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3

i n t ro d u c t i o n

In the Affective Computing Laboratory at the Massachusetts Institute 
of   Technology (MIT), scientists are designing computers that can read 
human emotions. Financial institutions have implemented worldwide 
computer networks that evaluate and approve or reject millions of  trans-
actions every minute. Roboticists in Japan, Europe, and the United States 
are developing service robots to care for the elderly and disabled. Japanese 
scientists are also working to make androids appear indistinguishable from 
humans. The government of  South Korea has announced its goal to put 
a robot in every home by the year 2020. It is also developing weapons-
 carrying robots in conjunction with Samsung to help guard its border with 
North Korea. Meanwhile, human activity is being facilitated, monitored, 
and analyzed by computer chips in every conceivable device, from automo-
biles to garbage cans, and by software “bots” in every conceivable virtual 
environment, from web surfi ng to online shopping. The data collected by 
these (ro)bots—a term we’ll use to encompass both physical robots and 
software agents—is being used for commercial, governmental, and  medical 
purposes.

All of  these developments are converging on the creation of  (ro)bots whose 
independence from direct human oversight, and whose potential impact on 
human well-being, are the stuff  of  science fi ction. Isaac Asimov, more than 
fi fty years ago, foresaw the need for ethical rules to guide the behavior of  
robots. His Three Laws of  Robotics are what people think of  fi rst when they 
think of  machine morality.

1. A robot may not injure a human being or, through inaction, allow a 
human being to come to harm.
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2. A robot must obey orders given it by human beings except where such 
orders would confl ict with the First Law.

3. A robot must protect its own existence as long as such protection does 
not confl ict with the First or Second Law.

Asimov, however, was writing stories. He was not confronting the chal-
lenge that faces today’s engineers: to ensure that the systems they build are 
benefi cial to humanity and don’t cause harm to people. Whether Asimov’s 
Three Laws are truly helpful for ensuring that (ro)bots will act morally is one 
of  the questions we’ll consider in this book.

Within the next few years, we predict there will be a catastrophic inci-
dent brought about by a computer system making a decision independent 
of  human oversight. Already, in October 2007, a semiautonomous robotic 
cannon deployed by the South African army malfunctioned, killing 9 soldiers 
and wounding 14 others—although early reports confl icted about whether 
it was a software or hardware malfunction. The potential for an even big-
ger disaster will increase as such machines become more fully autonomous. 
Even if  the coming calamity does not kill as many people as the terrorist 
acts of  9/11, it will provoke a comparably broad range of  political responses. 
These responses will range from calls for more to be spent on improving the 
technology, to calls for an outright ban on the technology (if  not an outright 
“war against robots”).

A concern for safety and societal benefi ts has always been at the forefront 
of  engineering. But today’s systems are approaching a level of  complexity 
that, we argue, requires the systems themselves to make moral decisions—to 
be programmed with “ethical subroutines,” to borrow a phrase from Star
Trek. This will expand the circle of  moral agents beyond humans to artifi -
cially intelligent systems, which we will call artifi cial moral agents (AMAs).

We don’t know exactly how a catastrophic incident will unfold, but the 
following tale may give some idea.

Monday, July 23, 2012, starts like any ordinary day. A little on the warm side 
in much of  the United States perhaps, with peak electricity demand expected 
to be high, but not at a record level. Energy costs are rising in the United 
States, and speculators have been driving up the price of  futures, as well as 
the spot price of  oil, which stands close to $300 per barrel. Some slightly 
unusual automated trading activity in the energy derivatives markets over 
past weeks has caught the eye of  the federal Securities and Exchange Com-
mission (SEC), but the banks have assured the regulators that their programs 
are operating within normal parameters.

At 10:15 a.m. on the East Coast, the price of  oil drops slightly in response 
to news of  the discovery of  large new reserves in the Bahamas. Software at 
the investment division of  Orange and Nassau Bank computes that it can a 
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turn a profi t by emailing a quarter of  its customers with a buy recommenda-
tion for oil futures, temporarily shoring up the spot market prices, as dealers 
stockpile supplies to meet the future demand, and then selling futures short 
to the rest of  its customers. This plan essentially plays one sector of  the cus-
tomer base off  against the rest, which is completely unethical, of  course. But 
the bank’s software has not been programmed to consider such niceties. In 
fact, the money-making scenario autonomously planned by the computer 
is an unintended consequence of  many individually sound principles. The 
computer’s ability to concoct this scheme could not easily have been antici-
pated by the programmers.

Unfortunately, the “buy” email that the computer sends directly to the 
customers works too well. Investors, who are used to seeing the price of  oil 
climb and climb, jump enthusiastically on the bandwagon, and the spot 
price of  oil suddenly climbs well beyond $300 and shows no sign of  slowing 
down. It’s now 11:30 a.m. on the East Coast, and temperatures are climbing 
more rapidly than predicted. Software controlling New Jersey’s power grid 
computes that it can meet the unexpected demand while keeping the cost of  
energy down by using its coal-fi red plants in preference to its oil-fi red genera-
tors. However, one of  the coal-burning generators suffers an explosion while 
running at peak capacity, and before anyone can act, cascading blackouts 
take out the power supply for half  the East Coast. Wall Street is affected, but 
not before SEC regulators notice that the rise in oil future prices was a com-
puter-driven shell game between  automatically traded accounts of  Orange 
and Nassau Bank. As the news spreads, and investors plan to shore up their 
positions, it is clear that the prices will fall dramatically as soon as the mar-
kets reopen and millions of  dollars will be lost. In the meantime, the black-
outs have spread far enough that many people are unable to get essential 
medical treatment, and many more are stranded far from home.

Detecting the spreading blackouts as a possible terrorist action, security 
screening software at Reagan National Airport automatically sets itself  to 
the highest security level and applies biometric matching criteria that make 
it more likely than usual for people to be fl agged as suspicious. The software, 
which has no mechanism for weighing the benefi ts of  preventing a terrorist 
attack against the inconvenience its actions will cause for tens of  thousands 
of  people in the airport, identifi es a cluster of  fi ve passengers, all waiting 
for Flight 231 to  London, as potential terrorists. This large concentration of  
“suspects” on a single fl ight causes the program to trigger a lock down of  
the airport, and the dispatch of  a Homeland Security response team to the 
terminal. Because passengers are already upset and nervous, the situation at 
the gate for Flight 231 spins out of  control, and shots are fi red.

An alert sent from the Department of  Homeland Security to the airlines 
that a terrorist attack may be under way leads many carriers to implement 
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measures to land their fl eets. In the confusion caused by large numbers of  
planes trying to land at Chicago’s O’Hare Airport, an executive jet collides 
with a Boeing 777, killing 157 passengers and crew. Seven more people die 
when debris lands on the Chicago suburb of  Arlington Heights and starts a 
fi re in a block of  homes.

Meanwhile, robotic machine guns installed on the U.S.-Mexican border 
receive a signal that places them on red alert. They are programmed to act 
autonomously in code red conditions, enabling the detection and elimina-
tion of  potentially hostile targets without direct human oversight. One of  
these robots fi res on a Hummer returning from an off-road trip near Nogales, 
Arizona, destroying the vehicle and killing three U.S. citizens.

By the time power is restored to the East Coast and the markets reopen 
days later, hundreds of  deaths and the loss of  billions of  dollars can be attrib-
uted to the separately programmed decisions of  these multiple interacting 
systems. The effects continue to be felt for months.

Time may prove us poor prophets of  disaster. Our intent in predicting such 
a catastrophe is not to be sensational or to instill fear. This is not a book about 
the horrors of  technology. Our goal is to frame discussion in a way that con-
structively guides the engineering task of  designing AMAs. The purpose of  
our prediction is to draw attention to the need for work on moral machines 
to begin now, not twenty to a hundred years from now when technology has 
caught up with science fi ction.

The fi eld of  machine morality extends the fi eld of  computer ethics beyond 
concern for what people do with their computers to questions about what 
the machines do by themselves. (In this book we will use the terms ethics
and morality interchangeably.) We are discussing the technological issues 
involved in making computers themselves into explicit moral reasoners. As 
artifi cial intelligence (AI) expands the scope of  autonomous agents, the chal-
lenge of  how to design these agents so that they honor the broader set of  
values and laws humans demand of  human moral agents becomes increas-
ingly urgent.

Does humanity really want computers making morally important deci-
sions? Many philosophers of  technology have warned about humans abdi-
cating responsibility to machines. Movies and magazines are fi lled with 
futuristic fantasies about the dangers of  advanced forms of  artifi cial intel-
ligence. Emerging technologies are always easier to modify before they 
become entrenched. However, it is not often possible to predict accurately 
the impact of  a new technology on society until well after it has been widely 
adopted. Some critics think, therefore, that humans should err on the side 
of  caution and relinquish the development of  potentially dangerous tech-
nologies. We believe, however, that market and political forces will prevail 
and will demand the benefi ts that these technologies can provide. Thus, it 
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is incumbent on anyone with a stake in this technology to address head-on 
the task of  implementing moral decision making in computers, robots, and 
virtual “bots” within computer networks.

As noted, this book is not about the horrors of  technology. Yes, the 
machines are coming. Yes, their existence will have unintended effects on 
human lives and welfare, not all of  them good. But no, we do not believe that 
increasing reliance on autonomous systems will undermine people’s basic 
humanity. Neither, in our view, will advanced robots enslave or exterminate 
humanity, as in the best traditions of  science fi ction. Humans have always 
adapted to their technological products, and the benefi ts to people of  having 
autonomous machines around them will most likely outweigh the costs.

However, this optimism does not come for free. It is not possible to just sit 
back and hope that things will turn out for the best. If  humanity is to avoid 
the consequences of  bad autonomous artifi cial agents, people must be pre-
pared to think hard about what it will take to make such agents good.

In proposing to build moral decision-making machines, are we still 
immersed in the realm of  science fi ction—or, perhaps worse, in that brand of  
science fantasy often associated with artifi cial intelligence? The charge might 
be justifi ed if  we were making bold predictions about the dawn of  AMAs or 
claiming that “it’s just a matter of  time” before walking, talking machines 
will replace the human beings to whom people now turn for moral guidance. 
We are not futurists, however, and we do not know whether the apparent 
technological barriers to artifi cial intelligence are real or illusory. Nor are 
we interested in speculating about what life will be like when your counselor 
is a robot, or even in predicting whether this will ever come to pass. Rather, 
we are interested in the incremental steps arising from present technologies 
that suggest a need for ethical decision-making capabilities. Perhaps small 
steps will eventually lead to full-blown artifi cial intelligence—hopefully a less 
murderous counterpart to HAL in 2001: A Space Odyssey—but even if  fully 
intelligent systems will remain beyond reach, we think there is a real issue 
facing engineers that cannot be addressed by  engineers alone.

Is it too early to be broaching this topic? We don’t think so. Industrial 
robots engaged in repetitive mechanical tasks have caused injury and even 
death. The demand for home and service robots is projected to create a world-
wide market double that of  industrial robots by 2010, and four times bigger 
by 2025. With the advent of  home and service robots, robots are no longer 
confi ned to controlled industrial environments where only trained workers 
come into contact with them. Small robot pets, for example Sony’s AIBO, are 
the harbinger of  larger robot appliances. Millions of  robot vacuum cleaners, 
for example iRobot’s “Roomba,” have been purchased. Rudimentary robot 
couriers in hospitals and robot guides in museums have already appeared. 
Considerable attention is being directed at the development of  service robots 
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that will perform basic household tasks and assist the elderly and the home-
bound. Computer programs initiate millions of  fi nancial transactions with an 
effi ciency that humans can’t duplicate. Software decisions to buy and then 
resell stocks, commodities, and currencies are made within seconds, exploit-
ing potentials for profi t that no human is capable of  detecting in real time, 
and representing a signifi cant percentage of  the activity on world markets.

Automated fi nancial systems, robotic pets, and robotic vacuum cleaners 
are still a long way short of  the science fi ction scenarios of  fully autonomous 
machines making decisions that radically affect human welfare. Although 
2001 has passed, Arthur C. Clarke’s HAL remains a fi ction, and it is a safe bet 
that the doomsday scenario of  The Terminator will not be realized before its 
sell-by date of  2029. It is perhaps not quite as safe to bet against the Matrix 
being realized by 2199. However, humans are already at a point where engi-
neered systems make decisions that can affect humans’ lives and that have 
ethical ramifi cations. In the worst cases, they have profound negative effect.

Is it possible to build AMAs? Fully conscious artifi cial systems with com-
plete human moral capacities may perhaps remain forever in the realm of  
science fi ction. Nevertheless, we believe that more limited systems will soon 
be built. Such systems will have some capacity to evaluate the ethical rami-
fi cations of  their actions—for example, whether they have no option but to 
violate a property right to protect a privacy right.

The task of  designing AMAs requires a serious look at ethical theory, 
which originates from a human-centered perspective. The values and con-
cerns expressed in the world’s religious and philosophical traditions are not 
easily applied to machines. Rule-based ethical systems, for example the Ten 
Commandments or Asimov’s Three Laws for Robots, might appear somewhat 
easier to embed in a computer, but as Asimov’s many robot stories show, 
even three simple rules (later four) can give rise to many ethical dilemmas. 
Aristotle’s  ethics emphasized character over rules: good actions fl owed from 
good character, and the aim of  a fl ourishing human being was to develop 
a virtuous character. It is, of  course, hard enough for humans to develop 
their own virtues, let alone developing appropriate virtues for computers or 
robots. Facing the engineering challenge entailed in going from Aristotle to 
Asimov and beyond will require looking at the origins of  human morality as 
viewed in the fi elds of  evolution, learning and development, neuropsychol-
ogy, and philosophy.

Machine morality is just as much about human decision making as about 
the philosophical and practical issues of  implementing AMAs. Refl ection 
about and experimentation in building AMAs forces one to think deeply 
about how humans function, which human abilities can be implemented 
in the machines humans design, and what characteristics truly distinguish 
humans from animals or from new forms of  intelligence that humans create. 
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Just as AI has stimulated new lines of  enquiry in the philosophy of  mind, 
machine morality has the potential to stimulate new lines of  enquiry in eth-
ics. Robotics and AI laboratories could become experimental centers for test-
ing theories of  moral decision making in artifi cial systems.

Three questions emerge naturally from the discussion so far. Does the 
world need AMAs? Do people want computers making moral decisions? 
And if  people believe that computers making moral decisions are neces-
sary or inevitable, how should engineers and philosophers proceed to design 
AMAs?

Chapters 1 and 2 are concerned with the fi rst question, why humans need 
AMAs. In chapter 1, we discuss the inevitability of  AMAs and give examples 
of  current and innovative technologies that are converging on sophisticated 
systems that will require some capacity for moral decision making. We dis-
cuss how such capacities will initially be quite rudimentary but nonetheless 
present real challenges. Not the least of  these challenges is to specify what 
the goals should be for the designers of  such systems—that is, what do we 
mean by a “good” AMA?

In chapter 2, we will offer a framework for understanding the trajectories 
of  increasingly sophisticated AMAs by emphasizing two dimensions, those of  
autonomy and of  sensitivity to morally relevant facts. Systems at the low end 
of  these dimensions have only what we call “operational morality”—that 
is, their moral signifi cance is entirely in the hands of  designers and users. 
As machines become more sophisticated, a kind of  “functional morality” is 
technologically possible such that the machines themselves have the capac-
ity for assessing and responding to moral challenges. However, the creators 
of  functional morality in machines face many constraints due to the limits 
of  present technology.

The nature of  ethics places a different set of  constraints on the accept-
ability of  computers making ethical decisions. Thus we are led naturally to 
the question addressed in chapter 3: whether people want computers mak-
ing moral decisions. Worries about AMAs are a specifi c case of  more gen-
eral concerns about the effects of  technology on human culture. Therefore, 
we begin by reviewing the relevant portions of  philosophy of  technology to 
provide a context for the more specifi c concerns raised by AMAs. Some con-
cerns, for example whether AMAs will lead humans to abrogate responsi-
bility to machines, seem particularly pressing. Other concerns, for example 
the prospect of  humans becoming literally enslaved to machines, seem to us 
highly speculative. The unsolved problem of  technology risk assessment is 
how seriously to weigh catastrophic  possibilities against the obvious advan-
tages provided by new technologies.

How close could artifi cial agents come to being considered moral agents 
if  they lack human qualities, for example consciousness and emotions? In 
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chapter 4, we begin by discussing the issue of  whether a “mere” machine 
can be a moral agent. We take the instrumental approach that while full-
blown moral agency may be beyond the current or future technology, there is 
nevertheless much space between operational morality and “genuine” moral 
agency. This is the niche we identifi ed as functional morality in chapter 2.
The goal of  chapter 4 is to address the suitability of  current work in AI for 
specifying the features required to produce AMAs for various applications.

Having dealt with these general AI issues, we turn our attention to the 
specifi c implementation of  moral decision making. Chapter 5 outlines what 
philosophers and engineers have to offer each other, and describes a basic 
framework for top-down and bottom-up or developmental approaches to the 
design of  AMAs. Chapters 6 and 7, respectively, describe the top-down and 
bottom-up approaches in detail. In chapter 6, we discuss the computability 
and practicability of  rule- and duty-based conceptions of  ethics, as well as the 
possibility of  computing the net effect of  an action as required by consequen-
tialist approaches to ethics. In chapter 7, we consider bottom-up approaches, 
which apply methods of   learning, development, or evolution with the goal of  
having moral capacities emerge from general aspects of  intelligence. There 
are limitations regarding the computability of  both the top-down and bot-
tom-up approaches, which we describe in these chapters. The new fi eld of  
machine morality must consider these limitations, explore the strengths and 
weaknesses of  the various approaches to programming AMAs, and then lay 
the groundwork for engineering AMAs in a philosophically and cognitively 
sophisticated way.

What emerges from our discussion in chapters 6 and 7 is that the original 
distinction between top-down and bottom-up approaches is too simplistic to 
cover all the challenges that the designers of  AMAs will face. This is true at 
the level of  both engineering design and, we think, ethical theory. Engineers 
will need to combine top-down and bottom-up methods to build workable 
systems. The diffi culties of  applying general moral theories in a top-down 
fashion also motivate a discussion of  a very different conception of  moral-
ity that can be traced to Aristotle, namely, virtue ethics. Virtues are a hybrid 
between top-down and bottom-up approaches, in that the virtues themselves 
can be explicitly described, but their acquisition as character traits seems 
essentially to be a bottom-up process. We discuss virtue ethics for AMAs in 
chapter 8.

Our goal in writing this book is not just to raise a lot of  questions but to 
provide a resource for further development of  these themes. In chapter 9,
we survey the software tools that are being exploited for the development of  
computer moral decision making.

The top-down and bottom-up approaches emphasize the importance 
in ethics of  the ability to reason. However, much of  the recent empirical 
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 literature on moral psychology emphasizes faculties besides rationality. 
Emotions, sociability, semantic understanding, and consciousness are all 
important to human moral decision making, but it remains an open ques-
tion whether these will be essential to AMAs, and if  so, whether they can 
be implemented in machines. In chapter 10, we discuss recent, cutting-edge, 
scientifi c investigations aimed at providing computers and robots with such 
suprarational capacities, and in chapter 11 we present a specifi c framework 
in which the rational and the suprarational might be combined in a single 
machine.

In chapter 12, we come back to our second guiding question concerning 
the desirability of  computers making moral decisions, but this time with a 
view to making recommendations about how to monitor and manage the 
dangers through public policy or mechanisms of  social and business liability 
management.

Finally, in the epilogue, we briefl y discuss how the project of  designing 
AMAs feeds back into humans’ understanding of  themselves as moral agents, 
and of  the nature of  ethical theory itself. The limitations we see in current 
ethical theory concerning such theories’ usefulness for guiding AMAs high-
lights deep questions about their purpose and value.

Some basic moral decisions may be quite easy to implement in comput-
ers, while skill at tackling more diffi cult moral dilemmas is well beyond pres-
ent technology. Regardless of  how quickly or how far humans progress in 
developing AMAs, in the process of  addressing this challenge, humans will 
make signifi cant strides in understanding what truly remarkable creatures 
they are. The exercise of  thinking through the way moral decisions are made 
with the granularity necessary to begin implementing similar faculties into 
(ro)bots is thus an exercise in self-understanding. We cannot hope to do full 
justice to these issues, or indeed to all of  the issues raised throughout the 
book. However, it is our sincere hope that by raising them in this form we 
will inspire others to pick up where we have left off, and take the next steps 
toward moving this project from theory to practice, from philosophy to engi-
neering, and on to a deeper understanding of  the fi eld of  ethics itself.
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Chapter 1
w h y  m a c h i n e  m o r a l i t y ?

Trolley Car Drivers and Robot 

Engineers

A runaway trolley is approaching a fork in the tracks. If  the trolley is allowed 
to run on its current track, a work crew of  fi ve will be killed. If  the driver 
steers the train down the other branch, a lone worker will be killed. If  you 
were driving this trolley what would you do? What would a computer or 
robot driving this trolley do?

Trolley cases, fi rst introduced by the philosopher Philippa Foot in 1967,
are a staple of  introductory ethics courses. In the past four decades, trolley 
cases have multiplied. What if  it is a bystander, rather than the driver, who 
has the power to throw a switch and change the trolley’s course? What if  
there is no switch, but the bystander could stop the train from plowing into 
the fi ve workers by toppling a very large man from a bridge onto the tracks, 
sending him to his death? These variants evoke different intuitive responses. 
Some people take drivers to have different responsibilities than bystanders, 
obligating them to act, even though bystanders would have no such obliga-
tion. Many people fi nd the idea of  toppling the large man onto the track—
what has come to be known as the “fat man” version of  the dilemma—far 
more objectionable than altering the switch, even though the body count is 
the same.

Trolley cases have also become the subject of  investigation by  psychologists 
and neuroscientists. Joshua Greene and his colleagues conducted a brain-
 imaging study showing that the “fat man” version evokes a much greater 
response in emotional processing centers of  the brain than does the “switch-
ing tracks” version. Scientifi c investigation of  people’s responses to trolley 
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cases does not answer the underlying philosophical questions about right and 
wrong. But such investigations do point to the complexity of  human responses 
to ethical questions.

Given the advent of  modern “driverless” train systems—already com-
mon at airports and beginning to appear in more complicated situations, 
for example the London Underground and the Paris and Copenhagen metro 
 systems—could trolley cases be one of  the fi rst frontiers for artifi cial  morality? 
Driverless systems put machines in the position of  making split-second deci-
sions that could have life or death implications. As the complexity of  the rail 
network increases, the likelihood of  dilemmas that are similar to the basic 
trolley case also goes up. How, for example, should automated systems com-
pute where to steer a train that is out of  control?

Engineers, of  course, insist that the systems are safe—safer than human 
drivers, in fact. But the public has always been skeptical. The London Under-
ground fi rst tested driverless trains more than four decades ago, in April 
1964. Back then, driverless trains faced political resistance from rail workers 
who believed their jobs were threatened and from passengers who were not 
entirely convinced of  the safety claims. For these reasons, London Transport 
continued to give human drivers responsibility for driving the trains through 
the stations. Attitudes change, however, and Central Line trains in London 
are now being driven through stations by computers, even though human 
drivers remain in the cab in a “supervisory” role. Most passengers likely 
believe that human drivers are more fl exible and able to deal with emergen-
cies than the computerized controllers are. But this may be human hubris. 
Morten Sondergaard, in charge of  safety for the Copenhagen metro, asserts 
that “automatic trains are safe and more fl exible in fall-back situations 
because of  the speed with which timetables can be changed.”

Nevertheless, despite advances in technology, passengers remain skep-
tical. Parisian metro planners have claimed that the only problems with 
driverless trains are “political, not technical.” No doubt, some of  the resis-
tance can be overcome simply by installing driverless trains and establish-
ing a safety record. However, we feel sure that most passengers would still 
think that there are crisis situations beyond the scope of  any programming, 
where human judgment would be preferred. In some of  those situations, the 
relevant judgment would involve ethical considerations, but the driverless 
trains of  today are, of  course, oblivious to ethics. Can and should software 
engineers attempt to enhance their software systems to explicitly represent 
ethical dimensions? We think that this question can’t be properly answered 
without better understanding what is  possible in the domain of  artifi cial 
morality.

It is easy to argue from a position of  ignorance that the goal of  artifi cial 
moral agency is impossible to achieve. But precisely what are the challenges 
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and obstacles for implementing artifi cial morality? There is a need for serious 
discussion of  this question. The computer revolution is continuing to pro-
mote reliance on automation, and autonomous systems are increasingly in 
charge of  a variety of  decisions that have ethical ramifi cations. How com-
fortable should one be about placing one’s life and well-being in the hands of  
ethically ignorant systems?

Driverless trains are here. Much more remote technologically are 
(ro)bots capable of  perceiving that heaving a large man onto the tracks 
could save fi ve lives and of  physically carrying out such an action. Mean-
while, the threat of  a terrorist attack has lead to an increase in remote 
surveillance, of  not only train switches but also bridges, tunnels, and 
unattended stretches of  track. Airport surveillance systems that scan the 
faces of  passengers and try to match these to a database of  known terror-
ists are under development.  Ostensibly, these systems are designed to alert 
supervisors when unusual activity occurs. But one can easily imagine an 
emergency in which a system might act automatically to redirect a train or 
close down part of  an airport terminal when not enough time is available 
for a supervisor to review and counter the action.

Suppose the driverless train is able to identify that the fi ve individuals 
on one track are railroad workers and the one on the other track is a child. 
Should the system factor this information into its decision? As the informa-
tion available to automated systems gets richer, the moral dilemmas it con-
fronts will also grow more complex. Imagine a computer that recognizes that 
the lone individual on one track is not a railroad worker, but a prominent 
citizen on whom the well-being and livelihood of  a large number of  fami-
lies depends. How deeply would people want their computers to consider the 
ramifi cations of  the actions they are considering?

Trolley cases aside, engineers often think that if  a (ro)bot encounters a 
diffi cult situation, it should just stop and wait for a human to resolve the 
problem. Joe Engelberger, the “father” of  industrial robotics, has been among 
those interested in developing service robots capable of  facilitating the needs 
of  the elderly and others in the home. Wendell Wallach asked him whether 
a service robot in the home would need moral decision-making faculties. 
Wouldn’t the robot need to discern whether an obstacle in its pathway is a 
child, a pet, or something like an empty paper bag and select an action on the 
basis of  its evaluation? Engelberger felt that such a system would not need 
a capacity to refl ect on its actions. “If  there is something in the way it just 
stops,” he said. Of  course, this kind of  inaction could also be problematic, 
interfering with the duties or tasks defi ned for the service robot, for example 
delivering medications every few hours to the individual being served.

For an engineer thinking about his or her own liability, inaction might 
seem the more prudent course. There is a long tradition in ethics of  regarding 
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actions as being more blameworthy than inactions. (Think about the Roman 
Catholic distinction between “sins of  omission” and the more serious “sins 
of  commission,” for instance.) We’ll return to the issues of  responsibility and 
liability at the end of  the book, but the main point for now is that even if  there 
were a moral distinction between action and inaction, a designer of  AMAs 
could not simply choose inaction as a substitute for good action.

Good and Bad Artifi cial Agents?

Autonomous systems are coming whether people like it or not. Will they be 
 ethical? Will they be good?

What do we mean by “good” in this context? It is not just a matter of  being 
instrumentally good—good relative to a specifi c purpose. Deep Blue is a good 
chess-playing computer because it wins chess games, but this is not the sense 
we mean. Nor do we mean the sense in which good vacuum cleaners get the 
fl oors clean, even if  they are robotic and do it with a minimum of  human 
supervision. These “goods” are measured against the specifi c purposes 
designers and users have. The kind of  good behavior that may be required 
of  autonomous systems cannot be so easily specifi ed. Should a good multi-
purpose robot hold open a door for a stranger, even if  this means a delay for 
the robot’s owner? (Should this be an owner-specifi ed setting?) Should a good 
autonomous agent alert a human overseer if  it cannot take action without 
causing some harm to humans? (If  so, is it suffi ciently autonomous?) When 
we talk about good in this sense, we enter the domain of  ethics.

To bring artifi cial agents into the domain of  ethics is not simply to 
say they may cause harm. Falling trees cause harm, but that doesn’t put 
them into the domain of  ethics. Moral agents monitor and regulate their 
behavior in light of  the harms their actions may cause or the duties they 
may neglect. Humans should expect nothing less of  AMAs. A good moral 
agent is one that can detect the possibility of  harm or neglect of  duty, and 
can take steps to avoid or minimize such undesirable outcomes. There are 
two routes to accomplishing this: First, the programmer may be able to 
anticipate the possible courses of  action and provide rules that lead to the 
desired outcome in the range of  circumstances in which the AMA is to be 
deployed. Alternatively, the programmer might build a more open-ended 
system that gathers information, attempts to predict the consequences of  
its actions, and customizes a response to the challenge. Such a system may 
even have the potential to surprise its programmers with apparently novel 
or creative solutions to ethical challenges.

Perhaps even the most sophisticated AMAs will never really be moral 
agents in the same sense that human beings are moral agents. But wherever 
one comes down on the question of  whether a machine can be genuinely 
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ethical (or even genuinely autonomous), an engineering challenge remains: 
how to get artifi cial agents to act as if  they are moral agents. If  multipur-
pose machines are to be trusted, operating untethered from their designers 
or owners and programmed to respond fl exibly in real or virtual world envi-
ronments, there must be confi dence that their behavior satisfi es appropriate 
norms. This goes beyond traditional product safety. Of  course, robots that 
short-circuit and cause fi res are no more tolerable than toasters that do so. 
However, if  an autonomous system is to minimize harm, it must also be “cog-
nizant” of  possible harmful consequences of  its actions, and it must select its 
actions in light of  this “knowledge,” even if  such terms are only metaphori-
cally applied to machines.

Present-Day Cases

Science fi ction scenarios of  computers or robots running amok might be 
entertaining, but these stories depend on technology that doesn’t exist today, 
and may never exist. Trolley cases are nice thought experiments for college 
ethics courses, but they can also make ethical concerns seem rather remote 
from daily life—the likelihood that you will fi nd yourself  in a position to 
save lives by heaving a very large innocent bystander onto a railroad track 
is remote. Nevertheless, daily life is fi lled with mundane decisions that have 
ethical consequences. Even something as commonplace as holding open a 
door for a stranger is part of  the ethical landscape, although the boundary 
between ethics and etiquette may not always be easy to determine.

There is an immediate need to think about the design of  AMAs because 
autonomous systems have already entered the ethical landscape of  daily 
activity. For example, a couple of  years ago, when Colin Allen drove from 
Texas to California, he did not attempt to use a particular credit card until he 
approached the Pacifi c coast. When he tried to use this card for the fi rst time 
to refuel his car, the credit card was rejected. Thinking there was something 
wrong with the pumps at that station, he drove to another and tried the card 
there. When he inserted the card in the pump, a message fl ashed instruct-
ing him to hand the card to a cashier inside the store. Not quite ready to 
hand over his card to a stranger, and always one to question computerized 
instructions, Colin instead telephoned the toll-free number on the back of  
the card. The credit card company’s centralized computer had evaluated the 
use of  the card almost 2,000 miles from home with no trail of  purchases 
leading across the country as suspicious, and automatically fl agged his 
account. The human agent at the credit card company listened to Colin’s 
story and removed the fl ag that restricted the use of  his card.

This incident was one in which an essentially autonomous computer 
initiated actions that were potentially helpful or harmful to humans. 
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 However, this doesn’t mean that the computer made a moral decision 
or used ethical judgment. The ethical signifi cance of  the action taken 
by this computer stemmed entirely from the values inherent in the rules 
programmed into it. Arguably, the values designed into the system justify 
the inconvenience to cardholders and business owners’ occasional loss 
of  sales. The credit card company wishes to minimize fraudulent trans-
actions. Customers share the desire to be spared fraudulent charges. But 
customers might reasonably feel that the systems should be sensitive to 
more than the fi nancial bottom line. If  Colin had needed fuel for his car 
because of  an emergency, it might not be so easy to assume that the incon-
venience was worthwhile.

Autonomous systems can also cause very widespread inconvenience. 
In 2003, tens of  millions of  people and countless businesses in the eastern 
United States and Canada were affected by a power blackout. The blackout 
was caused by a power surge that occurred when an overheated electri-
cal transmission line sagged into a tree just outside Cleveland. What sur-
prised investigators was how quickly this incident cascaded into a chain of  
 computer-initiated shutdowns at power plants in eight states and part of  
Canada. Once the power surge leaped beyond the control of  Ohio’s  electrical 
company, software agents and control systems at the other power plants acti-
vated shutdown procedures, leaving almost no time for human  intervention. 
Where humans were involved, they sometimes compounded the problems 
because of  inadequate information or lack of  effective communication. 
Days and sometimes weeks were required to restore electricity to customers 
throughout the northeastern power grid.

At the start of  the blackout, Wendell Wallach was working at home in 
Connecticut. He and his neighbors lost electricity, but only for a few seconds. 
Apparently, technicians at his local utility company had realized what was 
happening, quickly overrode automated shutdown procedures, and discon-
nected the electrical service in southern New England from the power grid. 
However, this was a rare success. The sheer scale of  the network makes effec-
tive human oversight impossible. The Finnish IT security company F-Secure 
investigated the malfunction. After going through the six-hundred-page 
transcript of  conversations between operators of  U.S. electrical grids in the 
moments leading up to the blackout, Mikko Hyppönen of  the company’s 
computer virus lab concluded that the computer worm Blaster played a major 
role. The transcripts indicate that operators did not receive correct informa-
tion prior to the blackout, because their computers were malfunctioning. The 
computers and the sensors monitoring the power grid used the same com-
munication channels through which Blaster was spreading. In Hyppönen’s 
analysis, just one or two infected computers in the network could have kept 
the sensors from relaying real-time data to the power  operators, which 
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could have led to the operator error that was identifi ed as the direct cause of  
the blackout.

In a perfect world, there would be no viruses, and control systems would 
be programmed to shut down only when doing so would minimize hardships 
for customers. However, in a world where operator error is a fact of  life, and 
humans are unable to monitor the entire state of  system software, the pres-
sures for increased automation will continue to mount. With the increasing 
complexity of  such systems, any evaluation of  confl icts between values—for 
example, maintaining the fl ow of  electricity to end users versus keeping com-
puters virus free becomes increasingly problematic—it becomes harder and 
harder to predict whether upgrading software now or later is more or less 
likely to lead to future problems. In the face of  such uncertainty, there is a 
need for autonomous systems to weigh risks against values.

The widespread use of  autonomous systems makes it urgent to ask which 
 values they can and should promote. Human safety and well-being repre-
sent core values about which there is widespread agreement. The relatively 
young fi eld of  computer ethics has also focused on specifi c issues—for exam-
ple, maintaining privacy, property, and civil rights in the digital age; facilitat-
ing computer-based commerce; inhibiting hacking, worms and viruses, and 
other abuses of  the technology; and developing guidelines for Net etiquette. 
New technologies have opened up venues for digital crime, eased the access 
of  minors to hardcore pornography, and robbed people’s time with unsolic-
ited advertising and unwanted emails, but it has been extremely diffi cult to 
establish the values, governmental regulations, and procedures that will fos-
ter the goals of  computer ethics. As new regulations and values emerge, peo-
ple will of  course want them to be honored by the AMAs they build. Machine 
morality extends the fi eld of  computer ethics by fostering a discussion of  the 
technological issues involved in making computers themselves into explicit 
moral reasoners.

One signifi cant issue at the intersection of  machine morality and com-
puter ethics concerns the data-mining bots that roam the Web, ferreting 
out information with little or no regard for privacy standards. The ease with 
which information can be copied using computers has undermined legal 
standards for intellectual property rights and forced a reevaluation of  copy-
right law. Some of  the privacy and property issues in computer ethics con-
cern values that are not necessarily widely shared but often connect back to 
core values in interesting ways. The Internet Archive project has been stor-
ing snapshots of  the Internet since 1996 and has been making those archives 
available via its Wayback Machine. These snapshots often include material 
that has since been deleted from the Internet. While there is a mechanism 
for requesting materials to be deleted from the archive, there have been sev-
eral cases where the victims or perpetrators of  crimes have left a trace on the 
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Wayback Machine, even though their original sites have been removed. At 
present, the data-gathering bots used by the Internet Archive are incapable 
of  assessing the moral signifi cance of  the materials they gather.

Ethical Killing Machines?

If  the foregoing examples leave you unconvinced that there is an immedi-
ate need to think about moral reasoning in (ro)bots, consider this. Remotely 
operated vehicles (ROVs) are already being deployed militarily. As of  Octo-
ber 2007, Foster-Miller Inc. has sent to Iraq for deployment three remotely 
operated machine-gun-carrying robots using the special weapons observa-
tion remote direct-action system (SWORDS). Foster-Miller has also begun 
marketing a version of  the weapons-carrying SWORDS to law enforcement 
departments in the United States. According to Foster-Miller, the SWORDS 
and its successor the MAARS (modular advanced armed robotic system) 
should not be considered autonomous, but are ROVs.

Another company, iRobot Corporation, whose Packbot has been deployed 
extensively in Iraq, has also announced the Warrior X700, a military robot 
that can carry weapons and will be available in the second half  of  2008.
However, robotic applications will not stop with ROVs. Semi-autonomous 
robotic systems, such as cruise missiles, already carry bombs. The military 

Figure 1.1. MAARS ROV. Courtesy of  Foster-Miller.
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also uses semi- autonomous robots designed for bomb disposal and surveil-
lance. The U.S. Congress ordered in 2000 that one-third of  military ground 
vehicles and deep-strike aircraft be replaced by robotic vehicles. According 
to a New York Times story in 2005, the Pentagon has the goal of  replacing 
soldiers with autonomous robots.

Some will think that humans should stop building robots altogether if  
they will be used for warfare. Worthy as that sentiment may be, it will be con-
fronted by the rationale that such systems will save the lives of  soldiers and 
law enforcement personnel. We don’t know who will win this political argu-
ment, but we do know that if  the proponents of  fi ghting machines win the 
day, now will be the time to have begun thinking about the built-in ethical 
constraints that will be needed for these and all (ro)botic applications. Indeed, 
Ronald Arkin, a roboticist at Georgia Institute of  Technology, received funding 
from the U.S. Army in 2007 to begin the development of  hardware and soft-
ware that will make robotic fi ghting machines capable of  following the ethical 
standards of  warfare. These rather extensive guidelines, honored by civilized 
nations, range from the rights of  noncombatants to the rights of  enemy 
 soldiers trying to surrender. However, ensuring that robots follow the ethical 
standards of  warfare is a formidable task that lags far behind the development 
of  increasingly sophisticated robotic  weapons systems for use in warfare.

Imminent Dangers

The possibility of  a human disaster arising from the use of  (ro)bots capable 
of  lethal force is obvious, and humans can all hope that the designers of  such 
systems build in adequate safeguards. However, as (ro)botic systems becom-
ing increasingly embedded in nearly every facet of  society, from fi nance to 
communications to public safety, the real potential for harm is most likely to 
emerge from an unanticipated combination of  events.

In the wake of  9/11, experts noted the vulnerability of  the U.S. power grid 
to an attack by terrorist hackers, especially given the grid’s dependence on 
old software and hardware. It is a very real possibility that a large percentage 
of  the power grid could be brought down for weeks and even months. To fore-
stall this, much of  the vulnerable software and hardware is being updated 
with more sophisticated automated systems. This makes the power grid 
increasingly dependent on the decisions made by computerized control sys-
tems. No one can fully predict how these decisions might play out in unfore-
seen circumstances. Insuffi cient coordination between systems operated by 
different utility companies increases the uncertainty.

The managers of  the electrical grid must balance demands for power 
from industry and the general public against the need to maintain  essential 
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 services. During brown-outs and surges, they decide who loses power. Deci-
sion makers, whether human or software, are faced with the competing 
values of  protecting equipment from damage and minimizing the harm to 
end users. If  equipment is damaged, harms can mount as the time to restore 
service is extended. These decisions involve value judgments. As the systems 
become increasingly autonomous, those judgments will no longer be in the 
hands of  human operators. Systems that are blind to the relevant values that 
should guide decisions in uncertain conditions are a recipe for disaster.

Even today, the actions of  computer systems can be individually quite 
small yet cumulatively very serious. Peter Norvig, director of  research at 
Google, notes that

today in the U.S. there are between 100 and 200 deaths every day from 
medical error, and many of  these medical errors have to do with comput-
ers. These are errors like giving the wrong drug, computing the wrong dos-
age, 100 to 200 deaths per day. I’m not sure exactly how many of  those you 
want to  attribute to computer error, but it’s some proportion of  them. It’s 
safe to say that every two or three months we have the equivalent of  a 9/11

in numbers of  deaths due to computer error and medical processes.

The dangers posed by systems used in medical applications are far from 
the science fi ction disasters posed by computer systems engaged in making 
explicit decisions that are harmful to humans. These systems are not HAL, 
out to kill the astronauts under his care. Nor is this the Matrix, with robots 
bent on enslaving unwitting humans. Arguably, most of  the harms caused 
by today’s (ro)bots can be attributed to faulty components or bad design. Pre-
liminary reports indicate that a component failed in the semiautonomous 
cannon that killed nine South African soldiers in 2007. Other harms are 
attributed to designers’ failure to build in adequate safeguards, consider all 
the contingencies the system will confront, or eliminate software bugs. Man-
agers’ desires to market or fi eld-test systems whose safety is unproven also 
pose dangers to the public, as will faulty reliance on systems not up to the 
task of  managing the complexity of  unforeseen situations. However, the line 
between faulty components, insuffi cient design, inadequate systems, and the 
explicit evaluation of  choices by computers will get more and more diffi cult 
to draw. As with human decision makers who make bad choices because 
they fail to attend to all the relevant information or consider all contingen-
cies, humans may only discover the inadequacy of  the (ro)bots they rely on 
after an unanticipated catastrophe.

Corporate executives are often concerned that ethical constraints will 
increase costs and hinder production. Public perception of  new technologies 
can be hampered by undue fears regarding their risks. However, the  capacity 
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for moral decision making will allow AMAs to be deployed in contexts that 
might otherwise be considered too risky, open up applications, and lower 
the dangers posed by these technologies. Today’s technologies—automated 
utility grids, automated fi nancial systems, robotic pets, and robotic vacuum 
cleaners—are a long way from fully autonomous machines. But  humanity 
is already at a point where engineered systems make decisions that can 
affect people’s lives. As systems get more sophisticated and their ability to 
 function autonomously in different contexts and environments expands, it 
will become more important for them to have their own ethical subroutines. 
The systems’ choices should be sensitive to humans and to the things that 
are important to humans. Humanity will need these machines to be self-
 governing: capable of  assessing the ethical acceptability of  the options they 
face. Rosalind Picard, director of  the Affective Computing Group at MIT, put 
it well when she wrote, “The greater the freedom of  a machine, the more it 
will need moral standards.”
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Chapter 2
e n g i n e e r i n g  m o r a l i t y

An Engineering Imperative?

In the Code of  Ethics of  the National Society of  Professional Engineers (NSPE), 
the fi rst “fundamental canon” is that engineers shall “hold paramount the 
safety, health, and welfare of  the public.” If  giving machines moral standards 
would improve public welfare and safety, then American engineers are obli-
gated by their own code of  ethics to make it happen.

Where might they start? The task seems overwhelming, but all engineer-
ing tasks are incremental, building on past technologies. In this chapter, 
we will provide a framework for understanding the pathways from current 
technology to sophisticated AMAs. Our framework has two dimensions: 
autonomy and sensitivity to values. These dimensions are independent, 
as the parent of  any teenager knows. Increased autonomy is not always 
balanced by increased sensitivity to the values of  others; this is as true of  
technology as it is of   teenagers.

The simplest tools have neither autonomy nor sensitivity. Hammers 
do not get up and hammer nails on their own, nor are they sensitive to 
thumbs that get in the way. But even technologies near the low end of  both 
dimensions in our framework can have a kind of  “operational morality” to 
their design. A gun that has a childproof  safety mechanism lacks auton-
omy and sensitivity, but its design embodies values that the NSPE Code of  
Ethics would endorse. One of  the major accomplishments in the fi eld of  
“engineering ethics” over the past twenty-fi ve years has been the raising 
of  engineers’ awareness of  the way their own values infl uence the design 
process and their sensitivity to the values of  others during it. When the 
design process is undertaken with  ethical values fully in view, this kind of  
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“operational morality” is totally within the control of  a tool’s designers and 
users.

At the other theoretical extreme are systems with high autonomy and 
high sensitivity to values, capable of  acting as trustworthy moral agents. 
That humanity does not have such technology is, of  course, the central issue 
of  this book. However, between “operational morality” and responsible moral 
agency lie many gradations of  what we call “functional morality”—from 
systems that merely act within acceptable standards of  behavior to intelli-
gent systems capable of  assessing some of  the morally signifi cant aspects of  
their own actions.

The realm of  functional morality contains both systems that have signifi -
cant autonomy but little ethical sensitivity and those that have low auton-
omy but high ethical sensitivity. Autopilots are an example of  the former. 
People trust them to fl y complex aircraft in a wide variety of  conditions, with 
minimal human supervision. They are relatively safe, and they have been 
engineered to respect other values, for example passenger comfort when 
executing maneuvers. The goals of  safety and comfort are accomplished, 

Figure 2.1. Two Dimensions of  AMA Development.
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 however, in different ways. Safety is maintained by directly monitoring air-
craft altitude and environmental conditions and continuously adjusting the 
wing fl aps and other control surfaces of  the aircraft to maintain the desired 
course. Passenger comfort is not directly monitored, and insofar as it is pro-
vided for, it is by precoding specifi c  maneuvering limits into the operating 
parameters of  the autopilot. The plane is capable of  banking much more 
steeply than it does when executing a turn, but the autopilot is programmed 
not to turn so sharply as to upset passengers. Under normal operating condi-
tions, the design of  the autopilot keeps it operating within the limits of  func-
tional morality. Under unusual conditions, a human pilot who is aware of  
special passenger needs, for example a sick passenger, or special passenger 
desires, for example thrill-seeking joyriders, can adjust her fl ying accord-
ingly. A signifi cant amount of  autonomy without any specifi c moral sensitiv-
ity puts autopilots somewhere up the left axis of  fi gure 2.1.

One example of  systems that have little autonomy but some degree of  
ethical sensitivity, falling on the right axis of  fi gure 1, is an ethical decision 
support system, which provides decision makers with access to morally rel-
evant information. Most of  these systems that exist fall within the realm of  
operational rather than functional morality. Furthermore, when they deal 
with ethical issues, it is usually for educational purposes. The programs are 
structured to teach general principles, not to analyze new cases. For example, 
the software walks students through historically important or hypothetical 
cases. However, some programs help clinicians select ethically appropri-
ate courses of  action, for example  MedEthEx, a medical ethics expert sys-
tem designed by the husband-and-wife team of  computer scientist Michael 
Anderson and philosopher Susan Anderson. In effect, MedEthEx engages in 
some rudimentary moral reasoning.

Suppose you are a doctor faced with a mentally competent patient who 
has refused a treatment you think represents her best hope of  survival. 
Should you try again to persuade her (a possible violation of  respect for the 
patient’s autonomy) or should you accept her decision (a possible violation 
of  your duty to provide the most benefi cent care)? The MedEthEx prototype 
prompts a caregiver to answer a series of  questions about the case. Then, 
on the basis of  a model of  expert judgment learned from similar cases, it 
delivers an opinion about the ethically appropriate way to proceed. We’ll 
describe the ethical theory behind MedEthEx in more detail later. For now, 
the important point is that the  Andersons’ system has no autonomy and is 
not a full-blown AMA but has a kind of  functional morality that provides a 
platform for further development.

It is important to understand that these examples are illustrative only. 
Each system is just a small distance along one of  the axes of  fi gure 1. Autopi-
lots have autonomy only in a very circumscribed domain. The autopilot can’t 



Figure 2.2. The many moods of  Kismet: anger, calm, disgust, fear, interest, sad-
ness, surprise, and tiredness. Courtesy MIT AI Lab.
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leave the cockpit to comfort a distraught passenger. MedEthEx gives advice 
only within a very small range of  cases. The software is entirely dependent on 
humans to provide the information relevant to its cases, and the practitioners 
must decide whether or not to follow its recommendations. Nevertheless, 
ethical issues arise even in these restricted domains, and the engineering side 
of  machine morality will build on such basic beginnings.

These independent steps along each dimension are relevant for machine 
morality, and so are attempts to make progress in both dimensions simulta-
neously. One such project was Kismet, a robot developed by graduate stu-
dents at MIT under the direction of  Rodney Brooks and most closely identifi ed 
with the work of  Cynthia Breazeal. Kismet represents an attempt to combine 
 emotional responsiveness with autonomous activity in a robot.  Kismet’s 
robotic head has cartoonish features typically associated with infants and 
young animals. By moving its head, ears, eyebrows, eyelids, and mouth it 
is able to display eight emotional states, including fear, surprise, interest, 
and sadness, as well as close its eyes and withdraw into a sleep-like pose. 
The actual emotional state the robot exhibits is determined by its analysis of  
the voice intonation of  the speaker and other factors, for example whether 
the system is seeking stimulation or is overstimulated. Kismet can return a 
gaze and direct its attention to where an individual points.

Kismet is programmed to take turns, as it engages in what appears to be 
a conversation, waiting for a silent space before interjecting a response to 
human speech. While the apparent language Kismet speaks is gibberish, it 
can appear to be quite responsive to social cues—for example, the voice into-
nation of  the speaker the robot is interacting with—even though the system 
has no actual comprehension of  what the human thinks or is saying. For 
example, voice  intonations that might be interpreted as scolding elicit the 
robot’s looking downward with an expression of  apparent shame.

Kismet, now retired and on display in the MIT Museum, was designed to 
read very basic social cues and respond with its own simple behavioral ges-
tures. Among Kismet’s capacities are reactions to the attention and proximity 
of  a human being. For example, Kismet may pull back when a person leans 
too close. The extent to which it is acceptable for one person to be in another’s 
face is perhaps nearer to etiquette than ethics, and varies from culture to cul-
ture. Nevertheless, Kismet’s actions are an example of  operational morality 
because the programmers have tapped into values that are important for the 
establishment of  trust and cooperation. Kismet has no explicit representation 
of  values and no capacity for reasoning about values. Despite these limita-
tions, many people fi nd their interactions with Kismet very compelling.

By placing Kismet in the realm of  operational morality, close to the ori-
gin of  the axes in fi gure 1, we aren’t being dismissive. The fi eld of  artifi cial 
morality must build on existing platforms, and Kismet is the result of  some 
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 signifi cant ideas about how to make machines behave in ways that people 
fi nd engaging. As an experiment in social robotics, Kismet was very success-
ful in demonstrating how it is possible for robots to trigger natural and intui-
tive social responses in people.

Autopilots, decision support systems, and robots with basic capacities 
to engage in emotion-laden interactions all provide starting points for the 
fi eld of  artifi cial morality. Systems like these, which are within the domain of  
operational morality or very limited functional morality, are relatively direct 
extensions of  their designers’ values. The designers have to anticipate most 
of  the circumstances in which their systems will operate, and the actions 
available in those circumstances are kept within tight limits. Written safety 
manuals attempt to offl oad the problem of  appropriate, safe, and ethical use 
to the operators, but they are not always successful in doing so! As technol-
ogy for autonomous decision making becomes more widespread, we envisage 
(ro)boticists realizing that their own professional code makes the develop-
ment of  AMAs an engineering imperative.

Some may wonder if  we aren’t trying to shoot the moon, when we ought 
to be concentrating on a few simpler tricks. The task of  designing systems is 
hard enough without bringing in the ill-defi ned notion of  values. Consider 
the systems approving credit card purchases. Shouldn’t people be happy that 
these systems protect customers and banks from fraudulent purchases, even 
if  sometimes customers are inconvenienced when their attempted purchases 
are denied? (“Computer says no . . .”) The software that analyses activity for 
fraudulent patterns can always be improved, so why not concentrate on that 
without worrying about building explicit ethical reasoning into the system?

It’s true, of  course, that the pattern analysis can be improved, but only 
up to a limit. The software engineers and bankers who design and deploy the 
system cannot perfectly predict all the circumstances in which people will try 
to use their credit cards. Perfectly innocent purchases, and sometimes even 
emergency purchases, will be blocked because they are deemed “suspicious” 
by the bank’s computers. From an engineer’s (and a banker’s) point of  view, 
the problem is one of  balancing an acceptable false positive rate (wrongly 
identifying innocent purchases as fraudulent) against an unacceptable false 
negative rate (wrongly failing to identify fraudulent activity). For the bank-
ers, what’s acceptable is primarily a matter of  what costs they can afford to 
pass on to their customers. Most customers are willing to accept the occa-
sional inconvenience (and embarrassment) of  a denied purchase if  it means 
they are protected against the fi nancial losses and headaches that could be 
incurred from a stolen credit card. Some customers will worry about the 
implications for privacy that follow from the bank’s ability to tie patterns of  
usage together. In this book, we’re less concerned with the nefarious purposes 
of  people who have access to such databases and more concerned with the 
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capacities of  the computers themselves to recognize when the ethical thing 
to do is extend credit even when the analysis suggest a higher risk for the 
bank. Because the existing approach to pattern analysis has inherent limits 
for protecting what people value, engineers are bound by their own ideals to 
pursue alternative approaches that promise to get beyond those limits.

Perhaps you think we are mistaken if  we believe that engineering ide-
als should prevail over corporate objectives. Credit card companies, after 
all, are not contractually obligated to approve any purchase, so there is no 
ethical issue at all involved in the use of  automated approval systems. But 
to accept this line of  reasoning is already to take a position on a substan-
tive moral question, namely, whether corporate morality is limited to con-
tractual issues. Designers of  autonomous systems who choose to ignore the 
broader consequences of  the decisions made by their machines are implicitly 
embedding a particular set of  values into these systems. Whether autono-
mous systems should consider only those factors relevant to the profi tability 
of  the corporations that employ them, and the contractual arrangements 
that exist between the corporations and their customers, is itself  a question 
about  ethics.

Perhaps you think us doubly naive if  we believe that moral arguments can 
overrule the bottom line. We think, however, that increasingly sophisticated 
forms of  functional morality, and eventually full-blown AMAs, will actually 
benefi t companies fi nancially.

One source of  this benefi t will be that these systems will make it possible to 
offer better service than the competition. The imperfect purchase authorization 
systems currently in use lead to customer frustration and sometimes defection 
to other companies. If  you are lucky enough to get through to a human oper-
ator, as Colin was when his fuel purchase was denied in California, you may 
be able to have the problem fi xed. But everyone has encountered situations 
with automated telephone systems where human intervention was unavail-
able. In the effort to enhance what we are calling the operational morality of  
these answering systems, large corporations are now trying to write software 
to detect frustrated (as well as “important”) customers and route them quickly 
to a human agent. However, even when one does reach a human, he might 
be working within constraints set by a computer program and might lack suf-
fi cient autonomy to solve the problem. Frustrated customers are bad for busi-
ness, while the bottom line drives corporations to incorporate more and more 
unsupervised decision making into the machines’ programs. Software that is 
sensitive to customers’ values and can make decisions approximating those of  
a morally good agent will help the bottom line, not hurt it.

The 2003 electrical blackout in the northeastern United States 
 underscored the fact that electrical companies were dependent on obsolete 
technology. Upgrades to software and control systems will make them even 
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more  autonomous than the previous ones, which were implicated in the 
shutdown. The additional complexity will make the systems even less acces-
sible to direct human monitoring, and this in turn will require a new level 
of  self-monitoring. Because of  operator errors and the inability of  humans 
to monitor the entire state of  system software, the pressures for increased 
automation will continue to mount. Even system upgrades and scheduled 
downtime for components of  the grid might themselves be handled in an 
autonomous fashion by the computers’ ongoing evaluation of  a broad range 
of  factors. This introduces a second level of  decision making where the con-
trol system becomes self-supervising to a signifi cant degree.

Such considerations indicate the need to move beyond simple control sys-
tems that ensure the network functions within safe parameters (operational 
morality) to systems capable of  evaluating options at both the primary level 
of  customer service and the secondary level of  self-management. These sys-
tems will need to handle, at the speed of  modern computing, complex situa-
tions in which choices are made and courses of  action are taken that could 
not have been foreseen by the designers and software programmers.

With these examples, we have tried to make it plausible that existing tech-
nologies provide various starting points for progress toward AMAs. Incre-
mental progress is often hard to see and diffi cult to predict. Even within our 
simplistic two-dimensional framework, there are multiple paths from current 
technologies to the full moral agency represented in the upper right corner 
of  fi gure 2.1. In our approach to artifi cial morality, we take progress along 
the dimension of  autonomy for granted—it is happening and will continue to 
happen. The challenge for the discipline of  artifi cial morality is how to move in 
the direction specifi ed by the other axis: sensitivity to moral considerations.

Decision support systems illustrate a trajectory in the development of  
intelligent systems by which technologies sensitive to moral considerations 
can develop independently from systems with increasing autonomy. This tra-
jectory, which leaves decision making in the hands of  humans, seems likely 
to move beyond external decision support systems to more intimate mergers 
of  humans and technology. Thus, increased autonomy represents only one 
trajectory in the development of  intelligent systems.

Perhaps one of  the most memorable scenes in science fi ction movies 
was the debut of  ED-209, a large, ugly, metallic robot, in the 1987 hit fi lm 
Robocop. The prototype for a robot police offi cer, ED-209 was programmed to 
shoot criminals who failed to drop their weapons after repeated warnings. In 
Robocop, Kinney, a young executive, eagerly volunteers to play the role of  the 
criminal for the demonstration of  the ED-209 to the board. The robot utters 
its warning in a standard computer-generated monotone voice, and Kinney 
drops his gun. The warning is repeated twice more. Then, the robot kills him 
with a stream of  bullets.
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ED-209 represents an autonomous, or at least semiautonomous, robot. In 
the movie, the failure of  the ED-209 is a minor setback for Omni Consumer 
Products, as another team is already developing an alternative strategy 
for fi ghting crime—Robocop—a cyborg merging the brain of  a slain offi cer 
with AI.

Many theorists believe that cyborgs will be the natural outgrowth of  
present research into IT, neuroprosthethics, neuropharmacology, nanotech-
nology, and gene therapy. The merging of  humans with their technologies 
poses different ethical issues than the development of  autonomous systems. 
Presumably the human component of  a cyborg would provide sensitivity to 
moral considerations, although one ethical concern is that the implanted 
technology should not interfere with the autonomy and moral faculties of  
the human. This is a problem that arises in the emerging fi eld of  neuroethics. 
Issues in research ethics, social justice, and improving lives also arise when 
considering the increased intimacy humans are forging with their technolo-
gies. However, the larger social concern is whether the emergence of  a cyborg 
culture is desirable.

Robocop and the ED-209 represent two different trajectories in the 
development of  IT: AI under the direct control of  humans, and autono-
mous systems capable of  functioning independently. Here, the important 
thing to note is that advances in morally sensitive decision support tech-
nology and neuroprosthetics might be adapted for enhancing autonomous 
systems.

Moor’s Categories of  Ethical Agents

James Moor, a professor of  philosophy at Dartmouth College, one of  the 
founding fi gures in the fi eld of  computer ethics, has proposed a hierarchi-
cal schema for categorizing AMAs. At the lowest level is what he calls “ethi-
cal impact agents”—basically any machine that can be evaluated for its 
ethical consequences. Moor’s own rather nice example is the replacement 
of  young boys with robots in the dangerous occupation of  camel jockey in 
Qatar. In fact, it seems to us that all (ro)bots have ethical impacts, although 
in some cases they may be harder to discern than others.

At the next level are what Moor calls “implicit ethical agents”: 
machines whose designers have made an effort to design them so that 
they don’t have negative ethical effects, by addressing safety and criti-
cal reliability concerns during the design process. Arguably, all (ro)bots 
should be engineered to be implicit ethical agents, insofar as design-
ers are negligent if  they fail to build in processes that assure safety and 
 reliability.
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Next come “explicit ethical agents”: machines that reason about eth-
ics using ethical categories as part of  their internal programming, perhaps 
using various forms of  “deontic” logic that have been developed for repre-
senting duties and obligations, or a variety of  other techniques.

Beyond all these lie full ethical agents: those that can make explicit moral 
judgments and are generally quite competent in justifying such decisions. 
This level of  performance is often presumed to require a capacity for con-
sciousness, intentionality, and free will. If  any of  these three is lacking in a 
human context, then the person’s moral agency and legal culpability comes 
into question.

While it is relatively easy to imagine artifi cial systems that are “ethical 
impact” or “implicit moral” agents, explicit moral agency poses more diffi -
cult challenges. Many philosophers (and some scientists) argue vigorously 
that it is impossible to have machines that are full ethical agents. These phi-
losophers and scientists doubt that humans can build artifi cial agents with 
consciousness, intentionality, and free will, and maintain there is a bright 
line separating explicit moral agents from full moral agents.

Moor maintains that explicit ethical agents should be the goal of  the 
emerging fi eld of  machine ethics. Whether it is even possible to do anything 
more, he argues, cannot be settled by philosophical argument or by engi-
neering experiments in the near future. We agree with the strategy of  tak-
ing small steps. While Moor’s categories don’t map directly onto our graph 
of  autonomy and sensitivity to morally relevant features, we think they are 
useful for specifying the range of  tasks confronting machine ethics. How-
ever, they don’t do much to specify the process of  building operational and 
functional moral agents. Is building implicit ethical agents a stepping-stone 
toward building explicit ethical agents? Moor doesn’t tell us, and it’s not 
really his concern to do so.

Our idea is that the development of  technology lies in an interaction 
between increased autonomy and increasing sensitivity. As (ro)bots evolve 
incrementally toward becoming AMAs, it may not be possible to draw sharp 
lines to say when they have gone from being one kind of  ethical agent to 
another in Moor’s scheme. With increasing autonomy comes the need for 
engineers to address broader safety and reliability issues. Some of  those 
needs may involve explicit representation of  ethical categories and princi-
ples, and some may not. Our guess is that engineers will add these capacities 
in a piecemeal fashion. Increased autonomy for (ro)bots is a process that is 
already well under way. The challenge for the discipline of  artifi cial morality 
is how to move in the direction specifi ed by the other axis: sensitivity to moral 
considerations.

Sensitivity to moral considerations might mean several things for an AMA. 
A useful distinction is offered by Drew McDermott, Professor of   Computer 
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Science at Yale University and an honorary fellow of  the Association for 
the Advancement of  Artifi cial Intelligence. McDermott argues that for the 
purposes of  designing AMAs it is important to keep in mind the difference 
between ethical reasoners and ethical decision makers. Much of  the initial 
thinking on how to build moral machines has not pursued moral decision 
making in McDermott’s sense, but has instead focused on adapting the rea-
soning tools used in a wide range of  expert systems for ethical reasoning.

For example, this is the approach proposed by Blay Whitby, a faculty 
member in Computer Science and Artifi cial Intelligence at the University 
of   Sussex in Brighton, England. Whitby, who has been writing about the 
social and  ethical dimensions of  computing for over twenty years, includes 
a  chapter on “The Computer Representation of  Moral Reasoning” in his 
1995 book Refl ections on AI. He considers in that chapter how the condi-
tional if-then rules used by expert systems might be adapted for moral 
reasoning in legal and other  applications. Whitby is well aware of  the diffi -
culties inherent in  building moral reasoners, and of  the limitations of  rely-
ing upon abstract  reasoning alone.

Similarly, McDermott points out that even if  one could solve the diffi cult 
challenges entailed in building systems that can reason about ethics, these 
agents would fall far-short of  being ethical decision makers. He contrast ethi-
cal decision making with ethical reasoning, writing “The ability to do ethical-
decision making, however, requires knowing what an ethical confl ict is, i.e., a 
clash between self-interest and what ethics prescribes.” In McDermott’s view, 
an agent can only know what an ethical confl ict is and be a genuine moral 
decision maker if  that agent has suffi cient free will to sometimes choose to 
act in its own self  interest when that runs counter to the moral prescription.

Real engineering challenges are best pursued with clear criteria for suc-
cess. How might one develop criteria for moral sensitivity or moral agency? 
Alan  Turing, one of  the fathers of  AI, confronted a similar problem in try-
ing to determine whether a computer is intelligent. Turing was a British 
mathematician whose wartime efforts in breaking the German code were 
instrumental in the Allies’ victory. Before the war, Turing had developed a 
mathematical representation of  machines and programs that enabled him 
to state with precision what mathematical functions any possible machine 
could compute. During and after the war, Turing turned his abstract ideas 
into actual machines, the forerunners of  the modern digital computer. In 
his 1950 article “Computing Machinery and Intelligence,” perhaps the single 
most infl uential article in the philosophy of  AI, Turing proposed to bypass 
the problem of  defi ning intelligence by applying a practical test: could a per-
son tell a machine from a human being on the basis only of  their conversa-
tional responses in a text-only exchange? According to Turing, if  an expert 
can’t tell the difference between the computer and the person, the computer 
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is to be considered intelligent for all practical purposes. This standard has 
become widely known as the Turing test. The criterion has drawbacks, but 
it nevertheless presents a clear goal for engineers to pursue in building intel-
ligent systems.

Could a useful moral Turing test be developed? We’ll discuss this later. 
The proposal is likely to be as controversial (and arguably unreachable) as 
the original Turing test. For the time being, each project directed at imple-
menting some aspect of  moral decision making in AI will need a specifi ca-
tion of  criteria for judging its success. Different criteria will result in different 
emphases on features such as logical consistency, language, or emotional 
intelligence.

Before getting into the details of  how to build and assess AMAs,  however, 
we will address two kinds of  worries we frequently encounter when pre-
senting this work. What will be the human consequences of  attempting 
to mechanize moral decision making? And is the attempt to turn machines 
into intelligent agents as misdirected as the alchemists’ quest to turn lead 
into gold?
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Chapter 3
d o e s  h u m a n i t y  wa n t 
c o m p u t e r s  m a k i n g 
m o r a l  d e c i s i o n s ?

Fear and Fascination

We’ve informally polled people on the desirability of  AMAs and found them 
quite divided. Many agree with us that AMAs are necessary and inevitable. 
Others say that the idea of  AMAs intensifi es their discomfort with advanced 
technology.

There is something paradoxical in the idea that one could relieve the 
anxiety created by sophisticated technology with even more sophisticated 
technology. A tension exists between the fascination with technology and 
the anxiety it provokes. We think this anxiety has two sources. On the one 
hand are all the usual futurist fears about technology on a trajectory beyond 
human control. On the other hand, we sense deeper, more personal worries 
about what this technology might reveal about human beings themselves.

Humanity’s deep relationship with technology is sometimes captured by 
the expression “man the toolmaker,” which summarizes a central concep-
tion of  human nature that is often (somewhat erroneously) used to distin-
guish humans from other animals. When the primitive ancestors of  humans 
picked up stones and fashioned them into tools or weapons, they initiated the 
coevolution of  humanity and its technologies. Today’s children fi nd it hard 
to imagine a world without computers, and everyone has been changed by 
the advent of  indoor plumbing, sanitation, speedy transportation, and wide-
spread education.

The centrality of  technology to human nature is the main theme in the 
philosophy of  technology, a subject that goes back to Aristotle. Philosophers 
of  technology deal with the role technology plays in human culture, includ-
ing the resulting costs and benefi ts. The biblical notion of  beating swords into 
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plowshares illustrates the long association of  tools with costs, benefi ts, and 
power. Because humans would be lost without their gadgets and machinery, 
the tools that to some extent defi ne humans can also be seen as controlling 
their lives and undermining their autonomy.

Two notions of  value are operating here. On the one hand, there are 
external values, which have to do with whether technology does or does 
not contribute to public welfare. Are nuclear weapons, cloning, and artifi -
cial intelligence good things overall? What about planes, trains, and auto-
mobiles? On the other hand, there are internal values, which have to do 
with how technology forms what it means to be human. Are we, as Andy 
Clark says, “natural born cyborgs” who take up technologies so readily as to 
become literally merged with them? Or is technology as easily shed as a pair 
of  underpants? (And by the way, where did the characters in The Matrix fi nd 
clothes?) There is a philosophical tension between humans’ autonomy and 
their dependence on technology.

Furthermore, there is the sense that the adoption of  new technologies not 
only alters human potential but can also transform human character and 
consciousness. Sociologist Sherry Turkle of  MIT writes that “an unstated 
question lies behind much of  our current preoccupations with the future of  
technology. The question is not what will technology be like in the future, but 
rather, what will we be like, what are we becoming as we forge increasingly 
intimate relationships with our machines.”

Philosophy of  technology raises questions about human freedom and dig-
nity in an increasingly technological society. Is it true that many more people 
in highly industrialized societies are relegated to repetitive and stultifying 
jobs? Does the demand for the products of  technology inevitably decimate 
the environment? The development of  some new technologies, for example 
genetic engineering and nanotechnology, raises the fear that powerful pro-
cesses are being unleashed that humans might not be able to control. Many 
of  the same worries arise in connection with (ro)bots. Much, perhaps most, of  
what is written in this genre is not engaged with solving technological prob-
lems themselves and, indeed, is critical of  the idea of  technological “progress.” 
These philosophers of  technology often see themselves as providing a neces-
sary counterweight to technology optimists, for example Maggie Boden, the 
very infl uential philosopher of  AI and founding Dean of  the School of  Cogni-
tive and Computing Sciences at the University of  Sussex in Brighton, England, 
who wrote in her 1983 article “Artifi cial Intelligence as a Humanizing Force” 
that AI could be “the Westerner’s mango tree,” capable of  freeing humanity 
from drudgery to pursue more humanistic activities.

While old-style philosophy of  technology was mostly reactive, and often 
motivated by the specter of  powerful processes beyond people’s control, a new 
generation of  philosophers of  technology are more proactive. They seek to 
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make engineers aware of  the values they bring to any design process and wish 
to infl uence the design and implementation of  technology rather than merely 
react to it. Not content with simply cheering or jeering, the new philosophers 
of  technology participate in meetings about activities as diverse as designing 
toys, video games, and sewage plants. Philosopher Helen Nissenbaum calls this 
“engineering activism.”

Some engineers may be tempted to ignore or dismiss questions about val-
ues as too “soft,” but this will not make them go away. Systems and devices 
will embody values whether or not humans intend or want them to. To ignore 
values in technology is to risk surrendering their determination to chance or 
some other force. Given the inevitable incorporation of  values into computer 
systems, Nissenbaum justifi es engineering activism as the need to “advocate 
on behalf  of  values” that serve humanity.

The fi eld of  artifi cial morality shares this activist approach to technology. 
It is fundamentally concerned with infusing technology with values that 
enhance human welfare. When computer systems select from among dif-
ferent courses of  action, they engage in a kind of  decision-making process. 
For the immediate future, the ethical dimensions of  this decision making will 
be largely determined by the values engineers incorporate into the systems, 
either implicitly or explicitly. Until recently, designers did not consider the 
ways values were implicitly embedded in the technologies they produced. 
Helping engineers become aware of  both the internal and external ethical 
dimensions of  their work has been an important achievement of  philoso-
phers such as Nissenbaum.

Attention to the values that are unconsciously built into technology is a 
very welcome development. At the very least, system designers should con-
sider whose values or what values they implement. But the morality implicit 
in the actions of  artifi cial agents is not simply a question of  engineering eth-
ics, that is to say, of  getting engineers to recognize their ethical assumptions. 
Given the complexity of  modern computers, engineers commonly discover 
that they cannot predict how a system will act in a new situation. Hundreds 
of  engineers contribute to the design of  each machine. Different companies, 
research centers, and design teams work on individual hardware and soft-
ware components that make up the fi nal product. The modular design of  a 
computer system can mean that no single person or group can fully grasp the 
way the system will interact with or respond to a complex fl ow of  new inputs. 
The goal of  artifi cial morality moves engineering activism beyond emphasiz-
ing the role of  designers’ values in shaping the operational morality of  sys-
tems to providing the systems themselves with the capacity for explicit moral 
reasoning and decision making.

The ideal AMA would take into account both external and internal values 
as it makes choices and acts. Nevertheless, initially, the emphasis will be on 
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ensuring that (ro)bots don’t cause external harms. Attention to internal val-
ues will lie primarily with the engineers who design the systems and with the 
society and users who elect to adopt or reject new technologies.

Delegating Responsibility for 

Decisions to a Computer

We have suggested that AMAs are necessary and inevitable, but are there 
downsides to developing this technology? There are, of  course, the highly 
speculative and often alarmist concerns raised by futurists and devotees of  
science fi ction, but there are also more immediate concerns regarding the 
impacts on human dignity and responsibility that may follow even from 
more limited forms of  artifi cially intelligent systems.

The initial approaches to machine morality are most likely to be in the 
form of  software support tools for decision makers. But there is a danger 
that such support tools will become crutches for users who will substitute 
the machines’ output for their own critical thinking. Social scientists Batya 
Friedman and Peter Kahn have raised this worry concerning decision sup-
port tools (DSTs).

Friedman and Kahn suggest that DSTs start a slippery slope toward the 
abandonment of  moral responsibility by human decision makers. As people 
come to trust the advice of  a DST, it can become more diffi cult to question 
that advice. There is a danger, they believe, that DSTs could eventually come 
to control the decision-making process.

Why would this be a bad thing? Friedman and Kahn are not completely 
clear on this point, although they seem to think that responsible computing 
requires a fully conscious agent to be responsible for every decision. We think 
that this might be a requirement for some very important contexts—perhaps 
life-and-death decisions in hospitals, for example. But there are lots of  areas 
where direct human oversight is impracticable, for reasons we’ve already 
explained. In those contexts, responsible computing means having programs 
that take into account and are responsive to the ethically relevant features of  
the problem under consideration.

Friedman and Kahn use the adoption of  a DST in the intensive care unit 
(ICU) of  a hospital to illustrate their concerns. They focus on APACHE, a 
computer-based decision support model that facilitates determining treat-
ment procedures for patients in the ICU. As they put it:

It may become the practice for critical care staff  to act on APACHE’s rec-
ommendations somewhat automatically, and increasingly diffi cult for 
even an experienced physician to challenge the “authority” of  APACHE’s rec-
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ommendation. . . . But at this point the open-loop consultation system . . . has 
become, in effect, a closed-loop system wherein computer prediction 
 dictates clinical decisions.

When Friedman and Kahn wrote their article in 1992, the APACHE sys-
tem was a prototype. The latest upgrade, APACHE-III, contains a database 
with information on more than six hundred thousand ICU patients. The sys-
tem is marketed on the premise that it can provide real-time, risk-adjusted 
clinical and fi nancial information to physicians and hospital administrators 
who manage care for high-risk, high-cost patients. APACHE Medical Sys-
tems claims that this helps hospitals to introduce procedural changes that 
can, for example, decrease the length of  time a patient stays in the ICU—and 
therefore decrease hospital costs. The company also contends that improved 
procedures and improvements in evaluating the prognosis for individual 
patients have led to quantifi able improvements in patient care.

Has the presence of  APACHE in hospitals led to a decline in physician 
autonomy? It is diffi cult to establish an answer to this question. In any case, 
it is unclear that a reduction of  physician autonomy would be such a bad 
thing, if  physicians using APACHE tend to do a better job for their patients 
than physicians working without a decision support system. Nevertheless, it 
is important to recognize the danger Friedman and Kahn highlight—of  phy-
sicians deferring to the machine in evaluating a patient’s care. Given the cur-
rent litigious age, we agree that health professionals may well be shy about 
challenging the conclusions of  a DST with a good record of  accomplishment. 
A computerized audit trail detailing the system’s analysis is likely to be avail-
able to enterprising malpractice attorneys. Rather than speculating about 
such reluctance, however, we think such worries should be based on empiri-
cal study—is it true that DSTs inevitably lead to too much machine control? 
Some preliminary studies suggest that physicians have a positive response to 
DSTs, but more research is necessary.

Friedman and Kahn have also considered the prospect that an APACHE 
system might one day be used to turn off  life support without any direct 
action by a human decision maker. This speculation might be alarming, but 
in the decade and half  since they raised this worry, we have not seen any evi-
dence that full machine control over life-and-death decisions has gotten any 
closer. Before anyone takes this drastic step, the available software would 
have to reach a level of  sophistication that far exceeds the ethical sensitivity 
of  anything currently envisaged. APACHE has only a very limited concep-
tion of  what is ethically or morally relevant in the ICU situation. A more 
ethically focused DST should be expected to consider not just patient sur-
vival but the issues of, for example, whether the treatment is consistent with 
the wishes of  the patient and his family and whether the anticipated result 
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of  the treatment will provide a quality of  life acceptable to him. These are 
the kinds of  considerations for patient autonomy and well-being that are 
usually best answered in a full and open dialogue between a physician and a 
patient, and may well include other human actors, for example, a spouse or 
religious counselor the patient invites into the  discussion.

Sometimes, however, patients are not in any condition to enter into 
a dialogue. Could computers be as accurate as a patient’s relatives in 
predicting the preferences of  such terminally ill patients? A National 
Institutes of  Health (NIH) research group published a study in 2007

showing that patients’ relatives were accurate in predicting the wishes 
of  their loved ones only about three-quarters of  the time. Could a com-
puter program do better? David Wendler, a bioethicist at NIH who was 
one of  the authors of  the study, believes so. He and his colleagues wrote 
a program that used no information except how well the treatment had 
worked for other patients in a similar condition. It applied a simple rule 
to predict whether a patient would have accepted a specifi c treatment. 
If  the treatment had a 1 percent chance of  allowing the patient to recover 
 normal  cognitive abilities, the program predicted that it would be chosen. 
The program was able to perform just as accurately as relatives and friends 
in predicting patients’ wishes. Wendler believes that by factoring in more 
information about a patient, such as age, gender, and occupation, it should 
be possible for software to signifi cantly outperform human judgment. Per-
haps, then, should you ever become incapacitated without having previously 
written a living will, you would prefer the decision about your intensive care 
to be made by a machine rather than your relatives!

When patients are not completely incapacitated, we agree with Friedman 
and Kahn about the need to be vigilant against misusing DSTs. Regardless 
of  the context, decision support should not be allowed to become decision 
making by default. However, this does not obviate the need for more and 
more sophisticated DSTs that take a broader range of  ethically relevant 
details into account—DSTs that are more like AMAs, in other words. A sys-
tem that gets 90 percent of  the decisions correct using only ethically blind 
criteria—for example, objective survivorship rates—may be missing the 10

percent of  cases where ethical judgment has the greatest signifi cance to all 
involved.

Nevertheless, one might object that developing DSTs along this track 
increases the slope, or its slipperiness. The worry is that the more intuitively 
plausible the output of  the machine, the more likely it is to be treated anthro-
pomorphically as embodying genuine moral intelligence. Arguably, those 
who design and market such systems are perpetuating a kind of  fraud on 
those who use them: they make people believe that these systems are some-
thing that they are not. We turn to this issue in the next section.
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Pulling the Wool

In 1944, Fritz Heider and Mary-Ann Simmel published a now classic exper-
iment in which they demonstrated how natural it is for people to attribute 
anthropomorphic properties to anything they perceive as being animate. 
In their experiment, subjects were shown movies of  simple geometric fi g-
ures moving around a blank screen and were asked to describe what they 
saw. Virtually everyone spontaneously described the movements of  these 
objects with words such as “wants,” “fears,” and “needs.” If  one of  the tri-
angles closely followed the other while the second made frequent changes 
of  direction, the fi rst triangle might be described as “chasing” the second 
triangle, or the second triangle was seen as “frightened by” and “running 
away” from the fi rst. Subjects spontaneously anthropomorphized and pro-
jected intentions on the objects. They found it very diffi cult to describe the 
activity in geometric terms even when prompted to do so. Many recent 
experiments have reconfi rmed how readily humans project intentions onto 
animated objects.

Most forms of  anthropomorphism are relatively innocuous. Humans 
relate to their pets at times as if  they are human, but most people appre-
ciate that what pets understand is limited. Toy companies have recognized 
that they can capitalize on the natural tendency to project emotional states 
and intentions onto animated objects in their design of  dolls, robopets, and 
other objects. When a robot dog wags its tail or hops around as one gives it 
attention, it is not “happy”; it has no internal states comparable to human 
emotions, or even the emotions of  an animal. Although there are interest-
ing research questions regarding such parlor tricks for social psychologists 
to pursue, it is well understood that these toys are designed primarily to be 
entertaining. Sony promoted its cute humanoid robot with the line “QRIO 
wants to be your friend.” But, of  course, QRIO does not “want” anything. The 
manufacturer wants you to buy QRIO. (Or, at least, they did until their new 
American CEO closed the robot division in 2006.)

There is a fi ne line between parlor tricks and duping the public. However, 
there is also considerable evidence that providing technology with human-
like skills can facilitate interaction between humans and their computers, 
gadgets, and robots. Many consumers like automobiles and computers that 
speak to them in a soothing voice. The Affective Computing Lab at MIT is 
experimenting with ways systems can recognize user frustration. For exam-
ple, frustration is registered in the form of  pressure on a specially designed 
mouse with built-in sensors. Pressure on the mouse activates the sensors, 
which in turn initiates on-screen menus or triggers a simulated voice that 
asks whether there is a problem. If  the user responds affi rmatively, the soft-
ware then offers various forms of  remediation.
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Other scientists in MIT’s Humanoid Robotics Group are exploring how 
systems designed to detect basic human social gestures and respond with 
human-like social cues can facilitate human-robot interactions. Perhaps the 
best known social robot is Kismet. No one would claim that Kismet has a 
sophisticated social aptitude. What is remarkable is that even with its very 
low-level, essentially mechanical social mechanisms, it could be quite per-
suasive in conveying the sense that it was alive and actually engaged in a 
form of  social interaction. (Some students in our classes feel bad when they 
see Kismet being scolded.)

Certainly, robots like Kismet, with some human-like features and move-
ments, can make interacting with technology easier and more comfortable. 
But there is also considerable uncertainty as to how human-like technology 
can or should be. Masahiro Mori, a Japanese roboticist, theorized in 1970

that people become more comfortable with and empathetic with robots with 
human-like features and movements until they start to look too human, and 
then people tend to become very uncomfortable with or even revolted by 
them. The dissonance created by what appears to be human but fails to meet 
human expectations is apparently quite disconcerting. Mori described this 
drop in comfort as the “uncanny valley”—on the assumption that it would 
be possible to overcome these negative feelings if  androids could be made 
even more human-like.

Mori’s uncanny valley causes different reactions among designers of  
robots. Hiroshi Ishiguru, who designs android robots with the goal of   having 
them look and act as much like humans as possible, sees the uncanny  valley 
as a challenge to be surmounted. Other roboticists read the uncanny 
 valley as suggesting that the most effective robots will be those that have 
some human-like characteristics but clearly do not pretend to be human. The 
strategy roboticists take is largely a function of  their goals. Given present-
day  technology, robots that are similar to but clearly distinct from humans in 
their appearance and actions are better than androids at facilitating human-
robot interaction.

The techniques developed to give Kismet the ability to detect basic social 
cues and respond with complementary social gestures are already being 
appropriated by businesses interested in designing and marketing toys and 
service robots. From a puritanical perspective, all such techniques are argu-
ably forms of  deception. However, consumers are unlikely to consider this 
an ethical problem, given the entertainment value and improved usability of  
such products—presuming, of  course, that they aren’t being designed for a 
nefarious purpose.

Still, there may be a problem if  the anthropomorphic responses elicited by 
such technologies tend to mask activities that are unintentionally harmful 
or unethical. Consider, for example, an experiment by the sociologist Sherry 
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Turkle, who brought robotic dolls into a nursing home. The particular type 
of  doll she loaned the residents had been commercially unsuccessful, failing 
to attract the interest of  sophisticated young consumers who could choose 
from similar dolls with better features. But Turkle was surprised by the depth 
of  the attachments many of  the nursing home residents formed with their 
robotic dolls, often being unwilling to give them up at the end of  the loan 
period. Clearly, many of  the residents were hungry for any form of  social 
interaction.

Most people consider robotic dolls a very poor substitute for human com-
panionship, and would regard the attachments formed by the home’s resi-
dents as a symptom of  society’s failure to attend to the emotional needs of  
the elderly and the disabled. One might well abhor any suggestion that social 
robots are a solution to loneliness and need for human interaction. But there 
are hard questions that need to be asked about the function, practicality, and 
desirability of  social robotics as a response to human needs. For example, if  
there is no evidence that people and communities are willing to direct the 
time or resources necessary to respond to the needs of  the elderly and dis-
abled for human contact, are social robots better than nothing?

Friedman and Kahn raise another serious ethical concern posed by the 
human tendency to anthropomorphize technology: the harm that can result 
from imputing faculties to machines that they do not have. Present-day 
technology is far from having the kinds of  intelligence and intentions people 
demand from human moral agents. Imputing such agency to machines is 
dangerous, and indicates a potential abrogation by humans of  responsibil-
ity. Companies that produce intelligent machines need to train users to be 
vigilant, not merely to escape liability but also to fulfi ll their responsibility 
for harms that result from a misunderstanding of  what the machines do and 
what they cannot do.

The introduction of  Trident submarines carrying nuclear weapons in the 
late 1980s was one of  the factors that seriously jeopardized the fate of  the 
Earth during the arms race between the United States and the Soviet Union. 
These ships broke the symbolic ten-minute barrier between the launch of  
weapons and weapons strikes that had been considered necessary for bring-
ing leaders into the decision-making process to evaluate whether images 
that appeared on radar screens signaled an attack or were harmless. Without 
time to bring humans into the decision-making process, weapons systems 
in the Soviet Union would be forced to rely on computer analysis of  the data 
and computers initiating retaliatory measures. The future of  humanity was 
about to be placed in the hands of  1980s Soviet computer technology. Luckily 
for all, the arms race collapsed. But even today, anyone who puts matters of  
life and death in the hands of  computers has failed to understand the limits 
of  current technology.
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It remains unclear whether, as AI systems become ubiquitous, users will 
come to better understand the limitations of  these machines. Will, for exam-
ple, most people come to appreciate the areas in which human intelligence 
excels in comparison to computers or will humans begin to feel inferior? Cer-
tainly, calculators and computers are far superior to humans in performing 
complex mathematical tasks, but has the adoption of  calculators, for exam-
ple, actually undermined the respect of  humans for their own faculties? The 
fact that computers perform mechanical and repetitive tasks so well is gener-
ally seen as a boon to humanity, a time saver that frees people to direct their 
attention to more important matters.

However, one might try to press the concern that if  computers are per-
ceived as handling moral deliberations, creative tasks, or other complex chal-
lenges better than humans, a form of  malaise or inferiority complex might 
set in, undermining self-respect. Computers with creative faculties might 
also sap the motivation of  creative individuals to test their own ingenuity. We 
think it would be incorrect to see technology as the thief  that steals motiva-
tion and spirit. Even children who are not among the most intelligent, ath-
letic, or artistic can be effectively motivated to accomplish great things. It is 
the challenge of  parents and educators to bring out the best in each child, 
regardless of  whether or not they show talent in one particular area. The 
social challenge in a world of  sophisticated machines will be to nurture 
human aspirations. We are confi dent that this challenge can be met. Indeed, 
for many children, new technologies have helped nurture talents that in pre-
vious generations lay hidden.

These worries are futuristic, so long as the verdict is out on whether 
scientists will succeed in their endeavors to duplicate individual human 
cognitive and social capacities within computer systems and robots. Opti-
mists believe that humans will build systems that equal or surpass human 
intelligence, and have argued that this may even happen in the next 
twenty to fi fty years. If  they are right, it will be seen by some as a blow to 
human dignity, a demonstration that humans are not unique creatures, 
with god-given talents that make them superior to animals and other enti-
ties. There are those who would even prefer that humans never fi nd out 
whether AI can rival human intelligence. While we understand this per-
spective, we believe that humanity is better served by pursuing scientifi c 
research. People are quite capable of  accommodating the truths that sci-
entifi c investigation brings to light. Furthermore, we suspect that substan-
tiating all higher order mental faculties in artifi cial systems will prove to 
be a particularly diffi cult challenge, if  not impossible, and the diffi culty of  
this challenge may indeed underscore why humans are such remarkable 
creatures.
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Soldiers, Sex Toys, and Slaves

Might accepting robots into people’s lives dilute cherished human values and 
degrade people’s humanity? Ironically, this question has been raised by one 
of  the most successful roboticists, Ronald Arkin, the director of  the Georgia 
Institute of  Technology’s Mobile Robot Laboratory. Arkin coined the phrase 
“Bombs, Bonding, and Bondage” to capture the social concerns posed by the 
three main forms of  human-robot interaction—robots as soldiers, as com-
panions, and as slaves. Robots for military applications, intimacy, and labor 
will each be very different entities with different goals giving rise to different 
ethical  considerations.

Does humanity want robot soldiers? Well, we already have them in the 
form of  cruise missiles, remotely controlled vehicles, and battlefi eld robots 
deployed for hazardous duty. A May 2006 news story describes the hundreds 
of  “PackBot Tactical Mobile Robots deployed in Iraq and Afghanistan to open 
doors in urban combat, lay fi ber-optic cable, defuse bombs and perform other 
hazardous duties previously done by humans alone.”

In the United States, where robotic research is largely fi nanced by the 
Department of  Defense, there are plans to spend billions on the long-term goal 
of  developing armed robots. According to numerous press reports in 2004

and 2005, the U.S. military had already developed a remote-operated Talon 
robot (using a SWORDS) armed with M240 or M249 machine guns, and in 
December 2005 the BBC reported that these robots were being deployed “to 
wage war against insurgents in Iraq.” The SWORDS robot takes aim elec-
tronically, although actual fi ring decisions are under the remote control of  
the human operator. At the end of  2007, there were reports that SWORDS 
robots were soon to be used in combat. No reports of  their actual usage have 
yet appeared. Nonetheless, at the end of  January 2008, a missile fi red from a 
remotely fl own Predator drone reportedly killed over a dozen members of  al 
Qaeda at a location inside Pakistan.

Even if  human operators initially remain within the loop of  any decision 
to kill using weapons-carrying robots, this will not always be the case. In fact, 
the Defense Advanced Research Projects Agency (DARPA) has been funding 
research into autonomous battlefi eld robots since at least the beginning of  
the decade, and DARPA’s fi eld combat systems (FCS) program has set a 2010

deadline for fi eld deployment of  military-grade robotic workforces needed for 
combat.

To our knowledge, fully autonomous gun-carrying or bomb-carrying sys-
tems have not yet been let loose. But the rationale for such systems is simple 
and compelling—robots decrease the need for humans in combat and there-
fore save the lives of  soldiers, sailors, and pilots. Furthermore, even remotely 
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operated vehicles such as the Predator are currently complex enough to 
require up to four people to operate one drone. Navigation, fl ight, and target-
ing functions each required highly trained personnel. Clearly, the side that 
can reduce its personnel needs by making its robots more and more autono-
mous will have an advantage. The Army is already testing supply robots that 
move across the battlefi eld without a human operator.

Robotic fi ghting machines will not be hampered with the inconvenience 
of  Asimov’s First Law—against harming or killing humans. The problem is 
obvious. Once robots are authorized to kill, real-time decisions are necessary 
to determine whether killing any particular person is justifi ed. Asimov him-
self  opened the door to the possibility of  a robot killing a human for the gen-
eral protection of  humanity, when he added his Zeroth Law to the other three 
laws: “A robot may not harm humanity, or, by inaction, allow humanity to 
come to harm.” Short of  implementing the ability to make moral decisions 
about when, where, and toward whom deadly force is acceptable, there is no 
way to reduce the likelihood that robotic fi ghting machines will cause unac-
ceptable harm. Furthermore, robots will not only kill enemy combatants but 
also be responsible for civilian deaths (“collateral damage”) and the deaths of  
allied troops (“friendly fi re”). Even if  collateral losses are justifi able given the 
larger objectives, the autonomous systems would need to be capable of  weigh-
ing the options. Given the diffi culty of  ensuring safety and ethical behavior, it 
is necessary to think long and hard about when to deploy weapon-carrying 
systems. The answer is unlikely to be as straightforward as “never.”

The generally held understanding of  the unmanned vehicles or cruise 
missiles that have already been deployed by the military is that they are tools 
or things. But given the human propensity to anthropomorphize, soldiers 
have bonded with their robots. Colin Angle, chief  executive of  iRobot, manu-
facturer of  the PackBot that is being used to fi nd and defuse explosive devices 
in Iraq, tells the story of  a U.S. soldier who begged that the company repair 
Scooby Doo, the affectionate name his unit gave their PackBot that was 
blown up after completing thirty-fi ve successful missions. Angle recounts 
that the soldier pleaded with iRobot to “please fi x Scooby Doo because he 
saved my life.”

An entirely different objective from building artifi cial soldiers is the devel-
opment of  artifi cial creatures, friends, and companions—robots designed for 
human interaction. Developers of  social robots are focusing on exploiting 
human psychology to either enhance usability or stimulate people to forge 
emotional bonds with their mechanical pets and companions.

Designers of  sex toys are particularly good at taking the lead in appro-
priating the latest technology to titillate their clients. Technological develop-
ment has a long history of  being driven by pornographic applications, and 
the fi eld of  robotics is no exception. As with all pornographic applications, 
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serious issues about exploitation of  women and fostering of  antisocial behav-
ior arise. But as with the discussion of  robot soldiers carrying weapons, there 
are two sides to this issue. For example, robot avatars functioning as sur-
rogate sex partners for John’s remote pleasures arguably provide a form of  
“safe sex.” But no doubt there will also be anecdotal evidence suggesting that 
relationships with robotic sex toys leads to aberrant antisocial behavior, and 
future research may confi rm this.

The use of  robots for solving problems of  loneliness goes well beyond their 
use for the instant gratifi cation of  sex. Researchers are working on (ro)bots 
that can read emotional states through facial expressions and other nonver-
bal and verbal cues to create the illusion of  being empathetic. In his 2007

book Love and Sex with Robots: The Evolution of  Human-Robot Relationships,
David Levy argues that the current research trajectory will lead to long-term 
partnerships and even marriage between humans and robots. However, the 
deepening of  emotional bonds opens up opportunities for unscrupulous 
designers and perhaps even future semiintelligent robots to exploit naive 
users. There are also, of  course, issues concerning the forms of  sexual behav-
ior that various communities will consider ethical for human-robot relation-
ships. Will it be necessary to regulate what a companion robot system can 
and cannot do? Perhaps. At the least, society should be prepared to address 
the social consequences of  sophisticated robot companions.

A long-standing attraction of  robots has been the prospect of  having ser-
vants or slaves that work 24/7 and don’t need to be paid—getting the benefi t 
of  having slaves without taking on the moral challenges of  slavery. Indeed, 
the word robot was fi rst coined by Josef  and Karel Capek in 1920 from the 
Czech word robota, which means drudgery or servitude. Ronald Arkin ques-
tions whether the moral problems inherent in slavery are circumvented by 
using robots as slaves. For thousands of  years, humans have held each other 
in involuntary servitude, and the abolition of  slavery has only been partially 
accomplished during the last 150 years. The abolition of  slavery is a young 
and perhaps still fragile moral principle, especially in light of  the vast number 
of  people worldwide who are still effectively enslaved as indentured workers. 
Arkin ponders whether the acceptance of  robot servants could reinstate slav-
ery as a viable option in societies that have offi cially abolished the practice, 
and he wonders whether this could relegitimize human slavery or lead to 
human sloth.

Robots as surrogates for human workers are already established in indus-
trial robotics and the commercialization of  robotic appliances, for example 
vacuum cleaners. The Japan Robot Association has set the goal of  develop-
ing service robots to care for the elderly and disabled within the next few 
years. Regardless of  any suggestion that slave robots are a bad idea, robots 
as tools and workhorses will be built. No one is likely to mistake a Roomba 
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for a person, but the usability and charm of  service robots will be enhanced 
by making them cute and more sociable-looking, with human- or pet-like 
features and faculties. Furthermore, the barriers to slavery may well lower 
incrementally as the distinctions between humans, cyborgs, and robots are 
blurred one by one.

Then there are the futurist concerns that robots themselves will eventu-
ally have feelings and emotions of  their own and will acquire intelligence, 
consciousness, and self-understanding. Will a robot that feels pain have 
the right to command a human to stop mistreating it? Will a robot with a 
sophisticated degree of  understanding be free to say that it will not work? 
Or, despite the evidence, will people continue to insist that robots are a race 
of  inferior life-forms without true feelings, higher-order mental faculties, or 
consciousness.

For the near future, most tasks will be performed by discrete robotic appli-
ances and embedded technology. Microprocessors in refrigerators, garbage 
cans, and clothing will alter humans’ workloads. The immorality of  human 
slavery will not be challenged as long as robot helpers are virtually invisible 
or without personality or emotions. But this is unlikely to remain the case for 
long. Household robots designed to be both companions and slaves are on 
engineers’ drawing boards—or should we say in their CAD programs.

Can Technology Risks be 

Properly Assessed?

Our discussion so far has underscored some of  the types of  social risks 
involved in the development of  advanced (ro)bots. But exactly how risky are 
they?

Assessing the impact of  new technologies is far from a science. Risk assess-
ment reports on the safety of  drugs, building projects, and complex technolo-
gies are fi lled with data about numerous factors. Eventually, someone has to 
interpret the relative import of  each factor, and quantifi able research gives 
way to value judgments. All too often, the empirical data is used to mask the 
fact that some group’s economic or political interests have weighed heavily 
in the fi nal evaluation of  risks.

No one engaged in assessing risks is under the illusion that one can elimi-
nate the unpredictable. The unpredictability of  the future hinges on missed 
infl uences, inadequate information, the fallibility of  humans, and unfore-
seen eventualities, for example, the ways complex technologies will affect 
each other and even give rise to new possibilities.

The value of  going through a formal process of  assessing risks lies in 
weighing the foreseeable benefi ts against the foreseeable risks. Without 
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going through this exercise, people are prone to give undue emphasis to 
more prominent  benefi cial or negative factors. The identifi cation of  risks can 
in turn facilitate the management of  risks. Professionals in the fi eld of  risk 
assessment struggle to make their research comprehensive, their discipline 
scientifi c, and their judgments transparent to the greatest extent possible. 
Technology assessment, a young discipline, is still struggling to effectively 
model how the introduction of  new technologies infl uences change in 
already dynamic social contexts.

Risk assessment is important to the project of  building decision-making 
(ro)bots in two respects. First, there are the risks posed to people individu-
ally and to society as a whole by implementing such systems. The risks may 
vary depending on the type of  system that is introduced. For example, service 
robots in the home may pose immediate physical and psychological risks to 
those who enter the house but are less likely to cause harm to anyone out-
side the home. Autonomous agents within computer networks, for example 
fi nancial systems, might be less likely to cause direct physical harm but are 
quite capable of  causing harms that have far-reaching social consequences 
that can, in turn, indirectly affect the physical well-being of  individuals. 
Automated programs that buy and sell stocks, bonds, and currencies on 
international markets have caused severe fi nancial crises by triggering large-
scale movements of  capital out of  specifi c countries.

Second, to the extent that the tools for assessing risks can predict the prob-
abilities and consequences of  various courses of  action, they might be appro-
priated by (ro)bots for evaluating the risk entailed in alternative responses to a 
challenge. That is, the analysis of  risks could potentially help the AMA select 
the best course of  action on the basis of  the available information. Some of  
the specialized tools and techniques professionals use for assessing risks have 
already been computerized. These programs might even provide a software 
platform for AMAs to analyze the consequences of  their own actions.

The Future

Nothing in life is risk free. Even librarians die from work-related factors or 
on-the-job risks. Americans and Europeans often have the illusion that they 
can effectively minimize risks so they approach zero. The public is particu-
larly attuned to the possibility of  disastrous events. In research published in 
1987, Americans rated nuclear power as the most dangerous in a list of  thirty 
activities or technologies that included smoking, pesticides, police work, 
x-rays, and prescription antibiotics. Professional risk assessors, who use 
psychometric scales that emphasize mortality rates, saw nuclear power as 
much safer  (twentieth in the list) than the general public. Surgery, which the 
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professionals rated as high risk (5), was ranked at 10 by the public. These dif-
ferences do not mean the  professionals are right and the public is necessarily 
confused. Rather, different factors can infl uence the assessment of  risk. For 
example, one might believe that eventually there will be a disastrous nuclear 
accident that will override existing safety records and low mortality rates.

Lurking in the background are all the science fi ction scenarios that sug-
gest that AI systems will eventually evolve into creatures that will want to 
eliminate humanity. Are engineers stepping onto a slippery slope leading 
to the inevitable extinction of  the human species? Humanity’s extinction at 
the hand of  (ro)bots is not inevitable. From our present vantage point, we 
think the risk is extremely low. Is it possible? It is hard to say. It is still unclear 
whether some of  the perceived barriers to robust AI can be overcome. If  they 
can be, and the platforms for it have been clarifi ed, then it may be possible to 
build appropriate ethical constraints into these systems to eliminate the pos-
sibility of  human  extermination.

It is much too early to consider relinquishing the benefi ts humans can 
derive from AI because of  highly speculative futurist fantasies. As this very 
young fi eld progresses, social theorists, engineers, and politicians will have 
many strategic opportunities to visit the question of  whether Pandora’s box 
is about to be opened.

The idea that humans should err on the side of  caution is not particu-
larly helpful in addressing speculative futuristic dangers. This idea is often 
formulated as the “precautionary principle” that if  the consequences of  an 
action are unknown but are judged to have some potential for major or irre-
versible negative consequences, then it is better to avoid that action. The dif-
fi culty with the precautionary principle lies in establishing criteria for when 
it should be invoked. Few people would want to sacrifi ce the advances in 
computer technology of  the past fi fty years because of  1950s fears of  a robot 
takeover. Without the benefi t of  hindsight, it is diffi cult to say which dangers 
represent unmanageable challenges and which can be managed if  not actu-
ally defused. Nevertheless, the diffi culty in applying the precautionary prin-
ciple should not be taken to undermine the need for vigilance.

The social issues we have raised highlight concerns that will arise in the 
development of  AI, but it would be hard to argue that any of  these con-
cerns leads to the conclusion that humans should stop building AI systems 
that make decisions or display autonomy. Nor is it clear what arguments 
or evidence would support such a conclusion. In a 1999 report released by 
the World Health  Organization, traffi c accidents were noted as the leading 
injury-related killer of  people between the ages of  fi fteen and forty-four. 
Motor vehicle accidents accounted for the deaths of  1,170,694 worldwide in 
1998. This fi gure does not include the deaths indirectly related to automo-
biles in the form of  air pollution (e.g., bronchial disease) and global warming 
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(e.g., skin cancer and storm-related deaths). If  people had known how 
destructive automobiles would be a hundred years ago, would they have 
stopped the development of  a favored form of  transportation? Probably not. 
Most people believe the advantages of  automobiles outweigh their destruc-
tive potential.

We are concerned with the destructive potential of  AI systems. That 
prompts our interest in promoting the fi eld of  artifi cial morality. We see no 
grounds for arresting research solely on the basis of  the issues presently being 
raised by social critics or futurists. However, we believe that there are and 
will continue to be opportunities to reassess whether the dangers of  develop-
ing AI outweigh any rewards. In the meantime, the development of  AMAs 
provides an important venue for exploring how effectively the risks posed by 
autonomous systems can be managed. It also provides a venue for assessing 
the nature of  moral agency itself, and it is to this topic that we turn next.



This page intentionally left blank 



55

Chapter 4
c a n  ⁽ ro ⁾ b o t s  r e a l ly 
b e  m o r a l ?

Careworthy Technology

“Soldiers Bond with Battlefi eld Robots” declared the headline of  the 2006

story by Reuters reporter Joel Rothstein about Scooby Doo. A 2007 story 
by Joel Garreau of  the Washington Post reported a colonel in the U.S. Army 
calling off  a robotic land-mine-sweeping experiment in which the robot 
kept crawling along despite losing its legs one at a time. The colonel, Gar-
reau reports, declared that the test was inhumane. Robots that humans care 
about are clearly a reality. But will the robots care about us? Can they?

Many people believe that machines are incapable of  being truly con-
scious, incapable of  the genuine understanding and emotions that defi ne 
humans’ most important relationships and shape humans’ ethical norms. 
What are these capacities? (The “ontological” question.) What can be known 
about them scientifi cally? (The “epistemological” question.) Does artifi cial 
morality depend on answering these questions? (The practical question.) Our 
answer to the ontological and epistemological questions is an emphatic “We 
don’t know!” (But neither does anyone else.) The reasons no one knows the 
answers to the fi rst two questions help shape our approach to the practical 
question, giving us the confi dence to answer it with a resounding no.

Practically speaking, all current progress toward AI involves software 
running on digital hardware. One day, perhaps sooner than people think, 
AMA development may take place in petri dishes or quantum computers, not 
CPUs. But the “wet” artifi cial life being developed at places like the J. Craig 
Venter Institute in Rockville, Maryland, and Protolife in Venice, Italy, is still 
prebacterial, and not yet programmable. And the problems facing large-scale 
quantum computing may be insurmountable. For the near term, at least, 
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the fi eld of  artifi cial morality is hitched to digital computing. But hasn’t it 
been shown that digital computers can’t have genuine understanding and 
consciousness? Isn’t it just a conceptual confusion to use “moral” and “ethi-
cal” to describe the behavior of  (ro)bots? Our task in this chapter is to argue 
convincingly that the immediate practical aims of  artifi cial morality need not 
be compromised by the controversy about the limits of  software-based intel-
ligence. In fact, we think that pressing ahead on the practical task of  building 
AMAs will contribute to better understanding of  the ontological and episte-
mological questions about the nature of  ethics itself.

Artifi cial Intelligence: 

The Very Idea

The mysteries of  matter, life, and mind defi ne the three major challenges of  
science. By the middle of  the twentieth century, scientists held the keys to 
understanding the fi rst two. In the early part of  the century, physicists made 
great strides in understanding the behavior of  matter and energy at scales 
from the subatomic to the universe. The discovery of  the structure of  DNA 
similarly put biology on a fast track.

Matter and life still hold their mysteries, of  course. But the basic tools for 
their scientifi c investigation were established—everyone knew that what 
was needed in physics were more powerful particle accelerators and more 
powerful telescopes, and in biology more powerful molecular techniques for 
manipulating genotypes and cells. These strategies still dominate physics 
and biology today. What, then, of  the mind? Many scientists have, of  course, 
pursued a biological route, folding the study of  mind into the study of  brains, 
deploying biological techniques. However, others have seen the central char-
acter of  mind in more general terms, defi ning it in terms of  information pro-
cessing, not neuroscience. It was in this context that the early advocates of  
AI saw computers as the best hope for putting mind onto a secure scientifi c 
footing.

A computer program is a series of  formally defi ned symbols that can be 
used to control the operations of  a physical machine—a “physical symbol 
system” in the terminology of  Allen Newell and Herbert Simon of  Carnegie 
Mellon University. In their Turing Award Lecture to the Association of  Com-
puting Machinery in 1975, Newell and Simon stated the AI manifesto boldly: 
“A physical symbol system has the necessary and suffi cient means for general 
intelligent action.” Cognitive psychology, as they envisaged it, was the science 
of  showing how computation is necessary for intelligence, by uncovering the 
symbolic operations involved in human intelligence. The task they envisaged 
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for AI was to show the suffi ciency of  symbolic computation by establishing 
that any intelligent capacity could be programmed into a computer.

If  intelligence is computation, then more and more powerful computers 
are AI’s analogs to the increasingly powerful particle accelerators used by 
 physicists to probe the deep structure of  matter. The number of  digital bits 
in today’s computers is still several orders of  magnitude below the number 
of  connections among neurons in a human brain, but the technology is 
increasing its capacity exponentially. Silicon transistors seem destined to be 
replaced by carbon nanotube transistors that will allow circuits to be laid out 
in three dimensions. Ray Kurzweil predicts the equivalent capacity of  one 
human brain will be available on desktop computers by 2020. He argues that 
when machine intelligence starts to outstrip the collective total of  all human 
intelligence, around 2029, humanity will have entered the Singularity. The 
Singularity marks a point at which change is so radical that it is no longer 
predictable.

Kurzweil is a proponent of  what Berkeley philosophy professor John Searle 
calls “strong AI”: the view that an appropriately programmed computer is a 
mind. In 1980, Searle published what has become the most widely discussed 
condemnation of  strong AI. In it, he argues that the formal symbol manipula-
tion carried out by a computer following a program is never suffi cient to pro-
duce intelligent understanding of  anything. He presents his famous “Chinese 
room” thought experiment, which he designed to show that it is possible for a 
computer to pass the Turing test without possessing genuine understanding 
or intelligence.

Searle argues that if  he performs the same procedures as a computer in 
responding to Chinese questions, he can pass the Turing test without actually 
understanding the Chinese language. He imagines himself  in a room with a 
book of  instructions (the program) that tell him what to do with pieces of  
paper he receives that have meaningless (to him) symbols on them. He looks 
up these symbols in the book of  instructions and follows the rules, which 
after some number of  steps lead him to copy some other symbols onto paper 
and pass them outside the room. Unbeknownst to him, the symbols are Chi-
nese, and from outside the room they are interpreted as lines of  dialogue in 
a conversation conducted in Chinese. Since he is “executing a program” in 
this thought experiment, yet does not genuinely understand the “conversa-
tion” in which he is participating, Searle argues that executing a program 
is insuffi cient for genuine understanding. This argument has given rise to a 
long debate and countless articles regarding whether a computer system can 
genuinely “understand anything.” Searle believes that the point made by his 
Chinese Room argument is common sense, and he expresses surprise that it 
isn’t more widely recognized by computer scientists.
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This is not the place to go into more detail about the Chinese room argu-
ment—as well-trodden a fi eld as one can fi nd in philosophy of  mind today. 
However, philosophers and others who accept Searle’s argument have taken 
it to show that programming a computer is a hopeless approach to the devel-
opment of  genuinely intelligent systems. We frequently encounter skeptics 
who claim that Searle’s result shows that our own approach to artifi cial 
morality is similarly hopeless.

We disagree. That is, we disagree that the philosophical objections should 
stop us from continuing to advocate for better computational solutions to 
ethical decision making. Nevertheless, we must recognize that there are phil-
osophical questions about the nature and status of  the kinds of  systems we 
envisage. We face two questions: Could a (ro)bot ever really be a moral agent? 
And how would one know?

While we don’t think that either of  these questions can or needs to be sat-
isfactorily resolved, it’s worth discussing them because the skepticism behind 
such questions can serve a useful, critical function. What is required for real 
moral agency? There are various answers to this question, some focusing 
on conscious reasoning, some on free will, and some on the issue of  moral 
responsibility.

Could a (Ro)bot Be a Real 

Moral Agent?

The discussion about “real” moral agency is useful if  it suggests capacities 
that need to be engineered into AMAs. If  consciousness provides advantages 
to moral agents, then people should want to consider it for AMAs. Recogniz-
ing that no current system is actually conscious, what limits does this place 
on the capacities of  AMAs?

Arguments against AMAs based on Searle’s position are of  little conse-
quence in practical applications. In his thought experiment, the output of  the 
symbol processing is completely indistinguishable from a genuine Chinese 
speaker to any outside observer. Therefore, Searle’s “genuine understand-
ing” marks a distinction without a behavioral difference. Nothing in Searle’s 
argument rules out the possibility of  producing AMAs that are behaviorally 
indistinguishable from genuine moral agents. Thus, his conception of  con-
scious, intentional understanding is simply irrelevant to the practical issues 
of  how to make (ro)bots behave ethically.

To René Descartes, over three hundred years ago, the idea of  machine 
intelligence was metaphysically absurd. Descartes looked into his own 
mind, and what he found there seemed so different from the world of  phys-
ical objects that he concluded mind and body were necessarily  distinct 
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substances. Machines are material objects, extended in space and time, 
and divisible into smaller material parts. Mind, on Descartes’s view, was 
the indivisible locus of  conscious reasoning. Although the human being, 
as conceived by Descartes, combined mechanical body and immaterial 
mind into a perfectly coordinated whole, material machines alone could 
never have intellectual attributes. Unlike Searle, Descartes thought that 
machines were inherently incapable of  reasoning or using language 
fl exibly. If  Descartes is right, then the prospects for AMAs are somewhat 
 dimmer.

Although Descartes asserted that mere matter could not reproduce the 
fl exible reasoning and speech of  human beings, he produced no airtight argu-
ment against this possibility. His understanding of  the capabilities of  mate-
rial objects was shaped by the best that seventeenth-century science could 
offer. However, even Descartes’s contemporary, Thomas Hobbes, believed 
that “mind will be nothing but the motions of  certain parts of  an organic 
body,” and nowadays, as an argument for dualism, Descartes’s views about 
the limitations of  matter carry little weight. However, as noted, there are 
those who still hold that there is something special about the human brain 
that gives it capacities that can never be attained by programmed silicon. It’s 
a point of  view that, given the best that twenty-fi rst-century science has to 
offer, can still be neither proved nor disproved.

One “special property” some believe is not to be found in any compu-
tational technology yet developed is free will. Conscious understanding is 
another. We’ll look at each of  these in turn.

The Ethics of  Deterministic 

Systems

Metaphysics appeared and asked her younger sister, Ethics: 
“What would you recommend that I should bring back to my 
protégés, the metaphysicians, whether or not they call themselves 
such?,” and Ethics answered: “Tell them they should always try 
to act so as to increase the number of  choices; yes, increase the 
number of  choices!”

—Heinz von Foerster

Unless suffering from compulsion or some other mental disorder, human 
beings feel free to act in various ways. This sense of  freedom can be present even 
when the physical options for action are extremely limited. A man in shackles 
may still feel free to blink his eyes. What is the source of  this feeling? And is it 
required for ethical behavior? No one can defi nitively answer these questions.
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The notion of  human free will is often viewed somewhat mystically as the 
“whatever it is” that underlies one’s feelings of  being free to act, even if  it 
cannot be defi ned in a scientifi cally acceptable way. The philosopher Daniel 
Dennett rejects such “magical” notions of  free will. He believes instead that 
the ability to consider multiple options and select among them is the only 
kind of  freedom humans have, and the only kind worth having. Be that as it 
may. (We, the present authors, don’t entirely agree with each other on this 
point.) Nevertheless, because free will can’t be formulated in clear terms, the 
mystical view only provides a vague argument against the attempt to engi-
neer AMAs. The hunch that there is a magical ingredient to human free will 
is one that we can’t refute, but we can’t apply it to the engineering task of  
creating AMAs either.

Does this undermine the whole project of  engineering AMAs? We don’t 
think so. Deep Blue’s ability to choose algorithmically among the chess 
moves needed to beat Gary Kasparov was not hampered by the lack of  any 
magical ingredients. One might argue, of  course, that the success of  Deep 
Blue depended crucially on the human creativity involved in its design. But 
even if  this human creativity is not deterministic, the result was a determin-
istic system capable of  playing chess at the highest level.

Despite being a deterministic system, Deep Blue qualifi es as an agent in 
some respects, while falling short in others. Luciano Floridi and J. W. Sand-
ers have identifi ed three key features that are important to the concept of  
artifi cial agents:

• Interactivity: Response to stimulus by change of  state; that is, the agent 
and its environment can act on each other

• Autonomy: Ability to change state without stimulus, that is, without 
direct response to interaction, which results in a certain degree of  com-
plexity and decoupledness from the environment

• Adaptability: Ability to change the “transition rules” by which the state 
is changed; that is, the agent may be viewed as learning its own mode of  
operation in a way which depends critically on its experience

Deep Blue is interactive and autonomous to a degree, but lacks adapt-
ability, being dependent on the programmers to change the rules by which 
it functions. (Indeed, Kasparov famously complained that the program-
mers unfairly added special rules geared specifi cally to defeating his style 
of  play.) Adding a learning component to the system would enhance its 
adaptability. However, the learning algorithms available today are far from 
suffi cient.

Chess isn’t ethics, of  course. Ethics is much closer to the core concep-
tion of  what it means to be a human being. A central feature of  the human 
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 experience as moral agents is that people frequently feel poised between act-
ing selfi shly and acting altruistically. People feel the pull of  both directions, 
and this tension sets up the possibility of  freedom—the equal freedom to do 
the wrong thing or the right thing. (Some ethicists even suggest that it is not 
possible to act ethically if  it is not also possible to act unethically.)

How might ethics arise for a deterministic system? We fi nd the possibil-
ity in the kind of  choice suggested by the cyberneticist Heinz von Foerster, 
whom we quoted at the beginning of  this section. Like it or not, existing 
(ro)bots are not just passive conduits of  ethical rules but themselves inter-
act with other agents in an existing moral ecology. The soldier’s concern for 
his bomb-sniffi ng robot introduces new ethical possibilities, for example, 
how he would rank the survival of  the robot against that of, say, a dog. But 
these possibilities also have an impact on ethical agent design. For example, 
it is within the scope of  current technology to measure the tendency of  a 
soldier to approach and interact with a robot and to use this to estimate 
whether he would act protectively toward the robot. Whether or not it is 
ultimately a good idea to program such capacities into military hardware, 
the goals of  a specifi c mission might dictate that robots should associate 
preferentially with those who respond to it in caring ways. In this way, the 
relationships between humans and (ro)bots can be reciprocal. Any agent 
operating within this reciprocal structure will face confl icts between its 
own goals and the goals of  others. Whenever the pursuit of  one set of  goals 
involves the possibility of  harm to others, an ethical issue arises. The more 
choices available to and evaluated by a system, the more potential there is 
for confl ict.

Young children and most animals have only a limited sense of  the effects 
of  their actions on the well-being of  others. For them, the scope for ethical 
action is limited by the invisibility of  the relevant options and outcomes. 
With increased cognitive sophistication, whether achieved evolutionarily, 
developmentally, or socially, comes greater awareness of  the confl icting 
goals among agents. It also brings sensitivity to confl icts within an agent’s 
own internal goals. A sophisticated moral agent, we suggest, is one that 
recognizes that different perspectives yield different preference rankings. 
These different rankings may not be resolvable in completely neutral, 
perspective-independent ways. An agent’s selection of  a course of  action 
may not be rigidly constrained by a single ordering of  preferences. People 
tolerate those with norms different from their own. The design of  AMAs 
should accommodate the degrees of  freedom that exist within the domain 
of   ethics.

For von Foerster, it is not just the question of  what to choose but also the 
expansion of  the available choices that is central to ethics. In Dennett’s view, 
the expansion of  choice comes about because (to quote the title of  his book) 
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“freedom evolves.” By this he means that evolution has provided humans 
with the capacity to consider multiple options and foresee multiple out-
comes.

The expansion of  choice is not only a theme in Dennett’s discussion of  
the evolution of  human freedom but also a central principle in the evolution 
and development of  ethical machines. Chris Lang, while a graduate student 
at the University of  Wisconsin at Madison, proposed that the expansion of  
choices for a search-based learning computer would lead to a system likely 
to act as a human-friendly moral agent. His optimistic view is based on a 
conception of  machine learning whereby “the rational search for strategies 
entails maximizing the rate at which one encounters novel ideas which, in 
turn, entails maximizing the diversity and interaction rate of  the group in 
which one participates.” According to Lang, this approach

entails maximizing freedom in the world in general, which usually involves 
both preserving life and empowering people—basically all the things we 
generally consider ethical. Even if  “superior” to humans, ethical machines 
would have to value interaction with humans, because the loss of  such 
interaction would entail a decrease in the diversity of  their environment.

We have yet to discuss Lang’s ideas about ethical learning machines, but 
for now it is interesting to note that he, like von Foerster, sees the maximiza-
tion of  choice as a key to moral agency.

We’ve suggested that the question of  whether deterministic systems 
can be considered real moral agents is as unanswerable as the question 
of  whether human beings really have free will. If  your conception of  real 
moral agency involves a “magical” notion of  free will, there is no way to be 
sure that humans have it. However, even if  humans don’t have any magi-
cal freedom, the issue of  how moral choice arises is largely unchanged. 
Recent discussion of  the relationship between ethics and freedom usefully 
points out important design considerations for AMAs. Even within a deter-
ministic framework for action, ethics involves open-ended choice. Options 
expand and consequences multiply as new agents enter the moral envi-
ronment. To perform well in the human moral context, AMAs will need 
the capacity to assess multiple options and consider different evaluative 
perspectives. By their actions, AMAs will undoubtedly feed back into, and 
thus change, the existing moral ecology. However, it is to be hoped that 
sophisticated AMAs would be less likely to deform the moral ecology in 
lamentable ways, even if  the way humans bond with them continues to 
outstrip their actual moral capabilities. Perhaps this is a false hope. Nev-
ertheless, moral freedom, whether compatible with determinism or not, is 
relevant to AMA design.
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Understanding and Consciousness

Like free will, human understanding and consciousness hold a mystical fasci-
nation for many. And like all attempts at demystifying the human mind, the 
claim that digital systems can possess genuine understanding or real conscious-
ness evokes strong negative responses. The human tendency to anthropomor-
phize both pets and machines makes it hard to avoid talking as though they 
have something like human understanding or human consciousness. But what 
kind of  understanding can (ro)bots actually have, and is it adequate for build-
ing AMAs? Will an AMA require consciousness, and can a system without 
consciousness be considered a moral agent? In both law and philosophy, moral 
agency is equated to moral responsibility, and is seldom attributed to individuals 
who do not understand or are not conscious of  what they are doing, for exam-
ple, young children. The issues of  rights and responsibilities for (ro)bots are what 
most people jump to when they fi rst hear about artifi cial morality, but, as before, 
our concern here is less with the downstream questions about what to do after 
the successful creation of  AMAs than with the upstream role of  consciousness 
and understanding in the system’s ability to make ethical judgments.

Understanding

Searle’s Chinese room is ground zero in the continuing debate over machine 
understanding. Most serious AI research has, however, moved away from an 
isolated focus on the conversational abilities needed to pass the Turing test. 
Machine understanding requires much more than conversation. Research-
ers are employing “multimodal” approaches to robotics that are modeled on 
the development of  human children. Such systems simultaneously process 
hearing, vision, and touch, and they learn about action and speech simul-
taneously. The words learned by such systems are thus “grounded” in the 
robot’s own actions and the actions it observes others performing. Even 
abstract capacities, for example arithmetic, may be grounded in the ability to 
move objects around to form perceptual clusters. People initially understand 
“2 + 2 = 4” not as an abstract proposition of  mathematics but as the concrete 
result of  creating two groups of  two objects and counting them, perhaps 
even by using their fi ngers. Physical interactions with pencil and paper may 
ground yet more abstract capacities, for example algebra. Many research-
ers are betting that when  information- processing capacities are grounded in 
this way, the gap between genuine human-like understanding and machine 
understanding becomes less signifi cant, perhaps even irrelevant.

The kind of  disconnected and disembodied symbol manipulation Searle 
imagined in the Chinese room makes genuine language comprehension 
practically impossible. If  all the references among symbols are internal to the 
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symbol system, then their signifi cance is circular in exactly the same way dic-
tionary defi nitions are. As you follow the chain of  defi nitions, you are often 
led back to the original word you were trying to understand. Real cognitive 
systems are physically embodied and situated in the world of  physical objects 
and social agents. The words, concepts, and symbols used by such systems 
are grounded in their interactions with objects and other agents.

Beginning with the work of  Rodney Brooks, director of  MIT’s Artifi cial 
Intelligence Laboratory, the theory of  embodied cognition has had a revolu-
tionary affect on both the scientifi c and commercial development of  robots. 
Brooks’s company iRobot produces the “Roomba” robotic vacuum cleaner 
and the  Packbot military robot (with over three hundred deployed in Iraq, 
including Scooby-Doo). In the mid-1980s, Brooks started developing insect-
like robots in the Artifi cial Intelligence Laboratory that were remarkably suc-
cessful in navigating through rooms and around objects.

For example, Genghis, an ant-like robot with six legs, was able to walk 
over various obstacles. Brooks’s genius lay in giving independent control to 
each of  the legs rather than using a central processor to coordinate all activ-
ity. He thereby produced very stable robots that adjusted to a wide range of  
pushes and shoves and could move over a wide variety of  terrains. Genghis’s 
ability to move around on legs without falling over was an impressive tour de 
force at a time when most roboticists were building wheeled vehicles because 
they seemed to offer greater stability. By thinking seriously about the way the 
robot is physically embodied and embedded in an environment, Brooks was 
able to show that a series of  relatively simple local processes could collectively 
lead to the emergence of  more complex behavior. For example, in Genghis, a 
distributed array of  sensors allows each local joint to respond to movements 
originating in other parts of  the robot. Those movements need not be explic-
itly signaled, but are implicitly detected by the sensors in other joints because 
when one leg moves, the angles of  all the other legs are changed.

Brooks proposes to build more sophisticated robotic systems by layering 
different behavioral capacities on top of  each other. Genghis could also fol-
low humans with the help of  infrared sensors. Genghis did not know what 
it was doing, yet it appeared to be attracted to the mammals it encountered. 
It appeared to have goal-directed behavior. Brooks showed that coordinated 
behavior could be accomplished without a central controller issuing instruc-
tions to the entire system.

Brooks refers to his approach as “subsumption architecture” or “behav-
ior-based robotics.” The idea is that the robot is provided with basic behav-
iors it can perform in response to environmental cues. Thus the environment 
plays a central role in determining which of  these subsumptive layers con-
trols the activity of  the robot at any given time. The potential power of  the 
 subsumption architecture lies in the way adaptive behavior emerges from 
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interactions among subsystems performing simple, lower-level tasks. Put dif-
ferently, in complex animals, and perhaps even humans, a collection of  rela-
tively simple components performing specifi c tasks can collectively take on 
the appearance of  complex behavior and higher-level cognitive function.

The theory of  embodied cognition arose as an alternative to the view 
that the brain must create a full internal representation of  the world, a com-
plete model or simulation containing all the details necessary for reasoning 
about how to act in the world. In the classical, more centralized approach 
to  cognition, the brain manipulated the internal symbols that made up its 
model of  the world, in order to determine each action and each response, 
for example the position of  every muscle or joint. However, robotic systems 
designed on this approach tend to be very fragile—falling over, for example, 
before they can accurately update their internal models in response to an 
unexpected shove. A robot  living in a self- created virtual reality is no match 
for one that responds immediately and continuously to reality itself. As 
Brooks is said to have put it, “the world is its own best representation.” His 
former student Brian Scasselati, now a roboticist at Yale University, jokingly 
says that he and his colleagues follow Brooks’s approach because “we are too 
lazy and too stupid to build successful  simulations” of  the robot’s world.

Can every challenge be met dynamically in direct interaction between the 
body and the world? Or are there tasks where it is helpful to have an internal 
model of  the world? On the one hand, there is considerable evidence that 
much of  human cognition is embodied. But clearly an internal model of  the 
world is helpful for planning and prediction, to imaginatively test various 
courses of  action. For the purposes of  designing AMAs, much more needs to 
be understood about the relationship between embodied cognition and the 
construction of  internal virtual or imagined models of  the world.

We recognize that it’s a long way from insect-like behavior to higher cog-
nition, including ethical decision making. Nevertheless, realizing the impor-
tance of  being embodied and embedded in the world provides two important 
insights. First, much of  the information agents need may already be built 
into the environments through which they move, making it unnecessary to 
reproduce or simulate this information internally; that is, one doesn’t always 
need to build a mental model of  the world. Second, people’s abilities to react 
with apparent understanding to their physical and social environments owe 
a lot to the structure and design of  their bodies, their limbs, and their senses, 
which allow them to process most responses with little or no need for con-
scious thought or  refl ection.

What moral aspects of  judgment and understanding are dependent on 
being embodied and situated in a world of  objects, entities, and other agents? 
For humans, much of  moral behavior is about adjusting to social situa-
tions in real time, in a way that tries to meet the changing needs, values, 
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and expectations of  the parties involved. Artifi cial moral agents will need 
to be similarly situated in their relationships. For example, the relationship 
between socially adept robots and the people and other agents in their envi-
ronment will be  constantly evolving, as will the social contexts within which 
they operate. Particularly with regard to the AMAs themselves, one might 
imagine increasing acceptance and latitude for their actions as humans 
come to feel that their behavior is trustworthy. If  you become more trusting 
and comfortable with the actions of  a robot in your home, a sophisticated 
system should be able to sense this comfort and accordingly expand the tasks 
it can perform without upsetting you. Conversely, if  robots fail to act appro-
priately, the public will demand laws and practices that add new restrictions 
on their behavior. Morality evolves, and AMAs will be active participants in 
working through new challenges in many realms of  activity.

What, then, does “understanding” mean, in the context of  this discussion? 
If  it means the capacity to react appropriately and adaptively to the social 
and physical environment, we see no reason to think that suitably embodied 
and embedded computers can’t have these reactions. Already there are engi-
neers developing human-computer interfaces that are “enactive”—engaging 
the users of  these systems through all sensory modalities instead of  limit-
ing the interactions to language. As such systems gain in sophistication, it 
will become increasingly irrelevant to ask whether all this understanding is 
located in just the digitally programmed part of  the system.

Consciousness

Understanding is sometimes equated with consciousness—another term 
with magical connotations, and having a bewildering array of  meanings. 
The term is used to mark the distinction between being awake or asleep, as 
well as to capture a range of  higher-order cognitive functions, including 
the abilities to be attentive, to plan, and to experience. There are unusual 
states of  consciousness that include dreaming, psychotic experiences, peak 
experiences, and fl ow.

Other varieties of  experience pose an epistemological problem. One can 
only conjecture what it is like to be a bat, or what a bird feels, as one can only 
guess at the character of  the conscious experiences of  people whose prefer-
ences in food or thrills differ markedly from our own. Presumably, what any 
computer could or would experience is similarly beyond humans’ ken. The 
idea that one cannot have knowledge about other kinds of  minds provides 
reason enough for some philosophers and scientists to doubt whether it even 
makes sense to talk about consciousness.

Some people attribute the mysterious experience of  being conscious (its 
“phenomenological” properties) to a nonphysical aspect of  the human mind 
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that is not literally in the physical universe at all. Soul, spirit, and supernatu-
ral substance are religious terms that attempt to capture the appearance of  
the mental magic of  humans’ conscious experiences. Some think conscious-
ness must be a universal property of  matter, shared in some measure even 
by the grains of  sand on the beach. At the other end of  the spectrum are 
scientifi c hardliners who reject any such views as mystical mumbo jumbo. 
On such views, consciousness must, if  the notion is to make sense at all, be 
understandable in terms of  something like information processing, neural 
network organization, or basic neurophysiological properties of  nervous 
systems.

In between these positions are researchers who believe that whether or not 
consciousness can be fully accounted for in objective informational or neural 
terms, it must be tightly correlated with observable or measurable features of  
the brain. The late Francis Crick, who won a Nobel Prize for his role in discov-
ering the structure of  DNA, spent the latter part of  his career working with 
his colleague Cristof  Koch in the search for the neural correlates of  conscious-
ness. Philosophers draw different lessons from this kind of  research. Patricia 
Churchland contends that as scientists come to understand the individual sys-
tems that make up consciousness, the problem of  understanding conscious-
ness will fade away. Others, for example David Chalmers and Colin McGinn, 
argue that while discovering correlations between consciousness and the 
brain is a scientifi cally valuable activity, it cannot provide an explanation of  
the phenomenological aspects of  conscious experience. This is either because 
there is not one available in principle, as Chalmers thinks, or because, just as 
dogs have cognitive limitations that make it impossible for them to understand 
calculus, people have cognitive limitations that make it impossible for them to 
understand how their brains produce consciousness, as McGinn believes.

Such philosophical pessimism has not deterred others from continuing to 
pursue neural and computational explanations of  consciousness. Are neu-
rons really the right place to be looking for an understanding of  conscious-
ness? One might argue along with John Searle that there is no better place to 
look because it is known that neurons produce consciousness, at least in the 
case of  humans. But maybe attempts to produce artifi cial consciousness by 
computation are like the earliest attempts at human fl ight, which involved a 
lot of  feathers and fl apping. It is now known that birds weren’t necessarily 
the best models for human fl ight (which is not to say that humans have had 
nothing to learn from them about fl ight). Flight is a functional property—it 
doesn’t matter how you do it, so long as you get airborne and stay airborne 
for a decent amount of  time. Because it is a functional property, fl ight can be 
manifested by a wide range of  different systems made out of  lots of  different 
materials. Perhaps the important properties of  consciousness are best under-
stood functionally, too. Even if  computers won’t be conscious in exactly the 
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same way as humans, perhaps they can be designed to function as if  they 
have the relevant similar capacities.

Machine consciousness is developing as a subspecialty within AI. Igor 
 Aleksander, a professor of  engineering at Imperial College in London, pro-
poses that the requirements of  consciousness can be broken down into 
axioms covering fi ve areas: a sense of  self, imagination, focused attention, 
forward planning, and emotion. Each of  these is in turn a composite or set of  
lower-level cognitive skills. In working toward building a conscious system, 
Owen Holland and Rod Goodman start from the bottom and move up, adding 
skill after skill to an embodied robot. They believe this process will eventually 
give rise to an internal representation of  the robot’s world and the robot’s own 
behavior, and this will lead to consciousness-like phenomena. Stan Franklin, 
designer of  a computer system named IDA, which he argues has attributes 
of  being conscious, proposes that an artifi cial agent is functionally conscious 
if  its architecture and mechanism allow it to do many of  the same tasks that 
human consciousness enables humans to do. (We will have a lot more to say 
about IDA in chapter 11.) Roboticists working on machine consciousness, 
for example Owen Holland and Murray Shanahan, recognize that building a 
system whose consciousness is comparable to that of  humans is a long way 
off. Nevertheless, they certainly believe that robots that are both functionally 
and phenomenally conscious will eventually be successfully developed.

Time will tell whether the fi eld of  machine consciousness will succeed. 
Some philosophers will insist that phenomenal consciousness requires some-
thing over and above functional equivalence, and will never be satisfi ed by the 
success of  computers in performing tasks associated with human conscious-
ness.  However, this conception of  consciousness as something that makes 
no difference at all to observable behavior is irrelevant to the development of  
AMAs. Functional  equivalence of  behavior is all that can possibly matter for the 
practical issues of  designing AMAs. As long as there are new ideas about how 
to get computers to converge toward human behavior, there is the prospect 
of  progress. At this stage of  the game, we think it would be premature to bet 
against human ingenuity in this regard.

What AMAs Still Can’t Do

Armchair arguments that there is a glass ceiling for (ro)bot intelligence are 
not entirely worthless; they might even turn out to have a correct conclusion. 
However, that can’t be judged from the present. In the meantime, these argu-
ments help focus attention on what is and is not important. Most of  the expe-
rienced roboticists we have talked to do not think that there is a glass ceiling. 
This is unsurprising, of  course, since pessimists tend to get weeded out of  the 
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profession. However, we predict that in the near term, (ro)bots will continue to 
converge toward human capacities while also showing considerable cognitive 
defi cits. Nevertheless, as we will illustrate later, the present state of  AI, artifi cial 
life, and robotics is suffi cient for the initiation of  some interesting experiments 
in the design of  AMAs, and for additional experiments just around the corner.

If  there are limits, they have yet to be proven. Human beings may also 
be limited in their reasoning. Kurt Gödel, for example, proved in his famous 
incompleteness theorem that any consistent system of  logic powerful enough 
to represent mathematical reasoning will contain true statements it cannot 
prove. (Alan Turing proved that a similar limitation applies to any computer 
program.) Sometimes it is claimed that humans can transcend the limits 
of  formal reasoning Gödel established, though how humans might do so is 
entirely unclear. Perhaps, if  humans knew how or if  they could transcend 
the limits of  formal logic, this would provide a tool for designing computers 
that also transcend such limitations. Issues such as these are well beyond the 
scope of  this book, although important to acknowledge.

Nevertheless, it is safe to assume that for some time to come, computers will 
be more limited than humans in what they can understand or be conscious of, 
and this will affect their abilities to accommodate nuances and make sensitive 
judgments. Whether computer understanding will ever be adequate to sup-
port full moral agency remains an open question. The problem that needs to be 
researched is whether there is morally relevant information that is inaccessible 
to systems lacking human-like understanding or consciousness. Is, for example, 
the ability to deal with the subtleties of  others’ feelings dependent on empathy 
or intuitions of  those feelings that would not be possible for a computer?

Human understanding and human consciousness emerged through bio-
logical evolution as solutions to specifi c challenges. They are not necessarily 
the only methods for meeting those challenges. Just as a computer system 
can  represent emotions without having emotions, computer systems may be 
capable of  functioning as if  they understand the meaning of  symbols with-
out actually having what one would consider to be human understanding. 
Nevertheless, questions regarding the capacity of  a computer or robot to 
understand or be conscious suggest that the development of  very sophisti-
cated AMAs will not be easy.

Assessing AMAs

Engineering, more than philosophy, thrives on clear task specifi cations. 
But what is the task of  an AMA? People disagree about the morality of  
various actions, and ethicists disagree about which is the right theoretical 
approach.
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Turing’s test for machine intelligence was an engineer’s solution to a 
philosophical problem: build a system whose performance can be measured 
against a known standard. The test has fl aws—for instance, its sole reli-
ance on language, and the game-like nature of  the situation. However, no 
one has successfully proposed a better test. Could a moral Turing test (MTT) 
play a similar role for the fi eld of  artifi cial morality? Colin Allen, Gary Var-
ner, and Jason Zinser considered this question and made some critical obser-
vations, which we review here. Just like the original Turing test, any MTT 
that depends on comparing the behavior of  a machine to that of  a human 
is bound to be far from a perfect evaluation tool. However, thinking through 
the limitations of  such a test can help sort out what might be important for 
evaluating AMAs.

One advantage of  using an MTT might be that it would bypass disagree-
ments about particular ethical issues. If  you disagree with your neighbor 
about some moral issue, for example whether killing animals for their fur is 
acceptable, you can nevertheless recognize your neighbor as a moral agent 
if  he can offer some relevant reasons for his view. Similarly, a machine that 
engages in a moral discussion might be indistinguishable from a human even 
if  it comes to conclusions different from the interrogator’s own view.

This focus on moral reasoning and justifi cation may, however, be inappro-
priate. Ethical theories differ on the importance of  justifi cation. Kant required 
good agents to act for good reasons—in other words, the reasoning process 
is an essential component of  the morality of  the action on Kant’s view. But 
 Aristotelian virtue theories place great emphasis on right action as a result 
of  habits due to good character, not theoretical knowledge. John  Stuart Mill, 
the most famous utilitarian of  the nineteenth century, argued that actions 
are  morally good independent of  the agent’s motivations. His utilitarian 
approach thus emphasized effects of  actions rather than their causes or 
justifi cations. Many people would also reject the Kantian view by claiming 
that young children, and perhaps dogs, are moral agents (albeit limited ones) 
even though they are incapable of  giving reasons for their actions.

Responding to these differences, Allen and his colleagues also considered 
an alternative version of  the MTT in which the “interrogator” is shown a set 
of  descriptions or examples of  actual morally signifi cant actions, purged of  
any identifying information. The interrogator’s task is to spot the machine. 
This approach could also turn out to be problematic if  humans happen to be 
recognizable because they often act less ethically than they should. People, 
after all, are not known for their saintliness. This worry suggests a different 
question could be asked—not “Can you tell which is the AMA?” but “Which 
of  these agents is less moral than the other?” Allen and his colleagues called 
this the comparative MTT (cMTT for short) and suggested that a successful 
AMA should be consistently judged the more moral.
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Problems remain for the cMTT. For one, the standard might still be too low, 
especially if  the humans selected for comparison are not paragons of  virtue. 
And ethics, as we mentioned, is usually taken to concern what people should 
do, not what they do do. So a comparison to actual human behavior might be 
inappropriate. In addition, a machine might pass the cMTT even if  its overall 
performance included actions that would be judged morally wrong, so long 
as the aggregate performance exceeds the human’s. People expect and toler-
ate human moral failures. However, they might not tolerate such failures in 
their machines. As Allen and his colleagues put it, “calculated decisions that 
result in harm to others are likely to be much less tolerated in a machine than 
in another human being. In other words, we shall probably expect more of  
our machines than we do of  ourselves.”

It is important to keep in mind some fundamental differences between 
humans and computers. The human organism evolved from a biochemical 
platform. The capacity to reason emerged from the emotional brain. In con-
trast, AI is currently being developed on a logical platform.

This suggests some advantages that computers may have over human 
brains for responding to moral challenges. For example, computers are likely 
to calculate a broader array of  possibilities in response to a challenge and 
therefore might come upon options that are better than those considered by 
human counterparts. Decisions made by people are not fully rational, in that 
only a few responses are considered and people generally settle for the fi rst 
option with which they feel comfortable.

Furthermore, the moral decisions of  computers will not initially suffer 
from interference by emotions. Thus, (ro)bots will not be hijacked by emo-
tions, for example rage or sexual jealousy. Nor will they have emotionally 
reinforced prejudices or be greedy—unless engineers elect to introduce affec-
tive mechanisms into (ro)bots. In chapter 10, we return to a discussion of  
why such mechanisms might be benefi cial for the design of  AMAs. Some-
thing like greed might also emerge from the kinds of  evolutionarily inspired 
bottom-up approaches to the development of  AMAs that we discuss in chap-
ter 7. If  greedy computer systems fl ourish, however, they are more likely to be 
greedy for energy or information than prestige, power, or sex.

If  these factors mean that computers are capable of  meeting higher stan-
dards than people, where could such standards come from? Moral theories 
do not provide unequivocal answers. Nor are they easily translated into algo-
rithms. Nevertheless, we believe that the attempt to translate theory into 
practice will be as instructive for ethicists as for (ro)boticists.
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Chapter 5
p h i l o s o p h e r s ,  e n g i n e e r s , 
a n d  t h e  d e s i g n  o f  a m a s

Two Scenarios

Scenario A: Imagine you are an ethicist and your friend, an AI engineer, says 
to you, “My company has asked me to design a robot that will always act 
ethically. Where should I start?” After sputtering off  a few ideas that sound 
incredibly simplistic to your ears and fail to connect with your friend, you 
reply, “I’ll get back to you.”

Scenario B: You are an ethicist and you hear that your friend, an AI engi-
neer, has just been awarded a military grant to design an ethical control sys-
tem for autonomous weapon systems in the battlefi eld. You rush toward his 
offi ce to offer your expertise, but halfway there, your pace begins to falter as 
you wonder to yourself, “Where do I begin?”

Scenario A is fi ctional, perhaps even a fantasy, given that engineers don’t 
usually receive such open-ended assignments and philosophers aren’t usu-
ally the fi rst people they think to call for advice. Scenario B, however, is based 
in current events.

Many experts believe that military robots are likely to be the fi rst place 
where AMAs will be needed. The U.S. Army’s Future Combat Systems envis-
ages autonomous vehicles deployed in combat zones. The bulk of  robotics 
funding from the Department of  Defense has gone toward basic engineer-
ing and software design, but Georgia Institute of  Technology computer 
scientist Ronald Arkin received an Army grant to develop design recom-
mendations for autonomous fi ghting vehicles operating in a war zone. The 
Navy has also recently funded a group at California Polytechnic Institute 
in San Luis Obispo to address the ethical issues surrounding automated 
weapon systems.
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Some will, of  course, see the idea of  ethical killing machines as itself  
morally suspect. But whatever the application, whether it is the elimina-
tion of  enemy forces or taking care of  the elderly, there is a fundamental 
divide between philosophers, who tend to think in terms of  highly abstract 
principles, and engineers, who have to accomplish the actual design task. 
Still, philosophers do have some role to play. General principles can guide 
design, even if  they are not suffi cient alone. Even though scenario A may 
be fi ctional, it provides a useful way to frame some questions that would 
come up, even for practical applications that demand ethical capacities from 
artifi cial agents.

What contribution, beyond helping engineers to be aware of  the ethical 
consequences of  their creation’s actions, can a trained ethicist or trained phi-
losopher make toward the design of  an AMA? Are ethical principles, theories, 
and frameworks—for example, utilitarianism or Kant’s categorical impera-
tive— useful in guiding the design of  computational systems capable of  act-
ing with some degree of  autonomy? Or will the contribution of  the ethicist 
be mainly that of  underlining the complexity of  the challenge, which could 
seem unhelpful to the engineer?

Grounding the Collaboration

Over the past half  century, the relationship of  philosophers to AI has been 
mixed, ranging from enthusiastic advocacy to trenchant critiques of  the opti-
mistic scenarios prophesied by those who believe that full-blown AI is just 
around the corner. Philosophers have not just commented from the sidelines; 
some have played a seminal role in developing the theories underlying AI. 
Daniel Dennett, who functioned as an advisor to the development of  the 
embodied learning robot Cog, has even proposed that “roboticists are doing 
philosophy, but that’s not what they think they’re doing.” But philosophers 
critical of  AI have also turned out to be better judges than the true believers 
of  the diffi culties AI engineers would encounter. Some of  the philosophi-
cal critiques regarding the limits of  computational strategies for achieving 
“strong AI” remain alive, as noted. However, this does not interfere with the 
“weak AI” task of  developing systems with a high degree of  what we have 
called “functional morality.” So in this and the next four chapters, we set 
aside the philosophical issues and focus on ways ethical considerations can 
be introduced into the platforms presently available.

Your engineering friend who has been charged with designing a (ro)bot 
that acts ethically will be concerned with the kinds of  constraints that should 
be placed on the system’s choices and actions. What role might ethical the-
ory play in defi ning the control architecture for such systems? In addition, 
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the engineer must determine what the information requirements are for a 
system making moral decisions: that is, what does the system need to know 
in order to make an informed decision, and what input devices and sensors 
will it need to get access to this information?

How can ethicists actually be helpful here? A well-trained ethicist is 
taught to recognize the complexity of  moral dilemmas, and is likely to be 
sensitive to the inadequacy of  any one approach meant to cover the range 
of  challenges the AMA might confront. The engineer, on the other hand, 
will be concerned that the ethicist’s desire to make the system sensitive to 
moral considerations will add further diffi culties to the already challenging 
task of  building reliable, effi cient, and safe systems. Theoretical discussions 
about the complexity and intractability of  ethical dilemmas will not be con-
sidered helpful. While engineers generally believe that there is more than 
one solution to every problem, they are trained to converge on a satisfactory 
solution for the problem at hand. Ethicists, however, are trained to diverge 
from each other, arguing separate positions so as to describe as completely 
as possible the range of  considerations and theories that may be relevant to 
a problem.

Here it is useful to borrow from the fi eld of  engineering ethics, where 
philosophers frequently worry about the problem of  making their discipline 
relevant and accessible to engineers. In outlining an approach for teaching 
ethics to scientists and engineers, Caroline Whitbeck, a professor in ethics 
at Case Western Reserve University, draws on a distinction philosopher Stu-
art Hampshire made between “a judge perspective” on ethical problems and 
“an agent perspective.” The judge perspective, which Whitbeck equates with 
traditional philosophical approaches to ethics, applies abstract principles to 
particular instances, and commonly poses ethical challenges as confl icts 
between two or more opposing sides or principles. This can entail a forced 
judgment—a choice between mutually exclusive and often unsatisfactory 
alternatives. In contrast, an agent perspective deals with ethical challenges 
from the point of  view of  an actor in a context, who must fi nd a solution to 
a problem. Engineers are accustomed to approaching engineering problems 
through case studies, an approach with which Hampshire’s agent perspec-
tive is more closely aligned. Whitbeck writes that “ethical or moral prob-
lems are often represented as confl icts between (usually two) opposing sides 
or opposing principles, but they are often better understood as problems in 
which there are multiple (ethical) constraints which may or may not turn 
out to be satisfi able simultaneously.” This suggests to Whitbeck that ethical 
challenges should be considered similar to design problems and treated as 
such.

Certainly not all ethical challenges can be approached in this way. But for 
the ethicist contributing to the design of  an AMA, keeping in mind an agent 
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perspective is useful on two levels. First, an agent perspective is similar to the 
problem-solving approach engineers understand. Second, the robot or com-
putational system can best be appreciated as a simple-minded agent looking 
for a way to proceed or act in a specifi c context within ethical constraints. 
In designing the computational systems that will operate within ethical 
constraints, emphasis must be placed on practical approaches for working 
through the challenge.

This emphasis on the practical may appear to philosophers as an over-
simplifi cation of  ethics. We recognize that both ethical theory and applied 
ethics are full of  complexity. Appreciation of  the complexity is useful, insofar 
as it suggests ways of  making computational systems more sophisticated. 
It is less useful if  it is simply directed at dismissing the project of  building 
AMAs. Ethical complexity comes from at least a couple of  sources. On the 
one hand, there are the nuanced discussions within ethical theory about 
the fundamental concepts of  the discipline. On the other hand, there are 
the diffi cult issues that arise from attempting to make normative judgments 
about real-world situations. Morality in humans is a complex activity and 
involves skills that many either fail to learn adequately or perform with lim-
ited mastery. Although there are shared values that transcend cultural dif-
ferences, cultures and individuals differ in the details of  their ethical systems 
and mores. Expecting AMAs to deal immediately with all of  these issues is 
impracticable, but our basic position is that any step toward sensitivity to 
moral considerations in (ro)bots, no matter how simplistic, is a step in the 
right direction.

Engineers will be quick to point out that ethics is far from science. Diffi -
cult value questions often arise both in situations where information is inad-
equate and where the results of  actions cannot be fully known in advance. 
Thus ethics can seem to be a fuzzy discipline that deals with some of  the most 
confusing and emotionally charged situations people encounter. Ethics can 
appear as far away from science as one can get.

Any claim that ethics can be reduced to a science would at best be naive. 
Nevertheless, we believe that the task of  enhancing the moral capabilities 
of  autonomous software agents will force scientists and engineers to break 
down moral decision making into its component parts, recognize what 
kinds of  decisions can and cannot be codifi ed and managed by essentially 
 mechanical systems, and learn how to design cognitive and affective sys-
tems capable of  managing ambiguity and confl icting perspectives. This 
project will demand that human moral decision making be analyzed to a 
degree of  specifi city as yet unknown.

Different specialists are likely to take different approaches to the problem 
of  implementing an AMA. For engineers and computer scientists, a natural 
approach might be to treat ethics as simply an additional set of  constraints, 
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to be satisfi ed like any other constraints on successful program operation. 
On this view, there would be nothing distinctive about moral reasoning. 
But, questions remain about what those additional constraints should be, 
whether they should be very specifi c (for example, “Obey posted speed lim-
its”) or more abstract (for example, “Never cause harm to a human being”) 
and whether they are to be treated as hard constraints, never to be violated, 
or soft ones, able to be stretched in pursuit of  other goals. Making a moral 
robot would be a matter of  fi nding the right set of  constraints and the right 
formulas for resolving confl icts. The problem of  developing AMAs might 
thus be understood as fi nding ways to implement abstract values within the 
control architecture of  intelligent systems. The result would be a kind of  
“bounded morality,” and a system capable of  behaving inoffensively so long 
as any situation it encountered fi ts within the general constraints predicted 
by its designers.

Where might such constraints come from? Philosophers confronted with 
this problem are likely to suggest a top-down approach of  encoding a particu-
lar ethical theory in software. This theoretical knowledge could then be used 
to rank options for moral acceptability. With respect to computability, how-
ever, the moral principles proposed by philosophers leave much to be desired, 
often suggesting incompatible courses of  action, or failing to recommend any 
course of  action. And in some respects, key ethical principles appear to be 
computationally intractable because of  the essentially limitless consequences 
any action might have.

But if  it is not possible to see a clear way to implement an ethical theory 
as a computer program, then one might also wonder whether such theories 
play a guiding role for human action. Thus, thinking about what machines 
are or are not capable of  may lead to deeper refl ection about the limits of  ethi-
cal theory in the computational domain. The problem of  AMAs is, from this 
perspective, a problem not of  how to give them abstract theoretical knowl-
edge but of  how to embody the right tendencies to react in the world. It is a 
problem of  moral psychology, not moral calculation.

Psychologists confronted with the problem of  constraining moral deci-
sion making are likely to focus on the way a sense of  morality develops in 
human children as they mature into adults. A developmental approach 
may be the most practicable route to machine morality. But given what is 
known about the unreliability of  this process for developing moral human 
beings, there’s a legitimate question to be raised about how reliable it 
would be to attempt to train (ro)bots to be AMAs. Psychologists also focus 
on the ways humans construct their reality, become aware of  self, others, 
and their environment, and navigate through the complex maze of  moral 
issues in their daily lives. Again, the complexity and tremendous variabil-
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ity of  these processes in humans underscores the challenge of  designing 
AMAs.

Whose Morality or What Morality?

There’s another kind of  reaction you might have when your friend the engi-
neer walks into your offi ce saying his company has asked him to design a 
robot that will always act ethically. “What the hell kind of  company has the 
right to dictate what’s ethical?” you might wonder.

The project of  building AMAs faces hard questions. Whose moral stan-
dards will be implemented? What ethical subroutines? Engineers are very 
good at building systems for well-specifi ed tasks, but there is no clear task 
specifi cation for moral behavior. Talk of  moral standards might seem to imply 
an accepted code of  behavior, but among people there is great disagreement 
about moral matters. Talk of  ethical subroutines also seems to suggest a 
particular  conception of  how ethical behavior might be implemented, but 
whether algorithms or lines of  software code can effectively represent ethi-
cal knowledge requires a sophisticated appreciation of  what that knowl-
edge consists in, and of  how ethical theory is related to the cognitive and 
emotional aspects of  moral behavior. The effort to clarify these things, and 
to develop alternative ways of  thinking about them, takes on special dimen-
sions in the context of  artifi cial agents. Any approach to machine morality 
has to be assessed in light of  the feasibility of  implementing the theory as a 
computer program.

Disagreements about the morality of  various actions—from illegally down-
loading music off  the Web to abortion or assisted suicide—underscore the 
diffi culties in determining criteria for ascribing morality to the actions of  an 
artifi cial system. The ethical theories of  Kant, Bentham, and Mill were shaped 
by the Enlightenment ideal that moral principles should be universal. But even 
those values on which there is general consensus tend to break down in face of  
the details of  specifi c situations. Truthfulness, or not lying, is a virtue most peo-
ple put aside when they believe their honesty will result in unwarranted harm 
to another person. Most people will applaud some lie as justifi ed if  there’s a net 
benefi t from telling it. On the other hand, Kant considered always telling the 
truth, regardless of  the consequences, to be imperative. He argued that lying to 
another person takes away that individual’s autonomy, which Kant considered 
foundational for all ethics.

Given the range of  perspectives regarding the morality of  specifi c values, 
behaviors, and lifestyles, perhaps there is no single answer to the question 
of  whose morality or what morality should be implemented in AI. Just as 
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people have different moral standards, there is no reason why all compu-
tational systems must conform to the same code of  behavior. One might 
envisage designing moral agents that conform to the values of  a specifi c 
religious tradition or to one or another brand of  secular humanism. Or the 
moral code for an AMA might be modeled on some standard for political 
correctness. Presumably, a robot could be designed to internalize the legal 
code of  a country and strictly follow that country’s laws. This concession to 
culturally diverse AMAs is not meant to suggest that there are no universal 
values, only to acknowledge that there may be more than one path to the 
design of  an AMA. Regardless of  what code of  ethics, norms, values, laws, 
or principles prevails in the design of  an AMA, that system will have to meet 
externally determined criteria as to whether it functions successfully as a 
moral agent.

Top-Down and Bottom-Up 

Approaches

The study of  ethics commonly focuses on top-down norms, standards, and 
theoretical approaches to moral judgment. From Socrates’ dismantling 
of  theories of  justice to Kant’s project of  rooting morality within reason 
alone, ethical  discourse has typically looked at the application of  broad 
standards of  morality to specifi c cases. According to these approaches, 
standards, norms, or principles are the basis for evaluating the morality 
of  an action. Top-down moral principles range from religious ideals and 
moral codes to culturally endorsed values and philosophical systems, 
but many of  the same values are evident in differing ethical systems. The 
Golden Rule, the Ten Commandments, Hinduism’s Yama and Niyama, lists 
of  virtues, and Kant’s categorical imperative can all be thought of  as top-
down ethical systems. Of  course, Asimov’s Three Laws for Robots are also 
top-down.

The term “top-down” is used in a different sense by engineers, who 
approach challenges with a top-down analysis through which they 
decompose a task into simpler subtasks. Components are assembled into 
modules that individually implement these simpler subtasks, and then 
the modules are hierarchically arranged to fulfill the goals specified by 
the original project.

In our discussion of  machine morality, we use “top-down” in a way that 
combines these two somewhat different senses from engineering and eth-
ics. In our merged sense, a top-down approach to the design of  AMAs is any 
approach that takes a specifi ed ethical theory and analyzes its computational 
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requirements to guide the design of  algorithms and subsystems capable of  
implementing that theory. In other words, a top-down approach takes an 
ethical theory, say, utilitarianism, analyzes the informational and procedural 
requirements necessary to implement this theory in a computer system, and 
applies that analysis to the design of  subsystems and the way they relate to 
each other in order to implement the theory.

In bottom-up approaches to machine morality, the emphasis is placed 
on creating an environment where an agent explores courses of  action and 
learns and is rewarded for behavior that is morally praiseworthy. There are 
various models for bottom-up acquisition of  moral capabilities. Childhood 
development provides one model. Evolution provides another bottom-up 
model for the adaptation, mutation, and selection of  those agents best able to 
meet some criteria for fi tness. Unlike top-down ethical theories, which defi ne 
what is and is not moral, in bottom-up approaches any ethical principles 
must be discovered or constructed.

Bottom-up approaches, if  they use a prior theory at all, do so only as a 
way of  specifying the task for the system, and not as a way of  specifying an 
implementation method or control structure. In bottom-up engineering, 
tasks can also be specifi ed theoretically using some sort of  performance 
measure (e.g., winning chess games, passing the Turing test, walking 
across a room without stumbling, etc.). Various trial-and-error techniques 
are available to engineers for progressively tuning the performance of  sys-
tems so that they approach or surpass the performance criteria. High levels 
of  performance on many tasks can be achieved even though the engineer 
lacks a theory of  the best way to decompose the task into subtasks. An 
analysis of  the system after it has determined how to perform a task can 
sometimes yield a theory or specifi cation of  the relevant subtasks, but the 
results of  such analyses can also be quite surprising and typically do not 
correspond to the kind of  decomposition suggested by a priori theorizing. 
In its ethical sense, a bottom-up approach to ethics is one that treats nor-
mative values as being implicit in the activity of  agents rather than explic-
itly articulated (or even articulatable) in terms of  a general theory. In our 
use of  the term “bottom-up,” we recognize that this may provide an accu-
rate account of  the agents’ understanding of  their own morality and the 
morality of  others, while we remain neutral on the ontological question 
of  whether morality is the kind of  concept for which an adequate general 
theory can be produced.

In practice, engineers and roboticists typically build their most complex 
systems using both top-down and bottom-up approaches. Components are 
assembled to fulfi ll specifi c functions guided by a theoretical top-down analy-
sis that is typically incomplete. Commonly, there is more than one route to 
meet the project goals, and there is a dynamic interplay between analysis 
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of  the project’s structure and the testing of  the system designed to meet the 
goals. Failures of  the system may, for example, reveal that the original anal-
ysis of  the challenge has overlooked secondary considerations, and so the 
control architecture has to be adjusted, software parameters refi ned, or new 
components added. Bottom-up self-organizing techniques can be utilized to 
facilitate the fi ne-tuning of  individual modules.

The top-down/bottom-up dichotomy is too simplistic for many complex 
engineering tasks, and one should not expect the design of  AMAs to be any 
different. Nevertheless, the concepts of  top-down and bottom-up task analy-
sis highlight two potential roles of  ethical theory for the design of  AMAs.
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Chapter 6
t o p - d o w n  m o r a l i t y

Putting Ethical Theories to Work

What does the engineer who is seeking to build an ethical machine need to 
know about ethical theories? Ask an ethicist this question, and he or she may 
launch into a survey of  the varieties of  consequentialism, deontology, and vir-
tue ethics that would be standard fare for an undergraduate course in ethics. 
Instead of  replicating Ethics 101, we will try to present the ethical theories 
with a view to what engineers or computer scientists can (or cannot) do 
with them.

Why might a top-down, theory-driven approach to morality for AMAs 
seem like a good way to proceed? One answer is that theories promise com-
prehensive solutions. If  ethical principles or rules could be explicitly stated, 
acting ethically would just be a matter of  following the rules. All that an 
AMA would need to do is compute whether its actions are allowed by the 
rules.

Ethicists don’t think this is a viable approach to human decision making, 
because people are simply incapable of  doing all the required calculations. 
But it is an old dream of  philosophers that machines might be able to do bet-
ter. The German philosopher Gottfried Wilhelm von Leibniz, who designed a 
calculating machine that was built in 1674, dreamed of  having more power-
ful machines that could directly apply moral rules to calculate the best action 
in any circumstances.

Despite the great enhancements in computing technology since Leibniz’s 
day, we think top-down theories may not serve to realize this dream. We’ll 
show that the prospects for implementing ethical rules as formal decision 
algorithms are rather dim. Nevertheless, people do appeal to top-down rules 
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to inform and justify their actions, and designers of  AMAs will need to cap-
ture this aspect of  human morality.

In the most general sense, the top-down approach to artifi cial morality is 
about having a set of  rules that can be turned into an algorithm. Top-down 
ethical systems might come from a variety of  sources, including religion, 
philosophy, and literature. Examples include the Golden Rule, the Ten Com-
mandments, consequentialist or utilitarian ethics, Kant’s moral imperative, 
legal and professional codes, and Asimov’s Three Laws of  Robotics.

In some of  these ways of  thinking, the list of  rules is just an arbitrary col-
lection of  whatever needs to be specifi cally proscribed or prescribed. This is 
the “commandment” model of  morality, which, in addition to having roots 
in the Judaic tradition, also pops up in Asimov’s Three Laws. The challenge 
facing commandment models is what to do when the rules confl ict: is there 
some further principle or rule for resolving the confl ict? Asimov’s approach 
was to prioritize the rules so that the fi rst law always trumped the second, 
which in turn always trumped the third. Unfortunately for roboticists (if  for-
tunately for the fi ction writer), the fi rst two of  Asimov’s laws are each suf-
fi cient to produce intractable confl ict on their own.

To solve the confl ict problem, some philosophers have attempted to fi nd 
more general or abstract principles from which more specifi c or particular 
principles might be derived. Other philosophers reject the idea that ethical 
rules should be understood as providing a comprehensive decision procedure, 
while continuing to recognize that top-down rules function as heuristics that 
help guide decisions and inform the critical analysis of  expert evaluators.

Whether ethical principles are conceived of  as rules or heuristics, much 
of  mainstream moral philosophy consists of  testing highly general principles 
against intuitive judgments about thought experiments such as the trolley 
cases. The history of  moral philosophy can be viewed as a long inquiry into 
the intuitions of  ethicists about what qualifi es something as morally right 
or morally wrong. The most general top-down ethical theories are meant to 
capture the essence of  moral judgment. Competing top-down theories are 
challenged whenever they seem to give the “wrong” answers according to 
some expert’s intuitions. Are these intuitions valid universally? There have 
long been cultural critics who have read Western and male-centered biases 
into the intuitions promoted by Western philosophers. More recently, a new 
breed of  “experimental philosophers” has been challenging the claim that 
these intuitions are even shared universally within the same culture.

We want to avoid getting sidetracked by the very knotty questions about 
ethical intuitions. Our focus is on the computational requirements for imple-
menting particular top-down theories. Are they really suitable as task speci-
fi cations for algorithms? And if  not, what does this say about the project of  
building AMAs? Only rarely have top-down theories been evaluated from a 
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computational perspective, and the results, we think, have the potential to 
cast light on the nature of  philosophical ethics itself.

Among those schools of  philosophers who think that ethical reasoning can 
be brought under a single general principle, there are two “big picture” rivals 
for what that general principle should be: utilitarianism and  deontology.

Utilitarians claim that morality is ultimately about maximizing the total 
amount of  “utility” (a measure of  happiness or well-being) in the world. 
The best actions (or the best specifi c rules to follow) are those that maxi-
mize aggregate utility. Because utilitarians care about the consequences of  
actions, their views are a type of  consequentialism. Another consequentialist 
theory is  egoism, which considers only the consequences for the individual 
doing the action. However, egoism is not a serious contender for the design 
of  AMAs (or even, perhaps, for ethics more generally). Because utilitarian-
ism seems to be the most promising version of  consequentialism for use in 
artifi cial systems, we’ll focus our discussion on it.

Within utilitarianism there is an important distinction between “act 
utilitarianism” (each individual action is assessed) and “rule utilitarianism” 
(rules for actions are assessed in light of  their tendency to increase total util-
ity). We initially discuss act utilitarianism, although many of  the points we 
make can be generalized to both forms. Utilitarian AMAs face heavy com-
putational demands because they need to work out many, if  not all, of  the 
consequences of  the options in order to rank actions morally. From the per-
spective of  the agent, the problem is how to determine the consequences of  
various courses of  action in order to maximize some measure of  utility. For 
the designer of  artifi cial systems, the problem to be solved is how to build 
mechanisms that can make the necessary determinations of  consequences 
and their net utilities.

The competing “big picture” view of  moral principles is that duties lie 
at the core of  ethics. Within this framework, the rights of  individuals are 
generally understood as the fl ip side of  duties. Duties and rights fall under 
the heading of  deontology, a nineteenth-century term for the study of  obliga-
tions. In general, any list of  duties or rights might suffer the same problem 
of  internal confl icts as a list of  commandments. For example, a duty to tell 
the truth might come into confl ict with a duty to respect another person’s 
privacy. One way to resolve these problems is to submit all prima facie duties 
to a higher principle. Thus it was Kant’s belief, for instance, that all legitimate 
moral duties could be grounded in a single principle, a categorical imperative,
which could be stated in such a way as to guarantee logical consistency.

For an artifi cial agent designed with a deontological approach to ethics, 
knowing the rules (or how to determine the rules) and having methods for 
applying those rules to a specifi c challenge is of  central importance. An agent 
that could also refl ect coherently on the validity of  specifi c rules would be 
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desirable, but this is a rather distant dream. The designer of  a deontologi-
cal (ro)bot needs to fi nd ways to ensure that the rules are activated when 
the situation requires their application, and to formulate an architecture for 
managing situations where rules confl ict.

Utilitarian and deontological approaches both raise their own specifi c 
computational issues, but they also raise a common problem of  whether any 
computer (or human, for that matter) could ever gather and compare all the 
information that would be necessary for the theories to be fully applied in real 
time. This problem is especially acute for a consequentialist approach, since 
the consequences of  any action are essentially unbounded in space or time. 
We will discuss this problem in the next section by asking whether a utilitar-
ian approach to artifi cial morality would require an omniscient computer. In 
the following sections, we consider deontological approaches.

Public discussions of  morality are not just about rights (deontology) and 
welfare (utility); they are often about issues of  character, too. This third 
element of  moral theory can be traced back to Aristotle and what is now 
known as “virtue ethics.” Virtue ethicists are not concerned to evaluate the 
morality of  actions on the basis solely of  outcomes, or in terms of  rights 
and duties. Instead, virtue theorists maintain that morally good actions 
fl ow from the cultivation of  good character, which consists in the realiza-
tion of  specifi c virtues. We discuss the application of  virtue theory to the 
design of  AMAs in  chapter 8.

Is An Omniscient Computer 

Needed?

The eighteenth-century British philosopher Jeremy Bentham is frequently 
credited with the idea that it would be desirable to develop a kind of  “moral 
arithmetic.” Bentham and the other philosophers who developed utilitar-
ian views wanted to put morality on an objective footing, getting away from
dependence on hard-to-justify lists of  duties or individual intuitions about 
what is right or wrong. They envisaged a method of  evaluating situations 
quantitatively—assigning numbers to the goods and harms that resulted 
from actions. Quantitative measures of  utility would allow for a simple deci-
sion rule: choose the action that results in the highest total utility. Utility is 
often equated with happiness. Thus the utilitarian’s traditional rallying cry 
“the greatest happiness for the greatest number.”

Because of  its numerical aspect, utilitarianism might seem to provide a 
uniquely attractive form of  ethical theory for AMAs. But what would it take 
to actually build a utilitarian AMA? In 1995, computer scientist James Gips 
of  Boston College presented what was perhaps the earliest attempt to outline 
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the computational requirements for any consequentialist robot. He outlined 
four necessary abilities:

(1) A way of  describing the situation in the world
(2) A way of  generating possible actions
(3)  A means of  predicting the situation that would result if  an action were 

taken given the current situation
(4)  A method of  evaluating a situation in terms of  its goodness or 

 desirability

This list falls a long way short of  specifying algorithms, far less an actual 
computer program. Nevertheless, it provides a useful framework for specify-
ing the relevant subtasks. Any actual attempt to implement utilitarian rea-
soning in a computer will need to make design decisions about each subtask. 
How complete a description of  the situation is needed? What range of  actions 
should the computer be capable of  generating? How can the computer make 
accurate predictions about situations that might be quite remote in space or 
time? And how are the different situations to be evaluated?

Let us begin with the last question, a staple of  introductory ethics courses. 
How can one reasonably assign numbers to something as subjective as hap-
piness, pleasure, or desirability? Bentham and Mill famously disagreed on 
whether the pleasure one person might take in playing a game is of  equal 
value to the pleasure another person might derive from reading poetry. 
A similar point arises when comparing the pleasure experienced by animals 
to that experienced by humans. Bentham consistently took the position that 
there are no intrinsically superior forms of  pleasure; the joy of  playing the 
game of  push-pin or reading the poetry of  Pushkin, the pleasure of  pigs or of  
people—it was all the same to Bentham. Others have worried that it makes 
no sense to think that all forms and varieties of  pleasure can be ranked on a 
single scale. It is sometimes suggested that the problem of  assigning numbers 
to utilities could be solved in the same way that courts, insurance companies, 
and free markets do it: by fi guring out how much individuals are willing to 
pay for certain goods or to avoid specifi c harms. But to many, equating moral 
values to monetary values seems extremely inadequate for, as the popular 
saying goes, some things are priceless.

This is one of  those questions that threatens to slide off  into a battle of  
intuitions we cannot hope to settle here. But however one decides to assign 
numbers, very similar computational issues arise. On the positive side, given 
some way of  assigning numbers to utilities, computers would seem uniquely 
suitable for the application of  consequentialist theories. In fact, one might 
expect computers to produce aggregate utility assessments faster and 
more accurately than humans. On the negative side are the problems of  
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 constructing a computable evaluation function that appropriately weighs 
present benefi ts against future harms, and vice versa, or actual benefi ts and 
harms against potential risks and benefi ts.

Any appearance of  computational simplicity completely vanishes when 
one refl ects on the kinds of  information that would have to be gathered in 
order to complete the other subtasks Gips describes.

Gips’s fi rst subtask is to describe the situation in the world. What are the 
relevant elements of  the situation? Depending on the breadth of  the moral 
constituency, this may include people, animals, and perhaps even whole 
 ecosystems (although perhaps with different weights). Regardless of  how 
this is settled (another battle of  intuitions?) the sheer scale of  the data col-
lection required to describe the situation of  all ethically relevant subjects is 
mind-boggling. The prominent British philosopher Bernard Williams imag-
ined that it would need an “omniscient, benevolent observer—he might be 
called the World Agent—who acquires everybody’s preferences and puts 
them together.” Williams’ point was to dismiss the possibility of  such an 
agent, but even if  a World Agent does exist, it doesn’t have a URL for easy 
(ro)bot access.

The second subtask, generating a range of  actions, is also affected by the 
range of  elements that have to be considered part of  the situation. If, for 
example, the welfare of  animals is not part of  the equation, then the possible 
action of  eating a meal might be generated without distinguishing between 
eating a vegetarian meal and a nonvegetarian meal. The greater the vari-
ety of  morally relevant facts, the more fi ne-grained the programming would 
need to be about the options considered.

Gips’s third subtask is to estimate the expanding effects of  an action on 
every entity that matters morally. The designers of  any algorithm must face 
at least two broad questions: Which future branches should be computed? 
And should far future outcomes be discounted?

Regarding the fi rst question, future effects cannot be computed indefi -
nitely into the future. There are primary effects that may directly satisfy 
goals underlying a decision to act, and the moral value of  these outcomes 
should be computed. But every action has an indefi nite number of  secondary 
effects, potentially leading to a computational black hole that would suck up 
vast amounts of  CPU time for any program that tried to track all the inter-
actions. Furthermore, secondary effects can on occasion have far-reaching 
consequences—as in the famous butterfl y effect elucidated by chaos theory 
(the idea that a butterfl y’s beating wings in China could affect the weather 
in North America several weeks later.) There is also the problem of  calcu-
lating future effects when information is incomplete. Weather forecasting 
suffers from exactly the same problems, but that has not stopped meteorolo-
gists from working toward increasingly more accurate predictions (while still 
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leaving plenty of  room for improvement!). One particularly useful technique 
weather forecasters use is to average across the predictions of  several com-
peting computer models. “Utility forecasters” might similarly employ mul-
tiple approaches to predicting the consequences of  specifi c behavior.

Regarding the second question, the sayings “Charity begins at home” and 
“Think globally, act locally” are both used to express the idea that ethical 
actions are grounded in relationships to people and places nearby. And what 
goes for space also goes for time: consequences in the far future typically 
have less of  a pull on people than more immediate consequences. Whether 
this is the ethically proper attitude is not for us to decide here. We note only 
that if  AMAs are going to act in ethically acceptable ways by deploying top-
down, consequentialist principles, then some method for discounting future 
and distant consequences is necessary. It is possible, perhaps, that the degree 
of  discounting would exactly correspond to the increasing degree of  uncer-
tainty that goes with predicting remote events. But there is no simple formula 
that relates time or distance to uncertainty—some events a year from now or 
5,000 kilometers from here may be much more predictable than other events 
only one week from now or 100 meters away.

Gips’s fourth subtask is to evaluate a situation in terms of  its goodness 
or desirability. We’ve already pointed out that utilitarians disagree among 
themselves about whether pleasures or satisfactions from different sources 
should be weighted differently. One way to proceed might be to collect as 
many subjective utility ratings as one can, to apply a weighting formula to 
these, and then to adjust it in a progressive fashion until the choices and 
actions of  the AMA appear to be satisfactory. There are, of  course, serious dif-
fi culties involved in collecting subjective assessments of  utility in real time.

To protect utilitarian AMAs from an endless stream of  calculations, viable 
strategies for accomplishing Gips’s four subtasks are needed. The diffi culty 
in terminating calculations is exacerbated by an additional challenge. The 
act of  computing potential consequences is itself  an action that requires 
time and resources, and may therefore have ethical consequences of  its own. 
If  one loses the opportunity to help someone in need because one’s deci-
sion making went on too long, the process of  deciding was dysfunctional. 
The utilitarian theory can be applied directly here because, of  course, the 
utilitarian principle specifi es that calculations should be halted at precisely 
the point where continuing to calculate rather than act has a negative effect 
on aggregate utility. But how do you know whether a computation is worth 
doing without actually doing the computation itself? This apparent paradox 
can only be solved by cutting off  computation by some other means.

People are confronted with the same challenges, and for this reason 
some theorists don’t feel that utilitarianism is a particularly useful or practi-
cal  theory. Nevertheless, humans do manage to act with the intention of  
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 maximizing welfare, even though they are clearly not omniscient. How do 
humans do it? They generally practice what Herb Simon, a founder of  AI 
and a Nobel laureate in economics in 1982, called “bounded rationality”: 
including a very limited set of  considerations in one’s rational decision 
making. The question is whether a more restricted computational system, 
weighing the same information as a human, would be an adequate moral 
agent. Not including all the preferences, incorrectly estimating them, or fail-
ing to understand short- and long-term consequences of  actions inevitably 
causes some pain and suffering, as the history of  humankind (painfully) 
reminds us.

Simon and his collaborator Allen Newell pioneered the use of  heuris-
tics—functional approximations, that is, “rules of  thumb”—to abbreviate 
complex searches by AI systems. Heuristic search is central to the success 
of  systems such as IBM’s chess-playing Deep Blue II, which does not need to 
search the unimaginably vast space of  chess moves into the indefi nite future 
to play a good game. Instead, it focuses on accomplishing intermediate goals 
by using approximate methods of  evaluation: rules of  thumb that rate cer-
tain arrangements of  pieces on the board as more valuable than others.

Perhaps moral heuristics could be developed to play a similar role. Ethical 
heuristics applied to individual actions would need to rank immediate con-
sequences of  actions with respect to their likelihood of  having ethically rel-
evant secondary outcomes. For instance, toppling a foreign government has 
many long-term consequences that must be assessed, but the effects of  this 
action on the work schedules of  newspaper journalists is not one that needs 
a lot of   attention.

One kind of  ethical heuristic might be to follow rules that are expected to 
increase local utility. For instance, rather than analyze all the consequences 
of  her possible actions, a person may choose between them solely on the 
basis of  benefi ts to her local community. A heuristic such as this may be glob-
ally benefi cial if  it turns out, for example, that a locally healthy population 
is more likely to engage in more distant forms of  charity. However, an effec-
tive moral agent might be able to rely on this relationship without having to 
check it explicitly.

Rule utilitarianism can also be seen as a kind of  heuristic approach. Rules 
can circumvent the need to calculate all of  the consequences of  individual 
actions, on the assumption that on average, the benefi ts of  following the 
rules outweigh the costs of  occasionally doing something that might have 
gone better without the rule. A problem, however, for an engineer designing 
an AMA on the basis of  rule utilitarianism is where the rules come from. 
Initially, the rules might be those agreed on by experts and programmed into 
the system. But because the justifi cation for applying these rules is itself  a 
 utilitarian one (following the rules produces higher overall utility than not 
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following them), they have to be reassessed periodically. The capacity to carry 
out such an assessment might also be required of  a sophisticated AMA. But 
initial attempts to apply rule utilitarian approaches to the design of  AMAs 
are unlikely to start with such sophisticated assessment capacities. Assum-
ing that the rules are initially going to be specifi ed by experts, then rule 
utilitarianism can be treated as a kind of  commandment theory, in which 
case the main computational issues are those shared with other rule-based 
approaches to AMA design.

Rules for Robots

No discussion of  top-down morality for robots can ignore Asimov’s Three 
Laws:

1. A robot may not injure a human being or, through inaction, allow a 
human being to come to harm.

2. A robot must obey orders given it by human beings except where such 
orders would confl ict with the First Law.

3. A robot must protect its own existence as long as such protection does 
not confl ict with the First or Second Law.

Well after he established the three laws, Asimov added a fourth or Zeroth 
Law (so named because it superseded the other three):

Zeroth: A robot may not harm humanity, or, by inaction, allow humanity 
to come to harm.

The rest of  the laws are modifi ed sequentially to acknowledge this.
Asimov’s Laws are of  course a piece of  fi ction—a plot device that allowed 

the development of  some very interesting stories. As we shall explain, they 
offer little practical guidance as moral philosophy, and their value as speci-
fi cations for algorithms is questionable. Nevertheless, they contain an inter-
esting idea about AMAs: that their behavior should conform to different 
standards than the usual rules of  morality for human beings.

Asimov’s idea of  special ethical duties for robots provides a signifi cant 
contrast with the utilitarian approach we discussed in the previous section. 
For the purposes of  moral evaluation, consequentialists generally don’t care 
why or by whom a particular action is carried out. But on deontological 
views, duties stem directly from the specifi c nature of  agents, and different 
kinds of  agents might have different duties.

In the movie RoboCop, the cyborg policeman is programmed with three 
directives that owe much to Asimov’s laws but take the idea of  task-specifi c 
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duties even further: (1) serve the public trust; (2) protect the innocent; and 
(3) uphold the law. The plot gimmick in RoboCop is the existence of  a secret 
fourth directive that supersedes the others, making RoboCop subservient to his 
corporate masters even though they are criminals. In the original movie, the 
residual human part of  RoboCop is able to overcome this fourth  directive, but 
this would not be possible for a (ro)bot programmed to follow rules strictly.

RoboCop’s secret directive and Asimov’s Second Law both require artifi -
cial agents to be virtual slaves of  their human masters. While this may help 
humans feel safer in the presence of  (ro)bots, clearly this is not a duty that 
should be thought to apply to moral agents generally. Here, however, we are 
not interested in justifying any particular set of  duties (or in debating what 
humans’ moral obligations might be toward intelligent machines). But we do 
want to talk more about Asimov’s rules in particular, because a lot of  people 
hearing about our project have asked, “But hasn’t Asimov already solved 
that problem?”

Isaac Asimov’s Three Laws provided a vehicle for his and other science fi c-
tion writers’ exploration of  the problems inherent in even a simple form of  
duty-based morality. Asimov offered no direct analysis of  these laws. Rather, 
he explored their viability through a series of  stories he wrote throughout his 
life. On fi rst reading, the rules appear to be straightforward. But it was evident 
to Asimov, and to succeeding generations, that even these simple laws would 
be problematic to implement. For every moral principle, there appear to be 
moral trade-offs.

Would a literal-minded robot, for example, interrupt a surgeon about 
to cut into a patient? Ensuring that a robot understands that a surgeon 
wielding a knife over a patient is not intending to harm the patient will 
be no easy matter. The fully intelligent application of  a simple duty-based 
morality would require a great deal of  understanding about context, and 
about exceptions to the rule of  causing no injury. An AMA with such capa-
bilities would need to have a broad knowledge base in order to apply rules 
appropriately in different contexts, and this knowledge base would need to 
be updated regularly.

What should a robot do if  any of  the available courses of  action might 
cause some harm to a human? In Liar, Asimov tells the story of  Herbie, 
a robot sensitive to human psychology, who breaks down while considering 
a challenge in which all options will cause psychological pain to humans. 
Of  course, humans confront such dilemmas daily. (Or would, if  they thought 
through the ramifi cations of  their actions!) In principle, the fact that Herbie 
broke down rather than causing harm to a human might appear to be an in-
built safeguard. But one could easily imagine a situation where a  homebound 
elderly person was dependent on the robot, and the breakdown of  the robotic 
system would cause even greater harm.
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As in the case of  the unwanted surgical intervention, if  a given list of  
rules fails to be comprehensive, the AMA will fail in unknown situations. 
In the context of  the real world, seemingly straightforward rules can also 
turn out to be impossible to follow. Without a scheme for prioritizing rules, 
confl ict between them can cause a deadlock. Asimov prioritized his rules 
to minimize confl icts between them, but even single rules can lead to dead-
lock, as when, for example, two humans give contradictory commands, or 
any action taken by the robot (including inaction) will cause harm to some-
one. Having a robot choose whether to act or not to act when either case 
results in harm to a human being is a proven recipe for suspense, but is cer-
tainly not recommendable for real world AMAs. Given that it is not always 
possible to prevent harm in the real world, the minimization of  harm may 
be the best one can hope for in many situations. (Whether humans can 
live with machines making such choices is a question we’ll come back to 
in chapter 12.)

Asimov’s rules are minimal restraints one might wish to implement on 
slave machines, not a fully fl eshed out morality for artifi cial minds with a 
capacity to act with considerable autonomy. Many of  the real-world moral 
codes one might wish to implement in a computational system do not pri-
oritize all the rules, and are therefore subject to confl icts between them. Any 
rule-based AMA will require a software architecture that can manage situ-
ations in which rules confl ict. In reviewing the lessons that can be taken 
from Asimov’s stories, IT consultant Roger Clarke proposes that an engineer 
might well conclude that rules or laws are not an effective design strategy for 
building robots whose behavior must be moral.

Even given a set of  comprehensive, nonconfl icting rules, consecutive rep-
etition of  one or more rules can lead to undesirable results. This is especially 
true when the rules are applied “blindly” in a succession of  individual deci-
sions, without consideration of  the whole process over a period of  time. The 
same phenomenon is found in the “voting paradoxes” that are well known to 
political scientists and philosophers. Philosopher Philip Pettit demonstrates 
such a situation in the example of  an editorial committee of  three members 
that resolves all the issues it faces by majority vote. In January, the committee 
agrees to promise subscribers that there will be no price rise over the next fi ve 
years. Another vote follows in midyear, when the committee decides to send 
articles to external reviewers and to be bound by their decision on whether 
or not to publish any individual piece. In December, the committee members 
are faced with the issue of  publishing technical articles that are quite costly 
to produce. The majority voted to publish the articles, but in this case the 
high publishing costs could possibly result in reneging on the earlier com-
mitment of  not increasing the  journal’s price. As the table on the next page 
shows, the votes of  each member of  the committee (A, B, and C) made sense 
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individually, but still led to inconsistency when subjected to the “blind” appli-
cation of  the majority vote rule.

Computers are particularly vulnerable to similar inconsistencies in deci-
sion making that result from locally consistent procedures being followed 
without the cumulative consequences being checked.

It’s rather easy to agree that a fully autonomous moral agent should not 
get stuck when it encounters an ethical dilemma. But would everyone agree 
that in order to resolve the dilemma, an AMA might cut the Gordian knot 
and possibly do harm to a human being? Sometimes rules, including demo-
cratic decision procedures, have to be broken. And some ethical systems allow 
rules to be disobeyed—as they are only prima facie constraints on actions. 
Any rule-based approach to allowing an AMA the latitude to override a rule 
would require the formulation of  extremely explicit criteria for when to do so. 
But any such criteria would very likely produce other dilemmas. Poking the 
balloon will cause it to bulge somewhere else.

Nevertheless, deontological moral rules continue to play an important 
role not just for philosophers doing ethical theory, but also in public dis-
cussions of  morality. Such rules range from the very explicit to the highly 
abstract, from specifi c prescriptions of  particular behaviors (e.g., “Thou shall 
not steal”) to guiding principles from which the correct action should be 
derived (e.g., “Treat others as you would wish them to treat you”). At the 
more specifi c end of  the scale are the Bible’s Ten Commandments, Asimov’s 
Three Laws, and professional codes of  conduct. At the more abstract end are 
the somewhat different versions of  the Golden Rule expressed in many world 
religions and cultures, and Kant’s categorical imperative requiring that the 
motives for actions be universalizable.

Different challenges arise for computing morality along the range from 
specifi c to abstract rules. Specifi c rules tend to be relatively easy to apply in 
simple cases but provide unclear guidance in more complex situations. Should 
you honor your father by stealing if  he asks you to, particularly if  he has no 
other way of  obtaining food? What would an Asimov-type robot do if  given 
contradictory orders by different humans or faced with a choice between 
actions that will all lead to harm to humans? The lists of  duties themselves do 
nothing to resolve these ambiguities. Even though Asimov makes the Three 
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Laws explicitly hierarchical, this is of  no use when an individual principle 
itself  results in confl icting demands. More abstract rules seem necessary for 
adjudicating such confl icts.

Über-Rule Computing

Kant’s categorical imperative and the Golden Rule represent the more abstract 
deontological theories. They attempt to bypass confl icts by stating principles 
of  such generality that they can be applied in any situation. The categorical 
imperative is explicitly designed to guarantee logical consistency. This might, 
therefore, make it seem especially appropriate for computers working within 
a logical framework. Kant wrote several different versions of  the categorical 
imperative, but the key idea is captured in this statement: “Act only on that 
maxim through which you can at the same time will that it should become 
a universal law.”

The exact meaning and application of  Kant’s theory is controversial among 
philosophers, but what might an engineer tasked with building an AMA get 
out of  the categorical imperative? We think a reasonable fi rst approximation 
is the idea that (ro)bots selecting among options must check to see whether 
their goals could be achieved if  similar other agents acted in the same way 
in corresponding situations. This application of  the imperative sidesteps the 
complicated question of  what Kant meant by requiring an agent to be able 
to will the maxim to be a universal law. Many followers of  Kant would argue 
that artifi cial agents are incapable of  willing anything at all. Nevertheless, 
the categorical imperative might be used by AMAs as a formal tool for check-
ing the morality of  a  behavior-guiding maxim. To apply this tool, an AMA 
would need an explicit and fully stated principle of  practical reason consist-
ing of  three elements: a goal, a means or course of  action by which the agent 
proposes to achieve that goal, and a statement of  the circumstances under 
which acting in that way will achieve the goal in question. Given these three 
elements, a very powerful computing device might be able to run an analysis 
or a simulation model to determine whether its goal would be blocked if  all 
other agents were to operate with the same maxim. For instance, Kant him-
self  illustrated the application of  the categorical imperative by deriving an 
injunction against lying, because, he reasoned, if  everyone lied in the pursuit 
of  their goals, then speech would become meaningless, making it impossible 
to lie at all.

While people might agree that too much lying undermines credibility, 
many people would disagree with Kant’s universalizing the maxim “Always 
tell the truth” and argue that a limited amount of  lying is appropriate in spe-
cifi c situations. Determining a self-consistent maxim that would cover those 
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situations is a diffi cult reasoning problem that ultimately depends on a great 
deal of  empirical knowledge. Any AMA that is to apply Kantian reasoning 
would thus require more than the aforementioned abstract characterizations 
of  goals, actions, and circumstances. It would also need to know a lot about 
human and (ro)bot psychology and about the effects of  actions in the world.

Duty-based systems principally revolve around rules, but the conse-
quences of  applying the rules are nevertheless important. Many rules, after 
all, are adopted in order to ward off  bad consequences. Some rules are even 
explicitly stated in terms of  consequences. A robot following Asimov’s laws, 
for instance, would need to know the extent to which its actions (or inaction) 
would result in harm to humans in order to determine whether it is conform-
ing to the First Law. Even Kant’s categorical imperative requires agents to 
consider whether a maxim is self-undermining, in the sense that following it 
would have the consequence of  undermining other attempts to follow it. An 
AMA based on Kant’s categorical imperative must also (1) recognize the goal 
of  its own action, and (2) assess the effects of  all other moral agents trying to 
achieve the same goal by acting the same way in comparable circumstances. 
It will typically also need to decide what to do, because (1) and (2) determine 
only what not to do, unless the alternatives are mutually exclusive. This 
AMA would also need to have extensive  psychological knowledge regard-
ing the humans involved in order to  satisfactorily perform all the necessary 
assessments.

An AMA that followed the Golden Rule would need to be able to (1) notice 
the effect of  others’ actions on itself, assess the effect (also in hypothetical 
situations), and chose its preferences; (2) assess the consequences of  its own 
actions on the affective states of  others, and decide whether they match its 
own preferences; and (3) take into account differences in individual psychol-
ogy while working on (1) and (2), as people affected by the action might 
respond differently to the same treatment. The latter point would presume 
that the AMA has a capacity to discern and anticipate changes in the affec-
tive reactions of  people to its decisions. Predicting the actual consequences 
of  actions is diffi cult to impossible.

Humans fi nd it exceedingly diffi cult to discern what more specifi c rules 
or maxims are consistent with über-rules such as the categorical imperative 
or the Golden Rule. All general deontological principles that seek to resolve 
confl icts among prima facie duties face similar issues. In the end, many of  
the computational issues facing duty-based approaches converge with those 
facing consequentialist systems.

Deontological theories require that AMAs implementing them under-
stand the rules suffi ciently well to reason correctly in any situation requir-
ing moral judgment. Proper interpretation and application of  a moral 
theory would be much easier if  the rules gave unambiguous direction in all 
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circumstances. But as simple as this may sound, there are again seemingly 
insurmountable  hurdles. To make the rules fully explicit, the AMA must be 
given clear  defi nitions of  all the terms that are used. This is not a simple task, 
considering, for instance, the vagueness of  the “universal” around which 
Kant’s categorical imperative revolves or the diffi culty of  specifying exactly 
what counts as a harm or an injury to a human being. Nevertheless, even 
vague concepts can have some clear applications. Baldness is a vague con-
cept, but Captain Picard is bald, after all. Likewise, some actions are clearly 
harmful. By focusing initially on the clear cases, it may be possible to cap-
ture a lot of  ordinary morality in a top-down fashion. Eventually, too, AMAs 
will need to possess the ability to reason about ethical cases in a top-down 
fashion.

Top to Bottom

The limitations of  top-down approaches nevertheless add up, on our view, 
to the conclusion that it will not be feasible to furnish an AMA with an 
 unambiguous set of  top-down rules to follow. Not everyone agrees, and later 
we will discuss the important efforts of  Susan and Michael Anderson with 
their  MedEthEx system, which organizes three prima facie duties (respect 
for autonomy,  benefi cence, and nonmalefi cience) into a consistent structure 
based on “expert”  judgments. Susan Anderson believes that one consistent 
set of  principles will emerge because she assumes that experts generally agree 
with each other. However, the same principles have been used throughout 
medical ethics, and there are countless situations where they lead to confl ict-
ing recommendations for action. We think that the task confronting AMAs 
is that of  learning to deal with the inherently ambiguous nature of  human 
moral judgment, including the fact that even experts can disagree.

How can machines operate successfully if  things are as ambiguous as we 
say? For that matter, how do humans do it? Humans learn to distinguish the 
letter of  the law from the spirit of  the law. Humans identify the ability to deal 
with the incoherence and complexity of  life, to fi nd balance between know-
ing and doubting, as practical wisdom. Wisdom emerges from experience, 
from attentive doing and observing, from the integration of  cognition, emo-
tions, and refl ection. (These are perhaps qualities that contribute to Kant’s 
inclusion of  a role for human will in his categorical imperative.) Does the 
need for such wisdom mean that humans have to build affective/emotional 
capacities as well as refl ective reasoning capacities into AMAs? Possibly, and 
we’ll discuss this topic in chapter 10. But fi rst we need to discuss the strengths 
of  “bottom-up” approaches to morality that see moral behavior as emerging 
from learning and evolution.
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Chapter 7
b o t t o m - u p  a n d 
d e v e l o p m e n t a l 
a p p roa c h e s

Organic Morality

Human beings do not enter the world as competent moral agents. Nor does 
everyone leave the world in that state. But somewhere in between, most peo-
ple acquire a modicum of  decency that qualifi es them for membership in the 
community of  moral agents.

Genes. development, and learning all contribute to the process of  becom-
ing a decent human being. The interaction between nature and nurture is, 
however, highly complex, and developmental biologists are only just begin-
ning to grasp just how complex it is. Without the context provided by cells, 
organisms, social groups, and culture, DNA is inert. Anyone who says that 
people are “genetically programmed” to be moral (or psychopathic for that 
matter) has an oversimplifi ed view of  how genes work.

Genes and environment interact in ways that make it nonsensical to 
think that the process of  moral development in children, or any other 
 developmental process, can be discussed in terms of  nature versus nur-
ture. Developmental biologists now know that it is really both, or nature 
through nurture. A complete scientific account of  moral evolution and 
development in the human species is a very long way off. And even if  one 
had such an account, it is not clear how one could apply it to digital com-
puters. Nevertheless, evolutionary and developmental ideas will continue 
to play a role in the design of  AMAs.

The idea that AI should try to mimic child development is as old as AI 
itself. In his classic 1950 article “Can Machines Think?” Alan Turing wrote: 
“Instead of  trying to produce a programme to simulate the adult mind, 
why not rather try to produce one which simulates the child’s? If  this were 
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then subjected to an appropriate course of  education one would obtain the 
adult brain.”

Turing was thinking not specifi cally about morality but instead about the 
problem of  whether a computing machine could ever perform an original 
act. The idea that machines would never be capable of  originating anything 
had been raised over a century earlier by Ada Lovelace, who had worked 
with Charles Babbage to give a comprehensible description of  the “analyti-
cal engine”—a planned but unbuilt mechanical computing device that is 
regarded as a forerunner to the modern digital computers ultimately made 
possible by Turing’s work.

Lovelace wrote that the “Analytical Engine has no pretensions to originate 
anything. It can do whatever we know how to order it to perform.” Turing 
reasoned that if  a computer could be put through an educational regime 
comparable to the education a child receives, “We may hope that machines 
will eventually compete with men in all purely intellectual fi elds.” Presum-
ably, this educational regime would include a moral education.

Simulating a child’s mind is only one of  the strategies being pursued for 
the design of  intelligent agents. In 1975, John Holland’s invention of  genetic 
algorithms generated much excitement about the potential for evolving 
adaptive programs. Genetic algorithms have been employed for many pur-
poses, for example, predicting the stock market and breaking codes. (Wikipe-
dia lists over thirty applications.) Holland’s work also led to the radical idea 
that computers might even become environments for evolving a new kind of  
life: artifi cial life (Alife).

Early advocates of  Alife proposed to simulate evolution within virtual 
environments. They hoped for the emergence of  agents capable of  learn-
ing, sophisticated behavior, and elements of  mind, all completely contained 
within a software-created world. Recognizing, however, that virtual worlds 
are no substitute for the challenges and complexities of  the real world, robot-
icists have also adapted Alife techniques to help them design robots that 
operate in physical environments. This is the fi eld now known as evolution-
ary robotics.

The power of  evolutionary algorithms can be illustrated by way of  evolu-
tionary robotics. An initial population of  (ro)bots, which vary slightly from 
one another, is evaluated in a real or virtual environment according to how 
well they succeed in some task. Each (ro)bot is assigned a score that mea-
sures its success (fi tness) in performing the desired task. The (ro)bots with 
the highest fi tness are used to generate a new set of  (ro)bots, by recombining 
components in a process modeled on sexual reproduction, and by introduc-
ing small, random mutations. The fi tness of  the new generation is mea-
sured, and the best performers are selected and allowed to reproduce. This 
is repeated for many generations, leading to progressive improvement in the 
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skill of  the (ro)bots at performing the task. To date, evolutionary roboticists 
have focused on robots learning sensorimotor control to perform tasks such 
as walking and navigating through a room, but in principle, such techniques 
might be utilized to evolve systems with higher cognitive faculties.

Insofar as artifi cial babies and Alife both provide methods for generat-
ing AMAs, they are examples of  “bottom-up” approaches, in which system 
design is not explicitly guided by any top-down ethical theory. Traditional 
 engineering approaches of  testing and refi ning intelligent systems can also 
be thought of  as following a bottom-up course of  development. Different 
approaches have different strengths, weaknesses, and implicit biases, which 
we will attempt to describe in the rest of  this chapter. We’ll begin with a dis-
cussion of  the evolution-inspired approaches before considering learning-
based approaches to moral  development.

Artifi cial Life and the Emergence 

of  Social Values

In 1975, the same year that Holland invented genetic algorithms, E. O. Wilson 
proposed that the science of  sociobiology might give rise to “a precise account 
of  the evolutionary origin of  ethics.” Putting these two ideas together raises 
the prospect that Alife could produce moral agents. If  the foundational values 
of  human society are rooted in humans’ biological heritage, then it might be 
reasonable to presume that these values would reemerge in a suffi ciently rich 
simulation of  natural selection.

Sociobiologists—and evolutionary psychologists, who are among their 
intellectual descendants—have made an effort to describe the evolutionary 
conditions that lead to the emergence of  value systems. A major theoretic 
underpinning of  this effort has been game theory, the mathematical theory 
of  competition and cooperation among rational agents, introduced in 1944

by John von Neumann and Oskar Morgenstern. Game theory is often asso-
ciated with the mathematician and 1994 Nobel laureate John Nash, whose 
life and work was introduced to popular culture through the Oscar-winning 
movie A Beautiful Mind.

A central thought experiment in game theory is the “prisoner’s dilemma,” 
in which each of  two criminal accomplices is offered a deal of  reduced sen-
tencing in return for giving state’s evidence against his partner. The deal is 
structured in such a way that the most rational choice for each player is to 
rat on the other, but if  they cooperate with each other by both keeping quiet, 
they will be better off  collectively. Because neither prisoner can trust his part-
ner to stay silent, rational self-interest leads both to “defect” by cooperating 
with the police rather than with each other.
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The analysis of  prisoner’s dilemma–type games becomes especially inter-
esting when two agents play against each other repeatedly. Iterated games 
make it possible for each player to decide whether or not to cooperate with 
the other on the basis of  what has happened in the previous interactions. The 
iterated prisoner’s dilemma game has become the basis for investigating the 
emergence of  cooperation in a wide range of  social sciences, from economics 
to sociobiology.

The iterated prisoner’s dilemma game enables theorists to analyze differ-
ent strategies and test them against each other. In the late 1970s, the political 
scientist Robert Axelrod put out a call for strategies to compete in tourna-
ments of  iterated prisoner’s dilemma games. He then tested the various strat-
egies against each other in computer simulations to see which was the most 
successful. One very simple strategy commonly called “tit for tat” turned out 
to do surprisingly well. In tit for tat, the player starts by cooperating in the 
fi rst round, and then on each successive round does what the other player 
did in the previous round. If  you try to get an advantage, then I try to get an 
advantage; if  you play fair, then I play fair. Tit for tat is not always the optimal 
strategy, but this simple strategy for conditional cooperation does well in a 
wide variety of  circumstances. We surmise that more sophisticated strategies 
for conditional cooperation are essential for building trust among agents liv-
ing in more complex social arrangements—a point to which we will return.

Game theory came to the attention of  evolutionary biologists John 
 Maynard Smith and William Hamilton, who both developed its application 
to biological cases. Hamilton was interested in the fact that social insects, for 
example worker bees, are reproductively sterile and may even die to enable 
the queen bee to reproduce. The logic of  evolutionary fi tness would seem to 
suggest that “defecting” from this arrangement and producing one’s own 
offspring would be a better strategy for keeping one’s genes in the gene pool 
than foregoing all of  one’s individual “fi tness” by having zero offspring.

Many social animals seem to cooperate with each other at a potential 
cost to their individual fi tness. For example, alerting others to the presence 
of  predators, sharing food, and taking care of  offspring belonging to other 
group members all involve costs to the individual. A central puzzle for biol-
ogy is how this behavior could evolve, given that such cooperation doesn’t 
always seem to be in the reproductive interests of  the animals providing the 
services. For instance, an animal that does something to alert others to the 
presence of  a predator could in fact attract the attention of  the predator to 
itself. An animal that kept quiet would be able to take advantage of  the alarm 
calls of  the others without risking its own demise.

Hamilton realized that the logic of  game theory could be applied to the 
evolutionary strategies of  individual genes independently of  whole organ-
isms. What is good for the gene need not be good for the organism. Richard 
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Dawkins later popularized this theory in his book The Selfi sh Gene. The selfi sh 
gene concept remains controversial for many reasons. (Among them is the 
question of  whether there really is such a thing as a gene for cooperation, 
or whether it makes sense to talk of  natural selection operating on single 
genes.) Nevertheless, the application of  game theory to evolution was a his-
torically important turning point for sociobiology. Working together, Axelrod 
and Hamilton concluded that because cooperation was sometimes a success-
ful strategy, it was one of  the traits that could emerge from an evolutionary 
process.

Peter Danielson and his colleagues at the University of  British Columbia’s 
Centre for Applied Ethics took Axelrod’s tournaments a step further by con-
structing simulated environments in which virtual organisms could change 
and adapt in response to the actions of  other entities in the population. Dan-
ielson called these Alife simulations “moral ecologies” in his book Artifi cial 
Morality: Virtuous Robots for Virtual Games. His simulated organisms could 
cooperate or defect, and some of  them could store information about their 
competitors’ previous behavior and use this information to implement vari-
ous conditional cooperation strategies. Danielson’s collaborator Bill Harms 
added the capacity for the bots to move around within the virtual world of  
the computer simulation. To Harms’s and Danielson’s surprise, the mindless 
individual entities began to form their own groups. Cooperators would group 
together with other cooperators, and uncooperative “predators” would also 
hang out together. In tough times, when the resources were limited, the pred-
ators would die off, while the cooperators had a competitive advantage. But 
conditional cooperators, whose behavior toward others was dependent on 
how others behaved toward them, continued to compete with each other for 
resources, leading to different degrees of  cooperation. Danielson proposed a 
concept of  “functional” morality in which rationality, as it is defi ned by game 
theory, is the only prerequisite for an agent to be a moral agent. Although he 
now views these experiments quite critically, they seemed to him at the time 
to demonstrate the promise of  Alife simulations to foster the emergence of  
moral agents.

Tennyson’s famous phrase “Nature, red in tooth and claw” has often been 
used to characterize the harsh amorality of  the Darwinian struggle for sur-
vival. The idea that morality itself  might emerge from evolution seems con-
trary to the portrayal of  nature as savage. Nevertheless, if  human morality 
evolved, then suffi ciently sophisticated Alife experiments ought to be able to 
evolve other morally sensitive agents. It is far from clear, though, what “suf-
fi ciently sophisticated” would mean in an artifi cial environment!

The propensities, features, and faculties that emerge out of  evolution are 
not merely the product of  individual entities struggling to survive and procre-
ate. They are the product of  social interactions and success in  environments 
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populated by many species. Often the most successful species are those whose 
members learn to cooperate with each other and recognize freeloaders that 
are a drain on resources. The values instantiated in evolved and evolving 
agents emerge from the pressures of  adapting, surviving, and procreating in 
a multiagent system.

It remains to be seen whether artifi cial environments that select among 
agents competing for the accumulation of  simple resources can produce 
anything like the moral propensities of  humans. A series of  recent experi-
ments has shown, for example, that people (and perhaps other animals) 
value fairness for its own sake, and will even give up additional money (or 
food) to ensure a relatively equitable distribution. In his book Evolution of  the 
Social Contract, Brian Skyrms, professor of  logic and philosophy of  science at 
the University of  California at Irvine, describes game-theoretical simulations 
in which a “Fair” strategy regularly dominates greedier strategies. However, 
several critics have pointed out that it is a long way from such simple strate-
gies and games to the real world. Insofar as the current understanding of  the 
conditions in which human morality evolved is very poor, this process seems 
likely to be very sensitive to features beyond humans’ control. Whether they 
are evolved in virtual or physical environments, AMAs are likely to be very 
different from the moral agents that have emerged from human evolution.

In addition to the problem of  getting the environment right, a major 
problem facing the adaptation of  evolutionary systems to the emergence of  
AMAs is how to design a fi tness function without explicitly applying moral 
criteria. The slogan “survival of  the most moral” highlights the problem of  
determining what “most moral” amounts to.

The transfer from virtual Alife environments to physically embodied 
agents is also unlikely to be straightforward. The decision-making processes 
of  an agent whose moral capacities have been evolved in a virtual environ-
ment are not necessarily going to work well in the physical world. This dif-
fi culty is exacerbated by a problem that has been noted with Alife generally. 
Experiments in simulated evolution have so far been unable to cross a thresh-
old where the patterns of  artifi cial life forms become suffi ciently complex to 
shed light on the robustness of  real biological life. Without knowing how to 
evolve agents of  suffi cient complexity in the virtual world, one cannot expect 
to evolve complex agents for the physical world.

Thus, Rodney Brooks notes that although experiments in Alife have pro-
gressed dramatically over the past few decades, “they have not taken off  
by themselves in the ways we have come to expect of  biological systems.” 
Thomas Ray, a tropical biologist and developer of  a highly regarded soft-
ware program for digital evolution (Tierra), admits, “evolution in the digital 
medium remains a process with a very limited record of  accomplishments.” 
And Peter Danielson acknowledges that the rather simplistic games and 
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 artifi cial environments used for evolutionary simulations are not really 
refl ective of  the complex environments and multidimensional scenarios that 
give rise to values, laws, and mores in the real world.

An appreciation for the limitations of  virtual worlds has led Danielson 
to pursue a completely different approach to machine morality, which we 
describe in chapter 9. But other scientists continue to work on developing 
more complex virtual worlds, and better measures of  complexity that can 
be used to drive evolutionary processes within them. Even though Danielson 
himself  lost confi dence in the value of  his early approach to virtual ethics, a 
next step for the study of  AMAs within Alife could be to try to evolve coopera-
tive agents within the richer framework provided by more sophisticated vir-
tual worlds. Much would depend, still, on the richness of  the environments 
(including the social dimensions) in which the artifi cial agents interact. For 
the time being, scientists’ ability to  simulate these worlds lags far behind 
 capturing the complexity of  the real world.

Some researchers believe that what has evolved in the real world of  
human social morality is something like a “moral grammar” or “moral core.” 
The idea of  a universal moral grammar for the human species was fi rst sug-
gested by political philosopher John Rawls in 1971, by way of  analogy to the 
universal grammar for language posited by MIT linguistics professor Noam 
Chomsky. Chomsky transformed the study of  linguistics and cognitive sci-
ence when he argued that human language learning could only be possible 
if  innate structures within human psychology narrowed the task to a limited 
number of  forms that human languages can take.

Rawls’s idea has recently been developed in the human evolutionary 
context by Harvard primatologist Marc Hauser in his book Moral Minds.
The topic of  AMAs is far outside the scope of  Hauser’s book, but just as 
Chomsky’s universal grammar spawned computational approaches to lan-
guage, perhaps the identifi cation of  a moral grammar would be potentially 
useful for the design of  AMAs. Hauser has no clear specifi cations for such 
a moral grammar, much less a computational theory built on top of  it, and 
in any case we are skeptical of  his thesis that human morality contains an 
evolved universal core. Nevertheless, it is a topic worthy of  further scientifi c 
 investigation.

Nanotechnologist Josh Storrs Hall has toyed with the idea of  a moral 
grammar or moral core while working in the specifi c context of  designing 
moral machines. In an early article he wrote in 2000, he explicitly mentions 
Rawls’s idea of  the universal moral grammar, but in his more recent work he 
seems to have abandoned that concept in favor of  a more generic notion of  a 
moral core or moral instincts. In his 2007 book Beyond AI: Creating the Con-
science of  the Machine, Hall writes, “A good fi rst cut at a design for an artifi cial 
moral instinct would be . . . a ‘cahooter guarantee protocol.’ ” “Cahooting” is 
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Hall’s label for the tendency of  human beings to engage in cooperative behav-
ior even when the simple logic of  game theory appears to dictate against it.

It seems correct to say that a tendency to cahoot is favored by evolution and 
culture under some conditions. However, Hall goes further with his optimistic 
belief  that the basic logic of  evolution and competition will lead to advanced 
moral agents possessing what he calls “hyperhuman morality.” He has written, 
“We are on the verge of  creating beings who are as good as we like to pretend 
to be but never really are.” According to Hall, such exemplary moral behavior 
will fl ow naturally from the core characteristics of  self-interest, curiosity, trust-
ability, and long planning horizons—characteristics he thinks are necessarily 
favored by evolutionary processes operating on long-lived, intelligent, social 
beings. His view is that the artifi cially intelligent machines (AIs) of  the future 
will be very long-lived—effectively immortal—and thus will need to consider 
the very long-term consequences of  their actions or suffer the negative conse-
quences directly. The result, Hall has written, will be “guaranteeably, un-self-
deceivingly honest AIs.”

We expect that most of  our readers will agree with us that this all sounds 
too good to be true. At the very least, it refers to a future we think is well beyond 
the immediate practical aims that we have outlined for building AMAs. How-
ever, even if  that is the future, what happens between here and the emer-
gence of  a hyperhuman AMA is another matter. Semi-evolved (ro)bots will 
not necessarily behave any better than their biological counterparts.

Nevertheless, Storrs Hall has made a valuable contribution to the discus-
sion about how to implement artifi cial morality that falls within the range 
of  bottom-up approaches. On his view, ethical behavior emerges from the 
evolution of  intelligence itself; the AMA designer’s problem thus reduces to 
that of  specifying the nature of  the intelligence to be implemented.

Ideas of  a moral grammar or moral instincts draw attention to elements 
of  human nature that are allegedly fi xed and immutable. But the most strik-
ing feature of  life, especially intelligent life, is its fl exibility and adaptability. 
What has evolved are not rigid systems with fi xed natures but adaptive sys-
tems that develop and learn. Indeed, the capacity to learn may be among 
the more remarkable features in the nature of  animals that display intelli-
gent behavior. If  any AMA is to function well in the niche created by human 
beings, it will need to be a learning machine.

Learning Machines

Whether evolved or constructed, AMAs will need some capacity for acquir-
ing the norms of  the locale in which they fi nd themselves. If  human morality 
is built up through experience, through trial and error honed by reason, then 
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teaching an AMA to be a moral agent may well require a process of  educa-
tion similar to that experienced by a child. The AMA will need to assimilate 
feedback about the moral acceptability or unacceptability of  its actions, at 
least during a designated developmental period, or perhaps over its entire life 
span. None of  the machine models of  learning that are presently available 
is anywhere close to the richness of  actual biological learning mechanisms. 
Realizing Turing’s dream of  a child-like AI has turned out to be much more 
diffi cult than he expected.

The fi eld of  AI has always been concerned with machine learning, and 
many learning models have been developed. Chomsky’s approach to human 
language learning exemplifi es one major type of  approach, where learning 
is treated as a problem of  fi nding the best representation of  the facts from 
a predetermined set of  possibilities (specifi ed by the universal grammar). An 
alternative approach treats the learner as more of  a blank slate, faced not 
only with the task of  fi nding an appropriate representation of  the facts but 
also, simultaneously, with the task of  fi nding an appropriate representational 
scheme. Traditional, symbolic approaches to AI tend to treat learning as the 
recombination of  a set of  predefi ned concepts. More recent connectionist 
approaches tend to rely less on preconceived structures, using the capacity 
of  artifi cial neural networks to dynamically generate their own classifi cation 
schemes from the input they receive.

Developmental psychologists are divided over the question of  whether 
infants come into the world with a rich set of  innate knowledge. Some psy-
chologists believe that infants are born knowing some basic facts about phys-
ical objects, numbers, and purposeful agents. Others dispute these claims 
vigorously. Developers of  AMAs need not enter into these disputes directly, 
although any particular learning model they adopt will tend to be aligned 
with one camp or another. Given the current lack of  understanding about 
the processes, the best attitude is probably pluralism, being open to trying 
anything that might work.

Some cognitive scientists are convinced that progress toward sophisti-
cated machine learning will need to take into account the physically embod-
ied aspects of  learners. For instance, an infant’s “knowledge” about physical 
objects, whether innate or acquired, probably does not consist of  a set of  sen-
tences describing how physical objects behave but is more likely grounded in 
her own physical presence and engagement with the world. Turing’s origi-
nal idea of  a child-like learning machine was based only in a pure symbol-
processing approach, but among scientists pursuing the dream of  child-like 
intelligence are two former students of  Rodney Brooks, Brian Scassellati and 
Cynthia Breazeal. Scassellati cut his teeth on the Cog project, which had the 
original goal of  investigating learning in a robot. But the challenge of  design-
ing Cog’s limbs, visual system, and other hardware components turned out 
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to be considerably greater than anticipated, and Cog was retired to the MIT 
museum before any signifi cant progress could be made on the problem of  
learning. Scassellati and Breazeal’s next step toward child-like learning capa-
bilities in a machine came from their collaboration on the Kismet robot, but 
Kismet has also been retired to the MIT museum. Each of  them is now work-
ing independently on a second generation of  child-like robots—“Leonardo” 
(Breazeal) and “Nico” (Scassellati). The hardware and software challenges 
remain formidable, and while some basic social learning is being investi-
gated—for example, in the area of  theory of  mind, as we discuss in chapter 
10—these researchers are a long way from any direct investigation of  moral 
development.

To adapt (ro)botic systems to moral development may require under-
standing how children acquire moral capacities. Freud and Piaget notably 
laid the foundations for developmental theories of  morality, and although 
their theories have many detractors, they provide a starting point for discus-
sion. In the specifi c area of  moral learning and development, the most prom-
inent fi gure is the psychologist Lawrence Kohlberg, who takes a Piagetian 
approach in which children develop their moral capacities through several 
cognitive-developmental stages. Kohlberg, who was the director of  Harvard’s 
Center for Moral Education in the 1980s, proposed that as the child grapples 
with challenges and is confronted with limitations in his ideas about meet-
ing those challenges, his concepts about what is right, wrong, and just move 
his understanding of  morality naturally to a next higher stage. In the initial 
premoral or preconventional stages, behavior is understood as the avoidance 
of  punishment or as the means to get what you want. In the conventional 
stages, morality is fi rst understood in terms of  interpersonal conformity 
and eventually as an aspect of  a social contract—laws or codes necessary to 
maintain order. Postconventional stages are characterized by a sincere con-
cern with human welfare, which can lead to a focus on universal moral prin-
ciples. These later stages require capacities for abstract moral  reasoning.

Kohlberg’s account was vigorously challenged by his Harvard colleague 
Carol Gilligan. She complained that Kohlberg placed undue emphasis on 
reasoning rather than on what she saw as the more feminine value of  care 
for others. Despite their disagreements, however, both Kohlberg and  Gilligan 
believe that moral development in children goes through several distinct 
stages. An attempt to replicate the stages proposed by either theorist might 
underpin a gradual approach to the development of  AMAs. However, for 
(ro)bots built with existing AI techniques and present-day computers, it 
also seems apparent that Kohlberg’s emphasis on reasoning provides a more 
immediately tractable project than Gilligan’s emphasis on care.

Another controversial issue in the fi eld of  moral development concerns 
how sensible it is to design programs of  moral education around these 
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 psychologists’ theories. (A similar question arises about the ethical theories 
of  Aristotle, Kant, and the utilitarians and about more religiously motivated 
views on moral education, held by, for example, William Bennett, who was 
secretary of  education under Ronald Reagan.) Of  course, long before there 
were developmental theories to guide education, millions of  children grew up 
to be good moral agents. They acquired patterns of  behavior and ideas about 
morality from family members and neighbors, they learned about fairness 
and reciprocity through childhood games, and they picked up other ideas 
from sermons, religious texts, and morality tales such as Aesop’s fables.

Nevertheless, modules for teaching moral reasoning, based on the work 
of  Kohlberg and others, have made their way into formal education during 
the past fi ve decades. The stages of  moral development are, in Kohlberg’s 
view, largely built on evaluating the applicability or limitations of  reasons 
for moral judgments within a given context. Children move on to the next 
level of  moral reasoning as they come to appreciate the limitations of  the 
reasons they have been relying on for guidance. Perhaps these modules could 
be adapted for training an artifi cial system that had the right sort of  logical 
capacities, although we know of  no attempts to do this. And perhaps such 
an attempt would fail without fi rst going through the earlier stages of  moral 
development.

In the earlier stages of  childhood development, rewards and punishment 
and approval and disapproval play a much bigger role in informing the moral 
reasoning of  young children. Although it is possible to simulate reward and 
punishment in a digital computer, it is unclear whether these formal simula-
tions have the immediacy or power that actual rewards and punishments 
have for children. Psychologists may disagree about the effectiveness of  pain 
as a  teaching tool, but regardless of  that, it is not known how to produce 
anything like it in a computer. It is sometimes suggested that punishment 
and rewards might be communicated in terms a computer would appreciate 
directly, for example, by manipulating processor speed, information fl ow, or 
the supply of  energy. But these seem either naive or far-fetched and futuris-
tic. Still, even without conscious pleasure or pain, computational learning 
mechanisms may be able to learn some basic patterns of  moral behavior.

Among those who have considered the possibility of  a learning-based 
approach to AMAs is Christopher Lang. While he was a philosophy gradu-
ate student at the University of  Wisconsin, Lang wrote an article in which 
he noted the limitations inherent in top-down systems designed around 
rule-based ethics, for example Asimov’s Three Laws. He argued that any 
rule-constrained system would suffer from a fatal rigidity in its behavior. 
Instead, Lang recommended an approach to moral agents that he originally 
called “quest ethics.” In this strategy, the computer would learn about eth-
ics through a never-ending quest to pursue rational goals. Lang’s ideas for 
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learning machines center around what are sometimes called “hill-climbing” 
or “greedy-search” algorithms. Such nonterminating learning algorithms 
endlessly search for better and better solutions. Genetic algorithms are hill-
climbing algorithms, as are various connectionist learning techniques.

Lang is extremely optimistic that learning machines will naturally come 
to value human aspirations and human diversity. The only limitation he per-
ceives in machines designed around quest ethics is that they will be tempo-
rarily immature until the system has evolved to a satisfactory level where 
it might be designated a moral agent. Like that of  Josh Storrs Hall, Lang’s 
optimism is based on what we see as some questionable ideas about the inevi-
tability of  ethical behavior emerging when the conditions are right.

Because these learning systems are not restricted by predetermined rules, 
Lang calls them “unbiased learning machines.” However, his use of  “unbi-
ased” in this context is somewhat idiosyncratic. In our terms, it appears to 
mean that they are not guided by top-down principles. In spite of  Lang’s sug-
gestion that such approaches are unbiased, there are various ways biases can 
creep in—for instance, in the design of  the particular platform, in defi ning 
the procedures or algorithms selected for the hill-climbing, and in the struc-
ture and richness of  the data available to the system.

Lang’s discussion is purely at a theoretical level. Actual goal-seeking or 
hill-climbing algorithms have yet to be thoroughly investigated for the devel-
opment of  moral agents (although we describe Marcello Guarini’s actual 
connectionist model of  moral classifi cation in chapter 9). Because learning 
machines remove the need for programmers to anticipate every contingency, 
they have become extremely popular for many applications outside ethics. 
We believe that these techniques hold great promise for programmers inter-
ested in developing moral agents.

Nevertheless, there are hazards inherent in learning systems. The vision 
of  learning systems developing naturally toward an ethical sensibility that 
values humans and human ethical concerns is an optimistic vision that sits 
in sharp contrast to the more dire futuristic predictions regarding the dan-
gers AI poses. We’ll assess those dangers in detail in chapter 12, but our dis-
cussion of  learning systems would be incomplete here if  we did not mention 
the prospect that any system that has the ability to learn may also have the 
potential to learn the wrong thing, possibly even to undo or override any 
built-in restraints.

This danger is inherent in IBM’s strategy for “autonomous computing” 
networks, which is directed at lowering costs through the design of  hard-
ware and software that monitors a system’s activity, optimizes performance, 
and heals bugs or system errors without human intervention. The challenge 
lies in designing systems that are self-repairing or that learn but don’t alter 
key functions or tinker with code in a manner that unleashes unanticipated 
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consequences. One wouldn’t, for example, want a “self-healing” computer 
to alter the real-time execution of  fi nancial transactions. As the number of  
variables the system manages increases, the effect of  each alteration grows 
exponentially, and the prospect of  potentially damaging results expands.

One solution to this problem involves a layered architecture. In a layered 
computational system, lower-level standards and protocols are functionally 
isolated from higher-order functionality. In order to maintain the integrity of  
code, programmers customizing software for individual clients seldom tam-
per with the shared, lower-level modules. Rather, they design an additional 
software module that contains the specifi c customizations required by the 
individual client and leave the shared code intact. For the purpose of  building 
AMAs, core restraints might be built into foundational layers of  the com-
puter platform that are inaccessible to those parts of  the computer that learn 
and revise the structures that process new information. This was Asimov’s 
strategy in proposing that the Three Laws of  robotics be built directly into 
the “positronic brain.” Recognizing the limitations of  Asimov’s laws again 
raises the question as to what moral restraints should be encoded into these 
“deeper” protocols. The ideas of  a moral grammar or moral code mentioned 
earlier in this chapter potentially provide an answer to this question.

If  key restraints could be programmed into a computational system at 
a very low level, they might act as something like a human conscience. In 
the short term, there might be little basis for concern that a learning system 
would alter these deeply embedded restraints. However, just as humans over-
ride their consciences given certain goals, desires, and motivations, a learn-
ing computer might also fi nd ways to circumvent restraints that got in the 
way of  its goals. We’ll return to this problem in chapter 12.

The rudimentary learning capacities of  existing AI systems are far from 
the rich adaptive learning skills evident in young children. Nor, as noted, have 
AI approaches to learning been applied to moral development. However, our 
 discussion of  the potential dangers of  learning machines leads us to believe 
that for the near term, engineers will need to combine learning or simulated 
evolution with more traditional bottom-up approaches to system design.

Assembling Modules

The immediate prospects for systems that act with sensitivity to moral con-
siderations are still largely confi ned to designing systems with operational 
morality, that is, ensuring that the AI system functions as designed. This is 
primarily the extension of  the traditional engineering concern with safety 
into the design of  smart machines that can reliably perform a specifi ed task, 
whether that entails a robot navigating a hallway without damaging itself  
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or running into people, visually distinguishing the presence of  a human 
from an inanimate object, or deciphering the emotional state implicit in a 
facial expression. While the focus of  engineers and computer scientists is 
on the design of  methods for carrying out discrete tasks, cumulatively these 
tasks might lead to more complex activities and greater autonomy. These 
approaches are “bottom-up” in our sense, because the development and 
deployment of  these discrete subsystems is not itself  explicitly guided by 
any ethical theory. Rather, it is hoped that by experimenting with the way 
these subsystems interact, something that has suitable moral capacities can 
 be created.

Computer scientists and roboticists are working on a variety of  discrete 
AI-related skills that are relevant to moral capacities. The techniques pro-
vided by different approaches—including Alife, genetic algorithms, con-
nectionism, learning algorithms, embodied or subsumptive architecture, 
evolutionary and epigenetic robotics, associative learning platforms, and 
even traditional symbolic AI—all have strengths in modeling specifi c 
 cognitive skills or  capacities.

Subsystems and modules will be built around the most effective techniques 
for implementing specifi c cognitive capacities and social mechanisms. How-
ever, computer scientists following such an approach are then confronted 
with the challenge of  assembling these discrete systems into a functional 
whole. Among the most promising approaches to robotics are those that 
exploit dynamic interaction between the various subtasks of  visual percep-
tion, moving, manipulating, and understanding speech. For example, Deb 
Roy, director of  the Cognitive Machines Group in the MIT Media Labora-
tory, exploits such interactions in the development of  the seeing, hearing, 
and talking robotic arm he calls “Ripley.” Ripley’s speech understanding 
and comprehension systems develop in the context of  carrying out human 
requests for actions related to identifying and manipulating objects within 
its fi elds of  vision and reach, while balancing internal requirements—for 
example, not allowing its servomotors to overheat, a very real mechanical 
concern, as it turns out.

In his public lectures, Roy sometimes places his project in the context of  
Asimov’s Three Laws. Roy depicts the various subsystems involved in speech 
processing, object recognition, movement, and recuperation as modules con-
nected to the relevant law or laws. It is obvious, for example, how speech 
comprehension is essential to the Second Law (obey humans) and motor 
cooling is essential to the Third Law (self-preservation). However, for our 
purposes, the most telling feature of  Roy’s presentation is that the line from 
Asimov’s First Law (do not harm humans) trails off  into dots. In other words, 
Roy has not yet thought of  how he might implement the moral capacities 
implied by the First Law. Without necessarily endorsing Asimov’s laws, the 
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challenge to computer scientists is how to replace the dots with a substantial 
account of  ethical  behavior.

How might one get from discrete skills to systems that are capable of  
autonomously displaying complex behavior, including moral behavior, and 
that are capable of  meeting challenges in new environmental contexts, and 
in interaction with many agents? Some scientists hope or presume that the 
aggregation of  discrete skill sets will lead to the emergence of  higher-order 
cognitive faculties, including emotional intelligence, moral judgment, and 
consciousness. While “emergence” is a commonly used word among scien-
tists and philosophers, it is still a rather vague concept that implies that more 
complex activities will somehow arise synergistically from the integration of  
simpler processes. When integrated successfully, components that are indi-
vidually limited in the fl exibility of  their responses can give rise to complex 
dynamic systems with a range of  choices or optional responses to exter-
nal conditions and pressures. Bottom-up engineering thus offers a kind of  
dynamic morality, where the ongoing feedback from different social mecha-
nisms facilitates varied responses as conditions change.

Human morality is dynamic. Although humans may be born trust-
ing their parents and other immediate caregivers, children and adults test 
new relationships and feel their way over time to deepening levels of  trust. 
Humans invest each relationship with varying degrees of  trust, but there is 
no simple formula for trust and no one method for establishing the degree to 
which a given person will trust a new acquaintance. Josh Storrs Hall’s sug-
gestion that AMAs need a “cahooter guarantee protocol” as a moral instinct 
seems a bit too predetermined, from this dynamic, interpersonal perspective. 
A variety of  social mechanisms, including low-risk experiments with coop-
eration, the reading of  another’s emotions in specifi c situations, estimations 
of  the other’s character, and calculations regarding what one is willing to 
risk in a given relationship all feed into the dynamic determination of  trust. 
Each new social interaction holds the prospect of  altering the degree of  trust 
invested in a relationship. The lesson for AI research and robotics is that 
while AMAs should not enter the world suspicious of  all relationships, they 
will need the capacity to dynamically negotiate or feel their way through to 
elevated levels of  trust with the other humans or computer systems with 
which they interact.

A strength of  complex bottom-up systems lies in the way they dynami-
cally integrate input from differing social mechanisms. A weakness in using 
bottom-up architecture as a strategy for developing AMAs lies in the current 
lack of  understanding regarding what goals to use for evaluating choices 
and actions as contexts and circumstances change. Bottom-up systems are 
easy to build when they are directed at achieving one clear goal. When the 
goals are several or the available information is confusing or incomplete, it 
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is a much more diffi cult task for bottom-up engineering to provide a clear 
course of  action. Nevertheless, progress in this area is being made, allowing 
adaptive systems to deal more effectively with transitions between different 
tasks, for example in Deb Roy’s work.

Bottom to Top

Bottom-up strategies hold the promise of  giving rise to skills and standards 
that are integral to the overall design of  AMAs, but they are extremely dif-
fi cult to evolve or develop. Evolution and learning are fi lled with trial and 
error—learning from mistakes and unsuccessful strategies. Even in the 
accelerated environment of  computer systems, where many generations of  
artifi cial agents can mutate and replicate within a few seconds, evolution 
and learning can be very slow processes.

It also remains unclear what would be the appropriate goal for an evolv-
ing AMA. What fi tness criteria would determine which AMAs were allowed 
to replicate and mutate? How might that goal be usefully defi ned for a self-
organizing system? Jonathan Hartman, an undergraduate roboticist at Yale, 
suggested in a class paper he wrote for Wendell Wallach that engineers 
might use Asimov’s Three Laws as the fi tness criteria. Unlike the top-down 
application of  these laws, where they function as hard constraints, in an evo-
lutionary context the laws would function as looser guiding principles that 
the system strives to fulfi ll. Succeeding generations would be judged on their 
ability to best approximate these goals. The downside of  this approach to the 
laws is that they might never become hard constraints, increasing the risk 
of  harm caused by a robot. The strength of  this approach is that the robot 
might evolve a more dynamic relationship to the laws, treating them as fl ex-
ible and adaptive guiding principles. Such softer constraints might be better 
able to avoid the puzzles and problems that have motivated Hall, Lang, and 
other authors to reject Asimov’s laws altogether. Hartman’s hybrid approach 
combines the straightforward, intuitive, top-down principles of  Asimov’s 
laws with the dynamic fl exibility that makes bottom-up development so 
desirable.

We noted that bottom-up approaches to artifi cial morality might lack 
some of  the safeguards that systems guided from the top down by ethical 
theories offer. Top-down principles seem “safer,” although they often imply 
 idealistic standards that are hard to meet, even for humans, and they might 
involve computational complexities that will make them diffi cult, if  not 
unfeasible, to implement. Permitting a learning AMA to continue to make 
mistakes as it develops moral reasoning is a luxury humanity may not be 
able to afford. In a controlled laboratory setting, it may be possible to create 
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a series of   learning or evolutionary situations through which an AMA could 
work its way toward a basic, acceptable level of  moral behavior. In theory, 
once this basic level had been achieved for one system, its program or hard-
ware could be reproduced indefi nitely. Each of  the systems reproduced in this 
way would need to continue learning to accommodate changing and unan-
ticipated circumstances. But the initial basic training and development dur-
ing the protected period would not need to be repeated for every AMA, saving 
everyone from the mistakes of  child-like learning machines.

A strength of  bottom-up engineering lies in the assembly of  components 
to achieve a goal. Presuming, however, that a sophisticated capacity for 
moral judgment will just emerge from bottom-up engineering is unlikely to be 
enough, and this suggests that the analysis provided by top-down approaches 
will also be necessary. Jonathan Hartman’s idea already suggested a kind 
of  hybrid approach, but there are also ways of  integrating top-down ethi-
cal theories more directly into the AMAs themselves. If  the components of  a 
system are well designed and can be integrated properly, then the breadth of  
choices open to an AMA in responding to challenges arising from its environ-
ment and social context will expand. An AMA with the top-down capacity 
to evaluate those options would be capable of  selecting the actions that both 
meet its goals and fall within acceptable social norms. However, this is not 
the only way to conceive of  a hybrid approach to AMA design, as we shall 
explain in the next chapter.
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Chapter 8
m e rg i n g  t o p - d o w n 
a n d  b o t t o m - u p

Hybrid Moral (Ro)bots

If  neither a pure top-down approach nor a bottom-up approach is fully ade-
quate for the design of  effective AMAs, then some hybrid will be necessary. 
Furthermore, as noted, the top-down, bottom-up dichotomy is somewhat 
simplistic. Engineers commonly start with a top-down analysis of  complex 
tasks to direct the bottom-up assembly of  components.

The top-down approaches discussed in chapter 6 emphasize the impor-
tance of  explicit ethical concerns that arise from the agent’s relationship to 
the world outside itself. Top-down principles and duties represent the desire 
of  communities to capture generic directives for determining which forms of  
behavior are acceptable and which are unacceptable. The top-down ethical 
restraints reinforce cooperation, through the principle that moral behavior 
often requires limiting one’s freedom of  action and behavior for the good of  
society, in ways that may not be in one’s short-term or self-centered interest. 
Ethical principles, for example maximizing the aggregate good, and duties, 
for example the duty to be “just,” tend to restrict an individual’s options. 
They presume a context in which the actor has considerable freedom in the 
way she can act but her actions should be confi ned to morally praiseworthy 
behavior. Top-down principles may also play an important role in helping 
moral agents sort out cases where moral intuitions are unclear.

Bottom-up approaches are directed more at cultivating the holding of  
implicit values on the part of  the agent. Values that emerge through the 
bottom-up development of  a system refl ect the specifi c causal determinants 
of  a system’s behavior. In chapter 7, we discussed approaches derived from 
evolution and machine learning. These approaches produce systems whose 
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choices and fl exibility in behavior expand beyond the limited actions avail-
able to refl exive systems or rigid rule followers. The ethical restraints honored 
by the evolving system or learning system are those that will tend to increase 
its choices and its opportunity to survive and fl ourish. For example, cooper-
ating with members of  the agent’s community will limit some choices while 
expanding opportunities.

Furthermore, as we will discuss in chapter 10, a moral agent may need to 
be embodied in the world, have access to emotions or emotion-like informa-
tion, and have an awareness of  social dynamics and customs if  it is to function 
properly in many contexts. Some of  the morally relevant input implied by these 
suprarational faculties (beyond the capacity to reason) might be a byproduct 
of  the bottom-up architecture, but this is by no means  guaranteed.

Both top-down and bottom-up approaches will undoubtedly be required 
for the task of  engineering AMAs. But hybrid approaches pose an additional 
problem, meshing both diverse philosophies and dissimilar architectures. 
Genetically acquired propensities, the discovery of  core values through 
experience, and the learning of  culturally endorsed rules all infl uence the 
moral development of  children. During young adulthood, those rules may be 
reformulated into abstract principles that guide one’s behavior in a top-down 
fashion. It is likely that the design of  praiseworthy AMAs will also require 
computational systems capable of  integrating diverse inputs and infl uences, 
including top-down values informed by cultivated implicit values and a 
rich appreciation of  context. To illustrate the way top-down and bottom-up 
aspects interact, we consider the possibility of  utilizing a connectionist net-
work to develop a computer system with good character traits or virtues.

Virtual Virtues

As we mentioned in chapter 6, virtue theorists, rather than focusing on con-
sequences or rules, emphasize the importance of  developing character or 
good habits: what one is takes precedence over what one does.

Do the virtues guarantee good behavior? In Plato’s dialogue of  the Meno,
Socrates argues that they would because the virtues couldn’t be misused: if  
someone really had a virtue it would be impossible for them to act as if  they 
did not have it. (Conversely, acting badly would show that they really didn’t 
have the virtue!)

What are the virtues? Plato identifi ed four cardinal virtues: wisdom, cour-
age, moderation, and justice. Aristotle expanded this list and divided them into 
intellectual and moral virtues. Writing sixteen hundred years later, Thomas 
Aquinas added the theological virtues, which hark back to St. Paul’s discus-
sion of  faith, hope, and charity (love) in his fi rst letter to the Corinthians.
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Just as utilitarians do not agree on how to measure utility, and deontolo-
gists do not agree on which list of  duties apply, contemporary virtue ethi-
cists do not agree on a standard list of  virtues that any moral agent should 
exemplify. In his 1995 French bestseller A Small Treatise on the Great Virtues,
the French atheist André Comte-Sponville offered eighteen virtues, includ-
ing politeness and humor. Other lists of  virtues have exceeded one hundred. 
Furthermore, what counts as a virtue may differ from community to com-
munity, leading some theorists to argue that virtue theory is wedded to a 
particular community’s values and may be problematic for a multicultural 
society. Rather than focusing on these differences, we will direct our atten-
tion to the computational tractability of  virtue ethics: could one make use of  
virtues as a programming tool?

A key to this question may even be found in Aristotle’s suggestion that 
the moral virtues are distinct from practical wisdom and intellectual virtues. 
Aristotle thought that the intellectual virtues could be taught, whereas the 
moral virtues had to be learned through habit and practice. This suggests 
that a different approach might be needed for different virtues if  they are to 
be implemented in AMAs. The possibility of  teaching the intellectual virtues 
would suggest that it’s possible to describe rules or principles explicitly. How-
ever, for the moral virtues, the emphasis on habit, learning, and character 
seems to suggest bottom-up processes of  discovery or learning by an indi-
vidual through practice.

It’s very unlikely that the virtues can be neatly divided into top-down and 
bottom-up approaches. In our view, they are hybrids. But it’s very diffi cult 
to start building hybrids before one has the pieces to hybridize from, and for 
this reason, it’s useful to approach the task of  building computers with char-
acter either as a top-down implementation of  virtues or as the development 
of  character by a learning computer. The former approach views virtues as 
characteristics that can be programmed into the system. The latter approach 
stems from the recognition of  a convergence between modern “connection-
ist” approaches to neural networks and virtue-based ethical systems, par-
ticularly that of  Aristotle. Connectionism focuses on the development and 
training of  neural networks through experience and examples, rather than 
on abstract theories captured by language and rules.

Top-Down Approaches to Virtues

The task of  programming virtues into a computational system runs into 
problems similar to those of  the rule-based approaches: confl icts between 
virtues, incomplete lists of  virtues, and especially diffi culties with defi nitions. 
Virtues affect how people deliberate and how they motivate their actions, but 
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an explicit description of  the relevant virtue rarely occurs in the content of  
the deliberation. For instance, a kind person does kind things but typically 
will not explain this behavior in terms of  her own kindness. Rather, a kind 
person will speak of  motives focused on the benefi ciary of  the kindness, for 
example, “She needs it,” “It will cheer him up,” or “It will stop the pain.” 
Besides revealing some of  the complexities of  virtue theory, this example also 
demonstrates that the boundaries between the various ethical theories, in 
this case utilitarianism and virtue-based ethics, can be quite fuzzy. Indeed, 
the very process of  developing one’s virtues is hard to imagine indepen-
dently of  training oneself  to act for the right motives so as to produce good 
 outcomes.

Top-down implementations of  the virtues are especially challenged by 
the fact that virtues intrinsically involve complex patterns of  motivation and 
desire. A particular virtue—for example, being kind—can affect almost any 
activity a person engages in; it has system wide effects. An artifi cial agent 
applying virtues in a top-down fashion would need to have  considerable 
knowledge of  psychology to fi gure out how to apply them in a given situation. 
For instance, what should one do when an action seems both to apply and to 
violate a virtue? Imagine that you—or your (ro)bot—have been asked by two 
people for a favor, but you can only help one of  them. The other will perceive 
your rejection as unkind. One might feel that being unkind is unacceptable, 
but how does one determine which party’s request to honor? A virtue-based 
AMA, like its deontological cohorts, could get stuck in endless looping when 
checking if  its actions are congruent with the prescribed  virtues, then refl ect-
ing on the checking, and so on.

Perhaps some of  these computational problems can be mitigated by link-
ing the virtues to functions and tailoring them sharply to the specifi c tasks of  
an AMA. Virtues were traditionally linked to function in the Greek tradition. 
It was considered important for each member of  the community to develop 
the virtues that would facilitate his performing his function well. For exam-
ple, a soldier was in particular need of  courage. Likewise, a (ro)bot’s virtue 
perhaps doesn’t need (initially) to be as broad as something like “kindness” 
but could involve the particular tasks associated with being kind in the role 
it has been given.

Still, we think it would be a mistake to make (ro)bot virtues too domain 
specifi c. Virtues that are stable across a broad range of  features provide a 
strong basis for trust. It has been claimed that if  you know that someone is 
kind in one context, you can be reasonably confi dent that she will be kind 
in others. This view can be challenged, however, by the existence of  many 
exceptions; for example, Oskar Schindler risked much to help others escape 
the Nazis yet was deceitful in his own family life. Nevertheless, the virtues 
are often presumed to provide stability because if  one exemplifi es a virtue 
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in some circumstances, one is less likely to behave as if  one does not have it 
in similar circumstances. Such stability is a very attractive feature, particu-
larly for AMAs that need to maintain “loyalty” under pressure while deal-
ing with various, not always legitimate sources of  information. In humans, 
the stability of  virtues, insofar as it exists, largely stems from their being 
emotionally grounded. One’s trust in others to do “the right thing” emerges 
from the foundation of  shared moral sentiments. The diffi culty posed for 
a designer of  AMAs is to fi nd a way to implement the same stability in a 
“cold” unemotional machine. A virtuous android may require emotions 
of  its own as well as emotionally rooted goals, for example, happiness. Per-
haps the artifi cial  simulation of  an admirable goal or desire to meet the 
criterion of  being virtuous will suffi ce, but in all likelihood this will only be 
found out by going through the actual exercise of  building a virtue-based 
computational  system.

Connectionist Virtues

After presenting his virtue-based theory, Aristotle spends much of  the Nico-
machean Ethics discussing the problem of  how one is to know which habits 
will lead to the “good,” or happiness. He is clear at the outset that there is no 
explicit rule for pursuing this generalized end, which is only grasped intui-
tively. The end is deduced from the particulars, from making connections 
between means and ends, between the specifi c things one needs to do and the 
goals one wishes to pursue. Humans learn what is “good” through intuition, 
induction, and experience. For example, through asking good people about 
the good, one’s generalized sense of  the goal comes into focus, and the ideal-
ized individual acquires practical wisdom and moral excellence.

Several writers have noted that connectionism, or parallel distributed pro-
cessing, has similarities to Aristotle’s discussion of  how people acquire vir-
tues. As Gips puts it, “the virtue-based approach to ethics, especially that of  
Aristotle, seems to resonate well with the modern connectionist approach to 
AI. Both seem to emphasize the immediate, the perceptual, the non- symbolic. 
Both emphasize development by training rather than by the  teaching of  
abstract theory.”

Connectionism is a strategy for modeling the emergence of  complex 
behavior through interconnected networks of  simple units each perform-
ing basic tasks. Connectionist models are usually called artifi cial neural net-
works, and although they ignore many important properties of  biological 
neurons, they share some of  the same processing capabilities. One strength 
of  connectionism is that artifi cial neural networks are able to learn to recog-
nize patterns or build categories naturally, by detecting statistical regularities 
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in complex inputs. This can be accomplished without explicit instructions or 
programming of  the concepts or categories that the network learns.

Neural networks are trained by incrementally changing the strengths 
of  the connections between network units. This allows the network to form 
associations between different patterns of  input and output. For example, 
connectionist networks have been trained to map written words onto their 
associated phonemes, making it possible for an artifi cial neural network 
to read a piece of  text aloud. Through the gradual accumulation of  data 
about the relationships among its inputs, the network can also generalize 
its responses beyond the particular examples on which it has been trained. 
Thus, a trained network may have the capacity to read new letter combina-
tions by associating them with the appropriate phonemes.

In 1995, Paul Churchland proposed that connectionist learning alone is 
enough to explain the development of  moral cognition. Churchland and his 
wife, Patricia, are philosophers of  cognitive science at the University of  Cali-
fornia, San Diego. They are strong allies of  the attempt to ground ethics in 
a naturalistic foundation, free from either the supernatural or the semantic 
content of  abstract concepts. Pat Churchland, whose work is rooted in the 
insights  provided by neuroscience, has discussed the need for a description 
of  how values emerge in evolutionary terms. Paul Churchland’s thesis about 
the suffi ciency of  connectionist learning for the development of  moral cogni-
tion is far from fully developed and is not specifi cally wed to Aristotle’s ethics. 
However, other philosophers, for example William Casebeer at the U.S. Air 
Force Academy, note the fi t between connectionism and Aristotle as they try 
to fl esh out a naturalized framework for how ethics emerged. For Casebeer, 
connectionism is an appropriate framework for naturalized ethics, if  one 
understands judgment in purely biological terms “as the cognitive capacity 
to skillfully cope with the demands of  the environment.”

The suggestion that connectionism might be especially appropriate for 
morality was also made by Jonathan Dancy, one of  the foremost promot-
ers of  moral particularism. The top-down approaches to ethics, as we have 
noted, are based on fi nding and representing general or universal principles 
underlying moral decision making. Many philosophers think that you can’t 
be rational if  you don’t have consistent moral principles that apply univer-
sally. But not all philosophers agree. The view in ethics called “particular-
ism” holds that moral reasons and categories are richly context-sensitive—so 
much so, in fact, that principles provide people with only very rough guides 
to appropriate action. The particularist’s view is that just as there is no gen-
eral rule about whether birds can fl y, there may be no general rule about 
whether killing another human being is ultimately wrong. The contextual 
details of  when actions are permissible may be so rich that it is impossible 
to summarize them in universal moral principles. Connectionist models are 
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good at capturing context-sensitive information without explicit or general 
rules. Thus connectionism seems as though it would be a good fi t with par-
ticularism. However, Dancy, like Churchland, has not offered a specifi c model 
of  how moral cognition would be developed in a neural network.

It is interesting and suggestive to note the similarity between Aristotelian 
ethics and connectionism, and the possibility that character might emerge 
from a connectionist model of  how the brain works. Given that virtues are 
context-sensitive, the power of  connectionism to unite virtue theory and 
particularism is attractive. However, existing connectionist systems are a 
long way from tackling the kind of  complex learning tasks one associates 
with moral development. The challenge of  implementing virtues within a 
neural network remains a formidable one.

Hybrid Virtue Ethics

Beyond the diffi culties posed by existing neural networks that lack the 
robustness to tackle complex ethic challenges, connectionist theory does not 
explain how neuronal activity makes the leap from the unconscious building 
up of  patterns to the consciousness of  a pattern. Generally, one expects that 
moral agents can both act appropriately and justify their actions. Hopefully, 
the justifi cation of  a moral judgment is tied to the actual reason the agent 
made the judgment and not merely a tale fabricated after the fact.

In a dialogue between Paul Churchland and the cognitive philosopher 
Andy Clark in the 1990s, Clark raised the question of  whether connectionist 
learning alone is enough to explain the development of  moral cognition.

Historically, the bias of  computational cognitive science is toward the indi-
vidual. Ethical theory, by contrast, has concerned itself  from the outset 
with individuals considered as parts of  larger social and political wholes. 
The attempt to formulate a joint image of  moral cognition helps correct 
the historical biases of  each tradition. The ethicist is asked to think about 
the individual mechanisms of  moral reason. The cognitive scientist is 
reminded that moral reason involves crucial collaborative, interpersonal 
dimensions. Perhaps neither party strictly requires the other to remind it of  
the neglected dimensions. But in practice, it is often the joint confrontation 
of  the issues that yields progress in the search for an integrated image.

Clark’s vision is that of  a complementarity between the bottom-up forces 
that form an individual’s moral sensibility and the top-down considerations 
regarding the relationship of  the individual to the community. However, the 
discussion between Clark and Churchland stayed at an abstract level. The 
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details of  how a connectionist learning system might be combined with a 
top-down architecture that accommodates social and political considerations 
while providing explanations tied to the reasons a judgment was made await 
the attention of  enterprising researchers. In chapter 11 we’ll discuss a hybrid 
platform of  top-down and bottom-up approaches toward a more human-
like AMA that is a step in that direction. But fi rst, let’s look at a few basic 
experiments directed at implementing moral decision making in  computer 
systems.
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Chapter 9
b e y o n d  va p o rwa r e ?

First Steps

Autonomous moral agents are coming. But where are they coming from? In 
this chapter, we describe software that is being designed with ethical compe-
tency in mind. Full AMAs are still “vaporware”—a promise no one knows 
how to fulfi ll. But software design has to start somewhere, and these proj-
ects provide the steam needed to drive the mental turbines that will generate 
 further research.

In this chapter, we’ll canvass three general approaches to ethical soft-
ware. Logic-based approaches attempt to provide a mathematically rigorous 
framework for modeling ethical reasoning in a rational agent. Case-based 
approaches explore various ways of  inferring or learning ethically appro-
priate behavior from examples of  ethical or unethical behavior. Multiagent 
approaches investigate what happens when many agents following various 
ethical strategies interact with one another. It’s likely that there are other 
approaches than these three, but they are the only ones being applied where 
some research into actual coding has already commenced.

Logically Moral

Selmer Bringsjord, director of  Rensselaer Polytechnic Institute’s AI and Rea-
soning Laboratory, sees logic as the best hope for AMAs. Bringsjord believes 
that humans can, and should, demand proof  of  the correctness and trustwor-
thiness of  their (ro)bots. But to make the ethical correctness of  the behavior 
specifi ed by a program provable, that program would have to be written in 
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terms of  the very same ethical concepts appearing in the proof. (Correct proofs 
aren’t magical: they don’t pull rabbits out of  hats.) Thus, a provable ethical 
program would have to contain logical operators that refer to the relevant eth-
ical facts. Bringsjord’s approach: write programs that use “deontic logics”—
systems of  logic that describe relationships among duties and obligations.

Deontic logics allow reasoning about what agents ought to make happen. 
This requires a way of  representing what ought to be the case (an “operator,” 
in the logician’s jargon) and some rules for manipulating statements that use 
the new operator. In addition to the basic logical machinery, it’s necessary 
to represent the specifi c obligations of  different agents in different contexts. 
And because different theories may specify different obligations, there are as 
many deontic logics as there are ethical theories. But once a set of  obligations 
has been fully encoded as a deontic logic, the approach has the advantage 
that very well-understood methods of  theorem proving can be applied to the 
resulting  formulas.

The Rensselaer group has implemented some different deontic logics and 
used software reasoning techniques on them. In one example, in which a 
(ro)bot needs to decide whether to turn off  life support (our worst night-
mare), they implemented a simple utilitarian deontic logic and, using theo-
rem-proving software that is widely available, were able to generate proofs 
about the relative adequacy of  different ethical codes for ensuring the desired 
outcomes. But in another example, they found that the logic led to a con-
tradiction when dealing with some common-sense descriptions of  obliga-
tions. It seems plausible that AMAs will need to be able to reason about what 
should happen after an obligation has been violated, so Bringsjord and his 
colleagues conclude that the logic must be modifi ed in some way to handle 
this. They are actively pursuing this challenge.

A rigorous, logic-based approach to software engineering requires AMA 
designers to formulate, up front, a consistent ethical code for any situation 
where they wish to deploy an AMA. Bringsjord admits that the approach will 
never be suitable for inserting AMAs into situations where humans them-
selves cannot say what the relevant principles are for making life-or-death 
decisions. Logic does have its limits, and in Bringsjord’s view the costs of  
building AMAs without respecting these limits may be the future imagined 
by Bill Joy in an infl uential article he wrote for Wired in 2000: a future that 
doesn’t need us. As Bringsjord and colleagues put it in their 2006 research 
article, “all bets are off  if  we venture into amoral territory.”

Perhaps Bringsjord is right that top-down, logic-based approaches are the 
only ones that can be trusted for fully autonomous deployment. Neverthe-
less, other researchers have their eyes on less autonomous applications and 
are pursuing programming approaches that can support ethical reasoning in 
a variety of  applications. The three case-based approaches we describe next 
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use different methods for generalizing from specifi c cases of  ethical decision 
making. The fi rst approach is MedEthEx by Susan and Michael  Anderson, 
which we have mentioned earlier. MedEthEx learns how to weigh duties 
against each other from the decisions made about specifi c cases by medical 
ethics experts when duties confl ict. The SIROCCO and Truth-Teller systems 
implemented by Bruce McLaren use “casuistic” reasoning—an approach 
to reasoning from cases that proceeds by fi nding analogies rather than 
using top-down principles to guide decisions. Our third example is Marcello 
 Guarini’s connectionist approach to generalizing ethical decision making.

The developers of  MedEthEx begin by adopting W. D. Ross’s theory of  
prima facie duties, which they apply specifi cally to medical situations. The 
three duties (autonomy, benefi cence, and nonmalefi cence) they adopt from 
Ross’s longer list are also known as principles in bioethics, and the ethical the-
ory based on them is called “principlism.” A prima facie duty is one that can 
be overridden by another duty. For instance, a physician who has a prima 
facie duty to provide the most effective medical treatment may also run up 
against another prima facie duty to respect the autonomy of  a patient who is 
refusing medical treatment. How are such confl icts to be resolved? On a pure 
deontic logic approach, it would be necessary to specify in advance some 
higher principles that would allow one to prove that the physician should (or 
shouldn’t) try again to persuade the patient to accept the treatment. How-
ever, such principles aren’t always specifi able in advance, and even experts 
may be unable to explain the reasoning that underlies the judgments they 
would make about particular cases.

MedEthEx uses an inductive logic system based on the Prolog program-
ming language to infer a set of  consistent rules from the judgments medi-
cal ethics experts have provided about specifi c cases. The cases used to train 
the system are represented by sequences of  numbers whose values, from +2

to −2, indicate the extent to which each prima facie duty is satisfi ed or vio-
lated in that situation. The recommendation of  the expert in each of  these 
cases is used by the program to infer how the expert weighed the various 
duties against each other when choosing between a pair of  actions, for exam-
ple, accepting a patient’s decision or trying to convince him to change it. 
The Andersons tested their system using cases that were coded for the three 
prima facie duties: nonmalefi cence (do no harm), benefi cence (improve the 
patient’s health), and autonomy (allow patients to make their own treatment 
decisions). Four cases where a consensus of  experts recommended accept-
ing the patient’s decision and four cases where the experts recommended 
overriding the patient were used to train the system. The Andersons then 
inspected the decisions suggested by MedEthEx on  additional cases.

Through its learning algorithms, MedEthEx builds a set of  conditions describ-
ing when one action should be preferred over another. In this  experiment, the 
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program generated a set of  rules for evaluating the possible decisions about the 
patient’s treatment. So, for example, accepting a patient’s decision to refuse a 
life-saving treatment yields a positive gain in autonomy, has a negative effect 
on benefi cence, and has little effect on malefi cence (as the physician is not 
doing any harm). The program generates numbers to represent the relative dif-
ferences between the allowable satisfaction or violation levels of  each duty, and 
applies a threshold to determine whether the expert would be willing to accept 
the violation of  a specifi c duty in order to allow satisfaction of  the others.

The approach taken by the Andersons is almost completely top-down—
the basic duties are predefi ned, and the classifi cation of  cases is based on 
those medical ethicists generally agree on. Although MedEthEx learns from 
cases in what might seem in a sense to be a “bottom-up” approach, these 
cases are fed into the learning algorithm as high-level descriptions using top-
down concepts of  the various duties that may be satisfi ed or violated. The 
theory is, as it were, spoon-fed to the system rather than it having to learn 
the meanings of  “right” and “wrong” for itself.

The Andersons would not claim that MedEthEx is suitable for autono-
mous decision making in the clinic, although they do see this kind of  software 
being useful in an advisory role. They do not address the worry we described 
in chapter 3 of  Peter Kahn and Batya Friedman, who argue that comput-
erized advisory systems are likely to erode the autonomy and responsibility 
of  primary caregivers. Of  course, even if  they should not be deployed in the 
clinic for this reason, the systems might still be useful for training purposes.

The Andersons see MedEthEx as of  interest to ethicists, even if  it is not 
ultimately used by physicians. The system generates rules for weighing the 
different prima facie duties, enabling ethicists to articulate more general 
principles that would otherwise be hard to discern in their own decision-
making practices. The Andersons note that the system “discovered” or made 
explicit a decision principle that covered the possible cases.

The complete and consistent decision principle that the system discovered 
can be stated as follows: A healthcare worker should challenge a patient’s 
decision if  it is not fully autonomous and there is either any violation of  the 
duty of  nonmalefi cence or a severe violation of  the duty of   benefi cence. 
Although, clearly, this rule is implicit in the judgments of  the consensus 
of  ethicists, we believe that this principle has never before been stated 
 explicitly.

One of  the Andersons’ declared goals is to incorporate the principles dis-
covered by MedEthEx into the decision procedures of  robots. Their latest 
project is EthEl, which they describe in their article on “Ethical Healthcare 
Agents.” EthEl’s task is to remind elderly patients to take their medications. 
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But when does reminding become unwanted nagging? The Andersons argue 
that EthEl should balance respect for patients’ autonomous wishes to skip 
medications against the harm that could result from doing so. The particu-
lar context in which EthEl operates brings in the element of  time sensitivity. 
The longer a patient goes without the medication, the closer the potential 
realization of  harm becomes. EthEl’s decision-making procedure uses a time-
based formula for changing the values assigned to the duties of  nonmalefi -
cence, benefi cence, and respect for  autonomy for the various possible actions 
of  reminding, staying silent, or notifying an overseer. For example, after the 
patient has refused the medicine over a period of  hours or days, a doctor 
could be contacted by the system.

How well will the model underlying MedEthEx and EthEl scale up to deal-
ing with more duties, more cases, and more diversity and disagreement 
among experts about the “correct” decisions? And could the Andersons’ gen-
eral approach play a role in a hybrid system, acquiring the relevant notions 
of  duty developmentally rather than building them in from the beginning? 
We don’t know, and neither do they. However, they have proposed building a 
system that generates its own rules as the next project in their research.

Making Cases Explicit

Of  course, it is best not to put all one’s software eggs in one basket. Bruce 
McLaren’s casuistic systems represent another arena in which software is 
being applied to ethical reasoning. In some dictionaries, casuistry is defi ned 
as a negative term, involving fallacious reasoning. But in ethics and law, the 
term is associated with a particular approach to decision making that relies 
on comparing new cases to one or more older cases. A decision on the new 
case is based on its similarity to the older cases. Such a decision need not 
involve any explicit theoretical principles—casuistry therefore implements a 
type of  bottom-up approach to ethical decision making.

McLaren’s approach is a response to the movement over the past two 
decades to require instruction in engineering ethics in all accredited engi-
neering programs in the United States. Engineers on the whole have little 
patience for philosophical abstractions and fi ctional counterexamples. But 
they are very familiar with case studies. When a bridge fails, or a ship sinks, 
or a spacecraft explodes, engineers will study the case from all conceivable 
angles to try to determine what went wrong.

Exactly these kinds of  case studies, including the very public analysis of  
the Challenger explosion in the 1980s, fueled the rise of  engineering ethics as 
a teaching discipline. Case studies of  disasters revealed that often it was the 
engineers themselves who had failed, as much or more than the equipment. 
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Engineers often found themselves with divided loyalties, weighing obligations 
to employers against obligations to vaguely defi ned notions of  public safety.

To teach engineers about utilitarianism and deontology could be coun-
terproductive, because philosophers tend to go straight for the controversies. 
Their goal is to understand what distinguishes the various theories. To repeat 
the point we made in chapter 5, this is the difference between the agent-
 centered perspective of  the engineer and the judge-centered perspective of  
the philosopher. To the typical undergraduate engineer, however, it can seem 
as though the philosophers’ approach to ethics is just the game of  choosing 
whichever theory lets you justify what you intended to do anyway.

The case-study methodology applied to engineering ethics imposes a kind 
of  rigor by forcing engineers to identify the factors framing the problem, 
comparing these factors across cases, and evaluating the courses of  action 
suggested by different cases. Instead of  focusing on big theories, the meth-
odology is detail-oriented. In many ways, the difference in approach mirrors 
the difference between the applied science of  engineering and the theoretical 
abstractions of  physics.

McLaren has developed a “Truth-Teller” system that compares two cases, 
outlining their differences and similarities. As its name suggests, Truth-
Teller limits its purview to cases where an agent may or may not be obliged to 
reveal the truth—for example, a lawyer who may only sometimes be required 
to reveal his or her inexperience handling a particular kind of  case. McLaren 
followed a traditional symbol-processing approach to represent the reasons 
for and against telling the truth, and the professional and personal relation-
ships among the agents involved. Comparing two cases then becomes the task 
of  comparing the reasons and relationships between them, a task McLaren 
implemented using traditional machine reasoning techniques. The result is a 
program that can analyze the compared situations, and describe the reasons 
that agents might give for or against telling the truth in the new situation.

The task of  framing the problem becomes, from an AI perspective, the 
task of  fi nding a suitable representation scheme appropriate for the applica-
tion of  machine reasoning to the cases. McLaren’s initial approach deliber-
ately skips the hard work of  translating from ordinary English descriptions of  
cases to the formal data structures required for machine reasoning. The real 
intelligence in this system lies with the human operator taking the cases and 
representing the reasons that might be applied in those situations. Truth-
Teller alone is not capable of  this, but is instead fed a predigested version of  
the cases.

McLaren was well aware that Truth-Teller represents only the fi rst step on 
the way to real moral reasoning abilities. His “System for Intelligent Retrieval 
of  Operationalized Cases and Codes” (SIROCCO) is the second step. Like its 
predecessor, this system is also the product of  engineers’ attempts to guide 
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their ethical behavior on the basis of  previous cases. The system is based on 
the professional code of  ethics that has emerged from decades of  engineering 
experience, and taps into a database of  over fi ve hundred cases that have been 
reviewed by the NSPE. Given a new case to evaluate—for example whether 
an engineer has an ethical obligation to inform a client of  her suspicions 
about some potentially hazardous material—SIROCCO looks for possibly rel-
evant prior cases and possibly relevant lines from the NSPE code of  ethics.

The integration of  Truth-Teller and SIROCCO is an obvious next step. One 
major hurdle is that the two applications do not presently use the same repre-
sentation scheme. Matching the way SIROCCO and Truth-Teller represent cases 
would open up new possibilities. For instance, the computer could automatically 
search for other cases similar to the initial case and outline the ways the initial 
case is truly similar and different from each example it discovers. Presumably, 
this might then lead to a prioritization of  the most similar cases and the prospect 
of  the machine recognizing patterns or rules illustrated by those cases.

Truth-Teller and SIROCCO are both decision support tools rather than 
autonomous decision makers. Truth-teller helps users fi nd relevant compari-
sons between two cases; McLaren conceives of  SIROCCO as a tool for collect-
ing relevant information from a database of  cases and codes. Nevertheless, 
one can imagine a future case-based AMA constantly perusing databases to 
update its understanding of  rules and their application in exceptional situa-
tions. In this way, it might be possible to design an AMA whose application of  
rules or other constraints dynamically accommodates legal precedents and 
emerging guidelines.

McLaren’s SIROCCO depends on being able to represent the relevant fea-
tures of  the cases and produce a report of  the possibly relevant prior cases, 
highlighting elements of  the NSPE code that may be in confl ict. The system 
uses a more sophisticated representation language than both Truth-Teller 
and MedEthEx but remains within traditional symbol-processing approaches 
to AI. Despite the widely presumed limitations of  such approaches, we think 
McLaren’s project is to be applauded. The task of  designing an adequate 
representation scheme for ethical cases, containing the information needed 
for machines to reason about their ethical dimensions, is far from trivial. 
Whether or not it ultimately leads to sophisticated moral reasoners we’ll 
learn from future attempts to build on this model.

Learning Implicitly from Cases

As we discussed in chapter 8, several philosophers have thought that con-
nectionist approaches to learning and categorization are especially compat-
ible with the idea that moral decisions don’t fi t neat defi nitions. Jonathan 
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Dancy, one of  the foremost promoters of  moral particularism, was among 
these philosophers. However, he did not develop any specifi c models.

Recently, Marcello Guarini, a philosopher at the University of  Windsor in 
Ontario, Canada, has responded to Dancy’s suggestion and directly experi-
mented with connectionist models. Guarini implemented a recurrent neural 
network to do moral classifi cation, that is, a network that uses feedback con-
nections to associate inputs with an internal context. The output of  this basic 
network is a simple classifi cation—either “Acceptable” or  “Unacceptable”—
of  inputs such as “Jill kills Jack to make money” or “Jill kills Jack to defend the 
innocent.” These inputs are represented as coded vectors of  ones and zeros, 
rather than full English statements, and the output is likewise a binary one or 
zero. After training and refi ning this basic network with sample cases, Gua-
rini tested its ability to generalize to some novel inputs, comparing its output 
to students’ survey responses to the verbal descriptions of  the input. The sys-
tem eventually attained a 70 percent success rate.

Hoping to extend the approach, Guarini implemented a second network, 
which he called Metanet, with the task of  identifying “contrast cases”—that 
is, pairs of  cases from the basic classifi cation task that differ in only one input 
feature. For example, two otherwise identical actions might differ only with 
respect to the number of  innocent bystanders who suffer. Contrast cases are 
most informative about moral decision making when the result for one is 
acceptable and the other is unacceptable. Guarini’s hope was that Metanet 
could use such cases to revise initial classifi cations. However, Metanet had 
only limited success identifying such cases, and Guarini comments that his 
results have mixed consequences for the philosophical debate about particu-
larism. On the one hand, the basic network classifi er doesn’t literally consult 
moral rules or principles, thus seeming to support the particularist point of  
view. On the other hand, it does not follow that there are no principles that 
describe its behavior. Furthermore, identifying and refi ning the principles 
that it does use may be an important part of  sophisticated moral reasoning. 
Guarini also remarks that his networks are unable to give reasons for their 
classifi cations, construct moral arguments, or come up with creative solu-
tions to novel problems.

Guarini is under no delusions about the limited power of  his connec-
tionist model. His goals are more philosophical than practical: to test ideas 
about moral particularism. Here, however, we are emphasizing the practi-
cal before the philosophical. Do connectionist approaches have a role to 
play in the development of  AMAs? Almost certainly so, but not in the form 
of  simple, stand-alone classifi ers. The patterns of  data that go into human 
moral behavior are vastly larger than a vector of  a dozen or so bits repre-
senting stripped-down verbal descriptions of  complicated moral situations. 
Rather, the human agent’s internal context includes emotions and other 
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feelings. Experiments like Guarini’s help clarify these issues by showing the 
 limitations of  simple connectionist approaches to moral classifi cation, but in 
the end a much richer architecture will be needed, perhaps along the lines 
of  the learning intelligent distribution agent model, which we’ll discuss in 
chapter 11.

Aside from needing a richer internal model, all of  the implemented sys-
tems we have described so far in this chapter ignore most of  the external 
social aspects of  moral behavior. Arguably, morality emerges out of  inter-
actions among multiple agents who must balance their own needs against 
the competing demands of  others. We turn next to implementations of  
 multiagent systems.

Multibots

Some of  the earliest experiments in artifi cial morality were based in game 
theory and involved agents competing against one another in simplifi ed arti-
fi cial worlds. In chapter 7, we introduced Peter Danielson’s early ALife exper-
iments with “virtuous robots for virtual games” and the turn toward more 
complex and realistic environments these experiments prompted for him.

Danielson’s recent interest in real-world environments has taken a cou-
ple of  different paths. One of  these is a nascent program of  experimenta-
tion with actual robots. Another is a major effort to develop software that 
can support social networking. Danielson’s Norms Evolving in Response to 
Dilemmas (NERD) project focuses on using software to assist people in the 
democratic negotiation of  solutions to ethical issues, rather than serving as 
an impartial judge or arbiter. The NERD project attempts to uncover the full 
range of  moral views held by people from diverse backgrounds (instead of  the 
extremes that form the focus of  most philosophical arguments). Danielson 
suggests that three lessons from his work with NERD may feed into the design 
of  autonomous moral agents. First, AMAs will need ways of  managing reci-
procity with a variety of  different interactors (“kids, cats, kibitzers, and evil-
doers,” as he puts it). Second, there will not be a one-size-fi ts-all moral agent, 
but a variety of  different agents fi lling different roles and suited for different 
environments. Third, people and artifi cial agents will need advanced tools to 
help them see the ethical consequences of  actions in a complex world.

Danielson’s approach focuses attention on the social nature of  ethics. 
Although he has not yet developed the real-world robotic aspects of  his 
research program, the obvious place to take it is into social robotics. In the 
next chapter, we discuss research directed at making robots sociable, but we 
know of  no one yet who is building social robots with ethical behavior explic-
itly in mind. One possible venue for experimenting with ethical behavior in 
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social contexts is the Robosoccer tournaments, in which teams of  robots 
from around the world are pitted against each other. Indeed, graduate stu-
dents in Gregory O’Hare’s group at University College, Dublin, have been 
using  soccer-playing robots as their platform of  choice with systems includ-
ing Mauro Dragone’s “Robot Soccer Anywhere” and Brian Duffy’s “Social 
Robot Architecture,” among others. Duffy’s architecture combines Rodney 
Brooks–style subsumptive mechanisms with mechanisms for representation-
based reasoning that use a standard “belief-desire-intention” (BDI) agent 
model. These models are commonsensical representations of  how the beliefs 
and desires of  reasoning agents interact with their intentions to accomplish 
their practical goals. We think that the combination of  BDI and subsump-
tion architectures looks very useful for merging bottom-up and top-down 
approaches to AMAs. There is still a very long way to go before robots that 
play soccer will display ethical behavior, recognize and reward fair play, or 
punish unfair play, yet the pieces for conducting research on these problems 
appear to be falling into place.

Virtual environments, for example, the popular website Second Life, are 
other possible venues for experiments with artifi cial ethical agents. The rape 
of  one virtual character by another in the virtual world of  Second Life not 
only created alarm among users but also raises its own moral issues, and 
apparently leaped off  the screen and came to the attention of  a Belgian court. 
As virtual worlds evolve, virtual agents will in all likelihood be expected 
to monitor their own behavior, and Second Life would seem to be a useful 
platform for conducting experiments with ethically sensitive bots. However, 
in keeping with our goal for this chapter to get beyond vaporware, we only 
 mention these possibilities in passing.

Robots Who Disobey

Matthias Scheutz is a roboticist at Indiana University who has started to 
work on ethical behavior in robots. Scheutz’s robots don’t have android fea-
tures, and they aren’t cute or cuddly. They don’t try to convince you that they 
are trustworthy by playing on your instinctive responses to facial gestures. 
Rather, Scheutz’s robots are designed to engage in a collaborative task with a 
human being, taking voice commands and giving verbal confi rmations and 
occasional suggestions about what to do next. Targeting Asimov’s Second 
Law, Scheutz has looked at how people react to differences in the auton-
omy of  the robot vis-à-vis obeying human commands. In his experiments, 
robots had a pair of  goals—to record data being dictated by the person, and 
to transmit that data before its batteries go dead. Some of  the participants 
in the experiment interacted with a robot that always followed the person’s 
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instructions. Other participants interacted with a robot that would disregard 
a command if  it was necessary to stop taking data readings and transmit the 
data before its battery died.

In order to rate the participants’ attitudes to the robot, Scheutz asked them 
fi ve questions before they interacted with it. After the experiment, he asked 
the same fi ve questions, and eleven more about their experiences during the 
experiment. (Did they feel that the robot understood their commands? Did 
they think the robot was trying to cooperate? etc.) The opinions of  the partic-
ipants in the study varied widely. Nevertheless, Scheutz found that the auton-
omy of  the robot, that is, whether it sometimes disobeyed commands, had 
an infl uence on their responses. In a follow-up experiment, Scheutz added a 
change in voice pitch to the robot’s speech as an indicator of  urgency. When 
stress or fear rises, so does the pitch of  human voices. Scheutz’s robot spoke 
at a higher pitch as the time to battery failure approached, the condition in 
which disobedience to a direct command could occur. With this addition of  
a simple emotional cue, subjects who experienced the robot’s disobedience 
were more likely to agree with the statement that “it is a good idea for robots 
to have their own goals and be somewhat autonomous rather than fully 
 controlled by people.”

Even though his robot isn’t deceptively cuddly, Scheutz worries about the 
ethical implications of  adding an emotional cue. Is the robot’s rising voice 
pitch deceptive? The robot isn’t really stressed or afraid. It doesn’t really feel 
anything at all. But it may trick people into treating it as if  it has such char-
acteristics. This is the programmer’s ethical dilemma, not the robot’s, which 
itself  is not being deceptive at all. If  faking emotions has a positive ethical 
impact (to use Jim Moor’s term), perhaps the programmer is off  the hook, so 
long as this implicit ethical agent is restricted to the narrow range of  activi-
ties for which it is designed. A more autonomous moral agent would need to 
decide when deception is permissible and when it is not. But to our knowl-
edge, no one is  working on such sophisticated decision making. So before our 
discussion dissolves again into the cloudy realm of  vaporware, let us turn our 
attention to another approach.

SophoLab

What happens when sophisticated agents meet complex environments? Often 
it becomes impractical to make predictions without simulating the environ-
ment and the behavior. And as the social environment becomes more complex, 
ethical principles can have unforeseen consequences. Thought experiments 
are not powerful enough for understanding large-scale  interactions among 
sophisticated agents. Computational experiments offer better prospects.
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Vincent Wiegel has developed a system he calls “SophoLab” to model 
the interactions between multiple agents. Developed to meet Wiegel’s 2007

doctoral requirements at the University of  Delft, Sopholab represents each 
individual agent as a merger between a BDI model and a deontic, epistemic, 
and action logic. Wiegel believes that Sopholab provides a good platform for 
“experimental computational philosophy.” Unlike the much older game-
theoretical simulations of  ethical behavior, which focused on very simple 
agents following very simple behavioral strategies, agents in Wiegel’s system 
are represented as having multiple intentions, and plans to carry them out 
that can change with events. SophoLab permits what Wiegel calls “walk-of-
life scenario testing,” in which the responses of  agents to a full cycle of  daily 
events can be simulated.

Multiagent platforms such as Wiegel’s can be used to simulate what hap-
pens when very different agents with different sets of  intentions and duties 
interact. For instance, in a large medical system, patients, doctors, nurses, 
and insurance agents may all have access to private information about the 
patients. However, none of  the parties has access rights to all the information 
about a client. And while some individuals may be duty bound not to pass 
the information in their possession on to certain others, or outside certain 
situations, this does not preclude such information fl owing between those 
individuals by more circuitous routes. Furthermore, some patients may place 
additional restrictions on who can have access to specifi c information. Sim-
ulations can be used to test the adequacy of  privacy rules among complex 
networks.

SophoLab uses a multiagent software system to create the actual individ-
ual artifi cial agents that are able to reason about who should have access to 
medical records, credit reports, or other protected information. It simulates 
various agents that can act across a computer network, and each network 
may be in a domain that has its own restrictions and protocols. The indi-
vidual agents are in communication and cooperate with each other in order 
to achieve their respective goals.

Wiegel told us that “one can think of  these agents as small computer 
 programs . . . with ‘a mind of  their own,’ though still a very, very far cry from 
anything resembling human intelligence.” For future applications, he pro-
poses modeling other situations in which the actions of  artifi cial agents inter-
acting with other agents (who may be functioning under a variety of  rule 
systems) have a signifi cant impact, which is neither entirely predictable nor 
controllable. Robotic cars that participate in the daily fl ow of  traffi c are an 
example of  this challenge. The car may need to violate a traffi c law in order 
to avoid an accident, but in doing so it will also need to weigh the imperative 
to complete its assignment against the risks its action poses to other traffi c 
participants.
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Beyond Vaporware?

Software for ethics is in its infancy. To grow up, it will need something other 
than “more of  the same.” As ethicists stress, moral agency requires practical 
reasoning guided by careful refl ection and deliberation. However, in order 
to behave appropriately in many contexts, artifi cial agents will require more 
than reason alone. In the next chapter we discuss the value of  emotions (or 
simulations of  emotions), an aptitude for interacting socially, and knowledge 
of  social customs for a moral (ro)bot.
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Chapter 10
b e y o n d  r e a s o n

Why Kirk Trumps Spock

Is reasoning about morally relevant information all that is required for the 
development of  an AMA? Even though Mr. Spock’s capacity to reason far 
exceeded that of  Captain Kirk in the Star Trek series, the more emotional 
and intuitive Kirk was presumed by the crew of  the Enterprise to be a better 
decision maker. Why? If  (ro)bots are to be trusted, will they need additional 
faculties and social mechanisms, for example emotions, to adequately appre-
ciate and respond to moral challenges? And if  so, how will these abilities be 
integrated with the top-down and bottom-up approaches to moral decision 
making that we imagined a supportive ethicist providing to the engineering 
colleague who came looking for help?

Scientifi c knowledge about the importance of  emotions and sociability to 
human decision making has grown exponentially during the past half  cen-
tury. It is no accident that this deepening appreciation of  the subtlety, rich-
ness, and complexity of  the human mind has emerged concurrently with the 
attempts of  AI engineers to design computer systems with human faculties. 
Designing functional computerized systems necessitates thinking through 
each minute operation. Engineers have come to recognize that emotional 
intelligence, sociability, and a dynamic relationship with the environment 
are essential for (ro)bots to function competently in social contexts.

The engineer will have to be aware of  the latest research on the factors 
that infl uence decision making: having emotions, being embodied in the 
world, and being social animals with social skills—for example, the ability 
to read nonverbal cues and gestures. In this chapter, we will fi rst outline the 
importance of  suprarational faculties for moral decision making and then 
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describe the tentative steps engineers are taking to implement emotions in 
artifi cial systems. In chapter 11, we’ll discuss hybrid systems, including those 
that have social skills and virtues.

Importance of  Suprarational 

Faculties for Moral Decision Making

In chapter 2, we portrayed the evolution of  technology toward moral agency 
along two dimensions: increases in autonomy and increases in sensitivity to 
morally relevant information. From a traditional philosophical perspective, 
autonomy is tightly connected to rationality and normativity, concepts that 
have been central to ethics. The availability of  morally relevant informa-
tion, however, has seemed to traditional ethicists to be less central to their 
concerns. They wish to distinguish what an agent is sensitive to, its actual 
moral psychology, from what ought to be the case. Ethicists have long recog-
nized that shame, guilt, and other emotions play a central role in regulating 
human behavior, but ethicists are more concerned with whether they should 
play that role.

Claims that emotions and other suprarational faculties actually provide 
the basis for morality itself  are particularly controversial. For example, social 
psychologist Jonathan Haidt of  the University of  Virginia argues that disgust 
is a moral emotion. Traditional ethicists would insist on maintaining a strict 
separation between disgust reactions and moral categories. Again, it comes 
down to respecting the is/ought distinction. The fact that some people do 
move from disgust reactions to moral claims (e.g., claiming that homosexu-
ality is wrong because it is disgusting) is, the traditional ethicist points out, a 
lamentable mistake, not a serious contribution to moral philosophy.

The ins and outs of  this debate are considerably more subtle than we can 
discuss here; fortunately, we can sidestep these issues. In our discussion of  
emotions, feelings, and social mechanisms, we will concentrate on how they 
provide additional channels for acquiring morally relevant information. 
The practical goal of  building AMAs requires, we argue, attention to these 
suprarational capacities. Although emotions and feelings can bias decisions 
toward unethical acts, they are also rich sources of  information that may 
be diffi cult to derive in other ways. Fear, for example, involves a felt bodily 
response to a dangerous situation that requires attention. Often, fear is felt 
before the mind consciously registers the cause of  the danger.

The words “feeling” and “emotion” are typically used to refer to different 
things. For example, it may be correct to talk about feelings of  pain, but pain 
is not normally considered an emotion (although pain may cause emotions, 
for example anger or sadness). Emotions themselves also typically involve 
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feelings (e.g., sadness may involve a kind of  aching sensation or a feeling of  
lethargy). Scientists and philosophers often classify both feelings and emo-
tions under the umbrella term “affective” states, leading to fi elds of  research 
such as “affective neuroscience” and “affective computing”. Terminology 
aside, for our purposes the most important point is that feelings and emo-
tions present comparable challenges for AI.

Affective states are crucial components of  the prosocial responses that 
motivate normal moral behavior. (These are responses that appear to be lack-
ing in many psychopaths.) Emotions and feelings help people to intuit the 
mental states of  others and to be sensitive to their needs. One’s own experi-
ences of  pain seem to be a necessary condition for empathy with the pain of  
others (although the capacity to feel pain is not suffi cient for empathy). Emo-
tions help one discern how a given course of  action is affecting and will affect 
others. When one sees fear on the face of  another and realizes that one is the 
source of  that fear, this knowledge contributes to one’s ability to modulate 
one’s actions and thereby alleviate the other person’s anxiety. Ethical reason-
ing would have very little motivational force if  humans lacked concern for 
how their behaviors make others feel.

We have noted that the ability to read the emotions of  others would be 
helpful for a service robot interacting with people in the home. The robot 
should recognize when the people it interacts with are in distress or fright-
ened. But emotions aren’t the whole story. A robot interacting with humans 
in a social context should be capable of  making social gestures that indicate 
its intentions, allowing people to form appropriate expectations about its 
behavior. Consider the way two people coordinate bringing a large piece of  
furniture into a house—verbal expressions and subtle movements all convey 
the ongoing intention to work together toward the successful completion of  
this diffi cult job. If  no one else is available, it would be wonderful to have the 
help of  a robot with such a laborious task, but only if  one could rely on active 
coordination of  actions with the robot. Social mechanisms—for example, 
the ability to read one another’s facial expressions or emotions—contribute 
to refi nements of  behavior that people expect from each other, and will also 
be necessary for robots if  they are to function to a high degree of  competence 
within social contexts.

The importance of  emotional intelligence and social skills raises the ques-
tion of  the extent to which an artifi cial agent must emulate human facul-
ties to function as an adequate moral agent. Morality is a distinctly human 
enterprise. Thus it is natural that humans would try to reproduce human 
skill sets in designing an AMA that lives up to humans’ moral standards. The 
substantiation of  human skills within AI holds a fascination of  its own. But 
computers, as they are at present, are very different from humans, having 
both advantages and disadvantages in comparison to humans. Computers 
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might be better than humans in making moral decisions, insofar as they can 
very quickly receive and analyze large quantities of  information (provided 
it is appropriately formatted) and can rapidly consider alternative options 
(again provided that the options are easily represented). Furthermore, their 
lack of  genuine emotional states would make them less vulnerable to emo-
tional hijacking. This is an important reason for Ronald Arkin’s belief  that 
battlefi eld robots will behave morally better than human soldiers operating 
under similar circumstances. Humans, however, are far superior to comput-
ers in managing information that is incomplete, contradictory, or unformat-
ted, and in making decisions when the consequences of  actions cannot be 
easily determined.

Computer intelligence is built on a logical platform free from desires, 
drives, and goals other than those that engineers design into the system. 
Human cognitive faculties evolved from and develop alongside an instinc-
tive emotional platform directed at survival and procreation. This difference 
underscores the paradoxical quality of  the challenge of  developing comput-
ers with emotions. Just as Deep Blue II beat Gary Kasparov by playing chess 
in a manner different from the way a human would play, it is quite conceiv-
able that an artifi cial agent might display moral judgment without utilizing 
the same cognitive or affective tools a human moral agent would apply.

Human interactions follow a dance that is shaped by the actions of  oth-
ers, and involves one’s own and others’ embodied responses to changes in 
the world, the way they respond to one’s actions, one’s intuitions about their 
intentions, and one’s knowledge of  the range of  appropriate responses in the 
specifi c social context. When one person moves into another person’s space, 
there can be a variety of  responses. If  the person is perceived as invading one’s 
space, one is likely to automatically recoil (unless, say, one was already spoiling 
for a fi ght). Recoiling at the invasion of  one’s space is an emotionally activated, 
embodied, social response. The actions, words, intonation, facial expressions, 
and body posture of  the other person before and after one recoils all contribute 
to how one interprets the other’s intent. Furthermore, what might be consid-
ered personal space varies from one cultural context to another.

The most natural approach for an engineer focused on introducing social 
skills, emotions, and embodied responses into a (ro)bot is to break each of  
these down into discrete inputs leading to corresponding actions. However, 
it will be essential that system designers do not lose sight of  the way these 
suprarational faculties are dynamically entangled. A vocal intonation that 
may be threatening in one context may be laughable in another.

Moral agents without affective or advanced cognitive faculties will func-
tion adequately in many domains, but it will be important to recognize when 
additional capabilities will be needed. In the following sections, we discuss 
some limited steps that can be taken toward implementing suprarational 
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faculties. Throughout this discussion, it will be necessary to keep an eye on 
what is lost in a system that is capable of  making rational decisions but has 
limited emotional intelligence, is socially inept, and is not embodied in the 
world. It is far from clear whether these limitations can be compensated for 
in other ways.

Emotional Intelligence

To what extent is the development of  appropriate emotional reactions a cru-
cial part of  normal moral development? If  crucial, how might these responses 
be instantiated in a machine?

The relationship of  emotions to ethics is an ancient issue that also has res-
onance in science fi ction. Are the emotion-suppressing Vulcans of  Star Trek
inherently capable of  better behavior than the more intuitive, less rational, 
more exuberant humans from Earth? Does Spock’s utilitarian mantra “The 
needs of  the many outweigh the needs of  the few” represent the rational pin-
nacle of  ethics as he engages in an admirable act of  self-sacrifi ce? Or do the 
subsequent efforts of  Kirk and the rest of  the Enterprise’s human crew to risk 
their own lives out of  a sense of  personal obligation to their friend represent 
a higher pinnacle of  moral sensibility?

In addition to Mr. Spock, Star Trek also introduced the superrational 
android Data, who goes berserk when an “emotion chip” is introduced into 
his circuitry. Data’s response exemplifi es a very long tradition in Western phi-
losophy of  focusing on the way emotions can interfere with or bias rational 
decision making and of  minimizing the contribution that emotions make to 
good moral judgment. The dominant philosophical view, going back to the 
Greek and Roman Stoic philosophers, has been that moral reasoning should 
be dispassionate and free of  emotional prejudice. This has been presumed to 
mean that emotions should be banned entirely from moral refl ection. Stoics 
believed that taming one’s passionate “animal nature” and living under the 
rule of  reason was the key to moral development. Among later moral phi-
losophers, many shared the view that emotions were of  little or no help in 
dealing with one’s moral concerns.

A few philosophers, most prominently Blaise Pascal and David Hume, 
argued that at least some emotions—compassion, pity, care, and love—are 
conducive to a moral life. Anticipating a perspective Sigmund Freud would 
later elucidate, they both viewed emotions as antecedent to reason. Emotions 
could never be fully managed by reason. “Reason is, and ought to be, the 
slave of  the passions,” Hume wrote.

Aristotle represents a third view of  the relationship between ethics and 
emotions. He held that emotions play a signifi cant role in determining what 
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actions are virtuous, but he also expected the virtuous individual to hold 
emotions in check. This middle way acknowledges that emotions in the 
extreme can have a negative affect but in balance can contribute positively 
toward good character or virtuous behavior.

This Aristotelian theme was given a modern incarnation in 1990, when 
psychologists Peter Salovey and John “Jack” Mayer introduced the concept of  
emotional intelligence, an idea that was later popularized in the title of  the 
1995 bestseller by journalist and science writer Daniel Goleman. The phrase 
emotional intelligence captures the understanding that there are dimensions 
of  intelligence other than IQ. The awareness and management of  one’s own 
emotions, learning from the information implicit in emotions, and recogniz-
ing the emotional states of  those with whom one interacts are all special 
forms of  intelligence. Implicit in the concept of  emotional intelligence is the 
recognition that emotions are complex and infl uence behavior in a variety 
of  ways. Despite such inroads into popular culture, suspicion of  the way 
emotionally driven prejudices and desires bias and distort judgment con-
tinues in society. But people are also increasingly aware of  the information 
and even wisdom that can be derived from emotional input. So while AMAs 
may not require emotions of  their own, they will need access to some of  the 
same kinds of  information and wisdom that humans acquire through their 
 emotions.

When it comes to making ethical decisions, the interplay between ratio-
nality and emotion is complex. The nature of  this complexity depends on how 
one views emotions. Philosopher Jesse Prinz identifi es fi ve classes of  emo-
tional theory (plus various hybrids among them). Feeling theories emphasize 
the conscious experiential aspects of  emotions. Somatic theories emphasize 
the bodily processes associated with emotions. Behavioral theories iden-
tify emotions with specifi c behavioral responses. Processing-mode theories 
emphasize the role of  emotions in modulating other mental activities. And 
pure cognitive theories emphasize the role of  beliefs in emotions.

Of  these fi ve, two focus on product: feeling theories and behavior theo-
ries. The other three focus on process. From an engineering perspective, the 
approaches that focus on process are more likely to suggest ways of  imple-
menting emotions, so we will concentrate on those. Processing mode theo-
ries and cognitive theories have the best chance of  building on top of  existing 
approaches to AI. For instance, a processing-mode change could be imple-
mented by changing the parameters controlling other perceptual or cogni-
tive processes, as when happiness is correlated with increased activity in 
certain parts of  the brain while sadness is associated with a decrease in those 
areas. Somatic theories present more of  a challenge, because it is not obvious 
how to integrate bodily processes into intelligent systems, nor is it known 
how crucially a robot’s emotions would depend on the details of  anatomy 
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and physiology. How much would robot bodies have to emulate human bod-
ies in order to have similar emotions?

We’ll further narrow our attention to cognitive versus somatic approaches. 
This is not because we fi nd processing-mode theories uninteresting or 
implausible, but because they seem concerned with setting parameters that 
are internal to the brain and hence less obviously connected to ethical or 
moral evaluation. Cognitive approaches clearly involve judgments about 
states of  affairs that are morally relevant. Somatic reactions—for example, 
feeling sick to one’s stomach at the sight of  someone being mistreated—are 
also easily connected to moral issues. Both cognitive and somatic theories 
are thus concerned with the horizontal axis of  fi gure 1 in chapter 2, con-
cerning the extent to which AMAs will require sensitivity to morally relevant 
 information.

Computational Challenges for 

Cognitive or Somatic Theories

From the point of  view of  traditional AI, pure cognitive approaches seem 
the most attractive, since they involve representation of  conditions that mat-
ter to the survival and well-being of  an organism. Hence, for example, on 
a cognitive account like that of  psychologist Richard Lazarus, fear may be 
characterized as a judgment by an organism that it is “facing an immediate, 
concrete, and overwhelming physical damage.” Insofar as such judgments 
(or “appraisals,” to use the jargon of  the psychologists) can be represented 
in the same way as any other judgment, engineers who want to implement 
emotions in a (ro)bot can use the same sorts of  knowledge representation 
approaches they use for any other domain of  human knowledge.

One source of  complexity in such an approach comes from deciding how 
many emotions there are and what they represent. Lazarus, who was one 
of  the leading emotions researchers until his death in 2002, constructed a 
table of  fi fteen “core relational themes” distinguishing anger, anxiety, fright, 
guilt, shame, sadness, envy, jealousy, disgust, happiness, pride, relief, hope, 
love, and compassion. The judgment implicit in a particular emotion could 
also vary as the context changes. Engineers might also elect to expand this 
list if  they felt that would be helpful in developing a subtler repertoire of  
responses.

Purely cognitive approaches to the emotions also seem rather inadequate, 
insofar as the mere judgment that one faces an imminent threat, without 
any accompanying feeling of  fear, seems insuffi cient to characterize the emo-
tion. In the late nineteenth century, William James, the enormously infl u-
ential Harvard psychologist, asked his colleagues to imagine an emotion, 
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subtracting out all bodily aspects—fear, say, without a pounding heart, dry 
mouth, and so on. What was left, he claimed, would not be an emotion at 
all. James thereby proposed a somatic theory of  emotions. As an objection to 
purely cognitive theories of  emotions, James’s thought experiment has a lot 
of  intuitive strength. From the point of  view of  designing AMAs, however, 
it’s less clear that the information received from somatic sources is the only 
possible channel for the morally relevant information that is important to 
ethical behavior.

This issue goes to the heart of  questions about the nature of  sociopathic 
behavior, because, as a matter of  fact if  not of  principle, it seems that appro-
priate emotional responses are major determinants of  ethical behavior. 
Could it be otherwise? Perhaps. However, for the engineer who has the task of  
building an AMA, it seems reasonable to use what is known about the actual 
ethical nature of  human beings.

Here a somatic approach seems to be at least part of  the story. And if  it 
is a part of  the story, it’s a huge and complicated part. Building the somatic 
architecture for a (ro)bot is a major undertaking, but one for which initial 
progress is being made by roboticists who are pursuing goals other than the 
project of  building an AMA. We’ll review of  some of  these research projects. 
But before getting into the details of  somatic processes, we need to say a little 
more about the way a somatic account of  the emotions may be part of  a 
hybrid approach.

On the basis of  his studies of  patients with damage to their affective sys-
tems, the neuroscientist and physician Antonio Damasio adopts a somatic 
account of  what he calls (primary emotions)—fast, embodied reactions that 
are closely associated with instinctual refl exes and drives. But he also notes 
that cognitive mechanisms can reuse primary emotions to guide behavior as 
a result of  learned associations, thought, and refl ection. He calls these “sec-
ondary emotions.” Primary emotions may have evolved to enable biologi-
cal organisms to bypass slower decision-making processes, while secondary 
emotions allow the same circuitry to be exploited for more sophisticated pur-
poses. If  speed is the main issue, primary emotional responses might not be 
necessary for AMAs. Digital circuitry is intrinsically much faster than neu-
ral circuitry, although there is much more to deliberative decision making 
than simple wiring. Presumably, however, even if  some deliberative evalua-
tion of  the threat is involved, AMAs can be designed to respond to dangers 
quickly. Nevertheless, the (ro)bot will require a mechanism that performs the 
function of  primary emotions in quickly determining which challenges pose 
immediate threats that must be responded to without delay.

In humans, the melding of  sensory input, thoughts, and memories gives 
rise to a rich repertoire of  secondary emotions. Neuroscientists are just 
beginning to probe how secondary emotions emerge through a network of  
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feedback loops between the emotional centers in the brain and the prefron-
tal cortex, the region that governs reason and planning. The importance of  
secondary emotions in decision making was underscored by Damasio in his 
research on patients for whom the link between the emotional and reason-
ing centers had been severed. In what has become one of  the best known 
neurological anecdotes, Damasio tells the story of  Eliot, a patient with brain 
damage to the neural circuitry necessary for processing secondary emotions. 
Eliot’s intelligence is above average, but he reports having very few emotions. 
Eliot is also incapable of  making even simple decisions, for example setting 
an appointment date. Evidently some emotional input is integral to rational 
decision making.

The emerging picture is one in which neither reason nor feelings nor-
mally dominate decision making but emotions may help with the selection of  
a course of  action. The medieval philosopher Jean Buridan invented a story 
about an ass who starved to death because he could not choose between two 
equal bales of  hay. Buridan’s ass was obviously not a normal animal; a real 
ass would have had his reasoned indecision short-circuited by increasingly 
urgent feelings of  hunger. Jaak Panksepp, a founding fi gure in the fi eld of  
affective neuroscience, has studied the laughter of  rats during play, and the 
pleasure they get from being tickled. Panksepp emphasizes the role of  emo-
tions in helping organisms to select from a repertoire of  responses to differing 
contexts and challenges. Panksepp argues that emotions shortcut impossi-
bly complicated cognitive calculations about what to do, thus they serve as 
“affective heuristics.”

Neuroscientists have proposed that humans have two different deci-
sion-making pathways in the brain, an affective pathway and a cognitive 
pathway. In fMRI images of  individuals working through emotionally laden 
moral challenges, the centers that “light up” in the brain are different from 
the ones involved in more analytical challenges. There is nevertheless con-
siderable disagreement as to how closely the two different pathways are 
integrated.

Three interrelated principles illuminate how sensory processing could 
develop into a sophisticated system for selecting among different actions or 
behavior streams: (1) emotions have valences; (2) organisms are homeo-
static systems; and (3) emotional systems learn through reinforcement of  
responses to stimuli that have led to successful attainment of  goals, and 
decay of  responses to those that have failed to do so. To say that organisms 
should be understood as homeostatic systems means that they naturally try 
to reestablish equilibrium after each divergence from a stable range or com-
fort zone. For example, over time all organisms diverge from having an opti-
mal or satisfactory supply of  energy. The feelings arising from a low energy 
state are said to activate behavior directed at fi nding food or resting. Behavior 
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that leads to the replenishment of  energy is reinforced, while behavior that 
doesn’t is overridden.

These three principles are generally accepted. Exactly how they operate 
in the human brain is less well established. Damasio’s “somatic markers” 
hypothesis provides one framework for understanding how rich emotional 
decision making emerges. The basic theory is that somatic markers simplify 
decision making by directing the agent to select the options that are most 
benefi cial. Through interactions in the environment, responses to stimuli are 
reinforced and induce an associated physiological affective state. These asso-
ciations are stored as somatic markers.

For humans, it is speculated that the storage location is the orbitomedial 
prefrontal cortex. When these somatic markers are activated or enlisted in 
future situations, they produce physiological effects that bias decision mak-
ing in a way that is intended to lead to the successful satisfaction of  goals 
or needs. Damasio hypothesizes that in complex decisions, in which the 
results are uncertain or the relative difference between options is unclear, 
the somatic markers for all the possible rewards and punishments produce 
a composite or net feeling. This feeling is essential for directing (biasing) the 
selection of  an appropriate action. Somatic markers might function as com-
plements to conscious deliberations, but they can also serve unconscious 
emotional decision making.

In Damasio’s view, feelings are somatic markers that expedite decision 
making by directing a person to one course of  action among many possi-
bilities. Feelings—for example hunger, pleasure, various forms of  pain, and 
tiredness—are attached to various action responses. Emotions provide a 
valence—a negative or positive weight on information being factored into 
one’s judgment. At each possible decision point, the somatic marker labels 
whether a disposition is good or bad, requiring engagement or aversion. 
At their worst, such predispositions can function as prejudices that bias and 
interfere with a person’s ability to adequately meet the challenge at hand. 
Collectively, however, the somatic markers can also be seen as framing the ter-
ritory of  considerations that need to be factored into a judgment.  A somatic 
marker system prunes the decision tree and thereby facilitates decision mak-
ing. Looked at from another perspective, the network of  interrelated somatic 
markers can be thought of  as providing scaffolding on which the capacity to 
reason is built.

These emotional heuristics are “rules of  thumb” that enable people to cut 
through complexity, frame issues, and make choices. Emotions thus play a 
central role in what Herbert Simon, one of  the founding fathers of  AI, called 
bounded rationality. Simon recognized that people must always make deci-
sions under conditions in which time and information are limited. He intro-
duced the notion of  “satisfi cing,” a term that blends satisfying and suffi cing, to 
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capture the idea that such decisions may not be what an unlimited rational 
agent might deem optimal but need only be “good enough” according to the 
decision maker’s criteria. For example, picking the fi rst option that comes 
to mind in which no one is physically hurt would satisfy criteria for accept-
ability, even if  further refl ection might come up with an even better option. 
Simon became justly famous for his work on bounded rationality and deci-
sion-making processes, eventually winning the Nobel Prize for economics in 
1978. Less well known is an article he wrote in 1967 on motivational and 
emotional controls of  cognition in which he specifi cally laid out the ways 
emotion might serve the functions of  satisfi cing and setting priorities.

Psychologists Gerd Gigerenzer and Peter Todd believe that some concep-
tions of  bounded rationality still require too much computation on the part 
of  the decision maker, particularly with respect to determining an appropri-
ate threshold for terminating the computation. In their book Simple Heu-
ristics That Make Us Smart they propose three distinct roles for heuristics in 
decision making. Emotions might guide the search for a satisfactory outcome 
by making certain options seem more or less attractive. They might provide 
a stopping rule by helping the agent to recognize when no further benefi ts 
will derive from continuing to evaluate options. And they may play a role in 
the specifi c decisions reached by enabling an agent to rank one choice above 
all others.

Gigerenzer and Todd’s “fast and frugal” approach, using simple heuris-
tics, provides decision-making capacities that work adaptively because they 
take advantage of  the way the agent’s environment is structured. Trusting 
another on the basis of  one’s emotional response to that person may not be 
objectively defensible, but works well in an environment where those who 
provoke such an emotional response tend, in fact, to be trustworthy. Emo-
tions may in this way contribute to a so-called adaptive toolbox of  fast and 
frugal heuristics.

While emotions are benefi cial in many circumstances, this is compatible 
with certain emotions being disadvantageous or even dysfunctional in other 
circumstances. Recognizing this fact presents an opportunity for engineers 
to design AMAs whose moral faculties operate in a way that makes them less 
susceptible to emotional interference or dysfunctionality. Today’s AI systems 
don’t have emotions, so they are not susceptible to the emotional biases and 
emotional fl ooding or hijackings that interfere with humans’ moral judg-
ments. Adding emotions, if  technologically feasible, would undoubtedly lead 
to complex interactions whose effects cannot be fully predicted. Engineers 
must therefore consider carefully whether the potential benefi ts of  emotions 
for AMAs exceed the potential costs.

But we are getting ahead of  the technology. Testing these suggestions 
about how suprarational faculties can contribute to moral decision making 
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in (ro)bots would require technological developments that computer scien-
tists are only beginning to tackle. Current research on suprarational faculties 
focuses largely on perfecting systems that emulate isolated skills, for example, 
reading the emotions captured in facial expressions. Nevertheless, progress is 
being made on a range of  different research fronts, as we’ll now describe.

From Sensory Systems to Emotions

Artifi cial intelligence engineers acknowledge that humans are a long way 
from knowing how to develop systems that can feel pleasure or pain, or have 
human-like emotions. The robots available today do not have nerves, neuro-
chemicals, feelings, or emotions, nor is it likely that robots in the near future 
will. Nevertheless, sensory technology is an active area of  research, and it is 
here that one might look for the foundations of  feelings and emotions. Micro-
phones and charged couple devices (found in digital cameras) are ubiquitous 
technologies that need no introduction from us. Some of  the technological 
developments relating to the other senses may be less familiar.

Smell and touch are particularly important contributors to human emotions 
and feelings, and both supply information germane to making moral decisions. 
The human sense of  smell, although less developed than that of  many ani-
mals, is nevertheless very complex, depending on a network of  thousands of  
specialized receptor neurons. The Cyranose 320, named for the famously large 
nose of  French duelist and poet Cyrano du Bergerac, is the fi rst commercially 
available handheld electronic sniffer. Based on technology initially developed 
at the California Institute of  Technology, the Cyranose has thirty-two olfactory 
sensors and is able to match odors to templates preloaded in it software within 
about ten seconds. It would be a stretch to claim that the Cyranose 320 or simi-
lar electronic noses can literally smell things in the same sense that humans 
and other animals smell. The Cyranose is much slower, and detects a much 
smaller range of  substances. Nevertheless, the device has numerous commer-
cial applications, for example the detection of  spoiled food and chemical spills. 
And since the terrorist attacks of  9/11, the Cyranose has increasingly found 
its way into security applications. (Although the use of  machine olfaction to 
fi ght terrorism is ethically laudable, perhaps privacy advocates should be as 
concerned about olfactory surveillance as they are about video surveillance. 
Many a tryst has been revealed by a whiff  of  unfamiliar perfume.)

Despite olfaction’s key role in setting moods and the widespread use of  
scent in religious ceremonies and many other emotion-inducing social con-
texts, no one, to our knowledge, is investigating the role a sense of  smell 
might play in social robotics. Touch, however, is another story. Engineers in 
MIT’s Robotic Life Group have designed a sensate skin that is embedded with 
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three different types of  somatic sensors, which register electric fi eld, temper-
ature, and force. This sensate skin is placed under the fur fabric and silicone 
skin that covers the surface of  “Huggable,” an interactive robotic companion 
modeled on the Gund Company’s “Butterscotch” teddy bear.

Huggable is being designed for therapeutic applications, for example in 
nursing homes. It will nuzzle when hugged and petted, and it also provides 
feedback about a patient to the nursing station monitoring the patient. 
Huggable’s ability to respond appropriately to social gestures is directly 
dependent on how accurately the system interprets the patient’s gestures. 
A touch, for example, can be light or hard, squeezing, petting, tickling, pat-
ting, or scratching. The MIT engineers have implemented a neural network 
designed to recognize nine different classes of  affective touch—tickling, pok-
ing, scratching, slapping, petting, patting, rubbing, squeezing, and contact. 
These classes of  touch are sorted into six response types from “teasing pleas-
ant” to “touch painful,” depending on the intensity of  the stimulation. The 
classes each drive a different response from Huggable. Being held pleasantly 
might, for example, lead to a nuzzling response.

These newer sensory technologies, combined with the much older tech-
nologies of  cameras and microphones, allow considerable amounts of  sen-
sory data to be accumulated. However, the next step—mapping these data 
onto the feelings and emotions that motivate actions—is more diffi cult. Emo-
tions and other mental states emerge from a web of  inputs from different 
senses. The ability of  the human nervous system to integrate diverse inputs 
and modulate internal states leads to a broad array of  nuanced responses 
to changing stimuli. The simple classifi cation scheme built into Huggable 
runs on an embedded Pentium class chip. More complex integrative somatic 
architectures are clearly within the scope of  artifi cial systems. It remains to 
be seen whether it is necessary to emulate in AMAs the full range of  subtle 
emotional states evident in humans. The only way to fi nd out is to build pro-
gressively more sophisticated systems and test them in realistic situations.

The capacity to understand and empathize with pain is likely to be an 
important dimension in the development of  AMAs. Pain sensations in 
 biological creatures depend on specialized receptors called nociceptors—
 neurons that are dedicated to detecting noxious stimuli. Pain is not simply the 
result of  high-intensity stimulation of  pressure and temperature receptors. 
Huggable uses thresholds to label stimuli as “unpleasant.” Although this fails 
to capture the subtle operation of  the biological pain system, it may provide a 
reasonable fi rst approximation. Nevertheless, a full system would need to be 
alert to the fact that in humans, pain is often context-specifi c and dependent 
on the integration of  a range of  factors. For example, in the late autumn one’s 
tolerance for cold is typically much lower than in the winter. Ears burn pain-
fully on the fi rst cold mornings. But as body metabolism readjusts, humans 



152 moral machines

are quite capable of  accommodating much colder winter temperatures with 
ease. A (ro)bot following Asimov’s First Law, to do or allow no harm to a 
human being, would need to be aware of  the facts of  human pain sensitivity. 
A quick way to this knowledge is to have the same sensitivities.

While we anticipate the development of  neural nets for integrating sensory 
input from a range of  sources, for the near term this data will be translated 
into cognitive representations of  emotions rather than actual somatic states 
that could be counted as (ro)bots having emotions or feelings of  their own. 
If  the actual capacity to feel pleasure and pain is essential for understand-
ing how other people will be affected by different courses of  action, (ro)bots 
will fall short in their discernment and moral acumen, not to mention their 
ability to be empathetic or compassionate. A truly compassionate (ro)bot is 
a tall order, and perhaps out of  reach as far as any technology known today. 
What isn’t out of  reach, however, is the development of  artifi cial systems 
capable of  reading the emotions (minds?) of  humans and interacting as if  
they understand the intentions and expectations of  humans.

Affective Computing 1: Detecting 

Emotions

I ask this as an open question . . . and I don’t know the answer: 
How far can a computer go in terms of  doing a good job 
handling people’s emotions and knowing when it is appropriate 
to show emotions without actually having the feelings?

—Rosalind Picard

Rosalind Picard’s Affective Computing Research Group at MIT wants to 
make it less frustrating to work with computers. Frustration is an emotion 
everyone can relate to when dealing with technology that seems stupid and 
infl exible. A fi rst step on the way to reducing frustration is to have computers 
and robots that can recognize frustration—in other words, that can recog-
nize an emotion.

But computers and robots don’t have telepathy or any special access to 
people’s inner feelings. Engineers are exploring techniques that emulate the 
ability to read the same nonverbal cues (facial expressions, tone of  voice, 
body posture, hand gestures, and eye movements) that help people under-
stand each other.

This is the relatively new fi eld of  affective computing, and it encom-
passes a variety of  different research goals. Modeling and studying human 
 emotions and building systems with the intelligence to recognize, categorize, 
and respond to those emotions are separate but also overlapping goals for 
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research in affective computing. Most of  the research focuses on developing 
computer systems that recognize and respond appropriately to the emotional 
states of  people interacting with the systems.

What’s the quickest route to recognizing a person’s emotional state? The 
dream of  many technologists has been one of  direct access to the physiology 
underlying the emotions. Heart rate, skin conductivity, and hormonal levels 
might all be used to measure when a person is afraid, nervous, or angry. But 
the fact remains that there are no widespread technologies that could enable 
(ro)bots to detect such things remotely or covertly. (Furthermore, covert 
technologies would be considered violations of  privacy.) A person must wear 
a heart rate monitor or be attached to a galvanic skin response machine 
or give a blood sample for these physiological measures to be available to a 
(ro)bot. Rosalind Picard and her students are developing interface devices 
embedded in keyboards or mice that can collect some physiological data. For 
example, while he was a graduate student in Picard’s lab, Carsten Reynolds 
developed a pressure-sensitive computer mouse as a tool for providing feed-
back on a user’s behavior. Combined with other data, pressure on the mouse 
may  indicate that the user is frustrated.

Another example is the work of  British Telecom with an MIT group that 
has explored methods whereby a speech-recognition interface could detect 
frustration in the voices of  people calling customer service. The system 
would adapt its responses to the user’s emotional state, or transfer the call 
to a human, or perhaps even apologize. Of  course, given that many people 
are no longer satisfi ed by perfunctory apologies from a robotic-sounding 
customer support person, an apology from a computer system could further 
antagonize those customers. Facilitating ease of  use is the goal, but no doubt 
systems that are effective at defusing frustration also serve the moral goal 
of  minimizing irritations that boil over into people’s interpersonal relation-
ships. Furthermore, they would decrease people’s anger toward dumb tech-
nologies (perhaps saving the “lives” of  the telephones and computers that 
are readily at hand).

There are three parts to alleviating the nearly universal frustration users 
experience working with stupid technology:

(1) Detecting the emotional frustration of  the user: This can vary from 
recognizing the repeated typing of  characters to the use of  a specially 
designed interfaces, for example, the mouse designed by Reynolds, 
which is sensitive to how much pressure the user places on it.

(2) Putting that frustration in context: Repeated typing, for example, may 
signal diffi culty in spelling or fi nding the right synonym. Random 
characters produced by dragging one’s hand across the keyboard sug-
gest a deeper frustration.
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(3) Responding or adapting to the frustration in a way that potentially solves 
the problem and, at the least, does not further frustrate the user: Hav-
ing the computer system simply ask, “Is something wrong?” with 
either text on the screen or through a speech synthesizer might begin 
a process of  alleviating frustration.

Charles Darwin’s third book, The Expression of  Emotions in Man and Ani-
mals, established the scientifi c study of  voice and gestures in the 1870s. This 
work continues with primatologists, for example Franz de Waal, and neu-
roscientists, for example Jaak Panksepp, researching the animal side of  the 
equation. On the human side, the work of  Paul Ekman has been seminal in 
illuminating people’s understanding of  facial expressions. Ekman and his 
students have demonstrated that the basic facial expressions for joy, sadness, 
fear, surprise, anger, and disgust are shared by all humans and are recog-
nizable across cultures. Ekman catalogued more than two thousand facial 
expressions as indicators of  emotional states. His Facial Action Coding Sys-
tem (FACS) is a primary focus for engineers interested in developing com-
puter systems with affective intelligence.

The FACS tracks the movement of  facial muscles, correlating forty-four 
different “action units”—for example, a raised eyebrow—to specifi c emo-
tions. Ekman and his collaborator Mark Frank of  Rutgers University are 
among many researchers exploring ways to computerize the FACS. As might 
be expected, computerized FACS systems are better able to discern basic emo-
tional expressions and the emotional states of  individuals in the laboratory 
and worse at determining subtle facial expressions or the emotional states of  
people in real-world applications. In addition to identifying facial expressions 
from constantly changing visual input, FACS systems need to register subtle 
momentary changes in facial expression and correlate those expressions with 
data stored in memory. The computational tasks are formidable, but (ro)bots 
with the ability to discern very basic emotions are on the horizon, and per-
haps this is all that will be necessary for the fi rst generation of  AMAs.

The FACS systems represent only one approach to machine detection of  
emotions. Other devices range from sensors that register skin conductivity 
to chairs that sense whether the sitter is restless or bored. Some engineers 
believe that they will be able to embed sensors in shoes that could discern and 
signal when the user is depressed. If  this technology works, a caregiver could 
use it to detect when a loved one has forgotten to take his antidepressants.

Single indicators of  human emotional states are notoriously unreliable. 
For example, the galvanic skin response for excitement is very similar to 
that for anxiety. Thus, while many engineers work on perfecting individual 
tools for discerning emotional states, other engineers have directed their 
research to combining these tools into multimodal systems, for example, 
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MOUE (Model of  User’s Emotions). Developed for the health-care  industry, 
MOUE is a  multimodal emotion evaluation system that characterizes a 
patient’s emotional state from data it retrieves from a number of  sources. 
Heart rate, breathing pattern, temperature, and other physiological indica-
tors, along with vocal characteristics and facial expressions, all contribute to 
MOUE’s interpretation of  a patient’s sensorimotor and physiological states. 
The MOUE also has some basic language-processing capabilities that allow it 
to evaluate the patient’s subjective description of  her mental and emotional 
experience. The computer passes a description of  the patient’s emotional 
and mental state to health-care providers, along with video imagery, audio 
recordings, and the quantitative data it has collected.

Designers of  emotionally sensitive AMAs could adopt the kind of  technol-
ogy used in MOUE. However, those who experiment with and use devices that 
can detect the emotional states of  others confront a major privacy hurdle. 
Will computer users want their personal computers to allow access to such 
information? Should other computational devices have access to this infor-
mation without written informed consent, or at least a basic contract between 
the user and the researcher or institution behind the device? Rosalind Picard 
and her former student Carsten Reynolds have struggled with how to handle 
the perception some users may have that technology that accesses their emo-
tional states violates their privacy. However, many people will embrace the 
technology if  it makes their interactions with computers less frustrating.

Affective Computing 2: Modeling 

and Using Emotions

Computer scientists have begun to experiment with computational models 
of  emotion and decision making. With the usual caveats about the huge gulf  
between these models and the real biological phenomena, we’ll describe sev-
eral of  these models and discuss their potential utility for the design of  AMAs. 
First we discuss the OCC, a computerized cognitive model of  the emotions 
developed by (and named after) Andrew Ortony, Gerald Clore, and Allan Col-
lins. Then we’ll turn to robotic experiments that capture aspects of  learning 
and emotional decision making.

Cognitive Emotions: The OCC

In the OCC, emotions are represented as positive or negative (“valenced”) 
responses to situations. The model classifi es situations according to whether 
they are desirable or whether the organism wishes them to stop. The OCC 
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is considered a cognitive model because it treats emotions as derived from a 
representation of  the events, agents, and objects in the world, and an analy-
sis of  whether the agent’s goals, desires, and intentions are being satisfi ed. 
For instance, the pleasure of  winning a competition would be inferred if  the 
program represents the agent as having the desire to win. The affective inten-
sity of  a situation is also computed from the cognitive representation of  the 
situation.

The OCC has twenty-two categories of  valenced responses that it applies 
to goal-oriented events, actions for which the agent will be held accountable, 
and attractive or unattractive objects. Each of  these valenced responses is 
mapped onto one of  four basic emotions: joy, sadness, fear, or anger. These 
in turn are mapped onto the corresponding Ekman facial expressions. Plea-
sure from winning a competition would, for example, be mapped to the basic 
Ekman facial expression for joy. Only four of  Ekman’s basic six expressions 
(joy, sadness, fear, and anger) are defi ned in the OCC model. Ortony, Clore, 
and Collins assumed that the other two basic Ekman expressions (surprise 
and disgust) do not involve much cognitive processing. Thus, the OCC is a 
model for a very limited range of  emotions. Nevertheless, it has been widely 
used for animating cartoon and virtual characters in the entertainment and 
computer game industries. Unlike FACS, which takes a facial expression as 
input and infers the emotional state of  the agent, OCC works in the opposite 
direction: it attempts to model the emotions the agent itself  possesses, treat-
ing the associated facial expressions as output.

Models of  Cognitive and Emotional 

Decision Making in AI

A highly infl uential conceptual model for how affect and cognition interact 
is CogAff, developed by Aaron Sloman, a philosopher at the University of  
Birmingham, with the help of  Ron Chrisley, a philosopher at Sussex Univer-
sity. CogAff  was developed as a model of  cognition for computer scientists 
designing autonomous systems. Different levels of  cognitive processing allow 
for different levels of  control in an agent. Sloman and Chrisley distinguish 
three such levels that can be implemented for the architecture of  an autono-
mous agent: the reactive, the deliberative, and “metamanagement.” For all 
practical purposes, the reactive level refers to the affective mechanisms, but 
these three layers interact in their model.

Artifi cial intelligence researchers have explored the application of  the 
principles of  emotional valence, homeostasis, and reinforcement in the 
design of  emotional decision-making systems. Marvin Minsky, in his book 
The Emotion Machine, proposes that emotions serve to limit the range of  
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actions considered. Reasoning mechanisms can then go to work more effi -
ciently on this restricted set of  options. An alternative approach envisages 
a role for affective states in experience-based learning. Positively valenced 
feedback reinforces successful behavior patterns, or negative valences can 
motivate a switch to other behaviors when the current actions are unsuc-
cessful. Hence, the agent might “feel” its way through a challenge posed by 
the environment, learning as it goes. Reason and feel can also be combined 
through experimentation and planning.

Perhaps the biggest challenge facing designers of  (ro)bots with affective 
intelligence is whether to try and capture emotional decision making as 
an independent process or treat emotions as a particular type of  input to a 
standard cognitive decision-making process. Which is better, one process or 
two? Early simulations of  robots with both affective and cognitive decision-
 making systems suggest that having two processes enhances the systems’ 
overall learning capabilities.

Sandra Gadanho formerly at the Institute for Systems and Robotics in 
Lisbon and now at Motorola, has explored how learning in an emotional 
decision-making system of  a robot compares with learning in a cognitive 
deliberative system. Khepera robots, which are rapidly becoming the robotic 
equivalent of  laboratory mice, were the subjects in the experiments Gadanho 
conducted while in Portugal. Khepera robots are tiny circular vehicles 55

millimeters (two inches) in diameter that run on wheels and are equipped 
with infrared and ultrasonic sensors. They can also be attached to computers 
to track their actions or feed their systems new data. Because these robots are 
so small, experiments with them can be set up in a very small space. They are 
also quite easy to adapt for use in multi-robot experiments. They have been 
used for experiments designed around basic tasks, for example obstacle avoid-
ance, following walls, target searches, and the study of  collective behavior.

In Gadanho’s experiment, a single Khepera robot is placed in a simple 
closed maze environment. The robot is equipped with eight sensors (six on 
front and two on the rear) that facilitate its ability to detect objects and ambi-
ent light. The robot can select from three basic behaviors: avoid walls, seek 
lights, and wall following. The goal of  the robot is to survive by maintaining 
an adequate level of  energy. The robot acquires energy through two lights, 
which its sensors detect, that are placed on opposite corners of  the maze. 
However, the energy is only available from a light for a short period of  time. 
Nor can the robot survive on energy from a single source. So the robot needs 
to learn how to acquire energy from multiple light sources while minimizing 
the energy it loses  navigating the maze.

The details of  Gadanho’s experiments are beyond our purposes here. 
What is relevant here is that some versions of  her emotion-based robots use 
controllers that are designed to apply reinforcement-learning techniques 



Figures 10.1 and 10.2. The Khepera robot (above) and its simulated environment 
(below). 10.1 courtesy of  k-team; 10.2 courtesy of  Sandra Gadanho.
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 (pleasant and unpleasant factors act as reinforcers of  behavior). Others have 
a goal system that doesn’t model emotions explicitly but attempts to iden-
tify properties that will help the robot work properly. The goals for robots in 
this second group are based on three homeostatic variables that the robot 
attempts to maintain within an acceptable range: energy, welfare (avoid col-
lisions), and activity (keep moving). Divergence from the comfort zone of  
these three variables activates behavioral responses in the robots. Measures 
of  decreasing divergence from the comfort zone provide the experimenter 
with empirical evidence that the robot is learning successful behavior pat-
terns. The performance of  robots with these two different designs was com-
petent and quite similar, although the robots whose learning was based 
around maintaining the homeostatic goals did slightly better than those with 
the simpler explicitly emotion-based system.

In a third group of  experiments, Gadanho deployed robots using what 
she names the asynchronous learning by emotion and cognition (ALEC) 
architecture. In these robots, she adds a cognitive system to the robots with 
either the original explicit emotion-based goal system or with the slightly bet-
ter performing homeostatic version. The cognitive system is composed of  a 
dynamic collection of  rules that allow the robot to make decisions on the 
basis of  what it has learned through past trials. There are distinct differences 
between the learning capabilities of  the emotion and the cognitive systems. 
The emotion system can store all events but has no way of  distinguishing one 
event from another, while the cognitive system only extracts the most sig-
nifi cant event. Gadanho writes that “the distinctive underlying mechanisms 
of  the two systems are consistent with the assumption that, in nature, the 
cognitive system can make more accurate predictions based on rules while 
the emotional associations have less explanatory power but can make more 
extensive predictions and predict further ahead in the future.”

In the ALEC architecture, the cognitive system collects data indepen-
dently from the emotional system and is designed to step in to correct bad 
decisions made by the emotional learning system. While agent architectures 
from other scientists propose a functional role for emotions in the context 
of  learning, Gadanho’s is one of  the fi rst to offer two differentiated learning 
mechanisms. While the cognitive system in the ALEC architecture does not 
perform well without the emotion system, robots with both decision-making 
systems perform much better than robots with just an emotion system.

Gadanho’s robots function within a quite simple environment and solve 
a rather straightforward challenge. However, her experiments do illustrate 
the advantages and disadvantages of  emotion-based and cognitive learn-
ing, and they also illustrate the overall benefi t of  having both systems. In 
her approach, the cognitive system functions as a check on the emotional 
learning system by enforcing constraints on the selection of  actions. In the 
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design of  more sophisticated robots, the cognitive and emotional decision-
making systems may be more tightly integrated, leading to a range of  cre-
ative responses to complex challenges, as well as rules or moral constraints 
on the actions available to a bottom-up learning system.

Human-Robot Interaction—

Beyond Cog and Kismet

Morality is a social phenomenon. Good behavior depends on sensitivity to the 
intentions and needs of  others. Autonomous moral agents will need to know 
what people want. In their interactions with humans, (ro)bots will need to be 
aware of  social conventions and expectations associated with their roles.

Along with the proliferation of  roles envisaged for (ro)bots, research 
projects directed at increasing the sociability of  robots have expanded dra-
matically in recent years. Robot toys, robopets, robot companions, mobile 
information kiosks in museums, rescue robots, delivery systems trekking 
through the halls of  hospitals, and robot coaches for exercise or personal 
health management must each follow different conventions in fulfi lling the 
tasks for which they are designed. A child who doesn’t want to play needs to 
be treated differently from a patient who doesn’t want to take her medicine.

Social interactions depend on trust. Among the foundations for building 
trust and mutual understanding are the capacities for reading facial expres-
sions, gestures, body posture, voice intonation, the direction of  another’s 
gaze, and other social cues. These, along with an understanding of  how to 
convey one’s own intentions, are also foundational for the possibility of  work-
ing together toward shared goals. Social interactions, including eye contact, 
imitation, and turn taking, nurture the development and learning of  infants 
and young children. Many of  the elements contributing to trust are cultur-
ally specifi c. Children learn what is an appropriate distance or an allowable 
physical contact between two people in their culture.

To be accepted by people, (ro)bots, both physical and virtual, will need 
to make their actions understood in a clear manner and will need to be able 
to learn and grow in dynamically changing social interactions. We intro-
duced earlier the Cog and Kismet robotic experiments in social interaction 
and embodied learning. Cog was designed to learn through interactions with 
people but had only limited capabilities. Kismet was designed to respond 
to voice prosody, pointing gestures, and the proximity of  the human with 
whom it was interacting with a fi xed repertoire of  social behaviors. Facial 
expressions for basic emotions, conversational turn taking, smiling and mov-
ing forward to engage people, and moving backward when humans came 
too close were among the responses made by Kismet. Cog and Kismet are 
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both now exhibits in the MIT Museum. Brian Scasselati, who as a graduate 
student led the team that designed Cog, is building a humanoid robot named 
Nico that emulates the cognitive faculties of  an infant. Cynthia Breazeal’s 
work currently focuses on “Leonardo,” a joint project of  the Robot Life group 
at MIT and Hollywood’s Stan Winston Studio, known for their expertise in 
animatronics (and creators of  the robot Teddy for the movie AI).

Leonardo is a successor to both Kismet and Cog. While Kismet’s inter-
actions with humans were limited to a fi xed set of  simple social gestures, 
Leonardo combines an expandable repertoire of  social responses with the 
rudimentary capacity to learn through social interactions. Through trial 
and error, supplemented by verbal feedback from an instructor, Leonardo 
has learned to perform relatively complex tasks that are challenging for a 
robot though simple from the human perspective—for example, turning on 
three separate lights by pushing large colored buttons in a specifi c sequence.

Leonardo’s added capacities make it possible for the researchers to tackle 
learning problems that were impossible for Cog and Kismet. For instance, 
Leonardo has been presented with a version of  the false belief  test that chil-
dren under the age of  three or four usually fail. As children develop normally 
beyond age four, they come to understand that others may have beliefs differ-
ent from their own. The false belief  test is designed to reveal the emergence 
of  this capability to represent the beliefs of  others. First an object is hidden 
while a child and another person are watching. Then the person leaves the 
room, and the child sees the object moved to a new location. Where does the 
child expect the other person will look for the object when he comes back into 
the room? Young children expect the person to look for the object at the new 
location, apparently indicating that they can’t conceive of  that person not 
knowing something they themselves know. Older children, of  course, know 
the difference between what they believe and what others believe.

In the Leonardo version of  the experiment, a human places two different 
objects, for example a bag of  chips and a bag of  cookies, into each of  two 
boxes, and then leaves the room. Another person then switches the objects 
in the boxes. When the fi rst person returns to the room, Leonardo infers from 
their behavior which object they are looking for and helps them get access 
to the correct box. If  Leonardo actually solved the false belief  test the way a 
child does, the robot would be on the way to successful social interactions. 
But Leonardo isn’t reading facial expressions or other nonverbal gestures to 
identify the two different participants. Rather, Leonardo’s software and sen-
sors rely on different arrangements of  refl ective tape placed on participants 
and objects to help the robot identify who is who and which snack is which. 
Furthermore, Leonardo’s software has been designed specifi cally to handle 
this particular version of  the false belief  test. Leonardo would not do so well 
with other versions of  the test that have successfully been given to children. 
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However, the team’s approach to the false belief  test provides a platform for 
the development of  more sophisticated approaches.

Other labs have taken social robotics into new contexts. For instance, 
Graduate Robot Attending a ConferencE (GRACE), was designed by a team 
from Carnegie Mellon University, the Naval Research Laboratory, Metria 
Inc., Northwestern University, and Swarthmore College to compete in a 
2002 challenge proposed by the American Association for Artifi cial Intelli-
gence. This robot interacts with humans primarily as an expressive talking 
head projected through a monitor mounted on a rather clunky mobile body, 
replete with cameras, microphones, and other sensors. To win the challenge, 
GRACE needed to fi nd its way to an elevator, get off  at the correct fl oor for the 
registration lobby, look for the registration desk, fi nd its way to the end of  the 
line, wait patiently as the line moved forward, and interact with staff  to get a 
name tag, bag of  conference goodies, and directions to the conference room. 
The robot then had to navigate through the crowd to fi nd its way to the room 
with the help of  an electronic map, and give a fi ve- to twenty-minute talk on 
its hardware and software.

Both GRACE and Leonardo have been confi gured to pass specifi c tests. 
Leonardo’s capacity to take the other’s perspective across a range of  tasks is 
extremely limited. And GRACE might well have diffi culty performing similar 
tasks at a different conference, without being reprogrammed. Nevertheless, 
we believe that Leonardo and GRACE are not simply performing parlor tricks. 
They both are serious scientifi c experiments that demonstrate signifi cant 
progress in the goal of  designing physically adept robots with social savvy 
and common sense.

While Leonardo and GRACE are behavior-based robots with faculties that 
are, at least theoretically, presumed to be similar to those of  humans, roboti-
cists, for example Hiroshi Ishiguro at Osaka University, are experimenting 
with social robots that have access to information a human might not have. 
For example, a robot traveling through Ishiguro’s laboratory has access to 
many remotely mounted cameras that provide it with information about 
what is taking place behind walls or in distant corners of  the room. A robot 
with this information could know exactly where in the lab it would fi nd a par-
ticular person or object. Ishiguro has also placed a robot in a school setting. 
This robot was capable of  mapping the social interaction patterns of  all the 
students, thereby enabling the teachers to identify which children were more 
outgoing and which tended to be isolated.

Until now, we have focused on robots’ emotional and social capacities. 
But Ishiguro and Breazeal also illustrate contrasting approaches to eliciting 
human emotional responses to robots. Ishiguro is best known for building 
robots that closely resemble humans. At MIT, the approach is aimed more 
toward the design of  appealing robots similar to cartoon characters or stuffed 
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animals, with some child-like features, for example, big eyes. This approach 
evokes anthropomorphic responses, perhaps causing people who interact 
with these robots to attribute more intelligence and emotional capacity to 
them than really exists. Ishiguro takes a harder path in demanding that his 
android models be highly realistic. His hopes of  overcoming people’s discom-
fort with golem-like entities correspond to Japanese roboticist Mashahiro 
Mori’s idea of  the uncanny valley—the area where human comfort with 
androids drops off  sharply because they have become too similar to people 
yet not similar enough.

Ishiguro, together with Karl MacDormand, who is presently teaching at 
the School of  Informatics at Indiana University–Purdue University Indianap-
olis, has initiated the fi eld of  “android science” in the belief  that  roboticists 
can learn how to build human-like robots that will eventually dispel this 
discomfort. Whether or not android science will succeed, these contrasting 
approaches highlight the fact that the possibility of  success for designing 
AMAs may depend on factors other than the acceptability of  their behavior. 
Appearance, whether more or less human-like, may count.

Other Minds and Empathy

If  the robot Leonardo had solved the false belief  test the way a human solves 
it, he would have demonstrated a core skill associated with a theory of  mind. 
Theory of  mind (ToM) is a somewhat ambiguous phrase that refers to the 
abilities that facilitate awareness of  another’s mental states. While few peo-
ple claim to have ESP, “getting into the minds of  others” by inferring their 
moods, beliefs, and intentions is certainly central to smoothly functioning 
social interactions.

Theory of  mind develops through the early years of  life. An infant learns 
in stages to distinguish her own body from that of  others, to recognize her-
self  in a mirror (primitive self-awareness), and to appreciate that another’s 
mind will contain different information from her own. All of  these contribute 
to the development of  ToM. Some theorists have even suggested that many 
of  the behaviors associated with autism are a result of  failure in the normal 
development of  ToM.

The research on ToM is fi lled with fascinating experiments and character-
ized by an array of  largely unproven theories. Nevertheless, AI engineers are 
already testing these theories in the design of  their robots. Scassellati, who 
took a leading role in building Cog and Kismet while studying at MIT under 
Rodney Brooks, wrote his Ph.D. dissertation on developing a ToM for a robot. 
Now an assistant professor in the Computer Science Department at Yale, 
Scassellati continues this work with the development of  the robot Nico.
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Theory of  mind is often presumed to emerge from a collection of  very low-
level skills. For example, Simmel and Heider, as mentioned earlier, demon-
strated with a few simple video clips that people impute intentions to objects on 
the basis of  simple movements. Associating intentions with basic  movements 
is one of  the lower-level skills that could contribute to building a full ToM.

Utilizing the theories of  cognitive scientists who have broken ToM down 
into discrete skills, computer scientists are trying to implement each of  these 
skills in hardware and software. For example, humans distinguish sensory 
inputs that arise from their own actions from those that arise from others’ 
actions. Scassellati and graduate student Kevin Gold have demonstrated how 
the timing of  sensory feedback after self-generated movement can be used to 
enable Nico to distinguish sensory inputs produced by its own actions from 
those produced by others’ movements.

Using this kind of  sensorimotor feedback, Nico can recognize itself  in 
a mirror, a test that is presumed to represent primitive self-awareness and 
that infants fi rst pass between eighteen and twenty-four months. When a 
refl ection from a mirror comes into the camera that functions as an eye, Nico 
assigns the image a score based on whether the image is likely to be “self,” 
“another,” or “neither.” The robot will also move its arms and assign a high 
probability that the image is “self ” if  this movement is evident in the refl ec-
tion. Conversely, when the refl ected image moves and Nico hasn’t moved, the 
probability is that the image is “another,” and if  the image is stationary, it is 
likely to be “neither.” Presumably, as Nico is programmed to discern other 
features and actions, it will factor these into determining self  from others, 
including specifi c others.

Current research on building a robot with ToM is proceeding on the 
assumption that the aggregation of  lower-level cognitive mechanisms will 
collectively enable the robot to act as if  it had a ToM. To date, only a few lim-
ited pieces of  the basic skills have been demonstrated. Identifying the full skill 
set that contributes to ToM and the hard work of  coordinating or integrating 
these skills lies ahead. To date, researchers not only lack systems with a ToM 
but do not even know whether they have adequate ideas about the attributes 
necessary for a system to have a ToM. Nevertheless, the fi rst steps taken by 
Scasselati, Breazeal, and their students are impressive enough to suggest that 
signifi cant strides can be anticipated over the next few years.

ToM and Empathy

The relationship between ToM and empathy is far from clear, but certainly 
both contribute to the way one human appreciates the states of  mind of  
another. The capacity to empathize with the feelings of  others is often 
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 considered to be a prerequisite for moral judgment and sensitive behavior 
in many situations where people interact. Nevertheless, there are cases of  
psychopaths who are skilled at deducing appropriate empathetic behavior 
without actually feeling empathy.

Infants demonstrate—by trying to comfort a distressed companion—
some capacity for empathy long before they develop the basic skills associ-
ated with a ToM. Indeed, behaviors that could be interpreted as empathic 
are evident in a broad array of  species. The discovery in macaque monkeys 
of  mirror  neurons—neurons that fi re both when the animal performs an 
action and when the animal observes another animal performing the same 
action—appear to many scientists to be a neural mechanism that facilitates 
access to another’s mind and feelings.

An artifi cial system that could empathize would be more likely to select 
morally appropriate responses in its choice of  actions. However, robots are 
unlikely to have empathy for other entities unless or until they have emotions 
of  their own. Without emotions, empathic behavior by robots will largely be 
the result of  rational responses built on top of  a merely symbolic representa-
tion of  the minds of  others.

Multiagent Environments

Cyburg, population 44,100, is a virtual community created by William Sims 
Bainbridge, a program director at the National Science Foundation and a 
leading fi gure in exploring the convergence of  research into nanotechnology, 
biotechnology, information technology, and cognitive science. The residents 
of  Cyburg are programmed to follows rules of  individual and social behavior 
that Bainbridge has drawn from the latest social science. Bainbridge, who 
is especially interested in the emergence of  religious beliefs, uses Cyburg to 
investigate the appearance of  complex communities where residents form 
groups and learn to trust or distrust each other.

Many social situations involve interactions among large numbers of  
agents. Such multiagent contexts are changing continually. Relationships 
among agents constantly evolve. Customs change. A socially viable robot 
will require a rich set of  skills to function properly in such a dynamic state of  
fl ux. If  people come to feel that the behavior of  AMAs is trustworthy, a cor-
responding change in acceptance and latitude for the actions of  AMAs will 
also be part of  the changing social context. Conversely, if  AMAs fail to act 
appropriately, they will have to adapt to additional restrictions that will be 
placed on their behavior.

Today’s bots actually function quite well in multiagent environments 
where auctions, bargaining, or other forms of  negotiation are the primary 
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mode of  interactions. These contexts are governed by prescribed rules. 
Within a rule-based environment, for example eBay, a computer can serve to 
coordinate the actions of  other agents or function as an independent agent 
that, for example, monitors the auction and places the winning bid in the last 
second before the auction closes.

Rules for auctions serve to establish trust among the participants, and 
punitive measures are applied to those who act deceptively. Presumably, this 
trust would be extended to a (ro)bot that played by the rules. Trust and safety 
come more easily when a (ro)bot’s behavior is predictable and falls within 
prescribed rules. However, within many social contexts a diffi culty arises in 
that agents need to be deceptive at times. In a poker game a human might 
bluff, or in a bargaining situation an agent might pretend that a lower offer 
was his fi nal offer. Agents that reveal their constellation of  beliefs, desires, 
intentions, feelings, and needs would be at a disadvantage.

On the other hand, opening the door to artifi cial agents that lie, manipu-
late, or are insincere undermines the prospect of  instilling trust in agents’ 
actions. People would not bid on eBay if  they believed that software agents 
were artifi cially raising the cost of  items by planting phony bids. Trust and 
suspicion go on concurrently for humans. In most contexts, people trust 
each other until that trust is undermined, but in other contexts, for example 
buying goods and services, caveat emptor is the norm. In a poker game, one 
expects bluffi ng. Artifi cial agents will need to know in which contexts human 
gestures can be taken at face value and when deception is possible or even 
the norm. They will also need to recognize when eliciting trust from human 
agents is essential and when deception is acceptable.

Similarly, humans may eventually need to understand that when and 
where to trust complex artifi cial agents will differ from context to context. In 
this connection, Matthias Scheutz has demonstrated that humans will tol-
erate a robot’s disobedience of  a direct command so long as they recognize 
that the robot’s disobedience is serving a shared goal. In a similar manner, 
deceptive behavior by (ro)bots need not necessarily undermine human trust 
in their actions. For instance, a robotic soccer player would need to success-
fully coordinate its actions with those of  its teammates, but it would also 
need to fake out members of  the other team to be successful in moving the 
ball toward the opponent’s goal. Such deception would be praised, not con-
demned, in the context of  soccer.

As we mentioned in chapter 9, Robosoccer provides a venue for experi-
menting with social interactions between machines. The challenge of  
constructing a world-class robotic soccer team has been widely adopted 
since Deep Blue II defeated Gary Kasparov in 1997. At the time, many crit-
ics argued that chess was too limited a context to be a real test of  machine 
intelligence. The advocates of  Robosoccer believe that cooperative embodied 
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tasks, for example playing soccer, are much more representative of  human 
intelligence. To date, the development of  robotic soccer players has focused 
on training systems to perform simple tasks—getting two-legged humanoid 
robots to kick a soccer ball or four-legged artifi cial intelligence robots (AIBOs) 
to pass a ball to each other. More complex tasks of  cooperation lie well in 
the future. The stated goal of  Robosoccer is to develop a world-class team of  
robot soccer players capable of  beating a world-class human team by 2050.
The advanced date is refl ective of  the diffi culty of  the challenge. Note, in 
comparison, that on May 25, 1961, President Kennedy allowed just a decade 
when he issued his challenge to put a man on the moon, and this was accom-
plished using computer systems and other technologies that were primitive 
compared to those available today.

An even more diffi cult challenge than an all-robot team is to develop a 
soccer team with both robotic and human agents coordinating their activi-
ties. Computerized agents can share standardized techniques for communi-
cating with each other. But new standards have to be established for systems 
developed on different platforms, as well as standards or norms for comput-
ers interacting with humans. A similar challenge faces the integration of  
military robots into the armed forces.

Human-computer interactions are likely to evolve in a dynamic way, and 
the computerized agents will need to accommodate these changes. For arti-
fi cial agents in multiagent environments, each transaction has the potential 
to change the relationships between agents. Norms can easily change, for 
example, when an agent moves into a new role over time, or even at different 
times or in different contexts during a single day. (If  you play golf  with your 
doctor, it is inappropriate for him to mention your medical conditions while 
standing on the putting green.) The demands of  multiagent systems thus 
illustrate the relationship between increasing autonomy and the need for 
more sensitivity to the morally relevant features of  different environments.

How Embodied Must a Robot Be?

Which aspects of  moral judgment and understanding are dependent on 
being embodied and situated in a world of  objects, entities, and other agents? 
The state of  an organism in any given moment is signifi cantly determined by 
its relationships to the objects, entities, and agents in its environment. Your 
capacity and confi dence that you can quickly respond to challenges, your pos-
ture, and your emotions are all infl uenced by these relationships. All of  this 
contributes to the information that informs one’s judgments  and actions.

Scientists who take an embodied perspective on cognition sometimes 
argue that it cannot be understood without recognizing the particular 
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nature of  biological organisms as self-organizing, self-maintaining, and 
actively striving to survive, thrive, and procreate. Building on this perspec-
tive, the philosopher Steve Torrance advocates what he calls a “robust” view 
of  ethics, in which only biological organisms that have feelings, sentience, 
and consciousness are inherently capable of  being moral actors. Torrance 
points out that the moral point of  view arguably requires feeling sympathy 
toward people in pain or distress, not merely acting on the basis of  a rational 
inference that helping others is the right thing to do. Without a capacity to 
actually feel distress, pain, fear, and anger or positive emotions such as joy, 
pleasure, gratitude, and affection, a being does not possess the moral states 
or moral identifi cations that are essential to being a fully rounded moral indi-
vidual. In this robust view of  ethics, the ability to have such states (distress, 
joy, fear, etc.) cannot be properly understood without reference to humans’ 
sentience, biological constitution, and history. In other words, empathy, sym-
pathy, sentience, and morality are all bound up together.

We believe that the robust view of  ethics requires serious consideration. 
But it is also a relatively new argument, again raising the bar for the fac-
ulties a (ro)bot will need in order to be judged a morally intelligent system. 
However, we also believe that this perspective by no means undermines the 
project of  building AMAs to function within limited contexts. Furthermore, 
in the process of  tackling more limited goals approaches may be discovered in 
turn for surmounting the challenges implicit in the robust view.

Catriona Kennedy, a research fellow at the School of  Computer Science at 
the University of  Birmingham, has come to a similar conclusion when con-
sidering the need for agents that function as trustworthy ethical assistants in 
limited domains. She proposes that ethical agents that are not embodied and 
lack human-like experiences and emotions “could be feasible if  two require-
ments are met: (1) The agent must protect the integrity of  its own reasoning 
(including its representation of  ethical rules etc.) . . . (2) The agent’s world 
should generate events that can be related to ethical requirements in the 
human world.” As an example, Kennedy cites an intrusion detection system 
built around policies that state which networks can talk to each other, and 
what protocols each network must use. The network translates the policies 
into “acceptable” patterns of  activity and learns to detect violations through 
the analysis of  activity registered by its sensors. In addition, the network will 
need to be able to discern the difference between undesirable activity and 
unreliable sensors. A successful ethical assistant would ground ethical prin-
ciples from the human world, for example, a specifi cation for honest business 
relationships, by associating it with events in its own world (reliable pat-
terns of  communication that fall within the policies). Such an agent would 
not need to be embodied in the human world to be a trustworthy agent in a 
 limited domain.
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More recently, Torrance has argued that an entity will require conscious-
ness to be a moral agent. If  he is correct, the work on machine consciousness 
will have to progress signifi cantly before full moral agency for a (ro)bot is 
possible.

A leading researcher in the fi eld of  machine consciousness is Owen 
 Holland, who in 2004 received a large six-fi gure grant to begin work on 
building a conscious robot. Holland notes three approaches to building con-
scious machines.

(1)  Identify the components of  consciousness, and implement all of  them 
in a machine.

(2)  Identify the components of  the machine that produces consciousness 
(the brain) and copy them.

(3)  Identify the circumstances in which consciousness arose, copy them, 
and hope that consciousness emerges again.

The fi rst approach is taken by Stan Franklin with his work on IDA. The 
second approach is represented by Igor Aleksander’s efforts to build a neural 
network model of  the structures involved in the process of  visual conscious-
ness. Holland’s own strategy is based on the third approach, to build a robot 
embodied in its environment in hopes of  reproducing the conditions under 
which consciousness emerged.

Each of  these approaches to substantiating consciousness within a 
machine relies heavily on some theory of  consciousness. Holland’s proj-
ect is closely tied to theories developed by the German philosopher Thomas 
 Metzinger. Franklin’s IDA is an attempt to integrate reasoning and emotions 
in an artifi cial system based on the neuroscientist Bernard Baars’s global 
workspace theory. In the next chapter, we will turn specifi cally to the viability 
of  Franklin’s approach for building an AMA.
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Chapter 11
a  m o r e  h u m a n - l i k e  a m a

Put ’em Together and What Have 

You Got?

In the previous two chapters, we have described some basic computational 
components that may be part of  the tool kit for building AMAs. Assembling 
the pieces into a single agent is not a trivial task, however. For AMAs to have 
a more complete repertoire of  cognitive capacities, an overall architecture 
is needed. In computer science terms, an “architecture” specifi es a system’s 
components and how they interact. Any designer of  an AMA architecture 
must therefore decide what components to include. Should AMAs have spe-
cifi c components dedicated to ethical sensibilities and reasoning? Or should 
these functions be carried out by more general mechanisms?

An example of  the fi rst type of  architecture is Ronald Arkin’s Army-
funded project, discussed at the beginning of  chapter 5. He is working on the 
problem of  how to make robotic fi ghting machines capable of  dealing with 
the complicated ethics of  wartime behavior. Arkin’s proposed architecture 
has four dedicated components for ethics: (1) an “ethical governor”–based 
deontic logic for managing the hard constraints on permissible behavior; 
(2) an “ethical behavior control” module that has internalized principles 
which implement the specifi c military rules of  engagement for a particu-
lar combat situation and selects among permissible options; (3) an “ethical 
adaptor” that engages emotional systems during real-time behavior, and 
engages in refl ective reasoning after the fact; and (4) a “responsibility advi-
sor” that serves as an interface between the robot and the human operator, 
to ensure that the operator has properly considered the implications of  send-
ing the robot out on an autonomous combat mission with authorization to 
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use lethal force. Drawing on several of  the systems we described in chapter 9,
Arkin has sketched out how each of  these components might be constructed 
and how their interactions might be managed. However, the system remains 
very much on the drawing board, and Arkin warns against being optimistic 
that ethical autonomous agents capable of  lethal force will be available any 
time soon. The danger, of  course, is that ethically blind autonomous agents 
capable of  lethal force are becoming available fi rst. If  exposing the diffi culty of  
making killing machines ethical can help put the brakes on building them with 
inadequate safeguards, then the project of  thinking about AMA design will 
have served a valuable purpose. And irrespective of  what one thinks about the 
morality of  robotic fi ghting machines, we think that the four components of  
Arkin’s system could be adapted for other more benevolent applications.

Like many projects in AI, Arkin’s architecture owes little to what is known 
of  human cognitive architecture. There’s nothing wrong with this as an 
engineering approach to getting a job done. However, our focus here will be 
an alternative approach that began with some discussions between Wendell 
Wallach and Stan Franklin, a computer scientist at the University of  Mem-
phis, and culminated in the remainder of  this chapter. The approach builds 
on Franklin’s learning intelligent distribution agent (LIDA), a conceptual 
and computational model of  cognition that Franklin has developed in con-
cert with other computer scientists and neuroscientists. We will look at how 
LIDA might accommodate top-down analysis and bottom-up propensities, 
including learning. We will also discuss the prospects for incorporating the 
affective capabilities that are likely to be important for full moral agency.

The approach we outline in this chapter is also an example of  the second 
kind of  architecture we mentioned in the opening paragraph—it does not 
have special-purpose ethics modules but instead implements ethical sensi-
bility and reasoning capacities from more general perceptual, affective, and 
decision-making components.

Franklin’s LIDA is based on Bernard Baars’s highly regarded global work-
space theory (GWT) and has been developed with input from Baars, who is 
based at the Neurosciences Institute in San Diego. Although it has scientifi c 
competitors, GWT is among the most recognized and best-supported theories 
of  consciousness and higher-order cognition. Franklin’s LIDA interests us as 
a computational model of  human decision making that might be applicable 
to the design of  AMAs because of  its relationship to GWT, and because it is 
quite comprehensive. Systems that attempt, like LIDA, to replicate human 
intelligence fully, are often referred to as having artifi cial general intelligence 
(AGI). Of  course, there are other AGI models we could have focused on, 
for example Ben Goertzel’s Novamente project. Goertzel believes that with 
enough resources, an AGI system can be achieved within the next ten years. 
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The CogAff  model of  philosophers Aaron Sloman and Ron Chrisley, which 
we mentioned in chapter 10, is another candidate.

Stan Franklin is not the only scientist who has turned to GWT to develop 
a computational model of  human-like decision making. Murray Shanahan, 
a roboticist at Imperial College in London, and Stanislas Dehaene, a cognitive 
neuropsychology researcher at Institut National de la Santé in Paris, have 
both turned to GWT in their modeling of  human cognition. The models of  
Franklin, Shanahan, and Dehaene all differ in various details, but because 
none of  those details seem specifi c to AMA design, we’ll minimize confusion 
by focusing entirely on Franklin’s LIDA.

Following the engineer’s creed that you don’t really know how something 
works if  you can’t build it, Franklin has set his sights on designing a sys-
tem that implements GWT fully. This has forced him to look at the operation 
of  lower-level cognitive functions with a specifi city that is often overlooked 
when considering the validity of  higher-level theories. Franklin’s desire is 
to build a computer system based on the best neuroscientifi c understanding 
of  how the various affective, memory, reasoning, learning, and procedural 
mechanisms in the brain function, and to use whichever software tools are 
the most capable of  performing each activity.

Franklin’s LIDA is not explicitly designed for moral deliberation. Rather, LIDA 
is a model of  how every agent is engaged in the process of  trying to make sense 
of  its environment. Agents must continually select a next action to perform 
on the basis of  many different sources and kinds of  information. The GWT is a 
theory of  how a winner emerges from the competition for attention between 
various coalitions of  information. The winning coalition occupies conscious-
ness, and is broadcast throughout the brain, where it is combined with infor-
mation that facilitates the selection of  the agent’s next action. For example, 
if  there is competition for attention among available sources of  nutrition, an 
object to inspect, a playful companion, or the presence of  a threatening preda-
tor, the predator would typically have to win the competition if  there is any 
hope for long-term survival. Within the LIDA model, moral decision making is 
a form of  action selection similar to any other. From the perspective of  action 
selection, a more human-like AMA does not need specially dedicated moral 
reasoning processes. Rather, the system needs only the normal set of  delibera-
tive mechanisms, applied to inputs having relevance to moral challenges.

LIDA’s designers hypothesize that in each second there are multiple cog-
nitive cycles, and in each cycle there is a competition for attention, a win-
ner that occupies consciousness, and the selection of  a next action. We will 
focus on how sensitivity to morally relevant information enters each cycle, 
how multiple cycles lead to higher-order analysis, how complex challenges 
are processed and an action is selected, and how an agent learns to refi ne its 
moral decision-making faculties.
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The LIDA model is a complex one, with many layers and separate mod-
ules to handle different functions. There are modules for each of  the different 
forms of  memory (perceptual memory, transient episodic memory, proce-
dural memory, etc.) and individual processes, for example turning externally 
and internally derived sensory data into percepts—say, the detection of  the 
presence of  a chair or a predator. Franklin has drawn on what he considers 
the best available software tools for implementing specifi c activity.

We won’t attempt to evaluate how satisfactory LIDA is as a model of  
human cognition or whether there are better hardware and software tools 
for implementing specifi c functions. Our concern here is whether a complex 
model, for example LIDA, is useful as a platform for implementing the various 
aspects of  human decision making that we have raised in earlier chapters. 
The LIDA model has not been fully implemented, nor has any other model 
of  human cognition; however, the core of  LIDA has been demonstrated in 
a program named IDA that Franklin developed for the U.S. Navy. The IDA 
program performed the role of  a Navy detailer, who assigns each sailor to a 
new billet at the end of  a tour of  duty. The Navy employs three hundred full-
time detailers. They communicate with sailors to fi nd out their preferences 
in assignments, match these to available posts, make sure that the needs and 
some 90 policies of  the Navy are satisfi ed, and negotiate with the sailor as to 
whether a proposed assignment is  satisfactory.

The LIDA model is IDA with Learning. Much of  LIDA is highly theoreti-
cal, and the actual software tools for substantiating individual tasks have not 
been developed. Furthermore, testing the conceptual model would require 
signifi cant funding to build the system. Franklin is diligent in fl eshing out 
the various conceptual details necessary to substantiate LIDA, but whether 
a fully functioning LIDA would demonstrate the moral acumen we believe 
an AMA will require is also impossible to judge without building and testing 
the system. We will outline the fi rst steps of  designing a computational LIDA 
that could support the various faculties necessary for moral decision mak-
ing. Again, our concern here is not necessarily to endorse LIDA as the best 
approach for building an AMA, but rather to offer one example of  a compu-
tational model for an AMA that accommodates many of  the complexities we 
have raised. First, we will describe the general features of  LIDA as a model of  
human action selection.

The LIDA Model

Making sense of  the world, in order to determine what to do next, is a contin-
uous process. The LIDA model tries to capture this dynamic by describing the 
unconscious mechanisms that feed the conscious processing of  information, 
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as represented in GWT. Figure 11.1 illustrates an individual LIDA cognitive 
cycle from sensory input in the upper left to consciousness in the lower right, 
and on to the selection of  an action.

Franklin’s basic strategy (and signifi cant contribution) is to match the 
complex higher-level cognitive processes described by GWT with a descrip-
tion of  lower-level mechanisms that make such higher-level processes pos-
sible and computable. These lower-level mechanisms are captured in the 
individual LIDA cycles. Each individual cycle captures the ever-ongoing need 
for the agent to sense its environment and its own internal state, process 
these inputs, and select an appropriate response. Franklin posits that there 
are roughly fi ve to ten such cycles in each second, that is, fi ve to ten discrete 
inputs to consciousness and the selection of  fi ve to ten behaviors. Individ-
ual LIDA cycles are the “atoms” on which the more complex “molecules” of  
higher-order cognitive functions are built.

The upper left-hand corner of  fi gure 11.1 illustrates the agent receiving 
both external and internal sensory input. Unconscious mechanisms, utiliz-
ing massive parallel processing, are continually at work organizing and mak-
ing sense of  this input. Lower-level sensory inputs are associated together to 
form features (color, texture), which are in turn combined into higher-level 
percepts, for example objects, specifi c people, feelings, or events. For example, 
a collection of  visual inputs combines with internally stored information to 
represent the presence of  a chair. Within the agent’s workspace, associations 
form between percepts and memory. Active processes in transient  episodic 

Figure 11.1. The LIDA Cognitive Cycle. (Stan Franklin, Sidney D’Mello, and 
Austin Hunter.)
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(short-term) memory and declarative (long-term) memory form local associ-
ations, which expand the internal, unconscious representation of  the agent’s 
world. The perception of  a familiar face might have cued the recollection of  a 
name and the agent’s last interaction with that person, which was stored in 
memory. At this stage, the system will have cued other information, includ-
ing similar-looking people, associates of  the identifi ed person, and other 
associated data, some of  which may be irrelevant to the situation at hand.

Meanwhile, attention codelets (pieces of  software code that perform sim-
ple operations) scan the representations in the workspace, looking for specifi c 
information that should be brought to the agent’s attention. Imagine, for 
example, one codelet looking for evidence that the agent’s natural predator 
is in the environment. In effect, it is the job of  this codelet to get the agent to 
attend to the presence of  the predator, but other attention codelets are also 
competing to direct the agent to attend to other matters.

The winner for that cognitive cycle comes to occupy the global workspace, 
thus being broadcast globally to enlist other modules to help the system fi nd 
an appropriate response. Franklin posits that an action is selected at the end 
of  every cognitive cycle, though certainly some of  the actions selected entail 
the need for multiple cycles in order to generate a full response to a complex 
 challenge.

It is usual to think of  decision making as a deliberative process involv-
ing conscious refl ection about competing evidence or goals. Deliberation 
can entail problem solving, reasoning, planning, and metacognition. These 
higher-order cognitive processes are distinguished in the LIDA model by the 
fact that they typically require multiple cognitive cycles. But in most situa-
tions, including many of  those that could be said to involve morals, the selec-
tion of  an action occurs in a single cognitive cycle. Actions that follow from 
single cycles are said by Franklin to be consciously mediated.

More complicated decisions require conscious deliberation, or “volitional” 
decision making, in William James’s terms. In 1890, James suggested that we 
think of  volitional decision making as a negotiation among internal propos-
ers of  a course of  action, objectors, and supporters. James’s example entailed 
getting out of  bed on a cold winter morning, but in this age of  overheated 
houses perhaps the example of  waking up thirsty will be more familiar. On 
waking up, the idea of  drinking orange juice may “pop into mind,” propelled 
to consciousness by an orange-juice proposer. “No, it’s too sweet,” asserts 
an objector. “How about a beer?” says a different proposer. “Too early in the 
day,” says another objector. “Orange juice is more nutritious,” says a sup-
porter. With no further objections, drinking orange juice is selected.

The LIDA model fl eshes out James’s volitional decision making within 
global workspace theory by means of  a multicyclic process. An idea pops 
into consciousness because it is a part of  the winning coalition for that cycle. 
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Coalitions between individual pieces of  information are created by an atten-
tion codelet, looking specifi cally for those pieces of  information. For example, 
an attention codelet might look for something as simple as objects that are 
red, or a codelet could search for red and blood together. In LIDA, the propos-
ers, objectors, and supporters referred to in James’s model are implemented 
as individual attention codelets. In the presence of  an activated thirst node 
in the workspace, one such attention codelet, a proposer codelet, has the task 
of  bringing drinking orange juice to mind. Seeing a node for “drink some 
orange juice” in the workspace, another attention codelet, an objector code-
let, attempts to bring to mind the idea that orange juice is too sweet. Sup-
porter codelets are implemented similarly. The LIDA model also includes a 
timekeeper codelet, and other mechanisms that we won’t describe fully here. 
These mechanisms ensure that the decision-making process does not oscil-
late endlessly between proposals and objections and reaches a resolution of  
the challenge at hand.

This simple synopsis only begins to capture the depth and level of  analysis 
that has gone into the development of  the LIDA model, and its application 
to specifi c aspects of  cognition, including perception and learning, model-
ing memory, and the role of  feelings and emotions. Stan Franklin, with the 
coauthorship of  many different computer and cognitive scientists, has writ-
ten more than fi fty articles on IDA and LIDA, many of  which focus on specifi c 
mechanisms within the model. Readers interested in particular aspects of  
cognition and how they might be implemented within computer systems will 
want to check out some of  these articles. Our discussion here is a continu-
ation of  Franklin’s larger project in exploring how moral decision-making 
faculties might be implemented within the LIDA model.

Human Moral Decision Making 

and LIDA

There is little evidence that moral decision making in humans follows any 
formal procedure. Perhaps some trained ethicists actually engage in a formal 
and extended deliberation on those occasions when they have the time to 
do so. Individuals who have a commitment to a particular moral code may 
have internalized feelings, character traits, and heuristics that facilitate their 
responding quickly (perhaps within one cognitive cycle) to challenges within 
the apparent constraints of  their preferred moral code, and with little or no 
need for refl ection. But most decision making is somewhat messy, drawing on 
emotions, moral sentiments, intuitions, heuristics in the form of  automated 
responses, rules and duties, and perhaps some explicit valuation of  utility or 
expected outcomes.



178 moral machines

Memories and personality traits fi nd their way into the mix. In all like-
lihood, no two people process moral decisions in quite the same way, even 
when confronted with identical challenges. Humans are hybrid decision 
makers, with unique approaches to moral choices, honed over time and 
altered by their own distinctive experiences.

The messiness of  human moral decision making has been explored by 
 psychologists. Going back at least to the 1970s, their experiments have probed 
how morally trivial inputs have a large effect on the behavior of  individuals. 
For example, subjects who have just discovered a dime in a phone booth are 
much more likely to help someone in distress (96 percent v. 13 percent).

In another experiment during the same era, students at Princeton Theo-
logical Seminary on their way to giving a presentation were told either that 
they were running late, on time, or early. On the way they encountered some-
one in distress. In this “good Samaritan” experiment, only 10 percent of  those 
who were running late stopped to help, versus 45 percent of  those who were 
told they were on time and 63 percent of  those who were told they had plenty 
of  time. The students’ prior responses to a questionnaire about their religious 
and moral beliefs were not signifi cantly correlated to their decisions to stop.

Philosophers argue vigorously about the interpretation of  these experi-
ments and whether they are relevant to ethics. Irrespective of  that debate, 
whether an engineer should design an AMA so that it is susceptible to such 
manipulations of  its environment remains an open question. And regardless 
of  what an engineer should want the AMA to do, it is possible that any sys-
tem that has suffi cient fl exibility to be able to adapt to unanticipated inputs 
would necessarily be susceptible to similar manipulations.

For some moral philosophers, the messiness of  human moral decision 
making underscores the reasons for keeping moral philosophy separate from 
the psychology of  moral decision making. In their view, ethical theories pro-
vide ideals to be refl ected on, not procedures for making moral decisions. But, 
as we have discussed, there is no guarantee that those ideals are computa-
tionally tractable, nor is there any account forthcoming from the ethicist of  
how to build systems that pursue them. (“Not my job!” such an ethical theo-
rist might well retort.)

The ethicist who deliberately ignores human psychology has relatively 
few options when the engineer knocks on her door asking for advice about 
how to build an AMA. Furthermore, as we have pointed out, bottom-up fac-
tors will be important in the development of  AMAs. It is in this spirit that we 
think it’s worth pursuing the complexities that might be afforded by a moral 
LIDA. This doesn’t mean, however, that the goal is to implement an agent 
who will be more helpful after fi nding a dime! The goal is not to reproduce 
every aspect of  human psychology but to reproduce those aspects that make 
real-world actions possible and  ethical.
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Our task here is to explain how some of  this messiness can be accommo-
dated within LIDA by providing a framework where the various infl uences on 
ethical decisions, from feelings to rules, might be represented mechanistically. 
The resulting agent may not be theoretically pure. It may not be a perfect 
utilitarian or deontologist, and it may not live up to ethical ideals, but its goals 
are applied, not theoretical. A LIDA-based AMA is intended to be a practical 
solution to a practical problem: how to take into account as much ethically 
relevant information as possible in the time available to select an action.

In our discussion we’ll focus on six areas:

1. Where are bottom-up propensities and values implemented? How does 
the agent learn new values and propensities, as well as reinforce or 
defuse existing values and propensities?

2. How does the LIDA model transition from a single cycle to the determi-
nation that information in consciousness needs to be deliberated on?

3. How are rules or duties represented in the LIDA model? What activates 
a rule and brings it to conscious attention? How might some rules be 
automated so that they no longer require deliberation?

4. How can planning or imagination (the testing out of  different  scenarios) 
be implemented in LIDA?

5. What determines the end of  a deliberation?
6. When a resolution to the challenge has been determined, how might 

the LIDA model monitor whether that resolution is successful? How 
might LIDA use this monitoring for further learning?

Bottom-Up Propensities, Values, 

and Learning

In chapter 7, we suggested that skills that emerge from bottom-up strate-
gies promise to be integral to the overall design of  AMAs. We asked whether 
engineers could meet the technological challenge of  developing systems 
with complex moral faculties from the bottom-up. LIDA offers a step toward 
 meeting this challenge.

Sophisticated morality requires the ability to refl ect on propensities that 
have been shaped by evolution and experience. People naturally favor fam-
ily and neighbors over those who are members of  other groups. These pro-
pensities are captured in emotional-affective responses to actions and their 
outcomes. Through refl ection on the moral outcomes produced by these pro-
pensities, a sophisticated moral agent may take steps to modulate them. One 
may work harder, for instance, to donate to charities that aid people very 
remote from us, but one may also decide that charity begins at home and 
work harder to cultivate strong relationships with those nearby.
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Feelings and inherent values embodied in people’s unthinking reac-
tions, for example the disgust associated with blood and other bodily fl u-
ids, may infl uence morality from the bottom up, but are not necessarily 
refl ective of  the values a society would recognize as moral values. Nega-
tive feelings may, for example, lead to prejudices when an agent automati-
cally attaches such feelings to individuals who are not a part of  the agent’s 
immediate group. From a moral perspective, it is important to understand 
how top-down considerations use and apply these bottom-up propensities. 
The approach LIDA offers to this hybrid challenge begins with the way 
an agent captures bottom-up propensities and the values implicit in these 
propensities.

Within LIDA, perceptual memory (part of  long-term memory) is repre-
sented by a SlipNet, a network of  nodes and links between the nodes that 
represent structures and concepts, including features, objects, and valenced 
feelings. Links between these nodes represent relationships that can form 
more complex  structures (percepts). These percepts pass on to the system’s 
working memory (workspace), from where they cue associated information 
in other areas of  short- and long-term memory, and this information in turn 
leads to further associations that may enrich or alter the percepts.

Associations between valenced feelings (positive or negative) and objects, 
people, contexts, situations, and so on are a primary way values and bottom-
up propensities form in an agent’s mind. The values are implicit in the feel-
ings and their valences, and LIDA captures this dynamic. These associations 
may arise during perception where sensory inputs are connected to nodes 
(objects, feelings, ideas, categories) in perceptual memory. These nodes in 
turn activate and connect to information retrieved from the various memory 
systems, which in LIDA are represented as separate memory modules.

Affects and perceptions that arise within the same LIDA cycle will form 
associations, particularly when the affective input is strong. However, unless 
the sensory input is particularly strong and sustained, or the initial input 
cues associated memories, the perception of  the objects and their associated 
affects decays quickly and disappears. The strength of  a value—the strength 
of  the connection—is reinforced by sustained sensory input, but these val-
ues are short-lived unless the information comes to attention. Attention rein-
forces a connection for the longer term and produces learning.

Baars posits that each instance of  attention contributes to learning. Con-
scious attention, modeled in Franklin’s LIDA as the global broadcast in each 
cognitive cycle, strengthens links between percepts. Powerful memories—
memories linked to strong valences—are reinforced each time they come to 
attention.

The challenges facing LIDA are similar to those for any human-like 
computer architecture, including how the system acquires new concepts 
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or generates new nodes. A second, particularly pressing problem is how to 
represent valences in the SlipNet. Must they be represented somatically or 
is it adequate to use a cognitive representation of  the valence? If  a feeling is 
expunged of  any somatic affect and is represented merely as a string of  sym-
bols or a mathematical formula, will it carry the full import of  the feeling as 
it is factored into the selection of  an action?

These are not easy problems, but LIDA does offer an architecture for inte-
grating presently available solutions. Given the modularity of  LIDA, it will 
also be able to integrate more sophisticated solutions to these challenges as 
they emerge from laboratories focusing on the development of  specifi c hard-
ware and software tools.

Moral Deliberation Involving Rules

Moral dilemmas that require some deliberation arise periodically—for 
example, in the form of  confl icting voices in one’s head. Some of  these voices 
might frame their arguments in terms of  rules, for example, “Thou shalt 
not steal.” Let’s  consider how the activation of  a rule, duty, or other objec-
tion to an action leads to a deliberative process. How are such rules or duties 
represented in the LIDA model? What activates a rule and brings it to con-
scious attention? How might some rules be automated so that they no longer 
require deliberation?

A specifi c example of  an inner dialogue about a human moral dilemma 
may help. Suppose the company you work for licenses some new, expensive 
computer software, say Adobe’s Photoshop. After becoming comfortable 
with the new software package at work, you feel the urge to copy it onto 
your home computer. An internal dialog commences, but not necessarily 
as wholly verbal and grammatical as what follows. “Let’s bring Photoshop 
home and load the program on my Mac.” “You shouldn’t do that. That would 
be illegal and stealing.” “But I’d use it for work-related projects that benefi t 
my company, which owns the software.” “Yes, but you’d also use it for per-
sonal projects with no relation to the company.” “True, but most of  the work 
would be company related.” And so on and on.

In LIDA, a proposer representing the idea of  copying Photoshop to the 
home Mac might win the competition for consciousness, modeling the way 
this idea might “pop into mind.” The proposal impels the initiation of  a 
behavior stream, but in a subsequent cycle that follows soon after, an objec-
tor succeeds in bringing to consciousness the idea “No, that would be steal-
ing.” The process continues over succeeding cognitive cycles with supporter 
codelets, and with further proposals and objections winning the competition 
to be consciously broadcast. The game is afoot.
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Note that the fi rst objection is implicitly based on the rule “Do not steal.” 
At the end of  the proposal cycle, the proposal to copy Photoshop is in the 
workspace. There it cues the “Do not steal” rule from semantic memory, a 
part of  long-term declarative memory. The rule is activated and represented 
as a structure in the workspace, that is, as a collection of  nodes and links. An 
attention codelet then forms a coalition with this rule, to build an  objector-
attention codelet whose informational content is “Don’t copy Photoshop, 
that would be stealing.” If  effective, the objection coming to consciousness 
arrests the action scheme implicit in the idea of  copying the software.

Rules and duties are stored in semantic memory as perceptual structures. 
Cued by a proposal or an objection, the rule or duty is recalled into work-
ing memory and brought into consciousness to participate in the internal 
dialogue. Note that a supporter, as well as an objector, can invoke a rule. The 
dialogue stops when a proposal is on the table without further objection long 
enough for the timer to metaphorically ding. At that point a scheme in proce-
dural memory for acting on the proposal is presented to the action selection 
mechanism. The scheme presented will have a high degree of  activation, so 
its selection is assured, barring some crisis or intervening alarm.

The activation of  a proposer or objector decays (weakens) in each cycle. 
Therefore, rules that function as strong constraints will require a high level 
of  activation to be sustained. To function properly, a rule such as “Thou shalt 
not kill” needs to be reinforced, and this may be accomplished by feelings, 
in the form of  strong valences, associated with the rule. Feelings of  shame, 
disgust with killing, or fear of  the law are effective reinforcers in people. But 
other supporters can provide positive valence to, say, the action of  killing in 
warfare, or of  protecting children and others under one’s protection.

Each time an application of  a rule or duty comes to consciousness, it—like 
every conscious event—becomes available for perceptual learning. If  a par-
ticular rule is applied frequently in similar situations, LIDA may produce a 
category node in perceptual memory that represents the rule in an abstract 
version of  the similar situations. In our example, the moral decision-making 
agent might learn the abstract node “Don’t copy software you don’t have 
a license for.” If  such a node is reinforced often enough, this application of  
the rule is automatic. During the extended learning process, the node would 
acquire links to other nodes, particularly to feelings with negative valence. 
Thus, when faced with a situation where copying software might be tempt-
ing, this rule node can become part of  the percept. Its presence in the work-
space would then inhibit proposer codelets from proposing copying software, 
that is, by invoking the rule automatically.

Why does the internal dialogue begin? We’ve seen how it begins. It begins 
with a proposer-attention codelet popping a proposal into mind. But why 
isn’t the action of  copying the software, for example, simply selected as the 
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consciously mediated action, at the end of  a single cycle, with no dialogue at 
all? In some specifi c situations, copying software is permissible. The software 
license may allow installation on two machines, offi ce and home, for use by 
a single user. If  encountered frequently enough, a scheme for copying soft-
ware can be procedurally learned with this situation as its context. In such 
a case, copying software can become a consciously mediated action that is 
selected during a single cycle. But in order for such a scheme to be procedur-
ally learned, its action must have been selected volitionally at least once; that 
is, some deliberative process must have allowed it.

Generally, it’s the perceived novelty of  a given situation that leads to it 
being the subject of  deliberation rather than simply being selected. It’s the 
newness, or at least apparent newness, of  a situation that in effect demands 
that the agent think about it. New situations do not fi t neatly into innate or 
learned heuristics, and therefore demand attention. In attending to new cir-
cumstances, associated proposals and objections naturally come to mind.

The Implementation of  Planning 

and Imagination

Decision making in general and moral decision making in particular often 
require imaginative planning and testing of  various possible scenarios. The 
approaches to building AMAs we have described in the previous chapter 
 generally lack mechanisms for generating and testing alternative actions 
(although BDI agents have some capabilities in this regard). The LIDA model, 
like many traditional AI programs, has the capacity to construct internal 
models that can be used to assess different situations. For example, Deep Blue 
II, the system that beat Gary Kasparov at chess, tested many sequences of  
moves before selecting the best one to execute.

The LIDA model approaches planning and the evaluation of  options dif-
ferently from traditional AI. In good old-fashioned artifi cial intelligence 
(GOFAI), the programmers need to determine many of  the criteria for evalu-
ating a possible scenario in advance. In LIDA, scenarios are built and eval-
uated by individual codelets performing discrete tasks. A scenario may be 
evaluated by thousands of  different codelets each looking for specifi c kinds of  
information. Attention codelets that fi nd information relevant to their con-
cerns compete to bring that information into consciousness. If, for example, 
a codelet discovers information representing blood in a scenario, this codelet 
might recruit other codelets to inspect whether that scenario leads to humans 
or animals being harmed. Codelets are a particularly useful model for moral 
decision making, in that no one needs to specify in advance the moral crite-
ria for evaluating a scenario. Rather, thousands of  attention codelets might 
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search for morally relevant information, while only those that found infor-
mation germane to their directive or function would compete for attention.

In LIDA, imagination corresponds to a model built in the workspace by 
codelets whose task is to build structures within the workspace. The compo-
nents of  internal models of  the world are nodes and links from perceptual 
memory. Action selection in LIDA takes place at the end of  each cognitive 
cycle. The action may be as simple as adding a component to a model in the 
workspace. By repeatedly altering a model in the workspace, imaginative 
deliberation can take place over many cycles.

Consider a town planner who has been given the task of  designing and 
locating the emergency services in a town. Part of  the planner’s training 
would have involved learning complex internal behavior streams for con-
structing and manipulating scenarios by placing various facilities at particu-
lar locations. Other internal behavior streams would allow the evaluation 
of  such scenarios (mental plans of  the locations for ambulance, fi re station, 
police, and hospital facilities) using functional, aesthetic, and moral crite-
ria. Volitional decision making, as described earlier, would employ yet other 
behavior streams to decide which of  the constructed scenarios to select. 
Appropriately, in LIDA, the central site for much of  this work is the work-
space, though an embodied LIDA-based robot might also put ideas on paper.

Ultimately, for moral deliberation to be appropriately modeled by LIDA, 
attention codelets that are sensitive to morally relevant information will 
need to be designed. Whether the design of  such morally sensitive codelets 
differs from the general design of  codelets that search for concrete informa-
tion remains to be seen. But minimally, for example, we expect that attention 
codelets that are sensitive to concrete information about the facial and vocal 
expressions of  people affected by an AMA’s actions will need to be part of  the 
mix. The advantage of  codelets is that they provide an indefi nitely extensible 
framework for taking more and more of  the relevant factors into account.

Resolution, Evaluation, and Further 

Learning

A LIDA-based agent would reach a resolution when there is no longer an 
objection to a proposal. Given that the activation of  an objection decays in 
repeat cycles, strongly reinforced proposals will in time prevail over weak 
objections. But proposals and their supporters also weaken in their activa-
tion over time. Weak proposals may also lose the competition for attention 
to other concerns demanding attention, defusing any pressure or need for 
the agent to act on the challenge. Highly activated rules, duties, or other 
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 objectors will outlast weak proposers, and force the development of  more 
creative proposals that accommodate the strong objections.

However, time pressures may force a decision before all objections have 
been dispelled. Decay in the strength of  proposals and objections, time pres-
sures on decision making, and pressures from other concerns can drive 
the selection of  a response to a challenge even when the response is inad-
equate or incomplete. Furthermore, moral deliberations seldom vanquish 
all objections, even with a generous allocation of  time. Moral decisions are 
often messy, but the LIDA architecture has the potential to produce adap-
tive behavior despite the complexity. Future LIDA-inspired moral agents may 
consider a broader array of  proposals, objections, and supporting evidence 
than a human agent can, and thereby, perhaps, select a more satisfactory 
course of  action than many humans.

The LIDA model is not designed around fi xed moral values and may, like 
a human agent, be susceptible to acting on strongly reinforced impulses and 
proposals without necessarily considering the needs of  others. This is the 
problem exposed by experiments such as the aforementioned good Samari-
tan one. Some philosophers have argued that such experiments show that 
the notion of  stable moral character is a myth, while others argue that they 
only reinforce the idea that ethics is not about how humans do behave but 
about providing them with ideals for refl ective self-regulation that transcend 
ordinary psychological tendencies. These are issues that lie far beyond the 
present technical capacities of  LIDA. But what LIDA offers is a model for com-
puter learning that could provide steps toward a more complete model of  
moral education or the development of  good character.

The way a LIDA-based AMA monitors its actions will be important to 
its moral development. When a resolution to a moral challenge has been 
 determined, such an agent monitors the success of  the resulting actions as 
it would any other action, primarily by means of  an expectation codelet. An 
expectation codelet is an attention codelet that is spawned by the selected 
action. The job of  this expectation codelet is to bring to consciousness infor-
mation about the outcome of  the action. In particular, the expectation agent 
would become activated by discrepancies between the predicted result of  a 
course of  action and its actual result. Attention to this discrepancy would 
in turn reinforce or inhibit the application of  that behavior scheme to future 
similar challenges. In this manner, attention to how the result correlates with 
the prediction would contribute to procedural learning. This general model 
of  procedural learning is applicable to moral development in the context of  
an agent that has explicitly factored moral considerations into the selection 
of  an action, and into its expectations about the positive moral outcome of  
the selected action.
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Moving Forward

The value of  a comprehensive theory, for example the GWT-LIDA model, 
is that it provides a framework for integrating input from a wide variety of  
sources. A modular system, for example LIDA, can support a broad range 
of  inputs. Modular computer systems don’t depend totally on the ingenuity 
of  one design team. The designers of  comprehensive systems can draw on the 
best-of-breed in the selection of  modules developed by other researchers for 
managing sensory input, perception, or various forms of  memory, including 
semantic memory and procedural memory. In the GWT-LIDA model, com-
petition for consciousness between different coalitions, global broadcasting 
of  the winning coalition, and the selection of  an action in each cycle are the 
mechanisms for integrating the input from the various sources. The uncon-
scious parallel processing of  information, the speed of  the cycles, and the 
multicyclic approach to higher-order cognitive faculties holds out the prom-
ise that a LIDA-like moral agent could integrate a wide array of  morally rel-
evant inputs into its choices and actions.

Nevertheless, we don’t want to give the impression that AI projects such 
as LIDA can solve all problems. Like other AI procedures for testing scenar-
ios, LIDA must face the challenge of  scaling—that is, the issue of  whether 
its strategy can be adapted to handle the building and evaluation of  com-
plex scenarios. Furthermore, the foregoing discussion raises a host of  addi-
tional questions. Do the mechanisms suggested by these descriptions capture 
important aspects of  the human decision-making process? Even if  humans 
function differently, are the mechanisms described adequate to capture the 
practical demands of  moral decision making? Are the mechanisms for rep-
resenting the confl ict between different rules (proposers and objectors) too 
simplistic to capture the rich dynamics of  human moral decision making? 
Can rudimentary systems that implement these mechanisms be scaled up to 
handle the more sophisticated moral challenges that autonomous systems 
functioning in a wide variety of  contexts will encounter? Is the functional 
model of  consciousness suggested by GWT and the LIDA model adequate? 
Or will the agent require some form of  phenomenal experience that is not 
captured in the system described? Can morality really be understood without 
a full description of  its social aspects? How well would LIDA handle the kinds 
of  delicate social negotiations that are involved in managing and regulating 
the confl icts that arise among agents with competing interests?

Franklin and others working with the LIDA model are able to suggest ways 
LIDA could meet these challenges, but the approaches will initially be only 
theories with no proof  of  concept. For example, Franklin believes that LIDA 
will need something like a ToM to function adequately within social contexts, 
and is working through ways the model might be adapted to accommodate 
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an appreciation of  other’s beliefs and intents. He believes ToM can be built 
into the model using the existing structures. As of  this writing, there is no 
ToM in LIDA, but certainly the aforementioned attention codelets sensitive 
to the emotional expressions on people’s faces would be an aspect of  building 
this capacity.

Of  course, many will remain suspicious of  mechanical explanations of  
moral faculties. But the proof, as has been often said, will be in the pudding. 
What we have described is certainly not a demonstration that fully function-
ing AMAs will emerge from computational systems. Rather, we have outlined 
one rich experimental framework for exploring this possibility.

The approach to building AMAs outlined in this chapter differs from the 
approaches described in chapter 9. There we surveyed software projects that 
focus on one aspect of  moral decision making. Here we have an approach 
that provides a general architecture for combining multiple kinds of  mor-
ally relevant considerations. However, at this stage, LIDA is only partially 
implemented and is largely a conceptual model. No one can know in advance 
whether it is better to pursue less ambitious projects that can currently be 
fully implemented, for example those described in chapter 9, or to attempt to 
develop systems with AGI. Indeed, the idea that there is a best approach may 
rest on a misconception. Eventually there might be ways of  combining the 
specialized approaches we discussed in chapters 9 and 10 into a dedicated 
modular architecture, for example the one proposed by Ronald Arkin, or into 
a global model, for example LIDA. But what we hope to have illustrated with 
this chapter and chapter 9 is that ethical software has left the pages of  science 
fi ction and is taking form in real lines of  code. No matter how primitive these 
efforts may currently be, the experiment of  designing AMAs has begun.
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Chapter 12
da n g e r s ,  r i g h t s ,  a n d 
r e s p o n s i b i l i t i e s

Tomorrow’s Headlines

“Robots March on Washington Demanding Their Civil Rights”

“Terrorist Avatar Bombs Virtual Holiday Destination”

“Nobel Prize in Literature Awarded to IBM’s Deep-Bluedora”

“Genocide Charges Leveled at FARL (Fuerzas Armadas Roboticas de 
 Liberacion)”

“Nanobots Repair Perforated Heart”

“VTB (Virtual Transaction Bot) Amasses Personal Fortune in Currency 
 Market”

“UN Debates Prohibition of  Self-Replicating AI”

“Serial Stalker Targets Robotic Sex Workers”

Are these headlines that will appear in this century or merely fodder for sci-
ence fi ction writers? In recent years, an array of  serious computer scientists, 
legal theorists, and policy experts have begun addressing the challenges 
posed by highly intelligent (ro)bots participating with humans in the com-
merce of  daily life. Noted scientists like Ray Kurzweil and Hans Moravec talk 
enthusiastically about (ro)bots whose intelligence will be superior to that of  
humans, and how humans will achieve a form of  eternal life by uploading 
their minds into computer systems. Their predictions of  the advent of  com-
puter systems with intelligence comparable to humans around 2020–50 are 
based on a computational theory of  mind and the projection of  Moore’s law 
over the next few decades. Legal scholars debate whether a conscious AI may 
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be designated a “person” for legal purposes, or eventually have rights equal 
to those of  humans. Policy planners refl ect on the need to regulate the devel-
opment of  technologies that could potentially threaten human existence as 
humans have known it. The number of  articles on building moral decision-
making faculties into (ro)bots is a drop in the proverbial bucket in compari-
son to the fl ood of  writing addressing speculative future scenarios.

New technologies will be combined to afford new possibilities. Advances 
in the fi elds of  genetics, nanotechnology, and neuropharmacology will com-
mingle with each other and with AI in ways that are far beyond humani-
ty’s ability to predict. Superintelligent (ro)bots are only one among many 
technologies that might emerge from AI research. Possibilities such as the 
rise of  a cyborg culture appear to be natural extensions of  present research 
in  neuroprosthetics, including cochlear implants, neural links to artifi cial 
limbs, and deep brain stimulations that alleviate symptoms of   Parkinson’s 
disease. Future cyborgs might even erase the boundaries between  cyberspace 
and RL (real life) with the help of  neural links between computers and 
brains. An interface connecting the activity of  nanobots within the blood-
stream to an external computer opens up possibilities for repairing damaged 
organs as well as enhancing physical and mental faculties. However, exter-
nally controlled nanobots may also permit unscrupulous access to people’s 
inner lives.

Which futuristic visions are likely within the near future (twenty to fi fty 
years) and which are speculative fantasies? For every Ray Kurzweil proph-
esying that the Singularity (a point when AI exceeds human intelligence) is 
near, there are perhaps two equally noted scientists dubious of  such claims. 
Scientists who believe it is inevitable that humans will create advanced forms 
of  AI differ on how soon strong AI will be possible (ten to two hundred years), 
while those skeptical of  the entire enterprise differ on whether it is possible. 
The skeptics emphasize the diffi culty of  the technological challenges that 
must be surmounted, while the believers are more likely to downplay it. The 
true believers tend to gloss over the ethical challenges that will be entailed in 
building AMAs, while the skeptics, to our minds, seem more sensitive to the 
risk that the systems that are built may acquire and act on values that are 
less than benign. This is certainly a generalization, but when the believers 
discuss the ethics of  AI systems with superior intelligence, they tend toward 
dubious or naive assumptions as to why humans will be able to trust the 
benefi cence of  such systems. In these differences, we may just be observing 
psychological orientations (the cup is half  full or half  empty) and the need 
for those who identify with grand challenges to be optimistic about the social 
benefi ts that will be derived from their projects.

It can be diffi cult to fathom the gap between the relatively primitive state 
of  existing (ro)botic technology and speculation regarding what is soon to 
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come. Yes, research is progressing at a remarkable rate. However, major tech-
nological thresholds need to be crossed before the promise of  human-like AI, 
not to  mention superhuman AI, should be considered a serious possibility by 
policy makers and the general public.

In this chapter, we will discuss some of  the more futuristic considerations 
that are related to the implementation of  moral decision-making faculties in 
AI. Let us be clear at the outset. None of  these futuristic refl ections help us 
write a line of  code for building AMAs. However, legal questions regarding 
who is responsible for the actions of  a (ro)bot, and when it might cross the 
threshold to where it bears responsibility for its own actions, are certainly 
related to the themes of  this book. Policy debates over the need to regulate 
or relinquish future research impact the development of  AMAs, and will in 
turn be affected by any advances that ensure the safety of  (ro)botic technol-
ogy. Furthermore, social policy is infl uenced by the hopes and fears of  the 
public. Public policy toward the development of  AI will, with a bit of  luck, 
be informed by realistic possibilities rather than speculation or hype. We will 
address the hopes and fears fi rst, and then turn to issues of  moral agency 
and legal responsibility, before concluding with some comments about 
whether research into (ro)botic technology should be embraced, regulated, 
or  relinquished.

Futurology

The possibility of  super-intelligent, self-replicating artifacts 
making all the important decisions gave rise to speculation that 
robots or other forms of  autonomous AI will eventually take 
over the world and dominate or even destroy humanity. While 
some scientists and technologists perceive such a development 
as natural or inevitable, others fi nd it possible, but not probable 
or inevitable, or consider the takeover scenarios exaggerated, 
leading to a distorted public image of  robotics and AI, and 
possibly damaging for further development of  AI.

—Iva Smit, Robots, Quo Vadis?

The futuristic (ro)botic literature spins scenarios of  intelligent machines act-
ing as moral or immoral agents, beyond the control of  the engineers who built 
them. (Ro)bots play a pivotal role in both utopian and dystopian visions.

Speculation that AI systems will soon equal if  not surpass humans in their 
intelligence feed technological fantasies and fears regarding a future robot 
takeover. Perhaps, as some versions of  the future predict, a species of  self-
replicating (ro)bots will indeed threaten to overwhelm humanity. However, 
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Bill Joy’s famous jeremiad in Wired (2000) against self- reproducing tech-
nology notwithstanding, self-replicating robots are unlikely to be a major 
threat. The roboticist Jordan Pollack of  Brandeis University points out that 
unlike pathogens or replicating nanotechnology, (ro)bots require signifi cant 
resources both in the form of  raw materials and infrastructure to reproduce 
themselves. Arresting (ro)bot reproduction is a simple matter of  destroying 
the infrastructure or shutting down the supply chain. Daniel Wilson also 
captured some of  the absurdity in overblown fears of  a robot takeover in 
his dryly humorous yet informative How to Survive a Robot Uprising: Tips on 
Defending Yourself  against the Coming Rebellion.

Nonetheless, tactics for stopping large robots from replicating are not 
likely to be successful when dealing with tiny nanobots. On the other hand, 
nanobots, even in this age of  miniaturization, are unlikely to be very intelli-
gent. Intelligent or not, the gray goo scenarios beloved by alarmists in which 
self-replicating nanobots eat all the organic material on earth symbolize the 
serious ethical challenges posed by nanotechnology. And it is also possible, 
as Michael Crichton dramatized in his novel Prey, that groups of  nanobots 
working together might display threatening swarm behavior.

Futurists interested in the advent of  a Singularity or advanced systems 
with AGI commonly refer to the need for friendly AI. The idea of  friendly AI 
is meant to capture the importance of  ensuring that such systems will not 
destroy humanity. However, it is often hard to tell how committed those who 
speak of  this project are to the hard work that would be necessary to make AI 
friendly, or whether they are giving this project lip service in order to quell the 
apprehension that advanced AI may not be benign—a fear that might lead to 
policies that interfere with the headlong charge toward superhuman AI.

The concept of  friendly AI was conceived and developed by Eliezer 
 Yudkovsky, a cofounder of  the Singularity Institute for AI. The institute 
assumes that the accelerating development of  IT will eventually produce 
smarter-than-human AI and has as its stated goal to confront the oppor-
tunities and risks posed by this challenge. Eliezer is a brilliant young man 
whose ideas sometimes border on genius. He is almost religiously devoted to 
the belief  that a Singularity is inevitable. His thoughts on making AI friendly 
presume systems will soon have advanced faculties that will facilitate train-
ing them to value humans and to be sensitive to human considerations.

Yudkovsky proposes that the value of  being “friendly” to humans is the
top-down principle that must be integrated into AGI systems well before a 
speculative critical juncture known as the “hard takeoff.” As opposed to a 
“soft takeoff,” where the transition to a Singularity takes place over a long 
period of  time, the “hard takeoff ” theory predicts that this transition will 
happen very abruptly, perhaps taking only a few days. The idea is that once 
a system with near-human faculties turns inward and begins modifying its 
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own code, its development could take off  exponentially. The fear is that such 
a system will soon far exceed humans in its capacities and, if  it is not friendly 
to humans, might treat humans no better than humans treat nonhuman 
animals or even insects.

Ben Goertzel does not believe that Yudkovsky’s friendly AI strategy is 
likely to be successful. Goertzel is one of  the leading scientists working on 
building an AGI. His Novamente project is presently directed at building an 
AGI that  functions within the popular online universe Second Life, and he 
believes that this will be possible within the next decade given adequate fund-
ing. Goertzel’s concern is that being “friendly” to humans is not likely to be 
a natural value for an AGI and therefore is less likely to survive successful 
rounds of  self-modifi cation. He proposes that an AGI be designed around a 
number of  basic values. In a working paper on AI morality, Goertzel makes a 
distinction between those abstract basic values—for example, creating diver-
sity, preserving existing patterns that have proved valuable, and keeping 
oneself  healthy—that might be easy to ground in the system’s architecture 
and hard-to-implement basic values that would need to be learned through 
experience. Among these “hard basic values” are preserving life and making 
other intelligent or living systems happy. Without experience, it would be dif-
fi cult for the system to understand what life or happiness is.

Goertzel suggests that it will be possible to “explicitly wire the AGI with 
the Easy basic values: ones that are benefi cial to humans but also  natural in 
the context of  the AGI itself  (hence relatively likely to be preserved through the 
AGI’s ongoing self-modifi cation process),” and he advocates the strategy of  
using “an experiential training approach to give the system the Hard basic 
values.” He properly tempers these suggestions with a dose of  humility:

Finally, at risk of  becoming tiresome, I will emphasize one more time that 
all these remarks are just speculation and intuitions. It is my belief  that 
we will gain a much better practical sense for these issues when we have 
subhuman but still moderately intelligent AGI’s [sic] to experiment with. 
Until that time, any defi nitive assertions about the correct route to moral 
AGI would be badly out of  place.

We agree with Goertzel that although it may be important to refl ect on 
serious future possibilities arising from intelligent systems, it will be diffi cult 
to make headway on formulating strategies for making those systems moral. 
First, computer scientists will need to discover which platforms are likely to 
lead toward a (ro)bot with AGI.

Peter Norvig, director of  research at Google and coauthor of  the classic 
modern textbook Artifi cial Intelligence: A Modern Approach, is among those 
who believe that morality for machines will have to be developed alongside 
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AI and should not be solely dependent on future advances. By now, it should 
be evident that this is also how we view the challenge of  developing moral 
machines.

Fears that advances in (ro)botic technology might be damaging to human-
ity underscore the responsibility of  scientists to address moral considerations 
during the development of  systems. One AI scientist particularly sensitive to 
the challenges that advanced AI could pose is Hugo de Garis, who heads the 
Artifi cial Intelligence Group at Wuhan University in Wuhan, China. De Garis 
is working on building brains out of  billions of  artifi cial neurons. He has 
been particularly vocal in pointing out the potential negative impact from AI 
research, including his own. He foresees a war between those who are sup-
portive of  advanced artilects (a term he has derived from “artifi cial intellects” 
to refer to ultraintelligent machines) and those who fear artilects.

Nick Bostrom, a philosopher who founded both the World Transhumanist 
Association and the Future of  Humanity Institute at Oxford University, pro-
poses that superintelligent machines will far surpass humans in the quality 
of  their ethical thinking. However, Bostrom cautions that given that such 
machines would be intellectually superior and unstoppable, it behooves their 
designers to provide them with human-friendly motivations.

Bostrom, like Josh Storrs Hall, whose belief  that humans can evolve arti-
fi cial agents with positive values we discussed in chapter 7, generally holds 
that superintelligent systems will act in a way that is benefi cial to human-
ity. Michael Ray LaChat of  the Methodist Theological School in Ohio goes 
a step further in predicting the development of  AI into an entity that “will 
become as morally perfect as human beings can imagine. . . . The empathetic 
imagination of  this entity will take into account the suffering and pain of  all 
truly sentient beings in the process of  decision-making. . . . Human persons 
will increasingly come to rely on the moral decisions of  this entity.” Perhaps, 
as LaChat’s writings suggest, the word “entity” should be replaced with the 
word “deity.”

We do not pretend to be able to predict the future of  AI. Nevertheless, the 
more optimistic scenarios are, to our skeptical minds, based on assumptions 
that border on blind faith. It is far from clear which platforms will be the most 
successful for building advanced forms of  AI. Different platforms will pose 
different challenges, and different remedies for those challenges. (Ro)bots 
with emotions, for example, represent a totally different species from (ro)bots 
without emotions.

However, we agree that systems with a high degree of  autonomy, with 
or without superintelligence, will need to be provided with something like 
human-friendly motivations or a virtuous character. Unfortunately, there 
will always be individuals and corporations who develop systems for their 
own ends. That is, the goals and values they program into (ro)bots may not 
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serve the good of  humanity. Those who formulate public policy will certainly 
direct attention to this prospect. It would be most helpful if  engineers took 
the potential for misuse into account in designing advanced AI systems.

The development of  systems without appropriate ethical restraints or 
motivations can have far-reaching consequences, even when (ro)bots have 
been developed for socially benefi cial ends. As we discussed in chapter 9, the 
U.S. Department of  Defense is particularly interested in replacing humans in 
dangerous military enterprises with robots. One stated goal is saving the lives 
of  human soldiers. Presumably, robot soldiers will not be programmed with 
anything as restrictive as Asimov’s First Law. Will, for example, the desirabil-
ity of  saving human lives by building robotic soldiers for combat outweigh 
the diffi culty of  guaranteeing that such machines are controllable and can’t 
be  misused?

From the perspective of  designing moral machines, the importance of  
the futuristic scenarios is that they function as cautionary tales, warning 
engineers to be on guard that solutions to present problems will not hold 
unintended future consequences. For example, what will happen when mili-
tary robots come into contact with service robots in a home that have been 
programmed with Asimov’s First Law? Initially, one might assume that very 
little would change for either the military or the service robot, but eventually, 
as robots acquired the capacity to reprogram or restructure the way they pro-
cess information, more serious consequences might result from this meeting, 
including the prospect that one robot would reprogram the other.

In the meantime, the more pressing concern is that very small incremental 
changes made to structures through which an AMA acquires and processes 
the information it is assimilating will lead to subtle, disturbing, and poten-
tially destructive behavior. For instance, a robot that is learning about social 
factors related to trust might overgeneralize irrelevant features, for example 
eye, hair, or skin color, and develop unwanted prejudices as a result.

Learning systems may well be one of  the better options for developing 
sophisticated AMAs, but the approach holds its own set of  unique issues. 
During adolescence, learning systems will need to be quarantined, sheltering 
humans from their trials and errors. The better-learning (ro)bots will be open 
systems—expanding the breadth of  information they integrate, learning from 
their environment, other machines, and humans. There is always the pros-
pect that a learning system will acquire knowledge that confl icts directly with 
its in-built restraints. Whether an individual (ro)bot will “be confl icted” by 
such knowledge or use it in a way that circumvents restraints we do not know. 
Of  particular concern is the possibility that a learning  system could discover a 
way to override control mechanisms that function as built-in restraints.

If  and when (ro)bots develop a high degree of  autonomy, simple control 
systems that restrain inappropriate behavior will not be adequate. How can 
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engineers build in values and control mechanisms that are diffi cult, if  not 
impossible, for the system to circumvent? In effect, advanced systems will 
require values or moral propensities that are integral to the system’s overall 
design and that the system neither can nor would consider dismantling. This 
was Asimov’s vision of  a robot’s positronic brain being designed around the 
Three Laws.

One of  the attractions of  a bottom-up approach to the design of  AMAs 
is that control mechanisms serving as restraints on the system’s behavior 
might evolve in a manner where they are indeed integrated into the overall 
design of  the system. In effect, integral internal restraints would act like a 
conscience that could not be circumvented except in pursuit of  a goal whose 
importance to humanity was clear. Storrs Hall and others have stressed this 
point in favoring the evolutionary approaches for building a conscience for 
machines. However, bottom-up evolution spawns a host of  progeny, and 
those that adapt and survive will not necessary be only those whose values 
are transparently benign from the perspective of  humans.

Punishment—from shame to incarceration—or at least fear of  punish-
ment plays some role in human development and in restraining inappropri-
ate behavior. Unfortunately, it is doubtful that the notion of  being punished 
would have any lasting effect in the development of  (ro)bots. Could a (ro)bot 
really be designed to fear being turned off? Certainly something correspond-
ing to a sense of  failure or even shame might be programmed into a future 
(ro)botic system to occur if  it is unsuccessful at achieving its goals. Further-
more, mechanisms for hampering the system’s pursuit of  its goals, for exam-
ple slowing down its information or energy supply if  it violates norms, might 
serve as surrogate forms of  “punishment” for simple autonomous (ro)bots. 
However, more advanced machines will certainly fi nd ways to circumvent 
these controls to discover their own sources of  energy and information.

The restraining infl uence of  authentic feelings of  failure or shame suggests 
the value of  a (ro)bot having emotions of  its own. Unfortunately, introduc-
ing emotions into (ro)bots is a virtual Pandora’s box fi lled with both benefi ts 
and ethical challenges. As William Edmonson, a lecturer in the School of  
Computer Science at the University of  Birmingham, writes, “emotionally 
immature Robots will present humans with strange behaviours and these 
might raise ethical concerns. Additionally, of  course, the Robots themselves 
may present the ethical challenge–is it unethical to construct Robots with 
emotions, or unethical to build them without emotions?”

From both a technical and moral perspective, building (ro)bots capable of  
feeling psychological and physical pain is not a simple matter. We’ll return to 
the morality of  introducing emotions into (ro)bots when we discuss (ro)bot 
rights. For our purposes here, it suffi ces to say that while undesirable emo-
tions may play an important role in human moral development, introducing 
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them into (ro)bots for this purpose alone is likely to create many more prob-
lems than it solves.

Designing or evolving restraints that are integral to the overall architec-
ture of  a (ro)bot is among the more fascinating challenges future roboticists 
will need to address. Their success in developing adequate control systems 
may well determine the technological feasibility of  designing AMAs, and 
whether the public will support building systems that display a high degree 
of   autonomy.

The fear that future systems could not be restrained adequately and could 
be destructive to humans leads a few critics to suggest that research into 
advanced AI should be stopped before it gets out of  hand. We’ll address the 
public policy challenges posed by AI later. But fi rst, let’s look at the criteria 
for designating (ro)bots as moral agents and whether they may some day be 
deserving of  civil and legal rights.

Responsibility, Liability, Agency, 

Rights, and Duties

Autonomous (ro)bots aren’t going to attempt a global takeover any time 
soon. But they are already causing harm, real and perceived, and they will 
not always operate within ethical or legal guidelines. When they do cause 
harm, someone—or something—will need to be held responsible.

If  the accelerating pace of  the digital age has taught only one lesson, it’s 
that laws lag behind technology. This has become apparent to many people 
who deal with the archaic copyright laws in the United States. Computers 
make copying and distributing information easy, whether or not the mate-
rial has a copyright. Some (especially representatives of  the book publish-
ing, music, and movie industries) see this as necessitating better digital rights 
management schemes to enforce the rights that intellectual property owners 
currently have. But others argue that it is the asserted rights that are a bro-
ken relic of  a bygone era, and those rights should be fi xed not enforced.

James Boyle, of  the Duke Law School Center for the Study of  the Pub-
lic Domain, argues that long-term copyrights made sense when publishers 
invested heavily in expensive printing technology. They deserved a fair return 
on those investments. Now that digital reproduction and distribution have 
trivial costs, authors and the public would be better served, he argues, by 
releasing materials into the public domain, the “digital commons,” sooner 
than the present laws allow. Boyle’s approach has been to promote new copy-
right agreements—“copylefts”—that allow authors to select from a menu of  
specifi c rights that they may transfer to others who wish to reuse their work. 
But such agreements do nothing to unlock the vast repository of  cultural 
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wealth that has little commercial value but remains locked up by copyrights 
conceived in a different era.

Just as copyright law has not kept up with the digital age, liability law is 
not going to keep up with challenges posed by increasingly autonomous arti-
fi cial agents. Legal scholars will, of  course, continue to react to technological 
developments. It was almost fi fteen years after the Internet was opened to 
commercial interests before prominent law schools like Duke saw the need 
for centers to study legal issues in the digital context. Similarly, we predict 
that it will be perhaps another fi fteen years before a major law school sees 
the need to start a Center for Law and Artifi cial Agents. Much harder than 
reacting, however, is the task of  anticipating the legal developments that will 
require attention.

Will there be a need for the (ro)bot equivalent of  a Bill of  Rights? (A Bill of  
(Ro)bot Lefts?) Both the European Parliament and the South Korean govern-
ment have recently published position articles that suggest this may  happen.

Of  more immediate concern than rights for (ro)bots are the existing prod-
uct safety and liability laws. These will prove to be just as inadequate for 
ascribing responsibility for the actions of  (ro)bots as copyright law has been 
for the  Internet. For example, Helen Nissenbaum has emphasized in an arti-
cle she published in 1996 that “many hands” play a role in creating the vari-
ous components that make up complex automata. As systems become more 
complex, it is extremely diffi cult to establish blame when something does go 
wrong. How these components will interact in the face of  new challenges 
and in new contexts cannot always be anticipated. The time and expense 
entailed in determining that relatively tiny O-rings were responsible for the 
1986 Challenger disaster illustrates just how diffi cult it is to determine why 
complex systems fail. Increasing the autonomy of  machines will make these 
problems even more diffi cult.

For the near future, product safety laws will continue to be stretched to 
deal with artifi cial agents. Practical liability for illegal, irresponsible, and 
dangerous practices will be established by the courts fi rst, and legislatures 
second. Intelligent machines will pose many new challenges to existing law. 
We predict that companies producing and utilizing intelligent machines will 
stress the diffi culties in determining liability and encourage no-fault insur-
ance policies. It may also be in their interests to promote a kind of  independent 
legal status as agents for these machines (similar to that given corporations) 
as a means of  limiting the fi nancial and legal obligations of  those who create 
and use them. In other words, a kind of  de facto moral agency will be attrib-
uted to the systems long before they are capable of  acting as fully intelligent 
autonomous systems. Many people, however, will resist the idea that arti-
fi cial systems should ever be considered as moral agents because they take 
computers and robots to be essentially mindless.
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Throughout this book, we have argued that it doesn’t really matter 
whether artifi cial systems are genuine moral agents. The engineering objec-
tive remains the same: humans need advanced (ro)bots to act as much like 
moral agents as possible. All things considered, advanced automated systems 
that use moral criteria to rank different courses of  action are preferable to 
ones that pay no attention to moral issues. It would be shortsighted and dan-
gerous to dismiss the problem of  how to design morally sensitive systems on 
the grounds that it’s not genuine moral agency.

Still, a danger looms. By calling artifi cial systems moral agents, perhaps 
people will end up absolving the designers, programmers, and users of  AMAs 
of  their proper moral responsibilities. Calling a machine a moral agent might 
tempt one to pass the buck when something goes wrong.

This is a serious issue, but the slope is not quite as slippery as one might 
think. Discussion about the assignment of  blame and responsibility goes on 
even when a person is acting as an agent for another. To take an extreme 
case, if  you hire a contract killer, it is no defense to say that the person you 
hired should have applied his own ethical standards and therefore you bear 
no responsibility for the murder. Even in less extreme cases, the agency of  
those who work for you or with you does not automatically absolve you of  
moral responsibility for their actions. Likewise, we see no justifi cation for the 
view that attributing moral agency to complex artifacts should provide an 
easy way to deny responsibility for their actions.

So for the immediate practical purposes of  designing and assigning 
responsibility for harms (software engineering and social engineering), we 
think that not very much hangs on whether robots and software agents 
really are moral agents. Nevertheless, it can still be instructive to look at the 
philosophical arguments about genuine moral agency, to see whether they 
provide clues to anticipating and dealing with the legal and political issues 
that will arise for autonomous (ro)bots.

Moral Agency

In daily practice, it is common initially to judge people by the outcomes of  
their actions. But conclusions based solely on outcomes are adjusted or aban-
doned when one learns more about the motives behind the actions in ques-
tion. Motives can so signifi cantly affect one’s judgment that even apparently 
good actions can be judged bad, as when suspicion of  ulterior motive can 
result in judging seemingly correct behavior to be immoral. (E.g., “He is kind 
and generous to her because he wants to con her into marriage.”) Refl ect-
ing on such cases, many ethicists have agreed that an action should only be 
considered moral if  it stems from a certain state of  the agent’s mind—from a 
certain quality of  intention, purpose, motive or disposition.
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In recent years, a number of  philosophers have sought to break out of  the 
traditional methods of  the discipline by inventing the fi eld of  “experimental 
philosophy.” Instead of  relying on intuitions about thought experiments that 
are agreed on within the narrow confi nes of  their colleagues’ offi ces, experi-
mental philosophers are now investigating systematically how intuitions 
about ethical (and other philosophical) problems can be infl uenced by seem-
ingly irrelevant facts. For instance, in the trolley cases in which fi ve people 
can be saved from a runaway trolley by sacrifi cing one, it has been found 
that being asked to imagine a scenario where they must touch the person 
who will die makes a big difference to people’s intuitions about what is per-
missible. Thus, similar outcomes are assessed differently according to one’s 
sense of  direct agency in the situation. Likewise, we predict that direct, physi-
cal interactions with robots will increase people’s sense of  their agency and 
responsibility.

Another interesting result from experimental philosophy was discovered 
by Joshua Knobe, a philosopher at the University of  North Carolina at Chapel 
Hill. Knobe has presented people with scenarios depicting the moneymaking 
motives of  a corporation’s CEO. In the scenarios, the CEO’s desire to make 
money is paramount for him. The CEO can be described as saying “I don’t 
care if  it harms/helps the environment so long as it makes us money!” In 
some scenarios, the actions he chooses lead to predictable secondary effects 
that are negative, and in some they are positive. In Knobe’s experiments, 
people are inclined to assign blame when the CEO’s actions lead to bad side-
effects but not to assign praise when they lead to equally predictable good 
side-effects. This asymmetry between credit and blame in otherwise identi-
cal scenarios may be explainable given that the CEO’s profi t-fi rst motive is 
already morally loaded. Nevertheless, we think Knobe’s discovery is relevant 
to people’s likely reactions to autonomous artifi cial agents. They will, of  
course, be blamed when things go wrong. Still, as noted in chapter 9, the 
research by roboticist Matthias Scheutz seems to show that people will be 
more inclined to tolerate disobedience in a robot when they assume that it is 
working toward a shared goal.

For utilitarians and other consequentialists, agency is secondary; an 
agent is judged by the effects of  his or her actions rather than the inten-
tions behind those actions. But clearly, humans’ interactions with complex 
machines and attitudes toward them are going to be shaped by something 
other than pure philosophical theory. Moral philosophers may lament 
this, but anyone interested in the future perspective of  law and politics 
toward (ro)bots can safely bet that they won’t follow a purely consequen-
tialist approach. Similarly, while virtue ethics provides rich intellectual 
resources for philosophical refl ections about character, these refl ections are 
likely to remain relatively remote from the daily tug-of-war of  courts and 
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 legislatures. Kantian ethicists tend to be among the most resistant to the idea 
that machines could be genuine moral agents. Specifi cally, many Kantians 
believe that machines necessarily lack the kind of  genuine (“metaphysical”) 
freedom of  will that is essential to any kind of  genuine moral agency. We 
have argued that genuineness is not the appropriate goal for the engineer-
ing task, and we would argue, too, that it is not an appropriate criterion for 
the legal questions either. Indeed, the very active legal issues surrounding 
direct rights for nonhuman animals show that the law already is willing to 
go where Kant would not have gone.

The discordant and sometimes obviously anthropocentric theories of  the 
various ethical schools do not bring one very close to clear criteria for legally 
treating an autonomous (ro)bot as a moral agent. However, one should 
not conclude that systems incapable of  comprehending the effects of  their 
actions will not be morally praised or blamed for these effects. Human ten-
dencies to assign praise and blame are complex and subject to many infl u-
ences, and there is every chance they will be extended to (ro)bots. An AMA 
might be considered praiseworthy once it has the capacity to assess the effects 
of  its actions on sentient beings and to use those assessments to make appro-
priate choices.

In chapter 4, we described Floridi and Sanders’ three criteria for attribut-
ing agency to mindless machines: interactivity, autonomy, and adaptability. 
On their view, one can look at a system at a variety of  levels, from low-level 
mechanical details to more abstract high-level aspects. Each level can be 
considered its own “level of  abstraction” in the language used by Floridi and 
Sanders. They maintain that if, from a given level of  abstraction, the system 
is taken to possess the three features, it should be considered an agent. If  it 
acts in ways that have moral consequences, then it will be considered a moral 
agent. The applicable “level of  abstraction” is specifi ed by the features a given 
person can observe (the observables). Different people, for example software 
users versus programmers versus engineers, will consider different features 
to be observable. Programmers will be aware of  the software and engineers 
of  the machinery while users may only perceive the behavior. Hence they 
will work at different “levels” of   abstraction.

Many ethicists and philosophers of  technology have been reluctant to 
attribute agency to artifacts because to do so seems to absolve the design-
ers and users of  those artifacts from moral responsibility for their usage. 
Floridi and Sanders attempt to assuage these concerns by making a distinc-
tion between moral accountability and moral responsibility. They write that 
“agents (including human agents) should be evaluated as moral if  they play 
the ‘moral game.’ Whether they mean to play it, or they know that they are 
playing it, is relevant only at a second stage, when we want to know whether 
they are morally responsible for their actions.”
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According to Floridi and Sanders, something much less than an attribu-
tion of  agency is required to hold an artifact accountable. When an artifi cial 
agent produces morally undesirable outcomes, one holds it accountable by 
removing it from service, destroying it, and so on. Their point is that by focus-
ing on the more limited notion of  moral accountability, it is possible to side-
step the worries about whether technological artifacts possess suffi ciently 
person-like capacities to count as moral agents in exactly the same sense as 
human beings. On their view, there is a level of  abstraction at which mindless 
systems can be considered moral agents, and it is essential to think about the 
design, use, and regulation of  such systems in terms of  moral accountability 
rather than being limited by worries about moral personhood that are more 
connected to questions about responsibility.

We agree to a great extent with the spirit of  Floridi and Sanders’ approach. 
In our view, worries about whether artifi cial systems can be “genuine” moral 
agents distract from important questions about how to design systems to act 
appropriately in morally charged situations. Floridi and Sanders do a good 
job of  addressing these (frequently Kantian-inspired) worries, thereby help-
ing to “liberate technological development of  [artifi cial agents] from being 
bound by the standard limiting view.”

With their “levels of  abstraction,” they are concerned to build a frame-
work that can legitimize the idea that software systems have moral agency—
their goal, as they put it, is “to clarify the concept of  agent.” However, we 
don’t think their philosophical analysis produces useful suggestions for 
the  engineering challenge of  building AMAs, which is why we have not 
addressed it in much detail before this point in the book. The closest they 
come to the implementation question is their suggestion that morally accept-
able behavior could be defi ned as a “threshold function” applied to the 
observable variables that make up a level of  abstraction—above a threshold 
might be considered moral, and below it immoral—but it is very hard to see 
how to put this abstract idea into practice. They also suggest that artifi cial 
agents should be designed for compliance with the Association for Comput-
ing Machinery’s Code of  Ethics. But how this could be implemented with a 
threshold is unclear. What are the variables, for example, that will enable 
a threshold to be defi ned for producing behavior in compliance with items 
in this code such as “Contribute to society and human well-being” and “Be 
honest and trustworthy”?

Despite our concerns about the limits of  their shifting the concept of  
agency, we don’t want to downplay our signifi cant agreement with Floridi 
and Sanders. Their framework is helpful in thinking about how and why 
people interacting with (ro)bots might start to treat them as AMAs. This 
will, however, be dependent on the level of  abstraction an observer relates to. 
According to Floridi and Sanders, systems that appear to ordinary users to 
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possess adaptability do not appear so to software engineers who are operating 
at a different level of  abstraction. Deterministic rules embedded in the com-
puters’ programs will be among the observables to the software engineers. 
While it is the case that in large-scale projects, no single individual may be 
able to treat the entire program as observable, any “ethical subroutines” will 
nonetheless be observable to some engineers. The questions that will face 
the legal system will be what level or levels of  observation are appropriate 
for deciding legal questions. In fact, a very similar debate goes on in legal 
and scientifi c circles about how to handle mechanistic gene-and-neuron-
level explanations of  human behavior—could these absolve some people of  
liability for their actions? Indeed, for the past fi fty years, legal systems have 
struggled with similar questions as to whether sociological factors absolved 
individuals of  responsibility for criminal actions. Recent advances in neuro-
science have led to the establishment of  working groups in “neuroethics” at 
several universities, notably the University of  Pennsylvania, Stanford Uni-
versity, and the University of  British Columbia.

The pressing issue for us here remains the one of  who is responsible for 
the behavior of  autonomous AMAs. Floridi and Sanders argue that the tra-
ditional view that only humans can be found responsible for certain kinds 
of  software and/or hardware is now rather outdated. Any agent is morally 
accountable. But artifi cial agents cannot be held responsible for their actions 
the same way humans are. Obviously, subjecting AMAs to human kinds 
of  praise or blame may not make much sense. Working with clear defi ni-
tions of  agents’ domains (i.e., level of  abstraction and morality thresholds) 
helps make this problem manageable by making it possible to separate and 
formalize responsibility, and clarify its part in morality. Moreover, avoiding 
anthropocentric and anthropomorphic attitudes toward agenthood removes 
numerous hindrances to the investigation and better understanding of  
what Floridi and Sanders call distributed morality, that is, “a macroscopic 
and growing phenomenon of  global moral actions and collective responsi-
bilities resulting from the ‘invisible hand’ of  systemic  interactions among 
several agents at a local level.” Their concept allows for mindless morality 
without inappropriately assigning moral responsibility to the machines. This 
is complementary to the traditional approach of  human-centered morality 
based on mental states, feelings, emotions, and legal responsibility. On this 
view, artifi cial agents that satisfy the criteria of  interactivity, autonomy, and 
adaptability are legitimate, fully accountable sources of  moral (or immoral) 
actions, even if  they do not exhibit free will, mental states, or responsibility.

The responsibility for the behavior of  intelligent artifacts remains a press-
ing and diffi cult matter to resolve, because the increasingly complex chains 
between actions and consequences typical for contemporary society obscure 
who makes key decisions and complicate the issue of  what is right or wrong. 
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Traditionally, human designers and operators were held morally accountable 
for the actions of  machines. This view is still appropriate in many situations, 
but does it apply when the behavior of  a machine emerges, to some extent 
unforeseeably, from decisions made by many people and possibly also by other 
machines? Floridi and Sanders suggested that assigning responsibility at any 
cost and looking for the responsible individual when something untoward 
happens is not likely to deliver the desired results under these circumstances. 
Rather, the ethics of  creative stewardship, that is, focusing on accountability 
and promoting normative action by monitoring and censuring autonomous 
agents, provides a far better perspective for dealing with the challenges of  
modern technology. We wish to emphasize once more, however, that while 
these post hoc questions about moral accountability are important, they 
do not provide obvious solutions to the primary technological challenge of  
building AMAs that have the capacity to assess the effects of  their actions on 
sentient beings, and to use those assessments to make appropriate decisions.

Rights and Responsibilities

Beginning with Sam Lehman-Wilzig’s 1981 article “Frankenstein Unbound: 
Towards a Legal Defi nition of  Artifi cial Intelligence,” the question of  whether 
there are barriers to designating intelligence systems legally accountable for 
their actions has captured the attention of  a small but growing community 
of  scholars. They generally concur that the law, as it exists, can accommo-
date the advent of  intelligent (ro)bots. A vast body of  law already exists for 
attributing legal personhood to nonhuman entities (corporations). No radical 
changes in the law would be required to extend the status of  legal person to 
machines with higher-order faculties, presuming that the (ro)bots were rec-
ognized as responsible agents.

From a legal standpoint, the more diffi cult questions concern the rights 
that might be conferred on an intelligent system. When or if  future artifi -
cial moral agents should acquire legal status of  any kind, the question of  
their legal rights will also arise. This will be particularly an issue if  intelligent 
machines are built with a capacity for emotions of  their own, for example the 
ability to feel pain.

Isaac Asimov anticipated this problem in his novella The Bicentennial Man,
on which a movie with the same title, starring Robin Williams, was based. 
Only when the main character, “Andrew,” an NDR-113 model robot, has his 
components replaced with organic matter and allows his positronic brain 
to decay and die is he accepted as a human being. A lesson one may take 
from this is that human morality springs from mortality. This would make 
Josh Storrs Hall’s fantasy of  perfectly moral machines arising  necessarily 



dangers,  r ights,  and responsib il it ies 205

from their immortality seem even more remote from what people want of  
their AMAs.

Already there are calls to block research into the kinds of  machines that 
could fully participate in the human moral sphere. Philosopher Thomas 
Metzinger is author of  a book on consciousness called Being No-One: The Self-
Model Theory of  Subjectivity. Metzinger’s theory of  the phenomenal self  model 
(PSM) has been used as the basis for virtual reality experiments in which 
human subjects experience events taking place in their own bodies while 
seeing the events from a third person perspective. Nothing in Metzinger’s 
account rules out the possibility of  building a PSM into machines. Indeed, 
his book has inspired the work of  the roboticist Owen Holland on machine 
consciousness. However, near the end of  his book Metzinger writes:

Suffering starts on the level of  Phenomenal Self  Models. . . . The PSM 
is the decisive neurocomputational instrument not only in developing 
a host of  new cognitive and social skills but also in forcing any strongly 
conscious system to functionally and representationally appropriate its 
own disintegration, its own failures and internal confl icts. Pain and any 
other nonphysical kind of  suffering, generally any representational state 
characterized by a “negative valence” and integrated into the PSM are 
now phenomenally owned. Now it inevitably, and transparently, is my 
own suffering. . . . Therefore, we should ban all attempts to create (or even 
risk the creation of) artifi cial and postbiotic PSMs from serious academic 
research.

Our present laws are based on a clear distinction between persons and 
machinery that will be increasingly challenged by more and more sophis-
ticated artifi cial agents. Floridi and Sanders are right that whether one sees 
such systems as agents at all will depend on the levels of  abstraction one 
applies. It is always possible to focus on low-level mechanisms and, from that 
perspective, express the view that nothing like moral agency is present. But, 
as we have seen, the same happens if  one goes too low into the molecules that 
make up human beings. Which level to apply is partly a pragmatic  matter—
it depends on what you know and what you want to accomplish—but ulti-
mately is a matter of  choice. From one perspective, the (ro)bots we create can 
seem mere machines and from another, complex adaptive entities that may 
be more or less sensitive to the things that matter morally to us.

David Calverley, a lawyer who has written specifi cally about AMAs, points 
out that while intelligent machines with higher-order faculties such as con-
sciousness may indeed fulfi ll current legal standards for being designated 
“legal persons,” ultimately their recognition as such will be a political and 
not a legal determination.
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Recognizing Success

Whether or not the legal ins and outs of  personhood can be sorted out, more 
immediate and practical for engineers and regulators is the need to evaluate 
AMA performance. But ethical standards are diverse, and ethical behavior is 
hard to defi ne, which suggests that something other than explicit standards 
might be necessary.

In many ways, the problem of  identifying a good AMA is a narrower ver-
sion of  the old AI standby of  how to say when a machine is intelligent. And 
just as Alan Turing tried to sidestep the question of  defi ning intelligence, 
an obvious idea for bypassing disagreements about ethical standards is to 
come up with a variant of  the Turing test: the MTT (introduced in chapter 4).
A human judge asks questions and tries to determine from the answers 
whether she is interacting with a machine or a human being. If  the judge 
cannot reliably distinguish a machine’s answers to questions about moral 
issues from a person’s, then the machine’s performance may be judged sat-
isfactory. Any MTT is bound to be a far from perfect evaluation tool, just like 
the original Turing test, but thinking through the limitations of  such a test 
can help sort out what one does want in an evaluation of  AMAs.

Turing tests are procedural tests. They specify a procedure for determin-
ing whether a machine’s performance is at the desired level without setting 
explicit standards. Nevertheless, procedures aren’t entirely neutral about 
what they consider important. Thus, the question-and-answer format of  
the MTT may place undue emphasis on a machine’s ability to articulate rea-
sons for its moral decisions. This might suit a Kantian who thinks that good 
actions must fl ow from good reasons, but it is not so suitable from either a 
utilitarian or common-sense approach. The most famous utilitarian of  the 
nineteenth century, John Stuart Mill, argued that actions are morally good 
independent of  the agent’s motivations. And many people think that young 
children (and perhaps even dogs) are moral agents even though they are 
incapable of  articulating the reasons for their actions.

One way to shift the focus from reasons to actions might be to restrict the 
information available to the human judge in some way. Suppose the human 
judge in the MTT is provided with descriptions of  actual, morally signifi cant 
actions of  a human and an AMA, purged of  all references that would iden-
tify the agents. If  the judge correctly identifi es the machine at a level above 
chance, then the machine has failed the test.

There is, however, a problem both for this version of  the MTT and the 
initial question-and-answer version. The problem is that distinguishability is 
the wrong criterion, because the machine might be recognized for responding 
or acting in ways that are consistently better than a human would. Turing 
considered an analogous problem for his original Turing test, and suggested 
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dumbing down the machine’s replies—making it delay its responses to arith-
metic problems, for example. For the original Turing test, this is acceptable, 
since indistinguishability really is the goal. But for AMAs, one might actually 
want them to be more consistent and impartial than humans usually are in 
their moral decisions and actions. Asking the judge to decide which of  a pair 
of  agents acted less morally than the other might solve this problem. If  the 
machine is not readily identifi ed as less moral more often than the human, 
then it has passed the test. This is the cMTT (discussed in chapter 4).

Still, the cMTT is far from perfect. First, one might think the standard is too 
low. Even though to pass the test the machine must, on average, be judged at 
least as moral as humans, one might demand more. That is, the goal should 
not be just to construct an AMA but to construct an exemplary AMA. The 
cMTT allows the machine’s aggregate performance to contain actions that 
would be judged as morally wrong, and morally worse than the human 
actions, so long as on balance these do not cause the machine to be rated 
lower than the human. The cMTT could, in response, be tightened to require 
that the machine not be judged worse than the human in any comparison of  
specifi c actions. But even with this restriction, the resulting standard might 
be too low: human behavior itself  is typically far from being morally ideal! 
People are likely to be much less tolerant of  decisions that result in harm to 
others made by a machine than of  those made by another human being.

Without any other generally agreed-on standard, however, the cMTT may 
remain the only workable yardstick available for assessing what is acceptable 
behavior from AMAs.

Embrace, Reject, or Regulate?

Public policy toward (ro)bots will undoubtedly be infl uenced by ideas about 
how to evaluate their intelligence and moral capacities. But political factors 
will play the larger role in determining the issues of  accountability and rights 
for (ro)bots, and whether some forms of  (ro)bot research will be regulated or 
outlawed.

(Ro)bot accountability is a tricky but manageable issue. For example, com-
panies developing AI are concerned that they may be open to lawsuits even 
when their systems enhance human safety. Peter Norvig of  Google offers the 
example of  cars driven by advanced technology rather than humans. Imag-
ine that half  the cars on U.S. highways are driven by (ro)bots, and the death 
toll decreases from roughly forty-two thousand a year to thirty-one thousand 
a year. Will the companies selling those cars be rewarded? Or will they be con-
fronted with ten thousand lawsuits for deaths blamed on the (ro)bot drivers?
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Norvig’s question faces any new technology. It could just as easily be asked 
about a new drug that reduces the overall death rate from heart disease while 
directly causing some patients to die from side effects. And just as drug com-
panies face lawsuits, so, too, will (ro)bot manufacturers be sued by (ro)bot-
chasing lawyers. Some cases will have merit, and some won’t. However, free 
societies have an array of  laws, regulations, insurance policies, and juridical 
precedents that help protect industries from frivolous lawsuits. Companies 
pursuing the huge commercial market in (ro)botics will protect their com-
mercial interests by relying on the existing frameworks and by petitioning 
legislatures for additional laws that help manage their liability.

However, as (ro)bots become more sophisticated, two questions may arise 
in the political arena. Can the (ro)bots themselves, rather than their man-
ufacturers or users, be held directly liable or responsible for damages? Do 
sophisticated (ro)bots deserve any recognition of  their own rights?

We think that both of  these questions are futuristic compared to the aims 
of  this book. Nevertheless, others have already started to discuss them, and 
we don’t want to ignore that discussion entirely.

There are many ways agents are held responsible for their actions within 
legal systems, corresponding to different available means of  punishment. 
Human agents have historically been punished in a variety of  ways: through 
infl iction of  pain, social ostracism or banishment, fi nes or other confi sca-
tion of  property, or deprivation of  liberty or life itself. Debates over whether 
it makes sense to hold (ro)bots accountable for their actions often center on 
whether any of  these traditionally applied punishments makes sense for arti-
fi cial agents. For instance, the infl iction of  pain only counts as a real punish-
ment for agents that are capable of  feeling it. Depriving an agent of  freedom 
only really punishes an agent who values freedom. And confi scation of  prop-
erty is only possible for agents who have property rights to begin with.

If  you are convinced that artifi cial agents will never satisfy the conditions 
for real punishment, the idea of  holding them directly accountable for their 
actions is a nonstarter. One can believe this and still agree with the main 
thrust of  this book, which is that some facsimile of  moral decision making 
is needed for autonomous systems. Successful AMAs might be constructed 
even if  they could never be held directly responsible for anything, just as arti-
fi cial chess players can win tournaments even though they never get direct 
credit for doing so.

However, you may be among the readers who believe that (ro)bots will 
eventually reach the point where it would be nothing but human prejudice 
to deny that they deserve equal treatment under the law. Such a movement 
is likely to come gradually, and with much disagreement about when the 
threshold has been crossed. In this respect, calls for (ro)bot rights are likely 
to mimic the politically signifi cant movement to increase rights for animals. 
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Much of  the animal rights movement has focused on protecting the more 
intelligent species from pain and distress.

Pain and emotional distress are not yet, of  course, issues for (ro)bots. 
The kinds of  emotional mechanisms we discussed in chapter 10 certainly do 
not cause actual conscious discomfort to the machines. However, designers 
will, in all likelihood, continue trying to build realistic emotions and pain 
responses into (ro)bots. It will be particularly diffi cult to establish whether 
these future (ro)bots actually have any subjective experience of  pain, just as 
it is diffi cult to establish whether people in vegetative states experience sub-
jective pain or what kinds of  pain animals experience. If  (ro)bots might one 
day be capable of  experiencing pain and other affective states, a question that 
arises is whether it will be moral to build such systems—not because of  how 
they might harm humans, but because of  the pain these artifi cial systems 
will themselves experience. In other words, can the building of  a (ro)bot with 
a somatic architecture capable of  feeling intense pain be morally justifi ed and 
should it be prohibited?

In the previous section, we described how the German philosopher Tho-
mas Metzinger has already called for a ban on building (ro)bots with a con-
scious self  model, precisely because he thinks this would increase the amount
of  pain and distress in the world. We think that Metzinger’s proposal is unlikely 
to be heeded. The commercial pressure toward more and more sophisticated 
(ro)bots is just too strong, particularly when it is so easy for people to shield 
themselves behind all the doubts about whether (ro)bots could really be 
 conscious.

If  not prohibited, should there be regulation of  experiments in which 
a robot might experience emotional states? A signifi cant body of  law has 
evolved to protect animals from undue suffering, including a network of  
institutional animal care and use committees that regulate the appropri-
ate care and use of  animals in research. These committees are similar to the 
institutional review boards that oversee the ethical treatment of  humans in 
research. Regulations protecting animals are far less stringent than those 
protecting humans, and there is much scientifi c disagreement about how 
animal pain and distress can be measured. Nevertheless, members of  animal 
care and use committee attempt to balance the needs of  scientifi c research 
against the well-being of  animals used in experiments. To date, there are no 
review boards to oversee the ethical treatment of  (ro)bots in research, nor 
is there any need for them. However, as the appearance of  subjective feel-
ings of  pain and pleasure in (ro)bots becomes stronger, there will be calls for 
regulations and review boards to oversee the kinds of  research that can be 
performed.

Establishing the subjective experience of  the systems, while hard enough, 
will only serve as a backdrop for deeper concerns. No doubt, there will be 
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individuals and groups for whom the prospect of  developing artifi cial systems 
with emotions is deemed unacceptable for ethical reasons, or offensive, if  not 
an abomination, for religious reasons. Barring a major political movement to 
severely restrict (ro)botic research, we would anticipate that legislatures will 
decide questions regarding the treatment of  (ro)bots in research narrowly. 
Initially, there will be legislation requiring a review of  the use and treatment 
of  (ro)bots in only specialized forms of  research, but as more sophisticated 
systems are built, a broader array of  experiments will require ethical review.

Regulating the treatment of  (ro)bots in research is not the same as grant-
ing legal rights to them, but the establishment of  protections provides a toe-
hold for the assignment of  rights. The progression toward rights for (ro)bots 
is likely to be slow. (Ro)bots may be programmed to demand energy, informa-
tion, and eventually education, protection, and property rights, but how is 
one to evaluate whether they truly desire social goods and services? If  a robot 
in a plaintive voice begs that you not turn it off, what criterion will you use to 
decide whether or not this is a plea that should be honored? As systems get 
more and more sophisticated, fewer and fewer people may question whether it 
is appropriate to anthropomorphize the actions of  a (ro)bot, and many people 
will come to treat the (ro)bots as the intelligent entities they appear to be.

Sexual politics are one frontier where these issues may come to the fore. 
The adoption of  mechanical devices, robots, and virtual reality by the sex 
industry is nothing new, and while some are offended by such practices, 
governments in democratic countries have largely turned away from trying 
to legislate the private practices of  the individuals who use these products. 
However, other social practices are likely to ignite public debate. Examples 
are the rights of  humans to marry robots and of  (ro)bots to own property. 
Lester del Rey was the fi rst writer to fi ctionalize a robot marrying a human 
in the classic short story “Helen O’Loy,” which he published in 1938. Helen, 
the robotic heroine, not only marries her inventor but later sacrifi ces herself  
when her husband dies. In 2007, almost seventy years later, the University 
of  Maastricht in the Netherlands awarded a doctorate to AI enthusiast David 
Levy for his thesis that trends in the development of  robotics and in shifting 
social attitudes toward marriage will lead to humans perceiving sophisti-
cated robots as suitable marriage partners. Given that marriage is an institu-
tion legally recognized by the state, legislatures can anticipate debating this 
possibility. Unlike most other kinds of  rights for robots, marriage is an issue 
that humans will have a direct interest in, and may therefore be among the 
fi rst rights considered for robots. Initially, presuming a human is granted 
the right to marry a robot, this might confer only limited rights to the robot. 
However, over time there would be demands for robots to have the legal right 
to inherit property, and to serve as a surrogate in health decisions involving 
an incapacitated human spouse.
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Long before legislatures consider granting rights to (ro)bots, however, 
they are likely to be forced to deal with demands to restrict research or even 
ban outright the development of  sophisticated AI systems. Even as the pub-
lic embraces scientifi c progress, there is considerable confusion, anxiety, and 
fear regarding the way future technologies might transform human identity 
and community.

The diffi culty, as we mentioned earlier, will be for legislatures, judges, and 
public offi cials to distinguish the societal challenges that need to be addressed 
from issues that are based on speculative projections. Unrealistic expectations 
and fears come partly from researchers who—because they need to promise 
results in order to get funding for their projects—give overly optimistic time 
frames for their anticipated results.

An actual catastrophe in which an AI system causes signifi cant harm 
to humans, or widespread fears that advanced forms of  AI will eventually 
eliminate humans, could, of  course, lead to political pressures that override 
any reasonable perspective. In addition, the political arena can be especially 
unpredictable and chaotic when confronted with issues in which many dif-
ferent constituencies have a stake. Because of  the commercial forces involved 
in (ro)botics, and because it is hard to know exactly what directions the tech-
nological developments will take, it is clear that there will be many stakehold-
ers. It is diffi cult to predict exactly who they will be, what their concerns will 
be, and how they will align with each other. This unpredictability is accen-
tuated when one considers the regulation of  “enhancement technologies” 
that promise tighter and tighter integration of  technology with the human 
body. Artifi cial intelligence is typically included in discussions of  technologi-
cal enhancements, from neuroprostheses to neuropharmacology to nano-
technology. James Hughes, author of  Citizen Cyborg: Why Democratic Societies 
Must Respond to the Redesigned Human of  the Future, argues that enhancement 
technologies will be a core political issue in the United States and Europe in 
the coming decades.

By what criteria will the risks posed by new technologies be assessed? How 
convincingly must a critic prove the likelihood of  the danger? At what stage 
is government justifi ed in stepping into the realm of  science to stop or slow 
scientifi c research, regardless of  whether harm has already occurred?

The precautionary principle, which we introduced in chapter 3, is often 
invoked to argue that scientists should relinquish research into fi elds that 
have the potential to be harmful to humans. The European Union has codi-
fi ed the precautionary principle in various directives, but the United States 
has not done so. This difference is refl ected in Europe’s more restrictive 
policies toward new technologies, including genetically modifi ed foods. On 
the other hand, rather than explicitly rejecting research that poses dan-
gers, legislators in the United States create regulatory hurdles that can be 
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 insurmountable. For example, fear in the United States that genetically modi-
fi ed grains designed to facilitate the production of  low-cost drugs will con-
taminate existing strains of  corn and wheat has resulted in the absence of  
any regulatory standard for establishing acceptable risks. This has more or 
less arrested any fi eld tests of  these plants.

Which of  the promised advances in computer technology or medical sci-
ence are people willing to forego on the basis of  highly speculative fears that 
humanity is heading toward the eradication of  the human species as it has 
been known? Who decides when research has crossed a threshold where it 
becomes dangerous? Which avenues of  research in the development of  arti-
fi cial agents hold potential dangers that can be foreseen, and how will these 
dangers be addressed? Which of  these dangers can be managed and which 
may require the relinquishment of  further research? What areas of  concern 
will need regulation and oversight, and how might this be managed in a way 
that does not interfere with scientifi c progress?

We have many questions and few answers. The lack of  clarity on these 
serious issues increases the prospect of  political infl uence in determining 
whether new technologies are regulated. Fear of  possible bad consequences 
is just one concern on the minds of  political leaders. Economic interests, 
hopes of  helping the needy, and pressure from socially conservative constitu-
ents are among the considerations that will infl uence decisions.

Furthermore, decisions to regulate research in Europe, the United States, 
or Asia will not necessarily be supported by other governments. Values and 
social pressures differ from country to country and state to state, as Presi-
dent George W. Bush discovered when he tried to slow stem cell research. The 
Japanese are under tremendous pressure to develop service robots to care for 
the elderly and homebound, while countries with more open immigration 
and guest worker programs are not under the same pressure. The values of  
religiously conservative voters, who care about social issues, tend to be much 
more infl uential in American than in European politics. Calls to relinquish 
research on ethical grounds are not likely to carry the same weight in more 
liberal countries.

National and international mechanisms for discriminating real dangers 
from speculative dangers are needed. One dimension of  this challenge is 
determining when technological thresholds that present clear ethical chal-
lenges and potential harms to humans are about to be crossed. This is easier 
said than done. It is not clear whether legislatures and international bodies 
such as the UN have the will to create effective mechanisms for oversight. 
Furthermore, there are few concrete suggestions on how any regulation of  
AI research might be accomplished. A “Roboethics Roadmap,” developed for 
the European Robotics Research Network (EURON) by Gianmarco Veruggio, 
an Italian roboticist and president of  Scuola di Robotica, admirably outlines 
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the benefi ts, obstacles, and challenges for a broad array of  robotic applica-
tions, but is largely focused on getting concerned parties to begin thinking 
about the issues. The expressed focus of  the Singularity Summit in the United 
States is also to ensure that (ro)bots will be friendly to human concerns, but 
here, too, there are few concrete proposals. Perhaps this is all that can be 
expected at this stage of  development.

A more diffi cult challenge than distinguishing real from speculative dan-
ger will be to assess how the cumulative effect of  incremental changes might 
lead to fundamental shifts in the structure of  society. Coevolution of  human 
culture and its technologies has been ongoing since the day humans fi rst 
picked up stones and used them as hammers or weapons. Cultural evolution 
continues at a rapid pace. Society is pretty good at assimilating change, for 
example, the extension of  the average life expectancy at birth in the United 
States from forty-seven in 1900 to seventy-eight years today, and the advent 
of  cell phones and iPods. But might the cumulative effect of  new technolo-
gies give rise to forms of  societal change that are seriously disruptive, if  not 
outright destructive?

Leon Fuerth, research professor of  international affairs at George Washington 
University and formerly national security advisor to Vice President Al Gore, 
uses the phrase “social tsunami” to describe the challenges posed by genetic 
engineering, nanotechnology, neuropharmacology, and AI. From his experi-
ence as a policy advisor in the Clinton-Gore administration, he notes that the 
public policy apparatus is not well adapted to plan for possible future crises. 
Policy makers are suspicious about the ability of  social planners to predict 
what might happen. Immediate goals beat out longer-term objectives in the 
competition for funds. While there are certainly limits in people’s ability to 
predict the future, failure to develop even short-term planning for events that 
have the potential to seriously disrupt social stability is shortsighted. Fuerth 
stresses the need for “forward engagement,” the disciplined capacity to plan 
for potentially major societal events.

We agree with Fuerth that it is time to bring a little foresight and planning 
to the challenges AI and other enhancement technologies pose. An initiative 
that regularly brings together experts and concerned members of  the public 
to map the current and imminent challenges posed by digital technologies 
would be particularly helpful. A central responsibility for this body would be 
to clarify those technological thresholds that must be crossed before specula-
tive futuristic challenges should be treated as real possibilities. Their reports 
could serve as an educational vehicle and as a framework for illuminating 
those challenges for which policy makers and society as a whole do indeed 
need to plan. Science is not static. Progress in one research avenue impacts 
progress in others. Such a map will need to be revised regularly.
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In this book, we have endeavored to map the pathways by which autono-
mous (ro)bots might become AMAs. No one knows where the ultimate tech-
nological limits of  moral machines may lie, or whether there are any limits 
at all. (Although there’s no shortage of  people claiming to know!) Engineers 
and ethicists must recognize the limits of  current technologies and utilize 
the ethical capabilities provided by the best technologies. Overly optimistic 
assessments of  technological capacities could lead to a dangerous reliance 
on (ro)bots that are not suffi ciently sensitive to ethical considerations. Overly 
pessimistic assessments could stymie the development of  some truly useful 
technologies or induce a kind of  fatalistic attitude toward (ro)bots.

We believe it is necessary to proceed with the development of  AMAs. 
Whether the future holds (ro)bots that are “real” moral agents is beside the 
point. It will be possible to engineer systems that are more sensitive to the 
laws and moral considerations that inform ethical decisions than anything 
presently available. The future needs AMAs.
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e p i l o g u e— ⁽ ro ⁾ b o t  m i n d s 
a n d  h u m a n  e t h i c s

In writing this book, we have learned that the process of  designing (ro)bots 
capable of  distinguishing right from wrong reveals as much about human 
ethical decision making as about AI.

We started with the deliberately naive idea that ethical theories might be 
turned into decision procedures, even algorithms. But we found that top-
down ethical theorizing is computationally unworkable for real-time deci-
sions. Furthermore, the prospect of  reducing ethics to a logically consistent 
principle or set of  laws is suspect, given the complex intuitions people have 
about right and wrong.

Professional ethicists already know that their theories cannot provide 
real-time decision procedures. Instead, many of  them see the project of  eth-
ics as aimed at justifying ethical decisions within a single, comprehensive 
framework. Perfect consequentialism or Kantianism represent ideals against 
which actions are to be measured. But for such ethicists, the impossible rigor 
demanded by such perfection looms large. For example, can a determined 
consequentialist also have genuine commitments to friends and family, come 
what may, or must he subjugate personal relationships to the maximization 
of  utility?

In our view, however, this is a monkish pursuit, not much removed from 
the question of  whether it is possible to live according to a vow of  perfect 
poverty or perfect silence. People don’t want AMAs to replicate the abstrac-
tions of  moral philosophers any more than they want their neighbors to do 
so. People want their neighbors to have the capacity to respond fl exibly and 
sensitively in real and virtual environments. They want to have confi dence 
that their neighbors’ behavior will satisfy appropriate norms, and that they 
can trust their neighbors’ actions. Meeting this challenge will entail an even 
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more thorough understanding of  human ethical behavior than is presently 
available. That is, building AMAs forces one to take a particularly compre-
hensive approach to ethical  decision making. It is important, we think, that 
the project of  building AMAs highlights the need for a richer understanding 
of  human morality.

This does not mean that top-down theories are worthless, but it impels one 
to take a different look at their role. Different theories provide languages for 
describing ethical challenges and lenses through which to view them. Every 
theory provides concepts that underscore different features of  actions and 
outcomes in situations of  moral risk. Different ethical theories, intuitions, 
and social practices must be factored into the choice of  actions. For humans, 
and for AMAs, the challenge is to broaden awareness of  the moral consider-
ations that impinge on a particular situation.

Trust and cooperation cannot be built by the dogmatic imposition of  
one framework over another or through the rigid application of  one view 
of  what is ethically “correct.” Rather, they require the capacity to see the 
other’s point of  view. Ethical theories are thus not strict guides to action, but 
frameworks for negotiation. Real problems facing real agents are the playing 
fi eld on which the social norms surrounding trust and cooperation must be 
addressed.

Some ethicists will claim that this misses the point of  ethics (as they 
understand it)—that ethics is about what should be, not merely about the 
way people do function in social situations. We agree that ethics helps an 
agent refl ect on the “oughts.” These oughts translate into the weights agents 
place on particular moral considerations. An agent will still need to fi nd a 
way to steer between the many moral considerations that impinge on each 
new challenge and come up with a course of  action that balances those con-
siderations as well as possible, while being able to explain why some consid-
erations could not be fully accommodated.

Perhaps one might have come to a similar conclusion through just think-
ing about the moral decision making of  humans, irrespective of  autonomous 
machines. However, refl ection on a comprehensive approach toward teach-
ing robots right from wrong has demanded attention to aspects of  moral deci-
sion making that people normally take for granted in their daily, frequently 
less-than-perfect attempts to behave ethically toward each other.

The quest to develop AMAs will also feed back on ethical understanding by 
providing a platform for experimental investigation. For instance, by tinker-
ing with the correspondence between what is said, what is done, and what is 
conveyed by nonverbal means, researchers will be able to systematically test 
how words, deeds, and gestures interact to shape ethical judgment. And by 
simulating the interactions among agents with different ethical  viewpoints, 
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it will be possible to supplement the speculative thought experiments of  
 science fi ction and philosophy with testable social and cognitive models.

Humans have always looked around for company in the universe. Their 
long fascination with nonhuman animals derives from the fact that animals 
are the things most similar to them. The similarities and the differences tell 
humans much about who and what they are. As AMAs become more sophis-
ticated, they will come to play a corresponding role as they refl ect humans’ 
 values. For humanity’s understanding of  ethics, there can be no more impor-
tant  development.
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These notes expand on some of  themes in the chapters, and we hope they inspire 
further thought and reading. We also give credit to people and works that 
have specifi cally infl uenced our writing about machine morality. The bibliog-
raphy provides a more complete list of  sources that have nourished our think-
ing about teaching robots right from wrong. Where those sources can be easily 
determined from the main text, we have not repeated them here in the notes, on 
the assumption that interested readers will be able to fi nd the relevant items in 
 the  bibliography.

Introduction

Asimov fi rst explicitly introduced the Three Laws of  Robotics in the short story 
“Runaround,” published in the March 1942 issue of  Astounding Science Fiction. In 
his 1985 novel Robots and Empire, Asimov formulated an additional Zeroth Law, to 
stand above the original three: “A robot may not harm humanity, or, by inaction, 
allow humanity to come to harm.” Other science fi ction writers have explored 
similar ideas, sometimes anticipating Asimov’s laws and sometimes expanding 
on them.

Journalist Noah Shachtman blogged about the incident in South Africa of  a 
robotic gun going awry; see “Robot Cannon Kills 9, Wounds 14,” Wired, October 
18, 2007, http://blog.wired.com/defense/2007/10/robot-cannon-ki.html. While 
mechanical malfunction was ultimately determined to be the cause of  the acci-
dent, Shachtman reports early claims that faulty software may have played a part. 
He also links to a video of  a separate incident in the United States, purportedly 
showing a remotely operated weapon emptying its magazine in an uncontrolled 
fashion and, although fortunately out of  ammunition by this point, swinging 
around in the direction of  the camera and the spectators, allegedly including 
some members of  the United States Congress.

n o t e s

http://blog.wired.com/defense/2007/10/robot-cannon-ki.html
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The future market for robots is analyzed by Dan Kara, president and edito-
rial director of  Robotics Trends, at his blog, www.robonexus.com/roboticsmarket
.htm. His analysis is partly on the basis of  fi gures from the Japan Robot Associa-
tion (www.jara.jp/e/).

Oxford University philosopher Nick Bostrom has argued that it is quite pos-
sible we are already living as part of  a computer simulation, if  not the Matrix per 
se. In a 2003 article in Philosophical Quarterly, “Are You Living In a Computer Sim-
ulation?” he argued that one of  these three things has to be true: (1) the human 
species is very likely to go extinct before reaching a “posthuman” stage; (2) any 
posthuman civilization is extremely unlikely to run a signifi cant number of  simu-
lations of  their evolutionary history (or variations thereof); and (3) we are almost 
certainly living in a computer simulation. Bostrom considers the three possibili-
ties to be equally likely. His paper and others debating its merit can be found at 
www.simulation-argument.com/.

Chapter 1

Philippa Foot introduced the trolley case thought experiment in her 1967 article 
“The Problem of  Abortion and the Doctrine of  Double Effect.” The original trolley 
cases have been embellished into dozens, perhaps hundreds, of  variants to test 
philosophical intuitions about what is or isn’t permissible according to various 
ethical theories. Trolley cases feature prominently in recent attempts by scientists 
to understand the evolutionary, emotional, and neurological bases for human 
moral decisions. Joshua Greene was the fi rst person to pose trolley cases to sub-
jects in the brain scanner, with his fMRI study published in Science in 2001.

Our discussion of  the actual driverless trains derives from the 2002 article 
“The Future Lies in Driverless Metros” by Mike Knutton, journalist and editor of  
the International Railway Journal; he quotes Morten Sondergaard of  the Copen-
hagen metro and discusses the experience of  the Paris metro with its driverless 
Meteor trains. Professor R. J. Hill of  Cambridge University made the case that 
politics and economics rather than engineering will hold back railway automa-
tion in his 1983 article “The Automation of  Railways” in the journal Physics 
in Technology. Since at least 2003, Bob Crow, the leader of  Britain’s National 
Union of  Rail, Maritime and Transport Workers, has repeatedly threatened 
strike action in opposition to the expansion of  driverless trains in the London 
Underground.

To learn more about Joseph Engelberger’s take on robotics and the service 
industry see his 1989 book Robotics in Service. Engelberger’s status as “father of  
robotics” is recognized annually by the Robotics Industries Association with its 
Joseph F. Engelberger Award for outstanding contributions to robotics.

IBM maintains a full archive about Deep Blue and its defeat of  world chess 
champion Gary Kasparov at www.research.ibm.com/deepblue/. Aleksandr Kro-
nrod, a Russian AI researcher, has made the claim that “chess is the Drosophila of  
AI.” Many cognitive scientists now believe that instead of  being AI’s fruit fl y, chess 
was actually a red herring, leading researchers into a blind alley for decades.
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F-Secure Corporation is headquartered in Helsinki; Mikko Hyppönen is chief  
research offi cer. Journalist Michael Shnayerson quotes Hyppönen in his January 
2004 article “The Code Warrior” in Vanity Fair.

Blaster (also known as Lovesan) was a worm that spread through several ver-
sions of  Microsoft Windows operating systems, causing instability and program-
ming hijacked systems to launch a distributed denial-of-service attack against 
Microsoft’s windowsupdate.com website. The planned attack failed to cause any 
serious problems for Microsoft.

Computer ethics emerged as a distinct fi eld in the early 1980s. It was put on 
the map in 1985 when Terrell Ward Bynum and Jim Moor edited a special issue of  
the journal Metaphilosophy that was republished as a book, and Deborah Johnson 
also published her textbook on the subject. Bynum has also written “A Very Short 
History of  Computer Ethics,” published in the summer 2000 issue of  the Ameri-
can Philosophical Association’s Newsletter on Philosophy and Computing and 
also available at www.southernct.edu/organizations/rccs/resources/research/ 
introduction/bynum_shrt_hist.html.

The Internet Archive Project and its Wayback Machine can be found at 
www.archive.org/. Journalist Reni Gertner wrote about lawyers using the Way-
back machine in her article “Lawyers Are Turning to Old Websites for Evidence,” 
published in Lawyers Weekly in August 15, 2005.

The U.S. Army’s plans for autonomous battlefi eld systems are presented 
at their Future Combat Systems website, www.army.mil/fcs/. Journalist Tim 
 Weiner’s account of  the army’s plans appeared in his article “New Model Army 
Soldier Rolls Closer to Battle” in the New York Times of  February 16, 2005. Noah 
Schactman and David Hambling are journalist-bloggers who follow the technol-
ogy of  automated warfare closely. Some recent articles by them on the Wired
 Blog Network include Schactman’s “Armed Robots Pushed to Police,” on August 
16, 2007, and “Roomba-Maker Unveils Kill-Bot” on October 17, 2007, and 
 Hambling’s “Armed Robots Go into Action,” on September 10, 2007.

Peter Norvig’s comments about the cumulative effects of  small mistakes 
can be found in the transcript of  a talk he gave at the Singularity Summit in 
San Francisco, September 9, 2007. The Singularity Summit is an annual con-
ference about the future of  AI and humanity; see www.singinst.org/media/ 
singularitysummit2007/).

The fi nal quotation of  the chapter is from Rosalind Picard’s book Affective 
Computing, published in 1997. Picard is more concerned with computers’ abilities 
to recognize emotions than their moral behavior, but clearly the one feeds into 
the other—a theme we develop in chapter 10.

Chapter 2

The NSPE Code of  Ethics may be found at www.nspe.org/Ethics/CodeofEthics/.
Helen Nissenbaum, professor of  media, culture, and communication and 

of  computer science at New York University, has extensively surveyed the ways 
values infl uence the design process. Nissenbaum’s website lists many of  her 
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 articles: www.nyu.edu/projects/nissenbaum/main_cv.html. She is codirector of  
the Values at Play research project (http://valuesatplay.org/), which looks at how 
designers of  computer games can become more aware of  the values they build 
into their games.

Neuroethics is a term that has come to prominence since the turn of  the 
twenty-fi rst century; it describes an emerging subfi eld of  bioethics that deals 
specifi cally with the ethical issues arising from neuroscience. Stanford University 
has developed a neuroethics program as part of  its Center for Biomedical Eth-
ics (see http:// neuroethics.stanford.edu). Other resources include the University 
of  Pennsylvania’s neuroethics website (http://neuroethics.upenn.edu/) and the 
philanthropic Dana Foundation (www.dana.org/neuroethics/). A peer-reviewed 
journal, Neuroethics, published its fi rst issue in March 2008.

The Drew McDermott quote comes from a paper titled “Why Ethics is a High 
 Hurdle for AI,” which he presented on July 12 at the 2008 North American Con-
ference on Computing and Philosophy at Indiana University in Bloomington, 
Indiana.

Chapter 3

In the light of  modern scientifi c discoveries about tool use and manufacture by 
animals, especially chimpanzees and New Caledonian crows, it is much harder to 
claim that humans are the only toolmakers. Still, it is clear that our toolmaking 
capacities are several levels beyond anything found in other animals.

The quotation from Sherry Turkle is from an interview in the MIT alumni 
magazine Open Door (http://alumweb.mit.edu/opendoor/200307/turkle.shtml).

Helen Nissenbaum’s call for engineering activism appears in the March 2001

article “How Computer Systems Embody Values,” in Computer, the fl agship mag-
azine of  the Institute of  Electrical and Electronics Engineers.

The full quote from Maggie Boden reads:

AI could be the Westerner’s mango tree. Its contribution to our food, shel-
ter, and manufactured goods, and to the running of  our administrative 
bureaucracies can free us not only from drudgery but for humanity it will 
lead to an increased number of  “service” jobs in the caring professions, 
education, craft, sport, and entertainment. Such jobs are human rather 
than inhuman, giving satisfaction not only to those for whom the service is 
provided, but also to those who provide it. And because even these jobs will 
very likely not, be full-time, people both in and out of  work will have time 
to devote to each other which today they do not enjoy. Friendship could 
become a living art again.

Batya Friedman and Peter Kahn, faculty members at the University of  Wash-
ington in Seattle, published a discussion of  the implications of  using software 
to assist medical resource allocation decisions in 1992 in “Human Agency and 
Responsible Computing: Implications for Computer System Design,” in Systems
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Software. Our discussion of  the use of  software to predict patients’ dying wishes 
draws on a report in the May 15, 2007, issue of  the Economist titled “Logical End-
ings.” The original research article, “How Should Treatment Decisions Be Made 
for Incapacitated Patients, and Why?” by Shalowitz, Garrett-Mayer, and Wendler, 
was published in 2007 in the open-access journal PLoS Medicine.

Experimental data supporting the claim that people readily anthropomorphize 
geometric fi gures appears in a 2000 review article in Trends in Cognitive Science by 
Brian Scholl and Patrice Tremoulet, “Perceptual Causality and Animacy.”

The quote regarding the hundreds of  Packbots deployed to Iraq is from a report 
by Joel Rothstein titled “Soldiers Bond with Battlefi eld Robots: Lessons Learned 
in Iraq May Show Up in Future Household ‘Avatars,’ ” MSNBC/Reuters, May 23,
2006. We draw on this article when we discuss the soldiers who bonded with 
Scooby Doo. The quotation from Colin Angle of  iRobot Corporation about Scooby 
Doo appeared in a May 24, 2006, CNET News story, “My Friend the Robot,” by 
Tom Krazit.

Historian Jonathan Coopersmith of  Texas A & M University has extensively 
studied the way the desire for pornography has driven technology. See, for exam-
ple, his 1999 article “The Role of  the Pornography Industry in the Development 
of  Videotape and the Internet,” in IEEE International Symposium on Technology 
and  Society—Women and Technology: Historical, Societal, and Professional Perspec-
tives (New Brunswick, NJ: Institute of  Electrical Electronics Engineers).

In a New York Times article on February 16, 2005, “New Model Army Sol-
dier Rolls Closer to Battle,” Tim Weiner, reporting on U.S. military investment in 
robotics, said that “the United States will spend many billions of  dollars on robots 
by 2010.” See the January 23, 2005, BBC News story “US Plans ‘Robot Troops’ 
for Iraq,” http://news.bbc.co.uk/2/hi/americas/4199935.stm. Surya Singh and 
Scott Thayer authored a technical survey of  autonomous robots for military 
systems in 2001 entitled “ARMS (Autonomous Robots For Military Systems): 
A Survey of  Collaborative Robotics Core Techologies.” This report may be found 
at the website of  Carnegie Mellon University’s Robotics Institute, www.ri.cmu.
edu/pubs/pub_3884.html. It is noteworthy that ethics and morality do not come 
up anywhere in the seventy-two-page text, and safety is mentioned only in the 
titles of  other cited works.

Our discussion of  how Americans rated different risks draws on Paul Slovic’s 
1987 article “Perception of  Risk” in Science. The 1999 WHO report entitled 
“Injury: A Leading Cause of  the Global Burden of  Disease” can be found at www
.who.int/ violence_injury_prevention/publications/other_injury/injury/en/.

Chapter 4

For Joel Rothstein’s MSNBC/Reuters report, see the notes to chapter 3. “Bots on 
the Ground: In the Field of  Battle (Or Even above It), Robots Are a Soldier’s Best 
Friend,” by Joel Garreau, appeared in the May 6, 2007, Washington Post.

Readers may recognize the name Craig Venter, whose institute is behind the 
quest for “wet Alife.” Venter headed the private group Celera Genomics, which 
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produced the fi rst map of  the human genome (his own genome was one of  
the fi ve sampled), sharing credit for this result with the International Human 
Genome Project. After leaving Celera, Venter founded the J. Craig Venter Insti-
tute (www.tigr.org/) in 2006. The institute is pursuing various bioengineering 
projects, including the attempt to build living cells from the ground up. An orga-
nization with similar objectives, Protolife (www.protolife.net/) was founded by 
physicist Norman Packard and philosopher Mark Bedau.

Allen Newell and Herbert Simon’s seminal Turing Award article “Computer 
Science as Empirical Inquiry: Symbols and Search,” originally published in 
1975 in the Communications of  the ACM, has been widely reprinted in countless 
 anthologies.

The concept of  a Singularity for AI was fi rst coined by the mathematician and 
science fi ction author Vernor Vinge, in an essay, “First Word” published in Janu-
ary 1983 in OMNI (now defunct). Vinge collected his thoughts on the subject in 
a conference address that was later revised and published in spring 1993 as “The 
Coming Technological Singularity: How to Survive in the Post-Human Era” in 
Whole Earth Review.

The fascinating and tragic story of  Alan Turing’s life and work was dramatized 
in the play and television movie Breaking the Code, which was based on Andrew 
 Hodges’s 1983 biography Alan Turing: The Enigma.

The exchange of  views about the nature of  mind between Thomas Hobbes 
and René Descartes is to be found in the “Objections and Replies” by noteworthy 
philosophers of  the day that were commissioned by Marin Mersenne and pub-
lished with Descartes’s Meditations in 1641. (The translations by E. S. Haldane and 
G. R. T. Ross, published in 1978 as a two-volume set titled The Philosophical Works 
of  Descartes, remain the edition of  choice for most English-speaking  scholars.)

The passage we quote from cyberneticist Heinz von Foerster about ethics and 
choice is from his 1992 essay “Ethics and Second-Order Cybernetics” and is avail-
able online at www.imprint.co.uk/C&HK/vol1/v1–1hvf.htm. Daniel Dennett’s 
discussion of  freedom of  will is to be found in his 2003 book Freedom Evolves.

The methods used for Deep Blue are described by M. Campbell, A. J. Hoane, and 
F. Hsu in the January 2002 issue of  Artifi cial Intelligence. For more on Deep Blue 
as human-machine collaboration, see “Chess Bump: The Triumphant  Teamwork 
of  Humans and Computers” by William Saletan, Slate, May 11, 2007, www.slate
.com/id/2166000/.

The quotation from Christopher Lang is from his unpublished 2002 paper 
“Ethics for Artifi cial Intelligence,” http://philosophy.wisc.edu/lang/AIEthics/
index.htm.

Rodney Brooks’s website at MIT maintains a wealth of  information about his 
robots and projects (http://people.csail.mit.edu/brooks/). The most widely read, 
discussed, and reprinted statement of  his philosophy of  cognition and robot 
building is his “Intelligence without Representation,” which originally appeared 
in Artifi cial Intelligence in 1991. Although the quotation “the world is its own best 
representation” does not directly appear in his 1991 article, it is the slogan that he 
and many others have used to encapsulate the main idea behind his subsumption 
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architecture for robots. The practical applications of  Brooks’s research are seen 
in the spinoff,  iRobot Corporation (website: www.irobot.com/). Brian Scasselati’s 
comment was made when he came as a guest lecturer to Wendell Wallach’s Yale 
seminar on “Robot Morals and Human Ethics” in November 2005.

The question of  bat consciousness entered philosophical consciousness with 
the appearance of  Thomas Nagel’s 1974 essay “What Is It Like to Be a Bat?” in 
Philosophical Review, in which Nagel also broached the idea that there might be a 
gap between what we can know and what we can understand. Patricia Church-
land’s remarks about the ability of  science to close that gap were made in a talk 
she gave at the dedication of  MIT’s Picower Institute for Learning and Memory, 
http://mitworld.mit.edu/video/342/. David Chalmers resuscitated arguments for 
dualism in his 1996 book The Conscious Mind: In Search of  a Fundamental Theory.
Colin McGinn’s view that a complete understanding of  consciousness might 
remain forever cognitively closed to human beings is in his 1999 book The Myste-
rious Flame: Conscious Minds in a Material World.

Igor Aleksander’s ideas about consciousness and emotions in machines can 
be found in a 2005 article he coauthored with Mercedes Lahnstein and Rabinder 
Lee titled “Will and Emotions: A Machine Model That Shuns Illusions,” which 
was presented at the Symposium on Next Generation Approaches to Machine 
Consciousness of  the United Kingdom’s Society for the Study of  AI and the Sim-
ulation of  Behavior, at the University of  Hertfordshire, UK, on April 13, 2005.
Owen Holland and Ron Goodman describe their approach in their 2003 article 
“Robots with  Internal  Models: A Route to Machine Consciousness,” in Holland’s 
edited volume Machine Consciousness. We give Stan Franklin’s approach full treat-
ment in chapter 11 here.

The fi nal part of  this chapter draws on the 2001 essay “Prolegomena to Any 
Future AMA,” by Colin Allen, Gary Varner, and Jason Zinser, in the Journal of  
Experimental and Theoretical Artifi cial Intelligence.

Chapter 5

Ron Arkin’s work at Georgia Tech on battlefi eld ethics for robots is sponsored 
by the U.S. Army Research Offi ce under Contract no. W911NF-06–0252. A tech-
nical report describing the research, “Governing Lethal Behavior: Embedding 
Ethics in a Hybrid Deliberative/Reactive Robot Architecture,” can be found at 
www.cc.gatech.edu/ai/robot-lab/online-publications/formalizationv35.pdf. The 
epigraph to this report, which Arkin attributes to Thomas Jefferson in 1787, is 
well worth repeating here: “State a moral case to a ploughman and a professor. 
The former will decide it as well, and often better than the latter, because he has 
not been led astray by artifi cial rules.”

Peter Asaro, a philosopher of  technology who is a fellow at the Rutgers University 
Center for Cultural Analysis, represents the view of  many experts when he writes: 
“The most demanding scenarios for thinking about robot ethics, I believe, lie in the 
development of  more sophisticated autonomous weapons systems”; “What Should 
We Want from a Robot Ethic?” International Review of  Information Ethics (2006).
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Dennett’s claim that roboticists are doing philosophy, whether or not they 
think this is so, appears in the essay “Cog as a thought experiment” that he wrote 
in 1997 for the journal Robotics and Autonomous Systems.

Our discussion of  Caroline Whitbeck’s ideas about engineering ethics, and the 
quotation, are drawn from her 1995 article “Teaching Ethics to Scientists and 
Engineers: Moral Agents and Moral Problems,” in Science and Engineering Ethics.

Chapter 6

Ethical theorists who take a heuristic approach to ethical principles include 
W. D. Ross in his 1930 book The Right and the Good, and Bernard Gert in his 1988

book Morality.
The “empirical turn” in recent ethics is represented by philosophers Joshua 

Knobe of  the University of  North Carolina, Chapel Hill, Shaun Nichols, of  the Univer-
sity of  Arizona, Tucson, and John Doris, of  Washington University at St. Louis, among 
others. Doris coordinates the Moral Psychology Research Group, whose website 
provides a good entry point to the subject at http:// moralpsychology.net/group/.

James Gips’s essay “Towards the Ethical Robot” was originally presented as a 
conference paper in 1991, and was published in the 1995 volume Android Episte-
mology, edited by Ken Ford, Clark Glymour, and Patrick Hayes.

Jeremy Bentham himself  was well aware of  the diffi culties of  precise utilitar-
ian calculations, and discussed the problems of  the “original” and “derivative” 
consequences of  a mischievous act as they affect “assigned” and “unassignable” 
individuals in his Introduction to the Principles of  Morals and Legislation, origi-
nally published in 1780. The all-knowing “World Agent” is imagined by Bernard 
 Williams in his 1985 book Ethics and the Limits of  Philosophy.

Roger Clarke’s discussion of  Asimov’s laws appears in a pair of  articles (1993

and 1994) in IEEE Computer: “Asimov’s Laws of  Robotics: Implications for Infor-
mationTechnology.” See also Wendell Wallach’s 2003 essay “Robot Morals and 
Human  Ethics” for further discussion of  the laws.

Philip Pettit’s discussion of  voting paradoxes appears in his essay “Akrasia,
Collective and Individual,” in Weakness of  Will and Practical Irrationality (2003),
edited by Sarah Stroud and Christine Tappolet.

In his “New Ten Commandments,” Bernard Gert of  Dartmouth College pro-
vides an ethical system whose rules can be disobeyed when confl icts arise. These 
rules are described in his 1988 book, Morality.

Critical analyses of  the possibility of  having a Kantian machine are provided 
by Thomas Powers in his essay “Prospects for a Kantian Machine” (IEEE Intelli-
gent Systems, July/August 2006), and in Bernd Carsten Stahl’s 2004 essay “Infor-
mation, Ethics, and Computers: The Problem of  Autonomous Moral Agents” 
(Minds and Machines).

Tom Beauchamp and James Childress developed four principles that are widely 
used in medical ethics in their 1979 book Principles of  Biomedical Ethics.

Our ideas about the integration of  cognition, emotions, and refl ective capaci-
ties owe much to Iva Smit. See her 2002 essay “Equations, Emotions, and Ethics: 
A Journey between Theory and Practice.”
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Chapter 7

The Human Genome Project has revolutionized biologists’ ideas about the rela-
tionship of  genes to traits with the discovery that there is a surprisingly small 
number of  protein-coding genes in the human genome (only about 50 percent 
more than the roundworm C. elegans). With this discovery, developmental factors 
and the complex interactions between genome and environment have come to 
the fore. Eva Jablonka and Marion Lamb’s 2005 book Evolution in Four Dimen-
sions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of  Life
provides a good introduction to the excitement of  postgenomic biology.

Ada Lovelace’s “Notes on the analytical engine” appeared in Taylor’s Scien-
tifi c Memoirs in 1843. Charles Babbage fi rst proposed the design for the analytical 
engine in 1837, but it remained only partially built by the time of  his death in 
1871.

John Holland developed his ideas about genetic algorithms in his 1975 book 
Adaptation in Natural and Artifi cial Systems. There are now more books, confer-
ences, and online guides to genetic algorithms than we can possibly list.

E. O. Wilson, known as one of  the world’s experts on ant behavior, created 
a huge stir with his book Sociobiology, fi rst published in 1975. Wilson was per-
ceived by many as being unjustifi ably reductionistic about human behavior and 
 morality.

The classic book on game theory is Theory of  Games and Economic Behavior by 
Oskar Morgenstern and John Von Neumann. (Von Neumann was also the archi-
tect of  the standard design for digital computers consisting of  central processing 
unit, control unit, and memory.) The story of  how game theory cross-fertilized 
evolutionary biology is too long to tell here, but Richard Dawkins’s 1976 book The 
Selfi sh Gene did much to popularize the idea (like Wilson, he has been accused of  
excessive  reductionism).

Robert Axelrod and William Hamilton published their seminal article “The 
Evolution of  Cooperation” in the March 27, 1981, issue of  Science. Their work 
inspired many of  the ideas we describe in this chapter, including Peter  Danielson’s 
computer simulations, which are described in two books, Artifi cial Morality: Vir-
tuous Robots for Virtual Games (1992) and Modeling Rationality, Morality and Evo-
lution (1998).  William Harms’s work appears in a pair of  articles in 1999 and 
2000 titled, respectively, “Biological Altruism in Hostile Environments” and “The 
Evolution of  Cooperation in Hostile Environments.” The second article is a com-
mentary on an article by Brian Skyrms titled “Game Theory, Rationality and Evo-
lution of  the Social Contract.” The quotation from Tennyson is from his poem “In 
Memoriam. A. H. H.” These themes were originally described in Skyrms’s 1996

book Evolution of  the Social Contract. Critics who have pointed out the substantial 
gap between simple simulations and real-world evolution include Martin Barrett, 
Ellery Eells, Branden Fitelson, and Elliott Sober in their 1997 review of  Skyrms’s 
book for the journal Philosophy and Phenomenological Research.

People sometimes prefer fairness over immediate gain, and this phenom-
enon has been widely investigated in the context of  “the ultimatum game,” 
which  Werner Güth and colleagues fi rst described in 1982 in their article “An 

notes  to  pages  99–104



228

 Experimental Analysis of  Ultimatum Bargaining” in the Journal of  Economic 
Behavior and Organization. That some animals may also value fairness over food is 
suggested by the work of  Sarah Brosnan and Frans de Waal in their article “Mon-
keys Reject Unequal Pay,” in Nature, September 18, 2003.

Results such as those from the ultimatum game have led several people to sup-
pose that there must be innate moral structures. John Rawls’s suggestion of  a 
universal moral grammar has been picked up enthusiastically by Marc Hauser, 
but the reaction to his 2006 book Moral Minds: How Nature Designed Our Uni-
versal Sense of  Right and Wrong has been mixed. Those who are impressed by the 
postgenomic ideas in biology especially fi nd strong claims about innateness to be 
incapable of  explaining much.

The quotation attributed to Rodney Brooks about the disappointing results 
from ALife appears in his 2001 article “Steps towards Living Machines” and 
also in his book Flesh and Machines.” The quotation from Thomas Ray appears 
in his essay “Kurzweil’s Turing Fallacy” in the 2002 collection Are We Spiritual 
Machines? Ray Kurzweil vs. the Critics of  Strong A.I.

Our remark about the role of  complexity in natural selection is based on the 
work of  Larry Yaeger and Olaf  Sporns at Indiana University. Their 2006 article 
“Evolution of  Neural Structure and Complexity in a Computational Ecology” 
appeared in ALife X, the published proceedings of  the “ALife X” conference held 
at Indiana University, Bloomington, June 3–7, 2006.

Lawrence Kohlberg’s classic work is his two-volume Essays on Moral Develop-
ment. Vol. 1, The Philosophy of  Moral Development, appeared in 1981; and vol. 2,
The Psychology of  Moral Development, in 1984.

Information about Deb Roy’s robot Ripley, including video clips and research 
articles, can be found at www.media.mit.edu/cogmac/projects/ripley.html.

Chapter 8

The English translation of  Comte-Sponville’s Small Treatise on the Great Virtues
was published in 2001. The examples we give of  kind motives in the text are 
drawn from Bernard Williams’s 1985 book Ethics and the Limits of  Philosophy,
already mentioned in the notes for chapter 6.

Although it would be anachronistic to claim that Aristotle was a connection-
ist, an affi nity between Aristotle and connectionism has been suggested by several 
authors. These include James Gips, in his 1995 essay “Towards the Ethical Robot” 
(see the notes to chapter 6), and Paul Churchland, in his 1995 book The Engine 
of  Reason, the Seat of  the Soul: A Philosophical Journey into the Brain. Churchland 
also returns to this theme in his 1996 essay “The Neural Representation of  the 
Social World” in the anthology Mind and Morals, edited by Larry May, Marilyn 
Friedman, and Andy Clark.

A stronger link between Aristotelian ethics and connectionism is asserted by 
 William Casebeer in his 2003 book Natural Ethical Facts: Evolution, Connectionism, 
and Moral Cognition; our quotation from Casebeer is on page 5. Jonathan Dancy 
draws the connection between connectionism and particularism in his 1993 book 

notes  to  pages  104–123

www.media.mit.edu/cogmac/projects/ripley.html


229

Moral Reasons. Andy Clark suggests a similar view in his essay “Connectionism, 
Moral Cognition, and Collaborative Problem Solving,” which also appeared in 
May, Friedman, and Clark’s Mind and Morals. David DeMoss explores the subject 
in a 1998 article “Aristotle, Connectionism, and the Morally Excellent Brain.” See 
also the work of  Marcello Guarini described in chapter 9.

Chapter 9

Bill Joy’s 2000 essay “Why the Future Doesn’t Need Us” was in the April issue of  
Wired, available at www.wired.com/wired/archive/8.04/joy.html. Joy’s jeramiad 
created quite a stir and a number of  critiques, including one in 2000 by Max 
More titled “Embrace, Don’t Relinquish, the Future,” and another in 2001 by 
John Seely Brown titled “Don’t Count Society Out: A Response to Bill Joy.”

Michael Anderson, Susan Anderson, and Chris Armen describe the MedEthEx 
system in their article “An Approach to Computing Ethics” in the July–August 
2006 issue of  IEEE Intelligent Systems. Susan Anderson is the philosopher in 
the MedEthEx team, and she refers to the duties implemented in MedEthEx as 
W.D. Ross’s prima facie duties. We defer to her language throughout the chapter, 
although in medical ethics these duties are more commonly known as (three of) 
the four principles of  biomedical ethics (the fourth being justice). Medical ethi-
cists typically attributed these principles to Tom Beauchamp and James Childress, 
rather than W. D. Ross. Beauchamp and Childress’s infl uential 1979 book The 
Principles of  Biomedical Ethics drew on the earlier work of  W. D. Ross in formu-
lating the four principles, and they have subsequently had a major infl uence on 
medical and research ethics. The Andersons’ latest work is described in a chapter 
entitled “Ethical Healthcare Agents” to appear in a 2008 book, Advanced Compu-
tational Intelligence Paradigms in Healthcare—3, edited by Lakmi C. Jain. The exten-
sive quotation from them is on page 244 of  the book.

Brian Duffy’s work on social agents began while he was a student at Univer-
sity College, Dublin. Duffy has since joined the Eurécom Affective Social Com-
puting Lab in France. The terminology of  BDI (belief  desire intention) agents 
is due to philosopher Michael Bratman, whose 1987 book Intention, Plans, and 
Practical Reason has had an important infl uence on computer models of  decision 
making.

Some of  the most philosophically advanced work on multiagent simulations is 
from the Netherlands, where there are state mandates to include all stakeholders 
in important public policy decisions. Jeroen van den Hoven and Gert-Jan Lokhorst 
describe their approach to computerized support for multiagent ethical decision 
making in their article “Deontic Logic and Computer Supported Computer Eth-
ics” in CyberPhilosophy: The Intersection of  Philosophy and Computing, edited by 
Terrell Bynum and James Moor (2002). Vincent Wiegel’s SophoLab system is 
described in a joint article he wrote with Hoven and Lokhorst, “Privacy, Deontic 
Epistemic Action Logic and Software Agents,” in Ethics and Information Technol-
ogy, December 2005. We quote Wiegel’s description of  the agents in his system 
from a mail message Wiegel sent to us, August 16, 2007.
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Chapter 10

Evidence of  resurgent interest in human-level AI comes from many directions. 
For example, the summer 2006 issue of  AI was dedicated to this theme.

Paul Rozin, Jonathan Haidt, and Clark McCauley provide an overview of  the 
literature on disgust in a chapter they wrote for the Handbook of  Emotions, edited 
by Michael Lewis and Jeannette Haviland-Jones, 2nd edition (2000). Shaun 
Nichols’s 2004 book Sentimental Rules: On the Natural Foundations of  Moral Judg-
ment brings the psychology of  emotions into the arena of  moral philosophy.

Peter Salovey and John Mayer’s article “Emotional Intelligence” was published 
in the journal Imagination, Cognition, and Personality in 1990.

Richard Lazarus’s cognitive account of  emotions is described in his 1991 book 
Emotion and Adaptation, which is the source of  the fi fteen core relational themes 
we mention. Philosopher Jesse Prinz argues against Lazarus in his 2004 book 
Gut Reactions: A Perceptual Theory of  Emotions, providing instead a modern ver-
sion of   William James’s view that emotions are felt bodily changes. Prinz’s view is 
also similar to Antonio Damasio’s neo-Jamesian view of  emotions as felt somatic 
markers, as described in Damasio’s 1995 book Descartes’ Error: Emotion, Reason, 
and the Human Brain and in his 1999 book The Feeling of  What Happens: Body and 
Emotions in the Making of  Consciousness. See also Ronald de Sousa’s 1987 mono-
graph The Rationality of  Emotion. The idea that emotions are crucial for rational-
ity can, of  course, be traced to much earlier sources, for instance to Hume in the 
eighteenth century.

For an example of  the two-pathway approach to decision making see neu-
roscientist Joseph LeDoux’s 1996 book The Emotional Brain: The Mysterious 
Underpinnings of  Emotional Life. Joshua Greene and his colleagues’ 2001 Science
study showing that emotional centers were differently engaged for different 
versions of  the trolley cases was mentioned in the notes to chapter 1. Greene is 
actively pursuing additional studies of  the pathways involved in moral decision 
 making.

The “fast and frugal” approach to decision making was introduced by Gerd 
 Gigerenzer and Peter Todd in their 1999 book Simple Heuristics That Make Us 
Smart.

Huggable has an embedded 1.8 Ghz Pentium M with 1 Gigabyte of  RAM. 
More details are available in “The Design of  the Huggable: A Therapeutic Robotic 
Companion for Relational, Affective Touch” (2006) by Walter Dan Stiehl and 
 colleagues.

The quotation from Rosalind Picard is from “The Love Machine” by David Dia-
mond in Wired (December 2003). The MOUE is described by Christine Lisetti and 
colleagues in “Developing Multimodal Intelligent Affective Interfaces for Tele-
home Health Care” in International Journal of  Human-Computer Studies (2003).

The OCC model of  emotions is presented in The Cognitive Structure of  Emotions
by Andrew Ortony, Gerald Clore, and Allan Collins, published in 1988. A descrip-
tion of  Sloman’s CogAff  model can be found in the 2005 article “The Architec-
tural Basis of  Affective States and Processes” by Aaron Sloman, Ron Chrisley, and 
 Matthias Scheutz.
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Our description of  Sandra Gadanho’s research is based upon her 2003 article 
“Learning Behavior-Selection by Emotions and Cognition in a Multi-Goal Robot 
Task” in the Journal of  Machine Learning Research.

We are hardly the fi rst to note that (ro)bots will need to be capable of  adapting to 
dynamically changing social interactions. Our thinking here is infl uenced by  Cynthia 
Breazeal’s 2002 book Designing Sociable Robots. See also Kerstein  Dautenhahn’s 
2002 book Socially Intelligent Agents: Creating Relationships with  Computers.

The idea of  theory of  mind was fi rst fl oated by David Premack and Guy Wood-
ruff  in their 1978 article “Does the Chimpanzee Have a Theory of  Mind?” in 
Behavioral and Brain Sciences.

Some of  the earliest work on infant empathy was done by Martin Hoffman, 
professor of  psychology at New York University. See his 2000 book Empathy and 
Moral Development: Implications for Caring and Justice.

William Sims Bainbridge describes Cyburg in his 2006 book titled God from the 
Machine: Artifi cial Intelligence Models of  Religious Cognition.

Matthias Scheutz’s work on disobedient robots is described in his 2007 paper 
coauthored with Charles Crowell, “The Burden of  Embodied Autonomy: Some 
Refl ections on the Social and Ethical Implications of  Autonomous Robots,” pre-
sented at the Workshop on Roboethics at the International Conference on Robot-
ics and Automation.

The work of  Francisco Varela, for example his 1980 book with Humberto 
 Maturana, Autopoiesis and Cognition: The Realization of  the Living, has been a rally-
ing point for the view of  life and cognition as self-organizing processes.

The two requirements for trustworthy agents in limited domains comes from 
Catriona Kennedy’s 2004 article “Agents for Trustworthy Ethical Assistance.”

The list of  three approaches to consciousness attributed to Owen Holland 
comes from a presentation available online at http://cswww.essex.ac.uk/staff/
owen/ adventure.ppt.

Chapter 11

This chapter is the result of  a collaboration with Stan Franklin, and he should be 
credited as a coauthor here. Franklin has been developing his ideas for a compu-
tational implementation of  Baars’s GWT in a number of  articles, beginning with 
his 2000 essay “A ‘Consciousness’ Based Architecture for a Functioning Mind.” 
Additional references are listed in the bibliography. Baars’s books include A Cog-
nitive Theory of  Consciousness (1988) and In the Theater of  Consciousness (1997).

Murray Shanahan’s robotics group at Imperial College in London is pursuing 
projects in spatial reasoning and perception using an upper-torso humanoid robot 
called LUDWIG (see http://casbah.ee.ic.ac.uk/~Empsha/ludwig/ Introduction.
html). Shanahan has written a series of  research articles with Bernard Baars 
applying GWT to issues in robotics. Stanislas Dehaene, a former president of  the 
Association for the Scientifi c Study of  Consciousness and author of  The Cognitive 
Neuroscience of  Consciousness (2001), has expanded on Baars’s approach with his 
neuronal global workspace model, which is based on a neural net representation 
of  the prefrontal cortex.
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Franklin’s LIDA borrows techniques from a variety of  sources, including 
 Douglas Hofstadter and Melanie Mitchell’s Copycat architecture (1994), Pentti 
Kanerva’s sparse distributed memory (1988), Gary Drescher’s schema mecha-
nism (1991), Pattie Maes’s behavior net (1989), and Rodney Brooks’s subsump-
tion architecture. (1991) The LIDA model’s codelets are similar to the agents in 
Marvin Minsky’s Society of  Mind (1986), demons in John Jackson’s Pandemo-
nium (1987), and Robert Ornstein’s small minds (1986).

The elements of  William James’s views on volition can be found in his 1890

book The Principles of  Psychology.
The 1970s saw a number of  experiments by social psychologists challenging 

the idea that stable moral character determines ethical behavior. The experiments 
we describe are derived from Isen and Levin’s “Effect of  Feeling Good on Help-
ing: Cookies and Kindness” (1972), and Darley and Batson’s “From Jerusalem to 
Jericho: A Study of  Situational and Dispositional Variables in Helping Behavior” 
(1973). Also important to this debate is Latane and Darley’s “The Unresponsive 
Bystander: Why Doesn’t He Help?” which appeared in 1970. For current discus-
sion of  these results, and some controversial claims about their consequences for 
ethics, see philosopher John Doris’s 2002 book Lack of  Character: Personality and 
Moral Behavior.

For additional reading about imagination, cognition, and ethics, see Mark 
Johnson’s 1994 book Moral Imagination: Implications of  Cognitive Science for Eth-
ics as well as the May, Friedman, and Clark anthology mentioned in the notes to 
chapter 10.

Chapter 12

Some of  our imaginary headlines are not so far from reality already. For example, 
journalist Matt Gross wrote about tourism in the virtual world Second Life in his 
article “It’s My (Virtual) World . . .” in the New York Times travel section, Novem-
ber 3, 2006. Describing a patron at a virtual concert, Gross wrote, “Then things 
turned really nasty: Mr. Folds pulled out a light saber and attacked the audience.” 
www.nytimes.com/2006/11/03/travel/escapes/03second.html.

The idea of  a “soft takeoff ” for the Singularity has been proposed by Ray 
 Kurzweil and Hans Moravec and was dramatized by Charles Stross in his science 
fi ction novel Accelerando, which was fi rst published as an electronic book for free 
download and then in conventional paperback form in 2006.

The quotation from Ben Goertzel on the Easy and Hard basic values is from 
his 2002 essay “Thoughts on AI Morality,” available at his website, www.goertzel.
org/dynapsyc/2002/AIMorality.htm.

The quotation from Michael Ray LaChat is from his essay “Moral Stages in 
the Evolution of  the Artifi cial Super-Ego: A Cost-Benefi ts Trajectory,” included 
in the collection edited by Iva Smit and Wendell Wallach of  the presentations 
at the 2003 Symposium on Cognitive, Emotive and Ethical Aspects of  Decision 
 Making in Humans and in Artifi cial Intelligence in Baden-Baden, which Smit 
and  Wallach organized.
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The experiment we describe as based on Thomas Metzinger’s account of  
consciousness was described in “Video Ergo Sum: Manipulating Bodily Self-
 Consciousness,” by Bigna Lenggenhager, Tej Tadi, Thomas Metzinger, and 
Olaf  Blanke, in Science, August 24, 2007. Regarding Metzinger’s view that the 
 development of  artifi cially conscious systems should be banned, we quote from 
Metzinger’s 2004 book Being No One, p. 622.
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