

XML 1.1 Bible
3rd Edition

Elliotte Rusty Harold

01 549863 FM.qxd 1/28/04 9:43 AM Page iii

01 549863 FM.qxd 1/28/04 9:43 AM Page ii

XML 1.1 Bible

3rd Edition

01 549863 FM.qxd 1/28/04 9:43 AM Page i

01 549863 FM.qxd 1/28/04 9:43 AM Page ii

XML 1.1 Bible
3rd Edition

Elliotte Rusty Harold

01 549863 FM.qxd 1/28/04 9:43 AM Page iii

XML 1.1 Bible, 3rd Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright  2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-4986-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

3O/RT/QS/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS
A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS
IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2004101453

Trademarks: Wiley and and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

549863 FM.qxd 2/3/04 10:41 PM Page iv

About the Author
Elliotte Rusty Harold is an internationally respected writer, programmer, and
educator, both on the Internet and off. He got his start writing FAQ lists for the
Macintosh newsgroups on Usenet and has since branched out into books, Web
sites, and newsletters. He’s an adjunct professor of computer science at
Polytechnic University in Brooklyn, New York. His Cafe con Leche Web site at
http://www.cafeconleche.org/ has become one of the most popular indepen-
dent XML sites on the Internet.

Elliotte is originally from New Orleans, to which he returns periodically in search of
a decent bowl of gumbo. However, he currently resides in the Prospect Heights
neighborhood of Brooklyn with his wife Beth, and his cats Charm (named after the
quark) and Marjorie (named after his mother-in-law). When not writing books, he
enjoys working on genealogy, mathematics, free software, and quantum mechanics.
His previous books include The Java Developer’s Resource, Java Network
Programming, Java Secrets, JavaBeans, Java I/O, XML: Extensible Markup Language,
XML in a Nutshell, Processing XML with Java, and Effective XML.

01 549863 FM.qxd 1/28/04 9:43 AM Page v

Credits
Acquisitions Editor
Jim Minatel

Development Editor
Marcia Ellett

Technical Editor
David Schultz

Production Editor
Angela Smith

Copy Editor
Joanne Slike

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists
Joyce Haughey
Jennifer Heleine
Kristin McMullan
Heather Ryan
Mary Gillot Virgin

Quality Control Technicians
Laura Albert
Susan Moritz
Carl William Pierce

Permissions Editor
Laura Moss

Media Development Specialist
Greg Stafford

Proofreading and Indexing
TECHBOOKS Production Services

01 549863 FM.qxd 1/28/04 9:43 AM Page vi

Preface

Welcome to the third edition of the XML 1.1 Bible. When the first edition was
published about five years ago, XML was a promising technology with a

small but growing niche. In the last half decade, it has absolutely exploded. XML no
longer needs to be justified as a good idea. In fact, the question developers are ask-
ing has changed from “Why XML?” to “Why not XML?” XML has become the data
format of choice for fields as diverse as stock trading and graphic design. More new
programs today are using XML than aren’t. A solid understanding of just what XML
is and how to use it has become a sine qua non for the computer literate.

The XML 1.1 Bible, 3rd Edition is your introduction to the exciting and fast-growing
world of XML. With this book, you’ll learn how to write documents in XML and how
to use style sheets to convert those documents into HTML so that legacy browsers
can read them. You’ll also learn how to use document type definitions (DTDs) and
schemas to describe and validate documents. You’ll encounter a variety of XML
applications in many domains, ranging from finance to vector graphics to geneal-
ogy. And you’ll learn how to take advantage of XML for your own unique projects,
programs, and web pages.

What’s New in the Third Edition
The French philosopher and mathematician Blaise Pascal once wrote in a letter, “I
have only made this longer because I have not had the time to make it shorter.” I
know how he felt. The first edition of the XML Bible was written under great time
pressure, was finished well after deadline, and totaled more than 1000 pages, the
largest book I had written up to that point. My favorite reader comment about that
edition was, “It would seem to me that if you asked the author to write 10,000 words
about the colour blue, he would be able to do it without breaking into a sweat.”
While I probably could write 10,000 words about blue, for the third edition, I did try
to restrain myself and take the time to write more concisely. I rewrote the book
from the ground up; and while I retained the basic flavor and outline that proved so
popular with the first edition, I tightened up the writing and cut many examples
down to size. With the benefit of five years of hindsight, I have also been able to
expand coverage of promising new technologies (schemas, XInclude, XHTML, SVG,
XML Base, and RDDL) while eliminating coverage of applications that proved to be
less useful than they initially appeared (WML, VML, CDF, HTML+TIME, RDF, and so
on). The result is a more concise, approachable volume that covers more of what
you need to know and less of what you don’t. If you liked the first or second edition,
you’re going to like the third edition even more. I’m confident you’ll find this an
even more useful tutorial and reference.

01 549863 FM.qxd 1/28/04 9:43 AM Page vii

viii Preface

Who You Are
Unlike most other XML books on the market, the XML 1.1 Bible, 3rd Edition dis-
cusses XML from the perspective of a web page author, not from the perspective of
a software developer. I don’t spend a lot of time discussing BNF grammars or pars-
ing element trees. Instead, I show you how you can use XML and existing tools
today to more efficiently produce attractive, exciting, easy-to-use, easy-to-maintain
web sites that keep your readers coming back for more.

This book is aimed directly at web site developers. I assume you want to use XML
to produce web sites that are difficult or impossible to create with raw HTML. You’ll
be amazed to discover that in conjunction with style sheets and a few free tools,
XML enables you to do things that previously required either custom software cost-
ing thousands of dollars per site or extensive knowledge of programming languages
such as Perl. None of the software discussed in this book will cost you more than a
few minutes of download time. None of the tricks require any programming.

What You Need to Know
XML does build on top of the underlying infrastructure of the Internet and the Web.
Consequently, I will assume you know how to FTP files, send e-mail, and load URLs
into your web browser of choice. I will also assume you have a reasonable knowl-
edge of HTML. On the other hand, when I discuss newer aspects of HTML that are
not yet in widespread use, such as Cascading Style Sheets, I discuss them in depth.

To be more specific, in this book I assume that you can do the following:

✦ Write a basic HTML page, including links, images, and text, using a text editor.

✦ Place that page on a web server.

On the other hand, I do not assume that you

✦ Know SGML. In fact, this preface is almost the only place in the entire book
you’ll see the word SGML used. XML is supposed to be simpler and more
widespread than SGML. It can’t be that if you have to learn SGML first.

✦ Are a programmer, whether of Java, Perl, C, or some other language. XML is a
markup language, not a programming language. You don’t need to be a pro-
grammer to write XML documents.

01 549863 FM.qxd 1/28/04 9:43 AM Page viii

ixPreface

What You’ll Learn
This book has one primary goal: to teach you to write XML documents for the Web.
Fortunately, XML has a decidedly flat learning curve, much like HTML (and unlike
SGML). As you learn a little, you can do a little. As you learn a little more, you can
do a little more. Thus, the chapters in this book build steadily on one another. They
are meant to be read in sequence. Along the way you’ll learn the following:

✦ How to author XML documents and deliver them to readers

✦ How semantic tagging makes XML documents easier to maintain and develop
than their HTML equivalents

✦ How to post XML documents on web servers in a form everyone can read

✦ How to make sure your XML is well formed

✦ How to write with international characters such as and Æ

✦ How to validate documents against DTDs and schemas

✦ How to build large documents from smaller parts using entities and XInclude

✦ How to merge different XML vocabularies with namespaces

✦ How to format your documents with CSS and XSL style sheets

✦ How to connect documents with XLinks and XPointers

In the final part of this book, you’ll see several practical examples of XML being
used for real-world applications, including the following:

✦ Web site design

✦ Schemas

✦ Vector graphics

✦ Genealogy

How the Book Is Organized
This book is divided into five parts:

I. Introducing XML

II. Document Type Definitions

III. Style Languages

IV. Supplemental Technologies

V. XML Applications

01 549863 FM.qxd 1/28/04 9:43 AM Page ix

x Preface

By the time you finish reading this book, you’ll be ready to use XML to create com-
pelling web pages.

Part I: Introducing XML
Part I (Chapters 1 through 6) begins with the history and theory behind XML and
the goals XML is trying to achieve. It shows you how the different pieces of the XML
equation fit together to enable you to create and deliver documents to readers.
You’ll see several compelling examples of XML applications to give you some idea
of the wide applicability of XML, including Scalable Vector Graphics (SVG), the
Open Financial Exchange (OFX), the Mathematical Markup Language (MathML), the
Extensible Forms Description Language (XFDL), and many others. Then you’ll learn
by example how to write XML documents with tags that you define that make sense
for your document. You’ll learn how to edit them in a text editor, attach style sheets
to them, and load them into a web browser such as Internet Explorer 5.0 or Mozilla.

Part II: Document Type Definitions
Part II (Chapters 7 through 11) focuses on document type definitions (DTDs). A
DTD specifies which elements are and are not allowed in an XML document, and the
exact context and structure of those elements. A validating parser can read a docu-
ment, compare it to its DTD, and report any mistakes it finds. DTDs enable docu-
ment authors to ensure that their work meets any necessary criteria.

In Part II, you’ll learn how to attach a DTD to a document, how to validate your doc-
uments against their DTDs, and how to write new DTDs that solve your own prob-
lems. You’ll learn the syntax for declaring elements, attributes, entities, and
notations. You’ll learn how to use entity declarations and entity references to build
both a document and its DTD from multiple, independent pieces. This allows you to
make long, hard-to-follow documents much simpler by separating them into related
modules and components. And you’ll learn how to use namespaces to mix together
different XML vocabularies in one document.

Part III: Style Languages
Part III (Chapters 12 through 16) teaches you everything you need to know about
style sheets. XML markup only specifies what’s in a document. Unlike HTML, it does
not say anything about what that content should look like. Instead, style shheets
provide all necessary information about an XML document’s appearance when
printed, viewed in a web browser, or otherwise displayed. Different style sheets can
be applied to the same document. You might, for example, want to use one style
sheet that specifies small fonts for printing, another one with larger fonts for on-
screen presentation, and a third with absolutely humongous fonts to project the
document on a wall at a seminar. You can change the appearance of an XML docu-
ment by choosing a different style sheet without touching the document itself.

01 549863 FM.qxd 1/28/04 9:43 AM Page x

xiPreface

Part III describes in detail the two style sheet languages in broadest use today,
Cascading Style Sheets (CSS) and the Extensible Stylesheet Language (XSL). CSS is a
simple style sheet language originally designed for use with HTML. It applies fixed
style rules to the contents of particular elements.

XSL, by contrast, is a more complicated and more powerful style language that can
apply styles to the contents of elements, as well as rearrange elements, add boiler-
plate text, and transform documents in almost arbitrary ways. XSL is divided into
two parts: a transformation language for converting XML trees to alternative trees,
and a formatting language for specifying the appearance of the elements of an
XML tree.

Part IV: Supplemental Technologies
Part IV (Chapters 17 through 20) introduces some XML-based languages and syn-
taxes that layer on top of basic XML to provide additional functionality and fea-
tures. XLink provides multidirectional hypertext links that are far more powerful
than the simple HTML <A> tag. XPointers introduce a new syntax you can attach to
the end of URLs to link not only to particular documents but also to particular parts
of particular documents. XInclude enables you to build large XML documents out of
multiple smaller XML documents. XML Schemas provide a more complete valida-
tions language that includes data typing and range checking. All of these can be
added to your own XML-based markup languages to extend their power and utility.

Part V: XML Applications
Part V (Chapters 21 to 25) demonstrates several practical uses of XML in different
domains. XHTML is a reformulation of HTML 4.0 as valid XML. RDDL is an XHTML-
and XLink-based language for documents containing meta-information placed at the
end of namespace URLs. Scalable Vector Graphics (SVG) is a standard XML format
for drawings recommended by the World Wide Web Consortium (W3C). Finally, a
completely new application is developed for genealogical data to show you not just
how to use XML tags and technologies, but why and when to choose them.
Combining all of these different applications, you’ll develop a good sense of how
XML applications are designed, built, and used in the real world.

What You Need
XML is a platform-independent technology. You’ll notice that screen shots in this
book have been captured from Windows, Mac OS 9, Mac OS X, and Linux. Almost all
the examples work equally well across all common platforms. You will need a web
browser that supports XML, such as Mozilla, Netscape 6.0 or later, or Internet
Explorer 6.0.

01 549863 FM.qxd 1/28/04 9:43 AM Page xi

xii Preface

Furthermore, much of the best software for working with XML is written in Java and
can run on multiple platforms. Much of this is freely available on the Internet. You
will need a Java 1.2 or later virtual machine. (Java 1.1 can do in a pinch.) You won’t
need to write any programs to use this book. You’ll just need it to run programs
written in Java.

How to Use This Book
This book is designed to be read more or less cover to cover. Each chapter builds
on the material in the previous chapters in a fairly predictable fashion. Of course,
you’re always welcome to skim over material that’s already familiar to you. I also
hope you’ll stop along the way to try out some of the examples and to write some
XML documents of your own. It’s important to learn not just by reading, but also by
doing. Before you get started, I’d like to make a couple of notes about grammatical
conventions used in this book.

Unlike HTML, XML is case-sensitive. <FATHER> is not the same as <Father> or
<father>. The father element is not the same as the Father element or the
FATHER element. Unfortunately, case-sensitive markup languages have an annoying
habit of conflicting with standard English usage. On rare occasion, this means that
you may encounter sentences that don’t begin with a capital letter. More commonly,
you’ll see capitalization used in the middle of a sentence where you wouldn’t
normally expect it. Please don’t get too bothered by this. All XML and HTML code
used in this book is placed in a monospaced font, so most of the time it will be
obvious from the context what is meant.

I have also adopted the British convention of placing punctuation inside quote
marks only when it belongs with the material quoted. Frankly, although I learned to
write in the American educational system, I find the British system far more logical,
especially when dealing with source code where the difference between a comma
or a period and no punctuation at all can make the difference between perfectly
correct and perfectly incorrect code.

What the Icons Mean
Throughout the book, I’ve used icons in the left margin to call your attention to
points that are particularly important.

Note icons provide supplemental information about the subject at hand, but gen-
erally something that isn’t quite the main idea. Notes are often used to elaborate
on a detailed technical point.

Note

01 549863 FM.qxd 1/28/04 9:43 AM Page xii

xiiiPreface

Tip icons indicate a more efficient way of doing something, or a technique that may
not be obvious.

Caution icons warn you of a common misconception or that a procedure doesn’t
always work quite like it’s supposed to. The most common reason for a Caution
icon in this book is to point out the difference between what a specification says
should happen and what actually does.

The Cross-Reference icon refers you to other chapters that have more to say about
a particular subject.

Reach Out
Feedback on past editions has had a significant positive effect on the structure and
content of this edition, and I encourage you to let me know what you think of it so I
can continue to improve future editions. After you have had a chance to read this
book, please take a moment to send me an e-mail at elharo@metalab.unc.edu. Be
sure to include the title of this book in your e-mail. Please be honest in your evalua-
tion. If you thought a particular chapter didn’t tell you enough, let me know. Of
course, I would prefer to receive comments such as “This is the best book I’ve ever
read,” “Thanks to this book, my web site won Cool Site of the Year,” or “Because I
was reading this book on the beach, I met a stunning swimsuit model who thought I
was the hottest thing on feet,” but I’ll take any comments I can get. J

You should also feel free to send me specific questions regarding the material in
this book. I’ll do my best to help you out and answer your questions, but I can’t
guarantee a reply. Generally, more specific questions (How do I change the value of
a variable in XSLT?) are more likely to receive timely, useful answers than very
generic, broad questions (How is XML used in the legal profession?).

Also, I invite you to visit my Cafe con Leche web site at http://www.cafeconleche.
org, which contains a lot of XML-related material and is updated almost daily. Despite
my persistent efforts to make this book perfect, some errors have doubtless slipped
by. Even more certainly, some of the material discussed here will change over time. I’ll
post any necessary updates and errata on my web site at http://www.cafeconleche.
org/books/bible3/. Please let me know via e-mail of any errors that you find that
aren’t already listed.

I hope you enjoy the book. Happy XMLing!

Elliotte Rusty Harold
elharo@metalab.unc.edu
http://www.cafeconleche.org
New York City, December 11, 2003

Cross-
Reference

Caution

Tip

01 549863 FM.qxd 1/28/04 9:43 AM Page xiii

01 549863 FM.qxd 1/28/04 9:43 AM Page xiv

Acknowledgments

The folks at Wiley Publishing have all been great. The acquisitions editors, John
Osborn, Grace Buechlein on the second edition, and Jim Minatel on this edi-

tion deserve special thanks for arranging the unusual scheduling this book required
to hit the moving target that XML presents. Marcia Ellett shepherded this book
through the development process. She managed the shifting outline and schedule
that a book based on unstable specifications and software requires with poise and
grace. Angela Smith proved equally adept on shepherding this book through its
final production. Terri Varveris edited the first edition and Sharon Nash the second
edition. Without them, there could never have been a third edition.

Steven Champeon brought his SGML experience to the book, and provided many
insightful comments on the text. My brother, Thomas Harold, put his command of
chemistry at my disposal when I was trying to grasp the Chemical Markup
Language. Carroll Bellau provided me with the parts of my family tree, which you’ll
find in Chapter 18. Piroz Mohseni and Heather Williamson served as technical edi-
tors on the first edition and corrected many of my errors. Ken Cox performed the
same service for the second edition, and B.K. Delong for the Gold edition. David
Schultz stepped up to the plate for this edition.

I also greatly appreciate all the comments, questions, and corrections sent in by
readers of the first and second editions and XML: Extensible Markup Language. I
hope that I’ve managed to address most of those comments in this book. They’ve
definitely helped make the XML 1.1 Bible, 3rd Edition a better book. Particular
thanks are due to Michael Dyck, Alan Esenther, and Donald Lancon, Jr. for their
especially detailed comments.

The agenting talents of David and Sherry Rogelberg of the Studio B Literary Agency
(http://www.studiob.com/) have made it possible for me to write effectively full-
time. I recommend them highly to anyone thinking about writing computer books.
And, as always, thanks go to my wife, Beth, for her endless love and understanding.

01 549863 FM.qxd 1/28/04 9:43 AM Page xv

Contents at a Glance
Preface . vii
Acknowledgments . xv

Part I: Introducing XML . 1
Chapter 1: An Eagle’s Eye View of XML . 3
Chapter 2: XML Applications . 17
Chapter 3: Your First XML Document . 55
Chapter 4: Structuring Data . 63
Chapter 5: Attributes, Empty-Element Tags, and XSL 103
Chapter 6: Well-formedness . 145

Part II: Document Type Definitions . 187
Chapter 7: Validity . 189
Chapter 8: Element Declarations . 205
Chapter 9: Attribute Declarations . 229
Chapter 10: Entity Declarations . 249
Chapter 11: Namespaces . 287

Part III: Style Languages . 309
Chapter 12: CSS Style Sheets . 311
Chapter 13: CSS Layouts . 335
Chapter 14: CSS Text Styles . 381
Chapter 15: XSL Transformations . 423
Chapter 16: XSL Formatting Objects . 507

01 549863 FM.qxd 1/28/04 9:43 AM Page xvi

Part IV: Supplemental Technologies 577
Chapter 17: XLinks . 579
Chapter 18: XPointers . 617
Chapter 19: XInclude . 647
Chapter 20: Schemas . 667

Part V: XML Applications . 731
Chapter 21: XHTML . 733
Chapter 22: Modular XHTML . 787
Chapter 23: The Resource Directory Description Language 833
Chapter 24: Scalable Vector Graphics . 849
Chapter 25: Designing a New XML Application 907

Index . 983

01 549863 FM.qxd 1/28/04 9:43 AM Page xvii

01 549863 FM.qxd 1/28/04 9:43 AM Page xviii

Contents
Preface . vii

Acknowledgments . xv

Part I: Introducing XML 1

Chapter 1: An Eagle’s Eye View of XML 3
What Is XML? . 3

XML is a meta-markup language . 3
XML describes structure and semantics, not formatting 5

Why Are Developers Excited About XML? . 6
Domain-specific markup languages . 6
Self-describing data . 7
Interchange of data among applications 8
Structured data . 8

The Life of an XML Document . 9
Editors . 9
Parsers and processors . 10
Browsers and other applications . 10
The process summarized . 10

Related Technologies . 11
HTML . 11
CSS . 12
XSL . 12
URLs and URIs . 13
XLinks and XPointers . 14
Unicode . 15
Putting the pieces together . 15

Summary . 16

Chapter 2: XML Applications . 17
What Is an XML Application? . 17

Chemical Markup Language . 18
Mathematical Markup Language . 19
RSS . 22
Classic literature . 25
Synchronized Multimedia Integration Language 26

01 549863 FM.qxd 1/28/04 9:43 AM Page xix

xx Contents

Open Software Description . 26
Scalable Vector Graphics . 27
MusicXML . 29
VoiceXML . 34
Open Financial Exchange . 36
Extensible Forms Description Language 36
HR-XML . 40

XML for XML . 43
XSL . 43
XLinks . 44
Schemas . 45

Behind-the-Scene Uses of XML . 46
Microsoft Office 2003 . 46
Netscape’s What’s Related . 49
UPS . 52

Summary . 54

Chapter 3: Your First XML Document 55
Hello XML . 55

Creating a simple XML document . 56
Saving the XML file . 56
Loading the XML file into a web browser 57

Exploring the Simple XML Document . 58
Meaning in Markup . 59
Writing a Style Sheet for an XML Document 60
Attaching a Style Sheet to an XML Document 61
Summary . 62

Chapter 4: Structuring Data . 63
Examining the Data . 64
XMLizing the Data . 67
The Advantages of the XML Format . 87
Preparing a Style Sheet for Document Display 88

Linking to a style sheet . 89
Assigning style rules to the root element 90
Assigning style rules to titles . 91
The complete style sheet . 98

Summary . 101

Chapter 5: Attributes, Empty-Element Tags, and XSL 103
Attributes . 103
Attributes versus Elements . 109

Structured metadata . 109
Meta-metadata . 113

01 549863 FM.qxd 1/28/04 9:43 AM Page xx

xxiContents

What’s your metadata is someone else’s data 113
Elements are more extensible . 114
Good times to use attributes . 114

Empty Elements and Empty-Element Tags 116
XSL . 119

Templates . 120
The body of the document . 121
The title . 123
Stations . 126
Shows . 129
Sorting . 134
Tables . 137
CSS or XSL? . 143

Summary . 144

Chapter 6: Well-formedness . 145
Well-formedness Rules . 145
XML Documents . 146

The XML declaration . 147
Single root element . 148

Text in XML . 148
Elements and Tags . 149

Element names . 149
Every start-tag must have a corresponding end-tag 150
Empty-element tags . 151
Elements may nest but may not overlap 152

Attributes . 154
Attribute names . 154
Attribute values . 154
Predefined attributes . 155

Entity References . 160
Comments . 162
Processing Instructions . 164
CDATA Sections . 165
Unicode . 167

Character encodings . 168
The encoding declaration . 168
Numeric character references . 169

XML 1.1 . 171
Well-formed HTML . 173

Rules for HTML . 173
Tools . 183

Summary . 185

01 549863 FM.qxd 1/28/04 9:43 AM Page xxi

xxii Contents

Part II: Document Type Definitions 187

Chapter 7: Validity . 189
Document Type Definitions . 189
Element Declarations . 190
DTD Files . 192
Document Type Declarations . 192

Internal DTDs . 194
Internal and external DTD subsets . 195
Public DTDs . 196
DTDs and style sheets . 197

Validating against a DTD . 199
Command-line validators . 200
Web-based validators . 201

Summary . 203

Chapter 8: Element Declarations . 205
Analyzing the Document . 205
ANY . 208
#PCDATA . 211
Child Elements . 213

+ One or More Children . 215
? Zero or One Child . 215
* Zero or More Children . 216
Choices . 216
Parentheses . 217

Mixed Content . 220
Empty Elements . 221
Comments in DTDs . 223
Summary . 227

Chapter 9: Attribute Declarations . 229
What Is an Attribute? . 229
Declaring Attributes . 230
Declaring Multiple Attributes . 231
Alternatives to Default Attribute Values . 232

#REQUIRED . 232
#IMPLIED . 233
#FIXED . 234

Attribute Types . 235
The CDATA attribute type . 235
The NMTOKEN attribute type . 236

01 549863 FM.qxd 1/28/04 9:43 AM Page xxii

xxiiiContents

The NMTOKENS attribute type . 236
The enumerated attribute type . 237
The ID attribute type . 238
The IDREF attribute type . 238
The IDREFS attribute type . 239
The ENTITY attribute type . 240
The ENTITIES attribute type . 241
The NOTATION attribute type . 241

A DTD for Attribute-Based Television Listings 242
Declaring SCHEDULE attributes . 243
Declaring STATION attributes . 243
Declaring SHOW attributes . 244
Declaring person attributes . 245
The complete DTD for the television listings example 246

Summary . 248

Chapter 10: Entity Declarations . 249
What Is an Entity? . 249
Internal General Entities . 250

Defining an internal general entity reference 251
Using general entity references in the DTD 254
Predefined general entity references 255

External General Entities . 256
Text declarations . 258
Nonvalidating parsers . 260

Internal Parameter Entities . 260
External Parameter Entities . 263
Building a Document from Pieces . 269
Non-XML Data . 274

Notations . 275
Unparsed entities . 278

Conditional Sections . 283
Summary . 284

Chapter 11: Namespaces . 287
The Need for Namespaces . 287
Namespace Syntax . 289

Defining namespaces with xmlns attributes 291
Multiple namespaces . 294
Attributes . 298
Default namespaces . 300

Namespaces and Validity . 304
Summary . 307

01 549863 FM.qxd 1/28/04 9:43 AM Page xxiii

xxiv Contents

Part III: Style Languages 309

Chapter 12: CSS Style Sheets . 311
What Are Cascading Style Sheets? . 311

A simple CSS style sheet . 312
Comments . 312
Attaching style sheets to documents 313
DTDs and style sheets . 316
CSS1 versus CSS2 . 316
CSS3 . 317

Selecting Elements . 317
The universal selector . 320
Grouping selectors . 320
Hierarchy selectors . 321
Attribute selectors . 323
ID selectors . 324
Pseudo-elements . 324
Pseudo-classes . 326

Inheritance . 328
Cascades . 329
Different Rules for Different Media . 330
Importing Style Sheets . 332
Character Sets . 333
Summary . 333

Chapter 13: CSS Layouts . 335
CSS Units . 335

Length values . 337
URL values . 339
Color values . 340
System colors . 341
Keyword values . 343
Strings . 343

The Display Property . 343
Inline elements . 347
Block elements . 348
None . 348
Compact and run-in elements . 350
Marker . 350
Tables . 350
List items . 351

Box Properties . 356
Margin properties . 356
Border properties . 358
Padding properties . 363

01 549863 FM.qxd 1/28/04 9:43 AM Page xxiv

xxvContents

Size . 364
The width and height properties . 365
The min-width and min-height properties 367
The max-width and max-height properties 367
The overflow property . 368

Positioning . 369
The position property . 369
Stacking elements with the z-index property 373
The float property . 373
The clear property . 374

Formatting Pages . 375
@page . 375
The size property . 376
The margin property . 376
The mark property . 377
The page property . 377
Controlling page breaks . 377
Widows and orphans . 379

Summary . 379

Chapter 14: CSS Text Styles . 381
Fonts . 381

Choosing the font family . 382
Choosing the font style . 384
Small caps . 385
Setting the font weight . 385
Setting the font size . 386
The font shorthand property . 390

Color . 392
Text . 392

Word spacing . 393
The letter-spacing property . 394
The text-decoration property . 395
The vertical-align property . 396
The text-transform property . 397
The text-align property . 398
The text-indent property . 399
The line-height property . 400
The white-space property . 402

Backgrounds . 404
The background-color property . 404
The background-image property . 405
The background-repeat property . 406
The background-attachment property 408
The background-position property 409
The background shorthand property 413

01 549863 FM.qxd 1/28/04 9:43 AM Page xxv

xxvi Contents

Visibility . 413
Content . 414

Quotes . 415
Attributes . 416
URIs . 416
Counters . 417

Summary . 421

Chapter 15: XSL Transformations . 423
What Is XSL? . 423
Overview of XSL Transformations . 424

Trees . 424
XSLT style sheet documents . 428
Where does the XML transformation happen? 430
Using xsltproc . 430
Browser display of XML files with XSLT style sheets 433

XSL Templates . 434
The xsl:apply-templates element . 435
The select attribute . 437

Computing the Value of a Node with xsl:value-of 437
Processing Multiple Elements with xsl:for-each 439
Patterns for Matching Nodes . 440

Matching the root node . 440
Matching element names . 442
Wildcards . 444
Matching children with / . 445
Matching descendants with // . 446
Matching by ID . 447
Matching attributes with @ . 447
Matching comments with comment() 449
Matching processing instructions with processing-instruction() . . . 450
Matching text nodes with text() . 451
Using the or operator | . 451
Testing with [] . 452

XPath Expressions for Selecting Nodes . 454
Node axes . 455
Expression types . 461

The Default Template Rules . 471
The default rule for elements . 471
The default rule for text nodes and attributes 472
The default rule for processing instructions and comments 472
Implications of the default rules . 473

Attribute Value Templates . 473
Deciding What Output to Include . 475

Inserting elements into the output with xsl:element 475
Inserting attributes into the output with xsl:attribute 476
Defining attribute sets . 477

01 549863 FM.qxd 1/28/04 9:43 AM Page xxvi

xxviiContents

Generating processing instructions with
xsl:processing-instruction . 478

Generating comments with xsl:comment 479
Generating text with xsl:text . 479

Copying the Context Node with xsl:copy 480
Counting Nodes with xsl:number . 482

Default numbers . 483
Number to string conversion . 485

Sorting Output . 486
Modes . 490
Defining Constants with xsl:variable . 492
Named Templates . 493
Passing Parameters to Templates . 495
Stripping and Preserving White Space . 496
Making Choices . 497

xsl:if . 498
xsl:choose . 498

Merging Multiple Style Sheets . 499
Importing with xsl:import . 499
Inclusion with xsl:include . 500

Output Methods . 500
XML Declaration . 501
Document Type Declaration . 502
Indentation . 503
CDATA sections . 504

Summary . 504

Chapter 16: XSL Formatting Objects 507
Formatting Objects and Their Properties 507

Formatting properties . 510
Transforming to formatting objects 514
Using FOP . 516

Page Layout . 518
The root element . 518
Simple page masters . 518
Regions . 520
Page sequences . 522
Page sequence masters . 530

Content . 533
Block-level formatting objects . 534
Inline formatting objects . 534
Table formatting objects . 535
Out-of-line formatting objects . 536

Leaders and Rules . 536
Graphics . 539

fo:external-graphic . 539
fo:instream-foreign-object . 541
Graphic properties . 544

01 549863 FM.qxd 1/28/04 9:43 AM Page xxvii

xxviii Contents

Links . 545
Lists . 547
Tables . 551
Inlines . 556
Footnotes . 557
Floats . 558
Formatting Properties . 559

The id property . 559
The language property . 559
Paragraph properties . 560
Character properties . 563
Sentence properties . 565
Area properties . 567

Summary . 575

Part IV: Supplemental Technologies 577

Chapter 17: XLinks . 579
XLinks versus HTML Links . 579
Linking Elements . 580
Declaring XLink Attributes in Document Type Definitions 582
Descriptions of the Remote Resource . 584
Link Behavior . 585

The xlink:show attribute . 585
The xlink:actuate attribute . 587

Extended Links . 589
Extended Link Syntax . 590
Arcs . 595
Out-of-Line Links . 601
XML Base . 607
Summary . 614

Chapter 18: XPointers . 617
Why XPointers? . 617
XPointer Examples . 618
A Concrete Example . 621
Location Paths, Steps, and Sets . 623
The Root Node . 625
Axes . 626

The child axis . 627
The descendant axis . 628
The descendant-or-self axis . 628
The parent axis . 628
The self axis . 628
The ancestor axis . 629

01 549863 FM.qxd 1/28/04 9:43 AM Page xxviii

xxixContents

The ancestor-or-self axis . 629
The preceding axis . 629
The following axis . 629
The preceding-sibling axis . 630
The following-sibling axis . 630
The attribute axis . 630
The namespace axis . 630

Node Tests . 631
Predicates . 633
Functions That Return Node-Sets . 635

id() . 636
here() . 637
origin() . 638

Points . 638
Ranges . 640

Range functions . 640
String ranges . 641

Child Sequences . 643
Summary . 644

Chapter 19: XInclude . 647
Use Cases for XInclude . 648
Non-Solutions . 651

DTDs . 651
Embedded XLinks . 652
Server-side includes . 653

The xinclude:include Element . 655
Validating Documents That Use XInclude 658
XPointers in XInclude . 660
Unparsed Text . 662
Fallbacks . 663
Summary . 665

Chapter 20: Schemas . 667
What’s Wrong with DTDs? . 667
What Is a Schema? . 669
The W3C XML Schema Language . 671
Hello Schemas . 671

The greeting schema . 672
Validating the document against the schema 673

Complex Types . 675
minOccurs and maxOccurs . 677
Element content . 680
Sharing content models . 682
Anonymous types . 683
Mixed content . 685

01 549863 FM.qxd 1/28/04 9:43 AM Page xxix

xxx Contents

Grouping . 686
The xsd:all Group . 688
Choices . 689
Sequences . 690

Simple Types . 690
Numeric data types . 692
Time data types . 695
XML data types . 696
String data types . 697
Binary types . 698
Miscellaneous data types . 699

Deriving Simple Types . 700
Deriving by restriction . 700
Facets . 702
Facets for strings: length, minLength, maxLength 702
The whiteSpace facet . 704
Facets for decimal numbers: totalDigits and fractionDigits 705
The enumeration facet . 705
The pattern facet . 707
Unions . 714
Lists . 714

Empty Elements . 715
Attributes . 716
Namespaces . 720

Schemas for default namespaces . 721
Multiple namespaces, multiple schemas 724

Annotations . 727
Summary . 728

Part V: XML Applications 731

Chapter 21: XHTML . 733
Why Validate HTML? . 733
Moving to XHTML . 735

Making the document well-formed XML 738
Making the document valid . 745
The strict DTD . 753
The frameset DTD . 767
HTML Tidy . 767
Setting the MIME media type . 771

What’s New in XHTML . 772
Character references . 772
Custom entity references defined in DTD 776
Encoding declarations . 781
The xml:lang attribute . 782
CDATA sections . 783

Summary . 785

01 549863 FM.qxd 1/28/04 9:43 AM Page xxx

xxxiContents

Chapter 22: Modular XHTML . 787
The Modules of XHTML . 787
A Sample DTD Module . 790

Element names . 793
Element-specific content models . 794
Generic content models . 795
Generic attribute models . 796
INCLUDE and IGNORE blocks . 796
Using XHTML entities in other applications 797

The Framework . 798
The notations framework module . 802
The data types framework module . 804
The namespace-qualified names module 805
The common attributes module . 807
The character entity modules . 808

The Driver DTD . 809
The Document Model . 816

The XHTML Basic document model 817
A minimal document model . 823

A Sample Schema Module . 828
Summary . 831

Chapter 23: The Resource Directory Description Language 833
What Does a Namespace URL Locate? . 834
The Solution . 835
The resource Element . 836
Natures . 843
Purposes . 845
Summary . 847

Chapter 24: Scalable Vector Graphics 849
What Is SVG? . 850

Scalability . 851
Vector versus bitmapped graphics 852

A Simple SVG Document . 852
Embedding SVG Pictures in Web Pages . 855
Simple Shapes . 858

The rect element . 859
The circle element . 861
The ellipse element . 862
The line element . 863
Polygons and polylines . 864

Paths . 866
Arcs . 869
Curves . 872

01 549863 FM.qxd 1/28/04 9:43 AM Page xxxi

xxxii Contents

Text . 873
Strings . 874
Text on a path . 876
Fonts and text styles . 878
Text spans . 879

Bitmapped Images . 879
Coordinate Systems and Viewports . 881

The viewport . 882
Coordinate systems . 883

Grouping Shapes . 888
Referencing Shapes . 889
Transformations . 892
Linking . 899
Metadata . 900
SVG Editors . 903
Summary . 904

Chapter 25: Designing a New XML Application 907
Organization of the Data . 907

Listing the elements . 909
Identifying the fundamental elements 909
Establishing relationships among the elements 912

Choosing a Namespace . 914
Persons . 915

A sample person . 915
The person DTD . 918
The person schema . 924

Families . 932
The family DTD . 933
The Family Schema . 935

Sources . 937
The Family Tree . 940

The Family Tree DTD . 946
The family tree schema . 948

Modularizing the DTDs . 950
Designing a Style Sheet for Family Trees . 960
A RDDL document for family trees . 968
Summary . 980

Index . 983

01 549863 FM.qxd 1/28/04 9:43 AM Page xxxii

Introducing XML
✦ ✦ ✦ ✦

In This Part

Chapter 1
An Eagle’s Eye
View of XML

Chapter 2
XML Applications

Chapter 3
Your First XML
Document

Chapter 4
Structuring Data

Chapter 5
Attributes,
Empty-Element Tags,
and XSL

Chapter 6
Well-formedness

✦ ✦ ✦ ✦

P A R T

II

02 549863 PP01.qxd 1/28/04 9:46 AM Page 1

02 549863 PP01.qxd 1/28/04 9:46 AM Page 2

An Eagle’s Eye
View of XML

This chapter introduces you to XML, the Extensible
Markup Language. It explains, in general terms, what

XML is and how it is used. It shows you how different XML
technologies work together, and how to create an XML docu-
ment and deliver it to readers.

What Is XML?
XML stands for Extensible Markup Language (often miscapi-
talized as eXtensible Markup Language to justify the acronym).
XML is a set of rules for defining semantic tags that break a
document into parts and identify the different parts of the doc-
ument. It is a meta-markup language that defines a syntax in
which other domain-specific markup languages can be written.

XML is a meta-markup language
The first thing you need to understand about XML is that it
isn’t just another markup language like HTML, TeX, or troff.
These languages define a fixed set of tags that describe a fixed
number of elements. If the markup language you use doesn’t
contain the tag you need, you’re out of luck. You can wait
for the next version of the markup language, hoping that it
includes the tag you need; but then you’re really at the mercy
of whatever the vendor chooses to include.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XML?

Why are developers
excited about XML?

The life of an XML
document

Related technologies

✦ ✦ ✦ ✦

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 3

4 Part I ✦ Introducing XML

XML, however, is a meta-markup language. It’s a language that lets you make up the
tags you need as you go along. These tags must be organized according to certain
general principles, but they’re quite flexible in their meaning. For example, if you’re
working on genealogy and need to describe family names, personal names, dates,
births, adoptions, deaths, burial sites, marriages, divorces, and so on, you can cre-
ate tags for each of these. You don’t have to force your data to fit into paragraphs,
list items, table cells, or other very general categories.

You can document the tags you create in a schema written in any of several lan-
guages, including document type definitions (DTDs) and the W3C XML Schema
Language. You’ll learn more about DTDs and schemas in Parts II and IV of this book.
For now, think of a schema as a vocabulary and a syntax for certain kinds of docu-
ments. For example, the schema for Peter Murray-Rust’s Chemical Markup Language
(CML) is a DTD that describes a vocabulary and a syntax for the molecular sciences:
chemistry, crystallography, solid-state physics, and the like. It includes tags for
atoms, molecules, bonds, spectra, and so on. Many different people in the field can
share this schema. Other schemas are available for other fields, and you can create
your own.

XML defines the meta syntax that domain-specific markup languages such as
MusicXML, MathML, and CML must follow. It specifies the rules for the low-level
syntax, saying how markup is distinguished from content, how attributes are
attached to elements, and so forth, without saying what these tags, elements, and
attributes are or what they mean. It gives the patterns that elements must follow
without specifying the names of the elements. For example, XML says that tags
begin with a < and end with a >. However, XML does not tell you what names must
go between the < and the >.

If an application understands this meta syntax, it at least partially understands all
the languages built from this meta syntax. A browser does not need to know in
advance each and every tag that might be used by thousands of different markup
languages. Instead, the browser discovers the tags used by any given document as
it reads the document or its schema. The detailed instructions about how to display
the content of these tags are provided in a separate style sheet that is attached
to the document.

For example, consider the three-dimensional Schrödinger equation:

XML means you don’t have to wait for browser vendors to catch up with your ideas.
You can invent the tags you need, when you need them, and tell the browsers how
to display these tags.

ih
∂ψ r, t

∂t
= – h2

2m∇2ψ r, t + V r ψ r, t

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 4

5Chapter 1 ✦ An Eagle’s Eye View of XML

XML describes structure and semantics,
not formatting
XML markup describes a document’s structure and meaning. It does not describe
the formatting of the elements on the page. You can add formatting to a document
with a style sheet. The document itself only contains tags that say what is in the
document, not what the document looks like.

By contrast, HTML encompasses formatting, structural, and semantic markup.
is a formatting tag that makes its content bold. is a semantic tag that
means its contents are especially important. <TD> is a structural tag that indicates
that the contents are a cell in a table. In fact, some tags can have all three kinds of
meaning. An <H1> tag can simultaneously mean 20-point Helvetica bold, a level 1
heading, and the title of the page.

For example, in HTML, a song might be described using a definition title, definition
data, an unordered list, and list items. But none of these elements actually have
anything to do with music. The HTML might look something like this:

<DT>Hot Cop
<DD> by Jacques Morali, Henri Belolo, and Victor Willis

 Jacques Morali
 PolyGram Records
 6:20
 1978
 Village People

In XML, the same data could be marked up like this:

<SONG>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Instead of generic tags such as <DT> and , this example uses meaningful tags
such as <SONG>, <TITLE>, <COMPOSER>, and <YEAR>. These tags didn’t come from
any preexisting standard or specification. I just made them up on the spot because
they fit the information I was describing. Domain-specific tagging has a number of
advantages, not the least of which is that it’s easier for a human to read the source
code to determine what the author intended.

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 5

6 Part I ✦ Introducing XML

XML markup also makes it easier for nonhuman automated computer software to
locate all of the songs in the document. A computer program reading HTML can’t
tell more than that an element is a DT. It cannot determine whether that DT repre-
sents a song title, a definition, or some designer’s favorite means of indenting text.
In fact, a single document might well contain DT elements with all three meanings.

XML element names can be chosen such that they have extra meaning in additional
contexts. For example, they might be the field names of a database. XML is far more
flexible and amenable to varied uses than HTML because a limited number of tags
don’t have to serve many different purposes. XML offers an infinite number of tags
to fill an infinite number of needs.

Why Are Developers Excited About XML?
XML makes easy many web-development tasks that are extremely difficult with
HTML, and it makes tasks that are impossible with HTML possible. Because XML is
extensible, developers like it for many reasons. Which reasons most interest you
depends on your individual needs, but once you learn XML, you’re likely to discover
that it’s the solution to more than one problem you’re already struggling with. This
section investigates some of the generic uses of XML that excite developers. In
Chapter 2, you’ll see some of the specific applications that have already been devel-
oped with XML.

Domain-specific markup languages
XML enables individual professions (for example, music, chemistry, human
resources) to develop their own domain-specific markup languages. Domain-specific
markup languages enable practitioners in the field to trade notes, data, and informa-
tion without worrying about whether or not the person on the receiving end has the
particular proprietary payware that was used to create the data. They can even send
documents to people outside the profession with a reasonable confidence that those
who receive them will at least be able to view the documents.

Furthermore, creating separate markup languages for different domains does not
lead to bloatware or unnecessary complexity for those outside the profession. You
may not be interested in electrical engineering diagrams, but electrical engineers are.
You may not need to include sheet music in your web pages, but composers do. XML
lets the electrical engineers describe their circuits and the composers notate their
scores, mostly without stepping on each other’s toes. Neither field needs special
support from browser manufacturers or complicated plug-ins, as is true today.

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 6

7Chapter 1 ✦ An Eagle’s Eye View of XML

Self-describing data
Much computer data from the last 40 years is lost, not because of natural disaster or
decaying backup media (though those are problems too, ones XML doesn’t solve),
but simply because no one bothered to document how the data formats. A Lotus 1-2-3
file on a 15-year-old 5.25-inch floppy disk might be irretrievable in most corporations
today without a huge investment of time and resources. Data in a less-known binary
format such as Lotus Jazz may be gone forever.

XML is, at a low level, an incredibly simple data format. It can be written in 100 per-
cent pure ASCII or Unicode text, as well as in a few other well-defined formats. Text
is reasonably resistant to corruption. The removal of bytes or even large sequences
of bytes does not noticeably corrupt the remaining text. This starkly contrasts with
many other formats, such as compressed data or serialized Java objects, in which
the corruption or loss of even a single byte can render the rest of the file unreadable.

At a higher level, XML is self-describing. Suppose you’re an information archaeologist
in the twenty-third century and you encounter this chunk of XML code on an old
floppy disk that has survived the ravages of time:

<PERSON ID=”p1100” SEX=”M”>
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME> McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE> </BIRTH>

<DEATH>
<DATE>9 Dec 1905</DATE> </DEATH>

</PERSON>

Even if you’re not familiar with XML, assuming you speak a reasonable facsimile of
twentieth-century English, you’ve got a pretty good idea that this fragment describes
a man named Judson McDaniel, who was born on February 21, 1834 and died on
December 9, 1905. In fact, even with gaps in or corruption of the data, you could
probably still extract most of this information. The same could not be said for a
proprietary, binary spreadsheet or word-processor format.

Furthermore, XML is very well documented. The World Wide Web Consortium
(W3C)’s XML specification and numerous books tell you exactly how to read XML
data. There are no secrets waiting to trip the unwary.

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 7

8 Part I ✦ Introducing XML

Interchange of data among applications
Because XML is nonproprietary and easy to read and write, it’s an excellent format
for the interchange of data among different applications. XML is not encumbered by
copyright, patent, trade secret, or any other sort of intellectual property restrictions.
It has been designed to be extremely expressive and very well structured while at
the same time being easy for both human beings and computer programs to read
and write. Thus, it’s an obvious choice for exchange languages.

One such format is the Open Financial Exchange 2.0 (OFX, http://www.ofx.net/).
OFX is designed to let personal finance programs, such as Microsoft Money and
Quicken, trade data. The data can be sent back and forth between programs and
exchanged with banks, brokerage houses, credit card companies, and the like.

OFX is further discussed in Chapter 2.

By choosing XML instead of a proprietary data format, you can use any tool that
understands XML to work with your data. You can even use different tools for differ-
ent purposes, one program to view and another to edit, for example. XML keeps you
from getting locked into a particular program simply because that’s what your data
is already written in, or because that program’s proprietary format is all your corre-
spondent can accept.

For example, many publishers require submissions in Microsoft Word. This means
that most authors have to use Word, even if they would rather use OpenOffice.org
Writer or WordPerfect. This makes it extremely difficult for any other company to
publish a competing word processor unless it can read and write Word files. To do
so, the company’s programmers must reverse-engineer the binary Word file format,
which requires a significant investment of limited time and resources. Most other
word processors have a limited ability to read and write Word files, but they generally
lose track of graphics, macros, styles, revision marks, and other important features.
Word’s document format is undocumented, proprietary, and constantly changing,
and thus Word tends to end up winning by default, even when writers would prefer
to use other, simpler programs. Word 2003 offers the option to save its documents
in an XML application called WordML instead of its native binary file format. It is far
easier to reverse-engineer an undocumented XML format than a binary format. In the
future, Word files will much more easily be exchanged among people using different
word processors.

Structured data
XML is ideal for large and complex documents because the data is structured. You
specify a vocabulary that defines the elements in the document, and you can specify
the relations between elements. For example, if you’re putting together a web page
of sales contacts, you can require every contact to have a phone number and an
e-mail address. If you’re inputting data for a database, you can make sure that no
fields are missing. You can even provide default values to be used when no data is
available.

Cross-
Reference

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 8

9Chapter 1 ✦ An Eagle’s Eye View of XML

XML also provides a client-side include mechanism that integrates data from multiple
sources and displays it as a single document. (In fact, it provides at least three differ-
ent ways of doing this, a source of some confusion.) The data can even be rearranged
on the fly. Parts of it can be shown or hidden depending on user actions. You’ll find
this extremely useful when you’re working with large information repositories like
relational databases.

The Life of an XML Document
XML is, at its root, a document format, a series of rules about what a document
looks like. There are two levels of conformity to the XML standard. The first is well-
formedness and the second is validity. Part I of this book shows you how to write
well-formed documents. Part II shows you how to write valid documents.

HTML is a document format that is designed for use on the Internet and inside web
browsers. XML can certainly be used for that, as this book demonstrates. However,
XML is far more broadly applicable. It can be used as a storage format for word
processors, as a data interchange format for different programs, as a means of
enforcing conformity with intranet templates, and as a way to preserve data in a
human-readable fashion.

However, like all data formats, XML needs programs and content before it’s useful.
It isn’t enough to just understand XML itself. That’s not much more than a specifica-
tion for what data should look like. You also need to know how XML documents are
edited, how processors read XML documents and pass the information they read
on to applications, and what these applications do with that data.

Editors
XML documents are most commonly created with an editor. This might be a basic
text editor, such as Notepad or vi, that doesn’t really understand XML at all. On the
other hand, it might be a completely WYSIWYG editor, such as Adobe FrameMaker,
that insulates you almost completely from the details of the underlying XML format.
Or it may be a structured editor, such as Visual XML (http://www.pierlou.com/
visxml/), that displays XML documents as trees. For the most part, the fancy editors
aren’t very useful as of yet, so this book concentrates on writing raw XML by hand
in a text editor.

Other programs can also create XML documents. For example, previous editions
of this book included several XML documents whose data came straight out of a
FileMaker database. In this case, the data was first entered into the FileMaker data-
base. Next, a FileMaker calculation field converted that data to XML. Finally, an
AppleScript program extracted the data from the database and wrote it as an XML
file. Similar processes can extract XML from MySQL, Oracle, and other databases
by using XML, Perl, Java, PHP, or any convenient language. In general, XML works
extremely well with databases.

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 9

10 Part I ✦ Introducing XML

In any case, the editor or other program creates an XML document. More often than
not, this document is an actual file on some computer’s hard disk, but it doesn’t
absolutely have to be. For example, the document might be a record or a field in
a database, or it might be a stream of bytes received from a network.

Parsers and processors
An XML parser (also known as an XML processor) reads the document and verifies
that the XML it contains is well formed. It may also check that the document is valid,
although this test is not required. The exact details of these tests are covered in
Part II. If the document passes the tests, the processor converts the document into
a tree of elements.

Browsers and other applications
Finally, the parser passes the tree or individual nodes of the tree to the client appli-
cation. If this application is a web browser such as Mozilla, the browser formats the
data and shows it to the user. But other programs may also receive the data. For
example, a database might interpret an XML document as input data for new records;
a MIDI program might see the document as a sequence of musical notes to play; a
spreadsheet program might view the XML as a list of numbers and formulas. XML is
extremely flexible and can be used for many different purposes.

The process summarized
To summarize, an XML document is created in an editor. The XML parser reads the
document and converts it into a tree of elements. The parser passes the tree to the
browser or other application that displays it. Figure 1-1 shows this process.

Figure 1-1: XML document life cycle

It’s important to note that all of these pieces are independent of and decoupled from
each other. The only thing that connects them is the XML document. You can change
the editor program independently of the end application. In fact, you may not always
know what the end application is. It might be an end user reading your work, it
might be a database sucking in data, or it might be something not yet invented. It
may even be all of these. The document is independent of the programs that read
and write it.

BrowserParserDocument displays
page to

is read by sends
data to

writes UserEditor

Tempest.xml
Txpad32.exe

T Xerces

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 10

11Chapter 1 ✦ An Eagle’s Eye View of XML

HTML is also somewhat independent of the programs that read and write it, but it’s
really only suitable for browsing. Other uses, such as database input, are beyond
its scope. For example, HTML does not provide a way to force an author to include
certain required content such as the ISBN in every book. XML enables you to do
this. You can even control the order in which particular elements appear (for
example, that level 2 headers must always follow level 1 headers).

Related Technologies
XML doesn’t operate in a vacuum. Using XML as more than a data format involves
several related technologies and standards, including the following:

✦ HTML for backward compatibility with legacy browsers

✦ The CSS and XSL style sheet languages to define the appearance of XML
documents

✦ URLs and URIs to specify the locations of XML documents

✦ XLinks to connect XML documents to each other

✦ The Unicode character set to encode the text of an XML document

HTML
Mozilla 1.0, Opera 4.0, Internet Explorer 5.0, and Netscape 6.0 and later provide some
(albeit incomplete) support for XML. However, it takes about two years before most
users have upgraded to a particular release of the software (in 2004, my wife still
uses Netscape 4 on her Mac at work), so you’re going to need to convert your XML
content into classic HTML for some time to come.

Therefore, before you jump into XML, you should be completely comfortable with
HTML. You don’t need to be a hotshot graphical designer, but you should know how
to link from one page to the next, how to include an image in a document, how to
make text bold, and so forth. Because HTML is the most common output format of
XML, the more familiar you are with HTML, the easier it will be to create the effects
you want.

On the other hand, if you’re accustomed to using tables or single-pixel GIFs to
arrange objects on a page, or if you begin planning a web site by sketching out its
design in Photoshop, you’re going to have to unlearn some bad habits. As previously
discussed, XML separates the content of a document from the appearance of the
document. You develop the content first, and then design a style sheet that formats
the content. Separating content from presentation is an extremely effective technique
that improves both the content and the appearance of the document. Among other
things, it enables authors, programmers, and designers to work more independently
of each other. However, it does require a different way of thinking about the design
of a web site, and perhaps even the use of different project management techniques
when multiple people are involved.

Note

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 11

12 Part I ✦ Introducing XML

CSS
Because XML allows arbitrary tags in a document, the browser has no way to know
in advance how each element should be displayed. When you send a document to a
user, you also need to send along a style sheet that tells the browser how to format
the tags you’ve used. One kind of style sheet you can use is a CSS style sheet.

Cascading style sheets, initially invented for HTML, define formatting properties such
as font size, font family, font weight, paragraph indentation, paragraph alignment,
and other styles that can be applied to particular elements. For example, CSS allows
HTML documents to specify that all H1 elements should be formatted in 32-point,
centered, Helvetica bold. Individual styles can be applied to most HTML tags that
override the browser’s defaults. Multiple style sheets can be applied to a single
document, and multiple styles can be applied to a single element. The styles then
cascade according to a particular set of rules.

CSS rules and properties are explored in more detail in Chapters 12, 13, and 14.

Mozilla, Opera 4.0, Netscape 6.0, and Internet Explorer 5.0 and later can display
XML documents with associated CSS style sheets. They differ a little in how many
CSS properties they support and how well they support them.

XSL
The Extensible Stylesheet Language (XSL) is a more powerful style language designed
specifically for XML documents. XSL style sheets are themselves well-formed XML
documents. XSL is actually two different XML applications:

✦ XSL Transformations (XSLT)

✦ XSL Formatting Objects (XSL-FO)

Generally, an XSLT style sheet describes a transformation from an input XML docu-
ment in one format to an output XML document in another format. That output
format can be XSL-FO, but it can also be any other text format (XML or otherwise),
such as HTML, plain text, or TeX.

An XSLT style sheet contains templates that match particular patterns of XML ele-
ments. An XSLT processor reads an XML document and an XSLT style sheet and
compares the elements it finds in the document to the patterns in the style sheet.
When the processor recognizes a pattern from the XSLT style sheet in the input
XML document, it instantiates the template and outputs the resulting text. Unlike
cascading style sheets, this output text is somewhat arbitrary and is not limited to
the input text plus formatting information. It depends on the instructions in the
template.

Cross-
Reference

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 12

13Chapter 1 ✦ An Eagle’s Eye View of XML

A CSS style sheet can only change the format of a particular element, and it can
only do so on an element-wide basis. An XSLT style sheet, on the other hand, can
rearrange and reorder elements. It can hide some elements and display others.
Furthermore, it can choose the style to use based not just on the element name, but
also on the contents and attributes of the element, on the position of the element in
the document relative to other elements, and on a variety of other criteria.

XSLT is introduced in Chapter 5 and explored in detail in Chapter 15.

XSL-FO is an XML application that describes the layout of a page. It specifies where
particular text is placed on the page in relation to other items on the page. It also
assigns styles, such as italic, or fonts, such as Arial, to individual items on the page.
You can think of XSL-FO as a page description language like PostScript (minus
PostScript’s built-in, Turing-complete programming language).

XSL-FO is covered in Chapter 16.

Which style sheet language should you choose? CSS has the advantage of broader
browser support. However, XSL is far more flexible and powerful, and better suited
to XML documents. Furthermore, XML documents with XSLT style sheets can easily
be converted to HTML documents with CSS style sheets. XSL-FO is a little past the
bleeding edge, however. No browsers support it, and even third-party FO-to-PDF con-
verters such as FOP don’t support all of the current formatting object specification.

Which language you pick largely depends on your use case. If you want to serve
XML files directly to clients and use their CPU power to format and transform the
documents, you really need to be using CSS (and even then, the clients had better
have very up-to-date browsers). On the other hand, if you want to support older
browsers, you’re better off converting documents to HTML on the server using XSLT,
and sending the browsers pure HTML. For high-quality printing, you’re better off with
XSLT plus XSL-FO. An advantage of XML is that it’s quite easy to do all of this at the
same time. You can change the style sheet and even the style sheet language you
use without changing the XML documents that contain your content.

URLs and URIs
XML documents can live on the Web, just like HTML and other documents. When
they do, they are referred to by Uniform Resource Locators (URLs). For example,
at the URL http://cafeconleche.org/examples/shakespeare/tempest.xml
you’ll find the complete text of Shakespeare’s Tempest marked up in XML.

Cross-
Reference

Cross-
Reference

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 13

14 Part I ✦ Introducing XML

Although URLs are well understood and well supported, the XML specification uses
the more general Uniform Resource Identifier (URI). URIs are a more general scheme
for locating resources; URIs focus a little more on the resource and a little less on the
location. Furthermore, they aren’t necessarily limited to resources on the Internet.
For example, the URI for this book is urn:isbn:0764549863. This doesn’t refer to
the specific copy you’re holding in your hands. It refers to the almost-Platonic form
of the third edition of the XML Bible shared by all individual copies.

In theory, a URI can find the closest copy of a mirrored document or locate a docu-
ment that has been moved from one site to another. In practice, URIs are still an area
of active research, and the only kinds of URIs that current software actually supports
are URLs.

XLinks and XPointers
As long as XML documents are posted on the Internet, people will want to link them
to each other. Standard HTML link tags can be used in XML documents, and HTML
documents can link to XML documents. For example, this HTML link points to the
aforementioned copy of the Tempest in XML:

<A HREF=
“http://cafeconleche.org/examples/shakespeare/tempest.xml”>
The Tempest by Shakespeare

Whether the browser can display this document if you follow the link depends on
just how well the browser handles XML files. Fourth-generation and earlier
browsers don’t handle them very well.

However, XML lets you go further with XLinks for linking to documents and XPointers
for addressing individual parts of a document.

XLinks enable any element to become a link, not just an A element. For example,
in XML, the preceding link might be written like this:

<PLAY xlink:type=”simple”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:href=

“http://cafeconleche.org/examples/shakespeare/tempest.xml”>
<TITLE>The Tempest</TITLE> by <AUTHOR>Shakespeare</AUTHOR>

</PLAY>

Furthermore, XLinks can be bidirectional, multidirectional, or even point-to-multiple
mirror sites from which the nearest is selected. XLinks use normal URLs to identify
the site to which they’re linking. As new URI schemes become available, XLinks will
be able to use those, too.

Note

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 14

15Chapter 1 ✦ An Eagle’s Eye View of XML

XLinks are discussed in Chapter 17.

XPointers allow links to point not just to a particular document at a particular loca-
tion, but to a particular part of a particular document. An XPointer can refer to a
particular element of a document; to the first, the second, or the seventeenth such
element; to the first element that’s a child of a given element; and so on. XPointers
provide extremely powerful connections between documents that do not require
the targeted document to contain additional markup just so its individual pieces
can be linked to another document.

Furthermore, unlike HTML anchors, XPointers don’t just refer to a point in a docu-
ment. They can point to ranges or spans. For example, an XPointer might be used
to select a particular part of a document so that it can be copied or loaded into a
program.

XPointers are discussed in Chapter 18.

Unicode
The Web is international, yet a disproportionate amount of the text you’ll find on
it is in English. XML is helping to change that. XML provides full support for the
Unicode character set. This character set supports almost every character that is
commonly used in every modern script on Earth.

Unfortunately, XML and Unicode alone are not enough to enable you to read and
write Russian, Arabic, Chinese, and other languages written in non-Roman scripts.
To read and write a language on your computer, it needs three things:

1. A character set for the script in which the language is written

2. A font for the character set

3. An operating system and application software that understand the
character set

If you want to write in the script as well as read it, you’ll also need an input method
for the script. However, XML defines character references that allow you to use
pure ASCII to encode characters not available in your native character set. This is
sufficient for an occasional quote in Greek or Chinese, although you wouldn’t want
to rely on it to write a novel in another language.

Putting the pieces together
XML defines the syntax for the tags you use to mark up a document. An XML docu-
ment is marked up with XML tags. The default character set for XML documents is
Unicode.

Cross-
Reference

Cross-
Reference

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 15

16 Part I ✦ Introducing XML

Among other things, an XML document may contain hypertext links to other docu-
ments and resources. These links are created according to the XLink specification.
XLinks identify the documents that they’re linking to with URIs (in theory) or URLs
(in practice). An XLink may further specify the individual part of a document it’s
linking to. These parts are addressed via XPointers.

If an XML document is intended to be read by human beings — and not all XML
documents are — a style sheet provides instructions about how individual elements
are formatted. The style sheet may be written in any of several style sheet languages.
CSS and XSL are the two most popular style sheet languages, and the two best
suited to use with XML.

Summary
In this chapter, you’ve seen a high-level overview of what XML is and what it can do
for you. In particular, you learned the following:

✦ XML is a meta-markup language that enables the creation of markup languages
for particular documents and domains.

✦ XML tags describe the structure and semantics of a document’s content, not
the format of the content. The format is described in a separate style sheet.

✦ XML documents are created in an editor, read by a parser, and displayed by a
browser.

✦ XML on the Web rests on the foundations provided by HTML, CSS, and URLs.

✦ Numerous supporting technologies layer on top of XML, including XSL style
sheets, XLinks, and XPointers. These let you do more than you can accomplish
with just CSS and URLs.

The next chapter presents a number of XML applications that demonstrate the ways
that XML is being used in the real world. Examples include vector graphics, musical
notation, mathematics, chemistry, human resources, and more.

✦ ✦ ✦

03 549863 Ch01.qxd 1/28/04 9:46 AM Page 16

XML
Applications

This chapter investigates many examples of XML applica-
tions: publicly standardized markup languages, XML

applications that are used to extend and expand XML itself,
and some behind-the-scene uses of XML. It is inspiring to see
so many different uses for XML, because it shows just how
widely applicable XML is. Many more XML applications are
being created or ported from other formats every day.

What Is an XML Application?
XML is a meta-markup language for designing domain-specific
markup languages. Each specific XML-based markup language
is called an XML application. This is not an application that uses
XML, such as the Mozilla web browser, the Gnumeric spread-
sheet, or the XML Spy editor; instead, it is an application of
XML to a specific domain, such as Chemical Markup Language
(CML) for chemistry or GedML for genealogy.

Each XML application has its own semantics and vocabulary,
but the application still uses XML syntax. This is much like
human languages, each of which has its own vocabulary and
grammar, while adhering to certain fundamental rules imposed
by human anatomy and the structure of the brain.

XML is an extremely flexible format for text-based data. The
reason XML was chosen as the foundation for the wildly differ-
ent applications discussed in this chapter (aside from the hype
factor) is that XML provides a sensible, well-documented for-
mat that’s easy to read and write. By using this format for its
data, a program can offload a great quantity of detailed pro-
cessing to a few standard free tools and libraries. Furthermore,
it’s easy for such a program to layer additional levels of syntax
and semantics on top of the basic structure XML provides.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an XML
application?

XML for XML

Behind-the-scene
uses of XML

✦ ✦ ✦ ✦

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 17

18 Part I ✦ Introducing XML

Chemical Markup Language
Peter Murray-Rust’s Chemical Markup Language (CML) may have been the first
XML application. CML was originally developed as a Standard Generalized Markup
Language (SGML) application, and gradually transitioned to XML as the XML stan-
dard developed. In its most simplistic form, CML is “HTML plus molecules,” but it
has applications far beyond the limited confines of the Web.

Molecular documents often contain thousands of different, very detailed objects.
For example, a single medium-sized organic molecule might contain hundreds of
atoms, each with at least one bond and many with several bonds to other atoms in
the molecule. CML seeks to organize these complex chemical objects in a straight-
forward manner that can be understood, displayed, and searched by a computer.
CML can be used for molecular structures and sequences, spectrographic analysis,
crystallography, scientific publishing, chemical databases, and more. Its vocabulary
includes molecules, atoms, bonds, crystals, formulas, sequences, symmetries, reac-
tions, and other chemistry terms. For example, Listing 2-1 is a basic CML document
for water (H2O).

Listing 2-1: The Water Molecule H2O Described in CML

<?xml version=”1.0”?>
<cml xmlns=”http://www.xml-cml.org/schema/cml2/core”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=
“http://www.xml-cml.org/schema/cml2/core cmlCore.xsd”>

<molecule title=”Water”>
<atomArray>
<atom id=”a1” elementType=”H” hydrogenCount=”0”/>
<atom id=”a2” elementType=”O” hydrogenCount=”2”/>
<atom id=”a3” elementType=”H” hydrogenCount=”0”/>

</atomArray>
<bondArray>
<bond atomRefs2=”a1 a2” order=”1”/>
<bond atomRefs2=”a2 a3” order=”1”/>

</bondArray>
</molecule>

</cml>

CML has several advantages over more traditional approaches to managing chemical
data, such as the Protein Data Bank (PDB) format or MDL Molfiles. First, CML is easier
to search, especially for generic tools that don’t understand all the intricacies of a
particular format. It’s also more easily integrated with web sites, a crucial advan-
tage at a time when Internet preprints and discussion groups are rapidly replacing

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 18

19Chapter 2 ✦ XML Applications

traditional paper journals and scientific meetings. Finally, and most importantly,
because the underlying XML is platform-independent, CML avoids the platform-
dependency that has plagued the binary formats used by traditional chemical soft-
ware and document formats. All chemists can read and write CML files, regardless of
the hardware and software they’ve chosen to adopt.

Murray-Rust also created JUMBO, the first general-purpose XML browser. Figure 2-1
shows JUMBO 3 displaying a CML file. JUMBO works by assigning each XML ele-
ment to a Java class that knows how to render that element. To enable JUMBO to
support new elements, you simply write Java classes for those elements. JUMBO is
distributed with classes for displaying the basic set of CML elements, including
molecules, atoms, and bonds, and is available at http://www.xml-cml.org/.

Mathematical Markup Language
Legend claims that Tim Berners-Lee invented the World Wide Web and HTML at
CERN, the European Laboratory for Particle Physics, so that high-energy physicists
could exchange papers and preprints. Personally, I’ve never believed that story. I
grew up in physics, and while I’ve wandered back and forth between physics, applied
math, astronomy, and computer science over the years, one thing the papers in all
of these disciplines had in common was lots and lots of equations. Until XML, there
wasn’t a good way to include equations in web pages. There were a few hacks —
Java applets that parse a custom syntax, converters that turn LaTeX equations into
GIF images, custom browsers that read TeX files — but none produced high-quality
results, and none caught on with web authors, even in scientific fields. XML is
changing this.

The Mathematical Markup Language (MathML) is an XML application for mathemat-
ical equations. MathML is sufficiently expressive to handle most math from grammar-
school arithmetic through calculus and differential equations. Although there are a
few limits to MathML at the high end of pure mathematics and theoretical physics,
it is eloquent enough to handle almost all educational, scientific, engineering, busi-
ness, economics, and statistics needs. And MathML is likely to be expanded in the
future, so even the purest of the pure mathematicians and the most theoretical
of the theoretical physicists will be able to publish and do research on the Web.
MathML completes the development of the Web into a serious tool for scientific
research and communication (despite its long digression to make it suitable as a
new medium for advertising brochures).

Mozilla is just beginning to support MathML. Figure 2-2 shows Mozilla displaying the
covariant form of Maxwell’s equations written in MathML. Other common browsers
do not support it at all. However, plug-ins and Java applets that add this support
are available, such as IBM’s Tech Explorer (http://www.software.ibm.com/
techexplorer) and Design Science’s WebEQ (http://www.dessci.com/en/
products/webeq/).

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 19

20 Part I ✦ Introducing XML

Figure 2-1: The JUMBO browser displaying a CML file

Figure 2-2: Mozilla displaying the covariant form of Maxwell’s
equations written in MathML

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 20

21Chapter 2 ✦ XML Applications

Listing 2-2 contains the document Mozilla is displaying.

Listing 2-2: Maxwell’s Equations in MathML

<?xml version=”1.0”?>
<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN”
“http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Fiat Lux</title>
</head>
<body>
<p>And God said,</p>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<mrow>
<msub>
<mi>δ</mi>
<mi>α</mi>

</msub>
<msup>
<mi>F</mi>
<mi>αβ</mi>

</msup>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>

</mrow>
<mi>c</mi>

</mfrac>
<msup>
<mi>J</mi>
<mrow>
<mi>β</mi>

</mrow>
</msup>

</mrow>
</math>
<p>and there was light.</p>
</body>
</html>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 21

22 Part I ✦ Introducing XML

Listing 2-2 is an example of a mixed HTML/MathML page. The headers and para-
graphs of text (“Fiat Lux,” “Maxwell’s Equations,” “And God said,” “and there was
light”) are given in HTML. The equation is written in MathML, an XML application.

In general, such mixed pages require special support from the browser, as is the
case here, or perhaps plug-ins, ActiveX controls, or JavaScript programs that parse
and display the embedded XML data.

RSS
RSS (nobody can agree on exactly what, if anything, the acronym stands for) is a
simple XML format used for content syndication by numerous web sites ranging
from personal web logs to major newspapers to government agencies. It’s useful for
any site that wants to provide a continuing feed of new information to interested
readers. Until now, it’s mostly been used for web logs, but it’s beginning to find other
uses, including software updates, security bulletins, government regulations, court
decisions, art gallery openings, office calendars, and more.

The person or organization providing the information publishes an RSS document
at a well-known URL. Interested parties subscribe to this information using any of a
variety of clients. Normally, when the user launches the RSS client, it automatically
fetches the latest content from all the subscribed sites. Each item in the document
includes a headline, perhaps a description, and a link to the full story at the main
web site. Users can activate this link to load that site and story into their web
browser if they want to know more.

An RSS document is an XML file, separate from the HTML pages it describes. Those
pages normally provide a link to the RSS document, and the RSS document links
back to pages on the main site. However, users don’t read the RSS document in a
standard web browser. Instead, they use custom client programs. The RSS client’s
purpose is to aggregate many different RSS feeds from many different web sites so
readers can pick and choose the stories they want to read without having to visit
each site individually.

Listing 2-3 shows the RSS document from my Cafe au Lait web site from June 23, 2003.
You can see it contains a title, description, and various metadata about the site, such
as the copyright notice and the language. This is followed by two items, each of
which represents one story. Each item has a title, a longer description of the story,
and a link to the full story on the web site. Figure 2-3 shows this feed loaded into
NetNewsWire Lite. Also notice the other channels I’ve subscribed to in the left-hand
panel.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 22

23Chapter 2 ✦ XML Applications

Figure 2-3: The Café au Lait RSS feed in NetNewsWire Lite

Listing 2-3: The RSS Feed from Cafe au Lait

<?xml version=”1.0”?>
<rss version=”0.92”>
<channel>
<title>Cafe au Lait Java News and Resources</title>
<link>http://www.cafeaulait.org/</link>
<description>Cafe au Lait is the preeminent independent

source of Java information on the net. Unlike many other Java
sites, Cafe au Lait is neither beholden to specific companies
nor to advertisers. At Cafe au Lait you’ll find many resources
to help you develop your Java programming skills here
including daily news summaries, FAQ lists, tutorials, course
notes, examples, exercises, book reviews, user groups and
more.

</description>
<language>en-us</language>
<copyright>(c) 2003 Elliotte Rusty Harold</copyright>
<webMaster>elharo@metalab.unc.edu</webMaster>

Continued

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 23

24 Part I ✦ Introducing XML

Listing 2-3 (continued)


<item>
<title>The Eclipse Project has posted the first

milestone release of Eclipse 3.0, an open source integrated
development environment (IDE) for Java.

</title>
<description>

The Eclipse Project has posted the first milestone release of
Eclipse 3.0, an open source integrated development environment
(IDE) for Java. It also doubles as a base platform for your
own applications, an alternative to the AWT and Swing, and a
powerful floor wax and dessert topping. From my perspective,
the most important new feature in this release is much better
support for Mac OS X. This is planned to be back ported to an
upcoming 2.2.1 maintenance release so Mac users won’t have to
wait for the final 3.0 release currently scheduled for 2004.
Other new features are mostly minor. Overall this feels more
like a 2.2 than a full version shift.
</description>

<link>http://www.cafeaulait.org/#news2003June21</link>
</item>
<item>
<title>Richard Rodger has posted Jostraca 0.3.3, “a

general purpose code generation toolkit for software
developers.

</title>
<description>

Richard Rodger has posted Jostraca 0.3.3, “a general purpose
code generation toolkit for software developers. Code
generation helps save you time and effort by reducing
redundancy and drudge work. Code generation can be thought of
as programming by example. Show the computer an example of
what you want, and it does the rest. Jostraca generates code
using the Java Server Pages syntax. However this syntax can be
used with any language. Jostraca comes preconfigured for Java,
Perl, Python, Ruby, Rebol and C, with more to come.” Jostraca
is published under the GPL. Jostraca is written in Java, and
Java 1.2 or later is required.
</description>

<link>http://www.cafeaulait.org/#news2003June21</link>
</item>

</channel>
</rss>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 24

25Chapter 2 ✦ XML Applications

RSS is a good example of XML’s contribution to platform and application indepen-
dence. Thousands of sites now publish RSS data to millions of independent systems.
RSS clients are available for pretty much all modern desktop operating systems, writ-
ten in many different languages. No other format could have been as broadly or as
quickly adopted. Choosing XML as the substrate for RSS made it much easier to gen-
erate and consume in many different systems ranging from cell phones and Palm
Pilots on the low end to traditional PC desktops and big iron servers on the high end.
RSS can be generated and processed by simple tools hacked together in a couple of
hours out of Perl, and it can be straightforwardly integrated with multi-gigabyte rela-
tional databases and six-figure content management systems. RSS is normally sent
over HTTP, but it can also be transmitted via e-mail, FTP, or even sneaker net. RSS is
architecture-, operating system-, protocol-, software-, and language-independent. It
gains all those benefits because XML is architecture-, operating system-, protocol-,
software-, and language-independent.

Classic literature
Jon Bosak has translated all of Shakespeare’s plays into XML. He includes the com-
plete text of the plays and uses XML markup to distinguish between titles, subtitles,
stage directions, speeches, lines, speakers, and more.

What does this offer over a book, or even a plain-text file? To a human reader, not
much. But to a computer doing textual analysis, it offers the opportunity to easily
distinguish between the different elements into which the plays are divided. For
example, it makes it quite simple for the computer to go through the text and
extract all of Romeo’s lines.

Furthermore, by altering the style sheet with which the document is formatted, an
actor could easily print a version of the document in which all of their lines were for-
matted in boldface, and the lines immediately before and after theirs were italicized.
Anything else you might imagine that requires separating a play into the lines uttered
by different speakers is much more easily accomplished with the XML-formatted
versions than with the raw text.

Bosak has also marked up English translations of the Old and New Testaments, the
Koran, and the Book of Mormon in XML. The markup in these is a little different.
For example, it doesn’t distinguish between speakers. Thus, you couldn’t use these
particular XML documents to create a red-letter Bible, for example, although a differ-
ent set of tags might allow you to do that. (A red-letter Bible prints words spoken
by Jesus in red.) And because these files are in English rather than the original lan-
guages, they are not as useful for scholarly textual analysis. Still, time and resources
permitting, those are exactly the sorts of things that XML would enable you to do if
you wanted. You’d simply need to invent a different vocabulary and syntax than the
one Bosak used.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 25

26 Part I ✦ Introducing XML

Synchronized Multimedia Integration Language
The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) is a
W3C-recommended XML application for writing “TV-like” multimedia presentations
for the Web. SMIL documents don’t describe the actual multimedia content (that is,
the video and sound that are played); instead, the SMIL documents describe when
and where the video and sound are played.

For example, a typical SMIL document for a film festival might say that the browser
should simultaneously play the sound file beethoven9.mid, show the video file
corange.mov, and display the HTML file clockwork.htm. Then, when it’s done, it
should play the video file 2001.mov and the audio file zarathustra.mid, and display
the HTML file aclarke.htm. This eliminates the need to embed low-bandwidth data
such as text in high-bandwidth data such as video just to combine them. Listing 2-4
is a simple SMIL file that does exactly this.

Listing 2-4: A SMIL Film Festival

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”
“http://wgw.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>
<body>
<seq id=”Kubrick”>
<audio src=”beethoven9.mid”/>
<video src=”corange.mov”/>
<text src=”clockwork.htm”/>
<audio src=”zarathustra.mid”/>
<video src=”2001.mov”/>
<text src=”aclarke.htm”/>

</seq>
</body>

</smil>

Furthermore, as well as specifying the time sequencing of data, a SMIL document
can position individual graphic elements on the display and attach links to media
objects. For example, at the same time as the movie and sound are playing, the text
of the respective novels could be subtitling the presentation.

Open Software Description
The Open Software Description (OSD) format is an XML application that was codevel-
oped by Marimba and Microsoft to update software automatically. OSD defines XML

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 26

27Chapter 2 ✦ XML Applications

tags that describe software components. The description of a component includes
the version of the component, its underlying structure, and its relationships to and
dependencies on other components. This provides enough information to decide
whether a user needs a particular update. If the update is needed, it can be pushed
automatically to the user without requiring the usual manual download and installa-
tion. Listing 2-5 is an example of an OSD file for an update to the fictional product
WhizzyWriter 1000.

Listing 2-5: An OSD File for an Update to WhizzyWriter 1000

<?xml version=”1.0”?>
<CHANNEL HREF=”http://updates.whizzy.com/updateChannel.html”>
<TITLE>WhizzyWriter 1000 Update Channel</TITLE>
<USAGE VALUE=”SoftwareUpdate”/>
<SOFTPKG HREF=”http://updates.whizzy.com/updateChannel.html”

NAME=”{46181F7D-1C38-22A1-3329-00415C6A4D54}”
VERSION=”5,2,3,1”
STYLE=”MSAppLogo5”
PRECACHE=”yes”>

<TITLE>WhizzyWriter 1000</TITLE>
<ABSTRACT>
Abstract: WhizzyWriter 1000: now with tint control!

</ABSTRACT>
<IMPLEMENTATION>
<CODEBASE HREF=”http://updates.whizzy.com/tnupdate.exe”/>
</IMPLEMENTATION>

</SOFTPKG>
</CHANNEL>

Only information about the update is kept in the OSD file. The actual update files are
stored in a separate CAB archive or executable and downloaded when needed. There
is considerable controversy about whether this is actually a good thing. Many soft-
ware companies, Microsoft not least among them, have a long history of releasing
updates that cause more problems than they fix. Many users prefer to stay away
from new software for a while until other, more adventurous souls have given it a
shakedown.

Scalable Vector Graphics
Vector graphics are preferable to bitmaps for many kinds of pictures including
flowcharts, cartoons, assembly diagrams, and similar images. However, the PNG,
GIF, and JPEG formats currently used on the Web are bitmap only; and most tradi-
tional vector graphics formats, such as PDF, PostScript, and EPS, were designed

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 27

28 Part I ✦ Introducing XML

with ink (or toner) on paper in mind rather than electrons on a screen. (This is one
reason PDF on the Web is such an inferior substitute for HTML, despite PDF’s much
larger collection of graphics primitives.) A vector graphics format for the Web should
support a lot of features that don’t make sense on paper, such as transparency,
antialiasing, additive color, hypertext, animation, and hooks to allow search engines
and audio renderers to extract text from graphics. None of these features are needed
for the ink-on-paper world of PostScript and PDF. The W3C has developed a vector
graphics format called Scalable Vector Graphics (SVG) to do for vector drawings
what GIF, JPEG, and PNG do for bitmap images.

SVG is an XML application for describing two-dimensional graphics. It defines three
basic types of graphics: shapes, images, and text. A shape is defined by its outline,
also known as its path, and may have various strokes or fills. An image is a bitmap
such as a GIF or a JPEG. Text is defined as a string of characters in a particular font,
and may be attached to a path, so it’s not restricted to horizontal lines of text as on
this page. All three kinds of graphics can be positioned on the page at a particular
location, rotated, scaled, skewed, and otherwise manipulated. Listing 2-6 shows a
pink triangle in SVG.

Listing 2-6: A Pink Triangle in SVG

<?xml version=”1.0”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”12cm” height=”8cm”>
<title>Listing 2-6 from the XML Bible, 3rd Edition</title>
<text x=”10” y=”15”>This is SVG!</text>
<polygon style=”fill: pink” points=”0,311 180,0 360,311” />

</svg>

Because SVG describes graphics rather than text — unlike most of the other XML
applications discussed in this chapter — it requires special display software. All of
the proposed style sheet languages assume that they’re displaying fundamentally
text-based data, and none of them can support the heavy graphics requirements of
an application such as SVG. Adobe has published browser plug-ins that support
SVG on Windows and the Mac (http://www.adobe.com/svg/), and the XML
Apache Project has released Batik (http://xml.apache.org/batik/), an open
source Java program that can display SVG documents and rasterize them to JPEG,
GIF, or PNG files. Figure 2-4 shows Listing 2-6 displayed in Batik. Native SVG support
might be added to future browsers. Mozilla already includes some preliminary code
for rendering SVG, though it’s not yet turned on in the release builds (http://www.
mozilla.org/projects/svg/).

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 28

29Chapter 2 ✦ XML Applications

Figure 2-4: The pink triangle displayed in Batik

For authoring, the current versions of many traditional drawing programs, such as
Adobe Illustrator and CorelDRAW, can save SVG files just like their native formats.
There are also numerous SVG-native programs such as Jasc Software’s WebDraw
(http://www.jasc.com/products/webdraw/).

Because SVG documents are pure text (like all XML documents), the SVG format is
easy for programs to generate automatically; and it’s easy for software to manipulate.
In particular, you can combine SVG with DOM and ECMAScript to make the pictures
on a web page animated and responsive to user action. Long term, SVG will probably
replace Macromedia’s proprietary, binary Flash format.

SVG is discussed in more detail in Chapter 24.

MusicXML
Recordare has created an XML application for musical notation called MusicXML.
MusicXML includes notes, beats, clefs, staffs, rows, rests, beams, repeats, dynamics,
articulations, slurs, and more. Listing 2-7 shows the first three measures from Beth
Anderson’s Flute Swale in MusicXML. This is a single-part piece for one instrument.
The document begins with some metadata about the piece. This is followed by a
single part containing the measures. The measures are divided into notes. The first
measure also has the usual information about clef, key, and time.

Cross-
Reference

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 29

30 Part I ✦ Introducing XML

Listing 2-7: The First Three Bars of Beth Anderson’s
Flute Swale

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE score-partwise PUBLIC

“-//Recordare//DTD MusicXML 0.7a Partwise//EN”
“http://www.musicxml.org/dtds/partwise.dtd”>

<score-partwise>
<work><work-title>Flute Swale</work-title></work>
<identification>
<creator type=”composer”>Beth Anderson</creator>
<rights>© 2003 Beth Anderson</rights>
<encoding>
<encoding-date>2003-06-21</encoding-date>
<encoder>Elliotte Rusty Harold</encoder>
<software>jEdit</software>
<encoding-description>

Listing 2-7 from the XML Bible, 3rd Edition
</encoding-description>

</encoding>
</identification>
<part-list>
<score-part id=”P1”>
<part-name>flute</part-name>

</score-part>
</part-list>
<part id=”P1”>
<measure number=”1”>
<attributes>
<divisions>4</divisions>
<key><fifths>2</fifths> <mode>major</mode></key>
<time><beats>4</beats><beat-type>4</beat-type></time>
<clef><sign>G</sign><line>2</line></clef>

</attributes>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>
</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch>
<step>C</step><alter>1</alter><octave>5</octave>

</pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 30

31Chapter 2 ✦ XML Applications

</note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>D</step></octave>5</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>
<note>
<pitch>
<step>C</step></alter>1</alter><octave>5</octave>
</pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>
<stem>down</stem>

</note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>
<stem>up</stem>

</note>
</measure>
<measure number=”2”>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch>
<step>C</step></alter>1</alter><octave>5</octave>

</pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

Continued

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 31

32 Part I ✦ Introducing XML

Listing 2-7 (continued)

</note>
<note>
<pitch><step>D</step></octave>5</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>
<note>
<pitch>
<step>C</step></alter>1</alter><octave>5</octave>
</pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>
<stem>down</stem>

</note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>
<stem>up</stem>

</note>
</measure>
<measure number=”3”>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch>
<step>C</step></alter>1</alter><octave>5</octave>
</pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 32

33Chapter 2 ✦ XML Applications

<note>
<pitch><step>D</step></octave>5</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>
<note>
<pitch>
<step>C</step><alter>1</alter><octave>5</octave>

</pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>

</note>
<note>
<pitch>
<step>F</step><alter>1</alter><octave>4</octave>

</pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>

</note>
<note>
<pitch><step>E</step></octave>4</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>

</note>
</measure>

</part>
</score-partwise>

An increasing number of music programs can import and/or export MusicXML,
including music notation editors, MIDI players, sheet music scanners, audio scan-
ners, converters into and out of other music formats, and more. However, in my
tests, the several programs I tried all had significant problems handling the above-
mentioned MusicXML. None of them could render or play it correctly. MusicXML
isn’t going to replace Finale anytime soon, but as the bugs are slowly fixed, it should
become a more useful, nonproprietary way to exchange and store music on and off
the Web.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 33

34 Part I ✦ Introducing XML

VoiceXML
VoiceXML (http://www.voicexml.org/) is an XML application for the spoken
word. In particular, it’s intended for voice mail and automated phone response sys-
tems (“If you found a boll weevil in Natural Goodness biscuit dough, please press 1.
If you found a cockroach in Natural Goodness biscuit dough, please press 2. If you
found an ant in Natural Goodness biscuit dough, please press 3. Otherwise, please
stay on the line for the next available entomologist.”).

VoiceXML enables the same data that’s used on a web site to be served up via tele-
phone. It’s particularly useful for information that’s created by combining small
nuggets of data, such as stock prices, sports scores, weather reports, and test
results. JSmart (http://www.jsmart.com/) uses VoiceXML to send games and
jokes to phones. In Mexico, Domino’s Pizza uses VoiceXML for a restaurant locator
application that receives more than 90,000 calls a month. Yahoo! sells a service
based on VoiceXML that lets users listen to their e-mail, look up contacts in their
address book, and get stock quotes, weather, sports, and news over the phone
(1-800-MY-YAHOO).

A small VoiceXML file for a shampoo manufacturer’s automated phone response
system might look something like that shown in Listing 2-8.

Listing 2-8: A VoiceXML Document

<?xml version=”1.0”?>
<vxml version=”1.0”>

<form>
<block>
<prompt bargein=”false”>
Welcome to TIC hair products division,
home of Wonder Shampoo.

</prompt>
<goto next=”#color_choice”/>

</block>
</form>

<menu id=”color_choice”>
<property name=”inputmodes” value=”dtmf”/>
<prompt>
If Wonder Shampoo turned your hair green, please press 1.
If Wonder Shampoo turned your hair purple, please press 2.
If Wonder Shampoo made you bald, please press 3.
</prompt>
<choice dtmf=”1” next=”#green.vxml”/>
<choice dtmf=”2” next=”#purple.vxml”/>
<choice dtmf=”3” next=”#bald.vxml”/>

</menu>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 34

35Chapter 2 ✦ XML Applications

<form id=”green”>
<block>

<prompt>
If Wonder Shampoo turned your hair green and you wish
to return it to its natural color, simply shampoo
seven times with three parts soap, seven parts water,
four parts kerosene, and two parts iguana bile.

</prompt>
<goto next=”#bye”/>

</block>
</form>

<form id=”purple”>
<block>

<prompt>
If Wonder Shampoo turned your hair purple and you
wish to return it to its natural color, please walk
widdershins around your local cemetery
three times while chanting “Surrender Dorothy.”

</prompt>
<goto next=”#bye”/>

</block>
</form>

<form id=”bald”>
<block>

<prompt>
If you went bald as a result of using Wonder Shampoo,
please purchase and apply a three-month supply
of our Magic Hair Growth Formula. Please do not
consult an attorney as doing so would violate the
license agreement printed on the inside fold of the
Wonder Shampoo box in 3-point type. By opening the
package, you agreed to the license terms.

</prompt>
<goto next=”#bye”/>

</block>
</form>

<form id=”bye”>
<block>
<prompt>
Thank you for visiting TIC Corp. Goodbye.
</prompt>
<disconnect/>

</block>
</form>

</vxml>

I can’t show you a screen shot of this example, because it’s not intended to be shown
in a web browser. Instead, you would listen to it on a telephone.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 35

36 Part I ✦ Introducing XML

Open Financial Exchange
Software cannot be changed willy-nilly. The data that software operates on has iner-
tia. The more data you have in a given program’s proprietary, undocumented format,
the harder it is to change programs. For example, my personal finances for the last
eight years are stored in Quicken. How likely is it that I will change to Microsoft
Money even if Money has features I need that Quicken doesn’t have? Unless Money
can read and convert Quicken files with zero loss of data, the answer is “NOT
LIKELY!”

The problem can even occur within a single company or a single company’s prod-
ucts. When I upgraded from Quicken 5 to Quicken 98, Quicken split one of my
retirement accounts into two accounts for no apparent reason. I had to create a
new account and manually rekey all the entries for that account. Needless to say, I
have not upgraded since and don’t plan to again if I can avoid it. The only reason
I upgraded then was that Quicken 5 was not Y2K-compliant.

As noted in Chapter 1, the Open Financial Exchange 2.0 (OFX) is an XML application
for describing financial data of the type stored in a personal finance product such as
Money or Quicken. Any program that understands OFX can read OFX data. Moreover,
because OFX is fully documented and nonproprietary (unlike the binary formats of
Money, Quicken, and similar programs), it’s easy for programmers to write the code
to understand OFX.

OFX not only enables Money and Quicken to exchange data with each other; it also
enables other programs that use the same format to exchange the data. For example,
if a bank wants to deliver statements to customers electronically, it only has to write
one program to encode the statements in the OFX format rather than several pro-
grams to encode the statement in Quicken’s format, Money’s format, GnuCash’s
format, and so forth.

The more programs that use a given format, the greater the savings in development
cost and effort. For example, six programs reading and writing their own and each
other’s proprietary formats require 30 different converters. Six programs reading and
writing the same OFX format require only six converters. Effort is reduced to O(n)
rather than to O(n2). Figure 2-5 depicts six programs reading and writing their own
and each other’s proprietary binary formats. Figure 2-6 depicts the same six pro-
grams reading and writing a single, open OFX format. Every arrow represents a con-
verter that has to trade files and data between programs. The XML-based exchange
is much simpler and cleaner than the binary-format exchange.

Extensible Forms Description Language
I went to my local bookstore and bought a copy of Armistead Maupin’s novel Sure of
You. I paid for that purchase with a credit card, and when I did so, I signed a piece
of paper agreeing to pay the credit card company $14.07 when billed. Eventually

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 36

37Chapter 2 ✦ XML Applications

they sent me a bill for that purchase, and I paid it. If I had refused to pay it, the credit
card company could have taken me to court to collect, and they would have used
my signature on that piece of paper to prove to the court that on October 15 I really
did agree to pay them $14.07.

The same day I also ordered Anne Rice’s The Vampire Armand from the online book-
store Amazon.com. Amazon charged me $16.17 plus $3.95 shipping and handling, and
again I paid for that purchase with a credit card. The difference is that Amazon.com
never got a signature on a piece of paper from me. Eventually the credit card com-
pany sent me a bill for that purchase, and I paid it. But if I had refused to pay the
bill, they didn’t have a piece of paper with my signature on it showing that I agreed
to pay $20.12 on October 15. If I had claimed that I never made the purchase, the
credit card company would have billed the charges back to Amazon. Before Amazon
or any other online or phone-order merchant is allowed to accept credit card pur-
chases without a signature in ink on paper, the merchant has to agree that it will be
responsible for all disputed transactions.

Figure 2-5: Six different programs reading and writing their own and each
other’s formats

Microsoft
Money

OFX
Format

Quicken

CheckFree
Mutual

Fund
Program

Proprietary
Bank SystemGnuCash

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 37

38 Part I ✦ Introducing XML

Figure 2-6: Six programs reading and writing the same OFX format

Exact numbers are hard to come by and vary from merchant to merchant, but proba-
bly around 2 percent of Internet transactions are billed back to the originating mer-
chant because of credit card fraud or disputes. This is a huge amount, especially in
an arena where margins are often negative to start with. Consumer businesses such
as Amazon simply accept this as a cost of doing business on the Internet and work
it into their price structure, but this won’t work for six-figure business-to-business
transactions. Nobody wants to send out $200,000 of masonry supplies only to have
the purchaser claim they never made the order. Before business-to-business transac-
tions can move onto the Internet, a method needs to be developed that can verify
that an order was in fact made by a particular person and that this person is who
he or she claims to be. Furthermore, this has to be enforceable in court.

Part of the solution to the problem is digital signatures — the electronic equivalent
of ink on paper. To digitally sign a document, you calculate a hash code for the doc-
ument using a known algorithm, encrypt the hash code with your private key, and

Microsoft
MoneyQuicken

CheckFree
Mutual

Fund
Program

Proprietary
Bank SystemGnuCash

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 38

39Chapter 2 ✦ XML Applications

attach the encrypted hash code to the document. Correspondents can decrypt the
hash code using your public key and verify that it matches the document. However,
they can’t sign documents on your behalf because they don’t have your private key.
The exact protocol followed is a little more complex in practice, but the bottom line
is that your private key is merged with the data you’re signing in a verifiable fash-
ion. No one who doesn’t know your private key can sign the document.

The scheme isn’t foolproof — it’s vulnerable to your private key being stolen, for
example — but it’s probably as hard to forge a digital signature as it is to forge a real
ink-on-paper signature. However, a number of less obvious attacks on digital signa-
ture protocols exist. One of the most important is changing the data that’s signed.
Changing the data should invalidate the signature, but it doesn’t if the changed data
wasn’t included in the first place. For example, when you submit an HTML form, the
only things sent are the values that you fill into the form’s fields and the names of
the fields. The rest of the HTML markup is not included. You might agree to pay
$1500 for a new 3GHz Pentium 4 PC, but the only thing sent on the form is the
$1500. Signing this number signifies what you’re paying, but not what you’re paying
for. The merchant can then send you two gross of flushometers and claim that’s
what you bought for your $1500. Obviously, if digital signatures are to be useful, all
details of the transaction must be included.

The problem gets worse if you’re trying to sell to the United States government.
Government regulations for purchase orders and requisitions often spell out the
contents of forms in minute detail, right down to the font face and type size. Failure
to adhere to the exact specifications can lead to your invoice for $20,000,000 worth
of depleted uranium artillery shells being rejected. Therefore, you need to establish
exactly what was agreed to and that you met all legal requirements for the form.
HTML’s forms just aren’t sophisticated enough to handle these needs.

XML, however, can. It is almost always possible to use XML to develop a markup
language with the right combination of power and rigor to meet your needs, and
this case is no exception. In particular, UWI.COM has proposed an XML application
called the Extensible Forms Description Language (XFDL, http://www.uwi.com/
xfdl/) for forms with extremely tight legal requirements that are to be signed with
digital signatures. XFDL further offers the option to do simple mathematics in the
form, for example, to automatically fill in the sales tax and shipping and handling
charges, and then to total the price.

UWI.COM has submitted XFDL to the W3C, but it’s really overkill for web browsers,
and probably won’t be adopted there. The real benefit of XFDL, if it becomes widely
adopted, is in business-to-business and business-to-government transactions. XFDL
can become a key part of electronic commerce, which is not to say that it will
become a key part of electronic commerce. It’s still early, and there are other players
in this space.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 39

40 Part I ✦ Introducing XML

HR-XML
The HR-XML Consortium (http://www.hr-xml.org/) is a nonprofit organization
with over 100 different members from various branches of the human resources
industry, including recruiters, temp agencies, large employers, and so on. It’s trying
to develop standard XML applications that describe resumes, available jobs, candi-
dates, benefits, background checks, payroll instructions, education histories, and
other information human resource departments commonly use. Listing 2-9 shows a
job listing encoded in HR-XML. This application defines elements matching the
parts of a typical classified want ad such as companies, positions, skills, contact
information, compensation, experience, and more.

Listing 2-9: A Job Listing in HR-XML

<?xml version=”1.0”?>
<JobPositionPosting>
<JobPositionPostingId>25740</JobPositionPostingId>
<HiringOrg>
<HiringOrgName>John Wiley & Sons</HiringOrgName>
<WebSite>http://www.wiley.com</WebSite>
<Industry><SummaryText>Publishing</SummaryText></Industry>
<Contact>
<PersonName>
<GivenName>Mara</GivenName>
<FamilyName>Cordal</FamilyName>

</PersonName>
</Contact>

</HiringOrg>

<JobPositionInformation>
<JobPositionTitle>Editor</JobPositionTitle>
<JobPositionDescription>
<JobPositionPurpose>
Working in our Scientific, Technical and Medical
Division as an Editor, you will be responsible for the
development and implementation of the strategic
publishing plan for designated market/subject
category. You will also ensure effective management of
the program, including the acquisition, development,
and profitable publication of books.

</JobPositionPurpose>
<JobPositionLocation>
<LocationSummary>
<Municipality>Hoboken</Municipality>
<Region>NJ</Region>

</LocationSummary>
</JobPositionLocation>
<Classification>
<DirectHireOrContract>
<DirectHire/>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 40

41Chapter 2 ✦ XML Applications

</DirectHireOrContract>
<Duration>
<Regular/>

</Duration>
</Classification>
<CompensationDescription>
<Pay>
<SalaryAnnual currency=”USD”>60,000</SalaryAnnual>

</Pay>
</CompensationDescription>

</JobPositionDescription>
<JobPositionRequirements>
<QualificationsRequired>
<Qualification type=”education”>College</Qualification>
<Qualification type=”experience”

yearsOfExperience=”3-5”>
Book acquisitions

</Qualification>
<Qualification type=”skill”>

Electrical engineering
</Qualification>
<Qualification type=”skill”>
Telecommunications

</Qualification>
</QualificationsRequired>
<SummaryText>
In-depth knowledge of the markets and subject areas
assigned; Proven expertise in acquiring, developing
projects and successfully managing and expanding a
program; Excellent leadership, analytical,
communication and interpersonal skills.

</SummaryText>
</JobPositionRequirements>

</JobPositionInformation>

<HowToApply distribute=”external”>
<ApplicationMethods>
<ByEmail>
<E-mail>opportunities@wiley.com</E-mail>
<SummaryText>Please put the job title, department,
location, and reference number in the subject line.
Your resume and cover letter must either be contained
in the body of your e-mail or be in Word or PDF
format.
</SummaryText>

</ByEmail>
<ByFax>
<PersonName>

<GivenName>Attn:</GivenName>
<FamilyName>Human Resources</FamilyName>

</PersonName>

Continued

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 41

42 Part I ✦ Introducing XML

Listing 2-9 (continued)

<FaxNumber>
<AreaCode>201</AreaCode>
<TelNumber>748-6049</TelNumber>

</FaxNumber>
</ByFax>
<ByMail>
<PostalAddress>
<CountryCode>US</CountryCode>
<PostalCode>07030</PostalCode>
<Region>NJ</Region>
<Municipality>Hoboken</Municipality>
<DeliveryAddress>
<AddressLine>111 River Street</AddressLine>

</DeliveryAddress>
</PostalAddress>

</ByMail>
</ApplicationMethods>
<SummaryText>
Please be sure to indicate the position and job number
for which you are applying. Please note that any writing
samples you submit along with your resume will not be
returned. Once we receive your letter and resume, you
will receive acknowledgment of receipt. You may be
contacted if your qualifications match current openings.
If there is no suitable position, we will retain your
resume in our files for future consideration.

</SummaryText>
</HowToApply>
<EEOStatement>
John Wiley & Sons is an equal opportunity employer.

</EEOStatement>
<NumberToFill>1</NumberToFill>

</JobPositionPosting>

Although you could certainly define a style sheet for HR-XML documents and use it
to place job listings on web pages, that’s not its main purpose. Instead, HR-XML is
trying to automate the exchange of job information between companies, applicants,
recruiters, job boards, and other interested parties. Hundreds of job boards exist
on the Internet today, along with numerous Usenet newsgroups and mailing lists.
It’s impossible for one individual to search them all, and it’s hard for a computer to
search them all because they all use different formats for salaries, locations, bene-
fits, and the like.

But if many sites adopt HR-XML, it becomes relatively easy for a job seeker to search
with criteria such as “all the jobs for Java programmers in New York City paying
more than $100,000 a year with full health benefits.” The IRS could enter a search
for all full-time, onsite, freelance openings so that it would know which companies
to go after for failure to withhold tax and to pay unemployment insurance.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 42

43Chapter 2 ✦ XML Applications

In practice, these searches would likely be mediated through an HTML form just
like current web searches. The main difference is that such a search would return
far more useful results because it could use the structure in the data and semantics
of the markup rather than relying on imprecise English text.

XML for XML
XML is an extremely general-purpose format for text data. Some of the things it is
used for are further refinements of XML itself. These include the XSL style sheet
language, the XLink hypertext vocabulary, and the W3C XML Schema Language.

XSL
XSL, the Extensible Stylesheet Language, is actually two XML applications. The
first application is a vocabulary for transforming XML documents called XSL
Transformations (XSLT). XSLT defines markup that represents trees, nodes, patterns,
templates, and other constructs that can be used to transform XML documents
from one markup vocabulary to another (or even to the same vocabulary with dif-
ferent data).

The second application is an XML vocabulary for formatting the transformed XML
document produced by the first part. This application is called XSL Formatting
Objects (XSL-FO). XSL-FO provides elements that describe the layout of a page,
including pagination, blocks, characters, lists, graphics, boxes, fonts, and more.
A simple XSLT style sheet that transforms an input document into XSL formatting
objects is shown in Listing 2-10.

Listing 2-10: An XSL Style Sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference=”only”>

Continued

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 43

44 Part I ✦ Introducing XML

Listing 2-10 (continued)

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt”>
<xsl:value-of select=”NAME”/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

Chapters 15 and 16 explore XSL in great detail.

XLinks
XML makes possible a new, more general kind of link called an XLink. XLinks
accomplish everything possible with HTML’s URL-based hyperlinks and anchors.
However, any element can become a link, not just A elements. For example, a
footnote element can link directly to the text of the note like this:

<footnote xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=”footnote7.xml”>7</footnote>

Furthermore, XLinks can do many things that HTML links cannot do. XLinks can be
bidirectional so that readers can return to the page they came from. XLinks can link
to arbitrary positions in a document. XLinks can embed text or graphic data inside
a document rather than requiring the user to activate the link (much like HTML’s
 tag but more flexible). In short, XLinks make hypertext even more powerful.

XLinks are discussed in more detail in Chapter 17.Cross-
Reference

Cross-
Reference

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 44

45Chapter 2 ✦ XML Applications

Schemas
XML’s facilities for specifying the permissibility of different character data inside
elements are weak to nonexistent. For example, suppose as part of a bank state-
ment application you set up ACCOUNT_BALANCE elements like this:

<ACCOUNT_BALANCE>$934.12</ACCOUNT_BALANCE>

All pure XML 1.0 can say is that the contents of the ACCOUNT_BALANCE element
should be character data. It cannot say that the balance should be given as a deci-
mal number with two decimal digits of precision, preceded by a currency sign.

A number of schemes have been proposed to use XML itself to more tightly restrict
what can appear in the content of any given element. The W3C has endorsed XML
Schema for this purpose. For example, Listing 2-11 shows a schema that declares
that ACCOUNT_BALANCE elements must contain a decimal number with two decimal
digits of precision, preceded by a currency sign.

Listing 2-11: A Schema for Money

<?xml version=”1.0”?>
<xsd:schema
targetNS=”http://www.cafeconleche.org/namespaces/money”

version=”1.0”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>
<!--

Regular Expression:
\p{Sc} Any Unicode currency indicator;

e.g., $, ¥, £, &#A4, etc.
\p{Nd} A Unicode decimal digit character
\p{Nd}+ One or more Unicode decimal digits
\. The period character
(\.\p{Nd}\p{Nd})
(\.\p{Nd}\p{Nd})? Zero or one strings like .35
This works for any decimalized currency.

-->
</xsd:restriction>

</xsd:simpleType>

<xsd:element name=”BALANCE” type=”money”/>

</xsd:schema>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 45

46 Part I ✦ Introducing XML

Schemas are discussed in more detail in Chapter 20.

I could show you more examples of XML used for XML, but the ones I’ve already dis-
cussed demonstrate the basic point: XML is powerful enough to describe and extend
itself. Among other things, this means that the XML specification can remain small
and simple. There may well never be an XML 2.0 because any major additions that
are needed can be built from XML rather than being built into XML. People and pro-
grams that need these enhanced features can use them. Others who don’t need them
can ignore them. You don’t need to know about what you don’t use. XML provides
the bricks and mortar from which you can build simple huts or towering castles.

Behind-the-Scene Uses of XML
Not all XML applications are public, open standards. Many software vendors are
moving to XML for their own data simply because it’s a well-understood, general-
purpose format for structured data that can be manipulated with easily available,
cheap, and free tools.

Microsoft Office 2003
Microsoft Office 2003 is the first edition to move away from the traditional undocu-
mented proprietary, closed, binary formats of the past and move forward into the
open world of XML. The major Office 2003 applications, including Word, PowerPoint,
Excel, and even Visio, can save their documents in XML (though, unfortunately, a
binary format is still the default). There are many advantages to this. First among
them, XML makes Office files much easier to exchange with other programs. The
professional edition of Office can even use custom, user-provided schemas instead
of Microsoft’s default schema. This is like Word styles and templates on steroids.

Listing 2-12 shows a small Word document containing just the string “Hello XML!”
encoded in WordML. I’ve had to add some line breaks to make this legible, but oth-
erwise the file is just as Word saved it. As ugly as this is, it’s still about a thousand
times prettier than the old binary format. Unlike files written by previous versions
of Word, this document does not have to be read by a word processor. Many differ-
ent tools can be written in a variety of languages to manipulate it. For instance, for
a long time I’ve wanted a tool that will extract just the outline from a Word file while
leaving all the body text behind. This would be very useful for planning the table
of contents for a new edition of a book based on the headers in the old version.
However, I never wanted that tool badly enough to learn Visual Basic for Applications
and the proprietary Word API. Now that Word is saving its data in XML, I can write
the tool I need in XSLT, Java, Perl, or some other language. I don’t have to use a
Microsoft language I don’t know to process a Microsoft document.

Cross-
Reference

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 46

47Chapter 2 ✦ XML Applications

Listing 2-12: A Simple Word 2003 Document

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<?mso-application progid=”Word.Document”?>
<w:wordDocument xmlns:w=

“http://schemas.microsoft.com/office/word/2003/2/wordml”
xmlns:v=”urn:schemas-microsoft-com:vml”
xmlns:w10=”urn:schemas-microsoft-com:office:word”
xmlns:SL=
“http://schemas.microsoft.com/schemaLibrary/2003/2/core”
xmlns:aml=”http://schemas.microsoft.com/aml/2001/core”
xmlns:wx=
“http://schemas.microsoft.com/office/word/2003/2/auxHint”

xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:dt=”uuid:C2F41010-65B3-11d1-A29F-00AA00C14882”
xml:space=”preserve”>

<o:DocumentProperties>
<o:Title>Hello World</o:Title>
<o:Author>Elliotte Rusty Harold</o:Author>
<o:LastAuthor>Elliotte Rusty Harold</o:LastAuthor>
<o:Revision>1</o:Revision><o:TotalTime>1</o:TotalTime>
<o:Created>2003-06-27T02:38:00Z</o:Created>
<o:LastSaved>2003-06-27T02:39:00Z</o:LastSaved>
<o:Pages>1</o:Pages>
<o:Words>1</o:Words><o:Characters>12</o:Characters>
<o:Company>Cafe au Lait</o:Company>
<o:Lines>1</o:Lines><o:Paragraphs>1</o:Paragraphs>
<o:CharactersWithSpaces>12</o:CharactersWithSpaces>
<o:Version>11.4920</o:Version>
</o:DocumentProperties>
<w:fonts>
<w:defaultFonts w:ascii=”Times New Roman”

w:fareast=”Times New Roman”
w:h-ansi=”Times New Roman” w:cs=”Times New Roman”/>

<w:font w:name=”Tahoma”>
<w:panose-1 w:val=”020B0604030504040204”/>
<w:charset w:val=”00”/>
<w:family w:val=”Swiss”/>
<w:pitch w:val=”variable”/>
<w:sig w:usb-0=”21007A87” w:usb-1=”80000000”

w:usb-2=”00000008” w:usb-3=”00000000”
w:csb-0=”000101FF” w:csb-1=”00000000”/>

</w:font>
</w:fonts>
<w:styles>
<w:versionOfBuiltInStylenames w:val=”3”/>
<w:latentStyles w:defLockedState=”off”

w:latentStyleCount=”156”/>
<w:style w:type=”paragraph” w:default=”on”

w:styleId=”Normal”>

Continued

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 47

48 Part I ✦ Introducing XML

Listing 2-12 (continued)

<w:name w:val=”Normal”/>
<w:rPr><wx:font wx:val=”Times New Roman”/>
<w:sz w:val=”24”/>
<w:sz-cs w:val=”24”/>
<w:lang w:val=”EN-US” w:fareast=”EN-US” w:bidi=”AR-SA”/>
</w:rPr></w:style>
<w:style w:type=”character” w:default=”on”
w:styleId=”DefaultParagraphFont”>
<w:name w:val=”Default Paragraph Font”/>
<w:semiHidden/></w:style>
<w:style w:type=”table” w:default=”on”

w:styleId=”TableNormal”>
<w:name w:val=”Normal Table”/>
<wx:uiName wx:val=”Table Normal”/>
<w:semiHidden/>
<w:rPr><wx:font wx:val=”Times New Roman”/></w:rPr>
<w:tblPr>
<w:tblInd w:w=”0” w:type=”dxa”/>
<w:tblCellMar>
<w:top w:w=”0” w:type=”dxa”/>
<w:left w:w=”108” w:type=”dxa”/>
<w:bottom w:w=”0” w:type=”dxa”/>
<w:right w:w=”108” w:type=”dxa”/>
</w:tblCellMar></w:tblPr></w:style>
<w:style w:type=”list” w:default=”on” w:styleId=”NoList”>
<w:name w:val=”No List”/>
<w:semiHidden/></w:style>
<w:style w:type=”paragraph” w:styleId=”BalloonText”>
<w:name w:val=”Balloon Text”/>
<w:basedOn w:val=”Normal”/>
<w:semiHidden/>
<w:rsid w:val=”A43BDF”/>
<w:pPr>
<w:pStyle w:val=”BalloonText”/></w:pPr>
<w:rPr>
<w:rFonts w:ascii=”Tahoma” w:h-ansi=”Tahoma” w:cs=”Tahoma”/>
<wx:font wx:val=”Tahoma”/>
<w:sz w:val=”16”/>
<w:sz-cs w:val=”16”/></w:rPr></w:style></w:styles>
<w:docPr>
<w:view w:val=”print”/>
<w:zoom w:percent=”100”/>
<w:doNotEmbedSystemFonts/>
<w:attachedTemplate w:val=””/>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 48

49Chapter 2 ✦ XML Applications

<w:defaultTabStop w:val=”720”/>
<w:characterSpacingControl w:val=”DontCompress”/>
<w:optimizeForBrowser/>
<w:validateAgainstSchema/>
<w:saveInvalidXML w:val=”off”/>
<w:ignoreMixedContent w:val=”off”/>
<w:alwaysShowPlaceholderText w:val=”off”/>
<w:compat>
<w:dontAllowFieldEndSelect/>
<w:useWord2002TableStyleRules/></w:compat></w:docPr>
<w:body><wx:sect>
<w:p>
<w:r>
<w:t>Hello XML!</w:t></w:r></w:p>
<w:sectPr>
<w:pgSz w:w=”12240” w:h=”15840”/>
<w:pgMar w:top=”1440” w:right=”1800” w:bottom=”1440”
w:left=”1800” w:header=”720” w:footer=”720” w:gutter=”0”/>

<w:cols w:space=”720”/>
<w:docGrid w:line-pitch=”360”/>
</w:sectPr></wx:sect></w:body></w:wordDocument>

Microsoft is hardly alone in moving its file formats to XML. Other products that use
XML as their native format include Sun’s StarOffice, Apple’s Keynote presentation
software, Apple’s iTunes music player, Mac OS X properties files, the Apache Project’s
Ant build tool, the Gnumeric spreadsheet, and the Dia drawing program. Mozilla and
Netscape are even storing their GUIs as XML. The common link that unites all these
products is that they’re all fairly recent programs, with limited if any legacy data.
Although legacy formats that predate XML data are likely to be with us through your
lifetime and mine, more and more new software is choosing XML as a convenient,
efficient format for any data it needs to save.

Netscape’s What’s Related
Netscape 6.0 and later support direct display of XML in the browser, but Netscape
actually started using XML internally as early as version 4.0.6. When you ask
Netscape to show you a list of sites related to the current one you’re looking at,
your browser connects to a CGI program running on a Netscape server (http://
www-rl1.netscape.com/wtgn through http://www-rl7.netscape.com/wtgn).
The data that the server sends back is in XML. Listing 2-13 shows the XML data for
sites related to http://www.wiley.com. (This data was not designed for human
eyes, so I’ve had to add a few line breaks where they otherwise would not occur.)

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 49

50 Part I ✦ Introducing XML

Listing 2-13: XML Data for Sites Related to
http://www.wiley.com

<?xml version=”1.0” encoding=”UTF-8”?>
<RDF:RDF>
<RelatedLinks>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://search.netscape.com/cgi-bin/search?search=wiley”
name=”Search on ‘wiley’”/>
<child instanceOf=”Separator1”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://directory.netscape.com/Business/Industries/Publishing/
Publishers/Academic_and_Technical”
name=”Business: ...Business: Industries: Publishing:
Publishers: Academic and Technical”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://directory.netscape.com/Business/Major_Companies/Publicly_Traded/J”
name=”Business: ...: Publicly Traded: J”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://directory.netscape.com/Science/Math/Operations_Research
/Commercial_Sites/Book_and_Journal_Publishers”
name=”Science: Math: ...Science: Math: Operations Research:
Commercial Sites: Book and Journal Publishers”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://search.netscape.com/add.html”
name=”Submit a site to the Open Directory”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/search/beditor.html”
name=”Become an Open Directory editor”/>
<child instanceOf=”Separator1”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.oup-usa.org/”
name=”Oxford University Press Usa “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.jefco.com/”
name=”Jefferies Internet Site “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.jriver.com/”
name=”J. River, Inc. - Network Gear “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.jostens.com/”
name=”Jostens Inc. “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.jboxford.com/”
name=”Jb Oxford - Online Trading The Way “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.ibtauris.com/”
name=”The I.b.tauris Website “ priority=”7”/>

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 50

51Chapter 2 ✦ XML Applications

<child href=”http://info.netscape.com/fwd/rlurls/
http://www.haworthpressinc.com/”
name=”Haworth “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.duxbury.com/”
name=”Duxbury Resource Center “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.cornellpress.cornell.edu/”
name=”Cornell University Press Publishes “ priority=”7”/>
<child href=”http://info.netscape.com/fwd/rlurls/
http://www.arnoldpublishers.com/”
name=”Arnold - Academic And Professional “ priority=”7”/>
<child href=”http://editorial.alexa.com/netscape_editor”
name=”Suggest related links”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/index.html”
name=”Learn more about What’s Related” />
<child instanceOf=”Separator1”/>
<Topic
name=”Site info for www.wiley.com”>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html”
name=”Owner: John Wiley & Sons, Inc.”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html”
name=”Date established: 12-Oct-1994”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html”
name=”Popularity: in top 25404 sites on web”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html”
name=”Number of pages on site: 3758”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html”
name=”Number of links to site on web: 17709”/>
</Topic>
<child instanceOf=”Separator1”/>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/keywords/index.html”
name=”Learn more about Internet Keywords”/>
</RelatedLinks>
</RDF:RDF>

This all happens completely behind the scenes. The users never know that the data
is being transferred in XML. The actual display is a sidebar in Netscape Navigator,
shown in Figure 2-7, not an XML or HTML page.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 51

52 Part I ✦ Introducing XML

Figure 2-7: Netscape’s What’s Related sidebar

UPS
The United Parcel Service makes a number of tools available to their customers to
track shipments over the Internet, check shipping rates, validate addresses, and
more (http://www.ec.ups.com/ecommerce/solutions). The content is sent
from a UPS server to the customer who requests it. In the earliest versions, the data
was sent in HTML so online stores and other shippers could paste it into their web
pages. However, the UPS HTML code didn’t always mesh very neatly with the site’s
own code. It could easily look out of place. Then UPS began offering the same infor-
mation in XML. XML can’t be pasted directly into the stores’ HTML, but it can be
easily manipulated using an XSL style sheet or other tool to take on the form the
site needs. It’s a much more flexible solution.

That’s not all UPS does with XML either. Individual consumers like me that occasion-
ally ship a package can use UPS’s web site to track those packages and schedule
pickups. However, large organizations that ship dozens to tens of thousands of pack-
ages a day don’t want to type each tracking number into a form individually. They
want to integrate the tracking information and the schedule pickup with their own
systems so it can be queried only when necessary and processed automatically. I
don’t know what kind of servers and systems UPS uses, but I can guarantee you that

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 52

53Chapter 2 ✦ XML Applications

whatever it is, they have tens of thousands of customers that use something else.
They can’t rely on any one vendor’s format to exchange this information with their
customers. Instead, they use XML.

XML is even more important when the process runs in reverse; that is, when cus-
tomers send information to UPS, to schedule a pickup, for example. UPS lets its
customers know what formats it expects to receive the data in, but it can’t trust them
to actually follow that format. Of the thousands of different programs at different
customer sites sending data to UPS, some of them (maybe most of them) are going
to have bugs. Some of them are going to send bad data, leave out the shipping
address, swap the order of the sender’s and recipient’s addresses, request pickups
at 3:00 A.M. instead of 3:00 P.M., calculate prices in Canadian dollars instead of U.S.
dollars, and make a whole slew of other mistakes. Before UPS schedules a pickup or
accepts any other request from a potentially unreliable source, it needs to verify
that all the required information is present and that it makes sense. XML makes it
very straightforward to list most of the relevant constraints in a simple, declarative
schema language, and then to validate each request against the expected schema. If
the validation succeeds, the request is accepted. If the validation fails, the request
can be passed off to a human for further processing or kicked back to the originat-
ing system. This protects the integrity of UPS’s systems. XML validation can’t catch
all problems. For example, it probably won’t notice an account number that doesn’t
correspond to a real account. But it is often a very good first step that easily per-
forms about 80 to 90 percent of the checks that need to be made. Whatever checks
remain to be done can be coded up more simply against XML than against a more
opaque binary format.

This really just scratches the surface of the use of XML for internal data. Many other
projects that use XML are just getting started, and many more will be started over
the next several years. Most of these won’t receive any publicity or write-ups in the
trade press, but they nonetheless have the potential to save their companies millions
of dollars in development costs over the life of the project. The self-documenting
nature of XML can be as useful for a company’s internal data as for its external data.
For instance, recently many companies were scrambling to try to figure out whether
programmers who retired 20 years ago used two-digit or four-digit dates. If that were
your job, would you rather be pouring over data that looked like this?

3c 79 65 61 72 3e 39 39 3c 2f 79 65 61 72 3e

Or data that looked like this?

<YEAR>99</YEAR>

Binary file formats meant that programmers were stuck trying to clean up data in
the first format. XML even makes the mistakes easier to find and fix.

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 53

54 Part I ✦ Introducing XML

Summary
This chapter has just begun to touch on the many and varied applications for which
XML has been and will be used. Some of these applications, such as SVG, MathML,
and MusicXML, are clear extensions of HTML for web browsers. Many others, how-
ever, such as OFX, XFDL, and HR-XML, go in new directions. And all of these applica-
tions have their own semantics and syntax that sits on top of the underlying XML.
In some cases, the XML roots are obvious. In other cases, you could easily spend
months working with one of theseand only hear of XML tangentially. In this chapter,
you explored the following applications in which XML has been put to use:

✦ Molecular sciences with CML

✦ Science and math with MathML

✦ Webcasting with RSS

✦ Classic literature

✦ Multimedia with SMIL

✦ Software updates through OSD

✦ Vector graphics with SVG

✦ Music notation in MusicXML

✦ Automated voice responses with VoiceXML

✦ Financial data with OFX 2.0

✦ Legally binding forms with XFDL

✦ Job listings with HR-XML

✦ Extending XML itself with XSL, XLink, and XML Schemas

✦ Internal use of XML by various companies, including Microsoft, Netscape, and
FederalUPS

In the next chapter, you will begin writing your own XML documents and displaying
them in a web browser.

✦ ✦ ✦

04 549863 Ch02.qxd 1/28/04 9:45 AM Page 54

Your First XML
Document

This chapter teaches you to create simple XML documents
with tags that you define that make sense for your docu-

ment. You learn which tools and software you can use to edit
and save an XML document. You also learn to write a style
sheet for the document that describes how the content of
those tags should be displayed. Finally, you learn to load the
document into a web browser so that it can be viewed.

Because this chapter teaches you by example, it will not cross
all the t’s and dot all the i’s. Experienced readers may notice a
few exceptions and special cases that aren’t discussed here.
Don’t worry about them; I’ll get to them over the course of the
next several chapters. For the most part, you don’t need to
memorize the technical rules up front. As with HTML, you can
learn and do a lot by copying a few simple examples that others
have prepared and modifying them to fit your needs.

Toward that end, I encourage you to follow along by typing in
the examples given in this chapter and loading them into the
different programs discussed. This will give you a basic feel
for XML that will make the technical details in future chapters
easier to grasp in the context of these specific examples.

Hello XML
This section follows an old programmer’s tradition of introduc-
ing a new language with a program that prints “Hello World”
on the console. XML is a markup language, not a programming
language; but the basic principle still applies. It’s easiest to get
started if you begin with a complete, working example that you
can expand, instead of starting with more fundamental pieces
that by themselves don’t do anything. If you do encounter
problems with the basic tools, those problems are a lot easier
to debug and fix in the context of the short, simple documents
used here, than in the context of the more complex documents
developed in the rest of the book.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a simple
XML document

Exploring the simple
XML document

Meaning in markup

Writing style sheets
for XML documents

Attaching style sheets
to XML documents

✦ ✦ ✦ ✦

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 55

56 Part I ✦ Introducing XML

Creating a simple XML document
In this section, you create a simple XML document and save it in a file. Listing 3-1 is
about the simplest XML document I can imagine, so start with it. You can type this
document in any convenient text editor, such as Notepad, BBEdit, or emacs.

Listing 3-1: Hello XML

<?xml version=”1.0”?>
<FOO>
Hello XML!
</FOO>

Listing 3-1 is not very complicated, but it is a good XML document. To be more
precise, it is a well-formed XML document. (XML has special terms for documents
that it considers “good” depending on exactly which set of rules they satisfy. “Well-
formed” is one of those terms, but we’ll get to that later.)

Well-formedness is covered in detail in Chapter 6.

Saving the XML file
After you’ve typed in Listing 3-1, save it in a file called hello.xml, HelloWorld.xml,
MyFirstDocument.xml, or some other name. The three-letter extension .xml is fairly
standard. However, do make sure that you save it in plain-text format, and not in
the native format of a word processor such as WordPerfect or Microsoft Word.

If you’re using Notepad on Windows 95 or 98 to edit your files, be sure to enclose
the filename in double quotes when saving the document; for example, “Hello.xml”,
not merely Hello.xml, as shown in Figure 3-1. Without the quotes, Notepad will
append the .txt extension to your filename, naming it Hello.xml.txt, which is not
what you want.

The Windows NT version of Notepad gives you the option to save the file in Unicode;
and Windows 2000 lets you choose UTF-8 and Unicode big endian, as well. All of
these will work equally well for XML.

Note

Cross-
Reference

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 56

57Chapter 3 ✦ Your First XML Document

Figure 3-1: An XML document saved
in Notepad with the filename in
quotes

Loading the XML file into a web browser
Now that you’ve created your first XML document, you’re going to want to look at
it. You can open the file directly in a browser that supports XML such as Internet
Explorer 5.0 or later. Figure 3-2 shows the result.

What you see will vary from browser to browser. In this case, it’s a nicely formatted
and syntax-colored view of the document’s source code. Opera will simply show
you the string “Hello XML!” in the default font. Whatever the browser shows you,
it’s not likely to be particularly attractive. The problem is that the browser doesn’t
really know what to do with the FOO element. You have to tell the browser how to
handle each element by adding a style sheet. You’ll learn to do that shortly, but let’s
first look a little more closely at this XML document.

Figure 3-2: Hello.xml displayed in Internet Explorer 6.0

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 57

58 Part I ✦ Introducing XML

Exploring the Simple XML Document
The first line of the simple XML document in Listing 3-1 is the XML declaration:

<?xml version=”1.0”?>

The XML declaration has a version attribute. An attribute is a name-value pair sepa-
rated by an equals sign. The name is on the left side of the equals sign, and the value
is on the right side between double quote marks.

Every XML document should begin with an XML declaration that specifies the ver-
sion of XML in use. (Some XML documents will omit this for reasons of backward
compatibility, but you should include a version declaration unless you have a specific
reason to leave it out.) In the previous example, the version attribute says that this
document conforms to the XML 1.0 specification.

If you have to ask whether you need XML 1.1, you don’t need it. I’ll have more to say
about this later, but for now, stick to XML 1.0. XML 1.1 gains you absolutely nothing.

Now look at the next three lines of Listing 3-1:

<FOO>
Hello XML!
</FOO>

Collectively, these three lines form a FOO element. Separately, <FOO> is a start-tag;
</FOO> is an end-tag; and Hello XML! is the content of the FOO element. Divided
another way, the start-tag, end-tag, and XML declaration are all markup. The text
Hello XML! is character data.

You might be asking what the <FOO> tag means. The short answer is “whatever you
want it to mean.” Rather than relying on a few hundred predefined tags, XML lets
you create the tags that you need when you need them. The <FOO> tag, therefore,
has whatever meaning you assign it. The same XML document could have been
written with different tag names, as shown in Listings 3-2, 3-3, and 3-4.

Listing 3-2: greeting.xml

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

Note

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 58

59Chapter 3 ✦ Your First XML Document

Listing 3-3: paragraph.xml

<?xml version=”1.0”?>
<P>
Hello XML!
</P>

Listing 3-4: document.xml

<?xml version=”1.0”?>
<DOCUMENT>
Hello XML!
</DOCUMENT>

The four XML documents in Listings 3-1 through 3-4 have tags with different names.
However, they are all equivalent because they have the same structure and content.

Meaning in Markup
Markup can indicate three kinds of meaning: structural, semantic, or stylistic.
Structure specifies the relations between the different elements in the document.
Semantics relates the individual elements to the real world outside of the document
itself. Style specifies how an element is displayed.

Structure merely expresses the form of the document, without regard for differences
between individual tags and elements. For example, the four XML documents shown
in Listings 3-1 through 3-4 are structurally the same. They all specify documents
with a single nonempty, root element that contains the same content. The different
names of the tags have no structural significance.

Semantic meaning exists outside the document, in the mind of the author or reader,
or in some computer program that generates or reads these files. For example, a web
browser that understands HTML, but not XML, would assign the meaning “para-
graph” to the tags <P> and </P> but not to the tags <GREETING> and </GREETING>,
<FOO> and </FOO>, or <DOCUMENT> and </DOCUMENT>. An English-speaking human
would be more likely to understand <GREETING> and </GREETING> or <DOCUMENT>
and </DOCUMENT> than <FOO> and </FOO> or <P> and </P>. Meaning, like beauty, is
in the mind of the beholder.

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 59

60 Part I ✦ Introducing XML

Computers, being relatively dumb machines, can’t really be said to understand the
meaning of anything. They simply process bits and bytes according to predetermined
formulas (albeit very quickly). A computer is just as happy to use <FOO> or <P> as it
is to use the more meaningful <GREETING> or <DOCUMENT> tags. Even a web browser
can’t be said to really understand what a paragraph is. All the browser knows is that
when it encounters the end of a paragraph it should place a blank line before the
next element.

Naturally, it’s better to pick tags that more closely reflect the meaning of the infor-
mation they contain. Many disciplines, such as math and chemistry, are working
on creating industry-standard tag sets. These should be used when appropriate.
However, many tags are made up as you need them. Here are some other possible
tags with different semantic meanings:

<MOLECULE> <sign>

<INTEGRAL> <ellipse>

<PERSON> <AOL>

<SALARY> <plus/>

<author> <TimeWarner>

<email> <equals/>

<planet> <Bankruptcy>

The third kind of meaning that can be associated with a tag is stylistic. Style says
how the content of a tag is to be presented on a computer screen or other output
device. Style says whether a particular element is bold, italic, green, two inches
high, and so on. Computers are better at understanding stylistic than semantic
meaning. In XML, style is applied through style sheets.

Writing a Style Sheet for an XML Document
XML allows you to create any tags that you need. Because you have almost complete
freedom in creating tags, a generic browser has no way to anticipate your tags and
provide rules for displaying them. Therefore, you also need to write a style sheet for
the XML document that tells browsers how to display particular tags. Like tag sets,
style sheets can be shared between different documents and different people, and
the style sheets you create can be integrated with style sheets others have written.

As discussed in Chapter 1, there is more than one style sheet language to choose
from. The one introduced in this chapter is cascading style sheets (CSS). CSS has
the advantage of being an established W3C standard, being familiar to many people
from HTML, and being supported in the first wave of XML-enabled web browsers.

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 60

61Chapter 3 ✦ Your First XML Document

As noted in Chapter 1, another possibility is XSL. XSL is currently the most power-
ful and flexible style sheet language, and the only one designed specifically for use
with XML. However, XSL is more complex than CSS and not yet as well supported
in web browsers.

XSL is discussed in Chapters 5, 15, and 16.

The greeting.xml example shown in Listing 3-2 only contains one tag, <GREETING>,
so all you need to do is define the style for the GREETING element. Listing 3-5 is a
very simple style sheet that specifies that the contents of the GREETING element
should be rendered as a block-level element in 24-point bold type.

Listing 3-5: greeting.xsl

GREETING {display: block; font-size: 24pt; font-weight: bold}

Listing 3-5 should be typed in a text editor and saved in a new file called greeting.css
in the same directory as Listing 3-2. The .css extension stands for cascading style
sheet. Again, the .css extension is important, although the exact filename is not.
However, if a style sheet is to be applied only to a single XML document, it’s often
convenient to give it the same name as that document with the extension .css
instead of .xml.

Attaching a Style Sheet to an XML Document
After you’ve written an XML document and a style sheet for that document, you
need to tell the browser to apply the style sheet to the document. In the long term,
there are likely to be a number of different ways to do this, including browser-server
negotiation via HTTP headers, naming conventions, and browser-side defaults.
However, right now, the only way that works is to include an <?xml-stylesheet?>
processing instruction in the XML document to specify the style sheet to be used.

The <?xml-stylesheet?> processing instruction has two required attributes: type
and href. The type attribute specifies the style sheet language used, and the href
attribute specifies a URL, possibly relative, where the style sheet can be found. In
Listing 3-6, the xml-stylesheet processing instruction specifies that the style sheet
named greeting.css written in the CSS language is to be applied to this document.

Cross-
Reference

Note

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 61

62 Part I ✦ Introducing XML

Listing 3-6: styledgreeting.xml with an xml-stylesheet
Processing Instruction

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<GREETING>
Hello XML!
</GREETING>

Now that you’ve created your first XML document and style sheet, you will want to
look at it. All you have to do is open Listing 3-6 in an XML-enabled web browser such
as Mozilla, Safari, Opera 4.0, or Internet Explorer 5.0. Figure 3-3 shows styledgreeting.
xml in Safari.

Figure 3-3: styledgreeting.xml in Safari

Summary
In this chapter, you learned how to create a simple XML document. In particular,
you learned the following:

✦ How to write and save simple XML documents

✦ How to assign XML elements three kinds of meaning: structural, semantic,
and stylistic

✦ How to write a CSS style sheet that tells browsers how to display particular
elements

✦ How to attach a CSS style sheet to an XML document with an xml-stylesheet
processing instruction

✦ How to load XML documents into a web browser

The next chapter develops a much larger example of an XML document that
demonstrates more of the practical considerations involved in choosing XML
element names.

✦ ✦ ✦

05 549863 Ch03.qxd 1/28/04 9:45 AM Page 62

Structuring Data

This chapter develops a longer example that shows how
television listings might be stored in XML. By following

along with this example, you’ll learn many useful techniques
that you can apply to all kinds of data-heavy documents.

A document such as this has many potential uses. Most obvi-
ously, it can be displayed on a web page. It can also be used to
generate printed listings for the daily newspaper. Advertisers
can use it to help decide where to buy ads. Digital video
recorders like TiVo can use it to decide when and what to
record. Nielsen boxes can use it to map the channels viewers
are watching to the shows playing on those channels. Hotels
can use it to generate custom listings for each reservation
they sell that cover just the channels shown at that hotel dur-
ing a customer’s stay. Unions such as the Screen Actors Guild
can use it to check which shows are playing how often to
determine which producers to bill for an actor’s appearances.
A web site could send subscribers automatic e-mail notifica-
tion of their favorite shows and movies. Once the data is in
XML, it’s very easy to repurpose for a thousand different uses.

Given so many different use cases, this information will
almost certainly be processed on a variety of hardware and
operating systems, ranging from the mainframes running large
television networks to PCs and Macs in local affiliates to oper-
ating systems embedded in VCRs in homes. The software run-
ning all these devices is written in a plethora of programming
languages with different capabilities and characteristics. They
need a device-independent format they can all handle, and
XML provides it.

As the example is developed, you’ll learn, among other things,
how to mark up data in XML, the principles for good XML
names, and how to prepare a style sheet for a document.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examining the data

XMLizing the data

The advantages of
the XML format

Preparing a style
sheet for document
display

✦ ✦ ✦ ✦

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 63

64 Part I ✦ Introducing XML

Examining the Data
The first step in developing an XML vocabulary for any domain of interest is to
identify the relevant categories. You can probably think of a few obvious ones on
the spot: show name, airtime, length of show, and a few others. However, to avoid
missing anything essential, it’s useful to look at some samples of the existing infor-
mation, even if it’s a noncomputerized form on paper. In this case, the obvious
place to look is TV Guide or the television listings in the daily newspaper. Table 4-1
shows one such sample that you might find in a typical newspaper.

Looking at this sample, you can immediately pick out some of the obvious informa-
tion any successful format must provide:

✦ Station

✦ Network

✦ Channel

✦ Title

✦ Date

✦ Start time

✦ Length or end time

✦ Description

✦ Rating

✦ Whether or not the show is closed captioned

✦ Year when a movie was made

✦ Movie type

✦ Number of stars

The information as shown in Table 4-1 is not necessarily in the same order as it
might appear in the XML document. For example, shows could be ordered by time
or network or not at all. Different systems might have different information. The
documents a network such as ABC sends to local affiliates might contain only the
shows broadcast by that network, and may not include channel numbers. The doc-
uments generated by a local station and sent to the local newspaper would proba-
bly contain all the shows on that station and the channel number. A producer of
syndicated programming like King World might not include start times because that
can vary from one market to the next, but could include the expected air dates.
The documents sent to their members by a media watchdog group such as the
American Family Association or the Gay and Lesbian Alliance Against Defamation
might contain only the shows they find particularly objectionable or praiseworthy.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 64

65Chapter 4 ✦ Structuring Data
Ta

bl
e

4-
1

Te
le

vi
si

on
 S

ch
ed

ul
e

Ju
ly

 3
, 2

00
3

7:
00

pm
7:

30
pm

8:
00

pm
8:

30
pm

C
B

S
2

H
ol

ly
w

oo
d

Sq
ua

re
s

En
te

rt
ai

nm
en

t
Th

e
Am

az
in

g
Ra

ce
 4

 C
C

Re

pe
at

, C
C

To

ni
gh

t C
C

Ei

gh
t t

w
en

ty
-s

om
et

hi
ng

s
sp

ee
d

th
ro

ug
h

Am
er

ic
an

 J
un

io
rs

fo

re
ig

n
cu

ltu
re

s
as

 q
ui

ck
ly

 a
s

po
ss

ib
le

 in

re
m

ai
ni

ng
 c

on
te

st
an

ts
;

at
te

m
pt

 to
 a

vo
id

 le
ar

ni
ng

 a
ny

th
in

g.

Se
x

an
d

th
e

C
ity

pr

ev
ie

w
.

N
B

C
4

EX
TR

A
TV

PG
, C

C

Ac
ce

ss
 H

ol
ly

w
oo

d
Fr

ie
nd

s
TV

14
,

Sc
ru

bs
 T

V1
4,

TV

PG
, C

C

Re
pe

at
, C

C

Re
pe

at
, C

C

Ro
ss

 d
oe

s
so

m
et

hi
ng

J.D

. w
or

rie
s

a
lo

t.
st

up
id

 w
hi

le
 P

ho
eb

e
ac

ts
 a

nn
oy

in
g.

FO
X

 5

Th
e

Si
m

ps
on

s
Se

in
fe

ld
 T

VP
G

, C
C

Th

e
H

ur
ric

an
e

(1
99

9)
 *

**
 (

R)
 T

V1
4,

 C
C

TV

PG
, C

C

Ja
ile

d
bo

xe
r

se
ek

s
to

 b
e

ex
on

er
at

ed
 a

fte
r

im
pr

is
on

m
en

t f
or

 m
ur

de
rs

 h
e

di
d

no
t

co
m

m
it.

A
B

C
7

Je
op

ar
dy

! T
VG

, C
C

W

he
el

 o
f F

or
tu

ne

Th
e

Lo
ve

 L
et

te
r

(1
99

9)
 *

*
(P

G
13

)
TV

14
, C

C

TV
G

, R
ep

ea
t,

CC

A
bo

ok
st

or
e

m
an

ag
er

 in
 a

 s
m

al
l t

ow
n

fin
ds

an
 a

no
ny

m
ou

s
lo

ve
 le

tt
er

 a
nd

 s
ea

rc
he

s
fo

r
th

e
pe

rs
on

 w
ho

 w
ro

te
 it

.

U
P

N
 9

Th

e
St

ev
e

H
ar

ve
y

Th
e

Ja
m

ie
 F

ox
x

W
W

E
Sm

ac
kD

ow
n!

 T
VP

G
, C

C

Sh
ow

 T
VP

G
, C

C

Sh
ow

 C
C

St

er
oi

d-
en

ha
nc

ed
 b

od
y

bu
ild

er
s

pr
et

en
d

to
hi

t e
ac

h
ot

he
r

w
hi

le
 g

ru
nt

in
g

lo
ud

ly
.

Re
fe

re
es

 p
re

te
nd

 to
 c

ar
e.

W
B

 1
1

Fr
ie

nd
s

TV
PG

, C
C

Ev

er
yb

od
y

Lo
ve

s
Ai

r
B

ud
: S

ev
en

th
 In

ni
ng

 F
et

ch
 (

20
02

)
(G

)
Ra

ym
on

d
CC

TV

G
, C

C

G
ol

de
n

re
tr

ie
ve

r
pl

ay
s

ba
se

ba
ll.

P
B

S
13

Th

e
N

ew
sH

ou
r

W
ith

 J
im

 L
eh

re
r

CC

C
in

ci
nn

at
i P

op
s:

 P
at

rio
tic

 B
ro

ad
w

ay
 T

VG
, C

C

C
on

tin
ue

d

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 65

66 Part I ✦ Introducing XML

Ta
bl

e
4-

1
(c

on
tin

ue
d)

Ju
ly

 3
, 2

00
3

7:
00

pm
7:

30
pm

8:
00

pm
8:

30
pm

P
B

S
21

B

B
C

 W
or

ld
 N

ew
s

Fa
ce

-O
ff

G
lo

be
 T

re
kk

er
 C

C

Ja
m

ai
ca

; c
ro

co
di

le
; T

re
as

ur
e

B
ea

ch
; B

ob
M

ar
le

y’
s

m
au

so
le

um
; B

lu
e

M
ou

nt
ai

n

P
B

S
25

Le

 J
ou

rn
al

Th

e
O

pe
n

M
in

d
Is

ad
or

a
D

un
ca

n:
 M

ov
em

en
t f

or
 th

e
So

ul

Th
e

da
nc

er
 m

ov
es

 to
 R

us
si

a
fo

llo
w

in
g

th
e

re
vo

lu
tio

n.
 D

is
co

ve
rs

 B
ol

sh
ev

is
m

 is
 b

or
in

g,
an

d
ev

er
yb

od
y’

s
po

or
.

W
P

X
N

 3
1

Su
pe

rm
ar

ke
t

Fa
m

ily
 F

eu
d

TV
PG

, C
C

It’

s
a

M
ira

cl
e

TV
PG

, C
C

Sw

ee
p

TV
G

Su

rv
iv

or
s

of
 s

ha
rk

 a
tt

ac
ks

, a
va

la
nc

he
s,

 a
nd

ai
rp

or
t s

ec
ur

ity
 c

he
ck

po
in

ts
.

W
X

TV
 4

1
La

s
V¡

as
 d

el
 A

m
or

Re

be
ca

W
N

JU
 4

7
So

fia
 D

am
e

Ti
em

po

Lo
s

Te
en

s

P
B

S
50

B

B
C

 W
or

ld
 N

ew
s

CC

N
JN

 N
ew

s
Am

er
ic

an
 E

xp
er

ie
nc

e
CC

W
LN

Y
 5

5
O

pr
ah

 W
in

fr
ey

 T
VP

G
, R

ep
ea

t,
CC

Si

lic
on

 T
ow

er
s

(1
99

9)
 (

PG
13

)

H
B

O
 5

01

Fi
na

l F
an

ta
sy

: T
he

 S
pi

rit
s

W
ith

in
 *

**
 (

PG
13

),
 C

C

Te
rm

in
at

or
 3

:
St

ar
 W

ar
s:

Ri

se
 o

f t
he

Ep

is
od

e
II

M
ac

hi
ne

s:

At
ta

ck
 o

f t
he

H

B
O

 F
irs

t
C

lo
ne

s
 *

**

Lo
ok

(P

G
),

 C
C

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 66

67Chapter 4 ✦ Structuring Data

Similarly, this one sample might not contain all the information you need to pro-
vide. Television networks routinely send out much more information about any one
show than can fit in the limited amount of space available. This includes episode
titles, cast lists, directors, original air dates, and more. On a web site such as
tv.yahoo.com, this might be accessible on a separate page accessed through a
hyperlink. In a printed version in the daily newspaper, this extra content will proba-
bly be omitted entirely. This is not an excuse not to include it, though. Generally, in
XML, each party to a transfer of information sends everything it knows and extracts
what it wants from what other parties send to it. It’s easier to chop out excess infor-
mation than it is to fill in missing data.

You should look at several independent samples in case one of them contains infor-
mation the other doesn’t contain. It’s certainly possible to leave out some of the infor-
mation some of the time if it isn’t relevant or useful in any particular instance.
However, you want to make the application flexible enough to handle a range of uses.

XMLizing the Data
XML is based on a containment model. Each XML element can contain text or other
XML elements, both of which are called the element’s children. Some XML elements
may contain both text and child elements. However, there’s often more than one
way to organize the data, depending on your needs. One advantage of XML is that it
makes it fairly straightforward to write a program that reorganizes the data in a dif-
ferent form.

Chapter 16 shows you one way of doing this using XSL transformations.

To get started, the first question you have to address is what contains what, or,
another way of putting it, which information is a part of which other information?
For instance, it is fairly obvious that a show has a rating and a title. The rating and
title belong to the show. Thus, the rating and title elements should be children of
the show element, rather than the other way around.

However, does a network contain a show or does a show contain a network? Is the
network a characteristic of a show, or is a show part of a network? Both approaches
are plausible. Indeed, it might be something else altogether, such as both the net-
work and the show being independent elements that are somehow linked together
(although doing so effectively would require some advanced techniques that aren’t
discussed for several chapters yet). There’s no one right answer to these questions,
though some approaches are likely to work better than others.

Cross-
Reference

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 67

68 Part I ✦ Introducing XML

Readers familiar with database theory might recognize XML’s model as essentially
a hierarchical database, and, consequently, recognize that it shares all the disad-
vantages (and a few advantages) of that data model. There are times when a
table-based relational approach makes more sense. This example certainly looks
like one of those times. However, XML doesn’t follow a relational model.

On the other hand, it is completely possible to store the actual data in multiple
tables in a relational database, and then generate the XML on the fly. This enables
one set of data to be presented in multiple formats. Transforming the data with
style sheets provides still more possible views of the data.

Because I’m not a network executive, my personal interests lie in the individual
shows rather than the networks. Therefore, I’m going to design my application
around shows. Most information will be a child of the individual show elements.
Different shows can be grouped together as part of a station element. The schedule
will contain separate stations. However, this is far from the only way to do it, and
different developers might well choose different arrangements for the same data.
You, however, might have other interests and can choose to divide the data in some
other fashion. There’s almost always more than one way to organize data in XML. In
fact, several upcoming chapters explore alternative markup vocabularies for this
very example.

Let’s begin the process of marking up the data. For the sake of the example, I’ve
picked just a few representative channels (CBS, WLNY, and HBO) in New York on
July 3, 2003. To keep the example manageably sized, I’m only going to include shows
that begin between 7:00 P.M. and 8:30 P.M. However, as you’ll soon see, this is easy to
extend to much larger chunks of time and many more stations and networks.

Remember that in XML you’re allowed to make up the tags as you go along. We’ve
already decided that the root element of this document will be a schedule.
Schedules will contain shows. Shows will have titles, start times, run lengths,
actors, descriptions, and so forth. Some of these will be optional. For example, the
evening newscast might not list actors. The 17,345th repeat of The Honeymooners
might not include a description. Some of the elements might contain child elements
of their own. For example, actors typically have a first name, a last name, and often
a middle initial. XML is very flexible. It’s easy to vary the exact information pro-
vided with any particular element. If you don’t know something, it’s easy to leave it
out. If you have extra information that wasn’t planned for, you can easily add an
extra element covering that content.

XML documents can be recognized by the XML declaration. This is placed at the
start of XML files to identify the version in use. The only version currently under-
stood is 1.0.

<?xml version=”1.0”?>

Note

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 68

69Chapter 4 ✦ Structuring Data

Version 1.1 is under development now, but offers no benefits to anyone reading
this book and is substantially less interoperable than XML 1.0. Version 1.1 is only
useful to people who speak Cherokee, Mongolian, Burmese, Amharic, and a few
other languages this book is not translated into. This is discussed further in
Chapter 6.

Every good XML document (where good has a very specific meaning to be dis-
cussed in Chapter 6) must have a root element. This is an element that completely
contains all other elements of the document. The root element’s start-tag comes
before all other elements’ start-tags, and the root element’s end-tag comes after all
other element’s end-tags. For the root element, I’ll pick SCHEDULE with a start-tag of
<SCHEDULE> and an end-tag of </SCHEDULE>. The document now looks like this:

<?xml version=”1.0”?>
<SCHEDULE>
</SCHEDULE>

The XML declaration is not an element or a tag. Therefore, it does not need to be
contained inside the root element SCHEDULE. But every element that you put in this
document will go between the <SCHEDULE> start-tag and the </SCHEDULE> end-tag.

Note

Naming Conventions

Before I go any further, I’d like to say a few words about naming conventions. As you’ll see
in Chapter 6, XML element names are quite flexible and can contain any number of letters
and digits in either upper- or lowercase. You have the option of writing XML tags that look
like any of the following:

<SCHEDULE>

<Schedule>

<schedule>

<TV_Schedule>

<TV-Schedule>

<TelevisionSchedule>

There are several thousand more variations. You can use all uppercase, all lowercase,
mixed-case with internal capitalization, or some other convention. However, I do recom-
mend that you choose one convention and stick to it.

On the other hand, it is very important that you use full, unabbreviated names. This makes
the documents much more comprehensible, and much easier to process. Throughout this
example, I’m following the explicit XML principle that “Terseness in XML markup is of mini-
mal importance.” If document size is truly an issue, it’s easy to compress the files with gzip
or another compression program. However, this can mean that XML documents tend to be
quite long and relatively tedious to type by hand.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 69

70 Part I ✦ Introducing XML

The next question to ask is whether there’s any information in Table 4-1 that applies
to the entire table, rather than individual rows or columns. I think there’s one key
piece: the date the table describes. This may or may not be present in all variations.
For instance, it’s very important in a monthly or weekly program guide, but not
nearly as important in the daily newspaper. Networks and local stations might pub-
lish documents containing a week’s worth of shows, which a newspaper uses to cre-
ate a schedule for a single day. Still, whether a single date will be present in every
instance of this application, it’s at least present here. It’s easily included in a DATE
child element of the root SCHEDULE element:

<?xml version=”1.0”?>
<SCHEDULE>
<DATE>July 3, 2003</DATE>

</SCHEDULE>

Following along with Table 4-1, the next obvious division is either the rows or the
columns of the table. The columns indicate times. The rows indicate stations. XML
does not by its nature lend itself to tabular structures. One or the other of these has
to be the next level of the hierarchy. Choosing the rows, that is, the stations, makes
sense because the shows don’t always line up evenly on column boundaries. On the
other hand, picking columns would allow you to sort the data by time instead of
station, which might be more useful. But one has to be chosen, so I choose the
rows. Still, there’s more than one way to do it, and picking the columns instead
would not be wrong.

What do you know about a station? Several things:

✦ The network affiliation

✦ The call letters

✦ The channel number

Choosing the most obvious names for each of these elements, the first station looks
like this:

<STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>

</STATION>

Later you’ll add the shows as children of the station that broadcasts them.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 70

71Chapter 4 ✦ Structuring Data

Not all stations have all these pieces, however. For example, independent stations
aren’t affiliated with a network, and cable-only channels don’t have call letters. You
can include those that apply and leave out those that don’t. For example, here are
STATION elements for WLNY, an independent channel, and HBO, a cable-only net-
work with no local affiliates:

<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

</STATION>
<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>

</STATION>

XML makes it very easy to include the information that applies and leave out the
information that doesn’t. There aren’t any special null values, or elements used just
to fill an expected slot.

So far, the complete document is as shown in Listing 4-1 (though you could always
add more stations, of course).

Listing 4-1: The Stations in the Schedule

<?xml version=”1.0”?>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
<STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>

</STATION>
<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

</STATION>
<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>

</STATION>
</SCHEDULE>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 71

72 Part I ✦ Introducing XML

I’ve used indentation here and in other examples to make it more obvious that the
STATION elements are children of the SCHEDULE elements and that the CHANNEL,
NETWORK, and CALL_LETTERS elements are children of the STATION elements.
This is good coding style, but it is not required. Parsers do faithfully report all white
space in the event that it is necessary, but in most applications white space is not
particularly significant, especially boundary white space that occurs solely between
two tags. The same example could have been written like this, but with a corre-
sponding loss of clarity:

<?xml version=”1.0”?><SCHEDULE><DATE>July 3,
2003</DATE><STATION><CHANNEL>2</CHANNEL><NETWORK>CBS
</NETWORK><CALL_LETTERS>WCBS</CALL_LETTERS>
</STATION><STATION><CHANNEL>55</CHANNEL>
<CALL_LETTERS>WLNY</CALL_LETTERS></STATION><STATION>
<CHANNEL>501</CHANNEL><NETWORK>HBO</NETWORK>
</STATION></SCHEDULE>

Of course, this version is much harder to read and to understand. The tenth goal
listed in the XML specification is “Terseness in XML markup is of minimal impor-
tance.” It is much more important that documents be legible than that they be
terse. The examples in this book reflect this principle throughout.

The key component of the information will be the individual shows. Let’s begin
with the first one in Table 4-1, Hollywood Squares. After examining it, you know the
following:

✦ The name of the show: Hollywood Squares.

✦ The start time: 7:00 P.M.

✦ The end time: 7:30 P.M.

✦ The length of the show: 30 minutes.

✦ The channel: 2.

✦ The network: CBS.

✦ The air date: July 3, 2003.

✦ The show is closed captioned.

✦ The show is a repeat.

The channel and network will become part of each STATION element. There’s no
need to duplicate them. The remainder of these items can each be made a child ele-
ment of a SHOW element like so:

<SHOW>
<NAME>Hollywood Squares</NAME>
<START_TIME>7:00 P.M.</START_TIME>

Note

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 72

73Chapter 4 ✦ Structuring Data

<END_TIME>7:00 P.M.</END_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>

</SHOW>

However, some of this information is deceptive and may need to be cleaned up
before it can be used:

✦ The start and end times are in the eastern time zone. These are the correct
local times for New York. However, it might be useful to indicate the time zone
in which these times are stated, typically by giving the offset from Greenwich
Mean Time and often using a 24-hour clock. For example, New York is five
hours behind Greenwich Mean Time, so the start time could be written as
19:00-0500.

✦ One of the three numbers — start time, end time, and length — is redundant.
Given two of these it’s possible to calculate the other. It might be wiser not to
include all three.

✦ The air date at least seems redundant with date of the entire schedule.
However, most television listings prefer to start the day somewhere around
5:00 or 6:00 A.M., rather than at midnight. Thus, it’s not uncommon for a show
that’s broadcast in the early morning one day to appear in the schedule for
the previous day.

Accounting for this, the SHOW element becomes something like this:

<SHOW>
<NAME>Hollywood Squares</NAME>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>

</SHOW>

Furthermore, a lot of information that could be made available doesn’t always show
up in the daily newspaper but might be used if the show is a pick of the day. This
includes the following:

✦ The cast: Don Rickles, Jerry Springer, Richard Simmons, Vicki Lawrence, John
Salley, Joanie Laurer, Martin Mull, Jillian Barberie, Kennedy

✦ The Producers: Henry Winkler, Michael Levitt

✦ The original air date: January 16, 2003

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 73

74 Part I ✦ Introducing XML

Even if this will be omitted from a particular view of the data, it might well be
included in the XML. At the minimum, it needs to be able to be included. Adding
this content, a SHOW element looks like this:

<SHOW>
<NAME>Hollywood Squares</NAME>
<TYPE>Series/Game Shows</TYPE>
<EPISODE_NUMBER>5074</EPISODE_NUMBER>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>January 16, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<CAST>
Don Rickles, Jerry Springer, Richard Simmons,
Vicki Lawrence, John Salley, Joanie Laurer,
Martin Mull, Jillian Barberie, Kennedy

</CAST>
<PRODUCER>Henry Winkler</PRODUCER>
<PRODUCER>Michael Levitt</PRODUCER>

</SHOW>

However, the CAST element is less than ideal. It has significant substructure that is
not yet reflected in the XML markup. The CAST is composed of individual actors.
However, because XML has no limit on the number of elements that may share
names, it’s easy to expand the markup to more thoroughly annotate this information:

<CAST>
<ACTOR>Don Rickles</ACTOR>
<ACTOR>Jerry Springer</ACTOR>
<ACTOR>Richard Simmons</ACTOR>
<ACTOR>Vicki Lawrence</ACTOR>
<ACTOR>John Salley</ACTOR>
<ACTOR>Joanie Laurer</ACTOR>
<ACTOR>Martin Mull</ACTOR>
<ACTOR>Jillian Barberie</ACTOR>
<ACTOR>Kennedy</ACTOR>

</CAST>

There’s still substructure we haven’t captured here, though. Actors (and produc-
ers) have both first and last names. Assuming you might want to do something with
this data, such as sort by last name, it makes sense to mark that up separately:

<CAST>
<ACTOR>
<GIVEN_NAME>Don</GIVEN_NAME>
<SURNAME>Rickles</SURNAME>

</ACTOR>
<ACTOR>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 74

75Chapter 4 ✦ Structuring Data

<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Springer</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Richard</GIVEN_NAME>
<SURNAME>Simmons</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Vicki</GIVEN_NAME>
<SURNAME>Lawrence</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>John</GIVEN_NAME>
<SURNAME>Salley</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Joanie</GIVEN_NAME>
<SURNAME>Laurer</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Martin</GIVEN_NAME>
<SURNAME>Mull</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Jillian</GIVEN_NAME>
<SURNAME>Barberie</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>Kennedy</GIVEN_NAME>
</ACTOR>
<PRODUCER>
<GIVEN_NAME>Henry</GIVEN_NAME>
<SURNAME>Winkler</SURNAME>

</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Michael</GIVEN_NAME>
<SURNAME>Levitt</SURNAME>

</PRODUCER>
</CAST>

Kennedy is the odd one out here. She only uses one name professionally, which is
actually her middle name. Fortunately, in XML it’s straightforward to leave out any
element that doesn’t apply in a particular instance. This is much better than includ-
ing an empty element, N/A, null, or some similar flag. The proper representation of
information that doesn’t exist is no element at all.

The tags <GIVEN_NAME> and <SURNAME> are preferable to the more obvious
<FIRST_NAME> and <LAST_NAME> or <FIRST_NAME> and <FAMILY_NAME>.
Whether the family name or the given name comes first or last varies from culture
to culture. Furthermore, surnames aren’t necessarily family names in all cultures.

Note

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 75

76 Part I ✦ Introducing XML

When developing a new format, it’s important to look at multiple examples. The
first one never shows every aspect of the domain. The second show on the sched-
ule is Entertainment Tonight. This is a syndicated news show instead of a syndicated
game show like Hollywood Squares. How well does this structure fit it? In terms of
scheduling, they’re not that different. The main difference is that it doesn’t have a
cast, and does include a description, but that’s easily handled by removing the
CAST element and adding a DESCRIPTION element. Not all elements with the same
name have to have exactly the same structure.

<SHOW>
<NAME>Entertainment Tonight</NAME>
<TYPE>Series/News</TYPE>
<EPISODE_NUMBER>5689</EPISODE_NUMBER>
<START_TIME>17:30-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<DESCRIPTION>
American Juniors remaining contestants;
Sex and the City preview.

</DESCRIPTION>
</SHOW>

One open question here is whether the DESCRIPTION element has identifiable sub-
structure. It certainly seems to. For example, you could mark it up as two separate
segments, each of which also contains a SERIES element:

<DESCRIPTION>
<SEGMENT>
<SERIES>American Juniors</SERIES> remaining contestants

</SEGMENT>
<SEGMENT>
<SERIES>Sex and the City</SERIES> preview

</SEGMENT>
</DESCRIPTION>

The real question is whether this is useful. Will similar content be found in enough
different shows to make it worthwhile to call this out individually? I think the
answer is yes. It might not be obvious in this small example, but if nothing else, this
one show is likely to reappear every night for years. The episode number here is
5689. There’ve been a lot of instances of this show in the past, and there’ll be more
in the future. However, looking at other examples of similar shows may indicate this
isn’t the ideal way to mark up this information. There may well be better, more gen-
eral ways. A final decision will have to wait until you have more experience with the
domain, but when in doubt, it’s better to have too much markup than too little, so
I’ll leave this in.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 76

77Chapter 4 ✦ Structuring Data

The next show is a little different. Instead of a half hour syndicated show, it’s an
hour-long network show. The actors aren’t listed, but the producers are. It also
adds a couple of new elements lacking in the previous two shows (though not seen
in Table 4-1), a title for the individual episode, and a middle name for a person. This
is not a problem. XML is the extensible markup language. When you encounter new
information, you can always invent an element to fit it.

<SHOW>
<NAME>The Amazing Race</NAME>
<TITLE>I Could Never Have Been Prepared for What

I’m Looking at Right Now</TITLE>
<TYPE>Series/Game Shows</TYPE>
<EPISODE_NUMBER>406</EPISODE_NUMBER>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<PRODUCER>

<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Bruckheimer</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Bertram</GIVEN_NAME>
<SURNAME>van Munster</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Hayma</GIVEN_NAME>
<MIDDLE_NAME>Screech</MIDDLE_NAME>
<SURNAME>Washington</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Jon</GIVEN_NAME>
<SURNAME>Kroll</SURNAME>

</PRODUCER>
<DESCRIPTION>
Eight twenty-somethings speed through foreign cultures
as quickly as possible in attempt to avoid learning
anything

</DESCRIPTION>
</SHOW>

So far I’ve looked only at series, but television also has numerous nonrecurring
shows. What would a movie look like, for example? When I checked the detailed list-
ings for the first movie on HBO this particular night, I discovered it had several new
pieces that had not been noted before, including a director, the writers, a rating,
and a number of stars. The cast was also much larger, and the original air date was
omitted.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 77

78 Part I ✦ Introducing XML

<SHOW>
<NAME>Final Fantasy: The Spirits Within</NAME>
<TYPE>Movie/Animated</TYPE>
<START_TIME>18:30-0500</START_TIME>
<LENGTH>105 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>PG-13</RATING>
<STARS>3</STARS>
<DESCRIPTION>
The last city on Earth defends itself against alien
phantoms. The plot has little to no relationship to
the video games of the same name.

</DESCRIPTION>
<DIRECTOR>

<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>

</DIRECTOR>
<WRITER>

<GIVEN_NAME>Al</GIVEN_NAME>
<SURNAME>Reinart</SURNAME>

</WRITER>
<WRITER>

<GIVEN_NAME>Jeff Vintar</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>

</WRITER>
<PRODUCER>

<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Jun</GIVEN_NAME>
<SURNAME>Aida</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Lee</SURNAME>

</PRODUCER>
<CAST>
<ACTOR>
<GIVEN_NAME>Ming</GIVEN_NAME>
<SURNAME>Na</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Alec</GIVEN_NAME>
<SURNAME>Baldwin</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Ving</GIVEN_NAME>
<SURNAME>Rhames</SURNAME>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 78

79Chapter 4 ✦ Structuring Data

</ACTOR>
<ACTOR>
<GIVEN_NAME>Steve</GIVEN_NAME>
<SURNAME>Buscemi</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>Peri</GIVEN_NAME>
<SURNAME>Gilpin</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Donald</GIVEN_NAME>
<SURNAME>Sutherland</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>James</GIVEN_NAME>
<SURNAME>Woods</SURNAME>

</ACTOR>
</CAST>

</SHOW>

Until now, I’ve been showing the XML document in pieces, element by element.
However, it’s now time to put all the pieces together and look at the complete docu-
ment containing the schedule for three New York stations between 7:00 and 8:30
P.M., July 3, 2003. Listing 4-2 demonstrates. Figure 4-1 shows this document loaded
into Mozilla 1.4.

Listing 4-2: tvschedule2003-07-03.xml—The Completed
XML Document

<?xml version=”1.0”?>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
<STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>

<SHOW>
<NAME>Hollywood Squares</NAME>
<TYPE>Series/Game Shows</TYPE>
<EPISODE_NUMBER>5074</EPISODE_NUMBER>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>January 16, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<CAST>

Continued

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 79

80 Part I ✦ Introducing XML

Listing 4-2 (continued)

<ACTOR>
<GIVEN_NAME>Don</GIVEN_NAME>
<SURNAME>Rickles</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Springer</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Richard</GIVEN_NAME>
<SURNAME>Simmons</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Vicki</GIVEN_NAME>
<SURNAME>Lawrence</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>John</GIVEN_NAME>
<SURNAME>Salley</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Joanie</GIVEN_NAME>
<SURNAME>Laurer</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Martin</GIVEN_NAME>
<SURNAME>Mull</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Jillian</GIVEN_NAME>
<SURNAME>Barberie</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>Kennedy</GIVEN_NAME>
</ACTOR>

</CAST>
<PRODUCER>
<GIVEN_NAME>Henry</GIVEN_NAME>
<SURNAME>Winkler</SURNAME>

</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Michael</GIVEN_NAME>
<SURNAME>Levitt</SURNAME>

</PRODUCER>
</SHOW>

<SHOW>
<NAME>Entertainment Tonight</NAME>
<TYPE>Series/News</TYPE>
<EPISODE_NUMBER>5689</EPISODE_NUMBER>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 80

81Chapter 4 ✦ Structuring Data

<START_TIME>19:30-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<DESCRIPTION>
American Juniors remaining contestants;
Sex and the City preview.

</DESCRIPTION>
</SHOW>

<SHOW>
<NAME>The Amazing Race</NAME>
<TITLE>I Could Never Have Been Prepared for What

I’m Looking at Right Now</TITLE>
<TYPE>Series/Game Shows</TYPE>
<EPISODE_NUMBER>406</EPISODE_NUMBER>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<PRODUCER>

<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Bruckheimer</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Bertram</GIVEN_NAME>
<SURNAME>van Munster</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Hayma</GIVEN_NAME>
<MIDDLE_NAME>Screech</MIDDLE_NAME>
<SURNAME>Washington</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Jon</GIVEN_NAME>
<SURNAME>Kroll</SURNAME>

</PRODUCER>
<DESCRIPTION>
Eight twenty-somethings speed through foreign
cultures as quickly as possible in desperate
attempt to avoid learning anything.

</DESCRIPTION>
</SHOW>

</STATION>

<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>

Continued

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 81

82 Part I ✦ Introducing XML

Listing 4-2 (continued)

<CHANNEL>55</CHANNEL>

<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>
Guests gabber; Oprah looks sympathetic.

</DESCRIPTION>
</SHOW>

<SHOW>
<NAME>Silicon Towers</NAME>
<TYPE>Movie</TYPE>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>1999</YEAR_MADE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<CAST>
<ACTOR>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Dennehy</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Daniel</GIVEN_NAME>
<SURNAME>Baldwin</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Brad</GIVEN_NAME>
<SURNAME>Dourif</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Gary</GIVEN_NAME>
<SURNAME>Mosher</SURNAME>

</ACTOR>
</CAST>
<DESCRIPTION>
A programmer discovers his company manufactures
chips for cracking bank systems.

</DESCRIPTION>
</SHOW>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 82

83Chapter 4 ✦ Structuring Data

</STATION>

<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>

<SHOW>
<NAME>Final Fantasy: The Spirits Within</NAME>
<TYPE>Movie/Animated</TYPE>
<START_TIME>18:30-0500</START_TIME>
<LENGTH>105 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<DESCRIPTION>
The last city on Earth defends itself against alien
phantoms. Little to no relationship to the video
games of the same name.

</DESCRIPTION>
<RATING>PG-13</RATING>
<STARS>2</STARS>
<DIRECTOR>

<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>

</DIRECTOR>
<WRITER>

<GIVEN_NAME>Al</GIVEN_NAME>
<SURNAME>Reinart</SURNAME>

</WRITER>
<WRITER>

<GIVEN_NAME>Jeff</GIVEN_NAME>
<SURNAME>Vintar</SURNAME>

</WRITER>
<PRODUCER>

<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Jun</GIVEN_NAME>
<SURNAME>Aida</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Lee</SURNAME>

</PRODUCER>
<CAST>
<ACTOR>
<GIVEN_NAME>Ming</GIVEN_NAME>
<SURNAME>Na</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Alec</GIVEN_NAME>

Continued

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 83

84 Part I ✦ Introducing XML

Listing 4-2 (continued)

<SURNAME>Baldwin</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Ving</GIVEN_NAME>
<SURNAME>Rhames</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Steve</GIVEN_NAME>
<SURNAME>Buscemi</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>Peri</GIVEN_NAME>
<SURNAME>Gilpin</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Donald</GIVEN_NAME>
<SURNAME>Sutherland</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>James</GIVEN_NAME>
<SURNAME>Woods</SURNAME>

</ACTOR>
</CAST>

</SHOW>

<SHOW>
<NAME>Terminator 3: Rise of the Machines:

HBO First Look</NAME>
<TYPE>Special/Documentary</TYPE>
<START_TIME>20:15-0500</START_TIME>
<LENGTH>15 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>June 26, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV14</RATING>

</SHOW>

<SHOW>
<NAME>Star Wars: Episode II -- Attack of

the Clones</NAME>
<TYPE>Movie</TYPE>
<START_TIME>20:30-0500</START_TIME>
<LENGTH>150 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>2002</YEAR_MADE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>PG-13</RATING>
<STARS>3</STARS>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 84

85Chapter 4 ✦ Structuring Data

<DESCRIPTION>
Obi-wan Kenobi and Anakin Skywalker battle
Count Dooku and the Trade Federation.

</DESCRIPTION>
<DIRECTOR>

<GIVEN_NAME>George</GIVEN_NAME>
<SURNAME>Lucas</SURNAME>

</DIRECTOR>
<WRITER>

<GIVEN_NAME>George</GIVEN_NAME>
<SURNAME>Lucas</SURNAME>

</WRITER>
<WRITER>

<GIVEN_NAME>Jonathan</GIVEN_NAME>
<SURNAME>Hales</SURNAME>

</WRITER>
<PRODUCER>

<GIVEN_NAME>George</GIVEN_NAME>
<SURNAME>Lucas</SURNAME>

</PRODUCER>
<PRODUCER>

<GIVEN_NAME>George</GIVEN_NAME>
<SURNAME>McCallam</SURNAME>

</PRODUCER>
<CAST>
<ACTOR>
<GIVEN_NAME>Ewan</GIVEN_NAME>
<SURNAME>McGregor</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Natalie</GIVEN_NAME>
<SURNAME>Portman</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Christopher</GIVEN_NAME>
<SURNAME>Lee</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Samuel</GIVEN_NAME>
<MIDDLE_INITIAL>L</MIDDLE_INITIAL>
<SURNAME>Jackson</SURNAME>

</ACTOR>
<ACTOR>

<GIVEN_NAME>Frank</GIVEN_NAME>
<SURNAME>Oz</SURNAME>

</ACTOR>
</CAST>

</SHOW>
</STATION>

</SCHEDULE>

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 85

86 Part I ✦ Introducing XML

In general, order matters in XML. Listing 4-2 arranges the three stations in ascend-
ing numeric order (2, 55, 501), and within each station it lists the shows in ascend-
ing order based on start time. It is possible to reorder the content when processing
or displaying it — just as it’s possible to sort any other list — but the parser will
faithfully report the elements in the order they appear in the input document. You
can rely on the order if you want to. On the other hand, you don’t have to. You may
decide, for example, that you don’t care what order the NAME, TITLE, TYPE, CAST,
and other children of each SHOW element appear. However, that’s a decision for you
to make; XML does not it make for you. Whether or not to treat order as significant
depends on whether or not it helps out in your use cases.

Figure 4-1: The raw TV schedule displayed in Mozilla 1.4

Even as large as it is, this document is incomplete. It contains only a couple of
hour’s worth of shows from three networks. Showing more than that would make
the example too long to include in this book. If you continued to look at more
shows, you would discover numerous other relevant pieces of information that
deserve to be marked up, including role played by an actor, broadcast language,
pay-per-view prices, and more. However, I will stop the XMLization of the data here
to move on; first to a brief discussion of why this data format is useful, and then to
the techniques that can be used for displaying it more attractively in a web
browser.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 86

87Chapter 4 ✦ Structuring Data

The Advantages of the XML Format
Table 4-1 does a good job of displaying a daily television schedule in a comprehen-
sible and compact fashion. What has been gained by rewriting that table as the
much longer XML document of Listing 4-2? There are several benefits, including the
following:

✦ The data is self-describing.

✦ The data can be manipulated with standard tools.

✦ The data can be viewed with standard tools.

✦ Different views of the same data are easy to create with style sheets.

The first major benefit of the XML format is that the data is self-describing. The
meaning of each item of information is clearly and unambiguously indicated by the
markup. For example, one of the more opaque values is the CLOSED_CAPTION ele-
ment. Its value is either Yes or No. In a more traditional, tab- or comma-delimited
format, there’d be no evidence of exactly what Yes or No meant. In XML, however,
it’s obvious that this tells you whether or not the show is closed captioned.
Sometimes, it takes several levels of markup to tease out the meaning of a string.
For instance, knowing that “Oprah Winfrey” is a name still leaves open the possibil-
ity that it may be the name of a person, a show, a book, a play, a high school, or
something else. However, the hierarchical nature of the XML document makes it
clear that this is indeed the name of a show.

Another common error in less-verbose formats is transposing values; for example,
flipping the order of the given name and the surname. More than one database
knows me as “Harold Elliotte” instead of “Elliotte Harold.” XML lets you transpose
with abandon. As long as the markup is transposed along with the content, no infor-
mation is lost or misunderstood. It doesn’t matter whether the first name comes
first or the last name comes first. It’s still completely obvious which is which.

The second benefit of the XML format is that data can be manipulated in a wide
range of XML-enabled tools, from expensive payware such as Adobe FrameMaker to
free open source software such as Cocoon and eXist. The data may be bigger, but
the extra redundancy allows more tools to process it. If you want to write your own
tools, there are parser libraries available in most major programming languages,
including C, C#, C++, Java, Perl, Python, Haskell, AppleScript, and many others. You
don’t have to start from scratch.

The same is true when the time comes to view the data. The XML document can be
loaded into Internet Explorer, Mozilla, Adobe FrameMaker, xmlspy, and many other
tools, all of which provide unique, useful views of the data. The document can even
be loaded into simple, plain-vanilla text editors such as vi, BBEdit, and TextPad.
XML is at least marginally viewable on all platforms.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 87

88 Part I ✦ Introducing XML

New software isn’t the only way to get a different view of the data either. The next
section develops a style sheet for television listings that provides a completely dif-
ferent way of looking at the data than what you see in Figure 4-1. Each time you
apply a different style sheet to the same document, you see a different picture.

Lastly, you should ask yourself if the size is really that important. Modern hard
drives are quite big and can a hold a lot of data, even if it’s not stored very effi-
ciently. Furthermore, XML files compress very well. Using gzip or similar algo-
rithms, it’s not uncommon to see a reduction in the file size of 90 percent or more.
Many current HTTP servers can actually compress the files they send so that
network bandwidth used by a document like this is fairly close to its actual infor-
mation content. Finally, don’t assume that binary file formats, especially general-
purpose ones, are necessarily more efficient. In practice, relational databases, such
as Oracle, and typical office software, such as Microsoft Excel, are quite spendthrift
with disk space. Although you can certainly create more efficient file formats to
hold this data, in practice, that isn’t often necessary.

Preparing a Style Sheet for Document Display
The view of the raw XML document shown in Figure 4-1 is not bad for some uses. For
instance, it allows you to collapse and expand individual elements so you see only
those parts of the document you want to see. However, most of the time, you’d prob-
ably like a more finished look, especially if you’re going to display it on the Web. To
provide a more polished look, you must write a style sheet for the document.

In this chapter, I use cascading style sheets (CSS). A CSS style sheet associates par-
ticular formatting with each element of the document. The complete list of ele-
ments used in the XML document of Listing 4-1 follows:

ACTOR

AIR_DATE

CALL_LETTERS

CAST

CHANNEL

CLOSED_CAPTIONED

DESCRIPTION

DIRECTOR

EPISODE_NUMBER

GIVEN_NAME

LENGTH

MIDDLE_INITIAL

MIDDLE_NAME

NAME

NETWORK

ORIGINAL_AIR_DATE

PRODUCER

RATING

REPEAT

SCHEDULE

SHOW

STARS

START_TIME

STATION

SURNAME

TITLE

TYPE

WRITER

YEAR_MADE

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 88

89Chapter 4 ✦ Structuring Data

Generally, you’ll want to follow an iterative procedure, adding style rules for each of
these elements one at a time, checking that they do what you expect, then moving
on to the next element. In this example, such an approach also has the advantage of
introducing CSS properties one at a time for those who are not familiar with them.

Linking to a style sheet
The style sheet can be named anything you like. If it’s only going to apply to one
document, it’s customary to give it the same name as the document but with the
three-letter extension .css instead of .xml. For example, the style sheet for the TV
schedule XML documents might be called tvschedule.css.

To attach a style sheet to the document, you simply add an <?xml-stylesheet?>
processing instruction between the XML declaration and the root element like this:

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”tvschedule.css”?>
<SEASON>
...

This tells a browser reading the document to apply the CSS style sheet found in the
file tvschedule.css to this document. This file is assumed to reside in the same
directory and on the same server as the XML document itself. In other words,
tvschedule.css is a relative URL. Absolute URLs may also be used, as in the fol-
lowing code fragment:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css”
href=”http://cafeconleche.org/styles/tvschedule.css”?>
<SCHEDULE>
...

You can begin by simply placing an empty file named tvschedule.css in the same
directory as the XML document. After you’ve done this and added the necessary
processing instruction to Listing 4-2, the document appears as shown in Figure 4-2.
Only the element content is shown. The collapsible outline view of Figure 4-1 is
gone. The formatting of the element content uses the browser’s defaults — black 12-
point Times New Roman on a white background, in this case.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 89

90 Part I ✦ Introducing XML

Figure 4-2: The TV schedule after a blank style sheet is applied

Assigning style rules to the root element
You do not have to assign a style rule to each element in the list. Many elements
can rely on the styles of their parents cascading down. The most important style,
therefore, is the one for the root element —SCHEDULE in this example. This defines
the default for all the other elements on the page. Computer monitors display at
roughly 96 dots per inch (dpi) and don’t have as high a resolution as paper at 300
or more dpi. Therefore, web pages should generally use a larger point size than is
customary in print. Let’s make the default 14-point type, black on a white back-
ground, as shown in the following:

SCHEDULE {font-size: 14pt; background-color: white;
color: black; display: block}

Place this statement in a text file, save the file with the name tvschedule.css in the
same directory as Listing 4-2, tvschedule2003-07-03.xml, and open the XML docu-
ment in your browser. You should see something similar to Figure 4-3.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 90

91Chapter 4 ✦ Structuring Data

Figure 4-3: A TV schedule in 14-point type with a black on white background

The default font size changed between Figure 4-2 and Figure 4-3. The text color and
background color did not. Indeed, it was not absolutely required to set them,
because black foreground and white background are the defaults. Nonetheless,
nothing is lost by being explicit about what you want.

Assigning style rules to titles
The DATE element is more or less the title of the document. Therefore, let’s make
it appropriately large and bold — 32 points should be big enough. Furthermore,
it should stand out from the rest of the document rather than simply running
together with the rest of the content, so let’s make it a centered block element. All
of this can be accomplished by the following style rule:

DATE {display: block; font-size: 32pt; font-weight: bold;
text-align: center}

Figure 4-4 shows the document after this rule has been added to the style sheet.
Notice in particular the line break after 2003. That’s there because DATE is now a
block-level element. Everything else in the document is an inline element. Only
block-level elements can be centered (or left-aligned, right-aligned, or justified).

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 91

92 Part I ✦ Introducing XML

Figure 4-4: Styling the DATE element as a title

“July 3, 2003” isn’t the ideal title for this document. “TV Schedule: July 23, 2003”
would be better, but the phrase “TV Schedule” isn’t included in the XML document.
CSS lets you add extra content from the style sheet either before or after particular
elements using the :before and :after pseudoselectors. The text that you want
to add is given as a string value of the content property. For example, to add the
phrase “TV Listings: “ to the beginning of the DATE element, add this rule to the
style sheet:

DATE:before {content: “TV Schedule: “}

Figure 4-5 shows the document after this rule has been added.

Internet Explorer doesn’t support either the :before and :after pseudoselec-
tors or the content property.

Caution

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 92

93Chapter 4 ✦ Structuring Data

Figure 4-5: Adding content to the YEAR element

In this document, with these style rules, DATE duplicates the functionality of
HTML’s H1 header element. Because this document is so neatly hierarchical, several
other elements serve the role of H2 headers, H3 headers, and so on. These elements
can be formatted by similar rules with only a slightly smaller font size. For this doc-
ument, the name of the network, channel, and call letters makes a nice level 2 divi-
sion, while each show makes a nice level 3 division. These four rules format them
accordingly:

STATION {display: block}
SHOW {display: block}
NETWORK, CHANNEL, CALL_LETTERS {font-size: 28pt;

font-weight: bold}
NAME {font-weight: bold}

Figure 4-6 shows the resulting document. Because SHOW and STATION are formatted
as block-level elements, there are line breaks before and after them.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 93

94 Part I ✦ Introducing XML

Figure 4-6: Styling CHANNEL, NETWORK, CALL_LETTERS, and NAME as headings

This is beginning to break up the document into more manageable, paragraph-sized
chunks. However, is this what you really want? Television listings are formatted as
tables for good reason. It makes them easier to scan and read. Could you instead
format this document as a table? CSS does allow you to format elements as parts of
tables instead of blocks. For example, these rules attempt to duplicate the table
structure of Table 4-1:

STATION {display: table-row}
NETWORK, CHANNEL, CALL_LETTERS {display: table-cell;

color: white; background-color: grey}
SHOW {border-width: 1px; border-style: solid;

display: table-cell}

However, CSS assumes that each element occupies a single cell. In the television
schedule, this translates into each show being exactly half an hour long. When this
isn’t the case, the cells rapidly get out of sync with the headings and each other, as
shown in Figure 4-7. Adding a caption row at the top for times simply isn’t possible.
Even within the realm of what CSS can theoretically handle, table support is
extremely limited and buggy in most current browsers. Sophisticated table layout
that can handle column spans, row spans, styles that depend on row and column,
and other advanced features — and that works reasonably well across browsers —
will have to wait until the more powerful XSL style sheet language is introduced in
the next chapter.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 94

95Chapter 4 ✦ Structuring Data

Figure 4-7: CSS table layout

Now it’s time to look at styling the individual shows. You’ve already made the
name bold. The next obvious step is to remove the information you don’t need. For
example, most printed television listings don’t bother to list the producer, director,
episode number, or current date. I’m also going to omit the complete cast. Sometimes
this is included, but most of the time it isn’t, and CSS doesn’t provide any way to
choose when to include it. In CSS, you can set an element’s display property to
none to hide it from view:

CAST {display: none}
AIR_DATE {display: none}
DIRECTOR {display: none}
EPISODE_NUMBER {display: none}
PRODUCER {display: none}
WRITER {display: none}

Figure 4-8 shows the result.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 95

96 Part I ✦ Introducing XML

Figure 4-8: Hiding unwanted content

The final step is to choose styles for the remainder of SHOW’s child elements. One
nice approach is to format everything except the description as a bulleted list. The
description can be formatted as a simple block-level element. For the bulleted list,
use the list-item value of the display property, a .35-inch indent, and a standard
disk bullet.

TYPE {display: list-item; list-style-type: disc;
margin-left: 0.35in }

LENGTH {display: list-item; list-style-type: disc;
margin-left: 0.35in}

START_TIME {display: list-item; list-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: list-item; list-style-type: disc;
margin-left: 0.35in}

REPEAT {display: list-item; list-style-type: disc;
margin-left: 0.35in}

CLOSED_CAPTIONED {display: list-item; list-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: list-item; list-style-type: disc;
margin-left: 0.35in}

RATING {display: list-item; list-style-type: disc;
margin-left: 0.35in}

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 96

97Chapter 4 ✦ Structuring Data

STARS {display: list-item; list-style-type: disc;
margin-left: 0.35in}

YEAR_MADE {display: list-item; list-style-type: disc;
margin-left: 0.35in}

Figure 4-9 shows the result.

This is beginning to look decent, but it still isn’t obvious what each bullet point rep-
resents. For example, the last two bullet points for Hollywood Squares are Yes and
Yes, but yes what? Once again, you can use the content property and the :before
pseudo-element to describe what each piece of the information is, with the result
shown in Figure 4-10.

LENGTH:before {content: “Length: “}
START_TIME:before {content: “Starts at “}
ORIGINAL_AIR_DATE:before {“First aired on “}
REPEAT:before {content: “Repeat: “}
CLOSED_CAPTIONED:before {content: “Closed captioned: “}
RATING:before {content: “Rating: “}
STARS:before {content: “Stars: “}
YEAR_MADE:before {content: “Made in “}

Figure 4-9: Styling the show data as a bulleted list

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 97

98 Part I ✦ Introducing XML

Figure 4-10: The finished schedule

The complete style sheet
Listing 4-3 shows the finished style sheet. CSS style sheets don’t have a lot of struc-
ture beyond the individual rules. In essence, this is just a list of all the rules that I
introduced separately in the preceding material. Reordering them wouldn’t make
any difference as long as they’re all present.

Listing 4-3: tvschedule.css

STATION {display: block}
SHOW {display: block}
NETWORK, CHANNEL, CALL_LETTERS {font-size: 28pt;

font-weight: bold}
NAME {font-weight: bold}
DATE:before {content: “TV Schedule: “}
DATE {display: block; font-size: 32pt; font-weight: bold;

text-align: center}
SCHEDULE {font-size: 14pt; background-color: white;

color: black; display: block}

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 98

99Chapter 4 ✦ Structuring Data

AIR_DATE {display: none}
DIRECTOR {display: none}
EPISODE_NUMBER {display: none}
PRODUCER {display: none}
WRITER {display: none}
CAST {display: none}

DESCRIPTION {display: block}

TYPE {display: list-item; list-style-type: disc;
margin-left: 0.35in }

LENGTH {display: list-item; list-style-type: disc;
margin-left: 0.35in}

START_TIME {display: list-item; list-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: list-item;
list-style-type: disc; margin-left: 0.35in}

REPEAT {display: list-item; list-style-type: disc;
margin-left: 0.35in}

CLOSED_CAPTIONED {display: list-item; list-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: list-item;
list-style-type: disc; margin-left: 0.35in}

RATING {display: list-item; list-style-type: disc;
margin-left: 0.35in}

STARS {display: list-item; list-style-type: disc;
margin-left: 0.35in}

YEAR_MADE {display: list-item; list-style-type: disc;
margin-left: 0.35in}

LENGTH:before {content: “Length: “}
START_TIME:before {content: “Starts at “}
ORIGINAL_AIR_DATE:before {“First aired on “}
REPEAT:before {content: “Repeat: “}
CLOSED_CAPTIONED:before {content: “Closed captioned: “}
RATING:before {content: “Rating: “}
STARS:before {content: “Stars: “}
YEAR_MADE:before {content: “Made in “}

This completes the basic formatting for the television schedule. However, work
clearly remains to be done. Some things that you might want to add include the
following:

✦ Instead of writing “Closed captioned: yes” or “Repeat: Yes”, it might be nicer
to simply write (CC) or (repeat) as in many actual TV schedules.

✦ Sort by start time rather than station.

✦ The call letters should be included only if the station is independent.

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 99

100 Part I ✦ Introducing XML

✦ The start times could be converted back to a more human-friendly format,
such as 7:00 P.M. instead of 19:00-0500.

✦ A two-star movie should be listed as ★★ instead of Stars: 2.

✦ You might want to include one or two actors, even if not the entire cast.

✦ You might want to include descriptions for some of the more important
shows, but not all of them.

✦ Even if you don’t lay out a grid schedule using a table, you might still want to
use multiple columns, as is often done in actual newspapers.

What unifies all these goals is that they require changing the information in the docu-
ment rather than merely annotating it with different styles. You could address some of
these points by adding more content to the document or changing the content that’s
there. For example, the STARS element could be written as <STARS>★★</STARS>
instead of <STARS>2</STARS>. (Yes, ★ is a Unicode character, which can be used in
an XML document.) The original document could be ordered by start time rather
than station. The CALL_LETTERS child element of a STATION could be present only
if the network isn’t.

Still, there’s something fundamentally troublesome about such tactics. If you orga-
nize the document so it’s absolutely perfect for this one use (a printed table in a
newspaper or a magazine), you may have eliminated information that’s critical for
other uses. What’s flawed here is not XML. XML is robust enough to handle all these
needs. However, CSS is a limited style language. It’s intended for words in a row that
already contain all the document content in the right order and nothing else. A few
elements can be hidden by setting display to none, and a little text can be added
using :before, :after, and the content property. However, at its core, CSS just
isn’t designed to handle complicated document manipulations before displaying
the result to the end user.

What’s really needed is a different style language that enables you to add certain
boilerplate content to elements and to perform transformations on the element
content that is present. Such a language exists — the Extensible Stylesheet
Language (XSL). CSS is simpler than XSL. CSS works well for basic web pages and
reasonably straightforward documents. XSL is considerably more complex, but it is
also more powerful. XSL builds on the simple CSS formatting that you learned in
this chapter, but it also transforms the source document into various forms that the
reader can view. It’s often a good idea to make a first pass at a problem using CSS
while you’re still debugging your XML, and to then move to XSL to achieve greater
flexibility.

XSL is further discussed in Chapters 5, 16, and 17.Cross-
Reference

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 100

101Chapter 4 ✦ Structuring Data

Summary
In this chapter, you saw an example of an XML document being built from scratch.
This chapter was full of seat-of-the-pants/back-of-the-envelope coding. The docu-
ment was written with only minimal concern for details. In particular, you learned
the following:

✦ How to examine the data to be included in the XML document to identify the
elements

✦ How to mark up the data with XML tags that you define

✦ The advantages of XML formats over traditional formats

✦ How to write a CSS style sheet that says how the document should be format-
ted and displayed

The next chapter explores an alternative way to organize and encode television list-
ings in XML by using attributes. It also introduces another style sheet language,
XSLT, which can serve as a supplement or an alternative to CSS.

✦ ✦ ✦

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 101

06 549863 Ch04.qxd 1/28/04 9:45 AM Page 102

Attributes,
Empty-Element
Tags, and XSL

There are an infinite number of ways to encode any given
set of data in XML. There’s no one right way to do it,

although some ways are more right than others and some are
more appropriate for particular uses. This chapter explores a
different solution to the problem of marking up television list-
ings in XML, carrying over the example from the previous chap-
ter. Specifically, you learn to use attributes to store information
and to use empty-element tags to define element positions. In
addition, because CSS doesn’t work well with contentless XML
elements of this form, this chapter examines an alternative and
more powerful style sheet language called XSL.

Attributes
In Chapter 4, all information was provided either by a tag
name or as the text content of an element. This is a straight-
forward and easy-to-understand approach, but it’s not the
only one. As in HTML, XML elements may have attributes. An
attribute is a name-value pair associated with an element. The
name and the value are each strings, and no element can con-
tain two attributes with the same name.

You’re already familiar with attribute syntax from HTML. For
example, consider this tag:

<IMG SRC=cup.gif WIDTH=89 HEIGHT=67 ALT=”Cup
of coffee”>

It has four attributes: the SRC attribute whose value is
cup.gif, the WIDTH attribute whose value is 89, the HEIGHT
attribute whose value is 67, and the ALT attribute whose value

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Attributes

Attributes versus
elements

Empty-element tags

XSL

✦ ✦ ✦ ✦

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 103

104 Part I ✦ Introducing XML

is Cup of coffee. However, in XML — unlike HTML — attribute values must always
be quoted, and start-tags must have matching end-tags. Thus, the XML equivalent
of this tag is as follows:

<IMG SRC=”cup.gif” WIDTH=”89” HEIGHT=”67”
ALT=”Cup of coffee”>

Another difference between HTML and XML is that XML assigns no specific mean-
ing to the IMG element and its attributes. In particular, there’s no guarantee that
an XML browser will interpret this element as an instruction to load and display
the image in the file cup.gif.

Attribute syntax fits the television listings example quite nicely. One advantage is
that it makes the markup somewhat more concise. For example, instead of contain-
ing a DATE child element, the SCHEDULE element only needs a DATE attribute.

<SCHEDULE DATE=”July 3, 2003”>
</SCHEDULE>

On the other hand, STATION should be a child of the SCHEDULE element rather than
an attribute. For one thing, there are many stations in a schedule. Anytime there’s
likely to be more than one of something, child elements are called for. Attribute
names must be unique within an element. You cannot, for example, write a SCHED-
ULE element like this:

<SCHEDULE DATE=”July 3, 2003” STATION=”WPIX” STATION=”WCBS”>
</SCHEDULE>

The second reason STATION is naturally a child element rather than an attribute is
that it has substructure; that is, it is divided into NETWORK, CALL_LETTERS, SHOW,
and CHANNEL elements. Attribute values are unstructured, flat text. XML elements
can conveniently encode structure.

The shows should also be child elements rather than attributes. Like STATION, they
have substructure; but there’s another reason they should be child elements: The
shows are ordered by time. It matters which one comes first. XML parsers preserve
element order. However, they do not preserve attribute order. Whenever order mat-
ters, you need elements rather than attributes.

However, the network, call letters, and channel of a station are all unstructured, flat
text; there’s only one of each per station, and their order doesn’t matter. Therefore,
STATION elements can easily have CALL_LETTERS, SHOW, and CHANNEL attributes
instead of CALL_LETTERS, SHOW, and CHANNEL child elements:

<STATION NETWORK=”CBS” CALL_LETTERS=”WCBS” CHANNEL=”2”>
</STATION>

Note

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 104

105Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

You don’t have to store this information in attributes. Child elements still work, but
you can use attributes here if you want to.

Shows will have many attributes if you choose to make each nonrepeating, non-
structured item an attribute. For example, here’s the listing for Entertainment
Tonight marked up as attributes:

<SHOW NAME=”Entertainment Tonight” TYPE=”Series/News”
EPISODE_NUMBER=”5689” START_TIME=”17:30-0500”
LENGTH=”30 minutes” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”July 3, 2003”
CLOSED_CAPTIONED=”Yes” REPEAT=”No”
DESCRIPTION=”American Juniors remaining contestants;
Sex and the City preview.”>

</SHOW>

However, not all the content can fit into attributes. For example, the CAST has sub-
structure. A show may have multiple writers, producers, and directors. Even the
DESCRIPTION may have substructure in some cases. These should all remain child
elements.

Listing 5-1 uses this new attribute style for a complete XML document containing
the schedule for three New York stations between 7:00 and 8:30 P.M. on July 3, 2003.
It provides all the same information as shown in Listing 4-2 in the previous chapter.
It is merely marked up differently.

Listing 5-1: A Complete XML Document Using Attributes
to Store Television Listings

<?xml version=”1.0”?>
<SCHEDULE DATE=”July 3, 2003”>

<STATION NETWORK=”CBS” CALL_LETTERS=”WCBS” CHANNEL=”2”>
<SHOW NAME=”Hollywood Squares” TYPE=”5074”

START_TIME=”19:00-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”January 16, 2003”
LENGTH=”30 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes”>

<CAST>
<ACTOR GIVEN_NAME=”Don” SURNAME=”Rickles”></ACTOR>
<ACTOR GIVEN_NAME=”Jerry” SURNAME=”Springer”></ACTOR>
<ACTOR GIVEN_NAME=”Richard” SURNAME=”Simmons”></ACTOR>
<ACTOR GIVEN_NAME=”Vicki” SURNAME=”Lawrence”></ACTOR>
<ACTOR GIVEN_NAME=”John” SURNAME=”Salley”></ACTOR>
<ACTOR GIVEN_NAME=”Joanie” SURNAME=”Laurer”></ACTOR>
<ACTOR GIVEN_NAME=”Martin” SURNAME=”Mull”></ACTOR>

Continued

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 105

106 Part I ✦ Introducing XML

Listing 5-1 (continued)

<ACTOR GIVEN_NAME=”Jillian” SURNAME=”Barberie”></ACTOR>
<ACTOR MIDDLE_NAME=”Kennedy”></ACTOR>
</CAST>
<PRODUCER GIVEN_NAME=”Henry”

SURNAME=”Winkler”></PRODUCER>
<PRODUCER GIVEN_NAME=”Michael”

SURNAME=”Levitt”></PRODUCER>
</SHOW>
<SHOW NAME=”Entertainment Tonight” TYPE=”5689”

START_TIME=”19:30-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”July 3, 2003” LENGTH=”30 minutes”
REPEAT=”No” CLOSED_CAPTIONED=”Yes” DESCRIPTION=”
American Juniors remaining contestants;
Sex and the City preview.”></SHOW>

<SHOW NAME=”The Amazing Race” TYPE=”406”
START_TIME=”20:00-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”July 3, 2003” LENGTH=”60 minutes”
REPEAT=”No” CLOSED_CAPTIONED=”Yes” DESCRIPTION=”
Eight twenty-somethings speed through foreign
cultures as quickly as possible in desperate
attempt to avoid learning anything.”>

<PRODUCER GIVEN_NAME=”Jerry”
SURNAME=”Bruckheimer”></PRODUCER>

<PRODUCER GIVEN_NAME=”Bertram”
SURNAME=”van Munster”></PRODUCER>

<PRODUCER GIVEN_NAME=”Hayma” MIDDLE_NAME=”Screech”
SURNAME=”Washington”></PRODUCER>

<PRODUCER GIVEN_NAME=”Jon” SURNAME=”Kroll”></PRODUCER>
</SHOW>

</STATION>

<STATION NETWORK=”” CALL_LETTERS=”WLNY” CHANNEL=”55”>
<SHOW NAME=”Oprah Winfrey” TYPE=”Series/Talk”

START_TIME=”19:00-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”February 4, 2003”
LENGTH=”60 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes”
DESCRIPTION=”Guests gabber;
Oprah looks sympathetic.”
RATING=”TV-PG”></SHOW>

<SHOW NAME=”Silicon Towers” TYPE=”Movie”
START_TIME=”20:00-0500” AIR_DATE=”July 3, 2003”
LENGTH=”60 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes” DESCRIPTION=”A programmer
discovers his company manufactures chips for
cracking bank systems.” RATING=”TV-PG”>

<CAST>
<ACTOR GIVEN_NAME=”Brian” SURNAME=”Dennehy”></ACTOR>
<ACTOR GIVEN_NAME=”Daniel” SURNAME=”Baldwin”></ACTOR>
<ACTOR GIVEN_NAME=”Brad” SURNAME=”Dourif”></ACTOR>
<ACTOR GIVEN_NAME=”Gary” SURNAME=”Mosher”></ACTOR>

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 106

107Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

</CAST>
</SHOW>

</STATION>

<STATION NETWORK=”HBO” CALL_LETTERS=”” CHANNEL=”501”>
<SHOW NAME=”Final Fantasy: The Spirits Within”

TYPE=”Movie/Animated” START_TIME=”18:30-0500”
AIR_DATE=”July 3, 2003” LENGTH=”105 minutes”
REPEAT=”Yes” CLOSED_CAPTIONED=”Yes”
DESCRIPTION=”The last city on Earth defends itself
against alien phantoms. Little to no relationship
to the video games of the same name.”
RATING=”PG-13” STARS=”2”>

<DIRECTOR GIVEN_NAME=”Hironobu”
SURNAME=”Sakaguchi”></DIRECTOR>

<WRITER GIVEN_NAME=”Al” SURNAME=”Reinart”></WRITER>
<WRITER GIVEN_NAME=”Jeff” SURNAME=”Vintar”></WRITER>
<PRODUCER GIVEN_NAME=”Hironobu”

SURNAME=”Sakaguchi”></PRODUCER>
<PRODUCER GIVEN_NAME=”Jun” SURNAME=”Aida”></PRODUCER>
<PRODUCER GIVEN_NAME=”Chris” SURNAME=”Lee”></PRODUCER>
<CAST>
<ACTOR GIVEN_NAME=”Ming” SURNAME=”Na”></ACTOR>
<ACTOR GIVEN_NAME=”Alec” SURNAME=”Baldwin”></ACTOR>
<ACTOR GIVEN_NAME=”Ving” SURNAME=”Rhames”></ACTOR>
<ACTOR GIVEN_NAME=”Steve” SURNAME=”Buscemi”></ACTOR>
<ACTOR GIVEN_NAME=”Peri” SURNAME=”Gilpin”></ACTOR>
<ACTOR GIVEN_NAME=”Donald”

SURNAME=”Sutherland”></ACTOR>
<ACTOR GIVEN_NAME=”James” SURNAME=”Woods”></ACTOR>

</CAST>
</SHOW>
<SHOW NAME=”Terminator 3: Rise of the Machines:

HBO First Look” TYPE=”Special/Documentary”
START_TIME=”20:15-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”June 26, 2003” LENGTH=”15 minutes”
REPEAT=”Yes” CLOSED_CAPTIONED=”Yes”

RATING=”TV14”></SHOW>
<SHOW NAME=”Star Wars: Episode II --

Attack of the Clones” TYPE=”Movie”
START_TIME=”20:30-0500” AIR_DATE=”July 3, 2003”
LENGTH=”150 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes” DESCRIPTION=”Obi-wan Kenobi
and Anakin Skywalker battle Count Dooku and the
Trade Federation.” RATING=”PG-13” STARS=”3”>
<DIRECTOR GIVEN_NAME=”George” SURNAME=”Lucas”></DIRECTOR>
<WRITER GIVEN_NAME=”George” SURNAME=”Lucas”></WRITER>
<WRITER GIVEN_NAME=”Jonathan” SURNAME=”Hales”></WRITER>
<PRODUCER GIVEN_NAME=”George”

SURNAME=”Lucas”></PRODUCER>
<PRODUCER GIVEN_NAME=”George”

SURNAME=”McCallam”></PRODUCER>

Continued

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 107

108 Part I ✦ Introducing XML

Listing 5-1 (continued)

<CAST>
<ACTOR GIVEN_NAME=”Ewan” SURNAME=”McGregor”></ACTOR>
<ACTOR GIVEN_NAME=”Natalie” SURNAME=”Portman”></ACTOR>
<ACTOR GIVEN_NAME=”Christopher” SURNAME=”Lee”></ACTOR>
<ACTOR GIVEN_NAME=”Samuel” MIDDLE_INITIAL=”L”

SURNAME=”Jackson”></ACTOR>
<ACTOR GIVEN_NAME=”Frank” SURNAME=”Oz”></ACTOR>

</CAST>
</SHOW>

</STATION>

</SCHEDULE>

Listing 5-1 uses mostly attributes for text content. Listing 4-2 used only elements.
There are intermediate approaches as well. For example, you could make the show
name and description part of element content, while leaving the rest of the data as
attributes, like this:

<SHOW TYPE=”Series/News” EPISODE_NUMBER=”5689”
START_TIME=”17:30-0500” LENGTH=”30 minutes”
AIR_DATE=”July 3, 2003” ORIGINAL_AIR_DATE=”July 3, 2003”
CLOSED_CAPTIONED=”Yes” REPEAT=”No”>

<NAME>Entertainment Tonight</NAME>
<DESCRIPTION>
American Juniors remaining contestants;
Sex and the City preview.

</DESCRIPTION>
</SHOW>

This would include the show and description name in the text of a page while still
making the rest of the data available. With the appropriate style sheet, it could be
displayed as a hypertext footnote or as a ToolTip to readers who want to look
deeper. The data in the attributes may also be processed in ways other than direct
display. For example, a program could use the AIR_DATE and START_TIME attributes
to sort the shows or to line them up in the right columns in a table, without directly
showing these times to the user. There’s always more than one way to represent the
same data. Which one you pick depends on the needs of your specific application.

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 108

109Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Attributes versus Elements
Chapter 4’s no-attribute approach was an extreme position. It’s also possible to
swing to the other extreme — storing all the information in the attributes and none
in the content. Listing 5-1 does this. In general, I don’t recommend this approach.
Storing all the information in element content — while equally extreme — is much
easier to work with in practice. However, this chapter entertains the possibility of
using only attributes for the sake of elucidation.

There are no hard-and-fast rules about when to use child elements and when to use
attributes. Generally, you’ll use whichever suits your application. With experience,
you’ll gain a feel for when attributes are easier than child elements and vice versa.
Until then, one good rule of thumb is that the data itself should be stored in ele-
ments. Information about the data (metadata) should be stored in attributes. When
in doubt, put the information in the elements.

To differentiate between data and metadata, ask yourself whether someone reading
the document would want to see a particular piece of information. If the answer is
yes, the information probably belongs in a child element. If the answer is no, the
information probably belongs in an attribute. If all tags were stripped from the doc-
ument along with all the attributes, the basic information should still be present.
Attributes are good places to put ID numbers, URLs, references, and other informa-
tion not directly or immediately relevant to the reader. However, there are many
exceptions to the basic principal of storing metadata as attributes. Reasons for
making an exception include the following:

✦ Attributes can’t hold structure well.

✦ Attributes are unordered. Elements are ordered.

✦ Elements allow you to include meta-metadata (information about the
information about the information).

✦ Not everyone always agrees on what is and isn’t metadata.

✦ Elements are more extensible in the face of future changes.

Structured metadata
Elements can have substructure; attributes can’t. This makes elements far more
flexible and may convince you to encode metadata as child elements. For example,
suppose you’re writing an article and you want to include a source for a fact. It
might look something like this:

<FACT SOURCE=”The Biographical History of Baseball,
Donald Dewey and Nicholas Acocella (New York: Carroll &
Graf Publishers, Inc. 1995) p. 169”>

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 109

110 Part I ✦ Introducing XML

Josh Gibson is the only person in the history of baseball
to hit a pitch out of Yankee Stadium.

</FACT>

Clearly, the information “The Biographical History of Baseball, Donald Dewey and
Nicholas Acocella (New York: Carroll & Graf Publishers, Inc. 1995) p. 169” is
metadata. It is not the fact itself. Rather, it is information about the fact. However,
the SOURCE attribute contains a lot of implicit substructure. You might find it more
useful to organize the information like this:

<SOURCE>
<AUTHOR>Donald Dewey</AUTHOR>
<AUTHOR>Nicholas Acocella</AUTHOR>
<BOOK>
<TITLE>The Biographical History of Baseball</TITLE>
<PAGES>169</PAGES>
<YEAR>1995</YEAR>

</BOOK>
</SOURCE>

Furthermore, using elements instead of attributes makes it straightforward to
include additional information such as the authors’ e-mail addresses, a URL where
an electronic copy of the document can be found, the chapter title, and anything
else that seems important.

Dates are another example. A common piece of metadata about scholarly articles is
the date the article was first received. This is important for establishing priority of
discovery and invention. It’s easy to include a DATE attribute in an ARTICLE tag:

<ARTICLE DATE=”06/28/1969”>
Polymerase Reactions in Organic Compounds

</ARTICLE>

However, the DATE attribute has substructure signified by the /. Getting that struc-
ture out of the attribute value is much more difficult than reading child elements of
a DATE element like this one:

<DATE>
<YEAR>1969</YEAR>
<MONTH>06</MONTH>
<DAY>28</DAY>

</DATE>

For example, with CSS, it’s easy to format the day and month invisibly so that only
the year appears:

YEAR {display: inline}
MONTH {display: none}
DAY {display: none}

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 110

111Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

If the DATE is stored as an attribute, however, there’s no easy way to access only
part of it. You must write a separate program in a programming language such as
ECMAScript or Java that can parse your date format. It’s easier to use the standard
XML tools and child elements.

Furthermore, the attribute syntax is ambiguous. What does the date “10/07/2004”
signify? Is it October 7th or July 10th? Readers from different countries will inter-
pret this data differently. Even if your parser understands one format, there’s no
guarantee the people entering the data will enter it correctly. The XML, by contrast,
is unambiguous.

Finally, using DATE children rather than attributes allows more than one date to be
associated with an element. For example, scholarly articles are often returned to
the author for revisions. In these cases, it can also be important to note when the
revised article was received, as in the following example:

<ARTICLE>
<TITLE>
Maximum Projectile Velocity in an Augmented Railgun

</TITLE>
<AUTHOR>Elliotte Harold</AUTHOR>
<AUTHOR>Bruce Bukiet</AUTHOR>
<AUTHOR>William Peter</AUTHOR>
<DATE>
<YEAR>1992</YEAR>
<MONTH>10</MONTH>
<DAY>29</DAY>

</DATE>
<DATE>
<YEAR>1993</YEAR>
<MONTH>10</MONTH>
<DAY>26</DAY>

</DATE>
</ARTICLE>

As another example, consider the ALT attribute of an IMG tag in HTML. This is lim-
ited to a single string of text. However, given that a picture is worth a thousand
words, you might well want to replace an IMG with marked-up text. For instance,
consider the pie chart shown in Figure 5-1.

When you use an ALT attribute, the best description of this picture that you can
provide is as follows:

<IMG SRC=”05021.gif”
ALT=”Pie Chart of Positions in Major League Baseball”
WIDTH=”819” HEIGHT=”623”>

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 111

112 Part I ✦ Introducing XML

Figure 5-1: Distribution of positions in major league baseball

However, by using an ALT child element, you have more flexibility because you can
embed markup. For example, you might provide a table of the relevant numbers
instead of a pie chart:

<ALT>
<TABLE>
<TR>
<TD>Starting Pitcher</TD> <TD>242</TD> <TD>20%</TD>

</TR>
<TR>
<TD>Relief Pitcher</TD> <TD>336</TD> <TD>27%</TD>

</TR>
<TR>
<TD>Catcher</TD> <TD>104</TD> <TD>9%</TD>

</TR>
<TR>
<TD>Outfield</TD> <TD>235</TD> <TD>19%</TD>

</TR>
<TR>
<TD>First Base</TD> <TD>67</TD> <TD>6%</TD>

</TR>
<TR>
<TD>Shortstop</TD> <TD>67</TD> <TD>6%</TD>

</TR>
<TR>
<TD>Second Base</TD> <TD>88</TD> <TD>7%</TD>

Major League Baseball Positions

Starting Pitcher
20%

Relief Pitcher
27%

Third Base
6%

Second Base
7%Shortstop

6%

First Base
6%

Outfield
19% Catcher

9%

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 112

113Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

</TR>
<TR>
<TD>Third Base</TD> <TD>67</TD> <TD>6%</TD>

</TR>
</TABLE>

</ALT>

You might even provide the actual PostScript or Scalable Vector Graphics (SVG)
code to render the picture in the event that the bitmap image is not available.

Meta-metadata
Using elements for metadata also easily allows for meta-metadata, or information
about the information about the information. For example, the author of a poem
might be considered to be metadata about the poem. The language in which that
author’s name is written is data about the metadata about the poem. This isn’t a
trivial concern, especially for distinctly non-Roman languages. For example, is the
author of the Odyssey Homer or ? Using elements, it’s easy to write the
following:

<POET LANGUAGE=”English”>Homer</POET>
<POET LANGUAGE=”Greek”> </POET>

However, if POET is an attribute rather than a child element, you’re stuck with
unwieldy constructs such as this:

<POEM POET=”Homer” POET_LANGUAGE=”English”
POEM_LANGUAGE=”English”>
Tell me, O Muse, of the cunning man...

</POEM>

And it’s even more bulky if you want to provide both the poet’s English and Greek
names:

<POEM POET_NAME_1=”Homer” POET_LANGUAGE_1=”English”
POET_NAME_2=” ” POET_LANGUAGE_2=”Greek”
POEM_LANGUAGE=”English”>
Tell me, O Muse, of the cunning man...

</POEM>

What’s your metadata is someone else’s data
“Meta-ness” is in the mind of the beholder. Who’s reading your document and why
they’re reading it determines what they consider to be data and what they consider
to be metadata. For example, if you’re simply reading an article in a scholarly journal,

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 113

114 Part I ✦ Introducing XML

the name of the author of the article is tangential to the information it contains.
However, if you’re sitting on a tenure and promotions committee scanning a journal
to see who’s publishing and who’s not, the names of the authors and the number of
articles they’ve published may be more important to you than what they wrote (sad
but true).

In fact, you yourself might change your mind about what’s meta and what’s data.
What’s only tangentially relevant today might become crucial next week. You can
use style sheets to hide unimportant elements today, and you can change the style
sheets to reveal them later. However, it’s more difficult to later reveal information
that was first stored in an attribute. This may require rewriting the document itself
rather than simply changing the style sheet.

Elements are more extensible
Attributes are certainly convenient when you only need to convey one or two
words of unstructured information. In these cases, there may genuinely be no cur-
rent need for a child element. However, this doesn’t preclude such a need in the
future.

For example, you may only need to store the name of the author of an article now,
and you may not need to distinguish between the first and last names. However, in
the future you might uncover a need to store first and last names, e-mail addresses,
institutions, snail-mail addresses, URLs, and more. If you’ve stored the author of
the article as an element, it’s easy to add child elements to include this additional
information.

Although any such change will probably require some revision of your documents,
style sheets, and associated programs, it’s still much easier to change a simple ele-
ment to a tree of elements than it is to make an attribute a tree of elements. If you
used an attribute, it’s very difficult to extend attribute syntax beyond the region for
which it was originally designed.

Good times to use attributes
Having exhausted all the reasons why you should use elements instead of
attributes, I feel compelled to point out that there are times when using attributes
makes sense. As previously mentioned, attributes are fully appropriate for very sim-
ple data without substructure that the reader is unlikely to want to see. One exam-
ple is the HEIGHT and WIDTH attributes of an IMG element. Although the values of
these attributes may change if the image changes, it’s hard to imagine how the data
in the attribute could be anything more than a very short string of text. HEIGHT and
WIDTH are one-dimensional quantities (in many ways), so they work well as attributes.

Furthermore, attributes are appropriate for simple information about the document
that has nothing to do with the content of the document. For example, it is often

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 114

115Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

useful to assign an ID attribute to each element. The value of an ID attribute is a
unique string possessed only by one element in the document. You can then use
this string for a variety of tasks including linking to particular elements of the docu-
ment, even if the elements move around as the document changes over time. For
example:

<SOURCE ID=”S1”>
<AUTHOR ID=”A1”>Donald Dewey</AUTHOR>
<AUTHOR ID=”A2”>Nicholas Acocella</AUTHOR>
<BOOK ID=”B1”>
<TITLE ID=”B2”>
The Biographical History of Baseball

</TITLE>
<PAGES ID=”B3”>169</PAGES>
<YEAR ID=”B4”>1995</YEAR>

</BOOK>
</SOURCE>

ID attributes make links to particular elements in the document possible. In this
way, they can serve the same purpose as the NAME attributes of HTML’s A elements.
Other data associated with linking —HREFs to link to, SRCs to pull images and
binary data from, and so forth — also work well as attributes.

There are more examples of linking via ID attributes in Chapter 17 and Chapter 18.

Attributes are also useful containers for document-specific style information. For
example, if TITLE elements are normally rendered as bold text, but you want to
make just one TITLE element both bold and italic, you might write something simi-
lar to this:

<TITLE STYLE=”font-style: italic”>Significant Others</TITLE>

This allows the style information to be embedded without changing the tree struc-
ture of the document. Although using a separate element would be ideal, this
scheme gives document authors more control when they cannot add elements to
the tag set that they’re working with. For example, the webmasters of a site might
require page authors and designers to use a particular XML vocabulary with a fixed
list of elements and attributes. Nonetheless, they might want to allow designers to
make minor adjustments to individual pages. Use this scheme with restraint, how-
ever, or you’ll soon find yourself back in the HTML hell that XML was supposed to
save you from, in which formatting is freely intermixed with meaning and docu-
ments are no longer maintainable.

The final reason to use attributes is to maintain compatibility with legacy formats
such as HTML. To the extent that you’re using tags that at least look similar to
HTML, such as , <P>, and <TD>, you might as well employ the standard HTML
attributes for these tags. This has the double advantage of allowing legacy browsers
to at least partially parse and display your document, and of being more familiar to
the people writing the documents.

Cross-
Reference

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 115

116 Part I ✦ Introducing XML

Empty Elements and Empty-Element Tags
An element that contains no content, not even white space, is called an empty ele-
ment. For example, this is an empty STATION element:

<STATION NETWORK=”CBS” CALL_LETTERS=”WCBS”
CHANNEL=”2”></STATION>

The end-tag immediately follows the start-tag. Rather than including both a start-
tag and an end-tag, you can include one empty-element tag. Empty-element tags are
distinguished from start-tags by a closing /> instead of a closing >. For example,
instead of <STATION></STATION>, you would write <STATION/>. The WCBS
STATION element can be written with an empty-element tag like this:

<STATION NETWORK=”CBS” CALL_LETTERS=”WCBS” CHANNEL=”2”/>

Often a space is placed before the closing /> to separate it from the last attribute
and make it a little easier to read:

<STATION NETWORK=”CBS” CALL_LETTERS=”WCBS” CHANNEL=”2” />

XML parsers treat both single-tag forms identically to the two-tag version. This
STATION element is precisely equal (though not identical) to the previous STATION
element formed with an empty tag. The difference between <STATION></STATION>
and <STATION/> is syntax sugar and nothing more. If you don’t like the empty-
element tag syntax or find it hard to read, don’t use it.

Listing 5-2 rewrites Listing 5-1 using empty-element tags where possible. This is a
little shorter and perhaps a little clearer than the two-tag version. However, it is
exactly the same document. There is no significant difference between Listing 5-1
and 5-2. Parsers will read the same information from both documents, and browsers
will display them identically.

Listing 5-2: A Complete XML Document Using Empty-Element
Tags to Store Television Listings

<?xml version=”1.0”?>
<SCHEDULE DATE=”July 3, 2003”>

<STATION NETWORK=”CBS” CALL_LETTERS=”WCBS” CHANNEL=”2”>
<SHOW NAME=”Hollywood Squares” TYPE=”5074”

START_TIME=”19:00-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”January 16, 2003”
LENGTH=”30 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes”>

<CAST>
<ACTOR GIVEN_NAME=”Don” SURNAME=”Rickles”/>
<ACTOR GIVEN_NAME=”Jerry” SURNAME=”Springer”/>

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 116

117Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

<ACTOR GIVEN_NAME=”Richard” SURNAME=”Simmons”/>
<ACTOR GIVEN_NAME=”Vicki” SURNAME=”Lawrence”/>
<ACTOR GIVEN_NAME=”John” SURNAME=”Salley”/>
<ACTOR GIVEN_NAME=”Joanie” SURNAME=”Laurer”/>
<ACTOR GIVEN_NAME=”Martin” SURNAME=”Mull”/>
<ACTOR GIVEN_NAME=”Jillian” SURNAME=”Barberie”/>
<ACTOR MIDDLE_NAME=”Kennedy”/>

</CAST>
<PRODUCER GIVEN_NAME=”Henry” SURNAME=”Winkler”/>
<PRODUCER GIVEN_NAME=”Michael” SURNAME=”Levitt”/>

</SHOW>
<SHOW NAME=”Entertainment Tonight” TYPE=”5689”

START_TIME=”19:30-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”July 3, 2003” LENGTH=”30 minutes”
REPEAT=”No” CLOSED_CAPTIONED=”Yes” DESCRIPTION=”
American Juniors remaining contestants;
Sex and the City preview.”/>

<SHOW NAME=”The Amazing Race” TYPE=”406”
START_TIME=”20:00-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”July 3, 2003” LENGTH=”60 minutes”
REPEAT=”No” CLOSED_CAPTIONED=”Yes” DESCRIPTION=”
Eight twenty-somethings speed through foreign
cultures as quickly as possible in desperate
attempt to avoid learning anything.”>

<PRODUCER GIVEN_NAME=”Jerry” SURNAME=”Bruckheimer”/>
<PRODUCER GIVEN_NAME=”Bertram” SURNAME=”van Munster”/>
<PRODUCER GIVEN_NAME=”Hayma” MIDDLE_NAME=”Screech”

SURNAME=”Washington”/>
<PRODUCER GIVEN_NAME=”Jon” SURNAME=”Kroll”/>

</SHOW>
</STATION>

<STATION NETWORK=”” CALL_LETTERS=”WLNY” CHANNEL=”55”>
<SHOW NAME=”Oprah Winfrey” TYPE=”Series/Talk”

START_TIME=”19:00-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”February 4, 2003”
LENGTH=”60 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes”
DESCRIPTION=”Guests gabber;
Oprah looks sympathetic.”
RATING=”TV-PG”/>

<SHOW NAME=”Silicon Towers” TYPE=”Movie”
START_TIME=”20:00-0500” AIR_DATE=”July 3, 2003”
LENGTH=”60 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes” DESCRIPTION=”A programmer
discovers his company manufactures chips for
cracking bank systems.” RATING=”TV-PG”>

<CAST>
<ACTOR GIVEN_NAME=”Brian” SURNAME=”Dennehy”/>
<ACTOR GIVEN_NAME=”Daniel” SURNAME=”Baldwin”/>
<ACTOR GIVEN_NAME=”Brad” SURNAME=”Dourif”/>
<ACTOR GIVEN_NAME=”Gary” SURNAME=”Mosher”/>

Continued

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 117

118 Part I ✦ Introducing XML

Listing 5-2 (continued)

</CAST>
</SHOW>

</STATION>

<STATION NETWORK=”HBO” CALL_LETTERS=”” CHANNEL=”501”>
<SHOW NAME=”Final Fantasy: The Spirits Within”

TYPE=”Movie/Animated” START_TIME=”18:30-0500”
AIR_DATE=”July 3, 2003” LENGTH=”105 minutes”
REPEAT=”Yes” CLOSED_CAPTIONED=”Yes”
DESCRIPTION=”The last city on Earth defends itself
against alien phantoms. Little to no relationship
to the video games of the same name.”
RATING=”PG-13” STARS=”2”>

<DIRECTOR GIVEN_NAME=”Hironobu” SURNAME=”Sakaguchi”/>
<WRITER GIVEN_NAME=”Al” SURNAME=”Reinart”/>
<WRITER GIVEN_NAME=”Jeff” SURNAME=”Vintar”/>
<PRODUCER GIVEN_NAME=”Hironobu” SURNAME=”Sakaguchi”/>
<PRODUCER GIVEN_NAME=”Jun” SURNAME=”Aida”/>
<PRODUCER GIVEN_NAME=”Chris” SURNAME=”Lee”/>
<CAST>
<ACTOR GIVEN_NAME=”Ming” SURNAME=”Na”/>
<ACTOR GIVEN_NAME=”Alec” SURNAME=”Baldwin”/>
<ACTOR GIVEN_NAME=”Ving” SURNAME=”Rhames”/>
<ACTOR GIVEN_NAME=”Steve” SURNAME=”Buscemi”/>
<ACTOR GIVEN_NAME=”Peri” SURNAME=”Gilpin”/>
<ACTOR GIVEN_NAME=”Donald” SURNAME=”Sutherland”/>
<ACTOR GIVEN_NAME=”James” SURNAME=”Woods”/>

</CAST>
</SHOW>
<SHOW NAME=”Terminator 3: Rise of the Machines:

HBO First Look” TYPE=”Special/Documentary”
START_TIME=”20:15-0500” AIR_DATE=”July 3, 2003”
ORIGINAL_AIR_DATE=”June 26, 2003” LENGTH=”15 minutes”
REPEAT=”Yes” CLOSED_CAPTIONED=”Yes” RATING=”TV14”/>

<SHOW NAME=”Star Wars: Episode II --
Attack of the Clones” TYPE=”Movie”
START_TIME=”20:30-0500” AIR_DATE=”July 3, 2003”
LENGTH=”150 minutes” REPEAT=”Yes”
CLOSED_CAPTIONED=”Yes” DESCRIPTION=”Obi-wan Kenobi
and Anakin Skywalker battle Count Dooku and the
Trade Federation.” RATING=”PG-13” STARS=”3”>
<DIRECTOR GIVEN_NAME=”George” SURNAME=”Lucas”/>
<WRITER GIVEN_NAME=”George” SURNAME=”Lucas”/>
<WRITER GIVEN_NAME=”Jonathan” SURNAME=”Hales”/>
<PRODUCER GIVEN_NAME=”George” SURNAME=”Lucas”/>
<PRODUCER GIVEN_NAME=”George” SURNAME=”McCallam”/>
<CAST>
<ACTOR GIVEN_NAME=”Ewan” SURNAME=”McGregor”/>
<ACTOR GIVEN_NAME=”Natalie” SURNAME=”Portman”/>

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 118

119Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

<ACTOR GIVEN_NAME=”Christopher” SURNAME=”Lee”/>
<ACTOR GIVEN_NAME=”Samuel” MIDDLE_INITIAL=”L”

SURNAME=”Jackson”/>
<ACTOR GIVEN_NAME=”Frank” SURNAME=”Oz”/>

</CAST>
</SHOW>

</STATION>
</SCHEDULE>

XSL
Figure 5-2 shows Listing 5-1 after the TV schedule style sheet from the previous
chapter is applied. It looks like a blank document because CSS styles only apply to
element content, not to attributes. If you use CSS, any data that you want to display
to the reader should be part of an element’s content rather than one of its
attributes.

Figure 5-2: A blank document is displayed when CSS is applied to an XML document
whose elements do not contain any character data.

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 119

120 Part I ✦ Introducing XML

However, there is an alternative style sheet language that does allow browsers to
display attribute content. This is the Extensible Stylesheet Language (XSL). XSL is
divided into two parts, XSL Transformations (XSLT) and XSL Formatting Objects
(XSL-FO). XSLT enables you to replace one tag with another. You define rules that
map your XML tags to standard HTML tags, or to HTML tags plus CSS attributes.
XSLT can reorder elements in the document and even add additional content that
was never present in the XML document.

Not all browsers support XSLT. In particular, Opera, Safari, Lynx, OmniWeb, iCab,
and Konqueror do not support XSLT. In addition, Internet Explorer has a number of
nasty bugs you have to work around that make XSLT development less pleasant
than it should be. Mozilla-derived browsers, including Camino, Firebird, and
Netscape 6.0 and later, do support XSLT quite well; however, Netscape 4.x and ear-
lier do not.

Chapter 15 introduces some techniques that enable you to use XSLT even with
browsers that don’t support it directly. In the meantime, however, don’t expect any
of the examples in the rest of this chapter to work as advertised except in Internet
Explorer 5.0 or later, Mozilla 1.0 or later, or Netscape 6.0 or later.

The formatting half of XSL defines an extremely powerful view of documents as
pages. XSL-FO enables you to specify the appearance and layout of a page, includ-
ing multiple columns, text flow around objects, line spacing, widow and orphan
control, font faces, styles, sizes, and more. It’s designed to be powerful enough to
lay out documents for both the Web and print automatically from the same source
document. For example, a local newspaper could use two different XSL style sheets
to generate both the printed and online editions of the television listings from the
same source document automatically. However, no web browsers yet support XSL
formatting objects. Thus, I focus on XSL transformations in this section.

XSL-FO is discussed in Chapter 16.

Templates
An XSLT style sheet contains templates into which data from the XML document is
poured. For example, a template might look similar to this:

<HTML>
<HEAD>
<TITLE>
XSLT Instructions to get the date

</TITLE>
</HEAD>
<BODY>
<H1>XSLT Instructions to get the date</H1>
XSLT Instructions to get the schedule

</BODY>
</HTML>

Cross-
Reference

Caution

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 120

121Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

The italicized sections will be replaced by particular XSLT elements that copy data
from the underlying XML document into this template. You can apply this template
to many different data sets. For example, if the template is designed to work with
the TV schedule, the same style sheet can display schedules for different days.

This may remind you of some server-side include schemes for HTML. In fact, this is
very much like server-side includes. However, the actual transformation of the
source XML document by the XSLT style sheet takes place on the client rather than
on the server. Furthermore, the output document does not have to be HTML. It can
be any well-formed XML.

Servers can be configured to perform the transformation on the server side
instead. This is how you make XML documents with XSLT style sheets compatible
with legacy browsers that don’t support XSL.

XSLT instructions can retrieve any data in the XML document. This includes ele-
ment content, element names, and most importantly for this example, attribute val-
ues. Particular elements are chosen by a pattern that considers the element’s name,
its value, its attributes’ names and values, its absolute and relative position in the
tree structure of the XML document, and more. Once the data is extracted from an
element, it can be moved, copied, and manipulated in a variety of ways. This brief
introduction doesn’t discuss everything you can do with XSLT. However, you will
learn to use XSLT to write some pretty amazing documents that can be immediately
viewed on the Web.

Chapter 15 discusses XSLT in depth.

The body of the document
Let’s begin by looking at a simple example and applying it to the TV schedule docu-
ment of Listing 5-1. Listing 5-3 is an XSLT style sheet. This style sheet provides the
HTML mold into which XML data will be poured.

Listing 5-3: An XSLT Style Sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings

</TITLE>
</HEAD>

Continued

Cross-
Reference

Note

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 121

122 Part I ✦ Introducing XML

Listing 5-3 (continued)

<BODY>
<H1>TV Listings</H1>

<HR></HR>
Copyright 2003

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Listing 5-3 resembles an HTML file included inside an xsl:template element. In
other words, its structure looks like this:

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
HTML file goes here

</xsl:template>

</xsl:stylesheet>

Listing 5-3 is not just an XSLT style sheet; it’s also an XML document. It begins with
an XML declaration. The root element of this document is xsl:stylesheet. This
style sheet contains a single template for the XML data encoded as an xsl:template
element. The xsl:template element has a match attribute with the value SCHEDULE,
and its content is a well-formed HTML document. It’s not a coincidence that the out-
put HTML is well formed. Because the HTML must first be part of an XSLT style
sheet, and because XSLT style sheets are well-formed XML documents, all the HTML
included in an XSLT style sheet must be well formed.

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 122

123Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Attaching the XSLT style sheet of Listing 5-3 to the XML document in Listing 5-1 is
straightforward. Simply add an <?xml-stylesheet?> processing instruction with a
type attribute with value application/xml and an href attribute that points to
the style sheet between the XML declaration and the root element, as in the follow-
ing example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”application/xml” href=”5-2.xsl”?>
<SCHEDULE DATE=”July 3, 2003”>
...

This is the same way that a CSS style sheet is attached to a document. The only dif-
ference is that the type attribute has the value application/xml instead of
text/css.

Internet Explorer expects the nonstandard and incorrect MIME type text/xsl
instead of application/xml. For maximum portability, you might want to
include two xml-stylesheet processing instructions pointing to the same style
sheet, one instruction with type text/xsl and the second instruction with type
application/xml, like this:

<?xml version=”1.0”?>
<?xml-stylesheet type=”application/xml”

href=”5-2.xsl”?>
<?xml-stylesheet type=”text/xsl” href=”5-2.xsl”?>
<SCHEDULE DATE=”July 3, 2003”>
...

The browser will pick whichever one it understands.

After the browser loads the XML document, it compares the root to each
xsl:template element until it finds one that matches. In this case, the single
template matches the root SCHEDULE element. When the browser finds this match,
it inserts the content of that template into the output document, producing what
you see in Figure 5-3.

The title
Of course, there’s something rather obvious missing from Figure 5-3 — the data!
Although the style sheet in Listing 5-3 displays something (unlike the CSS style
sheet of Figure 5-2), it doesn’t show any data from the XML document. To add this,
you need to use XSLT instruction elements to copy data from the source XML docu-
ment into the output document. Listing 5-4 adds xsl:value-of instructions that
extract the DATE attribute from the SCHEDULE element and insert it into the TITLE
and H1 elements of the output document. Figure 5-4 shows the rendered document.

Caution

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 123

124 Part I ✦ Introducing XML

Figure 5-3: TV listings after application of the XSL style sheet in Listing 5-3

Listing 5-4: An XSL Style Sheet with Instructions to Extract
the DATE Attribute of the SCHEDULE Element

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select=”@DATE”/>

</TITLE>
</HEAD>
<BODY>
<H1>TV Listings <xsl:value-of select=”@DATE”/></H1>

<HR></HR>
Copyright 2003

07 549863 Ch05.qxd 1/28/04 9:44 AM Page 124

125Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-4: Listing 5-1 after application of the XSL style sheet in Listing 5-4

The XSLT instruction that extracts the DATE attribute from the SCHEDULE element is
as follows:

<xsl:value-of select=”@DATE”/>

The xsl:value-of element copies the value of a node from the input document into
the output document. Here, the @ sign in front of DATE means you’re asking for the
attribute named DATE, rather than the child element named DATE. This element
appears twice because the year should appear twice in the output document — once
in the H1 header and once in the TITLE. Each time it appears, this instruction does
the same thing: It inserts the value of the DATE attribute, the string “July 3, 2003”.

XSLT instructions are distinguished from output elements such as HTML and H1 by
being placed in the http://www.w3.org/1999/XSL/Transform namespace. In
most cases, this namespace is associated with the prefix xsl. That is, the names of

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 125

126 Part I ✦ Introducing XML

all XSLT elements begin with xsl:. The namespace is identified by the xmlns:xsl
attribute of the root element of the style sheet. In Listings 5-2 and 5-3, and in all
other examples in this book, the value of that attribute is http://www.w3.org/
1999/XSL/Transform.

The prefix can and occasionally does change. However, the URI absolutely must be
http://www.w3.org/1999/XSL/Transform, nothing else. Various early and
outdated drafts of the XSLT specification used different namespace URIs. However,
modern, up-to-date, specification-compliant software uses http://www.w3.org/
1999/XSL/Transform and http://www.w3.org/1999/XSL/Transform
only! If you use any other namespace URI, or make even a small typo in the URI,
the results are likely to be very strange and hard to debug.

You should avoid any software that uses other namespaces because it’s likely to
be out-of-date and quite buggy. Furthermore, you should be wary of anybody who
tries to tell you to use a different namespace. They are not your friends! (Yes, I’m
talking about Microsoft here. Its trainers and evangelists have been promulgating a
nonstandard, Microsoft-only version of XSLT that doesn’t work with anything
except Internet Explorer. This nonstandard XSLT can be identified by its use of the
http://www.w3.org/TR/WD-xsl namespace URI. Treat this URI as a warning:
Dangerous nonstandard Microsoft extensions ahead!) In this book, I adhere strictly
to W3C standard XSLT that works with all XSLT-savvy browsers and platforms.

Namespaces are discussed in depth in Chapter 11.

Stations
Next, let’s add some XSLT instructions to pull out the STATION elements. There’s
more than one of these, so use the xsl:for-each instruction to iterate through
them. xsl:value-of elements will extract the network, call letters, and channel
from the attributes of each STATION element. These will all be placed in an H2
header. Listing 5-5 shows the code. Figure 5-5 shows the document rendered with
this style sheet.

Listing 5-5: An XSL Style Sheet with Instructions to Extract
STATION Elements

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select=”@DATE”/>

Cross-
Reference

Caution

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 126

127Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

</TITLE>
</HEAD>
<BODY>
<H1>TV Listings <xsl:value-of select=”@DATE”/></H1>

<xsl:for-each select=”STATION”>
<H2>
<xsl:value-of select=”@NETWORK”/>
<xsl:value-of select=”@CALL_LETTERS”/>
<xsl:value-of select=”@CHANNEL”/>

</H2>
</xsl:for-each>

<HR></HR>
Copyright 2003

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-5: The station networks, call letters, and channels displayed as H2 headers
when the XSLT style sheet in Listing 5-5 is applied

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 127

128 Part I ✦ Introducing XML

The key new instruction is the xsl:for-each element:

<xsl:for-each select=”STATION”>
<H2>
<xsl:value-of select=”@NETWORK”/>
<xsl:value-of select=”@CALL_LETTERS”/>
<xsl:value-of select=”@CHANNEL”/>

</H2>
</xsl:for-each>

xsl:for-each loops through all the STATION elements (more accurately, those
STATION elements that are children of the previously matched SCHEDULE element,
although in this document that’s all the STATION elements). As the XSLT processor
visits each STATION element, it outputs an <H2> start-tag, the value of its NETWORK ,
CALL_LETTERS, and CHANNEL attributes in that order, and a </H2> end-tag.

The first station in Figure 5-5, WCBS, looks a little funny, because as a broadcast
network affiliate, it has both a network and call letters. Ideally, you’d include the
call letters only if the network is not available, as for WLNY (or perhaps the reverse:
include the network only if the station doesn’t have call letters). Either is easy with
XSLT. You can use an xsl:if element to test the value of particular nodes. The con-
tents of the xsl:if element are placed in the output only if the test attribute of the
xsl:if instruction is true. In this case, you test whether the value of the NETWORK
attribute is an empty string:

<H2>
<xsl:if test=”@NETWORK=’’”>
<xsl:value-of select=”@CALL_LETTERS”/>

</xsl:if>
<xsl:value-of select=”@NETWORK”/>
<xsl:value-of select=”@CHANNEL”/>

</H2>

In other words, you’re only including the call letters if there’s no network. After this
test is added, the call letters for WCBS are omitted from the output, as shown in
Figure 5-6.

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 128

129Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Figure 5-6: The xsl:if instruction omits the call letters for network affiliates.

Shows
The next step is to add the individual shows. A nested xsl:for-each loop can
select the shows. Let’s put each show inside an HTML DIV element:

<xsl:for-each select=”STATION”>
<H2>
<xsl:if test=”@NETWORK=’’”>
<xsl:value-of select=”@CALL_LETTERS”/>

</xsl:if>
<xsl:value-of select=”@NETWORK”/>
<xsl:value-of select=”@CHANNEL”/>

</H2>

<xsl:for-each select=”SHOW”>
<DIV>
...

</DIV>
</xsl:for-each>

</xsl:for-each>

Notice that the nesting of the xsl:for-each elements that select stations and
shows mirrors the hierarchy of the document itself. This is not a coincidence. While
other schemes are possible that don’t require matching hierarchies, this is the sim-
plest, especially for highly structured data like the television schedule of Listing 5-1.

Inside the DIV element, you find instructions to select and format content from the
attributes of each SHOW element. One advantage of XSL over CSS is that you can
select exactly what you want and leave the rest out. Furthermore, what you do

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 129

130 Part I ✦ Introducing XML

include can appear in exactly the order you want it, even if that’s not the order it
appears in the input document. For example, if you’re trying to create something
like the columnar listings in TV Guide, as opposed to the show-by-show grid, you
might want the following content in this order:

1. The time the show starts

2. The number of stars

3. Show title in bold

4. (CC) if the show is closed captioned

5. The length of the show

6. The description, which normally begins on a new line

7. The primary actors

This can vary a lot from one show to the next, though. In general, the shows
deemed the most important get longer listings with more information. Less impor-
tant shows may be limited to a time, channel, and title. However, for the moment,
I’m going to assume all the shows in the list are equally important and include all
this information for each one.

The time of the show can be extracted with a simple xsl:value-of element, like
those you’ve used several times before:

<xsl:value-of select=”@START_TIME”/>

Applying the formatting is simply a matter of outputting the appropriate HTML
tags, perhaps with CSS STYLE attributes. For example, to print the channel number
in bold, just wrap a B element around an xsl:value-of instruction that selects
@CHANNEL, like this:

<xsl:value-of select=”@CHANNEL”/>

The closed caption information is a little different. Here, the input document has a
value that says “Yes” or “No” (or no attribute at all), but what you want to put (or
not put) in the output is the completely different string (CC). In this case, you can
use another xsl:if element to test the value of the CLOSED_CAPTIONED attribute:

<xsl:if test=”@CLOSED_CAPTIONED=’Yes’”> (CC) </xsl:if>

If and only if the test passes, the processor will output the string (CC). This is an
example of completely replacing the input content with the same information in a
very different form.

A slightly more complicated example of this is the STARS attribute. The value of this
attribute is a number, but it’s a number you want to replace with a string such as ★.
There are several ways to do this, most involving advanced features of XSLT you

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 130

131Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

won’t learn about for several chapters yet. However, assuming the STARS attribute
always contains an integer between 1 and 5, there is a simple naïve approach. Just
list all the possible values inside xsl:if statements like so:

<xsl:if test=”@STARS=1”> ★ </xsl:if>
<xsl:if test=”@STARS=2”> ★★ </xsl:if>
<xsl:if test=”@STARS=3”> ★★★ </xsl:if>
<xsl:if test=”@STARS=4”> ★★★★ </xsl:if>
<xsl:if test=”@STARS=5”> ★★★★★ </xsl:if>

If your text editor doesn’t let you type the ★ character, you can type ★
instead. This is called a character reference. I’ll explain how this works in Chapter 6.

There’s one more piece of information that’s often included with the show informa-
tion in television listings: the primary actors. They are often listed inside parenthe-
ses after the description like this: (Ewan McGregor, Natalie Portman, Christopher
Lee, Samuel L. Jackson, Frank Oz).

This is tricky because some listings don’t include actors at all, others just mention
the single most important actor, and still others mention several of the primary
actors. There are various ways to handle this, but I’m going to pick the simplest,
listing them all. Because the actors are child elements of CAST, which is a child ele-
ment of SHOW, this is going to require one more nested xsl:for-each element.
Since it’s really the actors we want, rather than the CAST, this xsl:for-each ele-
ment will iterate over CAST/ACTOR:

(<xsl:for-each select=”CAST/ACTOR”>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@MIDDLE_INITIAL”/>
<xsl:value-of select=”@MIDDLE_NAME”/>
<xsl:value-of select=”@SURNAME”/>,

</xsl:for-each>)

However, this first approach has a number of problems. First, not all shows list a
cast. You should really wrap this in an xsl:if element that tests for the presence
of a CAST element, like so:

<xsl:if test=”CAST”>(<xsl:for-each select=”CAST/ACTOR”>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@MIDDLE_INITIAL”/>
<xsl:value-of select=”@MIDDLE_NAME”/>
<xsl:value-of select=”@SURNAME”/>,

</xsl:for-each>)</xsl:if>

Next, the white space is only preserved in XSLT when there’s some non-white-space
character next to it. This means the names come out looking like “RichardSimmons”
instead of “Richard Simmons.” There are several ways to fix this, but the easiest is
to add an xml:space=”preserve” attribute to the xsl:for-each element like so:

Note

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 131

132 Part I ✦ Introducing XML

<xsl:for-each select=”CAST/ACTOR” xml:space=”preserve”>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@MIDDLE_INITIAL”/>
<xsl:value-of select=”@MIDDLE_NAME”/>
<xsl:value-of select=”@SURNAME”/>,

</xsl:for-each>

The final problem is that this template puts a comma after every name, including
the last. You actually want to include a comma only if this is not the last element.
Once again the xsl:if element comes to the rescue. The following code outputs a
comma only if the position of the current element (as indicated by the position()
function) is not the last child element (as indicated by the last() function):

<xsl:if test=”CAST”>(<xsl:for-each
select=”CAST/ACTOR” xml:space=”preserve”>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@MIDDLE_INITIAL”/>
<xsl:value-of select=”@MIDDLE_NAME”/>
<xsl:value-of select=”@SURNAME”/><xsl:if
test=”position() != last()”>, </xsl:if></xsl:for-each>)

</xsl:if>

The indentation has gotten quite funky here because the xml:space=”preserve”
attribute has made all the white space significant. You can no longer rely on the
XSLT processor to throw it away for you. Thus, you can’t add any white space you
aren’t willing to see in the output. On the other hand, the rendered HTML output
looks quite pretty, as evidenced by Figure 5-7. Listing 5-6 shows the complete style
sheet.

Listing 5-6: An XSL Style Sheet That Formats Shows

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select=”@DATE”/>

</TITLE>
</HEAD>
<BODY>
<H1>TV Listings <xsl:value-of select=”@DATE”/></H1>

<xsl:for-each select=”STATION”>
<H2>

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 132

133Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

<xsl:if test=”@NETWORK=’’”>
<xsl:value-of select=”@CALL_LETTERS”/>

</xsl:if>
<xsl:value-of select=”@NETWORK”/>
<xsl:value-of select=”@CHANNEL”/>

</H2>

<xsl:for-each select=”SHOW”>
<DIV>
<xsl:value-of select=”@START_TIME”/>
<xsl:value-of select=”@CHANNEL”/>
<xsl:if test=”@STARS=1”> ★ </xsl:if>
<xsl:if test=”@STARS=2”> ★★ </xsl:if>
<xsl:if test=”@STARS=3”> ★★★ </xsl:if>
<xsl:if test=”@STARS=4”> ★★★★ </xsl:if>
<xsl:if test=”@STARS=5”> ★★★★★ </xsl:if>
<xsl:value-of select=”@NAME”/>

<xsl:if test=”@CLOSED_CAPTIONED=’Yes’”> (CC) </xsl:if>
<xsl:value-of select=”@LENGTH”/>

<xsl:value-of select=”@DESCRIPTION”/>

<xsl:if test=”CAST”>(<xsl:for-each
select=”CAST/ACTOR”
xml:space=”preserve”><xsl:value-of
select=”@GIVEN_NAME”/>
<xsl:value-of select=”@MIDDLE_INITIAL”/>
<xsl:value-of select=”@MIDDLE_NAME”/>
<xsl:value-of select=”@SURNAME”/><xsl:if
test=”position() != last()”

>, </xsl:if></xsl:for-each>)
</xsl:if>

</DIV>
</xsl:for-each>

</xsl:for-each>

<HR></HR>
Copyright 2003

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 133

134 Part I ✦ Introducing XML

Figure 5-7: Shows formatted by the XSL style sheet in Listing 5-6

Sorting
There’s one major problem with the style sheet as designed so far. It arranges
shows by station and the order they appear in the input document. This is of little
use for a TV schedule. You only rarely want to know what shows are playing on a
particular station at all times. You very often want to know what shows are playing
on all stations at the same time. The data needs to be sorted by time rather than by
station, and the station should be added to the information about the individual
shows. This isn’t how the data is organized in the input document, but there’s no
reason the output document can’t use a different arrangement.

Fortunately, XSLT makes it easy to sort the data by various criteria. Each xsl:for-
each element can have an xsl:sort child element that specifies a sort key. In this
case, you want to sort in ascending order by start time. You also want to adjust the
xsl:for-each elements so they grab all the shows in the document at once, rather
than just those associated with one channel. Finally, you want to add the channel
before each show. This is a little tricky because a SHOW element doesn’t have a
CHANNEL attribute or child element. However, you can select the CHANNEL attribute
of the STATION parent element by using ../@CHANNEL in the select attribute. In
XSLT, the double period means the parent element, just like it means the parent
directory in UNIX and DOS. For good measure, I put the channel inside vertical bars
to make it more distinct.

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 134

135Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Listing 5-7 shows the finished style sheet, and Figure 5-8 shows the document ren-
dered with this style sheet.

Listing 5-7: An XSL Style Sheet That Sorts by Start Time

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select=”@DATE”/>

</TITLE>
</HEAD>
<BODY>
<H1>TV Listings <xsl:value-of select=”@DATE”/></H1>

<xsl:for-each select=”STATION/SHOW”>
<xsl:sort select=”@START_TIME” />
<DIV>
<xsl:value-of select=”@START_TIME”/> |
<xsl:value-of select=”../@CHANNEL”/> |
<xsl:if test=”@STARS=1”> ★ </xsl:if>
<xsl:if test=”@STARS=2”> ★★ </xsl:if>
<xsl:if test=”@STARS=3”> ★★★ </xsl:if>
<xsl:if test=”@STARS=4”> ★★★★ </xsl:if>
<xsl:if test=”@STARS=5”> ★★★★★ </xsl:if>
<xsl:value-of select=”@NAME”/>

<xsl:if test=”@CLOSED_CAPTIONED=’Yes’”> (CC) </xsl:if>
<xsl:value-of select=”@LENGTH”/>

<xsl:value-of select=”@DESCRIPTION”/>

<xsl:if test=”CAST”>(<xsl:for-each
select=”CAST/ACTOR”
xml:space=”preserve”><xsl:value-of
select=”@GIVEN_NAME”/>
<xsl:value-of select=”@MIDDLE_INITIAL”/>
<xsl:value-of select=”@MIDDLE_NAME”/>
<xsl:value-of select=”@SURNAME”/><xsl:if
test=”position() != last()”

>, </xsl:if></xsl:for-each>)
</xsl:if>

</DIV>
</xsl:for-each>

<HR></HR>
Copyright 2003

Continued

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 135

136 Part I ✦ Introducing XML

Listing 5-7 (continued)

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-8: Television listings sorted by start time

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 136

137Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

There’s more you could do. You could convert the universal times such as
18:30-0500 into more typical times such as 6:30 P.M. You could group shows that
start at the same time together. However, while possible, this would take you into
the area sometimes referred to as “XSLT rocket science.” For this example, I’m going
to stop here with the simple stuff, but in the next section I’ll fire off a rocket or two.

Tables
Figure 5-8 is a fairly decent textual television schedule. However, the example began
with a grid. Is it possible to reproduce this tabular format with XSLT? Yes. In fact,
it’s possible to do a considerably better job than with CSS. The task is a little
detailed, but not horribly difficult. Listing 5-8 shows an XSLT style sheet that
arranges the shows in a table. Time advances to the right. Channel numbers
increase down. No new XSLT elements are introduced. The same xsl:for-each,
xsl:value-of, and xsl:sort elements are used as before. This time, however,
the style sheet produces HTML table tags instead of DIVs. Figure 5-9 displays the
results.

Listing 5-8: An XSL Style Sheet that Places the Television
Schedule in a Table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select=”@DATE”/>

</TITLE>
</HEAD>
<BODY>
<H1 STYLE=”text-align: center”>

TV Listings <xsl:value-of select=”@DATE”/>
</H1>

<TABLE CELLSPACING=”0” RULES=”all” FRAME=”box”>
<xsl:for-each select=”STATION”>
<xsl:sort select=”@CHANNEL” />
<TR>
<TD>
<xsl:if test=”@NETWORK=’’”>
<xsl:value-of select=”@CALL_LETTERS”/>

</xsl:if>
<xsl:value-of select=”@NETWORK”/>

</TD>

Continued

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 137

138 Part I ✦ Introducing XML

Listing 5-8 (continued)

<TD>
<xsl:value-of select=”@CHANNEL”/>

</TD>
<xsl:for-each select=”SHOW”>
<TD>
<xsl:value-of select=”@NAME”/>

<xsl:if test=”@CLOSED_CAPTIONED=’Yes’”> (CC) </xsl:if>
<xsl:value-of select=”@DESCRIPTION”/>

</TD>
</xsl:for-each>

</TR>
</xsl:for-each>

</TABLE>

<HR></HR>
Copyright 2003

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

The hard part is lining up the shows by time, so that shows that start at 7:00 begin
in the same column, shows that start at 7:30 begin in the same column, and so
forth. Once again, we’re heading into the realm of XSLT rocket science, but it is
doable. The trick is that you need to divide the main body of the table into the
smallest unit of time you’re likely to encounter. In this case, five minutes works well.
Then, in each row, you need to calculate the start time to the nearest five minutes.
This tells you what column the show begins in. Then you need to divide the length
of the show by five minutes to get the number of cells the show spans. This will
become the value of the COLSPAN attribute. The operation is made trickier because
neither the START_TIME attribute nor the LENGTH attribute contains a pure number.
You need to do some string manipulation to extract the numbers before you can
operate on them. However, arithmetic and string manipulation at this level is within
the bounds of what XSLT can do, as Listing 5-9 and Figure 5-10 prove.

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 138

139Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Figure 5-9: Television listings sorted by start time

Listing 5-9: An XSL Style Sheet that Dynamically Calculates
Column Spans for the Table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<!-- count in 5 minute increments
with 6:00 A.M. as the zero point. Thus this sets
the start-time to 7:00 PM and the end time to
9:00 PM. However, these parameters can be
adjusted when the stylesheet is invoked. -->

<xsl:param name=”start” select=”156”/>
<xsl:param name=”finish” select=”180”/>

<xsl:template match=”SCHEDULE”>
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select=”@DATE”/>

</TITLE>

Continued

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 139

140 Part I ✦ Introducing XML

Listing 5-9 (continued)

</HEAD>
<BODY>
<H1 STYLE=”text-align: center”>

TV Listings <xsl:value-of select=”@DATE”/>
</H1>

<TABLE CELLSPACING=”0” RULES=”all” FRAME=”box”>
<COLGROUP>

<COL WIDTH=”20”/>
<COL WIDTH=”10”/>

</COLGROUP>
<COLGROUP SPAN=”{$finish - $start}” WIDTH=”20”/>
<THEAD STYLE=”text-align: center”>
<TR>
<TD />
<TD />
<xsl:call-template name=”fillTableHead”/>

</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”STATION”>
<xsl:sort select=”@CHANNEL” data-type=”number”/>
<TR>
<TD STYLE=”color: white; background-color: grey;

font-weight: bold”>
<xsl:if test=”@NETWORK=’’”>
<xsl:value-of select=”@CALL_LETTERS”/>

</xsl:if>
<xsl:value-of select=”@NETWORK”/>

</TD>
<TD STYLE=”color: white; background-color: grey;

font-weight: bold”>
<xsl:value-of select=”@CHANNEL”/>

</TD>

<xsl:for-each select=”SHOW”>
<xsl:variable name=”showstart”>
<xsl:call-template name=”getLocalTime”>
<xsl:with-param name=”input”

select=”@START_TIME”/>
</xsl:call-template>

</xsl:variable>
<xsl:variable name=”showlength” select=

“number(substring-before(@LENGTH, ‘ ‘)) div 5”/>
<xsl:variable name=”realshowlength”>
<xsl:call-template name=”getRealShowLength”>
<xsl:with-param name=”showstart”

select=”$showstart”/>
<xsl:with-param name=”showlength”

select=”$showlength”/>
</xsl:call-template>

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 140

141Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

</xsl:variable>

<TD COLSPAN=”{$realshowlength}” valign=”top”>
<xsl:value-of select=”@NAME”/>
<xsl:if test=”@CLOSED_CAPTIONED=’Yes’”>
(CC)

</xsl:if>
<xsl:value-of select=”@DESCRIPTION”/>

</TD>
</xsl:for-each>

</TR>
</xsl:for-each>
</TBODY>

</TABLE>

<HR/>
Copyright 2003

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

<xsl:template name=”getLocalTime”>
<!-- returns number of five-minute increments

since 6:00 A.M. -->
<xsl:param name=”input”/> <!-- in form 19:00-0500 -->

<xsl:variable name=”time24”
select=”substring-before($input, ‘-’)”/>

<xsl:variable name=”hour”
select=”substring-before($time24, ‘:’)”/>

<xsl:variable name=”minutes”
select=”substring-after($time24, ‘:’)”/>

<xsl:value-of
select=”(($hour - 6)*12) + ($minutes div 5)”/>

</xsl:template>

<xsl:template name=”getRealShowLength”>
<xsl:param name=”showstart”/>
<xsl:param name=”showlength”/>

<xsl:choose>

Continued

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 141

142 Part I ✦ Introducing XML

Listing 5-9 (continued)

<xsl:when test=”$showstart < $start”>
<xsl:value-of
select=”$showlength - ($start - $showstart)”/>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”$showlength”/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<!-- Note use of recursion -->
<xsl:template name=”fillTableHead”>
<xsl:param name=”time” select=”$start”/>
<TD COLSPAN=”6”>
<xsl:call-template name=”formatTime”>
<xsl:with-param name=”time” select=”$time”/>

</xsl:call-template>
</TD>
<xsl:if test=”$time < $finish - 6”>
<xsl:call-template name=”fillTableHead”>
<xsl:with-param name=”time” select=”$time + 6”/>

</xsl:call-template>
</xsl:if>

</xsl:template>

<xsl:template name=”formatTime”>
<xsl:param name=”time”/>
<xsl:variable name=”minutes” select=”($time * 5) mod 60”/>
<xsl:variable name=”hours”

select=”(floor(($time div 12) + 6)) mod 12”/>
<xsl:value-of select=”$hours”/>
<xsl:value-of select=”’:’”/>
<xsl:value-of select=”format-number($minutes, ‘00’)”/>

<xsl:if test=”$time < 72 or $time >= 216”> AM</xsl:if>
<xsl:if test=”$time >= 72 and $time < 216”> PM</xsl:if>
</xsl:template>

</xsl:stylesheet>

If it’s not immediately obvious to you how this style sheet works, don’t worry too
much. It definitely uses some of the more advanced features of XSLT, such as named
templates, variables, parameters, attribute value templates, functions, and recur-
sion. I’ll come back to XSLT and explain all these techniques in Chapter 15. For now,
just know that XSLT can perform quite complicated operations on the data in an
XML document before ultimately formatting it for display to the end user. It is, in
fact, a Turing-complete programming language.

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 142

143Chapter 5 ✦ Attributes, Empty-Element Tags, and XSL

Figure 5-10: Television listings arranged by duration

CSS or XSL?
CSS and XSL overlap to some extent. XSL is certainly more powerful than CSS. This
chapter only touched on the basics of XSL. However, XSL’s power is matched by its
complexity. XSL is definitely harder to learn and use than CSS. So the question is,
“When should you use CSS and when should you use XSL?”

CSS is more broadly supported than XSL. Netscape 4 and Internet Explorer 4 sup-
port parts of CSS Level 1 for HTML elements (although there are many annoying dif-
ferences between the two). Furthermore, most of CSS Level 1 and some of CSS Level
2 is supported by Internet Explorer 5.0 and later, Opera 4.0 and later, Netscape 6.0
and later, Safari, Konqueror, and Mozilla. Thus, choosing CSS gives you more com-
patibility with a broader range of browsers.

However, XSL is definitely more powerful than CSS. CSS only allows you to apply
formatting to element content. It does not allow you to change or reorder that con-
tent, choose different formatting for elements based on their contents or attributes,
or add boilerplate text like a signature block. XSL is far more appropriate when the
XML documents contain only the minimum of data and none of the HTML frou-frou
that surrounds the data.

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 143

144 Part I ✦ Introducing XML

XSL lets you separate the crucial data from everything else on the page, such as
mastheads, navigation bars, and signatures. With CSS, you have to include all these
pieces in your data documents. XML+XSL enables the data documents to live sepa-
rately from the web page documents. This makes XML+XSL documents more main-
tainable and easier to work with.

In the long run, XSL should become the preferred choice for data-intensive applica-
tions. CSS is more suitable for simple web pages like the ones grandparents write to
post pictures of their grandchildren. But for these uses, HTML alone is sufficient. If
you’ve really hit the wall with HTML, XML+CSS doesn’t take you much further
before you run into another wall. XML+XSL, by contrast, takes you far past the walls
of HTML. You still need CSS to work with legacy browsers, but in the long term, XSL
is the way to go.

Summary
In this chapter, you saw examples of creating an XML document from scratch.
Specifically, you learned the following:

✦ An attribute is a name-value pair included in an element’s start-tag.

✦ Attributes typically hold meta-information about the element rather than the
element’s data.

✦ Attributes are less convenient to work with than the contents of an element.

✦ Attributes work well for very simple information that’s unlikely to change its
form as the document evolves. In particular, style and linking information
work well as attributes. Structured and ordered information is often better
represented as elements.

✦ Empty-element tags are syntax sugar for elements with no content.

✦ XSL is a powerful style language that enables you to transform documents
from one XML vocabulary to other XML vocabularies or to non-XML vocabu-
laries such as HTML or tab-delimited text.

The next chapter discusses the exact rules to which well-formed XML documents
must adhere. It also explores some additional means of embedding information in
XML documents, including comments and processing instructions.

✦ ✦ ✦

07 549863 Ch05.qxd 1/28/04 9:45 AM Page 144

Well-
formedness

HTML 4.0 has 91 different elements. Most of these ele-
ments have 12 or more possible attributes for several

thousand different possible variations. Because XML is more
powerful than HTML, you might think that you need to learn
even more elements, but you don’t. XML gets its power
through simplicity and extensibility, not through a plethora of
elements.

In fact, XML predefines no elements at all. Instead, XML allows
you to define your own elements, as needed. However, these
elements and the documents built from them are not com-
pletely arbitrary. They have to follow a specific set of rules
elaborated in this chapter. A well-formed document is one that
follows these rules. Well-formedness is the minimum criterion
necessary for XML processors and browsers to read files. This
chapter examines the rules for well-formed documents. It
explores the different parts of an XML document — tags, text,
attributes, elements, and so on — and discusses the primary
rules each part must follow. Particular attention is paid to
how XML differs from HTML. Along the way I introduce sev-
eral new XML constructs including comments, processing
instructions, entity references, and CDATA sections. This
chapter isn’t an exhaustive discussion of well-formedness
rules. Some of the rules I present must be adjusted slightly for
documents that have a document type definition (DTD), and
there are additional well-formedness rules that define the rela-
tionship between the document and its DTD, but these will be
explored in later chapters.

Well-formedness Rules
Although XML allows you to invent as many different ele-
ments and attributes as you need, these elements and
attributes, as well as their contents and the documents that

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XML documents

Well-formedness rules

Text in XML

Elements and tags

Attributes

Entity references

CDATA sections

Comments

Unicode

XML 1.1

Well-formed HTML

✦ ✦ ✦ ✦

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 145

146 Part I ✦ Introducing XML

contain them, must all follow certain rules in order to be well-formed. If a document
is not well-formed, any attempts to read it or render it will fail.

The XML specification strictly prohibits XML parsers from trying to fix and under-
stand malformed documents. All a parser can do is signal the error. It is not allowed
to fix the error. It cannot make a best-faith effort to render what the author
intended. It cannot ignore the offending malformed markup. All it can do is report
the error and exit.

The objective here is to avoid the bug-for-bug compatibility wars that have hindered
HTML and that have made writing HTML parsers and renderers so difficult. Because
web browsers allow malformed HTML, web page designers don’t make the extra
effort to ensure that their HTML is correct. In fact, they even rely on bugs in individ-
ual browsers to achieve special effects. To properly display the huge installed base of
HTML pages, every new web browser must support every nuance, every quirk of all
the browsers that have come before. The marketplace would ignore any browser
that strictly adhered to the HTML standard. It is to avoid this sorry state that XML pro-
cessors are explicitly required to only accept well-formed XML.

To be well-formed, an XML document must follow more than 100 different rules.
However, most of these rules simply forbid things that you’re not very likely to do
anyway if you follow the examples given in this book. For example, one rule is that
the name of the element must immediately follow the < of the element’s start-tag.
For example, <TRIANGLE> is a legal start-tag but < TRIANGLE> isn’t. On the other
hand, the same rule says that it is OK to have extra space before the tag’s closing
angle bracket. That is, both <TRIANGLE> and <TRIANGLE > are well-formed start-
tags. Another rule says that element names must have at least one character; that
is, <> is not a legal start-tag and </> is not a legal end-tag. Chances are it never
would have occurred to you to create an element with a zero-length name, but com-
puters are dumber than human beings and need to have constraints like this
spelled out for them. XML’s well-formedness rules are designed to be understood
by software rather than human beings, so quite a few of them are a little technical
and won’t present much of a problem in practice. The only source for the complete
list of rules is the XML specification itself. However, if you follow the rules given
here, and check your work with an XML parser before distributing them, your docu-
ments should be fine.

XML Documents
An XML document is made up of text. It is a sequence of characters with a fixed
length that adheres to certain constraints. It may or may not be a file. For instance,
an XML document could be any of the following:

✦ A CLOB field in an Oracle database

✦ The result of a query against a database that combines several records from
different tables

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 146

147Chapter 6 ✦ Well-formedness

✦ A data structure created in memory by a Java program

✦ A data stream created on the fly by a CGI program written in Perl

✦ Some combination of several different files, each of which is embedded in
another

✦ One part of a larger file containing several XML documents

However, nothing essential is lost if you think of an XML document as a file, as long
as you keep in the back of your mind that it might not really be a file on a hard drive.

XML documents are made up of storage units called entities. Each entity contains a
well-formed document fragment. This is a piece of text that meets all of XML’s well-
formedness rules except for the one about there being a single root element. The
various entities that make up a document will be stored in different files, databases,
and other locations. The parser combines them all to form the complete document.

The XML declaration
In this and the next several chapters, I treat only simple XML documents that are
made up of a single entity, the document itself. Such documents can be understood
completely on their own without reading any other files. In other words, they stand
alone. Such a document normally contains a standalone pseudo-attribute in its
XML declaration with the value yes, similar to this one:

<?xml version=”1.0” standalone=”yes”?>

I call this a pseudo-attribute because technically only elements can have
attributes. The XML declaration is not an element. Therefore, standalone is not
an attribute even if it looks like one.

External entities and entity references can be used to combine multiple files and
other data sources to create a single XML document. These documents cannot
be parsed without reference to other files. Therefore, they normally have a
standalone pseudo-attribute with the value no:

<?xml version=”1.0” standalone=”no”?>

If a document does not have an XML declaration, or if a document has an XML dec-
laration but that XML declaration does not have a standalone pseudo-attribute,
the value no is assumed. That is, the document is assumed incapable of standing on
its own, and the parser will prepare itself to read external pieces as necessary. If the
document can, in fact, stand on its own, nothing is lost by the parser being ready to
read an extra piece.

XML documents do not have to include XML declarations, although they generally
should. If an XML document does include an XML declaration, this declaration must
be the first thing in the file (except possibly for an invisible Unicode byte order

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 147

148 Part I ✦ Introducing XML

mark). XML processors determine which character set is being used (ASCII compat-
ible, EBCDIC compatible, big-endian UTF-16, little-endian UTF-16) by reading the
first several bytes of a file and comparing those bytes against various encodings of
the string <?xml . Nothing should come before this, including white space. For
example, the following line is not an acceptable way to start an XML file because of
the extra spaces at the front of the line:

<?xml version=”1.0” standalone=”yes”?>

Single root element
An XML document has a root element that completely contains all other elements
of the document. This is also sometimes called the document element, although this
element does not have to have the name document or root. Just like any other ele-
ment, root elements are delimited by a start-tag and an end-tag. For example, con-
sider Listing 6-1.

Listing 6-1: greeting.xml

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

In this document, the root element is GREETING. The XML declaration is not an ele-
ment. Therefore, it does not have to be included inside the root element. Similarly,
other nonelement data in an XML document, such as an xml-stylesheet process-
ing instruction, a DOCTYPE declaration, or comments, do not have to be inside the
root element. But all other elements (other than the root itself) and all raw charac-
ter data must be contained in the root element.

Text in XML
An XML document is made up of text. Text is made up of characters. A character is
a letter, a digit, a punctuation mark, a space or tab, or some similar thing. XML uses
the Unicode character set, which not only includes the usual letters and symbols
from English and other Western European alphabets, but also the Cyrillic, Greek,
Hebrew, Arabic, and Devanagari alphabets, the Han ideographs for Chinese and
Japanese, the Korean Hangul syllabary, and many more writing systems.

A document’s text is divided into character data and markup. To a first approxima-
tion, markup describes a document’s logical structure, while character data is the

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 148

149Chapter 6 ✦ Well-formedness

basic information of the document. For example, in Listing 6-1, <?xml version=
”1.0”?>, <GREETING>, and </GREETING> are markup. Hello XML!, along with its
surrounding white space, is the character data. A big advantage of XML over other
formats is that it clearly separates the actual data of a document from its markup.

To be more precise, markup includes all tags, processing instructions, DTDs, entity
references, character references, comments, CDATA section delimiters, and the
XML declaration. Everything else is character data. However, this is tricky because
when a document is processed, some of the markup turns into character data. For
example, the markup > is turned into the greater than sign character (>). The
character data that’s left after the document is processed, and after all markup that
refers to character data has been replaced by the actual character data, is called
parsed character data, or PCDATA for short.

Elements and Tags
An XML document is a singly rooted hierarchical structure of elements. Each ele-
ment is delimited by a start-tag and an end-tag or is represented by a single empty-
element tag. An XML tag has the same form as an HTML tag; that is, start-tags begin
with a < followed by the name of the element the tag starts and end with the first >
after the opening < (for example, <GREETING>). End-tags begin with a </ followed
by the name of the element the tag finishes and are terminated by a > (for example,
</GREETING>). Empty-element tags begin with a < followed by the name of the ele-
ment and are terminated with a /> (for example, <GREETING/>).

Element names
Every element has a name made up of one or more characters. This is the name
included in the element’s start- and end-tags. Element names begin with a letter,
such as y or A, or an underscore _. Subsequent characters in the name may include
letters, digits, underscores, hyphens, and periods. They cannot include white space.
(The underscore often substitutes for white space.) Both lower- and uppercase let-
ters may be used in XML names, and the difference between them is significant. In
this book, I mostly follow the convention of making my names uppercase, mainly
because this makes them stand out better in the text. However, when I’m using a tag
set that was developed by others, it is necessary to adopt their case conventions.
For example, the following are legal XML start-tags with legal XML names:

<HELP>
<Book>
<volume>
<heading1>
<section.paragraph>
<Mary_Smith>
<_8ball>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 149

150 Part I ✦ Introducing XML

Colons are also technically legal in tag names. However, these are reserved for use
with namespaces. Namespaces allow you to mix and match tag sets that may use
the same tag names. Namespaces are discussed in Chapter 11. Until then, you
should not use colons in your tag names.

The following are not legal start-tags because they don’t contain legal XML names:

<Book%7>
<volume control>
<1heading>
<Mary Smith>
<.employee.salary>

The rules for element names actually apply to names of many other things as well.
The same rules are used for attribute names, ID attribute values, entity names, and
a number of other constructs that you encounter over the next several chapters.

Every start-tag must have a corresponding end-tag
Web browsers are relatively forgiving if you forget to close an HTML tag. For exam-
ple, if you include a tag in your document but no corresponding tag, the
part of the document that follows the tag will be made bold. However, the doc-
ument will still be displayed.

XML is not so forgiving. Every start-tag must be closed with the corresponding end-
tag. If a document fails to close an element with the right end-tag, the parser
reports an error message and the browser does not display any of the document’s
content after the error is detected (and possibly not before it either).

End-tags have the same name as the corresponding start-tag but are prefixed with a
/ after the initial angle bracket. For example, if the start-tag is <FOO>, the end-tag is
</FOO>. These are the end-tags for the previous set of legal start-tags.

</HELP>
</Book>
</volume>
</heading1>
</section.paragraph>
</Mary_Smith>
</_8ball>

XML names are case-sensitive. This is different from HTML in which <P> and <p>
are the same tag, and a </p> can close a <P> tag. The following are not end-tags for
the set of legal start-tags being discussed because the case does not match that of
the opening tag.

</help>
</book>
</Volume>

Note

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 150

151Chapter 6 ✦ Well-formedness

</HEADING1>
</Section.Paragraph>
</MARY_SMITH>
</_8BALL>

Empty-element tags
Many HTML elements do not have closing tags. For example, there are no ,
, </HR>, or </BR> tags in HTML. Some page authors do include tags
after their list items, and some HTML tools also use . However, the HTML 4.0
standard specifically denies that this is required. Like all unrecognized tags in
HTML, the presence of an unnecessary has no effect on the rendered output.

This is not the case in XML. The whole point of XML is to enable new elements and
their corresponding tags to be discovered as a document is parsed. Thus, unrecog-
nized tags should not be ignored. Furthermore, an XML processor must be capable
of determining on the fly whether a tag it has never seen before does or does not
have an end-tag.

XML distinguishes between normal start-tags that must have corresponding end-
tags and empty-element tags, which are tags that do not have end-tags. Empty-
element tags are closed with a slash and a closing angle bracket (/>); for example,

 or <HR/>. From the perspective of XML, these are the same as the equivalent
syntax using both start- and end-tags with nothing in between them; for example,

</BR> and <HR></HR>.

However, empty-element tags can only be used when the element is truly empty,
not when the end-tag is simply omitted. For example, in HTML you might write an
unordered list like this:

I’ve a Feeling We’re Not in Kansas Anymore
Buddies
Everybody Loves You

In XML, you cannot simply replace the tags with because the elements
are not truly empty. Instead they contain text. In normal HTML the closing
tag is omitted by the editor and implied by the parser. This is not the same thing as
the element itself being empty. The first LI element in this example contains the
content I’ve a Feeling We’re Not in Kansas Anymore. In XML, you must
close these tags like this:

I’ve a Feeling We’re Not in Kansas Anymore
Buddies
Everybody Loves You

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 151

152 Part I ✦ Introducing XML

On the other hand, a BR or HR or IMG element really is empty. It doesn’t contain any
text or child elements. Thus, in XML, you have two choices for these elements. You
can either write them with a start- and an end-tag in which the end-tag immediately
follows the start-tag — for example, <HR></HR>— or you can write them with an
empty-element tag, as in <HR/>.

Current web browsers deal inconsistently with empty-element tags. For example,
some browsers will insert a line break when they see an <HR/> tag and some
won’t. Furthermore, the problem may arise even without empty-element tags.
Some browsers insert two horizontal lines when they see <HR></HR>, and some
insert one horizontal line. The most generally compatible scheme is to use an
extra attribute before the closing />. The CLASS attribute is often a good choice;
for example, <HR CLASS=”empty”/>.

Elements may nest but may not overlap
Elements may contain (and indeed often do contain) other elements. However, ele-
ments may not overlap. Practically, this means that if an element contains a start-
tag for an element, it must also contain the corresponding end-tag. Conversely, an
element may not contain an end-tag without its matching start-tag. For example,
this is legal XML:

<H1><CITE>What the Butler Saw</CITE></H1>

However, the following is not legal XML because the closing </CITE> tag comes
after the closing </H1> tag:

<H1><CITE>What the Butler Saw</H1></CITE>

Most HTML browsers can handle this case with ease. However, XML browsers are
required to report an error for this construct.

Empty-element tags may appear anywhere, of course. For example,

<PLAYWRIGHTS>Oscar Wilde<HR/>Joe Orton</PLAYWRIGHTS>

This implies that for all nonroot elements, there is exactly one other element that
contains the element, but that does not contain any other element containing the
element. This immediate container is called the parent of the element. The element
is referred to as a child of the parent element. Thus, each nonroot element always
has exactly one parent, but a single element may have an indefinite number of chil-
dren or no children at all.

Consider Listing 6-2. The root element is the PLAYS element. This contains two
PLAY children. Each PLAY element contains three child elements: TITLE, AUTHOR,
and YEAR. Each of these contains character data.

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 152

153Chapter 6 ✦ Well-formedness

Listing 6-2: Parents and Children

<?xml version=”1.0” standalone=”yes”?>
<PLAYS>
<PLAY>
<TITLE>What the Butler Saw</TITLE>
<AUTHOR>Joe Orton</AUTHOR>
<YEAR>1969</YEAR>

</PLAY>
<PLAY>
<TITLE>The Ideal Husband</TITLE>
<AUTHOR>Oscar Wilde</AUTHOR>
<YEAR>1895</YEAR>

</PLAY>
</PLAYS>

In programmer terms, this means that XML documents form a tree. Figure 6-1
shows why this structure is called a tree. It starts from the root and gradually grows
limbs with leaves on their ends. Trees have a number of nice properties that make
them congenial to programmatic traversal, although this doesn’t matter so much to
you as the author of the document.

Figure 6-1: Listing 6-2’s tree structure

What the
Butler Saw Joe Orton

PLAY PLAY

PLAYS

1969 The Ideal
Husband Oscar Wilde 1895

TITLE AUTHOR YEAR TITLE AUTHOR YEAR

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 153

154 Part I ✦ Introducing XML

Trees are more commonly drawn from the top down. That is, the root of the tree is
shown at the top of the picture rather than the bottom. While this looks less like a
real tree, it doesn’t affect the topology of the data structure in the least.

Attributes
Elements can have attributes. Each attribute of an element is encoded in the start-
tag of the element as a name-value pair separated by an equals sign (=) and, option-
ally, some extra white space. The attribute value is enclosed in either single or
double quotes. For example,

<GREETING LANGUAGE=”English”>
Hello XML!
<MOVIE SRC = ‘WavingHand.mov’/>

</GREETING>

Here, the GREETING element has a LANGUAGE attribute that has the value English.
The MOVIE element has an SRC attribute with the value WavingHand.mov.

Attribute names
Attribute names are strings that follow the same rules as element names. That is,
attribute names must contain one or more characters and the first character must
be a letter or the underscore (_). Subsequent characters in the name may include
letters, digits, underscores, hyphens, and periods. They may not include white
space.

The same element cannot have two attributes with the same name. For example,
this is illegal:

<RECTANGLE SIDE=”8” SIDE=”10”/>

Attribute names are case-sensitive. The SIDE attribute is not the same as the side
or the Side attribute. Therefore, the following is legal:

<BOX SIDE=”8” side=”10” Side=”31”/>

However, this is extremely confusing, and I strongly urge you not to write markup
that depends on case.

Attribute values
Attributes values are strings. Even when the string shows a number, as in the
LENGTH attribute that follows, that number is the two characters 7 and 2, not the
binary number 72.

<RULE LENGTH=”72”/>

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 154

155Chapter 6 ✦ Well-formedness

If you’re writing code to process XML, you’ll need to convert the string to a number
before performing arithmetic on it.

Unlike attribute names, there are few limits on the content of an attribute value.
Attribute values can contain white space, begin with a number, or contain any
punctuation characters (except, sometimes, for single and double quotes). The
only characters an attribute value cannot contain are the angle brackets < and >,
though these can be included using the < and > entity references (discussed
soon).

XML attribute values are delimited by quote marks. Unlike HTML attribute values,
XML attribute values must be enclosed in quotes whether or not the attribute value
includes spaces. For example:

IBiblio

Most people choose double quotes. However, you can also use single quotes, which
is useful if the attribute value itself contains a double quote. For example:

<IMG SRC=”sistinechapel.jpg”
ALT=’And God said, “Let there be light,”

and there was light’/>

If the attribute value contains both single and double quotes, the one that’s not
used to delimit the string must be replaced with the proper entity reference. You
can use the entity reference ' for a single quote (an apostrophe) and "
for a double quote. I often just replace both, which is always legal. For example:

<PARAM NAME=”joke” VALUE=”The diner said,
"Waiter, There's a fly in my soup!"”>

Predefined attributes
XML assigns special meaning to attributes that begin with xml:. Currently three
such attributes are defined: xml:lang, xml:space, and xml:base. You should only
use these attributes for their intended purposes. The xml:space attribute
describes how white space is treated in the element. The xml:lang attribute
describes the language (and, optionally, dialect and country) in which the element
is written. The xml:base attribute provides the base URL against which relative
URLs in the element should be resolved. I’ll talk about xml:space and xml:lang
now. xml:base is covered in Chapter 17.

xml:space
In HTML, white space is relatively insignificant. Although the difference between
one space and no space is significant, the difference between 1 space and 2 spaces,
1 space and a carriage return, or 1 space, 3 carriage returns, and 12 tabs is not
important. For text in which white space is significant — computer source code,

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 155

156 Part I ✦ Introducing XML

certain mainframe database reports, or the poetry of e. e. cummings, for example —
you can use a PRE element to specify a monospaced font and preservation of white
space.

XML, however, preserves white space by default. The XML processor passes all
white space characters to the application unchanged. The application usually
ignores the extra white space. However, the XML processor can tell the application
that certain elements contain significant white space that should be preserved. The
page author uses the xml:space attribute to indicate these elements to the applica-
tion. The value preserve indicates that white space is significant; the value
default indicates that it isn’t. Listing 6-3 demonstrates.

Listing 6-3: Java Source Code with Significant White Space
Encoded in XML

<?xml version=”1.0”?>
<PROGRAM xml:space=”preserve”>public class AsciiTable {

public static void main (String[] args) {

for (int i = 0; i < 128; i++) {
System.out.println(i + “ “ + (char) i);

}

}

}
</PROGRAM>

Descendants (child elements and their children, and their children’s children, and
so on) of an element for which xml:space is defined are assumed to behave simi-
larly to their parent (either preserving or not preserving space), unless they pos-
sess an xml:space attribute with a conflicting value.

An XML parser always passes all white space to the application, regardless of
whether xml:space’s value is default or preserve. With a value of default,
however, the application does what it would normally do with extra white space.
With a value of preserve, the application treats the extra white space as signifi-
cant. Significance depends somewhat on the eventual destination of the data. For
example, extra white space in Java source code is relevant to a source code editor
but not to a compiler.

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 156

157Chapter 6 ✦ Well-formedness

xml:lang
The xml:lang attribute identifies the language in which its element’s content is
written. Ideally, each of these attribute values should be one of the two-letter lan-
guage codes defined by the original ISO-639 standard. The complete list of codes
can be found on the Web at http://www.ics.uci.edu/pub/ietf/http/
related/iso639.txt.

For example, consider this sentence from Petronius’s Satyricon in both Latin and
English. A SENTENCE element encloses both versions, but the first SENTENCE ele-
ment has an xml:lang attribute for Latin, while the second has an xml:lang
attribute for English.

<SENTENCE xml:lang=”la”>
Veniebamus in forum deficiente iam die, in quo notavimus
frequentiam rerum venalium, non quidem pretiosarum sed tamen
quarum fidem male ambulantem obscuritas temporis
facillime tegeret.

</SENTENCE>
<SENTENCE xml:lang=”en”>
We have come to the marketplace now when the day is failing,
where we have seen many things for sale, not for the
valuable goods but rather that the darkness of
the time may most easily conceal their shoddiness.

</SENTENCE>

While an English-speaking reader can easily tell which is the original text and which
is the translation, a computer can use the hint provided by the xml:lang attribute.
This distinction enables a spell checker to determine whether to check a particular
element and designate which dictionary to use. Search engines can inspect these
language attributes to determine whether to index a page and return matches
based on the user’s preferences. The language applies to the element and all its
content until one of its descendants declares a different language.

Too Many Languages, Not Enough Codes

XML remains a little behind the times in this area. The original ISO-639 standard language
codes were formed from two case-insensitive ASCII alphabetic characters. This standard
allows no more than 26 × 26, or 676 different codes. Almost 10 times that many different
languages are spoken on Earth today (not even counting dead languages such as Etruscan).
In practice, the reasonable codes are somewhat fewer than 676 because the language
abbreviations should have some relation to the name of the language.

ISO-639, part two, uses three-letter language codes, which should handle all languages
spoken on Earth. The XML standard specifically requires two-letter codes, however. On the
other hand, because of some very technical details about how the XML specification is writ-
ten, parsers are not required to enforce this constraint. Unfortunately, some do and some
do not, so documents really have to assume that two-letter codes are required.

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 157

158 Part I ✦ Introducing XML

Country codes
The value of the xml:lang attribute may include additional subcode segments, sep-
arated from the primary language code by a hyphen. Most often, the first subcode
segment is a two-letter country code specified by ISO 3166. You can retrieve the
most current list of country codes from http://www.isi.edu/in-notes/iana/
assignments/country-codes. For example:

<P xml:lang=”en-US”>Put the body in the trunk of the car.</P>
<P xml:lang=”en-GB”>Put the body in the boot of the car.</P>

By convention, language codes are written in lowercase and country codes are writ-
ten in uppercase. However, this is merely a convention. This is one of the few parts
of XML that is case-insensitive, because of its heritage in the case-insensitive ISO
standard.

IANA language codes
If no appropriate ISO code is available for the primary language, you can use one of
the codes registered with the Internet Assigned Numbers Authority (IANA). You can
find the most current list at http://www.isi.edu/in-notes/iana/assignments/
languages. IANA codes beginning with i-, such as i-navajo, represent new languages
not currently included in two-letter form in ISO 639. IANA codes beginning with a
two-letter ISO 639 code, such as zh-yue, represent a dialect of the primary language.
Thus, zh is the ISO-639 code for Chinese; zh-yue is the IANA code for the Yue dialect
of Chinese (more commonly known as Cantonese in English). The criteria for what
qualifies as a language and what qualifies as a dialect are not particularly well
defined. For instance, Swedish and Norwegian, two different languages, are mutu-
ally intelligible; but Cantonese and Mandarin, two different dialects of Chinese, are
mutually unintelligible. To be perfectly honest, the best answer is that the people
who speak different languages have their own armies and the people who speak
different dialects don’t.

For example, Listing 6-4 gives the national anthem of Luxembourg in both
Letzeburgesh (i-lux) and English (en):

Listing 6-4: The Luxembourg National Anthem
in Letzeburgesh and English

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<DOCUMENT>
<SONG xml:lang=”i-lux”

LYRICIST=”Michel Lentz” COMPOSER=”J.A. Zinnen”>
<STANZA>
<VERSE>Wo d’Uelzecht duerch d’Wisen ze’t,</VERSE>
<VERSE>Dûrch d’Fielzen d’Sauer brëcht,</VERSE>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 158

159Chapter 6 ✦ Well-formedness

<VERSE>Wo’ d’Ref lânscht d’Musel dofteg ble’t,</VERSE>
<VERSE>Den Himmel Wein ons mëcht:</VERSE>
<VERSE>Dat ass onst Land, fir dat mer ge’f</VERSE>
<VERSE>Heinidden alles won,</VERSE>
<VERSE>Ons Hemeschtsland dat mir so’ de’f</VERSE>
<VERSE>An onsen Hierzer dron.</VERSE>
<VERSE>Ons Hemeschtsland dat mir so’ de’f</VERSE>
<VERSE>An onsen Hierzer dron.</VERSE>

</STANZA>
<STANZA>
<VERSE>O Du do uewen, dem seng Hand</VERSE>
<VERSE>Durch d’Welt Natio’ne let,</VERSE>
<VERSE>Behitt du d’Lëtzeburger Land</VERSE>
<VERSE>Vum frieme Joch a Led;</VERSE>
<VERSE>Du hues ons all als Kanner schon</VERSE>
<VERSE>De freie Gêscht jo ginn,</VERSE>
<VERSE>Loss viru blënken d’Freihetsonn,</VERSE>
<VERSE>De’ mir so’ lâng gesinn.</VERSE>
<VERSE>Loss viru blënken d’Freihetsonn,</VERSE>
<VERSE>De’ mir so’ lâng gesinn.</VERSE>

</STANZA>
</SONG>
<SONG xml:lang=”en” TRANSLATOR=”Nicholas E. Weydert”>
<STANZA>
<VERSE>Where slow you see the Alzette flow,</VERSE>
<VERSE>The Sura play wild pranks,</VERSE>
<VERSE>Where lovely vineyards amply grow,</VERSE>
<VERSE>Upon the Moselle’s banks,</VERSE>
<VERSE>There lies the land for which our thanks</VERSE>
<VERSE>Are owed to God above,</VERSE>
<VERSE>Our own, our native land which ranks</VERSE>
<VERSE>Well foremost in our love.</VERSE>
<VERSE>Our own, our native land which ranks</VERSE>
<VERSE>Well foremost in our love.</VERSE>

</STANZA>
<STANZA>
<VERSE>Oh Father in Heaven whose powerful hand</VERSE>
<VERSE>Makes states or lays them low,</VERSE>
<VERSE>Protect the Luxembourger land</VERSE>
<VERSE>From foreign yoke and woe.</VERSE>
<VERSE>God’s golden liberty bestow</VERSE>
<VERSE>On us now as of yore.</VERSE>
<VERSE>Let Freedom’s sun in glory glow</VERSE>
<VERSE>For now and evermore.</VERSE>
<VERSE>Let Freedom’s sun in glory glow</VERSE>
<VERSE>For now and evermore.</VERSE>

</STANZA>
</SONG>

</DOCUMENT>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 159

160 Part I ✦ Introducing XML

X-Codes
If neither the ISO nor the IANA has a code for the language you need, which is often
the case for many aboriginal languages, you may define new language codes. These
x-codes must begin with the string x- or X- to identify them as user-defined, private-
use codes, as in the following example:

<P xml:lang=”x-choctaw”>
Chahta imanumpa ish anumpola hinla ho?

</P>
<P xml:lang=”en”>Do you speak Choctaw?</P>

Entity References
You’re probably familiar with a number of entity references from HTML. For exam-
ple, © represents the copyright symbol ©; and ® stands for the registered
trademark symbol ®. XML predefines the five entity references listed in Table 6-1.
These predefined entity references are used in XML documents in place of specific
characters that would otherwise be interpreted as part of markup. For example, the
entity reference < stands for the less than sign (<), which would otherwise be
interpreted as the beginning of a tag.

Table 6-1
XML Predefined Entity references

Entity Reference Character

& &

< <

> >

" “

' ‘

In XML, unlike HTML, entity references must end with a semicolon. > is a cor-
rect entity reference; > is not.

XML assumes that the opening angle bracket always starts a tag, and that the
ampersand always starts an entity reference. (This is often true of HTML as well,
but most browsers are more forgiving.) For example, consider this line:

<H1>A Homage to Ben & Jerry’s
New York Super Fudge Chunk Ice Cream</H1>

Caution

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 160

161Chapter 6 ✦ Well-formedness

Web browsers that treat this as HTML will probably display it correctly. However,
XML parsers will reject it, and for maximum safety, you should escape the amper-
sand with &, like this:

<H1>A Homage to Ben & Jerry’s
New York Super Fudge Chunk Ice Cream</H1>

The open angle bracket (<) is similar. Consider this common Java code embedded
in HTML:

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>

Both XML and HTML consider the less than sign in <= to be the start of a tag. The
tag continues until the next >. Thus, a web browser treating this fragment as HTML
will render this line as

for (int i = 0; i

rather than

for (int i = 0; i <= args.length; i++) {

The = args.length; i++) { is interpreted as part of an unrecognized tag.
Again, an XML parser will reject this line completely because it’s malformed.

The less than sign can be included in text in both XML and HTML by writing it as
<, as in the following example:

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>

Raw less than signs and ampersands in normal XML text are always interpreted as
starting tags and entity references, respectively. (The abnormal text is CDATA sec-
tions, described in an upcoming section.) Therefore, less than signs and amper-
sands that are text rather than markup must always be encoded as < and
&, respectively. Attribute values are text, too, and as you already saw, entity
references can be used inside attribute values.

Greater than signs, double quotes, and apostrophes must be encoded when they
would otherwise be interpreted as part of markup. However, it’s easier just to get in
the habit of encoding all of them rather than trying to figure out whether a particu-
lar use would or would not be interpreted as markup.

Other than the five entity references already discussed, you can only use an entity
reference if you define it in a DTD first. Because you don’t know about DTDs yet,
if the ampersand character & appears anywhere in your document, it must be
immediately followed by amp;, lt;, gt;, apos;, or quot;. All other uses violate
well-formedness.

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 161

162 Part I ✦ Introducing XML

Chapter 10 teaches you how to define new entity references for other characters
and longer strings of text using DTDs.

Comments
XML comments are almost exactly like HTML comments. They begin with <!-- and
end with --> . All data between the <!-- and --> is ignored by the XML processor.
It’s as if it weren’t there. This can be used to make notes to yourself or your coau-
thors, or to temporarily comment out sections of the document that aren’t ready, as
Listing 6-5 demonstrates.

Listing 6-5: An XML Document That Contains a Comment

<?xml version=”1.0”?>
<!-- This is Listing 6-5 from The XML Bible -->
<GREETING>
Hello XML!
<!--Goodbye XML-->
</GREETING>

Because comments aren’t elements, they can be placed before or after the root ele-
ment. However, comments cannot come before the XML declaration, which must be
the very first thing in the document. For example, this is not a well-formed XML
document:

<!-- This is Listing 6-5 from The XML Bible -->
<?xml version=”1.0”?>
<GREETING>
Hello XML!
<!--Goodbye XML-->
</GREETING>

Comments cannot be placed inside a tag. This document is also illegal:

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING <!--Goodbye--> >

However, comments may surround and hide tags. In Listing 6-6, the <ANTIGREETING>
tag and all its children are commented out. They are not shown when the document
is rendered. It’s as if they don’t exist.

Cross-
Reference

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 162

163Chapter 6 ✦ Well-formedness

Listing 6-6: A Comment That Comments Out an Element

<?xml version=”1.0”?>
<DOCUMENT>
<GREETING>
Hello XML!

</GREETING>
<!--
<ANTIGREETING>
Goodbye XML!

</ANTIGREETING>
-->
</DOCUMENT>

Because comments effectively delete sections of text, you must take care to ensure
that the remaining text is still a well-formed XML document. For example, be careful
not to comment out essential tags, as in this malformed document:

<?xml version=”1.0”?>
<GREETING>
Hello XML!
<!--
</GREETING>
-->

Once the commented text is removed, what remains is as follows:

<?xml version=”1.0”?>
<GREETING>
Hello XML!

Because the <GREETING> tag is no longer matched by a closing </GREETING> tag,
this is no longer a well-formed XML document.

There is one final constraint on comments. The two-hyphen string -- cannot occur
inside a comment. For example, this is an illegal comment:

<!-- The red door--that is, the second one--was left open -->

This means, among other things, that you cannot nest comments like this:

<?xml version=”1.0”?>
<DOCUMENT>
<GREETING>
Hello XML!

</GREETING>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 163

164 Part I ✦ Introducing XML

<!--
<ANTIGREETING>
<!--Goodbye XML!-->

</ANTIGREETING>
-->
</DOCUMENT>

It also means that you might run into trouble if you’re commenting out a lot of C,
Java, or JavaScript source code that’s full of expressions such as i-- or
numberLeft--. Generally, it’s not too hard to work around this problem once you
recognize it.

Processing Instructions
Processing instructions are like comments that are intended for computer pro-
grams reading the document rather than people reading the document. However,
XML parsers are required to pass along the contents of processing instructions to
the application on whose behalf they’re parsing, unlike comments that a parser is
allowed to silently discard. However, the application that receives the information
is free to ignore any processing instruction it doesn’t understand.

Processing instructions begin with <? and end with ?>. The starting <? is followed
by an XML name called the target, which identifies the program that the instruction
is intended for, followed by data for that program. For example, you saw this pro-
cessing instruction in the last chapter:

<?xml-stylesheet type=”text/xml” href=”5-2.xsl”?>

The target of this processing instruction is xml-stylesheet. This is a standard
name that means the data in this processing instruction is intended for any web
browser that can apply a style sheet to the document. type=”text/xml”
href=”5-2.xsl” is the processing instruction data that will be passed to the appli-
cation reading the document. If that application happens to be a web browser that
understands XSLT, it will apply the style sheet 5-2.xsl to the document and render
the result. If that application is anything other than a web browser, it will simply
ignore the processing instruction.

Appearances to the contrary notwithstanding, the XML declaration is technically
not a processing instruction. The difference is academic unless you’re writing a
program to read an XML document using an XML parser. In that case, the parser’s
API will provide different methods to get the contents of processing instructions
and the contents of the XML declaration.

xml-stylesheet processing instructions are always placed in the document’s pro-
log between the XML declaration and the root element start-tag. Other processing
instructions may also be placed in the prolog, or at almost any other convenient

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 164

165Chapter 6 ✦ Well-formedness

location in the XML document, either before, after, or inside the root element. For
example, PHP processing instructions generally appear wherever you want the PHP
processor to place its output. The only place a processing instruction cannot
appear is inside a tag or before the XML declaration.

The target of a processing instruction may be the name of the program it is
intended for, or it may be a generic identifier such as xml-stylesheet that many
different programs recognize. Target names that begin with the three letters xml (or
XML, Xml, xMl, or any other variation) are reserved for use by the World Wide Web
Consortium. However, you’re free to use any other convenient name for processing
instruction targets. Different applications support different processing instructions.
Most applications simply ignore any processing instruction whose target they don’t
recognize.

The xml-stylesheet processing instruction uses a very common format for pro-
cessing instructions in which the data is divided into pseudo-attributes; that is, the
data is passed as name-value pairs, and the values are delimited by quotes.
However, as with the XML declaration, these are not true attributes because a pro-
cessing instruction is not a tag. Furthermore, this format is optional. Some process-
ing instructions will use this style; others won’t. The only limit on the content of
processing instruction data is that it cannot contain the two-character sequence ?>
that signals the end of a processing instruction. Otherwise, it’s free to contain any
legal character that may appear in XML documents. For example, this is a legal pro-
cessing instruction:

<?php

echo “Abercrombie & Fitch: <<Clothes for White People>>”;
?>

In this example, the target is php. The rest of the processing instruction is data and
contains a lot of malformed text that would otherwise be illegal in an XML docu-
ment. Some programs might read this, recognize the php target, execute the little
program, and copy the text into the page. Other programs that don’t recognize the
php target will simply ignore it.

CDATA Sections
Suppose your document contains one or more large blocks of text that have a lot of
<, >, &, or “ characters but no markup. This would be true for a Java or HTML tuto-
rial, for example. It would be inconvenient to have to replace each instance of one
of these characters with the equivalent entity reference. Instead, you can include
the block of text in a CDATA section.

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 165

166 Part I ✦ Introducing XML

CDATA sections begin with <![CDATA[and end with]]>, as in the following example:

<![CDATA[
System.out.print(“<”);
if (x <= args.length && y > z) {
System.out.println(args[x - y]);

}
System.out.println(“>”);
]]>

The only text that’s not allowed within a CDATA section is the closing CDATA delim-
iter]]>. Comments may appear in CDATA sections but do not act as comments.
That is, both the comment tags and all the text they contain will be displayed.

Most of the time, anything inside a pair of <> angle brackets is markup, and any-
thing that’s not is character data. However, in CDATA sections, all text is pure char-
acter data. Anything that looks like a tag or an entity reference is really just the text
of the tag or the entity reference. The XML processor does not try to interpret it in
any way. CDATA sections are used when you want all text to be interpreted as pure
character data rather than as markup.

CDATA sections are extremely useful if you’re trying to write about HTML or XML in
XML. For example, this book contains many small blocks of XML code. The word
processor I’m using doesn’t care about that. But if I were to convert this book to
XML, I’d have to painstakingly replace all the less than signs with < and all the
ampersands with &, like this:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

To avoid having to do this, I can instead use a CDATA section to indicate that a block
of text is to be presented as is with no translation, as in the following example:

<![CDATA[<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>]]>

Because the CDATA section end delimiter]]> may not appear in a CDATA section,
CDATA sections cannot nest. This makes it relatively difficult to write about CDATA
sections in XML. If you need to do this, you just have to bite the bullet and use the
< and & escapes.

CDATA sections aren’t needed that often, but when they are needed, they’re needed
badly.

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 166

167Chapter 6 ✦ Well-formedness

Do not use CDATA sections to hide malformed markup. This is commonly done
when embedding HTML in XML, especially in RSS. This practice creates very fragile
systems that cannot be processed with off-the-shelf XML tools. CDATA sections are
for text, not markup. If you need to embed HTML in XML, make it well formed first,
as discussed in the final section of this chapter.

Unicode
All XML documents are read in Unicode. Unicode is a platform-independent charac-
ter set that includes almost all characters from most of the world’s living languages
and not a few dead ones, including English, German, Russian, Greek, Japanese,
Chinese, Arabic, Hebrew, Hindi, French, Cherokee, Thai, Burmese, Cambodian,
Korean, Turkish, Danish, Dutch, Gaelic, and many, many more. Unicode has room
for over 1 million different characters. In the current version, 4.0, a few more than
90,000 different Unicode characters are actually defined.

Unicode assigns each character a unique integer called its code point. For example,
the capital letter A is mapped to 65. The Greek letter π is mapped to the number
960. The Cyrillic character ˙ is mapped to 1206. The musical symbol & is mapped to
the number 119,072.

Almost all of these characters are legal in well-formed XML documents. In fact, it’s
easier to list the characters that aren’t allowed than those that are. In brief, the ille-
gal characters are as follows:

✦ The C0 controls with code points from 0 through 31, except for the carriage
return, linefeed, and tab. Illegal characters include the bell, form feed, vertical
tab, and null.

✦ The surrogate characters with code points from 55,296 to 57,343. The UTF-16
encoding pairs these up to represent characters from outside the Basic
Multilingual Plane (the first 65,535 characters of Unicode). However, they are
not themselves characters.

Including any of these characters in an XML document makes it malformed. This
most commonly happens when legacy text data from a database or other source is
blindly copied into an XML document without first scanning it for illegal characters.
Null and form feed are especially common problems in practice.

All other Unicode characters are allowed in XML documents, even the private-use
characters and characters that haven’t been defined yet. Not all characters can
appear as part of markup. For instance, ∞ and © are not allowed to be part of ele-
ment and attribute names. However, they are allowed in PCDATA and attribute val-
ues. Characters with special meaning to XML, such as < and &, can also be included
in PCDATA and attribute values, provided they are properly escaped first with an
entity or character reference.

Caution

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 167

168 Part I ✦ Introducing XML

Character encodings
Unicode code points are abstract numbers. They are not ints, shorts, floats, longs,
or any other particular data type, though they might be encoded that way on a par-
ticular system. Before these abstract integers can be used in a computer, they have
to be encoded as bytes. There’s more than one way to do this. For example, a naïve
encoding might simply represent each code point as a 4-byte big endian int.
Another might represent each code point as a 4-byte little endian int. And still
another might represent the numbers as either big endian or little endian ints, but
add an initial magic number to the file to determine which is being used.

Several different encodings of Unicode are in general use today. The two most com-
mon and important are UTF-8 and UTF-16. These are the only ones all XML parsers
support. Both are variable-width encodings that use different numbers of bytes for
different character ranges.

UTF-8 only uses a single byte for the most common characters, that is the ASCII
characters 0 to 127, at the expense of having to use 3 bytes for the less common
characters, particularly the Hangul syllables and Han ideographs. It uses 2 bytes for
most other characters. If you’re writing in English, UTF-8 can reduce file sizes by as
much as 50 percent compared to UTF-16. On the other hand, if you’re writing
mostly in Chinese, Korean, or Japanese, UTF-8 can increase your file size by as
much as 50 percent — so use it with caution. UTF-8 has mostly no effect on non-
Roman, non-CJK scripts such as Greek, Arabic, Cyrillic, and Hebrew.

UTF-16 is another very common encoding of Unicode, which all XML parsers are
required to support. UTF-16 encodes characters 0 through 65,535 (the Basic
Multilingual Plane, or BMP for short) directly as 2-byte values. Characters from
65,536 to 1,048,575 are encoded as 4-byte surrogate pairs.

Furthermore, legacy character sets such as ASCII, ISO-8859-1 (Latin-1), SJIS, or
MacRoman are treated as encodings of subsets of the Unicode character set. When
the parser reads an XML document, it converts all the data into Unicode.

The encoding declaration
XML processors assume text data is in the UTF-8 format unless told otherwise. This
means that they can read ASCII files, because ASCII is a strict subset of UTF-8. If you
like, you can write in other encodings besides UTF-8, provided the parser recognizes
them. Each document written in an alternative character encoding must have an
encoding declaration that specifies which character set or encoding is being used.
For example, this XML declaration says that the document is written in Latin-1:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

This one says the document is written in UTF-16:

<?xml version=”1.0” encoding=”UTF-16”?>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 168

169Chapter 6 ✦ Well-formedness

Documents that are written in UTF-16 should also have an invisible byte-order mark
before the XML declaration. This is normally inserted automatically by the editor
when it saves a file in UTF-16. This helps the parser determine whether the UTF-16 is
big endian or little endian. UTF-8 documents sometimes also have such a byte-order
mark, though it’s not required because UTF-8 is completely byte-order-independent.

Numeric character references
Every Unicode character has a code point between 0 and 1,114,111. If the text edi-
tor or encoding does not support the character you need, you can use a numeric
character reference to insert the character in the XML file instead.

A numeric character reference consists of the two characters &# followed by the
character code and a semicolon. For instance, the Greek letter π has Unicode value
960 so it can be inserted in an XML file as π. The Cyrillic character ˙ has
Unicode value 1206, so it can be included in an XML file with the character refer-
ence Ҷ.

Listing 6-7 demonstrates by encoding the first article of the Universal Declaration of
Human Rights in Chinese using numeric character references.

Listing 6-7: Decimal Numeric Character References

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<ARTICLE>
人 人 生 而 自 由,
在 尊 严 和 权 利
上 一 律 平 等。
他 们 赋 有 理 性
和 良 心, 并 应 以
兄 弟 关 系 的 精
神 相 对 待。.
</ARTICLE>

This isn’t particularly legible. It may be written in Chinese, but it’s all Greek to me.
However, if you load the result into a browser, all the references are resolved into
the actual Chinese characters, as shown in Figure 6-2. Your system will need a
Chinese font installed to display this.

Figure 6-2: Browsers convert
numeric character references into
the actual characters before
displaying them.

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 169

170 Part I ✦ Introducing XML

Numeric character references can also be specified in hexadecimal (base 16).
Although most people are more comfortable with decimal numbers, the Unicode
specification gives character values as 2-byte hexadecimal numbers. It’s often eas-
ier to use hex values directly rather than converting them to decimal.

All you need to do is include an x after the &# to signify that you’re using a hexadec-
imal value. For example, π has hexadecimal value 3C0, so it can be inserted in an
XML file as π. The Cyrillic character ˙ has hexadecimal value 4B6, so it can
be included in an XML file with the escape sequence Ҷ. Because 2 bytes
always produce exactly four hexadecimal digits, it’s customary (although not
required) to include leading zeros in hexadecimal character references so they are
rounded out to four digits. Listing 6-8 repeats Listing 6-7 with hexadecimal instead
of decimal character references.

Listing 6-8: Hexadecimal Numeric Character References

<?xml version=”1.0”?>
<ARTICLE>
人 人 生 而 自 由,
在 尊 严 和 权 利
上 一 律 平 等。
他 们 赋 有 理 性
和 良 心, 并 应 以
兄 弟 关 系 的 精
神 相 对 待。
</ARTICLE>

Numeric character references, both hexadecimal and decimal, can also be used to
embed characters that would otherwise be interpreted as markup. For example, the
ampersand (&) is encoded as & or &. The less than sign (<) is
encoded as < or <.

Numeric character references can only be used in character data and attribute val-
ues, however. They cannot be used in element or attribute names. For example,
Listing 6-9, which attempts to escape the tag names, is malformed.

Listing 6-9: A Malformed Document That Tries to Use
Character References in Element Names

<?xml version=”1.0”?>
<第条>
人 人 生 而 自 由,
在 尊 严 和 权 利

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 170

171Chapter 6 ✦ Well-formedness

上 一 律 平 等。
他 们 赋 有 理 性
和 良 心, 并 应 以
兄 弟 关 系 的 精
神 相 对 待。
</第条>

If you want to use Chinese in an element name or other markup, you must use a
character encoding that includes Chinese so you can type the actual characters
rather than character references.

Character references may seem to appear inside comments, processing instruc-
tions, and CDATA sections. However, in those contexts they are merely interpreted
as text. The parser does not convert a string such as & into a different charac-
ter inside CDATA sections, comments, and processing instructions.

XML 1.1
XML 1.0 was based on Unicode 2.0. XML 1.1 is designed to be independent of any
particular Unicode version. XML 1.0 explicitly listed all the characters that could be
used in XML names (including element names, attribute names, entity names, and
processing instruction targets). Characters that weren’t defined yet in Unicode 2.0
weren’t allowed in names. For example, you can’t write XML 1.0 names in Amharic,
Burmese, or Cambodian because those scripts weren’t added to Unicode until ver-
sion 3.0. Naturally, this is a bit of a problem for developers whose preferred lan-
guage is Amharic, Burmese, or Cambodian.

XML 1.1 allows you to use these scripts and others defined after Unicode 2.0 in doc-
uments. All you have to do is set the version attribute to 1.1 instead of 1.0. Listing
6-10 demonstrates with Article 1 of the Universal Declaration of Human Rights writ-
ten in Burmese:

Listing 6-10: A Burmese Document in XML 1.1

<?xml version=”1.1”?>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 171

172 Part I ✦ Introducing XML

However, this is only important for markup, not for PCDATA. XML 1.0 documents
can contain Burmese, Cambodian, Amharic, and other Unicode 4.0 scripts in text
content. They just can’t use it for markup. Listing 6-11 is a perfectly well-formed
XML document that uses the Burmese script for text but English markup.

Listing 6-11: Burmese Text with English Markup in XML 1.0

<?xml version=”1.0”?>
<ARTICLE>

</ARTICLE>

The second change XML 1.1 makes is allowing the use of the newline character,
Unicode code point 133, NEL, as a substitute for carriage returns and linefeeds. This
NEL character is used as a line terminator on some IBM mainframe systems instead
of the worldwide standards carriage return and linefeed. There’s no excuse for this
uninteroperability, and IBM really should have fixed this on their mainframes
decades ago. Nonetheless, XML 1.1 does allow NEL to be used as white space in
XML documents. However, it never has to be used. It can’t do anything a simple car-
riage return or linefeed can’t do, and it’s incompatible with existing XML processors
and systems as well as plain-vanilla text editors such as emacs and BBEdit.
Allowing NEL into XML 1.1 was a bad decision with no real value to anyone.

The third change XML 1.1 makes is forbidding the direct inclusion of the C1 control
characters with Unicode code points 128 through 159 in your documents with the
single exception of the NEL character. The C1 controls have never achieved broad
adoption, and their inclusion in XML 1.0 was an oversight. They should have been
banned like the C0 controls from 0 to 31. When you find these characters in a docu-
ment, what you most often have is a mislabeled Cp1252 document. Cp1252 is the
U.S. Windows default encoding. It’s mostly identical to ISO-8859-1 (Latin-1) except
that it uses the space from 128 to 159 for additional graphic characters such as ‰
and Œ. Other vendor character sets such as MacRoman also use this range. It’s rare
to find any of these code points used in a genuine Latin-1 or Unicode document.
XML 1.1 does allow these characters to be included if they’re escaped as numeric
character references such as ‡ or Œ.

The fourth change XML 1.1 makes is allowing additional C0 control characters such
as form feed and bell in XML data. However, these cannot be typed directly. They
must always be escaped with numeric character references such as  and .
Character 0, the null, is still not allowed whether you escape it or not. The remaining
C0 control characters are allowed, though only the three allowed in XML 1.0—carriage

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 172

173Chapter 6 ✦ Well-formedness

return, linefeed, and tab — do not have to be escaped. This may be useful if you have
a lot of legacy data with embedded control characters, but these control characters
simply aren’t needed in new XML documents. Markup is much better for indicating
page breaks, beeps, and other control structures than the C0 characters ever were.

Bottom line: If you aren’t interested in writing markup in Amharic, Burmese,
Cambodian, Yi, Tagalog, Mongolian, or a few other languages only lately added to
Unicode, you don’t need XML 1.1. Indeed, you should not use XML 1.1, because it
merely makes your documents incompatible with the large installed base of XML
software for no good reason. If you do want to write markup (not PCDATA but
markup) in one of these languages, set the version attribute of the XML declara-
tion to 1.1 and then proceed as normal.

The XML 1.1 specification also expends a lot of verbiage on Unicode normaliza-
tion. Very roughly, this is the act of changing characters like the letter e followed by
a combining accent acute into the single character é. However, the rules for nor-
malization are so weak that they have no actual effect on parsers. In brief, the
specification suggests that document authors should normalize their text, but for-
bids parsers from actively text. Parsers are allowed but not required to warn client
applications if they encounter unnormalized text. However, they were allowed to
warn about this (or anything else they didn’t like) in XML 1.0. Nothing has really
changed with respect to normalization in XML 1.1.

There is one more change XML 1.1 makes that’s potentially relevant to a few more
users, but it involves namespaces, so discussion will have to wait until namespaces
are introduced in Chapter 11.

Well-formed HTML
You can practice your XML skills even before all web browsers directly support XML
by writing well-formed HTML. Well-formed HTML is HTML that adheres to XML’s
well-formedness constraints but only uses standard HTML tags. Well-formed HTML
is easier to read than the sloppy HTML most humans and WYSIWYG tools such as
FrontPage write. It’s also easier for web robots and automated search engines to
understand. It’s more robust and less likely to break when you make a change. And
it’s less likely to be subject to annoying cross-browser and cross-platform differ-
ences in rendering. Furthermore, you can then use XML tools to work on your HTML
documents while still maintaining backward compatibility with browsers that don’t
support XML.

Rules for HTML
Real-world web pages are extremely sloppy. Tags aren’t closed. Elements overlap.
Raw less than signs appear in text. Semicolons are omitted from the ends of entity
references. Web pages with these problems are technically incorrect, but most
browsers accept them. Nonetheless, your web pages will be cleaner, display faster,
and be easier to maintain if you fix these problems.

Note

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 173

174 Part I ✦ Introducing XML

Some of the common problems that you need to look for in HTML include the
following:

1. Start-tags without matching end-tags (unclosed elements)

2. End-tags without start-tags (orphaned tags)

3. Overlapping elements

4. Unquoted attributes

5. Unescaped <, >, and & signs

6. Documents without root elements

7. End-tags in a different case than the corresponding start-tag

I’ve listed these in rough order of importance. Exact details vary from tag to tag,
however. For example, an unclosed tag will turn all elements following it
bold. However, an unclosed or <P> tag causes no problems at all.

Some constructs only apply to XML documents; they might cause problems if you
attempt to integrate them into your existing HTML pages. These XML-only con-
structs include the following:

1. The XML declaration

2. Empty-element tags

3. Entity references besides &, <, and > and numeric character
references

Fixing these problems isn’t hard, but there are a few pitfalls to trip up the unwary.
They are explored in the following section.

Close all elements
Any element that contains content, whether text or other child elements, should
have a start-tag and an end-tag. HTML doesn’t absolutely require this. For example,
<P> , <DT>, <DD>, and are often used in isolation. However, this relies on the
web browser to make a good guess at where the element ends, and browsers don’t
always do quite what authors want or expect. Therefore, it’s best to explicitly close
all elements.

The biggest change this requires to how you write HTML is thinking of <P> as a con-
tainer rather than a simple paragraph break mark. For example, previously, you
would probably have formatted these maxims from Oscar Wilde’s Phrases and
Philosophies for the Use of the Young like this:

Wickedness is a myth invented by good people to account
for the curious attractiveness of others.
<P>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 174

175Chapter 6 ✦ Well-formedness

Those who see any difference between soul and body have
neither.
<P>

Religions die when they are proved to be true. Science is the
record of dead religions.
<P>

The well-bred contradict other people. The wise contradict
themselves.
<P>

Now you have to format them like this instead:

<P>
Wickedness is a myth invented by good people to account
for the curious attractiveness of others.
</P>

<P>
Those who see any difference between soul and body
have neither.
</P>

<P>
Religions die when they are proved to be true. Science is the
record of dead religions.
</P>

<P>
The well-bred contradict other people. The wise contradict
themselves.
</P>

You’ve probably been taught to think of <P> as ending a paragraph. Now you have
to think of it as beginning one. This does provide some advantages, though. For
example, you can easily assign a variety of formatting attributes to a paragraph.
Here’s the original HTML title of House Resolution 581 as seen on http://thomas.
loc.gov/home/hres581.html:

<center>
<p><h2>House Calendar No. 272</h2>

<p><h1>105TH CONGRESS 2D SESSION H. RES. 581</h1>

<p>[Report No. 106-795]

<p>Authorizing and directing the Committee on the
Judiciary to investigate whether sufficient grounds
exist for the impeachment of William Jefferson Clinton,
President of the United States.
</center>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 175

176 Part I ✦ Introducing XML

Here’s the same text, but using well-formed HTML. The align attribute now
replaces the deprecated center element, and a CSS attribute is used instead of
the tag.

<h2 align=”center”>House Calendar No. 272</h2>

<h1 align=”center”>105TH CONGRESS 2D SESSION H. RES. 581</h1>

<p align=”center”>[Report No. 106-795]</p>

<p align=”center” style=”font-weight: bold”>
Authorizing and directing the Committee on the Judiciary to
investigate whether sufficient grounds exist for the
impeachment of William Jefferson Clinton,
President of the United States.
</p>

Delete orphaned end-tags; don’t let elements overlap
When you are editing pages, it’s not uncommon to remove a start-tag and forget to
remove its associated end-tag. In HTML, an orphaned end-tag, such as a
or </TD> that doesn’t have any matching start-tag, is unlikely to cause problems by
itself. However, it does make the file longer than it needs to be, increases the time
that it takes to download the document, and has the potential to confuse people or
tools that are trying to understand and edit the HTML source. Therefore, you
should make sure that each end-tag is properly matched with a start-tag.

More often an end-tag that doesn’t match any start-tag means that elements incor-
rectly overlap. Most elements that overlap on web pages are quite easy to fix. For
example, consider this common problem taken from the White House home page
(http://www.whitehouse.gov/, November 4, 1998).

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

Because the b element starts inside the font element, it must end inside the font
element. All that’s needed to fix it is to swap the end-tags like this:

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 176

177Chapter 6 ✦ Well-formedness

Alternately, you can swap the start-tags instead:

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

Occasionally, you’ll have a tougher problem. For example, consider this larger frag-
ment from the same page. I’ve made the problem tags bold to make it easier to see
the mistake:

<TD valign=TOP width=85>

<img border=0
src=”/WH/images/pin_calendar.gif”
align=LEFT height=50 width=75 hspace=5 vspace=5>
 </TD>
<TD valign=TOP width=225>
What’s New:

What’s happening at the White <nobr>House - </nobr>

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

</TD>

Here the element begins inside the first <TD valign=TOP
width=85> element and continues past that element into the <TD valign=TOP
width=225> element, where it finishes. The proper solution in this case is to close
the FONT element immediately before the first </TD> closing tag, and to then add a
new start-tag immediately after the start of the second TD ele-
ment, like this:

<TD valign=TOP width=85>

<img border=0
src=”/WH/images/pin_calendar.gif”
align=LEFT height=50 width=75 hspace=5 vspace=5>

</TD>
<TD valign=TOP width=225>

What’s New:

What’s happening at the White <nobr>House - </nobr>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 177

178 Part I ✦ Introducing XML

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

</TD>

Quote all attributes
HTML attributes only require quote marks if they contain embedded white space.
Nonetheless, it doesn’t hurt to include them. Furthermore, using quote marks may
help in the future, if you later decide to change the attribute value to something
that does include white space. It’s quite easy to forget to add the quote marks later,
especially if the attribute is similar to an ALT in an whose malformedness is
not immediately apparent when you are viewing the document in a web browser.

For example, consider this tag:

It should be rewritten like this:

The previously listed fragment from the White House home page has a lot of
attributes that require quoting. When the quote marks are fixed, it looks like this:

<TD valign=”TOP” width=”85”>

<img border=”0”
src=”/WH/images/pin_calendar.gif” align=”LEFT”
height=”50” width=”75” hspace=”5” vspace=”5”>

</TD>
<TD valign=”TOP” width=”225”>

What’s New:

What’s happening at the White <nobr>House - </nobr>

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

</TD>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 178

179Chapter 6 ✦ Well-formedness

Escape <, >, and & signs
HTML is more forgiving of loose less than signs and ampersands than is XML.
Nonetheless, even in pure HTML, they do cause trouble, especially if they’re fol-
lowed immediately by some other character. For example, consider this e-mail
address as it might easily be copied and pasted from the From: header in Eudora:

Elliotte Rusty Harold <elharo@metalab.unc.edu>

Were it to be rendered in HTML, this is all you would see:

Elliotte Rusty Harold

The e-mail address has been unintentionally hidden by the angle brackets. Anytime
you want to include a raw less than sign or ampersand in HTML, you really should
use the < and & entity references. The correct HTML for such a line would
be as follows:

From: Elliotte Rusty Harold <elharo@metalab.unc.edu>

You’re slightly less likely to see problems with an unescaped greater than sign
because this will only be interpreted as markup if it’s preceded by an as yet unfin-
ished tag. However, there may be such unfinished tags in a document, and a nearby
greater than sign can mask their presence. For example, consider this fragment of
Java code:

for (int i=0;i<10;i++) {
for (int j=20;j>10;j--) {

It’s likely to be rendered as follows:

for (int i=0;i10;j--) {

If those are only 2 lines in a 100-line program, it’s entirely possible you’ll miss the
omission when casually proofreading. On the other hand, if the greater than sign is
escaped, the unescaped less than sign will probably obscure the rest of the pro-
gram, and the problem will be harder to spot.

Use the same case for all tags
HTML isn’t case-sensitive, but XML is. If you open an element with <TD> you can’t
close it with </td>. When I went back to the White House home page for the sec-
ond edition of this book, I found that they’d fixed the problems I previously noted.
However, this time I found a lot of elements like this:

Commonly Requested Federal Services:

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 179

180 Part I ✦ Introducing XML

The end-tags need to at least match the case of the corresponding start-tags. Thus,
in this example, should be , like this:

Commonly Requested Federal Services:

However, most of the time I’d go a little further. In particular, I recommend picking a
single convention for tag case, either all uppercase, all lowercase, or camel case,
and sticking to it throughout the document. This is easier than trying to remember
details of each tag. In this book, I’m mostly using all uppercase tags so that the tags
will stand out in the text, but for HTML I normally use all lowercase because it’s
much easier to type and because, eventually, XHTML will require it. Thus, I’d
rewrite the preceding fragment like this:

Commonly Requested Federal Services:

XHTML is discussed in Chapters 21 and 22.

Include a root element
The root element for HTML files is supposed to be html. Most browsers forgive a
failure to include this. Nonetheless, it’s definitely better to make the very first tag in
your document <html> and the very last </html>. If any extra text or tags have
gotten in front of <html> or behind </html>, move them between <html> and
</html>.

One common manifestation of this problem is simply forgetting to include </html>
at the end of the document. I always begin my documents by typing <html> and
</html>, then type between them, rather than waiting until I’ve finished writing the
document and hoping that by that point, possibly days later, I still remember that I
need to put in a closing </html> tag.

Close empty-element tags with a />
Empty-element tags are the bête noir of converting HTML to well-formed XML.
HTML does not formally recognize the XML <elementname/> syntax for empty ele-
ments. You can convert
 to
, <HR> to <HR/>, to , and so on
quite easily. However, it’s a tossup whether any given browser will render the trans-
formed tags properly or not.

Do not confuse truly empty elements such as
, <HR>, and with ele-
ments that do contain content but often only have a start-tag in standard HTML,
such as <P>, , <DT>, and <DD>.

The simplest solution, and the solution approved by the XML specification, is to
replace the empty-element tags with start-tag/end-tag pairs with no content. The
browser should then ignore the unrecognized end-tag, as in the following example:

Caution

Cross-
Reference

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 180

181Chapter 6 ✦ Well-formedness

</BR>
<HR></HR>

This seems to work well in practice with one notable exception. Netscape treats
</BR> the same as
; that is, as a signal to break the line. Thus, while
 is a
single line break,
</BR> is a double line break, more akin to a paragraph mark
in practice. Furthermore, Netscape ignores
 completely. Web sites that must
support legacy browsers (essentially all web sites) cannot use either
</BR> or

. What does seem to work in practice for XML and legacy browsers is this:

Note the space between <BR and />. If the space bothers you, you can add an extra
attribute like this:

<BR CLASS=”empty”/>

Use no entity references other than &, <, >, ', and "
Many web pages don’t need entity references other than &, <, >,
', and ". However, the HTML 4.0 specification does define many more,
including the following:

✦ ™, the trademark symbol TM

✦ ©, the copyright symbol ©

✦ ∞, the infinity symbol ∞

✦ π, the lowercase Greek letter π

There are several hundred others. These are just a sample. However, using any of
these will make your document malformed. The real solution to this problem is to
use a DTD. I discuss the effect that DTDs have on entity references in Chapter 10. In
the meantime, there are several short-term solutions.

The simplest is to write the document in a character set that has all the symbols
you need, and then use a <META> directive to specify the character set in use. For
example, to specify that your document uses UTF-8 encoding, a character set dis-
cussed in the next chapter that contains all the characters you’re likely to want,
you would place this <META> directive in the head of your document:

<META http-equiv=”Content-Type” content=”text/html;
charset=UTF-8”></META>

Alternately, you can simply tell your web server to emit the necessary content type
header. However, it’s normally easier to use the <META> tag.

Content-Type: text/html; charset=UTF-8

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 181

182 Part I ✦ Introducing XML

The problem with this approach is that many browsers are likely not to be capable
of displaying the UTF-8 character set. The same is true of most of the other charac-
ter sets that you’re likely to use to provide these special characters.

HTML 4.0 supports character entity references just like XML’s; that is, you can
replace a character by &# and the decimal or hexadecimal value of the character in
Unicode, as in the following examples:

✦ ™ is the trademark symbol TM

✦ © is the copyright symbol ©

✦ ∞ is the infinity symbol ∞

✦ π is the lowercase Greek letter π

Unfortunately, HTML 3.2 only officially supports the numeric character references
between 0 and 255 (ISO Latin-1), and many commonly used web browsers won’t
recognize character references outside this range.

If you’re really desperate for well-formed XML that’s backward-compatible with
HTML, you can create bitmapped images of each desired character and include
them using inline images:

✦

✦ <img src=”copyright.gif” width=”12” height=”12”
alt=”Copyright”>

✦ img src=”infinity.gif” width=”12” height=”12”
alt=”infinity”>

✦

In practice, however, I don’t recommend including these characters as inline
images. Well-formedness is not nearly so important in HTML that it justifies the
added download and rendering time that using characters as inline images imposes
on your readers.

Don’t include an XML declaration
HTML documents don’t need XML declarations. However, they can have them. Web
browsers should simply ignore tags they don’t recognize. From their perspective,
the line

<?xml version=”1.0” standalone=”yes”?>

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 182

183Chapter 6 ✦ Well-formedness

is just another tag. Because browsers that don’t understand XML don’t understand
the <?xml?> tag, they quietly ignore it. However, I’ve encountered strange behav-
iors when different browsers are presented with an HTML document that includes
an XML declaration. When faced with such a file, Internet Explorer 4.0 for the Mac
tried to download the file rather than displaying it. Netscape Navigator 3.0 showed
the declaration as text at the top of the document. Admittedly, these are older
browsers, but they are still used by millions of people. Consequently, because the
XML declaration is not required for XML documents and because it doesn’t really
add a lot to XMLized HTML pages, I’ve removed it from my web sites.

Tools
It is not particularly difficult to write well-formed XML documents that follow the
rules described in this chapter. However, XML browsers are less forgiving of poor
syntax than are HTML browsers, so you do need to be careful.

If you violate any well-formedness constraints, XML parsers and browsers will
report a syntax error. Thus, the process of writing XML can be a little like the pro-
cess of writing code in a real programming language. You write it, and then you
compile it; when the compilation fails, you note the errors reported and fix them. In
the case of XML you parse the document rather than compile it, but the pattern is
the same.

Generally, you go through several edit-parse cycles before you get your first look at
the finished document in this iterative process. Despite this, there’s no question
that writing XML is a lot easier than writing C or Java source code. With a little
practice, you’ll get to the point at which you have relatively few errors, and at
which you can write XML almost as quickly as you can type.

There are several tools that will help you clean up your pages, most notably RUWF
(Are You Well-Formed?) from XML.COM and Tidy from Dave Raggett of the World
Wide Web Consortium.

RUWF
Any tool that can check XML documents for well-formedness can test well-formed
HTML documents as well. One of the easiest to use is the RUWF well-formedness
checker from XML.COM at http://www.xml.com/pub/a/tools/ruwf/check.
html. Figure 6-3 shows this tester. Simply type in the URL of the page that you want
to check, and RUWF returns the first several dozen errors on the page.

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 183

184 Part I ✦ Introducing XML

Figure 6-3: The RUWF well-formedness tester

Here’s the first batch of errors RUWF found on the White House home page. Most of
these errors are malformed XML, but legal (if not necessarily well styled) HTML.
However, at least one error (“Line 55, column 30: Encountered with no
start-tag.”) is a problem for both HTML and XML.

Line 28, column 7: Encountered </HEAD> expected </META>
...assumed </META> ...assumed </META> ...assumed </META>
...assumed </META>
Line 36, column 12, character ‘0’: after AttrName= in start-tag
Line 37, column 12, character ‘0’: after AttrName= in start-tag
Line 38, column 12, character ‘0’: after AttrName= in start-tag
Line 40, column 12, character ‘0’: after AttrName= in start-tag
Line 41, column 10, character ‘A’: after AttrName= in start-tag
Line 42, column 12, character ‘0’: after AttrName= in start-tag
Line 43, column 14: Encountered </CENTER> expected </br>
...assumed </br> ...assumed </br>
Line 51, column 11, character ‘+’: after AttrName= in start-tag
Line 52, column 51, character ‘0’: after AttrName= in start-tag
Line 54, column 57: after &
Line 55, column 30: Encountered with no start-tag.
Line 57, column 10, character ‘A’: after AttrName= in start-tag
Line 59, column 15, character ‘+’: after AttrName= in start-tag

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 184

185Chapter 6 ✦ Well-formedness

Tidy
After you’ve identified the problems, you’ll want to fix them. Many common prob-
lems — for example, putting quote marks around attribute values — can be fixed
automatically. The most convenient tool for doing this is Dave Raggett’s command-
line program HTML Tidy (http://tidy.sourceforge.net). Tidy is a character
mode program written in ANSI C that can be compiled and run on most platforms,
including Windows, UNIX, BeOS, and the Mac.

Tidy cleans up HTML files in several ways, not all of which are relevant to XML well-
formedness. In fact, in its default mode, Tidy tends to remove unnecessary (for
HTML, but not for XML) end-tags such as and to make other modifications
that break well-formedness. However, you can use the -asxml switch to specify
that you want well-formed XML output. For example, to convert the file index.html
to well-formed XML, you would type this command from a DOS window or shell
prompt:

C:\> tidy -m -asxml index.html

The -m flag tells Tidy to convert the file in place. The -asxml flag tells Tidy to for-
mat the output as XML.

Summary
In this chapter, you learned about XML’s well-formedness rules. In particular, you
learned the following:

✦ XML documents are sequences of characters that meet certain well-
formedness criteria.

✦ The text of an XML document is divided into character data and markup.

✦ An XML document is a tree structure made up of elements.

✦ Tags delimit elements.

✦ Start-tags and empty-element tags can have attributes, which describe
elements.

✦ The xml:space attribute determines whether white space in an element is
significant. The two possible values are default and preserve.

✦ The xml:lang attribute specifies the language in which an element’s content
is written.

✦ Entity references allow you to include <, >, &, “, and ‘ in your document.

✦ CDATA sections are useful for embedding text that contains a lot of <, >, and &
characters but no markup.

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 185

186 Part I ✦ Introducing XML

✦ Comments can document your code for other people who read it, but parsers
sometimes fail to report them. Comments can also hide sections of the docu-
ment that aren’t ready.

✦ Processing instructions allow you to pass application-specific information to
particular applications.

✦ When writing XML in encodings other than UTF-8, include an encoding
attribute in the XML or text declaration.

✦ Decimal and hexadecimal numeric character references such as A and
σ enable you to escape characters that do not exist in the document’s
encoding in PCDATA and attribute values.

✦ XML 1.1 is unlikely to be useful unless your preferred language is Burmese,
Amharic, Mongolian, Cambodian, or one of a few others not encoded in
Unicode 2.0.

✦ HTML documents can also be well formed with a little extra effort.

This chapter concludes your exploration of basic, well-formed XML. The next chap-
ter takes up document type definitions (DTDs) and validity. A DTD defines a struc-
ture for a class of XML documents. It specifies what document in that class must,
must not, and may contain. By validating documents against DTDs, you can quickly
and easily verify that your documents meet various conditions.

✦ ✦ ✦

08 549863 Ch06.qxd 1/28/04 9:44 AM Page 186

Document Type
Definitions

✦ ✦ ✦ ✦

In This Part

Chapter 7
Validity

Chapter 8
Element Declarations

Chapter 9
Attribute Declarations

Chapter 10
Entity Declarations

Chapter 11
Namespaces

✦ ✦ ✦ ✦

P A R T

IIII

09 549863 PP02.qxd 1/28/04 9:44 AM Page 187

09 549863 PP02.qxd 1/28/04 9:44 AM Page 188

Validity

XML has been described as a meta-markup language; that
is, a language for describing markup languages. In this

chapter, you begin to learn how to document and describe the
new markup languages that you create. Such markup languages
(also known as vocabularies or XML applications) are defined
via a document type definition (DTD). Individual documents
can be compared against DTDs in a process known as valida-
tion. If the document matches the constraints listed in the
DTD, the document is said to be valid; if the document doesn’t
match the constraints, the document is said to be invalid.

Document Type Definitions
A document type definition lists the elements, attributes, enti-
ties, and notations that can be used in a document, as well as
their possible relationships to one another. A DTD specifies a
set of rules for the structure of a document. For example, a
DTD may dictate that each BOOK element has exactly one ISBN
child element, exactly one TITLE child element, and one or
more AUTHOR children, and it may or may not contain a single
SUBTITLE. Each such rule is given in a declaration.

Every valid XML document must specify the DTD it’s valid with
respect to. This DTD can be included in the XML document it
describes, or that document can link to it at an external URL.
Such external DTDs can be shared by different documents and
web sites. If the DTD is not directly included in the document
but is linked in from an external source, changes made to the
DTD automatically propagate to all documents using that DTD.
On the other hand, backward compatibility is not guaranteed
when a DTD is modified. Incompatible changes can invalidate
documents.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Document type
definitions

DTD files

Document type
declarations

Validation
against a DTD

The list of elements

Element declarations

Comments in DTDs

✦ ✦ ✦ ✦

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 189

190 Part II ✦ Document Type Definitions

The real power of XML comes from common DTDs that are shared among many
documents written by different people. DTDs provide a means for businesses, orga-
nizations, and interest groups to agree upon, document, and enforce adherence
to markup standards. For example, a publisher may want an author to adhere to a
particular format because it makes laying out a book easier. An author may prefer
writing words in a row without worrying about matching up each bullet point in the
front of the chapter with a subhead inside the chapter. If the author writes in XML,
it’s easy for the publisher to check whether the author adhered to the predetermined
format specified by the DTD, and even to find out exactly where and how the author
deviated from the format. This is much easier than reading through the document
manually, hoping to spot all the minor deviations based on style alone.

DTDs also help ensure that different people and programs can read each other’s
files. For example, if chemists agree on a single DTD for basic chemical notation,
possibly via the intermediary of an appropriate professional organization such as
the American Chemical Society, they can rest assured that they can all read and
understand one another’s papers. The DTD defines exactly what is and is not allowed
to appear inside a document. The DTD establishes a standard for the elements that
viewing and editing software must support. Even more importantly, it establishes
that extensions beyond those the DTD declares are invalid. This helps prevent soft-
ware vendors from embracing and extending open protocols to lock users into their
proprietary software.

Furthermore, a DTD shows how the different elements of a document are arranged.
A DTD shows the generic structure of a document separate from the actual data in
the individual document instances. This means that you can slap a lot of fancy styles
and formatting onto the underlying structure without destroying it, much as you
paint a house without changing its basic architectural plan. The reader of your page
may not see or even be aware of the underlying structure, but as long as it’s there,
human authors and JavaScripts, servlets, databases, and other computer programs
can use it.

Element Declarations
Recall Listing 3-2 (greeting.xml) from Chapter 3, repeated here:

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

This XML document contains a single element, GREETING. (Remember, <?xml
version=”1.0”?> is the XML declaration, not an element.) A DTD for this document
has to declare the GREETING element. It may declare other elements, too, including
ones that aren’t present in this particular document, but it must at least declare the
GREETING element.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 190

191Chapter 7 ✦ Validity

Elements are declared using element declarations. Each element declaration gives
the name of the element and lists the elements and text that it can contain. This list
is called the content specification. For example, this element declaration for the
GREETING element says that elements with the name GREETING must contain only
parsed character data:

<!ELEMENT GREETING (#PCDATA)>

Every declaration begins with <!. Element declarations begin with <!ELEMENT
(case-sensitive, as most things are in XML). This is followed by some white space
and the name of the element being declared, GREETING in this example. Then there’s
some more white space and the content specification for this element. This content
spec (#PCDATA) says that the element must contain parsed character data. Parsed
character data is essentially any text that’s not markup. This also includes entity
references, such as &, that are replaced by text when the document is parsed.
In other words, GREETING elements can contain text but no child elements. A valid
GREETING element must look like this:

<GREETING>
various random text but no markup

</GREETING>

There’s no restriction on what text the element can contain. It can be zero or more
Unicode characters, with any meaning. DTDs don’t let you specify that an element
must contain a year such as 2004 or a floating-point number like 3.14152. You can
only say whether the element contains text, or child elements, or both. A GREETING
element can also look like this:

<GREETING>Hello!</GREETING>

Or even this:

<GREETING></GREETING>

However, a valid GREETING element cannot look like this:

<GREETING>
<SOME_TAG>various random text</SOME_TAG>
<SOME_EMPTY_TAG/>

</GREETING>

Nor may it look like this:

<GREETING>
<GREETING>various random text</GREETING>

</GREETING>

Each GREETING element must consist of nothing more and nothing less than parsed
character data between an opening <GREETING> tag and a closing </GREETING> tag.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 191

192 Part II ✦ Document Type Definitions

DTD Files
Declarations are placed in DTDs. Often a DTD is a single file, separate from the
document itself (although as you’ll soon see, other storage schemes are possible).
Such a DTD can be saved in a text file using any standard text editor. By convention,
this file will have the three-letter extension .dtd, although this isn’t required. For
example, you might save a DTD describing only GREETING elements in a file called
greeting.dtd, as shown in Listing 7-1.

Listing 7-1: greeting.dtd

<!ELEMENT GREETING (#PCDATA)>

Of course, DTDs are usually much longer and more complex and contain many
more declarations than this trivial example.

Most of the time, DTDs are written in either ASCII or UTF-8. If you use any other
encoding, the DTD must have a text declaration identifying the encoding used,
as discussed in the last chapter. For example, Listing 7-2 shows a DTD that uses
the ISO-8859-5 encoding because it uses the Russian word for greeting as an
element name:

Listing 7-2: russian_greeting.dtd

<?xml encoding=”ISO-8859-5”?>
<!ELEMENT ΠP BETCTB E (#PCDATA)>

Document Type Declarations
A document type declaration is placed in an XML document’s prolog to say what
DTD that document adheres to. It also specifies which element is the root element
of the document. The document type declaration can either specify the DTD directly,
by including it inside the document type declaration, or indirectly, by giving the URL
where the DTD is found. It may even do both, in which case the DTD has two parts,
the internal and external subsets.

NN

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 192

193Chapter 7 ✦ Validity

A document type declaration is not the same thing as a document type definition.
Only the document type definition is abbreviated DTD. A document type declaration
must contain or refer to a document type definition, but a document type defini-
tion never contains a document type declaration. I agree that this is unnecessarily
confusing. Unfortunately, XML is stuck with this terminology.

A document type declaration begins with <!DOCTYPE and ends with a >. In between
is the name of the root element, followed either by a pair of square brackets contain-
ing the DTD itself or by the SYSTEM keyword and a URL where the DTD can be found
(or, occasionally, both). A document type declaration has this basic form:

<!DOCTYPE name_of_root_element
SYSTEM “URL of the external DTD subset” [
internal DTD subset

]>

Here, name_of_root_element is simply the name of the root element. The SYSTEM
keyword indicates that what follows is a URL where the DTD is located. The square
brackets enclose the internal subset of the DTD; that is, those declarations included
inside the document itself. You can omit either the SYSTEM keyword and the URL to
the external DTD subset or the square brackets and internal DTD subset, but you
must have at least one of them for the document to be valid. For example, this doc-
ument type declaration only specifies an external DTD that can be found at the URL
http://example.org/greeting.dtd:

<!DOCTYPE GREETING SYSTEM “http://example.org/greeting.dtd”>

This document type declaration includes the DTD inside itself:

<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>

Line breaks and extra white space are not significant in a DTD. The same document
type declaration could be written on a single line like this:

<!DOCTYPE GREETING [<!ELEMENT GREETING (#PCDATA)>]>

In all cases, the document type declaration is placed in the document’s prolog, after
the XML declaration but before the root element. For example, Listing 7-3 adds a
document type declaration to the hello.xml document previously listed.

Caution

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 193

194 Part II ✦ Document Type Definitions

Listing 7-3: Hello XML with DTD

<?xml version=”1.0”?>
<!DOCTYPE GREETING SYSTEM “greeting.dtd”>
<GREETING>
Hello XML!
</GREETING>

Listing 7-3 uses a relative URL to locate the DTD so that it will be searched for in the
same directory in which the document itself was found. You might also wish to
locate DTDs relative to the web server’s document root or to the current directory.
In general, any reference that forms a URL relative to the location of the document
is acceptable. For example, these are all acceptable document type declarations:

<!DOCTYPE SEASON SYSTEM “/xml/dtds/greeting.dtd”>
<!DOCTYPE SEASON SYSTEM “dtds/greeting.dtd”>
<!DOCTYPE SEASON SYSTEM “../greeting.dtd”>

A document can’t have more than one document type declaration, that is, more
than one <!DOCTYPE>. To use elements declared in more than one external DTD,
you need external parameter entity references. These are discussed in Chapter 10.

Internal DTDs
Putting the entire DTD inside the document type declaration isn’t as reusable or
modular as locating it with a URL, but it sometimes helps when you’re developing a
new DTD and want to keep your example document and the DTD in sync. Moreover,
it will have some important consequences when entities are discussed in a couple
of chapters. Listing 7-4 shows a complete greeting document with an internal DTD.

Listing 7-4: Hello XML with an Internal DTD

<?xml version=”1.0”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<GREETING>
Hello XML!
</GREETING>

Note

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 194

195Chapter 7 ✦ Validity

You can load this document into an XML browser as usual. Figure 7-1 shows Listing
7-4 in Internet Explorer 5.5. The result is probably what you’d expect, a collapsible
outline view of the document source. Internet Explorer indicates that a document
type declaration is present by adding the line <!DOCTYPE GREETING (View Source
for full doctype...)> in blue. However, most web browsers (and all common
ones) do not check for validity and are happy to load invalid documents as well.

Figure 7-1: Hello XML with DTD displayed in Internet
Explorer 5.2

Internal and external DTD subsets
Although most documents consist of easily defined pieces, not all documents use a
common template. Many documents may need to use standard DTDs while adding
custom elements for their own use. Other documents may use only standard ele-
ments but need to reorder them. For example, one page might have a BODY that must
contain exactly one H1 header followed by a DL definition list, while another may
have a BODY that contains many different headers, paragraphs, and images in no
particular order. If a particular document has a different structure than other pages
on the site, it can be useful to define its structure in the document itself rather than
in a separate DTD. This approach also makes the document easier to edit.

To this end, a document can use both an internal and an external DTD subset. The
internal declarations go in square brackets inside the document type declaration.
For example, Listing 7-5 is an XML document whose root element is DOCUMENT. The
DOCUMENT element contains a GREETING child element followed by a DATE child
element. This structure is declared by placing a comma between each element that
must appear as a child element like this:

<!ELEMENT DOCUMENT (GREETING, DATE)>

The DATE element is also declared inside Listing 7-5’s document type declaration.
However, the declaration for the GREETING element is pulled from the file
greeting.dtd, which forms the external DTD subset.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 195

196 Part II ✦ Document Type Definitions

Listing 7-5: A Document Whose DTD Has Both an Internal
and an External Subset

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT SYSTEM “greeting.dtd” [

<!ELEMENT DOCUMENT (GREETING, DATE)>
<!ELEMENT DATE (#PCDATA)>

]>
<DOCUMENT>
<GREETING>Hello</GREETING>
<DATE>January 10, 2004</DATE>

</DOCUMENT>

A conflict between elements of the same name in the internal and external DTD sub-
sets is a validity error. The same element cannot be declared twice, whether in the
internal or external DTD subsets or both.

Public DTDs
The SYSTEM keyword is intended for private DTDs used by a single author or group.
Part of the promise of XML, however, is that broader organizations covering an entire
industry, such as the ISO or the IEEE, can standardize public DTDs to cover their
fields. This standardization saves developers from having to reinvent tag sets for
the same items and makes it easier for users to exchange interoperable documents.

DTDs designed for writers outside the creating organization use the PUBLIC keyword
instead of the SYSTEM keyword. Furthermore, the DTD gets a name. The syntax is as
follows:

<!DOCTYPE name_of_root_element PUBLIC “DTD_name” “DTD_URL”>

Once again, name_of_root_element is the name of the root element. PUBLIC is
an XML keyword that indicates that this DTD is intended for broad use and has a
public identifier. DTD_name is the public identifier associated with this DTD. Some
XML processors may attempt to use this identifier to retrieve the DTD from a cen-
tral repository. Finally, DTD_URL is a relative or absolute URL where the DTD can be
found if the public identifier is not recognized.

Public identifiers follow different rules than most XML names. They can only contain
the ASCII alphanumeric characters, the space, the carriage return, the linefeed, and
these punctuation marks: -’()+,/:=?;!*#@$_%. Furthermore, public identifiers follow a
few conventions.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 196

197Chapter 7 ✦ Validity

If a DTD is an ISO standard, its public identifier begins with the string ISO. If a non-ISO
standards body has approved the DTD, its public identifier begins with a plus sign
(+). If no standards body has approved the DTD, its name begins with a hyphen (-).
These initial strings are followed by a double slash (//) and the name of the DTD’s
owner, which is followed by another double slash and the type of document the
DTD describes. Then there’s another double slash followed by an ISO 639 language
identifier, such as EN for English. A complete list of ISO 639 identifiers is available at
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt. For example,
the greeting DTD can be named as follows:

-//Elliotte Rusty Harold//DTD Greetings and salutations//EN

This public identifier says that the DTD is not standards-body approved (-), belongs
to Elliotte Rusty Harold, describes greetings and salutations, and is written in
English. A full document type declaration pointing to this DTD with this name
follows:

<!DOCTYPE SEASON PUBLIC
“-//Elliotte Rusty Harold//DTD Greetings and salutations//EN”
“http://www.cafeconleche.org/dtds/greeting.dtd”>

You may have noticed that many HTML editors, such as BBEdit, automatically place
the following string at the beginning of every HTML file they create:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML//EN”>

Now you know what this string means! It says the document follows a nonstandards-
body-approved (-) DTD for HTML produced by the World Wide Web Consortium
(W3C) in the English language.

Technically, the W3C is not a standards organization, because its membership is
limited to corporations that pay its fees rather than to official government-approved
bodies. It only publishes recommendations instead of standards. In practice, the
distinction is irrelevant.

DTDs and style sheets
A valid document with a DTD can be combined with a style sheet just as a well-
formed document can be. Simply add the usual <?xml-stylesheet?> processing
instruction to the prolog, as shown in Listing 7-6.

Note

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 197

198 Part II ✦ Document Type Definitions

Listing 7-6: Hello XML with a DTD and Style Sheet

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<GREETING>
Hello XML!
</GREETING>

Figure 7-2 shows the resulting web page. In fact, this gives you exactly the same result
as did the same document in Chapter 3 without the DTD. Formatting generally does
not consider the DTD.

Figure 7-2: Hello XML with a DTD and style sheet displayed
in Internet Explorer 5.1

Notice how the three essential parts of the document can be stored in three different
files. The data is in the document file, the structure applied to the data is in the DTD
file, and the formatting is in the style sheet. This tripartition enables you to inspect
or change any or all of these relatively independently.

The DTD and the document are more closely linked than the document and the
style sheet. Changing the DTD generally requires revalidating the document and
may require edits to the document to bring it back into conformance with the DTD.
The necessity of this sequence depends on your edits; adding elements is rarely an
issue, although removing elements can be problematic.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 198

199Chapter 7 ✦ Validity

Validating against a DTD
To be considered valid, an XML document must satisfy four criteria:

1. It must be well formed.

2. It must have a document type declaration.

3. Its root element must be the one specified by the document type declaration.

4. It must satisfy all the constraints of the DTD specified by the document type
declaration.

Not all XML documents have to be valid, and not all parsers check documents for
validity. Often, it’s enough to merely be well formed. In fact, most web browsers,
including Internet Explorer, Opera, Safari, Konqueror, Netscape, and Mozilla, do not
check documents for validity.

Suppose you make a simple change to the hello.xml example by replacing the
<GREETING> and </GREETING> tags with <FOO> and </FOO>, as shown in Listing 7-7.
Listing 7-7 is invalid. It is a well-formed XML document, but it does not meet the
constraints specified by the document type declaration and the DTD.

Listing 7-7: This Document Is Invalid because It Does Not
Satisfy the DTD’s Rules

<?xml version=”1.0”?>
<!DOCTYPE GREETING SYSTEM “greeting.dtd”>
<FOO>
Hello XML!
</FOO>

This document has two problems:

1. The root element is not GREETING as required by the document type
declaration.

2. The FOO element has not been declared within the DTD.

Note

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 199

200 Part II ✦ Document Type Definitions

Command-line validators
In more complex documents, it’s not so easy to just look at a document and its DTD
and tell whether or not it’s valid. Instead, you’ll want to use a validating parser that
understands all the DTD rules and makes the checks for you. As a validating parser
reads a document, it checks whether the document adheres to the rules specified
by the document’s DTD. If it does, the parser passes the data along to the XML
application (such as a web browser or a database). If the parser finds a mistake,
it reports the error. If you’re writing XML by hand, you’ll want to validate your
documents before posting them so that you can be confident that readers won’t
encounter errors.

Not all XML parsers are validating parsers, but the Gnome Project’s libxml2 (http://
xmlsoft.org) is. libxml2 includes xmllint, a character mode application you can
use to validate documents. It was originally developed for Linux, but has been ported
to most common UNIXes, Windows, and Mac OS X. It may be installed by default on
a few Linux distros, but most users will need to download it from http://xmlsoft.
org/downloads.html first. Once you’ve installed libxml2 and made sure xmllint is
somewhere in your path, you run xmllint by typing the following at the shell prompt
or in a DOS window:

C:\>xmllint -valid 7-7.xml

You can use a URL instead of a filename, like this:

C:\>xmllint -valid
http://www.cafeconleche.org/books/bible3/source/07/7-1.xml

In either case, xmllint responds with a list of the errors it found. If the document
is well formed, xmllint also prints the document:

C:\> xmllint -valid 7-7.xml
7-7.xml:3: validity error: Not valid: root and DtD name do
not match ‘FOO’ and ‘GREETING’
<FOO>

^
7-7.xml:5: validity error: No declaration for element FOO
</FOO>

^
<?xml version=”1.0”?>
<!DOCTYPE GREETING SYSTEM “greeting.dtd”>
<FOO>
Hello XML!
</FOO>

You use xmllint or a similar tool first to find your mistakes so that you can fix them,
and then to verify that you’ve written valid XML that other programs can handle. In
essence, this is a proofreading or quality assurance phase, not finished output.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 200

201Chapter 7 ✦ Validity

Web-based validators
Web-based validators are an alternative for documents that aren’t particularly private
and that can easily be placed on a public web server. These validators only require
you to enter the URL of your document in an HTML form. They have the distinct
advantage of not requiring you to muck around with paths, environment variables,
and the other arcana required to install a command-line program.

Richard Tobin’s web-hosted XML well-formedness checker and validator is shown
in Figure 7-3. You’ll find it at http://www.cogsci.ed.ac.uk/%7Erichard/
xml-check.html. Figure 7-4 shows the errors displayed as a result of using this
program to validate Listing 7-7.

Brown University’s Scholarly Technology Group provides a validator at http://
www.stg.brown.edu/service/xmlvalid/ that’s notable for allowing you to
upload files from your computer instead of placing them on a public web server.
This validator is shown in Figure 7-5. Figure 7-6 shows the results of using this
program to validate Listing 7-7.

Figure 7-3: Richard Tobin’s RXP-based, web-hosted XML well-formedness checker
and validator

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 201

202 Part II ✦ Document Type Definitions

Figure 7-4: The errors in Listing 7-7, as reported by Richard Tobin’s XML validator

Figure 7-5: Brown University’s Scholarly Technology Group’s web-hosted
XML validator

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 202

203Chapter 7 ✦ Validity

Figure 7-6: The errors in Listing 7-7, as reported by Brown University’s Scholarly
Technology Group’s XML validator

Summary
In this chapter, you learned how to write a simple DTD and how to validate a docu-
ment against that DTD. In particular, you learned the following:

✦ A document type definition (DTD) provides a list of the elements, attributes,
entities, and notations that may be used in the document, and their relation-
ships to one another.

✦ DTDs lay out the permissible tags and the structure of a document.

✦ DTDs help document and enforce markup standards.

✦ A document’s prolog may contain a document type declaration that specifies
the root element and either contains or refers to the DTD.

✦ External DTDs can be located using the SYSTEM keyword and a URL in the doc-
ument type declaration.

✦ Standard DTDs can be located using the PUBLIC keyword in the document
type declaration.

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 203

204 Part II ✦ Document Type Definitions

✦ An internal DTD subset (which may be the complete DTD) can appear in the
document type declaration surrounded by square brackets.

✦ A document that adheres to the rules of its DTD is said to be valid. A docu-
ment that does not or that does not have a DTD is said to be invalid.

✦ Element declarations declare the name and children of an element.

In the next chapter, you delve deeper into element declarations, exploring how to
use different kinds of content models to describe complicated structures applicable
to many XML documents.

✦ ✦ ✦

10 549863 Ch07.qxd 1/28/04 9:44 AM Page 204

Element
Declarations

Elements form the primary structure of an XML document.
In valid documents, elements are constrained by element

declarations. An element declaration specifies what children in
which orders and quantities an element with a particular name
can have.

Each element used in a valid XML document must be declared
by an element declaration in the document’s DTD. Each ele-
ment declaration gives the name of an element and lists the
permissible contents of elements with that name. The list of
contents is sometimes called the content specification. The
content specification uses a simple grammar to precisely
specify what is and isn’t allowed in a document. This sounds
complicated, but all it really means is that you attach punctu-
ation marks such as *, ?, +, |, (, and) to element names to
indicate where and how many times an element may appear.
In this chapter, you learn the syntax and semantics of element
declarations.

Analyzing the Document
The first step to creating a DTD appropriate for a particular
document is to understand the structure of the information
that you’ll encode. Sometimes information is quite structured,
as in a contact list. At other times, it is relatively free-form, as
in an illustrated short story or a magazine article.

It’s often easier to begin if you have a concrete, well-formed
example document in mind that uses all the elements you
want in your DTD. When designing a new XML application,
I recommend writing some actual instance documents first,
and only then designing the DTD. This chapter uses a rela-
tively structured document you’re already familiar with as an

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Analyzing the
document

ANY

#PCDATA

Child elements

Mixed content

Empty elements

Comments in DTD

✦ ✦ ✦ ✦

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 205

206 Part II ✦ Document Type Definitions

example, the television schedule document first discussed in Chapter 4. You might
want to flip back to Example 4-2 to refresh your memory. In fact, you might want to
print out a copy from my web site at http://www.cafeconleche.org/books/
bible3/source/04/4-2.xml so you can have the example document in hand as
you read this chapter, to avoid a lot of flipping back and forth

Adding a DTD to this document enables you to enforce constraints that were previ-
ously adhered to only by convention. For example, the DTD can require that a SHOW
have exactly one NAME child, and that every STATION have a CHANNEL and at least
one CALL_LETTERS or NETWORK. It can require that a SHOW contain exactly one each
of NAME, TYPE, START_TIME, and LENGTH but make it optional whether a SHOW has
an ORIGINAL_AIR_DATE or a CAST. Furthermore, it can require that the NAME, TYPE,
START_TIME, and LENGTH child elements occur in a particular order. A DTD can also
require that elements occur in a particular context. For example, the GIVEN_NAME,
SURNAME, and MIDDLE_NAME elements may be used only inside ACTOR, PRODUCER,
WRITER, and DIRECTOR elements.

Table 8-1 summarizes the different elements in this particular XML application, as
well as the conditions each must satisfy. Each element has a list of the elements it
must contain and the elements it may contain. In some cases, an element may con-
tain more than one child element of the same type. A SCHEDULE contains one DATE
and one or more SHOW elements. A CAST generally contains more than one ACTOR.
Some shows are repeated a few hours later on the same station, especially on cable
networks. Thus, a single SHOW element might have more than one START_TIME. In
the table, the possibility of multiple children is indicated by adding (s) to the end of
the element’s name, such as ACTOR(s). When you write a DTD to describe this docu-
ment, you’ll need to write one element declaration for each distinct element name
that appears in the table. This declaration will list the permissible children of that
element, as well as their order and quantity.

Table 8-1
The Elements in the Television Schedule

Element Required Children Optional Children

SCHEDULE DATE, STATION(s)

DATE Text

STATION CHANNEL NETWORK, CALL_LETTERS, SHOW(s)

SHOW NAME, START_TIME(s), EPISODE_NUMBER, START_TIME,
LENGTH LENGTH, AIR_DATE, ORIGINAL_

AIR_DATE, CLOSED_CAPTIONED,
REPEAT, DESCRIPTION, TITLE, RATING,
YEAR_MADE, STARS, DIRECTOR, WRITER,
PRODUCER, CAST

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 206

207Chapter 8 ✦ Element Declarations

Element Required Children Optional Children

CAST ACTOR(s)

ACTOR GIVEN_NAME, MIDDLE_NAME,
MIDDLE_INITIAL, SURNAME

WRITER GIVEN_NAME, MIDDLE_NAME,
MIDDLE_INITIAL, SURNAME

PRODUCER GIVEN_NAME, MIDDLE_NAME,
MIDDLE_INITIAL, SURNAME

DIRECTOR GIVEN_NAME, MIDDLE_NAME,
MIDDLE_INITIAL, SURNAME

NAME Text

TYPE Text

CALL_LETTERS Text

NETWORK Text

CHANNEL Text

EPISODE_NUMBER Text

START_TIME Text

LENGTH Text

AIR_DATE Text

ORIGINAL_AIR_DATE Text

COLSED_CAPTIONED Text

REPEAT Text

GIVEN_NAME Text

MIDDLE_NAME Text

MIDDLE_INITIAL Text

SURNAME Text

DESCRIPTION Text

STARS Text

RATING Text

YEAR_MADE Text

Now that the information being stored and the optional and required relationships
between these elements have been identified, you’re ready to build a DTD for the
document that concisely — if a bit opaquely — summarizes those relationships.

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 207

208 Part II ✦ Document Type Definitions

DTDs are conservative. Everything not explicitly permitted is forbidden. If an element
has not been declared, it cannot be used (at least not in a valid document), and this
does sometimes make the development of DTDs rather tedious. However, DTD
syntax does enable you to compactly specify relationships that are cumbersome to
specify in sentences. For example, DTDs make it easy to say that NAME must precede
TYPE, which must precede START_TIME, which must precede LENGTH, which must
precede AIR_DATE, which must precede ORIGINAL_AIR_DATE, which must precede
CLOSED_CAPTIONED, which must precede REPEAT, which must precede RATING,
which must precede DESCRIPTION, and that all of these elements can only appear
inside a SHOW element.

ANY
It’s easiest to build DTDs hierarchically, working from the outside in. This enables
you to build a sample document at the same time that you build the DTD so that
you can verify that the DTD is itself correct and actually describes the format you
want. Thus the root element is probably the first element you’ll want to deal with.
In the television listings example, SCHEDULE is the root element. The document type
declaration in the XML document specifies the name of this element:

<!DOCTYPE SCHEDULE SYSTEM “tvschedule.dtd”>

However, this merely says that the root element is SCHEDULE. It does not say any-
thing about what a SCHEDULE element may or may not contain, which is why you
must next declare the SCHEDULE element in an element declaration inside the DTD.
That’s done with this line of code:

<!ELEMENT SCHEDULE ANY>

All element declarations begin with <!ELEMENT (case-sensitive) and end with >.
They include the name of the element being declared (SCHEDULE in this example)
followed by the content specification. In this declaration, the content specification
is the keyword ANY (again case-sensitive). This says that all possible elements as
well as plain text can be children of the SCHEDULE element.

Because ANY is so unrestrictive, it lets you very quickly create a DTD that will validate
a document. Simply list all the element names and give each of them the content
specification ANY. Listing 8-1 demonstrates.

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 208

209Chapter 8 ✦ Element Declarations

Listing 8-1: A Very Loose DTD for Television Listings

<!ELEMENT SCHEDULE ANY>
<!ELEMENT DATE ANY>
<!ELEMENT STATION ANY>
<!ELEMENT NETWORK ANY>
<!ELEMENT CALL_LETTERS ANY>
<!ELEMENT CHANNEL ANY>
<!ELEMENT SHOW ANY>
<!ELEMENT NAME ANY>
<!ELEMENT TYPE ANY>
<!ELEMENT EPISODE_NUMBER ANY>
<!ELEMENT START_TIME ANY>
<!ELEMENT LENGTH ANY>
<!ELEMENT AIR_DATE ANY>
<!ELEMENT ORIGINAL_AIR_DATE ANY>
<!ELEMENT CLOSED_CAPTIONED ANY>
<!ELEMENT REPEAT ANY>
<!ELEMENT CAST ANY>
<!ELEMENT ACTOR ANY>
<!ELEMENT GIVEN_NAME ANY>
<!ELEMENT SURNAME ANY>
<!ELEMENT PRODUCER ANY>
<!ELEMENT DESCRIPTION ANY>
<!ELEMENT TITLE ANY>
<!ELEMENT MIDDLE_NAME ANY>
<!ELEMENT RATING ANY>
<!ELEMENT YEAR_MADE ANY>
<!ELEMENT STARS ANY>
<!ELEMENT DIRECTOR ANY>
<!ELEMENT WRITER ANY>
<!ELEMENT MIDDLE_INITIAL ANY>

However, this DTD really doesn’t say very much. It provides a complete list of all
the possible elements, but it places no restrictions on where they may appear and
what they may contain. Given this DTD, it’s not just documents like Listing 4-2 that
are valid, but essentially any document that contains only the elements declared in
Listing 8-1. For example, the document in Listing 8-2 is valid, though ultimately you’ll
want to forbid documents like this one that omit crucial information and put other
information in the wrong place.

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 209

210 Part II ✦ Document Type Definitions

Listing 8-2: A Document That’s Valid According to the DTD
in Listing 8-1

<?xml version=”1.0”?>
<!DOCTYPE DATE SYSTEM “tvschedule.dtd”>
<DATE>
July 3, 2003
<CAST>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>

</CAST>
<SHOW>
Hollywood Squares
<START_TIME>19:00-0500</START_TIME>

</SHOW>
</DATE>

On the other hand, the document in Listing 8-3 is not valid, because it uses two ele-
ments that are not declared in Listing 8-1, NAME and ROLE. The problem is not that
ACTOR is not allowed to contain NAME and ROLE elements, but rather that the NAME
and ROLE elements have not been declared. The ANY content model really means
any declared element, not any element at all.

Listing 8-3: A Document That’s Invalid According to the DTD
in Listing 8-1

<?xml version=”1.0”?>
<!DOCTYPE ACTOR SYSTEM “tvschedule.dtd”>
<ACTOR>
<NAME>
<GIVEN_NAME>Frank</GIVEN_NAME>
<SURNAME>Oz</SURNAME>

</NAME>
<ROLE>Yoda</ROLE>
<DATE>May 25, 1944</DATE>

</ACTOR>

A loose DTD such as Listing 8-1 is useful to get started, because you can validate
documents immediately for testing. Starting with a very loose DTD like this one
does allow you to add one constraint at a time, test it, and move on to the next one.

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 210

211Chapter 8 ✦ Element Declarations

It’s easier than trying to write down the complete DTD starting from a blank page.
However, you’ll want to be more strict about most elements as you develop the DTD.

#PCDATA
Beginning at the top of the document, the first child of the root element is DATE.
The DATE element contains a little text, not even a whole line, like so:

<DATE>July 3, 2003</DATE>

The amount of text or the number of lines the DATE element contains doesn’t matter.
A validating parser doesn’t make any validity checks on the character data of an
element. However, that the DATE element can only contain text, and that it cannot
contain child elements, does matter. An element that can only contain plain text is
declared using the keyword #PCDATA in parentheses, like this:

<!ELEMENT YEAR (#PCDATA)>

This declaration says that a DATE can contain only parsed character data, that is,
text that’s not markup. It cannot contain children of its own. Therefore, this DATE
element is valid:

<DATE>June 20, 2004</DATE>

These DATE elements are also valid:

<DATE>2003</DATE>
<DATE>July 3</DATE>
<DATE>
The third day of the seventh month in the year of our Lord
two thousand and three
</DATE>

Even this DATE element is valid because XML does not attempt to validate the con-
tents of PCDATA, only that it is text that doesn’t contain markup.

<DATE>Delicious, delicious, oh how boring</DATE>

However, this DATE element is invalid because it contains child elements:

<DATE>
<MONTH>July</MONTH>
<DAY>3</DAY>
<YEAR>2003</YEAR>

</DATE>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 211

212 Part II ✦ Document Type Definitions

There are two basic kinds of elements in XML. Simple elements can only contain
plain text. They can’t have any child elements. Complex elements can contain other
elements or both plain text and other elements. There are no integer, floating-
point, date, or other data types in standard XML. Thus, you can’t use a DTD to say
that a channel number must be an integer, or that the call letters must be four
uppercase letters beginning with either K or W, even though doing so would match
U.S. requirements for call letters. Various other schema languages, including the
W3C XML Schema Language, do allow you to make and validate constraints on
simple content like these. Schemas are explored in Chapter 20.

There are quite a few more elements in the TV listings example that can only contain
character data, no child elements. Each of these is declared in the same way. Adding
these declarations, the DTD becomes as shown in Listing 8-4.

Listing 8-4: A Television Listing DTD That Uses Content Models

<!ELEMENT SCHEDULE ANY>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT SHOW ANY>
<!ELEMENT STATION ANY>
<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT EPISODE_NUMBER (#PCDATA)>
<!ELEMENT START_TIME (#PCDATA)>
<!ELEMENT LENGTH (#PCDATA)>
<!ELEMENT AIR_DATE (#PCDATA)>
<!ELEMENT ORIGINAL_AIR_DATE (#PCDATA)>
<!ELEMENT CLOSED_CAPTIONED (#PCDATA)>
<!ELEMENT REPEAT (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT MIDDLE_NAME (#PCDATA)>
<!ELEMENT MIDDLE_INITIAL (#PCDATA)>
<!ELEMENT RATING (#PCDATA)>
<!ELEMENT YEAR_MADE (#PCDATA)>
<!ELEMENT STARS (#PCDATA)>
<!ELEMENT DIRECTOR ANY>
<!ELEMENT WRITER ANY>
<!ELEMENT PRODUCER ANY>
<!ELEMENT ACTOR ANY>
<!ELEMENT CAST ANY>

Note

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 212

213Chapter 8 ✦ Element Declarations

Using this revised DTD, Listing 8-2 is now invalid because the DATE element is no
longer allowed to contain anything except character data. This hasn’t yet ruled out
all the documents you’d like to prohibit. However, you’re well on the way.

Child Elements
Because the SCHEDULE element was declared to accept any element as a child, ele-
ments could be tossed in willy-nilly. This is occasionally useful when you have text
that’s more or less unstructured, such as a magazine article in which paragraphs,
sidebars, bulleted lists, numbered lists, graphs, photographs, and subheads may
appear pretty much anywhere in the document. However, most of the time you want
to exercise more discipline and control over the placement of the data. For example,
you can require that every SCHEDULE have a DATE and one or more SHOWs, that every
ACTOR have a GIVEN_NAME and a SURNAME, and that the GIVEN_NAME come before
the SURNAME. This discipline is provided by a content model, a parenthesized list of
the possible child elements along with various quantifiers that identify how many
of each can appear and other punctuation that indicates whether or not order is
significant.

Some developers and books use the term content model to refer to all content
specifications, not just choices and sequences, but also mixed content declara-
tions and the EMPTY and ANY keywords. The XML specification only uses the
words content model to refer to parenthesized lists of child elements, and I follow
that usage here. However, not a lot is lost by conflating content model with con-
tent specification.

The first child of the SCHEDULE element is DATE. To declare that a SCHEDULE must
have a DATE, the content model is simply a pair of parentheses containing the ele-
ment name DATE, like this:

<!ELEMENT SCHEDULE (DATE)>

What this says is that each SCHEDULE element should contain exactly one DATE child
element, and possibly some boundary white space, but nothing else. Of course, the
SCHEDULE in Listing 4-2 doesn’t contain just a date. It also has three STATION child
elements. You can add additional children in their proper order, separated from each
other by commas. Here’s a complete declaration for the SCHEDULE element:

<!ELEMENT SCHEDULE (DATE, STATION, STATION, STATION)>

This form of content model is called a sequence. This says that each SCHEDULE
element should contain exactly one DATE child element, followed by exactly three
STATION elements. Listing 8-5 shows the revised DTD.

Note

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 213

214 Part II ✦ Document Type Definitions

Listing 8-5: A Television Listing DTD That Uses ##PCDATA
Content Specifications

<!ELEMENT SCHEDULE (DATE, STATION, STATION, STATION)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT SHOW ANY>
<!ELEMENT STATION ANY>
<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT EPISODE_NUMBER (#PCDATA)>
<!ELEMENT START_TIME (#PCDATA)>
<!ELEMENT LENGTH (#PCDATA)>
<!ELEMENT AIR_DATE (#PCDATA)>
<!ELEMENT ORIGINAL_AIR_DATE (#PCDATA)>
<!ELEMENT CLOSED_CAPTIONED (#PCDATA)>
<!ELEMENT REPEAT (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT MIDDLE_NAME (#PCDATA)>
<!ELEMENT MIDDLE_INITIAL (#PCDATA)>
<!ELEMENT RATING (#PCDATA)>
<!ELEMENT YEAR_MADE (#PCDATA)>
<!ELEMENT STARS (#PCDATA)>
<!ELEMENT DIRECTOR ANY>
<!ELEMENT WRITER ANY>
<!ELEMENT PRODUCER ANY>
<!ELEMENT ACTOR ANY>
<!ELEMENT CAST ANY>

Each element should be declared in its own <!ELEMENT> declaration exactly once,
even if it appears as a child in other <!ELEMENT> declarations. Listing 8-5 places the
declaration of NETWORK after the declaration of SCHEDULE that refers to it, but that
doesn’t matter. XML allows forward references. It even allows circular references;
that is, two elements A and B, either of which can be the child of the other. The order
in which element declarations appear is irrelevant as long as all elements used in
any content specification are declared somewhere in the DTD.

Listing 4-2 does adhere to this DTD because its SCHEDULE element contains one DATE
child followed by three STATION children, and nothing else. However, if the document
included only one or two STATION child elements or more than three STATION child
elements, it would be invalid. Similarly, if the STATION came before the DATE element
instead of after it, or if the document in any other way did not adhere to the DTD,
the document would be invalid and validating parsers would reject it. You can

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 214

215Chapter 8 ✦ Element Declarations

loosen the restrictions on the number of child elements by using quantifiers. You
can loosen the restrictions on order by using choices.

+ One or More Children
Listing 8-4 validates Listing 4-2. However, it’s a little too restrictive. It requires
that there be exactly three stations. That’s only true because I cut this example
down to fit in the book. More common cases would have all the stations broadcast
in a particular market, which could range into the hundreds. On the flip side, a
document sent out by one network or station might contain data for only a single
network.

To indicate that you want one or more of a given element, place a plus sign (+) after
the element name in the child list, as in the following example:

<!ELEMENT SCHEDULE (DATE, STATION+)>

This says that a SCHEDULE element must contain a single DATE element followed by
one or more STATION elements.

You can also use the + quantifier to indicate that each cast has one or more actors:

<!ELEMENT CAST (ACTOR+)>

If a cast had no actors at all, you just wouldn’t include that CAST element in the
instance document.

? Zero or One Child
In many cases, an element may only appear once or not at all. For example, con-
sider the names of the various person elements in the example: ACTOR, PRODUCER,
DIRECTOR, and WRITER. Most, but not all, of these have a GIVEN_NAME and a SURNAME.
Some, but not most, have a MIDDLE_NAME. One has a MIDDLE_INITIAL, but none
of the others do. None of these child elements appear more than once in any given
parent.

You can indicate that a child element is optional in a sequence — that is, that it can
appear or not appear — by suffixing its name with a ?. For example, here are better
declarations for the ACTOR, PRODUCER, DIRECTOR, and WRITER elements:

<!ELEMENT ACTOR (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>

<!ELEMENT WRITER (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>

<!ELEMENT PRODUCER (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>

<!ELEMENT DIRECTOR (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 215

216 Part II ✦ Document Type Definitions

Different elements in the same content model can have different quantifiers. For
example, consider the STATION element. Each STATION contains one CHANNEL,
either a NETWORK, CALL_LETTERS, or both, and one or more SHOW elements. It’s
declaration can be written by making use of both the + and ?, like this:

<!ELEMENT STATION (NETWORK?, CALL_LETTERS?, CHANNEL, SHOW+)>

* Zero or More Children
The final quantifier used in content models is the asterisk. This indicates a child can
appear zero or more times. It can appear once, twice, a thousand times, or not at all.
In the example, you might use this for middle names and middle initials, to account
for actors such as William Billy Bob Muddle with more than one middle name:

<!ELEMENT ACTOR (GIVEN_NAME?, MIDDLE_NAME*,
MIDDLE_INITIAL*, SURNAME?)>

<!ELEMENT WRITER (GIVEN_NAME?, MIDDLE_NAME?*,
MIDDLE_INITIAL*, SURNAME?)>

<!ELEMENT PRODUCER (GIVEN_NAME?, MIDDLE_NAME*,
MIDDLE_INITIAL*, SURNAME?)>

<!ELEMENT DIRECTOR (GIVEN_NAME?, MIDDLE_NAME*,
MIDDLE_INITIAL*, SURNAME?)>

This is also important for the SHOW element. Several potential child elements of
SHOW can appear once, several times, or not at all, including PRODUCER, DIRECTOR,
and WRITER. Of course, other children of the SHOW element are optional (?) and
some must appear (no quantifier). Because each SHOW element can have so many
children, its declaration is fairly long:

<!ELEMENT SHOW (NAME, TYPE?, EPISODE_NUMBER?, START_TIME+,
LENGTH, AIR_DATE, ORIGINAL_AIR_DATE? CLOSED_CAPTIONED?,
REPEAT?, RATING?, STARS?, DIRECTOR*, WRITER*, CAST?,
PRODUCER*, DESCRIPTION)>

Choices
So far, I’ve assumed that child elements appear or do not appear in a specific order.
You, however, might want to make your DTD more flexible, for example, by allowing
document authors to choose between different elements in a given place. For exam-
ple, in a DTD describing a purchase by a customer, each PAYMENT element might
have either a CREDIT_CARD child or a CASH child providing information about the
method of payment. However, an individual PAYMENT would not have both.

You can indicate that the document author needs to input either one or another ele-
ment by separating child elements with a vertical bar (|) rather than with a comma
(,) in the parent’s element declaration. For example, this declaration says that the
PAYMENT element must have a single child element of type CASH or CREDIT_CARD:

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 216

217Chapter 8 ✦ Element Declarations

<!ELEMENT PAYMENT (CASH | CREDIT_CARD)>

This sort of content specification is called a choice. You can separate any number
of children with vertical bars when you want exactly one of them to be used. For
example, the following says that the PAYMENT element must have a single child of
type CASH, CREDIT_CARD, or CHECK.

<!ELEMENT PAYMENT (CASH | CREDIT_CARD | CHECK)>

Parentheses
Each set of parentheses combines several elements so that the combination is
treated as a single unit when validating. This parenthesized unit can then be nested
inside other parentheses in place of a single element. Furthermore, you can then
affix a plus sign, an asterisk, or a question mark to it. You can group these parenthe-
sized combinations into still larger parenthesized groups to produce quite complex
structures. This is a very powerful technique.

For example, consider a list composed of two elements that must alternate with each
other. This is essentially how HTML’s definition list works. Each DT element should
be followed by one DD element. The declaration of such a DL element looks like this:

<!ELEMENT DL (DT, DD)*>

The parentheses indicate that it’s the matched <DT><DD> pair being repeated, not
<DD> alone.

Both choices and sequences appear in parentheses. These parentheses can also
have +, *, or ? quantifiers suffixed to them, with the expected meaning. For example,
this declaration says that an ACTOR element can have one or more of GIVEN_NAME,
MIDDLE_NAME, MIDDLE_INITIAL, or SURNAME child elements:

<!ELEMENT ACTOR
(GIVEN_NAME| MIDDLE_NAME | MIDDLE_INITIAL | SURNAME)+ >

Because this is a choice, these can appear in any order.

Even more usefully, you can include parenthesized choices and sequences in the
place of a single element name inside another choice or sequence. For example,
suppose you want to indicate that an ACTOR can have any number of middle names
and middle initials in any order. However, they can have at most one GIVEN_NAME
and one SURNAME. That constraint can be encoded like this:

<!ELEMENT ACTOR (GIVEN_NAME?,
(MIDDLE_NAME | MIDDLE_INITIAL)*,
SURNAME?)>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 217

218 Part II ✦ Document Type Definitions

This still allows an ACTOR to have no names at all. A more complex nesting of paren-
theses can require that each actor have at least one name, though it doesn’t matter
whether it’s a GIVEN_NAME (Cher), a MIDDLE_NAME (Kennedy), or a SURNAME (Teller):

<!ELEMENT ACTOR (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)

| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>

For a STATION element, ideally, you’d want either a NETWORK or CALL_LETTERS or
both. However, at least one must be present, and if both are present, the network
must come first. This declaration accomplishes that:

<!ELEMENT STATION (
(NETWORK | CALL_LETTERS | (NETWORK, CALL_LETTERS)),
CHANNEL, SHOW+)>

There’s actually a very subtle technical problem with this declaration. Its content
model is ambiguous. What this means is that when a parser sees an initial NETWORK
child element of a STATION, it doesn’t know whether it belongs to the first branch
of the choice or the third. Some validators can handle ambiguous content models,
but not all can. This model needs to be refactored to remove the ambiguity by plac-
ing the initial NETWORK child element in a single branch. This rearrangement works
nicely:

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

Listing 8-6 puts this all together to show the finished DTD for television listings
such as those of Listing 4-2.

Listing 8-6: The Finished Television Listing DTD

<!ELEMENT SCHEDULE (DATE, STATION+)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT STATION (

((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<!ELEMENT SHOW (NAME, TITLE?, TYPE?, EPISODE_NUMBER?, START_TIME+,
LENGTH, AIR_DATE, ORIGINAL_AIR_DATE?, YEAR_MADE?,
CLOSED_CAPTIONED?, REPEAT?, RATING?, STARS?, DIRECTOR*,
WRITER*, CAST?, PRODUCER*, DESCRIPTION?)>

<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 218

219Chapter 8 ✦ Element Declarations

<!ELEMENT NAME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT EPISODE_NUMBER (#PCDATA)>
<!ELEMENT START_TIME (#PCDATA)>
<!ELEMENT LENGTH (#PCDATA)>
<!ELEMENT AIR_DATE (#PCDATA)>
<!ELEMENT ORIGINAL_AIR_DATE (#PCDATA)>
<!ELEMENT CLOSED_CAPTIONED (#PCDATA)>
<!ELEMENT REPEAT (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT MIDDLE_NAME (#PCDATA)>
<!ELEMENT MIDDLE_INITIAL (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT RATING (#PCDATA)>
<!ELEMENT YEAR_MADE (#PCDATA)>
<!ELEMENT STARS (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT CAST (ACTOR+)>
<!ELEMENT ACTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT WRITER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>

Once you’ve finished the DTD, you’ll want to test it by validating your instance
documents. Just like any reasonably complex program, there are likely to be bugs.
The first few variants of this DTD I wrote did have bugs, both syntax and semantic
errors. Eventually, I fixed those. However, it still couldn’t completely validate
Listing 4-2. The problem was order. Listing 8-6 is quite specific about the order of
the child elements of SHOW. Not all the elements in Listing 4-2 use that particular
order. For example, some put the PRODUCER before the CAST, others after. Some put
the DESCRIPTION at the end. Some don’t. I could loosen up the order by using a

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 219

220 Part II ✦ Document Type Definitions

choice instead of a sequence. The problem is then I lose the ability to control the
number of each child element. If I say that PRODUCER can come before or after CAST,
I can’t say there’s at most one CAST. You’re forced to choose between more order
than you may want or less control of size than you need. In this case, I decided that
since order didn’t really matter and the number of child elements did, it wouldn’t
be as big a problem to impose an arbitrary order as to allow more of some elements
than I wanted.

There’s more that could be done, with a reasonable investment of effort. For example,
you could use a choice to specify different sets of data for different kinds of shows.
You might have one set of child elements for movies, a different set for television
series, and a different set for news. However, you could not specify that the branch
of the choice for movies could be used only if the TYPE element had the value Movie.

Nonetheless, using parentheses to create blocks of elements, either in sequences
with a comma or in choices with a vertical bar, and then suffixing the blocks with
quantifiers such as * and ? enables you to create complex structures with detailed
rules for how different elements follow one another. Try not to go overboard with
this, though. Simpler solutions are better solutions. The more complex a DTD is, the
harder it is to write valid files that satisfy the DTD, to say nothing of the complexity
of maintaining the DTD itself.

Mixed Content
You may have noticed that in most of the examples so far, elements either contained
child elements or character data, but not both. You can declare tags that contain
both child elements and character data. This is called mixed content. You can use
this to allow each CAST to include arbitrary text as well as ACTOR child elements,
as in the following example:

<!ELEMENT CAST (#PCDATA | ACTOR)*>

Mixing child elements with parsed character data severely restricts the structure
you can impose on your documents. In particular, you can specify only the names
of the child elements that can appear. You cannot constrain the order in which they
appear, the number of each that appears, or whether they appear at all. In terms of
DTDs, think of this as meaning that the child part of the DTD must look like this:

<!ELEMENT PARENT (#PCDATA | CHILD1 | CHILD2 | CHILD3)* >

Almost everything else, other than changing the list of permitted child elements,
is invalid. You cannot place the #PCDATA after the child elements. You cannot use
commas, question marks, or plus signs in an element declaration that includes
#PCDATA. A list of elements and #PCDATA separated by vertical bars is valid. Any
other use is not. For example, the following is illegal:

<!ELEMENT CAST (ACTOR*, #PCDATA)>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 220

221Chapter 8 ✦ Element Declarations

Thus, once you’ve said that a CAST element can contain parsed character data, you
can no longer say that it must have exactly one ACTOR child, or that the ACTOR chil-
dren come before or after the plain text.

Mixed content is most common in narrative content such as web pages and newspa-
per articles. While writing a paragraph, you might want to <EMPHASIZE>emphasize
a phrase</EMPHASIZE> or note a <PERSON>person’s name</PERSON>. On the other
hand, most of the text of the paragraph or sentence that surrounds the emphasized
phrase or noted name is just text, with nothing special to distinguish it from all the
other text of the paragraph or sentence. This structure is common to both written
and spoken narratives.

More recordlike documents such as the television listings example tend to avoid
mixed content. Structured documents are easier to work with if all elements contain
either other elements or unmarked-up text, but not both. You can always create a
new element that holds parsed character data if you find you need it. For example,
you can include a block of text at the end of each CAST element by declaring a new
BLURB element that holds only #PCDATA and adding it as the last child element of
CAST. Here’s how this looks:

<!ELEMENT CAST (ACTOR*, BLURB)>
<!ELEMENT BLURB (#PCDATA)>

This does not significantly change the structure of the document. All it does is add
one more optional element to each CAST element. However, human thought is not
nearly so structured, and these strict forms of markup don’t work as well in that
domain. Articles, essays, novels, diaries, travelogues, short stories, speeches, and
similar narratives are likely to make much heavier use of mixed content.

Empty Elements
As discussed in earlier chapters, it’s occasionally useful to define an element that
has no content. Examples in HTML include the image , horizontal rule <HR>,
and break
. In XML, such empty elements are sometimes denoted by empty-
element tags that end with />, such as , <HR/>, and
.

Valid documents must declare both the empty and nonempty elements they use.
Because empty elements by definition don’t have children, they’re easy to declare.
Use an <!ELEMENT> declaration containing the name of the empty element as normal,
but use the keyword EMPTY (case-sensitive as all XML tags are) instead of a list of
children. For example:

<!ELEMENT BR EMPTY>
<!ELEMENT IMG EMPTY>
<!ELEMENT HR EMPTY>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 221

222 Part II ✦ Document Type Definitions

Listing 8-7 is a valid document that uses both empty and nonempty elements.

Listing 8-7: A Valid Document Using Empty Elements

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT BR EMPTY>
<!ELEMENT HR EMPTY>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (HR, COPYRIGHT, BR, EMAIL,

BR, LAST_MODIFIED)>
]>
<DOCUMENT>
<TITLE>Empty-element Tags</TITLE>
<SIGNATURE>
<HR/>
<COPYRIGHT>2003 Elliotte Rusty Harold</COPYRIGHT>

<EMAIL>elharo@metalab.unc.edu</EMAIL>

<LAST_MODIFIED>Wednesday, December 3, 2003</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

Declaring an element to be EMPTY requires that all instances of it be empty. However,
an element that is declared to have PCDATA content or purely optional child elements
may also be empty some of the time. For example, Listing 8-12 declares that the
TITLE element contains parsed character data. Therefore, these are all valid TITLE
elements according to that DTD:

<TITLE>Empty-element Tags</TITLE>
<TITLE></TITLE>
<TITLE/>
<TITLE />

The empty-element tag syntax used in <TITLE/> is pure syntax sugar for the
longer form <TITLE></TITLE>. You can use <TITLE/> anywhere you use <TITLE>
</TITLE>. The TITLE element does not need to be declared EMPTY before it can be
represented by an empty-element tag.

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 222

223Chapter 8 ✦ Element Declarations

Comments in DTDs
DTDs can contain comments, just like the rest of an XML document. These com-
ments cannot appear inside a declaration, but they can appear outside one.
Comments are often used to organize the DTD in different parts, to document the
allowed content of particular elements, and to further explain what an element is.
For example, the element declaration for the DATE element might have a comment
such as this:

<!-- A date in the form Month Day, Year
The year is always written with four digits. -->

<!ELEMENT DATE (#PCDATA)>

As with all comments, this is only for the benefit of people reading the source code.
XML processors will ignore it.

Besides additional information about the format of character data, DTDs often use
comments to indicate:

✦ Who wrote the DTD

✦ Copyright for the DTD

✦ Usage conditions

✦ Usage instructions

✦ Customary PUBLIC and SYSTEM identifiers

Listing 8-8 is similar to previous television schedule examples but uses comments
to more fully explain the DTD.

Listing 8-8: A Commented DTD

<!-- Television Listings DTD
Copyright 2003 Elliotte Rusty Harold

This DTD was developed as an example for the
XML Bible, 3rd Edition by Elliotte Rusty Harold
(John Wiley & Sons, 2003).
You’ll find complete documentation in Chapter 8.
Feel free to use this DTD in any way you like.
Address questions and comments to
elharo@metalab.unc.edu

This DTD is customarily identified with the following
PUBLIC and SYSTEM IDs:

Continued

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 223

224 Part II ✦ Document Type Definitions

Listing 8-8 (continued)

PUBLIC
“-//Cafe con Leche//DTD TV Listings 1.0//EN”

SYSTEM
“http://cafeconleche.org/dtds/tvschedule.dtd”

However, you can make a local copy and use a different
SYSTEM ID if you like.

-->

<!-- The schedule for one day. However, the day may start
after midnight, and finish in the A.M. hours of the
following day. -->

<!ELEMENT SCHEDULE (DATE, STATION+)>

<!-- Dates are given in a human readable format such as
“July 23, 2004” -->

<!ELEMENT DATE (#PCDATA)>

<!-- One distinct show -->
<!ELEMENT SHOW (NAME, TITLE?, TYPE?, EPISODE_NUMBER?,

START_TIME+, LENGTH, AIR_DATE, ORIGINAL_AIR_DATE?,
YEAR_MADE?, CLOSED_CAPTIONED?, REPEAT?, RATING?, STARS?,
DIRECTOR*, WRITER*, CAST?, PRODUCER*, DESCRIPTION?)>

<!-- A broadcast channel, satellite system or cable provider
in a particular geographic area. -->

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<!-- This is the typical name of the network, such as
CBS, HBO, or CNN. -->

<!ELEMENT NETWORK (#PCDATA)>

<!-- These are the call letters assigned by the FCC or foreign
equivalent in all caps. For example, WPIX, KRGO, WTBS-->

<!ELEMENT CALL_LETTERS (#PCDATA)>

<!-- A positive integer listing the channel for the station
in the local market -->

<!ELEMENT CHANNEL (#PCDATA)>

<!-- The name of the series such as “Friends” or
“Babylon 5” -->

<!ELEMENT NAME (#PCDATA)>

<!-- The title of the individual episode such as
“The One with the Improbably Large Apartment” -->

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 224

225Chapter 8 ✦ Element Declarations

<!ELEMENT TITLE (#PCDATA)>

<!-- The type of the show. This is one of the
following values:

Series
Series/Comedy
Series/News
Series/Game Shows
Series/Talk
Movie
Movie/Action
Movie/Animated
Movie/Comedy
Movie/Drama
Sports
Sports/Football
Sports/Baseball
Sports/Basketball
Sports/Racing
Sports/Tennis
Sports/Golf

-->
<!ELEMENT TYPE (#PCDATA)>

<!-- The episode number in the format issued by the
producers. Not necessarily an integer. -->

<!ELEMENT EPISODE_NUMBER (#PCDATA)>

<!-- The time the show starts. This is given in
Universal Coordinated Time using a 24 hour clock.
For example, 18:30-0500. To get the local time
remove the time zone offset that follows the hyphen. -->

<!ELEMENT START_TIME (#PCDATA)>

<!-- The duration of the show in minutes. -->
<!ELEMENT LENGTH (#PCDATA)>

<!-- The date on which the show begins broadcasting.
The may not be the same as the date of the schedule
if the show starts on or after midnight. -->

<!ELEMENT AIR_DATE (#PCDATA)>

<!-- The date when this show was first broadcast. -->
<!ELEMENT ORIGINAL_AIR_DATE (#PCDATA)>

<!-- Yes if the show is closed captioned, No if it isn’t.
This element is omitted if it is not known whether
the show is closed captioned. -->

<!ELEMENT CLOSED_CAPTIONED (#PCDATA)>

Continued

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 225

226 Part II ✦ Document Type Definitions

Listing 8-8 (continued)

<!-- Yes if the show is a repeat, No if it isn’t.
This element is omitted if it is not known whether
the show is a repeat. -->

<!ELEMENT REPEAT (#PCDATA)>

<!-- A person’s first name. -->
<!ELEMENT GIVEN_NAME (#PCDATA)>

<!-- The family name of a person. May be more than
one word in cases like “Van Zandt” -->

<!ELEMENT SURNAME (#PCDATA)>

<!-- A person’s middle name. -->
<!ELEMENT MIDDLE_NAME (#PCDATA)>

<!-- A person’s middle initial. -->
<!ELEMENT MIDDLE_INITIAL (#PCDATA)>

<!-- FCC rating for a show. Possible values are

TV-Y
TV-Y7
TV-G
TV-PG
TV-PG14
TV-MA

Movies on cable channels may instead carry
one of these MPAA ratings:

G
PG
PG-13
R
NC-17

-->
<!ELEMENT RATING (#PCDATA)>

<!-- The year in which a movie was released theatrically -->
<!ELEMENT YEAR_MADE (#PCDATA)>

<!-- The number of stars to assign to a show.
The value is a number, typically 1 to 5,
occasionally including halves like 3.5 -->

<!ELEMENT STARS (#PCDATA)>

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 226

227Chapter 8 ✦ Element Declarations

<!-- Brief description of the show -->
<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT CAST (ACTOR+)>
<!ELEMENT ACTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT WRITER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME)
| (MIDDLE_NAME | MIDDLE_INITIAL)+
)>

There’s no limit to the amount of information that you can or should include in
comments. Including more does make your DTDs a little longer (and therefore harder
to scan and slower to download). However, the increased clarity provided by using
comments far outweighs these disadvantages. I recommend using comments liberally
in all of your DTDs, but especially in those intended for public use.

Summary
In this chapter, you learned the complete syntax for element declarations in DTDs. In
particular, you learned the following:

✦ Element declarations declare the name and content specification of an element.

✦ The content specification determines what an element may and may not
contain.

✦ The keyword ANY is a content specification indicating that there are no restric-
tions on the content of an element.

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 227

228 Part II ✦ Document Type Definitions

✦ A sequence is a parenthesized list of child elements separated by commas.
When a sequence is used as a content specification, child elements in the
instance document must appear in the same order as they appear in the
sequence.

✦ A choice is a parenthesized list of child elements separated by vertical bars
(|). When a choice is used as a content specification, one of the child ele-
ments listed in the choice must appear in the instance document.

✦ A plus sign (+) means one or more instances of the element, sequence, or
choice may appear.

✦ An asterisk (*) means zero or more instances of the element, sequence, or
choice may appear.

✦ A question mark (?) means zero or one instance of the element, sequence, or
choice may appear.

✦ Parenthesized sequences and choices can be nested to produce more complex
content models.

✦ An element with mixed content contains both child elements and parsed
character data. However, declaring mixed content limits the structure that
you can impose on the parent element.

✦ Empty elements are declared with the EMPTY keyword.

✦ Comments make DTDs much more legible.

When a document uses attributes, the attributes must also be declared in the DTD.
Chapter 9 shows you how to declare attributes in DTDs, and how you can attach
constraints to the attribute values.

✦ ✦ ✦

11 549863 Ch08.qxd 1/28/04 9:44 AM Page 228

Attribute
Declarations

Some XML elements have attributes, that is, name-value
pairs. Attributes are intended for extra information asso-

ciated with an element (such as an ID number) used only by
programs that read and write the file, and not normally for the
content of the element that’s read and written by humans. In
this chapter, you learn about the various attribute types and
how to declare attributes in document type definitions (DTDs).

What Is an Attribute?
As first discussed in Chapter 5, start-tags and empty-element
tags may contain attributes — name-value pairs separated by
an equals sign (=). For example,

<GREETING LANGUAGE=”English”>
Hello XML!
<MOVIE SOURCE=”WavingHand.mov”/>

</GREETING>

In this example, the GREETING element has a LANGUAGE
attribute, which has the value English. The MOVIE element
has a SOURCE attribute, which has the value WavingHand.mov.
The GREETING element’s content is Hello XML!. The language
in which the content is written is useful information about the
content. The language, however, is not itself part of the content.

Similarly, the MOVIE element’s content is the binary data
stored in the file WavingHand.mov. The name of the file is not
the content, although the name tells you where the content
can be found. The attribute contains information about the
content rather than the content itself.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an attribute?

Declaring attributes

Declaring multiple
attributes

Alternatives to default
attribute values

Attribute types

A DTD for attribute-
based television
listings

✦ ✦ ✦ ✦

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 229

230 Part II ✦ Document Type Definitions

Elements can possess more than one attribute, as in the following example:

<SCRIPT LANGUAGE=”javascript” ENCODING=”ISO-8859-1”>
...

</SCRIPT>
<RECTANGLE WIDTH=”30” HEIGHT=”45”/>

In this example, the SCRIPT element’s LANGUAGE attribute has the value javascript.
The SCRIPT element’s ENCODING attribute has the value ISO-8859-1. The RECTANGLE
element’s WIDTH attribute has the value 30. The RECTANGLE element’s HEIGHT
attribute has the value 45. These values are all strings, not numbers.

Declaring Attributes
Like elements, the attributes used in a document must be declared in the DTD for
the document to be valid. Attributes are declared by an attribute list in the follow-
ing form:

<!ATTLIST Element_name Attribute_name Type Default_value>

<! starts all declarations. ATTLIST is the keyword that indicates this is an attribute
list. Element_name is the name of the element possessing this attribute. Attribute_
name is the name of the attribute. Type is the kind of attribute — one of the 10 types
listed in Table 9-1. Finally, Default_value is the value the attribute takes on if no
value is specified for the attribute.

Table 9-1
Attribute Types

Type Meaning

CDATA Character data — text that is not markup

Enumerated A list of possible values from which exactly one will be chosen

ID A unique name not shared by any other ID type attribute in the document

IDREF The value of an ID type attribute of an element in the document

IDREFS Multiple IDs of elements separated by white space

ENTITY The name of an unparsed entity declared in the DTD

ENTITIES Multiple names of unparsed entities declared in the DTD, separated by
white space

NMTOKEN An XML name token

NMTOKENS Multiple XML name tokens separated by white space

NOTATION One or more names of notations declared in the DTD

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 230

231Chapter 9 ✦ Attribute Declarations

For example, consider the following element:

<GREETING LANGUAGE=”French”>
Salut!

</GREETING>

This element might be declared as follows in the DTD:

<!ELEMENT GREETING (#PCDATA)>
<!ATTLIST GREETING LANGUAGE CDATA “English”>

The <!ELEMENT> declaration simply says that a GREETING element contains parsed
character data. That’s nothing new. The <!ATTLIST> declaration says that GREETING
elements have an attribute with the name LANGUAGE and the type CDATA, essentially
the same as #PCDATA for element content. The word English in quotation marks is the
default value. If you encounter a GREETING element without a LANGUAGE attribute,
the value English is used by default.

Not all parsers read external DTD subsets. A parser that doesn’t will not see and
report any default attribute values declared in the external DTD subset, whereas
a parser that does read the external DTD subset will. When attribute values are
defaulted in from the DTD, two different parsers can see different information in the
same document. For this reason, it’s a good idea to include all important information
in the instance document, even if it’s available from the DTD. For maximum interop-
erability, avoid relying on default attribute values.

The attribute is declared separately from the element itself. The name of the ele-
ment to which the attribute belongs is included in the <!ATTLIST> declaration.
This attribute declaration applies only to that element, GREETING in the preceding
example. If other elements also have LANGUAGE attributes, they require separate
<!ATTLIST> declarations.

As with most declarations, the exact order in which attribute declarations appear is
not important. They can come before or after the element declaration they’re associ-
ated with. In fact, you can even declare an attribute more than once (although I don’t
recommend this practice), in which case the first such declaration takes precedence.

You can even declare attributes for elements that are not declared, although this is
uncommon. This is sometimes done to provide default attribute values or assign
attribute types in invalid documents.

Declaring Multiple Attributes
Elements often have more than one attribute. HTML’s IMG element can have
HEIGHT, WIDTH, ALT, BORDER, ALIGN, and several other attributes. In fact, all HTML
elements can have multiple attributes. XML tags can also have multiple attributes.
For example, a RECTANGLE element naturally needs both a LENGTH and a WIDTH.

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 231

232 Part II ✦ Document Type Definitions

<RECTANGLE LENGTH=”70px” WIDTH=”85px”/>

You can declare these attributes in several attribute declarations, with one declara-
tion for each attribute, as in the following example:

<!ELEMENT RECTANGLE EMPTY>
<!ATTLIST RECTANGLE LENGTH CDATA “0px”>
<!ATTLIST RECTANGLE WIDTH CDATA “0px”>

The preceding example says that RECTANGLE elements possess LENGTH and WIDTH
attributes, each of which has the default value 0px.

You can combine the two <!ATTLIST> declarations into a single declaration like this:

<!ATTLIST RECTANGLE LENGTH CDATA “0px”
WIDTH CDATA “0px”>

This single declaration declares both the LENGTH and WIDTH attributes, each with
type CDATA, and each with a default value of 0px. You can also use this syntax
when the attributes have different types or defaults, like this:

<!ATTLIST RECTANGLE LENGTH CDATA “15px”
WIDTH CDATA “34pt”>

Attributes are unordered. Both of the following elements are valid:

<RECTANGLE LENGTH=”70px” WIDTH=”85px”/>
<RECTANGLE WIDTH=”85px” LENGTH=”70px”/>

The parser does not consider attribute order when validating. It won’t even tell the
client application which one came first. Do not write any code that depends on
attribute order. If order matters, use child elements instead.

Alternatives to Default Attribute Values
Instead of specifying an explicit default attribute value such as 0px, an attribute
declaration can require the author to provide a value, allow the value to be omitted
completely, or even always use the default value. These requirements are specified
with the three keywords #REQUIRED, #IMPLIED, and #FIXED, respectively.

#REQUIRED
You may not always have a good option for a default value. For example, when writing
a DTD for use on your intranet, you might want to require that all documents have
at least one empty AUTHOR element. This element might not be rendered, but it can

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 232

233Chapter 9 ✦ Attribute Declarations

identify the person who created the document. This element can have NAME, EMAIL,
and EXTENSION attributes so that the author can be contacted, as shown in the fol-
lowing example:

<AUTHOR NAME=”Elliotte Rusty Harold”
EMAIL=”elharo@metalab.unc.edu” EXTENSION=”4093”/>

Instead of providing default values for these attributes, suppose you want to force
everyone posting a document on the intranet to identify themselves Although XML
can’t prevent someone from attributing authorship to Luke Skywalker, it can at least
require that authorship be attributed to someone by using #REQUIRED as the default
value. For example:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #REQUIRED>

If the parser encounters an AUTHOR element that does not include one or more of
these attributes, it signals the error.

You might also want to use #REQUIRED to force authors to give their IMG elements
WIDTH, HEIGHT, and ALT attributes, as in the following example:

<!ELEMENT IMG EMPTY>
<!ATTLIST IMG ALT CDATA #REQUIRED>
<!ATTLIST IMG WIDTH CDATA #REQUIRED>
<!ATTLIST IMG HEIGHT CDATA #REQUIRED>

Any attempt to omit these attributes (as all too many web pages do) produces an
invalid document. The XML parser notices the error and informs the author of the
missing attributes.

#REQUIRED helps you guarantee that the minimum information necessary for pro-
cessing a document is present. Any attribute that must be in the document should
be defaulted to #REQUIRED.

#IMPLIED
Sometimes you may not have a good option for a default value, but you do not want
to require the author of the document to include the attribute either. The attribute
is optional. For example, suppose some of the people posting documents to your
intranet are offsite freelancers who have e-mail addresses but lack phone extensions.
You don’t want to require them to include an extension attribute in their AUTHOR
elements.

<AUTHOR NAME=”Elliotte Rusty Harold”
EMAIL=”elharo@metalab.unc.edu” />

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 233

234 Part II ✦ Document Type Definitions

You still don’t want to provide a default value for the extension, but you do want to
allow authors to include such an attribute. In this case, use #IMPLIED as the default
declaration like this:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>

An AUTHOR element without an EXTENSION attribute simply has no such attribute.
The application can treat such an element as it chooses. For example, if the applica-
tion is feeding elements into a SQL database in which the attributes are mapped
to fields, the application would probably insert a null into the corresponding
database field.

As with elements, attribute values are almost never set to N/A, Not Available,
unknown, the empty string, or an illegal flag value such as -1. If the value of an
attribute is not known or not available, simply omit it from the instance document,
and declare it #IMPLIED in the DTD.

#FIXED
Finally, you may want to provide a default value for the attribute without allowing
the author to change it. For example, you might want to specify a common COMPANY
attribute of the AUTHOR element for anyone posting documents to your intranet,
like this:

<AUTHOR NAME=”Elliotte Rusty Harold” COMPANY=”TIC”
EMAIL=”elharo@metalab.unc.edu” EXTENSION=”3459”/>

You can require that everyone use this value for the company name by specifying
the default value as #FIXED, followed by the actual default, as in the following
example:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>

Document authors are not required to actually include the fixed attribute in their
tags. If they don’t include the fixed attribute, a parser that reads the DTD will report
the default value. If the fixed attribute is included in the instance document, how-
ever, it must have the value indicated in the DTD. Otherwise, the parser will report
an error.

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 234

235Chapter 9 ✦ Attribute Declarations

As with regular string defaults, if the parser does not read the DTD, it won’t see the
fixed default value. Thus, some parsers can ignore these attributes completely. For
this reason, if you put critical information in a fixed attribute, you should include it
in the instance document, too.

Attribute Types
All preceding examples have been CDATA type attributes. This is the most general
type, but there are nine other types permitted for attributes. Altogether the 10 types
are as follows:

✦ CDATA

✦ NMTOKEN

✦ NMTOKENS

✦ Enumerated

✦ ID

✦ IDREF

✦ IDREFS

✦ ENTITY

✦ ENTITIES

✦ NOTATION

Nine of the preceding types are constants used in the type field. The tenth, an enu-
merated type, lists all valid values explicitly. Let’s investigate each type in depth.

The CDATA attribute type
CDATA, the most general attribute type, means the attribute value may be any string
of text not containing a less than sign (<) or quotation marks (“). These characters
can be inserted using the usual entity references (<, and ") or by character
references (<, and "). Furthermore, all raw ampersands (&) — that is,
ampersands that do not begin a character or entity reference — must also be escaped
as & or &.

In fact, even if the value itself contains double quotes, they do not have to be
escaped. Instead, you can use single quotes to delimit the attributes, as in the
following example:

<RECTANGLE LENGTH=’7”’ WIDTH=’8.5”’/>

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 235

236 Part II ✦ Document Type Definitions

If the attribute value contains single and double quotes, the one not used to delimit
the value must be replaced with the entity reference ' (apostrophe) or "
(double quote), as in the following example:

<RECTANGLE LENGTH=’8'7”’ WIDTH=”10’6"”/>

The NMTOKEN attribute type
The NMTOKEN attribute type restricts the value of the attribute to a legal XML name
token. As discussed in Chapter 6, XML names must begin with a letter or an under-
score (_), and subsequent characters in the name may include letters, digits, under-
scores, hyphens, and periods. They cannot include white space. (The underscore
often substitutes for white space.) Technically, names can contain colons, but you
shouldn’t use this character because it’s reserved for use with namespaces. A name
token is the same as an XML name except that it may begin with digits, hyphens,
and periods rather than just letters and the underscore. Thus, 73 and -red are legal
name tokens even though they’re not legal names. All names are name tokens, but
not all name tokens are names.

The NMTOKEN attribute type helps when you need to pick from any large group of
names that aren’t specifically part of XML but do meet requirements for XML name
tokens. The most significant of these requirements is the prohibition of white space.
For example, NMTOKEN could be used for an attribute whose value had to map to an
8.3 DOS filename. On the other hand, it wouldn’t work well for UNIX, Macintosh, or
Windows NT filenames, because those names often contain white space.

For example, suppose you want to require a STATE attribute in an ADDRESS element
to be a two-letter abbreviation. You cannot force this characteristic with a DTD, but
you can prevent people from entering New York or Puerto Rico with the following
<!ATTLIST> declaration:

<!ATTLIST ADDRESS STATE NMTOKEN #REQUIRED>

However, California, Nevada, and other single-word states are still valid values. Of
course, you could simply use an enumerated list (to be covered shortly) with several
dozen two-letter codes (for example, CA for California), but that approach results in
more effort than many developers want to expend. On the other hand, if you define
this list once in a parameter entity reference in a DTD file, you can reuse the file many
times over.

The NMTOKENS attribute type
The NMTOKENS attribute type is the plural form of NMTOKEN. It enables the value of
the attribute to consist of multiple XML name tokens that are separated from each
other by white space. Generally, you use NMTOKENS for the same reasons as NMTOKEN,
but only when multiple tokens are required. For example, if you want to require
multiple two-letter state codes for a STATES attribute, you can use the following
declaration:

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 236

237Chapter 9 ✦ Attribute Declarations

<!ATTLIST ADDRESS STATES NMTOKENS #REQUIRED>

Then, documents could contain an ADDRESS element like this one:

<ADDRESS STATES=”MI NY LA CA”/>

Unfortunately, if you apply this technique, you’re no longer ruling out states such
as New York, because each individual part of the state name qualifies as an NMTOKEN,
as shown here:

<ADDRESS STATES=”MI New York LA CA”/>

The enumerated attribute type
The enumerated type is not an XML keyword, but a list of possible values for the
attribute, separated by vertical bars. Each value must be a valid XML name token.
The document author can choose any member of the list as the value of the attribute.

For example, suppose you want an element to be visible or invisible. You may want
the element to have a VISIBLE attribute, which can only have the values TRUE or
FALSE. If that element is the simple P element, the <!ATTLIST> declaration looks
like this:

<!ATTLIST P VISIBLE (TRUE | FALSE) “TRUE”>

The preceding declaration says that a P element may or may not have a VISIBLE
attribute. If it does have a VISIBLE attribute, the value of that attribute must
be either TRUE or FALSE. If it does not have such an attribute, the value TRUE is
assumed. For example:

<P VISIBLE=”FALSE”>You can’t see me! Nyah! Nyah!</P>
<P VISIBLE=”TRUE”>You can see me.</P>
<P>You can see me too.</P>

By itself, this declaration is not a magic incantation that hides text. It still relies on
the application to understand that it shouldn’t display invisible elements. Whether
the element is shown or hidden would probably be set through a style sheet rule
applied to elements with VISIBLE attributes. For example, these XSLT template
rules throw away content with a VISIBLE=”FALSE” attribute.

<xsl:template match=”P[@VISIBLE=’FALSE’]” />

<xsl:template match=”P[@VISIBLE=’TRUE’]”>
<xsl:apply-templates/>

</xsl:template>

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 237

238 Part II ✦ Document Type Definitions

The ID attribute type
An ID type attribute uniquely identifies an element in the document. Authoring
tools and other applications commonly use ID to help identify the elements of a
document without concern for their exact meaning or relationship to one another.

An attribute value of type ID must be a valid XML name — that is, it begins with a
letter and is composed of alphanumeric characters and the underscore without
white space. A particular name may not be used as an ID attribute of more than one
element. Using the same ID twice in one document causes the parser to return an
error. Furthermore, each element may not have more than one attribute of type ID.

Typically, ID attributes exist solely for the convenience of programs that manipulate
the data. In many cases, multiple elements can be effectively identical except for the
value of an ID attribute. If you choose IDs in some predictable fashion, a program
can enumerate all the different elements or all the different elements of one type in
the document.

The ID type is incompatible with #FIXED. An attribute cannot be both fixed and have
ID type, because a #FIXED attribute can only have a single value, whereas each ID
type attribute must have a different value. Most ID attributes use #REQUIRED, as
Listing 9-1 demonstrates.

Listing 9-1: A Required ID Attribute Type

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (P*)>
<!ELEMENT P (#PCDATA)>
<!ATTLIST P PNUMBER ID #REQUIRED>

]>
<DOCUMENT>
<P PNUMBER=”p1”>The quick brown fox</P>
<P PNUMBER=”p2”>The quick brown fox</P>

</DOCUMENT>

The IDREF attribute type
The value of an attribute with the IDREF type is the ID of another element in the
document. For example, Listing 9-2 shows the IDREF and ID attributes used to
connect children to their parents.

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 238

239Chapter 9 ✦ Attribute Declarations

Listing 9-2: family.xml

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (PERSON*)>
<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON PNUMBER ID #REQUIRED>
<!ATTLIST PERSON FATHER IDREF #IMPLIED>
<!ATTLIST PERSON MOTHER IDREF #IMPLIED>

]>
<DOCUMENT>
<PERSON PNUMBER=”a1”>Susan</PERSON>
<PERSON PNUMBER=”a2”>Jack</PERSON>
<PERSON PNUMBER=”a3” MOTHER=”a1” FATHER=”a2”>Chelsea</PERSON>
<PERSON PNUMBER=”a4” MOTHER=”a1” FATHER=”a2”>David</PERSON>

</DOCUMENT>

You generally use this uncommon but crucial type when you need to establish
connections between elements that aren’t reflected in the tree structure of the doc-
ument. In Listing 9-2, each child is given FATHER and MOTHER attributes containing
the ID attributes of its father and mother. However, based on the element structure
alone, there are simply four PERSON elements. None is the parent or child of the
other elements.

The IDREFS attribute type
You cannot easily and directly use an IDREF to link parents to their children in
Listing 9-2 because each parent has an indefinite number of children. As a work-
around, you can group all the children of the same parents into a FAMILY element
and link to the FAMILY. Even this approach falters in the face of half-siblings who
share only one parent. In short, IDREF works for many-to-one relationships, but not
for one-to-many or many-to-many relationships.

If one attribute potentially needs to refer to more than one ID in the document, you
can declare it to have type IDREFS. The value of such an attribute is a white-space-
separated list of XML names. Each name in the list must be the ID of some element
somewhere in the same document.

Listing 9-3 uses a single PARENTS attribute of type IDREFS rather than separate
FATHER and MOTHER attributes. This is a more realistic approach for a world in
which families often don’t come in neat packages of one father, one mother, and
two children.

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 239

240 Part II ✦ Document Type Definitions

Listing 9-3: alternative_family.xml

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (PERSON*)>
<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON PNUMBER ID #REQUIRED>
<!ATTLIST PERSON PARENTS IDREFS #IMPLIED>

]>
<DOCUMENT>
<PERSON PNUMBER=”a1”>Susan</PERSON>
<PERSON PNUMBER=”a2”>Jack</PERSON>
<PERSON PNUMBER=”a3” PARENTS=”a1 a2”>Chelsea</PERSON>
<PERSON PNUMBER=”a4” PARENTS=”a1 a2”>David</PERSON>

</DOCUMENT>

The ENTITY attribute type
An ENTITY type attribute enables you to link external binary data — that is, an
external, unparsed, general entity — into the document. The value of the ENTITY
attribute is the name of an unparsed general entity declared in the DTD, which
links to the external data.

The classic example of an ENTITY attribute is an image. The image consists of binary
data available from another URL. Provided the XML browser can support it, you can
include an image in an XML document with the following declarations in your DTD:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>
<!ENTITY LOGO SYSTEM “logo.gif” NDATA GIF>
<!NOTATION GIF PUBLIC

“-//IETF//NONSGML Media Type image/gif//EN”>

Then, at the desired image location in the document, insert the following IMAGE tag:

<IMAGE SOURCE=”LOGO”/>

This approach is not a magic formula that all XML browsers automatically under-
stand. It is simply one technique that browsers and other applications may or may
not adopt to embed non-XML data in documents.

This technique is explored further in Chapter 10.Cross-
Reference

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 240

241Chapter 9 ✦ Attribute Declarations

The ENTITIES attribute type
ENTITIES is a relatively rare plural form of ENTITY. The value of an ENTITIES type
attribute consists of multiple unparsed entity names separated by white space. Each
entity name refers to an external non-XML data source. One use for this approach is
a slide show that rotates different pictures, as in the following example:

<!ELEMENT SLIDESHOW EMPTY>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!ENTITY PIC1 SYSTEM “cat.gif”>
<!ENTITY PIC2 SYSTEM “dog.gif”>
<!ENTITY PIC3 SYSTEM “cow.gif”>

Then, at the point in the document where you want the slide show to appear, insert
the following tag:

<SLIDESHOW SOURCES=”PIC1 PIC2 PIC3”/>

Again, this is not a universal formula that all (or even any) XML browsers automati-
cally understand; it is simply one method that browsers and other applications
might adopt to embed non-XML data in documents.

The NOTATION attribute type
The NOTATION attribute type specifies that an attribute’s value is the name of a nota-
tion declared in the DTD. The default value of this attribute must also be the name
of a notation declared in the DTD. In brief, notations identify the format of data, for
instance, by specifying whether length is measured in meters or feet.

Notations are further discussed in Chapter 10.

For example, there are actually two kinds of ratings in the television listings docu-
ment, MPAA ratings for movies (G, PG, PG-13, R, and NC-17) and TV parental guide-
lines for made-for-TV shows (TV-Y, TV-Y7, TV-G, TV-PG, TV-14, TV-MA). A notation
attribute can indicate the type of the rating. First, the two notations must be
declared:

<!NOTATION MOVIE PUBLIC
“-//Motion Picture Association of America//Movie

Rating System//EN”
“http://www.mpaa.org/movieratings”>

<!NOTATION TV PUBLIC
“-//TV Parental Guidelines Board//The TV Parental

Guidelines//EN”
“http://www.tvguidelines.org/ratings.asp”>

Cross-
Reference

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 241

242 Part II ✦ Document Type Definitions

Next, specify that the RATING element has a TYPE attribute whose own type is
NOTATION. This declaration must list the legal notations for this attribute:

<!ATTLIST RATING TYPE NOTATION (MOVIE | TV) #REQUIRED>

A valid RATING element must now have a TYPE attribute with one of the two values
MOVIE or TV. RATING elements in the instance document now look like this:

<RATING TYPE=”MOVIE”>PG-13</RATING>
<RATING TYPE=”TV”>TV-PG</RATING>

Each element can have at most one NOTATION type attribute. More than one is
invalid.

At first glance, this approach may appear inconsistent with the handling of other
list attributes, such as ENTITIES and NMTOKENS, but these two approaches are
actually quite different. ENTITIES and NMTOKENS have a list of attributes in the
actual element in the document but only one value in the attribute declaration in
the DTD. NOTATION only has a single value in the attribute of the actual element
in the document, however. The list of possible values occurs in the attribute decla-
ration in the DTD.

A DTD for Attribute-Based Television Listings
Chapter 5 developed a well-formed XML document for television listings that used
attributes to store the DATE of a SCHEDULE, the NETWORK, CHANNEL, and CALL_
LETTERS of a STATION, the NAME, TYPE, START_TIME, and LENGTH of a SHOW, and
more. You saw this in Listing 5-1. You may want to print out a copy from my web
site at http://www.cafeconleche.org/books/bible3/source/05/5-1.xml so
you can have the example document in hand as you read this chapter, to avoid a lot
of flipping back and forth.

To make this document valid, you need to provide a DTD. This DTD must declare
both the elements and the attributes used in Listing 5-1. The element declarations
resemble the ones used in Chapter 8, except that there are fewer of them because
most of the information has been moved into attributes:

<!ELEMENT SCHEDULE (STATION+)>
<!ELEMENT STATION (SHOW+)>
<!ELEMENT SHOW (DIRECTOR*, WRITER*, PRODUCER*, CAST?)>
<!ELEMENT CAST (ACTOR+)>
<!ELEMENT ACTOR EMPTY>
<!ELEMENT WRITER EMPTY>
<!ELEMENT PRODUCER EMPTY>
<!ELEMENT DIRECTOR EMPTY>

Note

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 242

243Chapter 9 ✦ Attribute Declarations

Declaring SCHEDULE attributes
The SCHEDULE element has a single attribute, DATE. Although some semantic con-
straints determine what is and is not a date (“July 3, 2003” is a date; “Queen Victoria’s
underpants” is not), the DTD doesn’t enforce these. Thus, the best approach declares
that the DATE attribute has the most general attribute type, CDATA. Furthermore, we
want all schedules to have a date, so we’ll make the DATE attribute required.

<!ATTLIST SCHEDULE DATE CDATA #REQUIRED>

Although you really can’t restrict the form of the text authors enter in DATE
attributes, you can at least provide a comment that shows what’s expected. For
example, it might be a good idea to specify that four-digit years are required.

<!-- In the form “July 3, 2003” -->
<!-- DO NOT USE TWO-DIGIT YEARS like 98, 99, 00!! -->
<!ATTLIST SCHEDULE DATE CDATA #REQUIRED>

The W3C XML Schema Language uses XML documents to describe information that
might traditionally be encoded in a DTD, as well as data type information. Schemas
do allow you to express requirements such as “Each DATE element must contain a
four-digit year between 1843 and 1902.” Schemas are explored in Chapter 20.

Declaring STATION attributes
Next, consider STATION. Each has a CHANNEL attribute, a CALL_LETTERS attribute,
and a NETWORK attribute, all of which are optional. The channel is always a positive
integer. DTDs don’t let you say that the channel is a positive integer, but you can
say that it’s a name token. Not all name tokens are positive integers, but all positive
integers are name tokens.

<!ATTLIST STATION CHANNEL NMTOKEN #REQUIRED>

This doesn’t catch all illegal values, but it at least catches some of them.

Similarly, the call letters are always a legal XML name token. They’re composed
exclusively of ASCII letters, and, in a few countries, digits. This can also be declared
as a name token:

<!ATTLIST STATION CALL_LETTERS NMTOKEN #REQUIRED>

Traditionally, network names are also name tokens (CBS, NBC, HBO, and so on).
However, cable stations are increasingly using longer network names (Oxygen,
Home Shopping Network, and so on). These can all be abbreviated as name tokens.
However, as the world moves to digital cable and satellite television, it seems
increasingly unlikely that new networks will stick to the old conventions. It feels
safer to me to allow network names to be more arbitrary, so I’ll make them CDATA.

Note

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 243

244 Part II ✦ Document Type Definitions

<!ATTLIST STATION NETWORK CDATA #REQUIRED>

If you prefer, these three separate declarations for attributes of the same element
can be combined into one attribute list declaration:

<!ATTLIST STATION NETWORK CDATA #IMPLIED
CALL_LETTERS NMTOKEN #IMPLIED
CHANNEL NMTOKEN #REQUIRED>

One disadvantage of using a single attribute list to declare several attributes is that
it makes it impossible to include even simple comments next to the individual
attributes, because comments cannot appear inside declarations, only outside them.

Given these declarations, in either single or multiple form, all of these STATION
start-tags are valid:

<STATION NETWORK=”HBO” CHANNEL=”501”>
<STATION NETWORK=”CBS” CHANNEL=”2” CALL_LETTERS=”WCBS”>
<STATION CHANNEL=”55” CALL_LETTERS=”WLNY”>
<STATION CHANNEL=”882”>

The last one is a bit of a problem. It has neither a NETWORK nor a CALL_LETTERS
attribute, at least one of which you want to require, but without requiring both.
You were able to do this when NETWORK and CALL_LETTERS were child elements.
However, with attributes, you just can’t do this. Attributes are independent of each
other. You can’t make the presence or absence of one a precondition for the presence
or absence of the other.

Declaring SHOW attributes
SHOW has the most attributes of any of the elements in the document. A few of these
(NAME, START_TIME, LENGTH) are required, because they are absolutely necessary
for processing the document. If they’re missing, the style sheet (of Listing 5-8) and
other software that reads these documents will fail. The rest of the attributes are
optional. None have plausible default values. Most have no constraints that are
expressible in a DTD. A couple (STARS, YEAR_MADE) must be numbers and can
therefore be set to NMTOKEN. However, there is one notable exception. The RATING
attribute has a fixed list of values: TV-Y, TV-Y7, TV-G, TV-PG, TV-PG14, TV-MA, G,
PG, PG-13, R, NC-17. This is exactly the situation for an enumerated attribute:

<!ATTLIST SHOW RATING
(TV-Y | TV-Y7 | TV-G | TV-PG | TV-PG14 | TV-MA

| G | PG | PG-13 | R | NC-17) #IMPLIED>

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 244

245Chapter 9 ✦ Attribute Declarations

The REPEAT and CLOSED_CAPTIONED attributes are equally well served by an enu-
meration. In these two cases, the possible values are only two-fold, yes and no:

<!ATTLIST SHOW CLOSED_CAPTIONED (Yes | No) #IMPLIED
REPEAT (Yes | No) #IMPLIED

Like most things in XML, these matches are case-sensitive. If you want to allow
upper and mixed case variants, you need to explicitly list them:

<!ATTLIST SHOW
CLOSED_CAPTIONED (Yes | No | yes | no | YES | NO) #IMPLIED
REPEAT (Yes | No | yes | no | YES | NO) #IMPLIED

>

Here you see something attributes can do better than child elements. In the previous
chapter where RATING, REPEAT, and CLOSED_CAPTION were child elements, all you
could do was declare them to have a content specification of #PCDATA, document
the possible values with a comment, and hope the document authors read the DTD.
Attributes can actually enforce the restrictions.

Declaring person attributes
The television listings example has four person elements that differ primarily in ele-
ment name: ACTOR, PRODUCER, PUBLISHER, and WRITER. Each can have GIVEN_NAME,
MIDDLE_NAME, MIDDLE_INITIAL, and SURNAME attributes. There are no particular
rules for what characters are allowed in names. For example, surnames can contain
white space (de Havilland), apostrophes (d’Abo), and more. Thus, the only really
sensible type for these is CDATA. Because any particular person may not have any
of these, the only sensible default value is #IMPLIED. Given that, here’s the declara-
tion of the ACTOR element:

<!ATTLIST ACTOR GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

Using attributes instead of child elements to hold this information has two distinct
disadvantages. First, as with NETWORK and CALL_LETTERS for SHOW, it’s not possible
to say that an ACTOR must have at least one of GIVEN_NAME, MIDDLE_NAME, MIDDLE_
INITIAL, and SURNAME, though all of them are individually optional. <ACTOR/> is
now a valid ACTOR element even though it has no names at all. Second, only one of
each is allowed for each person. This means you have to force multiple middle names
and aliases into a single attribute. Child elements are really a better fit here.

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 245

246 Part II ✦ Document Type Definitions

The other three person elements can be declared almost identically:

<!ATTLIST PRODUCER GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

<!ATTLIST DIRECTOR GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

<!ATTLIST WRITER GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

Given the similarity between the four declarations for different kinds of people, you
might be wondering whether XML has any sort of macro expansion facility that
enables you to leverage the similarity. The short answer is yes, it does. That mecha-
nism, parameter entity references, is explored in the next chapter.

The complete DTD for the television listings example
Listing 9-4 shows the complete attribute-based television schedule DTD.

Listing 9-4: The Complete DTD for Television Listings Using
Attributes for Most Information

<!ELEMENT SCHEDULE (STATION+)>
<!ELEMENT STATION (SHOW+)>
<!ELEMENT SHOW (DIRECTOR*, WRITER*, PRODUCER*, CAST?)>
<!ELEMENT CAST (ACTOR+)>
<!ELEMENT ACTOR EMPTY>
<!ELEMENT WRITER EMPTY>
<!ELEMENT PRODUCER EMPTY>
<!ELEMENT DIRECTOR EMPTY>

<!ATTLIST SCHEDULE DATE CDATA #REQUIRED>

<!ATTLIST STATION NETWORK CDATA #IMPLIED
CALL_LETTERS NMTOKEN #IMPLIED
CHANNEL NMTOKEN #REQUIRED>

Note

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 246

247Chapter 9 ✦ Attribute Declarations

<!ATTLIST SHOW NAME CDATA #REQUIRED
TITLE CDATA #IMPLIED
TYPE CDATA #IMPLIED
EPISODE_NUMBER CDATA #IMPLIED
START_TIME CDATA #REQUIRED
LENGTH CDATA #REQUIRED
AIR_DATE CDATA #IMPLIED
ORIGINAL_AIR_DATE CDATA #IMPLIED
CLOSED_CAPTIONED (Yes | No) #IMPLIED
REPEAT (Yes | No) #IMPLIED
YEAR_MADE NMTOKEN #IMPLIED
STARS NMTOKEN #IMPLIED
DESCRIPTION CDATA #IMPLIED
RATING (TV-Y | TV-Y7 | TV-G | TV-PG

| TV-PG14 | TV-MA | G | PG | PG-13 | R | NC-17) #IMPLIED
>

<!ATTLIST ACTOR GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

<!ATTLIST PRODUCER GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

<!ATTLIST DIRECTOR GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

<!ATTLIST WRITER GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

To attach this DTD to Listing 5-1, you must add a document type declaration to its
prolog, assuming of course that Listing 9-4 is stored in a file called tvlistings.dtd:

<!DOCTYPE SEASON SYSTEM “tvlistings.dtd”>

Listing 9-4 does not really use any default attribute values. Instead, each attribute is
declared #IMPLIED or #REQUIRED. This is actually quite common and is sometimes
a good idea even when reasonable defaults are known. Not all parsers read the exter-
nal DTD subset of a document, especially those parsers built into web browsers.
Explicitly specifying all attribute values in the instance document is safer and more
robust than defaulting them in from the DTD.

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 247

248 Part II ✦ Document Type Definitions

Summary
In this chapter, you learned how to declare attributes in DTDs. In particular, you
learned the following concepts:

✦ Attributes are declared by an <!ATTLIST> declaration in the DTD.

✦ One <!ATTLIST> can declare an indefinite number of attributes for a single
element.

✦ Attributes normally have default values, but this condition can be changed
by using the keywords #REQUIRED, #IMPLIED, or #FIXED.

✦ There are 10 attribute types: CDATA, Enumerated, NMTOKEN, NMTOKENS, ID,
IDREF, IDREFS, ENTITY, ENTITIES, and NOTATION.

✦ The CDATA type is the most general. It means an attribute can contain charac-
ter data. Any well-formed content is valid.

✦ The NMTOKEN type means a valid attribute contains an XML name token. A
name token is like an XML name except that it can start with numbers or a
hyphen.

✦ The NMTOKENS type means a valid attribute contains a list of XML name tokens
separated by white space.

✦ The ID type means a valid attribute contains an XML name that is unique
among all ID type attributes in the document. An element can have at most
one attribute of ID type.

✦ The IDREF type means a valid attribute contains an XML name that is also the
value of an ID type attribute of some element in this document.

✦ The IDREFS type means a valid attribute contains a list of ID values separated
by white space.

✦ The ENTITY type means a valid attribute contains the name of an unparsed
entity declared in the DTD.

✦ The ENTITIES type means a valid attribute contains a white-space separated
list of unparsed entity names declared in the DTD.

✦ The NOTATION type means a valid attribute contains the name of a notation
declared in the DTD.

In the next chapter, you learn more about DTDs, including how to define new entity
references such as ©, α, and &chapter10;. You’ll see how to use multi-
ple DTDs to describe a single document, and how to divide one large document into
many smaller parts. You’ll also learn how notations, processing instructions, and
unparsed external entities can be used to embed non-XML data in XML documents.

✦ ✦ ✦

12 549863 Ch09.qxd 1/28/04 9:44 AM Page 248

Entity
Declarations

Asingle XML document can draw both data and declara-
tions from many different sources in many different files.

In fact, some of the data may draw directly from databases,
CGI scripts, or other nonfile sources. The items where the
pieces of an XML document are stored, in whatever form they
take, are called entities. Entity references load these entities
into the main XML document. General entity references load
data into the root element of an XML document. <, >,
', "e;, and & are predefined general entity
references that refer to the text entities <, >, ‘, “, and &,
respectively. Parameter entity references load data into the
document’s document type definition (DTD). They begin with
a % instead of an &. Unparsed entities point to non-XML, binary
data whose type is identified with a notation and are referenced
by an ENTITY type attribute. All three kinds of entities are
declared in the DTD.

What Is an Entity?
Logically speaking, an XML document is composed of a prolog
followed by a root element that strictly contains all other ele-
ments; but physically the content of an XML document can be
spread across multiple files. For example, each SHOW element
might appear in a separate file even though the root element
contains several thousand shows broadcast on one day. The
storage units that contain particular parts of an XML document
are entities. An entity can be a file, a database record, or any
other item that contains data. For example, all the complete
well-formed XML examples in this book are entities.

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an entity?

Internal general
entities

External general
entities

Internal parameter
entities

External parameter
entities

Building a document
from pieces

Unparsed entities

Conditional sections

✦ ✦ ✦ ✦

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 249

250 Part II ✦ Document Type Definitions

The storage unit that contains the XML declaration, the document type declaration,
and the root element is called the document entity. Thus, every XML document has
at least one entity. However, the root element and its descendents may also contain
entity references pointing to additional data that should be inserted into the docu-
ment. A validating XML processor combines all the referenced entities into a single
logical document before it passes the document on to the end application or displays
the file.

Nonvalidating processors may, but do not have to, insert entities defined in the
external DTD subset. They must insert entities defined in the internal DTD subset.

Entities hold content: well-formed XML, other forms of text, or binary data. The pro-
log and the document type declaration are part of the root entity of the document.
An XSL style sheet qualifies as an entity, but only because it itself is a well-formed
XML document. The entity that makes up the style sheet is not one of the entities
that compose the XML document to which the style sheet applies. A CSS style sheet
is not an entity at all.

Most entities have names by which you can refer to them. The only exception is the
document entity — the main file containing the XML document (although there’s no
requirement that this has to be a file as opposed to a database record, the output of
a CGI program, or something else).

Entities can be either internal or external. Internal entities are defined completely
within the DTD. External entities, by contrast, draw their content from another source
located via a URL. The main document only includes a reference to the URL where
the actual content resides.

Entities fall into two categories: parsed and unparsed. Parsed entities contain well-
formed XML text. Unparsed entities contain either binary data or non-XML text (such
as an e-mail message). Currently, unparsed entities aren’t well supported (if at all)
by most browsers, editors, and other tools.

Internal General Entities
You can think of an internal general entity reference as an abbreviation for commonly
used text or text that’s hard to type. An <!ENTITY> declaration in the DTD defines
an abbreviation and the text that the abbreviation stands for. For example, instead
of typing the same footer at the bottom of every page, you can simply define that
text as the FOOTER entity in the DTD and then type &FOOTER; at the bottom of each
page. Furthermore, if you decide to change the footer block (perhaps because your
e-mail address changes), you only need to make the change once in the DTD instead
of on every page that shares the footer.

Note

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 250

251Chapter 10 ✦ Entity Declarations

General entity references begin with an ampersand (&) and end with a semicolon (;),
with the entity’s name between these two characters. For example, < is a general
entity reference for the less than sign (<). The name of this entity is lt. The replace-
ment text of this entity is the one-character string <. Entity names consist of any set
of alphanumeric characters and the underscore. White space and other punctuation
characters are prohibited. Like most everything else in XML, entity references are
case-sensitive.

Although the colon (:) is technically permitted in entity names, this character is
reserved for use with namespaces, which are discussed in Chapter 11.

Defining an internal general entity reference
Internal general entities are defined in the DTD with an <!ENTITY> declaration,
which has the following format:

<!ENTITY name “replacement text”>

The name is the abbreviation for the replacement text. The replacement text
must be enclosed in quotation marks because it can contain white space and XML
markup. You type the name of the entity in the document, but the reader sees the
replacement text.

For example, my name is the somewhat excessive Elliotte Rusty Harold (blame my
parents for that one). Even with years of practice, I still make typos with that phrase.
I can define a general entity reference for my name so that every time I type &ERH;,
the reader will see Elliotte Rusty Harold. That definition is as follows:

<!ENTITY ERH “Elliotte Rusty Harold”>

Listing 10-1 demonstrates the &ERH; general entity reference. Figure 10-1 shows this
document loaded into Internet Explorer. You see that the &ERH; entity reference in
the source code is replaced by Elliotte Rusty Harold in the output.

Listing 10-1: The ERH Internal General Entity Reference

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>

Continued

Cross-
Reference

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 251

252 Part II ✦ Document Type Definitions

Listing 10-1 (continued)

<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (COPYRIGHT, EMAIL, LAST_MODIFIED)>

]>
<DOCUMENT>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>2004 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

Figure 10-1: Listing 10-1 after the internal general entity
reference has been replaced by the actual entity

Notice that the general entity reference, &ERH;, appears inside both the COPYRIGHT
and TITLE elements even though these are declared to accept only #PCDATA as chil-
dren. This arrangement is valid because the replacement text of the &ERH; entity
reference is parsed character data. Validation occurs after the parser replaces the
entity references with their values. The same thing happens when you use a style
sheet. The styles are applied to the element tree as it exists after entity values
replace the entity references.

However, validation is optional, even when the DTD defines entities that the docu-
ment uses. A parser can read the DTD to find entity definitions but still not check for
validity. For example, Listing 10-2 provides the same basic data as Listing 10-1 even
though it’s invalid, because the DTD doesn’t include declarations for every element:

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 252

253Chapter 10 ✦ Entity Declarations

Listing 10-2: An Invalid Document That Uses a DTD Solely
to Define a General Entity Reference

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>
]>
<DOCUMENT>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>2004 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

General entity definitions cannot contain the three characters %, &, and “ directly,
although you can include them via character references; & and % may be included if
they’re starting an entity reference rather than simply representing themselves. An
entity value can contain tags and span multiple lines. For example, the following
SIGNATURE entity is valid:

<!ENTITY SIGNATURE
“<SIGNATURE>

<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>

</SIGNATURE>”
>

An entity value can also contain multiple elements, as in the following example:

<!ENTITY SIGNATURE
“<HR/>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>”

>

However, if an entity value contains the start-tag for an element, it must also contain
the end-tag for the same element. That is, it cannot contain only part of an element.
For example, these are both illegal, even if they’re used in such a way that the result-
ing document would be well formed:

<!ENTITY COPYYEAR “<COPYRIGHT>2004 “>
<!ENTITY COPYNAME “Elliotte Rusty Harold</COPYRIGHT>”>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 253

254 Part II ✦ Document Type Definitions

The same is true for comments, processing instructions, entity references, and any-
thing else you might place inside an entity value. If it starts inside the entity, it must
finish inside the entity.

One advantage of using entity references instead of the full text is that it’s easier to
change the text. This is especially useful when a single DTD is shared between mul-
tiple documents. For example, suppose I decide to use the e-mail address eharold@
solar.stanford.edu instead of elharo@metalab.unc.edu. Rather than searching
and replacing through multiple files, I simply change one line of the DTD as follows:

<!ENTITY SIGNATURE
“<HR/>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>eharold@solar.stanford.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>”

>

Using general entity references in the DTD
The next obvious question is whether it’s possible to parameterize entities. For
example, could you use the preceding SIGNATURE entity but change the date in each
separate LAST_MODIFIED element on each page? The answer is yes. Entities can con-
tain other entities, and all of these entities can be redefined in a document’s internal
DTD subset. This enables both modularization and parameterization of DTDs. You
can include one general entity reference inside the definition another, like this:

<!ENTITY COPY2004 “Copyright 2004 &ERH;”>

This example is legal because the ERH entity appears as part of the COPY2004 entity
that itself will ultimately become part of the instance document. You can also use
general entity references in other places in the DTD that ultimately become part of
the instance document content (such as a default attribute value), although there
are restrictions. The first restriction is that the declaration cannot contain a circular
reference such as the following:

<!ENTITY ERH “©2004 Elliotte Rusty Harold”>
<!ENTITY COPY2004 “Copyright 2004 &ERH;”>

The second restriction: General entity references cannot insert text that is only part
of the DTD and that will not be used as part of the document content. For example,
the following attempted shortcut fails:

<!ENTITY PCD “(#PCDATA)”>
<!ELEMENT GIVEN_NAME &PCD;>
<!ELEMENT SURNAME &PCD;>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 254

255Chapter 10 ✦ Entity Declarations

It’s often useful, however, to have entity references merge text into a document’s
DTD. For this purpose, XML uses the parameter entity reference, which is discussed
later in this chapter.

Predefined general entity references
XML predefines the five general entity references listed in Table 10-1. These five
entity references appear in XML documents in place of specific characters that would
otherwise be interpreted as markup. For example, the entity reference < stands
for the less than sign (<), which could be interpreted as the beginning of a tag.

Table 10-1
XML Predefined Entity References

Entity Reference Character

& &

< <

> >

" “

' ‘

For maximum compatibility with older SGML parsers, you should declare these
references in your DTD if you plan to use them. Declaration is actually quite tricky,
because you must also escape the characters in the DTD without using recursion.
To do this, use character references containing the hexadecimal value of each char-
acter. Listing 10-3 shows the necessary declarations:

Listing 10-3: Declarations for the Predefined General Entity
References

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 255

256 Part II ✦ Document Type Definitions

Character references are discussed in Chapter 6.

External General Entities
Documents using only internal entities closely resemble the HTML model. The
complete text of the document is available in a single file. Images, applets, sounds,
and other non-HTML data may be linked to the file, but at least all the text is present.
Of course, the HTML model has some problems. In particular, it’s quite difficult to
embed dynamic information in the file. CGI scripts, Java applets, fancy database
software, server-side includes, ASP, JSP, PHP, and various other technologies can all
add this capability to HTML; but HTML alone only provides a static document. You
have to go outside HTML to build a document from multiple pieces. Frames are
perhaps the simplest HTML solution to this problem, but they are a user interface
disaster that consistently confuse and annoy users.

XML allows you to embed both well-formed XML documents and document frag-
ments inside other XML documents. Furthermore, XML defines the syntax whereby
an XML parser can build a document out of multiple smaller XML documents and
pieces thereof found either on local or remote systems. Documents may contain
other documents, which may contain other documents. As long as there’s no recur-
sion (an error reported by the processor), the application only sees a single, com-
plete document. In essence, this provides client-side includes.

External entities are data outside the main file containing the root element/document
entity. External entity references let you embed these external entities in the parsed
character data content of your document (though not in the attribute values) and
thus build a single XML document from multiple independent files.

An external general entity reference indicates where in the document the parser
should insert the external entity. The text of the entity comes from a document at a
given Uniform Resource Identifier (URI). This URI is specified in the entity’s declara-
tion in the DTD using this syntax:

<!ENTITY name SYSTEM “URI”>

URIs are similar to Uniform Resource Locators (URLs) but allow for more precise
specification of the linked resource. In theory, URIs separate the resource from the
location so that a web browser can select the nearest or least congested of several
mirrors without requiring an explicit link to that mirror. URIs are an area of active
research and heated debate. Therefore, in practice, and certainly in this book, URIs
are URLs for all purposes.

For example, you might want to put the same signature block on almost every page
of a site. For the sake of definiteness, assume that the signature block is the XML
code shown in Listing 10-4. This would be a well-formed XML document except that
it doesn’t have a root element.

Note

Cross-
Reference

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 256

257Chapter 10 ✦ Entity Declarations

Listing 10-4: An XML External Parsed Entity

<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
<HR/>

Furthermore, assume that you can retrieve this code from the URL http://
cafeconleche.org/boilerplate/signature.xml. You associate this file with
the entity reference &SIG; by adding the following declaration to the DTD:

<!ENTITY SIG SYSTEM
“http://cafeconleche.org/boilerplate/signature.xml”>

You can also use a relative URL. For example:

<!ENTITY SIG SYSTEM “/boilerplate/signature.xml”>

If the file to be included is in the same directory as the file doing the including, you
only need to use the filename, as in the following example:

<!ENTITY SIG SYSTEM “signature.xml”>

With any of these declarations, you can include the contents of the signature file in
a document at any point merely by using &SIG;, as illustrated with the simple docu-
ment in Listing 10-5. Figure 10-2 shows the rendered document in Internet Explorer.

Listing 10-5: The SIG External General Entity Reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT
(TITLE, COPYRIGHT, EMAIL, LAST_MODIFIED, HR?)>

<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT HR EMPTY>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ENTITY SIG SYSTEM “signature.xml”>

]>
<DOCUMENT>
<TITLE>Entity references</TITLE>
&SIG;

</DOCUMENT>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 257

258 Part II ✦ Document Type Definitions

Figure 10-2: A document that uses an external general
entity reference

The DTD declares both the internal elements, such as TITLE, and the external ele-
ments, such as COPYRIGHT. Validating parsers are required to resolve all entity ref-
erences and replace them with their values before checking the document against
its DTD.

The standalone attribute of the XML declaration now has the value no because
this file is no longer complete. Parsing the file requires additional data from the
external file signature.xml. Technically, though, the standalone declaration isn’t
required because its default value is no.

Text declarations
Because neither Listing 10-4 nor Listing 10-5 has an encoding declaration, the parser
assumes both are written in the UTF-8 encoding of Unicode. However, in general,
there’s no guarantee or requirement that all the external parsed entities a document
includes will use the same encoding. Indeed each external parsed entity can have a
different encoding. To account for this, each external parsed entity can have its
own text declaration. Text declarations look like XML declarations except that the
version pseudo-attribute is optional, the encoding pseudo-attribute is required,
and there’s no standalone pseudo-attribute. These are legal text declarations:

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml encoding=”UTF-8”?>

However, this is not a legal text declaration because the encoding is omitted:

<?xml version=”1.0”?>

This is not a legal text declaration because it includes a standalone declaration:

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 258

259Chapter 10 ✦ Entity Declarations

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

Listing 10-6 has a text declaration that says the entity is encoded in UTF-16 instead
of the default UTF-8.

Listing 10-6: An XML External Parsed Entity
with a Text Declaration

<?xml encoding=”UTF-16”?>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
<HR/>

If the external parsed entity has a root element, and if it either has a version
pseudo-attribute in the text declaration or does not have a text declaration at all,
then the external parsed entity may itself be a well-formed XML document. For
example, it could be the signature block shown in Listing 10-7. However, while
sometimes useful, this is not required.

Listing 10-7: An External Parsed Entity That Is Also
a Well-Formed XML Document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<SIGNATURE>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>

</SIGNATURE>

Whether a well-formed XML document or not, an external parsed entity cannot con-
tain a document type declaration. This means an external parsed entity cannot be
valid on its own. It can only be validated when it’s inserted into a full XML document
that does have a document type declaration. A document that uses external parsed
entities can be valid as long as it properly declares all the elements and attributes
used in both the document entity and all the other entities. Indeed, Listing 10-5 is
valid, but it does not have to be. Well-formedness only requires that a document
declare all the entities it uses. Listing 10-8 is an invalid but well-formed version of
Listing 10-5.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 259

260 Part II ✦ Document Type Definitions

Listing 10-8: An Invalid but Well-Formed Document That Uses
an External General Entity Reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ENTITY SIG SYSTEM “signature.xml”>
]>
<DOCUMENT>
<TITLE>Entity references</TITLE>
&SIG;

</DOCUMENT>

Nonvalidating parsers
All XML parsers resolve internal entity references defined in the internal DTD subset.
Nonvalidating processors can resolve external entity references, but they are not
required to do so. Expat, the open source XML parser used by Mozilla, for example,
does not resolve external entity references. Most other parsers do resolve external
entity references.

In the world of web browsers, Mozilla, Netscape, Safari, and Opera do not resolve
external entity references. Most recent versions of Internet Explorer do resolve
external entity references (though I did have trouble getting this to work on Internet
Explorer 5.2 for Mac OS X).

Internal Parameter Entities
General entities become part of the instance document, not the DTD. They can be
used in the DTD, but only in places where they will become part of the document
content. General entity references cannot insert text that is only part of the DTD
and will not be used as part of the document content. It’s often useful, however, to
have entity references in a DTD. For this purpose, XML provides the parameter
entity reference.

Parameter entity references are very similar to general entity references except for
these two key differences:

1. Parameter entity references begin with a percent sign (%) instead of an
ampersand (&).

2. Parameter entity references can only appear in the DTD, not the document
content.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 260

261Chapter 10 ✦ Entity Declarations

Parameter entities are declared in the DTD like general entities with the addition of
a percent sign before the name. The syntax looks like this:

<!ENTITY % name “replacement text”>

The name is the abbreviation for the entity. The reader sees the replacement text,
which must appear in quotes, as in the following example:

<!ENTITY % ERH “Elliotte Rusty Harold”>
<!ENTITY COPY2004 “Copyright 2004 %ERH;”>

Our earlier failed attempt to abbreviate (#PCDATA) works when a parameter entity
reference replaces the general entity reference:

<!ENTITY % PCD “(#PCDATA)”>
<!ELEMENT GIVEN_NAME %PCD;>
<!ELEMENT SURNAME %PCD;>

The real value of parameter entity references becomes apparent when you’re sharing
common lists of children and attributes between elements. The larger the block of
text you’re replacing and the more times you use it, the more useful parameter entity
references become. For example, in the television listing example of the last few
chapters, there are four person elements: ACTOR, WRITER, PRODUCER, and DIRECTOR.
Each had the same content model or attribute list containing a given name, middle
name, middle initial, and/or surname. The element declarations looked like this:

<!ELEMENT ACTOR (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)

| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT WRITER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 261

262 Part II ✦ Document Type Definitions

The person elements all have the same contents. If you invent a new child element,
such as TITLE or HONORIFIC, this element must be declared as a possible child of
all four person elements. Adding it to three, but forgetting to add it to the fourth
element, may cause trouble. Or imagine you discover a bug in the content model.
You need to fix it in four different places instead of one. This problem multiplies
when you have 40 or 400 parent elements instead of 4.

DTDs are much easier to maintain if you don’t give each similar element a separate
content model. Instead, make the content model a parameter entity reference; then
use that parameter entity reference in each of the container element declarations,
as in the following example:

<!ENTITY % NAMES_CONTENT
“((GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME)”>
<!ELEMENT ACTOR %NAMES_CONTENT;>
<!ELEMENT DIRECTOR %NAMES_CONTENT;>
<!ELEMENT NAME %NAMES_CONTENT;>
<!ELEMENT PRODUCER %NAMES_CONTENT;>

To add a new element or fix a bug, you only have to change a single parameter
entity declaration, rather than 4, 40, or 400 element declarations.

Parameter entity references must be declared before they’re used. The following
example is malformed because the %NAMES_CONTENT; reference is not declared
until it’s already been used twice:

<!ELEMENT ACTOR %NAMES_CONTENT;>
<!ELEMENT DIRECTOR %NAMES_CONTENT;>
<!ELEMENT NAME %NAMES_CONTENT;>
<!ELEMENT PRODUCER %NAMES_CONTENT;>
<!ENTITY % NAMES_CONTENT
“((GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME)”>

Parameter entities can only be used to define content models, element names, and
other parts of declarations in the external DTD subset. That is, parameter entity
references can only appear inside a declaration in the external DTD subset when
their replacement text is something less than a complete declaration. The preced-
ing examples are all illegal if they’re used in an internal DTD subset; that is, inside
the square brackets in a document type declaration.

Parameter entity references can be used in the internal DTD subset, but only if they
provide whole declarations, not simply pieces of them. For example, the following
declaration is legal in both the internal and external DTD subsets:

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 262

263Chapter 10 ✦ Entity Declarations

<!ENTITY % hr “<!ELEMENT HR EMPTY>”>
%hr;

Of course, this really isn’t any easier than declaring the HR element without parame-
ter entity references:

<!ELEMENT HR EMPTY>

You’ll mainly use parameter entity references in internal DTD subsets when they’re
referring to external parameter entities; that is, when they’re pulling in declarations
or parts of declarations from a different file. This is the subject of the next section.

External Parameter Entities
Up to this point, the examples have used monolithic DTDs that defined all the
elements used in the document. This technique becomes unwieldy with longer
documents, however. Furthermore, you often want to use part of a DTD in many
different places. For example, consider a DTD that describes a snail-mail address.
The definition of an address is quite general and can easily be used in many different
contexts. Similarly, the list of predefined entity references in Listing 10-2 is useful in
many XML documents, but you’d rather not copy and paste it all the time.

External parameter entities enable you to build large DTDs from smaller ones; that
is, one DTD can link to another and, in so doing, pull in the elements and entities
declared in the first. Although cycles are prohibited — DTD 1 cannot refer to DTD 2
if DTD 2 refers to DTD 1 — such nested DTDs can become large and complex.

At the same time, breaking a DTD into smaller, more manageable chunks makes the
DTD easier to analyze, modify, and reuse. Many of the examples in Chapter 8 and 9
were unnecessarily large. Both the document and its DTD become much easier to
understand when split into separate files.

Furthermore, using smaller, modular DTDs that only describe one set of elements
makes it easier to mix and match DTDs created by different people or organizations.
For example, if you’re writing a technical article about high-temperature supercon-
ductivity, you can use a molecular sciences DTD to describe the molecules involved,
a math DTD to write down your equations, a vector graphics DTD for the figures,
and a basic HTML DTD to handle the explanatory text.

In particular, you can use the mol.dtd DTD from Peter Murray-Rust’s Chemical
Markup Language, the MathML DTD from the World Wide Web Consortium (W3C)’s
Mathematical Markup Language, the SVG DTD from the W3C’s Scalable Vector
Graphics, and the W3C’s XHTML DTD.

Note

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 263

264 Part II ✦ Document Type Definitions

You can probably think of more examples where you need to mix and match concepts
(and therefore tags) from different fields. Human thought doesn’t restrict itself to
narrowly defined categories. It tends to wander all over the map. The documents
you write will reflect this.

Let’s see how to organize the television listings DTD from Chapter 8 as a combina-
tion of several different DTDs. This example is extremely hierarchical. One possible
division is to write separate DTDs for SHOW, STATION, and SCHEDULE. This is far from
the only way to divide the DTD into more manageable chunks, but it will serve as a
reasonable example. Listing 10-9 shows a DTD solely for a show that can be stored
in a file named show.dtd. Notice that it does not declare the STATION, SCHEDULE,
NETWORK, CALL_LETTERS, CHANNEL, or DATE elements.

Listing 10-9: A DTD for the SHOW Element and Its Children
(show.dtd)

<!ELEMENT SHOW (NAME, TITLE?, TYPE?, EPISODE_NUMBER?,
START_TIME+, LENGTH, AIR_DATE, ORIGINAL_AIR_DATE?,
YEAR_MADE?, CLOSED_CAPTIONED?, REPEAT?, RATING?, STARS?,
DIRECTOR*, WRITER*, CAST?, PRODUCER*, DESCRIPTION?)>

<!ELEMENT NAME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT EPISODE_NUMBER (#PCDATA)>
<!ELEMENT START_TIME (#PCDATA)>
<!ELEMENT LENGTH (#PCDATA)>
<!ELEMENT AIR_DATE (#PCDATA)>
<!ELEMENT ORIGINAL_AIR_DATE (#PCDATA)>
<!ELEMENT CLOSED_CAPTIONED (#PCDATA)>
<!ELEMENT REPEAT (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT MIDDLE_NAME (#PCDATA)>
<!ELEMENT MIDDLE_INITIAL (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT RATING (#PCDATA)>
<!ELEMENT YEAR_MADE (#PCDATA)>
<!ELEMENT STARS (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT CAST (ACTOR+)>
<!ELEMENT ACTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT WRITER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 264

265Chapter 10 ✦ Entity Declarations

)>
<!ELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
<!ELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>

By itself, this DTD doesn’t enable you to create very interesting documents. Listing
10-10 shows a simple valid file that only uses the DTD in Listing 10-9. This simple
file is not important for its own sake; however, you can build other, more complex
files out of these small parts.

Listing 10-10: A Valid Document Using the SHOW DTD

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SHOW SYSTEM “show.dtd”>
<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>

Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>

</SHOW>

What other parts of the document can have their own DTDs? Obviously, a STATION
is a big part. You could write its DTD as follows:

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 265

266 Part II ✦ Document Type Definitions

On closer inspection, however, you should notice that something is missing: the
definition of the SHOW element. The definition is in the separate file show.dtd and
needs to be connected to this DTD.

You connect DTDs with external parameter entity references. This connection takes
the following form:

<!ENTITY % name SYSTEM “URI”>
%name;

For example:

<!ENTITY % SHOW SYSTEM “show.dtd”>
%SHOW;

This example uses a relative URL (show.dtd) and assumes that the file show.dtd
will be found in the same place as the linking DTD. If that’s not the case, you can
use an absolute URL, as follows:

<!ENTITY % SHOW SYSTEM
“http://www.cafeconleche.org/dtds/show.dtd”>

%SHOW;

Listing 10-11 shows a completed station DTD that includes a reference to the
show DTD.

Listing 10-11: The STATION DTD (station.dtd)

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>

<!ENTITY % SHOW SYSTEM
“http://www.cafeconleche.org/dtds/show.dtd”>

%SHOW;

By using this DTD, producing a valid document whose root element is STATION is
straightforward. Listing 10-12 demonstrates one such valid station document. This
document uses both the elements declared in station.dtd and those declared in
show.dtd.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 266

267Chapter 10 ✦ Entity Declarations

Listing 10-12: A Valid Station Document

<?xml version=”1.0”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>
Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>

</SHOW>

<SHOW>
<NAME>Silicon Towers</NAME>
<TYPE>Movie</TYPE>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>1999</YEAR_MADE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<CAST>
<ACTOR>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Dennehy</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Daniel</GIVEN_NAME>
<SURNAME>Baldwin</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Brad</GIVEN_NAME>
<SURNAME>Dourif</SURNAME>

</ACTOR>

Continued

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 267

268 Part II ✦ Document Type Definitions

Listing 10-12 (continued)

<ACTOR>
<GIVEN_NAME>Gary</GIVEN_NAME>
<SURNAME>Mosher</SURNAME>

</ACTOR>
</CAST>
<DESCRIPTION>
A programmer discovers his company manufactures
chips for cracking bank systems.
</DESCRIPTION>

</SHOW>

</STATION>

Besides shows, a SCHEDULE also contains a DATE child element. Although DATE
could have its own DTD, it doesn’t pay to go overboard with splitting DTDs. Unless
you expect you’ll have some documents that contain DATE elements that are not
part of a SCHEDULE, you might as well include it in the same DTD. Listing 10-13
demonstrates.

Listing 10-13: The SCHEDULE DTD (schedule.dtd)

<!ELEMENT SCHEDULE (DATE, STATION+)>
<!ELEMENT DATE (#PCDATA)>

<!ENTITY % STATION SYSTEM “station.dtd”>
%STATION;

It’s now possible to write a valid document including all the shows and stations in
the schedule. This document only refers to the schedule DTD of Listing 10-13 using
the following document type declaration:

<!DOCTYPE SCHEDULE SYSTEM “schedule.dtd”>

It does not need to include the station DTD specifically because the schedule DTD
will pull it in, and it does not need to include the show DTD because the station
DTD will pull that in. DTD inclusion has an indefinite number of levels. Although
neither the schedule DTD nor the station DTD it imports declares the SHOW element,
you can still use SHOW elements in the right places in a schedule document because
the show DTD that the station DTD imports does declare the SHOW element. Only
after all parameter entity references are fully resolved is the document checked
against the DTD.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 268

269Chapter 10 ✦ Entity Declarations

Building a Document from Pieces
The television listing examples have been quite large. Although only a truncated
version with limited numbers of shows appears in this book, a full document
containing all the shows on the hundreds of stations broadcast over 24 hours on
a satellite TV or digital cable system could be way too large to comfortably down-
load or search, especially if the reader is only interested in a single show or station.
General entity references allow authors to split documents into many different,
smaller, more manageable documents, one for each schedule, station, and show.
External entity references connect the shows to form stations and the stations to
form schedules.

Unfortunately, you cannot embed just any XML document as an external parsed
entity. In particular, the documents you embed cannot have document type declara-
tions. Furthermore, they cannot have standalone declarations because they use a
text declaration instead of an XML declaration. Consider, for example, Listing 10-14,
oprah.xml. This is a revised version of Listing 10-10. However, if you look closely,
you’ll notice that the prolog is different. Listing 10-10’s prolog is as follows:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SHOW SYSTEM “show.dtd”>

Listing 10-14 modifies Listing 10-10 so it can be embedded into a new document using
an entity reference. The prolog has a text declaration instead of an XML declaration.
The document type declaration is completely omitted.

Listing 10-14: oprah.xml

<?xml encoding=”UTF-8”?>
<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>

Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>

</SHOW>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 269

270 Part II ✦ Document Type Definitions

Listing 10-15, wlny.dtd, and Listing 10-16, wlny.xml, use external parsed entities
pointing to Listing 10-14 and a similar document for another show to put together a
complete station. The DTD defines external entity references for each show on the
station. The XML document loads the DTD using an external parameter entity refer-
ence in its internal DTD subset. Then, its document entity resolves many external
general entity references that load in the individual shows.

Listing 10-15: The WLNY DTD with Entity References
for Show (wlny.dtd)

<!ENTITY Oprah SYSTEM “oprah.xml”>
<!ENTITY SiliconTowers SYSTEM “silicontowers.xml”>

Listing 10-16: WLNY with Shows Loaded from External
Entities (wlny.xml)

<?xml version=”1.0”?>
<!DOCTYPE STATION SYSTEM “wlny.dtd”>
<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

&Oprah;
&SiliconTowers;

</STATION>

Figure 10-3 shows Listing 10-16 loaded into Internet Explorer. Notice that the data
for the shows is present even though the main document only contains references
to the entities where the show data resides. Internet Explorer resolves external ref-
erences — not all XML parsers/browsers do.

It would be nice to continue this procedure — building a cast by combining actors, a
person by combining names, and so forth. Unfortunately, if you try this, you rapidly
run into a wall. The documents embedded via external entities cannot have their
own document type declarations. At most, their prologs can contain text declara-
tions. This means you can only have a single level of document embedding. This
contrasts with DTD embedding. DTDs can be nested arbitrarily deeply, but instance
documents cannot be.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 270

271Chapter 10 ✦ Entity Declarations

Figure 10-3: The XML document displays all shows on the
schedule.

There are two roads around this problem. One is to include all stations in a single
document that refers to the many different show documents. This requires one entity
declaration for each show. The other is to remove the document type declarations
from the individual station files. They can then no longer be parsed on their own.
They will only make sense when rendered as part of a document that does define all
the various entity references they make use of.

In both cases, you need a DTD that defines entity references for each station. Because
there’s no limit to how deeply DTDs can nest (unlike instance documents), Listing
10-17 begins with a DTD that pulls in DTDs containing entity definitions for all the
stations.

Listing 10-17: The Station DTD (stations.dtd)

<!ENTITY % wlny SYSTEM “wlny.dtd”>
%wlny;
<!ENTITY % wcbs SYSTEM “wcbs.dtd”>
%wcbs;
<!ENTITY % hbo SYSTEM “hbo.dtd”>
%hbo;

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 271

272 Part II ✦ Document Type Definitions

You’ll notice that in Listing 10-17 and other examples in this chapter, the entity
names are often the same or closely related to the names of the files the entities
point to. That’s occasionally more legible, but it’s not in any way required. I could
have called the entities foo1, foo2, and foo3 as long as the URLs they dereferenced
into were correct.

Listing 10-18 takes the first path. It pulls together all the show subdocuments and
then adds the DTDs that define the entities for each show. It includes one entity ref-
erence for each show in the schedule. The show entities are defined by Listing 10-19,
which is loaded from the internal DTD subset in Listing 10-18. The largest problem
with this approach is that if the document is served via HTTP, browsers will need to
make over several hundred separate connections to the server (one for each show)
before the document can be displayed.

Listing 10-18: Master Television Schedule Document Using
External Entity References for Shows

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SCHEDULE SYSTEM “schedule.dtd” [

<!ENTITY % shows SYSTEM “shows.dtd”>
%shows;

]>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
<STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>
&HollywoodSquares;
&EntertainmentTonight;
&AmazingRace;

</STATION>

<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
&Oprah;
&SiliconTowers;

</STATION>

<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>
&FinalFantasy;
&Terminator3;
&StarWars;

</STATION>

</SCHEDULE>

Note

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 272

273Chapter 10 ✦ Entity Declarations

Listing 10-19: DTD That Defines External Entity References
for Shows (shows.dtd)

<!ENTITY HollywoodSquares SYSTEM “hollywoodsquares.xml”>
<!ENTITY EntertainmentTonight SYSTEM
“entertainmenttonight.xml”>
<!ENTITY AmazingRace SYSTEM “amazingrace.xml”>
<!ENTITY Oprah SYSTEM “oprah.xml”>
<!ENTITY SiliconTowers SYSTEM “silicontowers.xml”>
<!ENTITY FinalFantasy SYSTEM “finalfantasy.xml”>
<!ENTITY Terminator3 SYSTEM “terminator3.xml”>
<!ENTITY StarWars SYSTEM “starwars.xml”>

You do have some flexibility in which levels you choose for the master document and
embedded data. For example, one alternative to the structure used by Listing 10-18
places the stations and all their shows in individual documents, then combines those
station files into a season with external entities, as shown in Listing 10-20. This has
the advantage of using a smaller number of XML files of more even sizes that place
less load on the web server and that would download and display more quickly. To
be honest, however, the advantage of one approach over the other is minimal. Feel
free to use whichever one more closely matches the organization of your data, or
simply whichever you feel more comfortable with.

Listing 10-20: A Television Schedule Using External Entity
References for Stations

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SCHEDULE SYSTEM “schedule.dtd” [

<!ENTITY % shows SYSTEM “shows.dtd”>
%shows;
<!ENTITY WLNY SYSTEM “wlny.xml”>
<!ENTITY WCBS SYSTEM “wcbs.xml”>
<!ENTITY HBO SYSTEM “hbo.xml”>

]>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
&WCBS:
&WLNY;
&HBO;

</SCHEDULE>

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 273

274 Part II ✦ Document Type Definitions

The individual station files included in this example, such as wlny.xml, contain the
data for the shows on those stations. They can either contain the data directly or
they can contain the entity references defined by shows.dtd. Listing 10-21 shows
what one such station document looks like. This is not by itself a complete or well-
formed XML document. It does not define any of the entity references it uses, and
it has a text declaration instead of an XML declaration. It can only be parsed when
imported into a document that does define these entity references, such as Listing
10-20. It is only a part of an XML document. The station documents are not usable
on their own because the entity references they contain are not defined until they’re
aggregated into the master document.

Listing 10-21: HBO Schedule with Shows Loaded
from External Entities

<?xml encoding=”ISO-8859-1”?>
<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>
&FinalFantasy;
&Terminator3;
&StarWars;

</STATION>

It’s unfortunate that only the top-level document is allowed to have a document
type declaration. This somewhat limits the utility of external parsed entities.

XInclude is a proposed standard that offers an alternative, non-DTD–based means of
building an XML document out of smaller XML documents. However, XInclude is not
part of the core XML standard and is not necessarily supported by any validating
XML processor and web browser, unlike the techniques of this chapter, which are
supported. XInclude is discussed in Chapter 19.

Non-XML Data
Not all data in the world is XML. In fact, I’d venture to say that most of the world’s
accumulated data isn’t XML. A heck of a lot is stored in plain text, HTML, and
Microsoft Word, to name just three common non-XML formats. Although most of this
data could theoretically be rewritten in XML — interest and resources permitting —
not all of the world’s data should be in XML. Encoding images in XML, for example,
would be extremely inefficient.

New
Feature

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 274

275Chapter 10 ✦ Entity Declarations

XML provides three constructs for working with non-XML data: notations, unparsed
entities, and processing instructions. Notations describe the format of non-XML
data. Unparsed entities provide links to the actual location of the non-XML data.
Processing instructions give information about how to view the data.

The material discussed in this section is controversial. Although everything I describe
is part of the XML 1.0 specification, not everyone agrees that it should be. You can
certainly write XML documents without using any notations or unparsed entities,
and with only a few simple processing instructions.

Notations
The first problem you encounter when working with non-XML data in an XML docu-
ment is identifying the format of the data so that the application knows how to
display the non-XML data. For example, it would be silly to try to draw an MP3 file
on the screen.

To a limited extent, you can solve this problem within a single application by using
a fixed set of elements for particular kinds of data. For example, if all pictures are
embedded through IMAGE elements and all sounds via AUDIO elements, it’s not hard
to develop a browser that knows how to handle those two elements. In essence, this
is the approach that HTML takes. However, this approach does prevent document
authors from creating new tags that more specifically describe their content (for
example, a PERSON element that happens to have a HEADSHOT attribute that points
to a JPEG image of that person).

Furthermore, no application understands all possible file formats. Most web
browsers can recognize and read GIF, JPEG, PNG, and perhaps a few other kinds
of image files, but they fail completely when faced with EPS, TIFF, FITS, or any of
the hundreds of other common and uncommon image formats. The dialog box in
Figure 10-4 is probably all too familiar.

Ideally, a document should tell the application what format an unparsed entity is in
so that you don’t have to rely on the application recognizing the file type by a
magic number or a potentially unreliable filename extension. Furthermore, you’d
like to give the application some hints about what program it can use to display the
unparsed entity if it’s unable to do so itself.

Notations provide a partial (although not always well supported) solution to this
problem. A notation describes one possible format for non-XML data through a
NOTATION declaration in the DTD. Each notation declaration contains a name and
an external identifier in the following syntax:

<!NOTATION name SYSTEM “externalID”>

Caution

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 275

276 Part II ✦ Document Type Definitions

Figure 10-4: What happens when Netscape
Navigator doesn’t recognize a file type

The name is an identifier for this particular format used in the document. The
externalID contains a human-intelligible string that somehow identifies the nota-
tion. For example, you might use MIME types as in this notation for GIF images:

<!NOTATION GIF SYSTEM “image/gif”>

You can also use a PUBLIC identifier instead of the SYSTEM identifier:

<!NOTATION GIF PUBLIC “image/gif”>

An alternate approach is to use a formal public identifier like those discussed in
Chapter 7, along with a URL, as in the following example:

<!NOTATION GIF PUBLIC
“-//IETF//NONSGML Media Type image/gif//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/image/gif”>

There is a lot of debate about what exactly makes a good external identifier. MIME
types, such as image/gif or text/html, are one possibility. Another possibility is to use
URLs or other locators for standards documents, such as http://www.w3.org/
TR/REC-html40/. A third possibility is the name of an official international stan-
dard such as ISO 8601 for representing dates and times. In some cases, an ISBN or
Library of Congress catalog number for the paper document where the standard is
defined might be more appropriate, and there are many more choices.

Caution

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 276

277Chapter 10 ✦ Entity Declarations

Which you choose may depend on the expected life span of your document. For
example, if you use an unusual format, you don’t want to rely on a URL that changes
from month to month. If you expect or hope that your document will still spark
interest in 100 years, you might want to consider identifiers that are likely to have
meaning in 100 years, as opposed to those that are merely this decade’s technical
ephemera.

You can also use notations to describe data that does fit in an XML document. For
example, consider this DATE element:

<DATE>05-07-06</DATE>

What day, exactly, does 05-07-06 represent? Is it May 7, 2006 C.E.? Or is it July 5,
2006 C.E.? The answer depends on whether you read this in the United States or
Europe. Maybe it’s even May 7, 1906 C.E. or July 5, 1906 C.E. Or perhaps what’s meant
is May 7, 6 C.E., during the reign of the Roman emperor Augustus in the West and
the Han dynasty in China. It’s also possible that this date isn’t in the “Common Era”
at all, but is given in the traditional Jewish, Muslim, or Chinese calendar. Without
more information, you cannot determine the true meaning.

To avoid this type of confusion, ISO standard 8601 defines a precise means of repre-
senting dates. In this scheme, July 5, 2006 C.E. is written as 20060705 or, in XML, as
follows:

<DATE>20060705</DATE>

This format doesn’t match anybody’s expectations; it’s equally confusing to every-
body and is thus more or less culturally neutral (although still biased toward the
traditional Western calendar).

Notations are declared in the DTD and then used as the values of NOTATION-type
attributes. To continue with the date example, Listing 10-22 defines two possible
notations for dates in ISO 8601 and conventional U.S. formats. Then, a required
FORMAT attribute of type NOTATION is added to each DATE element to describe the
structure of the particular element.

Listing 10-22: DATE Elements in an ISO 8601 and
Conventional U.S. Formats

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SCHEDULE [

<!NOTATION ISODATE SYSTEM
“http://www.iso.ch/cate/d15903.html”>

Continued

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 277

278 Part II ✦ Document Type Definitions

Listing 10-22 (continued)

<!NOTATION USDATE SYSTEM
“http://tf.nist.gov/timefreq/general/enc-d.htm#date”>

<!ELEMENT SCHEDULE (APPOINTMENT*)>
<!ELEMENT APPOINTMENT (NOTE, DATE, TIME?)>

<!ELEMENT NOTE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT TIME (#PCDATA)>

<!ATTLIST DATE FORMAT NOTATION (ISODATE | USDATE) #IMPLIED>

]>
<SCHEDULE>
<APPOINTMENT>
<NOTE>Deliver presents</NOTE>
<DATE FORMAT=”USDATE”>12-25-1999</DATE>

</APPOINTMENT>
<APPOINTMENT>
<NOTE>Party like it’s 1999</NOTE>
<DATE FORMAT=”ISODATE”>19991231</DATE>

</APPOINTMENT>
</SCHEDULE>

Notations can’t force authors to use the format described by the notation, but it is
sufficient for simple uses where you trust authors to correctly describe their data.

Unparsed entities
XML is not an ideal format for all data, particularly nontext data. For example, you
could store each pixel of a bitmap image as an XML element like this:

<PIXEL X=”232” Y=”128” COLOR=”FF5E32” />

This is hardly a good idea, though. Anything remotely like this would cause image
files to balloon to obscene proportions. Since you shouldn’t encode all data in XML,
XML documents must be capable of referring to data that is not currently XML and
probably never will be.

A typical web page can include GIF and JPEG images, Java applets, ActiveX controls,
various kinds of sounds, and so forth. In XML, any block of non-XML data is called an
unparsed entity because the XML processor won’t attempt to understand it. At most,
it informs the application of the entity’s existence and provides the application with
the entity’s name and location.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 278

279Chapter 10 ✦ Entity Declarations

HTML pages embed non-HTML entities through a variety of tags. Pictures are
included with the tag whose SRC attribute provides the URL of the image
file. Java applets are embedded via the <APPLET> tag whose CLASS and CODEBASE
attributes refer to the file and directory where the applet resides. The <OBJECT> tag
uses its CODEBASE attribute for a URI from which the object’s data is retrieved. In
each case, a particular predefined element represents a particular kind of content.
A predefined attribute contains the URL for that content.

XML applications can work like this, but they don’t have to. Instead, XML applica-
tions can use an unparsed entity to refer to the content. Unparsed entities provide
links to the actual location of the non-XML data. Then they use an ENTITY-type
attribute to associate that entity with a particular element in the document.

Declaring unparsed entities
As seen in previous sections, an external entity declaration looks like this:

<!ENTITY SIG SYSTEM
“http://www.cafeconleche.org/signature.xml”>

However, this form is only acceptable if the external entity that the URL names is
well-formed XML. If the external entity is not XML, you have to specify the entity’s
type using the NDATA keyword. For example, to associate the GIF file logo.gif with
the name LOGO, you would place this ENTITY declaration in the DTD:

<!ENTITY LOGO SYSTEM “logo.gif” NDATA GIF>

The final word in the declaration, GIF in this example, must be the name of a nota-
tion declared in the DTD. For example, the notation for GIF might look like this:

<!NOTATION GIF PUBLIC “image/gif”>

As usual, you can use absolute or relative URLs for the external entity as conve-
nience dictates. For example,

<!ENTITY LOGO SYSTEM “http://www.cafeconleche.org/logo.gif”
NDATA GIF>

<!ENTITY LOGO SYSTEM “/xml/logo.gif” NDATA GIF>
<!ENTITY LOGO SYSTEM “../logo.gif” NDATA GIF>

Embedding unparsed entities
You cannot simply embed an unparsed entity at an arbitrary location in the docu-
ment using a general entity reference as you can with parsed entities. For example,
Listing 10-23 is malformed because LOGO is an unparsed entity.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 279

280 Part II ✦ Document Type Definitions

Listing 10-23: A Malformed XML Document That Tries to
Embed an Unparsed Entity with a General
Entity Reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>

]>
<DOCUMENT>
&LOGO;

</DOCUMENT>

To embed unparsed entities, rather than using general entity references such as
&LOGO;, you declare an element that serves as a placeholder for the unparsed entity
(IMAGE, for example). Then you declare an ENTITY-type attribute for the IMAGE ele-
ment (SOURCE, for example) that provides only the name of the unparsed entity.
Listing 10-24 demonstrates.

Listing 10-24: A Valid XML Document That Correctly Embeds
an Unparsed Entity

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>

]>
<DOCUMENT>
<IMAGE SOURCE=”LOGO” />

</DOCUMENT>

549863 Ch10.qxd 2/3/04 10:39 PM Page 280

281Chapter 10 ✦ Entity Declarations

It is now up to the application reading the XML document to recognize the unparsed
entity and display it. Applications may choose not to display the unparsed entity
(just as a web browser may choose not to load images when the user has disabled
image loading).

These examples show empty elements as the containers for unparsed entities. That’s
not required, however. For example, imagine an XML-based corporate ID system that
a security guard uses to look up people entering a building. The PERSON element
might have NAME, PHONE, OFFICE, and EMPLOYEE_ID children and a PHOTO ENTITY
attribute. Listing 10-25 demonstrates.

Listing 10-25: A Nonempty PERSON Element with a PHOTO
ENTITY Attribute

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PERSON [
<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT EMPLOYEE_ID (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT OFFICE (#PCDATA)>
<!NOTATION JPEG SYSTEM “image/jpg”>
<!ENTITY ROGER SYSTEM “rogers.jpg” NDATA JPEG>

<!ATTLIST PERSON PHOTO ENTITY #REQUIRED>

]>
<PERSON PHOTO=”ROGER”>
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</OFFICE>

</PERSON>

This example might seem a little contrived. In practice, you’d be better advised to
make an empty PHOTO element with a SOURCE attribute a child of a PERSON element
rather than adding an ENTITY attribute to PERSON. Furthermore, you’d probably
separate the DTD into external and internal subsets. The external subset, shown in
Listing 10-26, declares the elements, notations, and attributes. These are the parts
likely to be shared among many different documents. The entity, however, changes
from document to document. Thus, you can better place it in the internal DTD sub-
set of each document, as shown in Listing 10-27.

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 281

282 Part II ✦ Document Type Definitions

Listing 10-26: The External DTD Subset person.dtd

<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE, PHOTO)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT EMPLOYEE_ID (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT OFFICE (#PCDATA)>
<!ELEMENT PHOTO EMPTY>
<!NOTATION JPEG SYSTEM “image/jpeg”>
<!ATTLIST PHOTO SOURCE ENTITY #REQUIRED>

Listing 10-27: A Document That Uses an Internal DTD Subset
to Locate the Unparsed Entity

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PERSON [

<!ENTITY % PERSON_DTD SYSTEM “person.dtd”>
%PERSON_DTD;
<!ENTITY ROGER SYSTEM “rogers.jpg” NDATA JPEG>

]>
<PERSON>
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</OFFICE>
<PHOTO SOURCE=”ROGER”/>

</PERSON>

Embedding multiple unparsed entities
On rare occasions, you may need to refer to more than one unparsed entity in a
single attribute, perhaps even an indefinite number. You can do this by declaring
an attribute of the entity placeholder to have type ENTITIES. An ENTITIES-type
attribute has a value part that consists of multiple unparsed entity names separated
by white space. Each entity name refers to an external non-XML data source and
must be declared in the DTD. For example, you might use this to write a slide show
element that rotates different pictures. The DTD would require these declarations:

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 282

283Chapter 10 ✦ Entity Declarations

<!ELEMENT SLIDESHOW EMPTY>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!NOTATION JPEG SYSTEM “image/jpeg”>
<!ENTITY CHARM SYSTEM “charm.jpg” NDATA JPEG>
<!ENTITY MARJORIE SYSTEM “marjorie.jpg” NDATA JPEG>
<!ENTITY POSSUM SYSTEM “possum.jpg” NDATA JPEG>
<!ENTITY BLUE SYSTEM “blue.jpg” NDATA JPEG>

Then, at the point in the document where you want the slide show to appear, insert
the following element:

<SLIDESHOW SOURCES=”CHARM MARJORIE POSSUM BLUE”/>

Once again, I must emphasize that this is not a magic formula that all (or even
any) XML browsers automatically understand. It is simply one technique that
browsers and other applications may or may not adopt to embed non-XML data in
documents.

Conditional Sections
When developing DTDs or documents, you may need to comment out parts of the
DTD not yet reflected in the documents. In addition to using comments directly, you
can omit a particular group of declarations in the DTD by wrapping it in an IGNORE
directive. The syntax follows:

<![IGNORE[
declarations that are ignored

]]>

As usual, white space doesn’t really affect the syntax, but you should keep the
opening <![IGNORE[and the closing]]> on separate lines for easy viewing.

You can ignore any declaration or combination of declarations — elements, entities,
attributes, or even other IGNORE blocks — but you must ignore entire declarations.
The IGNORE construct must completely enclose the entire declarations it removes
from the DTD. You cannot ignore a piece of a declaration (such as the NDATA GIF in
an unparsed entity declaration).

You can also specify that a particular section of declarations is included — that is,
not ignored. The syntax for the INCLUDE directive is just like the IGNORE directive
but with the INCLUDE keyword:

<![INCLUDE[
declarations that are included

]]>

Caution

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 283

284 Part II ✦ Document Type Definitions

When an INCLUDE is inside an IGNORE, the INCLUDE and its declarations are ignored.
When an IGNORE is inside an INCLUDE, the declarations inside the IGNORE block are
still ignored. In other words, an INCLUDE never overrides an IGNORE.

Given these conditions, you might wonder why INCLUDE even exists. No DTD would
change if all INCLUDE blocks were simply removed, leaving only their contents.
INCLUDE appears to be completely extraneous. However, there is one neat trick with
parameter entity references and both IGNORE and INCLUDE that you can’t do with
IGNORE alone. First, define a parameter entity reference as follows:

<!ENTITY % fulldtd “IGNORE”>

You can ignore elements by wrapping them in the following construct:

<![%fulldtd; [
declarations

]]>

The %fulldtd; parameter entity reference evaluates to IGNORE, so the declarations
are ignored. Now, suppose you make the one-word edit to change fulldtd from
IGNORE to INCLUDE, as follows:

<!ENTITY % fulldtd “INCLUDE”>

Immediately, all the IGNORE blocks convert to INCLUDE blocks. In effect, you have
a one-line switch to turn blocks on or off.

In this example, I’ve only used one switch, fulldtd. You can use this switch in
multiple IGNORE/INCLUDE blocks in the DTD. You can also have different groups of
IGNORE/INCLUDE blocks that you switch on or off based on different conditions.

You’ll find this capability particularly useful when designing DTDs for inclusion in
other DTDs. The ultimate DTD can change the behavior of the DTDs it embeds by
changing the value of the parameter entity switch.

Summary
In this chapter, you discovered that XML documents are built from both internal
and external entities. In particular, you learned the following:

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 284

285Chapter 10 ✦ Entity Declarations

✦ Entities are the physical storage units from which an XML document is
assembled.

✦ An entity holds content: well-formed XML, other forms of text, or binary data.

✦ Internal entities are defined completely within the DTD.

✦ External entities draw their content from another resource located via a URL.

✦ General entity references have the form &name; and are used in a document’s
content.

✦ Internal general entity references are replaced by an entity value given in the
entity declaration.

✦ External general entity references are replaced by the data at a URL specified
in the entity declaration after the SYSTEM keyword.

✦ Parameter entity references have the form %name; and are used exclusively
in DTDs.

✦ You can merge different DTDs with external parameter entity references.

✦ External entity references enable you to build large, compound documents out
of small parts.

✦ Invalid documents can still use DTDs to define entity references.

✦ Notations define a data type for non-XML data using a NOTATION declaration.

✦ Unparsed entities are storage units containing non-XML text or binary data.

✦ Unparsed entities are defined in the DTD using an ENTITY declaration with an
extra NDATA declaration identifying the type of data through a notation name.

✦ Documents include unparsed entities using ENTITY or ENTITIES attributes.

✦ INCLUDE and IGNORE blocks specify that the enclosed declarations of the DTD
are or are not (respectively) to be considered when parsing the document.

You’ll see a lot more examples of documents with DTDs over the next several
parts of this book, but as far as basic syntax and usage goes, this chapter concludes
the exploration of DTDs. However, there’s one more fundamental technology that
you need to add to your toolbox before you’ve got a complete picture of XML
itself. That technology is namespaces, a way of attaching prefixes and URIs to ele-
ment and attribute names so that applications can tell the difference between
elements and attributes from different XML vocabularies, even when they have the
same names. Chapter 11 explores namespaces.

✦ ✦ ✦

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 285

13 549863 Ch10.qxd 1/28/04 9:43 AM Page 286

Namespaces

While documents that use a single markup vocabulary
are useful (witness the television examples of

Chapters 4 and 5), documents that mix and match markup
from different XML applications are even more functional. For
example, imagine you want to include a BIOGRAPHY element in
each ACTOR element. Because the biography consists basically
of free-form, formatted text, it’s convenient to write it in well-
formed HTML without reinventing all the elements for para-
graphs, line breaks, list items, bold elements, and so forth
from scratch.

However, when mixing and matching elements from different
XML applications, you’re likely to find the same name used
for two different things. Is a TITLE the title of a page, the title
of a book, or the title of a person? Is an ADDRESS the mailing
address of a company or the e-mail address of a webmaster?
Namespaces disambiguate these cases by associating a
Uniform Resource Identifier (URI) with each XML application
and attaching a prefix to each element to indicate which appli-
cation it belongs to. Thus, you can have both BOOK:TITLE and
HTML:TITLE elements or POSTAL:ADDRESS and HTML:ADDRESS
elements instead of just one kind of TITLE or ADDRESS. This
chapter shows you how to use namespaces.

If you’re familiar with namespaces as used in C++ and
other programming languages, you need to put aside your
preconceptions before reading further. XML namespaces
are similar to, but not quite the same as, the namespaces
used in programming. In particular, XML namespaces do
not necessarily form a set (a collection with no duplicates).

The Need for Namespaces
XML enables developers to create their own markup languages
for their own projects. These languages can be shared with
people working on similar projects all over the world. One spe-
cific example of this is Scalable Vector Graphics (SVG). SVG is
an XML application that describes line art such as might be

Caution

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The need for
namespaces

Namespace syntax

Namespaces and
validity

✦ ✦ ✦ ✦

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 287

288 Part II ✦ Document Type Definitions

produced by Adobe Illustrator or Visio. SVG documents are embedded in HTML
or XHTML documents to add vector graphics to web pages. SVG elements include
desc, title, metadata, defs, path, text, rect, circle, ellipse, line, polyline,
polygon, use, image, svg, g, view, switch, a, altGlyphDef, script, style,
symbol, marker, clipPath, mask, linearGradient, radialGradient, pattern,
filter, cursor, font, animate, set, animateMotion, animateColor, animate-
Transform, color-profile, and font-face. Five of these —title, a, script,
style, and font— happen to share names with HTML elements. Several others
conflict with other XML vocabularies you might want to embed in an HTML docu-
ment. For example, MathML uses set to mean a mathematical set; the Resource
Description Framework (RDF) uses title to identify the title of a resource.

How is a browser reading a document that mixes HTML, SVG, and RDF supposed to
know whether any given title element is an HTML title, an SVG title, or an
RDF title? Perhaps the browser could have enough knowledge of where the differ-
ent kinds of SVG pictures, RDF metadata, MathML equations, and other extra-HTML
vocabularies are supposed to appear to be able to tell which is which. But what
is the browser supposed to do when it encounters conflicts with nonstandard
vocabularies that it hasn’t seen before and of which it has no understanding? XML
is designed to allow authors and developers to extend it with their own elements in
an infinite variety of ways. When authors begin mixing and matching tag sets created
by different developers, name conflicts are almost inevitable.

Namespaces are the solution. They allow each element and attribute in a document
to be placed in a different namespace mapped to a particular URI. The XML elements
that come from SVG are placed in the http://www.w3.org/2000/svg namespace.
The XML elements that come from XHTML are placed in the http://www.w3.org/
1999/xhtml namespace. MathML goes in the http://www.w3.org/1998/Math/
MathML namespace. If you mix in elements from some vocabulary you created your-
self, you can place that in another namespace, with a URI somewhere in a domain
you own.

A Uniform Resource Identifier is an abstraction of a URL. Whereas a URL locates a
resource, a URI identifies a resource. For example, a URI for a person might include
that person’s social security number. This doesn’t mean you can look the person
up in a web browser using a person URI. In theory, URIs are a superset of URLs,
which also include Uniform Resource Names (URNs). In practice, most URIs used
today, including most namespace URIs, are, in fact, URLs.

This URI doesn’t even have to point at any particular file. The URI that defines a
namespace is purely formal. Its only purpose is to group and disambiguate element
and attribute names in the document. It does not necessarily point to anything. In
particular, there is no guarantee that the document at the namespace URI describes the
syntax used in the document; or, for that matter, that any document exists at the URI.
Most namespace URIs produce 404 Not Found errors when you attempt to resolve
them. Having said that, if there is a canonical URI for a particular XML application,
that URI is a good choice for the namespace definition.

Note

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 288

289Chapter 11 ✦ Namespaces

Namespaces have been carefully crafted to layer on top of the XML 1.0 specifica-
tion. Other than reserving the colon character to separate prefixes and local names,
namespaces have no direct effect on standard XML syntax. An XML 1.0 processor
that knows nothing about namespaces can still read a document that uses names-
paces and will not find any errors. Conversely, a document that uses namespaces
must still be well formed when read by a processor that knows nothing about
namespaces. If the document is validated, it must be validated without specifically
considering the namespaces. To an XML processor, a document that uses names-
paces is just a document in which some of the element and attribute names have a
single colon. Documents that use namespaces do not break existing XML parsers;
and users don’t have to wait for notoriously unpunctual software companies to
release upgrades before using namespaces.

Namespace Syntax
Suppose you’re a webmaster at a small agency in Hollywood that represents screen-
writers. You want a web page that describes the scripts currently available for
auction from the agency’s clients. The basic page that provides the list is written in
HTML. The information about each client is given in some industry standard DTD
for describing people that requires PERSON elements to have this form:

<PERSON>
<FIRST>Larry</FIRST>
<LAST>Smith</LAST>
<TITLE>Mr.</TITLE>

</PERSON>

The information about screenplays is provided in SCRIPT elements that look
like this:

<SCRIPT>
<TITLE>New York Stories</TITLE>
<AUTHOR>
<PERSON>
<FIRST>Larry</FIRST>
<LAST>Smith</LAST>
<TITLE>Mr.</TITLE>

</PERSON>
</AUTHOR>
<SYNOPSIS>
Six friends with no visible means of support nonetheless
manage to live in improbably large apartments in
Manhattan.

</SYNOPSIS>
</SCRIPT>

The entire document might look something like Listing 11-1.

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 289

290 Part II ✦ Document Type Definitions

Listing 11-1: A Well-Formed XML Document That Uses HTML
and Two Custom XML Applications

<HTML>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT>
<TITLE>Chicken Feathers</TITLE>
<AUTHOR>
<PERSON>
<FIRST>William</FIRST>
<LAST>Sanders</LAST>
<TITLE>Col.</TITLE>

</PERSON>
</AUTHOR>
<SYNOPSIS>
Hijinks in a poultry factory

</SYNOPSIS>
</SCRIPT>

<SCRIPT>
<TITLE>Soft Copy</TITLE>
<AUTHOR>
<PERSON>
<FIRST>Nora</FIRST>
<LAST>Lessinger</LAST>
<TITLE>Dr.</TITLE>

</PERSON>
</AUTHOR>
<SYNOPSIS>Sex lives of the rich and famous</SYNOPSIS>

</SCRIPT>

Send inquiries to
<PERSON>
<TITLE>Mr.</TITLE>,
<FIRST>Mikhail</FIRST>
<LAST>Ovitsky</LAST>
<COMPANY>Duplicative Artists Mismanagement</COMPANY>,
<ADDRESS>135 Agents Row, Hollywood, CA 90123</ADDRESS>

</PERSON>

</BODY>
</HTML>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 290

291Chapter 11 ✦ Namespaces

There are several problems with this document, even though it’s well-formed XML.
Some of the elements used as part of the custom vocabularies conflict with each
other and with standard HTML. The first problem is that the TITLE element is used
for three separate things: the title of the page, the title of a script, and the title of a
person. The second problem may be even worse in practice. The SCRIPT element
conflicts with the HTML SCRIPT element. A web browser reading this document
might try to interpret the contents of the SCRIPT element as a JavaScript program.
Even though this particular page doesn’t use any JavaScript, an HTML renderer, even
one that supports XML embedded in HTML documents, is still going to think that a
SCRIPT element contains JavaScript. These sorts of problems crop up all the time
when you mix and match different XML vocabularies. In this case, the problem is the
attempt to merge three different vocabularies — one for persons, one for scripts, and
one for web pages — that were designed without much concern for each other.

Even if the names don’t conflict, how is an XML browser supposed to be able to
distinguish between groups of elements from different vocabularies? For example, a
studio robot might want to collect script proposals from various agencies by harvest-
ing all the SCRIPT elements that contain synopses while ignoring all the JavaScript.
You can fix all these problems by adding namespaces to the document. Namespaces
identify which elements in the document belong to which XML vocabularies.

Defining namespaces with xmlns attributes
The script auction example uses elements from three different vocabularies, so
three different namespaces are needed. Each namespace has a URI. You can choose
any convenient absolute URI in a domain that you own for the namespace. In this
example, I use the URI http://ns.cafeconleche.org/people/ for the person
application because I happen to own the cafeconleche.org domain.

The URI you choose does not have to refer to anything. There does not have to be
a DTD or a schema or any other page at all at the location identified by the names-
pace URI. In fact, there isn’t even a host named ns.cafeconleche.org. A namespace
URI is nothing more than a formal identifier that helps to distinguish between ele-
ments with the same name from different organizations. URIs were chosen for this
purpose because they allow developers to choose their own namespace URIs
without having to create yet another central registration authority.

However, URIs often contain characters that can’t appear in XML element and
attribute names. For example, http://ns.cafeconleche.org/people/first is
not a legal name for an XML element because it contains forward slashes. Therefore,
you have to associate the URI with a prefix and put the prefix in the element name
instead. The prefixes are generally some abbreviated form of the thing that the XML
application describes. For the person application, you might choose the prefix P, p,
or PE, or perhaps even person or PEOPLE. In this example, I use P as the prefix for
the person vocabulary with the associated URI http://ns.cafeconleche.org/
people/.

Note

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 291

292 Part II ✦ Document Type Definitions

You associate a namespace URI with a prefix by adding an xmlns:prefix attribute
to the elements they apply to. prefix is replaced by the actual prefix used for the
namespace. The value of the attribute is the URI of the namespace. For example, this
xmlns:P attribute associates the prefix P with the URI http://ns.cafeconleche.
org/people/.

xmlns:P=”http://ns.cafeconleche.org/people/”

Once this attribute is added to an element, the P prefix can then be attached to that
element’s name as well as the names of its attributes and descendants. Within
that element, the P prefix identifies something as belonging to the http://ns.
cafeconleche.org/people/ namespace. The prefix is attached to the local name
by a colon. Listing 11-2 demonstrates by adding the P prefix to the PERSON, FIRST,
and LAST elements, as well as those TITLE elements that come from the people appli-
cation, but not to the TITLE elements that come from HTML or the script application.

Listing 11-2: Placing the Person Application Elements
in a Separate Namespace

<HTML>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT>
<TITLE>Chicken Feathers</TITLE>
<AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>

<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</AUTHOR>
<SYNOPSIS>
Hijinks in a poultry factory

</SYNOPSIS>
</SCRIPT>

<SCRIPT>
<TITLE>Soft Copy</TITLE>
<AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>

<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>

</P:PERSON>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 292

293Chapter 11 ✦ Namespaces

</AUTHOR>
<SYNOPSIS>Sex lives of the rich and famous</SYNOPSIS>

</SCRIPT>

Send inquiries to
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>,
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

It’s now quite easy to distinguish between the title of the page and the title of a
person. The page’s title is represented by a TITLE element, while a person’s title is
represented by a P:TITLE element.

The elements with the P prefix are said to have qualified names beginning with the
P prefix:

✦ P:PERSON

✦ P:TITLE

✦ P:FIRST

✦ P:LAST

✦ P:COMPANY

✦ P:ADDRESS

The part of the name after the colon is called the local name. These six elements
have these six local names:

✦ PERSON

✦ TITLE

✦ FIRST

✦ LAST

✦ COMPANY

✦ ADDRESS

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 293

294 Part II ✦ Document Type Definitions

The prefix can change as long as the URI and the local names stay the same. The
true names of these elements are based on the URI rather than on the prefix. Thus,
the abstract true names of these six elements have a form like this:

✦ http://ns.cafeconleche.org/people/:PERSON

✦ http://ns.cafeconleche.org/people/:TITLE

✦ http://ns.cafeconleche.org/people/:FIRST

✦ http://ns.cafeconleche.org/people/:LAST

✦ http://ns.cafeconleche.org/people/:COMPANY

✦ http://ns.cafeconleche.org/people/:ADDRESS

However, you’ll never use a name like this anywhere in an XML document. In essence,
the shorter qualified names are mandatory nicknames that are used within the
document because URIs often contain characters such as ~, %, and / that aren’t
legal in XML names.

A namespace prefix can be any legal XML name that does not contain a colon. Recall
from Chapter 6 that a legal XML name must begin with a letter or an underscore (_).
Subsequent letters in the name may include letters, digits, underscores, hyphens,
and periods. They may not include white space.

Two prefixes are specifically disallowed: xml and xmlns. The xml prefix should only
be used for the xml:space and xml:lang attributes defined in the XML 1.0 spec-
ification and other generic attributes defined later by the W3C such as xml:
base. The prefix xml is automatically mapped to the URI http://www.w3.org/
XML/1998/namespace. The xmlns prefix is used to bind elements to namespaces
and is therefore not available as a prefix to be bound to.

Multiple namespaces
The difference between the title of a page and the title of a script is still up in the air,
as is the difference between a screenplay SCRIPT and a JavaScript SCRIPT. To fix
this, you must add another namespace to the document. This time, I use the prefix
SCR and the URI http://ns.cafeconleche.org/scripts/. Defining this mapping
requires adding this attribute to all the SCRIPT elements:

xmlns:SCR=”http://ns.cafeconleche.org/scripts/”

Alternately, instead of placing the declaration of the SCR namespace prefix on all
SCRIPT elements, I can put it on one element that contains them all. There are two
such elements in the example, HTML and BODY. When the namespace declaration is
not placed directly on the start-tag that begins the vocabulary, it’s generally put on
the root element, as shown in Listing 11-3.

Note

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 294

295Chapter 11 ✦ Namespaces

Listing 11-3: Declaring a Namespace on the Root Element

<HTML xmlns:SCR=”http://ns.cafeconleche.org/scripts/”>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCR:SCRIPT>
<SCR:TITLE>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>

<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>
Hijinks in a poultry factory

</SCR:SYNOPSIS>
</SCR:SCRIPT>

<SCR:SCRIPT>
<SCR:TITLE>Soft Copy</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>

<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>Sex lives of the rich and famous
</SCR:SYNOPSIS>

</SCR:SCRIPT>

Send inquiries to
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:TITLE>Mr.</P:TITLE> <P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 295

296 Part II ✦ Document Type Definitions

Whether you choose to declare a namespace on the root element or on some element
further down the hierarchy is mostly a matter of personal preference and conve-
nience in the document at hand. Some developers prefer to declare all namespaces
on the root element. Others prefer to declare the namespaces closer to where they’re
actually used. XML doesn’t care. For example, Listing 11-3 could have equally well
been written as shown in Listing 11-4, with both the SCR and P prefixes declared on
the root element.

Listing 11-4: Declaring All Namespaces on the Root Element

<HTML xmlns:SCR=”http://ns.cafeconleche.org/scripts/”
xmlns:P=”http://ns.cafeconleche.org/people/”>

<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCR:SCRIPT>
<SCR:TITLE>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>
Hijinks in a poultry factory

</SCR:SYNOPSIS>
</SCR:SCRIPT>

<SCR:SCRIPT>
<SCR:TITLE>Soft Copy</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON>
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>Sex lives of the rich and famous
</SCR:SYNOPSIS>

</SCR:SCRIPT>

Send inquiries to
<P:PERSON>
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 296

297Chapter 11 ✦ Namespaces

<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

In most cases (validation against a DTD being the notable exception), it’s the URI
that’s important, not the prefix. The prefixes can change. As long as the URI stays
the same, the meaning of the document is unchanged. For example, Listing 11-5
uses the prefixes PERSON and SCRIPT instead of P and SCR. However, this document
has the same meaning and content as Listing 11-4.

Listing 11-5: Same Document, Different Prefixes

<HTML xmlns:SCRIPT=”http://ns.cafeconleche.org/scripts/”
xmlns:PERSON=”http://ns.cafeconleche.org/people/”>

<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>William</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>

</PERSON:PERSON>

Continued

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 297

298 Part II ✦ Document Type Definitions

Listing 11-5 (continued)

</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

Send inquiries to
<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>
</PERSON:PERSON>

</BODY>
</HTML>

In fact, it’s even possible to redeclare prefixes so that one prefix refers to different
URIs in different places in the document, or so that two different prefixes refer to
the same URI. This is, however, needlessly confusing; I strongly recommend that
you avoid it. There are more than enough prefixes to go around, and almost no
need to reuse them within the same document. The main reason for this is to allow
different documents from different authors that happen to use the same prefix to be
combined. This is a good reason to avoid short prefixes such as A, S, and X that are
likely to be reused for different purposes.

Attributes
Because attributes belong to particular elements, they’re more easily distinguished
from similarly named attributes without namespaces. Consequently, it’s not nearly
as essential to add namespaces to attributes as to elements. For example, the XSLT
specification requires that all XSLT elements be in the http://www.w3.org/1999/
XSL/Transform namespace. However, it does not require that the attributes of
these elements be in any particular namespace. (In fact, it requires that they not be
in any namespace.) Nonetheless, you can attach namespace prefixes to attributes, if
necessary. For example, all the attributes in this SCRIPT element and its children
live in the http://namespaces.cafeconleche.org/scripts/ namespace.

<SCR:SCRIPT SCR:TYPE=”Sitcom”
SCR:COPYRIGHT=”2004 William Sanders”

xmlns:SCR=”http://namespaces.cafeconleche.org/scripts/”
xmlns:P=”http://namespaces.cafeconleche.org/people/”>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 298

299Chapter 11 ✦ Namespaces

<SCR:TITLE SCR:ALT=”NO”>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR SCR:ID=”A67Y”>
<P:PERSON>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS SCR:LANG=”English”>
Hijinks in a poultry factory

</SCR:SYNOPSIS>
</SCR:SCRIPT>

This might occasionally prove useful if you need to combine attributes from two
different XML applications on the same element. XLink uses prefixed attributes to
allow any element to become a link.

XLinks are discussed in Chapter 17.

It is possible (though mostly pointless) to associate the same namespace URI with
two different prefixes. The only reason I bring it up here is simply to warn you that
it is the true name of the attribute that must satisfy XML’s rules for an element not
having more than one attribute with the same name. For example, this code is ille-
gal because SCR:ID and SCRIPT:ID are the same:

<SCR:SCRIPT SCR:TYPE=”Sitcom”
SCR:COPYRIGHT=”2004 William Sanders”

xmlns:SCR=”http://namespaces.cafeconleche.org/scripts/”
xmlns:SCRIPT=”http://namespaces.cafeconleche.org/scripts/”
xmlns:P=”http://namespaces.cafeconleche.org/people/”>
<SCR:TITLE SCR:ID=”A67Y” SCRIPT:ID=”Y76A”>
Chicken Feathers

</SCR:TITLE>
</SCR:SCRIPT>

On the other hand, the parser does not actually check the URI to see what it points
to. The URIs http://ibiblio.org/xml/ and http://www.ibiblio.org/xml/
point to the same page, but the following code is legal:

<SCR:SCRIPT SCR:TYPE=”Sitcom”
SCR:COPYRIGHT=”2004 William Sanders”

xmlns:SCR=”http://ibiblio.org/xml/”
xmlns:SCRIPT=”http://www.ibiblio.org/xml/”
xmlns:P=”http://namespaces.cafeconleche.org/people/”>
<SCR:TITLE SCR:ID=”A67Y” SCRIPT:ID=”Y76A”>
Chicken Feathers

</SCR:TITLE>
</SCR:SCRIPT>

Cross-
Reference

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 299

300 Part II ✦ Document Type Definitions

Default namespaces
In long documents with a lot of markup all in the same namespace, it may be incon-
venient to add a prefix to each element name. You can attach a default namespace
to an element and to its child elements using an xmlns attribute with no prefix. The
element itself and all its children are considered to be in the defined namespace
unless they have an explicit prefix.

For example, you might wish to place the HTML elements in the script auction
example in a namespace of their own, but not to give them any prefixes so that
legacy browsers will still recognize them. Listing 11-6 does exactly this.

Listing 11-6: Placing the HTML Elements in the Same
Namespace

<HTML xmlns=”http://www.w3.org/1999/xhtml”
xmlns:SCRIPT=”http://ns.cafeconleche.org/scripts/”
xmlns:PERSON=”http://ns.cafeconleche.org/people/”>

<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>William</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 300

301Chapter 11 ✦ Namespaces

Send inquiries to
<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>
</PERSON:PERSON>

</BODY>
</HTML>

From the perspective of most XML applications, a document that uses the default
namespace is the same as a document that uses prefixes as long as the URIs associ-
ated with each element are the same. However, a legacy HTML browser will have a
much easier time with the code in Listing 11-6 than with the equivalent version in
Listing 11-7 that attaches the prefix HTML to all the HTML elements.

Listing 11-7: Prefixing the HTML Elements in the Same
Namespace

<HTML:HTML xmlns:HTML=”http://www.w3.org/1999/xhtml”
xmlns:SCRIPT=”http://ns.cafeconleche.org/scripts/”
xmlns:PERSON=”http://ns.cafeconleche.org/people/”>

<HTML:HEAD>
<HTML:TITLE>Screenplays for Auction</HTML:TITLE>

</HTML:HEAD>
<HTML:BODY>
<HTML:H1>January 27, 2004 Auction</HTML:H1>

<HTML:P>Pilot scripts for the Fall season:</HTML:P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>William</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

Continued

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 301

302 Part II ✦ Document Type Definitions

Listing 11-7 (continued)

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

Send inquiries to
<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>
</PERSON:PERSON>

</HTML:BODY>
</HTML:HTML>

A good time to use default namespaces is when you need to attach a namespace to
every element in an existing document to which you’re now going to add elements
from a different language. For example, if you place some MathML in an XHTML
document, you only have to add prefixes to the MathML elements. You can put all
the HTML elements in the XHTML namespace simply by adding an xmlns attribute
to the start-tag like this:

<html xmlns=”http://www.w3.org/1999/xhtml”>

You do not need to edit the rest of the file. The MathML tags you insert still need to
be in the proper MathML namespace. However, as long as they aren’t mixed up with
a lot of HTML markup, you can simply declare an xmlns attribute on the MathML’s
root element. This defines a default namespace for the MathML elements that over-
rides the default namespace of the document containing the MathML. Listing 11-8
demonstrates.

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 302

303Chapter 11 ✦ Namespaces

Listing 11-8: A MathML Math Element Embedded
in a Well-Formed HTML Document

<?xml version=”1.0”?>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Fiat Lux</title>
<meta name=”GENERATOR” content=”amaya V1.3b” />

</head>
<body>

<P>And God said,</P>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<mrow>
<msub>
<mi>δ</mi>
<mi>α</mi>

</msub>
<msup>
<mi>F</mi>
<mi>αβ</mi>

</msup>
<mi></mi>
<mo>=</mo>
<mi></mi>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>

</mrow>
<mi>c</mi>

</mfrac>
<mi></mi>
<msup>
<mi>J</mi>
<mrow>
<mi>β</mi>
<mo></mo>

</mrow>
</msup>

</mrow>
</math>

<P>and there was light</P>

</body>
</html>

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 303

304 Part II ✦ Document Type Definitions

Here, math, mrow, msub, mo, mi, mfrac, mn, and msup are all in the http://www.w3.
org/1998/Math/MathML namespace, even though the document that contains them
uses the http://www.w3.org/1999/xhtml namespace.

Attributes are never in a default namespace. They must be explicitly prefixed. An
unprefixed attribute is in no namespace at all. Even if the element it is a part of is in
some namespace, default or otherwise, the unprefixed attribute is still not in that
or any other namespace.

Namespaces and Validity
Namespaces do not get any special exemptions from the normal rules of well-
formedness and validity. Well-formedness is generally not a problem, but validity can
be. For a document that uses namespaces to be valid, you must declare the xmlns
attributes in the DTD just like you’d declare any other attribute. Furthermore, you
must declare the elements and attributes using the prefixes they use in the docu-
ment. For example, if a document uses a PERSON:ADDRESS element, the DTD must
declare a PERSON:ADDRESS element, not merely an ADDRESS element, like this:

<!ELEMENT PERSON:ADDRESS (#PCDATA)>

This means that if a DTD was written without namespace prefixes, it must be
rewritten using the namespace prefixes before it can be used to validate documents
that use prefixed element and attribute names. For example, consider this element
declaration:

<!ELEMENT SCRIPT (TITLE, AUTHOR, SYNOPSIS)>

You have to rewrite it as follows if the elements are all given the SCR namespace
prefix:

<!ELEMENT SCR:SCRIPT (SCR:TITLE, SCR:AUTHOR, SCR:SYNOPSIS)>

This means that you cannot easily use the same DTD for both documents with
namespaces and documents without, even if they use essentially the same vocabu-
lary. In fact, you can’t even use the same DTD for documents that use the same tag
sets and namespaces but different prefixes, because DTDs are tied to the actual
prefixes rather than the URIs of the namespaces.

If you have a question about whether a document that uses namespaces is well
formed or valid, forget everything you know about namespaces. Simply treat the
document as a normal XML document that happens to have some element and
attribute names that contain colons. The document is as well formed and valid as
it is when you don’t consider namespaces.

Tip

Note

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 304

305Chapter 11 ✦ Namespaces

There is one really ugly hack that enables a single DTD to describe documents from
the same application that use different namespace prefixes (or no prefix at all). You
can define the namespace prefix, the element names, and the namespace declaration
attributes as parameter entity references. Then the internal DTD subset can over-
ride these entity references to define them as whatever prefix that particular docu-
ment uses. For example, to parameterize the namespace prefix for the http://ns.
cafeconleche.org/people/ namespace used in several previous examples, first
declare PREFIX, COLON, and NAMESPACE_DECLARATION parameter entities:

<!ENTITY % PREFIX “PERSON”>
<!ENTITY % COLON “:”>
<!ENTITY % NAMESPACE_DECLARATION “xmlns%COLON;%PREFIX;”>

Next, declare parameter entities for the element names that depend on these
parameter entities. For example, here’s the declaration for the ADDRESS element:

<!ENTITY % ADDRESS.NAME “%PREFIX;%COLON;ADDRESS”>

Finally, declare the ADDRESS element using the ADDRESS.NAME entity:

<!ELEMENT %ADDRESS.NAME; (#PCDATA)>

Do not try to save a step by using the PREFIX and COLON entities directly in the
declaration of the PERSON element like this:

<!ELEMENT %PREFIX;%COLON;ADDRESS (#PCDATA)>

For various technical reasons, this is not well formed and does not work.

Similarly, every other use of a prefixed name, whether in an element declaration, a
content model, or an attribute list, should be parameterized. Listing 11-9 shows the
completely parameterized DTD.

Listing 11-9: A Parameterized DTD

<!ENTITY % PREFIX “PERSON”>
<!ENTITY % COLON “:”>
<!ENTITY % NAMESPACE_DECLARATION “xmlns%COLON;%PREFIX;”>

<!ENTITY % PERSON.NAME “%PREFIX;%COLON;PERSON”>
<!ENTITY % TITLE.NAME “%PREFIX;%COLON;TITLE”>
<!ENTITY % FIRST.NAME “%PREFIX;%COLON;FIRST”>
<!ENTITY % LAST.NAME “%PREFIX;%COLON;LAST”>
<!ENTITY % COMPANY.NAME “%PREFIX;%COLON;COMPANY”>
<!ENTITY % ADDRESS.NAME “%PREFIX;%COLON;ADDRESS”>

Continued

Caution

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 305

306 Part II ✦ Document Type Definitions

Listing 11-9 (continued)

<!ELEMENT %PERSON.NAME; (%TITLE.NAME;, %FIRST.NAME;,
%LAST.NAME;, %COMPANY.NAME;, %ADDRESS.NAME;)>
<!ATTLIST %PERSON.NAME; %NAMESPACE_DECLARATION; CDATA

#FIXED “http://ns.cafeconleche.org/people/”>

<!ELEMENT %TITLE.NAME; (#PCDATA)>
<!ELEMENT %FIRST.NAME; (#PCDATA)>
<!ELEMENT %LAST.NAME; (#PCDATA)>
<!ELEMENT %COMPANY.NAME; (#PCDATA)>
<!ELEMENT %ADDRESS.NAME; (#PCDATA)>

Now you can override the parameter entities in the internal DTD subset of the
instance document to choose a different prefix. For example, Listing 11-10 shows
a valid document that uses the prefix P instead of PERSON.

Listing 11-10: A Document That Changes the Namespace
Prefix

<?xml version=”1.0”?>
<!DOCTYPE P:PERSON SYSTEM “person.dtd” [
<!ENTITY % PREFIX “P”>

]>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:TITLE>Mr.</P:TITLE>
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

To use the default namespace with no prefix at all, just set both the PREFIX and
COLON entities to the empty string, as demonstrated in Listing 11-11.

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 306

307Chapter 11 ✦ Namespaces

Listing 11-11: A Document That Removes the Namespace
Prefix

<?xml version=”1.0”?>
<!DOCTYPE PERSON SYSTEM “person.dtd” [
<!ENTITY % PREFIX “”>
<!ENTITY % COLON “”>

]>
<PERSON xmlns=”http://ns.cafeconleche.org/people/”>
<TITLE>Mr.</TITLE>
<FIRST>Mikhail</FIRST>
<LAST>Ovitsky</LAST>
<COMPANY>Duplicative Artists Mismanagement</COMPANY>
<ADDRESS>
135 Agents Row, Hollywood, CA 90123

</ADDRESS>
</PERSON>

Summary
This chapter explained namespaces. In particular, you learned the following:

✦ Namespaces distinguish between elements and attributes with the same name
from different XML applications.

✦ In a document that mixes markup from multiple XML applications, name-
spaces identify which elements and attributes are part of which XML
applications.

✦ Namespaces are declared by an xmlns attribute whose value is the URI of the
namespace. The document referred to by this URI need not exist.

✦ The prefix associated with a namespace is the part of the name of the xmlns
attribute that follows the colon; for example, xmlns:prefix.

✦ Prefixes are attached to all element and attribute names that belong to the
namespace identified by the prefix.

✦ If an xmlns attribute has no prefix, it establishes a default namespace for that
element and its child elements (but not for any attributes).

✦ DTDs must be written in such a fashion that a processor that knows nothing
about namespaces can still parse and validate the document.

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 307

308 Part II ✦ Document Type Definitions

This completes Part II. You now have a solid grasp of XML fundamentals. The next
several parts look at a number of supplementary technologies that layer on top of
XML, as well as applications built with XML. Many of these applications use name-
spaces for one purpose or another. In particular, you’ll learn how namespaces are
used in the Extensible Stylesheet Language (XSL), the XML Linking Language
(XLink), Scalable Vector Graphics (SVG), and several other XML applications.

✦ ✦ ✦

14 549863 Ch11.qxd 1/28/04 9:43 AM Page 308

Style Languages
✦ ✦ ✦ ✦

In This Part

Chapter 12
CSS Style Sheets

Chapter 13
CSS Layouts

Chapter 14
CSS Text Styles

Chapter 15
XSL Transformations

Chapter 16
XSL Formatting
Objects

✦ ✦ ✦ ✦

P A R T

IIIIII

15 549863 PP03.qxd 1/28/04 9:49 AM Page 309

15 549863 PP03.qxd 1/28/04 9:49 AM Page 310

CSS Style Sheets

Cascading style sheets (CSS) is a very simple and straight-
forward language for applying styles to XML documents.

Most of the styles CSS supports should be familiar to you from
using any word processor. For example, you can choose the
font, the font weight, the font size, the background color, the
spacing between paragraphs, the borders around elements,
and more. However, rather than being stored as part of the
document itself, all the style information is placed in a separate
document called a style sheet. A single XML document can be
formatted in many different ways just by changing the style
sheet. Different style sheets can be designed for different
purposes — for print, the Web, presentations, and other
uses — all with the styles appropriate for the specific
medium, and all without changing any of the content in the
document itself.

Netscape 6.0 and later, Mozilla, Opera 4.0 and later, Safari,
and Internet Explorer 5.0 and later all implement some (but
not all) parts of the CSS specification. Earlier versions of the
major browsers, while perhaps supporting some form of
CSS for HTML documents, do not support it at all for XML
documents. To make matters worse, they all implement
different subsets of the specification, and sometimes don’t
implement the same subsets for XML as they do for HTML.
I’ll try to indicate where one browser or another has a par-
ticular problem as it comes up. However, if you find that
something in this chapter doesn’t work as advertised in your
favorite browser (or in any browser), please complain to
the browser vendor, not to me.

What Are Cascading Style Sheets?
Cascading style sheets (referred to as CSS from now on) is a
declarative language introduced in 1996 as a standard means
of adding information about style properties, such as fonts and
borders, to HTML documents. However, CSS actually works
better with XML than with HTML because HTML is burdened
with backward-compatibility issues. For example, properly

Caution

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is CSS?

Selecting elements

Inheritance

Cascades

Different rules for
different media

Importing style sheets

Character sets

✦ ✦ ✦ ✦

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 311

312 Part III ✦ Style Languages

supporting the CSS nowrap property requires eliminating the nonstandard but
frequently used NOWRAP element in HTML. Because XML elements don’t have any
predefined formatting, they don’t restrict which CSS styles can be applied to which
elements.

A simple CSS style sheet
A CSS style sheet contains a list of rules. Each rule gives the names of the elements
it applies to and the styles to apply to those elements. Consider Listing 12-1, a CSS
style sheet for poems. Listing 12-1 can be typed in any text editor, saved as a text file,
and called something like poem.css. The three letter extension .css is conventional,
but not required.

Listing 12-1: A CSS Style Sheet for Poems

POEM { display: block }
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block }

This style sheet has five rules. Each rule has a selector — in this instance the name
of the element to which it applies — and a list of styles to apply to instances of that
element. The first rule says that the contents of the POEM element should have a line
break before and after it (display: block). The second rule says that the contents
of the TITLE element should have a line break before and after it (display: block)
in 16-point (font-size: 16pt) bold type (font-weight: bold). The third rule
says that the POET element should have a line break before and after it (display:
block) and should be set off from what follows it by 10 pixels (margin-bottom:
10px). The fourth rule is the same as the third rule except that it applies to STANZA
elements. Finally, the fifth rule simply states that each VERSE element also has a line
break before and after it.

Comments
CSS style sheets can include comments. CSS comments are similar to C’s /* */
comments, but not to the <!-- --> XML and HTML comments. Listing 12-2
demonstrates. This style sheet doesn’t merely apply style rules to elements. It
also describes, in English, the results those style rules are supposed to achieve.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 312

313Chapter 12 ✦ CSS Style Sheets

Listing 12-2: A Style Sheet for Poems with Comments

/* Work around a Mozilla bug */
POEM { display: block }

/* Make the title look like an H1 header */
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }

/* Put a blank line in-between stanzas,
only a line break between verses */

STANZA { display: block; margin-bottom: 10px }
VERSE { display: block }

CSS style sheets aren’t nearly as convoluted as DTDs, or Java, C, or Perl programs,
so comments aren’t quite as necessary as they are in other languages. However, it’s
rarely a bad idea to include comments. They can only help someone who’s trying to
make sense out of a style sheet you wrote.

Attaching style sheets to documents
To really make sense out of the style sheet in Listing 12-1 or 12-2, you have to give
it an XML document to format. Listing 12-3 is a poem from Walt Whitman’s Leaves
of Grass marked up in XML. The second line is the xml-stylesheet processing
instruction that instructs the web browser loading this document to apply the style
sheet found in the file poem.css to this document. Figure 12-1 shows this document
loaded into Mozilla.

Listing 12-3: Darest Thou Now O Soul Marked Up in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”poem.css”?>
<POEM>

<TITLE>Darest Thou Now O Soul</TITLE>
<POET>Walt Whitman</POET>

<STANZA>
<VERSE>Darest thou now O soul,</VERSE>
<VERSE>Walk out with me toward the unknown region,</VERSE>
<VERSE>Where neither ground is for the feet nor

any path to follow?</VERSE>

Continued

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 313

314 Part III ✦ Style Languages

Listing 12-3 (continued)

</STANZA>
<STANZA>
<VERSE>No map there, nor guide,</VERSE>
<VERSE>Nor voice sounding, nor touch of

human hand,</VERSE>
<VERSE>Nor face with blooming flesh, nor lips,

are in that land.</VERSE>
</STANZA>
<STANZA>
<VERSE>I know it not O soul,</VERSE>
<VERSE>Nor dost thou, all is blank before us,</VERSE>
<VERSE>All waits undream’d of in that region,

that inaccessible land.</VERSE>
</STANZA>
<STANZA>
<VERSE>Till when the ties loosen,</VERSE>
<VERSE>All but the ties eternal, Time and Space,</VERSE>
<VERSE>Nor darkness, gravitation, sense,

nor any bounds bounding us.</VERSE>
</STANZA>
<STANZA>
<VERSE>Then we burst forth, we float,</VERSE>
<VERSE>In Time and Space O soul,

prepared for them,</VERSE>
<VERSE>Equal, equipt at last, (O joy! O fruit of all!)

them to fulfil O soul.</VERSE>
</STANZA>

</POEM>

The type pseudo-attribute in the xml-stylesheet processing instruction is the
MIME media type of the style sheet. Its value is text/css for CSS and application/
xml for XSL.

XSL is discussed in Chapters 5, 15, and 16.

The value of the href pseudo-attribute in the xml-stylesheet processing instruc-
tion is the URL, often relative, where the style sheet is located. If the style sheet can’t
be found, the browser will use its default style sheet instead.

Cross-
Reference

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 314

315Chapter 12 ✦ CSS Style Sheets

Figure 12-1: Darest Thou Now O Soul as rendered by Internet Explorer 6

You can apply the same style sheet to many documents. Indeed, you generally will.
Thus, it’s common to put your style sheets in some central location on your web
server where all of your documents can refer to them; a convenient location is a
styles directory in the web server’s document root.

<?xml-stylesheet type=”text/css” href=”/styles/poem.css”?>

You might even use an absolute URL to a style sheet on another web site, though
this does leave your site dependent on the status of the external site.

<?xml-stylesheet type=”text/css”
href=”http://www.cafeconleche.org/styles/poem.css”?>

You can even use multiple xml-stylesheet processing instructions to pull in rules
from different style sheets, as in the following example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”/styles/poem.css”?>
<?xml-stylesheet type=”text/css”

href=”http://www.cafeconleche.org/styles/poem.css”?>
<POEM>
...

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 315

316 Part III ✦ Style Languages

DTDs and style sheets
Style sheets are more or less orthogonal to DTDs. A document with a style sheet
may or may not have a DTD, and a document with a DTD may or may not have a
style sheet. However, DTDs do often serve as convenient lists of the elements that
you need to provide style rules for.

In this and the next several chapters, most of the examples use documents that are
well formed but not valid. The lack of DTDs will make the examples shorter and the
relevant parts more obvious. However, there’s absolutely no reason why you can’t
attach a style sheet to a document that has a DTD. In either case, the style rules
only apply to the content of the document, not to the DTD.

CSS1 versus CSS2
The first version of CSS was thrown together rather quickly and left a lot to the
imagination. It was quite limited in what it could accomplish. For example, CSS
could make an element red but couldn’t make it the same color as the desktop. It
could make text bold but couldn’t make it shadowed. The underlying layout model
only really worked for left-to-right languages, such as English and Greek, and fell apart
when faced with documents containing right-to-left languages, such as Arabic, or
top-to-bottom languages, such as Chinese. Many details were insufficiently specified
and open to multiple incompatible interpretations. Most importantly for the pur-
poses of this book, CSS only really considered HTML; it didn’t work well for XML.
For example, it didn’t provide table formatting because that could be done with
HTML table tags.

CSS with HTML versus CSS with XML

Although XML is the focus of this book, CSS style sheets also work with HTML documents.
The main differences between CSS with HTML and CSS with XML are as follows:

1. In HTML, the elements you can attach rules to are limited to standard HTML elements,
such as P, PRE, LI, DIV, and SPAN.

2. HTML browsers don’t recognize processing instructions, so style sheets are attached
to HTML documents using LINK tags in the HEAD element. Furthermore, per-document
style rules can be included in the HEAD in a STYLE element, as in the following
example:

<LINK REL=STYLESHEET TYPE=”text/css” HREF=”/styles/poem.css” >
<STYLE TYPE=”text/css”>
PRE { color: red }

</STYLE>

3. HTML browsers don’t render CSS properties as faithfully as XML browsers because of
the legacy formatting of elements. Tables are notoriously problematic in this respect.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 316

317Chapter 12 ✦ CSS Style Sheets

In 1998, the World Wide Web Consortium (W3C) published a revised and expanded
specification for CSS called CSS Level 2 (CSS2). At the same time, they renamed the
original CSS to CSS Level 1 (CSS1). CSS2 is mostly a superset of CSS1, with a few minor
exceptions. CSS2 incorporates many features that web developers and designers
have long requested from browser vendors. Of course, CSS2 fights the same back-
ward-compatibility battles with HTML that CSS1 fought. However, with XML, CSS2
can format content on both paper and the Web almost as well as a desktop publish-
ing program such as PageMaker or QuarkXPress can.

All browsers that can display XML documents support CSS Level 2, at least in part.
Therefore, this chapter focuses on CSS2 exclusively. The distinction between CSS1
and CSS2 is really only important for older browsers that don’t support XML at all.

CSS3
Work is ongoing to produce CSS Level 3 (CSS3). This is currently being developed at
the W3C as several independent pieces, including the following:

✦ Better page formatting, including running headers and footers, page numbers,
and automatically updated cross-references

✦ Styles for forms, including input fields, checkboxes, radio buttons, buttons,
list boxes, and more

✦ Math styles for equations and numbers

✦ Behavioral styles for tasks currently accomplished with JavaScript and DHTML

✦ More accurate color matching

✦ Multicolumn layouts

✦ Selectors that operate by element content and relative position in the
document

When all of these are done, they’ll be rolled together with the existing CSS2 specifi-
cation to produce CSS Level 3. However, it’s unlikely that this will be finished before
2004, and it certainly won’t be implemented by browsers in any large way until at
least 2005.

Selecting Elements
The part of a CSS rule that specifies which elements it applies to is called a selector.
The most common kind of selector is simply the name of an element; for example,
TITLE in this rule:

TITLE { display: block; font-size: 16pt; font-weight: bold }

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 317

318 Part III ✦ Style Languages

However, selectors can also specify multiple elements, elements with a particular ID,
and elements that appear in particular contexts relative to other elements. Indeed,
a selector can be anything from a simple element name to a complex system of con-
textual patterns. Table 12-1 summarizes the selector patterns.

Table 12-1
CSS Selector Patterns

Syntax Meaning

* Matches all elements.

X Matches every element with the name X; for example, the pattern
STANZA matches all STANZA elements.

X Y Matches every element with the name Y that is a descendent of an
element with the name X; for example, POEM VERSE matches all VERSE
descendents of POEM elements.

X > Y Matches every element named Y that is a child of an element named X;
for example, STANZA > VERSE matches all VERSE children of a STANZA
element.

X + Y Matches all elements named Y whose preceding sibling is an element
named X. For example, STANZA + REFRAIN matches every REFRAIN
element that is immediately preceded by a STANZA element. VERSE +
VERSE matches every VERSE element that is immediately preceded by
another VERSE element. In Listing 12-3, this matches all verses in each
STANZA except the first.

X:first-child Matches every element named X that is the first child of its parent ele-
ment; for example, POEM:first-child matches the first child element
of the POEM element. In Listing 12-3, this is the TITLE element.

X[A] Matches all elements named X that have an A attribute, no matter what
its value; for example, AUTHOR[NAME] matches every AUTHOR element
with a NAME attribute.

X[A=”M”] Matches all elements named X whose A attribute has the value M; for
example, AUTHOR[NAME=”Walt Whitman”] matches every AUTHOR
element whose NAME attribute has the value Walt Whitman.

X[A~=”M”] Matches all elements named X whose A attribute contains a space-
separated list of names, one of which is M; for example, AUTHOR[NAME=
”Walt”] matches every AUTHOR element whose NAME attribute has
the value Walt Whitman, Walt Smith, Walt Irving, or Irving Walt.

X[A|=”M”] Matches all elements named X whose A attribute contains a space-
separated list of names the first of which is M; for example, AUTHOR
[NAME|=”Walt”] matches every AUTHOR element whose NAME attri-
bute has the value Walt Whitman but not those whose NAME attribute
has the value Irving Walt.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 318

319Chapter 12 ✦ CSS Style Sheets

Syntax Meaning

X#M Matches any elements named X whose ID is M, as identified by an ID
type attribute. Unfortunately, this selector does not work properly for
XML in most web browsers.

X:lang(i) Matches all elements named X that are written in the natural language
i, as indicated by an xml:lang attribute.

X:link Matches all elements named X that are inside a link whose target has
not yet been visited.

X:visited Matches all elements named X that are inside a link whose target has
been visited.

X:active Matches all elements named X that are currently selected.

X:hover Matches all elements named X over which the cursor is currently
positioned.

X:focus Matches all elements named X that currently have the focus.

Demonstrating these selectors calls for a poem with a slightly more complicated
structure. Listing 12-4 shows Shakespeare’s twenty-first sonnet. This has both STANZA
and REFRAIN elements, each of which contains VERSE elements. The STANZA ele-
ments have NUMBER attributes of ID type, as established by a document type decla-
ration. The POEM element has a TYPE attribute with the value SONNET.

Listing 12-4: Shakespeare’s Twenty-First Sonnet

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”sonnet.css”?>
<!DOCTYPE POEM [
<!ATTLIST STANZA NUMBER ID #IMPLIED>

]>
<POEM TYPE=”SONNET”>
<POET>William Shakespeare</POET>
<TITLE>Sonnet 21</TITLE>
<STANZA NUMBER=”st1”>
<VERSE>So is it not with me as with that Muse</VERSE>
<VERSE>Stirr’d by a painted beauty to his verse,</VERSE>
<VERSE>Who heaven itself for ornament doth use</VERSE>
<VERSE>And every fair with his fair doth rehearse;</VERSE>

</STANZA>
<STANZA NUMBER=”st2”>
<VERSE>Making a couplement of proud compare</VERSE>
<VERSE>With sun and moon, with earth and sea’s rich

gems,</VERSE>

Continued

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 319

320 Part III ✦ Style Languages

Listing 12-4 (continued)

<VERSE>With April’s first-born flowers, and all things
rare</VERSE>

<VERSE>That heaven’s air in this huge rondure hems.</VERSE>
</STANZA>
<STANZA NUMBER=”st3”>
<VERSE>O, let me, true in love, but truly write,</VERSE>
<VERSE>And then believe me, my love is as fair</VERSE>
<VERSE>As any mother’s child, though not so bright</VERSE>
<VERSE>As those gold candles fix’d in heaven’s air.</VERSE>

</STANZA>
<REFRAIN>
<VERSE>Let them say more that like of hearsay well,</VERSE>
<VERSE>I will not praise that purpose not to sell.</VERSE>

</REFRAIN>
</POEM>

The universal selector
The * symbol selects all elements in the document. This lets you set default styles
for all elements. For example, this rule sets the default font to New York:

* { font-family: “New York” }

You can use * instead of an element name in other selector patterns to apply styles to
all elements with a specific attribute, attribute value, role, and so forth. For example,
this rule makes all elements whose TYPE attribute has the value SONNET italic:

*[TYPE=”SONNET”] { font-style: italic }

There’s only one such element in Listing 12-4, but other documents might have
more of these, which may or may not be POEM elements.

If you are using the universal selector with just one other property specification, you
can leave out the *. For example, the preceding rule could be rewritten as follows:

[TYPE=”SONNET”] { font-style: italic }

Grouping selectors
If you want to apply a set of properties to some but not all elements, list the element
names in the selector separated by commas. For example, in Listing 12-1 POET and
STANZA were both styled as block display with a 10-pixel margin. You can combine
these two rules like this:

POET, STANZA { display: block; margin-bottom: 10px }

Tip

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 320

321Chapter 12 ✦ CSS Style Sheets

You can add as many elements as you like. For example, this rule applies style to
POET, STANZA, and REFRAIN elements:

POET, STANZA, REFRAIN { display: block; margin-bottom: 10px }

Furthermore, more than one rule can apply styles to a single element. So you can
combine some standard properties into a rule with many selectors, then use more
specific rules to apply custom formatting to selected elements. For example, in
Listing 12-1 all the elements were listed as block display. This can be combined into
one rule while additional formatting for the POET, STANZA, REFRAIN, and TITLE
elements is contained in separate rules, as shown in Listing 12-5.

Listing 12-5: sonnet.css

POEM, VERSE, TITLE, POET, STANZA, REFRAIN { display: block }
POET, STANZA, REFRAIN { margin-bottom: 10px }
TITLE {font-size: 16pt; font-weight: bold }

If the rules conflict, the last one in the style sheet is chosen.

Hierarchy selectors
In XML, as in life, what you look like depends heavily on what your ancestors looked
like. You can individually select elements that are children or descendents of a speci-
fied type of element with descendant, child, and sibling selectors.

Child selectors
A child selector uses the greater than sign > to select an element if and only if
it’s an immediate child of a specified parent. For example, to apply a rule to VERSE
elements that are children of STANZA elements but not to VERSE elements that are
children of REFRAIN elements, you’d use the selector STANZA > VERSE. These rules
make stanza verses bold but refrain verses italic:

STANZA > VERSE {font-weight: bold }
REFRAIN > VERSE {font-style: italic }

You can expand this to look at the parent of the parent, the parent of the parent
of the parent, and so forth. For example, the following rule says that a VERSE
element inside a STANZA element inside a POEM element should be rendered in a
monospaced font:

POEM > REFRAIN > VERSE { font-family: Courier, monospaced }

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 321

322 Part III ✦ Style Languages

In practice, this level of specificity is rarely needed. In cases in which it does seem
necessary, you can often rewrite the style sheet to rely more on inheritance, cas-
cades, and relative units, and less on the precise specification of formatting.

Descendant selectors
A descendant selector chooses elements that are children, grandchildren, or other
descendants of a specified element. For example, you can specify one style for
VERSE elements contained in a POEM element and a different style for VERSE ele-
ments contained in a BOOK element. To do this, prefix the name of the ancestor
element to the name of the styled element separated by a space. The following
rules make book verses bold, but poem verses italic:

BOOK VERSE {font-weight: bold }
POEM VERSE {font-style: italic; font-weight: normal }

In the event of a conflict between two rules, the closer one takes precedence. For
example, if a BOOK contains a POEM that contains VERSE elements, those VERSE
elements will be italic and not bold. In case of a conflict between two equally
specific rules, the last rule encountered in the style sheet takes precedence.

You can even give VERSE elements inside POEM elements inside BOOK elements a
completely different style that is not shared by VERSE elements inside POEM ele-
ments that are not inside BOOK elements or VERSE elements that are not inside
POEM elements but are inside BOOK elements. For example, this rule makes such
elements red:

BOOK POEM VERSE {color: red }

Not all styles conflict with each other. For example, consider these three rules:

BOOK VERSE {font-weight: bold }
POEM VERSE {font-style: italic }
CHAPTER VERSE {color: red }

Together these say that every VERSE element contained inside a BOOK element will
be bold; every VERSE element contained inside a POEM element will be italic; and
every VERSE element contained inside a CHAPTER element will be red. A VERSE ele-
ment that matches all three rules — one that has a BOOK ancestor, a POEM ancestor,
and a CHAPTER ancestor — will have all three properties; that is, it will be bold,
italic, and red.

In Listings 12-2 and 12-4, all VERSE elements are descendants of POEM elements, but
not immediate children. Some VERSE elements are immediate children of STANZA
elements, and some are immediate children of the REFRAIN element. A descendant
selector of the form POEM VERSE matches a VERSE element that is an arbitrary
descendant of a SONNET element. To specify a minimum generation for a descendant,
you can use the selector POEM * VERSE, which forces the VERSE element to be at
least a grandchild, or lower descendent of the POEM element.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 322

323Chapter 12 ✦ CSS Style Sheets

You can combine descendant and child selectors to find specific elements. For
example, the following rule italicizes all VERSE elements that are children of a
REFRAIN element that is, in turn, a descendant of a POEM element.

POEM REFRAIN>VERSE { font-style: italic }

Adjacent sibling selectors
A plus sign (+) between two element names signifies that the left-hand element
precedes the right-hand element at the same level of the hierarchy. The right-hand
element is selected. For example, this rule finds all REFRAIN elements that share a
parent with a STANZA element and that immediately follow a STANZA element:

STANZA+REFRAIN {color: red}

This rule finds all VERSE elements that are preceded by another VERSE element:

VERSE+VERSE {color: blue}

Applied to Listings 12-2 and 12-4, this has the effect of coloring all verses blue
except the first one in the stanza.

Attribute selectors
Attribute selectors identify specific element/attribute combinations. Square
brackets surround the name of the attribute being specified. For example, this
rule specifies a script font for all <POEM TYPE=”x”> elements, but not plain <POEM>
elements:

POEM[TYPE] { font-family: “Zapf Chancery”, cursive }

To distinguish between <POEM TYPE=”x”> and <POEM TYPE=”y”> elements, you
can add an equals sign (=) followed by the quoted attribute value. For example, this
rule only applies to sonnets:

POEM[TYPE=”SONNET”] { font-style: italic }

You can use a ~= to indicate that the attribute value only needs to contain the spec-
ified word somewhere within it. For example, this rule italicizes all POEM elements
whose TYPE attribute contains the word SONNET:

POEM[TYPE~=”SONNET”] { font-style: italic }

However, this would not find elements whose TYPE attribute contains the word
SONNETS or UNISONNET. CSS only looks for complete words. It does not look for
substrings.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 323

324 Part III ✦ Style Languages

You can use a |= to indicate that the attribute value needs to begin with the speci-
fied word. For example, this rule italicizes all POEM elements whose TYPE attribute
begins with the word SONNET:

POEM[TYPE|=”SONNET”] { font-style: italic }

This would not find elements whose TYPE attribute had the value “HEXAMETER
SONNET”, but it would match a POEM with a TYPE attribute having the value
“SONNET HEXAMETER”.

ID selectors
Sometimes, a unique element needs a unique style. You need a rule that applies to
exactly that one element. For example, suppose you want to make one element in a
list bold to really emphasize it in contrast to its siblings. In this case, you can write
a rule that selects the element by its ID — that is, by the value of its ID type attribute.
The selector is the name of the element, followed by a sharp sign (#) and the value
of the ID attribute.

For example, this rule makes the first STANZA element, and only the first STANZA
element, in Listing 12-4 bold. Other STANZA elements appear with the default weight.

STANZA#st1 {font-weight: bold}

However, there’s a catch. To tell which attributes have ID type and can therefore be
selected by an ID selector, the browser must read the DTD. Most browsers, including
Safari, Mozilla, and Netscape, do not read the external DTD subset, so if that’s where
the attribute is declared, they won’t know that its type is ID and won’t apply the
style rule. Internet Explorer does read the external DTD subset, but it’s just plain
buggy and won’t apply this style rule no matter what. Opera also fails to apply this
rule even when the attribute is declared in the internal DTD subset. You’re better
off simply using an attribute selector that picks up the attribute by name, like this:

STANZA[NUMBER=”st1”] {font-weight: bold}

Pseudo-elements
Pseudo-elements are treated as elements in style sheets but are not necessarily
particular named elements in the document source code or the document tree. They
are abstractions of certain parts of the rendered document after application of the
style sheet (for example, the first line of a paragraph). Pseudo-elements address
parts of the document that aren’t normally identified as separate elements, but
nonetheless often need separate styles. These include the following:

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 324

325Chapter 12 ✦ CSS Style Sheets

✦ The first line of an element

✦ The first letter of an element

✦ The position immediately before an element

✦ The position immediately after an element

Addressing the first letter
The most common reason to format the first letter of an element separately from the
rest of the element is to insert a drop cap, as shown in Figure 12-2. This is accom-
plished by writing a rule that is addressed with the element name and followed by
:first-letter, as in the following example:

CHAPTER:first-letter {
font-size: 300%;
float: left;
vertical-align: text-top;
margin-right: 12px

}

Figure 12-2: A drop cap on the first-letter pseudo-element
with small caps used on the first-line pseudo-element

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 325

326 Part III ✦ Style Languages

Addressing the first line
The first line of an element is also often formatted differently than subsequent lines.
For example, it might be printed in small caps instead of normal body text, as shown
in Figure 12-2. You can attach the :first-line selector to the name of an element
to create a rule that only applies to the first line of the element, as in the following
example:

CHAPTER:first-line { font-variant: small-caps }

Exactly what this pseudo-element selects is relative to the current layout. If the
window is larger and there are more words in the first line, more words will be in
small caps. If the window is made smaller or the font gets larger so that the text
wraps differently and fewer words fit on the first line, the words that are wrapped
to the next line are no longer in small caps. The determination of which characters
compose the first-line pseudo-element is deferred until the document is actually
displayed.

Before and after
The :before and :after pseudo-elements select the location immediately before
and after the element that precedes them. The content property is used to put data
into this location. For example, this rule places the string ---------- between STANZA
objects to help separate the stanzas. The line breaks are encoded as \A in the string
literal:

STANZA:after {content: “\A----------\A”}
STANZA:before {content: “\A----------\A”}

Content is the only property a :before or :after selector is allowed to have. In
addition to including raw text, this can insert the value of an attribute, various kinds
of quotation marks, or a file found at a particular URL.

The content property is discussed in more depth in the section on generated
content in Chapter 14.

Pseudo-classes
Pseudo-classes select elements that have something in common, but do not neces-
sarily have the same type. Pseudo-classes differ from regular classes in that they
select elements based on aspects other than the name, attributes, or content of the
element. Pseudo-classes differ from pseudo-elements in that they always select an
entire element, never just a part of it.

Cross-
Reference

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 326

327Chapter 12 ✦ CSS Style Sheets

For example, a pseudo-class might be based on the position of the mouse, the object
that has the focus, or whether an object is a link. The :hover pseudo-class refers to
whichever element the cursor is currently over, regardless of the element’s type. An
element can even change its pseudo-class as the reader interacts with the document.
Some pseudo-classes are mutually exclusive, but most can be applied simultaneously
to the same element and can be placed anywhere within an element selector. CSS
pseudo-classes include the following:

✦ :first-child

✦ :hover

✦ :lang

✦ :right

✦ :left

✦ :first

:first-child
The :first-child pseudo-class selects the first child of the named element, regard-
less of its type. For example, this rule makes the first verse of each stanza bold:

STANZA:first-child {font-weight: bold}

:hover
The :hover pseudo-class refers to elements that the mouse or other pointing
device is pointing at, but without the mouse button depressed. For example, this
rule emboldens the STANZA element the cursor is pointing at:

STANZA:hover { font-weight: bold }

The STANZA element returns to its normal weight when the cursor is no longer
positioned over it.

:lang()
The :lang() pseudo-class selects elements with a specified language. In XML, the
language is specified via the xml:lang attribute. The following rule changes the
direction of all VERSE elements written in Hebrew to read right to left, rather than
left to right:

VERSE:lang(he) { direction: “rtl” }

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 327

328 Part III ✦ Style Languages

Inheritance
CSS does not require that you define a rule giving a value for every property to every
element. Some properties have default values that are used when no rule is specified.
Even more importantly, most elements can simply inherit the value of a property
from their parent element. For example, if no rule explicitly specifies the font size of
an element, the element has the same font size as its parent. If no rule specifies the
color of an element, the element has the same color as its parent. The same is true
of most CSS properties. In fact, the only properties that aren’t inherited are the
background and box properties. For example, consider these rules:

P { font-weight: bold;
font-size: 24pt;
font-family: sans-serif}

BOOK { font-style: italic; font-family: serif}

Now consider this XML fragment:

<P>
According to the American Library Association,
Michael Willhoite’s <BOOK>Daddy’s Roommate</BOOK> was
the #2 most frequently banned book in the U.S. in the 1990s.

</P>

Although the BOOK element has not been specifically assigned a font-weight or a
font-size, it will be rendered in 24-point bold because it is a child of the P element.
It will also be italicized because that is specified in its own rule. BOOK inherits the
font-weight and font-size of its parent P. If later in the document a BOOK element
appears in the context of some other element, it will inherit the font-weight and
font-size of that element.

The font-family is a little trickier because both P and BOOK declare conflicting
values for this property. Inside the BOOK element, the font-family declared by
BOOK takes precedence. Outside the BOOK element, P’s font-family is used. So,
“Daddy’s Roommate” is drawn in a serif font, while “most frequently banned book”
is drawn in a sans serif font.

Often, you want the child elements to inherit formatting from their parents, so it’s
important not to overspecify the formatting of any element. For example, suppose I
had declared that BOOK was written in a 12-point font, as follows:

BOOK {font-style: italic; font-family: serif; font-size: 12pt}

Then the example would be rendered as shown in Figure 12-3, with the BOOK title
being much smaller than the body text it’s embedded in.

You could fix this with a special rule that uses a contextual selector to pick out BOOK
elements inside P elements, but it’s easier to simply inherit the parent’s font-size.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 328

329Chapter 12 ✦ CSS Style Sheets

Figure 12-3: The BOOK written in a 12-point font size

One way to avoid problems like this, while retaining some control over the size of
individual elements, is to use relative units such as ems and exs instead of absolute
units such as points, picas, inches, and centimeters. An em is the width of the letter
m in the current font. An ex is the height of the letter x in the current font. If the
font gets bigger, so does everything measured in ems and exs.

A similar option that’s available for some properties is to use percentage units.
For example, the following rule sets the font size of the FOOTNOTE_NUMBER element
to 80 percent of the font size of the parent element. If the parent element’s font size
increases or decreases, FOOTNOTE_NUMBER’s font size scales accordingly.

FOOTNOTE_NUMBER { font-size: 80% }

Exactly what the percentage is a percentage of varies from property to property. In
the vertical-align property, the percentage is of the line height of the element
itself. In a margin property, a percentage is a percentage of the element’s width.

Cascades
There are several ways a CSS style sheet can be attached to an XML document:

✦ The XML document can include an <?xml-stylesheet?> processing instruc-
tion in its prolog. In fact, there can be more than one of these.

✦ The style sheet itself can import other style sheets.

✦ The user can specify a style sheet for the document using mechanisms inside
the browser.

✦ The browser can provide a default style sheet.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 329

330 Part III ✦ Style Languages

Thus, a single document might have more than one style sheet. For example, a
browser might have a default style sheet that is added to the one that the designer
provides for the page. In such a case, it’s entirely possible that there will be multiple
rules that apply to one element, and that these rules may conflict. It’s important to
determine in which order the rules are applied. This process is called a cascade,
from which cascading style sheets get their name.

When multiple style rules match a particular element, the most specific one is
chosen. For example, these two rules say that verses have a plain font-style but
that verses inside a refrain are italicized:

VERSE {font-style: normal }
REFRAIN VERSE {font-style: italic }

A verse inside a refrain will be italic because a rule that applies only to verses inside
refrains is more specific than one that applies to all verses. In case of a conflict
between two equally specific rules, the last rule encountered in the style sheet
takes precedence.

Try to avoid depending on cascading order. It’s rarely a mistake to specify as little
style as possible and to let the browser preferences take control.

If no rule matches a given element, that element inherits its properties from its
parent. If there is no value to be inherited from the parent element, the default
value is used. You can give most properties the value inherit to say explicitly that
it inherits the value from its parent. However, because this is normally the default,
this isn’t done much in practice. Instead, the property is simply left unspecified.

Different Rules for Different Media
XML documents aren’t just for web pages. They can be shown on TV screens, printed
on paper, bound in books, read by speech synthesizers, beamed to Palm Pilots,
and projected onto movie screens. Each media type has its own customary styles
and formats. Italics don’t make much sense on a dumb terminal. A font that’s easily
readable on paper at 300 dpi might be illegible when displayed on a low-resolution
computer screen.

CSS allows you to vary styles to match the medium in which the content is displayed.
For example, text is easier to read onscreen if it uses a sans serif font, while text on
paper is generally easiest to read if it is written in a serif font. You can enclose style
rules intended for only one medium in an @media rule naming that medium. There
can be as many @media rules in a document as there are media types to specify. For
example, Listing 12-6 formats a POEM differently depending on whether it’s being
printed on paper or displayed onscreen.

Tip

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 330

331Chapter 12 ✦ CSS Style Sheets

Listing 12-6: A CSS Style Sheet with Different Styles for
Different Media

@media print {
POEM { font-size: 10pt; font-family: Times, serif }
TITLE { font-size: larger; font-weight: bold;

font-family: Helvetica, sans-serif }
}
@media screen {
POEM { font-size: 12pt;

font-family: Geneva, Arial, sans-serif }
}
@media screen, print {
VERSE { line-height: 1.2 }

}
POEM, VERSE, TITLE, POET, STANZA, REFRAIN { display: block }
POET, STANZA, REFRAIN { margin-bottom: 2mm }
TITLE {font-size: larger; font-weight: bold }

The first @media block defines styles that will only be used if the document is printed
on paper. The second @media block defines styles that will only be used when the
document is displayed on the screen. The screen rules pick a larger font than the
print rules do. Because computer displays have much lower resolutions than print-
ers, it’s important to make the font larger on the screen than on the printout and to
choose a font that’s designed for the screen. The third @media block provides styles
that apply to both of these media types. To designate style instructions for multiple
media types simultaneously, simply list them following the @media rule designator
separated by a comma. The last three rules apply in all media: screen, print, or any-
thing else.

The browser decides which rules make sense in its current context when it knows
how it’s going to display the document. CSS does not specify an all-inclusive list of
media types, although it does provide a list of 10 possible values:

✦ all— All devices

✦ aural (continuous, aural) — Speech synthesizers

✦ braille (continuous, tactile) — Braille tactile feedback devices for the sight
impaired

✦ embossed (paged, tactile) — Paged Braille printers

✦ handheld (visual) — PDAs and other handheld devices, such as Windows CE
palmtops, Newtons, and Palm Pilots

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 331

332 Part III ✦ Style Languages

✦ print (paged, visual) — All printed, opaque material

✦ projection (paged, visual) — Presentation and slide shows, whether projected
directly from a computer or printed on transparencies

✦ screen (continuous, visual) — Bitmapped, color computer displays

✦ tty (continuous, visual) — Dumb terminals and old PC monitors that use a
fixed-pitch, monochromatic character grid

✦ tv (aural/visual) — Television-type devices; that is, low-resolution, analog
display, color

Some properties are only available with specific media types. For example, the
pitch property only makes sense with the aural media type.

Browsing software does not have to support all these types. Indeed, I know of no
single device that does support all of these. However, style sheet designers should
probably assume that readers will use any or all of these types of devices to view
their content.

Importing Style Sheets
The @import rule embeds a different style sheet into an existing style sheet. This
allows you to build large style sheets from smaller, easier-to-understand pieces.
An absolute or relative URL is used to identify the style sheets. For example, the
following rule imports the file poetry.css:

@import url(poetry.css);

@import rules may specify a media type following the name of the style sheet, in
which case the imported style sheet rules will only be used in the specified medium.
For example, the following rule imports the file printmedia.css. However, the rules
in this style sheet will only be applied to printouts and not to screen displays.

@import url(printmedia.css) print;

The next rule imports the file continuous.css that will be used for both computer
monitors and/or television display:

@import url(continuous.css) tv, screen;

The @import directives must appear at the beginning of the style sheet, before any
rules. Cycles (for example, poem.css imports stanza.css, which imports poem.css)
are prohibited.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 332

333Chapter 12 ✦ CSS Style Sheets

Style sheets that are imported into other style sheets have lower precedence than
the importing style sheet. This means that if sonnet.css imported poem.css and they
declared conflicting rules for an element, the rules in sonnet.css would override
those in poem.css.

Character Sets
CSS style sheets can be written in a multitude of encodings — ISO 8859-1, SJIS, UTF-8,
and so on — just like XML documents. There are three ways to specify the character
set in which a style sheet is written, and they take precedence in the following order:

1. The HTTP “charset” parameter in a “Content-Type” field

2. An @charset rule in the style sheet itself

3. The charset pseudo-attribute of the xml-stylesheet processing instruction
that links the style sheet to the XML document

Most of the time, the @charset rule is the easiest one to use because it lets the
person who writes the style sheet choose whatever encoding is convenient for him
or her. Each style sheet can contain no more than one of these. If present, it must
appear at the very beginning of the document and cannot be preceded by any other
characters. It’s followed by the name of the character set in double quotes. For
example, this rule says that the style sheet is written in the ISO 8859-1 character
set, a.k.a. Latin-1:

@charset “ISO-8859-1”

The character set name specified in this statement must be a name as described
in the IANA registry. The complete list can be found at http://www.iana.org/
assignments/character-sets.

Summary
This chapter showed you how to apply CSS styles to XML elements and documents.
In this chapter, you learned the following:

✦ CSS is a straightforward declarative language for applying styles to the contents
of elements that works well with HTML and even better with XML.

✦ Browser implementations of CSS are imperfect. Extensive testing is necessary
before publishing a document and its style sheet.

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 333

334 Part III ✦ Style Languages

✦ One or more processing instructions in the form <?xml-stylesheet type=
”text/css” href=”url”?> in the prolog indicates which style sheets a
browser should apply to the document.

✦ Selectors are a list of the elements that a rule applies to.

✦ Many (though not all) CSS properties are inherited by the children of the
elements they apply to.

✦ If multiple rules apply to a single element, the formatting properties cascade
in a sensible way.

✦ You can include C-like /* */ comments in a CSS style sheet.

✦ One style sheet can import another using an @import rule.

✦ An @media rule identifies in which media the given styles should be applied.

✦ An @charset rule identifies the character set in which the style sheet is
encoded.

This chapter focused on how you choose the elements to apply styles to. The next
two chapters focus on the styles themselves. You’ll learn about all the different
CSS properties that let you specify borders, colors, margins, fonts, sizes, positions,
and more.

✦ ✦ ✦

16 549863 Ch12.qxd 1/28/04 9:49 AM Page 334

CSS Layouts

When a browser renders an XML document, it places
the document text on one or more pages. The text on

each page is organized into nested boxes. Each paragraph is a
box. Each line in the paragraph is a box. And these line boxes
can contain still other boxes, which ultimately contain text. As
well as paragraphs, there may be tables and lists and other
items that are placed in boxes and that are subdivided into
smaller boxes. Furthermore, the browser can create boxes to
hold images, pull quotes, and other content that isn’t part of
the normal flow of the page. This chapter shows you how CSS
arranges text on the page in boxes with different sizes, bor-
ders, margins, padding, and positions. You learn how to create
boxes that are a certain size or that fall into a certain range of
sizes. You also learn how to position the boxes at particular
points on the page, as well as how to let the browser do the
hard work for you.

Netscape 6.0 and 7.0, Mozilla, Opera 4.0 and later, Safari,
and Internet Explorer 5.0 and later all implement only
some parts of the CSS specification. Earlier versions of the
major browsers, while perhaps supporting some form of
CSS for HTML documents, do not support it at all for XML
documents. To make matters worse, they all implement
different subsets of the specification, and sometimes don’t
implement the same subsets for XML as they do for HTML.
I’ll note where one browser or another has a particular
problem as we go along. However, if you find that some-
thing in this chapter doesn’t work as advertised in your
favorite browser, please complain to the browser vendor,
not to me.

CSS Units
CSS properties have names and values. Table 13-1 lists a few
of these property names and sample values.

Caution

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

CSS units

The display property

Box properties

Size

Positioning

Formatting pages

✦ ✦ ✦ ✦

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 335

336 Part III ✦ Style Languages

Table 13-1
Sample Property Names and Values

Name Value

display none

font-style italic

margin-top 0.5in

font-size 12pt

border-style solid

color #CC0033

background-color white

background-image url(http://www.idgbooks.com/images/paper.gif)

list-style-image url(/images/redbullet.png)

line-height 120%

The names are all CSS keywords. However, the values are much more diverse.
Some of them are keywords, such as the none in display: none or the solid in
border-style: solid. Other values are numbers with units, such as the 0.5in in
margin-top: 0.5in or the 12pt in font-size: 12pt. Still other values are URLs,
such as url(http://www.idgbooks.com/images/paper.gif) in background-
image: url(http://www.idgbooks.com/images/paper.gif); and still others
are RGB colors, such as the #CC0033 in color: #CC0033. Different properties per-
mit different values. However, only five different kinds of values account for almost
all properties. These five types are:

✦ Length

✦ URL

✦ Color

✦ Keyword

✦ String

Keywords vary from property to property, but the other kinds of values are the
same from property to property. That is, a length is a length regardless of which
property it’s the value of. If you know how to specify the length of a border, you
also know how to specify the length of a margin, a padding, an image, and a font.
This reuse of syntax makes working with different properties much easier.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 336

337Chapter 13 ✦ CSS Layouts

Length values
In CSS, length is a scalar measure used for width, height, font size, word and letter
spacing, text indentation, line height, margins, padding, border widths, and many
other properties. Lengths are given as a number followed by the abbreviation for
one of these units:

Inches in

Centimeters cm

Millimeters mm

Points pt

Picas pc

Pixels px

Ems em

Exs ex

For example, this rule says that the font used for the TITLE element should be
exactly 1 centimeter high:

TITLE {font-size: 1cm}

Although font sizes are normally specified in points rather than centimeters, the
browser will perform any necessary conversion between units.

The number may have a decimal point (for example, margin-top: 0.3in). Some
properties allow negative values, such as –0.5in, but not all do; and even those
that do often place limits on how negative a length can be. It’s best to avoid nega-
tive lengths for maximum cross-browser compatibility.

The units of length are divided into three classes:

✦ Absolute units — Inches, centimeters, millimeters, points, and picas

✦ Relative units — Pixels, ems, and exs

✦ Percentages

Absolute units of length
Absolute units of length are something of a misnomer because there’s really no
such thing as an absolute unit of length on a computer screen. Changing a moni-
tor’s resolution from 640×480 to 1600×1200 changes the length of everything on the
screen, inches and centimeters included. Nonetheless, CSS supports five “absolute”
units of length that at least don’t change from one font to the next. These are listed
in Table 13-2, along with the conversion factors between them.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 337

338 Part III ✦ Style Languages

Table 13-2
Absolute Units of Length

Inch Centimeters Millimeters Points Picas
(in) (cm) (mm) (pt) (pc)

Inch 1.0 2.54 25.4 72 6

Centimeters 0.3937 1.0 10 28.3464 4.7244

Millimeters 0.03937 0.1 1.0 2.83464 0.47244

Points 0.01389 0.0352806 0.352806 1.0 0.83333

Picas 0.16667 0.4233 4.233 12 1.0

Relative units of length
CSS also supports three relative units for lengths:

✦ em— The width of the letter m in the current font

✦ ex— The height of the letter x in the current font

✦ px— The size of a pixel (This assumes square pixels. All common modern dis-
plays use square pixels, although some older PC monitors, mostly now leaking
lead into landfills, did not.)

For example, this rule sets the left and right borders of the PULLQUOTE element to
twice the width of the letter m in the current font and the top and bottom borders
to one and a half times the height of the letter x in the current font:

PULLQUOTE { border-right-width: 2em;
border-left-width: 2em;
border-top-width: 1.5ex;
border-bottom-width: 1.5ex }

The normal purpose of ems and exs is to set a width that’s appropriate for a given
font, without necessarily knowing how big the font is. For example, in the preceding
rule, the font size is not known, so the exact width of the borders is not known
either. It can be determined at display time by comparison with the m and the x in
the current font. Larger font sizes will have correspondingly larger ems and exs.

Lengths in pixels are relative to the height and width of a (presumably square) pixel
on the monitor. Widths and heights of images are often given in pixels.

Pixel measurements are generally not a good idea. First, the size of a pixel varies
widely with resolution. Most power users set their monitors at much too high a
resolution, which makes the pixels far too small for legibility.

Caution

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 338

339Chapter 13 ✦ CSS Layouts

Second, within the next five years, 200-dpi and even 300-dpi monitors will
become common, finally breaking away from the rough 72-pixels-per-inch (give or
take 28 pixels) de facto standard that’s prevailed since the first Macintosh in 1984.
Documents that specify measurements in non-screen-based units, such as ems,
exs, points, picas, and inches, will be able to make the transition. However, docu-
ments that use pixel-level specifications will become illegibly small when viewed
on high-resolution monitors.

Percentage units of length
Finally, lengths can be specified as a percentage of something. Generally, this is a
percentage of the current value of a property. For example, if the font-size of a
STANZA element is 12 points, and the font size of the VERSE the STANZA contains is
set to 150 percent, the font size of the VERSE will be 18 points. Such a rule would
look like this:

VERSE {font-size: 150%}

The exact size in this case does depend on the size of the font in the parent ele-
ment. If the parent element font-size is bigger, the font-size of the child element will
be bigger. If the parent element font-size is smaller, the font-size of the child element
will be smaller.

URL values
Several CSS properties can have URL values, including background-image,
content, and list-style-image. Furthermore, as you saw in the last chapter, the
@import rule uses URL values. Literal URLs are placed inside url(). All forms of
relative and absolute URLs are allowed. For example:

DOC {background-image: url(http://www.mysite.com/bg.gif) }
LETTER {background-image: url(/images/paper.gif) }
GAME {background-image: url(currentposition.gif)}
INSTRC {background-image: url(../images/screenshot.gif)}

You can enclose the URL in single or double quotes, although nothing is gained by
doing so. For example:

DOC {background-image: url(“http://www.mysite.com/bg.gif”)}
LETTER {background-image: url(‘/images/paper.gif’) }
GAME {background-image: url(“currentposition.gif”) }
INSTRC {background-image: url(‘../images/screenshot.gif’) }

Any parentheses that appear inside the URL should be escaped as \(and \) or %2B
and %2C. Otherwise, standard URL escaping rules apply.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 339

340 Part III ✦ Style Languages

Color values
One of the most widely adopted uses of CSS is applying foreground and background
colors to elements on the page. Properties that take on color values include color,
background-color, and border-color.

CSS provides four ways to specify color: by name, by hexadecimal components, by
integer components, and by percentages. Defining color by name is the simplest
approach. CSS understands these 16 color names adopted from the Windows VGA
palette:

aqua

black

blue

fuchsia

gray

green

lime

maroon

navy

olive

purple

red

silver

teal

white

yellow

Of course, the typical color monitor can display several million more colors. You
can create other colors by specifying values for the RGB components of the colors.
CSS uses a 24-bit color model. Each primary color is stored in 8 bits. An 8-bit
unsigned integer is a number between 0 and 255. This number can be given in
either decimal or hexadecimal. Alternately, each component can be given as a per-
centage between 0 percent (0) and 100 percent (255). Table 13-3 lists some of the
possible colors and their decimal, hexadecimal, and percentage RGB values.

Table 13-3
Sample CSS Colors

Color Decimal RGB Hexadecimal RGB Percentage RGB

Pure red rgb(255,0,0) #FF0000 rgb(100%, 0%, 0%)

Pure green rgb(0,255,0) #00FF00 rgb(0%, 100%, 0%)

Pure blue rgb(0,0,255) #0000FF rgb(0%, 0%, 100%)

White rgb(255,255,255) #FFFFFF rgb(100%, 100%, 100%)

Black rgb(0,0,0) #000000 rgb(0%, 0%, 0%)

Light violet rgb(255,204,255) #FFCCFF rgb(100%, 80%, 100%)

Medium gray rgb(153,153,153) #999999 rgb(60%, 60%, 60%)

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 340

341Chapter 13 ✦ CSS Layouts

Color Decimal RGB Hexadecimal RGB Percentage RGB

Brown rgb(153,102,51) #996633 rgb(60%, 40%, 20%)

Pink rgb(255,204,204) #FFCCCC rgb(100%, 80%, 80%)

Orange rgb(255,204,204) #FFCC00 rgb(100%, 80%, 80%)

Many people still use 256-color displays. Some people even browse the Web in
monochrome, especially on handheld devices such as Palm Pilots. Even on more
capable systems, some colors are distinctly different on Macs and PCs. The most
reliable colors are the 16 named colors.

The next most reliable colors are those formed using only the hexadecimal com-
ponents 00, 33, 66, 99, CC, and FF (0, 51, 102, 153, 204, 255 in decimal; 0%, 20%,
40%, 60%, 80%, 100% in percentage units). For example, 33FFCC is a “browser-
safe” color because the red component is made from two 3s, the green from two
Fs, and the blue from two Cs.

If you specify a hexadecimal RGB color using only three digits, CSS duplicates
them; for example, #FC0 is really #FFCC00 and #963 is really #996633.

System colors
CSS also allows you to specify colors by copying them from the local graphical user
interface (GUI). These system colors can be used with all color-related properties.
Style rules based on system colors take into account user preferences, and there-
fore offer some advantages, including the following:

✦ Pages that fit the user’s preferred look and feel

✦ Greater accessibility for users whose default settings compensate for a
disability

Table 13-4 lists system color keywords and their descriptions. Any of the color
properties can take on these values.

Table 13-4
Additional System Colors Used with All Color-Related Properties

System Color Keywords Description

ActiveBorder The color of the border of the currently active window.

ActiveCaption The color of the caption of the currently active window.

AppWorkspace The background color of the multiple-document interface
parent window.

Continued

Tip

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 341

342 Part III ✦ Style Languages

Table 13-4 (continued)

System Color Keywords Description

Background Desktop background color.

ButtonFace The foreground color for three-dimensional GUI widgets.

ButtonHighlight The shadow color for three-dimensional widgets (for edges
facing away from the light source).

ButtonShadow The shadow color for three-dimensional widgets.

ButtonText Color of the text on push buttons.

CaptionText Color of the text in captions, size boxes, and scroll bar
arrow boxes.

GrayText The color of disabled text. This color is set to #000 if the
current display driver does not support a solid gray color.

Highlight The color of items selected in a control.

HighlightText The color with which selected text is highlighted.

InactiveBorder The color of an inactive window border.

InactiveCaption The color of an inactive window caption.

InactiveCaptionText The color of the text of a caption of an inactive window.

InfoBackground The background color for ToolTip controls.

InfoText The text color used in ToolTip controls.

Menu The background color of a menu.

MenuText The color of text in menu items.

Scrollbar The color of the scroll bar area.

ThreeDDarkShadow Dark shadow for three-dimensional widgets.

ThreeDFace The face color for three-dimensional widgets.

ThreeDHighlight The highlight color for three-dimensional widgets.

ThreeDLightShadow The light color for three-dimensional widgets (for edges
facing the light source).

ThreeDShadow The color of the dark shadow for three-dimensional
widgets.

Window The color in the window background.

WindowFrame The color of the window frame.

WindowText The color of the text in the window.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 342

343Chapter 13 ✦ CSS Layouts

For example, this rule sets the foreground and background colors of a VERSE to the
same colors used for the foreground and background of the browser’s window:

VERSE { color: WindowText; background-color: Window}

Keyword values
Keywords are not necessarily the same from property to property, but similar prop-
erties generally support similar keywords. For example, the value of border-left-
style can be any one of the keywords none, dotted, dashed, solid, double,
groove, ridge, inset, or outset. The border-right-style, border-top-style,
border-bottom-style, and border-style properties can also assume one of this
set of values. The individual keywords are discussed in the sections about the indi-
vidual properties.

Strings
A few CSS properties, such as font-family and content, have string values. In
CSS, a string is a sequence of Unicode characters enclosed in either single or dou-
ble quotes. If the string contains double quotes, single quotes must be used to
enclose the string and vice versa.

You can also use a backslash to escape otherwise illegal characters, typically single
or double quotes. For example, you can use \” to include a double quote mark inside
a string that’s surrounded by double quotes. Strings cannot contain line breaks.
However, you can use \A to insert one. You can also include a raw line break if you
prefix it by a backslash first. This is sometimes useful in the content property.

You can also use a backslash followed by the hexadecimal value of a Unicode char-
acter to insert a character that isn’t easy to type. For example, to insert the Greek
letter Θ, Unicode value 398 (in hexadecimal), you could simply use \398.

The Display Property
From the perspective of CSS, all elements are block elements, inline elements, table
parts, or invisible. The display property specifies which one of these an element
is. This property has 19 possible values given by keywords, as shown in Table 13-5.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 343

344 Part III ✦ Style Languages

Table 13-5
Values for the Display Property

Block Level Inline Elements Table Parts Invisible

block inline table-column none

table inline-table table-cell

list-item marker table-footer-group

run-in run-in table-column-group

compact compact table-row

table-header-group

table-row-group

table-caption

Block elements are usually separated from other elements by line breaks before and
after each one. Table elements are parts of a grid. Inline elements are placed one
after the other in a row. These are like words in a sentence. They move freely as
text is added and deleted around them. Block elements are more fixed and, at most,
move up and down but not left and right as content is added before and after them.
Block elements include tables, lists, and list items. Most display types are just modi-
fications of the main block or inline types.

A browser uses the distinction between these elements to make its first pass at lay-
ing out the document. It will place the text of any inline elements on the page mov-
ing from left to right, until it fills the line. If necessary, it will continue on the next
line down. (The direction property lets you reverse the order so that elements
are placed from right to left, useful if you’re formatting Hebrew or Arabic.) However,
when the browser comes to a block-level element, either the start or the end of one,
it breaks the line and continues on the next line.

Consider Listing 13-1, which is a synopsis of William Shakespeare’s Twelfth Night.
The root element, SYNOPSIS, contains six top-level elements, one TITLE and five
ACT elements. Each ACT contains an ACT_NUMBER and one or more SCENE children.
Each SCENE contains a SCENE_NUMBER and a LOCATION. LOCATION elements contain
mixed content, possibly including one or more CHARACTER elements.

Listing 13-1: A Synopsis of Shakespeare’s Twelfth Night in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”synopsis.css”?>
<SYNOPSIS>
<TITLE>Twelfth Night</TITLE>

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 344

345Chapter 13 ✦ CSS Layouts

<ACT>
<ACT_NUMBER>Act 1</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 2</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

Continued

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 345

346 Part III ✦ Style Languages

Listing 13-1 (continued)

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 3</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 4</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 346

347Chapter 13 ✦ CSS Layouts

<ACT>
<ACT_NUMBER>Act 5</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
</ACT>

</SYNOPSIS>

You can do a fair job of formatting this document using only display properties.
SYNOPSIS, TITLE, ACT, and SCENE are all block-level elements. ACT_NUMBER,
SCENE_NUMBER, LOCATION, and CHARACTER can remain inline elements. Listing 13-2
is a very simple style sheet that accomplishes this.

Listing 13-2: A Very Simple Style Sheet for the Synopsis
of a Play

SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 13-1 shows the synopsis of Twelfth Night loaded into Mozilla with the style
sheet of Listing 13-2. Notice that in Listing 13-2 it is not necessary to explicitly spec-
ify that ACT_NUMBER, SCENE_NUMBER, LOCATION, and CHARACTER are all inline ele-
ments. This is the default unless otherwise specified. Children do not inherit the
display property. Thus, just because SCENE is a block-level element does not mean
that its children, SCENE_NUMBER and LOCATION, are also block-level elements.

Inline elements
Inline elements are laid out horizontally in a row, starting from the top of the con-
taining box of the surrounding page or block element and moving from left to right.
When a row fills up, a new row is started on the next line down. Words can be
wrapped, but only as necessary to fit the text on the screen. There are no hard line
breaks. In HTML, EM, STRONG, B, I, and A are all inline elements. As another exam-
ple, you can think of EM, STRONG, B, I, and A in this paragraph as inline code ele-
ments. They aren’t separated out from the rest of the text. If no value is specified
for the display property, the default is to make the element an inline element.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 347

348 Part III ✦ Style Languages

Figure 13-1: The synopsis of Twelfth Night as displayed in Mozilla

Block elements
Block-level elements are laid out vertically, one on top of the other. The first block
is laid out in the top left corner of the containing block; then the second block is
placed below it, also flush against the left edge of the containing block. Each block-
level element is separated from its sibling and parent elements, generally by placing
a line break before and after it. The vertical distance between each block is defined
by the individual block’s margin and padding properties. In HTML, P, BLOCKQUOTE,
H1 through H6, and HR are all examples of block-level elements. The paragraphs and
headings you see on this page are all block-level elements. Block-level elements
may contain inline elements and other block-level elements, but inline elements
should only contain other inline elements, not block-level elements, although this
rule is not strictly enforced.

None
Setting display to none hides the element. An element whose display property is
set to none is invisible and not rendered on the screen. It does not affect the posi-
tion of other visible elements on the page. In HTML, TITLE, META, and HEAD would
have a display property of none. In XML, display: none is often useful for meta-
information in elements.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 348

349Chapter 13 ✦ CSS Layouts

For example, suppose you wanted to list the locations in the synopsis but drop
everything else. You could use the style sheet in Listing 13-3. This hides the TITLE,
ACT_NUMBER, and SCENE_NUMBER elements by setting their display property to
none. The LOCATION element is displayed as a block. Figure 13-2 shows the result of
applying this style sheet to Listing 13-1.

Listing 13-3: A Style Sheet for the Synopsis of a Play That
Only Shows the Locations

TITLE, ACT_NUMBER, SCENE_NUMBER { display: none }
LOCATION { display: block}

Once you’ve hidden an element by using display: none, you cannot then show
any of its descendants. For example, consider these rules:

SYNOPSIS { display: none }
LOCATION { display: block}

Because the LOCATION element is contained inside the SYNOPSIS element, it is hid-
den even though its own display property is set to block.

Figure 13-2: The synopsis of Twelfth Night showing only locations

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 349

350 Part III ✦ Style Languages

Compact and run-in elements
The compact and run-in values of the display property identify an element as
either a block or an inline box depending on context. Other properties declared as
these types will treat them as either a block or inline element depending on what
they eventually become.

A run-in box is a block-level element if the element that follows it is an inline ele-
ment. It is an inline element if the element that follows it is a block-level element. In
other words, it guarantees that there will be a line break before it but not after it.
This is sometimes useful for headings.

A compact box will normally be a block-level element. However, if it’s followed by a
block-level element and it can fit in the margin of that element’s box, the browser
will put it in the margin rather than making it a separate element.

Marker
Setting the display property to marker identifies a block that’s formed by content
generated in the style sheet rather than copied in from the XML document. This
value is only used with the :before and :after pseudo-elements that have been
attached to block-level elements.

Tables
CSS lets you format elements in tables using these 10 values of the display property:

✦ table

✦ inline-table

✦ table-row-group

✦ table-header-group

✦ table-footer-group

✦ table-row

✦ table-column-group

✦ table-column

✦ table-cell

✦ table-caption

For example, setting the display property to table indicates that the selected ele-
ment is a block-level container for various smaller children that will be arranged in
a grid. The inline-table value forces the table to act as an inline element, allow-
ing text to float along its sides, and allows multiple tables to be placed side by side.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 350

351Chapter 13 ✦ CSS Layouts

The other eight values in this list identify particular parts of a table, and should
only be used when the elements they’re applied to are descendants of an element
formatted as a table or inline table. The table-caption value formats an element
as a table caption. The table-row-group, table-header-group, and table-
footer-group values create groups of data cells that are formatted as a single row.
The table-column-group creates a group of data cells that are formatted as a sin-
gle column that was defined using the table-column value. XML elements that
appear in table cells have — naturally enough — a display property with the value
table-cell.

For example, if you were to build a table of the scenes and locations in the synop-
sis, each scene could be a row. Scene numbers and locations could be cells. Each
act could be a row group. The title would be a header. Listing 13-4 demonstrates.

Listing 13-4: A Style Sheet That Formats Synopses as Tables

SYNOPSIS {display: table}
TITLE {display: table-header}
SCENE { display: table-row}
ACT { display: table-row-group }
LOCATION, SCENE_NUMBER { display: table-cell }

Figure 13-3 shows the result of applying this style sheet to the Twelfth Night synop-
sis. By default, there are no grid lines or borders. These could be inserted using the
border properties that you’ll encounter shortly. It also wouldn’t hurt to add a little
padding around each cell.

Internet Explorer 6.0 and earlier does not support table formatting using CSS.

List items
List-item elements are block-level elements with a list-item marker preceding them.
In HTML, LI is a list-item element. If you simply set the display property to list-
item and don’t do anything else, the element is formatted as a block-level element
that may or may not have a bullet, called a marker, in front of it. However, you can
set three additional properties that affect how list items are displayed, as follows:

✦ list-style-type

✦ list-style-image

✦ list-style-position

Caution

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 351

352 Part III ✦ Style Languages

Figure 13-3: A table-based synopsis layout in Mozilla

There’s also a shorthand list-style property that lets you set all three in a
single rule.

Internet Explorer 6.0 and earlier on Windows does not support display: list-
item. Internet Explorer 5.1 and 5.2 for Macintosh do support display: list-
item.

One thing CSS lists do not imply, however, is indentation. If you’re accustomed to
using lists to indent items from HTML, you need to break yourself of that habit. In
CSS, indentation is provided by the margin and padding properties, as well as the
text-indent property. List items are not automatically indented unless you set the
other properties necessary to indent something. However, the list item marker may
be indented to the left of the normal text. That is, it may have a negative indent, and
this may place the marker off the screen. It’s important to set a reasonable positive
left margin on the list’s parent element.

The list-style-type property
The list-style-type property determines the nature of the bullet character in
front of each list item. Possibilities include the following:

✦ disc: •

✦ circle: °

Caution

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 352

353Chapter 13 ✦ CSS Layouts

✦ square: o

✦ decimal: 1, 2, 3, 4, 5, and so on

✦ decimal-leading-zero: 01, 02, 03, 04, 05, and so on

✦ lower-roman: i, ii, iii, iv, and so on

✦ upper-roman: I, II, III, IV, and so on

✦ lower-alpha: a, b, c, and so on

✦ upper-alpha: A, B, C, and so on

✦ lower-latin: Same as lower-alpha; a, b, c, and so on

✦ upper-latin: Same as upper-alpha; A, B, C, and so on

✦ lower-greek: α, β, γ, δ, ε, and so on

✦ hebrew: and so on

✦ armenian: and so on

✦ georgian: and so on

✦ cjk-ideographic: and so on

✦ hiragana: and so on

✦ katakana: and so on

✦ hiragana-iroha: and so on

✦ katakana-iroha: and so on

✦ none: No bullet character is used

I would not rely on a typical Western browser being capable of handling the more
unusual of these. In that case, it will default to decimal. (European-style numerals
have pretty much replaced Hebrew, Han, Roman, and other traditional number sys-
tems in most of the world for day-to-day use.) If no value is set, the default is disc.
For example, the style sheet in Listing 13-5 defines ACT and SCENE as list items.
However, ACT is given no bullet, and SCENE is given a square bullet. Figure 13-4
shows the synopsis in Opera with this style sheet.

Listing 13-5: A Style Sheet for a Play Synopsis That Uses
List Items

SYNOPSIS { display: block; margin-left: 0.5in }
TITLE { display: block }
ACT { display: list-item; list-style-type: none }
SCENE { display: list-item; list-style-type: square }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 353

354 Part III ✦ Style Languages

Figure 13-4: A list-based synopsis layout

The list-style-image property
Alternately, you can use a bitmapped image as the bullet. To do this, you set the
list-style-image property to the URL of the image file. If both list-style-
image and list-style-type are set, the list-style-image will be used, unless
it can’t be found, in which case the bullet specified by list-style-type will be
used. For example, this rule uses a heart (♥) stored in the file heart.jpg as the bullet
before each scene. (After all, Twelfth Night is a romantic comedy.) Figure 13-5 shows
the result of adding this rule to the synopsis style sheet.

SCENE { display: list-item;
list-style-image: url(heart.jpg);
list-style-type: square

}

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 354

355Chapter 13 ✦ CSS Layouts

Figure 13-5: A list-based synopsis layout with an image bullet

The list-style-position property
The list-style-position property specifies whether the bullet is drawn inside
or outside the text of the list item. The legal values are inside and outside. The
default is outside. The difference is only obvious when the text wraps onto more
than one line. This is inside:

* If music be the food of love, play on/Give me excess of it, that, surfeiting,/The
appetite may sicken, and so die./That strain again! it had a dying fall:

This is outside:

* If music be the food of love, play on/Give me excess of it, that, surfeiting,/The
appetite may sicken, and so die./That strain again! it had a dying fall:

The list-style shorthand property
Finally, the list-style property is a shorthand that allows you to set all three of
list-style-image, list-style-type, and list-style-position properties
simultaneously. For example, this rule says that a SCENE is displayed inside with a
heart image and no bullet:

SCENE { display: list-item;
list-style: none inside url(heart.jpg) }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 355

356 Part III ✦ Style Languages

Box Properties
CSS arranges text on a two-dimensional canvas. The elements drawn on this canvas
are laid out in imaginary rectangles called boxes. Each box is given a size and a
position, as well as margins, borders, and padding. The box edges are always ori-
ented parallel to the edges of the canvas. Box properties control the width, height,
margins, padding, and borders of the individual boxes. Figure 13-6 shows how these
properties relate to each other.

Figure 13-6: A CSS box with margin, border, and padding

These boxes stack together and wrap around each other so that the contents of
each element are aligned in an orderly fashion, based upon the rules of the style
sheets.

Margin properties
Margin properties control the amount of space added to the box outside its border.
This can be set separately for the top, bottom, right and left margins using the
margin-top, margin-bottom, margin-right, and margin-left properties. Each
margin can be specified as an absolute length or as a percentage of the size of the
parent element’s width. For example, you can add a little extra space between each
ACT element and the preceding element by setting ACT’s margin-top property to
3ex, as Listing 13-6 and Figure 13-7 demonstrate.

An XML element lives in a box
like this one. The total width of the
element is the sum of the natural
width or specified width of the
element, the width of the margin,
the width of the border, and the
width of the padding around the
border. The total height of the
element is the sum of the height
of the element, the height of the
margin, the height of the border,
and the height of the padding
around the border.

The margin

The border

The padding

The element

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 356

357Chapter 13 ✦ CSS Layouts

Listing 13-6: Extra Space on the Top Margin of Each Act

ACT { margin-top: 3ex }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 13-7: The top margin of the ACT element is larger.

You can also set all four margins simultaneously using the shorthand margin prop-
erty. For example, you can add extra white space around the entire Twelfth Night
document by setting the margin property for the root-level element (SYNOPSIS in
this example), as shown by the first rule of Listing 13-7 and in Figure 13-8.

Listing 13-7: Adding a 1-Centimeter Margin on Each Side
of the SYNOPSIS

SYNOPSIS { margin: 1.0cm 1.0cm 1.0cm 1.0cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 357

358 Part III ✦ Style Languages

Figure 13-8: One centimeter of white space around the entire synopsis

In fact, this is the same as using a single value for margin, which CSS interprets as
being applicable to all four sides.

SYNOPSIS { margin: 1.0cm }

Given two margin values, the first applies to top and bottom, the second to right
and left. Given three margin values, the first applies to the top, the second to the
right and left, and the third to the bottom. It’s probably easier to just use the sepa-
rate margin-top, margin-bottom, margin-right, and margin-left properties if
you want to specify different margins for different sides.

Border properties
Most boxes don’t have borders. They are invisible rectangles that affect the layout
of their contents, but are not seen as boxes by the readers. However, you can make
a box visible by drawing lines around it using the border properties. Border proper-
ties let you specify the style, width, and color of the border.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 358

359Chapter 13 ✦ CSS Layouts

Border style
By default, no border is drawn around boxes regardless of the width and color of
the border. To make a border visible, you must change the border-style property
of the box from its default value of none to one of these 10 values:

✦ none— No line

✦ hidden— An invisible line that still takes up space

✦ dotted— A dotted line

✦ dashed— A dashed line

✦ solid— A solid line

✦ double— A double solid line

✦ grooved— A line that appears to be drawn into the page

✦ ridge— A line that appears to be coming out of the page

✦ inset— The entire element (not just the line around the edge) appears
pushed into the document

✦ outset— The entire element (not just the line around the edge) appears to be
pushed out of the document

The border-style property can have between one and four values. As with the
margin property, a single value applies to all four borders. Two values set the top
and bottom borders to the first style, right and left borders to the second style.
Three values set the top, right and left, and bottom border styles, in that order.
Four values set each border in the order top, right, bottom, and left. For example,
Listing 13-8 adds a rule to enclose the entire SYNOPSIS in a solid border.

Listing 13-8: Bordering the SYNOPSIS

SYNOPSIS { border-style: solid }
SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

Figure 13-9 shows the result in Mozilla. In this case, the border has the secondary
effect of making the margin more obvious. (Remember that the margin is outside
the border.)

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 359

360 Part III ✦ Style Languages

Figure 13-9: A border around the synopsis

Border width
Four border-width properties specify the width of the borderlines along the top,
bottom, right, and left edges of the box. These are as follows:

✦ border-top-width

✦ border-right-width

✦ border-bottom-width

✦ border-left-width

Each may be specified as an absolute length or as one of three keywords: thin,
medium, or thick. Border widths cannot be negative but can be zero.

For example, to enclose the SYNOPSIS element in a 1-pixel-wide, solid border (the
thinnest border any computer monitor can display), use this rule:

SYNOPSIS { border-style: solid;
border-top-width: 1px;
border-right-width: 1px;
border-bottom-width: 1px;
border-left-width: 1px }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 360

361Chapter 13 ✦ CSS Layouts

If you want to set all or several borders to the same width, it’s more convenient to
use the border-width shorthand property. This property can have between one
and four values. One value sets all four border widths. Two values set the top and
bottom borders to the first value, right and left borders to the second value. Three
values set the top, right and left, and bottom widths in that order. Four values set
each border in the order top, right, bottom, and left. For example, the following is
equivalent to the previous rule:

SYNOPSIS { border-style: solid; border-width: 1px }

Border color
Most browsers draw borders in black by default, or possibly in shades of gray if
necessary to produce 3D effects for the grooved, ridge, inset, and outset styles.
However, you can use the border-color properties to change this for one or more
sides of the box. These properties are as follows:

✦ border-top-color

✦ border-right-color

✦ border-bottom-color

✦ border-left-color

There’s also a border-color shorthand property that sets the color of all four bor-
ders. A single value sets all four border colors. Two values set the top and bottom
borders to the first color, the right and left borders to the second color. Three val-
ues set the top, right and left, and bottom border colors in that order. Four values
set each border in the order top, right, bottom, and left. The value can be any rec-
ognized color name or an RGB triplet. For example, this rule encloses the SYNOPSIS
element in a 1-pixel-wide, solid red border:

SYNOPSIS { border-style: solid;
border-width: 1px;
border-color: red }

Shorthand border properties
Five shorthand border properties let you set the width, style, and color of a border
with one rule. These five properties are:

✦ border-top

✦ border-right

✦ border-bottom

✦ border-left

✦ border

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 361

362 Part III ✦ Style Languages

The border-top property provides a width, style, and color for the top border. The
border-right, border-bottom, and border-left properties are similar. For
example, the first rule of Listing 13-9 produces a 2-pixel groove blue border (a hori-
zontal rule if you will) below each act. Figure 13-10 shows the result.

Listing 13-9: Using Borders to Produce Horizontal Rules

ACT { border-bottom: 2px groove blue }
SYNOPSIS { border-style: solid }
SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

The border property sets all four sides to the specified width, style, and height.
For example, this rule draws a 3-pixel-wide, solid, red border around a SYNOPSIS
element.

SYNOPSIS { border: 3pt solid red }

Figure 13-10: A 2-pixel groove bottom border is similar to HTML’s HR element.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 362

363Chapter 13 ✦ CSS Layouts

Padding properties
The padding properties specify the amount of space on the inside of the border of
the box. The border of the box, if shown, falls between the margin and the padding
as shown in Figure 13-6. Padding may be set separately for the top, bottom, right,
and left padding using the padding-top, padding-bottom, padding-right, and
padding-left properties. Each padding can be given as an absolute length or as a
percentage of the element’s width. For example, you can set off the SYNOPSIS from
its border by setting its padding properties, as shown in this rule:

SYNOPSIS { padding-bottom: 1em;
padding-top: 1em;
padding-right: 1em;
padding-left: 1em }

You can also set all four at once using the shorthand padding property. For exam-
ple, this rule is the same as the previous one:

SYNOPSIS { padding: 1em 1em 1em 1em }

In fact, this is the same as using a single value for the padding property, which CSS
interprets as applying to all four sides:

SYNOPSIS { padding: 1em }

Given two padding values, the first applies to the top and bottom, the second to
the right and left. Given three padding values, the first applies to the top, the sec-
ond to the right and left, and the third to the bottom. It’s probably easier to use the
separate padding-top, padding-bottom, padding-right, and padding-left
properties.

The blue borders below the acts in the synopsis in Figure 13-10 seem a little too
close, so let’s add an ex of padding between the end of the act and the border with
the padding-bottom property, as shown in the first rule of Listing 13-10. Figure
13-11 shows the result. Generally, it’s a good idea to use a little padding around bor-
ders to make the text easier to read.

Listing 13-10: Padding the Border

ACT { padding-bottom: 1ex }
ACT { border-bottom: 2px groove blue }
SYNOPSIS { border-style: solid }
SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 363

364 Part III ✦ Style Languages

Figure 13-11: Padding makes borders easier on the eye.

Size
CSS lets you choose exactly how big each element’s box will be. By default, boxes
are just big enough to contain their contents, borders, and padding. Inline and table
elements that contain text always have these automatically calculated dimensions.
However, you can make block-level elements either bigger or smaller than this
default by using these six properties:

✦ height

✦ width

✦ min-width

✦ max-width

✦ min-height

✦ max-height

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 364

365Chapter 13 ✦ CSS Layouts

The width and height properties
Generally, the browser decides how much space each element requires by adding
up the total size of its contents, along with the size of any borders and padding; and
usually, this is exactly what you want it to do. However, you can force a block-level
element to a predetermined size by setting its width and height properties.
Consider Listing 13-11. The first rule says that every TITLE element will be exactly 3
inches wide and 2 inches high. Even if it doesn’t use up all this space, other ele-
ments that follow it will leave the extra space empty.

Listing 13-11: A Style Sheet That Sets a Fixed Size
for the TITLE Element

TITLE { width: 3in; height: 2in }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }

Figure 13-12 demonstrates the effect of Listing 13-11. Borders are added to all the
block-level elements so you can see where their boxes are placed. All of them
except for TITLE take up the minimum amount of vertical space they need to hold
their contents and the maximum amount of horizontal space. However, because the
TITLE element’s width and height properties have been set, it’s taller than it
needs to be and narrower than it could be.

If the box size specified is too small to hold the contents of the box, the contents
will not be scaled to fit. By default, the content will spill out of the box and overlap
whatever follows. Figure 13-13 demonstrates this with a box that’s too small for the
actual title. However, you can clip or scroll the overflowed contents using the
overflow property.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 365

366 Part III ✦ Style Languages

Figure 13-12: This TITLE element is exactly 3 inches wide and 2 inches high.

Figure 13-13: This TITLE element is exactly 3 ems wide and 1 em high, too small
to hold the entire title.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 366

367Chapter 13 ✦ CSS Layouts

You do not have to set both width and height. You can set one or the other, or nei-
ther. The default setting for both is auto; that is, calculate the necessary size based
on the contents and context of the box.

The min-width and min-height properties
If you want an element to take up at least a minimum amount of space, but also
want to allow it to grow larger, if necessary, to hold its contents, you can set the
min-height and min-width properties. These specify the smallest dimensions that
the element will use. For example, this rule says that a TITLE element must be at
least 1 inch wide and 1 inch high:

TITLE { min-width: 1in; min-height: 1in }

If the title needs more space than that, the browser is free to make its box larger. If
it takes up less space than that, the browser will leave some empty space. Min-
height and min-width should be preferred to height and width because you can
never be sure exactly how much space any given string of text is going to occupy
from one computer to the next. Using min-height and min-width instead of
height and width will give you the same effect most of the time, and look much
better in the occasional cases where you do need the extra space.

The min-height and min-width properties override height and width. If height
is set to something smaller than min-height, the value of the min-height prop-
erty determines the height of the box, regardless of the value of height. The same
is true for width and min-width.

The max-width and max-height properties
If you want an element to occupy no more than a certain amount of space, but you
do want it to be smaller if its contents allow, you can set the max-height and max-
width properties. Together, these specify the largest area that an element will
occupy. For example, this rule says that a TITLE element must be no more than 3
inches wide and 2 inches high:

TITLE { max-width: 3in; max-height: 2in }

If the title needs less space than that, the browser is free to shrink its box. However,
if it needs more space than that, the browser will let some text fall outside the box,
or otherwise handle it as specified by the overflow property. Because max-height
and max-width can cause text to overlap other text in an unattractive fashion, just
like height and width can, you should use it sparingly.

The max-height and max-width properties override height and width. If height
is set to something larger than max-height, the value of the max-height property
determines the height of the box, regardless of the value of height. The same is
true for width and max-width.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 367

368 Part III ✦ Style Languages

The overflow property
When the size of a box is precisely specified using width and height or limited by
max-width and max-height, it’s entirely possible that its contents may take up
more area than the box actually has. The overflow property controls how the
excess content is dealt with. This property can be set to one of four values:

✦ visible

✦ hidden

✦ scroll

✦ auto

The default is visible, which means let the text continue outside the box, on top
of the text in other boxes, if necessary. You saw an example of this in Figure 13-13.
On the other hand, if overflow is set to hidden, the visible text will be clipped to
its containing box, as shown for the TITLE element in Figure 13-14. This rule pro-
duces that effect:

TITLE { width: 3em; height: 1em; overflow: hidden}

Figure 13-14: This TITLE element is exactly 3 ems wide and 1 em high,
too small to hold the entire title, so the overflow is hidden.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 368

369Chapter 13 ✦ CSS Layouts

Another option that’s useful, especially for relatively large blocks that contain still
larger amounts of text, is to provide scroll bars. You can request this by setting
overflow to scroll. To specify scroll bars only if they’re actually needed — that is,
only if the content does indeed overflow — choose the value auto.

Positioning
For truly precise layouts, CSS lets you decide exactly where to put each element’s
box. By default, block-level elements contained inside the same parent element fol-
low each other on the page. They do not line up side by side or wrap around each
other. You can change this with judicious use of the float and clear properties.
You can even make elements overlap each other, in which case the z-index prop-
erty determines which element is on top and which is on bottom.

The position property
Element boxes can be positioned automatically by the browser, offset relative to
their automatically calculated positions, or placed at a fixed position in the box that
contains them or at a fixed position on the page. The position property deter-
mines which of these options the browser uses to position each element. It can
have one of these four keyword values:

✦ static— The default layout

✦ relative— Elements are offset from their static positions

✦ absolute— Elements are placed at a specific position relative to the box
they’re contained in

✦ fixed— Elements are placed at a specific point in the window or on the page

Relative positioning
As a document is being laid out, the formatter chooses positions for items according
to the normal flow of elements and text. This is the default, static formatting used by
most documents. After this has been completed, the elements can be shifted relative
to their natural, calculated positions. This adjustment in an element’s position is
known as relative positioning. Altering the position of an element in this manner does
not affect the positions of other elements. Thus, boxes can overlap because rela-
tively positioned boxes retain all of their normal sizes and spacing.

To relatively position an element, set its position property to relative. Then
specify the length to offset the left edge of the element to the right of its normal
position as the value of the left attribute and the length to offset the top edge of
the element down from its normal position as the value of the top attribute. You
can use negative numbers to offset to the left and up. For example, Listing 13-12
moves the TITLE element 50 pixels to the right and down from where it would nor-
mally be placed.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 369

370 Part III ✦ Style Languages

Listing 13-12: A Style Sheet That Adjusts the Position
of the TITLE Element

TITLE { position: relative; left: 50px; top: 50px }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }

Figure 13-15 shows how this makes the TITLE element overlap some other elements
on the page.

You can use the right property to offset the right edge of the element from the
right edge of its normal block; that is, to move it to the left. Similarly, you can set
the bottom property to offset the bottom edge of the element from the bottom edge
of its normal position and move it up.

Figure 13-15: A relatively positioned TITLE element

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 370

371Chapter 13 ✦ CSS Layouts

Absolute positioning
An absolutely positioned element is placed at a specific point inside the block that
contains it. For example, the coordinates of an absolutely positioned TITLE element
are relative to the top left corner of the SYNOPSIS block. If the SYNOPSIS block
moves, the TITLE element moves with it. However, if a sibling ACT element moves,
the TITLE element won’t move to accommodate it. The contents of absolutely posi-
tioned elements do not flow around other boxes, so absolute positioning may cause
elements to overlap. In fact, absolutely positioned elements have no impact on the
flow of their following siblings, so elements that follow the absolutely positioned
one act as if it were not there.

The position of the upper left corner of an absolutely positioned element is set by
the top and left properties. The position of the lower right corner of an absolutely
positioned element is set by the bottom and right properties. Specifying all four
positions fixes the height and width of the box. If one corner is omitted, the box is
sized appropriately for its contents. For example, the following rule places the
TITLE element exactly one inch down and one inch to the right of the upper left
corner of its parent SYNOPSIS element:

TITLE { position: absolute;
left: 1.0in; top: 1.0in; width: 3.0in; height: 2.0in}

Figure 13-16 shows the result. Notice that unlike a relatively positioned element, an
absolutely positioned element does not reserve any space for itself. Unless every-
thing on the page is absolutely positioned, it’s almost certain that some elements
will overlap each other.

Most of the time, absolute positioning is a bad idea for the same reason that abso-
lute sizes are a bad idea. Although an absolutely positioned element might look
okay on your system, it probably won’t on some of the systems that people will use
to read the document.

Fixed positioning
Elements with fixed positions are placed at coordinates relative to the window in
which they’re displayed or the piece of paper on which they’re printed. A fixed ele-
ment does not move when the document is scrolled. When printed on paper, a fixed
element appears in the same place on each page. This enables you to place a footer
or header on a document, or a signature at the end of a series of one-page letters.
For example, this rule puts the title near the top center of the window even when
the user has scrolled down to the bottom of the synopsis:

TITLE { position: fixed; top: 0.1in; left: 2in}

Unfortunately, this isn’t as useful as it might sound, because unless you also care-
fully apply a fixed position to everything else on the page, the elements will over-
lap, as shown in Figure 13-17.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 371

372 Part III ✦ Style Languages

Figure 13-16: An absolutely positioned TITLE element

Figure 13-17: A fixed position TITLE element

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 372

373Chapter 13 ✦ CSS Layouts

Stacking elements with the z-index property
When boxes overlap, the z-index property determines which boxes are on top of
which others. Elements with larger z-indexes are placed on top of elements with
smaller z-indexes. Whether the elements on the bottom show through is a function
of the background properties of the element on top of them. If the background is
transparent, at least some of what’s below will probably show through. For exam-
ple, Figure 13-17 showed the title on top of the synopsis. You can change the z-index
to put the title behind the synopsis using these rules:

TITLE { z-index: 1}
SYNOPSIS { z-index: 2}

Internet Explorer does not support the z-index property.

The float property
The float property, whose value is none by default, can be set to left or right. If
the value is left, the element is moved to the left side of the page and the text
flows around it on the right. In HTML, this is how an IMG with ALIGN=”LEFT”
behaves. If the value is right, the element is moved to the right side of the page
and the text flows around it on the left. In HTML, this is how an IMG with
ALIGN=”RIGHT” behaves. For example, the first rule in Listing 13-13 lets text float to
the right of the title, as shown in Figure 13-18.

Listing 13-13: A Floating TITLE

TITLE { float: left }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }

Caution

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 373

374 Part III ✦ Style Languages

Figure 13-18: The title floating on the left

The clear property
The clear property specifies whether an element can have floating elements on its
sides. If it cannot, the element will be moved below any floating elements that pre-
cede it. It’s analogous to the HTML <BR CLEAR=”ALL”> element. There are four
possible values:

✦ none

✦ left

✦ right

✦ both

The default value, none, causes floating elements to appear on both sides of the ele-
ment. The value left bans floating elements on the left side of the element. The
value right bans floating elements on the right side of the element. The value both
bans floating elements on both sides of the element. For example, suppose you add
this rule to the style sheet in Listing 13-13:

ACT { clear: left }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 374

375Chapter 13 ✦ CSS Layouts

Now, although the TITLE element wants to float on the left of the first ACT, ACT
doesn’t allow that, as is shown in Figure 13-19. TITLE is still on the left, but now
ACT is pushed down below the image.

Figure 13-19: The ACT clears the TITLE on the left.

Formatting Pages
CSS makes the reasonable assumption that pages are rectangular. A page can have
all the standard box properties, including margins and size, except for borders and
padding. However, a page box does not have borders or padding because these
would fall off the actual page. The @page selector selects the page so you can set
those properties that apply to the page itself rather than XML elements on the
page. Pseudo-classes can specify different properties for the first page, right-facing
pages, and left-facing pages.

@page
@page is a selector that refers to the page box. This is a rectangular area, roughly
the size of a printed page, which contains the page area and the margin block. The
page area contains the material to be displayed, and the edges of the box provide a

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 375

376 Part III ✦ Style Languages

container in which page layout occurs between page breaks. For example, this rule
gives the page 1-inch margins on all four sides:

@page { margin-left: 1.0in;
margin-right: 1.0in;
margin-top: 1.0in;
margin-bottom: 1.0in }

Because the @page rule is unaware of the page’s content, including the fonts it uses,
it can’t understand measurements in ems and exs. All other units of measurement
are acceptable, including percentages. Percentages used on margin settings are a
percentage of the total page box size. Page boxes allow negative values for margins,
which can place content outside of the area normally accessible by the application
or printer. In most of these cases, the content is simply cut.

@page selects every page of a document. You can use one of the page pseudo-class
selectors —:first, :left, or :right— to specify different properties for the first
page of a document, for the left (generally even numbered) pages of a document,
and for the right (generally odd numbered) pages of a document. For example,
these rules specify 1-inch outside margins and half-inch inside margins:

@page:right { margin-left: 0.5in; margin-right: 1.0in }
@page:left { margin-left: 1.0in; margin-right: 0.5in }
@page:first { margin-left: 0.5in; margin-right: 1.0in }

The size property
In an @page rule, the size property specifies the height and width of the page. You
can set the size as one or two absolute lengths, or as one of the four keywords
auto, portrait, landscape, or inherit. If only one length is given, the page will
be a square. When both dimensions are given, the first is the width of the page, and
the second is the height, as in this rule:

@page { size: 8.5in 11in }

The auto setting automatically sizes to the target screen or sheet. landscape
forces the document to be formatted to fit the target page, but with long sides hori-
zontal. The portrait setting formats the document to fit the default target page
size, but with long sides vertical.

The margin property
The margin property determines the sizes of the margins of the page, the rectangu-
lar areas on all four sides in which nothing is printed. This property is used as
shorthand for setting the margin-top, margin-bottom, margin-right, and
margin-left properties separately. These properties are the same as they are for

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 376

377Chapter 13 ✦ CSS Layouts

boxes. For example, this rule describes an 8.5-by-11-inch page with 1-inch margins
on all sides:

@page { size: 8.5in 11in; margin: 1.0in }

The mark property
The mark property places marks on the page delineating where the paper should be
cut and/or how pages should be aligned. These marks appear in the margins out-
side of the page box. The software controls the rendering of the marks, which are
only displayed on absolute page boxes. Absolute page boxes cannot be moved and
are controlled by the general margins of the page. Relative page boxes are aligned
against a target page, in most cases, forcing the marks off the edge of the page.
When aligning a relative page box, you are essentially looking at the page in your
mind’s eye and using margin and padding properties to move the printed area of
that page about the physical paper.

The mark property has four possible values —crop, cross, inherit, and none—
and can only be used with the @page element. Crop marks identify the cutting
edges of paper. Cross marks, also known as registration marks, are used to align
pages after printing. If set to none, no marks will be displayed on the document. For
example, this rule specifies a page with both crop and cross marks:

@page { mark: crop cross}

The page property
As well as using the @page selector to specify page properties, you can attach page
properties to individual elements by using the page property. To do this, you write
an @page rule that specifies the page properties, give that @page rule a name, and
then use the name as the value of the page property of a normal element rule. For
example, these two rules together say that a SYNOPSIS will be printed in landscape
orientation:

@page rotated { size: landscape}
SYNOPSIS { page: rotated}

When you are using the page property, it’s possible that different sibling elements
will specify different page properties. If this happens, a page break will be inserted
between the elements. If a child uses a different page layout than its parent, the
child’s layout takes precedence.

Controlling page breaks
When you are working in paged media, it’s often useful to be able to specify that
one or more elements are kept on the same page, if possible. Conversely, you might

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 377

378 Part III ✦ Style Languages

want to suggest a good place to break a page. You can control page breaks with
these five CSS properties:

✦ page-break-before

✦ page-break-after

✦ page-break-inside

✦ orphans

✦ widows

Generally, these properties are ignored in nonpaged media such as browser windows.

The page-break-before property controls whether pages are allowed, forbidden,
or required before the selected element. The page-break-after property controls
whether pages are allowed, forbidden, or required after the selected element. The
page-break-inside property determines whether pages are allowed, forbidden,
or required inside the selected element. These can be used to keep paragraphs of
related text, headings and their body text, images and their captions, or complete
tables together on the same page. They can also be used to insert page breaks.
Page-break-before and page-break-after can have any of these five values:

✦ auto

✦ always

✦ avoid

✦ left

✦ right

Page-break-inside is limited to avoid and auto.

The default for all three properties is auto, which means the formatter is free to put
page breaks wherever it likes. The value always means that a page break is
required in the specified place. The value avoid prevents a page break from occur-
ring where indicated. Finally, the values left and right force either one or two
page breaks, whichever is necessary to make the next page either a left or right-
hand page. This is useful at the end of a chapter in a book where chapters generally
start on right-hand pages, even when that leaves blank pages.

The following rule inserts a page break before and after every SYNOPSIS element in a
document but not inside a synopsis, so that each synopsis appears on its own page:

SYNOPSIS { page-break-before: always;
page-break-after: always;
page-break-inside: avoid }

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 378

379Chapter 13 ✦ CSS Layouts

This rule prevents page breaks inside acts, but allows them between acts:

ACT { page-break-before: auto;
page-break-after: auto;
page-break-inside: avoid }

This keeps every act complete on one page. Of course, it is possible that one ACT
element will simply be too large to fit on a single page. In this case, the formatter
may break the page anyway.

Widows and orphans
Sometimes it’s necessary to insert a page break in the middle of an element. For
example, a paragraph might begin on one page and continue on the next. This
avoids large runs of white space at the ends of pages. However, if too little of a para-
graph is left on any one page, the page looks ugly. For example, you would normally
prefer to avoid printing just the first line of a paragraph at the end of a page and the
rest of the paragraph on the next page. It would be more aesthetic to leave a blank
line at the bottom of the page and move the entire paragraph to the next page.
Similarly, there should be more than one line of a paragraph at the top of any given
page. If the normal line-breaking algorithm only places the last line of a paragraph
at the top of the page, the second-to-last line of the paragraph should be removed
from the bottom of the previous page and placed at the top of the next page.

Single lines at the bottom of a page are called orphans. Single lines at the top of a
page are called widows. You can set an element’s orphans and widows properties to
specify the minimum number of lines of a block-level element that the formatter
must place before and after each page break. For example, this rule says that if
there’s a page break in the middle of an ACT, there must be at least two lines of the
ACT on both sides of the break:

ACT { orphans: 2; widows: 2 }

Summary
This chapter discussed CSS’s layout model. In this chapter, you learned the following:

✦ Lengths in CSS can be specified in relative or absolute units. Relative units are
preferred.

✦ Color is given in a 24-bit RGB space in decimal, hexadecimal, or percentages.

✦ The display property determines whether an element is a block element,
inline element, list item, or table part.

✦ The text of XML elements is placed in rectangular boxes on one or more pages
when rendered by a browser.

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 379

380 Part III ✦ Style Languages

✦ Box properties let you adjust borders, margins, and padding around elements.

✦ Margins are extra white space inside an element’s box and can be set sepa-
rately for each side.

✦ Padding is extra white space inside an element’s box and can be set sepa-
rately for each side.

✦ A border is a line drawn between the margin and padding of a box, and can be
set separately for each side in a variety of styles, widths, and colors.

✦ The height, width, min-height, min-width, max-height, and max-width
properties adjust the size of element boxes.

✦ The position, left, right, top, and bottom properties adjust where an ele-
ment box is placed on the page.

✦ The @page rule lets you set the margins, size, and other properties of the
pages on which the XML elements will be placed.

The documents in this chapter were rather dry. Elements moved around on the
page, but they didn’t have any flare. They weren’t italic or bold or big or small or
flashing neon. The next chapter shows you the CSS properties that adjust a variety
of text styles, including font weight, font size, alignment, and color.

✦ ✦ ✦

17 549863 Ch13.qxd 1/28/04 9:47 AM Page 380

CSS Text Styles

The first part of each CSS rule is a selector that says which
elements the rule applies to. The second part is a list of

the properties that the rule applies to those elements. This
chapter focuses on the properties that you can specify in a CSS
rule. You learn how to change the font size, style, and weight;
how to align text and order paragraphs; how to control the
behavior of speech synthesizers reading the text; and more.

Netscape 6.0 and 7.0, Mozilla, Opera 4.0 and later, Safari,
and Internet Explorer 5.0 and later all implement only
some parts of the CSS specification. Earlier versions of the
major browsers, while perhaps supporting some form of
CSS for HTML documents, do not support it at all for XML
documents. To make matters worse, they all implement
different subsets of the specification, and sometimes don’t
implement the same subsets for XML as they do for HTML.
I’ll note where one browser or another has a particular
problem as we go along. However, if you find that some-
thing in this chapter doesn’t work as advertised in your
favorite browser, please complain to the browser vendor,
not to me.

Fonts
CSS provides several properties that control the font used to
draw the text, including the following:

✦ font-family

✦ font-size

✦ font-style

✦ font-variant

✦ font-weight

In addition, there’s a font shorthand property that can set
most of these properties simultaneously.

Caution

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Fonts

Color

Text

Backgrounds

Visibility

Content

✦ ✦ ✦ ✦

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 381

382 Part III ✦ Style Languages

Choosing the font family
The font family is the font in which the text is drawn. The value of the font-family
property is a comma-separated list of font names, such as Helvetica, Times, and
Palatino. Font names that include white space, such as Times New Roman, should
be enclosed in single or double quotes.

Names may also be one of the five generic names: serif, sans-serif, cursive,
fantasy, and monospace. The browser replaces these names with a font of the
requested type installed on the local system. Table 14-1 demonstrates these fonts.

Table 14-1
Generic Fonts

Name Typical Families Distinguishing Characteristic Example

Serif Times, Curlicues on the edges of The quick brown
Times New Roman, letters make serif text easier fox jumped over
Palatino to read in small body type. the lazy dog.

Sans-serif Geneva, Helvetica, Block type, often used in The quick brown
Verdana headlines. fox jumped over

the lazy dog.

Monospace Courier, A typewriter-like font in which The quick
Courier New, Monaco, each character has exactly brown fox
American Typewriter the same width; commonly jumped over

used for source code and the lazy dog.
e-mail.

Cursive ZapfChancery Script font, a simulation of The quick brown
handwriting. fox jumped over the

lazy dog.

Fantasy Western, Critter Text with special effects; The quick

for example, letters on fire, brown fox

letters formed by tumbling jumped over

acrobats, and letters made the lazy dog.

from animals.

Because there isn’t a guarantee that any given font will be available or appropriate
on a particular client system (10-point Times is practically illegible on a Macintosh,
much less a Palm Pilot), you should provide a comma-separated list of choices for
the font in the order of preference. The last choice in the list should always be one
of the generic names. However, even if you don’t specify a generic name and the
fonts you do specify aren’t available, the browser will pick something. It just might
not be anything like what you wanted.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 382

383Chapter 14 ✦ CSS Text Styles

For example, Listing 14-1 is a style sheet for play synopses similar to Listing 13-1 of
the previous chapter. It has rules that make the TITLE element Helvetica with fall-
back positions of Verdana and any sans serif font, and the rest of the elements
Times with fallback positions of Times New Roman and any serif font.

Listing 14-1: A Style Sheet for the Synopsis of a Play

TITLE { font-family: Helvetica, Verdana, sans-serif }
SYNOPSIS { font-family: Times, “Times New Roman”, serif }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 14-1 shows the synopsis loaded into Internet Explorer 6.0 with this style
sheet. Not a great deal has changed since Figure 13-1 in the last chapter. Times or
something very close to it is commonly the default font. The most obvious differ-
ence is that the title is now in Helvetica, a sans serif font.

The font-family property is inherited by child elements. Thus, by setting
SYNOPSIS’s font-family to Times, all the child elements are also set to Times
except for TITLE, whose own font-family property overrides the one it inherits.

Figure 14-1: The synopsis of Twelfth Night with the title in Helvetica

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 383

384 Part III ✦ Style Languages

Choosing the font style
The font-style property has three possible values: normal, italic, and
oblique. The regular text you’re reading now is normal. The typical rendering of
the HTML EM element is italicized. Oblique text is very similar to italicized text.
However, a computer creates oblique text by algorithmically slanting normal text.
A human designer creates italics by carefully handcrafting a font to look good in its
slanted form. Listing 14-2 adds a rule to the synopsis style sheet that italicizes
scene numbers.

Listing 14-2: A Style Sheet That Italicizes Scene Numbers

TITLE { font-family: Helvetica, Verdana, sans-serif }
SYNOPSIS { font-family: Times, “Times New Roman”, serif }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
SCENE_NUMBER { font-style: italic}

Figure 14-2 shows the synopsis loaded into Internet Explorer with this style sheet.

Figure 14-2: The synopsis of Twelfth Night with italic scene numbers

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 384

385Chapter 14 ✦ CSS Text Styles

Small caps
The font-variant property has two possible values: normal and small-caps.
The default is normal. Setting font-variant to small-caps replaces lowercase let-
ters with capital letters in a smaller font size than the main body text.

You can achieve a very nice effect by combining the font-variant property with
the first-letter pseudo-element. For example, define the ACT_NUMBER element to
have the font-variant: small-caps. Next, define the first letter of ACT_NUMBER to
have font-variant: normal. This produces act numbers that look like this:

ACT 1

Here are the rules:

ACT_NUMBER { font-variant: small-caps}
ACT_NUMBER:first-letter { font-variant: normal}

The second rule overrides the first, but only for the first letter of the act number.

Setting the font weight
The font-weight property determines how dark (bold) or light the text appears.
There are 13 possible values for this property:

✦ normal

✦ bold

✦ bolder

✦ lighter

✦ 100

✦ 200

✦ 300

✦ 400

✦ 500

✦ 600

✦ 700

✦ 800

✦ 900

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 385

386 Part III ✦ Style Languages

Weights range from 100 (the lightest) to 900 (the darkest). Intermediate, noncen-
tury values such as 850 are not allowed. Normal weight is 400. Bold is 700. The
bolder value makes an element bolder than its parent. The lighter value makes
an element less bold than its parent. However, there’s no guarantee that a particu-
lar font has as many as nine separate levels of boldness.

Here’s a simple rule that makes the TITLE and ACT_NUMBER elements bold:

TITLE, ACT_NUMBER { font-weight: bold}

Figure 14-3 shows the effect of adding this rule to the synopsis style sheet.

Setting the font size
The font-size property determines the height and the width of a typical character
in the font. Larger sizes take up more space. The size may be specified as a key-
word, a value relative to the font size of the parent, a percentage of the size of the
parent element’s font size, or an absolute number.

Figure 14-3: The synopsis of Twelfth Night with bold title and act numbers

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 386

387Chapter 14 ✦ CSS Text Styles

Keyword
Absolute size keywords are as follows:

✦ xx-small

✦ x-small

✦ small

✦ medium

✦ large

✦ x-large

✦ xx-large

These keywords are the preferred way to set font sizes because they are relative to
the base font size of the page. For example, if a nearsighted user has adjusted the
default font size to 20 points, a large font will be even larger and a small font will
still be pretty large.

Although the exact values are up to the browser’s best judgment, in general, each
size is 1.2 times larger than the next smallest size. The default is medium, so if a
browser’s default is 12 points, large type will be 14.4 points, x-large type will be
17.28 points, and xx-large type will be 20.736 points. By contrast, small type will
be 10 points, x-small type will be 8.33 points, and xx-small will be a possibly
illegible 7 points. A browser might well choose to round these values to the nearest
integer. Here’s a simple rule that makes the TITLE extra large:

TITLE { font-size: x-large }

Figure 14-4 shows the results after this rule is added to the synopsis style sheet.

Value relative to parent’s font size
You can also specify the size relative to the parent element as either larger or
smaller. For example, with the following rule, the SCENE_NUMBER will have a font
size that is smaller than the font size of its parent SCENE.

SCENE_NUMBER { font-size: smaller }

Figure 14-5 shows the result of adding this rule to the synopsis style sheet.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 387

388 Part III ✦ Style Languages

Figure 14-4: The synopsis of Twelfth Night with an extra large title

There’s no hard-and-fast rule for exactly how much smaller a smaller font will be or
how much larger a larger font will be. Generally, the browser will attempt to move
from medium to small, from small to x-small, and so forth. The same is true (in the
other direction) for larger fonts. Thus, making a font larger should increase its size
by about 20 percent, and making a font smaller should decrease its size by about
16.6 percent; but browsers are free to fudge these values to match the available font
sizes.

Percentage of parent element’s font size
If these options aren’t precise enough, you can make finer adjustments by using a
percentage of the parent element’s font size. For example, this rule says that the
font used for a SCENE_NUMBER is 50 percent of the size of the font for the SCENE (its
parent).

SCENE_NUMBER { font-size: 50% }

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 388

389Chapter 14 ✦ CSS Text Styles

Figure 14-5: The synopsis of Twelfth Night with a smaller scene number

Absolute lengths
Finally, you can specify a font size as an absolute length. Although you can use pix-
els, picas, centimeters, millimeters, or inches, the most common unit when measur-
ing fonts is the point. For example, this rule sets the default font-size for the
SYNOPSIS element and its children to 14 points.

SYNOPSIS { font-size: 14pt }

I urge you not to use absolute units to describe font sizes. It’s extremely difficult
(I’d argue impossible) to pick a font size that’s legible across all the different plat-
forms on which your page might be viewed, ranging from cell phones to the Sony
JumboTron in Times Square. Even when restricting themselves to standard per-
sonal computers, most designers usually pick a font that’s too small. Any text that’s
intended to be read on the screen should be at least 12 points, possibly more.

Figure 14-6 shows the results after all these font rules have been added to the syn-
opsis style sheet. The text of the scenes is not really bolder. It’s just bigger. In any
case, it’s a lot easier to read.

Caution

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 389

390 Part III ✦ Style Languages

Figure 14-6: The synopsis of Twelfth Night in a larger font size

The font shorthand property
Font is a shorthand property that sets the font style, variant, weight, size, and fam-
ily with one rule. For example, here are two rules for the TITLE and SCENE_NUMBER
elements that combine the separate rules of the previous section:

TITLE { font: bold x-large Helvetica, sans-serif }
SCENE_NUMBER { font: italic smaller Times, serif }

Values must be given in the following order:

1. One each of style, variant, and weight, in any order, any of which can be
omitted

2. Size, which cannot be omitted

3. Optionally, a forward slash (/) and a line height

4. Family, which cannot be omitted

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 390

391Chapter 14 ✦ CSS Text Styles

If this sounds complicated and hard to remember, that’s because it is. I certainly
can’t remember the exact details for the order of these properties without looking
them up. I prefer to just set the individual properties one at a time. It’s question-
able whether shorthand properties like this really save any time.

Listing 14-3 is the style sheet for the synopsis with all the rules devised so far, using
the font shorthand properties. However, because a font property is exactly equiv-
alent to the sum of the individual properties it represents, there’s no change to the
rendered document.

Listing 14-3: A Style Sheet for the Synopsis with font
Shorthand

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT_NUMBER { font: bold small-caps}
SYNOPSIS { font: 14pt Times, “Times New Roman”, serif }
ACT_NUMBER:first-letter { font-variant: normal}
TITLE {
font: bold x-large Helvetica, Verdana, Arial, sans-serif

}
SCENE_NUMBER { font: italic smaller Times, serif }

The font property may also have one of these six keyword values that match all of
a font’s properties to the properties of particular elements of the browser user
interface or the user’s system:

✦ caption— The font used for captioned widgets such as buttons

✦ icon— The font that labels icons

✦ menu— The font used for menu items

✦ message-box— The font used for display text in dialog boxes

✦ small-caption— The font used for labels on small widgets

✦ status-bar— The font used in the browser’s status bar

For example, this rule says that a SYNOPSIS element will be formatted with the same
font family, size, weight, and style as the font the browser uses in its status bar:

SYNOPSIS { font: status-bar }

Note

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 391

392 Part III ✦ Style Languages

Color
CSS can specify the color of almost any element on a page with the color property.
The value of this color property may be one of 16 named color keywords, or an RGB
triple in decimal, hexadecimal, or percentages. Children inherit the color property.
For example, the following rules specify that every element in the SYNOPSIS is col-
ored black except the SCENE_NUMBER, which is colored blue:

SYNOPSIS { color: black }
SCENE_NUMBER { color: blue}

The following rules are all equivalent to the preceding two. I recommend using
named colors, when possible, and browser-safe colors when not.

SYNOPSIS { color: #000000 }
SCENE_NUMBER { color: #0000FF}
SYNOPSIS { color: rgb(0, 0, 0) }
SCENE_NUMBER { color: rgb(0, 0, 255)}
SYNOPSIS { color: rgb(0%, 0%, 0%) }
SCENE_NUMBER { color: rgb(0%, 0%, 100%)}

The color property specifies the foreground color for the text content of an ele-
ment. It may be given as a literal color name such as red, or an RGB value such as
#CC0000. Color names include aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, and yellow.

The following style rules apply color to three elements, using three different meth-
ods of identifying color. It specifies the RGB hex value #FF0000 for SCENE_NUMBER
elements, all TITLE elements to appear in red, and all ACT_NUMBER elements to
appear in rgb(255,0,0).

SCENE_NUMBER { color: #FF0000}
TITLE { color: red}
ACT_NUMBER { color: rgb(255,0,0) }

In fact, these are just three different ways of saying pure red; and all three elements
will have the same color.

Text
These properties affect the appearance of text, irrespective of font:

✦ word-spacing

✦ letter-spacing

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 392

393Chapter 14 ✦ CSS Text Styles

✦ text-decoration

✦ vertical-align

✦ text-transform

✦ text-align

✦ text-indent

✦ line-height

✦ white-space

Word spacing
The word-spacing property expands text by adding additional space between
words. A negative value removes space between words. The only reason I can think
of to alter the word spacing on a web page is if you are a student laboring under
tight page-count limits who wants to make a paper look bigger or smaller than it is.

Desktop publishers love to spend hours tweaking these details pixel by pixel. The
problem is that all the rules they’ve learned about how and when to adjust spacing
are based on ink on paper and really don’t work when transferred to the medium
of electrons on phosphorus (a typical CRT monitor). You’re almost always better off
letting the browser make decisions about word and letter spacing for you.

If, on the other hand, your target medium is ink on paper, there’s a little more to
be gained by adjusting these properties. The main difference is that with ink on
paper you control the delivery medium. You know exactly how big the fonts are,
how wide and high the display is, how many dots per inch are being used, and so
forth. On the Web, you simply don’t have enough information about the output
medium available to control everything at this level of detail.

To change this from the default value of normal, you set a length for the property,
as in the following example:

SYNOPSIS { word-spacing: 1em }

Browsers are not required to respect this property, especially if it interferes with
other properties such as align: justified. Figure 14-7 demonstrates.

Spacing words requires that the browser be able to figure out where the boundaries
between words fall. While this is relatively straightforward in most Western lan-
guages— just look for the white space— it’s much more complex in some other lan-
guages, such as Sanskrit and Japanese. I wouldn’t count on most browsers being
able to handle this property for the more typographically challenging languages.

Caution

Note

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 393

394 Part III ✦ Style Languages

Figure 14-7: The synopsis of Twelfth Night with 1 em of word spacing

The letter-spacing property
The letter-spacing property expands text by adding additional space between
letters. A negative value removes space between letters. Again, the only reason I
can think of to do this on a web page is to make a paper look bigger or smaller than
it really is to meet a length requirement.

To change this from the default value of normal, set a length for the property, as in
the following example:

SYNOPSIS { letter-spacing: 0.3em }

Because justification works by adjusting the amount of space between letters,
changing the letter spacing manually can prevent the browser from justifying text.
However, browsers are not required to respect this property, especially if it inter-
feres with other properties such as align: justified. Nonetheless, most
browsers attempt to implement it as best they can within the restrictions of other
rules, as shown in Figure 14-8.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 394

395Chapter 14 ✦ CSS Text Styles

Figure 14-8: The SYNOPSIS element with 0.3 em letter spacing

The text-decoration property
The text-decoration property can have one of the following five values:

✦ none

✦ underline

✦ overline

✦ line-through

✦ blink

Except for none, which is the default, these values are not mutually exclusive. You
may, for example, specify that a paragraph is underlined, overlined, struck through,
and blinking. (I do not, however, recommend that you do this.)

Browsers, fortunately, are not required to support blinking text.

For example, the next rule specifies that CHARACTER elements are underlined.
Figure 14-9 shows the result of applying this rule to the synopsis of Twelfth Night.

CHARACTER { text-decoration: underline }

Note

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 395

396 Part III ✦ Style Languages

Figure 14-9: The synopsis of Twelfth Night with underlined characters

The vertical-align property
The vertical-align property controls the vertical alignment of text within an
inline box. It specifies how an inline element is positioned relative to the baseline of
the text. Valid values are as follows:

✦ baseline— Align the baseline of the inline box with the baseline of the block
box (this is the default)

✦ sub— Position the inline box as a subscript

✦ super— Position the inline box as a superscript

✦ top— Align the top of the inline box with the top of the line

✦ middle— Align the midpoint of the inline box with the baseline of the block
box, plus half of the x-height of the block box

✦ bottom— Align the bottom of the inline box with the bottom of the line

✦ text-top— Align the top of the inline box with the top of the parent ele-
ment’s font

✦ text-bottom— Align the bottom of the inline box with the bottom of the
parent element’s font

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 396

397Chapter 14 ✦ CSS Text Styles

You can also set the vertical-align property to a percentage that raises (posi-
tive value) or lowers (negative value) the box by the percentage of the line-height.
A value of 0% is the same as the baseline value. Finally, you can set vertical-
align to a signed length that will raise or lower the box by the specified distance.
A value of 0cm is the same as the baseline value.

The sub value makes the element a subscript. The super value makes the element
a superscript. The text-top value aligns the top of the element with the top of the
parent element’s font. The middle value aligns the vertical midpoint of the element
with the baseline of the parent plus half the x-height. The text-bottom value aligns
the bottom of the element with the bottom of the parent element’s font.

The top value aligns the top of the element with the tallest letter or element on the
line. The bottom value aligns the bottom of the element with the bottom of the low-
est letter or element on the line. The exact alignment changes as the height of the
tallest or lowest letter changes.

For example, the rule for a footnote number might look like this one that super-
scripts the number and decreases its size by 20 percent:

FOOTNOTE_NUMBER { vertical-align: super; font-size: 80% }

The text-transform property
The text-transform property can specify that text should be rendered in all
uppercase, all lowercase, or with initial letters capitalized. This is useful in head-
lines, for example. The valid values are as follows:

✦ capitalize

✦ uppercase

✦ lowercase

✦ none

Capitalization Makes Only The First Letter Of Every Word Uppercase Like This
Sentence. PLACING THE SENTENCE IN UPPERCASE, HOWEVER, MAKES EVERY LET-
TER IN THE SENTENCE UPPERCASE. The following rule converts the TITLE element
in the Twelfth Night synopsis to uppercase:

TITLE { text-transform: uppercase }

Internet Explorer doesn’t support the text-transform property, so Figure 14-10
shows the document in Mozilla.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 397

398 Part III ✦ Style Languages

Figure 14-10: The synopsis of Twelfth Night with an uppercased title

The text-transform property is somewhat language-dependent because many
languages — Hebrew, modern Georgian, and Chinese, for example — don’t have
distinct upper and lowercases. Even worse, letters that have the same capital form
in two languages might have different lowercase forms or vice versa.

The text-align property
The text-align property applies only to block-level elements. It specifies whether
the text in the block is aligned with the left side, the right side, centered, or justi-
fied. The valid values are as follows:

✦ left

✦ right

✦ center

✦ justify

Note

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 398

399Chapter 14 ✦ CSS Text Styles

The following rules center the TITLE element in the Twelfth Night synopsis and jus-
tify everything else. Figure 14-11 shows the synopsis after these rules have been
applied. I also changed SCENE to display: inline so that there’d be enough text
in a paragraph to extend across the browser window and show that the text is truly
justified.

SCENE { display: inline}
TITLE { text-align: center }
SYNOPSIS { text-align: justify }

Figure 14-11: The TITLE in the synopsis is centered and the rest of the text is justified.

The text-indent property
The text-indent property, which only applies to block-level elements, specifies
how far the first line of a block is indented with respect to the remaining lines of the
block. It is given either as an absolute length or as a percentage of the width of the
parent element. The value can be negative to create a hanging indent.

To indent all the lines of an element, rather than just the first, use the box proper-
ties discussed in Chapter 13 to set an extra left margin on the element.

For example, the following rule indents the scenes in the synopsis by half an inch.
Figure 14-12 shows the synopsis after this rule has been applied.

SCENE { text-indent: 0.5in }

Tip

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 399

400 Part III ✦ Style Languages

Figure 14-12: Each SCENE and its children in the synopsis are indented half an inch.

The line-height property
The line-height property specifies the distance between the baselines of succes-
sive lines. It can be given as an absolute number, an absolute length, or a percent-
age of the font size. For example, the following rule double-spaces the SYNOPSIS
element. Figure 14-13 shows the Twelfth Night synopsis after this rule has been
applied.

SYNOPSIS { line-height: 200% }

Double spacing isn’t particularly attractive, though, so I’ll remove it. Listing 14-4
summarizes the additions made in this and the previous sections to the synopsis
style sheet (minus the double spacing).

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 400

401Chapter 14 ✦ CSS Text Styles

Figure 14-13: A double-spaced synopsis

Listing 14-4: The Synopsis Style Sheet with Text Properties

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT_NUMBER { font-weight: bold}
SYNOPSIS { font-size: 14pt }
SYNOPSIS { word-spacing: 1em }
SYNOPSIS { letter-spacing: 0.3em }
SCENE_NUMBER { color: #FF0000}
TITLE { color: red}
ACT_NUMBER { color: rgb(255,0,0) }
ACT_NUMBER { font-variant: small-caps}
CHARACTER { text-decoration: underline }
SCENE_NUMBER { vertical-align: subscript}
TITLE { font-size-adjust: “.58”; }
SYNOPSIS { font-size-adjust: “.46”

font-family: Times, “Times New Roman”, serif }
TITLE { font: normal bold x-large Helvetica, Verdana,

Arial, sans-serif
}
SCENE_NUMBER { font: italic smaller Times, serif }
TITLE { text-align: center }
SYNOPSIS { text-align: justify }
SCENE { text-indent: 0.5in }

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 401

402 Part III ✦ Style Languages

The white-space property
The white-space property determines how significant white space (spaces, tabs,
line breaks) is within an element. The allowable values are as follows:

✦ normal

✦ pre

✦ nowrap

The default value, normal, simply means that runs of white space are condensed to
a single space and words are wrapped to fit on the screen or page. This is the way
white space is normally handled in both HTML and XML.

The pre value acts like the PRE (preformatted) element in HTML. All white space in
the input document is considered significant and faithfully reproduced on the out-
put device. It may be accompanied by a shift to a monospaced font. This would be
useful for computer source code or concrete poetry. Listing 14-5 is a poem, The
Altar by George Herbert, in which spacing is important. In this poem, the lines form
the shape of the poem’s subject.

Listing 14-5: The Altar in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”14-6.css”?>
<POEM>

<TITLE>The Altar</TITLE>
<POET>George Herbert</POET>

<VERSE> A broken ALTAR, Lord, thy servant rears,</VERSE>
<VERSE> Made of a heart, and cemented with tears:</VERSE>
<VERSE> Whose parts are as thy hand did frame;</VERSE>
<VERSE> No workman’s tool hath touched the same.</VERSE>
<VERSE> No workman’s tool hath touched the same.</VERSE>
<VERSE> A HEART alone</VERSE>
<VERSE> Is such a stone,</VERSE>
<VERSE> As nothing but</VERSE>
<VERSE> Thy power doth cut.</VERSE>
<VERSE> Wherefore each part</VERSE>
<VERSE> Of my hard heart</VERSE>
<VERSE> Meets in this frame,</VERSE>
<VERSE> To praise thy name:</VERSE>
<VERSE> That if I chance to hold my peace,</VERSE>
<VERSE> These stones to praise thee may not cease.</VERSE>
<VERSE> O let thy blessed SACRIFICE be mine,</VERSE>
<VERSE> And sanctify this ALTAR to be thine.</VERSE>

</POEM>

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 402

403Chapter 14 ✦ CSS Text Styles

Listing 14-6 is a style sheet that uses white-space: pre to preserve this form.
Figure 14-14 shows the result in Mozilla.

Internet Explorer does not correctly implement the white-space property.
Mozilla, Netscape, Safari, and Opera do.

Listing 14-6: A Style Sheet for White Space-Sensitive Poetry

POEM { display: block }
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block;

white-space: pre; font-family: monospace }

Figure 14-14: The Altar by George Herbert with white-space: pre

Finally, the nowrap value is a compromise that breaks lines exactly where there’s
an explicit break in the source text, but condenses other runs of space to a single
space. This might be useful when you’re trying to faithfully reproduce the line
breaks in a classical manuscript or some other poetry where the line breaks are sig-
nificant but the space between words isn’t.

Caution

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 403

404 Part III ✦ Style Languages

Backgrounds
The background of an element can be set to a color or an image. If it’s set to an
image, the image can be positioned differently relative to the content of the ele-
ment. This is accomplished with the following five basic properties:

✦ background-color

✦ background-image

✦ background-repeat

✦ background-attachment

✦ background-position

Finally, there’s a background shorthand property that allows you to set some or all
of these five properties in one rule.

Fancy backgrounds are vastly overused. Anything other than a very light back-
ground color only makes your page harder to read and annoys users. I list these
properties here for the sake of completeness, but I recommend that you use them
sparingly, if at all.

None of the background properties are inherited. Each child element must specify
the background it wants. However, it may appear as if background properties are
inherited because the default is for the background to be transparent. The back-
ground of whatever element is drawn below an element will show through. Most of
the time, this is the background of the parent element.

The background-color property
The background-color property can be set to the same values as the color prop-
erty. However, rather than changing the color of the element’s contents, it changes
the color of the element’s background on top of which the contents are drawn. For
example, to draw a SIGN element with yellow text on a blue background, you would
use this rule:

SIGN { color: yellow; background-color: blue}

You can also set the background-color to the keyword transparent (the
default), which simply means that the background takes on the color or image of
whatever the element is laying on top of, generally, the parent element.

Caution

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 404

405Chapter 14 ✦ CSS Text Styles

The background-image property
The background-image property is either none (the default) or a URL (generally
relative) where a bitmapped image file can be found. If it’s a URL, the browser will
load the image and use it as the background, much like the BACKGROUND attribute of
the BODY element in HTML. For example, the following rule attaches the file shake-
speare.jpg (shown in Figure 14-15) as the background for a SYNOPSIS element.

SYNOPSIS { background-image: url(shakespeare.jpg) }

Figure 14-15: The original, untiled,
uncropped background image for the
synopsis

Internet Explorer does not support fixed background images; Mozilla, Netscape,
Safari, and Opera do.

The image referenced by the background-image property is drawn underneath the
specified element, not underneath the browser pane like the BACKGROUND attribute
of HTML’s BODY element. Background images will generally not be the exact same
size as the contents of the page. If the image is larger than the element’s box, the
image will be cropped. If the image is smaller than the element’s box, it will be tiled
vertically and horizontally. Figure 14-16 shows a background image that has tiled
exactly far enough to cover the underlying content.

Tiling takes place across the element whose background-image property is set, not
across the browser window. You can set background images for nonroot elements
such as the ACT or the SCENE, if you like.

Caution

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 405

406 Part III ✦ Style Languages

Figure 14-16: A tiled background image

The background-repeat property
The background-repeat property adjusts how background images are tiled across
the screen. You can specify that background images are not tiled or are only tiled
horizontally or vertically. Possible values for this property are as follows:

✦ repeat

✦ repeat-x

✦ repeat-y

✦ no-repeat

For example, to show only a single picture of Shakespeare, you would set the
background-repeat of the SYNOPSIS element to no-repeat, like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat }

Figure 14-17 shows the result.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 406

407Chapter 14 ✦ CSS Text Styles

Figure 14-17: An untiled background image

To tile across but not down the page, set background-repeat to repeat-x, like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: repeat-x }

The result is shown in Figure 14-18:

Figure 14-18: A background image tiled across but not down

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 407

408 Part III ✦ Style Languages

To tile down but not across the page, as shown in Figure 14-19, set background-
repeat to repeat-y, like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: repeat-y }

Figure 14-19: A background image tiled down but not across

The background-attachment property
In HTML, the background image is attached to the document. When the document is
scrolled, the background image scrolls with it. With the background-attachment
property, you can specify that the background be attached to the window or pane
instead. Possible values are scroll and fixed. The default is scroll; that is, the
background is attached to the document rather than the window.

However, with background-attachment set to fixed, the document scrolls but
the background image doesn’t. This might be useful in conjunction with an image
that’s big enough for a typical browser window but not big enough to be a backdrop
for a large document when you don’t want to tile the image. You would code that
request like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-attachment: fixed;
background-repeat: no-repeat }

Figure 14-20 shows the effect after a little scrolling.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 408

409Chapter 14 ✦ CSS Text Styles

Figure 14-20: A fixed background image stays in the same position
in the window even as the document scrolls.

The background-position property
By default, the upper left corner of a background image is aligned with the upper
left corner of the element it’s attached to. (See Figure 14-17 for an example.) Most
of the time, this is exactly what you want. However, for those rare times when you
want a different appearance, the background-position property allows you to
move the background relative to the element.

You can specify the offset by using percentages of the width and height of the
parent element, by using absolute lengths, or by using two of the following six
keywords:

✦ top

✦ center

✦ bottom

✦ left

✦ center

✦ right

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 409

410 Part III ✦ Style Languages

Percentages of parent element’s width and height
Percentages enable you to pin different parts of the background to the correspond-
ing part of the element. The x coordinate is given as a percentage ranging from 0%
(left side) to 100% (right side). The y coordinate is given as a percentage ranging
from 0% (top) to 100% (bottom). For example, this rule places the upper right cor-
ner of the image in the upper right corner of the SYNOPSIS element. Figure 14-21
shows the result.

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: 100% 0% }

Figure 14-21: A background image aligned with the upper right
corner of the content

Absolute lengths
Setting background-position to a length fixes the upper left corner of the back-
ground at an absolute position in the element. The next rule places the upper left
corner of the background image shakespeare.jpg one centimeter to the right and
two centimeters below the upper left corner of the element. Figure 14-22 shows the
result.

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: 1cm 2cm }

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 410

411Chapter 14 ✦ CSS Text Styles

Figure 14-22: A background image positioned one centimeter to the
right and two centimeters below the left corner of the element

Keywords
The top left and left top keywords are the same as 0% 0%. The top, top
center, and center top are the same as 50% 0%. The right top and top right
keywords are the same as 100% 0%. The left, left center, and center left
keywords are the same as 0% 50%. The center and center center keywords are
the same as 50% 50%. The right, right center, and center right keywords are
the same as 100% 50%. The bottom left and left bottom keywords are the same
as 0% 100%. The bottom, bottom center, and center bottom mean the same as
50% 100%. The bottom right and right bottom keywords are the same as 100%
100%. Figure 14-23 shows the positions for the different values.

For example, this rule positions the image in the top center of the synopsis, as
shown in Figure 14-24:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: center top }

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 411

412 Part III ✦ Style Languages

Figure 14-23: Relative positioning of background images

Figure 14-24: An untiled background image pinned to the top center
of the SYNOPSIS element

If the background-attachment property has the value fixed, the image is placed
relative to the windowpane instead of the element. This means that as the window
is scrolled, the picture does not change its apparent position. It does not scroll with
the document.

top left
left top
0% 0%

top
top center
center top

50% 0%

top right
right top
100% 0%

left
center left
left center

0% 50%

center
center center

50% 50%

right
center right
right center
100% 50%

bottom left
left bottom
0% 100%

bottom
bottom center
center bottom

50% 100%

bottom right
right bottom
100% 100%

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 412

413Chapter 14 ✦ CSS Text Styles

The background shorthand property
The background property is shorthand for setting the background-color, back-
ground-image, background-repeat, background-attachment, and background-
position properties in a single rule. For example, to set background-color to
white, background-image to shakespeare.jpg, background-repeat to no-
repeat, and background-attachment to fixed in the SYNOPSIS element, you
can use this rule:

SYNOPSIS {
background: url(shakespeare.jpg) white no-repeat fixed

}

The preceding rule means exactly the same thing as this longer but more legible rule:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-color: white;
background-repeat: no-repeat;
background-attachment: fixed }

When you are using the background shorthand property, values for any or all of
the five properties can be given in any order. However, none can occur more than
once. For example, the upper right corner alignment rule used for Figure 14-21
could have been written like this instead:

SYNOPSIS { background: url(shakespeare.jpg) no-repeat 100% 0% }

Visibility
The visibility property controls whether the contents of an element are seen.
The three possible values of this property are as follows:

✦ visible

✦ hidden

✦ collapse

If visibility is set to visible, the contents of the box, including all borders, are
shown. This is the default. If visibility is set to hidden, the box’s contents and
border are not drawn. However, unlike an element whose display property is set
to none, invisible boxes still take up space and affect the layout of the document.
Setting visibility to hidden is not the same as setting display to none.

The collapse value is the same as hidden for most elements, except for table rows
and columns. For table rows and columns, collapse hides the row or column, but

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 413

414 Part III ✦ Style Languages

it does not otherwise change the layout of the table as hidden would. That is, it
acts almost exactly like display: none. However, you can’t set display to both
none and table-row or table-column, so for these elements, you have to use
visibility: collapse instead.

For example, this rule hides the SCENE_NUMBER elements:

SCENE_NUMBER {visibility: hidden}

Figure 14-25 shows the result. Notice that the locations of each scene are still
pushed over to the right in pretty much the same position they were in Figure
14-24. That’s because the space on the left is taken up by the invisible SCENE_
NUMBER elements.

Figure 14-25: Invisible scene numbers

Content
The content property places data from the style sheet into the output document at
a position indicated by a :before or :after pseudo-element. The value of the con-
tent property may be a string enclosed in quote marks. For example, this rule
places an asterisk before and after each SCENE element:

SCENE:after { content: “*”}
SCENE:before { content: “*”}

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 414

415Chapter 14 ✦ CSS Text Styles

Mozilla, Internet Explorer, and Opera currently only support the content property
on block-level elements. This would not work (although it should) for inline ele-
ments such as SCENE_NUMBER.

Figure 14-26 shows the result. The asterisks are just part of the display. They do not
become part of the XML document itself, so even if you added characters or strings
with special meaning to XML, < or &, for example, this would not make the docu-
ment malformed because the document is never changed.

Figure 14-26: Asterisks have been added by the content property.

You can add more than a single character to the content. For example, this rule
places a row of asterisks after each act:

ACT:after {content: “******************”}

Quotes
Instead of a string literal, the value may be the keyword open-quote to insert an
opening quote such as “ or close-quote to insert a closing quote character such
as “. By default, the straight double quote “ is used to quote items. However, you
can change this with the quotes property. The value of this element is the quote
pair to be used. For example, this rule says that if a LOCATION is quoted, the left
quote should be “ and the right quote should be “:

LOCATION {quotes: “”” “””}

Caution

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 415

416 Part III ✦ Style Languages

The quotes can be anything you want. For example, you could use the French
guillemets like this:

LOCATION {quotes: “«” “»”}

You could do e-mail-style quoting by setting the left quote to > and the right quote
to nothing at all, like this:

LOCATION {quotes: “>” “”}

There’s not even any requirement that you actually use any sort of quote marks.
For example, this rule uses these properties to put a right parenthesis after each
SCENE_NUMBER element:

SCENE_NUMBER {quotes: “” “)”}
SCENE_NUMBER:before {content: open-quote}
SCENE_NUMBER:after {content: close-quote}

If quotes are likely to nest, you can specify multiple quote combinations. For exam-
ple, this says that a quote inside a quote would be quoted with single quotation
marks:

LOCATION {quotes: “”” “”” “‘“ “‘“}

You have to match each open quote with a close quote, but if for some reason you
don’t want to show one or the other, you can use no-open-quote instead of open-
quote and no-close-quote where you would normally use close-quote. The no-
open-quote and no-close-quote keywords do not insert any characters; they just
increment or decrement the level of nesting as if quotes had been used.

Attributes
Normally, the only content the reader sees is character data that came from ele-
ment content in the XML document. However, you can use the attr() function as
the value of the content property to insert an attribute value into the displayed
document. For example, this rule inserts the content of the POEM element’s TYPE
attribute:

POEM:before {content: “A “ + attr(type)}

URIs
One of the most interesting values of the content property is a URI. The URI is
given in the same syntax used for the background-image property, and it means
much the same thing: Load the document at the specified URI, and display it in the
specified location. The browser is allowed to load and embed any kind of document
it understands. For example, this rule says that the picture found at the URI

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 416

417Chapter 14 ✦ CSS Text Styles

http://www.example.com/shakespeare.jpg should be inserted before the
TITLE element:

TITLE:before {
content: uri(http://www.example.com/shakespeare.jpg)

}

This can be used for any kind of content that the browser understands: images, text
files, PDFs, other XML documents, sound recordings, and more. For example, this
rule suggests that a sound file should be played before the TITLE element:

TITLE:before {
content: uri(http://www.example.com/12th_night.mp3)

}

All of this is subject to the abilities of the browser. For example, if one can’t play an
MP3 file, it will ignore this rule.

Counters
The final thing you can offer as the value of the content property is a counter. This
is a running total of some type of element from the input document. This enables
you to make simple numbered lists, to create outlines that are properly indented
with different numbering systems for each level of the outline, to assign numbers to
each part, chapter, and section, and more. Numbers can be recalculated on the fly
whenever a document changes, rather than having to be painstakingly inserted
by hand.

The counter-increment property creates and adds to the value of a named
counter. The counter() function inserts the current value of a specified counter
into the output. There’s also a counter-reset property that returns a counter to
its starting point. For example, suppose your XML document did not contain built-
in scene numbers or act numbers; that is, suppose it looked like Listing 14-7:

Listing 14-7: A Synopsis of Shakespeare’s Twelfth Night in
XML without Explicit Act or Scene Numbers

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”counters.css”?>
<SYNOPSIS>
<TITLE>Twelfth Night</TITLE>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace
</LOCATION>

Continued

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 417

418 Part III ✦ Style Languages

Listing 14-7 (continued)

</SCENE>
<SCENE>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 418

419Chapter 14 ✦ CSS Text Styles

<SCENE>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
</ACT>

</SYNOPSIS>

You can still insert scene numbers using counters. First, add a rule that increments
a counter named “scene” by 1 with each SCENE element:

SCENE {counter: scene}

Next, add a rule that inserts the current value of the scene counter as well as the
word “Scene” and a colon before each SCENE element:

SCENE:before {content: “Scene “ counter(scene) “: “}

Finally, reset the scene counter to zero at the beginning of each act so that scenes
start over from 1 in each act rather than counting continuously throughout the play:

ACT {counter-reset:scene 0}

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 419

420 Part III ✦ Style Languages

It’s not any harder to add an act counter. In fact, it’s a little easier, because you
don’t have to reset it. These two rules suffice:

ACT {counter-increment: act}
ACT:before {content: “Act “ counter(act) “: “}

In my tests, only Opera correctly applied this style sheet and rendered the docu-
ment with numbered acts and scenes. Various versions of Internet Explorer,
Mozilla, and Safari all failed. Regrettably, counters are not very reliable at the pre-
sent time.

You can increment by a number other than 1 by adding a second value to the
counter-increment property. For example, this rule increments the act counter
by 2 with each act:

ACT {counter-increment: act 2}

By default, counters are decimal numbers. However, you can provide an optional
second argument to the counter() function that changes the numbering style. The
possible values are the same as for the list-style-type property discussed in
Chapter 13; that is, disc, circle, square. decimal, lower-roman, upper-roman,
hebrew, and so on.

If you’d like to use generated content as the list bullet instead of the standard bul-
let, set the display property of the :before or :after pseudo-element to marker.
This must occur inside an element whose display property is set to list-item.
For example, Listing 14-8 uses generated content as a marker for both ACT and
SCENE lists.

Listing 14-8: Using Scene Numbers as List Bullets

SYNOPSIS, TITLE { display: block }
TITLE { font-family: Helvetica, Verdana, sans-serif;

font-size: x-large; text-align: center }
SYNOPSIS { font-family: Times, “Times New Roman”, serif;

font-size: 14pt; text-align: justify }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }
SCENE {display: list-item; counter-increment: scene}
ACT {display: list-item; counter-increment: act}
SCENE:before {display: marker;

content: “Scene “ counter(scene) “: “}
ACT {counter-reset: scene 0}
ACT:before {content: “Act “ counter(act) “: “}

Caution

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 420

421Chapter 14 ✦ CSS Text Styles

Summary
This chapter discussed CSS’s text and character-oriented properties. In this chap-
ter, you learned the following:

✦ The font-family property specifies the face in which the text is drawn. Its
value is a comma-separated list of family names, such as Helvetica and
“Times New Roman”, and generic names, such as sans-serif, serif,
cursive, monospace, and fantasy.

✦ The font-size property specifies how big text is as either an absolute length
such as 12pt, an absolute keyword such as small, a relative keyword such as
smaller, or a percentage of the parent element’s font size such as 80%.

✦ The font-stretch property determines how loose or tight a font is; that
is, how close the letters are together. Possible values include normal (the
default), wider, narrower, ultra-condensed, extra-condensed,
condensed, semi-condensed, semi-expanded, expanded, extra-expanded,
and ultra-expanded.

✦ The font-style property can be set to normal (the default), italic, or
oblique.

✦ The font-variant property can be set to normal (the default) or small-caps.

✦ The font-weight property determines how bold a font is. Possible values
include the keywords normal, bold, bolder, and lighter as well as the
numeric levels from 100 (the lightest) to 900 (the darkest).

✦ The color property can be set to a named color such as fuchsia, a hexadeci-
mal triple such as #FF00FF, or a decimal triple such as rgb(255, 0, 255) to
indicate the color of the foreground object.

✦ The word-spacing property gives a length to be used as extra space between
each pair of words.

✦ The letter-spacing property gives a length to be used as extra space
between each pair of characters.

✦ The text-decoration property can be set to none (the default), underline,
overline, line-through, and/or blink.

✦ The vertical-align property determines where an object is placed between
the top and bottom of its containing box. It can be set to an absolute length, a
percentage of the vertical height of the box, or one of the keywords baseline,
sub, super, top, text-top, middle, bottom, or text-bottom.

✦ The text-transform property can be set to none (the default), capitalize,
uppercase, or lowercase.

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 421

422 Part III ✦ Style Languages

✦ The text-align property can be set to left, right, center, or justify.

✦ The text-indent property specifies how far to indent the first line of a para-
graph using either an absolute length or a percentage of the width of the
paragraph.

✦ The text-shadow property places a shadow of a specified color, length,
width, and blur radius on one corner of an element.

✦ The line-height property determines the vertical extension of a line box. It
can be set to an absolute length or a percentage of the font size.

✦ The white-space property determines how white space is handled inside the
element. Allowed values include normal (the default), pre, and nowrap.

✦ The background-color property sets the color of an element’s background
using the same values the color property uses for the foreground color.

✦ The background of an element can be set to an image using the background-
image, background-repeat, background-attachment, and background-
position properties.

✦ The visibility property controls whether the contents of an element are
seen. It has three possible values: visible, hidden, and collapse.

✦ The content property places data from the style sheet into the output docu-
ment at a position indicated by a :before or :after pseudo-element. The
value of the content property can be a literal string, an attribute value loaded
with the attr() function, an opening or closing quote mark defined by the
quotes property, the value of a counter, or the document at a URI.

Although CSS is quite powerful when fully implemented, there are still some limits
to what you can achieve with it. First, CSS can only attach styles to content that
already appears in the document. It can only add very limited content to the docu-
ment, and it cannot transform the content in any way, such as by sorting or reorder-
ing it. These needs are addressed by XSL, the Extensible Stylesheet Language.
However, a more severe limitation is that you’re limited to those parts of CSS that
are reliably implemented across multiple browsers, a depressingly small subset of
standard CSS. XSL, by contrast, can be implemented on the server side, so you’re
not restricted to only those parts that browsers actually implement. Chapter 15
explores XSL transformations and shows you how much farther they can take you.

✦ ✦ ✦

18 549863 Ch14.qxd 1/28/04 9:49 AM Page 422

XSL
Transformations

The Extensible Stylesheet Language (XSL) includes both a
transformation language and a formatting language. Each

of these is an XML application. The transformation language
provides elements that define rules for how one XML docu-
ment is transformed into another XML document. The trans-
formed XML document may use the vocabulary of the original
document, or it may use a completely different set of ele-
ments. In particular, it may use the elements defined by the
second part of XSL, the formatting objects. This chapter dis-
cusses the transformation language half of XSL.

What Is XSL?
The transformation and formatting halves of XSL can function
independently of each other. For instance, the transformation
language can transform an XML document into a well-formed
HTML file, and completely ignore XSL formatting objects. This
is the style of XSL previewed in Chapter 5 and emphasized in
this chapter. Furthermore, it’s not absolutely required that a
document written in XSL formatting objects be produced by
using the transformation part of XSL on another XML docu-
ment. For example, a program written in Java could read TeX
or PDF files and translate them into XSL formatting objects.

In essence, XSL is two languages, not one. The first is a trans-
formation language, the second a formatting language. The
transformation language is useful independently of the format-
ting language. Its ability to move data from one XML represen-
tation to another makes it an important component of
XML-based electronic commerce, electronic data interchange,
metadata exchange, and any application that needs to convert
between different XML representations of the same informa-
tion. These uses are also united by their lack of concern with
rendering data on a display for humans to read. They are
purely about moving data from one computer system or pro-
gram to another.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XSL?

Overview of XSL
transformations

Understanding XSL
templates

Computing the value
of a node with
xsl:value-of

Processing multiple
elements with xsl:for-
each

Matching and
selecting nodes with
patterns

Understanding the
default template rules

Attribute value
templates

Deciding which
output to include

Counting nodes

Sorting output

Modes

Output methods

✦ ✦ ✦ ✦

19 549863 Ch15.qxd 1/28/04 9:48 AM Page 423

424 Part III ✦ Style Languages

Consequently, many implementations of XSL focus exclusively on the transforma-
tion part and ignore the formatting objects. These are incomplete implementations,
but nonetheless useful. Not all data must ultimately be rendered on a computer
monitor or printed on paper.

Chapter 16 discusses the XSL formatting language.

XSL is still under development. The language has changed radically in the past,
and will almost certainly change again in the future. This chapter is based on the
November 16, 1999, XSLT 1.0 Recommendation. Because XSLT is now an official
Recommendation of the World Wide Web Consortium (W3C), I’m hopeful that any
changes that do occur will simply add to the existing syntax without invalidating
style sheets that adhere to the 1.0 spec. Indeed, the W3C has begun work on XSLT
2.0, and it does seem likely that all legal XSLT 1.0 documents will still be legal XSLT
2.0 documents.

Not all software has caught up to the 1.0 Recommendation, however. In particular,
Version 5.5 and earlier of Internet Explorer only implement a very old working
draft of XSLT that looks almost nothing like the finished standard. You should not
expect most of the examples in this chapter to work with these versions of IE, even
after substantial tweaking. Internet Explorer 6.0 does implement something close
to XSLT 1.0. However, there are still some bugs and areas where Microsoft did not
follow the standard.

Overview of XSL Transformations
In an XSL transformation, an XSLT processor reads both an XML document and an
XSLT style sheet. The processor applies the instructions in the XSLT style sheet to
the data in the input document to generate a new XML document or fragment
thereof. Most processors can also output HTML. With some effort, most XSLT pro-
cessors can also be made to output essentially arbitrary text, though XSLT is
designed primarily for XML-to-XML and XML-to-HTML transformations.

Trees
As you learned in Chapter 6, every well-formed XML document forms a tree. A tree
is a data structure composed of connected nodes beginning with a top node called
the root. The root is connected to its child nodes, each of which is connected to
zero or more children of its own, and so forth. A diagram of a tree looks much like a
genealogical descendant chart that lists the descendants of a single ancestor. One
useful property of a tree is that each node and its children also form a tree. Thus, a
tree is a hierarchical structure of trees in which each tree is built out of smaller
trees.

Caution

Cross-
Reference

19 549863 Ch15.qxd 1/28/04 9:48 AM Page 424

425Chapter 15 ✦ XSL Transformations

For the purposes of XSLT, elements, attributes, namespaces, processing instruc-
tions, comments, and parsed character data are counted as nodes. Furthermore,
the document itself is the root of the tree. Thus, XSLT processors model an XML
document as a tree that contains seven kinds of nodes:

✦ The root

✦ Elements

✦ Text

✦ Attributes

✦ Namespaces

✦ Processing instructions

✦ Comments

The DTD and document type declaration are specifically not included in this tree.
However, a DTD may add default attribute values to some elements, which then
become additional attribute nodes in the tree. Entity and character references are
resolved into their replacement text. They are not counted as separate kinds of
nodes themselves. Similarly, CDATA sections merely become part of text nodes.
They are not treated differently than any other text.

For example, consider the XML document in Listing 15-1. This shows part of the
periodic table of the elements. I’ll be using this as an example in this chapter. The
root PERIODIC_TABLE element contains ATOM child elements. Each ATOM element
contains several child elements providing the atomic number, atomic weight, sym-
bol, boiling point, and so forth. A UNITS attribute specifies the units for those ele-
ments that have units.

ELEMENT would be a more appropriate name here than ATOM. However, writing
about ELEMENT elements and trying to distinguish between chemical elements
and XML elements might create confusion. Thus, for the purposes of this chapter,
ATOM seemed like the more legible option.

Listing 15-1: An XML Periodic Table with Two Atoms:
Hydrogen and Helium

<?xml version=”1.0”?>
<?xml-stylesheet type=”application/xml” href=”15-2.xsl”?>
<PERIODIC_TABLE>

<ATOM STATE=”GAS”>
<NAME>Hydrogen</NAME>
<SYMBOL>H</SYMBOL>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>

Continued

Note

19 549863 Ch15.qxd 1/28/04 9:48 AM Page 425

426 Part III ✦ Style Languages

Listing 15-1 (continued)

<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>20.28</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>13.81</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>
</ATOM>

<ATOM STATE=”GAS”>
<NAME>Helium</NAME>
<SYMBOL>He</SYMBOL>
<ATOMIC_NUMBER>2</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>4.216</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>0.95</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”><!-- At 300K -->
0.0001785

</DENSITY>
</ATOM>

</PERIODIC_TABLE>

You can find a much longer version of Listing 15-1 that includes all elements
through atomic number 110 http://www.cafeconleche.org/examples/
periodic_table/allelements.xml. This longer version is used in several of
the examples in this chapter.

Figure 15-1 displays a tree diagram of this document. It begins at the top with the
root node (not the same as the root element), which contains two child nodes, the
xml-stylesheet processing instruction and the root element PERIODIC_TABLE.
(The XML declaration is not directly visible to the XSLT processor and is not
included in the tree the XSLT processor operates on.) The PERIODIC_TABLE ele-
ment contains five child nodes. Two of them are obvious, the two ATOM elements.
The other three are almost invisible. These are the boundary white-space-text
nodes between <PERIODIC_TABLE> and <ATOM STATE=”GAS”>, between </ATOM>
and <ATOM STATE=”GAS”>, and between </ATOM> and </PERIODIC_TABLE>. XSLT
can see all the white space between tags. It’s up to the style sheet to decide
whether or not boundary white space is significant and should be preserved. Figure
15-1 is drawn under the assumption that these nodes aren’t important, and thus
omits them. However, other applications might treat them as significant.

Each ATOM element has an attribute node for its STATE attribute, text nodes for all
the white space between tags, and a variety of child element nodes. Each child ele-
ment contains a node for its text content, as well as nodes for any attributes, com-
ments, and processing instructions it possesses. Notice, in particular, that many

Note

19 549863 Ch15.qxd 1/28/04 9:48 AM Page 426

427Chapter 15 ✦ XSL Transformations

nodes are something other than elements. There are nodes for text, attributes, com-
ments, namespaces, and processing instructions. Unlike CSS, XSL is not limited to
working only with whole elements. It has a much more granular view of a document
that enables you to base styles on comments, attributes, processing instructions,
element content, and more.

Figure 15-1: Listing 15-1 as a tree diagram

XSLT operates by transforming one XML tree into another XML tree. More precisely,
an XSLT processor accepts as input a tree represented as an XML document and
produces as output a new tree, also represented as an XML document or document
fragment. Consequently, the transformation part of XSL is also called the tree con-
struction part. The XSL transformation language contains operators for selecting
nodes from the tree, reordering the nodes, and outputting nodes. If one of these
nodes is an element node, it may be an entire tree itself. Remember that all these
operators, both for input and output, are designed for operation on a tree.

The input must be an XML document. XSLT cannot transform from non-XML for-
mats such as PDF, TeX, Microsoft Word, PostScript, MIDI, or others. HTML and
SGML are borderline cases because they’re so close to XML. XSLT can work with
HTML and SGML documents that satisfy XML’s well-formedness rules. However,
XSLT cannot handle the wide variety of non-well-formed HTML and SGML that you
encounter on most web sites and document production systems. XSLT is not a
general-purpose language for transforming arbitrary data.

Most of the time, the output of an XSLT transformation is also an XML document.
However, it can also be a result tree fragment that could be used as an external
parsed entity in another XML document. (That is, it would be a well-formed XML
document if it were enclosed in a single root element.) In other words, the output
may not necessarily be a well-formed XML document, but it will at least be a plausi-
ble part of a well-formed XML document.

STATE="GAS" NAME

UNITS="grams/cubic
centimeter"

ATOM

SYMBOL ATOMIC_
NUMBER

ATOMIC_
WEIGHT DENSITY

At 300K,
1 atm

Hydrogen H 1 1.00794

Root

PERIODIC_TABLE

UNITS="Kelvin"

MELTING_POINT

13.81

0.0000899

UNITS="Kelvin"

BOILING_POINT

20.28

STATE="GAS" NAME

UNITS="grams/cubic
centimeter"

ATOM

SYMBOL ATOMIC_
NUMBER

ATOMIC_
WEIGHT DENSITY

At 300K,
1 atm

Helium He 2 4.0026

UNITS="Kelvin"

MELTING_POINT

0.95

0.0001785

UNITS="Kelvin"

BOILING_POINT

4.126

<?xml-stylesheet type="text/xml" href="18-2.xsl"?>

19 549863 Ch15.qxd 1/28/04 9:48 AM Page 427

428 Part III ✦ Style Languages

The xsl:output element and disable-output-escaping attribute discussed
later in this chapter loosen this restriction somewhat.

Most XSLT processors also support output as HTML and/or raw text, although the
specification does not require them to do so. To some extent, this allows you to
transform to non-XML formats such as TeX, RTF, or PostScript. However, XSLT is
not designed to make these transformations easy. It is designed for XML-to-XML
transformations. If you need a non-XML output format, it will probably be easier to
use XSLT to transform the XML to an intermediate XML format such as XSL-FO, and
then use additional, non-XSLT software to transform that into the format you want.

XSLT style sheet documents
An XSLT document contains template rules. A template rule has a pattern specifying
the nodes it matches and a template to be instantiated and output when the pattern
is matched. When an XSLT processor transforms an XML document under the con-
trol of an XSLT style sheet, it walks the XML document tree starting at the root, and
following an order defined by the template rules. As the processor visits each node
in the XML document, it compares that node with the pattern of each template rule
in the style sheet. When it finds a node that matches a template rule’s pattern, it
outputs the rule’s template. This template generally includes some markup, new
data, data copied out of the source XML document, as well as some directions
about which nodes to process next.

XSLT uses XML to describe these rules, templates, and patterns. The root element
of the XSLT document is either a stylesheet or a transform element in the
http://www.w3.org/1999/XSL/Transform namespace. By convention, this
namespace is mapped to the xsl prefix, but you’re free to pick another prefix if you
prefer. In this chapter, I always use the xsl prefix. From this point forward, it should
be understood that the prefix xsl is mapped to the http://www.w3.org/1999/
XSL/Transform namespace.

If you get the namespace URI wrong, either by using a URI from an older draft of
the specification, such as http://www.w3.org/TR/WD-xsl, or simply by mak-
ing a typo in the normal URI, the XSLT processor will output the style sheet docu-
ment itself instead of the transformed input document. This is the result of the
interaction between several obscure sections of the XSLT 1.0 specification. The
details aren’t important. What is important is that this very unusual behavior
looks very much like a bug in the processor if you aren’t familiar with it. If you are
familiar with it, fixing it is trivial; just correct the namespace URI to http://
www.w3.org/1999/XSL/Transform.

Each template rule is an xsl:template element. The pattern of the rule is placed in
the match attribute of the xsl:template element. The output template is the con-
tent of the xsl:template element. All instructions in the template for doing things,
such as selecting parts of the input tree to include in the output tree, are performed
by XSLT elements. These are identified by the xsl: prefix on the element names.
Elements that do not have an xsl: prefix are part of the result tree.

Tip

Tip

19 549863 Ch15.qxd 1/28/04 9:48 AM Page 428

429Chapter 15 ✦ XSL Transformations

Listing 15-2 shows a very simple XSLT style sheet with two template rules. The first
template rule matches the root element PERIODIC_TABLE. It replaces this element
with an html element. The contents of the html element are the results of applying
the other templates in the document to the contents of the PERIODIC_TABLE element.

The second template matches ATOM elements. It converts each ATOM element in
the input document into a P element in the output document. The xsl:apply-
templates rule inserts the text of the matched source element into the output
document. Thus, the contents of a P element will be the text (but not the markup)
contained in the corresponding ATOM element.

The xsl:stylesheet root element must have a version attribute with the value
1.0. It will normally also have an xmlns:xsl namespace declaration that binds the
prefix xsl to the http://www.w3.org/1999/XSL/Transform namespace URI.

Listing 15-2: An XSLT Style Sheet for the Periodic Table
with Two Template Rules

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<HTML>
<xsl:apply-templates/>

</HTML>
</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:apply-templates/>

</P>
</xsl:template>

</xsl:stylesheet>

The xsl:transform element can be used in place of xsl:stylesheet if you prefer.
This is an exact synonym with the same syntax, semantics, and attributes, as in this
example:

<?xml version=”1.0”?>
<xsl:transform version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<!-- templates go here -->

</xsl:transform>

In this book, I will stick to xsl:stylesheet.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 429

430 Part III ✦ Style Languages

Where does the XML transformation happen?
There are three primary ways to transform XML documents into other formats,
such as HTML, with an XSLT style sheet:

1. The XML document and associated style sheet are both served to the client
(web browser), which then transforms the document as specified by the style
sheet and presents it to the user.

2. The server applies an XSLT style sheet to an XML document to transform it to
some other format (generally HTML) and sends the transformed document to
the client (web browser).

3. A third program transforms the original XML document into some other for-
mat (often HTML) before the document is placed on the server. Both server
and client only deal with the transformed document.

Each of these three approaches uses different software, although they all use the
same XML documents and XSLT style sheets. A typical web server sending XML
documents to Mozilla is an example of the first approach. A servlet-compatible web
server using Apache’s Cocoon (http://cocoon.apache.org) is an example of the
second approach. A human using Michael Kay’s command-line Saxon program
(http://saxon.sourceforge.net) to transform XML documents to HTML docu-
ments, then placing the HTML documents on a web server is an example of the
third approach. However, these all use the same XSLT language.

In this chapter, I emphasize the third approach, primarily because at the time of
this writing, specialized converter programs, such as Michael Kay’s Saxon and the
Gnome Project’s xsltproc (http://xmlsoft.org/XSLT.html), provide the most
complete and accurate implementations of the XSLT specification. Furthermore,
this approach offers the broadest compatibility with legacy web browsers and
servers, whereas the first approach requires a more recent browser than many
users use, and the second approach requires special web server software. In prac-
tice, though, requiring a different server is not nearly as onerous as requiring a par-
ticular client. You, yourself, can install your own special server software; but you
cannot rely on your visitors to install particular client software.

Using xsltproc
xsltproc is a character mode application written in C. It was originally developed
for Linux, but has been ported to most common UNIXes, Windows, and Mac OS X. It
may be installed by default on a few Linux distros, but most users will need to
download it from http://xmlsoft.org/XSLT/downloads.html first. You’ll also
need to install libxml, the XML parser it depends on. You can download this from
http://www.xmlsoft.org/downloads.html.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 430

431Chapter 15 ✦ XSL Transformations

On Windows, you’ll also need to install the iconv library, which you can get from
the same site. All three libraries are distributed as zip files. When unzipped, these
archives each contain a lib and util directory. Simply copy the complete contents of
all three lib and util directories to your C:\WINDOWS or C:\WINNT directory.

Although I primarily use xsltproc in this chapter, the examples should work with
Saxon, Xalan, or any other XSLT processor that implements the XSLT 1.0
Recommendation. Some processors may produce slightly different output that
does not affect the final results, especially when outputting HTML. For example,
they may indent the tags a little differently, or add a META tag or two to the HEAD.
Normally these details aren’t very relevant, but if they concern you, you can control
them using the xsl:output instruction discussed toward the end of this chapter.

After everything’s installed in the right locations, you run xsltproc by typing the fol-
lowing at the shell prompt or in a DOS window:

C:\> xsltproc stylesheet.xsl document.xml

The first argument is the style sheet. The second argument is the XML document to
transform. You can add additional filenames or URLs to transform more than one
document. By default, the output is printed in the same shell prompt/DOS window
where you launched the processor. To redirect the output into a file, you can use
the -o option. For example, this command applies the style sheet in Listing 15-2 to
the document in Listing 15-1, and puts the output in the file 15-3.html:

C:\> xsltproc -o 15.3.html 15-2.xsl 15-1.xml

Listing 15-2 transforms input documents to well-formed HTML files, as discussed in
Chapter 6. However, you can transform from any XML application to any other as
long as you can write a style sheet to support the transformation. For example, you
can imagine a style sheet that transforms from Vector Markup Language (VML) doc-
uments to Scalable Vector Graphics (SVG) documents:

% xsltproc -o pinktriangle.svg VMLToSVG.xsl pinktriangle.vml

Most other command-line XSLT processors behave similarly, though of course
they’ll have different command-line arguments and options.

Listing 15-3 shows the output of running Listing 15-1 through xsltproc with the XSLT
style sheet in Listing 15-2. Notice that xsltproc does not attempt to clean up the
HTML it generates, which has a lot of white space. This is not important because
ultimately you want to view the file in a web browser that trims white space. Figure
15-2 shows Listing 15-3 loaded into Netscape Navigator 3.0. Because Listing 15-3 is
standard HTML, you don’t need an XML-capable browser to view it.

Note

Tip

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 431

432 Part III ✦ Style Languages

Listing 15-3: The HTML Produced by Applying the Style Sheet
in Listing 15-2 to the XML in Listing 15-1

<HTML>

<P>
Hydrogen
H
1
1.00794
20.28
13.81

0.0000899

</P>

<P>
Helium
He
2
4.0026
4.216
0.95

0.0001785

</P>

</HTML>

Figure 15-2: The page produced by applying the style
sheet in Listing 15-2 to the XML document in Listing 15-1

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 432

433Chapter 15 ✦ XSL Transformations

Browser display of XML files with XSLT style sheets
Instead of preprocessing the XML document, you can send the client both the XML
file and the XSLT file that describes how to render it. The client is responsible for
applying the style sheet to the document and rendering it accordingly. This is more
work for the client, but places much less load on the server. In this case, the XSLT
style sheet must transform the document into an XML vocabulary the client under-
stands. HTML is a likely choice, though other XML formats are options as well.

Attaching an XSLT style sheet to an XML document is easy. Simply insert an xml-
stylesheet processing instruction in the prolog immediately after the XML decla-
ration. This processing instruction should have a type attribute with the value
application/xml and an href attribute whose value is a URL pointing to the style
sheet, as shown here:

<?xml version=”1.0”?>
<?xml-stylesheet type=”application/xml” href=”15-2.xsl”?>

This is also how you attach a CSS style sheet to a document. The only difference
here is that the type attribute has the value application/xml instead of
text/css.

In the not too distant future, the more specific MIME media type application/
xslt+xml will be available to distinguish XSLT documents from all other XML
documents. After browsers are revised to support this, you will be able to write the
xml-stylesheet processing instruction like this instead:

<?xml-stylesheet type=”application/xslt+xml”
href=”15-2.xsl”?>

Internet Explorer’s XSLT support differs from the XSLT 1.0 Recommendation in sev-
eral ways. Most importantly, it expects the nonstandard MIME media type text/
xsl in the xml-stylesheet processing instruction rather than application/xml.
Otherwise, Internet Explorer 6.0 has reasonable, though imperfect, support for XSLT.

Internet Explorer 5.0 and 5.5 do not support XSLT 1.0 out of the box. They support
an earlier, beta version of XSLT with some Microsoft extensions. You can tell the dif-
ference by looking at the namespace URI. Style sheets written for IE5 use the URI
http://www.w3.org/TR/WD-xsl. Style sheets written for all other processors use
the URI http://www.w3.org/1999/XSL/Transform. To work with XML, it really
helps to upgrade to Internet Explorer 6.0 or later. If you must stick with IE 5.5 or
earlier, you can upgrade the MSXML parser instead. Download MSXML 3.0 from
http://msdn.microsoft.com/library/default.asp?url=/downloads/
list/xmlgeneral.asp. This installer does not automatically replace the earlier,
nonstandard-compliant MSXML 2.5 that is bundled. To replace the old version, you
also have to download and run a separate program called xmlinst.exe, which you
can get from the same page where you found MSXML 3.0. Otherwise, you’ll still be
stuck with the old, out-of-date beta version of XSLT.

Note

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 433

434 Part III ✦ Style Languages

MSXML 4.0 is also available but cannot replace the MSXML 2.5 bundled with
Internet Explorer 5.5 and earlier. If you’re using Internet Explorer 5.x, you should
use MSXML 3.0, not an earlier, nor a later, version.

Even once this is done, there are still some bugs and areas where Microsoft did not
follow the specification, so this is not quite a complete implementation of XSLT 1.0.
If you find that something in this chapter doesn’t work in Internet Explorer, please
complain to Microsoft, not to me.

XSL Templates
Template rules defined by xsl:template elements are the most important part of
an XSLT style sheet. These associate particular output with particular input. Each
xsl:template element has a match attribute that specifies which nodes of the
input document the template is instantiated for.

The content of the xsl:template element is the template to be instantiated. A tem-
plate may contain both text, which will appear literally in the output document, and
XSLT instructions that copy data from the input XML document to the result. Because
all XSLT instructions are in the http://www.w3.org/1999/XSL/Transform name-
space, it’s easy to distinguish between the elements that are literal data to be copied
to the output and instructions. For example, here is a template that matches the
root node of the input tree:

<xsl:template match=”/”>
<HTML>
<HEAD>
</HEAD>
<BODY>
</BODY>

</HTML>
</xsl:template>

When the XSLT processor reads the input document, the first node it sees is the
root. This rule matches that root node, and tells the XSLT processor to emit this
element:

<HTML>
<HEAD>
</HEAD>
<BODY>
</BODY>

</HTML>

This text is well-formed HTML. Because the XSLT document is itself an XML docu-
ment, its contents — templates included — must be well-formed XML.

Caution

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 434

435Chapter 15 ✦ XSL Transformations

If you were to use the preceding rule, and only the preceding rule, in an XSLT style
sheet, the output would be limited to the above six tags. That’s because no instruc-
tions in the rule tell the formatter to move down the tree and look for further
matches against the templates in the style sheet.

The xsl:apply-templates element
To get beyond the root, you have to tell the formatting engine to process the chil-
dren of the root. In general, to include content in the child nodes, you have to
recursively process the nodes through the XML document. The element that does
this is xsl:apply-templates. An xsl:apply-templates element tells the proces-
sor to compare each child node of the matched source element against the tem-
plates in the style sheet and, if a match is found, output the template for the
matched node. The template for the matched node may itself contain xsl:apply-
templates elements to search for matches for its children. When the XSLT engine
processes a node, the node is treated as a complete tree. This is the advantage of
the tree structure. Each part can be treated the same way as the whole. For exam-
ple, Listing 15-4 is an XSLT style sheet that uses the xsl:apply templates element
to process the child nodes.

Listing 15-4: An XSLT Style Sheet That Recursively Processes
the Children of the Root

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<HTML>
<xsl:apply-templates/>

</HTML>
</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<BODY>
<xsl:apply-templates/>

</BODY>
</xsl:template>

<xsl:template match=”ATOM”>
An Atom

</xsl:template>

</xsl:stylesheet>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 435

436 Part III ✦ Style Languages

When this style sheet is applied to Listing 15-1, here’s what happens:

1. The root node is compared with all template rules in the style sheet. It
matches the first one.

2. The <HTML> tag is written out.

3. The xsl:apply-templates element causes the formatting engine to process
the child nodes of the root node of the input document.

A. The first child of the root, the xml-stylesheet processing instruction,
is compared with the template rules. It doesn’t match any of them, so no
output is generated.

B. The second child of the root node of the input document, the root ele-
ment PERIODIC_TABLE, is compared with the template rules. It matches
the second template rule.

C. The <BODY> tag is written out.

D. The xsl:apply-templates element in the body element causes the
XSLT engine to process the child nodes of PERIODIC_TABLE.

a. The first child of the PERIODIC_TABLE element, that is the
Hydrogen ATOM element, is compared with the template rules. It
matches the third template rule.

b.The text “An Atom” is output.

c. The second child of the PERIODIC_TABLE element, that is the
Helium ATOM element, is compared with the template rules. It
matches the third template rule.

d.The text “An Atom” is output.

E. The </BODY> tag is written out.

4. The </HTML> tag is written out.

5. Processing is complete.

The end result is as follows:

<HTML>
<BODY>

An Atom

An Atom

</BODY>
</HTML>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 436

437Chapter 15 ✦ XSL Transformations

I actually skipped a couple of steps here. The boundary white space text nodes
were also processed. Their values were copied by the default template rules,
which is why there’s so much white space in the output. You’ll learn about the
default template rules for text nodes shortly.

The select attribute
To replace the text “An Atom” with the name of the ATOM element as given by its
NAME child, you need to specify that templates should be applied to the NAME chil-
dren of the ATOM element. To choose a particular set of children instead of all chil-
dren, supply xsl:apply-templates with a select attribute designating the
children to be selected, as in this template rule:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”NAME”/>

</xsl:template>

The select attribute uses the same kind of patterns as the match attribute of the
xsl:template element. For now, I’ll stick to simple names of elements; but in the
section on patterns for matching and selecting later in this chapter, you’ll see many
more possibilities for both select and match. If no select attribute is present, all
child element, text, comment, and processing instruction nodes are selected.
(Attribute and namespace nodes are not selected.)

The result of adding this rule to the style sheet of Listing 15-5 and applying it to
Listing 15-1 is this:

<HTML>
<BODY>

Hydrogen

Helium

</BODY>
</HTML>

Computing the Value of a Node
with xsl:value-of

The xsl:value-of element computes the string value of something (most of the
time, though not always, something in the input document) and copies that plain
text value into the output document. The select attribute of the xsl:value-of
element specifies exactly which something’s value is being computed.

Note

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 437

438 Part III ✦ Style Languages

The exact content of the string value depends on the type of the node. The most
common type of node is element, and the value of an element node is particularly
simple. It’s the concatenation of all the character data (but not markup) between
the element’s start-tag and end-tag. For example, the first ATOM element in Listing
15-1 is as follows:

<ATOM STATE=”GAS”>
<NAME>Hydrogen</NAME>
<SYMBOL>H</SYMBOL>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>20.28</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>13.81</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>
</ATOM>

The value of this element is:

Hydrogen
H
1
1.00794
1
20.28
13.81

0.0000899

I calculated this value by stripping out all the tags and comments. Everything else
including white space was left intact. The values of the other six node types are
calculated similarly, mostly in obvious ways. Table 15-1 summarizes.

Table 15-1
Values of Nodes

Node Type Value

Root The value of the root element

Element The concatenation of all parsed character data contained in the
element, including character data in any of the descendants of the
element

Text The text of the node; essentially the node itself

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 438

439Chapter 15 ✦ XSL Transformations

Node Type Value

Attribute The normalized attribute value as specified by Section 3.3.3 of the
XML 1.0 Recommendation; basically the attribute value after
entities are resolved and leading and trailing white space is
stripped; does not include the name of the attribute, the equals
sign, or the quotation marks

Namespace The URI of the namespace

Processing instruction The data in the processing instruction; does not include the target,
<? or ?>

Comment The text of the comment, <!-- and --> not included

For example, suppose you want to replace the literal text “An Atom” with the name
of the ATOM element, as given by the contents of its NAME child. You can replace “An
Atom” with <xsl:value-of select=”NAME”/>, like this:

<xsl:template match=”ATOM”>
<xsl:value-of select=”NAME”/>

</xsl:template>

Then, when you apply the style sheet to Listing 15-1, this text is generated:

<HTML>
<BODY>

Hydrogen

Helium

</BODY>
</HTML>

The item whose value is selected, the NAME element in this example, is relative to
the current node. The current node is the item matched by the template, the partic-
ular ATOM element in this example. Thus, when the Hydrogen ATOM is matched by
<xsl:template match=”ATOM”>, the Hydrogen ATOM’s NAME is selected by
xsl:value-of. When the Helium ATOM is matched by <xsl:template
match=”ATOM”>, the Helium ATOM’s NAME is selected by xsl:value-of.

Processing Multiple Elements with xsl:for-each
The xsl:value-of element should only be used in contexts where it is obvious
which node’s value is being taken. If there are multiple possible items that could be
selected, only the first one will be chosen. For example, this is a poor rule because
a typical PERIODIC_TABLE element contains more than one ATOM:

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 439

440 Part III ✦ Style Languages

<xsl:template match=”PERIODIC_TABLE”>
<xsl:value-of select=”ATOM”/>

</xsl:template>

There are two ways of processing multiple elements in turn. The first method
you’ve already seen. Simply use xsl:apply-templates with a select attribute
that chooses the particular elements that you want to visit, like this:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates select=”ATOM”/>

</xsl:template>

<xsl:template match=”ATOM”>
<xsl:value-of select=”.”/>

</xsl:template>

The select=”.” in the second template tells the formatter to take the value of the
matched node, ATOM in this example.

The second option is xsl:for-each. The xsl:for-each element processes each
element chosen by its select attribute in turn. However, no additional template
rule is required. Instead, the content of the xsl:for-each element serves as a tem-
plate. For example:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:for-each select=”ATOM”>
<xsl:value-of select=”.”/>

</xsl:for-each>
</xsl:template>

This is useful when you need to format the same content differently in different
places in the style sheet.

Patterns for Matching Nodes
The match attribute of the xsl:template element supports a complex syntax that
allows you to indicate precisely which nodes you do and do not want to match.
The select attribute of xsl:apply-templates, xsl:value-of, xsl:for-each,
xsl:copy-of, and xsl:sort supports an even more powerful superset of this syn-
tax called XPath that allows you to express exactly which nodes you do and do not
want to select. Various patterns for matching and selecting nodes are discussed in
following sections.

Matching the root node
In order that the output document be well-formed, the first thing output from an
XSL transformation should be the output document’s root element. Consequently,
XSLT style sheets generally start with a rule that applies to the root node. To specify

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 440

441Chapter 15 ✦ XSL Transformations

the root node in a rule, you give its match attribute the value “/”, as in the follow-
ing example:

<xsl:template match=”/”>
<DOCUMENT>
<xsl:apply-templates/>

</DOCUMENT>
</xsl:template>

This rule applies to the root node and only the root node of the input tree. When
the root node is read, the tag <DOCUMENT> is output, the children of the root node
are processed, then the </DOCUMENT> tag is output. This rule overrides the default
rule for the root node. Listing 15-5 shows a style sheet with a single rule that
applies to the root node.

Listing 15-5: An XSLT Style Sheet with One Rule for the
Root Node

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<HTML>
<HEAD>
<TITLE>Atomic Number vs. Atomic Weight</TITLE>

</HEAD>
<BODY>
<TABLE>
Atom data will go here

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

Because this style sheet only provides a rule for the root node, and because that
rule’s template does not specify any further processing of child nodes, only literal
output that’s included in the template is inserted in the resulting document. In
other words, the result of applying the style sheet in Listing 15-5 to Listing 15-1 (or
any other well-formed XML document) is this:

<HTML>
<HEAD>
<TITLE>Atomic Number vs. Atomic Weight</TITLE>
</HEAD>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 441

442 Part III ✦ Style Languages

<BODY>
<TABLE>

Atom data will go here
</TABLE>

</BODY>
</HTML>

Matching element names
As previously mentioned, the most basic pattern contains a single element name
that matches all elements with that name. For example, this template matches ATOM
elements and makes their ATOMIC_NUMBER children bold:

<xsl:template match=”ATOM”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</xsl:template>

Listing 15-6 demonstrates a style sheet that expands on Listing 15-5. First, an
xsl:apply-templates element is included in the template rule for the root node.
This element uses a select attribute to ensure that only PERIODIC_TABLE ele-
ments are processed.

Second, a rule that only applies to PERIODIC_TABLE elements is created using
match=”PERIODIC_TABLE”. This rule sets up the header for the table, and then
applies templates to form the body of the table from ATOM elements.

Finally, the ATOM rule specifically selects the ATOM element’s NAME, ATOMIC_NUMBER,
and ATOMIC_WEIGHT child elements with <xsl:value-of select=”NAME”/>,
<xsl:value-of select=”ATOMIC_NUMBER”/>, and <xsl:value-of select=
”ATOMIC_WEIGHT”/>. These are wrapped up inside HTML’s TR and TD elements,
so that the end result is a table of atomic numbers matched to atomic weights.
Figure 15-3 shows the output of applying the style sheet in Listing 15-6 to the
complete periodic table document rendered in Netscape Navigator.

One thing you might want to note about this style sheet: The exact order of the
NAME, ATOMIC_NUMBER, and ATOMIC_WEIGHT elements in the input document is
irrelevant. They appear in the output in the order they were selected; that is, first
number, then weight. Conversely, the individual atoms are sorted in alphabetical
order as they appear in the input document. Later, you’ll see how to use an
xsl:sort element to change that so you can arrange the atoms in the more con-
ventional atomic number order.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 442

443Chapter 15 ✦ XSL Transformations

Listing 15-6: Templates Applied to Specific Classes
of Element with Select

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<HTML>
<HEAD>
<TITLE>Atomic Number vs. Atomic Weight</TITLE>

</HEAD>
<BODY>
<xsl:apply-templates select=”PERIODIC_TABLE”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<H1>Atomic Number vs. Atomic Weight</H1>
<TABLE>
<TH>Element</TH>
<TH>Atomic Number</TH>
<TH>Atomic Weight</TH>
<xsl:apply-templates select=”ATOM”/>

</TABLE>
</xsl:template>

<xsl:template match=”ATOM”>
<TR>
<TD><xsl:value-of select=”NAME”/></TD>
<TD><xsl:value-of select=”ATOMIC_NUMBER”/></TD>
<TD><xsl:value-of select=”ATOMIC_WEIGHT”/></TD>

</TR>
</xsl:template>

</xsl:stylesheet>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 443

444 Part III ✦ Style Languages

Figure 15-3: A table showing atomic number versus atomic weight in Netscape
Navigator

Wildcards
Sometimes you want a single template to apply to more than one element. You can
indicate that a template matches all elements by using the asterisk wildcard (*) in
place of an element name in the match attribute. For example, this template says
that all input elements should be wrapped in a P element:

<xsl:template match=”*”>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

Of course this is probably more than you want. You’d like to use the template rules
already defined for PERIODIC_TABLE and ATOM elements as well as the root node,
and only use this rule for the other elements. Fortunately, you can. In the event that
two rules both match a single node, by default the more specific one takes prece-
dence. In this case, that means that ATOM elements will use the template with
match=”ATOM” instead of a template that merely has match=”*”. However, NAME,
BOILING_POINT, ATOMIC_NUMBER and other elements that don’t match a more spe-
cific template will cause the match=”*” template to activate.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 444

445Chapter 15 ✦ XSL Transformations

You can place a namespace prefix in front of the asterisk to indicate that only ele-
ments in a particular namespace should be matched. For example, this template
matches all SVG elements, presuming that the prefix svg is mapped to the normal
SVG URI http://www.w3.org/2000/svg in the style sheet.

<xsl:template match=”svg:*”>
<DIV>
<xsl:value-of select=”.”/>

</DIV>
</xsl:template>

Of course in Listing 15-1, there aren’t any elements from this namespace, so this
template wouldn’t produce any output. However, it might when applied to a differ-
ent document that did include some SVG.

Matching children with /
You’re not limited to the children of the current node in match attributes. You can
use the / symbol to match hierarchies of elements. Alone, the / symbol refers to
the root node. However, between two names it indicates that the second is the child
of the first. For example, ATOM/NAME refers to NAME elements that are children of
ATOM elements.

In xsl:template elements, this enables you to match only some of the elements of
a given kind. For example, this template rule marks SYMBOL elements that are chil-
dren of ATOM elements strong. It does nothing to SYMBOL elements that are not
direct children of ATOM elements.

<xsl:template match=”ATOM/SYMBOL”>
<xsl:value-of select=”.”/>

</xsl:template>

Remember that this rule selects SYMBOL elements that are children of ATOM ele-
ments, not ATOM elements that have SYMBOL children. In other words, the . in
<xsl:value-of select=”.”/> refers to the SYMBOL and not to the ATOM.

You can specify deeper matches by stringing patterns together. For example,
PERIODIC_TABLE/ATOM/NAME selects NAME elements whose parent is an ATOM
element whose parent is a PERIODIC_TABLE element.

You can also use the * wildcard to substitute for an arbitrary element name in a
hierarchy. For example, this template rule applies to all SYMBOL elements that are
grandchildren of a PERIODIC_TABLE element.

<xsl:template match=”PERIODIC_TABLE/*/SYMBOL”>
<xsl:value-of select=”.”/>

</xsl:template>

Caution

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 445

446 Part III ✦ Style Languages

Finally, as previously described, a / by itself selects the root node of the document.
For example, this rule applies to all PERIODIC_TABLE elements that are root ele-
ments of the document:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML><xsl:apply-templates/></HTML>

</xsl:template>

While / refers to the root node, /* refers to the root element, whatever it is. For
example, this template doesn’t care whether the root element is PERIODIC_TABLE,
DOCUMENT, or SCHENECTADY. It produces the same output in all cases.

<xsl:template match=”/*”>
<HTML>
<HEAD>
<TITLE>Atomic Number vs. Atomic Weight</TITLE>

</HEAD>
<BODY>
<xsl:apply-templates/>

</BODY>
</HTML>

</xsl:template>

Matching descendants with //
Sometimes, especially with an uneven hierarchy, you’ll find it easier to bypass inter-
mediate nodes and simply select all the elements of a given type, whether they’re
immediate children, grandchildren, great-grandchildren, or what have you. The
double slash, //, refers to a descendant at an arbitrary level. For example, this tem-
plate rule applies to all NAME descendants of PERIODIC_TABLE, no matter how
deep:

<xsl:template match=”PERIODIC_TABLE//NAME”>
<xsl:value-of select=”.”/>

</xsl:template>

The periodic table example is fairly shallow, but this trick becomes more important
in deeper and less predictable hierarchies, especially when an element can contain
other elements of its own type (for example, an ATOM contains an ATOM).

The // operator at the beginning of a pattern selects any descendant of the root
node. For example, this template rule processes all ATOMIC_NUMBER elements while
completely ignoring their location:

<xsl:template match=”//ATOMIC_NUMBER”>
<xsl:value-of select=”.”/>

</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 446

447Chapter 15 ✦ XSL Transformations

Matching by ID
You might want to apply a particular style to a particular single element without
changing all other elements of that type. The simplest way to do this in XSLT is to
attach a style to the element’s ID. This is done with the id() selector, which con-
tains the ID value in single quotes. For example, this rule makes the element with
the ID e47 bold:

<xsl:template match=”id(‘e47’)”>
<xsl:value-of select=”.”/>

</xsl:template>

This assumes, of course, that the elements you want to select in this fashion have
an attribute declared as type ID in the source document’s DTD. This may not be the
case, however. For one thing, many documents do not have DTDs. They’re merely
well-formed, not valid. And even if they have a DTD, there’s no guarantee that any
element has an ID type attribute.

ID-type attributes are not simply attributes with the name ID. ID type attributes
are discussed in Chapter 9.

Matching attributes with @
As you saw in Chapter 5, the @ sign matches against attributes and selects nodes
according to attribute names. Simply prefix the name of the attribute you want to
select with the @ sign. For example, this template rule matches UNITS attributes,
and wraps them in an I element:

<xsl:template match=”@UNITS”>
<I><xsl:value-of select=”.”/></I>

</xsl:template>

However, merely adding this rule to the style sheet will not automatically produce
italicized units in the output, because attributes are not children of the elements
that contain them. Therefore, by default, when an XSLT processor is walking the
tree, it does not see attribute nodes. You have to explicitly process them using
xsl:apply-templates with an appropriate select attribute. Listing 15-7 demon-
strates with a style sheet that outputs a table of atomic numbers versus melting
points. Not only is the value of the MELTING_POINT element written out, so is the
value of its UNITS attribute. This is selected by <xsl:apply-templates
select=”@UNITS”/> in the template rule for MELTING_POINT elements.

Cross-
Reference

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 447

448 Part III ✦ Style Languages

Listing 15-7: An XSLT Style Sheet That Selects the
UNITS Attribute with @

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>Atomic Number vs. Melting Point</H1>
<TABLE>
<TH>Element</TH>
<TH>Atomic Number</TH>
<TH>Melting Point</TH>
<xsl:apply-templates/>

</TABLE>
</BODY>

</HTML>
</xsl:template>

<xsl:template match=”ATOM”>
<TR>
<TD><xsl:value-of select=”NAME”/></TD>
<TD><xsl:value-of select=”ATOMIC_NUMBER”/></TD>
<TD><xsl:apply-templates select=”MELTING_POINT”/></TD>

</TR>
</xsl:template>

<xsl:template match=”MELTING_POINT”>
<xsl:value-of select=”.”/>
<xsl:apply-templates select=”@UNITS”/>

</xsl:template>

<xsl:template match=”@UNITS”>
<I><xsl:value-of select=”.”/></I>

</xsl:template>

</xsl:stylesheet>

Recall that the value of an attribute node is simply the normalized string value of
the attribute. After you apply the style sheet in Listing 15-7, ATOM elements come
out formatted like this:

<TR>
<TD>Hydrogen</TD><TD>1</TD><TD>13.81<I>Kelvin</I></TD>
</TR>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 448

449Chapter 15 ✦ XSL Transformations

<TR>
<TD>Helium</TD><TD>2</TD><TD>0.95<I>Kelvin</I></TD>
</TR>

You can combine attributes with elements using the various hierarchy operators.
For example, the pattern BOILING_POINT/@UNITS refers to the UNITS attribute of a
BOILING_POINT element. ATOM/*/@UNITS matches any UNITS attribute of a child
element of an ATOM element. This is especially helpful when matching against
attributes in template rules.

You can also use the @* wildcard to match all attributes of an element, for example
BOILING_POINT/@* to match all attributes of BOILING_POINT elements. You can
also add a namespace prefix after the @ to match all attributes in a declared
namespace. For example, @xlink:* matches all the XLink attributes, such as
xlink:show, xlink:type, and xlink:href, assuming the xlink prefix is mapped
to the http://www.w3.org/1999/xlink XLink namespace URI.

Matching comments with comment()
Most of the time, you should simply ignore comments in XML documents. Making
comments an essential part of a document is a very bad idea. By default, an XSLT
style sheet won’t do anything with comments. Nonetheless, XSLT does provide a
means to match a comment if you absolutely have to.

To match a comment, use the comment() pattern. Although this pattern has func-
tionlike parentheses, it never actually takes any arguments. For example, this tem-
plate rule italicizes all comments:

<xsl:template match=”comment()”>
<I><xsl:value-of select=”.”/></I>

</xsl:template>

You can use the hierarchy operators to select particular comments. For example,
recall that a DENSITY element looks like this:

<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>

This rule only matches comments that occur inside DENSITY elements:

<xsl:template match=”DENSITY/comment()”>
<I><xsl:value-of select=”.”/></I>

</xsl:template>

The only reason Listing 15-1 uses a comment to specify conditions instead of an
attribute or element is precisely for this example. In practice, you should never put

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 449

450 Part III ✦ Style Languages

important information in comments. The real reason XSLT allows you to select com-
ments is so that a style sheet can transform from one XML application to another
while leaving the comments intact. Any other use indicates a poorly designed origi-
nal document. The following rule matches all comments, and copies them back out
again using the xsl:comment element.

<xsl:template match=”comment()”>
<xsl:comment><xsl:value-of select=”.”/></xsl:comment>

</xsl:template>

Matching processing instructions
with processing-instruction()
When it comes to writing structured, intelligible, maintainable XML, processing
instructions aren’t much better than comments. However, there are occasional gen-
uine needs for them, including attaching style sheets to documents.

The processing-instruction() function matches processing instructions. The
argument to processing-instruction() is a quoted string giving the target of the
processing instruction to select. If you do not include an argument, all processing
instructions are matched. For example, this rule matches the processing instruction
children of the root node (most likely the xml-stylesheet processing instruction).
The xsl:processing-instruction element inserts a processing instruction with
the specified name and value in the output document. For example, this template
rule matches all processing instructions in the document’s prolog and epilog and
changes each one into a comment containing the processing instruction data:

<xsl:template match=”/processing-instruction()”>
<xsl:comment>
<xsl:value-of select=”.”/>

</xsl:comment>
</xsl:template>

This rule only matches xml-stylesheet processing instructions:

<xsl:template
match=”processing-instruction(‘xml-stylesheet’)”>
<xsl:comment>
<xsl:value-of select=”.”/>

</xsl:comment>
</xsl:template>

In fact, one of the primary reasons for distinguishing between the root element and
the root node is so that processing instructions from the prolog can be read and
processed. Although the xml-stylesheet processing instruction uses a name =
value syntax, XSL does not consider these to be attributes because processing
instructions are not elements. The value of a processing instruction is simply every-
thing between the white space following its name and the closing ?>.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 450

451Chapter 15 ✦ XSL Transformations

Matching text nodes with text()
Text nodes are generally ignored as nodes, although their values are included as
part of the value of a selected element. However, the text() operator does enable
you to specifically select the text child of an element. Despite the parentheses, this
operator takes no arguments. For example, this rule emboldens all text:

<xsl:template match=”text()”>
<xsl:value-of select=”.”/>

</xsl:template>

The main reason this operator exists is for the default rules. XSLT processors must
provide the following default rule whether the author specifies it or not:

<xsl:template match=”text()”>
<xsl:value-of select=”.”/>

</xsl:template>

This means that whenever a template is applied to a text node, the text of the node
is output. If you do not want the default behavior, you can override it. For example,
including the following empty template rule in your style sheet will prevent text
nodes from being output unless specifically matched by another rule:

<xsl:template match=”text()” />

Using the or operator |
The vertical bar (|) allows a template rule to match multiple patterns. If a node
matches one pattern or the other, it will activate the template. For example, this
template rule matches both ATOMIC_NUMBER and ATOMIC_WEIGHT elements:

<xsl:template match=”ATOMIC_NUMBER|ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

You can include white space around the | if that makes the code clearer, as in this
template rule:

<xsl:template match=”ATOMIC_NUMBER | ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

You can also use more than two patterns in sequence. For example, this template
rule applies to ATOMIC_NUMBER, ATOMIC_WEIGHT, and SYMBOL elements (that is, it
matches ATOMIC_NUMBER, ATOMIC_WEIGHT and SYMBOL elements):

<xsl:template match=”ATOMIC_NUMBER | ATOMIC_WEIGHT | SYMBOL”>
<xsl:apply-templates/>

</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 451

452 Part III ✦ Style Languages

The / operator is evaluated before the | operator. Thus, the following template rule
matches an ATOMIC_NUMBER child of an ATOM, or an ATOMIC_WEIGHT of unspecified
parentage, not an ATOMIC_NUMBER child of an ATOM or an ATOMIC_WEIGHT child of
an ATOM.

<xsl:template match=”ATOM/ATOMIC_NUMBER|ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

Testing with []
So far, I’ve merely tested for the presence of various nodes. However, you can test
for more details about the nodes that match a pattern using []. You can perform
many different tests, including the following:

✦ Whether an element contains a given child, attribute, or other node

✦ Whether the value of an attribute is a certain string

✦ Whether the value of an element contains a string

✦ What position a given node occupies in the hierarchy

For example, seaborgium, element 106, has only been created in microscopic quan-
tities. Even its most long-lived isotope has a half-life of only 30 seconds. With such a
hard-to-create, short-lived element, it’s virtually impossible to measure the density,
melting point, and other bulk properties. Consequently, the periodic table docu-
ment omits the elements describing the bulk properties of seaborgium and similar
atoms because the data simply doesn’t exist. If you want to create a table of atomic
number versus melting point, you should omit those elements with unknown melt-
ing points. To do this, you can provide one template for ATOM elements that have
MELTING_POINT children and another one for elements that don’t, like this:

<!-- Include nothing for arbitrary atoms -->
<xsl:template match=”ATOM” />

<!-- Include a table row for atoms that do have
melting points. This rule will override the
previous one for those atoms that do have
melting points. -->

<xsl:template match=”ATOM[MELTING_POINT]”>
<TR>
<TD><xsl:value-of select=”NAME”/></TD>
<TD><xsl:value-of select=”MELTING_POINT”/></TD>

</TR>
</xsl:template>

Note here that it is the ATOM element being matched, not the MELTING_POINT ele-
ment as in the case of ATOM/MELTING_POINT.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 452

453Chapter 15 ✦ XSL Transformations

The test brackets can contain more than simply a child-element name. In fact, they
can contain any XPath expression. (XPath expressions are a superset of match pat-
terns that are discussed in the next section.) If the specified element has a child
matching that expression, it is considered to match the total pattern. For example,
this template rule matches ATOM elements with NAME or SYMBOL children:

<xsl:template match=”ATOM[NAME | SYMBOL]”>
</xsl:template>

This template rule matches ATOM elements with a DENSITY child element that has a
UNITS attribute:

<xsl:template match=”ATOM[DENSITY/@UNITS]”>
</xsl:template>

To find all child elements that have UNITS attributes, use * to find all elements and
[@UNITS] to winnow those down to the ones with UNITS attributes, like this:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”*[@UNITS]”/>

</xsl:template>

One type of pattern testing that proves especially useful is string equality. An
equals sign (=) can test whether the value of a node identically matches a string.
For example, this template finds the ATOM element that contains an ATOMIC_NUMBER
element whose content is the string 10 (Neon).

<xsl:template match=”ATOM[ATOMIC_NUMBER=’10’]”>
This is Neon!

</xsl:template>

Testing against element content may seem extremely tricky because of the need to
get the value exactly right, including white space. You may find it easier to test
against attribute values because those are less likely to contain insignificant white
space. For example, the style sheet in Listing 15-8 applies templates only to those
ATOM elements whose STATE attribute value is the three letters GAS.

Listing 15-8: An XSLT Style Sheet That Selects Only Those
ATOM Elements Whose STATE Attribute
Has the Value GAS

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<HTML>

Continued

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 453

454 Part III ✦ Style Languages

Listing 15-8 (continued)

<HEAD><TITLE>Gases</TITLE></HEAD>
<BODY>
<xsl:apply-templates/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM”/>

<xsl:template match=”ATOM[@STATE=’GAS’]”>
<P><xsl:value-of select=”.”/></P>

</xsl:template>

</xsl:stylesheet>

You can use other XPath expressions for more complex matches. For example, you
can select all elements whose names begin with “A” or all elements with an atomic
number less than 100.

XPath Expressions for Selecting Nodes
The select attribute is used in xsl:apply-templates, xsl:value-of, xsl:for-
each, xsl:copy-of, xsl:variable, xsl:param, and xsl:sort to specify exactly
which nodes are operated on. The value of this attribute is an expression written in
the XPath language. The XPath language provides a means of identifying a particu-
lar element, group of elements, text fragment, or other part of an XML document.
The XPath syntax is used both for XSLT and XPointer.

XPointers are discussed in Chapter 18. XPath is discussed further in that chapter
as well.

Expressions are a superset of the match patterns discussed in the last section. That
is, all match patterns are expressions, but not all expressions are match patterns.
Recall that match patterns enable you to match nodes by element name, child ele-
ments, descendants, and attributes, as well as by making simple tests on these
items. XPath expressions allow you to select nodes through all these criteria, but
also by referring to ancestor nodes, parent nodes, sibling nodes, preceding nodes,
and following nodes. Furthermore, expressions aren’t limited to producing merely a
list of nodes, but can also produce booleans, numbers, and strings.

Cross-
Reference

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 454

455Chapter 15 ✦ XSL Transformations

Node axes
Expressions are not limited to specifying the children and descendants of the cur-
rent node. XPath provides a number of axes that you can use to select from differ-
ent parts of the tree relative to some particular node in the tree called the context
node. In XSLT, the context node is normally initialized to the current node that the
template matches, though there are ways to change this. Table 15-2 summarizes the
axes and their meanings.

Table 15-2
Expression Axes

Axis Selects From

ancestor The parent of the context node, the parent of the parent of the
context node, the parent of the parent of the parent of the
context node, and so forth back to the root node

ancestor-or-self The ancestors of the context node and the context node itself

attribute The attributes of the context node

child The immediate children of the context node

descendant The children of the context node, the children of the children
of the context node, and so forth

descendant-or-self The context node itself and its descendants

following All nodes that start after the end of the context node,
excluding attribute and namespace nodes

following-sibling All nodes that start after the end of the context node and have
the same parent as the context node

namespace The namespace of the context node

parent The unique parent node of the context node

preceding All nodes that finish before the beginning of the context node,
excluding attribute and namespace nodes

preceding-sibling All nodes that start before the beginning of the context node
and have the same parent as the context node

self The context node

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 455

456 Part III ✦ Style Languages

Choosing an axis limits the expression so that it only selects from the set of nodes
indicated in the second column of Table 15-2. The axis is generally followed by a
double colon (::) and a node test that further winnows down this node-set. For
example, a node test may contain the name of the element to be selected, as in the
following template rule:

<xsl:template match=”ATOM”>
<TR>
<TD>
<xsl:value-of select=”child::NAME”/>

</TD>
<TD>
<xsl:value-of select=”child::ATOMIC_NUMBER”/>

</TD>
<TD>
<xsl:value-of select=”child::ATOMIC_WEIGHT”/>

</TD>
</TR>

</xsl:template>

This template rule matches ATOM elements. When an ATOM element is matched, that
element becomes the context node. A NAME element, an ATOMIC_NUMBER element,
and an ATOMIC_WEIGHT element are all selected from the children of that matched
ATOM element and output as table cells. (If there’s more than one of these desired
elements — for example, three NAME elements — all are selected but only the value
of the first one is taken.)

The child axis doesn’t let you do anything that you can’t do with element names
alone. In fact, select=”ATOMIC_WEIGHT” is just an abbreviated form of select=
”child::ATOMIC_WEIGHT”. However, the other axes are a little more interesting.

Referring to the parent element is illegal in match patterns, but not in expressions.
To refer to the parent, use the parent axis. For example, this template matches
BOILING_POINT elements but outputs the value of the parent ATOM element:

<xsl:template match=”BOILING_POINT”>
<P><xsl:value-of select=”parent::ATOM”/></P>

</xsl:template>

Some radioactive atoms, such as polonium, have half-lives so short that bulk prop-
erties, such as the boiling point and melting point, can’t be measured. Therefore,
not all ATOM elements necessarily have BOILING_POINT child elements. The preced-
ing rule enables you to write a template that only outputs those elements that actu-
ally have boiling points. Expanding on this example, Listing 15-9 matches the
MELTING_POINT elements but actually outputs the parent ATOM element using
parent::ATOM.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 456

457Chapter 15 ✦ XSL Transformations

Listing 15-9: A Style Sheet That Outputs Only Those Elements
with Known Melting Points

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<HTML>
<BODY>
<xsl:apply-templates select=”PERIODIC_TABLE”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<H1>Elements with known Melting Points</H1>
<xsl:apply-templates select=”.//MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<p>
<xsl:value-of select=”parent::ATOM”/>

</p>
</xsl:template>

</xsl:stylesheet>

Once in awhile, you may need to select from the ancestors of an element. The
ancestor axis does this. For example, this rule inserts the value of the nearest
PERIODIC_TABLE element that contains the matched SYMBOL element.

<xsl:template match=”SYMBOL”>
<xsl:value-of select=”ancestor::PERIODIC_TABLE”/>

</xsl:template>

The ancestor-or-self axis behaves like the ancestor axis except that if the con-
text node passes the node test, it will be returned as well. For example, this rule
matches all elements. If the matched element is a PERIODIC_TABLE, that very
PERIODIC_TABLE is selected in xsl:value-of.

<xsl:template match=”*”>
<xsl:value-of select=”ancestor-or-self::PERIODIC_TABLE”/>

</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 457

458 Part III ✦ Style Languages

Node tests
Instead of the name of a node, the axis can be followed by one of these four node-
type functions:

✦ comment()

✦ text()

✦ processing-instruction()

✦ node()

The comment() function selects a comment node. The text() function selects a text
node. The processing-instruction() function selects a processing instruction
node, and the node() function selects any type of node. (The * wildcard only selects
element nodes.) The processing-instruction() node type can also contain an
optional argument specifying the name of the processing instruction to select.

Hierarchy operators
You can use the / and // operators to string expressions together. For example,
Listing 15-10 prints a table of element names, atomic numbers, and melting points
for only those elements that have melting points. It does this by selecting the parent
of the MELTING_POINT element, then finding that parent’s NAME and ATOMIC_NUMBER
children with select=”parent::*/child::NAME)”.

Listing 15-10: A Table of Melting Point versus Atomic Number

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>Atomic Number vs. Melting Point</H1>
<TABLE>
<TH>Element</TH>
<TH>Atomic Number</TH>
<TH>Melting Point</TH>
<xsl:apply-templates select=”child::ATOM”/>

</TABLE>
</BODY>

</HTML>
</xsl:template>

<xsl:template match=”ATOM”>
<xsl:apply-templates
select=”child::MELTING_POINT”/>

</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 458

459Chapter 15 ✦ XSL Transformations

<xsl:template match=”MELTING_POINT”>
<TR>
<TD>
<xsl:value-of select=”parent::*/child::NAME”/>

</TD>
<TD>
<xsl:value-of
select=”parent::*/child::ATOMIC_NUMBER”/>
</TD>
<TD>
<xsl:value-of select=”self::*”/>
<xsl:value-of select=”attribute::UNITS”/>

</TD>
</TR>

</xsl:template>

</xsl:stylesheet>

This is not the only way to solve the problem. Another possibility is to use the
preceding-sibling and following-sibling axes, or both if the relative
location (preceding or following) is uncertain. The necessary template rule for
the MELTING_POINT element looks like this:

<xsl:template match=”MELTING_POINT”>
<TR>
<TD>
<xsl:value-of
select=”preceding-sibling::NAME

| following-sibling::NAME”/>
</TD>
<TD>
<xsl:value-of
select=”preceding-sibling::ATOMIC_NUMBER

| following-sibling::ATOMIC_NUMBER”/>
</TD>
<TD>
<xsl:value-of select=”self::*”/>
<xsl:value-of select=”attribute::UNITS”/>

</TD>
</TR>

</xsl:template>

Abbreviated syntax
The various axes in Table 15-2 are a bit too wordy for comfortable typing. XPath
also defines an abbreviated syntax that can substitute for the most common of
these axes and is more commonly used in practice. Table 15-3 shows the full and
abbreviated equivalents.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 459

460 Part III ✦ Style Languages

Table 15-3
Abbreviated Syntax for XPath Expressions

Abbreviation Full

. self::node()

.. parent::node()

name child::name

@name attribute::name

// /descendant-or-self::node()/

Listing 15-11 demonstrates by rewriting Listing 15-10 using the abbreviated syntax.
The output produced by the two style sheets is exactly the same, however.

Listing 15-11: A Table of Melting Point versus Atomic Number
Using the Abbreviated Syntax

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>Atomic Number vs. Melting Point</H1>
<TABLE>
<TH>Element</TH>
<TH>Atomic Number</TH>
<TH>Melting Point</TH>
<xsl:apply-templates select=”ATOM”/>

</TABLE>
</BODY>

</HTML>
</xsl:template>

<xsl:template match=”ATOM”>
<xsl:apply-templates
select=”MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<TR>
<TD>
<xsl:value-of
select=”../NAME”/>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 460

461Chapter 15 ✦ XSL Transformations

</TD>
<TD>
<xsl:value-of
select=”../ATOMIC_NUMBER”/>
</TD>
<TD>
<xsl:value-of select=”.”/>
<xsl:value-of select=”@UNITS”/>

</TD>
</TR>

</xsl:template>

</xsl:stylesheet>

Match patterns can only use the abbreviated syntax and the unabbreviated child
and attribute axes. The full syntax using the axes of Table 15-2 is restricted to
expressions.

Expression types
Every XPath expression evaluates to a single value. For example, the expression 3
+ 2 evaluates to the value 5. The expressions used so far have all evaluated to
node-sets. However, there are four types of expressions in XPath:

✦ Node-sets

✦ Booleans

✦ Numbers

✦ Strings

In addition, XSLT adds one type to this list, the result tree fragment. This is what an
xsl:template element creates. However, it is not used by other non-XSLT uses of
XPath.

Node-sets
A node-set is an unordered group of nodes from the input document. The axes in
Table 15-2 all return a node-set containing the nodes they match. Which nodes are
in the node-set depends on the context node, the node test, and the axis.

For example, when the context node is the PERIODIC_TABLE element of Listing
15-1, the XPath expression select=”child::ATOM” returns a node-set that
contains both ATOM elements in that document. The XPath expression select=
”child::ATOM/child::NAME” returns a node-set containing the two element
nodes <NAME>Hydrogen</NAME> and <NAME>Helium</NAME> when the context
node is the PERIODIC_TABLE element of Listing 15-1.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 461

462 Part III ✦ Style Languages

The context node is a member of the context node list. The context node list is that
group of elements that all match the same rule at the same time, generally as a
result of one xsl:apply-templates or xsl:for-each instruction. For example,
when Listing 15-11 is applied to Listing 15-1, the ATOM template is invoked twice,
first for the hydrogen atom, then for the helium atom. The first time it’s invoked,
the context node is the hydrogen ATOM element. The second time it’s invoked, the
context node is the helium ATOM element. However, both times the context node list
is the set containing both the helium and hydrogen ATOM elements.

Table 15-4 lists a number of functions that operate on node-sets, either as argu-
ments or as the context node.

Table 15-4
Functions That Operate on or Return Node-sets

Function Return Type Returns

position() number The position of the context node in the
context node list; the first node in the
list has position 1.

last() number The number of nodes in the context
node list; this is the same as the
position of the last node in the list.

count(node-set) number The number of nodes in node-set.

id(string1 node-set A node-set containing all the elements
string2 string3...) anywhere in the same document that

have an ID named in the argument list;
the empty set if no element has the
specified ID.

key(string name, node-set A node-set containing all nodes in this
Object value) document that have a key with the

specified value. Keys are set with the
top-level xsl:key element.

document(string URI, node-set A node-set from the document referred
string base) to by the URI; the exact subset of nodes

are chosen from that document are
selected by the XPointer in the URI’s
fragment identifier. If the URI does not
have a fragment identifier, then the root
element of the named document is the
node-set. Relative URIs are relative to
the base URI given in the second
argument. If the second argument is
omitted, then relative URIs are relative
to the URI of the style sheet (not the
source document!).

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 462

463Chapter 15 ✦ XSL Transformations

Function Return Type Returns

local-name(node-set) string The local name (everything after the
namespace prefix) of the first node in
the node-set argument; can be used
without any arguments to get the local
name of the context node.

namespace-uri string The URI of the namespace of the first
(node-set) node in node-set; can be used

without any arguments to get the URI of
the namespace of the context node;
returns an empty string if the node is
not in a namespace.

name(node-set) string The qualified name (both prefix and
local part) of the first node in node-
set; can be used without an argument
to get the qualified name of the context
node.

generate-id(node-set) string A unique string for the first node in the
argument node-set; can be used
without any argument to generate an ID
for the context node.

If an argument of the wrong type is passed to one of these functions, XSLT will
attempt to convert that argument to the correct type; for example, by converting
the number 12 to the string “12”. However, no arguments can be converted to
node-sets.

You can use the position() function to determine an element’s position within a
node-set. Listing 15-12 is a style sheet that prefixes the name of each atom’s name
with its position in the document relative to the other atom names using
<xsl:value-of select=”position()”/>.

Listing 15-12: A Style Sheet That Numbers the Atoms in the
Order They Appear in the Document

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>

Continued

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 463

464 Part III ✦ Style Languages

Listing 15-12 (continued)

<BODY>
<xsl:apply-templates select=”ATOM”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”position()”/>.
<xsl:value-of select=”NAME”/>

</P>
</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 15-1, the output is this:

<HTML>
<HEAD>
<TITLE>The Elements</TITLE>
</HEAD>
<BODY>
<P>1.

Hydrogen</P>
<P>2.

Helium</P>
</BODY>
</HTML>

Booleans
A boolean has one of two values: true or false. XSLT allows any kind of data to be
transformed into a boolean. This is often done implicitly when a string or a number
or a node-set is used where a boolean is expected, as in the test attribute of an
xsl:if element. These conversions can also be performed by the boolean() func-
tion, which converts an argument of any type to a boolean according to these rules:

✦ A number is false if it’s zero or NaN (a special symbol meaning Not a Number,
used for the result of dividing by zero and similar illegal operations); true
otherwise.

✦ An empty node-set is false. All other node-sets are true.

✦ An empty result tree fragment is false. All other result tree fragments are true.

✦ A zero length string is false. All other strings are true.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 464

465Chapter 15 ✦ XSL Transformations

Booleans are also produced as the result of expressions involving these operators:

✦ = Equal to

✦ != Not equal to

✦ < Less than (really <)

✦ > Greater than

✦ <= Less than or equal to (really <=)

✦ >= Greater than or equal to

The < sign must be replaced by < even when used as the less-than operator
in an XML document such as an XSLT style sheet.

These operators are most commonly used in predicate tests to determine whether a
rule should be invoked. An XPath expression can contain not only a pattern that
selects certain nodes, but also a predicate that further filters the set of nodes
selected. For example, child::ATOM selects all the ATOM children of the context
node. However, child::ATOM[position()=1] selects only the first ATOM child of the
context node. [position()=1] is a predicate on the node test ATOM that returns a
boolean result: true if the position of the ATOM is equal to one; false otherwise. Each
node test can have any number of predicates. However, more than one is unusual.

For example, this template rule applies to the first ATOM element in the periodic
table, but not to subsequent ones, by testing whether or not the position of the ele-
ment equals 1.

<xsl:template match=”PERIODIC_TABLE/ATOM[position()=1]”>
<xsl:value-of select=”.”/>

</xsl:template>

This template rule applies to all ATOM elements that are not the first child element
of the PERIODIC_TABLE by testing whether the position is greater than 1:

<xsl:template match=”PERIODIC_TABLE/ATOM[position()>1]”>
<xsl:value-of select=”.”/>

</xsl:template>

The keywords and and or logically combine two boolean expressions according to
the normal rules of logic. For example, suppose you want a template that matches
an ATOMIC_NUMBER element that is both the first and last child of its parent ele-
ment; that is, it is the only element of its parent. This template rule uses and to
accomplish that:

<xsl:template
match=”ATOMIC_NUMBER[position()=1 and position()=last()]”>
<xsl:value-of select=”.”/>

</xsl:template>

Caution

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 465

466 Part III ✦ Style Languages

This template matches both the first and last ATOM elements in their parent by
matching when the position is 1 or when the position is equal to the number of ele-
ments in the set (using the last() function):

<xsl:template match=”ATOM[position()=1 or position()=last()]”>
<xsl:value-of select=”.”/>

</xsl:template>

This is logical or, so it will also match if both conditions are true. That is, it will
match an ATOM that is both the first and last child of its parent (in other words, if
the ATOM is the only child of its parent).

The not() function reverses the result of an operation. For example, this template
rule matches all ATOM elements that are not the first child of their parents:

<xsl:template match=”ATOM[not(position()=1)]”>
<xsl:value-of select=”.”/>

</xsl:template>

The same template rule could be written using the not equal operator != instead:

<xsl:template match=”ATOM[position()!=1]”>
<xsl:value-of select=”.”/>

</xsl:template>

This template rule matches all ATOM elements that are neither the first nor last ATOM
child of their parent:

<xsl:template match =
“ATOM[not(position()=1 or position()=last())]”>
<xsl:value-of select=”.”/>

</xsl:template>

XSLT does not have an exclusive or operator. However, one can be formed by judi-
cious use of not(), and, and or. For example, this rule selects those ATOM elements
that are either the first or last child, but not both:

<xsl:template
match=”ATOM[(position()=1 or position()=last())

and not(position()=1 and position()=last())]”>
<xsl:value-of select=”.”/>

</xsl:template>

There are three remaining functions that return booleans:

✦ true() always returns true.

✦ false() always returns false.

✦ lang(code) returns true if the current node has the same language (as given
by the xml:lang attribute) as the code argument.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 466

467Chapter 15 ✦ XSL Transformations

Numbers
XPath numbers are 64-bit IEEE 754 floating-point doubles. Even numbers like 43 or
–7000 that look like integers are stored as doubles. Non-number values, such as
strings and booleans, are converted to numbers automatically as necessary, or at
user request through the number() function using these rules:

✦ Booleans are 1 if true, 0 if false.

✦ A string is trimmed of leading and trailing white space, then converted to a
number in the fashion you would expect; for example, the string “12” is con-
verted to the number 12. If the string cannot be interpreted as a number, it is
converted to NaN.

✦ A node-set is converted to a string; the string is then converted to a number.

For example, this template only outputs the transuranium elements; that is, those
elements with atomic numbers greater than 92 (the atomic number of uranium). The
node-set produced by ATOMIC_NUMBER is implicitly converted to the string value of
the current ATOMIC_NUMBER node. This string is then converted into a number.

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Transuranium Elements</TITLE></HEAD>
<BODY>
<xsl:apply-templates select=”ATOM[ATOMIC_NUMBER>92]”/>

</BODY>
</HTML>

</xsl:template>

XPath provides the standard four arithmetic operators:

✦ + for addition

✦ - for subtraction

✦ * for multiplication

✦ div for division (the more common / is already used for other purposes in
XPath)

For example, <xsl:value-of select=”2+2”/> inserts the string “4” into the out-
put document. These operations are more commonly used as part of a test. For
example, this rule selects those elements whose atomic weight is more than twice
their atomic number:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>High Atomic Weight to Atomic Number Ratios</H1>
<xsl:apply-templates
select=”ATOM[ATOMIC_WEIGHT > 2 * ATOMIC_NUMBER]”/>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 467

468 Part III ✦ Style Languages

</BODY>
</HTML>

</xsl:template>

This template prints the ratio of atomic weight to atomic number:

<xsl:template match=”ATOM”>
<p>
<xsl:value-of select=”NAME”/>
<xsl:value-of select=”ATOMIC_WEIGHT div ATOMIC_NUMBER”/>

</p>
</xsl:template>

XPath also provides the less familiar mod operator, which takes the remainder of
two numbers. When used in conjunction with position(), this operator enables
you to perform tasks such as outputting every second ATOM or alternating colors
between rows in a table. Just define templates that apply different styles when the
position mod two is one and when it’s zero. For example, these two rules use differ-
ent colors for alternate rows of a table:

<xsl:template match=”ATOM[position() mod 2 = 1]”>
<TR>
<TD><xsl:value-of select=”NAME”/></TD>
<TD><xsl:value-of select=”ATOMIC_NUMBER”/></TD>
<TD><xsl:apply-templates select=”MELTING_POINT”/></TD>

</TR>
</xsl:template>

<xsl:template match=”ATOM[position() mod 2 = 0]”>
<tr style=”color: #666666”>
<TD><xsl:value-of select=”NAME”/></TD>
<TD><xsl:value-of select=”ATOMIC_NUMBER”/></TD>
<TD><xsl:apply-templates select=”MELTING_POINT”/></TD>

</TR>
</xsl:template>

You can change the divisor to 3 to apply different styles to every third element, to 4
to apply different styles to every fourth element, and so forth.

Finally, XPath includes four functions that operate on numbers:

✦ floor() returns the greatest integer less than or equal to the number.

✦ ceiling() returns the smallest integer greater than or equal to the number.

✦ round() rounds the number to the nearest integer.

✦ sum() returns the sum of its arguments.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 468

469Chapter 15 ✦ XSL Transformations

For example, this template rule estimates the number of neutrons in an atom by
subtracting the atomic number (the number of protons) from the atomic weight
(the weighted average over the natural distribution of isotopes of the number of
neutrons plus the number of protons) and rounding to the nearest integer:

<xsl:template match=”ATOM”>
<p>
<xsl:value-of select=”NAME”/>
<xsl:value-of
select=”round(ATOMIC_WEIGHT - ATOMIC_NUMBER)”/>

</p>
</xsl:template>

This rule calculates the average atomic weight of all the atoms in the table by
adding all the atomic weights, and then dividing by the number of atoms:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>Average Atomic Weight</H1>
<xsl:value-of
select=”sum(descendant::ATOMIC_WEIGHT)

div count(descendant::ATOMIC_WEIGHT)”/>
</BODY>

</HTML>
</xsl:template>

Strings
A string is a sequence of Unicode characters. Other data types can be converted to
strings using the string() function according to these rules:

✦ Node-sets are converted to strings by taking the value of the first node in the
set, as calculated by the xsl:value-of element, according to the rules given
in Table 15-1.

✦ Result tree fragments are converted by acting as if they’re contained in a sin-
gle element, and then taking the value of that imaginary element. Again, the
value of this element is calculated by the xsl:value-of element according to
the rules given in Table 15-1. That is, all the result tree fragment’s text (but not
markup) is concatenated.

✦ A number is converted to a European-style number string such as –12 or
3.1415292.

✦ Boolean false is converted to the English word false. Boolean true is con-
verted to the English word true.

Besides string(), XSLT contains 10 functions that manipulate strings. These are
summarized in Table 15-5.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 469

470 Part III ✦ Style Languages

Table 15-5
XPath String Functions

Function Return Type Returns

starts-with Boolean True if main_string starts with
(main_string, prefix_string; false otherwise.
prefix_string)

contains Boolean True if the contained_string is
(containing_string, part of the containing_string;
contained_string) false otherwise.

substring(string, String length characters from the
offset, length) specified offset in string; or all

characters from the offset to the
end of the string if length is
omitted; length and offset are
rounded to the nearest integer if
necessary; the first character in the
string is at offset 1.

substring-before String The part of the string from the first
(string, character up to (but not including)
marker-string) the first occurrence of marker-

string.

substring-after String The part of the string from the
(string, point immediately after the first
marker-string) occurrence of marker-string to

the end of string.

string-length(string) Number The number of characters in
string.

normalize-space String The string after leading and
(string) trailing white space is stripped and

runs of white space are replaced
with a single space; if the argument
is omitted the string value of the
context node is normalized.

translate(string, String Returns string with occurrences of
replaced_text, characters in replaced_text
replacement_text) replaced by the corresponding

characters from
replacement_text.

concat(string1, String Returns the concatenation of as
string2, . . .) many strings as are passed as

arguments in the order they were
passed.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 470

471Chapter 15 ✦ XSL Transformations

Function Return Type Returns

format-number String Returns the string form of number
(number, formatted according to the specified
format-string, format-string as if by Java 1.1’s
locale-string) java.text.DecimalFormat class

(see http://java.sun.com/
products/archive/jdk/1.1/in
dex.html); the locale-string is
an optional argument that provides
the name of the xsl:decimal-
format element used to interpret
the format-string.

The Default Template Rules
Having to carefully map the hierarchy of an XML document in an XSLT style sheet
may be inconvenient. This is especially true if the document does not follow a sta-
ble, predictable order like the periodic table, but rather throws elements together
willy-nilly like many web pages. In those cases, you should have general rules that
can find an element and apply templates to it regardless of where it appears in the
source document.

To make this process easier, XSLT defines several default template rules that are
implicitly included in all style sheets. The first default rule matches root and ele-
ment nodes, and applies templates to all child nodes. The second default rule
matches text nodes and attributes, copying their values into the output. Together,
these two rules mean that even a blank XSLT style sheet with just one empty
xsl:stylesheet element will still produce the raw character data of the input XML
document as output.

The default rule for elements
The first default rule applies to element nodes and the root node:

<xsl:template match=”*|/”>
<xsl:apply-templates/>

</xsl:template>

*|/ is XPath shorthand for “any element node or the root node.” The purpose of
this rule is to ensure that all elements are recursively processed even if they aren’t
reached by following the explicit rules. That is, unless another rule overrides this
one (especially for the root element), all element nodes will be processed.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 471

472 Part III ✦ Style Languages

However, once an explicit rule for any parent of an element is present, this rule will
not be activated for the child elements unless the template rule for the parent has
an xsl:apply-templates child. For example, you can stop all processing by
matching the root element and neither applying templates nor using xsl:for-each
to process the children, like this:

<xsl:template match=”/”>
</xsl:template>

The default rule for text nodes and attributes
Exceptionally observant readers may have noted that several of the examples seem
to have output the contents of some elements without actually taking the value of
the element they were outputting! These contents were provided by XSLT’s default
rule for text and attribute nodes. This rule is as follows:

<xsl:template match=”text()|@*”>
<xsl:value-of select=”.”/>

</xsl:template>

This rule matches all text and attribute nodes (match=”text()|@*”) and outputs
the value of the node (<xsl:value-of select=”.”/>). In other words, it copies
the text from the input to the output. This rule ensures that, at the very least, an
element’s text is output, even if no rule specifically matches it. Another rule can
override this one for specific elements where you want either more or less than the
text content of an element.

This rule also copies attribute values (but not names). However, they turn from
attributes in the input to simple text in the output. Because there’s no default rule
that ever applies templates to attributes, this rule won’t be activated for attributes
unless you specifically add a nondefault rule somewhere in the style sheet that
does apply templates to attributes of one or more elements.

The default rule for processing instructions
and comments
There’s also a default rule for processing instructions and comments. It simply says
to do nothing; that is, drop the processing instructions and comments from the out-
put as if they didn’t exist. It looks like this:

<xsl:template match=”processing-instruction()|comment()”/>

You can, of course, replace this with your own rule for handling processing instruc-
tions and comments if you want to.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 472

473Chapter 15 ✦ XSL Transformations

Implications of the default rules
Together, the default rules imply that applying an empty style sheet with only an
xsl:stylesheet or xsl:transform element but no children (such as Listing
15-13) to an XML document copies all the #PCDATA out of the elements in the input
to the output. However, this method produces no markup. These are, however,
extremely low priority rules. Consequently, any other matches take precedence
over the default rules.

Listing 15-13: An Empty XML Style Sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

</xsl:stylesheet>

One of the most common sources of confusion about XSLT in Internet Explorer 5.5
and earlier is that IE does not provide any of these default rules. You have to make
sure that you explicitly match any node whose contents (including descendants)
you want to output.

Attribute Value Templates
Attribute value templates enable a style sheet to determine the content of an
attribute dynamically based on the content of the input document rather than using
a literal fixed value in the style sheet. For example, suppose you want to convert
the periodic table into empty ATOM elements with this attribute-based form:

<ATOM NAME=”Vanadium”
ATOMIC_WEIGHT=”50.9415”
ATOMIC_NUMBER=”23”

/>

To do this, you must extract the contents of elements in the input document and
place those in attribute values in the output document. The first thing you’re likely
to attempt is something similar to this:

<xsl:template match=”ATOM”>
<ATOM NAME=”<xsl:value-of select=’NAME’/>”
ATOMIC_WEIGHT=”<xsl:value-of select=’ATOMIC_WEIGHT’/>”
ATOMIC_NUMBER=”<xsl:value-of select=’ATOMIC_NUMBER’/>”

/>
</xsl:template>

Caution

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 473

474 Part III ✦ Style Languages

But this is malformed XML. The < character is not allowed in an attribute value.
Instead, inside attribute values, data enclosed in curly braces {}, takes the place of
the xsl:value-of element. The correct way to write the preceding template rule is
like this:

<xsl:template match=”ATOM”>
<ATOM NAME=”{NAME}”/>
ATOMIC_WEIGHT=”{ATOMIC_WEIGHT}”
ATOMIC_NUMBER=”{ATOMIC_NUMBER}”

/>
</xsl:template>

In the output, {NAME} is replaced by the value of the NAME child element of the
matched ATOM. {ATOMIC_WEIGHT} is replaced by the value of the ATOMIC_WEIGHT
child element of the matched ATOM. {ATOMIC_NUMBER} is replaced by the value of
the ATOMIC_NUMBER child element, and so on.

Attribute value templates can have more complicated patterns than merely an ele-
ment name. In fact, you can use any XPath expression in an attribute value tem-
plate. For example, this template rule selects DENSITY elements in the form seen in
Listing 15-1:

<xsl:template match=”DENSITY”>
<BULK_PROPERTY
NAME=”DENSITY”
ATOM=”{../NAME}”
VALUE=”{normalize-space(.)}”
UNITS=”{@UNITS}”

/>
</xsl:template>

It converts them into BULK_PROPERTY elements that look like this:

<BULK_PROPERTY NAME=”DENSITY” ATOM=”Helium”
VALUE=”0.0001785” UNITS=”grams/cubic centimeter”/>

Attribute values are not limited to a single attribute value template. You can com-
bine an attribute value template with literal data or with other attribute value tem-
plates. For example, this template rule matches ATOM elements and replaces them
with their name formatted as a link to a file in the format H.html, He.html, and so
on. The filename is derived from the attribute value template {SYMBOL}, while the
literal data provides the period and extension.

<xsl:template match=”ATOM”>

<xsl:value-of select=”NAME”/>

</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 474

475Chapter 15 ✦ XSL Transformations

More than one attribute value template can be included in an attribute value. For
example, this template rule includes the density units as part of the VALUE attribute
rather than making them a separate attribute:

<xsl:template match=”DENSITY”>
<BULK_PROPERTY
NAME=”DENSITY”
ATOM=”{../NAME}”
VALUE=”{normalize-space(.)} {@UNITS}”

/>
</xsl:template>

You can place attribute value templates in many attributes in an XSLT style
sheet. This is particularly important in xsl:element, xsl:attribute, and
xsl:processing-instruction elements (discussed in the next section), where
attribute value templates allow the designer to defer the decision about exactly
what element, attribute, or processing instruction appears in the output until the
input document is read. You cannot use attribute value templates as the value of a
select or match attribute, an xmlns attribute, an attribute that provides the name
of another XSLT instruction element, or an attribute of a top-level element (one
that’s an immediate child of xsl:stylesheet).

Deciding What Output to Include
It’s often necessary to defer decisions about what markup to emit until the input
document has been read. For example, you might want to change the contents of a
FILENAME element into the HREF attribute of an A element, or replace one element
type in the input with several different element types in the output depending on
the value of an attribute. This is accomplished with xsl:element, xsl:attribute,
xsl:processing-instruction, xsl:comment, and xsl:text elements.

Inserting elements into the output with xsl:element
Elements are usually included in the output document simply by including the lit-
eral start- and end-tags in template content. For instance, to insert a P element, you
merely type <P> and </P> at the appropriate points in the style sheet. However,
occasionally, you need to use details from the input document to determine which
element to place in the output document. This might happen, for example, when
making a transformation from a source vocabulary that uses attributes for informa-
tion to an output vocabulary that uses elements for the same information.

The xsl:element element inserts an element into the output document. The
name of the element is given by an attribute value template in the name attribute
of xsl:element. The content of the element derives from the content of the
xsl:element element, which may include xsl:attribute, xsl:processing-
instruction, and xsl:comment instructions (all discussed shortly) to insert
these items.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 475

476 Part III ✦ Style Languages

For example, suppose you want to replace the ATOM elements with GAS, LIQUID,
and SOLID elements, depending on the value of the STATE attribute. Using
xsl:element, a single rule can do this by converting the value of the STATE
attribute to an element name. This is how it is done:

<xsl:template match=”ATOM”>
<xsl:element name=”{@STATE}”>
<NAME><xsl:value-of select=”NAME”/></NAME>
<!-- rules for other children... -->

</xsl:element>
</xsl:template>

By using more complicated attribute value templates, you can perform most of the
calculations that you might need.

Inserting attributes into the output with xsl:attribute
You can include attributes in the output document simply by typing the literal
attributes themselves. For example, to insert a DIV element with an ALIGN attribute
bearing the value CENTER, you merely type <DIV ALIGN=”CENTER”> and </DIV> at
the appropriate points in the style sheet. However, you frequently have to rely on
data that you read from the input document to determine an attribute value and
sometimes even to determine the attribute name.

For example, suppose you want a style sheet that selects atom names and formats
them as links to files named H.html, He.html, Li.html, and so forth, like this:

Hydrogen
Helium
Lithium

Each different element in the input will have a different value for the HREF attribute.
The xsl:attribute element calculates an attribute name and value and inserts it
into the output. Each xsl:attribute element is a child of either an xsl:element
element or a literal result element. The attribute calculated by xsl:attribute will
be attached to the element calculated by its parent in the output. The name of the
attribute is specified by the name attribute of the xsl:attribute element. The
value of the attribute is given by the contents of the xsl:attribute element. For
example, this template rule produces the output previously shown:

<xsl:template match=”ATOM”>
<A>
<xsl:attribute name=”HREF”>
<xsl:value-of select=”SYMBOL”/>.html

</xsl:attribute>
<xsl:value-of select=”NAME”/>

</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 476

477Chapter 15 ✦ XSL Transformations

All xsl:attribute elements must come before any other content of their parent
element. You can’t add an attribute to an element after you’ve already started writ-
ing out its content. For example, this template is illegal:

<xsl:template match=”ATOM”>
<A>
<xsl:value-of select=”NAME”/>
<xsl:attribute name=”HREF”>
<xsl:value-of select=”SYMBOL”/>.html

</xsl:attribute>

</xsl:template>

Defining attribute sets
You often need to apply the same group of attributes to many different elements of
either the same or different classes. For example, you might want to apply a style
attribute to each cell in an HTML table. To make this simpler, you can define one or
more attributes as members of an attribute set at the top level of the style sheet
with xsl:attribute-set, and then include that attribute set in an element with
an xsl:use-attribute-sets attribute.

For example, this xsl:attribute-set element defines an element named CELL-
STYLE with a font-family attribute of New York, Times New Roman, Times,
serif, and a font-size attribute of 12pt:

<xsl:attribute-set name=”CELLSTYLE”>
<xsl:attribute name=”font-family”>
New York, Times New Roman, Times, serif

</xsl:attribute>
<xsl:attribute name=”font-size”>12pt</xsl:attribute>

</xsl:attribute-set>

This template rule then applies those attributes to TD elements in the output:

<xsl:template match=”ATOM”>
<TR>
<TD xsl:use-attribute-sets=”CELLSTYLE”>
<xsl:value-of select=”NAME”/>

</TD>
<TD xsl:use-attribute-sets=”CELLSTYLE”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</TD>
</TR>

</xsl:template>

An element can use more than one attribute set by specifying the names of the all
the sets in a white-space-separated list in the value of the xsl:use-attribute-sets
attribute. All attributes from all the sets are applied to the element. For example,

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 477

478 Part III ✦ Style Languages

this TD element possesses attributes from both the CELLSTYLE and the NUMBER-
STYLE attribute sets:

<TD xsl:use-attribute-sets=”CELLSTYLE NUMBERSTYLE”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</TD>

If more than one attribute set defines the same attribute, the last attribute set men-
tioned is used. If there is more than one attribute set with the same name, the
attributes in the sets are merged.

You can also include attribute sets in particular elements by adding a use-
attribute-sets element to an xsl:element, xsl:copy, or xsl:attribute-set
element, as in the following example:

<xsl:element name=”TD” use-attribute-sets=”CELLSTYLE”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</xsl:element>

The xsl: prefix is unnecessary (and in fact prohibited) when use-attribute-
sets is an attribute of an XSLT element rather than a literal result element.

Generating processing instructions
with xsl:processing-instruction
The xsl:processing-instruction element places a processing instruction in the
output document. The target of the processing instruction is specified by a required
name attribute. The contents of the xsl:processing-instruction element
become the contents of the processing instruction. For example, this rule replaces
PROGRAM elements with a gcc processing instruction:

<xsl:template match=”PROGRAM”>
<xsl:processing-instruction name=”gcc”> -O4
</xsl:processing-instruction>

</xsl:template>

PROGRAM elements in the input are replaced by this processing instruction in the
output:

<?gcc -O4
?>

The contents of the xsl:processing-instruction element can include
xsl:value-of elements and xsl:apply-templates elements, provided the result
of these instructions is pure text. For example:

<xsl:template match=”PROGRAM”>
<xsl:processing-instruction name=”gcc”>-O4

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 478

479Chapter 15 ✦ XSL Transformations

<xsl:value-of select=”NAME”/>
</xsl:processing-instruction>

</xsl:template>

The xsl:processing-instruction element cannot contain xsl:element and
other instructions that produce elements and attributes in the result. Furthermore,
xsl:processing-instruction cannot include any instructions or literal text that
insert a ?> in the output, because that would prematurely end the processing
instruction.

Generating comments with xsl:comment
The xsl:comment element inserts a comment in the output document. It has no
attributes. Its contents are the text of the comment, as in the following example:

<xsl:template match=”ATOM”>
<xsl:comment>There was an atom here once.</xsl:comment>

</xsl:template>

This rule replaces ATOM nodes with the following comment:

<!--There was an atom here once.-->

The contents of the xsl:comment element can include xsl:value-of elements and
xsl:apply-templates elements, provided the results of these instructions are
pure text. It cannot contain xsl:element and other instructions that produce ele-
ments and attributes in the result. Furthermore, xsl:comment cannot include any
instructions or literal text that inserts a double hyphen in the comment. This would
result in a malformed comment in the output.

Generating text with xsl:text
The xsl:text element inserts its contents into the output document as literal text.
For example, this rule replaces each ATOM element with the string “There was an
atom here once”:

<xsl:template match=”ATOM”>
<xsl:text>There was an atom here once.</xsl:text>

</xsl:template>

The xsl:text element isn’t often used because most of the time it’s easier to sim-
ply type the text. However, xsl:text does have a couple of advantages. The first is
that it preserves white space exactly, even if the node contains nothing but white
space. By default, XSLT processors delete all text nodes from the style sheet that
contain only white space. Thus, this element is useful when dealing with concrete
poetry, computer source code, or other text in which white space is significant.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 479

480 Part III ✦ Style Languages

The xsl:text element also enables you to insert unescaped < and & into your out-
put document that are not converted to < and &. To do this, place the gen-
eral entity reference for the symbol (< or &) in an xsl:text element; then
set the xsl:text element’s disable-output-escaping attribute to yes. This can
be useful when you need to include JavaScript source code in the output document,
as in the following example:

<xsl:template match=”SCRIPT”>
<script language=”javascript”>
<xsl:text disable-output-escaping=”yes”>
<!-- if (

location.host.tolowercase().indexof(“ibiblio”)
< 0) {
location.href=”http://www.ibiblio.org/”;

}
} // -->

</xsl:text>
</script>

</xsl:template>

This may produce output that is not well-formed XML. However, if you’re trying to
write a non-XML format, such as HTML or TeX, this may be what you want. Note,
however, that the style sheet and the input document are both still well-formed XML.

Copying the Context Node with xsl:copy
The xsl:copy element copies the source node into the output tree. Child elements,
attributes, and other content are not automatically copied. However, the contents
of the xsl:copy element are a template that can select these things to be copied as
well. This is often useful when transforming a document from one markup vocabu-
lary to the same or a closely related markup vocabulary. For example, this template
rule strips the attributes and child elements off an ATOM and replaces it with the
value of its contents enclosed in a B element:

<xsl:template match=”ATOM”>
<xsl:copy>
<xsl:value-of select=”.”/>

</xsl:copy>
</xsl:template>

One useful template xsl:copy makes possible is the identity transformation; that
is, a transformation from a document into itself. Such a transformation looks like
this:

<xsl:template
match=”*|@*|comment()|processing-instruction()|text()”>
<xsl:copy>
<xsl:apply-templates

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 480

481Chapter 15 ✦ XSL Transformations

select=”*|@*|comment()|processing-instruction()|text()”/>
</xsl:copy>

</xsl:template>

You can adjust the identity transformation a little to produce similar documents.
For example, Listing 15-14 is a style sheet that strips comments from a document,
leaving the document otherwise untouched. It simply omits the comment() node
test from the match and select attribute values in the identity transformation.

Listing 15-14: An XSLT Style Sheet That Strips Comments
from a Document

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template
match=”*|@*|processing-instruction()|text()”>
<xsl:copy>
<xsl:apply-templates
select=”*|@*|processing-instruction()|text()”/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

xsl:copy only copies the source node. However, it does not automatically copy the
node’s attributes, children, or namespaces. In other words, it is a shallow copy. To
deep copy the entire node including all its attributes and descendants, use
xsl:copy-of. The select attribute of xsl:copy-of chooses the nodes to be
copied. For example, Listing 15-15 is a style sheet that uses xsl:copy-of to strip
out elements without melting points from the periodic table by copying only ATOM
elements that have MELTING_POINT children.

Listing 15-15: A Style Sheet That Copies Only ATOM Elements
That Have MELTING_POINT Children

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<PERIODIC_TABLE>

Continued

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 481

482 Part III ✦ Style Languages

Listing 15-15 (continued)

<xsl:apply-templates select=”ATOM”/>
</PERIODIC_TABLE>

</xsl:template>

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<xsl:copy-of select=”..”/>

</xsl:template>

</xsl:stylesheet>

Listings 15-14 and 15-15 are examples of XSL transformations from a source
vocabulary to the same vocabulary. Unlike most of the examples in this chapter,
they do not transform to well-formed HTML.

Counting Nodes with xsl:number
The xsl:number element inserts a formatted integer into the output document.
The value of the integer is given by the value attribute. This contains a number,
which is rounded to the nearest integer, then formatted according to the value of
the format attribute. Reasonable defaults are provided for both these attributes.
For example, consider the style sheet for the ATOM elements in Listing 15-16.

Listing 15-16: An XSLT Style Sheet That Counts Atoms

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>
<TABLE>
<TR><xsl:apply-templates select=”ATOM”/></TR>

</TABLE>
</BODY>

</HTML>
</xsl:template>

Note

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 482

483Chapter 15 ✦ XSL Transformations

<xsl:template match=”ATOM”>
<TD><xsl:number value=”ATOMIC_NUMBER”/></TD>
<TD><xsl:value-of select=”NAME”/></TD>

</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 15-1, the output appears like this:

<HTML>
<HEAD>
<TITLE>The Elements</TITLE>
</HEAD>
<BODY>
<TABLE>
<TR>
<TD>1</TD><TD>Hydrogen</TD><TD>2</TD><TD>Helium</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Each element is matched with its atomic number. The value attribute can contain
any data that XPath knows how to convert to a number. In this case, the
ATOMIC_NUMBER child element of the matched ATOM is converted.

Default numbers
If you use the value attribute to calculate the number, that’s all you need. However,
if the value attribute is omitted, the position of the current node in the source tree
is used as the number. For example, consider Listing 15-17, which produces a table
of atoms that have boiling points less than or equal to the boiling point of nitrogen.

Listing 15-17: An XSLT Style Sheet That Counts Atoms

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>
<TABLE>
<TR>

Continued

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 483

484 Part III ✦ Style Languages

Listing 15-17 (continued)

<TD>Name</TD>
<TD>Position</TD>
<TD>Default Number</TD>
<TD>Boiling Point</TD>

</TR>
<xsl:apply-templates
select=”ATOM[BOILING_POINT <= 77.344]”/>

</TABLE>
</BODY>

</HTML>
</xsl:template>

<xsl:template match=”ATOM”>
<TR>
<TD><xsl:value-of select=”NAME”/></TD>
<TD><xsl:number value=”position()”/></TD>
<TD><xsl:number/></TD>
<TD><xsl:number value=”BOILING_POINT”/></TD>

</TR>
</xsl:template>

</xsl:stylesheet>

Figure 15-4 shows the finished table produced by applying this style sheet to the
complete periodic table. This shows that the default value calculated by xsl:
number is the position of the node among other sibling nodes of the same type
(ATOM elements in this case). This is not the same as the number returned by the
position() function, which only calculates position relative to other nodes in
the context node list (the nodes which the template matched — hydrogen, helium,
nitrogen, and neon, in this example). You can change what xsl:number counts
using these three attributes:

✦ level

✦ count

✦ from

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 484

485Chapter 15 ✦ XSL Transformations

Figure 15-4: Atoms with boiling points less than or equal to nitrogen’s

Number to string conversion
Until now, I’ve implicitly assumed that numbers looked like 1, 2, 3, and so on; that
is, a European numeral starting from 1 and counting by 1. However, that’s not the
only possibility. For example, the page numbers in the preface and other front mat-
ter of books often appear in small Roman numerals such as i, ii, iii, iv, and so on.
And different countries use different conventions to group the digits, separate the
integer and fractional parts of a real number, and represent the symbols for the var-
ious digits. These are all adjustable through four attributes of xsl:number:

✦ format

✦ letter-value

✦ grouping-separator

✦ grouping-size

The format attribute
You can adjust the numbering style used by xsl:number using the format
attribute. This attribute generally has one of the following values:

✦ i— The lowercase Roman numerals i, ii, iii, iv, v, vi, . . .

✦ I— The uppercase Roman numerals I, II, III, IV, V, VI, . . .

✦ a— The lowercase letters a, b, c, d, e, f, . . .

✦ A— The uppercase letters A, B, C, D, E, F, . . .

For example, this rule numbers the atoms with capital Roman numerals:

<xsl:template match=”ATOM”>
<P>
<xsl:number value=”position()” format=”I”/>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 485

486 Part III ✦ Style Languages

You can specify decimal numbering with leading zeros by including the number of
leading zeros you want in the format attribute. For example, setting format=”01”
produces the sequence 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, You might find
this useful when lining numbers up in columns.

The letter-value attribute
The letter-value attribute distinguishes between letters interpreted as numbers
and letters interpreted as letters. For instance, if you want to use format=”I” to
start the sequence I, J, K, L, M, N, . . . instead of I, II, III, IV, V, VI, . . ., you would set
the letter-value attribute to the keyword alphabetic. The keyword tradi-
tional specifies a numeric sequence, as in the following example:

<xsl:template match=”ATOM”>
<P>
<xsl:number value=”position()”

format=”I” letter-value=”alphabetic”/>
<xsl:value-of select=”.”/>
</P>

</xsl:template>

Grouping attributes
In the United States, we tend to write large numbers with commas grouping every
three digits; for example, 4,567,302,000. However, in many languages and countries,
a period or a space separates the groups instead; for instance, 4.567.302.000 or 4
567 302 000. Furthermore, in some countries, it’s customary to group large numbers
every four digits instead of every three; for example, 4,5673,0000.

The grouping-separator attribute specifies the grouping separator used between
groups of digits. The grouping-size attribute specifies the number of digits used
in a group, as in the following example:

<xsl:number grouping-separator=” “ grouping-SIZE=”3”/>

Generally, you’d make these attributes contingent on the language.

Sorting Output
The xsl:sort element sorts the output nodes into a different order than they were
generated in. An xsl:sort element appears as a child of an xsl:apply-templates
element or xsl:for-each element. The select attribute of the xsl:sort element
defines the key used to sort the element’s output by xsl:apply-templates or
xsl:for-each.

By default, sorting is performed in alphabetical order of the keys. If more than one
xsl:sort element is present in a given xsl:apply-templates or xsl:for-each

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 486

487Chapter 15 ✦ XSL Transformations

element, the elements are sorted first by the first key, then by the second key, and
so on. If any elements still compare equally, they are output in the order they
appear in the source document.

For example, suppose you have a file full of ATOM elements arranged alphabetically.
To sort by atomic number, you can use the style sheet in Listing 15-18.

Listing 15-18: An XSLT Style Sheet That Sorts by
Atomic Number

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<HTML>
<HEAD>
<TITLE>Atomic Number vs. Atomic Weight</TITLE>

</HEAD>
<BODY>
<H1>Atomic Number vs. Atomic Weight</H1>
<TABLE>
<TH>Element</TH>
<TH>Atomic Number</TH>
<TH>Atomic Weight</TH>
<xsl:apply-templates>
<xsl:sort select=”ATOMIC_NUMBER”/>

</xsl:apply-templates>
</TABLE>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM”>
<TR>
<TD><xsl:apply-templates select=”NAME”/></TD>
<TD><xsl:apply-templates select=”ATOMIC_NUMBER”/></TD>
<TD><xsl:apply-templates select=”ATOMIC_WEIGHT”/></TD>

</TR>
</xsl:template>

</xsl:stylesheet>

Figure 15-5 shows the limits of alphabetical sorting. Hydrogen, atomic number 1, is
the first element. However, the second element is not helium, atomic number 2, but
rather neon, atomic number 10. Although 10 sorts after 9 numerically, alphabeti-
cally 10 falls before 2.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 487

488 Part III ✦ Style Languages

Figure 15-5: Atoms alphabetically sorted by atomic number

You can, however, adjust the order of the sort by setting the optional data-type
attribute to the value number, as in this element:

<xsl:sort data-type=”number” select=”ATOMIC_NUMBER”/>

Figure 15-6 shows the elements sorted properly.

You can change the order of the sort from the default ascending order to descend-
ing by setting the order attribute to descending, like this:

<xsl:sort order=”descending”
data-type=”number”
select=”ATOMIC_NUMBER”/>

This sorts the elements from the largest atomic number to the smallest so that
hydrogen now appears last in the list.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 488

489Chapter 15 ✦ XSL Transformations

Figure 15-6: Atoms numerically sorted by atomic number

Alphabetical sorting naturally depends on the alphabet. The lang attribute can set
the language of the keys. The value of this attribute should be an ISO 639 language
code such as en for English. However, processors are not required to know how to
sort in all the different languages that might be encountered in XML. While English
sorting is fairly straightforward, many other languages require much more compli-
cated algorithms. Indeed, a few languages actually have multiple standard ways of
sorting based on different criteria. The lang attribute is ignored if data-type is
number.

These are the same values supported by the xml:lang attribute discussed in
Chapter 6.

Finally, you can set the case-order attribute to one of the two values, upper-
first or lower-first, to specify whether uppercase letters sort before lowercase
letters or vice versa. The default depends on the language.

Cross-
Reference

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 489

490 Part III ✦ Style Languages

Modes
Sometimes you want to include the same content from the source document in the
output document multiple times. That’s easy to do simply by applying templates
multiple times, once in each place where you want the data to appear. However,
suppose you want the data to be formatted differently in different locations? That’s
a little trickier.

For example, suppose you want the output of processing the periodic table to be a
series of 100 links to more detailed descriptions of the individual atoms. In this
case, the output document would start like this:

Actinium
Aluminum
Americium
Antimony
Argon
...

Later in the document, the actual atom descriptions would appear, formatted like
this:

<H3>
Hydrogen
</H3>
<P>

Hydrogen
H
1
1.00794
20.28
13.81

0.0000899

</P>

This sort of application is common anytime you automatically generate a table of
contents or an index. The NAME of the atom must be formatted differently in the
table of contents than in the body of the document. You need two different rules
that both apply to the ATOM element at different places in the document. The solu-
tion is to give each of the different rules a mode attribute. Then you can choose
which template to apply by setting the mode attribute of the xsl:apply-templates
element. Listing 15-19 demonstrates.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 490

491Chapter 15 ✦ XSL Transformations

Listing 15-19: An XSLT Style Sheet That Uses Modes to Format
the Same Data Differently in Two Different Places

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>

<H2>Table of Contents</H2>

<xsl:apply-templates select=”ATOM” mode=”toc”/>

<H2>The Elements</H2>
<xsl:apply-templates select=”ATOM” mode=”full”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM” mode=”toc”>
<A>
<xsl:attribute name=”HREF”>#<xsl:value-of
select=”SYMBOL”/></xsl:attribute>

<xsl:value-of select=”NAME”/>

</xsl:template>

<xsl:template match=”ATOM” mode=”full”>
<H3><A>
<xsl:attribute name=”NAME”>
<xsl:value-of select=”SYMBOL”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>

</H3>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

</xsl:stylesheet>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 491

492 Part III ✦ Style Languages

The default template rule for nodes preserves modes. That is, for every mode n you
declare in your style sheet, the XSLT processor adds one template rule that applies
specifically to that mode and looks like this:

<xsl:template match=”*|/” mode=”n”>
<xsl:apply-templates mode=”n”/>

</xsl:template>

As usual, you are free to override this default rule with one of your own design.

Defining Constants with xsl:variable
Named constants help clean up code. They can replace commonly used boilerplate
text with a simple name and reference. They can also make it easy to adjust boiler-
plate text that appears in multiple locations by simply changing the constant
definition.

The xsl:variable element defines a named string for use elsewhere in the
style sheet via an attribute value template. It has a single attribute, name, which
provides a name by which the variable can be referred to. The contents of the
xsl:variable element provide the replacement text. For example, this xsl:
variable element defines a variable with the name copy04 and the value Copyright
2004 Elliotte Rusty Harold:

<xsl:variable name=”copy04”>
Copyright 2004 Elliotte Rusty Harold

</xsl:variable>

To access the value of this variable, you prefix a dollar sign to the name of the vari-
able. To insert this in an attribute, use an attribute value template. For example:

<BLOCK COPYRIGHT=”{$copy04}”>
</BLOCK>

An xsl:value-of element can insert the variable’s replacement text into the out-
put document as text:

<xsl:value-of select=”$copy04”/>

The contents of the xsl:variable element can contain markup including other
XSLT instructions. This means that you can calculate the value of a variable based
on other information, including the value of other variables. However, a variable
may not refer to itself recursively, either directly or indirectly. For instance, the fol-
lowing example is in error:

<xsl:variable name=”GNU”>
<xsl:value-of select=”$GNU”/>’s not Unix

</xsl:variable>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 492

493Chapter 15 ✦ XSL Transformations

Similarly, two variables may not refer to each other in a circular fashion, like this:

<xsl:variable name=”Thing1”>
Thing1 loves <xsl:value-of select=”$Thing2”/>

</xsl:variable>

<xsl:variable name=”Thing2”>
Thing2 loves <xsl:value-of select=”$Thing1”/>

</xsl:variable>

xsl:variable elements can either be top-level children of the xsl:stylesheet
root element or they can be included inside template rules. A variable present at
the top level of a style sheet can be accessed anywhere in the style sheet. It’s a
global variable. By contrast, a variable that’s declared inside a template rule is only
accessible by its following sibling elements and their descendants (the scope of the
variable). It’s a local variable. That is, it only applies inside that one template rule. It
is local to the template. Local variables override global variables with the same
name. Local variables can also override other local variables. In the event of a con-
flict between two variables with the same name, the closest local variable with the
same name is used.

Unlike variables in traditional programming languages such as Java, XSLT variables
may not be changed. After the value of a variable has been set, it cannot be
changed. It can be shadowed by another variable with the same name in a more
local scope, but its own value is fixed. An XSLT variable is more like an algebraic
variable than a programming language variable.

Named Templates
Variables are limited to basic text and markup. XSLT provides a more powerful
macro facility that can wrap standard markup and text around changing data. For
example, suppose you want an atom’s atomic number, atomic weight, and other key
values formatted as a table cell in small, bold Times font in blue. In other words,
you want the output to look like this:

<TD>

52

</TD>

You can certainly include all that in a template rule like this:

<xsl:template match=”ATOMIC_NUMBER”>
<TD>

<xsl:value-of select=”.”/>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 493

494 Part III ✦ Style Languages

</TD>
</xsl:template>

This markup can be repeated inside other template rules. When the detailed
markup grows more complex, and when it appears in several different places in a
style sheet, you may elect to turn it into a named template. Named templates
resemble variables. However, they enable you to include data from the place where
the template is applied, rather than merely inserting fixed text.

The xsl:template element can have a name attribute by which it can be explicitly
invoked, even when it isn’t applied indirectly. For example, this shows a sample
named template for the preceding pattern:

<xsl:template name=”ATOM_CELL”>
<TD>

<xsl:value-of select=”.”/>

</TD>
</xsl:template>

The <xsl:value-of select=”.”/> element in the middle of the named template
will be replaced by the value of the current node from which this template was
called.

The xsl:call-template element appears in the contents of a template rule. It has
a required name argument that names the template it will call. When processed, the
xsl:call-template element is replaced by the contents of the xsl:template ele-
ment it names. For example, you can now rewrite the ATOMIC_NUMBER rule like this
by using the xsl:call-template element to call the ATOM_CELL named template:

<xsl:template match=”ATOMIC_NUMBER”>
<xsl:call-template name=”ATOM_CELL”/>

</xsl:template>

This fairly simple example only saves a few lines of code, but the more complicated
the template, and the more times it’s reused, the greater the reduction in complex-
ity of the style sheet. Named templates also have the advantage, like variables, of
factoring out common patterns in the style sheet so that you can edit them as one.
For example, if you decide to change the color of atomic number, atomic weight,
and other key values from blue to red, you only need to change it once in the
named template. You do not have to change it in each separate template rule. This
facilitates greater consistency of style.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 494

495Chapter 15 ✦ XSL Transformations

Passing Parameters to Templates
Each separate invocation of a template can pass parameters to the template to cus-
tomize its output. This is done the same way for named templates and unnamed
templates. In the xsl:template element, the parameters are represented as
xsl:param child elements. In xsl:call-template or xsl:apply-templates ele-
ments, parameters are represented as xsl:with-param child elements.

For example, suppose you also want to include a link to a particular file for each
atom cell. The output should look something like this:

<TD>

52

</TD>

The trick is that the value of the HREF attribute has to be passed in from the point
where the template is invoked because it changes for each separate invocation of
the template. For example, atomic weights will have to be formatted like this:

<TD>

4.0026

</TD>

This template accomplishes that task:

<xsl:template name=”ATOM_CELL”>
<xsl:param name=”file”>index.html</xsl:param>
<TD>

<xsl:value-of select=”.”/>

</TD>
</xsl:template>

The name attribute of the xsl:param element gives the parameter a name (impor-
tant if there are multiple arguments), and the contents of the xsl:param element
supplies a default value for this parameter to be used if the invocation doesn’t pro-
vide a value. (This can also be given as a string expression by using a select
attribute.)

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 495

496 Part III ✦ Style Languages

When this template is called, an xsl:with-param child of the xsl:call-template
element provides the value of the parameter using its name attribute to identify the
parameter and its contents to provide a value for the parameter. For example:

<xsl:template match=”ATOMIC_NUMBER”>
<xsl:call-template name=”ATOM_CELL”>
<xsl:with-param

name=”file”>atomic_number.html</xsl:with-param>

</xsl:call-template>
</xsl:template>

Again, this is a simple example. However, much more complex named templates
exist. For example, you could define header and footer templates for pages on a
web site for importing by many different style sheets, each of which would only
have to change a few parameters for the name of the page author, the title of the
page, and the copyright date.

Stripping and Preserving White Space
You may have noticed that most of the examples of output have been formatted a
little strangely. The reason the examples appeared strange is that the source docu-
ment needed to break long elements across multiple lines to fit between the mar-
gins of this book. Unfortunately, the extra white space added to the input document
carried over into the output document. For a computer, the details of insignificant
white space aren’t important, but for a person they can be distracting.

The default behavior for text nodes read from the input document, such as the con-
tent of an ATOMIC_NUMBER or DENSITY element, is to preserve all white space. A
typical DENSITY element looks like this:

<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>

When its value is taken the leading and trailing white space is included, like this,
even though the space is really only there to help fit the example on this printed
page and isn’t at all significant:

0.0000899

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 496

497Chapter 15 ✦ XSL Transformations

You can use the normalize-space() function to strip the leading and trailing
white space from this or any other string. For example, instead of writing
<xsl:value-of select=”DENSITY”/>, you would write <xsl:value-of
select=”normalize-space(DENSITY)”/>.

You can also automatically delete white-space-only nodes in the input document by
using xsl:strip-space. The elements attribute of this top-level element contains
a list of elements from which text nodes that contain nothing but white space should
be deleted. For example, this element says that nodes containing only white space
should be stripped from DENSITY, NAME, SYMBOL, and BOILING_POINT elements:

<xsl:strip-space elements=”DENSITY NAME SYMBOL BOILING_POINT”/>

This is not the same as trimming white space from the ends of text nodes like
normalize-space() does. This only affects nodes that contain nothing but white
space, not nodes that contain white space and other nonspace content.

You can strip space-only nodes in all elements by using the * wildcard, like this:

<xsl:strip-space elements=”*”/>

There’s also an xsl:preserve-space element with a similar syntax but opposite
meaning. However, because preserving space is the default, this element isn’t much
used. Its main purpose is to override xsl:strip-space elements imported from
other style sheets or to specify a few elements where space is preserved when the
default has been reset to stripping by <xsl:strip-space elements=”*”/>.

White-space-only text nodes in the style sheet, as opposed to the input document,
are another matter. They are stripped by default. If you want to preserve one, you
attach an xml:space attribute with the value preserve to its parent element or to
another one of its ancestors.

The xml:space attribute was discussed in Chapter 6.

Sometimes the easiest way to include significant white space in a style sheet is to
wrap it in an xsl:text element. Space inside an xsl:text element is treated liter-
ally and not stripped.

Making Choices
XSLT provides two elements that allow you to choose different output based on the
input. The xsl:if element either does or does not output a given fragment of XML
depending on what patterns are present in the input. The xsl:choose element

Cross-
Reference

Caution

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 497

498 Part III ✦ Style Languages

picks one of several possible XML fragments, depending on what patterns are pre-
sent in the input. Most of what you can do with xsl:if and xsl:choose can also
be done by a suitable application of templates. However, sometimes the solution
with xsl:if or xsl:choose is simpler and more obvious.

xsl:if
The xsl:if element provides a simple facility for changing the output based on a
pattern. The test attribute of xsl:if contains an expression that evaluates to a
boolean. If the expression is true, the contents of the xsl:if element are output.
Otherwise, they’re not. For example, this template writes out the names of all ATOM
elements. A comma and a space is added after all except the last element in the list.

<xsl:template match=”ATOM”>
<xsl:value-of select=”NAME”/>
<xsl:if test=”position()!=last()”>, </xsl:if>

</xsl:template>

This ensures that the list looks like “Hydrogen, Helium” and not “Hydrogen,
Helium, “.”

There are no xsl:else or xsl:else-if elements. The xsl:choose element pro-
vides this functionality.

xsl:choose
The xsl:choose element selects one of several possible outputs depending on sev-
eral possible conditions. Each condition and its associated output template is pro-
vided by an xsl:when child element. The test attribute of the xsl:when element
is an XPath expression with a boolean value. If multiple conditions are true, only
the first true one is instantiated. If none of the xsl:when elements are true, the
xsl:otherwise child element is instantiated. If the xsl:choose element does not
have an xsl:otherwise element, no output created. For example, this rule changes
the color of the output based on whether the STATE attribute of the ATOM element is
SOLID, LIQUID, or GAS:

<xsl:template match=”ATOM”>
<xsl:choose>
<xsl:when test=”@STATE=’SOLID’”>
<P style=”color: black”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:when test=”@STATE=’LIQUID’”>
<P style=”color: blue”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 498

499Chapter 15 ✦ XSL Transformations

<xsl:when test=”@STATE=’GAS’”>
<P style=”color: red”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:otherwise>
<P style=”color: green”>
<xsl:value-of select=”.”/>

</P>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Merging Multiple Style Sheets
A single XML document may use many different markup vocabularies. You may
wish to use different standard style sheets for those different vocabularies.
However, you’ll also want style rules for particular documents. The xsl:import
and xsl:include elements enable you to merge multiple style sheets so that you
can organize and reuse style sheets for different vocabularies and purposes.

Importing with xsl:import
The xsl:import element is a top-level element whose href attribute provides the
URI of a style sheet to import. All xsl:import elements must appear before any
other top-level element in the xsl:stylesheet root element. For example, these
xsl:import elements import the style sheets genealogy.xsl and standards.xsl.

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:import href=”genealogy.xsl”/>
<xsl:import href=”standards.xsl”/>
<!-- other child elements follow -->

</xsl:stylesheet>

Rules in the imported style sheets may conflict with rules in the importing style
sheet. If so, rules in the importing style sheet take precedence. If two rules in differ-
ent imported style sheets conflict, the rule in the last style sheet imported (stan-
dards.xsl above) takes precedence.

The xsl:apply-imports element is a slight variant of xsl:apply-templates that
only uses imported rules. It does not use any rules from the importing style sheet.
This allows access to imported rules that would otherwise be overridden by rules
in the importing style sheet. Other than the name, it has identical syntax to
xsl:apply-templates. The only behavioral difference is that it only matches tem-
plate rules in imported style sheets.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 499

500 Part III ✦ Style Languages

Inclusion with xsl:include
The xsl:include element is a top-level element that copies another style sheet
into the current style sheet at the point where it occurs. (More precisely, it copies
the contents of the xsl-stylesheet or xsl:transform element in the remote doc-
ument into the current document.) Its href attribute provides the URI of the style
sheet to include. An xsl:include element can occur anywhere at the top level
after the last xsl:import element.

Unlike rules included by xsl:import elements, rules included by xsl:include ele-
ments have the same precedence in the including style sheet that they would have
if they were copied and pasted from one style sheet to the other. As far as the XSLT
processor is concerned, there is no difference between an included rule and a rule
that’s physically present.

Output Methods
Most of the examples in this chapter have focused on transforming XML into well-
formed HTML. However, most XSLT processors actually support three different out-
put methods:

✦ XML

✦ HTML

✦ Text

The XSLT processor behaves differently depending on which of these output meth-
ods it uses. The XML format is the default and in many ways the simplest. The out-
put is mostly exactly what you request in your style sheet. Because well-formed
XML does not permit raw less –than signs and ampersands, if you use a character
reference such as < or the entity reference < to insert the < character, the
formatter will output < or perhaps <. If you use a character reference such
as & or the entity reference & to insert the & character, the formatter will
insert & or perhaps &.

The HTML output method is designed to output standard HTML 4.0. This is not the
well-formed HTML used in this book, but rather traditional HTML in which empty-
element tags look like <HR> and instead of <HR/> and , processing
instructions are terminated with a > instead of ?>, and < signs used in JavaScript
are not converted to <. This makes it much easier to output HTML that works
across many browsers and platforms without odd effects such as double lines
where a single line is expected or other detritus caused by forcing HTML into the
XML mold. The HTML output method is automatically selected when the formatter
notices that the root output element is html, HTML, HtMl, or any other combination
of case that still spells Hypertext Markup Language.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 500

501Chapter 15 ✦ XSL Transformations

The final output method is pure text. The text output method operates by first
forming a full result tree as per the XML output method, but then only outputting
the string value of that tree. This is useful for transforming to non-XML formats
such as RTF or TeX. The primary benefit of the text output format is that less than
signs are not converted to < or < and ampersands are not converted to
& or &. This allows you to output effectively arbitrary text.

By default, an XSLT processor will use the XML output method, unless it recognizes
the output root element as HTML, in which case it uses the HTML output method.
You can change this by using a top-level xsl:output element. The method
attribute of the xsl:output element specifies which output method to use and nor-
mally has one of these three values:

✦ xml

✦ html

✦ text

For example, to specify that you want pure well-formed HTML as output, with all
the empty-element tags properly indicated, all less than signs escaped, and so
forth, you would use this xsl:output element at the top level of your style sheet:

<xsl:output method=”xml”/>

To indicate that you want regular HTML output even though you aren’t using an
html root element, you’d put this xsl:output element at the top level of your style
sheet:

<xsl:output method=”html”/>

The xsl:output element also has a number of other allowed attributes that modify
how XML is output. These allow you to change the prolog of the document, how the
output is indented with insignificant white space, and which elements use CDATA
sections rather than escaping < and & characters.

XML Declaration
Four attributes of xsl:output format the XML declaration used in your document.
This assumes the output method is xml. These attributes are as follows:

✦ omit-xml-declaration

✦ version

✦ encoding

✦ standalone

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 501

502 Part III ✦ Style Languages

The omit-xml-declaration attribute has the value yes or no. If yes, an XML dec-
laration is not included in the output document. If no, then it is. For example, to
insert a very basic <?xml version=”1.0”?> XML declaration in the output docu-
ment you would use this xsl:output element at the top level of your style sheet:

<xsl:output method=”xml” omit-xml-declaration=”no”/>

You could also include it as two separate xsl:output elements, like this:

<xsl:output method=”xml”/>
<xsl:output omit-xml-declaration=”no”/>

The default value of the version attribute of the XML declaration is 1.0. Currently,
that’s the only value allowed. If at some point in the future that changes, the ver-
sion attribute of xsl:output will allow you to change the version used in the XML
declaration, as in the following example:

<xsl:output version=”1.1”/>

You can set the standalone attribute of the XML declaration to the value yes or no
using the standalone attribute of the xsl:output element. For example, this
xsl:output element would insert the XML declaration <?xml version=”1.0”
standalone=”yes”?>:

<xsl:output method=”xml”
omit-xml-declaration=”no” standalone=”yes”/>

The final possible piece of an XML declaration is the encoding declaration. As you
probably guessed this can be set with the encoding attribute of the xsl:output
element. For example, to insert the XML declaration <?xml version=”1.0”
encoding=”ISO-8859-1”?>, you’d use this xsl:output element:

<xsl:output method=”xml”
omit-xml-declaration=”no” encoding=”ISO-8859-1”/>

This also changes the encoding the XSLT processor uses for the output document
from its default UTF-8. However, not all processors support all possible encodings.
Those written in Java are likely to support the most encodings because Java’s rich
class library makes it almost trivial to support several dozen popular encodings.

Document Type Declaration
XSLT does not provide any elements for building a DTD for the output document
with <!ELEMENT>, <!ATTLIST>, <!ENTITY>, and <!NOTATION> declarations, either
as an internal or external DTD subset. However, it does provide two attributes of
the xsl:output element you can use to include a DOCTYPE declaration that points
to an external DTD. These are doctype-system and doctype-public. The first

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 502

503Chapter 15 ✦ XSL Transformations

inserts a SYSTEM identifier for the DTD; the second a PUBLIC identifier. For example,
suppose you want this DOCTYPE declaration in your output document:

<!DOCTYPE PERIODIC_TABLE SYSTEM “chemistry.dtd”>

Then you would use this xsl:output element at the top level of your style sheet:

<xsl:output doctype-system=”chemistry.dtd”/>

The XSLT processor determines the proper root element for the document type
declaration by looking at the root element of the output tree. Using a full URL
instead of a relative URL is equally easy:

<xsl:output
doctype-system=”http://www.example.com/chemistry.dtd”/>

On the other hand, suppose you want this DOCTYPE declaration in your output
document:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/REC-html40/loose.dtd”>

Then you would use both doctype-system and doctype-public attributes so
your DOCTYPE declaration will have both a PUBLIC and a SYSTEM identifier. For
example:

<xsl:output
doctype-system=”http://www.w3.org/TR/REC-html40/loose.dtd”
doctype-public=”-//W3C//DTD HTML 4.0 Transitional//EN”/>

Indentation
The indentation of many of the output examples in this chapter has been more than
a little flaky. It’s certainly not as neat as the carefully hand-coded indentation of the
input documents. However, if white space isn’t particularly significant in your output
format, you can ask the formatter for “pretty printed” XML with the nesting of differ-
ent elements indicated by the indentation. This is accomplished by the indent
attribute of the xsl:output element. If this attribute has the value yes (the default
is no), the processor is allowed (but not required) to insert (but not remove) extra
white space into the output to try to pretty print the output. This may include inden-
tation and line breaks. For example, this element requests indenting:

<xsl:output indent=”yes”/>

You cannot specify how much you want each level indented (for example, by two
spaces or one tab). That’s up to the formatter. Nonetheless, the xsl:strip-space
and the indent attribute of the xsl:output element allow you to produce output
that’s almost as attractive as the most painstakingly hand-crafted XML.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 503

504 Part III ✦ Style Languages

CDATA sections
XSLT does not allow you to insert CDATA sections at arbitrary locations in XML doc-
uments produced by XSL transformations. However, you can specify that the text
contents of a particular element be placed in a CDATA section. In this case the < and
& symbols are not encoded as < and & as they would normally be. To do
this, place the name of the element whose text contents should be wrapped in
CDATA delimiters in the cdata-section-elements attribute of the xsl:output
element. For example, this xsl:output element says that the contents of the
SCRIPT element should be wrapped in a CDATA section:

<xsl:output cdata-section-elements=”SCRIPT”/>

You can enclose multiple names of elements whose text contents should be
wrapped in CDATA delimiters in one cdata-section-elements attribute simply by
separating the names with white space. For example, this xsl:output element says
that the contents of both the SCRIPT and CODE elements should be wrapped in a
CDATA section:

<xsl:output cdata-section-elements=”SCRIPT CODE”/>

Alternately, you can just use multiple xsl:output elements, each naming one ele-
ment. For example:

<xsl:output cdata-section-elements=”SCRIPT”/>
<xsl:output cdata-section-elements=”CODE”/>

Summary
In this chapter, you learned about XSL transformations. In particular, you learned
the following:

✦ The Extensible Stylesheet Language (XSL) comprises two separate XML appli-
cations for transforming and formatting XML documents.

✦ An XSL transformation applies rules to a tree read from an XML document to
transform it into an output tree written out as an XML document.

✦ An XSL template rule is represented as an xsl:template element. The match
attribute determines which nodes the template matches. The contents of the
xsl:template element are a template that is instantiated when a node is
matched.

✦ The value of a node is a pure text (no markup) string containing the contents
of the node. This can be calculated by the xsl:value-of element.

✦ You can process multiple elements in two ways: using the xsl:apply-
templates element and the xsl:for each element.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 504

505Chapter 15 ✦ XSL Transformations

✦ The value of the match attribute of the xsl:template element is a match pat-
tern specifying which nodes the template matches.

✦ XPath expressions (or simply expressions) are a superset of match patterns
used by the select attribute of xsl:apply-templates, xsl:value-of,
xsl:for-each, xsl:copy-of, xsl:variable, xsl:param, xsl:with-param,
and xsl:sort elements.

✦ Default rules apply templates to element nodes and take the value of text
nodes and attributes.

✦ Attribute value templates are braced XPath expressions in certain attributes
that are evaluated to create an attribute value.

✦ The xsl:element, xsl:attribute, xsl:processing-instruction,
xsl:comment, and xsl:text elements output elements, attributes, process-
ing instructions, comments, and text calculated from data in the input
document.

✦ The xsl:attribute-set element defines a common group of attributes that
can be applied to multiple elements in different templates with the xsl:use-
attribute-sets.

✦ The xsl:copy element shallow copies the current node from the input into
the output.

✦ The xsl:copy-of element deep copies the current node from the input into
the output.

✦ The xsl:number element inserts the number specified by its value attribute
into the output using a specified number format given by the format
attribute.

✦ The xsl:sort element can reorder the input nodes before copying them to
the output.

✦ Modes can apply different templates to the same element from different loca-
tions in the style sheet.

✦ The xsl:variable element defines named constants that can clarify your
code.

✦ Named templates help you reuse common template code. Parameters can be
defined and passed to templates using the xsl:param and xsl:with-param
elements.

✦ White space in the input document is maintained by default, unless an
xsl:strip-space element or xml:space attribute says otherwise.

✦ The xsl:if element produces output if, and only if, its test attribute is true.

✦ The xsl:choose element outputs the template of the first one of its xsl:when
children whose test attribute is true, or the template of its xsl:otherwise
element if no xsl:when element has a true test attribute.

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 505

506 Part III ✦ Style Languages

✦ The xsl:import and xsl:include elements merge rules from different style
sheets.

✦ The xsl:stylesheet element allows you to include a style sheet directly in
the document it applies to.

✦ Various attributes of the xsl:output element allow you to specify the output
document’s format, XML declaration, document type declaration, indentation,
encoding, and MIME media type.

The next chapter takes up the second half of XSL: the formatting objects vocabu-
lary. Formatting objects are an extremely powerful way of specifying the precise
layout you want your pages to have. XSL transformations are used to transform an
XML document into an XSL formatting object document.

✦ ✦ ✦

19 549863 Ch15.qxd 1/28/04 9:49 AM Page 506

XSL Formatting
Objects

XSL Formatting Objects (XSL-FO) are the second half of
the Extensible Stylesheet Language (XSL). XSL-FO is an

XML application that describes how pages will look when pre-
sented to a reader. A style sheet uses the XSL transformation
language to transform an XML document in a semantic vocab-
ulary into a new XML document that uses the XSL-FO presen-
tational vocabulary. While one can hope that web browsers
will one day know how to directly display data marked up
with XSL formatting objects, for now, an additional step is nec-
essary in which the output document is further transformed
into some other format, such as Adobe’s PDF.

Formatting Objects and
Their Properties

XSL-FO provides a more sophisticated visual layout model
than HTML+CSS. Formatting supported by XSL-FO, but not
supported by HTML+CSS, includes right-to-left and top-to-
bottom text, footnotes, margin notes, page numbers in cross-
references, and more. In particular, while cascading style
sheets (CSS) is primarily intended for use on the Web, XSL-FO
is designed for broader use. You should, for example, be able
to write an XSL style sheet that uses formatting objects to lay
out an entire printed book. A different style sheet should be
able to transform the same XML document into a web site.

This chapter is based on the October 15, 2001, Recom-
mendation of the XSL specification. However, most soft-
ware does not implement all of the final Recommendation
for XSL. In fact, so far, only a few stand-alone programs con-
vert XSL-FO documents into PDF files. There are no web
browsers that can display a document written with XSL for-
matting objects.

Caution

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Formatting objects
and their properties

Page layout

Content

Leaders and rules

Graphics

Links

Lists

Tables

Inlines

Footnotes

Floats

Formatting properties

✦ ✦ ✦ ✦

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 507

508 Part III ✦ Style Languages

There are exactly 56 XSL formatting object elements. These are placed in the
http://www.w3.org/1999/XSL/Format namespace. At least 99 percent of the
time, the chosen prefix is fo. In this chapter, I use the fo prefix to indicate this
namespace without further comment.

Of the 56 elements, most signify various kinds of rectangular areas. Most of the rest
are containers for rectangular areas and spaces. In alphabetical order, these format-
ting objects are as follows:

fo:basic-link

fo:bidi-
override

fo:block

fo:block-
container

fo:character

fo:color-
profile

fo:conditional-
page-master-
reference

fo:declarations

fo:external-
graphic

fo:float

fo:flow

fo:footnote

fo:footnote-
body

fo:initial-
property-set

fo:inline

fo:inline-
container

fo:instream-
foreign-object

fo:layout-master-set

fo:leader

fo:list-block

fo:list-item

fo:list-item-body

fo:list-item-label

fo:marker

fo:multi-case

fo:multi-properties

fo:multi-property-set

fo:multi-switch

fo:multi-toggle

fo:page-number

fo:page-number-
citation

fo:page-sequence

fo:page-sequence-
master

fo:region-after

fo:region-before

fo:region-body

fo:region-end

fo:region-start

fo:repeatable-
page-master-
alternatives

fo:repeatable-
page-master-
reference

fo:retrieve-
marker

fo:root

fo:simple-page-
master

fo:single-page-
master-reference

fo:static-content

fo:table

fo:table-and-
caption

fo:table-body

fo:table-caption

fo:table-cell

fo:table-column

fo:table-footer

fo:table-header

fo:table-row

fo:title

fo:wrapper

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 508

509Chapter 16 ✦ XSL Formatting Objects

The XSL formatting model is based on rectangular boxes called areas that can con-
tain text, empty space, images, or other formatting objects. As with CSS boxes, an
area has borders and padding on each of its sides, although CSS’s margins are
replaced by XSL’s space-before and space-after. An XSL formatter reads the format-
ting objects to determine which areas to place where on the page. Many formatting
objects produce single areas (at least most of the time); but because of page
breaks, word wrapping, hyphenation, and other details that must be taken into
account when fitting an indefinite amount of text into a finite amount of space,
some formatting objects do occasionally generate more than one area.

The formatting objects differ primarily in what they represent. For example, the
fo:list-item-label formatting object is a box that contains a bullet, a number,
or another indicator placed in front of a list item. A fo:list-item-body formatting
object is a box that contains the text, sans label, of the list item. And a fo:list-
item formatting object is a box that contains both the fo:list-item-label and
fo:list-item-body formatting objects.

When processed, the formatting objects document is broken up into pages. A web
browser window will normally be treated as one very long page. A print format will
often contain many individual pages. Each page contains a number of areas. There
are four primary kinds of areas:

1. Regions

2. Block areas

3. Line areas

4. Inline areas

These form a rough hierarchy. Regions contain block areas. Block areas contain
other block areas, line areas, and content. Line areas contain inline areas. Inline
areas contain other inline areas and content. More specifically:

✦ A region is the highest-level container in XSL-FO. You can think of a page of
this book as containing three regions: the header, the main body of the page,
and the footer. Formatting objects that produce regions include fo:region-
body, fo:region-before, fo:region-after, fo:region-start, and
fo:region-end.

✦ A block area represents a block-level element, such as a paragraph or a list
item. Although block areas may contain other block areas, there should
always be a line break before the start and after the end of each block area. A
block area, rather than being precisely positioned by coordinates, is placed
sequentially in the area that contains it. As other block areas are added and
deleted before it or within it, the block area’s position shifts as necessary to
make room. A block area may contain parsed character data, inline areas, line
areas, and other block areas that are sequentially arranged in the containing
block area. Formatting objects that produce block areas include fo:block,
fo:table-and-caption, and fo:list-block.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 509

510 Part III ✦ Style Languages

✦ A line area represents a line of text inside a block. For example, each of the
lines in this list item is a line area. Line areas can contain inline areas and
inline spaces. There are no formatting objects that correspond to line areas.
Instead, the formatting engine calculates the line areas as it decides how to
wrap lines inside block areas.

✦ Inline areas are parts of a line such as a single character, a footnote reference,
or a mathematical equation. Inline areas can contain other inline areas and
raw text. Formatting objects that produce inline areas include fo:character,
fo:external-graphic, fo:inline, fo:instream-foreign-object,
fo:leader, and fo:page-number.

Formatting properties
When taken as a whole, the various formatting objects in an XSL-FO document spec-
ify the order in which content is to be placed on pages. However, formatting proper-
ties specify the details of formatting, such as size, position, font, color, and a lot
more. Formatting properties are represented as attributes on the individual format-
ting object elements.

The details of many of these properties should be familiar from CSS. Work is ongo-
ing to ensure that CSS and XSL-FO use the same names to mean the same things.
For example, the CSS font-family property means the same thing as the XSL
font-family property; and although the syntax for assigning values to properties
is different in CSS and XSL-FO, the meaning of the values themselves is the same. To
indicate that the fo:block element is formatted in some approximation of Times,
you might use this CSS rule:

fo:block {font-family: ‘New York’, ‘Times New Roman’, serif}

The XSL-FO equivalent is to include a font-family attribute in the fo:block start-
tag in this way:

<fo:block font-family=”’New York’, ‘Times New Roman’, serif”>

Although this is superficially different, the style name (font-family) and the style
value (‘New York’, ‘Times New Roman’, serif) are the same. CSS’s font-family
property is specified as a list of font names, separated by commas, in order from
first choice to last choice. XSL-FO’s font-family property is specified as a list of
font names, separated by commas, in order from first choice to last choice. Both
CSS and XSL-FO quote font names that contain white space. Both CSS and XSL-FO
understand the keyword serif to mean an arbitrary serif font.

Of course, XSL formatting objects support many properties that have no CSS equiv-
alent, such as destination-placement-offset, block-progression-dimension,
character, and hyphenation-keep. You need to learn these to take full advantage
of XSL. The standard XSL-FO properties follow:

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 510

511Chapter 16 ✦ XSL Formatting Objects

absolute-position

active-state

alignment-adjust

alignment-
baseline

auto-restore

azimuth

background

background-
attachment

background-color

background-image

background-
position

background-
position-
horizontal

background-
position-vertical

background-repeat

baseline-shift

blank-or-not-
blank

block-progression-
dimension

border

border-after-
color

border-after-
precedence

border-after-
style

border-after-
width

border-before-
color

border-before-
precedence

border-before-style

border-before-width

border-bottom

border-bottom-color

border-bottom-style

border-bottom-width

border-collapse

border-color

border-end-color

border-end-precedence

border-end-style

border-end-width

border-left

border-left-color

border-left-style

border-left-width

border-right

border-right-color

border-right-style

border-right-width

border-separation

border-spacing

border-start-color

border-start-
precedence

border-start-style

border-start-width

border-style

border-top

border-top-color

border-top-style

border-top-width

border-width

bottom

break-after

break-before

caption-side

case-name

case-title

character

clear

clip

color

color-profile-name

column-count

column-gap

column-number

column-width

content-height

content-type

content-width

country

cue

cue-after

cue-before

destination-
placement-offset

direction

display-align

dominant-baseline

elevation

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 511

512 Part III ✦ Style Languages

empty-cells

end-indent

ends-row

extent

external-
destination

float

flow-name

font

font-family

font-selection-
strategy

font-size

font-size-adjust

font-stretch

font-style

font-variant

font-weight

force-page-count

format

glyph-orientation-
horizontal

glyph-orientation-
vertical

grouping-
separator

grouping-size

height

hyphenate

hyphenation-
character

hyphenation-keep

hyphenation-ladder-
count

hyphenation-push-
character-count

hyphenation-remain-
character-count

id

indicate-destination

initial-page-number

inline-progression-
dimension

internal-destination

keep-together

keep-with-next

keep-with-previous

language

last-line-end-indent

leader-alignment

leader-length

leader-pattern

leader-pattern-width

left

letter-spacing

letter-value

linefeed-treatment

line-height

line-height-shift-
adjustment

line-stacking-
strategy

margin

margin-bottom

margin-left

margin-right

margin-top

marker-class-name

master-name

master-reference

max-height

maximum-repeats

max-width

media-usage

min-height

min-width

number-columns-
repeated

number-columns-
spanned

number-rows-spanned

odd-or-even

orphans

overflow

padding

padding-after

padding-before

padding-bottom

padding-end

padding-left

padding-right

padding-start

padding-top

page-break-after

page-break-before

page-break-inside

page-height

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 512

513Chapter 16 ✦ XSL Formatting Objects

page-position

page-width

pause

pause-after

pause-before

pitch

pitch-range

play-during

position

precedence

provisional-
distance-between-
starts

provisional-
label-separation

reference-
orientation

ref-id

region-name

relative-align

relative-position

rendering-intent

retrieve-boundary

retrieve-class-
name

retrieve-position

richness

right

role

rule-style

rule-thickness

scaling

scaling-method

score-spaces

script

show-destination

size

source-document

space-after

space-before

space-end

space-start

space-treatment

span

speak

speak-header

speak-numeral

speak-punctuation

speech-rate

src

start-indent

starting-state

starts-row

stress

suppress-at-line-
break

switch-to

table-layout

table-omit-footer-at-
break

table-omit-header-at-
break

target-presentation-
context

target-processing-
context

target-stylesheet

text-align

text-align-last

text-altitude

text-decoration

text-depth

text-indent

text-shadow

text-transform

top

treat-as-word-space

unicode-bidi

vertical-align

visibility

voice-family

volume

white-space

white-space-collapse

widows

width

word-spacing

wrap-option

writing-mode

xml:lang

z-index

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 513

514 Part III ✦ Style Languages

Transforming to formatting objects
XSL-FO is a complete XML vocabulary for laying out text on a page. An XSL-FO doc-
ument is simply a well-formed XML document that uses this vocabulary. That
means it has an XML declaration, a root element, child elements, and so forth. It
must adhere to all the well-formedness rules of any XML document, or formatters
will not accept it. By convention, a file that contains XSL formatting objects has the
three-letter extension .fob or the two-letter extension .fo. However, it might have
the suffix .xml because it also is a well-formed XML file.

Listing 16-1 is a simple document marked up using XSL formatting objects. The root
of the document is fo:root. This element contains a fo:layout-master-set and
a fo:page-sequence. The fo:layout-master-set element contains fo:simple-
page-master child elements. Each fo:simple-page-master describes a kind of
page on which content will be placed. Here there’s only one very simple page, but
more complex documents can have different master pages for first, right, and left,
body pages, front matter, back matter, and more, each with a potentially different
set of margins, page numbering, and other features. The name by which the page
master will be referenced is given in the master-name attribute.

Content is placed on copies of the master page using a fo:page-sequence. The
fo:page-sequence element has a master-reference attribute naming the master
page to be used. Its fo:flow child element holds the actual content to be placed on
the pages. The content is given as two fo:block children, each with a font-size
property of 20 points, a font-family property of serif, and a line height of 30 points.

Listing 16-1: A Simple XSL-FO Document

<?xml version=”1.0”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference=”only”>

<fo:flow flow-name=”xsl-region-body”>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt”>
Hydrogen

</fo:block>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt” >
Helium

</fo:block>
</fo:flow>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 514

515Chapter 16 ✦ XSL Formatting Objects

</fo:page-sequence>

</fo:root>

Although you could write a document such as Listing 16-1 by hand, doing so would
lose all the benefits of content-format independence achieved by XML. Normally,
you write an XSLT style sheet that transforms an XML source document into XSL-
FO. Listing 16-2 is the XSLT style sheet that produced Listing 16-1 by transforming
the previous chapter’s Listing 15-1.

Listing 16-2: A Transformation from a Source Vocabulary
to XSL Formatting Objects

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:output indent=”yes”/>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference=”only”>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt”>
<xsl:value-of select=”NAME”/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 515

516 Part III ✦ Style Languages

Using FOP
At the time of this writing, no web browser can directly display XML documents
transformed into XSL formatting objects. However, there are several applications
that can convert an XSL-FO document into a viewable format such as PDF or TeX.
The one used here is the XML Apache project’s open source FOP. FOP is a command-
line Java program that converts XSL-FO documents to PDF files as well as several
other formats, including PCL, SVG, plain text, and FrameMaker MIF. At the time of
this writing, the most recent version of FOP is 0.20.5, which incompletely supports
a subset of the formatting objects and properties in the XSL 1.0 Recommendation.
You can download the latest version of FOP from http://xml.apache.org/fop/.

FOP is a Java program that should run on any platform with a reasonably compati-
ble Java 1.2 or later virtual machine. To install it, just unpack the distribution and
add the directory where you put it (I use /usr/local/xml/fop on UNIX and
C:\xml\fop on Windows) to your path.

The directory where you installed it contains, among other files, fop.bat and fop.sh.
Use fop.bat for Windows and fop.sh for UNIX. Add the appropriate script for your
platform to your path environment variable. Then run it from the command line
with arguments specifying the input and output files, like this:

C:\> fop -fo 16-1.fo -pdf 16-1.pdf

The output will look something like this:

[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] FOP 0.20.5
[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] building formatting object tree
[INFO] setting up fonts
[INFO] [1]
[INFO] Parsing of document complete, stopping renderer

Here, 16-1.fo is the input XML file that uses the formatting object vocabulary.
16-1.pdf is the output PDF file that can be displayed and printed by Adobe Acrobat,
Preview, GhostView, or other programs that read PDF files.

Although PDF files are themselves ASCII text, this isn’t a book about PostScript, so
there’s nothing to be gained by showing you the exact output of the preceding com-
mand. If you’re curious, open the PDF file in any text editor. Instead, Figure 16-1
shows the rendered file displayed in Acrobat Reader.

PDF files are not the only destination format for XML documents styled with XSL
formatting objects. FOP can also transform XSL-FO documents into PCL, MIF, SVG,
and plain-text files. In the near future, it’s expected to be able to produce RTF docu-
ments, as well. It can also display the file directly in a window, as shown in Figure
16-2. Other XSL-FO tools can produce other formats.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 516

517Chapter 16 ✦ XSL Formatting Objects

Figure 16-1: The PDF file displayed in Acrobat Reader

Figure 16-2: FOP rendering the XSL-FO
document in a GUI

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 517

518 Part III ✦ Style Languages

Page Layout
The root element of a formatting objects document is fo:root. This element con-
tains one fo:layout-master-set element and one or more fo:page-sequence
elements. The fo:page-sequence elements contain content; that is, text and
images to be placed on the pages. The fo:layout-master-set contains templates
for the pages that will be created. When the formatter reads an XSL-FO document, it
creates a page based on the first template in the fo:layout-master-set. Then it
fills it with content from the fo:page-sequence. When it’s filled the first page, it
instantiates a second page and fills it with content. The process continues until the
formatter runs out of content.

The root element
The fo:root element generally has an xmlns:fo attribute with the value
http://www.w3.org/1999/XSL/Format and may (though it generally does not)
have an id attribute. The fo:root element exists just to declare the namespace
and be the document root. It has no direct effect on page layout or formatting.

Simple page masters
The page templates are called page masters. Page masters are similar in purpose to
QuarkXPress master pages or PowerPoint slide masters. Each defines a general lay-
out for a page including its margins, the sizes of the header, footer, and body area of
the page, and so forth. Each actual page in the rendered document is based on one
master page, and inherits certain properties like margins, page numbering, and lay-
out from that master page. XSL-FO 1.0 defines exactly one kind of page master, the
fo:simple-page-master, which represents a rectangular page. The fo:layout-
master-set contains one or more fo:simple-page-master elements that define
master pages.

Future versions of XSL-FO will add other kinds of page masters, possibly including
nonrectangular pages.

Each master page is represented by a fo:simple-page-master element. A
fo:simple-page-master element defines a page layout, including the size of its
before region, body region, after region, end region, and start region. Figure 16-3
shows the typical layout of these parts. One thing that may not be obvious from
this picture is that the body region overlaps the other four regions (though not the
page margins); that is, the body is everything inside the thick black line including
the start, end, before, and after regions.

Note

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 518

519Chapter 16 ✦ XSL Formatting Objects

Figure 16-3: The layout of the parts of a simple page
of English text

In normal English text, the end region is the right side of the page, and the start
region is the left side of the page. This is reversed in Hebrew or Arabic text,
because these languages are written from right to left. In most modern languages,
the before region is the header and the after region is the footer, but this could be
reversed in a language that writes from bottom to top.

Simple page master properties
The fo:simple-page-master element has three main attributes:

✦ master-name— The name by which page sequences will reference this
master page

✦ page-height— The height of the page

✦ page-width— The width of the page

Note

page top margin

page bottom margin

p
a
g
e

r
i
g
h
t

m
a
r
g
i
n

p
a
g
e

l
e
f
t

m
a
r
g
i
n

BEFORE

BODY

S
T
A
R
T

E
N
D

AFTER

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 519

520 Part III ✦ Style Languages

If the page-height and page-width are not provided, the formatter chooses a rea-
sonable default based on the media in use (for example, 8.5"×11" for paper).

Other attributes commonly applied to page masters include the following:

✦ The margin-bottom, margin-left, margin-right, and margin-top
attributes, or the shorthand margin attribute

✦ The writing-mode attribute that determines which direction text flows on
the page, for example, left to right, right to left, or top to bottom

✦ The reference-orientation attribute that specifies in 90-degree increments
whether and how much the content is rotated

For example, here is a fo:layout-master-set containing one fo:simple-page-
master named US-Letter. It specifies an 8.5 × 11-inch page with half-inch margins
on each side. It contains a single region, the body, into which all content will be
placed.

<fo:layout-master-set>
<fo:simple-page-master master-name=”US-Letter”

page-height=”11in” page-width=”8.5in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

Regions
The designer sets the size of the body (center) region, header, footer, end region,
and start region, as well as the distances between them, by adding region child ele-
ments to the fo:simple-page-master. These are as follows:

✦ fo:region-before

✦ fo:region-after

✦ fo:region-body

✦ fo:region-start

✦ fo:region-end

The fo:region-before and fo:region-after elements each have an extent
attribute that gives the height of these regions. Their width extends from the left
side of the page to the right side. The fo:region-start and fo:region-end ele-
ments each have an extent attribute that specifies their widths. Their height
extends from the bottom of the start region to the top of the end region. (This
assumes normal Western text. Details would be rotated in Chinese, Hebrew, or any
other non-right-to-left-top-to-bottom script.)

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 520

521Chapter 16 ✦ XSL Formatting Objects

The fo:region-body does not have an extent attribute. Instead, the size of the
body is everything inside the page margins. Thus, the region body overlaps the
other four regions on the page. If you place text into the body and the other four
regions, text will be drawn on top of other content. To avoid this, you must set the
left margin of the body to be as large or larger than the extent of the start region,
the top margin of the body to be as large or larger than the extent of the before
region, and so on.

Each of the five regions of a simple page master may be filled with content when the
document is processed. However, the region elements do not contain that content.
Instead, they simply give the dimensions of the boxes the formatter will build to put
content in. The content is copied from a fo:flow or fo:static-content element
elsewhere in the document. The region elements are blueprints for the boxes, not
the boxes themselves.

For example, this fo:simple-page-master defines a page with 1 inch before and
after regions. The region body extends vertically from the bottom of the before
region to the top of the after region. It extends horizontally from the left side of the
page to the right side of the page because there is no start or end region.

<fo:simple-page-master master-name=”table_page”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in” margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

For another example, here is a fo:layout-master-set that makes all outer
regions 1 inch. Furthermore, the page itself has a half-inch margin on all sides.

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”

page-width=”8.5in” page-height=”11in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>

<fo:region-start extent=”1.0in”/>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin=”1.0in”/>
<fo:region-end extent=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>
</fo:layout-master-set>

The body regions from pages based on this page master will be 5.5 inches wide and
8 inches high. That’s calculated by subtracting the sum of the body region’s mar-
gins and the page margins from the size of the page.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 521

522 Part III ✦ Style Languages

Page sequences
In addition to a fo:layout-master-set, each formatting object document con-
tains one or more fo:page-sequence elements. Each page in the sequence has an
associated page master that defines how the page will look. The master-reference
attribute of the fo:page-sequence element determines which page master this is.
This attribute must match the name of a page master in the fo:layout-master-set.
Listing 16-1 used a fo:simple-master-page named only to fill this role, but it is
not uncommon to have more than one master page. In this case, the master pages
might be grouped as part of a fo:page-sequence-master instead. For example,
you could have one master page for the first page of each chapter, a different one
for all the subsequent left-hand pages, and a third for all the subsequent right-hand
pages. Or, there could be one simple page master for a table of contents, another
for body text, and a third for the index. In this case, you use one page sequence each
for the table of contents, the body text, and the index.

Each page sequence contains up to three kinds of child elements, in this order:

1. An optional fo:title element containing inline content that can be used as
the title of the document. This would normally be placed in the title bar of the
browser window like the TITLE element in HTML.

2. Zero or more fo:static-content elements containing text to be placed on
every page.

3. One fo:flow element containing data to be placed on each page in turn.

The main difference between a fo:flow and a fo:static-content is that text
from the flow isn’t placed on more than one page, whereas the static content is. For
example, the words you’re reading now are flow content that only appear on this
page, whereas the part and chapter titles at the top of the page are static content
that is repeated from page to page throughout the chapter.

The fo:flow element contains, in order, the elements to be placed on the page. As
each page fills with elements from the flow, a new page is created with the next
master page in the page sequence master for the elements that remain in the flow.
With a simple page master, the same page will be instantiated repeatedly, as many
times as necessary to hold all the content.

The fo:static-content element contains information to be placed on each page.
For example, it may place the title of a book in the header of each page. Static con-
tent can be adjusted depending on the master page. For instance, the part title may
be placed on left-hand pages, and the chapter title on right-hand pages. The
fo:static-content element can also be used for items such as page numbers that
have to be calculated from page to page. In other words, what’s static is not the
text, but the calculation that produces the text.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 522

523Chapter 16 ✦ XSL Formatting Objects

Flows
The fo:flow object holds the actual content that will be placed on the instances of
the master pages. This content is composed of a sequence of fo:block, fo:block-
container, fo:table-and-caption, fo:table, and fo:list-block elements.
This section sticks to basic fo:block elements, which are roughly equivalent to
HTML’s DIV elements. Later in this chapter, you learn more block-level elements
that a flow can contain.

For example, here is a basic flow containing the names of several atoms, each in its
own block:

<fo:flow flow-name=”xsl-region-body”>
<fo:block>Actinium</fo:block>
<fo:block>Aluminum</fo:block>
<fo:block>Americium</fo:block>

</fo:flow>

The flow-name attribute of the fo:flow, here with the value xsl-region-body,
specifies which of the five regions of the page this flow’s content will be placed in.
The allowed values are as follows:

✦ xsl-region-body

✦ xsl-region-before

✦ xsl-region-after

✦ xsl-region-start

✦ xsl-region-end

For example, a flow for the header has a flow-name value of xsl-region-before.
A flow for the body has the flow-name of xsl-region-body. There can’t be two
flows with the same name in the same page sequence. Thus, each fo:page-
sequence can contain at most five fo:flow children, one for each of the five
regions on the page.

You can now put together a complete style sheet that lays out the entire periodic
table. Listing 16-3 demonstrates this with an XSLT style sheet that converts the peri-
odic table into XSL formatting objects. The flow grabs all the atoms and places each
one in its own block. A simple page master named only defines an A4-sized master
page in landscape mode with half-inch margins on each side.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 523

524 Part III ✦ Style Languages

Listing 16-3: A Basic Style Sheet for the Periodic Table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 16-4 shows the resulting document after Listing 16-3 has been run through an
XSLT processor to produce an XSL-FO document, and that document has been run
through FOP to produce a PDF file.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 524

525Chapter 16 ✦ XSL Formatting Objects

Figure 16-4: The rendered form of Listing 16-3

Static content
Whereas each piece of the content of a fo:flow element appears on one page, each
piece of the content of a fo:static-content element appears on every page. For
example, if this book were laid out in XSL-FO, both the header at the top of the page
and the footer at the bottom of the page would have been produced by fo:static-
content elements. You do not have to use fo:static-content elements, but if
you do use them, they must appear before all the fo:flow elements in the page
sequence.

fo:static-content elements have the same attributes and contents as a
fo:flow. However, because a fo:static-content cannot break its contents
across multiple pages if necessary, it generally has less content than a fo:flow. For
example, Listing 16-4 uses a fo:static-content to place the words “The Periodic
Table” in the header of each page.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 525

526 Part III ✦ Style Languages

Listing 16-4: Using fo:static-content to Generate a Header

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>The Periodic Table</fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 16-5 shows the last page of the PDF file ultimately produced from Listing 16-4.
The same text, “The Periodic Table,” appears on all four pages of the document.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 526

527Chapter 16 ✦ XSL Formatting Objects

Figure 16-5: Static content in the header

Page numbering
The fo:page-sequence element has eight optional attributes that define page
numbers for the sequence:

✦ initial-page-number

✦ force-page-count

✦ format

✦ letter-value

✦ country

✦ language

✦ grouping-separator

✦ grouping-size

The initial-page-number attribute gives the number of the first page in this
sequence. The most likely value for this attribute is 1, but it could be a larger num-
ber if the previous pages are in a different fo:page-sequence or even a different
document. It can also be set to one of these three key words:

✦ auto— 1 unless pages from a preceding fo:page-sequence have pushed
that up. This is the default.

✦ auto-odd— Same as auto, but add 1 if that value is an even number; that is,
start on an odd page.

✦ auto-even— Same as auto, but add 1 if that value is an odd number; that is,
start on an even page.

The force-page-count attribute mandates that the document have an even or
odd number of pages or ends on an even or odd page. This is sometimes necessary

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 527

528 Part III ✦ Style Languages

for printed books. The force-page-count attribute can have one of these six key-
word values:

✦ auto— Make the last page an odd page if the initial-page-number of the
next fo:page-sequence is even. Make the last page an even page if the initial-
page-number of the next page-sequence is odd. If there is no next fo:page-
sequence or if the next fo:page-sequence does not specify an
initial-page-number, let the last page fall where it may.

✦ even— Require an even number of pages, inserting an extra blank page if nec-
essary to make it so.

✦ odd— Require an odd number of pages, inserting an extra blank page if neces-
sary to make it so.

✦ end-on-even— Require the last page to have an even page number, inserting
an extra blank page if necessary to make it so.

✦ end-on-odd— Require the last page to have an odd page number, inserting
an extra blank page if necessary to make it so.

✦ no-force— Do not require either an even or odd number of pages.

The country attribute should be set to an RFC 1766 country code
(http://www.ietf.org/rfc/rfc1766.txt). The language attribute should be
set to an RFC 1766 language code. For example, you would use en to indicate
English and us to indicate the United States.

These are essentially the same as the legal values for xml:lang that were dis-
cussed in Chapter 6, except that the country code and language codes are placed
in two separate attributes rather than in one attribute.

The remaining four attributes have exactly the same syntax and meaning as when
used as attributes of the xsl:number element from XSLT, so I won’t repeat that dis-
cussion here.

The xsl:number element and the format, letter-value, grouping-
separator, and grouping-size attributes are discussed in the “Number to String
Conversion” section in Chapter 15.

The fo:page-number formatting object is an empty inline element that inserts the
number of the current page. The formatter is responsible for determining what that
number is. This element can have a variety of formatting attributes common to
inline elements such as font-family and text-decoration. For example, Listing
16-5 uses fo:static-content and fo:page-number to put the page number at the
bottom of every page.

Cross-
Reference

Cross-
Reference

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 528

529Chapter 16 ✦ XSL Formatting Objects

Listing 16-5: Using fo:page-number to Place the
Page Number in the Footer

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”

margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”
initial-page-number=”1”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>The Periodic Table</fo:block>

</fo:static-content>

<fo:static-content flow-name=”xsl-region-after”>
<fo:block>p. <fo:page-number/></fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 529

530 Part III ✦ Style Languages

Figure 16-6 shows the second page of the PDF file generated from Listing 16-5. The
page number appears at the bottom of this and every other page in the document.

Figure 16-6: Automatically generated page numbers in the footer

Page sequence masters
Each page the formatter creates is associated with a master page from the fo:
layout-master-set that defines how the page will look. The master-reference
attribute of the fo:page-sequence element determines which master page this is.
Listings 16-3 through 16-5 used a single fo:simple-master-page named A4 to fill
this role, but it is not uncommon to have more than one master page. For example,
you could use one master page for the first page of each chapter, a different one for
all the subsequent left-hand pages, and a third for all the subsequent right-hand
pages. In this case, the master pages might be grouped as part of a fo:page-
sequence-master instead.

The fo:page-sequence-master element is a child of the fo:layout-master-set
that lists the order in which particular master pages will be instantiated using one
or more of these three child elements:

✦ fo:single-page-master-reference

✦ fo:repeatable-page-master-reference

✦ fo:repeatable-page-master-alternatives

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 530

531Chapter 16 ✦ XSL Formatting Objects

The fo:single-page-master-reference and fo:repeatable-page-master-
reference elements each have a master-reference attribute that specifies
which fo:simple-master-page their pages are based on. The fo:repeatable-
page-master-alternatives has child fo:conditional-page-master-reference
elements that are instantiated based on various conditions. Each of these child
fo:conditional-page-master-reference elements has a master-reference
attribute that specifies which fo:simple-master-page to use if its condition is
satisfied.

fo:single-page-master-reference
The simplest page master element is fo:single-page-master-reference whose
master-reference attribute identifies one master page to be instantiated. For
example, this fo:layout-master-set contains a fo:page-sequence-master ele-
ment named contents that says that all text should be placed on a single instance
of the master page named A4:

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>

<fo:region-body/>
</fo:simple-page-master>

<fo:page-sequence-master master-name=”contents”>
<fo:single-page-master-reference master-reference=”A4”/>

</fo:page-sequence-master>

</fo:layout-master-set>

This page sequence master only allows the creation of a single page. Technically,
it’s an error if there’s more content than can fit on this one page. However, in prac-
tice, most formatters simply repeat the last page used until they have enough pages
to hold all the content.

Now consider this page sequence master:

<fo:page-sequence-master master-name=”contents”>
<fo:single-page-master-reference master-name=”A4”/>
<fo:single-page-master-reference master-name=”A4”/>

</fo:page-sequence-master>

This provides for up to two pages, each based on the master page named A4. If the
first page fills up, a second is created. If that page fills up, the formatter may throw
an error, or it may create extra pages.

The same technique can be used to apply different master pages. For example, this
sequence specification bases the first page on the master page named front and
the second on the master page named back:

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 531

532 Part III ✦ Style Languages

<fo:page-sequence-master master-name=”contents”>
<fo:single-page-master-reference master-reference=”front”/>
<fo:single-page-master-reference master-reference=”back”/>

</fo:page-sequence-master>

The first page the formatter creates will be based on the master page named front.
The second page created will be based on the master page named back. If the sec-
ond page fills up, the formatter may throw an error; or it may create extra pages
based on back, the last master page instantiated.

fo:repeatable-page-master-reference
Of course, you usually don’t know in advance exactly how many pages there will be.
The fo:repeatable-page-master-reference element specifies that as many
pages as necessary will be used to hold the content, all based on a single master
page. The master-reference attribute identifies which master page will be
repeated. For example, this page sequence master will use as many copies of the
master page named A4 as necessary to hold all the content:

<fo:page-sequence-master master-name=”contents”>
<fo:repeatable-page-master-reference master-reference=”A4”/>

</fo:page-sequence-master>

Alternately, you can set the maximum-repeats attribute of the fo:repeatable-
page-master-reference element to limit the number of pages that will be cre-
ated. For example, this fo:page-sequence-master generates at most 10 pages per
document:

<fo:page-sequence-master master-name=”contents”>
<fo:repeatable-page-master-reference master-reference=”A4”

maximum-repeats=”10”/>
</fo:page-sequence-master>

This also lets you do things like using one master for the first 2 pages, another for
the next 3 pages, and a third master for the next 10 pages.

fo:repeatable-page-master-alternatives
The fo:repeatable-page-master-alternatives element specifies different
master pages for the first page, even pages, odd pages, blank pages, last even page,
and last odd page. This is more designed for a chapter of a printed book where the
first and last pages, as well as the even and odd pages, traditionally have different
margins, headers, and footers.

Because a fo:repeatable-page-master-alternatives element needs to refer
to more than one master page, it can’t use a master-reference attribute such
as fo:single-page-master-reference and fo:repeatable-page-master-
reference. Instead, it has fo:conditional-page-master-reference child
elements. Each of these has a master-reference attribute that identifies the

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 532

533Chapter 16 ✦ XSL Formatting Objects

master page to instantiate given that condition. The conditions themselves are
determined by three attributes:

✦ page-position— This attribute can be set to first, last, rest, or any to
identify it as applying only to the first page, last page, any page except the
first, or any page, respectively.

✦ odd-or-even— This attribute can be set to odd, even, or any to identify it as
applying only to odd pages, only to even pages, or to all pages, respectively.

✦ blank-or-not-blank— This attribute can be set to blank, not-blank, or
any to identify it as applying only to blank pages, only to pages that contain
content, or to all pages, respectively.

For example, this page sequence master says that the first page should be based on
the master page named letter_first, but that all subsequent pages should use
the master page named letter:

<fo:page-sequence-master master-name=”contents”>
<fo:repeatable-page-master-alternatives>
<fo:conditional-page-master-reference
page-position=”first” master-reference=”letter_first”/>

<fo:conditional-page-master-reference
page-position=”rest” master-reference=”letter”/>

</fo:repeatable-page-master-alternatives>
</fo:page-sequence-master master-reference=”contents”>

If the content overflows the first page, the remainder will be placed on a second
page. If it overflows the second page, a third page will be created. As many pages as
needed to hold all the content will be constructed.

Content
The content (as opposed to markup) of an XSL-FO document is mostly text. Non-
XML content such as GIF and JPEG images can be included in a fashion similar to
the IMG element of HTML. Other forms of XML content, such as MathML and SVG,
can be embedded directly inside the XSL-FO document. This content is stored in
several kinds of elements, including the following:

✦ Block-level formatting objects

✦ Inline formatting objects

✦ Table formatting objects

✦ Out-of-line formatting objects

All of these different kinds of elements are descendants of either a fo:flow or a
fo:static-content element. They are never placed directly on page masters or
page sequences.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 533

534 Part III ✦ Style Languages

Block-level formatting objects
A block-level formatting object is drawn as a rectangular area separated by a line
break and possibly extra white space from any content that precedes or follows it.
Blocks may contain other blocks, in which case the contained blocks are also sepa-
rated from the containing block by a line break and perhaps extra white space.
Block-level formatting objects include the following:

✦ fo:block

✦ fo:block-container

✦ fo:table-and-caption

✦ fo:table

✦ fo:list-block

The fo:block element is the XSL-FO equivalent of display: block in CSS or DIV
in HTML. Blocks may be contained in fo:flow elements, other fo:block elements,
and fo:static-content elements. fo:block elements may contain other
fo:block elements, other block-level elements such as fo:table and fo:list-
block, and inline elements such as fo:inline and fo:page-number. Block-level
elements may also contain raw text, as in this example:

<fo:block>The Periodic Table, Page <fo:page-number/></fo:block>

The block-level elements generally have attributes for both area properties and
text-formatting properties. The text-formatting properties are inherited by any child
elements of the block unless overridden.

As of version 0.20.5, FOP does not support fo:block-container or
fo:table-and-caption.

Inline formatting objects
An inline formatting object is also drawn as a rectangular area that may contain text
or other inline areas. However, inline areas are most commonly arranged in lines
running from left to right. When a line fills up, a new line is started below the previ-
ous one. The exact order in which inline elements are placed depends on the writ-
ing mode. For example, when working in Hebrew or Arabic, inline elements are first
placed on the right and fill to the left. Inline formatting objects include the following:

✦ fo:bidi-override

✦ fo:character

✦ fo:external-graphic

Caution

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 534

535Chapter 16 ✦ XSL Formatting Objects

✦ fo:initial-property-set

✦ fo:instream-foreign-object

✦ fo:inline

✦ fo:inline-container

✦ fo:leader

✦ fo:page-number

✦ fo:page-number-citation

As of version 0.20.5, FOP does not support fo:bidi-override, fo:initial-
property-set, or fo:inline-container.

Table formatting objects
The table formatting objects are the XSL-FO equivalents of CSS2 table properties.
However, tables do work somewhat more naturally in XSL-FO than in CSS. For the
most part, an individual table is a block-level object, while the parts of the table
aren’t really either inline or block level. However, an entire table can be turned into
an inline object by wrapping it in a fo:inline-container. There are nine XSL
table-formatting objects:

✦ fo:table-and-caption

✦ fo:table

✦ fo:table-caption

✦ fo:table-column

✦ fo:table-header

✦ fo:table-footer

✦ fo:table-body

✦ fo:table-row

✦ fo:table-cell

The root of a table is either a fo:table or a fo:table-and-caption that contains
a fo:table and a fo:caption. The fo:table contains a fo:table-header,
fo:table-body, and fo:table-footer. The table body contains fo:table-row
elements that are divided up into fo:table-cell elements.

FOP 0.20.5 has limited support for the table formatting objects, and none at all for
fo:table-and-caption and fo:table-caption.

Caution

Caution

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 535

536 Part III ✦ Style Languages

Out-of-line formatting objects
There are three “out-of-line” formatting objects:

✦ fo:float

✦ fo:footnote

✦ fo:footnote-body

Out-of-line formatting objects “borrow” space from existing inline or block objects.
On the page, they do not necessarily appear between the same elements that they
appeared between in the input-formatting object XML tree.

FOP 0.20.5 does not support fo:float.

Leaders and Rules
A rule is a block-level horizontal line inserted into text similar to the line below the
chapter title on the first page of this chapter. The HR element in HTML produces a
rule. A leader is a line that extends from the right side of left-aligned text in the mid-
dle of a line to the left side of some right-aligned text on the same line. It’s most
commonly made up of dots, although other characters can be used. Leaders are
commonly seen in menus and tables of contents. In fact, if you flip back to the table
of contents at the beginning of this book, you’ll see leaders between chapter and
section titles and the page numbers.

In XSL-FO both leaders and rules are produced by the fo:leader element. This is
an inline element that represents a leader, although it can easily serve as a rule by
placing it inside a fo:block.

Six attributes describe the appearance of a leader:

✦ leader-alignment— This can be set to reference-area or page to indicate
that the start edge of the leader should be aligned with the start edge of the
named item. It can also be set to none or inherit.

✦ leader-length— The length of the leader, such as 12pc or 5in.

✦ leader-pattern— This can be set to space, rule, dots, use-content, or
inherit. The use-content value means that the leader characters should be
read from the content of the fo:leader element.

Caution

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 536

537Chapter 16 ✦ XSL Formatting Objects

✦ leader-pattern-width— This property can be set to a specific length such
as 2mm or to use-font-metrics, which indicates that the leader should sim-
ply be as big as it would naturally be. This is not the length of the entire
leader (which is set by leader-length); it is the length of each repeating pat-
tern in the leader. If necessary, white space will be added to stretch each pat-
tern out to the requested length.

✦ rule-style— This property has the same values as the CSS border-style
properties; that is, none, dotted, dashed, solid, double, groove, ridge, and
inherit.

✦ rule-thickness— This property is the thickness (width) of the rule; 1 point
by default.

In addition, a number of other common properties apply to leaders. For instance,
you can use the font-family property to change the font in which a leader is
drawn or the color property to change the color in which a leader is drawn. For
example, this is a green horizontal line that’s 7.5 inches long and 2 points thick:

<fo:block>
<fo:leader leader-length=”7.5in” leader-pattern=”rule”

rule-thickness=”2pt” color=”green”/>
</fo:block>

Listing 16-6 uses fo:leader to place a rule at the top of each page footer.

Listing 16-6: Using fo:leader to Separate the Footer
from the Body with a Horizontal Line

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”

margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

Continued

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 537

538 Part III ✦ Style Languages

Listing 16-6 (continued)

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”
initial-page-number=”1”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>The Periodic Table</fo:block>

</fo:static-content>

<fo:static-content flow-name=”xsl-region-after”>
<fo:block><fo:leader leader-pattern=”rule”

leader-length=”18cm” />
</fo:block>
<fo:block>p. <fo:page-number/></fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 16-7 shows the third page of the PDF file generated from Listing 16-6. The
rule appears at the bottom of this and every other page in the document.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 538

539Chapter 16 ✦ XSL Formatting Objects

Figure 16-7: Automatically generated rules in the footer

Graphics
XSL-FO provides two elements for embedding pictures in a rendered document. The
fo:external-graphic element inserts a non-XML graphic, such as a JPEG image.
The fo:instream-foreign-object element inserts an XML document that is not
an XSL-FO document, such as an SVG picture or a MathML equation.

fo:external-graphic
The fo:external-graphic element provides the equivalent of an HTML IMG ele-
ment. That is, it loads an image, probably in a non-XML format, from a URL.
fo:external-graphic is always an empty element with no children. The src
attribute contains a URI identifying the location of the image to be embedded. For
example, consider this standard HTML IMG element:

The fo:external-graphic equivalent looks like this:

<fo:external-graphic src=”cup.gif”/>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 539

540 Part III ✦ Style Languages

Of course, you can use an absolute URL if you like:

<fo:external-graphic
src=”http://www.cafeconleche.org/images/cup.gif”/>

Just as with web browsers and HTML, there’s no guarantee that any particular for-
matting engine recognizes and supports any particular graphic format. Currently,
FOP supports GIF, JPEG, and SVG images. EPS images can be printed but not dis-
played on-screen. PNG and TIFF are supported if you have Sun’s Java Advanced
Imaging API library installed. More formats may be added in the future.

fo:external-graphic is an inline element. You can make it a block-level picture
simply by wrapping it in a fo:block element, like this:

<fo:block><fo:external-graphic src=”cup.gif”/></fo:block>

Listing 16-7 shows a style sheet that loads the image at http://cafeconleche.org/
images/atom.jpg and puts it in the header of all the pages. In this case, the URI of
the image is hard-coded in the style sheet. In general, however, it would be read
from the input document.

Listing 16-7: An XSL Style Sheet That References an
External Graphic

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”

margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 540

541Chapter 16 ✦ XSL Formatting Objects

<fo:page-sequence master-reference=”A4”
initial-page-number=”1”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>
<fo:external-graphic
src=”http://cafeconleche.org/images/atom.jpg”
/>
The Periodic Table

</fo:block>
</fo:static-content>

<fo:static-content flow-name=”xsl-region-after”>
<fo:block>
<fo:leader leader-pattern=”rule”

leader-length=”18cm”/>
</fo:block>
<fo:block>p. <fo:page-number/></fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 16-8 shows the first page of the PDF file generated from Listing 16-7. The pic-
ture appears at the top of this and every other page in the document.

fo:instream-foreign-object
The fo:instream-foreign-object element inserts a graphic that is described in
XML and that is included directly in the XSL-FO document. For example, a
fo:instream-foreign-object element might contain an SVG picture. The format-
ter would render the picture in the finished document. Listing 16-8 is an XSL-FO
document that places the pink triangle SVG example from Chapter 2 on the header
of each page.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 541

542 Part III ✦ Style Languages

Figure 16-8: Inserting an external graphic in the header

Listing 16-8: An XSL Style Sheet That Contains an
Instream SVG Picture

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”/>

</fo:simple-page-master>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 542

543Chapter 16 ✦ XSL Formatting Objects

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”
initial-page-number=”1”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block> The Periodic Table
<fo:instream-foreign-object>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”1.5cm” height=”1cm”>
<polygon style=”fill:#FFCCCC” points=”0,31 18,0 36,31”/>

</svg>
</fo:instream-foreign-object>

</fo:block>
</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 16-9 shows the first page of the PDF file generated from Listing 16-8. The tri-
angle appears at the top of this and every other page in the document.

SVG is discussed in depth in Chapter 24.

Not all formatters support all possible XML graphics formats. For example, FOP
does not support MathML at all, and only supports a subset of SVG. Still, this is a
useful technique, especially when you want XSLT to generate pictures at runtime.
For instance, you could write an XSLT style sheet that produced nicely formatted
annual reports, including all the charts and graphics, simply by transforming some
of the input document into XSL-FO and other parts of the input document into SVG.

Cross-
Reference

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 543

544 Part III ✦ Style Languages

Figure 16-9: Inserting an instream graphic in the header

Graphic properties
fo:external-graphic and fo:instream-foreign-object share a number of
properties designed to scale, position, crop, align, and otherwise adjust the appear-
ance of the image on the page.

Content type
The content-type attribute specifies the type of the graphic. You can give this as a
MIME media type, such as image/jpg or image/svg+xml, by prefixing the actual type
with content-type:. For example, to specify that the fo:external-graphic ele-
ment refers to a GIF image, you would write it as follows:

<fo:external-graphic content-type=”content-type:image/gif”
src=”cup.gif” />

This can also be given in terms of a namespace prefix by using a value in the form
namespace-prefix:prefix. For example, to specify that the fo:instream-
foreign-object includes an SVG picture, you write it as follows:

<fo:instream-foreign-object
xmlns:svg=”http://www.w3.org/2000/svg”
content-type=”namespace-prefix:svg”>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 544

545Chapter 16 ✦ XSL Formatting Objects

The namespace prefix does not have to be declared on the fo:instream-foreign-
object element. It simply needs to be declared somewhere in the ancestors of the
element.

Size
The height and width attributes specify the vertical and horizontal size of the
rectangle set aside on the page for the image. Either or both of these can be set to
the keyword auto, rather than to an absolute length, to indicate that the size of the
image itself should be used.

The content-height and content-width attributes specify the vertical and hori-
zontal size of the image itself. If either or both of these is not the same as height
and width, respectively, the image has to be scaled.

Scaling
The scaling attribute can be set to either uniform or non-uniform. Uniform scal-
ing maintains the height-to-width ratio of the image as it’s scaled. This is the
default. Nonuniform scaling may scale the height and width differently, so that the
image is distorted.

You can also choose the algorithm by which scaling occurs by using the scaling-
method attribute. This can be set to auto, integer-pixels, or resample-any-
method. Integer scaling maintains an integral ratio between original and scaled
images, such as 2:1 or 3:1, but not 1.5:1 or 3:2. In most cases, integer-scaled images
are smaller than images scaled by resample-any-method, but won’t require dither-
ing. The value auto lets the formatter decide what to do.

In addition, you can set a variety of common properties for inline elements. These
include the common accessibility, aural, background, border, padding, and margin
properties. Because graphics shouldn’t be split across multiple pages, they don’t
support the usual break properties, but they do support keep-with-next and
keep-with-previous.

Links
The fo:basic-link element encodes HTML-style hyperlinks in XSL-FO documents.
This is an inline formatting object that the user can click on to move to a different
document, or to a different place in the same document. This doesn’t offer much for
print, but it might be useful when and if web browsers support XSL-FO directly. The
link behavior is controlled by these eight attributes:

✦ external-destination

✦ internal-destination

✦ indicate-destination

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 545

546 Part III ✦ Style Languages

✦ show-destination

✦ destination-placement-offset

✦ target-presentation-context

✦ target-processing-context

✦ target-stylesheet

A link to a remote document target specifies the URI through the value of the
external-destination attribute. The browser should replace the current docu-
ment with the document at this URI when the reader activates the link. In most GUI
environments, the user activates the link by clicking on its contents. For example:

<fo:block> Be sure to visit the
<fo:basic-link
external-destination=”http://www.cafeconleche.org/”>
Cafe con Leche web site!

</fo:basic-link>
</fo:block>

You can also link to another node in the same document by using the internal-
destination attribute. The value of this attribute is not a URI, but rather the ID of
the element you’re linking to. You can often use XSLT’s generate-id() function to
produce both the IDs on the output elements and the links to those elements inside
the XSL-FO output. You should not specify both an internal and external destination
for one link.

The three other destination attributes affect the appearance and behavior of the
link. The indicate-destination attribute has a boolean value (true or false;
false by default) that specifies whether, when the linked item is loaded, it should
somehow be distinguished from nonlinked parts of the same document. For exam-
ple, if you follow a link to one ATOM element in a table of 100 atoms, the specific
atom you were connecting to might be in boldface, while the other atoms are in nor-
mal type. The exact details are system-dependent.

The show-destination attribute has two possible values: replace (the default)
and new. With a value of replace, when a link is followed, the target document
replaces the existing document in the same window. With a value of new, when the
user activates a link, the browser opens a new window in which to display the tar-
get document.

When a browser follows an HTML link into the middle of a document, generally the
specific linked element is positioned at the tip-top of the window. The destination-
placement-offset attribute specifies how far down the browser should scroll the
linked element in the window. It’s given as a length, such as 3in or 156px.

The three target properties describe how the document at the other end of the
link will be displayed. The target-presentation-context attribute contains a
URI that generally indicates some subset of the external destination that should

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 546

547Chapter 16 ✦ XSL Formatting Objects

actually be presented to the user. For example, an XPointer could be used here to
say that although an entire book is loaded, only the seventh chapter will be shown.

XPointer is discussed in depth in Chapter 18.

The target-processing-context attribute contains the base URI used to resolve
relative URIs in the external destination. Without a target-processing-context
attribute, relative URIs are relative to the current document.

Finally, the target-stylesheet attribute contains a URI that points to a style sheet
that should be used when the targeted document is rendered. This overrides any
style sheet that the targeted document itself specifies, whether through an xml-
stylesheet processing instruction, a LINK element in HTML, or an HTTP header.

In addition, the link may have the usual accessibility, margin, background, border,
padding, and aural properties.

Lists
The fo:list-block formatting object element describes a block-level list element.
(There are no inline lists.) A list may or may not be bulleted, numbered, indented,
or otherwise formatted. Each fo:list-block element contains either a series of
fo:list-item elements or fo:list-item-label fo:list-item-body pairs. (It
cannot contain both.) A fo:list-item must contain a fo:list-item-label and a
fo:list-item-body. The fo:list-item-label contains the bullet, number, or
other label for the list item as a block-level element. The fo:list-item-body con-
tains block-level elements holding the list item’s content. To summarize, a
fo:list-block contains fo:list-item elements. Each fo:list-item contains a
fo:list-item-label and fo:list-item-body. However, the fo:list-item ele-
ments can be omitted. For example:

<fo:list-block>
<fo:list-item>

<fo:list-item-label><fo:block>*</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block>Actinium</fo:block>

</fo:list-item-body>
</fo:list-item>
<fo:list-item>

<fo:list-item-label><fo:block>*</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block>Aluminum</fo:block>

</fo:list-item-body>
</fo:list-item>

</fo:list-block>

Cross-
Reference

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 547

548 Part III ✦ Style Languages

Or, with the fo:list-item tags removed:

<fo:list-block>
<fo:list-item-label>
<fo:block>*</fo:block>

</fo:list-item-label>
<fo:list-item-body>
<fo:block>Actinium</fo:block>

</fo:list-item-body>
<fo:list-item-label>
<fo:block>*</fo:block>

</fo:list-item-label>
<fo:list-item-body>
<fo:block>Aluminum</fo:block>
</fo:list-item-body>

</fo:list-block>

The fo:list-block element has two special attributes that control list formatting:

✦ provisional-label-separation— The distance between the list item label
and the list item body, given as a triplet of maximum;minimum;optimum, such
as 2mm;0.5mm;1mm

✦ provisional-distance-between-starts— The distance between the start
edge of the list item label and the start edge of the list item body

fo:list-block also has the usual accessibility, aural, border, padding, back-
ground, margin, and keeps and breaks properties. The fo:list-item element has
the standard block-level properties for backgrounds, position, aural rendering, bor-
ders, padding, margins, and line and page breaking. The fo:list-item-label and
fo:list-item-body elements only have the accessibility properties: id and keep-
together. The rest of their formatting is controlled either by the parent elements
(fo:list-item and fo:list-item-block) or the child elements they contain.

Listing 16-9 formats the periodic table as a list in which the atomic numbers are the
list labels and the names of the elements are the list bodies. Figure 16-10 shows the
second page of output produced by this style sheet.

Listing 16-9: An XSL Style Sheet That Formats the
Periodic Table as a List

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 548

549Chapter 16 ✦ XSL Formatting Objects

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<fo:list-block>
<xsl:apply-templates select=”//ATOM”>
<xsl:sort data-type=”number”

select=”ATOMIC_NUMBER”/>
</xsl:apply-templates>

</fo:list-block>
</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:list-item>
<fo:list-item-label><fo:block>

<xsl:value-of select=”ATOMIC_NUMBER”/>
</fo:block></fo:list-item-label>
<fo:list-item-body><fo:block>
<xsl:value-of select=”NAME”/>

</fo:block></fo:list-item-body>
</fo:list-item>

</xsl:template>

</xsl:stylesheet>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 549

550 Part III ✦ Style Languages

Figure 16-10: The periodic table formatted as a list

In HTML, a list item implies a certain level of indenting. However, as you can see in
Figure 16-10, no such indenting is implied by any of the XSL-FO list elements. If you
want list items to be indented, you can use the start-indent and end-indent
attributes on the fo:list-item-label and fo:list-item-body elements. Each
of these is set to a length. However, because the list item body normally starts on
the same line as the list item label, its start indent is often given by the special XSL-
FO body-start() function. This returns the combined length of the start-indent
and the provisional-distance-between-starts, as in the following example:

<xsl:template match=”ATOM”>
<fo:list-item>
<fo:list-item-label start-indent=”1.0cm”

end-indent=”1.0cm”>
<fo:block>
<xsl:value-of select=”ATOMIC_NUMBER”/>
</fo:block>

</fo:list-item-label>
<fo:list-item-body start-indent=”body-start()”>
<fo:block>
<xsl:value-of select=”NAME”/>

</fo:block>
</fo:list-item-body>

</fo:list-item>
</xsl:template>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 550

551Chapter 16 ✦ XSL Formatting Objects

Tables
The fundamental table element in XSL is fo:table-and-caption. This is a block-
level object that contains a fo:table and a fo:caption. If your table doesn’t need
a caption, you can just use a raw fo:table instead. The XSL-FO table model is
quite close to HTML’s table model. Table 16-1 shows the mapping between HTML
4.0 table elements and XSL formatting objects.

Table 16-1
HTML Tables versus XSL Formatting Object Tables

HTML Element XSL FO Element

TABLE fo:table-and-caption

no equivalent fo:table

CAPTION fo:table-caption

COL fo:table-column

COLGROUP no equivalent

THEAD fo:table-header

TBODY fo:table-body

TFOOT fo:table-footer

TD fo:table-cell

TR fo:table-row

Each fo:table-and-caption contains an optional fo:table-caption element
and one fo:table element. The caption can contain any block-level elements you
care to place in the caption. By default, captions are placed before the table, but
this can be adjusted by setting the caption-side property of the table-and-
caption element to one of these eight values:

✦ before

✦ after

✦ start

✦ end

✦ top

✦ bottom

✦ left

✦ right

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 551

552 Part III ✦ Style Languages

For example, here’s a table with a caption on the bottom:

<fo:table-and-caption caption-side=”bottom”>
<fo:table-caption>
<fo:block font-weight=”bold”

font-family=”Helvetica, Arial, sans”
font-size=”12pt”>

Table 16-1: HTML Tables vs. XSL Formatting Object Tables
</fo:block>

</fo:table-caption>
<fo:table>
<!-- table contents go here -->

</fo:table>
</fo:table-and-caption>

The fo:table element contains fo:table-column elements, an optional
fo:table-header, an optional fo:table-footer, and one or more fo:table-
body elements. The fo:table-body is divided into fo:table-row elements. Each
fo:table-row is divided into fo:table-cell elements. The fo:table-header
and fo:table-footer can either be divided into fo:table-cell or fo:table-
row elements. For example, here’s a simple table that includes the first three rows
of Table 16-1:

<fo:table>
<fo:table-header>
<fo:table-cell>
<fo:block font-family=”Helvetica, Arial, sans”

font-size=”11pt” font-weight=”bold”>
HTML Element

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Helvetica, Arial, sans”

font-size=”11pt” font-weight=”bold”>
XSL FO Element

</fo:block>
</fo:table-cell>

</fo:table-header>
<fo:table-body>
<fo:table-row>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
TABLE

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
fo:table-and-caption

</fo:block>
</fo:table-cell>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 552

553Chapter 16 ✦ XSL Formatting Objects

</fo:table-row>
<fo:table-row>
<fo:table-cell>
<fo:block>no equivalent</fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
fo:table

</fo:block>
</fo:table-cell>

</fo:table-row>
</fo:table-body>

</fo:table>

You can make table cells span multiple rows and columns by setting the number-
columns-spanned and/or number-rows-spanned attributes to an integer giving
the number of rows or columns to span. The optional column-number attribute can
change which column the spanning begins in. The default is the current column.

You can draw borders around table parts using the normal border properties. The
empty-cells attribute has the value show or hide; show if borders are to be drawn
around cells with no content, hide if not. The default is show.

When a long table extends across multiple pages, sometimes the header and footer
are repeated on each page. You can alter this behavior with the table-omit-
header-at-break and table-omit-footer-at-break attributes of the fo:table
element. The value false indicates that the header or footer is to be repeated from
page to page. The value true indicates that it is not. The default is false.

The optional fo:table-column element is an empty element that specifies proper-
ties for all cells in a particular column. The cells it applies to are identified by the
column-number attribute or by the position of the fo:table-column element
itself. fo:table-column does not actually contain any cells. A fo:table-column
can apply properties to more than one consecutive column by setting the number-
columns-spanned property to an integer greater than one. The most common
property to set in a fo:table-column is column-width (a signed length), but the
standard border, padding, and background properties (discussed shortly and
mostly the same as in CSS) can also be set.

FOP 0.20.5 has limited table support. In particular, it does not support fo:table-
caption or fo:table-and-caption. Furthermore, FOP requires you to explic-
itly specify the column widths using a fo:table-column element. You can’t let it
choose suitable widths as you might let a web browser do.

For example, Listing 16-10 lays out all the properties of the elements in a table.
Figure 16-11 shows the first page of output produced by this style sheet.

Caution

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 553

554 Part III ✦ Style Languages

Listing 16-10: An XSL Style Sheet That Formats the
Elements as a Table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<fo:table>
<fo:table-column column-width=”30mm”/>
<fo:table-column column-width=”12mm”/>
<fo:table-column column-width=”12mm”/>
<fo:table-column column-width=”25mm”/>
<fo:table-column column-width=”27mm”/>
<fo:table-column column-width=”18mm”/>
<fo:table-column column-width=”49mm”/>
<fo:table-column column-width=”16mm”/>
<fo:table-column column-width=”16mm”/>
<fo:table-column column-width=”16mm”/>
<fo:table-column column-width=”21mm”/>
<fo:table-column column-width=”21mm”/>
<fo:table-column column-width=”21mm”/>
<fo:table-body>
<xsl:apply-templates select=”//ATOM”>
<xsl:sort data-type=”number”
select=”ATOMIC_NUMBER”/>

</xsl:apply-templates>
</fo:table-body>

</fo:table>
</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 554

555Chapter 16 ✦ XSL Formatting Objects

<xsl:template match=”ATOM”>
<fo:table-row>
<fo:table-cell>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block><xsl:value-of select=”SYMBOL”/></fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_WEIGHT”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”OXIDATION_STATES”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block><xsl:value-of select=”DENSITY”/></fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ELECTRON_CONFIGURATION”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ELECTRONEGATIVITY”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_RADIUS”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_VOLUME”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”SPECIFIC_HEAT_CAPACITY”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>

Continued

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 555

556 Part III ✦ Style Languages

Listing 16-10 (continued)

<fo:block>
<xsl:value-of select=”SPECIFIC_HEAT_CAPACITY”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”THERMAL_CONDUCTIVITY”/>

</fo:block>
</fo:table-cell>

</fo:table-row>
</xsl:template>

</xsl:stylesheet>

Figure 16-11: The periodic table formatted as a table

Inlines
The fo:inline element has no particular effect on the layout of the page. Rather,
it’s an element on which you can hang formatting attributes, such as font-style
or color, for application to the inline’s contents. The fo:inline formatting object

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 556

557Chapter 16 ✦ XSL Formatting Objects

is a container that groups inline objects together. It cannot contain block-level ele-
ments. For example, you can use fo:inline elements to add style to various parts
of the footer, like this:

<fo:static-content flow-name=”xsl-region-after”>
<fo:block font-weight=”bold” font-size=”10pt”

font-family=”Arial, Helvetica, sans”>
<fo:inline font-style=”italic” text-align=”start”>
The XML Bible

</fo:inline>
<fo:inline text-align=”centered”>
Page <fo:page-number/>

</fo:inline>
<fo:inline text-align=”right”>
Chapter 19: XSL Formatting Objects

</fo:inline>
</fo:block>

</fo:static-content>

Footnotes
The fo:footnote element creates a footnote. The author places the fo:footnote
element in the flow exactly where the footnote reference such as 1 or * will occur.
The fo:footnote element contains both the reference text and a fo:footnote-
body block-level element containing the text of the footnote. However, only the foot-
note reference is inserted inline. The formatter places the note text in the after
region (generally the footer) of the page.

For example, this footnote uses an asterisk as a footnote marker and refers to
“JavaBeans, Elliotte Rusty Harold (IDG Books, Foster City, 1998), p. 147”. Standard
properties such as font-size and vertical-align are used to format both the
note marker and the text in the customary fashion.

<fo:footnote>
<fo:inline font-size=”smaller” vertical-align=”super”>*
</fo:inline>
<fo:footnote-body font-size=”smaller”>
<fo:inline font-size=”smaller” vertical-align=”super”>

*
</fo:inline>
<fo:inline font-style=”italic”>JavaBeans</fo:inline>,
Elliotte Rusty Harold
(IDG Books, Foster City, 1998), p. 147

</fo:footnote-body>
</fo:footnote>

XSL-FO doesn’t provide any means of automatically numbering and citing foot-
notes, but this can be done by judicious use of xsl:number in the transformation
style sheet. XSL Transformations make end notes easy as well.

Tip

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 557

558 Part III ✦ Style Languages

Floats
A fo:float produces a floating box anchored to the top of the region where it
occurs. A fo:float is most commonly used for graphics, charts, tables, or other
out-of-line content that needs to appear somewhere on the page, although precisely
where it appears is not particularly important. For example, this fo:block includes
a floating graphic with a caption:

<fo:block>
Although PDF files are themselves ASCII text,
this isn’t a book about PostScript, so there’s
nothing to be gained by showing you the exact
output of the above command. If you’re curious,
open the PDF file in any text editor.
Instead, Figure 16-1
<fo:float float=”before”>
<fo:external-graphic src=”549863 fg1601.tif”

height=”485px” width=”623px” />
<fo:block font-family=”Helvetica, sans”>
<fo:inline font-weight=”bold”>
Figure 16-1:

</fo:inline>
The PDF file displayed in Netscape Navigator

</fo:block>
</fo:float>
shows the rendered file displayed in
Netscape Navigator using the Acrobat plug-in.

</fo:block>

The formatter tries to place the graphic somewhere on the same page where the
content surrounding the fo:float appears. However, it may not always be able to
find room on that page. If it can’t, it moves the object to a subsequent page.

The value of the float attribute indicates on which side of the page the fo:float
floats. It can be set to before, start, end, left, right, none, or inherit.

The clear attribute can be set on elements near the floating object to indicate
whether they’ll flow around the side of the float or whether they’ll move below the
float. It can have the following values:

✦ start— The start edge of the object must not be adjacent to a floating object.

✦ end— The end edge of the object must not be adjacent to a floating object.

✦ left— The left edge of the object must not be adjacent to a floating object.

✦ right— The right edge of the object must not be adjacent to a floating object.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 558

559Chapter 16 ✦ XSL Formatting Objects

✦ both— Neither the left nor the right edge of the object may be adjacent to a
floating object.

✦ none

Within those limits, the formatter is free to place the graphic anywhere on the page.

FOP 0.20.5 does not support the fo:float formatting object.

Formatting Properties
By themselves, formatting objects say relatively little about how content is format-
ted. They merely put content in abstract boxes, which are placed in particular parts
of a page. Attributes on the various formatting objects determine how the content
in those boxes is styled.

As already mentioned, there are more than 200 different formatting properties. Not
all properties can be attached to all elements. For instance, there isn’t much point
to specifying the font-style of a fo:external-graphic. Most properties, how-
ever, can be applied to more than one kind of formatting object element. (The few
that can’t, such as src and provisional-label-separation, were discussed pre-
viously with the formatting objects they apply to.) When a property is common to
multiple formatting objects, it shares the same syntax and meaning across the
objects. For example, you use identical code to format a fo:title in 14-point
Times bold as you do to format a fo:block in 14-point Times bold.

Many of the XSL-FO properties are similar to CSS properties. The value of a CSS
font-family property is the same as the value of an XSL-FO font-family
attribute. If you’ve read about CSS in Chapters 12 through 14, you’re already more
than half finished learning XSL-FO properties.

The id property
You can apply the id property to any element. The value of this property must be
an XML name that’s unique within the style sheet and within the output formatting
object document. The last requirement is a little tricky because it’s possible that
one template rule in the style sheet may generate several hundred elements in the
output document. XSLT’s generate-id() function can be useful here.

The language property
The language property specifies the language of the content contained in either a
fo:block or a fo:character element. Generally, the value of this property is an
ISO 639 language code such as en (English) or la (Latin). It may also be the key-
word none or use-document. The latter means to simply use the language of the

Caution

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 559

560 Part III ✦ Style Languages

input as specified by the xml:lang attribute. For example, consider the first verse
of Caesar’s Gallic Wars:

<fo:block id=”verse1.1.1” language=”la”>
Gallia est omnis divisa in partes tres,
quarum unam incolunt Belgae, aliam Aquitani,
tertiam qui ipsorum lingua Celtae, nostra Galli appellantur

</fo:block>

Although the language property has no direct effect on formatting, it may have an
indirect effect if the formatter selects layout algorithms depending on the language.
For example, the formatter should use different default writing modes for Arabic
and English text. This carries over into determination of the start and end regions
and the inline and block progression directions. It can also be used to choose the
proper hyphenation dictionary.

Paragraph properties
Paragraph properties are styles that normally are thought of as applying to an
entire block of text in a traditional word processor, although perhaps block-level
text properties is a more appropriate name here. For example, indentation is a para-
graph property, because you can indent a paragraph, but you can’t indent a single
word.

Break properties
The break properties specify where page breaks are and are not allowed. There are
five loosely related break properties:

✦ keep-with-next

✦ keep-with-previous

✦ keep-together

✦ break-before

✦ break-after

The keep-with-next property determines how much effort the formatter will
expend to keep this formatting object on the same page as the following formatting
object. The keep-with-previous property determines how much effort the for-
matter will expend to keep this formatting object on the same page as the preced-
ing formatting object. And the keep-together property determines how much
effort the formatter will expend to keep the contents of this formatting object on
one page. These are not hard-and-fast rules because it’s always possible that a for-
matting object is just too big for one page. Each of these properties can be set to an
integer giving the strength of the effort to keep the objects on the same page (larger
integers are stronger) or to the keywords always or auto. always means maximum
effort; auto means let the breaks fall where they may.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 560

561Chapter 16 ✦ XSL Formatting Objects

By contrast, the break-before property and break-after properties mandate
some kind of break. What exactly is broken is determined by the value of the prop-
erty. This can be one of these five values:

✦ column— Break the current column and move to the next column.

✦ page— Break the current page and move to the next page.

✦ even-page— Break the current page and move to the next even-numbered
page, inserting a blank page if the current page is itself an even-numbered page.

✦ odd-page— Break the current page and move to the next odd-numbered page,
inserting a blank page if the current page is itself an odd-numbered page.

✦ auto— Let the formatter decide where to break; the default.

For example, this template rule ensures that each ATOM of sufficiently small size is
printed on a page of its own:

<xsl:template match=”ATOM”>
<fo:block break-before=”page” break-after=”page”>
<xsl:apply-templates/>

</fo:block>
</xsl:template>

Finally, the inhibit-line-breaks property is a boolean that can be set to true to
indicate that not even a line break is allowed, much less a page break.

XSL-FO also defines three shorthand page-break properties: page-break-after,
page-break-before, and page-break-inside. These are not absolutely neces-
sary because their effects can be achieved by appropriate combinations of the keep
and break properties. For example, to specify a page break after an element, you’d
set break-before to page and keep-with-previous to auto.

Hyphenation properties
The hyphenation properties determine where hyphenation is allowed and how it
should be used. These properties apply only to soft or “optional” hyphens, such as
those sometimes used to break long words at the end of a line. They do not apply to
hard hyphens, such as the ones in the word mother-in-law, although hard hyphens
may affect where soft hyphens are allowed. There are six hyphenation properties:

✦ hyphenate— Automatic hyphenation is allowed only if this property has the
value true.

✦ hyphenation-character— The Unicode character used to hyphenate
words, such as - in English.

✦ hyphenation-keep— One of the four keywords (column, none, page,
inherit) that specify where and whether hyphenation is allowed. The default
is not to hyphenate.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 561

562 Part III ✦ Style Languages

✦ hyphenation-ladder-count— A nonnegative integer that specifies the max-
imum number of hyphenated lines that may appear in a row.

✦ hyphenation-push-character-count— A nonnegative integer that speci-
fies the minimum number of characters that must follow an automatically
inserted hyphen. (Short syllables look bad in isolation.)

✦ hyphenation-remain-character-count— A nonnegative integer specifying
the minimum number of characters that must precede an automatically
inserted hyphen.

For example:

<fo:block hyphenate=”true”
hyphenation-character=”-”
hyphenation-keep=”none”
hyphenation-ladder-count=”2”
hyphenation-push-character-count=”4”
hyphenation-remain-character-count=”4” >

some content...
</fo:block>

XSL-FO does not specify a word-breaking algorithm to determine where a soft
hyphen may be applied. Even when these properties allow hyphenation, it’s still
completely up to the formatter to figure out how to hyphenate individual words.
Indeed, basic formatters may not attempt to hyphenate words at all.

Indent properties
The indent properties specify how far lines are indented from the edge of the text.
There are four of these:

✦ start-indent

✦ end-indent

✦ text-indent

✦ last-line-end-indent

The start-indent property offsets all lines from the start edge (left edge in
English). The end-indent property offsets all lines from the end edge (right edge in
English). The text-indent property offsets only the first line from the start edge.
The last-line-end-indent property offsets only the last line from the start edge.
Values are given as a signed length. For example, a standard paragraph with a half-
inch, first-line indent might be formatted this way:

<fo:block text-indent=”0.5in”>
The first line of this paragraph is indented

</fo:block>

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 562

563Chapter 16 ✦ XSL Formatting Objects

A block quote with a 1-inch indent on all lines on both sides is formatted like this:

<fo:block start-indent=”1.0in” end-indent=”1.0in”>
This text is offset one inch from both edges.

</fo:block>

Because the text-indent is added to the start-indent to get the total indenta-
tion of the first line, using a positive value for start-indent and a negative value
for text-indent creates hanging indents. For example, all lines except the first in
this paragraph are indented by 1 inch. The first line is only indented half an inch:

<fo:block text-indent=”-0.5in” start-indent=”1.0in”>
This paragraph uses a hanging indent.

</fo:block>

Character properties
Character properties describe the qualities of individual characters. They are
applied to elements that contain characters such as fo:block and fo:list-item-
body elements. These include color, font, style, weight, and similar properties.

The color property
The color property sets the foreground color of the contents using the same syn-
tax as the CSS color property. For example, this fo:inline colors the text “Lions
and tigers and bears, oh my!” pink:

<fo:inline color=”#FFCCCC”>
Lions and tigers and bears, oh my!

</fo:inline>

Colors are specified in much the same way as they are in CSS; that is, as hexadeci-
mal triples in the form #RRGGBB or as one of the 16 named colors (aqua, black,
blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver,
teal, white, and yellow).

Font properties
Any formatting object that holds text can have a wide range of font properties.
Most of these are familiar from CSS, including the following:

✦ font-family— A list of font names in order of preference

✦ font-size— A signed length

✦ font-size-adjust— The preferred ratio between the x-height and size of a
font, specified as an unsigned real number or as none

✦ font-stretch—The “width” of a font, given as one of the keywords condensed,
expanded, extra-condensed, extra-expanded, narrower, normal, semi-
condensed, semi-expanded, ultra-condensed, ultra-expanded, or wider

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 563

564 Part III ✦ Style Languages

✦ font-style— The style of font specified as one of the keywords italic,
normal, oblique, reverse-normal, or reverse-oblique

✦ font-variant— Either normal or small-caps

✦ font-weight— The thickness of the strokes that draw the font, given as one
of the keywords 100, 200, 300, 400, 500, 600, 700, 800, 900, bold, bolder,
lighter, or normal

Text properties
The text properties apply styles to text that are more or less independent of the
font chosen. These include the following:

✦ text-transform

✦ text-shadow

✦ text-decoration

✦ score-spaces

The text-transform property defines how text is capitalized, and is identical to
the CSS property of the same name. The four possible values are as follows:

✦ none— Don’t change the case (the default)

✦ capitalize— Make the first letter of each word uppercase and all subse-
quent letters lowercase

✦ uppercase— Make all characters uppercase

✦ lowercase— Make all characters lowercase

This property is somewhat language-specific. (Chinese and Hebrew, for example,
don’t have separate upper- and lowercases.) Formatters are free to ignore the case
recommendations when they’re applied to non-Roman text.

The text-shadow property applies a shadow to text. This is similar to a back-
ground color but differs in that the shadow is attached to the text itself rather than
to the box containing the text. The value of text-shadow can be the keyword none
or a named or RGB color. For example:

<fo:inline text-shadow=”FFFF66”>
This sentence is yellow.

</fo:inline>

The text-decoration property is similar to the CSS text-decoration property.
Like that property, it has these five possible values:

✦ none— No decoration, the default

✦ underline— Underlining

✦ overline— A line above the text

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 564

565Chapter 16 ✦ XSL Formatting Objects

✦ line-through— Strike through

✦ blink— The notorious blinking text introduced by Netscape

In addition to the five values that are familiar from CSS, XSL-FO also adds four val-
ues that turn off decoration that is inherited from a parent element:

✦ no-underline

✦ no-overline

✦ no-line-through

✦ no-blink

Scoring is a catchall word for underlining, line-through, double strike-through, and
so forth. The score-space property determines whether white space is scored. For
example, if score-spaces is true, an underlined sentence looks like this. If score-
spaces is false, an underlined sentence looks like this.

Sentence properties
Sentence properties apply to groups of characters, that is, a property that makes
sense only for more than one letter at a time, such as how much space to place
between letters or words.

Letter spacing properties
Kerning of text is a slippery measure of how much space separates two characters.
It’s not an absolute number. Most formatters adjust the space between letters
based on local necessity, especially in justified text. Furthermore, high-quality fonts
use different amounts of space between different glyphs. However, you can make
text looser or tighter overall.

The letter-spacing property adds additional space between each pair of glyphs,
beyond that provided by the kerning. It’s given as a signed length specifying the
desired amount of extra space to add, as in the following example:

<fo:block letter-spacing=”2px”>
This is fairly loose text

</fo:block>

The length may be negative to tighten up the text. Formatters, however, generally
impose limits on how much extra space they allow to be added to or removed from
the space between letters.

Word spacing properties
The word-spacing property adjusts the amount of space between words.
Otherwise, it behaves much like the letter spacing properties. The value is a signed
length giving the amount of extra space to add between two words. For example:

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 565

566 Part III ✦ Style Languages

<fo:block word-spacing=”0.3cm”>
This is pretty loose text.

</fo:block>

Line spacing properties
An XSL-FO formatting engine divides block areas into line areas. You cannot create
line areas directly from XSL-FO. However, with these five properties you can affect
how they’re vertically spaced:

✦ line-height— The minimum height of a line

✦ line-height-shift-adjustment—consider-shifts if subscripts and
superscripts should expand the height of a line; disregard-shifts if they
shouldn’t

✦ line-stacking-strategy—line-height (the CSS model and the default);
font-height (make the line as tall as the font height after addition of text-
altitude and text-depth); or max-height (distance between the maximum
ascender height and maximum descender depth)

✦ text-depth— A signed length specifying additional vertical space added
after each line; can also be the keyword use-font-metrics (the default) to
indicate that this depends on the font

✦ text-altitude— A signed length specifying the minimum additional vertical
space added before each line; can also be the keyword use-font-metrics
(the default) to indicate that this depends on the font

The line height also depends largely on the size of the font in which the line is
drawn. Larger font sizes will naturally have taller lines. For example, the following
opening paragraph from Mary Wollstonecraft’s A Vindication of the Rights of Woman
is effectively double-spaced:

<fo:block font-size=”12pt” line-height=”24pt”>
In the present state of society it appears necessary to go
back to first principles in search of the most simple truths,
and to dispute with some prevailing prejudice every inch of
ground. To clear my way, I must be allowed to ask some plain
questions, and the answers will probably appear as
unequivocal as the axioms on which reasoning is built;
though, when entangled with various motives of action, they
are formally contradicted, either by the words or conduct
of men.

</fo:block>

Text alignment properties
The text-align and text-align-last properties specify how the inline content
is horizontally aligned within its box. The eight possible values are as follows:

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 566

567Chapter 16 ✦ XSL Formatting Objects

✦ start— Left-aligned in left-to-right languages such as English

✦ center— Centered

✦ end— Right-aligned in left-to-right scripts

✦ justify— Expanded with extra space as necessary to fill out the line

✦ left— Align with the left side of the page regardless of the writing direction

✦ right— Align with the right side of the page regardless of the writing direction

✦ inside— Align with the inside edge of the page; that is, the right edge on the
left page of two facing pages or the left edge on the right page of two facing
pages

✦ outside— Align with the outside edge of the page; that is, the left edge on the
left page of two facing pages or the right edge on the right page of two facing
pages

The text-align-last property enables you to specify a different value for the last
line in a block. This is especially important for justified text, where the last line
often doesn’t have enough words to be attractively justified. The possible values
are the same as for text-align plus relative. A relatively aligned last line will
line up the same way as all other lines unless text-align is justified, in which
case the last line will align with the start edge instead.

White space properties
The space-treatment property specifies what the formatting engine should do
with white space that’s still present after the original source document is trans-
formed into formatting objects. It can be set to either preserve (the default) or
ignore. If you set it to ignore, leading and trailing white space will be thrown away.

The white-space-collapse property can be set to true (the default) or false.
When true, runs of white space are replaced by a single space. When false, they’re
left unchanged.

The wrap-option property determines how text that’s too long to fit on a line is
handled. This property can be set to wrap (the default) or no-wrap. When set to
wrap, this allows the formatter to insert line breaks as necessary to fit the text.

Area properties
Area properties are applied to boxes. These may be either block-level or inline
boxes. Each of these boxes has the following:

✦ A background

✦ Margins

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 567

568 Part III ✦ Style Languages

✦ Borders

✦ Padding

✦ A size

Background properties
The background properties are identical to the CSS background properties. There
are five:

✦ The background-color property specifies the color of the box’s background.
Its value is either a color such as red or #FFCCCC or the keyword transparent.

✦ The background-image property gives the URI of an image to be used as a
background. The value can also be the keyword none.

✦ The background-attachment property specifies whether the background
image is attached to the window or the document. Its value is one of the two
keywords fixed or scroll.

✦ The background-position property specifies where the background image
is placed in the box. Possible values include center, left, right, bottom,
middle, top, or a coordinate.

✦ The background-repeat property specifies how and whether a background
image is tiled if it is smaller than its box. Possible values include repeat, no-
repeat, repeat-x, and repeat-y.

The following block shows the use of the background-image, background-
position, background-repeat, and background-color properties:

<fo:block background-image=”/bg/paper.gif”
background-position=”0,0”
background-repeat=”repeat”
background-color=”white”>

Two strings walk into a bar...
</fo:block>

The only background properties FOP 0.20.5 supports are background-color
and background-image. The others will probably be added in future releases.

Border properties
The border properties describe the appearance of a border around the box. They
are mostly the same as the CSS border properties. However, in addition to border-
XXX-bottom, border-XXX-top, border-XXX-left, and border-XXX-right prop-
erties, the XSL versions also have border-XXX-before, border-XXX-after,
border-XXX-start, and border-XXX-end versions. There are 31 border proper-
ties in all:

Caution

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 568

569Chapter 16 ✦ XSL Formatting Objects

✦ Color —border-color, border-before-color, border-after-color,
border-start-color, border-end-color, border-top-color, border-
bottom-color, border-left-color, and border-right-color. The default
color is black.

✦ Width —border-width, border-before-width, border-after-width,
border-start-width, border-end-width, border-top-width, border-
bottom-width, border-left-width, and border-right-width. The
default width is medium.

✦ Style —border-style, border-before-style, border-after-style,
border-start-style, border-end-style, border-top-style, border-
bottom-style, border-left-style, border-right-style. The default
style is none.

✦ Shorthand properties —border, border-top, border-bottom, border-
left, border-right, border-color, border-style, border-width.

For example, this block has a 2-pixel-wide blue border:

<fo:block border-before-color=”blue” border-before-width=”2px”
border-after-color=”blue” border-after-width=”2px”
border-start-color=”blue” border-start-width=”2px”
border-end-color=”blue” border-end-width=”2px”>

You have been selected for Special High Intensity Training.
</fo:block>

Padding properties
The padding properties specify the amount of space between the border of the box
and the contents of the box. The border of the box, if shown, falls between the mar-
gin and the padding. The padding properties are mostly the same as the CSS
padding properties. However, in addition to padding-bottom, padding-top,
padding-left, and padding-right, the XSL-FO versions also have padding-
before, padding-after, padding-start, and padding-end versions. In total,
there are eight padding properties, each of which has a signed length for a value:

✦ padding-after

✦ padding-before

✦ padding-bottom

✦ padding-end

✦ padding-left

✦ padding-start

✦ padding-right

✦ padding-top

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 569

570 Part III ✦ Style Languages

For example, this block has half a centimeter of padding on each side:

<fo:block padding-before=”0.5cm” padding-after=”0.5cm”
padding-start=”0.5cm” padding-end=”0.5cm”>

Did you hear the one about the dyslexic agnostic?
</fo:block>

Margin properties for blocks
There are five margin properties, each of whose values is given as an unsigned
length.

✦ margin-top

✦ margin-bottom

✦ margin-left

✦ margin-right

✦ margin

However, these properties are only here for compatibility with CSS. In general, it’s
recommended that you use these four properties instead, because they fit better in
the XSL-FO formatting model:

✦ space-before

✦ space-after

✦ start-indent

✦ end-indent

The space-before and space-after properties are equivalent to the margin-top
and margin-bottom properties, respectively. The start-indent property is equiv-
alent to the sum of padding-left, border-left-width, and margin-left. The
end-indent property is equivalent to the sum of padding-right, border-right-
width, and margin-right. Figure 16-12 should make this clearer.

For example, this block has a half-centimeter margin at its start and end sides:

<fo:block start-indent=”0.5cm” end-indent=”0.5cm”>
Two strings walk into a bar...

</fo:block>

However, unlike margins, space properties are given as space specifiers that contain
more than one value. In particular, they contain a preferred value, a minimum value, a
maximum value, a conditionality, and a precedence. This allows the formatter some-
what more freedom in laying out the page. The formatter is free to pick any amount of
space between the minimum and maximum to fit the constraints of the page.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 570

571Chapter 16 ✦ XSL Formatting Objects

Figure 16-12: Padding, indents, borders, and space before and after for an XSL box

Each of the space values is a length. The conditionality is one of the two keywords
discard or retain. This determines what happens to extra space at the end of a
line. The default is to discard it. The precedence can either be an integer or the key-
word force. The precedence determines what happens when the space-end of
one inline area conflicts with the space-start of the next. The area with higher
precedence wins. The default precedence is 0. Semicolons separate all five values.

For example, consider this fo:block element:

<fo:block space-before=”0in;0.5in;0.166in;discard;force”>
It goes to 11.
</fo:block>

It says that, ideally, the formatter should add a sixth of an inch of space before this
element. However, it can add as little as no space at all and as much as half an inch
if necessary. Because the precedence is set to force, this will override any other
space specifiers that conflict with it. Finally, if there’s any extra space that’s left
over at the end, it will be discarded.

Margin properties for inline boxes
Two margin properties apply only to inline elements:

✦ space-end

✦ space-start

The total width of the box is
the sum of the natural or
specified width of the contents,
the width of the margin, the width
of the border, and the width of
the padding. The total height of
the element is the sum of the
height of the element, the
space-before, the space-after,
the height of the border, and the
height of the padding.

space-before

start indent end indent

The margin

The border

The padding

The element

space-after

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 571

572 Part III ✦ Style Languages

Their values are space specifiers that give a range of extra space to be added before
and after the element. The actual spaces may be smaller or larger. Because the
space is not part of the box itself, one box’s end space can be part of the next box’s
start space.

Size properties
Six properties specify the height and width of the content area of a box:

✦ height

✦ width

✦ max-height

✦ max-width

✦ min-height

✦ min-width

These properties do not specify the total width and height of the box, which also
includes the margins, padding, and borders. This is only the width and height of the
content area. As well as an unsigned length, the height and width properties may
be set to the keyword auto, which chooses the height and width based on the
amount of content in the box. However, in no case are the height and width larger
than the values specified by the max-height and max-width or smaller than the
min-height and min-width. For example:

<fo:block height=”2in” width=”2in”>
Two strings walk into a bar...

</fo:block>

The overflow properties
The overflow property determines what happens when there’s too much content
to fit within a box of a specified size. This may be an explicit specification using the
size properties or an implicit specification based on page size or other constraints.
There are six possibilities, each of which is represented by a keyword:

✦ auto— Use scroll bars if there is overflow; don’t use them if there isn’t. If
scroll bars aren’t available (for example, on a printed page), add a new page
for flow content and generate an error for static content. This is the default.

✦ hidden— Don’t show any content that runs outside the box.

✦ scroll— Attach scroll bars to the box so the reader can scroll to the addi-
tional content.

✦ visible— The complete contents are shown; if necessary, by overriding the
size constraints on the box.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 572

573Chapter 16 ✦ XSL Formatting Objects

✦ error-if-overflow— The formatter should give up and display an error
message if content overflows its box.

✦ paginate— If the object overflowed is a page, create a new page to hold the
excess content.

The clip property specifies the shape of the clipping region if the overflow prop-
erty does not have the value visible. The default clipping region is simply the box
itself. However, you can change this by specifying a particular rectangle, like this:

clip=rect(top_offset right_offset bottom_offset left_offset)

Here, top_offset, right_offset, bottom_offset, and left_offset are signed
lengths giving the offsets of the clipping region from the top, right, bottom, and left
sides of the box. This allows you to make the clipping region larger or smaller than
the box itself.

The reference-orientation property
The reference-orientation property allows you to specify that the content of a
box is rotated relative to its normal orientation. The only valid values are 90-degree
increments, which are measured counterclockwise from the orientation of the par-
ent container, that is, 0, 90, 180, and 270. You can also specify -90, -180, and -270.
For example, here’s a 90-degree rotation:

<fo:block reference-orientation=”90”>
Bottom to Top

</fo:block>

Writing mode properties
The writing mode specifies the direction of text in the box. This has important
implications for the ordering of formatting objects in the box. Most of the time,
speakers of English and other Western languages assume a left-to-right, top-to-
bottom writing mode, such as this:

A B C D E F G
H I J K L M N
O P Q R S T U
V W X Y Z

However, in the Hebrew and Arabic-speaking worlds, a right-to-left, top-to-bottom
ordering such as this one seems more natural:

G F E D C B A
N M L K J I H
U T S R Q P O
Z Y X W V

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 573

574 Part III ✦ Style Languages

In Taiwan, a top-to-bottom, left-to-right order is conventional:

A E I M Q U Y
B F J N R V Z
C G K O S W
D H L P T X

In XSL-FO, the writing mode doesn’t just affect text. It also affects how objects in a
flow or sequence are laid out, how wrapping is performed, and more. You’ve
already noticed that many properties are organized in start, end, before, and after
variations instead of left, right, top, and bottom. Specifying style rules in terms of
start, end, before, and after, instead of left, right, top, and bottom, produces more
robust, localizable style sheets.

The writing-mode property specifies the writing mode for an area. This property
can have 1 of 13 keyword values. These are as follows:

✦ bt-lr— Bottom-to-top, left-to-right

✦ bt-rl— Bottom-to-top, right-to-left

✦ lr-alternating-rl-bt— Left-to-right lines alternating with right-to-left
lines, bottom to top

✦ lr-alternating-rl-tb— Left-to-right lines alternating with right-to-left
lines, top to bottom

✦ lr-bt— Left to right, bottom to top

✦ lr-inverting-rl-bt— Left to right, then move up to the next line and go
right to left (that is, snake up the page like a backward S)

✦ lr-inverting-rl-tb— Left to right, then move down to the next line and go
right to left (that is, snake down the page like a backward S)

✦ lr-tb— Left to right, top to bottom

✦ rl-bt— Right to left, bottom to top

✦ rl-tb— Right to left, top to bottom

✦ tb-lr— Top to bottom, left to right

✦ tb-rl— Top to bottom, right to left

✦ tb-rl-in-rl-pairs— Text is written in two-character, right-to-left pairs; the
pairs are then laid out top-to-bottom to form a line; lines are laid out from
right to left

Orphans and widows
To a typesetter, an orphan is a single line of a paragraph at the bottom of a page. A
widow is a single line of a paragraph at the top of a page. Good typesetters move an
extra line from the previous page to the next page or from the next page to the pre-
vious page, as necessary, to avoid orphans and widows. You can adjust the number

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 574

575Chapter 16 ✦ XSL Formatting Objects

of lines considered an orphan by setting the orphans property to an unsigned inte-
ger. You can adjust the number of lines considered a widow by setting the widows
property to an unsigned integer. For example, if you want to make sure that every
partial paragraph at the end of a page has at least three lines, set the orphans prop-
erty to 3, as follows:

<fo:simple-page-master master-name=”even”
orphans=”3” page-height=”11in” page-width=”8.5in”

/>

Summary
In this chapter, you learned about XSL formatting objects. In particular, you learned
the following:

✦ An XSL processor follows the instructions in an XSLT style sheet to transform
an XML source document into a new XML document marked up in the XSL for-
matting object vocabulary.

✦ Most XSL formatting objects generate one or more rectangular areas. Pages
contain regions. Regions contain block areas. Block areas contain block areas
and line areas. Line areas contain inline areas. Inline areas contain other inline
areas and character areas.

✦ The root element of a formatting object document is fo:root. This contains
fo:layout-master-set elements and fo:page-sequence elements.

✦ Each fo:layout-master-set element contains one or more fo:simple-
page-master elements, each of which defines the layout of a particular kind
of page by dividing it into five regions (before, after, start, end, and body) and
assigning properties to each one. It may also contain one or more fo:page-
sequence-master elements.

✦ Each fo:page-sequence element contains zero or one fo:title elements,
zero or more fo:static-content elements, one or more fo:flow elements,
and a master-reference attribute. The contents of the fo:flow are copied
onto instances of the master pages in the order specified by the fo:page-
sequence-master element identified by the master-reference attribute.
The contents of the fo:static-content elements are copied onto every
page that’s created.

✦ The fo:external-graphic element loads an image from a URL and displays
it inline.

✦ The fo:instream-foreign-object element displays an image encoded in a
non-XSL-FO XML application, such as SVG or MathML. The code is included in
the XSL-FO document along with the XSL-FO code.

✦ The fo:basic-link element creates a hypertext link to a URL.

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 575

576 Part III ✦ Style Languages

✦ A list is a block-level element created by a fo:list-block element. It con-
tains block-level fo:list-item elements. Each fo:list-item contains a
fo:list-item-label and fo:list-item-body, and each of these contains
block-level elements.

✦ The fo:page-number element inserts the current page number.

✦ The fo:inline element is a container used to attach properties to the text
and areas it contains.

✦ The fo:footnote element inserts an out-of-line footnote and an inline foot-
note reference into the page.

✦ The fo:float element inserts an out-of-line, block-level element such as a fig-
ure or a pull quote onto the page. The float property determines which side
other elements are allowed to float around it.

✦ There are more than 200 separate XSL formatting properties, many of which
are identical to CSS properties of the same name. These are attached to XSL
formatting object elements as attributes.

✦ The keeps and breaks properties describe where page breaks are required
and forbidden. These include keep-with-next, keep-with-previous, keep-
together, break-before, break-after, widows, and orphans.

✦ The hyphenation properties describe whether and how to insert soft hyphens.
These include hyphenate, hyphenation-character, hyphenation-keep,
hyphenation-ladder-count, hyphenation-push-character-count,
and hyphenation-remain-character-count.

✦ The indent properties specify how far lines are indented from the edge of the
text. There are four of these: start-indent, end-indent, text-indent, and
last-line-end-indent.

✦ Character properties describe attributes of individual characters and include
color, font-family, font-size, font-size-adjust, font-stretch, font-
style, font-variant, font-weight, text-transform, text-shadow, text-
decoration, and score-space.

✦ Sentence properties describe formatting that only makes sense for groups of
letters and words and include letter-spacing, word-spacing, line-
height, line-height-shift-adjustment, line-stacking-strategy,
text-depth, text-altitude, text-align, text-align-last, space-
treatment, white-space-collapse, and wrap-option.

✦ Area properties describe attributes of boxes produced by various formatting
objects, and include the background, border, padding, and margin properties.

The next chapter introduces XLinks, a more powerful linking syntax than the stan-
dard HTML A element hyperlinks and XSL’s fo:basic-link.

✦ ✦ ✦

20 549863 Ch16.qxd 1/28/04 9:48 AM Page 576

Supplemental
Technologies

✦ ✦ ✦ ✦

In This Part

Chapter 17
XLinks

Chapter 18
XPointers

Chapter 19
XInclude

Chapter 20
Schemas

✦ ✦ ✦ ✦

P A R T

IVIV

21 549863 PP04.qxd 1/28/04 9:48 AM Page 577

21 549863 PP04.qxd 1/28/04 9:48 AM Page 578

XLinks

Hypertext in XML is divided into multiple parts: XLink,
XML Base, XPointer, and XInclude. XLink, the XML

Linking Language, defines how one document links to another
document. XML Base defines how the base URL of a document
(against which relative URLs are resolved) is set. XPointer, the
XML Pointer Language, defines how individual parts of a docu-
ment are addressed. XInclude defines how one document can
be built out of different pieces of other documents.

An XLink points to a URI (in practice, a URL) that specifies a
particular resource. If this URI is relative, the base URI can be
established by an xml:base attribute. Relative or not, this URI
may have a fragment identifier that more specifically identi-
fies the desired part of the targeted document. When the URI
points to an XML document, the fragment identifier is an
XPointer. This chapter explores XLink and XML Base. The
next two chapters explore XPointer and XInclude.

XLinks versus HTML Links
The Web conquered the more established Gopher protocol for
one main reason: HTML made it possible to embed hypertext
links in documents. These links could insert images or let the
user jump from inside one document to another document or
another part of the same document. To the extent that XML is
rendered into HTML for viewing, the same syntax that HTML
uses for linking can be used in XML documents. Alternate syn-
taxes can be converted into HTML syntax using XSLT.

XSLT, including several examples of converting XML markup
to HTML links, is discussed in Chapter 15.

However, HTML linking has limits. For one thing, URLs are lim-
ited to pointing at a single document. More granularity than
that, such as linking to the third sentence of the seventeenth
paragraph in a document, requires you to manually insert
named anchors in the targeted document. It can’t be done
without write access to the document to which you’re linking.

Cross-
Reference

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XLinks versus HTML
links

Linking elements

Descriptions of the
remote resource

Link behavior

Extended links

Extended link syntax

Arcs

Out-of-line links

XML Base

✦ ✦ ✦ ✦

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 579

580 Part IV ✦ Supplemental Technologies

Furthermore, HTML links don’t maintain any sense of history or relations between
documents. Although browsers may track the path you’ve followed through a series
of documents, such tracking isn’t very reliable. From inside the HTML, there’s no
way to know from where a reader came. Links are purely one-way. The linking docu-
ment knows to whom it’s linking, but the linked document does not know who’s
linking to it.

XLink supports more powerful links between documents designed especially for
use with XML. XLink achieves everything possible with HTML’s URL-based hyper-
links and anchors. Beyond this, however, it supports multidirectional links (where
the links run in more than one direction). Any element can become a link, not just
the A element. Links do not even have to be stored in the same file as the docu-
ments they connect. These features make XLinks more suitable not only for new
uses, but for things that can be done only with considerable effort in HTML, such
as cross-references, footnotes, end notes, and more.

Only Mozilla and its derivatives (Netscape 6, Netscape 7, Galeon, Camino, Firebird,
and so on) have any support for XLinks, and that support is incomplete. Internet
Explorer 6.0, Opera 7.0, and Safari 1.0 and earlier have absolutely no support for
any kind of XLink. There are no general-purpose applications that support arbitrary
XLinks. That’s because XLinks have a much broader base of applicability than
HTML links. XLinks are not just used for hypertext connections and embedding
images in documents. They can be used by any custom application that needs to
establish connections between documents and parts of documents, for any rea-
son. Even when XLinks are fully implemented in browsers, they may not always be
blue underlined text that you click to jump to another page. They can be that, but
they can also be both more and less, depending on your needs.

Linking Elements
In HTML, a link is defined with the <A> tag. However, just as XML is more flexible
with elements, it is more flexible with links. In XML, any element can be a link or
part of a link. XLink elements are identified by an xlink:type attribute with one
of these seven values:

✦ simple

✦ extended

✦ locator

✦ arc

✦ resource

✦ title

✦ none

Caution

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 580

581Chapter 17 ✦ XLinks

The xlink prefix must be bound to the http://www.w3.org/1999/xlink name-
space URI. As usual, the prefix can change as long as the URI remains the same. The
xlink prefix is customary and should be used unless you’ve got a good reason to
change it. In this chapter, I assume that the prefix xlink has been bound to the
http://www.w3.org/1999/xlink URI.

XLinks elements whose xlink:type attribute has the value simple or extended
are called linking elements. For example, these are three linking elements:

<COMPOSER xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=”http://users.rcn.com/beand/”>

Beth Anderson
</COMPOSER>
<FOOTNOTE xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:type=”simple”
xlink:href=”footnote7.xml”>7</FOOTNOTE>

<IMAGE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”onLoad” xlink:show=”embed”/>

Notice that the elements have semantic names that describe the content they con-
tain rather than how the elements behave. The information that these elements are
links is included in the attributes, not the element names. Attributes define the
linking behavior.

These three examples are simple XLinks. Simple XLinks are similar to standard HTML
links and are the only kind of link supported by today’s web browsers, so I’ll begin
with them. Later, I talk about the more complex (and more powerful) extended links.

In the preceding COMPOSER example, the xlink:href attribute defines the target of
the link. The value of this attribute is the absolute URL http://users.rcn.com/
beand/. This linking element describes a connection from the COMPOSER element in
the current document with the content “Beth Anderson” to the remote document at
http://users.rcn.com/beand/. If you were to include this element in an XML
document and load that document into an XLink-aware web browser, such as
Mozilla or Netscape 6, the user could click on it to jump to the page
http://users.rcn.com/beand/.

The browser does not necessarily indicate this to the user by underlining it and col-
oring it blue, however. Visual formatting is still the province of a style sheet. Web
documents that use XLinks will normally need CSS rules that use the :link and
:visited pseudo-classes to specify how links are formatted. For example, these
two rules attempt to duplicate traditional link formatting:

*:link {color: blue; text-decoration: underline}
*:visited {color: purple; text-decoration: underline}

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 581

582 Part IV ✦ Supplemental Technologies

You’re, of course, free to choose other styles, though doing so might cause readers
to miss your links. It’s best not to change the link colors.

You can also interpret this simple link more abstractly, as simply defining a one-way
connection from one resource, the COMPOSER element, to another resource, the web
page at http://users.rcn.com/beand/. Figure 17-1 diagrams this connection. This
connection does not really imply any particular semantics or behavior. It’s up to the
application reading the document to decide what this abstract link means to it.

Figure 17-1: A link from the COMPOSER element to
http://users.rcn.com/beand/

In the FOOTNOTE example, the link target attribute’s name is xlink:href. Its value is
the relative URL footnote7.xml. This describes a connection from the FOOTNOTE
element in the current document with the content “7” to the document named
footnote7.xml on the same server in the same directory as the document in which
this link appears.

In the third example above, the value of the xlink:href attribute is the relative
URL logo.gif. The scheme, host, and directory of the document are copied from
the scheme, host, and directory of the document in which the link appears.
However, this element requests slightly different behavior. Instead of waiting for
the user to activate the link, the xlink:actuate attribute asks that the link be
activated automatically as soon as the document is loaded. The xlink:show
attribute requests that the result be embedded in the current document instead
of replacing the current document.

Declaring XLink Attributes in
Document Type Definitions

If the document has a document type definition (DTD), these attributes should be
declared like any other. For example, declarations of the FOOTNOTE, COMPOSER, and
IMAGE elements might look like this:

<!ELEMENT FOOTNOTE (#PCDATA)>
<!ATTLIST FOOTNOTE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED

>

COMPOSER

Beth Anderson
http://users.rcn.com/beand/

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 582

583Chapter 17 ✦ XLinks

<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED

>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show CDATA #FIXED “onLoad”
xlink:actuate CDATA #FIXED “embed”

>

With these declarations, the xlink:type, xmlns:xlink, xlink:show, and
xlink:actuate attributes have fixed values. Therefore, they do not need to be
included in the instances of the elements, which you may now write more com-
pactly, like this:

<FOOTNOTE xlink:href=”footnote7.xml”>7</FOOTNOTE>
<COMPOSER xlink:href=”http://users.rcn.com/beand/”>
Beth Anderson

</COMPOSER>
<IMAGE xlink:href=”logo.gif”/>

Making an element a link doesn’t impose any restriction on other attributes or con-
tents of the element. An XLink element may contain arbitrary children or other
attributes. For example, a more realistic IMAGE element would look like this:

<IMAGE ALT=”Cafe con Leche Logo of a coffee cup”
WIDTH=”89” HEIGHT=”67”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”onLoad” xlink:show=”embed”/>

Half of the attributes don’t have anything to do with linking. The declaration in the
DTD would then look like this:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show CDATA #FIXED “onLoad”
xlink:actuate CDATA #FIXED “embed”
ALT CDATA #REQUIRED
ALIGN CDATA #IMPLIED
HEIGHT CDATA #REQUIRED
WIDTH CDATA #REQUIRED

>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 583

584 Part IV ✦ Supplemental Technologies

In fact, a linking element might even have children that are themselves linking ele-
ments! That is, a linking element may contain another linking element or elements.
This doesn’t have any special meaning. As far as links go, each linking element is
treated in isolation.

Descriptions of the Remote Resource
A linking element can have optional xlink:role and xlink:title attributes that
describe the remote resource; that is, the document or other resource to which the
link points. The title contains plain text that describes the resource. The role con-
tains an absolute URI pointing to a document that more fully describes the resource.
For example, the title might describe what a page does, and the role might point to a
help page for the page:

<SEARCH xlink:type=”simple”
xlink:href=”http://www.google.com/advanced_search”
xlink:title=”Search with Google”
xlink:role=”http://www.google.com/help.html”>

Search the Web with Google
</SEARCH>

Both the role and title describe the remote resource, not the local element. The
remote resource in the preceding example is the document at http://www.
google.com/advanced_search. It’s not uncommon, though it’s not required, for
the value of the xlink:title attribute to be the same as the contents of the
TITLE element of the page to which you are linking.

Another possibility is to have the role point to some form of identifier URL for the
format of the data found at the xlink:href. This may be a MIME media type, a
namespace URI, or the location of a prose specification, DTD, schema, or style
sheet. For example, to indicate that the search page is written in HTML you might
set the role to the URL of the HTML 4.0 specification:

<SEARCH xlink:type=”simple”
xlink:href=”http://www.google.com/advanced_search”
xlink:title=”Search with Google”
xlink:role=”http://www.w3.org/TR/html4/”>

Search the Web with Google
</SEARCH>

Alternately, you could use the URL for the HTML MIME media type, http://www.
isi.edu/in-notes/iana/assignments/media-types/text/html, the URL for
the XHTML namespace, http://www.w3.org/1999/xhtml, or the URL for the
HTML 3.2 DTD, http://www.w3.org/TR/REC-html32#dtd. You could even use a
mailto URL giving the e-mail address of the person who wrote the page. Other values
are possible. XLink does not define any rules for how applications should interpret
the value of an xlink:role, beyond simply stating that it must be an absolute URI.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 584

585Chapter 17 ✦ XLinks

XLink does not define the user interface by which link roles and titles are presented
to users. For example, Mozilla shows the user the title of the link in a ToolTip when
the cursor is hovering over the link, and does nothing with the role. A different
application might choose to put the title in the status bar of the browser window, or
do both, or neither. How or whether any particular application makes use of the
role and title is completely up to it.

As with all other attributes, the xlink:title and xlink:role attributes should be
declared in the DTD for all the elements to which they belong. For example, this is a
reasonable declaration for the preceding SEARCH element:

<!ELEMENT SEARCH (#PCDATA)>
<!ATTLIST SEARCH

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED

>

Link Behavior
Linking elements can contain two more optional attributes that suggest to applica-
tions how the link behaves when activated. These are:

✦ xlink:show

✦ xlink:actuate

The xlink:show attribute suggests how the content should be displayed when the
link is activated; for example, by opening a new window to hold the remote resource
or by loading the remote resource into the current window. The xlink:actuate
attribute suggests when the link should be activated; for instance, as soon as the
document is loaded, or only after a specific user request. Behavior is application-
dependent, however, and applications are free to ignore the suggestions.

The xlink:show attribute
The xlink:show attribute has five possible values:

✦ replace

✦ new

✦ embed

✦ other

✦ none

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 585

586 Part IV ✦ Supplemental Technologies

If the value of xlink:show is replace, then when the link is activated (generally by
clicking on it, at least in GUI browsers), the target of the link replaces the current
document in the same window. This is the default behavior of HTML links, as in this
example:

<COMPOSER xlink:type=”simple”
xlink:show=”replace”
xlink:href=”http://users.rcn.com/beand/”>

Beth Anderson
</COMPOSER>

If the value of xlink:show is new, activating the link opens a new window in which
the targeted resource is displayed. This is similar to the behavior of HTML links
when the target attribute is set to _blank, as in the following example:

<WEBSITE xlink:type=”simple”
xlink:show=”new”
xlink:href=”http://www.quackwatch.com/”>

Check this out, but don’t leave our site completely!
</WEBSITE>

If the value of xlink:show is embed, activating the link inserts the targeted resource
into the existing document. Exactly what this means is application-dependent.
Mostly, it implies that the application should somehow render the linked content
and display it as part of the finished document. This is how the IMG, APPLET, and
OBJECT elements behave in HTML. For example, an element like this one might be
used to indicate that a JPEG image should be embedded in the document:

<PHOTO xlink:type=”simple”
xlink:href=”images/nypride.jpg”
xlink:show=”embed”
ALT=”Marchers on 5th Avenue, June 2004”/>

If the value of xlink:show is other, the application is supposed to look for other
markup in the document that explains what to do. Generally, this would be used
when a particular XML application used different, non-XLink elements or attributes
to describe the link behavior. For example, many web pages have a LINK element in
their header that references a style sheet and looks similar to this:

<LINK REL=”stylesheet” TYPE=”text/css”
HREF=”http://www.w3.org/StyleSheets/TR/W3C-WD.css” />

This is a link, but what’s at the end of the link does not replace the existing docu-
ment; it does not embed itself into the existing document; it is not displayed in a
new window. In XML documents, you might agree that this behavior was implied
whenever a STYLESHEET element was encountered. Because this is not one of the
three predetermined link behaviors, you’d set xlink:show to other.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 586

587Chapter 17 ✦ XLinks

<STYLESHEET xlink:show=”other”
xlink:href=”http://www.w3.org/StyleSheets/TR/W3C-WD.css”

/>

Finally, you can set xlink:show to none to indicate that the document contains no
information to help the application decide what, if anything, to do with the link. It’s
completely up to the application reading the document to make its own choices.

Regardless of what behavior xlink:show suggests, the browser or other applica-
tion reading the document is free to do whatever it wants when the link is acti-
vated, including nothing at all. For example, a browser with “Automatically load
images” turned off might well choose to ignore xlink:show=”embed”.

Like all attributes in valid documents, the xlink:show attribute must be declared
in a <!ATTLIST> declaration for the linking element, as in the following example:

<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show (new | replace | embed) #IMPLIED “replace”

>

This particular DTD fragment doesn’t allow the xlink:show attribute to have the
value other or none. That’s OK, too. Not all linking elements necessarily support all
possible values of xlink:show.

The xlink:actuate attribute
A linking element’s xlink:actuate attribute has four possible values:

✦ onRequest

✦ onLoad

✦ other

✦ none

The value onRequest specifies that the link should be traversed only when and if
the user requests it. This is the behavior of a normal HTML link. For example, this
link jumps to Powell’s bookstore when the user specifically requests that action:

<PURCHASE xlink:type=”simple” xlink:actuate=”onRequest”
xlink:href=”http://www.powells.com/”>

Buy from Powell’s
</PURCHASE>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 587

588 Part IV ✦ Supplemental Technologies

On the other hand, if the linking element’s xlink:actuate attribute is set to
onLoad, the link is traversed as soon as the document containing the link is loaded.
For example, you might set the actuate attribute to onLoad for an image or other
piece of external content that’s to be embedded in the linking document. This way,
the user doesn’t have to click the link to follow it. The code might look like this:

<IMAGE xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”onLoad” xlink:show=”embed”/>

If the linking element’s xlink:actuate attribute value is other, the application
should look at other markup, not defined by XLink, to decide when to traverse the
link. For instance, a browser might define a PRELOAD element as indicating that a doc-
ument or image is not used on this page, but will likely soon be used. For example,

<PRELOAD xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”other” xlink:show=”none”/>

Therefore, if the browser has extra bandwidth available while the user is reading
the page, it should load the document and cache it. Otherwise, it waits until the
user actually actuates the link. Applications that don’t recognize the PRELOAD ele-
ment would simply ignore it. (I should warn you that this is a purely hypothetical
example that is not yet and probably never will be implemented by any actual
browser.)

Finally, setting xlink:actuate to none leaves it completely up to the application to
decide when or if to traverse the link.

Like all attributes in valid documents, the xlink:actuate attribute must be
declared in the DTD in an <!ATTLIST> declaration for the linking elements in which
it appears, as in the following example:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show (new | replace | embed) #IMPLIED “embed”
xlink:actuate (onLoad) #FIXED “onLoad”

>

This particular DTD fragment doesn’t allow the xlink:actuate attribute to have
the values onRequest, other, or none. That’s OK, too. Not all linking elements nec-
essarily support all possible values of xlink:actuate.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 588

589Chapter 17 ✦ XLinks

Extended Links
Simple links behave more or less like the old-fashioned links you’re accustomed to
from HTML. A simple link connects one element in the linking document to one tar-
get document. Furthermore, the link is one-way, from the source to the target.

Extended links, however, go substantially beyond HTML links to include multidirec-
tional links between many documents and out-of-line links. An extended link consists
of a set of resources and a set of the connections between them. The resources may
be local (part of the extended link element) or remote (not part of the extended link
element, and generally, though not necessarily, in another document). Each resource

A Shortcut for the DTD

Because the attribute names and types are standardized, it’s often convenient to make the
attribute declarations a parameter entity reference and simply repeat that in the declaration of
each linking element if there is more than one linking element in a document. For example:

<!ENTITY % link-attributes
“xlink:type CDATA #FIXED ‘simple’
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

xmlns:xlink CDATA #FIXED ‘http://www.w3.org/1999/xlink’
xlink:href CDATA #REQUIRED
xlink:show (new|replace|embed|other|none) #IMPLIED ‘replace’
xlink:actuate (onRequest|onLoad|other|none) #IMPLIED ‘onRequest’
“
>

<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

%link-attributes;
>
<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR

%link-attributes;
>
<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

%link-attributes;
>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 589

590 Part IV ✦ Supplemental Technologies

may be either a target or a source of a link or both. If a link does not contain any
local resources, only remote resources, it’s called an out-of-line link.

In computer science terms, an extended link is a directed, labeled graph in which
the resources are vertices and the links between resources are edges. Thought of
abstractly like this, an extended link is really just an XML format for a directed
graph. The tricky part comes in deciding exactly what any particular application is
supposed to do with such a data structure. For now, I can only speculate about
what applications might do with extended links and what sort of user interfaces
they might provide.

An extended link is represented in an XML document as an element of some arbi-
trary type, such as COMPOSER or TEAM, that has an xlink:type attribute with the
value extended. As usual, the xlink prefix is associated with the http://www.w3.
org/1999/xlink namespace URI. For example:

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

...
</WEBSITE>

Extended Link Syntax
Extended links generally point to more than one target and from more than one
source. Both sources and targets are called by the more generic name resource. In
fact, whether a resource is a source or a target can change depending on which link
is being followed and in which direction.

Resources are divided into remote resources and local resources. A local resource is
actually contained inside the extended link element. It is the content of an element
of arbitrary type that has an xlink:type attribute with the value resource.

A remote resource exists outside the extended link element, very possibly in another
document. The extended link element contains locator child elements that point to
the remote resource. These are elements with any name that have an xlink:type
attribute with the value locator. Each locator element has an xlink:href attribute
whose value is a URI locating the remote resource.

The terminology is unnecessarily confusing here. Both xlink:type=”locator”
and xlink:type=”resource” elements locate resources. An xlink:type=
”locator” element locates a remote resource. An xlink:type=”resource”
element locates a local resource. Personally, I think xlink:type=”local” and
xlink:type=”remote” would be better choices here; but xlink:type=
”resource” and xlink:type=”locator” are what the standard has given us.

Caution

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 590

591Chapter 17 ✦ XLinks

For example, suppose you’re writing a page of links to Java sites. One of the sites
you want to link to is Cafe au Lait at http://www.cafeaulait.org/. However,
there are also three mirrors of that site in three other countries. Some people com-
ing to the site will want to access the home site, while others will want to go to one
of the mirror sites. With HTML links or simple XLinks, you have to write four differ-
ent links, one for the home site and one for each mirror, and let the user pick.
However, with an extended XLink, you can provide one link that connects all four
sites, as well as the page you’re linking from. The browser can choose the one
closest to the user when the link is activated (though I feel compelled to reiterate
here that browser support for this is strictly hypothetical). The four remote sites
are identified by locator elements. The text that will be shown to the reader of the
page is identified by a resource element. Here’s the XML:

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

<NAME xlink:type=”resource”>Cafe au Lait</NAME>
<HOMESITE xlink:type=”locator”

xlink:href=”http://www.cafeaulait.org/”/>
<MIRROR xlink:type=”locator”

xlink:href=”http://sunsite.kth.se/javafaq”/>
<MIRROR xlink:type=”locator”

xlink:href=”http://ibiblio.org/javafaq/”/>
<MIRROR xlink:type=”locator”

xlink:href=”http://sunsite.cnlab-switch.ch/javafaq”/>
</WEBSITE>

This WEBSITE element describes an extended link with five resources:

✦ The NAME element containing the text Cafe au Lait, a local resource

✦ The document at http://www.cafeaulait.org/, a remote resource

✦ The document at http://sunsite.kth.se/javafaq, a remote resource

✦ The document at http://ibiblio.org/javafaq/, a remote resource

✦ The document at http://sunsite.cnlab-switch.ch/javafaq, a remote
resource

Figure 17-2 shows the WEBSITE extended link element and five resources. The
WEBSITE element contains one resource and refers to the other four by URLs.
However, this just describes these resources. No connections are implied between
them.

Both the extended link element itself and the individual locator children may have
descriptive attributes, such as xlink:role and xlink:title. The xlink:role
and xlink:title attributes of the extended link element provide default roles and
titles for each of the individual locator child elements. Individual resource and loca-
tor elements may override these defaults with xlink:role and xlink:title
attributes of their own. Listing 17-1 demonstrates.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 591

592 Part IV ✦ Supplemental Technologies

Figure 17-2: An extended link with one local and four remote resources

Listing 17-1: An Extended Link with One Local and Four
Remote Resources

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource”
xlink:role=”http://www.cafeaulait.org/”>

Cafe au Lait
</NAME>
<HOMESITE xlink:type=”locator”

xlink:href=”http://www.cafeaulait.org/”
xlink:role=”http://www.cafeaulait.org/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:role=”http://sunsite.kth.se/”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait U.S. Mirror”
xlink:role=”http://ibiblio.org/”
xlink:href=”http://ibiblio.org/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:role=”http://sunsite.cnlab-switch.ch/”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq”/>

</WEBSITE>

http://www.cafeaulait.org/

WEBSITE

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq<NAME>Cafe au Lait</NAME>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 592

593Chapter 17 ✦ XLinks

As always, in valid documents, the XLink elements and all their possible attributes
must be declared in the DTD. For example, Listing 17-2 is a DTD that declares the
WEBSITE, HOMESITE, NAME, and MIRROR elements, as used in the preceding example,
as well as their attributes.

Listing 17-2: A DTD That Declares the WEBSITE, NAME,
HOMESITE, and MIRROR Elements

<!ELEMENT WEBSITE (NAME, HOMESITE, MIRROR*) >
<!ATTLIST WEBSITE
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type (extended) #FIXED “extended”
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED

>

<!ELEMENT NAME (#PCDATA)>
<!ATTLIST NAME

xlink:type (resource) #FIXED “resource”
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

>

<!ELEMENT HOMESITE (#PCDATA)>
<!ATTLIST HOMESITE

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

>

<!ELEMENT MIRROR (#PCDATA)>
<!ATTLIST MIRROR

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 593

594 Part IV ✦ Supplemental Technologies

Another Shortcut for the DTD

If you have many extended link, resource, and locator elements, it may be advantageous to
define the common attributes in parameter entities in the DTD, which you can reuse in
different elements. For example:

<!ENTITY % extended.att
“xlink:type CDATA #FIXED ‘extended’
xmlns:xlink CDATA #FIXED ‘http://www.w3.org/1999/xlink’
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED”

>

<!ENTITY % resource.att
“xlink:type (resource) #FIXED ‘resource’
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED”

>

<!ENTITY % locator.att
“xlink:type (locator) #FIXED ‘locator’
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED”

>

<!ELEMENT WEBSITE (HOMESITE, MIRROR*) >
<!ATTLIST WEBSITE

%extended.att;
>

<!ELEMENT NAME (#PCDATA)>
<!ATTLIST NAME

%resource.att;
>

<!ELEMENT HOMESITE (#PCDATA)>
<!ATTLIST HOMESITE

%locator.att;
>

<!ELEMENT MIRROR (#PCDATA)>
<!ATTLIST MIRROR

%locator.att;
>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 594

595Chapter 17 ✦ XLinks

Arcs
The xlink:show and xlink:actuate attributes of a simple link define how and
when a link is traversed. Extended links are a little more complicated because they
provide many different possible traversal paths. For example, in an extended link
with three resources, A, B, and C; there are nine different possible traversals:

✦ A ➪ A

✦ B ➪ B

✦ C ➪ C

✦ A ➪ B

✦ B ➪ A

✦ A ➪ C

✦ C ➪ A

✦ B ➪ C

✦ C ➪ B

Each of these possible paths between resources can have different rules for
when the link is traversed and what happens when it’s traversed. These potential
traversals are called arcs, and they’re represented in XML by elements that have an
xlink:type attribute with the value arc. Traversal rules are specified by attaching
xlink:actuate and xlink:show attributes to arc elements. These attributes have
the same values and meanings as they do for simple links. Applications can use arc
elements to determine which traversals are and are not allowed and when a link is
traversed.

An arc element also has an xlink:from attribute and an xlink:to attribute. The
xlink:from attribute says which resource or resources the arc comes from. The
xlink:to attribute says which resource or resources the arc goes to. They do this
by matching the value of the xlink:label attributes on the various resources in
the extended link. Each xlink:label should contain an XML name token. For
example, if the xlink:from attribute has the value A, and the xlink:to attribute
has the value B, the arc goes from the resource whose xlink:label has the value
A to the resource whose xlink:label has the value B. Listing 17-3 demonstrates
with labels that contain two-letter country codes and state abbreviations mapped
to the geographic location of each resource.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 595

596 Part IV ✦ Supplemental Technologies

Listing 17-3: An Extended Link with Arcs

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource” xlink:label=”source”>
Cafe au Lait

</NAME>

<HOMESITE xlink:type=”locator”
xlink:href=”http://www.cafeaulait.org/”
xlink:label=”ny”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:label=”se”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait U.S. Mirror”
xlink:label=”nc”
xlink:href=”http://ibiblio.org/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:label=”ch”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”ch” xlink:show=”replace”
xlink:actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”ny” xlink:show=”replace”
xlink:actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”se” xlink:show=”replace”
xlink:actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”nc” xlink:show=”replace”
xlink:actuate=”onRequest”/>

</WEBSITE>

The first CONNECTION element in the preceding listing defines an arc from the
resource with the label “source” to the resource with the label “ch.” The second
CONNECTION element defines an arc from the resource with the label “source” to the
resource with the label “ny,” and so on. Figure 17-3 diagrams this link with ovals
representing the resources and arrows representing the arcs. This is the same as
Figure 17-2, but now connections have been added between resources, as specified
by the arc elements.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 596

597Chapter 17 ✦ XLinks

Figure 17-3: An extended link with one local and four remote resources and arcs
going from the local resource to each of the remote resources

In this case, each arc element defines exactly one connection, because the target
and source labels aren’t shared by multiple resources. However, this isn’t necessar-
ily the case. Each arc goes from exactly one resource to exactly one other resource.
However, a single arc element may actually describe multiple arcs. If more than one
resource has the xlink:label A, xlink:from=”A” and xlink:to=”B” define mul-
tiple arcs from all resources with the label A to the resource with label B. If more
than one resource has the label B, arcs go from all resources with the label A to all
resources with label B. For example, consider the WEBSITE element in Listing 17-4.

Listing 17-4: Labels Can Be Shared between Resources

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource” xlink:label=”source”>
Cafe au Lait

</NAME>

<HOMESITE xlink:type=”locator”
xlink:href=”http://www.cafeaulait.org/”
xlink:label=”home”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:label=”mirror”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”

Continued

http://www.cafeaulait.org/

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq<NAME>Cafe au Lait</NAME>

WEBSITE

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 597

598 Part IV ✦ Supplemental Technologies

Listing 17-4 (continued)

xlink:title=”Cafe au Lait U.S. Mirror”
xlink:label=”mirror”
xlink:href=”http://ibiblio.org/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:label=”mirror”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”mirror” xlink:show=”replace”
xlink:actuate=”onRequest”/>

</WEBSITE>

Here, the “mirror” label is shared by three different elements, and the single arc ele-
ment defines three arcs: one from the source to the Swedish mirror, one from the
source to the Swiss mirror, and one from the source to the U.S. mirror. Figure 17-4
diagrams this. It’s very similar to Figure 17-3 except that the link between the NAME
element and the home site at http://www.cafeaulait.org/ is missing. Because
the HOMESITE has a different label, it isn’t connected by the single arc element.

Figure 17-4: An extended link with one local and four remote resources and three
arcs going from the local resource to each of the mirror resources

http://www.cafeaulait.org/

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq<NAME>Cafe au Lait</NAME>

WEBSITE

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 598

599Chapter 17 ✦ XLinks

Although I don’t recommend it, you can omit either the xlink:from attribute, the
xlink:to attribute, or both from an arc element. In this case, all resources partici-
pating in the link, both local and remote, take the place of the missing attribute. For
example, consider the WEBSITE element in Listing 17-5.

Listing 17-5: An Omitted xlink:to Attribute

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource” xlink:label=”source”>
Cafe au Lait

</NAME>

<HOMESITE xlink:type=”locator”
xlink:href=”http://www.cafeaulait.org/”
xlink:label=”ny”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:label=”se”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait U.S. Mirror”
xlink:label=”nc”
xlink:href=”http://ibiblio.org/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:label=”ch”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:show=”replace” xlink:actuate=”onRequest”/>

</WEBSITE>

Its single arc element is missing the xlink:to attribute. Consequently, this
extended link includes five arcs — one from the source to us, three from the source
to each of the mirrors, and one from the source to itself. All arcs start at the NAME
element because the xlink:from attribute is present and so specifies. Figure 17-5
diagrams this. It’s very similar to Figure 17-3 except that there’s now an extra circu-
lar arc from the NAME element to itself.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 599

600 Part IV ✦ Supplemental Technologies

Figure 17-5: An extended link with one local and four remote resources and five
arcs going from the local resource to each of the resources, including to itself

As usual, to be valid, all the attributes and elements must be fully declared in the
document’s DTD. Listing 17-6 is a DTD fragment that describes the preceding
WEBSITE element.

Listing 17-6: A DTD for the WEBSITE Extended Link

<!ELEMENT WEBSITE (HOMESITE, MIRROR*, CONNECTION*) >
<!ATTLIST WEBSITE
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type (extended) #FIXED “extended”
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED

>

<!ELEMENT HOMESITE (#PCDATA)>
<!ATTLIST HOMESITE

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:label CDATA #IMPLIED
xlink:role CDATA #REQUIRED
xlink:title CDATA #IMPLIED

>

<!ELEMENT MIRROR (#PCDATA)>
<!ATTLIST MIRROR

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED

http://www.cafeaulait.org/

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq<NAME>Cafe au Lait</NAME>

WEBSITE

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 600

601Chapter 17 ✦ XLinks

xlink:label CDATA #IMPLIED
xlink:role CDATA #REQUIRED
xlink:title CDATA #IMPLIED

>

<!ELEMENT CONNECTION EMPTY>
<!ATTLIST CONNECTION
xlink:type (arc) #FIXED “arc”
xlink:from CDATA #IMPLIED
xlink:to CDATA #IMPLIED
xlink:show (replace) #IMPLIED “replace”
xlink:actuate (onRequest | onLoad) #IMPLIED “onRequest”

>

Out-of-Line Links
Inline links, such as the familiar A element from HTML, are themselves part of the
source or target of the link. Generally, they link from the document that they’re part
of to some other document. However, they can also link to a different part of the
same document. The source of the link, that is the blue underlined text, is included
inside the A element that defines the link. Most simple links are inline.

Extended links can also be out-of-line. An out-of-line link does not contain any part
of any of the resources it connects. Instead, the links are stored in a separate docu-
ment called the linkbase. For example, you might use a linkbase to maintain a slide
show where each slide requires next and previous links. By changing the order of
the slides in the linkbase, you can change the targets of the previous and next links
on each page without having to edit the slides themselves.

Out-of-line links also allow you to add links to and from documents that can’t be
modified, such as a page on someone else’s web site. For example, media watchdog
groups, such as FAIR (http://www.fair.org/) and AIM (http://www.aim.org/),
could put out-of-line links from the New York Times editorial page to analyses of
those editorials. The links would only be visible to users who loaded the right
linkbase, however.

Finally, out-of-line links allow you to add links to different parts of non-XML content.
For instance, you could link to the third minute of a QuickTime movie, even though
the movie doesn’t contain any attributes or elements that would normally be used
to identify the linked position.

For example, a list of mirror sites for a document, such as Listing 17-5, might be
stored in a separate file on a web server in a known location where browsers can
find and query it to determine the nearest mirror of a page they’re looking for. The
out-of-lineness, however, is that this element does not appear in the document from
which the link is activated.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 601

602 Part IV ✦ Supplemental Technologies

This expands the abstraction of style sheets into the linking domain. A style sheet is
completely separate from the document it describes, and yet provides rules that
modify how the document is presented to the reader. A linkbase containing out-of-line
links is separate from the documents it connects, yet it provides the necessary links
to the reader. This has several advantages, including keeping more presentation-
oriented markup separate from the document and allowing the linking of read-only
documents.

I feel compelled to note that application support for out-of-line links is at best
hypothetical at the time of this writing. Although I can show you how to create
such links, their actual implementation and support is almost certainly some time
away. Some of the details remain to be defined and likely will be implemented in
vendor-specific fashions, at least initially. Still, they hold the promise of enabling
more sophisticated linking than can be achieved with HTML.

For example, I’ve put the notes for a Java course I teach on my web site. Figure 17-6
shows the introductory page. This particular course consists of 13 classes, each of
which contains between 30 and 60 individual pages of notes. A table of contents
page for each class is then provided that links to each note page used in that class.
Each of the several hundred pages making up the entire site has links to the previ-
ous document (Previous link), the next document (Next link), and the table of con-
tents (Top link) for the week, as shown in Figure 17-7. Putting it all together, this
amounts to more than a thousand interconnections among this set of documents.

Figure 17-6: The introductory page for my class web site shows
13 weeks of lecture notes.

Caution

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 602

603Chapter 17 ✦ XLinks

Figure 17-7: One page of lecture notes displaying the Previous,
Next, and Top links

The possible interconnections grow exponentially with the number of documents.
Every time a document is moved, renamed, or divided into smaller pieces, the links
need to be adjusted on that page, on the page before it and after it in the set, and
on the table of contents for the week. Quite frankly, this is a lot more work than it
should be, and it tends to discourage necessary modifications and updates to the
course notes.

The sensible thing to do, if HTML supported it, would be to store the connections in a
separate document. Pages could then be reorganized by editing that one document.
HTML links don’t support this, but extended XLinks do. Listing 17-7 demonstrates
one such document. This document describes links from the main index page to the
individual classes and vice versa.

Listing 17-7: An Out-of-Line Extended Link

<COURSE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

<TOC xlink:type=”locator” xlink:href=”index.xml”
xlink:label=”index”/>

Continued

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 603

604 Part IV ✦ Supplemental Technologies

Listing 17-7 (continued)

<CLASS xlink:type=”locator” xlink:href=”week1.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week2.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week3.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week4.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week5.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week6.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week7.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week8.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week9.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week10.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week11.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week12.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week13.xml”
xlink:label=”class”/>

<CONNECTION xlink:type=”arc” from=”index” to=”class”/>
<CONNECTION xlink:type=”arc” from=”class” to=”index”/>

</COURSE>

Listing 17-8 demonstrates another possible out-of-line extended link. This one pro-
vides previous and next links between the 13 classes.

Listing 17-8: An Out-of-Line Extended Link

<COURSE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

<CLASS xlink:type=”locator” xlink:href=”week1.xml”
xlink:label=”1”/>

<CLASS xlink:type=”locator” xlink:href=”week2.xml”
xlink:label=”2”/>

<CLASS xlink:type=”locator” xlink:href=”week3.xml”
xlink:label=”3”/>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 604

605Chapter 17 ✦ XLinks

<CLASS xlink:type=”locator” xlink:href=”week4.xml”
xlink:label=”4”/>

<CLASS xlink:type=”locator” xlink:href=”week5.xml”
xlink:label=”5”/>

<CLASS xlink:type=”locator” xlink:href=”week6.xml”
xlink:label=”6”/>

<CLASS xlink:type=”locator” xlink:href=”week7.xml”
xlink:label=”7”/>

<CLASS xlink:type=”locator” xlink:href=”week8.xml”
xlink:label=”8”/>

<CLASS xlink:type=”locator” xlink:href=”week9.xml”
xlink:label=”9”/>

<CLASS xlink:type=”locator” xlink:href=”week10.xml”
xlink:label=”10”/>

<CLASS xlink:type=”locator” xlink:href=”week11.xml”
xlink:label=”11”/>

<CLASS xlink:type=”locator” xlink:href=”week12.xml”
xlink:label=”12”/>

<CLASS xlink:type=”locator” xlink:href=”week13.xml”
xlink:label=”13”/>

<!-- Previous Links -->
<CONNECTION xlink:type=”arc” xlink:from=”2” xlink:to=”1”/>
<CONNECTION xlink:type=”arc” xlink:from=”3” xlink:to=”2”/>
<CONNECTION xlink:type=”arc” xlink:from=”4” xlink:to=”3”/>
<CONNECTION xlink:type=”arc” xlink:from=”5” xlink:to=”4”/>
<CONNECTION xlink:type=”arc” xlink:from=”6” xlink:to=”5”/>
<CONNECTION xlink:type=”arc” xlink:from=”7” xlink:to=”6”/>
<CONNECTION xlink:type=”arc” xlink:from=”8” xlink:to=”7”/>
<CONNECTION xlink:type=”arc” xlink:from=”9” xlink:to=”8”/>
<CONNECTION xlink:type=”arc” xlink:from=”10” xlink:to=”9”/>
<CONNECTION xlink:type=”arc” xlink:from=”11” xlink:to=”10”/>
<CONNECTION xlink:type=”arc” xlink:from=”12” xlink:to=”11”/>
<CONNECTION xlink:type=”arc” xlink:from=”13” xlink:to=”12”/>

<!-- Next Links -->
<CONNECTION xlink:type=”arc” xlink:from=”1” xlink:to=”2”/>
<CONNECTION xlink:type=”arc” xlink:from=”2” xlink:to=”3”/>
<CONNECTION xlink:type=”arc” xlink:from=”3” xlink:to=”4”/>
<CONNECTION xlink:type=”arc” xlink:from=”4” xlink:to=”5”/>
<CONNECTION xlink:type=”arc” xlink:from=”5” xlink:to=”6”/>
<CONNECTION xlink:type=”arc” xlink:from=”6” xlink:to=”7”/>
<CONNECTION xlink:type=”arc” xlink:from=”7” xlink:to=”8”/>
<CONNECTION xlink:type=”arc” xlink:from=”8” xlink:to=”9”/>
<CONNECTION xlink:type=”arc” xlink:from=”9” xlink:to=”10”/>
<CONNECTION xlink:type=”arc” xlink:from=”10” xlink:to=”11”/>
<CONNECTION xlink:type=”arc” xlink:from=”11” xlink:to=”12”/>
<CONNECTION xlink:type=”arc” xlink:from=”12” xlink:to=”13”/>

</COURSE>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 605

606 Part IV ✦ Supplemental Technologies

Now the topics can be reordered simply by rearranging what’s connected to what in
the out-of-line extended link. The course notes themselves don’t have to be touched.
However, a couple of pieces are missing from this puzzle. The first is some notion of
how or where in the individual week documents the links will be displayed. It would be
easy enough to add <PREVIOUS/> and <NEXT/> tags to the individual week pages. The
XPointers you’ll learn about in the next chapter would allow you to select these ele-
ments in particular as the sources of outgoing links rather than the entire document.

A single XML document may contain multiple out-of-line extended links. Listings 17-7
and 17-8 could be combined into a single document. However, the XLink specifica-
tion is relatively silent on exactly what the format of such a compound document
should look like. About all it says is that such a document must be a well-formed
XML document. An XLink processor would presumably read the entire document
and extract and store any extended links it found there.

The final thing that’s missing is some way for a browser or other application that’s
reading the individual pages to be informed that there is a separate linkbase elsewhere
that it should read and parse so that it can show the links to the user. This is probably
the area in which the specification is weakest. Ideally, it would be handled through
some external mechanism such as HTTP headers. However, the only currently defined
way to do this (which still isn’t supported by any browsers or other software) is to
add an extended link inside the documents the out-of-line link connects.

One of the arcs in this extended link has an xlink:arcrole attribute with the
value http://www.w3.org/1999/xlink/properties/linkbase. The xlink:to
attribute of this arc element should identify a locator element that gives the URL of
the linkbase. The xlink:actuate attribute of the arc determines whether the links
are loaded automatically or whether a user request is required. For example, if
Listing 17-7 and Listing 17-8 were found in a file at the URL http://ibiblio.org/
javafaq/course/courselinks.xml, this element could be included in the main
page for the Java course notes:

<LINKBASE xlink:type=”xlink:extended”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<SOURCE xlink:type=”resource” xlink:label=”source”/>
<LINKS xlink:type=”locator” xlink:label=”linkbase”

xlink:href=
“http://ibiblio.org/javafaq/course/courselinks.xml”/>

<LOAD xlink:type=”arc”
xlink:arcrole=
“http://www.w3.org/1999/xlink/properties/linkbase”
xlink:from=”source” xlink:to=”linkbase”
xlink:actuate=”onLoad” />

</LINKBASE>

Of course, the problem with this approach is that it requires you to modify the doc-
uments before you can link them. At least in this case, however, it might be enough
for the browser to load one such document to find the linkbase, so you may not
need to modify every document the linkbase connects.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 606

607Chapter 17 ✦ XLinks

XML Base
Documents on the Web have an annoying tendency to move. Authors edit pages on
their local systems or staging servers before uploading them to the server. Readers
save copies on their hard drives. Fans make copies of entire sites, both licit and
illicit. Google caches almost the entire Web on its servers. Given this, authors really
can’t assume that readers get documents from the place the authors put them. It’s
entirely possible that a document will be somewhere else. For example, I used
AltaVista to search for a phrase in a document I published on my web site and
found it had somehow duplicated itself onto 12 different servers in five different
countries, my copyright notices notwithstanding.

Given all this and more, using relative URLs in a web document is a little risky; and
that’s true whether the URLs are stored in HTML, XML, XHTML, XLinks, XPointers,
XInclude, RDF, schemas, RDDL, or any of the other myriad languages that some-
where contain URLs. HTML solves this problem by allowing an empty BASE element
in the HEAD that identifies the base URL via an HREF attribute.

For example, Listing 17-9 is a very simple home page for a fictional San Francisco
plant nursery called God’s Green Earth. This page is normally found at http://
www.geocities.com/godsgreenearthsf/. Because of the BASE element in the
HEAD, it has the base URL http://www.geocities.com/godsgreenearthsf/ even
if you load it from a copy saved on your local hard drive. The logo image is loaded
from GeoCities, even if the page has been moved to a different server. Links that point
to relative URLs are relative to http://www.geocities.com/godsgreenearthsf/.
Indeed, anything in this page that uses a relative URL will be loaded from http://
www.geocities.com.

Listing 17-9: Setting the Base URL with a
BASE Element in HTML

<HTML>
<HEAD>
<TITLE>God’s Green Earth</TITLE>
<BASE HREF=”http://www.geocities.com/godsgreenearthsf/” />

</HEAD>
<BODY>
<H1>God’s Green Earth</H1>

Flowers
Seeds
Fertilizer
Sod

</BODY>

</HTML>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 607

608 Part IV ✦ Supplemental Technologies

There are five relative URLs in Listing 17-9, one in an IMG element and four in A ele-
ments. When any of these links are activated, the relative URL is combined with the
absolute URL in the base before the link is followed. The five URLs in Listing 17-9
become the following:

✦ http://www.geocities.com/clipart/m/s/appleblossoms.gif

✦ http://www.geocities.com/godsgreenearthsf/flowers.htm

✦ http://www.geocities.com/godsgreenearthsf/seeds.html

✦ http://www.geocities.com/godsgreenearthsf/fertilizer.html

✦ http://www.geocities.com/godsgreenearthsf/sod.html

The first URL in this list comes from GeoCities, but not from the godsgreenearthsf
directory, because the relative URL in the IMG element begins with a forward slash
and therefore starts from the root of the web server. It’s relative to the host but not
the directory. The remaining four URLs do not begin with a forward slash and all are
loaded from the godsgreenearthsf directory on www.geocities.com.

Similar approaches work in XHTML, but in most XML-based vocabularies, there’s
no convenient place to put a BASE element. The BASE element could even be
needed for something else entirely, such as the location of a military base or the
length of the base of a triangle.

Instead, in XML, you can use an xml:base attribute to establish a base URL. The
value of this attribute contains the base URL for that element and all its descen-
dants. For example, Listing 17-10 also has the base URL http://www.geocities.
com/godsgreenearthsf/. There are five XLinks in this document. Each XLink
contains a relative URL, and each is relative to http://www.geocities.com/
godsgreenearthsf/. Again, anything in this page that uses a relative URL will be
loaded from http://www.geocities.com no matter where the page itself is found.

Listing 17-10: Setting the Base URL with an xml:base
Attribute in XML

<?xml version=”1.0”?>
<BUSINESS xmlns:xlink=”http://www.w3.org/1999/xlink”

xml:base=”http://www.geocities.com/godsgreenearthsf/”>
<NAME>God’s Green Earth</NAME>
<LOGO xlink:type=”simple”

xlink:show=”embed”
xlink:actuate=”onLoad”
xlink:href=”/clipart/m/s/appleblossoms.gif” />

<PRODUCTS>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”flowers.html”>Flowers</PRODUCT>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 608

609Chapter 17 ✦ XLinks

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”seeds.html”>Seeds</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”fertilizer.html”>

Fertilizer
</PRODUCT>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”sod.html”>Sod</PRODUCT>

</PRODUCTS>
</BUSINESS>

When activated, the five XLinks in Listing 17-10 resolve to the same five URLs as
before:

✦ http://www.geocities.com/clipart/m/s/appleblossoms.gif

✦ http://www.geocities.com/godsgreenearthsf/flowers.htm

✦ http://www.geocities.com/godsgreenearthsf/seeds.html

✦ http://www.geocities.com/godsgreenearthsf/fertilizer.html

✦ http://www.geocities.com/godsgreenearthsf/sod.html

In Listing 17-10, all the URLs the base is attached to are in XLinks. The xml:base
attribute is more general than that, however. It also applies to URLs found in
XInclude include elements, processing instructions, W3C Schema Language
schemaLocation attributes, and more.

The one common kind of URL that xml:base does not apply to is the namespace
URL. xml:base attributes are not considered when processing a namespace URL,
even a relative one. However, relative namespace URLs are highly discouraged, and
you should not use them in your own work, so this shouldn’t be much of an issue in
practice.

Listing 17-10 is well formed and namespace well formed, although the latter may be a
little surprising because Listing 17-10 appears to be using an undeclared namespace
prefix, xml. Nowhere do you see an xmlns:xml declaration that binds the prefix xml
to some namespace URI. This is because the prefix xml is special. Of all possible
namespace prefixes, only this one does not need to be declared. All namespace-aware
parsers prebind it to the URI http://www.w3.org/XML/1998/namespace. This is a
special case accounted for in the namespaces specification to allow namespace-
aware parsers to be backwardly compatible with documents that use the xml:space

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 609

610 Part IV ✦ Supplemental Technologies

and xml:lang attributes defined in XML 1.0. You can declare the xml prefix if you feel
a need to, but if you do it must be set to that URL, like this:

<BUSINESS xmlns:xml=”http://www.w3.org/XML/1998/namespace”
xml:base=”http://www.geocities.com/godsgreenearthsf/”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

Most authors don’t bother to declare it.

Listing 17-10 is not valid because it doesn’t have a document type declaration, but
it could be valid if you provided one. The DTD would have to declare the xml:base
attribute just like any other attribute:

<!ATTLIST BUSINESS
xml:base CDATA #IMPLIED
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”

>

Most commonly, the xml:base attribute is attached to the root element so that it
establishes a base URL for the entire document. However, it can be applied to non-
root elements, in which case it only applies to the element and its descendants, and
not to other elements elsewhere in the tree. For example, Listing 17-11 moves it to
the PRODUCTS element:

Listing 17-11: An xml:base Attribute on a Nonroot Element

<?xml version=”1.0”?>
<BUSINESS xmlns:xlink=”http://www.w3.org/1999/xlink”>

<NAME>God’s Green Earth</NAME>
<LOGO xlink:type=”simple”

xlink:show=”embed”
xlink:actuate=”onLoad”
xlink:href=”/clipart/m/s/appleblossoms.gif” />

<PRODUCTS
xml:base=”http://www.geocities.com/godsgreenearthsf/”>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”flowers.html”>Flowers</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”seeds.html”>Seeds</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”fertilizer.html”>

Fertilizer
</PRODUCT>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 610

611Chapter 17 ✦ XLinks

xlink:actuate=”onRequest”
xlink:href=”sod.html”>Sod</PRODUCT>

</PRODUCTS>
</BUSINESS>

In this position, it only applies to the PRODUCT links. It does not apply to the LOGO
link. The logo URL /clipart/m/s/appleblossoms.gif is now relative to the phys-
ical location of this document. A different image will load if you pull it in from a
local drive than from one on a remote web server.

There can even be multiple xml:base attributes on different elements in the docu-
ment, so that different elements are relative to different URLs. If an element has
multiple ancestors with xml:base attributes, the closest one takes precedence.
Consider Listing 17-12. Here the root element sets the base URL to http://www.
geocities.com/godsgreenearthsf, and the PRODUCTS element sets the base URL
to http://www.seedgrow.com.

Listing 17-12: Multiple xml:base Attributes

<?xml version=”1.0”?>
<BUSINESS xmlns:xlink=”http://www.w3.org/1999/xlink”

xml:base=”http://www.geocities.com/godsgreenearthsf/”>
<NAME>God’s Green Earth</NAME>
<LOGO xlink:type=”simple”

xlink:show=”embed”
xlink:actuate=”onLoad”
xlink:href=”/clipart/m/s/appleblossoms.gif” />

<PRODUCTS xml:base=”http://www.seedgrow.com/”>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”flowers.html”>Flowers</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”seeds.html”>Seeds</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”fertilizer.html”>

Fertilizer
</PRODUCT>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”sod.html”>Sod</PRODUCT>

</PRODUCTS>
</BUSINESS>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 611

612 Part IV ✦ Supplemental Technologies

When activated, the five XLinks in Listing 17-12 resolve to these five URLs:

✦ http://www.geocities.com/clipart/m/s/appleblossoms.gif

✦ http://www.seedgrow.com/flowers.htm

✦ http://www.seedgrow.com/seeds.html

✦ http://www.seedgrow.com/fertilizer.html

✦ http://www.seedgrow.com/sod.html

On occasion, it might be useful to use relative URLs in xml:base attributes. In this
case, that URL is itself relative to the URL of the closest ancestor with an xml:base
attribute. If there is no such ancestor, the URL is relative to the actual URL of the
document. For example, Listing 17-13 sets the base URL of the root element to
http://www.geocities.com/godsgreenearthsf/ as before. However, an
xml:base attribute on the PRODUCTS element sets the base URL to products.

Listing 17-13: Relative URLs in xml:base Attributes

<?xml version=”1.0”?>
<BUSINESS xmlns:xlink=”http://www.w3.org/1999/xlink”

xml:base=”http://www.geocities.com/godsgreenearthsf/”>
<NAME>God’s Green Earth</NAME>
<LOGO xlink:type=”simple”

xlink:show=”embed”
xlink:actuate=”onLoad”
xlink:href=”/clipart/m/s/appleblossoms.gif” />

<PRODUCTS xml:base=”products”>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”flowers.html”>Flowers</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”seeds.html”>Seeds</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”fertilizer.html”>

Fertilizer
</PRODUCT>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”sod.html”>Sod</PRODUCT>

</PRODUCTS>
</BUSINESS>

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 612

613Chapter 17 ✦ XLinks

When activated, the five XLinks in Listing 17-13 resolve to these five URLs:

✦ http://www.geocities.com/clipart/m/s/appleblossoms.gif

✦ http://www.geocities.com/godsgreenearthsf/products/flowers.htm

✦ http://www.geocities.com/godsgreenearthsf/products/seeds.html

✦ http://www.geocities.com/godsgreenearthsf/products/fertilizer.
html

✦ http://www.geocities.com/godsgreenearthsf/products/sod.html

The disadvantage to the element-wide scope of xml:base, as opposed to the
document-wide scope of the BASE element in HTML, is that the base URL can never
be applied to things outside the root element. Specifically, it does not change the
location of a style sheet referenced in an xml-stylesheet processing instruction.
For example, consider Listing 17-14. The browser will look for the document
business.css in the same directory in which it found the XML document,
regardless of what xml:base says.

Listing 17-14: URLs Outside the Root Element

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”business.css”?>
<BUSINESS xmlns:xlink=”http://www.w3.org/1999/xlink”
xml:base=”http://www.geocities.com/godsgreenearthsf/”>
<NAME>God’s Green Earth</NAME>
<LOGO xlink:type=”simple”

xlink:show=”embed”
xlink:actuate=”onLoad”
xlink:href=”/clipart/m/s/appleblossoms.gif” />

<PRODUCTS>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”flowers.html”>Flowers</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”seeds.html”>Seeds</PRODUCT>

<PRODUCT xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:href=”fertilizer.html”>

Fertilizer
</PRODUCT>
<PRODUCT xlink:type=”simple”

xlink:show=”replace”

Continued

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 613

614 Part IV ✦ Supplemental Technologies

Listing 17-14 (continued)

xlink:actuate=”onRequest”
xlink:href=”sod.html”>Sod</PRODUCT>

</PRODUCTS>
</BUSINESS>

Likewise, xml:base has no effect on URIs used inside DTDs and document-type
declarations, whether in the internal or external DTD subsets.

Summary
In this chapter, you learned about XLinks and XML Base. In particular, you learned
the following:

✦ XLinks can do everything HTML links can do and quite a bit more, but they
aren’t well supported by current applications.

✦ XLink elements are all defined by attributes attached to the existing elements
in other XML applications.

✦ XLink attributes of all types are placed in the http://www.w3.org/1999/
xlink namespace, normally with the xlink prefix.

✦ Simple links behave much like HTML links, but they are not restricted to a
single <A> tag.

✦ XLink elements are identified by xlink:type attributes.

✦ Simple link elements are identified by xlink:type attributes with the value
simple.

✦ Simple link elements have an xlink:href attribute whose value is the URI the
link points to.

✦ Linking elements can describe the resource they’re linking to with
xlink:title and xlink:role attributes. The value of the xlink:role
attribute must be a URI.

✦ Linking elements can use the xlink:show attribute to tell the application how
the content should be displayed when the link is activated, for example, by
opening a new window.

✦ Linking elements can use the xlink:actuate attribute to tell the application
whether the link should be traversed without a specific user request.

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 614

615Chapter 17 ✦ XLinks

✦ Extended link elements are identified by xlink:type attributes with the value
extended.

✦ Extended links can contain multiple locators, resources, and arcs.

✦ Local resource elements are identified by xlink:type attributes with the
value resource. The resource is the content of the resource element.

✦ Remote resource locator elements are identified by xlink:type attributes
with the value locator.

✦ A locator element has an xlink:href attribute whose value is the URI of the
resource it locates.

✦ Both resource and locator elements have an xlink:label attribute that
contains an XML name token as a label for the resource.

✦ Arc elements are identified by xlink:type attributes with the value arc.

✦ Arc elements have xlink:from and xlink:to attributes that identify the
resources they connect by their labels.

✦ Arc elements may have xlink:show and xlink:actuate attributes to deter-
mine when and how traversal of the link occurs.

✦ An out-of-line link is a link that does not contain any local resources.

✦ A linkbase is a document containing one or more out-of-line, extended link
elements.

✦ A linkbase is found when a document with an extended link whose xlink:
arcrole has the value http://www.w3.org/1999/xlink/properties/
linkbase is read.

✦ An xml:base attribute on any element sets the URL against which relative
URLs in that element and its descendants are relative.

In Chapter 18, you learn how you can use XPointers to link not only to remote docu-
ments, but also to very specific elements in remote documents.

✦ ✦ ✦

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 615

22 549863 Ch17.qxd 1/28/04 9:48 AM Page 616

XPointers

XPointer, the XML Pointer Language, defines an address-
ing scheme for individual parts of an XML document.

These addresses can be used by any application that needs
to identify parts of or locations in an XML document. For
example, an XML editor could use an XPointer to identify the
current position of the insertion point or the range of the
selection. An XInclude processor can use an XPointer to deter-
mine what part of a document to include. You can also add an
XPointer fragment identifier to the URI in an XLink to change it
into a URI reference that locates one particular element in the
targeted document. XPointers use the same XPath syntax that
you’re familiar with from XSLT to identify the parts of the docu-
ment they point to, along with a few additional pieces.

No mainstream browsers have any support for XPointers.
You can use URLs with XPointer fragment identifiers in
web pages, but browsers will mostly ignore them.

Why XPointers?
Traditional URLs are simple and easy to use, but they’re also
quite limited. For one thing, a URL only points at a single, com-
plete document. More granularity than that, such as linking to
the third sentence of the seventeenth paragraph in a docu-
ment, requires the author of the targeted document to manu-
ally insert named anchors at the targeted location. The author
of the document doing the linking can’t do this unless he or
she also has write access to the document being linked to.
Even if the author doing the linking can insert named anchors
into the targeted document, it’s almost always inconvenient.

It would be more useful to be able to link to a particular ele-
ment or group of elements on a page without having to change
the document you’re linking to. For example, given a large doc-
ument such as the television listings of Chapters 4 and 5, you
might want to link to only one station or one show. There are
several parts to this problem. The first part is addressing the
individual elements. This is the part that XPointers solve.
XPointers enable you to target a given element by number,
name, type, or relation to other elements in the document.

Caution

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Why XPointers?

XPointer examples

Location paths, steps,
and sets

The root node

Axes

Node tests

Predicates

Functions that return
node-sets

Points

Ranges

Child sequences

✦ ✦ ✦ ✦

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 617

618 Part IV ✦ Supplemental Technologies

The second part of the problem is the protocol by which a browser asks a web
server to send only part of a document rather than the whole thing. This is an area
of active research. More work is needed. XPointers do little to solve this problem,
except for providing a foundation on which such systems can build. For example,
the best efforts to date are the so-called byte range extensions to HTTP available in
HTTP 1.1. So far, these have not achieved widespread adoption, mostly because web
authors aren’t comfortable specifying a byte range in a document. Furthermore, byte
ranges are extremely fragile. Trivial edits to a document, even simple reformatting,
can destroy byte range links. HTTP 1.1 does allow other range units besides raw
bytes (for example, XML elements), but does not require web servers or browsers to
support such units.

For the moment, therefore, an XPointer can be used as an index into a complete
document, the whole of which is loaded and then positioned at the location identi-
fied by the XPointer, and even this is more than most browsers can handle. In the
long term, extensions to XML, XLink, HTTP, and other protocols may allow more
sophisticated uses of XPointers. For example, XInclude will let you quote a remote
document by using an XPointer to tell browsers where to copy the quote in the
original document, rather than retyping the text of the quote. You could include
cross-references inside a document that automatically update themselves as the
document is revised. These uses, however, will have to wait for the development of
several next-generation technologies. For now, you must be content with precisely
identifying the part of a document you want to jump to when following an XLink.

XPointer Examples
HTML links generally point to one particular document. Additional granularity —
that is, pointing to a particular section, chapter, or paragraph of a particular
document — isn’t well supported. Provided you control both the linking and the
linked document, you can insert a named anchor into an HTML file at the position
to which you want to link, as in the following example:

<H2>XPointer Examples</H2>

You can then link to this position in the file by adding a # and the name of the
anchor to the URL. The piece of the URL after the # is called the fragment identifier.
For example, in this link the fragment identifier is xtocid20.2:

XPointer Examples

A URL with a fragment identifier is technically a URL reference, not a URL; but out-
side of specification documents, the distinction is almost never made, nor does it
matter.

Note

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 618

619Chapter 18 ✦ XPointers

However, this solution is a kludge. It’s not always possible to modify the target doc-
ument so that the source document can link to it. The target document might be on
a different server controlled by someone other than the author of the source docu-
ment. And the author of the target document might change or move it without noti-
fying the author of the source.

Furthermore, named anchors violate the principle of separating markup from con-
tent. Placing a named anchor in a document says nothing about the document or its
content. It’s just a marker for other documents to refer to. It adds nothing to the
document’s own content.

XPointers allow much more sophisticated connections between parts of docu-
ments. An XPointer can refer to any element of a document; to the first, second, or
seventeenth element; to the seventh element named P; to the first element that’s a
child of the second DIV element; and so on. XPointers provide precisely targeted
addresses of particular parts of documents. They do not require the targeted docu-
ment to contain additional markup just so its individual pieces can be linked to.

Furthermore, unlike HTML anchors, XPointers don’t point to just a single point in a
document. They can point to entire elements, to noncontiguous sets of elements, or
to a range of text between two points. Thus, you can use an XPointer to select a par-
ticular part of a document, perhaps so it can be copied or loaded into a program.

Here are a few examples of XPointers:

xpointer(id(“ebnf”))
xpointer(descendant::language[position()=2])
ebnf
xpointer(/child::spec/child::body/child::*/child::language[2])
xpointer(/spec/body/*/language[2])
element(/1/14/2)
xpointer(id(“ebnf”))xpointer(id(“EBNF”))

Each of these seven XPointers selects a particular element in a document. The first
finds the element with the ID ebnf. The second finds the second language element
in the document. The third is a shorthand form of finding the element with the ID
ebnf. The fourth and fifth both specify the second language child element of any
child element of the body child elements of the spec child of the root node. The
sixth finds the second child element of the fourteenth child element of the root ele-
ment. The final one also points to the element with the ID ebnf. However, if no such
element is present, it then finds the element with the ID EBNF.

The document is not specified by the XPointer; rather, the URI that precedes the
XPointer specifies the document. This URI may be contained in an XLink linking ele-
ment or in anything else that contains a URI pointing at an XML document. The
XLinks and URIs you saw in Chapter 17 did not contain XPointers, but it isn’t hard
to add XPointers to them. Most of the time, you simply append the XPointer to the

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 619

620 Part IV ✦ Supplemental Technologies

URI separated by a #, just as you do with named anchors in HTML. For example, the
preceding list of XPointers could be suffixed to URLs and come out looking similar
to the following:

http://www.w3.org/TR/1998/REC-xml-19980210.xml#xpointer(id(“ebnf”))
http://www.w3.org/TR/1998/REC-xml-19980210.xml#xpointer(
descendant::language[position()=2])
http://www.w3.org/TR/1998/REC-xml-19980210.xml#ebnf
http://www.w3.org/TR/1998/REC-xml-19980210.xml#xpointer(
/child::spec/child::body/child::*/child::language[2])
http://www.w3.org/TR/1998/REC-xml-19980210.xml#xpointer(
/spec/body/*/language[2])
http://www.w3.org/TR/1998/REC-xml-19980210.xml#element(/1/14/2)
http://www.w3.org/TR/1998/REC-xml-19980210.xml#xpointer(
id(“ebnf”))xpointer(id(“EBNF”))

In fact, these URIs are just six different ways of pointing to the same element of the
document at http://www.w3.org/TR/1998/REC-xml-19980210.xml. Often, such
URIs are values of the xlink:href attribute of a linking element, as in the following
example:

<SPECIFICATION xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple” xlink:href=
“http://www.w3.org/TR/1998/REC-xml-19980210.xml#xpointer(id(‘ebnf’))”
xlink:actuate=”onRequest” xlink:show=”replace”>
Extensible Markup Language (XML) 1.0

</SPECIFICATION>

XPointers don’t have any special exemptions from the rules of URIs. In particular, if
the XPointer contains characters that are not allowed in URLs such as Ω or ^, these
characters must be encoded in UTF-8, and the bytes of the UTF-8 encoding must be
hex-escaped using a percent sign. For example, the capital Greek letter omega is
Unicode character 3A9 in hexadecimal. When encoded in UTF-8, this character is
the two bytes 206 and 169. In hexadecimal, that’s CE and A9. Therefore, the
XPointer xpointer(id(“Ω”)) would be encoded in a URL as
xpointer(id(“%CE%A9”)).

✦ The caret is Unicode character 5E in hexadecimal.

✦ The equals sign is Unicode character 3D in hexadecimal.

✦ The colon is Unicode character 3A in hexadecimal.

Because these three characters are part of the ASCII character set, their UTF-8
encodings are simply their values. Therefore, xpointer(descendant::*[.=’^’])
would be encoded in a URL as xpointer(descendant%3A%3A*[.%3D’%5E’]).
Modern web browsers allow the square brackets [and] in URLs. However, some
older browsers do not, so for maximum compatibility you should escape these
characters as %5B and %5D, respectively. Thus, the preceding XPointer would
become xpointer(descendant%3A%3A*%5B.%3D’%5E’%5D).

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 620

621Chapter 18 ✦ XPointers

A Concrete Example
To demonstrate the different types of XPointers, it’s useful to have a concrete exam-
ple in mind. Listing 18-1 is a simple, valid document that should be self-explanatory.
It contains information about two related families and their members. The root ele-
ment is FAMILYTREE. A FAMILYTREE can contain PERSON and FAMILY elements.
Each PERSON and FAMILY element has a required ID attribute. Persons contain a
name, birth date, death date, and spouse. Families contain a husband, a wife, and
zero or more children. The individual persons are referred to from the family by
reference to their IDs.

This XML application is revisited in Chapter 25.

Listing 18-1: A Family Tree

<?xml version=”1.0”?>
<!DOCTYPE FAMILYTREE [

<!ELEMENT FAMILYTREE (PERSON | FAMILY)*>

<!-- PERSON elements -->
<!ELEMENT PERSON (NAME*, BORN*, DIED*, SPOUSE*)>
<!ATTLIST PERSON
ID ID #REQUIRED
FATHER CDATA #IMPLIED
MOTHER CDATA #IMPLIED

>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BORN (#PCDATA)>
<!ELEMENT DIED (#PCDATA)>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE IDREF IDREF #REQUIRED>

<!--FAMILY-->
<!ELEMENT FAMILY (HUSBAND?, WIFE?, CHILD*) >
<!ATTLIST FAMILY ID ID #REQUIRED>

<!ELEMENT HUSBAND EMPTY>
<!ATTLIST HUSBAND IDREF IDREF #REQUIRED>
<!ELEMENT WIFE EMPTY>
<!ATTLIST WIFE IDREF IDREF #REQUIRED>
<!ELEMENT CHILD EMPTY>
<!ATTLIST CHILD IDREF IDREF #REQUIRED>

]>
<FAMILYTREE>

<PERSON ID=”p1”>

Continued

Cross-
Reference

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 621

622 Part IV ✦ Supplemental Technologies

Listing 18-1 (continued)

<NAME>Domeniquette Celeste Baudean</NAME>
<BORN>21 Apr 1836</BORN>
<DIED>Unknown</DIED>
<SPOUSE IDREF=”p2”/>

</PERSON>

<PERSON ID=”p2”>
<NAME>Jean Francois Bellau</NAME>
<SPOUSE IDREF=”p1”/>

</PERSON>

<PERSON ID=”p3” FATHER=”p2” MOTHER=”p1”>
<NAME>Elodie Bellau</NAME>
<BORN>11 Feb 1858</BORN>
<DIED>12 Apr 1898</DIED>
<SPOUSE IDREF=”p4”/>

</PERSON>

<PERSON ID=”p4”>
<NAME>John P. Muller</NAME>
<SPOUSE IDREF=”p3”/>

</PERSON>

<PERSON ID=”p7”>
<NAME>Adolf Eno</NAME>
<SPOUSE IDREF=”p6”/>

</PERSON>

<PERSON ID=”p6” FATHER=”p2” MOTHER=”p1”>
<NAME>Maria Bellau</NAME>
<SPOUSE IDREF=”p7”/>

</PERSON>

<PERSON ID=”p5” FATHER=”p2” MOTHER=”p1”>
<NAME>Eugene Bellau</NAME>

</PERSON>

<PERSON ID=”p8” FATHER=”p2” MOTHER=”p1”>
<NAME>Louise Pauline Bellau</NAME>
<BORN>29 Oct 1868</BORN>
<DIED>3 May 1938</DIED>
<SPOUSE IDREF=”p9”/>

</PERSON>

<PERSON ID=”p9”>
<NAME>Charles Walter Harold</NAME>
<BORN>about 1861</BORN>
<DIED>about 1938</DIED>

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 622

623Chapter 18 ✦ XPointers

<SPOUSE IDREF=”p8”/>
</PERSON>

<PERSON ID=”p10” FATHER=”p2” MOTHER=”p1”>
<NAME>Victor Joseph Bellau</NAME>
<SPOUSE IDREF=”p11”/>

</PERSON>

<PERSON ID=”p11”>
<NAME>Ellen Gilmore</NAME>
<SPOUSE IDREF=”p10”/>

</PERSON>

<PERSON ID=”p12” FATHER=”p2” MOTHER=”p1”>
<NAME>Honore Bellau</NAME>

</PERSON>

<FAMILY ID=”f1”>
<HUSBAND IDREF=”p2”/>
<WIFE IDREF=”p1”/>
<CHILD IDREF=”p3”/>
<CHILD IDREF=”p5”/>
<CHILD IDREF=”p6”/>
<CHILD IDREF=”p8”/>
<CHILD IDREF=”p10”/>
<CHILD IDREF=”p12”/>

</FAMILY>

<FAMILY ID=”f2”>
<HUSBAND IDREF=”p7”/>
<WIFE IDREF=”p6”/>

</FAMILY>

</FAMILYTREE>

In the sections that follow, this document is assumed to be present at the URL
http://www.theharolds.com/genealogy.xml. This isn’t a real URL, but the
emphasis here is on selecting individual parts of a document rather than a docu-
ment as a whole.

Location Paths, Steps, and Sets
Many (though not all) XPointers are location paths. These are the same location
paths used by XSLT and discussed in Chapter 15. Consequently, much of the syntax
should already be familiar to you.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 623

624 Part IV ✦ Supplemental Technologies

Location paths are built from location steps. Each location step specifies a point in
the targeted document, always relative to some other well-known point such as the
start of the document or the previous location step. This well-known point is called
the context node. In general, a location step has three parts: the axis, the node test,
and an optional predicate. These are combined in this form:

axis::node-test[predicate]

For example, in the location step child::PERSON[position()=2], the axis is
child, the node-test is PERSON, and the predicate is [position()=2]. This loca-
tion step selects the second PERSON element along the child axis, starting from the
context node or, less formally, the second PERSON child element of the context
node. Of course, which element this actually is depends on what the context node
is. Consequently, this is what’s referred to as a relative location step. It’s relative to
the context node. There are also absolute location steps that do not depend on the
context node.

The axis specifies the direction to search from the context node. For example, an
axis can say to look at things that follow the context node, things that precede the
context node, things that are children of the context node, things that are attributes
of the context node, and so forth.

The node test indicates which nodes to consider along the axis. The most common
node test is simply an element name. However, the node test can also be the aster-
isk (*) wildcard to indicate that any element is to be matched, or one of several
functions for selecting comments, text, attributes, processing instructions, points,
and ranges. The group of nodes along the given axis that satisfy the node test forms
a location set.

The predicate is a boolean XPath expression (exactly like the XPath expressions
you learned about in XSLT) that tests each node in that set. If that expression
returns false, the node is removed from the set.

Often, after the entire location step — axis, node test, and predicate — has been
evaluated, what’s left is a single, unique node. However, not all location steps select
exactly one node. In some cases, there may be multiple nodes in the final location
set. On occasion, there might be no nodes in the location set; in other words, the
location set is the empty set.

A single location step is often not enough to identify the node you want. Commonly,
location steps are strung together, separated by slashes, to form a location path.
Each location step’s location set becomes the context node-set for the next step in
the path. For example, consider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON[position()=3])

The location path of this XPointer is /child::FAMILYTREE/child::
PERSON[position()=3]. It is built from two location steps:

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 624

625Chapter 18 ✦ XPointers

✦ /child::FAMILYTREE

✦ child::PERSON[position()=3]

The first location step is an absolute step that selects all child elements of the root
node whose name is FAMILYTREE. When applied to Listing 18-1, there’s exactly one
such element. The second location step is then applied relative to the FAMILYTREE
element returned by the first location step. All of its child nodes are considered.
Those that satisfy the node test — that is, elements whose name is PERSON— are
returned. There are 12 of these nodes. Each of these 12 nodes is then compared
against the predicate to see if its position is equal to 3. This turns out to be true for
only one node, Elodie Bellau’s PERSON element, so that is the single node this
XPointer points to.

It is not always the case, however, that an XPointer points to exactly one node. For
example, consider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON[position()>3])

This is exactly the same as before except that the equals sign has been changed to
a greater than sign. Now when each of the 12 PERSON elements are compared, the
predicate returns true for 9 of them. Each of these nine is included in the location
set that this XPointer returns. This XPointer points to nine nodes, not to one.

The Root Node
Although Listing 18-1 includes ID attributes for most elements, and although they
are convenient, they are not required for linking into the document. You can select
any element in the document simply by working your way down from the root
node. An initial / indicates the root node.

The root node is not the same as the root element. Rather, it is an abstract node
that contains the entire document, including any comments or processing instruc-
tions that come before or after the root element, such as xml-stylesheet, and the
root element itself. For example, to select the root node of the XML 1.0 specification
at http://www.w3.org/TR/REC-xml you can use this URI:

http://www.w3.org/TR/REC-xml#xpointer(/)

For another example, Domeniquette Celeste Baudean is the first person in List-
ing 18-1. Therefore, to point at her name, you can get the first element child of the
root node (that is, the root element of the document, FAMILYTREE), then count one
PERSON down from the root element, and then count one NAME down from that,
like this:

/child::*/child::PERSON[position()=1]/child::NAME

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 625

626 Part IV ✦ Supplemental Technologies

This location path says to find the root node, then find all element children of the
root node (which, in a well-formed XML document, will be exactly the root ele-
ment), then find the first PERSON element that’s an immediate child of that element,
and then find its NAME child elements.

Axes
XPath defines 13 axes along which an XPointer can search for nodes, all from the
same XPath syntax used for XSLT. These depend on context to determine exactly
what they point to. For example, consider this location path:

id(“p6”)/child::NAME

It begins with the id() function that returns a node-set containing the element with
the ID type attribute whose value is p6. This provides a context node for the follow-
ing location step along the relative child axis. Other axes include ancestor,
descendant, self, ancestor-or-self, descendant-or-self, attribute, and
more. Each serves to select a particular subset of the elements in the document.
For example, the following axis selects from nodes that come after the context
node. The preceding axis selects from nodes that come before the context node.
Table 18-1 summarizes the 13 axes.

Table 18-1
Location Step Axes

Axis Selects From

child All nodes contained in the context node, but not contained in
any other nodes the context node contains

parent The unique node that contains the context node but that does
not contain any other nodes that also contain the context node

self The context node

ancestor The parent of the context node, the parent of the parent of the
context node, the parent of the parent of the parent of the
context node, and so forth, back to the root node

ancestor-or-self The ancestors of the context node and the context node itself

attribute The attributes of the context node

descendant The children of the context node, the children of the children
of the context node, and so forth

descendant-or-self The context node and its descendants

following All nodes that start after the end of the context node,
excluding attribute and namespace nodes

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 626

627Chapter 18 ✦ XPointers

Axis Selects From

following-sibling All nodes that start after the end of the context node and have
the same parent as the context node, excluding attribute and
namespace nodes

preceding All nodes that finish before the beginning of the context node,
excluding attribute and namespace nodes

preceding-sibling All nodes that start before the beginning of the context node
and have the same parent as the context node, excluding
attribute and namespace nodes

The child axis
The child axis selects from the children of the context node. For example, con-
sider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON[position()=3]/child::NAME)

Reading from right to left, it selects the NAME child elements of the third PERSON
element that’s a child of the FAMILYTREE element that’s a child of the root of the
document. In this example, there’s only one such element; but if there are more
than one, all are returned. For instance, consider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON/child::NAME)

This selects all NAME children of PERSON elements that are children of FAMILYTREE
elements that are children of the root. There are a dozen of these in Listing 18-1.

It’s important to note that the child axis only selects from the immediate children
of the context node. For example, consider this URI:

http://www.theharolds.com/genealogy.xml#xpointer(/child::NAME)

This points nowhere because there are no NAME elements in the document that are
direct, immediate children of the root node. There are a dozen NAME elements that
are indirect children. If you’d like to refer to these, you should use the descendant
axis instead of child.

As in XSLT, the child axis is implied if no explicit axis name is present. For exam-
ple, the preceding three XPointers would more likely be written in this abbreviated
form:

xpointer(/FAMILYTREE/PERSON[position()=3]/NAME)
xpointer(/FAMILYTREE/PERSON/NAME)
xpointer(/NAME)

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 627

628 Part IV ✦ Supplemental Technologies

The descendant axis
The descendant axis searches through all the descendants of the context node, not
just the immediate children. For example, /descendant::BORN selects all the BORN
elements in the document. /descendant::BORN[position()=3] selects the third
BORN element encountered in a depth-first search of the document tree. (Depth first
is the order you get if you simply read through the XML document from beginning
to end.) In Listing 18-1, that selects Louise Pauline Bellau’s birthday, <BORN>29 Oct
1868</BORN>. There is no abbreviation for descendant axis.

The descendant-or-self axis
The descendant-or-self axis searches through all the descendants of the con-
text node and the context node itself. For example, id(“p11”)/descendant-or-
self::PERSON refers to all PERSON children of the element with ID p11 as well as
that element itself, because it is of type PERSON. There is no abbreviation for
descendant-or-self.

The descendant-or-self axis can be abbreviated by using a double slash in place
of a single slash. For example, //BORN[position()=3] also selects the third BORN
element encountered in a depth-first search of the document tree. //NAME selects
all NAME elements in the document. //PERSON/NAME selects all NAME children of
PERSON elements.

The parent axis
The parent axis refers to the node that’s the immediate parent of the context node.
For example, /descendant::HUSBAND[position()=1]/parent::* refers to the
parent element of the first HUSBAND element in the document. In Listing 18-1, this is
the FAMILY element with ID f1.

Without a node test, the parent axis can be abbreviated by a .. as in
//HUSBAND[position()=1]/...

The self axis
The self axis selects the context node. It’s sometimes useful when making relative
links. For example, /self::node() selects the root node of the document (which is
not the same as the root element of the document; that would be selected by
/child::* or, in this example, /child::FAMILYTREE.) It can be abbreviated by a
single period. However, this axis is rarely used in XPointers. It’s more useful for
XSLT select expressions.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 628

629Chapter 18 ✦ XPointers

The ancestor axis
The ancestor axis selects all nodes that contain the context node, starting
with its parent. For example, /descendant::BORN[position()=2]/
ancestor::*[position()=1] selects the element that contains the second BORN
element. Applied to Listing 18-1, it selects Elodie Bellau’s PERSON element. There’s
no abbreviation for the ancestor axis.

The ancestor-or-self axis
The ancestor-or-self axis selects the context node and all nodes that contain it.
For example, id(“p1”)/ancestor-or-self::* identifies a node-set that includes
Domeniquette Celeste Baudean’s PERSON element, that has ID p1, and its parent, the
FAMILYTREE element, and its parent, the root node. There’s also no abbreviation for
the ancestor-or-self axis.

The preceding axis
The preceding axis selects all nodes that finish before the context node. The first
time it encounters an element’s start-tag or empty-element tag, moving backwards
from the start of the context node, it counts that element. For example, consider
this rule:

/descendant::BORN[position()=3]/preceding::*[position()=6]

This says go to the third BORN element from the root, Louise Pauline Bellau’s birth-
day, <BORN>29 Oct 1868</BORN>, and then move back six elements. This lands on
Maria Bellau’s NAME element. There’s no abbreviation for the preceding axis.

The following axis
The following axis selects all elements that occur after the context node’s closing
tag. The first time it encounters an element’s start-tag or empty-element tag, it
counts that element. For example, consider this location path:

/descendant::BORN[position()=2]/following::*[position()=5]

This says go to Elodie Bellau’s birthday, <BORN>11 Feb 1858</BORN>, and then
move forward five elements. This lands on John P. Muller’s SPOUSE element,
<SPOUSE IDREF=”p3” />, after passing through Elodie Bellau’s DIED element,
Elodie Bellau’s SPOUSE element, John P. Muller’s PERSON element, and John P.
Muller’s NAME element, in this order. There’s no abbreviation for the following axis.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 629

630 Part IV ✦ Supplemental Technologies

The preceding-sibling axis
The preceding-sibling axis selects elements that precede the context node in
the same parent element. For example, /descendant::BORN[position()=2]/
preceding-sibling::*[position()=1] selects Elodie Bellau’s NAME element,
<NAME>Elodie Bellau</NAME>. /descendant::BORN[position()=2]/
preceding-sibling::*[position()=2] doesn’t point to anything, because
there’s only one sibling of Elodie Bellau’s BORN element before it. There’s no
abbreviation for the preceding-sibling axis.

The following-sibling axis
The following-sibling axis selects elements that follow the context node in the
same parent element. For example, /descendant::BORN[position()=2]/
following-sibling::*[position()=1] selects Elodie Bellau’s DIED element,
<DIED>12 Apr 1898</DIED>. /descendant::BORN[position()=2]/following-
sibling::*[position()=3] doesn’t point to anything, because there are only two
sibling elements following Elodie Bellau’s BORN element. There’s no abbreviation for
the following-sibling axis.

The attribute axis
The attribute axis selects attributes of the context node. For example, the loca-
tion path /descendant::SPOUSE/attribute::IDREF selects all IDREF attributes
of all SPOUSE elements in the document. The attribute axis can be abbreviated by
an @ sign. Thus, //SPOUSE/@IDREF also selects all IDREF attributes of all SPOUSE
elements in the document. @* is a general abbreviation for an attribute with any
name. So, //SPOUSE/@* indicates all attributes of all SPOUSE elements.

For another example, to find all PERSON elements in the document http://www.
theharolds.com/genealogy.xml whose FATHER attribute is Jean Francois Bellau
(ID p2), you could write //PERSON[@FATHER=”p2”].

The xmlns and xmlns:prefix attributes used to declare namespaces are not
attribute nodes. To get information about namespaces, you have to use the
namespace axis instead.

The namespace axis
The namespace axis contains the namespaces in scope on the context node. It only
applies to element nodes. There is one namespace node for each prefix that is
mapped to a URI on that element (whether the prefix is used or not, and whether
the xmlns:prefix attribute that created the mapping is on the element itself or
one of its ancestors). Furthermore, if the element is in a default, nonprefixed
namespace, there is also a namespace node for the default namespace.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 630

631Chapter 18 ✦ XPointers

Although the element is the parent of the namespace node, the namespace node is
not the child of the element. A simple walk of the tree or asking for the children of
the element will not find namespaces. Instead, you have to walk the namespace axis
explicitly. The only node tests that apply to namespace nodes are node() and *.

Fortunately, there’s very little reason to point to a namespace node with an
XPointer. This axis is more useful for XSLT and not much used in XPointer.

Node Tests
Most of the time, the node test part of a location step is simply an element or
attribute name such as PERSON or IDREF. However, there are nine other possibilities:

✦ *

✦ prefix:*

✦ node()

✦ text()

✦ comment()

✦ processing-instruction()

✦ point()

✦ range()

An asterisk stands for any element, except on the attribute axis, where it stands for
any attribute, and along the namespace axis, where it stands for any namespace.
For example, id(“p1”)/child::* selects all the child elements of the element
with the ID p1, regardless of their type. This does, however, select only element
nodes. It omits comment nodes, text nodes, processing instruction nodes, and
attribute nodes. If you want to select absolutely any kind of node, use the node()
node test instead.

A prefix followed by an asterisk selects all elements in the namespace that match
the prefix. For example, if the svg prefix is mapped to the http://www.w3.org/
2000/svg URI, svg:* matches all SVG elements. Similarly, @prefix:* matches all
attributes in the specified namespace. For example, if xlink is mapped to the URI
http://www.w3.org/1999/xlink, @xlink:* matches all XLink attributes in the
document, such as xlink:type, xlink:show, xlink:actuate, xlink:href,
xlink:role, and so forth.

The xmlns:prefix attributes in the document where the XPointer is found do not
apply to XPointers in that document (if indeed, the XPointer is even in an XML
document and not in an HTML document, painted on the side of a building, or
something else). Instead, you prefix the xpointer() part with one or more
xmlns(prefix=URI) parts that establish a prefix mapping.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 631

632 Part IV ✦ Supplemental Technologies

For example, suppose you want to point at the MathML math element in the docu-
ment at http://www.example.com/equations.xml. You know that this element is
in the http://www.w3.org/1998/Math/MathML namespace, but you don’t know
what prefix is used in the document. Regardless of what prefix the target document
uses, you can use the prefix mml as long as you use an xmlns(mml=http://www.
w3.org/1998/Math/MathML) part to associate it with the right URI, as in the fol-
lowing example:

xmlns(mml=http://www.w3.org/1998/Math/MathML)xpointer(//mml:math[1])

The text() node test specifically refers to the parsed character data content of
an element. It’s most commonly used with mixed content. Despite the parenthe-
ses, the text() node test does not actually take any arguments. For example,
/descendant::text() refers to all of the text but none of the markup of a docu-
ment. For another example, consider this CITATION element:

<CITATION CLASS=”TURING” ID=”C2”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>On Computable Numbers,
With an Application to the Entscheidungs-problem</TITLE>”

<JOURNAL>
Proceedings of the London Mathematical Society</JOURNAL>,

<SERIES>Series 2</SERIES>,
<VOLUME>42</VOLUME>
(<YEAR>1936</YEAR>):
<PAGES>230-65</PAGES>.

</CITATION>

The following location path refers to the quotation mark before the TITLE element:

id(“C2”)/child::text()[position()=2]

The first text node in this fragment is the white space between <CITATION
CLASS=”TURING” ID=”C2”> and <AUTHOR>. Technically, this location path refers
to all text between </AUTHOR> and <TITLE>, including the white space and not just
the quotation mark.

Because character data does not contain any child nodes, you cannot add an addi-
tional child, descendant, or attribute relative location step after the first term that
selects a text node.

The comment() node test specifically refers to comments. For example, this
XPointer points to the third comment in the document:

xpointer(/descendant::comment()[position()=3])

Because comments do not contain attributes or elements, you cannot add an addi-
tional child, descendant, or attribute relative location step after the first term that
selects a comment. Despite the parentheses, the comment() node test does not
actually take any arguments.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 632

633Chapter 18 ✦ XPointers

Finally, the processing-instruction() node test selects any processing
instructions that occur along the chosen axis. You can use it without any argu-
ments to select all processing instructions, or with an argument to specify the tar-
gets of the particular processing instructions you want to select. For example,
/descendant::processing-instruction() selects all processing instructions
in the document, whereas /descendant::processing-instruction(‘xml-
stylesheet’) only finds processing instructions that begin <?xml-stylesheet .
/descendant::processing-instruction(“php”) only finds processing instruc-
tions intended for PHP. As with comments, because processing instructions do
not contain attributes or elements, you cannot add an additional child, descendant,
or attribute relative location step after the first step that selects a processing
instruction.

The point() and range() node tests refer to new ways of dividing an XML docu-
ment that only work in XPointer, not in other standards that use XPath, such as
XSLT. They are discussed later in the chapter.

Predicates
Each location step can contain zero or more predicates that further restrict which
nodes an XPointer points to. In many cases, a predicate is necessary to pick the one
node from a node-set that you want. This uses the same syntax you learned from
XSLT in Chapter 15. Each predicate contains an expression in square brackets ([]).
This allows an XPointer to select nodes according to many different criteria, such
as the following:

✦ All elements that have a color attribute

✦ All elements that have a width attribute with the value 100

✦ The first element in the document that contains a LIMIT element

✦ The second element whose text content includes the word “Gale”

✦ All elements that are not the first or last children of their parents

✦ All elements whose value is 42

✦ All elements whose value is a number greater than 100

These are just a small sampling of the selections that predicates make possible.

The result of a predicate expression is ultimately converted to a boolean after all
calculations are finished. Nonboolean results are converted as follows:

✦ A number is compared against the position of the node in the context node
list. If it matches, the result is true; otherwise, the result is false. (More about
this shortly.)

✦ An empty node-set is false; all other node-sets are true.

✦ A zero-length string is false; all other strings are true (including the string
“false”).

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 633

634 Part IV ✦ Supplemental Technologies

The predicate expression is evaluated for each node in the context node list. Each
node for which the expression ultimately evaluates to false is removed from the list.
Thus, only those nodes that satisfy the predicate remain. I will not repeat the dis-
cussion of the operators and functions available to use expressions here. However, I
will show you a few examples of predicates using the expression syntax as it’s likely
to be used in XPointers.

Expression syntax is covered in Chapter 15.

Probably the most frequently used function in XPointer predicates is position().
This returns the index of the node in the context node list. This enables you to find
the first, second, third, or other indexed node. You can compare positions using the
relational operators <, >, =, !=, >=, and <=.

For example, in Listing 18-1 the root FAMILYTREE element has 14 immediate chil-
dren, 12 PERSON elements, and 2 FAMILY elements. In order, they are:

xpointer(/child::FAMILYTREE/child::*[position()=1])
xpointer(/child::FAMILYTREE/child::*[position()=2])
xpointer(/child::FAMILYTREE/child::*[position()=3])
xpointer(/child::FAMILYTREE/child::*[position()=4])
xpointer(/child::FAMILYTREE/child::*[position()=5])
xpointer(/child::FAMILYTREE/child::*[position()=6])
xpointer(/child::FAMILYTREE/child::*[position()=7])
xpointer(/child::FAMILYTREE/child::*[position()=8])
xpointer(/child::FAMILYTREE/child::*[position()=9])
xpointer(/child::FAMILYTREE/child::*[position()=10])
xpointer(/child::FAMILYTREE/child::*[position()=11])
xpointer(/child::FAMILYTREE/child::*[position()=12])
xpointer(/child::FAMILYTREE/child::*[position()=13])
xpointer(/child::FAMILYTREE/child::*[position()=14])

In fact, this test is so common that XPath offers a shorthand notation for it. Instead
of writing [position=X] where X is a number, you can simply enclose the number
or an XPath expression that returns the number in the square brackets, like this:

xpointer(/child::FAMILYTREE/child::*[1])
xpointer(/child::FAMILYTREE/child::*[2])
xpointer(/child::FAMILYTREE/child::*[3])
xpointer(/child::FAMILYTREE/child::*[4])
xpointer(/child::FAMILYTREE/child::*[5])
xpointer(/child::FAMILYTREE/child::*[6])
xpointer(/child::FAMILYTREE/child::*[7])
xpointer(/child::FAMILYTREE/child::*[8])
xpointer(/child::FAMILYTREE/child::*[9])
xpointer(/child::FAMILYTREE/child::*[10])
xpointer(/child::FAMILYTREE/child::*[11])
xpointer(/child::FAMILYTREE/child::*[12])
xpointer(/child::FAMILYTREE/child::*[13])
xpointer(/child::FAMILYTREE/child::*[14])

Cross-
Reference

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 634

635Chapter 18 ✦ XPointers

Greater numbers, such as /child::FAMILYTREE/child::*[15], don’t point to
anything.

To count all elements in the document, not just the immediate children of the root,
you can use the descendant axis instead of child. Table 18-2 shows the first four
descendant XPointers for the document element FAMILYTREE of Listing 18-1, and
what they point to. Note especially that /child::FAMILYTREE/descendant::
*[position()=1] points to the entire first PERSON element, including its children,
and not just the <PERSON> start-tag.

Table 18-2
The First Four Descendants of the Document Element

XPointer Points To

/child::FAMILYTREE/ <PERSON ID=”p1”>
descendant::*[position()=1] <NAME>Domeniquette Celeste

Baudean</NAME>

<BORN>11 Feb 1858</BORN>

<DIED>12 Apr 1898</DIED>

<SPOUSE IDREF=”p2”/>

</PERSON>

/child::FAMILYTREE/ <NAME>Domeniquette Celeste
descendant::*[position()=2] Baudean</NAME>

/child::FAMILYTREE/ <BORN>21 Apr 1836</BORN>
descendant::*[position()=3]

/child::FAMILYTREE/ <DIED>Unknown</DIED>
descendant::*[position()=4]

Functions That Return Node-Sets
XPointers are not limited to location paths. In fact, they can use any expression that
returns a node-set. In particular, they can use functions that return node-sets. There
are three of these:

✦ id()

✦ here()

✦ origin()

The last two, here() and origin(), are XPointer extensions to XPath that are not
available in XSLT.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 635

636 Part IV ✦ Supplemental Technologies

id()
The id() function is one of the simplest and most robust means of identifying an
element node. It selects the element in the document that has an ID type attribute
with a specified value. For example, consider this URI:

http://www.theharolds.com/genealogy.xml#xpointer(id(“p12”))

If you look at Listing 18-1, you find this element:

<PERSON ID=”p12” FATHER=”p2” MOTHER=”p1”>
<NAME>Honore Bellau</NAME>

</PERSON>

Because ID type attributes are unique in valid documents, there shouldn’t be any
other elements that match this XPointer. Therefore, http://www.theharolds.com/
genealogy.xml#xpointer(id(“p12”)) should refer to Honore Bellau’s PERSON
element. Note that the XPointer points to the entire element to which it refers,
including all its children, not just the start-tag.

If the document is invalid and more than one element has the same ID, only the
first one in the document is selected.

Because ID pointers are so common and so useful, there’s also a shortcut for this. If
all you want to do is point to a particular element with a particular ID, you can skip
all the xpointer(id(“”)) frou-frou and just use the bare ID after the #, like this:

http://www.theharolds.com/genealogy.xml#p12

This is called a shorthand pointer. You can only use a shorthand pointer if all you
want is the particular element with the particular ID. You cannot add additional
relative location steps to a URI that uses this shortcut to select children of the ele-
ment with ID p12 or the third attribute of the element with ID p12. If you want to do
that, you have to use the full xpointer(id(“p12”)) syntax.

The disadvantage of the id() function and shorthand pointers is that they require
assistance from the targeted document. If the element you want to point to does
not have an ID type attribute, you’re out of luck. If other elements in the document
have ID type attributes, you might be able to point to one of them and use a relative
location step to point to the one you really want. Nonetheless, ID type attributes
work best when you control both the targeted document and the linking document,
so that you can ensure that the IDs match the links even as the documents evolve
and change over time.

If the document does not have a DTD, it cannot have any ID type attributes, although
it may have attributes named ID. In this case, you can’t point at anything using the
id() function or a shorthand pointer.

Note

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 636

637Chapter 18 ✦ XPointers

One possibility is to first use an id()-based XPointer, but back it up with an
XPointer that looks for the attribute with the specific name anywhere in the docu-
ment, ID in this example. Simply append the second XPointer to the first, like this:

xpointer(id(“p12”))xpointer(//*[@ID=”p12”])

XPointers are evaluated from left to right. The first match found is returned, so the
backup is only used if an ID type attribute with the value p12 can’t be found.

here()
The second node-set returning function is here(). However, it’s only useful when
used in conjunction with one or more relative location steps. In intradocument
links, that is, links from one point in a document to another point in the same
document, it’s often necessary to refer to “the next element after this one,” or “the
parent element of this element.” The here() function refers to the node that con-
tains the XPointer so that such references are possible.

Consider Listing 18-2, a simple slide show. In this example, here()/../following::
SLIDE[1] refers to the next slide in the show. here()/../preceding::SLIDE[1]
refers to the previous slide in the show. Presumably, this would be used in conjunc-
tion with a style sheet that showed one slide at a time.

Listing 18-2: A Slide Show

<?xml version=”1.0”?>
<SLIDESHOW xmlns:xlink=”http://www.w3.org/1999/xlink”>
<SLIDE>
<H1>Welcome to the slide show!</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../following::SLIDE[1]”>
Next

</BUTTON>
</SLIDE>
<SLIDE>
<H1>This is the second slide</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../preceding::SLIDE[1]”>
Previous

</BUTTON>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../following::SLIDE[1]”>
Next

</BUTTON>
</SLIDE>
<SLIDE>

Continued

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 637

638 Part IV ✦ Supplemental Technologies

Listing 18-2 (continued)

<H1>This is the third slide</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../preceding::SLIDE[1]”>
Previous

</BUTTON>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../following::SLIDE[1]”>
Next

</BUTTON>
</SLIDE>
...
<SLIDE>
<H1>This is the last slide</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../preceding::SLIDE[1]”>
Previous

</BUTTON>
</SLIDE>

</SLIDESHOW>

Generally, the here() function is only used in XLinks where the href attribute con-
tains a relative URI pointing to the same document. If any URI part is included, it
must be the same as the URI of the current document.

origin()
The origin() function is much the same as here(); that is, it refers to the source of
a link. However, origin() is used in out-of-line links where the link is not actually
present in the source document. It points to the element in the source document
from which the user activated the link.

Points
Selecting a particular element or node is almost always good enough for pointing
into well-formed XML documents. However, on occasion, you might need to point
into XML data in which large chunks of non-XML text are embedded via CDATA sec-
tions, comments, processing instructions, or some other means. In these cases, you
might need to refer to particular ranges of text in the document that don’t map onto
any particular markup element. Or, you might need to point into non-XML substruc-
ture in the text content of particular elements; for example, the month in a BORN ele-
ment that looks like this:

<BORN>11 Feb 1858</BORN>

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 638

639Chapter 18 ✦ XPointers

An XPath expression can identify an element node, an attribute node, a text node, a
comment node, or a processing instruction node. However, it can’t indicate the first
two characters of the BORN element (the date) or the substring of text between the
first space and the last space in the BORN element (the month).

XPointer generalizes XPath to allow identifiers like this. An XPointer can address
points in the document and ranges between points. These may not correspond to
any one node. For example, the place between the X and the P in the word XPointer
at the beginning of this paragraph is a point. The place between the t and the h in
the word this at the end of the first sentence of this paragraph is another point. The
text fragment “Pointer generalizes XPath to allow pointers like t” between those two
points is a range.

Every point is either between two nodes or between two characters in the parsed
character data of a document. To make sense of this, you have to remember that
parsed character data is part of a text node. For example, consider this very simple
but well-formed XML document:

<GREETING>
Hello
</GREETING>

There are exactly 3 nodes and 14 distinct points in this document. The nodes are
the root node, which contains the GREETING element node, which contains a text
node. In order, the points are as follows:

1. The point before the root node

2. The point before the GREETING element node

3. The point before the text node containing the text “Hello” (as well as assorted
white space)

4. The point before the line break between <GREETING> and Hello

5. The point before the first H in Hello

6. The point between the H and the e in Hello

7. The point between the e and the l in Hello

8. The point between the l and the l in Hello

9. The point between the l and the o in Hello

10. The point after the o in Hello

11. The point after the line break between Hello and </GREETING>

12. The point after the text node containing the text “Hello”

13. The point after the GREETING element

14. The point after the root node

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 639

640 Part IV ✦ Supplemental Technologies

Points allow XPointers to indicate arbitrary positions in the parsed character data
of a document. They do not, however, enable pointing at a position in the middle of
a tag. In essence, what points add is the ability to break up the text content into
smaller nodes, one for each character.

A point is selected by using the string-range() function to select a range, then
using the start-point () or end-point() function to extract the first or last
point from the range. For example, this XPointer selects the point immediately
before the D in Domeniquette Celeste Baudean’s NAME element:

xpointer(start-point(string-range (id(‘p1’)/NAME,”Domeniquette”)))

This XPointer selects the point after the last e in Domeniquette:

xpointer(end-point(string-range(id(‘p1’)/NAME,”Domeniquette”)))

You can also take the start-point () or end-point () of an element, text, com-
ment, processing instruction, or root node to get the first or last point in that node.

Ranges
Some applications need to specify a range across a document rather than a particu-
lar point in the document. For example, the selection a user makes with a mouse is
not necessarily going to match up with any one element or node. It might start in
the middle of one paragraph, extend across a heading and a picture, and then end
in the middle of another paragraph two pages down.

Any such contiguous area of a document can be described with a range. A range
begins at one point and continues until another point. The start point and endpoint
are each identified by a location path. If the starting path points to a node-set
rather than a point, range-to() will return multiple ranges, one starting from the
first point of each node in the set.

To specify a range, you append /range-to(end-point) to a location path specify-
ing the start point of the range. The parentheses contain a location path specifying
the endpoint of the range. For example, suppose you want to select everything
between the first <PERSON> start-tag and the last</PERSON> end-tag in Listing 18-1.
The following XPointer accomplishes that:

xpointer(/child::FAMILYTREE/child::PERSON[position()=1]/range-to(/child::
FAMILYTREE/child::PERSON[position()=last()]))

Range functions
XPointer includes several functions specifically for working with ranges. Most of
these operate on location sets. A location set is just a node-set that can also contain
points and ranges, as well as nodes.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 640

641Chapter 18 ✦ XPointers

The range(location-set) function returns a location set containing one range for
each location in the argument. The range is the minimum range necessary to cover
the entire location. In essence, this function converts locations to ranges.

The range-inside(location-set) function returns a location set containing the
interiors of each of the locations in the input. That is, if one of the locations is an
element, the location returned is the content of the element (but not including the
start- and end-tags). However, if the input location is a range or point, the interior of
the location is just the same as the range or point.

The start-point(location-set) function returns a location set that contains
the first point of each location in the input location set. For example, start-
point(//PERSON[1]) returns the point immediately after the first <PERSON>
start-tag in the document. start-point(//PERSON) returns the set of points
immediately after each <PERSON> start-tag.

The end-point(location-set) function acts the same as start-point() except
that it returns the points immediately after each location in its input.

String ranges
XPointer provides some very basic string-matching capabilities through the
string-range() function. This function takes as an argument a location set to
search and a substring to search for. It returns a location set containing one range
for each nonoverlapping, matching substring. You can also provide optional index
and length arguments indicating how many characters after the match the range
should start and how many characters after the start the range should continue.
The basic syntax is as follows:

string-range(location-set, substring, index, length)

The first argument is an XPath expression that returns a location set specifying
which part of the document to search for a matching string. The second substring,
argument is the actual string to search for. By default, the range returned starts
before the first matched character and encompasses all the matched characters.
However, the index argument can give a positive number to start after the begin-
ning of the match. For example, setting it to 2 indicates that the range starts with
the second character after the first matched character. The length argument can
specify how many characters to include in the range.

A string range points to an occurrence of a specified string, or a substring of a given
string in the text (not markup) of the document. For example, this XPointer finds all
occurrences of the string “Harold”:

xpointer(string-range(/,”Harold”))

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 641

642 Part IV ✦ Supplemental Technologies

You can change the first argument to specify what nodes you want to look in. For
example, this XPointer finds all occurrences of the string “Harold” in NAME elements:

xpointer(string-range(//NAME,”Harold”))

String ranges can have predicates. For example, this XPointer finds only the first
occurrence of the string “Harold” in the document:

xpointer(string-range(/,”Harold”)[position()=1])

This targets the position immediately preceding the word Harold in Charles Walter
Harold’s NAME element. This is not the same as pointing at the entire NAME element
as an element-based selector would do.

A third numeric argument targets a particular position in the string. For example,
this targets the point between the l and d in the first occurrence of the string
“Harold” because d is the sixth letter:

xpointer(string-range(/,”Harold”,6)[position()=1])

An optional fourth argument specifies the number of characters to select. For exam-
ple, this URI selects the old from the first occurrence of the entire string “Harold”:

xpointer(string-range(/,”Harold”,4,3)[position()=1])

If the first string argument in the node test is the empty string, matching positions
in the context node’s text contents are selected. For example, the following
XPointer targets the first six characters of the document’s parsed character data:

xpointer(string-range(/,””1,6)[position()=1])

For another example, suppose that you want to find the year of birth for all people
born in the nineteenth century. The following will accomplish that:

xpointer(string-range(//BORN, “ 18”, 2, 4))

This says to look in all BORN elements for the string “ 18”. (The initial space is
important to avoid accidentally matching someone born in 1918 or on the 18th day
of the month.) When it’s found, move one character ahead (to skip the space) and
return a range covering the next four characters.

When you are matching strings, case is considered. Markup characters are
ignored.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 642

643Chapter 18 ✦ XPointers

Child Sequences
The two most common ways to identify an element in an XML document are by ID
and by location. Identifying an element by ID is accomplished through the id()
function or a shorthand pointer. Identifying an element by location is generally
accomplished by counting children down from the root. For example, the follow-
ing XPointers both point to John P. Muller’s PERSON element when applied to
Listing 18-1:

xpointer(id(“p4”))
xpointer(/child::*[position()=1]/child::*[position()=4])

A child sequence is a shortcut for XPointers like the second example above — that
is, an XPointer that consists of nothing but a series of child location steps counting
down from the root node, each of which selects a particular child by position only.
The shortcut is to use only the position number and the slashes that separate
individual elements from each other, like this:

element(/1/4)

As with the xpointer() scheme, this becomes the fragment identifier in a URI
reference:

http://www.theharolds.com/genealogy.xml#element(/1/4)

/1/4 is a child sequence that selects the fourth child element of the first child ele-
ment of the root. This syntax can be extended for any depth of child elements. For
example, these two URIs point to John P. Muller’s NAME and SPOUSE elements,
respectively:

http://www.theharolds.com/genealogy.xml#element(/1/4/1)
http://www.theharolds.com/genealogy.xml#element(/1/4/2)

Child sequences might include an initial ID. In that case, the counting begins from
the element with that ID rather than from the root. For example, John P. Muller’s
PERSON element has an ID attribute with the value p4. Consequently,
element(p4/1) points to his NAME element and element(p4/2) points to his
SPOUSE element.

Each child sequence always points to a single element. You cannot use child
sequences with any other relative location steps. You cannot use them to select
elements of a particular type. You cannot use them to select attributes or strings.
You can only use them to select a single element by its relative location in the tree.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 643

644 Part IV ✦ Supplemental Technologies

Summary
In this chapter, you learned about XPointers. In particular, you learned the following:

✦ XPointers refer to particular parts of, or locations in, XML documents.

✦ An XPointer is used as a fragment identifier for URLs that identify XML
documents.

✦ An XPointer is composed of one or more XPointer parts, each of which has
the form scheme (scheme data)

✦ The most expressive XPointer scheme is xpointer. The scheme data for the
xpointer scheme is an XPath expression that returns a node-set.

✦ A shorthand pointer is just the ID of an element. It selects the element with
that ID.

✦ Each location step contains an axis, a node test, and zero or more predicates.

✦ Location steps can be chained to make location paths.

✦ Relative location steps select nodes in a document based on their relationship
to a context node.

✦ The self axis points to the context node. It can be abbreviated as a period (.).

✦ The parent axis points to the node that contains the context node. It can be
abbreviated as a double period (..).

✦ The child axis includes the immediate children of the context node. It can be
abbreviated simply by a node test.

✦ The descendant axis includes all nodes contained in the context node. It can
effectively be abbreviated as a double slash (//).

✦ The descendant-or-self axis includes all nodes contained in the context
node, as well as the context node itself.

✦ The ancestor axis includes all element nodes that contain the context node,
as well as the root node.

✦ The ancestor-or-self axis includes all nodes that contain the context node,
as well as the context node itself.

✦ The preceding axis includes all nodes that finish before the context node.

✦ The following axis includes all nodes that start after the context node.

✦ The preceding-sibling axis selects from nodes that precede the context
node with the same parent node as the context node.

✦ The following-sibling axis selects from nodes that follow the context
node with the same parent node as the context node.

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 644

645Chapter 18 ✦ XPointers

✦ The attribute axis points to attributes of the context node. It can be abbre-
viated as an @ sign.

✦ The node test of a relative location step is normally an element or attribute
name, but can also be the * wildcard to select all elements or one of the key-
words comment(), text(), processing-instruction(), node(), point(),
or range().

✦ The optional predicate of a relative location step is a boolean XPath expres-
sion enclosed in square brackets that further narrows the node-set to which
the XPointer refers.

✦ The xmlns(prefix=URI) scheme is used to declare a namespace prefix for
use inside an XPointer.

✦ A point indicates a position preceding or following a node or a character.

✦ A range identifies the XML text between two points.

✦ The string-range() function points to a specified block of text.

✦ A child sequence points to an element by counting children from the root
using the element scheme.

In this chapter, you saw XPointers used in XLinks. In Chapter 19, you’ll see them
used in XInclude, the third leg in the XML hypertext tripod. XInclude is an element-
based syntax for building large XML documents out of smaller XML documents that
are themselves complete, well-formed, possibly valid XML documents. The individ-
ual pieces out of which the complete document is built are located via URLs. These
URLs can have XPointer parts to indicate that only part of a targeted document
should be included in the master document.

✦ ✦ ✦

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 645

23 549863 Ch18.qxd 1/28/04 9:47 AM Page 646

XInclude

XML documents can grow extremely large. Some real-
world examples have already crossed the gigabyte

threshold and are much bigger than can comfortably be
stored in a normal file system. These documents need to be
broken up into multiple separate files. In other cases, it’s sim-
ply more useful to store a document in multiple pieces. For
example, coauthors of a book would like to be able to work on
different chapters of a book or different sections of a chapter
simultaneously. This isn’t possible if the entire book is stored
in a single file.

XInclude is an element-based syntax for building large XML
documents out of smaller XML documents that are them-
selves complete, well-formed, possibly valid XML documents.
For example, a book might be built from chapters, which are
themselves built from sections. Each chapter and section can
also be a complete, well-formed XML document.

XInclude uses URIs (in practice, URLs) to locate the individual
parts that make up the complete document. The URIs can
have XPointer fragment identifiers to indicate that only one
fragment of a document will be included in the composed doc-
ument. The individual part documents can be used in multiple
different composed documents, or even multiple times in the
same document. And the individual part documents can stand
on their own and remain well-formed and valid as well.

At the time of this writing (December 2003), XInclude is
still bleeding-edge technology. The specification is still
undergoing significant development and modification.
libxml, xmllint, and xsltproc implement it, but few other
parsers and no browsers do. This chapter is based on the
November 10, 2003, second last call working draft of
the XInclude specification. By the time you’re reading this,
the exact syntax might have changed, perhaps a little, per-
haps a lot. This chapter should give you a pretty good idea
of when, where, and how you can use XInclude; but it is
not a final description of the exact syntax.

Caution

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Use cases for
XInclude

Nonsolutions

The xinclude:include
element

Validating documents
that use XInclude

XPointers in XInclude

Unparsed text

Fallbacks

✦ ✦ ✦ ✦

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 647

648 Part IV ✦ Supplemental Technologies

Use Cases for XInclude
Consider this book. It’s made up of more than 20 chapters, a preface, a table of con-
tents and other front matter, an index, front and back covers, and more. Each chap-
ter is divided into sections. Some of the sections have subsections. Almost all the
chapters have numerous code listings showing actual examples of XML documents.
Not surprisingly, this book was not written as a single flowing stream of text start-
ing with the first word on the front cover and finishing with the last word on the
back cover. Instead, individual chapters were written in a very roughly beginning-
to-end fashion. However, I didn’t hesitate to jump from one chapter to the next; nor
did I always write in a linear order. As I type these words, I’ve already finished
Chapters 1 through 14 and the appendixes. I’ve barely begun Chapter 15. Chapters
16 through 18 are mostly done, but a couple of sections in those chapters remain to
be written. Chapters 22 through 25 are in varying stages of completion. The preface
hasn’t been started and is probably the very last thing I will write.

When I complete a chapter, I e-mail it to the development editor. She makes her com-
ments and passes it on to both the technical and copy editors for review. The techni-
cal editor checks it for factual mistakes. The copy editor checks the spelling and
grammar as well as tightens up the prose. When they’re done, each sends their com-
ments back to her. She merges all the comments into a single manuscript and sends
the document back to me for author review. When I’ve reviewed the manuscript, I
e-mail the document back to the editor who gives it to Wiley’s layout department for
conversion to QuarkXPress. This process can be going on in parallel for multiple
chapters, each of which can be in a different stage of development. One chapter can
be in layout while two chapters are in copyedit, seven more are in technical review,
three are being author reviewed, and several are in early incomplete draft stages on
my hard drive.

The only reason this all works is that the chapters reside in single files that can be
written, reviewed, edited, and laid out more or less independently of each other.
Nonetheless, before the finished book you hold in your hands can be printed, all
these diverse files must be integrated into a single unit to which page numbers can
be applied and from which cross-references can be resolved. Depending on which
part of the process we’re in, we need different views of the entire document. When
the technical editor is checking my code examples, he just wants to see the actual
XML source code files and ignore the rest of the text completely. When the copy
editor is checking my spelling, grammar, and usage, she needs to see a complete
chapter with all text in place. When the indexing service is generating the index, it
needs to see the complete book with all page numbers in place.

This book was actually written in Microsoft Word and laid out in QuarkXPress.
These tools are a little too weak to make the process as seamless as it should be.
For instance, the source code examples have to be manually copied and pasted
from the source text files into the manuscript Word document. If I later discover a
bug in an example, I have to remember to change both the source document and

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 648

649Chapter 19 ✦ XInclude

the chapter manuscript. Needless to say, sometimes a change gets made in one
place and not the other, and consequently the examples tend to get out of sync.

Yes, I know there are features in Word that are supposed to allow you to do all of
these things. Trust me when I tell you that these are notoriously buggy and unus-
able for 800-page books. Authors and publishers have long since learned from
brutal experience to avoid master documents, linked files, cross-references, auto-
numbering, and other Word features that are supposed to allow you to build
documents from their component parts.

Recordlike documents need to be built out of multiple pieces just as frequently, per-
haps more frequently, than narrative documents like this book do. For example,
consider the television listing examples in Chapters 4, 5, 8, 9, and 10. Here, a rather
large document covering an entire schedule was built out of pieces containing indi-
vidual stations. Each station contained individual shows. It would be nice if each of
those pieces could be a well-formed, valid XML document on its own. Something
close to this was achieved in Chapter 10 with external entities. However, not all the
pieces could stand on their own. The shows were only well-formed when consid-
ered in the context of the entire document, not when considered in isolation. The
show documents were individually well-formed, but not valid.

The problem begins with show documents such as the one in Listing 19-1. I want to
combine these into a station document like that shown in Listing 19-2. Then I want
to combine the station documents into a complete schedule. Maybe I even want to
combine the schedules for all days into one humongous document listing all the
shows in a week, month, or year.

Listing 19-1: A Valid Document Describing a Single Show

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE SHOW SYSTEM “show.dtd”>
<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>

Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>

</SHOW>

Note

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 649

650 Part IV ✦ Supplemental Technologies

Listing 19-2: A Valid Station Document

<?xml version=”1.0”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>
Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>

</SHOW>

<SHOW>
<NAME>Silicon Towers</NAME>
<TYPE>Movie</TYPE>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>1999</YEAR_MADE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<CAST>
<ACTOR>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Dennehy</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Daniel</GIVEN_NAME>
<SURNAME>Baldwin</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Brad</GIVEN_NAME>
<SURNAME>Dourif</SURNAME>

</ACTOR>
<ACTOR>
<GIVEN_NAME>Gary</GIVEN_NAME>
<SURNAME>Mosher</SURNAME>

</ACTOR>

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 650

651Chapter 19 ✦ XInclude

</CAST>
<DESCRIPTION>
A programmer discovers his company manufactures
chips for cracking bank systems.
</DESCRIPTION>

</SHOW>

</STATION>

The most straightforward solution is to copy and paste each file into the next level
up in the hierarchy. However, it’s always a bad idea to store the same information in
multiple places. If you later discover a mistake, for example, that the last name of
an actor is spelled “Denehhy” instead of “Dennehy,” you need to correct the mis-
take in multiple places. Quite often you’ll miss a place, and the information will get
out of sync. Instead, it’s better to store each unit of information in exactly one
physical storage location (one file) and then reference that information from all
the other documents that need it.

Non-Solutions
There are several half-solutions that almost solve the problem. These solutions
include:

✦ External parsed entities

✦ Simple XLinks with xlink:show=”embed”

✦ Server-side includes

However, none of these do everything you need; and you can’t mix and match them
to get full functionality. What’s needed is a fourth option that operates at the parser
level and that’s orthogonal to validation.

DTDs
Referring to each show document as an external parsed entity is probably the clos-
est XML 1.0 comes to the desired functionality. External parsed entities do allow
you to build one document out of multiple smaller parts, do allow you to validate
the merged document, and do allow you to treat the merged document as a unit.
This approach was demonstrated in Chapter 10, as Listing 19-3 recalls.

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 651

652 Part IV ✦ Supplemental Technologies

Listing 19-3: WLNY with Shows Loaded from External Entities

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd” [
<!ENTITY % shows SYSTEM “wlny.dtd”>
%shows;

]>
<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

&Oprah;
&SiliconTowers;

</STATION>

However, there are some strict and inconvenient rules about what can and cannot
appear in the external parsed entity files themselves. For example, these files can
have a text declaration but not an XML declaration. They can have a root element,
so they can be well-formed, but they cannot have a document type declaration, so
they cannot be valid. If the station documents look like Listing 19-3, you can’t com-
bine them into a schedule document. The document type declaration gets in the
way. If you go the other direction and take out the document type declaration so
you can combine the station documents, each station document is no longer well-
formed on its own, because the entity references that point to shows such as
&Oprah; are no longer defined. External parsed entities only really work for single-
level hierarchies where only the topmost level needs to be valid. Deeper hierar-
chies than that require another approach.

Embedded XLinks
XLinks allow you to embed one XML document inside another by setting the
xlink:show attribute to embed. For example, Listing 19-4 tries to create a full sta-
tion document by linking to the individual show documents.

Listing 19-4: WLNY with Shows Loaded from XLinks

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xlink=”http://www.w3.org/1999/xlink”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<SHOW xlink:type=”simple” xlink:show=”embed”

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 652

653Chapter 19 ✦ XInclude

xlink:href=”Oprah.xml”/>
<SHOW xlink:type=”simple” xlink:show=”embed”
xlink:href=”SiliconTowers.xml”/>

</STATION>

However, xlink:show=”embed” does something a little different than is needed
here. It does not actually combine the XML documents the links point to. Instead,
when a browser loads Listing 19-4, it sets aside space in the window for each of the
individual show documents, such as Oprah.xml. It then loads each of these docu-
ments separately, figures out how to render it, and embeds the graphical representa-
tion of the show document inside the graphical representation of the station
document. Only the pictures are combined, not the documents themselves.

This has a number of implications. First among them is that Listing 19-4 is invalid,
because a validator will see empty SHOW elements with XLink attributes instead of
SHOW elements with child elements, as declared in the DTD. Second, a style sheet
processor needs to operate on each of the three documents separately. It can’t take
advantage of the relationships between information in the individual documents.
The information in the show documents is not conveniently available to a program
reading the station document. It has to resolve the URLs in the XLinks and parse
those documents separately. It has no information to help it determine the relation-
ship between the show documents and the station document that contains them.

Server-side includes
Even before XML, many web servers let authors build HTML documents out of mul-
tiple component parts using server-side includes. Typically, when the web server
receives a request for a document that contains server-side includes (normally
such documents are identified by a .shtml filename extension), it first reads the
document looking for special comments that look something like this:

<!--#include file=”Oprah.html” -->

It builds a new document that replaces these comments with the contents of the
referenced files.

The biggest problem with this approach is that it ties your pages to one vendor’s
software. While server-side include syntax is similar on most web servers, both syn-
tax and functionality do change somewhat from server to server, even when you’re
doing something as simple as including files in different directories. If you switch
web servers, you need to change all your server-side includes, too. For example, if
you’re using Apache, a document that uses server-side includes looks something
like Listing 19-5. However, if you use a different web server, it might be some other
syntax.

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 653

654 Part IV ✦ Supplemental Technologies

Listing 19-5: WLNY with Shows Loaded via Server-Side
Includes

<HTML>
<HEAD>
<TITLE>WLNY</TITLE>

</HEAD>
<BODY>
<H1>WLNY</H1>

<!--#include file=”Oprah.html” -->
<!--#include file=”SiliconTowers.html” -->

</BODY>
</HTML>

The second disadvantage of this approach should be obvious from Listing 19-5: It’s
HTML-only, at least on most servers. Web servers can’t process an XML document
that uses an arbitrary, non-HTML vocabulary. And, of course, this approach
assumes you’re using a web server. That’s not always the case. For example, an
XML document containing a book made up of multiple chapters might be meant to
be printed after application of an appropriate style sheet. There’s no web server
anywhere in sight.

There are some other disadvantages even if you’re using a web server and serving
XHTML. Notice that the document to include is identified by a file attribute, not
an href attribute. Most web servers can only include local documents from the
local file system. They can’t include a document served by a different web server
at a different URL. They often can’t include a document served by the same web
server if that document is produced dynamically by a CGI or a servlet instead of
being read from a static file on a hard drive.

Furthermore, even when the included document is a local file, it’s included in its
entirety almost as if by copy and paste. You can’t include just the contents of the
root element, but not the root element itself. In the HTML and XHTML world, where
every document has exactly one html root element that might not contain other
html elements, this means an included document can’t be served à la carte without
first being merged with some other master document. Similarly, you can’t say that
you just want to include the second section of a document or all sections that have
the word Barbara in their title. Inclusion is an all-or-nothing operation.

The next issue can be either an advantage or a disadvantage depending on your
point of view. Supporting server-side includes is a lot of work. Typically, the server
does that work, leaving the client with a lot less work to do. Sometimes this is what
you want, especially if the server is a raging beast of Pentium-fueled power and the
clients are 98MHz weaklings. However, in practice, it’s much more common that the

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 654

655Chapter 19 ✦ XInclude

clients have CPU cycles to spare, while the server is maxed out. In particular, if
you’re on a local network in an intranet environment where bandwidth isn’t much
of an issue, it might make more sense to just burst all the documents to the clients
and let them do the work of parsing and merging.

Still, despite all these issues, server-side includes are actually the approach that is
closest in spirit to the XInclude solution I discuss next. The syntax, environment,
and tools, however, are quite different.

The xinclude:include Element
XInclude enables you to include one document in another by using a single
xinclude:include element. This element has an href attribute whose value is a
URL pointing to the document to be included. The xinclude prefix is mapped to
the URI http://www.w3.org/2003/XInclude. The shorter prefix xi is also com-
monly used instead of xinclude. As always, the prefix can change as long as the
URI remains the same.

At the time of this writing (December, 2003) a lot of the available XInclude soft-
ware, including some I’ve published myself, only supports an older working draft
of the XInclude specification that uses the namespace http://www.w3.org/
2001/XInclude instead.

Listing 19-6 demonstrates the syntax by building the WLNY station document using
xinclude:include elements. Each href attribute of such an element contains a
relative URL pointing to the location of each show document. An XInclude proces-
sor will remove the XML declaration and document type declaration from each of
the show documents and insert what remains into the including document.

Listing 19-6: WLNY with Shows Included by XInclude

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<xinclude:include href=”Oprah.xml”/>
<xinclude:include href=”SiliconTowers.xml”/>

</STATION>

Recent versions of libxml, xmllint, and xsltproc support XInclude. To resolve the
include elements, simply use the --xinclude option when processing a file. xmllint
reads an XML document that uses xinclude:include elements, replaces all those

Caution

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 655

656 Part IV ✦ Supplemental Technologies

elements with the things they refer to, and then writes the merged document back
out again onto stdout. You just run it from a shell or DOS prompt, like this:

$ xmllint --xinclude wlny.xml
<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>

...

If you prefer, you can use the shell redirection operator > to put the output in a
different file rather than printing it on stdout. As well as this simple command-line
user interface, you can integrate the library with your own programs.

When processed, each of the xinclude:include elements in Listing 19-6 is replaced
by the referenced show document. However, the XML declaration and document type
declaration of the show documents, if any, are not included in the merged document.
This means that both the show and station documents can be valid because both can
contain document type declarations. This is not the case when you are using external
entity references to connect the files.

On occasion, one of the document type declarations in an included document
might affect the content of the root element. In particular, the document type decla-
ration might reference a DTD that defines entity references used in the document
instance, or it might provide default values for certain attributes. In this case, these
entity references are resolved and the default attribute values are added to the ele-
ments to which they apply before the document is included, even though the docu-
ment type declaration that includes these things is not carried over into the
included document. Ninety-nine percent of the time this is exactly the behavior you
want. It means you can include documents based solely on their logical structure,
without worrying about the details of the physical structure. The only time this is
likely to surprise you is when one of the included documents contains an entity ref-
erence such as ©. In this case, the XInclude processor will probably replace it
with the actual character, such as , or a numeric character reference, such as
©. Differences like this are only relevant when you’re viewing a document as a
text file in an editor without parsing it. An XML parser treats all these structures as
the same single character.

Technically, this behavior comes about because XInclude merges the infosets of
the various documents rather than copying and pasting text strings.

When you’re building a document out of multiple files like this, it’s always possible
there’ll be a problem with one of the files. For example, somebody might have
deleted, renamed, or moved Oprah.xml. Or perhaps you edited one of the included

Note

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 656

657Chapter 19 ✦ XInclude

documents and made a mistake so it’s no longer well-formed. In these cases, the
XInclude processor reports an error when it detects the problem.

In Listing 19-6, relative URLs such as Oprah.xml locate the show documents.
However, absolute URLs are equally acceptable. For example, Listing 19-7 uses
absolute URLs. Notice that this means you can build one document out of multiple
documents stored on many different web sites. This is something server-side
includes cannot do.

Listing 19-7: WLNY with Shows Referenced by Absolute URLs

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<xinclude:include href=
“http://cafeconleche.org/examples/shows/oprah.xml”/>

<xinclude:include href=
“http://cafeconleche.org/examples/shows/silicontowers.xml”/>

</STATION>

Other forms of relative URLS, such as shows/Oprah.xml or ../shows/Oprah.xml,
are also OK. If an xml:base attribute is present on the xinclude:include element
or one of its ancestors, the relative URL is resolved relative to that base URL.
Otherwise, it’s resolved relative to the actual URL of the document.

Included documents can themselves include other documents. In other words,
includes can nest. There’s no limit to the depth. For example, Listing 19-8 builds a
schedule by including stations, which themselves include the shows. The only
restriction is that includes cannot be circular. Document A cannot include docu-
ment B if document B includes document A, directly or indirectly.

Listing 19-8: A Schedule Includes Stations

<?xml version=”1.0”?>
<!DOCTYPE SCHEDULE SYSTEM “schedule.dtd”>
<SCHEDULE xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<DATE>July 3, 2003</DATE>
<xinclude:include href=”wlny.xml”/>
<xinclude:include href=”wcbs.xml”/>
<xinclude:include href=”hbo.xml”/>

</SCHEDULE>

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 657

658 Part IV ✦ Supplemental Technologies

Validating Documents That Use XInclude
Listings 19-6 through 19-8 had document type declarations that denoted the root
element for that document and located a DTD against which the instance document
could be validated. This is allowed but is certainly not required. XInclude works
equally well in well-formed but invalid documents. However, if a DTD is referenced,
XInclude processors are allowed to read it to resolve external entity references and
supply default attribute values.

If a processor wants to take the next step and actually validate the document, it
can. XInclude is deliberately orthogonal to validation. Validation can happen before
or after the xinclude:include elements are replaced by the documents they refer
to. Depending on when you want the validation to happen, you would structure
your DTD in one of two ways. If you want to validate before inclusion, your DTD
must declare the xinclude:include element in the appropriate place. Listing 19-9
demonstrates with a station DTD for pre-inclusion validation.

Listing 19-9: A DTD for Pre-Inclusion STATION Documents

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, xinclude:include+)>

<!ATTLIST STATION xmlns:xinclude CDATA #FIXED
“http://www.w3.org/2003/XInclude”>

<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>

<!ELEMENT xinclude:include EMPTY>
<!ATTLIST xinclude:include href CDATA #REQUIRED>

On the other hand, if you want to validate the document after all inclusions are
resolved, you have to write a DTD that fits the merged document. XInclude can only
be used in instance documents, not DTDs; but you can use parameter entity refer-
ences to split DTDs into multiple parts. This allows you to match the DTD modular-
ity to the document modularity. For example, assuming that a document called
show.dtd contains a proper DTD for SHOW elements, Listing 19-10 is an acceptable
DTD for post-inclusion validation.

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 658

659Chapter 19 ✦ XInclude

Listing 19-10: A DTD for Post-Inclusion STATION Documents

<!ENTITY % show.dtd SYSTEM “show.dtd”>
%show.dtd;

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<!ATTLIST STATION xmlns:xinclude CDATA #FIXED
“http://www.w3.org/2003/XInclude”>

<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>

With a little effort, it isn’t even hard to define a DTD that can validate both the pre-
and post-inclusion versions. Just put a choice in the content model that allows
either SHOW or xinclude:include elements. Listing 19-11 demonstrates.

Listing 19-11: A DTD for Both Pre- and Post-Inclusion
Station Documents

<!ELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, (xinclude:include | SHOW)+)>

<!ATTLIST STATION xmlns:xinclude CDATA #FIXED
“http://www.w3.org/2003/XInclude”>

<!ELEMENT NETWORK (#PCDATA)>
<!ELEMENT CALL_LETTERS (#PCDATA)>
<!ELEMENT CHANNEL (#PCDATA)>

<!ELEMENT xinclude:include EMPTY>
<!ATTLIST xinclude:include href CDATA #REQUIRED>

<!ENTITY % show.dtd SYSTEM “show.dtd”>
%show.dtd;

In fact, the DTD in Listing 19-11 actually allows a STATION element to contain both
SHOW and xinclude:include elements so that some shows can be linked in from
other files, while others are typed directly into the station document.

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 659

660 Part IV ✦ Supplemental Technologies

XPointers in XInclude
In the examples so far, the URLs in the xinclude:include elements have all
pointed to complete documents. URLs in XInclude href attributes should not have
fragment identifiers, and if one does have a fragment identifier it is ignored.
However, each xinclude:include element may have an xpointer attribute in
addition to or instead of its href attribute. The xpointer attribute contains, as the
name indicates, an XPointer that selects a subset of the document located by the
href attribute for inclusion. For example, it might select only the name of a show
rather than all the show’s info. It might select all NAME elements in the document.
It might even select something that isn’t an element at all, such as a text node.

The W3C XML Core Working Group radically changed how XPointers were handled
in XInclude as this book was in the final stages of editing. However, I am not at all
convinced that it changed for the better, and I would not be surprised if it changes
again before the final XInclude Recommendation is published. This section reflects
the latest working draft available in 2003, but this material seems especially like to
change again. Caveat lector.

For example, suppose you just want to list the names of the shows. Then from each
show document you’d extract just the NAME elements. The XPointer that does this
looks like this:

xpointer(/SHOW/NAME)

You can use xpointer attributes in the xinclude:include elements. Listing 19-12
demonstrates.

Listing 19-12: The Names of WLNY Shows Referenced by
Relative URLs with XPointers

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<xinclude:include href=”oprah.xml”

xpointer=”xpointer(/SHOW/NAME)”/>
<xinclude:include href=”silicontowers.xml”

xpointer=”xpointer(/SHOW/NAME)”/>
</STATION>

Caution

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 660

661Chapter 19 ✦ XInclude

After the xinclude:include elements are replaced, this document becomes
Listing 19-13.

Listing 19-13: The Names of Shows on WLNY

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<NAME>Oprah Winfrey</NAME>
<NAME>Silicon Towers</NAME>

</STATION>

By using more complicated XPath expressions, along with XPointers that point to
text nodes, it’s possible to put together still more complex documents. For exam-
ple, suppose you want SHOW elements that look like this:

<SHOW>Oprah Winfrey</SHOW>

You’d need to point to the text nodes inside the NAME elements of each SHOW element,
like this:

xpointer(/SHOW/NAME/text())

Furthermore, you’d need to include the SHOW start- and end-tags in the master
document and give it an xinclude:include child element, as demonstrated in
Listing 19-14.

Listing 19-14: WLNY Shows with Names Only

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<SHOW><xinclude:include href=”oprah.xml”

xpointer=”xpointer(/SHOW/NAME)/text()”/></SHOW>
<SHOW><xinclude:include href=”silicontowers.xml”

xpointer=”xpointer(/SHOW/NAME/text())”/></SHOW>
</STATION>

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 661

662 Part IV ✦ Supplemental Technologies

An XPointer that selects a point or a group of points has no effect when included.
Points are nondimensional, so including a point doesn’t really change the document
at all. Ranges are a different matter. If an XPointer selects a range, the complete con-
tents of the range are included. Furthermore, if a range partially selects an element
(for example, it covers the start-tag but not the end-tag, or vice versa), the entire
element that is only partially selected is included, not just the fraction of the ele-
ment that is pointed to.

There are, however, some limits on what the XPointer can point to. In particular, it
is not allowed to point to anything that, when included, would make the including
document malformed. For example, an xinclude:include element can be the root
element of a document; but, if so, it must be replaced by a node-set containing
exactly one element that can serve as the new root. It can’t be replaced by a text
node or two element nodes. Similarly, the XPointer in an xinclude:include ele-
ment should never point to an attribute or a namespace node, because replacing an
element with an attribute or namespace makes no sense. If an XPointer does point
to any of these items, the XInclude processor will signal an error and give up.

Unparsed Text
The examples up to this point have all included other well-formed XML documents
or pieces thereof. If an included document is not well-formed, the XInclude proces-
sor stops processing and reports the error. However, it would be useful to be able
to include documents that aren’t XML documents, and that aren’t well-formed. For
example, you might want to include a plain-text document such as an e-mail mes-
sage. If you were writing a tutorial about Python programming, you’d like to be able
to include the text of your example programs. Perhaps the URL you’re including
actually points to a CGI query against a database that returns a SQL result set as
ASCII text. However, in all these and many more cases, the text documents you
want to include may contain characters that would make an XML document mal-
formed, such as < and &. Such characters can be represented in XML documents
using entity references, character references, or CDATA sections. However, you still
need some way of telling the XInclude processor that it should escape these charac-
ters when it reads them in a referenced document, rather than treating them as
malformed markup and throwing an error.

To indicate that the included document is plain text that should not be parsed,
rather than another XML document, you add a parse=”text” attribute to the
xinclude:include element that includes it. For example, this xinclude:include
element references a Java source code file named HelloWorld.java:

<xinclude:include href=”HelloWorld.java” parse=”text”/>

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 662

663Chapter 19 ✦ XInclude

You can also set the value of parse to xml to indicate that the referenced document
is XML and should be parsed. For example, the previous television examples could
easily have been written like this:

<xinclude:include href=”Oprah.xml” parse=”xml”/>

However, since parse=”xml” is the default, this is rarely done explicitly.

I often use parse=”text” when I want to include an XML document as an example
in a larger document. That way, the unresolved markup is shown. For example, if
this very chapter were written in XML, it might be marked up like this:

<PARA>
Included documents may themselves include other documents. In
other words, includes can nest. There’s no limit to the depth.
For example, Listing 19-8 builds a schedule by including
stations which themselves include the shows. The only
restriction is that includes may not be circular. Document A
may not include document B if document B includes, directly
orindirectly, document A.
</PARA>
<LISTING>
<NUMBER>19-8</NUMBER>
<CAPTION>A schedule includes stations</CAPTION>
<BODY>
<xinclude:include href=”source/19/19-8.xml” parse=”text”/>
</BODY>

</LISTING>

If the unparsed text contains any reserved characters, such as & or <, they will be
escaped using entity references or character references when the result is serialized.

Fallbacks
When you are including documents from remote sites you don’t control, it’s not
uncommon for those documents to disappear. This might be temporary (a server
crashed, or a T1 connection was severed) or permanent (a document moved to a
new URL or was deleted entirely). In this case, the master document cannot be pro-
cessed because pieces it needs are missing.

To help alleviate this, each xinclude:include element can contain a single
xinclude:fallback child element. The contents of this element are used if the
remote resource that would normally be included cannot be found. For example,
Listing 19-15 is similar to Listing 19-7. However, if either of the remote documents are
not available when this is processed, this example will replace them with the text
“N/A”. With Listing 19-7, the whole document would simply be dropped with an error.

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 663

664 Part IV ✦ Supplemental Technologies

Listing 19-15: Include Elements with Fallbacks

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<xinclude:include href=
“http://cafeconleche.org/examples/shows/Oprah.xml”>
<xinclude:fallback>N/A</xinclude:fallback>

</xinclude:include>
<xinclude:include href=
“http://cafeconleche.org/examples/shows/SiliconTowers.xml”>
<xinclude:fallback>N/A</xinclude:fallback>

</xinclude:include>
</STATION>

The xinclude:fallback element can include markup as well as plain text. For
example, Listing 19-16 replaces missing documents with markup that’s filled with
N/A values. This might be useful to make sure the result document remains valid.

Listing 19-16: Fallbacks with Child Elements

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE STATION SYSTEM “station.dtd”>
<STATION xmlns:xinclude=”http://www.w3.org/2003/XInclude”>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
<xinclude:include href=
“http://cafeconleche.org/examples/shows/Oprah.xml”>
<xinclude:fallback>
<SHOW>
<NAME>N/A</NAME>
<START_TIME>N/A</START_TIME>
<LENGTH>N/A</LENGTH>
<AIR_DATE>N/A</AIR_DATE>

</SHOW>
</xinclude:fallback>

</xinclude:include>
<xinclude:include href=
“http://cafeconleche.org/examples/shows/SiliconTowers.xml”>
<xinclude:fallback>
<SHOW>
<NAME>N/A</NAME>
<START_TIME>N/A</START_TIME>
<LENGTH>N/A</LENGTH>
<AIR_DATE>N/A</AIR_DATE>

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 664

665Chapter 19 ✦ XInclude

</SHOW>
</xinclude:fallback>

</xinclude:include>
</STATION>

The xinclude:fallback element might even include other xinclude:include
elements, which are resolved only if the top-level include fails. And, of course,
these descendant xinclude:include elements may have fallbacks of their own, ad
infinitum. For example, you might use this capability to load a document from one
of several mirror sites:

<xinclude:include href=”http://www.example.com/data.xml”>
<xinclude:fallback>
<xinclude:include href=”http://www.example.net/data.xml”>
<xinclude:fallback>
<xinclude:include href=”file:///usr/data/data.xml”/>

</xinclude:fallback>
</xinclude:include>
</xinclude:fallback>

</xinclude:include>

As always, if any of these examples are to be validated, the DTD must declare all the
elements present in the document when validation takes place. If validation is per-
formed before XInclusion, the xinclude:fallback elements and their children
must be declared. If validation is performed after XInclusion, the content that
results from resolving the xinclude:include elements and xinclude:fallback
elements must be declared.

An xinclude:include element cannot contain more than one xinclude:fallback
element. This is forbidden. Similarly, xinclude:fallback elements cannot appear
outside an xinclude:include element.

Summary
In this chapter, you learned about XInclude, a W3C standard for building large XML
documents out of smaller, more manageable XML documents that are themselves
complete, well-formed, possibly valid XML documents. In particular, you learned
the following:

✦ Previous means of building large documents out of smaller parts, including
external general entities, server-side includes, and XLinks, all have significant
limitations.

✦ An XInclude processor or an XInclude-aware XML parser replaces each
xinclude:include element with the document identified by the xinclude:
include element’s href attribute.

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 665

666 Part IV ✦ Supplemental Technologies

✦ This href attribute contains a relative or absolute URL identifying the docu-
ment to be included.

✦ An optional xpointer attribute contains an XPointer that indicates which
part of the remote document should be included. If this is omitted, the entire
remote document is included.

✦ The xinclude:include element can have an optional parse=”text”
attribute to indicate that the document at the remote URL should be treated
as plain text rather than a parsed XML document.

✦ Each xinclude:include element can have a single xinclude:fallback
child element whose contents are included if the remote resource pointed to
be the xinclude:include element cannot be found.

This chapter addressed modular XML document instances. Chapter 20 explores the
W3C XML Schema Language, which, among other advantages, offers modular XML
content models. The W3C XML Schema Language is an XML application for defining
the permissible contents of documents adhering to a particular XML application.
Schemas let you specify element and attribute structures, much as DTDs do, but
they do it using an XML instance document syntax. Furthermore, schemas let you
impose constraints on the text content of XML elements and attributes, such as
specifying that a SHOE_SIZE element must contain a number between 1 and 15, or
that an ABSTRACT element must contain between 100 and 512 characters.

✦ ✦ ✦

24 549863 Ch19.qxd 1/28/04 9:47 AM Page 666

Schemas

Schemas are documents that define the valid contents of
particular classes of XML documents. The schema lan-

guage discussed in this chapter, the W3C XML Schema
Language, has a number of useful characteristics, most
notably the ability to specify data types for text content and
attribute values. For example, a schema can state that a PRICE
element has type double or that a YEAR attribute contains a
number between 1966 and 2012. However, schemas have a
number of other useful characteristics including namespace
awareness and the ability to validate complex structures built
up out of many different elements of many types.

What’s Wrong with DTDs?
Document type definitions (DTDs) are an outgrowth of XML’s
heritage in the Standardized General Markup Language
(SGML). SGML was always intended for narrative-style docu-
ments: books, reports, technical manuals, brochures, web
pages, and the like. DTDs were designed to serve the needs of
these sorts of documents, and indeed they serve them very
well. DTDs let you state very simply and straightforwardly
that every book must have one or more authors, that every
song has exactly one title, that every PERSON element has an
ID attribute, and so forth. Indeed, for narrative documents
that are intended for human beings to read from start to fin-
ish, that are more or less composed of words in a row, there’s
really no need for anything beyond a DTD. However, XML has
gone well beyond the uses envisioned for SGML. XML is being
used for object serialization, stock trading, remote procedure
calls, vector graphics, and many more things that look noth-
ing like traditional narrative documents; and it is in these new
arenas that DTDs are showing some limits.

The limitation most developers notice first is the almost com-
plete lack of data typing, especially for element content. DTDs
can’t say that a PRICE element must contain a number, much
less a number that’s greater than zero with two decimal digits
of precision and a dollar sign. There’s no way to say that a

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What’s wrong with
DTDs?

What is a schema?

The W3C XML
Schema Language

Hello schemas

Complex types

Grouping

Simple types

Deriving simple types

Empty elements

Attributes

Namespaces

Annotations

✦ ✦ ✦ ✦

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 667

668 Part IV ✦ Supplemental Technologies

MONTH element must be an integer between 1 and 12. There’s no way to indicate that
a TITLE must contain between 1 and 255 characters. None of these are particularly
important things to do for the narrative documents SGML was aimed at; but they’re
very common things to want to do with data formats intended for computer-to-
computer exchange of information rather than computer-to-human communication.
Humans are very good at handling fuzzy systems where expected data is missing, or
perhaps is not in quite the right format; computers are not. Computers need to know
that when they expect an element to contain an integer between 1 and 12, the ele-
ment really contains an integer in that range and nothing else.

The second problem is that DTDs have an unusual non-XML syntax. The same
parrsers and APIs that read an XML document can’t read a DTD. For example,
consider this common element declaration:

<!ELEMENT TITLE (#PCDATA)>

This is not a legal XML element. You can’t begin an element name with an exclama-
tion point. TITLE is not an attribute. Neither is (#PCDATA). This is a very different
way of describing information than is used in XML document instances. One would
expect that if XML were really powerful enough to live up to all its hype, it would be
powerful enough to describe itself. You shouldn’t need two different syntaxes: one
for the information and one for the meta-information detailing the structure of the
information. XML element and attribute syntax should suffice for both info and
meta-info.

The third problem is that DTDs are only marginally extensible and don’t scale very
well. It’s difficult to combine independent DTDs together in a sensible way. You can
do this with parameter entity references. Indeed, SMIL 2.0 and modular XHTML are
based on this idea. However, the modularized DTDs are very messy and very hard
to follow. The largest DTDs in use today are in the ballpark of 10,000 lines of code,
and it’s questionable whether much larger XML applications can be defined before
the entire DTD becomes completely unmanageable and incomprehensible. By con-
trast, the largest computer programs in existence today, which are much more
intrinsically complex than even the most ambitious DTDs, easily reach sizes of
1,000,000 lines of code or more.

Perhaps most annoyingly, DTDs are only marginally compatible with namespaces.
The first principle of namespaces is that only the URI matters. The prefix does not.
The prefix can change as long as the URI remains the same. However, validation of
documents that use namespace prefixes works only if the DTD declares the prefixed
names. You cannot use namespace URIs in a DTD. You must use the actual prefixes.
If you change the prefixes in the document but don’t change the DTD, the document
immediately ceases to be valid. There are some tricks that you can perform with
parameter entity references to make DTDs less dependent on the actual prefix, but
they’re complicated and not well understood in the XML community. And even
when they are understood, these tricks simply feel far too much like a dirty hack
rather than a clean, maintainable solution.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 668

669Chapter 20 ✦ Schemas

Finally, there are a number of annoying minor limitations where DTDs don’t allow
you to do things that it really feels like you ought to be able to do. For example,
DTDs cannot enforce the order or number of child elements in mixed content. That
is, you can’t enforce constraints such as each PARAGRAPH element must begin with
exactly one SUMMARY element that is followed by plain text. Similarly, you can’t
enforce the number of child elements without also enforcing their order. For exam-
ple, you cannot easily say that a PERSON element must contain a FIRST_NAME child,
a MIDDLE_NAME child, and a LAST_NAME child, but that you don’t care what order
they appear in. Again, there are workarounds, but they grow combinatorially com-
plex with the number of possible child elements.

Schemas are an attempt to solve all these problems by defining a new XML-based
syntax for describing the permissible contents of XML documents that includes the
following:

✦ Powerful data typing including range checking

✦ Namespace-aware validation based on namespace URIs rather than on prefixes

✦ Extensibility and scalability

However, schemas are not a be-all and end-all solution. In particular, schemas do not
replace DTDs! You can use both schemas and DTDs in the same document. DTDs
can do several things that schemas cannot do, most importantly declaring entities.
And DTDs still work very well for the classic sort of narrative documents they were
originally designed for. Indeed, for these types of documents, a DTD is often consid-
erably easier to write than an equivalent schema. Parsers and other software will
continue to support DTDs for as long as they support XML.

What Is a Schema?
The word schema derives from the Greek word σχηµα, meaning form or shape. It
was first popularized in the Western world by Immanuel Kant in the late 1700s.
According to the 1933 edition of the Oxford English Dictionary, Kant used the word
schema to mean, “Any one of certain forms or rules of the ‘productive imagination’
through which the understanding is able to apply its ‘categories’ to the manifold of
sense-perception in the process of realizing knowledge or experience.” (And you
thought computer science was full of unintelligible technical jargon!)

Schemas remained the province of philosophers for the next 200 years until the
word schema entered computer science, probably through database theory. Here,
schema originally meant any document that described the permissible content of a
database. More specifically, a schema was a description of all the tables in a
database and the fields in the table. A schema also described what type of data
each field could contain: CHAR, INT, CHAR[32], BLOB, DATE, and so on.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 669

670 Part IV ✦ Supplemental Technologies

The word schema has grown from that source definition to a more generic meaning
of any document that describes the permissible contents of other documents, espe-
cially if data typing is involved. Thus, you’ll hear about different kinds of schemas
from different technologies, including vocabulary schemas, RDF schemas, organiza-
tional schemas, X.500 schemas, and of course, XML schemas.

Because schemas is such a generic term, it shouldn’t come as any surprise that
there’s more than one schema language for XML. In fact, there are many, each with
its own unique advantages and disadvantages. These include Murata Makoto and
James Clark’s RELAX NG (http://relaxng.org/), Rick Jelliffe’s Schematron
(http://www.ascc.net/xml/resource/schematron/schematron.html), and
the W3C’s misleadingly, generically titled XML Schema Language. In addition,
traditional XML DTDs can be considered to be simply another schema language.

This chapter focuses almost exclusively on the W3C XML Schema Language.
Nonetheless, RELAX NG and Schematron are definitely worthy of your attention as
well. In particular, if you find W3C schemas to be excessively complex (and many
people do) and if you want a simpler schema language that still offers a complete
set of extensible data types, you should consider RELAX NG. RELAX NG adopts the
less controversial data types half of the W3C XML Schema Recommendation, but
replaces the much more complex and much less popular structures half with a
much simpler language.

There are also several dead XML schema languages that have been abandoned by
their manufacturers in favor of other languages. These include Document Content
Description (DCD), Commerce One’s Schema for Object-Oriented XML (SOX), and
Microsoft’s XML-Data Reduced (XDR). None of these is worth your time or invest-
ment at this point. They never achieved broad adoption, and their vendors are
now moving to the W3C XML Schema Language instead.

Most schema languages, including W3C schemas, RELAX NG, and DTDs, take the
approach that you must carefully specify what is allowed in the document. They are
conservative: Everything not permitted is forbidden. If, on the other hand, you’re
looking for a less-restrictive schema language in which everything not forbidden is

Note

You say schemas, I say schemata

Probably no single topic has been more controversial in the schema world than the proper
plural form of the word schema. The original Greek plural is σχηµαΤα, schemata in Latin
transliteration; and this is the form which Kant used and which you’ll find in most dictio-
naries. This was fine for the 200 years when only people with Ph.D.s in philosophy actually
used the word. However, as often happens when words from other languages are adopted
into popular English, its plural changed to something that sounds more natural to an anglo-
phone ear. In this case, the plural form, schemata, seems to be rapidly dying out in favor of
the simpler schemas. In fact, the three World Wide Web Consortium (W3C) schema specifi-
cations all use the plural form schemas. I follow this convention in this book.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 670

671Chapter 20 ✦ Schemas

permitted, you should consider Schematron. Schematron is based on XPath, which
allows it to make statements none of the other major schema languages can, such
as “An a element cannot have another a element as a descendant, even though an a
element can contain a strong element that can contain an a element if it itself is
not a descendant of an a element.” This isn’t a theoretical example. This is a real
restriction in XHTML that has to be made in the prose of the specification because
neither DTDs nor the W3C XML Schema Language are powerful enough to say it.
What it means is that links can’t nest; that is, a link cannot contain another link.

From this point forward, I will use the unqualified word schema to refer to the
W3C’s XML Schema Language; but please keep in mind that alternatives that are
equally deserving of the appellation do exist.

The W3C XML Schema Language
The W3C XML Schema Language was created by the W3C XML Schema Working
Group based on many different submissions from a variety of companies and indi-
viduals. It is a very large specification designed to handle a broad range of use
cases. In fact, the schema specification is considerably larger and more complex
than the XML 1.0 specification. It is an open standard, free to be implemented by
any interested party. There are no known patent, trademark, or other intellectual
property restrictions that would prevent you from doing anything you might rea-
sonably want to do with schemas. (This, unfortunately, is not quite the same thing
as saying that there are no known patent, trademark, or other intellectual property
restrictions that would prevent you from doing anything you might reasonably want
to do. The U.S. Patent Office has been a little out of control lately, granting patents
left and right for inventions that really don’t deserve it, including a lot of software
and business processes. I would not be surprised to learn of an as yet unnoticed
patent that at least claims to cover some or all of the W3C XML Schema Language.)

Hello Schemas
Let’s begin our exploration of schemas with the ubiquitous Hello World example.
Recall, once again, the code from Listing 3-2 (greeting.xml) in Chapter 3. It is shown
here:

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

This XML document contains a single element, GREETING. (Remember that <?xml
version=”1.0”?> is the XML declaration, not an element.) This element contains
parsed character data. A schema for this document has to declare the GREETING
element. It may declare other elements too, including ones that aren’t present in
this particular document, but it must at least declare the GREETING element.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 671

672 Part IV ✦ Supplemental Technologies

The greeting schema
Listing 20-1 is a very simple schema for GREETING elements. By convention it would
be stored in a file with the three-letter extension .xsd — greeting.xsd, for example —
but that’s not required. It is an XML document, so it has an XML declaration. It can
be written and saved in any text editor that knows how to save Unicode files. As
always, you can use a different character set if you declare it in an encoding declara-
tion. Schema documents are XML documents and have all the privileges and respon-
sibilities of other XML documents. They can even have DTDs, DOCTYPE declarations,
and style sheets if that seems useful to you, although in practice most do not.

Listing 20-1: greeting.xsd

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”GREETING” type=”xsd:string”/>

</xsd:schema>

The root element of this and all other schemas is schema. This must be in the
http://www.w3.org/2001/XMLSchema namespace. Normally, this namespace is
bound to the prefix xsd or xs, although this can change as long as the URI stays the
same. The other common approach is to make this URI the default namespace,
although that generally requires a few extra attributes to help separate out the
names from the XML application the schema describes from the names of the
schema elements themselves. You’ll see this when namespaces are discussed at
the end of this chapter.

Elements are declared using xsd:element elements. Listing 20-1 includes a single
such element declaring the GREETING element. The name attribute specifies which
element is being declared, GREETING in this example. This xsd:element element also
has a type attribute whose value is the data type of the element. In this case the type
is xsd:string, a standard type for elements that can contain any amount of text in
any form but not child elements. It’s equivalent to a DTD content model of #PCDATA.
That is, this xsd:element says that a valid GREETING element must look like this:

<GREETING>
various random text but no markup

</GREETING>

There’s no restriction on what text the element can contain. It can be zero or more
Unicode characters with any meaning. Thus, a GREETING element can also look
like this:

<GREETING>Hello!</GREETING>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 672

673Chapter 20 ✦ Schemas

Or even this:

<GREETING></GREETING>

However, a valid GREETING element may not look like this:

<GREETING>
<SOME_TAG>various random text</SOME_TAG>
<SOME_EMPTY_TAG/>

</GREETING>

Nor may it look like this:

<GREETING>
<GREETING>various random text</GREETING>

</GREETING>

Each GREETING element must consist of nothing more and nothing less than parsed
character data between a <GREETING> start-tag and a </GREETING> end-tag.

Validating the document against the schema
Before a document can be validated against a DTD, the document itself must contain
a document type declaration pointing to the DTD it should be validated against. You
cannot easily receive a document from a third party and validate it against your own
DTD. You have to validate it against the DTD that the document’s author specified.
This is excessively limiting.

For example, imagine you’re running an e-commerce business that accepts orders
for products using SOAP or XML-RPC. Each order comes to you over the Internet as
an XML document. Before accepting that order, the first thing you want to do is
check that it’s valid against a DTD you’ve defined to make sure that it contains all
the necessary information. However, if DTDs are all you have to validate with,
there’s nothing to prevent a hacker from sending you a document whose DOCTYPE
declaration points to a different DTD. Then your system may report that the docu-
ment is valid according to the hacked DTD, even though it would be invalid when
compared to the correct DTD. If your system accepts the invalid document, it could
introduce corrupt data that crashes the system or lets the hacker order goods they
haven’t paid for, all because the person authoring the document got to choose
which DTD to validate against rather than the person validating the document.

Schemas are more flexible. The schema specification specifically allows for a vari-
ety of different means for associating documents with schemas. For example, one
possibility is that both the name of the document to validate and the name of the
schema to validate it against could be passed to the validator program on the
command line, like this:

C:\>validator greeting.xml greeting.xsd

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 673

674 Part IV ✦ Supplemental Technologies

Parsers could also let you choose the schema by setting a SAX property or an envi-
ronment variable. Many other approaches are possible. The schema specification
does not mandate any one way of doing this. However, it does define one particular
way to associate a document with a schema. As with DOCTYPE declarations and
DTDs, this requires modifying the instance document to point to the schema. The
difference is that with schemas, unlike with DTDs, this is not the only way to do it.
Parser vendors are free to develop other mechanisms if they want to.

To attach a schema to a document, add an xsi:noNamespaceSchemaLocation
attribute to the document’s root element. (You can also add it to the first element in
the document that the schema applies to, but most of the time adding it to the root
element is simplest.) The xsi prefix is mapped to the http://www.w3.org/2001/
XMLSchema-instance URI. As always, the prefix can change as long as the URI
stays the same. Listing 20-2 demonstrates.

Listing 20-2: valid_greeting.xml

<?xml version=”1.0”?>
<GREETING xsi:noNamespaceSchemaLocation=”greeting.xsd”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

Hello XML!
</GREETING>

You can now run the document through any parser that supports schema valida-
tion. One such parser is Xerces Java from the XML Apache Project (http://xml.
apache.org/xerces2-j/). It includes a simple command line program named
sax.Counter that can validate against schemas as well as DTDs. When you set
the -v and -s flags, sax.Counter validates the documents against its schema as
specified by the xsi:noNamespaceSchemaLocation attribute. Assuming
sax.Counter finds no errors, it simply returns the amount of time that was
required to parse the document, as in the following example:

C:\XML>java sax.Counter -v -s valid_greeting.xml
valid_greeting.xml: 701 ms (1 elems, 1 attrs, 0 spaces, 12
chars)

To install sax.Counter, copy the JAR archives bundled with the Xerces distribution
into your jre/lib/ext directory. With the latest versions of the JDK, this may actually
be named something like j2re1.4.2/lib/ext instead. On Windows with a default
installation, you’ll find the appropriate directory in C:\Program Files\Java or per-
haps C:\Program Files\Javasoft. (The exact names tend to change from one ver-
sion of Java to the next.) You will need to have Java 1.2 or later installed. If
necessary, you can download the latest version from http://java.sun.com/.

Note

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 674

675Chapter 20 ✦ Schemas

Now, suppose you have a document that’s not valid, such as Listing 20-3. This docu-
ment uses a P element that hasn’t been declared in the schema.

Listing 20-3: invalid_greeting.xml

<?xml version=”1.0”?>
<GREETING
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”greeting.xsd”>
<P>Hello XML!</P>

</GREETING>

Running it through sax.Counter, you now get this output showing you what the
problems are:

$ java sax.Counter -s -v invalid_greeting.xml
[Error] invalid_greeting.xml:11:12: cvc-type.3.1.2:
Element ‘GREETING’ is a simple type, so it must have no
element information item [children].
invalid_greeting.xml: 907 ms (2 elems, 1 attrs, 0 spaces,
16 chars)

The problem is that the GREETING element is declared to have type xsd:string,
one of several “simple” types that cannot have any child elements. However, in this
case, the GREETING element does contain a child element: the P element.

Complex Types
The W3C XML Schema Language divides elements into complex and simple types. A
simple type element is one such as GREETING that can only contain text and does
not have any attributes. It cannot contain any child elements. It may, however, be
more limited in the kind of text it can contain. For example, a schema can say that a
simple element contains an integer, a date, or a decimal value between 3.76 and
98.24. Complex type elements can have attributes and can have child elements.

Most documents need a mix of both complex and simple elements. For example,
consider Listing 20-4. This document describes the song “Yes I Am” by Melissa
Etheridge. The root element is SONG. This element has a number of child elements
giving the title of the song, the composer, the producer, the publisher, the duration
of the song, the year it was released, the price, and the artist who sang it. Except for
SONG itself, these are all simple elements that can have type xsd:string. You might
see documents like this used in CD databases, MP3 players, Gnutella clients, or any-
thing else that needs to store information about songs.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 675

676 Part IV ✦ Supplemental Technologies

Listing 20-4: yesiam.xml

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”song.xsd”>
<TITLE>Yes I Am</TITLE>
<COMPOSER>Melissa Etheridge</COMPOSER>
<PRODUCER>Hugh Padgham</PRODUCER>
<PUBLISHER>Island Records</PUBLISHER>
<LENGTH>4:24</LENGTH>
<YEAR>1993</YEAR>
<ARTIST>Melissa Etheridge</ARTIST>
<PRICE>$1.25</PRICE>

</SONG>

Now you need a schema that describes this and all other reasonable song docu-
ments. Listing 20-5 is the first attempt at such a schema.

Listing 20-5: song.xsd

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”/>
<xsd:element name=”PRODUCER” type=”xsd:string”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”/>
<xsd:element name=”PRICE” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 676

677Chapter 20 ✦ Schemas

The root element of this schema is once again xsd:schema, and once again the pre-
fix xsd is mapped to the namespace URI http://www.w3.org/2001/XMLSchema.
This will be the case for all schemas in this chapter, and indeed all schemas that
you write.

This schema declares a single top-level element. That is, there is exactly one ele-
ment declared in an xsd:element declaration that is an immediate child of the root
xsd:schema element. This is the SONG element. Only top-level elements can be the
root elements of documents described by this schema, though in general they do
not have to be the root element.

The SONG element is declared to have type SongType. The W3C Schema Working
Group wasn’t prescient. They built a lot of common types into the language, but
they didn’t know that I was going to need a song type, and they didn’t provide one.
Indeed, they could not reasonably have been expected to predict and provide for
the numerous types that schema designers around the world were ever going to
need. Instead, they provided facilities to allow users to define their own types.
SongType is one such user-defined type. In fact, you can tell it’s not a built-in type
because it doesn’t begin with the prefix xsd. All built-in types are in the
http://www.w3.org/2001/XMLSchema namespace.

The xsd:complexType element defines a new type. The name attribute of this ele-
ment names the type being defined. Here that name is SongType, which matches
the type previously assigned to the SONG element. Forward references (for example,
xsd:element using the SongType type before it’s been defined) are perfectly
acceptable in schemas. Circular references are okay, too. Type A can depend on
type B, which depends on type A. Schema processors sort all this out without
any difficulty.

The contents of the xsd:complexType element specify what content a SongType
element must contain. In this example, the schema says that every SongType ele-
ment contains a sequence of eight child elements: TITLE, COMPOSER, PRODUCER,
PUBLISHER, LENGTH, YEAR, PRICEARTIST, and PRICE. Each of these is declared to
have the built-in type xsd:string. Each SongType element must contain exactly
one of each of these in exactly that order. The only other content it may contain is
insignificant white space between the tags.

minOccurs and maxOccurs
You can validate Listing 20-4, yesiam.xml, against the song schema, and it does
indeed prove valid. Are you done? Is song.xsd now an adequate description of legal
song documents? Suppose you instead wanted to validate Listing 20-6, a song docu-
ment that describes Hot Cop by the Village People. Is it valid according to the
schema in Listing 20-5?

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 677

678 Part IV ✦ Supplemental Technologies

Listing 20-6: hotcop.xml

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”song.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

The answer is no, it is not. The reason is that this song was a collaboration between
three different composers and the existing schema only allows a single composer.
Furthermore, the price is missing. If you looked at other songs, you’d find similar
problems with the other child elements. Under Pressure has two artists, David
Bowie and Queen. We Are the World has dozens of artists. Many songs have multiple
producers. A garage band without a publisher might record a song and post it on
Gnutella in the hope of finding one.

The song schema needs to be adjusted to allow for varying numbers of particular
elements. This is done by attaching minOccurs and maxOccurs attributes to each
xsd:element element. These attributes specify the minimum and maximum num-
ber of instances of the element that may appear at that point in the document. The
value of each attribute is an integer greater than or equal to zero. The maxOccurs
attribute can also have the value unbounded to indicate that an unlimited number
of the particular element may appear. Listing 20-7 demonstrates.

Listing 20-7: minOccurs and maxOccurs

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

minOccurs=”1” maxOccurs=”unbounded”/>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 678

679Chapter 20 ✦ Schemas

<xsd:element name=”PRODUCER” type=”xsd:string”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PUBLISHER” type=”xsd:string”
minOccurs=”0” maxOccurs=”1”/>

<xsd:element name=”LENGTH” type=”xsd:string”
minOccurs=”1” maxOccurs=”1”/>

<xsd:element name=”YEAR” type=”xsd:string”
minOccurs=”1” maxOccurs=”1”/>

<xsd:element name=”ARTIST” type=”xsd:string”
minOccurs=”1” maxOccurs=”unbounded”/>

<xsd:element name=”PRICE” type=”xsd:string”
minOccurs=”0” maxOccurs=”1”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

This schema says that every SongType element must have, in order:

1. Exactly one TITLE (minOccurs=”1” maxOccurs=”1”)

2. At least one, and possibly a great many, COMPOSERs (minOccurs=”1”
maxOccurs=”unbounded”)

3. Any number of PRODUCERs, although possibly no producer at all
(minOccurs=”0” maxOccurs=”unbounded”)

4. Either one PUBLISHER or no PUBLISHER at all (minOccurs=”0”
maxOccurs=”1”)

5. Exactly one LENGTH (minOccurs=”1” maxOccurs=”1”)

6. Exactly one YEAR (minOccurs=”1” maxOccurs=”1”)

7. At least one ARTIST, possibly more (minOccurs=”1”
maxOccurs=”unbounded”)

8. An optional PRICE, (minOccurs=”0” maxOccurs=”1”)

This is much more flexible and easier to use than the limited ?, *, and + that are
available in DTDs. It is very straightforward to say, for example, that you want
between four and seven of a given element. Just set minOccurs to 4 and
maxOccurs to 7.

If minOccurs and maxOccurs are not present, the default value of each is 1. Taking
advantage of this, the song schema can be written a little more compactly, as
shown in Listing 20-8.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 679

680 Part IV ✦ Supplemental Technologies

Listing 20-8: Taking Advantage of the Default Values
of minOccurs and maxOccurs

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Element content
The examples so far have all been relatively flat. That is, a SONG element contained
other elements; but those elements only contained character data, not child ele-
ments of their own. Suppose, however, that some child elements do contain other
elements, as in Listing 20-9. Here the COMPOSER and PRODUCER elements each con-
tain NAME elements.

Listing 20-9: A Deeper Hierarchy

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”20-10.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>
<NAME>Jacques Morali</NAME>

</COMPOSER>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 680

681Chapter 20 ✦ Schemas

<COMPOSER>
<NAME>Henri Belolo</NAME>

</COMPOSER>
<COMPOSER>
<NAME>Victor Willis</NAME>

</COMPOSER>
<PRODUCER>
<NAME>Jacques Morali</NAME>

</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Because the COMPOSER and PRODUCER elements now have complex content, you can
no longer use one of the built-in types such as xsd:string to declare them.
Instead, you have to define a new ComposerType and ProducerType using top-level
xsd:complexType elements. Listing 20-10 demonstrates.

Listing 20-10: Defining Separate ComposerType and
ProducerType Types

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”ComposerType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”ProducerType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”ComposerType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”ProducerType”

minOccurs=”0” maxOccurs=”unbounded”/>

Continued

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 681

682 Part IV ✦ Supplemental Technologies

Listing 20-10 (continued)

<xsd:element name=”PUBLISHER” type=”xsd:string”
minOccurs=”0”/>

<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Sharing content models
You may have noticed that PRODUCER and COMPOSER are very similar. Each contains
a single NAME child element and nothing else. In a DTD, you’d take advantage of this
shared content model via a parameter entity reference. In a schema, it’s much eas-
ier. Simply give them the same type. While you could declare that the PRODUCER
has ComposerType or vice versa, it’s better to declare that both have a more
generic PersonType. Listing 20-11 demonstrates.

Listing 20-11: Using a Single PersonType for Both COMPOSER
and PRODUCER

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 682

683Chapter 20 ✦ Schemas

<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Anonymous types
Suppose you wanted to divide the NAME elements into separate GIVEN and FAMILY
elements like this:

<NAME>
<GIVEN>Victor</GIVEN>
<FAMILY>Willis</FAMILY>

</NAME>
<NAME>
<GIVEN>Jacques</GIVEN>
<FAMILY>Morali</FAMILY>

</NAME>

To declare this, you could use an xsd:complexType element to define a new
NameType element, like this:

<xsd:complexType name=”NameType”>
<xsd:sequence>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

Then the PersonType would be defined like this:

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”NameType”/>

</xsd:sequence>
</xsd:complexType>

However, the NAME element is only used inside PersonType elements. Perhaps it
shouldn’t be a top-level definition. For example, you might not want to allow NAME
elements to be used as root elements, or to be children of things that aren’t
PersonType elements. You can prevent this by defining a name with an anonymous
type. To do this, instead of assigning the NAME element a type with a type attribute
on the corresponding xsd:element element, you give it an xsd:complexType child
element to define its type. Listing 20-12 demonstrates.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 683

684 Part IV ✦ Supplemental Technologies

Listing 20-12: Anonymous Types

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Defining the element types inside the xsd:element elements that are themselves
children of xsd:complexType elements is a very powerful technique. Among other
things, it enables you to give elements with the same name different types when
used in different elements. For example, you can say that the NAME of a PERSON con-
tains GIVEN and FAMILY child elements, while the NAME of a MOVIE contains an
xsd:string, and the NAME of a VARIABLE contains a string containing only
alphanumeric characters from the ASCII character set.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 684

685Chapter 20 ✦ Schemas

Mixed content
Schemas offer much greater control over mixed content than DTDs do. In particu-
lar, schemas let you enforce the order and number of elements appearing in mixed
content. For example, suppose you wanted to allow extra text to be mixed in with
the names to provide middle initials, titles, and the like as shown in Listing 20-13.

The format used here is purely for illustrative purposes. In practice, I’d recommend
that you make the middle names and titles separate elements as well.

Listing 20-13: Mixed Content

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”20-14.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>
<NAME>
Mr. <GIVEN>Jacques</GIVEN> <FAMILY>Morali</FAMILY> Esq.
</NAME>

</COMPOSER>
<COMPOSER>
<NAME>
Mr. <GIVEN>Henri</GIVEN> L. <FAMILY>Belolo</FAMILY>, M.D.
</NAME>

</COMPOSER>
<COMPOSER>
<NAME>
Mr. <GIVEN>Victor</GIVEN> C. <FAMILY>Willis</FAMILY>
</NAME>

</COMPOSER>
<PRODUCER>
<NAME>
Mr. <GIVEN>Jacques</GIVEN> S. <FAMILY>Morali</FAMILY>
</NAME>

</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

It’s very easy to declare that an element has mixed content in schemas. First, set up
the xsd:complexType exactly as you would if the element only contained child
elements. Then add a mixed attribute to it with the value true. Listing 20-14
demonstrates. It is almost identical to Listing 20-12 except for the addition of the
mixed=”true” attribute.

Caution

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 685

686 Part IV ✦ Supplemental Technologies

Listing 20-14: Declaring Mixed Content in a Schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>

<xsd:element name=”COMPOSER” type=”PersonType”
maxOccurs=”unbounded”/>

<xsd:element name=”PRODUCER” type=”PersonType”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PUBLISHER” type=”xsd:string”
minOccurs=”0”/>

<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”/>

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Grouping
So far, all the schemas you’ve seen have held that order mattered; for example, that
it would be wrong to put the COMPOSER before the TITLE or the PRODUCER after the
ARTIST. Given these schemas, the document shown in Listing 20-15 is clearly
invalid. But should it be? Element order often does matter in narrative documents
such as books and web pages. However, it’s not nearly as important in record-like
documents such as the examples in this chapter. Do you really care whether the

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 686

687Chapter 20 ✦ Schemas

TITLE comes first or not, as long as there is a TITLE? After all, if the document’s
going to be shown to a human being, it will probably first be transformed with an
XSLT style sheet that can easily place the contents in any order it likes.

Listing 20-15: A Song Document That Places the Elements
in a Different Order

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”song.xsd”>
<ARTIST>Village People</ARTIST>
<TITLE>Hot Cop</TITLE>
<COMPOSER>
<NAME><GIVEN>Jacques</GIVEN> <FAMILY>Morali</FAMILY></NAME>
</COMPOSER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<COMPOSER>
<NAME><FAMILY>Belolo</FAMILY> <GIVEN>Henri</GIVEN></NAME>
</COMPOSER>
<YEAR>1978</YEAR>
<COMPOSER>
<NAME><FAMILY>Willis</FAMILY> <GIVEN>Victor</GIVEN></NAME>
</COMPOSER>
<PRODUCER>
<NAME><GIVEN>Jacques</GIVEN> <FAMILY>Morali</FAMILY></NAME>
</PRODUCER>
<PRICE>$1.25</PRICE>

</SONG>

The W3C XML Schema Language provides three grouping constructs that specify
whether and how ordering of individual elements is important:

✦ The xsd:all group requires that each element in the group must occur at
most once, but that order is not important.

✦ The xsd:choice group specifies that any one element from the group should
appear. It can also be used to say that between N and M elements from the
group should appear in any order.

✦ The xsd:sequence group requires that each element in the group appear
exactly once, in the specified order.

Unfortunately, these constructs are not everything you might desire. In particular,
you can’t specify constraints such as those that would be required to really handle
Listing 20-14. In particular, you can’t specify that you want a SONG to have exactly
one TITLE, one or more COMPOSERs, zero or more PRODUCERs, and one or more
ARTISTs, but that you don’t care in what order the individual elements occur.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 687

688 Part IV ✦ Supplemental Technologies

The xsd:all Group
You can specify that you want each NAME element to have exactly one GIVEN child
and one FAMILY child, but that you don’t care what order they appear in. The
xsd:all group accomplishes this, as in the following example:

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”FAMILY” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
</xsd:all>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

The extension to handle what you want for Listing 20-15 seems obvious. It would
look like this:

<xsd:complexType name=”SongType”>
<xsd:all>
<xsd:element name=”TITLE” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”COMPOSER” type=”PersonType”

minOccurs=”1” maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0” maxOccurs=”1”/>
<xsd:element name=”LENGTH” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”YEAR” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”ARTIST” type=”xsd:string”

minOccurs=”1” maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:all>

</xsd:complexType>

Unfortunately, the W3C XML Schema Language restricts the use of minOccurs and
maxOccurs inside xsd:all elements. In particular, each one’s value must be 0 or 1.
You cannot set it to 4 or 7 or unbounded. Therefore, the preceding type definition is
invalid. Furthermore, xsd:all can only contain individual element declarations. It
cannot contain xsd:choice or xsd:sequence elements. xsd:all offers somewhat
more expressiveness than DTDs do, but probably not as much as you want.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 688

689Chapter 20 ✦ Schemas

Choices
The xsd:choice element is the schema equivalent of the | in DTDs. When
xsd:element elements are combined inside an xsd:choice, exactly one of those
elements must appear in instance documents. For example, the choice in this
xsd:complexType requires either a PRODUCER or a COMPOSER, but not both.

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:choice>
<xsd:element name=”COMPOSER” type=”PersonType”/>
<xsd:element name=”PRODUCER” type=”PersonType”/>

</xsd:choice>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string” minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

The xsd:choice element itself can have minOccurs and maxOccurs attributes that
establish exactly how many selections may be made from the choice. For example,
setting minOccurs to 1 and maxOccurs to 6 would indicate that between one and
six elements listed in the xsd:choice should appear. Each of these can be any of
the elements in the xsd:choice. For example, you could have six different ele-
ments, three of the same element and three of another, or up to six of the same ele-
ment. This next xsd:choice allows for any number of artists, composers, and
producers. However, in order to require that there be at least one ARTIST element
and at least one COMPOSER element, rather than allowing all spaces to be filled by
PRODUCER elements, it’s necessary to place xsd:element declarations for these
two outside the choice. This has the unfortunate side effect of locking in more
order than is really needed.

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”/>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”PRODUCER” type=”PersonType”/>
<xsd:element name=”COMPOSER” type=”PersonType”/>
<xsd:element name=”ARTIST” type=”xsd:string”/>

</xsd:choice>
<xsd:element name=”ARTIST” type=”xsd:string”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 689

690 Part IV ✦ Supplemental Technologies

<xsd:element name=”PRICE” type=”xsd:string”
minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

Sequences
An xsd:sequence element requires each member of the sequence to appear in the
same order in the instance document as in the xsd:sequence element. I’ve used
this frequently as the basic group for xsd:complexType elements in this chapter so
far. The number of times each element is allowed to appear can be controlled by
the xsd:element’s minOccurs and maxOccurs attributes. You can add minOccurs
and maxOccurs attributes to the xsd:sequence element to specify the number of
times the sequence should repeat.

Simple Types
Until now I’ve focused on writing schemas that validate the element structures in an
XML document. However, there’s also a lot of non-XML structure in the song docu-
ments. The YEAR element isn’t just a string. It’s an integer, and maybe not just any
integer either, but a positive integer with four digits. The PRICE element is some sort
of money. The LENGTH element is a duration of time. DTDs have absolutely nothing
to say about such non-XML structures that are inside the parsed character data
content of elements and attributes. Schemas, however, do let you make all sorts of
statements about what forms the text inside elements may take and what it means.
Schemas provide much more sophisticated semantics for documents than DTDs do.

Listing 20-16 is a new schema for song documents. It’s based on Listing 20-8, but
read closely and you should notice that a few things have changed.

Listing 20-16: A Schema with Simple Data Types

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 690

691Chapter 20 ✦ Schemas

<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Did you spot the changes? The values of the type attributes of the LENGTH and
YEAR declarations are no longer xsd:string. Instead, LENGTH has the type
xsd:duration and YEAR has the type xsd:gYear. These declarations say that it’s
no longer okay for the YEAR and LENGTH elements to contain just any old string of
text. Instead, they must contain strings in particular formats. In particular, the YEAR
element must contain a year; and the LENGTH element must contain a recognizable
length of time. When you check a document against this schema, the validator will
check that these elements contain the proper data. It’s not just looking at the ele-
ments. It’s looking at the content inside the elements!

Let’s actually validate hotcop.xml against this schema and see what we get:

$ java sax.Counter -s -v hotcop.xml
[Error] hotcop.xml:10:24: cvc-datatype-valid.1.2.1: ‘6:20’
is not a valid value for ‘duration’.
[Error] hotcop.xml:10:24: cvc-type.3.1.3: The value ‘6:20’
of element ‘LENGTH’ is not valid.
hotcop.xml: 897 ms (10 elems, 1 attrs, 0 spaces, 126 chars)

That’s unexpected! The problem is that 6:20 is not in the proper format for time
durations, at least not the format that the W3C XML Schema Language uses and
that schema validators know how to check. Schema validators expect that time
types are expressed in the format defined in ISO standard 8601, Representations of
dates and times (http://www.iso.ch/iso/en/prods-services/popstds/
datesandtime.html). This standard says that time durations should have the form
PnYnMnDTnHnMdS, where n is an integer and d is a decimal number. P stands for
“period.” nY gives the number of years; the first nM gives the number of months;
and nD gives the number of days. T separates the date from the time. Following the
T, nH gives the number of hours; the second nM gives the number of minutes; and
dS gives the number of seconds. If d has a fraction part, the duration can be speci-
fied to an arbitrary level of precision.

In this format, a duration of 6 minutes and 20 seconds should be written as
P0Y0M0DT0H6M20S. If you prefer, the zero pieces can be left out, so you can write
this more compactly as PT6M20S. Listing 20-17 shows the fixed version of
hotcop.xml with the LENGTH in the right format.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 691

692 Part IV ✦ Supplemental Technologies

Listing 20-17: fixed hotcop.xml

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”20-16.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>P0YT6M20S</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Admittedly the ISO 8601 format for time durations is a little obtuse, if precise. You
may well be asking whether there’s a type that you can specify for the LENGTH that
would make lengths such as 6:20 and 4:24 legal. In fact, there’s no such type built in
to the W3C XML Schema Language, but you can define one yourself. You’ll learn
how to do that soon, but first let’s explore some of the other data types that are
built in to the W3C XML Schema Language.

There are 44 built-in simple types in the W3C XML Schema Language. These can be
unofficially divided into seven groups:

✦ Numeric types

✦ Time types

✦ XML types

✦ String types

✦ The boolean type

✦ The URI reference type

✦ The binary types

Numeric data types
The most obvious data types, and the ones most familiar to programmers, are the
numeric data types. Among computer scientists, there’s quite a bit of disagreement
about how numbers should be represented in computer systems. The W3C XML

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 692

693Chapter 20 ✦ Schemas

Schema Language tries to make everyone happy by providing almost every numeric
type imaginable, including the following:

✦ Integer and floating point numbers

✦ Finite size numbers similar to those in Java and C and infinitely precise, unlim-
ited-size numbers similar to those in Eiffel and Java’s java.math package

✦ Signed and unsigned numbers

You’ll probably only use a subset of these. For example, you wouldn’t use both the
arbitrarily large xsd:integer type and the four-byte-limited xsd:int type. Table
20-1 summarizes the different numeric types.

Table 20-1
Schema Numeric Types

Name Type Examples

xsd:float IEEE 754 32-bit floating -INF, -1E4, -0, 0, 12.78E-2, 12, INF,
point number, or as close NaN
as you can get using a base
10 representation; same
as Java’s float type

xsd:double IEEE 754 64-bit floating- -INF, 1.401E-90, -1E4, -0, 0,
point number, or as close 12.78E-2, 12, INF, NaN, 3.4E42
as you can get using a base
10 representation; same
as Java’s double type

xsd:decimal Arbitrary precision, decimal -2.7E400, 5.7E-444, -3.1415292,
numbers; same as java. 0, 7.8, 90200.76, 3.4E1024
math.BigDecimal

xsd:integer An arbitrarily large or -500000000000000000000000,
small integer; same as -9223372036854775809,
java.math.BigInteger -126789, -1, 0, 1, 5, 23, 42, 126789,

9223372036854775808,
4567349873249832649873624958

xsd: An integer less than or equal 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, . . .
nonPositiveInteger to zero

xsd:negativeInteger An integer strictly less -1, -2, -3, -4, -5, -6, -7, -8, -9, . . .
than zero

Continued

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 693

694 Part IV ✦ Supplemental Technologies

Table 20-1 (continued)

Name Type Examples

xsd:long An eight-byte, two’s -9223372036854775808,
complement integer, such -9223372036854775807, . . . -6,
as Java’s long type -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, . . .,
2147483645, 2147483646,
2147483647, 2147483648, . . .
9223372036854775806,
9223372036854775807

xsd:int An integer that can be -2147483648, -2147483647,
represented as a four-byte, -2147483646, 2147483645,
two’s complement number, . . . -6, -5, -4, -3, -2, -1, 0, 1, 2, 3,
such as Java’s int type 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

. . ., 2147483645, 2147483646,
2147483647

xsd:short An integer that can be -32768, -32767, -32766, . . ., -6,
represented as a two-byte, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6,
two’s complement number, 7, 8, 9, 10, 11, 12, 13, 14, 15,
such as Java’s short type . . . 32765, 32766, 32767

xsd:byte An integer that can be -128, -127, -126, -125, . . ., -3, -2,
represented as a one-byte, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
two’s complement number 11, 12, 13, 14, 15, 16, . . .121, 122,
such as Java’s byte type 123, 124, 125, 126, 127

xsd: An integer greater than or 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
nonNegativeInteger equal to zero 12, 13, 14, 15,

xsd:unsignedLong An eight-byte unsigned 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
integer . . .18446744073709551614,

18446744073709551615

xsd:unsignedInt A four-byte unsigned integer 0, 1, 2, 3, 4, 5, . . .4294967294,
4294967295

xsd:unsignedShort A two-byte unsigned integer 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, . . .65533, 65534, 65535

xsd:unsignedByte A one-byte unsigned integer 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, . . . 252, 253, 254, 255

xsd:positiveInteger An integer strictly greater 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
than zero 13, 14, . . .

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 694

695Chapter 20 ✦ Schemas

Time data types
The next set of simple types the W3C XML Schema Language provides are more
familiar to database designers than to procedural programmers; these are the time
types. These can represent times of day, dates, or durations of time. The formats,
shown in Table 20-2, are all based on the ISO standard 8601, Representations of
Dates and Time. Time zones are given as offsets from Coordinated Universal Time
(Greenwich Mean Time to lay people) or as the letter Z to indicate Coordinated
Universal Time.

Table 20-2
XML Schema Time Types

Name Type Examples

xsd:dateTime A particular moment in 1999-05-31T13:20:00.000-05:00,
Coordinated Universal Time, 1999-05-31T18:20:00.000Z,
up to an arbitrarily small 1999-05-31T13:20:00.000,
fraction of a second 1999-05-31T13:20:00.000-05:00.321

xsd:date A specific day in history -0044-03-15, 0001-01-01,
1969-06-27, 2000-10-31, 2001-11-17

xsd:time A specific time of day that 14:30:00.000, 09:30:00.000-05:00,
recurs every day 14:30:00.000Z

xsd:gDay A day in no particular month, --01, --02, . . . –09, --10, --11, --12, . . .,
or rather in every month --28, --29, --30, --31

xsd:gMonth A month in no particular --01--, --02--, --03--, ---04--,
year . . . --09--, --10--, --11--, --12--

xsd:gYear A given year . . . -0002, -0001, 0001, 0002, 0003,
. . .1998, 1999, 2000, 2001, 2002,
. . .9997, 9998, 9999

xsd:gYearMonth A specific month in a 1999-12, 2001-04, 1968-07
specific year

xsd:gMonthDay A date in no particular year, --10-31, --02-28, --02-29
or rather in every year

xsd:duration A length of time, without P2000Y10M31DT09H32M7.4312S
fixed endpoints, to an
arbitrary fraction of a second

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 695

696 Part IV ✦ Supplemental Technologies

Notice, in particular, that in all the date formats the year comes first, followed by
the month, the day, the hour, and so on. The largest unit of time is on the left, and
the smallest unit is on the right. This helps avoid questions such as whether
2004–02–11 is February 11, 2004, or November 2, 2004.

XML data types
The next batch of schema data types should be quite familiar. These are the types
related to XML constructs themselves. Most of these types match attribute types in
DTDs such as NMTOKENS or IDREF. The difference is that with schemas these types
can be applied to both elements and attributes. These also include four new types
related to other XML constructs: xsd:language, xsd:Name, xsd:QName, and
xsd:NCName. Table 20-3 summarizes the different types.

Table 20-3
XML Schema XML Types

Name Type Examples

xsd:ID XML 1.0 ID attribute type; p1, p2, ss120-45-6789, _92, red,
any XML name that’s green, NT-Decl, seventeen
unique among ID type
attributes and elements

xsd:IDREF XML 1.0 IDREF attribute p1, p2, ss120-45-6789, _92, p1,
type; any XML name that’s p2, red, green, NT-Decl,
used as the value of an ID seventeen
type attribute or element
elsewhere in the document

xsd:ENTITY XML 1.0 ENTITY attribute PIC1, PIC2, PIC3, cow_movie,
type; any XML name that’s MonaLisa, Warhol
declared as an unparsed
entity in the DTD

xsd:NOTATION XML 1.0 NOTATION attribute GIF, jpeg, TIF, pdf, TeX
type; any XML name that’s
declared as a notation name
in the schema using
xsd:notation

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 696

697Chapter 20 ✦ Schemas

Name Type Examples

xsd:IDREFS XML 1.0 IDREFS attribute p1 p2, ss120-45-6789 _92,
type; a white space- red green NT-Decl seventeen
separated list of XML names
that are used as values of ID
type attributes or elements
elsewhere in the document

xsd:ENTITIES XML 1.0 ENTITIES attribute PIC1 PIC2 PIC3
type; a white space-separated
list of ENTITY names

xsd:NMTOKEN XML 1.0 NMTOKEN attribute 12 are you ready 199
type

xsd:NMTOKENS XML 1.0 NMTOKENS attribute MI NY LA CA
type, a white space-separated p1 p2 p3 p4 p5 p6
list of name tokens 1 2 3 4 5 6

xsd:language Valid values for xml:lang en, en-GB, en-US, fr, i-lux, ama,
as defined in XML 1.0 ara, ara-EG, x-choctaw

xsd:Name An XML 1.0 Name, with or set, title, rdf, math, math123,
without colons xlink:href, song:title

xsd:QName A prefixed name song:title, math:set,
xsd:element

xsd:NCName A local name without set, title, rdf, math,
any colons tei.2, href

For more details on the permissible values for elements and attributes declared to
have these types, see Chapters 9 and 11.

String data types
You’ve already encountered the xsd:string type. It’s the most generic simple
type. It requires a sequence of Unicode characters of any length, but this is what all
XML element content and attribute values are. There are also two very closely
related types: xsd:token and xsd:normalizedString. These are the same as
xsd:string, except that a schema aware processor may eliminate some white
space from the value before reporting it to the client application. Table 20-4 summa-
rizes the string data types.

Cross-
Reference

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 697

698 Part IV ✦ Supplemental Technologies

Table 20-4
XML Schema String Types

Name Type Examples

xsd:string A sequence of zero or more p1, p2, 123 45 6789,
Unicode characters that are ^*&^*&_92, red green
allowed in an XML document; blue, NT-Decl,
essentially the only forbidden seventeen; Mary had
characters are most of the C0 a little lamb, The
controls, surrogates, and the love of money is the
byte-order mark root of all Evil.,

Would you paint the
lily?

Would you gild gold?

xsd:normalizedString A string in which all tabs, PIC1, PIC2, PIC3,
carriage returns, and linefeeds cow_movie, MonaLisa,
are replaced by spaces Hello World , Warhol,

red green

xsd:token A string in which all tabs, p1 p2, ss123 45 6789,
carriage returns, and linefeeds _92, red, green, NT
are replaced by spaces, Decl, seventeenp1, p2,
consecutive spaces are 123 45 6789,
compressed to a single space, ^*&^*&_92, red green
and leading and trailing white blue, NT-Decl,
space is trimmed seventeen; Mary had a

little lamb, The love
of money is the root
of all Evil.

It’s important to note that none of these three types impose any limits on what
values may appear in the instance document. Elements with type xsd:strring,
xsd:normalizedString, and xsd:token can all contain tabs, linefeeds, consecu-
tive spaces, and so on. The difference is that for xsd:normalizedString and
xsd:token the parser may throw away some of this white space, while it won’t for
an xsd:string,.

Binary types
It’s impossible to include arbitrary binary files in XML documents, because they
might contain illegal characters such as a form feed or a null that would make the
XML document malformed. Therefore, any such data must first be encoded in legal

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 698

699Chapter 20 ✦ Schemas

characters. The W3C XML Schema Language supports two such encodings,
xsd:base64Binary and xsd:hexBinary.

Hexadecimal binary encodes each byte of the input as two hexadecimal digits — 00,
01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, and so on. Thus, an
entire file can be encoded using only the digits 0 through 9 and the letters A
through F. (Lowercase letters are also allowed, but uppercase letters are custom-
ary.) On the other hand, each byte is replaced by at least two bytes, so this encod-
ing at least doubles the size of the data. UTF-16 uses two bytes for each character
so it quadruples the size of the data. Clearly, this is not a very efficient encoding.
Hexadecimal binary encoded data tends to look like this:

A4E345EC54CC8D52198000FFEA6C807F41F332127323432147A89979EEF3

Base 64 encoding uses a more complex algorithm and a larger character set, 65 ASCII
characters chosen for their ability to pass through almost all gateways, mail relays,
and terminal servers intact, as well as their existence with the same code points in
ASCII, EBCDIC, and most other common character sets. Base 64 encodes every three
bytes as four characters, typically only increasing file size by a third in a character
set such as UTF-8, so it’s somewhat more efficient than xsd:hexBinary. Base-64-
encoded data tends to look something like this:

6jKpNnmkkWeArsn5Oeeg2njcz+nXdk0f9kZI892ddlR8Lg1aMhPeFTYuoq3I6n
BjWzuktNZKiXYBfKsSTB8U09dTiJo2ir3HJuY7eW/p89osKMfixPQsp9vQMgzph
6Qa lY7j4MB7y5ROJYsTr1/fFwmj/yhkHwpbpzed1LE=

XML Digital Signatures use Base 64 encoding to encode the binary signatures before
wrapping them in an XML element.

I really discourage you from using either of these if at all possible. If you have
binary data, it’s much more efficient and much less obtuse to link to it using XLink
or unparsed entities rather than encoding it in Base 64 or hexadecimal binary.

Miscellaneous data types
There are two types left over that don’t fit neatly into the previous categories:
xsd:boolean and xsd:anyURI. The xsd:boolean type represents something simi-
lar to C++’s bool data type. It has four legal values: 0, 1, true, and false. 0 is con-
sidered to be the same as false, and 1 is considered the same as true.

The final schema simple type is xsd:anyURI. An element of this type contains a
relative or absolute URI, possibly a URL, such as urn:isbn:0764547607,
http://www.w3.org/TR/2000/WD-xmlschema-2-20000407/#timeDuration,
/javafaq/reports/JCE1.2.1.htm, /TR/2000/WD-xmlschema-2-20000407/, or
../index.html.

Caution

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 699

700 Part IV ✦ Supplemental Technologies

Deriving Simple Types
You’re not limited to the 44 simple types that the W3C XML Schema Language
defines. As in object-oriented programming languages, you can create new data types
by deriving from the existing types. The most common such derivation is to restrict a
type to a subset of its normal values. For example, you can define an integer type that
only holds numbers between 1 and 20 by deriving from xsd:positiveInteger. You
can create enumerated types that only allow a finite list of fixed values. You can cre-
ate new types that join together the ranges of existing types through a union. For
example, you can derive a type that can hold either an xsd:date or an xsd:int.

New simple types are created by xsd:simpleType elements, just as new complex
types are created by xsd:complexType elements. The name attribute of
xsd:simpleType assigns a name to the new type by which it can be referred to in
xsd:element type attributes. The allowed content of elements and attributes with
the new type can be specified by one of three child elements:

✦ xsd:restriction to select a subset of the values allowed by the base type

✦ xsd:union to combine multiple types

✦ xsd:list to specify a list of elements of an existing simple type

Deriving by restriction
To create a new type by restricting from an existing type, give the xsd:simpleType
element an xsd:restriction child element. The base attribute of this element
specifies what type you’re restricting. For example, this xsd:simpleType element
creates a new type named phonoYear that’s derived from xsd:gYear:

<xsd:simpleType name=”phonoYear”>
<xsd:restriction base=”xsd:gYear”>
</xsd:restriction>

</xsd:simpleType>

With this declaration, any legal xsd:gYear is also a legal phonoYear, and any illegal
year is also an illegal phonoYear. You can limit phonoYear to a subset of the nor-
mal year values by using facets to specify which values are and are not allowed. For
example, the minInclusive facet defines the minimum legal value for a type. This
facet is added to a restriction as an xsd:minInclusive child element. The value
attribute of the xsd:minInclusive element sets the minimum allowed value for
the year:

<xsd:simpleType name=”phonoYear”>
<xsd:restriction base=”xsd:gYear”>
<xsd:minInclusive value=”1877”/>

</xsd:restriction>
</xsd:simpleType>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 700

701Chapter 20 ✦ Schemas

Here the value of xsd:minInclusive is set to 1877, the year Thomas Edison
invented the phonograph. Thus, 1877 is a legal phonoYear, 1878 is a legal
phonoYear, 2001 is a legal phonoYear, and 3005 is a legal phonoYear. However,
1876, 1875, 1874, and earlier years are not legal phonoYears, even though they are
legal xsd:gYears.

After the phonoYear type has been defined, you can use it just like one of the built-
in types. For example, in the SONG schema, you’d declare that the year element has
the type phonoYear, like this:

<xsd:element type=”phonoYear”/>

minInclusive is not the only facet you can apply to xsd:gYear. Other facets of
xsd:gYear are as follows:

✦ xsd:minExclusive— The minimum value that all instances must be strictly
greater than

✦ xsd:maxInclusive— The maximum value that all instances must be less
than or equal to

✦ xsd:maxExclusive— The maximum value that all instances must be strictly
less than

✦ xsd:enumeration— A list of all legal values

✦ xsd:whiteSpace— How white space is treated within the element

✦ xsd:pattern— A regular expression to which the instance is compared

Each facet is represented as an empty element inside an xsd:restriction element.
Each facet has a value attribute giving the value of that facet. One restriction can
contain more than one facet. For example, this xsd:simpleType element defines a
phonoYear as any year between 1877 and 2100, inclusive:

<xsd:simpleType name=”phonoYear”>
<xsd:restriction base=”xsd:gYear”>
<xsd:minInclusive value=”1877”/>
<xsd:maxInclusive value=”2100”/>

</xsd:restriction>
</xsd:simpleType>

It’s possible that multiple facets may conflict. For example, the minInclusive
value could be 2100 and the maxInclusive value could be 1877. While this is prob-
ably a design mistake, it is syntactically legal. It would just mean that the set of
phonoYears was the empty set, and phonoYear type elements could not actually be
used in instance documents.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 701

702 Part IV ✦ Supplemental Technologies

Facets
Facets are shared among many types. For example, the minInclusive facet can
constrain essentially any well-ordered type, including not only xsd:gYear, but also
xsd:byte, xsd:unsignedByte, xsd:integer, xsd:positiveInteger,
xsd:negativeInteger, xsd:nonNegativeInteger, xsd:nonPositiveInteger,
xsd:int, xsd:unsignedInt, xsd:long, xsd:unsignedLong, xsd:short,
xsd:unsignedShort, xsd:decimal, xsd:float, xsd:double, xsd:time,
xsd:dateTime, xsd:duration, xsd:date, xsd:gMonth, xsd:gYearMonth, and
xsd:gMonthDay. The complete list of constraining facets that can be applied to
different types is as follows:

✦ xsd:minInclusive— The value that all instances must be greater than or
equal to

✦ xsd:minExclusive— The value that all instances must be strictly greater than

✦ xsd:maxInclusive— The value that all instances must be less than or
equal to

✦ xsd:maxExclusive— The value that all instances must be strictly less than

✦ xsd:enumeration— A list of all legal values

✦ xsd:whiteSpace— How white space is treated within the element

✦ xsd:pattern— A regular expression to which the instance is compared

✦ xsd:length— The exact number of characters in a string, items in a list, or
bytes in binary data

✦ xsd:minLength— The minimum length

✦ xsd:maxLength— The maximum length

✦ xsd:totalDigits— The maximum number of digits allowed in the element

✦ xsd:fractionDigits— The maximum number of digits allowed in the
fractional part of the element

Not all facets apply to all types. For example, it doesn’t make much sense to talk
about the minimum value of an xsd:NMTOKEN or the number of fraction digits in an
xsd:gYear. However, when the same facet is shared by different types, it has the
same syntax and basic meaning for all the types.

Facets for strings: length, minLength, maxLength
The three length facets —xsd:length, xsd:minLength, and xsd:maxLength —
specify the number of units allowed in a value. For xsd:string and its subtypes —
xsd:normalizedString, xsd:token, xsd:hexBinary, xsd:base64Binary,
xsd:QName, xsd:NCName, xsd:ID, xsd:IDREF, xsd:IDREFS, xsd:language,
xsd:anyURI, xsd:ENTITY, xsd:NOTATION, xsd:NOTATIONS, xsd:NMTOKEN, and
xsd:NMTOKENS— the units are characters and these facets specify the number of

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 702

703Chapter 20 ✦ Schemas

characters allowed in the element or attribute value. For list types —xsd:
ENTITIES, xsd:NOTATIONS, and xsd:NMTOKENS— these facets control the number
of instances in the list. And finally for the two binary types —xsd:base64Binary
and xsd:hexBinary— these control the number of bytes in the decoded value.
The value attribute of each of these facets must contain a nonnegative integer.
xsd:length sets the exact number of units in the value, whereas xsd:minLength
sets the minimum length and xsd:maxLength sets the maximum length.

For example, the schema in Listing 20-18 uses the xsd:minLength and
xsd:maxLength facets to derive a new Str255 data type from xsd:string.
Whereas xsd:string allows strings of any length from zero on up, Str255 requires
each string to have a minimum length of 1 and a maximum length of 255. The
schema then assigns this data type to all the names and titles to indicate that each
must contain between 1 and 255 characters.

Listing 20-18: A Schema That Derives a Str255 Data Type
from xsd:string

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:simpleType name=”Str255”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”1”/>
<xsd:maxLength value=”255”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”Str255”/>
<xsd:element name=”COMPOSER” type=”Str255”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”Str255”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”Str255”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”Str255”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 703

704 Part IV ✦ Supplemental Technologies

The whiteSpace facet
The whiteSpace facet is unusual. Unlike the other 11 facets, xsd:whiteSpace does
not in any way constrain the allowed content of elements. Instead, it suggests what
the application should do with any white space that it finds in the instance docu-
ment. It says how significant that white space is. However, it does not say that any
particular kind of white space is legal or illegal.

The xsd:whiteSpace facet has three possible values:

✦ preserve— The white space in the input document is unchanged.

✦ replace— Each tab, carriage return, and linefeed is replaced with a single
space.

✦ collapse— Each tab, carriage return, and linefeed is replaced with a single
space. Furthermore, after this replacement is performed, all runs of multiple
spaces are condensed to a single space. Leading and trailing white space is
deleted.

Again, these are all just hints to the application. None of them have any effect on
validation.

The whiteSpace facet can only be applied to xsd:string, xsd:normalizedString,
and xsd:token types. Furthermore, it only fully applies to elements. XML 1.0
requires that parsers replace all white space in attributes, and collapse white space
in attributes whose DTD type is anything other than CDATA, regardless of what the
schema says.

The schema in Listing 20-19 uses the xsd:whiteSpace facets to derive a new
CollapsedString data type from xsd:string. Then it assigns this data type to
all the names and titles to indicate that white space should be collapsed in these
elements.

Listing 20-19: A Schema That Suggests Collapsing White
Space in Elements

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:simpleType name=”CollapsedString”>
<xsd:restriction base=”xsd:string”>

<xsd:whiteSpace value=”collapse”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=”SongType”>
<xsd:sequence>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 704

705Chapter 20 ✦ Schemas

<xsd:element name=”TITLE” type=”CollapsedString”/>
<xsd:element name=”COMPOSER” type=”CollapsedString”
maxOccurs=”unbounded”/>

<xsd:element name=”PRODUCER” type=”CollapsedString”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PUBLISHER” type=”CollapsedString”
minOccurs=”0”/>

<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”CollapsedString”
maxOccurs=”unbounded”/>

<xsd:element name=”PRICE” type=”xsd:string”
minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Facets for decimal numbers:
totalDigits and fractionDigits
When you are formatting numbers, it’s useful to be able to specify how many digits
should be used in the entire number, the integer parts, and the fraction parts.
Schemas don’t go as far in this regard as the printf() function in C or the
java.text.DecimalFormat class in Java, but they do offer you some control.

The xsd:totalDigits facet specifies the maximum number of decimal digits in a
number. It applies to most numeric types including xsd:byte, xsd:unsignedByte,
xsd:integer, xsd:positiveInteger, xsd:negativeInteger, xsd:nonNegativeInteger,
xsd:nonPositiveInteger, xsd:int, xsd:unsignedInt, xsd:long, xsd:unsignedLong,
xsd:short, xsd:unsignedShort, and xsd:decimal. The only exceptions are the IEEE
754 types that occupy a fixed number of bytes; that is, xsd:float and xsd:double.
The value of this facet must be a positive integer.

The xsd:fractionDigits facet specifies the maximum number of decimal digits to
the right of the decimal point. (There is no facet that allows you to specify the mini-
mum number of digits or fraction digits.) This only really applies to xsd:decimal.
Technically, it applies to all the integer types too, but for those types it’s fixed to the
value zero; that is, no fraction digits at all. You’re only allowed to change it for
xsd:decimal. The value of this facet must be a nonnegative integer.

The enumeration facet
Rather than setting some sort of range on legal values, the xsd:enumeration facet
simply lists all allowed values. It applies to every simple type except xsd:boolean.
The syntax is a little unusual. Each possible value gets its own xsd:enumeration
element as a child of the xsd:restriction element.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 705

706 Part IV ✦ Supplemental Technologies

Listing 20-20 uses an enumeration to derive a PublisherType from xsd:string. It
requires that the publisher be one of the oligopoly that controls 90 percent of all
U.S. music (Warner-Elektra-Atlantic, Universal Music Group, Sony Music
Entertainment, Inc., Capitol Records, Inc., and BMG Music).

Listing 20-20: A Schema That Uses an Enumeration to Derive
a Type from xsd:string

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”songType”/>

<xsd:simpleType name=”PublisherType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Warner-Elektra-Atlantic”/>
<xsd:enumeration value=”Universal Music Group”/>
<xsd:enumeration value=”Sony Music Entertainment, Inc.”/>
<xsd:enumeration value=”Capitol Records, Inc.”/>
<xsd:enumeration value=”BMG Music”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=”songType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”
maxOccurs=”unbounded”/>

<xsd:element name=”PRODUCER” type=”xsd:string”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PUBLISHER” type=”PublisherType”
minOccurs=”0”/>

<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”
maxOccurs=”unbounded”/>

<xsd:element name=”PRICE” type=”xsd:string”
minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

xsd:string is far from the only type you can derive from via enumeration. You can
derive from xsd:int, xsd:NMTOKEN, xsd:date, and, indeed, from all simple types
except xsd:boolean. Of course, the enumerated values all have to be legal
instances of the base type.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 706

707Chapter 20 ✦ Schemas

The pattern facet
There’s one element in the song examples that clearly deserves a data type, but so
far doesn’t have one —PRICE. However none of the built-in data types really match
the format for prices. Recall that PRICE elements look like this:

<PRICE>$1.25</PRICE>

This isn’t an integer of any kind, because it has a decimal point. It could be a
floating-point number, but that wouldn’t account for the currency sign. You could
drop off the currency sign, like this:

<PRICE>1.25</PRICE>

However, then you’d have to assume you were working in dollars. What if you
wanted to sell songs priced in pounds or yen or euros? Perhaps you could make the
currency sign part of a separate element, like this:

<PRICE>
<CURRENCY>$</CURRENCY>
<AMOUNT>1.25</AMOUNT>

</PRICE>

AMOUNT could be an xsd:float, and CURRENCY could be an xsd:string. However,
this still isn’t perfect. You want to limit the CURRENCY to exactly one character, and
that character must be a currency sign. You don’t want to allow it to contain any
arbitrary string. Furthermore, you’d like to limit the precision of the AMOUNT to
exactly two decimal places. You probably don’t want to sell songs that cost $1.1 or
$1.99999.

The solution to this problem, and to many similar problems where the values you
want to allow don’t quite fit any of the existing types, is to use the xsd:pattern
facet whose value attribute contains a regular expression that matches all legal
values and doesn’t match any illegal values.

The regular expressions used in schemas are similar to the regular expressions you
might be familiar with from Perl, grep, or other languages. You use statements like
[A-Z]+ to mean “a string containing one more of the capital letters from A to Z” or
(club)* to mean “a string composed of zero or more repetitions of the word club.”

Table 20-5 summarizes the grammar of XML schema regular expressions. In this
table A and B represent some string or another regular expression particle from
elsewhere in the table; that is, they will be replaced by something else when actu-
ally used in a regular expression. n and m represent some integer that will be
replaced by a specific number.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 707

708 Part IV ✦ Supplemental Technologies

Table 20-5
Regular Expression Symbols for XML Schema

Symbol Meaning

A? Zero or one occurrences of A

A* Zero or more occurrences of A

A+ One or more occurrences of A

A{n,m} Between n and m occurrences of A

A{n} Exactly n occurrences of A

A{n,} At least n occurrences of A

A|B Either A or B

AB A followed by B

. Any one character

\p{A} One character from Unicode character class A

[abcdefg] A single occurrence of any of the characters contained in the
brackets

[^abcdefg] A single occurrence of any of the characters not contained in the
brackets

[a-z] A single occurrence of any character from a to z inclusive

[^a-z] A single occurrence of any of character except those from a to z
inclusive

\n Linefeed

\r Carriage return

\t Tab

\\ Backward slash \

\| Vertical bar |

\. Period .

\- Hyphen -

\^ Caret ^

\? Question mark ?

* Asterisk *

\+ Plus sign +

\{ Open brace {

\} Closing brace }

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 708

709Chapter 20 ✦ Schemas

Symbol Meaning

\(Open parenthesis (

\) Closing parenthesis)

\[Open bracket [

\] Closing bracket]

For the most part, these symbols have exactly the same meanings that they have in
Perl. The schema regular expression syntax is somewhat weaker than Perl’s, but
then whose isn’t? In any case, this should be sufficient power to meet any reason-
able needs that schemas have.

Schema regular expressions do have one important feature that isn’t available prior
to Perl 5.6 and is unfamiliar to most developers — you can use \p{} to stand in for
a character in a particular Unicode character class. For example, N is the Unicode
character class for numbers. This doesn’t just include the European digits 0
through 9, but also the Arabic-Indic digits, the Devanagari digits, the Thai digits,
and many more besides. Therefore, \p{N} represents any digit defined anywhere in
Unicode. \p{N}+ represents a string consisting of one or more Unicode digits. Table
20-6 lists the various Unicode character classes you can take advantage of in regu-
lar expressions. For the money regular expression, you need the Sc class for cur-
rency indicators and the Nd class for decimal digits. This is a little more restrictive
than the N class, which includes nondecimal digits, such as the Roman numerals
and the Han ideograph representing 100,000,000.

Table 20-6
Unicode Character Classes

Abbreviation Includes Examples

Letters

L All letters a, b, c, A, B, C, ü, Ü, ç, Ç, ζ, θ, Ζ, Θ, a,
, Β, Α, , Β, ℵ, dz, Dz, DZ

Lu Uppercase letters A, B, C, Ü, Ç, Ζ, Θ, Α, , Β, DZ

Ll Lowercase letters

Lt Title case letters Dz

Lm Modifier letters; letters that h, j, r, w

are attached to the previous
characters somehow

Lo Other letters; typically ones Japanese Katakana and
from languages that don’t Hiragana, most Han ideographs
distinguish upper- and lowercase

Continued

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 709

710 Part IV ✦ Supplemental Technologies

Table 20-6 (continued)

Abbreviation Includes Examples

Marks

M All marks

Mn Nonspacing marks; mostly accent `, ‘, ¨, ¯
marks that are attached to the
previous character on the top or
bottom, and thus do not change
the amount of space the character
occupies

Mc Spacing combining marks; accent T, Gurmukhi vowel sign AA
marks that are attached to the
previous character on the left or
right, and thus do change the
amount of space the character
occupies

Me Enclosing marks that completely The Cyrillic hundred-thousands and
surround a character millions signs

Numbers

N All numbers 0, 1, 2, 3, 1⁄4, 1⁄2, 2, 3, , I, II, III, IV,
V,

Nd Decimal digits; characters that 0, 1, 2, 3,
represent one of the numbers
0 through 9

Nl Numbers based on letters I, II, III, IV,

No Other numbers 1⁄4, 1⁄2, 2, 3

Punctuation

P All punctuation -, _, • , (, [, {,),], }, ‘, “, «, ‘, “, », !, ?, @,
*, ¡, ¿, ·

Pc Connectors _, •

Pd Dashes Hyphens, soft hyphens, em dashes,
en dashes, etc.

Ps Opening punctuation (, [, {

Pe Closing punctuation),], }

Pi Initial quote marks ‘, “, «

Pf Final quote marks ‘, “, »

Po Other punctuation marks !, ?, @, *, ¡, ¿, ·

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 710

711Chapter 20 ✦ Schemas

Abbreviation Includes Examples

Separators

Z All separators

Zs Space Space, nonbreaking space, en space,
em space

Zl Line separators Unicode character 2028, the line
separator

Zp Paragraph separators Unicode character 2029, the
paragraph separator

Symbols

S All symbols ∂, ∆, ∏, $, ¥, £, ~, ¯, ¨, i, ©, ®, °, - ▲,
J

Sm Mathematical symbols ∂, ∆, π, ∑, √, ≠, ≤, ≥, ≈

Sc Currency signs

Sk Modifier symbols ~, ¯, ¨

So Other symbols

Other

C All others

Cc Control characters Carriage return, linefeed, tab and the
C1 controls

Cf Format characters The left-to-right and right-to-left
marks used to indicate change of
direction in bidirectional text

Co Private use characters; code
points that may be used for a
program’s internal purposes

Cn Unassigned; code points that,
while legal in XML, the Unicode
specification has not yet assigned
a character to

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 711

712 Part IV ✦ Supplemental Technologies

You’re now ready to put together a regular expression that describes money strings
such as $1.25. What you want to say is that each such string contains the following:

1. A currency symbol

2. One or more decimal digits

3. An optional fractional part, which, if present at all, consists of a decimal point
and two decimal digits

Here’s the regular expression that says that

\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?

It begins with \p{Sc} to indicate a currency symbol such as $, ¥, £, or €.

This is followed by \p{Nd}+. \p{Nd} represents any decimal digit character. The +
indicates one or more of these characters.

Next there’s a parenthesized expression followed by a question mark,
(\.\p{Nd}\p{Nd})?. The question mark indicates the parenthesized expression is
optional. However, if it does appear, its entire contents must be present, not just
part. In other words, the question mark stands for zero or one, just as it does in
DTDs. The contents of the parentheses are \.\p{Nd}\p{Nd}, which represents a
period followed by two decimal digits, for example .35. Normally a period in a regu-
lar expression means any character at all, so here it’s escaped with a preceding
backslash to indicate that we really do want the actual period character.

Now that you have a regular expression that represents money, you’re ready to
define a money type. As for the other facets, this is done with the xsd:simpleType
and xsd:restriction elements. Putting these together with the regular expres-
sion produces this type definition:

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>

</xsd:restriction>
</xsd:simpleType>

Listing 20-21 provides the complete song schema, including this type definition.
Take special note of the XML comment used to elucidate the regular expression.
Regular expressions can be quite opaque, and a comment like this one can go a
long way toward making the schema more comprehensible.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 712

713Chapter 20 ✦ Schemas

Listing 20-21: A Schema That Defines a Custom Money Type

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>
<!--

Regular Expression:
\p{Sc} Any Unicode currency indicator;

e.g., $, ¥, £, &#A4, etc.
\p{Nd} A Unicode decimal digit character
\p{Nd}+ One or more Unicode decimal digits
\. The period character
(\.\p{Nd}\p{Nd})
(\.\p{Nd}\p{Nd})? Zero or one strings of the form .35

This works for any decimalized currency.

-->
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”money” maxOccurs=”1”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”/>

Continued

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 713

714 Part IV ✦ Supplemental Technologies

Listing 20-21 (continued)

<xsd:element name=”FAMILY” type=”xsd:string”/>
</xsd:all>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Unions
Restriction is not the only way to create a new simple type, although it is the most
common way. You can also combine types using unions. For example, you could
combine the built-in xsd:decimal type with the money type just defined to create
a type that could contain either a decimal or a money value. To do this, give
the xsd:simpleType element an xsd:union child element instead of an
xsd:restriction child element. The xsd:union element contains more
xsd:simpleType elements identifying the types you’re combining in the union.
For example, this is the previously described money/xsd:decimal combined type:

<xsd:simpleType name=”MoneyOrDecimal”>
<xsd:union>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
</xsd:restriction>

</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Lists
Schemas can also specify that an element or attribute contains a list of a particular
simple type. For example, this YEARS element contains a list of years:

<YEARS>1987 1999 1992 2002</YEARS>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 714

715Chapter 20 ✦ Schemas

Elements such as this can be specified using an xsd:list in the xsd:simpleType.
The itemType attribute says what type of strings may appear in the list, as in the
following example:

<xsd:simpleType name=”YearList”>
<xsd:list itemType=”xsd:gYear”/>

</xsd:simpleType>

This requires that elements with type YearList contain a white space-separated
list of legal xsd:gYear values.

I must admit that I’m not very fond of list types, especially for elements. It seems
to me that if you’re going to have a list of different items, each of those items
should be a separate element, possibly a child element of some parent element,
but still its own element. Lists make a little more sense for attributes, but if there’s
a lot of substructure in the text, you should probably be using an element instead
of an attribute anyway.

You can derive another list type from an existing list type. When so doing, you can
restrict it according to the length, minLength, maxLength, and enumeration
facets. In this case, the values of the three length facets refer to the number of
items in the list rather than the number of characters in the content. For example,
this xsd:simpleType element derives a DoubleYear list type that must hold
exactly two years from the YearList type previously defined:

<xsd:simpleType name=”DoubleYear”>
<xsd:restriction base=”YearList”>
<xsd:length value=”2”/>

</xsd:restriction>
</xsd:simpleType>

Empty Elements
Empty elements are those that cannot contain any child elements or parsed charac-
ter data. This is the same as using the EMPTY content model in a DTD. As an exam-
ple of this technique, I’ll define an empty PHOTO element. This will be used in the
next section when attributes are introduced.

To create an empty element, you define it as a type but don’t give it an
xsd:sequence, xsd:all, or xsd:choice child. Thus, you don’t actually provide
any child elements. For example:

<!-- An empty element -->
<xsd:complexType name=”PhotoType”>
</xsd:complexType>

Caution

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 715

716 Part IV ✦ Supplemental Technologies

This does not require the PHOTO element to be defined with an empty-element
tag such as <PHOTO/>. The start-tag-end-tag pair <PHOTO></PHOTO> is also
acceptable. In fact, the XML 1.0 specification says these two forms are equivalent.
Schemas change nothing about XML 1.0. An XML 1.0 parser that knows nothing
about schemas will have no trouble reading a document that uses schemas.

Attributes
In the examples so far, two XML constructs have been conspicuous by their
absence: entities and attributes. The omission of entities was quite deliberate.
Schemas cannot declare entities. If you need entities, you must use a DTD. (Of
course, you can use a schema as well as the DTD.) However, schemas are fully
capable of declaring attributes. Indeed, they do a much better job of it than DTDs
do because schemas can use the full set of data types like xsd:float and
xsd:anyURI.

You may not have noticed my avoidance of attributes, because the examples all
used xmlns:xsi and xsi:noNamespaceSchemaLocation attributes on the
root element. However, as far as a schema validator is concerned, attributes used
to declare namespaces, or to attach documents to schemas, “don’t count.” You do
not have to, and indeed should not, declare these attributes. However, you do
have to declare all the other attributes you use.

As a concrete example, let’s consider how you might add an empty PHOTO element
to the SONG documents. This element would be similar to the IMG element in HTML
and would have an SRC attribute that contained a URL pointing to the photo’s loca-
tion, an ALT attribute containing some text in the event that the PHOTO can’t be dis-
played, and WIDTH and HEIGHT attributes that together give the size of the image in
pixels. Listing 20-22 demonstrates.

Listing 20-22: The PHOTO Element Has Several Attributes
of Different Types

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”20-23.xsd”>
<TITLE>Yes I Am</TITLE>
<PHOTO ALT=”Melissa Etheridge holding a guitar”

WIDTH=”100” HEIGHT=”300”
SRC=”guitar.jpg”/>

<COMPOSER>
<NAME>
<GIVEN>Melissa</GIVEN>
<FAMILY>Etheridge</FAMILY>

</NAME>

Note

Caution

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 716

717Chapter 20 ✦ Schemas

</COMPOSER>
<PRODUCER>
<NAME>
<GIVEN>Hugh</GIVEN>
<FAMILY>Padgham</FAMILY>

</NAME>
</PRODUCER>
<PRODUCER>
<NAME>
<GIVEN>Melissa</GIVEN>
<FAMILY>Etheridge</FAMILY>

</NAME>
</PRODUCER>
<PUBLISHER>Island Records</PUBLISHER>
<LENGTH>P0YT4M24S</LENGTH>
<YEAR>1993</YEAR>
<ARTIST>Melissa Etheridge</ARTIST>
<PRICE>$1.25</PRICE>

</SONG>

Even though the PHOTO element is empty, because it has attributes, it has a com-
plex type. You define a PhotoType just as you previously defined a PersonType
and a SongType. However, where those types used xsd:element to declare child
elements, this type will use xsd:attribute to declare attributes.

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”SRC” type=”xsd:anyURI”/>
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”/>
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”/>
<xsd:attribute name=”ALT” type=”xsd:string”/>

</xsd:complexType>

Because the SRC attribute should contain a URL, it’s been given the type xsd:anyURI.
Because the HEIGHT and WIDTH attributes should each be an integer greater than
zero, they’re given the type xsd:positiveInteger. Finally, because the ALT
attribute can contain essentially any string of text of any length, it’s set to the most
general type, xsd:string.

In this particular example, all the elements either have child elements or attributes,
not both. However, that’s certainly not required. In general, elements can have both
child elements and attributes. Just use both xsd:element and xsd:attribute in
the same xsd:complexType element. The xsd:attribute elements must come
after the xsd:sequence, xsd:choice, or xsd:all group that forms the body of the
element. For example, this xsd:element says that a PERSON element can have an
optional attribute named ID with type ID:

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 717

718 Part IV ✦ Supplemental Technologies

<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:all>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”ID” type=”xsd:ID”/>

</xsd:complexType>

Attributes can also be attached to elements that can only contain text such as an
xsd:string or an xsd:gYear. The details are a little more complex, because an
element with attributes by definition has a complex type. To make this work, you
derive a new complex type from a simple type by giving the xsd:complexType
element an xsd:simpleContent child element instead of an xsd:sequence,
xsd:choice, or xsd:all. The xsd:simpleContent element itself has an
xsd:extension child element whose base attribute identifies the simple type to
extend such as xsd:string. The xsd:attribute elements are placed inside the
xsd:extension element.

For example, suppose you want to allow the TITLE elements to have ID attributes,
like this:

<TITLE ID=”test”>Yes I Am</TITLE>

Previously, TITLE was defined with type xsd:string. Instead, let’s derive a new
type called StringWithID from xsd:string, like this:

<xsd:complexType name=”StringWithID”>
<xsd:simpleContent>
<xsd:extension base=”xsd:string”>
<xsd:attribute name=”ID” type=”xsd:ID”/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

The StringWithID type can then be applied to the TITLE element in the usual way,
like this:

<xsd:element name=”TITLE” type=”StringWithID”/>

By default, attributes declared in schemas are optional (#IMPLIED in DTD terminol-
ogy). However, an xsd:attribute can have a use attribute with the value
required to indicate that the element must occur. In this case, you probably do
want to insist that each of the four attributes be present. Therefore, the declaration
of PhotoType becomes this:

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”SRC” type=”xsd:anyURI”

use=”required” />
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 718

719Chapter 20 ✦ Schemas

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
</xsd:complexType>

The use attribute can also have the value optional to indicate that it may or may
not be present. (This is also the default if there is no use attribute.) If optional,
xsd:attribute may also have a default attribute giving the value the parser will
provide if it doesn’t find one in the instance document. If there is no default
attribute, this is the same as #IMPLIED in ATTLIST declarations in DTDs. Instead of
a use attribute, xsd:attribute can have a fixed attribute whose value is the con-
stant value for the attribute, whether present in the instance document or not. This
has the same effect as #FIXED in DTDs. Listing 20-23 puts this all together in a com-
plete schema for songs, including a PHOTO element with several required attributes.

Listing 20-23: A SONG Schema That Declares Attributes

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”SRC” type=”xsd:anyURI”

use=”required” />
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”PHOTO” type=”PhotoType”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>

Continued

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 719

720 Part IV ✦ Supplemental Technologies

Listing 20-23 (continued)

<xsd:element name=”PRICE” type=”money”/>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>
<!--

Regular Expression:
\p{Sc} Any Unicode currency indicator;

e.g., $, ¥, £, &#A4, etc.
\p{Nd} A Unicode decimal digit character
\p{Nd}+ One or more Unicode decimal digits
\. The period character
(\.\p{Nd}\p{Nd})
(\.\p{Nd}\p{Nd})? Zero or one strings of the form .35

This works for any decimalized currency.

-->
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:all>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Namespaces
So far, the example song documents have been blissfully namespace-free. Adding
namespaces to the documents and designing a schema that applies to the namespace-
qualified documents is not particularly difficult. Namespaces add some important fea-
tures, such as the ability to write schemas and validate documents that use elements
and attributes from multiple XML applications. However, the terminology is a little
confusing. Some words, such as qualified, don’t mean quite the same thing in schemas

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 720

721Chapter 20 ✦ Schemas

as they do in other XML technologies, so you do need to pay close attention and read
what follows carefully.

Schemas for default namespaces
Let’s begin with a simple example in which the XML application described by the
schema uses a single default, nonprefixed namespace. Most of the time each names-
pace URI maps to exactly one schema (though later you’ll learn several techniques
to break large schemas into parts using xsd:import and xsd:include).

The schema for elements that are not in any namespace is identified by an
xsi:noNamespaceSchemaLocation attribute. The schemas for elements that are in
namespaces are identified by an xsi:schemaLocation attribute. This attribute
contains a list of namespace URI/schema URI pairs. Each namespace URI is followed
by one schema URI. The namespace URI is almost always absolute, but the schema
URI is almost always a URL and often a relative URL.

Listing 20-24 demonstrates. This is the familiar hotcop.xml document that you’ve
seen several times already, though it’s been simplified a bit to keep the examples
smaller. All the elements in this document are in the http://ns.cafeconleche.
org/song namespace defined by the xmlns attribute on the root element. The
attributes in this document are not in any namespace because they don’t have pre-
fixes. There are two things you need to remember here:

1. Attributes without prefixes are never in any namespace, no matter what
namespace their parent element is in, and no matter what default namespace
the document uses.

2. For purposes of schema validation, namespace declaration attributes, such as
xmlns and xmlns:xsi, and schema attachment attributes, such as
xsi:schemaLocation, don’t count. You do not need to declare these in your
schema.

In this case, all the elements are in the http://ns.cafeconleche.org/song
namespace, so an xsi:schemaLocation attribute is needed to associate this
namespace with a URL where the schema can be found, namespace_song.xsd for
this example.

Listing 20-24: A SONG Document in the http://ns.
cafeconleche.org/song Namespace

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<SONG xmlns=”http://ns.cafeconleche.org/song”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =
“http://ns.cafeconleche.org/song

Continued

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 721

722 Part IV ✦ Supplemental Technologies

Listing 20-24 (continued)

namespace_song.xsd”
>
<TITLE>Hot Cop</TITLE>
<!-- I’ve temporarily dropped the SRC attribute on this

element. I’m going to replace it with XLinks shortly.
-->

<PHOTO ALT=”Victor Willis in Cop Outfit” WIDTH=”100”
HEIGHT=”200”/>

<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>P0YT6M20S</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

What does namespace_song.xsd look like? Listing 20-25 shows you. It’s much the
same schema as before, although I’ve dropped the MoneyType and PersonType to
save a little room.

Listing 20-25: A Schema for SONG Documents in the
http://ns.cafeconleche.org/song Namespace

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/song”
targetNamespace=”http://ns.cafeconleche.org/song”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 722

723Chapter 20 ✦ Schemas

<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”PHOTO” type=”PhotoType”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

The main body of the schema is much the same as before. However, the
xsd:schema start-tag has several new attributes. It looks like this:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/song”
targetNamespace=”http://ns.cafeconleche.org/song”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

The first xmlns attribute establishes the default namespace for this schema,
which is, after all, an XML document itself. It sets the namespace to http://ns.
cafeconleche.org/song, the same as in the instance documents you’re trying to
model. This says that the unprefixed element names used in this schema such as
PhotoType are in the http://ns.cafeconleche.org/song namespace.

The second attribute says that this schema applies to documents in the http://
ns.cafeconleche.org/song namespace; that is, the elements identified by name
attributes such as SONG, PHOTO, and TITLE are in the http://ns.cafeconleche.
org/song namespace.

The third attribute, elementFormDefault, has the value qualified. This means
that the elements being described in this document are in fact in a namespace;
specifically, they’re in the target namespace given by the targetNamespace
attribute. This does not mean that the elements being modeled necessarily have
prefixes, merely that they are in some namespace.

Finally, the fourth attribute, attributeFormDefault, has the value unqualified.
This means that the attributes described by this schema are not in a namespace.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 723

724 Part IV ✦ Supplemental Technologies

Schemas have one major advantage over DTDs when you are working with docu-
ments with namespaces. They validate against the local name and the namespace
URIs of the elements and attributes, not the prefix and the local name like DTDs do.
This means the prefixes do not have to match in the schema and in the instance
documents. Indeed, one might use prefixes and the other might use the default
namespace.

For example, consider Listing 20-26. This is the same as Listing 20-24 except that it
uses the song prefix rather than the default namespace to indicate the http://ns.
cafeconleche.org/song namespace. However, it can use the exact same schema!
The schema does not need to change just because the prefix (or lack thereof) has
changed. As long as the namespace URI stays the same, the schema is happy.

Listing 20-26: A SONG Document in the http://ns.cafeconleche.
org/song Namespace with Prefixes

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<song:SONG

xmlns:song=”http://ns.cafeconleche.org/song”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =
“http://ns.cafeconleche.org/song
namespace_song.xsd”

>
<song:TITLE>Hot Cop</song:TITLE>
<!-- I’ve temporarily dropped the SRC attribute on this

element. I’m going to replace it with XLinks shortly.
-->

<song:PHOTO ALT=”Victor Willis in Cop Outfit” WIDTH=”100”
HEIGHT=”200”/>

<song:COMPOSER>Jacques Morali</song:COMPOSER>
<song:COMPOSER>Henri Belolo</song:COMPOSER>
<song:COMPOSER>Victor Willis</song:COMPOSER>
<song:PRODUCER>Jacques Morali</song:PRODUCER>
<song:PUBLISHER>PolyGram Records</song:PUBLISHER>
<song:LENGTH>P0YT6M20S</song:LENGTH>
<song:YEAR>1978</song:YEAR>
<song:ARTIST>Village People</song:ARTIST>

</song:SONG>

Multiple namespaces, multiple schemas
Now, consider the case in which one document mixes markup from different vocabu-
laries. In particular, suppose that you want to use XLink to connect the PHOTO ele-
ment to the actual JPEG image rather than application-specific markup such as SRC.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 724

725Chapter 20 ✦ Schemas

You need to set xlink:type, xlink:href, xlink:show, and xlink:actuate
attributes on the PHOTO element to give it the proper meaning and behavior, like this:

<PHOTO xlink:type=”simple” xlink:href=”hotcop.jpg”
xlink:show=”embed” xlink:actuate=”onLoad”
ALT=”Victor Willis in Cop Outfit”
WIDTH=”100” HEIGHT=”200”/>

XLinks are discussed in Chapter 17.

Now the document uses two main namespaces, the http://ns.cafeconleche.
org/song namespace for songs and the http://www.w3.org/1999/xlink name-
space for XLinks. Thus, it needs two schemas. However, because the root element
can have only one xsi:schemaLocation attribute, it has to serve double duty and
declare both. Listing 20-27 demonstrates.

Listing 20-27: A SONG Document That Uses XLink
to Embed Photos

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<SONG xmlns=”http://ns.cafeconleche.org/song”

xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =
“http://ns.cafeconleche.org/song 20-29.xsd
http://www.w3.org/1999/xlink xlink.xsd”

>
<TITLE>Hot Cop</TITLE>
<PHOTO xlink:type=”simple” xlink:href=”hotcop.jpg”

xlink:show=”embed” xlink:actuate=”onLoad”
ALT=”Victor Willis in Cop Outfit”
WIDTH=”100” HEIGHT=”200”/>

<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>P0YT6M20S</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Listing 20-28 shows the XLink schema. It only declares attributes, no elements at all.
You haven’t seen an example of this yet, but it’s not hard. Just use xsd:attribute
elements at the top level, that is, as direct children of the xsd:schema element. The

Cross-
Reference

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 725

726 Part IV ✦ Supplemental Technologies

other difference between these top-level xsd:attribute elements and the ones
you’ve seen before is that three of the attributes have fixed values and don’t even
need to be explicitly included in the instance document. Only the xlink:href
attribute asks the author to supply a value. However, this is rather specific to this
particular use of XLink. Almost anything else you’d do with an XLink other than
embedding an image or other non-XML content into the document would require a
different schema that used different defaults.

Listing 20-28: xlink.xsd: An XLink Schema

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.w3.org/1999/xlink”
targetNamespace=”http://www.w3.org/1999/xlink”
attributeFormDefault=”unqualified”

>

<xsd:attribute name=”type” type=”xsd:string”
fixed=”simple”/>

<xsd:attribute name=”href” type=”xsd:anyURI”/>
<xsd:attribute name=”actuate” type=”xsd:string”

fixed=”onLoad”/>
<xsd:attribute name=”show” type=”xsd:string”

fixed=”embed”/>

</xsd:schema>

This schema doesn’t actually apply these attributes to any elements. Therefore,
the schema that does describe the PHOTO element needs to import xlink.xsd in
order to reference these declarations. This is done with an xsd:import element.
The xsd:import’s schemaLocation attribute tells the processor where to find the
schema to import. The namespace attribute says which elements and attributes
the schema declares. After this schema has been imported, you can add those
attributes to any xsd:complexType by giving it an xsd:attribute child whose
ref attribute identifies the attribute to be attached. Listing 20-29 demonstrates.

Listing 20-29: A SONG Schema That Imports the XLink Schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/song”
xmlns:xlink=”http://www.w3.org/1999/xlink”
targetNamespace=”http://ns.cafeconleche.org/song”
elementFormDefault=”qualified”

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 726

727Chapter 20 ✦ Schemas

attributeFormDefault=”unqualified”
>

<xsd:import namespace=”http://www.w3.org/1999/xlink”
schemaLocation=”xlink.xsd”/>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
<xsd:attribute ref=”xlink:type”/>
<xsd:attribute ref=”xlink:href” use=”required”/>
<xsd:attribute ref=”xlink:actuate”/>
<xsd:attribute ref=”xlink:show”/>

</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”PHOTO” type=”PhotoType”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Annotations
At some point in this chapter, it’s likely to have occurred to you that schemas can
get rather large and complex. If that hasn’t occurred to you yet, just imagine a
schema not for the very small and simple song documents demonstrated in this
chapter, but for much larger XML applications such as Scalable Vector Graphics
or XHTML.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 727

728 Part IV ✦ Supplemental Technologies

You can certainly use regular XML comments to describe schemas, and I encourage
you to do so, especially when you’re doing something less than obvious in the
schema. The W3C XML Schema Language also provides a more formal mechanism
for annotating schemas. Both the top-level xsd:schema element itself and the
various other schema elements (xsd:complexType, xsd:all, xsd:element,
xsd:attribute, and so on) can contain xsd:annotation child elements that
describe that part of the schema for human readers or for other computer pro-
grams. This element has two kinds of child elements:

✦ The xsd:documentation child element describes the schema for human
readers. It often contains copyright and similar information.

✦ The xsd:appInfo child element describes the schema for computer pro-
grams. For example, it might contain instructions about what style sheets to
apply to the schema.

Each xsd:annotation element can contain any number of either of these. However,
no special syntax has been defined for the content of these elements. You can put
anything in there you find convenient, including other XML markup, subject only to
the usual well-formedness constraints. Thus, an xsd:documentation element might
contain XHTML, and an xsd:appInfo element might contain XSLT. Then again,
either or both might simply contain plain, unmarked-up text. For example, this
annotation could be added to the song schemas developed in this chapter:

<xsd:annotation>
<xsd:documentation>
Song schema for Chapter 20 of the XML Bible, 3rd Edition
Copyright 2004 Elliotte Rusty Harold.
elharo@metalab.unc.edu
</xsd:documentation>
</xsd:annotation>

Summary
In this chapter, you learned the following:

✦ Schemas address a number of perceived limitations of DTDs, including a
strange, non-XML syntax, namespace incompatibility, lack of data typing, and
limited extensibility and scalability.

✦ There are multiple XML schema languages, including RELAX NG and the W3C
XML Schema Language (described in this chapter).

✦ An XML document can indicate the schema that applies to its non-namespace-
qualified elements via an xsi:noNamespaceSchemaLocation attribute, which
is normally placed on the root element.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 728

729Chapter 20 ✦ Schemas

✦ An XML document can indicate the schema that applies to its namespace
qualified elements via an xsi:schemaLocation attribute, which is normally
placed on the root element.

✦ Schemas declare elements with xsd:element elements.

✦ The type attribute of xsd:element specifies the data type of that element.

✦ Elements with complex types can have attributes and child elements.

✦ Elements with simple types only contain character data.

✦ The xsd:complexType element defines a new type for an element that can
contain child elements, attributes, and/or mixed content.

✦ The xsd:group, xsd:all, xsd:choice, and xsd:sequence elements let you
specify particular combinations of elements in an element’s content model.

✦ The minOccurs and maxOccurs attributes of xsd:element determine how
many of a given element are allowed in the instance document at that point.
The default for each is 1. maxOccurs can be set to unbounded to indicate that
any number of the element may appear.

✦ There are 44 built-in simple types, including many numeric, string, time,
binary, URI, and XML types.

✦ The xsd:simpleType element defines a new type for an element or attribute
that can only contain character data.

✦ You can define your own simple types by restricting an existing type such as
xsd:string with the xsd:restriction element. The base attribute of the
xsd:restriction child specifies what type you’re deriving from.

✦ Each xsd:restriction element contains one or more child elements repre-
senting facets: xsd:minInclusive, xsd:minExclusive, xsd:maxInclusive,
xsd:maxExclusive, xsd:enumeration, xsd:whiteSpace, xsd:pattern,
xsd:length, xsd:minLength, xsd:maxLength, xsd:totalDigits, and/or
xsd:fractionDigits.

✦ An xsd:simpleType element can create a new type by unifying the value
spaces of existing types. Each existing type combined into the new type is
identified by an xsd:union child element.

✦ A list type can hold one or more white-space-separated instances of an exist-
ing type. Such a type is defined by the xsd:list child of an xsd:simpleType
element.

✦ Schemas declare attributes with xsd:attribute elements.

✦ The xsd:import element imports declarations for elements and attributes in
a different namespace from another schema document.

✦ The xsd:include element imports declarations for elements and attributes
in the same namespace from another schema document.

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 729

730 Part IV ✦ Supplemental Technologies

✦ Adding xsd:annotation elements helps make your schemas more readable.

✦ The xsd:documentation child of an xsd:annotation element provides
information for human readers.

✦ The xsd:appInfo child of an xsd:annotation element provides information
for software programs reading the schema, though schema validators ignore it.

This completes your training in core XML technologies. The next part begins sev-
eral case studies of different XML applications in different vertical domains. First
out of the gate is the Extensible Hypertext Markup Language (XHTML). XHTML 1.0
is an XMLized form of HTML. XHTML 1.1 is a modularized form of XHTML 1.0 that
can be mixed with other XML applications.

✦ ✦ ✦

25 549863 Ch20.qxd 1/28/04 9:47 AM Page 730

XML
Applications

✦ ✦ ✦ ✦

In This Part

Chapter 21
XHTML

Chapter 22
Modular XHTML

Chapter 23
The Resource
Directory Description
Language

Chapter 24
Scalable Vector
Graphics

Chapter 25
Designing a New
XML Application

✦ ✦ ✦ ✦

P A R T

VV

26 549863 PP05.qxd 1/28/04 9:51 AM Page 731

26 549863 PP05.qxd 1/28/04 9:51 AM Page 732

XHTML

XHTML, the Extensible Hypertext Markup Language, is
the W3C’s effort to redefine HTML based on XML rather

than SGML. This requires tightening up a lot of the looseness
of traditional HTML. End-tags must be added to elements that
don’t normally have them, such as p and dt. Empty-element
tags, such as hr and img, must end in /> instead of just >.
Attribute values must be quoted. The names of all HTML ele-
ments and attributes are standardized in lowercase. But
XHTML goes one step further than merely requiring HTML
documents to be well-formed XML. It actually provides a doc-
ument type definition (DTD) that can validate XHTML
documents. In fact, it provides three:

✦ The XHTML strict DTD for new documents: http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

✦ The XHTML transitional DTD for legacy documents that
still use deprecated tags such as applet: http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

✦ The XHTML frameset DTD for documents that use
frames: http://www.w3.org/TR/xhtml1/DTD/
xhtml1-frameset.dtd

You can choose the one that best fits your site.

Why Validate HTML?
XHTML, the Extensible Hypertext Markup Language, is a refor-
mulation of HTML 4.0 as well-formed and valid XML. XHTML
documents must adhere to all the rules of XML. For example,
all start-tags must have matching end-tags. Elements can nest
but cannot overlap. Attribute values must be quoted. The
ampersand and less than characters can only be used to start
entity references and tags, respectively; and so on.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Why validate HTML?

Moving to XHTML

What’s new in
XHTML

✦ ✦ ✦ ✦

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 733

734 Part V ✦ XML Applications

Valid documents aren’t required for HTML, but validity does make it much easier
for browsers to understand documents. A valid XHTML document is far more likely
to render correctly and predictably across many different browsers than an invalid
HTML document. Until recently, too much of the competition among browser ven-
dors revolved around just how much broken HTML they could make sense of. For
example, Internet Explorer fills in a missing </table> end-tag, whereas Netscape
Navigator does not. For some time, many pages on Microsoft’s web site contained
missing </table> tags and could not be viewed in Netscape Navigator. (I’ll leave it
to the reader to decide whether this was unfortunate happenstance or deliberate
sabotage.) In either case, if Microsoft had required valid HTML on its web site, this
would not have happened.

It is extremely difficult for even the largest web shops to test their pages against
even a small fraction of the browsers that people actually use. Even testing the lat-
est versions of both Netscape and Internet Explorer is more than some designers
manage. While I certainly won’t argue that you shouldn’t test your pages in as many
versions of as many browsers as possible, the reality is that time and resources are
finite. Validating HTML goes a long way toward ensuring that your pages render
reasonably in a broad spectrum of browsers.

In addition, validating HTML helps you find your mistakes. There are a surprising
number of HTML documents on the Web today with truly mistaken HTML. I’ve seen
pages where authors have placed attributes on the wrong elements, misspelled ele-
ment and attribute names, left off the closing “ on an attribute or > on a tag, and
more. These problems don’t just cause problems in some browsers; they cause
major problems in all browsers! Yet you’ll find mistakes like these on some of the
largest and most popular sites on the Web. All of these common problems can be
easily detected if you validate your documents before publishing them.

There are also advantages to XHTML beyond the realm of browser display. First,
when your documents are XHTML rather than HTML, you get to use the myriad of
XML-aware tools to process your HTML documents. For example, you can use XSLT
to transform XHTML documents into XSL formatting objects for high-quality printing.

Second, because XML is much more carefully defined and stricter in what it does
and doesn’t allow than classic HTML, it’s much easier for your own custom pro-
grams to process XHTML than HTML. Web spiders, indexing tools, link checkers,
and other programs are all much easier to write for XHTML than for HTML. My Cafe
au Lait and Cafe con Leche web sites use XSLT to generate the RSS feeds.

Third, it’s much easier to mix other XML applications like Scalable Vector Graphics
(SVG) or MathML into an XHTML document than an HTML document. XHTML’s
well-formedness and validity rules make it really obvious where other, non-XHTML
content can be placed. Furthermore, XML namespaces make it easy for browsers
to determine which parts of a page come from which XML vocabulary, so that it
knows what to pass to the MathML plug-in, what to display as an SVG picture, and
what to format in a normal HTML fashion.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 734

735Chapter 21 ✦ XHTML

And while it may be marginally more difficult to write XHTML by hand than tradi-
tional HTML, it’s not significantly more difficult for editors such as Dreamweaver or
Microsoft Word to produce XHTML than HTML. The most recent versions of these
and many other tools have options to generate valid XHTML without any extra
effort on the user’s part.

Moving to XHTML
The XHTML 1.0 specification defines a Strictly Conforming XHTML Document as
one that meets the following criteria:

1. The root element of the document must be html.

2. The root element of the document must set the default namespace to
http://www.w3.org/1999/xhtml.

3. The document must have a DOCTYPE declaration that references the strict,
transitional, or frameset DTD using one of these three Formal Public
Identifiers:

• -//W3C//DTD XHTML 1.0 Strict//EN

• -//W3C//DTD XHTML 1.0 Transitional//EN

• -//W3C//DTD XHTML 1.0 Frameset//EN

4. The document must be valid.

These requirements have certain implications. For instance, well-formedness is a
prerequisite for validity. Therefore, requirement 4 implies that the document must
be well-formed. And, of course, requirement 3 has all sorts of implications based on
the rules found in those three DTDs. For the most part, these rules match your
expectations about what an HTML document should look like. However, there are
some exceptions, especially for the strict DTD. For example, all element and
attribute names must be lowercase. Nonstandard elements such as marquee and
layer and nonstandard attributes such as datafld are strictly forbidden.

Let’s explore the process you’ll have to go through to convert an existing HTML
document to XHTML. I’ll choose as an example a page I found in December 2000 on
Project FREEDOM, the web site of U.S. Representative Ron Paul (http://www.house.
gov/paul/mobileo.htm). I chose this page because it’s a particularly egregious
example of malformed, invalid, ugly, and just-plain-wrong HTML. According to the site
information at http://www.house.gov/paul/siteman.htm, “The site is stored on
the main House of Representative [sic] secure server and is generally created using a
combination of web-design software applications and direct HTML coding. The site
operates equally well on the most recent versions of Netscape and Microsoft Internet
Explorer-compatible platforms, working best with a frames-enabled browser.” In fact,
I’d be surprised if it works well in any browser. The most common problem on web
sites today is that they’ve been designed to look good on only one particular browser
or platform. However, this one seemed especially unsightly on every browser I tried,
including IE5.5 for Windows (shown in Figure 21-1).

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 735

736 Part V ✦ XML Applications

Figure 21-1: Ron Paul’s Mobile Office web page

The HTML source code is given in Listing 21-1. This is shown exactly as it appeared
on the site on December 1, 2000, aside from adding a few line breaks to fit it on the
printed page. (The page has since been deleted from his site.) Read through it care-
fully and see how many problems you can find.

Listing 21-1: http://www.house.gov/paul/mobileo.htm

<head><title>Mobile Office

</title></head>
<!--INSERT TITLE, INSERT TEXT-->

<body bgcolor=#ffffff text=black link=#000080 vlink=#000080
alink=#000080 leftmargin=0 topmargin=0 marginwidth=0
marginheight=0 >
<basefont size=2 face=”Times New Roman”>
<table border=0 valign=top align=left>
<tr><td bgcolor=#EFEFCE valign=top>

<table border=0><tr><td width=2></td><td border=1>
<font size=+1 face=”MS Sans Serif, Geneva,
Verdana”>Menu

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 736

737Chapter 21 ✦ XHTML

Opening Page

Search Project Freedom

E-Communications

A Biography of Ron Paul

Texas’ 14th District

Committees

Constituent Services

Mobile Office

Ron Paul’s Legislation

Cosponsors of Legislation

Privacy Forum

Press Releases

Weekly Column

Speeches

Legislative Update Line

Freedom Watch

Important Documents

Web Resources

House
Floor Schedule

Site Information

</td></tr></table>
<table align=right border=1><tr><td>

<P>
The Office of U.S. Rep. Ron Paul

203 Cannon HOB

Washington, DC 20515

(202) 225-2831<p>
</td></tr></table>

</td>

<td valign=top align=left>
<!--PAGE TEXT INSERT HERE-->

<CENTER><img src=”images/mo.gif” alt=”The Mobile
Office”></CENTER>
<P>
What is the Mobile Office?
<P>
The Current Mobile Office
Schedule.

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 737

738 Part V ✦ XML Applications

Listing 21-1 (continued)

<P>
<P>
The Monthly Schedule for the Mobile
office.<P>
<P>

<!--END OF PAGE-->
</td></tr>
</table>
<P>

In fact, there are more than 25 separate errors in this document, the exact number
depending on how you count. Since this document is so completely broken, let’s
divide the task of converting it to XHTML into three parts:

1. Convert it to well-formed XML.

2. Make it valid XHTML according to the transitional XHTML DTD.

3. Upgrade it to full conformance with the XHTML strict DTD.

Making the document well-formed XML
Listing 21-1 contains numerous well-formedness errors. Let’s address them in order.
The first one you should have noted is that there’s no root element! The html ele-
ment that should enclose all HTML and XHTML documents is missing. The docu-
ment starts with a head. This is followed by a body element. All well-formed XML
documents must have exactly one root element. Therefore, the first thing you need
to do is add an html root element, like this:

<html>
<head><title>Mobile Office</title></head>
<body>
...

</html>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 738

739Chapter 21 ✦ XHTML

However, the html root element isn’t the only element with problems in this docu-
ment. Many, many elements in this document, the body element being just the first
one, have start-tags but no corresponding end-tags. You have to fix all these too.
For example, near the bottom of the document, you’ll find these six paragraphs:

<P>
What is the Mobile Office?
<P>
The Current Mobile Office
Schedule.
<P>
<P>
The Monthly Schedule for the Mobile
office.<P>
<P>

However, these paragraphs are identified by six <P> start-tags that are all unmatched
by </P> end-tags. This needs to be fixed wherever it occurs. For example, that sec-
tion should be rewritten like this:

<P>
What is the Mobile Office?
</P>
<P>
The Current Mobile Office
Schedule.
</P>
<P></P>
<P>
The Monthly Schedule for the Mobile
office.
</P>
<P></P>
<P></P>

When you are matching start-tags to end-tags, it’s also important to make sure that
their cases match. A <P> start-tag cannot be closed with a </p> end-tag. This mis-
take is made in the first paragraph of this sample:

What is the Mobile Office?

The opening uppercase <A> tag is closed by a lowercase tag. The easiest way
to fix mismatched case problems is to adopt a single case for all tags. The XHTML
DTDs actually specify that all tags be written in lowercase, so you should change
the preceding fragment to this:

<p>
What is the Mobile Office?
</p>
<p>
The Current Mobile Office
Schedule.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 739

740 Part V ✦ XML Applications

</p>
<p></p>
<p>
The Monthly Schedule for the Mobile
office.
</p>
<p></p>
<p></p>

Another frequent problem with elements, one of the few this document doesn’t
really exhibit, is overlapping elements. This occurs when a start-tag appears inside
an element but the corresponding end-tag appears outside that element. This prob-
lem looks like this:

The Current Mobile Office
Schedule.

There are a couple of instances of this in Listing 21-1, but they’re all results of omitted
end-tags.

The final common problem with elements is an empty element that does not use an
empty-element tag. This is extremely prevalent because HTML includes many
empty elements such as br, img, and hr. However, HTML browsers don’t always
recognize XML’s empty-element tags, such as
 and <hr/>, and consequently
won’t always include the line break or horizontal rule you were aiming for. They
seem to think that these tags represent an element named br/ or hr/ rather than
an empty element named br or hr.

You could use start-tag/end-tag pairs, such as
</br> and <hr></hr>, instead.
However, these also cause problems for some browsers. In particular, the browser
may display two line breaks or horizontal lines where you only wanted one. The
solution that seems to work best in practice is to add an attribute to the empty-
element tag. This pushes the / away from the element name and eliminates prob-
lems with most browsers. Conveniently, XHTML allows all elements to have a class
attribute with any convenient value. It’s normally used as a hook off which to hang
CSS style rules. However, it can also be used for any purpose you like, including
simply moving the /> away from the element name. For example, consider this
fragment with four empty elements from Listing 21-1:

Important Documents

Web Resources

You can easily make the br elements well-formed by adding class=”empty”
attributes to their tags like this:

--------------------<br class=”empty”/>
Important Documents<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 740

741Chapter 21 ✦ XHTML

The value of the class attribute doesn’t have any particular significance here. It
does not have to be the word empty. If you need to place a different value in the
class attribute for some other purpose, you can. All that’s required to make the
empty-element tags work is that some attribute be present with some value. For
this function, it doesn’t really matter what the attribute is or what value it has.

The final thing that you need to do to make Listing 21-1 well-formed is to quote all
the attribute values. Right now, more attribute values are unquoted than quoted.
For example, here’s the body start-tag:

<body bgcolor=#ffffff text=black link=#000080 vlink=#000080
alink=#000080 leftmargin=0 topmargin=0 marginwidth=0
marginheight=0 >

You can place either single or double quotes around the attribute values, whichever
you prefer. Most web browsers will accept either one, but some third-party tools,
such as web spiders, work better with double quotes. For example:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080” leftmargin=”0”
topmargin=”0” marginwidth=”0” marginheight=”0”>

After all these changes are made, you now have a fully well-formed document.
Listing 21-2 demonstrates. I cleaned up the white space a little, too.

Listing 21-2: A Well-Formed Version of the Mobile Office Page

<html>
<head><title>Mobile Office</title></head>

<!--INSERT TITLE, INSERT TEXT-->

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080” leftmargin=”0”
topmargin=”0” marginwidth=”0” marginheight=”0”>

<basefont size=”2” face=”Times New Roman”/>
<table border=”0” valign=”top” align=”left”>
<tr><td bgcolor=”#EFEFCE” valign=”top”>

<br class=”empty”/>
<table border=”0”><tr><td width=”2”></td><td border=”1”>

Menu<br class=”empty”/>

Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 741

742 Part V ✦ XML Applications

Listing 21-2 (continued)

<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information
<br class=”empty”/>

</td></tr></table>
<table align=”right” border=”1”><tr><td>

<p></p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 742

743Chapter 21 ✦ XHTML

(202) 225-2831<p></p>

</td></tr></table>

</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<center><img src=”images/mo.gif” alt=”The Mobile
Office”/></center>
<p>
What is the Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule for the Mobile
office.
</p>
<p></p>

<!--END OF PAGE-->
</td></tr>
</table>
<p></p>
</body>
</html>

Well-formedness is a very picky criterion for documents to satisfy. I would never
trust myself to merely eyeball the well-formedness of a document without checking
it. Because XHTML is XML, and a well-formed XHTML document is a well-formed
XML document, you can use all the tools you use to check the well-formedness of
an XML document, such as xmllint, to check the well-formedness of an XHTML
document.

For example, here are the last couple of checks I made using an early version of the
Xerces-J parser while I was converting Listing 21-1 into Listing 21-2. The first one
found an error where an opening <A> tag was closed by tag, that is, a case
mismatch. The last check was naturally error-free. (Otherwise, it wouldn’t have
been the last check.)

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 743

744 Part V ✦ XML Applications

D:\books\bible2\examples\21>java sax.SAXCount 21-2.html
[Fatal Error] 21-2.html:63:57: The element type “A” must be
terminated by the matching end-tag “”.
org.xml.sax.SAXException: Stopping after fatal error: The
element type “A” must be terminated by the matching end-tag
“”.

at
org.apache.xerces.framework.XMLParser.
reportError(XMLParser.java:1040)

at
org.apache.xerces.framework.XMLDocumentScanner.
reportFatalXMLError(XMLDocumentScanner.java:634)

at org.apache.xerces.framework.XMLDocumentScanner
.abortMarkup(XMLDocumentScanner.java:683)

at org.apache.xerces.framework.XMLDocumentScanner$
ContentDispatcher.dispatch(XMLDocumentScanner.java:1187)

at
org.apache.xerces.framework.XMLDocumentScanner.parseSome(
XMLDocumentScanner.java:380)

at
org.apache.xerces.framework.XMLParser.parse(XMLParser.java:900)

at
org.apache.xerces.framework.XMLParser.parse(XMLParser.java:939)

at sax.SAXCount.print(SAXCount.java:152)
at sax.SAXCount.main(SAXCount.java:372)

D:\books\bible2\examples\27>java sax.SAXCount 21-2.html
21-2.html: 240 ms (87 elems, 90 attrs, 0 spaces, 758 chars)

The one thing you cannot do with an XHTML document that you can do with a nor-
mal XML document is just load it into an XML-savvy browser such as Mozilla to see
whether or not it’s well-formed. If you give a web browser a malformed XHTML
document, it will probably treat it as a normal HTML document and try to quietly
fix any problems it finds rather than reporting the mistakes. This may depend on
the details of the MIME media type or filename extension. However, in any case, it’s
not a reliable way to check XHTML documents for well-formedness.

Another common change that’s required to make many documents well-formed,
though not this particular one, is to define your entity references. HTML predefines
and authors use numerous entity references, including , ©, &tm;, and
more. None of these are allowed in an XML document unless they’re first declared
in a DTD. Fortunately, the XHTML DTD predefines all the usual HTML entity refer-
ences, as well as a few new ones besides, so as soon as you add a DOCTYPE declara-
tion pointing to one of the three XHTML DTDs, these entity references are no longer
a problem.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 744

745Chapter 21 ✦ XHTML

Making the document valid
A well-formed HTML document is only halfway to being a valid XHTML document.
Recall that there are four conditions for XHTML validity:

1. The root element of the document must be html.

2. The root element of the document must set the default namespace to
http://www.w3.org/1999/xhtml.

3. It must have a DOCTYPE declaration that references the strict, transitional, or
frameset DTD using one of these three public identifiers:

• -//W3C//DTD XHTML 1.0 Strict//EN

• -//W3C//DTD XHTML 1.0 Transitional//EN

• -//W3C//DTD XHTML 1.0 Frameset//EN

4. It must be valid.

The document has improved a great deal from its original form, but still only the
first of these four conditions and the prerequisite for the fourth condition have
been met.

Meeting the second condition is straightforward. Just add the necessary namespace
declaration to the html root element start-tag like this:

<html xmlns=”http://www.w3.org/1999/xhtml”>

Adding the DOCTYPE declaration is no harder. Attaching that, the beginning of the
document now looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

I’ve chosen the transitional DTD because it’s the simplest one to move an existing
document to. New documents should use the strict DTD instead. It would probably
also be a good idea to store a local copy of the DTD on your own site rather than
referencing the one on the W3C site. If you did that, the DOCTYPE declaration would
look similar to this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“xhtml1-transitional.dtd”>

If you wanted to, you could also add an XML declaration to the prolog. However,
that’s not absolutely required. Because a few older web browsers attempt to dis-
play the XML declaration as plain text at the start of the document, I prefer not to
include it in XHTML documents.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 745

746 Part V ✦ XML Applications

After you’ve added the DOCTYPE declaration, you can attempt to validate the docu-
ment using xmllint or some other program. The W3C provides an online validation
service at http://validator.w3.org/, shown in Figure 21-2. This can check
XHTML documents against the DTD they specify, as well as check normal HTML
documents against the SGML DTD for HTML 4.0.

Figure 21-2: The W3C HTML Validation Service

Various tools that you can use to validate XML documents are described in
Chapter 7.

Here are the results of my first attempt to validate the XHTMLized Mobile Office
page using the W3C validator:

✦ Line 8, column 49:

vlink=”#000080” alink=”#000080” leftmargin=”0”

Error: there is no attribute “leftmargin”

✦ Line 9, column 16:

topmargin=”0” marginwidth=”0” marginheight=”0”>
^

Error: there is no attribute “topmargin”

Cross-
Reference

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 746

747Chapter 21 ✦ XHTML

✦ Line 9, column 32:

topmargin=”0” marginwidth=”0” marginheight=”0”>
^

Error: there is no attribute “marginwidth”

✦ Line 9, column 49:

topmargin=”0” marginwidth=”0” marginheight=”0”>
^

Error: there is no attribute “marginheight”

✦ Line 11, column 27:

<table border=”0” valign=”top” align=”left”>
^

Error: there is no attribute “valign”

✦ Line 14, column 13:

^

Error: there is no attribute “SRC”

✦ Line 14, column 46:

^

Error: required attribute “src” not specified

✦ Line 14, column 46:

^

Error: required attribute “alt” not specified

✦ Line 16, column 56:

<table border=”0”><tr><td width=”2”></td><td border=”1”>
^

Error: there is no attribute “border”

✦ Line 67, column 2:

<p></p>
^

Error: document type does not allow element “p” here; missing one of
“object”, “applet”, “”map””, “iframe”, “button”, “ins”, “del”, “noscript”
start-tag

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 747

748 Part V ✦ XML Applications

✦ Line 71, column 16:

(202) 225-2831<p></p>

^

Error: document type does not allow element “p” here; missing one of
“object”, “”applet”, “map”, “iframe”, “button”, “ins”, “del”, “noscript”
start-tag

✦ Line 94, column 46:

^

Error: required attribute “alt” not specified

That’s 12 separate errors that need to be dealt with. Some of them have obvious
solutions; some of them don’t.

The first two problems reported are of similar provenance. The DTD does not
declare leftmargin and topmargin attributes for the body element. In fact, these
are Microsoft extensions to HTML that were never supported in standard HTML or
Netscape. They should be replaced by a CSS style attribute that sets those proper-
ties. For example:

<body style=”leftmargin: 0; topmargin: 0”
bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”
marginwidth=”0” marginheight=”0”>

This should work in all browsers that leftmargin and topmargin work in and
quite a few more besides. This demonstrates one of the advantages of validating
your XHTML: The pages you produce are much more cross-browser-compatible.

The next two problems are the marginwidth and marginheight attributes on the
body element. These are nonstandard Netscape extensions to HTML that were
never supported in standard HTML or Internet Explorer. They have the same effect
in Netscape that leftmargin and topmargin do in Internet Explorer. However, to
achieve XHTML conformance, you must delete them:

<body style=”leftmargin: 0; topmargin: 0”
bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”>

The next error is of a similar nature. The page author placed the valign attribute
on the table element. However, a table element isn’t allowed to have a valign
attribute, so this doesn’t mean anything to a browser. It’s possible that the author
meant this to be an align attribute, which a table is allowed to have; but given
the value of top, it’s more likely that they were trying to set the default vertical
alignment for cells within the table. It’s reasonable to guess that HTML might let

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 748

749Chapter 21 ✦ XHTML

you do this, but in fact it doesn’t. Instead, you have to place the valign attribute
on the tr or td elements. Fortunately, it’s fairly easy to fix this here because the
table in question only contains a single row. You just move the attribute from the
table start-tag to the tr start-tag like this:

<table border=”0” align=”left”>
<tr valign=”top”>

If the table contained multiple rows, you’d just copy the valign attribute to each
<tr> start-tag.

This demonstrates another benefit of validating your XHTML — it catches your
mistakes. These can be cases in which you misremembered the name of the
attribute, or they can be simple typos —gbcolor instead of bgcolor, for example.
Whichever they are, these are real problems that cause real trouble for web
browsers today, not just anal-retentive rules about how code is supposed to be
written. Finding and fixing these sorts of mistakes is important, even if you don’t
really care whether or not your document is valid.

The next two errors are related, and both stem from this element:

The first error says, “there is no attribute ‘SRC’.” The second error says, “required
attribute ‘src’ not specified.” In both cases, the problem is XML’s case sensitivity. In
XHTML, the SRC attribute is not the same as the src attribute, although they are
the same in traditional HTML. XHTML requires all attribute and element names to
be typed in lowercase. This fix is easy to make. Just change the attribute names
to lowercase:

The next error also refers to this img element. It says, “required attribute ‘alt’ not
specified.” In most cases, the transitional DTD lets most common, but improper,
forms of HTML slip through with only a little tweaking to require well-formedness.
However, in this case, the W3C has decided to put its foot down in defense of acces-
sibility. In XHTML, unlike in HTML, all images must be supplied with alternate text.
This means you have to add content to this element as an alt attribute. For exam-
ple, this alt attribute suffices:

<img src=”images/pflogosm.gif” border=”0”
alt=”Project Freedom Logo”/>

The next problem is a familiar one: “there is no attribute ‘border’” for the td ele-
ment. Again, the attribute was placed on the wrong element. It belongs on the
table element, not the td element. However, this table element already has a
border attribute with a different value. Because, as written, the border attribute
on the td element has no effect, I’ll assume that it was just a fluke and delete it
completely. That will keep us as close to the original page as possible.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 749

750 Part V ✦ XML Applications

The tenth and eleventh errors are the nastiest. These are the long ones that state,
“Error: document type does not allow element ‘p’ here; missing one of ‘object’,
‘applet’, ‘map’, ‘iframe’, ‘button’, ‘ins’, ‘del’, ‘noscript’ start-tag.” This isn’t very
clear, and the validator doesn’t tell you which one is missing or how it should be
inserted. These sorts of errors, when an element doesn’t match its content model,
can be some of the hardest to track down.

A different validator (sax.SAXCount) gave the different but equally unhelpful mes-
sage, “The content of element type ‘font’ must match ‘(#PCDATA|a|br|span|bdo|
object|applet| img|map|iframe|tt|i|b|big|small|u|s|strike|font|basefont|
em|strong|dfn|code|q|sub|sup|samp| kbd|var|cite|abbr| acronym|input|
select|textarea|label|button|ins|del|script|noscript)*’.”

These are two different ways of looking at the same problem. The specific problem
is that there’s an element A inside an element B when elements of type B are not
allowed to contain elements of type A. The W3C validator reports that as a problem
with A, while Xerces’ sax.SAXCount reports it as a problem with B. However, in
both cases the problem is the same. Neither validator tells you the whole problem,
but by putting them together, you see that the problem is that there’s a p element
inside a font element.

Looking at the content model that’s violated, you should notice that, as long as it is,
it does not include every element defined in XHTML. In particular, it just includes
the inline elements like a and strong. It does not include any of the block-level ele-
ments like p or table. Therefore, chances are that’s exactly what you’re looking for:
a block-level element that’s a child of a font element. With that information in
hand, it’s not hard to locate the offender. It’s this font element:

<p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831

</p>

The solution is straightforward: Move the font tags inside the p element like this:

<p>

The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831

</p>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 750

751Chapter 21 ✦ XHTML

There’s one final problem to be fixed, but this is one you’ve seen before. The img
element in line 94 does not have an alt attribute. This particular image is a picture
of the mobile office, so fill it in like this:

<img src=”images/mobileoffice.gif” border=”0”
alt=”Mobile Office Minivan”/>

Now you’re done. The document validates, at least against the transitional DTD.
Listing 21-3 shows the finished XHTML document.

Listing 21-3: A Valid XHTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head><title>Mobile Office</title></head>

<!--INSERT TITLE, INSERT TEXT-->

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”
style=”leftmargin: 0; topmargin: 0”>

<basefont size=”2” face=”Times New Roman”/>
<table border=”0” align=”left”>
<tr valign=”top”><td bgcolor=”#EFEFCE” valign=”top”>

<img src=”images/pflogosm.gif” border=”0”

alt=”Project Freedom Logo”/>

<br class=”empty”/>
<table border=”0”>
<tr>
<td width=”2”></td>
<td>

Menu

<br class=”empty”/>

Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 751

752 Part V ✦ XML Applications

Listing 21-3 (continued)

<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information

<br class=”empty”/>

</td></tr>
</table>
<table align=”right” border=”1”>
<tr><td>
<p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831
</p>

</td></tr>
</table>

</td>

<td valign=”top” align=”left”>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 752

753Chapter 21 ✦ XHTML

<!--PAGE TEXT INSERT HERE-->

<center>

</center>
<p>
What is the
Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule
for the Mobile office.

</p>
<p></p>

<img src=”images/mobileoffice.gif” border=”0”
alt=”Mobile Office Minivan”/>

<!--END OF PAGE-->
</td></tr>

</table>
<p></p>

</body>
</html>

The strict DTD
Moving to the transitional DTD is a good first step, and the easiest one to take; but
new documents should use the strict DTD instead. Time and resources permitting,
you should try to transition your HTML documents and XHTML transitional docu-
ments to the strict DTD as well. The very name transitional implies that it’s not
going to be around forever, and that possibly starting with XHTML 2.0 or perhaps
some later version, the strict DTD will be the only option for valid, future-looking
web pages.

The biggest difference between the strict DTD and the transitional DTD is that the
strict DTD almost completely eliminates presentational elements such as font and
center and presentational attributes such as bgcolor and width. Instead, these
should all be replaced by CSS styles. The goal here is to return to the original plan
for HTML as a semantic rather than presentational markup language.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 753

754 Part V ✦ XML Applications

To indicate that you want to use the strict DTD, just change the DOCTYPE declara-
tion of the document as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

Then run it through your validation tool of choice. When I changed the document
type declaration of Listing 21-3 to point to the strict DTD and passed it through the
W3C validator, 19 more problems were uncovered:

✦ Line 7, column 16:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
^

Error: there is no attribute “bgcolor”

✦ Line 7, column 31:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
^

Error: there is no attribute “text”

✦ Line 7, column 44:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
^

Error: there is no attribute “link”

✦ Line 8, column 12:

vlink=”#000080” alink=”#000080”
^

Error: there is no attribute “vlink”

✦ Line 8, column 28:

vlink=”#000080” alink=”#000080”
^

Error: there is no attribute “alink”

✦ Line 10, column 19:

<basefont size=”2” face=”Times New Roman”/>
^

Error: there is no attribute “size”

✦ Line 10, column 28:

<basefont size=”2” face=”Times New Roman”/>
^

Error: there is no attribute “face”

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 754

755Chapter 21 ✦ XHTML

✦ Line 10, column 46:

<basefont size=”2” face=”Times New Roman”/>
^

Error: element “basefont” undefined

✦ Line 11, column 28:

<table border=”0” align=”left”>
^

Error: there is no attribute “align”

✦ Line 12, column 35:

<tr valign=”top”><td bgcolor=”#EFEFCE” valign=”top”>
^

Error: there is no attribute “bgcolor”

✦ Line 14, column 48:

<img src=”images/pflogosm.gif” border=”0”
^

Error: there is no attribute “border”

✦ Line 20, column 22:

<td width=”2”></td>
^

Error: there is no attribute “width”

✦ Line 22, column 20:

^

Error: there is no attribute “size”

✦ Line 22, column 30:

^

Error: there is no attribute “face”

✦ Line 22, column 62:

^

Error: element “font” undefined

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 755

756 Part V ✦ XML Applications

✦ Line 25, column 41:

^

Error: element “font” undefined

✦ Line 74, column 48:

<p>
^

Error: element “font” undefined

✦ Line 87, column 14:

<center>
^

Error: element “center” undefined

✦ Line 95, column 43:

The
^

Error: there is no attribute “target”

Each of these problems is either an element or attribute that is not available in the
strict DTD. An element that’s not available in the DTD will produce several error
messages — one for the element itself and one for each attribute that element pos-
sesses. In every case, the forbidden item provides presentational information that
can be replaced with a CSS style. For example, the first five problems all relate to
color attributes on the body start-tag:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”
style=”leftmargin: 0; topmargin: 0”>

You can move the bgcolor and text values inside the allowed style attribute like
this:

<body style=”background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

When moving to CSS, the bgcolor attribute becomes the background-color prop-
erty and the text attribute becomes the (foreground) color property.

Background-color, color, and the other CSS properties used in this section
are discussed in Chapter 14.

The three link colors are trickier. CSS doesn’t provide any properties that are exact
equivalents for the link, vlink, and alink attributes. Instead, you have to provide

Cross-
Reference

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 756

757Chapter 21 ✦ XHTML

CSS rules that use the appropriate selectors to choose links, visited links, and
active links, and assign the desired colors to each one. These rules can be placed
in a style element in the document’s head like this:

<head>
<title>Mobile Office</title>
<style type=”text/css”>
a:link {color: #000080}
a:visited {color: #000080}
a:active {color: #000080}

</style>
</head>

In HTML, it’s customary to enclose the CSS rules in the content of the style ele-
ment in a comment like this:

<style type=”text/css”>
<!-- a:link {color: #000080}

a:visited {color: #000080}
a:active {color: #000080} -->

</style>

This hides the style rules from older browsers that don’t recognize CSS, and that
might try to display the contents of the style element as part of the document.
However, most browsers that understand strict XHTML can handle CSS, and all of
them at least recognize the style element. Furthermore, XML rules dictate that
XHTML browsers should not pay any attention to the contents of comments. (In
practice some do and some don’t.) The XML parser built-in to the browser may not
even provide the text of the comments to the rendering engine for display. If you
do need to write pages that work well in older browsers, you should use the tran-
sitional XHTML DTD instead of the strict one.

Changing link colors is a very bad thing to do to your readers. Browsing a page that
uses nonstandard link colors is a little like driving in a country where the stop signs
are blue, the warning signs are green, and the directional signs are red. While the
default link colors (blue, purple, and red) are hardly the ideal choices, they are the
ones standardized in today’s browsers, and they are the colors readers have
learned to expect. If you change the link colors, many readers won’t realize where
the links are on the page. They certainly won’t be able to tell the difference
between visited and unvisited links.

The next three errors stem from the basefont element:

<basefont size=”2” face=”Times New Roman”/>

This is a standard HTML element for setting the default font on the page. The first
two errors say that the size and face attributes of this element aren’t defined,
while the last error says that the basefont element itself isn’t defined. It has been
deleted from strict XHTML. Instead, you set default font properties for the docu-
ment by attaching CSS style properties to the body element of the document. The

Tip

Caution

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 757

758 Part V ✦ XML Applications

basefont’s size attribute can be replaced by a CSS font-size property. In HTML,
the size attribute of the basefont is given as a number between 1 and 7, where
3 is the browser’s default font size. The CSS equivalent is using smaller on
font-size. The basefont’s face attribute can be replaced by a CSS font-family
property. This makes the body start-tag look like this:

<body style=”font-size: smaller;
font-family: ‘Times New Roman’;
background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

The next problem is the align attribute on the first table. Because this already
has the default value left, you can just drop it out. There’s no need to replace it
with a CSS style.

The tenth problem is straightforward and easy to fix: The bgcolor attribute is not
allowed on table cells (td elements) any more than it’s allowed on the body ele-
ment. Again, you can replace it with a CSS background-color property, like this:

<td style=”background-color: #EFEFCE” valign=”top”>

Perhaps a little surprisingly, the valign presentational attribute is allowed here.
That’s because it has a special meaning for table cells that no generic CSS property
can really match.

The next problem is similar. In strict XHTML, the img element can’t have a border
attribute. Instead, it should have a border-width CSS style property. Furthermore,
this property can’t be an absolute number such as 0 or 2; it must have units. Thus,
you change this:

<img src=”images/pflogosm.gif” border=”0”
alt=”Project Freedom Logo”/>

to this:

<img src=”images/pflogosm.gif” style=”border-width: 0px”
alt=”Project Freedom Logo”/>

The next problem arises in line 20. The td element can’t have a width attribute.
This must be replaced by a CSS width property. Again, the HTML width is given in
pixels, so the equivalent CSS property must specify units of pixels like this:

<td style=”width: 2px”></td>

Next comes one of the most common problems with documents being converted
from old-style HTML to XHTML — the font element. Fortunately, this is easy to
change to CSS. The font element attributes map to CSS font properties just as
they did for the basefont element earlier. The size attribute is replaced by a
font-size property and the face attribute is replaced by a font-family prop-
erty. Of course, because the font element itself is illegal, you need an element to

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 758

759Chapter 21 ✦ XHTML

hang this style on. A lot of times there’s a fortuitous p or td or some other element
in the right place to fill this need; but if there’s not, you can add a span or div ele-
ment instead. Use span for inline runs of style and div for styles that surround one
or more block-level elements such as p and blockquote. For example, in this case
you can change the offending font element to this span element:

<span style=”font-size: +1;
font-family: ‘MS Sans Serif’, Geneva, Verdana”>

Menu

The next problem element is also a font element, and it is changed to another span
element:

The penultimate problem is the center element used to center the picture of the
mobile office minivan within its table cell. The center element has been completely
removed. Instead, you should use a div element with a CSS text-align property;
for example:

<div style=”text-align: center”>

</div>

Although this property is named text-align, it will align anything contained in the
div element, including, as in this case, images.

The final problem is an unusual one: The target attribute of the a element is for-
bidden. There’s no CSS equivalent for this attribute. It’s simply gone. Consequently,
you have to delete the target attribute from your strict XHTML documents, and
suffer the corresponding loss in functionality.

Current Mobile Office Schedule

The reason the W3C removed target from strict XHTML was that it’s used to con-
trol link behavior. In particular, target determines which window or frame the
document is displayed in. For example, by setting target to _blank you can
specify that the document will open in a new window rather than the current one.
The W3C feels that link behavior is outside the scope of HTML. This is, in my opin-
ion, a flaw in strict XHTML. Link behavior is not presentational information, and I
certainly don’t see any reason for it to be ruled out of bounds for a Hypertext
Markup Language. XLink does provide equivalent functionality through the
xlink:show attribute, but XHTML 1.0 doesn’t support XLink.

XLinks and the xlink:show attribute are discussed in Chapter 17.

That’s the last error the validator reported. Listing 21-4 is the complete, fixed docu-
ment with all the changes previously described.

Cross-
Reference

Note

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 759

760 Part V ✦ XML Applications

Listing 21-4: The Fixed XHTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Mobile Office</title>
<style type=”text/css”>
a:link {color: #000080}
a:visited {color: #000080}
a:active {color: #000080}

</style>
</head>

<!--INSERT TITLE, INSERT TEXT-->

<body style=”font-size: smaller;
font-family: ‘Times New Roman’;
background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

<table border=”0”>
<tr valign=”top”>
<td style=”background-color: #EFEFCE” valign=”top”>

<img src=”images/pflogosm.gif” style=”border-width: 0px”
alt=”Project Freedom Logo”/>

<br class=”empty”/>
<table border=”0”>
<tr>
<td style=”width: 2px”></td>
<td>

<span style=”font-size: +1;
font-family: ‘MS Sans Serif’, Geneva, Verdana”>
Menu

<br class=”empty”/>
<span style=”font-size: -2;

font-family: ‘Arial Narrow’”>
Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 760

761Chapter 21 ✦ XHTML

<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information

<br class=”empty”/>

</td></tr>
</table>
<table align=”right” border=”1”>
<tr><td>
<p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831
</p>

</td></tr>
</table>

</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<div style=”text-align: center”>

</div>
<p>
What is the

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 761

762 Part V ✦ XML Applications

Listing 21-4 (continued)

Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule
for the Mobile office.

</p>
<p></p>

<img src=”images/mobileoffice.gif” border=”0”
alt=”Mobile Office Minivan”/>

<!--END OF PAGE-->
</td></tr>

</table>
<p></p>

</body>
</html>

Listing 21-4 fixes all the errors that the validator found. Is this now a valid XHTML
document? Unfortunately, the answer is still no. If you read Listing 21-4, you should
have noticed that it still contains a number of illegal presentational elements, such as
font, and presentational attributes, such as border. In fact, if you rerun Listing 21-4
through the W3C validator, it spits out these five additional error messages:

✦ Line 79, column 20:

<table align=”right” border=”1”>
^

Error: there is no attribute “align”

✦ Line 81, column 25:

<p>
^

Error: there is no attribute “size”

✦ Line 81, column 34:

<p>
^

Error: there is no attribute “face”

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 762

763Chapter 21 ✦ XHTML

✦ Line 81, column 48:

<p>

^

Error: element “font” undefined

✦ Line 112, column 50:

<img src=”images/mobileoffice.gif” border=”0”
^

Error: there is no attribute “border”

Fortunately, all these errors are ones you’ve seen before, and they’re relatively easy
to fix. Listing 21-5 makes the necessary corrections. Still, there’s a deeper question.
Why didn’t the validator detect these problems the first time through? The reason
is that some problems can mask other problems. In particular, the validator will not
check anything inside an undefined element. For example, if a font element con-
tains a center element, the validator will only report the font element as being a
problem. It does not look inside the font element, so it won’t find the center
element or any other illegal elements or attributes that might be hidden there.
Therefore, when you think you’re done, you need to run the finished document
through the validator to make sure that no hidden problems have been revealed
(or even created) by your edits. In some cases, you may even need to make four or
five or more passes through the validator before you have finally eliminated all the
problems. This, however, is not one of those times. It turns out that Listing 21-5 is
indeed valid strict XHTML, and no further edits are required.

Listing 21-5: The Valid XHTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Mobile Office</title>
<style type=”text/css”>
a:link {color: #000080}
a:visited {color: #000080}
a:active {color: #000080}

</style>
</head>

<!--INSERT TITLE, INSERT TEXT-->

<body style=”font-size: smaller;
font-family: ‘Times New Roman’;

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 763

764 Part V ✦ XML Applications

Listing 21-5 (continued)

background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

<table border=”0”>
<tr valign=”top”>
<td style=”background-color: #EFEFCE” valign=”top”>

<img src=”images/pflogosm.gif” style=”border-width: 0px”
alt=”Project Freedom Logo”/>

<br class=”empty”/>
<table border=”0”>
<tr>
<td style=”width: 2px”></td>
<td>

<span style=”font-size: +1;
font-family: ‘MS Sans Serif’, Geneva, Verdana”>
Menu

<br class=”empty”/>

Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 764

765Chapter 21 ✦ XHTML

Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information

<br class=”empty”/>

</td></tr>
</table>
<table border=”1”>
<tr><td>
<p style=”font-size: -2; font-family: ‘Arial Narrow’”>

The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831
</p>
</td></tr>

</table>
</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<div style=”text-align: center”>

</div>
<p>
What is the
Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule
for the Mobile office.

</p>
<p></p>

<img src=”images/mobileoffice.gif”
<img src=”images/mobileoffice.gif”

style=”border-width: 0”
alt=”Mobile Office Minivan”/>

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 765

766 Part V ✦ XML Applications

Listing 21-5 (continued)

<!--END OF PAGE-->
</td></tr>

</table>
<p></p>

</body>
</html>

The disadvantage of this approach is that many older browsers don’t support all
of the CSS style properties used here, although they do support the equivalent pre-
sentational elements and attributes. For example, when I loaded Listing 21-5 into
Netscape Navigator 4.7.5, as shown in Figure 21-3, the picture of the Mobile Office
minivan had moved to the top of the page for no apparent reason. However,
Internet Explorer 5.5 for Windows did place the picture in the right place on the
page. Because of problems such as this, it may be advisable to stick with the transi-
tional DTD and the presentational attributes for a while longer until all your users
have upgraded to browsers that fully support CSS and XHTML. Even in late 2003,
the few pure XHTML web pages I’ve published elicit frequent complaints from read-
ers with older browsers such as Internet Explorer 5.5.

Figure 21-3: A browser exhibiting incorrect and unexplained rendering of an
XHTML plus CSS document

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 766

767Chapter 21 ✦ XHTML

The frameset DTD
The transitional DTD omits one popular feature of HTML — frames. The W3C has
never liked frames, and with good reason — they’re a user interface disaster that
consistently irritate and bewilder readers. Nonetheless, many web designers like
them, and many existing web sites use them.

Although I agree with the W3C and suggest that you avoid frames on all new pages
you create, there are times when an existing site design makes that impossible, at
least without an excessive investment of resources. Consequently, if you must use
frames but you still want to move to XHTML and validate your documents, you can
use the frameset DTD. This is very close to the transitional DTD, but adds all the
necessary declarations for frame, iframe, frameset, and other frame-related ele-
ments and attributes. The document type declaration for a page built on top of the
frame set DTD looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

As with the other two XHTML DTDs, it’s probably a good idea to store a local copy
of the frameset DTD and identify it by a relative URL rather than relying on the
official copy at the W3C. Then the document type declaration would look like
this instead:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“xhtml1-frameset.dtd”>

HTML Tidy
Converting malformed HTML documents to valid XHTML by hand, as I’ve done in
this chapter, can be a tedious and time-consuming job. Fortunately, Dave Raggett of
the W3C has published HTML Tidy, an open source tool that can do much of the
work for you. Tidy is a character-mode program written in ANSI C that can be com-
piled and run on most platforms, including Windows, UNIX, BeOS, and the Mac.
The latest version is available from http://tidy.sourceforge.net/.

In its default mode Tidy tends to remove unnecessary (for HTML, but not for XML)
end-tags such as and to make other modifications that break well-formed-
ness. However, you can use the --output-xhtml switch to specify that you want
valid XHTML output. For example, to convert the file mobile_office.html to valid
XHTML, you would type this command from a DOS window or shell prompt:

C:\> tidy --output-xhtml true mobile_office.html

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 767

768 Part V ✦ XML Applications

By default, Tidy just prints its output on stdout (the console or DOS window from
which you ran it), as well as messages about any problems it couldn’t fix. You’ll
probably want to redirect the corrected document into a file using the > redirection
operator, like this:

C:\>tidy --output-xhtml true mobile_office.html>21-6.html

Tidy (vers 30th April 2000) Parsing “mobile_office.html”
line 9 column 30 - Warning: lacks “alt” attribute
line 68 column 4 - Warning: lacks “alt” attribute

“mobile_office.html” appears to be HTML 3.2
2 warnings/errors were found!

The alt attribute should be used to give a short description
of an image; longer descriptions should be given with the
longdesc attribute which takes a URL linked to the description.
These measures are needed for people using non-graphical
browsers.

For further advice on how to make your pages accessible
see “http://www.w3.org/WAI/GL”. You may also want to try
“http://www.cast.org/bobby/” which is a free Web-based
service for checking URLs for accessibility.

You are recommended to use CSS to specify the font and
properties such as its size and color. This will reduce
the size of HTML files and make them easier maintain
compared with using elements.

HTML & CSS specifications are available from http://www.w3.org/
To learn more about Tidy see
http://www.w3.org/People/Raggett/tidy/
Please send bug reports to Dave Raggett care of
<html-tidy@w3.org>
Lobby your company to join W3C, see
http://www.w3.org/Consortium

Listing 21-6 shows the XHTML document Tidy produced. As the preceding message
indicates, it’s not actually a valid XHTML document. In this case, the problem is
that two img elements are missing alt attributes. While Tidy could insert an empty
alt attribute, that wouldn’t really serve any purpose. It has to rely on a human
being (you) to fill in a reasonable value for the alternate text. Otherwise, the docu-
ment is well-formed. Most of the time, the problems Tidy fails to fix are not too
difficult to fix by hand.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 768

769Chapter 21 ✦ XHTML

Listing 21-6: The Well-Formed, Almost-Valid XHTML
Document Produced by Tidy

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta name=”generator” content=”HTML Tidy, see www.w3.org” />
<title>Mobile Office</title>
<!--INSERT TITLE, INSERT TEXT-->
</head>
<body>
<basefont size=”2” face=”Times New Roman” />
<table border=”0” valign=”top” align=”left”>
<tr>
<td bgcolor=”#EFEFCE” valign=”top”><img
src=”images/pflogosm.gif border=”0” />

<table border=”0”>
<tr>
<td width=”2”></td>
<td border=”1”><font size=”+1”
face=”MS Sans Serif, Geneva, Verdana”>Menu

Opening
Page

Search Project Freedom

E-Communications

A Biography of Ron Paul

Texas’ 14th District

Committees

Constituent Services

Mobile Office

Ron Paul’s Legislation

Cosponsors of Legislation

Privacy Forum

Press Releases

Weekly Column

Speeches

Legislative Update Line

Freedom Watch

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 769

770 Part V ✦ XML Applications

Listing 21-6 (continued)

Important Documents

Web Resources

House
Floor Schedule

Site Information

 </td>
</tr>
</table>

<table align=”right” border=”1”>
<tr>
<td>

<p>The Office of U.S. Rep.
Ron Paul

203 Cannon HOB

Washington, DC 20515

(202) 225-2831</p>

<p></p>
</td>
</tr>
</table>
</td>
<td valign=”top” align=”left”><!--PAGE TEXT INSERT HERE-->
<center>
</center>

<p>What is the Mobile Office?
</p>

<p>The Current Mobile
Office Schedule.</p>

<p>The Monthly Schedule for the Mobile
office.</p>

<p>
<!--END OF PAGE--></p>
</td>
</tr>
</table>
</body>
</html>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 770

771Chapter 21 ✦ XHTML

Tidy also missed a couple of problems as well. When I ran this document through
the W3C validator, in addition to the aforementioned missing alt attributes, these
two problems were found:

✦ Line 11, column 25:

<table border=”0” valign=”top” align=”left”>
^

Error: there is no attribute “valign”

✦ Line 19, column 11:

<td border=”1”><font size=”+1”
^

Error: there is no attribute “border”

Still, all of these issues are easy enough to resolve once they’re noticed. Tidy may
not do everything for you, but it does do a lot.

Setting the MIME media type
There’s one final step before you’re ready to serve XHTML. You need to make sure
browsers recognize your documents as XHTML instead of plain-vanilla HTML. Most
browsers will treat a document quite differently depending on whether they think
it’s HTML or XHTML.

The first step is the filename extension. This should normally be .xhtml instead of
.html or .htm. For a file loaded from the file system instead of a server, this is
probably all you need to do.

The second step is to make sure the server assigns the MIME media type applica-
tion/xhtml+xml to the file, not text/html like most HTML documents. If your web
server comes configured to recognize XHTML documents, all you need to do is use
the .xhtml file extension. Otherwise, you’ll need to map the file extension to the
MIME type.

The exact instructions for doing this vary from one server to the next. For Apache,
you can add the following line to the server’s mime.types file, which normally
resides somewhere like /etc/mime.types:

application/xml+xhtml xhtml

If you don’t have access to that directory you can put this line in the .htaccess file
for the directory where the XHTML files reside:

AddType application/xml+xhtml xhtml

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 771

772 Part V ✦ XML Applications

If Microsoft IIS is your web server of choice, you’ll need to use the server GUI to
add a MIME type. The details vary a little depending on the version of Windows and
IIS, but it’s roughly like this:

1. In the Start Menu, select Settings ➪ Control Panel.

2. Open the Administrative Tools control panel.

3. Open the Computer Management icon.

4. Select the HTTP Headers tab.

5. Click File Types to show a File Types dialog box.

6. Click New Type in this dialog box, and another dialog box pops up.

7. In this dialog box, enter the filename extension (.xhtml) and the media type
associated with it (application/xhtml+xml).

8. Close everything in the reverse order that you opened it.

For other servers, please consult the server’s documentation.

What’s New in XHTML
For the most part, XHTML just tightens up existing HTML syntax. In the strict ver-
sion, it even throws out some familiar elements and attributes, such as font and
bgcolor. However, besides the stick of validity, XHTML proffers a few carrots as
well. Browsers that understand XHTML can use the full panoply of XML syntax that
isn’t available in classic HTML. This includes the following:

✦ Character references

✦ Custom entity references defined in the DTD

✦ CDATA sections

✦ Encoding declarations

✦ The xml:lang attribute

On the other hand, these constructs are quite near the bleeding edge, because almost
all of them cause problems for many browsers people are still using. Nonetheless,
they can be viable in certain controlled environments and will become more useful as
time passes and more people upgrade their browsers to full XHTML support. This
section explores a few of the advantages of using fully XHTML-aware browsers.

Character references
XML documents are Unicode. By implication, that means XHTML documents are
Unicode, too. You can present an XHTML browser with a document containing
mixed English, Greek, Arabic, and Japanese and expect it to do something

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 772

773Chapter 21 ✦ XHTML

reasonable with it. The browser may not have the necessary fonts to render the
non-Latin text, but at least it should not try to pretend that Arabic, Japanese, or
Greek is just a funny form of Latin-1, as many browsers do now.

Even if the browser can display text written in unusual character sets, it may still
not be easy to write such a document using existing editors. However, when writing
XHTML, you can use decimal or hexadecimal character references to produce the
full range of Unicode characters. A Unicode decimal character reference consists of
the two characters &# followed by the character code, followed by a semicolon. For
example, the capital Greek letter Σ has Unicode value 931, so it can be inserted in
an XML file as Σ. To use hexadecimal instead, just put an x after the #. For
example, Σ has hexadecimal value 3A3, so it may be inserted in an XML file as
Σ. Because two bytes always produce exactly four hexadecimal digits and
because most current Unicode characters occupy two bytes, it’s customary
(though not required) to include leading zeros in hexadecimal character references
so that they are rounded out to four digits. Listing 21-7 shows an XHTML document
containing a few lines from Plato’s Gorgias that uses a mix of ASCII characters and
decimal and hexadecimal character references.

Listing 21-7: An XHTML Document That Uses Character
References

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Gorgias 447a from Plato</title>

</head>
<body>
<h1>Plato, <cite>Gorgias 447a</cite></h1>
<p>

Καλλίκλης
:
πολέμου
καὶ
μάχης
φασὶ
χρη̂ναι,
ὠ̂
Σώκρατες,
οὕτω
μεταλαγχά
νειν.
</p>
<p>

Continued

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 773

774 Part V ✦ XML Applications

Listing 21-7 (continued)

Σωκράτης:
ἀλλ’
ἠ̂, τὸ
λεγόμενον,
κατόπιν
ἑορτη̂ς
ἥκομεν
καὶ
ὑστερου̂μ
εν;
</p>
<p>

Καλλίκλης
:
καὶ μάλα
γε
ἀστείας
ἑορτη̂ς:
πολλὰ
γὰρ καὶ
καλὰ
Γοργίας
ἡμι̂νὀλι
́γον
πρότερονε
̓πεδείξατ
ο.
</p>
<p>
Σωκράτης:
τούτων
μέντοι,
ὠ̂
Καλλίκλει
ς,
αἴτιος
χαιρεφω̂ν
ὅδε,
ἐν
ἀγορᾳ̂
ἀναγκάσα
ς
ἡμα̂ς
διατρι̂ψαι
</p>
</body>
</html>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 774

775Chapter 21 ✦ XHTML

Figure 21-4 shows this document loaded into the XHTML-savvy Mozilla. However,
this document doesn’t work nearly so well in older, non-XHTML-aware browsers, as
Figure 21-5 shows.

Figure 21-4: Mozilla can display Greek text typed with character references.

Figure 21-5: Legacy browsers don’t know what to do with character
references.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 775

776 Part V ✦ XML Applications

There’s also a middle ground. Some browsers understand character references but
either don’t have or don’t know how to use the fonts needed to display those char-
acters. Mozilla 1.2 on Mac OS 9 just displayed question marks for most of the char-
acters in Listing 21-7, as shown in Figure 21-6. Internet Explorer 6.0 can handle the
Greek letters and some of the accents, but is thrown by the breathing marks, as
shown in Figure 21-7.

Figure 21-6: Mozilla 1.2 recognizes that the character references are not
Roman letters, but can’t display them.

Custom entity references defined in DTD
Most web browsers understand a very basic set of predefined entity references,
including <, &, ©, , and so on. HTML 4.0 expanded this set to
several hundred entity references, including characters from the upper half of
the Latin-1 character set such as ñ (ñ) and Ü (Ü), mathematical
symbols such as ∂ (∂) and √ (√), Greek letters such as Θ (θ)
and Ω (Ω), and a few others besides. All of these are available in XHTML
documents as well. All three XHTML DTDs define these entities so that you can
use them.

In addition, you can define other entity references in the internal or external DTD
subsets of your document, just as you might for any XML document. These can
either point to individual characters, to text strings, to elements, or to groups of
elements. For example, Listing 21-8 is a DTD fragment that defines several
combining diacritical marks frequently used in classical Greek.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 776

777Chapter 21 ✦ XHTML

Figure 21-7: Internet Explorer 6.0 can handle the Greek letters but not the
breathing marks.

Listing 21-8: greek_accents.ent: A DTD Subset Defining
Greek Diacritical Marks

<!ENTITY varia “̀”> <!-- grave accent -->
<!ENTITY oxia “́”> <!-- acute accent -->
<!ENTITY circumflex “̂”>
<!ENTITY psili “̓”> <!-- smooth breathing -->
<!ENTITY dasia “̔”> <!-- rough breathing -->
<!ENTITY iota_subscript “ͅ”>

Entity references are discussed in more detail in Chapter 10.

Listing 21-9 is a more intelligible version of Listing 21-7. It imports this entity set
and uses the five general entities found there for the accent and breathing marks
instead of numeric character references. For the Greek letters, it uses general entity
references defined in the XHTML strict DTD. Finally, it defines three general entities
in the internal DTD subset for the names of Socrates, Gorgias, and Kallikles.

Cross-
Reference

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 777

778 Part V ✦ XML Applications

Listing 21-9: An XHTML Document That Uses Entity
References

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd” [

<!ENTITY % greek_accents SYSTEM “greek_accents.ent”>
%greek_accents;

<!ENTITY Socrates
“Σωκρα&oxia;της”>
<!ENTITY Gorgias
“Γοργι&oxia;ας”>
<!ENTITY Kallikles

“Καλλι&oxia;κλης”
>

]>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Gorgias 447a from Plato</title>

</head>
<body>
<h1>Plato, <cite>Gorgias 447a</cite></h1>
<p>
&Kallikles;:
πολε&oxia;μου
και&varia;
μα&oxia;χης
φασι&varia;
χρη&circumflex;ναι,
ω&psili;&circumflex;
Σω&oxia;κρατες,
ου&dasia;&oxia;τω
μεταλαγχ
α&oxia;νειν.
</p>
<p>
&Socrates;:
α&psili;λλ’
η&psili;&circumflex;, το&varia;
λεγο&oxia;μεν
ον,
κατο&oxia;πιν
ε&dasia;ορτη&circumflex;ς
η&dasia;&oxia;κομεν
και&varia;
υ&dasia;στερο

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 778

779Chapter 21 ✦ XHTML

υ&circumflex;μεν;
</p>
<p>

&Kallikles;:
και&varia;
μα&oxia;λα
γε
α&psili;στει&oxia;ας
ε&dasia;ορτη&circumflex;ς:
πολλα&varia;
γα&varia;ρ και&varia;
καλα&varia; &Gorgias;
η&dasia;μι&circumflex;νο&psili;λ
ι&oxia;γον
προ&oxia;τερον
ε&psili;πεδει&oxia;ξ
ατο.
</p>
<p>
&Socrates;:
του&oxia;των
με&oxia;ντοι,
ω&psili;&circumflex;
Καλλι&oxia;κλ
εις,
αι&psili;&oxia;τιος
Χαιρεφω&circumflex;ν
ο&dasia;&oxia;δε, ε&psili;ν
α&psili;γορ
α&circumflex;&iota_subscript;
α&psili;ναγκα&oxia;σ
ας
η&dasia;μα&circumflex;ς
διατρι&circumflex;ψα
ι
</p>
</body>
</html>

Unfortunately, this document requires a level of XHTML savvy that none of the
browsers I was able to test possessed. None of them recognized the nonpredefined
entities from either the internal or external DTD subsets. They all either displayed
something more or less like Figure 21-8 or Figure 21-9, the former if they thought the
file was HTML, and the latter if they thought it was XHTML. The use of author-
defined entity references in XHTML documents is likely to remain theoretical for
some time to come.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 779

780 Part V ✦ XML Applications

Figure 21-8: Browsers don’t yet support author-defined entity references in HTML.

Figure 21-9: Browsers don’t yet support author-defined entity references
in XHTML.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 780

781Chapter 21 ✦ XHTML

Encoding declarations
Web servers are supposed to identify the character set and encoding of documents
they send in the Content-type field of the HTTP header they prefix to each docu-
ment. For example, this HTTP header specifies the UTF-8 encoding of the Unicode
character set:

HTTP/1.1 200 OK
Date: Thu, 07 Dec 2000 21:09:53 GMT
Server: Apache/1.3.6 Ben-SSL/1.36 (Unix)
Last-Modified: Tue, 21 Dec 1999 03:04:51 GMT
Content-Length: 5201
Content-Type: text/html; charset=utf-8

In practice, however, most servers fail to do this. Furthermore, it’s difficult to con-
figure a web server to understand that particular documents are in some encoding
other than the most common one on that particular system. Therefore, HTML
authors who use a character set that goes beyond simple ASCII normally identify
the set they’re using with a meta element and an http-equiv attribute in the HTML
head, like this:

<meta
http-equiv=”Content-Type” content=”text/html; charset=UTF-8”

/>

To make matters worse, whereas most web browsers assume a document uses
Latin-1 when faced with an unidentified character set, XML processors are required
to assume that documents are written in UTF-8 unless they’re told otherwise. While
some browsers (though not all) will recognize a charset parameter passed in an
HTTP header, none will notice a meta element similar to this one.

Of course, XML documents have a different means of specifying character sets using
an encoding declaration inside the XML declaration, as in the following example:

<?xml version=”1.0” encoding=”UTF-8”?>

Unfortunately, some browsers that don’t recognize this construct as an XML decla-
ration or explicitly support XHTML will try to display it, so you want to avoid
including it if possible. The most broadly compatible option is to author your docu-
ments in UTF-8 so that you can omit the XML declaration, and use a meta element
to tell HTML browsers what they’re dealing with. If UTF-8 is too sophisticated for
your installed base of browsers, you should stick to pure ASCII (a subset of UTF-8)
and the predefined entity references.

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 781

782 Part V ✦ XML Applications

The xml:lang attribute
The xml:lang attribute contains a code identifying which language the content of
that element is written in. For example, these opening lines from Marcel Proust’s
Du côté de chez Swann are written in French, naturellement:

<q xml:lang=”fr-FR”
cite=”ftp://movie0.archive.org/pub/etext/etext01/swann10h.htm”
>
Longtemps, je me suis couché de bonne heure. Parfois, à peine
ma bougie éteinte, mes yeux se fermaient si vite que je
n’avais pas le temps de me dire: “Je m’endors.”
</q>

In HTML, language identification is normally handled by the lang attribute instead,
but otherwise the syntax is the same as in this q element:

<q lang=”fr-FR”
cite=”ftp://movie0.archive.org/pub/etext/etext01/swann10h.htm”
>
Longtemps, je me suis couché de bonne heure. Parfois, à peine
ma bougie éteinte, mes yeux se fermaient si vite que je
n’avais pas le temps de me dire: “Je m’endors.”
</q>

For XHTML 1.0, the W3C recommends using both the lang and xml:lang
attributes, like this:

<q lang=”fr-FR” xml:lang=”fr-FR”
cite=”ftp://movie0.archive.org/pub/etext/etext01/swann10h.htm”
>
Longtemps, je me suis couché de bonne heure. Parfois, à peine
ma bougie éteinte, mes yeux se fermaient si vite que je
n’avais pas le temps de me dire: “Je m’endors.”
</q>

HTML-aware tools will use the lang attribute to determine the language. XML-aware
tools will use the xml:lang attribute. In the event of a conflict between the two, the
value of the xml:lang attribute should take precedence, though this may depend
more on which attribute the tool in question expects to read than on the official
rules for disambiguation.

The xml:lang attribute was first introduced in Chapter 6.Cross-
Reference

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 782

783Chapter 21 ✦ XHTML

CDATA sections
Before there were any books about HTML, many people, the author of this book
included, learned HTML from the NCSA’s A Beginner’s Guide to HTML, which is itself
written in HTML and published on the Web at http://www.ncsa.uiuc.edu/
General/Internet/WWW/HTMLPrimer.html. Over the years, many other online
tutorials about HTML and other new markup languages have been written in HTML
and published on the Web. Today, many people are writing and reading online tuto-
rials about SVG, MathML, schemas, XHTML, and other cutting-edge topics. Indeed, I
read a few of these while preparing to write the book you’re reading now.

Of course, if you’ve ever written such a tutorial, you’ve noticed a problem. It’s
extremely inconvenient to write about HTML or anything that looks remotely like
HTML in HTML. The problem is that all the examples of markup are interpreted by
the browser as markup and disappear from the rendered document. For example, if
I were writing about the pre element in HTML, I might write something like this:

<p>
HTML normally answers the question of whether white space is
significant or not by predefining the meaning of white space
in particular elements. For instance, white space is
significant inside <code><pre></code> and <code></pre></code>
tags. It’s not significant almost everywhere else. This means
that if you want to preserve line breaks without using a
monospaced font, you need to insert a lot of <code>
</code>
tags as in this first stanza from William Blake’s poem
<cite>The Tyger</cite>:
</p>
<pre><code><p>
Tyger! Tyger! burning bright<br class=”empty”/>
In the forests of the night<br class=”empty”/>
What immortal hand or eye<br class=”empty”/>
Could frame thy fearful symmetry?<br class=”empty”/>
</p></code></pre>

Of course, when this was displayed in a browser, you’d see something like this:

HTML normally answers the question of whether white space is significant or
not by predefining the meaning of white space in particular elements. For
instance, white space is significant inside and tags. It’s not significant almost
everywhere else. This means that if you want to preserve line breaks without
using a monospaced font, you need to insert a lot of tags, as in this first stanza
from William Blake’s poem The Tyger:

Tyger! Tyger! burning bright

In the forests of the night

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 783

784 Part V ✦ XML Applications

What immortal hand or eye

Could frame thy fearful symmetry?

This is not what you wanted at all! Of course, you know the solution. I should have
escaped all the less than signs from the markup I wanted to appear in the rendered
document using entity references such as <, and if there were any raw amper-
sands in this sample, they’d need to be escaped too. The result looks like this:

<p>
HTML normally answers the question of whether white space is
significant or not by predefining the meaning of white space
in particular elements. For instance, white space is
significant inside <code><pre></code> and
<code></pre></code> tags. It’s not significant almost
everywhere else. This means that if you want to preserve line
breaks without using a monospaced font, you need to insert a
lot of <code>
</code> tags as in this first stanza from
William Blake’s poem <cite>The Tyger</cite>:
</p>
<pre><code><p>
Tyger! Tyger! burning bright<br class=”empty”/>
In the forests of the night<br class=”empty”/>
What immortal hand or eye<br class=”empty”/>
Could frame thy fearful symmetry?<br class=”empty”/>
</p></code></pre>

While adequate for occasional illegal characters, this is very tedious to do for large
examples. XML, by contrast, offers a very neat solution: Just wrap the entire exam-
ple in a CDATA section and then use the markup as you normally would. You can
still use < and & for the smaller pieces where the example markup is
intermingled with real markup, as in the following example:

<p>
HTML normally answers the question of whether white space is
significant or not by predefining the meaning of white space
in particular elements. For instance, white space is
significant inside <code><pre></code> and <code></pre></code>
tags. It’s not significant almost everywhere else. This means
that if you want to preserve line breaks without using a
monospaced font, you need to insert a lot of <code>
</code>
tags as in this first stanza from William Blake’s poem
<cite>The Tyger</cite>:
</p>
<pre><code><![CDATA[<p>
Tyger! Tyger! burning bright<br class=”empty”/>
In the forests of the night<br class=”empty”/>
What immortal hand or eye<br class=”empty”/>
Could frame thy fearful symmetry?<br class=”empty”/>
</p>]]></code></pre>

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 784

785Chapter 21 ✦ XHTML

CDATA sections are discussed in more detail in Chapter 6.

This is much easier to write, much easier to debug, and much easier to read. Most
XML-aware browsers I tested rendered this example correctly, including Mozilla,
Opera 7, and Safari, as shown in Figure 21-10. However, several versions of Internet
Explorer on three different platforms were all incapable of showing the content
inside the CDATA section. CDATA sections are unfortunately still on the wrong side
of the bleeding edge. Once Microsoft gets its act together, however, this will make
writing online tutorials for the next generation of markup languages much easier.

Figure 21-10: Safari recognizes CDATA sections in
XHTML documents.

Summary
In this chapter, you learned the following:

✦ XHTML is a reformulation of HTML as an XML application. Among other
changes, this requires making your HTML documents well-formed.

✦ When converting an existing HTML document into well-formed XML, you have
to make sure all attribute values are quoted, all entity references are declared,
all start-tags have matching end-tags, that there is a single root element, and
that elements do not overlap.

✦ XHTML documents must be valid according to one of three DTDs.

✦ The XHTML transitional DTD allows most standard HTML and XHTML ele-
ments and attributes defined in HTML 4.0 and earlier except for frames.

Cross-
Reference

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 785

786 Part V ✦ XML Applications

✦ The XHTML frameset DTD allows everything the transitional DTD allows, and
adds the elements and attributes needed to work with frames.

✦ The XHTML strict DTD disallows frame elements such as frame, presenta-
tional elements such as center and bgcolor, and deprecated elements such
as applet. The eliminated presentational attributes and elements are
replaced by CSS styles.

✦ When converting an existing HTML document into valid XHTML, you have to
repeatedly use a validation tool to make sure you’re only using allowed ele-
ments and attributes and only in the ways the DTD allows them to be used.

✦ Dave Raggett’s HTML Tidy is a very useful tool for automating the grunt work
involved in converting existing HTML documents to XHTML; but you’ll proba-
bly need to do some work by hand when Tidy is through with a document.

✦ XHTML lets you use character references in your web pages, though the
browser still needs a font it can use to draw those characters.

✦ XHTML lets you define entity references in the DTD to use in your web pages,
but current browsers often don’t recognize these.

✦ XML parsers determine the character set from an encoding declaration. HTML
parsers determine the character set from the charset parameter of the
Content-type field of an HTTP header. XHTML documents use the encoding
declaration, but only if the browser specifically knows about XHTML.

✦ XML’s xml:lang attribute and HTML’s lang attribute should both be used to
identify the language of an element.

✦ Theoretically, XHTML allows you to use CDATA sections in your web pages,
but Internet Explorer 6.0 and later can’t handle this.

This chapter described XHTML 1.0. Chapter 22 takes up Modular XHTML and
XHTML 1.1. While the basic vocabulary is the same between XHTML 1.0 and 1.1,
Modular XHTML divides the XHTML DTD into many separate parts that can be
mixed and matched with other applications, such as MathML and SVG, to create
unique combinations of functionality. Different profiles of XHTML offer different
combinations of functionality suitable for different needs.

✦ ✦ ✦

27 549863 Ch21.qxd 1/28/04 9:51 AM Page 786

Modular XHTML

XHTML 1.0 is still, by and large, HTML. The syntax has
changed a little, but the same elements and attributes

are present, and they mean essentially the same things in
XHTML that they mean in HTML 4.0. You can do pretty much
the same things with XHTML 1.0 that you’re already doing
with HTML. Officially, the acronym XHTML stands for
Extensible Hypertext Markup Language, but in truth its extensi-
bility is limited. You get to pick the transitional, strict, or
frameset DTDs, but that’s the limit of your freedom. You can’t
mix in Scalable Vector Graphics (SVG) or MathML or take out
tables without violating the DTDs, and thus producing invalid
XHTML.

XHTML 1.1, by contrast, is much more practically extensible.
It is divided into abstract modules, each covering a specific
area of functionality, such as tables, forms, images, structure,
and text. The individual modules are instantiated as particular
DTD or schema components. The DTD components are con-
nected by parameter entity references. By overriding particu-
lar parameter entity references, you can pick and choose
which modules you want to include in your own applications.
Furthermore, you can mix in DTD modules from other XML
applications such as SVG or the Resource Directory
Description Language (RDDL). As well as the full XHTML 1.1
profile, the W3C has published a stripped-down version called
XHTML Basic and duded-up versions that add Synchronized
Multimedia Integration Language (SMIL) and MathML.
Alternately, you can embed XHTML or particular parts of it
into your own XML applications.

The Modules of XHTML
Modular XHTML does not define any new elements or
attributes not already present in HTML 4.0 and XHTML 1.0.
However, it does organize all the elements and attributes of
standard HTML into 28 modules, each of which defines a dif-
ferent subset of the elements and attributes used in XHTML.
Most of these subsets are disjoint, though there are a few
places where they overlap. Table 22-1 lists the 28 modules and
specifies which elements each declares.

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The modules
of XHTML

A sample
DTD module

The framework

The driver DTD

The document model

A sample schema
module

✦ ✦ ✦ ✦

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 787

788 Part V ✦ XML Applications

Table 22-1
XHTML Modules

Module Purpose Defines

Structure Organization of the XML body, head, html, and title
document

Text Basic text markup abbr, acronym, address,
blockquote, br, cite, code,
dfn, div, em, h1, h2, h3, h4, h5, h6,
kbd, p, pre, q, samp, span, strong,
and var

Hypertext Linking The a element and its unique
attributes: accesskey, charset,
href, hreflang, rel, rev,
tabindex, and type

List Three different kinds of lists dl, dt, dd, ul, ol, and li.

Applet Java applets The applet and param elements,
as well as their unique attributes

Presentation Elements that are solely b, big, hr, i, small, sub, sup,
about appearance rather and tt
than meaning

Edit Revision tracking del and ins, as well as their unique
attributes, cite and datetime

Bi-directional Text Elements used to indicate The bdo element and its dir
a shift from left-to-right to attribute
right-to-left text and vice
versa

Basic Forms Forms as defined in form, input, label, select,
HTML 3.2 and earlier option, and textarea elements

Forms Forms as defined in form, input, label, select,
HTML 4.0 and later option, textarea, button,

fieldset, label, legend, and
optgroup

Basic Tables A limited group of table table, td, th, tr, and caption
elements

Tables All the table elements table, td, th, tr, col, colgroup,
tbody, thead, tfoot, and
caption

Image Images The img element and its unique
attributes alt, width, height,
longdesc, and src

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 788

789Chapter 22 ✦ Modular XHTML

Module Purpose Defines

Client-Side Image maps resolved by area and map; also adds some
Image Map the client attributes to the a, img, input, and

object elements to support their
use in image maps

Server-Side Image maps interpreted by The ismap attribute of the img and
Image Map the server input elements

Object Embedded non-HTML object and param
content like Flash pictures
and Shockwave animations

Frames Frame-related elements frame, frameset, and noframes
and attributes

Iframe Internal frames iframe

Target Which frame to load a The target attribute of the a, area,
selection in base, link, and form elements

Intrinsic Events JavaScript event handlers onblur, onfocus, onload,
onunload, onreset, onsubmit,
onchange, and onselect attributes

Scripting Scripts The script and noscript
elements

Meta-information Information about the The meta element along with its
document content, http-equiv, name, and

scheme attributes

Style Sheet Elements used for CSS styles The style element and its media,
title, and type attributes

Style Attribute Attributes used for CSS styles The style attribute

Link Related resources The link element used in HTML
headers, along with its charset,
href, hreflang, media, rel, rev,
and type attributes

Base Used to identify the URL The base element and its href
against which relative URLs attribute
in the document should
be resolved

Name Identification Intradocument linking The deprecated name attribute of the
a, applet, form, frame, iframe,
img and map elements

Legacy Very deprecated basefont, center, dir, font,
presentational elements isindex, menu, s, strike, and u,
and attributes you really as well as deprecated presentational
don’t need to use in 2004 attributes like bgcolor and align

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 789

790 Part V ✦ XML Applications

Within some limits you can use these modules independently of each other and
pick and choose those you want. For example, if you just want to add simple lists to
an application, you only have to load the list module, the modules that define what
a list item can contain (mostly the text module), and the framework modules on
which all the other XHTML modules depend. (I’ll get to these shortly.) However,
you don’t have to use tables, frames, applets, and all the other complicated parts
of HTML if you don’t need them.

Some modules are used in almost all variations of XHTML. For example, the struc-
ture, text, hypertext, and list modules are the core on which XHTML documents are
built. To some extent they correspond to the functionality that’s been present since
HTML 1.0. Other modules are used quite rarely. For instance, the legacy module
declares deprecated elements such as font, center, and dir that you shouldn’t
use in new documents but might need to validate in older ones. In a few cases, mod-
ules are alternatives to each other. For example, you can choose either the Basic
Tables module, which includes only the table, caption, th, td, and tr elements,
or the full tables module, which includes col, colgroup, tbody, thead, and tfoot
as well. However, you wouldn’t choose both.

For the most part, however, standard HTML pages require most of the modules. It’s
when you begin mixing XHTML into your own XML applications that you can take
advantage of smaller subsets of functionality. For example, in a collection of movie
reviews, each review might contain elements for the title of the movie, the year, the
actors in the movie, and so forth. However, because the review itself is a more or
less free-form narrative text with no particular structure, each review could also
contain a description element that contained XHTML. If you wanted only simple
reviews you might choose to leave out the forms and tables and applet modules,
and indeed omit everything except the core modules.

A Sample DTD Module
Listing 22-1 shows the List module, one of the four core modules required for
a minimal implementation of XHTML. This defines the definition, unordered and
ordered lists represented by the dl, dt, dd, ul, ol, and li elements. You can
download this and the other XHTML modules from http://www.w3.org/TR/
xhtml-modularization/. They’re bundled with the zip version of the XHTML
modularization specification.

Like all modules in XHTML, it has a standard public identifier, -//W3C//ELEMENTS
XHTML Lists 1.0//EN. It also has a suggested system identifier, http://www.
w3.org/TR/xhtml-modularization/DTD/xhtml-list-1.mod. However, this can
be changed if you want to point to a different copy of the DTD in a different loca-
tion; for example, if you wanted to store a copy on your local hard drive rather than
relying on the official version at the W3C Web site.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 790

791Chapter 22 ✦ Modular XHTML

Listing 22-1: xhtml-list-1.mod: The List Module DTD

<!-- .. -->
<!-- XHTML Lists Module -->
<!-- file: xhtml-list-1.mod

This is XHTML, a reformulation of HTML as a modular XML application.
Copyright 1998-2001 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: xhtml-list-1.mod,v 4.0 2001/04/02 22:42:49 altheim Exp $ SMI

This DTD module is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML Lists 1.0//EN”
SYSTEM “http://www.w3.org/TR/xhtml-modularization/DTD/xhtml-list-1.mod”

Revisions:
(none)
.. -->

<!-- Lists

dl, dt, dd, ol, ul, li

This module declares the list-oriented element types
and their attributes.

-->

<!ENTITY % dl.qname “dl” >
<!ENTITY % dt.qname “dt” >
<!ENTITY % dd.qname “dd” >
<!ENTITY % ol.qname “ol” >
<!ENTITY % ul.qname “ul” >
<!ENTITY % li.qname “li” >

<!-- dl: Definition List -->

<!ENTITY % dl.element “INCLUDE” >
<![%dl.element;[
<!ENTITY % dl.content “(%dt.qname; | %dd.qname;)+” >
<!ELEMENT %dl.qname; %dl.content; >
<!-- end of dl.element -->]]>

<!ENTITY % dl.attlist “INCLUDE” >
<![%dl.attlist;[
<!ATTLIST %dl.qname;

%Common.attrib;
>
<!-- end of dl.attlist -->]]>

<!-- dt: Definition Term -->

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 791

792 Part V ✦ XML Applications

Listing 22-1 (continued)

<!ENTITY % dt.element “INCLUDE” >
<![%dt.element;[
<!ENTITY % dt.content

“(#PCDATA | %Inline.mix;)*”
>
<!ELEMENT %dt.qname; %dt.content; >
<!-- end of dt.element -->]]>

<!ENTITY % dt.attlist “INCLUDE” >
<![%dt.attlist;[
<!ATTLIST %dt.qname;

%Common.attrib;
>
<!-- end of dt.attlist -->]]>

<!-- dd: Definition Description -->

<!ENTITY % dd.element “INCLUDE” >
<![%dd.element;[
<!ENTITY % dd.content

“(#PCDATA | %Flow.mix;)*”
>
<!ELEMENT %dd.qname; %dd.content; >
<!-- end of dd.element -->]]>

<!ENTITY % dd.attlist “INCLUDE” >
<![%dd.attlist;[
<!ATTLIST %dd.qname;

%Common.attrib;
>
<!-- end of dd.attlist -->]]>

<!-- ol: Ordered List (numbered styles) -->

<!ENTITY % ol.element “INCLUDE” >
<![%ol.element;[
<!ENTITY % ol.content “(%li.qname;)+” >
<!ELEMENT %ol.qname; %ol.content; >
<!-- end of ol.element -->]]>

<!ENTITY % ol.attlist “INCLUDE” >
<![%ol.attlist;[
<!ATTLIST %ol.qname;

%Common.attrib;
>
<!-- end of ol.attlist -->]]>

<!-- ul: Unordered List (bullet styles) -->

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 792

793Chapter 22 ✦ Modular XHTML

<!ENTITY % ul.element “INCLUDE” >
<![%ul.element;[
<!ENTITY % ul.content “(%li.qname;)+” >
<!ELEMENT %ul.qname; %ul.content; >
<!-- end of ul.element -->]]>

<!ENTITY % ul.attlist “INCLUDE” >
<![%ul.attlist;[
<!ATTLIST %ul.qname;

%Common.attrib;
>
<!-- end of ul.attlist -->]]>

<!-- li: List Item -->

<!ENTITY % li.element “INCLUDE” >
<![%li.element;[
<!ENTITY % li.content

“(#PCDATA | %Flow.mix;)*”
>
<!ELEMENT %li.qname; %li.content; >
<!-- end of li.element -->]]>

<!ENTITY % li.attlist “INCLUDE” >
<![%li.attlist;[
<!ATTLIST %li.qname;

%Common.attrib;
>
<!-- end of li.attlist -->]]>

<!-- end of xhtml-list-1.mod -->

Entity references are used throughout the module for element and attribute names,
for content models, and for conditional section markers that allow you to turn par-
ticular declarations on or off. This is a common pattern in modular DTDs that
allows a great deal of customizability. The key idea is that entity declarations can
be overridden by an earlier declaration, especially one in the internal DTD subset
of document.

Element names
The names of the elements are all defined by parameter entities that follow the pat-
tern elementName.qname. Thus, the name of the dl element is defined by the
parameter entity reference %dl.qname;. The name of the dt element is defined by
the parameter entity reference %dt.qname;. The name of the dd element is defined
by the parameter entity reference %dd.qname;, and so on. Suppose for some reason

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 793

794 Part V ✦ XML Applications

you wanted to change these to uppercase. To do this, you’d place the following dec-
larations in your internal DTD subset:

<!ENTITY % dl.qname “DL” >
<!ENTITY % dt.qname “DT” >
<!ENTITY % dd.qname “DD” >
<!ENTITY % ol.qname “OL” >
<!ENTITY % ul.qname “UL” >
<!ENTITY % li.qname “LI” >

Because other modules also use these parameter entity references to define the
content models of elements that can contain lists, these changes also change the
definitions used in the other modules. Thus, all the elements that contain lists are
redefined to contain DL, UL, and OL elements instead of dl, ol, and ul elements. In
fact, direct element names are used almost nowhere. This indirection through
parameter entity references is used throughout the modular XHTML DTDs.

Element-specific content models
Content models are also defined by parameter entity references. It is easy enough
to say that a dl element must contain matched dt dd pairs, or that a %dl.qname;
element must contain matched %dt.qname; %dd.qname; pairs. Instead, however, a
dl.content parameter entity is first defined liked this:

<!ENTITY % dl.content “(%dt.qname; | %dd.qname;)+” >

The %dl.content; parameter entity reference is then used to define the dl ele-
ment like this:

<!ELEMENT %dl.qname; %dl.content; >

If for some reason you decide that you want dl elements to contain definition
elements, each of which contains a dt dd pair, rather than having the dl element
contain the dt dd pair directly, you simply define the new definition element and
override the declaration of the dl.content entity, like this:

<!ELEMENT definition “(%dt.qname;, %dd.qname;)” >
<!ENTITY % dl.content “(definition)+” >

Of course, if you do change the name or content models of the dl element, or of
any other element, you should not expect off-the-shelf web browsers to understand
your revised elements.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 794

795Chapter 22 ✦ Modular XHTML

Generic content models
The default content models for dl, ul, and ol elements are defined completely in
terms of other elements defined in Listing 22-1. However, that isn’t true for the ele-
ments they contain: dt, dd, and li. These are defined like this:

<!-- dt: Definition Term -->

<!ENTITY % dt.element “INCLUDE” >
<![%dt.element;[
<!ENTITY % dt.content

“(#PCDATA | %Inline.mix;)*”
>
<!ELEMENT %dt.qname; %dt.content; >
<!-- end of dt.element -->]]>

<!-- dd: Definition Description -->

<!ENTITY % dd.element “INCLUDE” >
<![%dd.element;[
<!ENTITY % dd.content

“(#PCDATA | %Flow.mix;)*”
>
<!ELEMENT %dd.qname; %dd.content; >
<!-- end of dd.element -->]]>

<!-- li: List Item -->

<!ENTITY % li.element “INCLUDE” >
<![%li.element;[
<!ENTITY % li.content

“(#PCDATA | %Flow.mix;)*”
>
<!ELEMENT %li.qname; %li.content; >
<!-- end of li.element -->]]>

This can be simplified by resolving the local parameter entity references (assuming
that no previously loaded module is redefining any of these parameter entity refer-
ences), deleting the comments, and including everything that can be included. The
result looks like this:

<!ELEMENT dt (#PCDATA | %Inline.mix;)* >
<!ELEMENT dd (#PCDATA | %Flow.mix;)* >
<!ELEMENT li (#PCDATA | %Flow.mix;)* >

Perhaps surprisingly, there are still three parameter entity references for two differ-
ent parameter entities left: %Inline.mix; and %Flow.mix;. These are not defined
anywhere in Listing 22-1. Instead they must be defined before Listing 22-1 is loaded.
Although you could define them in your own DTDs, they are normally defined in the

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 795

796 Part V ✦ XML Applications

document model module. I will get to this later. In the meantime, what you need to
know is that there are three main parameter entity references used to define com-
mon content models shared among many different types of elements:

✦ Inline.mix— A choice containing all inline elements such as a, abbr,
acronym, br, img, kbd, object, span, em, strong, dfn, cite, code, q, samp,
strong, var, input, select, textarea, and label

✦ Block.mix— A choice containing all block-level elements such as p, div, h1,
h2, h3, h4, h5, h6, ul, ol, dl, table, form, pre, blockquote, and address

✦ Flow.mix— A choice containing all of the preceding inline and block-level
elements

Generic attribute models
The document model also defines a number of common attribute sets that can be
applied to most elements. For example, the li element is declared to possess the
common attributes:

<!ATTLIST %li.qname;
%Common.attrib;

>

Common.attrib is a parameter entity defined in another part of the framework, the
common attributes module, xhtml-attribs-1.mod. I discuss it in Table 22-5. For
now, what you need to know is that %Common.attrib; has the necessary replace-
ment text so that the id, class, title, and other attributes that apply to almost
all HTML elements get applied to this element.

INCLUDE and IGNORE blocks
Another use of parameter entity references is to remove particular elements from
content models. For example, let’s suppose you just don’t like definition lists and
want to forbid the dl, dt, and dd elements completely. All the declarations for these
elements and their attributes are enclosed in blocks like these:

<!ENTITY % dl.element “INCLUDE” >
<![%dl.element;[
<!ENTITY % dl.content “(%dt.qname; | %dd.qname;)+” >
<!ELEMENT %dl.qname; %dl.content; >
<!-- end of dl.element -->]]>

<!ENTITY % dl.attlist “INCLUDE” >
<![%dl.attlist;[
<!ATTLIST %dl.qname;

%Common.attrib;
>
<!-- end of dl.attlist -->]]>

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 796

797Chapter 22 ✦ Modular XHTML

Normally, %dl.element; and %dl.attlist; have the replacement text INCLUDE.
Consequently, the preceding fragment resolves to this, and the dl element is
included:

<![INCLUDE[
<!ENTITY % dl.content “(%dt.qname; | %dd.qname;)+” >
<!ELEMENT %dl.qname; %dl.content; >
<!-- end of dl.element -->]]>

<![INCLUDE[
<!ATTLIST %dl.qname;

%Common.attrib;
>
<!-- end of dl.attlist -->]]>

However, if you redefine dl.element and dl.attlist to IGNORE, those declara-
tions are omitted, and the dl element is effectively forbidden. The same trick can
be used for any element and attribute in XHTML. For example, to drop out the
blockquote element, define blockquote.element and blockquote.attlist as
IGNORE, like this:

<!ENTITY % blockquote.element “IGNORE” >
<!ENTITY % blockquote.attlist “IGNORE” >

To omit the cite element, define cite.element and cite.attlist as IGNORE, like
this:

<!ENTITY % cite.element “IGNORE” >
<!ENTITY % cite.attlist “IGNORE” >

Actually, because XML permits declarations of attributes for elements that don’t exist,
all you absolutely have to do is redeclare elementName.content as IGNORE.
However, I find it more aesthetically complete to drop both out.

Using XHTML entities in other applications
You can also use the entity references defined here in your own XML applications.
For example, suppose you have a DICTIONARY element that you want to allow to
contain a definition list, but not all the other XHTML elements. You would simply
import the XHTML DTD and then declare your element as possessing a content
model of %dl.qname;, like this:

<!ENTITY % xhtml SYSTEM “xhtml-basic10.dtd”>
%xhtml;
<!ELEMENT DICTIONARY (%dl.qname;)>

Even though you aren’t using the whole of XHTML in your own application, you still
need to import it all because the lists module you are using relies on it.

Note

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 797

798 Part V ✦ XML Applications

Or suppose you want to say that in your definition list the dt and dd elements can
only contain parsed character data, no child elements. Then, before you imported
it, you’d redefine the dt and dd content models as #PCDATA, like this:

<!ENTITY % dt.content “(#PCDATA)”>
<!ENTITY % dd.content “(#PCDATA)”>
<!ENTITY % xhtml SYSTEM “xhtml-basic10.dtd”>
%xhtml;
<!ELEMENT DICTIONARY (%dl.qname;)>

Another useful trick is to declare that one of your elements contains the same con-
tent as one of the standard XHTML elements. For example, suppose your XML
application contains a LIST element, and you want to say that this has the same
content as XHTML’s ul element. Simply import the XHTML DTD and use the
%ul.content; parameter entity reference, like this:

<!ELEMENT LIST %ul.content;>

Depending on context, the most useful parameter entity references are as follows:

✦ %span.content;— For inline elements

✦ %div.content;— For block-level elements that can contain other block-level
elements

✦ %p.content;— For block-level elements that cannot contain other block-
level elements

The Framework
By themselves the 28 modules are incomplete. They rely on a number of parameter
entity references such as %Common.attrib; and %Flow.mix; that must be defined
before the modules can be used. These are defined by a driver DTD. More specifi-
cally, they are defined by other framework modules that the driver DTD imports.

The framework is provided by the XHTML Modular Framework Module, xhtml-
framework-1.mod, shown in Listing 22-2. This module loads the other modules
that lay the foundation for the 28 XHTML modules by defining notations, data
types, namespaces, common attributes, the document model, and character enti-
ties. Until the framework module is loaded, none of the other modules can be used.

The framework module does not declare any elements or attributes itself. It just gath-
ers together all the pieces of the framework and loads them. None of these pieces
declare any elements or attributes either. They all just define entity references that
will be used to actually declare elements and attributes in the 28 modules.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 798

799Chapter 22 ✦ Modular XHTML

Listing 22-2: xhtml-framework-1.mod: The XHTML
Framework Module DTD

<!-- .. -->
<!-- XHTML Modular Framework Module -->
<!-- file: xhtml-framework-1.mod

This is XHTML, a reformulation of HTML as a modular XML application.
Copyright 1998-2001 W3C (MIT, INRIA, Keio), All Rights Reserved.
Revision: $Id: xhtml-framework-1.mod,v 4.0 2001/04/02 22:42:49 altheim Exp

$
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ENTITIES XHTML Modular Framework 1.0//EN”
SYSTEM “http://www.w3.org/TR/xhtml-modularization/DTD/xhtml-framework-1.mod”

Revisions:
(none)
.. -->

<!-- Modular Framework

This required module instantiates the modules needed
to support the XHTML modularization model, including:

+ notations
+ datatypes
+ namespace-qualified names
+ common attributes
+ document model
+ character entities

The Intrinsic Events module is ignored by default but
occurs in this module because it must be instantiated
prior to Attributes but after Datatypes.

-->

<!ENTITY % xhtml-arch.module “IGNORE” >
<![%xhtml-arch.module;[
<!ENTITY % xhtml-arch.mod

PUBLIC “-//W3C//ELEMENTS XHTML Base Architecture 1.0//EN”
“xhtml-arch-1.mod” >

%xhtml-arch.mod;]]>

<!ENTITY % xhtml-notations.module “INCLUDE” >
<![%xhtml-notations.module;[

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 799

800 Part V ✦ XML Applications

Listing 22-2 (continued)

<!ENTITY % xhtml-notations.mod
PUBLIC “-//W3C//NOTATIONS XHTML Notations 1.0//EN”

“xhtml-notations-1.mod” >
%xhtml-notations.mod;]]>

<!ENTITY % xhtml-datatypes.module “INCLUDE” >
<![%xhtml-datatypes.module;[
<!ENTITY % xhtml-datatypes.mod

PUBLIC “-//W3C//ENTITIES XHTML Datatypes 1.0//EN”
“xhtml-datatypes-1.mod” >

%xhtml-datatypes.mod;]]>

<!-- placeholder for XLink support module -->
<!ENTITY % xhtml-xlink.mod “” >
%xhtml-xlink.mod;

<!ENTITY % xhtml-qname.module “INCLUDE” >
<![%xhtml-qname.module;[
<!ENTITY % xhtml-qname.mod

PUBLIC “-//W3C//ENTITIES XHTML Qualified Names 1.0//EN”
“xhtml-qname-1.mod” >

%xhtml-qname.mod;]]>

<!ENTITY % xhtml-events.module “IGNORE” >
<![%xhtml-events.module;[
<!ENTITY % xhtml-events.mod

PUBLIC “-//W3C//ENTITIES XHTML Intrinsic Events 1.0//EN”
“xhtml-events-1.mod” >

%xhtml-events.mod;]]>

<!ENTITY % xhtml-attribs.module “INCLUDE” >
<![%xhtml-attribs.module;[
<!ENTITY % xhtml-attribs.mod

PUBLIC “-//W3C//ENTITIES XHTML Common Attributes 1.0//EN”
“xhtml-attribs-1.mod” >

%xhtml-attribs.mod;]]>

<!-- placeholder for content model redeclarations -->
<!ENTITY % xhtml-model.redecl “” >
%xhtml-model.redecl;

<!ENTITY % xhtml-model.module “INCLUDE” >
<![%xhtml-model.module;[
<!-- instantiate the Document Model module declared in the DTD
driver
-->
%xhtml-model.mod;]]>

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 800

801Chapter 22 ✦ Modular XHTML

<!ENTITY % xhtml-charent.module “INCLUDE” >
<![%xhtml-charent.module;[
<!ENTITY % xhtml-charent.mod

PUBLIC “-//W3C//ENTITIES XHTML Character Entities 1.0//EN”
“xhtml-charent-1.mod” >

%xhtml-charent.mod;]]>

<!-- end of xhtml-framework-1.mod -->

This module potentially loads as many as 10 other modules:

✦ The architecture module is ignored by default, but if xhtml-arch.module is
redefined to INCLUDE, it adds declarations that allow XHTML to become an
architectural forms base architecture.

✦ The notations module declares a number of notations that can be used to
type unparsed entities and element content.

✦ The data types module defines parameter entities that can be used as
aliases for attribute types that would otherwise have type CDATA, NMTOKEN,
or NMTOKENS.

✦ The XLink module doesn’t exist yet, but xhtml-xlink.mod holds its place for
a future addition or extension.

✦ The qualified names module defines the namespace URIs and prefixes used in
XHTML.

✦ The events module declares entities that can be used in attribute declarations
for attributes such as onfocus, onblur, and onclick. It is ignored by default
because the definitions of these events are expected to change in the future as
a result of work on the Document Object Model. However, if xhtml-events.
module is defined as INCLUDE instead, this module is included.

✦ The common attributes module defines entities that can be used in attribute
declarations for attributes shared by many XHTML elements such as id,
xml:lang, and class.

✦ The content model module defines entities such as Inline.mix that can be
used inside element declaration content models for many elements.

✦ The redeclaration module is loaded before the normal content model module.
You define entities here before they get defined in the content model module
to adjust the normal rules of XHTML.

✦ The character entities module defines general entities such as α and
© that can be used in XHTML instance documents.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 801

802 Part V ✦ XML Applications

In 9 of the 10 cases, the framework module defines the location of the module it’s
loading and then loads it. The tenth case is the document model. It merely loads
this from the parameter entity reference %xhtml-model.mod;. However, it does not
define that parameter entity. It assumes that %xhtml-model.mod; has already been
defined in the DTD that loaded the framework module. The framework module itself
depends on the document model. The document model is defined in the driver
DTD. The driver DTD is the one file that is referenced from the instance document’s
DOCTYPE declaration. The driver DTD defines the document model and loads the
framework, which then loads the document model and the individual modules.

The notations framework module
The notations module, xhtml-notations.module, defines a number of XML nota-
tions for unparsed data. For example, this declaration from the notations module
defines a notation for dates and times:

<!-- date and time information. ISO date format -->
<!NOTATION datetime

PUBLIC “-//W3C//NOTATION XHTML Datatype: Datetime//EN” >

Table 22-2 summarizes the notations declared here, but overall this module doesn’t
have a lot of practical impact on HTML documents.

Table 22-2
Notations Declared in Modular XHTML

Name Public Identifier Type

w3c-xml ISO 8879//NOTATION Extensible XML document
Markup Language (XML) 1.0//EN

cdata -//W3C//NOTATION XML 1.0: CDATA//EN XML CDATA

fpi ISO 8879:1986//NOTATION Formal SGML Formal Public
Public Identifier//EN Identifier

pixels -//W3C//NOTATION XHTML Datatype: Integer representing
Pixels//EN length in pixels

length -//W3C//NOTATION XHTML Datatype: nn for pixels or nn% for
Length//EN percentage length

multiLength -//W3C//NOTATION XHTML Datatype: Pixel, percentage, or
MultiLength//EN relative length

linkTypes -//W3C//NOTATION XHTML Datatype: A space-separated list of
LinkTypes//EN link types

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 802

803Chapter 22 ✦ Modular XHTML

Name Public Identifier Type

mediaDesc -//W3C//NOTATION XHTML Datatype: Single or comma-
MediaDesc//EN separated list of media

descriptors

number -//W3C//NOTATION XHTML Datatype: One or more digits
Number//EN

script -//W3C//NOTATION XHTML Datatype: Script expression
Script//EN

text -//W3C//NOTATION XHTML Datatype: Textual content
Text//EN

character -//W3C//NOTATION XHTML Datatype: A single Unicode
Character//EN character

charset -//W3C//NOTATION XHTML Datatype: A MIME character
Charset//EN encoding

charsets -//W3C//NOTATION XHTML Datatype: A space separated list of
Charsets//EN MIME character

encodings

contentType -//W3C//NOTATION XHTML Datatype: A MIME media type
ContentType//EN

contentTypes -//W3C//NOTATION XHTML Datatype: A comma-separated list
ContentTypes//EN of MIME media types

datetime -//W3C//NOTATION XHTML Datatype: ISO 8601 date and time
Datetime//EN

languageCode -//W3C//NOTATION XHTML Datatype: An RFC 3066 language
LanguageCode//EN code

uri -//W3C//NOTATION XHTML Datatype: A Uniform Resource
URI//EN Identifier (URI)

uris -//W3C//NOTATION XHTML Datatype: A space-separated list of
URIs//EN URIs

Notations are discussed in Chapter 10.Cross-
Reference

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 803

804 Part V ✦ XML Applications

The data types framework module
The data types module defines parameter entity references that can be used as
alternate names for attribute types that would otherwise have type CDATA,
NMTOKEN, or NMTOKENS. For example, this declaration defines a number type:

<!-- one or more digits (NUMBER) -->
<!ENTITY % Number.datatype “CDATA” >

Most XML parsers can’t enforce these types, but they do make the DTD a little
clearer about what kind of data is expected where. Table 22-3 lists the data types
defined in modular XHTML. You’ll notice there’s a considerable amount of overlap
with the notations in Table 22-2. That’s not an accident. These are for attribute
types and those are for unparsed entities, but the basic types are the same.

Table 22-3
Data Types Defined by Modular XHTML

Parameter Entity Reference Required Type XML Type

%Length.datatype; nn for pixels or nn% for percentage length CDATA

%LinkTypes.datatype; A space-separated list of link types NMTOKENS

%MediaDesc.datatype; A comma-separated list of media CDATA
descriptors

%MultiLength.datatype; Pixel, percentage, or relative length CDATA

%Number.datatype; One or more digits CDATA

%Pixels.datatype; An integer representing a length in pixels CDATA

%Script.datatype; A script expression CDATA

%Text.datatype; A Unicode string CDATA

%Character.datatype; A single Unicode character CDATA

%Charset.datatype; A MIME character encoding CDATA

%Charsets.datatype; A space separated list of MIME character CDATA
encodings

%Color.datatype; Color specification using color name CDATA
or sRGB (#RRGGBB) values

%ContentType.datatype; A MIME media type CDATA

%ContentTypes.datatype; A comma-separated list of MIME CDATA
media types

%Datetime.datatype; An ISO 8601 format date and time CDATA

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 804

805Chapter 22 ✦ Modular XHTML

Parameter Entity Reference Required Type XML Type

%FPI.datatype; An ISO 8879 formal public identifier CDATA

%LanguageCode.datatype; An RFC 3066 language code NMTOKEN

%URI.datatype; A Uniform Resource Identifier (URI) CDATA

%URIs.datatype; A space-separated list of URIs CDATA

Schema-aware parsers can enforce these data types, which makes schema-validated
XHTML somewhat stricter and more robust than DTD-validated XML.

The namespace-qualified names module
The namespace-qualified names module, xhtml-qname-1.mod, is divided into two
sections. Section A declares the namespace URIs and prefixes used for XHTML. By
redefining the entities in this part of the module, you can choose which namespace
prefix to use or to use no prefix at all (the default). This is normally done in the
driver DTD, as you’ll see shortly.

Table 22-4 lists the various parameter entity references declared in Section A, their
default values, and their purposes. The two most important entities are %XHTML.
prefixed; and %XHTML.prefix. To use namespace prefixes on all elements, define
%XHTML.prefixed; as INCLUDE and %XHTML.prefix as the prefix you want to use,
such as html.

Table 22-4
Parameter Entities Defined in the Qualified Names Module

Parameter Entity Reference Purpose Default Value

%NS.prefixed; Whether or not to use IGNORE
namespace prefixes, as
inherited from the driver DTD

%XHTML.prefixed; Whether or not to use %NS.prefixed;
namespace prefixes

%XHTML.xmlns; The namespace for all http://www.w3.
XHTML elements org/1999/xhtml

%XHTML.prefix The namespace prefix The empty string
(i.e., no prefix)

%XHTML.pfx; The prefix used when The empty string
prefixing is active (i.e., no prefix)

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 805

806 Part V ✦ XML Applications

Table 22-4 (continued)

Parameter Entity Reference Purpose Default Value

%xhtml-qname-extra.mod; The name of the module from The empty string
which to load additional (no such module is
qualified names loaded)

%XHTML.xmlns.extra. Namespace declaration The empty string (only
attrib; attributes for non-XHTML XHTML elements are

applications that are embedded included)
in XHTML such as MathML
or SVG

%NS.decl.attrib; All namespace declarations xmlns:%XHTML.
used in the DTD, including prefix; %URI.
the namespace declaration datatype; #FIXED
for XHTML ‘%XHTML.xmlns;’

%XHTML.xmlns.
extra.attrib;

%XLINK.xmlns.attrib; A placeholder for future The empty string (XLink
XLink support is not supported yet)

%XHTML.xmlns.attrib; All namespace declarations xmlns %URI.
used in the DTD, including datatype; #FIXED
the namespace declarations ‘%XHTML.xmlns;’
for XHTML and XLink %XLINK.xmlns.

attrib;

% xhtml-qname.redecl; The module from which to The empty string (do
load replacements for the not change the normal
standard qualified names names of XHTML

elements)

Section B of the qualified names module declares the prefixed names for all the dif-
ferent elements used in XHTML. The actual name of each element is the lowercase
name of the element followed by .qname. For example, this section defines the
names of the block structural elements:

<!-- module: xhtml-blkstruct-1.mod -->
<!ENTITY % div.qname “%XHTML.pfx;div” >
<!ENTITY % p.qname “%XHTML.pfx;p” >

There are declarations like this for all the hundred plus standard HTML elements.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 806

807Chapter 22 ✦ Modular XHTML

The common attributes module
The common attributes module, xhtml-attribs-1.mod, declares parameter enti-
ties that represent parts of ATTLIST declarations for attributes that apply to all or
most HTML elements such as id, class, and lang. For example, this is the entity
declaration for the title attribute:

<!ENTITY % title.attrib
“title %Text.datatype; #IMPLIED”

>

These are then grouped into collections of attributes. For example, this is the decla-
ration for the core attributes entity:

<!ENTITY % Core.attrib
“%XHTML.xmlns.attrib;
%id.attrib;
%class.attrib;
%title.attrib;
%Core.extra.attrib;”

>

Finally, all the different collections are grouped into one master collection called
%Common.attrib; that includes all of them. Table 22-5 summarizes the different
parameter entities defined in this module and the attributes they represent.

Table 22-5
Common Attributes and Attribute Groups

Defined in Modular XHTML

Parameter Entity Reference Attributes Included

%id.attrib; id

%class.attrib; class

%title.attrib; title

%Core.extra.attrib;

%Core.attrib; xmlns, id, class, title

%lang.attrib; xml:lang

%dir.attrib; dir

%I18n.attrib; dir, xml:lang

%Common.extra.attrib;

%Events.attrib;

%Common.attrib; xmlns, id, class, title, dir, xml:lang

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 807

808 Part V ✦ XML Applications

This table is not the final word on what attributes belong to which parameter enti-
ties. Many of these can be redefined. For example, three of them, Core.extra.
attrib, Common.extra.attrib, and Events.attrib, are empty by default. They
only exist so that other modules can redefine them.

Furthermore, some of these attributes can be controlled by other parameter enti-
ties that determine whether to INCLUDE or IGNORE a particular set. For example,
the internationalization attributes are controlled by the definition of
%XHTML.bidi;.

<![%XHTML.bidi;[
<!ENTITY % dir.attrib

“dir (ltr | rtl) #IMPLIED”
>

<!ENTITY % I18n.attrib
“%dir.attrib;
%lang.attrib;”

>

]]>
<!ENTITY % I18n.attrib

“%lang.attrib;”
>

If %XHTML.bidi; is set to INCLUDE, I18n.attrib includes the dir attribute. If
%XHTML.bidi; resolves to IGNORE, I18n.attrib includes only the xml:lang
attribute.

The character entity modules
The character entities module, xhtml-charent-1.mod, loads the three entity set
modules that define all of HTML’s standard entities such as © for the copy-
right sign © or Ω for the capital Greek letter omega, Ω. There are three of
these entity sets modules, each containing a different collection of characters:

✦ xhtml-lat1.ent— Characters 160 through 255 of Latin-1, mostly Western
European accented characters and punctuation marks, such as é, ü, £, and ©

✦ xhtml-special.ent— Assorted useful characters and punctuation marks
from outside the Latin-1 set, such as the Euro sign and the em dash

✦ xhtml-symbol.ent— The Greek alphabet and assorted symbols commonly
used for math, such as ∞ and ∫

The filenames of the entity modules are distinguished from the usual modules
because they all end in .ent rather than in .mod.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 808

809Chapter 22 ✦ Modular XHTML

For example, these are the lines from xhtml-symbol.ent that declare the ∞
and ∠ entities:

<!ENTITY infin “∞” ><!-- infinity, U+221E ISOtech -->
<!ENTITY ang “∠” ><!-- angle, U+2220 ISOamso -->

The Driver DTD
The modules discussed so far all provide parts of XHTML, but none of them are
suitable for use as the DTD of an actual XHTML document. None of them can be ref-
erenced from a document type declaration like this:

<!DOCTYPE html SYSTEM “xhtml-framework-1.mod”>

The DTD that puts them all together so that it can be referenced in a document
type declaration is called the driver DTD, and in fact there’s more than one. One of
the advantages of modular XHTML is that you can easily customize a driver DTD to
meet the needs of your own documents. Sometimes this means deleting modules
that you don’t use, such as the table module. At other times it might mean adding
in extra pieces, such as MathML equations, that aren’t part of standard HTML.

Driver DTDs are customized by redefining the parameter entity references that con-
trol particular modules. Each driver DTD is responsible for the following:

✦ Deciding whether to use namespace prefixes or the default namespace by set-
ting the NS.prefixed entity to IGNORE (no prefixes) or INCLUDE (use prefixes).

✦ Specifying what namespace prefix to use by setting the XHTML.prefix entity.

✦ Locating the document model by setting the xhtml-model.mod entity.

✦ Loading all the modules the instance documents will use.

In addition, the driver DTD may choose to predefine some of the entity references
used in the modules to customize the content or attributes of various elements.
Alternately, this can be done in a custom document model module or in a redeclara-
tion module.

For example, Listing 22-3 contains the XHTML Basic driver DTD. This is a simple
DTD suitable for uncomplicated Web pages. It does not use namespace prefixes
(NS.prefixed is set to IGNORE), and thus the XHTML.prefix entity is set to the
empty string. It uses the document model found at the relative URL xhtml-
basic10-model-1.mod. It loads the structural, text, hypertext, list, image, tables,
forms, link, meta-information, base, object, and param element modules, and
ignores the rest.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 809

810 Part V ✦ XML Applications

Listing 22-3: xhtml-basic10.dtd: The XHTML Basic Driver DTD

<!-- XHTML Basic 1.0 DTD -->
<!-- file: xhtml-basic10.dtd -->

<!-- XHTML Basic 1.0 DTD

This is XHTML Basic, a proper subset of XHTML.

The Extensible HyperText Markup Language (XHTML)
Copyright 1998-2000 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML Basic
DTD and its accompanying documentation for any purpose and
without fee is hereby granted in perpetuity, provided that the
above copyright notice and this paragraph appear in all
copies. The copyright holders make no representation about
the suitability of the DTD for any purpose.

It is provided “as is” without expressed or implied warranty.

Editors: Murray M. Altheim <mailto:altheim@eng.sun.com>
Peter Stark <mailto:Peter.Stark@ecs.ericsson.se>

Revision: $Id: xhtml-basic10.dtd,v 2.13 2000/12/18
12:56:23 mimasa Exp $ SMI

-->
<!-- This is the driver file for version 1.0 of the XHTML Basic

DTD.

This DTD is identified by the PUBLIC and SYSTEM identifiers:

PUBLIC: “-//W3C//DTD XHTML Basic 1.0//EN”
SYSTEM: “http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”
-->
<!ENTITY % XHTML.version “-//W3C//DTD XHTML Basic 1.0//EN” >

<!-- Use this URI to identify the default namespace:

“http://www.w3.org/1999/xhtml”

See the Qualified Names module for information
on the use of namespace prefixes in the DTD.

-->
<!ENTITY % NS.prefixed “IGNORE” >
<!ENTITY % XHTML.prefix “” >

<!-- Reserved for use with the XLink namespace:
-->

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 810

811Chapter 22 ✦ Modular XHTML

<!ENTITY % XLINK.xmlns “” >
<!ENTITY % XLINK.xmlns.attrib “” >

<!-- For example, if you are using XHTML Basic 1.0 directly,
use the FPI in the DOCTYPE declaration, with the xmlns
attribute on the document element to identify the default
namespace:

<?xml version=”1.0”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd” >
<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” >
...
</html>

-->

<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile “” >

<!-- Bidirectional Text features
This feature-test entity is used to declare elements
and attributes used for bidirectional text support.

-->
<!ENTITY % XHTML.bidi “IGNORE” >

<?doc type=”doctype” role=”title” { XHTML Basic 1.0 } ?>

<!-- ::: -->

<!ENTITY % xhtml-events.module “IGNORE” >
<!ENTITY % xhtml-bdo.module “%XHTML.bidi;” >

<!ENTITY % xhtml-model.mod
PUBLIC
“-//W3C//ENTITIES XHTML Basic 1.0 Document Model 1.0//EN”
“xhtml-basic10-model-1.mod” >

<!ENTITY % xhtml-framework.mod
PUBLIC “-//W3C//ENTITIES XHTML Modular Framework 1.0//EN”

“xhtml-framework-1.mod” >
%xhtml-framework.mod;

<!ENTITY % pre.content
“(#PCDATA
| %InlStruct.class;
%InlPhras.class;
%Anchor.class;
%Inline.extra;)*”

>

<!ENTITY % xhtml-text.mod

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 811

812 Part V ✦ XML Applications

Listing 22-3 (continued)

PUBLIC “-//W3C//ELEMENTS XHTML Text 1.0//EN”
“xhtml-text-1.mod” >

%xhtml-text.mod;

<!ENTITY % xhtml-hypertext.mod
PUBLIC “-//W3C//ELEMENTS XHTML Hypertext 1.0//EN”

“xhtml-hypertext-1.mod” >
%xhtml-hypertext.mod;

<!ENTITY % xhtml-list.mod
PUBLIC “-//W3C//ELEMENTS XHTML Lists 1.0//EN”

“xhtml-list-1.mod” >
%xhtml-list.mod;

<!-- ::: -->

<!-- Image Module -->
<!ENTITY % xhtml-image.module “INCLUDE” >
<![%xhtml-image.module;[
<!ENTITY % xhtml-image.mod

PUBLIC “-//W3C//ELEMENTS XHTML Images 1.0//EN”
“xhtml-image-1.mod” >

%xhtml-image.mod;]]>

<!-- Tables Module
... -->
<!ENTITY % xhtml-table.module “INCLUDE” >
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod

PUBLIC “-//W3C//ELEMENTS XHTML Basic Tables 1.0//EN”
“xhtml-basic-table-1.mod” >

%xhtml-table.mod;]]>

<!-- Forms Module -->
<!ENTITY % xhtml-form.module “INCLUDE” >
<![%xhtml-form.module;[
<!ENTITY % xhtml-form.mod

PUBLIC “-//W3C//ELEMENTS XHTML Basic Forms 1.0//EN”
“xhtml-basic-form-1.mod” >

%xhtml-form.mod;]]>

<!-- Link Element Module
.. -->
<!ENTITY % xhtml-link.module “INCLUDE” >
<![%xhtml-link.module;[
<!ENTITY % xhtml-link.mod

PUBLIC “-//W3C//ELEMENTS XHTML Link Element 1.0//EN”
“xhtml-link-1.mod” >

%xhtml-link.mod;]]>

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 812

813Chapter 22 ✦ Modular XHTML

<!-- Document Metainformation Module
............................ -->
<!ENTITY % xhtml-meta.module “INCLUDE” >
<![%xhtml-meta.module;[
<!ENTITY % xhtml-meta.mod

PUBLIC “-//W3C//ELEMENTS XHTML Metainformation 1.0//EN”
“xhtml-meta-1.mod” >

%xhtml-meta.mod;]]>

<!-- Base Element Module
.. -->
<!ENTITY % xhtml-base.module “INCLUDE” >
<![%xhtml-base.module;[
<!ENTITY % xhtml-base.mod

PUBLIC “-//W3C//ELEMENTS XHTML Base Element 1.0//EN”
“xhtml-base-1.mod” >

%xhtml-base.mod;]]>

<!-- Param Element Module
....................................... -->
<!ENTITY % xhtml-param.module “INCLUDE” >
<![%xhtml-param.module;[
<!ENTITY % xhtml-param.mod

PUBLIC “-//W3C//ELEMENTS XHTML Param Element 1.0//EN”
“xhtml-param-1.mod” >

%xhtml-param.mod;]]>

<!-- Embedded Object Module
..................................... -->
<!ENTITY % xhtml-object.module “INCLUDE” >
<![%xhtml-object.module;[
<!ENTITY % xhtml-object.mod

PUBLIC “-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN”
“xhtml-object-1.mod” >

%xhtml-object.mod;]]>

<!ENTITY % xhtml-struct.mod
PUBLIC “-//W3C//ELEMENTS XHTML Document Structure 1.0//EN”

“xhtml-struct-1.mod” >
%xhtml-struct.mod;

<!-- end of XHTML Basic 1.0 DTD -->

However, this is not the only possible DTD for modular XHTML. There are others,
and you can create your own as well. For example, Listing 22-4 is a minimal driver
DTD that does use the namespace prefix html. It refers to the document model
xhtml-minimal-model.mod, and it loads only the framework, structural, and text
modules. It omits links, tables, forms, images, and a lot more. An HTML variant like

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 813

814 Part V ✦ XML Applications

this might be suitable for embedding a little marked-up narrative text inside a
larger, non-HTML application. This is not part of any W3C specification. It’s just
something I created for this book because it seemed useful to me. You’re equally
free to make your own drivers to meet your needs.

Listing 22-4: xhtml-minimal.dtd: A Minimal XHTML Driver DTD

<!-- XHTML Minimal DTD -->
<!-- file: xhtml-minimal.dtd -->

<!-- XHTML Minimal DTD

This is XHTML Minimal, a proper subset of XHTML.

The Extensible HyperText Markup Language (XHTML)
Copyright 1998-2000 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML
Basic DTD and its accompanying documentation for any purpose
and without fee is hereby granted in perpetuity, provided that
the above copyright notice and this paragraph appear in all
copies. The copyright holders make no representation about
the suitability of the DTD for any purpose.

This is an even smaller version of the XHTML Basic DTD
developed by Elliotte Rusty Harold for the XML Bible,
Gold Edition.

It is provided “as is” without expressed or implied warranty.

Editors: Elliotte Harold <mailto:elharo@metalab.unc.edu>
Revision: 2001/05/14

-->
<!ENTITY % NS.prefixed “INCLUDE” >
<!ENTITY % XHTML.prefix “html” >

<!-- Reserved for use with the XLink namespace:
-->
<!ENTITY % XLINK.xmlns “” >
<!ENTITY % XLINK.xmlns.attrib “” >

<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile “” >

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 814

815Chapter 22 ✦ Modular XHTML

<!-- Bidirectional Text features
This feature-test entity is used to declare elements
and attributes used for bidirectional text support.

-->
<!ENTITY % XHTML.bidi “IGNORE” >

<!-- ::: -->

<!ENTITY % xhtml-events.module “IGNORE” >
<!ENTITY % xhtml-bdo.module “%XHTML.bidi;” >

<!ENTITY % xhtml-model.mod
PUBLIC
“-//ERH//ENTITIES XHTML Minimal Document Model 1.0//EN”
“xhtml-minimal-model.mod” >

<!ENTITY % xhtml-framework.mod
PUBLIC “-//W3C//ENTITIES XHTML Modular Framework 1.0//EN”

“xhtml-framework-1.mod” >
%xhtml-framework.mod;

<!ENTITY % xhtml-text.mod
PUBLIC “-//W3C//ELEMENTS XHTML Text 1.0//EN”

“xhtml-text-1.mod” >
%xhtml-text.mod;

<!ENTITY % xhtml-struct.mod
PUBLIC “-//W3C//ELEMENTS XHTML Document Structure 1.0//EN”

“xhtml-struct-1.mod” >
%xhtml-struct.mod;

<!-- end of XHTML Minimal 1.0 DTD -->

You can also add things to the driver DTD. For example, if you wanted to add
MathML to XHTML Basic, you could simply put this at the end of the normal
XHTML Basic DTD:

<!ENTITY % mathml.dtd
PUBLIC “-//W3C//DTD MathML 2.0//EN”

“http://www.w3.org/TR/MathML2/dtd/mathml2.dtd” >
%mathml.dtd;

However, you’d also have to change the document model to enable MathML math
elements to appear where you wanted them. I take this up in the next section.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 815

816 Part V ✦ XML Applications

The Document Model
In XHTML, the document model is primarily responsible for defining the permissi-
ble contents of elements. It accomplishes this by defining three parameter entity
references:

✦ %Block.mix;

✦ %Flow.mix;

✦ %Inline.mix;

Many XHTML elements have content models specified almost completely by one
of these content models. For example, the inline code element defined in the text
module declares its content model like this:

<!ENTITY % code.element “INCLUDE” >
<![%code.element;[
<!ENTITY % code.content

“(#PCDATA | %Inline.mix;)*”
>
<!ENTITY % code.qname “code” >
<!ELEMENT %code.qname; %code.content; >
<!-- end of code.element -->]]>

When most of the entities and INCLUDE blocks are resolved, what’s left is this:

<!ELEMENT code (#PCDATA | %Inline.mix;)* >

In fact, more than a dozen elements use exactly this content model. The innards of
a code element are pretty much the same as the innards of an em element, a strong
element, a kbd element, and more.

This isn’t true of all elements, though. Some elements have unique content models.
For example, a table can only contain caption, col, colgroup, thead, tbody, tr,
and tfoot elements. Because this content model is unique to tables, it is defined
completely within the tables module, like this:

<!ENTITY % table.element “INCLUDE” >
<![%table.element;[
<!ENTITY % table.content

“(%caption.qname;?, (%col.qname;* | %colgroup.qname;*),
((%thead.qname;?, %tfoot.qname;?, %tbody.qname;+) |
(%tr.qname;+)))”

>
<!ELEMENT %table.qname; %table.content; >
<!-- end of table.element -->]]>

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 816

817Chapter 22 ✦ Modular XHTML

It is still written using parameter entity references, and these could be predefined in
the document model. However, that would be rare. Most of the time, only the cross-
module parameter entity references like %Block.mix; are predefined in the docu-
ment model.

The td element, by contrast, can contain almost any nonstructural HTML element,
and thus its content model is specified using the common content model
%Flow.mix; like this:

<!ENTITY % td.element “INCLUDE” >
<![%td.element;[
<!ENTITY % td.content

“(#PCDATA | %Flow.mix;)*”
>
<!ELEMENT %td.qname; %td.content; >
<!-- end of td.element -->]]>

The XHTML Basic document model
Listing 22-5 shows the XHTML Basic document model module, xhtml-basic10-
model-1.mod. This is a straightforward and simple model that supports most of the
nondeprecated features of HTML.

Listing 22-5: xhtml-basic10-model-1.mod: The XHTML Basic
Document Model DTD

<!-- .. -->
<!-- XHTML Basic 1.0 Document Model Module
.................................... -->
<!-- file: xhtml-basic10-model-1.mod

This is XHTML Basic, a proper subset of XHTML.
Copyright 1998-2000 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: $Id: xhtml-basic10-model-1.mod,v 2.8 2000/11/03
14:28:25 mimasa Exp $ SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC
“-//W3C//ENTITIES XHTML Basic 1.0 Document Model 1.0//EN”

SYSTEM
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10-model-1.mod”

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 817

818 Part V ✦ XML Applications

Listing 22-5 (continued)

Revisions:
(none)
... -->

<!-- XHTML Basic Document Model

This module describes the groupings of elements that make
up common content models for XHTML elements.

-->

<!-- Optional Elements in head -->

<!ENTITY % HeadOpts.mix
“(%meta.qname; | %link.qname; | %object.qname;)*” >

<!-- Miscellaneous Elements -->

<!ENTITY % Misc.class “” >

<!-- Inline Elements -->

<!ENTITY % InlStruct.class “%br.qname; | %span.qname;” >

<!ENTITY % InlPhras.class
“| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;
| %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
| %abbr.qname; | %acronym.qname; | %q.qname;” >

<!ENTITY % InlPres.class “” >

<!ENTITY % I18n.class “” >

<!ENTITY % Anchor.class “| %a.qname;” >

<!ENTITY % InlSpecial.class “| %img.qname; | %object.qname;” >

<!ENTITY % InlForm.class
“| %input.qname; | %select.qname; | %textarea.qname;
| %label.qname;”

>

<!ENTITY % Inline.extra “” >

<!ENTITY % Inline.class
“%InlStruct.class;
%InlPhras.class;
%Anchor.class;
%InlSpecial.class;
%InlForm.class;
%Inline.extra;”

>

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 818

819Chapter 22 ✦ Modular XHTML

<!ENTITY % InlNoAnchor.class
“%InlStruct.class;
%InlPhras.class;
%InlSpecial.class;
%InlForm.class;
%Inline.extra;”

>

<!ENTITY % InlNoAnchor.mix
“%InlNoAnchor.class;
%Misc.class;”

>

<!ENTITY % Inline.mix
“%Inline.class;
%Misc.class;”

>

<!-- Block Elements -->

<!ENTITY % Heading.class
“%h1.qname; | %h2.qname; | %h3.qname;
| %h4.qname; | %h5.qname; | %h6.qname;”

>
<!ENTITY % List.class “%ul.qname; | %ol.qname; | %dl.qname;”>

<!ENTITY % Table.class “| %table.qname;” >

<!ENTITY % Form.class “| %form.qname;” >

<!ENTITY % BlkStruct.class “%p.qname; | %div.qname;” >

<!ENTITY % BlkPhras.class
“| %pre.qname; | %blockquote.qname; | %address.qname;”

>

<!ENTITY % BlkPres.class “” >

<!ENTITY % BlkSpecial.class
“%Table.class;
%Form.class;”

>

<!ENTITY % Block.extra “” >

<!ENTITY % Block.class
“%BlkStruct.class;
%BlkPhras.class;
%BlkSpecial.class;
%Block.extra;”

>

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 819

820 Part V ✦ XML Applications

Listing 22-5 (continued)

<!ENTITY % Block.mix
“%Heading.class;
| %List.class;
| %Block.class;
%Misc.class;”

>

<!-- All Content Elements -->

<!-- declares all content except tables
-->
<!ENTITY % FlowNoTable.mix

“%Heading.class;
| %List.class;
| %BlkStruct.class;
%BlkPhras.class;
%Form.class;
%Block.extra;
| %Inline.class;
%Misc.class;”

>

<!ENTITY % Flow.mix
“%Heading.class;
| %List.class;
| %Block.class;
| %Inline.class;
%Misc.class;”

>

<!-- end of xhtml-basic10-model-1.mod -->

This module progressively builds larger collections out of smaller pieces. For
example, the Flow.mix entity comprises five other entities: Heading.class,
List.class, Block.class, Inline.class, and Misc.class. Each of these entities
is built from still other pieces. Table 22-6 lists the parameter entities and their cus-
tomary replacement text as given in XHTML Basic, assuming the standard element
names are used without namespace prefixes. You’ll find these same parameter enti-
ties in the document models for XHTML 1.1 and XHTML 1.1 plus MathML. However,
in those cases, the replacement text will be a little larger and contain a few more
elements.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 820

821Chapter 22 ✦ Modular XHTML

Table 22-6
Document Model Parameter Entities Defined in XHTML Basic

Parameter Entity Replacement Text

%HeadOpts.mix; (meta | link | object)*

%Misc.class;

%InlStruct.class; Br | span

%InlPhras.class; | em | strong | dfn | code | samp | kbd |
var | cite | abbr | acronym | q

%InlPres.class;

%I18n.class;

%Anchor.class; | a

%InlSpecial.class; | img | object

%InlForm.class; | input | select | textarea | label

%Inline.extra ;

%Inline.class; br | span | em | strong | dfn | code | samp |
kbd | var | cite | abbr | acronym | q | a |
img | object | input | select | textarea |
label

%InlNoAnchor.class; br | span | em | strong | dfn | code | samp |
kbd | var | cite | abbr | acronym | q | img |
object | input | select | textarea | label

%InlNoAnchor.mix; br | span | em | strong | dfn | code | samp |
kbd | var | cite | abbr | acronym | q | img |
object | input | select | textarea | label

%Inline.mix; br | span | em | strong | dfn | code | samp |
kbd | var | cite | abbr | acronym | q | a |
img | object | input | select | textarea |
label

%Heading.class; h1 | h2 | h3 | h4 | h5 | h6

%List.class; Ul | ol | dl

%Table.class; | table

%Form.class; | form

%BlkStruct.class; p | div

%BlkPhras.class; | pre | blockquote | address

%BlkPres.class;

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 821

822 Part V ✦ XML Applications

Table 22-6 (continued)

Parameter Entity Replacement Text

%BlkSpecial.class; | table | form

%Block.extra;

%Block.class; p | div | pre | blockquote | address |
table | form

%Block.mix; h1 | h2 | h3 | h4 | h5 | h6 | ul | ol | dl |
p | div | pre | blockquote | address | table |
form

%FlowNoTable.mix; h1 | h2 | h3 | h4 | h5 | h6 | ul | ol | dl |
p | div | pre | blockquote | address | form |
br | span | em | strong | dfn | code | samp |
kbd | var | cite | abbr | acronym | q | a |
img | object | input | select | textarea |
label

%Flow.mix; h1 | h2 | h3 | h4 | h5 | h6 | ul | ol | dl |
p | div | pre | blockquote | address | table |
form | br | span | em | strong | dfn | code |
samp | kbd | var | cite | abbr | acronym | q |
a | img | object | input | select | textarea |
label

A number of the entities in Table 22-6 are empty by default. There are two reasons
for this. Some of them, such as %InlPres.class; and %Blockpres.class;, hold
elements XHTML Basic does not allow. For example, InlPres.class represents
inline presentational elements such as i and b. These are included in XHTML 1.1
but not in XHTML Basic. In XHTML 1.1, %InlPres.class; and %Blockpres.
class; are not empty.

The other category of empty parameter entities are the extra entities such as
%Inline.extra; and %Block.extra;. By redefining these, you can add elements
to the content models of many elements. For example, to allow the MathML math
element to appear wherever a block level element can appear, you simply redefine
%Block.extra;, like this:

<!ENTITY % Block.extra “| math” >

Of course, you also have to load the MathML DTD that defines the math element.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 822

823Chapter 22 ✦ Modular XHTML

When you’re mixing XHTML markup into your own applications, you might want to
use these parameter entity references to define the content models for your own
elements. For example, a NOTE element in a PATIENT_RECORD might be allowed to
contain essentially any XHTML block-level elements. In this case, you’d import the
XHTML Basic DTD into your own DTD and then declare the NOTE element, like this:

<!ENTITY % xhtml-basic SYSTEM “xhtml-basic10.dtd”>
%xhtml_basic;
<!ELEMENT NOTE ((%Block.mix;)*)>

Because of interdependencies among the different XHTML modules, it is necessary
to pull in the full XHTML Basic DTD rather than just the document model or the
block-level elements you actually want. Still, the extra elements won’t get in your
way. They’re defined, but they’re not allowed anywhere inside the DTD for the
PATIENT_RECORD.

This is a case in which you might want to use a prefix for the XHTML elements
rather than rely on the default namespace, especially if the NOTE and
PATIENT_RECORD elements themselves use the default namespace. In this case,
you’d just predefine the NS.prefixed and XHTML.prefix entities somewhere in
the patient record DTD before you load the XHTML driver DTD. For example:

<!ENTITY % NS.prefixed “INCLUDE” >
<!ENTITY % XHTML.prefix “html” >
<!ENTITY % xhtml-basic SYSTEM “xhtml-basic10.dtd”>
%xhtml_basic;
<!ELEMENT NOTE ((%Block.mix)*)>

Now all the NOTE elements will contain prefixed HTML. You’ll still need to declare
the XHTML namespace with an xmlns:html attribute on each NOTE element or one
of its ancestors in the PATIENT_RECORD documents. One possibility is to make the
declaration a fixed attribute of the root PATIENT_RECORD element in its DTD, like
this:

<!ATTLIST PATIENT_RECORD
xmlns:html CDATA #FIXED “http://www.w3.org/1999/xhtml”>

A minimal document model
If you define your own subsets of XHTML, you’ll probably need to define your own
document models as well. Listing 22-6 is a minimal XHTML document for use with
the minimal XHTML driver DTD seen previously in Listing 22-4. It’s based on the
XHTML Basic document model module, but it removes forms, tables, images, lists,
and more from the entity references defined here. The end result is a very Spartan
vocabulary.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 823

824 Part V ✦ XML Applications

Listing 22-6: xhtml-minimal-model.mod: A Minimal XHTML
Document Model DTD

<!-- ... -->
<!-- XHTML Minimal Document Model Module -->
<!-- file: xhtml-minimal-model.mod

This is XHTML Minimal, a proper subset of XHTML, derived
from XHTML Basic for the XML Bible Gold Edition.

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC
“-//ERH//ENTITIES XHTML Basic 1.0 Document Model 1.0//EN”
SYSTEM “xhtml-minimal-model.mod”

... -->

<!-- XHTML Minimal Document Model

This module describes the groupings of elements that make
up common content models for XHTML elements.

-->

<!-- Optional Elements in head -->

<!ENTITY % HeadOpts.mix “()*” >

<!-- Miscellaneous Elements -->

<!ENTITY % Misc.class “” >

<!-- Inline Elements -->

<!ENTITY % InlStruct.class “%br.qname; | %span.qname;” >

<!ENTITY % InlPhras.class
“| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;
| %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
| %abbr.qname; | %acronym.qname; | %q.qname;” >

<!ENTITY % InlPres.class “” >

<!ENTITY % I18n.class “” >

<!ENTITY % Anchor.class “” >

<!ENTITY % InlSpecial.class “” >

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 824

825Chapter 22 ✦ Modular XHTML

<!ENTITY % InlForm.class “” >

<!ENTITY % Inline.extra “” >

<!ENTITY % Inline.class
“%InlStruct.class;
%InlPhras.class;
%Anchor.class;
%InlSpecial.class;
%InlForm.class;
%Inline.extra;”

>

<!ENTITY % InlNoAnchor.class
“%InlStruct.class;
%InlPhras.class;
%InlSpecial.class;
%InlForm.class;
%Inline.extra;”

>

<!ENTITY % InlNoAnchor.mix
“%InlNoAnchor.class;
%Misc.class;”

>

<!ENTITY % Inline.mix
“%Inline.class;
%Misc.class;”

>

<!-- Block Elements -->

<!ENTITY % Heading.class
“%h1.qname; | %h2.qname; | %h3.qname;
| %h4.qname; | %h5.qname; | %h6.qname;”

>
<!ENTITY % List.class “” >

<!ENTITY % Table.class “” >

<!ENTITY % Form.class “” >

<!ENTITY % BlkStruct.class “%p.qname; | %div.qname;” >

<!ENTITY % BlkPhras.class
“| %pre.qname; | %blockquote.qname; | %address.qname;”

>

<!ENTITY % BlkPres.class “” >

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 825

826 Part V ✦ XML Applications

Listing 22-6 (continued)

<!ENTITY % BlkSpecial.class
“%Table.class;
%Form.class;”

>

<!ENTITY % Block.extra “” >

<!ENTITY % Block.class
“%BlkStruct.class;
%BlkPhras.class;
%BlkSpecial.class;
%Block.extra;”

>

<!ENTITY % Block.mix
“%Heading.class;
| %List.class;
| %Block.class;
%Misc.class;”

>

<!-- All Content Elements -->

<!-- declares all content except tables
-->
<!ENTITY % FlowNoTable.mix

“%Heading.class;
| %List.class;
| %BlkStruct.class;
%BlkPhras.class;
%Form.class;
%Block.extra;
| %Inline.class;
%Misc.class;”

>

<!ENTITY % Flow.mix
“%Heading.class;
| %List.class;
| %Block.class;
| %Inline.class;
%Misc.class;”

>

<!-- end of xhtml-minimal-model.mod -->

An alternate approach is to keep the normal XHTML Basic document model, but to
add a new module that predefines the various entity references that you want to

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 826

827Chapter 22 ✦ Modular XHTML

change. To do this, you’d point the parameter entity reference %xhtml-model.
redecl; at your module containing the redeclarations, as shown in Listing 22-7.

Listing 22-7: xhtml-minimal-redecl.mod: A Content Model
Redeclaration Module for Minimal XHTML

<!-- ... -->
<!-- XHTML Minimal Redeclarations Module -->
<!-- file: xhtml-minimal-redecl.mod

This is XHTML Minimal, a proper subset of XHTML, derived
from XHTML Basic for the XML Bible Gold Edition.

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC
“-//ERH//ENTITIES XHTML Minimal 1.0 Redeclarations 1.0//EN”
SYSTEM “xhtml-minimal-redecl.mod”

... -->

<!-- XHTML Minimal Document Model

This module describes the groupings of elements that make
up common content models for XHTML elements.

-->

<!-- Optional Elements in head -->

<!ENTITY % HeadOpts.mix “()*” >

<!ENTITY % I18n.class “” >

<!ENTITY % Anchor.class “” >

<!ENTITY % InlSpecial.class “” >

<!ENTITY % InlForm.class “” >

<!-- Block Elements -->

<!ENTITY % List.class “” >

<!ENTITY % Table.class “” >

<!ENTITY % Form.class “” >

<!-- end of xhtml-minimal-redecl.mod -->

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 827

828 Part V ✦ XML Applications

This module is much smaller than the module in Listing 22-6 because it only has to
change a few entity references. In many cases, it can just accept the defaults.

A Sample Schema Module
The schema implementation of XHTML modularization is not nearly as complete as
the DTD implementation, mostly because the W3C XML Schema Language took a lot
longer to finish than was expected. Nonetheless, version 1.0 is now more or less
complete, and work has begun on schema implementations of the various XHTML
modules. Listing 22-8 demonstrates the schema version of the list module, as
defined in the October 3, 2003, second Last Call Working Draft of Modularization of
XHTML in XML Schema.

Listing 22-8: The List Module Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://www.w3.org/1999/xhtml”
xmlns=”http://www.w3.org/1999/xhtml”>

<xs:annotation>
<xs:documentation>
List Module
This is the XML Schema Lists module for XHTML
List Module Elements

* dl, dt, dd, ol, ul, li

This module declares the list-oriented element types
and their attributes.
$Id: xhtml-list-1.xsd,v 1.2 2003/09/20 01:41:37 speruvem
Exp $

</xs:documentation>
<xs:documentation source=”xhtml-copyright-1.xsd”/>
<xs:documentation
source=”http://www.w3.org/TR/2001/REC-xhtml-

modularization-20010410/abstract_modules.html#s_listmodule”/>
</xs:annotation>

<xs:attributeGroup name=”dt.attlist”>
<xs:attributeGroup ref=”Common.attrib”/>

</xs:attributeGroup>
<xs:group name=”dt.content”>
<xs:sequence>
<xs:group ref=”Inline.mix” minOccurs=”0”

maxOccurs=”unbounded”/>
</xs:sequence>

</xs:group>

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 828

829Chapter 22 ✦ Modular XHTML

<xs:complexType name=”dt.type” mixed=”true”>
<xs:group ref=”dt.content”/>
<xs:attributeGroup ref=”dt.attlist”/>

</xs:complexType>

<xs:element name=”dt” type=”dt.type”/>

<xs:attributeGroup name=”dd.attlist”>
<xs:attributeGroup ref=”Common.attrib”/>

</xs:attributeGroup>
<xs:group name=”dd.content”>
<xs:sequence>
<xs:group ref=”Flow.mix” minOccurs=”0”

maxOccurs=”unbounded”/> </xs:sequence>
</xs:group>

<xs:complexType name=”dd.type” mixed=”true”>
<xs:group ref=”dd.content”/>
<xs:attributeGroup ref=”dd.attlist”/>

</xs:complexType>

<xs:element name=”dd” type=”dd.type”/>

<xs:attributeGroup name=”dl.attlist”>
<xs:attributeGroup ref=”Common.attrib”/>

</xs:attributeGroup>

<xs:group name=”dl.content”>
<xs:sequence>
<xs:choice maxOccurs=”unbounded”>
<xs:element ref=”dt”/>
<xs:element ref=”dd”/>

</xs:choice>
</xs:sequence>

</xs:group>

<xs:complexType name=”dl.type”>
<xs:group ref=”dl.content”/>
<xs:attributeGroup ref=”dl.attlist”/>

</xs:complexType>

<xs:element name=”dl” type=”dl.type”/>

<xs:attributeGroup name=”li.attlist”>
<xs:attributeGroup ref=”Common.attrib”/>

</xs:attributeGroup>
<xs:group name=”li.content”>
<xs:sequence>
<xs:group ref=”Flow.mix” minOccurs=”0”

maxOccurs=”unbounded”/>
</xs:sequence> </xs:group>

Continued

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 829

830 Part V ✦ XML Applications

Listing 22-8 (continued)

<xs:complexType name=”li.type” mixed=”true”>
<xs:group ref=”li.content”/>
<xs:attributeGroup ref=”li.attlist”/>

</xs:complexType>

<xs:element name=”li” type=”li.type”/>

<xs:attributeGroup name=”ol.attlist”>
<xs:attributeGroup ref=”Common.attrib”/>

</xs:attributeGroup>

<xs:group name=”ol.content”>
<xs:sequence>
<xs:element ref=”li” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:group>

<xs:complexType name=”ol.type”>
<xs:group ref=”ol.content”/>
<xs:attributeGroup ref=”ol.attlist”/>

</xs:complexType>

<xs:element name=”ol” type=”ol.type”/>

<xs:attributeGroup name=”ul.attlist”>
<xs:attributeGroup ref=”Common.attrib”/>

</xs:attributeGroup>
<xs:group name=”ul.content”>
<xs:sequence>
<xs:element ref=”li” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:group>

<xs:complexType name=”ul.type”>
<xs:group ref=”ul.content”/>
<xs:attributeGroup ref=”ul.attlist”/>

</xs:complexType>

<xs:element name=”ul” type=”ul.type”/>

</xs:schema>

A complete schema implementation of modular XHTML also requires schema ver-
sions of all the underlying framework modules, such as the common attributes
module and the data types module, as well as schemas for the document model.

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 830

831Chapter 22 ✦ Modular XHTML

Instead of a driver DTD, the schema implementation of XHTML 1.1 uses a hub docu-
ment. All of these are currently under development and may be available by the
time you’re reading this. Consult http://www.w3.org/TR/xhtml-m12n-schema
for the latest information.

Summary
In this chapter, you learned about modular XHTML, a W3C Recommendation for
organizing XHTML as a set of semi-independent DTDs that are easy to mix and
match with other XML applications. In particular, you learned the following:

✦ Modular XHTML divides the different parts of HTML into 28 modules, each
defining a related group of elements.

✦ These 28 modules depend on a framework module that defines entities all the
modules use to specify element names, namespace URIs and prefixes, content
models, and attribute types.

✦ A driver module integrates all the different parts of both the framework and
the abstract modules.

✦ A document model module defines the common content models shared
among the different modules.

✦ The abstract modules have concrete implementations as both DTDs and
schemas.

✦ You can use your own driver modules and document model modules to inte-
grate your own XML applications into XHTML or to subsume XHTML into
your own applications.

Chapter 23 investigates an application that’s built on top of XHTML Basic and mod-
ular XHTML — the Resource Directory Description Language (RDDL). RDDL adds a
single resource element to XHTML Basic. The resource element is an XLink that
can locate a resource associated with a particular namespace URI.

✦ ✦ ✦

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 831

28 549863 Ch22.qxd 1/28/04 9:51 AM Page 832

The Resource
Directory
Description
Language

If you’ve read Chapter 11, you know that there isn’t a DTD
or schema at the end of a namespace URI. In fact, there

may well be no page there at all. Even though almost all
namespace URIs are URLs, they do not actually locate any-
thing. Namespace URLs are simply formal identifiers. This has
proven to be completely counterintuitive and has led to many
repetitions of the frequently asked question, “What’s at the
end of a namespace URL?” on xml-dev and other XML mailing
lists and newsgroups.

After answering this question for about the three hundredth
time, Tim Bray and Jonathan Borden decided to turn the prob-
lem on its head. If they couldn’t convince developers that a
namespace URL didn’t actually locate anything, maybe they
should convince document authors to use namespace URLs
that did locate things instead. To this end, they invented a
new XML application for documents located at the end of a
namespace URL. This application is called the Resource
Directory Description Language (RDDL, pronounced “riddle”).
RDDL is a combination of XHTML Basic, XLink, and one new
resource element. A RDDL document lists various docu-
ments that are related to an XML application identified by a
particular namespace URL, including but not limited to
schemas, DTDs, specifications, style sheet, logos, software,
and more. RDDL was carefully designed to be easily viewed in
existing web browsers by humans and to be straightforwardly
machine-readable to enable automated resource lookup by
software.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What does a
namespace URL
locate?

The solution

The resource element

Natures

Purposes

✦ ✦ ✦ ✦

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 833

834 Part V ✦ XML Applications

What Does a Namespace URL Locate?
XSLT 1.0 is identified by the namespace URL http://www.w3.org/1999/XSL/
Transform. After teaching numerous XSLT classes, I’ve learned that as soon as I
introduce this, a student — almost inevitably — asks, “Does this mean I need to be
connected to the Internet to use XSLT?” In other words, does an XSLT processor
actually need to load the page at the URL http://www.w3.org/1999/XSL/
Transform? The short answer to this question is no, the namespace URL is just a
formal identifier that’s built into all XSLT 1.0 processors. An XSLT 1.0 processor
looks for that URL in the style sheets it processes, but it does not at any time con-
nect to www.w3.org.

Nonetheless, it’s quite natural to look at a URL such as http://www.w3.org/1999/
XSL/Transform and expect that there must be something there. Novice developers
routinely type these URLs into their browsers just to see what might be there. For a
long time, when loading http://www.w3.org/1999/XSL/Transform and other
official W3C namespace URLs into their browsers, developers simply got a 404 Not
Found error. Error logs at the W3C were filling up with the failed requests from peo-
ple who typed in namespace URLs to see what they would get. In some cases, DNS
servers were overloaded with attempts to resolve nonexistent hostnames that were
nonetheless used inside namespace URLs. Eventually, the W3C got tired of all the
extra messages these URLs added to their error logs and began putting up pages
similar to the one shown in Figure 23-1.

Figure 23-1: The HTML page at the XSLT namespace URL

However, this page was just a quick hack to avoid unnecessarily confusing develop-
ers. It was never intended as more than that, or as a suggestion that pages like this
should be put at the end of namespace URLs. In fact, the namespaces specification
specifically disavows the notion that a namespace URI can be resolved: “The name-
space name, to serve its intended purpose, should have the characteristics of
uniqueness and persistence. It is not a goal that it be directly usable for retrieval of

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 834

835Chapter 23 ✦ The Resource Directory Description Language

a schema (if any exists).” Nonetheless, many developers expect that they can find
some sort of schema, whether a DTD, a W3C XML Schema Language schema, a
Resource Description Framework (RDF) schema, or some other kind of schema at
the end of a namespace URL.

The reason the inventors of namespaces decided not to require namespace URLs to
be resolved was manyfold. However, it really boils down to the fact that there was
no obvious and unique choice of what to put at the end of a namespace URL. For
instance, they could have required a DTD, but that would have caused problems for
XML applications that used schemas. They could have required a schema or a DTD
and used MIME media types to tell which one was there, but that would have
required parsers to be able to read both DTDs and schemas. More importantly, it
wouldn’t have handled at all well the common case where the document using the
namespace is merely well formed and not valid. For example, all XSLT style sheets
use namespaces, but almost none of them use DTDs.

Another possibility was to put a specification for the XML application at the name-
space URL. However, not all XML applications have formal specifications identifiable
with a URL. For instance, the television listings example used in the early chapters
of this book was developed ad hoc and is not formally documented anywhere.
That’s a perfectly legal use of XML. Another problem with placing specifications at
the namespace URLs is that the specifications often change faster than the name-
space URL does. For example, XSLT 1.0, XSLT 2.0, and a now withdrawn proposal for
XSLT 1.1 all use the same http://www.w3.org/1999/XSL/Transform namespace
URL, even though they have three different specification documents.

Because the W3C couldn’t decide what to place at the end of a namespace URL, they
decided not to require anything to be there. However, they also decided not to for-
bid documents from being there either, or to make any restrictions on what sort of
documents could be there. They deliberately chose not to decide. This allowed spe-
cific XML applications to add additional requirements beyond the minimal set man-
dated by Namespaces in XML. For example, the Resource Description Framework
requires that an RDF schema be found at the end of a namespace URI for an RDF
property.

The Solution
By the time Tim Bray, Jonathan Borden, and the xml-dev mailing list revisited the
problem of what to put at the end of a namespace URL in late 2000, it had become
obvious that the W3C’s nondecision was confusing many developers, and that a
solution was needed. Clearly, putting nothing there wasn’t working, and leaving the
decision about what to put there to individual XML application developers wasn’t
much better.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 835

836 Part V ✦ XML Applications

Bray and Borden attacked the problem using an old programmer’s adage: Every
problem can be solved by adding an additional level of indirection. Instead of
choosing one possible thing to put at a namespace URL, such as a DTD, a schema, a
specification document, or something else, they decided to put a list of pointers to
all different kinds of related resources. For any given namespace URL, a single docu-
ment could provide a pointer to a DTD, a pointer to a schema, a pointer to a specifi-
cation, a pointer to a style sheet, a pointer to software to process the XML, and
more. In fact, it could even have pointers to more than one of each. As this was the
Web, the pointers would be URLs. Because this was XML, the URLs would be
embedded in XLinks. And because the document containing the list would have to
make sense to a human being loading the URL in a traditional, non-XML-aware web
browser, the XLinks would be placed in an XHTML Basic document.

The resource Element
A RDDL document is a well-formed XHTML document with one extra element —
resource. This element may appear anywhere a div element can appear, and it can
contain anything a div element can contain. To distinguish this from XHTML ele-
ments, it is placed in the http://www.rddl.org/ namespace. The prefix rddl is
customary, but as always, this can be changed as long as the URI remains the same.
Naturally, if you actually try to resolve that URL, you’ll see a RDDL document
describing RDDL itself, as shown in Figure 23-2. To a casual user this looks just like
any other Web page, which is the beauty of RDDL. If a developer types a namespace
URL into a web browser location bar to see what’s there, the developer should see
something he or she can read.

Each rddl:resource element identifies one resource that is somehow related to
the XML application denoted by a particular namespace URL. This related resource
can be a DTD, a schema, a style sheet, a specification, software that can read docu-
ments written in that XML vocabulary, or something else. For example, here’s a
typical rddl:resource element for the URL http://www.cafeconleche.org/
namespaces/tv/ that says a DTD for the XML application identified by that name-
space URI can be found at the URL http://ibiblio.org/xml/dtds/tv.dtd:

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://ibiblio.org/xml/dtds/tv.dtd”
xlink:role=

“http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml-dtd”
>
XHTML can go here...

</rddl:resource>

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 836

837Chapter 23 ✦ The Resource Directory Description Language

Figure 23-2: The RDDL document at the RDDL namespace URL

rddl:resource elements are simple XLinks, as indicated by the xlink:type=
”simple” attribute. The xlink:href attribute contains a URL pointing to the loca-
tion of the related resource. The xlink:role attribute contains a URL identifying
exactly what the related resource is. In this case, that URL indicates the specific
MIME media type registered for DTDs by pointing to the official registration page
for the DTD MIME type at the Institute for Information Sciences at the University of
Southern California. XLink requires that the value of an xlink:role attribute con-
tain an absolute URL, not just a simple MIME media type such as application/
xml-dtd. The rddl:resource element does not specify the namespace URL of the
resource that this resource is related to. That’s provided by the URL of the page
containing the rddl:resource element.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 837

838 Part V ✦ XML Applications

The RDDL DTD declares the rddl:resource element like this:

<!ELEMENT rddl:resource (#PCDATA | %Flow.mix;)*>

If you recall the %Flow.mix; parameter entity reference from the last chapter, you
realize that this means a rddl:resource element can contain essentially anything
the HTML body element can contain: block-level elements such as p and div, inline
elements such as span and em, unmarked-up text, or mixed content. Well-written
RDDL documents take advantage of this by putting a full description of the resource
being linked to inside each rddl:resource element, as in the following example:

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://ibiblio.org/xml/dtds/tv.dtd”
xlink:role=

“http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml-dtd” >

<p>
A
Document Type Definition (<abbr>DTD</abbr>)
for television listings is available.
This DTD is developed and described in Chapters 8, 9,
and 10 of the <cite>XML Bible, 3rd Edition</cite>
by Elliotte
Rusty Harold.

</p>

</rddl:resource>

The rest of a RDDL document is just XHTML. Listing 23-1 demonstrates. Notice how
this page is designed to provide a human-readable description of the resource.
Novices who naively type namespace URLs into the location bars of their web
browsers will no longer find themselves staring at 404 Not Found errors.

Listing 23-1: A Simple RDDL Document that Points to the DTD
for the http://www.cafeconleche.org
namespaces/tv/ XML Application

<!DOCTYPE html PUBLIC “-//XML-DEV//DTD XHTML RDDL 1.0//EN”
“http://www.rddl.org/rddl-xhtml.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:rddl=”http://www.rddl.org/”>

<head>
<title>An XML Application for TV Schedules</title>

</head>

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 838

839Chapter 23 ✦ The Resource Directory Description Language

<body>
<h1>An XML Application for TV Schedules</h1>

<div class=”head”>
<p>This Version:

August 21, 2003</p>

<p>Latest Version:
http://www.cafeconleche.org/namespaces/tv/

</p>
<p>Previous Version:

May 5, 2001

</p>
<p>Authors:</p>

Elliotte

Rusty Harold

</div>

<p>
This document describes the an XML application for television
schedules used as an example in the 3rd edition of the <cite>XML Bible</cite> \
by Elliotte Rusty Harold.
</p>

<p>This document has no official standing and has not been
considered or approved by any organization.</p>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://ibiblio.org/xml/dtds/tv.dtd”
xlink:role=

“http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml-dtd”
>

<p>
A Document Type
Definition (<abbr>DTD</abbr>) for TV Schedules is available.
This DTD is developed and described in Chapters 9, 10, and 11 of the
<cite>XML Bible, 3rd Edition</cite>.

</p>

</rddl:resource>

</body>
</html>

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 839

840 Part V ✦ XML Applications

Figure 23-3 shows this document loaded into Netscape Navigator 4. As far as
Netscape knows, this is just an HTML document, and Netscape can display it.
Netscape does not recognize the <rddl:resource> tags or xmlns attributes, so it
ignores them. In all other respects, it treats this as a regular HTML document.

Figure 23-3: Listing 23-1 displayed in an XML-unaware web browser

RDDL documents are free to use any part of XHTML Basic that seems useful, includ-
ing tables, forms, links, and CSS style sheets. The only major things missing are
deprecated presentational elements such as i and b, frames, and bidirectional text.

You can write anything that seems appropriate in the XHTML parts of your docu-
ment. In Listing 23-1, I placed information about the version at the top of the docu-
ment, but if I preferred to put it at the bottom, I could. I can make the document as
long or short as it needs to be. I could even include the complete text of Chapters 4,
5, 8, 9, and 10 if that seemed useful. There are no more limits on a RDDL document
than on any other HTML document. You are free to let your imagination and creativ-
ity run wild.

That having been said, don’t forget the ultimate purpose of a RDDL page. It’s techni-
cal documentation for a specific XML application. It should be clear, concise, and
straightforward. It should not include extraneous fluff or be overdesigned. For the
most part, a simple, top-to-bottom presentation of just the facts is what users will
appreciate most. You’re not trying to win a Webby with this page. You’re just
explaining to curious users what the application is and where they can learn more
about it.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 840

841Chapter 23 ✦ The Resource Directory Description Language

Software that reads the page will ignore the XHTML markup completely. It can
quickly search the page for rddl:resource elements and extract all the informa-
tion it needs from those elements’ start-tags.

Of course, one motivation for RDDL is that there’s often more than one resource
related to any given XML application. Thus, a RDDL document can contain as many
rddl:resource elements as there are related resources. Listing 23-2 adds
rddl:resource elements that point to the CSS style sheets and XSLT style sheets
developed for baseball earlier in this book.

Listing 23-2: A RDDL Document That Locates Multiple Related
Resources for the http://www.cafeconleche.org/
namespaces/tv/ XML Application

<!DOCTYPE html PUBLIC “-//XML-DEV//DTD XHTML RDDL 1.0//EN”
“http://www.rddl.org/rddl-xhtml.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:rddl=”http://www.rddl.org/”>

<head>
<title>An XML Application for TV Schedules</title>

</head>
<body>
<h1>An XML Application for TV Schedules</h1>

<div class=”head”>
<p>This Version:
August
21, 2003</p>
<p>Latest Version:
http://www.cafeconleche.org/namespaces/tv/</p>
<p>Previous Version:
May 5, 2001
</p>
<p>Authors:</p>

Elliotte Rusty Harold

</div>

<p>
This document describes the an XML application for television schedules used
as an example in the 3rd edition of the <cite>XML Bible</cite> by
Elliotte Rusty Harold.
</p>

Continued

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 841

842 Part V ✦ XML Applications

Listing 23-2 (continued)

<p>This document has no official standing and has not been
considered or approved by any organization.</p>

<h2>Document Type Definition</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://ibiblio.org/xml/dtds/tv.dtd”
xlink:role=”http://www.isi.edu/in-notes/iana/assignments/media-

types/application/xml-dtd” >

<p>
A Document Type
Definition (<abbr>DTD</abbr>) for TV Schedules is available.
This DTD is developed and described in Chapters 9, 10, and 11 of the
<cite>XML Bible, 3rd Edition</cite>.

</p>

</rddl:resource>

<h2>CSS Style Sheet</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://ibiblio.org/xml/styles/tvschedule.css”
xlink:role=”http://www.isi.edu/in-notes/iana/assignments/media-types/text/css”

>

<p>
A CSS style sheet
for TV Schedules is available. This style sheet was developed and
described in Chapter 4 of the <cite>XML Bible, 3rd Edition</cite>.

</p>

</rddl:resource>

<h2>XSLT Style Sheet</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://ibiblio.org/xml/styles/baseball.xsl”
xlink:role=

“http://www.isi.edu/in-notes/iana/assignments/media-types/application/xml+xslt”
>

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 842

843Chapter 23 ✦ The Resource Directory Description Language

<p>
An XSLT style sheet for
TV Schedules is also available. This style sheet was developed and
described in Chapter 5 of the <cite>XML Bible, 3rd Edition</cite>.

</p>

</rddl:resource>

</body>
</html>

Natures
In a rddl:resource element, the xlink:role attribute defines the nature of the
related resource. The nature tells you what kind of document you’ll find on the
other end of the xlink:href attribute for that resource. Examples of natures
include CSS style sheets, W3C Schema Language schemas, Schematron schemas,
HTML specification documents, Java applets, and more. RDDL does not place any
limits on what kinds of resources a RDDL document can point to. If it’s useful to
you, you can refer to it from a RDDL document.

However, RDDL does specify that certain URLs identify particular natures. For exam-
ple, the URL http://www.isi.edu/in-notes/iana/assignments/media-types/
application/xml-dtd always means that the nature is an XML DTD. The URL
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict always means that the
nature is strict XHTML 1.0.

Using standard URLs for standard natures allows software to find and apply style
sheets, schemas, DTDs, and other useful resources without human intervention.
For example, suppose a browser reads an XML document using a vocabulary it’s
never seen before, and it doesn’t immediately know how to display it. It needs to
find a style sheet that can display documents using that vocabulary. It sees that the
namespace URL for the document’s root element is http://www.cafeconleche.
org/namespaces/tv/, so it silently loads that URL. (The browser would not show
the page it loaded to the reader in this scenario.) The browser then scans the RDDL
document at http://www.cafeconleche.org/namespaces/ttv/ looking for a
rddl:resource element whose nature indicates that it’s a CSS style sheet.
According to the RDDL specification, this is indicated by the URL http://www.
isi.edu/in-notes/iana/assignments/media-types/text/css, so that’s the
URL the browser looks for. When it finds a rddl:resource with this nature, it loads
the URL in the xlink:href attribute of that element to get the style sheet. It can
then apply the newly found style sheet to the original document.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 843

844 Part V ✦ XML Applications

The same technique can be used anytime a browser or other tool needs to find a
resource that’s somehow related to the current document. By searching for differ-
ent natures, it can locate different kinds of related resources. Well-known natures in
RDDL include the following:

✦ http://www.isi.edu/in-notes/iana/assignments/media-types/
text/css— A CSS style sheet

✦ http://www.isi.edu/in-notes/iana/assignments/media-types/
application/xml-dtd— A document type definition (DTD)

✦ http://www.rddl.org/natures#mailbox— A UNIX mailbox

✦ http://www.isi.edu/in-notes/iana/assignments/media-types/
text/html— An HTML document

✦ http://www.w3.org/TR/html4/— An HTML 4.0 document

✦ http://www.w3.org/TR/html4/strict— An HTML 4 strict document

✦ http://www.w3.org/TR/html4/transitional— An HTML 4 transitional
document

✦ http://www.w3.org/TR/html4/frameset— An HTML 4 frameset document

✦ http://www.w3.org/1999/xhtml— An XHTML document

✦ http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict— An XHTML 1.0
strict document

✦ http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional— An XHTML
1.0 transitional document

✦ http://www.w3.org/2000/01/rdf-schema#— An RDF schema

✦ http://www.ascc.net/xml/schematron— A Schematron schema

✦ http://www.rddl.org/natures#SOCAT— An OASIS Open Catalog

✦ http://www.w3.org/2000/10/XMLSchema— A W3C XML Schema Language
schema

✦ http://www.w3.org/TR/REC-xml.html#dt-chardata— Character data

✦ http://www.w3.org/TR/REC-xml.html#dt-escape— Character data in
which left angle brackets, ampersands, and possibly other characters have
been escaped with general entity or character references such as & and
&

✦ http://www.w3.org/TR/REC-xml.html#dt-unparsed— An unparsed entity

✦ http://www.rddl.org/natures/software#language— Software written in
an unspecified programming language

✦ http://www.rddl.org/natures/software#python— Software written in
Python

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 844

845Chapter 23 ✦ The Resource Directory Description Language

✦ http://www.rddl.org/natures/software#java— Software written in Java

✦ http://www.ietf.org/rfc/rfc2026.txt— An IETF Request for Comments
(RFC)

✦ http://www.iso.ch/— An ISO standard

This is not a definitive list, and these are not the only allowed natures. In the future,
more may be published at http://www.rddl.org/natures/. Most importantly,
you can use any reasonable URL to identify new kinds of natures that you choose
for your own needs. There are some conventional ways to pick these nature URIs,
as demonstrated by the preceding list:

✦ A nature with a standard MIME media type can be identified by a URL to the
official registration for the type at the Internet Assigned Numbers Authority
(IANA) registry at http://www.isi.edu/in-notes/iana/assignments/
media-types/.

✦ A nature that is an XML document written in a standard vocabulary can be
identified by that vocabulary’s namespace URI.

✦ Standard, well-known natures that don’t have namespace URIs or registered
MIME media types can be identified by pointing to a part of a page on the
RDDL site at http://www.rddl.org/.

However, if none of these feel right for your resources, you’re free to identify natures
with some other kind of URL. Just make sure that the URL is actually resolvable.

Natures alone are not enough. For example, you may know that an HTML 4.0 docu-
ment is somehow related to a particular application, but you might not know how.
Is it the specification for the application? A tutorial for the vocabulary? The biogra-
phy of the person who invented it? Something else? Indeed, there may be multiple
related HTML 4.0 resources, one for each of these possibilities. To further expand
on the relationship between the original XML application and the related resource,
you can add a purpose in an xlink:arcrole attribute.

Purposes
There’s often more than one resource of a given nature associated with an XML
application. For example, separate CSS style sheets might be provided for the differ-
ent environments such as aural, Braille, handheld, print, projection, screen, and
television. XHTML 1.0 has one namespace URL but three different DTDs depending
on whether you want to use strict, transitional, or frameset XHTML. XHTML 1.1
adds several more possible variations on the DTD while keeping the namespace
URL the same.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 845

846 Part V ✦ XML Applications

In cases like this, it’s clear that the RDDL document needs to provide more than one
resource for each given nature. The different purposes of these resources with the
same natures can be distinguished by an optional xlink:arcrole attribute. As with
xlink:role, the XLink specification requires that the value of the xlink:arcrole
attribute be a URI.

Once again, the RDDL specification defines a number of URIs for well-known pur-
poses. For example, the URL http://www.rddl.org/purposes#entities would
be used on a document with the nature http://www.isi.edu/in-notes/iana/
assignments/media-types/application/xml-dtd to signify that the purpose
of this DTD is to define entities. Here’s the complete list of well-known purposes
as of October 2003:

✦ http://www.rddl.org/purposes#validation— This resource should be
used for classic XML or SGML DTD validation before the document is parsed.

✦ http://www.rddl.org/purposes#schema-validation— This resource
should be used for validation via some sort of schema after the document is
parsed; the type of schema would normally be identified by the nature.

✦ http://www.rddl.org/purposes#module— A file that is only part of a com-
plete DTD and that is typically used in modularized DTDs such as XHTML 1.1
and SMIL 2.0.

✦ http://www.rddl.org/purposes#schema-module— A module used in a
schema.

✦ http://www.rddl.org/purposes#entities— A DTD fragment containing
only entity definitions such as xhtml-special.ent in modular XHTML.

✦ http://www.rddl.org/purposes#notations— A DTD fragment containing
only notation declarations such as xhtml-notations-1.mod in modular
XHTML.

✦ http://www.rddl.org/purposes/software#xslt-extension— Software
implementing an extension function or element for XSLT.

✦ http://www.rddl.org/purposes/software#software-package— A
grouping of software resources.

✦ http://www.rddl.org/purposes/software#software-project— A col-
lection of resources related to a software package.

✦ http://www.rddl.org/purposes#JAR— A ZIP file with the extension .jar
containing Java classes.

✦ http://www.rddl.org/purposes/software#reference— Documentation
for the resource.

✦ http://www.rddl.org/purposes/software#normative-reference— The
definitive specification of the resource’s syntax and semantics.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 846

847Chapter 23 ✦ The Resource Directory Description Language

✦ http://www.rddl.org/purposes/software#non-normative-reference—
A useful but nonauthoritative description of the resource’s syntax and
semantics.

✦ http://www.rddl.org/purposes#prior-version— Documentation for a
previous version of the resource’s vocabulary; for example, the XHTML 1.0
specification relative to XHTML 1.1.

✦ http://www.rddl.org/purposes#definition— The definition of a term.

✦ http://www.rddl.org/purposes#icon— An image that represents the
resource.

✦ http://www.rddl.org/purposes#directory— Another RDDL document
whose resources should be merged with this document’s resources.

✦ http://www.rddl.org/purposes#alternate— An alternative for a
resource with the same nature as this one.

✦ http://www.rddl.org/purposes#canonicalization— The canonical
form of a resource.

✦ http://www.rddl.org/purposes#target— The namespace that this RDDL
document describes.

Currently, all well-known purpose URLs begin with http://www.rddl.org/
purposes#. However, this may change in the future, and you are allowed to add
to this list to create new purposes that suit your applications.

Summary
In this chapter, you learned about RDDL, the Resource Directory Description
Language. In particular, you learned the following:

✦ RDDL documents are placed at the end of namespace URLs to allow both
human readers and automated software to locate resources associated with
the XML application identified by the namespace URL.

✦ RDDL documents are essentially XHTML Basic documents with one extra ele-
ment —rddl:resource.

✦ The rddl:resource element is a simple XLink. The xlink:href attribute of
each rddl:resource element points to the related resource.

✦ The xlink:role attribute of the rddl:resource element identifies the
nature of the related resource. Natures are identified by well-known URLs.

✦ The xlink:arcrole attribute of the rddl:resource element identifies the
purpose of the related resource. Purposes are also identified by well-known
URLs.

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 847

848 Part V ✦ XML Applications

The next chapter explores a standard XML application from the W3C — Scalable
Vector Graphics (SVG). SVG is a W3C Recommendation for an XML format for line
art. Unlike most XML applications that describe text of some kind or another, or
perhaps numeric data, SVG documents describe pictures. SVG goes a long way
toward proving just how versatile XML really is.

✦ ✦ ✦

29 549863 Ch23.qxd 1/28/04 9:50 AM Page 848

Scalable Vector
Graphics

The world has several well-understood, well-supported,
open formats for photographs, painted art, and other

bitmapped graphics including TIFF, GIF, JPEG, and, most
recently, PNG. These have all achieved broad adoption on the
Web and elsewhere. However, a standard format for line art,
such as flowcharts, blueprints, technical diagrams, and other
sorts of drawings, has been sorely lacking. Scalable Vector
Graphics (SVG) is the first realistic candidate to fill this hole.

SVG is a W3C-endorsed XML application for line art. It defines
elements that represent polygons, rectangles, ellipses, lines,
curves, and more. New shapes can be defined using a simple
path language. Color schemes and patterns can be applied to
shapes through clipping, masking, compositing, fills, and gra-
dients. Furthermore, the shapes on the page can move.
JavaScript can make shapes respond to user input. SVG is a
complete format for detailed descriptions of dynamic vector
graphics. For static graphics, SVG is almost on a par with
Adobe’s EPS (Encapsulated PostScript) format, and consider-
ably more powerful than CGM (Computer Graphics Metafile).
For animated pictures, it’s as powerful as the proprietary SWF
format used by Macromedia Flash.

SVG documents can be embedded in web pages. Browser
plug-ins exist that enable Netscape and Internet Explorer to
display SVG graphics. Eventually, SVG support will be built
directly into browsers so that you can include SVG drawings
in your web pages with no more effort than you expend today
to add a GIF or JPEG picture to a page. However, SVG’s signifi-
cance extends far past the limited domain of Web sites. SVG
will eventually become the standard exchange medium for
drawings produced by all sorts of vector graphics software on
any platform.

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is SVG?

A simple SVG
document

Embedding SVG
pictures in web
pages

Simple shapes

Paths

Text

Bitmapped images

Coordinate systems
and viewports

Grouping shapes

Referencing shapes

Transformations

Linking

Metadata

SVG editors

✦ ✦ ✦ ✦

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 849

850 Part V ✦ XML Applications

At the time of this writing, no software implements the complete SVG 1.0 specifi-
cation. In fact, so far there are only a few standalone programs and browser plug-
ins that can understand SVG documents. None of the major web browsers
(Netscape, IE, Opera, Mozilla) know how to interpret and display an SVG picture
embedded in an HTML page without a plug-in. Amaya has implemented direct
support for SVG, and the Mozilla Project is working on it, though that work has yet
to be merged with the main Mozilla code base.

What Is SVG?
Computer graphics come in two primary formats, bitmapped and vector. A
bitmapped graphic lists the colors of individual pixels in a usually rectangular area.
Examples include the GIF, JPEG, and PNG images used on most web pages. If a
bitmapped graphic is 3 inches by 4 inches and has a resolution of 72 pixels per
inch, it contains 72×3×72 ×4 pixels, that is, 62,208 pixels. If the image is stored in
24-bit color, each pixel occupies 3 bytes, so this image uses 1,492,992 bits, or about
486K of memory. The actual file may use a variety of lossy and nonlossy compres-
sion algorithms to reduce this size somewhat, but bitmapped images still get very
big very quickly. This is why web pages with lots of pictures are so slow to load.

By contrast, a vector graphic does not store several bytes of data for each pixel in
the image. Instead, it stores a list of instructions for drawing the image. These
instructions might say to draw a black line between the upper left corner and the
lower right corner of the page, place a purple circle with a 2-inch radius in the mid-
dle of the page, and draw the text “Delicious, delicious. Oh how boring!” 12 points
high in the Palatino font on top of the circle. As a general rule, the space required
for these instructions is much less than the space required for a bitmapped equiva-
lent. Vector graphics are much smaller and more efficient than bitmapped images.
Vector formats aren’t suitable for all graphics — for example, they don’t work well
for photographs — but they are much better for graphics that were drawn on a
computer by a human being rather than being copied from nature using a camera,
digital or otherwise.

There are many vector graphics formats in the world today, including PICT, EPS,
and CGM; but for historical and political reasons, there really hasn’t been a stan-
dard format everyone could use. PICT files are based on the Macintosh’s native
QuickDraw software and algorithms. They are mostly limited to the Macintosh and
don’t port well to other platforms. EPS documents require a full-blown PostScript
interpreter, which, while potentially cross-platform, is too big a task for a lot of
graphic software vendors. CGM was probably the closest to a vendor-neutral, stan-
dard, vector graphics format, especially in its WebCGM incarnation; but CGM lacks
complex fills, image clipping, image manipulation, detailed color control, and other
high-end features that graphic designers need. Furthermore, CGM is a binary file
format, with all the concurrent disadvantages of binary file formats. In fact, all three
of these formats are so difficult to implement that few web browsers (and none of
the major ones) have included built-in support for them. It seems probable that

Caution

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 850

851Chapter 24 ✦ Scalable Vector Graphics

SVG will be the first successful effort to define a truly open, cross-platform standard
for vector graphics.

SVG is an XML application for describing drawings. SVG elements represent two-
dimensional shapes: rectangles, ovals, circles, triangles, clouds, spirals, trapezoids,
and so forth. Each shape is described as a path formed from a series of lines and
curves. SVG uses elements and attributes to describe the position, size, and outline
of each shape. CSS styles are used to attach colors, fonts, and other details to the
abstract geometric shapes.

XSL also integrates very nicely with SVG. Because SVG documents are well-formed
XML documents, an XSLT processor can convert SVG documents into other SVG
documents or into other XML applications. More commonly, an existing XML docu-
ment can be converted into SVG. For example, a file full of numbers might be con-
verted into a bar graph, a pie chart, or even a bar code. The resulting SVG
document might then be embedded in an XSL Formatting Objects document. SVG
merges very nicely with XSL-FO. XSL-FO can describe the general text-based page
layout, while SVG describes all the graphics.

Most SVG documents are drawn using a GUI and only saved into SVG form.
Consequently, you don’t need to know the detailed syntax of each and every SVG
element and attribute. However, if you know a little, you can sometimes do some
surprising tricks with the SVG file that might prove impossible with a graphical edi-
tor. For example, you can search for all the blue elements and change them to red.
SVG is also a much easier graphics format to generate from programs you write
than binary formats such as TIFF, PICT, or CGM.

Scalability
The S in SVG stands for Scalable. That means a given SVG picture is not tied to a
single resolution or size. The same picture can be expanded or compressed. The
same SVG document can become a very small picture on a Palm Pilot, a medium-
sized picture on a web page, or a very large picture projected on a movie screen. An
SVG picture can even be zoomed in or out at full resolution on the same display.
SVG pictures do not have absolute sizes.

Scalable also means that the same picture can be displayed at different resolutions.
I can print a full-page picture on my HP LaserJet 2200, and the picture will be
printed at the printer’s full resolution of 1200 dots per inch. I can show the same
picture on my Silicon Graphics 1600SW flat-panel monitor, and it will use the moni-
tor’s lesser resolution of 110 dots per inch. If I used a higher-resolution printer or a
lower-resolution monitor, the picture would adjust accordingly. Unlike bitmapped
formats such as TIFF, JPEG, and GIF, SVG pictures don’t require you to choose
between size and resolution.

Scalable also means that SVG can scale to very large projects where documents
are built up out of thousands of individual pictures. For example, an architectural

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 851

852 Part V ✦ XML Applications

diagram for a new campus of a large corporation might include separate SVG docu-
ments representing each room. Floor documents would be built up by combining
the room documents. Buildings would be created by combining the floor docu-
ments. The campus would be created by combining the individual building docu-
ments and adding a few pieces to represent the tunnels and roads and green spaces
that connected them. Similar buildings and floors might be described by annotating
small changes on top of basic templates. Different architects could work on differ-
ent parts of the campus at the same time, then combine all the pieces together.

In my opinion, this definition of scalability isn’t well met by SVG. The problem is
that SVG documents don’t carry any notion of the real-world sizes of what they
describe, just a scalable local coordinate space. This means that there’s no stan-
dard way of making sure that the water fountain I design will fit through the door
of the building you design.

Vector versus bitmapped graphics
Since the demise of daisy-wheel printers, all modern computer-rendering devices
have used bitmapped graphics. That is, they divide the canvas on which they draw
into a grid of pixels of varying colors. The basic algorithms for rendering raster
graphics are the same whether you’re talking about a 72-dpi color CRT monitor or a
1200-dpi black-and-white printer. This means that when a vector document such as
an SVG picture is drawn, it must first be converted into a bitmap. The real differ-
ence, therefore, between finite precision bitmapped pictures and infinitely precise
vector graphics is in where the conversion to the bitmap, and subsequent loss of
information, takes place. With a bitmapped image, the information is lost when the
document is first created at a particular resolution. With a vector image, all infor-
mation is maintained perfectly until the document is actually drawn on the screen
or printed on paper.

Because SVG graphics will eventually be rendered as bitmaps, the W3C Scalable
Vector Graphics Working Group decided they might as well take advantage of that
fact. Consequently, they added a number of fundamentally bitmapped features to
SVG that are applied to SVG pictures on the client side when the document is ren-
dered. For example, you can place bitmapped JPEG and PNG images in an SVG doc-
ument using the image element. For another example, infinitely precise vector text
doesn’t need antialiasing, but bitmapped text does. SVG renderers can apply a vari-
ety of antialiasing algorithms to both text and lines before drawing them on the
screen. SVG documents can also request bitmap filter effects such as blurring and
drop shadows.

A Simple SVG Document
Listing 24-1 is an SVG document that describes a red circle. This document should
be saved in a file named something similar to circle.svg or 24-1.svg. The three-letter
extension .svg is customary, although not required. This is an XML document, so it

Caution

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 852

853Chapter 24 ✦ Scalable Vector Graphics

could be saved as circle.xml or as circle.txt. The MIME media type of this document
should be set to image/svg+xml in environments that support MIME types.

Figure 24-1 shows the document displayed in Squiggle, the SVG viewer bundled
with the Apache XML Project’s Batik. The most recent version can be downloaded
from http://xml.apache.org/batik/. Batik requires Java 1.2 or later. After
you’ve unzipped the zip file, you can run Squiggle at the command line like this:

C:\>java -jar C:\batik-1.5\batik-squiggle.jar

Of course, you need to have Java installed somewhere in your path, and if you’ve
unzipped Batik anywhere other than C:\batik-1.5, adjust the preceding command
accordingly.

As well as providing a way to view files in a GUI, Squiggle can also export SVG
images as TIF, JPEG, and PNG bitmapped images, a function that I used to produce
many of the figures in this chapter.

Figure 24-1: An SVG document
displayed in Squiggle

Listing 24-1: An SVG Document That Represents
a Red Circle with a Blue Outline

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1in”>
<title>Listing 24-1 from the XML Bible</title>
<circle r=”30” cx=”34” cy=”34”

style=”fill: red; stroke: blue; stroke-width: 2” />
</svg>

This is an XML document, so it begins with an XML declaration like all good XML
documents should. This particular document doesn’t have a document type decla-
ration, so it’s only well formed, not valid. However, the SVG specification does

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 853

854 Part V ✦ XML Applications

include a DTD that you can use to validate SVG documents, and you could refer-
ence it if it seemed useful to do so. You could even provide an xml-stylesheet
processing instruction that connected this document to a CSS or XSL style sheet.

The root element of this and all SVG documents is svg. This element is in the
http://www.w3.org/2000/svg namespace. Sometimes, as here, this is the default
namespace. Other times, it’s mapped to a prefix. The prefix svg is customary. As
usual, the specific prefix (or lack thereof) doesn’t matter as long as the URI is correct.

The svg element has width and height attributes that specify the size of the can-
vas on which the picture is drawn. Here it’s a 3.5-inch-wide-by-1-inch-high rectangle.
These attributes aren’t required, but it’s a good idea to include them. Viewers can
use this to set window sizes, and it’s a useful reminder of how much space there is
to draw in.

The root svg element also contains two child elements: a title and a circle. The
title contains a string of text that’s displayed in the title bar of the SVG browser.
The circle is a shape to be drawn. This circle has a radius of 30. But 30 what? Is
that 30 pixels? 30 inches? 30 parsecs? It’s actually 30 units in the nondimensional
local coordinate space. Remember that SVG graphics are scalable. The real size of a
radius 30 circle can change from one environment to another. By default, it maps to
30 pixels on the local display, so the circle will be smaller on higher-resolution mon-
itors. However, you can use transforms and other markup to change the actual size,
as you’ll see soon.

The center of the circle is placed at position x=34, y=34. This is 34 units down from
and 34 units to the right of the upper left corner of the window. Standard computer
graphics coordinates are used. That is, the upper left corner of this rectangle is
point 0, 0. X coordinates increase to the right; Y coordinates increase down. Figure
24-2 diagrams this coordinate system. You can use floating-point numbers such as
7.5 to place shapes anywhere on this grid. You are not limited to placing shapes at
the actual pixels of the display. An SVG document represents an abstract, infinitely
precise, almost platonic ideal of a two-dimensional plane.

The style attribute assigns CSS properties to this circle. In particular, it sets the fill
color to red and the stroke color to blue. Furthermore, it makes the stroke two
units wide.

In my opinion, this is one of the flakier aspects of SVG. CSS defines a color prop-
erty, but it doesn’t define any fill, stroke, or stroke-width properties. SVG has
adopted the CSS syntax as an optional feature, but applied it to its own set of
properties. The same circle could equally well have been written like this:

<circle r=”30” cx=”34” cy=”34”
fill=”red” stroke=”blue” stroke-width=”2” />

For inline styles, I prefer to use the more explicit attributes. However, you can also
attach external CSS style sheets to SVG documents that set various properties for
different elements. This is perhaps a little more useful.

Caution

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 854

855Chapter 24 ✦ Scalable Vector Graphics

Figure 24-2: SVG coordinate system

SVG element and attribute names only use the ASCII character set, so any normal
text editor can produce and save an SVG document. However, if the drawing con-
tent itself contains non-ASCII text (for example, a Russian billboard), you’d have to
save it in some other character set and use the appropriate encoding declaration to
identify it. Of course, as you’ll see at the end of this chapter, you don’t have to use a
text editor to create or save an SVG document at all. In fact, most of the time, you’ll
probably use a graphics program such as Adobe Illustrator that offers a standard
user interface for drawing pictures. You’ll just save the finished result as SVG.

Embedding SVG Pictures in Web Pages
It’s very easy to include SVG pictures in web pages for browsers that natively
understand SVG. You don’t even have to use valid XHTML. Just paste the SVG
source code into the HTML document where you want the picture to appear. Listing
24-2 demonstrates by embedding Listing 24-1 in a simple HTML document.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 855

856 Part V ✦ XML Applications

Listing 24-2: An HTML Document in Which Listing 24-1
Is Embedded

<HTML>
<HEAD>
<TITLE>Circles are my friends</TITLE>

</HEAD>
<BODY>
<H1>Rectangles are the Enemy!</H1>

<svg xmlns=”http://www.w3.org/2000/svg”
style=”width: 3.5in; height: 1in”>

<title>Listing 24-1 from the XML Bible</title>
<circle r=”30” cx=”34” cy=”34”

style=”fill: red; stroke: blue; stroke-width: 2”/>
</svg>

<HR>
Last Modified August 22, 2004

Copyright 2004

Elliotte Rusty Harold

</BODY>
</HTML>

At the time of this writing, only the Amaya browser from the W3C natively supports
SVG included in this fashion. Figure 24-3 shows Amaya displaying Listing 24-2. You
can download the latest version from http://www.w3.org/Amaya/. This chapter
was written using Amaya 8.1a.

Figure 24-3: An SVG document included in a web page

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 856

857Chapter 24 ✦ Scalable Vector Graphics

Although they’re text, SVG documents are no more part of HTML than are the
binary GIF, JPEG, and PNG formats. Therefore, most browsers don’t support SVG
pictures that are pasted into HTML source code, as in Listing 24-2. Instead, you
have to save the picture in a separate document and link to it from the HTML by
using the EMBED element. This is very much like the normal IMG element you’re
familiar with from HTML. It has WIDTH, HEIGHT, ALT, ALIGN, and SRC attributes that
mean more or less the same as they mean for IMG. The only difference is that IMG is
used for image formats the browser natively supports, while EMBED is used for data
formats that require a separate plug-in. Most EMBED elements also have a PLUG-
INSPAGE attribute whose value is a URL where the browser can download the plug-
in it needs to display the embedded content. I recommend the Adobe SVG Viewer
plug-in, which is available for Netscape and Internet Explorer on both Windows and
Mac OS. For example, this EMBED element could be used to place Listing 24-1 in 100-
pixel-by-100-pixel rectangle on the page:

<EMBED WIDTH=”100” HEIGHT=”100” SRC=”24-1.svg”
ALT=”A red circle with a blue border”
ALIGN=”LEFT”
PLUGINSPAGE=”http://www.adobe.com/svg/viewer/install/”>

The SVG picture will be left-aligned so that text flows around it on the right. If the
browser can’t handle this type of content, it will display the alternate text “A red
circle with a blue border” instead. And if the user does not have the necessary plug-
in to load this document, it will ask the user if they want to go to the Adobe web
site to get it. Figure 24-4 shows the final result after the plug-in is installed and
Listing 24-3 is loaded into Netscape Navigator.

Listing 24-3: An HTML Document in Which Listing 24-1
Is Embedded

<HTML>
<HEAD>
<TITLE>Circles are my friends</TITLE>

</HEAD>
<BODY>
<H1>Rectangles are the Enemy!</H1>

<EMBED WIDTH=”100” HEIGHT=”100” SRC=”24-1.svg”
ALT=”A red circle with a blue border”
ALIGN=”LEFT”
PLUGINSPAGE=”http://www.adobe.com/svg/viewer/install/”>

<P>
You need version 3.0 or later of the Adobe SVG plug-in
for this to work. Earlier versions support older,
out-of-date beta drafts of SVG. This chapter describes
SVG 1.0.

Continued

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 857

858 Part V ✦ XML Applications

Listing 24-3 (continued)

</P>

<HR>
Last Modified August 21, 2004

Copyright 2004

Elliotte Rusty Harold

</BODY>
</HTML>

Figure 24-4: An SVG document embedded in a web page

Simple Shapes
SVG defines six simple shape elements that you can use to place particular kinds of
shapes on the page:

✦ rect

✦ circle

✦ ellipse

✦ line

✦ polygon

✦ polyline

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 858

859Chapter 24 ✦ Scalable Vector Graphics

You’re not limited to these shapes, however. You can also define arbitrary one- and
two-dimensional shapes using paths. But let’s begin with the basic shapes.

The rect element
The rect element represents a rectangle aligned with the two coordinate axes. In
other words, it represents rectangles like the one on the left side of Figure 24-5 but
not the one on the right side.

Figure 24-5: SVG rect elements represent rectangles like the one on the left,
not the one on the right.

Given the constraint of axis alignment, each rectangle can be fully specified by the
coordinates of its upper left corner, its width, and its height. These are given by
four attributes on the rect element:

✦ x— The x coordinate of the upper left corner of the rectangle

✦ y— The y coordinate of the upper left corner of the rectangle

✦ width— The extent of the rectangle parallel to the x-axis

✦ height— The extent of the rectangle parallel to the y-axis

For example, this rect element represents a 10 by 10 square whose upper left cor-
ner is aligned with the upper left corner of the picture:

<rect x=”0” y =”0” width=”10” height=”10”/>

Listing 24-4 draws part of a checkerboard by alternating red and black squares,
each 25 units square. Figure 24-6 shows the rendered document.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 859

860 Part V ✦ XML Applications

Listing 24-4: A Partial Checkerboard Made Up out of rects

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.0in”>
<title>Listing 24-4 from the XML Bible</title>
<rect x=”0” y=”0” width=”25” height=”25” fill=”red”/>
<rect x=”25” y=”0” width=”25” height=”25” fill=”black”/>
<rect x=”50” y=”0” width=”25” height=”25” fill=”red” />
<rect x=”0” y=”25” width=”25” height=”25” fill=”black”/>
<rect x=”25” y=”25” width=”25” height=”25” fill=”red” />
<rect x=”50” y=”25” width=”25” height=”25” fill=”black”/>
<rect x=”0” y=”50” width=”25” height=”25” fill=”red” />
<rect x=”25” y=”50” width=”25” height=”25” fill=”black”/>
<rect x=”50” y=”50” width=”25” height=”25” fill=”red” />

</svg>

Figure 24-6: A piece of a checkerboard
arranged with nine rect elements

You can make rounded rectangles by setting the rx and ry attributes of the rectan-
gle to a positive length. The larger this number, the more rounded the corners will
be. The maximum rounding is half the width of the rectangle for rx and half the
length of the rectangle for ry. This much rounding turns the rectangle into an
ellipse. Anything beyond that is ignored. For example, Listing 24-5 adds five units of
rounding to each of the rectangles from Listing 24-4. Figure 24-7 shows the results of
adding this rounding.

Listing 24-5: A Pattern of Nine Rounded rects

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.0in”>
<title>Listing 24-5 from the XML Bible</title>
<rect x=”0” y=”0” width=”25” height=”25” rx=”5” ry=”5”

fill=”red”/>
<rect x=”25” y=”0” width=”25” height=”25” rx=”5” ry=”5”

fill=”black”/>
<rect x=”50” y=”0” width=”25” height=”25” rx=”5” ry=”5”

fill=”red” />

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 860

861Chapter 24 ✦ Scalable Vector Graphics

<rect x=”0” y=”25” width=”25” height=”25” rx=”5” ry=”5”
fill=”black”/>

<rect x=”25” y=”25” width=”25” height=”25” rx=”5” ry=”5”
fill=”red” />

<rect x=”50” y=”25” width=”25” height=”25” rx=”5” ry=”5”
fill=”black”/>

<rect x=”0” y=”50” width=”25” height=”25” rx=”5” ry=”5”
fill=”red” />

<rect x=”25” y=”50” width=”25” height=”25” rx=”5” ry=”5”
fill=”black”/>

<rect x=”50” y=”50” width=”25” height=”25” rx=”5” ry=”5”
fill=”red” />

</svg>

Figure 24-7: A pattern of rounded rects

The circle element
The circle element represents a circle. The position of the circle is determined by
the coordinates of its center. The size of the circle is determined by its radius.
These are specified by three attributes of the circle element:

✦ cx— The x coordinate of the center of the circle

✦ cy— The y coordinate of the center of the circle

✦ r— The length of the radius

For example, this circle element has a 24-unit radius. Its center is positioned at
the upper left corner of the picture. Thus, only the lower right quarter (fourth
quadrant) of the circle will be shown. The other three quarters of the circle are off
the screen.

<circle cx=”0” cy=”0” r=”25” />

Listing 24-6 uses circle elements to draw a bull’s-eye on the screen. The circles in a
bull’s-eye are concentric, so that the center coordinates are the same for each circle.
Only the radius changes. This example takes advantage of the implicit z-ordering of
SVG shapes. Each shape is drawn on top of its previous sibling. That is, the first
circle element is drawn first, the second circle element is drawn on top of the
first, the third circle is drawn on top of the second, and so forth. Without this
ordering, the largest circle might be drawn on top of all the others, obscuring them.
Figure 24-8 shows the result.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 861

862 Part V ✦ XML Applications

Listing 24-6: An SVG Bull’s-eye

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”2.0in”>
<title>Listing 24-6 from the XML Bible</title>
<circle cx=”90” cy=”90” r=”70”

fill=”red” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”60”

fill=”white” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”50”

fill=”red” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”40”

fill=”white” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”30”

fill=”red” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”20”

fill=”white” stroke=”black” stroke-width=”2”/>
<circle cx=”90” cy=”90” r=”10”

fill=”red” stroke=”black” stroke-width=”2” />
</svg>

Figure 24-8: An SVG
bull’s-eye

The ellipse element
Ellipses are a little like squashed circles, or, reversing the perspective, circles are
degenerate ellipses. Whereas circles have perfect rotational symmetry, ellipses do
have definite x and y axes. Like SVG rectangles, SVG ellipses line up their axes par-
allel to the coordinate axes. Thus, like rectangles, you only need four numbers to
specify an ellipse:

✦ cx— The x coordinate of the center of the ellipse

✦ cy— The y coordinate of the center of the ellipse

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 862

863Chapter 24 ✦ Scalable Vector Graphics

✦ rx— The length of the radius of the ellipse parallel to the x-axis

✦ ry— The length of the radius of the ellipse parallel to the y-axis

For example, this ellipse is four times as long as it is high:

<ellipse cx=”45” cy=”20” rx=”40” ry=”10” />

Listing 24-7 places two very eccentric ellipses more or less perpendicular to each
other to form a simple four-pointed star. These use the default fill color (black) and
stroke (none). Figure 24-9 shows the result.

Listing 24-7: Two Ellipses Perpendicular to Each Other

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.0in”>
<title>Listing 24-7 from the XML Bible</title>
<ellipse cx=”45” cy=”45” rx=”40” ry=”10” />
<ellipse cx=”45” cy=”45” rx=”10” ry=”40” />

</svg>

Figure 24-9: Two ellipses perpendicular to each other

The line element
The line element represents a straight-line segment between two points. It is iden-
tified by the x and y coordinates of its endpoints, as specified in these attributes:

✦ x1— The x coordinate of the start point

✦ y1— The y coordinate of the start point

✦ x2— The x coordinate of the endpoint

✦ y2— The y coordinate of the endpoint

For example, this is a 100-unit horizontal line:

<line x1=”0” y1=”100” x2=”100” y2=”100”/>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 863

864 Part V ✦ XML Applications

This is a 100-unit vertical line:

<line x1=”0” y1=”100” x2=”0” y2=”0”/>

This line runs at a 45-degree angle between the endpoints of the two previous lines:

<line x1=”0” y1=”0” x2=”100” y2=”100”/>

Listing 24-8 puts them all together to form a right triangle. However, as currently
written, these lines won’t actually be visible. To display them, you need to set the
stroke color to something other than white. Listing 24-8 also expands the stroke
width to two pixels. Figure 24-10 shows the result.

Listing 24-8: A Right Triangle Formed from Three Lines

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”2.0in”>
<title>Listing 24-8 from the XML Bible</title>
<line x1=”0” y1=”100” x2=”100” y2=”100”

stroke-width=”2px” stroke=”black”/>
<line x1=”0” y1=”100” x2=”0” y2=”0”

stroke-width=”2px” stroke=”black”/>
<line x1=”0” y1=”0” x2=”100” y2=”100”

stroke-width=”2px” stroke=”black”/>
</svg>

Figure 24-10: A right triangle formed from three lines

Polygons and polylines
A polygon is a closed curve formed by straight-line segments between each consec-
utive pair of a sequence of three or more points. The first point is connected to the
second point, the second to the third, the third to the fourth, and so on, until the
last point, which is connected back to the first point. Thus, a polygon with N points
has N line segments. A polyline is similar except that the last point is not connected
back to the first point. A polyline with N points has only N-1 line segments. SVG

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 864

865Chapter 24 ✦ Scalable Vector Graphics

polygons include not only the usual convex polygons like triangles and concave
polygons like stars, but also considerably stranger items, such as polygons with
self-intersecting edges. Figure 24-11 shows the three major kinds. Rectangles are
special cases of polygons, but circles are not because they don’t use straight lines.

Figure 24-11: A convex polygon, a concave
polygon, and a complex polygon, each
formed from eight points

The points forming a polygon are listed in order in the polygon element’s points
attribute. The first point is connected to the second point, the second point is con-
nected to the third point, the third point is connected to the fourth point, and so
on. The last point is connected back to the first point. All points are given as pairs
of dimensionless numbers in the local coordinate space separated by a comma.
Points are separated from each other by white space. For example, the right trian-
gle of Listing 24-8 could instead be written as this polygon:

<polygon points=”0,100 100,100 0,0”/>

Figure 24-11 was actually created using polygon elements in the SVG document
shown in Listing 24-9.

Listing 24-9: Three Polygons

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.5in”>
<title>Listing 24-9 from the XML Bible</title>
<polygon points=”0,30 30,0 80,0 110,30 110,80 80,110

30,110 0,80”/>
<polygon points=”120,55 160,40 180,0 200,40 240,55 200,80

180,120 160,80”/>
<polygon points=”240,30 270,45 312,80 270,110 268,82

272,23 267,71 311,17 “/>
</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 865

866 Part V ✦ XML Applications

The polyline element is almost identical to the polygon element, except that the
last point listed in the points attribute is not connected back to the first point.
However, the last point can repeat the first point, so that the path is connected. For
example, the right triangle of Listing 24-8 could instead be written as this polyline:

<polyline points=”0,100 100,100 0,0 0,100”/>

It’s necessary to repeat the first point as the last point to get the polyline to close
up. On the other hand, polylines are filled by default, so adding the last point is
only really necessary if you turn the fill off using style=”fill: none”.

Paths
The path element represents an arbitrary two-dimensional curve. Paths can be
stroked so that they look like lines. They can be filled so they appear as solid
shapes. They can even be used as masks or clipping regions. You can think of a
path as the curve a pen draws as it moves across the paper. Often paths are con-
nected, but occasionally the artist will pick up the pen and put it down at a different
point on the page and continue drawing from there. However, the pen draws in sin-
gle-color ink (possibly invisible), and the tip of the pen has a fixed thickness. To
change the color or size of the line, the artist must change pens.

There are 10 basic operations the artist can perform with a pen:

✦ Move to — Pick the pen up and put it down at a specified point on the paper.

✦ Line to — Draw a straight line from the current pen position to a specified
point.

✦ Horizontal line to — Draw a straight line from the current pen position across
to a specified x coordinate, keeping the y coordinate the same.

✦ Vertical line to — Draw a straight line from the current pen position up or
down to a specified y coordinate, keeping the x coordinate the same.

✦ Arc — Draw an elliptical or circular arc from the current pen position to a
specified point.

✦ Curve to — Draw a cubic Bézier curve from the current pen position to a spec-
ified point.

✦ Smooth curve to — Draw a “smooth” cubic Bézier curve from the current pen
position to a specified point.

✦ Quadratic curve to — Draw a quadratic Bézier curve from the current pen
position to a specified point.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 866

867Chapter 24 ✦ Scalable Vector Graphics

✦ Smooth quadratic curve to — Draw a “smooth” quadratic Bézier curve from
the current pen position to a specified point.

✦ Close path — Draw a straight line from the current pen position back to the
first point in the path.

An SVG document represents a path with a path element. The d (for data) attribute
of the path contains the instructions for drawing the path. The instructions are
each represented by single letters:

✦ M and m for move to

✦ L and l for line to

✦ H and h for draw a horizontal line to

✦ V and v for draw a vertical line to

✦ A and a for draw an elliptical arc to

✦ C and c for draw a cubic Bézier curve to

✦ S and s for draw a smooth cubic Bézier curve to

✦ Q and q for draw a quadratic Bézier curve to

✦ T and t for draw a smooth quadratic Bézier curve to

✦ Z and z for close path

The uppercase letters give the points as absolute coordinates. The lowercase let-
ters give the points as positive or negative offsets from the current pen position.

Every path begins with an M or m to set the initial point. Paths must end with a Z or
z. Each M and L instruction is followed by the coordinates of the point to go to. For
example, here’s a path element that draws an isosceles triangle:

<path d=”M 0,200 L 100,0 L 200,200 Z” />

Don’t worry if it isn’t obvious to you that this is an isosceles triangle. In fact, I’d be
surprised if it were even obvious that this is a triangle. Here’s how this path
attribute is interpreted:

1. M 0,200— Move the pen to the point x=0, y=200. This is where the path
begins.

2. L 100,0— Draw a line from the current pen location (x=0, y=200) to
x=100, y=0.

3. L 200,200— Draw a line from the current pen location (x=100, y=0) to
x=200, y=200.

4. Z— Close the path; that is, draw a line from the last point (x=200, y=200)
back to the first point (x=0, y=200).

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 867

868 Part V ✦ XML Applications

There’s often more than one way to define a given path. For example, this path ele-
ment represents that same triangle but uses lowercase, relative units after estab-
lishing the initial point:

<path d=”m 0,200 l 100,-200 l 100,200 z” />

Here’s how this path attribute is interpreted:

1. m 0,200— Because this move-to command is the first point in the path, the
relative coordinates are treated as absolute coordinates, and the pen is
moved to the point x=0, y=200. This is where the path begins.

2. l 100,-200— Draw a line from the current pen location (x=0, y=200) that
goes 100 pixels to the right and 200 pixels down; that is, draw a line to
(x=100, y=0).

3. l 100,200— Draw a line from the current pen location (x=100, y=0) that goes
100 pixels to the right and 200 pixels down; that is, draw a line to (x=200,
y=200).

4. z— Close the shape; that is, draw a line from the current point (x=200, y=200)
back to the first point (x=0, y=200).

There are a variety of other forms path data can take, although the meaning is the
same. For example, you can use a space to separate the x and y coordinates in a
point rather than a comma, and you can provide several coordinates after a line-to
command to indicate that you want multiple lines drawn. For example, the preced-
ing path could equally easily have been written like this:

<path d=”m0 200l100 -200 100 200z” />

One reason not to write coordinates this way is that, although this form is equally
easy to write, it is far from equally easy to read. For example, is it obvious to you
where the second command is in the preceding path? (Hint: Be sure to distinguish
between the letter l and the digit 1.)

Listing 24-10 shows a tic-tac-toe board drawn as one single, long, self-intersecting
path. Because a tic-tac-toe grid is made up exclusively of horizontal and vertical
lines, this document uses the V and H operators heavily. Also note the use of the M
command to move the pen around the board without drawing a line. Finally,
because paths are filled by default, CSS styles are used to turn off filling and to turn
on stroking. Figure 24-12 shows the finished board.

Listing 24-10: Tic-Tac-Toe

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.6in” height=”3.4in”>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 868

869Chapter 24 ✦ Scalable Vector Graphics

<title>Listing 24-10 from the XML Bible</title>
<path d=”M 100,0 V 300

M 200,0 V 300
M 0,100 H 300
M 0,200 H 300 Z”
fill=”none” stroke=”black” stroke-width=”2px” />

</svg>

Figure 24-12: A tic-tac-toe board formed
from a single path element

Arcs
Arcs are more complex than straight lines. You must specify seven separate num-
bers to determine which arc will be drawn from the current point:

1. The radius of the arc along the x-axis; the larger the radius, the less curved
the arc will be.

2. The radius of the arc along the y-axis; equal x and y radii produce a circular arc.

3. The orientation of the ellipse with respect to the x-axis, in clockwise degrees

4. Whether the arc should subtend an angle greater than or less than 180
degrees; 1 for more than 180 degrees, 0 for less than 180 degrees

5. Whether the arc should be drawn with an increasing (counterclockwise) or
decreasing (clockwise) angle; 1 for an increasing angle, 0 for a decreasing
angle

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 869

870 Part V ✦ XML Applications

6. The x coordinate of the point to draw the arc to

7. The y coordinate of the point to draw the arc to

Here’s a path that uses an arc to draw a piece of pie with a 30-degree arc centered
on the y axis:

<path d=”M 100,100
L 74.11809548975, 3.40741737109
A 100 100 0 0 1 125.8819045103 3.40741737109
L 100, 100 Z”

style=”fill: none; stroke: black; stroke-width: 1px” />

Determining the correct coordinates for the preceding path required trigonometry,
a hand calculator, and some experimentation. The endpoints of the arc were calcu-
lated like this:

1. Make the radius of the circle 100 units.

2. Place the center of the circle at x=100, y=100.

3. Start the arc at the position x = 100 – 100 sin (30/2), y = 100 – 100 cos (30/2).

4. Finish the arc at the position x = 100 + 100 sin (30/2), y = 100 – 100 cos (30/2).

If that seems a little involved, that’s because it is. And this example is simpler than
many because only circular arcs were used, not elliptical ones, and the coordinates
and radius were deliberately chosen to make the math as simple as possible.

Many arcs will be considerably worse than this. Arcs are really beginning to hit the
limit of what you can plausibly work with by hand. Listing 24-11 draws a complete
pie with eight 45-degree pieces. Figure 24-13 shows the result. Forty-five-degree
increments are marginally easier to work with than 30-degree increments, but the
coordinates were still quite burdensome to calculate. The bottom line is that arc
paths are really intended for computers to calculate. Humans should use some sort
of reasonable GUI to describe them.

Listing 24-11: A Pie Formed by Eight Arc Paths

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.6in” height=”2.4in”>
<title>Listing 24-11 from the XML Bible</title>
<path d=”M 100,100

L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 870

871Chapter 24 ✦ Scalable Vector Graphics

<path d=”M 100,100
L 170.7106781187 29.28932188135
A 100 100 0 0 1 200 100
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 200, 100
A 100 100 0 0 1 170.7106781187 170.7106781187
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 170.7106781187,170.7106781187
A 100 100 0 0 1 100 200
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 100,200
A 100 100 0 0 1 29.28932188135 170.7106781187
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 29.28932188135 170.7106781187
A 100 100 0 0 1 0 100
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 0, 100
A 100 100 0 0 1 29.28932188135 29.28932188135
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 29.28932188135 29.28932188135
A 100 100 0 0 1 100 0
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

</svg>

Figure 24-13: A pie formed
by eight arc paths

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 871

872 Part V ✦ XML Applications

Curves
You now have the tools needed to produce essentially any two-dimensional shape
that can be formed from straight lines, as well as circles, ellipses, and pieces
thereof. But that still leaves a lot unaccounted for. Figure 24-14 shows just a few of
the things that you can’t really describe with the shapes and paths discussed so far.

Figure 24-14: Figures
drawn with Bézier
curves

Paths such as those in Figure 24-14, and many more, can be modeled by Bézier
curves. A Bézier curve is defined by a start point and an endpoint, as well as one or
more control points that define lines tangent to the curve through the start and
endpoints. One control point produces a quadratic Bézier curve. Two control
points produce a cubic Bézier curve. Smooth Bézier curves mirror one coordinate
point off the preceding coordinate point.

If you thought arcs were bad, Bézier curves are even worse. Where trigonometry
sufficed for arcs, Bézier curves require differential calculus. Fortunately, no one
expects you to calculate the coordinates for Bézier curves by hand. In a few cases,
a computer program might calculate them. For example, the spiral in Figure 24-14
is straightforward to generate algorithmically. However, most Bézier curves are

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 872

873Chapter 24 ✦ Scalable Vector Graphics

produced by a human artist in conjunction with a graphics program like Adobe
Illustrator. Indeed, that is exactly how Figure 24-14 was drawn. Thus, I’ll spare you
all the details of exactly how Bézier coordinates are specified in SVG. Instead, in
Listing 24-12, I’ll merely show you the SVG source code for the first shape in Figure
24-14. This was produced by Adobe Illustrator and cleaned up a little by hand for
printing in the book. The SVG source code for the last three pictures in Figure 24-14
would take too much space to show here, but it is on the web site at http://www.
cafeconleche.org/books/bible3/source/24/24-12.svg. I suggest that you
use a drawing program that can export SVG when you need to draw complicated
paths like these.

Listing 24-12: Bézier Curves

<?xml version=”1.0” encoding=”utf-8”?>
<!-- Generator: Adobe Illustrator 9.0, SVG Export Plug-In -->
<svg xml:space=”preserve” xmlns=”http://www.w3.org/2000/svg”>
<g id=”Layer_x0020_1”

style=”fill-rule:nonzero; clip-rule:nonzero; fill:#FFFFFF;
stroke:#000000; stroke-width:0.25;
stroke-miterlimit:4;”>

<path style=”stroke-width:1;”
d=”M99.233,22.5c0,27.614-22.386,50-50,50c-22.091,

0-40-17.909-40-40c0-17.673,14.327-32,
32-32c14.139,0,25.6,11.461,25.6,25.6c0,
11.311-9.169,20.48-20.48,20.48c-9.049,
0-16.384-7.335-16.384-16.384 c0-7.239,
5.869-13.107,13.107-13.107c5.791,0,10.486,4.694,
10.486,10.486c0,4.633-3.756,8.389-8.389,
8.389c-3.707,0-6.711-3.005-6.711-6.711”/>

</g>
</svg>

Bézier curves can also handle the simpler cases of straight lines, arcs, circles, and
more. Adobe Illustrator is a Bézier-based program, and consequently uses Bézier
curves like the ones shown here for almost all shapes when it exports an SVG docu-
ment, even for straighter shapes that could have been encoded as rectangles, poly-
gons, or lines.

Text
Picture books are fine for three-year-olds, but most vector graphics meant for
adults include text. Sometimes this text can be part of the web page or an XSL-FO
document in which the SVG is embedded. However, it’s also useful to be able to

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 873

874 Part V ✦ XML Applications

make text part of the picture. Sometimes you want a single line of text placed at a
particular position, and other times you want to wrap text around a curving path.
SVG provides all of these features; and, of course, it lets you choose the font family,
weight, and style. Furthermore, you can treat text as just another shape or path.
This means that you can apply coordinate transformations to skew or rotate text,
paint the text, clip and mask it, and do anything else to text that you could do to a
circle or a rectangle or a polygon. Finally, because XML documents are Unicode,
you aren’t just limited to standard Latin text. If the necessary fonts are installed,
SVG can handle text in right-to-left languages such as Arabic and ideographic lan-
guages such as Chinese.

The one thing that SVG really can’t do with text is wrap it. There’s no textBox ele-
ment in SVG. You can’t define a rectangle, assign some text to the rectangle, and
expect it to wrap every time a line reaches the right edge of the box. All line breaks
have to be inserted manually. The reason is that many languages, such as Tibetan,
Arabic, and Chinese, have relatively complex, context-sensitive rules about how
and where to break lines, and SVG implementers couldn’t be expected to be familiar
with all of them.

Strings
The text element places a single line of text on the canvas at the position indicated
by its x and y attributes. These are the coordinates of the lower left corner of the
string. The text to place is simply the content of the text element. For example,
this text element places the string Hello SVG! at the coordinates x=50, y=50 in the
default font and size:

<text x=”50” y=”50”>Hello SVG!</text>

Listing 24-13 is a nursery rhyme in SVG. Figure 24-15 shows the displayed text.

Listing 24-13: Four Text Elements, One for Each Line of a Poem

<?xml version=”1.0” encoding=”utf-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.6in” height=”1.0in”>
<title>Listing 24-13 from the XML Bible</title>
<text x=”50” y=”20”>Mary had a little lamb</text>
<text x=”50” y=”40”>whose fleece was white as snow</text>
<text x=”50” y=”60”>and everywhere that Mary went</text>
<text x=”50” y=”80”>the lamb was sure to go</text>

</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 874

875Chapter 24 ✦ Scalable Vector Graphics

Figure 24-15: Four text strings

Notice that the poem begins on the line with y=20. Y coordinates increase down.
The y attribute of the text element specifies the position of the baseline of the
string; that is, the bottom of the string. Therefore, if you set y to 0, most of the
string, aside from the descenders in letters like y and g, would be positioned at neg-
ative coordinates, outside the visible range.

The text element does not consider line breaks. Each line should be a separate
text element with a different y coordinate. For example, suppose you were to use
this single text element instead of the four in Listing 24-13:

<text x=”50” y=”20”>
Mary had a little lamb
whose fleece was white as snow
and everywhere that Mary went
the lamb was sure to go

</text>

Then SVG would just place all four verses on the same line as shown in Figure 24-16,
even if that means some of the text runs off the right-hand side of the visible area
and gets truncated.

Figure 24-16: One text string

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 875

876 Part V ✦ XML Applications

Normally, the SVG renderer compresses all runs of white space to a single space.
You can change this behavior by adding an xml:space attribute with the value
preserve to the text element, like this:

<text x=”50” y=”20” xml:space=”preserve”>
Mary had a little lamb
whose fleece was white as snow
and everywhere that Mary went
the lamb was sure to go

</text>

However, while this will add some extra space between words at the ends of the
verses like lamb and whose, it still won’t preserve the line breaks.

Text on a path
Suppose instead of a nursery rhyme that neatly divides into small lines with well-
defined line breaks, you have a much larger run of prose, like the text of this para-
graph, for example. You normally want to place that inside a box of fixed width and
fixed position, but unlimited height, and allow the formatter to decide where to
break the lines. SVG can’t quite do that, but it can get close.

SVG 1.2 will finally add the ability to automatically wrap text inside a shape.
However, this is not available in SVG 1.0 or 1.1 and is not yet supported by any
SVG tools.

SVG allows you to place text along a path other than a straight line. You can wrap
text along a triangle, a spiral, a cloud, Abraham Lincoln’s beard, or just about any
other path you can imagine. This is accomplished by placing a textpath element
inside a text element. The textpath element contains the text to draw and an
xlink:href attribute pointing to the path along which to draw it.

For example, to wrap the prose of a paragraph along five parallel lines, you first
need a path element that describes five parallel lines. This one will do:

<path id=”para5”
d=”M 10,20 L 200,20 M 10,40 L 200,40

M 10,60 L 200,60 M 10,80 L 200,80
M 10,100 L 200,100
M 10, 20 Z”

fill=”none” stroke=”none”/>

Notice the use of the M commands to jump from one line to the next without includ-
ing the jumps in the path. In particular, notice the last one that moves the pen back
to the beginning of the path. Without this, the last line of text might get drawn
across a diagonal line connecting the last point to the first point. Also notice that
this path element has an id attribute so that it can be linked to.

Note

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 876

877Chapter 24 ✦ Scalable Vector Graphics

The text element that writes along this path is given like this:

<text>
<textPath xlink:href=”#para5”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
The text to be wrapped along the path goes here

</textPath>
</text>

Don’t forget to map the xlink prefix to the http://www.w3.org/1999/xlink URI.
If you use this in multiple places in the document, it might be more convenient to
declare it on the root svg element.

Listing 24-14 is a complete SVG document that wraps a paragraph of text around a
path composed of horizontal lines.

Listing 24-14: Text on a Path

<?xml version=”1.0” encoding=”utf-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”4.0in” height=”1.5in”>

<title>Listing 24-14 from the XML Bible</title>

<path id=”para5”
d=”M 10,20 L 360,20 M 10,40 L 360,40

M 10,60 L 360,60 M 10,80 L 360,80
M 10,100 L 360,100 M 10, 120 L 360, 120
M 10,20 Z”

fill=”none” stroke=”black”/>/>

<text>
<textPath xlink:href=”#para5”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
Suppose instead of a nursery rhyme that neatly divides
into small lines with well-defined line breaks, you have
a much larger run of prose, like the text of this
paragraph for example. You normally want to place that
inside a box of fixed width and fixed position, but
unlimited height, and allow the formatter to decide
where to break the lines. SVG can’t quite do that yet,
but it can get close.

</textPath>
</text>

</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 877

878 Part V ✦ XML Applications

Figure 24-17 shows this example in Squiggle. You’ll notice that SVG is not very
smart about deciding where to break lines. In fact, it doesn’t even try. It just fills up
to the end of the line with text and then starts at the next point on the path. Part of
the problem here is that SVG needs to be internationalizable. A good line-breaking
algorithm is highly language-dependent. Hebrew and Chinese, for example, break
very differently than English and French.

Figure 24-17: Text on a path

Fonts and text styles
SVG adopts CSS text and font properties more or less in toto. You set the font fam-
ily, font weight, font style, font size, text decoration, color, and so forth by using CSS
Level 2 text properties. For example, this paragraph is written in 10-point Times
New Roman. If you were to encode it in SVG, it would look something like this:

<text x=”20” y=”20” font-size=”10pt;
font-family=”Times, ‘Times New Roman’, ‘New York’, serif”>
SVG adopts CSS text and font properties more or less in
toto. You set the font family, font weight, font style,
font size, ...

</text>

If you prefer, you can use the text element’s style attribute, like this:

<text x=”20” y=”20”
style=”font-size: 10pt;
font-family: Times, ‘Times New Roman’, ‘New York’, serif”>
SVG adopts CSS text and font properties more or less in
toto. You set the font family, font weight, font style,
font size, ...

</text>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 878

879Chapter 24 ✦ Scalable Vector Graphics

CSS text and font properties are covered in great detail in Chapter 14. A big advan-
tage to SVG adopting CSS for such properties is that you don’t need to learn, and I
don’t have to write about, two different syntaxes that describe pretty much the
same thing. As large as this book is, it would have been even larger without such
economical reuse of syntax.

Text spans
The tspan element lets you apply styles to pieces of a text element. It’s similar to
the span element in HTML, that is, a convenient hook off of which to hang CSS
styles or other properties. For example, tspan enables you to format the first sen-
tence of this paragraph with only the word tspan and text in Courier. Here’s how:

<text x=”20” y=”20” font-size=”10pt”
font-family=”Times, ‘Times New Roman’, serif”>

The <tspan font-family=”Courier, monospace”>tspan</tspan>
element lets you apply styles to pieces of a
<tspan font-family=”Courier, monospace”>text</tspan>
element.

</text>

Bitmapped Images
SVG is a format for vector graphics. Nonetheless, it’s very often useful or necessary
to place bitmapped images in line art. For example, you might want to start with a
photograph and then overlay text and arrows on that photograph that call out indi-
vidual parts. Or perhaps a calendar includes both vector graphics for functionality
and a photograph of a nature scene to make the calendar pretty to look at. In fact,
almost anywhere you look in printed matter, you’re likely to find art that combines
bitmapped images and vector graphics.

SVG allows you to place bitmapped images in documents in a straightforward fash-
ion. As with the IMG element in HTML, the actual bitmap data is not included in the
SVG document. Instead, it is linked in from a URL. Also as in HTML, exactly which
bitmapped graphic formats are supported depends on what software you’re using.
All SVG processors can handle JPEG and PNG. GIF is problematical because of
patent problems.

The image element contains a link to the file containing the bitmapped data. The
URL where the image data can be found is read from the xlink:href attribute,
where the xlink prefix is mapped to the standard XLink URI, http://www.w3.org/
1999/xlink. The x and y attributes specify where in the local coordinate system
the upper left-hand corner of the image should be placed. As with any SVG shape,
the chosen position might cause the image to lay on top of or beneath other items

Cross-
Reference

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 879

880 Part V ✦ XML Applications

on the canvas. The width and height attributes determine the size of the box in
which the image is placed. If the actual image is too large or too small for the box, it
will be scaled as necessary to fit the box, perhaps even disproportionately exactly
like the IMG element in HTML. For example, Listing 24-15 is a complete SVG docu-
ment that contains a picture of one of my cats, Marjorie. SVG text elements layer
the phrases “This is my cat Marjorie.” and “She likes to have her picture taken.” on
top of the picture. Figure 24-18 shows the results.

Listing 24-15: Placing a JPEG Image in an SVG Picture

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”360px” height=”310px”>

<title>Listing 24-15 from the XML Bible</title>

<image xlink:href=”marjorie.jpg”

x=”20px” y=”5px” width=”260px” height=”297px”/>

<text x=”25px” y=”240px”
font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

This is my cat Marjorie.
</text>
<text x=”25px” y=”255px”

font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

She likes to have her picture taken.
</text>

</svg>

You can also use the image element to load another SVG document into the current
one. The XML for the loaded SVG document is not merged into the existing docu-
ment, as it might be with XInclude. Instead, it’s treated as another picture with a
certain size at a certain set of coordinates, possibly with some filters applied to it.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 880

881Chapter 24 ✦ Scalable Vector Graphics

Figure 24-18: Text laid on top of an image

Coordinate Systems and Viewports
So far, we’ve worked in nondimensional units that map to screen pixels. However,
SVG supports all the units of length defined in CSS, including inches, centimeters,
millimeters, points, picas, pixels, and even percentages. For example, you can say
that a rectangle is 2 inches wide by 3 inches high like this:

<rect x=”0in” y=”0in” width=”2in” height=”3in”/>

When an SVG renderer such as Squiggle displays this rectangle, it will ask its envi-
ronment how many pixels there are in an inch. On most computer displays, it would
get an answer back that is somewhere between 68 and 200 pixels per inch. It would
then convert the requested length in inches to the equivalent length in pixels
before drawing the picture on the screen. Depending on the resolution of the moni-
tor and the capabilities of both the renderer and the host operating system, the
actual sizes might be a little more or a little less than what you asked for. For exam-
ple, if you draw a circle with a 10-inch radius on your display, then measure it with
a ruler (not an on-screen ruler, but a real physical ruler made out of wood), it
should be approximately 10 inches — maybe 8, maybe 12, depending on the resolu-
tion of the monitor, but something in the ballpark of 10 inches. And if the circle is 20
percent off of its expected size, all the other shapes drawn on that display will also
be 20 percent off.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 881

882 Part V ✦ XML Applications

Not all SVG lengths can be specified in real-world units like inches and points. In
particular, only rectangles, circles, ellipses, and lines can be specified this way.
Polygons and polylines must use nondimensional local units for the coordinates
given in their points attributes. Paths must also use nondimensional local units for
the coordinates given in their d attributes. This makes real-world units less useful
than they might otherwise be.

However, if you prefer to design your drawings in inches or feet or centimeters
rather than pixels, there is a workaround. You can assign a width and a height to
your svg element to specify how much space it occupies on the page. Then you can
set the viewBox attribute to define a local coordinate system within that svg ele-
ment. The combination of the actual, on-screen width and height with the view box
can define a mapping between the actual pixels and any units of length you desire,
from nanometers to parsecs.

The viewport
SVG pictures are drawn on an infinite, two-dimensional plane with infinitely precise
coordinates. Of course, when such a picture is actually shown on the screen, you
only see a finite rectangular region of limited precision called the viewport. This
viewport has a certain width and height that can be determined in several ways.

The first possibility applies when an SVG document is included in an HTML page
using an EMBED element as in Listing 24-3. In this case, the WIDTH and HEIGHT
attributes of the EMBED element establish the size of the canvas. Alternately, if the
svg element is pasted right into the HTML document, as in Listing 24-2, it can have
CSS height and width properties that set its size, even if this results in the image
being clipped. Listing 24-16 demonstrates.

Listing 24-16: Using CSS Properties to Set the Size
of an Embedded SVG Picture

<HTML>
<HEAD>
<TITLE>Circles are my friends</TITLE>

</HEAD>
<BODY>
<H1>Rectangles are the Enemy!</H1>

<svg xmlns=”http://www.w3.org/2000/svg”
style=”width: 100px; height: 100px”>

<title>Listing 24-16 from the XML Bible</title>
<circle r=”30” cx=”34” cy=”34”

fill=”red” stroke=”blue” stroke-width=”2”/>
</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 882

883Chapter 24 ✦ Scalable Vector Graphics

<HR />
Last Modified November 10, 2004

Copyright 2004

Elliotte Rusty Harold

</BODY>
</HTML>

If the svg element is not embedded in HTML in one fashion or another, or if the
external document in which it is embedded does not set its width and height, the
height is set by the width and height attributes of the svg element itself. For
example, this svg element has a viewport that’s 10 inches by 5 inches:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”10in” height=”5in”>

<circle r=”30” cx=”34” cy=”34”/>
</svg>

Alternately, the width and the height can be given in user coordinates, in which
case the real units are pixels. This svg element has a viewport that’s 144 pixels by
72 pixels:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”144” height=”72”>

<circle r=”30” cx=”34” cy=”34”/>
</svg>

Remember that this only changes the size of the viewport on the screen. It has no
effect on the size of the shapes that the svg element contains. If the shapes are too
big for the viewport, they’ll be truncated; but the plane on which the shapes are
rendered is still infinitely large.

Coordinate systems
There are many reasons why you might want to adjust the local coordinate system.
For example, if you were drawing a map, it might be convenient to have each local
coordinate unit represent a mile. Furthermore, you’d like 1 mile to map to 1 inch,
approximately 72 pixels. Or perhaps you want to draw a blueprint of a house on
which the local coordinate units reflect the actual size of the rooms in feet. For
example, the room in which I’m typing this is 10 feet by 12 feet, so I might represent
it as this rect element:

<rect x=”0” y=”0” width=”10” height=”12”/>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 883

884 Part V ✦ XML Applications

However, I do want the room to appear larger than 10 pixels by 12 pixels on the dis-
play. So I need to use a local coordinate system that is not so tightly locked to the
size of a pixel.

You can both scale and translate the local coordinate system by attaching a viewBox
attribute to the svg element. This changes the local coordinate system inside the
viewport by specifying four characteristics of the local coordinate system:

1. The x coordinate of the upper left corner of the viewport

2. The y coordinate of the upper left corner of the viewport

3. The width of the viewport in local coordinates

4. The height of the viewport in local coordinates

These four numbers are given in this order in the viewBox attribute of the SVG ele-
ment. For example, let’s suppose you have a 4-inch-by-4-inch space to work with on
the screen. However, your arithmetic would be simplified if you could use a 1000-
by-1000-unit square. Then you would set up your svg element like this:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”4in” height=”4in” viewBox=”0 0 1000 1000”>

<!-- SVG shapes -->
</svg>

The upper left corner is still at point x=0, y=0. The width and height in the local
coordinate space are now 1000 each. Dividing 1000 units by 4 inches, you find that
250 local units equal 1 inch on the screen. For example, consider the svg element in
Listing 24-17. This is 100 pixels by 100 pixels square. A large (radius=500) circle is
placed at x=400, y=400. Figure 24-19 shows the result. Most of the circle is cut off
both below and to the right, because most of the circle is outside the viewport. You
only see a small part of the upper left quadrant of the circle.

Listing 24-17: A Circle That Doesn’t Fit in Its Viewport

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”100px” height=”100px”>
<title>Listing 24-17 from the XML Bible</title>
<circle cx=”400” cy=”400” r=”500” />

</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 884

885Chapter 24 ✦ Scalable Vector Graphics

Figure 24-19: A radius 500 circle at
400,400 displayed in a 100-pixel square
viewport.

Now suppose you add a viewBox attribute to this svg element that sets the width
of the viewport to 1000 pixels by 1000 pixels. This is shown in Listing 24-18. This
effectively shrinks the circle by a factor of 10 to 1, as shown in Figure 24-20.
However, because the radius of the circle is 500 and the circle’s center is positioned
at x=400, y=400, the leftmost and topmost parts of the circle extend into the nega-
tive coordinate space and are truncated.

Listing 24-18: Using a viewBox Attribute to Adjust
the Local Coordinate System

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”100px” height=”100px”
viewBox=”0 0 1000 1000”>

<title>Listing 24-18 from the XML Bible</title>
<circle cx=”400” cy=”400” r=”500” />

</svg>

You can fix the truncation by using the view box to shift the coordinate system 100
units left and up. To do this, set the first two numbers in the viewBox attribute to
–100. Then the local coordinate system extends from –100 to 899 instead of 0 to
999. Listing 24-19 demonstrates, and Figure 24-21 shows the result.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 885

886 Part V ✦ XML Applications

Figure 24-20: A radius 500 circle at
400,400 displayed in a 100-pixel square
viewport and a 1000-unit square view box.

Listing 24-19: Using a viewBox Attribute to Adjust
the Local Coordinate System

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”100px” height=”100px”
viewBox=”-100 -100 1000 1000”>

<title>Listing 24-19 from the XML Bible</title>
<circle cx=”400” cy=”400” r=”500” />

</svg>

Figure 24-21: A radius 500 circle at
400,400 displayed in a 100-pixel square
viewport and a 1000-unit square view
box shifted down and to the right by
100 units.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 886

887Chapter 24 ✦ Scalable Vector Graphics

Suppose the viewport is 3 inches wide by 4 inches high, and you want 100 local
units to equal 1 inch on the screen. You’d multiply the actual width and height by
100/inch to get a 300 width and a 400 height. Then you’d use this svg element:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”3in” height=”4in” viewBox=”0 0 300 400”>

<!-- SVG shapes -->
</svg>

You can even scale the x and y axes independently. For example, suppose you want
100-units-per-inch resolution on the y-axis, but 300 units per inch resolution on the
x-axis, and the viewport is 4 inches square. You could use this svg element:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”4in” height=”4in” viewBox=”0 0 1200 400”>

<!-- SVG shapes -->
</svg>

However, by default SVG will attempt to maintain the aspect ratio of the picture. In
this case, it will expand the y coordinate to fit the x coordinates. You can change
this behavior by setting the preserveAspectRatio attribute of the svg element to
none, in which case, different scale factors on the x and y axes can lead to pictures
that seem squeezed along the more precise dimension. For example, you’d nor-
mally think this rect element was a square:

<rect x=”200” y=”200” width=”100” height=”100”/>

However, if you place this rect element in the preceding nonuniform coordinate
system and set preserveAspectRatio to none, as shown in Listing 24-20, you get
the rectangle shown in Figure 24-22.

Listing 24-20: Nonuniform Coordinate Systems Squeeze
Shapes If the Aspect Ratio Isn’t Preserved

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”4in” height=”4in” viewBox=”0 0 1200 400”
preserveAspectRatio=”none”>

<title>Listing 24-20 from the XML Bible</title>
<rect x=”200” y=”200” width=”100” height=”100”/>

</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 887

888 Part V ✦ XML Applications

Figure 24-22: Nonuniform coordinate
systems squeeze shapes

Grouping Shapes
The g (for group) element combines shapes so they can be treated as a single
entity. Each g can have its own local coordinate space in which its child shapes are
placed. This entire collection of shapes can then be moved, positioned, styled, and
copied as a unit. For example, suppose you need a shape that is a star inside a cir-
cle. You can create it by combining a circle with a polygon in a g element, like
this:

<g width=”6cm” height=”6cm” viewBox=”0 0 250 250”>
<circle cx=”115” cy=”115” r=”100” fill=”red” />
<polygon fill=”blue”
points=”33,90 97,90 117,36 137,90 199,90 147,125

167,180 117,146 67,180 85,125”>
</polygon>

</g>

The width and height attributes define the dimensions of the containing block.
The viewBox attribute defines the local coordinate system of the elements con-
tained in the group. This is an abstract system, not one based on any sort of physi-
cal units such as inches, pixels, or ems. The conversion between the local units and
the global units depends on the height and the width of the group. For instance, in

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 888

889Chapter 24 ✦ Scalable Vector Graphics

the preceding example the group’s actual height and width is 6 cm by 6 cm, but its
local width and height is 250 by 250. Thus, each local unit is 0.024 cm (6 cm/250).
As the height and width of the group change, the sizes of the contents of the group
scale proportionately. Furthermore, as you’ll see in the next section, the group can
be copied by use elements that can adjust the actual height and width. In this case,
the contents scale proportionately.

Referencing Shapes
Almost any shape, path, or group in an SVG document can be copied into multiple
different places in the document. The use element refers to an element defined
elsewhere in the document. For example, suppose you defined red and white
squares, like this:

<rect id=”RedSquare”
width=”1in” height=”1in”
fill=”red”/>

<rect id=”WhiteSquare”
width=”1in” height=”1in”
fill=”white”/>

Now suppose you want to place a copy of the red square at coordinates x=3in,
y=3in. This use element does that:

<use x=”3in” y=”3in” xlink:href=”#RedSquare”/>

For this to work, the xlink prefix has to be mapped to the standard XLink names-
pace URI, http://www.w3.org/1999/xlink. This is normally done on the root
element.

It’s customary to put the referenced elements inside a defs element. This hides
them so they won’t be drawn until they’re referenced by a use element, as in the
following example:

<defs>
<rect id=”RedSquare”

width=”1in” height=”1in”
fill=”red”/>

<rect id=”WhiteSquare”
width=”1in” height=”1in”
fill=”white”/>

</defs>

Referencing elements is especially useful if you have many different copies of the
same styled element at different positions. For example, designing a checkerboard
in SVG would normally require 64 different shapes, one for each square on the

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 889

890 Part V ✦ XML Applications

board. However, with use and g, you can reduce that to just 2 rectangles, 2 groups
of rectangles, and 24 use elements. Listing 24-21 demonstrates. Note especially the
nesting of the references. That is, the board uses the rows that use the squares.
Figure 24-23 shows the result of Listing 24-21.

Listing 24-21: A Checkerboard

<?xml version=”1.0” encoding=”utf-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”8in” height=”8in”>

<title>Listing 24-21 from the XML Bible</title>

<defs>

<rect id=”RedSquare”
width=”1in” height=”1in”
fill=”red”/>

<rect id=”BlackSquare”
width=”1in” height=”1in”
fill=”black”/>

<g id=”RowA”>
<use x=”0in” xlink:href=”#RedSquare”/>
<use x=”1in” xlink:href=”#BlackSquare”/>
<use x=”2in” xlink:href=”#RedSquare”/>
<use x=”3in” xlink:href=”#BlackSquare”/>
<use x=”4in” xlink:href=”#RedSquare”/>
<use x=”5in” xlink:href=”#BlackSquare”/>
<use x=”6in” xlink:href=”#RedSquare”/>
<use x=”7in” xlink:href=”#BlackSquare”/>

</g>

<g id=”RowB”>
<use x=”0in” xlink:href=”#BlackSquare”/>
<use x=”1in” xlink:href=”#RedSquare”/>
<use x=”2in” xlink:href=”#BlackSquare”/>
<use x=”3in” xlink:href=”#RedSquare”/>
<use x=”4in” xlink:href=”#BlackSquare”/>
<use x=”5in” xlink:href=”#RedSquare”/>
<use x=”6in” xlink:href=”#BlackSquare”/>
<use x=”7in” xlink:href=”#RedSquare”/>

</g>

</defs>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 890

891Chapter 24 ✦ Scalable Vector Graphics

<use y=”0in” xlink:href=”#RowA”/>
<use y=”1in” xlink:href=”#RowB”/>
<use y=”2in” xlink:href=”#RowA”/>
<use y=”3in” xlink:href=”#RowB”/>
<use y=”4in” xlink:href=”#RowA”/>
<use y=”5in” xlink:href=”#RowB”/>
<use y=”6in” xlink:href=”#RowA”/>
<use y=”7in” xlink:href=”#RowB”/>

</svg>

Figure 24-23: A checkerboard

This is actually not the most compact solution possible. You could build double
rows of two rows each, and then quadruple rows of two double rows each.
However, this is the most straightforward solution.

One thing SVG does not give you, which would be very useful in cases such as this,
is any sort of iterative structure that would let you simply say, “Give me eight rows
of four black squares each spaced two inches apart.” Tasks like this can sometimes
be accomplished with JavaScript and the SVG Document Object Model (DOM).

Note

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 891

892 Part V ✦ XML Applications

Transformations
There are two ways to travel to Jupiter. The first is to get in a rocket ship and fly
yourself there. The second is to pick up the entire universe and drag everything in
the universe except yourself a few hundred million miles so that Jupiter arrives
where you are, with everything else having moved the same amount in the same
direction. Needless to say, one of these solutions is considerably easier to accom-
plish than the other. However, in the abstract, massless world of SVG, that’s not
true. It is just as easy, sometimes even easier, to move the entire universe to where
you want it to be as it is to move a shape or path or group to where it needs to
go. The process of moving the SVG universe is called a coordinate system trans-
formation, and the engine that powers the move is the transform attribute of the g
element.

The coordinate system transformation that moves the universe so that you end up
on Jupiter is called a translation, but this is not the only kind of transformation
available in SVG. In fact, there are six kinds of transformation, each represented by
a different function that can be used in the value of a transform attribute:

✦ translate(dx dy)— Add dx to all x coordinates and dy to all y coordinates.

✦ rotate(θ x y)— Rotate the coordinate system by θ degrees around a z-axis
passing through the point x, y.

✦ scale(sx sy)— Multiply the x coordinates by sx and the y coordinates by sy.

✦ skewX(θ)— Skew the y-axis relative to the x-axis by θ degrees.

✦ skewY(θ)— Skew the x-axis relative to the y-axis by θ degrees.

✦ matrix(a b c d e f)— Multiply all coordinate vectors (x, y, 1) by this
translation matrix:

Translations and rotations are rigid transformations; that is, they preserve the dis-
tance between points. If a line is 70 units long before a translation or a rotation, it is
still 70 units long after a translation or rotation. For that matter, it is still 70 units
long after any combination of translations and rotations. A scaling, by contrast,
might change the sizes of various objects, though their relative sizes will be the
same. A skew can change both objects’ absolute and relative sizes. Finally, a matrix
is a fairly arbitrary transformation that can combine any or all of the other four
transforms, as well as adding a few things those can’t do, such as a flip.

a
b
0

c
d
0

e
f
0

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 892

893Chapter 24 ✦ Scalable Vector Graphics

Coordinate transforms are important tools in SVG and allow you to easily perform
tasks that are otherwise quite difficult; particularly because you don’t have to make
these transformations on the entire canvas at once. Instead, you make it one group
at a time. In each group you use the coordinate space that’s most appropriate for it.
The change from the original coordinate space to the new coordinate space is
defined by the g element’s transform attribute.

For example, consider the pie made up of 45-degree arcs from Listing 24-11. It was
relatively difficult to do all the trigonometry to calculate the proper endpoints of
each of the eight arcs. However, some arcs are easier than others. And once you’ve
got one arc, you can copy it to different positions and rotate each copy. Listing
24-22 is exactly the same pie as Listing 24-11, but it only required one bout with the
calculator and is a smaller document over all.

Listing 24-22: A Pie Formed by Eight Rotated Copies
of One Wedge

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
<title>Listing 24-22 from the XML Bible</title>
<defs>
<path id=”piece”

d=”M 100,100
L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”

fill=”brown” stroke=”black” stroke-width=”1px” />
</defs>

<g transform=”rotate(0 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(45 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(90 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(135 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(180 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(225 100 100)”>
<use xlink:href=”#piece”/>

Continued

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 893

894 Part V ✦ XML Applications

Listing 24-22 (continued)

</g>
<g transform=”rotate(270 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(315 100 100)”>
<use xlink:href=”#piece”/>

</g>

</svg>

Suppose you want to split the pie apart so that there are gaps between the pieces,
as in an exploded drawing. This is relatively difficult to do by manually calculating
the coordinates of each piece. However, it’s very straightforward to do with a trans-
lation. First, you translate the entire picture down and to the right, because as origi-
nally written, it butts up against the top and left edges. Then you rotate each piece
and translate it 4 units to the right and 10 up. Listing 24-23 demonstrates. Figure
24-24 shows the result.

Listing 24-23: An Exploded Pie

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”3.6in” height=”2.8in”>

<title>Listing 24-23 from the XML Bible</title>
<defs>
<path id=”piece”

d=”M 100,100
L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”

fill=”brown” stroke=”black” stroke-width=”1px” />
</defs>

<g transform=”translate(50 50)”>
<g transform=”rotate(0 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(45 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(90 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 894

895Chapter 24 ✦ Scalable Vector Graphics

</g>
<g transform=”rotate(135 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(180 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(225 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(270 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(315 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
</g>

</svg>

Figure 24-24: An exploded
diagram of a pie

In this case each transformation consists of a rotation followed by a translation.
You can string as many of these together as you like. However, transformations are
not always commutative. Order matters in transformations.

Scaling is a very straightforward operation in which the size of everything is multi-
plied by a fixed factor. You can provide different scales for the x and y axes, or just
one scale for both. For example, Listing 24-24 defines several pie pieces, each one
and a half times the size of the previous one. In this example, notice how the coor-
dinate system of the largest piece is actually the product of the multiple groups it’s
enclosed in and the transformations each imposes. Figure 24-25 shows the result.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 895

896 Part V ✦ XML Applications

Listing 24-24: Scaled Pie

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
<title>Listing 24-24 from the XML Bible</title>
<defs>
<path id=”piece”

d=”M 100,100
L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”

fill=”brown” stroke=”black” stroke-width=”1px” />
</defs>

<g transform=”translate(-100 0)”>
<use xlink:href=”#piece”/>
<g transform=”translate(0 50) scale(1.5)”>
<use xlink:href=”#piece”/>
<g transform=”translate(0 50) scale(1.5)”>
<use xlink:href=”#piece”/>
<g transform=”translate(0 50) scale(1.5)”>
<use xlink:href=”#piece”/>

</g>
</g>

</g>
</g>

</svg>

Skewing rotates one axis of the coordinate system, either x or y, but not both. Lines
that appear perpendicular to each other before skewing no longer appear so after
skewing. Figures tend to get squashed and pushed over in one direction or another.

You can skew either the x-axis relative to the y-axis with skewY() or the y-axis rela-
tive to the x-axis with skewX(). Each takes as an argument the number of degrees
to skew the axis by. This is sometimes used for text effects, as demonstrated in
Listing 24-25 and shown in Figure 24-26. The text normally runs along the x-axis,
whereas the letters are oriented parallel to the y-axis. Thus, skewing with respect to
the x axis (skewX()) merely slants the text within a line. However, skewing with
respect to the y-axis (skewY()) changes the baseline of the text but keeps all noni-
talic text pretty much perpendicular to the baseline.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 896

897Chapter 24 ✦ Scalable Vector Graphics

Figure 24-25: Scaled pieces of pie

Listing 24-25: Skewed Text

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”4.6in” height=”4.6in”>
<title>Listing 24-25 from the XML Bible</title>

<g transform=”skewX(45)”>
<text x=”10” y=”72”

font-size=”24pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

X Skewed 45 Degrees
</text>

</g>

<g transform=”skewY(45)”>
<text x=”10” y=”72”

font-size=”24pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

Y Skewed 45 Degrees
</text>

</g>

</svg>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 897

898 Part V ✦ XML Applications

Figure 24-26: Skewed text

All of these transformations — translations, skews, and rotations — are defined math-
ematically as multiplications of vectors by matrixes. An arbitrary two-dimensional
rigid transformation, as well as the nonrigid scales and skews, can be defined in
terms of multiplying the coordinate vector by a particular matrix. Furthermore, any
combinations of translations, scales, skews, and rotations can be defined as multipli-
cation by a matrix that is the product of the matrixes for each of the individual trans-
formations. However, the reverse is not true. Not all matrix transformations can be
decomposed into sequences of rotations, translations, scales, and skews. In particu-
lar, a matrix multiplication can flip the coordinate system; that is, map negative coor-
dinates into positive coordinates and vice versa, or, another way of thinking about it,
flip the entire plane over through the third dimension. The matrix for flipping the
coordinate system around the y-axis looks like this:

If you’re familiar with linear algebra, it should be obvious that this simple diagonal
matrix multiplies the x coordinates by –1 and leaves the y coordinates untouched.
In other words, it transforms vectors such as [x y 1] to [–x y 1]. If you’re not famil-
iar with linear algebra, just take my word for it. In SVG, this matrix is written as [–1
0 0 1 0 0]. (The last row of the transformation matrix is always (0 0 1) in SVG.) Thus,
to flip the coordinate system, you can use this transform:

<g transform=”matrix(-1 0 0 1 0 0)”>
<!-- SVG elements here -->

</g>

-1
0
0

0
1
0

0
0
1

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 898

899Chapter 24 ✦ Scalable Vector Graphics

To flip the y-axis around the x-axis, and thus get a coordinate system in which
increasing y is up, you’d use this transform:

<g transform=”matrix(1 0 0 -1 0 0)”>
<!-- SVG elements here -->

</g>

There are also matrixes for flips about other axes, but they can all be formed as a
flip about the y-axis followed by a translation.

Linking
Because SVG graphics are meant to be used on the Web, it shouldn’t come as any
great surprise that they can contain simple hypertext links. This allows SVG pic-
tures to be used as image maps on web pages without separate map files.

The a element indicates that its contents are a link. This is very similar to the a ele-
ment in HTML and XHTML, and behaves almost identically. However, instead of
using an href attribute, it uses an xlink:href attribute in which the xlink prefix
is mapped to the http://www.w3.org/1999/xlink URI. For example, Listing 24-26
draws nine circles in a 3 by 3 grid. Each circle element is enclosed in an element
that links to a news site such as CNN or the New York Times. When the user clicks
on a circle, the user is transported to the home page of a different news site.

Listing 24-26: Nine Circles Linked to Different Sites

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”3.6in” height=”3.6in”
viewBox=”0 0 300 300”>

<title>Listing 24-26 from the XML Bible</title>

<a xlink:href=”http://www.foxnews.com/”>
<circle r=”20” cx=”25” cy=”25” fill=”yellow”/>

<a xlink:href=”http://www.msnbc.com/”>
<circle r=”20” cx=”75” cy=”25” fill=”blue”/>

<a xlink:href=”http://www.news.com/”>
<circle r=”20” cx=”125” cy=”25” fill=”green”/>

<a xlink:href=”http://www.cnn.com/”>
<circle r=”20” cx=”25” cy=”75” fill=”red”/>

Continued

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 899

900 Part V ✦ XML Applications

Listing 24-26 (continued)

<a xlink:href=”http://www.indymedia.org/”>
<circle r=”20” cx=”75” cy=”75” fill=”orange”/>

<a xlink:href=”http://www.nytimes.com/”>
<circle r=”20” cx=”125” cy=”75” fill=”violet”/>

<a xlink:href=”http://www.guardian.co.uk/”>
<circle r=”20” cx=”25” cy=”125” fill=”indigo”/>

<a xlink:href=”http://www.csmonitor.com/”>
<circle r=”20” cx=”75” cy=”125” fill=”pink”/>

<a xlink:href=”http://news.bbc.co.uk/”>
<circle r=”20” cx=”125” cy=”125” fill=”purple”/>

</svg>

The a element can also have all the other attributes of a simple XLink, including
xlink:role, xlink:arcrole, xlink:title, xlink:type, xlink:show, and
xlink:actuate. xlink:type must have the value simple. xlink:actuate is lim-
ited to onRequest. xlink:show is limited to new and replace. (To embed content
in an SVG document, you have to use image rather than a.) These attributes have
the same meaning and behavior as for any other XLink.

XLinks are discussed in Chapter 17.

Metadata
Graphics, even ones written in XML, can be rather opaque to anyone who can’t see
very well. This class of users includes not only visually impaired people, but also
computer programs such as web spiders, indexers, spell checkers, and so forth. To
make the information normally encoded in graphics more accessible to this class of
users, most of the elements in an SVG document can contain title, desc, and
metadata elements. SVG places no restrictions on the contents of these elements,
except the following:

1. The content must be well-formed XML.

2. The content can use any XML vocabulary, provided a namespace distin-
guishes its elements from SVG’s elements.

Cross-
Reference

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 900

901Chapter 24 ✦ Scalable Vector Graphics

The main difference between these three elements (title, desc, and metadata) is
the rough semantic meaning they imply:

✦ The title element is a short string of generally unmarked-up text. It can be
placed in the title bar of the window showing the picture, as Squiggle does, or
in a ToolTip when the user places the mouse over the titled element.

✦ The metadata element often contains indexing information in some formal
vocabulary such as the Resource Description Framework (RDF), topic maps,
and/or the Dublin Core.

✦ The desc element often contains marked-up text intended for humans to read,
particularly well-formed HTML.

However, in practice they’re pretty much equivalent. Feel free to use whichever ele-
ments seem right to you. For example, a metadata element might contain XHTML
or RDF. The information in the metadata element is intended for non-SVG proces-
sors that need to try to make sense out of the picture. Listing 24-27 adds some
metadata describing the picture of my cat Marjorie originally seen in Listing 24-15.
The title element says this is Listing 24-27 from the XML Bible. The desc element
describes Marjorie with a little HTML. The metadata element contains an RDF
description of this picture. However, when loaded into a browser, the picture hasn’t
changed at all. Metadata is for almost anything except an SVG renderer.

Listing 24-27: RDF and XHTML Metadata Embedded
in an SVG Document

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”300px” height=”320px”>

<title>Listing 24-27 from the XML Bible</title>

<desc>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>

<i>Marjorie</i> is a 9-pound blue British shorthair.
She’s about three years old, loves cameras,
and hates people. She tolerates Beth and me,
barely, but hides in the back of the
bedroom closet anytime company comes over.

</p>

<p>
She’s definitely something of a wimp.
The other cat in our household, <i>Charm</i>, is
constantly attacking her; and, even though she’s a
couple of pounds heavier than him, her only real

Continued

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 901

902 Part V ✦ XML Applications

Listing 24-27 (continued)

defense is to lay down and wait until he gets bored
and runs away. When we got her, we hoped she’d bite
back and teach Charm that biting hurts, but no such
luck. Charm still bites anything and anyone he can
catch: mice, cats, dogs, people, furniture, paper,
computers, household appliances, etc.
If he can catch it, he will bite it.

</p>
</body>

</desc>

<metadata>
<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”#marjorie picture”>
<dc:title>Marjorie the Kitten</dc:title>
<dc:creator
rdf:resource=”mailto:elharo@metalab.unc.edu”/>

<dc:description>
A photo of a grey cat standing on a table
looking into the camera.

</dc:description>
<dc:date>2000-12-21</dc:date>
<dc:type>Photograph</dc:type>
<dc:format>image/jpeg</dc:format>
<dc:rights>
Copyright 2000 Elliotte Rusty Harold

</dc:rights>
</rdf:Description>

<rdf:Description about=”mailto:elharo@metalab.unc.edu”>
<dc:title>Elliotte Rusty Harold</dc:title>

</rdf:Description>

</rdf:RDF>
</metadata>

<image id=”marjorie_picture” xlink:href=”marjorie.jpg”
x=”20px” y=”5px” width=”260px” height=”297px”/>

<text x=”25px” y=”240px”
font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

This is my cat Marjorie.
</text>

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 902

903Chapter 24 ✦ Scalable Vector Graphics

<text x=”25px” y=”255px”
font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

She likes to have her picture taken.
</text>

</svg>

Although the most common place to put title, desc, and metadata elements is at
the top level, as immediate children of the root svg element, they can appear essen-
tially anywhere in the SVG document. For example, if one SVG document contained
multiple image elements, you could give each image element a metadata child to
describe the element.

SVG Editors
Drawing pictures with a keyboard is more than a little like hammering a nail with a
sponge. A keyboard simply isn’t the right tool with which to draw. A mouse is bet-
ter, and a graphics tablet is best of all. Fortunately, you can use more traditional
graphics tools such as Adobe Illustrator and CorelDRAW to produce SVG docu-
ments. Graphics programs that support SVG to some extent include the following:

✦ Adobe Illustrator 9.0 can export graphics as SVG. Version 10.0 can also open
and edit documents saved as SVG. It’s available as payware for both
Macintosh and Windows.

✦ The W3C’s open source Amaya web browser and editor has a very rudimen-
tary drawing tool that produces SVG. However, it’s really little more than a
proof of concept, and thoroughly inadequate for real work.

✦ Jasc Software, best known for Paint Shop Pro, also publishes WebDraw, a
native SVG editor for Windows 95/98/Me/NT4/2000.

✦ CorelDRAW 10 and later for Windows can both import and export SVG
documents.

As time passes, many other traditional graphics tools will add SVG to their reper-
toire, and programs that already support it will improve their support. Soon SVG
will be as ubiquitous in vector drawing programs as GIF and JPEG are today in
bitmapped paint programs.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 903

904 Part V ✦ XML Applications

Summary
In this chapter, you learned about SVG, an XML application for vector graphics rec-
ommended by the W3C. In particular, you learned the following:

✦ SVG provides a standard XML format for vector drawings.

✦ SVG pictures can be included directly in HTML documents for browsers that
understand SVG natively, such as Amaya.

✦ For browsers that don’t understand SVG natively, you can link to SVG pictures
from HTML using EMBED elements and render them with the Adobe SVG Plug-in.

✦ All SVG elements are in the http://www.w3.org/2000/svg namespace.

✦ The root element of an SVG picture is svg.

✦ Rectangles are defined by their upper left corner, width, and height. They are
parallel to the coordinate axes, and are represented by rect elements.

✦ Circles are defined by their center point and radius. They are represented by
circle elements.

✦ Ellipses are defined by their center point, x radius, and y radius. They are par-
allel to the coordinate axes and are represented by ellipse elements.

✦ Line segments are defined by their endpoints. They are represented by line
elements.

✦ Polygons are defined by a list of the points of the corners of the polygon. This
list is stored in a polygon element’s points attribute.

✦ Polylines are just like polygons except that the last point is not automatically
connected back to the first point.

✦ Paths are defined by a path element. The d attribute of a path element con-
tains a list of commands for the path and coordinates for those commands
including move to, line to, arc to, curve to, and close path.

✦ Each path command is represented by a single letter; uppercase if the coordi-
nates are absolute, lowercase if the coordinates are relative.

✦ Shapes and paths can be combined into a single unit called a group and repre-
sented by a g element.

✦ The use element copies a shape, path, or group defined elsewhere in the doc-
ument. An xlink:href attribute containing an XPointer identifies the shape
to draw.

✦ The defs element prevents its contents from being drawn until they’re refer-
enced by a use element.

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 904

905Chapter 24 ✦ Scalable Vector Graphics

✦ CSS styles specify the colors, fonts, and other details of the abstract geomet-
ric shapes defined by the SVG elements. These are attached to shapes, paths,
and groups using a style attribute.

✦ The viewBox attribute of the svg element maps a local coordinate space onto
the actual rectangular canvas where the picture will be drawn.

✦ The transform attribute of the g element can rotate, translate, scale, skew,
and flip SVG shapes.

✦ You can annotate SVG documents and elements with non-SVG information
using title, metadata, and desc elements.

✦ Graphics programs such as Adobe Illustrator are often a better way to pro-
duce SVG documents than typing raw code in a text editor.

This and the last several chapters, looked at a variety of XML applications designed
by third parties that are ready for you to use today. Chapter 25 changes gears and
explains how to design a new XML application from scratch that covers genealogy.

✦ ✦ ✦

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 905

30 549863 Ch24.qxd 1/28/04 9:50 AM Page 906

Designing
a New XML
Application

The last several chapters discussed XML applications that
were already invented by other people and showed you

how to use them. This chapter shows you how to develop an
XML application from scratch. This chapter builds an XML
application and associated document type definitions (DTDs)
for genealogical data from the ground up.

Organization of the Data
When developing a new XML application, you need to orga-
nize, either in your head or on paper, the data you’re describ-
ing. There are three basic steps in this process:

1. List the elements.

2. Identify the fundamental elements.

3. Relate the elements to each other.

An easy way to start the process is to explore the forms and
reports that are already available from other formats that
describe this data. Genealogy is a fairly well established disci-
pline, and genealogists have a fairly good idea of what infor-
mation is and is not useful and how it should be arranged.
This is often included in a family group sheet, a sample of
which is shown in Figure 25-1.

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Organization
of the data

Choosing a
namespace

Persons

Families

Sources

The family tree

Modularizing
the DTDs

A style sheet
for family trees

A RDDL document
for family trees

✦ ✦ ✦ ✦

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 907

908 Part V ✦ XML Applications

Figure 25-1: A family group sheet

You’ll need to duplicate and organize the fields from the standard reports in your
DTD to the extent that they match what you want to do. You can, of course, supple-
ment or modify them to fit your specific needs.

Object-oriented programmers will note many similarities between what’s
described in this section and the techniques they use to gather user requirements.
This is partly the result of my own experience and prejudices as an object-oriented
programmer, but more of it is due to the similarity of the tasks involved. Gathering
user requirements for software is not that different from gathering user require-
ments for markup languages. Database designers may also notice a lot of similar-
ity between what’s done here and what they do when designing a new database.

Note

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 908

909Chapter 25 ✦ Designing a New XML Application

Listing the elements
The first step in developing an XML application for a domain is to decide what the
elements are. This isn’t hard. It mostly involves brainstorming to determine what
may appear in the domain. As an exercise, write down everything you can think of
that may be genealogical information. To keep the problem manageable, include
only genealogical data. Assume you can use XHTML for standard text information
such as paragraphs, page titles, and so forth. Again, include only elements that
specifically apply to genealogy.

XHTML is discussed in Chapters 21 and 22.

Don’t be stingy. It’s easy to remove information later if there’s too much of it or
something doesn’t prove useful. At this stage, expect to have redundant elements
or elements that you’ll throw away after further thought.

Here’s the list I came up with. Your list will be at least a little different. Of course,
you may have used different names for the same things. That’s okay. There’s no one
right answer (which is not to say that all answers are created equal or that some
answers aren’t better than others).

Cross-
Reference

Father

Parent

Baptism

Note

Aunt

Mother

Child

Adoption

Gravesite

Niece

Person

Baby

Gender

Source

Grandparent

Family

Birthday

Burial

Surname

Grandmother

Son

Death date

Grandfather

Given name

Uncle

Daughter

Marriage

Date

Middle name

Nephew

Husband

Wife

Spouse

Ancestor

Descendant

Identifying the fundamental elements
The list in the last section has some effective duplicates and some elements that
aren’t really necessary. It’s probably missing a few elements as well, which you’ll
discover as you continue. This is normal. Developing an XML application is an itera-
tive process that takes some time before you feel comfortable with the result.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 909

910 Part V ✦ XML Applications

What you really need to do at this stage is determine the fundamental elements of
the domain. These are likely to be those elements that appear as immediate chil-
dren of the root, rather than contained in some other element. There are two real
possibilities here: family and person. Most of the other items in the list are either
characteristics of a person or family (occupation, birthday, marriage) or they’re a
kind of family or person (uncle, parent, baby).

At this stage, most people’s instinct is to say that family is the only fundamental ele-
ment, and that families contain people. This is certainly consistent with the usage
of the terms parent and child to describe the relationships of XML elements (a
usage I eschew in this chapter to avoid confusion with the human parents and chil-
dren being modeled). For example, you might imagine that a family looks like this:

<FAMILY>
<HUSBAND>Samuel English Anderson</HUSBAND>
<WIFE>Cora Rucker McDaniel</WIFE>
<CHILD>Judson McDaniel Anderson</CHILD>
<CHILD>Thomas Corwin Anderson</CHILD>
<CHILD>Rodger French Anderson</CHILD>
<CHILD>Mary English Anderson</CHILD>

</FAMILY>

However, there’s a problem with this approach. A single person likely belongs to
more than one family. I am both the child of my parents and the husband of my
wife. That’s two different families. Perhaps you can think of this as one extended
family, but how far back does this go? Are my grandparents part of the same family?
My great-grandparents? My in-laws? Genealogists generally agree that for the pur-
poses of keeping records, a family is a mother, a father, and their children.

Of course, the real world isn’t that simple. Some people have both adoptive and
biological parents. Many people have more than one spouse over a lifetime. My
father-in-law, Sidney Hart Anderson, was married 15 separate times to 12 different
women. Admittedly, Sidney is an extreme case. When he died, he was only four mar-
riages away from tying the world record for serial marriage. (Since then, former
Baptist minister Glynn Wolfe pushed the record to 29 consecutive marriages, but he
lived almost 40 years longer than Sidney did.) Nonetheless, you do need to account
for the likelihood that the same people belong to different families.

The standard family group sheets used by the Mormons, a variation of which was
shown in Figure 25-1, account for this by repeating the same people and data on dif-
ferent sheets. But for computer applications it’s better not to store the same infor-
mation more than once. Among other things, this avoids problems where data
stored in one place is updated while data stored in another is not. Instead, you can
make connections between different elements by using ID and IDREF attributes.

Thus, it is not enough to have only a single fundamental family element. There must
be at least one other fundamental element — the person. Each person is unique.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 910

911Chapter 25 ✦ Designing a New XML Application

Each has a single birthday, a single death date, most of the time (though not
always) a single name, and various other data. Families are composed of different
collections of persons. By defining the persons who make up a family, as well as
their roles inside the family, you define the family.

We often think of our family as an extended family including grandparents, daugh-
ters-in-law, uncles, aunts, and cousins, and perhaps biologically unrelated individ-
uals who happen to live in the same house. However, in the context of genealogy,
a family is a single pair of parents and their children. In some cases, the names of
these people may be unknown, and in many cases there may be no children or no
husband or wife (a single individual qualifies as a family of one). However, a fam-
ily does not include more distant relationships. A large part of genealogy is the
establishment of the actual biological or adoptive relationships between people.
It’s not uncommon to discover in the course of one’s research that the Cousin
Puss or Aunt Moot referred to in old letters was in fact no relation at all! Such peo-
ple should certainly be included in your records, but failure to keep their actual
connections straight can only lead to confusion farther down the road.

There’s one more key element that may or may not be a direct child of the root.
That’s the source for information. A source is like a bibliographical footnote, speci-
fying where each piece of information came from. The source may be a magazine
article such as “Blaise Pradel, Man At Arms, May/June 1987, pp. 26–31”; a book such
as “A Sesquicentennial History of Kentucky by Frederik A. Wallis & Hambleon Tapp,
1945, The Historical Record Association, Hopkinsville, KY”; a family Bible such as
“English-Demint Anderson Bible, currently held by Beth Anderson in Brooklyn”; or
simply word of mouth such as “Anne Sandusky, interview, 6-12-1995”.

Tracking the source for a particular datum is important because different sources
often disagree. It’s not uncommon to see birth and death dates that differ by a day
or a year, plus or minus. Less common, but still too frequent, are confusions
between parents and grandparents, aunts and cousins, names of particular people,
and more. When you uncover information that disputes information you’ve already
collected, it’s important to make a reasonable judgment about whether the new
information is more reliable than the old. Not all sources are equally reliable. In my
own research I’ve found a document claiming to trace my wife’s lineage back to
Adam and Eve through assorted biblical figures and various English royalty from
the Middle Ages. Needless to say, I don’t take this particular source very seriously.

I can think of plausible reasons to make the source a child of the individual ele-
ments it documents, but ultimately I think the source is not part of a person or a
family in the same way that a birth date or marriage date belongs to a particular
person. Rather, it is associated information that should be stored separately and
referenced through an ID. The main reason is that a single source, such as an old
family Bible, may well contain data about many different people and families. In
keeping with principles of data normalization, I’d prefer not to repeat the informa-
tion about the source more than once in the document. If you like, think of this as
akin to using endnotes rather than footnotes.

Note

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 911

912 Part V ✦ XML Applications

Establishing relationships among the elements
The third and final step before actually designing the application and writing the
DTD is to identify how the different pieces of information you want to track are con-
nected and what they contain. You’ve determined that the three fundamental ele-
ments are the person, the family, and the source. Now you must decide what you
want to include in these fundamental elements.

Family
A family is generally composed of a husband, a wife, and zero or more children.
Either the husband or the wife is optional. If you wish to account for same-sex mar-
riages (something most genealogy software couldn’t do until recently), simply
require one or two parents or spouses without specifying gender. Gender can then
be included as an attribute of a person, which is where it probably belongs anyway.

There’s some question about the proper names for these elements. Husband and
wife may not be exactly the right words for unmarried couples, or for single people
who never married. Many genealogists prefer father and mother instead, although,
again, that’s not really accurate when describing either couples or single people
who never had children. You could be excessively clinical and call them the male
and the female, or perhaps man and woman, but that doesn’t really identify the rela-
tionship. For purposes of this book, I’m going to choose husband and wife; but you
should be aware that the proper choice of names can be somewhat fraught and
highly emotional.

Is there other information associated with a family, as opposed to individuals in the
family? I can think of one thing that is important to genealogists: marriage informa-
tion. The date and place a couple was married (if any) and the date and place a cou-
ple was divorced (again, if any) are important information. Although you could
include such dates as part of each married individual, it really makes sense to make
it part of the family. Given that, a family looks something like this:

<FAMILY>
<MARRIAGE>
<DATE>...</DATE>
<PLACE>...</PLACE>

</MARRIAGE>
<DIVORCE>
<DATE>...</DATE>
<PLACE>...</PLACE>

</DIVORCE>
<HUSBAND>...</HUSBAND>
<WIFE>...</WIFE>
<CHILD>...</CHILD>
<CHILD>...</CHILD>
<CHILD>...</CHILD>

</FAMILY>

Information can be omitted if it isn’t relevant (for example, you wouldn’t include a
DIVORCE element for a couple that never divorced) or if you don’t know it.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 912

913Chapter 25 ✦ Designing a New XML Application

Person
The PERSON element is likely to be more complex. Let’s review the standard infor-
mation you’d want to store about a person:

✦ Name

✦ Gender

✦ Birth date

✦ Baptism date

✦ Death date

✦ Burial date and place

✦ Father

✦ Mother

Of these, name, birth, baptism, death, and burial are likely to be elements contained
inside a person. Gender is probably best modeled as an optional attribute with a
fixed-value list. Father and mother are likely to be attributes of the person that refer
back to the person elements for those people. Furthermore, a person needs an ID
attribute so he or she can be referred to by family and other person elements.

Father and mother seem to be borderline cases where you might get away with
using attributes, but there is the potential to run into trouble. Although everyone
has exactly one biological mother and one biological father, many people have
adoptive parents that may also need to be connected to the person.

Names are generally divided into family name and given name. This allows you to
do things such as write a style sheet that boldfaces all people with the last name
Harold.

Birth, death, burial (and possibly baptism — sometimes a baptismal record is all
that’s available for an individual) can all be divided into a date (possibly including a
time) and a place. Again, the place may simply be CDATA, or it can even be a full
address element. However, in practice, full street addresses that the post office
could deliver mail to are rarely available. Much more common are partial addresses
such as Mount Sterling, Kentucky, or the name of an old family farm.

Dates can either be stored as text or broken up into day, month, and year. In gen-
eral, it’s easier to break them into day, month, and year than to stick to a common
format for dates. On the other hand, allowing arbitrary text inside a date element
also allows for imprecise dates such as 1919-20, before 1753, or about 1800.

That may seem like everything, but one of the most interesting and important
pieces of all has been omitted — notes. A note about a person may contain simple
data, such as “first Eagle Scout in Louisiana,” or it may contain a complete story,
such as how Sam Anderson was killed in the field. This may be personal informa-
tion, such as religious affiliation, or it may be medical information, such as which

Caution

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 913

914 Part V ✦ XML Applications

ancestors died of stomach cancer. If you’ve got a special interest in particular infor-
mation such as religion or medical history, you can make that a separate element of
its own, but you should still include some element that can hold arbitrary informa-
tion of interest that you dig up during your research.

There are other things that you could include in a PERSON element — photographs,
for example — but I’ll stop here so that this chapter remains manageable. Let’s
move on to the SOURCE element.

Source
The third and final top-level element is SOURCE. A source is bibliographic informa-
tion that says where you learned a particular fact. It can be a standard citation to a
published article or book such as Collin’s History of Kentucky, Volume II, p. 325,
1840, 1875. Sources such as this have a lot of internal structure that could be cap-
tured with elements such as BOOK, AUTHOR, VOLUME, PAGE_RANGE, YEAR, and so
forth.

Several efforts are currently underway to produce DTDs for generic bibliographies.
The one that seems furthest along is BiblioML (http://www.biblioml.org/) from
France’s Ministère de la culture et de la communication, Mission de la recherche et
de la technologie. BiblioML is based on the international standard Unimarc
Bibliographic Format. Unfortunately, this isn’t finished as of late 2003.

Furthermore, sources in genealogy tend to be lot messier than in the typical term
paper. For instance, one of the most important sources in genealogy can be the fam-
ily Bible, with records of births, dates, and marriages. In such a case, it’s not the
edition, translation, or the publisher of the Bible that’s important; it’s the individual
copy that resides in Aunt Doodie’s house. For another example, exactly how do you
cite an obituary you found in a 50-year-old newspaper clipping in a deceased rela-
tive’s purse? Chances are the information in the obituary is accurate, but it’s not
easy to figure out exactly what page of what newspaper on what date it came from.

Because developing an XML application for bibliographies could easily be more
than a chapter of its own and is a task best left to professional informaticians, I will
satisfy myself with making the SOURCE element contain only character data. It will
also have an ID attribute in the form s1, s2, s3, and so forth, so that each source
can be referred to by different elements. Let’s move on to writing the DTD that doc-
uments this XML application.

Choosing a Namespace
Although not all XML applications need to use namespaces, most public ones should
probably use them. Namespaces are the standard way to identify which elements
belong with which software when multiple XML vocabularies get mixed together.
Even if you plan to keep your documents simple and not mix them with any outside
vocabulary, there’s no guarantee that other people who use your application will not

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 914

915Chapter 25 ✦ Designing a New XML Application

mix them. For example, even though you think of a genealogy document as an indi-
visible whole, somebody else might make it a part of a SOAP request.

The namespace URI you pick should be a URL and should be resolvable, because
you’re eventually going to want to put a RDDL document there. It should probably
use the HTTP protocol unless you’ve got a really good reason to pick something
else. Most importantly, the URL should be persistent. It needs to be in a domain
name that will remain stable. Thus, it really needs to be in a domain you own. You
should not use URLs at free hosts such as GeoCities or ISP user accounts. If you
change your ISP for any reason, the namespace URL should still be usable. I have an
account at IBiblio so I could use the namespace URL http://www.ibiblio.org/
xml/namespaces/genealogy/. However, IBiblio has changed its name several
times since I started there. It used to be metalab.unc.edu, and before that, it was
sunsite.unc.edu. This sort of instability is not acceptable in a host responsible
for namespace resolution. Consequently, I will pick a host in a domain I own,
cafeconleche.org. Furthermore I’m going to dedicate a specific host just to
namespaces, ns.cafeconleche.org, so that the namespace URI will begin http://
ns.cafeconleche.org/. However, it’s equally feasible, and indeed more common,
just to set up a special directory on my main web server; for example, http://
www.cafeconleche.org/namespaces/.

For the sake of convenience, the namespace URL should probably point to a direc-
tory rather than to a specific file. You can put the RDDL document in the index file
for this directory. The name of this directory should reflect the name of the applica-
tion you’re developing. I’m writing about genealogy, so my full namespace URL will
be http://ns.cafeconleche.org/genealogy/.

If I wanted to, I could pick a standard prefix at this point, but I’m not going to do
that. I expect that most of my genealogy documents will reside in their own files, so
I’m not going to need any prefix. The default namespace will do fine. However, I will
be careful to design the application in such a way that if someone else wants to add
a prefix at a later point, it’s straightforward for them to do so.

Persons
By using external entity references or XInclude, it’s possible to store individual peo-
ple in separate files, and then pull them together into families and family trees later.
So, let’s begin by working on an XML application for a single person. The next sec-
tions will merge this into a larger XML application for families and family trees.

A sample person
To develop a DTD or schema, it’s often useful to work backwards — that is, first
write out the XML markup you’d like to see using a real example or two, then write
the DTD that matches the data. I’m going to use my great-grandfather-in-law Samuel
English Anderson as an example, because I have enough information about him to

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 915

916 Part V ✦ XML Applications

serve as a good example, and also because he’s been dead long enough that no one
should get upset over anything I say about him. (You’d be amazed at the scandals
and gossip you dig up when doing genealogical research.) Here’s the information I
have about Samuel English Anderson, more or less as it appears in a standard
genealogy database:

Name: Samuel English Anderson29, 43

Birth: 25 Aug 1871 Sideview

Death: 10 Nov 1919 Mt. Sterling, KY

Father: Thomas Corwin Anderson (1845–1889)

Mother: LeAnah (Lee Anna, Annie) DeMint English (1843–1898)

Misc. Notes219

Samuel English Anderson was known in Montgomery County for his red hair
and the temper that went with it. He did once kill a man, but the court found
that it was in self-defense.

He was shot by a farm worker whom he had fired the day before for smoking
in a tobacco barn. Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the barn. Hamp also claims that
old-time rumors say they mashed his head with a fence post. Beth heard he
was cut to death with machetes in the field, but Hamp says they wouldn’t be
cutting tobacco in November, only stripping it in the barn.

Now let’s reformat this into XML as shown in Listing 25-1.

Listing 25-1: An XML Document for Samuel English Anderson

<?xml version=”1.0”?>
<PERSON ID=”p37” SEX=”M”

xmlns=”http://ns.cafeconleche.org/genealogy/”>
<REFERENCE SOURCE=”s29”/>
<REFERENCE SOURCE=”s43”/>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 916

917Chapter 25 ✦ Designing a New XML Application

<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
<SPOUSE PERSON=”p1099”/>
<SPOUSE PERSON=”p2660”/>
<FATHER PERSON=”p1035”/>
<MOTHER PERSON=”p1098”/>
<NOTE>
<REFERENCE SOURCE=”s219”/>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>
Samuel English Anderson was known in Montgomery County
for his red hair and the temper that went with it. He
did once kill a man, but the court
found that it was in self-defense.

</p>

<p>
He was shot by a farm worker whom he had
fired the day before for smoking in a tobacco barn.
Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the
barn. Hamp also says old-time rumors say they mashed
his head with a fence post. Beth heard he was cut to
death with machetes in the field, but Hamp says they
wouldn’t be cutting tobacco in November, only
stripping it in the barn.

</p>
</body>

</NOTE>
</PERSON>

The information about other people has been removed and replaced with references
to them. The ID numbers are provided by the database I use to store this informa-
tion (Reunion 5.0 from Leister Productions, http://www.leisterpro.com). The
endnote numbers become SOURCE attributes of REFERENCE elements. HTML tags are
used to mark up the note.

Eventually you might need to add a document type declaration, schema location
attributes, and xml-stylesheet processing instructions to this document.
However, that can wait. For now, you just need a basic example from which you can
work when writing the DTD. Exactly what you put in the document type declaration
and/or the schema location attributes will depend on exactly what you come up
with when you write the DTD, schema, and style sheet.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 917

918 Part V ✦ XML Applications

The person DTD
Now let’s see what a DTD for Listing 25-1 would look like. I’m going to begin with the
simplest DTD just to get started. However, once the DTD is finished, I’ll parameter-
ize it so users can adjust the namespace prefix. But it’s certainly easier to begin
with a less indirect approach until the basic application is debugged.

The first element is PERSON. This element may contain names, references, births,
deaths, burials, baptisms, notes, spouses, fathers, and mothers. I’m going to allow
zero or more of each in any order.

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | SPOUSE | FATHER | MOTHER)*>

At first glance it may seem strange not to require a BIRTH or some of the other ele-
ments. After all, everybody has exactly one birthday. However, keep in mind that
what’s being described here is more your knowledge of the person than the person
him- or herself. You often know about a person without knowing the exact day or
even year they were born. Similarly, you may sometimes have conflicting sources
that give different values for birthdays or other information. Therefore, it may be
necessary to include extra data.

The PERSON element has three attributes: xmlns, which I’ll make fixed; ID, which I’ll
require; and a SEX, which I’ll make optional. (Old records often contain children of
unspecified gender, sometimes named, sometimes not. Even photographs can be
unclear about gender, especially when children who died very young are involved.)

<!ATTLIST PERSON
xmlns CDATA #FIXED “http://ns.cafeconleche.org/genealogy/”
ID ID #REQUIRED
SEX (M | F) #IMPLIED>

Next, the child elements must be declared. Four of them —BIRTH, DEATH, BURIAL,
and BAPTISM— consist of a place and a date, and are otherwise the same. This is a
good place for a parameter entity reference:

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)*”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>
<!ELEMENT BURIAL %event;>

I’ve also added one or more optional REFERENCE elements at the start, even though
this example doesn’t have a SOURCE for any event information. Sometimes you’ll
have different sources for different pieces of information about a person. In fact, I’ll
add REFERENCE elements as potential children of almost every element in the DTD.
I declare REFERENCE like this, along with a comment in case it isn’t obvious from
glancing over the DTD exactly what’s supposed to be found in the reference:

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 918

919Chapter 25 ✦ Designing a New XML Application

<!-- The ID number of a SOURCE element
that documents this entry -->

<!ELEMENT REFERENCE EMPTY>
<!ATTLIST REFERENCE SOURCE NMTOKEN #REQUIRED>

Here the SOURCE attribute merely contains the number of the corresponding
source. When actual SOURCE elements are added to the DTD, this can become the
ID of the SOURCE element.

A PLACE contains only text. A DATE contains a date string. I decided against requir-
ing a separate year, date, and month to allow for less-certain dates that are common
in genealogy, such as “about 1876” or “sometime before 1920”.

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

The SPOUSE, FATHER, and MOTHER attributes each contain a link to the ID of a PERSON
element via a PERSON attribute. Again, this is a good opportunity to use a parameter
entity reference:

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

Ideally, the PERSON attribute would have type IDREF. However, as long as the per-
son being identified may reside in another file, the best you can do is require a
name token type.

The NAME element may contain any number of REFERENCE elements and zero or one
SURNAME and GIVEN elements. Each of these may contain text.

<!ELEMENT NAME (REFERENCE*, GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>

The NOTE element may contain an arbitrary amount of text. Some standard markup
would be useful here. The easiest solution is to adopt XHTML Basic. Simply use a
parameter entity reference to import the XHTML Basic DTD. I’ll allow each NOTE to
contain zero or more REFERENCE elements and a single body element:

<!ENTITY % xhtml PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“xhtml-basic10.dtd”>

%xhtml;
<!ELEMENT NOTE (REFERENCE*, body)>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 919

920 Part V ✦ XML Applications

Those three little lines get you all the markup you need for simple narratives.
There’s no need to invent your own. You can use the already familiar and well-
supported HTML tags. I chose to use only body because adding a header here seemed
a little superfluous, but if you want to include complete HTML documents, it’s easy
to do — just replace body with html in the above. This does assume that the file
xhtml-basic10.dtd and all the files it depends on can be found in the same directory
as this DTD, although that’s easy to adjust if you want to put it somewhere else. You
could even use the absolute URL at the W3C web site, http://www.w3.org/TR/
xhtml-basic/xhtml-basic10.dtd, although I prefer not to make my documents
dependent on the availability of a web site I don’t control. Listing 25-2 shows the
complete person DTD.

Listing 25-2: person.dtd: The Complete PERSON DTD

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | FATHER | MOTHER | SPOUSE)* >

<!ATTLIST PERSON
xmlns CDATA #FIXED “http://ns.cafeconleche.org/genealogy/”
ID ID #REQUIRED>

<!ATTLIST PERSON SEX (M | F) #IMPLIED>

<!-- The ID number of a SOURCE element that documents
this entry -->

<!ELEMENT REFERENCE EMPTY>
<!ENTITY % sourceref “SOURCE NMTOKEN #REQUIRED”>
<!ATTLIST REFERENCE %sourceref;>

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>
<!ELEMENT BURIAL %event;>

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

<!ELEMENT NAME (GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 920

921Chapter 25 ✦ Designing a New XML Application

<!ENTITY % xhtml PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“xhtml-basic10.dtd”>

%xhtml;

<!ELEMENT NOTE (REFERENCE*, body)>

Listing 25-2 is a complete DTD for PERSON elements. It’s straightforward and reason-
ably easy to understand. Or is it? Perhaps it only seems so to me because I wrote it.
If it’s obvious to you, that may only be because you were treated to several pages of
exposition and development before you looked at Listing 25-2. What will it look like
to someone just staring at the DTD cold? In general, I haven’t overly commented
the examples in this book because the prose text explains what’s going on.
However, most real-world DTDs don’t come attached to a 800+ page printed book.
Thus, actual DTDs need a lot more exposition inside the DTD itself. This normally
takes the form of XML comments. Listing 25-3 demonstrates. The DTD is almost
twice as long, but correspondingly much easier to understand.

Listing 25-3: commented_person.dtd: The PERSON DTD
with Comments

<!-- ... -->
<!-- Genealogy Person DTD -->
<!-- file: person.dtd

This DTD describes a PERSON element intended for use
in family tree documents. It was developed as an example
for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Person DTD 1.0//EN”
SYSTEM “person.dtd”

All the elements declared in this DTD are in the
http://ns.cafeconleche.org/genealogy/ namespace.
No prefix is used. The attributes are in no namespace.

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 921

922 Part V ✦ XML Applications

Listing 25-3 (continued)

It is not a formal standard, and has not been considered
or approved by any standards body.

.. -->

<!-- PERSON is the root element of documents that use this
DTD. However, it is more intended to be used as a part
of larger XML applications which would contain multiple
PERSON elements in a single document. -->

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | FATHER | MOTHER | SPOUSE)* >

<!ATTLIST PERSON
xmlns CDATA #FIXED “http://ns.cafeconleche.org/genealogy/”
ID ID #REQUIRED>

<!ATTLIST PERSON
xmlns:xsi CDATA #FIXED

“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation CDATA #IMPLIED

>

<!--M means male, F means female -->
<!ATTLIST PERSON SEX (M | F) #IMPLIED>

<!-- The ID number of a SOURCE element that documents
this entry -->

<!ELEMENT REFERENCE EMPTY>
<!ENTITY % sourceref “SOURCE NMTOKEN #REQUIRED”>
<!ATTLIST REFERENCE %sourceref;>

<!-- Events are occurrences at a certain
time and place, though the exact time and place may
not be known for certain. Events include marriages,
births, deaths, baptisms, and burials. -->

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>
<!ELEMENT BURIAL %event;>

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

<!-- A person reference is a pointer to another person
encoded in a PERSON element. The pointer is the ID
of the PERSON pointed to. -->

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 922

923Chapter 25 ✦ Designing a New XML Application

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

<!-- Middle names should be encoded as part of the
given name; e.g.
<NAME>
<GIVEN>Elliotte Rusty</GIVEN>
<SURNAME>Harold</SURNAME>

</NAME>
-->
<!ELEMENT NAME (GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>

<!-- The NOTE element contains an XHTML Basic body element
holding the text of the note. This allows you to write
essentially anything you care to write in a note.

-->
<!ENTITY % xhtml PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”

“xhtml-basic10.dtd”>
%xhtml;

<!ELEMENT NOTE (REFERENCE*, body)>

There are a number of useful bits of information in the comments that are not found
in the element and attribute declarations:

✦ Copyright information so that users know how and where they can use it
(any way they please in this case)

✦ An e-mail address to write to if the user has questions

✦ The public identifier and the suggested filename and system identifier

✦ What abbreviations stand for

✦ What the text content of some elements should look like

This isn’t the limit, either. You could certainly add a lot more detail in the com-
ments, up to and including the complete prose specification for the application.
Validators can easily skip over the comments. Human readers may find well-written
comments more useful than the declarations.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 923

924 Part V ✦ XML Applications

The person schema
Now that the DTD is finished, let’s see what a W3C XML Schema Language schema
for Listing 25-1 would look like. The key element is PERSON. This is an element with
complex content, and it is the root element of the document. Therefore, it must be
declared with a top-level xsd:element element. The big question for this, and
other elements with author-defined types, is whether it should be declared with a
named type or an anonymous type. Generally, a named type should be used if you
expect the element or the type to be used in many different contexts and you want
to reuse the type. Although the PERSON element and type are only used in one con-
text in Listing 25-1, it’s clear it will be used as a nonroot element in the full family
tree document. Thus, it’s best to define it as a type of its own.

The application is the same as it was in the DTD, so you don’t need to revisit all the
questions about what makes up a person. You can just translate the existing declara-
tion of the PERSON element in the DTD into a schema. In the DTD, this declaration is:

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | SPOUSE | FATHER | MOTHER)*>

Translating into an xsd:complexType element, this becomes

<xsd:complexType name=”PersonType”>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”NAME” type=”NameType”/>
<xsd:element name=”REFERENCE” type=”ReferenceType”/>
<xsd:element name=”BIRTH” type=”BirthType”/>
<xsd:element name=”DEATH” type=”DeathType”/>
<xsd:element name=”BURIAL” type=”BurialType”/>
<xsd:element name=”BAPTISM” type=”BaptismType”/>
<xsd:element name=”NOTE” type=”NoteType”/>
<xsd:element name=”SPOUSE” type=”SpouseType”/>
<xsd:element name=”FATHER” type=”FatherType”/>
<xsd:element name=”MOTHER” type=”MotherType”/>

</xsd:choice>
</xsd:complexType>

However, this does raise some new questions about the type of each of the child
elements of the PERSON that the DTD does not answer. All of these elements, at
least potentially, have either child elements or attributes, so they’re all complex
types. However, is each of them really a different type? The answer is no. For exam-
ple, BURIAL, BAPTISM, BIRTH, and DEATH all contain the same child elements and
should share a content model. In the DTD, this was indicated by parameter entity
references. In a schema, the same effect is achieved by defining one EventType and
assigning it to all the elements that share that type:

<xsd:complexType name=”EventType”>
<xsd:sequence>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 924

925Chapter 25 ✦ Designing a New XML Application

<xsd:element name=”REFERENCE” type=”ReferenceType”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PLACE” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”DATE” type=”xsd:string” minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

I chose to make PLACE and DATE strings rather than dates for the same reasons
they were made #PCDATA in the DTD. In this particular application, dates tend to be
quite fuzzy.

Similarly FATHER, MOTHER, and SPOUSE are all just instances of some kind of
PersonRefType, an empty element with a PERSON NMTOKEN attribute:

<xsd:complexType name=”PersonRefType”>
<xsd:attribute name=”PERSON” type=”xsd:NMTOKEN”/>

</xsd:complexType>

Eventually, of course, you’ll want to change the type of the PERSON attribute from
xsd:NMTOKEN to xsd:IDREF when you build the full family tree schema by overrid-
ing the definition of PersonRefType given here.

This still leaves NameType, ReferenceType, and NoteType. These do need their
own declarations. The NAME element is only used here, so it might as well use an
anonymous type declaration:

<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”GIVEN” type=”xsd:string”

minOccurs=”0” />
<xsd:element name=”SURNAME” type=”xsd:string”

minOccurs=”0” />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

The reference type will be used in many places in the schema, so it should have a
named type:

<xsd:complexType name=”ReferenceType”>
<xsd:attribute name=”SOURCE” type=”xsd:NMTOKEN”/>

</xsd:complexType>

The note type will also be used in multiple places, so it too has a named type.
However, its declaration is much trickier because one of the elements it contains,

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 925

926 Part V ✦ XML Applications

body, comes from a different namespace. Thus, you first have to import the schema
for XHTML to retrieve the necessary declarations for that namespace:

<xsd:import namespace=”http://www.w3.org/1999/xhtml”
schemaLocation=”xhtml1.1.xsd”/>

I’m using the full schema for XHTML here only because a schema for XHTML Basic
wasn’t available at the time of this writing. It would be easy enough to adjust this
when one does become available. The relative URL used here assumes that the file
xhtml1.1.xsd and all the files it depends on can be found in the same directory as
this schema.

Because the body element is declared in a different schema, I declare it here by ref-
erence rather than by name and type. Because the default namespace in this
schema is already mapped to http://ns.cafeconleche.org/genealogy/, I also
have to put a prefix on the body element and declare that prefix with an
xmlns:html attribute:

<xsd:complexType name=”NoteType”
xmlns:html=”http://www.w3.org/1999/xhtml”>

<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” />
<xsd:element ref=”html:body”/>

</xsd:sequence>
</xsd:complexType>

However, none of this means that you have to use such prefixes in your instance
documents. Schemas validate against namespace URIs, not prefixes. The prefixes
used here are chosen purely for convenience inside the schema. They do not apply
in the instance documents.

The PERSON element also has three attributes: xmlns, which doesn’t have to be
declared in a schema, ID, which I’ll require, and SEX, which I’ll make optional:

<xsd:attribute name=”ID” xsd:type=”ID” use=”required”/>
<xsd:attribute name=”SEX”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”M”/>
<xsd:enumeration value=”F”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>

After adding all these pieces and putting them together, the completed person
schema is shown in Listing 25-4:

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 926

927Chapter 25 ✦ Designing a New XML Application

Listing 25-4: person.xsd: The Complete PERSON Schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/genealogy/”
xmlns:html=”http://www.w3.org/1999/xhtml”
targetNamespace=”http://ns.cafeconleche.org/genealogy/”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:import namespace=”http://www.w3.org/1999/xhtml”
schemaLocation=”xhtml1.1.xsd”/>

<xsd:complexType name=”EventType”>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PLACE” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”DATE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”PersonRefType”>
<xsd:attribute name=”PERSON” type=”xsd:NMTOKEN”/>

</xsd:complexType>

<xsd:complexType name=”ReferenceType”>
<xsd:attribute name=”SOURCE” type=”xsd:NMTOKEN”/>

</xsd:complexType>

<xsd:complexType name=”NoteType”
xmlns:html=”http://www.w3.org/1999/xhtml”>

<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” />
<xsd:element ref=”html:body”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”PersonType”>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” maxOccurs=”unbounded”/>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 927

928 Part V ✦ XML Applications

Listing 25-4 (continued)

<xsd:element name=”GIVEN” type=”xsd:string”
minOccurs=”0” />

<xsd:element name=”SURNAME” type=”xsd:string”
minOccurs=”0” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”REFERENCE” type=”ReferenceType”/>
<xsd:element name=”BIRTH” type=”EventType”/>
<xsd:element name=”DEATH” type=”EventType”/>
<xsd:element name=”BURIAL” type=”EventType”/>
<xsd:element name=”BAPTISM” type=”EventType”/>
<xsd:element name=”NOTE” type=”NoteType”/>
<xsd:element name=”SPOUSE” type=”PersonRefType”/>
<xsd:element name=”FATHER” type=”PersonRefType”/>
<xsd:element name=”MOTHER” type=”PersonRefType”/>

</xsd:choice>
<xsd:attribute name=”ID” type=”xsd:ID” use=”required”/>
<xsd:attribute name=”SEX”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”M”/>
<xsd:enumeration value=”F”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

<xsd:element name=”PERSON” type=”PersonType”/>

</xsd:schema>

Before you can validate the sample document against this schema, you must add
the necessary schema location and namespace declaration attributes to the root
element of the instance document, like this:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/genealogy/”
targetNamespace=”http://ns.cafeconleche.org/genealogy/”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

Having done that, if you still want to be able to validate against the DTD, you need
to add declarations for those attributes to the DTD, like this:

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 928

929Chapter 25 ✦ Designing a New XML Application

<!ATTLIST PERSON
xmlns:xsi CDATA #FIXED

“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation CDATA #IMPLIED

>

Listing 25-4 does provide a complete content model for PERSON elements. It’s short,
simple, fairly straightforward, and reasonably easy to follow. Or is it? I think it is
because I wrote it, and one’s own code always seems more obvious to one’s self
than to anyone else. Furthermore, as I type these words I just wrote that code, so
it’s very fresh in my mind. It’s probably also fairly obvious to you, too, because
before you looked at Listing 25-4, you were treated to several pages of exposition
and development. Nonetheless, it’s almost certain that this schema won’t be nearly
as clear to anyone who’s just picking it up without reading this book. Most schemas
can be improved substantially by adding numerous comments and annotations that
describe exactly what is going on in the schema and why. Listing 25-5 does exactly
this. The schema is longer but much clearer to someone reading this schema for
the first time.

Listing 25-5: annotated_person.xsd: The Annotated PERSON
Schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/genealogy/”
xmlns:html=”http://www.w3.org/1999/xhtml”
targetNamespace=”http://ns.cafeconleche.org/genealogy/”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:annotation>
<xsd:documentation>

This schema describes a PERSON element intended for use
in family tree documents. It was developed as an example
for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

It is not a formal standard, and has not been considered
or approved by any standards body.

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 929

930 Part V ✦ XML Applications

Listing 25-5 (continued)

</xsd:documentation>
</xsd:annotation>

<xsd:import namespace=”http://www.w3.org/1999/xhtml”
schemaLocation=”xhtml1.1.xsd”/>

<xsd:complexType name=”EventType”>
<xsd:annotation>
<xsd:documentation>
The EventType describes occurrences at a certain
time and place, though the exact time and place may
not be known for certain. Events include marriages,
births, deaths, baptisms, and burials.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PLACE” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”DATE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”PersonRefType”>
<xsd:annotation>
<xsd:documentation>
The PersonRefType contains a pointer to a person
encoded in a PERSON element somewhere in this document.
The pointer is the ID of the PERSON pointed to.
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name=”PERSON” type=”xsd:NMTOKEN”/>

</xsd:complexType>

<xsd:complexType name=”ReferenceType”>
<xsd:annotation>
<xsd:documentation>
The ReferenceType contains a pointer to a SOURCE
element somewhere in this document. The pointer
is the ID of the SOURCE element pointed to.

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name=”SOURCE” type=”xsd:NMTOKEN”/>

</xsd:complexType>

<xsd:complexType name=”NoteType”
xmlns:html=”http://www.w3.org/1999/xhtml”>

<xsd:annotation>
<xsd:documentation>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 930

931Chapter 25 ✦ Designing a New XML Application

The NoteType is used for NOTE elements that contain
mostly narrative text discussing whatever seems
interesting about or relevant to a particular element.
The contents of the note are marked up in XHTML Basic.
(http://www.w3.org/TR/xhtml-basic)

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” />
<xsd:element ref=”html:body”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”PersonType”>
<xsd:annotation>
<xsd:documentation>
The PersonType is used for PERSON elements. It
describes one unique individual, with a name,
a birthday, and so on. However, some or all of the
information about this individual may be unknown
and hence omitted.

</xsd:documentation>
</xsd:annotation>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”GIVEN” type=”xsd:string”

minOccurs=”0” />
<xsd:element name=”SURNAME” type=”xsd:string”

minOccurs=”0” />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”REFERENCE” type=”ReferenceType”/>
<xsd:element name=”BIRTH” type=”EventType”/>
<xsd:element name=”DEATH” type=”EventType”/>
<xsd:element name=”BURIAL” type=”EventType”/>
<xsd:element name=”BAPTISM” type=”EventType”/>
<xsd:element name=”NOTE” type=”NoteType”/>
<xsd:element name=”SPOUSE” type=”PersonRefType”/>
<xsd:element name=”FATHER” type=”PersonRefType”/>
<xsd:element name=”MOTHER” type=”PersonRefType”/>

</xsd:choice>
<xsd:attribute name=”ID” type=”xsd:ID” use=”required”/>
<xsd:attribute name=”SEX”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”M”/>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 931

932 Part V ✦ XML Applications

Listing 25-5 (continued)

<xsd:enumeration value=”F”/>
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>

<xsd:element name=”PERSON” type=”PersonType”>
<xsd:annotation>
<xsd:documentation>
PERSON elements may be used as the root element
of a document. No other element declared in this
schema may be so used.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:schema>

Here I’ve used mostly xsd:annotation elements to describe what’s happening.
You could also use XML comments. Generally, I prefer annotations for larger blocks
of text that describe an entire type or schema, whereas I use comments for smaller
notes about individual lines of code or something below the level of an entire
schema or top-level element. Listing 25-5 does this when explaining about the val-
ues of a particular enumeration that M represents male and F represents female.

Using xsd:annotation elements also makes it easier to automatically generate
documentation for a schema using XSLT or other XML tools. All the processor
needs to do is extract the contents of all the xsd:documentation elements.
Although here I’ve only placed plain text in those elements, they are allowed to con-
tain any well-formed markup. For example, each xsd:documentation element
could contain one or more complete XHTML documents or parts of a whole docu-
ment that would be assembled automatically when the documentation was desired.

Families
Now that you know what a person looks like, the next step is to design a family.
Let’s begin with a sample family XML document, as shown in Listing 25-6.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 932

933Chapter 25 ✦ Designing a New XML Application

Listing 25-6: An XML Document for Samuel English
Anderson’s Family

<?xml version=”1.0” standalone=”no”?>
<FAMILY ID=”f25”

xmlns=”http://ns.cafeconleche.org/genealogy/”>
<HUSBAND PERSON=”p37”/>
<WIFE PERSON=”p1099”/>
<CHILD PERSON=”p23”/>
<CHILD PERSON=”p36”/>
<CHILD PERSON=”p1033”/>
<CHILD PERSON=”p1034”/>
<MARRIAGE>
<PLACE>Cincinnati, OH</PLACE>
<DATE>15 Jul 1892</DATE>

</MARRIAGE>
</FAMILY>

All that’s needed here are references to the members of the family, not the actual
family members themselves. The reference PERSON IDs are again provided from the
database where this information is stored. Their exact values aren’t important as
long as they’re reliably unique and stable.

The family DTD
Now that you’ve got a sample family, you have to prepare the DTD for all families,
similar to the one shown in Listing 25-7. Don’t forget to include items that are needed
for some families — even if not for this example — such as a divorce. A parameter
entity reference will pull in the declarations from the person DTD of Listing 25-3.
You’ll need this to define the %personref; and %event; entity references.

Listing 25-7: family.dtd: A DTD That Describes a Family

<!-- ... -->
<!-- Genealogy Family DTD -->
<!-- file: family.dtd

This DTD describes a FAMILY element intended for use
in family tree documents. It was developed as an example
for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 933

934 Part V ✦ XML Applications

Listing 25-7 (continued)

This DTD is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Family DTD 1.0//EN”
SYSTEM “family.dtd”

All the elements declared in this DTD are in the
http://ns.cafeconleche.org/genealogy/ namespace.
No prefix is used. The attributes are in no namespace.

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- FAMILY is the root element of documents that use this
DTD. However, it is more intended to be used as a part
of larger XML applications which would contain multiple
FAMILY elements in a single document. -->

<!-- The person DTD defines the %personref; and %event;
parameter entity references used here -->

<!ENTITY % person SYSTEM “person.dtd”>
%person;

<!-- A FAMILY can consist of as little as one person -->
<!ELEMENT FAMILY (REFERENCE*, HUSBAND?, WIFE?, CHILD*,

MARRIAGE*, DIVORCE*, NOTE*)>
<!ATTLIST FAMILY ID ID #REQUIRED>

<!-- HUSBAND and WIFE are used here for legacy reasons.
They should not be taken to imply anything about
marital state of the parties. -->

<!-- HUSBAND, WIFE, and CHILD are all EMPTY elements that
point to a PERSON element by matching its ID. -->

<!ELEMENT HUSBAND EMPTY>
<!ATTLIST HUSBAND %personref;>
<!ELEMENT WIFE EMPTY>
<!ATTLIST WIFE %personref;>
<!ELEMENT CHILD EMPTY>
<!ATTLIST CHILD %personref;>
<!ELEMENT DIVORCE %event;>
<!ELEMENT MARRIAGE %event;>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 934

935Chapter 25 ✦ Designing a New XML Application

I’m assuming no more than one HUSBAND or WIFE per FAMILY element. This is a
fairly standard assumption in genealogy, even in cultures where plural marriages
are common, because it helps to keep the children sorted out. When you are docu-
menting genealogy in a polygamous society, the same HUSBAND may appear in multi-
ple FAMILY elements. When you are documenting genealogy in a polyandrous
society, the same WIFE may appear in multiple FAMILY elements. Aside from over-
lapping dates, this is essentially the same procedure that’s followed when docu-
menting serial marriages. Of course, there’s nothing in the DTD that actually
requires people to be married in order to have children, any more than there’s any-
thing in biology that requires it.

Overall, this scheme is very flexible, much more so than if a FAMILY element had to
contain individual PERSON elements rather than merely pointers to them. That
would almost certainly require duplication of data across many different elements
and files. The only thing this DTD doesn’t handle well are same-sex marriages, and
that could easily be fixed by changing the FAMILY declaration to the following:

<!ELEMENT FAMILY (((HUSBAND, WIFE) | (HUSBAND, HUSBAND?)
| (WIFE, WIFE?)), MARRIAGE*, DIVORCE*, CHILD*)>

Allowing multiple marriages and divorces in a single family may seem a little
strange, but it does happen. My mother-in-law married and divorced my father-in-
law three separate times. Remarriages to the same person aren’t common, but they
do happen.

The Family Schema
The schema for families is not much more complicated than the DTD. It declares a
top-level FAMILY element with a family type. All the other types defined here can be
anonymous because they only appear inside FAMILY elements. There’s no reason to
pollute the type space with extraneous definitions. Keeping everything as local as
possible is a standard principle of good design. Listing 25-8 demonstrates.

Listing 25-8: family.xsd: A Schema That Describes a Family

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/genealogy/”
targetNamespace=”http://ns.cafeconleche.org/genealogy/”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:annotation>
<xsd:documentation>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 935

936 Part V ✦ XML Applications

Listing 25-8 (continued)

This schema describes a FAMILY element intended for use
in family tree documents. It was developed as an example
for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

</xsd:documentation>
</xsd:annotation>

<xsd:include schemaLocation=”person.xsd”/>

<xsd:complexType name=”FamilyType”>
<xsd:annotation>
<xsd:documentation>
The FamilyType is used exclusively for FAMILY
elements. Each such element can contains one father
(represented by a HUSBAND element for legacy reasons,
although no marriage is implied), one mother
(represented by a WIFE element for legacy reasons,
although no marriage is implied), and any number of
children represented by CHILD elements. All of these
elements reference PERSON elements elsewhere in the
document and any or all of them may be omitted.

Family membership is not exclusive. A single person
may be a member of multiple families.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name=”REFERENCE” type=”ReferenceType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”HUSBAND” type=”PersonRefType”

minOccurs=”0” />
<xsd:element name=”WIFE” type=”PersonRefType”

minOccurs=”0” />
<xsd:element name=”CHILD” type=”PersonRefType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”MARRIAGE” type=”EventType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”DIVORCE” type=”EventType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”NOTE” type=”NoteType”

minOccurs=”0” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”ID” xsd:type=”ID” use=”required”/>

</xsd:complexType>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 936

937Chapter 25 ✦ Designing a New XML Application

<xsd:element name=”FAMILY” type=”FamilyType”/>

</xsd:schema>

This schema uses the PersonRefType, EventType, and NoteType types defined in
Listing 25-4. To get access to them, simply include person.xsd using xsd:include.
This element differs from xsd:import in that the included schema covers the same
namespace. If you’re using two different namespaces (such as HTML), use
xsd:import; if you’re using the same namespace, use xsd:include.

Sources
The third and final top-level element is SOURCE. I’m using a watered-down SOURCE
element with little internal structure. However, storing the DTD in a separate file
makes it easy to add structure to it later. Some typical SOURCE elements look
like this:

<SOURCE ID=”s218”>Hamp Hoskins interview, 11-38-1996</SOURCE>
<SOURCE ID=”s29”>English-Demint Anderson Bible</SOURCE>
<SOURCE ID=”s43”>Anderson Bible</SOURCE>
<SOURCE ID=”s43”>
Letter from R. Foster Adams to Beth Anderson, 1972

</SOURCE>
<SOURCE ID=”s66”>
Collin’s History of Kentucky, Volume II, p. 325, 1840, 1875

</SOURCE>

A SOURCE element has a lot of internal structure. Work is ongoing in several places
to produce a generic DTD for bibliographic information with elements for articles,
authors, pages, publication dates, and more. However, this is quite a complex topic
when considered in its full generality; and, as previously mentioned, it doesn’t work
quite the same for genealogy as it does for most fields. The individual copy of a
family Bible or newspaper clipping with handwritten annotations may be more sig-
nificant than the more generic, standard author, title, publisher data used in most
bibliographies.

Because developing an XML application for bibliographies could easily be more
than a chapter of its own and is a task best left to experts in the field, I will satisfy
myself with making the SOURCE element contain only character data. It will also
have an ID attribute in the form s1, s2, s3, and so forth, so that each source can be
referred to by different elements. Listing 25-9 shows the extremely simple DTD for
sources.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 937

938 Part V ✦ XML Applications

Listing 25-9: source.dtd: A Simple SOURCE DTD

<!-- ... -->
<!-- Genealogy Source DTD -->
<!-- file: source.dtd

This DTD describes a SOURCE element intended for use
in family tree documents. It was developed as an example
for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Source DTD 1.0//EN”
SYSTEM “source.dtd”

All the elements declared in this DTD are in the
http://ns.cafeconleche.org/genealogy/ namespace.
No prefix is used. The attributes are in no namespace.

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- SOURCE is the root element of documents that use this
DTD. However, it is more intended to be used as a part
of larger XML applications which would contain multiple
SOURCE elements in a single document. -->

<!-- The character data of the DTD contains a bibliographic
citation for the source -->

<!ELEMENT SOURCE (#PCDATA)>
<!ATTLIST SOURCE ID ID #REQUIRED>

Listing 25-10 shows the almost equally simple source schema. This is an example of
a schema that only defines types. It does not actually declare any elements and can-
not be used on its own to validate a document. However, it can be included in
another schema that does declare elements of type SourceType.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 938

939Chapter 25 ✦ Designing a New XML Application

Listing 25-10: source.xsd: A Simple SOURCE Schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/genealogy/”
targetNamespace=”http://ns.cafeconleche.org/genealogy/”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:annotation>
<xsd:documentation>
This schema describes a REFERENCE element intended for
use in family tree documents. It was developed as an
example for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

</xsd:documentation>
</xsd:annotation>

<xsd:complexType name=”SourceType”>
<xsd:annotation>
<xsd:documentation>
The SourceType is used exclusively for REFERENCE
elements. Each such element has a unique ID attribute
by which it can be referred to, and PCDATA content
identifying the source of the information; e.g.,
a document, an interview, personal recollection, etc.

</xsd:documentation>
</xsd:annotation>
<xsd:simpleContent>
<xsd:extension base=”xsd:string”>
<xsd:attribute name=”ID” type=”xsd:ID” use=”required”/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

<xsd:element name=”SOURCE” type=”SourceType”/>

</xsd:schema>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 939

940 Part V ✦ XML Applications

The Family Tree
It’s now possible to combine the various people, families, and sources into a single
grouping that includes everyone. I’ll call the root element of this document FAMILY_
TREE. It will include PERSON, FAMILY, and SOURCE elements in no particular order.
Listing 25-11 shows a complete family tree document that includes 11 people, 3 fami-
lies, and 7 sources. The necessary document type declaration and schema location
attributes have been attached in the right places.

Listing 25-11: An XML Document of a Complete Family Tree

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE FAMILY_TREE SYSTEM “familytree.dtd”>
<FAMILY_TREE xmlns=”http://ns.cafeconleche.org/genealogy/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =

“http://ns.cafeconleche.org/genealogy/ family_tree.xsd
http://www.w3.org/1999/xhtml xhtml1.1.xsd”>

<PERSON ID=”p23” SEX=”M”>
<REFERENCE SOURCE=”s44”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Judson McDaniel</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Montgomery County, KY, 1893</PLACE>
<DATE>19 Jul 1894</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>27 Apr 1941</DATE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>Agriculture College in Iowa</p>
<p>Farmer</p>
<p>32nd degree Mason</p>
<p>
He shot himself in the pond in the back of Sideview
when he found that he was terminally ill. It has also
been claimed that he was having money and wife
troubles. (He and Zelda did not get along and he was
embarrassed to have married her.) It has further been
claimed that this was part of the Anderson family
curse.

</p>
</body>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 940

941Chapter 25 ✦ Designing a New XML Application

</NOTE>
</PERSON>

<PERSON ID=”p36” SEX=”F”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Mary English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>August 4, 1902?, Sideview, KY</PLACE>
<DATE>8 Apr 1902</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>19 Dec 1972</DATE>

</DEATH>
</PERSON>

<PERSON ID=”p37” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p1035”/>
<MOTHER PERSON=”p1098”/>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>
Samuel English Anderson was known in Montgomery
County for his red hair and the temper that went
with it. He did once kill a man,
but the court found that it was in self-defense.

</p>

<p>
He was shot by a farm worker whom he had
fired the day before for smoking in a tobacco barn.
Hamp says this may have been self-defense, because

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 941

942 Part V ✦ XML Applications

Listing 25-11 (continued)

He threatened to kill the workers for smoking in the
barn. Hamp also says old-time rumors say they mashed
his head with a fence post. Beth heard he was cut to
death with machetes in the field, but Hamp says they
wouldn’t be cutting tobacco in November, only
stripping it in the barn.

</p>
</body>

</NOTE>

</PERSON>

<PERSON ID=”p1033” SEX=”M”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>16 Jan 1898</DATE>

</BIRTH>
<DEATH>
<PLACE>Probably Australia</PLACE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>

<p>
Corwin fought with his father and then left home.
His last letter was from Australia.
</p>

</body>
</NOTE>

</PERSON>

<PERSON ID=”p1034” SEX=”M”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Rodger French</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>26 Nov 1899</DATE>

</BIRTH>
<DEATH>
<PLACE>Birmingham, AL</PLACE>

</DEATH>
<NOTE>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 942

943Chapter 25 ✦ Designing a New XML Application

<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>
Killed when the car he was driving hit a pig in the
road. Despite the many suicides in the family, this is
the only known sowicide.
</p>

</body>
</NOTE>

</PERSON>

<PERSON ID=”p1035” SEX=”M”>
<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>24 Aug 1845</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>18 Sep 1889</DATE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>Yale 1869 (did not graduate)</p>
<p>Breeder of short horn cattle</p>
<p>He was named after an Ohio senator. The name Corwin
is from the Latin corvinus
which means raven and is akin
to corbin/corbet.
In old French it was cord
and in Middle English Corse which meant
raven or cow.
</p>
<p>Attended Annapolis for one year, possibly to
avoid service in the Civil War.</p>

<p>
He farmed the old Mitchell farm
and became known as a leading short horn breeder.
He suffered from asthma and wanted to move to
Colorado in 1876 to avoid the Kentucky weather, but
he didn’t.

</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1098” SEX=”F”>
<REFERENCE SOURCE=”s29”/>
<NAME>
<GIVEN>LeAnah (Lee Anna, Annie) DeMint</GIVEN>
<SURNAME>English</SURNAME>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 943

944 Part V ✦ XML Applications

Listing 25-11 (continued)

</NAME>
<BIRTH>
<PLACE>Louisville, KY</PLACE>
<DATE>1 Mar 1843</DATE>

</BIRTH>
<DEATH>
<REFERENCE SOURCE=”s16”/>
<PLACE>acute Bright’s disease, 504 E. Broadway</PLACE>
<DATE>31 Oct 1898</DATE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>Writer (pseudonymously) for Louisville Herald</p>
<p>Ann or Annie was from Louisville. She wrote under

an assumed name for the Louisville Herald.</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1099” SEX=”F”>
<REFERENCE SOURCE=”s39”/>
<FATHER PERSON=”p1100”/>
<MOTHER PERSON=”p1101”/>
<NAME>
<GIVEN>Cora Rucker (Blevins?)</GIVEN>
<SURNAME>McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>1 Aug 1873</DATE>

</BIRTH>
<DEATH>
<REFERENCE SOURCE=”s41”/>
<REFERENCE SOURCE=”s60”/>
<PLACE>Sideview, bronchial trouble TB</PLACE>
<DATE>21 Jul 1909</DATE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>She was engaged to General Hood of the Confederacy,
but she was seeing Mr. Anderson on the side. A servant
was posted to keep Mr. Anderson away. However the girl
fell asleep, and Cora eloped with Mr. Anderson.</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1100” SEX=”M”>
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME>McDaniel</SURNAME>

</NAME>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 944

945Chapter 25 ✦ Designing a New XML Application

<BIRTH>
<DATE>21 Feb 1834</DATE>

</BIRTH>
<DEATH>
<DATE>9 Dec 1905</DATE>

</DEATH>
</PERSON>

<PERSON ID=”p1101” SEX=”F”>
<NAME>
<GIVEN>Mary E.</GIVEN>
<SURNAME>Blevins</SURNAME>

</NAME>
<BIRTH>
<DATE>1847</DATE>

</BIRTH>
<DEATH>
<DATE>1886</DATE>

</DEATH>
<BURIAL>
<PLACE>Machpelah Cemetery, Mt. Sterling KY</PLACE>

</BURIAL>
</PERSON>

<PERSON ID=”p1102” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<NAME>
<GIVEN>John Jay (Robin Adair)</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<REFERENCE SOURCE=”s43”/>
<PLACE>Sideview</PLACE>
<DATE>13 May 1873</DATE>

</BIRTH>
<DEATH>
<DATE>18 Sep 1889</DATE>

</DEATH>
<NOTE>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>
Died of flux. Rumored to have been killed by his
brother.

</p>
</body>

</NOTE>
</PERSON>

<FAMILY ID=”f25”>
<HUSBAND PERSON=”p37”/>
<WIFE PERSON=”p1099”/>
<CHILD PERSON=”p23”/>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 945

946 Part V ✦ XML Applications

Listing 25-11 (continued)

<CHILD PERSON=”p36”/>
<CHILD PERSON=”p1033”/>
<CHILD PERSON=”p1034”/>

</FAMILY>

<FAMILY ID=”f732”>
<HUSBAND PERSON=”p1035”/>
<WIFE PERSON=”p1098”/>
<CHILD PERSON=”p1102”/>
<CHILD PERSON=”p37”/>

</FAMILY>

<FAMILY ID=”f779”>
<HUSBAND PERSON=”p1102”/>

</FAMILY>

<SOURCE ID=”s16”>newspaper death notice in purse</SOURCE>
<SOURCE ID=”s29”>English-Demint Anderson Bible</SOURCE>
<SOURCE ID=”s39”>
Judson McDaniel & Mary E. Blevins Bible

</SOURCE>
<SOURCE ID=”s41”>
Cora McDaniel obituary, clipping from unknown newspaper

</SOURCE>
<SOURCE ID=”s43”>Anderson Bible</SOURCE>
<SOURCE ID=”s44”>
A Sesquicentennial History of Kentucky
Frederik A. Wallis & Hambleon Tapp, 1945,
The Historical Record Association, Hopkinsville, KY

</SOURCE>
<SOURCE ID=”s60”>
Interview with Ann Sandusky, May 1996

</SOURCE>

</FAMILY_TREE>

The Family Tree DTD
FAMILY_TREE is the one new element in Listing 25-11. It can contain any number of
PERSON, FAMILY, and SOURCE elements in any order. This is indicated with a choice:

<!ELEMENT FAMILY_TREE (PERSON | FAMILY | SOURCE)*>

It’s not necessary to redeclare the PERSON, FAMILY, and SOURCE elements and their
children. Instead, these can be imported by importing the family and source DTDs

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 946

947Chapter 25 ✦ Designing a New XML Application

with external parameter entity references. The family DTD then imports the
person DTD:

<!ENTITY % family SYSTEM “family.dtd”>
%family;
<!ENTITY % source SYSTEM “source.dtd”>
%source;

One thing you want to do at this point is switch from using NMTOKEN types for
spouses, parents, and references to actual ID types. This is because a FAMILY ele-
ment that’s part of a FAMILY_TREE should include all necessary PERSON elements.
You can do that by overriding the personref and sourceref parameter entity dec-
larations in the DTD for the family tree:

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

That’s all you need. Everything else is contained in the imported person and family
DTDs. Listing 25-12 shows the family tree DTD.

Listing 25-12: family_tree.dtd: The Family Tree DTD

<!-- ... -->
<!-- Genealogy Family Tree DTD -->
<!-- file: family_tree.dtd

This DTD describes a FAMILY_TREE element intended for use
as the root element in family tree documents. It was
developed as an example for Chapter 25 of the
XML Bible, 3rd Edition,
by Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This DTD is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Family Tree DTD 1.0//EN”
SYSTEM “family_tree.dtd”

All the elements declared in this DTD are in the
http://ns.cafeconleche.org/genealogy/ namespace.
No prefix is used. The attributes are in no namespace.

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 947

948 Part V ✦ XML Applications

Listing 25-12 (continued)

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- Predefine the %personref; and %sourceref; parameter
entity references so that they’ll have type IDREF instead
of NMTOKEN -->

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

<!-- Import the family and source DTDs. The family DTD imports
the person DTD. -->

<!ENTITY % family SYSTEM “family.dtd”>
%family;

<!ENTITY % source SYSTEM “source.dtd”>
%source;

<!-- A family tree consists of any number of SOURCE, PERSON,
and FAMILY elements in any order. These are all top-level
elements that refer to each other by ID attributes
and references. None of them contain any of the others.

-->
<!ELEMENT FAMILY_TREE (SOURCE | PERSON | FAMILY)*>

The family tree schema
The family tree schema is similar in general structure to the family tree DTD. It
defines one new element, FAMILY_TREE, and uses most of the existing definitions of
the other elements. However, now that all the FAMILY, PERSON, and SOURCE ele-
ments are in one document, it would be good to change the various reference
attributes from type NMTOKEN to type IDREF. In the DTD, this was done by predefin-
ing certain parameter entity references. In the schema, use the xsd:redefine ele-
ment instead. This behaves like the xsd:include element except that you can
place type definitions inside xsd:redefine that override the type definitions made
in the included schemas. For example, this xsd:redefine element imports most of
the family schema (which itself includes the person schema) but overrides the defi-
nitions of PersonRefType and SourceRefType:

<xsd:redefine schemaLocation=”person.xsd”>
<!-- Because all referenced persons will now be included

in this document, we can switch the pointer
attributes from name tokens to ID references. -->

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 948

949Chapter 25 ✦ Designing a New XML Application

<xsd:complexType name=”PersonRefType”>
<xsd:complexContent>
<xsd:restriction base=”PersonRefType”>
<xsd:attribute name=”PERSON” type=”xsd:IDREF”/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name=”ReferenceType”>
<xsd:complexContent>
<xsd:restriction base=”ReferenceType”>
<xsd:attribute name=”SOURCE” type=”xsd:IDREF”/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

</xsd:redefine>

Listing 25-13 shows the complete family tree schema.

Listing 25-13: familytree.xsd: The Family Tree Schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ns.cafeconleche.org/genealogy/”
targetNamespace=”http://ns.cafeconleche.org/genealogy/”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:annotation>
<xsd:documentation>
This schema describes a FAMILY_TREE element intended for
as the root element genealogy documents. It was
developed as an example for Chapter 25 of the XML Bible,
3rd Edition, by Elliotte Rusty Harold
(elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
use it or adapt it in any way you like.

</xsd:documentation>
</xsd:annotation>

<xsd:include schemaLocation=”source.xsd”/>

<xsd:include schemaLocation=”family.xsd”/>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 949

950 Part V ✦ XML Applications

Listing 25-13 (continued)

<xsd:redefine schemaLocation=”person.xsd”>
<!-- Because all referenced persons will now be included

in this document, we can switch the pointer
attributes from name tokens to ID references. -->

<xsd:complexType name=”PersonRefType”>
<xsd:complexContent>
<xsd:restriction base=”PersonRefType”>
<xsd:attribute name=”PERSON” type=”xsd:IDREF”/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name=”ReferenceType”>
<xsd:complexContent>
<xsd:restriction base=”ReferenceType”>
<xsd:attribute name=”SOURCE” type=”xsd:IDREF”/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

</xsd:redefine>

<xsd:complexType name=”FamilyTreeType”>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element ref=”PERSON”/>
<xsd:element ref=”FAMILY”/>
<xsd:element ref=”SOURCE”/>

</xsd:choice>
</xsd:complexType>

<xsd:element name=”FAMILY_TREE” type=”FamilyTreeType”/>

</xsd:schema>

Modularizing the DTDs
As written, the genealogy DTD is already partially modular. It is divided into sepa-
rate files for the PERSON, FAMILY, SOURCE, and FAMILYTREE elements. It does use
parameter entity references for some content models and attribute lists. It does use
the DTDs for Modular XHTML and XHTML Basic. However, it’s not nearly as modu-
lar as the modular XHTML DTD explored in Chapter 22.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 950

951Chapter 25 ✦ Designing a New XML Application

This is not unusual at this point. Modular DTDs can be hard to read and hard to fol-
low as compared to monolithic DTDs. When you are designing a new XML applica-
tion, it’s easiest to make everything explicit, at least at the start. However, after the
basic application is designed, it’s time to ask yourself if there are any ways in which
you can restructure the DTD to make it more extensible in the future without chang-
ing what is and is not allowed now.

I’m not sure you really need that much modularity here. For one thing, in a record-
like application such as this, you may well want to limit the permissible content
models and attributes of elements and not allow them to be so easily modified.
However, at the very least, you should allow the author to choose whether and
which namespace prefix the author wants to use. To do this, you have to define the
prefix and all element names as parameter entity references rather than directly.
Let’s begin by creating a new DTD module that does nothing but define parameter
entity references for the namespace URI and prefix. Listing 25-14 demonstrates.

Listing 25-14: genealogy-namespace.mod: The Namespace
DTD Module

<!-- ... -->
<!-- Genealogy Namespace Module -->
<!-- file: genealogy-namespace.mod

Copyright 2004 Elliotte Rusty Harold,
All Rights Reserved.

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Namespace Parts 1.0//EN”
SYSTEM “genealogy-namespace.mod”

... -->

<!-- Genealogy Namespace

This module declares parameter entities to support
namespace-qualified names, namespace declarations, and
name prefixing for the genealogy application developed
in Chapter 25 of the XML Bible.

-->

<!-- 1. Declare the parameter entity containing
the namespace URI for the genealogy namespace: -->

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 951

952 Part V ✦ XML Applications

Listing 25-14 (continued)

<!ENTITY % GENEALOGY.xmlns
“http://ns.cafeconleche.org/genealogy/” >

<!-- 2. Declare the parameter entity containing
the default namespace prefix string to use when
prefixing is enabled. This may be overridden. -->

<!ENTITY % SMIL.prefix “” >

<!-- 3. Declare a %GENEALOGY.prefixed; conditional section
keyword, used to activate namespace prefixing. The
default is not to use prefixing. -->

<!ENTITY % GENEALOGY.prefixed “IGNORE” >

<!-- 4. Declare parameter entities containing the
prefix used when prefixing is active, an empty
string when it is not.

-->
<![%GENEALOGY.prefixed;[
<!ENTITY % GENEALOGY.pfx “%GENEALOGY.prefix;:” >
]]>
<!ENTITY % GENEALOGY.pfx “” >

Next, you need a DTD that declares the qualified names of all the elements in terms
of these parameter entity references. Listing 25-15 is this module. The double indi-
rection of parameter entity references for the element names is really necessary
here only to prevent parsers from inserting extra white space into the middle of ele-
ment names, but it does make this DTD a little more adaptable.

Listing 25-15: genealogy-qname.mod: The Namespace
DTD Module

<!-- ... -->
<!-- Genealogy Qualified Names Module -->
<!-- file: genealogy-qname.mod

Copyright 2004 Elliotte Rusty Harold

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 952

953Chapter 25 ✦ Designing a New XML Application

PUBLIC “-//ERH//Genealogy Qualified Names 1.0//EN”
SYSTEM “genealogy-qname.mod”

... -->

<!-- Genealogy Qualified Names

This module declares parameter entities to support
namespace-qualified names for the genealogy application
developed in Chapter 25 of the XML Bible.

-->

<!-- module: person.mod -->
<!ENTITY % PERSON.qname “%GENEALOGY.pfx;PERSON” >
<!ENTITY % REFERENCE.qname “%GENEALOGY.pfx;REFERENCE” >
<!ENTITY % BIRTH.qname “%GENEALOGY.pfx;BIRTH” >
<!ENTITY % BAPTISM.qname “%GENEALOGY.pfx;BAPTISM” >
<!ENTITY % DEATH.qname “%GENEALOGY.pfx;DEATH” >
<!ENTITY % PLACE.qname “%GENEALOGY.pfx;PLACE” >
<!ENTITY % DATE.qname “%GENEALOGY.pfx;DATE” >
<!ENTITY % SPOUSE.qname “%GENEALOGY.pfx;SPOUSE” >
<!ENTITY % FATHER.qname “%GENEALOGY.pfx;FATHER” >
<!ENTITY % MOTHER.qname “%GENEALOGY.pfx;MOTHER” >
<!ENTITY % NAME.qname “%GENEALOGY.pfx;NAME” >
<!ENTITY % GIVEN.qname “%GENEALOGY.pfx;GIVEN” >
<!ENTITY % SURNAME.qname “%GENEALOGY.pfx;SURNAME” >
<!ENTITY % NOTE.qname “%GENEALOGY.pfx;NOTE” >

<!-- module: family.mod -->
<!ENTITY % HUSBAND.qname “%GENEALOGY.pfx;HUSBAND” >
<!ENTITY % WIFE.qname “%GENEALOGY.pfx;WIFE” >
<!ENTITY % CHILD.qname “%GENEALOGY.pfx;CHILD” >
<!ENTITY % DIVORCE.qname “%GENEALOGY.pfx;DIVORCE” >
<!ENTITY % MARRIAGE.qname “%GENEALOGY.pfx;MARRIAGE” >

<!-- module: source.mod -->
<!ENTITY % SOURCE.qname “%GENEALOGY.pfx;SOURCE” >

<!-- module: family_tree.mod -->
<!ENTITY % FAMILY_TREE.qname “%GENEALOGY.pfx;FAMILY_TREE” >

<!-- end of genealogy-qname-1.mod -->

Next, you rewrite the person, source, and family DTDs to use the parameter entities
defined in Listing 25-15. These DTDs are shown in Listings 25-16 through 25-19.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 953

954 Part V ✦ XML Applications

Listing 25-16: person.mod: The Person Module

<!-- ... -->
<!-- Genealogy Person DTD module -->
<!-- file: person.mod

This DTD module describes a PERSON element intended for
use in family tree documents. It was developed as part of
a genealogy example in Chapter 25 of the
XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Person Module 1.0//EN”
SYSTEM “person.mod”

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!ELEMENT %PERSON.qname; (%NAME.qname; | %REFERENCE.qname;|
%BIRTH.qname; | %DEATH.qname; |
%BURIAL.qname; | %BAPTISM.qname; |
%NOTE.qname; | %FATHER.qname; |
%MOTHER.qname; | %SPOUSE)* >

<!ATTLIST %PERSON.qname;
xmlns CDATA #FIXED “http://ns.cafeconleche.org/genealogy/”
ID ID #REQUIRED>

<!ATTLIST %PERSON.qname;
xmlns:xsi CDATA #FIXED

“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation CDATA #IMPLIED

>

<!--M means male, F means female -->
<!ATTLIST %PERSON.qname; SEX (M | F) #IMPLIED>

<!-- The ID number of a SOURCE element that documents
this entry -->

<!ELEMENT %REFERENCE.qname; EMPTY>
<!ENTITY % sourceref “SOURCE NMTOKEN #REQUIRED”>
<!ATTLIST %REFERENCE.qname; %sourceref;>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 954

955Chapter 25 ✦ Designing a New XML Application

<!-- Events are occurrences at a certain
time and place, though the exact time and place may
not be known for certain. Events include marriages,
births, deaths, baptisms, and burials. -->

<!ENTITY % event “(%REFERENCE.qname;*, %PLACE.qname;?,
%DATE.qname;?)”>
<!ELEMENT %BIRTH.qname; %event;>
<!ELEMENT %BAPTISM.qname; %event;>
<!ELEMENT %DEATH.qname; %event;>
<!ELEMENT %BURIAL.qname; %event;>

<!ELEMENT %PLACE.qname; (#PCDATA)>
<!ELEMENT %DATE.qname; (#PCDATA)>

<!-- A person reference is a pointer to another person
encoded in a PERSON element. The pointer is the ID
of the PERSON pointed to. -->

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT %SPOUSE.qname; EMPTY>
<!ATTLIST %SPOUSE.qname; %personref;>
<!ELEMENT %FATHER.qname; EMPTY>
<!ATTLIST %FATHER.qname; %personref;>
<!ELEMENT %MOTHER.qname; EMPTY>
<!ATTLIST %MOTHER.qname; %personref;>

<!-- Middle names should be encoded as part of the
given name; e.g.,
<NAME>
<GIVEN>Elliotte Rusty</GIVEN>
<SURNAME>Harold</SURNAME>

</NAME>
-->
<!ELEMENT %NAME.qname; (%GIVEN.qname;?, %SURNAME.qname;?)>
<!ELEMENT %GIVEN.qname; (#PCDATA)>
<!ELEMENT %SURNAME.qname; (#PCDATA)>

<!ELEMENT NOTE (REFERENCE*, body)>

Listing 25-17: family.mod: The Family Module

<!-- ... -->
<!-- Genealogy Family DTD -->
<!-- file: family.mod

This DTD module describes a FAMILY element intended for
use in family tree documents. It was developed as an
example for Chapter 25 of the XML Bible, 3rd Edition, by

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 955

956 Part V ✦ XML Applications

Listing 25-17 (continued)

Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This DTD is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Family Module 1.0//EN”
SYSTEM “family.mod”

All the elements declared in this DTD are in the
http://ns.cafeconleche.org/genealogy/ namespace.
No prefix is used. The attributes are in no namespace.

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- FAMILY is the root element of documents that use this
DTD. However, it is more intended to be used as a part
of larger XML applications which would contain multiple
FAMILY elements in a single document. -->

<!-- A FAMILY can consist of as little as one person -->
<!ELEMENT %FAMILY.qname; (%REFERENCE.qname;*, %HUSBAND.qname;?,

%WIFE.qname;?, %CHILD.qname;*, MARRIAGE.qname;*,
%DIVORCE.qname;*, %NOTE.qname;*)>

<!ATTLIST %FAMILY.qname; ID ID #REQUIRED>

<!-- HUSBAND and WIFE are used here for legacy reasons.
They should not be taken to imply anything about
marital state of the parties. -->

<!-- HUSBAND, WIFE, and CHILD are all EMPTY elements that
point to a PERSON element by matching its ID. -->

<!ELEMENT %HUSBAND.qname; EMPTY>
<!ATTLIST %HUSBAND.qname; %personref;>
<!ELEMENT %WIFE.qname; EMPTY>
<!ATTLIST %WIFE.qname; %personref;>
<!ELEMENT %CHILD.qname; EMPTY>
<!ATTLIST %CHILD.qname; %personref;>
<!ELEMENT %DIVORCE.qname; %event;>
<!ELEMENT %MARRIAGE.qname; %event;>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 956

957Chapter 25 ✦ Designing a New XML Application

Listing 25-18: source.mod: The Source Module

<!-- ... -->
<!-- Genealogy Source Module -->
<!-- file: source.mod

This DTD describes a SOURCE element intended for use
in family tree documents. It was developed as an example
for Chapter 25 of the XML Bible, 3rd Edition, by
Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Source Module 1.0//EN”
SYSTEM “source.mod”

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- SOURCE is the root element of documents that use this
DTD. However, it is more intended to be used as a part
of larger XML applications, which would contain multiple
SOURCE elements in a single document. -->

<!-- The character data of the DTD contains a bibliographic
citation for the source -->

<!ELEMENT %SOURCE.qname; (#PCDATA)>
<!ATTLIST %SOURCE.qname; ID ID #REQUIRED>

Listing 25-19: family_tree.mod: The Family Tree Module

<!-- ... -->
<!-- Genealogy Family Tree Module -->
<!-- file: family_tree.mod

This DTD describes a FAMILY_TREE element intended for use
as the root element in family tree documents. It was
developed as an example for Chapter 25 of the

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 957

958 Part V ✦ XML Applications

Listing 25-19 (continued)

XML Bible, 3rd Edition,
by Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

This schema is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Family Tree Module 1.0//EN”
“family_tree.mod”

SYSTEM “family_tree.mod”

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- A family tree consists of any number of SOURCE, PERSON,
and FAMILY elements in any order. These are all top-level
elements that refer to each other by ID attributes
and references. None of them contain any of the others.

-->
<!ELEMENT %FAMILY_TREE.qname; (
%SOURCE.qname; | %PERSON.qname; | %FAMILY.qname;
)*

>

Finally, you write the complete driver DTD for family trees that imports all five
DTDs, as well as XHTML Basic. Listing 25-20 demonstrates.

Listing 25-20: FamilyTree_driver.dtd: The Driver DTD

<!-- ... -->
<!-- Genealogy Family Tree Driver DTD -->
<!-- file: FamilyTree_driver.dtd

This DTD describes a FAMILY_TREE element intended for use
as the root element in family tree documents. It was
developed as an example for Chapter 25 of the
XML Bible, 3rd Edition,
by Elliotte Rusty Harold (elharo@metalab.unc.edu)
Published by Wiley 2004. ISBN 0-7645-4986-3.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 958

959Chapter 25 ✦ Designing a New XML Application

This DTD is placed in the public domain. Please
feel free to use it or adapt it in any way you like.

This DTD is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//ERH//Genealogy Family Tree DTD 1.0//EN”
“family_tree.dtd”

SYSTEM “family_tree.dtd”

It is not a formal standard, and has not been considered
or approved by any standards body.

... -->

<!-- Define namespaces and qualified names -->
<!ENTITY % namespaces SYSTEM “genealogy-namespaces.mod”>
%namespaces;
<!ENTITY % qnames SYSTEM “genealogy-qname.mod”>
%qnames;

<!-- Import XHTML Basic -->
<!ENTITY % xhtml PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”

“xhtml-basic10.dtd”>
%xhtml;

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

<!ENTITY % source PUBLIC
“-//ERH//Genealogy Source Module 1.0//EN”
“source.mod”>

%source;

<!ENTITY % person PUBLIC
“-//ERH//Genealogy Person Module 1.0//EN”
“person.mod”

>
%person;

<!ENTITY % family PUBLIC
“-//ERH//Genealogy Family Module 1.0//EN”
“family.mod”

>
%family;

<!ENTITY % family_tree PUBLIC
“-//ERH//Genealogy Family Tree Module 1.0//EN”
“family_tree.mod”>

%family_tree;

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 959

960 Part V ✦ XML Applications

As written, Listings 25-16 through 25-19 can only be used in conjunction with Listing
25-20 because they don’t import the namespace and qualified names modules that
declare the parameter entities that they use. However, if it were important that they
be able to be used independently, it would not be hard to import the namespace
and qualified names modules in a different driver DTD.

No further work is necessary to modularize the schemas. The schemas are already
as modular as they need to be. Because schemas only consider namespace URIs
and not prefixes, no special tricks are needed to allow authors to change the prefix.
Furthermore, schemas allow new types to be derived from existing types, and allow
existing types to be redefined in new schemas by using xsd:redefine in place of
xsd:include. All the modularity and extensibility that takes so much work to set
up in a DTD comes almost for free with schemas. That’s one of the big advantages
schemas have over DTDs.

Designing a Style Sheet for Family Trees
The family tree document is organized as records rather than as a narrative. To get
a reasonably pleasing view of the document, you need to reorder and reorganize
the contents before displaying them. CSS really isn’t powerful enough for this task.
Consequently, an XSLT style sheet is called for.

The input document uses multiple namespaces, http://ns.cafeconleche.org/
genealogy/ and http://www.w3.org/1999/xhtml. In the input document, both
of these are the default namespace on their respective sections. I want to output
regular HTML instead of XHTML for better compatibility with legacy browsers, so I
need to make sure my output elements are not in any namespace at all. And, of
course, there’s the XSLT namespace, too. Thus, the style sheet itself needs to distin-
guish between four different namespaces. This would be far too difficult to do if I
had to use the same prefix (or lack thereof) in the style sheet as in the input docu-
ment. Fortunately, I don’t. Instead, I can choose to use prefixes in my style sheet
even where I didn’t in the input document. Specifically, I will choose the following:

✦ xsl for http://www.w3.org/1999/XSL/Transform

✦ gen for http://ns.cafeconleche.org/genealogy/

✦ xhtml for http://www.w3.org/1999/xhtml

The resulting xsl:stylesheet root element will declare all these namespaces,
like this:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:gen=”http://ns.cafeconleche.org/genealogy/”
xmlns:html=”http://www.w3.org/1999/xhtml”>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 960

961Chapter 25 ✦ Designing a New XML Application

The default namespace is not explicitly mapped, so any element names without pre-
fixes will be in no namespace at all.

Now you’re ready to start writing template rules that match the nodes in the input
document. It’s best to begin with the root node. That way you can apply the style
sheet to the document after you write each template to make sure you’re getting
what you expect. Here the root node is merely replaced by the standard html,
head, and body elements. Templates are applied to the FAMILY_TREE root element
to continue processing. Note, however, that I have to use the gen namespace
prefix on FAMILY_TREE to make sure that I’m selecting the FAMILY_TREE element
in the http://ns.cafeconleche.org/genealogy/ namespace and not the
FAMILY_TREE element in no namespace.

<xsl:template match=”/”>
<html>
<head>
<title>Family Tree</title>

</head>
<body>
<xsl:apply-templates select=”gen:FAMILY_TREE”/>

</body>
</html>

</xsl:template>

The template rule for the FAMILY_TREE element divides the document into three
parts, one each for the families, people, and sources. Templates are applied to each
separately. Again, prefixes are used to sort the different elements into the right
namespaces.

<xsl:template match=”gen:FAMILY_TREE”>

<h1>Family Tree</h1>

<h2>Families</h2>
<xsl:apply-templates select=”gen:FAMILY”/>

<h2>People</h2>
<xsl:apply-templates select=”gen:PERSON”/>

<h2>Sources</h2>

<xsl:apply-templates select=”gen:SOURCE”/>

</xsl:template>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 961

962 Part V ✦ XML Applications

The SOURCE rule is quite simple. Each source is wrapped in a li element.
Furthermore, its ID is attached using the name attribute of the HTML a element.
This allows for cross-references directly to the source, as shown here:

<xsl:template match=”gen:SOURCE”>

<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”.”/>

</xsl:element>

</xsl:template>

The PERSON element is much more complex, so I’ll break it up into several template
rules. The PERSON template rule selects the individual parts and formats those that
aren’t too complex. It applies templates to the rest. The name is placed in an h3
header. This is surrounded with an HTML anchor whose name is the person’s ID.
The BIRTH, DEATH, BAPTISM, and BURIAL elements are formatted as list items, as
demonstrated here:

<xsl:template match=”gen:PERSON”>

<h3>
<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”gen:NAME”/>
</xsl:element>

</h3>

<xsl:if test=”gen:BIRTH”>
Born: <xsl:value-of select=”gen:BIRTH”/>

</xsl:if>
<xsl:if test=”gen:DEATH”>
Died: <xsl:value-of select=”gen:DEATH”/>

</xsl:if>
<xsl:if test=”gen:BAPTISM”>
Baptism: <xsl:value-of select=”gen:BAPTISM”/>

</xsl:if>
<xsl:if test=”gen:BURIAL”>
Burial: <xsl:value-of select=”gen:BURIAL”/>

</xsl:if>
<xsl:apply-templates select=”gen:FATHER”/>
<xsl:apply-templates select=”gen:MOTHER”/>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 962

963Chapter 25 ✦ Designing a New XML Application

<xsl:apply-templates select=”gen:NOTE”/>

</xsl:template>

The FATHER and MOTHER elements are also list items, but they need to be linked to
their respective people. These two template rules do that:

<xsl:template match=”gen:FATHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>#<xsl:value-of
select=”@PERSON”/></xsl:attribute>

Father
</xsl:element>

</xsl:template>

<xsl:template match=”gen:MOTHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>#<xsl:value-of
select=”@PERSON”/></xsl:attribute>

</xsl:attribute>
Mother

</xsl:element>

</xsl:template>

A couple of elements are indented in an unusual fashion — the xsl:attribute ele-
ments. These were originally written in a more standard form, like this:

<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/></xsl:attribute>

</xsl:attribute>

The problem with this approach is that the XSLT processor will consider the extra
white space between <xsl:attribute name=”href”> and # to be significant and
include it, encoded line breaks and all, in the attribute values it produces. The
attributes come out looking like this:

<a href=”
 #p1099”>
Mother

However, what I want is this:

Mother

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 963

964 Part V ✦ XML Applications

XSLT processors normally strip nodes that contain nothing but boundary white
space. However, they do not trim nodes of leading and trailing white space if the
node contains something other than white space — the sharp sign in this example.
The solution is straightforward — simply trim the extra white space yourself — but
it does tend to leave the style sheet looking less than pretty.

The final thing you need to do to format PERSON elements is to copy the contents of
the NOTE into the finished document. This requires replacing the body element with
a div element, because a genealogy document may contain multiple body elements
but an HTML document may not. However, all the contents should be moved over
verbatim. This rule does that by using xsl:for-each to iterate through the chil-
dren and attributes of the body, copying each one using xsl:copy-of:

<xsl:template match=”xhtml:body”>
<div>
<xsl:for-each select=”node()|@*”>
<xsl:copy-of select=”.”/>

</xsl:for-each>
</div>

</xsl:template>

The template rule for FAMILY elements will list the name and role of each member
of the family as a list item in an unordered list. Each member element will be linked
to the description of that individual. The rules to do this look like the following:

<xsl:template match=”FAMILY”>

<xsl:apply-templates select=”HUSBAND”/>
<xsl:apply-templates select=”WIFE”/>
<xsl:apply-templates select=”CHILD”/>

</xsl:template>

<xsl:template match=”HUSBAND”>
Husband:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”WIFE”>
Wife:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”CHILD”>
Child:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 964

965Chapter 25 ✦ Designing a New XML Application

The trickiest thing about these rules is the insertion of data from one element (the
PERSON) in a template that matches a different element (HUSBAND, WIFE, CHILD).
The ID of the PERSON stored in the HUSBAND/WIFE/CHILD’s PERSON attribute is used
to locate the right PERSON element; then its NAME child is selected.

Listing 25-21 is the finished family tree style sheet. Figure 25-2 shows the beginning
of the document after it’s been converted into HTML and loaded into Netscape
Navigator.

Listing 25-21: The Complete Family Tree Style Sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:gen=”http://ns.cafeconleche.org/genealogy/”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/”>
<html>
<head>
<title>Family Tree</title>

</head>
<body>
<xsl:apply-templates select=”gen:FAMILY_TREE”/>

</body>
</html>

</xsl:template>

<xsl:template match=”gen:FAMILY_TREE”>

<h1>Family Tree</h1>

<h2>Families</h2>
<xsl:apply-templates select=”gen:FAMILY”/>

<h2>People</h2>
<xsl:apply-templates select=”gen:PERSON”/>

<h2>Sources</h2>

<xsl:apply-templates select=”gen:SOURCE”/>

</xsl:template>

<xsl:template match=”gen:PERSON”>

<h3>
<xsl:element name=”a”>

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 965

966 Part V ✦ XML Applications

Listing 25-21 (continued)

<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”gen:NAME”/>
</xsl:element>

</h3>

<xsl:if test=”gen:BIRTH”>
Born: <xsl:value-of select=”gen:BIRTH”/>

</xsl:if>
<xsl:if test=”gen:DEATH”>
Died: <xsl:value-of select=”gen:DEATH”/>

</xsl:if>
<xsl:if test=”gen:BAPTISM”>
Baptism: <xsl:value-of select=”gen:BAPTISM”/>

</xsl:if>
<xsl:if test=”BURIAL”>
Burial: <xsl:value-of select=”gen:BURIAL”/>

</xsl:if>
<xsl:apply-templates select=”gen:FATHER”/>
<xsl:apply-templates select=”gen:MOTHER”/>

<xsl:apply-templates select=”gen:NOTE”/>

</xsl:template>

<xsl:template match=”gen:FATHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>#<xsl:value-of
select=”@PERSON”/></xsl:attribute>

Father
</xsl:element>

</xsl:template>

<xsl:template match=”gen:MOTHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>#<xsl:value-of
select=”@PERSON”/></xsl:attribute>

Mother
</xsl:element>

</xsl:template>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 966

967Chapter 25 ✦ Designing a New XML Application

<xsl:template match=”xhtml:body”>
<div>
<xsl:for-each select=”node()|@*”>
<xsl:copy-of select=”.”/>

</xsl:for-each>
</div>

</xsl:template>

<xsl:template match=”gen:SOURCE”>

<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”.”/>

</xsl:element>

</xsl:template>

<xsl:template match=”gen:FAMILY”>

<xsl:apply-templates select=”gen:HUSBAND”/>
<xsl:apply-templates select=”gen:WIFE”/>
<xsl:apply-templates select=”gen:CHILD”/>

</xsl:template>

<xsl:template match=”gen:HUSBAND”>
Husband:
<xsl:value-of select=”id(@PERSON)/gen:NAME”/>

</xsl:template>

<xsl:template match=”gen:WIFE”>
Wife:
<xsl:value-of select=”id(@PERSON)/gen:NAME”/>

</xsl:template>

<xsl:template match=”gen:CHILD”>
Child:
<xsl:value-of select=”id(@PERSON)/gen:NAME”/>

</xsl:template>

</xsl:stylesheet>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 967

968 Part V ✦ XML Applications

Figure 25-2: The family tree after conversion to HTML

A RDDL document for family trees
The XML application and its style sheet, DTDs, and schemas are now complete.
However, one more thing needs to be done before I can say that I’m finished. I’ve
been using the namespace URL http://ns.cafeconleche.org/genealogy/. Now
I should put something there. Specifically, I should put a RDDL document listing all
the related resources for this application. The related resources described in this
chapter are as follows:

✦ A DTD

✦ A modularized DTD

✦ A schema

✦ An XSLT style sheet

A DTD resource has the nature http://www.isi.edu/in-notes/iana/
assignments/media-types/application/xml-dtd. This chapter actually devel-
oped multiple DTDs: one for the PERSON, one for the FAMILY, one for the SOURCE,
and one for the FAMILY_TREE. The driver DTD has the validation purpose identified
by the well-known URL http://www.rddl.org/purposes#validation. The other

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 968

969Chapter 25 ✦ Designing a New XML Application

three DTDs have the DTD module purpose identified by the well-known URL
http://www.rddl.org/purposes#module. The family tree DTD depends on the
source and family DTDs. The family DTD depends on the person DTD. When I wrote
the RDDL document, this dependency seemed to naturally point to embedding one
RDDL resource element inside another, which is perfectly OK.

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/family_tree.dtd”
xlink:role=
“http://www.isi.edu/in-notes/iana/assignments/media-

types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#validation”

>
<p>
The

family tree DTD
 describes an XML application for basic
genealogical data. It’s designed to validate documents
with the root element <code>FAMILY_TREE</code> in the
http://ns.cafeconleche.org/genealogy/ namespace.
It depends on two DTD modules:
</p>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/source.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
<p>
The source DTD describes <code>REFERENCE</code>
elements in the http://ns.cafeconleche.org/genealogy/
namespace.
</p>

</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/family.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
<p>
The family DTD describes <code>FAMILY</code>
elements in the http://ns.cafeconleche.org/genealogy/

namespace.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 969

970 Part V ✦ XML Applications

This in turn depends on the
<rddl:resource xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/person.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”
>
person DTD. This DTD describes a single
<code>PERSON</code> element in the
http://ns.cafeconleche.org/genealogy/ namespace.

</rddl:resource>
</p>

</rddl:resource>

</rddl:resource>

The resource describing the modularized DTD is similar, although a little longer
because it needs to point to a few more DTD fragments. You can see it in Listing
25-22 later in this chapter.

A schema resource has the nature http://www.w3.org/2001/XMLSchema. There
are several schema files here, each of which can be thought of as a separate
resource. The FAMILY_TREE schema has the purpose http://www.rddl.org/
purposes#schema-validation. The other three schema documents have the pur-
pose http://www.rddl.org/purposes#schema-module. The modular structure
of these schemas is the same, so it isn’t surprising that nesting the rddl:resource
elements seemed the most natural way to describe them. This rddl:resource
elements describes all four schemas:

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/family_tree.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”
xlink:arcrole=”http://www.rddl.org/purposes#schema-validation”
>

<p>
The

family tree W3C XML Schema Language schema
 describes an XML application for basic
genealogical data. It’s designed to validate documents with
the root element <code>FAMILY_TREE</code> in the
http://ns.cafeconleche.org/genealogy/ namespace. It
depends on two DTD modules:
</p>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 970

971Chapter 25 ✦ Designing a New XML Application

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/source.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”

xlink:arcrole=”http://www.rddl.org/purposes#schema-module”
>
<p>

The source W3C XML Schema Language schema
describes <code>REFERENCE</code> elements
in the http://ns.cafeconleche.org/genealogy/
namespace.

</p>
</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/family.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”

xlink:arcrole=”http://www.rddl.org/purposes#schema-module”
>

<p>
The family W3C XML Schema Language schema
describes FAMILY elements in the
http://ns.cafeconleche.org/genealogy/ namespace.
This in turn depends on the
<rddl:resource xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/person.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”

xlink:arcrole=”http://www.rddl.org/purposes#schema-module”
>
person schema. This schema describes a single
PERSON element in the
http://ns.cafeconleche.org/genealogy/ namespace.

</rddl:resource>
</p>

</rddl:resource>

</rddl:resource>

It’s not necessary to include rddl:resource elements here that describe the
XHTML schemas or DTDs. Those are part of a different namespace and should be
described by a RDDL document at that URL, http://www.w3.org/1999/xhtml.
There isn’t one there yet, but that’s the W3C’s responsibility, not mine.

The next resource is the XSLT style sheet. This has the nature http://www.isi.edu/
in-notes/iana/assignments/media-types/application/xml+xslt based
on its MIME media type. There’s only one, so a purpose isn’t needed. The rddl:
resource element describing it is straightforward:

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 971

972 Part V ✦ XML Applications

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://cafeconleche.org/styles/familytree.xsl”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml+xslt”
>
<p>An
XSLT 1.0 style sheet for genealogy data is available.
This does not work with Internet Explorer 5.5 and earlier
because of Microsoft’s nonconforming implementation of
XSLT.</p>
</rddl:resource>

Is there anything else? I can think of one more thing: this book itself. After all, where
else are you going to find the complete description of the genealogy application?
The problem is that this book isn’t easily resolvable because it doesn’t live on the
Internet anywhere. Nonetheless, it does have a URI based on its ISBN number, if not
a URL. This URI is urn:isbn:0764549863. You can use this to set up one more
rddl:resource element identifying a reference for this application (purpose
http://www.rddl.org/purposes/software#reference).

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”urn:isbn:0764549863” xlink:arcrole=

“http://www.rddl.org/purposes/software#reference”
>
<p>

Chapter 25 of the XML Bible, 3rd Edition, describes and
explains this XML application in much greater detail. You
should be able to find it in any bookstore that stocks
computer books including <a href=
“http://www.bookpool.com/”>Bookpool and
Powells.
The list price is $39.99, but it’s often discounted.
If you need to special order it, the
ISBN number is 0-7645-4986-3 and the author is
Elliotte
Rusty Harold

</p>
</rddl:resource>

Listing 25-22 shows the completed RDDL document for the family tree application
for the namespace URI, http://ns.cafeconleche.org/genealogy/.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 972

973Chapter 25 ✦ Designing a New XML Application

Listing 25-22: The RDDL Document for the Family Tree XML
Application Developed in This Chapter

<!DOCTYPE html PUBLIC “-//XML-DEV//DTD XHTML RDDL 1.0//EN”
“http://www.rddl.org/rddl-xhtml.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:rddl=”http://www.rddl.org/”>

<head>
<title>An XML Application for Genealogy</title>

</head>
<body>
<h1>An XML Application for Genealogy</h1>

<div class=”head”>
<p>This Version:
August
24, 2003</p>
<p>Latest Version:
http://ns.cafeconleche.org/genealogy/</p>

<p>Previous Version: May 25,
2001</p>

<p>Authors:</p>

Elliotte
Rusty Harold

</div>

<p>
This document describes the an XML application for genealogy
statistics used as an example in the 3rd edition of the
<cite>XML Bible</cite>.
</p>

<p>Available related resource include:</p>

A DTD
A Modularized DTD
A schema
An XSLT stylesheet

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”urn:isbn:0764549863”

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 973

974 Part V ✦ XML Applications

Listing 25-22 (continued)

xlink:arcrole=”http://www.rddl.org/purposes/software#reference”
>
<p>

Chapter 25 of the XML Bible, 3rd Edition, describes and
explains this XML application in much greater detail. You
should be able to find it in any bookstore that stocks
computer books including <a href=
“http://www.bookpool.com/”>Bookpool and
Powells.
The list price is $39.99, but it’s often discounted.
If you need to special order it, the
ISBN number is 0-7645-4986-3 and the author is
Elliotte
Rusty Harold

</p>
</rddl:resource>

<p>This document has no official standing and has not been
considered or approved by any organization.</p>

<h2 id=”DTD”>Document Type Definition</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/family_tree.dtd”
xlink:role=
“http://www.isi.edu/in-notes/iana/assignments/media-

types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#validation”

>
<p>
The

family tree DTD
 describes an XML application for basic
genealogical data. It’s designed to validate documents
with the root element <code>FAMILY_TREE</code> in the
http://ns.cafeconleche.org/genealogy/ namespace.
It depends on two DTD modules:
</p>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/source.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 974

975Chapter 25 ✦ Designing a New XML Application

The
source
DTD describes <code>SOURCE</code> elements in the
http://ns.cafeconleche.org/genealogy/ namespace.
</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/family.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
The
family DTD describes <code>FAMILY</code>
elements in the http://ns.cafeconleche.org/genealogy/
namespace. This in turn depends on the
<rddl:resource xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/person.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”
>

person DTD. This DTD describes a single
<code>PERSON</code> element in the
http://ns.cafeconleche.org/genealogy/ namespace.
</rddl:resource>

</rddl:resource>

</rddl:resource>

<h2 id=”Modularized”>A Modularized DTD</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple” xlink:href=
“http://cafeconleche.org/dtds/FamilyTree_driver.dtd”
xlink:role=
“http://www.isi.edu/in-notes/iana/assignments/media-

types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#validation”

>
<p>
The

modularized family tree DTD

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 975

976 Part V ✦ XML Applications

Listing 25-22 (continued)

 describes the same XML application for basic
genealogical data as the previous DTD. However, it’s
designed to allow document authors to modify the namespace
prefix by overriding the <code>%GENEALOGY.prefix;</code> and
<code>%GENEALOGY.prefixed;</code> parameter entity
references.
If you wish to turn on prefixing, set
<code>%GENEALOGY.prefixed;</code> to <code>INCLUDE</code>
and <code>%GENEALOGY.prefix;</code> to the prefix you want
to use.
</p>

<p>
It is composed of six modules and one driver DTD:

</p>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/source.dtd”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
The
source module describes <code>SOURCE</code>
elements in the http://ns.cafeconleche.org/genealogy/
namespace.
</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/family.mod”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
The
family module describes <code>FAMILY</code>
elements in the http://ns.cafeconleche.org/genealogy/
namespace.
</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/person.mod”
xlink:role=”http://www.isi.edu/in-notes/iana/

assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 976

977Chapter 25 ✦ Designing a New XML Application

The
person module describes <code>PERSON</code>
elements in the http://ns.cafeconleche.org/genealogy/
namespace.
</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/person.mod”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
The <a href=
“http://cafeconleche.org/dtds/family_tree.mod”>
family tree module describes
<code>FAMILY_TREE</code> elements in the
http://ns.cafeconleche.org/genealogy/ namespace.

</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=
“http://cafeconleche.org/dtds/genealogy-namespace.mod”

xlink:role=”http://www.isi.edu/in-
notes/iana/assignments/media-types/application/xml-dtd”

xlink:arcrole=”http://www.rddl.org/purposes#module”
>
The <a href=
“http://cafeconleche.org/dtds/genealogy-namespace.mod”>
namespaces module defines the namespace URI
and prefix used in this application.
</rddl:resource>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/genealogy-qname.mod”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml-dtd”
xlink:arcrole=”http://www.rddl.org/purposes#module”

>
The <a href=
“http://cafeconleche.org/dtds/genealogy-qname.mod”>
qualified names module defines parameter entity
references that resolve to the prefixed names of the
different elements in this application.

</rddl:resource>

<rddl:resource xlink:type=”simple” xlink:href=
“http://cafeconleche.org/dtds/FamilyTree_driver.dtd”

Continued

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 977

978 Part V ✦ XML Applications

Listing 25-22 (continued)

xlink:role=”http://www.isi.edu/in-
notes/iana/assignments/media-types/application/xml-dtd”

xlink:arcrole=”http://www.rddl.org/purposes#module”
>
The <a href=
“http://cafeconleche.org/dtds/FamilyTree_driver.dtd”>
driver DTD loads all the modules in the correct
order.

</rddl:resource>

</rddl:resource>

<h2 id=”schema”>Schema</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://cafeconleche.org/dtds/family_tree.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”
xlink:arcrole=”http://www.rddl.org/purposes#schema-validation”
>

<p>
The

family tree W3C XML Schema Language schema
 describes an XML application for basic
genealogical data. It’s designed to validate documents with
the root element <code>FAMILY_TREE</code> in the
http://ns.cafeconleche.org/genealogy/ namespace. It
depends on two DTD modules:
</p>

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/source.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”

xlink:arcrole=”http://www.rddl.org/purposes#schema-module”
>
The
source W3C XML Schema Language schema
describes <code>SOURCE</code> elements
in the http://ns.cafeconleche.org/genealogy/
namespace.
</rddl:resource>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 978

979Chapter 25 ✦ Designing a New XML Application

<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/family.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”

xlink:arcrole=”http://www.rddl.org/purposes#schema-module”
>
The
family W3C XML Schema Language schema
describes <code>FAMILY</code> elements in the
http://ns.cafeconleche.org/genealogy/ namespace.
This in turn depends on the
<rddl:resource xlink:type=”simple”

xlink:href=”http://cafeconleche.org/dtds/person.xsd”
xlink:role=”http://www.w3.org/2001/XMLSchema”

xlink:arcrole=”http://www.rddl.org/purposes#schema-module”
>

person schema. This schema describes a single
<code>PERSON</code> element in the
http://ns.cafeconleche.org/genealogy/ namespace.
</rddl:resource>

</rddl:resource>

</rddl:resource>

<h2 id=”xslt”>XSLT Style Sheet</h2>

<rddl:resource xmlns:rddl=”http://www.rddl.org/”
xlink:type=”simple”
xlink:href=”http://cafeconleche.org/styles/familytree.xsl”
xlink:role=”http://www.isi.edu/in-

notes/iana/assignments/media-types/application/xml+xslt”
>
<p>An
XSLT 1.0 style sheet for genealogy data is available.
This does not work with Internet Explorer 5.5 and earlier
because of Microsoft’s nonconforming implementation of
XSLT.</p>
</rddl:resource>

</body>
</html>

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 979

980 Part V ✦ XML Applications

Figure 25-3: The RDDL document for the genealogy application

Summary
In this chapter, you saw an XML application for genealogy developed from scratch.
Along the way you learned to

✦ Always begin a new XML application by considering the domain you’re
describing.

✦ Try to identify the fundamental elements of the domain. Everything else is
likely to either be contained in or to be an attribute of one of these.

✦ Try to avoid including the same data in more than one place. Instead, use ID
and IDREF attributes to establish pointers from one element to another.

✦ Be sure to consider special cases. Don’t base your entire design on the most
obvious cases.

✦ Use parameter entities to merge the DTDs for each piece of the XML applica-
tion into one complete DTD.

✦ Use xsd:include and xsd:import to merge the schemas for each piece of
the XML application into one complete schema.

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 980

981Chapter 25 ✦ Designing a New XML Application

✦ Don’t get hung up on what your data will look like when you’re designing the
application. You can always reorganize it with XSLT.

✦ Make your namespace URIs resolvable URLs, and place a RDDL document at
the end of each namespace URL.

This concludes the XML Bible. Go forth now and write your own XML applications!

✦ ✦ ✦

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 981

31 549863 Ch25.qxd 1/28/04 9:50 AM Page 982

SYMBOLS AND NUMERICS
& (ampersand) entity reference, 255
‘ (apostrophe) entity reference, 255
* (asterisk)

node test, 631
quantifier, 216

@ (at) sign in XSLT pattern-matching, 447–449
: (colon) in element names, 150
, (comma) separator, 216
// (double slash) symbol (XSLT), 446
/ (forward slash) symbol (XSLT), 445–446
+ (plus sign) quantifier, 215
? (question mark) quantifier, 215–216
<? and ?> (question mark) tags in processing

instructions, 164
“ (quote mark) entity reference, 255
[] (square brackets) in XSLT pattern-matching,

452–454
_ (underscore character) in element names, 149
| (vertical bar)

or operator in XSLT pattern-matching, 451–452
separator, 216

<?xml-stylesheet?> processing instruction, 61–62,
123

404 Not Found error, 288

A
a element (SVG), 899–900
absolute positioning, 371–372
ActiveBorder system color, 341
ActiveCaption system color, 341
adjacent sibling selectors (CSS), 323
Adobe FrameMaker, 9
:after pseudo-element, 326
alignment of text

CSS (Cascading Style Sheets), 396–399
XSL-FO, 566–567

all element, 687–688
all media type (CSS), 331
ambiguous content models, 218
& entity reference, 160, 255
ampersand (&) entity reference, 255
ancestor axis

XPath expressions, 455, 457
XPointers, 626, 629

ancestor-or-self axis
XPath expressions, 455, 457
XPointers, 626, 629

annotation element, 728
annotations in schemas, 727–728
anonymous types, 683–684
ANY keyword, 208–210
anyURI element, 699
Apache Project

Ant build tool, 49
Squiggle SVG viewer, 853

' entity reference, 160, 255
apostrophe (‘) entity reference, 255
Apple

iTunes, 49
Keynote presentation, 49

Applet module (XHTML), 788
application design

data organization, 907–914
Families element example, 932–937
Family Tree example, 940–968
namespace selection, 914–915
Persons element example, 915–932
RDDL documents, 968–980
Sources element example, 937–939

applications
Chemical Markup Language (CML), 18–19
defined, 17
Extensible Forms Description Language (XFDL),

36–39
HR-XML, 40–43
Mathematical Markup Language (MathML), 19–22
Microsoft Office 2003, 46–49
MusicXML, 29–33
Open Financial Exchange 2.0 (OFX 2.0), 8, 36
Open Software Description (OSD), 26–27
RSS, 22–25
Scalable Vector Graphics (SVG), 27–29, 287–288
schemas, 45–46
Synchronized Multimedia Integration Language

(SMIL), 26
textual analysis, 25
United Parcel Service (UPS), 52–53
VoiceXML, 34–35
What’s Related (Netscape), 49–52
XLinks, 44
XSL (Extensible Stylesheet Language), 43–44

AppWorkspace system color, 341
Architecture module (XHTML Modular Framework

Module), 801
arcs (extended links), 595–600

Index

32 549863 Index.qxd 1/28/04 9:50 AM Page 983

984 Index ✦ A

area properties (XSL-FO), 567–568
areas (XSL-FO), 509–510
asterisk (*)

node test, 631
quantifier, 216

at (@) sign in XSLT pattern-matching, 447–449
attaching

backgrounds, 408–409
schemas, 674
style sheets

CSS (Cascading Style Sheets), 313–314, 329–330
<?xml-stylesheet?> processing instruction,

61–62, 89–90
XSLT style sheets, 123, 433

!ATTLIST tag, 230–231
attribute axis

XPath expressions, 455
XPointers, 626, 630

attribute declarations
!ATTLIST tag, 230–231
example, 242–247
multiple attributes, 231–232
order of, 231

attribute selectors (CSS), 323–324
attribute value templates (XSLT), 473–475
attributes

attributes versus child elements, 109–113
CDATA, 230, 235–236
content property (CSS), 416
data, 109–111
defined, 103, 229–230
ENTITIES, 230, 241
ENTITY, 230, 240
enumerated, 230, 237
href, 61, 123
ID, 230, 238
IDREF, 230, 238–239
IDREFS, 230, 239–240
metadata, 109–111
name, 58
namespaces, 298–299, 304
NMTOKEN, 230, 236
NMTOKENS, 230, 236–237
NOTATION, 230, 241–242
number of per element, 230
output document (XSLT), 476–478
pattern-matching (XSLT), 447–449
pseudo-attributes, 147
schemas, 716–720
syntax, 103–104, 154
type, 61, 123
unprefixed, 304
uses, 114–115

values
default values, 231–232
#FIXED, 234–235
#IMPLIED, 233–234
#REQUIRED, 232–233
syntax, 58, 104–105
well-formedness rules, 154–155

version, 58
well-formedness rules, 154
XLinks

xlink:actuate, 585, 587–588, 595
xlink:arcrole, 845–847
xlink:from, 595
xlink:href, 581–582, 837, 843
xlink:label, 595
xlink:role, 584–585, 837, 843
xlink:show, 585–587, 595
xlink:title, 584–585
xlink:to, 595
xlink:type, 580–581, 590, 837

xml:base, 155, 608–614
xml:lang, 155, 157–158, 782
xmlns, 300, 302
xmlns:prefix, 631
xml:space, 155–156
xsd:element

maxOccurs attribute, 678–680
minOccurs attribute, 678–680
type attribute, 683–684

XSL (Extensible Stylesheet Language), 120
XSL-FO graphics

content-height, 545
content-type, 544–545
content-width, 545
height, 545
scaling, 545
width, 545

aural media type (CSS), 331
axes

XPath expressions
ancestor, 455, 457
ancestor-or-self, 455, 457
attribute, 455
child, 455–456
descendant, 455
descendant-or-self, 455
following, 455
following-sibling, 455
namespace, 455
parent, 455–457
preceding, 455
preceding-sibling, 455
self, 455

32 549863 Index.qxd 1/28/04 9:50 AM Page 984

985Index ✦ A–C

XPointers
ancestor, 626, 629
ancestor-or-self, 626, 629
attribute, 626, 630
child, 626–627
defined, 624, 626
descendant, 626, 628
descendant-or-self, 626, 628
following, 626, 629
following-sibling, 627, 630
namespace, 630–631
parent, 626, 628
preceding, 627, 629
preceding-sibling, 627, 630
self, 626, 628

B
backgrounds

attaching, 408–409
background shorthand property (CSS), 404, 413
Background system color, 342
background-attachment property (CSS), 404, 408
background-color property (CSS), 336, 404
background-image property (CSS), 336, 404–405
background-position property (CSS), 404,

409–412
background-repeat property (CSS), 406–408
colors, 342, 404
images, 405–406
positioning, 409–412
repeating background images, 406–408
scrolling, 408–409
transparency, 404
XSL-FO (XSL Formatting Objects), 568

BASE element (HTML), 607–608
Base module (XHTML), 789
base URL, 608–612
base64Binary element, 699
Basic Forms module (XHTML), 788
Basic Tables module (XHTML), 788
Batik (Apache XML Project) Squiggle SVG viewer, 853
:before pseudo-element, 326
behavior of XLinks, 585–588
Bézier curves, 872–873
Bi-directional Text module (XHTML), 788
binary data types (schemas), 698–699
bitmapped graphics, 850, 852, 879–880
blinking text

CSS (Cascading Style Sheets), 395
XSL-FO, 565

block areas (XSL-FO), 509
block elements (CSS), 344, 348–349

block-level formatting objects, 534
boolean element, 699
booleans (XPath expressions), 464–466
borders

border shorthand property (CSS), 361–362
border-bottom shorthand property (CSS),

361–362
border-bottom-color property (CSS), 361
border-bottom-width property (CSS), 360
border-color shorthand property (CSS), 361
border-left shorthand property (CSS), 361–362
border-left-color property (CSS), 361
border-right shorthand property (CSS), 361–362
border-right-color property (CSS), 361
border-right-width property (CSS), 360
border-style property (CSS), 336, 359–360
border-top shorthand property (CSS), 361–362
border-top-color property (CSS), 361
border-top-width property (CSS), 360
border-width shorthand property, 361
XSL-FO, 568–569

box sizes (CSS), 364–368
boxes (CSS), 356
braille media type (CSS), 331
Braille printers, 331
Braille tactile feedback devices, 331
browsers

CSS (Cascading Style Sheets), 311, 317, 335
JUMBO, 19–20
Scalable Vector Graphics (SVG), 849–850,

856–857
XInclude, 647
XLinks, 580
XML support, 10–11
XPointers, 617
XSL (Extensible Stylesheet Language), 120
XSL-FO (XSL Formatting Objects), 507, 516
XSLT (XSL Transformations), 424, 433–434

bullet characters in lists, 352–353
bulleted lists

style rules, 96–98
XSL-FO, 547–550

ButtonFace system color, 342
ButtonHighlight system color, 342
ButtonShadow system color, 342
ButtonText system color, 342
byte element, 694
byte range extensions to HTTP, 618

C
C++ namespaces, 287
CaptionText system color, 342

32 549863 Index.qxd 1/28/04 9:50 AM Page 985

986 Index ✦ C

Cascading Style Sheets (CSS)
advantages, 60, 100, 311
attaching to XML documents, 313–314, 329–330
borders, 358–362
box sizes, 364–368
boxes, 356
browser support, 311, 317, 335
cascades, 329
character sets, 333
colors, 392
comments, 312–313
.css extension in filenames, 312
CSS versus XSL, 143–144
CSS1, 316–317
CSS2, 316–317
CSS3, 317
defined, 12, 311
disadvantages, 100
display properties of elements, 95–96
DTDs, 316
encoding options, 333
HTML, 311–312, 316
importing, 332–333
inheritance, 328–329
margins, 357–358
media types, 331–332
padding, 363–364
page breaks, 377–379
page formatting, 375–377
positioning

absolute positioning, 371–372
backgrounds, 409–412
clear property, 374–375
fixed positioning, 371–372
float property, 373–374
position property, 369–371
relative positioning, 369–370
z-index property, 373

properties
background shorthand, 404, 413
background-attachment, 404, 408
background-color, 336, 404
background-image, 336, 404–405
background-position, 404, 409–412
background-repeat, 404, 406–408
border shorthand, 361–362
border-bottom shorthand, 361–362
border-bottom-color, 361
border-bottom-width, 360
border-color shorthand, 361
border-left shorthand, 361–362

border-left-color, 361
border-left-width, 360
border-right shorthand, 361–362
border-right-color, 361
border-right-width, 360
border-style, 336, 359–360
border-top shorthand, 361–362
border-top-color, 361
border-top-width, 360
border-width shorthand, 361
clear, 374–375
color, 336, 392
content, 414–420
display, 336, 343–354
float, 373–374
font shorthand, 381, 390–391
font-family, 381–383
font-size, 336, 381, 387–390
font-style, 336, 381, 384
font-variant, 381, 385
font-weight, 381, 385–386
height, 365–367
letter-spacing, 394–395
line-height, 336, 400–401
list-style shorthand, 355
list-style-image, 336, 354–355
list-style-position, 355
list-style-type, 352–353
margin, 376–377
margin-bottom, 356, 358
margin-left, 356, 358
margin-right, 356, 358
margin-top, 336, 356–358
mark, 377
max-height, 367
max-width, 367
min-height, 367
min-width, 367
names, 335–336
orphans, 378–379
overflow, 365, 368–369
padding shorthand, 363
padding-bottom, 363
padding-left, 363
padding-right, 363
padding-top, 363
page, 377
page-break-after, 378–379
page-break-before, 378–379
page-break-inside, 378–379
position, 369–371

32 549863 Index.qxd 1/28/04 9:50 AM Page 986

987Index ✦ C

size, 376
text-align, 398–399
text-decoration, 395–396
text-indent, 352, 399–400
text-transform, 397–398
values, 335–343
vertical-align, 396–397
visibility, 413–414
white-space, 402–403
widows, 378–379
width, 365–367
word-spacing, 393–394
z-index, 373

pseudo-classes
defined, 326–327
:first-child, 327
:hover, 327
:lang(), 327
:link, 581
:visited, 581

pseudo-elements
:after, 326
:before, 326
defined, 324–325
:first-letter, 325
:first-line, 326

quotes, 415–416
referencing, 315
rules

@charset, 333
conflicts, 321
defined, 312
@media, 330–331
@page, 375–376

Scalable Vector Graphics (SVG), 878
selectors

adjacent sibling selectors, 323
attribute selectors, 323–324
child selectors, 321–322
defined, 312, 317
descendant selectors, 322–323
element names, 317
grouping, 320–321
hierarchy, 321
ID selectors, 324
patterns, 318–320
universal selector, 320

Style Attribute module (XHTML), 789
Style Sheet module (XHTML), 789
styles directory, 315
SVG (Scalable Vector Graphics), 854

tables, 94–95
text

alignment, 396–399
all caps, 397
blinking, 395
code example, 401
colors, 392
fonts, 381–391
indents, 399–400
letter spacing, 394–395
line height, 400–401
line-through, 395
lowercase, 397
overline, 395
underline, 395–396
uppercase, 397
word spacing, 393–394

versions, 316–317
white space, 402–403
XLinks, 581
xml-stylesheet processing instruction, 313–315

case-sensitivity
HTML, 179–180
XML, 150

![CDATA [and]] tags in CDATA sections, 166
CDATA attribute, 230, 235–236
cdata notation, 802
CDATA sections

![CDATA [and]] tags, 166
malformed markup, 167
well-formedness rules, 165–166
XHTML, 783–785
XSLT (XSL Transformations), 504

ceiling() function, 468
changing namespace prefixes, 294
character data, 148–149
character encodings, 168
character entities module (XHTML Modular

Framework Module), 801, 808–809
character notation, 803
character properties (XSL-FO), 563–565
character references

Unicode, 169–171
XHTML, 772–776

character sets, 333
charset notation, 803
@charset rules (CSS), 333
charsets notation, 803
Chemical Markup Language (CML), 18–19
child axis

XPath expressions, 455–456
XPointers, 626–627

32 549863 Index.qxd 1/28/04 9:50 AM Page 987

988 Index ✦ C

child elements, 67–68, 213–215
child selectors (CSS), 321–322
child sequences (XPointers), 643
choice content specification, 216–217
choice element, 687, 689
circle element (SVG), 861–862
circular references, 214
clear property (CSS), 374–375
Client-Side Image Map module (XHTML), 789
CML (Chemical Markup Language), 18–19
code indentation, 72
code points (Unicode), 167–168
colon (:) in element names, 150
color property

CSS, 336, 392
XSL-FO, 563

color values (CSS properties), 340–343
colors

backgrounds, 342, 404
CSS (Cascading Style Sheets), 392
XLinks, 581–582
XSL-FO (XSL Formatting Objects), 563

combining XHTML modules, 790
comma (,) separator, 216
comment() function, 449–450, 458
comment() node test, 631–632
comments

CSS (Cascading Style Sheets), 312–313
DTD (Document Type Definition), 223–227
output document (XSLT), 479
pattern-matching (XSLT), 449–450
schemas, 728
well-formedness rules, 162–164

common attributes module (XHTML Modular
Framework Module), 801, 807–808

complex elements, 212
complex type elements (schemas), 675–677
complexType element, 677, 681–682
concat() function, 470
conditional sections (DTD)

IGNORE directive, 283–284
INCLUDE directive, 283–284

constants in XSLT, 492
contains() function, 470
Content Model module (XHTML Modular Framework

Module), 801
content models

ambiguous, 218
defined, 213
schemas, 682–683

sequence, 213–214
XHTML modules, 794–796

content property (CSS), 414–420
content specification

choice, 216–217
defined, 191, 205

content (XSL-FO)
block-level formatting objects, 534
inline formatting objects, 534–535
out-of-line formatting objects, 536
table formatting objects, 535

contentType notation, 803
contentTypes notation, 803
context node

XPointers, 624
XSLT, 455, 480–482

converting HTML to XHTML, 735–738
copying XSLT context node, 480–482
count() function, 462
counters, 417–420
counting nodes (XSLT), 482–486
country codes, 158
creating

SVG documents, 855
vocabularies, 64, 67
XML documents, 56

CSS (Cascading Style Sheets)
advantages, 60, 100, 311
attaching to XML documents, 313–314, 329–330
borders, 358–362
box sizes, 364–368
boxes, 356
browser support, 311, 317, 335
cascades, 329
character sets, 333
colors, 392
comments, 312–313
conflicts in rules, 321
.css extension in filenames, 312
CSS versus XSL, 143–144
CSS1, 316–317
CSS2, 316–317
CSS3, 317
defined, 12, 311
disadvantages, 100
display properties of elements, 95–96
DTDs, 316
encoding options, 333
HTML, 311–312, 316
importing, 332–333

32 549863 Index.qxd 1/28/04 9:50 AM Page 988

989Index ✦ C

inheritance, 328–329
margins, 356–358
media types, 331–332
padding, 363–364
page breaks, 377–379
page formatting, 375–377
positioning

absolute positioning, 371–372
backgrounds, 409–412
clear property, 374–375
fixed positioning, 371–372
float property, 373–374
position property, 369–371
relative positioning, 369–370
z-index property, 373

properties
background shorthand, 404, 413
background-attachment, 404, 408
background-color, 336, 404
background-image, 336, 404–405
background-position, 404, 409–412
background-repeat, 404, 406–408
border shorthand, 361–362
border-bottom shorthand, 361–362
border-bottom-color, 361
border-bottom-width, 360
border-color shorthand, 361
border-left shorthand, 361–362
border-left-color, 361
border-left-width, 360
border-right shorthand, 361–362
border-right-color, 361
border-right-width, 360
border-style, 336, 359–360
border-top shorthand, 361–362
border-top-color, 361
border-top-width, 360
border-width shorthand, 361
clear, 374–375
color, 336, 392
content, 414, 416–420
content property, 415
display, 336, 343–354
float, 373–374
font shorthand, 381, 390–391
font-family, 381–383
font-size, 336, 381, 386–390
font-style, 336, 381, 384
font-variant, 381, 385
font-weight, 381, 385–386

height, 365–367
letter-spacing, 394–395
line-height, 336, 400–401
list-style shorthand, 355
list-style-image, 336, 354–355
list-style-position, 355
list-style-type, 352–353
margin, 376–377
margin-bottom, 356, 358
margin-left, 356, 358
margin-right, 356, 358
margin-top, 336, 356–358
mark, 377
max-height, 367
max-width, 367
min-height, 367
min-width, 367
names, 335–336
orphans, 378–379
overflow, 365, 368–369
padding shorthand, 363
padding-bottom, 363
padding-left, 363
padding-right, 363
padding-top, 363
page, 377
page-break-after, 378–379
page-break-before, 378–379
page-break-inside, 378–379
position, 369–371
size, 376
text-align, 398–399
text-decoration, 395–396
text-indent, 352, 399–400
text-transform, 397–398
values, 335–343
vertical-align, 396–397
visibility, 413–414
white-space, 402–403
widows, 378–379
width, 365–367
word-spacing, 393–394
z-index, 373

pseudo-classes
defined, 326–327
:first-child, 327
:hover, 327
:lang(), 327
:link, 581
:visited, 581

32 549863 Index.qxd 1/28/04 9:50 AM Page 989

990 Index ✦ C–D

pseudo-elements
:after, 326
:before, 326
defined, 324–325
:first-letter, 325
:first-line, 326

quotes, 415–416
referencing, 315
rules

@charset, 333
conflicts, 321
defined, 312
@media, 330–331
@page, 375–376

Scalable Vector Graphics (SVG), 878
selectors

adjacent sibling selectors, 323
attribute selectors, 323–324
child selectors, 321–322
defined, 312, 317
descendant selectors, 322–323
element names, 317
grouping, 320–321
hierarchy, 321
ID selectors, 324
patterns, 318–320
universal selector, 320

Style Attribute module (XHTML), 789
Style Sheet module (XHTML), 789
styles directory, 315
SVG (Scalable Vector Graphics), 854
tables, 94–95
text

alignment, 396–399
all caps, 397
blinking, 395
code example, 401
colors, 392
fonts, 381–391
indents, 399–400
letter spacing, 394–395
line height, 400–401
line-through, 395
lowercase, 397
overline, 395
underline, 395–396
uppercase, 397
word spacing, 393–394

versions, 316–317
white space, 402–403
XLinks, 581
xml-stylesheet processing instruction, 313–315

curves, 872–873

D
data

attributes, 109–111
metadata versus data, 113–114
non-XML data

notations, 275–278
processing instructions, 283–284
unparsed entities, 278–283

data interchange among applications, 8
data structure, 8–9
data types module (XHTML Modular Framework

Module), 801, 804–805
data types (schemas)

binary, 698–699
numeric, 692–694
string, 697–698
time, 695–696
XML, 696

data typing with DTDs, 667–668
date element, 695
dateTime element, 695
datetime notation, 803
DCD (Document Content Description) schema

language, 670
decimal element, 693
declaring attributes

!ATTLIST tag, 230–231
example, 242–247
multiple attributes, 231–232
order of, 231

declaring elements
ANY keyword, 208–210
asterisk (*) quantifier, 216
child elements, 213–215
choice content specification, 216–217
circular references, 214
comma (,) separator, 216
content models, 213–214
content specification, 191, 205
defined, 205
DTD (Document Type Definition), 205–208
!ELEMENT tag, 208, 214
empty elements, 221–222
forward references, 214
parentheses, 217–220
#PCDATA keyword, 211–212
plus sign (+) quantifier, 215
question mark (?) quantifier, 215–216
schemas, 672–673
syntax, 190–191
vertical bar (|) separator, 216

32 549863 Index.qxd 1/28/04 9:50 AM Page 990

991Index ✦ D

declaring entities
!ENTITY declaration, 250
general entities

external, 256–260
internal, 250–255
predefined, 255

parameter entities
external, 263–268
internal, 260–263

parsed entities, 269–274
unparsed entities, 279

declaring namespaces, 294–297
declaring text, 258–259
default namespaces, 300–304, 306–307
default template rules (XSLT style sheets)

attributes, 472
comments, 472
elements, 471–472
implications of, 473
processing instructions, 472
text nodes, 472

desc element (SVG), 900–903
descendant axis

XPath expressions, 455
XPointers, 626, 628

descendant selectors (CSS), 322–323
descendant-or-self axis

XPath expressions, 455
XPointers, 626, 628

designing applications
data organization, 907–914
Families element example, 932–937
Family Tree example, 940–968
namespace selection, 914–915
Persons element example, 915–932
RDDL documents, 968–980
Sources element example, 937–939

Dia drawing program, 49
digital signatures, 38–39
directives

IGNORE, 283–284
INCLUDE, 283–284

display properties of elements, 95–96
display property (CSS)

block elements, 344, 348–349
code example, 344–347
compact elements, 350
inline elements, 344, 347–348
invisible elements, 344, 348–349
lists, 351–354
markers, 350–351
none value, 336, 348–349
possible values, 343–344

run-in elements, 350
tables, 344, 350–351

Document Content Description (DCD) schema
language, 670

document element, 148
document entity, 250
document() function, 462
document model of XHTML, 816–820, 823–827
document type declaration, 192–194
Document Type Definition (DTD)

ANY keyword, 208–210
attribute declarations, 230–232, 242–247
comments, 223–227
conditional sections

IGNORE directive, 283–284
INCLUDE directive, 283–284

content specification, 191
data typing, 667–668
defined, 189
document type declaration, 192–194
driver DTDs, 809–815
DTD files, 192
element declarations, 190–191, 205–208
encoding options, 192
entity declarations, 249–250
extensibility, 668
external DTD subsets, 195–196
internal DTD subsets, 195–196
internal DTDs, 194–195
limitations, 667–669
loose, 210–211
mixed content, 669
modularized DTDs, 668
namespaces, 668
non-XML syntax, 668
!NOTATION declaration, 275–278
parameterized DTD, 305–306
#PCDATA keyword, 211–212
private DTDs, 196
public DTDs, 196
public identifiers, 196–197
scalability, 668
schemas, 669
standards, 190
style sheets, 197–198, 316
syntax, 668
validation, 199–203
XHTML frameset DTD, 733, 767
XHTML strict DTD, 733, 753–759
XHTML transitional DTD, 733
XInclude, 658–659
XLinks, 582–584, 589
XSLT (XSL Transformations), 502–503

32 549863 Index.qxd 1/28/04 9:50 AM Page 991

992 Index ✦ D

documents (RDDL)
code example, 838–840
namespace URLs, 833–836
natures, 843–845
purposes, 845–847
resource element, 836–838, 841–843
XHTML, 840

documents (SVG)
creating, 855
exporting, 903
graphics programs, 903
importing, 903
links, 899–900
metadata, 900–903
saving, 855
svg root element, 854

documents (XML)
attaching schemas, 674
attaching style sheets, 89–90, 123
character data, 148–149
contents overview, 15–16
creating, 56
CSS (Cascading Style Sheets), 313–314, 329–330
elements

attribute syntax, 154
case-sensitivity, 150
defined, 58–59
empty elements, 149
empty-element tags, 151–152
end-tags, 149–151
markup, 59–60
names, 149–150
overlapping elements, 152–153
start-tags, 149–151

embedded XLinks, 652–653
entities, 147
examples, 146–147
external parsed entities, 651–652
life cycle, 10
loading, 57
malformed, 146
markup, 148–149
naming, 56
root element, 148
saving, 56
server-side includes, 653–655
style sheets, 60–62
text, 148–149
Unicode, 15
validation, 205
viewing, 57

XInclude
browser support, 647
DTD (Document Type Definition), 658–659
fallbacks, 663–665
support, 274
unparsed text, 662–663
URIs (Uniform Resource Identifiers), 647
use cases, 647–651
validation, 658–659
xinclude:fallback child element, 663–665
xinclude:include element, 655–657
XPointers, 618, 660–662

XML declarations, 58, 147–148
XSLT style sheets, 433

documents (XSL-FO), 514–515
documents (XSLT)

template rules, 428–429, 434
well-formedness, 434
xsl:apply-templates element, 435–437
xsl:for-each element, 440
xsl:stylesheet element, 428–429
xsl:template element, 428, 434
xsl:transform element, 428–429
xsl:value-of element, 437–439

domain-specific markup languages, 6
double element, 693
double slash (//) symbol (XSLT), 446
downloading

MSXML parser, 433
XHTML modules, 790
xmlinst.exe, 433
xsltproc, 430

driver DTDs, 809–815
drop caps, 325
DTD (Document Type Definition)

ANY keyword, 208–210
attribute declarations, 230–232, 242–247
comments, 223–227
conditional sections

IGNORE directive, 283–284
INCLUDE directive, 283–284

content specification, 191
data typing, 667–668
defined, 189
document type declaration, 192–194
driver DTDs, 809–815
DTD files, 192
element declarations, 190–191, 205–208
encoding options, 192
entity declarations, 249–250
extensibility, 668

32 549863 Index.qxd 1/28/04 9:50 AM Page 992

993Index ✦ D–E

external DTD subsets, 195–196
internal DTD subsets, 195–196
internal DTDs, 194–195
limitations, 667–669
loose, 210–211
mixed content, 669
modularized DTDs, 668
namespaces, 668
non-XML syntax, 668
!NOTATION declaration, 275–278
parameterized DTD, 305–306
#PCDATA keyword, 211–212
private DTDs, 196
public DTDs, 196
public identifiers, 196–197
scalability, 668
schemas, 669
standards, 190
style sheets, 197–198, 316
syntax, 668
validation, 199–203
XHTML frameset DTD, 733, 767
XHTML strict DTD, 733, 753–759
XHTML transitional DTD, 733
XInclude, 658–659
XLinks, 582–584, 589
XSLT (XSL Transformations), 502–503

duration element, 695

E
Edit module (XHTML), 788
editors

Adobe FrameMaker, 9
Notepad, 9, 56
role of, 9
vi, 9
Visual XML, 9

element declarations
ANY keyword, 208–210
asterisk (*) quantifier, 216
child elements, 213–215
choice content specification, 216–217
circular references, 214
comma (,) separator, 216
content models, 213–214
content specification, 191, 205
defined, 205
DTD (Document Type Definition), 205–208
!ELEMENT tag, 208, 214
empty elements, 221–222
forward references, 214
parentheses, 217–220

#PCDATA keyword, 211–212
plus sign (+) quantifier, 215
question mark (?) quantifier, 215–216
schemas, 672–673
syntax, 190–191
vertical bar (|) separator, 216

element element
maxOccurs attribute, 678–680
minOccurs attribute, 678–680
schema element declarations, 672
type attribute, 683–684

element names
colon (:), 150
letters, 149
pattern-matching with XSLT, 442–444
underscore character (_), 149
white space, 149
XHTML modules, 793–794

!ELEMENT tag, 208, 214
elements

attribute syntax, 154
attributes, 103–105, 108, 229–230
attributes versus child elements, 109–113
case-sensitivity, 150
child elements, 67–68, 213–215
complex, 212
declaring, 190–191
defined, 58–59
display properties, 95–96
document element, 148
empty elements

schemas, 715–716
syntax, 116–119
well-formedness, 149, 151

empty-element tags, 151–152
end-tags, 149–151
Format namespace

fo:external-graphic, 539–541
fo:float, 558–559
fo:flow, 522–523
fo:footnote, 557
fo:inline, 556–557
fo:instream-foreign-object, 541–544
fo:layout-master-set, 518
fo:page-number, 528–529
fo:page-sequence, 518, 522, 527–528
fo:page-sequence-master, 530
fo:region-after, 520
fo:region-before, 520
fo:region-body, 521

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 993

994 Index ✦ E

elements (continued)
fo:region-end, 520
fo:region-start, 520
fo:repeatable-page-master-alternatives,

532–533
fo:repeatable-page-master-reference, 532
fo:root, 518
fo:simple-page-master, 518–520
fo:single-page-master-reference, 531–532
fo:static-content, 522, 525–527
fo:table, 551–553
fo:table-and-caption, 551–552
fo:title, 522

formatting
first letter of an element, 325
first line of an element, 326

markup, 59–60
mixed content, 220–221
naming, 70
naming conventions, 69
output document (XSLT), 475–476
overlapping elements, 152–153
resource, 836–838, 841–843
root element

defined, 69
namespace declarations, 296–297
style rules, 90–91
well-formedness, 148

simple, 212
start-tags, 149–151
SVG namespace

a, 899–900
circle, 861–862
desc, 900–903
ellipse, 862–863
g, 888–889
line, 863–864
metadata, 900–903
path, 866–873
polygon, 864–865
polyline, 866
rect, 859–861
svg, 854
text, 874–876
textpath, 876–878
title, 900–903
tspan, 879
use, 889–891

SVG (Scalable Vector Graphics), 288
uses, 114

visibility, 413–414
XInclude

xinclude:fallback, 663–665
xinclude:include, 655–657

XLinks, 580–582
XML Schema namespace

all, 687–688
annotation, 728
anyURI, 699
base64Binary, 699
boolean, 699
byte, 694
choice, 687, 689
complexType, 677, 681–682
date, 695
dateTime, 695
decimal, 693
double, 693
duration, 695
element, 672, 678–680, 683–684
ENTITIES, 697
ENTITY, 696
float, 693
gDay, 695
gMonth, 695
gMonthDay, 695
gYear, 695
gYearMonth, 695
hexBinary, 699
ID, 696
IDREF, 696
IDREFS, 697
int, 694
integer, 693
language, 697
long, 694
Name, 697
NCName, 697
negativeInteger, 693
NMTOKEN, 697
NMTOKENS, 697
nonNegativeInteger, 694
nonPositiveInteger, 693
normalizedString, 698
NOTATION, 696
positiveInteger, 694
QName, 697
restriction, 700–701
schema, 672
sequence, 687, 690

32 549863 Index.qxd 1/28/04 9:50 AM Page 994

995Index ✦ E

short, 694
simpleType, 700
string, 698
time, 695
token, 698
unsignedByte, 694
unsignedInt, 694
unsignedLong, 694
unsignedShort, 694

XSLT namespace
xsl:apply-imports, 499
xsl:apply-templates, 435–437, 495
xsl:attribute, 476–477
xsl:attribute-set, 477–478
xsl:call-template, 494–496
xsl:choose, 497–499
xsl:comment, 479
xsl:copy, 480–482
xsl:element, 475–476
xsl:for-each, 440
xsl:if, 497–498
xsl:import, 499
xsl:include, 500
xsl:number, 482–486
xsl:output, 501–504
xsl:param, 495
xsl:preserve-space, 497
xsl:processing-instruction, 478–479
xsl:sort, 486–489
xsl:strip-space, 497
xsl:stylesheet, 428–429
xsl:template, 434, 493–495
xsl:template element, 428
xsl:text, 479–480, 497
xsl:transform, 428–429
xsl:value-of, 437–439
xsl:variable, 492–493

ellipse element (SVG), 862–863
embedding

SVG pictures in Web pages, 855–858
unparsed entities, 279–283
XLinks, 652–653

embossed media type (CSS), 331
empty elements

declaring, 221–222
schemas, 715–716
syntax, 116–119
well-formedness, 149, 151

empty-element tags, 151–152
encoding declarations, 168–169, 781

encoding options, 333
end-point(location-set) function, 641
end-tags

elements, 149
root element, 148
well-formedness rules, 146, 150–151

entities
defined, 249
document entity, 250
external entities, 250, 256–260
internal entities, 250–255
parameter entities, 260–268
parameterizing, 254
parsed entities, 250, 269–274
unparsed entities, 250, 278–283
values, 253–254
well-formed document fragment, 147

ENTITIES attribute, 230, 241
ENTITIES element, 697
ENTITY attribute, 230, 240
!ENTITY declaration, 250
entity declarations

!ENTITY declaration, 250
general entities

external, 256–260
internal, 250–255
predefined, 255

parameter entities
external, 263–268
internal, 260–263

parsed entities, 269–274
unparsed entities, 279

ENTITY element, 696
entity references

&, 160, 255
', 160, 255
general

external, 256–258
internal, 250–255

>, 160, 255
HTML, 181–182
<, 160, 255
parameter

external, 263–268
internal, 260–263

predefined, 255
", 160, 255
well-formedness rules, 160–161
XHTML, 776–780

enumerated attributes, 230, 237

32 549863 Index.qxd 1/28/04 9:50 AM Page 995

996 Index ✦ E–F

enumeration facet, 701–702, 705–706
error 404 Not Found, 288
Events module (XHTML Modular Framework Module),

801
exporting SVG documents, 903
expressions (XPath)

abbreviated syntax, 459–461
ancestor axis, 455, 457
ancestor-or-self axis, 455, 457
attribute axis, 455
booleans, 464–466
child axis, 455–456
descendant axis, 455
descendant-or-self axis, 455
following axis, 455
following-sibling axis, 455
hierarchy operators, 458–459
match patterns, 454
namespace axis, 455
node tests, 458
node-sets, 461–464
numbers, 467–469
parent axis, 455–457
preceding axis, 455
preceding-sibling axis, 455
self axis, 455
strings, 469–471

extended links, 589–601
Extensible Forms Description Language (XFDL), 36–39
Extensible Hypertext Markup Language. See XHTML
eXtensible Markup Language (XML)

defined, 3–4
formatting, 5
HyperText Markup Language (HTML), 5–6, 11
interchanging data among applications, 8
self-describing features, 7
semantics, 5
structure, 5
uses, 6

Extensible Stylesheet Language (XSL)
advantages, 61
attribute display, 120
browser support, 120
defined, 12–13
example style sheet, 43–44

external DTD subsets, 195–196
external entities, 250

nonvalidating parsers, 260
text declarations, 258–259
well-formed XML documents, 259–260

external parsed entities, 651–652
external-graphic element, 539–541

F
facets

defined, 702
enumeration, 701–702, 705–706
fractionDigits, 702, 705
length, 702
maxExclusive, 701–702
maxInclusive, 701–702
maxLength, 702–703
minExclusive, 701–702
minInclusive, 700–702
minLength, 702–703
pattern, 701–702, 707
totalDigits, 702, 705
whiteSpace, 701–702, 704–705

false() function, 466
:first-child pseudo-class, 327
:first-letter pseudo-element, 325
:first-line pseudo-element, 326
fixed positioning, 371
#FIXED value (attributes), 234–235
float element, 558–559, 693
float property (CSS), 373–374
floor() function, 468
flow element, 522–523
fo:external-graphic element, 539–541
fo:float element, 558–559
fo:flow element, 522–523
fo:footnote element, 557
fo:inline element, 556–557
fo:instream-foreign-object element, 541–544
fo:layout-master-set element, 518
following axis

XPath expressions, 455
XPointers, 626, 629

following-sibling axis
XPath expressions, 455
XPointers, 627, 630

fonts
font shorthand property (CSS), 381, 390–391
font-family property (CSS), 381–383
font-size property (CSS), 336, 381, 386–390
font-style property (CSS), 336, 381, 384
font-variant property (CSS), 381, 385
font-weight property (CSS), 381, 385–386
Scalable Vector Graphics (SVG), 878
XSL-FO, 563–564

footnote element, 557
FOP program, 516–517
fo:page-number element, 528–529
fo:page-sequence element, 518, 522, 527–528
fo:page-sequence-master element, 530

32 549863 Index.qxd 1/28/04 9:50 AM Page 996

997Index ✦ F

fo:region-after element, 520
fo:region-before element, 520
fo:region-body element, 521
fo:region-end element, 520
fo:region-start element, 520
fo:repeatable-page-master-alternatives

element, 532–533
fo:repeatable-page-master-reference element,

532
Format namespace

fo:external-graphic element, 539–541
fo:float element, 558–559
fo:flow element, 522–523
fo:footnote element, 557
fo:inline element, 556–557
fo:instream-foreign-object element, 541–544
fo:layout-master-set element, 518
fo:page-number element, 528–529
fo:page-sequence element, 518, 522, 527–528
fo:page-sequence-master element, 530
fo:region-after element, 520
fo:region-before element, 520
fo:region-body element, 521
fo:region-end element, 520
fo:region-start element, 520
fo:repeatable-page-master-alternatives

element, 532–533
fo:repeatable-page-master-reference

element, 532
fo:root element, 518
fo:simple-page-master element, 518–520
fo:single-page-master-reference element,

531–532
fo:static-content, 526
fo:static-content element, 522, 525, 527
fo:table element, 551–553
fo:table-and-caption element, 551–552
fo:title element, 522

format-number() function, 471
formatting

first letter of an element, 325
first line of an element, 326
pages with CSS, 375–377

formatting properties (XSL-FO), 510–513, 559–563
Forms module (XHTML), 788
fo:root element, 518
forward references, 214
forward slash (/) symbol (XSLT), 445–446
fo:simple-page-master element, 518–520
fo:single-page-master-reference element,

531–532
fo:static-content element, 522, 525–527

fo:table element, 551–553
fo:table-and-caption element, 551–552
fo:title element, 522
404 Not Found error, 288
fpi notation, 802
fractionDigits facet, 702, 705
fragment identifier (URL), 618
FrameMaker (Adobe), 9
Frames module (XHTML), 789
framework module (XHTML)

architecture, 801
character entities, 801, 808–809
code listing, 799–801
common attributes, 801, 807–808
content model, 801
data types, 801, 804–805
events, 801
loading XHTML modules, 802
notations, 801–802
qualified names, 801, 805–806
redeclaration, 801
role of, 798
XLink, 801

functions
ceiling(), 468
comment(), 449–450, 458
concat(), 470
contains(), 470
count(), 462
document(), 462
end-point(location-set), 641
false(), 466
floor(), 468
format-number(), 471
generate-id(), 463
here(), 635, 637–638
id(), 462, 635–637
key(), 462
lang(), 466
last(), 462
local-name(), 463
matrix(), 892
name(), 463
namespace-uri(), 463
node(), 458
normalize-space(), 470, 497
origin(), 635, 638
position(), 462–464
processing-instruction(), 450, 458
range(location-set), 641
range-inside(location-set), 641

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 997

998 Index ✦ F–I

functions (continued)
rotate(), 892
round(), 468
scale(), 892
skewX(), 892, 896
skewY(), 892, 896
start-point(location-set), 641
starts-with(), 470
string(), 469
string-range(), 641–642
substring(), 470
substring-after(), 470
substring-before(), 470
sum(), 468
text(), 451, 458
translate(), 470, 892
true(), 466

G
g element (SVG), 888–889
gDay element, 695
generate-id() function, 463
gMonth element, 695
gMonthDay element, 695
Gnome Project’s libxml2 parser, 200
Gnumeric spreadsheet, 49
graphics

bitmapped graphics, 850, 852, 879–880
Scalable Vector Graphics (SVG), 27–29
vector graphics, 850–851
XSL-FO (XSL Formatting Objects)

content-height attribute, 545
content-type attribute, 544–545
content-width attribute, 545
external-graphic element, 539–541
height attribute, 545
instream-foreign-object element, 541–544
scaling attribute, 545
width attribute, 545

GrayText system color, 342
greater than sign () entity reference, 255
grouping

schemas, 686–690
selectors (CSS), 320–321
shapes, 888–889

> entity reference, 160, 255
gYear element, 695
gYearMonth element, 695

H
handheld media type (CSS), 331
height property (CSS), 365–367

Hello XML example program, 55
here() function, 635, 637–638
hexBinary element, 699
hierarchy of selectors (CSS), 321
hierarchy operators in XPath expressions, 458–459
Highlight system color, 342
HighlightText system color, 342
horizontal lines (rules), 536–538
:hover pseudo-class, 327
href attribute, 61, 123
HR-XML, 40–43
HTML (HyperText Markup Language)

BASE element, 607–608
case-sensitivity, 179–180
comparison to XML, 5–6, 11
converting HTML to XHTML, 735–738
CSS (Cascading Style Sheets), 311–312, 316
links, 579–580
malformed HTML, 146
prefixes in elements, 301–302
tables, 551
validation, 733–734
well-formed HTML, 173–183

HTML Tidy, 185, 767–771
HTTP (HyperText Transfer Protocol) byte range

extensions, 618
HyperText Markup Language. See HTML (HyperText

Markup Language)
Hypertext module (XHTML), 788

I
IANA language codes, 158–159
IANA registry, 333
ID attribute, 230, 238
ID element, 696
id() function, 462, 635–637
id property (XSL-FO), 559
id() selector, 447
ID selectors (CSS), 324
IDREF attribute, 230, 238–239
IDREF element, 696
IDREFS attribute, 230, 239–240
IDREFS element, 697
Iframe module (XHTML), 789
IGNORE blocks in XHTML modules, 796–797
IGNORE directive, 283–284
image backgrounds, 405–406
image maps, 789
Image module (XHTML), 788
#IMPLIED value (attributes), 233–234
@import rules (CSS), 332
importing

32 549863 Index.qxd 1/28/04 9:50 AM Page 998

999Index ✦ I–L

CSS style sheets, 332–333
SVG documents, 903
XSLT style sheets, 499

InactiveBorder system color, 342
InactiveCaption system color, 342
InactiveCaptionText system color, 342
INCLUDE blocks in XHTML modules, 796–797
INCLUDE directive, 283–284
indenting

code, 72
lists, 352, 550
text, 399
XSL-FO (XSL Formatting Objects), 562
XSLT processors, 503

InfoBackground system color, 342
InfoText system color, 342
inheritance in CSS, 328–329
inline areas (XSL-FO), 509–510
inline elements

CSS, 344, 347–348
XSL-FO, 556–557

inline formatting objects, 534–535
installing sax.Counter, 674
instream-foreign-object element, 541–544
int element, 694
integer element, 693
interchanging

data among applications, 8
prefixes, 297–298

internal DTD subsets, 195–196
internal DTDs, 194–195
internal entities, 250
Intrinsic Events module (XHTML), 789
ISO 639 public identifiers, 197
ISO-639 standard language codes, 157
iTunes (Apple), 49

J
JSmart, 34
JUMBO Web browser, 19–20

K
key() function, 462
Keynote presentation (Apple), 49
keyword values (CSS properties), 343
keywords

ANY, 208–210
#PCDATA, 211–212
PUBLIC, 196
SYSTEM, 193, 196

L
lang() function, 466
:lang() pseudo-class, 327
language element, 697
language property (XSL-FO), 559–560
languageCode notation, 803
languages

IANA language codes, 158–159
ISO-639 standard language codes, 157
Unicode, 167
x-codes, 160
xml:lang attribute, 155, 157–158

large XML documents
embedded XLinks, 652–653
external parsed entities, 651–652
server-side includes, 653–655
XInclude

browser support, 647
DTD (Document Type Definition), 658–659
fallbacks, 663–665
support, 274
unparsed text, 662–663
URIs (Uniform Resource Identifiers), 647
use cases, 647–651
validation, 658–659
xinclude:fallback child element, 663–665
xinclude:include element, 655–657
XPointers, 618, 660–662

last() function, 462
layout with CSS

block elements, 348–349
borders, 358–362
box sizes, 364–369
boxes, 356
color values, 340–343
compact elements, 350
display property, 343–351
inline elements, 347–348
invisible elements, 348–349
keyword values, 343
length values, 337–339
lists, 351–355
margins, 356–358
markers, 350
padding, 363–364
page breaks, 377–379
page formatting, 375–377
positioning, 369–375
run-in elements, 350
string values, 343
tables, 350–351
URL values, 339

32 549863 Index.qxd 1/28/04 9:50 AM Page 999

1000 Index ✦ L

layout-master-set element, 518
leaders, 536
Legacy module (XHTML), 789
length facet, 702
length notation, 802
length values (CSS properties), 337–339
less than sign () entity reference, 255
letter-spacing property

CSS, 394–395
XSL-FO, 565

libxml XML parser, 430
libxml2 XML parser, 200
life cycle of XML documents, 10
line areas (XSL-FO), 509–510
line element (SVG), 863–864
line-height property (CSS), 336, 400–401
line-spacing, 566
line-through text

CSS (Cascading Style Sheets), 395
XSL-FO, 565

Link module (XHTML), 789
:link pseudo-class (CSS), 581
linking elements, 581
links

HTML, 579–580
resources

defined, 590
local resources, 590
remote resources, 584–585, 590

SVG documents, 899–900
XLinks

behavior, 585–588
browser support, 580
colors, 581–582
CSS (Cascading Style Sheets), 581
defined, 14
DTD (Document Type Definition), 582–584, 589
elements, 580–582
embedded XLinks, 652–653
extended links, 589–601
linkbase, 601–602
linking elements, 581
local resources, 590
multidirectional links, 580, 589–590
out-of-line links, 590, 601–606
rddl:resource elements, 837
remote resources, 584–585, 590
styles, 581–582
uses, 44
XLink module (XHTML Modular Framework

Module), 801
xlink:actuate attribute, 585, 587–588, 595

xlink:arcrole attribute, 845–847
xlink:from attribute, 595
xlink:href attribute, 581–582, 837, 843
xlink:label attribute, 595
xlink:role attribute, 584–585, 837, 843
xlink:show attribute, 585–587, 595
xlink:title attribute, 584–585
xlink:to attribute, 595
xlink:type attribute, 580–581, 590, 837

XPointers
child sequences, 643
context node, 624
examples, 618–623
here() function, 635, 637–638
id() function, 635–637
location paths, 623–625
location sets, 640–641
location steps, 624–635
origin() function, 635, 638
points, 638–640
ranges, 640–642
root node, 625–626
shorthand pointers, 636
uses, 617–618
UTF-8 encoding, 620
XInclude, 660–662
xmlns:prefix attribute, 631

XSL-FO (XSL Formatting Objects), 545–547
linkTypes notation, 802
List module (XHTML), 788, 790–793
lists

bullet characters, 352–353
bulleted list style rules, 96–98
display property (CSS), 351–354
indentation, 352, 550
schemas, 714–715
XSL-FO (XSL Formatting Objects), 547–550

list-style property (CSS), 355
list-style-image property (CSS), 336, 354–355
list-style-position property (CSS), 355
list-style-type property, 352
list-style-type property (CSS), 353
literary analysis, 25
loading

XHTML modules, 802
XML documents, 57

local names, 293–294
local resources, 590
local-name() function, 463
location paths (XPointers), 623–625
location sets (XPointers), 640–641
location steps (XPointers)

32 549863 Index.qxd 1/28/04 9:50 AM Page 1000

1001Index ✦ L–M

axes
ancestor, 626, 629
ancestor-or-self, 626, 629
attribute, 626, 630
child, 626
defined, 624
descendant, 626, 628
descendant-or-self, 626, 628
following, 626, 629
following-sibling, 627, 630
namespace, 630–631
parent, 626, 628
preceding, 627, 629
preceding-sibling, 627, 630
self, 626, 628

context node, 624–627
node test, 624, 631–633
predicate, 624, 633–635

long element, 694
loose DTD, 210–211
< entity reference, 160, 255

M
Mac OS X, 49
malformed HTML, 146
malformed XML documents, 146
margin property (CSS), 376–377
margin-bottom property (CSS), 356, 358
margin-left property (CSS), 356, 358
margin-right property (CSS), 356, 358
margins

CSS (Cascading Style Sheets), 356–358
XSL-FO (XSL Formatting Objects), 570–572

margin-top property (CSS), 336, 356–358
mark property (CSS), 377
markers (CSS), 350–351
markup, 59–60, 148
markup language, 3–4
match patterns

at (@) sign, 447–449
attributes, 447–449
comments, 449–450
descendants, 446
double slash (//) symbol, 446
element names, 442–444
forward slash (/) symbol, 445–446
hierarchies of elements, 445–446
IDs, 447
or (|) operator, 451–452
processing instructions, 450
root node, 440–442
square brackets ([]), 452–454

text nodes, 451
wildcards, 444–445
XPath expressions, 454

MathML (Mathematical Markup Language), 19–22, 288
matrix() function, 892
maxExclusive facet, 701–702
max-height property (CSS), 367
maxInclusive facet, 701–702
maxLength facet, 702–703
maxOccurs attribute (xsd:element element), 678–680
max-width property (CSS), 367
@media rule (CSS), 330–331
media types (CSS), 331–332
mediaDesc notation, 803
Menu system color, 342
MenuText system color, 342
merging XSLT style sheets, 499
metadata

attributes, 109–111
metadata versus data, 113–114
meta-metadata, 113
SVG documents, 900–903

metadata element (SVG), 900–903
Meta-information module (XHTML), 789
meta-markup language, 4
meta-metadata, 113
Microsoft Office 2003, 46–49
MIME media type in XHTML, 771–772
minExclusive facet, 701–702
min-height property (CSS), 367
minInclusive facet, 700–702
minLength facet, 702–703
minOccurs attribute (xsd:element element), 678–680
min-width property (CSS), 367
mixed content

DTDs (Document Type Definitions), 669
elements, 220–221
schemas, 685–686

modes in XSLT, 490–492
modularized DTDs, 668
modules (XHTML)

Applet, 788
Base, 789
Basic Forms, 788
Basic Tables, 788
Bi-directional Text, 788
Client-Side Image Map, 789
combining, 790
content models, 794–796
document model, 816–820, 823–827
downloading, 790

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 1001

1002 Index ✦ M–N

modules (XHTML) (continued)
driver DTDs, 809–815
Edit, 788
element names, 793–794
Forms, 788
Frames, 789
Hypertext, 788
Iframe, 789
IGNORE blocks, 796–797
Image, 788
INCLUDE blocks, 796–797
Intrinsic Events, 789
Legacy, 789
Link, 789
List, 788, 790–793
loading, 802
Meta-information, 789
Name Identification, 789
Object, 789
parameter entities, 821–823
Presentation, 788
public identifier, 790
referencing XHTML entities, 797–798
schemas, 828–831
Scripting, 789
Server-Side Image Map, 789
Structure, 788
Style Attribute, 789
system identifier, 790
Tables, 788
Target, 789
Text, 788
XHTML Modular Framework Module

architecture, 801
character entities, 801, 808–809
code listing, 799–801
common attributes, 807–808
content model, 801
data types, 801, 804–805
events, 801
notations, 801–803
qualified names, 801, 805–806
redeclaration, 801
role of, 798
XLink, 801

MSXML parser, 433–434
multidirectional links, 580, 589–590
multiLength notation, 802
MusicXML, 29–33

N
Name element, 697
name() function, 463
Name Identification module (XHTML), 789
name tokens

NMTOKEN attribute, 230, 236
NMTOKENS attribute, 230, 236–237

namespace axis
XPath expressions, 455
XPointers, 630–631

namespace URLs, 833–836
namespaces

attributes, 298–299, 304
C++, 287
declaring, 294–297
default, 300–304, 306–307
DTDs (Document Type Definitions), 668
local names, 293–294
MathML, 288
prefixes

changing, 294
default namespaces, 306–307
HTML elements, 301–302
interchanging, 297–298
removing, 307
Uniform Resource Identifiers (URIs), 291–294
xml prefix, 294
xmlns prefix, 294

purpose of, 287–288
qualified names, 293–294
schemas, 720–727
SVG, 288
syntax, 289–291
URIs (Uniform Resource Identifiers), 288–289, 833
validity, 304–305
well-formedness, 304–305
XHTML, 288
XML 1.0 specification, 289
XML parsers, 289

namespace-uri() function, 463
naming

elements, 70
style sheets, 89
XML documents, 56

naming conventions, 69
natures (RDDL), 843–845
NCName element, 697
negativeInteger element, 693
Netscape’s What’s Related feature, 49–52

32 549863 Index.qxd 1/28/04 9:50 AM Page 1002

1003Index ✦ N–P

NMTOKEN attribute, 230, 236
NMTOKEN element, 697
NMTOKENS attribute, 230, 236–237
NMTOKENS element, 697
node() function, 458
node() node test, 631
node tests

XPath expressions, 458
XPointers, 624, 631–633

nodes (XPointers), 625–626
node-set returning functions

here(), 635, 637–638
id(), 635–637
origin(), 635, 638

node-sets (XPath expressions), 461–464
nonNegativeInteger element, 694
nonPositiveInteger element, 693
nonvalidating parsers, 260
non-XML data

notations, 275–278
processing instructions, 283–284
unparsed entities, 278–283

normalizedString element, 698
normalize-space() function, 470, 497
NOTATION attribute, 230, 241–242
!NOTATION declaration, 275–278
NOTATION element, 696
notations

cdata, 802
character, 803
charset, 803
charsets, 803
contentType, 803
contentTypes, 803
datetime, 803
fpi, 802
languageCode, 803
length, 802
linkTypes, 802
mediaDesc, 803
multiLength, 802
number, 803
pixels, 802
script, 803
syntax, 275–278
text, 803
uri, 803
uris, 803
w3c-xml, 802

notations module (XHTML Modular Framework
Module), 801–803

Notepad, 56
Notepad editor, 9
null elements, 71
number notation, 803
numbers in XPath expressions, 467–469
numeric character references (Unicode), 169–171
numeric data types (schemas), 692–694

O
Object module (XHTML), 789
Office 2003 (Microsoft), 46–49
OFX 2.0 (Open Financial Exchange 2.0), 8, 36
Open Financial Exchange 2.0 (OFX 2.0), 8, 36
Open Software Description (OSD), 26–27
or (|) operator in XSLT pattern-matching, 451–452
origin() function, 635, 638
orphans property

CSS, 378–379
XSL-FO, 574–575

OSD (Open Software Description), 26–27
out-of-line formatting objects, 536
out-of-line links, 590, 601, 603–606
output documents (XSLT)

attributes, 476–478
comments, 479
elements, 475–476
processing instructions, 478–479
text, 479–480

overflow property
CSS, 365, 368–369
XSL-FO, 572–573

overlapping elements, 152–153
overline text

CSS, 395
XSL-FO, 565

P
padding

padding shorthand property (CSS), 363
padding-bottom property (CSS), 363
padding-left property (CSS), 363
padding-right property (CSS), 363
padding-top property (CSS), 363
XSL-FO (XSL Formatting Objects), 569–570

page breaks
page-break-after property (CSS), 378–379
page-break-before property (CSS), 378–379
page-break-inside property (CSS), 378–379

32 549863 Index.qxd 1/28/04 9:50 AM Page 1003

1004 Index ✦ P

page formatting with CSS, 375–377
page masters (XSL-FO), 518–520
page property (CSS), 377
@page rule (CSS), 375–376
page sequences (XSL-FO), 522
page-number element, 528–529
page-sequence element, 518, 522, 527–528
page-sequence-master element, 530
parameter entity references

external, 263–268
internal, 260–263
XHTML, 821–823

parameterized DTD, 305–306
parameterizing entities, 254
parent axis

XPath expressions, 455–457
XPointers, 626, 628

parentheses () in element declarations, 217–220
parsed character data (PCDATA), 149
parsed entities, 250, 269–274
parsers

libxml, 430
malformed XML documents, 146
MSXML, 433–434
namespaces, 289
nonvalidating parsers, 260
role of, 10
validating parsers, 200
well-formedness, 145–146
white space, 72
Xerces Java (XML Apache Project), 674

passing parameters to templates (XSLT), 495–496
path element (SVG)

arcs, 869–871
basic operations, 866–867
Bézier curves, 872–873
drawing instructions, 867–869

pattern facet, 701–702, 707
pattern-matching

at (@) sign, 447–449
attributes, 447–449
comments, 449–450
descendants, 446
double slash (//) symbol, 446
element names, 442–444
forward slash (/) symbol, 445–446
hierarchies of elements, 445–446
IDs, 447
or (|) operator, 451–452
processing instructions, 450
root node, 440–442

square brackets ([]), 452–454
text nodes, 451
wildcards, 444–445
XPath expressions, 454

#PCDATA keyword, 211–212
PCDATA (parsed character data), 149
PDAs, 331
pixels notation, 802
plus sign (+) quantifier, 215
point() node test, 631, 633
points (XPointers), 638–640
polygon element (SVG), 864–865
polyline element (SVG), 866
position() function, 462–464
position property (CSS), 369–371
positioning with CSS

absolute positioning, 371–372
backgrounds, 409–412
clear property, 374–375
fixed positioning, 371–372
float property, 373–374
position property, 369–371
relative positioning, 369–370
z-index property, 373

positiveInteger element, 694
preceding axis

XPath expressions, 455
XPointers, 627, 629

preceding-sibling axis
XPath expressions, 455
XPointers, 627, 630

predefined attributes
xml:base, 155
xml:lang, 155, 157–158
xml:space, 155–156

predefined entity references, 255
predicate (location steps), 624, 633–635
prefix:* node test, 631
prefixes (namespaces)

changing, 294
default namespaces, 306–307
HTML elements, 301–302
interchanging, 297–298
removing, 307
URIs (Uniform Resource Identifiers), 291–294,

297–298
xml prefix, 294
xmlns prefix, 294

Presentation module (XHTML), 788
print media type (CSS), 332

32 549863 Index.qxd 1/28/04 9:50 AM Page 1004

1005Index ✦ P

processing instructions
IGNORE directive, 283–284
INCLUDE directive, 283–284
output document (XSLT), 478–479
pattern-matching (XSLT), 450
target, 164
well-formedness rules, 164–165
<?xml-stylesheet?>

attaching style sheets, 61–62, 123
CSS (Cascading Style Sheets), 313–315
XSLT style sheets, 433

processing-instruction() function, 450, 458
processing-instruction() node test, 631, 633
processors

XML
malformed XML documents, 146
role of, 10
well-formedness, 145–146

XSLT
indentation, 503
output methods, 500–503

projection media type (CSS), 332
properties

CSS (Cascading Style Sheets)
background shorthand, 404, 413
background-attachment, 404, 408
background-color, 336, 404
background-image, 336, 404–405
background-position, 404, 409–412
background-repeat, 404, 406–408
border shorthand, 361–362
border-bottom shorthand, 361–362
border-bottom-color, 361
border-bottom-width, 360
border-color shorthand, 361
border-left shorthand, 361–362
border-left-color, 361
border-left-width, 360
border-right shorthand, 361–362
border-right-color, 361
border-right-width, 360
border-style, 336, 359–360
border-top shorthand, 361–362
border-top-color, 361
border-top-width, 360
border-width shorthand, 361
clear, 374–375
color, 336, 392
content, 414–420
display, 336, 343–354
float, 373–374

font shorthand, 381, 390–391
font-family, 381–383
font-size, 336, 381, 386–390
font-style, 336, 381, 384
font-variant, 381, 385
font-weight, 381, 385–386
height, 365–367
letter-spacing, 394–395
line-height, 336, 400–401
list-style shorthand, 355
list-style-image, 336, 354–355
list-style-position, 355
list-style-type, 352–353
margin, 376–377
margin-bottom, 356, 358
margin-left, 356, 358
margin-right, 356, 358
margin-top, 336, 356–358
mark, 377
max-height, 367
max-width, 367
min-height, 367
min-width, 367
names, 335–336
orphans, 378–379
overflow, 365, 368–369
padding shorthand, 363
padding-bottom, 363
padding-left, 363
padding-right, 363
padding-top, 363
page, 377
page-break-after, 378–379
page-break-before, 378–379
page-break-inside, 378–379
position, 369–371
size, 376
text-align, 398–399
text-decoration, 395–396
text-indent, 352, 399–400
text-transform, 397–398
values, 335–343
vertical-align, 396–397
visibility, 413–414
white-space, 402–403
widows, 378–379
width, 365–367
word-spacing, 393–394
z-index, 373

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 1005

1006 Index ✦ P–R

properties (continued)
XSL-FO (XSL Formatting Objects)

areas, 567–568
backgrounds, 568
borders, 568–569
color, 563
complete listing of, 511–513
fonts, 563–564
hyphenation, 561–562
id, 559
indentation, 562–563
language, 559–560
line-spacing, 566
margins, 570–572
orphans, 574–575
overflow, 572–573
padding, 569–570
paragraph, 560–561
reference-orientation, 573
sentences, 565
similarities to CSS properties, 510
text alignment, 566–567
white space, 567
widows, 574–575
word-spacing, 565
writing modes, 573–574

pseudo-attributes, 147
pseudo-classes (CSS)

defined, 326–327
:first-child, 327
:hover, 327
:lang(), 327
:link, 581
:visited, 581

pseudo-elements (CSS)
:after, 326
:before, 326
defined, 324–325
:first-letter, 325
:first-line, 326

public identifiers, 196–197
PUBLIC keyword, 196
purposes (RDDL), 845–847

Q
QName element, 697
qualified names, 293–294
qualified names module (XHTML Modular Framework

Module), 801, 805–806
quantifiers

asterisk (*), 216
plus sign (+), 215
question mark (?), 215–216

question mark (?) quantifier, 215–216
question mark (<? and ?>) tags in processing

instructions, 164
" entity reference, 160, 255
quote mark (“) entity reference, 255
quotes, 415–416

R
range() node test, 631, 633
range-inside(location-set) function, 641
range(location-set) function, 641
ranges (XPointers), 640–642
RDDL (Resource Directory Description Language)

code example, 838–840
development history, 833
namespace URLs, 833–836
natures, 843–845
purposes, 845–847
resource element, 836–838, 841–843
XHTML, 840

Recordare MusicXML, 29–33
rect element (SVG), 859–861
Redeclaration module (XHTML Modular Framework

Module), 801
reference-orientation property (XSL-FO), 573
references to entities

&, 255
', 255
general

external, 256–260
internal, 250–255

>, 255
<, 255
parameter

external, 263–268
internal, 260–263

predefined, 255
", 255

referencing
CSS (Cascading Style Sheets), 315
shapes, 889–891
XHTML entities, 797–798

region-after element, 520
region-before element, 520
region-body element, 521
region-end element, 520
regions (XSL-FO), 509, 520–521
region-start element, 520
regular expressions in schemas, 708–712
relative positioning, 369–370
relative URLs, 612–613
RELAX NG schema language, 670
remote resources, 584–585, 590

32 549863 Index.qxd 1/28/04 9:50 AM Page 1006

1007Index ✦ R–S

removing prefixes, 307
repeatable-page-master-alternatives element,

532–533
repeatable-page-master-reference element, 532
repeating background images, 406–408
#REQUIRED value (attributes), 232–233
Resource Directory Description Language (RDDL)

code example, 838–840
development history, 833
namespace URLs, 833–836
natures, 843–845
purposes, 845–847
resource element, 836–838, 841–843
XHTML, 840

resource element (RDDL), 836–838, 841–843
resources (links)

defined, 590
local resources, 590
remote resources, 584–585, 590

restriction element, 700–701
root element

defined, 69, 148
end-tags, 148
namespace declarations, 296–297
start-tags, 148
style rules, 90–91

root element, 518
root node (XPointers), 625–626
rotate() function, 892
round() function, 468
RSS, 22–25
rules

CSS (Cascading Style Sheets)
@charset, 333
conflicts, 321
defined, 312
@media, 330–331
@page, 375–376

default template rules (XSLT)
attributes, 472
comments, 472
elements, 471–472
implications of, 473
processing instructions, 472
text nodes, 472

well-formed HTML, 173–183
well-formedness

attribute names, 154
attribute values, 154
attributes values, 155
CDATA sections, 165–166
comments, 162–164
complete list of, 146

element names, 149–150
empty-element tags, 151–152
encoding declaration, 168–169
end-tags, 146, 150–151
entity references, 160–161
overlapping elements, 152–153
processing instructions, 164–165
root element, 148
start-tags, 146, 150–151
text, 148–149
Unicode, 167–171
XML declaration, 147–148

rules (horizontal lines), 536–538
running xsltproc, 431–432
RUWF well-formedness checker (XML.COM), 183–184

S
saving

SVG documents, 855
XML documents, 56

sax.Counter, 674–675
Scalable Vector Graphics (SVG)

a element, 899–900
ASCII character set, 855
bitmapped features, 852
bitmapped graphics, 879–880
browser support, 849–850, 856–857
circle element, 861–862
code example, 852–854
coordinate systems, 881–887
CSS (Cascading Style Sheets), 854, 878
defined, 849
desc element, 900–903
description of, 27–29
ellipse element, 862–863
embedding in Web pages, 855–858
exploded pie example, 894–895
exporting SVG documents, 903
fonts, 878
g element, 888–889
importing SVG documents, 903
line element, 863–864
links, 899–900
matrix() function, 892
metadata, 900–903
metadata element, 900–903
namespace, 287–288
path element, 866–873
polygon element, 864–865
polyline element, 866
rect element, 859–861
referencing shapes, 889–891

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 1007

1008 Index ✦ S

Scalable Vector Graphics (SVG) (continued)
rotate() function, 892
scalability, 851–852
scale() function, 892
scaled pie example, 896
skewed text example, 897–898
skewX() function, 892, 896
skewY() function, 892, 896
text, 873–874
text editors, 855
text element, 874–876
textpath element, 876–878
title element, 900–903
transformations, 892–899
translate() function, 892
translations, 892
tspan element, 879
use element, 889–891
viewports, 882–887

scale() function, 892
Schema for Object-Oriented XML (SOX), 670
schema languages

Document Content Description (DCD), 670
RELAX NG, 670
Schema for Object-Oriented XML (SOX), 670
Schematron, 670–671
XML Schema Language, 670–671
XML-Data Reduced (XDR), 670

schemas
all element, 687–688
annotation element, 728
annotations, 727–728
anonymous types, 683–684
anyURI element, 699
attaching to XML documents, 674
attributes, 716–720
base64Binary element, 699
boolean element, 699
byte element, 694
choice element, 687, 689
code example, 671–673, 713–714
comments, 728
complex type elements, 675–677
complexType element, 672, 681–682
content models, 682–683
data types

binary, 698–699
numeric, 692–694
string, 697–698
time, 695–696
XML, 696

date element, 695
dateTime element, 695
decimal element, 693
defined, 667, 669–670
double element, 693
DTDs (Document Type Definitions), 669
duration element, 695
element content, 680–682
element declarations, 672–673
element element

element declarations, 672
maxOccurs attribute, 678–680
minOccurs attribute, 678–680
type attribute, 683

element order, 686–687
empty elements, 715–716
ENTITIES element, 697
ENTITY element, 696
facets, 702–703
float element, 693
gDay element, 695
gMonth element, 695
gMonthDay element, 695
grouping, 686–690
grouping constructs, 687
gYear element, 695
gYearMonth element, 695
hexBinary element, 699
ID element, 696
IDREF element, 696
IDREFS element, 697
int element, 694
integer element, 693
language element, 697
lists, 714–715
long element, 694
mixed content, 685–686
Name element, 697
namespaces, 720–727
NCName element, 697
negativeInteger element, 693
NMTOKEN element, 697
NMTOKENS element, 697
nonNegativeInteger element, 694
nonPositiveInteger element, 693
normalizedString element, 698
NOTATION element, 696
positiveInteger element, 694
QName element, 697
regular expressions, 708–712
restriction element, 700–701

32 549863 Index.qxd 1/28/04 9:50 AM Page 1008

1009Index ✦ S

schema root element, 672
sequence element, 687, 690
short element, 694
simple element types, 692
simple type elements, 675–677, 690–691
simpleType element, 700
string element, 698
time element, 695
token element, 698
unions, 714
unsignedByte element, 694
unsignedInt element, 694
unsignedLong element, 694
unsignedShort element, 694
uses, 45–46
validation, 673–675, 677–678
XHTML modules, 828–831

Schematron schema language, 670–671
screen media type (CSS), 332
script notation, 803
Scripting module (XHTML), 789
scroll bars, 369
Scrollbar system color, 342
scrolling backgrounds, 408–409
select attribute (xsl:apply-templates element),

437
selectors (CSS)

adjacent sibling selectors, 323
attribute selectors, 323–324
child selectors, 321–322
defined, 312, 317
descendant selectors, 322–323
element names, 317
grouping, 320–321
hierarchy, 321
id(), 447
ID selectors, 324
patterns, 318–320
universal selector, 320

self axis
XPath expressions, 455
XPointers, 626, 628

self-describing data, 7, 87
semantic markup, 59–60
sentence properties (XSL-FO), 565
separators

comma (,), 216
vertical bar (|), 216

sequence content model, 213–214
sequence element, 687, 690
Server-Side Image Map module (XHTML), 789

server-side includes, 653–655
SGML (Standardized General Markup Language), 667
shapes

circle element, 861–862
ellipse element, 862–863
g element, 888–889
grouping, 888–889
line element, 863–864
path element, 866–873
polygon element, 864–865
polyline element, 866
rect element, 859–861
referencing, 889–891

short element, 694
shorthand pointers, 636
simple elements, 212
simple type elements (schemas), 675–677, 690–691
simple-page-master element, 518–520
simpleType element, 700
single-page-master-reference element, 531–532
size property (CSS), 376
skewX() function, 892, 896
skewY() function, 892, 896
SMIL (Synchronized Multimedia Integration Language),

26
sorting

XSL style sheets, 134–137
XSLT output, 486–489

SOX (Schema for Object-Oriented XML), 670
speech synthesizers, 331
square brackets ([]) in XSLT pattern-matching,

452–454
Squiggle SVG viewer, 853
standalone pseudo-attribute, 147
Standardized General Markup Language (SGML), 667
StarOffice (Sun), 49
start-point(location-set) function, 641
starts-with() function, 470
start-tags

elements, 149
root element, 148
well-formedness rules, 146, 150–151

static-content element, 522, 525–527
string data types (schemas), 697–698
string element, 698
string() function, 469
string ranges (XPointers), 641–642
string values (CSS properties), 343
string-length() function, 470
string-range() function, 641–642
strings in XPath expressions, 469–471

32 549863 Index.qxd 1/28/04 9:50 AM Page 1009

1010 Index ✦ S

structure markup, 59
Structure module (XHTML), 788
structured data, 8–9
Style Attribute module (XHTML), 789
style markup, 59–60
style rules

bulleted lists, 96–98
root element, 90–91
tables, 94–95
titles, 91–93

Style Sheet module (XHTML), 789
style sheets

attaching, 61–62, 89–90
CSS (Cascading Style Sheets)

advantages, 60, 100, 311
attaching to XML documents, 313–314, 329–330
backgrounds, 404–412
blinking text, 395
borders, 358–362
box sizes, 364–368
boxes, 356
browser support, 311, 317, 335
cascades, 329
character sets, 333
@charset rules, 333
colors, 392
comments, 312–313
conflicts in rules, 321
content, 414–420
.css extension in filenames, 312
CSS1, 316–317
CSS2, 316–317
CSS3, 317
defined, 12, 311
disadvantages, 100
display properties of elements, 95–96
DTDs, 316
encoding options, 333
fonts, 381–391
HTML, 311–312, 316
importing, 332–333
indenting text, 399–400
inheritance, 328–329
letter spacing, 394–395
line height of text, 400–401
line-through text, 395
margins, 356–358
@media rule, 330–331
media types, 331–332
overline text, 395

padding, 363–364
page breaks, 377–379
page formatting, 375–377
positioning, 369–374
properties, 335–336
pseudo-classes, 326–327
pseudo-elements, 324–326
quotes, 415
referencing, 315
rules, 312, 321, 330–331
Scalable Vector Graphics (SVG), 854, 878
selectors, 312, 317–324
Style Attribute module (XHTML), 789
Style Sheet module (XHTML), 789
styles directory, 315
tables, 94–95
text alignment, 396–399
underline text, 395–396
versions, 316–317
visibility, 413–414
white space, 402–403
word spacing, 393–394
XLinks, 581
xml-stylesheet processing instruction,

313–315
CSS versus XSL, 143–144
DTD (Document Type Definition), 197–198
naming, 89
television listings example, 98–100
writing, 60–61
XSL

attaching to XML documents, 123
example, 121–134
sorting, 134–137
tables, 137–143
templates, 120–121

XSLT
attaching to XML documents, 433
attribute value templates, 473–475
default template rules, 471–473
importing, 499
merging, 499
template rules, 428–429, 434
well-formedness, 434
xml-stylesheet processing instruction, 433
xsl:apply-imports element, 499
xsl:apply-templates element, 435–437, 495
xsl:attribute element, 476–477
xsl:attribute-set element, 477–478
xsl:call-template element, 494–496

32 549863 Index.qxd 1/28/04 9:50 AM Page 1010

1011Index ✦ S–T

xsl:choose, 498
xsl:choose element, 497, 499
xsl:comment element, 479
xsl:copy element, 480–482
xsl:element element, 475–476
xsl:for-each element, 440
xsl:if element, 497–498
xsl:import element, 499
xsl:include element, 500
xsl:number element, 482–486
xsl:output element, 501–504
xsl:param element, 495
xsl:preserve-space element, 497
xsl:processing-instruction element,

478–479
xsl:sort element, 486–489
xsl:strip-space element, 497
xsl:stylesheet element, 428–429
xsl:template element, 428, 434, 493–495
xsl:text element, 479–480, 497
xsl:transform element, 428–429
xsl:value-of element, 437–439
xsl:variable element, 492–493

substring() function, 470
substring-after() function, 470
substring-before() function, 470
sum() function, 468
Sun’s StarOffice, 49
SVG editors, 903
svg element

height attribute, 854
width attribute, 854

SVG (Scalable Vector Graphics)
a element, 899–900
ASCII character set, 855
bitmapped features, 852
bitmapped graphics, 879–880
browser support, 849–850, 856–857
circle element, 861–862
code example, 852–854
coordinate systems, 881–887
CSS (Cascading Style Sheets), 854, 878
defined, 849
desc element, 900–903
description of, 27–29
ellipse element, 862–863
embedding in Web pages, 855–858
exploded pie example, 894–895
exporting SVG documents, 903
fonts, 878

g element, 888–889
importing SVG documents, 903
line element, 863–864
links, 899–900
matrix() function, 892
metadata, 900–903
metadata element, 900–903
namespace, 287–288
path element, 866–873
polygon element, 864–865
polyline element, 866
rect element, 859–861
referencing shapes, 889–891
rotate() function, 892
scalability, 851–852
scale() function, 892
scaled pie example, 896
skewed text example, 897–898
skewX() function, 892, 896
skewY() function, 892, 896
text, 873–874
text editors, 855
text element, 874–876
textpath element, 876–878
title element, 900–903
transformations, 892–899
translate() function, 892
translations, 892
tspan element, 879
use element, 889–891
viewports, 882–887

SVG viewers, 853
Synchronized Multimedia Integration Language (SMIL),

26
system colors (CSS properties), 341–343
SYSTEM keyword, 193, 196

T
table element, 551–553
table formatting objects, 535
table-and-caption element, 551–552
tables

CSS (Cascading Style Sheets), 94–95
display property (CSS), 344, 350–351
HTML, 551
style rules, 94–95
XSL style sheets, 137–143
XSL-FO (XSL Formatting Objects), 551–556

Tables module (XHTML), 788
tags. See elements

32 549863 Index.qxd 1/28/04 9:50 AM Page 1011

1012 Index ✦ T

Target module (XHTML), 789
television listings example

adding content, 77–79
attributes, 105–108
CAST element, 74–75
content, 64–67
DESCRIPTION element, 76
naming conventions, 69
organizing content, 67–76
reordering content, 86
SERIES element, 76
SHOW element, 72–74
STATION element, 72
style sheets

CSS, 98–100
XSL, 121–134

use cases, 63
XML document, 79–85

template rules (XSLT style sheets)
attribute value templates, 473–475
default template rules

attributes, 472
comments, 472
elements, 471–472
implications of, 473
processing instructions, 472
text nodes, 472

defined, 428
example, 429
xsl:template element, 428, 434

templates (XSL style sheets), 120–121
text

CSS (Cascading Style Sheets)
alignment, 396–399
all caps, 397
blinking, 395
code example, 401
colors, 392
fonts, 381–391
indents, 399–400
letter spacing, 394–395
line height, 400–401
line-through, 395
lowercase, 397
overline, 395
underline, 395–396
uppercase, 397
word spacing, 393–394

output document (XSLT), 479–480

Scalable Vector Graphics (SVG), 873–874
XML documents, 148–149
XSL-FO, 564–565

text alignment
CSS, 396–399
XSL-FO, 566–567

text declarations, 258–259
text element (SVG), 874–876
text() function, 451, 458
Text module (XHTML), 788
text() node test, 631–632
text notation, 803
text-align property (CSS), 398–399
text-decoration property (CSS), 395–396
text-indent property (CSS), 352, 399–400
textpath element (SVG), 876–878
text-transform property (CSS), 397–398
textual analysis, 25
ThreeDDarkShadow system color, 342
ThreeDFace system color, 342
ThreeDHighlight system color, 342
ThreeDLightShadow system color, 342
ThreeDShadow system color, 342
Tidy, 185, 767–771
time data types (schemas), 695–696
time element, 695
title element

SVG, 900–903
XSL-FO, 522

title style rules, 91–93
token element, 698
tools for well-formedness

HTML Tidy, 185
RUWF well-formedness checker (XML.COM),

183–184
totalDigits facet, 702, 705
transformations

how they work, 430
pattern-matching

at (@) sign, 447–449
attributes, 447–449
comments, 449–450
descendants, 446
double slash (//) symbol, 446
element names, 442–444
forward slash (/) symbol, 445–446
hierarchies of elements, 445–446
IDs, 447
or (|) operator, 451–452

32 549863 Index.qxd 1/28/04 9:50 AM Page 1012

1013Index ✦ T–V

processing instructions, 450
root node, 440–442
square brackets ([]), 452–454
text nodes, 451
wildcards, 444–445
XPath expressions, 454

xsltproc, 430–432
transformations (SVG), 892–899
translate() function, 470, 892
translations (SVG), 892
transparency of backgrounds, 404
traversal paths (extended links), 595
true() function, 466
tspan element (SVG), 879
tty media type (CSS), 332
tv media type (CSS), 332
type attribute, 61, 123

U
underline text

CSS, 395–396
XSL-FO, 564

underscore character (_) in element names, 149
Unicode

character encodings, 168
code points, 167–168
defined, 167
encoding declaration, 168–169
numeric character references, 169–171
well-formedness rules, 167–171
XML 1.1, 171–173

Uniform Resource Identifiers (URIs)
characters, 294
content property (CSS), 416–417
namespaces, 288, 291–294, 833
prefixes, 291–294, 297–298
XInclude, 647
XPointers, 619–620

Uniform Resource Locators (URLs)
BASE element (HTML), 607–608
base URL, 608–612
fragment identifier, 618
limitations, 617
namespace URLs, 833, 835–836
natures (RDDL), 845
purposes (RDDL), 846–847
relative URLs, 612–613
xml:base attribute, 608–614

unions in schemas, 714
United Parcel Service (UPS), 52–53
universal selector (CSS), 320
unparsed entities, 250, 278–283
unparsed text (XInclude), 662–663
unprefixed attributes, 304
unsignedByte element, 694
unsignedInt element, 694
unsignedLong element, 694
unsignedShort element, 694
UPS (United Parcel Service), 52–53
uri notation, 803
uris notation, 803
URIs (Uniform Resource Identifiers)

characters, 294
content property (CSS), 416–417
namespaces, 288, 291–294, 833
prefixes, 291–294, 297–298
XInclude, 647
XPointers, 619–620

URL values (CSS properties), 339
URLs (Uniform Resource Locators)

BASE element (HTML), 607–608
base URL, 608–612
fragment identifier, 618
limitations, 617
namespace URLs, 833–836
natures (RDDL), 845
purposes (RDDL), 846–847
relative URLs, 612–613
xml:base attribute, 608–614

use element (SVG), 889–891
UTF-8 encoding

Unicode, 168
XPointers, 620

UTF-16 encoding (Unicode), 168–169
UWI.COM, 39

V
validating parsers, 200
validation

DTD (Document Type Definition), 199–203
HTML, 733–734
namespaces, 304–305
schemas, 673–675, 677–678
XHTML, 735, 745–753
XInclude, 658–659

validators, Web-based, 201–203

32 549863 Index.qxd 1/28/04 9:50 AM Page 1013

1014 Index ✦ V–W

values
attributes

default values, 231–232
entities, 253–254
#FIXED, 234–235
#IMPLIED, 233–234
#REQUIRED, 232–233
syntax, 104–105, 108
well-formedness rules, 154–155

CSS properties
color values, 340–343
keyword values, 343
length values, 337–339
range of, 335–336
string values, 343
URL values, 339

vector graphics
CGM format, 850
defined, 850
EPS format, 850
PICT format, 850
Scalable Vector Graphics (SVG)

a element, 899–900
ASCII character set, 855
bitmapped features, 852
bitmapped graphics, 879–880
browser support, 849–850, 856–857
circle element, 861–862
code example, 852–854
coordinate systems, 881–887
CSS (Cascading Style Sheets), 854, 878
defined, 849
desc element, 900–903
description of, 27–29
ellipse element, 862–863
embedding in Web pages, 855–858
exploded pie example, 894–895
exporting SVG documents, 903
fonts, 878
g element, 888–889
importing SVG documents, 903
line element, 863–864
links, 899–900
matrix() function, 892
metadata, 900–903
metadata element, 900–903
namespace, 287–288
path element, 866–873
polygon element, 864–865
polyline element, 866

rect element, 859–861
referencing shapes, 889–891
rotate() function, 892
scalability, 851–852
scale() function, 892
scaled pie example, 896
skewed text example, 897–898
skewX() function, 892, 896
skewY() function, 892, 896
text, 873–874
text editors, 855
text element, 874–876
textpath element, 876–878
title element, 900–903
transformations, 892–899
translate() function, 892
translations, 892
tspan element, 879
use element, 889–891
viewports, 882–887

version attribute, 58
vertical bar (|)

or operator in XSLT pattern-matching, 451–452
separator, 216

vertical-align property (CSS), 396–397
vi editor, 9
viewing XML documents, 57
viewports (SVG), 882–887
visibility of elements, 413–414
:visited pseudo-class (CSS), 581
Visual XML editor, 9
vocabularies

adding elements, 77–79
categorizing elements, 64
creating, 64, 67
naming conventions, 69
ordering elements, 64
organizing elements, 67–76
reordering elements, 86

VoiceXML, 34–35

W
W3C (World Wide Web Consortium), 197, 834–835
W3C XML Schema Language

alternatives, 670–671
complex types, 675–677
development history, 671
simple types, 675–677, 690–692
specification, 671

w3c-xml notation, 802

32 549863 Index.qxd 1/28/04 9:50 AM Page 1014

1015Index ✦ W–X

Web browsers
CSS (Cascading Style Sheets), 311, 317, 335
JUMBO, 19–20
Scalable Vector Graphics (SVG), 849–850, 856–857
XInclude, 647
XLinks, 580
XML support, 10–11
XPointers, 617
XSL (Extensible Stylesheet Language), 120
XSL-FO (XSL Formatting Objects), 507, 516
XSLT (XSL Transformations), 424, 433–434

Web sites
HTML Tidy, 185
XML.COM RUWF well-formedness checker,

183–184
Web-based validators, 201–203
WebDraw SVG editor, 903
well-formed document fragment (entities), 147
well-formed HTML, 173–183
well-formedness

defined, 145
external entities, 259–260
importance of, 145
namespaces, 304–305
processors, 145–146
XHTML, 735, 738–744
XSLT documents, 434

well-formedness rules
attribute names, 154
attribute values, 154–155
CDATA sections, 165–166
comments, 162–164
complete list of, 146
element names, 149–150
empty-element tags, 151–152
encoding declaration, 168–169
end-tags, 146, 150–151
entity references, 160–161
overlapping elements, 152–153
processing instructions, 164–165
root element, 148
start-tags, 146, 150–151
text, 148–149
Unicode, 167–171
XML declaration, 147–148

well-formedness tools
HTML Tidy, 185
RUWF well-formedness checker (XML.COM),

183–184
What’s Related (Netscape), 49–52

white space
CSS, 402–403
element names, 149
parsers, 72
whiteSpace facet, 701–702, 704–705
white-space property (CSS), 402–403
xml:space attribute, 155–156
XSL-FO, 567
XSLT, 496–497

widows property
CSS, 378–379
XSL-FO, 574–575

width property (CSS), 365–367
wildcards in XSLT pattern-matching, 444–445
Window system color, 342
WindowFrame system color, 342
WindowText system color, 342
WordML, 8
word-spacing property

CSS, 393–394
XSL-FO, 565

World Wide Web Consortium (W3C), 197, 834–835
World Wide Web Consortium (W3C) XML Schema

Language
alternatives, 670–671
complex types, 675–677
development history, 671
simple types, 675–677, 690–692
specification, 671

writing modes in XSL-FO, 573–574
writing style sheets, 60–61

X
x-codes, 160
XDR (XML-Data Reduced), 670
Xerces Java (XML Apache Project), 674
XFDL (Extensible Forms Description Language), 36–39
XHTML

advantages, 734–735
CDATA sections, 783–785
character references, 772–776
code example, 760–766
converting HTML to XHTML, 735–738
encoding declarations, 781
entity references, 776–780
filename extension, 771
frameset DTD, 733, 767
HTML Tidy, 767–771
MIME media type, 771–772

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 1015

1016 Index ✦ X

XHTML (continued)
namespace, 288
RDDL documents, 840
strict DTD, 733, 753–759
transitional DTD, 733
validation, 735, 745–753
well-formedness, 735, 738–744
XHTML 1.0, 787
XHTML 1.1, 787
XHTML Basic, 787
xml:lang attribute, 782

XHTML Modular Framework Module
architecture, 801
character entities, 801, 808–809
code listing, 799–801
common attributes, 801, 807–808
content model, 801
data types, 801, 804–805
events, 801
loading XHTML modules, 802
notations, 801–803
qualified names, 801, 805–806
redeclaration, 801
role of, 798
XLink, 801

XHTML modules
Applet, 788
Base, 789
Basic Forms, 788
Basic Tables, 788
Bi-directional Text, 788
Client-Side Image Map, 789
combining, 790
content models, 794–796
document model, 816–820, 823–827
downloading, 790
driver DTDs, 809–815
Edit, 788
element names, 793–794
Forms, 788
Frames, 789
Hypertext, 788
Iframe, 789
IGNORE blocks, 796–797
Image, 788
INCLUDE blocks, 796–797
Intrinsic Events, 789
Legacy, 789
Link, 789
List, 788, 790–793
loading, 802
Meta-information, 789

Name Identification, 789
Object, 789
parameter entities, 821–823
Presentation, 788
public identifier, 790
referencing XHTML entities, 797–798
schemas, 828–831
Scripting, 789
Server-Side Image Map, 789
Structure, 788
Style Attribute, 789
Style Sheet, 789
system identifier, 790
Tables, 788
Target, 789
Text, 788

XInclude
browser support, 647
DTD (Document Type Definition), 658–659
fallbacks, 663–665
support, 274
unparsed text, 662–663
URIs (Uniform Resource Identifiers), 647
use cases, 647–651
validation, 658–659
xinclude:fallback child element, 663–665
xinclude:include element, 655–657
XPointers, 618, 660–662

XLinks
attributes

xlink:actuate, 585, 587–588, 595
xlink:arcrole, 845–847
xlink:from, 595
xlink:href, 581–582, 837, 843
xlink:label, 595
xlink:role, 584–585, 837, 843
xlink:show, 585–587, 595
xlink:title, 584–585
xlink:to, 595
xlink:type, 580–581, 590, 837

behavior, 585–588
browser support, 580
colors, 581–582
CSS (Cascading Style Sheets), 581
defined, 14
DTD (Document Type Definition), 582–584, 589
elements, 580–582
embedded XLinks, 652–653
extended links, 589–601
linkbase, 601–602
linking elements, 581
local resources, 590

32 549863 Index.qxd 1/28/04 9:50 AM Page 1016

1017Index ✦ X

multidirectional links, 580, 589–590
out-of-line links, 590, 601–606
rddl:resource elements, 837
resources

defined, 590
local resources, 590
remote resources, 584–585, 590

styles, 581–582
uses, 44
XLink module (XHTML Modular Framework

Module), 801
XML Apache Project Xerces Java, 674
XML application design

data organization, 907–914
Families element example, 932–937
Family Tree example, 940–968
namespace selection, 914–915
Persons element example, 915–932
RDDL documents, 968–980
Sources element example, 937–939

XML applications
Chemical Markup Language (CML), 18–19
defined, 17
Extensible Forms Description Language (XFDL),

36–39
HR-XML, 40–43
Mathematical Markup Language (MathML), 19–22
Microsoft Office 2003, 46–49
MusicXML, 29–33
Open Financial Exchange 2.0 (OFX 2.0), 8, 36
Open Software Description (OSD), 26–27
RSS, 22–25
Scalable Vector Graphics (SVG), 27–29, 287–288
schemas, 45–46
Synchronized Multimedia Integration Language

(SMIL), 26
textual analysis, 25
United Parcel Service (UPS), 52–53
VoiceXML, 34–35
What’s Related (Netscape), 49–52
XLinks, 44
XSL (Extensible Stylesheet Language), 43–44

XML data types (schemas), 696
XML declarations

HTML documents, 182–183
XSLT (XSL Transformations), 501–502

XML documents
attaching schemas, 674
attaching style sheets

CSS, 313–314, 329–330
processing instructions, 89–90
XSLT, 123, 433

character data, 148–149
contents overview, 15–16
creating, 56
elements

attribute syntax, 154
case-sensitivity, 150
defined, 58–59
empty elements, 149
empty-element tags, 151–152
end-tags, 149–151
markup, 59–60
names, 149–150
overlapping elements, 152–153
start-tags, 149–151

embedded XLinks, 652–653
entities, 147
examples, 146–147
external parsed entities, 651–652
life cycle, 10
loading, 57
malformed, 146
markup, 148–149
naming, 56
root element, 148
saving, 56
server-side includes, 653–655
style sheets, 60–62
text, 148–149
Unicode, 15
viewing, 57
XInclude

browser support, 647
DTD (Document Type Definition), 658–659
fallbacks, 663–665
support, 274
unparsed text, 662–663
URIs (Uniform Resource Identifiers), 647
use cases, 647–651
validation, 658–659
xinclude:fallback child element, 663–665
xinclude:include element, 655–657
XPointers, 618, 660–662

XML declarations, 58, 147–148
XML (eXtensible Markup Language)

defined, 3–4
formatting, 5
HyperText Markup Language (HTML), 5–6, 11
interchanging data among applications, 8
self-describing features, 7
semantics, 5
structure, 5
uses, 6

32 549863 Index.qxd 1/28/04 9:50 AM Page 1017

1018 Index ✦ X

XML 1.1, 171–173
XML parsers

libxml, 430
malformed XML documents, 146
MSXML, 433–434
namespaces, 289
role of, 10
validating parsers, 200
well-formedness, 145–146
white space, 72
Xerces Java (XML Apache Project), 674

XML Pointer Language. See XPointers
xml prefix, 294
XML processors. See XML parsers
XML Schema Language

alternatives, 670–671
complex types, 675–677
development history, 671
simple types, 675–677, 690–692
specification, 671

XML Schema namespace
all element, 687–688
annotation element, 728
anyURI element, 699
base64Binary element, 699
boolean element, 699
byte element, 694
choice element, 687, 689
complexType element, 677, 681–682
date element, 695
dateTime element, 695
decimal element, 693
double element, 693
duration element, 695
element element, 672, 678, 683–684
ENTITIES element, 697
ENTITY element, 696
float element, 693
gDay element, 695
gMonth element, 695
gMonthDay element, 695
gYear element, 695
gYearMonth element, 695
hexBinary element, 699
ID element, 696
IDREF element, 696
IDREFS element, 697
int element, 694
integer element, 693
language element, 697
long element, 694
Name element, 697

NCName element, 697
negativeInteger element, 693
NMTOKEN element, 697
NMTOKENS element, 697
nonNegativeInteger element, 694
nonPositiveInteger element, 693
normalizedString element, 698
NOTATION element, 696
positiveInteger element, 694
QName element, 697
restriction element, 700–701
schema element, 672
sequence element, 687, 690
short element, 694
simpleType element, 700
string element, 698
time element, 695
token element, 698
unsignedByte element, 694
unsignedInt element, 694
unsignedLong element, 694
unsignedShort element, 694

<?xml-stylesheet?> processing instruction, 61–62,
123

XML vocabularies
adding elements, 77–79
categorizing elements, 64
creating, 64, 67
naming conventions, 69
ordering elements, 64
organizing elements, 67–76
reordering elements, 86

xml:base attribute, 155, 608–614
XML.COM RUWF well-formedness checker, 183–184
XML-Data Reduced (XDR), 670
xmlinst.exe, 433
xml:lang attribute, 155, 157–158, 782
xmlns attribute, 300, 302
xmlns prefix, 294
xmlns:prefix attribute, 631
xml:space attribute, 155–156
xml-stylesheet processing instruction

CSS (Cascading Style Sheets), 313–315
XSLT style sheets, 433

XPath
expressions

abbreviated syntax, 459–461
ancestor axis, 455, 457
ancestor-or-self axis, 455, 457
attribute axis, 455
booleans, 464–466
child axis, 455–456

32 549863 Index.qxd 1/28/04 9:50 AM Page 1018

1019Index ✦ X

descendant axis, 455
descendant-or-self axis, 455
following axis, 455
following-sibling axis, 455
hierarchy operators, 458–459
match patterns, 454
namespace axis, 455
node tests, 458
node-sets, 461–464
numbers, 467–469
parent axis, 455–457
preceding axis, 455
preceding-sibling axis, 455
self axis, 455
strings, 469–471

Schematron schema language, 671
XPointers

appending to URIs, 619–620
browser support, 617
child sequences, 643
context node, 624
defined, 15, 617
examples, 618–623
here() function, 635, 637–638
id() function, 635–637
location paths, 623–625
location sets, 640–641
location steps

axes, 624, 626, 628–630
context node, 624
node test, 624, 631–633
predicate, 624, 633–635

origin() function, 635, 638
points, 638–640
ranges, 640–642
root node, 625–626
shorthand pointers, 636
uses, 617–618
UTF-8 encoding, 620
XInclude, 618, 660–662
xmlns:prefix attribute, 631

xsd:all element, 687–688
xsd:annotation element, 728
xsd:anyURI element, 699
xsd:base64Binary element, 699
xsd:boolean element, 699
xsd:byte element, 694
xsd:choice element, 687, 689
xsd:complexType element, 677, 681–682
xsd:date element, 695
xsd:dateTime element, 695
xsd:decimal element, 693

xsd:double element, 693
xsd:duration element, 695
xsd:element element

maxOccurs attribute, 678–680
minOccurs attribute, 678–680
schema element declarations, 672
type attribute, 683–684

xsd:ENTITIES element, 697
xsd:ENTITY element, 696
xsd:enumeration facet, 701–702, 705–706
xsd:float element, 693
xsd:fractionDigits facet, 702, 705
xsd:gDay element, 695
xsd:gMonth element, 695
xsd:gMonthDay element, 695
xsd:gYear element, 695
xsd:gYearMonth element, 695
xsd:hexBinary element, 699
xsd:ID element, 696
xsd:IDREF element, 696
xsd:IDREFS element, 697
xsd:int element, 694
xsd:integer element, 693
xsd:language element, 697
xsd:length facet, 702
xsd:long element, 694
xsd:maxExclusive facet, 701–702
xsd:maxInclusive facet, 701–702
xsd:maxLength facet, 702–703
xsd:minExclusive facet, 701–702
xsd:minInclusive facet, 700–702
xsd:minLength facet, 702–703
xsd:Name element, 697
xsd:NCName element, 697
xsd:negativeInteger element, 693
xsd:NMTOKEN element, 697
xsd:NMTOKENS element, 697
xsd:nonNegativeInteger element, 694
xsd:nonPositiveInteger element, 693
xsd:normalizedString element, 698
xsd:NOTATION element, 696
xsd:pattern facet, 701–702, 707
xsd:positiveInteger element, 694
xsd:QName element, 697
xsd:restriction element, 700–701
xsd:sequence element, 687, 690
xsd:short element, 694
xsd:simpleType element, 700
xsd:string element, 698
xsd:time element, 695
xsd:token element, 698
xsd:totalDigits facet, 702, 705

32 549863 Index.qxd 1/28/04 9:50 AM Page 1019

1020 Index ✦ X

xsd:unsignedByte element, 694
xsd:unsignedInt element, 694
xsd:unsignedLong element, 694
xsd:unsignedShort element, 694
xsd:whiteSpace facet, 701–702, 704–705
XSL (Extensible Stylesheet Language)

advantages, 61
attribute display, 120
browser support, 120
defined, 12–13
example style sheet, 43–44

XSL Formatting Objects (XSL-FO). See XSL-FO
XSL style sheets

attaching to XML documents, 123
CSS versus XSL, 143–144
example, 121–134
sorting, 134–137
tables, 137–143
templates, 120–121

XSL Transformations (XSLT). See XSLT
xsl:apply-imports element, 499
xsl:apply-templates element, 435–437, 495
xsl:attribute element, 476–477
xsl:attribute-set element, 477–478
xsl:call-template element, 494–496
xsl:choose element, 497–499
xsl:comment element, 479
xsl:copy element, 480–482
xsl:element element, 475–476
XSL-FO (XSL Formatting Objects)

area properties, 567–568
areas, 509
backgrounds, 568
block areas, 509
borders, 568–569
browser support, 507, 516
character properties, 563–565
code example, 524–525
colors, 563
content

block-level formatting objects, 534
inline formatting objects, 534–535
out-of-line formatting objects, 536
table formatting objects, 535

defined, 12–13
documents, 514–515
elements (complete listing of), 508
float element, 558–559
flow element, 522–523
fonts, 563–564
footnote element, 557
FOP program, 516–517

formatting properties, 510–513, 559–563
graphics

content-height attribute, 545
content-type attribute, 544–545
content-width attribute, 545
external-graphic element, 539–541
height attribute, 545
instream-foreign-object element, 541–544
scaling attribute, 545
width attribute, 545

hyphenation, 561
hyphenation properties, 562
indentation properties, 562–563
indenting, 550
inline areas, 509–510
inline element, 556–557
inlines, 556
layout-master-set element, 518
leaders, 536–537
letter-spacing, 565
line areas, 509–510
line-spacing, 566
links, 545–547
lists, 547–550
margins, 570–572
orphans property, 574–575
overflow property, 572–573
padding, 569–570
page masters, 518–520
page numbering, 527–530
page sequence masters, 530–533
page sequences, 522
page-number element, 528–529
page-sequence element, 518, 522, 527–528
page-sequence-master element, 530
paragraphs, 560–561
reference-orientation property, 573
region-after element, 520
region-before element, 520
region-body element, 521
region-end element, 520
regions, 509, 520–521
region-start element, 520
repeatable-page-master-alternatives

element, 532–533
repeatable-page-master-reference element,

532
root element, 518
rules, 536–538
sentence properties, 565
simple-page-master element, 518–520

32 549863 Index.qxd 1/28/04 9:50 AM Page 1020

1021Index ✦ X

single-page-master-reference element,
531–532

static-content element, 522, 525–527
table element, 551–553
table-and-caption element, 551–552
tables, 551–556
text, 564–565
text alignment, 566–567
title element, 522
white space, 567
widows property, 574–575
word-spacing, 565
writing modes, 573–574

xsl:for-each element, 440
xsl:if element, 497–498
xsl:import element, 499
xsl:include element, 500
xsl:number element

from attribute, 484
count attribute, 484
default numbers, 483–484
format attribute, 482, 485–486
grouping-separator attribute, 486
letter-value attribute, 486
level attribute, 484
value attribute, 482–483

xsl:output element, 501–504
xsl:param element, 495
xsl:preserve-space element, 497
xsl:processing-instruction element, 478–479
xsl:sort element, 486–489
xsl:strip-space element, 497
xsl:stylesheet element, 428–429
XSLT output documents

attributes, 476–478
comments, 479
elements, 475–476
processing instructions, 478–479
text, 479–480

XSLT processors
indentation, 503
output methods, 500–503

XSLT style sheets
attaching to XML documents, 433
default template rules

attributes, 472
comments, 472
elements, 471–472
implications of, 473
processing instructions, 472
text nodes, 472

importing, 499
merging, 499

template rules
attribute value templates, 473–475
defined, 428

well-formedness, 434
xml-stylesheet processing instruction, 433
xsl:apply-imports element, 499
xsl:apply-templates element, 435–437, 495
xsl:attribute element, 476–477
xsl:attribute-set element, 477–478
xsl:call-template element, 494–496
xsl:choose, 498
xsl:choose element, 497, 499
xsl:comment element, 479
xsl:copy element, 480–482
xsl:element element, 475–476
xsl:for-each element, 440
xsl:if element, 497–498
xsl:import element, 499
xsl:include element, 500
xsl:number element, 482–486
xsl:output element, 501–504
xsl:param element, 495
xsl:preserve-space element, 497
xsl:processing-instruction element, 478–479
xsl:sort element, 486–489
xsl:strip-space element, 497
xsl:stylesheet element, 428–429
xsl:template element, 428–429, 434, 493–495
xsl:text element, 479–480, 497
xsl:transform element, 428–429
xsl:value-of element, 437–439
xsl:variable element, 492–493

XSLT (XSL Transformations)
browser support, 424, 433–434
CDATA sections, 504
constants, 492
context node, 455, 480–482
counting nodes, 482–486
defined, 12–13
DTD (Document Type Definition), 502–503
how it works, 430
modes, 490–492
nodes, 425–428
passing parameters to templates, 495–496
pattern-matching

at (@) sign, 447–449
attributes, 447–449
comments, 449–450
descendants, 446
double slash (//) symbol, 446
element names, 442–444

Continued

32 549863 Index.qxd 1/28/04 9:50 AM Page 1021

1022 Index ✦ X–Z

XSLT (XSL Transformations) (continued)
forward slash (/) symbol, 445–446
hierarchies of elements, 445–446
IDs, 447
or (|) operator, 451–452
processing instructions, 450
root node, 440–442
square brackets ([]), 452–454
text nodes, 451
wildcards, 444–445
XPath expressions, 454

sorting output, 486–489
trees, 424–428
uses, 423–424
white space, 496–497
XML declarations, 501–502

XSLT 1.0 Recommendation, 424
xsltproc, 430–432

xsl:template element, 428, 434, 493–495
xsl:text element, 479–480, 497
xsltproc

downloading, 430
iconv library, 431
libxml XML parser, 430
running, 431–432

xsl:transform element, 428–429
xsl:value-of element, 437–439
xsl:variable element, 492–493

Z
z-index property (CSS), 373

32 549863 Index.qxd 1/28/04 9:50 AM Page 1022

	XML 1.1 Bible
	Cover

	Preface
	Acknowledgments
	Contents
	Part I: Introducing XML
	Chapter 1: An Eagle's Eye View of XML
	What Is XML?
	XML is a meta-markup language
	XML describes structure and semantics, not formatting

	Why Are Developers Excited About XML?
	Domain-specific markup languages
	Self-describing data
	Interchange of data among applications
	Structured data

	The Life of an XML Document
	Editors
	Parsers and processors
	Browsers and other applications
	The process summarized

	Related Technologies
	HTML
	CSS
	XSL
	URLs and URIs
	XLinks and XPointers
	Unicode
	Putting the pieces together

	Summary

	Chapter 2: XML Applications
	What Is an XML Application?
	Chemical Markup Language
	Mathematical Markup Language
	RSS
	Classic literature
	Synchronized Multimedia Integration Language
	Open Software Description
	Scalable Vector Graphics
	MusicXML
	VoiceXML
	Open Financial Exchange
	Extensible Forms Description Language
	HR-XML

	XML for XML
	XSL
	XLinks
	Schemas

	Behind-the-Scene Uses of XML
	Microsoft Office 2003
	Netscape's What's Related
	UPS

	Summary

	Chapter 3: Your First XML Document
	Hello XML
	Creating a simple XML document
	Saving the XML file
	Loading the XML file into a web browser

	Exploring the Simple XML Document
	Meaning in Markup
	Writing a Style Sheet for an XML Document
	Attaching a Style Sheet to an XML Document
	Summary

	Chapter 4: Structuring Data
	Examining the Data
	XMLizing the Data
	The Advantages of the XML Format
	Preparing a Style Sheet for Document Display
	Linking to a style sheet
	Assigning style rules to the root element
	Assigning style rules to titles
	The complete style sheet

	Summary

	Chapter 5: Attributes, Empty-Element Tags, and XSL
	Attributes
	Attributes versus Elements
	Structured metadata
	Meta-metadata
	What's your metadata is someone else's data
	Elements are more extensible
	Good times to use attributes

	Empty Elements and Empty-Element Tags
	XSL
	Templates
	The body of the document
	The title
	Stations
	Shows
	Sorting
	Tables
	CSS or XSL?

	Summary

	Chapter 6: Well-formedness
	Well-formedness Rules
	XML Documents
	The XML declaration
	Single root element

	Text in XML
	Elements and Tags
	Element names
	Every start-tag must have a corresponding end-tag
	Empty-element tags
	Elements may nest but may not overlap

	Attributes
	Attribute names
	Attribute values
	Predefined attributes

	Entity References
	Comments
	Processing Instructions
	CDATA Sections
	Unicode
	Character encodings
	The encoding declaration
	Numeric character references

	XML 1.1
	Well-formed HTML
	Rules for HTML
	Tools

	Summary

	Part II: Document Type Definitions
	Chapter 7: Validity
	Document Type Definitions
	Element Declarations
	DTD Files
	Document Type Declarations
	Internal DTDs
	Internal and external DTD subsets
	Public DTDs
	DTDs and style sheets

	Validating against a DTD
	Command-line validators
	Web-based validators

	Summary

	Chapter 8: Element Declarations
	Analyzing the Document
	ANY
	#PCDATA
	Child Elements
	+ One or More Children
	? Zero or One Child
	* Zero or More Children
	Choices
	Parentheses

	Mixed Content
	Empty Elements
	Comments in DTDs
	Summary

	Chapter 9: Attribute Declarations
	What Is an Attribute?
	Declaring Attributes
	Declaring Multiple Attributes
	Alternatives to Default Attribute Values
	#REQUIRED
	#IMPLIED
	#FIXED

	Attribute Types
	The CDATA attribute type
	The NMTOKEN attribute type
	The NMTOKENS attribute type
	The enumerated attribute type
	The ID attribute type
	The IDREF attribute type
	The IDREFS attribute type
	The ENTITY attribute type
	The ENTITIES attribute type
	The NOTATION attribute type

	A DTD for Attribute-Based Television Listings
	Declaring SCHEDULE attributes
	Declaring STATION attributes
	Declaring SHOW attributes
	Declaring person attributes
	The complete DTD for the television listings example

	Summary

	Chapter 10: Entity Declarations
	What Is an Entity?
	Internal General Entities
	Defining an internal general entity reference
	Using general entity references in the DTD
	Predefined general entity references

	External General Entities
	Text declarations
	Nonvalidating parsers

	Internal Parameter Entities
	External Parameter Entities
	Building a Document from Pieces
	Non-XML Data
	Notations
	Unparsed entities

	Conditional Sections
	Summary

	Chapter 11: Namespaces
	The Need for Namespaces
	Namespace Syntax
	Defining namespaces with xmlns attributes
	Multiple namespaces
	Attributes
	Default namespaces

	Namespaces and Validity
	Summary

	Part III: Style Languages
	Chapter 12: CSS Style Sheets
	What Are Cascading Style Sheets?
	A simple CSS style sheet
	Comments
	Attaching style sheets to documents
	DTDs and style sheets
	CSS1 versus CSS2
	CSS3

	Selecting Elements
	The universal selector
	Grouping selectors
	Hierarchy selectors
	Attribute selectors
	ID selectors
	Pseudo-elements
	Pseudo-classes

	Inheritance
	Cascades
	Different Rules for Different Media
	Importing Style Sheets
	Character Sets
	Summary

	Chapter 13: CSS Layouts
	CSS Units
	Length values
	URL values
	Color values
	System colors
	Keyword values
	Strings

	The Display Property
	Inline elements
	Block elements
	None
	Compact and run-in elements
	Marker
	Tables
	List items

	Box Properties
	Margin properties
	Border properties
	Padding properties

	Size
	The width and height properties
	The min-width and min-height properties
	The max-width and max-height properties
	The overflow property

	Positioning
	The position property
	Stacking elements with the z-index property
	The float property
	The clear property

	Formatting Pages
	@page
	The size property
	The margin property
	The mark property
	The page property
	Controlling page breaks
	Widows and orphans

	Summary

	Chapter 14: CSS Text Styles
	Fonts
	Choosing the font family
	Choosing the font style
	Small caps
	Setting the font weight
	Setting the font size
	The font shorthand property

	Color
	Text
	Word spacing
	The letter-spacing property
	The text-decoration property
	The vertical-align property
	The text-transform property
	The text-align property
	The text-indent property
	The line-height property
	The white-space property

	Backgrounds
	The background-color property
	The background-image property
	The background-repeat property
	The background-attachment property
	The background-position property
	The background shorthand property

	Visibility
	Content
	Quotes
	Attributes
	URIs
	Counters

	Summary

	Chapter 15: XSL Transformations
	What Is XSL?
	Overview of XSL Transformations
	Trees
	XSLT style sheet documents
	Where does the XML transformation happen?
	Using xsltproc
	Browser display of XML files with XSLT style sheets

	XSL Templates
	The xsl:apply-templates element
	The select attribute

	Computing the Value of a Node with xsl:value-of
	Processing Multiple Elements with xsl:for-each
	Patterns for Matching Nodes
	Matching the root node
	Matching element names
	Wildcards
	Matching children with /
	Matching descendants with //
	Matching by ID
	Matching attributes with @
	Matching comments with comment()
	Matching processing instructions with processing-instruction()
	Matching text nodes with text()
	Using the or operator |
	Testing with []

	XPath Expressions for Selecting Nodes
	Node axes
	Expression types

	The Default Template Rules
	The default rule for elements
	The default rule for text nodes and attributes
	The default rule for processing instructions and comments
	Implications of the default rules

	Attribute Value Templates
	Deciding What Output to Include
	Inserting elements into the output with xsl:element
	Inserting attributes into the output with xsl:attribute
	Defining attribute sets
	Generating processing instructions with xsl:processing-instruction
	Generating comments with xsl:comment
	Generating text with xsl:text

	Copying the Context Node with xsl:copy
	Counting Nodes with xsl:number
	Default numbers
	Number to string conversion

	Sorting Output
	Modes
	Defining Constants with xsl:variable
	Named Templates
	Passing Parameters to Templates
	Stripping and Preserving White Space
	Making Choices
	xsl:if
	xsl:choose

	Merging Multiple Style Sheets
	Importing with xsl:import
	Inclusion with xsl:include

	Output Methods
	XML Declaration
	Document Type Declaration
	Indentation
	CDATA sections

	Summary

	Chapter 16: XSL Formatting Objects
	Formatting Objects and Their Properties
	Formatting properties
	Transforming to formatting objects
	Using FOP

	Page Layout
	The root element
	Simple page masters
	Regions
	Page sequences
	Page sequence masters

	Content
	Block-level formatting objects
	Inline formatting objects
	Table formatting objects
	Out-of-line formatting objects

	Leaders and Rules
	Graphics
	fo:external-graphic
	fo:instream-foreign-object
	Graphic properties

	Links
	Lists
	Tables
	Inlines
	Footnotes
	Floats
	Formatting Properties
	The id property
	The language property
	Paragraph properties
	Character properties
	Sentence properties
	Area properties

	Summary

	Part IV: Supplemental Technologies
	Chapter 17: XLinks
	XLinks versus HTML Links
	Linking Elements
	Declaring XLink Attributes in Document Type Definitions
	Descriptions of the Remote Resource
	Link Behavior
	The xlink:show attribute
	The xlink:actuate attribute

	Extended Links
	Extended Link Syntax
	Arcs
	Out-of-Line Links
	XML Base
	Summary

	Chapter 18: XPointers
	Why XPointers?
	XPointer Examples
	A Concrete Example
	Location Paths, Steps, and Sets
	The Root Node
	Axes
	The child axis
	The descendant axis
	The descendant-or-self axis
	The parent axis
	The self axis
	The ancestor axis
	The ancestor-or-self axis
	The preceding axis
	The following axis
	The preceding-sibling axis
	The following-sibling axis
	The attribute axis
	The namespace axis

	Node Tests
	Predicates
	Functions That Return Node-Sets
	id()
	here()
	origin()

	Points
	Ranges
	Range functions
	String ranges

	Child Sequences
	Summary

	Chapter 19: XInclude
	Use Cases for XInclude
	Non-Solutions
	DTDs
	Embedded XLinks
	Server-side includes

	The xinclude:include Element
	Validating Documents That Use XInclude
	XPointers in XInclude
	Unparsed Text
	Fallbacks
	Summary

	Chapter 20: Schemas
	What's Wrong with DTDs?
	What Is a Schema?
	The W3C XML Schema Language
	Hello Schemas
	The greeting schema
	Validating the document against the schema

	Complex Types
	minOccurs and maxOccurs
	Element content
	Sharing content models
	Anonymous types
	Mixed content

	Grouping
	The xsd:all Group
	Choices
	Sequences

	Simple Types
	Numeric data types
	Time data types
	XML data types
	String data types
	Binary types
	Miscellaneous data types

	Deriving Simple Types
	Deriving by restriction
	Facets
	Facets for strings: length, minLength, maxLength
	The whiteSpace facet
	Facets for decimal numbers: totalDigits and fractionDigits
	The enumeration facet
	The pattern facet
	Unions
	Lists

	Empty Elements
	Attributes
	Namespaces
	Schemas for default namespaces
	Multiple namespaces, multiple schemas

	Annotations
	Summary

	Part V: XML Applications
	Chapter 21: XHTML
	Why Validate HTML?
	Moving to XHTML
	Making the document well-formed XML
	Making the document valid
	The strict DTD
	The frameset DTD
	HTML Tidy
	Setting the MIME media type

	What's New in XHTML
	Character references
	Custom entity references defined in DTD
	Encoding declarations
	The xml:lang attribute
	CDATA sections

	Summary

	Chapter 22: Modular XHTML
	The Modules of XHTML
	A Sample DTD Module
	Element names
	Element-specific content models
	Generic content models
	Generic attribute models
	INCLUDE and IGNORE blocks
	Using XHTML entities in other applications

	The Framework
	The notations framework module
	The data types framework module
	The namespace-qualified names module
	The common attributes module
	The character entity modules

	The Driver DTD
	The Document Model
	The XHTML Basic document model
	A minimal document model

	A Sample Schema Module
	Summary

	Chapter 23: The Resource Directory Description Language
	What Does a Namespace URL Locate?
	The Solution
	The resource Element
	Natures
	Purposes
	Summary

	Chapter 24: Scalable Vector Graphics
	What Is SVG?
	Scalability
	Vector versus bitmapped graphics

	A Simple SVG Document
	Embedding SVG Pictures in Web Pages
	Simple Shapes
	The rect element
	The circle element
	The ellipse element
	The line element
	Polygons and polylines

	Paths
	Arcs
	Curves

	Text
	Strings
	Text on a path
	Fonts and text styles
	Text spans

	Bitmapped Images
	Coordinate Systems and Viewports
	The viewport
	Coordinate systems

	Grouping Shapes
	Referencing Shapes
	Transformations
	Linking
	Metadata
	SVG Editors
	Summary

	Chapter 25: Designing a New XML Application
	Organization of the Data
	Listing the elements
	Identifying the fundamental elements
	Establishing relationships among the elements

	Choosing a Namespace
	Persons
	A sample person
	The person DTD
	The person schema

	Families
	The family DTD
	The Family Schema

	Sources
	The Family Tree
	The Family Tree DTD
	The family tree schema

	Modularizing the DTDs
	Designing a Style Sheet for Family Trees
	A RDDL document for family trees
	Summary

	Index
	Team DDU

