100%

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED

ONE HEMORED PERCENT

Create exiting,
dynamic Web sites
without becoming
a programmer

Focus on technologies
you will use most, such
as schemas, XHTML,
SVG, and RDDL

Build your knowledge
of the leading data
format technology
for the Web

COMPANION
WEB SITE
Features code examples,

XML 1.1 specification, valuable

information from previous editions,
and useful XML reference material

Elliotte Rusty Harold

XML 1.1 Bible

3rd Edition

Elliotte Rusty Harold

WILEY

Wiley Publishing, Inc.

XML 1.1 Bible

3rd Edition

XML 1.1 Bible

3rd Edition

Elliotte Rusty Harold

WILEY

Wiley Publishing, Inc.

XML 1.1 Bible, 3rd Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 0-7645-4986-3

Manufactured in the United States of America

10987654321

30/RT/QS/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS
A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS
IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2004101453

Trademarks: Wiley and and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

WILEY

About the Author

Elliotte Rusty Harold is an internationally respected writer, programmer, and
educator, both on the Internet and off. He got his start writing FAQ lists for the
Macintosh newsgroups on Usenet and has since branched out into books, Web
sites, and newsletters. He’s an adjunct professor of computer science at
Polytechnic University in Brooklyn, New York. His Cafe con Leche Web site at
http://www.cafeconleche.org/ has become one of the most popular indepen-
dent XML sites on the Internet.

Elliotte is originally from New Orleans, to which he returns periodically in search of
a decent bowl of gumbo. However, he currently resides in the Prospect Heights
neighborhood of Brooklyn with his wife Beth, and his cats Charm (named after the
quark) and Marjorie (named after his mother-in-law). When not writing books, he
enjoys working on genealogy, mathematics, free software, and quantum mechanics.
His previous books include The Java Developer’s Resource, Java Network
Programming, Java Secrets, JavaBeans, Java I/0, XML: Extensible Markup Language,
XML in a Nutshell, Processing XML with Java, and Effective XML.

Credits

Acquisitions Editor
Jim Minatel

Development Editor
Marcia Ellett

Technical Editor
David Schultz

Production Editor
Angela Smith

Copy Editor
Joanne Slike

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists

Joyce Haughey
Jennifer Heleine
Kristin McMullan
Heather Ryan
Mary Gillot Virgin

Quality Control Technicians
Laura Albert

Susan Moritz

Carl William Pierce

Permissions Editor
Laura Moss

Media Development Specialist
Greg Stafford

Proofreading and Indexing
TECHBOOKS Production Services

Preface

Welcome to the third edition of the XML 1.1 Bible. When the first edition was
published about five years ago, XML was a promising technology with a
small but growing niche. In the last half decade, it has absolutely exploded. XML no
longer needs to be justified as a good idea. In fact, the question developers are ask-
ing has changed from “Why XML?” to “Why not XML?” XML has become the data
format of choice for fields as diverse as stock trading and graphic design. More new
programs today are using XML than aren’t. A solid understanding of just what XML
is and how to use it has become a sine qua non for the computer literate.

The XML 1.1 Bible, 3rd Edition is your introduction to the exciting and fast-growing
world of XML. With this book, you'll learn how to write documents in XML and how
to use style sheets to convert those documents into HTML so that legacy browsers
can read them. You'll also learn how to use document type definitions (DTDs) and
schemas to describe and validate documents. You’ll encounter a variety of XML
applications in many domains, ranging from finance to vector graphics to geneal-
ogy. And you’ll learn how to take advantage of XML for your own unique projects,
programs, and web pages.

What's New in the Third Edition

The French philosopher and mathematician Blaise Pascal once wrote in a letter, “I
have only made this longer because I have not had the time to make it shorter.” I
know how he felt. The first edition of the XML Bible was written under great time
pressure, was finished well after deadline, and totaled more than 1000 pages, the
largest book I had written up to that point. My favorite reader comment about that
edition was, “It would seem to me that if you asked the author to write 10,000 words
about the colour blue, he would be able to do it without breaking into a sweat.”
While I probably could write 10,000 words about blue, for the third edition, I did try
to restrain myself and take the time to write more concisely. I rewrote the book
from the ground up; and while I retained the basic flavor and outline that proved so
popular with the first edition, I tightened up the writing and cut many examples
down to size. With the benefit of five years of hindsight, | have also been able to
expand coverage of promising new technologies (schemas, XInclude, XHTML, SVG,
XML Base, and RDDL) while eliminating coverage of applications that proved to be
less useful than they initially appeared (WML, VML, CDF, HTML+TIME, RDF, and so
on). The result is a more concise, approachable volume that covers more of what
you need to know and less of what you don’t. If you liked the first or second edition,
you’re going to like the third edition even more. I'm confident you'’ll find this an
even more useful tutorial and reference.

VI

Preface

Who You Are

Unlike most other XML books on the market, the XML 1.1 Bible, 3rd Edition dis-
cusses XML from the perspective of a web page author, not from the perspective of
a software developer. I don’t spend a lot of time discussing BNF grammars or pars-
ing element trees. Instead, | show you how you can use XML and existing tools
today to more efficiently produce attractive, exciting, easy-to-use, easy-to-maintain
web sites that keep your readers coming back for more.

This book is aimed directly at web site developers. I assume you want to use XML
to produce web sites that are difficult or impossible to create with raw HTML. You'll
be amazed to discover that in conjunction with style sheets and a few free tools,
XML enables you to do things that previously required either custom software cost-
ing thousands of dollars per site or extensive knowledge of programming languages
such as Perl. None of the software discussed in this book will cost you more than a
few minutes of download time. None of the tricks require any programming.

What You Need to Know

XML does build on top of the underlying infrastructure of the Internet and the Web.
Consequently, I will assume you know how to FTP files, send e-mail, and load URLs
into your web browser of choice. I will also assume you have a reasonable knowl-
edge of HTML. On the other hand, when I discuss newer aspects of HTML that are
not yet in widespread use, such as Cascading Style Sheets, I discuss them in depth.

To be more specific, in this book [assume that you can do the following:

4 Write a basic HTML page, including links, images, and text, using a text editor.

4 Place that page on a web server.
On the other hand, I do not assume that you

4+ Know SGML. In fact, this preface is almost the only place in the entire book
you’ll see the word SGML used. XML is supposed to be simpler and more
widespread than SGML. It can’t be that if you have to learn SGML first.

4 Are a programmer, whether of Java, Perl, C, or some other language. XML is a
markup language, not a programming language. You don’t need to be a pro-
grammer to write XML documents.

Preface

What You'll Learn

This book has one primary goal: to teach you to write XML documents for the Web.
Fortunately, XML has a decidedly flat learning curve, much like HTML (and unlike
SGML). As you learn a little, you can do a little. As you learn a little more, you can
do a little more. Thus, the chapters in this book build steadily on one another. They
are meant to be read in sequence. Along the way you’ll learn the following:

4+ How to author XML documents and deliver them to readers

4 How semantic tagging makes XML documents easier to maintain and develop
than their HTML equivalents

4+ How to post XML documents on web servers in a form everyone can read

4+ How to make sure your XML is well formed

4 How to write with international characters such as K and /£

4 How to validate documents against DTDs and schemas

4 How to build large documents from smaller parts using entities and XInclude

4+ How to merge different XML vocabularies with namespaces

4 How to format your documents with CSS and XSL style sheets

4 How to connect documents with XLinks and XPointers
In the final part of this book, you’ll see several practical examples of XML being
used for real-world applications, including the following:

4+ Web site design

4 Schemas

4 Vector graphics

4 Genealogy

How the Book Is Organized

This book is divided into five parts:

I. Introducing XML

II. Document Type Definitions
III. Style Languages
IV. Supplemental Technologies
V. XML Applications

X

Preface

By the time you finish reading this book, you’ll be ready to use XML to create com-
pelling web pages.

Part I: Introducing XML

Part I (Chapters 1 through 6) begins with the history and theory behind XML and
the goals XML is trying to achieve. It shows you how the different pieces of the XML
equation fit together to enable you to create and deliver documents to readers.
You'll see several compelling examples of XML applications to give you some idea
of the wide applicability of XML, including Scalable Vector Graphics (SVG), the
Open Financial Exchange (OFX), the Mathematical Markup Language (MathML), the
Extensible Forms Description Language (XFDL), and many others. Then you’ll learn
by example how to write XML documents with tags that you define that make sense
for your document. You'll learn how to edit them in a text editor, attach style sheets
to them, and load them into a web browser such as Internet Explorer 5.0 or Mozilla.

Part Il: Document Type Definitions

Part Il (Chapters 7 through 11) focuses on document type definitions (DTDs). A
DTD specifies which elements are and are not allowed in an XML document, and the
exact context and structure of those elements. A validating parser can read a docu-
ment, compare it to its DTD, and report any mistakes it finds. DTDs enable docu-
ment authors to ensure that their work meets any necessary criteria.

In Part II, you’ll learn how to attach a DTD to a document, how to validate your doc-
uments against their DTDs, and how to write new DTDs that solve your own prob-
lems. You'll learn the syntax for declaring elements, attributes, entities, and
notations. You'll learn how to use entity declarations and entity references to build
both a document and its DTD from multiple, independent pieces. This allows you to
make long, hard-to-follow documents much simpler by separating them into related
modules and components. And you’ll learn how to use namespaces to mix together
different XML vocabularies in one document.

Part lll: Style Languages

Part Il (Chapters 12 through 16) teaches you everything you need to know about
style sheets. XML markup only specifies what’s in a document. Unlike HTML, it does
not say anything about what that content should look like. Instead, style shheets
provide all necessary information about an XML document’s appearance when
printed, viewed in a web browser, or otherwise displayed. Different style sheets can
be applied to the same document. You might, for example, want to use one style
sheet that specifies small fonts for printing, another one with larger fonts for on-
screen presentation, and a third with absolutely humongous fonts to project the
document on a wall at a seminar. You can change the appearance of an XML docu-
ment by choosing a different style sheet without touching the document itself.

Preface

Part Ill describes in detail the two style sheet languages in broadest use today,
Cascading Style Sheets (CSS) and the Extensible Stylesheet Language (XSL). CSS is a
simple style sheet language originally designed for use with HTML. It applies fixed
style rules to the contents of particular elements.

XSL, by contrast, is a more complicated and more powerful style language that can
apply styles to the contents of elements, as well as rearrange elements, add boiler-
plate text, and transform documents in almost arbitrary ways. XSL is divided into
two parts: a transformation language for converting XML trees to alternative trees,
and a formatting language for specifying the appearance of the elements of an
XML tree.

Part IV: Supplemental Technologies

Part IV (Chapters 17 through 20) introduces some XML-based languages and syn-
taxes that layer on top of basic XML to provide additional functionality and fea-
tures. XLink provides multidirectional hypertext links that are far more powerful
than the simple HTML <A> tag. XPointers introduce a new syntax you can attach to
the end of URLs to link not only to particular documents but also to particular parts
of particular documents. XInclude enables you to build large XML documents out of
multiple smaller XML documents. XML Schemas provide a more complete valida-
tions language that includes data typing and range checking. All of these can be
added to your own XML-based markup languages to extend their power and utility.

Part V: XML Applications

Part V (Chapters 21 to 25) demonstrates several practical uses of XML in different
domains. XHTML is a reformulation of HTML 4.0 as valid XML. RDDL is an XHTML-
and XLink-based language for documents containing meta-information placed at the
end of namespace URLs. Scalable Vector Graphics (SVG) is a standard XML format
for drawings recommended by the World Wide Web Consortium (W3C). Finally, a
completely new application is developed for genealogical data to show you not just
how to use XML tags and technologies, but why and when to choose them.
Combining all of these different applications, you’ll develop a good sense of how
XML applications are designed, built, and used in the real world.

What You Need

XML is a platform-independent technology. You’ll notice that screen shots in this
book have been captured from Windows, Mac OS 9, Mac OS X, and Linux. Almost all
the examples work equally well across all common platforms. You will need a web
browser that supports XML, such as Mozilla, Netscape 6.0 or later, or Internet
Explorer 6.0.

Xii

Preface

Furthermore, much of the best software for working with XML is written in Java and
can run on multiple platforms. Much of this is freely available on the Internet. You
will need a Java 1.2 or later virtual machine. (Java 1.1 can do in a pinch.) You won’t
need to write any programs to use this book. You'll just need it to run programs
written in Java.

How to Use This Book

This book is designed to be read more or less cover to cover. Each chapter builds
on the material in the previous chapters in a fairly predictable fashion. Of course,
you're always welcome to skim over material that’s already familiar to you. I also
hope you’ll stop along the way to try out some of the examples and to write some
XML documents of your own. It’s important to learn not just by reading, but also by
doing. Before you get started, I'd like to make a couple of notes about grammatical
conventions used in this book.

Unlike HTML, XML is case-sensitive. <FATHER> is not the same as <Father> or
<father>. The father element is not the same as the Father element or the
FATHER element. Unfortunately, case-sensitive markup languages have an annoying
habit of conflicting with standard English usage. On rare occasion, this means that
you may encounter sentences that don’t begin with a capital letter. More commonly,
you'll see capitalization used in the middle of a sentence where you wouldn’t
normally expect it. Please don’t get too bothered by this. All XML and HTML code
used in this book is placed in amonospaced font, so most of the time it will be
obvious from the context what is meant.

[have also adopted the British convention of placing punctuation inside quote
marks only when it belongs with the material quoted. Frankly, although I learned to
write in the American educational system, I find the British system far more logical,
especially when dealing with source code where the difference between a comma
or a period and no punctuation at all can make the difference between perfectly
correct and perfectly incorrect code.

What the Icons Mean

Throughout the book, I've used icons in the left margin to call your attention to
points that are particularly important.

Note icons provide supplemental information about the subject at hand, but gen-
- erally something that isn't quite the main idea. Notes are often used to elaborate
on a detailed technical point.

Preface

Tip Tip icons indicate a more efficient way of doing something, or a technique that may
. not be obvious.
4

Caution Caution icons warn you of a common misconception or that a procedure doesn’t

always work quite like it's supposed to. The most common reason for a Caution
icon in this book is to point out the difference between what a specification says
should happen and what actually does.

,ﬁs-/‘x The Cross-Reference icon refers you to other chapters that have more to say about
ererence

a particular subject.

Reach Out

Feedback on past editions has had a significant positive effect on the structure and
content of this edition, and I encourage you to let me know what you think of it so |
can continue to improve future editions. After you have had a chance to read this
book, please take a moment to send me an e-mail at elTharo@metalab.unc.edu. Be
sure to include the title of this book in your e-mail. Please be honest in your evalua-
tion. If you thought a particular chapter didn’t tell you enough, let me know. Of
course, [would prefer to receive comments such as “This is the best book I've ever
read,” “Thanks to this book, my web site won Cool Site of the Year,” or “Because |
was reading this book on the beach, [met a stunning swimsuit model who thought I
was the hottest thing on feet,” but I'll take any comments I can get. ©

You should also feel free to send me specific questions regarding the material in
this book. I'll do my best to help you out and answer your questions, but I can’t
guarantee a reply. Generally, more specific questions (How do I change the value of
a variable in XSLT?) are more likely to receive timely, useful answers than very
generic, broad questions (How is XML used in the legal profession?).

Also, I invite you to visit my Cafe con Leche web site at http://www.cafeconTeche.
org, which contains a lot of XML-related material and is updated almost daily. Despite
my persistent efforts to make this book perfect, some errors have doubtless slipped
by. Even more certainly, some of the material discussed here will change over time. I'll
post any necessary updates and errata on my web site at http://www.cafeconleche.
org/books/bible3/. Please let me know via e-mail of any errors that you find that
aren’t already listed.

[hope you enjoy the book. Happy XMLing!

Elliotte Rusty Harold
elharo@metalab.unc.edu
http://www.cafeconleche.org
New York City, December 11, 2003

X1l

Acknowledgments

The folks at Wiley Publishing have all been great. The acquisitions editors, John
Osborn, Grace Buechlein on the second edition, and Jim Minatel on this edi-
tion deserve special thanks for arranging the unusual scheduling this book required
to hit the moving target that XML presents. Marcia Ellett shepherded this book
through the development process. She managed the shifting outline and schedule
that a book based on unstable specifications and software requires with poise and
grace. Angela Smith proved equally adept on shepherding this book through its
final production. Terri Varveris edited the first edition and Sharon Nash the second
edition. Without them, there could never have been a third edition.

Steven Champeon brought his SGML experience to the book, and provided many
insightful comments on the text. My brother, Thomas Harold, put his command of
chemistry at my disposal when [was trying to grasp the Chemical Markup
Language. Carroll Bellau provided me with the parts of my family tree, which you’ll
find in Chapter 18. Piroz Mohseni and Heather Williamson served as technical edi-
tors on the first edition and corrected many of my errors. Ken Cox performed the
same service for the second edition, and B.K. Delong for the Gold edition. David
Schultz stepped up to the plate for this edition.

[also greatly appreciate all the comments, questions, and corrections sent in by
readers of the first and second editions and XML: Extensible Markup Language. |
hope that I've managed to address most of those comments in this book. They've
definitely helped make the XML 1.1 Bible, 3rd Edition a better book. Particular
thanks are due to Michael Dyck, Alan Esenther, and Donald Lancon, Jr. for their
especially detailed comments.

The agenting talents of David and Sherry Rogelberg of the Studio B Literary Agency
(http://www.studiob.com/) have made it possible for me to write effectively full-
time. I recommend them highly to anyone thinking about writing computer books.

And, as always, thanks go to my wife, Beth, for her endless love and understanding.

Contents at a Glance

Preface e vii
Acknowledgments XV
Partl:Introducing XMLt 1
Chapter 1: An Eagle’s Eye Viewof XML 3
Chapter 2: XML Applications 17
Chapter 3: Your First XML Document 55
Chapter 4: StructuringData 63
Chapter 5: Attributes, Empty-Element Tags,and XSL. 103
Chapter 6: Well-formedness 145
Part II: Document Type Definitions 187
Chapter 7: Validity 189
Chapter 8: Element Declarations 205
Chapter 9: Attribute Declarations 229
Chapter 10: Entity Declarations 249
Chapter 11: Namespaces ittt 287
Partlll: StyleLanguagesctiiurrnnn 309
Chapter 12: CSS StyleSheets 311
Chapter 13: CSSLayouts i 335
Chapter 14: CSS Text Styles 381
Chapter 15: XSL Transformations 423

Chapter 16: XSL Formatting Objects 507

Part IV: Supplemental Technologies 577

Chapter 17: XLinks 579
Chapter 18: XPointers 617
Chapter 19: XInclude 647
Chapter 20: Schemas 667
Part V: XML Applications 731
Chapter 21: XHTML e e 733
Chapter 22: Modular XHTML 787
Chapter 23: The Resource Directory Description Language 833
Chapter 24: Scalable Vector Graphics 849
Chapter 25: Designing a New XML Application 907

Contents

Part I: Introducing XML 1

Chapter 1: An Eagle’s Eye Viewof XML3

WhatIs XML? e 3
XML is a meta-markup language 3

XML describes structure and semantics, not formatting 5

Why Are Developers Excited About XML? 6
Domain-specific markup languages 6
Self-describingdata o oo . 7
Interchange of data among applications 8
Structureddata 8

The Life of an XML Document 9
Editors 9
Parsers and processors 10
Browsers and other applications 10

The process summarized 10
Related Technologies 11
HTML . . . 11

CSS . 12

XSL 12
URLsand URIs 13
XLinks and XPointerso Lo L 14
Unicode e 15
Putting the pieces together. 15
SUMMAry oo 16
Chapter 2: XML Applications 17
What Is an XML Application?, 17
Chemical Markup Language 18
Mathematical Markup Language 19

RSS . 22
Classicliterature 25

Synchronized Multimedia Integration Language 26

XX

Contents

Open Software Description 26
Scalable Vector Graphics, 27
MusicXML 29
VoiceXML e 34
Open Financial Exchange 36
Extensible Forms Description Language 36
HRXML 40
XMLfor XML 43
XSL 43
XLinkso 44
Schemas 45
Behind-the-SceneUsesof XML 46
Microsoft Office 2003 46
Netscape’s What'sRelated 49

UPS . 52
SUMMAryo oo 54
Chapter 3: Your First XML Document 55
Hello XML 55
Creating a simple XML document 56
Saving the XMLfile 56
Loading the XML file intoaweb browser 57
Exploring the Simple XML Document 58
Meaningin Markup 59
Writing a Style Sheet for an XML Document 60
Attaching a Style Sheet to an XML Document 61
Summaryo 62
Chapter 4: StructuringData 63
ExaminingtheData, 64
XMLizingtheData 67
The Advantages of the XML Format 87
Preparing a Style Sheet for Document Display 88
Linkingtoastylesheet 89
Assigning style rules to therootelement 90
Assigning stylerules totitles 91

The complete stylesheet 98
Summary e e e e 101
Chapter 5: Attributes, Empty-Element Tags,and XSL 103
Attributes L 103
Attributes versus Elements o o L. 109
Structured metadatao Lo L 109

Meta-metadata 113

Contents XX|

What’s your metadata is someone else’sdata 113
Elements are more extensible 114
Good times to use attributes, 114
Empty Elements and Empty-Element Tags 116
XSL . e 119
Templates e 120

The body of thedocument 121
Thetitle 123
Stations 126
Shows 129
Sorting 134
Tables 137
CSSorXSL? e 143
SUMMArY e 144
Chapter 6: Well-formedness 145
Well-formednessRules 145
XMLDocumentso i 146
The XML declaration 147
Singlerootelement., 148
Textin XML e 148
Elementsand Tags, 149
Elementnames 149
Every start-tag must have a corresponding end-tag 150
Empty-elementtags 151
Elements may nest but may notoverlap 152
Attributes L 154
Attributenames 154
Attributevalues 154
Predefined attributes L. 155
Entity References 160
Comments 162
Processing Instructions o o 164
CDATA Sections 165
Unicode e 167
Characterencodings, 168

The encoding declaration 168
Numeric character references 169

XML 1.1 . . e 171
Well-formed HTML 173
Rulesfor HTML 173
Tools e 183

SUMMAry e e e e 185

XXIi

Contents

Part 1I: Document Type Definitions

Chapter7:Validity 189
Document Type Definitions 189
Element Declarations 190
DTDFiles o e e e 192
Document Type Declarations 192

Internal DTDs e 194
Internal and external DTDsubsets 195
PublicDTDs e 196
DTDs and stylesheets 197
Validating againstaDTD 199
Command-line validators 200
Web-based validators 201
SUMMAry e e e e e e e e 203

Chapter 8: Element Declarations 205
Analyzingthe Document 205
ANY . e 208
#PCDATA e 211
ChildElements e 213

+OneorMoreChildren 215
?ZeroorOneChild 215
*Zeroor More Children 216
Choices e 216
Parentheses 217
Mixed Content 220
Empty Elements 221
CommentsinDTDs 223
Summary e 227

Chapter 9: Attribute Declarations229
What Is an Attribute? 229
Declaring Attributes 230
Declaring Multiple Attributes 231
Alternatives to Default Attribute Values 232

#REQUIRED 232
#IMPLIED 233
#FIXED 234
Attribute Types 235
The CDATA attributetype 235

The NMTOKEN attributetype 236

Contents

The NMTOKENS attributetype 236

The enumerated attributetype 237

The ID attributetype 238

The IDREF attributetype 238

The IDREFS attributetype 239

The ENTITY attributetype 240

The ENTITIES attributetype 241

The NOTATION attributetype 241

A DTD for Attribute-Based Television Listings 242
Declaring SCHEDULE attributes 243
Declaring STATION attributes 243
Declaring SHOW attributes 244
Declaring person attributes, 245

The complete DTD for the television listings example 246
SUMMAry e e 248
Chapter 10: Entity Declarations 249
WhatlIsanEntity? 249
Internal General Entities L. 250
Defining an internal general entity reference 251
Using general entity referencesinthe DTD 254
Predefined general entity references 255
External General Entities 256
Textdeclarations 258
Nonvalidating parsers 260
Internal Parameter Entities Lo 0L 260
External Parameter Entitieso L. 263
Building a Document fromPieces 269
Non-XMLData 274
Notations 275
Unparsed entities o oo 278
Conditional Sections L o 283
Summary e e 284
Chapter 11: Namespaceso iirvernnnnnnn. 287
The Need for Namespaces o v v v v v i i 287
Namespace Syntax i i 289
Defining namespaces with xmlns attributes 291
Multiple namespaces 294
Attributes L 298
Default namespaces, 300
Namespaces and Validity 304

Summary e e e e e 307

XXII

XXiV Contents

Part IlI: Style Languages 309
Chapter 12: CSS Style Sheets 311
What Are Cascading Style Sheets? 311
A simple CSSstylesheet. 312
Comments i 312
Attaching style sheets todocuments 313
DTDs and stylesheets 316
CSS1versus CSS2 e 316

CSS3 . . e 317
Selecting Elements 317
The universalselector, 320
Grouping selectors 320
Hierarchy selectors 321
Attributeselectors L 323
IDselectors 324
Pseudo-elements o o o . 324
Pseudo-classes 326
Inheritance 328
Cascades e 329
Different Rules for Different Media 330
Importing Style Sheets 332
Character Sets 333
Summary 333
Chapter 13: CSSLayoutscuuvvunvnnnnnn 335
CSSUnits e 335
Lengthvalues 337
URLvalues 339
Colorvalues e 340
Systemcolors 341
Keywordvalues 343
Strings 343

The Display Property 343
Inlineelements 347
Blockelements, 348
None e 348
Compact and run-inelements 350
Marker e 350
Tables 350
Listitems 351

Box Properties 356
Margin properties 356
Border properties 358

Padding properties o o 363

Contents

Size 364
The width and height properties 365

The min-width and min-height properties 367

The max-width and max-height properties 367

The overflow property 368
Positioning 369
The position property 369
Stacking elements with the z-index property 373
Thefloat property 373
Theclear property 374
FormattingPages 375
@PAZE . . . e 375

The size property 376

The margin property 376
Themark property 377

The pageproperty 377
Controlling pagebreaks, 377
Widows andorphans, ... 379
Summary e e 379
Chapter 14: CSSText Styles 381
Fonts 381
Choosing the font family 382
Choosing thefontstyle 384
Smallcaps o o 385
Setting the fontweight 385
Setting the fontsize 386

The font shorthand property 390
Color e 392
Text . . . 392
Wordspacing 393

The letter-spacing property 394

The text-decoration property 395

The vertical-align property 396

The text-transform property 397

The text-align property 398

The text-indent property 399

The line-height property 400

The white-space property 402
Backgrounds 404
The background-color property 404

The background-image property 405

The background-repeat property 406

The background-attachment property 408

The background-position property 409

The background shorthand property 413

XXV

XX\/i Contents

Visibility 413
Content e 414
Quotes e 415
Attributes 416

URIS . . . 416
Counters 417
Summary e e e e e 421
Chapter 15: XSL Transformations 423
What Is XSL? 423
Overview of XSL Transformations 424
Trees o e 424
XSLT style sheet documents 428
Where does the XML transformation happen? 430
Using xsltproc 430
Browser display of XML files with XSLT style sheets 433
XSLTemplates e 434
The xsl:apply-templates element 435

The select attribute 437
Computing the Value of a Node with xsl:value-of 437
Processing Multiple Elements with xsl:for-each 439
Patterns for Matching Nodes 440
Matching therootnode 440
Matching elementnames 442
Wildcards 444
Matching childrenwith/ 445
Matching descendants with // 446
MatchingbyID 447
Matching attributeswith@ 447
Matching comments with comment() 449
Matching processing instructions with processing-instruction(). . . 450
Matching text nodes withtext() 451
Usingtheoroperator | 451
Testingwith [] 452
XPath Expressions for SelectingNodes 454
Nodeaxes i 455
Expressiontypes 461

The Default TemplateRules 471
The default rule forelements 471

The default rule for text nodes and attributes 472

The default rule for processing instructions and comments 472
Implications of the defaultrules 473
Attribute Value Templates 473
Deciding What OutputtoInclude 475
Inserting elements into the output with xsl:element 475
Inserting attributes into the output with xsl:attribute 476

Defining attributesets o .. 477

Contents XX\/i |

Generating processing instructions with

xsl:processing-instruction 478
Generating comments with xsl:comment 479
Generating text with xsl:itext 479

Copying the Context Node with xsl:copy 480
Counting Nodes with xsl:number 482
Default numbers o L 483
Number to string conversion 485
Sorting Output 486
Modes e 490
Defining Constants with xsl:variable 492
Named Templates e 493
Passing Parameters to Templates 495
Stripping and Preserving WhiteSpace 496
Making Choices 497
xshif . . . 498
xslichoose 498
Merging Multiple StyleSheets 499
Importing with xsliimport, 499
Inclusion with xslinclude 500
Output Methods 500
XML Declaration 501
Document Type Declaration 502
Indentation 503
CDATAsections it 504
SUMMArY e e e e 504
Chapter 16: XSL Formatting Objects 507
Formatting Objects and Their Properties 507
Formatting properties oo L. 510
Transforming to formatting objects 514
Using FOP e 516
PageLayout 518
Therootelement 518
Simple pagemasters 518
Regions e 520
Pagesequences. 522

Page sequencemasters, 530
Content e 533
Block-level formatting objects 534
Inline formatting objects 534
Table formatting objects 535
Out-of-line formatting objects 536
LeadersandRules 536
Graphics 539
forexternal-graphic L 539
fo:instream-foreign-object o o o oL 541

Graphic properties 544

XXVHI

Contents
Links 545
Lists 547
Tables e e 551
Inlines e 556
Footnotes 557
Floats e 558
Formatting Properties 559
Theidproperty 559
The language property 559
Paragraph properties, 560
Character properties 563
Sentence properties 565
Areaproperties 567
SUMMArY e e e e e 575
Part IV: Supplemental Technologies 577
Chapter 17:XLinks579
XLinks versus HTML Links 579
Linking Elements 580
Declaring XLink Attributes in Document Type Definitions 582
Descriptions of the Remote Resource 584
Link Behavior 585
The xlink:show attribute 585
The xlink:actuate attribute 587
Extended Links 589
Extended Link Syntax. 590
ATCS . o o e 595
Out-of-LineLinks 601
XML Base 607
SUMMArY e e e e e 614
Chapter 18: XPointers i nnnrnnns 617
Why XPointers? 617
XPointer Examples 618
AConcreteExample 621
Location Paths, Steps,and Sets 623
TheRootNode 625
AXES . 626
Thechildaxis o 627
Thedescendantaxis 628
The descendant-or-selfaxis 628
Theparentaxis 628
Theselfaxis 628

The ancestor axis 629

Contents XXiX

The ancestor-or-selfaxis 629

The precedingaxis 629

The following axis 629

The preceding-siblingaxis 630

The following-sibling axis 630

The attribute axis, 630

The namespaceaxis 630
NodeTests e 631
Predicates 633
Functions That Return Node-Sets 635
dO) . e 636
here() o o e 637
origin() e 638
Points 638
Ranges e 640
Range functions L. 640
String ranges e 641
Child Sequences e 643
Summary e e e 644
Chapter 19:XiInclude 647
UseCasesforXInclude, 648
Non-Solutions 651
DTDS . . . o e 651
Embedded XLinks 652
Server-sideincludes, 653

The xinclude:include Element 655
Validating Documents That Use XInclude 658
XPointersinXInclude o o oL 660
Unparsed Text e 662
Fallbacks e 663
Summary e 665
Chapter20:Schemas irnnrn.. 667
What’s Wrong withDTDs? 667
WhatIsaSchema? 669
The W3C XML Schema Language 671
HelloSchemas 671
The greetingschema 672
Validating the document against theschema 673
ComplexTypes 675
minOccurs and maxOccurs v v v v v v v v 677
Elementcontent 680
Sharing contentmodels 682
Anonymous types e e 683

Mixed content 685

XXX Contents

Grouping e 686
Thexsd:allGroup 688
Choices 689
Sequences e e 690

Simple Types e 690
Numericdatatypes 692
Timedatatypes 695
XML datatypes 696
Stringdatatypes 697
Binarytypes 698
Miscellaneous datatypes 699

Deriving Simple Types e 700
Deriving by restriction o 000 700
Facets 702
Facets for strings: length, minLength, maxLength 702
The whiteSpacefacet 704
Facets for decimal numbers: totalDigits and fractionDigits 705
The enumerationfacet. 705
The patternfacet 707
Unions 714
Lists . . . o 714

EmptyElements 715

Attributes L 716

Namespaces o e e 720
Schemas for default namespaces 721
Multiple namespaces, multiple schemas 724

Annotations 727

SumMmary e e e e e 728

Part V: XML Applications 731
Chapter21: XHTMLttt i 733

Why Validate HTML? 733

Movingto XHTML e 735
Making the document well-formed XML 738
Making the document valid 745
Thestrict DTD 753
The frameset DTD, 767
HTMLTidy e 767
Setting the MIME mediatype 771

What’'s Newin XHTML 772
Characterreferences 772
Custom entity references definedinDTD 776
Encoding declarations L. 781
The xml:lang attribute 782
CDATAsections o i i i e 783

Summary e e e 785

Contents XXX|

Chapter 22: Modular XHTML 787
The Modules of XHTML e 787
ASample DTDModule 790

Elementnames 793
Element-specific content models 794
Genericcontentmodels, 795
Generic attributemodels L. 796
INCLUDE and IGNORE blocks 796
Using XHTML entities in other applications 797
The Framework e 798
The notations frameworkmodule 802
The data types frameworkmodule 804
The namespace-qualified names module 805
The common attributes module 807
The character entitymodules 808
TheDriver DTD 809
The Document Model, 816
The XHTML Basic document model 817
A minimal documentmodel, 823
A Sample SchemaModule 828
Summary e e e 831

Chapter 23: The Resource Directory Description Language 833
What Does a Namespace URL Locate? 834
TheSolution 835
TheresourceElement 836
Natures e 843
Purposes 845
Summary e e e e 847

Chapter 24: Scalable Vector Graphics 849
WhatIs SVG? e 850

Scalability 851
Vector versus bitmapped graphics 852
ASimple SVGDocument 852
Embedding SVG Picturesin WebPages 855
Simple Shapes 858
Therectelement 859
Thecircleelement 861
Theellipseelement 862
Thelineelement 863
Polygons and polylines 864
Paths o e 866
Arcs ..o 869

XXXII

Contents

Text . . o 873
Strings 874
Textonapath 876
Fontsandtextstyles 878
Textspans o o e 879
BitmappedImages 879
Coordinate Systems and Viewports 881
Theviewport 882
Coordinate systems 883
Grouping Shapes 888
Referencing Shapes 889
Transformations 892
Linking e 899
Metadata L 900
SVGEditors 903
Summary e e e e e 904
Chapter 25: Designing a New XML Application 907
OrganizationoftheData 907
Listingtheelements 909
Identifying the fundamental elements 909
Establishing relationships among the elements 912
ChoosingaNamespace. 914
Persons 915
Asampleperson 915
ThepersonDTD 918
Thepersonschema 924
Families 932
Thefamily DTD o o 933

The Family Schema 935
Sources 937
TheFamily Tree 940
The Family Tree DTD 946

The family treeschema 948
Modularizingthe DTDs 950
Designing a Style Sheet for Family Trees 960
A RDDL document for family trees 968
Summary e e e e 980

Introducing XML

+ 0+ 0+
In This Part

Chapter 1
An Eagle’s Eye
View of XML

Chapter 2
XML Applications

Chapter 3
Your First XML
Document

Chapter 4
Structuring Data

Chapter 5
Attributes,

Empty-Element Tags,
and XSL

Chapter 6

Well-formedness

+ o+ 0+

<+

<+

An Eagle’s Eye
View of XML

+ 0+ o+

In This Chapter

This chapter introduces you to XML, the Extensible vhinei fo 2ty
Markup Language. It explains, in general terms, what

XML is and how it is used. It shows you how different XML
technologies work together, and how to create an XML docu-
ment and deliver it to readers.

Why are developers
excited about XML2

The life of an XML

document
What IS XM I_? Related technologies
XML stands for Extensible Markup Language (often miscapi- 4+ + + +

talized as eXtensible Markup Language to justify the acronym).
XML is a set of rules for defining semantic tags that break a
document into parts and identify the different parts of the doc-
ument. It is a meta-markup language that defines a syntax in
which other domain-specific markup languages can be written.

XML is a meta-markup language

The first thing you need to understand about XML is that it
isn’t just another markup language like HTML, TeX, or troff.
These languages define a fixed set of tags that describe a fixed
number of elements. If the markup language you use doesn’t
contain the tag you need, you’re out of luck. You can wait

for the next version of the markup language, hoping that it
includes the tag you need; but then you're really at the mercy
of whatever the vendor chooses to include.

4

Part | 4+ Introducing XML

XML, however, is a meta-markup language. It’s a language that lets you make up the
tags you need as you go along. These tags must be organized according to certain
general principles, but they’re quite flexible in their meaning. For example, if you're
working on genealogy and need to describe family names, personal names, dates,
births, adoptions, deaths, burial sites, marriages, divorces, and so on, you can cre-
ate tags for each of these. You don’t have to force your data to fit into paragraphs,
list items, table cells, or other very general categories.

You can document the tags you create in a schema written in any of several lan-
guages, including document type definitions (DTDs) and the W3C XML Schema
Language. You'll learn more about DTDs and schemas in Parts Il and IV of this book.
For now, think of a schema as a vocabulary and a syntax for certain kinds of docu-
ments. For example, the schema for Peter Murray-Rust’s Chemical Markup Language
(CML) is a DTD that describes a vocabulary and a syntax for the molecular sciences:
chemistry, crystallography, solid-state physics, and the like. It includes tags for
atoms, molecules, bonds, spectra, and so on. Many different people in the field can
share this schema. Other schemas are available for other fields, and you can create
your own.

XML defines the meta syntax that domain-specific markup languages such as
MusicXML, MathML, and CML must follow. It specifies the rules for the low-level
syntax, saying how markup is distinguished from content, how attributes are
attached to elements, and so forth, without saying what these tags, elements, and
attributes are or what they mean. It gives the patterns that elements must follow
without specifying the names of the elements. For example, XML says that tags
begin with a < and end with a >. However, XML does not tell you what names must
go between the < and the >.

If an application understands this meta syntax, it at least partially understands all
the languages built from this meta syntax. A browser does not need to know in
advance each and every tag that might be used by thousands of different markup
languages. Instead, the browser discovers the tags used by any given document as
it reads the document or its schema. The detailed instructions about how to display
the content of these tags are provided in a separate style sheet that is attached

to the document.

For example, consider the three-dimensional Schrédinger equation:

oy\r, t 2
ihwa(:) =— 2f§nV2‘V(r’ t) + V(r)\y(r, t)

XML means you don’t have to wait for browser vendors to catch up with your ideas.
You can invent the tags you need, when you need them, and tell the browsers how
to display these tags.

Chapter 1 + An Eagle’s Eye View of XML

XML describes structure and semantics,
not formatting

XML markup describes a document’s structure and meaning. It does not describe
the formatting of the elements on the page. You can add formatting to a document
with a style sheet. The document itself only contains tags that say what is in the
document, not what the document looks like.

By contrast, HTML encompasses formatting, structural, and semantic markup.
is a formatting tag that makes its content bold. is a semantic tag that
means its contents are especially important. <TD> is a structural tag that indicates
that the contents are a cell in a table. In fact, some tags can have all three kinds of
meaning. An <H1> tag can simultaneously mean 20-point Helvetica bold, a level 1
heading, and the title of the page.

For example, in HTML, a song might be described using a definition title, definition
data, an unordered list, and list items. But none of these elements actually have
anything to do with music. The HTML might look something like this:

<DT>Hot Cop

<DD> by Jacques Morali, Henri Belolo, and Victor Willis

 Jacques Morali

 PolyGram Records

 6:20

 1978

 Village People

<JUL>

In XML, the same data could be marked up like this:

<SONG>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
CARTIST>Village People</ARTIST>
</SONG>

Instead of generic tags such as <DT> and , this example uses meaningful tags
such as <SONG>, <TITLE>, <COMPOSER>, and <YEAR>. These tags didn’t come from
any preexisting standard or specification. [just made them up on the spot because
they fit the information [was describing. Domain-specific tagging has a number of
advantages, not the least of which is that it’s easier for a human to read the source
code to determine what the author intended.

6

Part | 4+ Introducing XML

XML markup also makes it easier for nonhuman automated computer software to
locate all of the songs in the document. A computer program reading HTML can’t
tell more than that an element is a DT. It cannot determine whether that DT repre-
sents a song title, a definition, or some designer’s favorite means of indenting text.
In fact, a single document might well contain DT elements with all three meanings.

XML element names can be chosen such that they have extra meaning in additional
contexts. For example, they might be the field names of a database. XML is far more
flexible and amenable to varied uses than HTML because a limited number of tags
don’t have to serve many different purposes. XML offers an infinite number of tags
to fill an infinite number of needs.

Why Are Developers Excited About XML?

XML makes easy many web-development tasks that are extremely difficult with
HTML, and it makes tasks that are impossible with HTML possible. Because XML is
extensible, developers like it for many reasons. Which reasons most interest you
depends on your individual needs, but once you learn XML, you’re likely to discover
that it’s the solution to more than one problem you're already struggling with. This
section investigates some of the generic uses of XML that excite developers. In
Chapter 2, you'll see some of the specific applications that have already been devel-
oped with XML.

Domain-specific markup languages

XML enables individual professions (for example, music, chemistry, human
resources) to develop their own domain-specific markup languages. Domain-specific
markup languages enable practitioners in the field to trade notes, data, and informa-
tion without worrying about whether or not the person on the receiving end has the
particular proprietary payware that was used to create the data. They can even send
documents to people outside the profession with a reasonable confidence that those
who receive them will at least be able to view the documents.

Furthermore, creating separate markup languages for different domains does not
lead to bloatware or unnecessary complexity for those outside the profession. You
may not be interested in electrical engineering diagrams, but electrical engineers are.
You may not need to include sheet music in your web pages, but composers do. XML
lets the electrical engineers describe their circuits and the composers notate their
scores, mostly without stepping on each other’s toes. Neither field needs special
support from browser manufacturers or complicated plug-ins, as is true today.

Chapter 1 + An Eagle’s Eye View of XML

Self-describing data

Much computer data from the last 40 years is lost, not because of natural disaster or
decaying backup media (though those are problems too, ones XML doesn’t solve),
but simply because no one bothered to document how the data formats. A Lotus 1-2-3
file on a 15-year-old 5.25-inch floppy disk might be irretrievable in most corporations
today without a huge investment of time and resources. Data in a less-known binary
format such as Lotus Jazz may be gone forever.

XML is, at a low level, an incredibly simple data format. It can be written in 100 per-
cent pure ASCII or Unicode text, as well as in a few other well-defined formats. Text
is reasonably resistant to corruption. The removal of bytes or even large sequences
of bytes does not noticeably corrupt the remaining text. This starkly contrasts with
many other formats, such as compressed data or serialized Java objects, in which
the corruption or loss of even a single byte can render the rest of the file unreadable.

At a higher level, XML is self-describing. Suppose you’re an information archaeologist
in the twenty-third century and you encounter this chunk of XML code on an old
floppy disk that has survived the ravages of time:

<PERSON ID="pl1100" SEX="M">
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME> McDaniel</SURNAME>
</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE> </BIRTH>
<DEATH>
<DATE>9 Dec 1905</DATE> </DEATH>
</PERSON>

Even if you're not familiar with XML, assuming you speak a reasonable facsimile of
twentieth-century English, you’ve got a pretty good idea that this fragment describes
a man named Judson McDaniel, who was born on February 21, 1834 and died on
December 9, 1905. In fact, even with gaps in or corruption of the data, you could
probably still extract most of this information. The same could not be said for a
proprietary, binary spreadsheet or word-processor format.

Furthermore, XML is very well documented. The World Wide Web Consortium
(W3C)’s XML specification and numerous books tell you exactly how to read XML
data. There are no secrets waiting to trip the unwary.

7

8

Part | 4+ Introducing XML

Interchange of data among applications

Because XML is nonproprietary and easy to read and write, it’s an excellent format
for the interchange of data among different applications. XML is not encumbered by
copyright, patent, trade secret, or any other sort of intellectual property restrictions.
It has been designed to be extremely expressive and very well structured while at
the same time being easy for both human beings and computer programs to read
and write. Thus, it’s an obvious choice for exchange languages.

One such format is the Open Financial Exchange 2.0 (OFX, http://www.ofx.net/).
OFX is designed to let personal finance programs, such as Microsoft Money and
Quicken, trade data. The data can be sent back and forth between programs and
exchanged with banks, brokerage houses, credit card companies, and the like.

is—j OFX is further discussed in Chapter 2.
Reference

By choosing XML instead of a proprietary data format, you can use any tool that
understands XML to work with your data. You can even use different tools for differ-
ent purposes, one program to view and another to edit, for example. XML keeps you
from getting locked into a particular program simply because that’s what your data
is already written in, or because that program’s proprietary format is all your corre-
spondent can accept.

For example, many publishers require submissions in Microsoft Word. This means
that most authors have to use Word, even if they would rather use OpenOffice.org
Writer or WordPerfect. This makes it extremely difficult for any other company to
publish a competing word processor unless it can read and write Word files. To do
so, the company’s programmers must reverse-engineer the binary Word file format,
which requires a significant investment of limited time and resources. Most other
word processors have a limited ability to read and write Word files, but they generally
lose track of graphics, macros, styles, revision marks, and other important features.
Word’s document format is undocumented, proprietary, and constantly changing,
and thus Word tends to end up winning by default, even when writers would prefer
to use other, simpler programs. Word 2003 offers the option to save its documents
in an XML application called WordML instead of its native binary file format. It is far
easier to reverse-engineer an undocumented XML format than a binary format. In the
future, Word files will much more easily be exchanged among people using different
word processors.

Structured data

XML is ideal for large and complex documents because the data is structured. You
specify a vocabulary that defines the elements in the document, and you can specify
the relations between elements. For example, if you're putting together a web page
of sales contacts, you can require every contact to have a phone number and an
e-mail address. If you're inputting data for a database, you can make sure that no
fields are missing. You can even provide default values to be used when no data is
available.

Chapter 1 + An Eagle’s Eye View of XML

XML also provides a client-side include mechanism that integrates data from multiple
sources and displays it as a single document. (In fact, it provides at least three differ-
ent ways of doing this, a source of some confusion.) The data can even be rearranged
on the fly. Parts of it can be shown or hidden depending on user actions. You'll find
this extremely useful when you’re working with large information repositories like
relational databases.

The Life of an XML Document

XML is, at its root, a document format, a series of rules about what a document
looks like. There are two levels of conformity to the XML standard. The first is well-
formedness and the second is validity. Part I of this book shows you how to write
well-formed documents. Part Il shows you how to write valid documents.

HTML is a document format that is designed for use on the Internet and inside web
browsers. XML can certainly be used for that, as this book demonstrates. However,
XML is far more broadly applicable. It can be used as a storage format for word
processors, as a data interchange format for different programs, as a means of
enforcing conformity with intranet templates, and as a way to preserve data in a
human-readable fashion.

However, like all data formats, XML needs programs and content before it’s useful.
It isn’t enough to just understand XML itself. That’s not much more than a specifica-
tion for what data should look like. You also need to know how XML documents are
edited, how processors read XML documents and pass the information they read
on to applications, and what these applications do with that data.

Editors

XML documents are most commonly created with an editor. This might be a basic
text editor, such as Notepad or vi, that doesn’t really understand XML at all. On the
other hand, it might be a completely WYSIWYG editor, such as Adobe FrameMaker,
that insulates you almost completely from the details of the underlying XML format.
Or it may be a structured editor, such as Visual XML (http://www.pierlou.com/
visxml/), that displays XML documents as trees. For the most part, the fancy editors
aren’t very useful as of yet, so this book concentrates on writing raw XML by hand
in a text editor.

Other programs can also create XML documents. For example, previous editions
of this book included several XML documents whose data came straight out of a
FileMaker database. In this case, the data was first entered into the FileMaker data-
base. Next, a FileMaker calculation field converted that data to XML. Finally, an
AppleScript program extracted the data from the database and wrote it as an XML
file. Similar processes can extract XML from MySQL, Oracle, and other databases
by using XML, Perl, Java, PHP, or any convenient language. In general, XML works
extremely well with databases.

10

Part | 4+ Introducing XML

In any case, the editor or other program creates an XML document. More often than
not, this document is an actual file on some computer’s hard disk, but it doesn’t
absolutely have to be. For example, the document might be a record or a field in

a database, or it might be a stream of bytes received from a network.

Parsers and processors

An XML parser (also known as an XML processor) reads the document and verifies
that the XML it contains is well formed. It may also check that the document is valid,
although this test is not required. The exact details of these tests are covered in
Part II. If the document passes the tests, the processor converts the document into
a tree of elements.

Browsers and other applications

Finally, the parser passes the tree or individual nodes of the tree to the client appli-
cation. If this application is a web browser such as Mozilla, the browser formats the
data and shows it to the user. But other programs may also receive the data. For
example, a database might interpret an XML document as input data for new records;
a MIDI program might see the document as a sequence of musical notes to play; a
spreadsheet program might view the XML as a list of numbers and formulas. XML is
extremely flexible and can be used for many different purposes.

The process summarized

To summarize, an XML document is created in an editor. The XML parser reads the
document and converts it into a tree of elements. The parser passes the tree to the
browser or other application that displays it. Figure 1-1 shows this process.

T | —

Txpad32.exe

Tempest.xml

Editor writes Document iSreadby Parser sends Browser displays User
data to page to

Figure 1-1: XML document life cycle

It’s important to note that all of these pieces are independent of and decoupled from
each other. The only thing that connects them is the XML document. You can change
the editor program independently of the end application. In fact, you may not always
know what the end application is. It might be an end user reading your work, it
might be a database sucking in data, or it might be something not yet invented. It
may even be all of these. The document is independent of the programs that read
and write it.

ﬂ\l ote

Chapter 1 + An Eagle’s Eye View of XML

HTML is also somewhat independent of the programs that read and write it, but it's

-~ really only suitable for browsing. Other uses, such as database input, are beyond
its scope. For example, HTML does not provide a way to force an author to include
certain required content such as the ISBN in every book. XML enables you to do
this. You can even control the order in which particular elements appear (for
example, that level 2 headers must always follow level 1 headers).

Related Technologies

XML doesn’t operate in a vacuum. Using XML as more than a data format involves
several related technologies and standards, including the following:

4+ HTML for backward compatibility with legacy browsers

4 The CSS and XSL style sheet languages to define the appearance of XML
documents

4+ URLs and URIs to specify the locations of XML documents
4 XLinks to connect XML documents to each other

4 The Unicode character set to encode the text of an XML document

HTML

Mozilla 1.0, Opera 4.0, Internet Explorer 5.0, and Netscape 6.0 and later provide some
(albeit incomplete) support for XML. However, it takes about two years before most
users have upgraded to a particular release of the software (in 2004, my wife still
uses Netscape 4 on her Mac at work), so you're going to need to convert your XML
content into classic HTML for some time to come.

Therefore, before you jump into XML, you should be completely comfortable with
HTML. You don’t need to be a hotshot graphical designer, but you should know how
to link from one page to the next, how to include an image in a document, how to
make text bold, and so forth. Because HTML is the most common output format of
XML, the more familiar you are with HTML, the easier it will be to create the effects
you want.

On the other hand, if you're accustomed to using tables or single-pixel GIFs to
arrange objects on a page, or if you begin planning a web site by sketching out its
design in Photoshop, you're going to have to unlearn some bad habits. As previously
discussed, XML separates the content of a document from the appearance of the
document. You develop the content first, and then design a style sheet that formats
the content. Separating content from presentation is an extremely effective technique
that improves both the content and the appearance of the document. Among other
things, it enables authors, programmers, and designers to work more independently
of each other. However, it does require a different way of thinking about the design
of a web site, and perhaps even the use of different project management techniques
when multiple people are involved.

11

12

Part | 4+ Introducing XML

CSS

Because XML allows arbitrary tags in a document, the browser has no way to know
in advance how each element should be displayed. When you send a document to a
user, you also need to send along a style sheet that tells the browser how to format
the tags you've used. One kind of style sheet you can use is a CSS style sheet.

Cascading style sheets, initially invented for HTML, define formatting properties such
as font size, font family, font weight, paragraph indentation, paragraph alignment,
and other styles that can be applied to particular elements. For example, CSS allows
HTML documents to specify that all H1 elements should be formatted in 32-point,
centered, Helvetica bold. Individual styles can be applied to most HTML tags that
override the browser’s defaults. Multiple style sheets can be applied to a single
document, and multiple styles can be applied to a single element. The styles then
cascade according to a particular set of rules.

D CSS rules and properties are explored in more detail in Chapters 12, 13, and 14.
Reference

Mozilla, Opera 4.0, Netscape 6.0, and Internet Explorer 5.0 and later can display
XML documents with associated CSS style sheets. They differ a little in how many
CSS properties they support and how well they support them.

XSL

The Extensible Stylesheet Language (XSL) is a more powerful style language designed
specifically for XML documents. XSL style sheets are themselves well-formed XML
documents. XSL is actually two different XML applications:

4 XSL Transformations (XSLT)
4+ XSL Formatting Objects (XSL-FO)

Generally, an XSLT style sheet describes a transformation from an input XML docu-
ment in one format to an output XML document in another format. That output
format can be XSL-FO, but it can also be any other text format (XML or otherwise),
such as HTML, plain text, or TeX.

An XSLT style sheet contains templates that match particular patterns of XML ele-
ments. An XSLT processor reads an XML document and an XSLT style sheet and
compares the elements it finds in the document to the patterns in the style sheet.
When the processor recognizes a pattern from the XSLT style sheet in the input
XML document, it instantiates the template and outputs the resulting text. Unlike
cascading style sheets, this output text is somewhat arbitrary and is not limited to
the input text plus formatting information. It depends on the instructions in the
template.

Chapter 1 + An Eagle’s Eye View of XML

A CSS style sheet can only change the format of a particular element, and it can
only do so on an element-wide basis. An XSLT style sheet, on the other hand, can
rearrange and reorder elements. It can hide some elements and display others.
Furthermore, it can choose the style to use based not just on the element name, but
also on the contents and attributes of the element, on the position of the element in
the document relative to other elements, and on a variety of other criteria.

,is-s-/‘x XSLT is introduced in Chapter 5 and explored in detail in Chapter 15.
Reference

XSL-FO is an XML application that describes the layout of a page. It specifies where
particular text is placed on the page in relation to other items on the page. It also
assigns styles, such as italic, or fonts, such as Arial, to individual items on the page.
You can think of XSL-FO as a page description language like PostScript (minus
PostScript’s built-in, Turing-complete programming language).

,is_s-/‘x XSL-FO is covered in Chapter 16.
Reference

Which style sheet language should you choose? CSS has the advantage of broader
browser support. However, XSL is far more flexible and powerful, and better suited
to XML documents. Furthermore, XML documents with XSLT style sheets can easily
be converted to HTML documents with CSS style sheets. XSL-FO is a little past the
bleeding edge, however. No browsers support it, and even third-party FO-to-PDF con-
verters such as FOP don’t support all of the current formatting object specification.

Which language you pick largely depends on your use case. If you want to serve
XML files directly to clients and use their CPU power to format and transform the
documents, you really need to be using CSS (and even then, the clients had better
have very up-to-date browsers). On the other hand, if you want to support older
browsers, you're better off converting documents to HTML on the server using XSLT,
and sending the browsers pure HTML. For high-quality printing, you're better off with
XSLT plus XSL-FO. An advantage of XML is that it’s quite easy to do all of this at the
same time. You can change the style sheet and even the style sheet language you
use without changing the XML documents that contain your content.

URLs and URIs

XML documents can live on the Web, just like HTML and other documents. When
they do, they are referred to by Uniform Resource Locators (URLs). For example,
atthe URL http://cafeconleche.org/examples/shakespeare/tempest.xml
you’ll find the complete text of Shakespeare’s Tempest marked up in XML.

13

14

Part | 4+ Introducing XML

Although URLs are well understood and well supported, the XML specification uses
the more general Uniform Resource Identifier (URI). URIs are a more general scheme
for locating resources; URIs focus a little more on the resource and a little less on the
location. Furthermore, they aren’t necessarily limited to resources on the Internet.
For example, the URI for this book is urn:isbn:0764549863. This doesn’t refer to
the specific copy you're holding in your hands. It refers to the almost-Platonic form
of the third edition of the XML Bible shared by all individual copies.

In theory, a URI can find the closest copy of a mirrored document or locate a docu-
ment that has been moved from one site to another. In practice, URIs are still an area
of active research, and the only kinds of URIs that current software actually supports
are URLs.

XLinks and XPointers

As long as XML documents are posted on the Internet, people will want to link them
to each other. Standard HTML link tags can be used in XML documents, and HTML
documents can link to XML documents. For example, this HTML link points to the
aforementioned copy of the Tempest in XML:

<A HREF=

"http://cafeconleche.org/examples/shakespeare/tempest.xml">
The Tempest by Shakespeare

<A

Whether the browser can display this document if you follow the link depends on
=~ just how well the browser handles XML files. Fourth-generation and earlier
browsers don’t handle them very well.

However, XML lets you go further with XLinks for linking to documents and XPointers
for addressing individual parts of a document.

XLinks enable any element to become a link, not just an A element. For example,
in XML, the preceding link might be written like this:

<PLAY xTlink:type="simple"
xmins:xTink="http://www.w3.0rg/1999/x1ink"
xTink:href=
"http://cafeconleche.org/examples/shakespeare/tempest.xml">
KTITLE>The Tempest</TITLE> by <AUTHOR>Shakespeare</AUTHOR>
</PLAY>

Furthermore, XLinks can be bidirectional, multidirectional, or even point-to-multiple
mirror sites from which the nearest is selected. XLinks use normal URLs to identify
the site to which they’re linking. As new URI schemes become available, XLinks will
be able to use those, too.

Chapter 1 + An Eagle’s Eye View of XML

- Cross- XLinks are discussed in Chapter 17.
Reference

XPointers allow links to point not just to a particular document at a particular loca-
tion, but to a particular part of a particular document. An XPointer can refer to a
particular element of a document; to the first, the second, or the seventeenth such
element; to the first element that’s a child of a given element; and so on. XPointers
provide extremely powerful connections between documents that do not require
the targeted document to contain additional markup just so its individual pieces
can be linked to another document.

Furthermore, unlike HTML anchors, XPointers don’t just refer to a point in a docu-
ment. They can point to ranges or spans. For example, an XPointer might be used
to select a particular part of a document so that it can be copied or loaded into a
program.

,is-s-/‘x XPointers are discussed in Chapter 18.
Reference

Unicode

The Web is international, yet a disproportionate amount of the text you’ll find on
it is in English. XML is helping to change that. XML provides full support for the
Unicode character set. This character set supports almost every character that is
commonly used in every modern script on Earth.

Unfortunately, XML and Unicode alone are not enough to enable you to read and
write Russian, Arabic, Chinese, and other languages written in non-Roman scripts.
To read and write a language on your computer, it needs three things:

1. A character set for the script in which the language is written
2. A font for the character set

3. An operating system and application software that understand the
character set

If you want to write in the script as well as read it, you’ll also need an input method
for the script. However, XML defines character references that allow you to use
pure ASCII to encode characters not available in your native character set. This is
sufficient for an occasional quote in Greek or Chinese, although you wouldn’t want
to rely on it to write a novel in another language.

Putting the pieces together

XML defines the syntax for the tags you use to mark up a document. An XML docu-
ment is marked up with XML tags. The default character set for XML documents is
Unicode.

15

16

Part | 4+ Introducing XML

Among other things, an XML document may contain hypertext links to other docu-
ments and resources. These links are created according to the XLink specification.
XLinks identify the documents that they’re linking to with URIs (in theory) or URLs
(in practice). An XLink may further specify the individual part of a document it’s
linking to. These parts are addressed via XPointers.

If an XML document is intended to be read by human beings — and not all XML
documents are —a style sheet provides instructions about how individual elements
are formatted. The style sheet may be written in any of several style sheet languages.
CSS and XSL are the two most popular style sheet languages, and the two best
suited to use with XML.

Summary

In this chapter, you've seen a high-level overview of what XML is and what it can do
for you. In particular, you learned the following:

4+ XML is a meta-markup language that enables the creation of markup languages
for particular documents and domains.

4+ XML tags describe the structure and semantics of a document’s content, not
the format of the content. The format is described in a separate style sheet.

4+ XML documents are created in an editor, read by a parser, and displayed by a
browser.

4+ XML on the Web rests on the foundations provided by HTML, CSS, and URLs.

4 Numerous supporting technologies layer on top of XML, including XSL style
sheets, XLinks, and XPointers. These let you do more than you can accomplish
with just CSS and URLs.

The next chapter presents a number of XML applications that demonstrate the ways
that XML is being used in the real world. Examples include vector graphics, musical

notation, mathematics, chemistry, human resources, and more.

+ o+ 0+

CHAPTER

XML
Applications

¢+ 4+ o+

In This Chapter

I his chapter investigates many examples of XML applica- \é\/hclztclcfﬂzr:ﬁXML
tions: publicly standardized markup languages, XML PP ’
applications that are used to extend and expand XML itself, XML for XML

and some behind-the-scene uses of XML. It is inspiring to see
so many different uses for XML, because it shows just how
widely applicable XML is. Many more XML applications are
being created or ported from other formats every day.

Behind-the-scene
uses of XML

¢+ 4+ o+

What Is an XML Application?

XML is a meta-markup language for designing domain-specific
markup languages. Each specific XML-based markup language
is called an XML application. This is not an application that uses
XML, such as the Mozilla web browser, the Gnumeric spread-
sheet, or the XML Spy editor; instead, it is an application of
XML to a specific domain, such as Chemical Markup Language
(CML) for chemistry or GedML for genealogy.

Each XML application has its own semantics and vocabulary,
but the application still uses XML syntax. This is much like
human languages, each of which has its own vocabulary and
grammar, while adhering to certain fundamental rules imposed
by human anatomy and the structure of the brain.

XML is an extremely flexible format for text-based data. The
reason XML was chosen as the foundation for the wildly differ-
ent applications discussed in this chapter (aside from the hype
factor) is that XML provides a sensible, well-documented for-
mat that’s easy to read and write. By using this format for its
data, a program can offload a great quantity of detailed pro-
cessing to a few standard free tools and libraries. Furthermore,
it’s easy for such a program to layer additional levels of syntax
and semantics on top of the basic structure XML provides.

18

Part | 4+ Introducing XML

Chemical Markup Language

Peter Murray-Rust’s Chemical Markup Language (CML) may have been the first
XML application. CML was originally developed as a Standard Generalized Markup
Language (SGML) application, and gradually transitioned to XML as the XML stan-
dard developed. In its most simplistic form, CML is “HTML plus molecules,” but it
has applications far beyond the limited confines of the Web.

Molecular documents often contain thousands of different, very detailed objects.
For example, a single medium-sized organic molecule might contain hundreds of
atoms, each with at least one bond and many with several bonds to other atoms in
the molecule. CML seeks to organize these complex chemical objects in a straight-
forward manner that can be understood, displayed, and searched by a computer.
CML can be used for molecular structures and sequences, spectrographic analysis,
crystallography, scientific publishing, chemical databases, and more. Its vocabulary
includes molecules, atoms, bonds, crystals, formulas, sequences, symmetries, reac-
tions, and other chemistry terms. For example, Listing 2-1 is a basic CML document
for water (H,0).

Listing 2-1: The Water Molecule H,0 Described in CML

<?xml version="1.0"7>
<cml xmins="http://www.xml-cml.org/schema/cml2/core”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.xml-cml.org/schema/cml2/core cmlCore.xsd">
<molecule title="Water">
<atomArray>
<atom id="al" elementType="H" hydrogenCount="0"/>
<atom id="a2" elementType="0" hydrogenCount="2"/>
<atom id="a3" elementType="H" hydrogenCount="0"/>
</atomArray>
<bondArray>
<bond atomRefs2="al a2" order="1"/>
<bond atomRefs2="a2 a3" order="1"/>
</bondArray>
</molecule>
</cml>

CML has several advantages over more traditional approaches to managing chemical
data, such as the Protein Data Bank (PDB) format or MDL Molfiles. First, CML is easier
to search, especially for generic tools that don’t understand all the intricacies of a
particular format. It’s also more easily integrated with web sites, a crucial advan-
tage at a time when Internet preprints and discussion groups are rapidly replacing

Chapter 2 4+ XML Applications 19

traditional paper journals and scientific meetings. Finally, and most importantly,
because the underlying XML is platform-independent, CML avoids the platform-
dependency that has plagued the binary formats used by traditional chemical soft-
ware and document formats. All chemists can read and write CML files, regardless of
the hardware and software they’'ve chosen to adopt.

Murray-Rust also created JUMBO, the first general-purpose XML browser. Figure 2-1
shows JUMBO 3 displaying a CML file. JUMBO works by assigning each XML ele-
ment to a Java class that knows how to render that element. To enable JUMBO to
support new elements, you simply write Java classes for those elements. JUMBO is
distributed with classes for displaying the basic set of CML elements, including
molecules, atoms, and bonds, and is available at http://www.xml-cml.org/.

Mathematical Markup Language

Legend claims that Tim Berners-Lee invented the World Wide Web and HTML at
CERN, the European Laboratory for Particle Physics, so that high-energy physicists
could exchange papers and preprints. Personally, I've never believed that story. I
grew up in physics, and while I've wandered back and forth between physics, applied
math, astronomy, and computer science over the years, one thing the papers in all
of these disciplines had in common was lots and lots of equations. Until XML, there
wasn’t a good way to include equations in web pages. There were a few hacks —
Java applets that parse a custom syntax, converters that turn LaTeX equations into
GIF images, custom browsers that read TeX files— but none produced high-quality
results, and none caught on with web authors, even in scientific fields. XML is
changing this.

The Mathematical Markup Language (MathML) is an XML application for mathemat-
ical equations. MathML is sufficiently expressive to handle most math from grammar-
school arithmetic through calculus and differential equations. Although there are a
few limits to MathML at the high end of pure mathematics and theoretical physics,
it is eloquent enough to handle almost all educational, scientific, engineering, busi-
ness, economics, and statistics needs. And MathML is likely to be expanded in the
future, so even the purest of the pure mathematicians and the most theoretical

of the theoretical physicists will be able to publish and do research on the Web.
MathML completes the development of the Web into a serious tool for scientific
research and communication (despite its long digression to make it suitable as a
new medium for advertising brochures).

Mozilla is just beginning to support MathML. Figure 2-2 shows Mozilla displaying the
covariant form of Maxwell’s equations written in MathML. Other common browsers
do not support it at all. However, plug-ins and Java applets that add this support
are available, such as IBM’s Tech Explorer (http://www.software.ibm.com/
techexplorer) and Design Science’s WebEQ (http://www.dessci.com/en/
products/webeq/).

20

Part | 4+ Introducing XML

|C:ﬁurbu:l\cml\src\tcstmols\?donlyburan.xml LI ik CWL %1 0 hitpcifnnnee xml-col orglfeltclicenil_0_1
20-30 Molecuar StructurePansl

Ruad'Nms[o_uﬁmslmb|

=8 x

Cptionz | HML | Halp ISTngIeCM.MDIacLIs

2D MolecularStructurePanes|

| clone Heln |
Clane | Style | Help |

I [prres | favaSd molecular visualisation sysiem 3 befa 1

Shaor JMYS Cortraller

| 30 view

| [Molgcule

tini3
il
Read fie. Cumba3icmist

AL

|Read file: C:ijumboTien

Figure 2-1: The JUMBO browser displaying a CML file

b Fiat Lux - Mozilla S ;
_ Eile Edit ‘iew Go Bookmarks Tools Window Help

O O O Q |:\) file:ifthomesalharodbibledimaxiell =him| I

And God said,

8o FOP =41 JP

and there was light. I

Done

== v [t

Figure 2-2: Mozilla displaying the covariant form of Maxwell's
equations written in MathML

Chapter 2 4+ XML Applications 21

Listing 2-2 contains the document Mozilla is displaying.

Listing 2-2: Maxwell’s Equations in MathML

<?xml version="1.0"7?>

<IDOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
"http://www.w3.0rg/TR/MathML2/dtd/xhtml-mathll-f.dtd">

<html xmins="http://www.w3.0rg/1999/xhtml">

<head>

<title>Fiat Lux</title>

</head>

<body>

<p>And God said,</p>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mrow>
<msub>
<mi>δ</mi>
<mi>α</mi>
</msub>
<msup>
<mi>F</mi>
<mi>αβ</mi>
</msup>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>
</mrow>
<mi>c</mi>
</mfrac>
<msup>
<mi>Jd</mi>
<mrow>
<mi>β</mi>
</mrow>
</msup>
</mrow>
</math>
<p>and there was light.</p>
</body>
</htm1>

22

Part | 4+ Introducing XML

Listing 2-2 is an example of a mixed HTML/MathML page. The headers and para-
graphs of text (“Fiat Lux,” “Maxwell’s Equations,” “And God said,” “and there was
light™) are given in HTML. The equation is written in MathML, an XML application.

In general, such mixed pages require special support from the browser, as is the
case here, or perhaps plug-ins, ActiveX controls, or JavaScript programs that parse
and display the embedded XML data.

RSS

RSS (nobody can agree on exactly what, if anything, the acronym stands for) is a
simple XML format used for content syndication by numerous web sites ranging
from personal web logs to major newspapers to government agencies. It’s useful for
any site that wants to provide a continuing feed of new information to interested
readers. Until now, it’s mostly been used for web logs, but it’s beginning to find other
uses, including software updates, security bulletins, government regulations, court
decisions, art gallery openings, office calendars, and more.

The person or organization providing the information publishes an RSS document
at a well-known URL. Interested parties subscribe to this information using any of a
variety of clients. Normally, when the user launches the RSS client, it automatically
fetches the latest content from all the subscribed sites. Each item in the document
includes a headline, perhaps a description, and a link to the full story at the main
web site. Users can activate this link to load that site and story into their web
browser if they want to know more.

An RSS document is an XML file, separate from the HTML pages it describes. Those
pages normally provide a link to the RSS document, and the RSS document links
back to pages on the main site. However, users don’t read the RSS document in a
standard web browser. Instead, they use custom client programs. The RSS client’s
purpose is to aggregate many different RSS feeds from many different web sites so
readers can pick and choose the stories they want to read without having to visit
each site individually.

Listing 2-3 shows the RSS document from my Cafe au Lait web site from June 23, 2003.
You can see it contains a title, description, and various metadata about the site, such
as the copyright notice and the language. This is followed by two items, each of
which represents one story. Each item has a title, a longer description of the story,
and a link to the full story on the web site. Figure 2-3 shows this feed loaded into
NetNewsWire Lite. Also notice the other channels I've subscribed to in the left-hand
panel.

Chapter 2 4+ XML Applications 23

0086 NetNewsWire Lite (290 unread) (=)

4 ¢ O ¢ 0o

Next Unread Wik &1l 4 | Openin Browser © Show Info Subscribe Unsubscribe Show Sites Drawer

30 subseriptions, 290 headlines unread

Subscriptions Cafe au Lait Java News and Resources headlines
@ BBC News (11) “ ... The Eclipse Project has posted the first milestone release of Eclipse 3.0, an open source integrated ¢
@ CNET News.com (5) M ... Richard Rodger has pasted Jostraca 0.3.3, "a general purpose code generation toolkit for software d

&3 Daring Fireball (9)

@ Les coups de langue de la
@ Lockergnome Bytes (15)
& Surfin’ Safari (9)

@ BEC News | WORLD (13)
& Wired News (7)

3 Cafe con Leche XML News
&3 Cafe au Lait Java News and
& Apple Press Releases (6)
& A Frog in the Valley

Q@ Da Linux French Page (20) —

=== — = == = = = = —
@ freshmeat.net (10) The Eclipse Project has posted the first milestone release of Eclipse 3.0, an open source &
integrated devel i L (IDE) for Jav.
@ Linux Journal (10} o 4.
Q@ L Maga 12 | . " ’ A~
@ Uinux Magazing (32) The Eclipse Project has posted the first milestone release of Eclipse 3.0, an open source
@ Linux Taday {15) integrated development environment (IDE) for Java. It also doubles as a base platform for
@ Living Without Microsoft your own aplications, an alternative to the AWT and Swing, and a powerful floor wax
and dessert topping. From my perspective, the most important new feature in this release
& MacCentral (2) PPINg Y persp! po

| is much better support for Mac 085 X, This is planned to be back ported to an upcoming
¥ 12,21 mainntenance release so Mac users won't have to wait for the final 3.0 release b}
hitp: | o targ/ 1

Figure 2-3: The Café au Lait RSS feed in NetNewsWire Lite

@ BBC News | UK (14)

Listing 2-3: The RSS Feed from Cafe au Lait

<?xml version="1.0"7>
<rss version="0.92">
<channel>

<title>Cafe au Lait Java News and Resources</title>

<link>http://www.cafeaulait.org/</1ink>

{description>Cafe au Lait is the preeminent independent
source of Java information on the net. Unlike many other Java
sites, Cafe au Lait is neither beholden to specific companies
nor to advertisers. At Cafe au Lait you'll find many resources
to help you develop your Java programming skills here
including daily news summaries, FAQ lists, tutorials, course
notes, examples, exercises, book reviews, user groups and
more.

</description>

<Tanguage>en-us</language>

<copyright>(c) 2003 Elliotte Rusty Harold</copyright>

<webMaster>elharo@metalab.unc.edu</webMaster>

Continued

24

Part | 4+ Introducing XML

Listing 2-3 (continued)

<{image>
<title>Cafe au Lait</title>
<url>http://www.cafeaulait.org/cup.gif</url>
<link>http://www.cafeaulait.org/</1ink>
<width>89</width>
<height>67</height>
</image>
itemd>
<title>The Eclipse Project has posted the first
milestone release of Eclipse 3.0, an open source integrated
development environment (IDE) for Java.
<Jtitle>
<description>
The Eclipse Project has posted the first milestone release of
Eclipse 3.0, an open source integrated development environment
(IDE) for Java. It also doubles as a base platform for your
own applications, an alternative to the AWT and Swing, and a
powerful floor wax and dessert topping. From my perspective,
the most important new feature in this release is much better
support for Mac 0S X. This is planned to be back ported to an
upcoming 2.2.1 maintenance release so Mac users won't have to
wait for the final 3.0 release currently scheduled for 2004.
Other new features are mostly minor. Overall this feels more
like a 2.2 than a full version shift.
</description>
<dink>http://www.cafeaulait.org/#news2003June21</Tink>
<Jitem>
Gitemd>
<title>Richard Rodger has posted Jostraca 0.3.3, "a
general purpose code generation toolkit for software
developers.
<Jtitle>
<description>
Richard Rodger has posted Jostraca 0.3.3, "a general purpose
code generation toolkit for software developers. Code
generation helps save you time and effort by reducing
redundancy and drudge work. Code generation can be thought of
as programming by example. Show the computer an example of
what you want, and it does the rest. Jostraca generates code
using the Java Server Pages syntax. However this syntax can be
used with any language. Jostraca comes preconfigured for Java,
Perl, Python, Ruby, Rebol and C, with more to come." Jostraca
is published under the GPL. Jostraca is written in Java, and
Java 1.2 or later is required.
</description>
<dink>http://www.cafeaulait.org/#news2003June21</Tink>
</itemd>
<{/channel>
</rss>

Chapter 2 4+ XML Applications 25

RSS is a good example of XML'’s contribution to platform and application indepen-
dence. Thousands of sites now publish RSS data to millions of independent systems.
RSS clients are available for pretty much all modern desktop operating systems, writ-
ten in many different languages. No other format could have been as broadly or as
quickly adopted. Choosing XML as the substrate for RSS made it much easier to gen-
erate and consume in many different systems ranging from cell phones and Palm
Pilots on the low end to traditional PC desktops and big iron servers on the high end.
RSS can be generated and processed by simple tools hacked together in a couple of
hours out of Perl, and it can be straightforwardly integrated with multi-gigabyte rela-
tional databases and six-figure content management systems. RSS is normally sent
over HTTP, but it can also be transmitted via e-mail, FTP, or even sneaker net. RSS is
architecture-, operating system-, protocol-, software-, and language-independent. It
gains all those benefits because XML is architecture-, operating system-, protocol-,
software-, and language-independent.

Classic literature

Jon Bosak has translated all of Shakespeare’s plays into XML. He includes the com-
plete text of the plays and uses XML markup to distinguish between titles, subtitles,
stage directions, speeches, lines, speakers, and more.

What does this offer over a book, or even a plain-text file? To a human reader, not
much. But to a computer doing textual analysis, it offers the opportunity to easily
distinguish between the different elements into which the plays are divided. For
example, it makes it quite simple for the computer to go through the text and
extract all of Romeo’s lines.

Furthermore, by altering the style sheet with which the document is formatted, an
actor could easily print a version of the document in which all of their lines were for-
matted in boldface, and the lines immediately before and after theirs were italicized.
Anything else you might imagine that requires separating a play into the lines uttered
by different speakers is much more easily accomplished with the XML-formatted
versions than with the raw text.

Bosak has also marked up English translations of the Old and New Testaments, the
Koran, and the Book of Mormon in XML. The markup in these is a little different.
For example, it doesn’t distinguish between speakers. Thus, you couldn’t use these
particular XML documents to create a red-letter Bible, for example, although a differ-
ent set of tags might allow you to do that. (A red-letter Bible prints words spoken
by Jesus in red.) And because these files are in English rather than the original lan-
guages, they are not as useful for scholarly textual analysis. Still, time and resources
permitting, those are exactly the sorts of things that XML would enable you to do if
you wanted. You’d simply need to invent a different vocabulary and syntax than the
one Bosak used.

26

Part | 4+ Introducing XML

Synchronized Multimedia Integration Language

The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) is a
W3C-recommended XML application for writing “TV-like” multimedia presentations
for the Web. SMIL documents don’t describe the actual multimedia content (that is,
the video and sound that are played); instead, the SMIL documents describe when
and where the video and sound are played.

For example, a typical SMIL document for a film festival might say that the browser
should simultaneously play the sound file beethoven9.mid, show the video file
corange.mov, and display the HTML file clockwork.htm. Then, when it’s done, it
should play the video file 2001.mov and the audio file zarathustra.mid, and display
the HTML file aclarke.htm. This eliminates the need to embed low-bandwidth data
such as text in high-bandwidth data such as video just to combine them. Listing 2-4
is a simple SMIL file that does exactly this.

Listing 2-4: A SMIL Film Festival

<?xml version="1.0" encoding="1S0-8859-1"7?>
<IDOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
"http://wgw.w3.0rg/TR/REC-smil/SMIL10.dtd">
<smil>
<body>
<seq id="Kubrick">
<audio src="beethoven9.mid"/>
<video src="corange.mov"/>
<{text src="clockwork.htm"/>
<audio src="zarathustra.mid"/>
<video src="2001.mov"/>
{text src="aclarke.htm"/>
</seq>
</body>
</smil>

Furthermore, as well as specifying the time sequencing of data, a SMIL document
can position individual graphic elements on the display and attach links to media
objects. For example, at the same time as the movie and sound are playing, the text
of the respective novels could be subtitling the presentation.

Open Software Description

The Open Software Description (OSD) format is an XML application that was codevel-
oped by Marimba and Microsoft to update software automatically. OSD defines XML

Chapter 2 4+ XML Applications 27

tags that describe software components. The description of a component includes
the version of the component, its underlying structure, and its relationships to and
dependencies on other components. This provides enough information to decide
whether a user needs a particular update. If the update is needed, it can be pushed
automatically to the user without requiring the usual manual download and installa-
tion. Listing 2-5 is an example of an OSD file for an update to the fictional product
WhizzyWriter 1000.

Listing 2-5: An OSD File for an Update to WhizzyWriter 1000

<?xml version="1.0"7?>
<CHANNEL HREF="http://updates.whizzy.com/updateChannel.html">
KTITLE>WhizzyWriter 1000 Update Channel</TITLE>
<USAGE VALUE="SoftwareUpdate"/>
<SOFTPKG HREF="http://updates.whizzy.com/updateChannel.html"
NAME="{46181F7D-1C38-22A1-3329-00415C6A4D54}"
VERSION="5,2,3,1"
STYLE="MSApplLogo5"
PRECACHE="yes">
<TITLE>WhizzyWriter 1000</TITLE>

<ABSTRACT>
Abstract: WhizzyWriter 1000: now with tint control!
</ABSTRACT>
<IMPLEMENTATION>
<CODEBASE HREF="http://updates.whizzy.com/tnupdate.exe"/>
</IMPLEMENTATION>
</SOFTPKG>
</CHANNEL>

Only information about the update is kept in the OSD file. The actual update files are
stored in a separate CAB archive or executable and downloaded when needed. There
is considerable controversy about whether this is actually a good thing. Many soft-
ware companies, Microsoft not least among them, have a long history of releasing
updates that cause more problems than they fix. Many users prefer to stay away
from new software for a while until other, more adventurous souls have given it a
shakedown.

Scalable Vector Graphics

Vector graphics are preferable to bitmaps for many kinds of pictures including
flowcharts, cartoons, assembly diagrams, and similar images. However, the PNG,
GIF, and JPEG formats currently used on the Web are bitmap only; and most tradi-
tional vector graphics formats, such as PDF, PostScript, and EPS, were designed

28

Part | 4+ Introducing XML

with ink (or toner) on paper in mind rather than electrons on a screen. (This is one
reason PDF on the Web is such an inferior substitute for HTML, despite PDF’s much
larger collection of graphics primitives.) A vector graphics format for the Web should
support a lot of features that don’t make sense on paper, such as transparency,
antialiasing, additive color, hypertext, animation, and hooks to allow search engines
and audio renderers to extract text from graphics. None of these features are needed
for the ink-on-paper world of PostScript and PDF. The W3C has developed a vector
graphics format called Scalable Vector Graphics (SVG) to do for vector drawings
what GIF, JPEG, and PNG do for bitmap images.

SVG is an XML application for describing two-dimensional graphics. It defines three
basic types of graphics: shapes, images, and text. A shape is defined by its outline,
also known as its path, and may have various strokes or fills. An image is a bitmap
such as a GIF or a JPEG. Text is defined as a string of characters in a particular font,
and may be attached to a path, so it’s not restricted to horizontal lines of text as on
this page. All three kinds of graphics can be positioned on the page at a particular
location, rotated, scaled, skewed, and otherwise manipulated. Listing 2-6 shows a
pink triangle in SVG.

Listing 2-6: A Pink Triangle in SVG

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg"
width="12cm" height="8cm">
<title>Listing 2-6 from the XML Bible, 3rd Edition</title>
{text x="10" y="15">This is SVG!</text>
<polygon style="fill: pink" points="0,311 180,0 360,311" />
</svg>

Because SVG describes graphics rather than text — unlike most of the other XML
applications discussed in this chapter —it requires special display software. All of
the proposed style sheet languages assume that they’re displaying fundamentally
text-based data, and none of them can support the heavy graphics requirements of
an application such as SVG. Adobe has published browser plug-ins that support
SVG on Windows and the Mac (http://www.adobe.com/svg/), and the XML
Apache Project has released Batik (http://xml.apache.org/batik/), an open
source Java program that can display SVG documents and rasterize them to JPEG,
GIF, or PNG files. Figure 2-4 shows Listing 2-6 displayed in Batik. Native SVG support
might be added to future browsers. Mozilla already includes some preliminary code
for rendering SVG, though it’s not yet turned on in the release builds (http://www.
mozilla.org/projects/svg/).

Chapter 2 4+ XML Applications 29

9% S quiggle:Listing 26 from the XML Bible, 3rd Edition’ I=IE
File Edit ¥iew Processing Go Tools ?
zlBonlaalaElarne
Location: |fi|!:,."homefeIhamflsihlﬂfpinktliangte.svg | -

This is SVG!
([4090 jhz 310.0 [[_

Figure 2-4: The pink triangle displayed in Batik

For authoring, the current versions of many traditional drawing programs, such as
Adobe Illustrator and CorelDRAW, can save SVG files just like their native formats.
There are also numerous SVG-native programs such as Jasc Software’s WebDraw
(http://www.jasc.com/products/webdraw/).

Because SVG documents are pure text (like all XML documents), the SVG format is
easy for programs to generate automatically; and it’s easy for software to manipulate.
In particular, you can combine SVG with DOM and ECMAScript to make the pictures
on a web page animated and responsive to user action. Long term, SVG will probably
replace Macromedia’s proprietary, binary Flash format.

- Cross- SVG is discussed in more detail in Chapter 24.
Reference

MusicXML

Recordare has created an XML application for musical notation called MusicXML.
MusicXML includes notes, beats, clefs, staffs, rows, rests, beams, repeats, dynamics,
articulations, slurs, and more. Listing 2-7 shows the first three measures from Beth
Anderson’s Flute Swale in MusicXML. This is a single-part piece for one instrument.
The document begins with some metadata about the piece. This is followed by a
single part containing the measures. The measures are divided into notes. The first
measure also has the usual information about clef, key, and time.

30

Part | 4+ Introducing XML

Listing 2-7: The First Three Bars of Beth Anderson’s
Flute Swale

<?xml version="1.0" standalone="no"?>
<IDOCTYPE score-partwise PUBLIC
"-//Recordare//DTD MusicXML 0.7a Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
{score-partwise>
<work><work-title>Flute Swale</work-title></work>
<identification>
{creator type="composer">Beth Anderson</creator>
<rights>© 2003 Beth Anderson</rights>
<encoding>
<encoding-date>2003-06-21</encoding-date>
<encoder>ElTiotte Rusty Harold</encoder>
<software>jEdit<{/software>
<encoding-description>
Listing 2-7 from the XML Bible, 3rd Edition
<{/encoding-description>
</encoding>
</identification>
<part-list>
{score-part id="P1">
<part-name>flute</part-name>
</score-part>
</part-list>
<{part id="P1">
<{measure number="1">
<attributes>
<divisions>4</divisions>

<key><fifths>2</fifths> <mode>major</mode></key>
<time><beats>4</beats><beat-type>4</beat-type></time>

<clef><sign>G</sign><Tine>2</Tine></clef>
<{/attributes>
<note>

<pitch><step>A</step></octave>4</octave></pitch>

<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>
</note>
<note>

<pitch><step>B</step></octave>4</octave></pitch>

<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch>

{step>C</step><alter>1</alter><octave>b</octave>

</pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

Chapter 2 4+ XML Applications

</note>

<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
{stem>up</stem>

<{/note>

<note>
<pitch><step>D</step></octave>5</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>

<note>
<pitch>
{step>C</step></alter>1</alter><octave>5</octave>
</pitch>
<duration>12</duration> <type>eighth<{/type>
<stem>down</stem>

</note>

<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>
<stem>down</stem>

</note>

<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>

<stem>up</stem>
<{/note>
<{/measure>
<{measure number="2">
<note>

<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch>

{step>C</step></alter>1</alter><octave>b</octave>

</pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

Continued

31

32 Part| 4 Introducing XML

Listing 2-7 (continued)

</note>

<note>
<pitch><step>D</step></octave>5</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>

</note>

<note>
<pitch>
{step>C</step></alter>1</alter><octave>5</octave>
<{/pitch>
<duration>12</duration> <type>eighth<{/type>
{stem>down</stem>

</note>

<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>
<stem>down</stem>

</note>

<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>24</duration> <type>quarter</type>

<stem>up</stem>
</note>
<{/measure>
<{measure number="3">
<note>

<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch>
{step>C</step></alter>1</alter><octave>b</octave>
</pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>6</duration> <type>sixteenth</type>
<stem>up</stem>

</note>

Chapter 2 4+ XML Applications 33

<note>
<pitch><step>D</step></octave>5</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>down</stem>
<{/note>
<note>
<pitch>
{step>C</step><alter>1</alter><octave>5</octave>
</pitch>
<duration>12</duration> <type>eighth</type>
{stem>down</stem>
</note>
<note>
<pitch><step>B</step></octave>4</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>
<{/note>
<note>
<pitch><step>A</step></octave>4</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>
</note>
<note>
<pitch>
{step>F</step><alter>1</alter><octave>4</octave>
</pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>
<{/note>
<note>
<pitch><step>E</step></octave>4</octave></pitch>
<duration>12</duration> <type>eighth</type>
<stem>up</stem>
</note>
<{/measure>
</part>
</score-partwise>

An increasing number of music programs can import and/or export MusicXML,
including music notation editors, MIDI players, sheet music scanners, audio scan-
ners, converters into and out of other music formats, and more. However, in my
tests, the several programs I tried all had significant problems handling the above-
mentioned MusicXML. None of them could render or play it correctly. MusicXML
isn’t going to replace Finale anytime soon, but as the bugs are slowly fixed, it should
become a more useful, nonproprietary way to exchange and store music on and off
the Web.

34

Part | 4+ Introducing XML

VoiceXML

VoiceXML (http://www.voicexml.org/)is an XML application for the spoken
word. In particular, it’s intended for voice mail and automated phone response sys-
tems (“If you found a boll weevil in Natural Goodness biscuit dough, please press 1.
If you found a cockroach in Natural Goodness biscuit dough, please press 2. If you
found an ant in Natural Goodness biscuit dough, please press 3. Otherwise, please
stay on the line for the next available entomologist.”).

VoiceXML enables the same data that’s used on a web site to be served up via tele-
phone. It’s particularly useful for information that’s created by combining small
nuggets of data, such as stock prices, sports scores, weather reports, and test
results. JSmart (http://www.jsmart.com/) uses VoiceXML to send games and
jokes to phones. In Mexico, Domino’s Pizza uses VoiceXML for a restaurant locator
application that receives more than 90,000 calls a month. Yahoo! sells a service
based on VoiceXML that lets users listen to their e-mail, look up contacts in their
address book, and get stock quotes, weather, sports, and news over the phone
(1-800-MY-YAHOO).

A small VoiceXML file for a shampoo manufacturer’s automated phone response
system might look something like that shown in Listing 2-8.

Listing 2-8: A VoiceXML Document

<?xml oversion="1.0"7>
<vxml version="1.0">

<form>
<block>
<prompt bargein="false">
Welcome to TIC hair products division,
home of Wonder Shampoo.
</prompt>
<goto next="{fcolor_choice"/>
</block>
</ form>

<menu id="color_choice">
<property name="inputmodes" value="dtmf"/>
<prompt>
If Wonder Shampoo turned your hair green, please press 1.
If Wonder Shampoo turned your hair purple, please press 2.
If Wonder Shampoo made you bald, please press 3.
</prompt>
{choice dtmf="1" next="#green.vxml"/>
<{choice dtmf="2" next="{#fpurple.vxml"/>
{choice dtmf="3" next="#bald.vxml"/>
</menu>

Chapter 2 4+ XML Applications

<form id="green">
<bTock>
<prompt>
If Wonder Shampoo turned your hair green and you wish
to return it to its natural color, simply shampoo
seven times with three parts soap, seven parts water,
four parts kerosene, and two parts iguana bile.
</prompt>
<goto next="#bye"/>
</bTock>
</ form>

<form id="purple">
<bTock>
<prompt>
If Wonder Shampoo turned your hair purple and you
wish to return it to its natural color, please walk
widdershins around your local cemetery
three times while chanting "Surrender Dorothy."
</prompt>
<goto next="#bye"/>
</bTock>
</form>

<form id="bald">
<bTock>
<prompt>
If you went bald as a result of using Wonder Shampoo,
please purchase and apply a three-month supply
of our Magic Hair Growth Formula. Please do not
consult an attorney as doing so would violate the
license agreement printed on the inside fold of the
Wonder Shampoo box in 3-point type. By opening the
package, you agreed to the license terms.
</prompt>
<goto next="{bye"/>
</block>
</form>

<form id="bye">
<bTock>
<prompt>
Thank you for visiting TIC Corp. Goodbye.
</prompt>
<disconnect/>
</block>
</form>

</vxml>

I can’t show you a screen shot of this example, because it’s not intended to be shown
in a web browser. Instead, you would listen to it on a telephone.

35

36

Part | 4+ Introducing XML

Open Financial Exchange

Software cannot be changed willy-nilly. The data that software operates on has iner-
tia. The more data you have in a given program’s proprietary, undocumented format,
the harder it is to change programs. For example, my personal finances for the last
eight years are stored in Quicken. How likely is it that I will change to Microsoft
Money even if Money has features I need that Quicken doesn’t have? Unless Money
can read and convert Quicken files with zero loss of data, the answer is “NOT
LIKELY!”

The problem can even occur within a single company or a single company’s prod-
ucts. When I upgraded from Quicken 5 to Quicken 98, Quicken split one of my
retirement accounts into two accounts for no apparent reason. I had to create a
new account and manually rekey all the entries for that account. Needless to say, |
have not upgraded since and don’t plan to again if [can avoid it. The only reason

[upgraded then was that Quicken 5 was not Y2K-compliant.

As noted in Chapter 1, the Open Financial Exchange 2.0 (OFX) is an XML application
for describing financial data of the type stored in a personal finance product such as
Money or Quicken. Any program that understands OFX can read OFX data. Moreover,
because OFX is fully documented and nonproprietary (unlike the binary formats of

Money, Quicken, and similar programs), it’s easy for programmers to write the code
to understand OFX.

OFX not only enables Money and Quicken to exchange data with each other; it also
enables other programs that use the same format to exchange the data. For example,
if a bank wants to deliver statements to customers electronically, it only has to write
one program to encode the statements in the OFX format rather than several pro-
grams to encode the statement in Quicken’s format, Money’s format, GnuCash’s
format, and so forth.

The more programs that use a given format, the greater the savings in development
cost and effort. For example, six programs reading and writing their own and each
other’s proprietary formats require 30 different converters. Six programs reading and
writing the same OFX format require only six converters. Effort is reduced to O(n)
rather than to O(n?). Figure 2-5 depicts six programs reading and writing their own
and each other’s proprietary binary formats. Figure 2-6 depicts the same six pro-
grams reading and writing a single, open OFX format. Every arrow represents a con-
verter that has to trade files and data between programs. The XML-based exchange
is much simpler and cleaner than the binary-format exchange.

Extensible Forms Description Language

[went to my local bookstore and bought a copy of Armistead Maupin’s novel Sure of
You. 1 paid for that purchase with a credit card, and when 1 did so, I signed a piece
of paper agreeing to pay the credit card company $14.07 when billed. Eventually

Chapter 2 4+ XML Applications 37

they sent me a bill for that purchase, and I paid it. If | had refused to pay it, the credit
card company could have taken me to court to collect, and they would have used
my signature on that piece of paper to prove to the court that on October 15 I really
did agree to pay them $14.07.

The same day I also ordered Anne Rice’s The Vampire Armand from the online book-
store Amazon.com. Amazon charged me $16.17 plus $3.95 shipping and handling, and
again I paid for that purchase with a credit card. The difference is that Amazon.com
never got a signature on a piece of paper from me. Eventually the credit card com-
pany sent me a bill for that purchase, and I paid it. But if [had refused to pay the
bill, they didn’t have a piece of paper with my signature on it showing that I agreed
to pay $20.12 on October 15. If I had claimed that I never made the purchase, the
credit card company would have billed the charges back to Amazon. Before Amazon
or any other online or phone-order merchant is allowed to accept credit card pur-
chases without a signature in ink on paper, the merchant has to agree that it will be
responsible for all disputed transactions.

Microsoft
Money

Mutual
Fund
Program

Proprietary
Bank System

Figure 2-5: Six different programs reading and writing their own and each
other’s formats

.

38

Part | 4+ Introducing XML

>Microsoft
Money

| 44‘
X/

Proprietary
> Bank System

Quicken

Mutual
Fund _
Program

CheckFree

GnuCash <

Figure 2-6: Six programs reading and writing the same OFX format

Exact numbers are hard to come by and vary from merchant to merchant, but proba-
bly around 2 percent of Internet transactions are billed back to the originating mer-
chant because of credit card fraud or disputes. This is a huge amount, especially in
an arena where margins are often negative to start with. Consumer businesses such
as Amazon simply accept this as a cost of doing business on the Internet and work
it into their price structure, but this won’t work for six-figure business-to-business
transactions. Nobody wants to send out $200,000 of masonry supplies only to have
the purchaser claim they never made the order. Before business-to-business transac-
tions can move onto the Internet, a method needs to be developed that can verify
that an order was in fact made by a particular person and that this person is who
he or she claims to be. Furthermore, this has to be enforceable in court.

Part of the solution to the problem is digital signatures —the electronic equivalent
of ink on paper. To digitally sign a document, you calculate a hash code for the doc-
ument using a known algorithm, encrypt the hash code with your private key, and

Chapter 2 4+ XML Applications

attach the encrypted hash code to the document. Correspondents can decrypt the
hash code using your public key and verify that it matches the document. However,
they can’t sign documents on your behalf because they don’t have your private key.
The exact protocol followed is a little more complex in practice, but the bottom line
is that your private key is merged with the data you’re signing in a verifiable fash-
ion. No one who doesn’t know your private key can sign the document.

The scheme isn’t foolproof —it’s vulnerable to your private key being stolen, for
example — but it’s probably as hard to forge a digital signature as it is to forge a real
ink-on-paper signature. However, a number of less obvious attacks on digital signa-
ture protocols exist. One of the most important is changing the data that’s signed.
Changing the data should invalidate the signature, but it doesn’t if the changed data
wasn’t included in the first place. For example, when you submit an HTML form, the
only things sent are the values that you fill into the form’s fields and the names of
the fields. The rest of the HTML markup is not included. You might agree to pay
$1500 for a new 3GHz Pentium 4 PC, but the only thing sent on the form is the
$1500. Signing this number signifies what you're paying, but not what you're paying
for. The merchant can then send you two gross of flushometers and claim that’s
what you bought for your $1500. Obviously, if digital signatures are to be useful, all
details of the transaction must be included.

The problem gets worse if you're trying to sell to the United States government.
Government regulations for purchase orders and requisitions often spell out the
contents of forms in minute detail, right down to the font face and type size. Failure
to adhere to the exact specifications can lead to your invoice for $20,000,000 worth
of depleted uranium artillery shells being rejected. Therefore, you need to establish
exactly what was agreed to and that you met all legal requirements for the form.
HTML'’s forms just aren’t sophisticated enough to handle these needs.

XML, however, can. It is almost always possible to use XML to develop a markup
language with the right combination of power and rigor to meet your needs, and
this case is no exception. In particular, UWL.COM has proposed an XML application
called the Extensible Forms Description Language (XFDL, http://www.uwi.com/
xfd1/) for forms with extremely tight legal requirements that are to be signed with
digital signatures. XFDL further offers the option to do simple mathematics in the
form, for example, to automatically fill in the sales tax and shipping and handling
charges, and then to total the price.

UWI.COM has submitted XFDL to the W3C, but it’s really overkill for web browsers,
and probably won’t be adopted there. The real benefit of XFDL, if it becomes widely
adopted, is in business-to-business and business-to-government transactions. XFDL
can become a key part of electronic commerce, which is not to say that it will
become a key part of electronic commerce. It’s still early, and there are other players
in this space.

39

40

Part | 4+ Introducing XML

HR-XML

The HR-XML Consortium (http://www.hr-xml.org/) is a nonprofit organization
with over 100 different members from various branches of the human resources
industry, including recruiters, temp agencies, large employers, and so on. It’s trying
to develop standard XML applications that describe resumes, available jobs, candi-
dates, benefits, background checks, payroll instructions, education histories, and
other information human resource departments commonly use. Listing 2-9 shows a
job listing encoded in HR-XML. This application defines elements matching the
parts of a typical classified want ad such as companies, positions, skills, contact
information, compensation, experience, and more.

Listing 2-9: A Job Listing in HR-XML

<?xml version="1.0"7>
<JobPositionPosting>
<JobPositionPostingld>25740</JobPositionPostingld>
<Hiring0Org>
<HiringOrgName>John Wiley & Sons</HiringOrgName>
<WebSite>http://www.wiley.com</WebSite>
<Industry><SummaryText>Publishing</SummaryText></Industry>
<Contact>
<PersonName>
<GivenName>Mara</GivenName>
<FamilyName>Cordal</FamilyName>
</PersonName>
<{/Contact>
</Hiring0Org>

<JobPositionInformation>
<JobPositionTitle>Editor</JobPositionTitle>
<JobPositionDescription>
<JobPositionPurpose>
Working in our Scientific, Technical and Medical
Division as an Editor, you will be responsible for the
development and implementation of the strategic
pubTishing plan for designated market/subject
category. You will also ensure effective management of
the program, including the acquisition, development,
and profitable publication of books.
</JobPositionPurpose>
<JobPositionlLocation>
<LocationSummary>
<Municipality>Hoboken</Municipality>
<Region>NJ</Region>
</LocationSummary>
</JobPositionlLocation>
<Classification>
<DirectHireOrContract>
<DirectHire/>

Chapter 2 4+ XML Applications

</DirectHireOrContract>
<Duration>
<Regular/>
</Duration>
</Classification>
<CompensationDescription>
<Pay>
<SalaryAnnual currency="USD">60,000</SalaryAnnual>
</Pay>
</CompensationDescription>
</JobPositionDescription>
<JobPositionRequirements>
<QualificationsRequired>
<Qualification type="education">College</Qualification>
<Qualification type="experience"
yearsOfExperience="3-5">
Book acquisitions
</Qualification>
<Qualification type="skill">
Electrical engineering
</Qualification>
<Qualification type="skill">
Telecommunications
</Qualification>
</QualificationsRequired>
<SummaryText>
In-depth knowledge of the markets and subject areas
assigned; Proven expertise in acquiring, developing
projects and successfully managing and expanding a
program; Excellent leadership, analytical,
communication and interpersonal skills.
</SummaryText>
</JobPositionRequirements>
</JobPositionInformation>

<HowToApply distribute="external">
<ApplicationMethods>
<ByEmail>
<E-mail>opportunities@wiley.com</E-mail>
<SummaryText>Please put the job title, department,
location, and reference number in the subject line.
Your resume and cover letter must either be contained
in the body of your e-mail or be in Word or PDF
format.
</SummaryText>
</ByEmail>
<ByFax>
<PersonName>
<GivenName>Attn:</GivenName>
<FamilyName>Human Resources</FamilyName>
</PersonName>

Continued

41

42

Part | 4+ Introducing XML

Listing 2-9 (continued)

<FaxNumber>
<AreaCode>201</AreaCode>
{TelNumber>748-6049</TelNumber>
</FaxNumber>
</ByFax>
<ByMail>
<PostalAddress>
<CountryCode>US</CountryCode>
<PostalCode>07030</PostalCode>
<Region>NJ</Region>
<Municipality>Hoboken</Municipality>
<DeliveryAddress>
<AddressLine>111 River Street</AddresslLine>
</DeliveryAddress>
<{/PostalAddress>
</ByMail>
</ApplicationMethods>
<SummaryText>
Please be sure to indicate the position and job number
for which you are applying. Please note that any writing
samples you submit along with your resume will not be
returned. Once we receive your letter and resume, you
will receive acknowledgment of receipt. You may be
contacted if your qualifications match current openings.
If there is no suitable position, we will retain your
resume in our files for future consideration.
</SummaryText>
</HowToApply>
<EEQStatement>
John Wiley & Sons is an equal opportunity employer.
</EEOStatement>
<NumberToFil1>1</NumberToFill>
</JobPositionPosting>

Although you could certainly define a style sheet for HR-XML documents and use it
to place job listings on web pages, that’s not its main purpose. Instead, HR-XML is
trying to automate the exchange of job information between companies, applicants,
recruiters, job boards, and other interested parties. Hundreds of job boards exist
on the Internet today, along with numerous Usenet newsgroups and mailing lists.
It’s impossible for one individual to search them all, and it’s hard for a computer to
search them all because they all use different formats for salaries, locations, bene-
fits, and the like.

But if many sites adopt HR-XML, it becomes relatively easy for a job seeker to search
with criteria such as “all the jobs for Java programmers in New York City paying
more than $100,000 a year with full health benefits.” The IRS could enter a search
for all full-time, onsite, freelance openings so that it would know which companies
to go after for failure to withhold tax and to pay unemployment insurance.

Chapter 2 4+ XML Applications

In practice, these searches would likely be mediated through an HTML form just
like current web searches. The main difference is that such a search would return
far more useful results because it could use the structure in the data and semantics
of the markup rather than relying on imprecise English text.

XML for XML

XML is an extremely general-purpose format for text data. Some of the things it is
used for are further refinements of XML itself. These include the XSL style sheet
language, the XLink hypertext vocabulary, and the W3C XML Schema Language.

XSL

XSL, the Extensible Stylesheet Language, is actually two XML applications. The

first application is a vocabulary for transforming XML documents called XSL
Transformations (XSLT). XSLT defines markup that represents trees, nodes, patterns,
templates, and other constructs that can be used to transform XML documents
from one markup vocabulary to another (or even to the same vocabulary with dif-
ferent data).

The second application is an XML vocabulary for formatting the transformed XML
document produced by the first part. This application is called XSL Formatting
Objects (XSL-FO). XSL-FO provides elements that describe the layout of a page,
including pagination, blocks, characters, lists, graphics, boxes, fonts, and more.

A simple XSLT style sheet that transforms an input document into XSL formatting
objects is shown in Listing 2-10.

Listing 2-10: An XSL Style Sheet

<?xml version="1.0"7>

{xsT:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlins:fo="http://www.w3.0rg/1999/XSL/Format">

<xsl:template match="/">
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">

{fo:layout-master-set>
<fo:simple-page-master master-name="only">
<fo:region-body/>
</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="only">

Continued

43

44

Part | 4+ Introducing XML

Listing 2-10 (continued)

<fo:flow flow-name="xsl-region-body">
<xsT:apply-templates select="//ATOM"/>
</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match="ATOM">
<fo:block font-size="20pt" font-family="serif"
line-height="30pt">
<xsT:value-of select="NAME"/>
</fo:block>
<{/xsl:template>

</xsl:stylesheet>

,iss-/‘x Chapters 15 and 16 explore XSL in great detail.
Reference

XLinks

XML makes possible a new, more general kind of link called an XLink. XLinks
accomplish everything possible with HTML’s URL-based hyperlinks and anchors.
However, any element can become a link, not just A elements. For example, a
footnote element can link directly to the text of the note like this:

<footnote xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xlink:type="simple"
xlink:href="footnote7.xml1">7</footnote>

Furthermore, XLinks can do many things that HTML links cannot do. XLinks can be
bidirectional so that readers can return to the page they came from. XLinks can link
to arbitrary positions in a document. XLinks can embed text or graphic data inside
a document rather than requiring the user to activate the link (much like HTML’s
 tag but more flexible). In short, XLinks make hypertext even more powerful.

,iss-/‘x XLinks are discussed in more detail in Chapter 17.
Reference

Chapter 2 4+ XML Applications 45

Schemas

XML's facilities for specifying the permissibility of different character data inside
elements are weak to nonexistent. For example, suppose as part of a bank state-
ment application you set up ACCOUNT_BALANCE elements like this:

CACCOUNT_BALANCE>$934.12</ACCOUNT_BALANCE>

All pure XML 1.0 can say is that the contents of the ACCOUNT_BALANCE element
should be character data. It cannot say that the balance should be given as a deci-
mal number with two decimal digits of precision, preceded by a currency sign.

A number of schemes have been proposed to use XML itself to more tightly restrict
what can appear in the content of any given element. The W3C has endorsed XML
Schema for this purpose. For example, Listing 2-11 shows a schema that declares
that ACCOUNT_BALANCE elements must contain a decimal number with two decimal
digits of precision, preceded by a currency sign.

Listing 2-11: A Schema for Money

<?xml version="1.0"7>

{xsd:schema

targetNS="http://www.cafeconleche.org/namespaces/money"
version="1.0"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:simpleType name="money">
{xsd:restriction base="xsd:string">
<xsd:pattern value="\p{Sc\p{Nd}t+(\ . \p{NdI\p{Nd})?"/>

<l--
Regular Expression:
\p{Sc} Any Unicode currency indicator;
e.g., $, &IxAL, &ixA3, &ffA4, etc.
\p{Nd} A Unicode decimal digit character
\p{Nd}+ One or more Unicode decimal digits
\ The period character

(\.\p{Nd}\p{Nd})
(N A\p{Nd}\p{Nd})? Zero or one strings Tike .35
This works for any decimalized currency.
-->
</xsd:restriction>
<{/xsd:simpleType>

{xsd:element name="BALANCE" type="money"/>

{/xsd:schema>

46 Part | 4+ Introducing XML

~ Cross- Schemas are discussed in more detail in Chapter 20.
Reference

I could show you more examples of XML used for XML, but the ones I've already dis-
cussed demonstrate the basic point: XML is powerful enough to describe and extend
itself. Among other things, this means that the XML specification can remain small
and simple. There may well never be an XML 2.0 because any major additions that
are needed can be built from XML rather than being built info XML. People and pro-
grams that need these enhanced features can use them. Others who don’t need them
can ignore them. You don’t need to know about what you don’t use. XML provides
the bricks and mortar from which you can build simple huts or towering castles.

Behind-the-Scene Uses of XML

Not all XML applications are public, open standards. Many software vendors are
moving to XML for their own data simply because it’s a well-understood, general-
purpose format for structured data that can be manipulated with easily available,
cheap, and free tools.

Microsoft Office 2003

Microsoft Office 2003 is the first edition to move away from the traditional undocu-
mented proprietary, closed, binary formats of the past and move forward into the
open world of XML. The major Office 2003 applications, including Word, PowerPoint,
Excel, and even Visio, can save their documents in XML (though, unfortunately, a
binary format is still the default). There are many advantages to this. First among
them, XML makes Office files much easier to exchange with other programs. The
professional edition of Office can even use custom, user-provided schemas instead
of Microsoft’s default schema. This is like Word styles and templates on steroids.

Listing 2-12 shows a small Word document containing just the string “Hello XML!”
encoded in WordML. I've had to add some line breaks to make this legible, but oth-
erwise the file is just as Word saved it. As ugly as this is, it’s still about a thousand
times prettier than the old binary format. Unlike files written by previous versions
of Word, this document does not have to be read by a word processor. Many differ-
ent tools can be written in a variety of languages to manipulate it. For instance, for
a long time I've wanted a tool that will extract just the outline from a Word file while
leaving all the body text behind. This would be very useful for planning the table

of contents for a new edition of a book based on the headers in the old version.
However, | never wanted that tool badly enough to learn Visual Basic for Applications
and the proprietary Word APIL. Now that Word is saving its data in XML, I can write
the tool I need in XSLT, Java, Perl, or some other language. I don’t have to use a
Microsoft language I don’t know to process a Microsoft document.

Chapter 2 4+ XML Applications

Listing 2-12: A Simple Word 2003 Document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?mso-application progid="Word.Document"?>
<w:wordDocument xmlns:w=
"http://schemas.microsoft.com/office/word/2003/2/wordml"
xmlns:v="urn:schemas-microsoft-com:vml"
xmlIns:wl0="urn:schemas-microsoft-com:office:word"
xmlns:SL=
"http://schemas.microsoft.com/schemalibrary/2003/2/core"
xmins:aml="http://schemas.microsoft.com/aml/2001/core"
xmlns :wx=
"http://schemas.microsoft.com/office/word/2003/2/auxHint"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlIns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
xml:space="preserve">
<o:DocumentProperties>
<o:Title>Hello World</o:Title>
<o:Author>Elliotte Rusty Harold</o:Author>
<o:LastAuthor>ElTliotte Rusty Harold</o:LastAuthor>
<o:Revision>1</o:Revision><o:TotalTime>1</o:TotalTime>
<0:Created>2003-06-27T02:38:00Z</0:Created>
<o:LastSaved>2003-06-27T02:39:007</0:LastSaved>
<o:Pages>1</o0:Pages>
<o:Words>1</o:Words><o:Characters>12</o:Characters>
<o:Company>Cafe au Lait</o:Company>
<o:Lines>1</o:Lines><o:Paragraphs>1</o:Paragraphs>
<o:CharactersWithSpaces>12</o:CharactersWithSpaces>
<o:Version>11.4920</o:Version>
</o:DocumentProperties>
<w:fonts>
<w:defaultFonts w:ascii="Times New Roman"
w:fareast="Times New Roman"
w:h-ansi="Times New Roman" w:cs="Times New Roman"/>
<w:font w:name="Tahoma">
<w:panose-1 w:val="020B0604030504040204"/>
<w:charset w:val="00"/>
<w:family w:val="Swiss"/>
<w:pitch w:val="variable"/>
<w:sig w:usb-0="21007A87" w:usb-1="80000000"
w:usbhb-2="00000008" w:usb-3="00000000"
w:csb-0="000101FF" w:csb-1="00000000"/>
</w:font>
</w:fonts>
<w:styles>
<w:versionOfBuiltInStylenames w:val="3"/>
<w:TatentStyles w:deflLockedState="off"
w:latentStyleCount="156"/>
<w:style w:type="paragraph" w:default="on"
w:styleld="Normal">

Continued

47

48

Part | 4+ Introducing XML

Listing 2-12 (continued)

<w

:name w:val="Normal"/>
<w:
<we
<w:
<w:

rPr><wx:font wx:val="Times New Roman"/>

Sz w:val="24"/>

Sz-CcS w:val="24"/>

lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

<JwirPr></wistyle>

<w:

w:
<w:
:semiHidden/></w:style>

:style w:type="table" w:default="on"

<w
<w

style w:type="character" w:default="on"
styleld="DefaultParagraphFont">
name w:val="Default Paragraph Font"/>

w:styleld="TableNormal">

<w:

name w:val="Normal Table"/>

<wx:UuiName wx:val="Table Normal"/>

<we
<w:
<w:
<we
:tb1CellIMar>
<w:
<we
<w:
<w:

<w

semiHidden/>

rPr><wx:font wx:val="Times New Roman"/></w:rPr>
tb1Pr>

tbTInd w:w="0" w:type="dxa"/>

top w:w="0" w:type="dxa"/>

left w:w="108" w:type="dxa"/>
pbottom w:w="0" w:type="dxa"/>
right w:w="108" w:type="dxa"/>

<Jw:tblCelIlMar></w:tb1Pr></w:style>

<w:
<w:
<we
<w:
<w:
<we
<w:

<w

<we
<w:
<w:
<we

style w:type="1ist" w:default="on" w:styleld="NolList">
name w:val="No List"/>

semiHidden/></w:style>

style w:type="paragraph” w:styleld="BalloonText">

name w:val="Balloon Text"/>

basedOn w:val="Normal"/>

semiHidden/>

:rsid w:val="A43BDF"/>

pPr>

pStyle w:val="BalloonText"/></w:pPr>

rPr>

rFonts w:ascii="Tahoma" w:h-ansi="Tahoma" w:cs="Tahoma"/>

<wx:font wx:val="Tahoma"/>

<w:
<we
<w:
<w:
<we
<w:
<w:

Sz w:val="16"/>

sz-cs w:val="16"/></w:rPr><{/w:style><{/w:styles>
docPr>

view w:val="print"/>

zoom w:percent="100"/>

doNotEmbedSystemFonts/>

attachedTemplate w:val=""/>

Chapter 2 4+ XML Applications

<w:defaultTabStop w:val="720"/>

<w:characterSpacingControl w:val="DontCompress"/>

<w:optimizeForBrowser/>

<w:validateAgainstSchema/>

<w:savelnvalidXML w:val="off"/>

<w:ignoreMixedContent w:val="off"/>

<w:alwaysShowPlaceholderText w:val="off"/>

<w:compat>

<w:dontAllowFieldEndSelect/>

<w:useWord2002TableStyleRules/></w:compat></w:docPr>

<w:body><wx:sect>

<w:p>

<wir>

<w:t>Hello XMLIK/w:t></w:ir></w:p>

<w:sectPr>

<w:pgSz w:w="12240" w:h="15840"/>

<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:1eft="1800" w:header="720" w:footer="720" w:gutter="0"/>

<w:cols w:space="720"/>

<w:docGrid w:line-pitch="360"/>

</wisectPr></wx:sect></w:body></w:wordDocument>

Microsoft is hardly alone in moving its file formats to XML. Other products that use
XML as their native format include Sun’s StarOffice, Apple’s Keynote presentation
software, Apple’s iTunes music player, Mac OS X properties files, the Apache Project’s
Ant build tool, the Gnumeric spreadsheet, and the Dia drawing program. Mozilla and
Netscape are even storing their GUIs as XML. The common link that unites all these
products is that they’re all fairly recent programs, with limited if any legacy data.
Although legacy formats that predate XML data are likely to be with us through your
lifetime and mine, more and more new software is choosing XML as a convenient,
efficient format for any data it needs to save.

Netscape’s What's Related

Netscape 6.0 and later support direct display of XML in the browser, but Netscape
actually started using XML internally as early as version 4.0.6. When you ask
Netscape to show you a list of sites related to the current one you’re looking at,
your browser connects to a CGI program running on a Netscape server (http://
www-rll.netscape.com/wtgn through http://www-r17.netscape.com/wtgn).
The data that the server sends back is in XML. Listing 2-13 shows the XML data for
sites related to http://www.wiley.com. (This data was not designed for human
eyes, so I've had to add a few line breaks where they otherwise would not occur.)

49

50

Part | 4+ Introducing XML

Listing 2-13: XML Data for Sites Related to
http://www.wiley.com

<?2xml version="1.0" encoding="UTF-8"?>

<RDF:RDF>

<{RelatedLinks>

<child href="http://info.netscape.com/fwd/ristatic/
http://search.netscape.com/cgi-bin/search?search=wiley"
name="Search on 'wiley'"/>

<child instanceOf="Separatorl"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://directory.netscape.com/Business/Industries/Publishing/
Publishers/Academic_and_Technical"

name="Business: ...Business: Industries: Publishing:
PubTishers: Academic and Technical"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://directory.netscape.com/Business/Major_Companies/Publicly_Traded/J"
name="Business: ...: Publicly Traded: J"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://directory.netscape.com/Science/Math/Operations_Research
/Commercial_Sites/Book_and_Journal_Publishers"
name="Science: Math: ...Science: Math: Operations Research:
Commercial Sites: Book and Journal Publishers"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://search.netscape.com/add.html"

name="Submit a site to the Open Directory"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/search/beditor.html"
name="Become an Open Directory editor"/>

<child instanceOf="Separatorl"/>

<child href="http://info.netscape.com/fwd/rlurls/
http://www.oup-usa.org/"

name="0xford University Press Usa " priority="7"/>

<child href="http://info.netscape.com/fwd/rlurls/
http://www.jefco.com/"

name="Jefferies Internet Site " priority="7"/>

<child href="http://info.netscape.com/fwd/rlurls/
http://www.jriver.com/"

name="J. River, Inc. - Network Gear " priority="7"/>
<child href="http://info.netscape.com/fwd/rlurls/
http://www.jostens.com/"

name="Jostens Inc. " priority="7"/>

<child href="http://info.netscape.com/fwd/rlurls/
http://www.jboxford.com/"

name="Jb Oxford - Online Trading The Way " priority="7"/>
<child href="http://info.netscape.com/fwd/rlurls/
http://www.ibtauris.com/"

name="The I.b.tauris Website " priority="7"/>

Chapter 2 4+ XML Applications

<child href="http://info.netscape.com/fwd/rlurls/
http://www.haworthpressinc.com/"

name="Haworth " priority="7"/>

<child href="http://info.netscape.com/fwd/rlurls/
http://www.duxbury.com/"

name="Duxbury Resource Center priority="7"/>
<child href="http://info.netscape.com/fwd/rlurls/
http://www.cornellpress.cornell.edu/"

name="Cornell University Press Publishes priority="7"/>
<child href="http://info.netscape.com/fwd/rlurls/
http://www.arnoldpublishers.com/"

name="Arnold - Academic And Professional priority="7"/>
<child href="http://editorial.alexa.com/netscape_editor"
name="Suggest related Tinks"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/related/index.html"
name="Learn more about What's Related" />

<child instanceOf="Separatorl"/>

<Topic

name="Site info for www.wiley.com">

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/related/faqg.html"
name="0wner: John Wiley & Sons, Inc."/>

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/related/faqg.html"
name="Date established: 12-0ct-1994"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/related/faqg.html"
name="Popularity: in top 25404 sites on web"/>
<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/related/faqg.html"
name="Number of pages on site: 3758"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/related/faqg.html"
name="Number of 1inks to site on web: 17709"/>
</Topic>

<child instanceOf="Separatorl"/>

<child href="http://info.netscape.com/fwd/ristatic/
http://home.netscape.com/escapes/keywords/index.html"
name="Learn more about Internet Keywords"/>
<{/Relatedlinks>

</RDF:RDF>

This all happens completely behind the scenes. The users never know that the data
is being transferred in XML. The actual display is a sidebar in Netscape Navigator,

shown in Figure 2-7, not an XML or HTML page.

51

52

Part | 4+ Introducing XML

] Wiley i Home - 14
\# bl ¢ iy ey CD S
My Sidebar
Shacks
 Ruddllat
‘ielit's Relalas
T Searchon ‘wiley' ettt bbbttt s b et s S e st s bbb s
4 Buz s Eusi e |nduslrive: Pu.. A
% Dusiness \ :
% ?u. ness. . Publicly Tradedod || (O S s ey Higever Educatio PR AN Al
% 5 Mathe Selence: Mitf Opes m 5 FOR = e
. Subemit £ site o the Dpen Dirsctory

Clear, Practical Guidance

m;‘;\::;sﬁﬁ:ﬂ'c“ Suitable far Researchess

nul.illullm s for researchers without Camputer

! and professianals. Programming Backgrounds
ﬂ Wi the Website i

% Become an Dzen Directory sdifor

B Qxferd Univer ity Press s
% Jefferies Inbernet Site
o River, In: - Hefwark Gesr

S Joatens e N
% Jb Geford - Dnline Trading The ‘Wey |
% The | Bdauris Webaite
%y Havarth
% Dusbury

Architecture & Design
Architechus & e :
Desian, Turf Manane menl, mare

T Cornell Universiby Prass Publishes Busines:

'\‘ Arnnld - gcodemmle 4nd Profesalonnl Azcounting, Finance & investmenis,
i Mznagemani,

4 Sumest relsted links [Core...

% Learn mors abast Whet's Relsted Chemistry

i Chemical Engiraaring
Craanic Chermisiy, mars.

Compurting
Chaose a Region =] @ Compuler Srierce. Hardware Intarnet &

[3300 info for ot swilay con

Mathormtics & Statistics
Algebra foplled Maih, Caicuus, mere...

T Lenrn more ahost |Rberet Eeuorss

W, miore. Physics & Astronory
Spring Highlights Astonomy. fundamenta’s of Haterial
Casiary & Hospil ity Seience, Guantun Physics & Field Thecry
These Wilay Culinary $Hles recenty Prefessions Baking & Fasty Profassional more..
racaived high honors Lgokeng & Culinary Arls, Fond Service
Dparaflons & Managamznt, mors.. Esychalagy .
2003 James deFmdﬂlﬂn Llinical Psvchalogy, Pragiics Management,

Award Winner E Paythalherapy more

Doenivail. Dune (8 257 dwie]

Figure 2-7: Netscape’s What's Related sidebar

UPS

The United Parcel Service makes a number of tools available to their customers to
track shipments over the Internet, check shipping rates, validate addresses, and
more (http://www.ec.ups.com/ecommerce/solutions). The content is sent
from a UPS server to the customer who requests it. In the earliest versions, the data
was sent in HTML so online stores and other shippers could paste it into their web
pages. However, the UPS HTML code didn’t always mesh very neatly with the site’s
own code. It could easily look out of place. Then UPS began offering the same infor-
mation in XML. XML can’t be pasted directly into the stores’ HTML, but it can be
easily manipulated using an XSL style sheet or other tool to take on the form the
site needs. It’'s a much more flexible solution.

That’s not all UPS does with XML either. Individual consumers like me that occasion-
ally ship a package can use UPS’s web site to track those packages and schedule
pickups. However, large organizations that ship dozens to tens of thousands of pack-
ages a day don’t want to type each tracking number into a form individually. They
want to integrate the tracking information and the schedule pickup with their own
systems so it can be queried only when necessary and processed automatically. I
don’t know what kind of servers and systems UPS uses, but I can guarantee you that

Chapter 2 4+ XML Applications 53

whatever it is, they have tens of thousands of customers that use something else.
They can’t rely on any one vendor’s format to exchange this information with their
customers. Instead, they use XML.

XML is even more important when the process runs in reverse; that is, when cus-
tomers send information to UPS, to schedule a pickup, for example. UPS lets its
customers know what formats it expects to receive the data in, but it can’t trust them
to actually follow that format. Of the thousands of different programs at different
customer sites sending data to UPS, some of them (maybe most of them) are going
to have bugs. Some of them are going to send bad data, leave out the shipping
address, swap the order of the sender’s and recipient’s addresses, request pickups
at 3:00 A.M. instead of 3:00 P.M., calculate prices in Canadian dollars instead of U.S.
dollars, and make a whole slew of other mistakes. Before UPS schedules a pickup or
accepts any other request from a potentially unreliable source, it needs to verify
that all the required information is present and that it makes sense. XML makes it
very straightforward to list most of the relevant constraints in a simple, declarative
schema language, and then to validate each request against the expected schema. If
the validation succeeds, the request is accepted. If the validation fails, the request
can be passed off to a human for further processing or kicked back to the originat-
ing system. This protects the integrity of UPS’s systems. XML validation can’t catch
all problems. For example, it probably won’t notice an account number that doesn’t
correspond to a real account. But it is often a very good first step that easily per-
forms about 80 to 90 percent of the checks that need to be made. Whatever checks
remain to be done can be coded up more simply against XML than against a more
opaque binary format.

This really just scratches the surface of the use of XML for internal data. Many other
projects that use XML are just getting started, and many more will be started over
the next several years. Most of these won’t receive any publicity or write-ups in the
trade press, but they nonetheless have the potential to save their companies millions
of dollars in development costs over the life of the project. The self-documenting
nature of XML can be as useful for a company’s internal data as for its external data.
For instance, recently many companies were scrambling to try to figure out whether
programmers who retired 20 years ago used two-digit or four-digit dates. If that were
your job, would you rather be pouring over data that looked like this?

3¢ 79 65 61 72 3e 39 39 3c 2f 79 65 61 72 3e
Or data that looked like this?

<YEAR>99</YEAR>

Binary file formats meant that programmers were stuck trying to clean up data in
the first format. XML even makes the mistakes easier to find and fix.

54

Part | 4+ Introducing XML

Summary

This chapter has just begun to touch on the many and varied applications for which
XML has been and will be used. Some of these applications, such as SVG, MathML,
and MusicXML, are clear extensions of HTML for web browsers. Many others, how-
ever, such as OFX, XFDL, and HR-XML, go in new directions. And all of these applica-
tions have their own semantics and syntax that sits on top of the underlying XML.
In some cases, the XML roots are obvious. In other cases, you could easily spend
months working with one of theseand only hear of XML tangentially. In this chapter,
you explored the following applications in which XML has been put to use:

4 Molecular sciences with CML

4 Science and math with MathML

4 Webcasting with RSS

4 Classic literature

4 Multimedia with SMIL

4 Software updates through OSD

4 Vector graphics with SVG

4 Music notation in MusicXML

4 Automated voice responses with VoiceXML

4 Financial data with OFX 2.0

4 Legally binding forms with XFDL

4 Job listings with HR-XML

4+ Extending XML itself with XSL, XLink, and XML Schemas

4 Internal use of XML by various companies, including Microsoft, Netscape, and

FederalUPS

In the next chapter, you will begin writing your own XML documents and displaying
them in a web browser.

+ o+ 0+

CHAPTER

Your First XML
Document

¢+ 4+ o+

In This Chapter

T Creati impl
his chapter teaches you to create simple XML documents XIS\T ég?:u?nzl::p ©
with tags that you define that make sense for your docu-

ment. You learn which tools and software you can use to edit
and save an XML document. You also learn to write a style
sheet for the document that describes how the content of
those tags should be displayed. Finally, you learn to load the
document into a web browser so that it can be viewed.

Exploring the simple
XML document

Meaning in markup

Because this chapter teaches you by example, it will not cross Writing style sheets
all the t’s and dot all the i’s. Experienced readers may notice a for XML documents
few exceptions and special cases that aren’t discussed here.

Don’t worry about them; I'll get to them over the course of the Attaching style sheets
next several chapters. For the most part, you don’t need to to XML documents
memorize the technical rules up front. As with HTML, you can

learn and do a lot by copying a few simple examples that others ¢+ +

have prepared and modifying them to fit your needs.

Toward that end, I encourage you to follow along by typing in
the examples given in this chapter and loading them into the
different programs discussed. This will give you a basic feel
for XML that will make the technical details in future chapters
easier to grasp in the context of these specific examples.

Hello XML

This section follows an old programmer’s tradition of introduc-
ing a new language with a program that prints “Hello World”
on the console. XML is a markup language, not a programming
language; but the basic principle still applies. It’s easiest to get
started if you begin with a complete, working example that you
can expand, instead of starting with more fundamental pieces
that by themselves don’t do anything. If you do encounter
problems with the basic tools, those problems are a lot easier
to debug and fix in the context of the short, simple documents
used here, than in the context of the more complex documents
developed in the rest of the book.

56

Part

| 4+ Introducing XML

Creating a simple XML document

In this section, you create a simple XML document and save it in a file. Listing 3-1 is
about the simplest XML document [can imagine, so start with it. You can type this
document in any convenient text editor, such as Notepad, BBEdit, or emacs.

Listing 3-1: Hello XML

<?xml oversion="1.0"7>
<FOO>

Hello XML!

</FOO>

Listing 3-1 is not very complicated, but it is a good XML document. To be more
precise, it is a well-formed XML document. (XML has special terms for documents
that it considers “good” depending on exactly which set of rules they satisfy. “Well-
formed” is one of those terms, but we’ll get to that later.)

- Cross- Well-formedness is covered in detail in Chapter 6.
‘ Reference

A ote

Saving the XML file

After you've typed in Listing 3-1, save it in a file called hello.xml, HelloWorld.xml,
MyFirstDocument.xml, or some other name. The three-letter extension .xml is fairly
standard. However, do make sure that you save it in plain-text format, and not in
the native format of a word processor such as WordPerfect or Microsoft Word.

If you're using Notepad on Windows 95 or 98 to edit your files, be sure to enclose

=~ the filename in double quotes when saving the document; for example, “Hello.xml”,
not merely Hello.xml, as shown in Figure 3-1. Without the quotes, Notepad will
append the .txt extension to your filename, naming it Hello.xml.txt, which is not
what you want.

The Windows NT version of Notepad gives you the option to save the file in Unicode;
and Windows 2000 lets you choose UTF-8 and Unicode big endian, as well. All of
these will work equally well for XML.

Chapter 3 4+ Your First XML Document

Figure 3-1: An XML document saved
Swep |30 = = e in Notepad with the filename in
quotes
Fiename; [Helowd" Save |
Save astyper [Teut Documents [0 = cancel_|
™ Save as Unicode

Loading the XML file into a web browser

Now that you’ve created your first XML document, you're going to want to look at
it. You can open the file directly in a browser that supports XML such as Internet
Explorer 5.0 or later. Figure 3-2 shows the result.

What you see will vary from browser to browser. In this case, it’s a nicely formatted
and syntax-colored view of the document’s source code. Opera will simply show
you the string “Hello XML!” in the default font. Whatever the browser shows you,
it’s not likely to be particularly attractive. The problem is that the browser doesn’t
really know what to do with the FO0 element. You have to tell the browser how to
handle each element by adding a style sheet. You’ll learn to do that shortly, but let’s
first look a little more closely at this XML document.

| Eile Edit View Favorites Tools Help | 4 |
| Address [2] p:\books\bible2s \03\Hello_xml | #6o
.2 . Q B 4| @A Gl 3|7
Back Forward Stop Refrezh Home Search Favorites History
_] |
<uml version="1.0" 7>
<FOO=Hello XML < /FOC0>
El
&] Done | | Fs My Computer ’

Figure 3-2: Hello.xml displayed in Internet Explorer 6.0

57

58 Part

| 4+ Introducing XML

Exploring the Simple XML Document

ﬁ\l ote

The first line of the simple XML document in Listing 3-1 is the XML declaration:

<?xml version="1.0"7>

The XML declaration has a version attribute. An attribute is a name-value pair sepa-
rated by an equals sign. The name is on the left side of the equals sign, and the value
is on the right side between double quote marks.

Every XML document should begin with an XML declaration that specifies the ver-
sion of XML in use. (Some XML documents will omit this for reasons of backward
compatibility, but you should include a version declaration unless you have a specific
reason to leave it out.) In the previous example, the version attribute says that this
document conforms to the XML 1.0 specification.

If you have to ask whether you need XML 1.1, you don't need it. I'll have more to say
-~ about this later, but for now, stick to XML 1.0. XML 1.1 gains you absolutely nothing.

Now look at the next three lines of Listing 3-1:

<FOO>
Hello XML!
</FOO>

Collectively, these three lines form a FO0 element. Separately, <F00> is a start-tag;
</F00> is an end-tag; and Hello XML! is the content of the FOO element. Divided
another way, the start-tag, end-tag, and XML declaration are all markup. The text
Hello XML! is character data.

You might be asking what the <F00> tag means. The short answer is “whatever you
want it to mean.” Rather than relying on a few hundred predefined tags, XML lets
you create the tags that you need when you need them. The <F00> tag, therefore,
has whatever meaning you assign it. The same XML document could have been
written with different tag names, as shown in Listings 3-2, 3-3, and 3-4.

Listing 3-2: greeting.xml

<?2xml oversion="1.0"7>
<GREETING>

Hello XML!
</GREETING>

Chapter 3 4 Your First XML Document 59

Listing 3-3: paragraph.xml

<?2xml version="1.0"7>
<P

Hello XML!

<P

Listing 3-4: document.xml

<?xml version="1.0"7>
<DOCUMENT>

Hello XML!
</DOCUMENT>

The four XML documents in Listings 3-1 through 3-4 have tags with different names.
However, they are all equivalent because they have the same structure and content.

Meaning in Markup

Markup can indicate three kinds of meaning: structural, semantic, or stylistic.
Structure specifies the relations between the different elements in the document.
Semantics relates the individual elements to the real world outside of the document
itself. Style specifies how an element is displayed.

Structure merely expresses the form of the document, without regard for differences
between individual tags and elements. For example, the four XML documents shown
in Listings 3-1 through 3-4 are structurally the same. They all specify documents
with a single nonempty, root element that contains the same content. The different
names of the tags have no structural significance.

Semantic meaning exists outside the document, in the mind of the author or reader,
or in some computer program that generates or reads these files. For example, a web
browser that understands HTML, but not XML, would assign the meaning “para-
graph” to the tags <P> and </P> but not to the tags <GREETING> and </GREETING>,
<F00> and </F00>, or <DOCUMENT> and </DOCUMENT>. An English-speaking human
would be more likely to understand <GREETING> and </GREETING> or <DOCUMENT>
and </DOCUMENT> than <FOO0> and </F00> or <P> and </P>. Meaning, like beauty, is
in the mind of the beholder.

60

Part | 4+ Introducing XML

Computers, being relatively dumb machines, can’t really be said to understand the
meaning of anything. They simply process bits and bytes according to predetermined
formulas (albeit very quickly). A computer is just as happy to use <F00> or <P> as it
is to use the more meaningful <GREETING> or <DOCUMENT> tags. Even a web browser
can’t be said to really understand what a paragraph is. All the browser knows is that
when it encounters the end of a paragraph it should place a blank line before the
next element.

Naturally, it’s better to pick tags that more closely reflect the meaning of the infor-
mation they contain. Many disciplines, such as math and chemistry, are working
on creating industry-standard tag sets. These should be used when appropriate.
However, many tags are made up as you need them. Here are some other possible
tags with different semantic meanings:

<MOLECULE> <sign>
<INTEGRAL> <ellipse>
<PERSON> <AOL>
<{SALARY> <plus/>
<author> <TimeWarner>
<email> <equals/>
<planet> <{Bankruptcy>

The third kind of meaning that can be associated with a tag is stylistic. Style says
how the content of a tag is to be presented on a computer screen or other output
device. Style says whether a particular element is bold, italic, green, two inches
high, and so on. Computers are better at understanding stylistic than semantic
meaning. In XML, style is applied through style sheets.

Writing a Style Sheet for an XML Document

XML allows you to create any tags that you need. Because you have almost complete
freedom in creating tags, a generic browser has no way to anticipate your tags and
provide rules for displaying them. Therefore, you also need to write a style sheet for
the XML document that tells browsers how to display particular tags. Like tag sets,
style sheets can be shared between different documents and different people, and
the style sheets you create can be integrated with style sheets others have written.

As discussed in Chapter 1, there is more than one style sheet language to choose
from. The one introduced in this chapter is cascading style sheets (CSS). CSS has
the advantage of being an established W3C standard, being familiar to many people
from HTML, and being supported in the first wave of XML-enabled web browsers.

Chapter 3 4+ Your First XML Document

As noted in Chapter 1, another possibility is XSL. XSL is currently the most power-
ful and flexible style sheet language, and the only one designed specifically for use
with XML. However, XSL is more complex than CSS and not yet as well supported
in web browsers.

-

,ﬁs-/‘x XSL is discussed in Chapters 5, 15, and 16.
Reference

The greeting.xml example shown in Listing 3-2 only contains one tag, <GREETING>,
so all you need to do is define the style for the GREETING element. Listing 3-5 is a
very simple style sheet that specifies that the contents of the GREETING element
should be rendered as a block-level element in 24-point bold type.

Listing 3-5: greeting.xsl

GREETING {display: block; font-size: 24pt; font-weight: bold}

Listing 3-5 should be typed in a text editor and saved in a new file called greeting.css
in the same directory as Listing 3-2. The .css extension stands for cascading style
sheet. Again, the .css extension is important, although the exact filename is not.
However, if a style sheet is to be applied only to a single XML document, it’s often
convenient to give it the same name as that document with the extension .css
instead of .xml.

Attaching a Style Sheet to an XML Document

After you've written an XML document and a style sheet for that document, you
need to tell the browser to apply the style sheet to the document. In the long term,
there are likely to be a number of different ways to do this, including browser-server
negotiation via HTTP headers, naming conventions, and browser-side defaults.
However, right now, the only way that works is to include an <?xml-stylesheet?>
processing instruction in the XML document to specify the style sheet to be used.

The <?xml1-stylesheet?> processing instruction has two required attributes: type
and href. The type attribute specifies the style sheet language used, and the href
attribute specifies a URL, possibly relative, where the style sheet can be found. In
Listing 3-6, the xm1-stylesheet processing instruction specifies that the style sheet
named greeting.css written in the CSS language is to be applied to this document.

61

62 Part| 4 Introducing XML

Listing 3-6: styledgreeting.xml with an xml-stylesheet
Processing Instruction

<?xml version="1.0"7>

<?xml-stylesheet type="text/css" href="greeting.css"?>
<GREETING>

Hello XML!

</GREETING>

Now that you'’ve created your first XML document and style sheet, you will want to

look at it. All you have to do is open Listing 3-6 in an XML-enabled web browser such
as Mozilla, Safari, Opera 4.0, or Internet Explorer 5.0. Figure 3-3 shows styledgreeting.

xml in Safari.

(& O O http:/ /www.cafeconleche.org/books/biblegold /source /03 /styledgreeting.xml
- b[(4] |+ -F_*hnn:_f}www.f.afef.cnIeche.org!booksrb:hleib‘sourcewS.fswledgreeung.xmlC‘

Figure 3-3: styledgreeting.xml in Safari

Summary

In this chapter, you learned how to create a simple XML document. In particular,
you learned the following:

4 How to write and save simple XML documents

4 How to assign XML elements three kinds of meaning: structural, semantic,
and stylistic

4 How to write a CSS style sheet that tells browsers how to display particular
elements

4 How to attach a CSS style sheet to an XML document with an xm1-stylesheet
processing instruction

4 How to load XML documents into a web browser

The next chapter develops a much larger example of an XML document that
demonstrates more of the practical considerations involved in choosing XML
element names.

¢+ o+

CHAPTER

Structuring Data

4+ + 4+ 4+

This chapter develops a longer example that shows how .

television listings might be stored in XML. By following In This Chapter
along with this example, you’ll learn many useful techniques
that you can apply to all kinds of data-heavy documents. Examining the data
A document such as this has many potential uses. Most obvi- XMLizing the data
ously, it can be displayed on a web page. It can also be used to
generate printed listings for the daily newspaper. Advertisers The advantages of
can use it to help decide where to buy ads. Digital video the XML format
recorders like TiVo can use it to decide when and what to
record. Nielsen boxes can use it to map the channels viewers Preparing a style
are watching to the shows playing on those channels. Hotels sheet for document
can use it to generate custom listings for each reservation displqy
they sell that cover just the channels shown at that hotel dur-
ing a customer’s stay. Unions such as the Screen Actors Guild + + + +

can use it to check which shows are playing how often to
determine which producers to bill for an actor’s appearances.
A web site could send subscribers automatic e-mail notifica-
tion of their favorite shows and movies. Once the data is in
XML, it’s very easy to repurpose for a thousand different uses.

Given so many different use cases, this information will
almost certainly be processed on a variety of hardware and
operating systems, ranging from the mainframes running large
television networks to PCs and Macs in local affiliates to oper-
ating systems embedded in VCRs in homes. The software run-
ning all these devices is written in a plethora of programming
languages with different capabilities and characteristics. They
need a device-independent format they can all handle, and
XML provides it.

As the example is developed, you'll learn, among other things,
how to mark up data in XML, the principles for good XML
names, and how to prepare a style sheet for a document.

64

Part | 4+ Introducing XML

Examining the Data

The first step in developing an XML vocabulary for any domain of interest is to
identify the relevant categories. You can probably think of a few obvious ones on
the spot: show name, airtime, length of show, and a few others. However, to avoid
missing anything essential, it’s useful to look at some samples of the existing infor-
mation, even if it’s a noncomputerized form on paper. In this case, the obvious
place to look is TV Guide or the television listings in the daily newspaper. Table 4-1
shows one such sample that you might find in a typical newspaper.

Looking at this sample, you can immediately pick out some of the obvious informa-
tion any successful format must provide:

4 Station

4+ Network

4 Channel

+ Title

4+ Date

4 Start time

4 Length or end time

4 Description

4 Rating

4 Whether or not the show is closed captioned

4 Year when a movie was made

4 Movie type

4 Number of stars
The information as shown in Table 4-1 is not necessarily in the same order as it
might appear in the XML document. For example, shows could be ordered by time
or network or not at all. Different systems might have different information. The
documents a network such as ABC sends to local affiliates might contain only the
shows broadcast by that network, and may not include channel numbers. The doc-
uments generated by a local station and sent to the local newspaper would proba-
bly contain all the shows on that station and the channel number. A producer of
syndicated programming like King World might not include start times because that
can vary from one market to the next, but could include the expected air dates.
The documents sent to their members by a media watchdog group such as the

American Family Association or the Gay and Lesbian Alliance Against Defamation
might contain only the shows they find particularly objectionable or praiseworthy:.

65

Chapter 4 4 Structuring Data

waE.CCOU
DD ‘DAL Aempeoig onouied :sdod ireuunui) DD 121Y37 Wi YA JNOHSMIN YL ¢l sdd
"legaseq sAe|d Janaual usapjon
2D DAL DD puowiey
(D) (z007) Y124 Buluul Yanss :png iy san07 Apoghiang 2D 'DdAL spuaii 1L 9Mm
"21eD 0} pudlaid saa1950y
"Ajpnoj Sununi8 sjiym Jay3o Yyoes uy
03 puajaid siapjing Apoq pasueyua-pioisls 2D Moys JD ‘DdAL Moys
DD ‘DdAL jumo@jpews AN XX04 alwef ay] Asniey ans3s ayy 6 Ndn
"} 9}01M oym uosiad ayy
10} S3YDIRDS pue 193] AA0| SnowAuoue ue
SpUul} UMO) [[eWS e Ul JaSeuewW 310)s)}00q Y 7D “1eaday ‘DAL
2D ‘PLAL (£19d) «« (6661) 19037 9A07T 3YL aunpod JO [93YMm 2D DAL jApredoar LDoav
“HWIWod
j0U pIp Yy s1apinw 1oy Juswuosuduwi
Ja)ye pajeIauUOXa 9q 0} SIS Jaxoq pajief 7D ‘DdAL
2D ‘PLAL () s« (6661) duLILINY BYL 2D ‘DdAL p|3juIes suosduwis 3y S X04
‘8uiouue spe
9gaoyd ajiym pidnis
"Joj B saoM QT SuIY}aWOos Sa0p Ssoy
DD ‘Jeaday DD ‘Jeaday 2D 'DdAL
‘F1LAL SQnIdS ‘vLAL spuaii{ poomAjjoH sse20y 2D 'DdAL Vi1X3 ¥ D4N
‘Mmainaid
Ao ays pue xas
‘3uiypAue uluies) pione o) 1dweye Isjueissjuod Suluiewal
ui 3|qissod se Appinb se sainynd udisioy slolunf uedLBWY
y3noiyy paads s3uiyiswos-Auanny 1y3ig 2D y8iuop 7D “eaday
DD ¥ 2oey Suizewy sy juswiuienaluy saienbg poomA|joH zs9)
wdog:8 wdoo:8 wdog:/ wdoo:£ £00Z ‘s Ainf

3|Npayds uoIsIAI|3L

-7 ||qelL

2D ‘(Dd) yoo7]

sxx SOUO|D 1sil4 O9H
wr_u upo v_umuu< umwc_r_um_\c
|| aposid3 QY1 Jo asiy

'SIBAA JRIS IS JojRulwlIa] 2D (£19d) s UIYNAA SHAIDS BY] :Asejuey euly L0S 09H
(£19d) (6661) s12mo] uodi|IS 2D “Jeaday ‘DdAL Asyuin yerdo SS ANTM
DD 9duauadxy ueduswy SMAN NN DD SM3N Pl4of\ D99 0S sdad
SUd3) SO odwsal] swe(elyos LY NINM
©39qay lowy |ap sein seq LY ALXM
‘syuiodypayd Ajndas yodie

pue ‘saydue[eAe ‘syoeje yieys Jo SIOAIAING DAL doams

DD ‘DdAL PRI B S DD ‘DdAL pPnad Ajiweq 19pewsadng LE NXdM

‘100d s ApoghAiana pue

‘8ull0q sI WSIASYS|0g SISA0JSI "UOIIN|OADI

9y} SuInmo||oy eISSNY O} SSAOW Jaduep Y|
|NOS 3y} 10} JUSWIAAO}\ :UBdUN(BIOPES] puly uado ayL |euinor o7 sz sdd

urejunoyy an|g ‘wnajosnew sAspepy
qog -yoeag ainseal] :3|Ip0od0Jd .edlewer
DD 49YfaiL 990[D §0-32e4 SM3N pliop\ D99 Lz sad
wdog:g wdoo:g wdog:/ wdoo:/ £00T ‘s AInr

(peanunuod) |-t 9|qelL

Part | 4+ Introducing XML

66

Chapter 4 4 Structuring Data

Similarly, this one sample might not contain all the information you need to pro-
vide. Television networks routinely send out much more information about any one
show than can fit in the limited amount of space available. This includes episode
titles, cast lists, directors, original air dates, and more. On a web site such as
tv.yahoo.com, this might be accessible on a separate page accessed through a
hyperlink. In a printed version in the daily newspaper, this extra content will proba-
bly be omitted entirely. This is not an excuse not to include it, though. Generally, in
XML, each party to a transfer of information sends everything it knows and extracts
what it wants from what other parties send to it. It’s easier to chop out excess infor-
mation than it is to fill in missing data.

You should look at several independent samples in case one of them contains infor-
mation the other doesn’t contain. It’s certainly possible to leave out some of the infor-
mation some of the time if it isn’t relevant or useful in any particular instance.
However, you want to make the application flexible enough to handle a range of uses.

XMLizing the Data

XML is based on a containment model. Each XML element can contain text or other
XML elements, both of which are called the element’s children. Some XML elements
may contain both text and child elements. However, there’s often more than one
way to organize the data, depending on your needs. One advantage of XML is that it
makes it fairly straightforward to write a program that reorganizes the data in a dif-
ferent form.

,is_s-/‘x Chapter 16 shows you one way of doing this using XSL transformations.
Reference

To get started, the first question you have to address is what contains what, or,
another way of putting it, which information is a part of which other information?
For instance, it is fairly obvious that a show has a rating and a title. The rating and
title belong to the show. Thus, the rating and title elements should be children of
the show element, rather than the other way around.

However, does a network contain a show or does a show contain a network? Is the
network a characteristic of a show, or is a show part of a network? Both approaches
are plausible. Indeed, it might be something else altogether, such as both the net-
work and the show being independent elements that are somehow linked together
(although doing so effectively would require some advanced techniques that aren’t
discussed for several chapters yet). There’s no one right answer to these questions,
though some approaches are likely to work better than others.

67

68

Part

_:-:f“""“

| 4+ Introducing XML

Readers familiar with database theory might recognize XML's model as essentially

s a hierarchical database, and, consequently, recognize that it shares all the disad-
vantages (and a few advantages) of that data model. There are times when a
table-based relational approach makes more sense. This example certainly looks
like one of those times. However, XML doesn’t follow a relational model.

On the other hand, it is completely possible to store the actual data in multiple
tables in a relational database, and then generate the XML on the fly. This enables
one set of data to be presented in multiple formats. Transforming the data with
style sheets provides still more possible views of the data.

Because I'm not a network executive, my personal interests lie in the individual
shows rather than the networks. Therefore, I'm going to design my application
around shows. Most information will be a child of the individual show elements.
Different shows can be grouped together as part of a station element. The schedule
will contain separate stations. However, this is far from the only way to do it, and
different developers might well choose different arrangements for the same data.
You, however, might have other interests and can choose to divide the data in some
other fashion. There’s almost always more than one way to organize data in XML. In
fact, several upcoming chapters explore alternative markup vocabularies for this
very example.

Let’s begin the process of marking up the data. For the sake of the example, I've
picked just a few representative channels (CBS, WLNY, and HBO) in New York on
July 3, 2003. To keep the example manageably sized, I'm only going to include shows
that begin between 7:00 P.M. and 8:30 P.M. However, as you'll soon see, this is easy to
extend to much larger chunks of time and many more stations and networks.

Remember that in XML you’re allowed to make up the tags as you go along. We've
already decided that the root element of this document will be a schedule.
Schedules will contain shows. Shows will have titles, start times, run lengths,
actors, descriptions, and so forth. Some of these will be optional. For example, the
evening newscast might not list actors. The 17,345 repeat of The Honeymooners
might not include a description. Some of the elements might contain child elements
of their own. For example, actors typically have a first name, a last name, and often
a middle initial. XML is very flexible. It’s easy to vary the exact information pro-
vided with any particular element. If you don’t know something, it’s easy to leave it
out. If you have extra information that wasn’t planned for, you can easily add an
extra element covering that content.

XML documents can be recognized by the XML declaration. This is placed at the
start of XML files to identify the version in use. The only version currently under-
stood is 1.0.

<?xml version="1.0"7>

Chapter 4 4 Structuring Data

/\lote Version 1.1 is under development now, but offers no benefits to anyone reading

) -~ this book and is substantially less interoperable than XML 1.0. Version 1.1 is only
useful to people who speak Cherokee, Mongolian, Burmese, Amharic, and a few
other languages this book is not translated into. This is discussed further in
Chapter 6.

Every good XML document (where good has a very specific meaning to be dis-
cussed in Chapter 6) must have a root element. This is an element that completely
contains all other elements of the document. The root element’s start-tag comes
before all other elements’ start-tags, and the root element’s end-tag comes after all
other element’s end-tags. For the root element, I'll pick SCHEDULE with a start-tag of
<SCHEDULE> and an end-tag of </SCHEDULE>. The document now looks like this:

<?xml version="1.0"7>
<SCHEDULE>
</SCHEDULE>

The XML declaration is not an element or a tag. Therefore, it does not need to be
contained inside the root element SCHEDULE. But every element that you put in this
document will go between the <SCHEDULE> start-tag and the </SCHEDULE> end-tag.

Naming Conventions

Before I go any further, I'd like to say a few words about naming conventions. As you'll see
in Chapter 6, XML element names are quite flexible and can contain any number of letters
and digits in either upper- or lowercase. You have the option of writing XML tags that look
like any of the following:

<SCHEDULE>
<Schedule>
<{schedule>
<TV_Schedule>
<TV-Schedule>
<TelevisionSchedule>

There are several thousand more variations. You can use all uppercase, all lowercase,
mixed-case with internal capitalization, or some other convention. However, | do recom-
mend that you choose one convention and stick to it.

On the other hand, it is very important that you use full, unabbreviated names. This makes
the documents much more comprehensible, and much easier to process. Throughout this
example, I'm following the explicit XML principle that “Terseness in XML markup is of mini-
mal importance.” If document size is truly an issue, it's easy to compress the files with gzip
or another compression program. However, this can mean that XML documents tend to be
quite long and relatively tedious to type by hand.

70

Part | 4+ Introducing XML

The next question to ask is whether there’s any information in Table 4-1 that applies
to the entire table, rather than individual rows or columns. I think there’s one key
piece: the date the table describes. This may or may not be present in all variations.
For instance, it’s very important in a monthly or weekly program guide, but not
nearly as important in the daily newspaper. Networks and local stations might pub-
lish documents containing a week’s worth of shows, which a newspaper uses to cre-
ate a schedule for a single day. Still, whether a single date will be present in every
instance of this application, it’s at least present here. It’s easily included in a DATE
child element of the root SCHEDULE element:

<?xml o version="1.0"7>
<SCHEDULE>

<DATE>July 3, 2003</DATE>
</SCHEDULE>

Following along with Table 4-1, the next obvious division is either the rows or the
columns of the table. The columns indicate times. The rows indicate stations. XML
does not by its nature lend itself to tabular structures. One or the other of these has
to be the next level of the hierarchy. Choosing the rows, that is, the stations, makes
sense because the shows don’t always line up evenly on column boundaries. On the
other hand, picking columns would allow you to sort the data by time instead of
station, which might be more useful. But one has to be chosen, so I choose the
rows. Still, there’s more than one way to do it, and picking the columns instead
would not be wrong.

What do you know about a station? Several things:

4 The network affiliation
4 The call letters
4 The channel number

Choosing the most obvious names for each of these elements, the first station looks
like this:

<STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>

</STATION>

Later you’ll add the shows as children of the station that broadcasts them.

Chapter 4 + Structuring Data 71

Not all stations have all these pieces, however. For example, independent stations
aren’t affiliated with a network, and cable-only channels don’t have call letters. You
can include those that apply and leave out those that don’t. For example, here are

STATION elements for WLNY, an independent channel, and HBO, a cable-only net-
work with no local affiliates:

<STATION>
CCALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

</STATION>

<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>

</STATION>

XML makes it very easy to include the information that applies and leave out the

information that doesn’t. There aren’t any special null values, or elements used just
to fill an expected slot.

So far, the complete document is as shown in Listing 4-1 (though you could always
add more stations, of course).

Listing 4-1: The Stations in the Schedule

<?2xml version="1.0"7>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
<STATION>
<KNETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>
</STATION>
<STATION>
CCALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
</STATION>
<STATION>
<KNETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>
</STATION>
</SCHEDULE>

72 Part| 4+ Introducing XML

ﬁlote I've used indentation here and in other examples to make it more obvious that the
e STATION elements are children of the SCHEDULE elements and that the CHANNEL,
NETWORK, and CALL_LETTERS elements are children of the STATION elements.
This is good coding style, but it is not required. Parsers do faithfully report all white
space in the event that it is necessary, but in most applications white space is not
particularly significant, especially boundary white space that occurs solely between
two tags. The same example could have been written like this, but with a corre-
sponding loss of clarity:

<?xml version="1.0"7?><SCHEDULE><DATE>July 3,
2003</DATE><STATION><CHANNEL>2</CHANNEL><NETWORK>CBS
</NETWORK><CALL_LETTERS>WCBS</CALL_LETTERS>
</STATION><STATION><CHANNEL>55</CHANNEL>
CCALL_LETTERS>WLNY</CALL_LETTERS></STATION><STATION>
<CHANNEL>501</CHANNEL><NETWORK>HBO</NETWORK>
</STATION></SCHEDULE>

Of course, this version is much harder to read and to understand. The tenth goal
listed in the XML specification is “Terseness in XML markup is of minimal impor-
tance” It is much more important that documents be legible than that they be
terse. The examples in this book reflect this principle throughout.

The key component of the information will be the individual shows. Let’s begin
with the first one in Table 4-1, Hollywood Squares. After examining it, you know the
following:

4 The name of the show: Hollywood Squares.

4 The start time: 7:00 P.M.

4 The end time: 7:30 P.M.

4 The length of the show: 30 minutes.

4 The channel: 2.

4 The network: CBS.

4 The air date: July 3, 2003.

4 The show is closed captioned.

4 The show is a repeat.
The channel and network will become part of each STATION element. There’s no

need to duplicate them. The remainder of these items can each be made a child ele-
ment of a SHOW element like so:

<SHOW>
<NAME>Ho1lywood Squares</NAME>
{START_TIME>7:00 P.M.</START_TIME>

Chapter 4 4 Structuring Data

<END_TIME>7:00 P.M.</END_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>

</SHOW>

However, some of this information is deceptive and may need to be cleaned up
before it can be used:

4 The start and end times are in the eastern time zone. These are the correct
local times for New York. However, it might be useful to indicate the time zone
in which these times are stated, typically by giving the offset from Greenwich
Mean Time and often using a 24-hour clock. For example, New York is five
hours behind Greenwich Mean Time, so the start time could be written as
19:00-0500.

4 One of the three numbers — start time, end time, and length —is redundant.
Given two of these it’s possible to calculate the other. It might be wiser not to
include all three.

4 The air date at least seems redundant with date of the entire schedule.
However, most television listings prefer to start the day somewhere around
5:00 or 6:00 A.M., rather than at midnight. Thus, it’s not uncommon for a show
that’s broadcast in the early morning one day to appear in the schedule for
the previous day.

Accounting for this, the SHOW element becomes something like this:

<SHOW>
<NAME>Hollywood Squares</NAME>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>

</SHOW>

Furthermore, a lot of information that could be made available doesn’t always show
up in the daily newspaper but might be used if the show is a pick of the day. This
includes the following:

4 The cast: Don Rickles, Jerry Springer, Richard Simmons, Vicki Lawrence, John
Salley, Joanie Laurer, Martin Mull, Jillian Barberie, Kennedy

4 The Producers: Henry Winkler, Michael Levitt

4 The original air date: January 16, 2003

75

74 Part| 4+ Introducing XML

Even if this will be omitted from a particular view of the data, it might well be
included in the XML. At the minimum, it needs to be able to be included. Adding
this content, a SHOW element looks like this:

<SHOW>
<NAME>Ho1lywood Squares</NAME>
<TYPE>Series/Game Shows</TYPE>
<EPISODE_NUMBER>5074</EPISODE_NUMBER>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<ATIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>January 16, 2003</0ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
{CAST>
Don Rickles, Jerry Springer, Richard Simmons,
Vicki Lawrence, John Salley, Joanie Laurer,
Martin Mull, Jillian Barberie, Kennedy
</CAST>
<PRODUCER>Henry Winkler</PRODUCER>
<PRODUCER>Michael Levitt</PRODUCER>
</SHOW>

However, the CAST element is less than ideal. It has significant substructure that is
not yet reflected in the XML markup. The CAST is composed of individual actors.
However, because XML has no limit on the number of elements that may share
names, it’s easy to expand the markup to more thoroughly annotate this information:

<CAST>
<ACTOR>Don Rickles</ACTOR>
<ACTOR>Jerry Springer</ACTOR>
<ACTOR>Richard Simmons</ACTOR>
<ACTOR>Vicki Lawrence</ACTOR>
<ACTOR>John Salley</ACTOR>
<ACTOR>Joanie Laurer</ACTOR>
<ACTOR>Martin Mull</ACTOR>
<ACTOR>Jil1lian Barberie</ACTOR>
<ACTOR>Kennedy</ACTOR>

</CAST>

There’s still substructure we haven’t captured here, though. Actors (and produc-
ers) have both first and last names. Assuming you might want to do something with
this data, such as sort by last name, it makes sense to mark that up separately:

<CAST>
<ACTOR>
<GIVEN_NAME>Don</GIVEN_NAME>
<SURNAME>Rickles</SURNAME>
</ACTOR>
<ACTOR>

fhos

Chapter 4 4+ Structuring Data 75

<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Springer</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Richard</GIVEN_NAME>
<SURNAME>Simmons</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Vicki</GIVEN_NAME>
<SURNAME>Lawrence</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>John</GIVEN_NAME>
<SURNAME>Salley</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Joanie</GIVEN_NAME>
<SURNAME>Laurer</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Martin</GIVEN_NAME>
<SURNAME>MuT1</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Ji1Tian</GIVEN_NAME>
<SURNAME>Barberie</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Kennedy</GIVEN_NAME>
</ACTOR>
<PRODUCER>
<GIVEN_NAME>Henry</GIVEN_NAME>
<SURNAME>Winkler</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Michael</GIVEN_NAME>
<SURNAME>Levitt</SURNAME>
</PRODUCER>
</CAST>

Kennedy is the odd one out here. She only uses one name professionally, which is
actually her middle name. Fortunately, in XML it’s straightforward to leave out any
element that doesn’t apply in a particular instance. This is much better than includ-
ing an empty element, N/A, null, or some similar flag. The proper representation of
information that doesn’t exist is no element at all.

The tags <GIVEN_NAME> and <SURNAME> are preferable to the more obvious

~~" <FIRST_NAME> and <LAST_NAME> or <FIRST_NAME> and <FAMILY_NAME>.

Whether the family name or the given name comes first or last varies from culture
to culture. Furthermore, surnames aren’t necessarily family names in all cultures.

76

Part | 4+ Introducing XML

When developing a new format, it’s important to look at multiple examples. The
first one never shows every aspect of the domain. The second show on the sched-
ule is Entertainment Tonight. This is a syndicated news show instead of a syndicated
game show like Hollywood Squares. How well does this structure fit it? In terms of
scheduling, they’re not that different. The main difference is that it doesn’t have a
cast, and does include a description, but that’s easily handled by removing the
CAST element and adding a DESCRIPTION element. Not all elements with the same
name have to have exactly the same structure.

<SHOW>
<NAME>Entertainment Tonight</NAME>
<TYPE>Series/News</TYPE>
<EPISODE_NUMBER>5689</EPISODE_NUMBER>
<START_TIME>17:30-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<DESCRIPTION>
American Juniors remaining contestants;
Sex and the City preview.
</DESCRIPTION>
</SHOW>

One open question here is whether the DESCRIPTION element has identifiable sub-
structure. It certainly seems to. For example, you could mark it up as two separate
segments, each of which also contains a SERIES element:

<DESCRIPTION>
<SEGMENT>
<SERIES>American Juniors</SERIES> remaining contestants
</SEGMENT>
<SEGMENT>
<SERTES>Sex and the City</SERIES> preview
</SEGMENT>
</DESCRIPTION>

The real question is whether this is useful. Will similar content be found in enough
different shows to make it worthwhile to call this out individually? I think the
answer is yes. It might not be obvious in this small example, but if nothing else, this
one show is likely to reappear every night for years. The episode number here is
5689. There've been a lot of instances of this show in the past, and there’ll be more
in the future. However, looking at other examples of similar shows may indicate this
isn’t the ideal way to mark up this information. There may well be better, more gen-
eral ways. A final decision will have to wait until you have more experience with the
domain, but when in doubt, it’s better to have too much markup than too little, so
I'll leave this in.

Chapter 4 + Structuring Data 77

The next show is a little different. Instead of a half hour syndicated show, it’s an
hour-long network show. The actors aren’t listed, but the producers are. It also
adds a couple of new elements lacking in the previous two shows (though not seen
in Table 4-1), a title for the individual episode, and a middle name for a person. This
is not a problem. XML is the extensible markup language. When you encounter new
information, you can always invent an element to fit it.

<SHOW>
<NAME>The Amazing Race</NAME>
KTITLE>I Could Never Have Been Prepared for What
I'm Looking at Right Now</TITLE>
{TYPE>Series/Game Shows</TYPE>
<EPISODE_NUMBER>406</EPISODE_NUMBER>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<ORTGINAL_ATR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
{CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<PRODUCER>
<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Bruckheimer</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Bertram</GIVEN_NAME>
<SURNAME>van Munster</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Hayma</GIVEN_NAME>
<MIDDLE_NAME>Screech</MIDDLE_NAME>
<SURNAME>Washington</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Jon</GIVEN_NAME>
<SURNAME>Kro11</SURNAME>
</PRODUCER>
<DESCRIPTION>
Eight twenty-somethings speed through foreign cultures
as quickly as possible in attempt to avoid learning
anything
</DESCRIPTION>
</ SHOW>

So far I've looked only at series, but television also has numerous nonrecurring
shows. What would a movie look like, for example? When I checked the detailed list-
ings for the first movie on HBO this particular night, [discovered it had several new
pieces that had not been noted before, including a director, the writers, a rating,
and a number of stars. The cast was also much larger, and the original air date was
omitted.

78

Part | 4+ Introducing XML

<SHOW>

<NAME>Final Fantasy: The Spirits Within</NAME>
<TYPE>Movie/Animated</TYPE>
{START_TIME>18:30-0500</START_TIME>
<LENGTH>105 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>PG-13</RATING>
{STARS>3</STARS>
<DESCRIPTION>
The Tast city on Earth defends itself against alien
phantoms. The plot has Tittle to no relationship to
the video games of the same name.
</DESCRIPTION>
<DIRECTOR>
<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>
</DIRECTOR>
<WRITER>
<GIVEN_NAME>A1</GIVEN_NAME>
<SURNAME>Reinart</SURNAME>
</WRITER>
<WRITER>
<GIVEN_NAME>Jeff Vintar</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>
</WRITER>
<PRODUCER>
<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Jun</GIVEN_NAME>
<SURNAME>Aida</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Lee</SURNAME>
</PRODUCER>
{CAST>
<ACTOR>
<GIVEN_NAME>Ming</GIVEN_NAME>
<SURNAME>Na</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>ATec</GIVEN_NAME>
<SURNAME>Baldwin</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Ving</GIVEN_NAME>
<SURNAME>Rhames</SURNAME>

Chapter 4 4 Structuring Data

</ACTOR>
<ACTOR>
<GIVEN_NAME>Steve</GIVEN_NAME>
<SURNAME>Buscemi</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Peri</GIVEN_NAME>
<SURNAME>Gi1pin</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Donald</GIVEN_NAME>
<SURNAME>Sutherland</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>James</GIVEN_NAME>
<SURNAME>Woods</SURNAME>
</ACTOR>

</CAST>
</SHOW>

Until now, I've been showing the XML document in pieces, element by element.
However, it’s now time to put all the pieces together and look at the complete docu-
ment containing the schedule for three New York stations between 7:00 and 8:30
P.M., July 3, 2003. Listing 4-2 demonstrates. Figure 4-1 shows this document loaded
into Mozilla 1.4.

Listing 4-2: tvschedule2003-07-03.xml—The Completed

XML Document

version="1.0"?>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
<STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>

<SHOW>
<NAME>Ho1lywood Squares</NAME>
<TYPE>Series/Game Shows</TYPE>
<EPTSODE_NUMBER>5074</EPISODE_NUMBER>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
CATR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>January 16, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<CAST>

Continued

79

80 Part| 4 Introducing XML

Listing 4-2 (continued)

<ACTOR>
<GIVEN_NAME>Don</GIVEN_NAME>
<SURNAME>Rickles</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Springer</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Richard</GIVEN_NAME>
<SURNAME>Simmons</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Vicki</GIVEN_NAME>
<{SURNAME>Lawrence</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>John</GIVEN_NAME>
<SURNAME>Salley</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Joanie</GIVEN_NAME>
<SURNAME>Laurer</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Martin</GIVEN_NAME>
<SURNAME>Mu11</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Ji1T1ian</GIVEN_NAME>
<SURNAME>Barberie</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Kennedy</GIVEN_NAME>
</ACTOR>
</CAST>
<PRODUCER>
<GIVEN_NAME>Henry</GIVEN_NAME>
<SURNAME>WinkTer</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Michael</GIVEN_NAME>
<SURNAME>Levitt</SURNAME>
</PRODUCER>
</SHOW>

<SHOW>
<NAME>Entertainment Tonight</NAME>
<TYPE>Series/News</TYPE>
<EPTSODE_NUMBER>5689</EPISODE_NUMBER>

Chapter 4 4 Structuring Data

{START_TIME>19:30-0500</START_TIME>
<LENGTH>30 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>July 3, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>No</REPEAT>
<DESCRIPTION>
American Juniors remaining contestants;
Sex and the City preview.
</DESCRIPTION>
</SHOW>

<SHOW>
<NAME>The Amazing Race</NAME>
<TITLE>I Could Never Have Been Prepared for What
I'm Looking at Right Now</TITLE>

{TYPE>Series/Game Shows</TYPE>

<EPISODE_NUMBER>406</EPISODE_NUMBER>

{START_TIME>20:00-0500</START_TIME>

<LENGTH>60 minutes</LENGTH>

<ATR_DATE>July 3, 2003</AIR_DATE>

<ORIGINAL_ATIR_DATE>July 3, 2003</ORIGINAL_ATIR_DATE>

{CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>

<REPEAT>No</REPEAT>

<PRODUCER>
<GIVEN_NAME>Jerry</GIVEN_NAME>
<SURNAME>Bruckheimer</SURNAME>

</PRODUCER>

<PRODUCER>
<GIVEN_NAME>Bertram</GIVEN_NAME>
<SURNAME>van Munster</SURNAME>

</PRODUCER>

<PRODUCER>
<GIVEN_NAME>Hayma</GIVEN_NAME>
<MIDDLE_NAME>Screech</MIDDLE_NAME>
<SURNAME>Washington</SURNAME>

</PRODUCER>

<PRODUCER>
<GIVEN_NAME>Jon</GIVEN_NAME>
<SURNAME>Kro11</SURNAME>

</PRODUCER>

<DESCRIPTION>
Eight twenty-somethings speed through foreign
cultures as quickly as possible in desperate
attempt to avoid Tearning anything.

</DESCRIPTION>

</SHOW>

</STATION>

<STATION>
CCALL_LETTERS>WLNY</CALL_LETTERS>

Continued

82 Part| 4 Introducing XML

Listing 4-2 (continued)
<CHANNEL>55</CHANNEL>

<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>

Guests gabber; Oprah looks sympathetic.

</DESCRIPTION>

</SHOW>

<SHOW>
<NAME>SiTicon Towers</NAME>
<TYPE>Movie</TYPE>
<START_TIME>20:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>1999</YEAR_MADE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<CAST>
<ACTOR>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Dennehy</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Daniel</GIVEN_NAME>
<SURNAME>BaTldwin</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Brad</GIVEN_NAME>
<SURNAME>Dourif</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Gary</GIVEN_NAME>
<SURNAME>Mosher</SURNAME>
</ACTOR>
</CAST>
<DESCRIPTION>
A programmer discovers his company manufactures
chips for cracking bank systems.
</DESCRIPTION>
</ SHOW>

Chapter 4 4 Structuring Data

</STATION>

<STATION>
<NETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>

<SHOW>
<NAME>Final Fantasy: The Spirits Within</NAME>
<TYPE>Movie/Animated</TYPE>
{START_TIME>18:30-0500</START_TIME>
<LENGTH>105 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<DESCRIPTION>
The Tast city on Earth defends itself against alien
phantoms. Little to no relationship to the video
games of the same name.
</DESCRIPTION>
<RATING>PG-13</RATING>
{STARS>2</STARS>
<DIRECTOR>
<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>
</DIRECTOR>
<WRITER>
<GIVEN_NAME>AT</GIVEN_NAME>
<SURNAME>Reinart</SURNAME>
</WRITER>
<WRITER>
<GIVEN_NAME>Jeff</GIVEN_NAME>
<SURNAME>Vintar</SURNAME>
</WRITER>
<PRODUCER>
<GIVEN_NAME>Hironobu</GIVEN_NAME>
<SURNAME>Sakaguchi</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Jun</GIVEN_NAME>
<{SURNAME>Aida</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Lee</SURNAME>
</PRODUCER>
{CAST>
<ACTOR>
<GIVEN_NAME>Ming</GIVEN_NAME>
<SURNAME>Na</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>ATec</GIVEN_NAME>

Continued

84 Part| 4+ Introducing XML

Listing 4-2 (continued)

<SURNAME>BaTdwin</SURNAME>

</ACTOR>

<ACTOR>
<GIVEN_NAME>Ving</GIVEN_NAME>
<SURNAME>Rhames</SURNAME>

</ACTOR>

<ACTOR>
<GIVEN_NAME>Steve</GIVEN_NAME>
<SURNAME>Buscemi</SURNAME>

</ACTOR>

<ACTOR>

<GIVEN_NAME>Peri</GIVEN_NAME>
<SURNAME>Gi1pin</SURNAME>

</ACTOR>

<ACTOR>
<GIVEN_NAME>Donald</GIVEN_NAME>
<SURNAME>Sutherland</SURNAME>

</ACTOR>

<ACTOR>
<GIVEN_NAME>James</GIVEN_NAME>
<SURNAME>Woods</SURNAME>

</ACTOR>

</CAST>
</SHOW>

<SHOW>

<NAME>Terminator 3: Rise of the Machines:
HBO First Look</NAME>

<TYPE>Special/Documentary</TYPE>
{START_TIME>20:15-0500</START_TIME>
<LENGTH>15 minutes</LENGTH>
CATR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>June 26, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV14</RATING>

</SHOW>

<SHOW>
<NAME>Star Wars: Episode II -- Attack of
the Clones</NAME>
<TYPE>Movie</TYPE>
<START_TIME>20:30-0500</START_TIME>
<LENGTH>150 minutes</LENGTH>
CATR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>2002</YEAR_MADE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>PG-13</RATING>
<STARS>3</STARS>

Chapter 4 4+ Structuring Data 85

<DESCRIPTION>
Obi-wan Kenobi and Anakin Skywalker battle
Count Dooku and the Trade Federation.
</DESCRIPTION>
<DIRECTOR>
<GIVEN_NAME>George</GIVEN_NAME>
{SURNAME>Lucas</SURNAME>
</DIRECTOR>
<WRITER>
<GIVEN_NAME>George</GIVEN_NAME>
<SURNAME>Lucas</SURNAME>
</WRITER>
<WRITER>
<GIVEN_NAME>Jonathan</GIVEN_NAME>
<SURNAME>Hales</SURNAME>
</WRITER>
<PRODUCER>
<GIVEN_NAME>George</GIVEN_NAME>
<{SURNAME>Lucas</SURNAME>
</PRODUCER>
<PRODUCER>
<GIVEN_NAME>George</GIVEN_NAME>
<SURNAME>McCallam</SURNAME>
</PRODUCER>
<CAST>
<ACTOR>
<GIVEN_NAME>Ewan</GIVEN_NAME>
<SURNAME>McGregor</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Natalie</GIVEN_NAME>
<SURNAME>Portman</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Christopher</GIVEN_NAME>
<SURNAME>Lee</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Samuel</GIVEN_NAME>
<MIDDLE_INITIAL>L</MIDDLE_INITIAL>
<SURNAME>Jackson</SURNAME>
</ACTOR>
<ACTOR>
<GIVEN_NAME>Frank</GIVEN_NAME>
<SURNAME>0z</SURNAME>
</ACTOR>
</CAST>
</SHOW>
</STATION>

</SCHEDULE>

86

Part | 4+ Introducing XML

In general, order matters in XML. Listing 4-2 arranges the three stations in ascend-
ing numeric order (2, 55, 501), and within each station it lists the shows in ascend-
ing order based on start time. It is possible to reorder the content when processing
or displaying it —just as it’s possible to sort any other list —but the parser will
faithfully report the elements in the order they appear in the input document. You
can rely on the order if you want to. On the other hand, you don’t have to. You may
decide, for example, that you don’t care what order the NAME, TITLE, TYPE, CAST,
and other children of each SHOW element appear. However, that’s a decision for you
to make; XML does not it make for you. Whether or not to treat order as significant
depends on whether or not it helps out in your use cases.

E Mozilla

. File Edit “iew Go Bookmarks Tools Window Help

@OQ O Q IQ— hitp:/fweeew. cafeconleche.orgfexamples/d-2. xml

Thos XL file does not appear to have any style mit ! iated with it The d it tres 1= shown below,

.=

=SCHEDULE-
=DATE=July 3, 2003=/DATE=
- =STATION-
= CHANNEL=2=/CHANNEL=
=NETWORK-CES=/NETWORE>
<CALL LETTERS-WCBS=/CALL LETTERS-
- <SHOW
“<MNAME *Hollywood Squares=</TVAME =
«TYPE=SeriesiGaree Shows<TYFPE=
<EPISODE NUMBERE-5074</EFIS ODE_NUMBER=
<START TIME=19.00-0500</START TIME~
<LENGTH=30 mintes</LENGTH~
<ATR_DATE>July 23, 2003</AIR_DATE>
<ORIGINAL AIR_DATE>Jawuary 16, 2003</ORIGINAL ATR_DATE>
=<CLOSED CAPTIONEPR Ves</CLOSED_CAPTIONED
<REPEAT>Yes</REPEAT>
- =CAST=
. =ACTOR=
<GIVEN_NAME >Don<iGIVEN_NAME=
< SURNAME=Rickles=/SURNAME=
“ACTOR=

- =ACTOR=
<GIVEN_NAME =Jenry=/GIVEN_NAME=>
<SURNAME=Sprirger=/SURNAME >
<IACTOR=

Done s&@;_:
Figure 4-1: The raw TV schedule displayed in Mozilla 1.4

Even as large as it is, this document is incomplete. It contains only a couple of
hour’s worth of shows from three networks. Showing more than that would make
the example too long to include in this book. If you continued to look at more
shows, you would discover numerous other relevant pieces of information that
deserve to be marked up, including role played by an actor, broadcast language,
pay-per-view prices, and more. However, | will stop the XMLization of the data here
to move on; first to a brief discussion of why this data format is useful, and then to
the techniques that can be used for displaying it more attractively in a web
browser.

Chapter 4 4+ Structuring Data 87

The Advantages of the XML Format

Table 4-1 does a good job of displaying a daily television schedule in a comprehen-
sible and compact fashion. What has been gained by rewriting that table as the
much longer XML document of Listing 4-2? There are several benefits, including the
following:

4+ The data is self-describing.
4 The data can be manipulated with standard tools.
4 The data can be viewed with standard tools.

4+ Different views of the same data are easy to create with style sheets.

The first major benefit of the XML format is that the data is self-describing. The
meaning of each item of information is clearly and unambiguously indicated by the
markup. For example, one of the more opaque values is the CLOSED_CAPTION ele-
ment. Its value is either Yes or No. In a more traditional, tab- or comma-delimited
format, there’d be no evidence of exactly what Yes or No meant. In XML, however,
it’s obvious that this tells you whether or not the show is closed captioned.
Sometimes, it takes several levels of markup to tease out the meaning of a string.
For instance, knowing that “Oprah Winfrey” is a name still leaves open the possibil-
ity that it may be the name of a person, a show, a book, a play, a high school, or
something else. However, the hierarchical nature of the XML document makes it
clear that this is indeed the name of a show.

Another common error in less-verbose formats is transposing values; for example,
flipping the order of the given name and the surname. More than one database
knows me as “Harold Elliotte” instead of “Elliotte Harold.” XML lets you transpose
with abandon. As long as the markup is transposed along with the content, no infor-
mation is lost or misunderstood. It doesn’t matter whether the first name comes
first or the last name comes first. It’s still completely obvious which is which.

The second benefit of the XML format is that data can be manipulated in a wide
range of XML-enabled tools, from expensive payware such as Adobe FrameMaker to
free open source software such as Cocoon and eXist. The data may be bigger, but
the extra redundancy allows more tools to process it. If you want to write your own
tools, there are parser libraries available in most major programming languages,
including C, C#, C++, Java, Perl, Python, Haskell, AppleScript, and many others. You
don’t have to start from scratch.

The same is true when the time comes to view the data. The XML document can be
loaded into Internet Explorer, Mozilla, Adobe FrameMaker, xmlspy, and many other
tools, all of which provide unique, useful views of the data. The document can even
be loaded into simple, plain-vanilla text editors such as vi, BBEdit, and TextPad.
XML is at least marginally viewable on all platforms.

88

Part | 4+ Introducing XML

New software isn’t the only way to get a different view of the data either. The next
section develops a style sheet for television listings that provides a completely dif-
ferent way of looking at the data than what you see in Figure 4-1. Each time you
apply a different style sheet to the same document, you see a different picture.

Lastly, you should ask yourself if the size is really that important. Modern hard
drives are quite big and can a hold a lot of data, even if it’s not stored very effi-
ciently. Furthermore, XML files compress very well. Using gzip or similar algo-
rithms, it’s not uncommon to see a reduction in the file size of 90 percent or more.
Many current HTTP servers can actually compress the files they send so that
network bandwidth used by a document like this is fairly close to its actual infor-
mation content. Finally, don’t assume that binary file formats, especially general-
purpose ones, are necessarily more efficient. In practice, relational databases, such
as Oracle, and typical office software, such as Microsoft Excel, are quite spendthrift
with disk space. Although you can certainly create more efficient file formats to
hold this data, in practice, that isn’t often necessary.

Preparing a Style Sheet for Document Display

The view of the raw XML document shown in Figure 4-1 is not bad for some uses. For
instance, it allows you to collapse and expand individual elements so you see only
those parts of the document you want to see. However, most of the time, you’d prob-
ably like a more finished look, especially if you're going to display it on the Web. To
provide a more polished look, you must write a style sheet for the document.

In this chapter, I use cascading style sheets (CSS). A CSS style sheet associates par-
ticular formatting with each element of the document. The complete list of ele-
ments used in the XML document of Listing 4-1 follows:

ACTOR LENGTH SHOW
AIR_DATE MIDDLE_INITIAL STARS
CALL_LETTERS MIDDLE_NAME START_TIME
CAST NAME STATION
CHANNEL NETWORK SURNAME
CLOSED_CAPTIONED ORIGINAL_AIR_DATE TITLE
DESCRIPTION PRODUCER TYPE
DIRECTOR RATING WRITER
EPISODE_NUMBER REPEAT YEAR_MADE
GIVEN_NAME SCHEDULE

Chapter 4 4+ Structuring Data 89

Generally, you’ll want to follow an iterative procedure, adding style rules for each of
these elements one at a time, checking that they do what you expect, then moving
on to the next element. In this example, such an approach also has the advantage of
introducing CSS properties one at a time for those who are not familiar with them.

Linking to a style sheet

The style sheet can be named anything you like. If it’s only going to apply to one
document, it’s customary to give it the same name as the document but with the
three-letter extension .css instead of .xml. For example, the style sheet for the TV
schedule XML documents might be called tvschedule.css.

To attach a style sheet to the document, you simply add an <?xm1-stylesheet?>
processing instruction between the XML declaration and the root element like this:

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="tvschedule.css"?>
<SEASON>

This tells a browser reading the document to apply the CSS style sheet found in the
file tvschedule.css to this document. This file is assumed to reside in the same
directory and on the same server as the XML document itself. In other words,
tvschedule.css is a relative URL. Absolute URLs may also be used, as in the fol-
lowing code fragment:

<?xml version="1.0"7>

<?xml-stylesheet type="text/css"
href="http://cafeconleche.org/styles/tvschedule.css"?>
{SCHEDULE>

You can begin by simply placing an empty file named tvschedule.css in the same
directory as the XML document. After you’ve done this and added the necessary
processing instruction to Listing 4-2, the document appears as shown in Figure 4-2.
Only the element content is shown. The collapsible outline view of Figure 4-1 is
gone. The formatting of the element content uses the browser’s defaults —black 12-
point Times New Roman on a white background, in this case.

90 Part| 4 Introducing XML

E Mozilla

. File Edit “iew Go Bookmarks Tools Window Help

" @O @O O Q IQ— hittp:/feneese. cafl leche. org/exarmpl hedule20030703. xml]

uly 3, 2003 CBS WCBS 2 Hollywood Squares SeriesiCame Shows 5074 19.00-0500 30 minates Tuly 3, 2003 Janvary 16, 2003 Yes Yes Don Rickles Jerry Springer
Fuickard Simmons Vicki Lawrence John Salley Joanis Laurer Blartin bl Tillian Barberie Kennedy Henry Winkler Ifichael Levitt Entertainenent Tonight Seriesiews
BEED 19:30-0500 30 minutes July 3, 2003 July 3, 2003 Yes Ho American Junioms rernaining contestants, Sexand the City previsw. The Amazing Race I Could Hever
Have Been Frepared for What I'm Looking at Fight How SeriesiCarne Shows 406 20.00-0500 60 rinutes July 3, 2003 Tuly 3, 2003 Yes Mo Jerry Bruckheimer
Bertrarn van Iurster Hayma Sereech Washington Jon Kroll Eight twenty-somethings speed through foreign cultures as quickly as possible in desperate attempt to
kovoid leaming anything, WLNY 55 Oprah Winfrey Series/Talk 19:00-0500 60 rinutes July 3, 2003 February 4, 2003 Yes Ves TV-FG Chuests gbber, Oprah looks
Eympathetic. Silicon Towers Movie 20.00-0500 60 minutes July 3, 2003 1999 Yes Yes TV-FO Brian Dennehy Daniel Baldwin Brad Downif CGary Mosher &
programmer disconvers his company ranufactures chips for eracking bank systems. HBO 501 Final Fantesy: The Spirits Within Movielfnimated 18:30-0500 105
pinutes July 3, 2003 Yes Yes PG-13 2 The last city on Earth defends itself agninst alien phantoms. Little to no relationship o the video garmes of the same name.
Hironobu Sakeguchi Al Feinart Jeff Vinter Hironobu Sakaguechi Jun Aida Chris Les Iing Ma Alec Baldwin Ving Fhames Steve Buscemi Perd Cilpin Donald Sutherland)
ames Woods Terrninator 3: Rise of the Iachines: HBO First Look SpecialDocureentary 20:15-0500 15 minutes Juby 3, 2003 June 26, 2003 Yes Yes TV14 Star
Wars: Episode I -- Attack of the Clones Movie 2030-0500 150 roinutes July 3, 2003 2002 Yes Yes PG-13 3 Cbi-wan Kenobi and Anekin Skyrwalker battle Count
Docky and the Trade Federation. George Lucas George Lucas Jonathan Hales Creorge Luses George MoCallam Evran WMeGregor Hatalie Fortman Chyistopher Lee
Eamuel L Jackson Frank Oz

Bane ===
Figure 4-2: The TV schedule after a blank style sheet is applied

Assigning style rules to the root element

You do not have to assign a style rule to each element in the list. Many elements
can rely on the styles of their parents cascading down. The most important style,
therefore, is the one for the root element — SCHEDULE in this example. This defines
the default for all the other elements on the page. Computer monitors display at
roughly 96 dots per inch (dpi) and don’t have as high a resolution as paper at 300
or more dpi. Therefore, web pages should generally use a larger point size than is
customary in print. Let’s make the default 14-point type, black on a white back-
ground, as shown in the following:

SCHEDULE {font-size: 1l4pt; background-color: white;
color: black; display: block}

Place this statement in a text file, save the file with the name tvschedule.css in the
same directory as Listing 4-2, tvschedule2003-07-03.xml, and open the XML docu-
ment in your browser. You should see something similar to Figure 4-3.

Chapter 4 4+ Structuring Data 91

B Mozilla [_[F]=

. File Edit “iew Go Bookmarks Tools Window Help

Ja @Q@OQ O IQ— hittp:ffeneee. caf leche orgfexampl hedule20030703 . xml]

uly 3, 2003 CBS WCBS 2 Hollywood Squares Series/Game Shows 5074 19:00-0500 30 minutes July 3,
2003 Tanuary 16, 2003 Yes Yes Don Rickles Jerry Springer Richard Simmons Vicki Lawrence John Salley
Toanie Laurer Martin Mull Jillian Barberie Kennedy Henry Winkler Michael Levitt Entertainment Tonight
Series/News 5689 19:30-0500 30 minutes July 3, 2003 July 3, 2003 Yes No American Juniors remaining
contestants; Sex and the City preview. The Amazing Race I Could Never Have Been Prepared for What
I'm Looking at Right Now Series/Game Shows 406 20:00-0500 60 minutes Tuly 3, 2003 July 3, 2003 Yes
No Jerry Bruckheimer Bertram van Munster Hayma Screech Washington Jon Kroll Eight twenty-somethings
speed through foreign cultures as quickly as possible in desperate attempt to avoid learning anything.
WLNY 55 Oprah Winfrey Series/Talk 19:00-0500 60 minutes Tuly 3, 2003 February 4, 2003 Yes Yes
TV-PG Guests gabber; Oprah looks sympathetic. Silicon Towers Movie 20:00-0500 60 minutes July 3,
2003 1999 Yes Yes TV-PG Brian Dennehy Daniel Baldwin Brad Dourif Gary Mosher A programmer
discovers his company manufactures chips for cracking bank systems. HBO 501 Final Fantasy: The Spirits
[Within Movie/Animated 18:30-0500 105 minutes July 3, 2003 Yes Yes PG-13 2 The last city on Earth
defends itself against alien phantoms. Little to no relationship to the video games of the same name.
Hironobu Sakaguchi Al Reinart Jeff Vintar Hironobu Sakaguchi Jun Aida Chris Lee Ming Na Alec Baldwin
Ving Rhames Steve Buscemi Peri Gilpin Donald Sutherland Tames Woods Terminator 3: Rise of the
Machines: HBO First Look Special'Documentary 20:15-0500 15 minutes Tuly 3, 2003 June 26, 2003 Yes
Yes TV14 Star Wars: Episode II -- Attack of the Clones Movie 20:30-0500 150 minutes Juty 3, 2003 2002
Yes Yes PG-13 3 Obi-wan Kenobi and Anakin Skywalker battle Count Dooku and the Trade Federation.
George Lucas George Lucas Jonathan Hales George Lucas George McCallam Ewan McGregor Natalie
Portman Christopher Lee Samuel L Tackson Frank Oz

Dore ==
Figure 4-3: A TV schedule in 14-point type with a black on white background

The default font size changed between Figure 4-2 and Figure 4-3. The text color and
background color did not. Indeed, it was not absolutely required to set them,
because black foreground and white background are the defaults. Nonetheless,
nothing is lost by being explicit about what you want.

Assigning style rules to titles

The DATE element is more or less the title of the document. Therefore, let’s make
it appropriately large and bold — 32 points should be big enough. Furthermore,

it should stand out from the rest of the document rather than simply running
together with the rest of the content, so let’s make it a centered block element. All
of this can be accomplished by the following style rule:

DATE {display: block; font-size: 32pt; font-weight: bold;
text-align: center}

Figure 4-4 shows the document after this rule has been added to the style sheet.
Notice in particular the line break after 2003. That’s there because DATE is now a
block-level element. Everything else in the document is an inline element. Only
block-level elements can be centered (or left-aligned, right-aligned, or justified).

o2 Part| 4 Introducing XML

B Mozilla M= ES

. File Edit “iew Go Bookmarks Tools Window Help

Ja @°®O® O IQ‘:— hittp:ffeneee. caf leche orgfexamples/schedulg20030703 . ml] A
July 3, 2003 i

CBS WCBS 2 Hollywood Squares Series/Game Shows 5074 19:00-0500 30 minutes July 3, 2003 January]
16, 2003 Yes Yes Don Rickles Jetry Springer Richard Simmons Vicki Lawrence John Salley Joanie
Laurer Martin Mull Jillian Barberie Kennedy Henry Winkler Michael Levitt Entertainment Tonight
Series/News 5689 19:30-0500 30 minutes July 3, 2003 July 3, 2003 Yes No American Juniors remaining
contestants; Sex and the City preview. The Amazing Race I Could Never Have Been Prepared for What
I'm Looking at Right Now Series/Game Shows 406 20:00-0500 60 minutes JTuly 3, 2003 July 3, 2003 Yes
No Jerry Bruckheimer Bertram van Munster Hayma Screech Washington Jon Kroll Eight
fwenty-somethings speed through foreign cultures as quickly as possible in desperate attempt to avoid
earning anything. WLNY 55 Oprah Winfrey Series/Talk 19:00-0500 60 minutes July 3, 2003 February 4, |=
2003 Yes Yes TV-PG Guests gabber; Oprah looks sympathetic. Silicon Towers Movie 20:00-0500 60
minutes July 3, 2003 1999 Yes Yes TV-PG Brian Dennehy Daniel Baldwin Brad Dourif Gary Mosher A
rogrammer discovers his company manufactures chips for cracking bank systems. HBO 501 Final
Fantasy: The Spirits Within Movie/Animated 18:30-0500 105 minutes July 3, 2003 Yes Yes PG-13 2 The
ast city on Earth defends itself against alien phantoms. Little to no relationship to the video games of the
same name. Hironobu Sakaguchi Al Reinart Jeff Vintar Hironobu Sakaguchi Jun Aida Chris Lee Ming Na
iAlec Baldwin Ving Rhames Steve Buscemi Peri Gilpin Donald Sutherland James Woods Terminator 3:
Rize of the Machines: HBO First Look Special/Documentary 20:15-0500 15 minutes July 3, 2003 June 26,
R003 Yes Yes TV14 Star Wars: Episode II -- Attack of the Clones Movie 20:30-0500 150 minutes July 3,
2003 2002 Yes Yes PG-13 3 Obi-wan Kenobi and Anakin Skywalker battle Count Dooku and the Trade
Federation. George Lucas George Lucas Jonathan Hales George Lucas George McCallam Ewan
Done = — = 5 5 : ==

Figure 4-4: Styling the DATE element as a title

I

“July 3, 2003” isn’t the ideal title for this document. “TV Schedule: July 23, 2003”
would be better, but the phrase “TV Schedule” isn’t included in the XML document.
CSS lets you add extra content from the style sheet either before or after particular
elements using the :before and :after pseudoselectors. The text that you want
to add is given as a string value of the content property. For example, to add the
phrase “TV Listings: “ to the beginning of the DATE element, add this rule to the
style sheet:

DATE:before {content: "TV Schedule: "}
Figure 4-5 shows the document after this rule has been added.

Caution Internet Explorer doesn’t support either the :before and :after pseudoselec-
tors or the content property.

Chapter 4 4 Structuring Data

B Mozilla M= ES

. File Edit “iew Go Bookmarks Tools Window Help

Ja @°®O® O IQ‘:— hittp:ffeneee. caf leche orgfexamples/schedulg20030703 . ml] A
July 3, 2003 i

CBS WCBS 2 Hollywood Squares Series/Game Shows 5074 19:00-0500 30 minutes July 3, 2003 January]
16, 2003 Yes Yes Don Rickles Jetry Springer Richard Simmons Vicki Lawrence John Salley Joanie
Laurer Martin Mull Jillian Barberie Kennedy Henry Winkler Michael Levitt Entertainment Tonight
Series/News 5689 19:30-0500 30 minutes July 3, 2003 July 3, 2003 Yes No American Juniors remaining
contestants; Sex and the City preview. The Amazing Race I Could Never Have Been Prepared for What
I'm Looking at Right Now Series/Game Shows 406 20:00-0500 60 minutes JTuly 3, 2003 July 3, 2003 Yes
No Jerry Bruckheimer Bertram van Munster Hayma Screech Washington Jon Kroll Eight
fwenty-somethings speed through foreign cultures as quickly as possible in desperate attempt to avoid
earning anything. WLNY 55 Oprah Winfrey Series/Talk 19:00-0500 60 minutes July 3, 2003 February 4, |=
2003 Yes Yes TV-PG Guests gabber; Oprah looks sympathetic. Silicon Towers Movie 20:00-0500 60
minutes July 3, 2003 1999 Yes Yes TV-PG Brian Dennehy Daniel Baldwin Brad Dourif Gary Mosher A
rogrammer discovers his company manufactures chips for cracking bank systems. HBO 501 Final
Fantasy: The Spirits Within Movie/Animated 18:30-0500 105 minutes July 3, 2003 Yes Yes PG-13 2 The
ast city on Earth defends itself against alien phantoms. Little to no relationship to the video games of the
same name. Hironobu Sakaguchi Al Reinart Jeff Vintar Hironobu Sakaguchi Jun Aida Chris Lee Ming Na
iAlec Baldwin Ving Rhames Steve Buscemi Peri Gilpin Donald Sutherland James Woods Terminator 3:
Rize of the Machines: HBO First Look Special/Documentary 20:15-0500 15 minutes July 3, 2003 June 26,
R003 Yes Yes TV14 Star Wars: Episode II -- Attack of the Clones Movie 20:30-0500 150 minutes July 3,
2003 2002 Yes Yes PG-13 3 Obi-wan Kenobi and Anakin Skywalker battle Count Dooku and the Trade
Federation. George Lucas George Lucas Jonathan Hales George Lucas George McCallam Ewan

I

Done =H= o
Figure 4-5: Adding content to the YEAR element

In this document, with these style rules, DATE duplicates the functionality of

HTML'’s H1 header element. Because this document is so neatly hierarchical, several
other elements serve the role of H2 headers, H3 headers, and so on. These elements
can be formatted by similar rules with only a slightly smaller font size. For this doc-
ument, the name of the network, channel, and call letters makes a nice level 2 divi-
sion, while each show makes a nice level 3 division. These four rules format them

accordingly:

STATION {display: block}

SHOW {display: block}

NETWORK, CHANNEL, CALL_LETTERS {font-size: 28pt;
font-weight: bold}

NAME {font-weight: bold}

Figure 4-6 shows the resulting document. Because SHOW and STATION are formatted

as block-level elements, there are line breaks before and after them.

93

94

Part | 4+ Introducing XML

B Mozilla M= ES

. File Edit “iew Go Bookmarks Tools Window Help

Ja @0 ®O 0 O IQ‘.— hittp:ffeneee. caf leche orgfexamples/schedulg20030703 . ml] A
TV Schedule: July 3, 2003 i
CBSWCBS2

Hollywood Squares Series/Game Shows 5074 19:00-0500 30 minutes July 3, 2003 January 16, 2003 Yes
Yes Don Rickles Terry Springer Richard Simmons Vicki Lawrence John Salley Joanie Laurer Martin Mull
illian Barberie Kennedy Henry Winkler Michael Levitt

ntertainment Tonight Series/News 5689 19:30-0500 30 minutes July 3, 2003 July 3, 2003 Yes No
erican Juniors remaining contestants; Sex and the City preview.

e Amazing Race I Could Never Have Been Prepared for What I'm Looking at Right Now
eries/Game Shows 406 20:00-0500 60 minutes July 3, 2003 July 3, 2003 Yes No Jerry Bruckheimer
ertram van Munster Hayma Screech Washington Jon Kroll Eight twenty-somethings speed through
oreign cultures as quickly as possible in desperate attempt to avoid learning anything,

LNY 55 il

prah Winfrey Series/Talk 19:00-0500 60 minutes Tuly 3, 2003 February 4, 2003 Yes Yes TV-PG
uests gabber; Oprah looks sympathetic.

ilicon Towers Movie 20:00-0500 60 minutes July 3, 2003 1999 Yes Yes TV-PG Brian Dennehy Daniel
aldwin Brad Dourif Gary Mosher A programmer discovers his company manufactures chips for
racking bank systems.

Dxi m&t
Figure 4-6: Styling CHANNEL, NETWORK, CALL_LETTERS, and NAME as headings

This is beginning to break up the document into more manageable, paragraph-sized
chunks. However, is this what you really want? Television listings are formatted as
tables for good reason. It makes them easier to scan and read. Could you instead
format this document as a table? CSS does allow you to format elements as parts of
tables instead of blocks. For example, these rules attempt to duplicate the table
structure of Table 4-1:

STATION {display: table-row)

NETWORK, CHANNEL, CALL_LETTERS {display: table-cell;
color: white; background-color: grey}

SHOW {border-width: 1px; border-style: solid;
display: table-cell}

However, CSS assumes that each element occupies a single cell. In the television
schedule, this translates into each show being exactly half an hour long. When this
isn’t the case, the cells rapidly get out of sync with the headings and each other, as
shown in Figure 4-7. Adding a caption row at the top for times simply isn’t possible.
Even within the realm of what CSS can theoretically handle, table support is
extremely limited and buggy in most current browsers. Sophisticated table layout
that can handle column spans, row spans, styles that depend on row and column,
and other advanced features — and that works reasonably well across browsers —
will have to wait until the more powerful XSL style sheet language is introduced in
the next chapter.

Chapter 4 4+ Structuring Data o5

. File Edit “iew Go Bookmarks Tools YWindow Help

Q@ @ @ [http:#fwwen cafeconleche orglexamples/sche duls 20030703 xml g
TV Schedule: July 3, 2003

CBS WCBS2 Hollywood Squares [Entertainment
Series/Game Shows Tonight
19:00-0500 30 minutes |[Series/News
anuary 16, 2003 Yes [19:30-0500 30
Iminutes July 3,
2003 Yes No
lAmerican Juniors
remaining
contestants; Sex
and the City
preview.

Silicon Towers Movie
120:00-0500 60 minutes
1999 Yes Yes TV-PG
A programmer
discovers his company
manufactures chips for

Figure 4-7: CSS table layout

Now it’s time to look at styling the individual shows. You've already made the

name bold. The next obvious step is to remove the information you don’t need. For
example, most printed television listings don’t bother to list the producer, director,
episode number, or current date. I'm also going to omit the complete cast. Sometimes
this is included, but most of the time it isn’t, and CSS doesn’t provide any way to
choose when to include it. In CSS, you can set an element’s display property to
none to hide it from view:

CAST {display: none}

AIR_DATE f{display: none}
DIRECTOR {display: none}
EPISODE_NUMBER {display: none}
PRODUCER {display: none}
WRITER {display: none}

Figure 4-8 shows the result.

96 Part| 4 Introducing XML

B Mozilla M= ES

. File Edit “iew Go Bookmarks Tools Window Help

Ja @0600 O IQ“— hittp:ffeneee. caf leche orgfexamples/schedulg20030703 . ml]

TV Schedule: July 3, 2003 i
CBSWCBS2

Hollywood Squares Series/Game Shows 5074 19:00-0500 30 minutes July 3, 2003 January 16, 2003 Yes
Yes Don Rickles Terry Springer Richard Simmons Vicki Lawrence John Salley Joanie Laurer Martin Mull
illian Barberie Kennedy Henry Winkler Michael Levitt

ntertainment Tonight Series/News 5689 19:30-0500 30 minutes July 3, 2003 July 3, 2003 Yes No [i
erican Juniors remaining contestants; Sex and the City preview.

e Amazing Race I Could Never Have Been Prepared for What I'm Looking at Right Now
eries/Game Shows 406 20:00-0500 60 minutes July 3, 2003 July 3, 2003 Yes No Jerry Bruckheimer
ertram van Munster Hayma Screech Washington Jon Kroll Eight twenty-somethings speed through
oreign cultures as quickly as possible in desperate attempt to avoid learning anything,

LNY 55 il

prah Winfrey Series/Talk 19:00-0500 60 minutes Tuly 3, 2003 February 4, 2003 Yes Yes TV-PG
uests gabber; Oprah looks sympathetic.

ilicon Towers Movie 20:00-0500 60 minutes July 3, 2003 1999 Yes Yes TV-PG Brian Dennehy Daniel
aldwin Brad Dourif Gary Mosher A programmer discovers his company manufactures chips for
racking bank systems.

=
= e

Done

Figure 4-8: Hiding unwanted content

The final step is to choose styles for the remainder of SHOW’s child elements. One
nice approach is to format everything except the description as a bulleted list. The
description can be formatted as a simple block-level element. For the bulleted list,
use the list-item value of the display property, a .35-inch indent, and a standard
disk bullet.

TYPE {display: Tist-item; Tist-style-type: disc;
margin-left: 0.35in }

LENGTH {display: list-item; list-style-type: disc;
margin-left: 0.35in}

START_TIME {display: list-item; Tist-style-type: disc;

margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

REPEAT {display: list-item; list-style-type: disc;
margin-left: 0.35in}

CLOSED_CAPTIONED {display: list-item; list-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

RATING {display: list-item; list-style-type: disc;
margin-left: 0.35in}

Chapter 4 4+ Structuring Data o7

STARS {display: Tist-item; list-style-type: disc;
margin-left: 0.35in}

YEAR_MADE {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

Figure 4-9 shows the result.

This is beginning to look decent, but it still isn’t obvious what each bullet point rep-
resents. For example, the last two bullet points for Hollywood Squares are Yes and
Yes, but yes what? Once again, you can use the content property and the :before
pseudo-element to describe what each piece of the information is, with the result
shown in Figure 4-10.

LENGTH:before {content: "Length: "}

START_TIME:before {content: "Starts at "}
ORIGINAL_AIR_DATE:before {"First aired on "}
REPEAT:before {content: "Repeat: "}
CLOSED_CAPTIONED:before {content: "Closed captioned: "}
RATING:before {content: "Rating: "}

STARS:before {content: "Stars: "}

YEAR_MADE:before {content: "Made in "}

. File Edit “iew Go Bookmarks Tools Window Help

Ja @O@OQ O IQ— hittp:ffeneee. caf leche orgfexampl hedule20030703. xml]
|

TV Schedule: July 3, 2003
CBSWCBS2 -

Hollywood Squares
+ Series/Game Shows
+ 19:00-0500
+ 30 minutes
+ January 16, 2003
+ Yes
+ Yes
Entertainment Tonight
+ Series/News
+ 19:30-0500
+ 30 minutes
« Tuly 3, 2003
+ Yes
+ No
American Juniors remaining contestants; Sex and the City preview.
The Amazing Race I Could Never Have Been Prepared for What I'm Looking at Right Now
+ Series/Game Shows
* 20:00-0500 =
Dane 2=

Figure 4-9: Styling the show data as a bulleted list

98

Part | 4+ Introducing XML

B Mozilla M= ES

. File Edit “iew Go Bookmarks Tools Window Help

Ja @0 ®O 0 O IQ‘.— hittp:ffeneee. caf leche orgfexamples/schedulg20030703 . ml] A
TV Schedule: July 3, 2003 i
CBSWCBS2 -

Hollywood Squares
+ Series/Game Shows
+ Starts at 19:00-0500
+ Length: 30 minutes
+ January 16, 2003
+ Clozed captioned: Yes
+ Repeal: Yes
Entertainment Tonight
+ Series/News
+ Starts at 19:30-0500
+ Length: 30 minutes
« Tuly 3, 2003
+ Closed captioned: Yes
+ Repeat: No
American Juniors remaining contestants; Sex and the City preview.
The Amazing Race I Could Never Have Been Prepared for What I'm Looking at Right Now
+ Series/Game Shows
« Starts at 20:00-0500 =
Done =3 o]
Figure 4-10: The finished schedule

The complete style sheet

Listing 4-3 shows the finished style sheet. CSS style sheets don’t have a lot of struc-
ture beyond the individual rules. In essence, this is just a list of all the rules that I
introduced separately in the preceding material. Reordering them wouldn’t make
any difference as long as they’re all present.

Listing 4-3: tvschedule.css

STATION {display: block}
SHOW {display: block}
NETWORK, CHANNEL, CALL_LETTERS {font-size: 28pt;
font-weight: bold}
NAME {font-weight: bold}
DATE:before {content: "TV Schedule: "}
DATE {display: block; font-size: 32pt; font-weight: bold;
text-align: center}
SCHEDULE {font-size: 14pt; background-color: white;
color: black; display: block}

Chapter 4 4+ Structuring Data 99

AIR_DATE {display: none}
DIRECTOR {display: none}
EPISODE_NUMBER {display: none}
PRODUCER {display: none}
WRITER {display: none}

CAST {display: none}

DESCRIPTION {display: block}

TYPE {display: list-item; list-style-type: disc;
margin-left: 0.35in }

LENGTH {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

START_TIME {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: Tist-item;
list-style-type: disc; margin-left: 0.35in}

REPEAT {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

CLOSED_CAPTIONED {display: list-item; list-style-type: disc;
margin-left: 0.35in}

ORIGINAL_AIR_DATE {display: Tist-item;
list-style-type: disc; margin-left: 0.35in}

RATING {display: list-item; Tist-style-type: disc;
margin-left: 0.35in}

STARS {display: Tist-item; Tist-style-type: disc;
margin-left: 0.35in}

YEAR_MADE {display: list-item; list-style-type: disc;
margin-left: 0.35in}

LENGTH:before {content: "Length: "}

START_TIME:before {content: "Starts at "}
ORIGINAL_AIR_DATE:before {"First aired on "}
REPEAT:before {content: "Repeat: "}
CLOSED_CAPTIONED:before {content: "Closed captioned: "}
RATING:before {content: "Rating: "}

STARS:before {content: "Stars: "}

YEAR_MADE:before {content: "Made in "}

This completes the basic formatting for the television schedule. However, work
clearly remains to be done. Some things that you might want to add include the
following:

4 Instead of writing “Closed captioned: yes” or “Repeat: Yes”, it might be nicer
to simply write (CC) or (repeat) as in many actual TV schedules.
4 Sort by start time rather than station.

4 The call letters should be included only if the station is independent.

100

Part | 4+ Introducing XML

4 The start times could be converted back to a more human-friendly format,
such as 7:00 P.M. instead of 19:00-0500.

4+ A two-star movie should be listed as %% instead of Stars: 2.
4 You might want to include one or two actors, even if not the entire cast.

4 You might want to include descriptions for some of the more important
shows, but not all of them.

4+ Even if you don’t lay out a grid schedule using a table, you might still want to
use multiple columns, as is often done in actual newspapers.

What unifies all these goals is that they require changing the information in the docu-
ment rather than merely annotating it with different styles. You could address some of
these points by adding more content to the document or changing the content that’s
there. For example, the STARS element could be written as <STARS> %% </STARS>
instead of <STARS>2</STARS>. (Yes, % is a Unicode character, which can be used in
an XML document.) The original document could be ordered by start time rather
than station. The CALL_LETTERS child element of a STATION could be present only
if the network isn’t.

Still, there’s something fundamentally troublesome about such tactics. If you orga-
nize the document so it’s absolutely perfect for this one use (a printed table in a
newspaper or a magazine), you may have eliminated information that’s critical for
other uses. What'’s flawed here is not XML. XML is robust enough to handle all these
needs. However, CSS is a limited style language. It’s intended for words in a row that
already contain all the document content in the right order and nothing else. A few
elements can be hidden by setting display to none, and a little text can be added
using :before, :after, and the content property. However, at its core, CSS just
isn’t designed to handle complicated document manipulations before displaying
the result to the end user.

What’s really needed is a different style language that enables you to add certain
boilerplate content to elements and to perform transformations on the element
content that is present. Such a language exists —the Extensible Stylesheet
Language (XSL). CSS is simpler than XSL. CSS works well for basic web pages and
reasonably straightforward documents. XSL is considerably more complex, but it is
also more powerful. XSL builds on the simple CSS formatting that you learned in
this chapter, but it also transforms the source document into various forms that the
reader can view. It’s often a good idea to make a first pass at a problem using CSS
while you're still debugging your XML, and to then move to XSL to achieve greater
flexibility:.

'E XSL is further discussed in Chapters 5, 16, and 17.
Reference

Chapter 4 4 Structuring Data 1 O]

Summary

In this chapter, you saw an example of an XML document being built from scratch.
This chapter was full of seat-of-the-pants/back-of-the-envelope coding. The docu-
ment was written with only minimal concern for details. In particular, you learned
the following:

4+ How to examine the data to be included in the XML document to identify the
elements

4 How to mark up the data with XML tags that you define

4+ The advantages of XML formats over traditional formats

4 How to write a CSS style sheet that says how the document should be format-
ted and displayed

The next chapter explores an alternative way to organize and encode television list-
ings in XML by using attributes. It also introduces another style sheet language,
XSLT, which can serve as a supplement or an alternative to CSS.

¢+

Attributes,
Empty-Element
Tags, and XSL

There are an infinite number of ways to encode any given
set of data in XML. There’s no one right way to do it,
although some ways are more right than others and some are
more appropriate for particular uses. This chapter explores a
different solution to the problem of marking up television list-
ings in XML, carrying over the example from the previous chap-
ter. Specifically, you learn to use attributes to store information
and to use empty-element tags to define element positions. In
addition, because CSS doesn’t work well with contentless XML
elements of this form, this chapter examines an alternative and
more powerful style sheet language called XSL.

Attributes

In Chapter 4, all information was provided either by a tag
name or as the text content of an element. This is a straight-
forward and easy-to-understand approach, but it’s not the
only one. As in HTML, XML elements may have attributes. An
attribute is a name-value pair associated with an element. The
name and the value are each strings, and no element can con-
tain two attributes with the same name.

You're already familiar with attribute syntax from HTML. For
example, consider this tag:

<IMG SRC=cup.gif WIDTH=89 HEIGHT=67 ALT="Cup
of coffee">

It has four attributes: the SRC attribute whose value is
cup.gif,the WIDTH attribute whose value is 89, the HEIGHT
attribute whose value is 67, and the ALT attribute whose value

CHAPTER

<+

In This Chapter
Attributes

Attributes versus

<+

elements

Empty-element tags

XSL

<+

<+

4

4

<+

4

104

Part

{/N ote

| 4+ Introducing XML

is Cup of coffee. However, in XML — unlike HTML — attribute values must always
be quoted, and start-tags must have matching end-tags. Thus, the XML equivalent
of this tag is as follows:

<IMG SRC="cup.gif" WIDTH="89" HEIGHT="67"
ALT="Cup of coffee">

Another difference between HTML and XML is that XML assigns no specific mean-

-~ ing to the IMG element and its attributes. In particular, there's no guarantee that
an XML browser will interpret this element as an instruction to load and display
the image in the file cup.gif.

Attribute syntax fits the television listings example quite nicely. One advantage is
that it makes the markup somewhat more concise. For example, instead of contain-
ing a DATE child element, the SCHEDULE element only needs a DATE attribute.

<SCHEDULE DATE="duly 3, 2003">
</SCHEDULE>

On the other hand, STATION should be a child of the SCHEDULE element rather than
an attribute. For one thing, there are many stations in a schedule. Anytime there’s
likely to be more than one of something, child elements are called for. Attribute
names must be unique within an element. You cannot, for example, write a SCHED -
ULE element like this:

<SCHEDULE DATE="Jduly 3, 2003" STATION="WPIX" STATION="WCBS">
</SCHEDULE>

The second reason STATION is naturally a child element rather than an attribute is
that it has substructure; that is, it is divided into NETWORK, CALL_LETTERS, SHOW,
and CHANNEL elements. Attribute values are unstructured, flat text. XML elements
can conveniently encode structure.

The shows should also be child elements rather than attributes. Like STATION, they
have substructure; but there’s another reason they should be child elements: The
shows are ordered by time. It matters which one comes first. XML parsers preserve
element order. However, they do not preserve attribute order. Whenever order mat-
ters, you need elements rather than attributes.

However, the network, call letters, and channel of a station are all unstructured, flat
text; there’s only one of each per station, and their order doesn’t matter. Therefore,
STATION elements can easily have CALL_LETTERS, SHOW, and CHANNEL attributes
instead of CALL_LETTERS, SHOW, and CHANNEL child elements:

CSTATION NETWORK="CBS"™ CALL_LETTERS="WCBS" CHANNEL="2">
</STATION>

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

You don’t have to store this information in attributes. Child elements still work, but
you can use attributes here if you want to.

Shows will have many attributes if you choose to make each nonrepeating, non-
structured item an attribute. For example, here’s the listing for Entertainment
Tonight marked up as attributes:

<SHOW NAME="Entertainment Tonight" TYPE="Series/News"
EPISODE_NUMBER="5689" START_TIME="17:30-0500"
LENGTH="30 minutes" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="July 3, 2003"
CLOSED_CAPTIONED="Yes" REPEAT="No"
DESCRIPTION="American Juniors remaining contestants;
Sex and the City preview.">

</ SHOW>

However, not all the content can fit into attributes. For example, the CAST has sub-
structure. A show may have multiple writers, producers, and directors. Even the
DESCRIPTION may have substructure in some cases. These should all remain child
elements.

Listing 5-1 uses this new attribute style for a complete XML document containing

the schedule for three New York stations between 7:00 and 8:30 P.M. on July 3, 2003.

It provides all the same information as shown in Listing 4-2 in the previous chapter.
It is merely marked up differently.

Listing 5-1: A Complete XML Document Using Attributes
to Store Television Listings

<?xml version="1.0"7>
<SCHEDULE DATE="July 3, 2003">

CSTATION NETWORK="CBS" CALL_LETTERS="WCBS" CHANNEL="2")>
<SHOW NAME="Hollywood Squares" TYPE="5074"
START_TIME="19:00-0500" AIR_DATE="Jduly 3, 2003"
ORIGINAL_AIR_DATE="January 16, 2003"
LENGTH="30 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes">
<CAST>
<ACTOR GIVEN_NAME="Don" SURNAME="Rickles"></ACTOR>
{ACTOR GIVEN_NAME="Jerry" SURNAME="Springer"></ACTOR>
<ACTOR GIVEN_NAME="Richard" SURNAME="Simmons"></ACTOR>
<ACTOR GIVEN_NAME="Vicki" SURNAME="Lawrence"></ACTOR>
<ACTOR GIVEN_NAME="John" SURNAME="Salley"></ACTOR>
<ACTOR GIVEN_NAME="Joanie" SURNAME="Laurer"></ACTOR>
<ACTOR GIVEN_NAME="Martin" SURNAME="Mull1"></ACTOR>

Continued

105

106 Partl + Introducing XML

Listing 5-1 (continued)

<ACTOR GIVEN_NAME="Jillian" SURNAME="Barberie"></ACTOR>
<ACTOR MIDDLE_NAME="Kennedy"></ACTOR>
</CAST>
<PRODUCER GIVEN_NAME="Henry"
SURNAME="Winkler"></PRODUCER>
<PRODUCER GIVEN_NAME="Michael"
SURNAME="Levitt"></PRODUCER>
</SHOW>
<SHOW NAME="Entertainment Tonight" TYPE="5689"
START_TIME="19:30-0500" AIR_DATE="July 3, 2003"
ORIGINAL_ATR_DATE="July 3, 2003" LENGTH="30 minutes"
REPEAT="No" CLOSED_CAPTIONED="Yes" DESCRIPTION="
American Juniors remaining contestants;
Sex and the City preview."></SHOW>
<SHOW NAME="The Amazing Race" TYPE="406"
START_TIME="20:00-0500" AIR_DATE="July 3, 2003"
ORIGINAL_ATR_DATE="July 3, 2003" LENGTH="60 minutes"
REPEAT="No" CLOSED_CAPTIONED="Yes" DESCRIPTION="
Eight twenty-somethings speed through foreign
cultures as quickly as possible in desperate
attempt to avoid Tearning anything.">
<PRODUCER GIVEN_NAME="Jerry"
SURNAME="Bruckheimer"></PRODUCER>
<PRODUCER GIVEN_NAME="Bertram"
SURNAME="van Munster"></PRODUCER>
<PRODUCER GIVEN_NAME="Hayma" MIDDLE_NAME="Screech"
SURNAME="Washington"></PRODUCER>
<PRODUCER GIVEN_NAME="Jon" SURNAME="Krol1"></PRODUCER>
</SHOW>
</STATION>

<STATION NETWORK="" CALL_LETTERS="WLNY" CHANNEL="55">
<SHOW NAME="Oprah Winfrey" TYPE="Series/Talk"
START_TIME="19:00-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="February 4, 2003"
LENGTH="60 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes"
DESCRIPTION="Guests gabber;
Oprah Tlooks sympathetic."
RATING="TV-PG"></SHOW>
<SHOW NAME="Silicon Towers" TYPE="Movie"
START_TIME="20:00-0500" AIR_DATE="July 3, 2003"
LENGTH="60 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes" DESCRIPTION="A programmer
discovers his company manufactures chips for
cracking bank systems."™ RATING="TV-PG">
<CAST>

<ACTOR GIVEN_NAME="Brian" SURNAME="Dennehy"></ACTOR>

<ACTOR GIVEN_NAME="Daniel" SURNAME="Baldwin"></ACTOR>

<ACTOR GIVEN_NAME="Brad" SURNAME="Dourif"></ACTOR>

<ACTOR GIVEN_NAME="Gary" SURNAME="Mosher"></ACTOR>

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

</CAST>
</SHOW>
</STATION>

{STATION NETWORK="HBO" CALL_LETTERS="" CHANNEL="501">
<SHOW NAME="Final Fantasy: The Spirits Within"
TYPE="Movie/Animated" START_TIME="18:30-0500"
AIR_DATE="July 3, 2003" LENGTH="105 minutes"
REPEAT="Yes" CLOSED_CAPTIONED="Yes"
DESCRIPTION="The Tast city on Earth defends itself
against alien phantoms. Little to no relationship
to the video games of the same name."
RATING="PG-13" STARS="2">
<DIRECTOR GIVEN_NAME="Hironobu"
SURNAME="Sakaguchi"></DIRECTOR>
<WRITER GIVEN_NAME="AT1" SURNAME="Reinart"></WRITER>
<WRITER GIVEN_NAME="Jeff" SURNAME="Vintar"></WRITER>
<PRODUCER GIVEN_NAME="Hironobu"
SURNAME="Sakaguchi"></PRODUCER>
<PRODUCER GIVEN_NAME="Jun" SURNAME="Aida"></PRODUCER>
<PRODUCER GIVEN_NAME="Chris" SURNAME="Lee"></PRODUCER>
{CAST>
<ACTOR GIVEN_NAME="Ming" SURNAME="Na"></ACTOR>
<ACTOR GIVEN_NAME="Alec" SURNAME="Baldwin"></ACTOR>
<ACTOR GIVEN_NAME="Ving" SURNAME="Rhames"></ACTOR>
<ACTOR GIVEN_NAME="Steve" SURNAME="Buscemi"></ACTOR>
<ACTOR GIVEN_NAME="Peri" SURNAME="Gilpin"></ACTOR>
<ACTOR GIVEN_NAME="Donald"
SURNAME="Sutherland"></ACTOR>
<ACTOR GIVEN_NAME="James" SURNAME="Woods"></ACTOR>
</CAST>
</SHOW>
<SHOW NAME="Terminator 3: Rise of the Machines:
HBO First Look"™ TYPE="Special/Documentary"
START_TIME="20:15-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="June 26, 2003" LENGTH="15 minutes"
REPEAT="Yes" CLOSED_CAPTIONED="Yes"
RATING="TV14"></SHOW>
<SHOW NAME="Star Wars: Episode II --
Attack of the Clones" TYPE="Movie"
START_TIME="20:30-0500" AIR_DATE="July 3, 2003"
LENGTH="150 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes" DESCRIPTION="0bi-wan Kenobi
and Anakin Skywalker battle Count Dooku and the
Trade Federation." RATING="PG-13" STARS="3">
<DIRECTOR GIVEN_NAME="George" SURNAME="Lucas"></DIRECTOR>
<WRITER GIVEN_NAME="George" SURNAME="Lucas"></WRITER>
<WRITER GIVEN_NAME="Jonathan" SURNAME="Hales"></WRITER>
<PRODUCER GIVEN_NAME="George"
SURNAME="Lucas"></PRODUCER>
<PRODUCER GIVEN_NAME="George"
SURNAME="McCallam"></PRODUCER>

Continued

107

108

Part | 4+ Introducing XML

Listing 5-1 (continued)

<CAST>
CACTOR GIVEN_NAME="Ewan" SURNAME="McGregor"></ACTOR>
<ACTOR GIVEN_NAME="Natalie" SURNAME="Portman"></ACTOR>
<ACTOR GIVEN_NAME="Christopher"” SURNAME="Lee"></ACTOR>
CACTOR GIVEN_NAME="Samuel" MIDDLE_INITIAL="L"

SURNAME="Jdackson"></ACTOR>

<ACTOR GIVEN_NAME="Frank" SURNAME="0z"></ACTOR>

</CAST>

</SHOW>
</STATION>

</SCHEDULE>

Listing 5-1 uses mostly attributes for text content. Listing 4-2 used only elements.
There are intermediate approaches as well. For example, you could make the show
name and description part of element content, while leaving the rest of the data as
attributes, like this:

<SHOW TYPE="Series/News" EPISODE_NUMBER="5689"
START_TIME="17:30-0500" LENGTH="30 minutes"
AIR_DATE="July 3, 2003" ORIGINAL_AIR_DATE="July 3, 2003"
CLOSED_CAPTIONED="Yes" REPEAT="No">
<NAME>Entertainment Tonight</NAME>
<DESCRIPTION>
American Juniors remaining contestants;
Sex and the City preview.
</DESCRIPTION>
</SHOW>

This would include the show and description name in the text of a page while still
making the rest of the data available. With the appropriate style sheet, it could be
displayed as a hypertext footnote or as a ToolTip to readers who want to look
deeper. The data in the attributes may also be processed in ways other than direct
display. For example, a program could use the ATR_DATE and START_TIME attributes
to sort the shows or to line them up in the right columns in a table, without directly
showing these times to the user. There’s always more than one way to represent the
same data. Which one you pick depends on the needs of your specific application.

Chapter 5 4 Attributes, Empty-Element Tags, and XsL 1 (09

Attributes versus Elements

Chapter 4’s no-attribute approach was an extreme position. It’s also possible to
swing to the other extreme — storing all the information in the attributes and none
in the content. Listing 5-1 does this. In general, [don’t recommend this approach.
Storing all the information in element content — while equally extreme —is much
easier to work with in practice. However, this chapter entertains the possibility of
using only attributes for the sake of elucidation.

There are no hard-and-fast rules about when to use child elements and when to use
attributes. Generally, you’'ll use whichever suits your application. With experience,
you’ll gain a feel for when attributes are easier than child elements and vice versa.
Until then, one good rule of thumb is that the data itself should be stored in ele-
ments. Information about the data (metadata) should be stored in attributes. When
in doubt, put the information in the elements.

To differentiate between data and metadata, ask yourself whether someone reading
the document would want to see a particular piece of information. If the answer is
yes, the information probably belongs in a child element. If the answer is no, the
information probably belongs in an attribute. If all tags were stripped from the doc-
ument along with all the attributes, the basic information should still be present.
Attributes are good places to put ID numbers, URLs, references, and other informa-
tion not directly or immediately relevant to the reader. However, there are many
exceptions to the basic principal of storing metadata as attributes. Reasons for
making an exception include the following:

4 Attributes can’t hold structure well.

4 Attributes are unordered. Elements are ordered.

4+ Elements allow you to include meta-metadata (information about the
information about the information).

4+ Not everyone always agrees on what is and isn’t metadata.

4+ Elements are more extensible in the face of future changes.

Structured metadata

Elements can have substructure; attributes can’t. This makes elements far more
flexible and may convince you to encode metadata as child elements. For example,
suppose you're writing an article and you want to include a source for a fact. It
might look something like this:

<FACT SOURCE="The Biographical History of Baseball,
Donald Dewey and Nicholas Acocella (New York: Carroll &
Graf Publishers, Inc. 1995) p. 169">

110

Part | 4+ Introducing XML

Josh Gibson is the only person in the history of baseball
to hit a pitch out of Yankee Stadium.
</FACT>

Clearly, the information “The Biographical History of Baseball, Donald Dewey and
Nicholas Acocella (New York: Carroll & Graf Publishers, Inc. 1995) p. 169” is
metadata. It is not the fact itself. Rather, it is information about the fact. However,
the SOURCE attribute contains a lot of implicit substructure. You might find it more
useful to organize the information like this:

<SOURCE>
<AUTHOR>Donald Dewey</AUTHOR>
<AUTHOR>Nicholas Acocella</AUTHOR>
<BOOK>
<TITLE>The Biographical History of Baseball</TITLE>
<PAGES>169</PAGES>
<YEAR>1995</YEAR>
</BOOK>
</SOURCE>

Furthermore, using elements instead of attributes makes it straightforward to
include additional information such as the authors’ e-mail addresses, a URL where
an electronic copy of the document can be found, the chapter title, and anything
else that seems important.

Dates are another example. A common piece of metadata about scholarly articles is
the date the article was first received. This is important for establishing priority of
discovery and invention. It’s easy to include a DATE attribute in an ARTICLE tag:

<ARTICLE DATE="06/28/1969">
Polymerase Reactions in Organic Compounds
</ARTICLE>

However, the DATE attribute has substructure signified by the /. Getting that struc-
ture out of the attribute value is much more difficult than reading child elements of
a DATE element like this one:

<DATE>
<YEAR>1969</YEAR>
<MONTH>06</MONTH>
<DAY>28</DAY>
</DATE>

For example, with CSS, it’s easy to format the day and month invisibly so that only
the year appears:

YEAR {display: inline}
MONTH {display: none}
DAY {display: none)

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

If the DATE is stored as an attribute, however, there’s no easy way to access only
part of it. You must write a separate program in a programming language such as
ECMAScript or Java that can parse your date format. It’s easier to use the standard
XML tools and child elements.

Furthermore, the attribute syntax is ambiguous. What does the date “10/07/2004”
signify? Is it October 7th or July 10th? Readers from different countries will inter-
pret this data differently. Even if your parser understands one format, there’s no
guarantee the people entering the data will enter it correctly. The XML, by contrast,
is unambiguous.

Finally, using DATE children rather than attributes allows more than one date to be
associated with an element. For example, scholarly articles are often returned to
the author for revisions. In these cases, it can also be important to note when the
revised article was received, as in the following example:

<ARTICLE>
<TITLE>
Maximum Projectile Velocity in an Augmented Railgun
</TITLE>
<AUTHOR>ETTliotte Harold</AUTHOR>
<AUTHOR>Bruce Bukiet</AUTHOR>
<AUTHOR>WiTlTliam Peter</AUTHOR>
<DATE>
<YEAR>1992</YEAR>
<MONTH>10</MONTH>
<DAY>29</DAY>
</DATE>
<DATE>
<YEAR>1993</YEAR>
<MONTH>10</MONTH>
<DAY>26</DAY>
</DATE>
</ARTICLE>

As another example, consider the ALT attribute of an IMG tag in HTML. This is lim-
ited to a single string of text. However, given that a picture is worth a thousand
words, you might well want to replace an IMG with marked-up text. For instance,
consider the pie chart shown in Figure 5-1.

When you use an ALT attribute, the best description of this picture that you can
provide is as follows:

<IMG SRC="05021.gif"
ALT="Pie Chart of Positions in Major League Baseball"
WIDTH="819" HEIGHT="623">

</ IMG>

111

112 Partl + Introducing XML

Major League Baseball Positions

Second Base ThirdoBase Starting Pitcher
Shortstop 7% 6% 20%
6%

First Base
6%

Ol;g‘l;m Relief Pitcher
o Catcher 21%

9%
Figure 5-1: Distribution of positions in major league baseball

However, by using an ALT child element, you have more flexibility because you can
embed markup. For example, you might provide a table of the relevant numbers
instead of a pie chart:

<ALT>
<TABLE>
<TR>
<TD>Starting Pitcher</TD> <TD>242</TD> <TD>20%</TD>
</TR>
<TR>
<TD>Relief Pitcher</TD> <TD>336</TD> <TD>27%</TD>
</TR>
<TR>
<TD>Catcher</TD> <TD>104</TD> <TD>9%</TD>
</TR>
<TR>
<TD>0utfield</TD> <TD>235</TD> <TD>19%</TD>
</TR>
<TR>
<TD>First Base</TD> <TD>67</TD> <TD>6%</TD>
</TR>
<TR>
<TD>Shortstop</TD> <TD>67</TD> <TD>6%</TD>
</TR>
<TR>
<TD>Second Base</TD> <TD>88</TD> <TD>7%</TD>

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

</TR>
<TR>
<TD>Third Base</TD> <TD>67</TD> <TD>6%</TD>
</TR>
</TABLE>
</ALTS

You might even provide the actual PostScript or Scalable Vector Graphics (SVG)
code to render the picture in the event that the bitmap image is not available.

Meta-metadata

Using elements for metadata also easily allows for meta-metadata, or information
about the information about the information. For example, the author of a poem
might be considered to be metadata about the poem. The language in which that
author’s name is written is data about the metadata about the poem. This isn’t a
trivial concern, especially for distinctly non-Roman languages. For example, is the
author of the Odyssey Homer or Opnpog? Using elements, it’s easy to write the
following:

<POET LANGUAGE="EngTlish">Homer</POET>
<POET LANGUAGE="Greek">Ounpcg </POET>

However, if POET is an attribute rather than a child element, you're stuck with
unwieldy constructs such as this:

<POEM POET="Homer" POET_LANGUAGE="English"
POEM_LANGUAGE="English">

Tell me, 0 Muse, of the cunning man...
</POEM>

And it’s even more bulky if you want to provide both the poet’s English and Greek
names:

<POEM POET_NAME_1="Homer" POET_LANGUAGE_1="English"
POET_NAME_2="o0unpoc" POET_LANGUAGE_2="Greek"
POEM_LANGUAGE="English">

Tell me, 0 Muse, of the cunning man...
</POEM>

What's your metadata is someone else’s data

“Meta-ness” is in the mind of the beholder. Who’s reading your document and why
they’re reading it determines what they consider to be data and what they consider
to be metadata. For example, if you're simply reading an article in a scholarly journal,

113

114

Part | 4+ Introducing XML

the name of the author of the article is tangential to the information it contains.
However, if you're sitting on a tenure and promotions committee scanning a journal
to see who'’s publishing and who’s not, the names of the authors and the number of
articles they’'ve published may be more important to you than what they wrote (sad
but true).

In fact, you yourself might change your mind about what’s meta and what’s data.
What'’s only tangentially relevant today might become crucial next week. You can
use style sheets to hide unimportant elements today, and you can change the style
sheets to reveal them later. However, it’s more difficult to later reveal information
that was first stored in an attribute. This may require rewriting the document itself
rather than simply changing the style sheet.

Elements are more extensible

Attributes are certainly convenient when you only need to convey one or two
words of unstructured information. In these cases, there may genuinely be no cur-
rent need for a child element. However, this doesn’t preclude such a need in the
future.

For example, you may only need to store the name of the author of an article now,
and you may not need to distinguish between the first and last names. However, in
the future you might uncover a need to store first and last names, e-mail addresses,
institutions, snail-mail addresses, URLs, and more. If you've stored the author of
the article as an element, it’s easy to add child elements to include this additional
information.

Although any such change will probably require some revision of your documents,
style sheets, and associated programs, it’s still much easier to change a simple ele-
ment to a tree of elements than it is to make an attribute a tree of elements. If you
used an attribute, it’s very difficult to extend attribute syntax beyond the region for
which it was originally designed.

Good times to use attributes

Having exhausted all the reasons why you should use elements instead of
attributes, I feel compelled to point out that there are times when using attributes
makes sense. As previously mentioned, attributes are fully appropriate for very sim-
ple data without substructure that the reader is unlikely to want to see. One exam-
ple is the HEIGHT and WIDTH attributes of an IMG element. Although the values of
these attributes may change if the image changes, it’s hard to imagine how the data
in the attribute could be anything more than a very short string of text. HEIGHT and
WIDTH are one-dimensional quantities (in many ways), so they work well as attributes.

Furthermore, attributes are appropriate for simple information about the document
that has nothing to do with the content of the document. For example, it is often

Chapter 5 4 Attributes, Empty-Element Tags,andXSL] 15

useful to assign an 1D attribute to each element. The value of an 1D attribute is a
unique string possessed only by one element in the document. You can then use
this string for a variety of tasks including linking to particular elements of the docu-
ment, even if the elements move around as the document changes over time. For
example:

<SOURCE ID="S1">
<AUTHOR ID="A1">Donald Dewey</AUTHOR>
<AUTHOR ID="A2">Nicholas Acocella</AUTHOR>
<BOOK ID="B1">
<TITLE ID="B2">
The Biographical History of Baseball
</TITLE>
<PAGES ID="B3">169</PAGES>
<YEAR ID="B4">1995</YEAR>
</BOOK>
</SOURCE>

ID attributes make links to particular elements in the document possible. In this
way, they can serve the same purpose as the NAME attributes of HTML’s A elements.
Other data associated with linking—HREFs to link to, SRCs to pull images and
binary data from, and so forth —also work well as attributes.

'@ There are more examples of linking via ID attributes in Chapter 17 and Chapter 18.
eference

Attributes are also useful containers for document-specific style information. For
example, if TITLE elements are normally rendered as bold text, but you want to
make just one TITLE element both bold and italic, you might write something simi-
lar to this:

KTITLE STYLE="font-style: italic">Significant Others</TITLE>

This allows the style information to be embedded without changing the tree struc-
ture of the document. Although using a separate element would be ideal, this
scheme gives document authors more control when they cannot add elements to
the tag set that they’re working with. For example, the webmasters of a site might
require page authors and designers to use a particular XML vocabulary with a fixed
list of elements and attributes. Nonetheless, they might want to allow designers to
make minor adjustments to individual pages. Use this scheme with restraint, how-
ever, or you'll soon find yourself back in the HTML hell that XML was supposed to
save you from, in which formatting is freely intermixed with meaning and docu-
ments are no longer maintainable.

The final reason to use attributes is to maintain compatibility with legacy formats
such as HTML. To the extent that you're using tags that at least look similar to
HTML, such as , <P>, and <TD>, you might as well employ the standard HTML
attributes for these tags. This has the double advantage of allowing legacy browsers
to at least partially parse and display your document, and of being more familiar to
the people writing the documents.

116 Partl + Introducing XML

Empty Elements and Empty-Element Tags

An element that contains no content, not even white space, is called an empty ele-
ment. For example, this is an empty STATION element:

{STATION NETWORK="CBS" CALL_LETTERS="WCBS"
CHANNEL="2"></STATION>

The end-tag immediately follows the start-tag. Rather than including both a start-
tag and an end-tag, you can include one empty-element tag. Empty-element tags are
distinguished from start-tags by a closing /> instead of a closing >. For example,
instead of <STATION></STATION>, you would write <STATION/>. The WCBS
STATION element can be written with an empty-element tag like this:

{STATION NETWORK="CBS"™ CALL_LETTERS="WCBS" CHANNEL="2"/>

Often a space is placed before the closing /> to separate it from the last attribute
and make it a little easier to read:

(STATION NETWORK="CBS"™ CALL_LETTERS="WCBS" CHANNEL="2" />

XML parsers treat both single-tag forms identically to the two-tag version. This
STATION element is precisely equal (though not identical) to the previous STATION
element formed with an empty tag. The difference between <STATION></STATION>
and <STATION/> is syntax sugar and nothing more. If you don’t like the empty-
element tag syntax or find it hard to read, don’t use it.

Listing 5-2 rewrites Listing 5-1 using empty-element tags where possible. This is a
little shorter and perhaps a little clearer than the two-tag version. However, it is
exactly the same document. There is no significant difference between Listing 5-1
and 5-2. Parsers will read the same information from both documents, and browsers
will display them identically.

Listing 5-2: A Complete XML Document Using Empty-Element
Tags to Store Television Listings

<?xml oversion="1.0"7>
<SCHEDULE DATE="July 3, 2003">

{STATION NETWORK="CBS" CALL_LETTERS="WCBS" CHANNEL="2">
<SHOW NAME="Hollywood Squares" TYPE="5074"
START_TIME="19:00-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="Jdanuary 16, 2003"
LENGTH="30 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes">
<CAST>
<ACTOR GIVEN_NAME="Don" SURNAME="Rickles"/>
<ACTOR GIVEN_NAME="Jerry" SURNAME="Springer"/>

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

<ACTOR GIVEN_NAME="Richard" SURNAME="Simmons"/>
<ACTOR GIVEN_NAME="Vicki" SURNAME="Lawrence"/>
<ACTOR GIVEN_NAME="John" SURNAME="Salley"/>
<ACTOR GIVEN_NAME="Joanie" SURNAME="Laurer"/>
<ACTOR GIVEN_NAME="Martin" SURNAME="Mull"/>
<ACTOR GIVEN_NAME="Jillian" SURNAME="Barberie"/>
<ACTOR MIDDLE_NAME="Kennedy"/>
</CAST>
<PRODUCER GIVEN_NAME="Henry" SURNAME="Winkler"/>
<PRODUCER GIVEN_NAME="Michael" SURNAME="Levitt"/>
</SHOW>
<SHOW NAME="Entertainment Tonight" TYPE="5689"
START_TIME="19:30-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="July 3, 2003" LENGTH="30 minutes"
REPEAT="No" CLOSED_CAPTIONED="Yes" DESCRIPTION="
American Juniors remaining contestants;
Sex and the City preview."/>
<SHOW NAME="The Amazing Race" TYPE="406"
START_TIME="20:00-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="July 3, 2003" LENGTH="60 minutes"
REPEAT="No" CLOSED_CAPTIONED="Yes" DESCRIPTION="
Eight twenty-somethings speed through foreign
cultures as quickly as possible in desperate
attempt to avoid Tearning anything.">
<PRODUCER GIVEN_NAME="Jerry" SURNAME="Bruckheimer"/>
<PRODUCER GIVEN_NAME="Bertram" SURNAME="van Munster"/>
<PRODUCER GIVEN_NAME="Hayma" MIDDLE_NAME="Screech"
SURNAME="Washington"/>
<PRODUCER GIVEN_NAME="Jon" SURNAME="Kroll1"/>
</SHOW>
</STATION>

<STATION NETWORK="" CALL_LETTERS="WLNY"™ CHANNEL="55">
<SHOW NAME="Oprah Winfrey" TYPE="Series/Talk"
START_TIME="19:00-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="February 4, 2003"
LENGTH="60 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes"
DESCRIPTION="Guests gabber;
Oprah looks sympathetic."
RATING="TV-PG"/>
<SHOW NAME="Silicon Towers" TYPE="Movie"
START_TIME="20:00-0500" AIR_DATE="July 3, 2003"
LENGTH="60 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes" DESCRIPTION="A programmer
discovers his company manufactures chips for
cracking bank systems." RATING="TV-PG">
<CAST>

<ACTOR GIVEN_NAME="Brian" SURNAME="Dennehy"/>

<ACTOR GIVEN_NAME="Daniel" SURNAME="Baldwin"/>

<ACTOR GIVEN_NAME="Brad" SURNAME="Dourif"/>

<ACTOR GIVEN_NAME="Gary" SURNAME="Mosher"/>

Continued

117

118 Partl + Introducing XML

Listing 5-2 (continued)

</CAST>
</SHOW>
</STATION>

{STATION NETWORK="HBO" CALL_LETTERS="" CHANNEL="501">
<SHOW NAME="Final Fantasy: The Spirits Within"
TYPE="Movie/Animated" START_TIME="18:30-0500"
ATR_DATE="July 3, 2003" LENGTH="105 minutes"
REPEAT="Yes" CLOSED_CAPTIONED="Yes"
DESCRIPTION="The last city on Earth defends itself
against alien phantoms. Little to no relationship
to the video games of the same name."
RATING="PG-13" STARS="2">
<DIRECTOR GIVEN_NAME="Hironobu" SURNAME="Sakaguchi"/>
<WRITER GIVEN_NAME="AT1" SURNAME="Reinart"/>
<WRITER GIVEN_NAME="Jeff" SURNAME="Vintar"/>
<PRODUCER GIVEN_NAME="Hironobu" SURNAME="Sakaguchi"/>
<PRODUCER GIVEN_NAME="Jun" SURNAME="Aida"/>
<PRODUCER GIVEN_NAME="Chris" SURNAME="Lee"/>
{CAST>
<ACTOR GIVEN_NAME="Ming" SURNAME="Na"/>
<ACTOR GIVEN_NAME="Alec" SURNAME="Baldwin"/>
<ACTOR GIVEN_NAME="Ving" SURNAME="Rhames"/>
<ACTOR GIVEN_NAME="Steve" SURNAME="Buscemi"/>
<ACTOR GIVEN_NAME="Peri" SURNAME="Gilpin"/>
<ACTOR GIVEN_NAME="Donald" SURNAME="Sutherland"/>
<ACTOR GIVEN_NAME="James" SURNAME="Woods"/>
</CAST>
</ SHOW>
<SHOW NAME="Terminator 3: Rise of the Machines:
HBO First Look"™ TYPE="Special/Documentary"
START_TIME="20:15-0500" AIR_DATE="July 3, 2003"
ORIGINAL_AIR_DATE="June 26, 2003" LENGTH="15 minutes"
REPEAT="Yes" CLOSED_CAPTIONED="Yes" RATING="TV14"/>
<SHOW NAME="Star Wars: Episode II --
Attack of the Clones" TYPE="Movie"
START_TIME="20:30-0500" AIR_DATE="July 3, 2003"
LENGTH="150 minutes" REPEAT="Yes"
CLOSED_CAPTIONED="Yes" DESCRIPTION="0bi-wan Kenobi
and Anakin Skywalker battle Count Dooku and the
Trade Federation." RATING="PG-13" STARS="3">
<DIRECTOR GIVEN_NAME="George" SURNAME="Lucas"/>
<WRITER GIVEN_NAME="George" SURNAME="Lucas"/>
<WRITER GIVEN_NAME="Jonathan" SURNAME="Hales"/>
<PRODUCER GIVEN_NAME="George" SURNAME="Lucas"/>
<PRODUCER GIVEN_NAME="George" SURNAME="McCallam"/>
<CAST>
<ACTOR GIVEN_NAME="Ewan" SURNAME="McGregor"/>
<ACTOR GIVEN_NAME="Natalie" SURNAME="Portman"/>

Chapter 5 4 Attributes, Empty-Element Tags,andXSL] 19

CACTOR GIVEN_NAME="Christopher"” SURNAME="Lee"/>
<ACTOR GIVEN_NAME="Samuel" MIDDLE_INITIAL="L"
SURNAME="Jackson"/>
CACTOR GIVEN_NAME="Frank" SURNAME="0z"/>
</CAST>
</SHOW>
</STATION>
</SCHEDULE>

XSL

Figure 5-2 shows Listing 5-1 after the TV schedule style sheet from the previous
chapter is applied. It looks like a blank document because CSS styles only apply to
element content, not to attributes. If you use CSS, any data that you want to display
to the reader should be part of an element’s content rather than one of its

attributes.

i = () http://www.cafeconleche.org/..source/05/5-1xml B
<) = e
Bsck Forward Slop Refresh Hame ¢ AuloFill Print Mail £

m@ hitp i/ P cafesonleche org/books /bible3 /zource 705 /51 xm m

@ kternet zone 2

Figure 5-2: A blank document is displayed when CSS is applied to an XML document
whose elements do not contain any character data.

120

Part | 4+ Introducing XML

However, there is an alternative style sheet language that does allow browsers to
display attribute content. This is the Extensible Stylesheet Language (XSL). XSL is
divided into two parts, XSL Transformations (XSLT) and XSL Formatting Objects
(XSL-FO). XSLT enables you to replace one tag with another. You define rules that
map your XML tags to standard HTML tags, or to HTML tags plus CSS attributes.
XSLT can reorder elements in the document and even add additional content that
was never present in the XML document.

Caution Not all browsers support XSLT. In particular, Opera, Safari, Lynx, OmniWeb, iCab,

and Konqueror do not support XSLT. In addition, Internet Explorer has a number of
nasty bugs you have to work around that make XSLT development less pleasant
than it should be. Mozilla-derived browsers, including Camino, Firebird, and
Netscape 6.0 and later, do support XSLT quite well; however, Netscape 4.x and ear-
lier do not.

Chapter 15 introduces some techniques that enable you to use XSLT even with
browsers that don’t support it directly. In the meantime, however, don't expect any
of the examples in the rest of this chapter to work as advertised except in Internet
Explorer 5.0 or later, Mozilla 1.0 or later, or Netscape 6.0 or later.

The formatting half of XSL defines an extremely powerful view of documents as
pages. XSL-FO enables you to specify the appearance and layout of a page, includ-
ing multiple columns, text flow around objects, line spacing, widow and orphan
control, font faces, styles, sizes, and more. It’s designed to be powerful enough to
lay out documents for both the Web and print automatically from the same source
document. For example, a local newspaper could use two different XSL style sheets
to generate both the printed and online editions of the television listings from the
same source document automatically. However, no web browsers yet support XSL
formatting objects. Thus, I focus on XSL transformations in this section.

E XSL-FO is discussed in Chapter 16.
Reference

Templates

An XSLT style sheet contains templates into which data from the XML document is
poured. For example, a template might look similar to this:

<HTML>
<HEAD>
<TITLE>
XSLT Instructions to get the date
JTITLE>
</HEAD>
<BODY>
<HIDXSLT Instructions to get the date</H1>
XSLT Instructions to get the schedule
</BODY>
SHTMLD

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

The italicized sections will be replaced by particular XSLT elements that copy data
from the underlying XML document into this template. You can apply this template
to many different data sets. For example, if the template is designed to work with
the TV schedule, the same style sheet can display schedules for different days.

This may remind you of some server-side include schemes for HTML. In fact, this is
very much like server-side includes. However, the actual transformation of the
source XML document by the XSLT style sheet takes place on the client rather than
on the server. Furthermore, the output document does not have to be HTML. It can
be any well-formed XML.

ﬁlote Servers can be configured to perform the transformation on the server side
=~ instead. This is how you make XML documents with XSLT style sheets compatible
with legacy browsers that don’t support XSL.

XSLT instructions can retrieve any data in the XML document. This includes ele-
ment content, element names, and most importantly for this example, attribute val-
ues. Particular elements are chosen by a pattern that considers the element’s name,
its value, its attributes’ names and values, its absolute and relative position in the
tree structure of the XML document, and more. Once the data is extracted from an
element, it can be moved, copied, and manipulated in a variety of ways. This brief
introduction doesn’t discuss everything you can do with XSLT. However, you will

learn to use XSLT to write some pretty amazing documents that can be immediately
viewed on the Web.

,is-s-/‘x Chapter 15 discusses XSLT in depth.
Reference

The body of the document

Let’s begin by looking at a simple example and applying it to the TV schedule docu-
ment of Listing 5-1. Listing 5-3 is an XSLT style sheet. This style sheet provides the
HTML mold into which XML data will be poured.

Listing 5-3: An XSLT Style Sheet

<?xml version="1.0"7>
{xsl:stylesheet version="1.0"
xmlns:xslT="http://www.w3.0rg/1999/XSL/Transform">

<xsT:template match="SCHEDULE">
<HTML>
<HEAD>
<TITLE>
TV Listings
</TITLE>
</HEAD>

Continued

121

122 Partl + Introducing XML

Listing 5-3 (continued)

<BODY>
<HI>TV Listings</H1>

<HR></HR>

Copyright 2003

Elliotte Rusty Harold

<TA>

elharo@metalab.unc.edu

<IAS

</B0ODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

Listing 5-3 resembles an HTML file included inside an xs1:template element. In
other words, its structure looks like this:

<?xml version="1.0"7>
{xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsT:template match="SCHEDULE">
HTML file goes here
</xsl:template>

<{/xsl:stylesheet>

Listing 5-3 is not just an XSLT style sheet; it’s also an XML document. It begins with
an XML declaration. The root element of this document is xs1:stylesheet. This
style sheet contains a single template for the XML data encoded as an xs1:template
element. The xs1:template element has a match attribute with the value SCHEDULE,
and its content is a well-formed HTML document. It’s not a coincidence that the out-
put HTML is well formed. Because the HTML must first be part of an XSLT style
sheet, and because XSLT style sheets are well-formed XML documents, all the HTML
included in an XSIT style sheet must be well formed.

Chapter 5 4 Attributes, Empty-Element Tags,andXSL] 23

Attaching the XSLT style sheet of Listing 5-3 to the XML document in Listing 5-1 is
straightforward. Simply add an <?xm1-stylesheet?> processing instruction with a
type attribute with value application/xml and an href attribute that points to
the style sheet between the XML declaration and the root element, as in the follow-
ing example:

<?xml version="1.0"7>
<?xml-stylesheet type="application/xml" href="5-2.xs1"7?>
<SCHEDULE DATE="July 3, 2003">

This is the same way that a CSS style sheet is attached to a document. The only dif-
ference is that the type attribute has the value application/xml instead of
text/css.

Caution Internet Explorer expects the nonstandard and incorrect MIME type text/xs]
instead of application/xml. For maximum portability, you might want to
include two xm1-stylesheet processing instructions pointing to the same style
sheet, one instruction with type text/xs1 and the second instruction with type
application/xml, like this:

<?xml version="1.0"7>

<?xml-stylesheet type="application/xml"
href="5-2.xs1"?>

<?xml-stylesheet type="text/xsl1" href="5-2.xs1"7>

<SCHEDULE DATE="July 3, 2003">

The browser will pick whichever one it understands.

After the browser loads the XML document, it compares the root to each
xs1:template element until it finds one that matches. In this case, the single
template matches the root SCHEDULE element. When the browser finds this match,
it inserts the content of that template into the output document, producing what
you see in Figure 5-3.

The title

Of course, there’s something rather obvious missing from Figure 5-3 —the data!
Although the style sheet in Listing 5-3 displays something (unlike the CSS style
sheet of Figure 5-2), it doesn’t show any data from the XML document. To add this,
you need to use XSLT instruction elements to copy data from the source XML docu-
ment into the output document. Listing 5-4 adds xs1:value-of instructions that
extract the DATE attribute from the SCHEDULE element and insert it into the TITLE
and H1 elements of the output document. Figure 5-4 shows the rendered document.

124 Partl + Introducing XML

Fli= = (2) TV Listings qaf=]
o = = e
Elack Farward Stop Refresh Hoere 5 AutoFil Print PMail {
m@ htpd Furwrw cafeconleche org Mooks Mook Ssouree /0551 aml n

TV Listings

Copyright 2003 Elliotte Rusty Harold

elharo@metalab.unc.edu

! Internet zone I %
Figure 5-3: TV listings after application of the XSL style sheet in Listing 5-3

Listing 5-4: An XSL Style Sheet with Instructions to Extract
the DATE Attribute of the SCHEDULE Element

<?xml version="1.0"7>
{xsl:stylesheet version="1.0"
xmlins:xslT="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="SCHEDULE">
<HTML>

<HEAD>

<TITLE>
TV Listings <xsl:value-of select="@DATE"/>

<JTITLE>

</HEAD>

<BODY>
<HI>TV Listings <xsl:value-of select="@DATE"/></HI1>

<HR></HR>
Copyright 2003

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

Elliotte Rusty Harold

<IAS

elharo@metalab.unc.edu

<IA>

</BODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

wBack v = - @D (9 A} | Qseach GjFaveiles iMeda o3| G S o B

Address!:é] hiltp: # fwaw cafieconleche, org/books/bible3/ source 05/5-1 sl 3 ("’Eo |Links el

TV Listings July 3, 2003

Copyright 2003 Elliotte Rusty Harold
elharo@@metalab unc edu

@] [[[| intemet
Figure 5-4: Listing 5-1 after application of the XSL style sheet in Listing 5-4

BN

The XSLT instruction that extracts the DATE attribute from the SCHEDULE element is
as follows:

<{xsT:value-of select="@DATE"/>

The xs1:value-of element copies the value of a node from the input document into
the output document. Here, the @ sign in front of DATE means you're asking for the
attribute named DATE, rather than the child element named DATE. This element
appears twice because the year should appear twice in the output document —once
in the H1 header and once in the TITLE. Each time it appears, this instruction does
the same thing: It inserts the value of the DATE attribute, the string “July 3, 2003”.

XSLT instructions are distinguished from output elements such as HTML and H1 by
being placed in the http://www.w3.0rg/1999/XSL/Transform namespace. In
most cases, this namespace is associated with the prefix xs1. That is, the names of

125

126

Part | 4+ Introducing XML

all XSLT elements begin with xs1:. The namespace is identified by the xmIns: xs1
attribute of the root element of the style sheet. In Listings 5-2 and 5-3, and in all
other examples in this book, the value of that attribute is http://www.w3.0rg/
1999/XSL/Transform.

Caution The prefix can and occasionally does change. However, the URI absolutely must be

http://www.w3.0rg/1999/XSL/Transform, nothing else. Various early and
outdated drafts of the XSLT specification used different namespace URIs. However,
modern, up-to-date, specification-compliant software uses http://www.w3.0org/
1999/XSL/Transform and http://www.w3.0rg/1999/XSL/Transform
only! If you use any other namespace URI, or make even a small typo in the URI,
the results are likely to be very strange and hard to debug.

You should avoid any software that uses other namespaces because it's likely to
be out-of-date and quite buggy. Furthermore, you should be wary of anybody who
tries to tell you to use a different namespace. They are not your friends! (Yes, I'm
talking about Microsoft here. Its trainers and evangelists have been promulgating a
nonstandard, Microsoft-only version of XSLT that doesn't work with anything
except Internet Explorer. This nonstandard XSLT can be identified by its use of the
http://www.w3.0rg/TR/WD-xs1 namespace URI. Treat this URI as a warning:
Dangerous nonstandard Microsoft extensions ahead!) In this book, | adhere strictly
to W3C standard XSLT that works with all XSLT-savvy browsers and platforms.

- Cross- Namespaces are discussed in depth in Chapter 11.
Reference

Stations

Next, let’s add some XSLT instructions to pull out the STATION elements. There’s
more than one of these, so use the xs1:for-each instruction to iterate through
them. xs1:value-of elements will extract the network, call letters, and channel
from the attributes of each STATION element. These will all be placed in an H2
header. Listing 5-5 shows the code. Figure 5-5 shows the document rendered with
this style sheet.

Listing 5-5: An XSL Style Sheet with Instructions to Extract
STATION Elements

<?xml version="1.0"7>
{xsl:stylesheet version="1.0"
xmIns:xsT="http://www.w3.0rg/1999/XSL/Transform">

<xsT:template match="SCHEDULE">
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select="@DATE"/>

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

</TITLE>
</HEAD>
<BODY>
<HI>TV Listings <xsl:value-of select="@DATE"/></H1>

{xsl:for-each select="STATION">
<H2>
<{xsl:value-of select="@NETWORK"/>
<{xsl:value-of select="@CALL_LETTERS"/>
<{xsT:value-of select="@CHANNEL"/>
</H2>
<{/xsl:for-each>

<HR></HR>

Copyright 2003

Elliotte Rusty Harold

<A

elharo@metalab.unc.edu

<TA>

</BODY>
</HTML>
<{/xsl:template>

</xsl:stylesheet>

ils Edit . amritss Tools Help N
| Bk v 5 ~ D @) | Doeach EiFaveites PMeds o | S+ S = 64

.Addressi:é] Filkp: 4 dvarwn cafieconleche. org/books/bible3/ source 0551wl 3 (550 |Links el
-

TV Listings July 3, 2003
CBSWCBS2
WLNYS55

HBOS501

Copyright 2003 Elliotte Rusty Harold

elharo@metalab unc edu ZI
‘2] Done l_l_l_lﬂ Intarnet 7
Figure 5-5: The station networks, call letters, and channels displayed as H2 headers
when the XSLT style sheet in Listing 5-5 is applied

127

128

Part | 4+ Introducing XML

The key new instruction is the xs1:for-each element:

{xsl:for-each select="STATION">
<H2>
<{xsT:value-of select="@NETWORK"/>
<{xsT:value-of select="@CALL_LETTERS"/>
<{xsT:value-of select="@CHANNEL"/>
</H2>
<{/xsl:for-each>

xs1:for-each loops through all the STATION elements (more accurately, those
STATION elements that are children of the previously matched SCHEDULE element,
although in this document that’s all the STATION elements). As the XSLT processor
visits each STATION element, it outputs an <H2> start-tag, the value of its NETWORK ,
CALL_LETTERS, and CHANNEL attributes in that order, and a </H2> end-tag.

The first station in Figure 5-5, WCBS, looks a little funny, because as a broadcast
network affiliate, it has both a network and call letters. Ideally, you'd include the
call letters only if the network is not available, as for WLNY (or perhaps the reverse:
include the network only if the station doesn’t have call letters). Either is easy with
XSLT. You can use an xs1:1if element to test the value of particular nodes. The con-
tents of the xs1:1if element are placed in the output only if the test attribute of the
xs1:1f instruction is true. In this case, you test whether the value of the NETWORK
attribute is an empty string:

<H2>
<xsT:if test="@NETWORK=""">
<{xsT:value-of select="@CALL_LETTERS"/>
<Ixsliif>
<{xsT:value-of select="@NETWORK"/>
<{xsT:value-of select="@CHANNEL"/>
</H2>

In other words, you’re only including the call letters if there’s no network. After this
test is added, the call letters for WCBS are omitted from the output, as shown in
Figure 5-6.

Chapter 5 4 Attributes, Empty-Element Tags,and XSL] 29

Gabarl v = v (@D [3| Dseach ZiFaveites Meds o | 3N S A R
Address!é] hltp: # fvaw cafieconleche, org/books/bible3/ source 0551wl 3 .[960 |ljnks %
TV Listings July 3, 2003
CBS2
WLNY55
HBOS501
Copyright 2003 Elliotte Rusty Harold
elharo@metalab unc edu zl
‘2] Done l_l | |‘ Intemeat %

Figure 5-6: The xsl:if instruction omits the call letters for network affiliates.

Shows

The next step is to add the individual shows. A nested xs1:for-each loop can
select the shows. Let’s put each show inside an HTML DIV element:

{xsl:for-each select="STATION">

<H2>

<xs1:if test="@NETWORK=""">
<{xsT:value-of select="@CALL_LETTERS"/>

<Ixsliif>
<{xsT:value-of select="@NETWORK"/>
<{xsT:value-of select="@CHANNEL"/>

</H2>

<xs1:for-each select="SHOW">
<DIV>

</DIV>
</xsl:for-each>

{/xsl:for-each>

Notice that the nesting of the xs1:for-each elements that select stations and

shows mirrors the hierarchy of the document itself. This is not a coincidence. While
other schemes are possible that don’t require matching hierarchies, this is the sim-
plest, especially for highly structured data like the television schedule of Listing 5-1.

Inside the DIV element, you find instructions to select and format content from the
attributes of each SHOW element. One advantage of XSL over CSS is that you can
select exactly what you want and leave the rest out. Furthermore, what you do

130

Part | 4+ Introducing XML

include can appear in exactly the order you want it, even if that’s not the order it
appears in the input document. For example, if you're trying to create something
like the columnar listings in 7V Guide, as opposed to the show-by-show grid, you
might want the following content in this order:

. The time the show starts

. The number of stars

. Show title in bold

. (CC) if the show is closed captioned

. The length of the show

. The description, which normally begins on a new line

N S U1 AW N

. The primary actors

This can vary a lot from one show to the next, though. In general, the shows
deemed the most important get longer listings with more information. Less impor-
tant shows may be limited to a time, channel, and title. However, for the moment,
I'm going to assume all the shows in the list are equally important and include all
this information for each one.

The time of the show can be extracted with a simple xs1:value-of element, like
those you’ve used several times before:

<{xsT:value-of select="@START_TIME"/>

Applying the formatting is simply a matter of outputting the appropriate HTML
tags, perhaps with CSS STYLE attributes. For example, to print the channel number
in bold, just wrap a B element around an xs1:value-of instruction that selects
@CHANNEL, like this:

{B><xsl:value-of select="@CHANNEL"/>

The closed caption information is a little different. Here, the input document has a
value that says “Yes” or “No” (or no attribute at all), but what you want to put (or
not put) in the output is the completely different string (CC). In this case, you can
use another xs1:1f element to test the value of the CLOSED_CAPTIONED attribute:

<xsT:if test="@CLOSED_CAPTIONED="Yes'"> (CC) </xsT:if>

If and only if the test passes, the processor will output the string (CC). This is an
example of completely replacing the input content with the same information in a
very different form.

A slightly more complicated example of this is the STARS attribute. The value of this
attribute is a number, but it’s a number you want to replace with a string such as *.
There are several ways to do this, most involving advanced features of XSLT you

Chapter 5 4 Attributes, Empty-Element Tags,and XSL] 3]

won’t learn about for several chapters yet. However, assuming the STARS attribute
always contains an integer between 1 and 5, there is a simple naive approach. Just
list all the possible values inside xs1:1if statements like so:

<xsT:if test="@STARS=1"> % </xsT:if>
<xsT:if test="@STARS=2"> %% </xsl:if>
<xsl:if test="@STARS=3"> Jkk </xsl:if>
<xsT:7f test="@STARS=4"> kk* </xsl:if>
<xsT:if test="@STARS=5"> Hkk*kk </xsl:if>

ﬁ\lote If your text editor doesn't let you type the % character, you can type ★
' -~ instead. This is called a character reference. I'll explain how this works in Chapter 6.

There’s one more piece of information that’s often included with the show informa-
tion in television listings: the primary actors. They are often listed inside parenthe-
ses after the description like this: (Ewan McGregor, Natalie Portman, Christopher
Lee, Samuel L. Jackson, Frank Oz).

This is tricky because some listings don’t include actors at all, others just mention
the single most important actor, and still others mention several of the primary
actors. There are various ways to handle this, but I'm going to pick the simplest,
listing them all. Because the actors are child elements of CAST, which is a child ele-
ment of SHOW, this is going to require one more nested xs1:for-each element.
Since it’s really the actors we want, rather than the CAST, this xs1:for-each ele-
ment will iterate over CAST/ACTOR:

(<xs1:for-each select="CAST/ACTOR">
<xsl:value-of select="@GIVEN_NAME"/>
<{xsT:value-of select="@MIDDLE_INITIAL"/>
<{xsT:value-of select="@MIDDLE_NAME"/>
<{xsl:value-of select="@SURNAME"/>,

<{/xsl:for-each>)

However, this first approach has a number of problems. First, not all shows list a
cast. You should really wrap this in an xs1:1if element that tests for the presence
of a CAST element, like so:

<xsT:if test="CAST">(<xsl:for-each select="CAST/ACTOR">
<{xsT:value-of select="@GIVEN_NAME"/>
<{xsT:value-of select="@MIDDLE_INITIAL"/>
<{xsT:value-of select="@MIDDLE_NAME"/>
<{xsT:value-of select="@SURNAME"/>,
{/xsl:for-each>)</xsl:if>

Next, the white space is only preserved in XSLT when there’s some non-white-space
character next to it. This means the names come out looking like “RichardSimmons”
instead of “Richard Simmons.” There are several ways to fix this, but the easiest is
toadd an xml:space="preserve" attribute to the xs1:for-each element like so:

132 Partl + Introducing XML

<xsT:for-each select="CAST/ACTOR" xml:space="preserve">
<{xsl:value-of select="@GIVEN_NAME"/>
<{xsT:value-of select="@MIDDLE_INITIAL"/>
<{xsT:value-of select="@MIDDLE_NAME"/>
<xsl:value-of select="@SURNAME"/>,

<{/xsl:for-each>

The final problem is that this template puts a comma after every name, including
the last. You actually want to include a comma only if this is not the last element.
Once again the xs1:1if element comes to the rescue. The following code outputs a
comma only if the position of the current element (as indicated by the position()
function) is not the last child element (as indicated by the Tast () function):

<xsT:if test="CAST">(<xsl:for-each
select="CAST/ACTOR" xml:space="preserve">
<{xsT:value-of select="@GIVEN_NAME"/>
<{xsl:value-of select="@MIDDLE_INITIAL"/>
<{xsl:value-of select="@MIDDLE_NAME"/>
<{xsT:value-of select="@SURNAME"/><{xsT:if

test="position() != Tast()">, </xsl:if><{/xsl:for-each>)
<IxsT:if>

The indentation has gotten quite funky here because the xml1:space="preserve"
attribute has made all the white space significant. You can no longer rely on the
XSLT processor to throw it away for you. Thus, you can’t add any white space you
aren’t willing to see in the output. On the other hand, the rendered HTML output
looks quite pretty, as evidenced by Figure 5-7. Listing 5-6 shows the complete style
sheet.

Listing 5-6: An XSL Style Sheet That Formats Shows

<?xml version="1.0"7>
{xsl:stylesheet version="1.0"
xmlns:xsT="http://www.w3.0rg/1999/XSL/Transform">

{xsl:template match="SCHEDULE">
<HTML>

<HEAD>

<TITLE>
TV Listings <xsl:value-of select="@DATE"/>

<JTITLE>

</HEAD>

<BODY>
<HI>TV Listings <xsl:value-of select="@DATE"/></H1>

{xsl:for-each select="STATION">
<H2>

Chapter 5 4 Attributes, Empty-Element Tags, andXSL] 33

<xs1:if test="@NETWORK=""">
<{xsT:value-of select="@CALL_LETTERS"/>
<IxsT:if>
<{xsT:value-of select="@NETWORK"/>
<{xsT:value-of select="@CHANNEL"/>
</H2>

<{xsl:for-each select="SHOW">
<DIV>
<{xsT:value-of select="@START_TIME"/>
<xs1:value-of select="@CHANNEL"/>
<xs1:1f test="@STARS=1"> % </xs1:if>
<xs1:if test="@STARS=2"> %% </xs1:if>
<xs1:1f test="@STARS=3"> %%k </xs1:if>
<xs1:1f test="@STARS=4"> %kkk*k </xs1:if>
<xs1:7f test="@STARS=5"> kkkk*k </xsl:if>
<xs1:value-of select="@NAME"/>
<xs1:1f test="@CLOSED_CAPTIONED="'Yes'"> (CC) </xsl:if>
<{xsT:value-of select="@LENGTH"/>

<{xsT:value-of select="@DESCRIPTION"/>

<xsT:if test="CAST">(<xsl:for-each
select="CAST/ACTOR"
xml:space="preserve"><{xsl:value-of
select="@GIVEN_NAME" />
<xsl:value-of select="@MIDDLE_INITIAL"/>
<{xsl:value-of select="@MIDDLE_NAME"/>
<{xsT:value-of select="@SURNAME"/><{xsT:if

test="position() != Tast()"

>, </xsl:if><{/xsl:for-each>)

<IxsTaif>

</DIVY
<{/xsl:for-each>

{/xsl:for-each>

<HR></HR>

Copyright 2003

ElTiotte Rusty Harold

<IAS

elharo@metalab.unc.edu

<A

</BODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

134

Part | 4+ Introducing XML

ATV Listings July 3, 2003 - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help |]

ch S - QM A Qseweh (Hievater Godn |- S B

Address IE] hitp:hvvew, cafeconleche cog/book s/bible3/2ource/05/5-1 xml L! oGo Links |
a

TV Listings July 3, 2003
CBS2

12:00-0500Hollywood Squares (CC) 30 mutes

(Don Rickles, Jerry Springer, Richard Simmmons, Vicki Lawrence, John Salley, Joanie Laurer, Martin Jdull, Jilian Barberie,
Eemnedy)

19:30-0500Entertainment Tonight (CC) 30 minutes

American Juniors remaining contestants, Sex and the City preview.

20:00-0500The Amazing Race (CC) 60 minutes

Eight twenty-somethings speed through foreign cultures as quickly as posaible in desperate attempt to avoid learming anything,

WLNYS55

12:00-05000prah Winfrey (CC) 60 minutes =
Guests gabber, Oprah looks sympathetic,

20:00-05008ilicon Towers (CC) 60 minutes

A programmer discovers his company manufactures chups for cracking bank systems. (Brian Dennehy, Daniel Baldwin, Brad
Dounf, Gary Mosher)

HBOS501

[£] Done [[| intemet
Figure 5-7: Shows formatted by the XSL style sheet in Listing 5-6

Sorting

There’s one major problem with the style sheet as designed so far. It arranges
shows by station and the order they appear in the input document. This is of little
use for a TV schedule. You only rarely want to know what shows are playing on a
particular station at all times. You very often want to know what shows are playing
on all stations at the same time. The data needs to be sorted by time rather than by
station, and the station should be added to the information about the individual
shows. This isn’t how the data is organized in the input document, but there’s no
reason the output document can’t use a different arrangement.

Fortunately, XSLT makes it easy to sort the data by various criteria. Each xs1:for-
each element can have an xs1:sort child element that specifies a sort key. In this
case, you want to sort in ascending order by start time. You also want to adjust the
xs1:for-each elements so they grab all the shows in the document at once, rather
than just those associated with one channel. Finally, you want to add the channel
before each show. This is a little tricky because a SHOW element doesn’t have a
CHANNEL attribute or child element. However, you can select the CHANNEL attribute
of the STATION parent element by using . . /@CHANNEL in the select attribute. In
XSLT, the double period means the parent element, just like it means the parent
directory in UNIX and DOS. For good measure, [put the channel inside vertical bars
to make it more distinct.

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

Listing 5-7 shows the finished style sheet, and Figure 5-8 shows the document ren-
dered with this style sheet.

Listing 5-7: An XSL Style Sheet That Sorts by Start Time

<?xml version="1.0"7?>
{xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="SCHEDULE">
<HTML>

<HEAD>

<TITLE>
TV Listings <xsl:value-of select="@DATE"/>

</TITLE>

</HEAD>

<BODY>
<HI>TV Listings <xsl:value-of select="@DATE"/></HI1>

<{xsl:for-each select="STATION/SHOW">

<{xsl:sort select="@START_TIME" />

<DIV>
<{xsl:value-of select="@START_TIME"/> |
<xsl:value-of select="../@CHANNEL"/> |
<xsT:if test="@STARS=1"> % </xsl:if>
<xsT:if test="@STARS=2"> %% </xsl:if>
<xs1:1f test="@STARS=3"> k%% </xs1:if>
<xs1:1f test="@STARS=4"> %kkk*k </xsl:if>
<xsT:if test="@STARS=5"> *kkKk*k <{/xsl:if>
<xs1:value-of select="@NAME"/>

<xsT:if test="@CLOSED_CAPTIONED="Yes"'"> (CC) </xsl:if>

<{xsT:value-of select="@LENGTH"/>

<{xsT:value-of select="@DESCRIPTION"/>

<xs1:1f test="CAST">(<xsl:for-each
select="CAST/ACTOR"
xml:space="preserve"><{xsl:value-of
select="@GIVEN_NAME" />
<{xsT:value-of select="@MIDDLE_INITIAL"/>
<{xsT:value-of select="@MIDDLE_NAME"/>
<{xsT:value-of select="@SURNAME"/><{xsT:if

test="position() != Tast()"

>, </xs1:if></xs1:for-each>)

<Ixsliify

</DIV>
<{/xsl:for-each>

<HR></HR>
Copyright 2003

Continued

135

136 Partl + Introducing XML

Listing 5-7 (continued)

Elliotte Rusty Harold

<IAS

elharo@metalab.unc.edu

<IA>

</BODY>
</HTML>
</xsl:template>

</xsl:stylesheet>

2R TV Listings July 3 3 - Microsoft Internet Explorer
g ¥ f

?ile Edit “iew Favar.i.les Tools Help |

Address IE] hitp:hvvew, cafeconleche cog/book s/bible3/2ource/05/5-1 xml L‘ oGo Links |

TV Listings July 3, 2003 i

18:30-0500 | 501 | #** Final Fantasy: The Spirits Within (CC) 105 minutes

The last city on Earth defends itself against alien phantoms. Little to no relationship to the wideo games of the same name. Ming
IMa, Alec Baldwin, Ving Bhames, Steve Buscemu, Pen Gilpin, Donald Suthetland, Tames Woods)

1%:00-0500 | 2 | Hollywood Squares (CC) 30 minutes

(Don Rackles, Jerry Springer, Richard Synmens, Vicka Lawrence, John Salley, Joanie Laurer, Martin ull, Jilian Barberie,
Eennedy)

19:00-0500 | 55 | Oprah Winfrey (2C) 60 mumites

Guests gabber, Oprah looks sympathetic

19:30-0500 | 2 | Entertainment Tonight (CC) 30 minutes

American Juniors remaining contestants, Sex and the City preview.

20:00-0500 | 2 | The Amazing Race (CC) 60 minutes

Eight twenty-somethings speed through foreign cultures as quickly as possible m desperate atterapt to avoid learmng anything,
20:00-0500 | 55 | Silicon Towers (CC) 60 minutes

A programmet discovers his company manufactures chips for cracking bank systems (Brian Dennehy, Daniel Baldwin, Brad
Drourd, Gary Wosher)

20:15-0500 | 501 | Terminator 3: Rise of the Machines: HBO First Look (CC) 15 munutes

20:30-0500 | 501 | %% * Star Wars: Episode IT -- Attack of the Clones (CC) 150 munutes

Obi-wan Fenobi and Anakin Skywalker battle Count Dooku and the Trade Federation (Ewan McGregor, Matalie Portman,
Chnistopher Lee, Samuel L Jackson, Frank Og)

Copynght 2003 Eliotte Rusty Harold =
&) Done [[l internst
Figure 5-8: Television listings sorted by start time

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

There’s more you could do. You could convert the universal times such as
18:30-0500 into more typical times such as 6:30 P.M. You could group shows that
start at the same time together. However, while possible, this would take you into
the area sometimes referred to as “XSLT rocket science.” For this example, 'm going
to stop here with the simple stuff, but in the next section I'll fire off a rocket or two.

Tables

Figure 5-8 is a fairly decent textual television schedule. However, the example began
with a grid. s it possible to reproduce this tabular format with XSLT? Yes. In fact,
it’s possible to do a considerably better job than with CSS. The task is a little
detailed, but not horribly difficult. Listing 5-8 shows an XSLT style sheet that
arranges the shows in a table. Time advances to the right. Channel numbers
increase down. No new XSLT elements are introduced. The same xs1:for-each,
xsl:value-of, and xs1:sort elements are used as before. This time, however,

the style sheet produces HTML table tags instead of DIVs. Figure 5-9 displays the
results.

Listing 5-8: An XSL Style Sheet that Places the Television
Schedule in a Table

<?xml version="1.0"7?>
{xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="SCHEDULE">
<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select="@DATE"/>
</TITLE>
</HEAD>
<BODY>
<{H1 STYLE="text-align: center">
TV Listings <xsl:value-of select="@DATE"/>
</HIS

{TABLE CELLSPACING="0" RULES="all" FRAME="box">
{xsl:for-each select="STATION">
<{xsl:sort select="@CHANNEL" />
<TR>
<TD>
<xs1:1f test="@NETWORK=""">
<{xsT:value-of select="@CALL_LETTERS"/>

<Ixsliify
<{xsT:value-of select="@NETWORK"/>
</TD>

Continued

137

138

Part | 4+ Introducing XML

Listing 5-8 (continued)

<TD>

<xsl:value-of select="@CHANNEL"/>
</TD>
<{xs1:for-each select="SHOW">

<TD>

<xs1:value-of select="@NAME"/>
<xs1:if test="@CLOSED_CAPTIONED="Yes"'"> (CC) </xsl:if>
<{xsT:value-of select="@DESCRIPTION"/>
</TD>
</xsl:for-each>
</TR>
{/xsl:for-each>
</TABLE>

<HR></HR>

Copyright 2003

Elliotte Rusty Harold

<A

elharo@metalab.unc.edu

<TA>

</BODY>
</HTMLD
</xsl:template>

</xsl:stylesheet>

The hard part is lining up the shows by time, so that shows that start at 7:00 begin
in the same column, shows that start at 7:30 begin in the same column, and so
forth. Once again, we’re heading into the realm of XSLT rocket science, but it is
doable. The trick is that you need to divide the main body of the table into the
smallest unit of time you’re likely to encounter. In this case, five minutes works well.
Then, in each row, you need to calculate the start time to the nearest five minutes.
This tells you what column the show begins in. Then you need to divide the length
of the show by five minutes to get the number of cells the show spans. This will
become the value of the COLSPAN attribute. The operation is made trickier because
neither the START_TIME attribute nor the LENGTH attribute contains a pure number.
You need to do some string manipulation to extract the numbers before you can
operate on them. However, arithmetic and string manipulation at this level is within
the bounds of what XSLT can do, as Listing 5-9 and Figure 5-10 prove.

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

139

=TV Listings luly 3, 2003 - Mozilla

& B

> . 1
Farward Reload Stop

I& httpd Awwew cafeconleche org/books /bible 3 source /05751 5 vI @_Sur:l

=¥

Print

TV Listings July 3, 2003

Hollywood Squares (CC)

Entertainment Tonight
(CC) American Juniors
remaining contestants; Sex
and the City preview,

The Amazing Race (CC) Eight
twenty-somethings speed through
Foreign cultures as quickly as possible
in desperate atternpt to avoid learning
anything,

Final Fantasy: The Spirits

defends itself against alien
phantoms, Little to no
relationship to the video games
of the same name,

Within (CC) The last city on Earth

Terminator 3: Rise of the
Machines: HEO First Look
(CC)

Star Wars: Episode Il -- Attack of
the Clones (CC) Obi-wan Kenobi and
Anakin Skywallker battle Count Dooku
and the Trade Federation,

Oprah Winfrey (CC) Guests
VRV @Sl abber; Oprah looks
sympathetic,

Silicon Towers (CC) A
programmer discovers his
company manufactures
chips for cracking bank

5ystems,

Copyright 2003 Ellietrte Rusty Harold
elharo@metalab.unc.edu
Done

Figure 5-9: Television listings sorted by start time

Listing 5-9: An XSL Style Sheet that Dynamically Calculates
Column Spans for the Table

<?xml version="1.0"7>

<{xsl:stylesheet version="1.0"
xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<l-- increments

the zero point. Thus this sets

7:00 PM and the end time to

these parameters can be

count in 5 minute
with 6:00 A.M. as
the start-time to
9:00 PM. However,

adjusted when the stylesheet is invoked. -->
<xsl:param name="start" select="156"/>
<xsl:param name="finish" select="180"/>
<xsl:template match="SCHEDULE">

<HTML>
<HEAD>
<TITLE>
TV Listings <xsl:value-of select="@DATE"/>
</TITLE>

Continued

140 Partl + Introducing XML

Listing 5-9 (continued)

</HEAD>
<BODY>
<H1 STYLE="text-align: center">
TV Listings <xsl:value-of select="@DATE"/>
</H1>

{TABLE CELLSPACING="0" RULES="all" FRAME="box">
<COLGROUP>
<COL WIDTH="20"/>
<COL WIDTH="10"/>
</COLGROUP>
<COLGROUP SPAN="{$finish - $start}" WIDTH="20"/>
<THEAD STYLE="text-align: center">
<TR>
<TD />
<TD />
<xsT:call-template name="fillTableHead"/>
</TRY
<{/THEAD>
<TBODY>
{xsT:for-each select="STATION">
<xsl:sort select="@CHANNEL" data-type="number"/>
<TR>
<TD STYLE="color: white; background-color: grey;
font-weight: bold">
<xsT:1f test="@NETWORK=""">
<xsT:value-of select="@CALL_LETTERS"/>

<Ixsliif>
<{xsT:value-of select="@NETWORK"/>
</TD>

<TD STYLE="color: white; background-color: grey;
font-weight: bold">
<xsl:value-of select="@CHANNEL"/>
</TD>

{xsT:for-each select="SHOW">
<xsT:variable name="showstart">
<xsl:call-template name="getlLocalTime">
<xsl:with-param name="input"
select="@START_TIME"/>
</xsl:call-template>
<{/xsl:variable>
<xsl:variable name="showlength" select=
"number(substring-before(@LENGTH, ' ")) div 5"/>
{xsT:variable name="realshowlength">
<xsT:call-template name="getRealShowlLength">
<xsl:with-param name="showstart"
select="$§showstart"/>
<xsT:with-param name="showlength"
select="$showlength"/>
{/xsl:call-template>

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

</xsl:variable>

<TD COLSPAN="{$realshowlength}" valign="top">
<xs1:value-of select="@NAME"/>
<xs1:1f test="@CLOSED_CAPTIONED="'Yes'">

(CC)

<Ixsl:if>
<xsl:value-of select="@DESCRIPTION"/>

</TD>

<{/xsl:for-each>

</TR>
<{/xsl:for-each>
</TBODY>
</TABLE>

<HR/>

Copyright 2003

Elliotte Rusty Harold

<A

elharo@metalab.unc.edu

<TA>

</BODY>
</HTML>
<{/xsl:template>

<xsl:template name="getlLocalTime">
<I'-- returns number of five-minute increments
since 6:00 A.M. -->
<{xsl:param name="input"/> <!-- in form 19:00-0500 -->

<{xsl:variable name="time24"

select="substring-before($input, '-')"/>
<{xsl:variable name="hour"
select="substring-before($time24, ":")"/>

{xsT:variable name="minutes"

select="substring-after($time24, ':')"/>

<{xsT:value-of
select="(($hour - 6)*12) + ($minutes div 5)"/>

</xsl:template>

<xsT:template name="getRealShowlLength">
<xsT:param name="showstart"/>
{xsT:param name="showlength"/>

<{xsl:choose>

Continued

141

1472 Partl + Introducing XML

Listing 5-9 (continued)

<{xsT:when test="$showstart &1t; $start">
<xsl:value-of
select="$showlength - ($start - $showstart)"/>
</xs1:when>
<{xsl:otherwise>
<{xsl:value-of select="$showlength"/>
</xsl:otherwise>
{/xsl:choose>
<{/xsl:template>

<l-- Note use of recursion -->
<xsl:template name="fillTableHead">
<{xsl:param name="time" select="$start"/>
<TD COLSPAN="6">
<xsl:call-template name="formatTime">
<xsl:with-param name="time" select="$time"/>
</xsl:call-template>
</TD>
<xsl:if test="$time &1t; $finish - 6">
<xsl:call-template name="fillTableHead">
<xsl:with-param name="time" select="$time + 6"/>
</xsl:call-template>
<IxsTeif>
</xsl:template>

{xsl:template name="formatTime">
<xs1:param name="time"/>

{xsl:variable name="minutes" select="($time * 5) mod 60"/>

{xsl:variable name="hours"

select="(floor(($time div 12) + 6)) mod 12"/>

{xsT:value-of select="$hours"/>
<{xsT:value-of select="":""/>
{xsT:value-of select="format-number($minutes, '00')"/>

<xs1:1f test="%time &1t; 72 or $time >= 216"> AMI/xsl:if>
<xsl:1f test="$time >= 72 and $time &1t; 216"> PMI/xsl:if>

</xsl:template>

</xsl:stylesheet>

If it’s not immediately obvious to you how this style sheet works, don’t worry too
much. It definitely uses some of the more advanced features of XSLT, such as named
templates, variables, parameters, attribute value templates, functions, and recur-
sion. I'll come back to XSLT and explain all these techniques in Chapter 15. For now,
just know that XSLT can perform quite complicated operations on the data in an
XML document before ultimately formatting it for display to the end user. It is, in

fact, a Turing-complete programming language.

Chapter 5 4 Attributes, Empty-Element Tags, and XSL

[=TV Listings July 3, 2003 - Mozilla = uf=]

E:%k v FJ’T%;.T u lﬁm ‘§:§1 I,& hitp./ Awww cofeconlechs org/books/bible3/0urce /05/5- 12 vI 28 _Search Ptiﬁt bt |
TV Listings July 3, 2003

~_ T:00PM | T:30PM 8:00PM [. 8:30 PM

Hollywood Entertainment |The Amazing Race (CC) Eight

Squares (CC) Tonight (CC) tweanty-somathings speed through foreign
Armerican Juniors|culturas as quickly as possible in desperate
remaining attermnpt to avoid learning anything.
contastants; Sax
and the City
praview,

Oprah Winfrey (CC) Cuests Silicon Towers (CC) A programmer discavers

gabber; Oprah looks sympathetic, [his company manufactures chips for cracking

bank systems.

Final Fantasy: The Spirits Within (CC) Terminator|Star Wars: Episode Il --

The last city on Earth defends itself against 3: Rise of |Attack of the Clones

HBO alien phantoms, Little to neo relationship to the (CC] Obi-wan Kenobi and

the video games of the same name, Machines: |Anakin Skywalker battle
HBO First |Count Dooku and the
Look (CC) |Trade Federation,

Copyright 2003 Elliotte Rusty Harold
elharo@metalab.unc.edu

Done | ’“Hw

Figure 5-10: Television listings arranged by duration

CSS or XSL?

CSS and XSL overlap to some extent. XSL is certainly more powerful than CSS. This
chapter only touched on the basics of XSL. However, XSL's power is matched by its
complexity. XSL is definitely harder to learn and use than CSS. So the question is,
“When should you use CSS and when should you use XSL?”

CSS is more broadly supported than XSL. Netscape 4 and Internet Explorer 4 sup-
port parts of CSS Level 1 for HTML elements (although there are many annoying dif-
ferences between the two). Furthermore, most of CSS Level 1 and some of CSS Level
2 is supported by Internet Explorer 5.0 and later, Opera 4.0 and later, Netscape 6.0
and later, Safari, Konqueror, and Mozilla. Thus, choosing CSS gives you more com-
patibility with a broader range of browsers.

However, XSL is definitely more powerful than CSS. CSS only allows you to apply
formatting to element content. It does not allow you to change or reorder that con-
tent, choose different formatting for elements based on their contents or attributes,
or add boilerplate text like a signature block. XSL is far more appropriate when the
XML documents contain only the minimum of data and none of the HTML frou-frou
that surrounds the data.

143

144

Part | 4+ Introducing XML

XSL lets you separate the crucial data from everything else on the page, such as
mastheads, navigation bars, and signatures. With CSS, you have to include all these
pieces in your data documents. XML+XSL enables the data documents to live sepa-
rately from the web page documents. This makes XML+XSL documents more main-
tainable and easier to work with.

In the long run, XSL should become the preferred choice for data-intensive applica-
tions. CSS is more suitable for simple web pages like the ones grandparents write to
post pictures of their grandchildren. But for these uses, HTML alone is sufficient. If
you've really hit the wall with HTML, XML+CSS doesn’t take you much further
before you run into another wall. XML+XSL, by contrast, takes you far past the walls
of HTML. You still need CSS to work with legacy browsers, but in the long term, XSL
is the way to go.

Summary

In this chapter, you saw examples of creating an XML document from scratch.
Specifically, you learned the following:

4 An attribute is a name-value pair included in an element’s start-tag.

4 Attributes typically hold meta-information about the element rather than the
element’s data.

4+ Attributes are less convenient to work with than the contents of an element.

4 Attributes work well for very simple information that’s unlikely to change its
form as the document evolves. In particular, style and linking information
work well as attributes. Structured and ordered information is often better
represented as elements.

4+ Empty-element tags are syntax sugar for elements with no content.

4+ XSL is a powerful style language that enables you to transform documents
from one XML vocabulary to other XML vocabularies or to non-XML vocabu-
laries such as HTML or tab-delimited text.

The next chapter discusses the exact rules to which well-formed XML documents
must adhere. It also explores some additional means of embedding information in
XML documents, including comments and processing instructions.

+ ¢+

C H AgP T\E R

Well-
formedness

H TML 4.0 has 91 different elements. Most of these ele-
ments have 12 or more possible attributes for several
thousand different possible variations. Because XML is more
powerful than HTML, you might think that you need to learn
even more elements, but you don’t. XML gets its power
through simplicity and extensibility, not through a plethora of
elements.

In fact, XML predefines no elements at all. Instead, XML allows
you to define your own elements, as needed. However, these
elements and the documents built from them are not com-
pletely arbitrary. They have to follow a specific set of rules
elaborated in this chapter. A well-formed document is one that
follows these rules. Well-formedness is the minimum criterion
necessary for XML processors and browsers to read files. This
chapter examines the rules for well-formed documents. It
explores the different parts of an XML document — tags, text,
attributes, elements, and so on—and discusses the primary
rules each part must follow. Particular attention is paid to
how XML differs from HTML. Along the way I introduce sev-
eral new XML constructs including comments, processing
instructions, entity references, and CDATA sections. This
chapter isn’t an exhaustive discussion of well-formedness
rules. Some of the rules I present must be adjusted slightly for
documents that have a document type definition (DTD), and
there are additional well-formedness rules that define the rela-
tionship between the document and its DTD, but these will be
explored in later chapters.

Well-formedness Rules

Although XML allows you to invent as many different ele-
ments and attributes as you need, these elements and
attributes, as well as their contents and the documents that

s
In This Chapter
XML documents
Well-formedness rules
Text in XML

Elements and tags
Attributes

Entity references
CDAVTA sections
Comments

Unicode

XML 1.1

Well-formed HTML

¢+ 4+ o+

146 Partl + Introducing XML

contain them, must all follow certain rules in order to be well-formed. If a document
is not well-formed, any attempts to read it or render it will fail.

The XML specification strictly prohibits XML parsers from trying to fix and under-
stand malformed documents. All a parser can do is signal the error. It is not allowed
to fix the error. It cannot make a best-faith effort to render what the author
intended. It cannot ignore the offending malformed markup. All it can do is report
the error and exit.

/ The objective here is to avoid the bug-for-bug compatibility wars that have hindered

/'Note HTML and that have made writing HTML parsers and renderers so difficult. Because

~ web browsers allow malformed HTML, web page designers don't make the extra
effort to ensure that their HTML is correct. In fact, they even rely on bugs in individ-
ual browsers to achieve special effects. To properly display the huge installed base of
HTML pages, every new web browser must support every nuance, every quirk of all
the browsers that have come before. The marketplace would ignore any browser
that strictly adhered to the HTML standard. It is to avoid this sorry state that XML pro-
cessors are explicitly required to only accept well-formed XML.

To be well-formed, an XML document must follow more than 100 different rules.
However, most of these rules simply forbid things that you're not very likely to do
anyway if you follow the examples given in this book. For example, one rule is that
the name of the element must immediately follow the < of the element’s start-tag.
For example, <TRIANGLE> is a legal start-tag but < TRIANGLE> isn’t. On the other
hand, the same rule says that it is OK to have extra space before the tag’s closing
angle bracket. That is, both <TRIANGLE> and <TRIANGLE > are well-formed start-
tags. Another rule says that element names must have at least one character; that
is, <> is not a legal start-tag and </> is not a legal end-tag. Chances are it never
would have occurred to you to create an element with a zero-length name, but com-
puters are dumber than human beings and need to have constraints like this
spelled out for them. XML's well-formedness rules are designed to be understood
by software rather than human beings, so quite a few of them are a little technical
and won’t present much of a problem in practice. The only source for the complete
list of rules is the XML specification itself. However, if you follow the rules given
here, and check your work with an XML parser before distributing them, your docu-
ments should be fine.

XML Documents

An XML document is made up of text. It is a sequence of characters with a fixed
length that adheres to certain constraints. It may or may not be a file. For instance,
an XML document could be any of the following:

4+ A CLOB field in an Oracle database

4+ The result of a query against a database that combines several records from
different tables

Chapter 6 + Well-formedness |47

4 A data structure created in memory by a Java program
4+ A data stream created on the fly by a CGI program written in Perl

4 Some combination of several different files, each of which is embedded in
another

4 One part of a larger file containing several XML documents

However, nothing essential is lost if you think of an XML document as a file, as long
as you keep in the back of your mind that it might not really be a file on a hard drive.

XML documents are made up of storage units called entities. Each entity contains a
well-formed document fragment. This is a piece of text that meets all of XML'’s well-
formedness rules except for the one about there being a single root element. The
various entities that make up a document will be stored in different files, databases,
and other locations. The parser combines them all to form the complete document.

The XML declaration

In this and the next several chapters, I treat only simple XML documents that are
made up of a single entity, the document itself. Such documents can be understood
completely on their own without reading any other files. In other words, they stand
alone. Such a document normally contains a standalone pseudo-attribute in its
XML declaration with the value yes, similar to this one:

<?xml version="1.0" standalone="yes"?>

_ﬁ\lﬂle | call this a pseudo-attribute because technically only elements can have
s attributes. The XML declaration is not an element. Therefore, standalone is not
an attribute even if it looks like one.

External entities and entity references can be used to combine multiple files and
other data sources to create a single XML document. These documents cannot
be parsed without reference to other files. Therefore, they normally have a
standalone pseudo-attribute with the value no:

<?xml version="1.0" standalone="no"?>

If a document does not have an XML declaration, or if a document has an XML dec-
laration but that XML declaration does not have a standalone pseudo-attribute,
the value no is assumed. That is, the document is assumed incapable of standing on
its own, and the parser will prepare itself to read external pieces as necessary. If the
document can, in fact, stand on its own, nothing is lost by the parser being ready to
read an extra piece.

XML documents do not have to include XML declarations, although they generally
should. If an XML document does include an XML declaration, this declaration must
be the first thing in the file (except possibly for an invisible Unicode byte order

148

Part | 4+ Introducing XML

mark). XML processors determine which character set is being used (ASCII compat-
ible, EBCDIC compatible, big-endian UTF-16, little-endian UTF-16) by reading the
first several bytes of a file and comparing those bytes against various encodings of
the string <?xm1 . Nothing should come before this, including white space. For
example, the following line is not an acceptable way to start an XML file because of
the extra spaces at the front of the line:

<?xml version="1.0" standalone="yes"?>

Single root element

An XML document has a root element that completely contains all other elements
of the document. This is also sometimes called the document element, although this
element does not have to have the name document or root. Just like any other ele-
ment, root elements are delimited by a start-tag and an end-tag. For example, con-
sider Listing 6-1.

Listing 6-1: greeting.xml

<?2xml oversion="1.0"7>
<GREETING>

Hello XML!
</GREETING>

In this document, the root element is GREETING. The XML declaration is not an ele-
ment. Therefore, it does not have to be included inside the root element. Similarly,
other nonelement data in an XML document, such as an xm1-stylesheet process-
ing instruction, a DOCTYPE declaration, or comments, do not have to be inside the
root element. But all other elements (other than the root itself) and all raw charac-
ter data must be contained in the root element.

Text in XML

An XML document is made up of text. Text is made up of characters. A character is
a letter, a digit, a punctuation mark, a space or tab, or some similar thing. XML uses
the Unicode character set, which not only includes the usual letters and symbols
from English and other Western European alphabets, but also the Cyrillic, Greek,
Hebrew, Arabic, and Devanagari alphabets, the Han ideographs for Chinese and
Japanese, the Korean Hangul syllabary, and many more writing systems.

A document’s text is divided into character data and markup. To a first approxima-
tion, markup describes a document’s logical structure, while character data is the

Chapter 6 4+ Well-formedness 149

basic information of the document. For example, in Listing 6-1, <?xm1 version=
"1.0"7?>, <GREETING>, and </GREETING> are markup. Hel1o XML!, along with its
surrounding white space, is the character data. A big advantage of XML over other
formats is that it clearly separates the actual data of a document from its markup.

To be more precise, markup includes all tags, processing instructions, DTDs, entity
references, character references, comments, CDATA section delimiters, and the
XML declaration. Everything else is character data. However, this is tricky because
when a document is processed, some of the markup turns into character data. For
example, the markup > ; is turned into the greater than sign character (). The
character data that’s left after the document is processed, and after all markup that
refers to character data has been replaced by the actual character data, is called
parsed character data, or PCDATA for short.

Elements and Tags

An XML document is a singly rooted hierarchical structure of elements. Each ele-
ment is delimited by a start-tag and an end-tag or is represented by a single empty-
element tag. An XML tag has the same form as an HTML tag; that is, start-tags begin
with a < followed by the name of the element the tag starts and end with the first >
after the opening < (for example, <GREETING>). End-tags begin with a </ followed
by the name of the element the tag finishes and are terminated by a > (for example,
</GREETING>). Empty-element tags begin with a < followed by the name of the ele-
ment and are terminated with a /> (for example, <GREETING/>).

Element names

Every element has a name made up of one or more characters. This is the name
included in the element’s start- and end-tags. Element names begin with a letter,
such as y or A, or an underscore _. Subsequent characters in the name may include
letters, digits, underscores, hyphens, and periods. They cannot include white space.
(The underscore often substitutes for white space.) Both lower- and uppercase let-
ters may be used in XML names, and the difference between them is significant. In
this book, I mostly follow the convention of making my names uppercase, mainly
because this makes them stand out better in the text. However, when I'm using a tag
set that was developed by others, it is necessary to adopt their case conventions.
For example, the following are legal XML start-tags with legal XML names:

<HELP>

<Book>

<volume>

<headingl>
{section.paragraph>
<Mary_Smith>
<_8ball>

150 Part
‘\I ote

‘\I ote

| 4+ Introducing XML

Colons are also technically legal in tag names. However, these are reserved for use
with namespaces. Namespaces allow you to mix and match tag sets that may use
the same tag names. Namespaces are discussed in Chapter 11. Until then, you
should not use colons in your tag names.

-

The following are not legal start-tags because they don’t contain legal XML names:

<Book%7>

<volume control>
<{lheading>

<Mary Smith>
<.employee.salary>

The rules for element names actually apply to names of many other things as well.
The same rules are used for attribute names, ID attribute values, entity names, and
a number of other constructs that you encounter over the next several chapters.

-

Every start-tag must have a corresponding end-tag

Web browsers are relatively forgiving if you forget to close an HTML tag. For exam-
ple, if you include a tag in your document but no corresponding tag, the
part of the document that follows the tag will be made bold. However, the doc-
ument will still be displayed.

XML is not so forgiving. Every start-tag must be closed with the corresponding end-
tag. If a document fails to close an element with the right end-tag, the parser
reports an error message and the browser does not display any of the document’s
content after the error is detected (and possibly not before it either).

End-tags have the same name as the corresponding start-tag but are prefixed with a
/ after the initial angle bracket. For example, if the start-tag is <F00>, the end-tag is
</F00>. These are the end-tags for the previous set of legal start-tags.

</HELP>

</Book>

</volume>
<{/headingl>
<{/section.paragraph>
</Mary_Smith>
</_8ball>

XML names are case-sensitive. This is different from HTML in which <P> and <p>
are the same tag, and a </p> can close a <P> tag. The following are not end-tags for
the set of legal start-tags being discussed because the case does not match that of
the opening tag.

</help>
</book>
</Volume>

Chapter 6 + Well-formedness] 5]

</HEADING1>
</Section.Paragraph>
</MARY_SMITH>
</_8BALL>

Empty-element tags

Many HTML elements do not have closing tags. For example, there are no ,
, </HR>, or </BR> tags in HTML. Some page authors do include tags
after their list items, and some HTML tools also use . However, the HTML 4.0
standard specifically denies that this is required. Like all unrecognized tags in
HTML, the presence of an unnecessary </L1> has no effect on the rendered output.

This is not the case in XML. The whole point of XML is to enable new elements and
their corresponding tags to be discovered as a document is parsed. Thus, unrecog-
nized tags should not be ignored. Furthermore, an XML processor must be capable
of determining on the fly whether a tag it has never seen before does or does not
have an end-tag.

XML distinguishes between normal start-tags that must have corresponding end-
tags and empty-element tags, which are tags that do not have end-tags. Empty-
element tags are closed with a slash and a closing angle bracket (/>); for example,

 or <HR/>. From the perspective of XML, these are the same as the equivalent
syntax using both start- and end-tags with nothing in between them; for example,

</BR> and <HR></HR>.

However, empty-element tags can only be used when the element is truly empty,
not when the end-tag is simply omitted. For example, in HTML you might write an
unordered list like this:

I've a Feeling We're Not in Kansas Anymore
Buddies

Everybody Loves You

</JUL>

In XML, you cannot simply replace the <L 1> tags with <L.I/> because the elements
are not truly empty. Instead they contain text. In normal HTML the closing
tag is omitted by the editor and implied by the parser. This is not the same thing as
the element itself being empty. The first LI element in this example contains the
content ['ve a Feeling We're Not in Kansas Anymore.In XML, you must
close these tags like this:

I'"ve a Feeling We're Not in Kansas Anymore
Buddies

Everybody Loves You

152

Part | 4+ Introducing XML

‘\I ote

On the other hand, a BR or HR or IMG element really is empty. It doesn’t contain any
text or child elements. Thus, in XML, you have two choices for these elements. You
can either write them with a start- and an end-tag in which the end-tag immediately
follows the start-tag— for example, <HR></HR>—or you can write them with an
empty-element tag, as in <HR/>.

Current web browsers deal inconsistently with empty-element tags. For example,
some browsers will insert a line break when they see an <HR/> tag and some
won't. Furthermore, the problem may arise even without empty-element tags.
Some browsers insert two horizontal lines when they see <HR></HR>, and some
insert one horizontal line. The most generally compatible scheme is to use an
extra attribute before the closing />. The CLASS attribute is often a good choice;
for example, <HR CLASS="empty"/>.

Elements may nest but may not overlap

Elements may contain (and indeed often do contain) other elements. However, ele-
ments may not overlap. Practically, this means that if an element contains a start-
tag for an element, it must also contain the corresponding end-tag. Conversely, an
element may not contain an end-tag without its matching start-tag. For example,
this is legal XML:

<HI>CITE>What the Butler Saw</CITE></H1>

However, the following is not legal XML because the closing </CITE> tag comes
after the closing </H1> tag:

<HI>CITE>What the Butler Saw</H1></CITE>

Most HTML browsers can handle this case with ease. However, XML browsers are
required to report an error for this construct.

Empty-element tags may appear anywhere, of course. For example,
<PLAYWRIGHTS>Oscar Wilde<HR/>Joe Orton</PLAYWRIGHTS>

This implies that for all nonroot elements, there is exactly one other element that
contains the element, but that does not contain any other element containing the
element. This immediate container is called the parent of the element. The element
is referred to as a child of the parent element. Thus, each nonroot element always
has exactly one parent, but a single element may have an indefinite number of chil-
dren or no children at all.

Consider Listing 6-2. The root element is the PLAYS element. This contains two
PLAY children. Each PLAY element contains three child elements: TITLE, AUTHOR,
and YEAR. Each of these contains character data.

Chapter 6 ¢ Well-formedness 153

Listing 6-2: Parents and Children

<?xml version="1.0" standalone="yes"?>
<PLAYS>
<PLAY>
<TITLE>What the Butler Saw</TITLE>
<AUTHOR>Joe Orton</AUTHOR>
<YEAR>1969</YEAR>
</PLAY>
<PLAY>
{TITLE>The Ideal Husband</TITLE>
<AUTHOR>Oscar Wilde</AUTHOR>
<YEAR>1895</YEAR>
</PLAY>
</PLAYS>

In programmer terms, this means that XML documents form a tree. Figure 6-1
shows why this structure is called a tree. It starts from the root and gradually grows
limbs with leaves on their ends. Trees have a number of nice properties that make
them congenial to programmatic traversal, although this doesn’t matter so much to
you as the author of the document.

What the The Ideal .
Butler Saw Joe Orton 1969 Husband Oscar Wilde 1895
A A A 7'y y'y 'y
TITLE AUTHOR YEAR TITLE AUTHOR YEAR
A 2
PLAY PLAY
PLAYS

Figure 6-1: Listing 6-2's tree structure

154 Partl + Introducing XML

_ﬁlote Trees are more commonly drawn from the top down. That is, the root of the tree is
-~ shown at the top of the picture rather than the bottom. While this looks less like a
real tree, it doesn't affect the topology of the data structure in the least.

Attributes

Elements can have attributes. Each attribute of an element is encoded in the start-
tag of the element as a name-value pair separated by an equals sign (=) and, option-
ally, some extra white space. The attribute value is enclosed in either single or
double quotes. For example,

<GREETING LANGUAGE="English">
Hello XML!
<MOVIE SRC = 'WavingHand.mov'/>
</GREETING>

Here, the GREETING element has a LANGUAGE attribute that has the value English.
The MOVIE element has an SRC attribute with the value WavingHand.mov.

Attribute names

Attribute names are strings that follow the same rules as element names. That is,
attribute names must contain one or more characters and the first character must
be a letter or the underscore (). Subsequent characters in the name may include
letters, digits, underscores, hyphens, and periods. They may not include white
space.

The same element cannot have two attributes with the same name. For example,
this is illegal:

<RECTANGLE SIDE="8" SIDE="10"/>

Attribute names are case-sensitive. The SIDE attribute is not the same as the side
or the Side attribute. Therefore, the following is legal:

<BOX SIDE="8" side="10" Side="31"/>

However, this is extremely confusing, and I strongly urge you not to write markup
that depends on case.

Attribute values

Attributes values are strings. Even when the string shows a number, as in the
LENGTH attribute that follows, that number is the two characters 7 and 2, not the
binary number 72.

<RULE LENGTH="72"/>

Chapter 6 ¢ Well-formedness |55

If you're writing code to process XML, you’ll need to convert the string to a number
before performing arithmetic on it.

Unlike attribute names, there are few limits on the content of an attribute value.
Attribute values can contain white space, begin with a number, or contain any
punctuation characters (except, sometimes, for single and double quotes). The
only characters an attribute value cannot contain are the angle brackets < and >,
though these can be included using the &1t ; and > ; entity references (discussed
soon).

XML attribute values are delimited by quote marks. Unlike HTML attribute values,
XML attribute values must be enclosed in quotes whether or not the attribute value
includes spaces. For example:

IBiblio

Most people choose double quotes. However, you can also use single quotes, which
is useful if the attribute value itself contains a double quote. For example:

<IMG SRC="sistinechapel.jpg"
ALT="And God said, "Let there be Tight,"
and there was light'/>

If the attribute value contains both single and double quotes, the one that’s not
used to delimit the string must be replaced with the proper entity reference. You
can use the entity reference ' for a single quote (an apostrophe) and "
for a double quote. I often just replace both, which is always legal. For example:

<PARAM NAME="joke" VALUE="The diner said,
"Waiter, There's a fly in my soup!"">

Predefined attributes

XML assigns special meaning to attributes that begin with xm1 :. Currently three
such attributes are defined: xm1:1ang, xml:space, and xm1:base. You should only
use these attributes for their intended purposes. The xm1: space attribute
describes how white space is treated in the element. The xm1 : Tang attribute
describes the language (and, optionally, dialect and country) in which the element
is written. The xm1 :base attribute provides the base URL against which relative
URLs in the element should be resolved. I'll talk about xm1:space and xml:1ang
now. xml :base is covered in Chapter 17.

xml:space

In HTML, white space is relatively insignificant. Although the difference between
one space and no space is significant, the difference between 1 space and 2 spaces,
1 space and a carriage return, or 1 space, 3 carriage returns, and 12 tabs is not
important. For text in which white space is significant — computer source code,

156 Partl + Introducing XML

certain mainframe database reports, or the poetry of e. e. cummings, for example —
you can use a PRE element to specify a monospaced font and preservation of white
space.

XML, however, preserves white space by default. The XML processor passes all
white space characters to the application unchanged. The application usually
ignores the extra white space. However, the XML processor can tell the application
that certain elements contain significant white space that should be preserved. The
page author uses the xml : space attribute to indicate these elements to the applica-
tion. The value preserve indicates that white space is significant; the value
default indicates that it isn’t. Listing 6-3 demonstrates.

Listing 6-3: Java Source Code with Significant White Space
Encoded in XML

<?xml version="1.0"7>
<PROGRAM xml:space="preserve">public class AsciiTable {

public static void main (Stringl] args) f{

for (int i = 0; i &1t; 128; i++) |
System.out.printin(i + " "+ (char) i);
}

}
</PROGRAM>

Descendants (child elements and their children, and their children’s children, and
so on) of an element for which xm1:space is defined are assumed to behave simi-
larly to their parent (either preserving or not preserving space), unless they pos-
sess an xm1 : space attribute with a conflicting value.

_.-}lNDte An XML parser always passes all white space to the application, regardless of

' =~ whether xm1:space’svalueis default or preserve. With a value of default,
however, the application does what it would normally do with extra white space.
With a value of preserve, the application treats the extra white space as signifi-
cant. Significance depends somewhat on the eventual destination of the data. For
example, extra white space in Java source code is relevant to a source code editor
but not to a compiler.

Chapter 6 + Well-formedness

xml:lang

The xm1:1ang attribute identifies the language in which its element’s content is
written. Ideally, each of these attribute values should be one of the two-letter lan-
guage codes defined by the original [ISO-639 standard. The complete list of codes
can be found on the Web at http://www.ics.uci.edu/pub/ietf/http/
related/iso639.txt.

For example, consider this sentence from Petronius’s Satyricon in both Latin and
English. A SENTENCE element encloses both versions, but the first SENTENCE ele-
ment has an xm1: Tang attribute for Latin, while the second has an xm1:1ang
attribute for English.

<SENTENCE xml:lang="1a">
Veniebamus in forum deficiente iam die, in quo notavimus
frequentiam rerum venalium, non quidem pretiosarum sed tamen
quarum fidem male ambulantem obscuritas temporis
facillime tegeret.
</SENTENCE>
<SENTENCE xml:lang="en">
We have come to the marketplace now when the day is failing,
where we have seen many things for sale, not for the
valuable goods but rather that the darkness of
the time may most easily conceal their shoddiness.
</SENTENCE>

While an English-speaking reader can easily tell which is the original text and which
is the translation, a computer can use the hint provided by the xm1:1ang attribute.
This distinction enables a spell checker to determine whether to check a particular
element and designate which dictionary to use. Search engines can inspect these
language attributes to determine whether to index a page and return matches
based on the user’s preferences. The language applies to the element and all its
content until one of its descendants declares a different language.

Too Many Languages, Not Enough Codes

XML remains a little behind the times in this area. The original 1ISO-639 standard language
codes were formed from two case-insensitive ASCII alphabetic characters. This standard
allows no more than 26 x 26, or 676 different codes. Almost 10 times that many different
languages are spoken on Earth today (not even counting dead languages such as Etruscan).
In practice, the reasonable codes are somewhat fewer than 676 because the language
abbreviations should have some relation to the name of the language.

ISO-639, part two, uses three-letter language codes, which should handle all languages
spoken on Earth. The XML standard specifically requires two-letter codes, however. On the
other hand, because of some very technical details about how the XML specification is writ-
ten, parsers are not required to enforce this constraint. Unfortunately, some do and some
do not, so documents really have to assume that two-letter codes are required.

158

Part | 4+ Introducing XML

Country codes

The value of the xm1 : 1ang attribute may include additional subcode segments, sep-
arated from the primary language code by a hyphen. Most often, the first subcode
segment is a two-letter country code specified by ISO 3166. You can retrieve the
most current list of country codes from http://www.isi.edu/in-notes/iana/
assignments/country-codes. For example:

<P xml:Tang="en-US">Put the body in the trunk of the car.</P>
<P xml:Tang="en-GB">Put the body in the boot of the car.</P>

By convention, language codes are written in lowercase and country codes are writ-
ten in uppercase. However, this is merely a convention. This is one of the few parts
of XML that is case-insensitive, because of its heritage in the case-insensitive [ISO
standard.

IANA language codes

If no appropriate ISO code is available for the primary language, you can use one of
the codes registered with the Internet Assigned Numbers Authority (IANA). You can
find the most current list at http://www.isi.edu/in-notes/iana/assignments/
Tanguages. IANA codes beginning with i-, such as i-navajo, represent new languages
not currently included in two-letter form in ISO 639. IANA codes beginning with a
two-letter ISO 639 code, such as zh-yue, represent a dialect of the primary language.
Thus, zh is the [SO-639 code for Chinese; zh-yue is the IANA code for the Yue dialect
of Chinese (more commonly known as Cantonese in English). The criteria for what
qualifies as a language and what qualifies as a dialect are not particularly well
defined. For instance, Swedish and Norwegian, two different languages, are mutu-
ally intelligible; but Cantonese and Mandarin, two different dialects of Chinese, are
mutually unintelligible. To be perfectly honest, the best answer is that the people
who speak different languages have their own armies and the people who speak
different dialects don’t.

For example, Listing 6-4 gives the national anthem of Luxembourg in both
Letzeburgesh (i-lux) and English (en):

Listing 6-4: The Luxembourg National Anthem
in Letzeburgesh and English

<?2xml version="1.0" encoding="I1S0-8859-1"7?>
<DOCUMENT>
<SONG xml:Tang="1-Tux"
LYRICIST="Michel Lentz" COMPOSER="J.A. Zinnen">
<STANZA>
<VERSE>Wo d'Uelzecht duerch d'Wisen ze't,</VERSE>
<VERSE>DOrch d'Fielzen d'Sauer bricht,</VERSE>

Chapter 6 ¢ Well-formedness 159

<VERSE>Wo' d'Ref lénscht d'Musel dofteg ble't,</VERSE>
<VERSE>Den Himmel Wein ons micht:</VERSE>
<VERSE>Dat ass onst Land, fir dat mer ge'f</VERSE>
<VERSE>Heinidden alles won,</VERSE>
<VERSE>Ons Hemeschtsland dat mir so' de'f</VERSE>
<VERSE>An onsen Hierzer dron.</VERSE>
<VERSE>Ons Hemeschtsland dat mir so' de'f</VERSE>
<VERSE>An onsen Hierzer dron.</VERSE>
</STANZA>
<STANZA>
<VERSE>0 Du do uewen, dem seng Hand</VERSE>
<VERSE>Durch d'Welt Natio'ne Tet,</VERSE>
<VERSE>Behitt du d'LOtzeburger Land</VERSE>
<VERSE>Vum frieme Joch a Led;</VERSE>
<VERSE>Du hues ons all als Kanner schon</VERSE>
<VERSE>De freie G—scht jo ginn,</VERSE>
<VERSE>Loss viru blinken d'Freihetsonn,</VERSE>
<VERSE>De" mir so' Téong gesinn.</VERSE>
<VERSE>Loss viru blOnken d'Freihetsonn,</VERSE>
<VERSE>De" mir so' T1dong gesinn.</VERSE>
</STANZA>
</SONG>
<SONG xml:Tang="en" TRANSLATOR="Nicholas E. Weydert">
{STANZA>
<VERSE>Where slow you see the Alzette flow,</VERSE>
<VERSE>The Sura play wild pranks,</VERSE>
<VERSE>Where lovely vineyards amply grow,</VERSE>
<VERSE>Upon the Moselle's banks,</VERSE>
<VERSE>There lies the Tand for which our thanks</VERSE>
<VERSE>Are owed to God above,</VERSE>
<VERSE>Qur own, our native Tand which ranks</VERSE>
<VERSE>Well foremost in our love.</VERSE>
<VERSE>Qur own, our native land which ranks</VERSE>
<VERSE>Well foremost in our love.</VERSE>
</STANZA>
{STANZA>
<VERSE>Oh Father in Heaven whose powerful hand</VERSE>
<VERSE>Makes states or Tays them Tlow,</VERSE>
<VERSE>Protect the Luxembourger land</VERSE>
<VERSE>From foreign yoke and woe.</VERSE>
<VERSE>God's golden liberty bestow</VERSE>
<VERSE>On us now as of yore.</VERSE>
<VERSE>Let Freedom's sun in glory glow</VERSE>
<VERSE>For now and evermore.</VERSE>
<VERSE>Let Freedom's sun in glory glow</VERSE>
<VERSE>For now and evermore.</VERSE>
</STANZA>
</SONG>
</DOCUMENT>

160

Part | 4+ Introducing XML

X-Codes

If neither the ISO nor the IANA has a code for the language you need, which is often
the case for many aboriginal languages, you may define new language codes. These
x-codes must begin with the string x- or X- to identify them as user-defined, private-
use codes, as in the following example:

<P xml:lang="x-choctaw">

Chahta imanumpa ish anumpola hinla ho?
</P>
<P xml:lang="en">Do you speak Choctaw?</P>

Entity References

You're probably familiar with a number of entity references from HTML. For exam-
ple, © ; represents the copyright symbol ©; and ® stands for the registered
trademark symbol ®. XML predefines the five entity references listed in Table 6-1.
These predefined entity references are used in XML documents in place of specific
characters that would otherwise be interpreted as part of markup. For example, the
entity reference &1t ; stands for the less than sign (<), which would otherwise be
interpreted as the beginning of a tag.

Table 6-1
XML Predefined Entity references

Entity Reference Character
& &

&1t <

> >

" “

' !

Caution In XML, unlike HTML, entity references must end with a semicolon. > ; is a cor-

rect entity reference; > is not.

XML assumes that the opening angle bracket always starts a tag, and that the
ampersand always starts an entity reference. (This is often true of HTML as well,
but most browsers are more forgiving.) For example, consider this line:

<H1>A Homage to Ben & Jerry's
New York Super Fudge Chunk Ice Cream</H1>

Chapter 6 + Well-formedness] 6]

Web browsers that treat this as HTML will probably display it correctly. However,
XML parsers will reject it, and for maximum safety, you should escape the amper-
sand with &, like this:

<HI>A Homage to Ben & Jerry's
New York Super Fudge Chunk Ice Cream</H1>

The open angle bracket (<) is similar. Consider this common Java code embedded
in HTML.:

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>
Both XML and HTML consider the less than sign in <= to be the start of a tag. The

tag continues until the next >. Thus, a web browser treating this fragment as HTML
will render this line as

for (int i 0; i

rather than
for (int 1 = 0; 1 <= args.length; i++) {

The = args.length; i++) { isinterpreted as part of an unrecognized tag.
Again, an XML parser will reject this line completely because it’s malformed.

The less than sign can be included in text in both XML and HTML by writing it as
&1t;, as in the following example:

<CODE> for (int i = 0; 1 &1t;= args.length; i++) { </CODE>

Raw less than signs and ampersands in normal XML text are always interpreted as
starting tags and entity references, respectively. (The abnormal text is CDATA sec-
tions, described in an upcoming section.) Therefore, less than signs and amper-
sands that are text rather than markup must always be encoded as &1t ; and
&, respectively. Attribute values are text, too, and as you already saw, entity
references can be used inside attribute values.

Greater than signs, double quotes, and apostrophes must be encoded when they
would otherwise be interpreted as part of markup. However, it’s easier just to get in
the habit of encoding all of them rather than trying to figure out whether a particu-
lar use would or would not be interpreted as markup.

Other than the five entity references already discussed, you can only use an entity
reference if you define it in a DTD first. Because you don’t know about DTDs yet,

if the ampersand character & appears anywhere in your document, it must be
immediately followed by amp;, 1t;, gt;, apos;, or quot ;. All other uses violate
well-formedness.

162 Partl + Introducing XML

r Cross- Chapter 10 teaches you how to define new entity references for other characters
Reference)\ 4nd longer strings of text using DTDs.

Comments

XML comments are almost exactly like HTML comments. They begin with <!-- and
end with --> . All data between the <! -- and - -> is ignored by the XML processor.
It’s as if it weren’t there. This can be used to make notes to yourself or your coau-
thors, or to temporarily comment out sections of the document that aren’t ready, as
Listing 6-5 demonstrates.

Listing 6-5: An XML Document That Contains a Comment

<?xml version="1.0"7>

{I-- This is Listing 6-5 from The XML Bible -->
<GREETING>

Hello XML!

<!--Goodbye XML-->

</GREETING>

Because comments aren’t elements, they can be placed before or after the root ele-
ment. However, comments cannot come before the XML declaration, which must be
the very first thing in the document. For example, this is not a well-formed XML
document:

<!-- This is Listing 6-5 from The XML Bible -->
<?xml version="1.0"7>

<GREETING>

Hello XML!

<!--Goodbye XML-->

</GREETING>

Comments cannot be placed inside a tag. This document is also illegal:

<?xml version="1.0"7>
<GREETING>

Hello XML!

<{/GREETING <!--Goodbye--> >

However, comments may surround and hide tags. In Listing 6-6, the <ANTIGREETING>
tag and all its children are commented out. They are not shown when the document
is rendered. It’s as if they don’t exist.

Chapter 6 ¢ Well-formedness 163

Listing 6-6: A Comment That Comments Out an Element

<?2xml version="1.0"7>
<DOCUMENT>
<GREETING>
Hello XML!
</GREETING>
<=
<ANTIGREETING>
Goodbye XML!
</ANTIGREETING>
-->
</DOCUMENT>

Because comments effectively delete sections of text, you must take care to ensure
that the remaining text is still a well-formed XML document. For example, be careful
not to comment out essential tags, as in this malformed document:

<?xml version="1.0"7>
<GREETING>

Hello XML!

<=

</GREETING>

-->

Once the commented text is removed, what remains is as follows:

<?xml oversion="1.0"7>
<GREETING>
Hello XML!

Because the <GREETING> tag is no longer matched by a closing </GREETING> tag,
this is no longer a well-formed XML document.

There is one final constraint on comments. The two-hyphen string - - cannot occur
inside a comment. For example, this is an illegal comment:

<!-- The red door--that is, the second one--was left open -->
This means, among other things, that you cannot nest comments like this:

<?xml o version="1.0"7>
<DOCUMENT>
<GREETING>
Hello XML!
</GREETING>

164 Partl + Introducing XML

<l--
<ANTIGREETING>
<!--Goodbye XML!-->
</ANTIGREETING>
-
</DOCUMENT>

It also means that you might run into trouble if you’re commenting out a lot of C,
Java, or JavaScript source code that’s full of expressions such as i-- or
numberlLeft--. Generally, it’s not too hard to work around this problem once you
recognize it.

Processing Instructions

Processing instructions are like comments that are intended for computer pro-
grams reading the document rather than people reading the document. However,
XML parsers are required to pass along the contents of processing instructions to
the application on whose behalf they’re parsing, unlike comments that a parser is
allowed to silently discard. However, the application that receives the information
is free to ignore any processing instruction it doesn’t understand.

Processing instructions begin with <? and end with ?>. The starting <? is followed
by an XML name called the target, which identifies the program that the instruction
is intended for, followed by data for that program. For example, you saw this pro-
cessing instruction in the last chapter:

<?xml-stylesheet type="text/xml" href="5-2.xs1"7?>

The target of this processing instruction is xm1-stylesheet. This is a standard
name that means the data in this processing instruction is intended for any web
browser that can apply a style sheet to the document. type="text/xml"
href="5-2.xs1" is the processing instruction data that will be passed to the appli-
cation reading the document. If that application happens to be a web browser that
understands XSLT, it will apply the style sheet 5-2.xsl to the document and render
the result. If that application is anything other than a web browser, it will simply
ignore the processing instruction.

_ﬁlote Appearances to the contrary notwithstanding, the XML declaration is technically
not a processing instruction. The difference is academic unless you're writing a
program to read an XML document using an XML parser. In that case, the parser's
API will provide different methods to get the contents of processing instructions
and the contents of the XML declaration.

xml-stylesheet processing instructions are always placed in the document’s pro-
log between the XML declaration and the root element start-tag. Other processing
instructions may also be placed in the prolog, or at almost any other convenient

Chapter 6 ¢ Well-formedness] 65

location in the XML document, either before, after, or inside the root element. For
example, PHP processing instructions generally appear wherever you want the PHP
processor to place its output. The only place a processing instruction cannot
appear is inside a tag or before the XML declaration.

The target of a processing instruction may be the name of the program it is
intended for, or it may be a generic identifier such as xm1-stylesheet that many
different programs recognize. Target names that begin with the three letters xm1 (or
XML, Xm1, xM1, or any other variation) are reserved for use by the World Wide Web
Consortium. However, you're free to use any other convenient name for processing
instruction targets. Different applications support different processing instructions.
Most applications simply ignore any processing instruction whose target they don’t
recognize.

The xml-stylesheet processing instruction uses a very common format for pro-
cessing instructions in which the data is divided into pseudo-attributes; that is, the
data is passed as name-value pairs, and the values are delimited by quotes.
However, as with the XML declaration, these are not true attributes because a pro-
cessing instruction is not a tag. Furthermore, this format is optional. Some process-
ing instructions will use this style; others won’t. The only limit on the content of
processing instruction data is that it cannot contain the two-character sequence ?>
that signals the end of a processing instruction. Otherwise, it’s free to contain any
legal character that may appear in XML documents. For example, this is a legal pro-
cessing instruction:

<?php

echo "Abercrombie & Fitch: <<Clothes for White People>>";
7>

In this example, the target is php. The rest of the processing instruction is data and
contains a lot of malformed text that would otherwise be illegal in an XML docu-
ment. Some programs might read this, recognize the php target, execute the little
program, and copy the text into the page. Other programs that don’t recognize the
php target will simply ignore it.

CDATA Sections

Suppose your document contains one or more large blocks of text that have a lot of
<, >, & or " characters but no markup. This would be true for a Java or HTML tuto-
rial, for example. It would be inconvenient to have to replace each instance of one
of these characters with the equivalent entity reference. Instead, you can include
the block of text in a CDATA section.

166 Partl + Introducing XML

CDATA sections begin with <! [CDATA[and end with]]>, as in the following example:

<ILCDATAL

System.out.print("<");

if (x <= args.length && y > z) {
System.out.printin(argsix - y1);

}

System.out.printin(">");

11>

The only text that’s not allowed within a CDATA section is the closing CDATA delim-
iter 11>. Comments may appear in CDATA sections but do not act as comments.
That is, both the comment tags and all the text they contain will be displayed.

Most of the time, anything inside a pair of <> angle brackets is markup, and any-
thing that’s not is character data. However, in CDATA sections, all text is pure char-
acter data. Anything that looks like a tag or an entity reference is really just the text
of the tag or the entity reference. The XML processor does not try to interpret it in
any way. CDATA sections are used when you want all text to be interpreted as pure
character data rather than as markup.

CDATA sections are extremely useful if you're trying to write about HTML or XML in
XML. For example, this book contains many small blocks of XML code. The word
processor I'm using doesn’t care about that. But if [were to convert this book to
XML, I'd have to painstakingly replace all the less than signs with &1t ; and all the
ampersands with &, like this:

&1t;?xml version="1.0" standalone="yes"?>
&1t ;GREETING>

Hello XML!

&1t;/GREETING>

To avoid having to do this, I can instead use a CDATA section to indicate that a block
of text is to be presented as is with no translation, as in the following example:

CITCDATA[<?xm] version="1.0" standalone="yes"?>
<GREETING>

Hello XML!

</GREETING>T11>

Iﬁlote Because the CDATA section end delimiter] 1> may not appear in a CDATA section,
~~ CDATA sections cannot nest. This makes it relatively difficult to write about CDATA
sections in XML. If you need to do this, you just have to bite the bullet and use the

&1t; and & escapes.

CDATA sections aren’t needed that often, but when they are needed, they’re needed
badly.

Chapter 6 + Well-formedness] 67

Caution Do not use CDATA sections to hide malformed markup. This is commonly done
when embedding HTML in XML, especially in RSS. This practice creates very fragile
systems that cannot be processed with off-the-shelf XML tools. CDATA sections are
for text, not markup. If you need to embed HTML in XML, make it well formed first,
as discussed in the final section of this chapter.

Unicode

All XML documents are read in Unicode. Unicode is a platform-independent charac-
ter set that includes almost all characters from most of the world’s living languages
and not a few dead ones, including English, German, Russian, Greek, Japanese,
Chinese, Arabic, Hebrew, Hindi, French, Cherokee, Thai, Burmese, Cambodian,
Korean, Turkish, Danish, Dutch, Gaelic, and many, many more. Unicode has room
for over 1 million different characters. In the current version, 4.0, a few more than
90,000 different Unicode characters are actually defined.

Unicode assigns each character a unique integer called its code point. For example,
the capital letter A is mapped to 65. The Greek letter 7 is mapped to the number
960. The Cyrillic character U is mapped to 1206. The musical symbol & is mapped to
the number 119,072.

Almost all of these characters are legal in well-formed XML documents. In fact, it’s
easier to list the characters that aren’t allowed than those that are. In brief, the ille-
gal characters are as follows:

4 The CO controls with code points from 0 through 31, except for the carriage
return, linefeed, and tab. Illegal characters include the bell, form feed, vertical
tab, and null.

4 The surrogate characters with code points from 55,296 to 57,343. The UTF-16
encoding pairs these up to represent characters from outside the Basic
Multilingual Plane (the first 65,535 characters of Unicode). However, they are
not themselves characters.

Including any of these characters in an XML document makes it malformed. This
most commonly happens when legacy text data from a database or other source is
blindly copied into an XML document without first scanning it for illegal characters.
Null and form feed are especially common problems in practice.

All other Unicode characters are allowed in XML documents, even the private-use
characters and characters that haven’t been defined yet. Not all characters can
appear as part of markup. For instance, «~ and © are not allowed to be part of ele-
ment and attribute names. However, they are allowed in PCDATA and attribute val-
ues. Characters with special meaning to XML, such as < and &, can also be included
in PCDATA and attribute values, provided they are properly escaped first with an
entity or character reference.

168

Part | 4+ Introducing XML

Character encodings

Unicode code points are abstract numbers. They are not ints, shorts, floats, longs,
or any other particular data type, though they might be encoded that way on a par-
ticular system. Before these abstract integers can be used in a computer, they have
to be encoded as bytes. There’s more than one way to do this. For example, a naive
encoding might simply represent each code point as a 4-byte big endian int.
Another might represent each code point as a 4-byte little endian int. And still
another might represent the numbers as either big endian or little endian ints, but
add an initial magic number to the file to determine which is being used.

Several different encodings of Unicode are in general use today. The two most com-
mon and important are UTF-8 and UTF-16. These are the only ones all XML parsers

support. Both are variable-width encodings that use different numbers of bytes for

different character ranges.

UTF-8 only uses a single byte for the most common characters, that is the ASCII
characters 0 to 127, at the expense of having to use 3 bytes for the less common
characters, particularly the Hangul syllables and Han ideographs. It uses 2 bytes for
most other characters. If you're writing in English, UTF-8 can reduce file sizes by as
much as 50 percent compared to UTF-16. On the other hand, if you're writing
mostly in Chinese, Korean, or Japanese, UTF-8 can increase your file size by as
much as 50 percent —so use it with caution. UTF-8 has mostly no effect on non-
Roman, non-CJK scripts such as Greek, Arabic, Cyrillic, and Hebrew.

UTF-16 is another very common encoding of Unicode, which all XML parsers are
required to support. UTF-16 encodes characters 0 through 65,535 (the Basic
Multilingual Plane, or BMP for short) directly as 2-byte values. Characters from
65,536 to 1,048,575 are encoded as 4-byte surrogate pairs.

Furthermore, legacy character sets such as ASCII, ISO-8859-1 (Latin-1), SJIS, or
MacRoman are treated as encodings of subsets of the Unicode character set. When
the parser reads an XML document, it converts all the data into Unicode.

The encoding declaration

XML processors assume text data is in the UTF-8 format unless told otherwise. This
means that they can read ASCII files, because ASCIl is a strict subset of UTF-8. If you
like, you can write in other encodings besides UTF-8, provided the parser recognizes
them. Each document written in an alternative character encoding must have an
encoding declaration that specifies which character set or encoding is being used.
For example, this XML declaration says that the document is written in Latin-1:

<?xml version="1.0" encoding="1S0-8859-1"7>
This one says the document is written in UTF-16:

<?xml version="1.0" encoding="UTF-16"7>

Chapter 6 + Well-formedness

Documents that are written in UTF-16 should also have an invisible byte-order mark
before the XML declaration. This is normally inserted automatically by the editor

when it saves a file in UTF-16. This helps the parser determine whether the UTF-16 is
big endian or little endian. UTF-8 documents sometimes also have such a byte-order
mark, though it’s not required because UTF-8 is completely byte-order-independent.

Numeric character references

Every Unicode character has a code point between 0 and 1,114,111. If the text edi-
tor or encoding does not support the character you need, you can use a numeric
character reference to insert the character in the XML file instead.

A numeric character reference consists of the two characters & followed by the
character code and a semicolon. For instance, the Greek letter © has Unicode value
960 so it can be inserted in an XML file as &#f960 ;. The Cyrillic character Y has
Unicode value 1206, so it can be included in an XML file with the character refer-
ence Ҷ .

Listing 6-7 demonstrates by encoding the first article of the Universal Declaration of
Human Rights in Chinese using numeric character references.

Listing 6-7: Decimal Numeric Character References

<?xml version="1.0" encoding="1S0-8859-1"7>

<ARTICLE>

人 &##20154; &#k29983; 而 自 由,
&##22312; &{#k23562; 严 和 权 利
&4#19978; 一 &{#f24459; &{#24179; &##31561;8。
&##20182; 们 赋 &{#26377; 理 性
&##21644; 良 &ff24515;, &f#24182; &{#24212; &j#20197;
&##20804; &{#f24351; 关 &##31995; &{#30340; 精
神 &4#30456; &##23545; &##24453;8&4#12290;.
</ARTICLE>

This isn’t particularly legible. It may be written in Chinese, but it’s all Greek to me.
However, if you load the result into a browser, all the references are resolved into
the actual Chinese characters, as shown in Figure 6-2. Your system will need a
Chinese font installed to display this.

Glala) udhr_chinese.xml E Figure 6-2: Browsers convert
4. » @ [E __file:/{ /Users/elharo/stallion /udhr_chinese.xml numel'ic Chal’acter refel’ences intO

AEMEHEESFEANI LE—RELE, K | the actual characters before
HHEMED FELAD X F W8 displaying them

169

170

Part | 4+ Introducing XML

Numeric character references can also be specified in hexadecimal (base 16).
Although most people are more comfortable with decimal numbers, the Unicode
specification gives character values as 2-byte hexadecimal numbers. It’s often eas-
ier to use hex values directly rather than converting them to decimal.

All you need to do is include an x after the &3 to signify that you’re using a hexadec-
imal value. For example, © has hexadecimal value 3C0, so it can be inserted in an
XML file as π ;. The Cyrillic character U has hexadecimal value 4B6, so it can
be included in an XML file with the escape sequence 䢶 ;. Because 2 bytes
always produce exactly four hexadecimal digits, it’s customary (although not
required) to include leading zeros in hexadecimal character references so they are
rounded out to four digits. Listing 6-8 repeats Listing 6-7 with hexadecimal instead
of decimal character references.

Listing 6-8: Hexadecimal Numeric Character References

<?xml version="1.0"7>

<ARTICLE>

&XAEBA; &IX4AEBA; &#Fx751F; 而 自 由,
&x5728; &iFx5C0A; &#Fx4E25; 和 &i#x6743; 利
QIXAEOA; NQ0; &#xH5F8B; 平 等。
껖 &HXAEEC; 赋 有 理 性
&x548C; &iFxB826F; &#xHFC3;, 并 &#fx5E94; &xX4EEL;
&ddx5144; &#xHFLIF; 关 系 &#fx7684; &{x7CBE;
R¥xTI5E; &Ix76F8; 对 待。
</ARTICLE>

Numeric character references, both hexadecimal and decimal, can also be used to
embed characters that would otherwise be interpreted as markup. For example, the
ampersand (&) is encoded as & or &. The less than sign (<) is
encoded as < or <.

Numeric character references can only be used in character data and attribute val-
ues, however. They cannot be used in element or attribute names. For example,
Listing 6-9, which attempts to escape the tag names, is malformed.

Listing 6-9: A Malformed Document That Tries to Use
Character References in Element Names

<?xml oversion="1.0"7>

<&{Fx7B2C; 条 ;>

&IXAEBA; &IX4AEBA; &ffx751F; 򸀌 &f#x81EA; &ffx7531;,
&x5728; &i#x5C0A; &#fx4E25; 和 权 &{#x5229;

Chapter 6 + Well-formedness] 7]

RFXAEQA; 񊸀 律 &#Fx5E73; 等。
RQIXAED6; &IFX4EEC; 赋 有 &i#x7406; 性
&x548C; &#Fx826F; &#xHFC3;, 并 &#fx5E94; &{xX4EEL;
&4Fx5144; &fFx5F1F; 关 &fFx7CFB; &#fx7684; &ix7CBE;
&##x795E; &IxT6F8; &i#Fx5BFI; 待。

</&JFXTB2C; 条 ;5>

If you want to use Chinese in an element name or other markup, you must use a
character encoding that includes Chinese so you can type the actual characters
rather than character references.

Character references may seem to appear inside comments, processing instruc-
tions, and CDATA sections. However, in those contexts they are merely interpreted
as text. The parser does not convert a string such as & into a different charac-
ter inside CDATA sections, comments, and processing instructions.

XML 1.1

XML 1.0 was based on Unicode 2.0. XML 1.1 is designed to be independent of any
particular Unicode version. XML 1.0 explicitly listed all the characters that could be
used in XML names (including element names, attribute names, entity names, and
processing instruction targets). Characters that weren’t defined yet in Unicode 2.0
weren’t allowed in names. For example, you can’t write XML 1.0 names in Amharic,
Burmese, or Cambodian because those scripts weren’t added to Unicode until ver-
sion 3.0. Naturally, this is a bit of a problem for developers whose preferred lan-
guage is Amharic, Burmese, or Cambodian.

XML 1.1 allows you to use these scripts and others defined after Unicode 2.0 in doc-
uments. All you have to do is set the version attribute to 1.1 instead of 1.0. Listing

6-10 demonstrates with Article 1 of the Universal Declaration of Human Rights writ-

ten in Burmese:

Listing 6-10: A Burmese Document in XML 1.1

<?xml version="1.1"7>

<3)§§>

AR08 08 podeubeomn s BmlnfeE] coplisomé:?
8egodeodean mgéfmengm(eéy copdieomé:?
sg:grronagep: [05oopbd fopddll i[>

soe§oodeon 358§ 0388005 BondSearn 8oBoiifmll
BopcBgoops mg&iqé: eemnconll socdeooyEfoyadimd
</3’>§§>

172

Part | 4+ Introducing XML

However, this is only important for markup, not for PCDATA. XML 1.0 documents
can contain Burmese, Cambodian, Amharic, and other Unicode 4.0 scripts in text
content. They just can’t use it for markup. Listing 6-11 is a perfectly well-formed
XML document that uses the Burmese script for text but English markup.

Listing 6-11: Burmese Text with English Markup in XML 1.0

<?xml version="1.0"7>

<ARTICLE>

gB&opd B c\goSmtSGm::BmDa[soéﬁ copheomné?
pBagBeobeon mglimenegmu€l copdeomné:e
sgigrenapep: [obwopdd oyl §&fen:

soe§onoieon 358 oyEfocd Bonodeon Bo3c3§erll
Bopigood 39898 svonIroonll socdeomyfoyoéimd

</ARTICLE>

The second change XML 1.1 makes is allowing the use of the newline character,
Unicode code point 133, NEL, as a substitute for carriage returns and linefeeds. This
NEL character is used as a line terminator on some IBM mainframe systems instead
of the worldwide standards carriage return and linefeed. There’s no excuse for this
uninteroperability, and IBM really should have fixed this on their mainframes
decades ago. Nonetheless, XML 1.1 does allow NEL to be used as white space in
XML documents. However, it never has to be used. It can’t do anything a simple car-
riage return or linefeed can’t do, and it’s incompatible with existing XML processors
and systems as well as plain-vanilla text editors such as emacs and BBEdit.
Allowing NEL into XML 1.1 was a bad decision with no real value to anyone.

The third change XML 1.1 makes is forbidding the direct inclusion of the C1 control
characters with Unicode code points 128 through 159 in your documents with the
single exception of the NEL character. The C1 controls have never achieved broad
adoption, and their inclusion in XML 1.0 was an oversight. They should have been
banned like the CO controls from 0 to 31. When you find these characters in a docu-
ment, what you most often have is a mislabeled Cp1252 document. Cp1252 is the
U.S. Windows default encoding. It’s mostly identical to ISO-8859-1 (Latin-1) except
that it uses the space from 128 to 159 for additional graphic characters such as %o
and (E. Other vendor character sets such as MacRoman also use this range. It’s rare
to find any of these code points used in a genuine Latin-1 or Unicode document.
XML 1.1 does allow these characters to be included if they’re escaped as numeric
character references such as ‡ or Œ.

The fourth change XML 1.1 makes is allowing additional CO control characters such
as form feed and bell in XML data. However, these cannot be typed directly. They
must always be escaped with numeric character references such as  and .
Character 0, the null, is still not allowed whether you escape it or not. The remaining
CO control characters are allowed, though only the three allowed in XML 1.0 — carriage

o

Chapter 6 + Well-formedness

return, linefeed, and tab—do not have to be escaped. This may be useful if you have
a lot of legacy data with embedded control characters, but these control characters
simply aren’t needed in new XML documents. Markup is much better for indicating
page breaks, beeps, and other control structures than the CO characters ever were.

Bottom line: If you aren’t interested in writing markup in Amharic, Burmese,
Cambodian, Yi, Tagalog, Mongolian, or a few other languages only lately added to
Unicode, you don’t need XML 1.1. Indeed, you should not use XML 1.1, because it
merely makes your documents incompatible with the large installed base of XML
software for no good reason. If you do want to write markup (not PCDATA but
markup) in one of these languages, set the version attribute of the XML declara-
tion to 1.1 and then proceed as normal.

The XML 1.1 specification also expends a lot of verbiage on Unicode normaliza-
tion. Very roughly, this is the act of changing characters like the letter e followed by
a combining accent acute into the single character é. However, the rules for nor-
malization are so weak that they have no actual effect on parsers. In brief, the
specification suggests that document authors should normalize their text, but for-
bids parsers from actively text. Parsers are allowed but not required to warn client
applications if they encounter unnormalized text. However, they were allowed to
warn about this (or anything else they didn't like) in XML 1.0. Nothing has really
changed with respect to normalization in XML 1.1.

There is one more change XML 1.1 makes that’s potentially relevant to a few more
users, but it involves namespaces, so discussion will have to wait until namespaces
are introduced in Chapter 11.

Well-formed HTML

You can practice your XML skills even before all web browsers directly support XML
by writing well-formed HTML. Well-formed HTML is HTML that adheres to XML'’s
well-formedness constraints but only uses standard HTML tags. Well-formed HTML
is easier to read than the sloppy HTML most humans and WYSIWYG tools such as
FrontPage write. It’s also easier for web robots and automated search engines to
understand. It’s more robust and less likely to break when you make a change. And
it’s less likely to be subject to annoying cross-browser and cross-platform differ-
ences in rendering. Furthermore, you can then use XML tools to work on your HTML
documents while still maintaining backward compatibility with browsers that don’t
support XML.

Rules for HTML

Real-world web pages are extremely sloppy. Tags aren’t closed. Elements overlap.
Raw less than signs appear in text. Semicolons are omitted from the ends of entity
references. Web pages with these problems are technically incorrect, but most
browsers accept them. Nonetheless, your web pages will be cleaner, display faster,
and be easier to maintain if you fix these problems.

173

174 Partl + Introducing XML

Some of the common problems that you need to look for in HTML include the
following:

. Start-tags without matching end-tags (unclosed elements)

. End-tags without start-tags (orphaned tags)

. Overlapping elements

. Unquoted attributes

. Unescaped <, >, and & signs

. Documents without root elements

N S Ul AW N -

. End-tags in a different case than the corresponding start-tag

I've listed these in rough order of importance. Exact details vary from tag to tag,
however. For example, an unclosed tag will turn all elements following it
bold. However, an unclosed <L 1> or <P> tag causes no problems at all.

Some constructs only apply to XML documents; they might cause problems if you
attempt to integrate them into your existing HTML pages. These XML-only con-
structs include the following:

1. The XML declaration
2. Empty-element tags

3. Entity references besides &, &1t ;, and > ; and numeric character
references

Fixing these problems isn’t hard, but there are a few pitfalls to trip up the unwary.
They are explored in the following section.

Close all elements

Any element that contains content, whether text or other child elements, should
have a start-tag and an end-tag. HTML doesn’t absolutely require this. For example,
<P>,<DT>, <DD>, and are often used in isolation. However, this relies on the
web browser to make a good guess at where the element ends, and browsers don’t
always do quite what authors want or expect. Therefore, it’s best to explicitly close
all elements.

The biggest change this requires to how you write HTML is thinking of <P> as a con-
tainer rather than a simple paragraph break mark. For example, previously, you
would probably have formatted these maxims from Oscar Wilde’s Phrases and
Philosophies for the Use of the Young like this:

Wickedness is a myth invented by good people to account
for the curious attractiveness of others.
<P>

Chapter 6 ¢ Well-formedness |75

Those who see any difference between soul and body have
neither.
<P>

Religions die when they are proved to be true. Science is the
record of dead religions.
<PY>

The well-bred contradict other people. The wise contradict
themselves.
<P>

Now you have to format them like this instead:

<P>

Wickedness is a myth invented by good people to account
for the curious attractiveness of others.

<P

<P>

Those who see any difference between soul and body
have neither.

/P>

<P>

Religions die when they are proved to be true. Science is the
record of dead religions.

</P>

<P>

The well-bred contradict other people. The wise contradict
themselves.

/P>

You’ve probably been taught to think of <P> as ending a paragraph. Now you have
to think of it as beginning one. This does provide some advantages, though. For
example, you can easily assign a variety of formatting attributes to a paragraph.
Here’s the original HTML title of House Resolution 581 as seen on http://thomas.
loc.gov/home/hres581.html:

{center>
<p><h2>House Calendar No. 272</h2>

<p><h1>105TH CONGRESS 2D SESSION H. RES. 581</h1>
<{p>[Report No. 106-795]

<p>Authorizing and directing the Committee on the
Judiciary to investigate whether sufficient grounds
exist for the impeachment of William Jefferson Clinton,
President of the United States.

<{/center>

176 Partl + Introducing XML

Here’s the same text, but using well-formed HTML. The a11ign attribute now
replaces the deprecated center element, and a CSS attribute is used instead of
the tag.

<h2 align="center">House Calendar No. 272</h2>
<hl align="center">105TH CONGRESS 2D SESSION H. RES. 581</h1>
<p align="center">[Report No. 106-7951</p>

<p align="center" style="font-weight: bold">

Authorizing and directing the Committee on the Judiciary to
investigate whether sufficient grounds exist for the
impeachment of William Jefferson Clinton,

President of the United States.

</p>

Delete orphaned end-tags; don’t let elements overlap

When you are editing pages, it’s not uncommon to remove a start-tag and forget to
remove its associated end-tag. In HTML, an orphaned end-tag, such as a
or </TD> that doesn’t have any matching start-tag, is unlikely to cause problems by
itself. However, it does make the file longer than it needs to be, increases the time
that it takes to download the document, and has the potential to confuse people or
tools that are trying to understand and edit the HTML source. Therefore, you
should make sure that each end-tag is properly matched with a start-tag.

More often an end-tag that doesn’t match any start-tag means that elements incor-
rectly overlap. Most elements that overlap on web pages are quite easy to fix. For
example, consider this common problem taken from the White House home page
(http://www.whitehouse.gov/, November 4, 1998).

<l-- New Begin -->

Remarks 0Of The
President Regarding Social Security

<!-- New End -->

Because the b element starts inside the font element, it must end inside the font
element. All that’s needed to fix it is to swap the end-tags like this:

<!-- New Begin -->

Remarks 0f The
President Regarding Social Security

<l-- New End -->

Chapter 6 + Well-formedness] 77

Alternately, you can swap the start-tags instead:

<l-- New Begin -->

Remarks Of The
President Regarding Social Security

<I-- New End -->

Occasionally, you'll have a tougher problem. For example, consider this larger frag-
ment from the same page. I've made the problem tags bold to make it easier to see
the mistake:

<TD valign=TOP width=85>

<img border=0
src="/WH/images/pin_calendar.gif"
align=LEFT height=50 width=75 hspace=5 vspace=5>
 </TD>
<TD valign=TOP width=225>
What's New:

What's happening at the White <nobr>House - </nobr>

<l-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

</TD>

Here the element begins inside the first <TD valign=TOP
width=85> element and continues past that element into the <TD valign=TOP
width=225> element, where it finishes. The proper solution in this case is to close
the FONT element immediately before the first </TD> closing tag, and to then add a
new start-tag immediately after the start of the second TD ele-
ment, like this:

<TD valign=TOP width=85>

<img border=0
src="/WH/images/pin_calendar.gif"

align=LEFT height=50 width=75 hspace=5 vspace=5>

</TD>

<TD valign=TOP width=225>

What's New:

What's happening at the White <nobr>House - </nobr>

178

Part | 4+ Introducing XML

<I-- New Begin -->
Remarks Of The
President Regarding Social Security

<l-- New End -->

</TD>

Quote all attributes

HTML attributes only require quote marks if they contain embedded white space.
Nonetheless, it doesn’t hurt to include them. Furthermore, using quote marks may
help in the future, if you later decide to change the attribute value to something
that does include white space. It’s quite easy to forget to add the quote marks later,
especially if the attribute is similar to an ALT in an whose malformedness is
not immediately apparent when you are viewing the document in a web browser.

For example, consider this tag:

It should be rewritten like this:

The previously listed fragment from the White House home page has a lot of
attributes that require quoting. When the quote marks are fixed, it looks like this:

<TD valign="TOP" width="85">

<img border="0"
src="/WH/images/pin_calendar.gif" align="LEFT"
height="50" width="75" hspace="5" vspace="5">

</TD>

<TD valign="TOP" width="225">

What's New:

What's happening at the White <nobr>House - </nobr>

<l-- New Begin -->

Remarks 0f The
President Regarding Social Security

<I-- New End -->

</TD>

Chapter 6 + Well-formedness

Escape <, >, and & signs

HTML is more forgiving of loose less than signs and ampersands than is XML.
Nonetheless, even in pure HTML, they do cause trouble, especially if they're fol-
lowed immediately by some other character. For example, consider this e-mail
address as it might easily be copied and pasted from the From: header in Eudora:

Elliotte Rusty Harold <elharo@metalab.unc.edu>
Were it to be rendered in HTML, this is all you would see:

Elliotte Rusty Harold

The e-mail address has been unintentionally hidden by the angle brackets. Anytime
you want to include a raw less than sign or ampersand in HTML, you really should
use the &1t ; and & entity references. The correct HTML for such a line would
be as follows:

From: Elliotte Rusty Harold <elharo@metalab.unc.edu>

You're slightly less likely to see problems with an unescaped greater than sign
because this will only be interpreted as markup if it’s preceded by an as yet unfin-
ished tag. However, there may be such unfinished tags in a document, and a nearby
greater than sign can mask their presence. For example, consider this fragment of
Java code:

for (int i=0;i<10;i++) {
for (int j=20;3>10;j--) {

It’s likely to be rendered as follows:
for (int 1=0;710;j--) |

If those are only 2 lines in a 100-line program, it’s entirely possible you’ll miss the
omission when casually proofreading. On the other hand, if the greater than sign is
escaped, the unescaped less than sign will probably obscure the rest of the pro-
gram, and the problem will be harder to spot.

Use the same case for all tags

HTML isn’t case-sensitive, but XML is. If you open an element with <TD> you can’t
close it with </td>. When | went back to the White House home page for the sec-
ond edition of this book, I found that they’d fixed the problems I previously noted.
However, this time I found a lot of elements like this:

Commonly Requested Federal Services:

179

180

Part | 4+ Introducing XML

The end-tags need to at least match the case of the corresponding start-tags. Thus,
in this example, should be , like this:

<{B>Commonly Requested Federal Services:

However, most of the time I'd go a little further. In particular, I recommend picking a
single convention for tag case, either all uppercase, all lowercase, or camel case,
and sticking to it throughout the document. This is easier than trying to remember
details of each tag. In this book, I'm mostly using all uppercase tags so that the tags
will stand out in the text, but for HTML I normally use all lowercase because it’s
much easier to type and because, eventually, XHTML will require it. Thus, I'd
rewrite the preceding fragment like this:

Commonly Requested Federal Services:

iS_S-/‘X XHTML is discussed in Chapters 21 and 22.
Reference

Include a root element

The root element for HTML files is supposed to be htm1. Most browsers forgive a
failure to include this. Nonetheless, it’s definitely better to make the very first tag in
your document <ntm1> and the very last </htm1>. If any extra text or tags have
gotten in front of <htm1> or behind </htm1>, move them between <html> and
</html>.

One common manifestation of this problem is simply forgetting to include </htm1>
at the end of the document. I always begin my documents by typing <htm1> and
</htm1>, then type between them, rather than waiting until I've finished writing the
document and hoping that by that point, possibly days later, I still remember that I
need to put in a closing </htm1> tag.

Close empty-element tags with a />

Empty-element tags are the béte noir of converting HTML to well-formed XML.
HTML does not formally recognize the XML <elementname/> syntax for empty ele-
ments. You can convert
 to
, <HR> to <HR/>, to , and so on
quite easily. However, it’s a tossup whether any given browser will render the trans-
formed tags properly or not.

Caution Do not confuse truly empty elements such as
, <HR>, and with ele-

ments that do contain content but often only have a start-tag in standard HTML,
such as <P>, , <DT>, and <DD>.

The simplest solution, and the solution approved by the XML specification, is to
replace the empty-element tags with start-tag/end-tag pairs with no content. The
browser should then ignore the unrecognized end-tag, as in the following example:

Chapter 6 + Well-formedness] 8]

</BR>
<HR></HR>

This seems to work well in practice with one notable exception. Netscape treats
</BR> the same as
; that is, as a signal to break the line. Thus, while
 is a
single line break,
</BR> is a double line break, more akin to a paragraph mark
in practice. Furthermore, Netscape ignores
 completely. Web sites that must
support legacy browsers (essentially all web sites) cannot use either
</BR> or

. What does seem to work in practice for XML and legacy browsers is this:

Note the space between <BR and />. If the space bothers you, you can add an extra
attribute like this:

<BR CLASS="empty"/>

Use no entity references other than &, <, >, ', and "
Many web pages don’t need entity references other than &, &1t;, > ;,
', and " ;. However, the HTML 4.0 specification does define many more,
including the following:

4+ ™, the trademark symbol ™

4 ©, the copyright symbol ©

4 ∞, the infinity symbol -

4+ π, the lowercase Greek letter
There are several hundred others. These are just a sample. However, using any of
these will make your document malformed. The real solution to this problem is to

use a DTD. [discuss the effect that DTDs have on entity references in Chapter 10. In
the meantime, there are several short-term solutions.

The simplest is to write the document in a character set that has all the symbols
you need, and then use a <META> directive to specify the character set in use. For
example, to specify that your document uses UTF-8 encoding, a character set dis-
cussed in the next chapter that contains all the characters you're likely to want,
you would place this <META> directive in the head of your document:

<META http-equiv="Content-Type" content="text/html;
charset=UTF-8"></META>

Alternately, you can simply tell your web server to emit the necessary content type
header. However, it’s normally easier to use the <META> tag.

Content-Type: text/html; charset=UTF-8

182

Part | 4+ Introducing XML

The problem with this approach is that many browsers are likely not to be capable
of displaying the UTF-8 character set. The same is true of most of the other charac-
ter sets that you're likely to use to provide these special characters.

HTML 4.0 supports character entity references just like XML'’s; that is, you can
replace a character by &3 and the decimal or hexadecimal value of the character in
Unicode, as in the following examples:

+ &4f8482; is the trademark symbol ™

4+ &#f169; is the copyright symbol ©

4 &4(8734; is the infinity symbol

4+ %4960 ; is the lowercase Greek letter ©t
Unfortunately, HTML 3.2 only officially supports the numeric character references

between 0 and 255 (ISO Latin-1), and many commonly used web browsers won’t
recognize character references outside this range.

If you're really desperate for well-formed XML that’s backward-compatible with
HTML, you can create bitmapped images of each desired character and include
them using inline images:

4

4 <img src="copyright.gif" width="12" height="12"
alt="Copyright">

4 img src="infinity.gif" width="12" height="12"
alt="infinity">

4

In practice, however, [don’t recommend including these characters as inline
images. Well-formedness is not nearly so important in HTML that it justifies the
added download and rendering time that using characters as inline images imposes
on your readers.

Don’t include an XML declaration

HTML documents don’t need XML declarations. However, they can have them. Web
browsers should simply ignore tags they don’t recognize. From their perspective,
the line

<?xml version="1.0" standalone="yes"?>

Chapter 6 + Well-formedness] 83

is just another tag. Because browsers that don’t understand XML don’t understand
the <?7xm17?> tag, they quietly ignore it. However, I've encountered strange behav-
iors when different browsers are presented with an HTML document that includes
an XML declaration. When faced with such a file, Internet Explorer 4.0 for the Mac
tried to download the file rather than displaying it. Netscape Navigator 3.0 showed
the declaration as text at the top of the document. Admittedly, these are older
browsers, but they are still used by millions of people. Consequently, because the
XML declaration is not required for XML documents and because it doesn’t really
add a lot to XMLized HTML pages, I've removed it from my web sites.

Tools

It is not particularly difficult to write well-formed XML documents that follow the
rules described in this chapter. However, XML browsers are less forgiving of poor
syntax than are HTML browsers, so you do need to be careful.

If you violate any well-formedness constraints, XML parsers and browsers will
report a syntax error. Thus, the process of writing XML can be a little like the pro-
cess of writing code in a real programming language. You write it, and then you
compile it; when the compilation fails, you note the errors reported and fix them. In
the case of XML you parse the document rather than compile it, but the pattern is
the same.

Generally, you go through several edit-parse cycles before you get your first look at
the finished document in this iterative process. Despite this, there’s no question
that writing XML is a lot easier than writing C or Java source code. With a little
practice, you’ll get to the point at which you have relatively few errors, and at
which you can write XML almost as quickly as you can type.

There are several tools that will help you clean up your pages, most notably RUWF
(Are You Well-Formed?) from XML.COM and Tidy from Dave Raggett of the World
Wide Web Consortium.

RUWF

Any tool that can check XML documents for well-formedness can test well-formed
HTML documents as well. One of the easiest to use is the RUWF well-formedness
checker from XML.COM at http://www.xml.com/pub/a/tools/ruwf/check.
htm1. Figure 6-3 shows this tester. Simply type in the URL of the page that you want
to check, and RUWF returns the first several dozen errors on the page.

184 Partl + Introducing XML

W XML.com: RUWF? The XML Syntax Checker - Mozilla =HE|
. 2 . A @ = . l.
s e e ;"ti-l-'] .& htipd A eml comd pubda Mool sdruwficheck html F @ _Search Print | m
e — o

notated X

Viat s XIIL? Sty RUWF"’

Whats XSLT? o if are you well-formed?

Vihatis XSL-FC ro & 5 g0

Vihat s XLirk XML file is well-formed

Wihat s » ML Smema'?

%ﬁwr— Typaina URL below, and we'll fetch whataver it points at and check to

wﬂ:tt 5 ETSSE_ Maps? see whether it's wall-formed XML, In cas= you don't have any XML lying
are [0 aps / i i 1 .

Wm%%@, around, wa've providad a couple of test files:

What are XFomms"?

XSLT Hedpe of he Day . www

® http: .-’.n"www xml.co m.-’rnnls.-’ruwffw_

our Password ? fre=
Ym URL: [nitp:{/www. whitehouse. gov

Ahernatwely, type some XML in here:

Add the latest news

from XML.com to
your web site

Click here! b

P COLUMNS
XML-Deviant

iyl bt _Ruwr?/

Trensfomming XML
ﬁﬁ i and XE%L This XML syntax checker is built with the XML::Parser module and

ch Salz
Jon el Perl.

~ Done E || ==

SUET

Figure 6-3: The RUWF well-formedness tester

Here’s the first batch of errors RUWF found on the White House home page. Most of
these errors are malformed XML, but legal (if not necessarily well styled) HTML.
However, at least one error (“Line 55, column 30: Encountered with no
start-tag.”) is a problem for both HTML and XML.

Line 28, column 7: Encountered </HEAD> expected </META>
.assumed </META> ...assumed </META> ...assumed </META>
.assumed </META>

Line 36, column 12, character '0O': after AttrName= in start-tag

Line 37, column 12, character '0': after AttrName= in start-tag

Line 38, column 12, character '0': after AttrName= in start-tag

Line 40, column 12, character '0O': after AttrName= in start-tag

Line 41, column 10, character 'A': after AttrName= in start-tag

Line 42, column 12, character '0': after AttrName= in start-tag

Line 43, column 14: Encountered </CENTER> expected </br>

assumed </br> ...assumed </br>

L1ne 51, column 11, character '+': after AttrName= in start-tag

Line 52, column 51, character '0O': after AttrName= in start-tag

Line 54, column 57: after &

Line 55, column 30: Encountered with no start-tag.

Line 57, column 10, character "A': after AttrName= in start-tag

Line 59, column 15, character '+': after AttrName= in start-tag

Chapter 6 ¢ Well-formedness] 85

Tidy

After you've identified the problems, you’ll want to fix them. Many common prob-
lems — for example, putting quote marks around attribute values — can be fixed
automatically. The most convenient tool for doing this is Dave Raggett’s command-
line program HTML Tidy (http://tidy.sourceforge.net). Tidy is a character

mode program written in ANSI C that can be compiled and run on most platforms,
including Windows, UNIX, BeOS, and the Mac.

Tidy cleans up HTML files in several ways, not all of which are relevant to XML well-
formedness. In fact, in its default mode, Tidy tends to remove unnecessary (for
HTML, but not for XML) end-tags such as </L1> and to make other modifications
that break well-formedness. However, you can use the -asxml switch to specify
that you want well-formed XML output. For example, to convert the file index.html
to well-formed XML, you would type this command from a DOS window or shell
prompt:

C:\> tidy -m -asxml index.html

The -m flag tells Tidy to convert the file in place. The -asxm]1 flag tells Tidy to for-
mat the output as XML.

Summary

In this chapter, you learned about XML’s well-formedness rules. In particular, you
learned the following:

4+ XML documents are sequences of characters that meet certain well-
formedness criteria.

4 The text of an XML document is divided into character data and markup.

4 An XML document is a tree structure made up of elements.

4 Tags delimit elements.

4 Start-tags and empty-element tags can have attributes, which describe
elements.

4 The xm1:space attribute determines whether white space in an element is
significant. The two possible values are default and preserve.

4+ The xm1:Tang attribute specifies the language in which an element’s content
is written.

4 Entity references allow you to include <, >, &, ", and ' in your document.

4 CDATA sections are useful for embedding text that contains a lot of <, >, and &
characters but no markup.

186

Part | 4+ Introducing XML

4 Comments can document your code for other people who read it, but parsers
sometimes fail to report them. Comments can also hide sections of the docu-
ment that aren’t ready.

4 Processing instructions allow you to pass application-specific information to
particular applications.

4 When writing XML in encodings other than UTF-8, include an encoding
attribute in the XML or text declaration.

4+ Decimal and hexadecimal numeric character references such as A and
σ enable you to escape characters that do not exist in the document’s
encoding in PCDATA and attribute values.

4 XML 1.1 is unlikely to be useful unless your preferred language is Burmese,
Ambharic, Mongolian, Cambodian, or one of a few others not encoded in
Unicode 2.0.

4 HTML documents can also be well formed with a little extra effort.

This chapter concludes your exploration of basic, well-formed XML. The next chap-
ter takes up document type definitions (DTDs) and validity. A DTD defines a struc-
ture for a class of XML documents. It specifies what document in that class must,
must not, and may contain. By validating documents against DTDs, you can quickly
and easily verify that your documents meet various conditions.

+ ¢+

Document Type
Definitions

1]

YR TR SRS
In This Part

Chapter 7
Validity

Chapter 8

Element Declarations

Chapter 9

Attribute Declarations

Chapter 10

Entity Declarations

Chapter 11
Namespaces

+ 0+ o+

Validity

XML has been described as a meta-markup language; that
is, a language for describing markup languages. In this
chapter, you begin to learn how to document and describe the
new markup languages that you create. Such markup languages
(also known as vocabularies or XML applications) are defined
via a document type definition (DTD). Individual documents
can be compared against DTDs in a process known as valida-
tion. If the document matches the constraints listed in the
DTD, the document is said to be valid; if the document doesn’t
match the constraints, the document is said to be invalid.

Document Type Definitions

A document type definition lists the elements, attributes, enti-
ties, and notations that can be used in a document, as well as
their possible relationships to one another. A DTD specifies a
set of rules for the structure of a document. For example, a
DTD may dictate that each BOOK element has exactly one ISBN
child element, exactly one TITLE child element, and one or
more AUTHOR children, and it may or may not contain a single
SUBTITLE. Each such rule is given in a declaration.

Every valid XML document must specify the DTD it’s valid with
respect to. This DTD can be included in the XML document it
describes, or that document can link to it at an external URL.
Such external DTDs can be shared by different documents and
web sites. If the DTD is not directly included in the document
but is linked in from an external source, changes made to the
DTD automatically propagate to all documents using that DTD.
On the other hand, backward compatibility is not guaranteed
when a DTD is modified. Incompatible changes can invalidate
documents.

CHAPTER

+ 0+ o+
In This Chapter

Document type
definitions

DTD files

Document type
declarations

Validation
against a DTD

The list of elements
Element declarations
Comments in DTDs

¢+ 4+ o+

190

Part Il ¢ Document Type Definitions

The real power of XML comes from common DTDs that are shared among many
documents written by different people. DTDs provide a means for businesses, orga-
nizations, and interest groups to agree upon, document, and enforce adherence

to markup standards. For example, a publisher may want an author to adhere to a
particular format because it makes laying out a book easier. An author may prefer
writing words in a row without worrying about matching up each bullet point in the
front of the chapter with a subhead inside the chapter. If the author writes in XML,
it’s easy for the publisher to check whether the author adhered to the predetermined
format specified by the DTD, and even to find out exactly where and how the author
deviated from the format. This is much easier than reading through the document
manually, hoping to spot all the minor deviations based on style alone.

DTDs also help ensure that different people and programs can read each other’s
files. For example, if chemists agree on a single DTD for basic chemical notation,
possibly via the intermediary of an appropriate professional organization such as
the American Chemical Society, they can rest assured that they can all read and
understand one another’s papers. The DTD defines exactly what is and is not allowed
to appear inside a document. The DTD establishes a standard for the elements that
viewing and editing software must support. Even more importantly, it establishes
that extensions beyond those the DTD declares are invalid. This helps prevent soft-
ware vendors from embracing and extending open protocols to lock users into their
proprietary software.

Furthermore, a DTD shows how the different elements of a document are arranged.
A DTD shows the generic structure of a document separate from the actual data in
the individual document instances. This means that you can slap a lot of fancy styles
and formatting onto the underlying structure without destroying it, much as you
paint a house without changing its basic architectural plan. The reader of your page
may not see or even be aware of the underlying structure, but as long as it’s there,
human authors and JavaScripts, servlets, databases, and other computer programs
can use it.

Element Declarations

Recall Listing 3-2 (greeting.xml) from Chapter 3, repeated here:

<?2xml version="1.0"7>
<GREETING>

Hello XML!
</GREETING>

This XML document contains a single element, GREETING. (Remember, <?xm]
version="1.0"7> is the XML declaration, not an element.) A DTD for this document
has to declare the GREETING element. It may declare other elements, too, including
ones that aren’t present in this particular document, but it must at least declare the
GREETING element.

Chapter 7 + Validity

Elements are declared using element declarations. Each element declaration gives
the name of the element and lists the elements and text that it can contain. This list
is called the content specification. For example, this element declaration for the
GREETING element says that elements with the name GREETING must contain only
parsed character data:

CIELEMENT GREETING (#PCDATA)>

Every declaration begins with <!. Element declarations begin with <! ELEMENT
(case-sensitive, as most things are in XML). This is followed by some white space
and the name of the element being declared, GREETING in this example. Then there’s
some more white space and the content specification for this element. This content
spec (#PCDATA) says that the element must contain parsed character data. Parsed
character data is essentially any text that’s not markup. This also includes entity
references, such as &, that are replaced by text when the document is parsed.
In other words, GREETING elements can contain text but no child elements. A valid
GREETING element must look like this:

<GREETING>
various random text but no markup
</GREETING>

There’s no restriction on what text the element can contain. It can be zero or more
Unicode characters, with any meaning. DTDs don’t let you specify that an element
must contain a year such as 2004 or a floating-point number like 3.14152. You can
only say whether the element contains text, or child elements, or both. A GREETING
element can also look like this:

<GREETING>Hel10o!</GREETING>
Or even this:
{GREETING></GREETING>
However, a valid GREETING element cannot look like this:
<GREETING>
<SOME_TAG>various random text</SOME_TAG>

<SOME_EMPTY_TAG/>
</GREETING>

Nor may it look like this:
<GREETING>

<GREETING>various random text</GREETING>
</GREETING>

Each GREETING element must consist of nothing more and nothing less than parsed
character data between an opening <GREETING> tag and a closing </GREETING> tag.

191

192

Part Il ¢ Document Type Definitions

DTD Files

Declarations are placed in DTDs. Often a DTD is a single file, separate from the
document itself (although as you’ll soon see, other storage schemes are possible).
Such a DTD can be saved in a text file using any standard text editor. By convention,
this file will have the three-letter extension .dtd, although this isn’t required. For
example, you might save a DTD describing only GREETING elements in a file called
greeting.dtd, as shown in Listing 7-1.

Listing 7-1: greeting.dtd

CIELEMENT GREETING (#fPCDATA)>

Of course, DTDs are usually much longer and more complex and contain many
more declarations than this trivial example.

Most of the time, DTDs are written in either ASCII or UTF-8. If you use any other
encoding, the DTD must have a text declaration identifying the encoding used,
as discussed in the last chapter. For example, Listing 7-2 shows a DTD that uses
the ISO-8859-5 encoding because it uses the Russian word for greeting as an
element name:

Listing 7-2: russian_greeting.dtd

<?xml encoding="1S0-8859-5"7>
CVELEMENT TIPMBETCTBUE (#PCDATA)>

Document Type Declarations

A document type declaration is placed in an XML document’s prolog to say what
DTD that document adheres to. It also specifies which element is the root element
of the document. The document type declaration can either specify the DTD directly,
by including it inside the document type declaration, or indirectly, by giving the URL
where the DTD is found. It may even do both, in which case the DTD has two parts,
the internal and external subsets.

Chapter 7 + Validity 193

Caution A document type declaration is not the same thing as a document type definition.
Only the document type definition is abbreviated DTD. A document type declaration
must contain or refer to a document type definition, but a document type defini-
tion never contains a document type declaration. | agree that this is unnecessarily
confusing. Unfortunately, XML is stuck with this terminology.

A document type declaration begins with <!DOCTYPE and ends with a >. In between
is the name of the root element, followed either by a pair of square brackets contain-
ing the DTD itself or by the SYSTEM keyword and a URL where the DTD can be found
(or, occasionally, both). A document type declaration has this basic form:

<I!DOCTYPE name_of_root_element
SYSTEM "URL of the external DTD subset" [
internal DTD subset

1

Here, name_of_root_element is simply the name of the root element. The SYSTEM
keyword indicates that what follows is a URL where the DTD is located. The square
brackets enclose the internal subset of the DTD; that is, those declarations included
inside the document itself. You can omit either the SYSTEM keyword and the URL to
the external DTD subset or the square brackets and internal DTD subset, but you
must have at least one of them for the document to be valid. For example, this doc-
ument type declaration only specifies an external DTD that can be found at the URL
http://example.org/greeting.dtd:

<IDOCTYPE GREETING SYSTEM "http://example.org/greeting.dtd">
This document type declaration includes the DTD inside itself:

<IDOCTYPE GREETING [
CIVELEMENT GREETING (#PCDATA)>
»

Line breaks and extra white space are not significant in a DTD. The same document
type declaration could be written on a single line like this:

<IDOCTYPE GREETING [<!ELEMENT GREETING (#PCDATA)> 1>

In all cases, the document type declaration is placed in the document’s prolog, after
the XML declaration but before the root element. For example, Listing 7-3 adds a
document type declaration to the hello.xml document previously listed.

194

Part Il ¢ Document Type Definitions

Listing 7-3: Hello XML with DTD

<?2xml version="1.0"7>

<!DOCTYPE GREETING SYSTEM "greeting.dtd">
<GREETING>

Hello XML!

</GREETING>

Listing 7-3 uses a relative URL to locate the DTD so that it will be searched for in the
same directory in which the document itself was found. You might also wish to
locate DTDs relative to the web server’s document root or to the current directory.
In general, any reference that forms a URL relative to the location of the document
is acceptable. For example, these are all acceptable document type declarations:

<IDOCTYPE SEASON SYSTEM "/xml/dtds/greeting.dtd">
<IDOCTYPE SEASON SYSTEM "dtds/greeting.dtd">
<!DOCTYPE SEASON SYSTEM "../greeting.dtd">

A document can't have more than one document type declaration, that is, more
than one <!DOCTYPE>. To use elements declared in more than one external DTD,
you need external parameter entity references. These are discussed in Chapter 10.

-

Internal DTDs

Putting the entire DTD inside the document type declaration isn’t as reusable or
modular as locating it with a URL, but it sometimes helps when you’re developing a
new DTD and want to keep your example document and the DTD in sync. Moreover,
it will have some important consequences when entities are discussed in a couple
of chapters. Listing 7-4 shows a complete greeting document with an internal DTD.

Listing 7-4: Hello XML with an Internal DTD

<?xml oversion="1.0"7>
<!DOCTYPE GREETING [
CIELEMENT GREETING (#fPCDATA)>
1>
<GREETING>
Hello XML!
</GREETING>

Chapter 7 + Validity

You can load this document into an XML browser as usual. Figure 7-1 shows Listing
7-4 in Internet Explorer 5.5. The result is probably what you’d expect, a collapsible
outline view of the document source. Internet Explorer indicates that a document
type declaration is present by adding the line <!DOCTYPE GREETING (View Source
for full doctype...)> in blue. However, most web browsers (and all common
ones) do not check for validity and are happy to load invalid documents as well.

8eoce @ http://cafeconleche.org/...le3/source/07 /7-4.xml| =
e @ - = e

Back Forward Stop Refresh Home @ AutoFil Print Mail
U E IR (F) hetg o/ f cafeconteste org/books /bibleT/ source /07 /7=4 xml m

<?xml version="1.0" ?>
<!DOCTYPE GREETING (View Source for fulf doctype...)>
<GREETING>Hello XML!</GREETING>

| & Intornet zonoe
Figure 7-1: Hello XML with DTD displayed in Internet
Explorer 5.2

Internal and external DTD subsets

Although most documents consist of easily defined pieces, not all documents use a
common template. Many documents may need to use standard DTDs while adding
custom elements for their own use. Other documents may use only standard ele-
ments but need to reorder them. For example, one page might have a BODY that must
contain exactly one H1 header followed by a DL definition list, while another may
have a BODY that contains many different headers, paragraphs, and images in no
particular order. If a particular document has a different structure than other pages
on the site, it can be useful to define its structure in the document itself rather than
in a separate DTD. This approach also makes the document easier to edit.

To this end, a document can use both an internal and an external DTD subset. The
internal declarations go in square brackets inside the document type declaration.
For example, Listing 7-5 is an XML document whose root element is DOCUMENT. The
DOCUMENT element contains a GREETING child element followed by a DATE child
element. This structure is declared by placing a comma between each element that
must appear as a child element like this:

CTELEMENT DOCUMENT (GREETING, DATE)>

The DATE element is also declared inside Listing 7-5’s document type declaration.
However, the declaration for the GREETING element is pulled from the file
greeting.dtd, which forms the external DTD subset.

195

196

Part Il ¢ Document Type Definitions

Listing 7-5: A Document Whose DTD Has Both an Internal
and an External Subset

<?xml version="1.0"7>
<!DOCTYPE DOCUMENT SYSTEM "greeting.dtd" [
<ITELEMENT DOCUMENT (GREETING, DATE)>
CTELEMENT DATE (4fPCDATA)>
1>
<DOCUMENT>
<GREETING>Hel10</GREETING>
<DATE>January 10, 2004</DATE>
</DOCUMENT>

A conflict between elements of the same name in the internal and external DTD sub-
sets is a validity error. The same element cannot be declared twice, whether in the
internal or external DTD subsets or both.

Public DTDs

The SYSTEM keyword is intended for private DTDs used by a single author or group.
Part of the promise of XML, however, is that broader organizations covering an entire
industry, such as the ISO or the IEEE, can standardize public DTDs to cover their
fields. This standardization saves developers from having to reinvent tag sets for
the same items and makes it easier for users to exchange interoperable documents.

DTDs designed for writers outside the creating organization use the PUBLIC keyword
instead of the SYSTEM keyword. Furthermore, the DTD gets a name. The syntax is as
follows:

<IDOCTYPE name_of_root_element PUBLIC "DTD_name" "DTD_URL">

Once again, name_of_root_element is the name of the root element. PUBLIC is

an XML keyword that indicates that this DTD is intended for broad use and has a
public identifier. DTD_name is the public identifier associated with this DTD. Some
XML processors may attempt to use this identifier to retrieve the DTD from a cen-
tral repository. Finally, D7D _URL is a relative or absolute URL where the DTD can be
found if the public identifier is not recognized.

Public identifiers follow different rules than most XML names. They can only contain
the ASCII alphanumeric characters, the space, the carriage return, the linefeed, and
these punctuation marks: -’()+,/:=7;*#@$_%. Furthermore, public identifiers follow a
few conventions.

Chapter 7 + Validity 197

If a DTD is an ISO standard, its public identifier begins with the string ISO. If a non-ISO
standards body has approved the DTD, its public identifier begins with a plus sign
(+). If no standards body has approved the DTD, its name begins with a hyphen (-).
These initial strings are followed by a double slash (//) and the name of the DTD’s
owner, which is followed by another double slash and the type of document the
DTD describes. Then there’s another double slash followed by an ISO 639 language
identifier, such as EN for English. A complete list of ISO 639 identifiers is available at
http://www.ics.uci.edu/pub/ietf/http/related/iso0639.txt. For example,
the greeting DTD can be named as follows:

-//E1liotte Rusty Harold//DTD Greetings and salutations//EN

This public identifier says that the DTD is not standards-body approved (-), belongs
to Elliotte Rusty Harold, describes greetings and salutations, and is written in
English. A full document type declaration pointing to this DTD with this name
follows:

<IDOCTYPE SEASON PUBLIC
"-//E1liotte Rusty Harold//DTD Greetings and salutations//EN"
"http://www.cafeconleche.org/dtds/greeting.dtd">

You may have noticed that many HTML editors, such as BBEdit, automatically place
the following string at the beginning of every HTML file they create:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML//EN">

Now you know what this string means! It says the document follows a nonstandards-
body-approved (-) DTD for HTML produced by the World Wide Web Consortium
(W3C) in the English language.

;ﬁ\lote Technically, the W3C is not a standards organization, because its membership is

=~ limited to corporations that pay its fees rather than to official government-approved
bodies. It only publishes recommendations instead of standards. In practice, the
distinction is irrelevant.

DTDs and style sheets

A valid document with a DTD can be combined with a style sheet just as a well-
formed document can be. Simply add the usual <?xml-stylesheet?> processing
instruction to the prolog, as shown in Listing 7-6.

198

Part Il ¢ Document Type Definitions

Listing 7-6: Hello XML with a DTD and Style Sheet

<?xml version="1.0"7>
<?xml-stylesheet type="text/css" href="greeting.css"?>
<!DOCTYPE GREETING [
CIELEMENT GREETING (#fPCDATA)>
1
<GREETING>
Hello XML!
</GREETING>

Figure 7-2 shows the resulting web page. In fact, this gives you exactly the same result
as did the same document in Chapter 3 without the DTD. Formatting generally does
not consider the DTD.

[0 =———— @ http://www.cafeconleche.org/..source/07/7-6xm =———— B

<9 « = =

Back Ferward Stap Refresh Hare 3 Aokl Print Mail e

m @ Rty o/ e cafeconleshe org/books SbibleS/ seurce FOT/ T-6 xml n
Hello XML!

! Internet zone. B

Figure 7-2: Hello XML with a DTD and style sheet displayed
in Internet Explorer 5.1

Notice how the three essential parts of the document can be stored in three different
files. The data is in the document file, the structure applied to the data is in the DTD
file, and the formatting is in the style sheet. This tripartition enables you to inspect
or change any or all of these relatively independently.

The DTD and the document are more closely linked than the document and the
style sheet. Changing the DTD generally requires revalidating the document and
may require edits to the document to bring it back into conformance with the DTD.
The necessity of this sequence depends on your edits; adding elements is rarely an
issue, although removing elements can be problematic.

Chapter 7 + Validity

Validating against a DTD

To be considered valid, an XML document must satisfy four criteria:

1. It must be well formed.

2. It must have a document type declaration.

3. Its root element must be the one specified by the document type declaration.
4. It must satisfy all the constraints of the DTD specified by the document type

declaration.

Not all XML documents have to be valid, and not all parsers check documents for

- validity. Often, it's enough to merely be well formed. In fact, most web browsers,

including Internet Explorer, Opera, Safari, Konqueror, Netscape, and Mozilla, do not
check documents for validity.

Suppose you make a simple change to the hello.xml example by replacing the
<GREETING> and </GREETING> tags with <FOO> and </F00>, as shown in Listing 7-7.
Listing 7-7 is invalid. It is a well-formed XML document, but it does not meet the
constraints specified by the document type declaration and the DTD.

Listing 7-7: This Document Is Invalid because It Does Not
Satisfy the DTD’s Rules

<?xml version="1.0"7>

<!DOCTYPE GREETING SYSTEM "greeting.dtd">
<FO0>

Hello XML!

</FOO>

This document has two problems:

1. The root element is not GREETING as required by the document type
declaration.

2. The FOO element has not been declared within the DTD.

199

200 Partll + Document Type Definitions

Command-line validators

In more complex documents, it’s not so easy to just look at a document and its DTD
and tell whether or not it’s valid. Instead, you’ll want to use a validating parser that
understands all the DTD rules and makes the checks for you. As a validating parser
reads a document, it checks whether the document adheres to the rules specified
by the document’s DTD. If it does, the parser passes the data along to the XML
application (such as a web browser or a database). If the parser finds a mistake,

it reports the error. If you're writing XML by hand, you’ll want to validate your
documents before posting them so that you can be confident that readers won’t
encounter errors.

Not all XML parsers are validating parsers, but the Gnome Project’s libxml2 (http://
xmlsoft.org)is. libxml2 includes xmllint, a character mode application you can
use to validate documents. It was originally developed for Linux, but has been ported
to most common UNIXes, Windows, and Mac OS X. It may be installed by default on
a few Linux distros, but most users will need to download it from http://xmlsoft.
org/downloads.html first. Once you've installed libxml2 and made sure xmllint is
somewhere in your path, you run xmllint by typing the following at the shell prompt
or in a DOS window:

C:\>xmllint -valid 7-7.xml
You can use a URL instead of a filename, like this:

C:\>xmllint -valid
http://www.cafeconleche.org/books/bible3/source/07/7-1.xml

In either case, xm11int responds with a list of the errors it found. If the document
is well formed, xm111int also prints the document:

C:\> xmllint -valid 7-7.xml

7-7.xml:3: validity error: Not valid: root and DtD name do
not match '"FOO' and 'GREETING'

<FO0>

7-7.xml:5: validity error: No declaration for element FOO
</FOO>
A

<?xml oversion="1.0"7>

<!DOCTYPE GREETING SYSTEM "greeting.dtd">
<FOO>

Hello XML!

</FOO>

You use xm11int or a similar tool first to find your mistakes so that you can fix them,
and then to verify that you've written valid XML that other programs can handle. In
essence, this is a proofreading or quality assurance phase, not finished output.

Chapter 7 + Validity

Web-based validators

Web-based validators are an alternative for documents that aren’t particularly private
and that can easily be placed on a public web server. These validators only require
you to enter the URL of your document in an HTML form. They have the distinct
advantage of not requiring you to muck around with paths, environment variables,
and the other arcana required to install a command-line program.

Richard Tobin’s web-hosted XML well-formedness checker and validator is shown
in Figure 7-3. You'll find it at http://www.cogsci.ed.ac.uk/%7Erichard/
xml-check.html. Figure 7-4 shows the errors displayed as a result of using this
program to validate Listing 7-7.

Brown University’s Scholarly Technology Group provides a validator at http://
www.stg.brown.edu/service/xmlvalid/ that’s notable for allowing you to
upload files from your computer instead of placing them on a public web server.
This validator is shown in Figure 7-5. Figure 7-6 shows the results of using this
program to validate Listing 7-7.

8eoce XML well-formedness checker and validator - Mozilla (=]
s o 5 e

€« . » . 3 @ : ; o ; <1)y = . .

e v e A hetp:f fwww.cogsci.ed.ac.uk/~richard/xml-check.htr Z_Search rine m

&

M

XML well-formedness checker and validator

Use this form to check an XML document for well-formedness and (optionally) validity. External
entity references are included, even when not validating. If the document is well-formed, the
parser outputs the corresponding canonical XML.

This service is provided for occasional checking of XML documents. Any other use is prohibited.
Some lusers have been abusing this service for purposes that are clearly fraudulent. Note that we
keep detailed log files and report all suspected abuses to the relevant authorities.

The checker uses the RXP parser, written by Richard Tobin. RXP is part of the LT XML system,
which is available from the Language Technology Group at the University of Edinburgh.

If you find yourself using this service frequently, | suggest you download RXP or LT XML and use |
it locally. N

URL: [ht:p:!fw\wa,cafecnnleche.org!hnuksfhiblei.fscurcem?,f?—?,xm! checkitﬂ clear

[validate?
I~ do namespace processing?

XML namespaces don't mesh well with DTD-based validity, so you quite likely won't want to select

Figure 7-3: Richard Tobin's RXP-based, web-hosted XML well-formedness checker
and validator

201

202 Partll + Document Type Definitions

8eoce XML checker results - Mozilla =
5 e T

@€ - w . A @ : - 5 7 F =

pack Forvrd T e —tton J;. hetp:f fwww.cogseied ac.uk/~richard /xmi-checkeg = | & Search Print m

XML checker results

The document appears to be well-formed. The canonical XML follows:

<FOO>
Hello XML!
</FOO>

Any validity or namespace errors follow:

Warning: Start tag for undeclared element FOO &
in unnamed entity at line 3 char 5 of

http:/ /www.cafeconleche.org/books/bible3/source/07/7-7.xml

Warning: Root element is FOO, should be GREETING

in unnamed entity at line 3 char 5 of

http: / /www.cafeconleche.org/books/bible3/source/07 /7-7.xml

Please report any problems with this checker to richard@cogsci.ed.ac.uk

Figure 7-4: The errors in Listing 7-7, as reported by Richard Tobin’s XML validator

8006 STG XML Validation Form - Mozilla =)
b5 k- . b= T4
z i " Is N
Bae:-k - [t?i’_'“c v Reﬁﬂ Ei M hrep:/ fwwen.stg.brown edu/service/ xmbvalid/ = |z Search ll;r:ift -

i

SCHOLARLY TECHNOLOGY GROUP

XML Validation Form

To validate a small XML document, just paste it into the text field below and hit the validate button.
If the document is too large to be conveniently pasted into the text field, enter its filename into the

local file field. You may also validate an arbitrary XML document on the Web by typing its URI into
the URI field.

For more instructions, see below. See also the FAQ.

Local file:
[rusers fetharo 7-7 xmi {Browse...t

™ suppress warning messages
™ Relax namespace checks

Validate !é Clear

URL

r Suppress warning messages
I Relax namespace checks

Validate [Clear -

Figure 7-5: Brown University's Scholarly Technology Group’s web-hosted
XML validator

Chapter 7 + Validity 203

eoce Validation Results for 7-7.xml - Mozilla (=)
‘4. 2 .3 @ b heap:/ /wwwstg brawn.edu fegi-bin/xmivalid/xmival v |{ g Search) =F ~
i Back Forward Reload Stop) s : g == O Prim

. . ~
Validation Results for 7-7.xml

A list of error and warning messages follows along with (if needed, and if supplied) a line-numbered dump of the original document
from the first up through the last erroneous line.

Errors:

line 2, 7-7.xml:
werror (563): can't resolve System ID; gresting ded
ine 3, 7-7.xml:
#rror (1102): tag uses GI for an undeclared element F
line 5, 7-7.xmi:
ertor (1150): enclosing g undefined or lacks eontent madel; can't check ehild: (CharDats
line 5, 7-7.xml:

error (1103): end tag uses Gi for an undeclared element: FOO
2 6, 7-7.xml:
error (401) doctype name doesn't masch G for top-level element: F

5
T

Original Document:

line 2: <!DOCTYPE GREETING SYSTEM “greeting.dtd">
line 3: <FOO>

line 4: Hello XML!

line 5;: </FOO> .

Figure 7-6: The errors in Listing 7-7, as reported by Brown University’s Scholarly
Technology Group’s XML validator

Summary

In this chapter, you learned how to write a simple DTD and how to validate a docu-
ment against that DTD. In particular, you learned the following:

4 A document type definition (DTD) provides a list of the elements, attributes,
entities, and notations that may be used in the document, and their relation-
ships to one another.

4+ DTDs lay out the permissible tags and the structure of a document.
4 DTDs help document and enforce markup standards.

4 A document’s prolog may contain a document type declaration that specifies
the root element and either contains or refers to the DTD.

4 External DTDs can be located using the SYSTEM keyword and a URL in the doc-
ument type declaration.

4 Standard DTDs can be located using the PUBLIC keyword in the document
type declaration.

204 Partll + Document Type Definitions

4 An internal DTD subset (which may be the complete DTD) can appear in the
document type declaration surrounded by square brackets.

4 A document that adheres to the rules of its DTD is said to be valid. A docu-
ment that does not or that does not have a DTD is said to be invalid.

4 Element declarations declare the name and children of an element.
In the next chapter, you delve deeper into element declarations, exploring how to
use different kinds of content models to describe complicated structures applicable
to many XML documents.

+ o+ 0+

CHAPTER

Element
Declarations

+ 0+ o+

In This Chapter

Analyzing th
Elements form the primary structure of an XML document. nalyzing ihe

document
In valid documents, elements are constrained by element
declarations. An element declaration specifies what children in
: B, . . ANY
which orders and quantities an element with a particular name
can have.
#PCDATA

Each element used in a valid XML document must be declared
by an element declaration in the document’s DTD. Each ele-
ment declaration gives the name of an element and lists the

Child elements

permissible contents of elements with that name. The list of Mixed content
contents is sometimes called the content specification. The

content specification uses a simple grammar to precisely Empty elements
specify what is and isn’t allowed in a document. This sounds

complicated, but all it really means is that you attach punctu- Comments in DTD
ation marks such as *, ?, +, |, (, and) to element names to

indicate where and how many times an element may appear. + + + +

In this chapter, you learn the syntax and semantics of element
declarations.

Analyzing the Document

The first step to creating a DTD appropriate for a particular
document is to understand the structure of the information
that you’ll encode. Sometimes information is quite structured,
as in a contact list. At other times, it is relatively free-form, as
in an illustrated short story or a magazine article.

It’s often easier to begin if you have a concrete, well-formed
example document in mind that uses all the elements you
want in your DTD. When designing a new XML application,

[recommend writing some actual instance documents first,
and only then designing the DTD. This chapter uses a rela-
tively structured document you’re already familiar with as an

206

Part Il ¢ Document Type Definitions

example, the television schedule document first discussed in Chapter 4. You might
want to flip back to Example 4-2 to refresh your memory. In fact, you might want to
print out a copy from my web site at http://www.cafeconleche.org/books/
bible3/source/04/4-2.xml so you can have the example document in hand as
you read this chapter, to avoid a lot of flipping back and forth

Adding a DTD to this document enables you to enforce constraints that were previ-
ously adhered to only by convention. For example, the DTD can require that a SHOW
have exactly one NAME child, and that every STATION have a CHANNEL and at least
one CALL_LETTERS or NETWORK. It can require that a SHOW contain exactly one each
of NAME, TYPE, START_TIME, and LENGTH but make it optional whether a SHOW has
an ORTIGINAL_ATR_DATE or a CAST. Furthermore, it can require that the NAME, TYPE,
START_TIME, and LENGTH child elements occur in a particular order. A DTD can also
require that elements occur in a particular context. For example, the GTVEN_NAME,
SURNAME, and MIDDLE_NAME elements may be used only inside ACTOR, PRODUCER,
WRITER, and DIRECTOR elements.

Table 8-1 summarizes the different elements in this particular XML application, as
well as the conditions each must satisfy. Each element has a list of the elements it
must contain and the elements it may contain. In some cases, an element may con-
tain more than one child element of the same type. A SCHEDULE contains one DATE
and one or more SHOW elements. A CAST generally contains more than one ACTOR.
Some shows are repeated a few hours later on the same station, especially on cable
networks. Thus, a single SHOW element might have more than one START_TIME. In
the table, the possibility of multiple children is indicated by adding (s) to the end of
the element’s name, such as ACTOR(s). When you write a DTD to describe this docu-
ment, you’ll need to write one element declaration for each distinct element name
that appears in the table. This declaration will list the permissible children of that
element, as well as their order and quantity.

Table 8-1
The Elements in the Television Schedule

Element Required Children Optional Children
SCHEDULE DATE, STATION(s)
DATE Text
STATION CHANNEL NETWORK, CALL_LETTERS, SHOW(S)
SHOW NAME, START_TIME(s), EPISODE_NUMBER, START_TIME,

LENGTH LENGTH, AIR_DATE, ORIGINAL_

AIR_DATE, CLOSED_CAPTIONED,
REPEAT, DESCRIPTION, TITLE, RATING,
YEAR_MADE, STARS, DIRECTOR, WRITER,
PRODUCER, CAST

Chapter 8 4+ Element Declarations (7

Element Required Children Optional Children

CAST ACTOR(s)

ACTOR GIVEN_NAME, MIDDLE_NAME,
MIDDLE_INITIAL, SURNAME

WRITER GIVEN_NAME, MIDDLE_NAME,
MIDDLE INITIAL, SURNAME

PRODUCER GIVEN_NAME, MIDDLE_NAME,
MIDDLE_INITIAL, SURNAME

DIRECTOR GIVEN_NAME, MIDDLE_NAME,
MIDDLE INITIAL, SURNAME

NAME Text

TYPE Text

CALL_LETTERS Text

NETWORK Text

CHANNEL Text

EPISODE_NUMBER Text

START_TIME Text

LENGTH Text

AIR_DATE Text

ORIGINAL_AIR_DATE Text
COLSED_CAPTIONED Text

REPEAT Text
GIVEN_NAME Text
MIDDLE_ NAME Text
MIDDLE_INITIAL Text
SURNAME Text
DESCRIPTION Text
STARS Text
RATING Text
YEAR_MADE Text

Now that the information being stored and the optional and required relationships
between these elements have been identified, you're ready to build a DTD for the
document that concisely —if a bit opaquely — summarizes those relationships.

208

Part Il ¢ Document Type Definitions

DTDs are conservative. Everything not explicitly permitted is forbidden. If an element
has not been declared, it cannot be used (at least not in a valid document), and this
does sometimes make the development of DTDs rather tedious. However, DTD
syntax does enable you to compactly specify relationships that are cumbersome to
specify in sentences. For example, DTDs make it easy to say that NAME must precede
TYPE, which must precede START_TIME, which must precede LENGTH, which must
precede AIR_DATE, which must precede ORIGINAL_AIR_DATE, which must precede
CLOSED_CAPTIONED, which must precede REPEAT, which must precede RATING,
which must precede DESCRIPTION, and that all of these elements can only appear
inside a SHOW element.

ANY

It’s easiest to build DTDs hierarchically, working from the outside in. This enables
you to build a sample document at the same time that you build the DTD so that
you can verify that the DTD is itself correct and actually describes the format you
want. Thus the root element is probably the first element you’ll want to deal with.
In the television listings example, SCHEDULE is the root element. The document type
declaration in the XML document specifies the name of this element:

<!DOCTYPE SCHEDULE SYSTEM "tvschedule.dtd">

However, this merely says that the root element is SCHEDULE. It does not say any-
thing about what a SCHEDULE element may or may not contain, which is why you
must next declare the SCHEDULE element in an element declaration inside the DTD.
That’s done with this line of code:

C!ELEMENT SCHEDULE ANY>

All element declarations begin with <!ELEMENT (case-sensitive) and end with >.
They include the name of the element being declared (SCHEDULE in this example)
followed by the content specification. In this declaration, the content specification
is the keyword ANY (again case-sensitive). This says that all possible elements as
well as plain text can be children of the SCHEDULE element.

Because ANY is so unrestrictive, it lets you very quickly create a DTD that will validate
a document. Simply list all the element names and give each of them the content
specification ANY. Listing 8-1 demonstrates.

Chapter 8 4 Element Declarations (09

Listing 8-1: A Very Loose DTD for Television Listings

<!ELEMENT SCHEDULE ANY>
C'ELEMENT DATE ANY>

CTELEMENT STATION ANY>
<TELEMENT NETWORK ANY>
C'ELEMENT CALL_LETTERS ANY>
CTELEMENT CHANNEL ANY>
CTELEMENT SHOW ANY>

CTELEMENT NAME ANY>

CTELEMENT TYPE ANYD>

<!ELEMENT EPISODE_NUMBER ANY>
CTELEMENT START_TIME ANY>
CTELEMENT LENGTH ANY>
CTELEMENT AIR_DATE ANY>
C'ELEMENT ORIGINAL_AIR_DATE ANY>
CTELEMENT CLOSED_CAPTIONED ANY>
CTELEMENT REPEAT ANY>
CTELEMENT CAST ANY>

CTELEMENT ACTOR ANYD>
CTELEMENT GIVEN_NAME ANY>
CTELEMENT SURNAME ANY>
CTELEMENT PRODUCER ANY>
CVELEMENT DESCRIPTION ANY>
CYELEMENT TITLE ANY>
CTELEMENT MIDDLE_NAME ANY>
<IELEMENT RATING ANY>
C'ELEMENT YEAR_MADE ANY>
CTELEMENT STARS ANYD>
<!ELEMENT DIRECTOR ANY>
CTELEMENT WRITER ANY>
CTELEMENT MIDDLE_INITIAL ANY>

However, this DTD really doesn’t say very much. It provides a complete list of all
the possible elements, but it places no restrictions on where they may appear and
what they may contain. Given this DTD, it’s not just documents like Listing 4-2 that
are valid, but essentially any document that contains only the elements declared in
Listing 8-1. For example, the document in Listing 8-2 is valid, though ultimately you’ll
want to forbid documents like this one that omit crucial information and put other
information in the wrong place.

210 Partll ¢ Document Type Definitions

Listing 8-2: A Document That'’s Valid According to the DTD
in Listing 8-1

<?xml version="1.0"7>
<!DOCTYPE DATE SYSTEM "tvschedule.dtd">
<DATE>
July 3, 2003
<CAST>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>
</CAST>
<SHOW>
Hollywood Squares
{START_TIME>19:00-0500</START_TIME>
</SHOW>
</DATE>

On the other hand, the document in Listing 8-3 is not valid, because it uses two ele-
ments that are not declared in Listing 8-1, NAME and ROLE. The problem is not that
ACTOR is not allowed to contain NAME and ROLE elements, but rather that the NAME
and ROLE elements have not been declared. The ANY content model really means
any declared element, not any element at all.

Listing 8-3: A Document That's Invalid According to the DTD
in Listing 8-1

<?xml version="1.0"7>
<IDOCTYPE ACTOR SYSTEM "tvschedule.dtd">
<ACTOR>
<NAME>
<GIVEN_NAME>Frank</GIVEN_NAME>
<SURNAME>0z</SURNAME>

</NAME>

<ROLE>Yoda</ROLE>

<DATE>May 25, 1944</DATE>
</ACTOR>

A'loose DTD such as Listing 8-1 is useful to get started, because you can validate
documents immediately for testing. Starting with a very loose DTD like this one
does allow you to add one constraint at a time, test it, and move on to the next one.

Chapter 8 + Element Declarations

It’s easier than trying to write down the complete DTD starting from a blank page.
However, you’ll want to be more strict about most elements as you develop the DTD.

#PCDATA

Beginning at the top of the document, the first child of the root element is DATE.
The DATE element contains a little text, not even a whole line, like so:

<DATE>July 3, 2003</DATE>

The amount of text or the number of lines the DATE element contains doesn’t matter.
A validating parser doesn’t make any validity checks on the character data of an
element. However, that the DATE element can only contain text, and that it cannot
contain child elements, does matter. An element that can only contain plain text is
declared using the keyword #PCDATA in parentheses, like this:

CIELEMENT YEAR (#PCDATA)>

This declaration says that a DATE can contain only parsed character data, that is,
text that’s not markup. It cannot contain children of its own. Therefore, this DATE
element is valid:

<DATE>June 20, 2004</DATE>
These DATE elements are also valid:

<DATE>2003</DATE>

<DATE>July 3</DATE>

<DATE>

The third day of the seventh month in the year of our Lord
two thousand and three

</DATE>

Even this DATE element is valid because XML does not attempt to validate the con-
tents of PCDATA, only that it is text that doesn’t contain markup.

<DATE>Delicious, delicious, oh how boring</DATE>
However, this DATE element is invalid because it contains child elements:

<DATE>
<MONTH>July</MONTH>
<DAY>3</DAY>
<YEAR>2003</YEAR>
</DATE>

211

212 Partll 4+ Document Type Definitions

,.{A\lote There are two basic kinds of elements in XML. Simple elements can only contain

-~ plain text. They can't have any child elements. Complex elements can contain other
elements or both plain text and other elements. There are no integer, floating-
point, date, or other data types in standard XML. Thus, you can't use a DTD to say
that a channel number must be an integer, or that the call letters must be four
uppercase letters beginning with either K or W, even though doing so would match
U.S. requirements for call letters. Various other schema languages, including the
W3C XML Schema Language, do allow you to make and validate constraints on
simple content like these. Schemas are explored in Chapter 20.

There are quite a few more elements in the TV listings example that can only contain
character data, no child elements. Each of these is declared in the same way. Adding
these declarations, the DTD becomes as shown in Listing 8-4.

Listing 8-4: A Television Listing DTD That Uses Content Models

C'ELEMENT SCHEDULE ANY>

<TELEMENT DATE (##PCDATA)>
CTELEMENT SHOW ANY>

CTELEMENT STATION ANY>

CTELEMENT NETWORK (##PCDATA)>
<'ELEMENT CALL_LETTERS (##PCDATA)>
CTELEMENT CHANNEL (##PCDATA)>
CTELEMENT NAME (##PCDATA)>
<TELEMENT TYPE (##PCDATA)>
C'ELEMENT EPISODE_NUMBER (##PCDATA)>
CTELEMENT START_TIME (##PCDATA)>
<TELEMENT LENGTH (##PCDATA)>
CTELEMENT AIR_DATE (##PCDATA)>
<IELEMENT ORIGINAL_AIR DATE (#PCDATA)>
<IELEMENT CLOSED_CAPTIONED (#PCDATA)>
C'ELEMENT REPEAT (##PCDATA)>
CTELEMENT GIVEN_NAME (##PCDATA)>
<TELEMENT SURNAME (##PCDATA)>
CYELEMENT DESCRIPTION (##PCDATA)>
CTELEMENT TITLE (##PCDATA)>
CTELEMENT MIDDLE_NAME (##PCDATA)>
CYELEMENT MIDDLE_INITIAL (##PCDATA)>
CTELEMENT RATING (##PCDATA)>
CTELEMENT YEAR_MADE (##PCDATA)>

)>

CTELEMENT STARS (##PCDATA
CTELEMENT DIRECTOR ANY>

C'ELEMENT WRITER ANY>

C!ELEMENT PRODUCER ANY>

CTELEMENT ACTOR ANYD>

CTELEMENT CAST ANY>

Chapter 8 4+ Element Declarations 713

Using this revised DTD, Listing 8-2 is now invalid because the DATE element is no
longer allowed to contain anything except character data. This hasn’t yet ruled out
all the documents you’d like to prohibit. However, you're well on the way.

Child Elements

’LMe

Because the SCHEDULE element was declared to accept any element as a child, ele-
ments could be tossed in willy-nilly. This is occasionally useful when you have text
that’s more or less unstructured, such as a magazine article in which paragraphs,
sidebars, bulleted lists, numbered lists, graphs, photographs, and subheads may
appear pretty much anywhere in the document. However, most of the time you want
to exercise more discipline and control over the placement of the data. For example,
you can require that every SCHEDULE have a DATE and one or more SHOWs, that every
ACTOR have a GIVEN_NAME and a SURNAME, and that the GIVEN_NAME come before
the SURNAME. This discipline is provided by a content model, a parenthesized list of
the possible child elements along with various quantifiers that identify how many
of each can appear and other punctuation that indicates whether or not order is
significant.

Some developers and books use the term content model to refer to all content

-~ specifications, not just choices and sequences, but also mixed content declara-

tions and the EMPTY and ANY keywords. The XML specification only uses the
words content model to refer to parenthesized lists of child elements, and I follow
that usage here. However, not a lot is lost by conflating content model with con-
tent specification.

The first child of the SCHEDULE element is DATE. To declare that a SCHEDULE must
have a DATE, the content model is simply a pair of parentheses containing the ele-
ment name DATE, like this:

CTELEMENT SCHEDULE (DATE)>

What this says is that each SCHEDULE element should contain exactly one DATE child
element, and possibly some boundary white space, but nothing else. Of course, the
SCHEDULE in Listing 4-2 doesn’t contain just a date. It also has three STATION child
elements. You can add additional children in their proper order, separated from each
other by commas. Here’s a complete declaration for the SCHEDULE element:

<!ELEMENT SCHEDULE (DATE, STATION, STATION, STATION)>

This form of content model is called a sequence. This says that each SCHEDULE
element should contain exactly one DATE child element, followed by exactly three
STATION elements. Listing 8-5 shows the revised DTD.

214

Part Il ¢ Document Type Definitions

Listing 8-5: A Television Listing DTD That Uses ##PCDATA
Content Specifications

CTELEMENT SCHEDULE (DATE, STATION, STATION, STATION)>

CIELEMENT DATE (##PCDATA)>
CTELEMENT SHOW ANY>

CTELEMENT STATION ANYD>

<TELEMENT NETWORK (#fPCDATA
CTELEMENT CALL_LETTERS (#fPCDATA
CTELEMENT CHANNEL (##PCDATA
CTELEMENT NAME (#fPCDATA
CTELEMENT TYPE (#fPCDATA
CTELEMENT EPISODE_NUMBER (##PCDATA
<VELEMENT START_TIME (##PCDATA

)>
)>
)>
)>
)>
)>
)>
CTELEMENT LENGTH (##PCDATA)>
CTELEMENT AIR_DATE (##PCDATA)>
<IELEMENT ORIGINAL_AIR DATE (#PCDATA)>
<IELEMENT CLOSED_CAPTIONED (#fPCDATA)>
)>
)>
)>
)>
)>
)>
)>
)>
)>
)>

CTELEMENT REPEAT (##PCDATA
<'ELEMENT GIVEN_NAME (#fPCDATA
C'ELEMENT SURNAME (#fPCDATA
CTELEMENT DESCRIPTION (##PCDATA
CTELEMENT TITLE (##PCDATA
C'ELEMENT MIDDLE_NAME (#fPCDATA

CTELEMENT MIDDLE_INITIAL
<TELEMENT RATING
<!ELEMENT YEAR_MADE
CTELEMENT STARS
<!ELEMENT DIRECTOR ANY>
CTELEMENT WRITER ANY>
CTELEMENT PRODUCER ANY>
<TELEMENT ACTOR ANY>
CTELEMENT CAST ANY>

(#fPCDATA
(#fPCDATA
({fPCDATA
(#fPCDATA

Each element should be declared in its own <!ELEMENT> declaration exactly once,
even if it appears as a child in other <!ELEMENT> declarations. Listing 8-5 places the
declaration of NETWORK after the declaration of SCHEDULE that refers to it, but that
doesn’t matter. XML allows forward references. It even allows circular references;
that is, two elements A and B, either of which can be the child of the other. The order
in which element declarations appear is irrelevant as long as all elements used in
any content specification are declared somewhere in the DTD.

Listing 4-2 does adhere to this DTD because its SCHEDULE element contains one DATE
child followed by three STATION children, and nothing else. However, if the document
included only one or two STATION child elements or more than three STATION child
elements, it would be invalid. Similarly, if the STATION came before the DATE element
instead of after it, or if the document in any other way did not adhere to the DTD,
the document would be invalid and validating parsers would reject it. You can

Chapter 8 + Element Declarations

loosen the restrictions on the number of child elements by using quantifiers. You
can loosen the restrictions on order by using choices.

+ One or More Children

Listing 8-4 validates Listing 4-2. However, it’s a little too restrictive. It requires

that there be exactly three stations. That’s only true because I cut this example
down to fit in the book. More common cases would have all the stations broadcast
in a particular market, which could range into the hundreds. On the flip side, a
document sent out by one network or station might contain data for only a single
network.

To indicate that you want one or more of a given element, place a plus sign (+) after
the element name in the child list, as in the following example:

C'ELEMENT SCHEDULE (DATE, STATION+)>

This says that a SCHEDULE element must contain a single DATE element followed by
one or more STATION elements.

You can also use the + quantifier to indicate that each cast has one or more actors:
CTELEMENT CAST (ACTOR+)>

If a cast had no actors at all, you just wouldn’t include that CAST element in the
instance document.

? Zero or One Child

In many cases, an element may only appear once or not at all. For example, con-
sider the names of the various person elements in the example: ACTOR, PRODUCER,
DIRECTOR, and WRITER. Most, but not all, of these have a GI VEN_NAME and a SURNAME.
Some, but not most, have a MIDDLE_NAME. One has a MIDDLE_INITIAL, but none

of the others do. None of these child elements appear more than once in any given
parent.

You can indicate that a child element is optional in a sequence —that is, that it can
appear or not appear — by suffixing its name with a ?. For example, here are better
declarations for the ACTOR, PRODUCER, DIRECTOR, and WRITER elements:

CTELEMENT ACTOR (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>
CTELEMENT WRITER (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>
<!ELEMENT PRODUCER (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>
C!ELEMENT DIRECTOR (GIVEN_NAME?, MIDDLE_NAME?,
MIDDLE_INITIAL?, SURNAME?)>

215

216 Partll ¢ Document Type Definitions

Different elements in the same content model can have different quantifiers. For
example, consider the STATION element. Each STATION contains one CHANNEL,
either a NETWORK, CALL_LETTERS, or both, and one or more SHOW elements. It’s
declaration can be written by making use of both the + and ?, like this:

CTELEMENT STATION (NETWORK?, CALL_LETTERS?, CHANNEL, SHOW+)>

* Zero or More Children

The final quantifier used in content models is the asterisk. This indicates a child can
appear zero or more times. It can appear once, twice, a thousand times, or not at all.
In the example, you might use this for middle names and middle initials, to account
for actors such as William Billy Bob Muddle with more than one middle name:

CTELEMENT ACTOR (GIVEN_NAME?, MIDDLE_NAME~*,
MIDDLE_INITIAL*, SURNAME?)>
CTELEMENT WRITER (GIVEN_NAME?, MIDDLE_NAME?*,
MIDDLE_INITIAL*, SURNAME?)>
CTELEMENT PRODUCER (GIVEN_NAME?, MIDDLE_NAME*,
MIDDLE_INITIAL*, SURNAME?)>
C!ELEMENT DIRECTOR (GIVEN_NAME?, MIDDLE_NAME*,
MIDDLE_INITIAL*, SURNAME?)>

This is also important for the SHOW element. Several potential child elements of
SHOW can appear once, several times, or not at all, including PRODUCER, DIRECTOR,
and WRITER. Of course, other children of the SHOW element are optional (?) and
some must appear (no quantifier). Because each SHOW element can have so many
children, its declaration is fairly long:

<TELEMENT SHOW (NAME, TYPE?, EPISODE_NUMBER?, START_TIME+,
LENGTH, AIR_DATE, ORIGINAL_AIR_DATE? CLOSED_CAPTIONED?,
REPEAT?, RATING?, STARS?, DIRECTOR*, WRITER*, CAST?,
PRODUCER*, DESCRIPTION)>

Choices

So far, I've assumed that child elements appear or do not appear in a specific order.
You, however, might want to make your DTD more flexible, for example, by allowing
document authors to choose between different elements in a given place. For exam-
ple, in a DTD describing a purchase by a customer, each PAYMENT element might
have either a CREDIT_CARD child or a CASH child providing information about the
method of payment. However, an individual PAYMENT would not have both.

You can indicate that the document author needs to input either one or another ele-
ment by separating child elements with a vertical bar (|) rather than with a comma
(,) in the parent’s element declaration. For example, this declaration says that the
PAYMENT element must have a single child element of type CASH or CREDIT_CARD:

Chapter 8 + Element Declarations |7/

CTELEMENT PAYMENT (CASH | CREDIT_CARD)>

This sort of content specification is called a choice. You can separate any number
of children with vertical bars when you want exactly one of them to be used. For
example, the following says that the PAYMENT element must have a single child of
type CASH, CREDIT_CARD, or CHECK.

<TELEMENT PAYMENT (CASH | CREDIT_CARD | CHECK)>

Parentheses

Each set of parentheses combines several elements so that the combination is
treated as a single unit when validating. This parenthesized unit can then be nested
inside other parentheses in place of a single element. Furthermore, you can then
affix a plus sign, an asterisk, or a question mark to it. You can group these parenthe-
sized combinations into still larger parenthesized groups to produce quite complex
structures. This is a very powerful technique.

For example, consider a list composed of two elements that must alternate with each
other. This is essentially how HTML'’s definition list works. Each DT element should
be followed by one DD element. The declaration of such a DL element looks like this:

C!ELEMENT DL (DT, DD)*>

The parentheses indicate that it’s the matched <DT><DD> pair being repeated, not
<DD> alone.

Both choices and sequences appear in parentheses. These parentheses can also
have +, *, or ? quantifiers suffixed to them, with the expected meaning. For example,
this declaration says that an ACTOR element can have one or more of GIVEN_NAME,
MIDDLE_NAME,MIDDLE_INITIAL, or SURNAME child elements:

<IELEMENT ACTOR
(GIVEN_NAME| MIDDLE_NAME | MIDDLE_INITIAL | SURNAME)+ >

Because this is a choice, these can appear in any order.

Even more usefully, you can include parenthesized choices and sequences in the
place of a single element name inside another choice or sequence. For example,
suppose you want to indicate that an ACTOR can have any number of middle names
and middle initials in any order. However, they can have at most one GIVEN_NAME
and one SURNAME. That constraint can be encoded like this:

CTELEMENT ACTOR (GIVEN_NAME?,
(MIDDLE_NAME | MIDDLE_INITIAL)~*,
SURNAME?)>

218

Part Il ¢ Document Type Definitions

This still allows an ACTOR to have no names at all. A more complex nesting of paren-
theses can require that each actor have at least one name, though it doesn’t matter
whether it’s a GIVEN_NAME (Cher), a MIDDLE_NAME (Kennedy), or a SURNAME (Teller):

CIELEMENT ACTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE INITIAL)+, SURNAME)
| SURNAME
)>

For a STATION element, ideally, you’d want either a NETWORK or CALL_LETTERS or
both. However, at least one must be present, and if both are present, the network
must come first. This declaration accomplishes that:

CTELEMENT STATION (
(NETWORK | CALL_LETTERS | (NETWORK, CALL_LETTERS)),
CHANNEL, SHOW+)>

There’s actually a very subtle technical problem with this declaration. Its content
model is ambiguous. What this means is that when a parser sees an initial NETWORK
child element of a STATION, it doesn’t know whether it belongs to the first branch
of the choice or the third. Some validators can handle ambiguous content models,
but not all can. This model needs to be refactored to remove the ambiguity by plac-
ing the initial NETWORK child element in a single branch. This rearrangement works
nicely:

CTELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

Listing 8-6 puts this all together to show the finished DTD for television listings
such as those of Listing 4-2.

Listing 8-6: The Finished Television Listing DTD

CTELEMENT SCHEDULE (DATE, STATION+)>

CIELEMENT DATE ({fPCDATA)>

CTELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

C'ELEMENT SHOW (NAME, TITLE?, TYPE?, EPISODE_NUMBER?, START_TIME+,
LENGTH, AIR_DATE, ORIGINAL_AIR_DATE?, YEAR_MADE?,
CLOSED_CAPTIONED?, REPEAT?, RATING?, STARS?, DIRECTOR*,
WRITER*, CAST?, PRODUCER*, DESCRIPTION?)>

CTELEMENT NETWORK ({fPCDATA)>

<IELEMENT CALL_LETTERS ({fPCDATA)>

<TELEMENT CHANNEL ({fPCDATA)>

Chapter 8 4+ Element Declarations 219

<!ELEMENT NAME (#fPCDATA)>
CTELEMENT TITLE (##PCDATA)>
CTELEMENT TYPE (##PCDATA)>
C'ELEMENT EPISODE_NUMBER (#fPCDATA)>
CTELEMENT START_TIME (##PCDATA)>
<TELEMENT LENGTH (##PCDATA)>
C'ELEMENT AIR_DATE (##PCDATA)>
<IELEMENT ORIGINAL_ATIR DATE (#PCDATA)>
<IELEMENT CLOSED_CAPTIONED (#PCDATA)>
CTELEMENT REPEAT (##PCDATA)>
CTELEMENT GIVEN_NAME (##PCDATA)>
CTELEMENT MIDDLE_NAME (##PCDATA)>
CTELEMENT MIDDLE_INITIAL (##PCDATA)>
CTELEMENT SURNAME (##PCDATA)>
<TELEMENT RATING (##PCDATA)>
<!ELEMENT YEAR_MADE (##PCDATA)>
CTELEMENT STARS (##PCDATA)>
CIELEMENT DESCRIPTION (##PCDATA)>

CIELEMENT CAST (ACTOR+)>
CIELEMENT ACTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

)>
CIELEMENT WRITER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

)>
CIELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

)>
CIELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

)>

Once you've finished the DTD, you’ll want to test it by validating your instance
documents. Just like any reasonably complex program, there are likely to be bugs.
The first few variants of this DTD [wrote did have bugs, both syntax and semantic
errors. Eventually, [fixed those. However, it still couldn’t completely validate
Listing 4-2. The problem was order. Listing 8-6 is quite specific about the order of
the child elements of SHOW. Not all the elements in Listing 4-2 use that particular
order. For example, some put the PRODUCER before the CAST, others after. Some put
the DESCRIPTION at the end. Some don’t. I could loosen up the order by using a

220

Part Il ¢ Document Type Definitions

choice instead of a sequence. The problem is then I lose the ability to control the
number of each child element. If [say that PRODUCER can come before or after CAST,
[can’t say there’s at most one CAST. You're forced to choose between more order
than you may want or less control of size than you need. In this case, I decided that
since order didn’t really matter and the number of child elements did, it wouldn’t
be as big a problem to impose an arbitrary order as to allow more of some elements
than [wanted.

There’s more that could be done, with a reasonable investment of effort. For example,
you could use a choice to specify different sets of data for different kinds of shows.
You might have one set of child elements for movies, a different set for television
series, and a different set for news. However, you could not specify that the branch
of the choice for movies could be used only if the TYPE element had the value Movie.

Nonetheless, using parentheses to create blocks of elements, either in sequences
with a comma or in choices with a vertical bar, and then suffixing the blocks with
quantifiers such as * and ? enables you to create complex structures with detailed
rules for how different elements follow one another. Try not to go overboard with
this, though. Simpler solutions are better solutions. The more complex a DTD is, the
harder it is to write valid files that satisfy the DTD, to say nothing of the complexity
of maintaining the DTD itself.

Mixed Content

You may have noticed that in most of the examples so far, elements either contained
child elements or character data, but not both. You can declare tags that contain
both child elements and character data. This is called mixed content. You can use
this to allow each CAST to include arbitrary text as well as ACTOR child elements,

as in the following example:

CLELEMENT CAST (#PCDATA | ACTOR)*>

Mixing child elements with parsed character data severely restricts the structure
you can impose on your documents. In particular, you can specify only the names
of the child elements that can appear. You cannot constrain the order in which they
appear, the number of each that appears, or whether they appear at all. In terms of
DTDs, think of this as meaning that the child part of the DTD must look like this:

<TELEMENT PARENT (#PCDATA | CHILDI | CHILD2 | CHILD3)* >

Almost everything else, other than changing the list of permitted child elements,
is invalid. You cannot place the #PCDATA after the child elements. You cannot use
commas, question marks, or plus signs in an element declaration that includes
#IPCDATA. A list of elements and #PCDATA separated by vertical bars is valid. Any
other use is not. For example, the following is illegal:

CIELEMENT CAST (ACTOR*, #PCDATA)>

Chapter 8 + Element Declarations 7]

Thus, once you’ve said that a CAST element can contain parsed character data, you
can no longer say that it must have exactly one ACTOR child, or that the ACTOR chil-
dren come before or after the plain text.

Mixed content is most common in narrative content such as web pages and newspa-
per articles. While writing a paragraph, you might want to <EMPHASIZE>emphasize
a phrase</EMPHASIZE> or note a <PERSON>person’s name</PERSON>. On the other
hand, most of the text of the paragraph or sentence that surrounds the emphasized
phrase or noted name is just text, with nothing special to distinguish it from all the
other text of the paragraph or sentence. This structure is common to both written
and spoken narratives.

More recordlike documents such as the television listings example tend to avoid
mixed content. Structured documents are easier to work with if all elements contain
either other elements or unmarked-up text, but not both. You can always create a
new element that holds parsed character data if you find you need it. For example,
you can include a block of text at the end of each CAST element by declaring a new
BLURB element that holds only #PCDATA and adding it as the last child element of
CAST. Here’s how this looks:

CYELEMENT CAST (ACTOR*, BLURB)>
<IELEMENT BLURB (#fPCDATA)>

This does not significantly change the structure of the document. All it does is add
one more optional element to each CAST element. However, human thought is not
nearly so structured, and these strict forms of markup don’t work as well in that
domain. Articles, essays, novels, diaries, travelogues, short stories, speeches, and
similar narratives are likely to make much heavier use of mixed content.

Empty Elements

As discussed in earlier chapters, it’s occasionally useful to define an element that
has no content. Examples in HTML include the image , horizontal rule <HR>,
and break
. In XML, such empty elements are sometimes denoted by empty-
element tags that end with />, such as , <HR/>, and
.

Valid documents must declare both the empty and nonempty elements they use.
Because empty elements by definition don’t have children, they’re easy to declare.
Use an <!ELEMENT> declaration containing the name of the empty element as normal,
but use the keyword EMPTY (case-sensitive as all XML tags are) instead of a list of
children. For example:

CTELEMENT BR - EMPTYD>
CTELEMENT IMG EMPTY>
CTELEMENT HR - EMPTY>

2272 Partll 4+ Document Type Definitions

Listing 8-7 is a valid document that uses both empty and nonempty elements.

Listing 8-7: A Valid Document Using Empty Elements

<?xml version="1.0"7>
<!DOCTYPE DOCUMENT [
{VELEMENT DOCUMENT (TITLE, SIGNATURE)>
CTELEMENT TITLE (#fPCDATA)>
CTELEMENT COPYRIGHT (4fPCDATA)>
<VELEMENT EMAIL (4fPCDATA)>
<IELEMENT BR EMPTY>
<ITELEMENT HR EMPTY>
<VELEMENT LAST_MODIFIED (#PCDATA)>
<IELEMENT SIGNATURE (HR, COPYRIGHT, BR, EMAIL,
BR, LAST_MODIFIED)>
1>
<DOCUMENT>
KTITLE>Empty-element Tags</TITLE>
<SIGNATURE>
<HR/>
<COPYRIGHT>2003 Elliotte Rusty Harold</COPYRIGHT>

<EMAIL>eTharo@metalab.unc.edu</EMAIL>

<LAST_MODIFIED>Wednesday, December 3, 2003</LAST_MODIFIED>
</SIGNATURE>
</DOCUMENT>

Declaring an element to be EMPTY requires that all instances of it be empty. However,
an element that is declared to have PCDATA content or purely optional child elements
may also be empty some of the time. For example, Listing 8-12 declares that the
TITLE element contains parsed character data. Therefore, these are all valid TITLE
elements according to that DTD:

KTITLE>Empty-element Tags</TITLE>
KTITLEXS/TITLE>

<TITLE/>

<KTITLE />

The empty-element tag syntax used in <TITLE/> is pure syntax sugar for the
longer form <TITLE></TITLE>. You can use <TITLE/> anywhere you use <TITLE>
</TITLE>. The TITLE element does not need to be declared EMPTY before it can be
represented by an empty-element tag.

Chapter 8 4+ Element Declarations 223

Comments in DTDs

DTDs can contain comments, just like the rest of an XML document. These com-
ments cannot appear inside a declaration, but they can appear outside one.
Comments are often used to organize the DTD in different parts, to document the
allowed content of particular elements, and to further explain what an element is.
For example, the element declaration for the DATE element might have a comment
such as this:

<I-- A date in the form Month Day, Year
The year is always written with four digits. -->
<VELEMENT DATE (#fPCDATA)>

As with all comments, this is only for the benefit of people reading the source code.
XML processors will ignore it.

Besides additional information about the format of character data, DTDs often use
comments to indicate:

4 Who wrote the DTD

4 Copyright for the DTD

4 Usage conditions

4 Usage instructions

4 Customary PUBLIC and SYSTEM identifiers

Listing 8-8 is similar to previous television schedule examples but uses comments
to more fully explain the DTD.

Listing 8-8: A Commented DTD

{l-- Television Listings DTD
Copyright 2003 ETT1iotte Rusty Harold

This DTD was developed as an example for the
XML Bible, 3rd Edition by Elliotte Rusty Harold
(John Wiley & Sons, 2003).

You'll find complete documentation in Chapter 8.
Feel free to use this DTD in any way you like.
Address questions and comments to
elharo@metalab.unc.edu

This DTD is customarily identified with the following
PUBLIC and SYSTEM IDs:

Continued

224 Partll 4+ Document Type Definitions

Listing 8-8 (continued)

PUBLIC
"-//Cafe con Leche//DTD TV Listings 1.0//EN"
SYSTEM
"http://cafeconleche.org/dtds/tvschedule.dtd"”

However, you can make a local copy and use a different
SYSTEM ID if you like.

-->

{!-- The schedule for one day. However, the day may start
after midnight, and finish in the A.M. hours of the
following day. -->

<TELEMENT SCHEDULE (DATE, STATION+)>

<!-- Dates are given in a human readable format such as
"July 23, 2004" -->
<ITELEMENT DATE ({FPCDATA)>

<l-- One distinct show -->

<VELEMENT SHOW (NAME, TITLE?, TYPE?, EPISODE_NUMBER?,
START_TIME+, LENGTH, AIR_DATE, ORIGINAL_AIR_DATE?,
YEAR_MADE?, CLOSED_CAPTIONED?, REPEAT?, RATING?, STARS?,
DIRECTOR*, WRITER*, CAST?, PRODUCER*, DESCRIPTION?)>

<!-- A broadcast channel, satellite system or cable provider
in a particular geographic area. -->
<TELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<!-- This is the typical name of the network, such as
CBS, HBO, or CNN. -->
<TELEMENT NETWORK (#fPCDATA)>

{!-- These are the call Tetters assigned by the FCC or foreign
equivalent in all caps. For example, WPIX, KRGO, WTBS-->

<IELEMENT CALL_LETTERS (fPCDATA) >
<I-- A positive integer listing the channel for the station
in the local market -->
<ITELEMENT CHANNEL ({FPCDATA)>
<!-- The name of the series such as "Friends" or
"Babylon 5" -->
<TELEMENT NAME ({fPCDATA)>
<l-- The title of the individual episode such as

"The One with the Improbably Large Apartment" -->

Chapter 8 + Element Declarations

CTELEMENT TITLE (##PCDATA)>

<l-- The type of the show. This is one of the
following values:

Series
Series/Comedy
Series/News
Series/Game Shows
Series/Talk
Movie
Movie/Action
Movie/Animated
Movie/Comedy
Movie/Drama
Sports
Sports/Football
Sports/Baseball
Sports/Basketball
Sports/Racing
Sports/Tennis
Sports/Golf

>
<TELEMENT TYPE (fPCDATA) >
<l-- The episode number in the format issued by the
producers. Not necessarily an integer. -->

CTELEMENT EPISODE_NUMBER (##PCDATA)>

<!-- The time the show starts. This is given in
Universal Coordinated Time using a 24 hour clock.
For example, 18:30-0500. To get the Tocal time

remove the time zone offset that follows the hyphen.

<TELEMENT START_TIME ({FPCDATA)>

<!-- The duration of the show in minutes. -->

CTELEMENT LENGTH ({FPCDATA)>

<!-- The date on which the show begins broadcasting.
The may not be the same as the date of the schedule
if the show starts on or after midnight. -->

<IELEMENT AIR_DATE (fPCDATA) >

<!-- The date when this show was first broadcast. -->

CIELEMENT ORIGINAL_AIR_DATE (#PCDATA)>

{l-- Yes if the show is closed captioned, No if it isn't.

This element is omitted if it is not known whether
the show is closed captioned. -->
<IELEMENT CLOSED_CAPTIONED (4fPCDATA)>

Continued

225

226 Partll + Document Type Definitions

Listing 8-8 (continued)

<l-- Yes if the show is a repeat, No if it isn't.
This element is omitted if it is not known whether
the show is a repeat. -->

CTELEMENT REPEAT (##PCDATA)>

<l-- A person's first name. -->

CTELEMENT GIVEN_NAME (##PCDATA)>

<{I-- The family name of a person. May be more than
one word in cases like "Van Zandt" -->

<TELEMENT SURNAME (##PCDATA)>

<!-- A person's middle name. -->

CTELEMENT MIDDLE_NAME (##PCDATA)>

<!-- A person's middle initial. -->

<IELEMENT MIDDLE_INITIAL (fPCDATA) >
<!-- FCC rating for a show. Possible values are

TV-Y
TV-Y7
TV-G
TV-PG
TV-PG14
TV-MA

Movies on cable channels may instead carry
one of these MPAA ratings:

G

PG
PG-13
R
NC-17

-->
CLELEMENT RATING (#PCDATA)>

<{!-- The year in which a movie was released theatrically -->
<IELEMENT YEAR_MADE (fPCDATA) >

<!-- The number of stars to assign to a show.
The value is a number, typically 1 to 5,
occasionally including halves like 3.5 -->
<TELEMENT STARS (#fPCDATA)>

Chapter 8 + Element Declarations

<!-- Brief description of the show -->
<IELEMENT DESCRIPTION (fPCDATA) >

CTELEMENT CAST (ACTOR+)>

CTELEMENT ACTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)

SURNAME

)>
CTELEMENT WRITER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)

SURNAME

)>
<!TELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)

SURNAME

)>
CTELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME)
(MIDDLE_NAME | MIDDLE_INITIAL)+

)>

There’s no limit to the amount of information that you can or should include in
comments. Including more does make your DTDs a little longer (and therefore harder
to scan and slower to download). However, the increased clarity provided by using
comments far outweighs these disadvantages. | recommend using comments liberally
in all of your DTDs, but especially in those intended for public use.

Summary

In this chapter, you learned the complete syntax for element declarations in DTDs. In
particular, you learned the following:
4+ Element declarations declare the name and content specification of an element.

4 The content specification determines what an element may and may not
contain.

4+ The keyword ANY is a content specification indicating that there are no restric-
tions on the content of an element.

227

228 Partll ¢ Document Type Definitions

4+ A sequence is a parenthesized list of child elements separated by commas.
When a sequence is used as a content specification, child elements in the
instance document must appear in the same order as they appear in the
sequence.

4 A choice is a parenthesized list of child elements separated by vertical bars
(|). When a choice is used as a content specification, one of the child ele-
ments listed in the choice must appear in the instance document.

4+ A plus sign (+) means one or more instances of the element, sequence, or
choice may appear.

4 An asterisk (*) means zero or more instances of the element, sequence, or
choice may appear.

4 A question mark (?) means zero or one instance of the element, sequence, or
choice may appear.

4+ Parenthesized sequences and choices can be nested to produce more complex
content models.

4 An element with mixed content contains both child elements and parsed
character data. However, declaring mixed content limits the structure that
you can impose on the parent element.

4+ Empty elements are declared with the EMPTY keyword.
4 Comments make DTDs much more legible.
When a document uses attributes, the attributes must also be declared in the DTD.

Chapter 9 shows you how to declare attributes in DTDs, and how you can attach
constraints to the attribute values.

+ o+ 0+

CHAPTER

Attribute
Declarations

SOme XML elements have attributes, that is, name-value
pairs. Attributes are intended for extra information asso-
ciated with an element (such as an ID number) used only by
programs that read and write the file, and not normally for the
content of the element that’s read and written by humans. In
this chapter, you learn about the various attribute types and
how to declare attributes in document type definitions (DTDs).

What Is an Attribute?

As first discussed in Chapter 5, start-tags and empty-element
tags may contain attributes — name-value pairs separated by
an equals sign (=). For example,

<GREETING LANGUAGE="English">
Hello XML!
<MOVIE SOURCE="WavingHand.mov"/>
</GREETING>

In this example, the GREETING element has a LANGUAGE
attribute, which has the value English. The MOVIE element
has a SOURCE attribute, which has the value WavingHand.mov.
The GREETING element’s content is Hel1o XML!. The language
in which the content is written is useful information about the
content. The language, however, is not itself part of the content.

Similarly, the MOVIE element’s content is the binary data
stored in the file WavingHand.mov. The name of the file is not
the content, although the name tells you where the content
can be found. The attribute contains information about the
content rather than the content itself.

0+ o+
In This Chapter
What is an attribute?
Declaring aftributes

Declaring multiple
attributes

Alternatives to default
attribute values

Attribute types
A DTD for attribute-
based television

listings

+ 0+ o+

230

Part Il ¢ Document Type Definitions

Elements can possess more than one attribute, as in the following example:
<SCRIPT LANGUAGE="javascript" ENCODING="IS0-8859-1">
</SCRIPT>
<RECTANGLE WIDTH="30" HEIGHT="45"/>
In this example, the SCRIPT element’s LANGUAGE attribute has the value javascript.
The SCRIPT element’s ENCODING attribute has the value 1S0-8859-1. The RECTANGLE

element’s WIDTH attribute has the value 30. The RECTANGLE element’s HEIGHT
attribute has the value 45. These values are all strings, not numbers.

Declaring Attributes

Like elements, the attributes used in a document must be declared in the DTD for
the document to be valid. Attributes are declared by an attribute list in the follow-
ing form:

SITATTLIST Element_name Attribute_name Type Default_value>

<! starts all declarations. ATTLIST is the keyword that indicates this is an attribute
list. ETement_name is the name of the element possessing this attribute. Attribute_
name is the name of the attribute. Type is the kind of attribute—one of the 10 types
listed in Table 9-1. Finally, Default_value is the value the attribute takes on if no
value is specified for the attribute.

Table 9-1

Attribute Types
Type Meaning
CDATA Character data —text that is not markup
Enumerated A list of possible values from which exactly one will be chosen
ID A unique name not shared by any other ID type attribute in the document
IDREF The value of an ID type attribute of an element in the document
IDREFS Multiple IDs of elements separated by white space
ENTITY The name of an unparsed entity declared in the DTD
ENTITIES Multiple names of unparsed entities declared in the DTD, separated by

white space

NMTOKEN An XML name token
NMTOKENS Multiple XML name tokens separated by white space

NOTATION One or more names of notations declared in the DTD

Chapter 9 + Attribute Declarations 3]

For example, consider the following element:

<GREETING LANGUAGE="French">
Salut!
<{/GREETING>

This element might be declared as follows in the DTD:

CIVELEMENT GREETING (#fPCDATA)>
CVATTLIST GREETING LANGUAGE CDATA "English™>

The <!ELEMENT> declaration simply says that a GREETING element contains parsed
character data. That’s nothing new. The <!ATTLIST> declaration says that GREETING
elements have an attribute with the name LANGUAGE and the type CDATA, essentially
the same as #fPCDATA for element content. The word English in quotation marks is the
default value. If you encounter a GREETING element without a LANGUAGE attribute,
the value English is used by default.

Not all parsers read external DTD subsets. A parser that doesn’t will not see and
report any default attribute values declared in the external DTD subset, whereas

a parser that does read the external DTD subset will. When attribute values are
defaulted in from the DTD, two different parsers can see different information in the
same document. For this reason, it’s a good idea to include all important information
in the instance document, even if it’s available from the DTD. For maximum interop-
erability, avoid relying on default attribute values.

The attribute is declared separately from the element itself. The name of the ele-
ment to which the attribute belongs is included in the <!ATTLIST> declaration.
This attribute declaration applies only to that element, GREETING in the preceding
example. If other elements also have LANGUAGE attributes, they require separate
<IATTLIST> declarations.

As with most declarations, the exact order in which attribute declarations appear is
not important. They can come before or after the element declaration they’re associ-
ated with. In fact, you can even declare an attribute more than once (although I don’t
recommend this practice), in which case the first such declaration takes precedence.

You can even declare attributes for elements that are not declared, although this is
uncommon. This is sometimes done to provide default attribute values or assign
attribute types in invalid documents.

Declaring Multiple Attributes

Elements often have more than one attribute. HTML’s IMG element can have
HEIGHT, WIDTH, ALT, BORDER, ALIGN, and several other attributes. In fact, all HTML
elements can have multiple attributes. XML tags can also have multiple attributes.
For example, a RECTANGLE element naturally needs both a LENGTH and a WIDTH.

232

Part Il ¢ Document Type Definitions

CRECTANGLE LENGTH="70px" WIDTH="85px"/>

You can declare these attributes in several attribute declarations, with one declara-
tion for each attribute, as in the following example:

C'ELEMENT RECTANGLE EMPTY>
CTATTLIST RECTANGLE LENGTH CDATA "Opx">
CIATTLIST RECTANGLE WIDTH CDATA "0Opx">

The preceding example says that RECTANGLE elements possess LENGTH and WIDTH
attributes, each of which has the default value Opx.

You can combine the two <!ATTLIST> declarations into a single declaration like this:

CYATTLIST RECTANGLE LENGTH CDATA "Opx"
WIDTH CDATA "Opx">

This single declaration declares both the LENGTH and WIDTH attributes, each with
type CDATA, and each with a default value of 0px. You can also use this syntax
when the attributes have different types or defaults, like this:

CYATTLIST RECTANGLE LENGTH CDATA "15px"
WIDTH CDATA "34pt">

Attributes are unordered. Both of the following elements are valid:

<RECTANGLE LENGTH="70px" WIDTH="85px"/>
CRECTANGLE WIDTH="85px" LENGTH="70px"/>

The parser does not consider attribute order when validating. It won'’t even tell the
client application which one came first. Do not write any code that depends on
attribute order. If order matters, use child elements instead.

Alternatives to Default Attribute Values

Instead of specifying an explicit default attribute value such as Opx, an attribute
declaration can require the author to provide a value, allow the value to be omitted
completely, or even always use the default value. These requirements are specified
with the three keywords #REQUIRED, ##IMPLIED, and #F IXED, respectively.

#REQUIRED

You may not always have a good option for a default value. For example, when writing
a DTD for use on your intranet, you might want to require that all documents have
at least one empty AUTHOR element. This element might not be rendered, but it can

Chapter 9 + Attribute Declarations 33

identify the person who created the document. This element can have NAME, EMATL,
and EXTENSION attributes so that the author can be contacted, as shown in the fol-
lowing example:

<AUTHOR NAME="Elliotte Rusty Harold"
EMATL="elharo@metalab.unc.edu" EXTENSION="4093"/>

Instead of providing default values for these attributes, suppose you want to force
everyone posting a document on the intranet to identify themselves Although XML
can’t prevent someone from attributing authorship to Luke Skywalker, it can at least
require that authorship be attributed to someone by using #REQUIRED as the default
value. For example:

CTELEMENT AUTHOR EMPTY>

CTATTLIST AUTHOR NAME CDATA #REQUIRED>
CIATTLIST AUTHOR EMATIL CDATA #REQUIRED>
CIATTLIST AUTHOR EXTENSION CDATA #fREQUIRED>

If the parser encounters an AUTHOR element that does not include one or more of
these attributes, it signals the error.

You might also want to use #REQUIRED to force authors to give their IMG elements
WIDTH, HEIGHT, and ALT attributes, as in the following example:

CTELEMENT IMG EMPTY>

CYATTLIST IMG ALT CDATA #REQUIRED>
<IATTLIST IMG WIDTH CDATA #REQUIRED>
<IATTLIST IMG HEIGHT CDATA #REQUIRED>

Any attempt to omit these attributes (as all too many web pages do) produces an
invalid document. The XML parser notices the error and informs the author of the
missing attributes.

##REQUIRED helps you guarantee that the minimum information necessary for pro-
cessing a document is present. Any attribute that must be in the document should
be defaulted to #REQUIRED.

#IMPLIED

Sometimes you may not have a good option for a default value, but you do not want
to require the author of the document to include the attribute either. The attribute
is optional. For example, suppose some of the people posting documents to your
intranet are offsite freelancers who have e-mail addresses but lack phone extensions.
You don’t want to require them to include an extension attribute in their AUTHOR
elements.

<AUTHOR NAME="E1liotte Rusty Harold"
EMAIL="elharo@metalab.unc.edu" />

234 Partll + Document Type Definitions

You still don’t want to provide a default value for the extension, but you do want to
allow authors to include such an attribute. In this case, use #IMPLIED as the default
declaration like this:

CTELEMENT AUTHOR EMPTY>

<IATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
CYATTLIST AUTHOR NAME CDATA #REQUIRED>
CTATTLIST AUTHOR EMATIL CDATA #REQUIRED>

An AUTHOR element without an EXTENSION attribute simply has no such attribute.
The application can treat such an element as it chooses. For example, if the applica-
tion is feeding elements into a SQL database in which the attributes are mapped

to fields, the application would probably insert a null into the corresponding
database field.

As with elements, attribute values are almost never set to N/A, Not Available,
unknown, the empty string, or an illegal flag value such as -1. If the value of an
attribute is not known or not available, simply omit it from the instance document,
and declare it #IMPLIED in the DTD.

#FIXED

Finally, you may want to provide a default value for the attribute without allowing
the author to change it. For example, you might want to specify a common COMPANY
attribute of the AUTHOR element for anyone posting documents to your intranet,
like this:

<AUTHOR NAME="ETliotte Rusty Harold" COMPANY="TIC"
EMAIL="elharo@metalab.unc.edu" EXTENSION="3459"/>

You can require that everyone use this value for the company name by specifying
the default value as #FIXED, followed by the actual default, as in the following
example:

CTELEMENT AUTHOR EMPTY>

CTATTLIST AUTHOR COMPANY CDATA #FIXED "TIC">
<IATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
CTATTLIST AUTHOR NAME CDATA #REQUIRED>
CTATTLIST AUTHOR EMAIL CDATA #REQUIRED>

Document authors are not required to actually include the fixed attribute in their
tags. If they don’t include the fixed attribute, a parser that reads the DTD will report
the default value. If the fixed attribute is included in the instance document, how-
ever, it must have the value indicated in the DTD. Otherwise, the parser will report
an error.

Chapter 9 4 Attribute Declarations

As with regular string defaults, if the parser does not read the DTD, it won’t see the
fixed default value. Thus, some parsers can ignore these attributes completely. For
this reason, if you put critical information in a fixed attribute, you should include it
in the instance document, too.

Attribute Types

All preceding examples have been CDATA type attributes. This is the most general
type, but there are nine other types permitted for attributes. Altogether the 10 types
are as follows:

4 CDATA

4 NMTOKEN

4 NMTOKENS

4 Enumerated

+ 1D

4 IDREF

4 IDREFS

4+ ENTITY

4+ ENTITIES

4 NOTATION

Nine of the preceding types are constants used in the type field. The tenth, an enu-
merated type, lists all valid values explicitly. Let’s investigate each type in depth.

The CDATA attribute type

CDATA, the most general attribute type, means the attribute value may be any string
of text not containing a less than sign (<) or quotation marks ("). These characters
can be inserted using the usual entity references (&1t ;, and " ;) or by character
references (<, and &{#fx22;). Furthermore, all raw ampersands (&) —that is,
ampersands that do not begin a character or entity reference —must also be escaped
as & or &.

In fact, even if the value itself contains double quotes, they do not have to be
escaped. Instead, you can use single quotes to delimit the attributes, as in the
following example:

<RECTANGLE LENGTH='7"" WIDTH="'8.5""'/>

235

2356

Part Il ¢ Document Type Definitions

If the attribute value contains single and double quotes, the one not used to delimit
the value must be replaced with the entity reference ' (apostrophe) or "
(double quote), as in the following example:

<RECTANGLE LENGTH='8'7""' WIDTH="10'6""/>

The NMTOKEN attribute type

The NMTOKEN attribute type restricts the value of the attribute to a legal XML name
token. As discussed in Chapter 6, XML names must begin with a letter or an under-
score (_), and subsequent characters in the name may include letters, digits, under-
scores, hyphens, and periods. They cannot include white space. (The underscore
often substitutes for white space.) Technically, names can contain colons, but you
shouldn’t use this character because it’s reserved for use with namespaces. A name
token is the same as an XML name except that it may begin with digits, hyphens,
and periods rather than just letters and the underscore. Thus, 73 and -red are legal
name tokens even though they’re not legal names. All names are name tokens, but
not all name tokens are names.

The NMTOKEN attribute type helps when you need to pick from any large group of
names that aren’t specifically part of XML but do meet requirements for XML name
tokens. The most significant of these requirements is the prohibition of white space.
For example, NMTOKEN could be used for an attribute whose value had to map to an
8.3 DOS filename. On the other hand, it wouldn’t work well for UNIX, Macintosh, or
Windows NT filenames, because those names often contain white space.

For example, suppose you want to require a STATE attribute in an ADDRESS element
to be a two-letter abbreviation. You cannot force this characteristic with a DTD, but
you can prevent people from entering New York or Puerto Rico with the following
<IATTLIST> declaration:

<IATTLIST ADDRESS STATE NMTOKEN #REQUIRED>

However, California, Nevada, and other single-word states are still valid values. Of
course, you could simply use an enumerated list (to be covered shortly) with several
dozen two-letter codes (for example, CA for California), but that approach results in
more effort than many developers want to expend. On the other hand, if you define
this list once in a parameter entity reference in a DTD file, you can reuse the file many
times over.

The NMTOKENS attribute type

The NMTOKENS attribute type is the plural form of NMTOKEN. It enables the value of
the attribute to consist of multiple XML name tokens that are separated from each
other by white space. Generally, you use NMTOKENS for the same reasons as NMTOKEN,
but only when multiple tokens are required. For example, if you want to require
multiple two-letter state codes for a STATES attribute, you can use the following
declaration:

Chapter 9 + Attribute Declarations 237/

CVATTLIST ADDRESS STATES NMTOKENS #fREQUIRED>
Then, documents could contain an ADDRESS element like this one:

<ADDRESS STATES="MI NY LA CA"/>

Unfortunately, if you apply this technique, you’re no longer ruling out states such
as New York, because each individual part of the state name qualifies as an NMTOKEN,
as shown here:

<ADDRESS STATES="MI New York LA CA"/>

The enumerated attribute type

The enumerated type is not an XML keyword, but a list of possible values for the
attribute, separated by vertical bars. Each value must be a valid XML name token.
The document author can choose any member of the list as the value of the attribute.

For example, suppose you want an element to be visible or invisible. You may want
the element to have a VISIBLE attribute, which can only have the values TRUE or
FALSE. If that element is the simple P element, the <!ATTLIST> declaration looks
like this:

CIATTLIST P VISIBLE (TRUE | FALSE) "TRUE">

The preceding declaration says that a P element may or may not have a VISIBLE
attribute. If it does have a VISIBLE attribute, the value of that attribute must

be either TRUE or FALSE. If it does not have such an attribute, the value TRUE is
assumed. For example:

<P VISIBLE="FALSE">You can't see me! Nyah! Nyah!</P>
<P VISIBLE="TRUE">You can see me.</P>
<P>You can see me too.</P>

By itself, this declaration is not a magic incantation that hides text. It still relies on
the application to understand that it shouldn’t display invisible elements. Whether
the element is shown or hidden would probably be set through a style sheet rule
applied to elements with VISIBLE attributes. For example, these XSLT template
rules throw away content with a VISIBLE="FALSE" attribute.

<xsl:template match="P[@VISIBLE="FALSE"]" />
<{xsT:template match="P[@VISIBLE="TRUE']">

<xsl:apply-templates/>
</xsl:template>

238 Partll + Document Type Definitions

The ID attribute type

An 1D type attribute uniquely identifies an element in the document. Authoring
tools and other applications commonly use 1D to help identify the elements of a
document without concern for their exact meaning or relationship to one another.

An attribute value of type 1D must be a valid XML name —that is, it begins with a
letter and is composed of alphanumeric characters and the underscore without
white space. A particular name may not be used as an 1D attribute of more than one
element. Using the same ID twice in one document causes the parser to return an
error. Furthermore, each element may not have more than one attribute of type ID.

Typically, 1D attributes exist solely for the convenience of programs that manipulate
the data. In many cases, multiple elements can be effectively identical except for the
value of an 1D attribute. If you choose IDs in some predictable fashion, a program
can enumerate all the different elements or all the different elements of one type in
the document.

The 1D type is incompatible with #FIXED. An attribute cannot be both fixed and have
ID type, because a #FIXED attribute can only have a single value, whereas each 1D
type attribute must have a different value. Most 1D attributes use #REQUIRED, as
Listing 9-1 demonstrates.

Listing 9-1: A Required ID Attribute Type

<?xml version="1.0"7>
<IDOCTYPE DOCUMENT [
<TELEMENT DOCUMENT (P*)>
<IELEMENT P (#PCDATA)>
CIATTLIST P PNUMBER ID #REQUIRED>
1>
<DOCUMENT>
<P PNUMBER="pl1">The quick brown fox</P>
<P PNUMBER="p2">The quick brown fox</P>
</DOCUMENT>

The IDREF attribute type

The value of an attribute with the IDREF type is the ID of another element in the
document. For example, Listing 9-2 shows the IDREF and 1D attributes used to
connect children to their parents.

Chapter 9 + Attribute Declarations 39

Listing 9-2: family.xml

<?2xml version="1.0"7>
<!DOCTYPE DOCUMENT [
<IELEMENT DOCUMENT (PERSON*)>
<CIELEMENT PERSON (##PCDATA)>
CVATTLIST PERSON PNUMBER ID #REQUIRED>
CIATTLIST PERSON FATHER IDREF #IMPLIED>
CIATTLIST PERSON MOTHER IDREF #IMPLIED>
1>
<DOCUMENT>
<PERSON PNUMBER="al">Susan</PERSON>
<PERSON PNUMBER="a2">Jack</PERSON>
<PERSON PNUMBER="a3" MOTHER="al" FATHER="a2">Chelsea</PERSON>
<PERSON PNUMBER="a4" MOTHER="al" FATHER="a2">David</PERSON>
</DOCUMENT>

You generally use this uncommon but crucial type when you need to establish
connections between elements that aren’t reflected in the tree structure of the doc-
ument. In Listing 9-2, each child is given FATHER and MOTHER attributes containing
the ID attributes of its father and mother. However, based on the element structure
alone, there are simply four PERSON elements. None is the parent or child of the
other elements.

The IDREFS attribute type

You cannot easily and directly use an IDREF to link parents to their children in
Listing 9-2 because each parent has an indefinite number of children. As a work-
around, you can group all the children of the same parents into a FAMILY element
and link to the FAMILY. Even this approach falters in the face of half-siblings who
share only one parent. In short, IDREF works for many-to-one relationships, but not
for one-to-many or many-to-many relationships.

If one attribute potentially needs to refer to more than one ID in the document, you
can declare it to have type IDREFS. The value of such an attribute is a white-space-
separated list of XML names. Each name in the list must be the ID of some element
somewhere in the same document.

Listing 9-3 uses a single PARENTS attribute of type IDREFS rather than separate
FATHER and MOTHER attributes. This is a more realistic approach for a world in
which families often don’t come in neat packages of one father, one mother, and
two children.

240

Part Il ¢ Document Type Definitions

Listing 9-3: alternative_family.xml

<?xml version="1.0"7>
<IDOCTYPE DOCUMENT [
<IELEMENT DOCUMENT (PERSON*)>
CIELEMENT PERSON (#PCDATA)>
CIATTLIST PERSON PNUMBER ID ##REQUIRED>
<IATTLIST PERSON PARENTS IDREFS #IMPLIED>
1
<DOCUMENT>
<PERSON PNUMBER="al">Susan</PERSON>
<PERSON PNUMBER="a2">Jack</PERSON>
<PERSON PNUMBER="a3" PARENTS="al a2">Chelsea</PERSON>
<PERSON PNUMBER="a4" PARENTS="al a2">David</PERSON>
</DOCUMENT>

The ENTITY attribute type

An ENTITY type attribute enables you to link external binary data—that is, an
external, unparsed, general entity —into the document. The value of the ENTITY
attribute is the name of an unparsed general entity declared in the DTD, which
links to the external data.

The classic example of an ENTITY attribute is an image. The image consists of binary
data available from another URL. Provided the XML browser can support it, you can
include an image in an XML document with the following declarations in your DTD:

<IELEMENT IMAGE EMPTY>
CIATTLIST IMAGE SOURCE ENTITY #REQUIRED>
CTENTITY LOGO SYSTEM "logo.gif"™ NDATA GIF>
<INOTATION GIF PUBLIC

"-//TETF//NONSGML Media Type image/gif//EN">

Then, at the desired image location in the document, insert the following IMAGE tag:
<IMAGE SOURCE="LOGO"/>
This approach is not a magic formula that all XML browsers automatically under-

stand. It is simply one technique that browsers and other applications may or may
not adopt to embed non-XML data in documents.

,iss-/‘x This technique is explored further in Chapter 10.
Reference

Chapter 9 + Attribute Declarations 4]

The ENTITIES attribute type

ENTITIES is a relatively rare plural form of ENTITY. The value of an ENTITIES type
attribute consists of multiple unparsed entity names separated by white space. Each
entity name refers to an external non-XML data source. One use for this approach is
a slide show that rotates different pictures, as in the following example:

<'ELEMENT SLIDESHOW EMPTY>

CIATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
CLENTITY PIC1 SYSTEM "cat.gif">

CTENTITY PICZ2 SYSTEM "dog.gif">

CYENTITY PIC3 SYSTEM "cow.gif">

Then, at the point in the document where you want the slide show to appear, insert
the following tag:

<SLIDESHOW SOURCES="PIC1 PICZ2 PIC3"/>

Again, this is not a universal formula that all (or even any) XML browsers automati-
cally understand; it is simply one method that browsers and other applications
might adopt to embed non-XML data in documents.

The NOTATION attribute type

The NOTATION attribute type specifies that an attribute’s value is the name of a nota-
tion declared in the DTD. The default value of this attribute must also be the name
of a notation declared in the DTD. In brief, notations identify the format of data, for
instance, by specifying whether length is measured in meters or feet.

- Cross- Notations are further discussed in Chapter 10.
Reference

For example, there are actually two kinds of ratings in the television listings docu-
ment, MPAA ratings for movies (G, PG, PG-13, R, and NC-17) and TV parental guide-
lines for made-for-TV shows (TV-Y, TV-Y7, TV-G, TV-PG, TV-14, TV-MA). A notation
attribute can indicate the type of the rating. First, the two notations must be
declared:

<INOTATION MOVIE PUBLIC
"-//Motion Picture Association of America//Movie
Rating System//EN"
"http://www.mpaa.org/movieratings">
<INOTATION TV PUBLIC
"-//TV Parental Guidelines Board//The TV Parental
Guidelines//EN"
"http://www.tvguidelines.org/ratings.asp">

247 Partll 4+ Document Type Definitions

Next, specify that the RATING element has a TYPE attribute whose own type is
NOTATION. This declaration must list the legal notations for this attribute:

CIATTLIST RATING TYPE NOTATION (MOVIE | TV) #REQUIRED>

A valid RATING element must now have a TYPE attribute with one of the two values
MOVIE or TV. RATING elements in the instance document now look like this:

<RATING TYPE="MOVIE">PG-13</RATING>
<RATING TYPE="TV">TV-PG</RATING>

Each element can have at most one NOTATION type attribute. More than one is
invalid.

ﬁlote At first glance, this approach may appear inconsistent with the handling of other
=~ list attributes, such as ENTITIES and NMTOKENS, but these two approaches are
actually quite different. ENTITIES and NMTOKENS have a list of attributes in the
actual element in the document but only one value in the attribute declaration in
the DTD. NOTATION only has a single value in the attribute of the actual element
in the document, however. The list of possible values occurs in the attribute decla-

ration in the DTD.

A DTD for Attribute-Based Television Listings

Chapter 5 developed a well-formed XML document for television listings that used
attributes to store the DATE of a SCHEDULE, the NETWORK, CHANNEL, and CALL_
LETTERS of a STATION, the NAME, TYPE, START_TIME, and LENGTH of a SHOW, and
more. You saw this in Listing 5-1. You may want to print out a copy from my web
siteat http://www.cafeconleche.org/books/bible3/source/05/5-1.xml so
you can have the example document in hand as you read this chapter, to avoid a lot
of flipping back and forth.

To make this document valid, you need to provide a DTD. This DTD must declare
both the elements and the attributes used in Listing 5-1. The element declarations
resemble the ones used in Chapter 8, except that there are fewer of them because
most of the information has been moved into attributes:

CTELEMENT SCHEDULE (STATION+)>

CTELEMENT STATION (SHOW+)>

CTELEMENT SHOW (DIRECTOR*, WRITER*, PRODUCER*, CAST?)>
CTELEMENT CAST (ACTOR+)>

CTELEMENT ACTOR EMPTY>

CTELEMENT WRITER EMPTY>

<'ELEMENT PRODUCER EMPTY>

CTELEMENT DIRECTOR EMPTY>

jLMe

Chapter 9 + Attribute Declarations 243

Declaring SCHEDULE attributes

The SCHEDULE element has a single attribute, DATE. Although some semantic con-
straints determine what is and is not a date (“July 3, 2003” is a date; “Queen Victoria’s
underpants” is not), the DTD doesn’t enforce these. Thus, the best approach declares
that the DATE attribute has the most general attribute type, CDATA. Furthermore, we
want all schedules to have a date, so we’ll make the DATE attribute required.

CIATTLIST SCHEDULE DATE CDATA #REQUIRED>

Although you really can’t restrict the form of the text authors enter in DATE
attributes, you can at least provide a comment that shows what’s expected. For
example, it might be a good idea to specify that four-digit years are required.

<l--In the form "July 3, 2003" -->
<!-- DO NOT USE TWO-DIGIT YEARS Tlike 98, 99, 00!! -->
IATTLIST SCHEDULE DATE CDATA #REQUIRED>

The W3C XML Schema Language uses XML documents to describe information that
-~ might traditionally be encoded in a DTD, as well as data type information. Schemas

do allow you to express requirements such as “Each DATE element must contain a

four-digit year between 1843 and 1902." Schemas are explored in Chapter 20.

Declaring STATION attributes

Next, consider STATION. Each has a CHANNEL attribute, a CALL_LETTERS attribute,
and a NETWORK attribute, all of which are optional. The channel is always a positive
integer. DTDs don’t let you say that the channel is a positive integer, but you can
say that it’s a name token. Not all name tokens are positive integers, but all positive
integers are name tokens.

CIATTLIST STATION CHANNEL NMTOKEN #fREQUIRED>
This doesn’t catch all illegal values, but it at least catches some of them.

Similarly, the call letters are always a legal XML name token. They’re composed
exclusively of ASCII letters, and, in a few countries, digits. This can also be declared
as a name token:

<IATTLIST STATION CALL_LETTERS NMTOKEN #REQUIRED>

Traditionally, network names are also name tokens (CBS, NBC, HBO, and so on).
However, cable stations are increasingly using longer network names (Oxygen,
Home Shopping Network, and so on). These can all be abbreviated as name tokens.
However, as the world moves to digital cable and satellite television, it seems
increasingly unlikely that new networks will stick to the old conventions. It feels
safer to me to allow network names to be more arbitrary, so I'll make them CDATA.

244

Part Il ¢ Document Type Definitions

CIATTLIST STATION NETWORK CDATA #REQUIRED>

If you prefer, these three separate declarations for attributes of the same element
can be combined into one attribute list declaration:

CYATTLIST STATION NETWORK CDATA #IMPLIED
CALL_LETTERS NMTOKEN #IMPLIED
CHANNEL NMTOKEN #REQUIRED>

One disadvantage of using a single attribute list to declare several attributes is that
it makes it impossible to include even simple comments next to the individual
attributes, because comments cannot appear inside declarations, only outside them.

Given these declarations, in either single or multiple form, all of these STATION
start-tags are valid:

<STATION NETWORK="HBO" CHANNEL="501">

{STATION NETWORK="CBS"™ CHANNEL="2" CALL_LETTERS="WCBS">
<STATION CHANNEL="55" CALL_LETTERS="WLNY">

<STATION CHANNEL="882">

The last one is a bit of a problem. It has neither a NETWORK nor a CALL_LETTERS
attribute, at least one of which you want to require, but without requiring both.

You were able to do this when NETWORK and CALL_LETTERS were child elements.
However, with attributes, you just can’t do this. Attributes are independent of each
other. You can’t make the presence or absence of one a precondition for the presence
or absence of the other.

Declaring SHOW attributes

SHOW has the most attributes of any of the elements in the document. A few of these
(NAME, START_TIME, LENGTH) are required, because they are absolutely necessary
for processing the document. If they’re missing, the style sheet (of Listing 5-8) and
other software that reads these documents will fail. The rest of the attributes are
optional. None have plausible default values. Most have no constraints that are
expressible in a DTD. A couple (STARS, YEAR_MADE) must be numbers and can
therefore be set to NMTOKEN. However, there is one notable exception. The RATING
attribute has a fixed list of values: TV-Y, TV-Y7, TV-G, TV-PG, TV-PG14, TV-MA, G,
PG, PG-13, R, NC-17. This is exactly the situation for an enumerated attribute:

CIATTLIST SHOW RATING
(TV-Y | TV-Y7 | TV-G | TV-PG | TV-PG14 | TV-MA
| G| PG| PG-13 | R | NC-17) #IMPLIED>

Chapter 9 4 Attribute Declarations 45

The REPEAT and CLOSED_CAPTIONED attributes are equally well served by an enu-
meration. In these two cases, the possible values are only two-fold, yes and no:

<IATTLIST SHOW CLOSED_CAPTIONED (Yes | No) fFIMPLIED
REPEAT (Yes | No) #IMPLIED

Like most things in XML, these matches are case-sensitive. If you want to allow
upper and mixed case variants, you need to explicitly list them:

<IATTLIST SHOW
CLOSED_CAPTIONED (Yes | No | yes | no | YES | NO) #IMPLIED
REPEAT (Yes | No | yes | no | YES | NO) #IMPLIED
>

Here you see something attributes can do better than child elements. In the previous
chapter where RATING, REPEAT, and CLOSED_CAPTION were child elements, all you
could do was declare them to have a content specification of #PCDATA, document
the possible values with a comment, and hope the document authors read the DTD.
Attributes can actually enforce the restrictions.

Declaring person attributes

The television listings example has four person elements that differ primarily in ele-
ment name: ACTOR, PRODUCER, PUBLISHER, and WRITER. Each can have GIVEN_NAME,
MIDDLE_NAME, MIDDLE_INITIAL, and SURNAME attributes. There are no particular
rules for what characters are allowed in names. For example, surnames can contain
white space (de Havilland), apostrophes (d’Abo), and more. Thus, the only really
sensible type for these is CDATA. Because any particular person may not have any
of these, the only sensible default value is #IMPLIED. Given that, here’s the declara-
tion of the ACTOR element:

CIATTLIST ACTOR GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE _INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

Using attributes instead of child elements to hold this information has two distinct
disadvantages. First, as with NETWORK and CALL_LETTERS for SHOW, it’s not possible
to say that an ACTOR must have at least one of GIVEN_NAME, MIDDLE_NAME, MIDDLE__
INITIAL, and SURNAME, though all of them are individually optional. <ACTOR/> is
now a valid ACTOR element even though it has no names at all. Second, only one of
each is allowed for each person. This means you have to force multiple middle names
and aliases into a single attribute. Child elements are really a better fit here.

246

Part Il ¢ Document Type Definitions

The other three person elements can be declared almost identically:

CYATTLIST PRODUCER GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>
CTATTLIST DIRECTOR GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE_INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>
CVATTLIST WRITER GIVEN_NAME CDATA #IMPLIED
MIDDLE_NAME CDATA #IMPLIED
MIDDLE _INITIAL CDATA #IMPLIED
SURNAME CDATA #IMPLIED>

,ﬁ\' ote

Given the similarity between the four declarations for different kinds of people, you

-~ might be wondering whether XML has any sort of macro expansion facility that
enables you to leverage the similarity. The short answer is yes, it does. That mecha-
nism, parameter entity references, is explored in the next chapter.

The complete DTD for the television listings example

Listing 9-4 shows the complete attribute-based television schedule DTD.

Listing 9-4: The Complete DTD for Television Listings Using
Attributes for Most Information

<TELEMENT SCHEDULE (STATION+)>

CTELEMENT STATION (SHOW+)>

CTELEMENT SHOW (DIRECTOR*, WRITER*, PRODUCER*, CAST?)>
<TELEMENT CAST (ACTOR+)>

CTELEMENT ACTOR EMPTY>

CTELEMENT WRITER EMPTY>

<!ELEMENT PRODUCER EMPTY>

CTELEMENT
CYATTLIST

CTATTLIST

DIRECTOR EMPTY>
SCHEDULE DATE
STATION NETWORK

CALL_LETTERS
CHANNEL

CDATA #fREQUIRED>

CDATA #IMPLIED
NMTOKEN #IMPLIED
NMTOKEN #REQUIRED>

Chapter 9 + Attribute Declarations 47/

CYATTLIST SHOW NAME CDATA
TITLE CDATA
TYPE CDATA
EPISODE_NUMBER CDATA
START_TIME CDATA
LENGTH CDATA
AIR_DATE CDATA

ORIGINAL_AIR_DATE CDATA

##IREQUIRED
F#IMPLIED
J#IMPLIED
#IMPLIED
##REQUIRED
##REQUIRED
#IMPLIED
J#/IMPLIED

CLOSED_CAPTIONED (Yes | No) {fIMPLIED

REPEAT (Yes | No) #IMPLIED
YEAR_MADE NMTOKEN #IMPLIED
STARS NMTOKEN #IMPLIED
DESCRIPTION CDATA #IMPLIED

RATING (TV-Y | TV-Y7
| TV-PG14 | TV-MA | G | PG | PG-13 | R
>

CIATTLIST ACTOR GIVEN_NAME CDATA
MIDDLE_NAME CDATA
MIDDLE_INITIAL CDATA
SURNAME CDATA
CYATTLIST PRODUCER GIVEN_NAME CDATA
MIDDLE_NAME CDATA
MIDDLE_INITIAL CDATA
SURNAME CDATA
CTATTLIST DIRECTOR GIVEN_NAME CDATA
MIDDLE_NAME CDATA
MIDDLE_INITIAL CDATA

SURNAME CDATA
CVATTLIST WRITER GIVEN_NAME CDATA
MIDDLE_NAME CDATA
MIDDLE_INITIAL CDATA
SURNAME CDATA

TV-G | TV-PG
| NC-17) #IMPLIED

##IMPLIED
#IMPLIED
F#IMPLIED
#IMPLIED>
#IMPLIED
F#IMPLIED
J#IMPLIED
#IMPLIED>
F#/IMPLIED
J#IMPLIED
#IMPLIED
J#IMPLIED>
##IMPLIED
#IMPLIED
#/IMPLIED
J#IMPLIED>

To attach this DTD to Listing 5-1, you must add a document type declaration to its
prolog, assuming of course that Listing 9-4 is stored in a file called tvlistings.dtd:

<!DOCTYPE SEASON SYSTEM "tvlistings.dtd">

Listing 9-4 does not really use any default attribute values. Instead, each attribute is
declared #IMPLIED or #REQUIRED. This is actually quite common and is sometimes
a good idea even when reasonable defaults are known. Not all parsers read the exter-
nal DTD subset of a document, especially those parsers built into web browsers.
Explicitly specifying all attribute values in the instance document is safer and more

robust than defaulting them in from the DTD.

248 Partll + Document Type Definitions

Summary

In this chapter, you learned how to declare attributes in DTDs. In particular, you
learned the following concepts:

4 Attributes are declared by an <!ATTLIST> declaration in the DTD.

4 One <!ATTLIST> can declare an indefinite number of attributes for a single
element.

4 Attributes normally have default values, but this condition can be changed
by using the keywords #REQUIRED, ##IMPLIED, or #FIXED.

4 There are 10 attribute types: CDATA, Enumerated, NMTOKEN, NMTOKENS, ID,
IDREF, IDREFS, ENTITY, ENTITIES, and NOTATION.

4 The CDATA type is the most general. It means an attribute can contain charac-
ter data. Any well-formed content is valid.

4 The NMTOKEN type means a valid attribute contains an XML name token. A
name token is like an XML name except that it can start with numbers or a
hyphen.

4 The NMTOKENS type means a valid attribute contains a list of XML name tokens
separated by white space.

4+ The 1D type means a valid attribute contains an XML name that is unique
among all ID type attributes in the document. An element can have at most
one attribute of 1D type.

4 The IDREF type means a valid attribute contains an XML name that is also the
value of an 1D type attribute of some element in this document.

4+ The IDREFS type means a valid attribute contains a list of 1D values separated
by white space.

4+ The ENTITY type means a valid attribute contains the name of an unparsed
entity declared in the DTD.

4 The ENTITIES type means a valid attribute contains a white-space separated
list of unparsed entity names declared in the DTD.

4 The NOTATION type means a valid attribute contains the name of a notation
declared in the DTD.

In the next chapter, you learn more about DTDs, including how to define new entity
references such as ©, α, and &chapterl0;. You'll see how to use multi-
ple DTDs to describe a single document, and how to divide one large document into
many smaller parts. You'll also learn how notations, processing instructions, and
unparsed external entities can be used to embed non-XML data in XML documents.

+ + o

Entity
Declarations

Asingle XML document can draw both data and declara-
tions from many different sources in many different files.
In fact, some of the data may draw directly from databases,
CGI scripts, or other nonfile sources. The items where the
pieces of an XML document are stored, in whatever form they
take, are called entities. Entity references load these entities
into the main XML document. General entity references load
data into the root element of an XML document. &1t ;, > ;,
', "e;, and & are predefined general entity
references that refer to the text entities <, >, ', ", and &,
respectively. Parameter entity references load data into the
document’s document type definition (DTD). They begin with
a % instead of an &. Unparsed entities point to non-XML, binary
data whose type is identified with a notation and are referenced
by an ENTITY type attribute. All three kinds of entities are
declared in the DTD.

What Is an Entity?

Logically speaking, an XML document is composed of a prolog
followed by a root element that strictly contains all other ele-
ments; but physically the content of an XML document can be
spread across multiple files. For example, each SHOW element
might appear in a separate file even though the root element
contains several thousand shows broadcast on one day. The
storage units that contain particular parts of an XML document
are entities. An entity can be a file, a database record, or any
other item that contains data. For example, all the complete
well-formed XML examples in this book are entities.

YR SR St
In This Chapter
What is an entity?

Internal general
entities

External general
entities

Internal parameter
entities

External parameter
entities

Building a document
from pieces

Unparsed entities
Conditional sections

¢+ + o+ o+

250

Part

_:-:f“"’“’

Il 4+ Document Type Definitions

The storage unit that contains the XML declaration, the document type declaration,
and the root element is called the document entity. Thus, every XML document has
at least one entity. However, the root element and its descendents may also contain
entity references pointing to additional data that should be inserted into the docu-
ment. A validating XML processor combines all the referenced entities into a single
logical document before it passes the document on to the end application or displays
the file.

Nonvalidating processors may, but do not have to, insert entities defined in the
-~ external DTD subset. They must insert entities defined in the internal DTD subset.

Entities hold content: well-formed XML, other forms of text, or binary data. The pro-
log and the document type declaration are part of the root entity of the document.
An XSL style sheet qualifies as an entity, but only because it itself is a well-formed
XML document. The entity that makes up the style sheet is not one of the entities
that compose the XML document to which the style sheet applies. A CSS style sheet
is not an entity at all.

Most entities have names by which you can refer to them. The only exception is the
document entity — the main file containing the XML document (although there’s no
requirement that this has to be a file as opposed to a database record, the output of
a CGI program, or something else).

Entities can be either internal or external. Internal entities are defined completely
within the DTD. External entities, by contrast, draw their content from another source
located via a URL. The main document only includes a reference to the URL where
the actual content resides.

Entities fall into two categories: parsed and unparsed. Parsed entities contain well-
formed XML text. Unparsed entities contain either binary data or non-XML text (such
as an e-mail message). Currently, unparsed entities aren’t well supported (if at all)
by most browsers, editors, and other tools.

Internal General Entities

You can think of an internal general entity reference as an abbreviation for commonly
used text or text that’s hard to type. An <!ENTITY> declaration in the DTD defines
an abbreviation and the text that the abbreviation stands for. For example, instead
of typing the same footer at the bottom of every page, you can simply define that
text as the FOOTER entity in the DTD and then type &FO0OTER; at the bottom of each
page. Furthermore, if you decide to change the footer block (perhaps because your
e-mail address changes), you only need to make the change once in the DTD instead
of on every page that shares the footer.

Chapter 10 + Entity Declarations 251

General entity references begin with an ampersand (&) and end with a semicolon (;),
with the entity’s name between these two characters. For example, &1t ; is a general
entity reference for the less than sign (<). The name of this entity is 1t. The replace-
ment text of this entity is the one-character string <. Entity names consist of any set
of alphanumeric characters and the underscore. White space and other punctuation
characters are prohibited. Like most everything else in XML, entity references are
case-sensitive.

- Cross- Although the colon (3) is technically permitted in entity names, this character is
Reference \ o orved for use with namespaces, which are discussed in Chapter 11.

Defining an internal general entity reference

Internal general entities are defined in the DTD with an <!ENTITY> declaration,
which has the following format:

CLTENTITY name "replacement text">

The name is the abbreviation for the replacement text. The replacement text
must be enclosed in quotation marks because it can contain white space and XML
markup. You type the name of the entity in the document, but the reader sees the
replacement text.

For example, my name is the somewhat excessive Elliotte Rusty Harold (blame my
parents for that one). Even with years of practice, I still make typos with that phrase.
I can define a general entity reference for my name so that every time I type &ERH;,
the reader will see Elliotte Rusty Harold. That definition is as follows:

CITENTITY ERH "Elliotte Rusty Harold">

Listing 10-1 demonstrates the &ERH; general entity reference. Figure 10-1 shows this
document loaded into Internet Explorer. You see that the &ERH ; entity reference in
the source code is replaced by E1Tiotte Rusty Harold in the output.

Listing 10-1: The ERH Internal General Entity Reference

<?2xml oversion="1.0"7>
<!DOCTYPE DOCUMENT [

CIENTITY ERH "Elliotte Rusty Harold">
CTELEMENT DOCUMENT (TITLE, SIGNATURE)>

CIELEMENT TITLE (#PCDATA)>
<IELEMENT COPYRIGHT (#PCDATA)>

Continued

2572 Partll + Document Type Definitions

Listing 10-1 (continued)

<IELEMENT EMAIL (#fPCDATA)>
<IELEMENT LAST_MODIFIED (#PCDATA)>
CTELEMENT SIGNATURE (COPYRIGHT, EMAIL, LAST_MODIFIED)>

»
<DOCUMENT>
KTITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>2004 &ERH;</COPYRIGHT>
<EMATL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
</STGNATURE>
</DOCUMENT>
B O_ 6 [file:/ flocalhost/...o/Big Mac/bible3/10/10-1.xml (=]
@ M@ = i}
Back Forward Stop Refresh Home :© AutoFill Print Mail

Tile:/ Mlocalhest/Users /e haro /BigR20Mas/bible3/ 1071 0-1 ml m

<?xml version="1.0" ?>
<!DOCTYPE DOCUMENT (View Source for full doctype...)>
- <DOCUMENT>
<TITLE=>Elliotte Rusty Harold</TITLE=>
- <SIGNATURE>
<COPYRIGHT > 2004 Elliotte Rusty Harold</COPYRIGHT =
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED >July 30, 2004</LAST_MODIFIED>
</SIGNATURE>
</DOCUMENT>

| [Local mashine zone p
Figure 10-1: Listing 10-1 after the internal general entity
reference has been replaced by the actual entity

Notice that the general entity reference, &ERH ;, appears inside both the COPYRIGHT
and TITLE elements even though these are declared to accept only #PCDATA as chil-
dren. This arrangement is valid because the replacement text of the &ERH; entity
reference is parsed character data. Validation occurs after the parser replaces the
entity references with their values. The same thing happens when you use a style
sheet. The styles are applied to the element tree as it exists after entity values
replace the entity references.

However, validation is optional, even when the DTD defines entities that the docu-
ment uses. A parser can read the DTD to find entity definitions but still not check for
validity. For example, Listing 10-2 provides the same basic data as Listing 10-1 even
though it’s invalid, because the DTD doesn’t include declarations for every element:

Chapter 10 + Entity Declarations 2573

Listing 10-2: An Invalid Document That Uses a DTD Solely
to Define a General Entity Reference

<?xml version="1.0"7>
<!DOCTYPE DOCUMENT [
CTENTITY ERH "Elliotte Rusty Harold">
»
<DOCUMENT>
KTITLE>&ERH;</TITLE>
{SIGNATURE>
<COPYRIGHT>2004 &ERH;</COPYRIGHT>
<EMATL>eTharo@metalab.unc.edu</EMATIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
</SIGNATURE>
</DOCUMENT>

General entity definitions cannot contain the three characters %, &, and " directly,
although you can include them via character references; & and % may be included if
they’re starting an entity reference rather than simply representing themselves. An
entity value can contain tags and span multiple lines. For example, the following
STGNATURE entity is valid:

CVENTITY SIGNATURE
"<SIGNATURE>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
</SIGNATURE>"
>

An entity value can also contain multiple elements, as in the following example:

CVENTITY SIGNATURE
"<HR/>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>"

>

However, if an entity value contains the start-tag for an element, it must also contain
the end-tag for the same element. That is, it cannot contain only part of an element.
For example, these are both illegal, even if they’re used in such a way that the result-
ing document would be well formed:

CLENTITY COPYYEAR "<COPYRIGHT>2004 ">
CTENTITY COPYNAME "Elliotte Rusty Harold</COPYRIGHT>">

254

Part Il ¢ Document Type Definitions

The same is true for comments, processing instructions, entity references, and any-
thing else you might place inside an entity value. If it starts inside the entity, it must
finish inside the entity.

One advantage of using entity references instead of the full text is that it’s easier to

change the text. This is especially useful when a single DTD is shared between mul-
tiple documents. For example, suppose I decide to use the e-mail address eharold@
solar.stanford.eduinstead of eTharo@metalab.unc.edu. Rather than searching
and replacing through multiple files, I simply change one line of the DTD as follows:

CVENTITY SIGNATURE
"<HR/>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>eharold@solar.stanford.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>"

Using general entity references in the DTD

The next obvious question is whether it’s possible to parameterize entities. For
example, could you use the preceding SIGNATURE entity but change the date in each
separate LAST_MODIFIED element on each page? The answer is yes. Entities can con-
tain other entities, and all of these entities can be redefined in a document’s internal
DTD subset. This enables both modularization and parameterization of DTDs. You
can include one general entity reference inside the definition another, like this:

CTENTITY COPY2004 "Copyright 2004 &ERH;">

This example is legal because the ERH entity appears as part of the COPY2004 entity
that itself will ultimately become part of the instance document. You can also use
general entity references in other places in the DTD that ultimately become part of
the instance document content (such as a default attribute value), although there
are restrictions. The first restriction is that the declaration cannot contain a circular
reference such as the following:

CVENTITY ERH "©2004 ETTiotte Rusty Harold">
CTENTITY COPY2004 "Copyright 2004 &ERH;">

The second restriction: General entity references cannot insert text that is only part
of the DTD and that will not be used as part of the document content. For example,
the following attempted shortcut fails:

CIENTITY PCD "({fPCDATA) ">
<IELEMENT GIVEN NAME &PCD;>
CIELEMENT SURNAME &PCD; >

Chapter 10 + Entity Declarations 255

It’s often useful, however, to have entity references merge text into a document’s
DTD. For this purpose, XML uses the parameter entity reference, which is discussed
later in this chapter.

Predefined general entity references

XML predefines the five general entity references listed in Table 10-1. These five
entity references appear in XML documents in place of specific characters that would
otherwise be interpreted as markup. For example, the entity reference &1t ; stands
for the less than sign (<), which could be interpreted as the beginning of a tag.

Table 10-1
XML Predefined Entity References

Entity Reference Character

& &

&1t <

> >

" "

' !

For maximum compatibility with older SGML parsers, you should declare these
references in your DTD if you plan to use them. Declaration is actually quite tricky,
because you must also escape the characters in the DTD without using recursion.
To do this, use character references containing the hexadecimal value of each char-
acter. Listing 10-3 shows the necessary declarations:

Listing 10-3: Declarations for the Predefined General Entity
References

CVENTITY 1t "&:#60;">
CLENTITY gt "&i62;:">
CVENTITY amp "&##38;:#38;">
CIENTITY apos "'">
CVENTITY quot "&i#34;">

256 Partll + Document Type Definitions

- Cross- Character references are discussed in Chapter 6.
Reference

External General Entities

Documents using only internal entities closely resemble the HTML model. The
complete text of the document is available in a single file. Images, applets, sounds,
and other non-HTML data may be linked to the file, but at least all the text is present.
Of course, the HTML model has some problems. In particular, it’s quite difficult to
embed dynamic information in the file. CGI scripts, Java applets, fancy database
software, server-side includes, ASP, JSP, PHP, and various other technologies can all
add this capability to HTML; but HTML alone only provides a static document. You
have to go outside HTML to build a document from multiple pieces. Frames are
perhaps the simplest HTML solution to this problem, but they are a user interface
disaster that consistently confuse and annoy users.

XML allows you to embed both well-formed XML documents and document frag-
ments inside other XML documents. Furthermore, XML defines the syntax whereby
an XML parser can build a document out of multiple smaller XML documents and
pieces thereof found either on local or remote systems. Documents may contain
other documents, which may contain other documents. As long as there’s no recur-
sion (an error reported by the processor), the application only sees a single, com-
plete document. In essence, this provides client-side includes.

External entities are data outside the main file containing the root element/document
entity. External entity references let you embed these external entities in the parsed
character data content of your document (though not in the attribute values) and
thus build a single XML document from multiple independent files.

An external general entity reference indicates where in the document the parser
should insert the external entity. The text of the entity comes from a document at a
given Uniform Resource Identifier (URID). This URI is specified in the entity’s declara-
tion in the DTD using this syntax:

CVENTITY name SYSTEM "URI™>

_ﬁlote URIs are similar to Uniform Resource Locators (URLs) but allow for more precise
~— specification of the linked resource. In theory, URIs separate the resource from the
location so that a web browser can select the nearest or least congested of several
mirrors without requiring an explicit link to that mirror. URIs are an area of active
research and heated debate. Therefore, in practice, and certainly in this book, URIs

are URLs for all purposes.

For example, you might want to put the same signature block on almost every page
of a site. For the sake of definiteness, assume that the signature block is the XML
code shown in Listing 10-4. This would be a well-formed XML document except that
it doesn’t have a root element.

Listing 10-4:

Chapter 10 + Entity Declarations 257

An XML External Parsed Entity

<COPYRIGHT>2004 ETliotte Rusty Harold</COPYRIGHT>
<EMATL>eTharo@metalab.unc.edu</EMATIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>

<HR/>

Furthermore, assume that you can retrieve this code from the URL http://
cafeconleche.org/boilerplate/signature.xml. You associate this file with
the entity reference &S1G; by adding the following declaration to the DTD:

CVENTITY SIG SYSTEM
"http://cafeconleche.org/boilerplate/signature.xml">

You can also use a relative URL. For example:

CLENTITY SIG

SYSTEM "/boilerplate/signature.xml">

If the file to be included is in the same directory as the file doing the including, you
only need to use the filename, as in the following example:

CLENTITY SIG

SYSTEM "signature.xml">

With any of these declarations, you can include the contents of the signature file in
a document at any point merely by using &S1G;, as illustrated with the simple docu-
ment in Listing 10-5. Figure 10-2 shows the rendered document in Internet Explorer.

Listing 10-5:

The SIG External General Entity Reference

<?2xml version="1.0" standalone="no"?>
<!DOCTYPE DOCUMENT [

<TELEMENT

(TITLE,
CYELEMENT
<TELEMENT
CTELEMENT
CIELEMENT
<TELEMENT

DOCUMENT

COPYRIGHT, EMAIL, LAST_MODIFIED, HR?)>
TITLE (#PCDATA)>

COPYRIGHT (#PCDATA)>

EMATL (#PCDATA)>

HR EMPTY>

LAST_MODIFIED (#PCDATA)>

CTENTITY SIG SYSTEM "signature.xml™>

»
<DOCUMENT>

KTITLE>Entity references</TITLE>

&SIG;
</DOCUMENT>

258 Partll ¢ Document Type Definitions

A I]ﬂl!:ﬂ!..Mac!l]esktnp Folder/bible3/10/10-5xml = 0B
« = e
Hack Ferwsed Stap Refresh Bame 5 AutaFiil Print Mail £

mj file:/ £ /BIgB20Mac /DesklopB20F o lder /bible3 /107 10-5 <m n

<7wml version="1.0" standalone="na" 7>
<!DOCTYPE DOCUMENT {View Source for full doctype...)»
- <DOCUMENT>

<TITLE=Entity references<,/TITLE>
<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT >
<EMalL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED=July 30, 2004</LAST_MODIFIED>
<HR />

</DOCUMENT>

Elwal rvachine zone |z

Figure 10-2: A document that uses an external general
entity reference

The DTD declares both the internal elements, such as TITLE, and the external ele-
ments, such as COPYRIGHT. Validating parsers are required to resolve all entity ref-
erences and replace them with their values before checking the document against
its DTD.

The standalone attribute of the XML declaration now has the value no because
this file is no longer complete. Parsing the file requires additional data from the
external file signature.xml. Technically, though, the standalone declaration isn’t
required because its default value is no.

Text declarations

Because neither Listing 10-4 nor Listing 10-5 has an encoding declaration, the parser
assumes both are written in the UTF-8 encoding of Unicode. However, in general,
there’s no guarantee or requirement that all the external parsed entities a document
includes will use the same encoding. Indeed each external parsed entity can have a
different encoding. To account for this, each external parsed entity can have its
own text declaration. Text declarations look like XML declarations except that the
version pseudo-attribute is optional, the encoding pseudo-attribute is required,
and there’s no standalone pseudo-attribute. These are legal text declarations:

<?xml version="1.0" encoding="UTF-8"7>
<?xml encoding="UTF-8"7>

However, this is not a legal text declaration because the encoding is omitted:
<?xml version="1.0"7?>

This is not a legal text declaration because it includes a standalone declaration:

Chapter 10 + Entity Declarations 259

<?2xml version="1.0" encoding="UTF-8" standalone="no"?>

Listing 10-6 has a text declaration that says the entity is encoded in UTF-16 instead
of the default UTF-8.

Listing 10-6: An XML External Parsed Entity
with a Text Declaration

<?xml encoding="UTF-16"?>

<COPYRIGHT>2004 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>eTharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
<HR/>

If the external parsed entity has a root element, and if it either has a version
pseudo-attribute in the text declaration or does not have a text declaration at all,
then the external parsed entity may itself be a well-formed XML document. For
example, it could be the signature block shown in Listing 10-7. However, while
sometimes useful, this is not required.

Listing 10-7: An External Parsed Entity That Is Also
a Well-Formed XML Document

<?xml version="1.0" encoding="1S0-8859-1"7?>
<STGNATURE>
<COPYRIGHT>2004 ETliotte Rusty Harold</COPYRIGHT>
<EMAIL>eTharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2004</LAST_MODIFIED>
</SIGNATURE>

Whether a well-formed XML document or not, an external parsed entity cannot con-
tain a document type declaration. This means an external parsed entity cannot be
valid on its own. It can only be validated when it’s inserted into a full XML document
that does have a document type declaration. A document that uses external parsed
entities can be valid as long as it properly declares all the elements and attributes
used in both the document entity and all the other entities. Indeed, Listing 10-5 is
valid, but it does not have to be. Well-formedness only requires that a document
declare all the entities it uses. Listing 10-8 is an invalid but well-formed version of
Listing 10-5.

260

Part Il ¢ Document Type Definitions

Listing 10-8: An Invalid but Well-Formed Document That Uses
an External General Entity Reference

<?xml version="1.0" standalone="no"?>
<!DOCTYPE DOCUMENT [
CTENTITY SIG SYSTEM "signature.xml">
>
<DOCUMENT>
KTITLE>Entity references</TITLE>
&SIG;
</DOCUMENT>

Nonvalidating parsers

All XML parsers resolve internal entity references defined in the internal DTD subset.
Nonvalidating processors can resolve external entity references, but they are not
required to do so. Expat, the open source XML parser used by Mozilla, for example,
does not resolve external entity references. Most other parsers do resolve external
entity references.

In the world of web browsers, Mozilla, Netscape, Safari, and Opera do not resolve
external entity references. Most recent versions of Internet Explorer do resolve
external entity references (though I did have trouble getting this to work on Internet
Explorer 5.2 for Mac OS X).

Internal Parameter Entities

General entities become part of the instance document, not the DTD. They can be
used in the DTD, but only in places where they will become part of the document
content. General entity references cannot insert text that is only part of the DTD
and will not be used as part of the document content. It’s often useful, however, to
have entity references in a DTD. For this purpose, XML provides the parameter
entity reference.

Parameter entity references are very similar to general entity references except for
these two key differences:

1. Parameter entity references begin with a percent sign (%) instead of an
ampersand (&).

2. Parameter entity references can only appear in the DTD, not the document
content.

Chapter 10 4+ Entity Declarations

Parameter entities are declared in the DTD like general entities with the addition of
a percent sign before the name. The syntax looks like this:

CLTENTITY % name "replacement text">

The name is the abbreviation for the entity. The reader sees the replacement text,
which must appear in quotes, as in the following example:

CVENTITY % ERH "ElTiotte Rusty Harold">
CVENTITY COPY2004 "Copyright 2004 %ZERH;">

Our earlier failed attempt to abbreviate (#PCDATA) works when a parameter entity
reference replaces the general entity reference:

CLENTITY % PCD "(#PCDATA)">
<'ELEMENT GIVEN_NAME %PCD;>
CTELEMENT SURNAME 5PCD;>

The real value of parameter entity references becomes apparent when you're sharing
common lists of children and attributes between elements. The larger the block of
text you're replacing and the more times you use it, the more useful parameter entity
references become. For example, in the television listing example of the last few
chapters, there are four person elements: ACTOR, WRITER, PRODUCER, and DIRECTOR.
Each had the same content model or attribute list containing a given name, middle
name, middle initial, and/or surname. The element declarations looked like this:

CIELEMENT ACTOR (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)

| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)

| SURNAME
)>
CIELEMENT WRITER (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
SURNAME
)>
<IELEMENT PRODUCER (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
SURNAME
)>
CIELEMENT DIRECTOR (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
SURNAME

)>

261

262 Partll + Document Type Definitions

The person elements all have the same contents. If you invent a new child element,
such as TITLE or HONORIFIC, this element must be declared as a possible child of
all four person elements. Adding it to three, but forgetting to add it to the fourth
element, may cause trouble. Or imagine you discover a bug in the content model.
You need to fix it in four different places instead of one. This problem multiplies
when you have 40 or 400 parent elements instead of 4.

DTDs are much easier to maintain if you don’t give each similar element a separate
content model. Instead, make the content model a parameter entity reference; then
use that parameter entity reference in each of the container element declarations,
as in the following example:

CLENTITY % NAMES_CONTENT
"((GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME)">

CIELEMENT ACTOR %NAMES_CONTENT;>

CIELEMENT DIRECTOR %NAMES_CONTENT;>

<IELEMENT NAME “NAMES_CONTENT ;>

<IELEMENT PRODUCER %NAMES_CONTENT;>

To add a new element or fix a bug, you only have to change a single parameter
entity declaration, rather than 4, 40, or 400 element declarations.

Parameter entity references must be declared before they're used. The following
example is malformed because the ZNAMES_CONTENT ; reference is not declared
until it’s already been used twice:

CIELEMENT ACTOR %NAMES_CONTENT;>

CIELEMENT DIRECTOR %NAMES_CONTENT;>

CIELEMENT NAME “NAMES_CONTENT ; >

CIELEMENT PRODUCER %NAMES_CONTENT;>

CLENTITY % NAMES_CONTENT
"((GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME)">

Parameter entities can only be used to define content models, element names, and
other parts of declarations in the external DTD subset. That is, parameter entity
references can only appear inside a declaration in the external DTD subset when
their replacement text is something less than a complete declaration. The preced-
ing examples are all illegal if they’re used in an internal DTD subset; that is, inside
the square brackets in a document type declaration.

Parameter entity references can be used in the internal DTD subset, but only if they
provide whole declarations, not simply pieces of them. For example, the following
declaration is legal in both the internal and external DTD subsets:

Chapter 10 + Entity Declarations 263

CLENTITY % hr "<IELEMENT HR EMPTY>">
%hr;

Of course, this really isn’t any easier than declaring the HR element without parame-
ter entity references:

CTELEMENT HR EMPTY>

You'll mainly use parameter entity references in internal DTD subsets when they’re
referring to external parameter entities; that is, when they’re pulling in declarations
or parts of declarations from a different file. This is the subject of the next section.

External Parameter Entities

A\l ote

Up to this point, the examples have used monolithic DTDs that defined all the
elements used in the document. This technique becomes unwieldy with longer
documents, however. Furthermore, you often want to use part of a DTD in many
different places. For example, consider a DTD that describes a snail-mail address.
The definition of an address is quite general and can easily be used in many different
contexts. Similarly, the list of predefined entity references in Listing 10-2 is useful in
many XML documents, but you'd rather not copy and paste it all the time.

External parameter entities enable you to build large DTDs from smaller ones; that
is, one DTD can link to another and, in so doing, pull in the elements and entities
declared in the first. Although cycles are prohibited —DTD 1 cannot refer to DTD 2
if DTD 2 refers to DTD 1 —such nested DTDs can become large and complex.

At the same time, breaking a DTD into smaller, more manageable chunks makes the
DTD easier to analyze, modify, and reuse. Many of the examples in Chapter 8 and 9
were unnecessarily large. Both the document and its DTD become much easier to
understand when split into separate files.

Furthermore, using smaller, modular DTDs that only describe one set of elements
makes it easier to mix and match DTDs created by different people or organizations.
For example, if you're writing a technical article about high-temperature supercon-
ductivity, you can use a molecular sciences DTD to describe the molecules involved,
a math DTD to write down your equations, a vector graphics DTD for the figures,
and a basic HTML DTD to handle the explanatory text.

In particular, you can use the mol.dtd DTD from Peter Murray-Rust's Chemical

-~ Markup Language, the MathML DTD from the World Wide Web Consortium (W3C)'s

Mathematical Markup Language, the SVG DTD from the W3C's Scalable Vector
Graphics, and the W3C’'s XHTML DTD.

264

Part Il ¢ Document Type Definitions

You can probably think of more examples where you need to mix and match concepts
(and therefore tags) from different fields. Human thought doesn’t restrict itself to
narrowly defined categories. It tends to wander all over the map. The documents
you write will reflect this.

Let’s see how to organize the television listings DTD from Chapter 8 as a combina-
tion of several different DTDs. This example is extremely hierarchical. One possible
division is to write separate DTDs for SHOW, STATION, and SCHEDULE. This is far from
the only way to divide the DTD into more manageable chunks, but it will serve as a
reasonable example. Listing 10-9 shows a DTD solely for a show that can be stored
in a file named show.dtd. Notice that it does not declare the STATION, SCHEDULE,
NETWORK, CALL_LETTERS, CHANNEL, or DATE elements.

Listing 10-9: A DTD for the SHOW Element and Its Children
(show.dtd)

C'ELEMENT SHOW (NAME, TITLE?, TYPE?, EPISODE_NUMBER?,
START_TIME+, LENGTH, AIR_DATE, ORIGINAL_AIR_DATE?,
YEAR_MADE?, CLOSED_CAPTIONED?, REPEAT?, RATING?, STARS?,
DIRECTOR*, WRITER*, CAST?, PRODUCER*, DESCRIPTION?)>

CTELEMENT NAME (##PCDATA)>
CTELEMENT TITLE (##PCDATA)>
CTELEMENT TYPE (##PCDATA)>
CTELEMENT EPISODE_NUMBER (##PCDATA)>
<VELEMENT START_TIME (#fPCDATA)>
CTELEMENT LENGTH (##PCDATA)>
CIELEMENT AIR_DATE (##PCDATA)>
<IELEMENT ORIGINAL_AIR_DATE (#PCDATA)>
<IELEMENT CLOSED_CAPTIONED (#fPCDATA)>
CTELEMENT REPEAT (##PCDATA)>
<'ELEMENT GIVEN_NAME (##PCDATA)>
C'ELEMENT MIDDLE_NAME (##PCDATA)>
CTELEMENT MIDDLE_INITIAL (##PCDATA)>
<TELEMENT SURNAME (##PCDATA)>
CTELEMENT RATING (##PCDATA)>
CTELEMENT YEAR_MADE (##PCDATA)>
<TELEMENT STARS (##PCDATA)>
C'ELEMENT DESCRIPTION (##PCDATA)>

CIELEMENT CAST (ACTOR+)>
<IELEMENT ACTOR (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME
)>
CIELEMENT WRITER (
(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

Chapter 10 4+ Entity Declarations

)>
<IELEMENT PRODUCER (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

)>
<IELEMENT DIRECTOR (

(GIVEN_NAME, (MIDDLE_NAME | MIDDLE_INITIAL)*, SURNAME?)
| ((MIDDLE_NAME | MIDDLE_INITIAL)+, SURNAME)
| SURNAME

)>

By itself, this DTD doesn’t enable you to create very interesting documents. Listing
10-10 shows a simple valid file that only uses the DTD in Listing 10-9. This simple
file is not important for its own sake; however, you can build other, more complex
files out of these small parts.

Listing 10-10: A Valid Document Using the SHOW DTD

<?xml version="1.0" standalone="no"?>

<IDOCTYPE SHOW SYSTEM "show.dtd">

<SHOW>
<NAME>QOprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</0ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>

<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>
Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>
</SHOW>

What other parts of the document can have their own DTDs? Obviously, a STATION
is a big part. You could write its DTD as follows:

CTELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>
CTELEMENT NETWORK (##PCDATA)>
<!ELEMENT CALL_LETTERS (##PCDATA)>
CTELEMENT CHANNEL (##PCDATA)>

265

266 Partll + Document Type Definitions

On closer inspection, however, you should notice that something is missing: the
definition of the SHOW element. The definition is in the separate file show.dtd and
needs to be connected to this DTD.

You connect DTDs with external parameter entity references. This connection takes
the following form:

CTENTITY % name SYSTEM "URI™>
kname;

For example:

CYENTITY % SHOW SYSTEM "show.dtd">
5SHOW;

This example uses a relative URL (show.dtd) and assumes that the file show.dtd
will be found in the same place as the linking DTD. If that’s not the case, you can
use an absolute URL, as follows:

CTENTITY % SHOW SYSTEM
"http://www.cafeconleche.org/dtds/show.dtd">
5SHOW;

Listing 10-11 shows a completed station DTD that includes a reference to the
show DTD.

Listing 10-11: The STATION DTD (station.dtd)

CTELEMENT STATION (
((NETWORK, CALL_LETTERS?) | CALL_LETTERS),
CHANNEL, SHOW+)>

<TELEMENT NETWORK (#fPCDATA)>
C'ELEMENT CALL_LETTERS (##PCDATA)>
CTELEMENT CHANNEL (##PCDATA)>

CTENTITY % SHOW SYSTEM
"http://www.cafeconleche.org/dtds/show.dtd">
%SHOW ;

By using this DTD, producing a valid document whose root element is STATION is
straightforward. Listing 10-12 demonstrates one such valid station document. This
document uses both the elements declared in station.dtd and those declared in
show.dtd.

Chapter 10 4+ Entity Declarations

Listing 10-12: A Valid Station Document

<?2xml version="1.0"7>

<!DOCTYPE STATION SYSTEM "station.dtd">

STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<ATR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>
Guests gabber; Oprah looks sympathetic.
</DESCRIPTION>

</SHOW>

<SHOW>

<NAME>SiTicon Towers</NAME>

<TYPE>Movie</TYPE>

<START_TIME>20:00-0500</START_TIME>

<LENGTH>60 minutes</LENGTH>

<ATR_DATE>July 3, 2003</AIR_DATE>

<YEAR_MADE>1999</YEAR_MADE>

<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>

<REPEAT>Yes</REPEAT>

<RATING>TV-PGLK/RATING>

<CAST>

<ACTOR>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Dennehy</SURNAME>

</ACTOR>

<ACTOR>
<GIVEN_NAME>Daniel</GIVEN_NAME>
<SURNAME>Baldwin</SURNAME>

</ACTOR>

<ACTOR>
<GIVEN_NAME>Brad</GIVEN_NAME>
<SURNAME>Dourif</SURNAME>

</ACTOR>

Continued

267

268

Part Il ¢ Document Type Definitions

Listing 10-12 (continued)

<ACTOR>
<GIVEN_NAME>Gary</GIVEN_NAME>
<SURNAME>Mosher</SURNAME>

</ACTOR>

</CAST>

<DESCRIPTION>

A programmer discovers his company manufactures

chips for cracking bank systems.

</DESCRIPTION>

</SHOW>

</STATION>

Besides shows, a SCHEDULE also contains a DATE child element. Although DATE
could have its own DTD, it doesn’t pay to go overboard with splitting DTDs. Unless
you expect you’ll have some documents that contain DATE elements that are not
part of a SCHEDULE, you might as well include it in the same DTD. Listing 10-13
demonstrates.

Listing 10-13: The SCHEDULE DTD (schedule.dtd)

CTELEMENT SCHEDULE (DATE, STATION+)>
<!ELEMENT DATE (#PCDATA)>

CVENTITY % STATION SYSTEM "station.dtd">
BSTATION;

It’s now possible to write a valid document including all the shows and stations in
the schedule. This document only refers to the schedule DTD of Listing 10-13 using
the following document type declaration:

<!DOCTYPE SCHEDULE SYSTEM "schedule.dtd">

It does not need to include the station DTD specifically because the schedule DTD
will pull it in, and it does not need to include the show DTD because the station
DTD will pull that in. DTD inclusion has an indefinite number of levels. Although
neither the schedule DTD nor the station DTD it imports declares the SHOW element,
you can still use SHOW elements in the right places in a schedule document because
the show DTD that the station DTD imports does declare the SHOW element. Only
after all parameter entity references are fully resolved is the document checked
against the DTD.

Chapter 10 + Entity Declarations 269

Building a Document from Pieces

The television listing examples have been quite large. Although only a truncated
version with limited numbers of shows appears in this book, a full document
containing all the shows on the hundreds of stations broadcast over 24 hours on

a satellite TV or digital cable system could be way too large to comfortably down-
load or search, especially if the reader is only interested in a single show or station.
General entity references allow authors to split documents into many different,
smaller, more manageable documents, one for each schedule, station, and show.
External entity references connect the shows to form stations and the stations to
form schedules.

Unfortunately, you cannot embed just any XML document as an external parsed
entity. In particular, the documents you embed cannot have document type declara-
tions. Furthermore, they cannot have standalone declarations because they use a
text declaration instead of an XML declaration. Consider, for example, Listing 10-14,
oprah.xml. This is a revised version of Listing 10-10. However, if you look closely,
you’ll notice that the prolog is different. Listing 10-10’s prolog is as follows:

<?2xml version="1.0" standalone="no"7?>
<!DOCTYPE SHOW SYSTEM "show.dtd">

Listing 10-14 modifies Listing 10-10 so it can be embedded into a new document using
an entity reference. The prolog has a text declaration instead of an XML declaration.
The document type declaration is completely omitted.

Listing 10-14: oprah.xml

<?xml encoding="UTF-8"7>

<SHOW>
<NAME>Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</ORIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REPEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>

Guests gabber; Oprah looks sympathetic.

</DESCRIPTION>

</SHOW>

270

Part Il ¢ Document Type Definitions

Listing 10-15, winy.dtd, and Listing 10-16, winy.xml, use external parsed entities
pointing to Listing 10-14 and a similar document for another show to put together a
complete station. The DTD defines external entity references for each show on the
station. The XML document loads the DTD using an external parameter entity refer-
ence in its internal DTD subset. Then, its document entity resolves many external
general entity references that load in the individual shows.

Listing 10-15: The WLNY DTD with Entity References
for Show (wliny.dtd)

CTENTITY Oprah SYSTEM "oprah.xml">
CTENTITY SiliconTowers SYSTEM "silicontowers.xml">

Listing 10-16: WLNY with Shows Loaded from External
Entities (winy.xml)

<?2xml version="1.0"7>

<!DOCTYPE STATION SYSTEM "wlny.dtd">

<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>

&0prah;
&SiliconTowers;

</STATION>

Figure 10-3 shows Listing 10-16 loaded into Internet Explorer. Notice that the data
for the shows is present even though the main document only contains references
to the entities where the show data resides. Internet Explorer resolves external ref-
erences —not all XML parsers/browsers do.

It would be nice to continue this procedure — building a cast by combining actors, a
person by combining names, and so forth. Unfortunately, if you try this, you rapidly
run into a wall. The documents embedded via external entities cannot have their
own document type declarations. At most, their prologs can contain text declara-
tions. This means you can only have a single level of document embedding. This
contrasts with DTD embedding. DTDs can be nested arbitrarily deeply, but instance
documents cannot be.

Chapter 10 + Entity Declarations 7/]

Fli=———— Dﬁle:fﬂ..‘Mal:mesktnp Folder/bible3/10/winyxml = 0B
9 « = X e
Back Forward Stap Refresh Hoo S Auterill Print Mail

|] file 1/ / fmigTa0ttan /Desktop Ta20Fo er bibled/ 10, winy xmi
<7uml version="1.0" 7>

<|DOCTYPE STATION (View Source for full doctype...)>
- <STATION>
<CALL _LETTERS>WLNY</CALL_LETTERS>
<CHAMMNEL>55</CHANNEL>
<7uml version="1.0" encoding="UTF-8" 7>
— <SHOW>
<NAME=Oprah Winfrey</NAME>
<TYPE>Series/Talk</TYPE>
<START_TIME>19:00-0500</START_TIME>
<LENGTH>60 minutes</ENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<ORIGINAL_AIR_DATE>February 4, 2003</0RIGINAL_AIR_DATE>
<CLOSED_CAPTIONED>Yes</CLOSED_CAPTIONED>
<REPEAT>Yes</REFEAT>
<RATING>TV-PG</RATING>
<DESCRIPTION>Guests gabber;
Oprah looks sympathetic.</DESCRIPTION>
</SHOW>
- <SHOW>
<NAME=Silicon Towers</NAME>
<TYPE>Movie</ TYPE>
<START_TIME=>20:00-0500</START_TIME>
<LENGTH=>60 minutes</LENGTH>
<AIR_DATE>July 3, 2003</AIR_DATE>
<YEAR_MADE>1999</YEAR_MADE>

S A SCLOSED CAPTIONEDS
Loaal rachine zone

s

Figure 10-3: The XML document displays all shows on the
schedule.

There are two roads around this problem. One is to include all stations in a single
document that refers to the many different show documents. This requires one entity
declaration for each show. The other is to remove the document type declarations
from the individual station files. They can then no longer be parsed on their own.
They will only make sense when rendered as part of a document that does define all
the various entity references they make use of.

In both cases, you need a DTD that defines entity references for each station. Because
there’s no limit to how deeply DTDs can nest (unlike instance documents), Listing
10-17 begins with a DTD that pulls in DTDs containing entity definitions for all the
stations.

Listing 10-17: The Station DTD (stations.dtd)

KTENTITY % wlny SYSTEM "wlny.dtd">
wwiny;

CTENTITY % webs SYSTEM "wcbs.dtd">
»Wechs;

CITENTITY % hbo SYSTEM "hbo.dtd">
%hbo;

272

Part Il ¢ Document Type Definitions

jLMe

-

You'll notice that in Listing 10-17 and other examples in this chapter, the entity
names are often the same or closely related to the names of the files the entities
point to. That's occasionally more legible, but it's not in any way required. | could
have called the entities foo1, foo2, and foo3 as long as the URLs they dereferenced
into were correct.

Listing 10-18 takes the first path. It pulls together all the show subdocuments and
then adds the DTDs that define the entities for each show. It includes one entity ref-
erence for each show in the schedule. The show entities are defined by Listing 10-19,
which is loaded from the internal DTD subset in Listing 10-18. The largest problem
with this approach is that if the document is served via HTTP, browsers will need to
make over several hundred separate connections to the server (one for each show)
before the document can be displayed.

Listing 10-18: Master Television Schedule Document Using
External Entity References for Shows

<?xml version="1.0" standalone="no"?>
<IDOCTYPE SCHEDULE SYSTEM "schedule.dtd" [
CTENTITY % shows SYSTEM "shows.dtd">
%shows ;
1>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
{STATION>
<NETWORK>CBS</NETWORK>
<CALL_LETTERS>WCBS</CALL_LETTERS>
<CHANNEL>2</CHANNEL>
&HollywoodSquares;
&EntertainmentTonight;
&AmazingRace;
</STATION>

<STATION>
<CALL_LETTERS>WLNY</CALL_LETTERS>
<CHANNEL>55</CHANNEL>
&0prah;
&SiliconTowers;

</STATION>

<STATION>
<KNETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>
&FinalFantasy;
&Terminator3;
&StarWars;

</STATION>

</SCHEDULE>

Chapter 10 + Entity Declarations 73

Listing 10-19: DTD That Defines External Entity References
for Shows (shows.dtd)

CIENTITY HollywoodSquares SYSTEM "hollywoodsquares.xml">
CITENTITY EntertainmentTonight SYSTEM
"entertainmenttonight.xml">

CIENTITY AmazingRace SYSTEM "amazingrace.xml">

CTENTITY Oprah SYSTEM "oprah.xml">

CLTENTITY SiliconTowers SYSTEM "silicontowers.xml">
CIENTITY FinalFantasy SYSTEM "finalfantasy.xml">
CITENTITY Terminator3 SYSTEM "terminator3.xml">

CTENTITY StarWars SYSTEM "starwars.xml">

You do have some flexibility in which levels you choose for the master document and
embedded data. For example, one alternative to the structure used by Listing 10-18
places the stations and all their shows in individual documents, then combines those
station files into a season with external entities, as shown in Listing 10-20. This has
the advantage of using a smaller number of XML files of more even sizes that place
less load on the web server and that would download and display more quickly. To
be honest, however, the advantage of one approach over the other is minimal. Feel
free to use whichever one more closely matches the organization of your data, or
simply whichever you feel more comfortable with.

Listing 10-20: A Television Schedule Using External Entity
References for Stations

<?xml version="1.0" standalone="no"?>
<!DOCTYPE SCHEDULE SYSTEM "schedule.dtd" [
CITENTITY % shows SYSTEM "shows.dtd">
%shows;
CTENTITY WLNY SYSTEM "wlny.xml">
CITENTITY WCBS SYSTEM "wcbs.xml">
CVENTITY HBO SYSTEM "hbo.xml">
1>
<SCHEDULE>
<DATE>July 3, 2003</DATE>
&WCBS:
&WLNY ;
&HBO ;
</SCHEDULE>

274

Part Il ¢ Document Type Definitions

New
Feature

The individual station files included in this example, such as winy.xml, contain the
data for the shows on those stations. They can either contain the data directly or
they can contain the entity references defined by shows.dtd. Listing 10-21 shows
what one such station document looks like. This is not by itself a complete or well-
formed XML document. It does not define any of the entity references it uses, and
it has a text declaration instead of an XML declaration. It can only be parsed when
imported into a document that does define these entity references, such as Listing
10-20. It is only a part of an XML document. The station documents are not usable
on their own because the entity references they contain are not defined until they’re
aggregated into the master document.

Listing 10-21: HBO Schedule with Shows Loaded
from External Entities

<?xml encoding="1S0-8859-1"7?>

<STATION>
<KNETWORK>HBO</NETWORK>
<CHANNEL>501</CHANNEL>
&FinalFantasy;
&Terminator3;
&StarWars;

</STATION>

It’s unfortunate that only the top-level document is allowed to have a document
type declaration. This somewhat limits the utility of external parsed entities.

\ _ Xinclude is a proposed standard that offers an alternative, non-DTD-based means of
building an XML document out of smaller XML documents. However, XInclude is not
part of the core XML standard and is not necessarily supported by any validating
XML processor and web browser, unlike the techniques of this chapter, which are
supported. XInclude is discussed in Chapter 19.

Non-XML Data

Not all data in the world is XML. In fact, I'd venture to say that most of the world’s
accumulated data isn’t XML. A heck of a lot is stored in plain text, HTML, and
Microsoft Word, to name just three common non-XML formats. Although most of this
data could theoretically be rewritten in XML — interest and resources permitting —
not all of the world’s data should be in XML. Encoding images in XML, for example,
would be extremely inefficient.

Chapter 10 + Entity Declarations 75

XML provides three constructs for working with non-XML data: notations, unparsed
entities, and processing instructions. Notations describe the format of non-XML
data. Unparsed entities provide links to the actual location of the non-XML data.
Processing instructions give information about how to view the data.

Caution The material discussed in this section is controversial. Although everything | describe
is part of the XML 1.0 specification, not everyone agrees that it should be. You can
certainly write XML documents without using any notations or unparsed entities,
and with only a few simple processing instructions.

Notations

The first problem you encounter when working with non-XML data in an XML docu-
ment is identifying the format of the data so that the application knows how to
display the non-XML data. For example, it would be silly to try to draw an MP3 file
on the screen.

To a limited extent, you can solve this problem within a single application by using
a fixed set of elements for particular kinds of data. For example, if all pictures are
embedded through IMAGE elements and all sounds via AUDI0 elements, it’s not hard
to develop a browser that knows how to handle those two elements. In essence, this
is the approach that HTML takes. However, this approach does prevent document
authors from creating new tags that more specifically describe their content (for
example, a PERSON element that happens to have a HEADSHOT attribute that points
to a JPEG image of that person).

Furthermore, no application understands all possible file formats. Most web
browsers can recognize and read GIF, JPEG, PNG, and perhaps a few other kinds
of image files, but they fail completely when faced with EPS, TIFF, FITS, or any of
the hundreds of other common and uncommon image formats. The dialog box in
Figure 10-4 is probably all too familiar.

Ideally, a document should tell the application what format an unparsed entity is in
so that you don’t have to rely on the application recognizing the file type by a
magic number or a potentially unreliable filename extension. Furthermore, you'd
like to give the application some hints about what program it can use to display the
unparsed entity if it’s unable to do so itself.

Notations provide a partial (although not always well supported) solution to this
problem. A notation describes one possible format for non-XML data through a
NOTATION declaration in the DTD. Each notation declaration contains a name and
an external identifier in the following syntax:

<INOTATION name SYSTEM "externallID">

276 Partll 4+ Document Type Definitions

Figure 10-4: What happens when Netscape

_ —— Navigator doesn't recognize a file type
Click the program pou want ko uge to open the file ‘marling. fob',

IFthe program you want is nok in the list, click Other.
Diescription of ' fob' files:
f

LChoose the program you want to uge:

|

[V Always use this program to open this file

{68 Cancel | Other... |

The name is an identifier for this particular format used in the document. The
externalID contains a human-intelligible string that somehow identifies the nota-
tion. For example, you might use MIME types as in this notation for GIF images:

<INOTATION GIF SYSTEM "image/gif">
You can also use a PUBLIC identifier instead of the SYSTEM identifier:

<INOTATION GIF PUBLIC "image/gif">

An alternate approach is to use a formal public identifier like those discussed in
Chapter 7, along with a URL, as in the following example:

<INOTATION GIF PUBLIC
"-//TETF//NONSGML Media Type image/gif//EN"
"http://www.isi.edu/in-notes/iana/assignments/media-
types/image/gif">

Caution There is a lot of debate about what exactly makes a good external identifier. MIME
types, such as image/gif or text/html, are one possibility. Another possibility is to use
URLs or other locators for standards documents, such as http://www.w3.0rg/
TR/REC-htm140/. A third possibility is the name of an official international stan-
dard such as 1SO 8601 for representing dates and times. In some cases, an ISBN or
Library of Congress catalog number for the paper document where the standard is
defined might be more appropriate, and there are many more choices.

Chapter 10 4+ Entity Declarations

Which you choose may depend on the expected life span of your document. For
example, if you use an unusual format, you don't want to rely on a URL that changes
from month to month. If you expect or hope that your document will still spark
interest in 100 years, you might want to consider identifiers that are likely to have
meaning in 100 years, as opposed to those that are merely this decade’s technical
ephemera.

You can also use notations to describe data that does fit in an XML document. For
example, consider this DATE element:

<DATE>05-07-06</DATE>

What day, exactly, does 05-07-06 represent? Is it May 7, 2006 C.E.? Or is it July 5,
2006 C.E.? The answer depends on whether you read this in the United States or
Europe. Maybe it’s even May 7, 1906 C.E. or July 5, 1906 C.E. Or perhaps what’s meant
is May 7, 6 C.E., during the reign of the Roman emperor Augustus in the West and
the Han dynasty in China. It’s also possible that this date isn’t in the “Common Era”
at all, but is given in the traditional Jewish, Muslim, or Chinese calendar. Without
more information, you cannot determine the true meaning.

To avoid this type of confusion, ISO standard 8601 defines a precise means of repre-
senting dates. In this scheme, July 5, 2006 C.E. is written as 20060705 or, in XML, as
follows:

<DATE>20060705</DATE>

This format doesn’t match anybody’s expectations; it’s equally confusing to every-
body and is thus more or less culturally neutral (although still biased toward the
traditional Western calendar).

Notations are declared in the DTD and then used as the values of NOTATION-type
attributes. To continue with the date example, Listing 10-22 defines two possible
notations for dates in ISO 8601 and conventional U.S. formats. Then, a required
FORMAT attribute of type NOTATION is added to each DATE element to describe the
structure of the particular element.

Listing 10-22: DATE Elements in an ISO 8601 and
Conventional U.S. Formats

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE SCHEDULE [

<INOTATION ISODATE SYSTEM
"http://www.iso.ch/cate/d15903.htm1">

Continued

277

278

Part Il ¢ Document Type Definitions

Listing 10-22 (continued)

<INOTATION USDATE SYSTEM
"http://tf.nist.gov/timefreq/general/enc-d.htmfdate">

CVELEMENT SCHEDULE (APPOINTMENT*)>
C'ELEMENT APPOINTMENT (NOTE, DATE, TIME?)>

<IELEMENT NOTE (#PCDATA)>
<IELEMENT DATE (#fPCDATA)>
<IELEMENT TIME (#PCDATA)>

<IATTLIST DATE FORMAT NOTATION (ISODATE | USDATE) #IMPLIED>

1>
<SCHEDULE>
<APPOINTMENT>
<NOTE>Deliver presents</NOTE>
<DATE FORMAT="USDATE">12-25-1999</DATE>
</APPOINTMENT>
<APPOINTMENT>
<NOTE>Party like it's 1999</NOTE>
<DATE FORMAT="ISODATE">19991231</DATE>
</APPOINTMENT>
</SCHEDULE>

Notations can’t force authors to use the format described by the notation, but it is
sufficient for simple uses where you trust authors to correctly describe their data.

Unparsed entities

XML is not an ideal format for all data, particularly nontext data. For example, you
could store each pixel of a bitmap image as an XML element like this:

<PIXEL X="232" Y="128" COLOR="FF5E32" />

This is hardly a good idea, though. Anything remotely like this would cause image
files to balloon to obscene proportions. Since you shouldn’t encode all data in XML,
XML documents must be capable of referring to data that is not currently XML and
probably never will be.

A typical web page can include GIF and JPEG images, Java applets, ActiveX controls,
various kinds of sounds, and so forth. In XML, any block of non-XML data is called an
unparsed entity because the XML processor won'’t attempt to understand it. At most,
it informs the application of the entity’s existence and provides the application with
the entity’s name and location.

Chapter 10 + Entity Declarations 279

HTML pages embed non-HTML entities through a variety of tags. Pictures are
included with the tag whose SRC attribute provides the URL of the image

file. Java applets are embedded via the <APPLET> tag whose CLASS and CODEBASE
attributes refer to the file and directory where the applet resides. The <OBJECT> tag
uses its CODEBASE attribute for a URI from which the object’s data is retrieved. In
each case, a particular predefined element represents a particular kind of content.
A predefined attribute contains the URL for that content.

XML applications can work like this, but they don’t have to. Instead, XML applica-
tions can use an unparsed entity to refer to the content. Unparsed entities provide
links to the actual location of the non-XML data. Then they use an ENTITY-type
attribute to associate that entity with a particular element in the document.

Declaring unparsed entities
As seen in previous sections, an external entity declaration looks like this:

CIENTITY SIG SYSTEM
"http://www.cafeconleche.org/signature.xml">

However, this form is only acceptable if the external entity that the URL names is
well-formed XML. If the external entity is not XML, you have to specify the entity’s
type using the NDATA keyword. For example, to associate the GIF file logo.gif with
the name L0GO, you would place this ENTITY declaration in the DTD:

CTENTITY LOGO SYSTEM "logo.gif" NDATA GIF>

The final word in the declaration, GIF in this example, must be the name of a nota-
tion declared in the DTD. For example, the notation for GIF might look like this:

<INOTATION GIF PUBLIC "image/gif">

As usual, you can use absolute or relative URLs for the external entity as conve-
nience dictates. For example,

CTENTITY LOGO SYSTEM "http://www.cafeconleche.org/logo.gif"
NDATA GIF>

<TENTITY LOGO SYSTEM "/xml/logo.gif" NDATA GIF>

CVENTITY LOGO SYSTEM "../logo.gif" NDATA GIF>

Embedding unparsed entities

You cannot simply embed an unparsed entity at an arbitrary location in the docu-
ment using a general entity reference as you can with parsed entities. For example,
Listing 10-23 is malformed because L0GO is an unparsed entity.

280

Part Il ¢ Document Type Definitions

Listing 10-23: A Malformed XML Document That Tries to
Embed an Unparsed Entity with a General
Entity Reference

<?2xml version="1.0" standalone="no"?>
<!DOCTYPE DOCUMENT [
<ITELEMENT DOCUMENT ANY>
CTENTITY LOGO SYSTEM "http://www.ibiblio.org/xml/logo.gif"
NDATA GIF>
<INOTATION GIF SYSTEM "image/gif">
1>
<DOCUMENT>
&L0GO;
</DOCUMENT>

To embed unparsed entities, rather than using general entity references such as
&L0GO;, you declare an element that serves as a placeholder for the unparsed entity
(IMAGE, for example). Then you declare an ENTITY-type attribute for the IMAGE ele-
ment (SOURCE, for example) that provides only the name of the unparsed entity.
Listing 10-24 demonstrates.

Listing 10-24: A Valid XML Document That Correctly Embeds
an Unparsed Entity

<?2xml version="1.0" standalone="no"7?>
<!DOCTYPE DOCUMENT [

IELEMENT DOCUMENT ANY>

CITENTITY LOGO SYSTEM "http://www.ibiblio.org/xml/logo.gif"
NDATA GIF>

<INOTATION GIF SYSTEM "image/gif">

CTELEMENT IMAGE EMPTY>

CIATTLIST IMAGE SOURCE ENTITY #REQUIRED>

»
<DOCUMENT>

<IMAGE SOURCE="LOGO" />
</DOCUMENT>

Chapter 10 + Entity Declarations 28]

It is now up to the application reading the XML document to recognize the unparsed
entity and display it. Applications may choose not to display the unparsed entity
(just as a web browser may choose not to load images when the user has disabled
image loading).

These examples show empty elements as the containers for unparsed entities. That’s
not required, however. For example, imagine an XML-based corporate ID system that
a security guard uses to look up people entering a building. The PERSON element
might have NAME, PHONE, OFFICE, and EMPLOYEE 1D children and a PHOTO ENTITY
attribute. Listing 10-25 demonstrates.

Listing 10-25: A Nonempty PERSON Element with a PHOTO
ENTITY Attribute

<?xml version="1.0" standalone="no"?>
<!DOCTYPE PERSON [
<VELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE)>

CTELEMENT - NAME (##PCDATA)>
<IELEMENT EMPLOYEE_ID (#fPCDATA)>
CTELEMENT PHONE (##PCDATA)>
<'ELEMENT OFFICE (##PCDATA)>

<!NOTATION JPEG SYSTEM "image/jpg">
CLENTITY ROGER SYSTEM "rogers.jpg" NDATA JPEG>

CIATTLIST PERSON PHOTO ENTITY #REQUIRED>

»
<PERSON PHOTO="ROGER">
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</0FFICE>
</PERSON>

This example might seem a little contrived. In practice, you’d be better advised to
make an empty PHOTO element with a SOURCE attribute a child of a PERSON element
rather than adding an ENTITY attribute to PERSON. Furthermore, you’d probably
separate the DTD into external and internal subsets. The external subset, shown in
Listing 10-26, declares the elements, notations, and attributes. These are the parts
likely to be shared among many different documents. The entity, however, changes
from document to document. Thus, you can better place it in the internal DTD sub-
set of each document, as shown in Listing 10-27.

282

Part Il ¢ Document Type Definitions

Listing 10-26: The External DTD Subset person.dtd

<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE, PHOTO)>

CTELEMENT NAME (##PCDATA)>
CVELEMENT EMPLOYEE_ID (#fPCDATA)>
<IELEMENT PHONE (##PCDATA)>
CTELEMENT OFFICE (##PCDATA)>
CTELEMENT PHOTO EMPTY>

<INOTATION JPEG SYSTEM "image/jpeg">
CIATTLIST PHOTO SOURCE ENTITY #REQUIRED>

Listing 10-27: A Document That Uses an Internal DTD Subset
to Locate the Unparsed Entity

<?xml version="1.0" standalone="no"7?>
<!DOCTYPE PERSON [

CVENTITY % PERSON_DTD SYSTEM "person.dtd">
%PERSON_DTD;
CTENTITY ROGER SYSTEM "rogers.jpg" NDATA JPEG>

»
<PERSON>
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</0FFICE>
<PHOTO SOURCE="ROGER"/>
</PERSON>

Embedding multiple unparsed entities

On rare occasions, you may need to refer to more than one unparsed entity in a
single attribute, perhaps even an indefinite number. You can do this by declaring
an attribute of the entity placeholder to have type ENTITIES. An ENTITIES-type
attribute has a value part that consists of multiple unparsed entity names separated
by white space. Each entity name refers to an external non-XML data source and
must be declared in the DTD. For example, you might use this to write a slide show
element that rotates different pictures. The DTD would require these declarations:

Chapter 10 + Entity Declarations 283

C'ELEMENT SLIDESHOW EMPTY>

<IATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<INOTATION JPEG SYSTEM "image/jpeg">

CLENTITY CHARM SYSTEM "charm.jpg" NDATA JPEG>
CLENTITY MARJORIE SYSTEM "marjorie.jpg" NDATA JPEG>
CLENTITY POSSUM SYSTEM "possum.jpg" NDATA JPEG>
CLENTITY BLUE SYSTEM "blue.jpg" NDATA JPEG>

Then, at the point in the document where you want the slide show to appear, insert
the following element:

<SLIDESHOW SOURCES="CHARM MARJORIE POSSUM BLUE"/>

Caution Once again, | must emphasize that this is not a magic formula that all (or even
any) XML browsers automatically understand. It is simply one technique that
browsers and other applications may or may not adopt to embed non-XML data in
documents.

Conditional Sections

When developing DTDs or documents, you may need to comment out parts of the
DTD not yet reflected in the documents. In addition to using comments directly, you
can omit a particular group of declarations in the DTD by wrapping it in an IGNORE
directive. The syntax follows:

<ILTIGNOREL
declarations that are ignored
11>

As usual, white space doesn’t really affect the syntax, but you should keep the
opening <! [IGNORE[and the closing 11> on separate lines for easy viewing.

You can ignore any declaration or combination of declarations — elements, entities,
attributes, or even other I GNORE blocks — but you must ignore entire declarations.
The IGNORE construct must completely enclose the entire declarations it removes
from the DTD. You cannot ignore a piece of a declaration (such as the NDATA GIF in
an unparsed entity declaration).

You can also specify that a particular section of declarations is included —that is,
not ignored. The syntax for the INCLUDE directive is just like the TGNORE directive
but with the INCLUDE keyword:

<ILINCLUDEL
declarations that are included
11>

284

Part Il ¢ Document Type Definitions

When an INCLUDE is inside an IGNORE, the INCLUDE and its declarations are ignored.
When an IGNORE is inside an INCLUDE, the declarations inside the IGNORE block are
still ignored. In other words, an INCLUDE never overrides an IGNORE.

Given these conditions, you might wonder why INCLUDE even exists. No DTD would
change if all INCLUDE blocks were simply removed, leaving only their contents.
INCLUDE appears to be completely extraneous. However, there is one neat trick with
parameter entity references and both IGNORE and INCLUDE that you can’t do with
IGNORE alone. First, define a parameter entity reference as follows:

CVENTITY % fulldtd "IGNORE">

You can ignore elements by wrapping them in the following construct:

<IHD %fulldtd; [
declarations
1>

The %fulldtd; parameter entity reference evaluates to IGNORE, so the declarations
are ignored. Now, suppose you make the one-word edit to change ful1dtd from
IGNORE to INCLUDE, as follows:

CYENTITY % fulldtd "INCLUDE">

Immediately, all the IGNORE blocks convert to INCLUDE blocks. In effect, you have
a one-line switch to turn blocks on or off.

In this example, I've only used one switch, ful1dtd. You can use this switch in
multiple IGNORE/INCLUDE blocks in the DTD. You can also have different groups of
IGNORE/INCLUDE blocks that you switch on or off based on different conditions.

You'll find this capability particularly useful when designing DTDs for inclusion in
other DTDs. The ultimate DTD can change the behavior of the DTDs it embeds by
changing the value of the parameter entity switch.

Summary

In this chapter, you discovered that XML documents are built from both internal
and external entities. In particular, you learned the following:

Chapter 10 + Entity Declarations 285

4 Entities are the physical storage units from which an XML document is
assembled.

4 An entity holds content: well-formed XML, other forms of text, or binary data.
4 Internal entities are defined completely within the DTD.
4+ External entities draw their content from another resource located via a URL.

4+ General entity references have the form &name; and are used in a document’s
content.

4 Internal general entity references are replaced by an entity value given in the
entity declaration.

4+ External general entity references are replaced by the data at a URL specified
in the entity declaration after the SYSTEM keyword.

4 Parameter entity references have the form %name; and are used exclusively
in DTDs.

4 You can merge different DTDs with external parameter entity references.

4 External entity references enable you to build large, compound documents out
of small parts.

4 Invalid documents can still use DTDs to define entity references.
4+ Notations define a data type for non-XML data using a NOTATION declaration.
4 Unparsed entities are storage units containing non-XML text or binary data.

4 Unparsed entities are defined in the DTD using an ENTITY declaration with an
extra NDATA declaration identifying the type of data through a notation name.

4 Documents include unparsed entities using ENTITY or ENTITIES attributes.

4+ INCLUDE and IGNORE blocks specify that the enclosed declarations of the DTD
are or are not (respectively) to be considered when parsing the document.

You'll see a lot more examples of documents with DTDs over the next several

parts of this book, but as far as basic syntax and usage goes, this chapter concludes
the exploration of DTDs. However, there’s one more fundamental technology that
you need to add to your toolbox before you've got a complete picture of XML

itself. That technology is namespaces, a way of attaching prefixes and URIs to ele-
ment and attribute names so that applications can tell the difference between
elements and attributes from different XML vocabularies, even when they have the
same names. Chapter 11 explores namespaces.

+ o+ 0+

CHAPTER

Namespaces

4+ + 4+ 4+
While documents that use a single markup vocabulary

are useful (witness the television examples of In This Chapter
Chapters 4 and 5), documents that mix and match markup
from different XML applications are even more functional. For The need for
example, imagine you want to include a BIOGRAPHY element in namespaces
each ACTOR element. Because the biography consists basically
of free-form, formatted text, it’s convenient to write it in well- Namespace syntax
formed HTML without reinventing all the elements for para-
graphs, line breaks, list items, bold elements, and so forth Namespaces and
from scratch. validity
However, when mixing and matching elements from different 4+ 4+ 4+ 4+

XML applications, you're likely to find the same name used

for two different things. Is a TITLE the title of a page, the title
of a book, or the title of a person? Is an ADDRESS the mailing
address of a company or the e-mail address of a webmaster?
Namespaces disambiguate these cases by associating a
Uniform Resource Identifier (URI) with each XML application
and attaching a prefix to each element to indicate which appli-
cation it belongs to. Thus, you can have both BOOK: TITLE and
HTML:TITLE elements or POSTAL : ADDRESS and HTML : ADDRESS
elements instead of just one kind of TITLE or ADDRESS. This
chapter shows you how to use namespaces.

If you're familiar with namespaces as used in C++ and
Caution other programming languages, you need to put aside your
preconceptions before reading further. XML namespaces
are similar to, but not quite the same as, the namespaces
used in programming. In particular, XML namespaces do
not necessarily form a set (a collection with no duplicates).

The Need for Namespaces

XML enables developers to create their own markup languages
for their own projects. These languages can be shared with
people working on similar projects all over the world. One spe-
cific example of this is Scalable Vector Graphics (SVG). SVG is
an XML application that describes line art such as might be

288

Part Il ¢ Document Type Definitions

;/N ote

produced by Adobe Illustrator or Visio. SVG documents are embedded in HTML
or XHTML documents to add vector graphics to web pages. SVG elements include
desc, title, metadata, defs, path, text, rect,circle,ellipse, line,polyline,
polygon, use, image, svg, g, view, switch, a,altGlyphDef, script, style,
symbol, marker, clipPath, mask, 1inearGradient, radialGradient, pattern,
filter, cursor, font, animate, set,animateMotion, animateColor, animate-
Transform,color-profile,and font-face. Five of these—title, a, script,
style, and font —happen to share names with HTML elements. Several others
conflict with other XML vocabularies you might want to embed in an HTML docu-
ment. For example, MathML uses set to mean a mathematical set; the Resource
Description Framework (RDF) uses tit1e to identify the title of a resource.

How is a browser reading a document that mixes HTML, SVG, and RDF supposed to
know whether any given title element isan HTML title,an SVG title, or an
RDF title? Perhaps the browser could have enough knowledge of where the differ-
ent kinds of SVG pictures, RDF metadata, MathML equations, and other extra-HTML
vocabularies are supposed to appear to be able to tell which is which. But what

is the browser supposed to do when it encounters conflicts with nonstandard
vocabularies that it hasn’t seen before and of which it has no understanding? XML
is designed to allow authors and developers to extend it with their own elements in
an infinite variety of ways. When authors begin mixing and matching tag sets created
by different developers, name conflicts are almost inevitable.

Namespaces are the solution. They allow each element and attribute in a document
to be placed in a different namespace mapped to a particular URI. The XML elements
that come from SVG are placed in the http://www.w3.0rg/2000/svg namespace.
The XML elements that come from XHTML are placed in the http://www.w3.0rg/
1999/xhtm] namespace. MathML goes in the http://www.w3.0rg/1998/Math/
MathML namespace. If you mix in elements from some vocabulary you created your-
self, you can place that in another namespace, with a URI somewhere in a domain
you own.

A Uniform Resource Identifier is an abstraction of a URL. Whereas a URL /ocates a

-~ resource, a URI identifies a resource. For example, a URI for a person might include

that person’s social security number. This doesn't mean you can look the person
up in a web browser using a person URI. In theory, URIs are a superset of URLs,
which also include Uniform Resource Names (URNSs). In practice, most URIs used
today, including most namespace URIs, are, in fact, URLs.

This URI doesn’t even have to point at any particular file. The URI that defines a
namespace is purely formal. Its only purpose is to group and disambiguate element
and attribute names in the document. It does not necessarily point to anything. In
particular, there is no guarantee that the document at the namespace URI describes the
syntax used in the document; or, for that matter, that any document exists at the URL
Most namespace URIs produce 404 Not Found errors when you attempt to resolve
them. Having said that, if there is a canonical URI for a particular XML application,
that URI is a good choice for the namespace definition.

Chapter 11 4+ Namespaces 289

Namespaces have been carefully crafted to layer on top of the XML 1.0 specifica-
tion. Other than reserving the colon character to separate prefixes and local names,
namespaces have no direct effect on standard XML syntax. An XML 1.0 processor
that knows nothing about namespaces can still read a document that uses names-
paces and will not find any errors. Conversely, a document that uses namespaces
must still be well formed when read by a processor that knows nothing about
namespaces. If the document is validated, it must be validated without specifically
considering the namespaces. To an XML processor, a document that uses names-
paces is just a document in which some of the element and attribute names have a
single colon. Documents that use namespaces do not break existing XML parsers;
and users don’t have to wait for notoriously unpunctual software companies to
release upgrades before using namespaces.

Namespace Syntax

Suppose you’re a webmaster at a small agency in Hollywood that represents screen-
writers. You want a web page that describes the scripts currently available for
auction from the agency’s clients. The basic page that provides the list is written in
HTML. The information about each client is given in some industry standard DTD
for describing people that requires PERSON elements to have this form:

<PERSON>
<FIRST>Larry</FIRST>
<LAST>Smith</LAST>
<TITLE>Mr .</TITLE>
</PERSON>

The information about screenplays is provided in SCRIPT elements that look
like this:

<SCRIPT>
<TITLE>New York Stories</TITLE>
<AUTHOR>
<PERSON>
<FIRST>Larry</FIRST>
<LAST>Smith</LAST>
KTITLE>Mr . </TITLE>
</PERSON>
</AUTHOR>
<SYNOPSIS>
Six friends with no visible means of support nonetheless
manage to live in improbably Targe apartments in
Manhattan.
</SYNOPSIS>
</SCRIPT>

The entire document might look something like Listing 11-1.

290 Partll + Document Type Definitions

Listing 11-1: A Well-Formed XML Document That Uses HTML
and Two Custom XML Applications

<CHTML>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT>
{TITLE>Chicken Feathers</TITLE>
<AUTHOR>
<PERSON>
<FIRSTO>WiTliam</FIRST>
<LAST>Sanders</LAST>
<TITLE>Col.</TITLE>
</PERSON>
</AUTHOR>
<SYNOPSIS>
Hijinks in a poultry factory
</SYNOPSIS>
</SCRIPT>

{SCRIPT>
KTITLE>Soft Copy</TITLE>
<AUTHOR>
<PERSON>
{FIRST>Nora</FIRST>
<LAST>Lessinger</LAST>
KTITLE>Dr . </TITLE>
</PERSON>
</AUTHOR>
<{SYNOPSIS>Sex lives of the rich and famous</SYNOPSIS>
</SCRIPT>

Send inquiries to
<PERSON>
KTITLEDMr . </TITLE>,
<FIRST>Mikhail</FIRST>
<LAST>Ovitsky</LAST>
<COMPANY>Duplicative Artists Mismanagement</COMPANY>,
<ADDRESS>135 Agents Row, Hollywood, CA 90123</ADDRESS>
</PERSON>

</BODY>
</HTML>

‘\I ote

Chapter 11 4+ Namespaces 29]

There are several problems with this document, even though it’s well-formed XML.
Some of the elements used as part of the custom vocabularies conflict with each
other and with standard HTML. The first problem is that the TITLE element is used
for three separate things: the title of the page, the title of a script, and the title of a
person. The second problem may be even worse in practice. The SCRIPT element
conflicts with the HTML SCRIPT element. A web browser reading this document
might try to interpret the contents of the SCRIPT element as a JavaScript program.
Even though this particular page doesn’t use any JavaScript, an HTML renderer, even
one that supports XML embedded in HTML documents, is still going to think that a
SCRIPT element contains JavaScript. These sorts of problems crop up all the time
when you mix and match different XML vocabularies. In this case, the problem is the
attempt to merge three different vocabularies —one for persons, one for scripts, and
one for web pages —that were designed without much concern for each other.

Even if the names don’t conflict, how is an XML browser supposed to be able to
distinguish between groups of elements from different vocabularies? For example, a
studio robot might want to collect script proposals from various agencies by harvest-
ing all the SCRIPT elements that contain synopses while ignoring all the JavaScript.
You can fix all these problems by adding namespaces to the document. Namespaces
identify which elements in the document belong to which XML vocabularies.

Defining namespaces with xmins attributes

The script auction example uses elements from three different vocabularies, so
three different namespaces are needed. Each namespace has a URL You can choose
any convenient absolute URI in a domain that you own for the namespace. In this
example, I use the URI http://ns.cafeconleche.org/people/ for the person
application because I happen to own the cafeconleche.org domain.

The URI you choose does not have to refer to anything. There does not have to be
a DTD or a schema or any other page at all at the location identified by the names-
pace URL. In fact, there isn't even a host named ns.cafeconleche.org. A namespace
URI is nothing more than a formal identifier that helps to distinguish between ele-
ments with the same name from different organizations. URIs were chosen for this
purpose because they allow developers to choose their own namespace URIs
without having to create yet another central registration authority.

However, URIs often contain characters that can’t appear in XML element and
attribute names. For example, http://ns.cafeconleche.org/people/firstis
not a legal name for an XML element because it contains forward slashes. Therefore,
you have to associate the URI with a prefix and put the prefix in the element name
instead. The prefixes are generally some abbreviated form of the thing that the XML
application describes. For the person application, you might choose the prefix P, p,
or PE, or perhaps even person or PEOPLE. In this example, I use P as the prefix for
the person vocabulary with the associated URI http://ns.cafeconleche.org/
people/.

2972 Partll + Document Type Definitions

You associate a namespace URI with a prefix by adding an xmins: prefix attribute
to the elements they apply to. prefix is replaced by the actual prefix used for the
namespace. The value of the attribute is the URI of the namespace. For example, this
xmlns:P attribute associates the prefix P with the URI http://ns.cafeconleche.
org/people/.

xmins:P="http://ns.cafeconleche.org/people/"

Once this attribute is added to an element, the P prefix can then be attached to that
element’s name as well as the names of its attributes and descendants. Within

that element, the P prefix identifies something as belonging to the http://ns.
cafeconleche.org/people/ namespace. The prefix is attached to the local name
by a colon. Listing 11-2 demonstrates by adding the P prefix to the PERSON, FIRST,
and LAST elements, as well as those TITLE elements that come from the people appli-
cation, but not to the TITLE elements that come from HTML or the script application.

Listing 11-2: Placing the Person Application Elements
in a Separate Namespace

<HTML>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</HI1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT>
KTITLE>Chicken Feathers</TITLE>
<AUTHOR>
<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
<P:FIRST>WiTliam</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col1.</P:TITLE>
</P:PERSON>
</AUTHOR>
<SYNOPSIS>
Hijinks in a poultry factory
</SYNOPSIS>
</SCRIPT>

<{SCRIPT>

<TITLE>Soft Copy</TITLE>

<AUTHOR>

<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
KP:TITLE>Dr.</P:TITLE>

</P:PERSON>

Chapter 11 4+ Namespaces 293

</AUTHOR>
<SYNOPSIS>Sex lives of the rich and famous</SYNOPSIS>
</SCRIPT>

Send inquiries to
<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Qvitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>,
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123
</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

It’s now quite easy to distinguish between the title of the page and the title of a
person. The page’s title is represented by a TITLE element, while a person’s title is
represented by a P: TITLE element.

The elements with the P prefix are said to have qualified names beginning with the
P prefix:

4 P:PERSON

4+ P:TITLE

4 P:FIRST

4+ P:LAST

4 P:COMPANY

4 P:ADDRESS
The part of the name after the colon is called the local name. These six elements
have these six local names:

4 PERSON

4+ TITLE

4 FIRST

4+ LAST

4 COMPANY

4 ADDRESS

294 Partll + Document Type Definitions

/N ote

The prefix can change as long as the URI and the local names stay the same. The
true names of these elements are based on the URI rather than on the prefix. Thus,
the abstract true names of these six elements have a form like this:

4+ http://ns.cafeconleche.org/people/:PERSON

4 http://ns.cafeconleche.org/people/:TITLE

4+ http://ns.cafeconleche.org/people/:FIRST

4 http://ns.cafeconleche.org/people/:LAST

4+ http://ns.cafeconleche.org/people/:COMPANY

4+ http://ns.cafeconleche.org/people/:ADDRESS
However, you'll never use a name like this anywhere in an XML document. In essence,
the shorter qualified names are mandatory nicknames that are used within the

document because URIs often contain characters such as ~, %, and / that aren’t
legal in XML names.

A namespace prefix can be any legal XML name that does not contain a colon. Recall
from Chapter 6 that a legal XML name must begin with a letter or an underscore ().
Subsequent letters in the name may include letters, digits, underscores, hyphens,
and periods. They may not include white space.

Two prefixes are specifically disallowed: xm1 and xm1ns. The xm1 prefix should only

=~ be used for the xm1:space and xm1:1ang attributes defined in the XML 1.0 spec-

ification and other generic attributes defined later by the W3C such as xml:
base. The prefix xm1 is automatically mapped to the URI http://www.w3.0rg/
XML/1998/namespace. The xmins prefix is used to bind elements to namespaces
and is therefore not available as a prefix to be bound to.

Multiple namespaces

The difference between the title of a page and the title of a script is still up in the air,
as is the difference between a screenplay SCRIPT and a JavaScript SCRIPT. To fix
this, you must add another namespace to the document. This time, I use the prefix
SCRand the URI http://ns.cafeconleche.org/scripts/. Defining this mapping
requires adding this attribute to all the SCRIPT elements:

xmlns:SCR="http://ns.cafeconleche.org/scripts/"

Alternately, instead of placing the declaration of the SCR namespace prefix on all
SCRIPT elements, I can put it on one element that contains them all. There are two
such elements in the example, HTML and BODY. When the namespace declaration is
not placed directly on the start-tag that begins the vocabulary, it’s generally put on
the root element, as shown in Listing 11-3.

Chapter 11 4+ Namespaces 295

Listing 11-3: Declaring a Namespace on the Root Element

<HTML xmlns:SCR="http://ns.cafeconleche.org/scripts/">
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCR:SCRIPT>
<SCR:TITLE>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
<P:FIRSTO>WiTliam</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>
</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>
Hijinks in a poultry factory
</SCR:SYNOPSIS>
</SCR:SCRIPT>

<{SCR:SCRIPT>
{SCR:TITLE>Soft Copy</SCR:TITLE>
<{SCR:AUTHOR>
<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>
</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>Sex Tives of the rich and famous
</SCR:SYNOPSIS>
</SCR:SCRIPT>

Send inquiries to

<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
<P:TITLE>Mr.</P:TITLE> <P:FIRST>Mikhail</P:FIRST>
<P:LAST>Qvitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>
<P:ADDRESS>

135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>

</P:PERSON>

</BODY>
</HTML>

296 Partll + Document Type Definitions

Whether you choose to declare a namespace on the root element or on some element
further down the hierarchy is mostly a matter of personal preference and conve-
nience in the document at hand. Some developers prefer to declare all namespaces
on the root element. Others prefer to declare the namespaces closer to where they’re
actually used. XML doesn’t care. For example, Listing 11-3 could have equally well
been written as shown in Listing 11-4, with both the SCR and P prefixes declared on
the root element.

Listing 11-4: Declaring All Namespaces on the Root Element

<HTML xmlns:SCR="http://ns.cafeconleche.org/scripts/"
xmins:P="http://ns.cafeconleche.org/people/">
CHEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>

<H1>January 27, 2004 Auction</HI1>
<P>Pilot scripts for the Fall season:</P>

<SCR:SCRIPT>
{SCR:TITLE>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>CoT.</P:TITLE>
</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>
Hijinks in a poultry factory
</SCR:SYNOPSIS>
</SCR:SCRIPT>

{SCR:SCRIPT>
<SCR:TITLE>Soft Copy</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON>
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>
</P:PERSON>
</SCR:AUTHOR>
{SCR:SYNOPSIS>Sex 1lives of the rich and famous
</SCR:SYNOPSIS>
</SCR:SCRIPT>

Send inquiries to

<P:PERSON>
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Qvitsky</P:LAST>

Chapter 11 4+ Namespaces

<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123
</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

In most cases (validation against a DTD being the notable exception), it’s the URI
that’s important, not the prefix. The prefixes can change. As long as the URI stays
the same, the meaning of the document is unchanged. For example, Listing 11-5
uses the prefixes PERSON and SCRIPT instead of P and SCR. However, this document
has the same meaning and content as Listing 11-4.

Listing 11-5: Same Document, Different Prefixes

<HTML xmlns:SCRIPT="http://ns.cafeconleche.org/scripts/"
xmins:PERSON="http://ns.cafeconleche.org/people/">
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</HI1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>WilTiam</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col1.</PERSON:TITLE>
</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory
</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
{SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>
</PERSON:PERSON>

Continued

297

298

Part Il ¢ Document Type Definitions

Listing 11-5 (continued)

</SCRIPT:AUTHOR>
{SCRIPT:SYNOPSIS>Sex Tives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

Send inquiries to

<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>

135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>

</PERSON:PERSON>

</BODY>
</HTML>

In fact, it’s even possible to redeclare prefixes so that one prefix refers to different
URIs in different places in the document, or so that two different prefixes refer to
the same URI. This is, however, needlessly confusing; I strongly recommend that
you avoid it. There are more than enough prefixes to go around, and almost no
need to reuse them within the same document. The main reason for this is to allow
different documents from different authors that happen to use the same prefix to be
combined. This is a good reason to avoid short prefixes such as A, S, and X that are
likely to be reused for different purposes.

Attributes

Because attributes belong to particular elements, they’re more easily distinguished
from similarly named attributes without namespaces. Consequently, it’s not nearly
as essential to add namespaces to attributes as to elements. For example, the XSLT
specification requires that all XSLT elements be in the http://www.w3.0rg/1999/
XSL/Transform namespace. However, it does not require that the attributes of
these elements be in any particular namespace. (In fact, it requires that they not be
in any namespace.) Nonetheless, you can attach namespace prefixes to attributes, if
necessary. For example, all the attributes in this SCRIPT element and its children
live in the http://namespaces.cafeconleche.org/scripts/ namespace.

{SCR:SCRIPT SCR:TYPE="Sitcom"
SCR:COPYRIGHT="2004 William Sanders"
xmlIns:SCR="http://namespaces.cafeconleche.org/scripts/"
xmins:P="http://namespaces.cafeconleche.org/people/">

Chapter 11 4+ Namespaces 299

{SCR:TITLE SCR:ALT="NO">Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR SCR:ID="A67Y">
<P:PERSON>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Co1.</P:TITLE>
</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS SCR:LANG="English">
Hijinks in a poultry factory
</SCR:SYNOPSIS>
</SCR:SCRIPT>

This might occasionally prove useful if you need to combine attributes from two
different XML applications on the same element. XLink uses prefixed attributes to
allow any element to become a link.

'jiss-A XLinks are discussed in Chapter 17.
Reference

It is possible (though mostly pointless) to associate the same namespace URI with
two different prefixes. The only reason I bring it up here is simply to warn you that
it is the true name of the attribute that must satisfy XML's rules for an element not
having more than one attribute with the same name. For example, this code is ille-
gal because SCR: 1D and SCRIPT:ID are the same:

<{SCR:SCRIPT SCR:TYPE="Sitcom"

SCR:COPYRIGHT="2004 William Sanders"
xmlIns:SCR="http://namespaces.cafeconleche.org/scripts/"
xmIns:SCRIPT="http://namespaces.cafeconleche.org/scripts/"
xmins:P="http://namespaces.cafeconleche.org/people/">
<SCR:TITLE SCR:ID="A67Y" SCRIPT:ID="Y76A">

Chicken Feathers
</SCR:TITLE>
</SCR:SCRIPT>

On the other hand, the parser does not actually check the URI to see what it points
to. The URIs http://ibiblio.org/xml/ and http://www.ibiblio.org/xml/
point to the same page, but the following code is legal:

<SCR:SCRIPT SCR:TYPE="Sitcom"

SCR:COPYRIGHT="2004 William Sanders"
xmins:SCR="http://ibiblio.org/xml/"
xmins:SCRIPT="http://www.ibiblio.org/xml/"
xmins:P="http://namespaces.cafeconleche.org/people/">
{SCR:TITLE SCR:ID="A67Y" SCRIPT:ID="Y76A">

Chicken Feathers
</SCR:TITLE>
</SCR:SCRIPT>

300 Partll + Document Type Definitions

Default namespaces

In long documents with a lot of markup all in the same namespace, it may be incon-
venient to add a prefix to each element name. You can attach a default namespace
to an element and to its child elements using an xm1ns attribute with no prefix. The
element itself and all its children are considered to be in the defined namespace
unless they have an explicit prefix.

For example, you might wish to place the HTML elements in the script auction
example in a namespace of their own, but not to give them any prefixes so that
legacy browsers will still recognize them. Listing 11-6 does exactly this.

Listing 11-6: Placing the HTML Elements in the Same
Namespace

<HTML xmlns="http://www.w3.0rg/1999/xhtm1"
xmins:SCRIPT="http://ns.cafeconleche.org/scripts/"
xmIns:PERSON="http://ns.cafeconleche.org/people/">
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2004 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT:SCRIPT>
{SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Wil1iam</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Co1.</PERSON:TITLE>
</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory
</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
{SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>
</PERSON:PERSON>
</SCRIPT:AUTHOR>
{SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

Chapter 11 4+ Namespaces

Send inquiries to

<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>

135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>

</PERSON:PERSON>

</BODY>
</HTML>

From the perspective of most XML applications, a document that uses the default
namespace is the same as a document that uses prefixes as long as the URIs associ-
ated with each element are the same. However, a legacy HTML browser will have a
much easier time with the code in Listing 11-6 than with the equivalent version in
Listing 11-7 that attaches the prefix HTML to all the HTML elements.

Listing 11-7: Prefixing the HTML Elements in the Same
Namespace

<HTML:HTML xmlIns:HTML="http://www.w3.0rg/1999/xhtml"
xmIns:SCRIPT="http://ns.cafeconleche.org/scripts/"
xmIns:PERSON="http://ns.cafeconleche.org/people/">
<HTML:HEAD>
CHTML:TITLE>Screenplays for Auction</HTML:TITLE>
</HTML:HEAD>
<HTML:BODY>
<HTML:H1>January 27, 2004 Auction</HTML:H1>

<HTML:P>Pilot scripts for the Fall season:</HTML:P>

{SCRIPT:SCRIPT>
{SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Wil1iam</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Co1.</PERSON:TITLE>
</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

Continued

301

302

Part Il ¢ Document Type Definitions

Listing 11-7 (continued)

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

{SCRIPT:SCRIPT>
{SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>
</PERSON:PERSON>
</SCRIPT:AUTHOR>
{SCRIPT:SYNOPSIS>Sex Tives of the rich and famous
</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

Send inquiries to

<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>0Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>

135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>

</PERSON:PERSON>

</HTML:BODY>
</HTML:HTML>

A good time to use default namespaces is when you need to attach a namespace to
every element in an existing document to which you're now going to add elements
from a different language. For example, if you place some MathML in an XHTML
document, you only have to add prefixes to the MathML elements. You can put all
the HTML elements in the XHTML namespace simply by adding an xmIns attribute
to the start-tag like this:

<html xmins="http://www.w3.0rg/1999/xhtml">

You do not need to edit the rest of the file. The MathML tags you insert still need to
be in the proper MathML namespace. However, as long as they aren’t mixed up with
a lot of HTML markup, you can simply declare an xm1ns attribute on the MathML’s
root element. This defines a default namespace for the MathML elements that over-
rides the default namespace of the document containing the MathML. Listing 11-8
demonstrates.

Chapter 11 4+ Namespaces 303

Listing 11-8: A MathML Math Element Embedded
in a Well-Formed HTML Document

<?xml version="1.0"7>
<html xmins="http://www.w3.0rg/1999/xhtm1">
<head>
<title>Fiat Lux</title>
<meta name="GENERATOR" content="amaya V1.3b" />
</head>
<body>

<P>And God said,</P>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mrow>
<msub>
<mi>δ</mi>
<mi>&Fx3B1;</mi>
</msub>
<msup>
<mi>F</mi>
<mi>αβ</mi>
</msup>
<mi></mi>
<mo>=</mo>
<mi></mi>
<mfrac>
<mrow>
<mn>4</mn>
<mi>&Fx3C0;</mi>
</mrow>
<mi>c</mi>
</mfrac>
<mi></mi>
<msup>
<mi>J</mi>
<mrow>
<mi>β</mi>
<mo></mo>
</mrow>
</msup>
</mrow>
</math>

<P>and there was Tight</P>

</body>
</html>

304 Partll + Document Type Definitions

Here, math, mrow, msub, mo, mi, mfrac, mn, and msup are all in the http://www.w3.
org/1998/Math/MathML namespace, even though the document that contains them
uses the http://www.w3.0rg/1999/xhtm] namespace.

_ﬁlote Attributes are never in a default namespace. They must be explicitly prefixed. An
-~ unprefixed attribute is in no namespace at all. Even if the element it is a part of is in
some namespace, default or otherwise, the unprefixed attribute is still not in that

or any other namespace.

Namespaces and Validity

Namespaces do not get any special exemptions from the normal rules of well-
formedness and validity. Well-formedness is generally not a problem, but validity can
be. For a document that uses namespaces to be valid, you must declare the xmIns
attributes in the DTD just like you’d declare any other attribute. Furthermore, you
must declare the elements and attributes using the prefixes they use in the docu-
ment. For example, if a document uses a PERSON: ADDRESS element, the DTD must
declare a PERSON: ADDRESS element, not merely an ADDRESS element, like this:

<IELEMENT PERSON:ADDRESS (#PCDATA)>

This means that if a DTD was written without namespace prefixes, it must be
rewritten using the namespace prefixes before it can be used to validate documents
that use prefixed element and attribute names. For example, consider this element
declaration:

C'ELEMENT SCRIPT (TITLE, AUTHOR, SYNOPSIS)>

You have to rewrite it as follows if the elements are all given the SCR namespace
prefix:

C'ELEMENT SCR:SCRIPT (SCR:TITLE, SCR:AUTHOR, SCR:SYNOPSIS)>

This means that you cannot easily use the same DTD for both documents with
namespaces and documents without, even if they use essentially the same vocabu-
lary. In fact, you can’t even use the same DTD for documents that use the same tag
sets and namespaces but different prefixes, because DTDs are tied to the actual
prefixes rather than the URIs of the namespaces.

Tip If you have a question about whether a document that uses namespaces is well

formed or valid, forget everything you know about namespaces. Simply treat the

4 document as a normal XML document that happens to have some element and
attribute names that contain colons. The document is as well formed and valid as
it is when you don't consider namespaces.

o

Chapter 11 4+ Namespaces 305

There is one really ugly hack that enables a single DTD to describe documents from
the same application that use different namespace prefixes (or no prefix at all). You
can define the namespace prefix, the element names, and the namespace declaration
attributes as parameter entity references. Then the internal DTD subset can over-
ride these entity references to define them as whatever prefix that particular docu-
ment uses. For example, to parameterize the namespace prefix for the http://ns.
cafeconleche.org/people/ namespace used in several previous examples, first
declare PREFIX, COLON, and NAMESPACE_DECLARATION parameter entities:

CLENTITY % PREFIX "PERSON">
CLENTITY % COLON ":">
CTENTITY % NAMESPACE_DECLARATION "xmIns%ZCOLON;%PREFIX;">

Next, declare parameter entities for the element names that depend on these
parameter entities. For example, here’s the declaration for the ADDRESS element:

CTENTITY % ADDRESS.NAME "%PREFIX;%COLON;ADDRESS">
Finally, declare the ADDRESS element using the ADDRESS . NAME entity:
<VELEMENT %ADDRESS.NAME; (#fPCDATA)>
Caution Do not try to save a step by using the PREFIX and COLON entities directly in the
declaration of the PERSON element like this:
CIVELEMENT %PREFIX;%COLON;ADDRESS (#PCDATA)>
For various technical reasons, this is not well formed and does not work.
Similarly, every other use of a prefixed name, whether in an element declaration, a

content model, or an attribute list, should be parameterized. Listing 11-9 shows the
completely parameterized DTD.

Listing 11-9: A Parameterized DTD

CLENTITY % PREFIX "PERSON">
CTENTITY % COLON ":">
CLENTITY % NAMESPACE_DECLARATION "xmlns%COLON;%ZPREFIX;">

CTENTITY % PERSON.NAME "BPREFIX;%COLON;PERSON">
CLENTITY % TITLE.NAME "BPREFIX;%COLON;TITLE">
CLENTITY % FIRST.NAME "BPREFIX;%COLON; FIRST">
CTENTITY % LAST.NAME "BPREFIX;%COLON; LAST">
CLENTITY % COMPANY . NAME "%PREFIX;%COLON;COMPANY">
CYENTITY % ADDRESS.NAME "%PREFIX;%COLON;ADDRESS">

Continued

306

Part Il ¢ Document Type Definitions

Listing 11-9 (continued)

<ITELEMENT %PERSON.NAME; (%TITLE.NAME;, %FIRST.NAME;,
%LAST .NAME;, %COMPANY.NAME;, %ADDRESS.NAME;)>
STATTLIST %PERSON.NAME; %ZNAMESPACE_DECLARATION; CDATA
f#fFIXED "http://ns.cafeconleche.org/people/">

CTELEMENT ZTITLE.NAME; (#PCDATA)>
<VELEMENT %ZFIRST.NAME; (#PCDATA)>
CTELEMENT %ZLAST.NAME; (#fPCDATA)>
<IELEMENT %COMPANY.NAME; (#PCDATA)>
<IELEMENT %ADDRESS.NAME; (#PCDATA)>

Now you can override the parameter entities in the internal DTD subset of the
instance document to choose a different prefix. For example, Listing 11-10 shows
a valid document that uses the prefix P instead of PERSON.

Listing 11-10: A Document That Changes the Namespace
Prefix

<?xml version="1.0"7>
<IDOCTYPE P:PERSON SYSTEM "person.dtd" [
<VENTITY % PREFIX "P">
»
<P:PERSON xmlns:P="http://ns.cafeconleche.org/people/">
KP:TITLE>Mr.</P:TITLE>
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>0Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123
</P:ADDRESS>
</P:PERSON>

To use the default namespace with no prefix at all, just set both the PREFIX and
COLON entities to the empty string, as demonstrated in Listing 11-11.

Chapter 11 4+ Namespaces 307

Listing 11-11: A Document That Removes the Namespace
Prefix

<?xml version="1.0"7>
<IDOCTYPE PERSON SYSTEM "person.dtd" [
CTENTITY % PREFIX "">
CTENTITY % COLON "">
»
<PERSON xmlns="http://ns.cafeconleche.org/people/">
KTITLEDMr.</TITLE>
<FIRST>Mikhail</FIRST>

<LAST>Qvitsky</LAST>
<COMPANY>Duplicative Artists Mismanagement</COMPANY>
<ADDRESS>
135 Agents Row, Hollywood, CA 90123
</ADDRESS>
</PERSON>

Summary

This chapter explained namespaces. In particular, you learned the following:

4+ Namespaces distinguish between elements and attributes with the same name
from different XML applications.

4 In a document that mixes markup from multiple XML applications, name-
spaces identify which elements and attributes are part of which XML
applications.

4+ Namespaces are declared by an xm1ns attribute whose value is the URI of the
namespace. The document referred to by this URI need not exist.

4+ The prefix associated with a namespace is the part of the name of the xmIns
attribute that follows the colon; for example, xmins:prefix.

4 Prefixes are attached to all element and attribute names that belong to the
namespace identified by the prefix.

4 If an xm1ns attribute has no prefix, it establishes a default namespace for that
element and its child elements (but not for any attributes).

4+ DTDs must be written in such a fashion that a processor that knows nothing
about namespaces can still parse and validate the document.

308 Partll + Document Type Definitions

This completes Part II. You now have a solid grasp of XML fundamentals. The next
several parts look at a number of supplementary technologies that layer on top of
XML, as well as applications built with XML. Many of these applications use name-
spaces for one purpose or another. In particular, you’ll learn how namespaces are
used in the Extensible Stylesheet Language (XSL), the XML Linking Language
(XLink), Scalable Vector Graphics (SVG), and several other XML applications.

¢+ o+ 0+

Style Languages /1]

R

In This Part

Chapter 12
CSS Style Sheets

Chapter 13
CSS Layouts

Chapter 14
CSS Text Styles

Chapter 15
XSL Transformations

Chapter 16
XSL Formatting
Obijects

R

CSS Style Sheets

' ascading style sheets (CSS) is a very simple and straight-
forward language for applying styles to XML documents.

Most of the styles CSS supports should be familiar to you from
using any word processor. For example, you can choose the
font, the font weight, the font size, the background color, the
spacing between paragraphs, the borders around elements,
and more. However, rather than being stored as part of the
document itself, all the style information is placed in a separate
document called a style sheet. A single XML document can be
formatted in many different ways just by changing the style
sheet. Different style sheets can be designed for different
purposes — for print, the Web, presentations, and other

uses — all with the styles appropriate for the specific
medium, and all without changing any of the content in the
document itself.

Netscape 6.0 and later, Mozilla, Opera 4.0 and later, Safari,

Caution and Internet Explorer 5.0 and later all implement some (but
not all) parts of the CSS specification. Earlier versions of the
major browsers, while perhaps supporting some form of
CSS for HTML documents, do not support it at all for XML
documents. To make matters worse, they all implement
different subsets of the specification, and sometimes don't
implement the same subsets for XML as they do for HTML.
I'll try to indicate where one browser or another has a par-
ticular problem as it comes up. However, if you find that
something in this chapter doesn't work as advertised in your
favorite browser (or in any browser), please complain to
the browser vendor, not to me.

What Are Cascading Style Sheets?

Cascading style sheets (referred to as CSS from now on) is a
declarative language introduced in 1996 as a standard means
of adding information about style properties, such as fonts and
borders, to HTML documents. However, CSS actually works
better with XML than with HTML because HTML is burdened
with backward-compatibility issues. For example, properly

CHAPTER

0+ o+
In This Chapter
What is CSS2
Selecting elements
Inheritance

Cascades

Different rules for
different media

Importing style sheets
Character sets

R R

312

Part Ill 4+ Style Languages

supporting the CSS nowrap property requires eliminating the nonstandard but
frequently used NOWRAP element in HTML. Because XML elements don’t have any
predefined formatting, they don’t restrict which CSS styles can be applied to which
elements.

A simple CSS style sheet

A CSS style sheet contains a list of rules. Each rule gives the names of the elements
it applies to and the styles to apply to those elements. Consider Listing 12-1, a CSS
style sheet for poems. Listing 12-1 can be typed in any text editor, saved as a text file,
and called something like poem.css. The three letter extension .css is conventional,
but not required.

Listing 12-1: A CSS Style Sheet for Poems

POEM { display: block }

TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }

STANZA { display: block; margin-bottom: 10px }

VERSE { display: block }

This style sheet has five rules. Each rule has a selector—in this instance the name
of the element to which it applies —and a list of styles to apply to instances of that
element. The first rule says that the contents of the POEM element should have a line
break before and after it (display: block). The second rule says that the contents
of the TITLE element should have a line break before and after it (display: block)
in 16-point (font-size: 16pt) bold type (font-weight: bold). The third rule
says that the POET element should have a line break before and after it (display:
b1ock) and should be set off from what follows it by 10 pixels (margin-bottom:
10px). The fourth rule is the same as the third rule except that it applies to STANZA
elements. Finally, the fifth rule simply states that each VERSE element also has a line
break before and after it.

Comments
CSS style sheets can include comments. CSS comments are similar to C’s /* */
comments, but not to the <!-- --> XML and HTML comments. Listing 12-2

demonstrates. This style sheet doesn’t merely apply style rules to elements. It
also describes, in English, the results those style rules are supposed to achieve.

Chapter 12 4+ CSS Style Sheets

Listing 12-2: A Style Sheet for Poems with Comments

/* Work around a Mozilla bug */
POEM { display: block }

/* Make the title look like an H1 header */
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }

/* Put a blank line in-between stanzas,

only a line break between verses */
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block }

CSS style sheets aren’t nearly as convoluted as DTDs, or Java, C, or Perl programs,
so comments aren’t quite as necessary as they are in other languages. However, it’s
rarely a bad idea to include comments. They can only help someone who'’s trying to
make sense out of a style sheet you wrote.

Attaching style sheets to documents

To really make sense out of the style sheet in Listing 12-1 or 12-2, you have to give
it an XML document to format. Listing 12-3 is a poem from Walt Whitman’s Leaves
of Grass marked up in XML. The second line is the xm1-stylesheet processing
instruction that instructs the web browser loading this document to apply the style
sheet found in the file poem.css to this document. Figure 12-1 shows this document
loaded into Mozilla.

Listing 12-3: Darest Thou Now O Soul Marked Up in XML

<?xml version="1.0"7>
<?xml-stylesheet type="text/css" href="poem.css"?>
<POEM>

<TITLE>Darest Thou Now O Soul</TITLE>
<POET>Walt Whitman</POET>

<STANZA>
<VERSE>Darest thou now 0 soul,</VERSE>
<VERSE>Walk out with me toward the unknown region,</VERSE>
<VERSE>Where neither ground is for the feet nor
any path to follow?</VERSE>

Continued

313

314 Partlil + Style Languages

Listing 12-3 (continued)

</STANZA>
{STANZA>
<VERSE>No map there, nor guide,</VERSE>
<VERSE>Nor voice sounding, nor touch of
human hand,</VERSE>
<VERSE>Nor face with blooming flesh, nor lips,
are in that Tand.</VERSE>
</STANZA>
{STANZA>
<VERSE>T know it not O soul,</VERSE>
<VERSE>Nor dost thou, all is blank before us,</VERSE>
<VERSE>ATT waits undream'd of in that region,
that inaccessible Tand.</VERSE>
</STANZA>
<STANZA>
<VERSE>Til11 when the ties Toosen,</VERSE>
<VERSE>AT1 but the ties eternal, Time and Space,</VERSE>
<VERSE>Nor darkness, gravitation, sense,
nor any bounds bounding us.</VERSE>
</STANZA>
{STANZA>
<VERSE>Then we burst forth, we float,</VERSE>
<VERSE>In Time and Space 0 soul,
prepared for them,</VERSE>
<VERSE>Equal, equipt at last, (0 joy! O fruit of alll)
them to fulfil 0 soul.</VERSE>
</STANZA>

</POEM>

The type pseudo-attribute in the xm1-stylesheet processing instruction is the
MIME media type of the style sheet. Its value is text/css for CSS and application/
xm1 for XSL

,D XSL is discussed in Chapters 5, 15, and 16.
Reference

The value of the href pseudo-attribute in the xm1-stylesheet processing instruc-
tion is the URL, often relative, where the style sheet is located. If the style sheet can’t
be found, the browser will use its default style sheet instead.

Chapter 12 + CSS Style Sheets 315

3 http:/fwww.cafeconleche.org/books/bibled/source/12/darestthou.xml - Microsoft Internet Explorer (=]

File Edit ‘iew Favorites Tools Help |-
GBack v =+ G f] 4} | QSemch [GiFaveites EhMeda ¢ | Zh~ S = A |
Address |[s] hip://www.cafecorieche. org/bocks bible3/: N 2/darestthaw =] @6 |Links »
Darest Thou Now O Soul [l
Walt Whitrnan

Darest thou now O soul,
“Walle out wath me toward the unknown reglon,
“Where netther ground is for the feet nor any path to follow?

Mo map there, nor guide,
Mor woice seunding, nor touch of human hand,
IMor face with blooming flesh, nor ips, are in that land.

I know ttnot O soul,
Wor dost thou, all is blank before us,
All waits undrearn'd of in that region, that inaccessible land.

Till when the ties loosen,
All but the ties eternal, Time and Space,
Mor darkness, gravtation, sense, nor any bounds bounding us.

Then we burst forth, we float,
In Time and Space O soul, prepared for them,
Equal, equipt at last, (O joy! O fut of alll) them to fulfil O soul =

2] Done ’_’_’_|ﬂ Intarnet 7
Figure 12-1: Darest Thou Now O Soul as rendered by Internet Explorer 6

You can apply the same style sheet to many documents. Indeed, you generally will.
Thus, it’s common to put your style sheets in some central location on your web
server where all of your documents can refer to them; a convenient location is a
styles directory in the web server’s document root.

<?xml-stylesheet type="text/css" href="/styles/poem.css"?>

You might even use an absolute URL to a style sheet on another web site, though
this does leave your site dependent on the status of the external site.

<?xml-stylesheet type="text/css"
href="http://www.cafeconleche.org/styles/poem.css"?>

You can even use multiple xm1-stylesheet processing instructions to pull in rules
from different style sheets, as in the following example:

<?xml version="1.0"7>

<?xml-stylesheet type="text/css" href="/styles/poem.css"?>

<?xml-stylesheet type="text/css"
href="http://www.cafeconleche.org/styles/poem.css"?>

<POEM>

316 Partlil + Style Languages

Although XML is the focus of this book, CSS style sheets also work with HTML documents.
The main differences between CSS with HTML and CSS with XML are as follows:

1. In HTML, the elements you can attach rules to are limited to standard HTML elements,
such as P, PRE, LI, DIV, and SPAN.

2. HTML browsers don't recognize processing instructions, so style sheets are attached
to HTML documents using LINK tags in the HEAD element. Furthermore, per-document
style rules can be included in the HEAD in a STYLE element, as in the following
example:

<LINK REL=STYLESHEET TYPE="text/css" HREF="/styles/poem.css" >
<STYLE TYPE="text/css">

PRE { color: red)
</STYLE>

3. HTML browsers don't render CSS properties as faithfully as XML browsers because of
the legacy formatting of elements. Tables are notoriously problematic in this respect.

DTDs and style sheets

Style sheets are more or less orthogonal to DTDs. A document with a style sheet
may or may not have a DTD, and a document with a DTD may or may not have a
style sheet. However, DTDs do often serve as convenient lists of the elements that
you need to provide style rules for.

In this and the next several chapters, most of the examples use documents that are
well formed but not valid. The lack of DTDs will make the examples shorter and the
relevant parts more obvious. However, there’s absolutely no reason why you can’t
attach a style sheet to a document that has a DTD. In either case, the style rules
only apply to the content of the document, not to the DTD.

CSS1 versus €SS2

The first version of CSS was thrown together rather quickly and left a lot to the
imagination. It was quite limited in what it could accomplish. For example, CSS
could make an element red but couldn’t make it the same color as the desktop. It
could make text bold but couldn’t make it shadowed. The underlying layout model
only really worked for left-to-right languages, such as English and Greek, and fell apart
when faced with documents containing right-to-left languages, such as Arabic, or
top-to-bottom languages, such as Chinese. Many details were insufficiently specified
and open to multiple incompatible interpretations. Most importantly for the pur-
poses of this book, CSS only really considered HTML; it didn’t work well for XML.
For example, it didn’t provide table formatting because that could be done with
HTML table tags.

Chapter 12 + CSS Style Sheets 317/

In 1998, the World Wide Web Consortium (W3C) published a revised and expanded
specification for CSS called CSS Level 2 (CSS2). At the same time, they renamed the
original CSS to CSS Level 1 (CSS1). CSS2 is mostly a superset of CSS1, with a few minor
exceptions. CSS2 incorporates many features that web developers and designers
have long requested from browser vendors. Of course, CSS2 fights the same back-
ward-compatibility battles with HTML that CSS1 fought. However, with XML, CSS2
can format content on both paper and the Web almost as well as a desktop publish-
ing program such as PageMaker or QuarkXPress can.

All browsers that can display XML documents support CSS Level 2, at least in part.
Therefore, this chapter focuses on CSS2 exclusively. The distinction between CSS1
and CSS2 is really only important for older browsers that don’t support XML at all.

CSS3

Work is ongoing to produce CSS Level 3 (CSS3). This is currently being developed at
the W3C as several independent pieces, including the following:

4 Better page formatting, including running headers and footers, page numbers,
and automatically updated cross-references

4 Styles for forms, including input fields, checkboxes, radio buttons, buttons,
list boxes, and more

4 Math styles for equations and numbers

4 Behavioral styles for tasks currently accomplished with JavaScript and DHTML
4 More accurate color matching

4 Multicolumn layouts

4 Selectors that operate by element content and relative position in the

document

When all of these are done, they’ll be rolled together with the existing CSS2 specifi-
cation to produce CSS Level 3. However, it’s unlikely that this will be finished before
2004, and it certainly won’t be implemented by browsers in any large way until at
least 2005.

Selecting Elements

The part of a CSS rule that specifies which elements it applies to is called a selector.
The most common kind of selector is simply the name of an element; for example,
TITLE in this rule:

TITLE { display: block; font-size: 16pt; font-weight: bold }

318

Part Ill 4+ Style Languages

However, selectors can also specify multiple elements, elements with a particular ID,
and elements that appear in particular contexts relative to other elements. Indeed,
a selector can be anything from a simple element name to a complex system of con-
textual patterns. Table 12-1 summarizes the selector patterns.

Table 12-1
CSS Selector Patterns

Syntax Meaning

* Matches all elements.

X Matches every element with the name X; for example, the pattern
STANZA matches all STANZA elements.

XY Matches every element with the name Y that is a descendent of an
element with the name X; for example, POEM VERSE matches all VERSE
descendents of POEM elements.

X >Y Matches every element named Y that is a child of an element named X;
for example, STANZA > VERSE matches all VERSE children of a STANZA
element.

X + Y Matches all elements named Y whose preceding sibling is an element

X:first-child

X[A]

X[A="M"]

X[A~="M"]

XLA|="M"]

named X. For example, STANZA + REFRAIN matches every REFRAIN
element that is immediately preceded by a STANZA element. VERSE +
VERSE matches every VERSE element that is immediately preceded by
another VERSE element. In Listing 12-3, this matches all verses in each
STANZA except the first.

Matches every element named X that is the first child of its parent ele-
ment; for example, POEM: first-child matches the first child element
of the POEM element. In Listing 12-3, this is the TITLE element.

Matches all elements named X that have an A attribute, no matter what
its value; for example, AUTHORLNAME] matches every AUTHOR element
with a NAME attribute.

Matches all elements named X whose A attribute has the value M; for
example, AUTHOR[LNAME="Walt Whitman"] matches every AUTHOR
element whose NAME attribute has the value Walt Whitman.

Matches all elements named X whose A attribute contains a space-
separated list of names, one of which is M; for example, AUTHOR[NAME=
"Walt"] matches every AUTHOR element whose NAME attribute has
the value Walt Whitman, Walt Smith, Walt Irving, or Irving Walt.

Matches all elements named X whose A attribute contains a space-
separated list of names the first of which is M; for example, AUTHOR
[NAME |="Walt"] matches every AUTHOR element whose NAME attri-
bute has the value Walt Whitman but not those whose NAME attribute
has the value Irving Walt.

Chapter 12 4+ CSS Style Sheets

Syntax Meaning

X#EM Matches any elements named X whose ID is M, as identified by an ID
type attribute. Unfortunately, this selector does not work properly for
XML in most web browsers.

X:Tang(7) Matches all elements named X that are written in the natural language
i, as indicated by an xm1:1ang attribute.

X:Tink Matches all elements named X that are inside a link whose target has
not yet been visited.

X:visited Matches all elements named X that are inside a link whose target has
been visited.

X:active Matches all elements named X that are currently selected.

X:hover Matches all elements named X over which the cursor is currently
positioned.

X:focus Matches all elements named X that currently have the focus.

Demonstrating these selectors calls for a poem with a slightly more complicated
structure. Listing 12-4 shows Shakespeare’s twenty-first sonnet. This has both STANZA
and REFRAIN elements, each of which contains VERSE elements. The STANZA ele-
ments have NUMBER attributes of ID type, as established by a document type decla-
ration. The POEM element has a TYPE attribute with the value SONNET.

Listing 12-4: Shakespeare’s Twenty-First Sonnet

<?xml version="1.0"7>
<?xml-stylesheet type="text/css" href="sonnet.css"?>
<IDOCTYPE POEM [

CIATTLIST STANZA NUMBER ID #IMPLIED>

»

<POEM TYPE="SONNET">
<POET>William Shakespeare</POET>
<TITLE>Sonnet 21</TITLE>

{STANZA NUMBER="stl1">
<VERSE>So is it not with me as with that Muse</VERSE>
<VERSE>Stirr'd by a painted beauty to his verse,</VERSE>
<VERSE>Who heaven itself for ornament doth use</VERSE>
<VERSE>And every fair with his fair doth rehearse;</VERSE>
</STANZA>
{STANZA NUMBER="st2">
<VERSE>Making a couplement of proud compare</VERSE>
<VERSE>With sun and moon, with earth and sea's rich
gems, </VERSE>

Continued

319

320

Part Ill 4+ Style Languages

Tip

Listing 12-4 (continued)

CVERSE>With April's first-born flowers, and all things
rare</VERSE>
<VERSE>That heaven's air in this huge rondure hems.</VERSE>
</STANZA>
<STANZA NUMBER="st3">
<VERSE>Q, Tet me, true in love, but truly write,</VERSE>
<VERSE>And then believe me, my love is as fair</VERSE>
<VERSE>As any mother's child, though not so bright</VERSE>
<VERSE>As those gold candles fix'd in heaven's air.</VERSE>
</STANZA>
<REFRATN>
<VERSE>Let them say more that Tike of hearsay well,</VERSE>
<VERSE>I will not praise that purpose not to sell.</VERSE>
</REFRAIN>
</POEM>

The universal selector

The * symbol selects all elements in the document. This lets you set default styles
for all elements. For example, this rule sets the default font to New York:

* { font-family: "New York" }
You can use * instead of an element name in other selector patterns to apply styles to
all elements with a specific attribute, attribute value, role, and so forth. For example,
this rule makes all elements whose TYPE attribute has the value SONNET italic:

*[TYPE="SONNET"] { font-style: italic }

There’s only one such element in Listing 12-4, but other documents might have
more of these, which may or may not be POEM elements.

If you are using the universal selector with just one other property specification, you

~, can leave out the *. For example, the preceding rule could be rewritten as follows:

[TYPE="SONNET"] { font-style: italic }

Grouping selectors

If you want to apply a set of properties to some but not all elements, list the element
names in the selector separated by commas. For example, in Listing 12-1 POET and
STANZA were both styled as block display with a 10-pixel margin. You can combine
these two rules like this:

POET, STANZA { display: block; margin-bottom: 10px }

Chapter 12 + CSS Style Sheets 3]

You can add as many elements as you like. For example, this rule applies style to
POET, STANZA, and REFRAIN elements:

POET, STANZA, REFRAIN { display: block; margin-bottom: 10px }

Furthermore, more than one rule can apply styles to a single element. So you can
combine some standard properties into a rule with many selectors, then use more
specific rules to apply custom formatting to selected elements. For example, in
Listing 12-1 all the elements were listed as block display. This can be combined into
one rule while additional formatting for the POET, STANZA, REFRAIN, and TITLE
elements is contained in separate rules, as shown in Listing 12-5.

Listing 12-5: sonnet.css

POEM, VERSE, TITLE, POET, STANZA, REFRAIN { display: block }
POET, STANZA, REFRAIN { margin-bottom: 10px }
TITLE {font-size: 16pt; font-weight: bold }

If the rules conflict, the last one in the style sheet is chosen.

Hierarchy selectors

In XML, as in life, what you look like depends heavily on what your ancestors looked
like. You can individually select elements that are children or descendents of a speci-
fied type of element with descendant, child, and sibling selectors.

Child selectors

A child selector uses the greater than sign > to select an element if and only if

it’s an immediate child of a specified parent. For example, to apply a rule to VERSE
elements that are children of STANZA elements but not to VERSE elements that are
children of REFRAIN elements, you’d use the selector STANZA > VERSE. These rules
make stanza verses bold but refrain verses italic:

STANZA > VERSE {font-weight: bold }
REFRAIN > VERSE {font-style: italic }

You can expand this to look at the parent of the parent, the parent of the parent
of the parent, and so forth. For example, the following rule says that a VERSE
element inside a STANZA element inside a POEM element should be rendered in a
monospaced font:

POEM > REFRAIN > VERSE { font-family: Courier, monospaced }

3272 Partlil + Style Languages

In practice, this level of specificity is rarely needed. In cases in which it does seem
necessary, you can often rewrite the style sheet to rely more on inheritance, cas-
cades, and relative units, and less on the precise specification of formatting.

Descendant selectors

A descendant selector chooses elements that are children, grandchildren, or other
descendants of a specified element. For example, you can specify one style for
VERSE elements contained in a POEM element and a different style for VERSE ele-
ments contained in a BOOK element. To do this, prefix the name of the ancestor
element to the name of the styled element separated by a space. The following
rules make book verses bold, but poem verses italic:

BOOK VERSE {font-weight: bold }
POEM VERSE {font-style: italic; font-weight: normal }

In the event of a conflict between two rules, the closer one takes precedence. For
example, if a BOOK contains a POEM that contains VERSE elements, those VERSE
elements will be italic and not bold. In case of a conflict between two equally
specific rules, the last rule encountered in the style sheet takes precedence.

You can even give VERSE elements inside POEM elements inside BOOK elements a
completely different style that is not shared by VERSE elements inside POEM ele-
ments that are not inside BOOK elements or VERSE elements that are not inside
POEM elements but are inside BOOK elements. For example, this rule makes such
elements red:

BOOK POEM VERSE {color: red }
Not all styles conflict with each other. For example, consider these three rules:

BOOK VERSE {font-weight: bold }
POEM VERSE {font-style: italic }
CHAPTER VERSE {color: red }

Together these say that every VERSE element contained inside a BOOK element will
be bold; every VERSE element contained inside a POEM element will be italic; and
every VERSE element contained inside a CHAPTER element will be red. A VERSE ele-
ment that matches all three rules — one that has a BOOK ancestor, a POEM ancestor,
and a CHAPTER ancestor — will have all three properties; that is, it will be bold,
italic, and red.

In Listings 12-2 and 12-4, all VERSE elements are descendants of POEM elements, but
not immediate children. Some VERSE elements are immediate children of STANZA
elements, and some are immediate children of the REFRAIN element. A descendant
selector of the form POEM VERSE matches a VERSE element that is an arbitrary
descendant of a SONNET element. To specify a minimum generation for a descendant,
you can use the selector POEM * VERSE, which forces the VERSE element to be at
least a grandchild, or lower descendent of the POEM element.

Chapter 12 4+ CSS Style Sheets

You can combine descendant and child selectors to find specific elements. For
example, the following rule italicizes all VERSE elements that are children of a
REFRAIN element that is, in turn, a descendant of a POEM element.

POEM REFRAIN>VERSE { font-style: italic }

Adjacent sibling selectors

A plus sign (+) between two element names signifies that the left-hand element
precedes the right-hand element at the same level of the hierarchy. The right-hand
element is selected. For example, this rule finds all REFRAIN elements that share a
parent with a STANZA element and that immediately follow a STANZA element:

STANZA+REFRAIN {color: red}

This rule finds all VERSE elements that are preceded by another VERSE element:

VERSE+VERSE {color: blue}

Applied to Listings 12-2 and 12-4, this has the effect of coloring all verses blue
except the first one in the stanza.

Attribute selectors

Attribute selectors identify specific element/attribute combinations. Square
brackets surround the name of the attribute being specified. For example, this

rule specifies a script font for all <POEM TYPE="x"> elements, but not plain <POEM>
elements:

POEMLTYPE] { font-family: "Zapf Chancery", cursive }

To distinguish between <POEM TYPE="x"> and <POEM TYPE="y"> elements, you
can add an equals sign (=) followed by the quoted attribute value. For example, this
rule only applies to sonnets:

POEMLTYPE="SONNET"] { font-style: italic }

You can use a ~= to indicate that the attribute value only needs to contain the spec-
ified word somewhere within it. For example, this rule italicizes all POEM elements
whose TYPE attribute contains the word SONNET:

POEMLTYPE~="SONNET"] { font-style: italic }

However, this would not find elements whose TYPE attribute contains the word
SONNETS or UNISONNET. CSS only looks for complete words. It does not look for
substrings.

323

324

Part Ill 4+ Style Languages

You can use a | = to indicate that the attribute value needs to begin with the speci-
fied word. For example, this rule italicizes all POEM elements whose TYPE attribute
begins with the word SONNET:

POEMLTYPE|="SONNET"] { font-style: italic }

This would not find elements whose TYPE attribute had the value "HEXAMETER
SONNET", but it would match a POEM with a TYPE attribute having the value
"SONNET HEXAMETER".

ID selectors

Sometimes, a unique element needs a unique style. You need a rule that applies to
exactly that one element. For example, suppose you want to make one element in a
list bold to really emphasize it in contrast to its siblings. In this case, you can write
arule that selects the element by its ID —that is, by the value of its ID type attribute.
The selector is the name of the element, followed by a sharp sign (#) and the value
of the ID attribute.

For example, this rule makes the first STANZA element, and only the first STANZA
element, in Listing 12-4 bold. Other STANZA elements appear with the default weight.

STANZA#stl {font-weight: bold}

However, there’s a catch. To tell which attributes have ID type and can therefore be
selected by an ID selector, the browser must read the DTD. Most browsers, including
Safari, Mozilla, and Netscape, do not read the external DTD subset, so if that’s where
the attribute is declared, they won’t know that its type is ID and won’t apply the
style rule. Internet Explorer does read the external DTD subset, but it’s just plain
buggy and won’t apply this style rule no matter what. Opera also fails to apply this
rule even when the attribute is declared in the internal DTD subset. You're better
off simply using an attribute selector that picks up the attribute by name, like this:

STANZALNUMBER="st1"] {font-weight: bold}

Pseudo-elements

Pseudo-elements are treated as elements in style sheets but are not necessarily
particular named elements in the document source code or the document tree. They
are abstractions of certain parts of the rendered document after application of the
style sheet (for example, the first line of a paragraph). Pseudo-elements address
parts of the document that aren’t normally identified as separate elements, but
nonetheless often need separate styles. These include the following:

Chapter 12 4+ CSS Style Sheets

4 The first line of an element
4 The first letter of an element
4 The position immediately before an element

4 The position immediately after an element

Addressing the first letter

The most common reason to format the first letter of an element separately from the
rest of the element is to insert a drop cap, as shown in Figure 12-2. This is accom-
plished by writing a rule that is addressed with the element name and followed by

:first-letter, as in the following example:

CHAPTER:first-letter {
font-size: 300%;
float: left;
vertical-align: text-top;
margin-right: 12px

| - Microsoft Inte

J_F_ile Edit View Favorites Tools Help

‘«r—-.'*.@

Back Forward Stop Refresh Home

Q G I |

Search Favorites History |

| J Adress IE'I D:Abooks\Bible\CD\source\1 ZI\LatinE enesis. xml j 'r>.é0

N PRINCIPIO CREAVIT DEUS CAELUM ET TERRAM TERRA AUTEM ERAT

inanis et vacua et tenebrae super faciem abyssi et spiritus

Dei ferebatur super aquas dixitque Deus fiat lux et facta est
lux et vidit Deus lucem guod esset bona et divisit lucem ac
tenebras appellavitque lucem diem et tenebras noctem
factumgue est vespere et mane dies unus dixit quoque Deus fiat
firmamentum in medio aguarum et dividat aguas ab aquis et
fecit Deus firmamentum divisitgue aguas guae erant sub
firmamento ab his quae erant super firmamentum et factum est
ita vocavitque Deus firmamentum caelum et factum est vespere
et mane dies secundus dixit vero Deus congregentur aquae guae
sub caslo sunt in locum unum et appareat arida factumgue est
ita et vocavit Deus aridam terram congregationesque aquarum
appellavit maria et vidit Deus quod esset bonum et ait germinet
terra herbam virentem et facientem semen et lignum pomiferum
faciens fructum iuxta genus suum cuius semen in semet ipso sit
super terram et factum est ita et protulit terra herbam virentem
et adferentem semen iuxta genus suum lignumgue faciens

-

|

'&] Done || | = My Computer

PA

Figure 12-2: A drop cap on the first-letter pseudo-element

with small caps used on the first-line pseudo-element

325

326

Part Ill 4+ Style Languages

Addressing the first line

The first line of an element is also often formatted differently than subsequent lines.
For example, it might be printed in small caps instead of normal body text, as shown
in Figure 12-2. You can attach the : first-11ine selector to the name of an element
to create a rule that only applies to the first line of the element, as in the following
example:

CHAPTER:first-1ine { font-variant: small-caps }

Exactly what this pseudo-element selects is relative to the current layout. If the
window is larger and there are more words in the first line, more words will be in
small caps. If the window is made smaller or the font gets larger so that the text
wraps differently and fewer words fit on the first line, the words that are wrapped
to the next line are no longer in small caps. The determination of which characters
compose the first-1ine pseudo-element is deferred until the document is actually
displayed.

Before and after

The :before and :after pseudo-elements select the location immediately before
and after the element that precedes them. The content property is used to put data
into this location. For example, this rule places the string between STANZA
objects to help separate the stanzas. The line breaks are encoded as \A in the string
literal:

STANZA:after {content: "\A---------- \A"}
STANZA:before {content: "\A---------- \A"}

Content is the only property a : before or :after selector is allowed to have. In

addition to including raw text, this can insert the value of an attribute, various kinds
of quotation marks, or a file found at a particular URL.

content in Chapter 14.

@ The content property is discussed in more depth in the section on generated
eierence

Pseudo-classes

Pseudo-classes select elements that have something in common, but do not neces-
sarily have the same type. Pseudo-classes differ from regular classes in that they
select elements based on aspects other than the name, attributes, or content of the
element. Pseudo-classes differ from pseudo-elements in that they always select an
entire element, never just a part of it.

Chapter 12 + CSS Style Sheets 37/

For example, a pseudo-class might be based on the position of the mouse, the object
that has the focus, or whether an object is a link. The :hover pseudo-class refers to
whichever element the cursor is currently over, regardless of the element’s type. An
element can even change its pseudo-class as the reader interacts with the document.
Some pseudo-classes are mutually exclusive, but most can be applied simultaneously
to the same element and can be placed anywhere within an element selector. CSS
pseudo-classes include the following:

4+ :first-child
:hover
:lang
:right
:left
:first

AR IR R

first-child
The : first-child pseudo-class selects the first child of the named element, regard-
less of its type. For example, this rule makes the first verse of each stanza bold:

STANZA:first-child {font-weight: bold}

:hover

The :hover pseudo-class refers to elements that the mouse or other pointing
device is pointing at, but without the mouse button depressed. For example, this
rule emboldens the STANZA element the cursor is pointing at:

STANZA:hover { font-weight: bold }

The STANZA element returns to its normal weight when the cursor is no longer
positioned over it.

:lang()

The :1ang() pseudo-class selects elements with a specified language. In XML, the
language is specified via the xm1: 1ang attribute. The following rule changes the
direction of all VERSE elements written in Hebrew to read right to left, rather than
left to right:

VERSE:Tang(he) { direction: "rtl1" }

328

Part Ill 4+ Style Languages

Inheritance

CSS does not require that you define a rule giving a value for every property to every
element. Some properties have default values that are used when no rule is specified.
Even more importantly, most elements can simply inherit the value of a property
from their parent element. For example, if no rule explicitly specifies the font size of
an element, the element has the same font size as its parent. If no rule specifies the
color of an element, the element has the same color as its parent. The same is true
of most CSS properties. In fact, the only properties that aren’t inherited are the
background and box properties. For example, consider these rules:

P { font-weight: bold;
font-size: 24pt;
font-family: sans-serif}
BOOK { font-style: italic; font-family: serif}

Now consider this XML fragment:

<P>

According to the American Library Association,

Michael Willhoite's <BOOK>Daddy's Roommate</BOOK> was

the #2 most frequently banned book in the U.S. in the 1990s.
</P>

Although the BOOK element has not been specifically assigned a font-weight or a
font-size, it will be rendered in 24-point bold because it is a child of the P element.
It will also be italicized because that is specified in its own rule. BOOK inherits the
font-weight and font-size of its parent P. If later in the document a BOOK element
appears in the context of some other element, it will inherit the font-weight and
font-size of that element.

The font-family is a little trickier because both P and BOOK declare conflicting
values for this property. Inside the BOOK element, the font-family declared by
BOOK takes precedence. Outside the BOOK element, P’s font-family is used. So,
“Daddy’s Roommate” is drawn in a serif font, while “most frequently banned book”
is drawn in a sans serif font.

Often, you want the child elements to inherit formatting from their parents, so it’s
important not to overspecify the formatting of any element. For example, suppose |
had declared that BOOK was written in a 12-point font, as follows:

BOOK {font-style: italic; font-family: serif; font-size: 12pt}

Then the example would be rendered as shown in Figure 12-3, with the BOOK title
being much smaller than the body text it’s embedded in.

You could fix this with a special rule that uses a contextual selector to pick out BOOK
elements inside P elements, but it’s easier to simply inherit the parent’s font-size.

Chapter 12 + CSS Style Sheets 390

3 http://www.cafeconleche.org/books/bibled/source/12/banned.xml - Microsoft Internet Explorer
File Edit “iew Favorites Tools Help -
WBack v = -+ G 2] A} | QGemch [Faveites EhMeda £ | Zh~ S = A

Address ||='[hitpe A wwn cafeconieche org/bocks/bible3/source/1 2/banned sl j & Go | Links *

According to the American Library Association,
Michael Willhoite's paaays Roommae Was the #2 most
frequently banned book in the U.S. in the 1990s.

2] Done ’_’_’_|‘ Intamet
Figure 12-3: The BOOK written in a 12-point font size

B

One way to avoid problems like this, while retaining some control over the size of
individual elements, is to use relative units such as ems and exs instead of absolute
units such as points, picas, inches, and centimeters. An em is the width of the letter
m in the current font. An ex is the height of the letter x in the current font. If the
font gets bigger, so does everything measured in ems and exs.

A similar option that’s available for some properties is to use percentage units.

For example, the following rule sets the font size of the FOOTNOTE_NUMBER element
to 80 percent of the font size of the parent element. If the parent element’s font size
increases or decreases, FOOTNOTE_NUMBER’s font size scales accordingly.

FOOTNOTE_NUMBER { font-size: 80% }

Exactly what the percentage is a percentage of varies from property to property. In
the vertical-align property, the percentage is of the line height of the element
itself. In a margin property, a percentage is a percentage of the element’s width.

Cascades

There are several ways a CSS style sheet can be attached to an XML document:
4 The XML document can include an <?xml-stylesheet?> processing instruc-
tion in its prolog. In fact, there can be more than one of these.
4 The style sheet itself can import other style sheets.

4+ The user can specify a style sheet for the document using mechanisms inside
the browser.

4 The browser can provide a default style sheet.

330

Part Ill 4+ Style Languages

Tip

Thus, a single document might have more than one style sheet. For example, a
browser might have a default style sheet that is added to the one that the designer
provides for the page. In such a case, it’s entirely possible that there will be multiple
rules that apply to one element, and that these rules may conflict. It’s important to
determine in which order the rules are applied. This process is called a cascade,
from which cascading style sheets get their name.

When multiple style rules match a particular element, the most specific one is
chosen. For example, these two rules say that verses have a plain font-style but
that verses inside a refrain are italicized:

VERSE {font-style: normal }
REFRAIN VERSE {font-style: italic }

A verse inside a refrain will be italic because a rule that applies only to verses inside
refrains is more specific than one that applies to all verses. In case of a conflict
between two equally specific rules, the last rule encountered in the style sheet
takes precedence.

Try to avoid depending on cascading order. It's rarely a mistake to specify as little

» style as possible and to let the browser preferences take control.
s

If no rule matches a given element, that element inherits its properties from its
parent. If there is no value to be inherited from the parent element, the default
value is used. You can give most properties the value inherit to say explicitly that
it inherits the value from its parent. However, because this is normally the default,
this isn’t done much in practice. Instead, the property is simply left unspecified.

Different Rules for Different Media

XML documents aren’t just for web pages. They can be shown on TV screens, printed
on paper, bound in books, read by speech synthesizers, beamed to Palm Pilots,

and projected onto movie screens. Each media type has its own customary styles
and formats. Italics don’t make much sense on a dumb terminal. A font that’s easily
readable on paper at 300 dpi might be illegible when displayed on a low-resolution
computer screen.

CSS allows you to vary styles to match the medium in which the content is displayed.
For example, text is easier to read onscreen if it uses a sans serif font, while text on
paper is generally easiest to read if it is written in a serif font. You can enclose style
rules intended for only one medium in an @media rule naming that medium. There
can be as many @med1ia rules in a document as there are media types to specify. For
example, Listing 12-6 formats a POEM differently depending on whether it’s being
printed on paper or displayed onscreen.

Chapter 12 4+ CSS Style Sheets

Listing 12-6: A CSS Style Sheet with Different Styles for
Different Media

@media print {
POEM { font-size: 10pt; font-family: Times, serif }
TITLE { font-size: larger; font-weight: bold;
font-family: Helvetica, sans-serif }
1
@media screen {
POEM { font-size: 1Zpt;
font-family: Geneva, Arial, sans-serif }
1
@media screen, print {
VERSE { line-height: 1.2 }
1
POEM, VERSE, TITLE, POET, STANZA, REFRAIN { display: block }
POET, STANZA, REFRAIN { margin-bottom: 2mm }
TITLE {font-size: Targer; font-weight: bold }

The first @med1ia block defines styles that will only be used if the document is printed
on paper. The second @media block defines styles that will only be used when the
document is displayed on the screen. The screen rules pick a larger font than the
print rules do. Because computer displays have much lower resolutions than print-
ers, it’s important to make the font larger on the screen than on the printout and to
choose a font that’s designed for the screen. The third @media block provides styles
that apply to both of these media types. To designate style instructions for multiple
media types simultaneously, simply list them following the @media rule designator
separated by a comma. The last three rules apply in all media: screen, print, or any-
thing else.

The browser decides which rules make sense in its current context when it knows
how it’s going to display the document. CSS does not specify an all-inclusive list of
media types, although it does provide a list of 10 possible values:

4 al1—All devices

4 aural (continuous, aural) — Speech synthesizers

4 braille (continuous, tactile) —Braille tactile feedback devices for the sight
impaired

4+ embossed (paged, tactile) —Paged Braille printers

4+ handheld (visual) —PDAs and other handheld devices, such as Windows CE
palmtops, Newtons, and Palm Pilots

332

Part Ill 4+ Style Languages

4 print (paged, visual) — All printed, opaque material

4+ projection (paged, visual) —Presentation and slide shows, whether projected
directly from a computer or printed on transparencies

4 screen (continuous, visual) — Bitmapped, color computer displays

4 tty (continuous, visual) —Dumb terminals and old PC monitors that use a
fixed-pitch, monochromatic character grid

4 tv (aural/visual) — Television-type devices; that is, low-resolution, analog
display, color

Some properties are only available with specific media types. For example, the
pitch property only makes sense with the aural media type.

Browsing software does not have to support all these types. Indeed, I know of no
single device that does support all of these. However, style sheet designers should
probably assume that readers will use any or all of these types of devices to view
their content.

Importing Style Sheets

The @import rule embeds a different style sheet into an existing style sheet. This
allows you to build large style sheets from smaller, easier-to-understand pieces.
An absolute or relative URL is used to identify the style sheets. For example, the
following rule imports the file poetry.css:

@import url(poetry.css);
@import rules may specify a media type following the name of the style sheet, in
which case the imported style sheet rules will only be used in the specified medium.
For example, the following rule imports the file printmedia.css. However, the rules
in this style sheet will only be applied to printouts and not to screen displays.

@import url(printmedia.css) print;

The next rule imports the file continuous.css that will be used for both computer
monitors and/or television display:

@import url(continuous.css) tv, screen;
The @import directives must appear at the beginning of the style sheet, before any

rules. Cycles (for example, poem.css imports stanza.css, which imports poem.css)
are prohibited.

Chapter 12 4 CSS Style Sheets 333

Style sheets that are imported into other style sheets have lower precedence than
the importing style sheet. This means that if sonnet.css imported poem.css and they
declared conflicting rules for an element, the rules in sonnet.css would override
those in poem.css.

Character Sets

CSS style sheets can be written in a multitude of encodings —ISO 8859-1, SJIS, UTF-8,
and so on—just like XML documents. There are three ways to specify the character
set in which a style sheet is written, and they take precedence in the following order:

1. The HTTP “charset” parameter in a “Content-Type” field
2. An @charset rule in the style sheet itself

3. The charset pseudo-attribute of the xm1-stylesheet processing instruction
that links the style sheet to the XML document

Most of the time, the @charset rule is the easiest one to use because it lets the
person who writes the style sheet choose whatever encoding is convenient for him
or her. Each style sheet can contain no more than one of these. If present, it must
appear at the very beginning of the document and cannot be preceded by any other
characters. It’s followed by the name of the character set in double quotes. For
example, this rule says that the style sheet is written in the ISO 8859-1 character
set, a.k.a. Latin-1:

@charset "IS0-8859-1"

The character set name specified in this statement must be a name as described
in the IANA registry. The complete list can be found at http://www.iana.org/
assignments/character-sets.

Summary

This chapter showed you how to apply CSS styles to XML elements and documents.
In this chapter, you learned the following:

4+ CSS is a straightforward declarative language for applying styles to the contents
of elements that works well with HTML and even better with XML.

4 Browser implementations of CSS are imperfect. Extensive testing is necessary
before publishing a document and its style sheet.

334

Part Ill 4+ Style Languages

4 One or more processing instructions in the form <?xml-stylesheet type=
"text/css" href="url"?>in the prolog indicates which style sheets a
browser should apply to the document.

4 Selectors are a list of the elements that a rule applies to.

4+ Many (though not all) CSS properties are inherited by the children of the
elements they apply to.

<4 If multiple rules apply to a single element, the formatting properties cascade
in a sensible way.

4 You can include C-like /* */ comments in a CSS style sheet.
4 One style sheet can import another using an @import rule.
4 An @med1a rule identifies in which media the given styles should be applied.

4+ An @charset rule identifies the character set in which the style sheet is
encoded.

This chapter focused on how you choose the elements to apply styles to. The next

two chapters focus on the styles themselves. You'll learn about all the different

CSS properties that let you specify borders, colors, margins, fonts, sizes, positions,

and more.

¢+ o+ 0+

CHAPTER

CSS Layouts

4+ + 4+ 4+

When a browser renders an XML document, it places .

the document text on one or more pages. The text on In This Chapter
each page is organized into nested boxes. Each paragraph is a
box. Each line in the paragraph is a box. And these line boxes CSS units
can contain still other boxes, which ultimately contain text. As
well as paragraphs, there may be tables and lists and other The display property
items that are placed in boxes and that are subdivided into
smaller boxes. Furthermore, the browser can create boxes to Box properties
hold images, pull quotes, and other content that isn’t part of
the normal flow of the page. This chapter shows you how CSS Size
arranges text on the page in boxes with different sizes, bor-
ders, margins, padding, and positions. You learn how to create Positioning

boxes that are a certain size or that fall into a certain range of
sizes. You also learn how to position the boxes at particular
points on the page, as well as how to let the browser do the
hard work for you. + + + +

Formatting pages

Caution Netscape 6.0 and 7.0, Mozilla, Opera 4.0 and later, Safari,
and Internet Explorer 5.0 and later all implement only
some parts of the CSS specification. Earlier versions of the
major browsers, while perhaps supporting some form of
CSS for HTML documents, do not support it at all for XML
documents. To make matters worse, they all implement
different subsets of the specification, and sometimes don't
implement the same subsets for XML as they do for HTML.
I'll note where one browser or another has a particular
problem as we go along. However, if you find that some-
thing in this chapter doesn’t work as advertised in your
favorite browser, please complain to the browser vendor,
not to me.

CSS Units

CSS properties have names and values. Table 13-1 lists a few
of these property names and sample values.

336 Partlil + Style Languages

Table 13-1
Sample Property Names and Values

Name Value

display none

font-style italic

margin-top 0.51n

font-size 12pt

border-style solid

color ##CC0033

background-color white

background-image urlChttp://www.idgbooks.com/images/paper.gif)
list-style-image url(/images/redbullet.png)
lTine-height 120%

The names are all CSS keywords. However, the values are much more diverse.
Some of them are keywords, such as the none in display: none orthe solid in
border-style: solid. Other values are numbers with units, such as the 0.51n in
margin-top: 0.5inorthe 12ptin font-size: 12pt. Still other values are URLs,
suchas url(http://www.idgbooks.com/images/paper.gif) in background-
image: url(http://www.idgbooks.com/images/paper.gif);and still others
are RGB colors, such as the #CC0033 in color: #CC0033. Different properties per-
mit different values. However, only five different kinds of values account for almost
all properties. These five types are:

4 Length

4+ URL

4+ Color

4+ Keyword

4 String
Keywords vary from property to property, but the other kinds of values are the
same from property to property. That is, a length is a length regardless of which
property it’s the value of. If you know how to specify the length of a border, you

also know how to specify the length of a margin, a padding, an image, and a font.
This reuse of syntax makes working with different properties much easier.

Chapter 13 4 CSS Layouts 337/

Length values

In CSS, length is a scalar measure used for width, height, font size, word and letter
spacing, text indentation, line height, margins, padding, border widths, and many

other properties. Lengths are given as a number followed by the abbreviation for

one of these units:

Inches in
Centimeters cm
Millimeters mm
Points pt
Picas pc
Pixels pX
Ems em
Exs ex

For example, this rule says that the font used for the TITLE element should be
exactly 1 centimeter high:

TITLE {font-size: lcm}

Although font sizes are normally specified in points rather than centimeters, the
browser will perform any necessary conversion between units.

The number may have a decimal point (for example, margin-top: 0.3in). Some
properties allow negative values, such as -0.51n, but not all do; and even those
that do often place limits on how negative a length can be. It’s best to avoid nega-
tive lengths for maximum cross-browser compatibility.

The units of length are divided into three classes:

4 Absolute units —Inches, centimeters, millimeters, points, and picas
4 Relative units —Pixels, ems, and exs

4 Percentages

Absolute units of length

Absolute units of length are something of a misnomer because there’s really no
such thing as an absolute unit of length on a computer screen. Changing a moni-
tor’s resolution from 640x480 to 1600x1200 changes the length of everything on the
screen, inches and centimeters included. Nonetheless, CSS supports five “absolute”
units of length that at least don’t change from one font to the next. These are listed
in Table 13-2, along with the conversion factors between them.

3358

Part Ill 4+ Style Languages

Table 13-2
Absolute Units of Length

Inch Centimeters Millimeters Points Picas

(in) (cm) (mm) (Pt (P9
Inch 1.0 2.54 25.4 72 6
Centimeters 0.3937 1.0 10 28.3464 47244
Millimeters 0.03937 0.1 1.0 2.83464 0.47244
Points 0.01389 0.0352806 0.352806 1.0 0.83333
Picas 0.16667 0.4233 4.233 12 1.0

Relative units of length
CSS also supports three relative units for lengths:

4 em—The width of the letter m in the current font
4+ ex—The height of the letter x in the current font

4 px— The size of a pixel (This assumes square pixels. All common modern dis-
plays use square pixels, although some older PC monitors, mostly now leaking
lead into landfills, did not.)

For example, this rule sets the left and right borders of the PULLQUOTE element to
twice the width of the letter m in the current font and the top and bottom borders
to one and a half times the height of the letter x in the current font:

PULLQUOTE { border-right-width: 2em;
border-left-width: z2em;
border-top-width: 1.5ex;
border-bottom-width: 1.5ex }

The normal purpose of ems and exs is to set a width that’s appropriate for a given
font, without necessarily knowing how big the font is. For example, in the preceding
rule, the font size is not known, so the exact width of the borders is not known
either. It can be determined at display time by comparison with the m and the x in
the current font. Larger font sizes will have correspondingly larger ems and exs.

Lengths in pixels are relative to the height and width of a (presumably square) pixel
on the monitor. Widths and heights of images are often given in pixels.

Caution Pixel measurements are generally not a good idea. First, the size of a pixel varies

widely with resolution. Most power users set their monitors at much too high a
resolution, which makes the pixels far too small for legibility.

Chapter 13 4+ CSS Layouts 339

Second, within the next five years, 200-dpi and even 300-dpi monitors will
become common, finally breaking away from the rough 72-pixels-per-inch (give or
take 28 pixels) de facto standard that's prevailed since the first Macintosh in 1984.
Documents that specify measurements in non-screen-based units, such as ems,
exs, points, picas, and inches, will be able to make the transition. However, docu-
ments that use pixel-level specifications will become illegibly small when viewed
on high-resolution monitors.

Percentage units of length

Finally, lengths can be specified as a percentage of something. Generally, this is a
percentage of the current value of a property. For example, if the font-size of a
STANZA element is 12 points, and the font size of the VERSE the STANZA contains is
set to 150 percent, the font size of the VERSE will be 18 points. Such a rule would
look like this:

VERSE {font-size: 150%}

The exact size in this case does depend on the size of the font in the parent ele-
ment. If the parent element font-size is bigger, the font-size of the child element will
be bigger. If the parent element font-size is smaller, the font-size of the child element
will be smaller.

URL values

Several CSS properties can have URL values, including background-image,
content,and Tist-style-image. Furthermore, as you saw in the last chapter, the
@import rule uses URL values. Literal URLs are placed inside url (). All forms of
relative and absolute URLs are allowed. For example:

DOC {background-image: url(http://www.mysite.com/bg.gif) }
LETTER {background-image: url(/images/paper.gif) }

GAME {background-image: url(currentposition.gif)}

INSTRC {background-image: url(../images/screenshot.gif)}

You can enclose the URL in single or double quotes, although nothing is gained by
doing so. For example:

DOC {background-image: url("http://www.mysite.com/bg.gif")}
LETTER {background-image: url('/images/paper.gif') }

GAME {background-image: url("currentposition.gif") }

INSTRC {background-image: url('../images/screenshot.gif') }

Any parentheses that appear inside the URL should be escaped as \ (and \) or %2B
and %2C. Otherwise, standard URL escaping rules apply.

340

Part Ill 4+ Style Languages

Color values

One of the most widely adopted uses of CSS is applying foreground and background
colors to elements on the page. Properties that take on color values include color,
background-color, and border-color.

CSS provides four ways to specify color: by name, by hexadecimal components, by
integer components, and by percentages. Defining color by name is the simplest
approach. CSS understands these 16 color names adopted from the Windows VGA
palette:

aqua navy
black olive
blue purple
fuchsia red
gray silver
green teal
lime white
maroon yellow

Of course, the typical color monitor can display several million more colors. You
can create other colors by specifying values for the RGB components of the colors.
CSS uses a 24-bit color model. Each primary color is stored in 8 bits. An 8-bit
unsigned integer is a number between 0 and 255. This number can be given in
either decimal or hexadecimal. Alternately, each component can be given as a per-
centage between 0 percent (0) and 100 percent (255). Table 13-3 lists some of the
possible colors and their decimal, hexadecimal, and percentage RGB values.

Table 13-3

Sample CSS Colors
Color Decimal RGB Hexadecimal RGB Percentage RGB
Pure red rgb(255,0,0) #FF0000 rgb(100%, 0%, 0%)
Pure green rgb(0,255,0) #00FFO0 rgb(0%, 100%, 0%)
Pure blue rgb(0,0,255) #0000FF rgb (0%, 0%, 100%)
White rgb(255,255,255) #FFFFFF rgb(100%, 100%, 100%)
Black rgb(0,0,0) #000000 rgb(0%, 0%, 0%)
Light violet rgb(255,204,255) #FFCCFF rgb(100%, 80%, 100%)

Medium gray rgb(153,153,153) #999999 rgb(60%, 60%, 60%)

Tip

Chapter 13 4+ CSS Layouts

Color Decimal RGB Hexadecimal RGB Percentage RGB
Brown rgb(153,102,51) #996633 rgb(60%, 40%, 20%)
Pink rgb(255,204,204) #FFCCCC rgb(100%, 80%, 80%)
Orange rgb(255,204,204) #FFCCO0 rgb(100%, 80%, 80%)

Many people still use 256-color displays. Some people even browse the Web in
monochrome, especially on handheld devices such as Palm Pilots. Even on more

o

4 capable systems, some colors are distinctly different on Macs and PCs. The most

reliable colors are the 16 named colors.

The next most reliable colors are those formed using only the hexadecimal com-
ponents 00, 33, 66, 99, CC, and FF (0, 51, 102, 153, 204, 255 in decimal; 0%, 20%,
40%, 60%, 80%, 100% in percentage units). For example, 33FFCC is a “browser-
safe” color because the red component is made from two 3s, the green from two
Fs, and the blue from two Cs.

If you specify a hexadecimal RGB color using only three digits, CSS duplicates
them; for example, #FCO is really #FFCCO0 and #963 is really #996633.

System colors

CSS also allows you to specify colors by copying them from the local graphical user
interface (GUI). These system colors can be used with all color-related properties.
Style rules based on system colors take into account user preferences, and there-
fore offer some advantages, including the following:

4 Pages that fit the user’s preferred look and feel
4+ Greater accessibility for users whose default settings compensate for a
disability

Table 13-4 lists system color keywords and their descriptions. Any of the color
properties can take on these values.

Table 13-4
Additional System Colors Used with All Color-Related Properties
System Color Keywords Description
ActiveBorder The color of the border of the currently active window.
ActiveCaption The color of the caption of the currently active window.
AppWorkspace The background color of the multiple-document interface

parent window.

Continued

341

Part Ill 4+ Style Languages

Table 13-4 (continued)

System Color Keywords

Description

Background
ButtonFace

ButtonHighlight

ButtonShadow
ButtonText
CaptionText

GrayText

Highlight
HighlightText
InactiveBorder
InactiveCaption
InactiveCaptionText
InfoBackground
InfoText

Menu

MenuText
Scrollbar
ThreeDDarkShadow
ThreeDFace
ThreeDHighlight
ThreeDLightShadow

ThreeDShadow

Window
WindowFrame

WindowText

Desktop background color.
The foreground color for three-dimensional GUI widgets.

The shadow color for three-dimensional widgets (for edges
facing away from the light source).

The shadow color for three-dimensional widgets.
Color of the text on push buttons.

Color of the text in captions, size boxes, and scroll bar
arrow boxes.

The color of disabled text. This color is set to #000 if the
current display driver does not support a solid gray color.

The color of items selected in a control.

The color with which selected text is highlighted.
The color of an inactive window border.

The color of an inactive window caption.

The color of the text of a caption of an inactive window.
The background color for ToolTip controls.

The text color used in ToolTip controls.

The background color of a menu.

The color of text in menu items.

The color of the scroll bar area.

Dark shadow for three-dimensional widgets.

The face color for three-dimensional widgets.

The highlight color for three-dimensional widgets.

The light color for three-dimensional widgets (for edges
facing the light source).

The color of the dark shadow for three-dimensional
widgets.

The color in the window background.
The color of the window frame.

The color of the text in the window.

Chapter 13 4 CSS Layouts 3473

For example, this rule sets the foreground and background colors of a VERSE to the
same colors used for the foreground and background of the browser’s window:

VERSE { color: WindowText; background-color: Window}

Keyword values

Keywords are not necessarily the same from property to property, but similar prop-
erties generally support similar keywords. For example, the value of border-Teft-
style can be any one of the keywords none, dotted, dashed, solid, double,
groove, ridge, inset,or outset. The border-right-style, border-top-style,
border-bottom-style, and border-style properties can also assume one of this
set of values. The individual keywords are discussed in the sections about the indi-
vidual properties.

Strings

A few CSS properties, such as font-family and content, have string values. In
CSS, a string is a sequence of Unicode characters enclosed in either single or dou-
ble quotes. If the string contains double quotes, single quotes must be used to
enclose the string and vice versa.

You can also use a backslash to escape otherwise illegal characters, typically single
or double quotes. For example, you can use \ " to include a double quote mark inside
a string that’s surrounded by double quotes. Strings cannot contain line breaks.
However, you can use \A to insert one. You can also include a raw line break if you
prefix it by a backslash first. This is sometimes useful in the content property.

You can also use a backslash followed by the hexadecimal value of a Unicode char-
acter to insert a character that isn’t easy to type. For example, to insert the Greek
letter ©, Unicode value 398 (in hexadecimal), you could simply use \398.

The Display Property

From the perspective of CSS, all elements are block elements, inline elements, table
parts, or invisible. The display property specifies which one of these an element
is. This property has 19 possible values given by keywords, as shown in Table 13-5.

344 Partlil + Style Languages

Table 13-5

Values for the Display Property
Block Level Inline Elements Table Parts Invisible
block inline table-column none
table inline-table table-cell
list-item marker table-footer-group
run-in run-in table-column-group
compact compact table-row

table-header-group
table-row-group

table-caption

Block elements are usually separated from other elements by line breaks before and
after each one. Table elements are parts of a grid. Inline elements are placed one
after the other in a row. These are like words in a sentence. They move freely as

text is added and deleted around them. Block elements are more fixed and, at most,
move up and down but not left and right as content is added before and after them.
Block elements include tables, lists, and list items. Most display types are just modi-
fications of the main block or inline types.

A browser uses the distinction between these elements to make its first pass at lay-
ing out the document. It will place the text of any inline elements on the page mov-
ing from left to right, until it fills the line. If necessary, it will continue on the next
line down. (The direction property lets you reverse the order so that elements
are placed from right to left, useful if you're formatting Hebrew or Arabic.) However,
when the browser comes to a block-level element, either the start or the end of one,
it breaks the line and continues on the next line.

Consider Listing 13-1, which is a synopsis of William Shakespeare’s Twelfth Night.
The root element, SYNOPSIS, contains six top-level elements, one TITLE and five
ACT elements. Each ACT contains an ACT_NUMBER and one or more SCENE children.
Each SCENE contains a SCENE_NUMBER and a LOCATION. LOCATION elements contain
mixed content, possibly including one or more CHARACTER elements.

Listing 13-1: A Synopsis of Shakespeare’s Twelfth Night in XML

<?xml oversion="1.0"7>
<?xml-stylesheet type="text/css" href="synopsis.css"?>
<SYNOPSIS>

KTITLE>Twelfth Night</TITLE>

Chapter 13 4+ CSS Layouts

<ACT>

<ACT_NUMBER>Act 1</ACT_NUMBER>

<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>'s palace
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Q1ivia</CHARACTER>'s house
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>'s palace.
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Q1ivia</CHARACTER>'s house
</LOCATION>

</SCENE>

</ACT>

<ACT>

<ACT_NUMBER>Act 2</ACT_NUMBER>

<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Q1ivia</CHARACTER>'s house
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>'s palace.
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>OTivia</CHARACTER>'s garden
</LOCATION>

Continued

345

346

Part Ill 4+ Style Languages

Listing 13-1 (continued)

</SCENE>
</ACT>

<ACT>

CACT_NUMBER>Act 3</ACT_NUMBER>

<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>OTivia</CHARACTER>'s
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>QO1ivia</CHARACTER>'s
</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>

<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>QO1ivia</CHARACTER>'s
</LOCATION>

</SCENE>

</ACT>

<ACT>
CACT_NUMBER>Act 4</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>QO1ivia</CHARACTER>'s
</LOCATION>
</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>OTivia</CHARACTER>'s
</LOCATION>
</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>OT1ivia</CHARACTER>'s
</LOCATION>
</SCENE>
</ACT>

garden

house

garden

front yard

house

garden

Chapter 13 + CSS Layouts 347

<ACT>
<ACT_NUMBER>Act 5</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>OTivia</CHARACTER>'s front yard
</LOCATION>
</SCENE>
</ACT>

</SYNOPSIS>

You can do a fair job of formatting this document using only display properties.
SYNOPSIS, TITLE, ACT, and SCENE are all block-level elements. ACT_NUMBER,
SCENE_NUMBER, LOCATION, and CHARACTER can remain inline elements. Listing 13-2
is a very simple style sheet that accomplishes this.

Listing 13-2: A Very Simple Style Sheet for the Synopsis
of a Play

SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 13-1 shows the synopsis of Twelfth Night loaded into Mozilla with the style
sheet of Listing 13-2. Notice that in Listing 13-2 it is not necessary to explicitly spec-
ify that ACT_NUMBER, SCENE_NUMBER, LOCATION, and CHARACTER are all inline ele-
ments. This is the default unless otherwise specified. Children do not inherit the
display property. Thus, just because SCENE is a block-level element does not mean
that its children, SCENE_NUMBER and LOCATION, are also block-level elements.

Inline elements

Inline elements are laid out horizontally in a row, starting from the top of the con-
taining box of the surrounding page or block element and moving from left to right.
When a row fills up, a new row is started on the next line down. Words can be
wrapped, but only as necessary to fit the text on the screen. There are no hard line
breaks. In HTML, EM, STRONG, B, I, and A are all inline elements. As another exam-
ple, you can think of EM, STRONG, B, I, and A in this paragraph as inline code ele-
ments. They aren’t separated out from the rest of the text. If no value is specified
for the display property, the default is to make the element an inline element.

Part Ill 4+ Style Languages

eoce Mozilla (=]
I b, ~ 1

4. = .3 @ ; : €) & - [l
= Hack Forverd e el —ston J‘.hl[ll..lr|r|:ilﬁ!tDﬂFl:thL‘.ﬂfgfhtlDksfhlb]t]f!nurl:l:fl).l’. & Search Prins m
Twelfth Night

Act 1

Scene 1 Duke Orsino's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's house

Act 2

Scene 1 The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's garden

Act 3

Scene 1 Olivia's garden
Scene 2 Olivia's house

Scene 3 A street

Scene 4 Olivia's garden

Act 4

Scene 1 Olivia's front yard
Scene 2 Olivia's house

Scene 3 Olivia's garden

Act 5

Scene 1 Olivia's front yard

Figure 13-1: The synopsis of Twelfth Night as displayed in Mozilla

Block elements

Block-level elements are laid out vertically, one on top of the other. The first block
is laid out in the top left corner of the containing block; then the second block is
placed below it, also flush against the left edge of the containing block. Each block-
level element is separated from its sibling and parent elements, generally by placing
a line break before and after it. The vertical distance between each block is defined
by the individual block’s margin and padding properties. In HTML, P, BLOCKQUOTE,
H1 through H6, and HR are all examples of block-level elements. The paragraphs and
headings you see on this page are all block-level elements. Block-level elements
may contain inline elements and other block-level elements, but inline elements
should only contain other inline elements, not block-level elements, although this
rule is not strictly enforced.

None

Setting display to none hides the element. An element whose display property is
set to none is invisible and not rendered on the screen. It does not affect the posi-
tion of other visible elements on the page. In HTML, TITLE, META, and HEAD would
have a display property of none. In XML, display: none is often useful for meta-
information in elements.

Chapter 13 4+ CSS Layouts 349

For example, suppose you wanted to list the locations in the synopsis but drop
everything else. You could use the style sheet in Listing 13-3. This hides the TITLE,
ACT_NUMBER, and SCENE_NUMBER elements by setting their display property to
none. The LOCATION element is displayed as a block. Figure 13-2 shows the result of
applying this style sheet to Listing 13-1.

Listing 13-3: A Style Sheet for the Synopsis of a Play That
Only Shows the Locations

TITLE, ACT_NUMBER, SCENE_NUMBER { display: none }
LOCATION { display: block}

Once you've hidden an element by using display: none, you cannot then show
any of its descendants. For example, consider these rules:

SYNOPSIS { display: none }
LOCATION { display: block}

Because the LOCATION element is contained inside the SYNOPSIS element, it is hid-
den even though its own display property is set to b1ock.

8006 Mozilla [=)

X = 7 T
e . e . A B T - Wl .
| Bark ; : Heioad—stor \J!;. hetp:/ fcafeconleche.org/books /bible3 /source/13 /s & Search

arward stop —_— Print

Duke Orsino's palace
The sea-coast
Olivia's house

Duke Orsino's palace.
Olivia's house

The sea-coast

A street

Olivia's house

Duke Orsino's palace.
Olivia's garden
Olivia's garden
Olivia's house

|A street

Olivia's garden
Olivia's front yard
Olivia's house
Olivia's garden
Olivia's front yard

Figure 13-2: The synopsis of Twelfth Night showing only locations

350

Part Ill 4+ Style Languages

Compact and run-in elements

The compact and run-in values of the display property identify an element as
either a block or an inline box depending on context. Other properties declared as
these types will treat them as either a block or inline element depending on what
they eventually become.

A run-in box is a block-level element if the element that follows it is an inline ele-
ment. It is an inline element if the element that follows it is a block-level element. In
other words, it guarantees that there will be a line break before it but not after it.
This is sometimes useful for headings.

A compact box will normally be a block-level element. However, if it’s followed by a
block-level element and it can fit in the margin of that element’s box, the browser
will put it in the margin rather than making it a separate element.

Marker

Setting the display property to marker identifies a block that’s formed by content
generated in the style sheet rather than copied in from the XML document. This
value is only used with the :before and :after pseudo-elements that have been
attached to block-level elements.

Tables

CSS lets you format elements in tables using these 10 values of the display property:

4+ table

4+ inline-table

4+ table-row-group

4 table-header-group

4+ table-footer-group

4+ table-row

4+ table-column-group

4+ table-column

4+ table-cell

4 table-caption
For example, setting the display property to table indicates that the selected ele-
ment is a block-level container for various smaller children that will be arranged in

a grid. The inline-table value forces the table to act as an inline element, allow-
ing text to float along its sides, and allows multiple tables to be placed side by side.

Chapter 13 4+ CSS Layouts 351

The other eight values in this list identify particular parts of a table, and should
only be used when the elements they’re applied to are descendants of an element
formatted as a table or inline table. The table-caption value formats an element
as a table caption. The table-row-group, table-header-group, and table-
footer-group values create groups of data cells that are formatted as a single row.
The table-column-group creates a group of data cells that are formatted as a sin-
gle column that was defined using the table-column value. XML elements that
appear in table cells have —naturally enough—a display property with the value
table-cell.

For example, if you were to build a table of the scenes and locations in the synop-
sis, each scene could be a row. Scene numbers and locations could be cells. Each
act could be a row group. The title would be a header. Listing 13-4 demonstrates.

Listing 13-4: A Style Sheet That Formats Synopses as Tables

SYNOPSIS {display: table}

TITLE {display: table-header}

SCENE { display: table-row}

ACT { display: table-row-group }

LOCATION, SCENE_NUMBER { display: table-cell }

Figure 13-3 shows the result of applying this style sheet to the Twelfth Night synop-
sis. By default, there are no grid lines or borders. These could be inserted using the
border properties that you’ll encounter shortly. It also wouldn’t hurt to add a little
padding around each cell.

Caution Internet Explorer 6.0 and earlier does not support table formatting using CSS.

List items

List-item elements are block-level elements with a list-item marker preceding them.
In HTML, LI is a list-item element. If you simply set the display propertyto 1ist-
item and don’t do anything else, the element is formatted as a block-level element
that may or may not have a bullet, called a marker, in front of it. However, you can
set three additional properties that affect how list items are displayed, as follows:

4 list-style-type
4 list-style-image
4+ list-style-position

352

Part Ill 4+ Style Languages

eoce Mozilla (=]
- 7 iy

a?:'k - [u‘:%_”u v m‘?m ?i M hrpj fcafeconleche.org/books bible3 fsource/13 /1 = f £@_Search \ ‘;ﬁ -
Twelfth Night

Act 1

Scene 1 Duke Orsino's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's house

Act 2

Scene 1 The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's garden

Act 3

Scene 1 Olivia's garden

Scene 2 Olivia's house

Scene 3 A street

Scene 4 Olivia's garden

Act 4

Scene 1 Olivia's front yard
Scene 2 Olivia's house

Scene 3 Olivia's garden

Act 5

Scene 1 Qlivia's front yard

Figure 13-3: A table-based synopsis layout in Mozilla

There’s also a shorthand 1ist-style property that lets you set all three in a
single rule.

Caution Internet Explorer 6.0 and earlier on Windows does not support display: 1ist-

item. Internet Explorer 5.1 and 5.2 for Macintosh do support display: 1ist-
item.

One thing CSS lists do not imply, however, is indentation. If you're accustomed to
using lists to indent items from HTML, you need to break yourself of that habit. In
CSS, indentation is provided by the margin and padding properties, as well as the
text-indent property. List items are not automatically indented unless you set the
other properties necessary to indent something. However, the list item marker may
be indented to the left of the normal text. That is, it may have a negative indent, and
this may place the marker off the screen. It’s important to set a reasonable positive
left margin on the list’s parent element.

The list-style-type property
The Tist-style-type property determines the nature of the bullet character in
front of each list item. Possibilities include the following:

4 disc:e

4 circle:O

Chapter 13 4+ CSS Layouts

4 square: O

4 decimal: 1,2, 3,4,5, and so on

4 decimal-leading-zero: 01, 02, 03, 04, 05, and so on

4 lower-roman: i, ii, iii, iv, and so on

4 upper-roman: [, II, III, IV, and so on

4 lower-alpha:a, b, ¢, and so on

4 upper-alpha: A, B, C, and so on

4 lower-Tatin:Same as lTower-alpha;a, b, ¢, and so on

4 upper-Tlatin: Same as upper-alpha; A, B, C, and so on

4+ lower-greek:a, B, v, d, €, and so on

4 hebrew: 3,3, 7,7, and so on

+ armenian: U2 F2 99 F2 52 and so on

4 georgian: @, @, 9. andsoon

4 cjk-ideographic: —, =, =, and so on

4+ hiragana: &, v, 9, 2, £, 7>, and so on

+ katakana: 7, A4, v, =, &, #, %, and so on

4 hiragana-iroha: v, A, 1%, 12,13, ~, &, and so on

4 katakana-iroha: 1, 2, 2N, =, 7, ~~, b, and so on

4+ none: No bullet character is used
[would not rely on a typical Western browser being capable of handling the more
unusual of these. In that case, it will default to decimal. (European-style numerals
have pretty much replaced Hebrew, Han, Roman, and other traditional number sys-
tems in most of the world for day-to-day use.) If no value is set, the default is disc.
For example, the style sheet in Listing 13-5 defines ACT and SCENE as list items.

However, ACT is given no bullet, and SCENE is given a square bullet. Figure 13-4
shows the synopsis in Opera with this style sheet.

Listing 13-5: A Style Sheet for a Play Synopsis That Uses
List Items

SYNOPSIS { display: block; margin-left: 0.5in }
TITLE { display: block }

ACT { display: Tist-item; Tist-style-type: none }
SCENE { display: Tist-item; list-style-type: square }

353

354 Partlil + Style Languages

806 ii http: / /www.cafeconleche.org/books/bible3/source (13 synopsis.xml

4 p O A © Kk &K

Back Forward Reload Home Hotist Print New

@ D@ w hitp: [fwww.cafeconleche.org/books /biblel fsouree 13/ synopsis. xml 1 Q = Google search 1 '?@v 100% |
Twelfth Night &
Act 1

o Scene 1 Duke Orsino's palace
o Scene 2 The sea-coast

o Scene 3 Olivia's house

o Scene 4 Duke Orsino's palace.
o Scene 5 Olivia's house

Act2

o Scene 1 The sea-coast

o Scene 2 A street

o Scene 3 Olivia's house

o Scene 4 Duke Orsino's palace.
o Scene 5 Olivia's garden
Act3

o Scene 1 Olivia's garden

o Scene 2 Olivia's house

o Scene 3 A street

o Scene 4 Olivia's garden

Act4

o Scene 1 Olivia's front yard

o Scene 2 Olivia's house el
o Scene 3 Olivia's garden

Act§ v

Figure 13-4: A list-based synopsis layout

The list-style-image property

Alternately, you can use a bitmapped image as the bullet. To do this, you set the
1ist-style-image property to the URL of the image file. If both Tist-style-
imageand Tist-style-type are set,the 1ist-style-image will be used, unless
it can’t be found, in which case the bullet specified by 1ist-style-type will be
used. For example, this rule uses a heart (v) stored in the file heart.jpg as the bullet
before each scene. (After all, Twelfth Night is a romantic comedy.) Figure 13-5 shows
the result of adding this rule to the synopsis style sheet.

SCENE { display: Tist-item;
1ist-style-image: url(heart.jpg);
list-style-type: square

Chapter 13 4+ CSS Layouts 355

evee & http://cafeconleche.org/books/bible3/source/13/synopsis.xml

4 p O A © Kk &K

Back Forward Reload Home Hotist Print New

P (@ D)= http:/feafeconleche.org /books/bibled fsource 13/ synopsis.xml) Q, » Geogle search 'Ev 100%)
Twelfth Night i
Act 1 r

¥ Scene 1 Duke Orsino's palace
¥ Scene 2 The sea-coast

¥ Scene 3 Olivia's house

¥ Scene 4 Duke Orsino's palace.
¥ Scene 5 Olivia's house

Act 2

¥ Scene 1 The sea-coast

¥ Scene 2 A street

¥ Scene 3 Olivia's house

¥ Scene 4 Duke Orsino's palace.
¥ Scene 5 Olivia's garden

Act3

¥ Scene 1 Olivia's garden

¥ Scene 2 Olivia's house

¥ Scene 3 A street

¥ Scene 4 Olivia's garden

Act 4

¥ Scene 1 Olivia's front yard

¥ Scene 2 Olivia's house

¥ Scene 3 Olivia's garden |
Act5 -
¥ Seene 1 Nlivia's front vard X

Figure 13-5: A list-based synopsis layout with an image bullet

The list-style-position property

The Tist-style-position property specifies whether the bullet is drawn inside
or outside the text of the list item. The legal values are inside and outside. The
default is outside. The difference is only obvious when the text wraps onto more
than one line. This is inside:

* If music be the food of love, play on/Give me excess of it, that, surfeiting,/The
appetite may sicken, and so die./That strain again! it had a dying fall:

This is outside:
* If music be the food of love, play on/Give me excess of it, that, surfeiting,/The
appetite may sicken, and so die./That strain again! it had a dying fall:

The list-style shorthand property

Finally, the 1ist-style property is a shorthand that allows you to set all three of
list-style-image, list-style-type,and list-style-position properties
simultaneously. For example, this rule says that a SCENE is displayed inside with a
heart image and no bullet:

SCENE { display: list-item;
list-style: none inside url(heart.jpg) }

356

Part Ill 4+ Style Languages

Box Properties

CSS arranges text on a two-dimensional canvas. The elements drawn on this canvas
are laid out in imaginary rectangles called boxes. Each box is given a size and a
position, as well as margins, borders, and padding. The box edges are always ori-
ented parallel to the edges of the canvas. Box properties control the width, height,
margins, padding, and borders of the individual boxes. Figure 13-6 shows how these
properties relate to each other.

An XML element lives in a box

like this one. The total width of the
element is the sum of the natural
width or specified width of the
element, the width of the margin, -

the width of the border, and the The border
width of the padding around the

The margin

border. The total height of the - ;
element is the sum of the height The padding
of the element, the height of the
margin, the height of the barder,
and the height of the padding
around the border.

The element

Figure 13-6: A CSS box with margin, border, and padding

These boxes stack together and wrap around each other so that the contents of
each element are aligned in an orderly fashion, based upon the rules of the style
sheets.

Margin properties

Margin properties control the amount of space added to the box outside its border.
This can be set separately for the top, bottom, right and left margins using the
margin-top, margin-bottom, margin-right, and margin-1left properties. Each
margin can be specified as an absolute length or as a percentage of the size of the
parent element’s width. For example, you can add a little extra space between each
ACT element and the preceding element by setting ACT’s margin-top property to
3ex, as Listing 13-6 and Figure 13-7 demonstrate.

Chapter 13 4+ CSS Layouts

Listing 13-6: Extra Space on the Top Margin of Each Act

ACT { margin-top: 3ex }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

evee & http://cafeconleche.org/books/bible3/source/13/synopsis.xml

4 p O f © & kK

Back Forward Reload Home Hotist Print New

P (@ D)= http:/feafeconleche.org /books/bibled fsource 13/ synopsis.xml) Q, » Geogle search 'Ev 100% |
[Twelfth Night

lAct 1

Beene 1 Duke Orsino's palace
Scene 2 The sea-coast

Beene 3 Olivia's house

[Scene 4 Duke Orsino's palace.
Beene 5 Olivia's house

et 2

Beene 1 The sea-coast

Scene 2 A street

Beene 3 Olivia's house

Bcene 4 Duke Orsino's palace.
Beene 5 Olivia's garden

IAct 3 l
Bcene 1 Olivia's garden

Beene 2 Olivia's house

Bcene 3 A street

Beene 4 Olivia's garden

Act 4 X

Figure 13-7: The top margin of the ACT element is larger.

You can also set all four margins simultaneously using the shorthand margin prop-
erty. For example, you can add extra white space around the entire Twelfth Night
document by setting the margin property for the root-level element (SYNOPSIS in
this example), as shown by the first rule of Listing 13-7 and in Figure 13-8.

Listing 13-7: Adding a 1-Centimeter Margin on Each Side
of the SYNOPSIS

SYNOPSIS { margin: 1.0cm 1.0cm 1.0cm 1.0cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

357

358

Part Ill 4+ Style Languages

eoce Mozilla (=]
x . 5 T
4. = .3 @ : : =) S - [
e e Helaad—ca J bt feafeconleche.arg/books bibled /source/13 1 &R Search | i m
a
Twelfth Night
Act 1

Scene 1 Duke Orsino's palace
Scene 2 The sea-coast
Scene 3 Olivia's house
Scene 4 Duke Orsino's palace.
Scene 5 Olivia's house

Act 2

Scene 1 The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's garden

Act 3

Scene 1 Olivia's garden
Scene 2 Olivia's house
Scene 3 A street

Scene 4 Olivia's garden

Act 4
Scene 1 Olivia's front yard

Figure 13-8: One centimeter of white space around the entire synopsis

In fact, this is the same as using a single value for margin, which CSS interprets as
being applicable to all four sides.

SYNOPSIS { margin: 1.0cm }

Given two margin values, the first applies to top and bottom, the second to right
and left. Given three margin values, the first applies to the top, the second to the
right and left, and the third to the bottom. It’s probably easier to just use the sepa-
rate margin-top, margin-bottom, margin-right, and margin-1left properties if
you want to specify different margins for different sides.

Border properties

Most boxes don’t have borders. They are invisible rectangles that affect the layout
of their contents, but are not seen as boxes by the readers. However, you can make
a box visible by drawing lines around it using the border properties. Border proper-
ties let you specify the style, width, and color of the border.

Chapter 13 4+ CSS Layouts 359

Border style

By default, no border is drawn around boxes regardless of the width and color of
the border. To make a border visible, you must change the border-style property
of the box from its default value of none to one of these 10 values:

4 none—No line

4 hidden—An invisible line that still takes up space

4+ dotted —A dotted line

4 dashed —A dashed line

4 solid—Asolid line

4 double—A double solid line

4 grooved—A line that appears to be drawn into the page
4 ridge—Aline that appears to be coming out of the page

4 inset —The entire element (not just the line around the edge) appears
pushed into the document

4 outset —The entire element (not just the line around the edge) appears to be
pushed out of the document

The border-style property can have between one and four values. As with the
margin property, a single value applies to all four borders. Two values set the top
and bottom borders to the first style, right and left borders to the second style.
Three values set the top, right and left, and bottom border styles, in that order.
Four values set each border in the order top, right, bottom, and left. For example,
Listing 13-8 adds a rule to enclose the entire SYNOPSIS in a solid border.

Listing 13-8: Bordering the SYNOPSIS

SYNOPSIS { border-style: solid }

SYNOPSIS { margin: Icm Icm Icm lcm }

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

Figure 13-9 shows the result in Mozilla. In this case, the border has the secondary
effect of making the margin more obvious. (Remember that the margin is outside
the border.)

360

Part Ill 4+ Style Languages

ece

Mozilla

‘4.2 .3 @

Forward Reload Stop

& hetp:/ fcafeconleche.org/books /bible3 /source/13/:

(= .
& Search >
= O primt m

[Twelfth Night

Act 1

Scene 1 Duke Orsino's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's house

Act 2

Scene 1 The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's garden

Act 3

Scene 1 Olivia's garden
Scene 2 Olivia's house
Scene 3 A street

Scene 4 Olivia's garden

Act 4
Scene 1 Olivia's front yard

Figure 13-9: A border around the synopsis

Border width

Four border-width properties specify the width of the borderlines along the top,
bottom, right, and left edges of the box. These are as follows:

4 border-top-width
4 border-right-width
4 border-bottom-width
4 border-left-width

Each may be specified as an absolute length or as one of three keywords: thin,
medium, or thick. Border widths cannot be negative but can be zero.

For example, to enclose the SYNOPSIS element in a 1-pixel-wide, solid border (the
thinnest border any computer monitor can display), use this rule:

SYNOPSIS { border-style:
border-top-width:
border-right-width:
border-bottom-width:
border-left-width:

solid;
1px;
1px;
1px;
lpx }

Chapter 13 + CSS Layouts 36]

If you want to set all or several borders to the same width, it’s more convenient to
use the border-width shorthand property. This property can have between one
and four values. One value sets all four border widths. Two values set the top and
bottom borders to the first value, right and left borders to the second value. Three
values set the top, right and left, and bottom widths in that order. Four values set
each border in the order top, right, bottom, and left. For example, the following is
equivalent to the previous rule:

SYNOPSIS { border-style: solid; border-width: 1px }

Border color

Most browsers draw borders in black by default, or possibly in shades of gray if
necessary to produce 3D effects for the grooved, ridge, inset, and outset styles.
However, you can use the border-color properties to change this for one or more
sides of the box. These properties are as follows:

4 border-top-color

4 border-right-color

4 border-bottom-color

4 border-left-color
There’s also a border-color shorthand property that sets the color of all four bor-
ders. A single value sets all four border colors. Two values set the top and bottom
borders to the first color, the right and left borders to the second color. Three val-
ues set the top, right and left, and bottom border colors in that order. Four values
set each border in the order top, right, bottom, and left. The value can be any rec-

ognized color name or an RGB triplet. For example, this rule encloses the SYNOPSIS
element in a 1-pixel-wide, solid red border:

SYNOPSIS { border-style: solid;
border-width: 1px;
border-color: red }

Shorthand border properties

Five shorthand border properties let you set the width, style, and color of a border
with one rule. These five properties are:

4 border-top

4 border-right

4 border-bottom

4 border-left

4+ border

362 Partlil + Style Languages

The border-top property provides a width, style, and color for the top border. The
border-right, border-bottom, and border-1eft properties are similar. For
example, the first rule of Listing 13-9 produces a 2-pixel groove blue border (a hori-
zontal rule if you will) below each act. Figure 13-10 shows the result.

Listing 13-9: Using Borders to Produce Horizontal Rules

ACT { border-bottom: 2px groove blue }
SYNOPSIS { border-style: solid }

SYNOPSIS { margin: lcm lcm lcm lcm }

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

The border property sets all four sides to the specified width, style, and height.
For example, this rule draws a 3-pixel-wide, solid, red border around a SYNOPSIS
element.

SYNOPSIS { border: 3pt solid red }

eoce Mozilla (=]

= . ? sy

a?:'k > [u‘:-ﬁf_”u - m‘?m ?i & hutp:f/cafeconleche.org/books bible3 /source/13/s + { &2 Search \ ‘;ﬁ -
.
M

[Twelfth Night

Act 1

Scene 1 Duke Orsino's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's house

jAct 2

Scene 1 The sea-coast

[Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's garden

Act 3

Scene 1 Olivia's garden
Scene 2 Olivia's house
[Scene 3 A street

Scene 4 Olivia's garden

Act 4

Sranmo 1 Nlivia'c frant uard

Figure 13-10: A 2-pixel groove bottom border is similar to HTMLs HR element.

Chapter 13 4+ CSS Layouts

Padding properties

The padding properties specify the amount of space on the inside of the border of
the box. The border of the box, if shown, falls between the margin and the padding
as shown in Figure 13-6. Padding may be set separately for the top, bottom, right,
and left padding using the padding-top, padding-bottom, padding-right, and
padding-left properties. Each padding can be given as an absolute length or as a
percentage of the element’s width. For example, you can set off the SYNOPSIS from
its border by setting its padding properties, as shown in this rule:

SYNOPSIS { padding-bottom: lem;
padding-top: lem;
padding-right: lem;
padding-Teft: lem }

You can also set all four at once using the shorthand padding property. For exam-
ple, this rule is the same as the previous one:

SYNOPSIS { padding: lem lem lem lem }

In fact, this is the same as using a single value for the padding property, which CSS
interprets as applying to all four sides:

SYNOPSIS { padding: lem }

Given two padding values, the first applies to the top and bottom, the second to
the right and left. Given three padding values, the first applies to the top, the sec-
ond to the right and left, and the third to the bottom. It’s probably easier to use the
separate padding-top, padding-bottom, padding-right, and padding-Tleft
properties.

The blue borders below the acts in the synopsis in Figure 13-10 seem a little too
close, so let’s add an ex of padding between the end of the act and the border with
the padding-bottom property, as shown in the first rule of Listing 13-10. Figure
13-11 shows the result. Generally, it’s a good idea to use a little padding around bor-
ders to make the text easier to read.

Listing 13-10: Padding the Border

ACT { padding-bottom: lex }

ACT { border-bottom: 2px groove blue }
SYNOPSIS { border-style: solid }

SYNOPSIS { margin: lcm lcm lcm lcm }

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

363

364

Part Ill 4+ Style Languages

[Twelfth Night

Act 1

Scene 1 Duke Orsino's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's house

IAct 2

Scene 1 The sea-coast

[Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsino's palace.
Scene 5 Olivia's garden

Act 3

[Scene 1 Olivia's garden
Scene 2 Olivia's house
Scene 3 A street

Scene 4 Olivia's garden

eoce Mozilla (=]
S . 5 T
e . e . A B : i A y & .
s e Helaad—ca J bt feafeconleche.arg/books bibled /source/13 1 &R Search | i m
.
M

Figure 13-11: Padding makes borders easier on the eye.

Size

CSS lets you choose exactly how big each element’s box will be. By default, boxes
are just big enough to contain their contents, borders, and padding. Inline and table
elements that contain text always have these automatically calculated dimensions.

However, you can make block-level elements either bigger or smaller than this

default by using these six properties:

4+ height

4+ width

4 min-width
4 max-width
4+ min-height
4 max-height

Chapter 13 4+ CSS Layouts

The width and height properties

Generally, the browser decides how much space each element requires by adding
up the total size of its contents, along with the size of any borders and padding; and
usually, this is exactly what you want it to do. However, you can force a block-level
element to a predetermined size by setting its width and height properties.
Consider Listing 13-11. The first rule says that every TITLE element will be exactly 3
inches wide and 2 inches high. Even if it doesn’t use up all this space, other ele-
ments that follow it will leave the extra space empty.

Listing 13-11: A Style Sheet That Sets a Fixed Size
for the TITLE Element

TITLE { width: 3in; height: 2in }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: lex }

Figure 13-12 demonstrates the effect of Listing 13-11. Borders are added to all the
block-level elements so you can see where their boxes are placed. All of them
except for TITLE take up the minimum amount of vertical space they need to hold
their contents and the maximum amount of horizontal space. However, because the
TITLE element’s width and height properties have been set, it’s taller than it
needs to be and narrower than it could be.

If the box size specified is too small to hold the contents of the box, the contents
will not be scaled to fit. By default, the content will spill out of the box and overlap
whatever follows. Figure 13-13 demonstrates this with a box that’s too small for the
actual title. However, you can clip or scroll the overflowed contents using the
overflow property.

365

366 Partlil + Style Languages

8ece Mozilla [a=)
I B o
‘d- - - 3 v§§ » Tl A =5 -
Hack Fored felosd— %t J‘ htep:/ feafeconleche.org/books /bible3 /source/13/: @ Search P m
emmsssssmmssssrnnnane .
e

[Twelfth Night

: ' [Scene 1 Duke Orsino's palace

' [Scene 2 The sea-coast

| |Scene 3 Olivia's house

by
| [Scene 4 Duke Orsino's palace.

, |Scene 5 Olivia's house

: : [Scene 1 The sea-coast

Figure 13-12: This TITLE element is exactly 3 inches wide and 2 inches high.

eee Mozilla (=]
bt B S "

‘d- - - 3 v§§ » Tl A =5 -

Back B Hetosd— Stos J‘ http://cafeconleche.org/books (bibled /source/ 132 @ Search P m

: [Scene 1 Duke Orsino's palace

i ! [Scene 2 The sea-coast
by

| [Scene 3 Olivia's house

| |Scene 4 Duke Orsino's palace.

, |Scene 5 QOlivia's house

: : |Scene 1 The sea-coast

i1 [scene 2 A street
I

1 [Scene 3 Olivia's house

H
5 | |Scer|e 4 Duke Orsino's palace.

, | cene 5 Olivia's garden

Figure 13-13: This TITLE element is exactly 3 ems wide and 1 em high, too small
to hold the entire title.

Chapter 13 4+ CSS Layouts

You do not have to set both width and height. You can set one or the other, or nei-
ther. The default setting for both is auto; that is, calculate the necessary size based
on the contents and context of the box.

The min-width and min-height properties

If you want an element to take up at least a minimum amount of space, but also
want to allow it to grow larger, if necessary, to hold its contents, you can set the
min-height and min-width properties. These specify the smallest dimensions that
the element will use. For example, this rule says that a TITLE element must be at
least 1 inch wide and 1 inch high:

TITLE { min-width: 1lin; min-height: 1in }

If the title needs more space than that, the browser is free to make its box larger. If
it takes up less space than that, the browser will leave some empty space. Min-
height and min-width should be preferred to height and width because you can
never be sure exactly how much space any given string of text is going to occupy
from one computer to the next. Using min-height and min-width instead of
height and width will give you the same effect most of the time, and look much
better in the occasional cases where you do need the extra space.

The min-height and min-width properties override height and width.If height
is set to something smaller than min-height, the value of the min-height prop-
erty determines the height of the box, regardless of the value of height. The same
is true for width and min-width.

The max-width and max-height properties

If you want an element to occupy no more than a certain amount of space, but you
do want it to be smaller if its contents allow, you can set the max-height and max-
width properties. Together, these specify the largest area that an element will
occupy. For example, this rule says that a TITLE element must be no more than 3
inches wide and 2 inches high:

TITLE { max-width: 3in; max-height: 2in }

If the title needs less space than that, the browser is free to shrink its box. However,
if it needs more space than that, the browser will let some text fall outside the box,
or otherwise handle it as specified by the overf1ow property. Because max-height
and max-width can cause text to overlap other text in an unattractive fashion, just
like height and width can, you should use it sparingly.

The max-height and max-width properties override height and width.If height
is set to something larger than max-height, the value of the max-height property
determines the height of the box, regardless of the value of height. The same is
true for width and max-width.

367

368 Partlil + Style Languages

The overflow property

When the size of a box is precisely specified using width and height or limited by
max-width and max-height, it’s entirely possible that its contents may take up
more area than the box actually has. The overf1ow property controls how the
excess content is dealt with. This property can be set to one of four values:

4 visible

4 hidden

4+ scroll

4 auto
The default is visible, which means let the text continue outside the box, on top
of the text in other boxes, if necessary. You saw an example of this in Figure 13-13.
On the other hand, if overflow is set to hidden, the visible text will be clipped to

its containing box, as shown for the TITLE element in Figure 13-14. This rule pro-
duces that effect:

TITLE { width: 3em; height: lem; overflow: hidden}

Mozilla

F: e y
i T Reloud %\g. Ahun:Hcarecnnleche.oru{hon"' 4 4R_Search \ ‘:i‘ .

i

Print
revseee
................................. -
= Iz
: : [Scene 1 Duke Orsino's palace | : :
i 1 [Scene 2 The sea-coast Jr:
i1 LI
N | ISl:ene 3 QOlivia's house it
L 1
i ISr.ene 4 Duke Orsino's palace. | 1
| 1=
i | |Scene 5 Olivia's house |y
E b e o o mm Em E o B RN M SN ER MR BN RN M SN BN B G N RN SN A B M SN M B Em o E - :
|AC'E 2 I

: |Scene 1 The sea—coast

1 [Scene 2 A street

1
N |S|:ene 4 Duke Orsino's palace.

]
|
1 [Scene 3 Olivia's house]
' I
I

T
ty [scene 5 Qlivia's garden

Figure 13-14: This TITLE element is exactly 3 ems wide and 1 em high,
too small to hold the entire title, so the overflow is hidden.

Chapter 13 4+ CSS Layouts 369

Another option that’s useful, especially for relatively large blocks that contain still
larger amounts of text, is to provide scroll bars. You can request this by setting
overflowto scroll. To specify scroll bars only if they’re actually needed —that is,
only if the content does indeed overflow — choose the value auto.

Positioning

For truly precise layouts, CSS lets you decide exactly where to put each element’s
box. By default, block-level elements contained inside the same parent element fol-
low each other on the page. They do not line up side by side or wrap around each
other. You can change this with judicious use of the f1oat and clear properties.
You can even make elements overlap each other, in which case the z-index prop-
erty determines which element is on top and which is on bottom.

The position property

Element boxes can be positioned automatically by the browser, offset relative to
their automatically calculated positions, or placed at a fixed position in the box that
contains them or at a fixed position on the page. The position property deter-
mines which of these options the browser uses to position each element. It can
have one of these four keyword values:

4 static—The default layout
4+ relative—Elements are offset from their static positions

4+ absolute—Elements are placed at a specific position relative to the box
they’re contained in

4+ fixed —Elements are placed at a specific point in the window or on the page

Relative positioning

As a document is being laid out, the formatter chooses positions for items according
to the normal flow of elements and text. This is the default, static formatting used by
most documents. After this has been completed, the elements can be shifted relative
to their natural, calculated positions. This adjustment in an element’s position is
known as relative positioning. Altering the position of an element in this manner does
not affect the positions of other elements. Thus, boxes can overlap because rela-
tively positioned boxes retain all of their normal sizes and spacing.

To relatively position an element, set its position property to relative. Then
specify the length to offset the left edge of the element to the right of its normal
position as the value of the Teft attribute and the length to offset the top edge of
the element down from its normal position as the value of the top attribute. You
can use negative numbers to offset to the left and up. For example, Listing 13-12
moves the TITLE element 50 pixels to the right and down from where it would nor-
mally be placed.

370

Part 111

4+ Style Languages

Listing 13-12: A Style Sheet That Adjusts the Position
of the TITLE Element

TITLE { position: relative; left: 50px; top: 50px }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: lex }

Figure 13-15 shows how this makes the TITLE element overlap some other elements
on the page.

You can use the right property to offset the right edge of the element from the
right edge of its normal block; that is, to move it to the left. Similarly, you can set
the bottom property to offset the bottom edge of the element from the bottom edge
of its normal position and move it up.

B e Mozilla [=)

< Print

Back Forward Reload 5o

il [Scene 2 The sea-coast

L1
'y
| 1
2 1
i1 |Scene 3 Olivia's house | 1
i 1
t |5cene 4 Duke Orsino's palace. | I
: 1

I

i —
Ty |5cene 5 Olivia's house

Y '

: |Scene 1 The sea-coast | :

: |Scene 2 A street | :

1 |Scene 3 Olivia's house | 1

: |Scene 4 Duke Orsino's palace. | :

: [Scene 5 Olivia's garden | :

Il |, v o -
A3~~~ ---"-""-""""""""""""-""----"""- """ 30

<€ = i

~ i
- @ . A §§ i hetp:f/cafeconleche.org/books bible3 /source/13/: (& _Search Y & .

L e T T e S e e oy e |

Figure 13-15: A relatively positioned TITLE element

Chapter 13 + CSS Layouts 37]

Absolute positioning

An absolutely positioned element is placed at a specific point inside the block that
contains it. For example, the coordinates of an absolutely positioned TITLE element
are relative to the top left corner of the SYNOPSIS block. If the SYNOPSIS block
moves, the TITLE element moves with it. However, if a sibling ACT element moves,
the TITLE element won’t move to accommodate it. The contents of absolutely posi-
tioned elements do not flow around other boxes, so absolute positioning may cause
elements to overlap. In fact, absolutely positioned elements have no impact on the
flow of their following siblings, so elements that follow the absolutely positioned
one act as if it were not there.

The position of the upper left corner of an absolutely positioned element is set by
the top and Teft properties. The position of the lower right corner of an absolutely
positioned element is set by the bottom and right properties. Specifying all four
positions fixes the height and width of the box. If one corner is omitted, the box is
sized appropriately for its contents. For example, the following rule places the
TITLE element exactly one inch down and one inch to the right of the upper left
corner of its parent SYNOPSIS element:

TITLE { position: absolute;
left: 1.0in; top: 1.0in; width: 3.0in; height: 2.0in}

Figure 13-16 shows the result. Notice that unlike a relatively positioned element, an
absolutely positioned element does not reserve any space for itself. Unless every-
thing on the page is absolutely positioned, it’s almost certain that some elements
will overlap each other.

Most of the time, absolute positioning is a bad idea for the same reason that abso-
lute sizes are a bad idea. Although an absolutely positioned element might look
okay on your system, it probably won’t on some of the systems that people will use
to read the document.

Fixed positioning

Elements with fixed positions are placed at coordinates relative to the window in
which they’re displayed or the piece of paper on which they’re printed. A fixed ele-
ment does not move when the document is scrolled. When printed on paper, a fixed
element appears in the same place on each page. This enables you to place a footer
or header on a document, or a signature at the end of a series of one-page letters.
For example, this rule puts the title near the top center of the window even when
the user has scrolled down to the bottom of the synopsis:

TITLE { position: fixed; top: 0.1lin; Teft: 2in}

Unfortunately, this isn’t as useful as it might sound, because unless you also care-
fully apply a fixed position to everything else on the page, the elements will over-
lap, as shown in Figure 13-17.

3772 Partlil + Style Languages

eoce Mozilla (=]

T s, X E 11

i Ba‘:-k - !.:'-f,:._- - Reﬁd 5;3? i hetp:f/cafeconleche.org/books bible3 /source/13/: (& _Search \ ;jft -
a

: |5cene 1 Duke Orsino's palace

: 1 [Scene 2 The sea-coast
T

1

I

|l

| 1
. | B
1 [Scene 3 Oftvaddftiobsght i
H [

I

I

|y

=1
] |Scene 4 Dgke Orsino's palace.

i |
" |5cene 5 QOljvia's house

: |scene 1 THe sea-coast

i1 [Scene 2 A btreet

i 1 [Scene 3 Olivia's house

|
] |Scene 4 Duke Orsino's palace.

: 1
H |Scene 5 Qlivia's garden

Figure 13-16: An absolutely positioned TITLE element

eoce Mozilla (=]
T S 3
Ba‘:-k - !”_f’.!“__ o 5;3? i hetp:f/cafeconleche.org/books bible3/source/13/: v || 8 Search 3 ;jft -
e B e ey ey g — =
y
__ -

§ACt 2 [rwelfth Night

: [Scene 1 The sea-coast

1 [Scene 2 A street
T

i
i |Scene 4 Duke Orsino's palace.

]
]
1 |Scene 3 Olivia's house |
]
|

i
Ty |Scene 5 Olivia's garden

: |Scene 1 Olivia's garden

1 |Scene 3 A street

|
! |Scene 2 Olivia's house |
]
|

1
] |Scene 4 Qlivia's garden

! [Scene 1 Olivia's front yard |
i1

1 |Scene 2 Olivia's house |
i

: . [ceana 3 Niliale maredan I

Figure 13-17: A fixed position TITLE element

Chapter 13 4+ CSS Layouts 3773

Stacking elements with the z-index property

When boxes overlap, the z-index property determines which boxes are on top of
which others. Elements with larger z-indexes are placed on top of elements with
smaller z-indexes. Whether the elements on the bottom show through is a function
of the background properties of the element on top of them. If the background is
transparent, at least some of what’s below will probably show through. For exam-
ple, Figure 13-17 showed the title on top of the synopsis. You can change the z-index
to put the title behind the synopsis using these rules:

TITLE { z-index: 1}
SYNOPSIS { z-index: 2}

Caution Internet Explorer does not support the z-index property.

The float property

The f1oat property, whose value is none by default, can be set to Teft or right. If
the value is Teft, the element is moved to the left side of the page and the text
flows around it on the right. In HTML, this is how an IMG with ALIGN="LEFT"
behaves. If the value is right, the element is moved to the right side of the page
and the text flows around it on the left. In HTML, this is how an IMG with
ALIGN="RIGHT" behaves. For example, the first rule in Listing 13-13 lets text float to
the right of the title, as shown in Figure 13-18.

Listing 13-13: A Floating TITLE

TITLE | float: left }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: lex }

374 Partlil + Style Languages

B e Mozilla [=)
— E?:-k - u?%_.:..- - ;eﬁd ;%;‘ i hetp:f/cafeconleche.org/books bible3 /source/13/: (&&_Search \ ‘;‘:{ -
iuu-u--uuuluuu-;u;--;--;u;u;u;--;u;u;u;--;u;u;u;--;u;u;u;--;--;u;u;--;--;u;u;u;-.;u;u;u;‘-;u;u.u: .Ar
: Act 1 %

: [Scene 1 Duke Orsino's palace | l

: [Scene 2 The sea-coast | :

1 |Scene 3 Olivia's house | 1

: |Scene 4 Duke Orsino's palace. | :

: |5cene 5 Qlivia's house | :
e i

: |Scene 1 The sea-coast | : |
I |Scene 2 A street |1)
1 |Scene 3 Olivia's house | :

: |Scene 4 Duke Orsino's palace. | :

: |Scene 5 Qlivia's garden | :
PR omm mm mm omm mm mm mm omm o mm mm mm o mw R M M m mm R M M wm M o wm M e mm e o -

T 3 3

: [Scene 1 Olivia's garden | :

Figure 13-18: The title floating on the left

The clear property

The clear property specifies whether an element can have floating elements on its
sides. If it cannot, the element will be moved below any floating elements that pre-
cede it. It’s analogous to the HTML <BR CLEAR="ALL"> element. There are four
possible values:

4 none

4+ left

4 right

4+ both
The default value, none, causes floating elements to appear on both sides of the ele-
ment. The value Teft bans floating elements on the left side of the element. The
value right bans floating elements on the right side of the element. The value both

bans floating elements on both sides of the element. For example, suppose you add
this rule to the style sheet in Listing 13-13:

ACT { clear: left }

Chapter 13 4+ CSS Layouts 375

Now, although the TITLE element wants to float on the left of the first ACT, ACT
doesn’t allow that, as is shown in Figure 13-19. TITLE is still on the left, but now
ACT is pushed down below the image.

80606 Mozilla (=]
T S ~ Ty
i Ba‘:-k . e §§ & hup:/jcafecanteche.org/baoks /bible3/source/13/: v [z search \ = .

Forward Reload 5o Print

E lllllllllllllllllllllIlllllllllllIlllllllIllllllllllllllllllllllllllIlllllllllllIllllllllllllllllllllllllllIIIIIIIIIIIIIE .AP
welfth Night]

: [Scene 1 Duke Orsino's palace [

1 [Scene 2 The sea-coast [

T :
i [Scene 3 Olivia's house I

=) X
T |5cene 4 Duke Orsino's palace. |)t

i 5
ty |5cene 5 Olivia's house | i

® M B RN R N S BN Em S W SN BN SR G SN B GE S G BN BN S S BN B S SN N N N G S B Gm S n B B s e o W

: : |Scene 1 The sea-coast [1:

I [Scene 2 A street |1
1

i [Scene 3 Olivia's house]

i1 :
t |Scene 4 Duke Orsino's palace. I :

: |Scene 5 Olivia's garden

Figure 13-19: The ACT clears the TITLE on the left.

Formatting Pages

CSS makes the reasonable assumption that pages are rectangular. A page can have
all the standard box properties, including margins and size, except for borders and
padding. However, a page box does not have borders or padding because these
would fall off the actual page. The @page selector selects the page so you can set
those properties that apply to the page itself rather than XML elements on the
page. Pseudo-classes can specify different properties for the first page, right-facing
pages, and left-facing pages.

@page
@page is a selector that refers to the page box. This is a rectangular area, roughly

the size of a printed page, which contains the page area and the margin block. The
page area contains the material to be displayed, and the edges of the box provide a

376

Part Ill 4+ Style Languages

container in which page layout occurs between page breaks. For example, this rule
gives the page 1-inch margins on all four sides:

@page { margin-left: 1.0in;
margin-right: 1.01in;
margin-top: 1.00n;
margin-bottom: 1.0in }

Because the @page rule is unaware of the page’s content, including the fonts it uses,
it can’t understand measurements in ems and exs. All other units of measurement
are acceptable, including percentages. Percentages used on margin settings are a
percentage of the total page box size. Page boxes allow negative values for margins,
which can place content outside of the area normally accessible by the application
or printer. In most of these cases, the content is simply cut.

@page selects every page of a document. You can use one of the page pseudo-class
selectors— : first, : Teft, or :right —to specify different properties for the first
page of a document, for the left (generally even numbered) pages of a document,
and for the right (generally odd numbered) pages of a document. For example,
these rules specify 1-inch outside margins and half-inch inside margins:

@page:right { margin-left: 0.5in; margin-right: 1.0in }
@page:left { margin-left: 1.0in; margin-right: 0.5in }
@page:first { margin-left: 0.5in; margin-right: 1.0in }

The size property

In an @page rule, the size property specifies the height and width of the page. You
can set the size as one or two absolute lengths, or as one of the four keywords
auto, portrait, Tandscape, or inherit.If only one length is given, the page will
be a square. When both dimensions are given, the first is the width of the page, and
the second is the height, as in this rule:

@page { size: 8.5in 11in }

The auto setting automatically sizes to the target screen or sheet. Tandscape
forces the document to be formatted to fit the target page, but with long sides hori-
zontal. The portrait setting formats the document to fit the default target page
size, but with long sides vertical.

The margin property

The margin property determines the sizes of the margins of the page, the rectangu-
lar areas on all four sides in which nothing is printed. This property is used as
shorthand for setting the margin-top, margin-bottom, margin-right, and
margin-Teft properties separately. These properties are the same as they are for

Chapter 13 + CSS Layouts 377

boxes. For example, this rule describes an 8.5-by-11-inch page with l-inch margins
on all sides:

@page { size: 8.5in 11in; margin: 1.0in }

The mark property

The mark property places marks on the page delineating where the paper should be
cut and/or how pages should be aligned. These marks appear in the margins out-
side of the page box. The software controls the rendering of the marks, which are
only displayed on absolute page boxes. Absolute page boxes cannot be moved and
are controlled by the general margins of the page. Relative page boxes are aligned
against a target page, in most cases, forcing the marks off the edge of the page.
When aligning a relative page box, you are essentially looking at the page in your
mind’s eye and using margin and padding properties to move the printed area of
that page about the physical paper.

The mark property has four possible values—crop, cross, inherit, and none —
and can only be used with the @page element. Crop marks identify the cutting
edges of paper. Cross marks, also known as registration marks, are used to align
pages after printing. If set to none, no marks will be displayed on the document. For
example, this rule specifies a page with both crop and cross marks:

@page { mark: crop cross}

The page property

As well as using the @page selector to specify page properties, you can attach page
properties to individual elements by using the page property. To do this, you write
an @page rule that specifies the page properties, give that @page rule a name, and
then use the name as the value of the page property of a normal element rule. For
example, these two rules together say that a SYNOPSIS will be printed in landscape
orientation:

@page rotated { size: landscape}
SYNOPSIS { page: rotated}

When you are using the page property, it’s possible that different sibling elements
will specify different page properties. If this happens, a page break will be inserted
between the elements. If a child uses a different page layout than its parent, the
child’s layout takes precedence.

Controlling page breaks

When you are working in paged media, it’s often useful to be able to specify that
one or more elements are kept on the same page, if possible. Conversely, you might

378 Partlil + Style Languages

want to suggest a good place to break a page. You can control page breaks with
these five CSS properties:

4 page-break-before
4 page-break-after
4 page-break-inside
4 orphans

4+ widows
Generally, these properties are ignored in nonpaged media such as browser windows.

The page-break-before property controls whether pages are allowed, forbidden,
or required before the selected element. The page-break-after property controls
whether pages are allowed, forbidden, or required after the selected element. The
page-break-inside property determines whether pages are allowed, forbidden,
or required inside the selected element. These can be used to keep paragraphs of
related text, headings and their body text, images and their captions, or complete
tables together on the same page. They can also be used to insert page breaks.
Page-break-before and page-break-after can have any of these five values:

4+ auto
4 always
4+ avoid
4+ left
4 right

Page-break-inside is limited to avoid and auto.

The default for all three properties is auto, which means the formatter is free to put
page breaks wherever it likes. The value aTways means that a page break is
required in the specified place. The value avoid prevents a page break from occur-
ring where indicated. Finally, the values 1eft and right force either one or two
page breaks, whichever is necessary to make the next page either a left or right-
hand page. This is useful at the end of a chapter in a book where chapters generally
start on right-hand pages, even when that leaves blank pages.

The following rule inserts a page break before and after every SYNOPSIS element in a
document but not inside a synopsis, so that each synopsis appears on its own page:

SYNOPSIS { page-break-before: always;
page-break-after: always;
page-break-inside: avoid }

Chapter 13 + CSS Layouts 379

This rule prevents page breaks inside acts, but allows them between acts:

ACT { page-break-before: auto;
page-break-after: auto;
page-break-inside: avoid }

This keeps every act complete on one page. Of course, it is possible that one ACT
element will simply be too large to fit on a single page. In this case, the formatter
may break the page anyway.

Widows and orphans

Sometimes it’s necessary to insert a page break in the middle of an element. For
example, a paragraph might begin on one page and continue on the next. This
avoids large runs of white space at the ends of pages. However, if too little of a para-
graph is left on any one page, the page looks ugly. For example, you would normally
prefer to avoid printing just the first line of a paragraph at the end of a page and the
rest of the paragraph on the next page. It would be more aesthetic to leave a blank
line at the bottom of the page and move the entire paragraph to the next page.
Similarly, there should be more than one line of a paragraph at the top of any given
page. If the normal line-breaking algorithm only places the last line of a paragraph
at the top of the page, the second-to-last line of the paragraph should be removed
from the bottom of the previous page and placed at the top of the next page.

Single lines at the bottom of a page are called orphans. Single lines at the top of a
page are called widows. You can set an element’s orphans and widows properties to
specify the minimum number of lines of a block-level element that the formatter
must place before and after each page break. For example, this rule says that if
there’s a page break in the middle of an ACT, there must be at least two lines of the
ACT on both sides of the break:

ACT { orphans: 2; widows: 2 }

Summary

This chapter discussed CSS’s layout model. In this chapter, you learned the following:
4 Lengths in CSS can be specified in relative or absolute units. Relative units are
preferred.
4 Color is given in a 24-bit RGB space in decimal, hexadecimal, or percentages.

4+ The display property determines whether an element is a block element,
inline element, list item, or table part.

4+ The text of XML elements is placed in rectangular boxes on one or more pages
when rendered by a browser.

380

Part Ill 4+ Style Languages

4 Box properties let you adjust borders, margins, and padding around elements.

4 Margins are extra white space inside an element’s box and can be set sepa-
rately for each side.

4 Padding is extra white space inside an element’s box and can be set sepa-
rately for each side.

4 A border is a line drawn between the margin and padding of a box, and can be
set separately for each side in a variety of styles, widths, and colors.

4 The height,width, min-height, min-width, max-height, and max-width
properties adjust the size of element boxes.

4 The position, 1eft, right, top, and bottom properties adjust where an ele-
ment box is placed on the page.

4+ The @page rule lets you set the margins, size, and other properties of the
pages on which the XML elements will be placed.

The documents in this chapter were rather dry. Elements moved around on the
page, but they didn’t have any flare. They weren’t italic or bold or big or small or
flashing neon. The next chapter shows you the CSS properties that adjust a variety
of text styles, including font weight, font size, alignment, and color.

¢+ o+

C HIA P TYE R

CSS Text Styles

+ + + +
The first part of each CSS rule is a selector that says which .
elements the rule applies to. The second part is a list of In This Chapter
the properties that the rule applies to those elements. This
chapter focuses on the properties that you can specify in a CSS Fonts
rule. You learn how to change the font size, style, and weight;
how to align text and order paragraphs; how to control the Color
behavior of speech synthesizers reading the text; and more.
Text
Caution Netscape 6.0 and 7.0, Mozilla, Opera 4.0 and later, Safari,
and Internet Explorer 5.0 and later all implement only Backgrounds
some parts of the CSS specification. Earlier versions of the
major browsers, while perhaps supporting some form of Visibility
CSS for HTML documents, do not support it at all for XML
documents. To make matters worse, they all implement i

different subsets of the specification, and sometimes don't

implement the same subsets for XML as they do for HTML. + + + +
I'll note where one browser or another has a particular

problem as we go along. However, if you find that some-

thing in this chapter doesn’t work as advertised in your

favorite browser, please complain to the browser vendor,

not to me.

Fonts

CSS provides several properties that control the font used to
draw the text, including the following:

4 font-family

4+ font-size

4+ font-style

4+ font-variant

4 font-weight

In addition, there’s a font shorthand property that can set
most of these properties simultaneously.

382 Partlil + Style Languages

Choosing the font family

The font family is the font in which the text is drawn. The value of the font-family
property is a comma-separated list of font names, such as Helvetica, Times, and
Palatino. Font names that include white space, such as Times New Roman, should
be enclosed in single or double quotes.

Names may also be one of the five generic names: serif, sans-serif, cursive,
fantasy, and monospace. The browser replaces these names with a font of the
requested type installed on the local system. Table 14-1 demonstrates these fonts.

Table 14-1
Generic Fonts
Name Typical Families Distinguishing Characteristic = Example
Serif Times, Curlicues on the edges of The quick brown
Times New Roman, letters make serif text easier fox jumped over
Palatino to read in small body type. the lazy dog.
Sans-serif Geneva, Helvetica, Block type, often used in The quick brown
Verdana headlines. fox jumped over
the lazy dog.
Monospace Courier, A typewriter-like font in which The quick
Courier New, Monaco, each character has exactly brown fox
American Typewriter the same width; commonly jumped over
used for source code and the lazy dog.
e-mail.
Cursive ZapfChancery Script font, a simulation of The quick brown
handwriting. fox jumped over the
lazy dog.
Fantasy Western, Critter Text with special effects; THE QUIEK
for example, letters on fire, BROWH 8%
letters formed by tumbling JUMPED BVER
acrobats, and letters made TUE LAZY D2G.

from animals.

Because there isn’t a guarantee that any given font will be available or appropriate
on a particular client system (10-point Times is practically illegible on a Macintosh,
much less a Palm Pilot), you should provide a comma-separated list of choices for
the font in the order of preference. The last choice in the list should always be one
of the generic names. However, even if you don’t specify a generic name and the
fonts you do specify aren’t available, the browser will pick something. It just might
not be anything like what you wanted.

Chapter 14 4 CSS Text Styles

For example, Listing 14-1 is a style sheet for play synopses similar to Listing 13-1 of
the previous chapter. It has rules that make the TITLE element Helvetica with fall-
back positions of Verdana and any sans serif font, and the rest of the elements
Times with fallback positions of Times New Roman and any serif font.

Listing 14-1: A Style Sheet for the Synopsis of a Play

TITLE { font-family: Helvetica, Verdana, sans-serif }
SYNOPSIS { font-family: Times, "Times New Roman", serif }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 14-1 shows the synopsis loaded into Internet Explorer 6.0 with this style
sheet. Not a great deal has changed since Figure 13-1 in the last chapter. Times or
something very close to it is commonly the default font. The most obvious differ-
ence is that the title is now in Helvetica, a sans serif font.

The font-family property is inherited by child elements. Thus, by setting
SYNOPSIS's font-family to Times, all the child elements are also set to Times
except for TITLE, whose own font-family property overrides the one it inherits.

’a}mp:.-"."r.-amEnnEeche.mg-"llunlas."hihle';‘_.":‘.mlrr.-e.-"1-d.-":‘.3,r|||:4|:|.=.-is.xn'|l - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help |]
“hack = - @ [| Qseach [alFavoites Fhede P~ I B

Address IE] hitp:#/cateconleche, org/books/bible 3/ source /1 4/ spnopsis, xml L! oGo | Links |
a

Twelfth Night

Act]

Scene 1 Duke Orsmo's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Scene 4 Duke Orsine's palace.
Scene 5 Olivia's house

Act2

Scene 1 The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Orsing's palace.
Secene 5 Olivia's garden

Act3

Scene 1 Olivia's garden
Secene 2 Olivia's house

Scene 3 A street

Scene 4 Olivia's garden

Actd

Seene 1 Olivia's front vard
Scene 2 Olivia's house

Scene 3 Clivia's garden

ActS

Scene 1 Olivia's front vard

K

[£] Done [[[l interet
Figure 14-1: The synopsis of Twelfth Night with the title in Helvetica

383

384

Part Ill 4+ Style Languages

Choosing the font style

The font-style property has three possible values: normal, italic, and
oblique. The regular text you're reading now is normal. The typical rendering of
the HTML EM element is italicized. Oblique text is very similar to italicized text.
However, a computer creates oblique text by algorithmically slanting normal text.
A human designer creates italics by carefully handcrafting a font to look good in its
slanted form. Listing 14-2 adds a rule to the synopsis style sheet that italicizes
scene numbers.

Listing 14-2: A Style Sheet That Italicizes Scene Numbers

TITLE { font-family: Helvetica, Verdana, sans-serif }
SYNOPSIS { font-family: Times, "Times New Roman", serif }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
SCENE_NUMBER { font-style: italic}

Figure 14-2 shows the synopsis loaded into Internet Explorer with this style sheet.

’a}mp:.-"."r.-amEnnEeche.mg-"llunlas."hihle';‘_.":‘.mlrr.-e.-"1-d.-":‘.3,r|||:4|:|.=.-is.xn'|l - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help |]

5 - D A 2| Doeach [HFavoies Ghleda oH| Dyr ok = 14
Address IE] hitp:#/cateconleche, org/books/bible 3/ sounce /1 4/ spnopsis, xml L! oGo Links |

%= Back

Twelfth Night i
Act]

Scene ! Duke Orsno's palace
Seene 2 The sea-coast

Scene 3 Olivia's house

Seene 4 Duke Orsine's palace.
Seene & Olivia's house

Act2

Scene ! The sea-coast

weene 2 A street

Scene 3 Olivia's house

Seene 4 Duke Orsine's palace.
Scene 5 Olima's garden

Act3

Scene § Olivia's garden
Scene 2 Olimia's house

Stene 3 A street

Seene 4 Olivia's garden

Actd

Seene § Olivia's front vard
Seene 2 Olivia's house

Srene 3 Olina's garden

ActS

Seene § Olinia's front yard

K

[£] Done [[[l interet
Figure 14-2: The synopsis of Twelfth Night with italic scene numbers

Chapter 14 + CSS Text Styless 385

Small caps

The font-variant property has two possible values: normal and small-caps.
The default is normal. Setting font-variant to small-caps replaces lowercase let-
ters with capital letters in a smaller font size than the main body text.

You can achieve a very nice effect by combining the font-variant property with
the first-letter pseudo-element. For example, define the ACT_NUMBER element to
have the font-variant: small-caps. Next, define the first letter of ACT_NUMBER to
have font-variant: normal. This produces act numbers that look like this:

Act 1
Here are the rules:

ACT_NUMBER { font-variant: small-caps}
ACT_NUMBER:first-Tetter { font-variant: normal}

The second rule overrides the first, but only for the first letter of the act number.

Setting the font weight
The font-weight property determines how dark (bold) or light the text appears.
There are 13 possible values for this property:
4+ normal
4+ bold
4 bolder
4 lighter
4+ 100
4+ 200
4+ 300
4+ 400
4+ 500
4+ 600
4+ 700
4+ 800
4+ 900

386 Partlil + Style Languages

Weights range from 100 (the lightest) to 900 (the darkest). Intermediate, noncen-
tury values such as 850 are not allowed. Normal weight is 400. Bold is 700. The
bolder value makes an element bolder than its parent. The 1ighter value makes
an element less bold than its parent. However, there’s no guarantee that a particu-
lar font has as many as nine separate levels of boldness.

Here’s a simple rule that makes the TITLE and ACT_NUMBER elements bold:

TITLE, ACT_NUMBER { font-weight: bold}

Figure 14-3 shows the effect of adding this rule to the synopsis style sheet.

Setting the font size

The font-size property determines the height and the width of a typical character
in the font. Larger sizes take up more space. The size may be specified as a key-
word, a value relative to the font size of the parent, a percentage of the size of the
parent element’s font size, or an absolute number.

’a}mp:.-"."r.-amEnnEeche.mg-"llunlas."hihle';‘_.":‘.mlrr.-e.-"1-d.-":‘.3,r|||:4|:|.=.-is.xn'|l - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help |]
| Qseach [alFevortes Gitede | o S

Address IE] hitp:#/cateconleche, org/books/bible 3/ sounce /1 4/ spnopsis, xml L! oGo Links |

Twelfth Night i
AcTl

Seene ! Duke Orsine's palace
Seene 2 The sea-coast

Srene 3 Olina's house

Seene 4 Duke Orsine's palace.
Scene 5 Olivia's house

AcT2

Scene I The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Oraine's palace,
Scene 5 Olina's garden
AcT3

Seene § Olivia's garden
Srene 2 Olivia's house

Stene 5 A street

Scene 4 Olina's garden
AcT4

Seene § Olivia's front yard
Srene 2 Olina's house

Stcene 3 Olivia's garden
ACTS

Scene § Olina's front yard

[£] Done [[l internet
Figure 14-3: The synopsis of Tiwelfth Night with bold title and act numbers

Chapter 14 4 CSS Text Styles

Keyword
Absolute size keywords are as follows:
4 xx-small
4+ x-small
4 small
4+ medium
4+ large
4+ x-large
4 xx-large
These keywords are the preferred way to set font sizes because they are relative to
the base font size of the page. For example, if a nearsighted user has adjusted the

default font size to 20 points, a large font will be even larger and a small font will
still be pretty large.

Although the exact values are up to the browser’s best judgment, in general, each
size is 1.2 times larger than the next smallest size. The default is medium, so if a
browser’s default is 12 points, 1arge type will be 14.4 points, x-1arge type will be
17.28 points, and xx-1arge type will be 20.736 points. By contrast, small type will
be 10 points, x-smal1 type will be 8.33 points, and xx-smal1 will be a possibly
illegible 7 points. A browser might well choose to round these values to the nearest
integer. Here’s a simple rule that makes the TITLE extra large:

TITLE { font-size: x-large }
Figure 14-4 shows the results after this rule is added to the synopsis style sheet.

Value relative to parent’s font size

You can also specify the size relative to the parent element as either 1arger or
smaller. For example, with the following rule, the SCENE_NUMBER will have a font
size that is smaller than the font size of its parent SCENE.

SCENE_NUMBER { font-size: smaller }

Figure 14-5 shows the result of adding this rule to the synopsis style sheet.

387

388

Part Ill 4+ Style Languages

Twelfth Night

AcTl

Scene § Duke Orsino's palace
Scene 2 The sea-coast

Scene 3 Olivia's house

Seene 4 Duke Orsine's palace.
Srene 5 Olivia's house

AcT2

Scene ! The sea-coast

Scene 2 A street

Scene 3 Olivia's house

Scene 4 Duke Oramo's palace.
Stcene 5 Olivia's garden
ACT3

Scene 1 Olima's garden
Stcene 2 Olivia's house

Scene 3 A street

Srene 4 Olina's garden
AcT4

Seene § Olivia's front yard
Srene 2 Olima's house

Seene 3 Olivia's garden

ACTS
e R =
|| % Internet

{TDGne
Figure 14-4: The synopsis of Twelfth Night with an extra large title

There’s no hard-and-fast rule for exactly how much smaller a smaller font will be or
how much larger a larger font will be. Generally, the browser will attempt to move
from medium to small, from small to x-small, and so forth. The same is true (in the
other direction) for larger fonts. Thus, making a font larger should increase its size
by about 20 percent, and making a font smaller should decrease its size by about
16.6 percent; but browsers are free to fudge these values to match the available font
sizes.

Percentage of parent element’s font size

If these options aren’t precise enough, you can make finer adjustments by using a
percentage of the parent element’s font size. For example, this rule says that the
font used for a SCENE_NUMBER is 50 percent of the size of the font for the SCENE (its
parent).

SCENE_NUMBER { font-size: 50% }

Chapter 14 4 CSS Text Styles

:/fcafeconleche.org/books’bibled/source/14/synopsis.xml - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help |]
Sk = = - D [2] 4F | Qbeach [siFavores GHeda | B~ S 14

Address Iél hitp: #/cateconleche, org/books/bible 3/ sounce /1 4 spnopsis, xml L! oGo Links |
a

Twelfth Night

AcTl

Srene | Duke Orsine's palace
Srene 2 The sea-coast

Seene 3 Olivia's house

Stene 4 Duke Orsino's palace
Seene 5 Olima's house

AcT2

Stene] The sea-coast

Srene 2 A street

Seene 3 Olivia's house

Seeme Dukee Orsino's palace.
Seene 5 Olina's garden
ACT3

Seeme] Olina's garden

Srene 2 Olina's house

Seewe 3 A street

Stene 4 Olina's garden
AcT4

Seewe | Oliwa's front yard
Seene 2 Olima's house

Seeve 2 Olina's garden
ACTS o

P T S 1

2] Done [s internet

Figure 14-5: The synopsis of Tiwelfth Night with a smaller scene number

Absolute lengths

Finally, you can specify a font size as an absolute length. Although you can use pix-
els, picas, centimeters, millimeters, or inches, the most common unit when measur-
ing fonts is the point. For example, this rule sets the default font-size for the
SYNOPSIS element and its children to 14 points.

SYNOPSIS { font-size: 14pt }

Caution | urge you not to use absolute units to describe font sizes. It's extremely difficult
(I'd argue impossible) to pick a font size that's legible across all the different plat-
forms on which your page might be viewed, ranging from cell phones to the Sony
JumboTron in Times Square. Even when restricting themselves to standard per-
sonal computers, most designers usually pick a font that's too small. Any text that's
intended to be read on the screen should be at least 12 points, possibly more.

Figure 14-6 shows the results after all these font rules have been added to the syn-
opsis style sheet. The text of the scenes is not really bolder. It’s just bigger. In any
case, it’s a lot easier to read.

389

390

Part Ill 4+ Style Languages

A http://cafeconleche.org/books/bible3/source/14/synopsis.xml - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help |]

Covi -5 O 3| Qe G G [O

Address Iél hitp: #/cateconleche, org/books/bible 3/ sounce /1 4 spnopsis, xml L! oGo Links |
a

Twelfth Night

ACT 1

«me: Duke Orsino's palace
zme2 The sea-coast

seme3 Olivia's house

=mes Duke Orsino's palace.
smes Olivia's house

ACT2

zme: The gea-coast

semez A Shreet

wmes Olivia's house

smes Duke Orsino's palace.
semes Olivia's garden

ACT 3

smes Olivia's garden

semez Olivia's house

semea A Sireet

semes Olivia's garden

ACT 4

semer Olivia's front yard
semez Olivia's house =

[£] Done [[l internst
Figure 14-6: The synopsis of Tiwelfth Night in a larger font size

The font shorthand property

Font is a shorthand property that sets the font style, variant, weight, size, and fam-
ily with one rule. For example, here are two rules for the TITLE and SCENE_NUMBER
elements that combine the separate rules of the previous section:

TITLE { font: bold x-large Helvetica, sans-serif }
SCENE_NUMBER { font: italic smaller Times, serif }

Values must be given in the following order:
1. One each of style, variant, and weight, in any order, any of which can be
omitted
2. Size, which cannot be omitted
3. Optionally, a forward slash (/) and a line height

4. Family, which cannot be omitted

/N ote

Chapter 14 4 CSS Text Styles

If this sounds complicated and hard to remember, that's because it is. | certainly

-~ can't remember the exact details for the order of these properties without looking

them up. I prefer to just set the individual properties one at a time. It's question-
able whether shorthand properties like this really save any time.

Listing 14-3 is the style sheet for the synopsis with all the rules devised so far, using
the font shorthand properties. However, because a font property is exactly equiv-
alent to the sum of the individual properties it represents, there’s no change to the
rendered document.

Listing 14-3: A Style Sheet for the Synopsis with font
Shorthand

SYNOPSIS, TITLE, ACT, SCENE { display: block }

ACT_NUMBER { font: bold small-caps}

SYNOPSIS { font: 14pt Times, "Times New Roman", serif }

ACT_NUMBER:first-letter { font-variant: normal}

TITLE |
font: bold x-large Helvetica, Verdana, Arial, sans-serif

1
SCENE_NUMBER { font: italic smaller Times, serif }

The font property may also have one of these six keyword values that match all of
a font’s properties to the properties of particular elements of the browser user
interface or the user’s system:

4 caption—The font used for captioned widgets such as buttons

4 icon—The font that labels icons

4 menu—The font used for menu items

4+ message-box—The font used for display text in dialog boxes

4 small-caption—The font used for labels on small widgets

4 status-bar —The font used in the browser’s status bar

For example, this rule says that a SYNOPSIS element will be formatted with the same
font family, size, weight, and style as the font the browser uses in its status bar:

SYNOPSIS { font: status-bar }

391

392

Part Ill 4+ Style Languages

Color

CSS can specify the color of almost any element on a page with the color property.
The value of this color property may be one of 16 named color keywords, or an RGB
triple in decimal, hexadecimal, or percentages. Children inherit the color property.
For example, the following rules specify that every element in the SYNOPSIS is col-
ored black except the SCENE_NUMBER, which is colored blue:

SYNOPSIS { color: black }
SCENE_NUMBER { color: blue}

The following rules are all equivalent to the preceding two. [recommend using
named colors, when possible, and browser-safe colors when not.

SYNOPSIS color: #000000 }
SCENE_NUMBER { color: #0000FF}
SYNOPSIS color: rgbh(0, 0, 0) }

{

{

{
SCENE_NUMBER { color: rgb(0, 0, 255)})
SYNOPSIS { color: rgb(0%, 0%, 0%) }
SCENE_NUMBER { color: rgb(0%, 0%, 100%)}
The color property specifies the foreground color for the text content of an ele-
ment. It may be given as a literal color name such as red, or an RGB value such as
#CC0000. Color names include aqua, black, blue, fuchsia, gray, green, Time,
maroon, navy,olive, purple, red, silver, teal,white,and yellow.

The following style rules apply color to three elements, using three different meth-
ods of identifying color. It specifies the RGB hex value #FF0000 for SCENE_NUMBER
elements, all TITLE elements to appear in red, and all ACT_NUMBER elements to
appear in rgb(255,0,0).

SCENE_NUMBER { color: #FF0000}
TITLE { color: red}
ACT_NUMBER { color: rgb(255,0,0) }

In fact, these are just three different ways of saying pure red; and all three elements
will have the same color.

Text

These properties affect the appearance of text, irrespective of font:

4 word-spacing

4 letter-spacing

Chapter 14 4 CSS Text Styles

4 text-decoration
4 vertical-align
4+ text-transform
4+ text-align

4+ text-indent

4 line-height

4 white-space

Word spacing

The word-spacing property expands text by adding additional space between
words. A negative value removes space between words. The only reason I can think
of to alter the word spacing on a web page is if you are a student laboring under
tight page-count limits who wants to make a paper look bigger or smaller than it is.

;!Lom

Desktop publishers love to spend hours tweaking these details pixel by pixel. The
problem is that all the rules they've learned about how and when to adjust spacing
are based on ink on paper and really don’t work when transferred to the medium
of electrons on phosphorus (a typical CRT monitor). You're almost always better off
letting the browser make decisions about word and letter spacing for you.

If, on the other hand, your target medium is ink on paper, there's a little more to
be gained by adjusting these properties. The main difference is that with ink on
paper you control the delivery medium. You know exactly how big the fonts are,
how wide and high the display is, how many dots per inch are being used, and so
forth. On the Web, you simply don't have enough information about the output
medium available to control everything at this level of detail.

To change this from the default value of normal, you set a length for the property,
as in the following example:

SYNOPSIS { word-spacing: lem }

Browsers are not required to respect this property, especially if it interferes with
other properties such as align: justified. Figure 14-7 demonstrates.

Caution

Spacing words requires that the browser be able to figure out where the boundaries
between words fall. While this is relatively straightforward in most Western lan-
guages —just look for the white space —it's much more complex in some other lan-
guages, such as Sanskrit and Japanese. | wouldn’t count on most browsers being
able to handle this property for the more typographically challenging languages.

393

394

Part Ill 4+ Style Languages

2 http:iic econleche.org/books/bibled/source/14/synopsis.xml - Microsoft Internet Explorer
File Edit View Favorites Tools Help -
Gtk » o o~ G (4] | QuGesch GjFavoites TiMeda F | T S5 A

| Address !-El hiltp: /e afecenleche org/bocks bible 3 source/ 1 4/smopsis.aml

Twelfth Night

ACT 1

Seene 1 Duke Orsino's palace
Sceme 2 The sea-coast

Sceme 3 Olivia's house

Scene 4 Duke Orsino's palace.
Seene 5 Olivia's house

ACT 2
Scene | The sea-coast

Seepe 2 A street

Scene 3 Olivia's house u
Seene 4 Duke Orsino's palace.

=| @B |Unks |

Seene I Olivia's garden

ACT 3

Seene | Olivia's garden

Sceme 2 Olivia's house

Fooa 1 A atrest :I
@] Done [[|®ntemet 7

Figure 14-7: The synopsis of Twelfth Night with 1 em of word spacing

The letter-spacing property

The Tetter-spacing property expands text by adding additional space between
letters. A negative value removes space between letters. Again, the only reason |
can think of to do this on a web page is to make a paper look bigger or smaller than
it really is to meet a length requirement.

To change this from the default value of normal, set a length for the property, as in
the following example:

SYNOPSIS { Tletter-spacing: 0.3em }

Because justification works by adjusting the amount of space between letters,
changing the letter spacing manually can prevent the browser from justifying text.
However, browsers are not required to respect this property, especially if it inter-
feres with other properties suchas align: justified. Nonetheless, most
browsers attempt to implement it as best they can within the restrictions of other
rules, as shown in Figure 14-8.

Chapter 14 4 CSS Text Styles

econleche.org/books/bibled/source/14/synopsis.xml - Microsoft Internet Explorer
File Edit ‘iew Favontes Tools Help

Gtk » o o~ G (4] | QuGesch GjFavoites TiMeda F | T S5 A

| Address !-El hiltp: /e afecenleche org/bocks bible 3 source/ 1 4/smopsis.aml

=| @B |Unks |

Twelfth Night

ACT 1

Scene I Duke Orsino's palace

Scene 2 The sea-coast

Scenme 3 Olivia's house

Scene 4 Duke Orgino's palace.

Scene 5 Olivia's house

ACT 2

Scene I The sea-coast

Scene Z2 A street

Scene 3 Olivia's house u
Secene 4 Duke Orgino's palace.

Scene 5 Olivia's garden

ACT 3

Seene 1 Olivia's garden

Scene 2 Olivia's house

Serone 3 A aftrest LI
@] Done [[|®ntemet 7

Figure 14-8: The SYNOPSIS element with 0.3 em letter spacing

The text-decoration property

The text-decoration property can have one of the following five values:

4+ none

4 underline

4+ overline

4 line-through
4+ blink

Except for none, which is the default, these values are not mutually exclusive. You
may, for example, specify that a paragraph is underlined, overlined, struck through,

and blinking. (I do not, however, recommend that you do this.)

Aote Browsers, fortunately, are not required to support blinking text.

For example, the next rule specifies that CHARACTER elements are underlined.

Figure 14-9 shows the result of applying this rule to the synopsis of Twelfth Night.

CHARACTER { text-decoration: underline }

395

396

Part Ill 4+ Style Languages

2} http:iicafeconleche org/hooks/bible3/source/14/synopsis.xml - Microsoft Internet Explorer

File Edit View Favorites Tools Help -
Gtk » o o~ G (4] | QuGesch GjFavoites TiMeda F | T S5 A

| Address !.@ Filtp: /e afeconleche crg/bock s/bible3/source/ 1 4/ smopss sml ﬂ @ Go | Links */
Twelfth Night

ACT 1

Scene I Duke Orsino's palace

Scene 2 The sea-coast

Sceme 3 Olivia's house

Scene 4 Duke Orsgino's palace.

Scene 5 Olivia's house

ACT 2

Scene I The sea-coast

Scene Z2 A street

Scene 3 QOlivia's house u
Secene 4 Duke Orgino's palace.

Scene 5 QOlivia's garden

ACT 3

Seene 1 Olivia's garden

Scene 2 QOlivia's house

Serone 3 A atrest :I
@] Done [[|®ntemet 7

Figure 14-9: The synopsis of Twelfth Night with underlined characters

The vertical-align property

The vertical-align property controls the vertical alignment of text within an
inline box. It specifies how an inline element is positioned relative to the baseline of

the text. Valid values are as follows:

4 baseline—Align the baseline of the inline box with the baseline of the block

box (this is the default)
4 sub—Position the inline box as a subscript

4 super —Position the inline box as a superscript

4 top—Align the top of the inline box with the top of the line

4 middle—Align the midpoint of the inline box with the baseline of the block

box, plus half of the x-height of the block box

4 bottom—Align the bottom of the inline box with the bottom of the line

4 text-top—Align the top of the inline box with the top of the parent ele-

ment’s font

4+ text-bottom—Align the bottom of the inline box with the bottom of the

parent element’s font

Chapter 14 ¢ CSS Text Styles 397

You can also set the vertical-align property to a percentage that raises (posi-
tive value) or lowers (negative value) the box by the percentage of the line-height.
A value of 0% is the same as the baseline value. Finally, you can set vertical-
align to a signed length that will raise or lower the box by the specified distance.
A value of Ocm is the same as the baseline value.

The sub value makes the element a subscript. The super value makes the element
a superscript. The text-top value aligns the top of the element with the top of the
parent element’s font. The midd1e value aligns the vertical midpoint of the element
with the baseline of the parent plus half the x-height. The text-bottom value aligns
the bottom of the element with the bottom of the parent element’s font.

The top value aligns the top of the element with the tallest letter or element on the
line. The bottom value aligns the bottom of the element with the bottom of the low-
est letter or element on the line. The exact alignment changes as the height of the
tallest or lowest letter changes.

For example, the rule for a footnote number might look like this one that super-
scripts the number and decreases its size by 20 percent:

FOOTNOTE_NUMBER { vertical-align: super; font-size: 80% }

The text-transform property

The text-transform property can specify that text should be rendered in all
uppercase, all lowercase, or with initial letters capitalized. This is useful in head-
lines, for example. The valid values are as follows:

4 capitalize

4 uppercase

4 lowercase

4 none
Capitalization Makes Only The First Letter Of Every Word Uppercase Like This
Sentence. PLACING THE SENTENCE IN UPPERCASE, HOWEVER, MAKES EVERY LET-

TER IN THE SENTENCE UPPERCASE. The following rule converts the TITLE element
in the Twelfth Night synopsis to uppercase:

TITLE { text-transform: uppercase }

Internet Explorer doesn’t support the text-transform property, so Figure 14-10
shows the document in Mozilla.

398

Part Ill 4+ Style Languages

B Mozilla
. File Edit “iew Go Bookmarks Tools Window Help

O O @ O IQ— hitp:#fcafeconleche. org/books/bibledfsource/ 4/synopsis. uml

e e g Duke

TWELFTH NIGHT

ACT 1

i cene ! Duke Orsino's
e e] The sea-coast
i cene 3 Olivia's house
i cene 7 Duke Orsino's
cene s Olivia's house
ACT 2

s e e ne i The sea-coast
i ceme H A street

e me] Olivia's house

Orsino's

i ceme 3 Olivia's garden
ACT 3

i cene : Olivia's garden
fcene 2 Olivia's house
i cene 3 A street

teene ¢ Olivia's garden
ACT 4

feeme 10 Olivia's front

palace

palace.

palace.

yard

Dong

Figure 14-10: The synopsis of Tielfth Night with an uppercased title

The text-transform property is somewhat language-dependent because many
languages — Hebrew, modern Georgian, and Chinese, for example —don't have
distinct upper and lowercases. Even worse, letters that have the same capital form
in two languages might have different lowercase forms or vice versa.

The text-align property

The text-align property applies only to block-level elements. It specifies whether
the text in the block is aligned with the left side, the right side, centered, or justi-

fied. The valid values are as follows:

4 left
4+ right
4 center

4 justify

Tip

Chapter 14 + CSS Text Styles 399

The following rules center the TITLE element in the Twelfth Night synopsis and jus-
tify everything else. Figure 14-11 shows the synopsis after these rules have been
applied. I also changed SCENE to display: inline so that there’d be enough text
in a paragraph to extend across the browser window and show that the text is truly
justified.

SCENE { display: inline}
TITLE { text-align: center }
SYNOPSIS { text-align: justify }

¥ Mozilla M= E3

. File Edit “iew Go Bookmarks Tools Window Help

o G 0 @ Q |§, http:fcafeconleche. orgfbooks/bible3/s ource/1 4/synopsis. xmi i |
TWELFTH NIGHT

ACT 1 Seene : Duke Orsino's palace feeme 2 The

sea-coast Seeme E Olivia's house Scene ¢ Duke

Orsino's palace. Scene 3 Olivia's house

ACT 2 Feene i The sea-coast Seene 2 A street Seene

i Olivia's house Scene 7 Duke Orsino's palace. Seeme

g Olivia's garden

ACT 3 Seeme : Olivia's garden Seeme 2 Olivia's

house Seeme 3 A street Feene 4 Olivia's garden

ACT 4 Seene : Olivia's front yvard Seeme 2 Olivia's

house Sceme 3 Olivia's garden

ACT 5 Seene ! Olivia's front vyard

Dece | B

Figure 14-11: The TITLE in the synopsis is centered and the rest of the text is justified.

The text-indent property

The text-indent property, which only applies to block-level elements, specifies
how far the first line of a block is indented with respect to the remaining lines of the
block. It is given either as an absolute length or as a percentage of the width of the
parent element. The value can be negative to create a hanging indent.

To indent all the lines of an element, rather than just the first, use the box proper-
- ties discussed in Chapter 13 to set an extra left margin on the element.

B

)

For example, the following rule indents the scenes in the synopsis by half an inch.
Figure 14-12 shows the synopsis after this rule has been applied.

SCENE { text-indent: 0.5in }

400

Part Ill 4+ Style Languages

% Mozilla =] ES |
. File Edit View Go Bookmarks Tools Window Help
B @ O O Q l‘vhtrp:!fcafecnnIe|:he.orgfhnnksfhible?snumef‘lMsynopgis.xml I
TWELFTH NIGHT =

AcT 1

sceme 1+ Duke Orsino's palace

seeme 2 The sea-coast

Seene f] Olivia's house

sceme ¢ Duke Orsino's palace.

Seena 3 Olivia's house
ACT 2

Seene i The sea-coast i

Scene 2 A street =

Sceme 3 Olivia's house

seene ¢ Duke Orsino's palace.

Seene 3 Olivia's garden
ACT 3

Sceme I Olivia's garden

sceme 2 Olivia's house

Seene] A street

Scene 4 Olivia's garden —
ACT 4

seene ¢+ Olivia's front yard
) Seeme 2 Olivia's house] =
Done | ol

Figure 14-12: Each SCENE and its children in the synopsis are indented half an inch.

The line-height property

The Tine-height property specifies the distance between the baselines of succes-
sive lines. It can be given as an absolute number, an absolute length, or a percent-
age of the font size. For example, the following rule double-spaces the SYNOPSIS
element. Figure 14-13 shows the Twelfth Night synopsis after this rule has been
applied.

SYNOPSIS { Tine-height: 200% !

Double spacing isn’t particularly attractive, though, so I'll remove it. Listing 14-4
summarizes the additions made in this and the previous sections to the synopsis
style sheet (minus the double spacing).

Chapter 14 4 CSS Text Styles

¥ Mozilla M= E3
. File Edit Wiew Go Bookmarks Tools Window Help |
al e 0 @ Q I\p http: ffcafeconleche, orgfbooks/hible3fsource/1 4/synopsis, ki I
TWELFTH NIGHT T

ACT 1

scene 1+ Duke Orsino's palace

seense 2 The sea-coast =

Seene 3 Olivia's house

Sceme 4 Duke Orsino's palace.

Seene ; Olivia's house U]
ACT 2

scene 1+ The sea-coast

Scene] A street

Seene 1 Olivia's house

seene ¢ Duke Orsino's palace.

sceme 5 Olivia's garden =

Figure 14-13: A double-spaced synopsis

Listing 14-4: The Synopsis Style Sheet with Text Properties

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT_NUMBER { font-weight: bold}
SYNOPSIS { font-size: 14pt }
SYNOPSIS { word-spacing: lem }
SYNOPSIS { Tletter-spacing: 0.3em }
SCENE_NUMBER { color: #FF0000}
TITLE { color: red}
ACT_NUMBER { color: rgh(255,0,0) }
ACT_NUMBER { font-variant: small-caps}
CHARACTER { text-decoration: underline }
SCENE_NUMBER { vertical-align: subscript}
TITLE { font-size-adjust: ".58"; }
SYNOPSIS { font-size-adjust: ".46"
font-family: Times, "Times New Roman", serif }
TITLE { font: normal bold x-large Helvetica, Verdana,

1

SCENE_NUMBER { font: italic smaller Times, serif }
TITLE { text-align: center }

SYNOPSIS { text-align: justify }

SCENE { text-indent: 0.5in }

Arial, sans-serif

401

4072 Partlll + Style Languages

The white-space property

The white-space property determines how significant white space (spaces, tabs,
line breaks) is within an element. The allowable values are as follows:

4 normal
4 pre

4 nowrap

The default value, normal, simply means that runs of white space are condensed to
a single space and words are wrapped to fit on the screen or page. This is the way
white space is normally handled in both HTML and XML.

The pre value acts like the PRE (preformatted) element in HTML. All white space in
the input document is considered significant and faithfully reproduced on the out-
put device. It may be accompanied by a shift to a monospaced font. This would be
useful for computer source code or concrete poetry. Listing 14-5 is a poem, The
Altar by George Herbert, in which spacing is important. In this poem, the lines form
the shape of the poem’s subject.

Listing 14-5: The Altar in XML

<?xml version="1.0"7>
<?xml-stylesheet type="text/css" href="14-6.css"?>
<POEM>

KTITLE>The Altar</TITLE>
<POET>George Herbert</POET>

<VERSE> A broken ALTAR, Lord, thy servant rears,</VERSE>
<VERSE> Made of a heart, and cemented with tears:</VERSE>
<VERSE> Whose parts are as thy hand did frame;</VERSE>

<VERSE> No workman's tool hath touched the same.</VERSE>
<VERSE> No workman's tool hath touched the same.</VERSE>

<VERSE> A HEART alone</VERSE>
<VERSE> Is such a stone,</VERSE>
<VERSE> As nothing but</VERSE>
<VERSE> Thy power doth cut.</VERSE>
<VERSE> Wherefore each part</VERSE>
<VERSE> 0of my hard heart</VERSE>
<VERSE> Meets in this frame,</VERSE>
<VERSE> To praise thy name:</VERSE>

<VERSE> That if I ~chance to hold my peace,</VERSE>
<VERSE> These stones to praise thee may not cease.</VERSE>
<VERSE> 0 let thy blessed SACRIFICE be mine,</VERSE>
<VERSE> And sanctify this ALTAR to be thine.</VERSE>

</POEM>

Chapter 14 4 CSS Text Styles

Listing 14-6 is a style sheet that uses white-space: pre to preserve this form.
Figure 14-14 shows the result in Mozilla.

Caution Internet Explorer does not correctly implement the white-space property.
Mozilla, Netscape, Safari, and Opera do.

Listing 14-6: A Style Sheet for White Space-Sensitive Poetry

POEM

TITLE

POET

STANZA

VERS

B Mozilla
. File Edit “iew Go Bookmarks Tools Window Help

E

display: block }
display: block; font-size: 1l6pt; font-weight: bold }

display: block; margin-bottom: 10px }

{
{
{ display: block; margin-bottom: 10px }
{
{

display: block;
white-space: pre; font-family: monospace }

@Q O @ Q I%— hitp:#icafeconleche. org/books/bible3/sources! 4/altar xml I

[Feorge Herbert

That

The Altar

if

A broken ALTAR, Lord, thy servant rears,
Hade of a heart, and cemented with tears:
Whose parts are as thy hand did frame;
Mo workman's tool hath touched the sawme.
Mo workman's tool hath touched the sSame.

L HELRT alone
Is such a 3tone,
Az nothing but

Thy power doth cut.
Uherefore each part
0f my hard heart
Heers in this frame,
To praise thy name:

I chance to hold ny peace,
Thess stones to praise thes may not ceases,
0O let thy bleased
End =manctify this ALTAR to ke thine.

SACRIFICE

be nmine,

Daone

W

Figure 14-14: The Altar by George Herbert with white-space: pre

Finally, the nowrap value is a compromise that breaks lines exactly where there’s

an explicit break in the source text, but condenses other runs of space to a single
space. This might be useful when you’re trying to faithfully reproduce the line
breaks in a classical manuscript or some other poetry where the line breaks are sig-
nificant but the space between words isn’t.

403

404 Partill + Style Languages

Backgrounds

The background of an element can be set to a color or an image. If it’s set to an
image, the image can be positioned differently relative to the content of the ele-
ment. This is accomplished with the following five basic properties:

4 background-color
4 background-image
4 background-repeat
4 background-attachment

4 background-position

Finally, there’s a background shorthand property that allows you to set some or all
of these five properties in one rule.

Caution Fancy backgrounds are vastly overused. Anything other than a very light back-
ground color only makes your page harder to read and annoys users. | list these
properties here for the sake of completeness, but | recommend that you use them
sparingly, if at all.

None of the background properties are inherited. Each child element must specify
the background it wants. However, it may appear as if background properties are
inherited because the default is for the background to be transparent. The back-
ground of whatever element is drawn below an element will show through. Most of
the time, this is the background of the parent element.

The background-color property

The background-color property can be set to the same values as the color prop-
erty. However, rather than changing the color of the element’s contents, it changes
the color of the element’s background on top of which the contents are drawn. For
example, to draw a SIGN element with yellow text on a blue background, you would
use this rule:

SIGN { color: yellow; background-color: blue}
You can also set the background-color to the keyword transparent (the

default), which simply means that the background takes on the color or image of
whatever the element is laying on top of, generally, the parent element.

Chapter 14 + CSSText Styles 405

The background-image property

The background-image property is either none (the default) or a URL (generally
relative) where a bitmapped image file can be found. If it’s a URL, the browser will
load the image and use it as the background, much like the BACKGROUND attribute of
the BODY element in HTML. For example, the following rule attaches the file shake-
speare.jpg (shown in Figure 14-15) as the background for a SYNOPSIS element.

SYNOPSIS { background-image: url(shakespeare.jpg) }

S

Figure 14-15: The original, untiled,
uncropped background image for the
synopsis

Caution Internet Explorer does not support fixed background images; Mozilla, Netscape,
Safari, and Opera do.

The image referenced by the background-image property is drawn underneath the
specified element, not underneath the browser pane like the BACKGROUND attribute
of HTML'’s BODY element. Background images will generally not be the exact same
size as the contents of the page. If the image is larger than the element’s box, the
image will be cropped. If the image is smaller than the element’s box, it will be tiled
vertically and horizontally. Figure 14-16 shows a background image that has tiled
exactly far enough to cover the underlying content.

Tiling takes place across the element whose background-image property is set, not
across the browser window. You can set background images for nonroot elements
such as the ACT or the SCENE, if you like.

406

Part Ill 4+ Style Languages

B Mozilla =] E3
. File Edit “iew Go Bookmarks Tools Window Help

G @ O Q |\.‘hnpﬁcafeconleche org/books/bible3/source/ 4/synopsis) |

Figure 14-16: A tiled background image

The background-repeat property
The background-repeat property adjusts how background images are tiled across
the screen. You can specify that background images are not tiled or are only tiled
horizontally or vertically. Possible values for this property are as follows:

4 repeat

4 repeat-x

4 repeat-y

4 no-repeat

For example, to show only a single picture of Shakespeare, you would set the
background-repeat of the SYNOPSIS element to no-repeat, like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat }

Figure 14-17 shows the result.

Chapter 14 + CSSText Styles 4 (7

B Mozilla =] E3
. File Edit “iew Go Bookmarks Tools Window Help

| @ @00 Q |’\+ httpc#fcafeconleche org/books/bible3/source/l 4/synopsis) |

NIGHT B

Orsino's palace
sea-coast
ia's house
Orsino's palace. =
house

Scene i The sea-coast
Seemne z A street

Seene ' Olivia's house =
sceme ¢ Duke Orsino's palace.
Sceme 5 Olivia's garden

ACT 3

Seeme I Olivia's garden

Soeme 2 Olivia's house ||
A s s .

Done [==

Figure 14-17: An untiled background image

To tile across but not down the page, set background-repeat to repeat-x, like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: repeat-x }

The result is shown in Figure 14-18:

B Mozilla =] E3
. File Edit “iew Go Bookmarks Tools Window Help

| @ @00 Q |’\+ httpc#fcafeconleche org/books/bible3/source/l 4/synopsis) |
NI 1 . -

Scene i The sea-coast
Seemne z A street

Seene ' Olivia's house =
sceme ¢ Duke Orsino's palace.

Sceme 5 Olivia's garden

ACT 3

Seeme I Olivia's garden

Soeme 2 Olivia's house ||
A s s .

Done [==

Figure 14-18: A background image tiled across but not down

408

Part Ill 4+ Style Languages

To tile down but not across the page, as shown in Figure 14-19, set background-
repeat to repeat-y, like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: repeat-y }

% Mozilla =] B3
. File Edit “iew Go Bookmarks Tools “Window Help

| @ @00 Q |’\+ httpc#fcafeconleche org/books/bible3/source/l 4/synopsis) |

NIGHT B

5

e Orsino's palace
sea-coast
ia's house
Orsino's palace. =

:g: sea-coast

“iﬁ'!%“v house =

Orsino's palace.

garden
house

[-

Figure 14-19: A background image tiled down but not across

The background-attachment property

In HTML, the background image is attached to the document. When the document is
scrolled, the background image scrolls with it. With the background-attachment
property, you can specify that the background be attached to the window or pane
instead. Possible values are scrol1 and fixed. The default is scrol1; that is, the
background is attached to the document rather than the window.

However, with background-attachment set to fixed, the document scrolls but
the background image doesn’t. This might be useful in conjunction with an image
that’s big enough for a typical browser window but not big enough to be a backdrop
for a large document when you don’t want to tile the image. You would code that
request like this:

SYNOPSIS { background-image: url(shakespeare.jpg);

background-attachment: fixed;
background-repeat: no-repeat }

Figure 14-20 shows the effect after a little scrolling.

Chapter 14 4 CSS Text Styles

B Mozilla =] E3
. File Edit “iew Go Bookmarks Tools Window Help

| @ @00 Q |’\+ httpc#fcafeconleche org/books/bible3/source/l 4/synopsis) |

|
sce sea-coast i
5 e street
Yoo house
Orsino's palace.

garden

garden
Seene 2 Olivia's house
Scene E A street
Scenme 4 Olivia's garden
ACT 4 =
Sceme I Olivia's front yard
Sceme 2 Olivia's house
Sceme 3 Olivia's garden
ACT 5
Sceme I Olivia's front vyard =
Done | el

Figure 14-20: A fixed background image stays in the same position
in the window even as the document scrolls.

The background-position property

By default, the upper left corner of a background image is aligned with the upper
left corner of the element it’s attached to. (See Figure 14-17 for an example.) Most
of the time, this is exactly what you want. However, for those rare times when you
want a different appearance, the background-position property allows you to

move the background relative to the element.

You can specify the offset by using percentages of the width and height of the
parent element, by using absolute lengths, or by using two of the following six

keywords:

4+ top
4+ center
4+ bottom
+ left
4+ center
4 right

409

410

Part Ill 4+ Style Languages

Percentages of parent element’s width and height

Percentages enable you to pin different parts of the background to the correspond-
ing part of the element. The x coordinate is given as a percentage ranging from 0%
(left side) to 100% (right side). The y coordinate is given as a percentage ranging
from 0% (top) to 100% (bottom). For example, this rule places the upper right cor-
ner of the image in the upper right corner of the SYNOPSIS element. Figure 14-21
shows the result.

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: 100% 0% }

% Mozilla [(o] x]
. File Edit “iew Go Bookmarks Tools Window Help

i O @°@ Q |’\+ httpc#fcafeconleche org/books/bible3/source/l 4/synopsis) |
TWELFTH NIGHT E|
ACT 1

Sceme 2 Duke Orsino's palace

Seene 2 The sea-coast

Sceme 3 Olivia's house

scene ¢« Duke Orsino's palace.

Soene 5 Olivia's house

AcCT 2

Scene i The sea-coast

Seemne z A street

Seene ' Olivia's house =
sceme ¢ Duke Orsino's palace.

Sceme 5 Olivia's garden

ACT 3

Seeme I Olivia's garden

Soeme 2 Olivia's house =
Bore i e [=2

Figure 14-21: A background image aligned with the upper right
corner of the content

Absolute lengths

Setting background-position to alength fixes the upper left corner of the back-
ground at an absolute position in the element. The next rule places the upper left
corner of the background image shakespeare.jpg one centimeter to the right and
two centimeters below the upper left corner of the element. Figure 14-22 shows the
result.

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: lcm 2cm }

Chapter 14 4 CSS Text Styles

B Mozilla =] E3
. File Edit “iew Go Bookmarks Tools Window Help

i O @°@ Q .|’\> httpc#fcafeconleche org/books/bible3/source/l 4/synopsis) |

TWELFTH NIGHT B
ACT 1

Duke Orsino's palace
sea-coast

Ha's house

Orsino's palace. =

house

Fea-coast
treet

s 3 house =
sceme ¢ Duke Orsino's palace.
Sceme 5 Olivia's garden
ACT 3
Seeme I Olivia's garden
Soeme 2 Olivia's house =
Bore i e [=2

Figure 14-22: A background image positioned one centimeter to the
right and two centimeters below the left corner of the element

Keywords

The top left and Teft top keywords are the same as 0% 0%. The top, top
center,and center top are the same as 50% 0%. The right topand top right
keywords are the same as 100% 0%. The 1eft, Teft center, and center Teft
keywords are the same as 0% 50%. The center and center center keywords are
the same as 50% 50%. The right, right center, and center right keywords are
the same as 100% 50%. The bottom left and 1Teft bottomkeywords are the same
as 0% 100%. The bottom, bottom center, and center bottom mean the same as
50% 100%. The bottom right and right bottomkeywords are the same as 100%
100%. Figure 14-23 shows the positions for the different values.

For example, this rule positions the image in the top center of the synopsis, as
shown in Figure 14-24:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: center top }

411

412 Partlll + Style Languages

top .
o o
o/ MO center top o/ NO
0% 0% 50% 0% 100% 0%
left center right_
et center center oenter Foht conter
o/ ENO 50% 50% o/ =0
0% 50% 100% 50%
bottom left bottom bottom right
left bottom bottom center right bottom
o 0 center bottom o 0
0% 100% 50% 100% 100% 100%

Figure 14-23: Relative positioning of background images

% Mozilla [H[=1 E3
. File Edit “iew Go Bookmarks Tools Window Help [
g Q @ @ Q |\+ht1pﬂcafeconleche org/books/bible3/source/1 4/synopsis o |
TWELFTH NIGHT 4 B]
ACT 1

Seene Duke Orsi ace

Seene 2 The sea-c

Sceme 3 Olivia's h

scene ¢ Duke Orginp’™s yalace. =
seene 5 Olivia's 5 & :

AcCT 2

Scene i The sea-coast

Seemne z A street

Seene ' Olivia's house

sceme ¢ Duke Orsino's palace.

Sceme 5 Olivia's garden

ACT 3

Seeme I Olivia's garden

Soeme 2 Olivia's house =
Done ' - - [4@—{@,

Figure 14-24: An untiled background image pinned to the top center
of the SYNOPSIS element

If the background-attachment property has the value fixed, the image is placed
relative to the windowpane instead of the element. This means that as the window
is scrolled, the picture does not change its apparent position. It does not scroll with
the document.

Chapter 14 + CSSTextStyles 413

The background shorthand property

The background property is shorthand for setting the background-color, back-
ground-image, background-repeat, background-attachment, and background-
position properties in a single rule. For example, to set background-color to
white, background-image to shakespeare.jpg, background-repeat tono-
repeat, and background-attachment to fixed in the SYNOPSIS element, you

can use this rule:

SYNOPSIS {
background: url(shakespeare.jpg) white no-repeat fixed

}

The preceding rule means exactly the same thing as this longer but more legible rule:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-color: white;
background-repeat: no-repeat;
background-attachment: fixed }

When you are using the background shorthand property, values for any or all of
the five properties can be given in any order. However, none can occur more than
once. For example, the upper right corner alignment rule used for Figure 14-21
could have been written like this instead:

SYNOPSIS { background: url(shakespeare.jpg) no-repeat 100% 0% }

Visibility

The visibility property controls whether the contents of an element are seen.
The three possible values of this property are as follows:

4 visible

4 hidden

4 collapse
Ifvisibility is setto visible, the contents of the box, including all borders, are
shown. This is t