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Preface to  th e  First Edition

The 1980s are likely to be the decade of the parallel computer, and it is the 
purpose of this book to provide an introduction to the topic. Although many 
computers have displayed examples of parallel or concurrent operation since 
the 1950s, it was not until 1974-5 that the first computers appeared that 
were designed specifically to use parallelism in order to operate efficiently 
on vectors or arrays of numbers. These computers were based on either 
executing in parallel the various subfunctions of an arithmetic operation in 
the same manner as a factory assembly line (pipelined computers such as the 
CDC STAR and the TIASC), or replicating complete arithmetic units 
(processor arrays such as the ILLIAC IV). There were many problems in 
these early designs but by 1980 several major manufacturers were offering 
parallel computers on a commercial basis, as opposed to the previous research 
projects. The main examples are the CRAY-1 (actually first installed in 1976) 
and the CDC CYBER 205 pipelined computers, and the ICL DAP and 
Burroughs BSP processor arrays. Unfortunately, since we wrote this material 
Burroughs have experienced problems in the production of the BSP and, 
although a prototype machine was built, Burroughs have withdrawn from 
this project. However, this still remains a very interesting design and with 
its demise perhaps gives more insight into this field. Pipelined designs are 
also becoming popular as processors to attach to minicomputers for signal 
processing or the analysis of seismic data, and also as attachments to micro 
based systems. Examples are the FPS AP-120B, FPS-164, Data General 
AP/130 and IBM 3838.

Parallelism has been introduced in the above design because improvements 
in circuit speeds alone cannot produce the required performance. This is 
evident also in the design studies produced for the proposed National 
Aeronautics Simulation Facility at NASA Ames. This is to be based on a 
computer capable of 109 floating-point operations per second. The CDC

IX



X PREFACE TO THE FIRST EDITION

proposal for this machine comprises four high-performance pipelined units, 
whereas the Burroughs design is an array of 512 replicated arithmetic units. 
The advent of very large-scale integration (v l s i) as a reliable chip 
manufacturing process, provides a technology that can produce very large 
arrays of simple processing elements (pe s ). The ICL DAP (4096 pe s ) and the 
Goodyear Aerospace MPP are early examples of processor arrays that are 
likely to be developed within the decade to take advantage of v l s i technology. 
It may be claimed that the above designs are of interest only to large scientific 
laboratories and are not likely to make an impact on the mass of computer 
users. Most experience shows, however, that advances in computer architecture 
first made for the scientific market do later become part of the general 
computing scene.

It seems therefore that the need for greater parallelism in design (i.e. the 
demand for greater performance than circuit speed alone can give), coupled 
with the technology for implementing highly parallel designs (v l s i), is likely 
to make parallelism in computer architecture a growth area in the 1980s. It 
is the purpose of this book to explain the principles of and to classify both 
pipelined and array-like designs, to show how these principles have been 
actually implemented in a number of successful current designs (the CRAY-1, 
CYBER 205, FPS AP-120B, ICL DAP and Burroughs BSP), and to compare 
the performance of the different designs on a number of substantial 
applications (matrix operations, f f t , Poisson-solving). The advent of highly 
parallel architectures also introduces the problem of designing numerical 
algorithms that execute efficiently on them, and computer languages in which 
these algorithms can be expressed. We regard the algorithmic and language 
aspects of parallelism as being equally important as the architectural, and 
devote chapters specifically to them.

A feature of our treatment that may be novel is the concept of a 
two-parameter description of the performance of a computer: in addition to 
the usual maximum performance in floating-point operations per second r^, 
we introduce the half-performance length n1/2, which is the length of vector 
that is required to achieve half the maximum performance. This variable may 
also be regarded as measuring the amount of parallelism in a design and 
varies from nl/2 = 0 for a serial computer to n1/2 = oo for an infinite array 
of processors. Thus the second parameter nicely classifies parallel designs 
into a spectrum characterised by a quantitative measure. It therefore answers 
the question: how parallel is my computer? Of equal importance is the fact 
that n1/2 also determines quantitatively the choice of the most efficient 
algorithm. It therefore also answers the question: what is the best algorithm 
to use on my parallel computer? We have also introduced an algebraic-style 
notation, that enables the overall architecture of a computer to be expressed
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in one line, thus circumventing the need for verbose descriptions and aiding 
the classification of designs by allowing generic descriptions by a formula.

Most material in this book has been collected for a lecture course given 
in the Computer Science Department at Reading University entitled 
‘Advanced Computer Architecture’. This course has evolved into a 40-lecture 
unit over the last five years, and it was the lack of a suitable text that provided 
the motivation for writing this book. The lecture course is given as an option 
to third year undergraduates but would also be suitable for a specialised 
course at MSc level, or as taught material to PhD students preparing for a 
thesis in the general area of parallel computation.

Many people have helped, by discussion and criticism, with the preparation 
of the manuscript. Amongst these, we would like to mention our colleagues 
at Reading University: particularly Jim Craigie, John Graham, Roger Loader, 
John Ogden, John Roberts and Shirley Williams; and Henry Kemhadjian of 
Southampton University. Dr Ewan Page, Vice-Chancellor of Reading 
University, and the series editor Professor Mike Rogers of Bristol University 
have also suggested improvements to the manuscript. We have also received 
very generous assistance with information and photographs from representatives 
of the computer manufacturers, amongst whom we wish to thank Pete 
Flanders, David Hunt and Stewart Reddaway of ICL Research and Advanced 
Development Centre, Stevenage, and John Smallbone of ICL, Euston; 
Professor Dennis Parkinson of ICL and Queen Mary College, London 
University; Stuart Drayton, Mick Dungworth and Jeff Taylor of CRAY 
research, Bracknell; David Barkai and Nigel Payne at Control Data 
Corporation (UK), and Patricia Conway, Neil Lincoln and Chuck Purcell 
of CDC Minneapolis; J H Austin of Burroughs, Paoli, and G Tillot of 
Burroughs, London; C T Mickelson of Goodyear Aerospace, Akron; and 
John Harte, David Head and Steve Markham of Floating Point Systems, 
Bracknell. Many errors were also corrected by Ms Jill Dickinson (now 
Mrs Contla) who has typed our manuscript with her customary consummate 
skill.

We have dedicated this book to computer designers, because without their 
inspiration and dedication we would not have had such an interesting variety 
of designs to study, classify and use. The design of any computer is inevitably 
a team effort but we would like to express our particular appreciation to 
Seymour Cray, Neil Lincoln, George O ’Leary and Stewart Reddaway, who 
were the principal designers for the computers that we have selected for 
detailed study.

R W Hockney, C R Jesshope
1981
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Preface to  th e  Second Edition

In the seven years that have passed since the publication of Parallel Computers 
sufficient changes have occurred to warrant the preparation of a second 
edition. Apart from the evolution of architectures described in the first edition 
(e.g. CYBER 205 to ETA10, and CRAY-1 to CRAY X-MP and CRAY-2), 
many novel multi-instruction stream (m im d ) computers have appeared 
experimentally, and some are now commercially available (e.g. Intel iPSC, 
Sequent Balance, Alliant FX/8). In addition, microprocessor chips (e.g. the 
INMOS transputer) are now available that are specifically designed to be 
connected into large networks, and many new systems are planned to be based 
upon them.

Whilst keeping the overall framework of the first edition, we have included 
these developments by expanding the Introduction (including necessary 
extensions to the algebraic architecture notation, and the classification of 
designs), and selecting some architectures for more detailed description in 
the following chapters. In the chapter on vector pipelined computers 
(Chapter 2), we have included a description of the highly successful Japanese 
vector computers (Fujitsu VP, Hitachi S810, and NEC SX2), as well as the 
new generation of multiple vector computers from the USA (the CRAY-2 
and ETA10). In the chapter on multiprocessors and processor arrays, we 
have included the Denelcor HEP, the first commercially available m im d  
computer, and the Connection Machine.

Although the HEP is no longer available, we feel that its architecture, 
based on multiple instruction streams time-sharing a single instruction 
pipeline, is sufficiently novel and interesting to warrant inclusion; and the 
Connection Machine represents the opposite approach of connecting a very 
large number (approximately 65000) of small processors in a network.

The INMOS transputer is the first commercial chip which has been 
conceived of as a building block for parallel computers; its architecture and

xiii



XIV PREFACE TO THE SECOND EDITION

application are therefore covered in some detail in Chapter 3. There are 
currently around one dozen commercial computers on the market making 
use of multiple transputers, and probably many thousands of companies 
worldwide investigating the possibilities of this chip, either as a potential 
product, or as a component for a parallel embedded system. This interest is 
not surprising, when it is considered that just a few dozen T800 transputer 
chips are capable of delivering the performance of the CRAY-1, described in 
the first edition of this book. This chip product is symptomatic of the 
developments that have occurred over the last five to ten years in semiconductor 
technology; gate density has doubled every two years or so and clock periods 
improved by 50% in the same period. Currently there is no sign that this 
progression will flatten out significantly. These trends and their implication 
are considered in Chapter 6.

Developments in parallel languages since the first edition are covered by 
the inclusion of the proposed FORTRAN 8X standard for the expression of 
vector computation which will be available on all vector computers, CMLISP, 
the programming language for the Connection Machine, and OCCAM, the 
programming language for the INMOS transputer.

The advent of m im d  computers has necessitated the definition of performance 
parameters to take into account the cost of the synchronisation of the multiple 
instruction streams, and the cost of communicating data between processors. 
In defining the parameters (s1/2 for synchronisation, and f l/2 for communi-
cation), we have followed the philosophy of the (r^, n1/2) parameters which 
we introduced in the first edition to characterise the behaviour of a vector 
pipeline, and which are now quite widely known and adopted. That is to say 
we have chosen parameters that can be related to some property of the user’s 
program (e.g. the amount of arithmetic in a parallelised block of code). This 
leads to the development of methods of algorithm analysis based on these 
parameters which are given in Chapter 5.

It would take too much space to thank all who have helped with 
information or illustrations for the new edition, but we would like to thank 
particularly: David Dent (ECMWF); Paul Elstone, John Larson and 
William White (Cray Research); Shaun Powell, P J Elms, Alain Hochedez, 
and Jean-Claude Lignac (CDC); Meg Saline and Cliff Arnold (ETA Systems); 
David Snelling (ex Denelcor) and Ian Curington (ex FPS); David May 
(INMOS); Geoff Manning (AMT Ltd); Leon Bentley, Andrew Rushton, 
Jimmy Stewart, Adriano Cruz, Russel O ’Gorman, Gadge Panesar, Ernest 
Ng and Charles Askew (Southampton University).

It is easy for a book on computers to become a rather tedious description 
of endless different architectures, indeed some of our readers may feel we 
have also fallen into that trap. However, as with the first edition, we have
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attempted to put the presentation in a historic perspective, and within a 
theoretical framework of a notation, a classification and a theory of 
performance which we hope may still be applicable when the particular 
computers described are past history. In this way we hope the new edition 
will remain as popular as a teaching text as was the first edition, presenting 
principles and methodology as well as rapidly outdated facts. Nevertheless 
we have described many of the computers, languages and algorithms that 
will be used by computer practitioners in the next five years, both professional 
computer scientists and computational scientists of various disciplines (e.g. 
physics, chemistry, biology and engineering). We therefore expect this new 
edition to be equally useful to those various groups as they try to obtain the 
best performance from the many and varied parallel computer architectures 
now available to them.

R W Hockney 
C R Jesshope
(Reading and Southampton Universities, August 1987)
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Introduction

Large-scale parallelism is the principal innovation to appear in the design 
of large commercially available computers in the 1980s. In this introductory 
chapter we trace the history of this development (§1.1), then lay out the 
principles that can be applied to classify these parallel computers (§1.2) and 
characterise their relative performance (§1.3). In order to make efficient use 
of such parallel computers the programmer must be aware of the overall 
organisation of the computer system, which we aptly describe as its 
architecture: that is to say, the number and type of processors, memory 
modules and input/output channels, and how these are controlled and 
interconnected. Chapters 2 and 3 are devoted respectively to describing the 
architecture of the two main classes of parallel computers, namely the 
pipelined computer and the multiprocessor array. It would be impractical to 
give a comprehensive description of all designs in these categories; instead 
we have selected principally commercially available computers that have or 
are likely to have a significant number of sales, and which differ sufficiently 
from each other to illustrate alternative approaches to the same problem. 
The pipelined computers described in Chapter 2 are the CRAY X-MP, 
CRAY-2, CYBER 205, ETA10 and the FPS 164/MAX. The processor arrays 
and multiprocessors described in Chapter 3 are the ICL DAP, Burroughs BSP, 
Denelcor HEP and the Connection Machine. In our discussion of future 
developments in Chapter 6 we compare the characteristics of Bipolar and 
mos  technologies, discuss the technological issues arising in the design of 
parallel computers, and consider the potential of wafer-scale integration.

The advent of very large-scale chip integration (v l s i), culminating in the 
single-chip microprocessor, has led to a large number of computer designs 
in which more than one instruction stream cooperate towards the solution 
of a problem. Such multi-instruction stream or m im d  computers are reviewed 
(§1.1.8) and classified (§1.2.5) in Chapter 1 and one of them, the Denelcor 
HEP (§3.4.4), is described in detail in Chapter 3.

1



2 INTRODUCTION

New architectural features require new computer languages and new 
numerical algorithms, if the user is to take advantage of the development. 
In the case of parallel computers that are designed to work most efficiently 
on one- or sometimes two-dimensional lists of data, this is most naturally 
achieved by introducing the mathematical concept of vector or matrix into 
the computer language and by analysing algorithms in terms of their 
suitability for execution on vectors of data. A good computer language also 
greatly influences the ease of programming and Chapter 4 is devoted to 
parallel languages from the point of view of implicit parallelism (§4.2), 
structure parallelism (§4.3) and process parallelism (§4.4). The usefulness of 
a parallel computer depends on the invention or selection of suitable parallel 
algorithms and in Chapter 5 we establish principles for measuring the 
performance of an algorithm on a parallel computer. These are then applied 
to the selection of algorithms for recurrences, matrix multiplication, tridiagonal 
linear equations, transforms and some partial differential equations.

Although our presentation is necessarily based on the situation circa 1987, 
we try to establish principles that the reader can apply as computer 
architecture develops further. Our objective is to enable the reader to assess 
new designs by classifying their architecture and characterising their 
performance; and thereby be able to select suitable algorithms and languages 
for solving particular problems.

1.1 HISTORY OF PARALLELISM AND SUPERCOMPUTING

Our history will be primarily a study of the influence of parallelism on the 
architecture of top-of-the-range high-performance computers designed to 
solve difficult problems in science and engineering (e.g. the solution of three- 
dimensional time-dependent partial differential equations). The requirement 
in such work is for the maximum arithmetic performance in floating-point 
(i.e. real as opposed to integer) arithmetic, which has been achieved by a 
combination of technological advances and the introduction of parallelism 
into the architecture of the computers. Computers satisfying the above 
requirement are now generally known as supercomputers, so that this section 
might equally well be regarded as a history of supercomputing.

We start our discussion of the history of parallelism in computer architecture 
by considering the reduction in the time required for a simple arithmetic 
operation, for example a floating-point multiplication, in the period since the 
first commercially produced computer, the UNI VAC 1, appeared in 1951. 
This is shown in figure 1.1 and demonstrates roughly a ten-fold increase in



HISTORY OF PARALLELISM AND SUPERCOMPUTING 3

FIGURE 1.1 The history of computer arithmetic speed since 1950, 
showing an increase of a factor of 10 in 5 years.

arithmetic computing speed every five years. This sensational increase in 
computer speed has been made possible by combining the technological 
improvements in the performance of the hardware components with the 
introduction of ever greater parallelism at all levels of the computer 
architecture.

The first generation of electronic digital computers in the 1950s used 
electronic valves as their switching components with gate delay times! of 
approximately 1 gs. These were replaced about 1960 by the discrete germanium 
transistor (gate delay time of approximately 0.3 /¿s) in such second-generation 
machines as the IBM 7090. Bipolar planar integrated circuits (ics) on silicon, 
at the level of small-scale integration (ssi), with a few gates per chip and gate 
delay time of about 10 ns, were introduced in about 1965 and gradually 
improved until around 1975 gate delay times of slightly less than 1 ns were 
reliably possible. Although about five to ten times slower, much greater 
packing densities are possible with the alternative metal oxide silicon 
(m o s ) semiconductor technology. By the beginning of the 1980s micro-
processors, with a speed and capacity about equal to the first-generation 
valve computers, were available on a single chip of silicon a few millimetres

t  The gate delay time is the time taken for a signal to travel from the input of one 
logic gate to the input of the next logic gate (see e.g. Turn 1974 p 147). The figures 
are only intended to show the order of magnitude of the delay time.



4 INTRODUCTION

square. This engineering development obviously makes possible the 
implementation of various highly parallel architectures that had previously 
remained only theoretical studies.

Looking at the period from 1950 to 1975 one can see that the basic speed 
of the components, as measured by the inverse of the gate delay time, has 
increased by a factor of about 103, whereas the performance of the computers, 
as measured by the inverse of the multiplication time, has increased by a 
factor of about 105. This additional speed has been made possible by 
architectural improvements, principally the introduction of parallelism, which 
is the main subject of this volume. For economic reasons, different technologies 
favour the introduction of parallelism in different ways. For example, in 
Chapter 6 we discuss the influence of v l s i and wafer-scale integration on the 
way increased parallelism is likely to be introduuced into the architecture of 
future scientific supercomputers. Technological development, including some 
interesting predictions for the 1980s, is also discussed by Turn (1974) in his 
book entitled Computers in the 1980s and by Sumner (1982) in the 
Infotech State of the Art Report: Supercomputer Systems Technology, 
Our discussion that follows centres on the organisational aspect of introducing 
parallelism rather than the details of its implementation in hardware.

The above comparison does not take into account the possible overlapping 
of different arithmetic and logical operations, and we may alternatively 
compare the clock period, as a measure of the speed of the technology, with 
the number of useful arithmetic operations performed per second on an actual 
problem as a measure of performance. Wilkes et al (1951) quote an execution 
time of 18n ms for evaluating a series of n terms (2n arithmetic operations) 
on the EDS AC 1 (Wilkes and Ren wick 1949) which had a clock period of 
2 ps. This is an average rate of 100 arithmetic operations per second, which 
we may compare with a performance of 130 million arithmetic operations 
per second on the CRAY-1 (Russell 1978) for matrix multiplication. Since 
the CRAY-1 has a clock period of 12.5 ns, we have an improvement in total 
performance of 106 over the period of about three decades, of which only 
about a factor of 160 can be attributed to improvements in technology. One 
should also note a great improvement in the quality of an arithmetic 
operation, from 36-bit fixed-point arithmetic on the EDS AC 1 to 64-bit 
floating-point arithmetic on the CRAY-1.

The overall architecture of the first generation of computers is described 
as serial and follows the fundamental ideas of the stored program computer 
laid down by Burks et al (1946), and usually referred to simply as the von 
Neumann organisation. Such a computer comprises an input and output 
(I/O ) device, a single memory for storing both data and instructions, a single 
control unit for interpreting the instructions, and a single arithmetic and
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logical unit for processing the data. The latter two units are referred to as 
the central processing unit or c pu . The important feature in the present 
context is that each operation of the computer (e.g. memory fetch or store, 
arithmetic or logical operation, input or output operation) had to be 
performed sequentially, i.e. one at a time. Parallelism refers to the ability to 
overlap or perform simultaneously many of these tasks.

The principal ways of introducing parallelism into the architecture of 
computers are described fully in §1.2. They may be summarised as:

(a) Pipelining—the application of assembly-line techniques to improve 
the performance of an arithmetic or control unit;

(b) Functional—providing several independent units for performing 
different functions, such as logic, addition or multiplication, and allowing 
these to operate simultaneously on different data;

(c) Array—providing an array of identical processing elements ( pe s ) 
under common control, all performing the same operation simultaneously 
but on different data stored in their private memoricc—i.e. lockstep 
operation;

(d) Multiprocessing or m i m d — the provision of several processors, each 
obeying its own instructions, and usually communicating via a common 
memory, or connected in a network.

Of course, individual designs may combine some or all of these parallel 
features. For example, a processor array may have pipelined arithmetic units 
as its pe s , and one functional unit in a multi-unit computer might be a 
processor array.

Up to 1980, multiprocessor designs have been concerned primarily with 
methods of connecting several independent computers so as to maximise the 
throughput of a computer installation. This is certainly important but is 
outside the scope of this book. Consequently we will point out examples of 
multiprocessors when they arise as part of the parallelism of a computer, but 
refer the reader to the reviews by Enslow (1974, 1977), Infotech (1976) 
and Jones and Schwarz (1980) for the discussion of multiprocessors in the wider 
context of system performance. The advent of the cheap microprocessor 
around 1975 has made realistic the concept of many linked microprocessors 
cooperating on the solution of one problem and such systems are likely to 
become increasingly important in the 1980s. A number of experimental 
systems have been proposed and implemented (Satyanarayanan (1980), 
Hockney (1985b, d) and §1.1.8). An excellent discussion of parallelism as it 
affects all aspects of computer design (arithmetic units, memory organisation, 
instruction scheduling, input/output, multiprocessing and multiprogramming) 
is given by Lorin (1972) in his book Parallelism in Hardware and Software:
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Real and Apparent Concurrency. A most comprehensive survey of all types 
of parallel architectures appears in the book by Hwang and Briggs (1984) 
entitled Computer Architecture and Parallel Processing. Supercomputers are 
specifically considered in the book by Lazou (1986) entitled Supercomputers 
and their Use.

In our presentation of the history of parallelism we do not attempt a 
complete survey but focus attention only on developments that represented 
significant steps in the introduction of parallelism. Nor do we attempt to 
mention all machines or papers. Instead we have selected only those machines 
that either achieved significant sales or were particularly influential within 
the computer science community, and similarly only a few of the most 
influential scientific papers are mentioned. The main evolutionary trends and 
connections, evident in the introduction of parallelism into computer 
architecture, are illustrated in figure 1.2. We now describe separately the 
main lines of development.

Readers interested in additional information on the early history of 
computers, mostly prior to 1950, are directed to the collection of original 
papers edited by Randell (1975) entitled The Origins of Digital Computers: 
Selected Papers, and to Hartree’s (1950) book Calculating Instruments and 
Machines. A collection of essays written by many of the early pioneers of 
computing has been compiled by Metropolis, Howlett and Rota (1980) under 
the title A History of Computing in the Twentieth Century, and makes 
absorbing reading. Wartime work in the USA and UK is described, as well 
as developments in the USSR, Japan, Germany and Czechoslovakia. A highly 
readable account of the history of computer design from Babbage to the 
early 1950s is given by Kuck (1978) in his book entitled The Structure of 
Computers and Computations. This includes a very interesting account of the 
interplay between the personalities involved in the early development of the 
digital computer, and the engineering problems that they encountered. A 
particularly valuable historical survey is given by Rosen (1969) who describes 
the development of computers from the ENIAC in 1946 to the CDC 7600 
in 1968. Detailed information on the architecture of many of the computers 
that we mention is given by Bell and Newell (1971) in their book Computer 
Structures: Readings and Examples, which includes papers on most of the 
important families of computers. It covers the period approximately 1950-70, 
and gives design and historical details not readily available elsewhere. This 
book has been revised and brought up to date by Siewiorek, Bell and Newell 
(1982) under the title Computer Structures: Principles and Examples. These 
two books are primarily concerned with the architecture of the most successful 
serial computers (e.g. PDP 8 and 11, IBM 360), but the latter does include 
a description of some parallel systems (ILLIAC IV, STAR AN, C.mmp,
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8 INTRODUCTION

CRAY-1, TIASC). Other machines (MU5, ATLAS, IBM 370, UNIVAC 1100, 
DEC 10, CRAY-1) are described in the special issue of the Communications 
of the Association of Computing Machinery devoted to computer architecture 
(ACM 1978) and in the book by Ibbett (1982) entitled The Architecture of 
High Performance Computers, which also discusses the CDC 6600 and 7600, 
the IBM 360 models 91 and 195, the TIASC and CDC Cyber 205. Useful 
summaries of the architecture of most commercially available computers are 
given in a series of reports on computer technology published by Auerbach 
(1976a). A recent review of parallelism and array processing including 
programming examples is given by Zakharov (1984).

1.1.1 Parallelism prior to 1960
The earliest reference to parallelism in computer design is thought to be in 
General L F Menabrea’s publication in the Bibliothèque Universelle de 
Genève, October 1842, entitled Sketch of the Analytical Engine Invented by 
Charles Babbage (see Morrison and Morrison 1961 p 244, Kuck 1977). In 
listing the utility of the analytic engine he writes:

Secondly, the economy of time: to convince ourselves of this, we need 
only recollect that the multiplication of two numbers, consisting each of twenty 
figures, requires at the very utmost three minutes. Likewise, when a long series 
of identical computations is to be performed, such as those required for the 
formation of numerical tables, the machine can be brought into play so as to 
give several results at the same time, which will greatly abridge the whole 
amount of the processes.

It does not appear that this ability to perform parallel operation was included 
in the final design of Babbage’s calculating engine or implemented; however 
it is clear that the idea of using parallelism to improve the performance of a 
machine had occurred to Babbage over 100 years before technology had 
advanced to the state that made its implementation possible. Charles Babbage 
undoubtedly pioneered many of the fundamental ideas of computing in his 
work on the mechanical difference and analytic engines which was motivated 
by the need to produce reliable astronomical tables (Babbage 1822, 1864, 
Babbage 1910, Randell 1975).

The first general-purpose electronic digital computer, the ENIAC, was a 
highly parallel and highly decentralised machine. Although conceived and 
designed principally by J W Mauchly and J P Eckert Jr, ENIAC was described 
mainly by others (Goldstine and Goldstine 1946, Hartree 1946, 1950, Burks 
and Burks 1981 ). Since it had 25 independent computing units (20 accumulators,
1 multiplier, 1 divider/square rooter, and 3 table look-up units), each 
following their own sequence of operations and cooperating towards the 
solution of a single problem, ENIAC may also be considered as the first
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example of m im d  computing. Furthermore, it used decimal arithmetic 
internally, and computed on all ten decimal digits of a number in parallel. 
ENIAC was designed and built in the Moore School of Engineering at the 
University of Pennsylvania between 1943 and 1946, under contract to the 
US Army. It was subsequently moved to the Aberdeen Ballistics Research 
Laboratory where it was used successfully for the calculation of projectile 
trajectories and firing tables until 1955.

The overall architecture of ENIAC was conceived as an electronic version 
of the mechanical differential analysers which were, at that time, the most 
advanced machines for the solution of differential equations (Bush 1931,1936, 
Hartree 1950). These machines used a vertical wheel in contact with a 
horizontal disc to form a mechanical integrator. If y is the distance of the 
wheel from the centre of the disc, and the disc rotates by an angle dx, then 
the wheel rotates by an angle y dx. Hence if y is varied proportionally to the 
integrand, the total accumulated rotation of the wheel is Jy dx. In order to 
obtain a solution, several such integrators were linked together by shafts in 
a pattern corresponding to the differential equation that was to be solved 
(see Hartree 1950). The mechanical differential analyser was thus an 
analogue device in which the angular rotation of the shafts was proportional 
to the values of the variables in the problem. As was also the case with later 
electronic analogue computers, all the integrators (then called amplifiers) 
worked simultaneously and in parallel on the problem. This pattern of parallel 
working was maintained in the ENIAC. However, since finite differences had 
to be used to represent differential coefficients, and integrals became finite 
sums, the integrators of the differential analyser became accumulator units 
(i.e. adders) in the ENIAC.

Using present-day terminology one could describe the programming of 
ENIAC as follows: the variables in the finite difference formulation of the 
problem were assigned to different accumulators, and the outputs and inputs 
of the accumulators were connected together as demanded by the equations, 
using large plugboards; switches were then set on each accumulator to specify 
the particular sequence of operations it was to perform (i.e. a different 
microprogram could be given to each of the 20 accumulators); finally a 
master program was set on switches in the master control unit, which initiated 
the microprograms in the accumulators at the appropriate times, and 
synchronised their actions. Note that there was no concept of a single stored 
program that described the whole algorithm, and which was subsequently 
executed by a fixed computer architecture—this important idea of the stored 
program computer was implemented first in the next generation of computers.

In contrast, the architecture of ENIAC was rearranged for each problem, 
by using the plugboard to rewire the connections between the units. One
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could say that the algorithm was literally wired into the computer. It is 
interesting that such ideas are beginning to sound very ‘modern’ again in 
the 1980s in the context of m im d  computing, reconfigurable v l s i arrays, and 
special-purpose computers executing very rapidly a limited set of built- 
in algorithms. However, the time was not ripe for this type of parallel 
architecture in the 1940s, as can be seen in the following quotation from 
Burks (1981) who was a member of the ENIAC design team.

The ENIAC’s parallelism was relatively short-lived. The machine was completed 
in 1946, at which time the first stored program computers were already being 
designed. It was later realized that the ENIAC could be reorganized in the 
centralized fashion of these new computers, and that when this was done it 
would be much easier to put problems on the machine. This change was
accomplished in 1948__ Thereafter the plugboard of the ENIAC was never
modified, and the machine was programmed by setting switches at a central 
location. Thus the first general-purpose electronic computer, built with a parallel 
decentralized architecture, operated for most of its life as a serial centralized 
computer! [Author’s italics.]

The difficulty of programming parallel computers is a recurring theme that 
is still with us today, and it remains to be seen whether the second coming 
of the parallel computer in the 1980s will be more successful than the first!

The first stored program computers—EDSAC at the University of 
Cambridge (Wilkes and Renwick 1949) and EDVAC at the University 
of Pennsylvania (completed in 1952)—and their commercial derivatives 
(e.g. UNIVAC 1: see Eckert et al 1951) used mercury delay line memories 
of a few 100 words. Since, in such storage, the successive bits of a number 
are presented to the reading head in a time sequence starting with the least 
significant bit, it was natural and economic to perform the arithmetic on two 
numbers bit by bit. The addition, for example, of two 32-bit numbers was 
performed in 32 machine cycles by very simple circuitry capable only of 
adding one bit to another. Arithmetic performed in this way is termed bit-serial 
and an early use of parallelism in computers was to speed up the arithmetic 
by performing the operations on all bits of a number in parallel.

It is interesting to note that the serial organisation of arithmetic was 
considered as one of the advantages gained by introducing electronic 
components into computers, which had traditionally performed their 
arithmetic in parallel. For example, serial arithmetic had been rejected by 
Babbage for his difference engine because of the long execution time involved 
(Babbage 1864, Morrison and Morrison 1961 p 34), and his analytic engine 
was to have performed arithmetic on 50 decimal digits in parallel. A typical 
desk calculator of the 1940s worked with about 12 decimal digits in parallel. 
The extra speed of electronics over the mechanical and electromechanical
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components of previous machines allowed an improvement of performance 
by a factor of between 103 and 104 together with the economy of equipment 
that went with processing only a single digit at a time. The same was also 
true if one compared the parallel arithmetic on ENIAC, which was a previous 
electronic machine, with the serial arithmetic on machines like ED VAC (von 
Neumann 1945). Circuit techniques had improved to a situation where the 
time between pulses on ED VAC was 1 /¿s compared with 10 /is on ENIAC, 
and this enabled a 32-bit serial addition to be performed in 32 /¿s compared 
with an equivalent ten decimal digit addition of 200 /xs on ENIAC. 
Multiplication by successive addition on EDVAC was also faster than 
multiplication on ENIAC, although ENIAC could multiply ten decimal digits 
by one decimal digit in parallel.

A first-generation valve computer containing several parallel features was 
the pilot ACE and its commercial derivative, the English Electric DEUCE. 
The design of the pilot model ACE (Wilkinson 1953) was undertaken during 
a visit by Dr H D Huskey to the UK National Physical Laboratory in 1947, 
following the ideas of Dr A M Turing (see his biography, Turing 1959), and 
first operated in 1951. This machine had 11 mercury delay lines, each with 
a capacity of 32 32-bit words and a circulation time of 1 ms. The arithmetic 
was serial with one bit occurring every clock period of 1 /xs. Features of 
interest included a card reader, card punch and multiplier that could operate 
in parallel with the rest of the machine, and instructions (which we would 
now class as vector instructions) that could perform a limited number of 
operations on all the 32 numbers in a delay line. For example, decimal to 
binary or binary to decimal conversion was undertaken by the c pu  whilst 
the rows of a card were passing through the reader or punch. Also the sign 
adjustment required to complete a signed multiplication was computed using 
the adder during the 2 ms that were required by the multiplier to perform 
an unsigned multiplication. These are examples of functional parallelism. An 
instruction could be held active (in effect repeated) for up to 32 clock periods 
thus, for example, allowing the sum of all numbers in a delay line to be 
computed by one instruction. This facility was frequently used for computing 
check sums, and is one of the earliest examples of a vector instruction. In 
the production version, the English Electric DEUCE (Haley 1956) which 
appeared in 1954, the fast store was increased to 12 delay lines and backed 
up by an 8000-word magnetic drum. Parallelism was also evident during 
drum transfers, because calculations in the rest of the machine could proceed 
at the same time. An autonomous hardware fixed-point divider (2 ms to 
complete) was also provided on DEUCE which, like the multiplier, could work 
in parallel with the rest of the machine. However it used the same registers 
as the multiplier. Three single-, three double- and two quadruple-word delay
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lines were provided as fast-access registers on DEUCE. One single- and one 
double-word delay line were associated with fixed-point adders and could 
also act as accumulators.

Bit-parallel arithmetic became a practical part of computer design with 
the availability of static random-access memories from which all the bits of 
a word could be read conveniently in parallel. The first experimental machine 
to use parallel arithmetic was finished at the Institute of Advanced Studies 
(IAS) in 1952, and this was followed in 1953 by the first commercial computer 
with parallel arithmetic, the IBM 701. Both these machines used electrostatic 
cathode ray tube storage devised by Williams and Kilburn (1949), and were 
followed in a few years by the first machines to use magnetic-core memory. 
The most successful of these was undoubtedly the IBM 704 of which about 
150 were sold. This machine had not only parallel arithmetic but also the 
first hardware floating-point arithmetic unit, thus providing a significant 
speed-up over previous machines that provided floating-point arithmetic, if 
at all, by software. The first IBM 704 was commissioned in 1955 and the 
last machine switched off in 1975. The remarkable history of this first- 
generation valve machine which performed useful work for 20 years is 
described by McLaughlin (1975).

In the IBM 704, along with other machines of its time, all data read by 
the input equipment or written to the output equipment had to pass through 
a register in the arithmetic unit, thus preventing useful arithmetic from being 
performed at the same time as input or output. Initially the equipment was 
an on-line card reader (150 to 250 cards per minute), card punch (100 cards 
per minute) and line printer (150 lines per minute). Soon these were replaced 
by the first magnetic tape drives as the primary on-line input and output 
equipment (at 15000 characters per second, at least 100 times faster than the 
card reader or line printer). Off-line card-to-tape and tape-to-printer facilities 
were provided on a separate input/output (I/O ) computer, the IBM 1401. 
However these tape speeds were still approximately 1000 times slower than 
the processor could manipulate the data, and input/output could be a major 
bottleneck in the overall performance of the IBM 704 and of the computer 
installation as a whole.

The I/O  problem was at least partially solved by allowing the arithmetic 
and logic unit of the computer to operate in parallel with the reading and 
printing of data. A separate computer, called an I/O  channel, was therefore 
added whose sole job was to transfer data to or from the slow peripheral 
equipment, such as card readers, magnetic tapes or line printers, and the 
main memory of the computer. Once initiated by the main control unit, the 
transfer of large blocks of data could proceed under the control of the 
I/O  channel whilst useful work was continued in the arithmetic unit. The
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I/O  channel had its own instruction set, especially suited for I/O  operations, 
and its own instruction processing unit and registers. Six such channels were 
added to the IBM 704 in 1958 and the machine was renamed the IBM 709. 
This is therefore an early case of multiprocessing. The machine still used 
electronic valves for its switching logic and had a short life because, by this 
time, the solid state transistor had become a reliable component. The IBM 
709 was re-engineered in transistor technology and marketed in 1959, as the 
IBM 7090. This machine, together with the upgraded versions (IBM 7094 
and 7094 II), was extremely successful and some 400 were built and sold.

During the early development of any new device it is usual to find a wide 
range of innovative thought and design, followed by a period dominated by 
a heavy investment in one particular type of design. After this period, further 
innovation tends to be very difficult due to the extent of this investment. The 
pattern can be seen in the development of the motor car, with a wide range 
of engine principles used around 1900 including petrol, steam and rotary 
engines, and the subsequent huge investment in the petrol driven internal 
combustion engine that one can now scarcely imagine changing. Similarly 
many novel architectural principles for computer design were discussed in 
the 1950s although, up to 1980, only systems based on a single stream of 
instructions and data had met with any commercial success. It appears likely, 
however, that very large-scale integration (v l s i) technology and the advent 
of cheap microprocessors may enable the realisation of some of these 
architectures in the 1980s.

In 1952 Leondes and Rubinoff (1952) described a multi-operation computer 
based around a rotating drum memory. The machine DINA was a digital 
analyser for the solution of the Laplace, diffusion and wave equations. A 
somewhat similar concept was put forward later by Zuse (1958) in the design 
for a ‘field calculating machine’. The principle of spatially connected arrays 
of processors was established by von Neumann (1952) who showed that a 
two-dimensional array of computing elements with 29 states could perform 
all operations, because it could simulate the behaviour of a Turing machine. 
This theoretical development was followed by proposals for a practical design 
by Unger (1958) that can be considered as the progenitor of the SOLOMON, 
ILLIAC IV and ICL DAP computers that were to appear in the 1970s.

Similarly the paper by Holland (1959) describing an assembly of processors 
each obeying their own instruction stream, can be considered the first 
large-scale multiprocessor design and the progenitor of later linked micro-
processor designs such as those proposed about 20 years later by Pease 
(1977), and by Bustos et al (1979) for the solution of diffusion problems. The 
indirect binary n-cube, proposed by Pease, was a paper design for 2" 
microprocessors connected topologically as either a 1-, 2-, up to n-dimensional
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cube suitable for a wide range of common numerical algorithms, such as the 
fast Fourier transform. It was envisaged that up to 16 384 microprocessors 
could be used (n=  14). The Hypercube announced by IMS Associates 
(Millard 1975) was based on Pease’s ideas: it comprised a 4-dimensional 
cube with two microprocessors at each node, one for internode communication 
and the other for data manipulation. This particular hypercube came to 
nothing at this time; however, the idea reappeared in the early 1980s as the 
Cosmic Cube and the Intel Personal Supercomputer (see §1.1.8).

1.1.2 Fast scalar computers
A scalar computer is one that provides instructions only for manipulating 
data items comprising single numbers, in contrast to the vector computer 
that also has instructions for manipulating data items comprising an ordered 
set of numbers (that is to say a vector). The history of the development of 
fast scalar computers in the 1960s and 1970s is largely the history of the 
introduction of more and more parallelism into the overall serial design of 
the single instruction stream/single data stream computers, such as the 
IBM 7090, that had become a fairly standard architecture by the end of the 
1950s.

A computer that had a profound influence on both architecture and 
software was the ATLAS (Kilburn et al 1962, Sumner et al 1962, Howarth 
et al 1961, 1962, Lavington 1978). This machine was conceived at the 
University of Manchester in about 1956 and designed by a combined 
industrial and university group under the direction of Professor Kilburn. The 
prototype was working at the University in 1961, and the first production 
model was completed by Ferranti Ltd (later to become part of International 
Computers and Tabulators, and afterwards International Computers Limited) 
in 1963. The ATLAS was known principally for pioneering the use of a 
complex multiprogramming operating system based on a large virtual 
one-level store and an interrupt system. The operating system organised the 
allocation of resources to the programmes currently in various stages of 
execution. The virtual address space appeared to the user as a single-level 
store with approximately 106 words; however this was automatically translated 
to references to the multilevel physical store comprising magnetic cores (16 K 
words, where K = 1024), magnetic drum (96 Kwords) and finally magnetic 
tape as backing store. This was made possible by a paging system, which 
transferred information between the different levels of the store hierarchy in 
units of 512 words called pages. The interrupt system enabled slow I/O  devices 
to work autonomously and only to interrupt calculations in the c pu  when 
it was absolutely necessary.



HISTORY OF PARALLELISM AND SUPERCOMPUTING 15

In addition to the above organisational improvements, the ATLAS also 
made early use of parallelism to improve its calculational performance. The 
2 [is main core memory was divided into four independent banks (called 
stacks) which made possible, in favourable circumstances, the retrieval in 
one store cycle of two instructions and their two operands in parallel. The 
arithmetic itself was performed in a bit-parallel fashion (Kilburn et al 1960). 
Functional parallelism was present in the provision of a separate autonomous 
24-bit adder for index calculations, called the B-arithmetic unit, in addition 
to the main fixed- and floating-point arithmetic unit which worked on 48 
bits (40-bit mantissa and 8-bit power-of-eight exponent) using a single main 
accumulator. The B-arithmetic unit worked in association with 128 24-bit 
index registers (called B lines), built from fast magnetic cores with a cycle 
time of 0.7 [is. The instructions were single-address and specified an operation 
between the contents of that address and the contents of the main accumulator. 
The 48 bits of an instruction contained a 10-bit function code, a 24-bit main 
core address and two 7-bit index-register addresses. The operand address 
was obtained by adding the contents of one or both of the specified index 
registers to the main address. The principle of pipelining was used in order 
to overlap the following phases of instruction execution: instruction fetch, 
24-bit operand address calculation in the B unit, operand fetch and 48-bit 
arithmetic operation in the main accumulator. The effectiveness of the 
pipelining can be judged from the fact that, in an example of a series of 
floating-point additions, the 6.0 [is per operation that would be required for 
the sequential execution of all the phases of the instruction is reduced to an 
average of 1.6 [is per operation with pipelining. Between two and four 
instructions are in various stages of execution at any time. The corresponding 
time for floating-point multiplication was 5 [is, and the average time per 
order for FORTRAN programs was measured to be approximately 3 [is. The 
logic of the Ferranti ATLAS was implemented in discrete germanium 
transistors and diodes with a typical gate delay of 12 ns. About 80000 
transistors were used in the computer.

In order to make effective use of such parallel features as multiple arithmetic 
units, registers and memories, it is necessary to look ahead in the instruction 
stream and determine which instructions can be executed concurrently 
without altering the logic of the program. Having detected this parallelism 
in the program, it is then necessary to schedule the issue of instructions to 
the arithmetic units for execution in the optimal way. Both these aspects of 
‘look-ahead’ are considered by Keller (1976) and Kuck (1978), and are 
included in most fast scalar computers such as the CDC 6600 and 
IBM 360/91.

The gradual introduction of functional parallelism and pipelining can be
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seen in the evolution of the serial computer concept at Control Data 
Corporation under the influence of Seymour R Cray (founder member of 
the Company in 1957, Vice President and leading designer). The CDC 6600, 
first delivered in 1964, was the first computer to employ functional parallelism 
as a major feature of its design (Thornton 1964). The development of the 
machine is well described by Thornton (1970), who was responsible for most 
of the detailed design, in his book Design of a Computer— The Control 
Data 6600. The CDC 6600 comprised a 1 ps magnetic-core memory, divided 
into 32 independent banks that could work in parallel; 10 separate functional 
units for multiplication (duplicated), division, addition, long addition, shift, 
boolean, branch and increment (duplicated); and 10 peripheral processors 
forming a very flexible link with slow input/output devices. The 10 peripheral 
processors, although they timeshared the use of a single arithmetic and control 
unit, executed independent programs on data in separate memories. They 
therefore acted logically as independent processors and were an example of 
multiprocessing. To suit the scientific market all the arithmetic was floating-
point (60-bit words), except in the increment unit (18-bit addition and 
subtraction only) which was for integer loop counting and address calculation. 
The CDC 6600 was such a success that it took much of the scientific market 
that had previously been dominated by IBM with their 7090 and 7094. In 
1969, Control Data followed the 6600 with an upgraded version, the 
CDC 7600. This was about four times faster because the clock period was 
reduced from 100 ns in the 6600 to 27.5 ns. The ten serially organised 
functional units of the 6600 were replaced by eight pipelined functional units 
and one serial unit for division that could not be pipelined. Because of the 
extra speed of the pipelined units, it was no longer necessary to duplicate 
the multiplication and increment units. An extra functional unit for counting 
the number of ones in a word was added. The architectures of the CDC 6600 
(renamed CYBER 70 model 74) and the CDC 7600 (renamed CYBER 70 
model 76) must be two of the most successful produced for the scientific 
market. Over 50 of the latter machines have been installed.

The history of IBM production computers during the 1960s and 1970s 
also showed a gradual introduction of further parallelism. This development 
started in 1956 with much enthusiasm and a contract from the Los Alamos 
Scientific Laboratory to build a computer 100 times as fast as the IBM 704. 
This computer was called STRETCH (Dunwell 1956, Bloch 1959), and was 
later marketed for a brief period as the IBM 7030. Its principal novel features 
were a look-ahead facility to pick up, decode, calculate addresses and fetch 
operands several instructions in advance, and the division of memory into 
two independent banks that could send data to the arithmetic units in parallel.
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The maximum transfer rate of data to and from memory was thereby increased 
by a factor equal to the number of memory banks. This was the first use of 
parallelism in memory, and enabled a relatively slow magnetic-core memory 
to be matched more satisfactorily to the faster processor. Almost all 
subsequent large computers have used banked (sometimes called interleaved) 
memory of this kind. The first STRETCH was delivered to Los Alamos 
in 1961, but did not achieve its design goals. Its manufacture also proved 
financially unsatisfactory to the company, and after seven systems were built 
(one being installed at AWRE Aldermaston UK) the computer was withdrawn 
from the product range. Potential customers were then sold the slower but 
very popular IBM 7090 series.

After the experience of STRETCH, it seemed that IBM had lost interest 
in high-speed computing. The IBM 360 series of computers was announced 
in 1964, but it contained no machine with a performance comparable to that 
of the CDC 6600 which was first installed the same year. The dramatic success 
of the CDC 6600 in replacing IBM 7090s and converting most large scientific 
centres to a rival company, made IBM respond. It was not until 1967, however, 
that the IBM 360/91 (Anderson et al 1967) arrived with a performance of 
about twice that of the CDC 6600. This machine had the look-ahead facility 
of STRETCH, and like the CDC 6600 had separate execution units for 
floating-point and integer address calculation each of which was pipelined 
and could operate in parallel. The principle of pipelining was also introduced 
to speed up the processing of instructions, the successive operations of 
instruction fetch, decode, address calculation and operand fetching being 
overlapped on successive instructions. In this way several instructions were 
simultaneously in different phases of their execution as they flowed through 
the pipeline. However the CDC 7600 appeared in 1969 and outperformed 
the 360/91 by about a factor two. IBM’s reply in 1971 was the 360/195 which 
had a comparable performance to the CDC 7600. The IBM 360/195 (Murphy 
and Wade 1970) combined the architecture of the 360/91 with the cache 
memory that was introduced in the 360/85. The idea of introducing a 
high-speed buffer memory (or cache) between the slow main memory and 
the arithmetic registers goes back to the Ferranti ATLAS computer 
(Fotheringham 1961). The cache, 32 768 words of 162 ns semiconductor 
memory in the 360/85, held the most recently used data in blocks of 64 bytes. 
If the data required by an instruction were not in the cache, the block 
containing it was obtained from the slower main mempry (4 Mbytes of 
756 ns core storage, divided into 16 independent banks) and replaced the 
least frequently used block in the cache. It is found in many large-scale 
calculations that memory references tend to concentrate around limited
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regions of the address space. In this case most references will be to data in 
the fast cache memory and the performance of the 4 Mbyte slow memory 
will be effectively that of the faster cache memory.

Gene Amdahl, who was chief architect of the IBM 360 series (Amdahl 
et al 1964), formed a separate company in 1970 (the Amdahl Corporation) 
to manufacture a range of computers that were compatible with the IBM 
360 instruction code, and could therefore use IBM software. These machines 
were an important step in the evolution of computer technology and 
parallelism. The first machine in the range, the AMDAHL 470V/6, was the 
first to use large-scale integration ( l s i) technology for the logic circuits of 
the c pu  (bipolar emitter coupled logic, e c l , with 100 circuits per chip), and 
for this reason is sometimes called a fourth-generation technology computer. 
Six such machines were delivered in 1975 of which the first two were to 
NASA and the University of Michigan. The use of l s i reduced the machine 
to about one-third of the size of the comparable IBM 360/168, which used 
a much smaller level of integration. Although the arithmetic units in this 
machine were not pipelined, a high throughput of instructions was obtained 
by pipelining the processing of instructions. The execution of instructions 
was divided into 12 suboperations that used 10 separate circuits. When 
flowing smoothly, a new instruction could be taken every two clock periods 
(64 ns) and therefore up to six instructions were simultaneously in different 
phases of execution, and could be said to be in parallel execution. A high-speed 
buffer (or cache) bipolar memory of 16 Kbytes (65 ns access) improved the 
effective access time to the main memory of up to 8 Mbytes of mo s  store 
(650 ns access).

1.1.3 Pipelined vector computers
In 1972 Seymour Cray left Control Data Corp. to start his own company, 
Cray Research Inc., with the aim of producing the fastest computer in the 
world. In the extraordinarily short time of four years the CRAY-1 computer 
was designed and built, the first model being delivered to the Los Alamos 
Scientific Laboratory in 1976. The CRAY-1 (Russell 1978, Dungworth 1979) 
followed the evolutionary trend from the 6600 and 7600. It provided 12 
functional units, now all pipelined, a faster clock with period 12.5 ns, and a 
16-bank one-million-word bipolar memory with a 50 ns cycle time. The 
principal novel feature was the provision of eight vector registers, each capable 
of holding 64 floating-point numbers (64 bits long), and a set of about 
32 machine instructions for manipulating and performing arithmetic on these 
vectors. Three functional units were reserved for vector operations (shift, 
logical and addition) and three shared with scalar instructions (floating-point 
addition, multiplication and reciprocal approximation). The CRAY-1 was
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referred to as a vector computer, because it provided instructions for 
manipulating vectors. It was the first pipelined vector computer to be 
commercially successful, and remains by far the most successful; by the end 
of 1984 88 CRAY-ls and its sucessor, the CRAY X-MP, had been sold. The 
CRAY-1 regularly achieved measured rates of 130 Mflop/s (millions of 
floating-point operations per second) on suitable problems (e.g. matrix 
multiplication).

The main weaknesses of the original CRAY-1 design were (a) inadequate 
I/O  capability, (b) low transfer rate from main memory to vector registers 
(i.e. bandwidth), and (c) the absence of a hardware scatter/gather instruction. 
These resulted in the actual performance on real problems often being 
significantly less than the arithmetic pipelines themselves could deliver. The 
CRAY-1S, announced in 1979, solved the first problem by introducing an 
I/O  Subsystem to relieve the main CRAY-1 c pu  of I/O  interrupt handling 
and buffer management tasks, associated with front-end computers, discs and 
other peripheral devices. The Subsystem comprises two to four I/O  processors 
and a buffer memory of 1/2 or 1 Mbyte. The I/O  Subsystem has a direct 
channel to main memory with a transfer rate of 850 million bits per second. 
The CRAY-IS also increased the main memory capacity from 1 Mwords 
to 4 Mwords in the same physical space by using 4 Kbit memory chips 
instead of 1 Kbit chips.

The next major step in the evolution of the CRAY-1 series of computers 
was the announcement of the CRAY X-MP in 1982. This is a multiprocessor 
design that can be described as two CRAY-1 computers working from a 
common memory of 2 or 4 Mwords. Each c pu  has four ports in memory, one 
for I/O  and three for use by the vector registers, thus increasing the maximum 
memory bandwidth for data transfer by a factor of eight, and solving 
the limited bandwidth problem (b). In the absence of memory bank conflicts, 
two vector input streams and one output stream may now access memory 
simultaneously in both c pu s , and each may support an arithmetic pipeline 
at close to its maximum speed with data coming from and returning to main 
memory. The two c pu s  may work on different parts of one problem, or on 
independent problems (jobs). Synchronisation is either via main memory 
locations, or a set of special synchronisation registers. An increased level of 
integration (16 gates per chip as compared with 4 or 5 gates per chip on the 
CRAY-1) allows the two c pu s  to fit in the same physical space as the original 
CRAY-1. High-speed secondary storage is provided in the form of a solid state 
device (s s d ), comprising up to 32 Mwords in 64 banks of volatile mo s  memory. 
The data transfer rate between ss d  and main memory is 1250 Mbyte per 
second. The initial version of the CRAY X-MP thus removes the first two 
weaknesses of the CRAY-1. In 1984 a four-cpu model was announced which
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removes the third weakness by including a hardware scatter/gather instruction. 
The top of this range, the CRAY X-MP/48, has a peak performance of 
840 Mflop/s and an ecl  bipolar central memory of 8 Mwords (64-bit) 
arranged in 64 interleaved banks. The CRAY X-MP is chosen for detailed 
description in Chapter 2 (§2.2).

In 1981 Seymour Cray stepped down as chairman of Cray Research in 
order to devote his time to the development of the CRAY-2 and other future 
machines. The new liquid immersion technology of the CRAY-2 was 
demonstrated in 1981 (Cray 1981). This involves submerging the whole 
machine in a bath of a clear inert liquid fluorocarbon, which acts as the 
cooling fluid. When encased in a transparent container—creating the 
so-called ‘goldfish bowl’ computer—quite beautiful effects are observed due 
to turbulence in the fluid. The improved cooling efficiency allows a greater 
density of component packaging, and a smaller c pu . The whole machine 
is contained in a cylinder 4 feet high and 4 \  feet in diameter. Circuit 
boards are packed closely together in three dimensions, giving a maximum 
wire length of 16 inches—compared with the two-dimensional packing and 
wire length of four feet on the CRAY-1. The CRAY-2 is designed to have 
up to four cpus  and a clock period of 4 ns. If the two floating-point pipelines 
( +  , x ) in each of the four cpus  all work simultaneously, then two arithmetic 
operations are completed every nanosecond, corresponding to 2 Gflop/s. 
As with the CRAY X-MP, more cpus  may be added in later machines. Each 
cpu  has a similar architecture to the CRAY-1, but the addition of 16 Kwords 
of local memory for intermediate results makes the machine incompatible 
with the CRAY-1 series at the machine code level. The CRAY-2 will use the 
UNIX operating system, and 32-bit addressing provides a total address space 
of 256 Mwords. Prototype CRAY-2 machines with one cpu  and 16 Mword 
memories were delivered to NMFECC Livermore and the University of 
Minnesota in 1984/5, and three four-cpu machines were delivered in 
1985, including one to NASA Ames Research Laboratory, California, with 
256 Mwords of memory. Four installations were delivered in 1986 with 
four c pu s  and either 64 or 256 Mwords of memory. The first CRAY-2 in Europe 
was ordered in 1985 by the State of Baden-Wiirtemberg in Germany, for 
installation at the University of Stuttgart. By 1987 CRAY-2s had also been 
installed at the Ecole Polytechnique, Paris, and at the UKAEA Harwell 
Laboratory in the UK. Initially the CRAY-2 will use the same silicon 16-gate 
logic chips that are used on the CRAY X-MP. The next major development 
is likely to be the use of gallium arsenide chips which should allow the clock 
period to be reduced to about one nanosecond. The gallium arsenide machine 
will probably be called the CRAY-3, and is scheduled for 1990. It is likely
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to have 16 processors, a shared memory of 1 Gword, and a performance in 
excess of 15 Gflop/s. The CRAY-2 is described in detail in §2.2.7.

Two other pipelined vector computers have earlier origins than the 
CRAY-1, namely the CDC STAR 100 and the Texas Instruments Advanced 
Scientific Computer TIASC (Theis 1974, Hockney 1977). The STAR 100 
(Hintz and Tate 1972) was conceived about 1964 as a processor for vectors 
with an instruction set based on Iverson’s (1962) APL language, that would 
with pipelining be able to sustain rates of 100 Mflop/s on the long vectors 
that were common to many scientific problems at the Lawrence Livermore 
Laboratory (LLL). A letter of intent was received in 1967 and design started. 
After a long gestation period of six years the first machine was operational 
in 1973 and two machines were delivered to LLL in 1974-5. There were two 
major hiatuses, one technological and one in the design itself, which led to 
the slow development, and when available the STAR 100 suffered from its 
very early start in the mid-1960s. Its 1.2 fis magnetic-core memory had been 
surpassed by semiconductor memory, and its clock with an 80 ns period was 
slow compared with its competitors by the time the machine was available 
in the mid-1970s. Furthermore, the best serially organised computers such 
as the CDC 7600 and IBM 360/195 had much faster arithmetic units for 
scalar operations, and for operations on any but the longest vectors. The 
STAR 100 was only able to outperform these more general-purpose 
competitors on very carefully prepared code, with vectors of several hundred 
or thousand elements. Consequently only about four machines were built 
and these went to government laboratories (two at LLL and one at NASA 
Langley) or were kept by the company as a facility available over the 
CYBERNET communications network. No STAR 100 was sold to a genuine 
commercial customer. The STAR 100, however, has been completely re-
engineered in l s i with semiconductor memory, and was introduced to the 
market in 1979 as the CYBER 203E (Kascic 1979). This machine has been 
renamed the CYBER 205 and is now highly competitive with the CRAY-1. 
We take it as a second example of pipelined architecture in §2.3. The CYBER 
205 differs from the CRAY-1 in processing all vector instructions to and from 
main memory (there are no vector registers); however it has multiple 
general-purpose pipelines, as opposed to the specialised pipelines of the 
CRAY-1. The first delivery was to the UK Meteorological Office in 1981.

In September 1983 CDC founded a separate company, ETA Systems Inc., 
in order to speed up the further development of their supercomputers. Control 
Data retained 40% ownership in ETA Systems, who announced the 
target of 10 Gflop/s for their ETA10 machine. This is described as 
having eight processors with the architecture of the CYBER 205 but
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three to five times faster. Thus, program compatibility will be maintained 
with all the software developed for the CDC CYBER 205. The extra speed 
and greater level of integration are achieved by using c m o s  technology cooled 
to liquid nitrogen temperatures ( — 200 °C). A c m o s  gate array chip made 
by Honeywell with up to 20000 gates is used which dissipates 2 watts, as 
compared with 4 watts dissipation for the 250-gate e cl  chips used on the 
CYBER 205. This will enable the c pu  to be contained in about five square 
feet of floor space. The ETA10 is described in more detail in §2.3.7.

The TIASC (Watson 1972, Ibbett 1982) was started about 1966 as a 
computer suitable for the high-speed processing of seismic data (involving 
very heavy use of Fourier transforms). It was an interesting design based on 
one, two, or four identical general-purpose pipelines, each capable of 
performing all the elementary instructions on vector operands. Instructions 
could be taken from one or two instruction processing units. We therefore 
have here another example of multiprocessing. The semiconductor memory 
had eight banks and a cycle time of 320 ns. With four pipes operating 
optimally a design rate of 50 Mflop/s was theoretically achieved. The number 
of arithmetic pipes and instruction units was varied in order to meet the 
particular demands of the customer. The first TIASC was operational in 1973 
and about seven were built, most of which were used within the company 
and its associates. The most important sales were a four-pipe configuration 
(the only one) to the Geophysical Fluid Dynamics Laboratory (GFDL) at 
Princeton, and a two-pipe configuration to the Naval Research Laboratory 
(NRL) in Washington. However, after installing about seven systems, Texas 
Instruments discontinued manufacture of the TIASC. It also suffered, like 
the STAR 100, from a scalar unit that was significantly slower than other 
competitive computers like the CDC 7600.

The first venture of the Japanese manufacturers into the supercomputer 
field was by Fujitsu with their FACOM VP-100 and VP-200 pipelined vector 
computers, which were announced in 1982 (Miura and Uchida 1984). These 
machines are clearly designed to combine the best features of the CRAY-1 
and CYBER 205. They have separate scalar and vector units that may work 
simultaneously, as in the CYBER 205; however, the vector unit is register- 
oriented, as in the CRAY-1. There are separate pipelines for add/logical, 
multiply and divide, working with data held in 64 Kbytes of vector register 
memory. A feature unique to these machines is the ability to reconfigure this 
vector storage dynamically under program control. The storage may be 
configured either as eight vector registers each of length 1024 elements, or 
as 256 vector registers of length 32 elements, or by factors of two between 
these limits. There are two load/store pipelines between the vector registers
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and the main memory (compared with one on the CRAY-1 and three on the 
CYBER 205 and CRAY X-MP). The maximum main memory size is 
256 Mbytes (eight times that of the CYBER 205 or CRAY-1). The 
FACOM VPs provide masking instructions similar to those of the CYBER 
205 and they have a hardware indirect vector addressing instruction 
(i.e. a random scatter/gather instruction), present on the CYBER 205 but 
missing on the CRAY-1. The clock period of the vector unit is 7.5 ns which 
gives a maximum processing rate of 533 Mflop/s for the VP-200. This rate 
and the memory sizes given above are halved for the VP-100. The first delivery 
was a VP-100 to the University of Tokyo at the end of 1983. Two other 
Japanese pipelined vector computers were announced in 1983, the HITACHI 
S-810 model 10/model 20 (630 Mflop/s maximum) and the NEC SX-1 /SX-2 
(1300 Mflop/s maximum). All these Japanese computers are described in 
more detail in Chapter 2, §2.4.

IBM’s first venture into vector processing was announced in 1985 (nine 
years after the first CRAY-1 was delivered) as a part of the System/370 range 
of computers. This comprises a multiprocessor IBM 3090 scalar processor 
with a maximum performance of about 5 Mflop/s, to which can be optionally 
attached vector facilities which have about three to four times the scalar 
performance. This is a much lower ratio of vector to scalar speed than is 
provided by competitive machines, but is thought by IBM to be the best 
cost-effective choice. Each processor of the 3090 can support only one vector 
facility, and the current (1987) maximum number of processors is six, although 
this number will presumably increase. The IBM 3090-VF therefore provides 
both vector (s im d ) processing in the vector facility, and multi-tasking (m im d ) 
programming using the multiple processors. Each 3090 processor has a 
64 Kbyte cache buffer memory that is used for instruction and data by both 
the scalar and vector units. Behind the cache, the four-processor model 400 
has a central memory of 128 Mbyte and one extended memory of 256 Mbyte. 
Each vector facility has 16 vector registers, each holding 128 32-bit numbers, 
which may be combined in pairs for storing 128 64-bit numbers. The cycle 
time is 18.5 ns corresponding to a peak performance of 54 Mflop/s per 
pipeline. The vector facility has independent multiply and add pipelines giving 
a peak theoretical performance of 108 Mflop/s per vector facility. However, 
these rates can only be approached in highly optimised codes which keep 
most of the required data in registers or cache memory most of the time, 
thereby making minimal access to central or extended memory which is a 
severe bottleneck in the system. For example, the rate observed for a single 
dyadic vector operation in FORTRAN (see §1.3.3) with all data in cache 
memory is 13 Mflop/s. If the data are in central memory, this is reduced to
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7.3 Mflop/s for a stride between successive elements of the vectors of unity 
(compare 70 Mflop/s on the CRAY X-MP, see §2.2.6) and to 1.7 Mflop/s 
for a stride of eight.

1.1.4 SOLOMON and after
A major milestone in the history of parallelism is certainly the paper of 
Slotnick et al (1962) entitled ‘The SOLOMON computer’. This computer 
concept has also been described by Gregory and McReynolds (1963), and 
can be traced back to the ideas of Unger (1958). The acronym stands for 
Simultaneous Operation Linked Ordinal M odular Network, and describes 
a two-dimensional array of 32 x 32 processing elements, each with a memory 
for 128 32-bit numbers and an arithmetic unit working in a bit-serial fashion, 
under control of a single instruction stream in a central control unit. Contrary 
to the evolutionary development of the serial computer to the vector pipeline 
computer, the SOLOMON concept was a radical change in thinking on 
computer architecture, and had a substantial influence on computer science 
research as well as on computer design. The SOLOMON computer was 
never built exactly as described in the 1962 paper, but gave birth not only 
to the ILLIAC IV and Burroughs PEPE floating-point processor arrays, but 
also to the Goodyear Aerospace STAR AN and ICL DAP arrays of one-bit 
processors which are often called associative processors. We will discuss these 
developments separately.

The US Department of Defense’s Advanced Research Projects Agency 
(ARPA) awarded a contract to the University of Illinois for the design of a 
SOLOMON-type computer in 1966, and this computer then became known 
as the ILLIAC IV. The original design is described by Slotnick (1967) in 
another influential paper entitled ‘Unconventional systems’, and by Barnes et al 
(1968) and McIntyre (1970). It was to comprise four quadrants, each with 
a control unit interpreting a single stream of instructions for 64 floating-point 
processing elements ( pe s ). Each pe  was to have 2000 64-bit words of thin-film 
memory and the pes  in each quadrant were connected as an 8 x 8 array. The 
four quadrants were to be connected by a highly parallel I/O  bus, and backed 
up by a large disc as secondary memory from which jobs would be read, 
and to which results would be written. Each of the 256 pes  was envisaged 
to produce a floating-point operation in 240 ns so that a maximum rate of 
1 Gflop/s was planned. Although only one quadrant was built and a 
maximum processing rate of approximately 50 Mflop/s was measured, the 
manufacture of the ILLIAC IV had a considerable influence on the 
development of computer technology and architecture. The design of the 
ILLIAC IV as actually built and its use in realistic applications is described 
by Feierbach and Stevenson (1979a) and by Slotnick (1971).
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The tortuous story of the ILLIAC IV is described by Falk (1976) in his 
article ‘Reaching for the gigaflop’. The machine was the first to use 
semiconductor memory chips (256-bit bipolar logic gates from Fairchild) for 
all its main memory, after it was discovered that there was insufficient space 
for the thin-film memories that were originally proposed. The bipolar logic 
gates were originally intended to be packed about 20 to the chip (m s i) but 
this had to be reduced to about 7 gates per chip (ssi). This was due largely 
to the decision to pioneer the new and faster emitter-coupled logic (e c l ) 
rather than the established transistor-transistor logic ( t t l ). ILLIAC IV also 
pioneered the use of 15-layer circuit boards and computer-aided layout 
methods that proved necessary to wire them. The manufacture of ILLIAC 
IV (now reduced to one quadrant) was entrusted to Burroughs and the 
machine was delivered to NASA Ames Research Center, California in 1972. 
It was not until 1975, however, that a useable service could be offered and 
this was with the original clock period lengthened from 40 ns to 80 ns, with 
the consequential slowing down of all the operations.

The ILLIAC IV may be regarded as a failure in that it cost four times the 
original contract figure and did not come even within a factor of 10 of its 
originally proposed performance. However its influence was profound and 
we will probably see in the 1980s computer architectures rather similar to 
that of ILLIAC IV now that technology has advanced sufficiently to make 
such architectures practicable. ILLIAC IV was, like many major changes, 
too ambitious for the technology of its time. The computer software developed 
in association with ILLIAC IV was also considerable, including four 
computer languages that could express the parallelism of the computer, and 
much work on the development of suitable algorithms for standard 
mathematical problems which contain parallelism, such as matrix manipu-
lations and the solution of partial differential equations (see, for example, 
Kuck 1968). The computer languages were the ALGOL-like TRANQUIL 
(Abel et al 1969) and GLYPNIR (Lawrie et al 1975), the PASCAL-like 
ACTUS (Perrott 1978), and CFD FORTRAN (Stevens 1975).

The Burroughs Corporation has played a major role in the development 
of array-like parallel processors. This began with the ILLIAC IV, for which 
Burroughs was the system contractor in the period 1969-73, continued with 
the PEPE parallel processor for the US Army (delivery began in 1976), and 
culminated with the announcement in 1977 of the Burroughs Scientific 
Processor (BSP) as a commercial venture for the general scientific market, 
in competition with the pipelined designs from Cray Research Inc. (CRAY-1) 
and Control Data Corporation (CYBER 205). We will now describe the 
relation of the PEPE and BSP designs to the ILLIAC IV.

The ILLIAC IV was designed for the solution of partial differential
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equations and can be described as an 8 x 8 array of 64-bit floating-point 
processing elements each with 2 Kwords of memory, working in lockstep 
fashion with nearest-neighbour connections, and controlled by a single 
instruction stream process in a central control unit. PEPE, the Parallel 
Element Processor Ensemble, was designed, on the other hand, to control a 
ballistic missile defense system of radar detectors and missile launchers 
(Berg et al 1972, Cornell 1972, Vick and Cornell 1978). PEPE had its origins 
in work at Bell Laboratories, Whippany, on content-addressable distributed 
logic memories (Lee and Pauli 1963) combined with floating-point processing 
(Crane and Githens 1965), which led in about 1972 to the building of an 
experimental machine (PEPE IC) with 16 32-bit floating-point processing 
elements (Crane et al 1972). The full-size PEPE was manufactured by 
Burroughs and comprised a loosely coupled system of 288 pe s , each containing 
three processors (one each for input of radar signals, processing of data, and 
output of control signals) controlled in lockstep fashion by three control 
units, one for each type of processor in the pe s . The three control units were 
connected to three standard I/O  channels of a CDC 7600 which acted as 
host to the complete system. When operating, each target that was identified 
became the responsibility of one pe  and, because there were no ordered 
connections between the targets, no direct connections were provided at all 
between the pe s . When necessary, communication between the pes  took place 
via the memories of the control units. The array of processors was then said 
to be unstructured and the word ensemble was coined for this arrangement. 
Since each pe  had a floating-point processing rate of 1 Mflop/s, the complete 
PEPE could be rated as having a potential maximum computing rate of 
288 Mflop/s. More realistic estimates for actual problems lead to estimates 
of about 100 Mflop/s (Vick and Cornell 1978). A 36-element version of the 
PEPE hardware was delivered to the BMDATC Advanced Research Center 
in Huntsville, Alabama in 1976.

One of the problems with the ILLIAC IV is the delay in routing data long 
distances across the array, caused by the limited nearest-neighbour connections 
between the 64 processors and the 64 banks of pe  memory. In their commercial 
design, the BSP (Jensen 1978, Austin 1979), Burroughs have reduced the 
number of processors to 16 and the number of memory banks to 17. This 
smaller number makes it possible to provide connections via an ‘alignment 
network’ between any processor and any of the memory banks. The choice 
of a prime number of memory banks different from the number of processors 
allows the use of mapping algorithms that reduce the number of memory 
conflicts that may arise in common matrix manipulations. The pes  themselves 
are serially organised floating-point processors with an addition or multiplication 
time of 320 ns for the production of 16 results (one in each p e ). The careful
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overlapping of the read, write and arithmetic, together with the provision of 
all memory bank to pe  connections, is expected to eliminate most bottlenecks; 
and the BSP is designed thereby to sustain a large fraction of its maximum 
processing rate of 50 Mflop/s on the majority of problems, The BSP is chosen 
for detailed study in §3.4.3, but was withdrawn from the market in 1980 before 
any had been sold.

ARPA and NASA jointly established an Institute of Advanced Computation 
(IAC) to support the ILLIAC IV, and in 1977 this institute published a 
design proposal for a machine called PHOENIX (Feierbach and Stevenson 
1976b) to replace the ILLIAC IV in the mid-1980s. IAC foresaw the need 
for a 10 Gflop/s machine in order to solve three-dimensional problems in 
aerodynamic flow with sufficient resolution. The PHOENIX design can be 
described as 16 ILLIAC I Vs each executing their own instruction stream 
under the control of a central control unit. If each pe  can produce a result 
in 100 ns (a reasonable assumption with 1980 technology) the total of 1024 pes  
could produce the required 1010 operations per second.

NASA also commissioned two other design studies, from Control Data 
Corporation and Burroughs, for machines to replace the ILLIAC IV and 
form a Numerical Aerodynamic Simulation Facility (NASF) for the mid- 
1980s (Stevens 1979). The CDC design was based on an uprated four-pipe 
CYBER 205, operating in lockstep fashion, plus a fifth pipe as an on-line 
spare that can be electronically switched in if an error is detected. Each 
pipeline can produce one 64-bit result or two 32-bit results every 8 ns. 
However each result may be formed from up to three operations, leading to 
a maximum computing rate of 3 Gflop/s. There was also a fast scalar processor 
clocked at 16 ns. In contrast, the Burroughs design may be regarded as an 
upgrade to the BSP architecture, being based on 512 pes  connected to 521 
memory banks (the nearest larger prime number). Unlike the ILLIAC IV, 
each pe  has its own instruction processor. The same instructions are assigned 
to each processor, but the arrangement does permit them to be executed in 
different sequences depending on the result of data-dependent conditions 
that may differ from processor to processor. With a planned floating-point 
addition time of 240 ns, multiplication time of 360 ns and 512 processors, a 
maximum processing rate of about 1-2 Gflop/s could be envisaged, ecl  
technology was planned with a 40 ns clock period.

The initial SOLOMON computer design (Slotnick et al 1962) was a 32 x 32 
array of one-bit processors each with 4096 bits of memory, conducting its 
arithmetic on 1024 numbers in parallel in a bit-serial fashion. This describes 
quite closely the pilot model of the ICL Distributed Array Processor 
(DAP), that was started in 1972 and commissioned in 1976 (Flanders et al 
1977, Reddaway 1979, 1984). The first production model of the machine was
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installed at Queen Mary College London in 1980. It comprises a 64 x 64 
array of pes  and forms a memory module of a host ICL 2980. As with the 
SOLOMON and the ILLIAC IV, the pes  are connected in a two-dimensional 
network with nearest-neighbour connections. The original DAP used small- 
scale integration with 16 pes  and their memory per circuit board. We take 
the ICL DAP as an architecture for detailed study in §3.4. In October 1986, 
Active Memory Technology (AMT) was founded to develop further the DAP 
concept. It markets the v l s i DAP 500 as processors attached to work stations 
(§3.5).

An important feature of the engineering design of the ICL DAP is that 
the pe  logic is mounted on the same printed circuit board as the memory to 
which it belongs. An attractive possible development using v l s i technology, 
is to include the pe  and its memory on the same chip. In the von Neumann 
concept the logic and memory are both conceptually and materially in 
different units (or even separate cabinets), which can lead to severe bottlenecks 
if the transfer rate between the two units is inadequate. In the ICL DAP, as 
its name implies, the logic is distributed into the memory where it is adjacent 
to the data it is to manipulate. The advent of v l s i which allows approximately 
105 logic gates to be included on one chip, has made the distribution of logic 
into memory a practicable proposition. Indeed this has become almost a 
necessity because of the problems associated with interconnections between 
chips. The AMT DAP 510, for example, is a 32 x 32 array with 64 pes  per 
v l s i chip.

Stone (1970) proposed a logic-in-memory computer in which each of the 
16 Kbyte segments of the cache memory of an IBM 360/85 was to have 
special-purpose logic that would process the 16 segments in parallel. This 
could be used as an associative memory or for simple arithmetic operations 
on 16 elements in parallel. In a limited sense the proposal was for a 16-pe  DAP 
without the processor interconnections. Kautz (1971) proposed a more 
extensive logic-in-memory computer called an Augmented Content-Addressed 
Memory (ACAM) with special circuitry for sorting, matrix inversion, fast 
Fourier transform, correlation etc. The engineering of the l s i chips was to 
be by cellular arrays with a universal logic capability, implementing as far 
as possible in hardware special algorithms that had been devised for parallel 
computation: for example, fast Fourier transform (Pease 1968) and matrix 
inversion (Pease 1967).

1.1.5 Orthogonal and associative computers
Another influential paper in the history of parallelism is that of Shooman 
(1960) entitled ‘Parallel computing with vertical data’, in which he describes 
an ‘orthogonal computer’ organisation (see also Shooman 1970). The 
arithmetic units of a conventional serial computer take their data serially
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from memory in the form of words (e.g. 32-bit floating-point numbers) and 
by 1960 most scientific computers would process the bits of the word in 
parallel. Such a procedure may be described as word-serial and bit-parallel 
processing. Shooman recognised that many problems involving information 
retrieval required searches on only a few bits of each word and that 
conventional word-serial processing was inefficient. He proposed, therefore, 
that the memory should also be referenced in the orthogonal direction, i.e. 
across the words by bit slice. If the bits in memory are thought of as a 
two-dimensional array, with the bits of the kih word forming the kth 
horizontal row, then the /th bit slice is the bit sequence formed from the /th 
bit of each number—that is to say the /th vertical column of the array. In 
the orthogonal computer, one pe  is provided for each word of memory and 
all the bits of a bit slice can be processed in parallel. This is called bit-serial 
and word-parallel processing. The orthogonal computer provided a ‘horizontal 
unit’ for performing word-serial/bit-parallel operation and a separate ‘vertical 
unit’ for bit-serial/word-parallel operation.

The idea of performing tests in parallel on all words has led to the idea 
of the associative or content-addressable memory, in which an item is 
referenced by the fact that part of its contents match a given bit pattern (or 
mask), rather than by the address of its location in store. In a purely associative 
memory, there is no facility to address a data item by its position in store. 
However many systems provide both forms of addressing. The multitude of 
different processors based on associative memories have been reviewed by 
Thurber and Wald (1975) and Yau and Fung (1977), and the reader is also 
referred to the books by Foster (1976) and Thurber (1976) for a more complete 
treatment. We will describe here only two of these, the OMEN and STARAN, 
that have been marketed commercially.

The OMEN (Orthogonal Mini EmbedmeNt) series of computers were a 
commercial implementation of the orthogonal computer concept, manufactured 
by Sanders Associates for signal processing applications. They are described 
by Higbie (1972). The OMEN-60 series used a PDP-11 for the conventional 
horizontal arithmetic unit and an array of 64 pes  for the associative vertical 
arithmetic unit which operated on byte slices, rather than bit slices. Depending 
on the model, either bit-serial arithmetic with eight bits of storage were 
provided with each pe , or alternatively hardware floating-point with eight 
16-bit registers and five mask registers. Logic was provided between the pe s  
to reverse the order of the bytes within a slice, or perform a perfect shuffle 
or barrel shift.

Another computer derived from the orthogonal computer concept was the 
Goodyear STARAN (Batcher 1979) which was conceived in 1962, completed 
in 1972 and by 1976 about four had been sold. The STARAN typically 
comprised four array modules, each 256 one-bit pes  and between 64 Kbits
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and 64 Mbits of total storage, controlled by a sequential PDP-11. Unlike 
the SOLOMON, however, the storage was not assigned to specific pe s ; 
instead, a flexible ‘FLIP’ network was interposed between the pes  and the 
memory. A slice of 256 bits was selected from memory in a pattern specified, 
under program control, by a 256-bit code. The pattern selected may, for 
example, have treated the store as a multidimensional array with a varying 
number of dimensions, or shuffled the data in the manner required by the 
fast Fourier transform and other important numerical algorithms. Connections 
between the pe s  were achieved by passing the 256-bit slices of data through 
the FLIP network, thus achieving in minimum time a highly flexible effective 
interconnection pattern that could be varied from problem to problem by 
the programmer. The STAR AN, like other bit-oriented computers, was most 
effective when performing logic and short word-length integer arithmetic. A 
particularly suitable application is the digital processing of pictures, in which 
the image is divided into millions of pixels (picture elements) each of which 
is represented by 6-12 bits. The first STARAN was delivered to the 
Rome Air Force Base for such an application and it has also been proposed 
for air traffic control.

The STARAN and DAP concepts have been brought together in proposals 
from Goodyear Aerospace Corporation for a Massively Parallel Processor 
(m p p ), which comprises a 132 x 128 array of one-bit pe s  connected two- 
dimensionally. The machine is designed principally for picture processing of 
satellite photographs at rates of 106 pixels per second. Eight- and twelve-bit 
integer arithmetic is designed for execution at the rate of a few Gflop/s and 
32-bit floating-point arithmetic between 200 and 400 Mflop/s.

1.1.6 Array and attached processors
Another line of computer evolution involving parallelism has been the 
development of relatively cheap, special-purpose computers for processing 
arrays of data, which are therefore often referred to as ‘array processors’. 
Note that, in this context, this name does not imply that the computers are 
architecturally arrays of processors; in fact most designs use the pipeline 
principle. Such computers normally, but not always, require a host, and are 
therefore also called attached processors. The main application is to signal 
processing and the analysis of seismological data, and the most ubiquitous 
algorithm, round which the hardware is designed, is the fast Fourier transform 
( f f t ). The first such processors were augmented 16-bit minicomputers, which 
permitted parallel access to both data and instructions. Bipolar technology 
was used to enhance the performance to rates of about 5 x 104 operations 
per second. The next phase of development was the design of special-purpose 
‘function boxes’ for the f f t  and similar algorithms. Parallelism was extensively
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used in these function boxes, which typically comprised multiple program, 
data and coefficient memories that could be simultaneously accessed, and 
multiple adders and multipliers interconnected in the way required for the 
particular algorithm. The function boxes were controlled by microprograms 
that were installed at the factory. The machines were thus almost totally 
inflexible, but they were able to provide a factor of 10 improvement in 
performance to about 0.5 Mop/s.

In 1973 a new generation of array processor emerged in which multiple 
processing units were interconnected by a limited number of data buses and 
ran asynchronously under the overall supervision of a central control unit. 
Processing speeds of around 5 Mop/s were achieved; however the asynchronous 
operation led to major difficulties of timing and non-reproducibility of 
conditions in program check-out.

By far the most successful of the array processors is the Floating Point 
Systems AP-120B which has returned to the principle of synchronous 
operation (Harte 1979). The company was founded in 1970, the machine 
launched in 1976 and by 1985 about 5000 systems had been installed. 
The FPS AP-120B, which may be attached to either minicomputers or 
main-frame computers as hosts, performs 38-bit floating-point arithmetic in 
separate pipelined multiplication and addition units, and 16-bit counting and 
address calculation in an independent integer arithmetic unit. Three memories 
(for data, tables and program) and two ‘scratch pads’ of registers are provided 
with multiple paths between each memory and each arithmetic unit. All units 
of the machine are controlled in each clock cycle by a 64-bit instruction that 
gives precisely reproducible conditions, and unlike many earlier machines, 
allows the computer to be programmed for a variety of uses. Thus the 
special-purpose line of development has evolved in this machine to a cheap 
general-purpose processor of arrays. Typically, processing rates of 5-10 Mflop/s 
may be achieved, at costs of approximately £50000 (1980 prices). This is 
highly cost-effective computing and may enable many calculations presently 
prohibitively expensive for industrial use to become commonplace. In many 
respects the FPS AP-120B may be considered as the ‘poor-man’s’ CRAY-1, 
being about one-tenth as fast and one-fiftieth of the price. The overall 
architecture of both machines is quite similar, both being based on multiple 
independent pipelined functional units. In 1980 Floating Point Systems 
announced the FPS-164 Attached Processor, a 64-bit version of the AP-120B, 
with a main memory expandable to 1.5 million 64-bit words. The peak 
processing rate is marginally reduced to 11 Mflop/s in this machine (clock 
period lengthened to 182 ns) but the larger main memory eliminates the need 
for a host computer and the time lost in the AP-120B waiting for slow 
transfers to and from the host. Computation rates between 1 and 8 Mflop/s
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are typical, depending on the problem and the care with which it is 
programmed. There are no vector instructions, and such operations must be 
coded as a tight scalar loop. In 1985 an implementation of the FPS 164 in 
ec l  technology was announced. This machine, called the FPS 264, is four to 
five times faster than the FPS 164, but otherwise the same.

A novel enhancement to the FPS 164 was announced in 1984, the FPS 
164/MAX which stands for Matrix Algebra Accelerator. This machine has 
a standard FPS 164 as a master, and may add up to 15 MAX boards, each 
of which is equivalent to two additional FPS 164 c pu s . In total there is 
therefore the equivalent of 31 FPS 164 c pu s  or 341 Mflop/s. The FPS 164 
and 164/MAX are considered in detail in §2.5.7 and §2.5.8, respectively.

1.1.7 Enter the Japanese with the Fifth Generation
The Japanese shocked the computer world in October 1981 with a vision of 
computing in the 1990s that they called the Fifth Generation (Feigenbaum 
and McCorduck 1983). Their ideas were announced to the world at an 
international conference in Tokyo entitled ‘Fifth Generation Computer 
Systems’ ( f g c s ) (Moto-oka 1982, 1984). The Japanese identified expert and 
knowledge-based systems (k b s ) as the main application area for computing 
in the 1990s. These systems use a database of rules to represent the knowledge 
of an expert, and use this to draw conclusions and inferences from facts 
supplied interactively by a user. The system is intended to behave very much 
like a consultation between a human expert and someone with a problem 
requiring the expert’s knowledge. The most successful applications to date 
have been in limited areas of well-defined knowledge such as medical diagnosis 
in specific areas. Other examples include the machine translation of foreign 
languages, machine maintenance and economic analysis. Some large companies 
are concerned with the loss of expertise that arises when a skilled long-service 
member of staff retires. The capturing of his knowledge within a computer 
expert system is proposed as a way of partially alleviating this problem.

In order to provide the above capability it is envisaged that an fg c s  would 
comprise three main parts: a knowledge database machine with 100 to 
1000 Gbyte of storage to contain and manage the accumulated knowledge; 
a problem-solving and inference machine to manipulate the knowledge 
database and respond to questions; and an intelligent interface machine to 
communicate with the human user in speech and images. The Japanese 
Ministry of International Trade and Industry (MITI) together with the eight 
leading electronic manufacturers (including Fujitsu, Hitachi, NEC, Mitsubishi, 
OKI and Toshiba) are collaborating in a ten-year national project to build 
such an fg cs  by 1992. The project is led by Professor Moto-oka of Tokyo 
University and has a budget of about 400 million US dollars.
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The basic computer requirement of the inference machine can be expressed 
as the number of logical inferences made per second ( l ip s ), and it is estimated 
that a fifth-generation computer would need to perform between 100 M li ps  
and 1 G l ips . Present computers have the capability of between 0.01 and 
0.1 M l ips , s o  that one is looking for about four orders of magnitude 
improvement in speed of logical operations over current computers. Such 
factors are only likely to be achieved by a combination of improved 
technology, architecture and methods. It is concluded that an increase in 
device speeds will not alone be sufficient, and that computers will have to 
become more parallel and use architectures such as data-flow which 
automatically make use of the inherent parallelism in a problem. In such 
computers an operation takes place whenever the input data for it are 
available and there is a functional unit free (see §3.2.2 and Treleaven (1979), 
Treleaven, Brownbridge and Hopkins (1982) and Dennis (1980)). In contrast 
to computers controlled by instruction streams, which are described as 
control-flow computers, the only limits to the order of execution are those 
imposed by data dependencies. Subject to these constraints, that can be 
identified by the hardware, a data-flow computer may perform as many 
operations in parallel as it has functional units. Of much greater importance 
is the fact that the programmer is not required to identify the parallelism in 
his problem nor to program it explicitly into his instruction stream. The use 
of high levels of parallelism by replication is also felt to be necessary in order 
to take advantage of the opportunities offered by v l s i mass production.

Another important part of the fifth-generation concept is a vast improvement 
in the interface between the human user and the computer, which is known 
as the man-machine interface (m m i). Current computers are weak in speech 
recognition, textual manipulation, graphical communication and image 
processing; all of which are important capabilities for a good interface to the 
human user. Great importance is attached to improvements in these areas, 
which lend themselves well to parallel computation; indeed, already highly 
parallel s im d  computers like the ICL DAP and STARAN have proved to be 
most effective in image processing. As well as being able to communicate via 
images and sound, it is envisaged that the m m i should also make use of the 
inference machine to appear to be as ‘intelligent’ as possible to the user.

The fifth-generation computer project does not address itself to the 
provision of improved facilities for numerical processing, because this is the 
concern of a separate project. In 1982 MITI started another national project 
to develop ‘High Speed Computing Systems for Scientific and Technological 
Use’, with the target of producing a 10 Gflop/s supercomputer by 1989 
(Kashiwagi 1984). The project is lead by Dr H Kashigawi of the Electro- 
Technical Laboratory and has a budget of 100 million US dollars. It is in
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collaboration with the six electronic manufacturers mentioned above in 
connection with the fifth-generation project. The usual applications to 
weather prediction, aerodynamics and nuclear energy research were cited to 
justify the programme. The project involves research into parallel computer 
architecture and software, new switching devices with high speed and level 
of integration, and finally the construction and evaluation of the supercomputer. 
New logical devices with a 10 ps gate delay time (using a Josephson junction 
operating at liquid helium temperatures, and the high-electron-mobility 
transistor, h e m t , operating at liquid nitrogen temperatures) and a 30 ps gate 
delay (using gallium arsenide) are the target, together with new memory 
devices with 10 ns access time. The level of integration envisaged for logic is 
3000 gates per chip and for memory 16 Kbits per chip. In addition to the 
national project, several company supercomputers appeared in 1984/5. These 
are all multiple pipelined designs with similarities to the CRAY-1 and 
CDC CYBER 205. They are the Fujitsu FACOM VP-100/VP-200, the 
HITACHI S-810 model 10/model 20 and the NEC SX-l/SX-2, with peak 
performances of 533 Mflop/s, 630 Mflop/s and 1300 Mflop/s respectively. 
Several experimental machines have been built with other architectures in the 
universities and national research institutes (processor arrays, m im d  and 
data-flow computers), and it will be interesting to see what architecture is 
finally chosen for the national supercomputer.

1.1.8 m im d  computers
It is sometimes said that, spurred on by the advance of v l s i technology and 
the cheap microprocessor, the 1980s will be the decade of the m im d  computer. 
Such multiple instruction stream/multiple data stream computers are those 
controlled by more than one stream of instructions. Here we also limit the 
term to tightly coupled systems in which the instruction streams can be 
programmed to cooperate together on the solution of a single problem. Thus 
we exclude loosely coupled computers connected by slow message passing 
networks (e.g. ARPANET), and multiprocessor configurations that are 
hidden from the user such as the four processors in the IBM 3081. We have 
already met small-scale examples of m im d  computing in the 4-cpu  CRAY 
X-MP and CRAY-2, and the 8-c pu  ETA10. However, m im d  computers are 
usually thought of as larger collections of computers (most frequently minis 
or micros) and memory modules, connected together by a switch, or arranged 
in a network. Logically, the same effect can be obtained by passing multiple 
instruction streams through a single instruction processing unit, as is done 
in a single-PEM Denelcor HEP computer. Both of these are examples of
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m im d  computing, because both have multiple instruction streams. There are 
now so many proposed m im d  architectures that the inclusion of a complete 
list here, even if possible, would be inappropriate as well as boring. Rather 
few have actually been built and successfully operated, and this has guided 
our choice of those to describe below. A more complete survey is given in 
Hockney (1985b, d, 1986).

(/) Carnegie-Mellon C.mmp and Cm*
One of the most ambitious early examples of m im d  computing was the C.mmp 
computer at Carnegie-Mellon University (Wulf and Bell 1972, Mashburn 
1982). This comprised 16 DEC PDP-11 minicomputers connected to 16 
memory modules by a 16 x 16 crossbar switch. The switch provided a direct 
electrical connection between every computer and every memory module (see 
figure 3.8). The computers communicated by sharing a 32 Mbyte logical 
address space, of which 2.7 Mbytes was implemented by the memory modules. 
All computers are also connected to a common interrupt bus. The design 
started in 1971 and the machine was completed in 1975. It remained 
operational until 1980. Its successor, the Cm*, was an entirely different 
concept, using the microprocessors that had now become available (Swan, 
Fuller and Siewiorek 1977, Fuller et al 1978). Unlike the C.mmp, the memory 
in Cm* is subdivided amongst the microprocessors, and made local to them; 
and a hierarchical packet-switching network provides communication between 
the microprocessors. The primary unit is the ‘computer module’ which 
comprises a DEC LSI-11 microprocessor with 64 Kbytes of dynamic mo s  
memory, and perhaps other peripherals, attached to its LSI-11 bus. This 
module may act as an independent computer; however, up to 14 may be 
linked to a common intracluster bus to form a tightly coupled cluster within 
which data transfer is by direct memory access. The system is built up by 
linking clusters together via two intercluster buses to form a loosely coupled 
network exchanging data by packet-switching techniques. Both the intra- and 
intercluster buses are controlled by microprogrammed computers. The 
tightness of the coupling between the computer modules is in inverse 
proportion to the time to transfer data between them, and this varies by a 
factor of ten depending on the relative positions of the modules. Transfers 
within the local memory of the same module take 3 /¿s, those between different 
modules of the same cluster take 9 /¿s, and those between different clusters 
take 26 ps. All component computers of Cm* share a common virtual address 
space of 256 Mbytes, and the design is expandable to an arbitrary extent by 
adding more clusters. It is hoped to take advantage of the latter feature in 
a future v l s i implementation of the architecture containing many hundreds 
or even thousands of computers. The detailed hardware design of Cm* began
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in 1975, and a single cluster of ten computers was operational in 1977. A 
five-cluster Cm* containing 50 computer modules is now operational, and 
this has been proposed as a flexible test-bed for simulating other proposed 
m im d  computer designs. Both C.mmp and Cm* are described by Satyanarayanan 
(1980), and operational experience is reported by Jones and Schwarz (1980).

(ii) UK experiments
The many small experimental university m im d  systems developed in the late 
1970s and early 1980s are too numerous to enumerate in full. However, the 
following systems are typical. Shared-memory m im d  systems have been built 
at the University of Loughborough under Professor Evans, and used 
extensively for the development of parallel m im d  algorithms (Barlow, Evans 
and Shanehchi 1982). The first system used two Interdata 70 minicomputers 
sharing 32 Kbytes of their address space. Later, in 1982, four TI 990/10 
microcomputers sharing memory were commissioned as an asynchronous 
parallel processor (Barlow et al 1981). A larger m im d  system, called CYBA-M, has 
been built at the University of Manchester Institute of Science and Technology 
(UMIST) under Professor Aspinall, and consists of 16 Intel 8080 micro-
processors sharing a multiport memory through part of their address space 
(Aspinall 1977, 1984, Dagless 1977). Other interesting UK projects are the 
Manchester Data-Flow computer, the Imperial College ALICE reduction 
machine and the University of Southampton RPA and Supernode projects. 
The last two are discussed in Chapter 3.

(Hi) New York University Ultracomputer and IBM RP3 
Most of the above UK computers have not been well publicised but were 
built and operated successfully for several years. A much more ambitious 
university project was the NYU Ultracomputer which was extensively 
publicised but remained for many years a paper machine. However, the 
publications have been influential in the theory and design of large-scale m im d  
systems. In response to the potential of v l s i replication, the original concept of 
Schwartz (1980) defined a family of computer architectures, called ultra- 
computers, which linked together thousands of processing elements in a 
‘perfect-shuffle nearest-neighbour (ps n n )’ connection network (see figure 3.21). 
This network requires each pe  to be connected to four others at the most, 
and it was shown that it was suitable for implementing the many parallel 
algorithms that are based on ‘divide and conquer’ strategies. A 16K pe  
ultracomputer with these connections can be used as a 128 x 128 2D array, 
or as a 32 x 32 x 16 3D array, or as a 16 x 16 x 8 x 8 4D hyper-array. The 
memory was to be distributed throughout the network, with 132K 16-bit 
words being associated as local memory with each pe . Separate data-routing
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chips make the ps n n  connections between pes  in groups of eight. In a later 
design for the ultracomputer (Gottlieb et al 1983), the memory was removed 
from the processing elements and concentrated in memory modules (m m s ). 
The pes  are then connected to the mms  by a multistage switch in the form 
of an Omega network (Lawrie 1975). If there are N pe s  and N mms  then 
there are log2N stages in the switch. A design for a 4096-pe  machine was 
considered for implementation in the 1990s. Initially it is intended to build 
a 64-pe  prototype from commercially available microprocessors and memories, 
and custom-made switching elements. IBM is building a 512-pe  version of 
the Ultracomputer design at their Yorktown Heights Research Laboratory, 
which is called the Research Parallel Processor Project (RP3). This comprises 
four quadrants of 64 pes  each. The first quadrant is scheduled for 
service in 1988.

A unique feature of the Ultracomputer design is the provision of a 
‘fetch-and-add’ operation ( f a ), which is partly implemented by the nodes of 
the switch. If many pe s  wish to add data into the same main memory location, 
they may all independently issue f a  instructions to that location, perhaps 
even at the same time. The switch hardware combines these requests as they 
meet at nodes in the switch, and finally the memory is incremented as if all 
the requests had been issued in an arbitrary order. Thus the necessary 
sequence of add operations is maintained even if the order, which is not 
important, is not known. Fetch-and-add operations are of fundamental 
importance in many m im d  algorithms: e.g. for counting down a synchronisation 
variable common to many processes, and for charge accumulation in a 
particle-pushing plasma simulation. The provision of special hardware for 
this operation in the Ultracomputer is an important innovation which will 
significantly speed up the operation of many codes. If every pe  issues an f a  
on the same variable, all results are obtained in the time required for 
just one fa .

(iv) Illinois Cedar project
The Cedar project that is being built at the University of Illinois by David 
Kuck and his team is aimed towards achieving a multi-gigaflop/s machine 
by 1990 (Gajski et al 1983). The overall architecture is broadly similar to 
that of the Ultracomputer, but Cedar does not have the fetch-and-add 
instruction. Sixteen clusters of eight pe s  are connected via an extended Omega 
global switching network to 256 global memory modules of 4 to 16 Mword 
each. The time between a pe  data request to global memory and the data 
being available at the pe  is about 2 ps. Each cluster has eight pe s , each with 
16 Kwords of local memory. These pes  are pipelined, and are interconnected 
via a local switching network. All memory locations have a full-empty flag
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(like the Denelcor HEP) to allow synchronisation of the pe s . The prototype 
Cedar 32 was planned to have four clusters of eight pes  and use a 400 ns 
clock period. This provides 2.5 Mflop/s per pe  in a low-speed technology, 
giving a total maximum performance of 80 Mflop/s (comparable to the 
CRAY-1) for the desk-top-sized prototype. This is planned to be expanded 
to a 16-cluster Cedar 128 (320 Mflop/s, in 1988) and to a 64-cluster Cedar 
512 (1.2 Gflop/s, in 1990). An alternative engineering is planned using a 
40 ns clock period and 25 Mflop/s per pe , giving a four-cluster Cedar 32H 
(800 Mflop/s, in 1989) and a 16-cluster Cedar 128H (3.2 Gflop/s, in 1991). 
Funding began in 1983 and industrial participation is expected and required 
in order to produce the larger machines. In fact, the above plans have 
not been followed exactly, because in 1985 it was decided to use the 
commercially available Alliant FX/8 as the Cedar cluster. This machine 
is described in §1.1.9.

(y) Erlangen e g  p a

Perhaps the most original and imaginative m im d  architecture was developed 
under Professor Händler at the University of Erlangen, West Germany, and 
is called the Erlangen General Purpose Array or e g pa  (Händler, Hofmann 
and Schneider 1975, Händler 1984). The connections between the computers 
in e gpa  are topologically similar to a pyramid, with computers at the corners 
and connections along the edges. The control C-computer, at the top of the 
pyramid, controls four B-computers at the corners of its base. The four 
B-computers also have direct connections along the edges of the base. This 
five-computer system has been working since 1981, and uses AEG 80-60 
minicomputers each with 512 Kbytes of memory. The idea is expandable to 
further levels by making each B-computer itself the top of a further pyramid 
with four A-computers at its base. There are then 16 A-computers in total, 
which are connected amongst themselves at the lowest level as a 4 x 4 array 
with nearest-neighbour connections, as in the ICL DAP. The advantage of 
the egpa  pyramidal topology is that short-range communication can take 
place most effectively along the nearest-neighbour connections, whereas 
long-range communication can take place most effectively by sending the 
data higher up the pyramid. For example, if the bottom computers form an 
n x n array, then the furthest computers can communicate in 21og2n steps 
via the top of the whole pyramid, compared with In steps if the nearest- 
neighbour connections alone were provided. The five-computer system has 
been used for contour and picture processing, and has proved to be about 
three times faster than a single computer of the same type (Herzog 1984). If 
the hierarchical development is taken one stage further by making each 
A-computer the top of a further pyramid, there will be 1, 4, 16 and 64
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computers respectively at the four levels, making a total of 85 computers. 
This is the basis of the Erlangen Multiprocessor 85 project (Händler 
et al 1985).

(vi) Livermore S-l
By far the largest m im d  project is the Livermore S-l computer (Widdoes and 
Correll 1979, Farmwald 1984). Sponsored by the US Navy and Department 
of Energy, and supported by Edward Teller, the complete design for the S-l 
computer comprises 16 CRAY-1-class pipelined vector computers connected 
to 16 memory banks by a full crossbar switch which provides a direct logical 
connection between each computer and each memory bank. The S-l can 
therefore be regarded as a ‘grown-up’ version of the C.mmp. An overall 
performance equivalent to about ten CRAY-1 computers is expected, that is 
to say close to 1 Gflop/s. Each of the component computers (called 
uniprocessors) is provided with a data cache (64 Kbytes) and instruction 
cache (16 Kbytes) in order to limit traffic through the switch. All the 
computers are also directly connected to a common bus (the synchronisation 
box) in order to facilitate the transfer of small amounts of data and the 
synchronisation of messages rapidly between them. Each memory module 
may contain up to 1 Gbyte (230) of storage, giving a total physical storage 
of 16 Gbyte (9-bit bytes). The programmer, however, sees a uniform virtual 
memory of up to 2 Gbyte. The hardware paging mechanism translates virtual 
addresses to physical addresses without the need for programmer intervention. 
The normal arithmetic mode is 36-bit floating-point, but 18-bit and 72-bit 
numbers are also included.

Single instructions are provided for some common mathematical functions 
(e.g. sine, exponential, log) which take about two multiply times. In addition 
to the usual element-by-element vector instructions, matrix transpose, matrix 
multiply, and fast Fourier transform may be performed by single instructions. 
There are no vector registers, and all vector operations are to and from main 
memory assuming contiguous storage of successive elements, as in the 
CYBER 205. Also, there is no hardware scatter/gather instruction to assist 
the assembly of contiguous vectors from disordered data, although the matrix 
transpose instruction can be used if the data are ordered. The S-l project 
provides for a continual upgrading of the technology within a constant 
architectural design. A Mark I uniprocessor using e cl  10K ms i was 
commissioned in 1977, followed by the Mark IIA using ecl  100K in 1983. 
The Mark V version calls for a supercomputer on a wafer.

(vii) MIDAS
The Modular Interactive Data Analysis System (MIDAS) at the University
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of California, Berkeley (Maples et al 1981), is a hierarchical system consisting 
of a primary computer controlling several secondary computers, each of 
which controls a multiple processor array (m pa ). The primary computer 
handles system control and user communication, and allocates resources to 
each job. The secondary computers handle individual problems, compute the 
sequential parts and allocate the parallel parts for parallel execution within 
the m pa . At the lowest level the mpas  are clusters of eight pe s  (Modcomp 7860s) 
which form the computational heart of the system. Each mp a  also has an 
input and an output processor and a crossbar switch connecting the 
processors to 16 switchable memory modules, each of 256 Kbytes. The 
allocation of a memory module to a pe  can be changed in 50 ns, after which 
the memory module may be directly addressed by the pe . The mpa  is therefore 
a crossbar-switched shared-memory m im d  computer. A prototype with four 
pes  and eight memory modules has been operational since January 1982, and 
a complete subsystem with a primary computer, one secondary computer 
and one mpa  has been operational since February 1983. The Modcomp 7860 
is rated at approximately 85% of a VAX 11/780, which is equivalent 
to 0.3 Mflop/s, giving a maximum performance of approximately 3 Mflop/s 
(equivalent to about a CDC 7600) for the one-MPA system. This has been 
used to solve a variety of problems in computational physics, particularly 
nuclear science.

(viii) NASA Finite Element Machine
The NASA Finite Element Machine (FEM) (Jordan 1978) is a two- 
dimensional m im d  array of pe s  controlled by a TI990 minicomputer. The 
processing elements are TI9900 microcomputers with an AM9512 floating-
point arithmetic coprocessor and 32 Kbytes r a m plus 16 Kbytes ro m  of 
memory. One-bit data paths connect each pe  to its four nearest neighbours 
and its four second nearest neighbours (i.e. both the orthogonal and the 
diagonal connections are present in the two-dimensional lattice). All pe s  are 
also connected to a 16-bit global bus that can sense the state of eight flag 
registers in each pe . ‘AH’, ‘any’ and other logical functions can be derived 
from the state of these pe  flags, and used to synchronise the operation of the 
array. The design of the machine describes a 6 x 6 array of 36 pe s . Initially 
a 4 x 2 array was built and became operational in 1983. A second 4 x 2  array 
was added to this in 1984 to make a 4 x 4 array. The initial eight-PE array 
was extensively used and much early m im d  experience was obtained on it.

(ix) Hypercubes (Cosmic Cube, Intel iPSC, FPS T-Series)
Binary hypercubes have been extensively studied as possible interconnection 
networks for m im d  computers since the important paper by Pease (1977)
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entitled ‘The indirect binary «-cube microprocessor array’. However, they 
were not realised in a practical way until the Cosmic Cube was built at Cal 
Tech by Geoffrey Fox and Charles Seitz in 1984. Following the publicity 
received by this machine, several commercial versions have appeared, and 
this field of development is growing rapidly.

The point, line, square and cube with nodes at their corners and connections 
along their edges, are respectively the zeroth-, first-, second-, and third-order 
hypercube networks. Each one is made by taking two copies of the next 
lower-order hypercube and joining corresponding corners (i.e. nodes). For 
example, the fourth-order hypercube is made from two cubes by connecting 
corresponding corners. In this sequence the dth-order hypercube has n = 2d 
nodes, and d = log2n connections to each node. Thus one attraction of this 
connection scheme is that the number of connections grows relatively slowly 
with the size of the hypercube. Another attraction is that the dth-order 
hypercube has, obviously, as subsets the connections of all lower-order 
hypercubes, as well as all the connections needed for a fast Fourier transform 
( f f t ) of n data. That is to say, if the n data are assigned one value to each 
node of a dth-order hypercube, then the data combined at any stage of the 
f f t  algorithm are always in adjacent nodes. We now describe the architecture 
of some hypercube computers in more detail.

(x) Cosmic Cube
The Cosmic Cube at the California Institute of Technology (Seitz 1985) and 
its commercial derivative, the Intel iPSC (personal supercomputer), are both 
hypercube networks of microprocessors. The Cosmic Cube is a 26 hypercube 
hosted by a VAX 11/780. Each node of the cube comprises an Intel 8086 
with an Intel 8087 floating-point coprocessor, and 128 Kbytes r am  plus 
8 Kbytes ro m  of local memory. Communication between pes  is by queued 
message passing along the edges of the hypercube at a rate of 2 Mbit/s, each 
pe  being connected to six neighbours. There are independent asynchronous 
communication channels in the send and receive directions (full duplex), each 
with queues for a 64-bit message packet. The communication latency between 
nodes is admitted to be large compared to the instruction time, but is said 
to be comparable to the overhead time taken by a node to deal with a 64-bit 
message packet. This makes the machine a more accurate simulator of future 
machines with single-chip nodes. The machine can be loosely described as 
the equivalent of 64 IBM PCs collaborating on a problem.

The 8087 has a maximum performance of 50 Kflop/s, hence the 64- 
processor Cosmic Cube has a maximum of about 3 Mflop/s. This is described 
as approximately ten times a VAX 11 /780 for about the same cost. However, 
it is only 1/10 to 1/100 the performance of the large supercomputers. The
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machine has been working since October 1983 and a number of computational 
physics problems have been reformulated and successfully computed on it. 
An extended 210 node hypercube, called the Homogeneous Machine, is 
planned using at each node the faster Intel 80286 plus 80287 plus 80186 chips 
and 256 Kbytes of local memory (using 64 Kbit chips), expandable to 
1 Mbyte with 256 Kbit chips. The maximum performance of the 210 
hypercube is estimated to be about 100 Mflop/s, that is to say, about the 
same as the large supercomputers (CRAY X-MP and CYBER 205).

(xi) Intel iPSC and iPSC-VX, and N-Cube
In 1985 Intel announced the iPSC hypercubes in sizes 25, 26 and 27 rated at 
2, 4 and 8 Mflop/s. Each processing node contains an Intel 80286 micro-
processor with an 80287 arithmetic coprocessor rated at 1/16 Mflop/s. This 
gives 512 Kbytes of r a m and 64 Kbytes e pr o m . The 32-node hypercube 
occupies about 2 ft x 2 ft x 4 ft and is controlled by an Intel 310 micro-
computer. Another company, N-Cube, is marketing hypercubes based on 
specially designed 32-bit v l s i nodal chips with a peak performance of 
0.3 Mflop/s and 128 Kbytes of local memory. Their first produce N-Cube/10 
can be expanded to a 10-cube of 1024 nodes.

In 1986 Intel announced the iPSC-VX in which a pipelined vector processor 
board is attached to each node, increasing the peak theoretical vector 
performance to 20 Mflop/s per node in 32-bit mode and 6.7 Mflop/s in 64-bit 
mode. However, since two boards are now required per node, the maximum 
number of nodes is reduced to 64. As there has been no accompanying 
increase in the rate of internode communication, the performance of this 
machine is likely to be determined primarily by the time spent in communication 
rather than the arithmetic (i.e. the value o f /1/2 will be very high, see §1.3.6). 
Because of this, very careful problem formulation and programming will be 
required to realise problem performances anywhere near the peak rates.

(xii) FPS T-Series
Also in 1986, Floating Point Systems announced the T-Series, or Tesseract, 
which is a hypercube theoretically expandable to 214 = 16384 nodes. However, 
the first machines delivered in 1986 to Michigan Tech University, the 
University of Grenoble and the UK SERC Daresbury Laboratory were 16- or 
32-node machines. Each node has an INMOS transputer (see §3.5.5) to 
handle communication and 1 Mbyte of dual port video dram  as memory. 
The dr am  can feed a 256-element contiguous vector of 32-bit numbers in 
parallel to one of four vector registers which themselves feed two WEITEK 
64-bit pipelined floating-point arithmetic chips for multiplication and addition 
respectively. With a 125 ns clock, the theoretical peak performance is
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16Mflop/s per node. However, this rate assumes that the vectors are 
contiguously stored in the dram  and that both the multiplier and adder are 
being used simultaneously. The INMOS transputer has the job of rearranging 
data into contiguous form, which it may do in parallel with the operation 
of the vector pipelines. However, the ratio of the time to perform an arithmetic 
operation to the time to rearrange data in the dra m  to the time to obtain 
data from a neighbouring node is 1:26:256. Again we find that communication 
between nodes is at least two orders of magnitude slower than the arithmetic, 
and the caveats applied above to the performance of the Intel iPSC, clearly 
also apply to the T-series.

( j c i i i )  Denelcor HEP— pipelined m i m d

It is interesting, and perhaps significant, that the first m im d  computer to be 
marketed commercially, the Denelcor HEP (Smith 1978), is quite dissimilar 
to any of the computers that we have described above. Rather than having 
a number of distinct instruction processing units, each with its own instruction 
stream, in HEP we find many instruction streams sharing a single pipelined 
instruction processing unit. The overall architecture of a full-size heterogeneous 
element processor (h e p ) can be described as 16 process execution modules 
(pe m s ) connected to 128 data memory modules (d m m s ) via a packet-switching 
network. Each pe m  contains 1 Mwords of program memory, 2 Kwords of 
register memory and 4 Kwords of constant memory. The creation of 
instruction streams is under program control: the machine instruction 
(or FORTRAN command) CREATE initiates a new instruction stream, and 
up to 50 user instruction streams can be created. Instructions are taken in 
turn from each stream into the top of an eight-stage instruction pipeline. 
When the pipeline is full an instruction is completed every clock period of 
100 ns, giving a maximum performance of 10 Mips per pe m , or 160 Mips for 
a complete h e p . If we assume that about five instructions are issued on average 
for every floating-point operation, these rates correspond approximately to 
2 Mflop/s per pe m , and 32 Mflop/s per HEP. Higher processing rates of 5 to 
6 Mflop/s per pe m  can be obtained if the average number of instructions per 
floating-point operation can be reduced. This is possible for certain matrix 
computations if the pe m  registers are programmed to act as vector registers 
for intermediate results. This limits the number of references to data memory 
through the switch (Sorensen 1984, Dongarra and Sorensen 1985).

The method of implementing m im d  computing within the pe m  of a HEP 
is much more flexible than that used in designs based on a fixed number of 
microcomputers. The number of instruction streams can be changed from 
one problem to the next by appropriate programming, thus the number of 
streams can be chosen to suit the problem being solved—it is no longer a
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number fixed by the hardware that may not suit the problem or algorithm 
being implemented. Each d m m  may contain up to 1M 64-bit words, giving 
a maximum capacity of 1 Gbyte for a complete system. The switch is a 
multilevel packet-switching network with a 50 ns propagation time between 
nodes. A typical time to get data to a pe m  from memory via the switch is 
2 fis. Because of its interesting architecture we have chosen the Denelcor HEP 
for detailed study in §3.4

The development of the HEP was sponsored by the US Army, and 
culminated in the delivery of a 4 pe m  x  4 d m m  system to the Ballistics Research 
Laboratories, Aberdeen, Maryland in 1982. This was especially fitting because 
BRL had also sponsored and taken delivery of ENIAC in 1946, which can 
be considered as the first m im d  computer. Single pe m /d m m  systems have been 
delivered to the University of Georgia Research Foundation (1982), 
Messerschmidt Research Munich (1983), and Los Alamos Research 
Laboratories (1983). The original HEP as described above, or HEP-1, was built 
with conservative ecl  10K technology, because it was not desired to pioneer 
a revolutionary architecture at the same time as a new technology. However, 
the HEP-2, which was announced in 1983 for delivery in 1986, was to have 
used upgraded ecl  v l s i technology with a switching time of 300 ps and 
2500 gates per chip. The clock period would have been 20 ns and there would 
have been a combined multiply-add pipeline, with a peak rate of 100 Mflop/s 
per pe m . It was to be based on the HEP-1 m im d  architecture and designed to 
have a performance ranging from 250 Mips to 12000 Mips, corresponding 
roughly to 50 Mflop/s and 2.4 Gflop/s. Regrettably, these plans did not come 
to fruition because the company went out of business in 1985 due to financial 
problems. However, the design of the HEP is so novel and interesting that we 
describe it in more detail in §3.4.4.

(xiv) CDC CyberPlus— a ring system
The CyberPlus, from Control Data, is derived from the Advanced Flexible 
Processor that was built for military applications such as the rapid analysis 
of photographs taken from aircraft. The architecture of CyberPlus is unusual 
and interesting because it is based on communication via a multiple-ring 
topology.

The CDC CyberPlus multi-parallel processor comprises from 1 to 
16 CyberPlus processors connected in a ring to a channel of a host CDC 
Cyber 170/800. It is therefore a ring network m im d  computer in our 
classification (see §1.2.6). Up to four such rings can be attached to the host. 
The CyberPlus processor itself has 256 or 512 Kwords of 64-bit memory 
(80 ns access) for floating-point data, 16 Kwords of 16-bit memory (20 ns 
access) for integers, and a program memory of 4 Kwords of 240-bit
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instructions. There are fifteen independent functional units for integer, 
boolean and read/write operations and an option of three functional units for 
floating-point add, multiply and divide/square root may be added. The 
floating-point capability is rated at 65 Mflop/s in 64-bit mode and 103 Mflop/s 
in 32-bit mode. The clock period is 20 ns and the long 240-bit instruction 
specifies the destination of the output from each functional unit at every cycle 
of the machine.

The CyberPlus processors form stations on a ring, and communication 
between processors is achieved by sending information packets to the ring. 
The packets move round the ring at the rate of one station per clock period, 
until their destination is reached. A packet may be read from and written to 
the ring by every processor every clock period. The time to communicate 
between processors therefore depends on their relative separation on the ring. 
A second ring connects the CyberPlus processors to the Cyber 170 host and 
its memory.

(xv) Bus-connected systems (ELX SI 6400, FPS 5000, Sequent Balance)
By far the most common commercial m im d  computer systems are based on 
attaching multiple computing elements (c e s ) and multiple memory modules 
to a common bus. We describe some of these below. Other computers with 
a similar architecture are the FLEX/32 (20/cabinet), the Encore Multimax 
(20) and the Culler PSC (2), where we have given the maximum number of 
ces  in parentheses.

(xvi) ELXSI  6400
The ELXSI 6400 is an example of a m im d  system in which the processors 
and memory are connected by a fast shared bus. In ELXSI (Taylor 1983) 
there may be from one to ten c pu s  and one to four I/O  processors accessing 
from one to six memory systems (4 to 192 Mbytes) via a common high-speed 
databus, known as the Gigabus. The 64-bit c pu s  deliver 4 Mips, so that the 
maximum system could potentially achieve 40 Mips. The Gigabus is 64-bits 
wide and has a cycle time of 25 ns, giving a maximum transfer rate of 
320 Mbyte/s of addresses and data. Usable data rates of 160 to 220 Mbyte/s 
are claimed. The memory cycle time is 400 ns (for two 64-bit reads and one 
write) and the floating-point multiply time is 300 ns (64-bit). Also taking 
into account the bus cycles required, the total time to complete a floating-point 
multiply on one c pu  is about 800 ns, giving a performance of 1.2 Mflop/s. 
Actually the Livermore kernels are executed at between 0.3 and 1.4 Mflop/s 
on a one-cpu system. By overlapping memory access with arithmetic, it 
appears that one memory system can support two c pu s  without interference, 
and therefore six memory systems are more than adequate to support the
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full ten-cpu system, giving a peak performance of 12 Mflop/s. An ELXSI 
6400 has been ordered by the NASA Ames Dryden Data Analysis Facility.

(.xvii) FPS-5000
The Floating Point Systems 5000 series of computers is, like ELXSI, a 
bus-connected shared-memory m im d  system (Cannon 1983). An 8 or 
12 Mflop/s control processor and up to three 18 Mflop/s XP32 arithmetic 
coprocessors are connected via a 6 Mword/s bus to a system-common 
memory of up to 1 Mword. The control processor is either an FPS AP-120B 
or FPS-100 ‘array processor’, but the XP32 is a new design, using the WEITEK 
32-bit floating-point multiplier and adder v l s i chips. The latter are eight-stage 
pipelines operating on a 167 ns clock period, giving a peak performance of 
6 Mflop/s per chip. One multiplier chip feeds its result into two adder chips 
in a manner suited to the computation of the fast Fourier transform, giving 
a peak performance of 18 Mflop/s per coprocessor, and 62 Mflop/s for the 
maximum system. Independent programs can be executed in the control 
processor and each of the coprocessors. The FPS-5000 is described in more 
detail in §2.5.10.

(xviii) Sequent Balance 8000, 21000
Designed as a superminicomputer with about six times the performance of 
a DEC VAX 11/780, the Sequent Balance is a 32-bit bus-connected 
shared-memory architecture. Up to 12 pes  (model 8000) or 24 pes  (model 
21000) and up to 28 Mbyte of shared common memory are attached to a 
52-bit wide pipelined packet bus with a sustained bandwidth of 26.7 Mbyte/s. 
There is a virtual memory address space of 16 Mbyte for each user process. 
Each pe  is an NS 32032 processor operated at 10 MHz with a floating-point 
unit, memory management unit, and 8 Kbyte of cache memory. Two pes  are 
mounted per board and connected to the bus by a custom ic chip which 
manages interprocessor communication, synchronisation and interrupts. 
First shipments of the Sequent Balance began in 1984 and by the end of 1985 
some 80 systems had been manufactured. The computer is popular as an 
economic vehicle for investigating parallel algorithms for use on shared- 
memory systems, and is used for this purpose, for example, in the Department 
of Computer Studies at Loughborough University of Technology.

(x/x) IBM / CAP and Cornell Supercomputer Center 
IBM’s love-hate relationship with large-scale scientific supercomputing, 
which has already been commented upon, took a positive turn in the early 
1980s under the leadership of Dr Enrico dementi who had been appointed 
an IBM Fellow and allowed to pursue his own interests in computational
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chemistry with IBM’s support. Finding disappointing computer facilities for 
such work in existing IBM products, Clementi conceived the idea of attaching 
as many as ten Floating Point Systems 164 computers to channels on an 
IBM host machine. The computers form a star network centred on the host, 
and there is no direct connection between the ten FPS 164 computers. 
Although the channel transfer rate is slow compared with computation, 
Clementi and his colleagues found that many scientific problems could 
be broken down into subtasks that did not need to communicate too 
frequently over the slow channels. Computing rates comparable to the 
CRAY-1 are claimed for this loosely coupled array of processors (called 
/C A P ) at very economic cost. The /CA P is described in more detail in §2.5.9.

The first /CAP system installed at IBM Kingston, and a second was 
installed in 1985/6 at the IBM European Center for Scientific and Engineering 
Computing (ECSEC), Rome, for use by European scientists. A rather similar 
facility is also being set up at Cornell University by the US National Science 
Foundation as one of four advanced scientific computing centres. This is in 
association with the Cornell Center for Theory and Simulation in Science 
and Engineering, headed by Kenneth G Wilson, the 1982 Nobel Laureate 
in Physics.

The initial configuration which uses ten FPS 164 computers to achieve 
CRAY-1-like speeds is, perhaps, not very exciting, but experience using it 
has demonstrated how to break down large problems onto this type of loosely 
coupled m im d  system. There are, however, three impending developments 
that could transform this picture. First, a high-speed bus is under development 
that will allow the FPS 164s to communicate directly with each other, without 
having to use the slow channels to the host; secondly, the FPS 164s can be 
replaced by FPS 264s with a four- to five-fold increase in speed and no 
program changes; thirdly, up to 15 FPS MAX boards can be added to each 
FPS, giving a theoretical peak computation rate of 341 Mflop/s for each 
FPS, and 3.4 Gflop/s for the complete /CAP configuration.

(xx) BBN Butterfly
This computer differs from the other m im d  systems described in this section 
in that it is a distributed-memory switched system (see §1.2.6 and figure 1.9). 
That is to say, all the memory of the system is distributed as local memory 
to the multiple c e s  which are then connected to each other by a multistage 
packet switch. However, the distributed nature of the memory is hidden from 
the programmer who may write his programs as though all the memory was 
shared by all the c e s . The only difference between accessing data in the c e ’s 
local memory or the local memory of another ce  is the time for the messages 
to pass through the switch. This is stated to be 4 ps which is a very long 
time in computer terms. The topology of the switch is a Banyan network
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(Feng 1981) which is similar to that required to bring data together in the 
log2n stages of a fast Fourier transform on n data (the so-called butterfly 
operation, see also §3.2.2 and §5.5.1). Hence the name butterfly switch.

The first model of the BBN Butterfly (1985) contained 128 ces  out of a 
design maximum of 256, each based on the Motorola 68000 with 1 Mbyte 
of local memory. Later enhancements include hardware floating-point using 
the Motorola 68020 with 68881 coprocessor, and a local memory of 4 Mbyte. 
On ce  with its memory is contained on a board. The original 128-c e  
Butterfly computer has achieved 26 Mflop/s on the multiplication of two 
400 x 400 matrices, and 3 Mflop/s on the solution of 1200 linear equations 
by Gaussian elimination.

(xxi) The INMOS Transputer
An important stage in the development of m im d  networks of computers was 
the announcement of the INMOS Transputer in 1985 (INMOS 1985). This 
is a family of v l s i components specifically designed for supporting concurrent 
operation and the associated OCCAM parallel programming language. For 
example, the T800 transputer provides, on a single 1 x 1 cm2 chip, a 32-bit 
microprocessor with a floating-point coprocessor, 4 Kbits of on-chip memory, 
and four 1-bit serial links for connection to other transputers in a network. 
A number of m im d  computer systems based on the transputer are now under 
construction, and clearly the transputer will have a significant impact on the 
development of m im d  networks. For this reason the transputer is described 
in detail in Chapter 3 (§3.5.5), and the OCCAM language in Chapter 4 
(§4.4.2).

(xxii) The WEITEK floating-point v l s i  chips
Another v l s i development which has had a significant influence on the 
implementation, and particularly the performance of m im d  computer systems 
has been the availability of off-the-shelf v l s i chips for pipelined floating-point 
arithmetic. Prior to 1984 a fast 64-bit floating-point adder requiring about 
13000 gates was implemented in medium-scale integration (m s i, with 10 to 
100 gates per chip). It needed about 2000 chips and occupied seven large 
16 inch x 22 inch boards (Charlesworth and Gustafson 1986). In mid-1984, 
however, WEITEK Inc. of Sunnyvale, California, successfully made the 
transition to very large-scale integration (vlsi , with more than 1000 gates 
per chip), and offered the capability of fast pipelined 64-bit floating-point 
arithmetic in a set of nine v ls i chips (Ware et al 1984). By mid-1985 other 
manufacturers (e.g. Analog Devices) were offering similar products. The 
WEITEK 64-bit chips include a seven-stage floating-point multiplier and a 
six-stage floating-point adder, clocked at 125 ns. The theoretical peak 
performance is therefore 16 Mflop/s from just two v ls i chips. It is therefore
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possible for any designer to obtain a theoretical peak performance of 
16 Mflop/s per ce  (or 1 Gflop/s for a 64-c e  system) by adding these 
off-the-shelf chips to every c e  of a m im d  system. Of course, the fraction of 
this theoretical peak that is actually achieved may be very small indeed unless 
adequate communication bandwidth is also provided to feed data to the 
floating-point chips, which is rarely the case. Nevertheless, the arithmetic 
potential of m im d  systems has been revolutionised by these components which 
are found at the heart of many systems (e.g. Alliant FX/8, FPS T-Series, 
FPS 5000, FPS-164/MAX).

1.1.9 Minisupercomputers (Convex C-l, SCS-40)
Sometimes called ‘affordable supercomputers’, the minisupercomputer might 
be defined as a 64-bit floating-point vector computer with 1/8 to 1/4 the 
performance of a supercomputer but at about 1/10 the price, i.e. at the price 
of a minicomputer. For example, the Convex C-l, announced in 1984, has 
a peak performance of 20 Mflop/s (64-bit) or 40 flop/s (32-bit) for a price 
of $495000 (Linback 1984). (The performance of this and other mini-
supercomputers is compared with mini- and supercomputers in table 1.1.) 
The appearance of this computer is another aspect of the computer revolution 
introduced by v l s i chips with 10000 or more gates per chip. This technology 
not only allows all the logic of a simple serial computer to be contained on 
a single chip, producing the microprocessor, it also allows all the logic of a 
sophisticated pipelined vector computer to be placed on a few hundred chips 
which in turn can be mounted on a few boards. As an extreme example, the 
ETA Corporation have shown that the logic of a two-pipe CYBER 205 can 
be placed on one 19 inch x 24 inch board using c m o s  v l s i chips containing 
20000 logic gates per chip (see §2.3.7).

(0 Convex C-l
The Convex C-l uses 8000 gates per chip and packages the machine with 
128 Mbyte of memory in a single 5-foot high 19 inch rack. A second rack 
contains a tape drive and disc storage. With a total power dissipation of
3.2 kW, fan cooling is adequate, and an office environment, as used for the 
typical minicomputer, is satisfactory. In contrast, the CRAY X-MP super-
computer uses 16-gate per chip integration, generates about 200 kW, and 
requires a separate freon refrigeration plant for cooling; hence one reason 
for the difference in costs. The relative computation speeds should be roughly 
inversely proportional to the clock periods which are 12.5 ns for the CRAY-1 
and 100 ns for the C-l, giving a ratio of eight, much as is observed.

The performance on a real problem can be judged and set in context by 
the LINPACK benchmark (Dongarra 1986) in which a set of 300 linear 
equations is solved in FORTRAN using matrix-vector techniques (see
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table 1.1). The relative performances are 66 Mflop/s for the CRAY-1S, 
8.7 Mflop/s for the Convex C-l and 0.1 Mflop/s for the DEC VAX 11/780 
with floating-point accelerator (a much used and typical 1984 minicomputer). 
Hand optimisation of critical coding improves the performance of the C-l 
to 14 Mflop/s. On the other hand a 1984 supercomputer, the CRAY X-MP/4

Table 1.1 Some benchmark comparisons between minisupercomputers. The average 
performance is given in Mflop/s for the stated problem in 64-bit floating-point 
arithmetic (except where stated). Comparable figures for top-of-the-range super-
computers are given in table 2.7. (Data from Dongarra 1985, Dongarra and Sorensen 
1985, 1987.)

M IN I M I N I S U P E R S U P E R

V A X b A llia n t C o n v e x S C S C R A Y d
P r o b lem  1 1 /7 8 0  F P A F X /( p ) d C - l 4 0 X - M P /( p )

T h e o re tica l 5 . 9 ( 1 ) 20 4 4 2 1 0 ( 1 )
p eak 4 7 ( 8 ) 4 0  (3 2 -b it ) 4 2 0  (2 )
p er fo rm a n ce 8 4 0  (4 )

(''oo, « 1/2 ) (0 .9 . 151) (1 ) ( 7 0 , 5 3 ) ( l ) f
F O R T R A N  §1 .3 .3 (1 .1 , 2 3 )  (8 ) (1 3 0 , 5 7 0 0 ) ( 2 ) r

L iv erm o re  3 9 6 ( 1 )
in n er  p ro d u ct

L iv erm o re  6 8 ( 1 )
tr id ia g o n a l

L iv erm o re  14 7 ( 1 )
p a r tic le  p u sh er

L IN P A C K ® 1 .3 ( 1 ) 2.9 7.3 2 4 ( 1 )
F O R T R A N 2.5  (8 )
n  =  100 6 .2  (8 ) ‘

A ssem b ler 1 .7 ( 1 ) 3.2 4 4 ( 1 )
in n e r -lo o p 2 .6  (8 )

n  =  100 8.5 (8 ) '

M a tr ix -v e c to r 171 (1 )
b est a sse m b ler  0 .1 1 c 7.3 (8 ) c 8 .7 C 2 5 7  (2 )
n  =  3 0 0 1 4 ( 8 ) 14 26 4 8 0  (4 )

Notes
a Solution of n linear equations (Dongarra et al 1979). 
b Typical 1984 32-bit minicomputer for comparison. 
c All FORTRAN.
d Number of c e s  or c p u s  used in parentheses. 
c FORTRAN with compiler directives. f Hockney (1985a)
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using all the four c pu s , can achieve 480 Mflop/s on this problem. The 
significance of the development of minisupercomputers is thus that engineering 
firms currently doing technical calculations on a VAX 11/780 or similar 
minicomputer can enhance their calculational capability probably by about 
two orders of magnitude by installing a minisupercomputer, without 
significantly increasing their costs. This means that complex engineering 
simulations, previously confined to costly specialist supercomputer centres, 
can now for the first time be performed in-house. Furthermore, the quality 
of the arithmetic is improved from 32-bit for a VAX to 64-bit on a 
minisupercomputer. However, although the 1984 Convex C-l can justifiably 
claim to have between 1/8 and 1/4 of the performance of a 1976 
supercomputer (the CRAY-1) the benchmark results also show that it has 
only 1 /50 of the performance of a 1984 supercomputer (the CRAY X-MP/4) 
on the LINPACK benchmark.

The architecture of the Convex C-l is broadly similar to the CRAY-1 in 
that it is based on a set of functional units working from vector registers. 
However, the detailed architecture is quite different; the machine does not 
use the CRAY instruction set. Unlike the CRAY-1, the C-l instruction set 
allows addressing to an individual byte, and the 32-bit address (compare 
24-bit on the CRAY-1) can directly address a virtual memory space of 
4 Gbyte, or 500 Mword (64-bit). There are three functional units (for 
load/store/vector edit, add/logical and multiply/divide), and eight vector 
registers holding 128 64-bit elements each. Each functional unit comprises 
two identical pipes, one for odd and the other for even elements. Each pipe 
performs a 64-bit operation every 200 ns or a 32-bit operation every clock 
period of 100 ns. This leads to an effective processing rate of one 64-bit result 
every 100 ns, or one 32-bit result every 50 ns. Since only two of the pipes 
perform floating-point arithmetic, this corresponds to a peak performance 
of 20 Mflop/s in 64-bit mode or 40 Mflop/s in 32-bit mode. The vector 
registers are supplied with data from either a 64 Kbyte, 50 ns cache memory, 
or directly from a 16 Mword, 16-bank dynamic r am  main memory. The 
bandwidth for transfers of 64-bit data words from main memory to the cache 
is 10 Mword/s, compared to 80 Mword/s on the CRAY-1 and 315 Mword/s 
on the CRAY X-MP.

(ii) SCS-40
The second minisupercomputer to be announced was the Scientific Computer 
Systems SCS-40 which appeared in 1986. Like the Convex C-l, the 
manufacturers claim that the SCS-40 delivers 25 % of the performance of the 
CRAY X-MP/1 at 15% of the cost. However, unlike the C-l, this machine 
uses the CRAY instruction set, and CRAY programs should run without 
alteration. The physical architecture comprises 16 main memory banks
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(4 Mwords maximum configuration) connected via multiple buses and a vector 
crossbar switch to eight 64-element vector registers. These in turn are 
connected by multiple buses to a set of pipelined functional units, corresponding 
to those of the CRAY series. Each functional unit has a maximum 
performance of one result per clock period of 45 ns, giving a peak performance 
of 44 Mflop/s if the floating-point add and multiply pipelines are working 
simultaneously.

The bus cycle time is 22.5 ns, allowing a single physical bus to move two 
64-bit words in the machine clock period, and thereby act as two logical 
buses. Four such logical buses are provided between main memory and the 
vector registers, giving a bandwidth of 4 words per clock period of 
89 Mword/s (compare 10 Mword/s on the C-l). The six logical buses 
provided between the vector registers and the functional units allow two 
vector dyadic operations to be performed simultaneously. In order to provide 
these speeds of operation the machine logic is engineered from ms i and l s i 
integrated circuits using e c l  logic, in contrast to the slower v l s i cm o s  logic 
used in the Convex C-l (clock period 100 ns). The speed difference is evident 
in the LINPACK benchmark for matrices of order 100, when the SCS-40 
reaches 7.3 Mflop/s and the Convex C-l 2.9 Mflop/s; a ratio almost exactly 
that between the clock periods of the machines. Recoding of the LINPACK 
benchmark in terms of matrix-vector, rather than vector-vector operations, 
improves the performance to 26 Mflop/s for a matrix of order 300.

(iii) Alliant FX/ 8
The Alliant FX/8 is the only minisupercomputer described here which is 
based on a mimd  architecture. That is to say that there are eight computational 
elements (c es ) sharing a common memory. Each c e  is a vector computer 
with eight vector registers holding 32 64-bit words each, and separate 
pipelined functional units for floating-point addition, multiplication and 
division. With a cycle time of 170 ns each c e  has a peak vector performance 
of 11.8 Mflop/s (32-bit) or 5.9 Mflop/s (64-bit), and an eight-CE machine has 
therefore a theoretical peak performance of 94 Mflop/s (32-bit) or 47 Mflop/s 
(64-bit). The c e s  are connected via a crossbar switch to two 64 Kbyte caches 
with a bandwidth of 376 Mbyte/s. The caches in turn access the shared 
memory via a 188 Mbyte/s memory bus. The shared memory is expandable 
to 64 Mbyte in 8 Mbyte modules, each divided into four banks. The 
benchmark performance of the Alliant FX/8 is compared with the other 
minisupercomputers in table 1.1. The performance is seen to be very similar 
to that of the Convex C-l, and less than that of the SCS-40.

The machine also contains a ‘concurrency bus’ that is directly connected 
to all the c e s . This is used to synchronise the c e s  with the minimum amount
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of overhead. Each c e  has a concurrency control unit (ecu) which is its interface 
to the concurrency bus. The ecus distribute the work among the c e s  at 
run-time, and synchronise the calculation by hardware. In this way, for 
example, data dependencies between different instantiations of a DO loop 
are maintained correctly by hardware without any intervention from the 
programmer, even though different loop indices are assigned different ce s . 
The Alliant FX/8 is to be used as the eight-PE cluster in the Illinois Cedar 
project that has already been described (§1.1.8). It is also sold separately, for 
example, as an Apollo DOMAIN workstation. First deliveries were made in 
1985. A one-CE model is marketed as the Alliant FX/1. This has a 32 Kbyte 
cache and one or two 8 Mbyte memory modules.

1.2 CLASSIFICATION OF DESIGNS

We have seen during our discussion of the history of parallelism that a wide 
variety of different parallel architectures have been proposed, and a fair 
number have been realised, at least in experimental form. Attempts to bring 
some order into this picture by classifying the designs have not however met 
with any general success, and there is (cl987) no useful and accepted 
classification scheme or accompanying notation. We will however present 
the taxonomy of Flynn (1972) in §1.2.2 and that of Shore (1973) in §1.2.3 
since both of these have been discussed quite widely and some of the associated 
terminology has become part of the language of computer science. The 
problem with these classifications is that several well established architectures, 
particularly the highly successful pipelined computer, do not fit into them at 
all clearly, and others such as the ICL DAP may fit equally well into several 
different groups. An alternative approach is to focus attention on the principal 
ways in which parallelism appears in the architecture of actual computers, 
namely: pipelining, processor replication and functional parallelism. These 
divisions themselves, springing as they do from the engineering reality, form 
the basis of a taxonomy that is easier to apply than the more theoretical 
concepts of Flynn and Shore.

The first stage in the development of any successful classification is, 
however, the ability to describe reasonably accurately and concisely the 
essential features of a particular architecture, and this requires a suitable 
notation. We give therefore in §1.2.4 such a notation that enables an 
architecture to be described within one line of text. It plays much the same 
role in discussing computer architecture as the chemical formulae of large 
molecules do in chemistry. This notation is then used in §1.2.5 to give a 
structural classification of the serial and parallel computers that are discussed 
in this book.
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1.2.1 Levels of parallelism
History shows that parallelism has been used to improve the effectiveness of 
computers since the earliest designs, and that it has been applied at several 
distinct levels which might be classified as:

(1) Job level
(i) between jobs;
(ii) between phases of a job;

(2) Program level
(i) between parts of a program;
(ii) within DO loops;

(3) Instruction level
(i) between phases of instruction execution;

(4) Arithmetic and bit level
(i) between elements of a vector operation;
(ii) within arithmetic logic circuits

At the highest level the objective of a computer installation is to maximise 
the rate of processing of jobs. In the simplest analysis each job may be 
considered as being divided into several sequential phases, each of which 
requires a different system program and system resources. The typical phases 
might be: input FORTRAN source code from a disc or tape; compile 
FORTRAN into object code; link object code with various library sub-
routines; execute the resulting module; print output files. Any I/O  operation 
is very slow compared with program execution, hence any large computer 
installation provides several I/O  channels or peripheral processors which 
can perform I/O  in parallel with program execution, and provides a battery 
of disc and tape drives. Most installations have a single processor for program 
execution, but some contain two or more processors. It is the purpose of the 
operating system, which is the name given to the computer program that 
controls the flow of work through the computer, to organise the sharing of 
the system resources between the different jobs. Usually several programs 
(e.g. 5-10) reside in the fast memory of the computer, and in the case of a 
single processor only one will be in execution. As soon as this program 
requires a slow I/O  facility, for example a read from disc, this operation is 
initiated in the channel and another program put into execution. The first 
program waits until the data are available and control passes back to it when 
the other programs are similarly obliged to wait. In this way the I/O  of one 
job is overlapped with the execution of another, in a dynamic manner 
according to the needs of the jobs that happen to be sharing the computer 
at a particular time.

Such operating systems, because they do not know the internal logical
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inter-relations of the programs being executed, must assume that the different 
phases of one job have to be executed in sequence and that any I/O  statement 
in the program must be completed before the next statement is executed. In 
some circumstances a programmer can maintain control over his I/O  
operations and arrange to read his data in blocks from backing store. In this 
case he may apply buffering in order to overlap the I/O  in his program with 
the execution of his program. In three-stage buffering, for example, two 
channels are used and three blocks of data are present in the store. 
Simultaneously a new block is read into buffer 1 via the input channel, new 
values are calculated by the processor from the block of data in buffer 2, and 
the last block of values calculated are being written from buffer 3 via the 
output channel. The calculation proceeds by cyclically changing the roles of 
the buffers.

We can see from the above that the main requirement of computer 
architecture in allowing parallelism at the job level is to provide a correctly 
balanced set of replicated resources, which comes under the general classification 
of functional parallelism applied overall to the computer installation. In this 
respect it is important for the level of activity to be monitored well in all 
parts of the installation, so that bottlenecks can be identified, and resources 
added (or removed) as circumstances demand.

We next consider the types of parallelism that arise during the execution 
of a program that constitutes one of the job phases considered above. Within 
such a program there may be sections of code that are quite independent of 
each other and could be executed in parallel on different processors in a 
multiprocessor environment (for example a set of linked microprocessors). 
Some sections of independent code can be recognised from a logical analysis 
of the source code, but others will be data-dependent and therefore not known 
until the program is executed. In another case, different executions of a loop 
may be independent of each other, even though different routes are taken 
through the conditional statements contained in the loop. In this case, each 
microprocessor can be given the full code, and as many passes through the 
loop can be performed in parallel as there are microprocessors. This situation 
arises in Monte-Carlo scattering calculations for non-interacting particles, 
and has important applications in nuclear engineering. The programming 
problems associated with such linked microprocessors are an active area of 
current research, and many such systems have become operational in the 
1980s (see §§1.1.8 and 1.2.6).

All manufacturers of computers designed for efficient operations on vectors 
of numbers (Burroughs, Texas Instruments and CRAY) have produced 
FORTRAN compilers that recognise when a DO loop can be replaced by 
one or several vector instructions. This is the recognition by software that a
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particular DO loop is just the scalar representation of a set of vector 
operations, and can therefore be executed much more effectively by machine 
instructions that are especially engineered to perform such operations 
efficiently. The architectural features used are then either the pipelined 
arithmetic units in the case of pipelined vector computers (e.g. CYBER 205 
and CRAY-1) or the replicated processing elements in the case of the processor 
array (e.g. ICL DAP and BSP).

At a lower level still, we have already noted that the processing of any 
instruction may be divided into several suboperations, and that pipelining 
may be used to overlap the different suboperations on different instructions. 
Such pipelining is widely used on all fast scalar processors (e.g. ICL 2900, 
AMDAHL 470V/6) and on some processor arrays (e.g. BSP). Part of the 
processing of an instruction is the performance of the arithmetic and this 
itself may be divided into suboperations and pipelined (see §1.3.1), and 
therefore represents a lower-level example of parallelism.

At the lowest level, we have the choice in the arithmetic logic itself, whether 
to perform this arithmetic in a bit-serial fashion, or on all the bits of a number 
in parallel. Intermediate possibilities exist: for example, performing the logic 
on all bits of a bytef in parallel, but taking the bytes of the number 
sequentially. Such issues of parallelism, at the arithmetic and bit level, were 
an active area of development in the first-generation computers of the 1950s. 
After bit-parallel arithmetic in floating-point became the standard in about 
1955, the existence of parallelism at this lowest level was largely forgotten. 
However, the advent in the late 1970s of the microprocessor, which may be 
regarded as a first-generation computer on one or a few chips, has again 
made these issues important. Furthermore the desire to produce cost-effective 
large arrays of processing elements, has seen a return to bit-serial arithmetic 
in some large computers such as the STAR AN and ICL DAP.

1.2.2 Flynn’s taxonomy
Flynn does not base his macroscopic classification of parallel architecture 
on the structure of the machines, but rather on how the machine relates its 
instructions to the data being processed. A stream is defined as a sequence 
of items (instructions or data) as executed or operated on by a processor. 
Four broad classifications emerge, according to whether the instruction or 
data streams are single or multiple:

(1) s i s d — single instruction stream/single data stream. This is the 
conventional serial von Neumann computer in which there is one stream of

f l  b y te  is  a  s e q u e n c e  o f  8 b in a r y  d ig its  (b it s ) .
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instructions (and therefore, in practice, only one instruction processing unit) 
and each arithmetic instruction initiates one arithmetic operation, leading to 
a single data stream of logically related arguments and results. It is irrelevant 
whether pipelining is used to speed up the processing of instructions or the 
arithmetic. It is what we have previously called a serial scalar computer. 
Examples are: CDC 6600 (unpipelined); CDC 7600 (pipelined arithmetic); 
AMDAHL 470V/6 (pipelined instruction processing).

(2) s i m d — single instruction stream/multiple data stream. This is a 
computer that retains a single stream of instructions but has vector 
instructions that initiate many operations. Each element of the vector is 
regarded as a member of a separate data stream hence, excepting the 
degenerate case of vectors of length one, there are multiple data streams. 
This classification therefore includes all machines with vector instructions. 
Again it is irrelevant whether the capability of vector processing is realised 
by pipelining or by building arrays of processors. Examples: CRAY-1 
(pipelined vector computer); ILLIAC IV (processor array); ICL DAP 
(processor array); OMEN-64 (processor array).

(3) m i s d — multiple instruction stream/single data stream. This class seems 
to be void because it implies that several instructions are operating on a data 
item simultaneously. However Flynn ( 1972) states that it includes specialised 
streaming organisations using multiple instruction streams on a single 
sequence of data. However no examples are given.

(4) m i m d — multiple instruction stream/multiple data stream. Multiple 
instruction streams imply the existence of several instruction processing units 
and therefore necessarily several data streams. This class therefore includes 
all forms of multiprocessor configurations, from linked main-frame computers 
to large arrays of microprocessors.

From our point of view, the problem with the above classification scheme is 
that it is too broad: since it lumps all parallel computers except the 
multiprocessor into the si md  class and draws no distinction between the 
pipelined computer and the processor array which have entirely different 
computer architectures. This is because it is, in effect, a classification by broad 
function (whether or not explicit vector instructions are provided) rather 
than a classification of the design (i.e. architecture). It is rather like classifying 
all churches in one group because they are places of worship. This is certainly 
a valid broad grouping, and distinguishes churches from houses, but is not 
very useful to the architect who wishes to distinguish between the different 
styles of church architecture by the shape and decoration of their arches and
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windows. In this book we are, like the architect, interested in studying the 
details of the organisation, and therefore need a finer classification.

1.2.3 Shore’s taxonomy
Unlike Flynn, Shore (1973) based his classification on how the computer is 
organised from its constituent parts. Six different types of machine were 
recognised and distinguished by a numerical designator (see figure 1.3).

Machine /. The conventional von Neuman architecture with a single control 
unit (cu), processing unit ( p u ), instruction memory ( i m ) and data memory 
(d m ). A single d m  read produces all bits of any word for processing in parallel 
by the p u . The pu  may contain multiple functional units which may or may 
not be pipelined; hence this group includes both the pipelined scalar computer 
(e.g. CDC 7600) and the pipelined vector computer (e.g. CRAY-1), whose 
similarity in architecture has already been noted.

Machine II. This is the same as machine I except that a d m  read fetches a 
bit slice from all words in memory instead of all bits of one word; and the 
pu  is organised to perform its operations in a bit-serial fashion. If the memory

FIGURE 1.3 Schematic representation of the six machine classes defined 
by Shore (1973). Machine I, word-serial, bit-parallel; II, word-parallel, bit- 
serial; III ( =  I -h II), orthogonal computer; IV, unconnected array; V, 
connected array; VI, logic-in-memory array.
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is regarded as a two-dimensional array of bits with one word stored per row, 
machine II reads a vertical slice of bits, whereas machine I reads a horizontal 
slice. Examples are the ICL DAP and STAR AN.

Machine III. This is a combination of machines I and II. It comprises a 
two-dimensional memory from which may be read either words or bit slices, 
a horizontal pu  to process words and a vertical pu  to process bit slices; in 
short it is the orthogonal computer of Shooman (1970). Both the ICL DAP 
and STARAN may be programmed to provide the facilities of machine III, 
but since they do not have separate pu s  for words and bit slices they are not 
in this class. The Sanders Associates OMEN-60 series of computers is an 
implementation of machine III exactly as defined (Higbie 1972).

Machine IV. This machine is obtained by replicating the pu  and dm  of 
machine I (defined as a processing element, pe ) and issuing instructions to 
this ensemble of pe s  from a single control unit. There is no communication 
between the pe s  except through the control unit. A well known example is 
the PEPE machine. The absence of connections between the pe s  limits the 
applicability of the machine, but makes the addition of further pe s  relatively 
straightforward.

Machine V. This is machine IV with the added facility that the pe s  are arranged 
in a line and nearest-neighbour connections are provided. This means that 
any pe  can address words in its own memory and that of its immediate 
neighbours. Examples are the ILLIAC IV, which also provides short-cut 
communication between every eight pes .

Machine VI. Machines I to V all maintain the concept of separate data 
memory and processing units, with some databus or switching element 
between them, although some implementations of one-bit machine II 
processors (e.g. ICL DAP) include the pu  and dm  one the same ic board. 
Machine VI, called a logic-in-memory array ( lima ), is the alternative 
approach of distributing the processor logic throughout the memory. 
Examples range from simple associative memories to complex associative 
processors.

Forgetting for the moment the awkward case of the pipelined vector 
computer, we can see that Shore’s machines II to V are useful subdivisions 
of Flynn’s simd  class, and that machine I corresponds to the si sd  class. Again 
the pipelined vector computer, which clearly needs a category of its own, is 
not satisfactorily covered by the classification, since we find it in the same 
grouping as unpipelined scalar computers with no internal parallelism above 
the requirement to perform arithmetic in a bit-parallel fashion. We also find



60 INTRODUCTION

it unsatisfactory that the machine classes are designated by numbers that 
have no mnemonic or ordinal significance, in much the same way that one 
would not find it helpful for a zoologist to describe the reptiles as animal 
class VI.

1.2.4 An algebraic-style structural notation ( a s n )

The first step in the creation of a classification scheme is the definition of a 
suitable notation. In order to differentiate between the computers described 
in this book, it should be more detailed than that of Flynn or Shore, and 
take explicit account of the successful pipelined designs. The notation is 
structural and based on a shorthand indicating the number of instruction, 
execution and memory units, and the manner of their interconnection and 
control. In this respect it is rather similar to a chemical formula, but the 
description of a computer is more complex: for example, in chemistry there 
is only one type of carbon atom,f whereas in a computer we must distinguish 
between many types of execution unit (integer, floating-point, pipelined, 
bit-serial, etc). An exact mathematical definition of the syntax of the notation 
is given in Backus Naur form (b n f ) in Appendix 1. We give below a tutorial 
exposition with examples, and describe the semantics of the notation.

The notation regards a computer as a number of functional units that 
manipulate data, connected by data paths and operating under the control 
of instruction units. The simplest example of a von Neumann serial computer 
in the structural notation is

which defines the computer C to be a single instruction processing unit I 
controlling the units in the brackets. These are a single execution unit E for 
performing arithmetic, connected by a single data path (the dash or so-called 
von Neumann bottleneck) to a single or unbanked memory unit M.

One can see from the above example that our notation is similar in intent 
to the pm s  (processor-memory-switch) level notation of Bell and Newell 
(1971); however it differs in some important ways that make it more suitable 
for our purpose. Our primary objective has been to allow concise one-line 
or few-line descriptions of the overall architecture in an algebraic style that 
lends itself to printing, typing and input to computer programs. In particular 
we desire a neat notation for arrays of processors of variable dimension and 
size, and are most interested in the number and type of data-manipulating 
units and how they are controlled.

t  Note that the three naturally occurring isotopes of carbon all have the same electronic 
structure and therefore the same chemistry.
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The detailed description of our structural notation is treated under the 
headings:

A The units (rules 1-10)—define the symbols used to represent units and 
to combine them into groups.

B Connections between units (rules 11-16)—define the notation for data 
paths and the manner of describing complex networks.

C Comments (rule 17)—allows additional information to be included in 
a flexible and open-ended way.

D Control of units (rules 18-20)—define the different types of control that 
make a collection of units into a computer.

E Examples—show how different computers may be described.

A The units
(1) Symbols—the following is an alphabetical list of the symbols which 
designate the different types of units comprising a computer or processor:

B An integer, fixed-point or boolean execution unit.
C A computer which is any combination of units including

at least one I unit.
Ch An I/O  channel which may send data to or from an I/O  

device interface and memory, independently of the other 
units.

D An I/O  device, e.g. card reader, disc, v d u . The nature of 
the device is given as a comment in parentheses.

E An execution unit which manipulates data. That is to say 
it performs the arithmetic, logical and bit-manipulation 
functions on the data streams. It is subdivided into F and 
B units and often called an a l u  or arithmetic and logical 
unit.

F A floating-point execution unit.
H A data highway or switching unit. Transfers data without 

change, other than possibly reordering the data items (e.g. the 
FLIP network of STARAN).

I An instruction unit which decodes instructions and sends 
(or issues) commands to execution units where the instructions 
are carried out. Often called an ipu  or instruction processing 
unit.

IO An I/O  device interface which collects data from a device 
and loads it to a local register or vice versa.

M A one-dimensional memory unit where data and instructions
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are stored, e.g. registers, buffer memory, main memory, 
disc.

O A two-dimensional or orthogonal memory.
P A processor which is defined as any collection of units 

including an E unit but not including an I unit.
S A switching unit which interconnects other units, such as 

a multistage omega switch. In most cases a switch would 
perform no computation on the user’s data.

U An unspecified unit. A symbol to be used when none of 
the above categories applies. The nature of the unit is 
specified by a comment in parentheses following the symbol. 
Examples might be various intermediate control units within 
a complex system.

(2 ) Pipelining is indicated by a lower case p following the symbol for the 
unit, or a structure enclosed in braces. This means that some or all of the 
operations or suboperations performed by the unit or structure are overlapped 
in time, e.g.

Ip a pipelined instruction unit,
Ep a pipelined execution unit,
{ E < - - , - - > M } p  a structure in which the operations of

memory read and memory write are 
overlapped.

(3) Vector instructions, if provided in the instruction set, may be indicated 
by a final lower case v in the symbol for an I unit. In the case of processor 
arrays, in which all instructions are operations on vectors, the symbol is 
understood and therefore omitted, e.g.

Ipv a pipelined instruction unit with vector instructions,
Iv an instruction unit with vector instructions that is not 

pipelined.

(4) Different units of the same kind can be distinguished by a final integer, 
for example:

Epl pipelined execution unit number 1,
Ep3 pipelined execution unit number 3.

(5) Substitution is encouraged, in order to promote clarity through a 
hierarchical notation. For example, the different types defined under rule (4) 
are to be defined in subsequent equations, separated by semicolons, e.g.

I[E l, E2]; E l=  ; E2 =
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(6) Multiple units—the number of units of the same kind that can operate 
simultaneously is indicated by an initial integer. Note particularly that a unit, 
however multipurpose and complex, is not counted more than once unless 
it can perform more than one operation at a time, e.g.

E a single multifunction execution unit for multiplication, 
addition, logical etc, performing only one operation at a 
time, as in the IBM 7090,

10E 10 independent function units for multiplication, addition,
logical etc, that may operate simultaneously, as in the CDC 
6600.

(7) Replication—a bar over a symbol, or over a structure delimited by braces
{ }, is used to indicate that all the units in a group are identical, e.g.

64P = 64{E— M } 64 identical processing elements, as in the
ILLIAC IV.

(8) Groups of units may be defined by enclosing the units in braces { }. If
the units are separated by commas (the concurrent separator) they may 
operate simultaneously and therefore in parallel. If the units are separated 
by a slash (the sequential separator) the units may operate only one at a 
time, that is to say sequentially or serially, e.g.

{4Fp, 2B} four floating-point arithmetic pipelines and two 
unpipelined integer units that may operate simul-
taneously,

{E1/E2/E3} three execution units that may operate only one at 
a time.

Only one type of separator applies within any set of braces; however 
a multiple unit still implies simultaneous operation, e.g.

{3F1/B1} three floating-point units that may
operate simultaneously amongst them-
selves but sequentially with a fixed- 
point unit,

3F1 = (F( + ), F(*), F( -r-)} the floating-point units are an adder,
multiplier and divider that operate 
concurrently,

B1 = {B( + )/B(shift)} the fixed-point unit has an adder
and shifter that operate one at a 
time.

In the above the symbols in parentheses are comments (see rule (17)).
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(9) The number of bits that are operated on in parallel by the unit is 
indicated by a subscript, e.g.

I16 a 16-bit instruction unit,
E64 a 64-bit execution unit.

Multiple instruction streams processed by a single I-unit, as in the Denelcor 
HEP, can be indicated by a multiplier showing the possible number 
of streams, e.g.

IP50*64 the instruction processing unit within a pe m  of the 
Denelcor HEP, which processes 50 64-bit user instruction 
streams in a pipelined fashion.

If the multiplier is omitted, one stream is implied. The following notation is 
used for memory units. Note that each section of memory that operates 
independently (i.e. each memory bank) is treated as a separate memory unit. 
An asterisk is used for ‘times’ or multiply, e.g.

nMwmb a one-dimensional memory divided into n banks; each 
bank contains w words of b bits and when accessed 
delivers b bits in parallel,

M 1K,32 a one-dimensional memory circuit with 1024 32-bit 
words,

8 M6 4 .6 4  the eight vector registers of the CRAY-1, each holding 
64 64-bit numbers,

Oh,,6 a two-dimensional orthogonal memory of w words of b 
bits, that delivers either a word slice of b bits or a bit 
slice of w bits.

(10) The characteristic time associated with the operation of a unit is 
indicated by a superscript. The unit of measurement is nanoseconds unless 
otherwise stated in supporting text or as a comment in parentheses; e.g.

I40 instruction unit with clock period of 40 ns,
E200 execution unit with average operation time of 200 ns,
M650 memory unit with access time of 650 ns.

B Connections between units
(11) Databus connections between two units are indicated by the following 
connectors:

a connection of unspecified type,
< -  a simplex connection to the left,
-  > a simplex connection to the right,
< -  > a full duplex connection,
< - / -  > a half duplex connection.
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A simplex connection can transfer data only in the direction shown. A full 
duplex connection may transfer data in both directions at the same time. 
A half duplex connection may transfer data in either direction, but not both 
at the same time. Using the concurrent and sequential separators we have:

< -  > an abbreviation for { < - , -  > },
< - / -  > an abbreviation for { < - / -  > }.

In the above the dash may be replicated (or printed as a line of arbitrary 
length) in order to improve the appearance of a structural description, e.g.

Thus a multiple dash in the notation is semantically and logically equivalent 
to a single dash. Arrows may be typed using ‘less than’ < and ‘greater than’ 
> symbols. Note the use of the semicolon (as in ALGOL60) as a separator 
between structural expressions. The width of the databus in bits may be 
written below the connector in the format ‘number of data bits’ + (optionally) 
‘number of address bits’. Thus:

64 +°i6 a databus transferring 64 data bits and 16 address bits every 
100 ns

~s> a simplex connection to the right which is 8 data bits wide.

Multiple data buses can be described with a multiplier and an asterisk (*) 
as in FORTRAN. Braces are used for algebraic grouping because parentheses 
are reserved for comments, e.g.

< > four identical full duplex databuses, each with
4*{64 +  16 } ,  . - . . , 4 ,64 data bits and 16 address bits.

A complex data path or switch can be identified by a highway identifier and 
explained in a subsequent definition, e.g.

The right-hand side of such a definition should contain only data paths.

(12) Series connections—a chain of units linked by databuses such as 
E—Ml — M2—M3 describes a set of units that are connected logically in 
series, in the sense of an electrical circuit.

(13) Parallel connections, in the logical sense of a parallel connection in an 
electrical circuit, can be described using the concurrent (,) or sequential (/) 
separators between units (or descriptions of the parallel paths) and enclosing 
the list in braces { }. Greater flexibility is obtained by introducing the
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no-connection sym bol (|). A unit may be connected outside the braces as 
follows:

U connection outside brace unspecified,
—U| connection outside brace to left, no connection to right,
|U — connection outside brace to right, no connection to left,
— U — connection outside brace to left and right.

The no-connection symbol may be omitted if no ambiguity arises: for example 
if there is nowhere the connection could be made in any case, e.g.

— {U 1, U2, U3} a group of units that may
operate concurrently, con-
nected in an unspecified way 
to the databus on the left,

— {U1/U2/U3} — a group of units working one
at a time with unspecified 
connections to the databuses 
on the left and right,

— {— U 1 —, — U2 —, — U3 — } — three concurrently operating
parallel paths which would 
be drawn:

—  U1 —

-----------------U2-----------------

—  U3 —
— {— U1—, |U2—, — U3— }— as above but U2 is not con-

nected to the left, thus:
—  U1 —

------------  U2-----------------

U3 —
— {— U 1 —/ — U2—/ U3 — } — three parallel alternative paths,

working one at a time. Since 
this is a distinction in time it 
cannot be drawn differently 
from the third example above.

In order to illustrate the use of descriptions of paths instead of simple units, 
and the nesting of such parallel connections, consider the complex of 
connections
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They may be needed to specify long connections or structures that cannot 
be represented in the manner of the last paragraph. For example, the structure

showing three computers Cl, C2, C3 connected to five memory banks 
Ml, M2, M3, M4, M5 is most clearly expressed by

where connection points a, b and c have been defined as shown on the 
memory banks. We note the use of a list of connection points in braces in 
the case of multiple connections. Since any connection can be included in 
this manner, connection points provide the facility of describing an arbitrary 
network of units.

( 15 ) Arrays of processors are for the most part arranged in multi-
dimensional rectangular or square arrays. It is natural therefore to express 
such an arrangement in the multiplier preceding the description of the

which can be expressed as

where the arrowed paths are unidirectional and alternative paths.

(14) Connection points are specified by lower case letters within or at the 
end of connectors, e.g.
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processor. We use the asterisk for multiplication (as in FORTRAN) and 
powers as appropriate, e.g.

128*64P an 8192 array of identical processors arranged as a 
128 times 64 array,

642P a 64 x 64 array of processors,
24{2C} a four-dimensional binary hypercube with 16 nodes. 

Each node has two computers.

The extent of connectivity between the processors may be given as a 
superscript to braces { } or brackets [ ] in the form ‘c-nn\ This means
that the processors may transfer data directly to or from processors out to 
and including their cth nearest neighbour. If c is zero there is no direct 
connection. For example:

288 {3E— M }°"nn PEPE with 288 unconnected processors, each
with three execution units and memory, 

C[642P ] l nn the ICL DAP with 1st nearest-neighbour
connections to four processors,

the CLIP image processing computer (Duff 
1978) that has connections to 2nd nearest 
neighbours. That is to say to the eight 
neighbours:

\ i /VN
Other more complex connection patterns may be specified as comments 
between parentheses.

(16) Cross connections (such as crossbar and other switching networks) 
between multiple execution and memory units are indicated by a cross. The 
details of the connection network must be explained in separate text. Transfer 
times and bit widths may be added as above. For example:

Ip[16F x 17M] the BSP with 16 floating-point execution units 
cross-connected to 17 memory banks.

The cross symbol may be replicated to improve legibility, and thus multiple 
crosses are logically and semantically identical to a single cross. The exact
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action of a switch can be defined by including the switching function as a 
comment between parentheses (see rule (17) below). For example:

represents the exchange permutation considered in §3.3.2 and shown in 
figure 3.9. In the above expression I f  J is the integer floor function of f  and 
|x |2* means that the argument x is taken modulo 2k (see §3.3). Alternatively, 
substitution may be used to achieve greater clarity, e.g.

n E x H 3 x m M ;  H3 = H(|x|2* +1).

A switch may also be specified by using the unit symbol S. This is useful 
when the switch connection is one-sided: for example when a number of 
identical units are connected by a switch in a mim d  system, or when the 
switch is a major unit of the system which should be emphasised. For example

C(Cedar cluster) = 8C x S (local omega switch).

C Comments
The notation is open-ended to the extent that comments may be added 
throughout to clarify the meaning of a unit or connection.

(17) Comments are enclosed in parentheses ( ) and contain additional
optional information about the immediately preceding symbol. The information 
may have any syntax, e.g.

M l10(bipolar)— M2400(m o s )— M3(lms)(dise) a memory hierarchy, 
Fp(*, ecl ) a pipelined floating-point multiplier in e c l

technology,
Ip(4 segs)[ ] a four-segment instruction pipeline.

Note the use of a comment as a superscript in order to allow nonstandard 
time units. The unspecified unit symbol (U) allows any unit to be defined, e.g.

U(2803) an IBM 2803 control unit.

In the case of data connections the parentheses are inserted between a pair 
of dashes or crosses, e.g.

E—(half mile coaxial line)— M; E x (Banyan network) x M.

The following symbols are used: bit is denoted by (b) and byte (B), with the 
usual si unit prefixes and the convention K = 1024, M = K 2, G = K 3, T = K 4.

D Control of units
A set of units under the control of an instruction stream defines a computer.
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(18) Computers and processors. Within the notation we maintain the 
convention that a computer is a group of units which can process instructions 
and therefore contains at least one I unit. In the context of overall architecture, 
an I unit is programmable and processes a user’s instruction stream. With 
this definition a microprocessor is more aptly described as a microcomputer. 
The simplest computer is described as:

C = I[E — M].

A processor, on the other hand, is any set of units that can process data but 
does not itself process the user instruction stream. It therefore contains an 
E unit but no I unit. The simplest case would be:

P = E— M.

This definition of a processor fits with the common usage in the term processor 
array for an array of E— M units under common control of an external 
I unit, as in the ICL DAP.

The above distinction is not absolutely clear cut, because many units which 
we would regard as execution units, are in fact controlled by microprograms, 
the instructions of which are processed by the E unit. From the point of view 
of overall architecture—which is our main interest here—the important 
point is whether a unit is programmable by the user. If it is, then we would 
regard it as having an I unit. If it is not user programmable then there is no 
I unit, even though internally a fixed micro-instruction stream may be 
involved. Similarly, from the overall architectural view we would only 
describe programmable registers as part of the description of a computer, 
even though there are many other internal registers in the computer (for 
example between the stages of a pipelined execution unit).

There is no reason why the notation should not be used to describe the 
internal structure of a microprogrammed general-purpose arithmetic pipeline, 
or a microprocessor in detail. In this case all the internal registers, 
programmable or not, would be described and the unit processing the 
microprogram would be usefully classified as an I unit. It is clear, therefore, 
that the meaning of an I unit depends on the use to which the notation is 
being put, and should be made clear in the supporting text.

(19) The extent of control exercised by an I or a C unit is shown by the
control brackets [ ]. The units controlled are listed inside the brackets,
separated by commas if they may operate simultaneously, or by slashes if 
the units operate only one at a time, e.g.

I1[4I2[64P]] a master instruction unit (II) controlling 4
quadrants, each comprising an instruction
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Ip[Cl,C2,C3]

unit (12) controlling 64 identical processors: 
as in the original plans for ILLIAC IV, 
a pipelined instruction unit controlling three 
computers that may operate simultaneously,

C l[E p l/E p2]; C 1 = I [ B — M] a control computer Cl which 
performs boolean operations and contains 
memory, controlling two pipelined execution 
units that operate one at a time.

(20) The type of control exercised by an I unit or a C unit may optionally 
be indicated by a lower case subscript to the control bracket. The following 
modes are adequate to describe the computers in this volume. Other modes 
can be described in comments:

asynchronous(a) The units controlled have more than one clock. 
The clocks are not synchronised and communi-
cation between units must be coordinated by

horizontal (h)
flags and agreed ‘hand-shaking’ protocols.
A single composite instruction controls the 
action of a set of different units at each clock

lockstep (/)
period, e.g. the FPS AP-120B.
A set of identical processors are controlled 
synchronously to perform the same operation at 
the same time, e.g. the ICL DAP.

issue-when-ready (r) Instructions are issued to execution units as soon 
as the required unit and registers are free, e.g. 
the CRAY-1.

For example:

I[10F, 10C]r The CDC 6600 with 10 different in-
dependent floating-point functional units 
and 10 identical I/O  computers. Instruc-
tions are issued when units are ready.

C[64P], The ILLIAC IV with 64 identical pro-
cessors controlled in lockstep mode.

I[4C ](description ofcontrol) Four computers controlled by an I unit
in the manner described in the comment 
within parentheses.

E Examples
In order to illustrate the use of the above notation we give below one-equation 
or one-line descriptions of a variety of computers. The detail of the description
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can be varied according to need, and for clarity a hierarchical description in 
several equations is to be preferred—with the overall architecture described 
in the first equation, and the detail filled in by substitution in subsequent 
equations, if necessary down to the level of individual registers. More complex 
structures may require the extension of the formula into the second dimension, 
in the manner of a structural chemical formula.
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The SE England regional star computer network:

1.2.5 A structural taxonomy
We will now formulate, with the aid of the above notation, a structural 
taxonomy of both serial and parallel computers. The overall subdivisions of 
this taxonomy are shown in figure 1.4. These are further subdivided for serial 
computers in figure 1.5 and parallel computers in figures 1.6 to 1.10. These 
figures are tree structures and therefore there is only one route from the top 
of the diagram to any of the classes of computer that are defined on the 
bottom line. For a computer to belong to a particular class it must possess 
all the properties stated in the boxes that are traversed to reach the definition. 
A well known computer in each class is given, together with the canonical 
definition of the class in the structural notation and a descriptive name for 
computers in that class. It is unavoidable that certain large computers will 
have properties belonging to more than one class. One will then have to 
decide which is the more dominant property. We hope that this circumstance

,C C

or, alternatively

A ‘Benzene’ ring of 6 computers.
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FIGURE 1.4 The broad subdivisions in computer architecture.

is relatively rare and that the subdivisions are fine enough to differentiate 
those computers that one feels should be treated separately.

At the highest level we follow the functional classification of Flynn and 
divide computers into those with single instruction streams (si) and those 
with multiple instruction streams ( m im d ). A taxonomy for m im d  computers

FIGURE 1.5 Classification of serial unicomputers using the structural 
notation of §1.2.4.
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FIGURE 1.6 Parallel unicomputers based on functional parallelism and 
pipelining. A classification of computers discussed in this book.

is given in the next section, §1.2.6. Here we further subdivide si machines 
into those with a single unpipelined E unit and those with multiple and/or 
pipelined E units. Remembering that an E unit may only execute one function 
at a time (even though it may be able to compute many functions), the single 
unpipelined E unit subdivision (figure 1.5) leads to sequential operation and all 
the serial computers, whereas the multiple E units or pipelined subdivision 
allows different types of overlapping and the family of parallel unicomputers 
(figures 1.6 and 1.7).

The next level of subdivision is based on the type of arithmetic performed 
by the E units. The difference in complexity between a one-bit arithmetic 
unit (less than 10 logic gates) and a floating-point arithmetic unit (many 
thousands of logic gates) is sufficiently large to constitute a qualitative 
difference which should be recognised. The extra space required for floating-
point circuitry also places very different constraints on assembling large arrays 
of processors, from those associated with one-bit processors. Consequently 
arrays of floating-point processors and arrays of one-bit processors are 
different in their engineering, appearance and properties. In order to include 
the historic evolution of serial computers, this class has been divided into 
integer arithmetic and floating-point arithmetic, and the former class into 
serial and parallel arithmetic. This side of the classification is of more than

CLASSIFICATION OF DESIGNS
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historical interest because it includes the early generations of microprocessor 
(e.g. an 8-bit microprocessor).

Figure 1.6 covers the introduction of functional parallelism and pipelining 
into the traditional serial computer concept, and we first differentiate into 
separate classes computers with and without pipelined E units. On the left 
is the unpipelined multi-unit scalar computer, such as the CDC 6600, which 
obtains its performance entirely by functional parallelism. On the right the 
pipelined computers are first divided into those with or without explicit vector 
instructions. We find that this division is necessary to separate high- 
performance scalar computers such as the CDC 7600 from the pipelined 
vector computers such as the CRAY-1. In other respects these machines are 
remarkably similar. The pipelined computers with vector instructions are 
further subdivided into those with separate special-purpose pipelines for each 
type of arithmetic operation (e.g. the CRAY-1), and those with one or more 
general-purpose pipelines each capable of performing more than one type of 
operation (e.g. the CYBER 205). The pipelined computers with only scalar 
instructions are subdivided into those in which one instruction controls all 
units at each cycle (horizontal control as in the FPS AP-120B), and those 
in which instructions are issued to units individually when they are ready to 
carry out an operation (as in the CDC 7600).

The alternative of obtaining parallelism by the replication of processors 
under lockstep control is considered in figure 1.7. Again this is divided into 
the floating-point class and the few-bit class (thus including the lockstep 
array of 8-bit microprocessors). The next subdivision concerns the connections 
between the processors, whether these be unconnected (i.e. connectivity c = 0) 
or connected to neighbours (c ^  1) in a ¿-dimensional array. Other forms of 
connections are lumped loosely under the class of cross-connected processors 
and memory. Under the few-bit category it seems appropriate to identify the 
unconnected processors as the classical associative computer and make explicit 
mention of computers based on an orthogonal memory. Many computers 
can be programmed to reference both word slices and bit slices, but note 
that to fit our definition an orthogonal computer must have separate 
word-slice and bit-slice processors. That is to say it must be specifically 
engineered to be an orthogonal computer, in order to be classed as one.

1.2.6 A taxonomy of mimd  computers
The vast number of different proposals for multi-instruction stream computers 
that have appeared in the last few years, only some of which were described 
in §1.1.8, form a confusing menagerie of computer designs. In order to put 
these into some kind of order, we show in figures 1.8, 1.9 and 1.10 a possible 
taxonomy for such m im d  computers (Hockney 1985b, d). In this taxonomy
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we have only included computers controlled by multiple streams of 
conventional instructions—the so-called control-flow computers. Other more 
novel forms of control for exploiting parallelism, such as data-flow and 
reduction computers are considered in §3.2.2.

Figure 1.8 shows the broad division into pipelined, switched and network 
systems. Multiple instruction streams may be processed either by time-sharing 
a single sophisticated pipelined instruction processing unit, or by providing 
separate (and necessarily much simpler) instruction processing hardware for 
each stream. The first alternative is described as pipelined mi md  and is found 
within a single pem  of the Denelcor HEP (see §3.4.4). m im d  systems using

FIGURE 1.8 A s tr u c tu r a l t a x o n o m y  o f  m i m d  c o m p u te r  sy s te m s .
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FIGURE 1.9 Subdivisions within the switched class of m im d  computer systems. 
Examples of computers within each class are given below each class name. Those 
in square brackets show the structure of the class but have s im d  rather than m im d  
control. The type of multistage switch is given in parentheses.

the second alternative naturally divide into those with a separate and 
identifiable switch (switched mi md ) and those in which computing elements 
are connected in a recognisable and often extensive network (mi md  networks). 
In the former all connections between the computers are made via the switch, 
which is usually quite complex and a major part of the design. In the latter, 
individual computing elements (c e s ) may only communicate directly with their 
neighbours in the network, and long-range communication across the 
network requires the routing of information via, possibly, a large number of 
intermediate c e s . The c e  must therefore provide a small computer (e.g. a 
microprocessor), a portion of the total system memory, and a number of 
links for connection to neighbouring elements in the network. Early network 
systems provided these facilities on a board. However, the INMOS Transputer
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FIGURE 1.10 Subdivisions within the network class of m i m d  computer systems.

(see §3.5.5) now provides a c e  on a chip, and is an ideal building block for 
mi md  networks.

In network systems the c e s  are the nodes of the network and may also be 
called nodal computers or processors, or processing elements. Within our 
notation and classification, however, they should be called computing 
elements in order to indicate that they are complete computers with an 
instruction processing unit. The term pe  is reserved for the combination of 
arithmetic unit and memory without an instruction processing unit, as is 
found in s im d  computers such as the ICL DAP (see §3.4.2).

Switched systems are further subdivided in figure 1.9 into those in which 
all the memory is distributed amongst the computers as local memory and 
the computers communicate via the switch (distributed-memory mi md ); and 
those in which the memory is a shared resource that is accessed by all 
computers through the switch (shared-memory mi md ). A further subdivision 
is then possible according to the nature of the switch, and examples are given 
in figure 1.9 of crossbar, multistage and bus connections in both shared- and 
distributed-memory systems. Many larger systems have both shared common
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memory and distributed local memory. Such systems could be considered as 
hybrids or simply as switched mimd . However, we prefer to classify them as 
variations with the shared-memory section, and reserve the distributed- 
memory section for systems with no separate shared memory. The classification 
is based on the location of the memory that is intended for permanent storage 
of the main data of a problem. Local (or cache) memory that is present in 
almost all systems and used for temporary storage during calculation is not 
relevant to the classification.

All mi md  networks appear to be distributed-memory systems, but they 
may be further subdivided according to the topology of the network, as is 
shown in figure 1.10. The simplest network is the star, in which several 
computers are connected to a common host as in the /CA P configuration of 
IBM Kingston and Rome. Single and multidimensional meshes are exemplified 
by the CyberPlus ID ring design and the 2D meshes of the NASA FEM and 
Columbia VFPP. The ICL DAP, Goodyear MPP and ILLIACIV are examples 
of 2D meshes but they are controlled by a single instruction stream, and are 
therefore s i m d  rather than m i m d  computers. Binary hypercube networks in 
which there are only two computers along each dimension form an interesting 
class which is receiving a lot of attention in the Cosmic Cube of CIT and its 
commercial derivative, the Intel iPSC. Examples also exist of hierarchical 
networks based on trees, pyramids (the e g p a ) and bus-connected clusters of 
computers (Cm*). The most suitable computer network will certainly depend 
on the nature of the problem to be solved, hence it is attractive to have a 
m i m d  network which may be reconfigured under program control. The CHiP 
computer and the Southampton ESPRIT Supernode computer (see §3.5.5( v)) 
are designed to satisfy this requirement.

1.3 CHARACTERISATION OF PERFORMANCE

In the last section we have discussed the classification of many varied 
computer architectures from the simple serial scalar microprocessor, through 
the multi-unit pipelined vector computers, to the highly replicated processor 
array. These designs appear to have little in common, yet it is the purpose 
of this section to define two parameters that characterise the performance of 
all these computers; and to look upon the serial, pipelined and array-like 
processor as different members of a continuous spectrum of designs, rather 
than representing fundamentally different computers. Of course, such a 
simplistic view can only be regarded as a first-order description, but we 
believe that it is sufficient to characterise quantitatively the nature of a 
computer and thereby to determine the best algorithms to use on it. In order
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to derive this simple generic description of all serial and parallel computers 
we must first examine in more detail the principal ways of increasing the 
speed of an arithmetic unit.

1.3.1 Serial, pipelined and array architectures
Figure 1.11 illustrates the different ways of performing an arithmetic operation 
on serial, pipelined and array architectures. As an example, we take the 
problem of adding two floating-point vectors x, and y, (i=  1, 2, . . . ,n) to 
obtain the sum vector z, = xf + yf- ( / = 1, 2,.. . ,  w). The operation of adding 
any pair of the above elements (x = e x 2 p and y = f x 2 q) may be divided 
into four suboperations which, for simplicity, we will assume take the same 
time to complete. These are: (1) compare exponents, i.e. form (p — q); 
(2) shift x with respect to y, (p — q) places in order to line up the binary 
points; (3) add the mantissa of x to the mantissa of y; and (4) normalise by 
shifting the result z to the left until the leading non-zero digit is next to the 
binary point. In the serial computer the four suboperations must be completed 
on the first element pair x l5 y x to produce the first result z l9 before the second

FIGURE 1.11 Comparison of serial, pipelined and array architectures
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element pair enters the arithmetic unit. This sequential calculation of the 
elements of the result vector is illustrated in the centre of figure 1 .1 1 , where 
a time axis running from top to bottom is understood. If / is the number of 
suboperations (in this case, / = 4) and x is the time required to complete each 
(usually the clock period) then the time to perform an operation on a vector 
of length n is

( 1 .1 a)

and the maximum rate of producing results is

( U b )

In serial operation we notice that the circuitry responsible for each of the 
/ suboperations is only active for 1 / / of the total time. This in itself represents 
an inefficiency, which is more obvious if we draw the instructive analogy 
with a car assembly line. The suboperations that are required to manufacture 
the sum of two numbers are analogous to the suboperations that are required 
to manufacture a car: for example, ( 1 ) bolt the body to the chassis, (2 ) attach 
the engine, (3) attach the wheels and (4) attach the doors. Serial operation 
corresponds to only one group of men working at a time, and only one car 
being present on the assembly line. Clearly, in our example, three-quarters 
of the assembly-line workers are always idle.

The car assembly line obtains its efficiency by allowing a new car to begin 
assembly in suboperation ( 1 ) as soon as the first car has gone on to 
suboperation (2). In this way a new car is started every x time units and, 
when the line is full, a car is completed every x time units. We often speak 
of the suboperations as forming a pipeline, and in our example there are four 
cars at various stages of assembly within the pipeline at any time, and none 
of the assembly-line workers is ever idle. This is the principle that is used to 
speed up the production of results in a pipelined arithmetic unit, and is 
illustrated to the left of figure 1.11. The timing diagram shows that the 
speed-up is obtained by overlapping (i.e. performing at the same time, or in 
parallel) different suboperations on different pairs of arguments. The time to 
perform the operation on a vector of length n is therefore

 (l-2a)

where sx is a fixed set-up time that is required to set up the pipeline for the 
vectors in question, i.e. to compute the first and last addresses for each vector 
and other overheads. It also includes the fixed time for numbers to be 
transferred between memory and the arithmetic pipeline. The number of 
sub-operations (stages or segments) in the pipeline is / and therefore differs for 
different arithmetic operations. When full, and therefore operating smoothly,
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a pipeline delivers one result every clock period t , hence

( 1 .2 b)

Comparing this with equation (1.1b) one sees that pipelining of an operation 
increases the speed at most by a factor of /—the number of suboperations 
that are overlapped.

It is obvious from the above that any operations that can be subdivided 
into roughly equal suboperations can be pipelined. A very common example 
is the pipelining of instruction processing, in which the overlapped sub-
operations might be: ( 1 ) instruction decode; (2 ) calculate operand addresses; 
(3) initiate operand fetch; (4) send command to functional unit; and (5) fetch 
next instruction. Computers with pipelined instruction processing units are 
the IBM 360/91 (one of the earliest), ICL 2980, AMDAHL 470V/6. Other 
computers, such as the BSP, pipeline on a more macroscopic scale and overlap 
the operations of ( 1 ) memory fetch, (2 ) unpipelined arithmetic operation and 
(3) storage of results. Machines that do have an arithmetic pipeline, do not 
necessarily have vector instructions in their repertoire (e.g. CDC 7600, IBM 
360/195). The most notable machines with arithmetic pipelines and vector 
instructions are the CDC STAR 100 (the first), its derivative the CYBER 
205, the TIASC and the CRAY-1.

An alternative way of increasing the speed of arithmetic is to replicate the 
execution units and form an array of processing elements (pe s ) under the 
common control of a single instruction stream. The pes  all perform the same 
arithmetic operation at the same time, but on different data in their own 
memories. If there are N  such processors (N  < n), the first N  argument pairs 
(xf, yf) can be sent to the pes  and the first N results found simultaneously in 
a time of one parallel operation on all elements of the array, say iy (4r in 
our example). The next N elements can then be loaded and also computed 
in parallel in a further iy time units. This is repeated until all the elements 
are computed. The timing diagram is shown on the right of figure 1.11 and 
we conclude that the time to compute a vector of length n on such a processor 
array is

(1.3a)

and

(1.3b)

where f  * 1 —the ceiling function of x—is the smallest integer that is either 
equal to or greater than x. The function gives the number of repetitions of 
the array operation that are required if there are more elements in the vector 
than there are processors in the array. The maximum rate of producing results
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occurs when the vector length n is an integer multiple of the number of 
processors; and represents a speed-up of N  over the operation of a serial 
processor with the same type of arithmetic unit.

Computers have appeared both in the form of relatively few unpipelined 
floating-point processors: the ILLIAC IV (64 p e s ), the BSP (16 p e s ); and in 
the form of much larger arrays of very simple one-bit processors: the STAR AN 
(256 p e s ) and the ICL DAP (4096 p e s ). The latter alternative becomes 
particularly attractive when implemented in v l s i technology, which is ideally 
suited to the large-scale replication of simple logic. Intermediate possibilities 
exist for arrays based on commercially available n-bit microprocessors 
(typically, n = 4, 8 , 16). Also, for a given performance, there is always the 
choice between a few highly optimised arithmetic pipelines, and a larger array 
of simpler processors. This contrast is evident in the following sequence of 
competing commercial designs: the CRAY-1 (two floating-point pipelines), 
the BSP (an array of 16 unpipelined floating-point processors) and the ICL 
DAP (an array of 4096 one-bit processors). The ideas of pipelining and 
replication can conceptually be combined into an array of pipelined processors. 
Circa 1985, although there are examples of multiple pipelines (e.g. the 
CDC CYBER 205 and CRAY X-MP), there are no examples of pipelines 
interconnected as multidimensional arrays.

A good introduction to the principles of pipelining and replication is given 
by Graham (1970). A more detailed survey of pipeline architecture, including 
the discussion of several actual designs, can be found in Ramamoorthy and 
Li (1977) and Kuck (1978). The engineering aspects of effective pipelining 
of digital systems are discussed in Jump and Ahuja (1978) and in the 
comprehensive book by Kogge (1981) entitled The Architecture of Pipelined 
Computers. Replicated architectures are surveyed by Thurber and Wald 
(1975) and Thurber (1976).

1.3.2 The performance parameters (r^, n1/2)
We shall use as our unifying criterion for the varied architectures described 
in the last section, the performance of the computer during a single arithmetic 
operation on a vector of length n. This will be fitted as closely as possible to 
the following generic formula for the time of the operation, i, as a function 
of the vector length:

(1.4a)

The two parameters and n1/2 completely describe the hardware performance 
of the idealised generic computer and give a first-order description of any 
real computer. These characteristic parameters are called:
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(a) the maximum or asymptotic performance r^ —the maximum rate of 
computation in floating-point operations performed per second. For the 
generic computer this occurs asymptotically for vectors of infinite length, 
hence the subscript. The common unit for floating-point execution is 
millions of floating-point operations per second (megaflop/s or Mflop/s).

(b) the half-performance length nl/2—the vector length required to achieve 
half the maximum performance;

Alternatively if n < nl/2 it is often more convenient to express the time by 
the equivalent formula

(1.4b)

where n0 = roo/n 1/2 is called the specific performance.
When deriving average values for and n1 /2 from a timing expression 

for a sequence of vector operations, it is important to remember that t is 
defined as the time per vector operation of length n. Thus if a vector arithmetic 
operations take a time

(1.4c)

then

Hence by comparison with equation (1.4a),

(1.4d)

from which it is clear that speeding up all the circuits of a computer by the 
same factor/  (by dividing b and c by/) , for example by decreasing the clock 
period, increases the asymptotic performance by this factor but does not alter 
« 1/ 2 -

The significance of the above parameters is quite different. The maximum 
performance (r^) is primarily a characteristic of the computer technology 
used. It is a scale factor applied to the performance of a particular computer 
architecture reflecting the technology in which a particular implementation 
of that architecture is built. Furthermore if we are taking the ratios of the 
performances (defined as inversely proportional to the time for execution) 
of different algorithms on the same computer, cancels and plays no role 
in the choice of the best algorithm. Therefore this parameter does not appear 
in our discussion of algorithms in Chapter 5.

The half-performance length (nl/2), on the other hand, is a measure of the 
amount of parallelism in the computer architecture and is not affected by
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changes in technology. We shall see that it varies from n1/2= 0  for serial 
computers with no parallel operation to nll2 = oo for an infinite array of 
processors. It therefore provides a quantitative one-parameter measure of 
the amount of parallelism in a computer architecture. Because nl/2 does not 
appear as a factor in equation (1.4a), the relative performance of different 
algorithms on a computer is determined by the value of n1/2. The vector 
length (or average length), n, may be said to measure the parallelism in the 
problem, and the ratio v = n1/2/n measures how parallel a computer appears 
to a particular problem. If v = 0 or small then an algorithm designed for a 
sequential or serial environment will be the best; however if v is large an 
algorithm designed for a highly parallel environment will prove the most 
suitable. Chapter 5 is therefore mainly a discussion of the influence of n1 /2  

or v on the performance of an algorithm.
It is evident from the timing equation (1.2a) for a pipelined computer that 

any overhead, such as the set-up time s t , contributes to the value of n1/2, 
even though it may not represent any parallel features in the architecture. 
The number of pipeline stages, /, in the same expression does, however, 
measure hardware parallelism because it is the number of suboperations 
that are being performed in parallel. It is not therefore strictly true that n1 /2  

always measures hardware parallelism, but we may describe it as measuring 
the a p p a r e n t  p a r a l le l i s m  of the hardware. From the user’s point of view the 
behaviour of the computer is determined by the timing expression (1.4a) and 
the value of n1/2, however it arises. A pipelined computer with a large value 
of n l/2 appears and behaves as though it has a high level of real hardware 
parallelism, even though it may be due to a long set-up time. And it simply 
does not matter to the user how much of the apparent parallelism is real. 
For this reason we will not draw a distinction between real and apparent 
parallelism in the rest of this book; we simply refer to n1 / 2  as measuring the 
parallelism of the computer.

Expressing the timing equation (1.4a) in terms of a start-up time, 
i0, and a time per result, t , we have

(1.4c)

which, comparing with equation (1.4a), corresponds to

(1.40

where

Comparing (1.4a) and (1.4e) leads to two other interpretations of the 
meaning of n l / 2 . First, n l/2 measures the number of floating-point operations
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which could have been done in the time of the vector start-up, t0. It therefore 
measures the importance, in terms of lost floating-point operations, of the 
start-up time to the user. Secondly, when the vector length equals n1/2, the 
first and second terms of equation ( 1.4e) are equal, and half the time is being 
lost in vector start-ups (first term), and only half the time is being used to 
perform useful arithmetic (second term).

Previous analyses of vector timings by Calahan (1977), Calahan and Ames 
(1979), Heller (1978) and Kogge (1981) all use linear timing relations like 
( 1.4e), rather than our expression ( 1.4a). All the above authors recognise the 
importance of the ratio (i0 /r), but they do not single it out as a primary 
parameter. In our view, however, it is not the absolute value of the start-up 
time that is of primary importance in the comparison of computers and 
algorithms, but its ratio to the time per result. It is for this reason that we 
signify this ratio with a descriptive symbol, n1/2, and make it central to the 
analysis.

It will be clear from the above that an n1 / 2  timing analysis can be applied 
to any process that obeys a linear timing relation such as (1.4a) or (1.4e). 
Although we do not pursue it in this book, an obvious case is that of input 
and output operations (I/O). In many large problems I/O  dominates the 
time of calculation. Obtaining data from a disc is characterised by a long 
start-up time for the movement of arms and track searching, before the first 
data element is transferred, followed by the rest of the elements in quick 
succession. That is to say, the time to access n elements obeys equation ( 1.4e) 
which is best interpreted using the equivalent equation (1.4a) and the two 
parameters and n1/2. The maximum rate, r^ , is usually measured in Mbytes 
per second, and n1 /2 would be the length of the block transferred in bytes 
required to produce an average transfer rate of Values of n1 /2 obtained 
for I/O  systems are usually very large, indicating that one should transfer 
large blocks of data (n > nl/2) as few times as possible.

1.3.3 The (r n1/2) benchmark
The maximum performance and half-performance length of a computer are 
best regarded as experimentally determined quantities obtained by timing 
the performance of a computer on a test problem which we call the (r^, nl/2) 
benchmark:

(1.5)

1 0

20
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or its equivalent assembler code. The DO 10 loop in the above FORTRAN 
code would be replaced by a vector instruction by any vectorising compiler. 
The measurement and subtraction of the subroutine-call overhead, TO, is 
necessary in order to obtain an accurate measurement. NMAX is the 
maximum vector length and SECOND is a subroutine giving the c pu  time 
in seconds. If the time t is then plotted against the vector length n a straight-line 
graph such as figure 1.12 arises. The negative of the intercept of the line with 
the n-axis gives the value of n1/2 and the reciprocal of the slope of the line 
gives the value of r^. The results shown are for the CDC CYBER 205 and 
are typical of a pipeline machine.

We may also derive the value of nl/2 from the timing data given by 
manufacturers. Typically this will be in the form of equation (1.6a)

( 1 .6 a)

whence, by comparison with equation (1.4a), one obtains for the pipeline 
computer

( 1 .6 b)

and
( 1 .6 c)

FIGURE 1.12 Measurement of nl/2 and r* for a computer from its 
performance as a function of vector length. Data from Kascic (1979) for 
a two-pipe CDC CYBER 203E, n1/2 =  100, r«, =  100 Mflop/s.
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Since the length of the pipeline, /, depends on the operation being carried 
out, we do not expect nl/2 to be absolutely constant for a particular computer. 
It will depend to some extent on the operations being performed, and how 
the computer is used. In particular we note that any unnecessary overheads 
in loop control that are introduced by a compiler, will appear as a software 
addition to the value of s, and therefore as an increased value of n1/2. 
Notwithstanding these reservations, we regard n1/2 as a useful characterisation 
of vector performance.

For serial computers we compare the timing equation (1.1a) with the 
generic form (1.4a) and obtain

( 1 .6 d)

The characterisation of a processor array by the parameter n1/2 is less 
obvious, because the timing formula (1.3a) is discontinuous, as shown in 
figure 1.13. It is best to distinguish two cases, depending on whether the 
vector length, n, is less than or greater than the number of processors in the 
array, N. If n ^  N, the array is filled or partially filled only once. Thus the 
time for a parallel operation is independent of n and equal to i (j. In this 
circumstance, from the point of view of the problem, the array acts as though 
it has an infinite number of processors. Appropriately, the correct limit is 
obtained in the generic formula (1.4b) if we take

(1.7a)

On the other hand if n > N, the processor will have to be filled several times 
and the best characterisation will be obtained if we take as the generic 
approximation a line that represents the average behaviour of the array. This 
is the broken line in figure 1.13, that passes through the centres of the steps 
which represent the actual performance. We obtain from the intercept and 
slope of this line

(1.7b)

A more complicated situation arises in the case of an array of pipelined 
processors—for example the CDC NASF design. In this case the actual 
execution time is given by

( 1 .8 a)

where N is the number of identical arithmetic pipelines, and s t  and / are the 
set-up time and number of segments of each pipe. This result can be 
understood by thinking of the system as one pipeline that performs its 
suboperations on superwords, each of which comprises N  numbers. Then 
\~n/N~\ is the number of such superwords that must be processed, and
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FIGURE 1.13 The time t for a vector calculation of length n on an array 
of N processors (full line). The nearest linear approximation (broken line) 
shows that ni/2 =  N / 2 and rao =  N / t h where t {l is the time for one parallel 
operation on the array.

replaces n in the pipeline equation (1.6a). This timing equation is plotted in 
figure 1.14 (full line) together with the generic approximation (broken line), 
from which we conclude

(1.8b)

FIGURE 1.14 The measurement of w1/2 for an array of N pipelines. 
The full line is the actual timing data and the broken line is the 
approximate generic description. In this example nl/2 =  5.5N, raD =  N / z 
and s +  l =  6.
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Neglecting the unimportant difference between 1 and 1/2 in the formulae 
(1.6b) and (1.8b) for n1/2, we see that replicating the pipelines N  times, 
multiplies not only the maximum rate by N as expected, but also the half- 
performance length by N. The latter result is also to be expected if one 
interprets nl/2 as the total amount of parallelism in the system, i.e. the total 
number of things that are done in parallel. The total parallelism in N  pipelines 
is then expected to be N times the parallelism in a single pipeline.

1.3.4 The spectrum of computers
The two parameters n1/2 and provide us with a quantitative means of 
comparing the parallelism and maximum performance of all computers. It 
is most instructive to examine the relative position of different computers on 
the (n1/2, r^) plane. Such a diagram, which may be regarded as separating 
the computers into a spectrum, is shown in figure 1.15 for most of the 
computers in this book. The vertical axis (r^) is the maximum performance 
in megaflop/s of the computer and the horizontal axis (n1/2) is the amount 
of parallelism in the architecture. A computer is then represented by a dot 
in the diagram, except that in most cases a computer may be used in different 
modes with different levels of parallelism. We thus find that one computer is 
often represented by a solid line connecting the points representing its different 
modes of operation. We also show by arrowed lines computer designs 
that are evolutionary developments of each other. Since we use a logarithmic 
scale, we arbitrarily plot serial designs (nl/2 = 0) on the line n1/2 = 1. This is 
quite reasonable because serial computers, when programmed to process a 
vector, do display a small non-zero value of n1/2.

We have noted that replicating a processor N  times multiplies both nl/2 
and by N; consequently computer designs that are related by replication 
without change in technology form diagonal lines at approximately 45°. 
Examples are the scalar, vector and matrix modes of operation for the ICL 
DAP, at the bottom right; the 1-, 2- and 4-pipe versions of the TIASC and 
the 2- and 4-pipe versions of the CYBER 205, in the centre of the diagram; 
and the evolution of the 16-pe  BSP to the 512-pe  NASF design of Burroughs. 
Along such lines the ratio rO0/n 1/2f i.e. the performance per unit parallelism, 
is constant. This ratio, which we denote by n0, is more characteristic of a 
particular computer family than either the maximum performance or half-
performance length considered separately. A high value of this ratio is 
desirable because less parallelism is required in order to achieve a desired 
performance. However, more advanced technology and cooling methods are 
required to increase n0, and the cost rises quickly. The maximum specific 
performances n0 for a range of computer architectures are given in table 1 .2 , 
in order of decreasing value. The specific performance is also the parameter
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FIGURE 1.15 The two-dimensional spectrum of computers plotted on the (n1/2, 
plane. Diagonal lines at roughly 45° correspond to development by increased 
replication. Operations are floating-point except where stated. A prime denotes the 
number of bits in the representation of a number.
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TABLE 1.2 The specific performance, 7i0, for a range of parallel computer 
architectures. Maximum values are quoted.

Computer
Maximum specific performance
^ 0  = ''co/” l / 2  (M/s)

CDC 7600, CRAY-1 10
BSP, Burroughs NASF 7
CYBER 205, CDC NASF 1-4
TIASC 0.4
STAR 100 0.2
ICL DAP 0.008-0.04
M ulti-microprocessors 
(c 1980) e.g. AMD AM9511 ~  0.008-0.02

that determines the performance of a computer on short vectors (see § 1 .3 .5 ). 
Hence short-vector performance is unchanged as we pass along these diagonal 
lines, and is only improved as one passes orthogonally to them, towards the 
top left of the diagram.

Improvements in technology, in particular a shorter clock period, increase
without changing nl/2, and cause vertical movement in the diagram. This 

is apparent in the evolution of the CYBER 205 (20 ns clock) to the CDC 
NASF design (10 ns clock). A reduction in start-up time causes a reduction 
in nl/2 and a movement to the left in the diagram. This also contributes to 
the change from the CYBER 205 to the CDC NASF design.

The range of computers shown varies from very highly replicated slow 
arithmetic units of the ICL DAP (high w1/2), to computers with a few 
high-performance pipelined arithmetic units such as the CRAY-1 (low nl/2). 
Roughly the same maximum megaflop performance rate might be expected 
from a 128 x 128 DAP and a CRAY-1; however the half-performance length 
of these machines differs by two orders of magnitude and they would have 
quite different programming characteristics—the CRAY-1 almost having the 
characteristics of the serial machine (low nl/2) and the DAP almost those of 
an infinite parallel machine (high nl/2). The two machines are therefore 
separated by a large amount horizontally in our spectrum of designs. The 
horizontal axis thus covers the full range of architectures from the serial 
computer on the left to the highly parallel computer on the right. It can also 
be argued that a computer only solves efficiently those problems with a vector 
length greater than its nl/2. Thus the higher the value of w1/2, the more limited 
is the set of problems that it may solve efficiently. In this sense therefore one
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can regard the nl/2 axis as ranging from the most general-purpose on the 
left to the most specialised on the right.

1.3.5 Vector ( si m d ) performance
We have considered so far only the maximum performance of a processor
on imagined vectors of infinite length. The generic timing formula ( 1.4a) can 
be used to define some other numbers that characterise the performance of 
a computer on actual programs with finite vector lengths. These are:

(a) the average vector performance

(1.9a)

or

where x = (n /nl/2), pipe(x) = ( 1  + x l ) 1; and 
(b) the vector efficiency

(1.9b)

The relation between vector efficiency and vector length is shown in 
figure 1.16, in which we note from the definition that rj = 0.5 when n = n1/2, 
and that the efficiency asymptotically approaches unity as the vector length

FIGURE 1.16 The vector efficiency rj of a calculation on the generic 
computer as a function of vector length n. The actual processing rate is 
the maximum rate times the efficiency. This curve, y =  (1 +  x “ 1) ~ 1 is 
called the pipeline function, pipe(x).
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increases to infinity. It is important to realise that the approach to the 
asymptote is slow, for example a vector length of n = 4nl/2 is required to 
reach 80% of the maximum performance, and 9n1 /2 to reach 90%. The initial 
slope of the efficiency curve, which determines the short-vector performance, 
is given by the broken line. This joins the point (n = w1/2, rj= 1) to the origin. 
The above functional form y = (1 4 - x ~ 1) “ 1 appears frequently in performance 
analyses to describe the way in which an asymptote is approached (see § 1.3.6). 
Owing to its origin here in describing the performance of a pipeline as a 
function of vector length, we call it the pipeline function, pipe(x). Whenever 
this functional form occurs the performance can be described by two 
parameters, the asymptotic value (here r^) and the half-performance 
parameter (here n1/2, but elsewhere / 1/2(§ 1.3.6) or s 1/2(§ 1.3.6)). For processor 
arrays, the actual efficiency curve is discontinuous as shown by the full line 
in figure 1.17. However the broken line shows how the generic approximation 
with nll2 = N /2  gives a good average description of the efficiency of such a 
computer.

It is instructive to examine the performance of a computer on vectors that 
are both long and short compared with its half-performance length. Thus, 
let us consider the following two limiting cases.

(i) The long-vector limit ( n » n 1/2 and x->oo)
In this limit, we have from equations (1.4a) and the first equation of (1.9a)

(1.9c)

FIGURE 1.17 The vector efficiency of a calculation on a processory array 
(full line) compared with its approximate representation by the generic 
computer (broken line).
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Thus the time of execution is proportional to vector length, and the 
performance is constant. Equation (1.9c) is the timing equation for serial 
computation, in which the time is simply the total arithmetic divided by the 
rate. Thus, in the long-vector limit any computer behaves like a serial computer 
even though it may have substantial parallelism and large nl/2.

(ii) The short-vector limit (n « n l/2 and x->0)
In this limit, it is appropriate to use the timing relation (1.4b) and the second 
equation of (1.9a), and we find

(1.9d)

Thus the time of execution is constant independent of the vector length, and 
the performance is proportional to vector length. This is the behaviour of 
an infinite array of processing elements, since there are, in this case, always 
enough processors to assign one to each of the vector elements. The 
computation can, therefore, always be completed in the time for one parallel 
operation of the array, independent of the length of the vector. Thus, in the 
short-vector limit all computers act like infinitely parallel arrays, even though 
their n1/2 might be quite small.

We find therefore that characterises the performance of a computer on 
long vectors, whilst n0 characterises its performance on short vectors, hence 
the subscript zero.

Many parallel computers have a scalar unit with nlj2 = 0 and a maximum 
processing rate r ^  as well as a vector processing array or pipeline with 
« 1 /2 > 0 and a maximum processing rate of r ^ s. The vector breakeven length, 
nb, is the vector length above which the vector processor takes less time to 
perform the operation on a vector than the scalar processor. Using the generic 
formula (1.4a) we obtain:

( 1. 10)

where Roo( = roov/roos) is the ratio of maximum vector to maximum scalar 
processing rates, both measured in elements per second. The relationship 
(1.10) is plotted in figure 1.18. Generally speaking, it is desirable to have a 
small value of nb, otherwise there will be few problems for which the vector 
processor will be useful. Equation (1.10) shows that this can be achieved by 
a small value of n1/2 or a large ratio between the vector and scalar processing 
rates. The vector breakeven length and other parameters are given for a 
selection of computers in table 1.3.

Since the ratio of vector to scalar speed is usually substantial (of 
order 1 0 ), the overall performance of an actual program depends on the 
fraction v of the arithmetic operations between pairs of numbers (called 
elemental operations) that are performed by vector instructions compared to
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FIGURE 1.18 The influence of the maximum vector to scalar speed 
ratio Rao on the breakeven length nh.

TABLE 1.3 The characteristic parameters of several parallel computers.

Computerf «1/2
foo
(Mflop/s) ^oo «*

64' CRAY-1 10-20 80 13 1.5-3
48' BSP 25-150 50 20 1-8
2-pipe 64' CDC CYBER 205 100 100 10 11
1-pipe 64' TIASC 30 12 4 7
64' CDC STAR 100 150 25 12 12
32' (64 x 64) ICL DAP 2048 16 400 5

f  Prime denotes bits.

those that are performed by scalar instructions. We shall refer to this ratio 
as the fraction of arithmetic vectorised. The average time per elemental 
operation is then

( 1 .1 1 a)

where iv and is are the average times required for an elemental operation 
when performed with, respectively, a vector or scalar instruction. The rate 
of execution is r = t ~ 1 and is a maximum rv for complete vectorisation 
(v=  1 , i = iv); hence the fraction of the maximum realisable gain that is 
achieved with a fraction v of the arithmetic vectorised is

( 1 .1 1 b)
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where R = rv/ r s = ts/ t v = Rœrj is the actual vector to scalar speed ratio for 
the problem concerned, and is a function of vector length through the 
efficiency rj. Figure 1.19 shows g as a function of v for a variety of values of 
R from 2 to 1000. It is clear that for large R a very high proportion of the 
arithmetic must be vectorised if a worthwhile gain in performance is to be 
realised. Obtaining such levels of vectorisation may not be as difficult as it 
appears, because the introduction of one vector instruction of length n 
vectorises n elemental operations, where n may be very large. As a measure 
of the amount of vectorisation required, we define vl/2 as the fraction of 
arithmetic that must be vectorised in order to obtain one-half of the maximum 
realisable gain. From equation (1.11b) we obtain

( 1 .1 2 a)

which in the limit of large R becomes

( 1 .1 2 b)

The relationship (1.12a) is plotted in figure 1.20.
In the limit of an infinitely fast vector unit (R->oo) we find from 

equation ( 1 .1 1 b),

( 1 .1 2 c)

FIGURE 1.19 The influence of the fraction of arithmetic vectorised v 
on the fraction of the maximum gain that is realised g. R is the vector 
to scalar speed ratio, v l/2 is the value of v required to realise half the 
maximum gain.
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R

FIGURE 1.20 The fraction of arithmetic that must be vectorised to 
obtain half the maximum realisable gain, v l/2, as a function of the actual 
vector to scalar speed ratio R.

That is to say, if the vector unit is much faster than the scalar unit, the speed 
of a vector computer is determined only by the speed of its scalar unit, r^  
and the scalar fraction of the arithmetic ( 1  — v). Put in another way, if a 
tortoise and a hare are in a relay race, the average speed of the pair is almost 
entirely determined by the speed of the tortoise and how far it has to travel. 
The speed of the hare is not important because the time taken by the hare 
is, in any case, negligible. It would not improve matters significantly, for 
example, if the hare were replaced by a cheetah. This effect is shown by the 
slow approach of vl/2 to its asymptotic value in figure 1 .2 0 , as the speed of 
the vector unit increases. In a sentence, vector computers with slow scalar 
units are doomed, as can be seen from the history of the CDC STAR 100 
(see §1.1.3). The above effect and equations (1.11) and (1.12) are collectively 
known as Amdahl's law (Amdahl 1967), and the steep rise in the curve of 
figure 1.19 as Amdahl's wall In the design of their vector computer, IBM 
have concluded that it is not cost effective to build a vector unit that is more 
than four or five times faster than the scalar unit, although we have seen in 
table 1 . 2  that many of the most successful vector computers have values of 
Roo significantly higher than this.

The Amdahl law arises whenever the total time of some activity is the 
sum of the time for a fast process and the time for a slow process. The same 
law therefore applies when a job is subdivided for execution on a m i m d
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multiprocessor. This is often called the problem of m u l t i - ta s k in g  a job. If the 
number of processors is large, say N, then the speed of work that is subdivided 
for parallel execution on the N processors is N times the speed of execution 
of those parts of the job that must be executed sequentially on a single 
processor. Thus, for large N, the average speed of the job is primarily 
determined by the speed of a single processor (necessarily very slow if N is 
large) and the fraction of work that cannot be multi-tasked, because it must 
be processed sequentially, i.e. equation (1.12c) again (Larson 1984, 1985).

1.3.6 mimd  performance
It is important to realise that the adoption of multi-instruction stream 
programming d o e s  have a cost. Such m im d  programming incurs additional 
overheads and associated expenses, and furthermore the s im d  saving is lost. 
Whether or not a m im d  solution to a problem is advantageous obviously 
depends on the magnitude of these costs.

If, in a m im d  computer, p  microprocessors are all executing the identical 
sequence of instructions (i.e. taking the same route through the same program) 
then p identical instructions are fetched from memory into p identical 
instruction processing units ( ipus ), when only a single instruction fetch and 
ipu  is really needed. In this case both memory bandwidth and silicon area 
are being wasted. A s imd  computer would be much more effective for such 
a job, because it would indeed only fetch and process a single instruction 
into its master control unit, and the p  processing elements would perform 
identical operations under common control, as is required. This saving of 
instruction fetch and processing is known as the s i m d  s a v in g , and is the main 
reason why such computers were invented. The saved silicon area can be 
used to add more parallelism into the arithmetic units and hence increase 
their speed, and the saved memory bandwidth will reduce memory contention 
for data and associated delays.

It is highly likely that m im d  computers will be executing identical programs 
in all their microprocessors, for who is going to write, for example, a thousand 
different subroutines for a thousand-processor m im d  system? Of course, the 
key point is that identical instructions are not necessarily executed, even if 
the programs in the microprocessors are the same, because there may be 
data-dependent branches in the program which could cause different routes 
to be taken through the program by different microprocessors. A prime 
example is a Monte Carlo simulation where, by the choice of a different set 
of random numbers as data, different routes are deliberately taken through 
a common program every time it is executed. Such problems clearly require 
the multiple instruction streams of a m im d  computer for their solution, and 
are quite unsuited to solution on a s im d  computer.
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There are, however, many cases where the natural subdivision of a problem 
onto a m im d  computer leads to the execution of an identical sequence of 
instructions by all the microprocessors. Consider, for example, the solution 
of p independent sets of tridiagonal equations, one set given to each of p 
processors, or the calculation of p independent fast Fourier transforms. Both 
these problems occur at different stages of the solution of partial differential 
equations by transform methods (see §5.6.2), and contain no data-dependent 
branches. They are therefore ideally suited to s imd  solution and do not require 
the multiple instruction streams of a m im d  computer.

The three problems (or overheads) associated with m im d  computing are:

( 1 ) scheduling of work amongst the available processors (or instruction 
streams) in such a way as to reduce, preferably to zero, the time that processors 
are idle, waiting for others to finish;

(2 ) synchronisation of the processors so that the arithmetic operations take 
place in the correct sequence;

(3) communication of data between the processors so that the arithmetic 
is performed on the correct data.

The problem of communication of data from memory to the arithmetic 
units is present on all computers and causes the difference between peak 
performance rates of arithmetic pipelines usually quoted by manufacturers, 
and the average performance rates found for realistic problems. Scheduling 
and synchronisation are, however, new problems introduced by m im d  
computation. Three parameters are used to quantify the problems, Ep 
for scheduling, s 1 / 2  for synchronisation and / 1 / 2  for communication 
(Hockney 1987b, c, d).

(0 Scheduling parameter: Ep
Scheduling is the most commonly studied problem in m im d  computation; 
indeed until recently it was the only problem of the three that had received 
much attention. Most of the literature on parallel algorithms is concerned 
with the problem of scheduling the work of different algorithms onto a 
p-processor system, on the assumption that the time taken for synchronisation 
and data communication can be ignored. For the moment we shall also make 
this assumption, because we wish to consider the latter two effects separately. 
Following the work of David Kuck’s group at the University of Illinois 
(Kuck 1978 p 33) we introduce the efficiency of scheduling, £ p, of work 
amongst p processors as follows. If 7\ is the time to perform all the work 
on one processor, and Tp is the time to perform the work when it is shared 
amongst the p processors of the same type, then

(1.13)
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Perfect scheduling occurs when it is possible to give (l/p)th  of the work to 
each processor, when Tp= T 1/p  and Ep= 1. If the work cannot be exactly 
balanced between the p processors, then some processors finish before others 
and become idle, making Tp> T^/p and Ep< 1. For this reason scheduling 
is sometimes referred to as load balancing.

If is the maximum performance of the p-processor system, then each 
processor has a maximum performance of r^/p. Also, if we consider the 
processors to be serial computers (n1/2 = 0 ), as would be the case if they were 
microprocessors, and let the work be quantified as s floating-point arithmetic 
operations, then the time to perform all the work on one processor is

(1.14)

(1.15)

(ii) Synchronisation or grain size parameter: s 1 /2

We introduce the synchronisation overhead into the above timing formula
(1.15) by defining the concept of work segment as the basic unit out of which 
m im d  programs are built up. A work segment is a body of work lying between 
two synchronisation points, which is scheduled into p completely independent 
tasks, one of which is given to each of the p processors. ‘Independent’ means 
that there is no communication (i.e. data transfer) between the tasks of the 
work segment. The extent of the work segment is determined by the fact that 
it lies between two synchronisation points. That is to say all work started 
prior to the work segment must finish before the work segment is started, 
and all work within the segment must finish before the next part of the 
program proceeds. In scientific programming the amount of work is usually 
equated to the number of floating-point operations in the segment.

If the amount of work that is divided up for independent parallel execution 
on the p processors is large, we say that the grain of the parallelism is large, 
or that the program exhibits large-grain parallelism. Similarly, if the amount 
of work divided up is small, we speak of small-grain parallelism. The main 
difference between s imd  and m im d  programming is the grain size of the 
program parallelism. In s imd  computing synchronisation takes place by 
hardware after every vector operation and the grain of the parallelism is 
equal to the vector length and is often quite small. In m im d  computing the 
grain size is usually much greater and may involve a whole phase of an

and the time for parallel execution on p processors is
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algorithm (e.g. Fourier transform over a whole three-dimensional mesh). We 
can quantify the idea of grain size by equating it to s, the amount of work 
in a work segment defined in the previous paragraph. Put slightly differently, 
the grain size of a s imd  program is the work within the innermost DO loops 
that are replaced by vector instructions, m im d  programs are more usually 
subdivided at the outermost DO loops, and the grain size equals large 
segments of the total program.

The above act of synchronisation will take a certain time, i0, depending 
on the hardware facilities provided on the computer, and on the software 
facilities provided by the operating system and computer language. The 
synchronisation parameter s 1 /2 is defined as the amount of arithmetic that 
could have been done (at the maximum rate of r^) during the time taken 
for synchronisation (Hockney 1985c). Thus, sl/2 = raot0 is the amount of 
arithmetic that is, so to say, lost because of the need for synchronisation. It 
therefore measures the importance of the synchronisation overhead to the 
user, because it measures it in units of lost arithmetic which is the currency 
of the user’s problem. If we add the synchronisation time to the time for the 
actual work previously computed, Tp, we get the time for a work segment to be

(1.16)

For a problem that can be perfectly scheduled (Ep = 1), equation (1.16) 
for m im d  computation has the same form as equation (1.4a) for a s imd  vector 
instruction, with the amount of arithmetic, s, being analogous to the vector 
length, n, and s 1 /2  being analogous to nl/2. Thus s 1 /2  is also the amount of 
arithmetic required in a work segment in order for the average computing 
rate to be half the maximum, i.e. r^/2. In this situation, when s = s l/2 only 
half the time is spent on useful arithmetic, the other half being spent on 
synchronising the work. The system is then being used with 50% effectiveness. 
The parameter s 1 /2  may therefore be called the half-performance grain size. 
The average performance for other values of the amount of arithmetic s is 
given by

(1.17)

This expression is the same as equation (1.9a) and figure 1.16 for the average 
vector performance as a function of vector length, with replaced by £ p, 
and w1 /2 replaced by s l/2Ep.

It is important to know the value of s 1 /2 for a m im d  computer because it 
is a yardstick which can be used to judge the grain size of the program 
parallelism which can be effectively used. In other words, it tells the 
programmer how much arithmetic there must be in a work segment before 
it is worthwhile splitting the work between several processors. If we regard
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an effectiveness of less than 50% as unacceptable, then by definition the grain 
(or segment) size, s, must exceed s1/2. If, on the other hand, we ask for the 
break even grain size, sb, above which it is faster to suffer the synchronisation 
overhead and split the job between p processors than to avoid synchronisation 
altogether by using a single processor, we obtain, equating (1.14) and (1.16):

(1.18)

For perfect scheduling (Ep = 1) this result is exactly analogous to the vector 
break even length, nb, calculated in equation ( 1 .1 0 ) and plotted in figure 1.18, 
with the number of processors, p, taking the place of the ratio of vector to 
scalar processing rates R^.

Like n1/2, the synchronisation parameter, s1/2, should be considered as an 
experimental quantity to be measured on any m im d  system, and such 
measurements are reported for the two-cpu CRAY X-MP and IBM /CA P 
in Chapter 2 (Hockney 1985a, 1987d), and the Denelcor HEP in Chapter 3 
(Hockney and Snelling 1984, Hockney 1985c). The programs used differ in 
detail according to the synchronisation and multi-tasking software provided 
by the system. However, the principle is as follows. As with the measurement 
of n1 /2 in program ( 1 .5 ) an element-by-element vector multiply is chosen as 
the task to be subdivided amongst the instruction streams. When the vector 
length is a multiple of the number of instruction streams (or processors) the 
work can be perfectly scheduled, and for these vector lengths we measure 
the time, i, as a function of the amount of arithmetic, s, and fit the results to

(1.19a)
and the average performance is given by the pipeline function

(1.19b)

The same subroutine is given to each instruction stream which consists of 
the DO 10 loop of program (1.5) with parameters specifying the starting and 
ending values of /. These are set by the master control program to different 
values in each instruction stream, to ensure that each stream performs a 
different section of the original vector multiply operation.

Different cases can be distinguished for the synchronisation measurement 
according to the different synchronisation primitives that are provided, and 
in a network system according to whether the required data is in the 
processors or must be transferred across the network. In the latter case one 
is also including the cost of communication in the measurement. To study 
synchronisation alone one would assume the data was available in the local 
memory of each processor. A study of the worst and best values for and 
s1 /2 gives a span of values between which those applicable in actual problems 
can be expected to lie. In a tightly coupled system which has fast communication 
between the processors, the range between best and worst cases should be
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quite small; but in a loosely coupled system with slow communication 
between processors the range of values could be large. The variation of s1 /2  

with communication delays is considered in the (r^, Si/2 »/i/2 ) benchmark 
described in §1.3.6, part (iv), below.

(iii) Communication parameter: / 1 /2

In all the tests used above to measure n1/2 and s 1 / 2  we have always taken 
element-by-element vector multiply as a standard problem, and distinguished 
different cases with different values for (r^, m 1 / 2 , s 1 / 2 )  depending on whether 
the vectors were stored in local registers or global main memory. If the 
processing rate of an arithmetic pipeline is faster than the rate at which data 
can be obtained from and returned to main memory, then there will be a 
memory access (or communication) bottleneck, and the effective processing 
rate of the computer will improve as the amount of arithmetic performed 
per memory access increases. This situation, which we refer to as inadequate 
memory bandwidth, is common in supercomputers because of their high- 
performance arithmetic pipelines. Our test case of vector multiply has only 
1/3 of a floating-point operation per memory access, which is the worst 
possible case. Many calculations permit a much higher value and the following 
simple analysis attempts to take this into account.

Memory access may be approximately modelled (Hockney 1985d, 
Curington and Hockney 1986) by assuming that each vector memory access 
obeys the timing relation

and that vector operations in the arithmetic pipeline obey the timing relation

Introducing the important new variable /  (the computational intensity), which 
is defined as the number of floating-point operations per memory reference, 
and expressing the average time per vector arithmetic operation as

then, in the case that memory transfers and arithmetic cannot be overlapped, 
we find that

( 1 .2 0 a)

( 1 .2 0 b)

( 1 .2 1 a)

( 1 .2 1 b)

( 1 .2 1 c)
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where

Thus the ratio x determines the extent to which the average performance 
of the combined arithmetic pipeline and memory approaches asymptotically 
that of the arithmetic pipeline alone. The peak performance is defined as 
the performance in the limit/-*  oo, and is equal in this model to r^. Equation 
( 1 .2 1 b) shows that the manner in which this asymptote is reached is identical 
to the way the average performance of a single pipeline, r, approaches its 
asymptote, r^, as a function of vector length n, namely like the pipeline 
function pipe(x) (see equation (1.9a) and figure 1.16). Hence, in analogy to 
«1/2 , we introduce another parameter / 1 /2 (the half-performance intensity) 
which is the value of /  required to achieve half the peak performance. The 
parameter f l/2 is a property of the computer hardware alone and provides 
a yardstick to which the computational intensity, /  (which is a function of the 
algorithm and application alone), should be compared in order to estimate 
the average performance, r^. If/ = / 1/2, then the average performance is half 
the maximum possible (as with n1/2); but if we require 90% of the maximum 
performance (0.9r^) then we need / =  9 / 1/2. Equation (1.21c) shows how the 
n1 /2 of the combined memory and arithmetic pipeline varies from that of the 
memory for small /  to that of the arithmetic pipeline for large /. 
Figures 1.21(a) and (h) show measurements of / 1 /2 for an FPS 164 linked by a 
channel to an IBM 4381 host (Hockney 1987c). Similar measurements have 
also been reported for the FPS 5000 (Curington and Hockney 1986).

The value of / 1 /2 is determined by plotting f / r ^  versus f  which should be 
approximately linear. The inverse slope of the best straight line is and the 
negative intercept with the/ axis i s /1/2, because rearranging equation ( 1 .2 1 b) 
we have

If, on the other hand, memory transfers may take place at the same time as 
the arithmetic pipeline performs arithmetic, it is possible to overlap memory 
transfer with arithmetic. In this case, a different functional form arises which 
we define as the knee function. This is the truncated ramp function

The performance of the combined pipelines with memory transfer overlap is 
then

( 1 .2 1 d)

( 1 .2 2 a)

( 1 .2 2 b)
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FIGURE 1.21 (a) Variation of asymptotic performance, r«,, as a
function of the number of floating-point operations per memory reference, 
/ , for an FPS 164 linked via a channel to an IBM 4381 host. Data held in 
the host is transferred to the FPS 164 for computation, then returned. The 
measured values are fitted to equation (1.21b) with r =  1.08 Mflop/s and 
/ 1/2 =  1.5. The computation is a dyadic vector multiply, A{I) =  B(I)*C(I);  
/  =  1, TV. (From Hockney (1987c).) (b ) The average half-performance 
length, n1/2, as a function of floating-point operations per memory 
reference, /, for an FPS 164 linked via a channel to an IBM 4381 host. 
The measured values are fitted to equation (1.21c) with / i /2 =  1-5, 
«7/2 =  2900 and nfl1/2 =  4. (From Hockney (1987c).)

where

( 1 .2 2 c)
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Thus, the effect of allowing memory transfer overlap is to halve the value of 
/ 1/2, and therefore reduce the amount of arithmetic per memory reference 
that is required to achieve a given fraction of the peak performance.

In the above analysis, if the memory and arithmetic pipeline are in the 
same cpu , we have an analysis of a memory-bound single instruction stream/ 
single data stream (s is d ) or s imd  computer. If, on the other hand, the memory 
and arithmetic pipeline are in different c pu s , we have an analysis of the 
communication overhead in a m im d  computer. In both cases the key hardware 
parameter is / 1 /2 which in this model of computation is proportional to the 
ratio of arithmetic performance to the rate of data transfer. Other analyses 
of performance degradation due to data communication problems are given 
by Lint and Agerwala (1981) and Lee, Abu-Sufah and Kuck (1984).

(iv) The (r^, S1/2, / i /2) benchmark
In the above discussion we have considered the overheads of synchronisation 
for constant / (part (»)), and the effects of communication delays without 
synchronisation (part (Hi)). In this section we consider a more general 
benchmark which includes both effects, and in particular shows the variation 
of s 1 /2 with f

The vector A is to be computed as the element-by-element vector multiply 
of the vectors B  and Q  by dividing the work as equally as possible amongst 
p processors. The vectors B  and C  initially reside in the main system memory 
(wherever that might be), and the result vector A is to be assembled in the 
same memory. Thus each of the p processors must be sent a portion of the 
vectors B  and C, perform the partial vector multiply, and return its 
portion of the result vector A to main memory. The job is finished only when 
all the processors have returned their partial vectors to main memory. That 
is to say, a synchronisation point must be programmed after the calculational 
part of the program (e.g. by including a barrier statement) and included in 
the timing measurement. In order to vary the ratio of computation to 
communication, the multiplication of the partial vectors B  and C  in each 
processor is repeated 3 / times. This maintains the previous definition of /, 
since there are three I/O  operations (input B, C; output A). Furthermore, 
when / =  1 / 3 , the vector operation is performed once as described in part (ii).

As before we describe the overall timing of the benchmark as follows:

(1.23)

However, now we separate the synchronisation, communication, and 
calculational parts of the time and consider the case that arithmetic and 
communication cannot be overlapped in time. Then the times add and
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(1.24a)

t = t(start-up and synchronisation) -I- t(communication) + t(calculation)
(1.24b)

where the three terms are identified respectively with start-up and 
synchronisation, communication and calculation as shown. The terms given 
in the equation are explained as follows. The term s is the total number of 
floating-point operations (flop) performed in all processors; m is the number 
of I/O  data words in the work segment (see below); /  equals s/m  and gives 
the floating-point operations per I/O  data word; t0(p) is the time for the 
null job (s = m = 0); tt(p) is the time per I/O  word on average; and ta(p) is 
the time per floating-point operation, on average.

The problem variable m quantifies the communication that a work segment 
has with the rest of the program. If, as is usual, the body of a work segment 
is written as a subroutine, it is the number of words contained in all the 
input and output variables and arrays of the subroutine, for all instantiations 
of the subroutine. In the case of the above benchmark, if the vector length 
is n, then m = 3n (two input vectors and one output vector), and s = 3nf] 
because the arithmetic is repeated 3 / times.

A little rearrangement shows that

(1.25a)

and
(1.25b) 

or

(1.25c)

where

(1.25d)

The interpretation of equations (1.25) is as follows. The primary hardware 
parameters which determine the behaviour of the m im d  computer are the 
time parameters t0, tt and ta. However, these only affect program performances 
through the ratios in equation (1.25d). The peak performance is ?*,, the 
inverse of the arithmetic time. The peak value of s1/2, namely s1/2, is the ratio 
of synchronisation to arithmetic time, i.e. the maximum possible arithmetic 
lost during synchronisation. The communication parameter / 1 /2 is the ratio 
of the communication time to the arithmetic time, i.e. the ratio of computation
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rate to communication rate (i.e. bandwidth). The overall performance 
parameters (r^, s1/2) are less than the peak hardware values because of the 
communication delays, and this variation is expressed by the pipeline function 
in equation (1.25a).

Having computed the overall parameters, the actual average performance 
is given in equation (1.25b), where the last expression shows how the peak 
rate is degraded by communication delays (first pipe function), and by 
inadequate grain size (second pipe function). In equation (1.25b) it must be 
remembered that s 1 /2 is a function of/  through equation (1.25a). The true 
variation of average rate with/ and s is seen more clearly in equation ( 1.25c), 
where only the true hardware parameters are used. In equation (1.25c) the 
first term in the denominator comes from the arithmetic time, the second 
term comes from the communication time, and the third term from the 
synchronisation time.

Figures 1.22(a) and (b) show measurements of the overall performance para-
meters (r^, s1/2) of equation (1.23) for the (r^, s1/2, / 1/2) benchmark applied to the 
IBM /CA P parallel computer system (see §2.5.9), in which ten FPS 164 
computers are attached by channels to an IBM 4381 host (Hockney 1987d). 
Since f l/2 = 2 the upper curves for / =  100 in these figures correspond to 
and s1/2, and the lower curves show the performance degradation which occurs 
when /  is small. The broken and chain curves (fit 1 and fit 2) are fits obtained 
using equations (1.25) with the following parameters:

(1.26)

These parameters tell us that in order to be suitable for solution on this 
computer system, a problem should have/ =  8  flop/ref giving/ / / 1 /2 = 4 and 
an asymptotic performance of 80% of the peak performance. The s 1 /2 for 
ten processors would be about 400 kflop, and for 80% effectiveness one 
would need a grain size of 4 x s 1 /2  ~  1.6 Mflop. This is the numeric meaning 
of the statement that this system is loosely coupled and therefore only suitable 
for the solution of problems exhibiting large-grain parallelism (of the order 
1 Mflop). Fortunately, many problems of physics do satisfy this criterion 
(Fox and Otto 1984).

(v) Program performance
The previous sections have considered only the timing of a single work 
segment which can be distributed amongst p processors. To consider a complete 
program comprising many work segments, one must take into account that
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FIGURE 1.22 (a) The asymptotic performance, r«,, as a function of 
the number of processors used, p, with /  =  100 and / =  1/3, for the 
IBM /C A P . The top curve is effectively /^(p). The broken and chain 
curves for fit 1 correspond to the values (1.26) in equation ( 1.25a). (b ) The 
synchronisation parameter, s 1/2, as a function of the number of processors 
used, p, with /  =  100 and / =  1/3, for the IBM /C A P. The top curve is 
effectively s 1/2(p). The broken and chain curves for fit 2 correspond to 
the values (1.26) in equation (1.25a).

112
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some of these might contain code that has to be executed sequentially on a 
single processor in order to get the correct results. Let us therefore divide 
the time of execution of the original sequential program, 7"i, into two parts

(1.27)

where £ser is the time for the essentially serial part of the code, and £par is the 
time, when executed sequentially, for the part that can be executed in parallel. 
When the program is parallelised the best parallel time will be

(1.28)

where only the time of the second term is reduced by parallel execution. We 
have, of course, assumed that synchronisation and communication time are 
negligible. If we define the performance R (p) of the program to be the inverse 
of the executing time, then

(1.29a)

which can also be written

(1.29b)

where

(1.29c)

Thus the asymptotic rate R is the inverse of the time for the part of the 
program that could not be parallelised. This occurs in the model when the 
number of processsors p —► oo which reduces the time for the parallelisable 
part of the program to zero. We notice that the functional form of the 
approach to the asymptotic rate is again that of the pipeline function 
pipe(x), and p1/2, as usual, is the number of processors required to achieve 
half of the asymptotic performance.

The usual parameter that is used to compare the performance of algorithms 
is the speed-up, Sp (Kuck 1978), which is defined as

(1.30a)

where Ti and Tp are, respectively, the times for the algorithm to run on one 
or p processors. From which we conclude

(1.30b)
= (fraction of original program time not parallelised) *.
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Both the pipeline function equations (1.29b) and (1.30a) are expressions 
of Amdahl’s law (Amdahl 1967), that the performance or speed-up cannot 
exceed that obtained if the vectorised or parallelised parts take zero time. 
The maximum rate is then determined by the time for the unvectorised or 
unparallelised part of the program.

Many parallelised programs are found to follow the functional dependence 
of equation (1.29b), at least for small values of p. In practice, however, as p 
becomes larger, synchronisation and other overheads usually increase rapidly 
with p, with the result that there is often a maximum in the program 
performance, and a subsequent reduction in performance as the number of 
processors further increases. This observed behaviour has been fitted to the 
function

In this formula the overhead of synchronisation is represented by the factor 
in braces, and the rapidity with which it increases with p is determined by n 
which we call the index of synchronisation. Clearly, it is desirable for it to 
be as small as possible.

The magnitude of the synchronisation overhead is determined by p, with 
larger values meaning a smaller overhead. The values of these parameters 
are likely to vary considerably between different computer software systems. 
The maximum performance occurs when p = p and has the value

As a practical example of parallelisation we have taken a large program 
for the simulation of electron flow in semiconductors, called FET6 , and 
converted it for parallel execution on the IBM /CA P system at IBM ECSEC, 
Rome (Hockney 1987c). The program calculates new positions and velocities 
of approximately 1 0 0 0 0  electrons step-by-step in time, and is completely 
described in Hockney and Eastwood (1981), Chapter 10. Each time-step 
comprises three stages: charge assignment, potential solution, and acceleration. 
During the acceleration stage the motion of all electrons is independent, so 
that this part of the program can be parallelised by giving 1 /p of the electrons 
to each of the p processors. Since this is the most time-consuming part of 
the time-step, the other parts of the time-step were not altered and thus form 
the sequential part of the program.

Figure 1.23 shows actual performance measurements of FET6  on multiple 
FPS 164s. The timing of the parallelised program is fitted well by equation 
(1.31a), in the range 1 ^ p ^  10, with the following parameters (equivalent 
speed-up ratios to R(\ )  are given in parentheses):

(1.31a)

(1.31b)



CHARACTERISATION OF PERFORMANCE 115

/?«> = 0.5

FIGURE 1.23 Absolute performance of the FET6 program on one to 
ten FPS 164s. Note that the performance reaches a peak of R for p 
processors. The measured values are fitted to equation (1.31a) with 
R o0 =  0.5, p 1/ 2 =  5.5, R =  0.25, p =  7.1 and n =  5. If the overhead of 
synchronisation could be eliminated the performance would follow the 
broken curve which asymptotes at R^.

(1.32)

The maximum value of the performance is then, from equation (1.31b),

(1.33)

We can interpret the significance of these parameters as follows. The value 
of p = 7.1 means that the parallelised program cannot usefully utilise more 
than seven processors, and in this sense is reasonably well matched to the 
ten-processor /CAP system. Values of (R,p,n) depend on the synchronisation 
overhead. If it were possible to reduce this substantially by additional 
synchronisation hardware or improvements to the software, the effect would be 
represented by increasing p-> oo and R ^ R ^ .  Since synchronisation takes 
place on the host, this could be achieved by providing a faster host computer 
on the /CAP system. The parameter R ^  is thus the maximum possible 
performance for the program when synchronisation time is negligible. Ninety 
per cent of this performance can be achieved if the number of processors 
p = 9p1/2 = 50, which indicates that this particular program would benefit 
from the use of more processors than the ten that are available on the Rome 
/CAP system, provided the synchronisation overheads are substantially 
reduced.

In figure 1.23 ideally the performance would follow the claim line pRl5 
along which the performance is p times that for a single processor (this 
is the ideal of so-called linear speed-up). However, because only part
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of the program is parallelised, Amdahl’s law limits the performance 
to less than R^ = 0.5 time-step/s. Thus the Amdahl wall in this plot is an 
Amdahl ceiling.

In the absence of synchronisation overheads the performance would follow 
the pipeline function with p1/2 = 5.5 processors, and this is shown as the 
broken curve. However, after about five processors, synchronisation overheads 
rapidly reduce the performance, which is seen to peak at p = 7.1 processors 
when the performance is R = 0.25, a speed-up of only S7 = 3.1 compared with 
the performance on a single processor is found.

This behaviour of program performance as a function of number of 
processors is typical of m im d  computer systems. One’s concern is to 
produce hardware and software that make R^ and p as large as possible, 
and p 1/2 as small as possible.



Pipelined Computers

2.1 SELECTION AND COMPARISON

In this chapter we describe in detail the architecture, technology and 
performance of several pipelined computers. First we discuss the latest models 
of the CRAY series of supercomputers, that is to say the CRAY X-MP and 
CRAY-2. These have been by far the most commercially successful, and some 
88 of the original CRAY-1 computers, and its successors the CRAY-1S, -1M 
and X-MP had been installed by 1985. Three prototype one-cpu CRAY-2 
computers were installed in test sites in 1984/5 and a total of 13 full 4-c pu  
systems had been installed by the end of 1987.

The second computer series described, the CDC CYBER 205, is now also 
well established with sales in the region of 30 by 1985. Its architecture has 
a long history going back to the CDC STAR 100 which was conceived in 
the mid-1960s, and is sufficiently different from that of the CRAY series to 
make a separate study worthwhile. The future of this line lies with the ETA10, 
which can be described as eight CYBER 205 cpus  attached to a common 
memory, and implemented in cm o s  technology cooled by liquid nitrogen. 
With this interesting development one can be assured that the CYBER 205 
architecture will also be of lasting interest.

The three Japanese vector computers, the FUJITSU VP 100/200, 
HITACHI S-810/10 and 20, and the NEC SX1/SX2, appeared later and 
clearly owe much to the CRAY and CYBER 205 architectures. These are so 
similar that we treat them together in a comparative fashion.

The last series of pipelined architectures that we discuss is the Floating 
Point Systems 164 and 164/MAX. These computers have almost the same 
architecture as that of the earlier FPS-120B and FPS-100, and over 5500 of 
this series of computers had been installed by 1985. They have the advantage 
of being within the price range of a wide range of industries and universities, 
and when properly programmed can give exceptional price performance. Of
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particular interest is the availability of matrix accelerator, or MAX, boards, 
up to 15 of which can be attached to an FPS-164. Each of these is equivalent 
to two additional FPS-164 c pu s  under single-instruction control. For the 
right matrix problems, performance in the supercomputer range can be 
obtained at minicomputer cost. A further interesting development is that 
by Clementi at IBM Kingston and Rome, and Wilson at Cornell University, 
which combines about ten FPS-164s to a host computer, making an economic 
m im d  system for the solution of large scientific problems. For these reasons, 
the FPS-164 architecture is also certain to be of lasting significance.

In the comparisons below we will describe: the physical layout, in order 
to give an idea of the size and appearance of the machine; the overall 
architecture, in order to appreciate the main storage areas, data paths, transfer 
rates and computing elements; the technology, in order to be aware of, for 
example, the level of integration; the instruction set, in order to give an idea 
of its richness; the software, in order to gauge the amount available and its 
breadth; and then finally the performance is judged by measurements of 
and n l/2 obtained where possible by running programs on the computers.

2.2 THE CRAY X-MP AND CRAY-2

The CRAY X-MP and CRAY-2 are both manufactured by Cray Research 
Inc. f  in Chippewa Falls, Wisconsin, USA. They are derivatives of the CRAY-1 
computer which was designed by Seymour Cray and first installed at the Los 
Alamos Scientific Laboratory in 1976 (Auerbach 1976b, Hockney 1977, 
Russell 1978, Dungworth 1979, Hockney and Jesshope 1981). The develop-
ment of the CRAY X-MP, which is a multiprocessor version of the CRAY-1, 
is due to Steve Chen and his team (Chen 1984) in Chippewa Falls. A two-cpu 
version was announced in 1982, and a four-cpu version in 1984. Data on the 
CRAY X-MP is taken primarily from the CRAY X-MP Computer Systems 
reference manuals (Cray 1982, 1984a, 1984b). The next development in this 
series is the CRAY Y-MP, which was announced in 1987. This is anticipated 
to have a clock period of 4-5 ns, and to comprise of up to 16 c pu s  and have 
32 Mword of common memory, backed up with a secondary memory of 
1 Gword.

The CRAY-2, on the other hand, has been developed as a separate project 
by Seymour Cray at his Chippewa Falls laboratory. It uses more advanced 
circuit technology and a new concept in cooling. This permits the use of the

t  Corporate headquarters: 608 Second Avenue South, Minneapolis, Minnesota 55402, 
USA. UK Office: Cray Research (UK) Ltd, Cray House, London Road, Bracknell, 
Berks RG12 2SY.
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fastest clock currently, circa 1988, found in production computers with a 
period of 4.1 ns. The CRAY-2 was announced as a produce in 1985 (Cray 
1985).

2.2.1 Physical layout
The most striking feature of all CRAY computers is their small size. This is 
well illustrated in figure 2.1 which shows a typical CRAY X-MP installation. 
At the centre is the CRAY X-MP itself which is housed in the same 
three-quarter cylindrical mounting that has been a characteristic of the earlier 
CRAY-1 and CRAY-1S computers. To the left is a quarter-cylinder housing 
the solid state device ( s s d ) which is sometimes referred to as a solid state 
disc, and to the right is another quarter-cylinder housing the I/O  subsystem 
(ios).

The CRAY X-MP comprises a central 4\ ft diameter cylindrical column 
6^ ft high, surrounded by a circular seat bringing the diameter at floor level 
to about 9 ft. The central column is divided into three 90° segments each of

FIGURE 2.1 A typical CRAY X-MP installation, showing the computer in the 
centre, the I/O  subsystem on the right and the solid state device ( s s d ) on the left. 
(Photograph courtesy of Cray Research Inc.)
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which has four wedge-shaped columns holding up to 144 circuit modules. 
Each module comprises a pair of circuit boards mounted on opposite sides 
of a heavy copper heat transfer plate which makes a good thermal contact 
with the cast aluminium vertical cold bars as shown in figure 2.2. These cold 
bars are the prominent vertical features seen in the central column of 
figure 2.1. Freon is circulated through stainless steel pipes inserted in the 
cold bars which are thereby cooled to 21 °C. The copper plate temperature 
is maintained at 25 °C and the module temperature between 48 and 54 °C. 
The seats around the base of the CRAY X-MP enclose power supplies and 
some plumbing associated with the distribution of the freon cooling. Two 
25-ton compressors are located externally to the computer room and complete 
the cooling system. A 175 kVA motor generator, also housed externally, 
supplies 208 V, 400 cycle three-phase primary power. The total power 
consumption of the machine is 128 kW, most of which must be removed by 
the freon cooling system. The CRAY X-MP occupies 45 square feet of floor

FIGURE 2.2 A vertical column of circuit boards on the CRAY X-MP. 
The boards are attached in pairs to copper coding plates which 
are clamped to the vertical freon-cooled aluminium cooling bars. 
(Photograph courtesy of Cray Research Inc.)
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FIGURE 2.3 A single 6 inch x 8 inch circuit board of the CRAY X-MP 
mounted with packaged integrated circuit chips. Each board has the 
capacity for a maximum of 144 chips. (Photograph courtesy of Cray 
Research Inc.)

space and weighs 5.25 tons. The ios and s s d  each occupy 15 square feet of 
floor space, and weigh 1.5 tons.

Figure 2.3 shows a double-layer module. Two circuit boards are attached 
to each of two copper plates and rigidly fixed to form a three-dimensional 
structure of four boards. As well as the connections within the circuit boards, 
cross connections are made in the third dimension between the four printed 
circuit boards. The four-board model then slides in grooves as shown in 
figure 2.2.

The CRAY X-MP obtains it high performance, in part, from the compact 
arrangement of its circuit boards that leads to short signal paths and 
propagation delays. This can be seen in figure 2.4, which shows the layout
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FIGURE 2.4 (a) The layout of memory and logic within the central column of the 
CRAY X-MP/48 showing the location of the four c pu s  and memory. (b ) Allocation 
of circuit board positions to units in one quadrant (i.e. cpu  1).

of the modules in the X-MP/48. There are twelve columns in total, forming 
the 270° arc of the CRAY X-MP housing. The central four columns house
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the four c pu s  and the left and right four columns the 8 Mword of main 
memory.

2.2.2 Architecture
The overall architecture of the CRAY X-MP can be described as one, two 
or four CRAY-1-like c pu s  sharing a common memory of up to 8 Mwords. 
The original two-cpu model introduced in 1982 occupied a three-quarter 
cylinder of 12 columns, as shown in figure 2.1. However, in 1984 the use of 
higher density chips allowed the two-cpu and one-cpu models to be housed 
in six columns, and a four-cpu model was introduced using the full 12 columns. 
The one-cpu model is available with 1, 2 or 4 Mwords of 76 ns static mo s  
memory, arranged in 16 banks (1 and 2 Mwords) or 32 banks (4 Mwords); 
and the two-cpu model with 2 or 4 Mwords of 38 ns ecl  bipolar memory, 
arranged in 16 and 32 banks respectively. The four-cpu model has 8 Mwords 
of ecl  memory arranged in 64 banks. The latter computer is called the CRAY 
X-MP/48 where the first digit gives the number of c pu s  and the second digit 
the number of megawords of shared memory.

The overall architectural block diagram in figure 2.5 is drawn for the 
CRAY X-MP/22 and X-MP/24. Each c pu  has 13 or 14 independent 
functional units working to and from registers (there are two vector logical 
units in the model X-MP/48). As in the CRAY-1, there are eight 24-bit 
address registers (AO,. . . . ,  A7), eight 64-bit scalar registers (SO,..., S7) and 
eight vector registers (VO, ..., V7), each holding up to 64 64-bit elements. 
The address registers have their own address integer add and integer multiply 
pipelines, and the scalar and vector registers each have their own integer add, 
shift, logical and population count pipelines. Floating-point arithmetic 
operations are performed in three pipelines, for multiply, add and reciprocal 
approximation (r a ), which take their arguments from either the vector or 
scalar registers. Note that this means scalar and vector floating-point 
operations cannot be performed simultaneously, as they can in computers 
with separate scalar and vector units (e.g. CYBER 205). A 7-bit vector length 
(v l ) register specifies the number of elements (up to a maximum of 64) that 
are involved in a vector operation, and the 64-bit vector mask (v m ) register 
has one bit for each element of a vector register and may be used to mask 
off certain elements from action by a vector instruction.

In order to perform arithmetic operations, data must first be transferred 
from common memory to the registers. This may be done directly, or in the 
case of the S and A registers via block transfers to the T and B buffer registers, 
each of which holds 64 data items. The maximum data transfer to the S and 
A registers is one word every two clock periods, and to the T and B registers 
combined is 3 words per clock period. Transfers to and from the vector
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FIGURE 2.5 Architectural block diagram of a CRAY X-MP/2, showing the two 
c pu s , memory and principal data paths. The various letters are Cray’s abbreviations 
for various registers in the machine (i.e. A, B, S, T and V). These are followed by 
a decimal number showing the number of registers. The 64' represents the length of 
register in bits, sb, s t , v m and v l  are other registers, see text. The ending ‘F ’ designates 
floating-point operations.

registers must be made directly with common memory and three 64-bit data 
paths are provided for this purpose. Two of the paths transfer input arguments 
from common memory to the vector registers and the third transfers the 
result from the vector register to common memory. Because the data paths 
are separate, two input arguments and one result can be transferred per clock
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period, giving a data transfer rate of 315 Mword/s per c pu . A four-cpu 
machine has therefore a memory bandwidth of 1.2 Gword/s. If there is no 
contention for memory access (see next paragraph), the common memory 
can read and write data at this rate. Since, when full, each floating-point 
pipeline requires two new arguments and generates one result every clock 
period, the bandwidth to common memory is just sufficient to support one 
floating-point arithmetic pipeline from common memory. If other pipelines 
are to be simultaneously active, this is only possible if intermediate results 
are stored in the registers and not returned to common memory. The 
register-oriented architecture of the CRAY machines is designed to be used 
in this way. The advantage of providing registers is that, when properly 
programmed, there is less demand for common memory bandwidth and high 
rates of computation can be achieved for the inner-loops of calculations. The 
cost is the greater complexity of programming that is required to achieve the 
optimum use of the registers, whether this is done by a compiler or by hand 
coding in assembler.

There are four ports into common memory for each c pu , one of which 
(labelled I/O ) is reserved for use by the input/output subsystem and the 
solid state device. The three other ports (labelled A, B, C) are available to 
support the data paths to the registers described in the last paragraph. All 
loads and stores to the A and S registers use port C. Block transfers from 
common memory to the B registers use port A, and to the T registers use 
port B. Block stores to common memory from the B and T registers use port C. 
Transfers from common memory and the vector registers use all three ports: 
ports A and B to load the registers from memory, and port C to store into 
memory. This means that three memory accesses can be made per clock 
period. With four ports from up to four processors accessing up to 64 memory 
banks, the memory interconnection system on the CRAY X-MP is complex. 
Cheung and Smith (1984) have analysed the system and suggested some 
improvements. For clarity, we describe now the X-MP/24 with two c pu s  and 
32 memory banks. The extension to more c pu s  and more banks follows the 
same pattern.

The memory is divided into four sections, each with eight memory banks 
of 128 Kword. (The larger X-MP/48 has 16 banks per section, with each 
consecutive four banks in the same section.) There is an independent data 
path, called a line, from each c pu  to each section of memory. The four lines 
on each c pu  are connected by a crossbar switch to the A, B, C and I/O  data 
paths coming from the functional units. Addressing is interleaved across the 
sections such that the two least significant bits of the address give the section 
number, and the five least significant bits give the bank number. When 
accessed a line is busy for one clock period, and a bank for four clock periods.
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Memory contention on the X-MP can then take several forms. Bank 
conflicts, with which we are familiar on other systems, occur when a bank 
is accessed whilst it is still processing a previous memory reference. A 
simultaneous conflict arises when a bank is referenced simultaneously on the 
independent lines from different c pu s . This is resolved by alternating the 
priority of the c pu s  every four clock periods. Finally there is a line conflict 
within a c pu , which occurs when two or more of the A, B, C and I/O  data 
paths make a memory request to the same memory section (i.e. want the 
same line) in the same machine cycle. Line conflicts are resolved by giving 
priority to a vector reference with an odd stride over that with an even stride. 
If both references have the same parity the first reference to have been issued 
has priority. Memory references are resolved, and waits are initiated if conflicts 
arise, on an element-by-element basis during vector references. This means 
that the time interval between elements of a vector reference is not predictable 
or necessarily regular. Since these elements feed into the arithmetic pipelines, 
stages of a pipeline may become temporarily empty. These holes or ‘bubbles’ 
in the pipeline cause a degradation in average arithmetic performance, 
depending on the detailed pattern of memory referencing. Since contention 
for memory may depend on activity in c pu s  that are not under the control 
of the programmer the degradation is likely to be unpredictable. However, 
in the very worst possible case of four c pu s  each making three memory 
accesses per clock period to the same bank, each c pu  would only satisfy an 
access every 16 clock periods, compared to a maximum rate of three accesses 
every clock period, giving a theoretical maximum degradation of memory 
bandwidth by a factor of 48. Cheung and Smith (1984) analyse more realistic 
patterns of memory access and conclude that performance is typically 
degraded by 2.5 to 7% on average due to memory contention, and in 
particularly bad cases by 20 to 33%.

The solid state device, or ssd , is a solid state mos  storage device ranging 
from 64 to 1024 Mbytes (i.e. up to 128 Mword arranged in 128 banks) which 
can be used in place of disc storage for the main data of very large user 
problems, and by the operating system for temporary storage. It is therefore 
often referred to as a solid state disc, and acts like a disc with an access time 
of less than 50 //s. It may be linked to an X-MP/48 via one or two 
1250 Mbyte/s channels, and to an X-MP/2 by one such channel. The 
X-MP/1 may be connected by a 100 Mbyte/s channel.

Front-end computers, magnetic tape drives and disc storage units are 
always connected to the CRAY X-MP by an I/O  subsystem (ios). The first 
was introduced in 1979 to improve the I/O  performance of the original 
CRAY-1 computer with both disc and magnetic tape storage. The enhanced 
version introduced in 1981 is an integral part of all CRAY X-MP installations,
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and comprises two to four 16-bit I/O  processors ( i o p ) and an 8 Mword buffer 
memory. The first io p  handles communication with up to three front-end 
processors, and the second io p  handles communication between up to 16 disc 
units and the X-MP common memory via the buffer memory. The third and 
fourth io ps  are optional, and each may be used to attach a further 16 disc 
units. The DD-49 disc introduced in 1984 has a capacity of 1200 Mbyte and 
a 10 Mbyte/s transfer rate. The ios communicates with the CRAY X-MP 
via two 100 Mbyte/s channels. There is also an optional direct path between 
the ios and ss d  with a transfer rate of 40 Mbyte/s.

All the c pu s  of a CRAY X-MP share a single I/O  section which 
communicates with the ios and ss d . A 1250 Mbyte/s channel is provided for 
ss d  data transfer, and two 100 Mbyte/s channels for ios transfers. Four 
6 Mbyte/s channels transfer I/O  requests from the c pu s  and other computers 
to the io ps .

Each c pu  has four instruction buffers, each holding 128 16-bit instruction 
parcels. On the X-MP/2 all eight memory ports are used for instruction 
fetch, which takes place at 8 words (32 parcels) per clock period. For this 
reason all other memory references on both processors are suspended during 
an instruction fetch from either processor. An exchange package of 16 64-bit 
words defines the status of a user job and may be exchanged in 380 ns.

The intercommunication section of the CRAY X-MP contains three 
clusters of common registers (five clusters on the X-MP/48) that may be 
accessed by all c pu s  for communication and synchronisation purposes. There 
is also a common clock that allows program timing to be made to the nearest 
clock period. The clock cycles of all c pu s  are synchronised. The common 
registers are eight 24-bit sb  registers, eight 64-bit s t  registers and 32 1-bit 
synchronisation or semaphore (s m ) registers. Instructions are provided to 
transfer their contents to the A and S registers.

The 13 functional units take data from, and return data to, the A, S, V 
and vector mask registers only. The functional units, which may all operate 
concurrently, fall into four groups. The clock time, t , of the first models of 
the CRAY X-MP was 9.5 ns. This was reduced to 8.5 ns on later models of 
the machine. We will use the value of 9.5 ns in the rest of this chapter.

Unit time
Functional unit (ns) (clock periods) =  /

Address units ( 24-bit)
(1) integer addition 19 2
(2) integer multiplication 38 4
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Functional unit (ns)

Unit time

(clock periods) =  /

S c a l a r  u n i t s  (  6 4 - b i t  )

(3) integer addition 28.5 3
(4) shift 19 or 28.5 2 or 3
(5) logical 9.5 1
(6) population count 28.5 or 38 3 or 4

F l o a t i n g - p o i n t  u n i t s  (  6 4 - b i t  )
(7) addition 57 6
(8) multiplication 66.5 7
(9) reciprocal approximation (ra ) 133 14

V e c t o r  u n i t s  ( 6 4 - b i t  )
(10) integer addition 28.5 3
(11) shift 38 4
(12) logical 19 2
(13) population count 57 6

M a i n  m e m o r y  o p e r a t i o n s  ( 6 4 - b i t  )

load scalar register from main memory 133 14
load vector register from main memory 769.5 81
(64 elements)

AH the functional units are pipelined and may accept a new set of arguments 
every clock period. In the above list the unit time is the length of the pipeline 
in nanoseconds or clock periods. In the latter units, it is therefore the 
variable / of §1.3.1. In the case of scalar instructions the above is the time 
from instruction issue to the time at which the scalar result is available (i.e. 
ready) in the result register for use by another instruction. In the case of a 
vector instruction an additional clock period is required to transfer each 
operand from a vector register to the top of a functional unit, and a further 
clock period is required to transfer each result element from the bottom of 
the pipeline to the result vector register. The timing formula for a vector 
instruction processing n elements is therefore

(2.1a)

Comparing equation (2.1a) with the general formulae (1.6), we see that the 
start-up time and half-performance length for register-to-register vector 
operations are respectively given by:

(2.1b)
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The address units are for address, index and other small-range calculations 
with integers less than about 16 million in two’s-complement arithmetic. 
Data are taken from and returned to the A registers. The scalar units operate 
exclusively on 64-bit data in the S registers and, with the exception of 
population count, return results to the S registers. Integer addition is in two’s 
complement arithmetic. Shifts may be performed on either the 64-bit contents 
of an S register (unit time 2 clock periods), or on the 128 bits of two 
concatenated S registers (unit time 3 clock periods). The logical unit performs 
bit-by-bit manipulation of 64-bit quantities and is an integral part of the 
modules containing the S registers. For this reason the data do not need to 
leave the S register modules and the function can be performed in one clock 
period. The population-count unit counts the number of bits having the value 
of one in the operand (unit time 4 clock periods) or the number of zeroes 
preceding the first one in the operand (unit time 3 clock periods). The resulting 
7-bit count is returned to an A register.

The vector units perform operations on operands from a pair of V registers 
or from a V register and an S register. The result is returned to a V register 
or the vector mask register. Successive operand pairs are transmitted to the 
functional unit every clock period. The corresponding result emerges from 
the unit / clock periods later, where / is the functional unit time. After this, 
results emerge at the rate of one per clock period. The number of elements 
that are processed in such a vector operation is equal to the number stored 
in the 7-bit vector length register (v l ). The elements used are the elements 
0, 1, 2, . .., up to the number specified. Some vector operations are also 
controlled by the 64-bit vector mask register (v m ). Bit n of the mask 
corresponds to element n of a vector register. The v m register is used in 
conjunction with instructions to pick out elements of a vector, or to merge 
two vectors into one (see §2.2.4). The vector integer addition unit performs 
64-bit two’s-complement integer element-by-element addition and sub-
traction. The vector shift unit shifts the 64-bit contents of vector elements or 
the 128-bit contents of pairs of adjacent vector elements. Shift counts are 
stored in the instruction or an A register. The vector logical unit performs 
bit-by-bit logical operations on the elements of a vector and also creates 
64-bit masks in the v m register.

The three floating-point functional units perform both scalar and vector 
floating-point operations. The arguments and results may therefore be either 
S or V registers. The 64-bit signed-magnitude floating-point number has a 
48-bit mantissa giving a precision of about 14 decimal digits, and a 16-bit 
biased binary exponent giving a normalised decimal number range of 
approximately 10"2500 to 10 + 25O°. Separate units are provided for floating-
point addition, multiplication and division. Division is performed in the
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reciprocal approximation and multiplication units by an iterative procedure. 
This approach makes possible the pipelining of the division operation.

The division algorithm to compute the ratio of two scalars S1/S2 is 
implemented by four machine instructions with the following actions:

reciprocal approximation (2.2a)

reciprocal iteration (2.2b)

multiplication by numerator (2.2c)

multiplication by correction (2.2d)

This can be recognised as the Newton iteration for the reciprocal of S2, 
because this problem is the same as finding the zero of the function

(2.3a)

which has the derivative

(2.3b)

The Newton iteration is defined by

(2.3c)

therefore

(2.3d)

where n is the iteration number. In the above code, instruction (2.2a) forms 
an approximation to the reciprocal of S2 using the reciprocal approximation 
unit. This approximation is stored in S3 and corresponds to x (n) in equations 
(2.3c,d). The reciprocal iteration instruction (2.2b) computes with one 
instruction the contents of the bracket in equation (2.3d) and is executed by 
the floating-point multiplication unit. The multiplication instruction (2.2c) 
multiplies the initial approximation to (S2)_1 by the numerator SI, and 
the multiplication instruction (2.2d) applies the correction specified by 
equation (2.3d). After one iteration the result is accurate to 47 bits, that is 
to say essentially the full precision of the 48-bit mantissa. The reason for 
multiplying by the numerator before applying the correction is that the 
instructions (2.2b) and (2.2c), although they use the same unit, may be started 
on successive clock periods; whereas instruction (2.2d), if it came first, would 
have to wait the completion of instruction (2.2b) because it requires the value 
of S4. With the ordering in equation (2.2) the division is complete in 29 clock 
periods corresponding to 2.8 Mflop/s. If the instructions (2.2) were replaced 
by vector instructions and placed in the order (2a, 2c, 2b, 2d), instructions

Multiplication
unit

r a  unit



THE CRAY X-MP AND CRAY-2 131

(2.2a) and (2.2c) would chain together (see three paragraphs ahead). The 
element-by-element division of two vectors can be accomplished at the 
asymptotic average rate of 27 Mflop/s.

Instructions on the CRAY X-MP are either one-parcel (16-bit) instructions 
or two-parcel (32-bit) instructions. Prior to execution, instructions reside in 
four instruction buffers, each of which can contain 128 one-parcel instructions 
or equivalent combinations of different length instructions. The buffers are 
filled cyclically from main memory. Whenever a required instruction is not 
present in the buffers, the next buffer in the cycle is completely filled by taking 
one 64-bit word (4 parcels) from each memory bank in parallel. There is a 
22-bit program counter (p ) containing the address of the next instruction to 
be executed, a 16-bit next instruction parcel (n ip ) to hold the next instruction, 
a 16-bit current instruction parcel (c ip ) to hold the instruction waiting to 
issue, and a 16-bit lower instruction parcel to hold the second parcel of a 
two-parcel current instruction.

An instruction can be issued (i.e. sent to the functional unit for execution) 
if the unit is not busy with a previous operation and if the required input 
and result registers are not reserved by any other instructions currently in 
execution. Different instructions place different reservations on the registers 
that they use, and the manual (Cray 1976) should be consulted for details. 
Broadly speaking a vector instruction reserves the output vector register for 
the duration of the operation and the input vector register until the last 
element has entered the top of the pipeline. However if a vector instruction 
uses a scalar register this is not reserved because a copy of the scalar is kept 
in the functional unit. The scalar register may therefore be altered in the 
clock period after the vector instruction is issued. Similarly the value of the 
vector length register is kept by the functional unit and the v l  register can 
be changed immediately after instruction issue. Hence instructions with 
different vector lengths can be executing concurrently. In the case of scalar 
instructions only the result register is reserved by the instruction, in order 
to prevent it being read by other instructions before its value has been 
updated.

A special feature of the CRAY X-MP architecture is the ability to chain 
together a series of vector operations so that they operate together as one 
continuous pipeline (Johnson 1978). The difference between unchained and 
chained operations is illustrated in figure 2.6. The upper diagram shows the 
timing for three vector instructions if chaining does not take place.

The time for unchained operation of a sequence of m vector instructions is

(2.4a)
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FIGURE 2.6 Timing diagram (a) for three unchained vector operations 
a, b and c and (b) for the same operations if they can be chained together. 
In this example s +  / =  10 and n =  50. The time sequence for the processing 
of the kih element is given by a horizontal line drawn k units down from 
the time axis. An element passes through a pipeline for an operation 
when this line crosses the trapezoid for that operation.

Expressed as a time per vector operation this becomes

(2.4b)

where the average asymptotic performance is

(2.4c)

and the average half-performance length is

(2.4d)

In the case of m chained vector operations we have

(2.5a)

The timing equation (2.4b) applies but now with

(2.5b)
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(2.5c)

The second equalities in equations (2.4d) and (2.5c) are the results if all the 
pipes have the same start-up time and pipelength, as will frequently be 
approximately true. We see from the above that the average behaviour of a 
sequence of unchained vector operations is the same as the behaviour of a 
single operation. However, if m vector operations are chained together, both 
the asymptotic performance and the half-performance length are increased 
m-fold. This effect was noted previously in Chapter 1 as arising from 
the replication of processors. In the case of chaining it arises because 
the m pipelines are working concurrently which similarly increases both 
performance, r^, and the amount of parallelism, n 1/2. In the case of unchained 
operation the pipelines are working sequentially and there is consequently 
no increase in the average rap' of computation or the parallelism.

The architecture of the CRAY X-MP can be conveniently summarised 
using the a s n  notation of §1.2.4. A short description, ignoring I/O  
and the details of the register connections, but still presenting the essential 
computational features of the machine, would read:

2.2.3 Technology
The main 8 Mword memory of the CRAY X-MP/48 is composed of either 
bipolar or static mo s  64 Kbit v l s i chips with an access time of 38 ns or four
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clock periods. In contrast to the CRAY-1, which used 4/5 NAND gate chips, 
the logic circuits of the CRAY X-MP and the A and S registers are made 
from 16-gate array integrated circuits with a 300-400 ps propagation delay. 
As in the CRAY-1, the backwiring between modules is made by twisted pairs 
of wires.

2.2.4 Instruction set
The CRAY X-MP has approximately 128 instructions (a 7-bit operation 
code in most but not all instructions). The majority of the instructions are 
three-address instructions and specify the source of two input operands and 
the destination of the result. Since all functional units work register-to-register, 
only three bits are required to specify a source or destination, hence the 
operation code and three addresses just fit into a 16-bit single-parcel 
instruction. All but about 18 of the instructions are single-parcel. Instructions 
referring to a main-memory address (22 bits) for block transfers or branching 
require two parcels and are 32-bit. Instructions containing 22-bit constants 
for transfer to the A or S registers also require two parcels.

The instructions provide the range of logical, shift, branch, integer and 
floating-point arithmetic that one would expect from the nature of the 13 
functional units. We give below examples in the notation of the CAL 
assembler language. The format of the instruction is

( 2.6 )

II parcel 1 || parcel 2 1|

Read /Write:
B/fc, Ai ,A0 Read (Ai) words to B register jk  from (AO)
,A0 TjkM Store (A i) words from T register jk  to (AO)
Ai exp,Ah Read from ((Ah) + jkm) to Ai. (AO = 0, jkm = exp)
exp,A/i Si Store (Si) to ((Ah) + jkm). (A0 = 0,jkm = exp)
Vi ,A0,Ak Read (VL) words to Vi from (A0) incremented by (Ak)

> o > V/ Store (VL) words from V/ to (A0) incremented by (Ak)
A/ s i Transmit (S;) to Ai
Bjk Ai Transmit (Ai) to Bjk
Si V k Transmit (Tjk) to Si
SMyTc 1 Set jkth semaphore register
Ai SB, Read jth  shared B register

Control
J Bjk Branch to (Bjk)
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R exp

JSZ exp
JAP exp

Logic:
Si Sj & S/c
Vi- Sj'.Vk
s o Si < exp
Si Si.S/ < A/c

Arithmetic:
Si exp
Ai Aj + A/c
Si Sj*Sk
vi- Sj*FVk
si- /Hsy
vi \ j * \ \ k

Miscellaneous:
VL A k
Si- VM
Si RT
Ai PS,
A i ZSj

Return branch to ijkm (=  exp); set BOO to instruction 
counter

Branch to ijkm ( = exp) if (SO) = 0 
Branch to ijkm ( = exp) if (AO) positive

Logical product of (Sj) and (S/c) to Si 
Logical sum of (Sj) and (V/c) to Vi 
Shift (Si) left jk  ( = exp) places to SO 
Shift register pair (SiSj) left (A/c) places to Si

Transmit jkm ( = exp) to Si
Integer sum of (Aj) and (A/c) to Ai
Integer product of (Sj) and (S/c) to Si
Floating product of (Sj) and (V/c) to Vi
Floating reciprocal approximation of (Sj) to Si
2.0—product of (V/) and (V/c) to Vi; reciprocal iteration

Transmit (A/c) to VL 
Transmit (VM) to Si 
Transmit (real-time clock) to Si 
Population count of (Sj) to Ai 
Leading zero count of (Sj) to Ai

In the above, parentheses around a register name mean the contents of that 
register, and exp can be replaced by a simple arithmetic expression, the value 
of which is placed in the instruction.

Two instructions of the CRAY X-MP merit special explanation. These are:

Set Mask—the 64 bits of the vector mask (VM) register correspond 
one-for-one to the 64 elements of a vector register. If the element satisfies a 
condition the corresponding bit of VM is set to one, otherwise it is zeroed. 
The conditions are zero, non-zero, positive or zero, negative. Thus:

VM V5, Z set VM bit to 1 where V5 elements are zero,
VM V7, P set VM bit to 1 where V7 elements are positive or zero.

Vector Merge—the contents of two vector registers Wj and V/c are merged 
into a single result vector Vi according to the mask in the VM register. If 
the /th bit of VM is 1 the /th element of Wj becomes the /th element of the 
result register, otherwise the /th element of V/c becomes the /th element of 
the result register. Wj may alternatively be a scalar register. The value in the 
vector length register determines the number of elements that are merged.
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Thus:

Vi Vj\Wk & VM merge Wj and V/c into Vi according to the
pattern in VM,

V7 S2!V6 & VM merge S2 and V6 into V7 according to the 
pattern in VM.

The purpose of the mask and merge instructions is to permit conditional 
evaluation with vector instructions. Consider, for example, the evaluation of

(2.7)

in which A(I)  is to take the value of expression 1 if C(7) is zero or positive, 
or the value of expression 2 if C(7) is negative. If we assume that A(I)  and 
C(7) are stored in element (7 — 1) of, respectively, vector registers V3 and 
V4, and VL contains the value of N (assumed for simplicity ^64) then the 
above code can be implemented using vector instructions as follows:

(1) evaluate expression 1 for all elements and place in V1;
(2) evaluate expression 2 for all elements and place in V2;
(3) VM V4, P set VM bit to 1 where V4 element ^ 0 ;
(4) V3 VI !V2 & VM merge VI and V2 according to VM.

We note that in this method expression 1 and expression 2 must be evaluated 
for all elements, even though only N of the 2N results will be used in the 
final merged vector V3. This is clearly wasteful of arithmetic but does allow 
the use of vector instructions throughout. Alternatively the FORTRAN code 
(2.7) can be implemented with scalar instructions, in which case one would 
examine the sign of C(7) element-by-element and evaluate either expression 1 
or expression 2 as indicated, but not both. In this case no unnecessary 
arithmetic is performed; however the scalar arithmetic used is slower than 
the vector arithmetic of the first method. Clearly there will be some breakeven 
vector length above which the vector merge method is faster than evaluation 
with scalar instructions.

Two situations cause particular problems to parallel computers. These can 
be described as the scatter and gather operations, which can be defined by 
the following FORTRAN code:

(1) Scatter

(2.8a)
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(2) Gather

(2.8b)

In either case the integer array INDEX contains a set of indices which may 
specify addresses that are scattered arbitrarily over the main memory of the 
computer. A scatter operation distributes an ordered set of elements Y(7) 
throughout memory, according to the pattern of addresses in the array 
INDEX. Conversely the gather operation collects the scattered elements of 
X and sorts them into the ordered array Y. Such operations occur in sorting 
problems; in reordering as, for example, the unscrambling of the bit-reversed 
order of the fast Fourier transform (see §5.5.2); and in the charge assignment 
(scatter operation) and field interpolation (gather operation) steps of a 
simulation code using a particle-mesh model (see Hockney and Eastwood 
1981).

CRAY X-MP models prior to the four-cpu announcement in 1984, and 
the earlier CRAY-1 and CRAY-1S computers, had no special hardware or 
instructions for implementation of scatter and gather operations. Such 
loops as (2.8) had to be executed by scalar instructions, and had a 
rather disappointing performance of about 2.5 M op/s (Hockney and 
Jesshope 1981). The CRAY X-MP/4, however, provides vector scatter/gather 
instructions, and also related compress index instructions that permit these 
operations to execute at much higher vector speeds:

,A0, V/ V/ vector scatter Vy using indices in Vi
Vi ,A0, V/ vector gather into Vi using indices in Vy
Vi, VM Vy, Z compress index of zero Vy, i.e. obtain indices of

zero elements of Vy as a compressed vector 
in Vi, and set VM = 1 in corresponding bit 
positions.

The gather instruction is executed on either of the two read ports, and the 
scatter instruction in the write port. The compress index instruction is 
executed in the vector logical unit.

Using these instructions the scatter loop (2.8a) can be implemented by

VO ,A0, 1 vector
VI ,A0, 1 vector
,A0, VI VO vector

and the gather loop by

VO ,A0, 1 vector
VI ,A0, VO gather
,A0, 1 VI vector

load Y(I) into VO
load INDEX(I) into VI (2.8c)
scatter to X(INDEX(I))

load INDEX(I) into VO 
X(INDEX(I)) into VI (2.8d)
store Y to common memory
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The method of vectorising conditional expressions explained in connection 
with the vector merge instruction is inefficient because the arithmetic for 
both alternatives of the IF statement in (2.7) must be performed, even though 
only one alternative is needed—the unwanted results being discarded in the 
merge operation. If the number of elements that are to be changed by the 
IF statement is a small proportion of the total, a better strategy is to pick 
out the indices of the vector elements satisfying the condition using the 
compress index instruction, and subsequently gather the elements into a 
compressed vector. The arithmetic is then performed only on the compressed 
vector which is much shorter than the original. The results can be 
subsequently scattered back to their original location. As a trivial example 
illustrating this situation, consider the loop

(28e)

in which we assume that the number of non-zero elements in X  is small. This 
can be most effectively executed by the following code:

VO ,A0, 1 vector load X(I)
VI, VM VO, N put indices of non-zero values of X(I) in VI,
V5 VI V5 and V6; and set corresponding elements of
V6 VI VM to 1

SI VM put vector mask in SI
A1 PS1 count population of ones in SI
VL A1 set length of compressed vector in VL register

(2.8f)

V2 ,A0, VI vector gather X(I)
V3 ,A0, V5 vector gather Y(I)
V4 V2 + FV3 Y(I) = Y(I) + X (I)on compressed vectors
,A0, V6 V4 vector scatter of Y(I) to original positions 

in memory

As in the previous case, the testing must be performed on all N elements of 
the vectors, however, the arithmetic (which could be substantial in a realistic 
example) is only performed on the compressed vectors. If the pattern of 
memory access avoids memory contention, the four final vector instructions 
of (2.8f) chain together and can execute at the full vector speed of one element 
per clock period.

2.2.5 Software
The principal new feature of the CRAY X-MP software compared to that



THE CRAY X-MP AND CRAY-2 139

previously described for the CRAY-1 is the provision of system routines to 
allow the multiple c pu s  to cooperate in the solution of a single user problem. 
This facility is called multi-tasking on the CRAY X-MP and concerns 
provision for synchronising the operation of the multiple c pu s . In other 
computing systems, these may be called provisions for parallel, m im d  or 
multi-instruction programming, or for multiprocessing. CRAY reserve the 
term multi-tasking for parallel programming at the subroutine level, in which 
the unit of work that is handed for execution to a c pu  is a subroutine, and 
preferably a large one. Such a unit is called a task. The software provides 
three basic facilities: first for initiating and waiting for such tasks (the fork /join 
or TASKS software), secondly for protecting critical sections of code that 
must be executed by only one c pu  at a time (the LOCKS software), and 
thirdly for synchronising sequences of events occurring in different tasks (the 
EVENTS software). All facilities are invoked by calls to FORTRAN routines 
in the standard multi-tasking library.

A task is defined in the normal way as a subroutine and is initiated by

CALL TSKSTART (taskid, name, list)

where taskid is the name of a three-element integer array identifying the task, 
name is the name of the subroutine, and list is a list of any arguments to the 
subroutine. A call to TSKSTART defines a new logical c pu  which has a 
one-to-one correspondence with the task and puts it into a queue for 
execution. The actual physical c pu  which executes the task is chosen by the 
multi-tasking software, and is not within the gift of the programmer. This 
has the advantage that multi-tasking programs written for a CRAY X-MP 
do not have to be aware of the number of c pu s  available, and therefore will 
execute without change on a one-, two- or four-cpu model.

A multi-tasking program will always have a control program, which will 
make one or more CALLS to TSKSTART at a point in the program where 
time can be saved by giving independent pieces of work to other c pu s . Such 
a point is called a fork in the program. The companion facility is

CALL TSKWAIT (taskid)

which makes the control program wait until the task identified by taskid has 
finished. If this is done for all the tasks that were initiated, one has produced 
a join in the program (or synchronisation point) which cannot be passed 
until all the parallel streams of instructions in the separate tasks have 
finished.

Very often the tasks that are initiated at a fork in the program are quite 
independent and require no intertask communication during their execution. 
Defining independent tasks is the clearest method of programming, and leads



140 PIPELINED COMPUTERS

to the clearest programs and easiest program debugging. However, it may 
not always be possible. An example of independent tasks is the calculation 
of fast Fourier transforms on all 32 lines of a 32 x 32 mesh, during the solution 
of a partial differential equation (see §5.6.2, equation (5.133)). Half the 
transforms can be given to each c pu  of an X-MP/2 with no inter-
communication between them. All that is required is that all the Fourier 
transforms are complete before the next stage of the algorithm is performed. 
This may be achieved by a CALL to TSKWAIT.

In contrast, the separate tasks created at a fork may contain sections of 
code that could give wrong answers if they were executed simultaneously by 
more than one c pu . These are called critical sections of code, and an example 
is the updating of a shared common variable. Supposing two or more tasks 
are being executed, each of which includes the following code

COMMON S

S = S +  1

The intention is that the common variable S is incremented by one as each 
task reaches this part of the code. However, if c pu 2 reads S while c pu I is in 
the process of updating it but before the new value is stored, c pu 2 will read 
the old value of S instead of the new. The updating by c pu I will be lost, and 
the count in S will be incorrect. The only way to ensure that the updating 
is correct is to ensure that the statement S = S + 1 is executed to completion, 
including the store into S, by only one task at a time. This is the simplest 
example of a critical section of code that must be executed by only one cpu  
at a time. More complicated examples may involve substantial segments of 
code, but all have the feature of reading and writing into shared common 
variables. The failure to identify and protect critical sections of code is one 
of the most frequent programming errors, and the most difficult to detect 
because the program might work sometimes, depending on the detailed 
loading and timing of the computer.

The multi-tasking software provides locks to protect critical sections of 
code, which are manipulated by the following subroutines.

CALL LOCKASGN (name)

CALL LOCKON (name)

CALL LOCKOFF (name)

CALL LOCKREL (name)

where name is an integer variable assigned to and identifying the lock. A lock 
has only two states, either locked (also described as being on or set) or
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unlocked (also described as being off, reset or cleared). LOCKASGN creates 
the lock and sets it to off. LOCKON switches the lock on, if it was off, or 
suspends the task if it was on. In the latter case the task will wait in suspension 
until the lock is cleared by some other task. At this point all tasks which 
were waiting for the lock to be cleared continue execution. LOCKOFF 
switches the lock off unconditionally, and LOCKREL eliminates the lock 
and releases the identifier assigned to the lock, which may then be used for 
other purposes. Thus locks with the same name (i.e. using the same key) may 
be put around many critical sections of code in different tasks by writing

LOCKON (name)

<code: e.g. S = S + 1 >

LOCKOFF (name)

but the important feature to remember is that the mechanisms work as though 
there is only one key for each lock name. This ensures that only one of the 
locked (or protected) segments may be executed at a time. In general such 
protected sections of code should be kept to a minimum, because locks force 
the code segments to execute sequentially. Some c pu s  will become idle waiting 
for the key to the lock, and the whole point and advantage of parallel 
processing on multiple c pu s  is lost.

Another cause for communication between tasks may be the need to 
establish a certain sequence of events between two interacting tasks. The 
following synchronisation primitives are provided by the multi-tasking 
software:

CALL EVASGN (name)

CALL EVWAIT (name)

CALL EVPOST (name)

CALL EVCLEAR (name)

CALL EVREL (name)

where name is an integer variable associated with the occurrence of an event. 
EVASGN defines the existence of an event called name which has two possible 
states: posted (i.e. it has happened) or cleared (or not posted, i.e. it has not 
yet happened). EVWAIT checks the status of the event. If it is not posted 
the calling program is suspended and waits until it is, alternatively if it is 
posted the program proceeds. EVCLEAR clears the posted event and, since 
EVWAIT does not change the status of an event, it is normally called 
immediately after EVWAIT. EVREL eliminates the event, and releases the
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variable name. By appropriate definitions of events and calls to EVWAIT 
and EVPOST, any sequence of events can be forced between two interacting 
tasks. The LOCKS and EVENTS primitives have very similar facilities, and 
can clearly simulate each other. For clarity it is best to use locks for protecting 
critical sections and events for synchronising events.

As the CRAY manuals point out, multi-tasking has some cost. Calls to 
the TASKS, LOCKS and EVENTS subroutines take time, and are an 
overhead that has to be borne by any multi-tasked program, and which is 
not present in the same program if it is executed as a single task on one c pu . 
Put another way, multi-tasking does not reduce the number of c pu  cycles 
required to complete a job, indeed it increases the number of cycles due to 
calls to the multi-tasking routines. What it does is to reduce the total elapsed 
wall-clock time for a job by sharing the c pu  cycles amongst several c pu s . 
Multi-tasking will therefore only be worthwhile if the size of the tasks, known 
as the grain of the parallelism, is large enough to outweigh the multi-tasking 
overhead. It is important, therefore, to reduce calls to the multi-tasking 
library, and to exploit parallelism in the program at the highest possible level 
(i.e. between different instantiations of the outermost loops of the program). 
In order to enable a quantitative judgement to be made, the magnitude of 
the overhead associated with each of the three methods of synchronisation 
has been measured, and is given in the next section.

2.2.6 Performance
The performance of the original CRAY-1 computer has been fully discussed 
in the first edition of Parallel Computers (Hockney and Jesshope 1981). Here 
we present measurements made on the two-cpu CRAY X-MP/22 of the three 
parameters r^, n 1/2 and s l/2 (see §§1.3.3 and 1.3.6, and Hockney (1985a)). 
First we give measurements of and n 1/2 on a single c pu , and afterwards 
consider the overhead, s 1/2, of synchronising the two c pu s  by different 
methods. Figure 2.7 shows the result of executing the equivalent of the code 
(1.5) for dyadic and two types of triadic operations. For each vector length 
N in the program (1.5), the measurement was repeated 100 times and the 
minimum value is plotted in figure 2.7. The result is obtained in the standard 
way by fitting the best straight line and recording its inverse slope as and 
its negative intercept on the n-axis as n1/2. The results are shown in table 2.1.

The first three cases in table 2.1 are measurements of vector instructions. 
The dyadic case uses only a single vector pipeline with all vectors stored in 
main memory, and is to be compared with values of = 22 Mflop/s and 
« 1/ 2 = 18 previously obtained on the CRAY-1 (Hockney and Jesshope 1981). 
We find a three-fold increase in r x due, primarily, to the provision of three 
memory ports on the CRAY X-MP compared with one on the CRAY-1. The
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FIGURE 2.7 Measurements of and nlj2 on one c pu  of the CRAY 
X-MP/22. Time, i, as a function of vector length, n, for a single vector 
operation. (a ) Dyadic operations A = B x C .  (b ) All vector triadic 
operations A =  D  x B +  C.(c) CYBER 205 triad A =  s B +  C. All vectors 
obtained from and returned to common memory. (Figure courtesy of 
North-Holland from Parallel Computing.)

TABLE 2.1 Measured values of and nl/2 on a single cpu  of a 
CRAY X-MP for memory-to-memory operations. CRAY-1 values are 
in parentheses. The start-up time is t 0 =  n l/2/ r 00.

Operation:
statement 10 ol code (1.5)

roo
(Mflop/s)

nl/2
(flop)

¿0
(/is)

Dyadic
A(I) =  B(I)*C(I)

70 53 0.75

(CRAY-1 values) (22) (18) (0.82)

All vector triad
A(I) = D (I)*B(I) + C(I)

107 45 0.42

CYBER 205 triad 
A(I) =  s*B(I) +  C( I)

148 60 0.40

Scalar code 
A(I) =  B(I)*C(I)

5 4 0.80
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start-up time in microseconds, i0 = wi/2 / r oo> has not changed significantly 
between the two machines: the extra complexity of memory access on the 
X-MP being compensated by a reduction in clock period. However, the 
importance of this overhead, which is what n 1/2 measures, is three times 
greater on the X-MP, because three times as much arithmetic could have 
been done during this time compared with the CRAY-1. The maximum rate 
at which one floating-point pipeline can deliver results is one result per clock 
period of 9.5 ns, that is to say 105 Mflop/s. The measured value of 
roo = 70 Mflop/s is less than this because of the time taken to refill the vector 
registers from main memory. Because the vector registers hold 64 elements, 
this is an overhead that is incurred every 64 elements and is just visible 
(figure 2.7).

The second two cases are measurements for triadic vector operations, which 
involve the chaining of two vector instructions and the simultaneous use of 
both the floating-point multiply and add pipelines. At best we can expect a 
doubling of which is achieved if one of the arguments is a scalar, but is 
not achieved in the all-vector case. The value of n l/2 is not materially altered 
in the triad cases; however, the start-up time in microseconds is halved because 
a single start-up of 0.8 jus is shared between two instructions.

For comparison purposes, we have run the dyadic benchmark with 
instructions to the compiler to use only scalar instructions, and obtain 
r(X) = 5 Mflop/s and n l/2 = 4. The start-up time t0 remains at 0.8 /¿s but this 
is now of negligible importance because the arithmetic performance is about 
twenty times slower when scalar instructions are used.

Four methods of synchronising the operation of the two c pu s  of a 
CRAY X-MP on a single job have been considered, and all the programs 
used are given in Hockney (1985a). They are the use of the TSKSTART and 
TSKWAIT primitives, which we refer to as the TASKS method; the use of 
the LOCKON and LOCKOFF primitives which we refer to as the LOCKS 
method; the use of the EVPOST and EVWAIT primitives which we refer to 
as the EVENTS method; and finally the use of a simplified LOCKS method 
written in CAL code. In all cases the programs were run on the computer 
in stand-alone mode, and timing was performed using the real-time clock 
function RTC(DUM). In this way we ensure that the second physical c pu  
is assigned to the second logical c pu  in the programs, and that we are 
measuring the wall-clock time for the complete job. In the TASKS method 
(figure 2.8), after calling the real-time clock at the start of the measurement 
(Tl), the second c pu  is given a copy of the subroutine DOALL by the 
TSKSTART statement, and begins to execute it. The first c p u , which is 
performing the control program MULTI, then executes another copy of the 
subroutine DOALL in the CALL DOALL statement. The TSKWAIT
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PROGRAM MULTI
COMMON/GLOBAL/A( 4 0 0 ) ,  B ( 4 0 0 ) ,  C ( 4 0 0 )
DIMENSION I D T ( 2 )
EXTERNAL DOALL
DATA B / 4 0 0 " l . 0 /  , C / 4 0 0 * 1 . 0 /

NMAX = 4 0 0  
I D T ( l )  = 2

T 1  r  9 . 5 E - 9 * R T C ( D U M )
T2 = 9 . 5 E - 9 " R T C ( D U M )
T0 = T 2 - T 1

DO 2 0  N = 2 ,  NMAX, 2 
T1 = 9 . 5 E - 9 “ RTC(DUM)
NHALF = M / 2 ,
NH1 = NHALF + 1

CALL TSKSTART ( I D T , D O A L L ,  N H 1 ,  N )
CALL DOALL ( 1 ,  NHALF)
CALL TSKWAIT ( I D T )

T2 = 9 . 5 E - 9 * R T C (  DUM)

T = T 2 - T 1 - T 0  
WRITE ( 6 ,  1 0 0 )  N ,  T 

2 0  CONTINUE

1 0 0  FORMAT ( '  N: ' ,  1 4 ,  4 X ,  ' TIME IN S E C O N D S : ’ F 1 6 . 1 2 )  
STOP  
END

SUBROUTINE DOALL ( N l ,  N 2 )
C O M M O N / G L O B A L / A ( 4 0 0 ) , B ( 4 0 0 ) ,  C ( 4 0 0 )

DO 1 0  I  = N l ,  N2  
1 0  A ( I ) = B ( I ) * C ( I )

RETURN
END

FIGURE 2.8 Program for measuring r , and s1/2 when a job is split between the 
two c p u s  of the CRAY X-MP/22 using the TASKS method of synchronisation.

statement ensures that both c pu s  have finished their share of the work before 
the timer is called again to record the end of the measurement (T2). The 
parameters to DOALL are used to ensure that the two c pu s  do different
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TABLE 2.2 Measured values of and s 1/2 when dyadic memory-to- 
memory operations are split between two CPUs on the CRAY X-MP22. 
The overhead is separately measured using TASKS, LOCKS, EVENTS 
and CAL code for synchronisation. The synchronisation overhead is 
t0 =  in microseconds.

Method
r oo
(Mflop/s)

S 1/2 
(flop)

to
0 « )

no — to 1 
(k/s)

TASKS 130 5700 45 22
LOCKS 140 4000 28 36
EVENTS 140 2000 14 71
Simplified LOCKS 110 220 2 500
CAL code

Note: results are deliberately rounded to two significant figures only. Greater precision 
would suggest spurious accuracy.

elemental operations ( N /2 each) from the total of N  operations. In this 
method the overhead of starting a new task occurs at every fork into a work 
segment that is divided between the two c pu s , and is therefore included in 
the measurement.

The measured time fits the formula

which leads to the values of and s 1/2 given in table 2.2. The next least 
expensive method of synchronisation proves to be the LOCKS method. In 
this case we observe (table 2.2) s 1/2 = 4000, about 2/3 of the value found for 
the TASKS method. On the other hand, we find the EVENTS method half 
as expensive as the LOCKS method with s 1/2 = 2000. In order to determine 
the least overhead possible, a simplified form of the LOCKS method has 
been programmed in CAL by John Larson of Cray Research Inc. The 
overhead is thereby reduced by a factor of ten to s 1/2 = 220. An examination 
of the CAL code shows that there is no wasted time, and it is unlikely that 
synchronisation can be achieved on the CRAY X-MP with less overhead. 
However, it must be said that in the CAL code, one c pu  waits for the other 
to finish by continually testing one of the synchronisation registers. This 
prevents the waiting c pu  from doing any other work during this time, and 
hence this code would hardly be acceptable as a general method of 
synchronisation.

2.2.7 CRAY-2 and CRAY-3
Figure 2.9 is a striking view of the CRAY-2 computer and its coolant reservoir
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FIGURE 2.9 Overall view of the CRAY-2 computer, with the coolant 
reservoir in the background.

(Cray 1985). The mainframe in the foreground, which weighs nearly three 
tons, contains a foreground processor, four background processors, a large 
common memory of 256 Mword, and all power supplies and backwiring. 
This is all contained within a cylindrical cabinet 4 feet high and 4( feet in 
diameter. The compression in size is remarkable—in effect a four-cpu CRAY 
X-MP plus its I/O  system and solid state device have been shrunk to a third 
or a quarter of their present size, and placed in a single container. The power 
generation of 195 kW is little changed from that of the CRAY X-MP, but 
an entirely new cooling technology— liquid immersion cooling—is used to 
remove it. In this method all the circuit boards and power supplies are totally 
immersed in a bath of clear inert fluorocarbon liquid which is slowly circulated 
(about one inch per second) and passed through a chilled water heat 
exchanger to extract the heat. Cooling is particularly effective because the 
coolant, which has a high dielectric constant and good insulating properties, 
is in direct contact with the printed circuit boards and integrated circuit 
packages. Figure 2.10 shows a closer view of the coolant circulating past the
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FIGURE 2.10 Total immersion cooling technology of the CRAY-2. All 
circuit boards and backwiring are totally immersed in a bath of fluoro-
carbon coolant, which is seen bubbling past the boards. (Photograph 
courtesy of Cray Research Inc.)

boards. The cooling system is closed and valveless; the collection of columns 
at the rear of figure 2.9 is a reservoir for the 200 gallons of coolant. If a 
circuit board needs to be replaced all the coolant must be pumped to the 
reservoir before the circuit boards can be reached. This can be accomplished 
in a few minutes.

The clock period on the CRAY-2 is 4.1 ns, and this necessitates short 
connecting wires between boards. This requirement has led to the develop-
ment of three-dimensional pluggable modules, each comprising eight printed 
circuit boards rigidly held together as a unit with cross connections between 
the boards. Each module (see figure 2.11) forms an 8 x 8 x 12 array of 
integrated circuit packages giving approximately 250 chip positions. The 
module measures approximately 1 x 4 x 8  inches, weighs two pounds, and 
consumes 300 to 500 W of power. The 320 modules are mounted in 14 
columns forming a 300° arc. There are 152 c pu  modules and 128 memory 
modules, with approximately 240000 chips, nearly 75000 of which are
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FIGURE 2.11 A CRAY-2 module comprising eight circuit boards. (Photograph 
courtesy of Cray Research Inc.)

memory. The logic chips use 16-gate arrays, as in the CRAY X-MP. As in 
the other CRAY computers, backwiring uses twisted pair wires between 
2 inches and 25 inches in length. In all there are about 36 000 such connections 
with a total length of about six miles.

The overall architecture of the CRAY-2 is shown in figure 2.12, and can 
be described as four background processors accessing a large shared common 
memory, and under the control of a foreground processor. The common 
memory of 256 M 64-bit words is directly addressable by all the processors 
(32-bit addressing is used). It is arranged in four quadrants of 32 banks, 
giving a total of 128 banks with 2 Mword per bank. Dynamic m o s  memory 
technology is used (256K bits per chip), which means that the access time 
(about 250 ns) is very long compared to the main e c l  memory of the 
CRAY X-MP (38 ns). In this respect, the common memory is more correctly 
compared to the solid state device memory of an X-MP. Each memory bank 
has a functionally independent data path to each of four bidirectional memory 
ports, each of which connects to one background processor and one 
foreground communications channel. The total bandwidth to memory is 
therefore 1 Gword/s.

Access to common memory is phased, which means that each processor 
can have access to a particular quadrant only every four clock periods when 
its phase for accessing that quadrant comes around. There are four phases, 
one assigned to each of the background processors. The 32 memory banks 
in a quadrant share a data path to each common memory port; however, 
because of the phased access scheme, only one bank accesses the path in a
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FIGURE 2.12 Overall architectural block diagram of the four-cpu CRAY-2.

given four-clock-period time slot. Therefore each bank, functionally, has an 
independent path to each of the four memory ports. The least significant two 
bits of the memory address select the quadrant, the next five bits select one 
of the 32 banks in a quadrant, and the remaining 25 bits of a 32-bit address 
specify the word within a bank (of course at present only 21 of these are 
needed to address the 2 Mword of a bank). Thus the elements of a
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contiguously stored vector are spread first across the quadrants, then across 
the banks, and finally across the words of a bank.

If references to successive elements of the vector occur every clock period, 
then a given quadrant is referenced every four clock periods, and a given 
bank every 128 clock periods (512 ns). The common memory access time of 
about 250 ns therefore avoids memory bank conflicts in this ideal case of 
reference to a contiguously stored vector. Bank conflicts will occur if the 
stride in memory address between successive elements is four or a larger 
power of two. In the worst case, when all the elements are stored in the same 
bank, the memory access rate is only 1 /64 of the maximum for contiguous 
vectors. Consequently the performance of the CRAY-2 depends critically 
on the pattern of memory accesses to the common memory, and may vary 
widely for different jobs, and for differently programmed implementations of 
the same job.

The foreground processor supervises the background processors, common 
memory and peripheral controllers via four 4-Gbit/s communication 
channels. Each channel is a 16-bit data ring connecting one background 
processor, up to nine disc controllers, a front-end interface, a common 
memory port, and the foreground processor. The ring transfers a 16-bit data 
packet between stations every clock period. The foreground processor itself 
is a 32-bit integer computer with a 4 Kword (32-bit) local data memory and 
32 Kbytes of instruction memory.

The architecture of a background processor is shown in figure 2.13, and 
can be described as a CRAY-1 architecture with the B and T intermediate 
registers replaced by 16 Kword of local memory. As in the CRAY-1, there 
is only a single bidirectional data path to the common memory, and there 
are eight 64-word vector registers and eight 64-bit scalar registers. The eight 
address registers have become 32-bit registers but there is no longer a 
data path directly from the common memory to the address registers. 
The functional units are also somewhat differently arranged, and reduced 
in number to nine. There is now no separate floating-point reciprocal 
approximation unit. This function now shares the floating-point multiply 
unit, which also provides the new function of hardware square root. The 
vector shift, population count, and integer arithmetic share a single vector 
integer unit; and the scalar integer add and population count are both 
performed in the scalar integer unit. Except for being 32-bit units, the address 
functional units are the same as on the CRAY-1. The 16 Kword local memory 
has an access time of four clock periods, and is intended for the temporary 
storage of scalars and vector segments during computation. The speed of 
this memory relative to the functional units is the same as the main memory 
of the CRAY X-MP, which of course is very much larger (up to 8 Mword).



152 PIPELINED COMPUTERS

FIGURE 2.13 Architectural block diagram of a single CRAY-2 c p u .

Each background processor has its own 64-bit real-time clock which is 
advanced every clock period, and synchronised at start-up time with the 
clocks in the other background processors. There is a 32-bit program address 
counter, and common memory field protection is provided by a 32-bit 
base and limit registers. Eight 1-bit semaphore flags and a 32-bit status 
register are provided to control access to shared memory areas, and to 
synchronise the background processors. Eight instruction buffers hold 64 
16-bit instruction parcels, and instruction issue takes place every other clock 
period. There are 128 basic instruction codes which include scatter/gather 
facilities, like the CRAY X-MP/4; however, the ability to chain together a 
succession of vector instructions, which is an important feature of the CRAY-1 
and X-MP, has been lost and is not available on the CRAY-2.
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The operating system on the CRAY-2 is based on the AT and T Unixf 
system, which is rapidly becoming an industry standard (Ritchie and 
Thompson 1974, Bourne 1982). This will provide the standard Unix facilities 
and a C-language compiler. A new FORTRAN optimising (NFT) compiler 
and a CAL-2 assembler are provided, together with a CRAY-1 to CRAY-2 
assembler conversion utility. Extensions have been introduced to Unix to 
enhance the I/O  performance, multiprocessing facilities, and networking.

The peak performance of a background processor is two floating-point 
results per clock period, or 500 Mflop/s, giving 2 Gflop/s for the four-cpu 
computer. This could apply only if arguments and results are stored in the 
registers and local memory (register-to-register operation), and can be 
approached for favourable problems such as matrix multiply for which a rate 
of 430 Mflop/s has been reported. The rates obtained for average FORTRAN 
jobs which would use the slow common memory for storage will depend 
greatly on the efficiency with which common memory transfers are buffered 
by the compiler, and on the amount of arithmetic performed on average per 
common memory reference. Values obtained for the (r^, nl/2) benchmark 
(see §1.3.3) may be more indicative of the performance to be obtained from 
average FORTRAN jobs working to and from data in common memory.

Table 2.3 shows the results on the CRAY-2 of the (r^, n l/2) benchmark 
for a variety of simple kernels, using the first CIVIC compiler (1985) and an 
improved compiler CFT77 (1.3) which appeared two years later. In these 
tests, all the input data and results are stored in common memory, and no 
use is made of the fast 16 Kword local memory. Also very little arithmetic 
is performed per common memory reference ( /  < 2), so that the performance 
is primarily determined by the speed of the common memory, and not by 
the speed of the arithmetic pipelines. For these reasons the measured values 
of Too represent a worst case evaluation, but nevertheless one that may arise 
from FORTRAN code that is not optimised to make use of the local memory, 
by giving appropriate directives to the compiler. If the same loops were 
executed with the input data and results stored in the vector registers of the 
c pu , a performance approaching the theoretical peak performance of the 
arithmetic pipelines alone (r^) should be attainable. This column therefore 
represents the evaluation of the best possible case.

The first five kernels are vectorised by the compiler and show improved 
performance as /  increases, as is to be expected from a memory-limited 
computation. The next two kernels, the recurrence and charge assignment, 
do not vectorise and the performance is characteristic of scalar code. 
The last two kernels concern data movement only. Transposition has a

t  Unix is a trademark of AT and T Bell Laboratories.



154 PIPELINED COMPUTERS

TABLE 2.3 Results of the (r00, n ll2) benchmark for a variety of simple kernels on 
one c p u  of the CRAY-2, using FORTRAN code and the CIVIC compiler (1985). 
The improved values in parentheses are for CFT77 (1.3), as of November 1987.

Operation: 
statement 10 
program (1.5) Stride

roc
(Mflop/s)

r oo
(Mflop/s) «1/2

Dyad 1 244 32 (56) 53 (83)
A(I) = B(I)»C(I)
/ =  1/3

8 244 9(10) 10(0.5)

All vector triad 1 488 54 (65) 31 (28)
A (I )= B (I) .C (I)  +  D(I)

/ =  1/2
8 488 14(17) 7 (2.5)

All vector 4-op
A(I) =  B(I)*C(I) + D (I)*E(I) + F(I) 
/  =  2/3

1 488 73 (100) 33 (33)

Matrix multiply 
middle product (§5.3.2) 
/  =  2

1 488 75(72) 75 (59)

Inner product 
S = S + B(I)*C(I) 
/ =  i

1 488 73 (119) 283 (236)

First-order recurrence 
A(I) = B (I )* A (I -1 )  + D(I)
/  = 1/2

1 488 3.1 (12) 4.1(15)

Charge assignment 
A(J(I)) = A(J(I)) +  S
/ =  1/2

1 244 1.4(2.8) 2.6(10)

Transposition 
A(I,J) = A(J,I)

1 — 2.1 (3.4) 1.6 (6.2)

Random scatter; gather 
A(J(I)) = B(I); A(I) =  B(J(I))

— — 19(29) 26 (45)

performance similar to scalar operation. However, scatter/gather is quite 
efficiently implemented at a rate near vector speeds. The results also show 
a severe degradation of performance when non-contiguous vectors are used 
(here chosen to have a stride of eight). The large ratio between the theoretical 
peak rates, r^, and the measured performance r^  confirms the statement 
that the performance of the CRAY-2 depends critically on the care with 
which problems are programmed, in particular on minimising common
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memory references and maximising the use of the cpu  local memory for 
intermediate results.

The CRAY-3 is an implementation of the CRAY-2 in gallium arsenide 
(GaAs) technology which should allow a clock period of 1 ns. The chips are 
manufactured by Gigabit Logic Inc., California (Alexander 1985) and Harris 
Microwave (McCrone 1985). The CRAY-3 is also likely to have more 
processors, perhaps 8 to 16 and a common memory of one gigaword. It is 
scheduled for 1988/9.

2.3 THE CDC CYBER 205 AND ETA10

The CYBER 205 is manufactured by Control Data Corporationt in Saint 
Paul, Minnesota, USA. The machine was announced in 1980, and the first 
delivery to a customer site was to the UK Meteorological Office, Bracknell, 
England in 1981. By 1985 about 27 CYBER 205 computers had been installed. 
The CYBER 205 represents the culmination of a long programme of 
research and development that began with the design and delivery of the 
CDC STAR 100 computer in the period 1965-75 (see §1.1.3). A very 
interesting account of the technology and design trade-offs that were made 
during the creation of this computer is given by Neil Lincoln (1982) who 
was in charge of the design team. Other details are to be found in the 
CDC CYBER 200 Model 205 Computer System Hardware Reference Manual 
(CDC 1983). In 1983 the CYBER 205 series 600 was introduced which 
replaced the 4 Mword bipolar main memory of the original computer (now 
called the series 400) with a larger 16 Mword static mo s  memory. Both these 
machines are described in this section. Since they differ only in the technology 
and packaging of the memory, we base the description below on the two-pipe 
4 Mword series 400 machine, and point out only when necessary differences 
between it and the series 600 machines. The CYBER 205 architecture is 
important because it is being continued into the next generation of super-
computers. The ETA10 computer which appeared in 1986 may be described 
as eight up-rated CYBER 205 computers working from a large shared 
memory. This is described in §2.3.7.

2.3.1 Physical layout
A photograph of the CYBER 205 and a block diagram of the different parts 
of the machine are shown in figures 2.14 and 2.15. The photograph is taken

t  Corporate Headquarters: PO Box 0, Minneapolis, Minnesota 55440, USA. UK 
Office: Control Data House, 179/199 Shaftesbury Avenue, London WC2H 8AR.
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FIGURE 2.14 View of the CDC CYBER 205, showing the vector stream and 
string units on the left and the floating-point pipes on the right. (Photograph 
courtesy of Control Data Corporation.)

FIGURE 2.15 Block diagram of the different units of the CDC 
CYBER 205 series 400. The series 600 differs only in the memory section, 
which is smaller and rectangular in plan. (Diagram courtesy of Control 
Data Corporation.)
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from the top left of figure 2.15 and is of a two-pipe machine. The main 
memory comprises four or eight memory sections. In the series 400 machine, 
these are housed in two or four wedge-shaped cabinets, each containing one 
million 64-bit words in two memory sections. The scalar section which 
contains the instruction processing unit, forms the central core of the machine. 
To one end is attached the memory through the memory interface unit, and 
to the other end is attached the vector processor. The latter comprises one, 
two or four vector floating-point arithmetic pipelines, a vector stream and 
string section, and an I/O  and vector set-up and recovery section. Overall 
a 4 Mword computer occupies a floor area of about 23 ft x 19 ft. Cooling 
for the basic central computer with 1 Mword of memory consists of two 
30-ton water-cooled condensing units which are housed separately, and power 
is supplied by one 250 kVA motor-generator set. The heat dissipation is 
about 118 kW. An additional 80 kVA motor-generator set and 90 tons of 
cooling are needed for the 4 Mword system, and a standby 250 kVA generator 
is provided. The CYBER 205 is designed to be attached to a front-end system, 
typically a CYBER 180, CDC 6000, IBM or VAX computer.

The series 600 computer differs from the above description only in the 
memory cabinets, which fit to the end and side of sections J and K forming 
a rectangular plan. There are still four or eight memory sections, but these 
may now contain 0.5, 1, 1.5, or 2 Mwords each, giving configurations with 
1, 2, 4, 8, 12 or 16 Mwords of memory.

2.3.2 Architecture
The principle units and data paths in the CYBER 205 are shown in figure 2.16. 
Memory comprises eight sections (A to H), each divided into eight memory 
stacks (called memory modules on the series 600). Each memory stack (or 
module) is divided into eight memory banks and has an independent 32-bit 
data path to the memory interface unit. Each bank contains 16K 39-bit 
half-words on the series 400 (32 data bits plus 7 s e c d e d  bits). On the series 
600, however, a bank may contain 16K, 32K, 48K or 64K half-words, 
depending on the number of ranks of chips mounted on the memory board 
(see §2.3.3).

The memory is organised into pairs of sections (A/H, B/G, C/F, D/E) 
each of which therefore has 16 stacks and a 512-bit data path to the interface 
unit. This data width is known as a superword or sword. It is equivalent to 
eight 64-bit words or 16 32-bit half-words, and is the unit of access to memory 
for vectors. Successive addresses in a sword are stored in different memory 
stacks, so that a sword may be accessed in parallel by taking a half-word 
from each stack of the 16 stacks in a double section of memory. The access 
and cycle time of memory is 80 ns. However, provided successive references
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are to different banks, a fresh sword can be referenced every clock period of 
20 ns from each double section. This is a bandwidth of 400 Mword/s per 
double memory section. However, not all this bandwidth is used by the 
memory interface unit (see below).

Although memory may be addressed by the bit, byte (8 bits), half-word 
(32 bits) or word (64 bits), access to memory is by the sword (512 bits) for 
vectors, by the word or half-word otherwise. The memory interface unit 
organises memory requests at each 20 ns interval into swords, words or 
half-words, then delivers or assembles this data via 128-bit wide paths to the 
scalar and vector sections. Communication with the rest of the computer is 
in terms of three read paths and two write paths, and the memory interface 
unit has a one-sword buffer associated with each path (Rl, R2, R3 for read 
and Wl, W2 for write). The memory interface unit connects to the scalar, 
vector and I/O  sections via 10 128-bit data paths, each of which has a 
maximum transfer rate of 128 bits every clock period, giving a maximum 
total transfer rate of 1000 Mword/s.

On a two-pipe machine the memory interface unit operates as described 
above, and has a maximum read throughput in vector mode of one sword 
or 8 words per clock period. As each pipe requires two new input arguments 
per clock period, the capacity of the data paths and interface unit just matches 
the needs of the arithmetic pipelines. A four-pipe machine, however, requires 
twice the above amount of data per clock period, and four-pipe machines 
have the Rl, R2, and W 1 buffers increased to 1024 bits, and the corresponding 
data paths to the vector unit increased to 256 bits. The interface unit then 
makes simultaneous reference to a double-sword (1024 bits) of data, by 
simultaneously accessing a half-word from 32 memory stacks spread over 
four memory sections. Clearly this is still not using the full bandwidth of the 
memory itself, which is capable of supplying a half-word simultaneously from 
each of its 64 memory stacks (eight stacks in each of eight memory sections).

The scalar section reads from buffers Rl and R3, and writes to buffer Wl. 
All data paths to the vector section also pass through the scalar section where 
s e c d e d  checking and priority determination for memory requests take place. 
The inclusion of s e c d e d  checking in the architecture substantially extends 
the mean time between failures. The scalar section contains the instruction 
issue pipeline, which has a maximum issue rate of one instruction every 20 ns 
clock period (t ). The three address instructions are drawn from a stack which 
may hold up to 128 32-bit instructions or 64 64-bit instructions, or mixtures 
with equivalent total length. Both vector and scalar instructions are decoded 
in the instruction issue pipeline, which dispatches the decoded vector 
instructions to the vector unit for execution. The issue of decoded scalar 
instructions to the scalar arithmetic functional units is controlled on a
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reservation system, the principal conditions of which are:

(1) Source operand conflict—an instruction requiring the result of a 
previous instruction as input must wait until the operand is available;

(2) Output operand conflict—an instruction whose result refers to the same 
result register as a previously issued instruction must wait until the previous 
instruction is complete.

Sixteen result address registers hold the register file addresses for the output 
operands of previously issued instructions, and these are checked against the 
operands of any instruction awaiting issue until no conflicts arise.

The arithmetic portion of the scalar section comprises a load/store unit 
and five independent arithmetic functional units which take data from and 
return data to a file of 256 64-bit registers. The load/store unit moves data 
between the register file and main memory. The clock time x = 20 ns and the 
unit times are:

Functional unit (ns)

Unit time

(clock periods)

Load/Store 300 15
Addition/Subtraction 100 5
Multiplication 100 5
Logical 60 3
Single Cycle 20 1
Division, Square root, Conversion

for 64 bits 1080 54
for 32 bits 600 30

The above unit times are the total times required to compute either a 32-bit 
or a 64-bit result; however all units except the last are pipelined and may 
take a new set of arguments every clock period. However note that the register 
file can supply at most one new pair of arguments per clock period and this 
is the factor most likely to limit the processing rate of the scalar section as 
a whole. However, the division, square root and conversion unit is not 
pipelined in this way, and new arguments are only accepted every 54 clock 
periods. The result from any of the above units can be passed directly to the 
input of any unit, in a process called shortstopping. This process, when 
applicable, eliminates the time needed to write results to a register and retrieve 
them for use in the next arithmetic operation. The unit times above assume 
that shortstopping takes place and do not include the time to write results



THE CDC CYBER 205 AND ETA10 161

to registers or memory. The register file may supply at most two operands 
for the current instruction and store one result from the previous instruction 
concurrently during every clock period. This is found to be sufficient to 
support a scalar performance of 45 Mflop/s out of a peak potential of one 
instruction every 20 ns or 50 Mflop/s.

Access to main memory is controlled by the load/store unit which acts as 
a pipeline and may accept one read (load) from memory every clock period 
or one write (store) to memory every two clock periods. A buffer is provided 
in the unit for up to six read and three write requests. A randomly accessed 
word can be read from memory and loaded into the register file in 300 ns 
provided memory is not busy. If it is, up to a further 80 ns is added to the 
time.

Operations on vectors of numbers or strings of characters are performed 
in the vector section which comprises either one, two or four floating-point 
pipelines and a string unit that are fed with streams of data by a stream unit. 
Unlike the CRAY X-MP there are no vector registers, and all vector 
operations are main-memory to main-memory operations, necessitating data 
to travel a round trip of about 50 ft, compared to less than 6 ft on the 
CRAY X-MP. This difference partly explains the much longer vector start-up 
time on the CYBER 205. A vector may comprise up to 65 535 consecutively 
addressed elements. If the required data is not consecutively stored the 
required elements can be selected by a control vector of bits, one bit for each 
word of the vector. The operation is then only performed for elements for 
which the corresponding control bit is one. However all elements of the 
consecutively stored vector must be read from memory even though only a 
small fraction may be operated upon. Alternatively if the control vector is 
sparse in ones, the specified elements of a long vector may be selected by a 
compress operation and re-stored consecutively. Subsequent operations may 
then be performed with better efficiency on the new compressed vector. In 
addition efficient scatter/gather instructions are implemented by microcode 
in the stream unit. These reference memory either randomly according to an 
index list, or periodically (i.e. at equal intervals).

Data is received from main memory in three input streams: A and B for 
the two streams of floating-point numbers, and (M, X, Y) for control vectors 
and character strings. There are two output streams: C for floating-point 
numbers and R for character strings. Each of these streams is 128 bits wide 
and is distributed by the stream unit into 128-bit data streams for use by the 
floating-point pipelines and 16-bit streams for use by the string unit. Each 
of the identical floating-point pipelines (PI to P4 in figure 2.16) comprises 
five separate pipelined functional units for addition, multiplication, shifting 
operations and delay, connected via a data interchange (see figure 2.17).
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FIGURE 2.17 Overall organisation of one of the floating-point pipelines 
on the CDC CYBER 205. The machine may contain one, two or four such 
identical general-purpose pipelines. (Diagram courtesy of Control Data 
Corporation.)

Division and square root are performed in the multiplication unit. Each unit 
is attached to the data interchange by three 128-bit data paths (two input 
paths A and B, and the output path C). These paths can therefore support 
a rate of 100 million 64-bit results per second (M r/s) per unit. The units 
themselves however are only capable of generating results at half this rate 
(50 M r/s for 64-bit operation and 100 M r/s for 32-bit operation). For simple 
vector instructions using a single unit the data interchange connects the two 
input streams A and B and the output stream C to the appropriate functional 
unit, leading to an asymptotic operation rate of 50 Mflop/s (64-bit operation) 
and 100 Mflop/s (32-bit operation) per pipeline. If the two successive vector 
instructions use different units, contain one operand that is a scalar and are 
preceded by the select-link instruction, then ‘linkage’ takes place. The output 
stream from the first unit used is fed by the data interchange to the input of 
the second unit. In this way the two units operate concurrently and the two 
instructions act as a single vector instruction with no intermediate reference 
to main memory. Examples of such linked triadic operations! are:

vector + scalar*vector, (vector 4- scalar)*vector,

t  A triadic operation is one involving three input arguments, e.g. A -l- B x C; a dyadic 
operation is one involving two input arguments, e.g. A + B.
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which occur frequently in matrix problems (for example the inner product 
of two vectors by the middle-product method, see §5.3.2). This facility plays 
the same role as chaining does on the CRAY X-MP, but is more restrictive. 
On the CYBER 205 two operations at most may be linked together and one 
of the operands must be a scalar. For such linked triads the asymptotic 
performance of a floating-point pipeline is doubled to 100 and 200 Mflop/s 
for 64-bit and 32-bit arithmetic respectively. The maximum asymptotic 
performance on the CYBER 205 is therefore 800 Mflop/s for linked triads 
in 32-bit arithmetic on a 4-pipe machine.

Figure 2.18 shows in more detail the overall organisation of the addition 
and multiplication pipelines. The addition operation (figure 2.18(a)) is seen to 
be divided into seven principal suboperations. A backward connection (or 
shortstop) is provided around the ADD segment to allow the unnormalised 
addition result of one element of a vector operation to be added to the next 
element of the vector. This facility is used in the interval instruction which 
forms the vector Cl+1= C , -hB; C0 = A. Another shortstop takes the 
normalised result C of the addition pipe back to become the B operand input. 
The result arrives back at B eight clock periods after the operands contributing

Shortstop

FIGURE 2.18 Block diagram of the principal sections of (a) the floating-
point addition and (b) multiplication pipelined units on the CDC CYBER 
205. (Diagram courtesy of Control Data Corporation.)
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to it entered the pipe, hence one can accumulate Ci + 8 = Ct + A i+S. This 
facility is used in summing all the elements of a vector, and in the dot- or 
inner-product instructions. The multiplication pipeline (figure 2.18(h)) has a 
similar shortstop (7 clock period delay) that is used to find the product of 
all elements of a vector. The asymptotic rate for multiplication is 50 Mflop/s 
(64-bit arithmetic) or 100 Mflop/s (32-bit arithmetic) per pipeline, and for 
division is 4 Mflop/s (64-bit arithmetic) or 15.35 Mflop/s (32-bit arithmetic) 
per pipeline. A divide enhancement is available as an option which doubles 
the asymptotic rate for division.

The string unit performs all bit logical and character string operations on 
strings (i.e. vectors) of bits and bytes. It also processes the control vector 
associated with the masking of floating-point operations. All data paths to 
the string unit are 16 bits wide. There are two paths, X and Y, for data input 
and one path, M, for a mask of control bits. The output data stream is R. 
The result rate on bit logical operations is 800 Mbit/s on any CYBER 205.

The basic CYBER 205 provides eight I/O  ports, each 32 bits wide and 
capable of transferring 200 Mbit/s. A second set of eight I/O  ports may 
be optionally added leading to a total maximum I/O  bandwidth of 
3200 Mbit/s. Each I/O  channel contains a 4096-bit buffer register. All 
channels share a further I/O  buffer register which connects to the memory 
interface unit via a 128-bit read data bus (R3) and 128-bit write data bus (W2). 
The full I/O  rate is available at any level of vector or scalar usage in the 
c pu . Any I/O  channel can be utilised by the maintenance control unit (m c u ) 
which provides the interface to the operator for maintenance, system control 
(including initial start-up) and monitoring. The mc u  consists of a control 
unit, line printer, disc drive and channel interface. Working in off-line mode 
the m cu  loads diagnostic routines from disc and displays their results; working 
on-line the m cu  performs real-time monitoring of the c pu  and displays its 
status.

The architecture of the CYBER 205 can be summarised using the a s n  
notation of §1.2.4 as follows:
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2.3.3 Technology
The main interest in the technology of the CYBER 205 centres on the use 
of a novel l s i  circuit, packaging and cooling technique for the logic of the 
computer, based on l s i  bipolar e c l  gate-array logic. As an example we show 
in figure 2.19 an overall view of a 15-layer arithmetic circuit board which 
can hold an array of 10 x  15 l s i  chips. The main feature is the \  in x  \  in 
coolant pipe carrying freon that passes horizontally across the board 
10 times. The l s i  chips are mounted on ceramic holders approximately 
0.5 in x  0.7 in x  0.1 in and clamped directly onto the cooling pipes which 
maintain a chip temperature of 55 ± 1 °C. In figure 2.20 a technician is shown

F K J U K t  2.19 An a r i t h m e t i c  c i r c u i t  b o a r d  o i  t h e  C D C  CYBEK 2UX 
F r e o n  c o o l a n t  f l o w s  t h r o u g h  { i n  x  |  i n  p i p e s  t o  w h i c h  l s i  c h i p s  a r e  

c l a m p e d .  E a c h  1 5 - l a y e r  b o a r d  m a y  h o l d  u p  t o  1 5 0  l s i  c h i p s .  ( P h o t o g r a p h  
c o u r t e s y  o f  C o n t r o l  D a t a  C o r p o r a t i o n . )
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FIGURE 2.20 A close-up of a CDC CYBER 205 circuit board, showing 
a technician replacing a 168-switch l s i  chip mounted on its ceramic switch 
holder. The horizontal bars are the coolant pipes. (Photograph courtesy 
of Control Data Corporation.)

replacing an l s i  chip and numerous empty clamps awaiting chips are shown 
attached to the coolant pipes. In figure 2.21 the various connectors and 
clamps that hold the ceramic-mounted chip to the pipe are shown, and 
figure 2.22 shows how these are assembled. The copper pad on the ceramic 
mount makes direct thermal contact with the cooling pipe. The l s i  chip has 
52 external connections that are brought out to the side and bottom of the 
ceramic mount (called an l s i  array, figure 2.22 left). Two connectors, one for 
each side of the ceramic mount and each containing 26 pins, are plugged 
into the circuit board (figure 2.21 centre and figure 2.22 right) and a plastic 
retainer mounted over them. The l s i  array is dropped into the retainer and 
clamped in place by a metal spring clip. To give an idea of the compression 
in size achieved by l s i , we note that the entire scalar section L (see figures 2.14 
and 2.15) is housed on 16 l s i  boards in a cabinet about seven feet long. The 
l s i  chips use bipolar transistors with emitter-coupled logic ( e c l ) circuitry. 
An array of 168 e c l  switches (equivalent to about 300 logic gates) is packed 
onto each l s i  chip. Subnanosecond gate delays are achieved with a power x  

gate-delay product of about 6 pJ. Only 29 different l s i  chips are used in the 
whole computer. The use of l s i  in the c p u  reduces the power consumption 
and makes the machine easier to maintain. Reliability is also improved by 
reducing the number of connections external to the chip by a factor of about 
six. The power consumed by each 168-switch l s i  chip is smaller by a factor 
of 10 than the power required by the previous ssi technique.
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FIGURE 2.21 The various holders, connectors and clamps that are 
used to attach the 0.5 in x 0.7 in ceramic-mounted l s i  chip to the coolant 
pipes. In the centre two chips are shown mounted on a section of circuit 
board. (Photograph courtesy of Control Data Corporation.)

FIGURE 2.22 Left: top and bottom views of the l s i  chip mounted on its ceramic 
holder. The mounted chip is called an l s i  array. Right: exploded view of how the l s i  

array is attached to the coolant pipe and circuit board. (Diagrams courtesy of Control 
Data Corporation.)
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The main memory of the CYBER 205 series 400 uses 4K bipolar memory 
chips with a cycle and access time of 80 ns. Auxiliary logic uses emitter- 
coupled circuitry with e c l  100K chips. Each one million 64-bit words of 
memory is housed in two memory sections, each of which holds eight memory 
stacks, as is shown in figure 2.23. Figure 2.24 shows a close-up of one stack 
which stores 128K 32-bit half-words in eight independent memory banks. A 
stack contains two input boards, one output board and 16 memory boards. 
Cooling is provided by freon cooling plates that lie between the boards. A 
memory board, which is shown in figure 2.25, provides 20 or 19 bits of a 
word in parallel from groups of four 4K memory chips. A pair of memory 
boards forms a memory bank that accesses in parallel 39 bits (32 data bits 
and 7 s e c d e d  bits), one bit from each of 39 memory chips. The memory 
address specifies which of the 16K bits from a group of four 4K-bit chips is 
accessed.

Although the organisation of the CYBER 205 series 600 memory is identical 
to the series 400 from the user’s point of view, the technology and packaging 
are quite different. Static m o s  16-Kbit chips are used, and the greater level of 
integration enables the memory to be offered as either 1, 2, 4, 8, 12 or

FIGURE 2.23 The racks associated with the storage of one million 64-bit words 
in the CYBER 205. There are two sections of memory on the extreme left and 
right, and two smaller cabinets of the memory interface in the centre. In the 
memory section on the right eight memory stacks holding a total of half a million 
words can be seen. The CYBER 205 may contain 1, 2 or 4 such million-word 
assemblies.
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FIGURE 2.24 A memory stack from the CYBER 205. The stack has 
two input boards, one output board and 16 memory boards. A pair of 
memory boards comprise one memory bank of 16K 32-bit half-words. 
There are eight banks in a stack which gives storage for 128K half-words. 
(Photographs courtesy of Control Data Corporation.)

16 Mwords. In the maximum 16 Mword machine, each of the eight memory 
sections contains 2 Mwords, organised in eight memory modules of 512K 
32-bit half-words. Each module plays the same role as a memory stack in 
the series 400, and comprises a control board with e c l  100K series logic 
chips and a 12 inch x 15 inch storage board assembly, on which is mounted 
a 4 x 4 array of 3.25 inch x 2.25 inch ministorage boards. These latter boards 
play the role of the 16 memory boards of the series 400 stack, and each 
contains 20 16-Kbit m o s  chips, ten on each side. One layer (called a rank) 
of ministorage boards therefore gives a capacity of 128K half-words, the 
equivalent of the maximum 4 Mword series 400 machine. Up to three 
additional ranks of ministorage boards may be attached piggy-back fashion 
to the first layer. Each extra rank provides an additional 4 Mwords of 
consecutive storage locations to form the 8, 12 and 16 Mword memories.
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FIGURE 2.25 A memory board from the CYBER 205 that provides 20 bits in 
parallel. The 4K-bit memory chips are mounted centrally in two 4 x 10 arrays. Four 
chips are associated with each bit position of the word, giving 16K memory addresses. 
Two such boards form a memory bank, and provide the 39 bits of a half-word 
(32 data bits and 7 s e c d e d  check bits). (Photograph courtesy of Control Data 
Corporation.)

The memory access time of the series 600 is unchanged at 80 ns, as are all 
other features of the CYBER 205.

The operation of the CYBER 205 scalar and vector sections is controlled 
by microcode that is stored in memories housed on auxiliary logic boards 
that may hold up to 90 e c l  100K circuit chips. One such board is shown 
lying horizontally at the top of the l s i  board in figure 2.19. These memories, 
the 128 32-bit instruction stack, and the 256 64-bit register file are all 
assembled on auxiliary boards from the e c l  100K chips. These memory 
elements have a read/write cycle time of 10 ns which includes the 1.0 ns 
e c l  100K gate delay time.

2.3.4 Instruction set
The instruction set of the CYBER 205 is particularly rich in facilities, but it 
is necessary first to discuss the addressing system and the arithmetic formats. 
The CYBER 205 has a virtual addressing storage system. The virtual address 
field in an instruction has 48 bits and is an address to an individual bit in
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virtual memory. Thus one may address up to 2.8 x 1014 bits, 3.5 x 1013 bytes, 
8.8 x 1012 32-bit half-words or 4.4 x 1012 64-bit words of virtual memory. 
The top half of virtual storage is reserved for the operating system and vector 
temporaries, leaving 2.2 x 1012 64-bit words of virtual address space for user 
programs and data. On the other hand, the physical main memory has a 
maximum of 4.2 x 106 64-bit words. The operating system transfers programs 
and data into main memory as either short pages (512, 2K or 8K 64-bit 
words long) or long pages of 64K 64-bit words. The translation between the 
virtual memory address and the physical memory address is performed in 
the scalar section using 16 associative registers. The registers hold associative 
words which contain the virtual and corresponding physical addresses of the 
16 most recently used pages. They may all be compared in one clock period 
for a match between a virtual address in the instruction being processed and 
the virtual page addresses in the associative word. If there is no match, the 
comparison continues into the space table which is the extension of the list 
of associative words into main memory. If there is a match the virtual address 
is translated into the physical address, and the program execution continues. 
If the page is not found, the program state is automatically retained in memory 
and the monitor program is entered in order to transfer control to another 
job.

Floating-point arithmetic may be performed on either 32-bit half-words 
or 64-bit full-words. Numbers are expressed as C x 2£ where the coefficient 
C and the exponent E are two’s complement integers. In the 32-bit format 
E has 8 bits and C has 24 bits, allowing a number range from ± 10"27 to 
+ 10 + 4°. In 64-bit format E has 16 bits and C has 48 bits, giving a number 
range from ± K)-8616 to ± 10+8644. The binary points of both the exponent 
and the coefficient are on the extreme right of their bit fields, since they are 
both integers, and the sign bit is on the extreme left of the field. A number 
is normalised when the sign bit of the coefficient is different from the bit 
immediately to its right. Double-precision results are stored as two numbers 
in the same format as the single-precision result, and referred to as the upper 
and lower results. They may be operated upon separately. Another feature 
is the provision of significance arithmetic. In this mode the result of a 
floating-point operation is shifted in such a way that the number of significant 
digits in the result is equal to the number of significant digits of the least 
significant operand.

Instructions in the CYBER 205 are three-address and may be either 32 or 
64 bits long with 12 possible formats. There are 219 different instructions 
which may be divided into the following categories (the number of instructions 
in each category is given in parentheses):

Register (60) Vector macro (15)
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Index (9) String (1)
Branch (29) Logical string (8)
Vector (28) Non-typical (51)
Sparse vector (11) Monitor (7)

In this short review we cannot attempt to describe all the instructions, but 
we do attempt to give the flavour of the instruction set by giving examples 
of the more interesting instructions.

Register instructions manipulate data in the 256 64-bit register file, either 
as 32-bit half-words or as 64-bit full-words, depending on the instruction. R, 
S and T  stand for 8-bit register numbers. The bits in a word are numbered 
from left to right starting at zero. Examples of register instructions are:

ADDX R, S, T  Add address part (i.e. bits 16 to 63) of register 
R to register S and store in register T.

EX PH R, T  Take the half-word exponent from register Rand
place in least significant bit positions of register T.

Index instructions load and manipulate 16, 24 or 48 portions of registers:

IS R, 116 Increase the rightmost 48 bits of register R by the
16-bit operand 116 in bits 16 to 31 of the 32-bit 
instruction.

Branch instructions can be used to compare or examine single bits, 48-bit 
indices, 32- or 64-bit floating-point operands. The results of the comparison 
determine whether the program continues with the next sequential instruction 
or branches to a different instruction sequence:

CFPEQ A, X, [£ , y] Compare for equality the 64-bit floating-
point numbers in registers A and X. Jump 
to location specified by the contents of 
[£ , y] if comparison is successful.

Vector instructions perform operations on ordered sets of numbers that 
are stored in consecutive storage locations. The designated operation is 
performed element-by-element and the result stored in a consecutive set of 
storage locations. The maximum length of such a vector is 65 535 elements. 
A vector is specified in an instruction by giving the numbers (8 bits each) of 
a pair of registers, for example [ A, X] or [01, 02]. The first register contains 
the base address (48 bits) and field length (16 bits) of the vector, and the 
second register contains a 16-bit offset to the base address identifying the 
start of the vector. A vector instruction also includes the number of the 
register (8 bits) that contains the address of the start of the control vector
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(48 bits). The control vector is a bit vector containing one bit position for 
each element of the vector operands. It is used to control (or mask) the 
storage of the result of the vector operation. One may, for example, require 
that storage only takes place for elements for which the corresponding control 
bit is a one (or alternatively a zero). In the following A, B, C, X, Y, Z  stand 
for register numbers in the range 00 to FF in hexadecimal:

MPYUV [A, X \  IB , Y], C, Z Multiply the vector specified by
registers [A, X~\ by the vector 
specified by registers [£, Y] under 
the control vector specified by 
register Z. The output vector is 
specified by register C. The offset 
for the output vector is in register 
C 4- 1 by convention.

Vector instructions include add, subtract, multiply, divide (using either 
the upper or lower portions of the double-length results, normalised or 
significance arithmetic), the ceiling and floor functions of APL (Iverson 1962), 
contraction and expansion of numbers between 64-bit and 32-bit floating-
point formats, square root, truncation, and the packing and unpacking of 
the coefficient and exponent of floating-point numbers.

A special data format is provided for use if a vector contains many zero 
or near-zero elements. Such a vector may be compressed into a sparse vector 
which is specified by an order vector and data vector. The order vector is a 
bit vector with a bit position for every element of the full vector. The presence 
of a non-zero element is identified by a one bit and the presence of a 
zero-element by a zero bit. With the positions of all the non-zero elements 
identified by the order vector, the data vector need only store the values of 
the non-zero elements in the order that they appear in the full vector. A 
sparse vector is specified in an instruction by giving the numbers of a pair 
of registers. The first register of the pair contains the base address of the data 
vector and the second register contains the base address and field length of 
the order vector. Addition, subtraction, multiplication and division operations 
can be performed on such sparse vectors, for example:

ADDNS [A, X \ [£, Y], [C, Z ] Add normalised the sparse vector
specified by registers [A,X]  to 
the sparse vector specified by 
registers [£, Y], storing the result 
as a sparse vector specified by 
registers [C ,Z].
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Sparse vectors are formed by vector compare instructions, for example:

CMPEQ [A,X],  [Æ, Y \ Z  Compare and form order vectors: if
An = Bn, bit Z„t equals 1 otherwise
z„ = o,

followed by a vector compress operation, for example:

CPSV A, C, Z Compress vector A into vector C, controlled by the 
order vector Z.

A sparse vector can be expanded to a full vector, for example, by:

MRGV A, B, C, Z Merge vector A with vector B under control of 
order vector Z. If B is a vector of all zeroes then 
the result vector C is the expanded form of the 
sparse vector A:
if Z n = 1, Cn = next element of A ; 
if Z„ = 0, Cn = next element of B.

A similar instruction that does not expand the vectors is the mask instruction:

MASK A,B, C ,Z  Form output vector C from corresponding 
elements of A or B, depending on the value of 
the corresponding bit in the control vector Z: 
if Z„ = 1, Cn = An\ 
if Z n = 0, Cn = Bn.

The vector compare, compress, merge and mask instructions are examples 
of non-typical instructions. Other instructions in this category include: read 
real-time clock, count ones in field, simulate fault, find maximum or minimum 
element in a vector, merge bit and byte strings, scan for a given byte.

Another set of instructions of particular interest are the vector macro 
instructions, which perform with one instruction some of the more frequent 
operations in numerical analysis. They are implemented in microcode and 
perform operations that would normally require a subroutine of instructions. 
In all cases the elements involved in the operation may be selected by a 
control vector Z. Examples are:

ADJMEAN [A, X] , C, Z  Adjacent mean:
C„ = (An+l + An)/2

AVG U ,X ] ,[ £ ,y ] ,C ,Z  Average: Cn = (An + Bn)/2

t  Anl Bn, C„ mean the nth element of the floating-point vector specified by the words 
in registers A, B, C respectively. Zn means the nth bit of the order or control vector 
specified by the word in register Z.
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DELTA [ A , X] , C, Z Delta or numerical 
differentiation: C„ = (A„ +1 — An)

DOTV [ A , X l [ B , Y ] , C , Z Double-length dot product 
(£\4„£J stored in registers C 
and C + 1.

SUM [ A, X] , C, Z Sum of elements of A (double-
length) to registers C and C -h i.

VREVV [ A , X I C , Z Transmit vector A to C with its 
elements in reverse order.

The operations of periodic or random scatter and gather (see §2.2.4) are 
performed by single instructions on the CYBER 205. They apply to items 
or groups moved to or from either main memory or the register file. Examples 
are:

VTOVX \_A,X],B,C Vector to indexed vector transmission
B -> C indexed by A

VXTOV \_A, X ],# , C Indexed vector to vector transmission
B indexed by A -> C

Index lists that are used above may be generated in any convenient way; 
however a special search instruction is provided that can be useful for this 
purpose, for example:

SRCHEQ A,B, C,Z  Search for equality and form index list. A„ 
is compared with all elements of B until 
equality is found. The number of unsuccessful 
comparisons before the ‘hit’ is entered into 
C„. This is repeated for all elements of A. The 
counts Cn are in fact the indices of the 
elements satisfying the condition of equality. 
The comparison may be limited to certain 
elements by the control vector Z.

Another form of the search instruction provides a single index, for example:
SELLT [v4,X], [£ , Y],C,Z Select on less than conditions: the

corresponding elements of A and B 
are compared in turn starting with 
the first element. The index of the 
first pair to satisfy the condition 
(here An< B n) is placed in the 
register C. Element pairs are skipped 
or included according to the bits in 
the control vector Z.
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String instructions perform operations on strings of data in the form of 
8-bit bytes. These represent characters from a possible set of 256, including 
for example the a s c ii  and e bc d ic  standards. In contrast with the CYBER 203, 
the CYBER 205 implements only one such byte-oriented instruction:

MOVL [A, X \  [C, Y],I8 The bytes in A are moved left to
become the bytes of C. Repeats of byte 
18 are brought in from the right as 
required.

The logical string operations, on the other hand, perform logical operations 
on strings of single bits. Eight logical operations are provided in separate 
instructions, for example:

AND [/4,X ],[B , Y ],[C ,Z ] The logical bit-by-bit AND of the
bits in A with the bits in B form the 
bits of C.

NOR [/4, X], [£ , Y], [C ,Z ] The NOT of the inclusive OR of the
bits of A with the bits of B form the 
bits of C.

The monitor instructions function only when the machine is in monitor mode. 
They are used by the operating system to load and store associative words 
to absolute addresses in memory in order to manage the virtual memory 
system and to deal with interrupts. These instructions cannot be executed in 
a user program without causing a program fault.

2.3.5 Software
The software used on the CYBER 205 is a development of that written for 
the CDC STAR 100, and has been in operational use on the STAR 100, 
CYBER 203 or CYBER 205 since 1974. The principal items of software are:

(1) CYBER 205-OS—a batch and interactive operating system;
(2) CYBER 200 FORTRAN—a vectorising compiler for the main high- 

level language;
(3) CYBER 200 META—the assembler language that gives access to all 

the hardware features of the machine;
(4) CYBER utilities—including a loader and file editing and maintenance 

facilities.
The CYBER 200 operating system is designed to handle batch and 

interactive access, either locally or from remote sites, via a front-end computer 
such as a CYBER 180 series, IBM or VAX. The mass storage for user 
files is on CDC 819 disc units (capacity 4800 Mbit, average data rate
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36.8 Mbit/s, average positioning time 50 ms) attached to data channels of 
the CYBER 205. Each user may program using memory of up to 2.2 x 1012 
64-bit words. Such programs are stored on the mass storage system and 
transferred into the physical store of the computer (maximum 4 x 106 64-bit 
words) in pages. It is the job of the operating system to allocate the physical 
memory into appropriately sized pages and distribute these amongst the 
several user programs that may be executing in a multiprogramming 
environment. The operating system achieves this by using monitor mode 
instructions to change the associative words in the associative registers and 
page table. The operating system is highly modular, and communication 
between different parts is by messages. The bulk of the operating system is 
stored in virtual memory and is paged into main memory when required. 
Only the kernel and pager are resident in the memory of the CYBER 205 at 
all times. The kernel handles the allocation of time to active jobs and the 
communication of messages to different parts of the software. The pager 
handles the allocation of memory and page swapping.

Another part of the operating system, called the virtual system, enters jobs 
into the operating system from the batch or interactive terminals, and removes 
jobs from memory if they finish or become inactive. Messages from active 
jobs for I/O  are processed by the virtual system and sent to the loosely 
coupled network ( l c n ) for execution. Accounting tasks are also performed. 
An operator program is provided for interactive communication with the 
operator who may: display user jobs and accounting information; terminate, 
suspend and resume jobs; look at system tables; and generally control the 
flow of jobs through the computer.

The CYBER 200 FORTRAN compilers include both the ANSI standards 
X3.9-1966 and 1978, with extensions to permit the user to make use of the 
vector and string hardware facilities of the CYBER 205. Some features have 
been added that comply with ANSI standard X3.9-1978, and that have 
become a Control Data standard in earlier CDC compilers (NAMELIST I/O , 
ENCODE/DECODE, BUFFER IN and BUFFER OUT). The compiler 
has an automatic vectoriser that substitutes either vector instructions or 
appropriate STACKLIB routines (see p. 178) for DO loops, where such 
replacement cannot alter the logic of the problem. In addition the CYBER 200 
FORTRAN compiler provides an optimiser that reschedules the order of 
scalar instructions so as to make optimum use of the scalar registers and 
pipelined scalar functional units, thus providing the maximum of functional 
concurrency without specific user intervention.

Vector operations are specified by descriptors which define vectors. These 
translate directly into the machine instruction format described in §2.3.4. A 
vector is specified by an array name, a starting index and a length. Thus
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given an array A, A( 10; 100) means the vector which starts at location A( 10) 
and which is 100 elements long. Descriptors can be used implicitly within 
expressions, or by dynamic declaration. Examples are given below.

In both cases the array of elements B(2), . .., 5(1000) is multiplied by two 
and stored in locations A( 1),..., ,4(999). In case (1) the descriptors are used 
in place of the array names in the arithmetic statement, and in case (2) the 
array elements to be used are specified in the arithmetic statement.

Access to all instructions of the CYBER 205 may be obtained through 
special subroutine calls of the form CALL Q8ADDX(R,S, T) which, for 
example, generates the single machine instruction ADDX R , S, T. The 
mnemonics for other machine instructions can similarly be prefixed with the 
reserved letters Q8 and used as a subroutine call in order to generate a single 
instruction in the place in the FORTRAN code where the subroutine call is 
made. Alternatively user-supplied assembler code can be incorporated in a 
FORTRAN program by linking a subprogram generated by the CYBER 200 
assembler itself as an external reference to the FORTRAN program during 
the loading of the program parts.

Some frequently occurring dyadic and triadic operations on vectors, 
including recursive operations, have been efficiently programmed and are 
available via special subroutine calls to the STACKLIB routines. Examples 
from the 25 general forms, are:

(1) Add Recursive V1 

being the equivalent of

(2) Multiply Add 

being the equivalent of
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(3 ) Subtract Multiply, Recursive VI, Reverse Order 

being the equivalent of

In the above the letters following Q8 identify the type of arithmetic operations 
involved, and the numerical code indicates whether the operands are scalar 
or vector and which operands are recursive.

The META assembler program for the CYBER 205 generates relocatable 
binary code from mnemonic machine instructions, procedures, functions and 
miscellaneous directives. Access is thereby provided to all the hardware 
facilities of the machine. Directives allow the programmer to control the 
process of assembly. Some features of the assembler are: conditional assembly 
capability for selective assembly, generation of re-entrant code that can be 
used simultaneously by several users without duplication of the code, ability 
to redefine all or any of the instruction mnemonics, ability to define a symbol 
for a set (or list) of data, the attributes of such sets (type and number of 
elements etc) may be assigned and referenced by the programmer. The assembly 
process takes place in two passes. In the first pass, all statements are 
interpreted, values are assigned to symbols, and locations are assigned to 
each statement. In the second pass, external and forward references are 
satisfied, data generation is accomplished, and the binary output and assembly 
listings are produced. Assembler programs are modular in form and may 
consist of several subprograms that are linked together by the LOADER 
program.

The LOADER program is one of the operating system utilities. It takes 
relocatable binary code produced by the FORTRAN compiler of the META 
assembler, links these with any requested library routines, and produces an 
executable program file. The user has control over the characteristics of the 
program file and may, for example, specify that certain routines be loaded 
as a group in either a small or large virtual page. Source files of the 
CYBER 205 software system, including the compiler and assembler, and user 
programs are all stored as card images in program files that may be created, 
edited and maintained on a card-by-card basis by the utility program 
UPDATE. Object binary files may be edited with the object library editor.

The above file maintenance activities, job preparation and input/output 
are performed on the front-end computer, thereby leaving the CYBER 205 
for its main task of large-scale calculation. The hardware link between the
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front-end computer and the CYBER 205 is controlled by link software which 
permits multiple front-end computers to operate concurrently.

2.3.6 Performance
We consider first the performance of the CYBER 205 in the best case, when 
successive elements of all vectors are stored contiguously in memory. The 
performance of non-contiguously stored vectors is considered on page 184. 
Table 2.4 gives the expected performance of a selection of such contiguous 
vector operations in a 64-bit floating-point arithmetic on a two-pipe 
CYBER 205. We notice immediately that the half-performance length n1/2 
is, with the exception of scatter and gather, close to 100; that is to say at 
least twice as long as the CRAY X-MP. Since the value of n1/2 determines 
the best algorithm to use (see Chapter 5), it may be the case that different 
algorithms should be used on the two machines, even though they are both 
in the general category of pipelined vector computers. For most instructions, 
the asymptotic operation rate is 100 Mop/s or Mflop/s, compared with 
70 Mflop/s for such dyadic operations on the CRAY X-MP. This rate is 
reduced to 40-50 Mop/s for the scatter, gather, max/min and product of 
element instructions.

TABLE 2.4 Expected vector performance of a two-pipe CYBER 205 for a selection 
of instructions (64-bit working), interpreted in terms of and n1/2. The actual 
performance in a multiprogramming environment may differ somewhat from these 
values. N = number of elements in the output vector, /  =  number of elements in the 
input vector or vectors. All vectors are contiguously stored in memory.

Instruction
Time
(clock periods)

roo
(M op/s) «1/2

Full vector addition 51 T  0.5N 100 102
Full vector multiplication 52 +  0.5 N 100 104
Sparse vector addition 88 + //1 6  + 7W/16 ^ 89 f ^ 156
Sparse vector multiplication 88 +  //1 6  + 7N/16 ^73J ^ 128
Dot product 116 + / 100 116
Product of elements 126 + / 50 126
Max or min of elements 86 + / 50 86
Compress 52 + 0.5/ 100 104
Mask or merge 56 +  0.5 N 100 112
Random scatter 83 + 1.25N 40 66
Random gather 6 9 +  1.25N 40 55
Vector relational 56 + 0.5 N 100 112
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In the last paragraph we have compared the performance of the two-pipe 
CYBER 205 and the CRAY X-MP when doing arithmetic to the same precision 
namely 64 bits. There are two ways in which the performance of the 
CYBER 205 can be increased. One option is to decrease the precision of the 
arithmetic to 32-bit floating-point, and the other is to increase the number 
of pipes from 2 to 4. The actions of halving the precision or doubling the 
number of pipes both have the effect of doubling the number of results that 
are produced in a given time. Performing both actions, i.e. going to 32-bit 
arithmetic on a four-pipe machine, produces four times the number of results 
in the same physical time. If the time to produce n results on the two-pipe
machine in 64-bit arithmetic is

(2.9)

then this is also the time for operating on a vector of length ri = cn, where 
c = 2 or 4 in the above cases. Substituting in equation (2.9), we have

(2.10a)

(2.10b)

In the new situation (indicated by a prime) we have, by definition

(2.10c)

and hence by comparison with equation (2.10b) we have

(2.10d)

Therefore doubling or quadrupling the vector length processed in a given 
time, doubles or quadruples both and n 1/2. This effect can be seen in the 
data given by Kascic (1979) in figure 2.26, which shows the timing curve 
for dyadic vector addition or element-by-element multiplication of the 
form C = A op B on a two-pipe CYBER 205 in 64-bit arithmetic (curve 
A.r^ = 100 Mflop/s, n1/2 = 100) with the same operation on a 2-pipe 
CYBER 205 in 32-bit arithmetic or on a 4-pipe CYBER 205 in 64-bit 
arithmetic (curve B:rx = 200 Mflop/s, n1/2 = 200).

Figure 2.26 also shows the timing curve C for a linked triadic operation 
such as

( 2. 11)

in which vector B is multiplied by the scalar c, and then added element-by- 
element to the vector A. Since most of the overhead that contributes to « 1/2 
is associated with the reading and writing of numbers to main memory, 
roughly doubling the length of the pipeline does not significantly alter n1/2.
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However two operations must be credited for every result returned to memory 
and is thereby doubled. Put another way: let the timing equation for 
either a multiplication or addition vector operation be

(2.12a)

where s is the time to read and write to memory and / is the arithmetic pipe 
length. In the CYBER 205 s » l > 1, hence

(2.12b)

If two such operations are linked together, then the timing equation per 
vector operation becomes:

(2.13a)

and hence

(2.13b)

Thus, as previously stated, r^ is doubled and ni/2 is approximately unchanged. 
This is shown by curves B and C in figure 2.26. In fact n l/2 is increased by 
about 50% due to the time for the select-link instruction, which has been 
ignored in the above analysis, but which must be executed just prior to the

FIGURE 2.26 Timing curves used in the determination of and ni/2 
for the CDC CYBER 205, taken from data given by Kascic (1979). A, 
2-pipe CYBER 205 in 64-bit arithmetic on dyadic operations; B, 4-pipe 
CYBER 205 in 64-bit arithmetic or a 2-pipe CYBER 205 in 32-bit 
arithmetic also on dyadic operations; C, 4-pipe CYBER 205 in 64-bit 
arithmetic on triadic operations.

and
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vector instructions that are to be linked together. This increase in ni(2 can 
be seen in curve C of figure 2.26.

The results of the above measurements of r^  and nl/2 are summarised in 
table 2.5 and compared with the previous results for a single c pu  of the 
CRAY X-MP. The specific performance n0 measures the short vector 
performance (see § 1.3.5), hence one can see immediately that the short vector 
performance of the X-MP/1 is always greater than that of the CYBER 205, 
even the four-pipe machine. On the other hand—except for the one-pipe 205 
in 32-bit mode—the long vector performance of the CYBER 205, which is 
measured by r«,, is always greater than that of the X-MP/1. It follows that 
there must be a vector length, say n, above which the CYBER 205 is faster 
and below which the CRAY X-MP is faster.

The value of h can be obtained by equating the performance of the two 
machines. If we use a superscript (2) for the CYBER 205 and the superscript 
(1) for the CRAY X-MP, one obtains

(2.14a)

whence
(2.14b)

where a = r ^ / r ^  and y = n ^ / n ^  are the ratio of asymptotic performance 
and the ratio of specific performance respectively. Equation (2.14b) was used 
to calculate the values of h in table 2.5.

TABLE 2.5 The asymptotic performance r h a l f  performance length n1/2 and the 
specific performance n0 =  rao/ n ll2 for contiguous memory-to-memory operations on 
the CYBER 205 and a one-CPU CRAY X-MP. The term h is the vector length above 
which the CYBER 205 has a high average performance than the CRAY X-MP/1. 
The CRAY X-MP/1 has the higher performance for vector lengths less than n.

**00 (Mflop/s) **1/2 (M /s)
- h 

DyadComputer Bits Dyad Triad Dyad Triad Dyad Triad

CYBER 205 64 50 100 50 75 1 1.3 0 0

one-pipe 32 100 200 100 150 1 1.3 58

CYBER 205 64 100 200 100 150 1 1.3 58
two-pipe 32 200 400 200 300 1 1.3 26

CYBER 205 64 200 400 200 300 1 1.3 26
four-pipe 32 400 800 400 600 1 1.3 20

CRAY X-MP/1 64 70 148 53 60 1.3 2.4 —
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The performance parameters given in tables 2.4 and 2.5 apply only if 
successive elements of the vectors involved are stored in successive memory 
addresses. Such vectors are said to be contiguous, and the memory of all 
computers is usually organised to access such vectors without memory-bank 
or memory-data-path conflicts. The stride of a vector is the interval in memory 
address between successive elements of the vector. A contiguous vector is 
therefore a vector with a stride of one, and any other vector is a non-contiguous 
vector. In general, vectors may have other constant strides. For example, if 
the elements of an (n x n) matrix are stored contiguously column by column 
(normal FORTRAN columnar storage), the rows of the matrix form vectors 
with a constant stride of n. Such vectors are sometimes described as being 
periodic. Other vectors may have elements whose location is specified by a 
list of addresses which may have arbitrary values. Such vectors are referred 
to as random vectors, and are accessed by using the scatter/gather (or indirect 
addressing) instructions of a computer.

Since computers are normally optimised for rapid access to elements of 
a contiguous vector, their performance is usually degraded (sometimes 
dramatically) if non-contiguous vectors are involved. This is particularly true 
in the case of the CYBER 205 and, as an example, we consider the timing 
of a dyadic operation X = Y*Z  between random vectors. Since the only 
vector instructions available on the CYBER 205 are between contiguous 
vectors, this non-contiguous vector operation must be performed in several 
stages: first the two input vectors Y and Z must be ‘gathered’ into two 
temporary contiguous vectors; then a contiguous vector operation can 
be performed, producing a temporary contiguous result; and finally the 
contiguous result is ‘scattered’ to the random locations of the vector Z. We 
can calculate the timing for this non-contiguous operation by using the timing 
formulae in table 2.4:

(2.15)

Since t  " 1 corresponds to 50 Mflop/s, we find that the effective parameters 
describing a non-contiguous dyadic operation are

(2.16)
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Thus we find that the use of non-contiguous vectors has degraded the 
performance by almost a factor 10 from the asymptotic contiguous 
performance of 100 Mflop/s. Because the time for the non-contiguous 
operation is dominated by the time for the scatter/gather operations which 
are not speeded up by increasing the number of vector pipelines, the above 
performance of approximately 10 Mflop/s maximum is virtually unchanged 
if the number of vector pipelines is increased.

It would, of course, be absurd to program the CYBER 205 entirely with 
non-contiguous vector operations of the kind discussed in the last paragraph. 
First, all problems should be structured so that the number of non-contiguous 
operations is reduced to a minimum, possibly even zero; and secondly if 
non-contiguous operations are unavoidable, it is desirable to group them so 
that many contiguous operations (rather than one in the above example) 
are performed on the temporary contiguous vectors. In this way the overhead 
of the scatter/gather operations is amortised over many vector operations. 
Even so the contiguous and non-contiguous performance for a dyadic 
operation are the best and worst possible cases, and actual performance on 
a particular problem will lie between the two. The fact that the range of 
performance between the worst and best case on the CYBER 205 is so large 
is indicative that considerable program restructuring may be necessary to 
get the best performance out of this computer.

2.3.7 The ETA10
The ETA10 is the first product of ETA Systems Inc.t, which was formed in 
August 1983 as an off-shoot of Control Data Corporation, to shorten the 
development cycle of new supercomputers and, in particular, to continue the 
development of the CYBER 205 line of supercomputers. This 10 Gflop/s 
computer was announced in 1986, with first customer deliveries in early 
1987. The system is to be developed into a 30 Gflop/s computer, the ETA30, 
by 1992, possibly using gallium arsenide technology. ETA10 computers have 
been ordered for the National Advanced Scientific Computing Centers at 
Princeton, Minnesota and Florida State Universities, and for the Super-
computer Applications Laboratory (SAL) at the University of Georgia, 
Athens. Orders outside the USA have been announced for the German 
Weather Service in Offenbach, West Germany, and for the Atmospheric and 
Environmental Service of Canada. The first delivery was to Florida State 
University, Tallahasse, in January 1987.

The overall architecture of the ETA10 is shown in figure 2.27(a) and 
comprises 2,4, 6 or 8 c pu s  and 2 to 18 I/O  units working from a large shared

1 1450 Energy Park Drive, St Paul, MN 55108, USA.
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( a )

FIGURE 2.27 (a) Overall architectural block diagram of the ETA10 computer.

memory of 64, 128, 192 or 256 Mwords (64-bit). Each c pu  is architecturally 
the same as a two-pipe CYBER 205 with 4 Mwords (64-bit) of local memory, 
as described in §§2.3.1 to 2.3.5. The installation at Tallahasse is shown in 
figure 2.21(b). The two low cabinets at the front each house four c pu s  with 
their local memories, and the taller cabinet behind houses the shared memory 
and I/O  units. Although the memory is hierarchical, programmers will see 
a uniform virtual address space, addressed by 48 bits, as in the CYBER 205. 
The enhanced ETA30 is expected to have 16 Mwords of local memory per 
processor and 1 Gword of shared memory. The target peak performance of
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(b)

FIGURE 2.27 cont. (b ) General view of the ETA10 installation at Florida State 
University, Tallahasse, which was installed in January 1987. Each of the two low 
cabinets at the front holds four c p u s , each with 4 Mword of local memory. The 
large shared memory of up to 256 Mword and the I/O  units are contained in the 
taller cabinet behind.

each ETA10 c pu  on triadic operations is 800 Mflop/s in 64-bit working and 
1600 Mflop/s in 32-bit working, which corresponds to a clock period of 5 ns. 
This is a four-fold increase in performance over the CYBER 205 with its 
20 ns clock. The peak performance of the complete eight-cpu system is, 
therefore, 12.8 Gflop/s in 32-bit mode, thus reaching the company’s goal. 
The first machines will, however, have a clock period of 7 ns.

Each c pu  is connected to the shared memory by a separate high-speed c pu  
port with a bandwidth of one 64-bit word per clock period (200 Mword/s 
or 12.8 Mbit/s). This is 1/6 of the data rate required to drive the two 
arithmetic pipelines of the c pu  directly from the shared memory, hence it is 
assumed that substantial calculations are performed within a c pu  using 
its local memory, before results are returned to shared memory. The 
Communication Buffer is a high-speed, one million word memory used to 
communicate, coordinate and synchronise the multiprocessor activity. Input 
and output are performed via 18 slower I/O  ports with a bandwidth of 
400 Mbit/s. Each I/O  port contains up to eight functional units, each
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FIGURE 2.27 cont. (c) (Top) A single 19 in x 24 in c pu  board of the ETA10, 
which contains all the logic of a two-pipe CYBER 205. Above this is the 4 Mword 
of local memory. (Bottom) The cpu  board being lowered into the tank of the 
liquid nitrogen cryostat. The c pu  board is totally immersed in the liquid nitrogen, 
but the local memory above is air-cooled. A thick layer of insulation can be seen 
separating the two.
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containing a 68020 microprocessor to support standard peripherals (such as 
discs and tapes), and networks (such as Ethernet, Hyperchannel and l c n s ) 
via multiple I/O  channels.

As the internal speed of logic devices within a chip has increased, the 
relative importance of interconnection delay, experienced when logic signals 
pass between chips, has increased. A major aim of supercomputer designers 
is therefore the reduction of this interconnection delay by placing more and 
more logic gates on each chip, thus reducing the number of chips 
and their interconnections. Unfortunately, increasing the level of v l s i in this 
way leads to the use of slower technologies which are normally unacceptable 
in a high-performance computer: for example, a much higher density of gates 
can be achieved using c m o s  than by using the faster ecl  technology. ETA 
Systems has resolved this dilemma by adopting the slower c m o s  technology 
because of its higher gate density, and regaining the lost speed by operating 
the chips at liquid nitrogen temperatures, as we now see.

The principal innovation in the ETA10 computer is technological, since 
the architecture of the c pu  has been around since the CDC STAR 100 in the 
mid-1960s. ETA Systems has adopted high-density c m o s  gate-arrays for the 
computer logic, with 20000 gates on a 1 x 1 cm2 chip. These were developed 
by Honeywell for the US Defense Department’s vh sic  (very high-speed 
integrated circuit) program, and use a 1.25 ¡jlm feature size. Because of the 
complexity of the chips, self-testing logic is incorporated on the chip. The 
technology is voltage-driven and only uses power when it changes state. 
Consequently, the chip generates only about 2 W, which is to be compared 
with 4 W for the 250-gate ecl  chip used on the CYBER 205.

By using the above c m o s  chips, a reduction in the number of chips of about 
80 times can be achieved compared to the CYBER 205. This technology, 
along with very dense 42-layer printed circuit boards and electronic computer- 
aided design tools, has enabled a single c pu  of a two-pipe CYBER 205, to 
be placed on a single 19 inch x 24 inch board containing 250 c m o s  chips. 
The 4 Mword local memory is mounted separately above. Thus the whole 
4 Mword CYBER 205 illustrated in figures 2.14 and 2.15, and occupying 
23 ft x 19 ft, has been reduced to one logic board and a compact set of 
memory boards occupying about two square feet (figure 2.27(c), top).

At room temperature, cm o s  is not as fast as the bipolar ecl  technology 
which is usually used for supercomputer logic circuits. However, if the cm o s  
chips are cooled to liquid nitrogen temperatures (77 K), circuit speeds are 
increased about two-fold, and speeds equivalent to room temperature ec l  
can be achieved. The life of the circuit boards is also found to be increased. 
The c pu  of the ETA10 will therefore be totally immersed in liquid nitrogen, 
which is part of a closed-loop system including a cryogenerator. The local
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and shared memory, however, will be air cooled. The ETA10 will therefore 
to be the first commercially produced cryogenic computer. Figure 2.27(c) 
(bottom) shows the c pu  boards being lowered into the cryogenic tank, and 
the thick insulating layer that separates the liquid-nitrogen-cooled logic 
boards from the air-cooled local memory.

The 4 Mword local memory in each c pu  is made from 64K-bit c m o s  static 
r a m chips, and the shared memory uses 256K-bit dynamic r a m chips. The 
use of the above density of v l s i enables the maximum eight-cpu 256 Mword 
ETA10 system to be contained in a single cabinet occupying only 7 ft x 10 ft 
of floor space (figure 2.21(b)).

The instruction set of the ETA10 is upward compatible with that of the 
CYBER 205: that is to say all CYBER 205 machine instructions are 
included. However, some instructions have been added to manipulate the 
communication buffer and permit m im d  programming, i.e. the synchron-
isation of the multiple c pu s  when working together to solve a single problem 
(multi-tasking on the CRAY X-MP).

A large software program has been mounted to support the ETA10. The 
vos (virtual operating system) will be provided with user interfaces to 
maintain compatibility with the CYBER 205 virtual operating system, and 
UNIX will be provided for compatibility with a large range of workstations 
and minicomputer front-ends, vos design emphasises direct interactive 
communication between the user and the ETA10, with support for both 
high-speed and local area networks, thus eliminating the requirements for a 
larger general purpose front-end computer. Although FORTRAN 77 is 
available, the main programming language is expected to be FORTRAN 8X, 
which anticipates the ANSI 8X standard (see Chapter 4) and provides 
structures for expressing program parallelism.

In addition to vectorising compilers for the above languages, the KAP 
preprocessor developed by Kuck and Associates, and based on Kuck’s 
parafrase system, automatically identifies parallelism in programs and 
restructures them to enhance the level of subsequent vectorisation (Kuck 
1981). The operating system will also contain a multi-tasking library for 
parallel processing. The multi-tasking tools allow access to a shareable data 
set from each processor.

2.4 JAPANESE VECTOR COMPUTERS

In 1983/4 three Japanese manufacturers (Fujitsu, Hitachi and NEC) 
announced pipelined vector computers that combined the best features from 
the CRAY-1 and CYBER 205 machines. All the computers had separate scalar
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and vector units like the CYBER 205, and vector registers like the CRAY-1; 
indeed a single-block architectural diagram could be used for all three 
machines. The computers are the Fujitsu FACOM VP-100 and VP-200 with 
an advertised peak performance of 266 and 533 Mflop/s respectively; the 
Hitachi HITAC S810 models 10 and 20 with a peak performance of 315 and 
630 Mflop/s; and the NEC SX1 and SX2 with a peak performance of 570 
and 1300 Mflop/s. Although similar in overall architecture, the three 
computers differ significantly in detail, particularly in the cooling technology. 
We will now describe the computers in more detail.

2.4.1 The Fujitsu FACOM VP-100/200/400
The FACOM VP-100/200 was the first of the Japanese vector computers to 
appear (Motegi, Uchida and Tsuchimoto 1984, Miura and Uchida 1984, 
Tamura, Kamiya and Ishigai 1985). The project was started by Fujitsu in 
1978 and the first machine was operational in 1982. The first customer delivery 
of a VP-100 was made to the Institute of Plasma Physics at Nagoya University 
in December 1983, and the second delivery, also of a VP-100, was made to 
Kyoto University in April 1984. The VP-200 model shown in figure 2.28 was 
taken at the Fujitsu Ltd Numazu Production Plant in the foothills of Mount 
Fuji, where all the vector processor manufacture and software development 
takes place. The VP-100 and VP-200 are marketed in the USA and UK by 
Amdahl Corporation as the Amdahl VP1100 and VP1200 and, in Germany, 
the Fujitsu vector processors are marketed by Siemens who installed a VP-200 
in their Munich support centre in February 1985. Siemens first sale of a 
VP-200 was to the IABG Institute in Munich. A VP-400 with twice the 
performance of the VP-200 was installed at the Japanese National Aerospace 
Laboratory in 1985. Its theoretical peak performance is 1 Gflop/s.

The overall view of the VP-200 in figure 2.28 shows three cabinets in the 
foreground for, from left to right, memory, the scalar unit, and the channel 
processors. At the rear are two further cabinets for the vector unit and a 
second block of memory. The machine shown occupies about 20 ft x 15 ft 
of floor space, weighs about 7 tons and consumes about 80 kVA of power.

Unlike the CRAY and CYBER 205 computers which use freon refrigeration, 
the Fujitsu vector processors use forced air cooling. This is achieved by 
attaching cooling fins to the chip mounting, as shown in figure 2.29. Figure 
2.29(a) shows a logic chip which uses bipolar ecl  l s i with 400 gates per chip. 
Register files are contained on similar chips with 1300 gates per chip. In both 
cases the gate delay time is 350 ps. Figure 2.29(b) shows a high-speed memory 
module comprising four lK-bit bipolar ra ms  with an access time of 5.5 ns. 
In this case four fins are used, one for each chip. This memory module is 
used for buffer memory and control store. Both the assemblies shown in
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FIGURE 2.28 Overall view of the Fujitsu VP-200. The three cabinets on the 
right are for memory, scalar unit, and channel processors; the two on the left are the 
vector unit and a second cabinet of memory.

figure 2.29 are about 0.75 inch x 0.75 inch x 0.75 inch, and are mounted on 
multichip carriers ( m c c s )  holding up to 121 assemblies in an 11 x 11 array, 
as shown in figure 2.30(a). The m c c  is a 31 x 31 cm2 14-layer printed circuit 
board. Thirteen such m c c s  are then mounted horizontally in a 5 cm cube 
called a stack. This is shown in figure 2.30(b). The main memory of the 
VP-100/200 is made from 64K-bit static m o s  chips with an access time of 
55 ns. These chips do not require fins to dissipate the heat and are mounted 
as flat packs on 24 x 38 cm2 6-layer printed circuit memory boards (not 
illustrated, but like any other such board). Each board contains a 4 x 32 array 
of 64K-bit data chips or 1 Mbyte of memory.

The overall architecture of the FACOM vector processors is given in 
figure 2.31. The architecture of the vector unit is CRAY-like, in the sense 
that multiple functional units (for floating-point add, multiply and divide) 
work from a vector register memory (64 Kbyte). However, there is a separate 
scalar unit, as in the CYBER 205, with 64 Kbyte of buffer storage (5.5 ns
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( b )

FIGURE 2.29 Air-cooled chips of the Fujitsu vector processors, (a) 
An e c l  l s i  logic chip with 400 gates, (b) Four 1 Kbit memory 
chips mounted together on a module.

access). The main memory (55 ns access) of 256 Mbyte is arranged as 
256 banks, and is connected to the vector registers by two load/store pipelines. 
The above numbers are for the VP-200; the main memory and vector register 
storage is halved in the VP-100. There are also 256 mask registers, each of
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32 bits (16 bits on the VP-100), which are used to store mask vectors which 
control conditional vector operations and vector editing operations.

A unique feature of the computer is that the vector register storage may 
be dynamically reconfigured under program control either as 256 vector 
registers of 32 64-bit elements, 128 registers of 64 elements,... etc, or as eight 
registers of 1024 elements. The length of the vector registers is specified by 
a special register, and can be altered by a program instruction.

The clock period of the scalar unit is 15 ns, which is called the major cycle. 
The vector unit, however, works on a clock period of 7.5 ns, the minor cycle. 
On the VP-200 the floating-point add and multiply pipelines can deliver two 
64-bit results per clock period, leading to a peak performance of 267 Mflop/s 
for register-to-register dyadic operations using one pipeline, and 533 Mflop/s 
for register-to-register triadic operations which use both the add and multiply 
pipelines simultaneously. These rates are halved on the VP-100. The divide 
pipeline is slower and has a peak performance of 38 Mflop/s. On the VP-200 
each load/store pipeline can deliver four 64-bit words every 15 ns, or 
equivalently a bandwidth of 267 Mword/s (133 Mword/s on the VP-100). 
These rates are 2/3 of the bandwidth which is required to support a dyadic 
operation with arguments and results stored in main memory. Thus, unlike 
the CRAY X-MP and CYBER 205, the Fujitsu VP has insufficient memory 
bandwidth to support such memory-to-memory operations. This puts a 
heavier burden on the compiler to make effective use of the vector registers 
for intermediate results in order to limit transfers to and from main memory.

The instruction set of the Fujitsu VP is identical to the IBM 370, with the 
addition of vector instructions; indeed IBM-370-generated load modules will 
run on the VP without change. Vector instructions include conditional 
evaluation of a vector arithmetic operation controlled by a mask with one 
bit per element of the vector (as on the CYBER 205, §2.3.4); compress and 
expand vectors according to a condition; and vector indirect addressing, 
that is to say a random scatter/gather instruction as described for the 
CRAY X-MP in §2.2.4. This instruction can gather four elements every 15 ns.

It is anticipated that most users will write their programs in FORTRAN, 
and an extensive interactive software system is being developed for the 
interactive optimisation and vectorisation of such programs (Kamiya, Isobe, 
Takashima and Takiuchi 1983, Matsuura, Miura and Makino 1985). For 
example, the vectorisation of IF statements presents a particular problem,

<
FIGURE 2.30 Logic technology of the Fujitsu vector processor, (a) A 
multichip carrier (mc c ) with space for 121 l s i chips, (b) A stack of 13 horizontally 
mounted mc c s .
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and the FORTRAN 77/VP vectorising compiler selects the best of three 
possible methods. These are: (a) conditional evaluation using a bit-mask;
(b) selection of the participating elements into a compressed vector before 
performing the arithmetic; and (c) the use of the vector indirect addressing 
to select the participating elements. The compiler compares the three methods, 
based on the relative frequency of load/store operations in the DO loop, 
and the fraction of the vector elements which are participating (the true 
ratio). If the true ratio is medium to high, a masked arithmetic operation is 
best; otherwise the compress method is best when the frequency of load/store 
operations is low, and indirect addressing is best when the frequency is high. 
Interaction takes the form of suggestions to the programmer on how to 
restructure his program to improve the level of vectorisation.

2.4.2 The Hitachi HITAC S-810
The Hitachi HITAC S-810 was the second of the Japanese vector processors 
to appear, the first customer delivery being to the University of Tokyo in

FIGURE 2.31 Overall architectural block diagram of the Fujitsu vector 
processor, (f pr  denotes floating-point registers and gp r  denotes general-purpose 
registers.)
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1984. Other machines have been installed for internal company use. The 
Hitachi S-180 model 10 and model 20 vector computers are similar in overall 
architecture to the Fujitsu machines, as can be seen by comparing figures 2.31 
and 2.32. The principal difference is that the S-810 has more pipelines 
(Nagashima, Inagami, Odaka and Kawabe 1984). There are three load and 
one load/store pipelines on the S-810 compared to only two load/store 
pipelines on the VP. This means that memory-to-memory dyadic operations 
can be supported on the S-810 at the full rate. The main memory size is 
256 Mbytes (40 ns access time) and there is 64 Kbytes of vector register 
storage. Like the Fujitsu VP, this register storage can be reconfigured 
dynamically to hold vectors of different lengths.

The model 20 has 12 floating-point arithmetic pipelines (four add, two 
multiply/divide followed by add, and two multiply followed by add). The 
clock period for both models is 14 ns, which corresponds to a theoretical 
peak performance of 71.4 Mflop/s per pipeline for register-to-register 
operation, or 857 Mflop/s for the 12 pipelines. However, if one takes into 
account the time to load the vector registers from main memory this is 
reduced to a realistic maximum performance of 630 Mflop/s if all the 
pipelines are used. The design is optimised to evaluate expressions such as 
A =(B + C)*D which require three vector loads and one vector store and 
thus use the four load and store pipelines. The model 10 has a 6 floating-point

FIGURE 2.32 Overall architectural block diagram of the Hitachi S-810 model 10. 
( v m r  denotes the vector mask register and L denotes logical operations.)
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pipelines and half the vector register and main memory size. Its peak 
performance is quoted as 315 Mflop/s.

As with any of the computers discussed, the observed performance on 
actual problems will be less than the above peak rates, because of problems 
of memory access. As a simple test, the (ro0,n l/2) benchmark described in 
§1.3.3 has been executed for a number of vectorised DO loops (statement 10 
of program segment (1.5)). The results are given in table 2.6 for the S-810 
models 10 and 20 in both 32- and 64-bit precision. For the model 10 we 
observe a maximum performance of approximately 240 Mflop/s for the 
four-ops case, which is an expression that makes maximum use of the 
hardware. In this case, there are three input vectors and one output vector 
which occupy all the four pipelines to memory. In addition, the expression 
uses the two add and the two multiply pipelines. Since the pipelines have a 
clock period of 14 ns this corresponds to a maximum rate of 71 Mflop/s per 
pipeline, giving a maximum expected performance of 284 Mflop/s. The 
measured value of 240 Mflop/s is less than this, due to the time required to 
load the vector registers.

If there are more than three input vectors and one output vector, the memory 
bandwidth is insufficient to feed the arithmetic pipelines with data at the rate

TABLE 2.6 Results for the (rQ0,w1/2) benchmark on the Hitachi S-810/10 
with figures for the model 20 in parentheses. Upper case variables are vectors, 
and lower case are scalars. (Data courtesy of M Yasumura, Hitachi Central 
Research Laboratory, Tokyo.)

Operation: 
statement 10 
program (1.5) Stride

Precision
bits

foo
(Mflop/s) n 1/2

Dyad 1 32 60( 97) 60(130)
64 62(119) 73(143)

A =  B + C 8 32 31 ( 61) 46(108)
64 56(110) 92(208)

Triad 1 32 118(180) 71(126)
64 121(238) 73(152)

A = B + e * C 8 32 43( 85) 27( 61)
64 66(131) 41(108)

Four-ops 1 32 238(345) 91(157)
64 231(489) 88(190)

A = B +  (e*C + f*D) 8 32 85(163) 24( 58)
64 134(263) 49(111)
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required. The performance is degraded, and the expression must then be 
treated as a combination of simpler dyadic and triadic operations, whose 
performance we consider next. Simpler expressions such as dyads and triads 
cannot make use of all the arithmetic pipelines and we observe rates of 
approximately 60 and 120 Mflop/s respectively for contiguous vectors with 
a stride of unity. This rate may be degraded to a half or a third due to 
memory-bank conflicts if the vectors are non-contiguous, in our case with a 
stride of eight. In summary, one could say that, for contiguous vectors, 
r^ = 60 Mflop/s per arithmetic operation in the expression (up to a maximum 
of four), with a degradation of up to a factor of three for unfavourably stored 
vectors. These results seem to be unaffected by the precision of the arithmetic. 
Thus a performance in the range 30 to 240 Mflop/s is to be expected from 
the model 10 depending on the circumstances. Values of n l/2 range from 40 
to 90.

The results for the model 20 are shown in parentheses in table 2.6. This 
model has twice the number of arithmetic pipes and we observe almost exactly 
double the rx and also double the value of n l/2, leading to a performance 
between approximately 60 and 480 Mflop/s depending on the circumstances. 
This is to be compared with a peak performance of 630 Mflop/s quoted by 
the manufacture. Because n l/2 is also doubled, vectors twice as long are 
required to achieve the same fraction of the maximum performance.

The Hitachi S-810 is air-cooled, like the Fujitsu VP, and uses ecl  l s i with 
550 gates per chip (350 ps gate delay) or 1500 gates per chip (450 ps gate 
delay) for its logic. Vector register storage uses bipolar lK-bit chips with
4.5 ns access time, and the main storage uses 16 K-bit c m o s  static rams . Each 
plug-in board holds up to 40 chips and has 14 interconnection layers.

As with the Fujitsu VP, the instruction set is an extension of IBM 370 and 
a vectorising compiler for IBM FORTRAN 77 is seen as the principal input 
language. The techniques used for vectorisation are described by Yasamura 
et al (1984). IBM-generated load modules will run without change.

2.4.3 The NEC SX1/SX2
The Nippon Electric Corporation’s SX1 and SX2 computers were the last 
of the three Japanese vector computers to appear, and the SX2 has the highest 
theoretical peak performance of over 1 Gflop/s (figure 2.33). The first two 
deliveries of SX2 computers were made in 1985 to Osaka University and the 
Sumito Trading Company. European marketing is by Mitsui and Company 
Europe Group.

The SX computers use current mode logic (c m l ) bipolar gates with a 
density of 1000 gates per l s i chip and a gate delay time of 250 ps. Cache and 
vector registers are made from 1 K-bit bipolar r a ms  with a 3.5 ns access time.
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F I G U R E  2 . 3 3  G e n e r a l  v i e w  o f  t h e  N i p p o n  E l e c t r i c  C o m p a n y  S X 2  c o m p u t e r .

These chips (36 of them) are packaged on a 10 cm square ceramic base to 
form a multichip package (figure 2.34(a)), which in turn is placed in a liquid 
cooling module (figure 2.34(h)) through which water circulates. The main 
memory of 256 M byte is com posed of 64K-bit m o s  static r a m s  with a 40 ns 
access time. The large extended memory of 2 Gbyte is com posed of dynamic 
m o s  chips.

The overall architecture of the NEC SX2 is shown in figure 2.35 (W atanabe 
1984). There are four general-purpose vector pipelines, each of which 
com putes every fourth element of a vector operation and has inside it a 
com bined floating-point m ultiply/divide pipeline and an add pipeline. Thus 
the elements of a vector operation are spread across the available vector 
pipelines, as in the CYBER 205. The clock period is 6 ns, so that when 
all eight floating-point pipelines are working sim ultaneously a maximum  
rx =  1333 M flop /s is asym ptotically possible. The above figures refer to the 
SX2 model. The SX1 com puter has a 7 ns clock period and half the number 
of pipelines, giving a maximum r x =  570 M flop/s. The data transfer rate 
between memory and vector registers is eight numbers per clock period.

As with the other Japanese machines the input language is FO R TR A N  77.
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(b)
FIGURE 2.34 Water-cooled technology of NEC SX1/SX2. (a) A 10 cm2 multichip 
package, containing 36 l s i  chips, each of which has 1000 logic gates, (b) The liquid 
cooling module.

There is an automatic vectoriser, analyser and optimiser to assist in 
restructuring the FORTRAN to obtain a better level of vectorisation. Unlike 
the other machines, the instruction set is not compatible with IBM 370, and 
IBM-generated load modules will not run on the machine.

2.4.4 Performance Comparisons
A substantial number of benchmark comparisons have been made between 
the vector computers that we have described, and some of these are given
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in table 2.7. The top three rows give the average performance in Mflop/s for 
three of the so-called Livermore loops (McMahon 1972, Arnold 1982, Riganati 
and Schneck 1984). Fourteen such DO loops were selected by the Lawrence 
Livermore Laboratory as being typical of their computer-intensive work. We 
have selected three which generally exhibit both the best and the worst 
performance of a computer. Loop 3, the inner product, is at the centre of 
most linear algebra routines. Most vector computers make special provision 
for this loop, and the highest vector performance is usually observed. The 
performance in loops 6 and 14 is usually more characteristic of the scalar 
performance because the DO loops involve recurrences and the opportunity

FIGURE 2.35 Overall architectural block diagram of the NEC SX2.
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for vectorisation is reduced or eliminated. These problems are the solution 
of a tridiagonal system of equations and the movement of particles in a 
computer simulation of a hot gas plasma.

The Livermore loops are called kernel benchmarks because they consist 
of small program segments, rather than the solution to a complete problem. 
We can see in the comparison between Livermore loop 3 and loops 6 or 14 
that the kernel performance ranges over at least a factor of 10. Hence it is 
also of interest to see what performance is found on a complete problem 
which would involve both vectorisable and non-vectorisable loops, together 
with unavoidable scalar code. To address this point, Dongarra (1985) has 
compiled a set of benchmark measurements from the timings of the well 
known LINPACK routines for the solution of a full set of 100 linear equations 
by lower/upper triangular ( l u ) decomposition and back substitution 
(Dongarra et al 1979). Rows four and five of table 2.7 give the performance 
for FORTRAN code and for specially optimised code for the same problem 
using assembler routines for the key inner loops. The solution of 100 linear 
equations is not a large enough problem to demonstrate the full capabilities 
of a large supercomputer, particularly one with multiple c pu s . Hence in row 
6 we show the best performance that has been obtained for solving 300 linear 
equations, using the matrix-vector method (see next paragraph). The 
performance obtained on this benchmark is indicative of what should be 
obtainable from carefully optimised code.

A glance at table 2.7 shows that it is not possible to see a clear distinction 
between the performance of the computers. All of the computers are of similar 
performance and can be expected to work at a few tens of Mflop/s on 
non-optimised FORTRAN code, and a few hundreds of Mflop/s on carefully 
optimised code (possibly needing assembler code). Which computer has the 
best performance on any particular problem is likely to depend on the care 
with which the program is optimised. For example, substantially improved 
performance can be obtained on the CRAY X-MP if the lu  decomposition 
is expressed in terms of matrix-vector operations, instead of vector-vector 
operations (see row 6). The work of a matrix-vector operation may then be 
multi-tasked very efficiently across the multiple c pu s  (Dongarra and Eisenstat 
1984, Chen et al 1984). The best performance is achieved on the CRAY X-MP 
if three rows are simultaneously eliminated (Dongarra and Hewitt 1985). In 
this case, a performance of 718 Mflop/s is obtained for the solution of a set 
of 1000 equations on a four-cpu CRAY X-MP. Other detailed comparisons 
of the performance of the above supercomputers are given by Bucher (1984), 
Lubeck et al (1985), and Bucher and Simmons (1986).
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2.5 THE FPS AP-120B AND DERIVATIVES

The FPS AP-120B and its derivatives—the AP 190L, the FPS-100, 164, 
164/MAX, 264 and the FPS 5000—are all members of a single family of 
computers based on a common architecture, namely that of ihe FPS AP-120B. 
These computers have been renamed as follows: the original ms i version of 
the FPS-164 (now discontinued) is called the MHO, the later v l s i version 
(first called the FPS-364) is called the M30, the FPS-164/MAX is called the 
M l45, and the FPS-264 is now the M60. They are all manufactured 
by Floating Point Systems Inc.t in Beaverton near Portland, Oregon, USA. 
The company was founded in 1970 by C N Winningstad to manufacture 
low-cost yet high-performance floating-point units to boost the performance 
of minicomputers, particularly for signal processing applications. Starting in 
1971, the company produced floating-point units for inclusion in other 
manufacturers’ machines (e.g. Data General). The first machine marketed 
under the company’s name, the AP-120B, was co-designed by George 
O ’Leary and Alan Charlesworth, and had a peak performance of 12 Mflop/s. 
Deliveries began in 1976, and by 1985 approximately 4400 machines had 
been delivered. The FPS-100 is a cheaper version of the AP-120B, made for 
inclusion as a part of other computer systems. The AP-120B was designed 
for attachment to minicomputers, and a version with more memory, called 
the AP-190L, was introduced for attachment to larger mainframe computers 
such as the IBM 370 series.

In 1980 the concept of the AP-120B was broadened from rather specialised 
signal processing applications to general scientific computing by increasing 
the word length from 38 to 64 bits, and the addressing capability from 16 
to 24 bits. The memory capacity was also greatly increased, first to 1 Mword 
then to 7.25 Mword. The new machine which evolved was the FPS-164 which 
was first delivered in 1981. By 1985 about 180 FPS-164s had been sold. 
Although capable of solving much larger problems than the AP-120B, 
the FPS-164 was no faster at arithmetic—indeed its peak performance 
of 11 Mflop/s was 1 Mflop/s less than that of the AP-120B. The first 
improvement in arithmetic speed came in 1984 with an enhancement to the 
architecture called the matrix accelerator (MAX) board. Each such MAX 
board can be regarded computationally as the equivalent of two additional 
FPS-164 c pu s , so that a machine with the maximum of 15 MAX boards has 
a theoretical peak performance of 31 FPS-164 cp u s  or 341 Mflop/s. The 
AP-120B and the FPS-164 are both implemented in low-power (and therefore 
low-speed) transistor-transistor logic (t t l ), and the next improvement

t  Headquarters: PO Box 23489, Portland, Oregon 97223, USA. UK Office: Apex 
House, London Road, Bracknell, Berkshire, UK.
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in performance came in 1985 with the announcement of an ec l  version of 
the FPS-164, called the FPS-264, which had a peak performance of 
38 Mflop/s. The FPS-164 was designed in 1979 with the then current ms i of 
between 10 and 100 gates per chip. The machine has now been re-engineered 
in cmo s  v l s i and is marketed as the FPS M30 computer, which may be 
attached to microVAX and Sun workstations. The architecture is the same 
as the FPS-164 which we describe here.

The FPS-164/MAX is a si md  computer because the 31 c pu s  in a 
full configuration operate in lock-step in response to a single stream of 
instructions. Another development of the AP-120B architecture has, however, 
been towards multi-instruction stream computing (m im d ). The FPS-5000 
series of computers, announced in 1983, have a control processor, up to three 
arithmetic coprocessors and an I/O  processor attached via a common bus 
to a common memory and a host computer. Each arithmetic coprocessor 
(a c ) has its own control unit, and may be executing a different subroutine 
from the other ac s , thus providing a m im d  capability. According to the 
classification given in § 1.2.6 the FPS-5000 is a bus-connected, shared-memory 
m im d  computer. The control processor of the FPS-5000 is either an AP-120B 
or FPS-100 computer. The XP-32 arithmetic coprocessor is of a new design 
due to Pincus and Kallio, but follows the same general pattern as the 
AP-120B.

All the above computers are called array processors because they are 
designed to process arrays of numbers efficiently. Architecturally, however, 
they are all pipelined computers with a small number of pipelined arithmetic 
units working from a common memory and registers. In this respect their 
architecture is CRAY-like. It is important to realise that although the above 
computers are called array processors, they are not arrays of processors like 
the ICL distributed array processor DAP (see Chapter 3). This ambiguity 
in the meaning of the expression ‘array processor’ has led us to avoid its use 
in this book. However, the term is commonly used for the computers described 
in this section and by the manufacturers. Some, however, prefer to interpret 
the initials AP to mean attached processor, since most require a host 
computer.

We start by describing in detail the father of the family, namely the AP-120B 
(§2.5.1 to §2.5.6), then follow with separate sections on the special features 
introduced in the FPS-164 and 264 (§2.5.7), the FPS 164/MAX (§2.5.8) and 
the FPS-5000 (§2.5.10). The use of multiple FPS-164s attached to a host, to 
form a loosely coupled array of processors (/C A P) is considered in §2.5.9.

2.5.1 FPS AP-120B
Apart from company documentation, the principal references describing the 
AP-120B are by Wittmayer (1978), Harte (1979) and Charlesworth (1981).
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FIGURE 2.36 An overall view of an FPS AP-120B installation. The 
AP-120B occupies only 29 inches of rack space, and is attached to a 
PDP 11/34 with two disc units, a tape reader and output printer. The 
control teletype or vdu  is not shown. (Photograph courtesy of D Head 
and Floating Point Systems, S A Ltd.)

The FPS AP-120B occupies 29 in of rack space on a standard EIA 19 in 
wide rack. Figure 2.36 shows a small installation comprising a PDP 11/34 
host in the lower portion of the rack below the AP-120B, two disc units, a 
magnetic tape reader and output printer. The control teletype or vdu  is not 
shown. The machine weighs about 160 pounds and consumes less than 1.3 kW 
(compared with about 115 kW for the CRAY X-MP). Cooling is by forced 
air driven by push -  pull fans that are part of the A P-120B chassis. The machine 
can therefore be carried by one man, and plugged into a standard 13-amp 
domestic power socket. In contrast to the CRAY X-MP and CYBER 205, 
no auxiliary coolant plant or motor-generator sets are required to drive the 
machine.

Figure 2.37 shows a rear view of an AP-120B with a circuit board partially 
withdrawn. The cooling fans which can be seen at the top, blow air over the



T H E  F P S  A P - 1 2 0 B  A N D  D E R I V A T I V E S 209

F I G U R E  2 . 3 7  R e a r  v i e w  o f  t h e  F P S  A P - 1 2 0 B  s h o w i n g  t h e  v e r t i c a l l y  
m o u n t e d  1 0  i n  x  1 5  i n  c i r c u i t  b o a r d s  a n d  f a n  c o o l i n g .  ( P h o t o g r a p h  
c o u r t e s y  o f  D  H e a d  a n d  F l o a t i n g  P o i n t  S y s t e m s ,  S  A  L t d . )

vertically mounted 15 in x 10 in circuit boards. The chassis has capacity for 
28 etched-circuit boards which are chosen to suit the particular requirements 
for memory and input/output. Two of the circuit boards are shown in greater 
detail in figure 2.38. The circuit boards are six-layered, comprising three 
signal layers and three power supply layers for ±  5 V and -I-12 V. The power 
supplies, which are not shown in figure 2.37, are mounted on a separate 
power panel that occupies the rear part of the 29 in rack space behind the 
circuit boards.

2.5.2 Architecture
The overall architecture of the AP-120B is shown in figure 2.39. It is based 
on multiple special-purpose memories feeding two floating-point pipelined 
arithmetic units via multiple data paths. The machine is driven synchronously 
from a single clock with a period of 167 ns. This means that the state of the 
machine after a sequence of operations is always known and reproducible.
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FIGURE 2.38 Two circuit boards from the FPS AP-120B. Left: 
the control buffer logic board from the control unit which decodes 
instructions; right: a board from the program memory which stores 
instructions. (Photograph courtesy of D Head and Floating Point 
Systems, S A Ltd.)

The operation of the machine can therefore be exactly simulated, clock period 
by clock period, and the machine does not suffer from the delicate timing 
uncertainties that had plagued some earlier computers which had separate 
clocks driving several independent units. Multiple data paths are provided 
between the memories and the pipelines, in order to minimise the delays and 
contentions that can occur if a single data path is shared between many units.

Starting at the top of figure 2.39 the memories are: a program memory of 
up to 4K 64-bit words for storing the program (cycle time 50 ns); a scratch-pad 
(S-pad) memory of 16 16-bit registers for storing addresses and indices; a 
table memory (167 ns cycle time, either read only or read/write memory) of 
up to 64K 38-bit words for storing frequently used constants, such as the 
sine and cosine tables for use in calculating a Fourier transform; two sets 
(data pad X  and data pad T) of 32 38-bit registers for storing temporary 
floating-point results; and a main data memory for 38-bit words (plus three 
parity bits), directly addressable to 64 Kwords but, with an additional 4-bit 
page address, expandable up to 1 Mword. Separate 38-bit data paths are 
provided to each of the two inputs to the floating-point adder and multiplier. 
These four independent paths may be fed from the main data memory, the 
data pads or from table memory. Three further 38-bit data paths feed results 
from the two pipelines back to their own inputs, or to the data pads or main 
data memory. These multiple paths allow an operand to be read from each 
data pad and a result written to each data pad during one machine cycle.
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FIGURE 2.39 Overall architecture of the FPS AP-120B, showing the multiple 
memories, arithmetic pipelines and data paths. (Diagram courtesy of Floating Point 
Systems Inc.)
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The address within both data pads is given by the contents of the data pad 
address register (d pa ). Relative addressing ( —4 to 4-3) with respect to this 
address is available separately for each data pad within the instruction in 
the data pad index fields XR, YR, XW, YW (see §2.4.4).

The main data memory is available in 8K modules (or 32K modules 
depending on the chip type) which are each organised as a pair of independent 
memory banks, one bank for the odd addresses and the other bank for the 
even addresses. The standard memory has an access/cycle time of 500 ns and 
the optional fast memory has a cycle time of 333 ns. Successive references to 
the same memory bank (e.g. all even addresses less than 8K) must be separated 
by at least three clock periods with standard memory or two clock periods 
with fast memory. Two successive references to different memory banks (e.g. 
two neighbouring addresses which are from odd and even banks, or two 
even addresses separated by 8K and therefore in different modules) may 
however be made on successive clock periods. Alternating references to the 
odd and even memory banks, as would occur when accessing sequential 
elements of a long vector, can occur at one reference per clock period for 
fast memory, giving an access to the same bank every 333 ns (matching the 
capability of the memory chip), and an effective minimum cycle time between 
requests to memory as a whole of 167 ns. For standard memory this rate 
must be halved, giving an effective memory cycle time for such optimal 
sequential access of 333 ns. If repeatedly accessing the same bank, a cycle 
time of 500 ns (three clock periods) applies. The memory is therefore described 
by the manufacturer as having an interleaved ‘cycle’ time of 167 ns for fast 
memory or 333 ns for standard memory, even though the memory chips have 
a physical cycle time of 333 and 500 ns respectively. However, it should be 
remembered, when making comparisons with other machines, that we have 
previously quoted the cycle time of the memory chips as a measure of the 
quality of the memory (e.g. 38 ns main memory of the CRAY X-MP, although 
this is organised into banks so as to give an interleaved ‘cycle’ time of 9.5 ns). 
If a memory reference to a part of the memory that is busy occurs, the 
machine stops execution until the memory becomes quiet.

Instructions on the AP-120B are 64 bits wide, and each instruction controls 
the operation of all units in the machine. Thus there is, in this sense, only 
one instruction in the instruction set (see §2.5.4) with fields which control 
each of the 10 functions, although some fields overlap and thus exclude 
certain combinations of functions. This arrangement of control is referred to 
as ‘horizontal microcode’. Instructions are processed at the maximum rate 
of one per clock period, i.e. 6 million instructions per second, but since each 
instruction controls many operations this is equivalent to a higher rate on a 
conventional machine whose instructions only control one unit.
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The S pad contains an independent 16-bit integer arithmetic and logical 
unit (a l u ) for computing addresses, loop counts and indices in its set of 16 
16-bit registers. The operations provided are: integer addition, subtraction; 
logical AND, OR, and equivalent; and shifts and bit reversal for use in 
Fourier transformation (see §5.5). All these operations take one clock period. 
There is no provision for multiplication. These integer operations are 
performed in parallel with floating-point calculations in the pipelines.

Both the addition and multiplication floating-point pipelines may take a 
new pair of operands every clock period and deliver a result every clock 
period. Thus the maximum rate of generation of results is 6 Mflop/s per 
pipeline, or 12 Mflop/s if both pipelines can be kept supplied with data. The 
performance on actual problems is more likely to be in the range 4-8 Mflop/s 
(see §2.5.6). The length of the multiplication pipeline is three clock periods 
(500 ns) and of the addition pipeline is two clock periods (333 ns). The 
addition pipeline also performs the logical operations of AND, OR and 
equivalence, absolute value, scale and number conversions between sign- 
magnitude and two’s complement formats. The operation of the addition 
and multiplication pipelines is clarified by figures 2.40 and 2.41 which show 
the possible source and destinations of operands, the two input registers (Al, 
A2 or M l, M2), the partial operations performed at each stage of the pipelines, 
and the buffer registers for holding the intermediate partial results. The 
AP-120B does not provide a hardware divider, and floating-point division 
is accomplished in software by evaluating an approximating polynomial.

FIGURE 2.40 The two-stage addition pipeline of the FPS AP-120B. 
Note the possible sources of operands and destinations for results, using 
the notation of figure 2.39. Buffers are provided between each stage to 
store intermediate results. (Diagram courtesy of Floating Point Systems 
Inc.)
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FIGURE 2.41 The three-stage multiplication pipeline of the FPS 
AP-120B. Notation as used in figure 2.39. (Diagram courtesy of Floating 
Point Systems Inc.)

Floating-point arithmetic is performed in a 38-bit format (10-bit radix-2 
exponent and a 28-bit two’s complement mantissa). This representation has 
a dynamic range 10± 153 and a precision of eight decimal places. It provides 
significantly more precision than IBM 32-bit radix-16 format (10±78 and six 
decimal places). Extra guard digits are also kept during the arithmetic 
operation in order to minimise loss of precision. The conversion of numbers 
between the format used by the host computer and the internal 38-bit format 
of the AP-120B takes place as the numbers are transferred between the 
machines.

Input and output to the AP-120B is performed by an I/O  port ( i o p) or a 
general programmable I/O  port (g pi o p). The io p provides either 16- or 38-bit 
direct memory access to the main data memory of the AP-120B, by ‘stealing’ 
memory cycles as required. Data transfer rates of 1.5 Mword/s into the a p 
and 1.3 Mword/s out of the a p are obtained. The 16-bit wide port is used 
for analog-to-digital input, display outputs and standard peripherals. The 
38-bit wide port also contains a full adder and can be wired for a variety of 
data format conversions. As well as normal I/O  this port can be used to link 
one AP-120B to another. The io p occupies one circuit board of the 
AP-120B, and can accommodate up to 256 external devices. The gp io p is a 
programmable I/O  channel which provides up to 3 Mword/s continuous 
transfer with ‘in-flight’ format conversion including fixed-point to floating-
point. It contains two 18 Mips microprocessors and occupies three circuit
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boards. It is used typically to interface with discs, real-time displays, video 
cameras and other computers.

The architecture of the AP-120B with a 64K standard main data memory 
can be expressed in the as n  notation of §1.2.4 as follows:

2.5.3 Technology
The AP-120B is designed for reliability and therefore uses only well proven 
components and technologies, under conditions well clear of any operating 
limits. As a result mean time between failure (m t b f ) of the hardware is typically 
several months to a year. The logic of the computer is made from low-power 
Schottky bipolar t t l  (transistor-transitor logic) chips with a level of 
integration varying from a few gates per chip to a few hundred gates per 
chip. Typical gate delays in this logic technology are 3-5 ns. Various registers 
in the computer are also made in this logic technology. These are the S-pad 
and data-pad registers, and the subroutine return stack. The 50 ns program 
source memory and the 167 ns table memory both use IK Schottky bipolar 
memory chips, whereas the slower and larger main data memory uses either 
4K or 16K mo s  memory chips.

It is interesting to compare the CRAY X-MP with the AP-120B from the 
point of view of technology, speed and power consumption, as they represent 
opposite extremes. The CRAY X-MP uses high-speed and high-power bipolar 
ecl  technology with sub-nanosecond gate delays and a clock period of 9.5 ns, 
leading to the need for a large freon cooling system to dissipate a total of 
about 115 kW. The AP-120B on the other hand uses mostly low-power 
technology and consequently has a much longer clock period of 167 ns. 
However this permits the use of air cooling and limits the total power 
consumption to about 1.3 kW.
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2.5.4 Instruction set
There are no vector instructions per se on the FPS AP-120B. Instead a 64-bit 
instruction is issued every clock period that has fields which control the 
operation of all units in the computer during that clock period. As an example, 
if the field FM (see below) controlling the multiplication pipeline is activated 
(i.e. bit 51 of the instruction is one), then all data in the multiplication pipeline 
are advanced to the next stage. The pipeline must therefore be activated three 
times to ‘push’ one pair of arguments completely through the three-stage 
pipeline and thereby complete one multiplication operation. A further 
activation of the pipeline is necessary for every subsequent element of a vector 
operation. This would most likely be set within a loop. The format of the 
single universal instruction is shown in figure 2.42. The notation for the data 
sources and destinations corresponds with figure 2.39. For a complete 
description of the instruction the reader is referred to the AP-120B Processor 
Handbook (FPS 1976a). In order to indicate the operation of the instruction, 
we give below examples of the uses of the data fields:

( 1 ) S-pad group (control of 16-bit integer a l u  and 16-bit registers)

SOP specifies dyadic S-pad operation, e.g. ADD, SUB, MOV, 
AND, OR, EQUIV; operands are SPS and SPD registers; 
result goes to SPD.

FIGURE 2.42 The data fields in the 64-bit instruction of the FPS 
AP-120B. This single instruction controls the operation of all units in 
the computer at every clock period. (Diagram courtesy of Floating Point 
Systems Inc.)
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SPS number (4 bits) of 16-bit source register.
B if 1, reverses bits of source register before performing 

operation.
SPD number of 16-bit destination register.
SH specifies single left or right shift, or double right shift after 

operation.
SOP1 specifies monadic operations on data in SPD register 

when SOP = 0, e.g. increment (-hi), decrement ( —1) or 
complement SPD register.

SPEC control, conditional and branch instructions.

(2) Floating-point adder group

FADD specifies dyadic operations, e.g. FADD, FSUB, AND, OR, 
EQUIV using data in A1 and A2. Intermediate results are 
moved one segment down the pipeline to the next buffer 
register.

A1 source of data to be loaded into first adder input register,
e.g. FM (multiplier output), DPX, TM.

A2 source of data to be loaded into second adder input.
FADD1 specifies monadic operations on data in A2 when 

FADD = 0, e.g. convert A2 to integer, sign-magnitude or 
two’s complement; take absolute value.

(3) I/O  group (controls I/O  and transfers to and from buses), e.g.

D P B S -S P D  
D PB S-T M A

SPFN -  PNLBS 
INTA

data-pad bus contents to S-pad destination, 
data-pad bus contents to table memory address 
register.
output of S-pad to panel bus.
interrupt acknowledge; device address put in
DPBS.

(4) Branch group

COND condition for branch, e.g. always, on flag, on arithmetic 
error, return jump from subroutine, on FA or SPFN = , 

> 0 .0 .

DISP if branch true next address is current address -h DISP — 16,
relative jump of — 16 to + 15.

(5) Data-pad group (controls transfers to and from data pads X and Y)

DPA current data-pad address.
DPX load data pad X from DPBS, FA or FM.



218 PIPELINED COMPUTERS

DPY load data pad Y from DPBS, FA or FM.
DPBS selects DPX, DPY, MD, SPFN or TM to be sent to data-pad 

bus.
XR data-pad register with address DPA -I- XR — 4 is sent to

DPX.
YR data-pad register with address DPA + YR — 4 is sent to

DPY.
XW DPX is sent to data-pad register with address 

DPA + XW -  4.
YW DPY is sent to data-pad register with address 

DPA + YW -  4.

(6) Floating-point multiplier group

FM multiply or no operation. Intermediate results are moved one 
stage down the pipeline to the next buffer register.

Ml loaded from FM, DPX, DPY or TM.
M2 loaded from FA, DPX, DPY or MD.

(7) Memory group (controls transfers to and from main data and table 
memories)

MI load memory input register from FA, FM or DPBS.
MA increment or decrement memory-address register by one, or 

read from SPFN, and initiate data memory cycle.
DPA increment or decrement data-pad address by one or set 

address from SPFN.
TMA as DPA but for table memory.

2.5.5 Software
Software for the AP-120B, except for device drivers, is written in FORTRAN, 
so that it may be compiled to run on a variety of host computers. It may be 
subdivided into the following categories:

(1) operating system;
(2) program development software;
(3) application libraries.

The operating system consists of an executive APEX and a set of diagnostic 
routines APTEST. The executive controls transfers of data between the host 
and the AP-120B, transfers a p programs from the host to the a p program 
source ( ps ) memory and initiates the execution of programs in the a p. The 
operation of APEX is illustrated in figure 2.43. Most user programs will be 
FORTRAN programs that call either upon AP-120B maths library programs
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FIGURE 2.43 Diagram showing the action of the APEX executive 
during program execution (courtesy of Floating Point Systems Inc). Both 
AP-120B instructions and data are transferred between the host computer 
and the AP-120B under the control of APEX.

or user-supplied subroutines of AP-120B instructions in order to manipulate 
arrays in the AP-120B. APEX itself is a subroutine that is linked as part of 
the compiled FORTRAN program and runs on the host. It contains a table 
recording the location and contents of all a p  routines that have already been 
loaded in the a p  program source memory. The AP-120B instructions for each 
a p  routine are stored as part of each subroutine in the host memory. Assuming 
that subroutines 1 and 2 have already been called, the following sequence of 
events takes place as the FORTRAN program executes in the host computer:

(1) FORTRAN program calls on a p  using routine 3 (VADD);
(2) routine 3 calls APEX;
(3) ps  memory table searched: routine 3 not in ps  memory;
(4) APEX transfers AP-120B instructions from host to ps  memory;
( 5 )  p s  memory table updated;
(6) APEX initiates execution of routine 3 in the AP-120B.

Data is transferred from the host to the AP-120B by calling the subroutine 
APPUT and results are transferred back with the subroutine APGET. Both 
these routines also call upon APEX to control the transfer. Once the execution 
of a program on the a p has begun, APEX returns control to the FORTRAN
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calling program on the host, which may then proceed with other calculations 
that do not use the a p . If a call to another a p  routine is met before the first 
has finished, APEX will wait for the first call to be completed.

The program development software comprises:

(1) Mathematics library—over 250 FORTRAN callable subroutines for 
the manipulation of arrays. The subroutines are written in assembler code 
and carefully optimised. Examples from the standard library are:

VADD, VMUL

SVE, DOTPR 
MMUL, MATINV 
CFFT, ACORT

element-by-element vector addition and 
multiplication;
sum of vector elements and dot product; 
matrix multiplication and inverse; 
complex fast Fourier transform and 
autocorrelation.

In addition there exists the advanced maths library which contains routines 
for function generation, binary search, tridiagonalisation, diagonalisation, 
solution of real and complex sparse systems of equations, and the solution 
of ordinary differential equations by Runge-Kutta integration.

(2) APAL—the assembler for AP-120B code which assembles programs 
on the host for subsequent execution on the a p.

(3) APLOAD—links separate APAL object modules into a single module 
for execution on the a p .

(4) APSIM , APDBUG—simulates an a p program and allows debugging 
on the host or a p respectively.

(5) VFC—vector function chainer. Consolidates multiple calls to maths 
library routines into a single call and thereby reduces calling overhead.

( 6 )  a p  FORTRAN—a compiler running on the host that accepts 
FORTRAN IV and produces code for execution on the a p .

The above software allows programs to be prepared in a variety of ways. In 
the order of decreasing speed in execution and increasing ease of preparation, 
these methods are likely to be: APAL assembler, vector function chainer, 
maths library routines and a p FORTRAN.

Application libraries are available for:

(1) SIGLIB—signal processing library with routines for histograms, 
hanning windows, correlations, transfer and coherence functions etc.

(2) IM P —image processing library with routines for 2D fast Fourier 
transform and convolution, image filtering etc.

(3) AM LIB—advanced maths library with routines for function generation, 
Runge-Kutta integration, sparse matrix solution and matrix eigenvalues.
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2.5.6 Performance
The AP-120B does not include a real-time clock and it is therefore impossible 
to time the execution of programs accurately. Attempts to time programs by 
using the clock on the host computer are usually imprecise and variable 
because of the effect of the host operating system. This is particularly the 
case if a time-sharing system is in use. In estimating the performance of the 
AP-120B we are therefore forced to rely on the timing formula given in the 
AP-120B maths library documents. The document (FPS 1976b) which we 
use gives timing formulae that may be related directly to formula (1.4a) 
defining and n1/2. The minor differences from later documents (FPS 
1979a, b) are unimportant. Because of the synchronous nature of these 
machines theoretical timings should be reliable; however the absence of a 
clock makes the optimisation of large programs very difficult. The detailed 
timing of large programs soon becomes tedious and error prone. An 
alternative is to simulate the execution of the ap  program on the host computer 
using the program APSIM (see §2.5.5). This program produces the theoretical 
program timing but again may be impractical for the timing of large programs 
because it runs about 1000 times slower than the program would execute on 
the AP-120B itself.

Using the maths library documents (FPS 1976b) we give the timing 
formulae for a selection of simple vector operations, and derive from them 
estimates for n1/2 and r^. We quote the timing formulae for the standard 
memory (500 ns chip cycle time) and give the improved values of for the 
fast memory (333 ns chip cycle time) in parentheses. Where there is a small 
timing variation because of the choice of odd or even memory locations for 
the vectors, we have taken the minimum timing. None of these minor timing 
alternatives substantially change the character of the machine, and they can 
largely be ignored.

Memory-to-memory move of vector A to C. K and /  are the memory 
increments between successive elements of A and C respectively. The time 
for N operations is:

hence

We note that this operation is memory bound and the transfer rate doubles 
for the fast memory. However n l/2 is unaffected by the memory type.

Vector move
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Vector addition

The time for N operations is:

therefore

Vector multiplication(3)

( 2 )

The time for N  operations is:

therefore

(4) Vector division

The time for N  operations is:

therefore

and we see that, because the calculation is dominated by arithmetic, the faster 
memory does not increase the performance.

(5) Vector exponential

The time for N exponentials is:

therefore

(6) Dot product
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The time for 2N operations is: 

therefore

The above selection of timings and performances, which may be considered 
typical for simple memory-to-memory vector operations, shows that only a 
small fraction of the potential performance of 12 Mflop/s can be realised for 
such operations. This is because the memory bandwidth is insufficient to 
support a memory-to-memory processing rate of this magnitude. A single 
vector operation has two input vector operands and one output result vector. 
Therefore a memory-to-memory processing rate of 12 Mflop/s requires a 
memory bandwidth of 36 Mword/s. The standard memory on the AP-120B 
has a bandwidth varying between 2 and 3 Mword/s depending on whether 
references are all to the same memory bank or alternate between different 
memory banks. The fast memory has similarly a bandwidth varying between 
3 and 6 Mword/s. Thus it is evident that the memory bandwidth is 
only about one-tenth of that required to sustain both the addition and 
multiplication pipelines working with data from main memory.

The most likely constraint on the realisation of fast processing rates on 
the AP-120B is therefore the low memory bandwidth. In order that memory 
bandwidth does not become a bottleneck, it is necessary for the computational 
intensity (see p i06), / , to be at least two floating-point operations per memory 
reference (flop/ref) with fast memory, or at least 4 flop/ref with standard 
memory. These conditions are realised for more complicated algorithms and 
large enough problem sizes, n: e.g. matrix multiplication, /  = 2n/3 flop/ref; 
fast Fourier transform ( f f t ), /  = 1.251og2n flop/ref.

The f f t  algorithm is worthy of closer examination because it is the 
main algorithm around which machines like the AP-120B were designed. 
Throughout the algorithm operations are of the ‘butterfly’ type (see equation 
(5.87)):

(2.17a) 

(2.17b)

where a and b are complex elements from main memory, and c and d are 
complex results to be returned to main memory. The complex constant w 
may reside in a register. Equations (2.17) require one complex multiplication 
(s = w*b) and two complex additions (a + s, a — s) for four memory 
references to complex numbers. This is the equivalent of 10 real arithmetic 
operations for eight real memory references, or /  = 1.25 flop/ref. The above
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considerations are for the radix-2 transform and show that this algorithm 
does not have a high enough computational intensity to keep the arithmetic 
pipes busy. By combining two levels of the f f t  together, we obtain the radix-4 
algorithm and increase the computational intensity to 2.5 flop/ref, which is 
a figure satisfying the conditions given above for the fast memory. We find 
that the maths library subroutine CFFT does use the radix-4 algorithm and 
gives a performance of 8 Mflop/s.

The values of half-performance length found above are in the range 
n 1 / 2 = 1-3, showing that the AP-120B, although it has many parallel features, 
actually behaves very similarly to a serial computer. In this respect the 
computer is similar to the CRAY-1 (nl/2 ~  10) and quite different from the 
CYBER 205 (n1/2 ~  100) or ICL DAP (n1/2 ~  1000). The selection of the 
best algorithm is normally determined by the value of n l/2 (see Chapter 5) 
and we would expect algorithms optimised to perform well on a serial 
computer also to perform well on the AP-120B. However, as has been 
emphasised above, the performance of a program may be more dependent 
on the management of memory references than on the questions of vector 
length that are addressed by the value of n l/2.

2.5.7 FPS-164 (renamed M140 and M30) and 264 (renamed M60)
As can be seen from figure 2.44 the FPS-164 is substantially larger than the 
AP-120B, being about 5.5 ft high and occupying about 2.5 ft x 7 ft of floor 
space, principally because of the need to accommodate a much larger memory. 
The same cabinet is also used for the FPS-164/MAX and FPS-264. The 
principal improvements introduced in the FPS-164 (compared with the 
AP-120B) are:

(a) 64-bit floating-point arithmetic compared with 38-bit;
(b) 32-bit integer arithmetic compared with 16-bit;
(c) 24-bit addressing to 16 Mword compared to 16-bit addressing to
64 Kword only;
(d) 64-bit X- and Y-pad data registers compared with 32-bit;
(e) 64 32-bit S-pad address registers compared with 16 16-bit;
(f) 1024 64-bit instruction cache replacing program memory;
(g) 256 32-bit subroutine return address register stack;
(h) main memory expandable from 0.25 to 7.25 Mword with memory
protection;
( i )  table memory of 32 Kwords r a m ;

(j) a clock for timing programs—sadly lacking on the AP-120B.

The increase in arithmetic precision and addressing range generally lift the
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FIGURE 2.44 Overall view of the FPS-164.

specification of the computer up from that of a minicomputer to that of 
current large mainframe computers. The way these features fit into the overall 
architecture can be seen in figure 2.45. In contrast to the AP-120B, both 
instructions and data share the same main memory, and instructions are 
automatically read into the instruction cache as needed. This cache memory 
therefore replaces the separate program memory of the AP-120B. Subroutine 
referencing is made more efficient on the FPS-164 by the inclusion of the 
subroutine stack which provides storage for 256 32-bit subroutine return 
addresses. The table memory, also called auxiliary memory, has become 
primarily a random access memory for use as temporary register storage for 
intermediate results. The first 8K of this memory is however reserved for 
read-only constants of which about 5K are assigned, the next 16K or 32K 
(depending on the option purchased) may be used as random access memory 
by user programs. The main memory is organised into modules, each with 
even and odd memory banks, as in the AP-120B. The original FPS-164 used 
16K-bit dynamic n m o s  chips and had 12 memory modules occupying 24 
memory boards (each board a bank), giving a capacity of 1.5 Mword. 
Subsequently, the use of 64K-bit memory chips has enabled the memory
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capacity to be increased to 7.25 Mword. Main memory acts as a three-stage 
pipeline, and successive requests to the same bank may occur every other 
clock period. Table memory acts as a two-stage pipeline, and successive 
requests may occur on successive clock cycles. A new feature on main memory 
is memory mapping and protection. If this is available, the contents of the 
MDBASE register are added to the requested address on line MA (see figure 
2.39) to form a physical address. If this exceeds the contents of the MDLIMIT 
register no memory access takes place: a read produces zeros and a write is 
ignored.

The FPS-164 is said to have a nominal clock period of 167 ns like the 
AP-120B. However, the actual clock period used is slightly longer at 182 ns, 
which leads to an asymptotic pipeline rate of 11 Mflop/s. The machine is

FIGURE 2.45 Overall architecture of the FPS-164.
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also provided with a programmable real-time clock and a c pu  timer that 
increments every clock period of the computer. This enables accurate timings 
to be made within user programs.

The theoretical arithmetic performance of the FPS-164 is 11/12 of the 
theoretical figures given for the AP-120B. With the availability of the c pu  
timer, accurate benchmarking is possible and we quote results obtained by 
Thompson (private communication). The result of the (rc09n l/2) benchmark 
for memory-to-memory arithmetic operations is given in table 2.8. The results 
for straight FORTRAN code (top number of pair), and for the use of the 
optimised mathematics library routines (bottom numbers) are compared. As 
expected from the theoretical timings for the AP-120B, a performance of 
about 1 Mflop/s is to be expected for dyadic operations. Except for the dyadic 
add operation, there is nothing to recommend the use of the library routines, 
because the same performance can be obtained using FORTRAN, and the 
overhead of the operation is less using FORTRAN as can be seen from the 
smaller value of n 1/2. A dyadic operation is the worst case for performance 
because there is no opportunity to store intermediate results in fast access 
registers, and the number of floating-point operations per memory reference, 
f  is 1/3 only. The last two cases of the triad and three-ops raise /  to 2/3

TABLE 2.8 Benchmark results of (ra09nl/2) for memory-to-memory 
operations on the FPS-164. Upper case variables are vectors, lower case 
are scalars. (Data courtesy of Bill Thompson, TUCC.) (Upper numbers 
FORTRAN, lower numbers library routine or higher optimisation level, 
OPTC.)

Operation: 
statement 10 
program (1.5)

roo
(Mflop/s) «1/2

A = B +  C 0.88 5
CALL VADD 1.06 16

A = B*C 1.07 5
CALL VMUL 1.04 17

> II 00 n 0.30 7

A =  b*(C — D)
OPTC = 1 0.8 —

OPTC = 3 3.4 —

A = B + C*(D — E)
OPTC = 1 1.0 —

OPTC = 3 3.2 —
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and 3/4 respectively. With the compiler optimisation level (o pt c ) equal to 
one, which performs local optimisation only, the dyadic performance of about 
1 Mflop/s is obtained. However, if o pt c  = 3, software pipelining is employed 
to overlap operations and the performance is raised three-fold.

Performance on more substantial benchmarks, the Livermore loops and 
LIN PACK, are given in table 2.9. Broadly speaking, a performance on actual 
problems between 1 and 5 Mflop/s is typical, depending on the care with 
which the problem is programmed.

The FPS-264 is an e c l  logic implementation of the FPS-164 architecture, 
which allows the clock period to be reduced from 182 ns to 53 ns, a ratio of 
3.4. Other improvements to the instruction cache and main data memory 
lead to a claimed performance ratio of between four and five times the 
FPS-164. Logic uses air-cooled custom Fairchild 100K e c l  chips (compared 
with Schottky t t l  on the FPS-164), and the main memory uses 64K-bit static 
nm os  chips (compared with dynamic nm os  on the FPS-164). The latter allows 
the memory to be packaged with 0.5 Mword per memory board, divided 
into two banks. A maximum main data memory of 4.5 Mword divided into 
18 banks was available on the first machines. The instruction cache is divided 
into two interleaved banks of 4 Kword, giving a total of 8 Kword, compared 
with 1 Kword on the FPS-164. The FPS-264 has the same external 
appearance as the FPS-164, being packaged in the same cabinet (see 
figure 2.44). The reported performance of the FPS-264 on the Livermore 
loops and the LINPACK benchmark is given in table 2.9, and generally 
supports the assertion that the FPS-264 can be expected to perform about 
four times faster than the FPS-164.

2.5.8 FPS-164/MAX (renamed M145)
A novel enhancement to the FPS-164 was announced in 1984, the FPS- 
164/MAX which stands for matrix algebra accelerator (Charlesworth and 
Gustafson 1986). This machine has a standard FPS-164 as a master, and 
may add up to 1 5  MAX boards, each of which is equivalent to two 1 6 4 - c p u s  

with the addition of four vector registers of 2048 elements in each c p u . In 
total there is therefore the equivalent of 31 1 6 4 - c p u s  or 341 Mflop/s.

The architecture of the MAX board is shown in figure 2.46. The board 
contains two c pu s , each with an eight-stage 64-bit floating-point multiplier 
which feeds its results into an eight-stage floating-point adder. One input to 
every multiplier in the machine (and there are 31 multipliers in a 15-board 
machine) is broadcast from main data memory, whilst the other input comes 
from the local scalar or vector registers on the MAX board. Similarly, the 
second input to the adder comes from the local registers. In the broadcast 
operation the same number is sent simultaneously from main data memory
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TABLE 2.9 Performance of a selection from the Livermore and 
LINPACK benchmarks on the FPS-164, 264 and FPS-164/MAX. 
Figures are Mflop/s for 64-bit arithmetic.

Problem FPS-164 FPS-264
FPS-
164/MAXf

Theoretical peak — — 33(1)
performance — 99(4)

11 38 341(15)

(»•co, « 1/2 ) (1.07,5) — —

FORTRAN §1.3.3

Livermore 3 3.0e — —

inner product
Livermore 6 1.1e — —

tridiagonal
Livermore 14 1.5e — —

particle pusher

LINPACK3 1.4 4.7 —

FORTRAN"
« = 1 0 0

Assembled — — 6(1)*
inner loop
n =  100 2.9 10 20(15)*

Matrix-vectord — — 15(1 )h
best assembler 
n =  300 8.7 33

26(4)h

Notes
a Solution of linear equation using DGEFA and DGESL for 

matrices of order 100 (Dongarra et al 1979). 
b All FORTRAN code (Dongarra 1985). 
c BLAS routines optimised in assembler (Dongarra 1985). 
d FORTRAN matrix-vector method of Dongarra and Eisenstat 

(1984). Matrix order 300. Best reported assembler (Dongarra 
1985).

e Gustafson 1985.
f Number of MAX boards used in parentheses, 
g FPS 1985b. 
h Dongarra 1986.

to all the multipliers. The clock period of the MAX board is the same as the 
FPS-164 main c pu , namely 182 ns, hence each board has a peak performance 
of 22 Mflop/s. The logic of the FPS-164/MAX is implemented in cm o s  v l s i ,
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and the arithmetic pipelines of the MAX board (shown in figure 2.47) use 
the pipelined WEITEK arithmetic chips.

MAX boards occupy memory board positions of the FPS-164, and it is 
possible to upgrade an existing FPS-164 to an FPS-164/MAX. The MAX 
boards look to the host computer to be the top 1 Mword of the 16 Mword 
of its address space, leaving a maximum addressable normal memory of 
15 Mword. The FPS-164/MAX uses the same memory board as the FPS-264, 
with 0.5 Mword per board of static n m o s  chips. A full FPS-164/MAX has 
29 memory board slots of which 14 are used to hold the 7 Mword of physical 
main data memory, and 15 slots are used for the 15 MAX boards. The 
availability of 256 K-bit static n m o s  chips will allow 1 Mword per memory 
board and a physical memory size of 15 Mword, to match the full addressing 
capability.

The idea of the MAX board is to speed up the arithmetic in a nest of two 
or three DO loops, such as one finds in many matrix operations, in particular 
in the code for matrix multiply. In this example the 31 164-c pu s  of a full 
system would be used to simultaneously calculate the 31 inner products that 
are required to produce 31 elements in a column of the product matrix. The 
FPS architecture is already optimised for the efficient calculation of inner

F I G U R E  2 . 4 6  A r c h i t e c t u r e  o f  a  m a t r i x  a c c e l e r a t o r  ( M A X )  b o a r d .
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FIGURE 2.47 A MAX board.

products, and the only problem is to ensure that the required data is available 
to the pipelines. One of the vector registers of each of the 31 c p u s  receives 
one of the 31 rows of the first matrix, whilst the elements of the column of 
the second matrix are broadcast, one-by-one, to all c p u s  as the 31 inner 
products are accumulated, as is illustrated in figure 2.48. This produces 31 
elements in the corresponding column of the result matrix. All other columns 
for the same 31 rows can be computed without altering the contents of the 
vector registers, and it is only when this saving in data movement is possible 
that the FPS 164/MAX can approach its maximum performance. Fortunately 
many important problems in linear algebra (solving equations, eigenvalues 
etc) can be formulated to satisfy this condition. At this stage in the calculation 
of the matrix product, 31 rows of the product matrix have been computed. 
The vector registers must now be refilled in order to compute the next 31 
rows, until the product matrix is completed.

The kernel of the above algorithm is the multiplication of the (31 x 2048) 
matrix A by the (2048 x 2048) matrix B, to give the (31 x 2048) product 
matrix C. We assume C is initially cleared and transferred to main data 
memory after the execution of the following code

(2.18)

where I is the cpu-number.
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F I G U R E  2 . 4 8  T h e  s i m u l t a n e o u s  c a l c u l a t i o n  o f  3 1  i n n e r  p r o d u c t s ,  
( A i. B ; i =  1 , 3 1 )  u s i n g  1 5  M A X  b o a r d s .  T h e  e l e m e n t s  o f  B  a r e  b r o a d c a s t  
o n e - b y - o n e  t o  a l l  b o a r d s ,  a n d  e a c h  b o a r d  a c c u m u l a t e s  t w o  i n n e r  p r o d u c t s
( S t =  Si  + A ikB k J ; k =  1 , 2 0 4 8 ) .

The DO-I loop is implemented by the broadcast of the scalar quantity 
B(K,J) to all 31 c p u s ,  multiplying it by the A(1,K) which is an element taken 
from the local vector A h and accumulating the inner product in C(I,J) which 
is taken from the local vector C,. In these operations all the 31 c p u s  work 
in lockstep (i.e. in unison) but on their own individual data (I is the 
cpu-number), that is to say the control is s i m d . The DO-K loop accumulates 
the inner product, and the DO-J loop moves from column to column. All
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the three DO loops in (2.18) can be executed without transferring data 
between main data memory and the MAX board registers, and this is the 
essential requirement for efficient MAX board utilisation. This is expressed 
by saying that there must be re-use of data in both space and time if the 
peak speed is to be reached. Re-use in space refers to the broadcast of a 
single quantity B(K,J) simultaneously to the 31 c p u s  in the DO-I loop, and 
re-use in time refers to the fact that C(I,J) and A(I,K) are continually re-used 
from local memory in the DO-K and DO-J loops.

The purpose of the re-use facility is to limit the need for transfers between 
the main data memory and the MAX boards, and to perform the maximum 
amount of arithmetic between such transfer so as to dilute the penalty of 
loading the registers. We have expressed this before by the computational 
intensity, /, which is the number of floating-point operations per memory 
reference. In the above matrix multiply example we have two floating-point 
operations per execution of statement 1, and the references are the read of 
A and B, and the store of C (there is hardware provision for the initial 
clearing of C). Thus

(2.19)

This is to be compared with the hardware parameter, / 1/2, which is half the 
ratio of asymptotic arithmetic performance to memory bandwidth in the 
relevant case of memory transfer overlap which occurs on the FPS-164 (see 
§1.3.6 and equation (1.20)). The memory bandwidth to the MAX boards, 
r™, is one word per clock period, and the maximum arithmetic rate, r^ , is 
62 arithmetic operations per clock period, hence

( 2.20)

The expected average performance can be estimated from (1.22b) as

(2.21a)

whence

(2.21b)

Thus we find that when the conditions for re-use in space and time are 
satisfied, a performance within 3% of the maximum peak performance is 
possible.

The MAX boards can only execute a limited number of instructions of the 
type that are given in table 2.10. The operation of the MAX boards and their 
registers are memory-mapped onto the top Mword of the addressable 
16 Mword, as shown in figure 2.49. That is to say that the boards are operated 
simply by writing and reading to appropriate parts of the upper Mword of
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T A B L E  2 . 1 0  T h e  i n s t r u c t i o n s  t h a t  m a y  b e  e x e c u t e d  b y  a  M A X  b o a r d ,  a n d  
t h e  p e a k  p e r f o r m a n c e  i n  M f l o p / s  f o r  1  a n d  1 5  b o a r d s .  T h e  s a m e  p e r f o r m a n c e  
a p p l i e s  t o  b o t h  r e a l  a n d  c o m p l e x  a r i t h m e t i c .  F u l l  v e c t o r  o p e r a t i o n s  u s e

J(I) = I

M A X  b o a r d s

N a m e F O R T R A N  p r o g r a m  l i n e 1 1 5

D o t  p r o d u c t S  =  S  +  A ( I ) * B ( J ( I ) ) 2 2 3 4 1
C o m p l e x  d o t  p r o d u c t S  =  S  +  A ( I ) » B ( I ) 2 2 3 4 1
V S M A A ( J ( I ) )  =  S * B ( J ( I ) )  +  C ( I ) 1 1 1 6 7
V M S A A ( J ( I ) )  =  B ( J ( I ) ) * C ( I )  +  S 1 1 1 6 7
V e c t o r  m u l t A (  J (  I  ) )  =  B ( I ) * C ( J ( I ) ) 5 . 5 8 3
V e c t o r  a d d A ( J ( I ) )  =  B ( I )  +  C ( J ( I ) ) 5 . 5 8 3

F I G U R E  2 . 4 9  T h e  m e m o r y  m a p p i n g  o f  M A X  b o a r d s  o n t o  1 6  M w o r d  a d d r e s s  s p a c e  
o f  a n  F P S - 1 6 4 .
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the FPS-164 address space. This is divided into 16 individual MAX memory 
maps of 64 Kword each. The first 15 of these maps operate the 15 MAX 
boards individually, and the last is the broadcast segment which operates all 
the boards in unison. The first 32 Kword of the memory map addresses is 
the vector register storage which allows for eight registers of 4K elements 
each. The first MAX implementation, however, limits the vector length to 
2K elements. Next are the eight scalar registers and the vector index registers. 
The MAX board is operated by placing appropriate words in the ‘advance 
pipe’ section.

The nature of the software that is available for driving the FPS-164/MAX 
can be seen from the following FORTRAN code that implements the matrix 
multiply discussed above

CALL SYSSAVAILMAX(NUMMAX)

MAXVEC = 8*NUMMAX + 4

NUMVEC = MAXVEC

( 2.22)

IF(NUMVEC .LE. 0) GOTO 10 

CALL PLOADD(A(I,l ),N, 1, NUMVEC, ITMA, 1, IERR)

DO 20 J = 1, N

CALL PDOT(B( 1,J),1, N, C(I,J), 1, NUMVEC, ITMA, 1,0, IERR) 

20 CONTINUE 

10 CONTINUE

The maximum performance is achieved by using as many vector registers as 
possible. The first statement in the above code obtains in NUMMAX the 
number of MAX boards that are mounted on the system. Since each contains 
eight vector registers, and there are four vector registers on the host FPS-164, 
NUMVEC is the number of vector registers. The DO-I loop loads NUMVEC 
rows of the matrix A into the available vector registers in preparation for 
accumulating NUMVEC inner products. The CALL PDOT forms the inner 
product with the Jth row, and this is repeated for all the rows by the DO-J 
loop.

2.5.9 IBM /CAP and Cornell systems
Both IBM and Cornell University are developing replicated m i m d  computing
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systems, based on linking together multiple FPS processors. The IBM loosely 
coupled array of processors ( /C A P ) is the brainchild of Enrico Clementi and 
is installed at the IBM Kingston laboratory. In 1985 a similar configuration 
was installed at the IBM Scientific Center, Rome, to be the first computational 
heart of the newly set up ‘European Center for Scientific and Engineering 
Computing’ (ECSEC).

A simplified drawing of the IBM /CA P computer system is shown in 
figure 2.50. Ten FPS-164 computers, each with 4 Mbytes of main data 
memory are connected by 2-3 Mbyte/s channels to IBM host computers 
(Berney 1984). Seven are connected to an IBM 4381 for computational work 
and three to an IBM 4341 for program development, although all ten can 
be switched to the IBM 4381, making a system with a theoretical peak 
performance of 110 Mflop/s. The actual performance on quantum chemical 
problems for the ten-FPS-164 configuration is reported to be about the same 
as a CRAY-1S, or about 60 Mflop/s (Clementi et al 1984). Possible 
enhancements to the initial configuration involve the addition of two MAX 
boards to the ten FPS-164s, which gives a peak performance of 550 Mflop/s. 
If the maximum number of 15 boards were added to each FPS-164 the peak 
performance would be raised to 3.4 Gflop/s.

The above computer system is described as a loosely coupled array because 
in the initial configuration there was no direct connection between the 
computing elements (the FPS-164s), and because the connection to the host 
is by slow channels. Consequently, only problems which exhibit a very large 
grain of parallelism can be effectively computed. That is to say that a very

F I G U R E  2 . 5 0  A  s i m p l i f i e d  b l o c k  d i a g r a m  o f  t h e  I B M  e x p e r i m e n t a l  
l o o s e l y  c o u p l e d  a r r a y  o f  p r o c e s s o r s  ( / C A P )  a t  K i n g s t o n ,  w i t h  t e n  
F P S - 1 6 4  c o m p u t e r s  c o n n e c t e d  v i a  I B M  h o s t  c o m p u t e r s .
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large amount of work must be performed on data within the FPS-164 before 
the results are transferred over the slow channels to the host, or via the 
host to other FPS-164s. A fast 22 Mbyte/s FPS bus (called FPSBUS, 
directly connecting the FPS-164s, has subsequently been developed by FPS 
which substantially reduces the overhead of transferring data between the 
FPS-164s.

A similar project to the above has been developed for some years at Cornell 
University’s Theory Center under the direction of Professor Kenneth Wilson. 
Initially, this comprised eight FPS-100 processors connected by a custom 
24 Mbyte/s bus. The work is now part of the Cornell Advanced Scientific 
Computing Center which is sponsored by NSF, IBM and FPS. It is 
envisaged that up to 4000 MAX boards could be interconnected to give 
a peak performance rate of about 40 Gflop/s.

In order to quantify the synchronisation and communication delays on 
the /C A P, measurements have been made of the performance parameters 
(roo,Si/2 , / i /2) and these are discussed in §1.3.6, part (iv). The benchmark has 
been conducted using either the channels or the FPS BUS for communication, 
and gives rise to the following total timing equations (Hockney 1987d)

where m is the number of I/O  words and s the number of floating-point 
operations in the work segment (see §1.3.6, part (iv)). The first two terms in 
equations (2.23) are a fit to the synchronisation time, the third term is the 
time spent on communication, and the last term is the time spent on 
calculation. The fact that the communication term is inversely proportional 
to the number of processors, p, in the case of the channels, shows that the 
channels, although slow, are working in parallel. On the other hand, we see 
that the communication time does not depend on p in the case of the 
FPSBUS showing that the bus, although much faster, is working serially.

In order to compare the use of the channels with the use of the FPSBUS 
we equate the two timing formulae (2.23a) and (2.23b) and obtain the equation 
for the equal performance line (e p l ):

This relationship is plotted on the (p,m) phase plane in figure 2.51. Given a 
number of processors p and the number of I/O  words m, a point is specified 
on this plane. Its location in the plane determines whether bus or channel 
communication should be used. There is an infinity in the relationship (2.24) 
at p = 9.78 (broken line) showing that the channels will always be faster if

(2.23a)

(2.23b)

(2.24)
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N u m b e r  of  F P S - 1 6 4 s ,  p

F I G U R E  2 . 5 1  P h a s e  d i a g r a m  c o m p a r i n g  t h e  u s e  o f  t h e  F P S  B U S  w i t h  
t h e  u s e  o f  t h e  c h a n n e l s .  F o r  a n y  n u m b e r  o f  p r o c e s s o r s  c h o s e n ,  p, e i t h e r  
t h e  F P S  B U S  o r  t h e  c h a n n e l s  i s  f a s t e r  d e p e n d i n g  o n  t h e  n u m b e r  o f  I / O  
w o r d s  m .  F o r  m o r e  t h a n  a b o u t  1 0  p r o c e s s o r s  t h e  c h a n n e l s  a r e  a l w a y s  
f a s t e r .

F I G U R E  2 . 5 2  O v e r a l l  a r c h i t e c t u r e  o f  t h e  F P S - 5 0 0 0  s e r i e s  o f  c o m p u t e r s .
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there are ten processors or more. This is because the channels have a smaller 
start-up and synchronisation overhead than the bus, and a faster asymptotic 
rate if there are ten or more working in parallel. That is to say, more than 
ten 2-3 Mbyte/s channels working in parallel are faster than a 22 Mbyte/s bus 
working serially. We also show in figure 2.51 the line corresponding to 
1 Mword per processor, which is a typical main memory size for an FPS-164 
installation. Values of m above this line are inaccessible in such an installation, 
because problems requiring such a magnitude of I/O  would not fit into the 
memory of the installation. However, the memory size can be increased to 
28 Mword/FPS-164 (using 1 Mword memory boards) corresponding to a 
line off the top of the diagram.

2.5.10 FPS-5000 series
The FPS-5000 series of computers is interesting because it forms one of the 
few commercially available m i m d  computer systems. It is the latest offering 
of so-called ‘array processors’ from FPS, and is a multicomputer development 
of AP-120B type of architecture. In our classification of m i m d  computers 
(§1.2.6 and figure 1.9), it falls in the class of bus-connected, shared-memory, 
switched m i m d  systems.

The overall architecture of an FPS-5000 series computer system is shown 
in figure 2.52 (FPS 1984a). The system is connected to its host computer by 
the control processor ( c p )  which is either an FPS AP-120B with a 167 ns 
clock or the slower FPS-100 with a 250 ns clock. Both c p s  have the same 
architecture but differ in technology and packaging. The c p  may perform 
useful arithmetic itself at peak rates, respectively, of 12 and 8 Mflop/s. More 
importantly, however, it controls the rest of the system which comprises up 
to three arithmetic coprocessors ( a c s )  and a number of I/O  processors ( i o p s )  

which share a common bus connection to a system common memory ( s c m )  

of between 0.25 and 1 Mword. The a c s  are FPS XP-32 computers with a 
peak performance of 18 Mflop/s. The largest system announced in 1983 used 
an FPS-100 c p  (8 Mflop/s) and three XP-32 a c s ,  giving a theoretical peak 
performance of 62 Mflop/s. Continuity with previous systems is maintained 
because all software prepared for the AP-120B will run on the control 
processor, and the computing power can be enhanced in stages by adding 
arithmetic coprocessors as required.

The progression of technology in the 1970s and early 1980s is exemplified 
by the progression from the AP-120B (1975), through the FPS-100 (1978) 
to the XP-32 (1983). The basic processor of the AP-120B used Schottky t t l  

chips operating at 8 MHz and occupied 20 boards. Of these, three boards 
were required for the multiplier and three for the adder. The FPS-100 was 
able to compress the identical architecture onto ten boards by using low-
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To

c p  a n d  s c m

F I G U R E  2 . 5 3  I n t e r n a l  a r c h i t e c t u r e  o f  t h e  F P S  X P - 3 2  a r i t h m e t i c  
c o p r o c e s s o r .

power Schottky t t l  chips, at the cost of a slower clock (4 MHz). The 
multiplier and adder were both compressed to one board each. The XP-32, 
on the other hand, fits the whole processor onto a single board and, 
furthermore, includes a second floating-point adder. This is achieved by using 
fast Schottky v l s i  chips with a 6 MHz clock. The multiplier is now reduced 
to a single chip (from the three boards in the AP-120B), namely the 32-bit 
WEITEK WTL-1032. Similarly the floating-point adders each use the 
WEITEK WTL-1033 floating-point a l u  chip. The rest of the logic uses the 
Advanced Micro Devices 29500 series of v l s i  circuits, and INMOS IMS-1040 
static r a m s . The use of standard WEITEK floating-point chips has meant a 
change to the floating-point number representation. The FPS AP-120B and 
FPS-100 use a 38-bit format as described in §2.5.2. This has a dynamic 
number range from 10~155to l0 +153, and a precision of 28 bits. The WEITEK 
chips, however, have adopted the IEEE 754 32-bit floating-point standard 
(IEEE 1983), which has a much reduced dynamic range of 10"38 to 10 + 38, 
but a more precise mantissa equivalent to 33 bits.

The architecture of the XP-32 coprocessor (figure 2.53) is similar in general 
concept to that of the AP-120B but differs in detail (FPS 1984c). A five-stage 
floating-point multiplier pipeline and two five-stage floating-point adder
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pipelines are connected by multiple data paths to a local main data ( l m d )  

and a table coefficient memory ( t c m ) .  The l m d  stores 16K 32-bit words 
arranged in two banks, and the t c m  has 4K 32-bit words also arranged in 
two banks. Overall control of the XP-32 is exercised by the executive unit 
( e u )  which can operate simultaneously with the arithmetic unit ( a u ) ,  thereby 
providing for the parallel execution of I/O  and address calculation with 
floating-point arithmetic. The e u  performs all communication of programs 
and data between the a c  and the c p  and s c m . The a u  performs arithmetic 
only on data in the local t c m  and l m d  memories. Microcode programs for 
the e u  reside in e u  p r o m ,  which contains 2K 80-bit microcode instructions. 
Similarly, microcode programs for the a u  reside in a writable control store 
(wcs) of 4K 128-bit microcode instructions, arranged in four banks.

There is no direct connection between the arithmetic coprocessors. The 
coprocessors can only take data from and return results to the s c m ,  s o  that 
any communication between the a c s  is by shared data in the s c m . The s c m  

acts as the main data memory of the control processor. In the case of the 
AP-120B control processor, it operates as described in §2.5.2 for the fast 
memory (333 ns access) with a 167 ns clock period. In the case of the FPS-100 
control processor, the memory works on the slower 250 ns clock period. The 
arithmetic coprocessors may also have direct memory access ( d m a )  to the 
s c m  by taking turns with the c p  with the available memory cycles, according 
to a priority scheme. In the case of access by the a c s ,  the s c m  may either 
read or write one word per clock period (but not both at the same time), 
giving a total s c m  memory bandwidth of either 6 Mword/s (24 Mbyte/s) or 
4 Mword/s (16 Mbyte/s). However, the memory is organised such that any 
individual XP-32 coprocessor may only use half this bandwidth, thereby 
allowing two a c s  on an FPS-5000 system before the memory bus restricts 
its performance. This is achieved by limiting memory requests from any 
particular a c  to every other memory cycle.

The FPS-5000 may be programmed entirely by calls to library programs 
in a subset of FORTRAN 77 called CPFORTRAN. In most cases company 
documentation gives timing formulae from which values of and n1/2 can 
be derived (FPS 1984a,b, 1985a). We give below a selection indicating 
the facilities provided.

(i) Host interface routines
The following routines run on the host computer, load programs and data 
into the FPS-5000, and start the CPFORTRAN program running on the c p .

CPOPEN Open a CPFORTRAN program file.

CPLOAD Load a CPFORTRAN program file from host to c p .
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CPRUN Start CPFORTRAN program running on c p .

EXPUT Start data transfer from host to FPS-5000.

EXGET Start data transfer from FPS-5000 to host.

APWAIT Wait for data transfer and c p  program to stop.

APWD Wait for data transfer to stop.

APWR Wait for c p  program to stop.

(ii) Synchronisation of the acs  by the c p

The following routines run on the c p ,  and control the a c s .

XPSEL Select the XP-32 for subsequent XPWAIT.

XPRUN Start program running in selected XP-32.

XPWAIT Wait for selected XP-32 to finish.

XPSTAT Obtain status of XP-32.

(iii) Data transfer to and from scm

The following routines run on the XP-32s, and transfer data prior to and 
after calculation.

XPDMAR Transfer data between s c m  and l m d .

XTMDMA Transfer data between s c m  and t c m . 

rO0 = 2 Mop/s

XPISNC Wait for transfer (or arithmetic) to finish.

{iv) Arithmetic within the XP-32
The following XPMLIB routines run on the XP-32 and perform arithmetic 
on data in the l m d  of the XP-32.

ZVMUL(IA, IB, IC, N) Element-by-element vector dyadic 
multiply of A*B  to C, N elements (r^ = 4 Mflop/s, n l/2 = 33).

ZVDIV(IA, IB, IC, N) Element-by-element vector divide 
(r x — 0.5 Mflop/s, n ll2 = 9).

ZVSASM(IA, IB, ID, IC, N) One-vector triad, vector scalar add 
scalar multiply: C = (A + b)*d (r^ = 12 Mflop/s, n1/2 = 56).
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ZVASM(IA, IB, ID, IC, N) CDC 205-type two-vector triad, 
vector add scalar multiply: C = (A + B)*d 
(rK = 8  Mflop/s, ni/2 = 37).

ZVAM(IA, IB, ID, IC, N) All-vector triad, vector add multiply:
C = (A + B)*D (rx = 6  Mflop/s, nl/2 = 28).

The above performance figures are for dyadic and triadic operations within 
a single XP-32 processor and they do not take into account the time taken 
to synchronise the multiple a c s  of an FPS-5000 (i.e. the m im d  performance), 
or the time to transfer data from the s c m to l m d  prior to performing the 
calculations. These have been separately measured by Curington and 
Hockney (1986) and interpreted in terms of the parameters w1/2, s 1 / 2 and 
/ i / 2 (§1-3.6). The results are given in tables 2.11 and 2.12.

The FPS-5320A computer which was used for the measurements comprises 
a control processor and either one or two XP-32 arithmetic coprocessors.

TABLE 2.11 Measurements of (r^, n1/2, s 1/2) on a multiprocessor FPS-5320A 
with a control processor (c p), and one or two XP-32 coprocessors, operating 
on data in their respective local memories.

Operation Configuration
foo

(Mflop/s) ^  1/21" OF S 1/2

Dyad c p only 1.5 141
Ai =  Bi*Ci One XP-32 4.0 470
VMUL or ZVMUL Two XP-32 8 . 0 1320

c p +  two XP-32 9.2 1545

Triad c p only 3.9 401
At =  (fl, + s) * c One XP-32 1 2 .0 1490
VSASM or ZVSASM Two XP-32 24.0 4200

c p +  two XP-32 27.7 4820

TABLE 2.12 Values of peak performance, r«,, and f l/2 for a single 
FPS XP-32 arithmetic coprocessor when performing triadic ZVSASM 
operations on data originating in system common memory.

Case r0o (Mflop/s) fl/2

Sequential I/O 12.5 4.2
Overlapped I/O 12.6 2.2
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The measurements with the c p  alone in table 2.11 involve no synchronisation 
and hence are of n1/2, whereas those using multiprocessors include the 
synchronisation time and are therefore of s 1/2. The values of the latter indicate 
the minimum amount of arithmetic that is worth dividing amongst the XP-32 
coprocessors. Both the c p  and a c s  work on a 6  MHz clock, and have 
arithmetic pipelines with a peak performance of 6  Mflop/s for dyadic 
operations which use only one pipeline, or 12 Mflop/s for triadic operations 
which use two pipelines. The peak performance for the maximum con-
figuration of the control processor and two XP-32s is therefore 18 Mflop/s 
for dyads and 36 Mflop/s for triads. These peak rates are achieved in the 
case of the XP-32 executing triads. However, in the other cases inadequate 
memory bandwidth prevents the peak rates being realised, although the 
XP-32 suffers much less than the c p in this respect.

The measurements in table 2.11 are for operations performed on data 
residing in the local memories ( lm d ) of the XP-32s, which it is assumed has 
already been loaded. However, in actual use the data for a problem will be 
stored in s c m , and will have to be transferred to the l m d  before calculation 
can take place. The overall rate of computation will critically depend, 
therefore, on the amount of arithmetic performed in the XP-32 per data 
transfer between s c m and l m d  (i.e. the variable /  defined in §1.3.6) and can 
be characterised by the parameter / 1/2. The FPS-5000 is an ideal vehicle for 
studying this dependence because/  can easily be varied and the value required 
to achieve half the peak performance can be obtained. This is the performance 
parameter / 1/2, and is given in table 2.12. The observed peak rate of 
12 Mflop/s is as expected for the ZVSASM operation. The test proceeds by 
transferring a vector of n data from s c m to l md  using XPDMAR, and then 
performing/ ZVSASM operations upon the vector. Two cases are considered, 
first when the I/O  transfers between s c m and l m d  take place sequentially 
with the arithmetic operation, and secondly when the I/O  takes place 
simultaneously with the arithmetic (i.e. is overlapped with it). We find that 
the effect of overlapping the I/O  is to halve the value of / 1/2.



M ultiprocessors and processor 
arrays

3.1 THE LIMITATIONS OF PIPELINING

There are only two techniques for introducing parallelism into computer 
hardware, replication and pipelining; pipelining can be considered as 
replication which has been made possible through sequence, as each 
component of replication in a pipeline follows another in time. Pipelined 
operations are performed by overlapping their simpler component operations 
using parallel hardware. This is performed such that at any given time, 
component parts of a sequence of operations are being processed in the 
pipeline. In this way a single operation will share the pipeline with a number 
of other operations as it progresses through the various stages.

The fundamental difference between pipelining and spatial replication 
is that the parallel component operations of a pipeline are quite likely to 
perform different tasks, which when performed in sequence make up the 
operation required. There is obviously a limit to the parallelism available by 
splitting an operation into subtasks in this way, unless the operations are 
extremely complex. Although complete programs are complex, and the use 
of pipes of concurrent tasks as a style of programming can be very attractive, 
such large pipelines are very application-specific. Thus for general use 
pipelining can only provide a limited degree of parallelism, by exploiting 
commonly used complex operations such as floating-point arithmetic.

Pipelining is, however, the most attractive form of parallelism available, 
because pipelining does not create the same communications problems found 
using spatial replication. A pipeline is designed to reflect the natural data 
flow of the operation being performed, whereas spatial replication will utilise 
either a fixed network or a programmable connection network. In the first 
case the network may not necessarily reflect the data flow required in the

245
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operations being performed; in the latter case, although it is more general, 
the costs are large.

Although it is attractive, pipelining alone will not achieve the goal of 
unlimited computing power, which has motivated the use of parallelism in 
computer systems. This will only come about through the use of spatial 
replication, or indeed the use of both pipelining and spatial replication. This 
thesis seems already to have been proved, as is evident in the evolution of 
the pipelined computers described in Chapter 2. The CRAY X-MP has 
evolved by the replication of a faster but functionally identical computational 
section to that found in its predecessor, the CRAY-1. Another good example 
is found in the CDC CYBER 205, which has evolved from the CDC STAR 
by the replication of the STAR’S re-engineered pipes. Indeed, this same 
architecture has a more highly replicated future in the ETA10, where a v l s i 
implementation of a two-pipe CYBER 205 will be replicated up to eight 
times to obtain a maximum performance of 10 Gflop/s.

These architectures based on the limited replication of very fast processors 
are very expensive to engineer. They rely on fast clock periods, which mandate 
the use of high-speed, high-power circuits such as e c l , which is not a very 
dense circuit technology. Moreover, in order to match the high-speed circuits, 
the packaging must keep the circuits as close to each other as is physically 
possible. In this way the clock rates are not limited by signal propagation 
times. This in turn exacerbates the problems of removing the power dissipated 
by these ‘hot’ circuits. The ETA1 0  is an exception to this use of e c l  circuits 
in supercomputers, as it uses high-packing-density c m o s  circuits. In order to 
obtain fast clock speeds in this v l s i technology, low voltage levels and 
very cold operating temperatures are required (liquid nitrogen temperatures).

Although the ETA1 0  uses v l s i circuits, it still does not exploit the full 
economies of scale that can be obtained from v l s i. Many different custom 
chips, using the gate array design technique, are required. The alternative of 
using mass-produced v l s i circuits implies massive replication in the system. 
It is only recently (circa 1985) that components suitable for replication on 
this scale have become available. This chapter explores the alternatives of 
replication in computer architecture; the technological issues are discussed 
further in Chapter 6 .

3.2 THE ALTERNATIVE OF REPLICATION

3.2.1 A matter of scale
In replicated systems, the most important issues are a matter of scale; whereas 
small numbers of processors may communicate efficiently using bussed
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systems or by shared memory, in larger numbers the inherent sequentiality 
of these communication methods produces bottlenecks. The designer is then 
forced to consider systems in which data is switched between processors. 
This switching can take place either in a fixed network, in which distances 
grow with the number of processors, or in a programmable connection 
network, in which the costs follow a square law. (The latter can also have 
considerable wiring problems.)

Figure 3.1 shows schematically a generic spatially replicated system. It is 
an attempt to distil the common features found in a wide variety of such 
systems, and in doing so perhaps reflects none. However, it does illustrate 
the major features of such architectures. These are: a parallel memory, from 
which many words may be accessed simultaneously; an array of processors; 
and the all-important switching circuits. The interprocessor switch provides 
a set of connections between ports on the processors, which may provide a 
small fixed set of permutations, or may indeed provide the complete set of 
all n\ permutations. The processor-memory switch provides data paths 
between the various banks of memory and the processors. There are two 
sensible alternatives for this switch, one allows only the identity permutation 
and the other allows a given processor to access all memory banks. It should 
be noted that it may not be desirable to have an equal number of processors 
and memory banks in this latter case.

The differences between the many and diverse parallel architectures that 
may be found in the literature can be quantified by the following metrics:

(a) the first quantity is the size of the array and the power of the individual

FIGURE 3.1 Diagram showing a generic spatially replicated system, 
where Pj to P„ are the processors and to Mm are the memory 
modules.
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processor, the product of the two to some extent determining the power of 
the overall system;

(b) the complexity of the switching networks, which will determine the 
flexibility of the system and hence whether the power obtained by replication 
can be utilised by a large class of problems;

(c) the distribution of the control to the system, i.e. whether the whole 
array is controlled by a central control processor, or whether each processor 
has its own controller; and

(d) the form of the control to the system, which may be derived from the 
flow of control through a predefined instruction sequence or a control 
structure more suited to declarative programming styles, such as data flow 
or reduction.

It should be noted that in this model the processors may not have a simple 
atomic structure, but may themselves contain replication or concurrency, as 
in the case of the replicated pipeline structures referred to above.

3.2.2 The control organisation
Of all the issues raised above, it is perhaps control which provides the major 
differences between parallel architectures. This is certainly true when 
considering the overall form of the control (i.e. control flow, reduction, data 
flow etc) and much controversy surrounds the choice of control for the next 
generation of computers, the fifth generation (Uchida 1983).

Both data flow (Dennis 1980, Chamber et al 1984) and reduction control 
strategies (Turner 1982, Chamber et al 1984) can be instrumental in relieving 
the programmer of the task of explicitly sequencing instructions. This has a 
profound effect on software engineering (see Chapter 4), as well as providing 
a framework for a machine execution strategy. In these functional and logical 
languages instruction sequencing arises from the decomposition of a 
description of the problem, rather than from an algorithm.

(0  Data flow
In data flow, an instruction does not execute under the influence of a program 
counter, but instead is able to execute if and only if all of its operands are 
available. A dataflow program can therefore be considered as a directed 
graph, along which data tokens flow, with the output from an operation 
being connected with an arc of the graph to the operations that consume its 
result. Instructions in a physical machine would generally be represented as 
packets containing operations, operands (as data or references) and tag fields 
giving meaning to this data. The latter is required because the state of the 
machine can no longer provide a context from which the interpretation of
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the data may be derived. During execution these tags would be matched with 
result packets, containing tag and data fields, and when all operands to a 
given instruction have been matched, the instruction can be queued for 
immediate execution.

To illustrate this consider the program and execution for the expression 
given below

(A -f B)*(C -f D)

The program, comprising a number of instruction packets, is ‘loaded’ into 
the system by injecting those packets into a program memory. The program 
execution would be initiated by injecting data packets, containing values for 
A, B, C and D into the system. One implementation of the variables A to D 
would be to assign unique tags to them which would be stored in the 
instruction packets. The data would then need to be similarly tagged. A 
matching unit could then match the tags of the data to the corresponding 
instructions as the data circulated through the system. For example, the two 
addition operations would attract the associated data and then become 
available for execution, possibly in parallel. There is scope for pipelining and 
replication in data flow computers.

Pipelining can be introduced in the flow of data packets (sequence of 
operations) through the system. Replication can be achieved by sharing the 
instruction packets between processors. If this latter form of parallelism is 
exploited, then some equitable means of sharing the program packets and 
associated tags between the processors is required.

Only when these two addition operations have been completed, generating 
values for the bracketed sub-expressions, will the multiplication operation be 
able to execute. It can be seen that the execution strategy is data driven and 
commences from the innermost level of nesting of an expression and proceeds 
outwards. Obviously, in a realistic program, the data flow graph or program 
will be very much more complex than this simple example. However, this 
example is sufficient to illustrate the notion of asynchronous parallelism being 
totally controlled by the data-driven mechanism. Because all data dependencies 
have been resolved within the graph description of the program, no explicit 
parallel declarations are required to allow data flow programs to run on 
multiple processors. Programs must be decomposed, however, in ways from 
which parallelism may be extracted. A simple list recursion, for example, 
would produce a sequential algorithm, whereas a recursive dividing of the 
list, expressing the function to both halves, would generate an algorithm 
containing parallelism. This recursive halving is the basis for many common 
algorithms, for example quick sort, and is a classical expression for generating 
implicit parallelism.
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A data flow machine based on this concept of tagged instruction packets 
would comprise one or more processors containing the following units:

(a) one or more execution units;
(b) one or more data stores;
(c) a program store, containing the program graph;
(d) a matching unit, to complete unmatched tokens.

Such a machine has been constructed by a research group at Manchester 
University (Gurd and Watson 1980, and Watson and Gurd 1982). For further 
reading on data flow see Chamber et al (1984) and Hwang and Briggs (1984).

(ii) Reduction
Reduction as a means of computer control can also yield parallelism without 
explicit control. Reduction is based on the mathematics of functions and 
lambda calculus, and using this formalism programs can be considered as 
expression strings or as parse trees. For example, a program could be 
represented by the following expression, either as a string, or in structured 
form as a parse tree for the expression, with the operator at the root and 
two subtrees containing4 + ’ operators and the operands A and B and C and 
D respectively.

((A + B)*(C + D))

Whereas in data flow execution is data driven, in a reduction strategy 
execution is demand driven. Thus if this program was entered into the system, 
or activated by a request for its result from a larger program, then a series 
of rewrites would take place, reducing this expression to its component 
operations. A rewrite is the procedure of taking an expression or tree and 
reducing that expression, performing the operation if leaves are known, or 
by activating its sub-expression or subtrees if they are not. The term 
‘reduction’ is perhaps misleading, for early operations in this sequence will 
generate more programs for execution, as new subtrees or sub-expressions 
are activated.

Each subtree may of course be distributed on concurrent hardware for 
evaluation in parallel. At some later stage the program has been reduced to 
its component operations, which in a similar manner to data flow systems 
can be represented by tagged packets. It can be seen that reduction approaches 
the evaluation of an expression from the outermost nesting and works 
inwards, generating work as it proceeds.

A research group at Imperial College has been building an architecture 
for the implementation of functional languages by reduction (Darlington 
and Reeve 1981). This machine is based on transputers, and a few prototype 
machines were delivered by ICL, one to Imperial College in 1986. Another
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practical implementation of a reduction architecture is being funded by the 
Alvey program at University College, London (Peyton-Jones 1987a, b). For 
further reading concerning recent practical work on data flow, reduction and 
other advances in parallel processing see Chamber et al (1984) and Jesshope 
(1987b).

Despite the fact that both of the above methods of computer control 
generate parallelism without explicit command, they can also suffer from 
inefficiencies when compared with the more exploited control flow strategy. 
In both cases a substantial amount of computation can be required in 
organisation. There may be tens or even hundreds of instructions executed 
for every useful instruction (e.g. floating-point operation in a number-
crunching application). This is very inefficient when compared to the highly 
optimised control flow computers which have been developed over the last 
three to four decades of von Neumann computing. However, these architectures 
attempt to increase the level of abstraction of the programming model towards 
one in which the computer executes the specification of a problem. An analogy 
to this situation would be to compare programming in assembler and a 
high-level language, where the latter should not be compared with the former 
in terms of efficiency, unless programming efficiency is also considered. In 
this case, there have been shifts towards architectures for executing high-level 
languages (Organick 1973) which have minimised any loss of efficiency paid 
for the higher level of abstraction.

In the same way, as research continues in the field of declarative systems, 
architectures will become more efficient as refinements are made in the 
hardware implementations and in compiler technology to exploit these 
improvements. Indeed, in recent presentations on data flow research at 
Manchester (Gurd 1987), results were presented which show the Manchester 
data flow machine comparing very favourably with conventional architectures. 
Functional language implementations are likely to follow this development 
path but are currently some five years behind the development stage of data flow.

One fundamental limitation in these architectures is that of communication 
bandwidth between processors, but this is shared with all replicated systems. 
This problem grows with the size of the replicated system and because data 
flow and reduction machines effectively require the distribution and 
communication of programs as well as data, the communications bandwidth 
requirements are greater and are likely to be more of a limitation if these 
strategies are adopted. For example, data packets of around 100 bits are 
common in such architectures, even for 16-bit operations. In control flow 
only one of a pair of operands need ever be communicated through a 
communication network. In data flow and reduction, many of these large 
packets may need to be communicated in order to obtain a single useful 
operation. Latency or pipelining is an effective tool in combating communication
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complexity, but for an effective system there must be a balance of load between 
communication and processing and, as indicated above, this load balancing 
is biased against communication as the degree of replication increases.

Generally the most efficient replicated systems either communicate data 
or programs between processors, whichever requires the least bandwidth. 
For example, if two processors need to enter into a sustained communication 
with each other, it may well be appropriate for the code of each processor 
to gravitate to each other, rather than for data to be passed between them. 
In s imd  machines of course it is only necessary to pass data.

(iii) Control flow
Considering just control flow architectures, there is still a wide choice in the 
implementation of control strategy in a replicated system. For example, if 
we use a single central controller for all processors, then we have a s imd  
machine. The ‘alternative’ is to make each processor obey its own instruction 
stream by giving it an autonomous controller. If this is the case, then we 
have the m im d  machine in Flynn’s categorisation. However, between these 
two extremes lies a whole range of control strategies.

Consider the following example: at one level of a given architecture we 
may find an array of processors under m im d  control, but each ‘processor’ 
may also contain an array of processors under s imd  control. This structure 
has been proposed by a number of designers (Pease 1977, Jesshope 1986a, b, c, 
Lea 1986).

Alternatively, consider the case where we have a single central controller 
which provides most of each control word for a s imd  array, but where each 
of the processors may also provide local control information, depending on 
local conditions. Most s imd  computers provide at least a rudimentary amount 
of control at the processor level, although this is usually restricted to an 
on/off switch. In other arrays more control fields have been devolved to the 
processors, while maintaining overall synchronisation and sequencing centrally. 
If such an array has a significant amount of local control it is said to be 
adaptive. An example of an adaptive array is considered in §3.5.4.

The control of an array may also have a number of levels; indeed this 
technique is often used to combat complexity in control unit design. It is 
possible that at one level the array may be synchronised, under the control 
of a single instruction stream, but that at lower levels (microcode for example) 
different instruction sequences may be obeyed. Thus, depending on local 
state, the local microcontroller may take autonomous action, albeit in 
response to an identical broadcast instruction. Such a system was proposed 
by Pease (1977) and implemented in Baba (1987).

In reality these decisions related to control and illustrated by the examples 
above are merely engineering decisions based on the implementation
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technologies. Unlike the distinction between declarative and control flow, 
these decisions are not decisions of philosophy, for in practice any form of 
control may be simulated by any other. However, a penalty in efficiency will 
be paid if the control structure does not match the algorithm. Running s imd  
programs on m im d  machines is wasteful in hardware, and may pay a large 
penalty in synchronisation overhead, whereas the opposite would require the 
s imd  machine to run an interpreter, probably very inefficiently, which could 
then interpret a processor’s data as instructions.

Whatever the choices then, decisions will be made based on technological 
restrictions and likely applications. For example, if implementing a replicated 
system to perform binary image processing, a single-bit serial processor would 
be a good choice of processor. However, a m im d  construction of single-bit 
processors would not be efficiently implemented because of the large overhead 
added by the controller and program store. A s imd  machine would therefore be 
most appropriate. Unfortunately, when entering the realm of replicated systems, 
there is no universal solution, or at least one has not yet been discovered.

3.2.3 The distribution of processing power
One of the major and most controversial issues concerned with replication 
is the distribution of processing power. Designs have been produced in which 
the number of processors varies from a few tens to many thousands. Obviously 
for a given cost, the more complex the processor, the fewer can be combined 
in a single array. This is a classic trade-off problem, between the power of 
the individual processor and the size of the processor array. What then are 
the factors influencing this decision?

One major factor, which has already been discussed in Chapter 1, is the 
applicability of a parallel computer to a given set of problems. The more 
parallel a computer is, the more specialised it becomes. This is really an 
efficiency argument, for if the problem is less parallel than the computer, then 
the efficiency of the computer suffers. However, this argument may be 
countered for a large range of applications, as for these, parallel algorithms 
exist; see Chapter 5. Quantifying the amount of parallelism is obviously 
impossible, unless the size and type of the problem is known. However, for a 
large class of problems, the amount of parallelism which may be exploited is far 
greater than the largest arrays being built c l988. Moreover, the size of these 
problems is likely to increase with the processing power available and, for a 
processor of fixed complexity, this will vary with the amount of replication.

However, for a certain class of problems a small amount of parallelism 
may be desirable and this need will be met by small arrays of very powerful 
processors, employing relatively expensive floating-point hardware, or indeed 
by pipelined vector computers. For other problems, parallelism is feasible 
on a large scale and other considerations may be taken into account.
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The simplest of all processors use the bit-serial approach and many 
thousands of these may be combined very cheaply, by exploiting v l s i 
technologies. In this way the processing power is spread very thinly over a 
single bit slice of the data, which must be highly parallel. It can be seen that 
given the parallelism, this approach provides very efficient use of the hardware 
for all forms of data: boolean, character, integer and floating-point. It can 
also be shown that, for a given number of logic elements, this approach 
provides the maximum computational power at least for simple operations.

Consider as a simple problem the addition of a number of pairs of b-bit 
numbers (N say, where N ^  b), given b 1-bit full adders with delay time t fa. 
Figure 3.2 gives the truth table for a full adder and also shows an 
implementation.

One solution to the problem is to link the full adders in a chain, which 
then adds all bits within a word. This is sometimes called a parallel adder

FIGURE 3.2 Truth table and circuit diagram for a full adder, constructed 
from exclusive-OR and NAND gates. The inputs are A, B and a carry-in 
signal Cin and the outputs are S (the sum) and Cout the carry-out. The truth 
table also shows the signals P and G, functions of A and B only, indicating 
that a carry is propagated at this position or generated at this position.
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FIGURE 3.3 Parallel or ripple carry adder.

and is shown in figure 3.3. It can be seen however, that the process is not 
parallel at all, it is sequential. The carry out from the first 1-bit adder is only 
defined after time t fa  from A, B and Cin all being available, where t fa  is the 
delay introduced by two n a n d  gates and an exclusive o r  gate. This carry is 
then required as input to the second adder in the chain. A more apt description 
of this adder is given by its alternative name, the ripple carry adder. The 
total delay, ir, for the b-bit ripple addition is given by

(3.1)

where i d is the delay introduced by one n a n d  gate. Therefore, ignoring 
memory access time, the solution to our problem will be given by N times 
equation (3.1). We call this time Tr:

(3.2)

The bit-slice approach uses each 1-bit adder as an independent unit, which 
adds pairs from different words in parallel. The carry out from one step must 
be held in a register, for input at the next step. This is illustrated in figure
3.4 and the time to add each bit slice, ib, is given simply by:

(3.3)



256 MULTIPROCESSORS AND PROCESSOR ARRAYS

i i

M em ory

B it
¿7-1

O ne
w ord

B 't0 B it s l ic e

X  Y  S  X  Y  S  X  Y  S  X  Y  S

FIGURE 3.4 Parallel bit-slice addition.

where is the time taken to catch the carry signal. The total time to complete 
the problem using the bit-slice approach is given by

(3.4)

where f  • • • 1  denotes the integer ceiling function.
It can be seen that the time required in the bit-slice approach grows with 

N, whereas the ripple-carry approach grows with N/b.
It is instructive to take into account the memory access times; for example, 

by adding the memory access time, t m , to both equations ( 3 . 1 )  and ( 3 . 3 ) ,  the 
following ratio is obtained for the solution to this problem:

This simplifies, if N is an integral multiple of b, to give:

(3.5)

Obviously if t m »  rd there is very little to be gained by the bit-slice approach. 
It seems very likely that this is the reason why the machines of the early
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1950s followed the bit-parallel, word-serial line of evolution. It is interesting 
to speculate how the history of computing would have progressed, if there 
had been less of a disparity between the memory and logic technologies of 
the 1950s.

Today it is economic to build memory and logic from the same technology, 
even on the same v l si chip. Thus the ratio in equation (3.5) is significantly 
greater than 1, for even modest word sizes. This is not the end of this discussion 
however, as seemingly sequential processes may often be speeded up by new 
techniques. This is true for example in recursion, as is shown in Chapter 5, 
which describes parallel algorithms. The addition of two b-bit numbers is a 
classic case of a recursive algorithm and may be computed in log2b steps. 
This has been shown to be a lower bound (Winograd 1967).

How then can this be accomplished using logic elements? The key lies in 
the definition of the two states in a full adder called propagate and generate, 
and are labelled P and G respectively on figure 3.2. Based on the two input 
values to be summed, they define the two states: ‘carry is generated’ and 
‘carry will be propagated’. Given a pair of such states, it is simple to define 
new generate and propagate states for the combined pair. For example, given 
P0, and G0, Gx, two new states P' and G' are defined by:

and (3.6)

Given these, a carry-out state may also be defined using the carry in:

(3.7)

Figure 3.5 shows the layout of a carry look-ahead unit based on equations 
(3.6) and (3.7). This unit may be incorporated into a tree-like structure, to 
give the carry look-ahead adder. This is illustrated for an eight-bit word in 
figure 3.6. It can be seen that in general, b full adders and b— 1 carry 
look-ahead units are required. The delay for this circuit for b > 2 is given by 
the time to obtain the most significant sum bit, which is given by:

(3.8)

where i CL is the delay in obtaining C' in a single carry look-ahead unit 
(figure 3.5). This gives a great improvement over equation (3.1) for typical 
values of b, at the expense of doubling the number of gates. However, for 
the problem of adding N b-bit pairs of numbers this is still slower than using 
the bit-slice technique, as can be seen in equation (3.9):
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FIGURE 3.5 A carry look-ahead circuit, constructed from NAND gates 
and inverters, which has as inputs the propagate and generate signals 
from two bit positions (PO, GO and PI, G l); which a carry-in signal 
has as outputs a modified propagate and generate signal (which can 
used to cascade the circuit) and a carry-out signal C'.

FIGURE 3.6 Eight-bit carry look-ahead adder, c l ,  carry look-ahead units; f a ,  

full adders (see also figures 3.2 and 3.5).

ST
P
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(3.9)

Here the delays in the carry look-ahead unit ( t Cl ) have been equated to the 
full adder delays t fa.

Similar techniques can be applied to obtain fast multiplication (Waser 
1978) but again there are penalties to pay in the increased number of logic 
gates required. Thus we have shown techniques that are available to build 
faster but more complex functional units, although the relative cost increases 
and the efficiency can never match the bit-slice approach (unless rM >>t fa).

This does not imply that all hardware should employ the bit-slice approach, 
as for single scalar operations the more complex hardware must be used. 
Thus the distribution of processing power will depend on several factors, of 
which the cost-performance ratio and expected parallelism of the workload 
are most prominent.

3.3 SWITCHING NETWORKS

3.3.1 Introduction
The theory and construction of switching networks are fundamental to the 
success of large-scale parallelism, which has now become feasible through 
the exploitation of v l s i technology. Replication on a large scale, as described 
in §3.2.1, is not viable unless connections can be established, either between 
processors or between processors and memory, in a programmable manner. 
Such connections can be established using switching networks—a collection 
of switches, with a given connection topology. Much of the early theory 
concerning switching networks was motivated by the needs of the telephone 
industry ( Clos 1953, Benes 1965 ) but the convergence of this and the computer 
industry, in computer networks, digital telephone exchanges and now in 
parallel computers, has led to much more interest in this area. This section 
explores switching network architecture, with particular emphasis on large- 
scale parallel processing. Further reading in this same area can be found in 
a recent book by Siegel (1985).

Switching networks provide a set of interconnections or mappings between 
two sets of nodes, the inputs and the outputs. For N inputs and M outputs 
there are N M well defined mappings from inputs to outputs, where by well 
defined we mean that each output is defined in terms of one and only one 
input. Figure 3.7 illustrates this by giving all well defined mappings between 
3 inputs and 2 outputs. A network performing all N M such mappings we will 
call a generalised connection network (g c n ).
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FIGURE 3.7 All possible mappings from three inputs to two outputs:
(a) one-to-many; (b) one-to-one.

If we limit the mappings only to the class of one-to-one mappings, then 
N\ such mappings are well defined. Figure 3.7 also shows the subset of 
one-to-one mappings: they do not broadcast data from one input to more 
than one output. For this class of mapping to be non-empty, there must be 
at least as many inputs as outputs. A network which performs these N\ 
mappings we will call a connection network (c n ).

The obvious way of implementing a generalised connection network is 
with a full or complete crossbar network, where each input can be switched 
to any output. This is illustrated in figure 3.8, using two different 
representations. In the first (figure 3.8(a)), the edges represent the input and 
output sets and the nodes represent the crosspoints or switches. An alternative 
representation is given by the bipartite graph (figure 3.8(b)), where the nodes 
represent the input and output sets and the edges represent the crosspoints. 
The full crossbar is the most general form of switching network, but the 
number of crosspoints required is NM  since there is one crosspoint between 
each input and output. This network will therefore become very expensive 
for large N. In general, a practical limit for N is around 27, whereas the
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FIGURE 3.8 Two representations of the crossbar switch from four inputs to 
four outputs.

number of processors to be switched may be as high as 2 1 4  or greater. 
Networks of this kind were used in the Burroughs BSP, one with N — 16 
and M = 17 and another with M = 16 and N = 17.

Other switching networks are either based on many small interconnected 
crossbar networks, or on incomplete crossbar networks. These will be 
discussed later, but first we must introduce a notation and define some 
permutations which will simplify the discussion considerably.

3.3.2 Some fundamental permutations
A permutation on an ordered set of N nodes can be defined by a function 
t t (x ), where x and n(x) are integers in the range 0 ^  x, t c(x ) ^  N — 1. The 
function 7i(x) must also be one-to-one. For example, the function

(3.10)

defines an exchange permutation (figure 3.9).
However, for many permutations it is often found that a simpler way of 

defining the permutation can be obtained by looking at the binary 
representation of x. Thus

represents the binary address of an element in the set. Permutations of the 
set of inputs can now be defined by operations or permutations on their 
binary address. This notation has been used to good effect in several papers 
concerning data manipulation and routing networks (Flanders 1982, Parker 
1980, Nassimi and Sahni 1980).

(i) Exchange permutation
The exchange permutation defined above can now be more simply defined 
in terms of the binary representation of x.
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F I G U R E  3 . 9  E x c h a n g e  p e r m u t a t i o n s .

(3.11)

The bar denotes the complement of a given bit. Thus the kth exchange 
permutation can be defined by complementing the kth bit of the binary 
representation of x.

(ii) Perfect shuffle permutation
The perfect shuffle is so called as it can be performed by cutting the set in 
two and interleaving the two sets obtained, as in the perfect card shuffle (see 
figure 3.10). This permutation corresponds to a unit circular left shift of the 
binary representation of x:

(3.12)

The kth subshuffle o(k) and kth supershuffle o{k) can also be defined by cyclic 
left shifts on the least and most significant k bits respectively:

These are also illustrated in figure 3.14 for n = 3 and k = 2. Clearly

(3.13)

(3.14)
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FIGURE 3.10 Perfect shuffle permutations.

It can also be seen from figure 3.10 that the subshuffles (least significant 
bits) treat the set as a number of subsets, performing the perfect shuffle on 
each. The supershuffles, however, shuffle the whole set, but increase the width 
of the data shuffled.

(ill) Butterfly permutation
The butterfly permutation (figure 3.11) is defined over the binary representation 
of x by exchanging the first and last bits:

(3.15)

As with the shuffle, we can also define the kth sub-butterfly and kth 
superbutterfly of x. The fcth sub-butterfly exchanges fcth and first bits, and 
the kth superbutterfly the nth and (n — fc + l)th bits:

(3.16)

and
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FIGURE 3.11 Butterfly and bit reversal permutations.

(3.17)

The sub- and superbutterfly are also illustrated in figure 3.11, for n = 3 and 
k = 2. Again

and

(iv) Bit reversal permutation
The bit reversal permutation, as its name suggests, is defined over the binary 
representation of x by reversing the order of the bits:

(3.18)

One application where this permutation occurs is in the fast Fourier transform 
algorithm (see §5.5).

As with the previous two permutations, the fcth sub bit reversal and kih 
super bit reversal can also be defined over the least and most significant k 
bits of x:
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(3.19)

(3.20)

Figure 3.11 also illustrates the bit reversal for n = 3. However, the two 
permutations are not always equivalent, as will be shown later when we 
consider the algebra of permutations.

(v) Shift permutation
This last permutation is in fact more easily described without resorting to 
the bit representation of x:

(3.21)

Again we define sub- and supershifts on the least and most significant k bits 
of the binary representation of x. In terms of the bit representation of x, 
equation (3.21) defines the binary addition over the n-bit field, ignoring 
overflow. Therefore the sub- and supershifts can be defined as follows:

(3.22)

FIGURE 3.12 Shift permutations.
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(3.23)

These are illustrated in figure 3.12 for n = 3 and k = 2.

3.3.3 The algebra of permutations
In order to establish more complex permutations and to establish equivalences, 
we will wish to combine and manipulate the simple permutations described 
above. This is really described by the algebra of functions. Thus we combine 
two functions by writing for example p(o(x)), which describes the permutation 
defined by a perfect shuffle followed by a bit reversal. In terms of the bipartite 
graphs, this is equivalent to attaching the outputs of the shuffle to the inputs 
of the bit reversal. In order to simplify expressions, and at the same time 
preserve this feeling of left to right data flow in bipartite graphs, the expression 
above will be abbreviated to op. There is precedence for this form of functional 
product in the syntax of the combination of operators in APL (Iverson 1979). 
Also, oo will be abbreviated to o2.

As in any algebra, we will require a unit or identity permutation, which 
we denote by i. This permutation preserves the order of the input set:

Having defined an identity permutation, we can now define the inverse of a 
mapping. For example the inverse of the perfect shuffle is denoted by o~ 1 

and oo ~ 1 = a ~ lo = i. The inverse mapping can be understood by reading 
the bipartite graphs from right to left.

Using this permutation algebra, we will now establish some important 
identities. In most cases these identities may be verified by considering the 
binary representation of x.

The first identity concerns the relationships between the kth sub- and 
superpermutations, where for the general permutation n,

Now we give a group of identities which concern the inverses of the 
permutations defined above:

(3.24)

(3.25)

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)
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Another group of identities concerns the relationships which can be defined 
between the different permutations:

The final group of identities concerns the first sub-permutations only:

As an example of the use of this algebra and the identities defined, let us 
establish what was apparent from figure 3.11, that for n = 3, p = p. From 
equations (3.27b) and (3.27c)

Since P(l) is the identity permutation (equation 3.28c) and ft{k) is its own 
inverse (equation 3.26c),

3.3.4 Single-stage networks
Single-stage networks consist of a fixed or single stage of switches. Thus in 
a P-processor array, the network would consist of a single array of P multiway 
selectors. This form of network is easily partitioned, with the selectors being 
a part of the processor hardware. Thus this form of network is usually 
associated with the interprocessor switch in figure 3.1.

Single-stage networks normally establish only a limited number of 
permutations directly. Other more general permutations must be built up 
iteratively. Thus, for example, if the network provides the shift permutation 
a, then to perform a{n~k\  where an~k = a2‘, would require 2k iterations through 
the network.

We will now describe a number of single-stage networks, defining their 
switches in terms of the set of permutations which they can generate. Thus

defines the switch SW, which performs the m permutations, n l or n2 through 
to nm. In all the discussion that follows we will assume that P = 2P, unless 
otherwise stated.

(3.27a)

(3.27b)

(3.27c)

(3.28a)

(3.28b)

(3.28c)
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0 1 2 3 ^ 5 6 7
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FIGURE 3.13 The ring network R(1).

(i) The ring network
This is the simplest of all networks; it consists of a ring of processors, with 
a undirectional flow of information. This is illustrated in figure 3.13 and like 
all single-stage networks is an incomplete crossbar switch, which is defined as:

(ii) N earest-neighbour networks
This is a simple extension of the ring network, which allows a bidirectional 
flow of information. It is illustrated in figure 3.14 and defined as:

This network is simple and cheap to construct but is not very suitable for a 
large number of processors. However, it may be generalised to more than 
one dimension. For example, if P = Qk and Q = 2q, then the k-dimensional 
nearest-neighbour network can be defined as follows:

The ICL DAP uses this switching network with k = 2 and q = 6 .

The permutations here can be considered as shifting north, south, east and 
west over a two-dimensional grid, with wraparound at the edges. The
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Outputs

FIGURE 3.14 The nearest-neighbour network N N (1).

ILLIACIV also has a two-dimensional nearest-neighbour switching network, 
with q = 3, although here the periodicity is defined somewhat differently:

It is interesting to note what happens when we take the limiting case of 
the nearest-neighbour network, with k = p = log2 P. Here q = 1 and from 
(3.27a)

This describes the binary hypercube, whose structure consists of a hypercube 
of p dimensions with two processors per side. This is illustrated in figure 3.15 
for p = 3, where it can be seen that the kth exchange is equivalent to 
exchanging information across the kth plane of symmetry (k = 1 plane shown).

(iii) Perfect shuffle networks
The perfect shuffle has had strong support as a permutation on which to 
base a switching network (Stone 1971, Lang and Stone 1976, Lang 1976). 
The perfect shuffle switch is defined below and illustrated in figure 3.16:

It can be seen that this is not a very satisfactory switch, as it leaves four 
disconnected subsets of processors. Because of this the perfect shuffle exchange
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FIGURE 3.15 Illustration of the binary hypercube with eight nodes. 
The first plane of symmetry is shown.

Outputs

FIGURE 3.16 Perfect shuffle network PS(1).

(Stone 1971) and perfect shuffle nearest-neighbour networks (Grosch 1979) 
have been proposed. These are defined below and are illustrated in figure
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FIGURE 3.17 Perfect shuffle exchange PSE(1) and perfect shuffle 
nearest-neighbour PSNN(1) networks; broken lines convert PSE(1) to 
PSNN(1).

PSSN  =  {G(p)1, a ^ 1, i, ocip), cr(p)}.

Both of these switches can be generalised to more than one dimension, as 
for the nearest-neighbour switch. However in the limiting case k = p, both 
are equivalent to the binary hypercube.

3.3.5 Some properties of single-stage networks
Single-stage networks or switches can be used iteratively to simulate a 
connection network. By iteration we mean that after one pass through the 
switch, the output at a given processor will be passed on as input to the same 
or another switch setting. Thus, for a given network, it is important to know 
how many iterations will be required to establish a mapping. This may 
affect the speed of the computation, especially if a large number of iterations 
are required.

To compare the networks discussed above, we introduce the concept of 
distance through the network. For example, the distance between two nodes 
i and j  in the network is defined as the number of iterations required to 
establish the mapping i -+j. Having defined this we introduce two distance 
measures, which are a function of a given network and which give an 
indication of the effectiveness of the network. These measures were first
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defined by Jesshope (1980b, c) and have been used to establish timing 
estimates for the manipulation of data in processor arrays (Jesshope 1980a, c). 
A more complete study of the simulation of one network by another 
can be found in Siegel (1985).

(i) Maximum distance measure
The maximum distance measure D{k), for a /c-dimensional network, gives the 
maximum distance between any two nodes in the network. It gives a measure 
of the effectiveness of the network for problems which involve global 
communication. In one dimension of an R switch, the processor that is farthest 
from processor i is processor i — 1 and for the NN switch it is processor 
i + N / 2. An inductive argument is given by Jesshope (1980b), which affirms 
the scaling by k as given in table 3.1. For the perfect shuffle networks it is 
simpler to consider the binary representation of the address of the nodes. 
Thus for the PSE switch, node i= {bq, bq- 1?..., bx} is most distant from 
node j  = {bq, bq _ x, . . . ,  b!}. This mapping can therefore be performed in q — 1 
perfect shuffles (shift bits left) and q first-order exchanges (complement first 
bit). For the PSNN switch, the nodes which are most distant are i and i + j , 
where 7  = {10101 ...} . This again requires q — 1 perfect shuffles but only 
q/ 2 shifts (add one to i)- The maximum distance in the PS switch is of course 
infinity. All of these results are summarised in table 3.1.

(ii) Fan out, fan in measure
The fan out, fan in measure gives a measure of the distance required to 
propagate one piece of information to all nodes in the network, or its inverse, 
the reduction (collection) of information. This is an important measure for 
many divide and conquer algorithms (see Chapter 5). This mapping will 
require a number of parallel permutations (possibly under boolean control). 
For example, in one dimension of the NN or R switch, an algorithm to 
perform this is given in figure 3.18. It can be seen that the total number of 
shift permutations for one dimension is Q — 1 = 1+  2 + 4 4 -...4 -  Q/2. For

TABLE 3.1 Properties of single-stage networks.

Network

Property NNW P S , « PSEW PSNN(k)

Maximum 
distance D{k) H Q -  1 ) k Q / 2 OO k(2q- l ) H q  +  l q /  2 D -  1 )
Fan out F{k) H Q -  1) H Q -  1 ) 00 k(2q- l ) k(2q- \ )



SWITCHING NETWORKS 273

FIGURE 3.18 Illustration of the algorithm to fan out a single item of 
data to all nodes in a ring R(1) or nearest-neighbour network N N (1).

the PSE and PSNN networks, however, the algorithm is best considered in 
terms of the binary representation of the address or identifier of each 
processor. The algorithm is illustrated schematically in figure 3.19, showing 
data being propagated to all processors from processor number 0. Consider 
first the PSE network: the shuffle and exchange permutations are described 
in §3.3.2 by equations (3.11) and (3.12). These equations complement the 
least significant bit of the address of a processor and perform a circular left 
shift on the address of a processor respectively. Thus the problem can be 
more easily specified as one of generating the addresses of all processors from 
the source address by complementing the least significant bit of the address 
and left-circular-shifting the bits of the address.

An intuitive lower bound can be derived for the number of steps that are 
required to complete this operation. With the operations that are available, 
the address that is ‘farthest’ from the source address is that which is its 
complement. To complement an n-bit address requires n complement 
operations (least significant bit only) and n — 1 shift operations, giving a total 
of 2n— 1 operations. Figure 3.19 illustrates that by suitable masking all 
addresses can be generated while complementing the source address.

Implementing this algorithm on the PSE network, only one half of the 
exchanged data is ever actually used, either the left shift or right shift, 
depending on the parity of the source of the data. Therefore, exactly the same 
algorithm can be used in the PSNN network. The odd and even masked 
exchanges can be simulated in the same time using the left or right shifts of 
the NN network. The algorithm is illustrated in a different form in figure 3.20 
and the above results for the fan out process are summarised in table 3.1.
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FIGURE 3.19 Illustration of the algorithm to fan out a single item of 
data to all nodes in a perfect shuffle exchange network PSE{1).

To compare the effectiveness of the network switches described, we will 
look at all possible configurations of a 4096 processor array. In order to do 
this we also need a rough estimate of the cost of a given configuration. Thus 
we assume a cost function C, given by the number of permutations the switch 
can perform, excluding the identity permutation (i.e. C = m — 1). D{k) and C 
are evaluated in table 3.2 for the 4096 processor example.

It can be seen from table 3.2 that the PSE and PSNN networks are the 
most cost effective for k = 1, but that the R and NN networks improve 
markedly for k = 2. Beyond this the returns in the R and NN networks 
diminish for increasing dimensionality. The PSE and PSNN networks show 
no benefits from increased dimensionality until k = p, when it can be seen
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1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 Binary
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Decimal

X Exchange
X X Shuffle

X X X Exchange
X X X X Shuffle

X X X X X X Exchange
X X X X X X X X Shuffle

X X X X X X X X X X X X Exchange
X X X X X X X X X X X X X X X X Completed

FIGURE 3.20 A diagram showing the fan out operation using the shuffle-exchange 
network. The binary and decimal addresses of the processors are shown at the top 
of the table and the operations performed are shown on the right of the table. The 
crosses represent the propagation of the information from address 0.

TABLE 3.2 Maximum distance D(k) in a 4096 processor array. The cost 
function C is shown in parentheses.

that no network is any better than any other. Indeed it can easily be shown, 
using the algebra of permutations in §3.3.3, that all four networks are 
equivalent; the difference in cost reflects the increased bandwidth from 
multiple equivalent permutations.

It is perhaps not too surprising that the most common network found in 
processor arrays is the two-dimensional NN network as in the ILLIAC IV 
(McIntyre 1970), ICL DAP (Flanders et al 1977), Goodyear MPP (Batcher 
1980), GEC GRID (Robinson and Moore 1982), NTT AAP (Komdo et al 
1983). Linköping University LIPP (Ericsson and Danielson 1983), NCR
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GAPP (NCR 1984) and Southampton University RPA (Jesshope et al 1986). 
A recent exception is the connection machine (Hillis 1985), which uses, at 
least at the v l s i level, the limiting case of any of these networks, with k = p. 
This is often called the binary hypercube network or just the cube network 
(see figure 3.15).

One may ask why the PSE(1) network has not found favour, since it provides 
a very cost effective solution to long-range communication. There are perhaps 
several answers concerning both its use and implementation. Many algorithms 
require local communication, and usually in some nearest-neighbour form, 
and yet it requires 21og2 (N — 1) iterations for the PSE network to simulate 
a two-dimensional NN network (Siegel 1985). To put this in perspective, this 
is also the maximum distance through the network. This can be easily verified 
by considering the fact that 0 and N are adjacent in any NN switch and yet 
are the farthest separated in the PSE switch. The PSNN switch overcomes 
some of these limitations and the two-dimensional PSNN has been considered 
in many paper designs; it has the two-dimensional nearest-neighbour 
connections used in many algorithms, but also has additional long-range 
communication properties. The reason that this network has not to our 
knowledge been used in any implementation, lies in the implementation itself.

Unlike the NN networks, networks based on the perfect shuffle permutation 
cannot be partitioned. If you slice a NN(1) network in half, it can be connected 
by only two wires; even a divided NN(2) network requires only N l/2. What 
is more important, each half of the NN network will also function as an NN 
network of reduced size. However, if any network containing the perfect 
shuffle permutation is divided in two, then N/2  wires are required to connect 
each half and neither half has any function on its own. There are three 
implications to this: the first is in design, as if the network cannot be 
partitioned, then it must be designed as a whole, there being little regularity 
to submodules; the second is related and concerns reliability, this is achieved 
through redundancy, but with no regularity, which is very expensive; the 
third concerns the number of wires between submodules, for in modern 
system wires are more expensive and detrimental to performance than logic 
gates. All three issues are increasingly important in the current era of v l s i 
devices (see Chapter 6).

3.3.6 Multistage networks
In some situations it is required to connect one set of resources to another, 
so that any member of one set may access every member of the other set. 
One such example is found when providing switching between processors 
and memory banks, as in figure 3.1, where we wish to create a full access, 
shared-memory, multiprocessor system. Here it may be required that a given



SWITCHING NETWORKS 277

processor needs access to every memory bank in the system. To provide such 
access a full connection network is required.

We have already met the full crossbar network (figure 3.8), which is a full 
connection network, and also encountered its major disadvantage—that the 
number of gates required to implement it grows as the square of the number 
of inputs. To put this in perspective, consider it as an alternative to 
the single-stage networks considered in the previous section to connect 4096 
processors. This would require at least 16 million transistors but probably 
many times more than this for a switch of reasonable performance. The two- 
dimensional NN switch on the other hand could be implemented in a mere 
25 000 transistors.

Multistage networks can also provide a cheaper alternative to the complete 
crossbar switch, when a full connection network is required. These networks 
are based on a number of interconnected crossbar switches, the most common 
being built up from the 2 x 2  crossbar switch. This switch is illustrated in 
figure 3.21 and can generate two permutations and a further two broadcast 
mappings.

If one bit is used to control this switch then only the permutations in 
figure 3.21(a, b) will be selected. Using an array of N/2  such switches we 
can define the /cth-order exchange switch, a single-stage network, which 
requires N/2  control bits as:

(3.29)

(a) (b)

0 •------- ------•  0 0

FIGURE 3.21 2 x 2  switching element and mappings.



278 MULTIPROCESSORS AND PROCESSOR ARRAYS

(b)

FIGURE 3.22 Benes network: (a) reduction of an N by N crossbar 
switch to two N/ 2  by N /2 crossbar switches and two exchange switches; 
(b) binary Benes network with full reduction and simplification (N =  8).

Alternatively if two control bits are used for each 2 x 2  crossbar, then all 
four mappings in figure 3.21 can be generated. Thus we can extend equation
(3.29) to give the /cth-order generalised exchange switch, which requires N  
control bits:

(3.30)

Here l (k) and u(k) are the upper and lower broadcast mappings which are 
defined by:

(i) Connection networks
It was shown by Benes (1965) that the complete N  x N crossbar switch 
could be reduced to two N/2 x N/2  crossbar switches together with two N-input
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exchange switches as described above. This is illustrated in figure 3.22(a) and 
if we define an N  x N  crossbar switch as X(n), where N  = 2n them this reduction 
can be formally described by:

(3.31)

Obviously this reduction can be continued recursively giving:

(3.32)

This can be modularised using the relationship in equation (3.29) giving:

Finally this can be simplified, by noting that the pre- and post-permutation 
of the inputs and outputs of a switch only redefine the order of these sets. 
Thus we obtain an expression for the binary Benes network (Lenfant 1978):

(3.33)

This is illustrated in figure 3.22(b). By definition this is a full connection 
network giving AM possible permutations; moreover, if we generalise this 
using the GE(1) switch, then all N N well defined mappings can be established.

(ii) Shuffle exchange networks
Another class of networks which are not full connection networks are the 
so called shuffle exchange networks. Four such networks will be described 
here, the omega network (Lawrie 1975), the indirect binary n-cube network 
(Pease 1977), the banyan network (Goke and Lipovski 1973) and the R 
network (Parker 1980). These are identified below by Q, C, Y and R 
respectively:

It can be seen that the banyan switch is only the binary n-cube without the 
final unshuffle and that the R network is derived from the first half of the 
binary Benes switch, followed by a shuffle. Another interesting point which 
has been proved by Parker (1980) is the relationship between Q, C and R, 
which gives the following identity:

The omega and binary «-cube networks are illustrated in figure 3.23.
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[a)

FIGURE 3.23 Shuffle exchange networks: (a) omega network; (b) 
indirect binary n-cube network.

Although these switches are not full connection networks, they do provide 
a very rich class of permutations, suitable for many applications on 
multiprocessor systems. Apart from mesh and matrix manipulation, they 
are highly suited to the f f t  and related algorithms ( Pease 1969 ) and to sorting 
techniques (Batcher 1968). For more information concerning multistage 
networks see Siegel (1985).

3.3.7 Network control
Up until now no account has been taken of how the setting of the individual 
switches or selectors in both the single- or multistage networks is obtained. 
For a single-stage network, which supports m permutations, over P processors, 
then Plog2m bits of control are required to fully control the switch. However, 
it is common for single-stage networks to be controlled by a single instruction 
stream. In this case a single log2m bit control field is broadcast to all processors 
in the array. There are some exceptions to this, and it has been shown using 
the RPA (Jesshope et al 1986) to be a very powerful extension to the s i m d  

model to devolve the control of the switch to the processor, so that it may 
be set from local state. The RPA is described in some detail in §3.5.4.

For the crossbar switch, with N inputs, N 2 control bits are required, one
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for each crosspoint. To establish a connection between input i and output j , 
it is sufficient to assert the bit in position i, j  in the matrix of crosspoints. If 
only one-to-one mappings are to be allowed, then for each input row, only 
one output column may be connected to it. Thus the number of control bits 
may be reduced to N\og2N, by coding the column numbers.

The situation is not so simple and perhaps still not so well understood, 
when considering multistage networks. These also require 0 (M o g 2N) 
control bits, with the constant depending on topology and whether this 
network is generalised to perform broadcast mappings. To store control 
words for even a limited subset of the available mappings will not be feasible. 
For example to store the control to compute only shift permutations will 
require 0 ( N 2\og2N) bits, which is already unreasonable for a large array of 
processors.

The alternative is to compute the control words for a given permutation. 
The method of Waksman (1968) can calculate the control word for any given 
permutation in 0(N \og2N) steps using a sequential algorithm, which can 
be reduced to O (N) steps using a parallel algorithm (Thompson 1977). How-
ever, this is again unacceptable as it would dominate the switching delay time.

All is not lost, however, as there do exist algorithms which can compute 
the control required but only for a limited number of permutations. Such 
algorithms can be found in Lenfant (1978) and Parker (1980).

So far we have considered the control solution, which establishes a complete 
circuit for the permutation, until a new control word is loaded. An alternative 
strategy is to use the network as a packet switch. This involves using the 
network statistically, so that a given connection is only established in order 
to let a small packet of data through. In this case packets of data need to 
carry the address of their destination and possibly some sequencing information 
if large packets are sent in small fixed sizes. Thus the packets contain their 
own control and can be routed by intelligent switch nodes and if they arrive 
out of sequence can be reassembled at their destination.

The routing algorithm at each switch node must decide in which direction 
the switch must be set in order to send the packet closer to its destination. 
Because the network is being used statistically, more packets may arrive than 
the switch can handle in any time slot. In this case provision must be made 
either to refuse a packet or to buffer unwanted packets. In some cases the 
algorithm for refusal may send a packet further away from its intended 
destination.

The implementation of a packet-switched network, if efficient, can provide 
a very powerful basis for many parallel computational models. It provides 
a structure which has distributed control, and therefore provides a very 
dynamic environment.
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A good analogy to illustrate the differences between a circuit switch and 
a packet switch is to consider the services of a telephone company and the 
post office. The post office forwards discrete packages from one branch to 
another, until delivered, while the telephone company will establish a direct 
link between you and another subscriber when you dial his number. In fact 
these days you may not actually have exclusive use of the circuits used, but 
for the bandwidth you require this is apparently what you perceive. Indeed, 
some experiments have been made with packet-switched voice communications, 
but this just illustrates the power of packet switching as a routing technique.

3.3.8 Data access and alignment
A major feature in replicated systems, especially s im d  arrays, is the way in 
which memory is organised. How the memory is connected to the processors 
and how it is addressed are two important features of this organisation.

Let us consider first the situation where each processor is connected to its 
own memory partition. This is the simplest configuration and the only 
consideration here is how the memory is addressed. An instruction issued 
from the control unit would normally supply the same address to all 
processors. A major issue is whether to allow the individual processor to 
modify this address, using its own index register.

This facility was provided on the ILLIAC IV, one of the first processor 
arrays to be built. In this computer the programmer may set an index register 
in each processor, based on information available locally, and then use this 
to select a non-planar slice of the array memory. This is important in many 
classes of problems as it often saves the manipulation of data (Jesshope 1980c).

The ICL DAP, on the other hand, does not provide this facility but then 
this machine has bit-serial arithmetic; to modify the DAP address would 
require a 14-bit addition (16K memory). Consequently it would require many 
processor cycles to modify the address. More sophisticated hardware would 
be required to obtain address modification in a realistic time. Roberts (1980) 
has proposed v l s i processor designs to accomplish this. These designs use 
carry look-ahead adders for address modification, while maintaining a 
bit-serial approach to arithmetic, but is this a realistic use of the additional 
complexity made available by the use of v l s i?

With a switch between the processors and memory, a richer set of mappings 
is required. Likewise it becomes more important that each memory bank is 
addressed independently.

Memory bank conflicts are one of the major drawbacks of any parallel 
memory organisation. This is true of the overlapped or interleaved organisation 
found in vector processors as well as the parallel organisation found in 
processor arrays. To illustrate this figure 3.24 shows a 4 x 4 array stored in



SWITCHING NETWORKS 283

FIGURE 3.24 Storage scheme giving conflict-free access to rows but 
not columns of the 4 x 4 matrix.

four banks of parallel memory. It can be seen that the rows of A may be 
accessed without conflict but that data in a column of A all reside within 
the same memory bank. There is no way therefore that this data may be 
accessed in parallel.

With a switching network that can connect all memory banks to a given 
processor, it is very desirable to have a memory or data structure in which 
rows, columns and other principle substructures from arrays may be accessed 
without conflict. One method of achieving this is through skewed storage 
schemes. Figure 3.25 shows one such scheme for our 4 x 4  matrix. This allows

FIGURE 3.25 Skewed storage scheme giving conflict-free access to both 
rows and columns of the 4 x 4 matrix.
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the conflict-free access of rows and columns however the diagonals of A 
remain in conflict. The question of more general skewing schemes has been 
investigated by Budnik and Kuck (1971) and Shapiro (1978), who consider 
the case of a prime number of memory banks, or alternatively a number 
which is not a power of 2. More recently Deb (1980) presents an example 
of a skewing scheme ( 4 x 4 )  which allows conflict-free access to rows, columns 
and both major diagonals. It does not however give conflict-free access to 
all circulant diagonals (Jesshope 1980b).

Burroughs, in their ill-fated BSP design (see §3.4.3), have devised a memory 
organisation based on the skewing schemes described by Budnik and Kuck 
(1971). The principle feature of this organisation is a memory with a prime 
number of memory banks, which allows conflict-free access to all linear 
subarrays defined by a start address and a skip distance. The exception to 
this is where the skip distance and the number of memory banks have a 
common factor. This occurs only when the skip distance is a multiple of the 
number of memory banks, which is prime.

We will illustrate this organisation with our 4 x 4  array as an example. 
Instead of having four memory banks for our four-processor array, we would 
choose the next highest prime number, five in this case. In general, to obtain 
parallelism N  from a memory organisation choose M  to be a prime number 
such that M ^  N. The address of each element of an array is then given by 
equation (3.34), where a is the corresponding linear address of the element.

(3.34)

where |_/ J gives the integer floor function off  and \f\g is the value off  modulo g. 
Table 3.3 gives these address mappings for our 4 x 4  example and figure 3.26 
illustrates this. It is perhaps a bad example as one of the principle sets of 
subarrays, the forward diagonals, causes memory conflict. For an N  x N 
matrix the forward diagonal has a skip distance of N -h i, which in our 
example is 5, the same as the number of memory banks. However, all other 
linear subarrays can be accessed without conflict; these include rows, columns 
and backward diagonals. As an example consider the access of row 2 of this 
matrix. The start address is 1 and the skip distance is 4, which define the 
linear address of each element of this row. Thus:

and using (3.34) gives

and correspondingly



AN HISTORICAL PERSPECTIVE 285

TABLE 3.3 The mapping of a 4 x 4 array.

Element of A Linear address number Address in bank

1,1 0 0 0
2,1 1 1 0
3,1 2 2 0
4,1 3 3 0
1,2 4 4 1
2,2 5 0 1
3,2 6 1 1
4,2 7 2 1
1,3 8 3 2
2,3 9 4 2
3,3 10 0 2
4,3 11 1 2
1,4 12 2 3
2,4 13 3 3
3,4 14 4 3
4,4 15 0 3

In accessing a subarray, /i defines a mapping vector or permutation which 
can be used to set the switching network to align the memory banks to the 
correct processors. The indexing vector i is used to modify the base address. 
It should be noted that index components of i correspond to the memory 
banks given in /# and must therefore be permuted according to /i to give the 
index in memory bank order. A glance at figure 3.26 will confirm that the 
vectors above do in fact select row 2 of our matrix.

3.4 AN HISTORICAL PERSPECTIVE

3.4.1 A chequered history
Parallelism in computer design can be applied to either the bits within a 
word or across a number of words, or indeed to both. This trade-off has 
already been illustrated in §3.2.3. The choice of bit-parallel/word-serial 
designs, pioneered by von Neumann and others in the 1950s, has set a trend 
in computer architectures that has only recently been questioned seriously. 
This choice correctly reflected the engineering and technological constraints
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FIGURE 3.26 Storage scheme using a prime number of memory banks 
(five), which gives conflict-free access to all linear subarrays (rows, 
columns etc) of the 4 x 4  matrix, provided that successive elements are 
not separated by five.

that were current at that time, when logic was relatively very fast and 
expensive, and storage was relatively slow and inexpensive. These constraints 
resulted in the word-organised processor-memory structure (the so called 
von Neumann architecture), which kept the expensive parts busy (i.e. the 
processors built from vacuum tubes).

In modern computer design, both memory and logic are now cheap and 
the critical component has become the wire or interconnect. Many hundreds 
of thousands of transistors are routinely designed into custom v l s i circuits 
and will probably be pushing into the millions in the near future. Certainly 
circuits with in excess of one million transistors have already been fabricated 
(see Chapter 6). Because memory and logic can now be made using the same 
technology, the speed and costs are comparable; indeed it is very desirable 
to integrate memory and logic onto the same chip. These new technological 
factors require architectures with an equal balance between processing and 
memory and, moreover, require the components separated in the von 
Neumann architecture to be much more closely integrated.

The processor array, and to some extent the multiprocessor system, has 
taken an alternative evolutionary path to the conventional von Neumann 
processor in that many processors cooperate on a single problem, each 
accessing data from its own memory. It should be noted that with a full 
permutation switch between processors and memories, the notion of ownership 
may take on a very temporary nature! The grid-connected s im d  computer
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has perhaps been the primary contender in this architectural development, 
as will be seen later. However, to date not one of these systems has been a 
commercial success. Some have been technically successful and some have 
been commercial, but user preference for computers which execute standard 
serial FORTRAN has dominated the supercomputer market. However, with 
the increasing awareness of parallelism, the further development of parallel 
languages (see Chapter 4) and the growing cost/performance ratio that can 
be obtained with highly replicated v l s i circuits, processor arrays and 
multiprocessor systems are beginning to come of age. It remains to be seen 
whether any manufacturer can grasp the bit and produce a success story at 
last.

(0 An early start
The idea for connected computers, which could be applied to spatial problems, 
was conceived as early as 1958 in the paper by Unger (1958). In this machine 
a two-dimensional array of neighbour-connected logical modules was 
conceived as being controlled by a single master controller. Each module 
(these would be called processing elements or pes  today) consisted of an 
accumulator, a boolean processor and about six bits of r a m . Data was input 
to a module either by connecting the modules in a shift register, or directly 
from the master controller. The controller acted as a conventional 
von Neumannn sequencer would have, with one exception—the ability to 
make a branch decision based on the logical sum of data from all modules 
in the array (the accumulators supplied this data). This exception was one 
of the most important innovations in Unger’s design and it can still be found 
in nearly all processor arrays designed today.

This feature provided the only data-dependent branch possible in Unger’s 
design, which translates to the parallel construct:

FOR ALL PROCESSORS 

IF ANY (ACCUMULATOR = TRUE)

THEN ACTION 1 

ELSE ACTION 2

Of course with a suitable change in the sense of the logic, a branch on the 
‘all accumulators true’ condition could also be obtained.

This architecture was never built, because of the ‘alarming figures’ that 
Unger estimated for the number of logic gates required. The actual figures 
called for around tens of thousands of logic gates, which may easily be 
implemented on a single chip today.
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(ii) SOLOMON
The grid-connected computer was further consolidated in the SOLOMON 
computer design (Slotnick et al 1962, Gregory and McReynolds 1963) which 
was a 32 x 32 array of pe s , and although this was also never built, it was the 
precursor to the ILLIAC (University of Illinois Advanced Computer) range 
of designs, which culminated in the ILLIAC IV and Burroughs BSP designs 
(see §§1.1.4 and 3.4.3). The SOLOMON design also had a major influence 
on the ICL DAP (see §3.4.2) and was perhaps notable for introducing another 
control concept into the s im d  processor array, that of mode control (or 
activity as it would be called today). The mode of a pe  was a single-bit flag, 
which could be set with reference to local data and then used to determine 
the action of later instructions. In particular it could be used to inhibit storage 
of results in the array where not set, and thus provide a local conditional 
operation.

This mode or activity control is equivalent to the following construct: 

FOR ANY PROCESSOR 

IF MODE 

THEN ACTION 1

This parallel IF-TH EN  construct is sometimes written 

WHERE MODE 

THEN ACTION 1

(iff) The ILLIAC IV
The ILLIAC IV was really the first technically successful array processor to 
be built and will be fondly remembered by at least one of the authors of this 
volume, as it was used in anger at a very early stage of a program of research 
into the use of parallel computers for solving problems in science and 
engineering (Jesshope and Craigie 1980). For many researchers the 
ILLIAC IV, delivered to NASA Ames in 1972, was offering a full service via 
ARPANET from 1975.

The ILLIAC IV consisted of 64 complex processors arranged in a 
two-dimensional grid. The processors were 64 bits wide, although these could 
be reconfigured to operate on 8-bit data giving an array size of 256. The 
original design comprised four quadrants each the size of the array actually 
built and the whole, using four controllers, should have been capable of in 
excess of 1 Gflop/s (109). One of the pioneering features of the ILLIAC IV, 
which was only feasible due to its complex processor design, was the provision 
of local indexing operations. An X register in each processor could be used
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to modify the broadcast address it received from the central controller. 
Therefore each processor could access a different location in its own memory.

This facility provides the parallel construct:

FOR ALL PROCESSORS {LABELLED I = [0 FOR 64]}

A [I] : = M EM ORY[X[I]]

As was shown in §3.3.8, this is a very powerful feature, especially when 
accessing arrays in multiple dimensions.

Although the ILLIAC IV was delivered late, was over budget, never really 
worked to full specification and was very unreliable, it provided the research 
community in the area of parallel machine construction and use with a 
tremendous stimulus. One has only to look at the development of parallel 
languages for the ILLIAC to see this. For example, the ALGOL-like 
TRANQUIL (Abel et al 1969) and GLYPNIR (Lawrie et al 1975), the 
FORTRAN-like CFD (Stevens 1975) and the PASCAL-like ACTUS 
(Perrott 1979) were all developed originally for the ILLIAC IV.

(iv) The real beginning
The 1970s also saw the development of many other processor array designs. 
In Britain two developments resulted in machines being fabricated, the CLIP 
project at University College, London, which was a design specifically built 
for image processing applications (Fountain and Goetcherian 1980) and the 
ICL DAP, which is described in more detail in §3.4.2. The first commercial 
ICL DAP was delivered in 1979 to Queen Mary College, London (QMC), 
and despite being well favoured in the research communities, was not a 
commercial success for ICL. It seemed that its successor, an LSI DAP would 
have a similar fate; however, at the time of writing, ICL had spun off its 
commercial DAP development into a newly created start-up company called 
Active Memory Technology Ltd (AMT Ltd). It remains to be seen whether 
this new company will be able to compete with the growing number of 
transputer products.

Of the six main-fram DAPs built, one went to QMC, two others 
went to Edinburgh University, one to the Hydraulics Research station at 
Wallingford, one to the National Physical Laboratory at Teddington and 
the last was used internally at ICL for integrated circuit c a d . In the US, 
STARAN and PEPE were other array processors built in the 1970s. The 
ST A RAN was an associative processor built by Goodyear Aerospace and 
PEPE was a system designed for tracking many ballistic missiles in real time.

Most of the systems mentioned above have had successors, many of which 
are described in the later sections of this chapter. For example, the ill-fated 
BSP, built by Burroughs, followed directly from their experience as contractors
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on the ILLIAC IV project. Although only one BSP machine was ever built, 
it is described in §3.4.3 as it represented the state-of-the-art in array processors 
design at that time. However, it had to compete commercially with established 
vector processors such as the CRAY-1. To do this it should have been able 
to outperform the CRAY-1 on maximum performance, but it gave only a 
fraction of the CRAY’S peak performance. The fact that, unlike the CRAY, 
the BSP was designed to give a high fraction of its maximum performance 
on a wide range of problems when programmed in FORTRAN, did not seem 
to cut any ice with the end users or their representatives. There is a moral 
here perhaps.

3.4.2 The ICL DAP
Design of the pilot DAP (distributed array processor) was started in 1974 
and was similar to the SOLOMON design (Gregory and McReynolds 1963), 
which consisted of a two-dimensional array of 1024 1-bit processors. However 
the DAP design introduced two new contributions to the SOLOMON 
formula. The first of these was a hardware feature, which effectively slices 
the array in two orthogonal directions. A number of registers are provided 
in the master control unit (m c u ), which match and can be aligned with either 
dimension of the DAP array. This is achieved by the use of two orthogonal data 
highways, which thread rows and columns of processing elements (pe s ). These 
highways have one bit for each bit in the mc u  register, which terminates in 
either a row or column of the DAP array. Thus pe I 7 will have a one-bit 
highway directly to bits i and j  of the m c u  register. These highways collect 
and broadcast data to slices of the DAP array and provide the DAP with 
much of its flexibility in manipulating data.

The second contribution made by the DAP design concerns the manner 
in which the DAP is integrated into a complete system. The DAP is designed 
to emulate a memory module for an ICL main-frame computer and also to 
process data autonomously in a highly parallel manner. This concept has 
given the DAP its name, as processing power is distributed throughout the 
memory of a conventional computer.

The pilot DAP hardware was completed less than two years after its 
inception, as an array of 32 x 32 pes  having 1 Kbit of memory each. Some 
six years later in 1980, the first three production models were delivered to 
their respective customer sites. These main-frame machines consist of a large 
array of 4096 pe s  arranged in the same two-dimensional geometry, each 
having 4 Kbits of memory per pe . This gives a total of 2 Mbytes of memory 
(later increased to 8 Mbytes) which was attached to one of the top-end 
machines in the ICL 2900 range. There are some minor differences between 
pilot and main-frame machines and later differences between this and the
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LSI DAPs. However, we will describe the first production version here. For 
the interested reader the pilot machine was first described in Reddaway (1973) 
and was evaluated on several applications in Flanders et al (1977), and the 
LSI DAPs are considered later in this section.

The main-frame DAP was constructed in units of 16 processors and 
associated memory on one 12 in x 7 in circuit board. This contained around 
80 16-pin t t l  integrated circuits, with typical levels of integration being 10-40 
gates per chip. A single gate delay of 5 ns gives an overall clock cycle of 
200 ns, including memory access. All memory for one processor is provided 
by a single chip, initially a 4K static m o s  device. Thus 256 boards comprise 
the array section of the DAP, which together with control unit boards and 
host store access control are housed in a single air-cooled cabinet, occupying 
some 20-30 ft2 of floor space. This is illustrated in figure 3.27. The cost of 
the complete DAP system was about £500000, in addition to the cost of the 
2900 host computer. However, it should be noted that the extra memory 
provided by the DAP would have cost a significant part of this figure in any 
case.

Figure 3.28 illustrates a typical 2900 system, which consists of an order code 
processor and a store access controller, both cross connected with a number

FIGURE 3.27 The DAP array memory and access unit (courtesy of 
ICL).
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FIGURE 3.28 Relationship of the DAP to the 2900 main-frame computer. 
smac , store multiple access controller, dac , DAP access controller; m c u , 
master control unit.

of memory units. One or more of these memory units may be a DAP, which 
provides memory in the conventional way and may also be instructed by the 
order code processor to execute its own DAP code. The memory may still 
be used while the DAP is processing, by stealing unused memory cycles. 
Protection of DAP code and data is obtained by giving various access 
permissions. For example, read only and read execute segments may be 
defined in the DAP to protect data and code.

The store access controller provides memory access to peripherals and 
also provides a block transfer facility between memory units. Thus if the 
DAP is considered as the number crunching core of the system, then 
conventional store can be considered as fast backing store to the DAP, with 
the facility for pre- and post-processing by the order code processor. 
Figure 3.29 identifies the major components and data highways in the DAP. 
Interface to the 2900 system is provided by the DAP access controller and 
the column highway, which has one bit for each column of processors in the 
DAP array. Thus one 2900 64-bit word corresponds to a row across the 
DAP memory. Incrementing the 2900 address first increments down the 
columns of the DAP array and then through the 4K DAP address space. 
The column highway also provides a path between rows of the DAP array 
and the mc u  registers, which can be used for data and/or instruction 
modification. Finally, the column highway provides the path for the m cu  to 
fetch DAP instructions from the DAP store. DAP instructions are stored 
two per store row and one row is fetched from memory in one clock cycle.
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FIGURE 3.29 Major components of the DAP.

Under certain conditions, instructions can be stored in the instruction buffer 
for repeated execution. More details of this are given later.

It can also be seen from figure 3.29 that the row highway connects the 
DAP array to the m c u  registers in the orthogonal direction. The row highway 
has one bit for each row of processors in the array and is used exclusively 
for transmitting data to and from the m c u  registers. Figure 3.30 illustrates 
the various components and data paths which comprise a single processing 
element. The array forms a two-dimensional grid, with each processing 
element having four neighbours. The undefined connections at the edge of 
the array are defined by the instruction being executed. The geometry of an 
instruction is either planar or cyclic in rows and columns. Planar geometry 
defines a zero input at the edges, whereas cyclic geometry gives periodic 
connections in rows or columns of the array. The geometry of rows and 
columns can be set independently.

Within the processor are three 1-bit registers, two multiplexers and a 1-bit 
full adder. The A register provides programmable control over the action of 
the processing element, as certain store instructions are only enabled if this 
activity register is set. The A register also has a gated input for the rapid 
combination of the control masks by anding the contents of the register with 
the input. The other registers and accumulator (Q) and carry store (C).

The adder adds Q, C and the input to the processing element, giving sum 
and carry outputs, which can be stored in the Q and C registers respectively. 
One exception to this is when an add to store instruction is being executed.

AN HISTORICAL PERSPECTIVE
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1 o
FIGURE 3.30 A simplified diagram of the ICL DAP processing 
element.

This family of instructions takes 1.5 cycles to execute and during this time 
reads an operand and writes the sum bit back to the same location (most 
instructions take only one cycle to execute, see below), thus saving half a 
cycle over an accumulator addition followed by a store accumulator 
instruction.

Parity processing elements (not illustrated in the figures) are incorporated 
into the design. These check both memory and logical functions (Hunt 1978). 
Also when acting as 2900 memory, a full Hamming error code is maintained, 
which gives single error correction and double error detection on every 64 
bits of data read.

Instructions in the DAP are executed in two phases, the fetch and execute 
cycles. Each of these cycles is 200 ns in the main-frame DAP. However when 
an instruction appears after and within the scope of a special hardware DO 
loop instruction, then the first phase which fetches the instruction will only
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be performed once for all N  passes of the scope of the loop. The DO loop 
instruction has two data fields, a length field which indicates the scope of 
the loop and a count field which may be modified and gives the number of 
times the loop is to be executed. The maximum length of the loop is 60 
instructions and the maximum loop count is 254. Within a loop, instructions 
may have their addresses incremented or decremented by 1 on each pass. 
The DO loop is essential for building up software to operate on words of 
data. The rate of instruction execution is asymptotically one every clock 
period in the loop, compared with one every 1.5 clock periods when 
instructions have to be fetched for each execution (two instructions are fetched 
in one fetch cycle).

Most DAP instructions have fields as illustrated in figure 3.31(a). The 
operation code and inversion field effectively specify the instruction. The 
inversion bit creates pairs of instructions which are identical, with the 
exception that one of the inputs to the instructions is inverted. For example 
QA and QAN are the related pair which load the Q register from the contents 
of the A register. QAN inverts the input. Many DAP instructions have such 
complementary pairs. The two other 1-bit fields specify whether the DAP 
instruction is to have its address incremented or decremented within a DO 
loop.

The two 3-bit fields specify m c u  registers. The first is set if a data register 
is required and the second if modification of the instruction is required. The 
two remaining fields give either a store address or an effective shift address 
in shift instructions. These fields can be modified by the m c u  register specified 
in the modifier field.

FIGURE 3.31 Instruction and modifier formats: (a) instruction; (b) 
address modifier; (c) shift modifier.



296 MULTIPROCESSORS AND PROCESSOR ARRAYS

An instruction which references memory contains two 7-bit address fields. 
One specifies a row or column number and the other a 7-bit offset in memory. 
These addresses are added to the contents of the modifier register (figure 
3.31 ( b ) )  to form the absolute address. A carry across into the memory address 
is only allowed in instructions which reference rows. For instructions which 
reference columns the column number is truncated to 6 bits to give a value 
modulo 64.

In instructions which shift data through the p e  array, the two address fields 
specify a relative address across the array. One field is used to specify the 
geometry and direction of the shift, and the other is used as a shift count. 
Both may be modified with the contents of an m c u  register having the format 
given in figure 3.31(c). The possible values of direction are self, N, S, E and W. 
Geometry has four possibilities, giving row and column geometries which 
may be set independently to plane or cyclic.

With either form of addressing, no modification is performed if the modifier 
field is set to zero. Thus register zero cannot be used as a modifier.

We will not attempt to describe all instruction types here, the interested 
reader should consult the DAP APAL assembly language manual (ICL 1979c).

TABLE 3.4 Summary of DAP instructions.

Register-register Register-memory

1-b i t  a d d i t i o n  

Full or half add, 
sum to Q, 
carry to C

1 -b i t  a d d i t i o n  to  s t o r e  

Full or half add, 
sum to store, 
carry to C

V e c t o r  a d d i t i o n  

Ripply carry add 
Q - Q  + C

T r a n s m i t

Register-to-register within pe , 
includes shift instructions

L o a d / s t o r e

Load and store Q and A registers 
(rows, columns or entire store 
plane)

m c u / a r r a y

Load mc u  registers, broadcast or 
write selectively to/from Q and A

m c u / s t o r e

Load mcu  registers, broadcast or 
write selectively to/from store

m c u  o n ly

Control, logic and arithmetic on 
mcu  registers



AN HISTORICAL PERSPECTIVE 297

FIGURE 3.32 Conceptual data paths in DAP processing element.

What we do attempt, however, is to summarise the instructions into groups 
in table 3.4 and indicate the conceptual data paths created by these 
instructions in figure 3.32. In this figure the broken lines indicate control 
exercised by the activity register.

The normal mode of processing on the DAP is bit-serial on 4096 words 
in parallel. The microcode for addition will therefore use the hardware DO 
loop facility to access consecutive bits of data, which must be stored 
contiguously in memory.

Alternatively the DAP processing elements may be configured to form a 
parallel or ripple carry adder (figure 3.3) (the pe s  may be linked in any 
direction). Thus 64-bit words may be processed in parallel 64 at a time. The 
ripple carry is propagated at better than one bit position in each clock period, 
with at least four bit positions being guaranteed.

Figure 3.33 illustrates the data mappings of these two modes of operation, 
matrix mode and vector mode. Processing word data in vector mode is always 
performed one work per row in the DAP, although this is wasteful of 
processing elements for short data (less than 64 in the main-frame DAP). 
The RPA described in §3.5.4 is designed to make use of these unused elements 
to provide a more flexible architecture. It should be noted that unless a data
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FIGURE 3.33 A diagram of the DAP processor array and memory, 
showing the two storage modes available; vector mode, in which the 
word is stored horizontally over a row of pe s ; and matrix mode, where 
the word is stored vertically over a single pe .

remapping is performed prior to the operation when processing data which 
does not map onto the DAP, then storage as well as processing power is lost.

At the system level on the main-frame DAP, which is closely integrated 
into the host system (ICL 2900), all DAP code appears to the user as a part 
of a mixed language system, with DAP FORTRAN subroutines being called 
from within the FORTRAN program executing on the 2900. As an example, 
consider the typical application illustrated in figure 3.34.

It can be seen that normal systems services are provided by the host system, 
including compilation, data set-up and analysis. A single entry point in the 
host FORTRAN program would then transfer control to the DAP entry 
subroutine and its siblings. Communications between DAP and host are by 
common blocks, which when accessed by the DAP will be loaded into the 
2900 store corresponding to the DAP memory, where they are accessible to 
both host and DAP systems.

The language DAP FORTRAN, a parallel FORTRAN-based language, 
is described in §4.4.2. A DAP assembly language APAL is also provided, 
with interfaces to both FORTRAN and DAP FORTRAN. When using 
floating-point arithmetic and the standard system routines (which are highly
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FIGURE 3.34 Control and data flow in DAP programs.

optimised), there is little benefit to be gained from using APAL. However, 
if algorithms can be found which exploit the bit nature of the processing 
elements, then orders of magnitude performance improvements may be made 
by coding at the assembler level (Eastwood and Jesshope 1977).

As the DAP consists of bit-serial processing elements, all arithmetic must 
be built up in software. For the mode of processing on the DAP matrix 
arithmetic will be based on sequences of single-bit operations. This means 
that there will be a strong performance dependency on the word length of 
the representation of the data. For integer arithmetic the proportionality is 
by word length and word length squared for addition and multiplication 
respectively. For floating-point calculations these proportionalities are 
masked somewhat by the overheads of exponent and mantissa manipulation. 
However in both cases, this word-length dependency is both the good news 
and the bad news concerning DAP performance. The bad news is that 
applications requiring extreme accuracy do rather poorly on the DAP; the
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good news is complementary, with some applications which require only 
short word lengths giving many hundreds of millions of operations per second.

For most problems, 32-bit floating-point calculation gives acceptable 
accuracy and we have therefore given timings for this precision in table 3.5. 
These are taken from Reddaway (1979) and represent the timings of the 
optimised system routines provided for arithmetic. These figures may also 
be used to give fairly accurate timing estimates of DAP FORTRAN programs, 
as in the DAP the overheads from high-level language manipulation are 
minimal. This is due to the rapid rate at which the DAP can perform data 
manipulation and is highlighted by the timing for assignment in table 3.5.

Some of these arithmetic routines have been timed in DAP FORTRAN 
programs, to establish how large the overhead is for a high-level language. 
These measured timings are given in table 3.6. It can be seen that the overheads 
range from less than 10% for single matrix operations (4096 elements) and 
increase to a little over 20% for DO loops performing 10 matrix operations 
(40960 elements).

Great savings can sometimes be made if bit-level algorithms can be used. 
Some examples of this are illustrated in table 3.5, where some operations 
give seemingly contradictory execution rates. Perhaps the most noticeable is 
the sum over a matrix of 4096 elements. One could expect this result to 
take about 12 floating-point additions (log2 4096 = 12); however it takes less 
than two! Other examples are square root and logarithm, which normally

TABLE 3.5 DAP arithmetic routines (32-bit precision). X, Y and Z are 
real (4096 elements); IX, IY and IZ are integer (4096 elements); S is a 
real scalar.

Operation Time (fis) Processing rate (M op/s)

Z<-X 17 241
z<-x*s 40-130 32-102
Z<-X **2 125 33
Z<-X + Y 150 27
Z«- SQRT(X) 170 24
Z<- X* Y 250 16
Z<- LOG(X) 285 14
Z<-X /Y 330 12
Z<- MAX(X,Y) 33 124
Z<- MOD(Z) 1 4096
IZ<- IX +  IY 22 186
S<-SUM (X) 280 175
S<- MAX(X) 48 85



AN HISTORICAL PERSPECTIVE 301

TABLE 3.6 Arithmetic time in DAP FORTRAN (32-bit precision). X, Y and Z 
are real (4096 or 40960 elements); S is a real scalar.

Operation

4096 elements 40960 elements

Time {fis) Rate (Mflop/s) Time (fis) Rate (Mflop/s)

Z<-X -l- Y 152 27 1848 22
Z<-X*Y 272 15 3048 13
Z < -X *S | 112-200 20-37 1368-2272 18-30
Z<- X**2 152 27 1816 23
Z<- SQRT(X) 192 21 2208 19
Z «-X /Y 376 11 4080 10

take many floating-point multiplications when performed iteratively. Some 
of the algorithms used for these functions are described in Flanders et al 
(1977) and Gostick (1979).

3.4.3 The Burroughs BSP
Unlike the DAP, the BSP is an array of complex processors, capable of 
performing floating-point operations on 48-bit words. It thus draws heavily 
on Burroughs previous experience in its contractor role when designing and 
constructing the ILLIAC IV. Although the design has many interesting 
features, it suffered from a reorganisation within the then ailing Burroughs 
company and never went into production. This was probably a fair decision, 
as the machine did not compete in performance with the then established 
CRAY-1. Indeed it did not even compete with its predecessor the ILLIAC 
IV, with a maximum processing rate of only 50 Mflop/s compared with the 
80-100 possible on the ILLIAC IV. Despite this disappointing maximum 
performance, the design tackled a number of major deficiencies in its 
predecessors and is of sufficient interest to be included here.

One of the major problems tackled by Burroughs was that of maintaining 
a large computation data base, which was matched in performance to give 
continuous use of the processor array. This was a severe limitation on the 
ILLIAC IV (Feierbach and Stevenson 1979a), which had only 128 Kwords 
of random-access memory backed up with a large and unreliable disc memory. 
In contrast the BSP has from 1 to 8 Mwords of random-access memory, 
backed up by a fast electronic file memory. In addition to its size, Burroughs

for minimum and typical figures respectively.
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have organised the central BSP memory so that many regular array subsets 
can be accessed in parallel without conflict.

Other lessons that Burroughs have learnt from their ILLIACIV experiences 
concern the organisation of the control processor, another weak point in the 
design of the ILLIAC. Whereas the ILLIAC IV had a small buffer memory 
and only limited processing power, the BSP provides a 256 Kword memory 
and a more complex scalar processor in addition to the control processor. 
This memory is used for code and data.

The details of the BSP described here are taken from the pre-production 
prototype (Burroughs 1977a-d, Austin 1979), which was built and tested by 
1980. Figure 3.35 shows the overall configuration of a BSP system.

The interface between the system manager and the BSP provides two data 
highways, one slow and one fast. The slow highway (500 Kbyte/s) interfaces 
the I/O  processor directly with the BSP control unit and is used for passing 
messages and control between the two systems. The second fast data highway 
(* Mwords/s) interfaces the I/O  processor with the file memory controller 
and is used for passing code and data files for processing on the BSP. The 
file memory provides a buffered interface between front-end and back-end 
systems for high bandwidth communication.

The file memory is one of the three major components of the BSP. The

FIGURE 3.35 Relationship of the BSP to a B7800 main-frame computer.
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FIGURE 3.36 BSP control processor and array section, showing major 
components and data paths.

other two, the control processor and processor array are illustrated in 
figure 3.36 and described below.

The control processor portion of the BSP contained four asynchronous 
units, which between them provided array control, job scheduling, I/O  and 
file memory management, error management and finally communication of 
commands between the system manager and BSP.

The control processor had 256 Kwords of 160 ns cycle mo s  memory. This 
memory held both scalar and vector instructions and scalar data and had a 
data highway to the file memory.

The scalar processing unit was a conventional register oriented processor, 
which used identical hardware to that found in the 16 arithmetic units (a u s ) 
of the array. However it differed from the au s  in that it had its own instruction 
processor, which read and decoded instructions stored in the control 
processor memory.

The scalar processor had 16 48-bit general-purpose registers and was 
clocked with a cycle of 80 ns. It performed both numeric and non-numeric
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operations, performing floating-point arithmetic at a maximum rate of
1.5 Mflop/s. One of the major tasks of the scalar processor is to pre-process 
vector instructions. This includes optimisations, checking for vector hazards 
and the insertion of various data fields into the vector instruction format. 
These operations were performed using sixteen 120-bit vector data buffers, 
which each held a vector instruction descriptor. Completed instructions were 
passed onto the array control unit, which queued instructions, finally 
decoding and broadcasting microcode control to the array section of the BSP.

It should be noted that the control processor was completely overlapped 
with the array section of the BSP. When initialised, the queue of instructions 
in the array control unit would keep the array section processing continuously. 
The scalar processor independently processed scalar instructions and pre- 
processed vector instructions. This approach was pioneered in the ILLIAC 
IV design, where careful assembler coding was required to exploit the overlap. 
In the BSP the scalar processor and array control unit hardware provided 
the necessary run-time operations.

The array section of the BSP contained four units which taken cyclically 
form a five-element pipeline. The operations or tasks performed by this 
pipeline are as follows:

(a) read parallel memory for operands;
(b) align operand data with arithmetic units;
(c) perform operation;
(d) align result data with memory banks;
(e) store results in parallel memory.

These operations are overlapped with successive sets of 16 elements taken 
from the vector instructions processed by the array control unit. The number 
of clock periods ( 160 ns) required for each of these tasks is variable, depending 
on the number of operands and operations performed. The overlap of this 
pipeline is controlled using different microcode fragments called templates, 
which describe the amount of overlap in these tasks.

The arithmetic units were general-purpose and driven by a single broadcast 
micro-instruction sequence. The control word is over 100 bits wide and 
provides direct access to the primitive functions of the aus , which in addition 
to floating-point operators have a comprehensive set of field manipulation 
and editing operators. These include special FORTRAN format conversion 
operators.

Floating-point addition and multiplication both required two clock periods 
of 160 ns, giving a maximum processing rate for one a u  of Mflop/s. The 
array of 16 thus gives the peak rate of 50 Mflop/s noted earlier. Floating-point 
division and square rooting are both implemented using a Newton-Raphson
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iteration and read only memories ( r o m s ), which supplied the first 
approximation.

The 48-bit word, used historically by Burroughs, has 36 bits of significant 
mantissa giving a precision of 10—11 decimal digits. An 11-bit binary exponent 
gives a range of + 10 + 307. Double-length accumulators and registers permit 
the hardware implementation of double-precision arithmetic.

The parallel memory in the BSP array section contained 17 memory banks, 
with a cycle time of 160 ns. 17 is the next highest prime number greater than 
16 (the number of processors). This arrangement when coupled with full 
connection networks provides conflict-free access to all linear vectors, 
provided that the increment between elements in memory is not a multiple 
of the prime number, 17. This access technique has been described in §3.3.8.

The connection networks used in the BSP were full crossbar switches and 
contained error detection and correction logic. These switches also had a cycle 
time of 160 ns.

Vector instructions processed by the array control unit could have from 
one to four operations (one to five sets of operands) producing a single vector 
or scalar result. The use of such high-level instructions enabled more 
optimisation in the use of the hardware, not only in register usage but in 
matching templates to maximise the overlap through the pipeline. It can be 
seen that an overall balance of the elements of the pipeline was achieved for 
triadic operations, e.g.

A = B op C op D.

Here the four memory references of 160 ns and two operations (+ , — or *) 
at 320 ns can be fully overlapped. However, the input and output routing 
networks contain some slack, using only three and one of the four cycles 
respectively.

The BSP was designed as a high-level language processor (FORTRAN), 
which provided hardware optimisations and transformations of user code at 
run time. A complicated control processor was necessary to maintain a high 
loading of the pipeline network:

(a) fetch operands;
(b) align operands;
(c) perform operation;
(d) align results;
(e) store results.

From the FORTRAN language viewpoint, the construct most likely to 
optimise the use of multiple arithmetic units is a nested set of DO loops. In 
fact BSP vector operations are based on one or two nested DO loops.



306 MULTIPROCESSORS AND PROCESSOR ARRAYS

However, most DO loops contain some run-time resolution of parameters 
and because of this the BSP high-level descriptor format for vector operations 
may also contain run-time parameters.

These ‘machine’ instructions had the form of memory-to-memory vector 
operations whose operands were arrays of arbitrary length (volume) having 
one or two dimensions. A single instruction contained up to four possible 
different operators and thus up to five different operands. For example the 
FORTRAN code

would compile into one BSP high-level instruction. Depending on N, a 
run-time variable, this instruction would generate a sequence of control 
signals for each set of 16 elements. These control signals controlled memory, 
both alignment networks and the arithmetic units. What is more, the control 
signals were timed so as to optimise the overlap in the array section pipeline.

In addition to the monadic, dyadic, tetradic and pentadic operations 
provided in the BSP instruction repertoire, there were also a number of 
special vector instruction forms. The most important of these are summarised 
in table 3.7.

The format of BSP instructions is given in figure 3.37 and includes loop 
length fields, instruction form and operations used, and descriptors for each 
operand and result. Optionally, boolean vectors for operands and results 
could also be specified. We will use the example in figure 3.37 to illustrate

TABLE 3.7 BSP special vector operation forms.

Vector scalar operations
Single precision reduction
Double precision reduction
Sequence
Compress
Expand
Merge
Random fetch 
Random store 
Dot product 
Recurrence (all)
Recurrence (last)
Data transfer

A <- B op S
+ A2 +  A3 +  ... 4- An 

As above but all in double precision 
A{«— A j -|- A2 +  ... + Ai 
A<-B (under boolean control)
A<-B (under boolean control)
A<-B or C (under boolean control)
A«- B(I)
A(I)<-B
S 4— A y * B i +  A 2 * B2 An* Bn
A i <— C!, Ai <— _ j * Bi +  Ct
Last term in above sequence 
Control memory < — > parallel memory
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.1.0

FIGURE 3.37 Format of the BSP high-level machine language and vector 
descriptors: (top) FORTRAN code; (bottom) BSP vector form.

the control flow in processing this instruction, which performs matrix 
multiplication.

The first thing to notice is that the code specifies a triple nested DO loop. 
Thus this single instruction would be placed within a loop in scalar code 
which when executed on the scalar processor would generate 32 copies of 
this instruction with the parameterised start fields resolved. These fields would 
be planted by the scalar processor while the instruction resided in the 1 2 0 -bit 
vector data buffers. When each completed instruction was assembled it would 
be passed on to the array control unit for further processing and for execution.

The first stage of the control unit pipe assembled the sequence of descriptors 
provided by the scalar processing unit into a single global description of the 
operations. It also established any dependencies between successive vector 
instructions. When this processing was complete the finished package was 
placed in a queue called the template descriptor memory, where it awaited 
execution. At this stage the description of the operation is still at the program 
array level. This was translated into operations on sets of 16 elements only
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at the final stage of instruction processing, performed by the template control 
unit, which selected the appropriate micro-instruction sequence for the 
operation, and then cycled through it while incrementing and decrementing 
addresses and loop counts.

For any given instruction form there are a number of alternative micro-
instruction control sequences held in rom . These templates and the template 
control processor select the optimum template at each stage of the instruction 
execution. These control signals were called templates as they define areas 
in the array pipeline—time space, which had to be matched as closely as 
possible in order to maximise the use of the array pipe.

Figure 3.38 illustrates two templates which can be used to execute the 
instruction of our example (figure 3.37). They define the number of cycles 
required for each section of the pipe and how these cycles overlap. Because 
the pipeline formed a ring network and because a single memory was used

FIGURE 3.38 Two templates for the execution ofC =  C + A *Bon the 
BSP. The templates show the clock periods required in the BSP pipeline. 
Fetch and store are performed in the same memory and cannot be 
overlapped, hence the second template which reserves a store cycle for 
a previous template.
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for both fetching and storing, reservations had to be made which are 
illustrated by the broken lines. These areas must not be overlapped. The 
second template in figure 3.38 has a space between fetching A and B ; this is 
to accommodate a reservation from an execution of a previous template.

Returning to our example we can now see how the template control unit 
selected the appropriate template and incremented the addresses. This is 
shown in figure 3.39. We assume that the first template starts up the pipe. 
The control unit will therefore select the first of the two alternative templates 
shown in figure 3.38, as this minimises the number of clocks required. There 
is no reservation required when fetching the next set of 16 operands, so the 
same template is used for a second time. Note that the arithmetic unit is the 
critical resource here. All successive templates are of the second variety, which 
allows for the reservation required by the store cycle. It can be seen that after 
this point all memory and all arithmetic unit cycles are being used.

Figure 3.39 also illustrates a common design constraint when overlapping 
input and output to memory. It can be seen that although all memory and

FIGURE 3.39 An illustration of how templates can be overlapped. The 
operation performed is matrix multiplication (see also figures 3.37 and 
3.38).
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arithmetic unit cycles are being used, the routing networks are both 
under-utilised. Although one cycle is used for each memory cycle, routing 
and memory operations cannot both be overlapped using a single switch. 
This is because routing is a post-memory operation on fetch and a 
pre-memory operation on store. Thus both switching networks are required and 
both will always be under-utilised, leaving the control unit only memory and 
arithmetic unit cycles to optimise.

What happened between instructions was important to the BSP’s 
performance on short vectors. Let us assume that the example code for matrix 
multiplication was followed by the following loop:

The BSP array control unit would determine whether there were any

FIGURE 3.40 An illustration of how different operations may be 
overlapped. Here the triadic operation continued from figure 3.39 is 
overlapped with a dyadic operation using the templates from figure 3.41.
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FIGURE 3.41 Templates for the dyadic operation D =  E*F on the 
BSP.

sequential dependencies between the successive instructions and if there are 
no vector hazards it would overlap the instructions. In our example this is 
shown in figure 3.40. It can be seen that when this vector instruction is fully 
operational, it is memory limited and that during the overlap, using the two 
templates in figure 3.41, all memory cycles have been used. Similarly, had 
the operation been arithmetic unit dominated, then the optimisation would 
have utilised all arithmetic unit cycles.

The whole concept of BSP was to provide continuous high performance 
without interruption from I/O  and system. Thus looking at the BSP 
performance figures without this perspective can be a little misleading. 
Burroughs had not aimed for massive performance figures which could not 
be sustained, but instead designed a computer which could maintain 
50-100% of its maximum performance continuously. It would do this despite 
being programmed exclusively in FORTRAN.

The basic operation times for the BSP arithmetic units are given in 
table 3.8. It should be noted that all overheads associated with these operations 
(e.g. memory and data alignment) are overlapped to some extent. Therefore 
these figures represented sustainable performance figures. For example for
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FIGURE 3.42 Measurement of nx/2 and for the BSP, for a single 
vector instruction with the pipeline flushed before and after the operation; 
n1/2 = 150, rœ =  50 Mflop/s. (Timings courtesy of Burroughs Corporation.)

TABLE 3.8 Operations on the BSP.

Operation
Time for 16 
result (ns)

Dyadic execution 
rate (Mflop/s)

Triadic execution 
rate (Mflop/s)

+ 320 33 50
— 320 33 50
* 320 33 50

1280 12.5 12.5
2080 7.7 7.7

+ , — and *, the BSP can compute memory-to-memory on triadic operations 
at a continuous 50 Mflop/s. For dyadic operations, which were memory 
limited, a continous rate of only 33 Mflop/s was possible.

Although the overheads are overlapped in a pipeline, no or very little 
start-up time was associated with vector operations. The reason for this was 
that the BSP was capable of overlapping even dissimilar operations. This is 
illustrated in figures 3.42 and 3.43, which show real timings for vector
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operations of different lenghts. In figure 3.42 the pipeline was artificially 
flushed before and after a single vector operation. It can be seen that an nl/2 
of 150 is exhibited due to the start-up time associated with the ring network 
pipeline. However in normal use, succeeding vector operations are overlapped 
using template descriptors. The effects of this are shown in figure 3.44, where 
it can be seen that n 1/2 has been reduced to 25.

3.4.4 The Denelcor HEP
The Denelcor Heterogeneous Element Processor (HEP) was designed by 
Burton Smith (1978). Although it was discontinued in 1985, due to the 
financial problems of the company, the architecture (like the BSP) is of 
sufficient interest to warrant a detailed discussion in this chapter. At the 
outermost level (figure 3.45) the HEP comprises up to 16 process execution 
modules ( pe m s ) connected via a packet-switched network to up to 128 data 
memory modules (d m m s ). The 16 pe m s  execute separate programs but all 
may access data in any of the 128 d m m s , which together form a large shared 
memory. Each d m m  contains up to one million 64 bit words, with an access

FIGURE 3.43 Measurements of nl/2 and r^ for the BSP in the steady state, with 
successive vector operations being overlapped; nl/2 =  25, riX) = 48  Mflop/s. (Timings 
courtesy of Burroughs Corporation.)
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FIGURE 3.44 Control and data flow in a typical BSP program.

time of 50 ns. A pe m accesses memory by sending a 128-bit ‘request packet’ 
containing the address of data (i.e. dm m  and address within d m m ). This 
traverses the multistage network to the correct d m m , the required data is 
accessed and entered into the packet, which is returned to the requesting pe m 
again via the nodes of the switch. The transit time of the packet is 50 ns per 
node and a typical time between requesting data and it being available in 
the pe m is 2.4 fis.

At this level of description the HEP can be considered as a shared-memory, 
multistage-switched mimd  system, as described in the classification in § 1 .2 .6 .

In any mim d  system the most important aspects of the design concern the 
mechanisms for synchronisation and the related protocols for multiple access 
to shared memory. In the Denelcor HEP both of these mechanisms are 
provided by a full/empty tag associated with all words in memory. This 
device provides a handshake protocol on every word of data in the entire
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FIGURE 3.45 A diagram showing the Denelcor HEP system, with up 
to 16 pe ms  connected by a packet-switching network to up to 128 d mms .

system, as in normal use; data may not be read from a location unless this 
bit signifies ‘full’ and data may not be written to a location unless the bit 
signifies ‘empty’. Normally, after a read operation the bit is set to ‘empty’ 
and after a write operation the bit is set to ‘full’. With a little thought it can 
be seen that this mechanism is sufficient to implement the protocol required 
for an Occam channel (see §4.4.2). This is sufficient therefore to implement 
all synchronisation and data protection primitives.

The structure of the individual pe m is particularly interesting because each 
may process up to 50 user instruction streams, from up to seven user tasks. 
The multiple instruction streams share a single eight-stage instruction 
execution pipeline with a great deal of hardware support. Instruction streams 
or processes are effectively switched on every clock cycle, so the distribution 
of processor resources is exceedingly fair. The organisation of this pipeline 
is shown in figure 3.46. Thus a single pe m is itself an example of a pipelined 
mimd  computer (see figure 1.8). The pe m is controlled by a queue of process 
tags (one for each instruction stream), which rotate around a control loop. 
The tag contains the program status word for the instruction stream or process 
that it represents. The process tag contains among other things the program 
counter for that process, which is updated on each pass through the 
INC PSW box. The instructions themselves are stored in a 1 Mword program 
memory, and local data is held either in 2048 64-bit registers or in 4096 
read-only memory locations, which are intended for frequently used constants. 
Separate pipelined functional units are provided for floating multiply, add 
and divide, integer ( i f u ) and create operations (c f u ), and references to shared 
memory (s f u ). As the process tags rotate around the control loop, the
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FIGURE 3.46 A diagram illustrating the operation of a single HEP pem . The 
diagram shows the control loop on the left and the execution loop on the right. 
The asynchronous switch is decoupled from the synchronous operation of the 
functional units. (INC denotes increment, if  denotes instruction fetch and d f  
denotes data fetch, psw  denotes process status word.)

appropriate data rotates around the data loop. Data leave the registers, pass 
through the appropriate pipeline, and the result is returned to the register 
memory under the control of the passage of the process tag through the 
instruction pipeline. As the process tag passes through the first stage of the 
instruction pipeline, the instruction is brought from the program memory; 
during the second stage the data referenced by the instruction are fetched 
from the register or constant storage to the appropriate functional unit; 
during stages three to seven the data pass through the unit and the function 
is completed; and finally in the eighth stage, the result of the operation is 
stored back in the registers.

The above description applies only to instructions that access data from
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the registers or constant store. If, however, an instruction refers to data stored 
in the shared memory (d m m s ), then the process tag is removed from the 
process queue and placed in the s fu  queue while data is being retrieved from 
shared memory. The tag is said to be waved off and its place in the process 
queue can be used by another process or the process queue can be shortened. 
This mechanism allows the process queue to contain only active processes. 
In this way each process status word (ps w ) in a process tag can always have 
its program counter updated on each pass around the control queue. Thus 
all operations are synchronous, with the exception of access to shared 
memory. This is handled in the s fu  queue, which re-inserts the waved-off 
process into the process queue only when the data packet has arrived from 
the appropriate d d m .

A new instruction stream (called a process) is initiated with the machine 
instruction (or FORTRAN statement) CREATE. This uses the c f u  to create 
a new process tag and to insert it into the process queue. It is then said to 
be an active process. It remains so, until either the process is completed (i.e. 
a successful QUIT instruction or FORTRAN RETURN statement is 
executed), or the tag leaves the process queue while waiting for data from 
the shared memory (wave-off). Unlike the transputer, there is no mechanism 
for a process to be passively delayed until a time-out.

It is instructive to examine the performance of the instruction pipeline as 
the number of active processes increases. In the case of a single task (collection 
of user processes) the process queue may be thought of as a circular queue 
of up to 50 tags. The minimum length of the process queue is eight and if 
less than eight processes are active, there will be some empty slots in the 
queue. These slots can be filled by creating additional processes (until eight 
are active) without changing the length of the queue, or the timing of the 
other processes. Thus as more processes are created, the total instruction 
processing rate increases linearly with the number of active processes, because 
there are less empty slots in the process queue and hence more instructions 
being processed in the same time. This continues until there are eight active 
processes and the pipeline is full. In this condition the processing rate is at 
a maximum. One instruction leaves the pipeline every 100 ns, giving a 
maximum rate of 10 Mips per pe m , or 160 Mips for a full system of 16 pe m s . 
If more than eight active processes are created, the only effect is to increase 
the length of the process queue. In this way the instruction processing rate 
for each process decreases, leaving the total instruction processing rate 
constant at 10 Mips per pe m .

To summarise this mechanism, we would expect the processing rate to rise 
linearly with number of active processes until the instruction pipeline is full
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and then to remain constant. The instruction pipeline becomes full when 
there are eight active processes. Since most active processes will make some 
use of the shared memory and hence become waved off, then in practice more 
than eight active processes will be required to maintain a full instruction 
pipeline. In fact, in FORTRAN programs, about 12 to 14 active processes 
are required to maintain a full instruction pipeline, which allows from four 
to six waved-off processes.

The beauty of this system is that even if a particular user is unable to 
provide sufficient processes to fill the instruction pipeline, the pipeline will be 
automatically filled with processes from other tasks or jobs. Thus the HEP 
can effectively multitask at the single-instruction level, in a single processor 
with no processor overhead. There is of course an overhead for process 
creation and deletion.

In order to interpret the effective performance of the HEP on applications 
dominated by floating-point operations, it is necessary to know how many 
instructions are required per floating-point operation. This variable is called 
i3 and modifies the asymptotic performance per pem  as indicated below:

Clearly i3 must be minimised in order to maximise the useful floating-point 
performance. Consider the case of a dyadic vector operation in which all 
variables are stored in shared memory. This may be expressed by the loop:

Since the HEP has no vector instructions, this loop must be programmed 
with scalar instructions. If the loop were coded in assembler it could be coded 
in six instructions, namely:

(a) fetch B(I) from shared memory to register;
(b) fetch C(I) from shared memory to register;
(c) perform a register-to-register scalar multiply;
(d) store the result to A(I) in shared memory;
(e) increment I;
(f) test and branch to start of loop.

In this case i3 = 6  and = 1.7 Mflop/s. If, however, all variables were 
stored in registers, instructions (a), (b) and (d) would be unnecessary, making 
¿3 = 3 and doubling the asymptotic performance to 3.3 Mflop/s. Further
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optimisations could be made by in-line coding (loop unrolling), giving 
processing rates of 4.5 and 6.7 Mflop/s for memory and register operations, 
using four operations per loop. Sorensen (1984) and Dongarra and Sorensen 
(1985) have shown that a performance of 5 to 6  Mflop/s can be achieved for 
a variety of common matrix problems by these methods and the intelligent 
use of the pem  registers as temporary storage of intermediate vector results. 
This reduces the number of references to shared memory and the value of i3.

Performance may also be degraded when using many separate processes 
to solve a single problem, because one must also consider the time required 
to synchronise the separate instruction streams, as discussed in §1.3.6. To 
measure the synchronisation overhead on the HEP the (r^, s1/2) benchmark 
has been executed. In this benchmark, the work of a memory-to-memory 
dyadic vector multiply operation with s floating-point operations is divided 
among P processes. The time, £, of execution is fitted to

t = r~ ^s + s ^ )

where now both r^ and s 1 /2 are functions of P. The measured time includes 
the time to start P instructions at each synchronisation point, and the time 
to detect that all streams have finished their work.

A detailed theoretical analysis of the timing of the above benchmark is 
given in Hockney (1984a), and measured values of and s 1 /2  for a variety 
of different cases are reported in Hockney and Snelling (1984), and more fully 
in Hockney (1985c). The results show that for a fixed number of processes, 
t is a linear function of s and therefore fitted well by the above model. On 
the other hand, figure 3.47 shows the time as a function of the number of 
processes, for a fixed s. In this case, the time is seen first to decrease to a 
minimum, as slots in the instruction pipeline are filled. At P = Popt = 12 the 
time is a minimum. If P is increased further, the time gradually increases, 
due to the greater time required to synchronise a larger number of processes. 
It is clear from this example that there is no virtue in creating more than 
12-14 processes on a single pe m , even if the logic of the program lends itself 
to a larger number.

Figure 3.48 shows values of and s1 /2  as a function of P for fork/join 
synchronisation. In this method the processes are created with the 
FORTRAN CREATE statement and allowed to die as they finish their work. 
The asymptotic performance is seen to rise linearly to its maximum value 
and then to remain constant, as expected from the earlier discussion. The 
maximum value of = 1.7 Mflop/s is consistent with i3 = 6  as described 
previously. The theoretical analysis (full curve) predicts that s 1 /2  should rise 
quadratically with P, and this is observed. The best operating point, shown 
by the arrow, occurs when the maximum performance has just been reached.
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FIGURE 3.47 A diagram showing the optimal number of processes 
required to drive a single pem .

Any further increase in P increases the overhead (i.e. the value of s1/2) without 
improving the value of r^. At the optimum point we have:

FORK/JOIN = 1.7 Mflop/s and s 1 /2 = 828

The above method of synchronisation requires the process to be created 
and destroyed dynamically. A process is created when required by the 
CREATE statement (FORK) and allowed to die on completion (JOIN). This 
is obviously an inefficient method of obtaining synchronisation in the program 
and therefore leads to high values of s1/2. The alternative is to create static 
processes once only, and to achieve synchronisation using other means. The 
hardware provides the mechanism for synchronisation in its full/empty tags 
on each location in shared memory. Therefore, using a shared variable, 
synchronisation can be achieved using a semaphore. A counter initialised to 
the number of concurrent processes used can be decremented once by each 
process on completion of its share of the work. All completed processes 
then wait for the variable to become zero, at which point synchronisation 
has been achieved.

This is a software implementation of barrier synchronisation, which has 
substantially less overhead than dynamically creating and destroying
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FIGURE 3.48 Diagrams showing s 1/2 and rœ against the number of 
processes, P, in the process queue.

processes

BARRIER ro0 = \.l  Mflop/s and s 1 /2  = 230.

In order to test the effect of increasing the amount of arithmetic per memory 
reference, statement 10 of the test loop (1.5) was replaced with:

IF (A(I).LE.O.O) THEN

C(I) = SIN(A(I)*EXP(B(I)))

ELSE

C(I) = COS(A(I)*EXP(B(I)))

ENDIF

In this case all arithmetic associated with the evaluation of the SIN, COS 
and EXP functions is performed between temporary variables stored in 
registers. The effective performance in Mflop/s is increased about three-fold 
to:

FORK/JOIN rœ = 4.8 Mflop/s and s 1 /2 = 710 

BARRIER rœ = 4.8 Mflop/s and s1 /2 = 190
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It is clear that in this example the average number of instructions per 
floating-point operation has been reduced from six to two, compared with 
the vector dyadic kernel.

3.5 REPLICATION—A FUTURE WITH v l s i

3.5.1 An auspicious start
The advent of l s i and v l s i chips has given a large boost to the research and 
development of array processor and multiprocessor architectures. A review 
of multiprocessor design has already been given in Chapter 1 and to some 
extent the availability of cheap and powerful microprocessors has catalysed 
this research. However, it is in the area of array processors that the true 
impact of v l s i is being seen. As outlined in Chapter 6 , v l s i chips need to 
contain great regularity and repetition in order to reduce design time and 
optimise the utilisation of silicon area. Bit-serial processor arrays are therefore 
ideal candidates for v l s i (and even wafer-scale integration (wsi)) as they 
consist of a large number of relatively simple circuits replicated in a very 
regular manner, usually in a two-dimensional grid.

This is confirmed by the growing body of literature describing projects 
based on grid-connected arrays. University College, London, for example, 
has continued to develop designs for the CLIP (Fountain and Goetcherian 
1980, Fountain 1983) and ICL are continuing to develope their DAPs, 
which are described in more detail in §3.5.2. Other projects include the 
GEC GRID (Robinson and Moore 1982, Arvind et al 1983), the LIPP project 
at Linköping University, Sweden (Ericsson and Danielson 1983), the NTT 
APP (Komdo et al 1983) in Japan, the connection machine from Thinking 
Machines Corporation (which is described in §3.5.3) and the RPA project 
at Southampton University (described in §3.5.4). All of these projects have 
developed or are developing v l s i chips which contain from 16 to 64 single-bit 
processors.

Indeed, there is a bit-serial parallel processing chip on the market called 
the GAP (NCR 1984), which contains 96 single-bit pe s . It is a 6  x 12 array, 
with nearest-neighbour interconnections, which can be cascaded into larger 
systems. Its major limitation is the limited on-chip memory, 128 bits per pe  
and the lack of a pin per pe  for connecting external ra m .

Another important development, which is set to make a major impact in 
the field of multiprocessor systems is the INMOS transputer (INMOS 1984). 
This chip can either be viewed as a state-of-the-art 32-bit microprocessor, as 
a new generation systems building block, or as a hardware realisation of an
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OCCAM process. OCCAM (INMOS 1984) is a parallel processing language 
based on CSP (Hoare 1986) and is described in some detail in §4.4.2.

What distinguishes the INMOS transputer from its competitors is that it 
has been designed to exploit vl si . Like some other recent microprocessors 
it has a reduced instruction set ( r is c ) architecture, and the silicon real estate 
thus saved has been used for a large area of on-chip ra m , and (of equal 
importance) a communications system for providing intertransputer 
communications. The communications system is a direct implementation of 
the point-to-point asynchronous communications found between OCCAM 
processes. Parallel OCCAM processes can therefore be directly mapped onto 
a connected set of transputers. The transputer and related systems are 
described in more detail in §3.5.5.

Already many projects are underway which hope to exploit the transputer 
in parallel systems. These include at least two large Alvey projects, a major 
ESPRIT project originating from Southampton University and many 
commercially funded projects. It was one of Iann Barron’s objectives (he is 
one of the co-founders of INMOS) that the transputer should sell in volumes 
comparable to those of memory chips and thus exploit the economies of 
scale. If this were to happen, it would provide a great deal of processing 
power (10 Mips) at the cost of a memory chip (about $10). The recently 
announced T800 floating-point transputer provides 1-2 Mflop/s, and if this 
chip can be brought down even to the $50 level, then the impact on 
high-performance computers cannot be underestimated. Already five European 
and at least two US manufacturers have products on the market, based on 
multiple transputers, which provide a great deal of computing power at a 
very realistic cost. As the cost of transputers and hence systems is reduced, 
parallelism in the form of replicated systems will certainly come of age.

INMOS have been very thorough in their forward planning of transputer 
products and, to a large extent, systems containing transputers should be 
very future-proof. This is achieved by making the communications links run 
at standard speeds (5, 10 and 20 MHz) regardless of processor speed and 
thus providing a standard and simple interface between generations of 
products. The first transputer product, the T414, and its successor, the T800, 
are described in more detail in §3.5.5 and OCCAM is introduced in §4.4.2. 
The two sections should be read together to obtain a full understanding of 
the transputer systems concepts. Section 3.5.5 also considers some of the 
issues involved in building systems in transputers, with illustrations from the 
transputer projects at Southampton University. It should be noted that the 
RPA described in §3.5.4 also uses transputers as host and control computers 
for the array, thus taking full advantage of the process parallelism inherent 
in OCCAM and the standard interfaces provided by the transputer links.
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3.5.2 LSI DAPs and beyond
In 1985 the first of a second generation of DAPs, built from l s i technology, 
was delivered to a customer site—the Royal Signals and Radar Establishment 
(RSRE), Malvern, took delivery of the first 32 x 32 prototype for radar and 
other signal processing applications. In 1986 the first commercial prototype 
version of the same machine was delivered to the DAP Support Unit at 
QMC. This prorotype is interfaced to an ICL Perq single-user system running 
PNX, ICL’s implementation of UNIX for this machine. Since these deliveries, 
ICL has separated off* its commercial development in DAP technology into 
a start-up company called Active Memory Technology Ltd (AMT). AMT 
are re-engineering this prototype for commercial exploitation. The first 
customer deliveries were in the last quarter of 1987. Whereas the prototype 
mini-DAPs (as they are known) contain a 1 6 - p e  v l s i gate array chip, the 
re-engineered AMT version uses a 6 4 - p e  custom v ls i design.

The architecture of the mini-DAP is largely unchanged from the main-frame 
DAP at the pe  level. The major difference is in the addition of a fast I/O  
path, as found in both GEC GRID (Robinson and Moore 1982, Arvind et 
al 1983) and Goodyear MPP (Batcher 1980) designs. In this scheme, an 
additional register is connected between pes  to form a parallel shift register 
running from south to north across the array. The shift register is controlled 
independently to the normal operation of the rest of the pe s , which are issued 
with instructions from the master control unit ( m c u ), see §3.4.2. The operation 
of this shift or I/O  plane is controlled from the fast I/O  unit, which also 
provides buffering for data as well as a facility for reformatting data on the 
fly. Data can be shifted through this plane at a rate of one 32-bit word into 
or out of the array every 100 ns, giving a total bandwidth of 40 Mbyte/s. 
When the plane formed by these registers has been shifted in from the 
I/O  unit, it can be loaded into the DAP memory by stealing a DAP memory 
cycle. This means that fast I/O  and processing in the DAP can proceed 
concurrently, enabling it to be used for real-time applications such as image 
and signal processing.

This I/O  mechanism signifies a major shift in system philosophy for the 
DAP. Main-frame DAPs were implemented as an integral component of 
another system, namely the ICL 2900, and relied on that system to provide 
all I/O  services (see §3.4.2). The mini-DAP, however, is an attached processor, 
which can be interfaced to a variety of hosts, or indeed used as a stand-alone 
or embedded system, after applications have been developed. A block diagram 
of the mini-DAP system is given in figure 3.49, which shows the major data 
paths. The fast I/O  path acts as a 32 serial-to-parallel converter, one for 
each column of the DAP memory. With the exception of this data path, the 
array is unchanged from the main-frame DAP. Two-dimensional nearest-
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I/O
bus

FIGURE 3.49 Diagram showing the structure of the ICL mini-DAP, 
with the addition of a fast I/O  plane and buffer.

FIGURE 3.50 A photograph of the prototype mini-DAP, showing the physical size 
of the cabinet. (Photograph courtesy of AMT Ltd.)
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FIGURE 3.51 A photograph of an array board from the mini-DAP, showing the 
technology used. The large square packages are l s i gate array chips containing 16 
processors. (Photograph courtesy of AMT Ltd.)

neighbour connectivity with optional wrap-around is implemented between 
processing elements and row and column highways connect pes  to bits in 
the mc u  and the hcu  (host connection unit). Indeed, the mini-DAP is 
source-code compatible with its predecessor, in both DAP FORTRAN and 
A PAL (DAP assembler) languages.

The implementation of the prototype mini-DAP is in t t l  and c m o s  
components, with the array of processing elements being implemented in 
4 x 4  subarrays contained in a customised National 6224 gate array. This 
uses c m o s  technology and the chips are packaged in 1 2 0  pin-grid array 
packages. The development of this chip, coupled with the advance in memory 
technology over the last five to ten years, has brought about a substantial 
reduction in the number of chip packages in the mini-DAP system. The 
main-frame DAP used on average five packages per pe , whereas the mini-DAP 
uses one gate array and eight memory chips (1 Mbyte option) for a 4 x 4 
subarray. This order of magnitude reduction in parts, combined with the 
smaller array size, allows the machine to be packaged in an office environment 
pedestal cabinet, dissipating less than 1 kW of power. Figures 3.50 and 3.51, 
respectively, show the physical size of the mini-DAP and the technology used.
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At the next level of packaging, the array is constructed from boards 
containing 128 pe s , in a 16 x 8  subarray. The board also contains the 
128 x 8  K of memory required for the 1 Mbyte option or 128 x 16 K required 
for the 2 Mbyte option. Eight such boards comprise the 32 x 32 array. The 
remainder of the system requires a further eight boards; two of these are 
array support boards providing instruction decode, parity memory etc; 
another two provide the mc u  and separate code store; the remainder provide 
an interface to the outside world, via the hc u  and fast I/O  unit.

The two major differences in architecture over the main-frame DAP are 
found in the mcu  and additional control units such as the h c u  and I/O  unit. 
These facilities make the mini-DAP considerably more powerful than the 
main-frame DAP. For example, in the mc u  itself additional instructions 
include a multiply instruction, n-place shift and interrupt handling instructions. 
In the main-frame DAP microcode was stored in the DAP array and fetched 
and executed in a two-phase cycle, but in the mini-DAP there is a separate 
code store, which adds no overhead to the instruction cycle. The code store 
is currently 32K by 36 bits, although addressing capability is there for up to 
one Mword of code. A block diagram of the new mcu  is given in figure 3.52.

Figure 3.53 shows the mini-DAP fast I/O  unit, which interfaces to the 
32-bit input and output buses of the array I/O  plane. It comprises two data 
buffers of 64 Kbytes each, which can be configured separately or for use 
together. The buffers can be configured separately or for use together. The 
buffers can be configured under software control to provide comer turning 
or reformatting of the data passed to the DAP array. Corner turning is 
illustrated schematically in figure 3.54.

The prototype mini-DAPs have instruction cycles of 155 ns, which is some 
25 % faster than the main-frame DAP, although their peak processing rate 
will be reduced as there are only one quarter of the pe s  found in the main-frame 
DAP. Some performance figures for the mini-DAP are given in table 3.9.

With the increase in packing density expected in the re-engineered 
AMT DAPs, it may be possible to market a similar sized machine comprising 
4096 pe s , as in the main-frame DAP. This machine is also expected to have 
a faster clock rate, possibly 100 ns. The combination of these improvements 
would give a factor of six improvement in performance over those figures 
above. However, it is unlikely that such architectures will compete in the 
scientific market where floating-point arithmetic is required. The new T800 
could achieve the figures quoted above, with just five to ten chips. The 
application areas where the bit-serial architectures do best is where their 
word length flexibility can be exploited; for example, in signal and image 
processing. It can be seen in table 3.9 that performance for addition is inversely 
proportional to word length.
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FIGURE 3.52 The control unit of the mini-DAP.

FIGURE 3.53 The fast I/O system in the mini-DAP.
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FIGURE 3.54 A schematic illustration of corner turning; the square 
buffer can be accessed in two orthogonal directions.

TABLE 3.9 Some performance figures for the prototype mini-DAP 
machine. These figures are for a 32 x 32 array using a 155 ns clock. 
All figures are given in millions of operations per second.

Word
length Operation Performance

8-bit Add 280
Multiply 42
Multiply
(constant) 100-200

16-bit Add 140
Multiply 10
Multiply
(constant) 30-100

32-bit
floating-
point Add 8.6

Multiply 5.1
Square 10.9
Square root 7.4
Divide 4.1
Log 4.2

Other applications where this class of architecture excels are where broadcast 
and reduction operations over data are required. For example, in associative 
processing, set and database manipulation etc.

3.5.3 The Connection Machine
The Connection Machine has developed from research by Hillis and others at 
MIT, primarily for use as a parallel artificial intelligence engine. Although
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claimed by Hillis in his book of the same name (Hillis 1985) to be a ‘new 
type of computing engine’, to a large extent the implementation draws heavily 
on the established bit-serial grid computer developments that have preceded 
it. What distinguishes the connection machine from its predecessors is the 
use of a complex switching network which provides programmable connections 
between any two processors. These connections may be changed dynamically 
during the execution of programs, as they are based on packet-routing 
principles. Data is forwarded through the network, which has the topology 
of a twelve-dimensional hypercube, to an address contained within the packet. 
Because of the topology of the network, one bit of the binary address 
corresponds to one of two nodes in each dimension of the hypercube (see §3.3).

The connection machine derives its power and name from this ability to 
form arbitrary connections between processors; however, there are many 
compromises in the design and it is not clear that the designers had sufficient 
experience in the implementation technologies. A twelve-dimensional hypercube 
requires a considerable amount of wiring and, as is expounded in Chapter 6, 
this can contribute excessively to cost and performance degradation. However, 
the principles behind the machine are laudable, in providing a virtual replicated 
architecture, onto which a user description of the problem to be solved can 
be transparently mapped.

The Connection Machine is not the only bit-serial development that has 
considered the problems of information representation and array adaptability. 
Southampton University’s RPA project (§3.5.4) is also an adaptive array 
architecture which has a communications system capable of creating arbitrary 
connections between processors and varying these dynamically. The connection 
machine implements connections in a bit-serial packet network, arranged in 
a binary cube topology and giving a slow but general connection capability. 
The RPA, on the other hand, implements connections by circuit switching 
over a connection network which conforms to the underlying implementation 
technology, which is planar. However, there is provision for long-range 
communication, which can be irregular. These long-range connections are 
implemented at the expense of processing power, by using processing elements 
as circuit switch elements. This latter trade-off is one which need not be fixed 
at system design time. For example, in the connection machine, 50% of the 
array chip is dedicated to packet routing. In the RPA, all of the chip is used 
for pe s , but at compile or run time some of these may be used simply for 
switching elements.

The reader is encouraged to compare and contrast these two approaches 
to this communications problem. The direct connection provides an efficient 
hardware implementation and gives a high bandwidth. The packet switch, 
on the other hand, is more costly, but gives high network efficiencies over
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a wide variety of data structures. Moreover, the packet approach provides 
a system which can be used implicitly and dynamically.

The Connection Machine has been implemented by Thinking Machines 
Corporation, a company co-founded by Hillis, and is called the CM-1. This 
prototype consists of a large array of processor/memory cells, which can be 
connected together using the programmable connection network to form 
data-dependent patterns called active data structures. The activity of these 
structures is directed by a host computer, which has a data bus giving it 
access to the array memory. In this respect the connection machine is similar 
to the ICL 2900/DAP system and indeed to the transputer/RPA system 
described in the following section. In all three cases the array memory can 
be considered as belonging to the host system, so that it may address and 
modify locations within the array memory. However, for computationally 
intensive tasks, the host can instruct the array to access and process data 
stored in this shared memory. In this way processing power is distributed 
throughout the host’s memory sytem, avoiding the von Neumann bottleneck 
which would otherwise be crippling in a uniprocessor realisation of comparable 
processing rates.

This active-memory array in the CM-1, DAP and RPA is a very 
powerful configuration as it provides a very responsive configuration for 
synchronising activity. Typical applications would require the broadcast of 
information to the array, keys (for example to activate data), some processing 
of active data, followed by a reduction of that information for dissemination 
by the host system using selection (array memory addressing) or reduction 
(minimum, maximum, sum etc).

The processor/memory array in the CM-1 comprises 65 536 processors 
each with 4096 bits of memory. This is implemented using a 16-pe  custom 
v l s i chip and 4 x 4 K static r a m chips. On the chip the pe s  are connected in 
a nearest-neighbour grid or ‘NEWS’ network, although from the pin-out 
figures given in Hillis (1985) it seems the prototype does not extend this 
connectivity across chip boundaries. This is illustrated in figure 3.55. The 
binary hypercube connection provides the interconnect at the chip level, and 
16 pes  on a single connection machine v l s i chip share the bandwidth of a 
single packet-router. Thus the machine can be considered as a twelve-
dimensional hypercube of nodes comprising a 4 x 4 grid of single-bit pes  at 
each node. Each chip contains a router, which handles messages for the 16 
processors on that chip, which it does by forwarding data packets bit-serially 
over one of twelve bi-directional wires. This network therefore comprises 
4096 routers connected by 24576 bi-directional wires. This is a very high 
wiring density when compared to other bit-serial processor arrays.

The processor chip has been implemented in cm o s , is about 1 cm2 and
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FIGURE 3.55 The connection machine.

contains about 50000 transistors. It dissipates 1 W at 4 MHz and is packaged 
in a 68-pin ceramic chip carrier; to provide an isomorphic NEWS network 
over the entire machine would have required another 32 pins per package. 
Each processor chip is supported by four 4 k x 4 static memory chips and 
a subarray of 32 array chips and 128 memory chips is packaged onto a single 
printed circuit board, giving 512 processor/memory cells in all. These modules 
are then packaged in backplanes, with two backplanes containing 16 modules 
housed in a rack. Four racks complete the machine.

This hierarchy in the packaging technology simplifies the wiring for the 
cube network, with the first five dimensions on a circuit board, the following 
four within a backplane and the remaining three within racks. Even so, at 
the top level of the cube, each edge comprises 8192 signal ground pairs wired 
using flap cables. The whole machine is air-cooled, operates at 4 MHz and 
dissipates 12 kW of power. Comparing clock speed and array size, one would 
expect to see a performance which was an order of magnitude greater than the 
main-frame DAP, but for some applications even this performance has not 
been achieved.

A single microprogrammed control unit provides control to the array, with 
this control being synchronised by a single global clock. Instructions from 
the host (called macro-instructions) and data returning to the host are queued 
in a first-in, first-out ( f i f o ) sequence between the host and microcontroller. 
These buffers even out the flow of micro-instructions and data between the
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host and microcontroller. Each call to a microroutine, called micro-instruction 
by Hillis (1985), may require a few or many thousands of clock cycles, 
depending on the data to be processed. When branching on array-supplied 
data in the host, the fifo  buffers must of course be flushed.

Each processor cell in the CM-1 typical of many bit-serial array designs 
and is illustrated in figure 3.56. The basic operation of the cell is a five-address 
operation with two sources and the destination bits coming from and going 
to external memory. These are addressed by two 12-bit fields, with the 
destination sharing an address with one of the source operands. Three further 
four-bit addresses provide a source and destination flag register for input 
and output from the a l u ; these addresses are provided to the pe  chip. A final 
four-bit address specifies which of the flag registers should be used as a 
conditional or activity flag. Three clock cycles are required for the sequence 
comprising this operation. Two eight-bit global control fields completely 
specify one of the 256 boolean functions possible, with three boolean inputs 
for each of the outputs. Local on/off control can be provided by any of the 
16 processor flags and a sum tree provides a logical OR of a signal from 
each processor in the array.

One of the major shortcomings of the connection machine design is the 
under-exploitation of the mass of wire which comprises the hypercube 
network. It can be argued that wiring is the most costly component in modern 
VLSI-based systems. The router on the connection machine routes data in 
cycles, where each cycle proceeds to send a message in each of the dimensions 
in sequence. This means only 1/12 of the wire is ever being used. It is obvious

FIGURE 3.56 The connection machine processing element. The a l u  

can yield two outputs, each of which can be one of the 256 three-input 
boolean functions.
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that it would be costly to provide a router that was capable of handling 12 
concurrent transfers, which leads this author to doubt the viability of a 
twelve-dimensional network in this application. With 1/12 of the bandwidth 
being wasted, approximately the same long-range bandwidth and greater 
short-range bandwidth could be achieved with a packet-based NEWS 
network, with concurrent transmission and reception over the four directions. 
A software implementation of such a network has been implemented relatively 
efficiently on the RPA, which is described in §3.5.4.

For further information on the Connection Machine, the interested reader 
is referred to the book by Hillis (1985) for more detail of the design of the 
CM-1. In particular, the operation of the packet network is covered in some 
detail. The performance of the CM-1 is summarised in table 3.10, using Hillis’ 
own measures.

TABLE 3.10 Performance of the 64K prototype CM-1.

Performance characteristic Value

Size of memory 2.5 x 108 bits
Memory bandwidth 2.0 x 1011 bits/s
Processor bandwidth! 
Communication bandwidth

3.8 x 1011 bits/s

Worst case 3.2 x 107 bits/s
Typical case 1.0 x 109 bits/s
Best case 5.0 x 1010 bits/s

t  It should be noted that processor bandwidth 
measures the number of bits entering and leaving 
the a l u  in a second and not the number of operands 
per second.

The programming environment for the connection machine is based on 
LISP, which has a long history at MIT. Connection machine LISP (CMLISP) 
is an extension to common LISP, which is designed to support the parallel 
operations of the connection machine. It is a s im d  language, which reflects 
the control flow of the host computer and and microcontroller while allowing 
operations to be expressed over parallel data structures. Connection machine 
LISP is to common LISP what FORTRAN 8X (see §4.3.3) is to FORTRAN 77. 
The language is fully documented in Hillis and Steele (1985) and is 
introduced in §4.3.4.

3.5.4 The RPA
(/) Reconfigurable processor arrays
The RPA is an architecture designed for structure processing, defined in
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§4.3; it is a processor array which uses many simple processors, but which 
can adapt its physical structure in a limited way to accommodate a variety 
of data structures. The RPA is designed to support structure processing over 
the widest range of data structures, consistent with the adaptable grid network 
used; however, this is not as restrictive as would be expected, as will be seen 
later, for it includes structures such as binary trees. The RPA was developed 
at Southampton University with funding from the U K ’s Alvey program 
(Jesshope 1985, Jesshope 1986a, b, c, Jesshope et al 1986, Rushton and 
Jesshope 1986, Jesshope and Stewart 1986, Jesshope 1987a, b). It is similar 
to the DAP and connection machine in that it is an array of single-bit 
synchronous processing elements with a common microcontroller. It is not 
a true simd  machine, however, as local modification of an instruction is 
allowed by distributing some of the control word fields across the array. This 
allows the array to adapt to different situations. Figure 3.57 illustrates this 
concept for rectangular arrays.

It is well known that a synchronous structure such as a large s im d  machine is 
limited in the size to which it can be extended, as clock and control information 
must be distributed to synchronise the system. Any skew in distributing these 
signals will reduce the clock frequency. There is therefore an optimal size of 
RPA which will depend on the characteristics of the implementation and

FIGURE 3.57 A diagram showing the RPA’s ability to adapt to 
different rectangular structures.
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packaging technologies. The current architecture will support arrays of upto 
256 by 256, with 16 processors per v l s i chip. The size of an RPA system, 
however, is not limited by the size of the optimal synchronous system block, 
for RPA systems can be further expanded using process parallelism (see §4.4).

The RPA exists within a transputer’s memory system as active memory, 
and processes executed on the RPA can be considered as extending the 
transputer’s instruction set in an OCCAM programming model. Another 
way of expressing this is that the process parallelism of the transputer and 
OCCAM is used to bind together many synchronous systems capable of 
efficiently executing structure parallelism. Therefore, the RPA can either be 
viewed as an array processor with a transputer host, or as an intelligent 
memory system to the transputer, which can be replicated like any other 
transputer system. This replication could exploit the explicit parallelism of 
OCCAM to describe program structure by mapping communications onto 
the INMOS links. The technique of algorithmic parallelism (see §4.5.2) could 
thus be exploited within a multiple RPA system.

The major conceptual problem in any replicated design is one of mapping 
the problem’s description of virtual processors onto a fixed processor structure. 
In this respect, an important aspect of the RPA design is that it allows the 
structure of the array to adapt to the problem being implemented. This 
greatly simplifies the compiler’s task of data mapping to obtain conformity 
between the user’s view of the world and the machine’s view. It does this at 
the same time as maintaining a high utilisation of the hardware.

Ideally, in a processor array for structure processing, there should be a 
single processing element for each individual element of the data structure 
being processed. Unfortunately, there is no way of knowing a priori how 
large or small a data structure will be required. Indeed, the structure may 
vary dynamically. Structures larger than the array are well understood, for 
each processing element can process sequentially as many elements of the 
data structure as are required. Problems arise, however, in maintaining the 
topology of the data structure, especially if the structure is complex. The 
corollary of this problem is the ability to assign more than one pe  to a 
data-structure element, and this is less well understood. In fact, this represents 
the major departure between the RPA and other bit-serial processor arrays.

To achieve this flexibility, the simd  execution model is extended by allowing 
processors to modify the broadcast instruction. In this way the processors 
may act in a different, but locally preprogrammed, manner. This extended 
local control provides both flexibility and efficiency in the most common 
data processing operations and communications. It can also be shown that 
as well as allowing the rectangular array structure to be varied in size and 
shape, it also allows efficient implementations of data manipulation operations,
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including those on irregular data structures. For example, other topologies, 
such as trees and graphs, may be efficiently implemented, although not with 
the dynamic flexibility of using a packet-based communications system. 
However, the mechanisms can also be exploited to provide reasonably efficient 
software implementations of packet routing over the RPA, as will be shown 
later.

The RPA approach to virtual structure parallelism allows a single code 
to be executed on different physical realisations of replicated systems, without 
any recoding; moreover, this is true at the low level, as microcode routines 
can adapt to different configurations of array size and structure by 
parametrisation.
(ii) The RPA implementation
The RPA array is constructed from a very flexible processing element in a 
two-dimensional, four-connected lattice, with wrap-around at both edges. A 
single RPA system is illustrated in figure 3.58. The array of RPA p e s  has

FIGURE 3.58 The RPA computer system, showing the array, the 
controller and host, with the interaction between the three components.
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been designed to act as a pool of virtual processors, connected according to 
the structure being processed. To achieve this, each p e  must be considered 
as a bit slice of a larger processing unit, which will support a wide range of 
common microprocessor operations. The composite processing unit supports 
binary operations, a wide range of shift operations and bit-parallel arithmetic 
operations. These processing units can be configured, dynamically if required, 
from any connected path of RPA p e s  . The most useful configurations are 
closed subgraphs of the RPA array, as these support cyclic and double-length 
shift operations in a single microcycle and also greatly simplify serial 
arithmetic when applied to words of data stored in processing units. For 
example, performing 16-bit arithmetic serially using four-bit processing units, 
the carry bit from one four-bit addition at the most significant bit will be 
adjacent to the least significant bit, where it will be required on the following 
cycle. If multi-bit processors are configured as closed loops of p e s ,  then the 
configurations will support the following operations:

(1) all bitwise logical operations on two operands (two independently 
programmed operations can be performed in a single cycle);

(2) single-length cyclic and planar (arithmetic) shifts;
(3) double-length cyclic and planar (arithmetic) shifts;
(4) broadcast of one bit to all other bits within a processor;
(5) ripple-carry arithmetic with fast Manchester carry chain, performed in 

multiple ‘byte’ operations, with automatic handling of carry between 
sub-operations;

(6) multiplication with full double-length result, using multiple ripple-carry 
adds (5), double-length shifts (3) and broadcast of bit data within ‘bytes’ (4).

The p e  or bit slice has a four-bus structure, as shown in figure 3.59, with

FIGURE 3.59 The RPA processing element (bit-slice).
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two operand and two result buses. The al u  provides logical and bit-serial 
operations, using local operands only and the neighbour-select provides a 
means of transferring data from one pe  to another. Bit-parallel arithmetic is 
made possible by the use of both a lu  and neighbour-select, which together 
form a fast Manchester carry-chain adder. The key to the flexibility of the 
array lies in the use of three preset control fields, which are provided in each 
pe  in the array, R in figure 3.59. These control fields determine switch settings 
and edge effects in arithmetic and shift operations.

Two of these fields, each of two bits, specify the control of the nearest- 
neighbour switch (left and right shifts) the reconfiguration register also 
contains a further two-bit field, which codes the significance of the pe  in the 
larger processing unit. The codes used are for most significant bit, least 
significant bit and any other bit. The remaining code is used for a very 
powerful feature which allows the inputs from the switch to be connected 
directly to the outputs. This allows the distributed control of communications 
such as the row and column highways found in the ICL DAP and 
GEC GRID. However, it does this in a much more flexible manner, as the 
combination of direction and significance codes can be used to bus together 
any connected string of pe s . These bus connections may either be used to 
distribute data to all pes  s o  connected, or indeed be used to bypass pe s  in 
order to implement connection structures that would not otherwise be 
possible, containing long-range connections.

The storage provided in each pe  is stack-based. There is a bit stack and 
an activity stack, for storing single bits of data in a pe . Each comprises eight 
bits of data and both are identical, with the exception that the top bit of the 
activity stack can be used to conditionally disable the operation of the pe . 
Storage is also provided for words of data in the pe . These are arranged as 
a stack of eight-bit words with parallel-to-serial and serial-to-parallel 
conversion provided by a pair of shift registers. This structure allows bit-serial 
(or word-serial) arithmetic to be performed, without the awkward bit reversal 
encountered using stacks. Finally, a single-bit I/O  port allows up to 64K 
bits of external storage to be connected to each pe .

The internal r a m has dual control mechanisms which allow stack or 
random access to the bytes of a word with local or global control of either. 
For example, the stack can be conditionally pushed or popped, depending 
on the value of the activity stack. The store structure also contains a full 
n-place shift, which is locally controlled, and comparitor circuits between the 
two shift registers providing serial-parallel conversion. These facilities 
provide much enhanced floating-point capability within the array. For a 
given cycle time and array size, the floating-point performance of the RPA 
can be a factor of ten above that of the ICL DAP architecture. The price
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paid for this is a more complex processing element. At the time of writing, 
a test chip containing a single pe  has been fabricated. It uses a 3 /¿m n-well 
c m o s  process and occupies a little under 4 mm2. We anticipate going into 
production with a 16-pe , which will occupy about 0.8 cm2. Figure 3.60 
shows the RPA test chip.

(iii) The RPA control system
Processor arrays, such as the DAP and connection machine, generally use 
a single controller to control all processors in the array. This gives a very 
cost effective machine by sharing a complex control mechanism between 
many processors. The RPA, however, departs from this control structure in 
two ways.

At one level the RPA can be considered as a m i m d  system, with each 
‘processor’ containing an array of processors under s i m d  control. This 
structure ( m i m s i m d ) has also been proposed by a number of other designers 
(Lea 1986) and allows the exploitation of all forms of parallelism within 
applications. The synchronous component can exploit the parallelism found 
in structure, such as arrays, strings, lists and trees, and the event-synchronised

FIGURE 3.60 A microphotograph of the RPA test chip showing 
one p e  and additional test structures. This chip was fabricated at 
Southampton University.
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mim d  layer can exploit the irregular or independent parallelism also found 
in many algorithms.

Although a single RPA/transputer system can be considered as a 
conventional s im d  array, each pe  may, under locally determined conditions, 
store or generate some or all of its control word for use in subsequent 
operations. This adaptive modification of s im d  control allows each processor 
some autonomy of action. Most si m d  computers provide minimal control at the 
processor level, being usually restricted to a data-dependent on/off switch. This 
structure maintains the advantage of fine grain synchronisation while allowing 
a limited adaptability to differing processing requirements in the array.

Figure 3.58 shows the control structure of a single RPA. Two major control 
loops can be identified. The first is between the array and its microsequencer. 
This is conventional; the controller supplies microcontrol words and addresses 
to the array (a wide word data path) and receives condition signals from the 
array and possibly from the other devices in the system. The second control 
loop involves data from the array memory, which can be accessed by 
processes executing on the host system. This loop allows a coarser grain 
synchronisation that may involve events from other transputer/RPA systems. 
The use of this loop involves the initiation by the host of some action in the 
array, which will set data in the array memory; this data will subsequently 
be retrieved by the host and used to determine subsequent actions.

One of the major design gcrds of the RPA system has been to map this 
second control loop into an OCCAM programming model in such a way 
that the programmer can trade real and virtual concurrency in an application. 
This will allow for applications code to be ported between different 
transputer/RPA configurations.

The implementation alternatives in mapping the RPA control structure 
into OCCAM are determined by the granularity of processes running on the 
array. Should array processes be complete programs, running concurrently 
and perhaps communicating with the host? Or should they be considered 
as indivisible extensions to the host instruction set? It is the communications 
required between host and array which provide the discrimination between 
these two alternatives. If we define a basic array process as being an indivisible 
unit of computation, so far as communication between host and array is 
concerned, such that the order may be modelled by the following OCCAM 
fragment

—HOST PERCEPTION OF ARRAY ORDER 
ARRAY! SOMETHING 
ARRAY. PROCESS 
ARRAY? SOMETHING. ELSE
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then any decision concerning the partitioning of control between host and 
array controller is in effect a decision about whether constructions of basic 
array processes may be determined by the array controller, or whether they 
must be determined by the transputer host.

If sequences of these basic array processes are to be determined by the 
array controller, allowing complete programs (processes) to run on the array, 
then for concurrent operation of the host and array, there must be 
communication between host and array to provide the necessary synchronisation 
events. This concurrent operation between host and array is illustrated in 
OCCAM in the example below.

PAR
SEQ -  -  HOST PROCESS 

ARRAY ! SOMETHING 
HOST. PROCESS. 1 
ARRAY ? SOMETHING.ELSE 
HOST. PROCESS.2 

SEQ -  -  ARRAY PROCESS 
ARRAY? SOMETHING 
ARRAY.PROCESS. 1 
ARRAY! SOMETHING.ELSE 
ARRAY.PROCESS.2

In this example the host initiates action in the array and proceeds. At some 
later stage the two processes synchronise by a communication initiated from 
the array and both then proceed, perhaps modifying their actions based on 
that communication. In this control model synchronising communications 
may be initiated by host or array.

If we wish to overlap processing and communication, so that efficiency is 
not lost in achieving synchronisation, then this model must be modified to 
allow both host and array to run their respective processes in parallel. This 
is illustrated in the example below, where the synchronising communications 
have been hidden within host and array processes.

PAR
PAR -  -  HOST PROCESS 

HOST. PROCESS. 1 
HOST. PROCESS.2 

PAR -  -  ARRAY PROCESS 
ARRAY.PROCESS. 1 
ARRAY.PROCESS.2

To implement this model requires an array sequencer that can support
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multiple, concurrent processes. It would need to be interruptable, so that an 
array process requiring communication with the host could be suspended, 
while communications were proceeding, and resumed on completion of the 
communication. However, the overheads in this process switching are large, 
and the microcontroller required is complex. Thus in the RPA we have opted 
for the alternative of indivisible array orders.

This approach excludes synchronisation between processes running on the 
host and array, except on initiation and termination of the array process. It 
has a number of advantages. Because there is no need for synchronisation 
within an array process, there is now no need for array orders to be suspended. 
Entry microroutines can run to completion using a simpler microsequencer. 
Some mechanism for supporting concurrent process execution on the array 
is desirable, however, as there may be communication before and after each 
microroutine, and it is still desirable to overlap this with processing. Such 
parallelism may, however, be implemented using a single process queue, 
containing active processes; an interruptable sequencer would require at least

FIGURE 3.61 The structure of the RPA control unit.
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two process queues, for active and suspended processes, with support for 
suspending and activating processes to achieve synchronisation.

Figure 3.61 gives a more detailed view of the transputer control system, 
which contains a single multiport process queue, through which the transputer 
and microcontroller communicate. Within this implementation, array 
microcode routines provide processes which can be considered as indivisible 
extensions to the host’s instruction set, and which map into the OCCAM 
language. PAR and SEQ constructors, and array and host processes, may 
now be freely mixed, with communication (hidden in the example below) 
providing synchronising events and control flow where required:

-  -  HOST/ARRAY PROCESS 
SEQ

PAR
HOST. PROCESS. 1 
SEQ

ARRAY. PROCESS. 1 
ARRAY? SOMETHING 
PAR

HOST. PROCESS.2 
IF

SOMETHING = GOOD 
ARRAY. PROCESS.2 

TRUE
ARRAY.PROCESS.3

Using this system, a sequence of array processes which require no 
synchronising communications may be buffered in the array controller with 
control passing from one to the next without recourse to host interaction. 
They are added to the process queue in the array controller and then executed 
from this queue in sequence. Likewise, parallel array processes may also be 
queued for execution on the array.

A considerable volume of low-level software has been implemented in the 
design of the RPA computer system, using the RPA simulator-based 
microcode development system (Jesshope and Stewart 1986). This provides 
a simulator of a 32 x 32 array and controller, implemented on the binary 
image of the microcode. It uses the graphics hardware of an ICL Perq 
workstation to implement this. The system provides programming by menu 
and is illustrated in figure 3.62. It can provide interactive data and
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FIGURE 3.62 The RPA microcode development system, showing menu-driven 
graphical input of microcode.

configuration editing, microcode editing and full array and controller 
simulation with graphical display of all internal states and buses, if required 
for debugging.

The RPA as a transputer-based workstation with a 32 x 32 array will 
provide between 20 and 100 Mflop/s on 32-bit floating-point numbers, 
assuming a clock rate of 10 MHz. Because of the serial nature of arithmetic 
implemented on the array, maximum performance will be dependent on the 
precision of the data. For example, 32-bit integer addition of 32 x 32 arrays
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will be performed at a rate of approximately 200 Mop/s, whereas 8-bit 
integer addition will be performed at almost four times this rate, which is 
almost a thousand million operations per second (1 Gop/s). Indeed, boolean 
operations can be performed at a rate of 20 Gop/s and it is possible to 
associate on character data at the rate of about 1 Gop/s.

Table 3.11 gives examples of performance estimates provided by running 
real code on the simulator. The only assumption contained within these 
figures is a clock period of 100 ns, which is justified by electrical simulation 
of the test chip.

(it;) Data structure mapping
The RPA array can be viewed as a very flexible array of processing units 
where, as the array size increases, the number of bits in the processing unit 
decreases. Figure 3.57 illustrates this concept. It should be noted that 
rectangular, as well as square, arrays may be directly configured. It is also 
possible to map multidimensional arrays over the RPA structure, and 
providing the array bounds are powers of two, any remappings to activated 
data may be efficiently coded. Figure 3.63 illustrates the shifts required to 
provide communication within 8-bit processing units. Use is made of the 
reconfiguration bits to provide boundaries for single shift operations and 
long-range shifts. The direction registers provide the ability to perform

TABLE 3.11 Performance estimates for the RPA computer system over 
1024 operations. (All figures in millions of operations per second.) All 
floating-point operations are full IEEE specification, with denormalisation 
and rounding. IBM format floating-point is very much faster.

Operation Performance

8-bit integer addition 930
16-bit integer addition 465
32-bit integer addition 233

8-bit integer multiplication 128
32-bit integer multiplication 16
32-bit integer multiplication 5
32-bit floating-point addition 18
32-bit floating-point multiplication 6
32-bit floating-point division 6
32-bit maximum 790
string matching 500-1000
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FIGURE 3.63 Illustration of the use of local control fields in the mapping of regular 
data structures over the RPA; the key gives the significance of the control fields.
(a) Two eight-bit microprocessors, configured from closed cycles of RPA p e s  (note 
that m s  and l s  bits are adjacent, enabling efficient shift operations and carry handling).
(b) The same two microprocessors, with connections configured to create a local bus 
structure, to support broadcast operations from the least significant bit.

Key: A s in g le  RPA p rocessing  e lem en t.
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FIGURE 3.63 cont. (c) A regular mapping of a binary tree structure.

non-laminar shifts. More complex structure mappings and rotations can 
exploit the theory of musical bits (Flanders 1982).

For nearest neighbour shifts between processing units, it can be shown 
that although local communication bandwidth is degraded by approximately 
the square root of the number of processing elements in the processing 
unit, the global communication bandwidth remains constant for any 
configuration. Indeed, the communication bandwidth in less regular data 
structures or in complex data movements can be much improved over the 
software implementations that would be required in a non-adaptive array. 
In a software implementation, a great deal of repetition may be required to 
obtain multiple-shift directions, by alternately masking and shifting. However, 
in the RPA this can be achieved by configuring the switch network to realise 
the various shift directions concurrently. Moreover, all stack stores may be 
conditionally pushed or popped, allowing for irregular data storage, with 
stacks in different processing units out of step.
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Figure 3.63 illustrates the codes required in the local control fields to 
implement some regular configurations, which together give some idea of the 
power and flexibility of this adaptive array structure. The three configuration 
fields are shown in each processing element in figures 3.63(a) to 3.63(c). These 
are coded as shown in the key and correspond directly to the configuration 
store state in each RPA pe .

Figure 3.63(a) shows the configuration for two 8-bit processors. Notice 
that these are closed loops and thus support the full range o f‘byte’-oriented 
operations.

To perform multiplication, it is possible to configure the processors of 
figure 3.63(a) to broadcast data from one bit to all other bits in a given 
processor and to do this in each processor simultaneously. This configuration 
(figure 3.63(h)) gives the facility of a parallel bus structure, in which multiple 
broadcasts can be performed concurrently.

Figure 3.63(c) shows how the array can be used to map a binary tree of 
single-bit processors onto the RPA. This is achieved with a 50% utilisation 
of the pe s . Some 25% of the pes  are not used at all and another 25% are 
used in bus configuration and only pass inputs to outputs, providing 
long-range communication where required.

Less regular structures can be mapped onto the array by implementing a 
packet-based communications structure over the adaptable nearest-neighbour 
communications network, using a layer of microcode. Such an implementation 
has been coded on the RPA and the results of one cycle of the algorithm are 
illustrated in figure 3.64. We have implemented 32-bit packets, with two 
absolute address fields for x and y pe s . Using this scheme only one data 
packet may be buffered in on-chip RAM, but simultaneous transmission and 
reception of packets is possible in the absence of data collision. However, 
with the global reduction facility implemented over the RPA array, it is 
possible to detect a potential collision deterministically in very few microcycles 
and buffer packets out to external r a m .

The total circuit-switched bandwidth of the RPA is two bits in and two 
bits out of every pe  in every microcycle, a total of 4 x 1010 bit/s, 
approximately equivalent to the CM-1 machine (see §3.5.3), although this 
machine is 64 times larger. In packet-switched mode, it requires between 100 
and 200 microcycles to forward 32 bits of data one pe  nearer their destination, 
giving a total of between 3 and 6 x 109 bit/s over the entire array. Thus, 
the flexibility of addressed data communication degrades the communications 
bandwidth by an order of magnitude; however, the static bandwidth is high 
and this is very much more efficient compared to an implementation on a 
non-adaptive array. This system allows irregular and dynamic data structures 
to be implemented.
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FIGURE 3.64 An illustration of the implementation of a packet-
switching protocol over the RPA network.

3.5.5 Transputers and related systems
The transputer (INMOS 1985) is shown in figure 3.65; it is a single-chip 
microprocessor from the British company INMOS Ltd. It is distinguished 
from other vendors’ microprocessors in that it is designed as a building block 
for parallel processors. To facilitate this it has memory and links to connect 
one transputer to another, all on a single v l s i chip. It can be viewed therefore 
as a family of programmable v l s i components that support concurrency.

In the transputer INMOS have taken as many components of a traditional 
von Neumann computer as possible and implemented them on a single 1 cm2 
chip, while at the same time providing a high level of support for a concurrent 
or process-based view of computation. To some extent this is an optimisation 
of the underlying cm o s  technology (see §6.1), for communication between 
v l s i devices has a very much lower bandwidth than communication between 
subsystems on-chip. Pins on a v l s i chip are expensive and relatively slow. 
The support for concurrency includes hardware support for a process queue, 
with special registers and microcode instructions supporting the creation of 
parallel tasks; a minimal context for each active process, so that process
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FIGURE 3.65 A microphotograph of the T800 transputer chip. This 
chip contains 4 Kbytes of r a m  (the large area to the bottom left); 
controllers for four INMOS links and the event input (in the relatively 
random area in the bottom right); a 32-bit data path and r o m  (in the 
middle right); and the 64-bit floating-point unit data path flanked by 
r o m  (at the top). Each of these blocks occupies approximately 20% of 
the chip area; the remaining 20% is required for the memory interface 
and controllers around the periphery of the chip. (Photograph courtesy 
of INMOS Ltd.)

switching is very rapid; hardware timers; and an external interrupt or event 
signal.

The processing part of the transputer is a R ise or reduced instruction set 
computer, which provides a very rapid rate of execution (20 MHz) of a small 
range of instructions and addressing modes. This processor occupies about 
25% of the chip area. A further 25-30% is occupied by 2 Kbytes (T414) of 
on-chip static memory, and the transputer-to-transputer communications 
links occupy another 25 %. The remainder is occupied by the interface circuits 
and bus logic for the external memory system.
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Currently, transputers products available include a 32-bit processor with 
a multiplexed 32-bit address/data bus (T414), a 16-bit processor with 16-bit 
address and data buses (T212), and a disc controller chip, with 16-bit address 
and data buses and a specialised interface for industry standard discs. At the 
time of writing, INMOS were testing engineering samples of the T800 
floating-point version of the transputer which has, on the same chip, a 
floating-point hardware unit, as well as all of the other T414 components. 
Indeed, the use of a more dense ra m  technology has allowed 4 Kbytes of 
on-chip memory to be used in the T800 design.

In all products, a range of speeds is available, currently up to 20 MHz 
internal operation, although INMOS literature for the T800 talks to a 
30 MHz part. One unique feature of the transputer, however, is that the 
external clock rates are maintained at 5 MHz for all parts. This greatly 
simplifies engineering, as only a relatively low-frequency clock signal need 
be routed around a system or board. Transputer systems communicate 
asynchronously and can therefore be combined with each processor using 
its own clock, provided the crystals are true to ± 200 p p m .

In transputer parts, all components execute concurrently; each of the four 
links and the floating-point coprocessor on the T800 can all perform useful 
work while the processor is executing other instructions. Each link has a dma  
channel into the memory system which will reduce, but not significantly so, 
the memory bandwidth to the processor.
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FIGURE 3.66 A sequence of transputer board level components, 
containing (a) 1, (b) 16 and (c) 42 transputers respectively. (Photographs 
courtesy of INMOS Ltd.)
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Figure 3.66 illustrates the power of the T800 transputer chip, by considering 
some transputer board sub-assemblies. Figure 3.66(a) shows a 2 Mbyte single 
transputer board, a 1-2 Mflop/s component; figure 3.66(b) illustrates a 16 
transputer board, a 16-32 Mflop/s component; and figure 3.66(c) illustrates 
a 42 transputer board, a 42-84 Mflop/s component! All boards are double- 
extended eurocard format. Of course one is trading processing power for 
memory in this sequence, but it can be seen that there is a great incentive to 
provide computing models which utilise a relatively small amount of ram , 
for example pipelines. With the rate at which gate density is increasing in 
mo s  technologies, it would not be surprising to see the demise of the r a m 
chip, in favour of a processor-memory device, of which the transputer is the 
harbinger. The achievement of 4 Mflop/s and 64 Kbytes on a single silicon 
die in 1990 would not be a surprising feat.

(i) The processor architecture
Transputer systems execute the OCCAM programming language (see §4.4.2), 
in which concurrency may be described between transputers in the system, 
or indeed within a single transputer. The transputer must therefore support 
internal concurrency. A process on the transputer is described by six registers 
(see figure 3.67). The six registers are:

(a) a three-element operand stack (A, B and C in figure 3.67);
(b) a workspace pointer which points to an area of memory holding the 

processes’ local variables;
(c) an instruction pointer which points to the next instruction to be executed 

by the process; and
(d) an operand register, used for forming literal values or operands.

The stack is used in a conventional manner, with operations referencing 
the top locations implicitly. Instructions are all of a fixed and compact format, 
which embody the principles of R ise  design, but at the same time allow for 
the extension of the instruction set within the same instruction format. This 
design also allows independence of processor word length. The format is given 
in figure 3.68 and contains a four-bit opcode and a four-bit data value, which 
can be used as an operand or address.

The instructions encoded into the four-bit opcode include:

load constant; 
add constant; 
load local; 
store local; 
load local pointer; 
load non-local;
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FIGURE 3.67 The INMOS transputer, (a) A block diagram of the chip 
architecture, (b) The transputer registers.

FIGURE 3.68 The transputer instruction format and operand register.

store non-local; 
jump;
conditional jump; and 
call.

These single instructions can use the four-bit constant contained in the 
data field, giving a literal value between 0 and 15, or an address relative to 
the workspace pointer for local references, i.e. an offset of 0 to 15. The 
non-local references give offsets relative to the top of stack, or A, register. 
For larger literals, two additional instructions provide the ability to build 
data values from sequences of these byte instructions. All instructions
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commence their execution by loading their four-bit data value into the 
operand register, and the direct functions above terminate by clearing this 
register. There are, however, additional instructions which load this register 
and whose action is to shift this result left by four places, therefore increasing 
its significance by a factor of 16. These instructions do not clear the operand 
register after execution. Two instructions— prefix and negative prefix—allow 
positive and two’s complement negative values to be constructed in the 
operand register, up to the word length of the processor.

This data can be used as an operand to the above direct instructions. 
Statistics of the analysis of compiler-generated code indicate that the above 
direct instructions are the most commonly used operations and addressing 
modes. Moreover, these results also show that the most commonly used 
literal values are small integer constants. This simple instruction set therefore 
allows the most commonly used instructions to be executed very rapidly. 
However, the story does not end there, for even the most ardent Rise advocates 
would require more than this handful of instructions; 64-128 is typical for 
other Rise processors.

The operate instruction allows the operand register to be interpreted as 
an opcode, giving, in a single byte instruction, an additional 16 instructions, 
which operate on the stack. What is more the prefix instruction can be used 
to extend the range of functions available. Currently, all instructions can be 
encoded with a single operand register prefix. The most frequently used 
indirect operations are encoded into the nibble contained in the first byte. 
As an example, to multiply the top of stack, with a value of 16 bits significance, 
it would require the following code sequence:

prefix—most significant 4 bits
prefix—next least significant 4 bits
prefix—last prefix bits
load constant—contains the last 4 bits
prefix—indirect function
operate—decodes operand register as multiply.

This sequence takes four cycles to load the operand and 40 to execute the 
multiply, not such a large overhead for the simplicity. Indeed, if account were 
taken of speed improvement in processor cycle time because of the simple 
decoding, then the benefits of the R ise approach the transputer has taken are 
well justified. The sequence is also compactly encoded, requiring only 
six bytes of data (two bus cycles to load the instructions).

(ii) Support for concurrency
The transputer has a high degree of support for concurrency. It has a
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microcoded scheduler, which allows any number of processes to compete for 
the processor’s time, subject to memory limitations only. Processes are held 
on two process queues. One is the active queue, which holds the process being 
executed and any other active processes waiting to be executed. The inactive 
queue holds those processes waiting on an input, output or timer interrupt. 
The scheduler does not need to poll any of these devices so consumes no 
processor cycles on inactive processes. Figure 3.69 illustrates the linkages 
involved in a process queue, in this case the active queue. Two registers hold 
the head and tail of the list, and the executing process has its workspace 
pointer and program counter loaded into the processor’s registers. All other 
processes hold these values in the workspace.

Process swap times are very small, of the order of microseconds, depending 
on the instruction being executed. This is because little state has to be saved. 
The evaluation stack does not need to be saved, and when the current process 
can no longer proceed, its program counter and workspace pointer are saved 
in its workspace and the next process is taken from the active list.

Two further micro-instructions provide a means of adding and deleting 
processes from the active process queue. These are start process and 
end process. A start process instruction is required for each component of 
the PAR constructor in OCCAM (see §4.4.2), and the correct termination 
of this process is ensured by the use of the end process instruction, which 
decrements a workspace counter when executed. Only when each component 
of the PAR construct has terminated will the counter be decremented to zero, 
signifying correct termination and allowing the process in which the construct 
was embedded to proceed.

FIGURE 3.69 The transputer process queue linkage.
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(iii) The INMOS link
Communication between processes on the transputer or between processes 
on different transputers is performed by two instructions input message and 
output message. The communication which is supported is a point-to-point, 
unbuffered message-passing scheme. It therefore requires a handshake 
between processes, which synchronises them. The same two instructions are 
used for message passing between processes on the same transputer, as well 
as between processes running on different transputers. The instructions use 
the address of the channel to determine which form of communication is 
required.

Internal channels are represented by a single word in the memory which 
provides the handshake protocol between communicating processes. The 
channel holds either a special value ‘empty’ or the identity of a process. A 
channel is initialised to empty, and when either a reading or writing process 
becomes ready, the identity of that process is stored in the channel location; 
this process would then be descheduled. When the second process becomes 
ready, it will find the process identification of the first process in the channel 
location and the message is copied and the waiting process is added to the 
active process list. The message is defined by a count, a channel location, 
and a pointer to the message. Figure 3.70 shows the above sequence 
diagrammatically.

External channels proceed in a similar manner, but the link interface 
performs the job of copying the message across the link circuit. Each link 
implements two OCCAM channels in opposite directions over a three-wire 
t t l  level circuit. Communications over these links are controlled by 
autonomous controllers, which have dm  a  access to the transputer’s memory. 
Four bi-directional communications and processing can therefore proceed 
concurrently on the same transputer chip. Each link controller has three 
registers, holding a pointer to a process workspace, a pointer to a message 
and a byte count for the message, with which it controls the transfer of the 
message. The only difference in operation is that on external communication, 
both processes would need to be descheduled while the autonomous transfer 
took place.

The operation and performance of the INMOS link is fundamental to the 
effective exploitation of the transputer. All transputer products will support 
communications over this asynchronous point-to-point connection, with 
speeds of 5, 10 and 20 Mbit/s. Although the transfer is autonomous, unless 
the messages passed over the links are reasonably large, a true overlap will 
not be possible, as each transfer will use a small but finite amount of processor 
resource to deschedule the processes and initiate set-up of the link controller’s 
registers. If the link bandwidth is measured as a function of message length,
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the classic pipeline model is seen, with a start-up without transmission, 
followed by a constant throughput. The granularity of a message therefore 
modifies the bandwidth seen. It must also be remembered that the start-up 
period also degrades processor performance, to such an extent that many 
concurrent small transfers may saturate the processor.

FIGURE 3.70 The operation of internal and external channel communication. 
(a) The first process P finds the channel location empty, (b) The process is 
descheduled and its location stored in the channel, (c) The second process Q 
finds the location of P in the channel, the communication proceeds and process 
P is rescheduled.
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FIGURE 3.70 cont. (d) The initial state of two yet-to-communicate channels. 
(e) The state during communication; note that both process P and Q are descheduled.

Figure 3.71 shows the time required to transmit a message of a given size 
on a transputer with 10 MHz links and 12.5 MHz processor clock, as found 
in the first T414 transputer products. The maximum or asymptotic transfer 
rate is approximately 0.5 Mbyte/s, which can be achieved in both directions 
over the link. A half-performance message length of approaching one byte 
is also observed. Various processor and link rates will modify these observed 
parameters, with the start-up time being proportional to the processor clock 
and the asymptotic bandwidth being, to a first order, proportional to the
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FIGURE 3.71 A graph of time required for communication over an INMOS 
link against message length for a T414 rev A transputer.

link rate. Thus, on current best T414 silicon (20 MHz processor and 20 MHz 
links), an asymptotic bandwidth of 1 Mbyte/s should be seen, with a half 
bandwidth message length of 1 byte.

The link protocol uses an 11-bit data packet, containing a start bit, a bit 
to distinguish data and acknowledge packets, eight data bits and a stop bit. 
The acknowledge packet is two bits long and contains a start and stop bit. 
The protocol allows for a data byte to be acknowledged by the receiving 
transputer, on receipt of the second (distinguishing) bit. This would allow 
for continuous transmission of data packets from the transmitting transputer, 
providing that the signal delay was small compared with the packet 
transmission time.

This pre-acknowledgement of data packets is not implemented on current 
T414 transputers, and an acknowledge packet will not be sent until the 
complete data packet has been received. However, this protocol has been 
implemented on the T800, giving a maximum theoretical transfer rate of 
approaching 2 Mbyte/s, per link, per direction. This bandwidth could cause 
degradation on bi-directional traffic, as data and acknowledge packets must 
be interleaved.

(iv) Performance
The performance of the transputer is dependent on a number of factors, for
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example, the clock speed of the part, which may vary from 12.5 MHz to 
20 MHz. Also, if data is coming from off-chip ra m , the access times will 
depend on the speed of the memory parts used and, for most operations, this 
is a major factor in the speed of operation. At best, the external memory 
interface will cycle at three transputer clock cycles (150 ns for the 20 MHz 
processor). Internal memory, on the other hand, will cycle within a single 
processor cycle. It is clear from this that on-chip data will provide significant 
speed gains. The transputer reference manual gives a breakdown of cycles 
required for the execution of various OCCAM constructs. We have, however, 
performed a number of benchmarks on a single transputer board, containing 
a T414 rev A transputer with a 12.5 MHz internal clock. The results of these 
timings are given in table 3.12 below.

When using OCCAM the programmer is encouraged to express parallelism, 
even if the code fragment is configured onto a single transputer. This style 
of programming should be encouraged, but only providing that parallel 
processes can be created without excessive overhead. INMOS claim that in 
the transputer this overhead is no larger than a conventional function call 
in a sequential language. In order to test this we have executed the following 
code on a single (12.5 MHz) transputer.

TABLE 3.12 A range of performance figures for the INMOS transputer 
T414 rev A (12.5 MHz). Figures given are in millions of operations per 
second for operands from internal and external memory respectively.

Performance

Internal External
Operation memory memory

Integer addition 1.78 0.23
Integer multiplication 0.33 0.14
Integer division 0.27 0.13
Floating-point addition 0.03 0.017
Floating-point multiplication 0.03 0.018
Floating-point division 0.03 0.016



REPLICATION— A FUTURE WITH v l s i 363

This code was executed for various values of m and n, where the product 
m*n=  1024. This was executed in internal and external memory, and the 
results are summarised in figure 3.72. Using off-chip memory, it can be clearly 
seen that the overheads of process creation do not become significant until 
128 parallel processes are used to perform 1024 integer multiplications; and

FIGURE 3.72 A graph showing the effect of parallelism on the 
performance of a single T414 rev A transputer. In this experiment 1024 
integer multiplication operations were performed using a number of 
parallel tasks, (a) Data and program in external memory. (b) Data and 
program in internal memory.



in the case of on-chip memory, when 256 parallel processes are used to 
perform the 1024 operations. These correspond to eight and four operations 
for each process respectively.

The overheads of creating parallel processes are therefore small. These 
figures also show the advantages of programming transputers so that code 
and data both use on-chip memory. If the transputer is used in this mode of 
operation, it is likely that code for the algorithm will be distributed across 
a number of transputers. This is called algorithmic parallelism, and the 
technique is illustrated in §4.5.2. In this situation, data will probably be 
sourced from communications links. We therefore executed code on connected 
transputers to simulate the effect of various packet sizes on operation times. 
The OCCAM code executed on the transputer was a sequence of integer 
multiplications executed from internal memory, with both sets of operands 
sourced from two externally configured OCCAM channels and the results 
sent to an externally configured OCCAM channel. All I/O  was buffered so 
that communications and operations could all proceed in parallel. The results 
are summarised in figure 3.73, where curves are plotted for a given packet 
length, showing time required against total number of operations performed; 
the curves are compared with the ideal, which gives time for internally sourced 
data.

FIGURE 3.73 A graph showing the effect of communications on transputer 
operations. The operands and results were all sourced from INMOS 
links. Each line shows the result for a given packet size. The ideal (no 
communications) is also shown for comparison.

364 MULTIPROCESSORS AND PROCESSOR ARRAYS
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In advance literature for the floating-point transputer, INMOS made 
claims that the 20 MHz part would execute at a sustained rate in excess of
1.5 Mflop/s. This would make it a very powerful chip. These claims have been 
verified on engineering samples tested at Southampton University. If the 
application allows, the transputer could be used with very little support 
circuitry and one could, for example, imagine of the order of 32 transputer 
chips on a single IBM format circuit board, using no external memory. This 
board would add an astonishing 50 Mflop/s to a personal computer system. 
Table 3.13 gives operation times for IEEE floating-point on the T800, as 
taken from INMOS’ advanced literature.

(v) Building systems with transputers
Transputers can be used in a variety of applications and in a variety of ways, 
and there are now many transputer-based systems on the market, including 
racks of transputer development cards from INMOS. However, it does not 
matter whether code or data may be partitioned over the transputer network 
(see §4.5); it is the communications issues which determine the mapping of 
code and the configuration of links.

Communications play an important role in all well designed systems. The 
communications bottleneck in a conventional processor is typically the 
processor-to-memory interface, which is usually the off-chip interface. 
Communications, not surprisingly, can also limit the performance of parallel 
machines, although here the limit arises in processor-to-processor communi-
cations. Moreover, this problem is fundamental, and although it can be moved

TABLE 3.13 Floating-point operation times for the T800 transputer. 
The -20 is a 20 MHz part and the -30 a 30 MHz part. All times in ns.

Operation

Part

T800-30 T800-20

Single

Precision 

Double Single Double

Addition 233 233 350 350
Subtraction 233 233 350 350
Multiplication 433 700 650 1050
Division 633 1133 950 1700
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up and down the systems’ hierarchy, it will not go away. For example, we 
can trade chip and wiring complexity in a fully switched system against the 
large diameter of a static network.

In the latter case, when processing a partitioned data structure, one that 
is shared between the processors in the system, then only in the special case 
where each partition of the data structure is independent will no communications 
be required between processors. More generally, data must be shared between 
processors in the system and in many problems the communications 
complexity can dominate the complexity of the algorithm. For example, in 
sorting or computing matrix products each element in the resulting data 
structure requires information from all other elements in the original 
structures.

Such problems with global communications properties scale rather 
unfavourably with the extent of parallelism in the system, unless the 
connectivity between processors reflects that between partitions of the data 
structure. It is shown in figure 3.73 above that on local communications the 
number of operations (integer multiplications) required per word of data 
received over the INMOS link is two. It is also clear that a significant 
degradation of the communication bandwidth due to a large-diameter 
network would require a relatively coarse granularity in the partitioning of 
the algorithm. The transputer with its four links could be configured directly 
into the following networks: a two-dimensional grid, a perfect shuffle 
exchange network, a butterfly network, or other four-connected topologies 
(see §3.3.4). In all cases, however, if the data partitioning does not match the 
underlying network, then communication bandwidth will be degraded in 
relation to the processing rate of the system, in proportion to the diameter 
of the network. The diameter of the networks above varies from log2n to 
n112. On applications that become communications-limited, performance will 
not scale linearly with processors added to the system.

The technique which avoids this unfavourable scaling is to allow arbitrary 
permutations to be established between processors, using a crossbar switch 
or its equivalent. Although the latter has many advantages and allows an 
arbitrary scaling of parallelism, the costs of such a switch will tend to grow 
with the square of the number of processors in the system. The costs of the 
fixed networks, however, vary linearly with the number of processors added 
to the system. However, because the transputer communicates over a 
high-bandwidth serial circuit, the costs of fully connecting transputers via 
their link circuits is not prohibitively expensive, or at least is not so for arrays 
of up to several thousand transputers, which with the T800 gives multiple 
gigaflop/s machines.

A transputer system which allows arbitrary networks of transputers to be
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configured was first proposed by one of the authors and is now the subject 
of a major ESPRIT project in advanced information processing. One of the 
motivating factors behind this design was to use switched nodes of transputers 
to implement program-derived networks, so that the transputers could be 
configured in algorithmic networks. This effectively creates a more powerful 
node which has a higher communications performance than a single 
transputer. Algorithmic parallelism can be exploited, with the placed processes 
and network configuration forming a static or quasidynamic data flow graph 
of the algorithm (see §4.5.2 for details).

To understand the arguments behind this, consider the following. A 
transputer has processing power P and communications bandwidth C, with 
the ratio of these, C/P , determining how soon a system would become 
communications-bandwidth-limited as more transputers were added to the 
system. Now consider taking a small number of transputers, say n, and 
arranging them as in figure 3.74. It has been shown (Nicole and Lloyd 1985) 
that this configuration will implement any graph of the n labelled transputers.

N

FIGURE 3.74 The supernode architecture.
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It does this using two pairs of In x 2n complementary crossbar switches. 
Such a 4 supernode’ can implement any four-connected data flow graph for 
a given algorithm. Now consider the communications ratio. The node has n 
transputers and therefore power nP; it also has communication bandwidth 
nC, as there is one link to the outside world for each link on a transputer 
in the node. The ratio of the two is therefore the same as a single transputer, 
namely, C/P. However, if these nodes are now connected into a static network, 
the diameter of the network would be smaller, as fewer nodes would be 
required to achieve the same performance; it would be smaller by a factor 
of n. This has three effects on communications scaling.

( 1 ) Because the node has more legs, it can be more richly interconnected. 
For example, up to 4n + 1 supernodes may be directly connected by one link 
only, In + 1 by two links, and so on. Because of this, the diameter of the 
resulting network has been considerably reduced.

(2) If a static network of the same topology is implemented, then its 
diameter would in any case be reduced, as fewer nodes are required. For 
example, in a grid network the diameter would be less by a factor of n112.

(3) Finally, as the fewer nodes can chew on a larger partition of the data 
structure, there is a surface/volume reduction in the data structure partition 
which will aid all but global communications requirements.

Of course, having defined a supernode of transputers, one can recursively 
define larger and larger systems, as shown below, using the notation from 
§1.2.4;

Ct + j = nCt x 4nl ~ lS(2n x 2n crossbar)

C0 = transputer.

Such a description defines a multistage switch, built from 2n x 2n crossbar 
nodes. For example, the two-level machine being built at Southampton for 
the ESPRIT collaboration is in fact a set of transputers connected by a 
three-stage c l o s  network. The first level is illustrated in figure 3.74, the second 
level in 3.75, where here each node is a cluster of n transputers or a supemode.

The supernode can be considered as a supertransputer, for it obeys an 
OCCAM programming model, with the OCCAM providing transputer 
orders for each component and instructions to set the switching circuits, 
which realise the required network of connections. Thus OCCAM is used to 
define procedure and structure. A supernode would typically comprise some 
10-50 transputers and by itself could provide a powerful, stand-alone 
workstation. Larger machines can be constructed using the supemode as a 
unit of replication, in regular arrays or in higher-level supernodes.

In the ESPRIT design, each supernode will have up to 36 transputers,
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FIGURE 3.75 The second-level switch topology for a multiple- 
supernode, reconfigurable transputer network.

where most transputers have only 256 Kbytes of fast static r a m (eight chips), 
packed eight per board using hyper-extended, triple eurocards. At supernode 
level, one of the transputers, designated the control transputer, will have the 
switch chips mapped as I/O  devices and will be able to configure the local 
network. This device is also the master on an eight-bit control bus, which is 
connected to all other transputers in the supernode. This bus provides the 
ability to set and read signals such as reset, analyse and error on any 
transputer, and provides a low-bandwidth communications medium between 
the transputers for control and debug purposes. This bus also provides 
IF ANY and IF ALL synchronisation between the transputers, so that global 
events may be signalled to the controller. This is necessary for non-static use 
of the switch, to provide a time reference when link activity has ceased so 
that it may be reconfigured. Each first-level supernode will also have r a m 
and disc servers, both implemented as transputers hooked into the switch.

The controller and bus are linked at the second level by the second-level 
controller, which sets the outer switches and acts as bus master for a bus on 
which each first-level controller is a slave. A prototype supernode was 
completed in the third quarter of 1987, with first samples of the T800 transputer, 
which was developed by INMOS as part of the same ESPRIT collaboration. 
The partners in the collaboration are the Apsis SA, Grenoble University, 
INMOS Ltd, the UK government research establishment RSRE, Southampton 
University, Telmat SA and Thorn EMI pic.



4 Parallel Languages

4.1 INTRODUCTION

There seem to have been two trends in the development of high-level 
languages. Those that owe their existence to an application or class of 
applications, such as FORTRAN, COBOL, and C, and those that have 
been developed to further the art of computer science, such as ALGOL, 
LISP, PASCAL and PROLOG. The development of the former to some 
extent has been stifled by the establishment of standards. Conversely, to 
some extent, the lack of standards and the desire to invent have led to the 
proliferation of versions of the latter.

There have also been attempts to produce a definitive language, 
incorporating the ‘best’ features of the known art and to bind these into 
an all-embracing standard. Such an attempt was made by the US Department 
of Defense (DOD) (1978) and the resulting language, ADA (Tedd et al 1984, 
Burns 1985), has been adopted by both the DOD and the UK Ministry of 
Defence. Even though validated compilers are now becoming widely available, 
most implementations seem very inefficient at implementing one of its major 
assets, its tasking or concurrency. Typical values for task creation and 
synchronisation range from 4-20 ms and 1-10 ms respectively (Burns 1985, 
Clapp et al 1986, Rhodes 1986). These may be compared to similar figures, 
but measured in microseconds, for OCCAM implemented on the transputer.

It can be argued that the procedure adopted with ADA was doomed 
from its inception; it has taken almost a decade from the establishment 
of the requirements to the widespread use of validated compilers. The 
resulting compilers are large, because the language is ‘complete’ and 
implementations supporting real concurrency on distributed systems are 
still immature. What is more, during that period we have seen some 
fundamental changes to the conception and use of computers. In particular, 
this decade has seen the widespread use of concurrency. Although concurrency

3 7 0
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is addressed in ADA, there is now far more practical experience of concurrency 
and new languages have been developed, such as OCCAM (May and Taylor 
1984), which treat concurrency in a simpler, more consistent, and more formal 
manner. OCCAM is not a complete language, but its explicit and minimalist 
approach makes it an ideal tool to explore techniques for exploiting 
parallelism.

However, as we will demonstrate in this chapter, the numerous and 
vastly different applications and underlying models of parallelism will 
require radically different language structures.

One of the major divisions in language development, which has emerged 
during the last decade, is that between the imperative and declarative styles 
of programming. The declarative style of programming has had the most 
profound effect on computer architecture research during this period. This 
style of programming does not map well onto the classical von Neumann 
architecture, with its heavy use of dynamic data structures, which only 
highlight the deficiencies of the single port into a linear memory (the von 
Neumann bottleneck). Although this development is not the subject of this 
chapter, there is an abundance of literature for the interested reader. A good 
introduction can be found in the books Functional Programming (Henderson 
1980) and Distributed Computing (Chamber et al 1984).

Another major development, which aims to promote the concept of 
re-usable software, is the object-oriented approach to programming. Although 
it is possible to buy well specified integrated circuits, with an exact 
specification (data sheet), and to integrate these into a more complex system, 
the same notion of ‘off the shelf’ software components has to date been 
limited to scientific library packages (equivalent say to m s i  t t l  components). 
Objective languages give the programmer the ability to construct ‘software 
ics’ of arbitrary complexity; they thus promote the concept of the ‘software 
shop’, where a systems engineer may browse and, for example, buy a 
windowing package and applications package, and be sure (on reading data 
sheets) that they could be integrated into a single application. For an 
enthusiastic introduction to these concepts, the reader is referred to the book 
Object Oriented Programming (Cox 1986).

4.1.1 Imperative languages
An imperative language is one in which the program instructs the 
computer to perform sequences of operations, or if the system allows it, 
disjoint sequences of instructions operating concurrently. Imperative languages 
have really evolved from early machine code, by successive abstraction away 
from the hardware and its limited control structures. This has had two
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beneficial effects, namely the improvement of programmer productivity and the 
portability obtained by defining a machine-independent programming environment

An imperative language, however, even at its highest level of abstraction, 
will still reflect the algorithmic steps in reaching a solution. In addition 
to the retention of this notion of sequence, these languages also retain 
a strong flavour of the linear address space, still found in most machines. 
This is reflected in the use of arrays, which have direct or addressed access 
to all elements.

One of the more recent abstractions added to the imperative programming 
model has been the introduction of concurrency (Harland 1985), where 
many disjoint sequences of instructions may proceed in parallel. This 
abstraction or parallelism in instruction streams evolved well before the 
widespread introduction of hardware concurrency, the requirement being 
the effective utilisation of the single most expensive resource in the computer, 
the c p u . With the use of logically separate tasks, c pu  cycles could be shared 
between those tasks, thus avoiding the situation where a single task might 
have to wait for action on some slow I/O  device. By abstracting concurrency, 
the non-deterministic sharing of the c p u ’s cycles could be obtained. Any task 
awaiting action from slow peripherals could be suspended by the system to 
allow another free task to proceed. Such multiprogramming environments 
gave rise to the interrupt, a mechanism to enable peripheral devices to attract 
the attention of the c pu  when required.

The paper by Harland (1985) gives a good introduction to concurrency 
in imperative programming languages. He develops this theme from the 
early requirements for concurrency, through to more recent abstractions, 
which include the manipulation of processors and programs, as values 
within the language.

4.1.2 Declarative languages
The declarative style of programming is based on a more mathematical 
foundation, with the aim of moving away from descriptions of algorithms 
towards a rigorous specification of the problem. Hence the use of the 
name declarative. These languages are based either on the calculus of 
functions, lambda calculus, or on a subset of predicate logic. Examples 
of these two mathematical foundations can be found in LISP and PROLOG 
respectively. A good introduction to these foundations and their application 
to this style of programming can be found in the book Logic, Algebra 
and Databases (Gray 1984). The natural data structure for these declarative 
languages is the list, which is an indirect mapping onto a linear address 
space. This structure, however, is less well suited to implementation on 
a linear address space than the array and can lead to very inefficient
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utilisation of what is probably the computer’s most critical resource, the 
processor-memory interface.

Although less efficient than the imperative style of programming, there 
is a demand for languages based on the formal rigour of mathematics. 
This is due to the massive complexity of modern software systems and 
the growing reliance found on such systems in our modern society. The 
move towards intelligent or expert systems also results in less regular, 
and hence less imperative, programming styles. Programmer productivity 
can be greatly improved for many applications by the use of more formal 
languages (Henderson 1986). Moreover, as these declarative languages 
are based on mathematics, it is possible to formally verify the software 
systems created with them (Gries 1976).

A further advantage of the declarative approach, or at least it is claimed to 
be an advantage by the experts in this field, is that such languages can 
supply implicit parallelism, as well as implicit sequencing (Clark and 
Gregory 1984, Shapiro 1984). However, this is not achieved without 
pitfalls, such as the parallel generation of unproductive work! However, 
research in this area is very active, being well supported through the UK 
government’s Alvey research program, and major advances in this area 
may well be expected in the 1990s. ICL, for example, are collaborating 
on one of the major Alvey projects in this area, which could well lead to 
designs for efficient parallel-computer-based declarative languages. Whether 
these computers will be the general-purpose workhorses of the late 1990s, 
replacing the traditional main-frame, is an open question.

As an introduction to this style of programming, §4.3.4 describes CMLISP 
or *LISP, a language based on LISP and hence the lambda notation. This 
language contains extensions to drive the connection machine which involve 
an explicit expression of parallelism across the list structure. The connection 
machine has already been described in Chapter 3.

4.1.3 Objective languages
Objective languages are based on two main techniques, encapsulation and 
inheritance. Objectivity is a more pragmatic foundation than the rigour of 
logic or functional languages. It does, however, provide a potential solution 
to the software problem discussed above, which may at the same time be 
acceptably efficient on conventional computers. What is more, it provides a 
model of computation which can be implemented on a distributed system.

Of the two techniques, encapsulation is the most straightforward and is 
often used as a good programming technique (Parnas 1972, Booch 1986), 
even when not enforced by the language. Encapsulation hides data and gives 
access to methods or procedures to access that data. The modules in ADA
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(Burns 1985) and Modula 2 (Wirth 1981) embody this technique. Access to 
the data is only provided through the shared procedures. The encapsulation 
of data and access mechanisms in this way defines the object, and an objective 
language is one which enforces this regime by building an impenetrable fortress 
around these objects. This can be done at a high level, such as in 
OBJECTIVE C and ADA (Cox 1986), or at a very low level in the system, 
as found in SMALLTALK 80 (Goldberg and Robson 1983).

Having encapsulated a programmer’s efforts in the creation of such 
constrained objects, a mechanism must be provided in order to evolve or 
enhance that object, without a full-scale assault on its defences. This is the 
second technique of objective languages—inheritance. Inheritance allows the 
programmer to create classes of objects, where those classes of objects may 
involve common access mechanisms or common data formats. For example, 
given a class of objects ‘array’, we may wish to use this to implement a 
subclass of objects, ‘string’, which are based on array objects but have access 
mechanisms specific to strings. Conversely, given a set of access mechanisms 
to an object, we may wish to extend the range of type of that object, but 
exploit the access mechanisms which already exist. These are examples of 
inheritance. The mechanism for implementing inheritance is to replace the 
function or procedure call to an object by a mechanism involving message 
passing between objects. The message provides a key by which the access 
mechanism can be selected. This is equivalent to a late or delayed building 
of an access mechanism to a function call or procedure. Thus only at run 
time, when a selection is made from a class, is the appropriate access 
mechanism or data type selected.

The notion of encapsulation can readily be distributed for, as is indicated 
above, implementations are often based on message passing. The notion of 
inheritance is not so easily distributed, as it is based on a class tree defining 
and extending objects. A distributed implementation of a class of objects 
would, if naively mapped onto a processor tree, become heavily saturated at 
the root. However, by exploiting the applications parallelism and replicating 
the class structure (program) where required, an efficient mapping can result. 
What is more, because of the underlying packet nature of communications, 
a dynamic load balancing may be readily implemented. Object-oriented 
languages can then be considered as prime candidates for the efficient 
exploitation of parallel systems, where ‘efficient’ implies both programmer 
and machine utilisation efficiency. The field is new, however, and little work 
has been published to date in this area. The interested reader is referred to 
the OOPSLA 1986 proceedings, published as a special issue of the SIGPLAN 
notices (Meyrowitz 1986).

Although we have briefly reviewed some modern language trends, this
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chapter (with the exception of CMLISP) follows the trends in the development 
of imperative languages, and the way they have evolved to deal with various 
aspects of hardware parallelism. Section 4.3 deals with parallelism which is 
introduced through structure, as found in the siMD-like architectures. These 
languages are ideal for array processors, such as the ICL DAP, and vector 
processors, such as the CRAY-1. Section 4.4 covers the use of process or task 
parallelism that is found in mim d  systems. However, the most common 
exploitation of parallelism is provided by the automatic vectorising compilers 
used for FORTRAN on most vector computers. This form of parallelism is 
extracted from loop structures within sequential code. It has the advantage 
(the only advantage perhaps) that existing sequential code for production 
applications can benefit from the speed-up obtained from vector instruction 
sets implemented on pipelined floating-point units. This approach and its 
potential disadvantages are discussed in detail in §4.2 below.

4.2 IMPLICIT PARALLELISM AND VECTORISATION

4.2.1 Introduction
The high-level language has been developed as a programming tool to express 
algorithms in a concise and machine-independent form. One of the most 
common languages, FORTRAN, has its roots in the 1950s and because of 
this, it reflects the structure of machines from that era: computers which 
perform sequences of operations on individual items of scalar data. 
Programming in these languages therefore requires the decomposition of an 
algorithm into a sequence of steps, each of which performs an operation on 
a scalar object. The resulting ordering of the calculation is often arbitrary, 
for example when adding two matrices together it is immaterial in which 
order the corresponding elements are combined, yet an ordering must be 
implied in a sequential programming language. This ordering not only adds 
verbosity to the algorithm but may prevent the algorithm from executing 
efficiently.

Consider for example the FORTRAN code to add two matrices:

no 10 j - i y  n  
no l o  i>:i. r n
a  ( i » j  > a  < i  f  j  > + n  ( T •> j  )

1 0  C O N T I N U E

Here the elements of A and B are accessed in column major order, which is, 
by definition, the order in which they are stored. On many computers, if this 
order had been reversed, the program would not have executed as efficiently. 
In this example, because no ordering is required by the algorithm, it is unwise 
to encode an ordering in the program. If no ordering is encoded the compiler
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may choose the most efficient ordering for the target computer. Moreover 
should the target computer contain parallelism, then some or all of the 
operations may be performed concurrently, without analysis or ambiguity.

The language APL (Iverson 1962) was the first widely used language which 
expressed parallelism consistently, although its aim was for concise expression 
of problems rather than their parallel evaluation. Iverson took mathematical 
concepts and notations and based a programming language on them. 
However, the major difference between the mathematical description of an 
algorithm and a program to execute it is in the description and manipulation 
of the data structures. APL therefore contains powerful data manipulation 
facilities.

Chapters 2 and 3 have described new developments in computer architecture. 
These architectures embed parallelism of one form or another into the 
execution of instructions in the machine. Computing has arrived therefore 
(nearly two decades after Iverson) at the situation where there is a need to 
express the parallelism in an algorithm for parallel execution.

4.2.2 The ideal approach
To illustrate the need described above consider the development of code, 
from the stated problem, to its execution in machine code on the target 
machine. The following four stages can be recognised, where the figure in 
brackets indicates the degree of parallelism to be found at that stage:

(a) choose a suitable algorithm for the problem (P);
(b) express the algorithm in a high-level language (L);
(c) compile the language into machine-readable object code (0 );
(d) execute the code on the target machine (Af).

The degree of parallelism is the number of independent operations that may 
be performed simultaneously (see §5.1.2).

In the ideal situation the degree of parallelism should not increase through 
this development process. We call this the principle of conservation of 
parallelism, i.e.,

Programming languages that embody this ideal allow the programmer to 
express the parallelism of implementations of algorithms in terms of explicit 
language constructions, without being constrained by the nature of the target 
hardware. Should this expression of the algorithm give cause for inefficiency, 
then a transformation must be applied to impose order on the calculation. 
It takes only a little thought to verify that this principle is desirable; to 
translate a parallel operation into a sequence of steps requires only an
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arbitrary ordering to be placed on the elemental operations. To translate a 
sequential process into a parallel operation, however, requires a more complex 
analysis. The data flow of the program must be analysed to ensure that any 
ordering is in fact arbitrary and that there are no sequential dependencies 
in the proposed parallel operations. Inevitably, this analysis is often prevented 
by run-time constructs and variables in the code.

4.2.3 The vectoriser
The persistent demand for a new generation of computers to execute existing 
production codes unchanged has mandated a compromise approach in the 
exploitation of the performance benefits to be gained from parallelism. This 
demand has been such that all commercially successful vector processors 
support some form of vectorising compiler (Wolfe 1986).

How then does this vectorising approach compare with our ideal?
The CRAY-1 provides a good example of the vectorisation approach. Code 

must be written in sequential FORTRAN (i.e. L= 1). However, the natural 
parallelism of the machine is 64 and therefore O = M = 64. In this situation 
any parallelism in an algorithm is lost when it is expressed in the high-level 
language and must therefore be regenerated by the compiler. This is shown 
graphically in figure 4.1: (a) shows the ideal situation and (b) the loss and 
regeneration of parallelism.

This approach should really be considered as a temporary means of 
maintaining continuity when moving to a parallel computer. However, quite 
often the vectorising compiler will provide no parallel structures as an 
alternative to vectorisation. Thus all new code development must be made 
in the sequential language, which can only further entrench the sequential 
attitude towards programming and moreover can lead to obscure programming 
practices. Vectorisation often requires programmer intervention because 
many dependencies can only be resolved at run time. Rewriting code to avoid 
this often results in obscure constructs and bad programming practices, which 
hide the basic algorithm and make maintenance of the code more difficult.

4.2.4 Machine parallelism
It is unfortunate, but the most common class of language which expresses 
parallelism does so by the limitation of parallelism to that found on the 
target computer. Here L = 0  = M and hopefully P ^  L. This is illustrated in 
figure 4.1(d). Obviously these languages, by their definition, are not portable. 
They have evolved, in the absence of any parallel processing standard, as the 
easiest and most efficient language to implement on a given machine. They 
are efficient, as inefficient constructs are avoided completely. Also, the 
programmer is made aware of the machine’s parallelism and will therefore
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FIGURE 4.1 Parallelism in the development of code: (a) the ideal of 
conservation of parallelism; (b) vectorising languages; (c) expression of 
problem parallelism languages; (d) limitation of parallelism languages.

be more likely to avoid a severe mismatch with his problem’s data structures. 
However, as more parallel computers (and languages) become available, the 
problems of transporting programs between them become very severe 
(Williams 1979). We will return to this problem of portability later.

4.2.5 Vectorising techniques
Vectorising compilers take code written in a sequential language, usually 
FORTRAN, and where possible generate parallel or vector machine code
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instructions for the target machine. To do this the compiler must match 
segments of code to code templates which are known to be vectorisable. For 
example one of the simplest templates would be:

DO< LABEL >Y = < CONST >TO< CONST >

<LABEL><ARRAY VAR>(Y)= (ARRAY VAR>(Y)<OP>
<ARRAY VAR>(Y)

This would simply translate into one or more vector operations, depending 
on target instruction set and difference between the loop-bound constants. 
More complex templates may involve variable loop bounds, array subscript 
expressions, conditional statements, subroutine calls and nested constructs.

This process can be considered as an optimisation or transformation, 
usually performed on the source code or some more compact tokenised form. 
For example, the compiler for the Texas Instruments Advanced Scientific 
Computer (ASC NX) performs the optimisation on a directed graph 
representation of the source code. However, for simplicity, only the source 
code transformations will be considered in the examples given in this chapter. 
It is clear that the most likely place in which to find suitable sequences of 
operations for vectorisation is within repetitive calculations, or DO loops in 
FORTRAN. Thus the vectorising compiler will analyse DO loops, either the 
innermost loop, or possibly more. The ASC NX compiler analyses nests of 
three DO loops and if there are no dependencies can produce one machine 
instruction to execute the triple loop. The Burroughs Scientific Computer 
(BSP) vectorising compiler analyses nested DO loops. It will reorder the 
loops if one of the innermost loops contains a dependency.

In general, the transformation performed on one or more DO loops is a 
change in the implied sequence or order of execution. In the sequential 
execution of the DO loop, the order implied is a statement-by-statement 
ordering, for each given value of the loop index. The order required for 
parallel execution is one in which each statement is executed for all given 
index values, before the following statement is executed for any. This 
transformation can only be performed when there is no feedback in and 
between any of the statements within the loop. Detecting and analysing these 
dependencies is the major task in vectorisation.

4.2.6 Barriers to vectorisation
It will be instructive to look at the various constructs, which can inhibit or 
block the vectorisation process. Some of these constructs will be fundamentally 
unvectorisable, while others are ‘difficult’ constructs for the vectoriser to 
analyse.
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(i) Conditional and branch statements
Loops containing IF statements and transfers of control can inhibit the 
vectorisation process. However, many single- or multiple-statement conditionals 
can be made parallel (with some attendant loss of efficiency). For example 
the simple loop below,

reduces to the parallel construction (§4.3.1)

where A.LT.O supplies the vector mask which ‘controls’ the vector operation 
It is possible to vectorise single- and the more complicated multi-statement 
conditions, using this masking technique.

(ii) Sequential dependencies
This covers the largest area of possible barriers to vectorisation. Some 
dependencies are due to the ordering of statements, others are due to the 
recursive nature of the calculation. The former category can easily be 
vectorised by statement reordering and the use of temporary storage. Consider 
the simple example:

This may look contrived, but is typical of the indexing constructs which can 
inhibit vectorisation. It is not recursive, although simply applying the ordering 
transformations will produce the wrong results. The implied ordering would 
put old values of A(7) into OLD(7); the transformed ordering puts new values 
of A(7) (i.e. NEW(7 + 1)) into OLD(7). The problem then is a simple question 
of timing and a good compiler would therefore reorder this calculation, or 
provide temporary storage for the old values of A(7).

The equivalent loops below are both vectorisable:

The true recursive construct is similar to the above example and can be 
expressed in one line, or hidden using multiple assignments. Two examples 
are given below:
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These are examples of first-order linear recurrences which cannot be 
vectorised without resorting to special algorithms (see §5.2).

In general, for a construct matching the following template,

DC) .10 I ^

where OFFSET is an integer variable, vectorisation is inhibited. This is 
because the compiler does not know at compile time that OFFSET has the 
same sign as the loop increment, or is such that no overlap occurs between 
left- and right-hand sides of the assignment. Thus the construct may be 
vectorisable in principle but not in practice, unless runtime checks are 
compiled.

(iii) Nonlinear and indirect indexing
Certain index expressions can also inhibit vectorisation. Simple linear 
combinations of loop index variables should cause no problems, unless there 
are hardware restrictions. However, if index expressions are nonlinear or 
contain indirect references, then vectorisation is not a trivial process. 
Examples of index expressions which could possibly inhibit vectorisation are 
given below:

In the first case if either I or J were invariant within the loop being considered, 
then this expression would be linear and vectorisable, otherwise it would not 
be.

(iv) Subroutine calls within loops
The final barrier to vectorisation considered here is the inclusion of 
subroutines or user-defined functional calls within a loop. These are not 
vectorisable because subprograms are generally compiled separately and the 
compiler lacks the information required to make its analysis.
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4.2.7 The BSP vectoriser
The BSP compiler (Austin 1979) is a good example of the use of vectorising 
techniques. It was based on a great deal of experience obtained in this field 
at the University of Illinois. It analyses more than one level of nested loops 
and can perform certain order transformations on statements and DO loops. 
In addition to this, the compiler will vectorise loops containing first-order 
linear recurrences and also certain loops containing IF statements. The 
following examples of the vectorising capability of the BSP FORTRAN 
compiler are taken from Austin (1979). The vectorisation transformation is 
expressed in terms of BSP parallel constructs
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In this last example a recurrence in J has been isolated and the innermost 
and outermost loops in M  and L have been vectorised. Notice that although 
the BSP hardware can handle first-order linear recurrence, the recurrence 
vectorisation process will only be invoked if no other vectorisation can be 
performed on a given set of DO loops. This is because the parallel evaluation 
of a first-order linear recurrence is not 100% efficient (see §5.2).

4.3 STRUCTURE PARALLELISM

Section 4.2 above gives one solution to the problem of portability, which is 
to continue to use existing (sequential) languages and to make the system 
responsible for generating the mapping of the problem or algorithm onto 
the underlying hardware. However, techniques for automatically generating 
parallelism are largely limited to optimisations of loop constructs for 
execution on vector processors. The automatic exploitation of other forms 
of parallelism, for example replicated systems, is not well understood and 
results to date have shown poor utilisation of processor and communications 
resources. One of the major problems in this respect is the lack of a formalism 
for describing the structure of the problem within a consistent model of 
computation which will facilitate a mapping of that structure onto the 
underlying machine’s structure. This problem of data mapping is not 
described well in a language which must use loop structures and indexing to 
express it. Other more formal approaches treat whole array objects and



384 PARALLEL LANGUAGES

classes of mappings that can be applied to them (for example, see §3.3 and 
Flanders (1982)).

Even targeted on a vector computer, the vectorising compiler is not the 
ideal route to portability. The FORTRAN programmer will of course 
optimise his sequential code, so that the compiler will recognise as much as 
possible as being vectorisable. Because of the underlying differences in 
the vector hardware, optimal loop lengths and access patterns into memory 
will change from machine to machine. The solution to the portability using 
vectorisation therefore fails, as the programmer treats FORTRAN as in the 
past, as an assembler language.

An alternative solution places the onus on the programmer to explicitly 
declare which parts of his code are to be executed in parallel. In this way a 
parallel structure can be chosen to express the solution of the problem and 
not the underlying machine structure. The portability problem now becomes 
one of implementation, as an efficient mapping of the programmer’s expression 
of parallelism must now be automatically mapped onto the target hardware.

Two techniques are available to explicitly express parallelism: by using a 
description of the data structure to express parallelism, structure parallelism, 
or by using a description of the program or process structure to express 
parallelism, process parallelism. They can in some circumstances be very 
similar, as a distributed program’s process structure may be designed to 
exploit the structure of its data. To make a distinction in these circumstances, 
assume that structure parallelism is defined at the granularity of a single 
operation and that the operations are carried out as if simultaneously over 
every element of a data structure. Process parallelism, on the other hand, is 
defined with a large granularity, with an instruction stream and state 
associated with each element, or (more likely) with each partition of the data 
structure.

It is really the underlying computational model that distinguishes these 
two forms of parallelism, and the manner in which load is balanced across 
a system. In structure parallelism, one can consider virtual processors to be 
associated one per data structure element, with activated data being mapped 
onto the available processors in a manner which balances the load between 
processors. Thus, load sharing is achieved through data-structure element 
redistribution—data remapping. For example, if only one row of a distributed 
matrix was selected for processing, a redistribution of the data elements in 
that row may be required to maintain a load on all processors. This may 
also be viewed as a redistribution of virtual processors to actual processors 
to maintain an even load. In process parallelism, on the other hand, the 
program partition or process is virtualised and load balancing occurs by the 
distribution of processes across the processors. Process parallelism is explored
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in more detail in §4.4: this section is concerned only with the exploitation 
of structure parallelism.

Structure parallelism is in essence a formal method of expressing the result 
of the vectorising transformations given in §4.2 above, as the operational 
semantics of the vector processor are as described above for structure 
parallelism. The vectorisation approach works for vector computers because 
pipelined access to a single memory system can mask the data transformation 
implicit in these semantics, and also because the efficiency of a pipeline is an 
asymptotic function of vector length (see §1.3).

Structure parallelism has been used in many language extensions, usually 
to express the s i m d  parallelism found in processor arrays, e.g. DAP FORTRAN 
(ICL 1979a). However, these languages have tended to express the parallelism 
of the underlying hardware, thus leaving the programmer to define the data 
transformations required to maintain a high processor load. They can 
therefore be considered as low-level, machine-specific languages. The emerging 
standard for FORTRAN, FORTRAN 8 X (ANSI 1985), is proposing extensions 
to allow any array to be manipulated as a parallel data structure. This is a 
welcome proposal, although somewhat late and incomplete; it will, however, 
allow the programmer to express the structure and parallelism inherent in 
an algorithm, rather than in that of the hardware. We explore this emerging 
language standard later in this section.

Using structure parallelism, the programmer is free to use virtually unbounded 
parallelism in the expression of an algorithm. Completely general languages 
of this type allow all data structures to be treated as objects on which 
operations can be performed in parallel. This departure is best viewed as 
allocating a virtual processor to each element of the data structure. Then, at 
a given stage in an algorithm, some of these data-structure elements will be 
activated, either explicitly by selection from the data structure (for example 
a row from a matrix), or implicitly by a conditional construct in the language 
(such as the WHERE statement in FORTRAN 8 X). The compiler, or indeed 
the system at run time, will then allocate activated virtual processors to real 
processors in the system.

This idea of virtually unbounded parallelism could prove an embarrassment 
in a process-based approach, where the overhead in creating many instruction 
streams may be greater than the work involved. In both structure and process 
parallelism, a transformation from parallel to sequential can be made at 
compile time for a given target architecture, in order to optimise performance. 
However, in the case of process parallelism, the transformation is not so 
straightforward and it would be unlikely that a run-time system could be 
developed to do this efficiently. In the case of data-structure parallelism, the 
transformation is simple, merely one of ordering sets of similar operations.
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Moreover, any ordering imposed can be such so as to optimise access patterns 
into memory systems (Jesshope 1984). It is true that this can result in a large 
requirement for storage, because of the need to perform all operations as if 
simultaneously. For example, complex array-valued expressions will require 
array-valued temporaries. However, optimisations such as those used for 
vectorisation can reduce the requirements to match the parallelism of the 
target hardware.

4.3.1 Array constructs
In this section we consider a number of constructs which can be used to 
express the structure of parallelism through the use of arrays. These are based 
on the FORTRAN language but the syntax does not necessarily reflect any 
implementation, current or proposed. They attempt to derive a consistent 
extension to a language, which naturally supports structure parallelism as 
applied to arrays. These proposals differ in some important issues from these 
being proposed by the ANSI X3J3 Committee, which has been considering, 
among other issues, array extensions to the next FORTRAN standard (8 X). 
The ANSI proposals are outlined in detail in §4.3.3.

Because of the higher level of abstraction found in the array construct 
when compared with sequential code, we would expect to see a contraction 
in the amount of code required to express a given algorithm. This is analogous 
to the expressiveness of matrix algebra over that of scalar algebra. Any 
construct included in the language should therefore reflect this and allow the 
concise expression of operations between array-valued data objects. APL 
takes this philosophy to its extreme and results in code which is difficult to 
read. We do not wish, however, to simply add cumbersome syntax to existing 
sequential constructs. This opposite extreme can be illustrated by the 
PAR DO, which has been suggested as an alternative to the existing 
FORTRAN DO statement, wherein the order of evaluation is modified so 
that each statement is executed for all values of the DO range, before the 
succeeding statement is executed. Thus the body of the loop is executed in 
sequence, but with each statement being executed for the whole range of the 
DO statement, as if each statement were included in its own loop. This syntax 
is confusing and verbose, and it is far more natural to imply the DO loop(s) 
from the structure of the array operands.

(i) Arrays as elemental data objects
In this approach arrays are treated as distinct data objects of a given rank 
(dimensionality). Therefore, any reference to the array will imply the whole 
array. It should be noted that this approach does not preclude the use 
of an array as a set of sequential objects, for indexing can be used to
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reduce the rank of the object by selection. Thus, for example, given a 
three-dimensional array A, it is said to have rank 3, and any reference to 
the name A alone will imply a reference to all elements in parallel. Indexing 
in any one of the dimensions of A may be considered as a selection operation, 
which reduces the rank of A by one. Thus if all three dimensions are indexed, 
a scalar or data object of rank 0 is selected from A. More details of selection 
mechanisms are given below. It should be noted that this concept already 
has some precedent in sequential languages; in FORTRAN for example, the 
reference to an array name in the READ and WRITE statement implies a 
reference to all elements of that array.

Although this approach is the most general, many language extensions 
have made a compromise, in that the number of dimensions in which the 
array can be considered as a parallel object are limited. Any further 
dimensions must be indexed within the body of the code, thus providing sets 
of parallel array objects of limited dimensions. This mixed approach has been 
adopted almost exclusively on processor arrays, where the number of 
dimensions which may be referenced in parallel corresponds to the size and 
shape of the hardware. It has the advantage of distinguishing the parallel 
and sequential access found in processor array memories, but the disadvantage 
of being machine-dependent and hence non-portable.

Examples of this approach are found in CFD (Stevens 1975), GLYPNIR 
(Lawrie et al 1975) and ACTUS (Perrott 1979), all languages proposed or 
implemented for the ILLIAC IV. CFD and GLYPNIR manipulate one-
dimensional arrays of 64 elements, which map onto the ILLIAC array of 
processors. ACTUS is more general, but the original implementation 
developed for the ILLIAC IV allowed only one dimension of a PASCAL 
array to be referenced in parallel. Another example of this mixed approach 
is found in DAP FORTRAN (ICL 1979), where either the first or first two 
dimensions of an array may be referenced in parallel. Again these first two 
dimensions must correspond to the DAP size. Both DAP FORTRAN and 
CFD are discussed further in §4.4.

(ii) Selection from array objects
It is assumed that an array is defined as above as a parallel data object and 
that indexing mechanisms are rank-reducing or selection techniques. Thus 
slices and subsets of array objects, which may themselves be parallel array 
objects, may be manipulated within the language. There are many techniques 
available to perform this selection, some of which can have conflicting 
meanings.

Selecting reduced rank objects This mechanism is perhaps the most important,



388 PARALLEL LANGUAGES

as it provides downward compatibility with the underlying sequential 
language. At its simplest it is equivalent to indexing in a sequential language. 
The difference however is that given an array object of rank n say, then all 
reduced rank array objects are also atomic elements of the language. For 
example row vectors, column vectors and scalars are all valid atomic objects, 
which are selections from a two-dimensional array or matrix. Row and 
column vectors are selected by indexing in one and only one dimension of 
the array, and a scalar is selected by indexing in both dimensions of the array. 
Thus in FORTRAN, given a two-dimensional N  x N  array or matrix A, then

(a) A would refer to the whole matrix,
(b) A(/,) would refer to the 7th row of A (a vector),
(c) A(,J) would refer to the Jth column of A (also a vector),
(d) A(I,J) would refer, as expected, to the 7,Jth element of A
(a scalar).

In some languages the syntax of this selection mechanism has been emphasised 
by a special symbol, usually an asterisk, which is used in the position where 
subscripts are elided. This symbol can be thought of as a whole-dimension 
selector. Thus the examples above become,

(a) A or A(*,*)
(b) A(/,*)
(c) A(*,J).

However, because of its elegance and simplicity, subscript elision will be used 
in all the following examples, unless a specific syntax is being described.

Selecting a range of values It will often be necessary to select a range of 
values from a given subscript position. Thus instead of reducing the rank of 
an array object the size of that object is reduced. The range must therefore 
specify a subset of the whole dimension range. This can be defined, as in loop 
control, by a pair or triplet of integers or integer expressions. These would 
specify a start index, an optional step index and a limit index, which would 
be used as a selector in one of the dimensions of an array. Thus, given the 
same N x N matrix used in the example above, A(2 :7V— 1,2 :7V— 1) would 
select the interior points of the matrix and A(1:(2)N, 1:3) would select the 
first three elements of all odd rows. In both examples the syntax used is 
start:(step) limit, where the step, if omitted, is assumed to be unity. These 
rank- and range-reducing selection mechanisms are illustrated in figure 4.2 
for an 8 x 8 array.

Selection using integer arrays The simple selection mechanisms described 
above give as a special case the more familiar sequential indexing. It can also
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(a)

FIGURE 4.2 An example of the selection from an 8 x 8 array: (a) rank- 
reducing selections; (b) range-reducing selections.

be argued that the same should be true for indexing with arrays of integers 
and that it should be a special case of the familiar indirect indexing found 
in sequential languages. However, there are at least two ways in which this 
indirect indexing may be used, and both cannot be represented by the same 
syntax.

One interpretation gives a linear mapping or cartesian product of linear 
mappings over more than one dimension. This is shown below, using familiar 
sequential constructs, where IV and JV are the integer vectors defining the 
mappings:

(a) A(/,JV(J))
(b) A(IV(/),JV(J))

Here (a) gives a linear mapping of the second dimension of A and (b) gives 
a cartesian product of linear mappings in both dimensions of A. It can be 
seen that if this use were applied in parallel, with subscript elision

(a) A(,JV)
(b) A(IV,JV)
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then the resulting arrays are of the same rank as A, but have a range in the 
dimensions selected given by the mapping vector. The mapping produced 
may be one-to-many; however the values of the elements of the mapping 
vector must all lie within the range of the dimension in which it is used. Thus 
if A is an N x N array and IV and JV are vectors of range M, then all 
elements of IV and JV must be less than or equal to N 9 and (a) would give 
an N x M array and (b) an M x M array. Both are arbitrary mappings of 
the elements of A.

The other interpretation of this construct gives a projection over one or more 
dimensions of an array. This is a rank-reducing operation and is shown below 
using similar sequential constructs. Here however JV is an integer vector 
and JM an integer array, both of which define a slice of the array which is 
projected over the remaining dimensions:

(c) A(/,JV(/))
(d) B(/,J,JM (/,J))

The important point to notice here is that the index vector JV and index 
array JM have the same shape as the array slice they select, and are indexed 
in the same way. When using subscript elision there is no way to differentiate 
between the two uses of indirect indexing, as (c) and (d) yield the following 
parallel constructs

(c) A(,JV)
(d) B(„JM)

It can be seen that the syntax of the parallel construct given by (c) is identical 
to that given by (a), but they have completely different semantics. Here if A 
is an N x N array and BanAi x i Vxi V array, then JV must be an N-element 
vector and JM an N x N array. Both reduce the rank of the arrays they are 
indexing as if they were scalars; however, the slice obtained is not laminar 
but projected over the elided dimensions. Again the values of the elements 
of the index array must be less than or equal to the range of the dimension 
from which they select. These two techniques are illustrated in figure 4.3, for 
a 4 x 4 array.

It will be shown later that the projection variant of this structure, when used 
in conjunction with another construct, is able to emulate the general mapping 
technique. The obvious choice of semantics for this construct is therefore as 
a projection. This convention is adopted in all later examples, unless otherwise 
specified. This selection technique may be used in conjunction with other 
indexing techniques in other dimensions in the array, including other index 
arrays. However all indexed arrays must conform to the slice of the array 
produced. Thus TABLE (,,/,J,X) is a valid selection from TABLE, even if
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FIGURE 4.3 An example of the selection from an array A using integer 
vectors (IV and JV): (a) the projection selection; (b) a general mapping 
in one and two dimensions of the array.

/, J and K are integer arrays. In general /, J and K must either be integer 
scalars or integer arrays which conform to the slice produced (i.e. those 
dimensions in which the whole range is implied). The concept of conformity 
is discussed in more detail later.

Selection using boolean array objects Another selection mechanism which 
can be applied to array objects uses conforming logical arrays or expressions. 
Selection is made depending on the truth value of the logical selector. Thus 
the ith element may be selected from a one-dimensional array by indexing 
it with a one-dimensional boolean array with the value ‘true’ in the zth 
element. The arrays must of course conform. Similarly the same boolean 
array could have been used to select either a row or column vector from a 
two-dimensional array or matrix. These examples are illustrated in figure 4.4.

All of the examples given above use this form of indexing as a rank-reducing 
selection mechanism. DAP FORTRAN (see §4.3.2) for example insists on 
this restriction. However it is possible, although perhaps not desirable, to 
extend this form of indexing so that it becomes range-reducing. In this case 
the boolean vector above would have a number of elements set to true, and
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FIGURE 4.4 An example of the selection from an 8 x 8 array using a 
logical vector LV.

the selection would give an object of the same rank, but with only those 
elements selected by the values ‘true’. Similar techniques can be used to 
selectively update an array object. These are discussed in more detail later.

Shift indexing Strictly speaking this is not a selection mechanism; however 
as it is often implemented as an indexing technique it is included in this 
section for completeness. It is an alignment mechanism and can be used to 
shift or rotate array objects along a given dimension. A good example of its 
use is in mesh relaxation techniques (see §5.6.1), where each point on the 
mesh is updated from some average of its neighbouring points. The simplest 
case is where a point takes on the average values of its four nearest neighbours 
in two dimensions. This could be expressed as below, where the syntax is 
from DAP FORTRAN:

Every element of A is updated simultaneously from the four neighbouring 
elements, selected by shifting the array A left (+ )  and right ( - )  in each 
dimension. For the interior values of A, this is equivalent to the sequential 
code below.
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d o  2 o i  :>< ti |
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The most natural way of writing this relaxation sequentially would be to 
replace ANEW(/,J) by A(/,J) in loop 10. This, however, is recursive and 
when evaluated uses both old and new values of A, defined by the loop 
ordering. Numerical analysts will recognise this as the difference between 
the Gauss-Seidel and Jacobi relaxations. It will be seen in §4.3.3 that 
FORTRAN 8X proposes that these shifts be implemented using functions, 
and not employing indexing techniques.

In sequential code the edge effects would normally be considered 
separately; however in the parallel construct this can be accomplished 
by assuming some geometry to the array. For example, a dimension can be 
considered to be cyclic, in which case shifts will be end-around, or to be 
planar, where shifts will be end-off with appropriate data shifted in at the 
boundaries. Combinations of these geometries in a two-dimensional array 
are illustrated in figure 4.5. It can be seen that planar, cylindrical and toroidal 
topological surfaces are produced.

The syntax given in the example above is obviously limited to shifts of 
only one position in each direction, as to add an integer to the + and — 
symbols creates a valid selection from A. Shifts of more than one place have 
been incorporated into parallel languages using a whole-dimension selector

FIGURE 4.5 The topological geometries possible in two dimensions 
using planar and cyclic geometries for array shifting: (a) planar; 
(b) cylindrical (axis N -S); (c) cylindrical (axis E-W ); (d) toroidal.
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symbol, * for example, where A(* — N) would shift A in its first dimension 
N  places to the right.

(ill) Array expressions and conformity
Given whole arrays as data objects within a language, it is necessary to 
introduce some rules concerning their use in expressions. The most fundamental 
of these is the way in which operations are applied to the individual elements 
of the array objects. When combining arrays with arithmetic, relational or 
logical binary operators it is assumed that corresponding elements of the 
two arrays are combined with the same operator, as if done simultaneously. 
Similarly unitary operators are applied to all elements within the array object. 
The results of such operations are also array objects. Having defined 
operations between arrays in this way, expressions can be built up as in 
sequential languages, using the accepted rules concerning type, precedence 
of operators and placement of parentheses. However, the most important 
considerations are the rules concerning size and shape of array objects as 
operands within expressions. These are fundamental to the language design.

Unless two objects contain the same number of elements, the definition of 
the elemental array operation becomes ambiguous. This may be avoided by 
defining the way in which array operands overlap, together with a value to 
be given to the undefined elements. For example, array operands may be 
aligned by their first or last elements, linearly or dimension by dimension. 
Undefined elements may be given unity or null values, or left undefined etc. 
Clearly, this situation is not desirable.

The alternative to this is to constrain all operand pairs in an expression 
to conform. This will be defined here by saying that the two operands must 
have the same rank and the same range in corresponding dimensions. By 
limiting expressions in this way, it is possible to have a much tighter control 
over the occurrence of errors, both at compile and at run time. This is 
illustrated neatly in the example performing matrix multiplication given at 
the end of this section. Having introduced this restriction however, it becomes 
necessary to introduce constructs which will provide the ability to compress, 
expand or reshape arrays, so that they conform. In this way the onus will 
be placed firmly on the programmer, to specify exactly how he or she wishes 
to make arrays conform. The indexing techniques discussed above will provide 
some of the mechanisms for this; others must be provided either as additional 
operators or functions within the language.

(iv) Coercion of arrays to obtain conformity
A functional notation will be used to illustrate some of the operations required 
in order to coerce array objects to conform. The functions given here will be
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required in some form, in any language that requires array operands to 
conform.

Rank-reducing functions It has been shown that the rank of an array object 
may be reduced by indexing or selection. Another way in which it may be 
reduced is by the repeated use of a binary operator between elements in one 
or more dimensions of the array. Although this could be described in the 
language as a sequence of operations, this would not give the opportunity 
of using parallelism for the reduction. For example the sum of N  elements 
can be performed in log2N steps in parallel (see §5.2.2). Table 4.1 gives a list 
of the most common reduction operations. Each has two parameters, the 
array and the dimension along which the reduction is to be performed. 
Functions should also provide for a reduction over all of the dimensions of 
the array. In APL similar functions are provided as composite operators 
where @/gives the reduction using the binary operator @. The syntax of 
combining operators is considered in a paper by Iverson (1979).

Rank-increasing functions It is often necessary to increase the rank of an 
object to obtain conformity. The most frequent use of this is in operations 
between scalars and arrays. This is often termed broadcasting in parallel

TABLE 4.1 Reduction functions for array extensions to FORTRAN. 
A is integer or real, B is logical. Provision should also be made to extend 
the action of these functions to all dimensions, perhaps by omitting the 
second parameter.

Function Operation Reduction

SUM {A, k ) +
*k

PRO D(A , k ) *
h

AND (B, k) A an d J5(i ifc, . . . ,  i|)
h

OR (B,k) V o r B ( i u . . . J k, . . . J l)

MAX(4,/c)
i k

MIN (A, k )
ik
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computation, because a copy of the scalar is broadcast as the second operand 
to every element of the array. This action may be regarded more generally 
as the coercion of a scalar, by repetition, into a conforming array. This 
particular example is unambiguous and can be implied simply by relaxing 
the rule which requires conformity between operands, allowing scalars and 
arrays to be mixed freely within expressions.

This is not true however for the more general case. Operations between 
vectors and matrices for example can be performed either by repeating the 
vector as a row, or as a column, to obtain conformity with the matrix. In 
general there are nCr ways in which an r-dimensional ‘square’ array may be 
coerced into an n-dimensional ‘square’ array, where

If arrays have different ranges in each dimension, the number of possibilities 
may be restricted, or even vanish. However, it is a good idea to introduce 
this coercion as an explicit operation or function call, so that error checking 
may be provided. Again the example of matrix multiplication illustrates this. 
Only one function need be required to perform any coercion by repetition. 
Thus, for example,

is an array formed by the repetition of A, N  times along its kth dimension. 
For example if V is a vector of N  elements then

is an N  x N matrix formed by the repetition of V as rows of the matrix and

is formed by the repetition of V as columns of the matrix.
Any coercion can now be built up by repeated use of this one simple 

function.

A reshaping construct Another construct which may be necessary to obtain 
conformity is the conceptual reshaping of data structures. Operations 
between arrays of different dimensions but with the same total number of 
elements are sometimes necessary. A good example is in the fast Fourier 
transform algorithm (§5.5.2), where it is simpler to treat a linear array of N  
elements as a variable three-dimensional array. This is illustrated in one of 
the programming examples given at the end of this section.

As much more emphasis is being placed on the shape of arrays, which
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must conform in expressions and assignments for example, it is more 
important to define the shape of array objects passed to subprograms. For 
example, a parameter and argument would then conform if only the shape or 
dimensionality of these objects was the same. Thus in FORTRAN, an array 
parameter to a subprogram should define the principal subarray of the 
argument passed. In this way a parametrised subset of the range in each 
dimension may be selected within the subprogram.

Having allowed the DIMENSION statement to define a dynamic range 
within the subprogram, a statement is required to change the shape of an 
array with respect to its initial declaration. For the sake of illustration we 
introduce the MAP statement, which has the format of a dimension statement 
but which can be considered as an executable statement, defining a remapping 
of a declared array object. It must be assumed that this mapping is one-to-one 
in order to give an exact definition.

For example, if we consider the dimension list Wj,..., np, of the array object

then this list defines the shape and mapping of A over an ordered set of 
n r - I  nk data locations (not necessarily contiguous). An element from this 
set is located by providing an index list, which is used to generate
the mapping function/D, giving the element’s position in the set:

The MAP statement would redefine this mapping function over the same 
ordered set of elements, by providing a MAP list ml,.. . ,m q in the MAP 
statement.

This redefines the shape of A, so that given a new index list iu . . . , iq, an 
element is selected from the set by the new mapping function / M:

It can be seen that the mapping is not completely defined unless

It should be noted that / D need not define a mapping over a contiguous 
set of storage locations. This is because the ordered set of elements, over
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which f D is defined, may also represent a mapping (reduction in range) of 
an array passed to a subprogram.

In a serial computer, these address mapping functions would merely be 
used for address calculation. However, on some parallel machines, remapping 
of physical data may actually be required in order to provide parallelism.

An example of the use of this MAP statement is given below; it reshapes 
a linear array into two dimensions.

DIMENSION A(N)

It can be seen that the remapping of A is not completely defined if N is odd. 
The last element of A is undefined in the MAP statement, due to the truncation 
of integer division.

(i?) Expression indexing
By the introduction of parallelism into a language, expressions themselves 
have become array-valued objects, with a given shape. It may therefore be 
desirable to select from an expression using the same indexing techniques 
described earlier. This selection is only likely to be required with the use of 
the functional form and then only to avoid unnecessary assignment to 
temporary variables. Syntactically the selection can be performed by following 
the expression with a pair of brackets containing the required selector. Thus 
the expression is treated exactly as an array object. An example of this is 
given in the first programming example.

(vi) Array assignment
The value of an array expression must at some stage be assigned to an array 
variable. The assignment like all other operations is elemental and, using the 
same arguments as for expression evaluation, the result of the expression 
must conform to the array variable. Again this conformity can be relaxed 
for the assignment of a scalar expression to an array variable, as this can be 
performed unambiguously. In order to obtain conformity at the assignment 
stage, all of the selection mechanisms described earlier may be used to 
selectively update an array variable.
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Thus for example, a vector expression could be selectively assigned to a 
row or column of a matrix by:

A(/,) = (conforming vector expression)

or

A(,J) = (conforming vector expression)

One technique which is particularly powerful is the selective assignment, 
using a boolean array or expression. This in fact can replace the conditional 
assignments. The technique is sometimes called masking, as the boolean array 
may be considered as a mask controlling the assignment. For example the 
absolute value of A may be generated by negating only its negative element 
as given below:

A(A.LT.O) = -  A

(vii) Programming examples
The constructs above are now used to illustrate how parallel coding can give 
concise and readily understandable interpretations of an algorithm. Three 
examples are used; the general one-dimensional mapping problem, matrix 
multiplication and the fast Fourier transform algorithm.

General mapping This problem can be neatly illustrated using the selection 
of a word or phrase from an alphabet. Thus given a one-dimensional array 
of characters, ALPHABET(27), which contains A through Z and blank, we 
wish to select a word or phrase, WORD(N), from this alphabet, using an 
integer array INDEX(N), which points to the corresponding letters in the 
alphabet.

Remember that the indirect indexing we have allowed is of the projection 
or rank-reducing type, and not the general mapping required by this example. 
The technique, therefore, is to expand the alphabet into a two-dimensional 
object by repetition N  times. The word can then be selected by indexing the 
first dimension, using the N  elements of INDEX. This gives the code below. 
The structures manipulated are illustrated in figure 4.6.

Matrix multiplication The second example given is matrix multiplication. 
It shows the correspondence between the mathematical and programming
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FIGURE 4.6 The data structures manipulated in the general mapping 
programming example.

notation. Notice also that in this example, all NLM  multiplications are 
expressed in parallel without loss of generality in the algorithm.

The product is formed by first expanding A and B so they become 
three-dimensional objects (figure 4.7). In the first A is repeated as the first 
two dimensions of the structure, in the second B is repeated as the last two 
dimensions. It can be seen that both these calls to XPND produce arrays
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FIGURE 4.7 The data structures manipulated in the matrix multipli-
cation programming example.

which conform (i.e., both have shape (N,Ai,L)). The product of these arrays 
is then reduced by summation over the middle dimension (i.e. for all M 
subspaces of shape (N,L)), giving the required result, an N  by L matrix, which 
is assigned to M ATMULT. Notice that in this form, declared with non-square 
matrices, any error in specifying the appropriate dimension selectors 
(1, 2, or 3) would produce a compile-time error, as either the multiplication 
or assignment would not conform.

This expression of the algorithm implies no sequencing whatsoever (this 
is now left to the compiler), so here all four variants of the algorithm 
(§5.3.1-§5.3.4) can be extracted from this one code.
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(iii) The fast Fourier transform
In §5.5.2 recursive equations are derived which define the fast Fourier 
transform as a sequence of partial transforms specified over a variable 
two-dimensional structure (equation (5.88)). The offset between elements 
combined together in these equations can also be considered as a third 
dimension of length 2, halving the range of the first dimension. This gives a 
simple transformation from equation (5.88) to the equations below:

end

repeat

It is now only a trivial transformation to express this in our parallel 
constructs, using a function RECUR (as in figures 5.13, 5.14 and 5.16). The 
function performs one pass of the sequence over /.

This code, when used with a calling sequence assigning RECUR to F, gives 
the transforms in place. It uses only the temporary storage defined by the 
array-valued function and returns the transformed values in bit reverse order. 
It is left as an exercise for the reader to recode the function using the flow 
diagram in figure 5.12, to produce the results in natural order.

Again it should be noted that this description of the algorithm incorporates 
all three schemes described in §5.5. Scheme A is obtained if the compiler 
sequences the last dimension of the arrays and scheme B is obtained if the 
compiler sequences the first dimension of the arrays. If, however, there is

end
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sufficient machine parallelism available, then sequencing neither dimension 
yields the parallel (PARAFT) scheme (§5.5.4). Thus with a suitable compiler, 
efficient machine code can be generated for an entire spectrum of computers, 
with n1/2 varying from 1 to N.

4.3.2 DAP FORTRAN—a constrained approach
DAP FORTRAN (ICL 1979a, b) is a language developed as its name suggests 
for the ICL DAP. This language was the only high-level language supported 
on the main-frame DAP (see §3.4.2) and has since been released as the 
programming language for the later mini-DAP (see §3.5.2). This language, 
although constraining arrays to take on the size and shape of the target array 
processor, has made major contributions to the further development of the 
future FORTRAN standards on array facilities. It implements many of the 
constructs found in the previous section, although on array objects constrained 
to the size of the target hardware, 64 x 64 for the main-frame DAP and 
32 x 32 for the mini-DAP. The language has also been the source of many 
of the array-oriented intrinsic functions proposed in the FORTRAN 8X 
standard.

(i) Data objects
Arrays are declared in DAP FORTRAN in the usual way, using the 
DIMENSION or TYPE statement. However vectors are declared with their 
first dimension elided and matrices with the first two dimensions elided. These 
are the constrained dimensions, which take on the DAP size of N  elements 
for a vector and iV x N fora  matrix. Sets of these objects may also be declared 
by using other dimensions.

DIMENSION V( ), VSET(,4)

REAL M(,),MSET(„4)

The examples above therefore define a single vector V and vector set VSET 
of four vectors, followed by a matrix M and matrix set M SET of four matrices. 
The unconstrained dimensions are for sequential access only and map onto 
the DAP store. Details of this mapping are described in §3.4.2. These 
dimensions are treated exactly as in standard FORTRAN.

As the parallel dimensions are constrained to the DAP array size, objects 
of like type conform. However when mixing objects of different type, coercion 
must be applied. DAP FORTRAN allows the coercion of scalars to types 
vector and matrix, and provides functions to coerce vectors to type matrix. 
The two functions MATR and MATC give matrices formed by repetition of 
a vector as rows, or columns, of the matrix respectively.
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(ii) Selection mechanisms
Selection mechanisms from constrained dimensions in DAP FORTRAN use 
integer, logical and integer vector indices, as described in §3.4.2. The vector 
or indirect indexing can be applied as a projection over all rows or all columns. 
This technique cannot however be used in the unconstrained dimensions, as 
it would imply separately indexed memories in each pe , which is not supported 
in the hardware.

All selection from constrained dimensions is rank-reducing, with the 
exception of selective updating (see §4.3.1). Thus a selection from a matrix 
gives either a single vector or a single scalar, and a selection from a vector 
always gives a scalar. There is no range selection mechanism, and logical 
selection must yield a unique result. Examples of these selection mechanisms 
are given below, for the following declarations:

REAL M(,),V( )

INTEGER u y i (  )

LOGICAL ML(,),VL( )

M (/,) row /  of M,

M ( , J ) column J  of M,

M( ¡,J) element I , J  of M,

V ( I ) element /  of V,

M(VL,) row of M,

M(,VL) column of M,

M(ML) element of M,

T(VL) element of V,

M(VI,) vector containing M(VI(/),/) in

M(,VI) vector containing Af(/,VI(/)) in

element /, 

element /.

In these examples, the vector and logical matrices must have one and only 
one element set to .TRUE., and the integer vector VI must have all of its 
elements in the range 1 to N. Indexing is generalised in DAP FORTRAN, 
by allowing suitable expressions in the place of variables in the above 
examples.

Routing can also be applied as an indexing operation using the + or — 
symbol in either of the constrained dimensions examples are given below.
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V( + )  shifts V one place to the left,

V( —) shifts V one place to the right,

M( + ,) shifts M one place to the north,

M( —,) shifts M one place to the south,

M(, + ) shifts M one place to the west,

M(, —) shifts M one place to the east,

M( + ) shifts M one place to the left, treated as a long vector,

M ( - )  shifts M one place to the right, treated as a long vector.

Shifts of greater than one place are expressed by the use of functions.

(in) Array assignments
Indexing expressions on the left-hand side of an assignment specify which 
selection from the variable is to be updated. This selective assignment can 
be used to make an assignment conform; for example a vector expression 
can be assigned to any valid vector selection from a matrix. Alternatively, 
selection may also allow the updating of a range of values, where the 
expression and left-hand side conform. In this case the selection only indicates 
which elements are to be assigned and which are to be left unchanged. For 
example consider the use of logical matrix, or logical vector indexing:

M(LM)=< matrix expression )

M(VL,) = <matrix expression)

In both of these cases, the restrictions which were placed on right-hand side 
indexing no longer apply. The logical matrix LM or logical vector LV can 
have more than one element true. Thus LM selects a set of elements to be 
updated and LV a set of row vectors. In both cases the elements selected for 
updating are taken from the corresponding elements in the matrix expression, 
and those not selected are left unchanged.

(iv) Functions
Because expressions in DAP FORTRAN can be matrix- or vector-valued, 
the function subprogram definition has been extended to include matrix and 
vector valued functions, as well as the more usual scalar-valued function. The 
type of the function is declared in the function statement. Thus

REAL MATRIX FUNCTION MATMULT

declares a function MATMULT which returns a real matrix valued result.
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In addition to the extension of a user-defined function, the standard or 
built-in FORTRAN functions have been made polymorphic. They return a 
value of the same type as their argument, with matrix and vector types being 
evaluated in parallel. Other built-in functions introduced into DAP FORTRAN 
include data manipulation functions, shift functions, selection functions and 
reduction functions. The reduction functions operate over either or both of 
the constrained dimensions, using arithmetic, relational or logical operators. 
Some examples are given below.

ALL

ANY

ANDROWS

ORCOLS

SUM

MAXP

.AND. over rows and columns 

.OR. over rows and columns 

.AND. over rows 

.OR. over columns 

+ over rows and columns

^  over rows and columns (gives logical position 
only)

(y) Examples
In the general mapping example, the code for DAP FORTRAN looks very 
similar to that given for the general parallel constructs (§4.3.2). This is because 
the size of the problem maps onto DAP array or the constrained dimensions 
in DAP FORTRAN. However, the code is only good for N  ^  64 (32). The 
arrays ALPHABET and WORD must also be padded with blanks to length 
64 or 32.

Notice here that the syntax requires the expression to be enclosed in 
parentheses in order to index it.

(vi) Matrix multiplication example
Again because of the constrained dimensions, the code given below multiplies 
matrices less than or equal to the DAP size. The variant of the algorithm 
used is the outer product, which has N 2 parallelism (§5.3.3).
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A variant of the general expression of matrix multiplication can also be 
contrived in DAP FORTRAN, for matrices of size 16 x 16,16 being the cube 
root of 642:

MATMULT( R0U( I 3)  ♦ AND ♦COL( J 3 ) ) = SIJM-4-SQUARE (
MATC-4 - SQUARE< A » 1 1» J 1 >

*
MATR- 4- SQUARE( B »12  » J 2 )

» 1 3 » J 3 )

where SUM-4-SQUARE, MATC-4-SQUARE and MATR-4-SQUARE are 
user-defined functions (Jesshope and Craigie 1980), which simulate a 163 
DAP, using a symmetric low-order interleaving over the 642 DAP array 
(Jesshope 1980c).

4.3.3 FORTRAN 8X—the new FORTRAN standard
Although in DAP FORTRAN above, the parallel data objects in the language 
map onto the target architecture, other languages proposed at about 
the same time took an unconstrained approach to introducing structure 
parallelism into FORTRAN. Two such examples are the BSP FORTRAN 
compiler, which combined the benefits of both vectorising capability and 
array constructs (Burroughs 1977e, Austin 1979), and VECTRAN, an 
experimental language developed by IBM, based on FORTRAN, and 
described in the papers by Paul and Wilson (1975, 1978).

Clearly, the separate development of many languages targeted on particular 
array and vector architectures is not an ideal situation. For this reason, the 
ANSI X3J3 Committee decided to consider array extensions as a feature to 
be added to the new FORTRAN standard that they were then considering. 
This decision was first considered in the ANSI committee which produced 
the FORTRAN 77 standard, but was discarded at that time with a 
recommendation that it be considered for inclusion in the next standard. 
Many of these array features are based on the constructs found in 
languages such as DAP FORTRAN, BSP FORTRAN and VECTRAN. 
These deliberations began almost a decade ago, but the X3J3 Committee, at 
the time of writing, has just been voting on a draft specification of the next 
FORTRAN standard. This is called FORTRAN 8X, and the name reflects 
the expected data for the full ANSI approval, i.e. by 198X. The sequence 
(66,77,88) is looking increasingly unlikely, as the standard will only be 
approved after the Committee has considered responses to a public review. 
Indeed the Committee is having difficulty in agreeing a draft specification 
for comment, as many delegates believe the language is becoming too large.

The new features of the proposed standard, which are of interest here, are 
those concerned with arrays and array processing (process or task parallelism 
is not one of the new additions to the language). The features described here
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are based on information obtained from the ANSI X3J3 working document 
(X3J3/S8, version 95) dated June 1985 and should not therefore be considered 
as fixed. They may be changed, removed or added to prior to acceptance as 
a proposed standard. Having given this disclaimer, we add that the array 
features described here have been stable for some time.

The array extensions in the new language follow quite closely the proposals 
outlined in §4.3.1. There has, however, been a new data type introduced as 
a consequence of the addition of the array-processing features. This new type 
is the BIT type, which has two values, M’ and ‘0’ and together with bit 
operations represents the two-value system of boolean mathematics. This 
type has been added to support the use of boolean mask variables to enable 
and disable array operations.

(/) Arrays as elemental data objects
Array objects are notionally rectangular, with an index for each dimension 
(up to seven) in the structure. The size of each dimension is called the extent 
of that dimension and the number of dimensions the rank of the array. A 
scalar has rank zero. The array size is the total number of elements or the 
product of extents. An array may have zero size. The shape of an array is 
defined by the rank and the extent in each dimension. Once declared, the 
rank of an array is constant but the extents need not be constant. Extents 
may vary for dummy arguments, local procedure arrays and alias arrays, 
details of which are given below. There is also a facility for changing the 
rank of an array, while the size remains constant, using the parameter/dummy 
argument interface on a procedure subprogram.

Two arrays are said to conform in the new language if they have the same 
shape, with the exception of the scalar, which is conformable with any array. 
As described in §4.3.1, any operation defined for scalars may be applied to 
conforming arrays and these are performed as if the scalar operation were 
applied to each element of the arrays and in such a way that it may be 
assumed that all operations occur simultaneously.

(¿0 Explicit-shape arrays
An explicit-shape array is one in which the array is defined with explicit 
values for the array dimension bounds, an optional lower bound and an 
upper bound for each dimension of the array. If variables are used in the 
definition of these bounds then the arrays must either be dummy arguments 
or local variables to a procedure, and in the latter case the array is termed 
automatic. The following are explicit-shape arrays.
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Here A is a two-dimensional array, with extent from 2 to 10 in the first 
dimension and extent from 5 to 30 in the second dimension; B is a 
three-dimensional array with extents of 1 to 10 in each dimension. If N were 
a variable, then the last array C would have to be a dummy argument or 
local variable to a procedure.

(iii) Assumed-shape arrays
An assumed-shape array is one in which the shape of the array is inherited 
from an actual argument passed to a procedure. An assumed-shape array 
may only appear in a procedure, where it will be declared as a dummy 
argument to that procedure. It will assume the shape of the actual argument 
when the procedure is referenced. The dummy argument may also be declared 
in an ARRAY statement,which confers array attributes to a variable. In this 
case the dummy argument and all other entities declared within the same 
ARRAY statement will all assume the shape of the actual argument, which 
becomes associated with the dummy argument. In this way a number of 
array objects, not necessarily dummy arguments, will assume the shape of 
an array parameter.

(iv) Allocate-shape arrays
An allocate-shape array is one in which the type, name and rank are declared, 
but whose shape or bounds are determined at run time when space is allocated 
by an ALLOCATE statement. Examples of allocate-shape arrays are given 
below.

The rank of the array is given by the number of colons, so these arrays 
have the same rank as the earlier explicit-shape array declarations. The size 
and shape of such allocate-shape arrays are undefined until the array has 
been allocated. No reference to it or any of its elements may be made until 
the array has been allocated.

(v) Array sections
As with the constructs introduced in §4.3.1, an array reference without 
subscripts implies the use of the whole array. If some computation is inferred, 
then this will be performed on all array elements, and in any order. There 
are exceptions to this where the lexical ordering is still required, such as in 
I/O  and data statements, for example. Elements of arrays may still be selected, 
by supplying a full list of subscripts, in the normal way. The number of 
subscripts required is given by the rank of the array. Each subscript variable 
used will reduce the rank of the section selected by one, so that if all subscripts
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are supplied, the rank of the section selected is zero, which corresponds to 
a scalar.

Alternatively, an array section may be selected by the use of index ranges 
in appropriate subscript positions. The section is therefore defined (as is the 
parent array) by the cartesian product of these index ranges. The subset is 
selected from the index range by means of a section selector, which takes 
one of two forms: a triplet defining base with extent and skip indices, giving 
a monotonic sequence, or a rank-one integer array. Using the triplet 
(separated by colons)

are both valid sections from the explicit-shape array defined above. The first 
is a vector of ten elements, defined using subscripts in the last two dimensions, 
and the second is a three-dimensional array formed using the odd indices 
from the first dimension. Exactly the same sections could have been defined 
using a rank-one array in the first subscript, i.e.

where in the first case IV = [1,2,3,4,5,6,7,8,9,10] and in the second case 
IV = [1,3,5,7,9]. In general, the number of indices and section selectors 
must match the rank of the parent array. The vector section selector may 
contain any sequence of indices which lie within the extent of the dimension 
in which it is placed.

As noted in §4.3.1, which introduced this mapping variant of vector 
selection, the list of indices may define a one-to-many mapping from the 
parent to the array section and this could lead to non-deterministic results 
if assignment were allowed to such array sections. The 8X definition forbids 
such assignment and also assignment via a parameter/dummy argument pair, 
if such implied assignment is non-deterministic.

(vi) ALIAS attribute and IDENTIFY statement
When is an array not an array? The answer is when it has the ALIAS attribute. 
An array name declared with this attribute is not an array object until it has 
been associated with an actual object by appearing in an IDENTIFY 
statement. The IDENTIFY statement has the flavour of a dynamically 
executed COMMON statement, as it overloads an area of memory with a 
number of different arrays, which may have different shape. However, unlike 
the COMMON statement this assignment of a named (ALIASed) array with 
an area of memory is performed by an executable statement, which may 
contain variables used to define the mapping of the ALIASed array over the 
actual array object.
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The IDENTIFY statement is probably one of the most controversial new 
features in the package for handling array processing. It is a means of 
providing a dynamic address mapping from the alias array into the parent 
array, although this mapping is constrained to be linear. This is rather like 
an array section, except that it provides a wider range of subsets of the parent 
array. A simple example will illustrate the use of this statement.

IDENTIFY(DIAG(I) = ARRAY(I, I), 1= 1:N)

In this example the array DIAG is an array of rank one, which is the ALIAS 
array; it has been associated with the storage in the parent array ARRAY, 
in such a way that the elements of DIAG map onto the diagonal of ARRAY. 
In general, the mapping onto the parent array can be any linear combination 
of the dummy subscripts of the alias array. There must be a range 
specifier given for the dummy subscript which defines the range over 
which the mapping is defined. In one statement, therefore, a linear subscript 
transformation and dynamic range can be specified.

Another example, given below, redefines the first 100 elements of a rank- 
one array VECTOR, to create a rank-two alias array ARRAY. In this example, 
the two dummy subscripts define the extent of the two dimensions of ARRAY, 
and the expected mapping of this aliasing is defined by the linear combination 
of these used to subscript VECTOR.

IDENTIFY(ARRAY(I,J) = VECTOR(I + 10*(J -  1)),

1=1:10, J = 1:10)

Any reference or assignment to the alias array will actually modify the 
elements of the host array, as specified by the subscript mapping. In the 
example given, therefore, an assignment to DIAG will modify the first N  
locations of the leading diagonal of ARRAY.

An alias array, once IDENTIFYed can be treated just like any other array 
object, including being subscripted or sectioned, being passed as an actual 
argument to a subprogram, or even as a parent object to another IDENTIFY 
statement. Non-deterministic use of a many-to-one ALIASing is not allowed, 
as there are similar restrictions to those applied on vector selectors.

It can be seen, therefore, that this is a very powerful feature for selecting 
subarrays. However, it is likely to prove difficult to implement on many 
processor arrays, for example the ICL DAP, for it implies the run-time 
manipulation of a global address space. It is far better suited to the vector 
supercomputer, where access to memory is sequential and is specified by a 
constant stride through memory, which simply provides the linear subscript 
translation. On a processor array it could, for example, be implemented using
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selective update over the parent structure, or if this were too inefficient it 
would require the assignment to an alias array, with subsequent mapping 
and merging with the parent array, as this is a runtime construct it is quite 
likely that packet-switched communication will be required.

(vii) Array intrinsic functions and procedures
Because the semantics of the new language allows the manipulation of array 
objects as first-class citizens, it allows their use as parameters in all the existing 
intrinsic functions in FORTRAN. It does this by making all such functions 
polymorphic, in much the same way as the operators are overloaded. Thus 
SIN(A) would produce as a result an object which conforms to its argument. 
Therefore, if A were a matrix of a given size or shape, the function would 
return another matrix, of the same size and shape, but whose elements were 
the values obtained by applying the SIN function to each of the argument’s 
elements.

There are also many new intrinsic functions in the FORTRAN 8X proposal, 
which have been added to support the array extensions to the language. For 
example, there are enquiry functions which will provide the range, rank or 
size of an array. There are also array manipulation functions, such as 
MERGE, SPREAD, REPLICATE, RESHAPE, PACK and UNPACK. Most 
of these functions have equivalent operators in the APL language (Iverson 
1962).

This section is not intended to give a complete description of the new 
FORTRAN standard, which in any case is not, at the time of writing, even 
a draft proposal. It attempts instead to give a flavour of the constructs of 
interest to users of array and vector parallel computers. The interested reader 
is referred to the source document (Campbell 1987), or its successor, which 
may be obtained from the Secretary of the ANSI X3J3 Committee. There is 
also a paper by the two British delegates on the FORTRAN X3J3 Committee 
(Reid and Wilson 1985) which gives examples of the use of the FORTRAN 
8X features, and the book Fortran 8X Explained by Metcalf and Reid (1987).

4.3.4 CMLISP
In contrast to the languages described above, which are based on the array 
structure and FORTRAN, this section describes a language based on the list 
data structure and the common LISP language. An introduction to the LISP 
language is given below (for continuity) however, the interested reader is 
referred to one of the many introductory books on this language (Winston 
and Horn 1981, Touretsky 1974).

In LISP, the central objects in the language are lists; even the functions 
that operate on them and their definitions are lists. Indeed, functions defined 
in LISP may take other functions as arguments or produce functions as
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results. These are known as higher-order functions and their use provides a 
very powerful and expressive programming environment. The reduction 
operator ‘ V in APL is a higher-order function; it takes another operator and 
an array as its arguments and applies the operator between every element 
of the array. For example, in APL. \  + A would sum the elements of A, and 
\*A  would form the product of elements of A.

In LISP the list is represented by a sequence of items, separated by space 
and enclosed by parentheses. For example:

item—is an atom;

(iteml item2)—is a list containing two atoms;

((iteml item2))—is a list containing one item, which is itself a list 
containing two atoms;

((iteml item2) item3)—is a list containing two items, one a list and 
one an atom.

The basic operations defined in LISP provide for the construction and 
dissolution of list objects, for example:

CAR—returns the first atom of a list;

CDR—returns the tail of the list;

CONS—returns a list constructed from an atom and a list;

LIST—returns a list constructed from atoms.

CMLISP (Hillis 1985) was designed as a programming environment for the 
connection machine and is based on common LISP, which has a long history 
at MIT. It is designed to support the parallel operations of the connection 
machine, which is a s i m d  machine. However, because of the expressiveness 
of the LISP language, it is possible to define MiMD-like operations in CMLISP. 
However, CMLISP does reflect the control flow of the host computer and 
microcontroller of the connection machine, while at the same time allowing 
operations to be expressed over parallel data structures. Connection machine 
LISP is to common LISP what FORTRAN 8X is to FORTRAN 77. The 
language is fully documented in Hillis and Steele (1985).

The three artifacts that have been added to the common LISP language 
to produce CMLISP are the xector, which is an expression of parallelism; 
the alpha notation, which is a higher-order function expressing parallelism 
of operation across a xector; and the beta reduction, which is a higher-order 
function expressing reduction. The beta reduction can be equivalent to the 
APL\operator described above.
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(0 The xector
The parallel data structure in CMLISP is called the xector, which loosely 
speaking corresponds to a set of processors or virtual processors and their 
corresponding values. It is a parallel data object and can be operated on, 
giving element-by-element results. In this sense it is reminiscent of the 
FORTRAN 8X array. CMLISP supports parallel operations to create, 
combine, modify and reduce xectors. Unlike DAP FORTRAN, the CMLISP 
xector is not hardware-dependent; the xector size or scope is not constrained, 
but can be of user-defined size. Indeed the xector’s size may vary dynamically.

Another difference between FORTRAN 8X and CMLISP arises from the 
nature of the data structures involved. In FORTRAN the data structure is 
the array, and a FORTRAN 8X array is, in essence, a parallel set of indices 
and values. However, because the structure is implicitly rectangular, the 
indices are not important. Manipulation of these indices is expressed in the 
language as a set of data movement operators, which shift the array in a 
given direction and for a given distance. In CMLISP the xector also comprises 
an index/value pair, where both index and value are LISP objects. Moreover, 
because the objects are lists, a significant coding will often be placed on the 
index set. In other words, the xector represents a function between LISP 
objects. The domain and range are sets of LISP objects and the mapping 
associates a single object in the range with each object in the domain. Each 
object in the range is an index and has a corresponding object in the domain, 
which is its value.

The implementation is such that it is assumed that each element of a xector 
is stored in a separate processor where the index is the name of that processor, 
an address stored in the memory of the host machine, and the value is the 
value stored at that processor. Hillis (1985) introduces a notation for 
representing xectors, as follows:

(John-►Mary Paul-►Joan Chris-♦Sue}.

Here the set of symbols John, Paul, Chris is mapped onto the set of symbols 
Mary, Joan, Sue. This notation reflects the view of a xector as a function. A 
special case of the xector is the set, where a set of symbols is mapped onto 
itself;

{red -+ red white -► white blue -► blue} 

which is equivalent to

{red white blue}.

Another special case is where the domain of the xector comprises a sequence 
of integers, starting from zero. This is essentially a rank-one FORTRAN 8X
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array, as it corresponds to an ordered set of values. The alternative notation 
suggested by Hillis reflects this:

which is equivalent to

The last special case is the constant xector, which maps every possible 
index value onto a constant value. For example, the xector which mapped 
all values onto the number 100 is represented by:

Xectors can be manipulated in LISP just as other LISP objects. For 
example, a xector can be assigned to a variable using the SETQ function. 
For instance:

This assignment sets the value of the symbol ‘Wife—of’ to the xector 
defined above. The ’ signifies that the item following is an atom. Having 
assigned a xector, the symbol can be used in other functions; for example, 
to reference a value

{XREF Wife—o f ’ John)

evaluates to Mary. Similarly XSET will change a value for a given index and 
XMOD will add another index value pair, if they do not already exist. 
Functions are also provided to convert between xectors and regular LISP 
objects. For example,

(LIST—TO—VECTOR’(5 2 10))

evaluates to the xector special case

(ii) The alpha notation
The alpha notation in CMLISP is a more formal means of expressing parallel 
operations than found in the other languages described here, for example 
FORTRAN 8X. Strictly speaking the alpha notation is the broadcast 
operator; it creates a constant xector of its argument, i.e. writes the same 
value in each processor. For example:
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More interestingly

which is a xector of -I- functions. When this object is applied to two xectors, 
the effect of applying it is to perform an elementwise composition of the 
values of the xectors. In FORTRAN 8X, this notation is implicit, as the 
operators have been overloaded, to represent both scalar and parallel 
operations, depending on context. Thus

and

In order to use the algebraic properties of the alpha notation, Hillis 
introduces its inverse operator, which cancels the effect of the application of 
alpha. This is useful if alpha is a factor of most items of an expression. For 
example

but if a or b evaluated to a xector, then the use of *•’ would cancel the 
application of a. Thus, if a were a xector,

Thus a is a parallel operator and • its inverse, or a way of marking already 
parallel objects, in an expression to be evaluated in parallel.

(iii) Beta reduction
The beta operator is similar to the APL reduction operator described above. 
When applied to an expression involving a binary operator and a single 
xector, it has the effect of modifying that operator to one that performs a 
reduction operation over that xector by applying the operation between each 
value of that xector. For example

The combined use of alpha and this use of the beta notation in CMLISP 
provides a very powerful tool for constructing all manner of functions. A 
number of function definitions which make use of this combination of 
operators are given below. In these examples alpha provides broadcast and
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allows all manner of associative operations, and beta gives reduction, a 
powerful set manipulation operation.

(DEFUN All—Same (xy)(/? AND (a = xy))).

This can be read, define a function called ‘All—Same’, with parameters x 
and y (xectors), which is defined as the beta reduction using logical AND of 
the xector result of the elementwise operation of equality between the 
parameters x and y . Only if all values of the xectors x and y are equal will 
the function return a value TRUE. A similar function, but which uses the logical 
operator, OR, is defined below. This would detect an equality between any 
two values with the same index.

(DEFUN One—Same (xy)(fi  OR (a = xy))).

The next example illustrates the use of the dot operator. In fact the definition 
differs only in the use of this symbol, applied to one of the parameters, and 
the factorisation of the operator a. The function Is—In behaves quite 
differently, however. It detects whether the item y is in the set of values defined 
by the xector x. The equality is now defined to be between the item y and 
the values of x. Alpha and dot are used to provide a consistent xector 
expression. This is a combination of associative and reduction operators:

(DEFUN Is— In (xy){P AND a ( = •xy))).

A final example defines the xector length, by summing a value of one, over 
every index of the xector parameter. This is achieved by the device of defining 
a function ‘Second—One’, which returns its second parameter. The use of 
this function within an alpha expression, using the dotted xector parameter 
x as the first parameter to the function, effectively produces a xector of ones, 
of the same size as x:

(DEFUN Xector— Length (x)(/? + a (Second—One*x 1)))

(DEFUN Second—One (xy)(y))

The use of beta as described in the examples above is only a special case 
of a more generalised function. In its most general form, /? takes two xectors 
as arguments. It returns a third xector, which is created from the values of 
the first xector and the indices of the second xector. This is illustrated in the 
example below:

In fact this can be viewed as a routing operation, for it sends the values 
of the first xector to the indices specified by the second xector. For example,
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in a packet-routing network, the operation performed at each processor 
would be to emit a packet into the network, whose data was its value from 
the first xector, and whose address was its value from the second xector. Of 
course the resulting xector, defined by the arrival of those messages, is 
undefined if the second xector contains replicated values. In CMLISP this 
condition is regarded as an error. However, if /? is used in conjunction with 
another operator, this specifies a reduction operation to be performed on 
any clashes of index (address). So whereas

it is found that

The special case described above, with only a single xector argument, 
assumes the second argument to be the constant xector, so that all values of 
the first xector are reduced by the qualifying operator. The implementation 
will define which index, or processor number, the reduction is performed to. 
In a s i m d  machine, this is naturally the control sequencer.

4.4 PROCESS PARALLELISM

4.4.1 Introduction
As introduced in the previous section, there are two fundamental techniques 
available to explicitly express parallelism; structure parallelism and process 
parallelism. The previous section also described various implementations of 
the first of these, structure parallelism. However, CMLISP, and even APL, 
both provide mechanisms which treat operators as the basic values of the 
parallel data structure. We could, of course, imagine whole programs as being 
the components of the parallel structure, in which case we have a description 
of process parallelism. To reiterate then, the distinction is one of granularity, 
for structure parallelism was defined above as the granularity of a single 
operation over every element of a data structure. Process parallelism, however, 
requires distributed sequences of operations.

The underlying computational model and the manner in which load is 
balanced across a system is also very different between these two approaches. 
As has been shown in the previous section, in structure parallelism one can 
consider the processors to be associated one per data structure element, with 
activated data being mapped onto the available processors in order to balance 
the load. Thus, load sharing is achieved through data structure element 
redistribution. In process parallelism, however, the process is virtualised and
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load balancing occurs by the distribution of processes across the processors. 
The unit of distribution is the code, and of course its associated data and 
state. The virtualisation in this case involves maintaining a number of 
instruction streams on a single processor.

Because each process involves a considerable overhead in terms of 
establishing an instruction stream, there is a penalty in implementing a high 
degree of concurrency, using process parallelism. To some extent, the 
transputer and OCCAM is the first system to reduce this overhead to a 
manageable level. The penalty paid is a static process structure, established 
at compile time. Dynamic process creation and deletion, while being more 
flexible, will necessarily incur a greater overhead for concurrency and will 
therefore require a coarser granularity for efficiency. This is one of the major 
problems that is being tackled by researchers in declarative systems—that 
of controlling the grain size of the processes being created.

Historically, process parallelism has evolved to exploit the non-deterministic 
sharing of the resources of a single processor and not from the need to exploit 
concurrent hardware. This sharing allowed the c pu , then the single most 
expensive resource in a main-frame, to be effectively utilised. For when a 
program had to wait on a slow input or output device, the ‘wasted’ cpu  
cycles could then be used by another program.

Four fundamentals are required for any process-oriented language: a 
method of initiating and terminating concurrent tasks (for example, the 
fork and join procedures in UNIX); a means of communicating between 
concurrent tasks, either implemented as a message-passing system or by 
shared memory; a means of synchronising tasks, so that they can share a 
common time reference, however vague; and finally a means of determining 
choice, or non-determinism. In many languages more than one of these 
requirements may be merged into a single construct or underlying im-
plementation. For example, the choice of shared memory provides both 
communication and non-determinism, for it allows information written by 
one task to be read from another. Moreover, if more than one task has write 
access to a given location, then a reading task cannot know, without further 
information, which was the writing task.

Another difference between these two techniques is that whereas the use 
of structure parallelism results in very concise code, which is easier to 
understand and debug than sequential code, the use of process parallelism 
creates more pitfalls for the unwary programmer, such as deadlock, which 
is where two or more processes are in a state such that each is waiting for 
an event or communication from one of the other processes. The simplest 
situation is where two processes wish to communicate with each other, but 
both are programmed to read from the other before writing; they will both
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wait forever, or for a system time-out, as neither can write before reading. 
Breaking the programmed symmetry breaks the deadlock.

It is the fundamental asynchrony, or global non-determinism, which makes 
programming in this model difficult. Consider that we have n instruction 
streams, and that it is possible to give a time reference for any instruction 
in the overall system. Consider what the next state of the system is after a 
given instruction has executed. In the absence of any synchronisation, there 
are n possible choices of the next state of the system, following that n2, etc. 
It is this exponential growth of trace that makes debugging process-based 
languages so very difficult. A classical situation is the manner in which a bug 
will mysteriously vanish when code to trace the system’s behaviour is added 
to a faulty program. This is, of course, because the timing of the system has 
been altered.

This is one small section in a book covering all aspects of parallelism, and 
we restrict ourselves here to a discussion of one process-based language, OCCAM 
The reason this language has been chosen is because it is a complementary 
language to the transputer. Indeed, the OCCAM language is very intimately 
related to the transputer hardware, and it is recommended that this section 
and §3.5.4, describing the transputer, should be read together.

For more details about other process-based languages and a more general 
discussion on the theory of this approach, the reader is referred to an excellent 
introduction to this topic (Ben-Ari 1982), and the book Communicating 
Sequential Processes by Hoare (1986).

4.4.2 OCCAM—a minimalist approach
One of the most elegant schemes that has been proposed for process 
synchronisation is that implemented in communicating sequential processes 
(c s p) (Hoare 1978, 1986), by unbuffered point-to-point communication, c s p 
has been chosen by INMOS as the basis for a language for the transputer. 
That language is called OCCAM (May and Taylor 1984, INMOS 1984, 
Jones 1985, INMOS 1986, Pountain 1986a) and it is designed to support 
explicit hardware concurrency. It therefore reflects the concurrency found in 
the transputer, or to put it another way, transputers are designed to implement 
the programming language OCCAM very efficiently. Although transputers 
will also provide efficient implementation of most modern languages, 
concurrency in transputer systems is only available through OCCAM.

(i) Processes and process construction
OCCAM programs can be described as processes which perform actions and 
terminate. This concept of the process can be viewed at many levels within 
the program. Indeed, the entire program can be considered as a process which
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starts, performs some actions and then terminates. At the lowest level, the 
primitives of the language are themselves considered as processes and are 
called primitive processes. Composite processes can be constructed from 
primitive or other constructed processes by a number of process constructors. 
The scope of these constructors is indicated in the text of the program by a 
fixed layout, with indentation of two spaces. For example,

SEQ

A

B

is read: perform in sequence first the process A and then the process B. A 
similar constructor is used to express parallel execution of processes:

PAR

A

B

This reads: perform the processes A and B in parallel. Both constructed 
processes terminate only after all of their constituent processes terminate. 
However, if process A did not terminate in the SEQ construction, process B 
would not start; whereas in the PAR construction, if process A did not 
terminate, process B would still have a chance to execute and terminate.

The parallel and sequential constructors may be freely mixed, with their 
scope determined by indentation and outdentation. For example:

PAR

SEQ

A

B

SEQ

C

D

Here two processes are executed in parallel; one is the sequence of process 
A followed by B, the other is the sequence of process C followed by process D.

It is shown above how processes, including the language’s primitives, 
can be combined to execute in sequence or in parallel, this latter being the
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first fundamental described in the introduction. However, what of the 
rules concerning communication between these processes? Sequentially 
constructed processes may share memory, for they will be executed on a 
single processor and reflect the flow of control found in other sequential 
languages. However, the constituent processes of a PAR constructor are not 
allowed to share memory, even though they may be executing on the same 
processor. All communication between parallel processes in OCCAM must 
be via communication links joining those processes. These are called 
OCCAM channels. They are labelled and provide point-to-point, unbuffered 
communication between the processes to which they are attached.

All active OCCAM processes are constructed from three primitive 
processes, namely input, output and assignment. Input and output are the 
communication primitives and are used in pairs between parallel processes, 
using a named channel. For example:

PAR

chan!a -f b 

chan?c
The two parallel primitive processes communicate with each other by 

writing (!) and reading (?) across the named channel ‘chan’. This constructed 
process is formally equivalent to the assignment process below, assignment 
being the other primitive process in OCCAM:

c:= a + b
The only reason to write this action in a parallel way would be to assign 

from one processor to another. A little more thought will reveal that this 
transformation from assignment to communication is one which introduces 
parallelism from a sequential construct.

There are two further primitive processes, but these do no useful work. 
The SKIP process starts, does nothing and terminates, and is used where 
the OCCAM syntax requires a process in a constructor, but the algorithm 
requires no action. The second process that does nothing is the STOP process. 
As its name implies, this process starts, does nothing, but does not terminate. 
For example, the process

SEQ

A

B

STOP

C
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is formally equivalent to 

SEQ 

A 

B

STOP

as process C will never execute.

(ii) Synchronisation and configuration
As in c sp , the communication channel between parallel processes is 
unbuffered. Thus, whichever process on a channel becomes ready first will 
wait for the other process to reach its communication primitive. There is a 
handshake implicit in the implementation of this communication sequence, 
for the first process ready must signal the other that it is waiting. For details 
of this implementation see §3.5.4. The communication therefore gives a global 
time reference between the two parallel processes. If synchronisation is not 
important to the execution of a program, for example in a producer-consumer 
situation, the user can add buffering processes. Ideally, the buffer process 
should always be ready to accept input or output. It must of course run in 
parallel with both producer and consumer processes. The communication 
structure of such a program is shown below. If the buffer provides sufficient 
storage to even out the flow of traffic between producer and consumer, they 
can then both proceed in their own time, blissfully unaware of the other’s 
existence.

PAR

—producer 

out!...

—buffer 

PAR 

out?... 

in!...

—consumer 

in?...

An OCCAM program is said to be configured when OCCAM channels 
are assigned to the physical links on a transputer. When this is done, the
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OCCAM program provides a static process structure, which at some level 
of its hierarchy is mapped onto the network of transputers. OCCAM 
programs thus provide code for executing on transputers, as well as 
information defining the network connecting them. Indeed, it is often useful 
to consider OCCAM processes as balloons and OCCAM channels as arcs 
connecting them. Such a process diagram is given in figure 4.8.

The handshake providing synchronisation between transputers is generated 
by the link hardware during the communication process. If more than one 
parallel process is executing on a single processor and one process is awaiting

PROC TWIDDLE(CHAN m.n.o.p VAR w,z)
VAR ptr 
ptr = 4
WHILE TRUE 

SEQ
VAR a[6],/>[6],c[6],£/[6],f[2]
PAR

m?a[jptr for 2] 
n?b [ptr for 2]
SEQ

PAR
i [ 0] = 6  [ptr — 2]*w — [ ptr — 1 ]*z 
i[1 ] = 6 [ptr — 2] *z + A [ptr -  1 ] *w 

PAR
c[ptr — 2] = a [ptr - 2 ]  +t[0] 
c [ ptr — 1 ] = a [ ptr — 1 ] + f [ 1 ] 
d[ ptr- 2 ]  =d[  ptr- 2 ]  — f [0] 
tf[ptr —1]=tf[ptr —1 ] —f[1] 

o !c [p tr-4  for 2] 
p !d [ptr — 4 for 2] 

ptr = (ptr + 2 )\6

FIGURE 4.8 The fast Fourier transform expressed algorithmically as 
sets of communicating processes, each of which applies complex multiply 
and add/subtract to the inputs. The communication binding would 
provide the usual butterfly network.
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a synchronising event, then that process is deschedulecl and other processes 
may compete for the processor’s resources. On receipt of that event, the 
suspended process is rescheduled. In this way the non-deterministic loading 
of transputers in a system may be evened out, although the overall static 
loading must be decided by the programmer. Later implementations of 
OCCAM may well relax this static process description.

In communication between two processes running on a single transputer, 
the OCCAM channels are implemented by moving data within the trans-
puter’s memory, using the same synchronising protocol as is applied to the 
link. Moreover, the same transputer orders are used for both situations, 
allowing precompiled code to have a channel assigned to a link or a 
memory location. It is thus possible to port an OCCAM program between 
physically different transputer networks, by exchanging time-shared for real 
concurrency, but only if a partitioning of the static process network can be 
found which is isomorphic to the physical transputer network. If such a 
partitioning exists, then the only required changes to the OCCAM code are 
the statements which allocate channels to links.

(iii) Choice and non-determinism
Like other sequential languages, OCCAM has other constructors, which 
allow a choice of action. The first of these is a looping construct. For 
example:

WHILE condition 

SEQ 

A 

B

This construct executes its body repeatedly until the controlling condition 
becomes FALSE, at which point it terminates. In this example the body is a 
process comprising the sequence of processes A and B.

The second conventional mechanism for choice in OCCAM is a generalised 
IF constructor, which allows conditional processes. The semantics of the IF 
statement are similar to the CASE statement from PASCAL, for example. 
The IF statement can take any number of processes, each of which must 
have a test or guard associated with it. The IF statement starts, evaluates 
each test in the order written and executes the first process whose test evaluates 
to TRUE; it then terminates. An IF statement without any components 
therefore acts like a STOP process. Each test does not have to partition the 
test space into disjoint sets, but to ensure termination of the IF statement
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the space must be covered. For this reason, an IF statement will often finish 
with a combination of TRUE and SKIP. For example:

IF

a = 1 

A

a = 2 

B

TRUE

SKIP

This code provides choices for a = 1 and a = 2, and covers the test space 
with the TRUE condition. Because of the semantics of the statement, the 
SKIP process will only be executed if a is not equal to one and is not equal 
to two.

The IF statement provides deterministic choice within an OCCAM 
program; the choice is determined by the value of variables within the scope 
of the constructor, and the semantics of its execution. The same cannot be 
said if choice were to be determined by the state of a channel, for the 
state of channels cannot be determined at any given time because they 
are asynchronous. Thus, non-deterministic choice is provided by another 
constructor, the ALT. The ALT constructor provides a number of alternative 
processes and, like the IF constructor, each process has a choice which 
determines the process to execute. Unlike the IF constructor, the choices 
must include an input on a channel; they may also contain a condition (as 
in the IF constructor). The choices in an ALT constructor are called guards, 
after Dijkstra (1975). For example:

running := TRUE

VAR x

WHILE running 

ALT

chanl ? x and RUNNING 

chan3! x

chan2 ? x and RUNNING 

chan3! x
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onoff? ANY 

running := NOT running

This program will multiplex inputs received from channels 1 and 2 onto 
channel 3, until it receives any input on the channel ‘onofT. The ALT process 
will start, wait for one of the non-deterministic choices to be satisfied (in this 
case by waiting for an input and evaluating the condition), execute the 
guarded process, and then terminate.

This program also illustrates a number of other aspects about OCCAM; 
for example the input to ANY provides a signal, as the data associated with 
the communication is discarded. Only the synchronisation is relevant. Notice 
also how the program is terminated. The variable ‘running’ must be set as 
a guarded process in this example, otherwise the ALT statement may not 
terminate (an ALT process behaves like an IF process in this respect). For 
example, it could be reset after the WHILE test, but before the ALT test, in 
which case none of the guards would ever be satisfied on that pass of the 
WHILE process. The program illustrates variable declaration, which can be 
associated with any process or construct in the language, and its scope is 
determined by the persistence of that process. Thus the variable x would be 
allocated off the process stack prior to the execution of the WHILE 
constructor, and reclaimed after it has terminated. Indeed it is possible, 
although a little silly, to do the following:

(iv) Replicators
With sequential, as well as parallel, constructors, it is often desirable to use 
replication. OCCAM allows this as an extension of the syntax of the respective 
constructors. For example:

SEQ i = 0 FOR 5

A

B

will perform the sequence of processes A then B, five times. The processes 
may contain arrays which use i as an index, or may use / as a label in other 
ways, just as in other sequential loop constructs. The values taken by i are 
[0 1 2 3 4]. The use of the parallel replicator is more interesting, for
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with it arrays of parallel processes may be described. For example:

PAR i = 0 FOR 32 

PAR 7 = 0 FOR 32 

A

will set up a two-dimensional array of processes A. The replicator variables 
can now be used to select from arrays of channels, and to describe 
communication between these replications of this process. It should be noted 
that the requirement for static networks in current implementations of 
OCCAM mandate a constant or constant expression for the replicator 
count.

It is clear that in this text we can only provide an introduction to the 
OCCAM language. For further reading, the reader may wish to refer to 
INMOS (1984) and Jones (1985) for an introduction to OCCAM I, to 
INMOS (1986) and Pountain (1986a) for an introduction to OCCAM II, 
and to Hoare (1986) and Roscoe and Hoare (1986) for a more theoretical 
treatment of CSP and OCCAM.

4.5 TECHNIQUES FOR EXPLOITING PARALLELISM

To complete this chapter on parallel languages we summarise a number of 
techniques which can be applied to the solution of a problem. The choice of 
technique will depend on many factors, including the languages available, 
the underlying model of parallelism, and the parameters of its implementation. 
However, the same algorithm may be implemented in many cases using all 
three of the techniques outlined below.

For example, using transputer networks the model is one of process 
parallelism and the most important parameter which must be considered is 
that of link communication bandwidth, discussed in §3.5.5. This will determine 
the granularity with which a program or its data may be partitioned for 
distribution on a network of transputers (assuming, of course, that the 
program requires communications). For a given algorithm, the granularity 
and hence efficiency may well be different using the different techniques 
described below.

4.5.1 The processor farm
This is one of the simplest methods of exploiting parallelism. It can be used 
in applications where discrete bundles of processing can be ‘farmed out’ to 
an available processor. These processes may well be identical, but must be
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independent. For example, in experimental high-energy physics vast amounts 
of data are produced from experiments. This data must be analysed for 
significant events. Each event, once recognised, may require a large amount 
of processing to determine whether it is significant or not. The processing of 
this data may be farmed out to a processor, while other events are being 
recognised and processed on other processors. The processors can be allocated 
from a pool of available processors. This is sometimes called event parallelism.

There are many other applications in which this technique may be 
exploited, for example the processing of independent shapes in ic design mask 
data, or the calculation of independent pixels of colour in the Mandlebrot 
set calculation. In all cases, the allocation of units of work of sufficient size 
to a worker processor would be performed by a supervisor process, whose 
only task was to distribute work and collate results.

The requirement for efficient operation of this methodology is to have 
independent units of processing which require no (significant) inter-
communication, in terms of their computational requirement, when compared 
with the overhead of distributing the work and collating the results. There 
is still a communications requirement, which should ideally be overlapped 
with the processing activity. The load on the supervisor will also limit the 
granularity of the unit of computation.

Process structures for implementing processor farms are illustrated in 
figure 4.9(a). Figure 4.9(h) shows a single-level model, where work is 
distributed along a linear structure when requested, or even continuously, 
with results being collected along back channels. Each process, which would 
be physically distributed, would contain code for receiving and forwarding 
work (which would depend on the buffering scheme used), and a copy of the 
program to be executed.

Figure 4.9(c) shows a hierarchical structure for a processor farm, where 
all but the leaf nodes would contain a supervisor process, receiving and 
distributing work, and a copy of the program to be executed. The leaf nodes 
would require only a simple buffering process plus the program.

4.5.2 Algorithmic parallelism
The second technique relates to pipeline structures. In this technique, a 
program or process is partitioned and distributed across a network of 
processors, or processing agents. Each partition executes in parallel on its 
own data, or data that it receives from other partitions of the program. Where 
there are sequential constraints on the evaluation of the partitions of the 
program, pipelining may be brought into play to maintain concurrency. 
Where pipelining is used, there is a requirement for streams of data to be
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FIGURE 4.9 The concept of the processor farm. (a) Model of the 
processor farm, (b) A linear network of farm processes, (c) A tree network 
of farm processes.

processed by each partition, so that any start-up imposed by sequence may 
be amortised.

The network of processors required for this technique must ideally reflect 
the data flow of the given algorithm. It should in fact form a static data flow 
graph of the algorithm. The granularity of the distributed processes could 
theoretically be at the level of a single operation, as in a fine grain dynamic 
data flow machine (Gurd and Watson 1980, Watson and Gurd 1982), or 
even finer if we consider the microprogramming of pipelined architectures. 
Alternatively, the granularity could be at the program level, as in UNIX 
piped processes. The granularity of the processes must be determined by the 
ratio of time required for processing, compared with the time required for 
communicating any data to a given process.



TECHNIQUES FOR EXPLOITING PARALLELISM 431

This is a highly effective way to program the transputer, for example, 
especially if the code and data required in each transputer is small compared 
with its on-chip memory, as this gives a system with a high density of 
processing power and low density of distributed memory. Indeed, if the 
program partitions are sufficiently small, all data and the program may be 
held in the on chip memory, 4 Kbytes in the case of the T800.

This technique has often been exploited in special-purpose hardware, for 
example in digital signal processing. However, given a programmable 
component, such as the transputer, many applications could exploit common 
hardware. The problem is that unless the network accurately reflects the 
data flow graph of the application, the granularity of the distributed processes 
will become unacceptably large. This is due to the additional latency, larger 
processor overhead, and the lower bandwidth associated with data forwarding 
between non-adjacent transputers. An example of a f f t  implementation is 
given in figure 4.8, where a subset of the process network is shown, together 
with the fragment of OCCAM 1 which executes on each transputer.

4.5.3 Geometric parallelism
The final technique for exploiting replication involves a partitioning of data, 
rather than code. If a given algorithm can process a large data structure 
concurrently, then it may be partitioned over a network of processors. In 
this case, the algorithm normally used to process that data would simply be 
replicated on every processor in the network. The algorithm would then be 
applied to the local partition of the data structure, together with any data 
communicated from other partitions.

It is important, for the reasons outlined in §3.3, that the underlying network 
reflect the communications patterns required between partitions of the data 
structure.



5 Parallel Algorithms

5.1 GENERAL PRINCIPLES

In order to obtain the optimum performance from any computer it is necessary 
to tailor the computer program to suit the architecture of the computer. This 
has always been the case, even on serial computers, and remains so. It is the 
reason why carefully written assembler code which takes into account the 
structure of the computer can still outperform the code produced by the most 
sophisticated compilers. What has changed with the advent of the parallel 
computer is the ratio between the performance of a good and a bad computer 
program. This ratio is not likely to exceed a factor of two or three on a serial 
computer, whereas factors of ten or more are not uncommon on parallel 
computers. Quite simply the stakes in the programming game have been 
substantially raised.

We make no attempt in this chapter to survey parallel algorithms in all 
major areas of numerical analysis—such a task would require a volume to 
itself. Instead we have selected a series of related problems that illustrate the 
kind of considerations that are likely to be important in choosing an 
algorithm, and show how the relative performance of algorithms can be 
analysed in a simple way using the concepts introduced in Chapter 1. We 
start in §5.2 with the simple problem of finding the sum of a set of numbers, 
and then extend the techniques to the solution of the general first-order 
recurrence. Matrix multiplication (§5.3) is another simple problem that 
demonstrates a variety of approaches, each of which is suited to a different 
type of parallel computer. Tridiagonal systems of equations (§5.4) and 
transforms (§5.5) both occur very frequently and deserve special consideration. 
The results obtained in these last two sections are then used in §5.6 to analyse 
different iterative and direct methods for the solution of partial differential 
equations. This section lays special emphasis on rapid transform methods 
that are applicable to certain classes of simple partial differential equations, such

4 3 2
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as Poisson’s equation. Of the many areas that we do not have the space to 
consider, the most important are probably optimisation, root finding, 
ordinary differential equations, full and sparse general linear equations, and 
matrix inversion and eigenvalue determination. The reader is referred to 
Miranker (1971), Poole and Voight (1974), Sameh (1977), Heller (1978) and 
the references therein for a discussion of some of these topics. Other 
perspectives on parallel computation are given by Kulisch and Miranker 
(1983) and Rung (1980).

The analysis of a parallel algorithm must be performed within the 
framework of a particular computational timing model. Here we use 
the (r^, nl/2) model of the timing behaviour of the hardware (§1.3.2) to 
develop the n 1/2 method of algorithm analysis for s i m d  computation (§5.1.6), 
and the s 1/2 method of analysis for m i m d  computation (§5.1.7). Many other 
models exist, for example that of Bossavit (1984) for vector computation, 
and Kuck (1978) and Calahan (1984) for m i m d  computation.

Until 1984 there was no journal exclusively devoted to the publication of 
algorithms for parallel computers. Most publications appeared in the USA 
in IEEE Transactions on Computers, the Journal and Communications of the 
Association of Computing Machinery or the Journal of Computational Physics 
(Academic Press). In Europe the principal source is Computer Physics 
Communications (North-Holland), which contains the proceedings of the 
conferences on Vector and Parallel Processors in Computational Science 
(VAPP 1982, 1985) held in Chester in 1981 and Oxford in 1984. Other recent 
European conferences with published proceedings containing parallel algorithms 
were Conpar 81 (Händler 1981) and Parallel Computing 83, 85 (Feilmeier, 
Joubert and Schendel 1984, 1986). The principle conference in the USA is 
the International Conference on Parallel Processing which takes place yearly 
and is published by the IEEE Computer Society Press. In 1984 two new 
journals appeared devoted entirely to the problems of parallel computation: 
these are Parallel Computing (North-Holland) and the Journal of Parallel 
and Distributed Computing (Academic Press). The journal Computers and 
Artificial Intelligence, published by the Slovak Academy of Sciences since 
1982 with papers in English or Russian, also covers parallel algorithms. 
Another principal source for parallel algorithms are edited collections of 
papers by the leading practitioners, often resulting from specialist one-off 
conferences. Examples of these are: High Speed Computers and Algorithm 
Organization (Kuck et al 1977); Parallel Computations (Rodrigue 1982); 
Parallel Processing Systems (Evans 1982); High-speed Computation (Kowalik 
1984); Algorithms, Software and Hardware of Parallel Computers (Miklosko 
and Kotov 1984); Distributed Computing (Chambers et al 1984); Distributed 
Computing Systems Programme (Duce 1984); Introduction to Numerical
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Methods for Parallel Computers (Schendel 1984); Parallel MIMD Computation 
(Kowalik 1985); Vector and Parallel Processors for Scientific Computation 
(Sguazzerò 1986); and Scientific Computing on Vector Computers (Schönauer 
1987). It seems, from the explosive growth of publications since 1984, that 
parallel computation has established itself as an independent field of study.

5.1.1 Algorithm performance
We will define the performance of a computer program or algorithm to be 
inversely proportional to the c pu  tim et consumed during the execution of 
the program. In other words a high-performance program reaches its goal 
in the least time. Thus in this context the objective is to minimise the cpu  
time that is used to obtain the solution to the problem. This is not the only 
definition of performance that could have been given—we might have asked 
for minimum cost on a particular computer installation or for the least use 
of memory. However, the improvement in performance by our definition is 
usually desirable and is the easiest to quantify. Any reference to cost is subject 
to the vagaries of individual charging algorithms, and the availability of very 
large fast computer memories (256 Mword seems to be becoming the norm 
on parallel computers) means that the use of memory is not likely to be an 
important constraint.

It is interesting to note that on the first generation of computers, for 
example the EDS AC which had a total fast memory of only 512 words 
(Wilkes et al 1951), the minimum use of memory was the most important 
design criterion and special algorithms were devised to satisfy it, for example 
Gill’s variation of the Runge-Kutta method for the solution of ordinary 
differential equations (Gill 1951 ). It is also important to realise that on parallel 
computers, the goal of minimum execution time is not necessarily synonymous 
with performing the minimum number of arithmetic operations in the way 
that it is on a serial computer. This will become evident from the examples 
given in this chapter, and arises because the gains in speed resulting from 
increasing the amount of parallel execution in an algorithm may outweigh 
the cost of introducing extra arithmetic operations. Thus although it is 
sensible to measure the hardware performance of a computer in terms of the 
number of floating-point operations executed per second, such a measure 
alone is insufficient to assess the performance of an algorithm on a parallel 
computer (see §§5.1.6 and 5.1.7).

The performance of a computer program depends both on the suitability 
of the numerical procedure—known as the algorithm—that is used to solve

t  Central processing unit time— the time during which the computational units of a 
computer (arithmetic and logic) are used by a program. It does not include time for 
input and output.
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the problem and on the skill with which the algorithm is implemented on 
the computer by the programmer or compiler during the operation of coding. 
In this chapter we examine the algorithms that are suitable for the solution 
of a range of common problems on parallel computers. If the parallelism in 
the algorithm matches the parallelism of the computer it is almost certain 
that a high-performance code can be written by an experienced programmer. 
However, it is outside the scope of this book to consider the details of 
programming for any particular computer, and the reader is referred to the 
programming manuals for his particular computer. Most parallel computers 
provide a vectorising compiler from a high-level language, usually FORTRAN 
with or without array processing extensions (see Chapter 4), and it should 
be possible to realise most of the potential performance in such a language 
In most cases it will be necessary to code the key parts of the program in 
assembler language—thereby controlling all the architectural features of the 
machine—if the ultimate performance is to be obtained (for example supervector 
performance on the CRAY X-MP, see Chapter 2).

5.1.2 Parallelism
At any stage within an algorithm, the parallelism of the algorithm is defined 
as the number of arithmetic operations that are independent and can therefore 
be performed in parallel, that is to say concurrently or simultaneously. On 
a pipelined computer the data for the operations would be defined as vectors 
and the operation would be performed nearly simultaneously as one vector 
instruction. The parallelism is then the same as the vector length. On a 
processor array the data for each operation are allocated to different 
processing elements of the array and the operations on all elements are 
performed at the same time in response to the interpretation of one instruction 
in the master control unit. The parallelism is then the number of data elements 
being operated upon in parallel in this way. The parallelism may remain 
constant during the different stages of an algorithm (as in the case of matrix 
multiplication, §5.3) or it may vary from stage to stage (as in the case of 
SERICR, the serial form of cyclic reduction, §5.4.3).

The architecture of parallel computers is often such as to achieve the best 
performance when operations take place on vectors with certain lengths (that 
is to say, certain numbers of elements). We shall refer to this as the natural 
hardware parallelism of the computer. The 64 x 64 ICL DAP, for example, 
provides three types of storage and modes of arithmetic for vectors of, 
respectively, length one (horizontal storage and scalar mode), length 64 
(horizontal storage and vector mode) and length 4096 (vertical storage and 
matrix mode). Although these modes are achieved through software, they 
are chosen to match the hardware dimensions of the DAP array and thus
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constitute three levels of natural parallelism, each with its own level of 
performance (see §3.4.2). On pipelined computers without vector registers, such 
as the CYBER 205, the average performance (equations (1.9) and figure 1.16) 
increases monotonically as the vector length increases, and one can only say 
the natural hardware parallelism is as long as possible (up to maximum 
vector length allowed by the hardware of the machine, namely 64K — 1). On 
pipelined computers with vector registers, such as the CRAY X-MP, the 
performance is best for vector lengths that are multiples of the number of 
elements held in a vector register. In the case of the CRAY X-MP with vector 
registers holding 64 elements of a vector, the natural parallelism is 64 and 
multiples thereof.

The objective of a good programmer/numerical analyst is to find a method 
of solution that makes the best match between the parallelism of the algorithm 
and the natural parallelism of the computer.

5.1.3 The paracomputer and efficiency
In order to assess the performance of processor arrays, Schwartz (1980) has 
introduced the concept of the paracomputer. This computer is an infinite s i m d  

array of processing elements, each of which may access a common memory 
in parallel for any piece of data. Any algorithm would have its maximum 
performance on such a computer because the normal causes of inefficiency 
are eliminated. The paracomputer suffers no routing delays or memory 
conflicts (§5.1.4 and §5.1.5) and always has sufficient processing elements. 
Although the paracomputer can never be built, it is a useful concept for 
assessing the performance of algorithms and actual processor arrays. For 
example, one can define the para-efficiency as

_  time to execute on the paracomputer 
p time to execute on an actual computer ($.1)

where we assume that the processing elements have the same hardware 
performance on the para- and actual computers.

One may also use the ratio of the execution times on the paracomputer 
for two algorithms as a relative measure of their performance. However, this 
measure may not be a good indication of the relative performance on actual 
computers, because it ignores the time required to transfer data between 
distant processing elements of the array (the routing delays). Grosch (1979) 
has used the concept of the paracomputer to compare the performance of 
different algorithms for the solution of Poisson’s equations on processor 
arrays with different interconnection patterns between the processing elements. 
He compares the common nearest-neighbour connections, as available in the
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ICL DAP (see §3.4.2), with and without long-range routing provided by the 
perfect shuffle interconnections as proposed by Stone (1971).

Although devised for the comparison of processor arrays, the concept of 
the paracomputer can be related to the study of pipelined processors. The 
para-computer corresponds to a pipelined processor with zero start-up time, 
no memory-bank conflicts and a half-performance length nx/2 of infinity. 
Remembering that nl/2 = s + / — 1 (see equation (1.6b)), where s t  is the set-up 
time and / the number of subfunctions that are overlapped, one can see that 
the paracomputer is approached as /, the extent of parallel operation in the 
pipeline, becomes large. At the other extreme one can define a perfect serial 
processor as a pipeline processor with only one subfunction (i.e. the arithmetic 
units are not segmented) and which also has no set-up time or memory 
conflicts. The perfect serial processor therefore corresponds to a pipelined 
processor with nx/2 = 0. Actual pipelined designs, with a finite number of 
subfunctions and therefore a finite value of w1/2, then lie between the perfect 
serial processor and the para-computer, depending on their half-performance 
length. Characterised in this way, we obtain the spectrum of computers 
described in §1.3.4 and shown in figure 1.15.

5.1.4 Routing delays
We have already mentioned that the time to route data between different 
processing elements on a processor array can have an important effect on 
the para-efficiency of algorithms on such computers. These routing delays 
may be relatively unimportant, if the time for a typical arithmetic operation 
is very much longer than the time to pass data between a pair of processing 
elements—as is the case for floating-point arithmetic on the ICL DAP. 
However, if the arithmetic operation time is comparable to the routing time, 
the latter plays an important role in determining the performance of an 
algorithm and cannot be ignored. This occurs on the ICL DAP when short 
words and integer arithmetic are used, as is likely to be the case in picture 
processing. For example Jesshope (1980a) has shown that, in an implementation 
of the number theoretic transform on the ICL DAP, routing delays can 
account for over half of the execution time of the algorithm. Other results 
on data routing are given in Jesshope (1980b, c).

5.1.5 Memory-bank conflicts
Routing delays represent the problem of bringing together in one processor 
data from different parts of the memory. A similar problem on a typical 
pipelined vector computer, such as the CRAY X-MP, is that of the memory 
conflicts that may occur when data is brought from the banked memory of 
such a machine to one of its pipelined arithmetic units. Although the memory
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of such machines is often described as a large multimillion-word random- 
access memory, this description is deceptive. It would be quite impossible to 
provide a separate parallel connection between each of the several million 
words and the pipelined arithmetic units. In practice such memories are 
divided into a relatively small number of independent banks. On a CRAY 
X-MP with a 2 Mword memory, for example, there are 16 such banks of 
128 Kwords, each of which may be servicing simultaneously a different 
memory request. The banks are numbered 0 to 15 and ordered cyclically in 
numerical sequence with bank 0 following bank 15. A contiguous vector is 
one in which successive elements in a vector are stored in successively 
numbered, and therefore different, banks of memory. Successive elements 
may therefore be accessed on successive clock cycles of the machine. This is 
the maximum rate of delivery of data (described as a bandwidth of one word 
per clock period) and matches the maximum rate at which data can be 
accepted by a pipelined arithmetic unit. Banking delays are said to occur if 
the actual rate of transfer is less than this maximum. This happens if a memory 
request is made to a memory bank that is still busy servicing a previous 
request. This is known as a memory-bank conflict.

On the CRAY X-MP a memory bank is busy for four clock periods when 
servicing a memory request and a second request to the same bank cannot 
be accepted during this time. However, requests to different banks that are 
not busy may be made on successive clock cycles. It is obvious that, on a 
16-bank machine every fourth element of a contiguous vector can be accessed 
at the maximum rate because the requests to any bank occur at intervals of 
four clock periods, just as the bank becomes free from its previous request. 
If, however, requests were made on successive clock periods to every eighth 
element of the vector, they would arrive at each bank every two clock periods, 
while the bank was still busy with the previous request. Therefore every 
eighth element of a vector, although successive values are stored in different 
memory banks, may only be accessed at half the maximum rate. Every 
sixteenth element of a vector is stored in the same memory bank and successive 
values can be accessed at best every four clock periods, that is to say at a 
quarter of the maximum rate.

It is evident, therefore, that in selecting an algorithm for a machine with 
a banked memory, care must be taken to avoid memory-bank conflicts. 
Unfortunately many good numerical algorithms are based on recursive 
halving or doubling, and involve successive reference to data separated in 
memory location by a power of two (e.g. the fast Fourier transform, 
see §5.5.2). It is also common practice to perform matrix manipulation with 
matrices in which the number of rows and columns is a power of two. Since
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the number of memory banks is usually chosen also to be a power of two, 
memory-bank conflicts can arise very easily. They are one reason for not 
achieving supervector performance on the CRAY X-MP and other vector 
computers.

Such conflicts can be minimised by considering carefully the layout of a 
matrix in store. Let us consider a 16 x 16 matrix stored column by column 
across a memory split into 16 banks. This is the normal pattern of storage 
provided by a FORTRAN compiler. Successive elements of any column, or 
of a forward or backward diagonal may be accessed at the maximum rate 
because they are stored in different memory banks. However, all elements of 
the same row are stored in the same bank and cannot be accessed in succession 
for row operations without memory conflict. This problem may be solved in 
software by adding a dummy row and column to the matrix. It is then stored 
as if it were a 17 x 17 matrix. Successive elements of any column (storage 
interval of one bank), any row (interval 17 banks) or forward diagonal 
(interval 18 banks) can be accessed without memory conflict. Only access to 
the backward diagonal (storage interval 16 banks) leads to memory conflict, 
but this pattern of access is rare in matrix manipulation.

Memory conflicts can be minimised in the common instances mentioned 
above, if the number of memory banks is chosen as a prime number. The 
Burroughs Scientific Computer adopts this hardware approach and has 
17 memory banks. In the above example of a 16 x 16 matrix, all rows, columns 
and diagonals can be accessed without conflict. An important feature of a 
prime number of memory banks (other than 2) is that references to elements 
of a vector separated by a power of two, as occur repeatedly in successive 
doubling algorithms, cannot be references to the same memory bank.

5.1.6 The nl/2 method of vector ( s im d ) algorithm analysis
The advent of the new generation of vector computers presents the numerical 
analyst with new problems. After questions of numerical convergence and 
accuracy have been satisfactorily answered, there remains the question of the 
selection of the best algorithm to solve a particular problem on a particular 
computer. If we consider ‘best’ to be synonymous with the least execution 
time, then it is necessary to take into account the timing characteristics 
of the computer hardware and its associated software. We present the 
nl/2 method of algorithm analysis as a rational way of introducing these 
characteristics into the method of choice (Hockney 1982, 1983, 1984b). 
The parameter ni/2 has also been used for performance evaluation by 
Arnold (1983), Gannon and Van Rosendale (1984), Neves (1984), Strakos 
(1985, 1987) and Schonauer (1987).
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In order to time an algorithm on the serial computer it is only necessary 
to know its total amount of arithmetic—often called the work—because the 
computer time is directly proportional to this quantity. In this case, 
optimisation is straightforward because minimising the time is the same as 
minimising the total amount of arithmetic, which is the condition that has 
been traditionally used ever since the first serial von Neumann computers 
were built. On a vector computer, however, the situation is much more 
complex because some of the work is collected into a smaller number of 
vector operations, in each of which many arithmetic operations are executed 
in parallel by either pipelining or the simultaneous use of many arithmetic 
units. There is a timing overhead associated with the initiation of each of 
these vector operations. This overhead is proportional to the n1/2 of the 
computer and must be included in the timing comparison. In fact, vector 
computers often differ more in the extent of this overhead than they do in 
their asymptotic performance. In estimating the timing of an algorithm on 
a vector computer it is therefore necessary to know, and include the effect 
of, both the amount of arithmetic and the number of vector operations. The 
w1/2 method of algorithm analysis provides a methodology for including both 
these quantities in the timing analysis, and thereby solving the much more 
difficult problem of time minimisation on a vector computer. The traditional 
condition of minimising the arithmetic is, quite simply, incorrect, and in 
particular we will find that the minimum arithmetic algorithm does not 
necessarily execute in the minimum time.

(/) Vectorisation
The first stage, however, in converting an existing program to run on a vector 
computer is the reorganisation of the code so that as many as possible of 
the DO loops are replaced by vector instructions during the process of 
compilation using a vectorising compiler. This process of vectorisation may 
be all that is done, and leaves a program comprised of two parts: a scalar 
part to be executed by the scalar unit of the computer, and a vector part to 
be executed by the vector unit. It is quite usual for the of the scalar unit 
to be ten times slower than the of the vector unit, so that the execution 
time of the algorithm may depend primarily on the size of the scalar part of 
the code, and rather little on the efficiency with which the vector part of the 
code is organised (see §1.3.5 and figure 1.19). However, there are many 
algorithms associated particularly with the solution of partial differential 
equations, in which all the floating-point arithmetic can be performed by 
vector instructions, and we give some examples in this chapter. For these 
vector algorithms the best organisation of the vectors (i.e. the choice of the 
elements composing them and their length) is of critical importance. The
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nl/2 method of vector algorithm analysis is presented as a technique for 
rationally optimising vector algorithms, or the vector parts of more complex 
codes that also have unavoidable scalar parts.

A survey of vectorisation techniques with reference to the CRAY-1, 
CYBER 205, HITACHI S9 with IAP, ICL DAP and the Denelcor HEP has 
been made in a monograph by Gentzsch (1984). Other publications on the 
topic are Wang (1980), Swarztrauber (1982), Arnold (1983), Bossavit (1984) 
and Neves (1984). The best known automatic vectoriser is probably that 
developed at the University of Illinois by Kuck (1981) and co-workers, called 
the parafrase system. Vectorisation techniques are also discussed by 
Yasamura et al (1984) and Schonauer (1987), and the performances of three 
automatic vectorisers, including parafrase, are compared by Arnold (1982).

(ii) Algorithm timing
The simplest timing assumption to make is that a vector algorithm is a 
sequence of vector instructions, and that the time to execute a vector 
instruction is linearly dependent on the length of the vector involved, and 
characterised by the two parameters (rOD9n1/2) and the timing formula (1.4a), 
namely

(5.2)

The time T  for the execution of the algorithm can then be written

(5.3)

where q is the number of vector operations making up the algorithm and n, 
is the vector length of the ith vector operation. If the parameters r^ and nlj2 
are approximately the same for all the operations, or suitable average values 
are taken, then and nl/2 may be taken out of the summation, and equation
(5.3) may be written

(5.4a)

where

is the total amount of arithmetic in the algorithm.
Alternatively, the timing formula (5.4a) for the execution of an algorithm 

can be written in terms of the average vector length, h, of the algorithm:

(5.4b)
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or as

where h = s/q. The expression in square brackets in equation (5.4c) is the factor 
by which a traditional serial complexity analysis, r ~ 1s, is in error when 
applied in a vector environment. It also shows that it is not the absolute 
value of nl/2 which is important, but its ratio to the average length of a vector 
operation in the algorithm: i.e. nl/2/h.

(iii) Serial and parallel complexity
Equation (5.4a) is interesting because it reveals the link between traditional 
serial numerical analysis and recent work on parallel algorithms. Expressed 
differently, it shows the link between the serial and parallel complexity analysis 
of algorithms. A serial computer is one with a small or zero value of n1/2, 
hence only the first term of equation (5.4a) is important, and the minimum 
execution time is obtained by minimising s, the total amount of arithmetic. 
However, parallel algorithm analysis is based on the use of the paracomputer, 
which in our formalism is obtained by taking n1/2 = oo (see §5.1.3). In this 
case only the second term of equation (5.4a) is important, and the minimum 
execution time is obtained by minimising the number of vector operations 
q, regardless of the amount of arithmetic involved. These two contrasting 
views of algorithm optimisation have led to a dichotomy in the numerical 
analysis/algorithm community between those living in the ‘serial’ and 
‘infinitely parallel’ worlds, because quite different algorithms are frequently 
recommended for the solution of the same problem. We believe that the 
n1/2 method of algorithm analysis provides a simple bridge between the two 
views.

Both the above views of algorithm optimisation are unrealistic extremes, 
because actual vector computers usually have finite, non-zero values of n1/2 
(for example, the CRAY-1 has a value approximately equal to 20, and the 
CYBER 205 a value approximately equal to 100). The question then arises: 
‘What should one minimise on a computer with a finite value of n1/2?’ 
Equation (5.4a) shows that the answer is that one should minimise neither 
s nor q, but should minimise the quantity (s + n l/2q). The n i/2 method of 
analysis is a formalism for doing just that. The half-performance length n1/2 
is thus seen to be the parameter that linearly interpolates between the extreme 
views of serial and infinitely parallel computation. It is the way through 
which the finite parallelism of a computer system can be introduced into the 
analysis. The main point of the method is that one does not have to decide, 
unrealistically, whether one’s computer is serial or parallel; one can actually

(5.4c)
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include numerically the amount of parallelism by including the correct value 
of nm .

(iv) Algorithmic phase diagrams
When algorithms are compared on the same computer, we take the ratio of 
two timing expressions of the form of equation (5.4). The algorithm is fully 
described by giving the operations counts s and q (or h and q, or h and s) 
and the computer described by the two parameters and t i1/2. In taking the 
ratio of two timing expressions to determine the best algorithm the value of 
7̂  cancels out, since it affects the timing of both algorithms by the same 
factor. Thus, within the approximations of this analysis, tz1/2 is the only 
property of the computer that affects the choice of algorithm.

When comparing algorithms, equal performance lines ( e p l ) play a key role. 
If T(a) and T(b) are the execution times for algorithms (a) and (b) respectively, 
then the performance of (a) equals or exceeds that of (b), P(a)^ P (b), if 
T(b) ^  T(a), from which one obtains

(5.5)

The inequality in (5.5) determines the regions of a parameter plane in which 
each algorithm has the better performance, and the equality gives the formula 
for the epl  between algorithms (a) and (b).

Because of the nature of the characterisation, nl/2 always appears linearly 
in equations for equal performance lines. It may therefore be set explicitly 
on the left-hand side of such equations. It is a property of the computer, as 
seen through the compilers and assemblers that are used. The right-hand 
side, however, depends only on the operations’ counts of the two algorithms, 
and is likely to be a complicated nonlinear function of the size of the problem 
72. This might be the order of the matrices in a matrix problem, or the number 
of mesh points along a side in a finite difference approximation to a partial 
differential equation problem.

The manner of presenting the results of an algorithm comparison is 
important. Formulae such as (5.5) contain the result, but cannot be used 
without extensive computation, and in complicated cases tables of numbers 
soon become unmanageable. Clearly, a graphical presentation is to be 
preferred, which will allow the choice of algorithm to be made directly from 
the information that defines the problem. Such a presentation can be made 
by plotting equal performance lines between pairs of algorithms on the (t21/2,t i) 
parameter plane. These lines divide the plane into regions in which each of 
the competing algorithms has the best performance. We call such a presentation 
a ‘phase diagram’ in analogy with such diagrams in physical chemistry. In
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the case of the chemical phase diagram, the values of parameters describing 
the conditions (e.g. temperature and pressure) determine a point in a 
parameter plane that is divided into regions in which the different states of 
matter have the lowest energy. One could say that nature then chooses this 
state from all others as the best for the material. In the case of the algorithmic 
phase diagram, parameters describing the computer and problem size 
determine a point in a parameter plane that is divided into regions in which 
each algorithm has the least execution time. This algorithm is then chosen 
as the best.

It is helpful to adopt certain standards in the presentation of such 
algorithmic phase diagrams, in order to make comparisons between them 
easier. It is good practice to make the x axis equal to or proportional to h 1/2, 
and the y axis equal to or proportional to the problem size n. In this way 
algorithms suitable for the more serial computers (small n1/2) appear to the 
left of the diagram, and those suitable for the more parallel computers 
(large n1/2) to the right. Similarly, algorithms suitable for small problems are 
shown at the bottom of the diagram, and those suitable for large problems 
at the top. A logarithmic scale is usually desirable for both axes, and in the 
simplest case of the (w1/2, n) plane the horizontal axis specifies the computer 
and the vertical axis the problem size. Some examples of algorithmic phase 
diagrams are given in figures 5.3, 5.9, 5.10, 5.26, 5.27 and 5.28 (Hockney 1982, 
1983). A simple example of their preparation and interpretation is given in 
§5.2.3. This compares two algorithms. A more complicated example comparing 
four algorithms is given in Hockney (1987a). Figure 5.28 compares two 
algorithms, giving the best value of an optimisation parameter to use in any 
part of the phase plane.

We have seen in equation (5.4c) that the ratio n1/2/h is more important 
in the timing than nl/2 itself. Similarly, we find that algorithmic phase 
diagrams are usually more compactly drawn if the x axis is equal to the ratio 
of n1/2 to problem size: n l/2/n. This ratio, rather than n1/2 itself, determines 
whether one is computing in a serial environment (small values) or a parallel 
environment (large values). The ratio also has the advantage of being 
independent of the units used to measure n.

(v) Serial and parallel vector algorithms
In the design of vector algorithms it is useful to distinguish two extreme 
formulations of the same basic method, that is to say two different 
organisations of the same algebraic/numerical relationships which define the 
numerical method. These are as follows:

(1) The serial variant of the vector algorithm, which is obtained by 
minimising the total amount of arithmetic, s—this formulation of the vector
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algorithm is so called because it would run in the minimum time if it were 
executed on a serial computer for which n l/2 = 0 ;

(2 ) the parallel variant of the vector algorithm, which is obtained by 
minimising the number of vector operations q (or equivalently maximising 
the average vector length h)—this formulation would execute in minimum 
time on an infinitely parallel computer for which n 1/ 2 = oo, or on an array 
of processors with a processor for every element of the longest vector.

The analyses that we give below limit consideration to these two possible 
formulations. In more complex situations, formulations may be desirable 
which are hybrids of the above extreme cases. For example, if the vector 
length in a problem is much larger than the number of processors in an array 
of processors, then the serial variant can often be used to reduce the vector 
lengths to less than the array size, after which the parallel variant is used.

(vi) Scalar and vector units
The n1/2 method of analysis, expressed in algorithmic phase diagrams, can 
also be used to compare the performance of a scalar algorithm in the scalar 
unit of a computer with the performance of an equivalent vector algorithm 
in the vector unit of the same computer. Suppose the scalar algorithm has 
s(s) floating-point operations, then the time for the scalar algorithm executing 
in the scalar unit is

(5.6a)

where r ^  is the performance of the scalar unit. If the vector unit is 
characterised by the parameters ( r^ ,  n1/2), then the time to execute the vector 
algorithm will be

(5.6b)

where the superscript (v) indicates the counts of the operations for the vector 
algorithm. The formula for the equal performance line between the two 
alternatives is given by the condition Ts = Tv, whence

(5.7)

where = ( r ^ / r ^ J  is the ratio of the asymptotic performance of the vector 
and scalar units. An example of such a comparison is given in figure 5.3(a) 
for the problem of summing a set of numbers.

(vii) Variation of r^ , nl/2
For simplicity, the derivation of the n1/2 method of algorithm analysis given 
above is based on the assumption that the two parameters (r^, nl/2) may be
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regarded as constant, and may therefore be taken out of the summations in 
equation (5.3). Manifestly, this assumption is not always true, because in 
Chapter 2 we have derived different values for the parameters for the different 
cases of, for example, register-to-register or memory-to-memory operations, 
contiguous or non-contiguous vectors, dyadic or triadic operations, etc. If 
the variation in (r^, n1/2) is large for these different cases, the summation in 
equation (5.3) can be split into several sums, one for each type of operation, 
and different values of the parameter used in each summation. Alternatively, 
the correct average values (r^, h l/2) can be used for the parameters, which 
are given by

where (r^ k, nl / u ) are the parameters for the kth type of arithmetic operation, 
and sk and qk are the operations’ counts for the kth type of arithmetic 
operation. The time for the algorithm is then given by

where s = YJksk and q = Ŷ Mk are the total operations’ counts, as before.
The calculation of the above average values is similar to calculating the 

average performance of a computer, using different mixes of instructions (for 
example, the Gibson mix and Whetstone mix). The weights used in the above 
expressions (5.8), (sk/s) and (qk/ q \  are the fraction of the arithmetic which 
is of type k and the fraction of the vector operations which are of type k 
respectively. The important fact is that these ratios will be relatively 
independent of the problem size n, and the analysis can proceed as before 
using h1/2 instead of nl/2. In most cases, however, it will be adequate to treat 
rœ and nl/2 as constant and interpret the algorithmic phase diagrams for the 
range of parameter values that arises.

5.1.7 The s l/2 method of mi md  algorithm analysis
The extension of the above methodology to mi md  computation with multiple 
instruction streams requires a slightly different computational model, and 
we use the concept of the work segment introduced in § 1.3.6 ( Hockney 1984a, 
1985a, 1985c, Hockney and Snelling 1984). A work segment is a section of 
program in which the work can be divided between several logically 
independent (i.e. not communicating) instruction streams. These instruction 
streams may be implemented as separate processes in, for example, a single 
pe m of the Denelcor HEP, or be executed in separate processors in a 
multimicroprocessor architecture or a multi-PEM HEP. From the point of 
view of the computational model, however, all these cases are treated with

(5.8a)

(5.8b)
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the same analysis, simply as separate instruction streams. The essence of the 
work segment is that the computation is synchronised before and after each 
segment. That is to say all the work in a segment must be completed before 
the next segment can begin. The time i, to execute a work segment is therefore 
the sum of the time to execute the longest of the instruction streams plus the 
time to synchronise the multiple instruction streams: that is to say, from 
equation (1.16)

(5.9)

where s, is the number of floating-point operations between pairs of numbers 
in the ith work segment, subsequently called the amount of work in the 
segment, or the grain of the segment; E{ is the efficiency, Ep, of process 
utilisation in the ith work segment (the subscript p is now dropped);

is the asymptotic (or maximum possible) performance in Mflop/s as before; 
and s 1 / 2 is the synchronisation overhead measured in equivalent floating-
point operations.

In equation (5.9) the value of both and s1 / 2 will depend on the number 
of instruction streams or processors used. For example, if there are p 
processors the r^ in equation (5.9) is p times the asymptotic performance of 
one processor. The value of s 1 / 2 also depends on the type of synchronisation 
and the efficiency of the software tools provided for synchronisation. 
Measured values of (r^, s1/2) for a variety of different cases are given for the 
CRAY X-MP in §2.2.6 (Hockney 1985a), for the Denelcor HEP in 
Chapter 3 (Hockney 1984a, 1985c, Hockney and Snelling 1984), and for the 
FPS-5000 in Curington and Hockney (1986).

Having established the timing for a work segment, we are now in a position 
to consider a mi md  program. In any mi md  program there will be a critical 
path, the time of execution of which is the time of execution of the whole 
program. In some cases the critical path is obvious (there may only be one 
path), and in other cases it may be very difficult to determine or even be 
data-dependent and therefore unknown until run time. However, to proceed 
further with a timing analysis we must assume that the critical path is known. 
The time Tfor a mi md  algorithm is calculated by summing equation (5.9) 
for each work segment along the critical path, giving

(5.10)

where q is the number of work segments along the critical path of the 
algorithm, s = 1 sf is the total amount of work along the critical path and
E = s/C^UiSi/Ei)  is the average efficiency of process utilisation along the 
critical path of the algorithm.

For algorithms that fit into the above computational model, we see that
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the programming environment (computer hardware, system software and 
compiler facilities) is described by the parameter pair (rœ, s 1/2) and the 
algorithm itself is described by the triplet (s, q, E). As in the case of s i md  
computing, the value of rœ cancels when comparing the performance of two 
MiMD algorithms on the same computer. That leaves the value of s 1/2 as the 
computer parameter that determines the choice of the best mi md  algorithm.

Comparing equations (5.9) and (5.10) with (5.2) and (5.4a), one can see 
the analogy between s i md  and mi md  computation. The grain of a segment, 
s, or more correctly s/E p, is analogous to vector length, n; and the overhead 
of synchronisation, measured by s1/2, is analogous to the half-performance 
length, n1/2. Similarly, mi md  algorithms can be compared using algorithmic 
phase diagrams.

It is shown in §1.3.6, and it is obvious from the above analogy, that the 
grain size of a work segment must exceed s 1 / 2 if the average processing rate 
of the segment is to exceed 50% of the maximum (we assume Ep % 1).

Because the cost of communication between instruction streams is often 
high in mi md  systems, values of s 1/2 tend to be quite large, often several 
hundred or thousand floating-point operations. It is important, therefore, to 
divide a mi md  algorithm into large independent blocks of code which are 
given to different instruction streams, thereby obtaining very large values of 
s. This can often be best achieved by the parallel execution of different cases 
of the outermost DO loop, and is therefore called parallelisation at the 
outermost level of the program. This philosophy of programming is in sharp 
contrast to s i md  programming, in which it is the innermost DO loops of a 
program that are parallelised by being replaced with vector instructions. 
Unfortunately, parallelisation at the outermost level requires overall knowledge 
of the structure of the program, and is much more difficult to automate than 
the vectorisation of single or double DO loops, which can be done by a local 
examination of the program near the loops. Consequently, the parallelisation 
of a program for mi md  computation is likely to require much more 
programmer intervention than the vectorisation of a program for s i md  
computation, and might even necessitate the complete restructuring of the 
whole program.

5.2 RECURRENCES

A recurrence is a sequence of evaluations in which the value of the latest 
term in the sequence depends on one or more of the previously computed 
terms. Such recurrences pervade numerical analysis: in the solution of linear 
equations by Gaussian elimination; in all matrix manipulations that require
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the inner product of vectors; in all iterative methods, because a better 
approximation to a solution is calculated from previous approximations; in 
all solutions of ordinary differential equations in time because values at one 
time depend on those found at earlier times; and in marching methods for 
the solution of differential equations in space.

The evaluation of a recurrence presents a special problem for a parallel 
computer because the definition itself is given in terms of sequential 
evaluation, and it would appear that only one term could be evaluated at a 
time, giving no scope for parallel evaluation. Needless to say the problem 
can be rephrased (at the expense of introducing extra arithmetic operations) 
so as to allow parallel evaluation and we shall explain this first in terms of 
the simple problem of evaluating the partial sums of a sequence of numbers 
(§5.2.1 and §5.2.2). In the final section (§5.2.3) we consider the introduction 
of parallelism into—that is to say the vectorisation of—the general linear 
first-order recurrence. Parallel algorithms for solving recurrences are also 
described by Kogge and Stone (1973) and Ladner and Fisher (1980).

5.2.1 Sequential sum
The general linear first-order recurrence can be expressed as the evaluation 
of the sequence Xj from the recurrence relation

(5.11a)

given the values of x0, a l9..., an, and d1?..., d„. There is no loss of generality, 
and considerable convenience, if we assume x0 = ax = 0. This can be done if 
we redefine dx as dl + a^o , and this will now be assumed.

As a special case of the above (aj= 1) we consider first the evaluation of 
the partial sums Xj defined by

(5.11b)

where Xj is the sum of the first j  numbers in the sequence dx,. . . ,  dn.
The partial sums may be evaluated simply from the recurrence

(5.11c)

This sequential sum method of evaluation may be realised with (n— 1) 
additions by the obvious FORTRAN code:

(5.12a)

The relationship between the data storage pattern, arithmetic operations 
and time may be shown in a routing diagram. Such a diagram is shown for
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FIGURE 5.1 The routing for the sequential sum method for forming 
all the partial sums of eight numbers, Xj =  £j[ = i dk, j  =  1, 8. The
vertical axis is time, the horizontal axis is storage location or processing 
element number. Routing of data across the store is indicated by an 
arrow.

this algorithm in figure 5.1 for the case n = 8 . The sequence of evaluations 
takes place from the bottom moving upwards; operations that can be 
evaluated in parallel are shown on the same horizontal level. It is clear that 
at each time level only one operation can be performed (parallelism = 1 ), 
and we say that the sequential sum algorithm has

(5.12b)

and the operations’ counts are

(5.12c)

In order to quantify the routing, we suppose that the horizontal axis in 
figure 5.1 indicates the relative location of the data in the memory of a serial 
or pipelined computer, or in the case of a processor array the processing 
element number. Variables in the same horizontal position do not necessarily 
overwrite each other. If overwriting is not required, such variables may be 
stored in different locations in the same pe  of a processor array, or in a 
different sequence of locations in a serial or pipelined computer.

A unit parallel routing operation is defined as a shift of all elements of an 
array in parallel to a set of neighbouring pe s . In the simplest case of
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nearest-neighbour connectivity in a one-dimensional processor array, this 
can be to shift all elements one pe  to the right or one pe  to the left. In a 
two-dimensional processor array such as the ICL DAP, a unit parallel routing 
can shift all elements of a two-dimensional data matrix, which is mapped 
over the processor array, to their nearest-neighbour pe s  to the north, south, 
east or west. In a processor array, storage after a parallel operation may be 
suppressed according to the state of an activity bit in each pe . Thus the 
number of elements actually shifted after a parallel routing operation is under 
program control. We refer to the number of elements actually shifted 
(i.e. the usefulness of the parallel shift operation) as the parallelism of the 
routing operation.

Inspection of figure 5.1 shows that the sequential sum algorithm requires 
a routing of one unit to the right at each time level. Only one number (the 
value of the sum accumulated so far) is involved in the shift, hence the 
parallelism is 1. This is confirmed by the fact that there is only one slanting 
arrow, indicating a shift of one number, at each time level. The complete 
algorithm therefore requires

n — 1 routing operations with parallelism 1 . (5.12 d)

5.2.2 Cascade sum
The alternative parallel approach to the evaluation of partial sums is most 
easily understood from the routing diagram for the algorithm. This is shown 
in figure 5.2(a) for the case n = 8 , and the algorithm is called the cascade 
partial sum method. A set of n accumulator registers are first loaded with 
the data to be summed. At level one, a copy of the accumulators is shifted 
one place to the right and added to the unshifted accumulators in order to 
form the sum of the data in adjacent pairs. At the next level, the process is 
repeated but with a shift of two places to the right, thereby producing sums 
of groups of four numbers. As the shifts are made, zeros are brought in from 
the left as required. In general, at the /th time level a shift of 2l places is made 
and at level / = log2n the accumulators contain the required partial sums.

The cascade partial sum method may be expressed in an obvious vector 
FORTRAN-like language by:

(5.13a)

where X and D are vectors of n elements, + is a parallel addition over the 
n elements, and SHIFTR(X, L) is a vector function that places a copy of X 
shifted L storage locations to the right into the temporary vector SHIFTR. 
The elements of the vector X are not disturbed. The cascade partial sum
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FIGURE 5.2 (a) The routing diagram for the parallel cascade sum method of 
forming partial sums. Zeros are brought in from the left as the vector of accumulators 
is shifted to the right. If only the total sum x 8 is required, then only the operations 
shown as full circles and bold lines need be performed, (b) Martin Oates’ method of 
computing all partial sums.

method therefore requires
log2n additions with parallelism n (5.13b)

giving operations’ counts of
(5.13c)
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If we assume nearest-neighbour connectivity, 2l 1 unit routing operations 
are required at level /, giving a total of 1 + 2 + + 4 + ... + w/2 or

n — 1 routing operations with parallelism n. (5.13d)

The formalism for the cascade method described above, which keeps the 
vector length at its maximum value of n, is appropriate for use on processor 
arrays, because the redundant additions by zero do not consume extra time. 
On a vector computer, however, less time is required if the redundant 
operations are omitted, and the vector length is reduced. In this case the 
method requires

1 addition with parallelism n -

giving the operations’ counts

(5.13f)

In the algorithm analyses made in §5.2.3 we will assume that the vector length 
is reduced in this way.

Every operation in the cascade partial sum algorithm has approximately 
a parallelism of n (actually varying from n — 1 to nj l  if the vector length is 
reduced). The total number of arithmetic operations has, however, increased 
from n — 1 for the sequential sum method to approximately n\og2n. The cost 
of increasing the parallelism from 1 to n has therefore been a substantial 
increase in the amount of arithmetic. For n = 1024, for example, the cascade 
partial sum method requires ten times the number of additions. On a serial 
computer that can only perform one addition at a time, it is obvious that 
the cascade partial sum method will never be worthwhile. On a processor 
array or a pipelined processor we must consider whether the increased 
performance that these processors obtain by performing n additions in parallel 
is enough to outweigh the increase in the total amount of arithmetic 
(see §5.2.3).

The cascade partial sum algorithm simplifies considerably in the important 
special case in which only the single result of the total sum is required (in 
our case x8). In figure 5.2 we have emphasised as bold lines and full circles 
those routings and arithmetic operations that contribute to the calculation 
of x8, and note that these are only a small fraction of the operations that 
are required for the calculation of all the partial sums. The calculations 
contributing to the total sum form a binary tree (with the appearance of a 
cascade), in which the number of operations and therefore the parallelism is 
halved at each level / of the calculation. Assuming, for simplicity, that n is a 
power of two, the number of operations for the cascade total sum method is

(5.13e)
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1 addition with parallelism n2 z,

The number of scalar additions in the algorithm is therefore

(5.14b)

and we note that the cascade total sum algorithm has the same number of 
scalar operations as the sequential sum method, even though the reorganisation 
of the calculation into a binary tree has introduced the possibility of parallel 
operation. This total sum method is the algorithm normally referred to as 
the cascade sum method.

It has been pointed out by Martin Oates (private communication) that 
all partial sums can also be computed in a parallel fashion with approximately 
half the number of redundant arithmetic operations that are present in the 
original cascade partial sum method shown in figure 5.2(a). Martin Oates’ 
variation is shown in figure 5.2(b). The partial sums are built up hierarchically. 
First, adjacent pairs are added, then pairs of these are combined to form all 
the partial sums of groups of adjacent four numbers, then these are combined 
in pairs to form sums of eight, and so on. At each level n/2 additions are 
performed in parallel, and there are log2n levels as before, giving operations’ 
counts of

(5.14c)

compared with approximately 5 = nlog2n additions in the original method.
There is, however, a programming problem with Oates’ method, in that 

the routing or indexing at each level is not as regular as that for the original 
method. If a vector computer, such as a CRAY X-MP, is being used, although 
the operations at each level are independent they cannot all be performed 
with a single vector operation. They would have to be implemented as a 
sequence o f ‘scalar + vector’ operations, thus not realising the full potential 
for parallel execution. For example, at the last stage of the calculation 
in figure 5.2(b \ the scalar x4  is added to the vector made up of the current 
values of the last four elements of the d array. At the previous stage, two 
such operations must be executed in sequence, on vectors of length 
two, and so on.

If, however, a processor array such as the ICL DAP is being used, both 
shifting and masking are required to arrange that the correct components of 
the vectors are added. Clearly, the routing is much simpler in the original 
method. In any particular case, it would require a detailed analysis of many 
alternatives to decide whether the reduction in redundant arithmetic made

(5.14a)
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up for the extra complexity of the program. Oates’ method turns out to be 
a special case of a class of algorithms for the so called ‘parallel prefix 
calculation’ that have been described by Ladner and Fisher (1980). In the 
following section we will analyse the performance of the original method, 
and leave it as an exercise for the reader to calculate the effect of using the 
Oates’ variation.

5.2.3 Relative performance
The performance of the cascade and sequential sum methods will now be 
compared using the n1/2 method for analysis (§5.1.6). This model of computation 
assumes that there is an infinite memory, and that there are no memory bank 
conflicts. Although possibly violated in practice, the above assumptions give 
a good first basis for the choice of algorithm. A programmer responsible for 
evaluating sums on a real computer must, of course, give careful consideration 
to the properties of its memory.

We consider first the problem of finding only the total sum, and compare 
the sequential method with the cascade total sum method. Both these have 
the same amount of arithmetic, (n — 1) floating-point operations. However 
the cascade has fewer vector instructions (log2 n) than the sequential (n — 1 ). 
It is obvious, therefore, that if both algorithms are executed in the vector 
unit of a computer, then the cascade method will always be the best, because 
these are fewer vector start-ups. However, one may ask the question whether 
it might be better to execute the sequential method in the scalar unit, and 
thereby avoid suffering the vector start-up overhead altogether. The scalar 
unit has a slower asymptotic rate, and therefore there will be a break-even 
problem size, above which it will be better to use the cascade method in the 
vector unit and gain the benefit of its higher asymptotic performance, and 
below which it is better to avoid the vector start-up overhead by using the 
scalar unit, even though its asymptotic performance is lower. This comparison 
can be quantified by using equation (5.7), with sis) = ( n— 1), s(v) = ( n — 1), 
q(v) = log2 /i, whence the equation for the equal performance line is

(5.15a) 

or

(5.15b)

The algorithmic phase diagram corresponding to equation (5.15b) is given 
in figure 5 .3 (a) for a ratio of vector-to-scalar asymptotic speeds of 
R^ = 2, 5,10, 50,100. The diagram is interpreted as follows. Lines of constant 
nlj2 lie at 4 5 ° to the axis, and the line for n1 / 2 = 2 0  corresponding to the 
CRAY-1 is shown. This computer has % 10, and the intercept between
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(a)

FIGURE 5.3 (a) Comparison of the sequential sum method in the
scalar unit, and the cascade total sum method in the vector unit. is 
the ratio of vector to scalar speeds. The broken line is the line of constant
n l l 2  =  2 0 .

the line of constant nl/2 and the line of constant gives the break-even 
problem size. Roughly speaking, the conclusion is that the summation of up 
to about eight numbers should be done in the scalar unit (or by scalar 
instructions), whereas larger problems should be done in the vector unit. It 
is obvious, and borne out by the diagram, that as the rate of vector-to-scalar 
speed decreases, the scalar unit should be used for longer vector problems.

In considering the calculation of all partial sums, we have three alternatives 
to consider; the use of the sequential and cascade partial sum methods in 
the vector unit, and the sequential method in the scalar unit. We need not 
consider the use of the cascade partial sum method in the scalar unit but it 
will always perform worse than the sequential method, since it has more 
arithmetic. There are therefore three equal performance lines to compute for 
each of the three possible pairs of algorithms.
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FIGURE 5.3 cont. (b) Comparison of three algorithms for the calculation 
of all partial sums. The sequential and cascade method executed in the 
vector unit are compared with the sequential method executed in the 
scalar unit. The ratio of vector to scalar speed is =  10.

In order to compute the sequential and cascade partial sum methods in 
the vector unit we need only calculate the total arithmetic, s, and the number 
of vector operations, q, for each method. For the sequential sum

(5.16a)

For the cascade partial sum

(5.16b)

Given the above operations’ counts, the formula for the equal performance
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line between the two methods can be immediately written down from 
equation (5.5):

(5.16c)

The comparison of the sequential method in the scalar unit with the above 
two methods in the vector unit can be immediately written down using the 
operations’ counts (5.16a,b). The equal performance lines obtained by 
substituting in equation (5.7) are: with the sequential method

(5.17a)

and with the cascade partial sum method

(5.17b)

The algorithmic phase diagram is obtained by drawing the three equal 
performance lines (5.16c), (5.17a) and (5.17b) on the (w1/2, n) plane. This is 
shown in figure 5.3(b).

The phase diagram shows us that for any particular computer (described 
by a fixed value for n 1/2, i.e. a vertical line in figure 5.3(b)) none of the methods 
is always the best. We cannot say, for example, that because we are using a 
parallel computer the cascade algorithm which is designed for parallel 
computation is always the best. The choice depends in a complex way on 
the relation between the problem size n and the n1/2 and R^ of the computer, 
which can only be adequately expressed by an algorithmic phase diagram.

For nl/2 < Koo — l(floo = 10 in figure 5.3(b)), the choice of algorithm lies 
between the sequential or cascade partial sum method, both executed in the 
vector unit. In this case, for any particular computer there is always a problem 
size above which the sequential sum method is best, and this is given by the 
position of the equal performance line. For example, if one is using a computer 
with w1 / 2 = 8 , then the sequential method is best for summing more than 
about 1000 numbers. In this large problem case, the vector lengths in the 
calculation have become so long that the nl/2 of the computer is negligible 
(i.e. n/n 1/2 is large). We are then in the regime of serial computation (see 
equations (1.9c) and (5.4c)), and it is not surprising that the algorithm designed 
for serial sequential computation is best. Put another way, one might say 
that the problem is so large (as measured by n) that the parallelism of the 
computer (as measured by nl/2) is negligible, and the computer looks and 
behaves to problems of this size as though it were a serial computer even 
though it has finite parallelism, and serial variations of algorithms which 
minimise s are the best.

If nl/2 > Rx — 1, the choice is between the cascade partial sum method 
executed in the vector unit, and the sequential method executed in the scalar
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unit. For example, if nl/2 = 20, problem sizes less than n& 10 and greater 
than n % 2000 should be solved in the scalar unit. In the former case the 
vectors are not long enough to make up for the vector start-up overhead, 
and in the latter case too much extra arithmetic is introduced to make the 
cascade method worthwhile. In the intermediate region 10 ^  n < 2000 the 
use of the vector unit with its higher asymptotic performance is worthwhile. 
However, for nlj2 ^  120 (in the case of = 10), the vector start-up overhead 
is too large ever to be compensated by the higher vector performance, and 
the sequential sum method in the scalar unit is always the best. Figure 5.3(b) 
can be drawn for other values of as was done in figure 5.3(a). The 
boundary line between the use of the scalar and the vector unit will move 
further to the right as R^  increases and to the left as it decreases. The equal 
performance line between the two algorithms executed in the vector unit, 
however, will remain unchanged.

If the partial sum problem is being solved on the paracomputer, or a finite 
processor array with more processing elements than there are numbers to 
be summed, then we take n1/2 = oo. In this case the time is proportional to 
the number of vector operations, q. Consequently, the cascade method is 
always the best, because it only has log2« vector operations compared with 
( n— 1) for the sequential method. If an algorithm is being chosen for a 
processor array, it is also necessary to consider carefully the influence of the 
necessary routing operations on the time of execution. The number of routing 
operations is the same for the cascade and sequential methods (both n — 1 

routings, see equations (5.12d) and (5.13d)). Therefore, the inclusion of the 
time for routing will not affect the choice of algorithm. However, depending 
on the relative time for a routing and an arithmetic operation, and the 
algorithm under consideration, the time for routing may be an important 
component of (or even dominate) the execution time. If routing is y times 
faster than arithmetic, that is to say

then the ratio of time spent on routing to the time spent on arithmetic is, 
for the cascade sum method,

time for one parallel arithmetic operation
(5.18)

time for one parallel routing operation

(5.19a)

from which we can conclude that routing dominates arithmetic if

(5.19b)



460 PARALLEL ALGORITHMS

The above shows that routing will always dominate arithmetic for vectors 
longer than n3, where

(5.19c)

Since y = 10 is a typical value, this will happen for any but the most trivial 
problems. This shows that there is no point in improving the arithmetic speed 
of a processor array unless a corresponding reduction in routing time 
can be made.

One way of eliminating the time spent on routing is to provide some 
long-range connections between the processors. In the above introductory 
analysis we have assumed for simplicity a one-dimensional array with 
nearest-neighbour connections. Most large processor arrays are, however, 
configured as two- or multi-dimensional arrays. The ICL DAP, for example, 
is configured as a two-dimensional array of 64 x 64 processors. If these are 
treated as a single vector of 4096 elements written row by row across the 
array, then a single routing operation to the nearest-neighbour connections 
between adjacent rows results in a shift of 64 places. The more general 
case of data routing in /c-dimensional arrays is discussed in §5.5.5 and in 
Jesshope (1980a, b, c). Other interconnection patterns, such as the perfect 
shuffle, offer other long-range connections (see §3.3.4 and §3.3.5). The reader 
is invited to consider the effect of such connections on the comparisons 
made above.

5.2.4 Cyclic reduction
The general linear first-order recurrence (equation (5.1 la)) can be evaluated 
sequentially from the definition of the recurrence by the following FORTRAN 
code:

This requires

2 n arithmetic operations with parallelism 1 , (5 .2 1 a)

and

n routings with parallelism 1 . (5 .2 1 b)

The routing diagram for the sequential algorithm is given in figure 5.4. For 
simplicity, we shall not count separately the different types of arithmetic 
operation although they may have different execution times. The ratio of a 
multiplication time to an addition time rarely exceeds two and is often quite 
close to unity. In particular, on a pipelined computer both the addition and

(5.20)
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P E ,  P E 2 P E j  PE«,

FIGURE 5.4 The routing diagram for the sequential evaluation of the 
general first-order recurrence. In this case n =  4. Variables linked by a 
brace are stored in the same pe . One pe  is used to evaluate each term of 
the recurrence.

multiplication pipes, when full, deliver one result every clock period. For 
n > n l/2 the average time for an addition or multiplication operation is very 
nearly the same.

The equivalent parallel algorithm to the cascade sum method is known as 
cyclic reduction, and has a wide application in numerical analysis, particularly 
when one is trying to introduce parallelism into a problem. For example we 
will use it again to solve tridiagonal systems of algebraic equations in a 
parallel fashion (see §5.4.3). The original recurrence (equation (5.1 la)) relates 
neighbouring terms in the sequence, namely Xj to xj - 1. The basic idea of 
cyclic reduction is to combine adjacent terms of the recurrence together in 
such a way as to obtain a relation between every other term in the sequence, 
that is to say to relate Xj to Xj_2. It is found that this relation is also a linear 
first-order recurrence—although the coefficients are different and the relation 
is between alternate terms. Consequently the process can be repeated (in 
a cyclic fashion) to obtain recurrences relating every fourth term, every eighth 
term, and so on. When the recurrence relates every n terms (i.e. after log2n 
levels of reduction), the value at each point in the sequence is related only 
to values outside the range which are known or zero, hence the solution has 
been found. When the method is used on serial computers, the number of 
recurrence equations that are used is halved at each successive level, hence 
the term ‘cyclic reduction’. On a parallel computer we are interested in
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keeping the parallelism high and will not, in fact, reduce the number of 
equations that are used at each level. Therefore the name of the algorithm 
is somewhat misleading.

We will now work out the algebra of the cyclic reduction method. Let us 
write the original recurrence relation for two successive terms as:

The repeated application of the above process may be summarised by the 
reduced equations for level Z. Superscripts denote the level number.

v - a(i)x , + M) f/ = 0, l , . . . , lo g 2/j 
xj ~ aj Xj_2‘ + dj jy = 1 ,2 ,...,« (5.24a)

where

a f  = a " - l 'afS2l \ , (5.24b)

d!P = aj-l~ + dV~1(, (5.24c)

and initially

IIo<3IIo
. (5.24d)

If the subscript of any aj9 dj or x} is outside the defined range \ ^ n ,  the
correct result is obtained by taking its value as zero. When Z = log2n all 
references to Xj_2‘ = Xj .n in equation (5.24a) are outside the defined range, 
hence the solution to the recurrence is

Xj = (/j°**n). (5.24e)

The method is therefore to generate successively the coefficients a f  and dV 
defined by equation (5.24b, c) until d{j og2n) is found. This is the solution to 
the recurrence.

At first sight it might appear as if equation (5.24c) could not be evaluated

and

Substituting equation (5.22b) into equation (5.22a) we obtain

where equation (5.23b) is a linear first-order recurrence between alternate 
terms of the sequence with a new set of coefficients given by

(5.22a)

(5.22b)

(5.23a)

(5.23b)
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in parallel. After all, the equation for dV has superficially the same appearance 
as the original sequential recurrence with x replaced by d. The fundamental 
difference between equation (5.24c) and the original recurrence (5.22a) is that 
the values of df~2l~l and on the right-hand side of equation (5.24c) are 
all known values that were computed at the previous level (/— 1). These 
d(jl~l) are distinct variables from the d f  on the left-hand side. The latter 
{ d f \ j  = 1 , . . . ,  n} may therefore be evaluated by a single operation or vector 
instruction. These relationships are clarified by the routing diagrams for the 
evaluation of a f  (figure 5.5) and d^  (figure 5.6).

In these diagrams we show only the values of a (j l) and d f  that are actually 
used, and the arithmetic operations that are necessary. We note that only 
about half the values of a f  are required. In particular none is required at 
/ = 3. The amount of parallelism varies from about n at the start to 
approximately n/2 at the final level. On pipelined computers which have a 
variable vector length, it would increase performance to reduce the vector 
length to the correct value at each level. On processor arrays with n ^ N  or 
the paracomputer, in which the execution time is not affected by the vector 
length, the parallelism can be kept equal to n at each level by loading all 
cij = 0  for — n / 2 ^ j  and dj = 0  for —n ^ j ^ O  or otherwise contriving 
that out-of-range values are picked up as zeros.

It is obviously quite complex to evaluate the performance of the cyclic 
reduction algorithm, taking into account the reduction in parallelism at each 
level. We may however get a lower bound by assuming that the parallelism 
remains as n at each level, and that all the a f  are calculated. The 
average parallelism is \_(n — 1 ) + (n — 2) + ... + (n — 2r) + ... + w/2 ]/log2n 
= n\_ 1 — ( 1  — n ~ 1 )/log2 w], hence, asymptotically for large n, we have

31og2H arithmetic operations with parallelism n

P E :  PE 3 PE 4 P E s  P E 6 P E 7 P E ,

FIGURE 5.5 The routing diagram for equation (5.24b), the parallel 
calculation of the coefficients a f  in the cyclic reduction algorithm applied 
to the general linear first-order recurrence for the case n =  8.
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FIGURE 5.6 The routing diagram for equation (5.24c), the parallel 
calculation of the coefficients d f  in the cyclic reduction algorithm applied 
to the general linear first-order recurrence. The values of a are supplied 
from the calculation shown in figure 5.5, which proceeds in parallel with 
this figure.

and (5.25)

2(n— 1 ) routing operations with parallelism n.

We leave it as an exercise for the reader to carry out a similar analysis 
to that performed earlier for the sequential and cascade sum methods, 
and to take into account fully the reduction in parallelism at each level. The 
above general first-order recurrence becomes the cascade sum for the special 
case dj = 1 for which makes all the multiplications in figure 5.6 and
the whole of figure 5.5 redundant.

The cyclic reduction algorithm can be implemented in a vector form of 
FORTRAN by the code:

x - n
DO 1 L -  1 f L0G2N

X -  A * S H T F T R < X » 2 * * ( L - 1 ) )  + X 
.1 A = A * S H I F T R ( A r 2 * * ( L ~ l  ) )

where X, D and A have been declared as vectors. In the implementation 
of the above code, we note that the main memory address of the vector X

(5.26a)
(5.26b)
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and of the vector SHIFTR, which are both required for the evaluation of 
statement (5.26a), are separated by powers-of-two memory banks. The same 
is true for the vector A in statement (5.26b). Memory-bank conflicts (see 
§5.1.5) are therefore likely to be a serious impediment to the rapid evaluation 
of the cyclic reduction algorithm for serial and pipelined computers with the 
number of memory banks equal to a power of two. The Burroughs BSP, 
because of its choice of a prime number of banks (17), does not suffer from 
this problem (se §3.3.8).

5.3 MATRIX MULTIPLICATION

Matrix multiplication is the simplest example of matrix manipulation and 
illustrates rather well the different ways in which a simple algorithm should 
be restructured to suit the architecture of the computer on which it is to be 
executed. Mathematically, the elements Citj of the product matrix are related 
to the elements Aitj and Bitj of the matrices being multiplied, by the equation

(5.27)

where the first subscript is the row number and the second subscript is the 
column number.

5.3.1 Inner-product method
Invariably on serial computers, matrices have been multiplied using a nest 
of three DO loops, using FORTRAN code that is a direct translation of the 
above definition, namely:

(5.28a)

(5.28b)

where we assume that all elements C(/,J) of the matrix are set to zero before 
entering the code. The assignment statement in the code (5.28b) forms the 
inner product of the ith row of A and the 7 th column of B. It is a special case 
of the sequential evaluation of the sum of a set of numbers that was discussed 
in §5.2 (let dk = AikBkJ in equation (5.1 lb), then xn = CitJ-). We therefore have 
the option of evaluating it sequentially as in the code (5.28) or by using the 
cascade sum method. The considerations are the same as those given in §5.2. 
Some computers provide an ‘inner or dot product’ instruction (e.g. the
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CYBER 205, see table 2.4), and the use of this must be considered in any 
comparisons.

There is, however, more parallelism inherent in the evaluation of the matrix 
product than is present in the problem of evaluating a single sum. This is 
because a matrix multiplication involves the evaluation of n2 inner products 
and these may be performed n at a time (the middle-product method) or n2 
at a time (the outer-product method).

5.3.2 Middle-product method
The middle-product method is obtained by interchanging the order of the 
DO loops in the code (5.28). If we bring the loop over rows, /, to the innermost 
position, we have code that computes the inner product over all elements of 
a column of C in parallel:

(5.29a)

(5.29b)

Every term in the loop over / can be evaluated in parallel, so that the loop 
(5.29b) can be replaced by a vector expression. In an obvious notation, the 
code can be written:

(5.30a)

where C( ,J ) and A( ,/C) are vectors composed of the Jth and Kth columns 
of C and A. The addition, + , is a parallel addition of n elements, and the 
multiplication, *, is the multiplication of the scalar B(K,J) by the vector 
A( , K ). The parallelism of the middle-product code is therefore n, compared 
with 1 for the original inner-product method. This has been obtained by the 
simple process of interchanging the order of the DO loops. Note that we 
could have moved the J loop to the middle, thus computing all the inner 
products of a row in parallel. However, elements of the column of a matrix 
are usually stored in adjacent memory locations (FORTRAN columnar 
storage), consequently memory-bank conflicts are reduced if vector operations 
take place on column vectors. Thus the code of (5.30) is usually to be preferred.

The middle-product method, when programmed in assembler, is found to 
be the best code on the CRAY-1 computer. Supervector performance of 
138 Mflop/s is observed. This implies that, on average, almost two arithmetic

(5.30b)
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operations are being performed per clock period (one operation per clock is 
equivalent to 80 Mflop/s). This is possible because the multiplication and 
addition operations in statement (5.30b) can be chained to act as a single 
pipelined composite operation delivering one element of the result vector 
C( ,J) per clock period.

It is interesting to note that the middle-product method is found to have 
superior performance to the inner-product method, even on computers such 
as the CDC 7600 that do not have explicit vector instructions, and are not 
usually classified as parallel computers. However the CDC 7600 does have 
pipelined arithmetic units and their performance is improved if requests for 
arithmetic are received in a regular fashion, as in the serial code (5.29b) for 
vector operations. This idea has been exploited in a set of carefully optimised 
assembler routines, called STACKLIB (see §2.3.5), that has been written at 
the Lawrence Livermore Laboratory. These routines perform various dyadic and 
triadic vector operations, such as the ‘vector + scalar x vector’ statement in 
code (5.30b), and obtain performance improvements of about a factor of two 
over code written for serial evaluation, such as (5.28b).

5.3.3 Outer-product method
The outer-product method is obtained by moving the loop over K in the 
code (5.28) to the outside, as follows:

(5.31a)

The code (5.31b) can be replaced by a single array-like statement in which 
one term of the inner product is evaluated in parallel for all n2 elements of 
C. Using the notation introduced in Chapter 4, C stands for the whole array 
and we may write:

(5.31b)

where the multiplication operation is an element-by-element multiplication 
of an n x n matrix made by duplicating the Kth column of A, and an n x n 
matrix made by duplication of the kth row of B. The addition operation is 
an element-by-element addition of n x n elements. This is expressed in

(5.33)

(5.32)

DAP FORTRAN by:
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where the function subprogram MATC(X) forms a matrix all of whose 
columns are the vector X. MATR(X) similarly forms a matrix all of whose 
rows are the vector X. Two functions are required because otherwise the 
coercion of a vector into a matrix is ambiguous (see §4.3.1 (iii) and (vi)).

The outer product is clearly highly suitable for a processor array that has 
the same dimensions as the matrices (e.g. multiplying 64 x 64 matrices on a 
64 x 64 ICL DAP). In this case the parallelism of the hardware is exactly 
matched to the parallelism of the algorithm. Because the parallelism has been 
increased from n to n2, compared with the middle-product method, the 
outer-product method is also likely to be superior on pipelined computers 
with a large value of n1/2. For the case of 64 x 64 matrices the vector length 
is increased from 64 for the middle product to 4096 for the outer product. 
The ratio of the performance of the outer-product method, Pc, to the 
performance of the middle-product method, Pm, is in the ratio of the time 
to perform n vector operations of length n to the time to perform one vector 
operation of length n2:

(5.34a)

(5.34b)

It is clear that there is little to choose between the two methods from this 
point of view for computers such as the CRAY-1 with small values of n1/2. 
Other considerations, such as the ability to work in the vector registers and 
to use chaining, favour the middle product. However there are obvious 
advantages to the outer product in pipelined computers in the last case in 
which n2 > nl/2 > n.

5.3.4 Using n3-parallelism
An interesting combination of the techniques that have been discussed for 
introducing parallelism has been used by Jesshope and Craigie (1980) in 
considering the multiplication of matrices on processor arrays that do not

For the case of n = 64 we have



MATRIX MULTIPLICATION 469

match the size of the matrices (also in Jesshope and Hockney 1979). For 
example, how should one best compute the product of two 16x16 matrices 
on a 64 x 64 ICL DAP? Obviously it would be very wasteful to adopt the 
outer-product method and only use one sixteenth of the available processors.

Jesshope and Craigie note that there are n3 multiplications in the product 
of two n x n matrices (n2 inner products, each with n multiplications; see 
equation (5.27)), and that all these products can be evaluated simultaneously 
with a parallelism of n3. The summation of the n terms of all the n2 inner 
products can be achieved in log2n steps, also with parallelism n3, using the 
cascade sum method. The equivalent FORTRAN code is:

(5.35a)

(5.35b)

In the above, the loop (5.35a) performs all the n3 multiplications and the 
loop (5.35b) evaluates the cascade sum. After the execution of the four nested 
loops (5.35b) the C(/,J) element of the product is found in location C(/,J,1). 
The above code can be expressed succinctly, using the parallel constructs 
outlined in §4.3.1 (see pp 400-1) by the following single statement:

(5.35c)

For the case of 16 x 16 matrices on a 64 x 64 ICL DAP, we have n = 16 and 
n3 = 4096, hence the parallelism of the algorithm exactly matches the 
parallelism of the hardware. The three indices of the matrices in the code
(5.35) are mapped onto the two indices of the processor array in some regular 
fashion. In order to reduce the routing during the evaluation of the cascade 
sum, it is important to store all the values with the same first two subscripts 
(/ and J)  near each other. Such mapping is

(5.36)

where the subscripts on the pe  (,) array designate the row and column 
number of the pe  and are to be evaluated as FORTRAN statements. 
The result of this mapping is that the 16 values with the same first two 
subscripts are stored in a compact 4 x 4  array of processing elements, and 
routing during the summation is kept to a minimum. The long-range routing 
that is required during the expansion of A and B can be effectively performed
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on the ICL DAP using the broadcast facility (see §3.4.2). The SUM function 
in statement (5.35c) can also be optimised using bit-level algorithms.

5.4 TRIDIAGONAL SYSTEMS

Triadiagonal systems form a very important class of linear algebraic 
equations. They occur repeatedly as finite-difference approximations to 
differential equations with second derivatives: for example, simple harmonic 
motion and the Helmholtz, Laplace, Poisson and diffusion equations. 
Consequently efficient methods for the solution of such equations lie at the 
heart of many important numerical algorithms for the solution of the above 
equations: for example line-iterative methods such as a d i  and s l o r , and the 
rapid f a c r  and Buneman direct methods for the solution of certain classes 
of these equations. Some of these methods will be discussed later in §5.6. 
Unfortunately many of the techniques, for example Gaussian elimination, 
that have proved most effective on serial computers are sequential algorithms 
and therefore unsuitable for use on parallel computers. In this section we 
discuss the problem of introducing parallelism into these methods and 
alternatively the adoption of new algorithms, such as cyclic reduction, that 
are inherently more parallel. In developing these techniques we can use much 
of the experience gained during the study of vectorising recurrences in §5.2.

The solution of tridiagonal systems of equations has been quite widely 
discussed in the literature. Methods for vector computers are given by Stone 
(1973,1975), Lambiotte and Voight (1975), Swarztrauber (1979a,b), Kershaw 
(1982), Kascic ( 1984b), Gentzsch (1984) and Schonauer (1987). On the other 
hand, methods suitable for parallel implementation on mi md  computer 
systems are given by Evans (1980), Kowalik and Kumar (1985) and Wang
(1985).

5.4.1 Gaussian elimination
The general tridiagonal set of linear algebraic equations may be written as:

(5.37)
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or in matrix-vector notation:

(5.38)

The Gaussian elimination algorithm may be stated as follows:

(5.39a)

(5.39b)

(5.39c)

(5.39d)

(5.39e)

(ii) Back substitution

x„ =  gn,

x i = gi - y v ix i+l9 i = ( n -  1), (n — 2 ) , . . 1 .  (5.39f)

In the forward elimination stage two auxiliary vectors are computed, w and 
e, which are functions only of the coefficients in the matrix A. These vectors 
are the coefficients in the triangular decomposition of A into the product of 
a lower triangular matrix L and an upper triangular matrix U :

A = LU (5.40)

where

(i) Forward elimination

and

or

or
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Using this decomposition the solution of equation (5.37) for a particular 
right-hand side, k, can be expressed in two stages:

(5.41a) 

(5.41b)

Hence Ax = LUx = Lg = k as required. The forward elimination stage (5.39d) 
is the expression in component form of equation (5.41a) and the back 
substitution stage, equation (5.39f), is the expression of equation (5.41b). 
During this process g may overwrite k and the solution x may overwrite g, 
hence no extra storage is implied by the appearance of the intermediate 
vector g.

If the auxiliary vectors are not precalculated we evaluate equations (5.39a) 
and (5.39c) together, followed by equation (5.39f). The denominator 
(fe£ — af-W|_ x) is only evaluated once, and a total of 8n scalar arithmetic 
operations are required. However, if several equations are to be solved with 
the same left-hand-side matrix A but different right-hand-side vectors k, the 
number of operations can be reduced to 5n if the two auxiliary vectors w 
and e are precalculated and stored. In this case we use equations (5.39a) and 
(5.39b) in a preliminary calculation, and equations (5.39d) and (5.39f) to 
obtain the solution for each right-hand side. If only the one vector, w, is 
precalculated, equation (5.39b) is omitted and equations (5.39e) and (5.39f) 
are used. The number of scalar arithmetic operations increases to 6n but, of 
course, storage is saved. If the tridiagonal system arises from the finite 
difference of a second derivative on a regular mesh, then at = = 1. In this
case e{ = w, and the algorithm simplifies considerably:

Wi = c l / b l , 

wi = (bi - w i. i y l , i = 2, 3 ,..., n — 1; (5.42a)

Si = k l / b l ,

9i = ( k i - 9 i -  i K , / = 2, 3 ,..., n\ (5.42b)

= 0»,

i = n — 1, n — 2, . . . ,  1. (5.42c)x i = gi - w ix i+u

The scalar operations are now reduced to 6n without precalculation and 4n 
with precalculation of the single vector w.

The three loops (5.39a, c, f) or (5.42) of the Gaussian elimination algorithm 
are all sequential recurrences that must be evaluated one term at a time. 
Hence the parallelism of the algorithm is 1. This, together with the fact that 
vector elements are references with unit increment and that the number of



TRIDIAGONAL SYSTEMS 473

arithmetic operations is minimised, makes the algorithm ideally suited to 
serial computers. Equally, the absence of any parallelism prevents the 
algorithm from taking any advantage of the parallel hardware features on a 
computer. Hence the algorithm is most unsuitable for solving a single 
tridiagonal system of equations on a parallel computer.

However, if one is faced with solving a set of m independent tridiagonal 
systems (say m = 64), as frequently occurs in the solution of p d e s  (see §5.6), 
then Gaussian elimination will be the best algorithm to use on a parallel 
computer. In this case all m systems would be solved in parallel by changing 
all variables in the algorithm into vectors of length m running across the 
tridiagonal systems. For example the variable w, would become the vector 
{wi,k> k=  1, . . . ,  m} where wi k is the value of vvf in the kth tridiagonal system. 
When this is done, all the scalar operations in equations (5.39) become vector 
operations with vector length m. All statements vectorise fully, and the 
maximum vector performance is obtained. We thus obtain both the minimum 
number of arithmetic operations (by the choice of the Gaussian procedure) 
and the maximum parallelism. We note that normally these two aims cannot 
be satisfied simultaneously (see e.g. §5.2 on recurrences). The main disadvantage 
of this method is that the total storage required increases m-fold compared 
with solving the tridiagonal systems one at a time. The choice between these 
two alternatives is discussed further in §5.4.4.

5.4.2 Recursive doubling
Several methods have been proposed to introduce parallelism into the 
sequential Gaussian algorithm, notably the recursive doubling algorithm of 
Stone (1973). We will describe a variation of his improved algorithm 
(Stone 1975). The performance of several of these algorithms on the 
CDC STAR 100 pipelined computer is given by Lambiotte and Voight (1975). 
Another comparison, between algorithms on the CDC 7600 and CDC STAR 
100, is given by Madsen and Rodrigue (1976).

An examination of the Gaussian algorithm given in equations (5.39a, d, f) 
or in equations (5.42) shows that the algorithm consists of three recurrences. 
The recurrences for gt and x, are both linear and first-order; they may therefore 
be evaluated by cyclic reduction using the method for the general linear 
first-order recurrence given in §5.2.4. No further discussion is required. The 
recurrence for w,, although also a two-term recurrence, is nonlinear since it 
relates w, to (b, —^ w ,.! ) -1 . Cyclic reduction cannot therefore be directly 
applied to introduce parallelism into this recurrence. It may however be 
applied after some transformations.
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The recurrence for w, is:

(5.43a)

If we now let

(5.43b)

and rearrange, we have

(5.44a)

with

(5.44b)

Equation (5.44a), not surprisingly, is the homogenous form of the original 
equations. It is a linear second-order (or three-term) recurrence. Hence the 
problem of finding vvf is the same as the problem of solving the original 
equations. In §5.4.3 we will show how to use cyclic reduction directly to solve 
such recurrences. The recursive doubling algorithm, although it uses cyclic 
reduction, proceeds somewhat differently, as we now show.

For the sake of generality we will solve the second-order recurrence:

(5.45a)

(5.45b)

(5.45c)

where

(5.45d)

with

Equation (5.45c) is a linear first-order recurrence for the vector v, of the

or as

Equation (5.45a) can be expressed as follows:
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general form of equation (5.11a) except that the multiplying factor is now a 
matrix. The recurrence can be solved using the cyclic reduction procedure 
described for the scalar recurrence in §5.2.4, with appropriate interpretation 
in terms of vectors and matrices. Having found v, (taking hf = 0), the values 
of y, are known from its components, and vvf is calculated from equation 
(5.43b). This completes the recursive doubling algorithm for the parallel 
evaluation of the LU decomposition of a tridiagonal system by the Gaussian 
elimination recurrences.

It might be thought that one could solve the original equations by this 
method, because they are the same as equation (5.45a). However, this 
approach is thwarted because one does not have a starting value for Vj. This 
is because such a tridiagonal system arises from a second-order p d e  with 
boundary conditions at the two ends (i.e. one may consider y0 and yn+l to 
be known). However, the recurrence can only be evaluated progressively if 
starting conditions are given for two adjacent values—say y0 and y u giving 
a starting value for v^ If such starting values are available, the method above 
does provide a method of parallel solution for the general linear second-order 
recurrence. This would occur if the equations arose from a second-order 
initial-value problem, rather than the boundary-value problem presently 
under discussion.

In order to estimate the number of operations we will make the approximation 
that the parallelism remains at n throughout. Then we have, neglecting 
constant terms:

The time to execute the algorithm on a computer with a half-performance 
length of nl/2 is therefore proportional to

(5.46b)

5.4.3 Cyclic reduction
Cyclic reduction was first used to solve tridiagonal equations by Hockney 
(1965) in collaboration with Golub. The method was implemented on a serial 
computer, the IBM 7090, and was chosen in preference to Gaussian 
elimination because cyclic reduction deals with periodic boundary conditions 
in a much neater way, eliminating the need for the calculation of auxiliary

(5.46a)
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vectors. The equations solved were those arising from the finite-difference 
approximation to Poisson’s equation and had the same coefficients at each 
mesh point. These equations are discussed in detail in §5.6. For convenience 
the number of mesh points and therefore the number of equations was taken 
to be a power of two. Neither of these restrictions is necessary to the method 
as has been shown by Swarztrauber (1974) and Sweet (1974, 1977). For 
simplicity here, however, we will assume that n = n' — 1, where n' = 2q and q 
is an integer, and solve the general coefficient problem defined in equation 
(5.37).

Writing three adjacent equations we have for i = 2, 4,..., n' — 2:

The special end equations are included correctly if we set x0 = xn> = 0. If the 
first of these equations is multiplied by a, = —ai/bi- l9 and the last by

(5.48a)

(5.48b)

The equations (5.48) relate every second variable and, if written for 
i = 2, 4 ,..., n' — 2, are a tridiagonal set of equations of the same form as the 
original equations (5.47) but with different coefficients (a(l), 6(1), c(1)). The 
number of equations has been roughly halved. Clearly the process can be 
repeated recursively until, after log2(n') — 1 levels of reduction, only the 
central equation for i = ri /2 remains. This equation is

where the superscript r = log2(n') — 1 indicates the level of reduction. Since 
x o = xn’ = 0, the solution for the central equation is obtained by division

(5.49b)

(5.47)

(5.49a)
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The remaining unknowns can now be found from a filling-in procedure. Since 
we know x0, x n 7 2  and xn> the unknowns midway between these can be found 
from the equations at level r — 1 using

for i = n'/4 and 3n'/4. The filling-in procedure is repeated until, finally, all 
the odd unknowns are found using the original equations.

The cyclic reduction procedure therefore involves the recursive calculation 
of new coefficients and right-hand sides, for levels / = 1 , 2 , . . . ,  q — 1 , from

(5.50)

where

and

with the initial values a}0) = ah fej.0) = h, and c(°} = ch followed by the recursive 
filling-in of the solution, for / = q, q — 1 , . . . ,  2 , 1 from

where

and x 0 = xn< = 0 when they occur. The routing diagram for this algorithm is 
shown in figure 5.7 for the case n' = 8 . For convenience we define the vector 
Pi(ah bh ch ki) to indicate all the values calculated by equations (5.50).

The number of operations involved in the evaluation of equations (5.50) is

(5.51)

The time for this part of the calculation on a computer with a half-performance

(5.52)
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FIGURE 5.7 Routing diagram for the serial cyclic reduction algorithm 
(SERICR) for n'=  8. Rectangular boxes indicate the evaluation of 
equation (5.50) and the diamonds the evaluation of equation (5.51). The 
variables calculated are written inside the boxes with the notation
p i =  (ah bh ch ki).

length of nl/2 is proportional to (i.e. omitting the common factor r~l )

(5.53a)

In these comparisons we will only keep terms of order n' and log2n', hence 
for n1/2 > 1 and log2n' > 1 approximately we have

(5.54b)

The evaluation of equation (5.51) requires

5 operations with parallelism nl 1

Hence

(5.53b)

(5.54a)
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The manner of performing cyclic reduction that has just been described has 
the least number of scalar arithmetic operations and is therefore the best 
choice for a serial computer. We will therefore call the algorithm the serial 
variant of cyclic reduction with the acronym SERICR. The total time required 
for its execution is therefore proportional to:

(5.55)

On processor arrays it is generally desirable to keep the parallelism as 
high as possible, and an alternative method of carrying out cyclic reduction 
keeps the parallelism at n throughout the reduction phase. At the last level 
of reduction the solution for all variables is found in parallel—instead of 
only the central value in SERICR—and the filling-in phase is not required. 
Because this method is most suitable for the paracomputer we call it the 
parallel variant of cyclic reduction with the acronym PARACR.

The routing diagram for the parallel variant is shown in figure 5.8. At each 
level the reduction equations (5.50) are applied in parallel to all n equations. 
A difficult appears to arise when data is required that is not in the defined 
range 1 ^  i ^  n. However, it may be seen that the correct results are obtained

FIGURE 5.8 Routing diagram for the parallel cyclic reduction algorithm 
(PARACR) for n' =  8. The special vector p0 =  (0,1,0,0).

(5.54c)
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(5.56a)

or

pi*0 = (0,1,0,0),

The above special values, when inserted into the defining equation (5.48a), 
lead to the equation

which gives the correct boundary values. We may therefore either consider 
the solution of the original finite set of equations, or alternatively an infinite 
set extended with the coefficients (5.56a). This only amounts to adding 
equations such as (5.56b) outside the range of the original problem. Either 
point of view is equally valid, but the latter view is more appropriate for the 
parallel variant of cyclic reduction because it defines the required values of 
pi and x, outside the originally defined problem. After calculating pjfl) (actually 
only the values of fr, and /c, are required), the value of x, is obtained from 
equation (5.51):

(5.57)

The terms in x on the right-hand side of equation (5.51 ) do not occur because, 
at this level of reduction, they refer to values outside the range 1 ^  i ^  n and 
by equation (5.56b) are zero.

The number of operations in the PARACR algorithm is clearly

(5.58a)

(5.58b)

An advantage of the cyclic reduction algorithm is that, under certain 
conditions, the reduction process may be stopped before completion without 
loss of accuracy. This is possible if the tridiagonal system is sufficiently 
diagonally dominant. Let us define the diagonal dominance of the original 
system of equations (5.47) as <5, the minimum over all the equations of the 
ratios |fc,|/|a,| and IbJ/lc,!. We can then consider the solution of the simpler 
set of constant coefficient equations:

axi- i + bXi + axi+1 = kh (5.59)

if one takes

(5.56b)

with parallelism n

and the time of execution is proportional to
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with \ b/a \ = <5, which is equally or less diagonally dominant than the original. 
If this simpler set of equations can be solved to a certain approximation, 
then the original equations will be solved more accurately. The cyclic 
reduction recurrence (5.50) for this case is

where the subscript i is dropped because the coefficients are the same for all 
equations, and we use the fact that c{l) = a(l). Dividing equation (5.60b) by 
equation (5.60a) we obtain the recurrence relation for the diagonal dominance:

<5(0) = <5,

Hence if the initial diagonal dominance S > 2, the diagonal dominance will 
grow quadratically at least as fast as equation (5.61a), and

(5.61b)

The finite difference approximation of the Helmholtz equation,

(5.62a)

for a mesh separation of h, is

(5.62b)

Hence

(5.62c)

and for ft > 0  the difference equations satisfy the condition for the increase 
in diagonal dominance with depth of reduction. The harmonic equations 
that are obtained in the solution of partial differential equations are an 
important set of equations falling in this category (see §5.6.2).

If at any stage in the reduction the inverse of the diagonal dominance 
is less than the required accuracy (or the rounding error of the computer 
being used), and the solution x is known to be of order unity, then the

(5.60a)

(5.60b)

and then

(5.61a)
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reduction may be stopped. The solution equation (5.51) is

(5.63a)

and, by postulation, the terms in x on the right-hand side may be neglected 
compared with the left-hand side. The solution at this level can then be 
found by simple division:

(5.63b)

and in PARACR the solution is known everywhere or in SERICR the filling- 
in may start.

For large 3 (say > 3 ), the level, T, at which reduction may stop is obtained 
approximately using equation (5.61b):

(5.64a)

where e is the permitted relative error in the solution, or

(5.64b)

The first term shows how a greater demand for accuracy (larger e_1) 
necessitates more levels of reduction and the second term shows how the 
number of levels is reduced as the diagonal dominance increases. If S is close 
to two, the full recurrence (5.61a) must be evaluated. In any case, the 
practical approach is to measure the diagonal dominance, S(l\  at each level 
of reduction from the values of a(l\ b{l) and c(/), and to stop the reduction if 
equation (5.64a) is satisfied.

Of course there is no saving in the algorithm unless ?< lo g 2 (n') — 1» the 
maximum number of levels for complete reduction. This leads to the result 
that truncated reduction can produce savings when

(5.65a)

where

(5.65b)

If we take the example e = 2_ 2 O%10_ 6  (32-bit single-precision on the 
IBM 360) and 5 = 4 (as occurs in the harmonic equations of §5.6.2), we obtain

(5.65c)

Hence it is clear that truncated reduction can produce worthwhile savings 
even for small numbers of equations, provided they are sufficiently diagonally 
dominant. A simple test for the condition (5.64a) is likely to be worth including
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in any subroutine for cyclic reduction. The savings in execution time can be 
substantial if hundreds or thousands of equations are involved.

5.4.4 Choosing the algorithm
We will now consider the issues involved in choosing the best algorithm for 
the solution of m tridiagonal systems each of which is a set of n equations 
in n unknowns. The alternatives available and the conclusions are fairly 
typical of those arising in the choice of the best algorithm for any problem 
on a parallel computer. We again compare the performance of algorithms 
on a computer with a finite half-performance length using the nl/2 method 
of algorithm analysis (see §5.1.6). We assume, as usual, an infinite memory 
with no bank conflicts. The results are taken from Hockney (1982).

On a serial computer we have only one consideration, namely the 
minimisation of the number of arithmetic operations. On a parallel computer 
there are many more operations available and the selection of the best method 
becomes more complex. For the above problem of m tridiagonal systems, one 
may take the best sequential algorithm and apply it to the m systems, in 
parallel, or take the best parallel algorithm for solving a single system and 
apply it sequentially or in parallel to the m systems. In the latter case one 
has the further complication that the best parallel algorithm will depend on 
the amount of hardware parallelism available on the computer (i.e. the value 
of n1/2)- On a serial computer the first option is unavailable, and all computers 
have the same value of nlj2 ( = 0 ), hence the alternatives telescope.

We start by considering the best algorithm for solving a single tridiagonal 
system of n equations. Using equations (5.46b), (5.58b) and (5.55), and 
ignoring the unimportant difference between n' and n, we find the operations’ 
counts and average vector length n of the competing algorithms to be as 
follows.

(1) For recursive doubling ( r d ) the operations’ counts are 

Hence using

we obtain

(5.66a)

(2) For cyclic reduction with vector length kept at n and no filling-in stage 
(termed PARACR),
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hence

(3) For cyclic reduction with vector length halving at each level of reduction 
and including a filling-stage (termed SERICR),

s = \ l n  q=  171og2/i

hence

In the above we also ignore possible savings from truncated reduction which 
should certainly be taken into account if the systems are strongly diagonally 
dominant.

The recursive doubling algorithm has a poorer performance than either 
variant of cyclic reduction and will not be further considered. It would, of 
course, be used if it were required to find the LU decomposition of the 
equations. For the stated problem of actually solving the equations, cyclic 
reduction is always better. The choice is therefore between the parallel and 
serial variants of cyclic reduction (PARACR and SERICR respectively).

Given the operations’ counts s and q, the algorithmic phase diagram can 
now be drawn by using equation (5.5). We find that the parallel variant has 
the better or equal performance (PPAr a c r  ^  ^ s e r i c r )  when

(5.67a)

The equality gives the boundary line of equal performance. This is plotted 
in figure 5.9 together with the regions of the diagram in which each algorithm 
is superior. For large n1 / 2 we have:

(5.67b)

This shows that for the paracomputer (n1 / 2 = oo) the parallel variant, 
PARACR, is the best algorithm for all orders n of the equations (hence the 
name of the variant).

For finite values of n1/2 there is always some n( % 0.42n1/2) for values greater 
than which the serial variant is superior. This result is analogous to that 
found in §5.2.3 for the solution of recurrences. The value of n1 / 2 measures 
the amount of hardware parallelism. If the vector length is much greater than 
this for a particular problem, then for this problem the computer will act 
like a serial computer—that is to say the parallelism of the computer is too 
small to have an influence on the performance. In this circumstance the 
criterion of performance on a serial computer will be relevant: namely that

(5.66b)

(5.66c)
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FIGURE 5.9 The selection of the best algorithm for the solution of a 
single tridiagonal system of n equations on a computer with a half-
performance length of nl/2: SERICR, cyclic reduction with reduction of 
vector length; PARACR, cyclic reduction without reduction of vector 
length. (From Hockney (1982), courtesy of North-Holland.)

the best algorithm is that with the least number of scalar arithmetic 
operations, i.e. the serial variant of cyclic reduction (SERICR).

If, alternatively, we are presented with the problem of solving a set of m 
tridiagonal systems each of n equations, we have the choice of either 
applying SERICR or PARACR in parallel or sequentially to the m systems, 
or using the best serial method (the Gaussian elimination recurrence described 
in the last paragraph of §5.4.1) to all systems in parallel. For computers 
with a large natural parallelism ^mn, for example large processor arrays 
(the ICL DAP) or pipelined computers with a large ni/2 (the CYBER 205), 
the best algorithm is likely to be the one with the most parallelism. For such 
cases we compare Gaussian elimination applied in parallel to all systems 
(MULTGE) with parallelism m, with SERICRpar and PARACRpar in which 
the named cyclic reduction algorithm is applied in parallel to all systems.
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Using equation (5.5) we obtain the following relationships, in which the 
inequality determines which algorithm has the better performance, and the 
equality gives the equation for the equal performance line on the (n l/2/m, n) 
parameter plane.

PPARACRpar ^ PMULTGE when

(5.69a)

P SERICRpar ^  P MULTGE w h e n

(5.69b)

P PARACRpar ^ PsERicRpar when

(5.69c)

The lines defined by equations (5.69) are shown in figure 5.10 and divide the 
(nl/2/m, n) parameter plane into regions in which each of the three methods 
has the best performance. This is rather like a chemical phase diagram, and 
there is even a ‘triple point’ at n % 7, n i/2/m % 7.7 where the three algorithms 
have the same performance. We find that for n lj2 = oo (the paracomputer), 
PARACRpar as expected, the best algorithm for all n. However for finite 
n l/2 and n l/2 > 10m there is always some «, greater than which SERICRpar 
is favoured. If the number of systems m is greater than w1/2, we find that the 
application of the best serial algorithm in parallel to the m systems is always 
the best. In the region 1 < nl/2/m < 10 all three algorithms may be favoured 
in the complex way displayed by the diagram.

The operations’ counts and average vector lengths for these alternatives are 
as follows.

(5.68a)

(5.68b)

(5.68c)
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FIGURE 5.10 The selection of the best algorithm for the solution of 
m tridiagonal systems of n equations for computers with a large natural 
parallelism ^mn. We compare the Gaussian elimination (MULTGE), 
and the serial (SERICRpar) and parallel (PARACRpar) versions of cyclic 
reduction when applied in parallel to all m systems. (From Hockney 
(1982), courtesy of North-Holland.)

For computers with a limited parallelism approximately equal to n or m, 
there is insufficient parallelism to apply SERICR or PARACR in parallel. 
This would apply, typically, to computers such as the CRAY X-MP (which has 
a natural parallelism of 64) when applied to the solution of 64 tridiagonal 
systems of length 64. In this case we must compare SERICRseq and 
PARACRseq (in which the named cyclic reduction algorithm is applied 
sequentially to the m systems) with the best serial method applied in parallel 
(MULTGE). The performance and average vector lengths for these cases 
are

(5.70a)

(5.70b)
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FIGURE 5.11 The selection of the best algorithm for the solution of 
m tridiagonal systems of n equations for a computer with limited 
parallelism of approximately m or n (here n1/2 =  100). We compare 
Gaussian elimination applied in parallel to all m systems (MULTGE), 
with the serial (SERICRseq) and parallel (PARACRseq) versions of cyclic 
reduction applied sequentially to the m systems.

Figure 5.11 shows the comparison between these two algorithms and 
MULTGE for the case w1 / 2 = 100. The vertical line separating the PARACRscq 
and SERICRseq methods is obtained from the equality in equation (5.67a) 
or figure 5.9, and is true for all m. Multiple Gaussian elimination will have 
a performance better than or equal to the parallel variant of cyclic reduction 
applied sequentially when

(5.70c)

or when

We find, broadly speaking, that the multiple application of the sequential

or when

Similarly we find that MULTGE is superior to SERICRseq when

(5.70d)
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Gaussian algorithm is the best when the number of systems exceeds one tenth 
of the number of equations in each system. This will be the case for most 
applications arising from the solution of partial differential equations (see 
§5.6). There is a relatively small part of the diagram favouring the parallel 
variant of cyclic reduction, and this becomes smaller as n1/2 decreases. Indeed 
for n l/2 ^  10, PARACRseq is never the best algorithm.

5.5 TRANSFORMS

Mathematical transforms play an important role in mathematical and 
numerical analysis. Amongst these the finite Fourier transform (see Bracewell 
1965) and the related number theoretic transform are the most important 
because especially fast algorithms exist for their evaluation. The fast Fourier 
transform ( f f t ) algorithm (§5.5.1) obtains all components of the transform 
of n data values in 0 (nlog 2 n) real scalar arithmetic operations, compared 
with 0 ( n 2) such operations for other transforms. The number theoretic 
transform ( n t t ) (see §5.5.6) has not only the logarithmic operation count of 
the f f t , but also the advantage of using only integer additions and shifts; 
there are no multiplication operations. The n t t  therefore is particularly well 
suited for use on bit-oriented architectures such as the ICL DAP or Goodyear 
MPP (see Chapter 3).

Some of the applications of the Fourier transform are:

(a) The Fourier transformation of data as a function of time (time-series 
analysis) in order to determine the frequency spectrum. The Fourier transform 
is often the best way of computing the auto- and cross-correlations of such 
time series, and smoothing of the data is often best achieved in frequency 
space (for example the reduction or elimination of high noise frequencies). 
For a full discussion see Blackman and Tukey (1959).

(b) The Fourier transformation of data as a function of space in order to 
obtain the wavenumber spectrum. In many physical situations a wave analysis 
leads to the clearest understanding of a phenomenon (for example the 
realisation that certain wavelengths are unstable). Any linear system (or small 
disturbances of a nonlinear system) can be completely described by giving 
its dispersion equation, that is to say the frequency of oscillation as a function 
of the wavenumber of the disturbance. The measurement of this relation 
clearly requires a Fourier analysis in both space and time, for a large number 
of wavenumbers and frequencies.

(c) Spatial correlations between particles in, for example, a liquid are 
described by the pair (and higher) correlation functions, that is to say the
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probability that two particles are separated by a distance, as a function of 
that distance. Physical measurements, however, by x-ray and neutron 
diffraction determine the structure factor, which is the Fourier transform 
of the spatial correlation. Many transformations from wavenumber to 
coordinate space are required in order to interpret the experiments.

(d) Particle simulations by the method of molecular dynamics (see Hockney 
and Eastwood 1988, Chapter 12), trace the orbits of a large collection of 
atoms in a liquid. The interpretation of the dynamic properties of the liquid 
and its comparison with theory is best undertaken via the dynamic structure 
factor. This is determined by a Fourier analysis of the particle coordinates 
in space and time.

(e) The solution of linear partial differential equations is frequently 
undertaken in wavenumber space (so called Galerkin or spectral methods, 
see Orszag 1971). Nonlinear terms are included by transforming to coordinate 
space, carrying out the nonlinear interaction, and then transforming back to 
wavenumber space. Clearly such methods are only possible if rapid methods 
for evaluating the transforms are available and used.

(f) As a special case of (e) it is found that some of the fastest methods for 
solving the discrete form of Poisson’s equation in simple geometries are 
based on a partial Fourier transform of the data using the f f t  (e.g. the FACR 
algorithm of Hockney (1965) that is discussed in §5.6.2). In this circumstance 
the requirement is to perform many Fourier transforms in parallel, for 
example to transform the data on each of 64 lines of a 64 x 64 mesh in 
parallel. In a meteorological application using a semi-implicit timestepping 
procedure thousands of real Fourier transforms are required per timestep 
(Temperton 1979b).

(g) The solution of many field problems may be expressed as the convolution 
of a source distribution with an influence function that describes the influence 
on the solution of a point source. Using the convolution theorem, one has 
equivalently that the Fourier transform of the solution is the product, 
wavenumber by wavenumber, of the Fourier transform of the source and the 
Fourier transform of the influence function. The solution may be found by: 
(i) taking the transform of the source; (ii) multiplying it by the transform of 
the influence function, which may be precalculated and stored; and finally 
(iii) taking the inverse transform to obtain the solution. Such a method is 
only practical with the advent of the f f t , and has been extensively used in 
the calculation of the gravitational potential due to an isolated system of 
stars, that is to say a galaxy (Hockney 1970, Brownrigg 1975, Eastwood and 
Brownrigg 1979) and in the calculation of electrostatic interactions in ionic 
crystals with the p 3m algorithm (Eastwood 1976, Amini and Hockney 1979, 
Hockney and Eastwood 1988).
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This list of applications is by no means exhaustive. Other applications 
involving digital filtering, calculation of covariances and spectral densities, 
averaging and smoothing and the Laplace transform are discussed by Cooley 
et al (1967).

5.5.1 Fast Fourier transform
The fast Fourier transform is a collective term for a group of methods for 
the rapid evaluation of the finite Fourier transform (or Fourier analysis):

where f j  are the set of n complex data to be transformed and J k are the set 
of n complex harmonic amplitudes resulting from the transformation. A direct 
evaluation of the definition (5.71a) would require n complex multiplications 
and n complex additions per harmonic, or a total of 8 n2 real arithmetic 
operations for the evaluation of all n harmonics. The value of the f f t  algorithm 
is that it reduces this operation count to approximately 5nlog2n real 
arithmetic operations. The ratio of the performance of the f f t  to the direct 
evaluation on a serial computer is therefore

This ratio varies from about 18 (n=  128) to about 102 (n=  1024) and to 
about 5 x 104  (n % 106). It is not surprising therefore that the publication of 
the f f t  by Cooley and Tukey (1965) has led to a major revolution in numerical 
methods. Although Cooley, Lewis and Welch (1967) cite earlier works 
containing the idea for n log2w methods (e.g. Runge and Konig 1924, Stumpff 
1939, Danielson and Lanczos 1942, Thomas 1963) these were not generally 
known. Before 1965 Fourier transformation was thought to be a costly n2 
process that could only be conducted sparingly and was usually best avoided; 
after 1965 it became a relatively cheap process, orders of magnitude faster 
than had been previously thought.

The transform (5.71a) has the inverse (or Fourier synthesis):

(5.71a)

(5.71b)

(5.72a)

which may be proved using the orthogonality relation:

(5.72b)

(5.72c)

where 0# is the Kronecker delta:
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Ignoring the factor of n ~1 in equation (5.71a), which can be included outside 
the routine for Fourier transformation, both the direct and inverse transform 
can be expressed as

where

The association of the negative sign with Fourier analysis in equation 
(5.73b) and the positive sign with Fourier synthesis is arbitrary. We have 
followed the conventions of transmission theory and Bracewell ( 1965). Clearly 
the choice is immaterial and can be accommodated by the appropriate choice 
of a>„. The algorithm is the same in both cases. Being the nth root of unity, 
con has the important property that

(5.74a)

and thus

where s and t are integers. The definitions (5.73b, c) also show that any 
common factor may be removed from or inserted into both the subscript 
and superscript of without altering its value. Thus, for example,

Frequently the function to be transformed is real, say gp and the transforms 
are expressed in terms of sines and cosines. Thus, assuming n is even,

(5.75a)

where

(5.75b)

and

(5.75c)

The coefficients of ak and bk of the real transform are simply related to the

(5.74b)

(5.73a)

(5.73b)
(5.73c)
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A real transform can therefore be obtained by performing a complex transform 
of length n on data of which the real part is gj and the imaginary part is 
zero. The real and imaginary parts of the first n/ 2 harmonics of the complex 
transform yield the coefficients of the real transform by equation (5.75d). The 
second n/2 harmonics are redundant, being the complex conjugates of the 
first n i l  harmonics by:

(5.76)

The above method of computing the real transform is clearly wasteful as half 
the input data is zero (all the imaginary parts) and half the results contain 
no new information and are discarded. The number of scalar real arithmetic 
operations is 5nlog2 fl.

A more economic method of performing a real transform is to treat the 
even values of the real input data as the real parts of a function to be 
transformed, and the odd values of the real input data as the imaginary parts, 
thus

The complex transform of / ,  is now of length n/2 and takes 2^n\og2n scalar 
real operations. The coefficients of the real transform are then found as 
follows:

(a) Calculate for k =  l ,2 , . . . ,n /4 — 1 the transforms of the n/2 even and 
n/2 odd values:

(5.78a)

(5.78b)

where the asterisk denotes the complex conjugate.
(b) Calculate for k =  l ,2 , . . . ,n /4 — 1 the intermediate transform Ck of 

length n/2, defined by

(5.79a)

(5.79b)

(5.79c)

real and imaginary parts of the complex transform (5.71a) of g, by:

(5.75d)

(5.77)
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(c) Finally obtain the coefficients of the real transform from:

(5.80a) 

(5.80b) 

(5.80c)

The number of real scalar arithmetic operations is 2jtt log2n + 3jtt, where 
the second term arises from the post-manipulation of Jk in equations
(5.78)-(5.80).

The calculation of the Fourier series (5.75a) from the coefficients (5.75b, c) 
can be performed by reversing the above procedure as follows:

(5.81a)

(5.81b)

(5.82a)

(5.82b)

(5.83a)

(5.83b)

and also

We then calculate the complex Fourier synthesis of the n j l  complex values 
J k and the resulting n/ 2  complex values contain the required synthesised 
values in successive real and imaginary parts, thus

f j ^ Y  ^ p ( ^ T f ) 7 k = ^ j  + i0 2 j +u j  = 0 , l , . . . ,n /2  — 1 . 
k=o \  n / z  /

(5.83e)

(5.83c)

(5.83d)
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The above procedure involved a pre-manipulation of the n real data into the 
appropriate n/ 2  complex values which are then transformed using the 
complex f f t . As in analysis, the number of real scalar arithmetic operations 
is 2 jn  log2n + 3

The calculation of the real Fourier transform is discussed by Cooley et al 
(1967) and by Bergland (1968). A different approach, involving the folding 
of data before multiplying by sines and cosines, is described by Hockney 
(1970). The latter method is the amalgamation of hand computation methods 
as given, for example, by Runge (1903, 1905) and Whittaker and Robinson 
(1944) and gives in addition to the periodic transform described above, the 
finite sine and cosine transformations. The latter together with the calculation 
of the Laplace transform are discussed by Cooley et al (1970). Other important 
publications on the f f t  are Gentleman and Sande (1966), Singleton (1967, 
1969), Uhrich (1969) and the book on the subject by Brigham (1974). In this 
chapter we aim only to bring out the main features of the f f t  algorithm and 
discuss some of the considerations affecting its implementation on parallel 
computers. For this purpose we will limit the discussion to the binary (or 
radix-2 ) case for which n = 2q (where q is integral) although the algorithm 
can be applied efficiently to any n that is a product of small primes preferably 
repeated many times. Such mixed radix algorithms are described by Singleton 
(1969) and Temperton (1977, 1983a, 1983c). A form of the binary algorithm 
particularly well suited to parallel processing has been given by Pease (1968), 
and the performance of several of the above algorithms has been compared 
on the CRAY-1 by Temperton ( 1979b), and on the CYBER 205 by Temperton 
(1984) and Kascic (1984b). Vectorisation of the fast Fourier transform is 
discussed by Korn and Lambiotte (1979), Wang (1980) and Swarztrauber 
(1982, 1984). The implementation of fast radix-2 algorithms on processor 
arrays is considered by Jesshope (1980a).

The above algorithms, which are all variations and extensions of the 
algorithm published by Cooley and Tukey (1965), may be described as the 
conventional fast Fourier transform. Their efficiency relies on the factors of n 
being repeated many times. Curiously, there is another form of the fast Fourier 
transform, called the prime factor algorithm ( p f a ), in which n is split into 
non-repeating factors which are all mutually prime to each other. These 
methods were first introduced by Good (1958, 1971) and Thomas (1963), 
and subsequently developed by Kolba and Parks (1977), Winograd (1978), 
and Johnson and Burrus (1983). The method has found most application in 
signal processing (Burrus 1977, Burrus and Eschenbacher 1981), and is fully 
described in the books by McClellan and Rader (1979), and Nussbaumer 
(1982). The practicalities of implementing the pf a  on current vector computers 
have been discussed by Temperton (1983b, 1985, 1988).
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One aspect of the above methods is the manipulation of the algebraic 
formulae for the f f t  in such a way as to minimise the number of 
multiplications. The theory of this technique has been developed by Winograd 
(1978, 1980), and the method has been used extensively for the computation 
of the f f t  and convolutions by Cooley (1982) and Ausländer and Cooley
(1986). The numerical stability of the resulting algorithms is discussed by 
Ausländer et al (1984).

5.5.2 Deriving the f f t

The key to the derivation of the fast Fourier transform algorithm is the 
appropriate definition of intermediate partial transforms. Here we adopt the 
definition used by Roberts (1977) although the notation has been slightly 
changed. The partial transforms of the n data, / 0, / l5. i at level / of the 
transform are defined byt

(5.84a)

where

(5.84b)

and i is an integer subscript with values

(5.84c)

The above defines a collection of n l ~ l transforms. Each transform is 
distinguished by its identification number i which is the index of the first 
datum from which the transform is calculated. The remaining data for the 
transform are separated from the first by the interval n2~l. The length of 
each transform is 2l. Thus (Z)J f  is the fcth harmonic of the ith transform at 
level /. t  When Z = 0 we have j  = k = 0 and

(5.85a)

Hence the level-zero transforms are the initial data. At level Z = q, where 
q = log2 n, we have i = 0  and

(5.85b)

Thus at level log2n there is only one partial transform which is proportional 
to the required complete transform over all the original n data.

(i)
fThe notation /?  will be used in the text only.
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It is also helpful to consider the partial transforms (0J f  as the elements of 
a two-dimensional matrix of 2l rows and n2~l columns, formed by writing 
the harmonics of each partial transform as a column vector and placing these 
column vectors side by side. Then we start at level zero with a single row of 
data, and finish at level log2n with a single column of results. In going from 
one level to the next the number of columns is halved and the number 
of rows is doubled. This view should not be taken to imply that the 
partial transforms are necessarily stored in the computer as a variable 
two-dimensional array. One-dimensional indexing is invariably used in 
FORTRAN and we will see that storage may be saved if the harmonic 
amplitudes are calculated in a shuffled—rather than their natural—order. 
Two-dimensional indexing can be used if the necessary features are available 
in the parallel constructs of the language and efficiently implemented, as is 
shown in §4.3.1 (iii).

The arithmetic of the algorithm is obtained by deriving a recurrence for 
the partial transforms at level / -h 1 in terms of those at level /:

(5.86a)
j = o

Dividing the summation into two parts by setting; = 2s + t with 5  = 0 ,1 ,..., 2l 
and t = 0 , 1  one obtains:

where in the last step we have removed the common factor 2  from the subscript 
and superscript of the second factor. Substituting equation (5.86c) into (5.86b) 
and writing separately the terms for t = 0  and 1 one obtains

(5.87a)

(5.87b)

(5.86b)

Remembering the definition of co2'+i as the 2/+1th root of unity we have:

(5.86c)

Hence

Replacing k by k + 21 gives:
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In the last step of equation (5.87c) we have removed the common factor 2Z 
from the subscript and superscript of the first factor, and used the fact that
( o 2  —  —  1 .

To summarise, the Cooley-Tukey (1965) formulation of the f f t  is given
by:

where k = 0 , 1 , . . . , 2 Z — 1 and i = 0 , 1 , . . . , nl  {l+l) — \ with starting condition 
(0 )7? = f.. The result of the transform is found from:

(5.88c)

If (Z+1)7? overwrites (l)J k and (/ + 1)J ic + 2' overwrites (Z)/? +„2 -<,+i> then the 
transform can be performed in-place without the need for any auxiliary 
storage. However the final harmonics are then obtained in reverse binary 
order. That is to say, if k = kq_x2q~l + kq_^2q l  + ••• + /ii2  + /c0, where kp 
is the pth digit in the binary representation of k, then this harmonic will be 
found in location (q)J k\ where k' = k02q~l + k 12q~2 + ... + kq- 22 + kq- 2- If 
the harmonic analysis is to be followed by a synthesis step which reverses 
the above steps, then there is no need to sort the harmonics into natural 
order. This is the case during the solution of a field problem by the convolution 
method. If the harmonics are required as output, however, a sorting step 
must be inserted after the basic algorithm. Such a sorting is often referred 
to as bit-reversal, because the harmonics occur in bit-reversed order. 
Alternatively, if overwriting is eliminated by placing the result of the 
recurrence in a second array, sorting may take place at each level as is shown 
in the data flow diagram in figure 5.12.

The fast Fourier transform of equations (5.88) may be reversed by solving 
for level / in terms of level / + 1 and the inverse transform obtained as 
follows:

(5.89a) 

(5.89b)

(5.88a)

(5.88b)

since iZ)7? + 2 = (Z)7i, from equation (5.84a), and

(5.87c)
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FIGURE 5.12 Data flow diagram for the Cooley-Tukey formulation 
of the fast Fourier transform. The diamonds evaluate the recurrence 
(5.88). The number in the diamond is the power of the nth root of unity 
that is used as a phase factor. (After Temperton 1977.)

where k = 0 , 1 , . . . ,  2^—1 and i = 0, l , . . . ,w2 (/+1)— 1 with the starting 
condition,

(5.89c)

The synthesised results are found from:

(5.89d)

An examination of equations (5.89) shows that the final result is unchanged 
if the factor n is dropped from equation (5.89c) and the factors of \  are 
dropped from equations (5.89a) and (5.89b). This amounts to inserting a 
factor 2 _i on the right-hand side in the definition of the partial transform 
(5.48a).
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Since an inverse transform can be converted to a forward transform by 
replacing a> by co_1, interchanging the roles of /  and J, and multiplying by 
n " 1 at a convenient place, equations (5.89) also provide an alternative 
formulation for the forward transform:

and the results found

This is the Gentleman-Sande (1966) formulation of the fast Fourier 
transform.

The f f t  may be based on either the recurrence (5.88) or (5.90). Implemen-
tations also differ in the storage pattern chosen for the intermediate partial 
transforms. For example Uhrich (1969) uses equations (5.88) and Pease 
(1968) uses equations (5.90).

5.5.3 Vectorisation
The techniques for the implementation of the f f t  on vector pipelined 
computers can be illustrated by considering the FORTRAN code for the 
Cooley-Tukey algorithm of equations (5.88) that is given in figure 5.13. This 
program comprises a control routine (top) which calls the subroutine RECUR 
(bottom) to evaluate the recurrence (5.88). RECUR (F, G, W, L, N)  performs 
the recurrence once for L = l on the input data in the complex vector F and 
puts the output in the complex vector G. The vector W contains powers of 
the nth root of unity and N = n is the total number of complex variables. At 
successive levels the input and output alternate between the arrays F and G, 
and calls to RECUR are therefore made in pairs in the control routine. Since 
F and G are different vectors the output never overwrites the input. This 
permits the harmonics to be kept in natural order and allows most compilers 
to vectorise the statements in the DO 11 loop. We assume that W has been 
previously loaded with powers of the nth root of units such that

(5.91a)

1 with the starting values

(5.90c)

(5.90a)

(5.90b)

(5.90d)
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FIGURE 5.13 The control program (top) and the subroutine RECUR 
for scheme A (bottom) with vectorisation of the DO II loop.

and the partial transforms are arranged such that

(5.91b)

The other principal FORTRAN variables are LI = / + l , K l = f c + l , I l = i + l ,  
I2L = 2Z, N2L1 = n2~(l+l\  I2L1 = 2 Z+1, N2L2 = n2~(Z + 2), LO G 2N =log2n. 
The statements in the DO 20 loop are the implementation of the Cooley- 
Tukey recurrence (5.88). They are written with all the indexing explicitly in 
terms of the loop control variables in order to display the opportunity for 
vectorisation. As written, most compilers would replace the DO 20 II loop 
by vector instructions. Since W is not a function of II, it is replaced by the 
scalar WK in the inner loop which may be implemented by instructions of 
the form

vector = vector + scalar*vector

The vector length is n2_(Z+1) and decreases at each call to the subroutine 
RECUR, taking on the values w/2, nf4, ... ,  4, 2, 1. The storage interval
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between successive elements of the vector F that are referenced in the DO 
II loop is 2l and takes on the values 1,2,4, 8, 1 6 , ,  n/2. Consequently, in the 
later stages of the algorithm, there will be memory-bank conflicts on 
computers with a power-of-two number of memory banks. On the CRAY-1 
for example, there will be conflicts for Z ^  2 or intervals that are multiples 
of four complex or eight real numbers.

The above memory-bank conflicts can be eliminated at the expense of a 
small amount of extra storage, by adding unity to the storage intervals INC1 
and INC2 for Z ^  2. This increases the storage requirement by ¿, but the 
storage intervals between successive elements of the vector F become 
1,2, 5 ,9 ,17,..., w/2 + 1 at levels Z = 0,1,2, 3 ,4 ,..., log2(n) — 1. This modifi-
cation of the storage pattern takes place in the IF statements just prior to 
the DO 20 loop.

There are ten scalar real arithmetic operations in the DO 20 loop, hence 
on a computer with a half-performance length of n1/2, the time to execute 
this algorithm (which we call scheme A) is proportional to:

(5.92a)

(5.92b) 

(5.92c)

The last term in equation (5.92c) is the normal serial operation count for 
the f f t  algorithm (take n1/2 = 0), and the first term shows the effect of 
hardware parallelism through the value of n1/2.

It is obvious that the DO K1 and DO II loops of the above code can be 
interchanged without altering the effect of the statements in the DO 20 loop. 
If this is done, as is shown in figure 5.14, the DO K1 loop becomes the 
innermost and is replaced by vector instructions. The vector length is 2\ or 
1,2,4, .. . ,« /2  in successive passes, and the storage interval is w2_(Z+1), or 
n/2, n/4 ,.. . . ,  4,2,1. Memory-bank conflicts are a serious problem in the early 
stages of this algorithm but can be avoided in the manner described above. 
The variable W is now a vector in the inner loop and the multiplication is 
a vector*vector instruction. The time to execute this alternative algorithm 
(scheme B) is proportional to:

(5.93a)

(5.93b)
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FIGURE 5.14 Subroutine RECUR for scheme B with vectorisation of 
the DO K1 loop.

Setting / '= log2(n) — 1 —/, and reversing the order of the first summation 
one obtains:

(5.93c)

(5.93d) 

(5.93e)

We therefore find that, if taken to completion, the two alternative schemes 
execute in the same time. However they have different characteristics. Scheme 
A starts with long vectors which reduce in length as the algorithm proceeds, 
whereas scheme B starts with short vectors which increase in length as the 
algorithms proceed. The performance of any parallel computer improves as 
the vector length increases, hence a combined algorithm suggests itself. 
Perform the first p levels of the f f t  using scheme A and the last q — p levels 
using scheme B. This combined algorithm executes in a time proportional to

(5.94a)

= 10n1/2(2p 4- n2 p — 2) + 5n log2n. (5.94b)

By differentiating equation (5.49b) with respect to p, we find the condition 
for the minimum execution time 

d tA
(5.95a)
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Hence

2P = n/2p, 22p = n, (5.95b)

p = \ log2n. (5.95c)

With this optimal selection of p, the minimum vector length is 2P = J n (or 
J \ n  if n is not a multiple of four) and the execution time (assuming n is a 
multiple of four) is given by

(5.96)

This type of combined algorithm was developed independently by Roberts 
(1977) and Temperton (1979b). Temperton’s version is based on the 
Gentleman-Sande recurrence (5.90) and forms the basis of the subroutine 
CFFT2 written in CAL assembler by Petersen (1978) for the CRAY X-MP 
computer scientific subroutine library.

Two further simplifications are usually incorporated in any efficient 
algorithm. These concern the value of the multipliers = (ok*i2} 1 that 
occur in both the Cooley-Tukey and the Gentleman-Sande recurrences. 
When k = 0 the multiplier is unity and an unnecessary multiplication by this 
value can be avoided by writing a separate loop for this case. In the calculation 
of the first level of partial transforms, when 1 = 0 in the recurrences (5.88), 
this occurs for every evaluation of equations (5.88). At other levels, it occurs 
at the first use of the equations. In the calculation of the second level of 
partial transforms, when / = 1 in equations (5.88), k = 0,1 and the multipliers 
are 1 and i. Since multiplication by i merely interchanges the real and 
imaginary parts and changes the sign of the real part, no multiplications are 
required in the calculation of the second-level transformations either. Again 
a separate loop is justified.

Some arithmetic may be saved if the number of elements n being 
transformed contains factors of four (Singleton 1969). It is then advantageous 
to combine two applications of the recurrence (5.88) into a single recurrence 
involving four input values and four output values(/ +1 */•. If we suppose
n is a power of four and therefore log2n is even, the transform can be performed 
by evaluating the recurrence

and

(5.97a)
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(5.97b)

(5.97c)

(5.97e)

The data flow diagram for the power-of-four transform (n = 42) is shown in 
figure 5.15. The evaluation of the recurrence (5.97) requires three complex 
multiplications in order to calculate a, b and c, and eight complex additions 
occur in equations (5.97b, c,d,e). That is 34 real operations for ^log2n values 
of l and n/4 combinations of k and L This is a total of 4.25nlog2n real 
operations compared with 5nlog2n for the power-of-two transform, or a 
saving of 15%. When / = 1, k = 0, all the multipliers are unity and as in the 
case of the power-of-two transform, special code is justified to avoid 
unnecessary multiplications. The power-of-two and power-of-four transforms 
can easily be combined to give an efficient transform for any power of two, 
that first removes all factors of four from n and then, if necessary, removes 
a final factor of two.

5.5.4 Parallel implementation
On processor arrays there is a high premium in performance to be obtained 
if the parallelism of the algorithm can be made to match the hardware 
parallelism of the array—that is to say the number of processors in the array. 
The algorithms discussed in §5.5.3 have parallelism varying from n/2 to 
and are therefore not very suitable for implementation on processor arrays 
which have a fixed number of processors and therefore fixed parallelism. If, 
however, the DO K1 loop and the DO II loop of figure 5.13 or figure 5.14 
are combined into a single loop, all the arithmetic can be performed with a 
fixed parallelism of n. If this parallelism should match the array (e.g. 
transforming 4096 values on a 64 x 64 ICL DAP), then the ideal has been 
achieved.

We shall call the above algorithm PARAFT because it is the most suitable 
for execution on the paracomputer. The details of the subroutine RECUR 
are given in figure 5.16. The DO 20 loop contains no arithmetic and consists 
solely of data movements that are necessary to prepare for the arithmetic

(5.97d)
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FIGURE 5.15 The data flow diagram for the power-of-four transform 
for n = 16. The diamonds evaluate the recurrence (5.97). The number in 
the diamond is the power of the nth root of unity used in the evaluation 
of the constant a.

that is performed in the DO 30 loop. The complex arrays U and E are copies 
of the data array F with a sign change corresponding to the negative sign 
in equation (5.88b). The complex array V contains copies of the multipliers 
a>21̂  in the correct place so that all n multiplications of equations (5.88) can 
be performed in parallel in the first statement of the DO 30 loop. The second 
statement of the DO 30 loop then performs all the n additions of equations 
(5.88) in parallel.

As described in the previous section, there are no genuine multiplications 
in the first two calls to RECUR, when / = 0 and 1. Special code for these 
cases and the use of a power-of-four transform when possible would be 
incorporated in an efficient program. The routing inherent in the DO 20
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FIGURE 5.16 Subroutine RECUR for PAR AFT with vector length N 
in the DO 30 loop.

loop must be considered when assessing the time of execution of the algorithm. 
In processor arrays where arithmetic is slow compared with routing, such 
as the ICL DAP, the DO 20 loop will not consume a major part of the 
execution time. For example, data routing accounts for 10-20% of the overall 
time when performing 1024 complex transforms on a 32 x 32 ICL DAP 
(Flanders et al 1977). On arrays of more powerful processors the DO 20 
routing loop will assume relatively more importance. Several processor arrays 
have special routing connections and circuitry designed to perform efficiently 
the routing necessary in the fast Fourier transform. Examples are the 
Goodyear STARAN and the Burroughs BSP (see Chapter 3).

Examination of figure 5.16 shows that the PAR AFT algorithm requires 
one complex multiplication and one complex addition to be performed at 
each level with parallelism n. This is equivalent to eight real operations with 
parallelism n at log2n levels or, assuming routing is unimportant, an execution 
time proportional to

(5.98a)

By comparing equation (5.98a) with the time for the A + B scheme in equation 
(5.96) we find that PARAFT has a higher performance than A + B if

(5.98b)

The regions of the («, nl,\) plane favoured by the two algorithms on this
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FIGURE 5.17 The regions of the (n, m/ nl/2) plane in which either the 
(A -|- B) scheme or the PAR AFT algorithm has the higher performance 
when applied in parallel to m fast Fourier transforms each of length n. 
When m =  1 the graph applies to the selection of the best algorithm for 
a single transform.

basis are shown in figure 5.17 (with m = 1). The above considerations apply 
accurately to pipelined computers and to processor arrays in an average 
sense (see §1.3.3). Other alternatives exist, and Jesshope (1980a) has shown 
that a combination of the two methods is advantageous on processor arrays 
when the transform length exceeds the array size. In this case the length of 
the transform is successively halved using the A + B scheme, until the transfer 
length is less than the array size. At this stage the PARAFT algorithm is 
used to complete the transform.

If faced with the problem of calculating m independent transforms each of 
length n, the approach will depend on the amount of parallelism desired. We 
first consider the methods which have the maximum parallelism and compare 
the performance of the A + B scheme and PARAFT when applied in parallel 
across the m transforms. These methods are suitable for machines with large 
natural parallelism, for example the CYBER 205 and the ICL DAP. The 
execution times will be proportional to

(5.99a) 

(5.99b)

Compared with equation (5.4b) these have average vector lengths of
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(5.99c)

(5.99d)

Equations (5.99) show that the (A + B)par algorithm has the better performance 
when

(5.99e)

The regions of the (n ,m/ni/2) plane favouring the two methods are shown 
in figure 5.17. We see that the (A + B)par scheme is favoured whenever either 
the number of transformations or the length of the transforms becomes large.

If, alternatively, there is advantage to restricting the parallelism of the 
algorithm to approximately n or m, then we can ask whether it is advantageous 
to repeat the best algorithm for a single transform m times, or to take the 
best serial algorithm and perform it in parallel on the m systems (the 
MULTFT algorithm). The best serial algorithm is either scheme A or scheme 
B with n1/2 = 0 and requires 5n log2n real scalar arithmetic operations. The 
MULTFT algorithm has average vector length h ml ,ltft  = and will execute 
in a time proportional to:

When applied sequentially m times, on the m different systems to be 
transformed, the other algorithms will execute in a time proportional to:

(5.100b)

(5.100c)

(5.100d)

From these timings we conclude that the MULTFT algorithm will have 
a superior performance to the (A -F B)seq scheme if

(5.101a)

and will have a superior performance to the PARAFTseq algorithm if

(5.101b)

(5.100a)

and with average vector lengths
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FIGURE 5.18 The selection of the best algorithm for calculating m fast 
Fourier transforms each of length n, on a computer with natural 
parallelism approximately m or for which the A + B scheme is the best 
method for calculating a single transform (see figure 5.17). The best serial 
ff t  is applied in parallel to the transforms, MULTFT, or the A + B 
scheme is applied sequentially, (A -l- B)seq. In this case a single curve 
applies for all values of n1/2, and divides the regions of the (n, m) plane 
in which either the MULTFT or (A + B)seq scheme has the better 
performance. The open circles are interpolated from the measured results 
of Temperton (1979b) on the CRAY-1.

The full curve in figure 5.18 is a plot of equation (5.101a) and shows the 
region of the (n,m) plane in which either the MULTFT or the (A + B)seq 
scheme has the superior performance. We note that equation (5.101a) is 
independent of nl/2 and a single curve applies for all computers. We conclude, 
roughly speaking, that if the number of systems to be transformed exceeds 
one tenth of the length of the systems, then it is advantageous to use the best 
serial algorithm on all systems in parallel, rather than the best parallel 
algorithm on each system in sequence. Temperton (1979b) compared the 
actual performance of two FORTRAN codes on the CRAY-1 for algorithms 
comparable to MULTFT and the (A -1- B)seq scheme. His measurements are 
shown as the open circles and the broken line. The trend of Temperton’s 
measurements agrees with the predictions of the simple theory given above, 
and would be in absolute agreement if the predicted speed of MULTFT 
relative to the (A + B)seq scheme were increased by a factor between two and 
three. Such relative behaviour might be expected because the MULTFT
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algorithm has much simpler indexing than the (A 4 - B)seq scheme (the 
increment of the innermost vectorised loop over the m systems is always unity) 
and memory is therefore accessed in the most favourable fashion.

Figure 5.19 is a similar comparison between MULTFT and the sequential 
application of the PARAFT algorithm. It is for use when we conclude from 
figure 5.17 that PARAFT is the best algorithm for performing a single 
transform. The following limiting values may be useful:

(5.102a) 
(5.102b)

and for large n a limiting value of m is reached

(5.102c)

5.5.5 Routing considerations
The above performance comparisons have been made on the assumption 
that routing delays (see §5.1.4) do not make an important contribution to

FIGURE 5.19 The selection of the best algorithm for calculating m fast 
Fourier transforms each of length n, on a computer with a natural 
parallelism of approximately n or m, and for which the PARAFT 
algorithm is the best method of calculating a single transform (see 
figure 5.17). PARAFT is applied sequentially to the m transforms, 
PARAFTseq. The curve shows the boundary in the (n/nl/2i m/ n i/2) plane 
between regions in which either the MULTFT or PARAFTseq method 
has the better performance.
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the execution time. Such delays only affect the performance of processor 
arrays on which the PARAFT algorithm is most likely to be the best from 
the point of view of arithmetic operations (see figure 5.17). We will therefore 
consider the routing problem for this algorithm. The routing delay will 
obviously depend on the connectivity pattern between the processors of the 
array. We will therefore consider a general class of such processor connections, 
which includes most of the processor arrays that have been manufactured. 
The treatment here follows that of Jesshope (1980a) who gives a compre-
hensive analysis of the implementation of fast radix- 2  transforms on processor 
arrays. Further results on routing and transpositions in processor arrays are 
given by Jesshope ( 1980b,c). In addition to the above, Nassimi and Sahni 
(1980) consider the implementation of bit-reversal and the perfect shuffle.

Let us consider a processor array with P processors, arranged in a cartesian 
k-dimensional array with Q processors in each coordinate direction, then

(5.103a)

and, in accordance with normal practice, we take Q to be a power of 2

(5.103b)

Each processor has access to data in its own memory and that of its immediate 
neighbours in each coordinate direction. Note, in particular, that diagonal 
connections are not present. For the case q ^  2 this connectivity pattern 
requires 2k connections to each processor and kP data paths for the whole 
array, if we assume that a data path can be used for transferring data in 
either direction. For the case q=  1 the above counts are halved. At the edges 
of the array the processors are connected in a periodic sense in each dimension. 
If / represents the coordinate direction and it the coordinate in the /th 
direction, periodicity means that all coordinates are interpreted modQf* 
hence

(5.104a)

and nearest-neighbour connectivity means that processors are connected if 
their coordinates differ by ± 1 in one, and only one, coordinate direction.

We wish to use the above /c-dimensional array as a store for a one-
dimensional array { f h i= l , . . . ,n }  of data to be transformed. To avoid 
complication we shall assume that the number of processors equals the 
number of data. Numbering the processors sequentially along the 1st, 2nd 
to the kth dimension we have the correspondence

(5.104b)

t  mod is short for modulo.
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and nearest-neighbour connectivity means that processor i is connected to:

(5.104c)

Computers that fall into the above class of connectivity are:

(a) ILLIAC IV P = 64, k = 2, Q = 8 , q = 3, and processor i connects with 
( i±  l , i  + 8)mod64. Note that although the internal connections are two- 
dimensional, the edge connections treat the array as a periodic one-
dimensional structure. For this reason the machine is not strictly speaking 
in the class;

(b) ICL DAP P = 4096, k = 2, Q = 64, q = 6 , and processor i connects with 
(i ±  1 ) mod 64, (/ + 64) m od4096;

(c) HYPERCUBE (binary) P =  16, k = 4, <2 = 2, q=  1, and processor i 
connects with (i ±  l)m o d 2 , ( /±  2 ) mod4, (i± 4 )m od8 , (/ + 8 ) mod 16.

We see that the problem of providing kP data paths limits the dimensionality 
of practical arrays to two when the number of processors is large. The highest 
level of connectivity is given by the Hypercube (Millard 1975) which takes 
2  = 2, 3 or 4 and k = 4. Computers that do not fall into the above 
class are those that provide diagonal connections within the network, for 
example CLIP at University College, London (Duff 1978, 1980a, 1980b) that 
provides connections to the nearest eight processors in a two-dimensional 
array, whereas our definition only allows connections to the nearest four 
processors.

In the PARAFT algorithm the routing takes place entirely in the DO 20 
loop of figure 5.16 in which a partial reordering takes place at every stage 
In the first and third statements, values of F separated by N2L1 = n / 2/ + 1  

are shifted to lie under each other. A similar shift and negation takes place 
in the second and fourth statement. If we take the case of the Cooley-Tukey 
algorithm without reordering, the PARAFT algorithm can be simplified and 
rephrased as follows:

(5.105a)

(a) Disable even groups of n/2l+l processors and multiply by a 
prestored array of phase factors.

(b) Route all data n/2l+l nodes through the linear connectivity 
network modulo 2n/2l+1 and store in a temporary workspace. If no 
cyclic connections exist in the network modulo 2n/2l+\  then this 
step must be performed in two masked steps, routing the odd and 
even groups of n/2l+l elements in opposite directions.
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(c) Disable odd groups of n/2l + 1 processors and change the sign of 
the work space.

(d) Ada the work space to the data array.

End

In the above formulation the numbers of unit routing operations are

(5.105b)

as / takes on the value 0 to log2 (n) — 1. If the P processors are connected in 
a linear array (i.e. k = 1 ) then the total number of routing operations is

The first term in equation (5.106a) takes into account that, for / = 0, the 
periodicity of the array allows the required routing to be achieved by a single 
routing to the left or right by n/2 places. The multiplier two in the second 
term takes into account that in step (b) above, the odd and even groups are 
routed in separate operations.

If the array is multidimensional and, as we are assuming, the data fills the 
processor array exactly, then the first relative movement of data by n / 2  vector 
elements can be achieved by a routing of Q/2 along the kth dimension, the 
second movement of n/4 by a routing of Q/4 in the kth dimension. The 
successive routings by half the previous value can be continued in the kth 
dimension until the routing is unity. To route by half this amount we must 
now turn to motion in the (k — l)th dimension by an amount Q/ 2  which 
again can be continued until the routing is unity. To route by half this amount 
we must now turn to motion in the (k — 2 )th dimension and so on until all the 
dimensions have been used up. This is illustrated for a 16 x 16 array of 
processors in figure 5.20. Obviously the above process requires routings equal 
to equation (5.106a), but with Q replacing n, for each of the k dimensions. 
Accordingly the total number of routings of complex numbers for k- 
dimensional connectivity is

(5.107a)

The minimum number of such complex routings occurs if Q = 2, that is to 
say for a binary hypercube, in which case

(5.107b)

(5.106a)

(5.106b)



TRANSFORMS 515

FIGURE 5.20 The magnitude and direction of the routings required 
for the evaluation of a transform of 28 =  256 values on a 16 x 16 processor 
array. / =  0,1, — ,7  is the loop control variable in statement (5.105a). 
The level of the partial transform calculated after the shift is / +  1.

The numbers of complex routing operations that are required by the other 
computers are, using equation (5.107a):

(5.108a) 

(5.108b)

or since k = (log2 n)/g for the special case of n = P

(5.108c)

The number of real parallel arithmetic operations after the above parallel 
complex routings is 81og2n [see equation (5.98)]. Therefore, if we assume

fThe quotes indicate a hypothetical ILLIAC IV-like machine with two-dimensional 
periodic edge connectivity.
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that a parallel routing operation is y times faster than a parallel arithmetic 
operation, then again for n = P

(5.109a)

where the leading factor of two takes into account that each complex routing 
in equation (5.108c) is a movement of two real numbers. For the computers 
under consideration, we have approximately:

(a) ‘ILLIAC IV’

7 = 2, *r /*a  — 42%, (5.109b)

(b) ICL DAP

7  = 2 0 , iR/ r A= 1 9 % , (5.109c)

(c) HYPERCUBE

y=  1 0 , *r / *a  =  2.5%. (5.109d)

It appears therefore that routing delays, although significant, do not dominate 
the calculation of complex Fourier transforms on practical designs of 
processor arrays, and may justifiably be ignored in a first estimate of the 
performance of fast transform algorithms. However, we see in §5.5.6 that the 
reverse is true for the calculation of number theoretic transforms on certain 
types of processor arrays.

In general, routing will dominate over arithmetic when tR/ t A ^  1 or, 
recalling that q = log2 Q, when

(5.110a)

or for large Q when

(5.110b)

Then to the nearest power of two we have:

(5.110c)

This result, which is shown in figure 5.21, is independent of the dimensionality 
of the processor array, and states that it is unlikely to be worthwhile, because 
of routing delays, to build arrays with a linear dimension greater than a few 
hundred, depending on the value of y. Indeed the more complex the processors
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FIGURE 5.21 Linear dimension Q of a processor array above which 
routing delays exceed the arithmetic time in the f f t ,  plotted as a function 
of y, the ratio between the time for an arithmetic operation to the time 
for a routing operation. Curves for the calculation of the Fourier 
transform in complex arithmetic and for the Rader transform in integer 
modulo arithmetic are shown.

and hence the smaller the value of y ,  the smaller the arrays must be kept to 
prevent routing from dominating the execution time. Small values of y  will 
also occur in bit-organised computers such as the ICL DAP, when they are 
used for short-word-length integer arithmetic (say eight-bit words when y  % 2 ) 
as might arise in picture processing (see §5.5.6).

The above result is important because the advent of very large-scale 
integration technology, with 1 0 4  or more logic elements per chip, makes 
possible the manufacture of very large arrays. Such large arrays are attractive 
from the cost point of view, and may apparently give very high performance. 
However, the above result shows that, when one considers actual algorithms, 
one must be aware of the limitations when the linear dimensions become large. 
Although we have specifically discussed the routing problem for the fast Fourier 
transform algorithm, very similar routings occur in many parallel algorithms— 
e.g. the parallel algorithm for the evaluation of a first-order recurrence given 
in §5.2.2. The result must therefore be considered to be fairly general.
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In order to concentrate on essentials, the above discussion of routing has 
assumed that one is performing a single one-dimensional transform of 
length equal to the number of available processors. For a discussion of 
routing delays for multiple and multi-dimensional transforms which do not 
necessarily match the size of the processor array, the reader is referred to the 
original papers, particularly Jesshope ( 1980a, b).

5.5.6 Number theoretic transforms
Number theoretic transforms, in particular the Fermat number transform, 
have important applications in picture processing, and in the solution of 
partial differential equations (see §5.6.2) as was first considered by Eastwood 
and Jesshope (1977). These transforms have also been advantageously 
employed in digital signal processing by Pollard (1971), Rader (1972) and 
Agarwal and Burrus (1974,1975). They play an analogous role to the Fourier 
transform when arithmetic is conducted modulo Ft = 22‘ + 1, the ith Fermat 
number, and functional values are confined to the integers 0 , l , . . . , F f — 1 

(technically a ring of integers). In this case one may define the number 
theoretic transforms as

(5.111a)

which has the inverse

(5.111b)

where a is the nth root of unity (modulo Ft). Thus

(5.111c)

Comparing equations (5.111) with the definition of the finite Fourier 
transform (5.73) and (5.74), we see that a has the same properties in the ring 
of integer values as does co in the field of complex numbers. Consequently 
all the fast algorithms that were developed for the Fourier transform in §5.5.2 
to §5.5.5 can be applied equally well to the calculation of the number theoretic 
transform, provided that the arithmetic is conducted modulo Fr Note 
however that it is usual to associate the scale factor n ~ 1 with the inverse 
transform (5.111b). This is the opposite convention to that used for the 
Fourier transform, in which the factor was associated with the forward 
transform (5.71a).

The integer functions akj and (x~k'j are orthogonal, like the functions o ±kj,
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j

FIGURE 5.22 The discrete orthogonal functions akj used in the number 
theoretic Rader transform (a = 2) for t =  2. Functional values are in the 
range 0 ,1, . . . ,  F2 — 1 =  16, and are represented by five bits. The transform 
length is n = 8 (n ~ 1 =  15), and k =  0 ,1, . . . ,  n — 1 =  7. Functions for k ^ 4 
are the mirror image about the vertical line j  =  4 of the function that is 
drawn for 8 — k (i.e. (xkj = cc(n~k){n~j)).
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as may easily be proved:

(5.112a)

Summing the geometric series and using the fact that a" = 1, we obtain

(5.112b)

Returning to the definition (5.112a) we obtain directly

(5.112c)

This property is analogous to the orthogonality relation (5.72b). The functions 
(xkj are plotted for the case t = 2 in figure 5.22.

The most useful types of Fermat number transforms arise when a is a 
power of two, when they are called the Rader (1972) transform ( r t ) .  In this 
case all the multiplications by powers of a in equation (5.111) may be achieved 
by shifting, and especially rapid computer codes can be written. There is also 
a relation between the number of binary digits (bits) that are used in the 
number representation and the length n of the transform. Integers in 
the range 0 , 1 , . . . , Ft — 1 = 2b, where ft = 2 *, require b -hi bits for their 
representation, because the number 2b = — 1 mod Ft (a one followed by b 
zeros) is included in the range. All other numbers in the range may be 
represented by b bits.

If a = 2 the length of the transform is, in general,

(5.113a)

and its reciprocal, that is required in equation (5.111b), is given by

(5.113b)

If the binary digits are numbered from 0 to ft, starting at the least significant 
digit, n ~ 1 has ones in the zeroth bit and in bits ft — 1 to ft — 1 — t inclusive. 
To prove equation (5.113b) we calculate

and, since 2b = Ft — 1,

(5.113c)
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Some particular cases of interest are:

(5.114a) 

(5.114b) 

(5.114c) 

(5.114d)

The number theoretic transform can be performed on real variables if they 
are first scaled to the allowed integer range, and then discretised to the nearest 
integer value. In this case the discretisation error is about 2~b, and for higher 
accuracy one must use larger b. If the length of the transform is then too 
long, it may be halved by squaring a; then a = 4, n = b and n ~ 1 = Ft — 2b~t. 
For example,

(5.115a)
and by repeating the process

(5.115b)

In this way it should be possible to choose a precision b, transform length 
n and root of unity a, suitable for most circumstances.

The usefulness of the Fermat number transform depends critically on the 
efficiency with which the necessary arithmetic modulo Ft can be performed. 
Many computers perform two’s complement arithmetic which in b bits is 
arithmetic modulo 2b = Ft — 1. To convert this to arithmetic modulo F„ we 
must subtract one from the sum of two numbers whenever a carry is detected 
from the highest-order bit, except in the case when bits 0  to b — 1 are all 
zero. This latter case is a valid result and represents 2b or — 1 mod Fr If the 
computer only has b bits in its integer number representation some other 
method, such as an auxiliary logical variable associated with each number, 
must be used to represent this number. Similarly we must add one to the 
two’s complement negative of a number, or to the difference of two numbers 
if the result is negative. Multiplication by an arbitrary number modulo Ft is 
performed by subtracting the high-order b bits of the 2 ft-bit product from 
the lower-order b bits. Note that Ft = 2b -f 1 contains only two bits, a one 
in the least-significant-bit position of the low-order b bits and a one in the 
least-significant-bit position of the high-order b bits. Thus the above operation 
is the same as normalising the product to the allowed integer range by 
subtracting Ft until the high-order bits are all zero. Again a special case must 
be made for the occurrence of 2b and for multiplying by 2b. Multiplying by 
powers of a is performed by shifting followed by normalisation as described 
above.
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It is clear that arithmetic modulo Ft requires several tests and special cases, 
and it is unlikely that the number theoretic transforms will have any speed 
advantages over the Fourier transform on computers that provide hardware 
floating-point arithmetic. On bit-serial and bit-addressable computers such 
as the ICL DAP or the Goodyear STAR AN, which do not provide hardware 
floating-point, the situation is radically different, for in these cases special 
arithmetic routines can be microcoded at the bit level for modulo arithmetic. 
In particular the shifts apparently involved when multiplying by a can 
be avoided by addressing the appropriate bits in the memory and any 
multiplication by akj takes no longer than the single subtraction that is 
necessary for normalisation. The comparison between modulo Ft and 
floating-point arithmetic on the ICL DAP is shown in table 5.1. It is clear 
that modulo arithmetic is about 1 0  times faster than floating-point on this 
machine.

If the Rader transform is computed by the same technique as was used in 
the PARAFT method for the Fourier transform (see §5.5.4), there will be 
one parallel addition operation and one parallel multiplication operation (by 
a power of two) for each of the log2n levels of the algorithm. The total number 
of modulo Ft arithmetic operations, each with parallelism n, for the 
/c-dimensional array of n = Qk = 2qk processors of §5.5.5, is therefore

(5.116a)

The routing requirements are identical to those in the PARAFT algorithm, 
therefore

(5.116b)

TABLE 5.1 Comparison of modulo F5 =  232 + 1 and real floating-point 
arithmetic (IBM 32-bit format) on the ICL DAP. Time in /rs for 4096 
results on a 64 x 64 array of processors.

Operation Modulo F5t Real floating-pointi

+ 36 150
— 30 150
X 24 § 250
Route 10 10

t  From Eastwood and Jesshope (1977). 
t  From Reddaway (1979).
§ Multiplication by powers of 2.
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and the ratio of the time spent in routing to that spent on arithmetic is, for 
the Rader transform,

(5.116c)

where y is the ratio of the time for a modulo Ft arithmetic operation to the 
time for a unit routing operation. Referring to table 5.1, we see that y = 3 
for 33-bit working with t = 5 on the 64 x 64 ICL DAP (k = 2,Q = 64,q = 6 ), 
leading to

(5.117a)

and

(5.117b)

Hence routings dominate the arithmetic time for the calculation of Rader 
transforms on the ICL DAP and similar machines.

The time spent on routing will equal or exceed the time spent on arithmetic 
when

(5.118a)

or for large Q when

(5.118b)

The curve for equality and the regions of the Q — y plane in which routing 
or arithmetic dominate are shown in figure 5.21. It can be seen that the linear 
dimensions of processor arrays should be kept as small as possible if the 
Rader transform is to be efficiently calculated. Since y is likely to be less than 
four for modulo arithmetic, linear dimensions greater than 32 will lead to 
algorithms that are dominated by the time spent in rearranging the data in 
store, rather than performing useful calculations on the data.

The above analysis is based on a transform equal to the size of the processor 
array. However in solving a three-dimensional partial differential equation, 
the transform is likely to be much larger than the array size, in which case 
the overheads due to routing decrease dramatically. For example, the 261 % 
overhead given in equation (5.117b) for a 64 x 64 transform becomes only 
25% for a 64 x 64 x 64 transform on a 64 x 64 ICL DAP (Jesshope 1980a).

Notwithstanding the fact that routing may dominate arithmetic, the overall 
performance of the Rader transform far exceeds that of the Fourier transform 
on machines such as the ICL DAP. If we compare the amount of arithmetic 
needed to transform n integer values in the Rader transform with that needed 
to transform n real values (i.e. w/2 complex values) in the Fourier transform,
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we find 2 log2n parallel operations compared with 41og2«. Furthermore we 
have seen in table 5.1 that each modulo arithmetic operation in the Rader 
transform is about 1 0  times faster than the corresponding floating-point 
operation in the Fourier transform. On this basis a maximum speed advantage 
of about 20 can be anticipated for the Rader transform. Actual values will 
be less than this maximum because of the overhead due to routing delays 
which is the same for both transforms. For example, in a three-dimensional 
transform of 32 x 32 x 16 values on a 32 x 32 ICL DAP using the same fast 
radix-2 algorithm, a Rader transform took 50 ms and a Fourier transform 
700 ms (Eastwood and Jesshope 1977). This is a speed ratio of 14 in favour 
of the Rader transform and is consistent with the above estimates.

5.6 PARTIAL DIFFERENTIAL EQUATIONS

In considering the solution of partial differential equations (pd e s ) on parallel 
computers, we can draw upon the results obtained earlier in this chapter for 
the solution of tridiagonal systems (see §5.4) and the calculation of transforms 
(see §5.5). Almost all of the sound numerical techniques for the solution of 
pd e s , which have been used successfully since the 1950s on serial computers, 
involve the repeated solution of independent tridiagonal systems or the 
repeated transformation of independent sets of data. Such methods are 
well suited to efficient implementation on parallel computers because the 
independent systems or independent transforms may be computed in parallel. 
Thus the problem is not to insert parallelism into a known sequential method, 
as has been the case in previous sections of this chapter, but rather to match 
the natural parallelism of the computer to the existing parallelism of the 
algorithm. For example, the algorithm for the solution of a three-dimensional 
problem on an n x n x n mesh can be expressed in terms of operations with 
a parallelism of either n, n2 or n3. The selection of the most suitable technique 
for a particular computer involves recognising which of these three levels of 
parallelism matches most closely the natural parallelism of the computer.

We describe first (§5.6.1) the common iterative (or relaxation methods) in 
two dimensions because these can be applied to the solution of the most 
general linear pd e  with arbitrary coefficients. We make the important point 
that the method of simultaneously adjusting all points (Jacobi method), which 
has the maximum parallelism of n2, cannot be used because of its impossibly 
slow convergence. This is a warning that in one’s quest for methods with 
the maximum parallelism, one should not ignore the long established results 
of numerical analysis on convergence as given, for example, by Varga (1962) 
or Forsythe and Wasow (1960). The method of successive over-relaxation 
with odd/even ordering and Chebyshev acceleration is recommended because
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of its vastly superior convergence properties, even though the parallelism is 
halved. This method may be applied by points (s o r ) or by lines (s l o r ), and 
it is interesting that we find the former method most favourable on machines 
such as the ICL DAP and the latter on machines such as the CRAY X-MP. The 
more usual algorithm of sor  with typewriter ordering is at first sight a 
sequential process. However, Hunt (1979) has shown how it may be applied 
in parallel by operating on alternate diagonal lines in the manner of a pipeline. 
The parallelism approaches n2/2 if the number of iterations is much greater 
than n. The parallel implementation of the s or  method has also been discussed 
by Adams and Ortega (1982), and Evans (1984a, b). The application of 
multigrid iterative methods on parallel computers has been investigated by 
Grosch (1979). Another good iterative method that we discuss is the 
alternating direction implicit method (a d i). Parallel marching methods are 
considered by Vajtersic (1984), and vector implementations by Schonauer
(1987).

The solutions of simple pd e s  with constant coefficients (for example 
Poisson’s equation V2</> = p) in simple regions (such as the square or 
rectangle) with simple boundary conditions (given value, slope or periodicity) 
have important applications in many areas of physics and engineering. 
Especially fast direct (i.e. non-iterative) methods, based on the f f t , are 
available for the solution of this class of problem and these are described in 
§5.6.2. The speed of these methods makes possible the time-dependent 
simulation of, for example, stars in galaxies, electrons in semiconductor 
devices, and atoms in solids and liquids (see Hockney and Eastwood 1988). 
Again the algorithms, which were first developed on serial computers, are 
inherently parallel and may be efficiently implemented on parallel computers 
without alteration. Such methods have been extended to the biharmonic 
equation by Vajtersic (1982) and implemented on the egpa  computer (§1.1.8).

The first two sections on iterative and direct methods are written in terms 
of two-dimensional problems, both for simplicity of presentation and because 
such problems are well within the capabilities of current, cl988, computers 
and are therefore most frequently posed. The extra speed associated with the 
advent of the parallel computer, however, for the first time makes the solution 
of three-dimensional problems with reasonable resolution (say 643 mesh) a 
practical proposition. We therefore consider in the last section (§5.6.3) some 
of the alternative strategies that are possible in the solution of such 
three-dimensional problems.

5.6.1 Iterative methods: so r , slor , a d i

The most general linear second-order pd e  in two dimensions may be 
expressed as
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(5.119a)

where the coefficients A, B, C, D, E are arbitrary functions of position. This 
equation encompasses the principal equations of mathematical physics and 
engineering (the Helmholtz, Poisson, Laplace, Schrodinger and diffusion 
equations) in the common coordinate systems (cartesian (x, y), polar (r, 0 ), 
cylindrical (r, z), axisymmetric spherical (r, 0 ) and spherical surface (0 , </>)). 
If the above equation is differenced on an n x n mesh of points using standard 
procedures (see e.g. Forsythe and Wasow 1960), one obtains a set of 
algebraic equations, each of which relates the values of the variables on five 
neighbouring mesh points:

where the integer subscripts p,q = 1 , . . . ,  n, label the mesh points in the x and 
y directions respectively. The coefficients a, b, c, d and e vary from mesh 
point to mesh point and are related to the functions A, B, C, Z), E and the 
separations between the mesh points in a complicated way through the 
particular difference approximation that may be used. The right-hand-side 
variable f p q is a linear combination of the values of p(x, y) at the mesh points 
near (p, q). In the simplest case it is the value of p(x, y) at the mesh point (p, q).

Iterative procedures are defined by starting with a guess for the values of
(f)pq at all the mesh points, and using the difference equation (5.119b) as a 
basis for calculating improved values. The process is repeated and, if 
successful, the values of </> converge to the solution of equation (5.119b) at 
all mesh points. In the simplest procedure the values of </> at all mesh points 
are simultaneously adjusted to the values they would have by equation 
(5.119b) if all the neighbouring values of (j) are assumed to be correct, namely 
(j) at each mesh point is replaced by a new value:

Since the replacement is to take place simultaneously, all values of </> on the 
right-hand side are ‘old’ values from the last iteration and the starred values 
on the left-hand side are the ‘new’ and, hopefully, improved values.

The above method of simultaneous displacements was first considered by 
Jacobi (1845), and is often called the Jacobi method. It is ideally suited for

(5.119b)

(5.120)
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implementation on parallel computers. Simultaneous adjustment means that 
equation (5.120) can be evaluated at all mesh points in parallel with the 
maximum possible parallelism of n2. Typically n = 32 to 256, so that the 
parallelism varies from about 1000 to about 64000. This leads to satisfactorily 
long vectors for efficient manipulation on pipelined computers. On the other 
hand for processor arrays such as the ICL DAP, the mesh can probably be 
chosen to fit the pe  array exactly or be a simple multiple of it, thus allowing 
the computer to be used with all its processors active (for example, the 
solution of a 64 x 64 mesh problem on a 64 x 64 pe  ICL DAP). Furthermore 
all the variables referred to in the adjustment equation (5.120) are nearest 
neighbours in the pe  array and so may be referenced without the need for 
routing operations. In fact the ICL DAP was obviously designed with this 
kind of application in mind.

The fact that a single iteration of the simultaneous replacement method 
can be efficiently implemented on parallel computers does not necessarily 
mean that it is a good method to use, because we must also consider the 
number of iterations that are required to obtain satisfactory convergence. 
The convergence rate cannot be found simply for the general equation 
(5.119b) but analytic results are well known for the simpler case of 
Poisson’s equation in the square with zero values (Dirichlet conditions) 
on the boundary. This corresponds to taking apq = bp q = cp q = dp q = 1 and 
ePyq= —4 for all mesh points, and is often called the model problem. We 
emphasise that iterative methods should never be used actually to solve the 
model problem, because the direct transform methods of §5.6.2 are at least 
10 times faster. The model problem is introduced here only to indicate the 
rate of convergence that might be expected when iterative methods are used 
to solve the general difference equation (5.119b), on which fast transform 
methods cannot be used.

It may be shown (see e.g. Varga 1962) that, asymptotically after a large 
number of iterations, the factor by which the normf of the error vector is 
reduced at every iteration of the Jacobi method is given by:

The above convergence factor, 2j, can be used to calculate tf ,; the number of 
iterations required to reduce the error by a factor 1 0 -p :

(5.121a)

t  The sum over all mesh points of the square of the difference between the approximate 
and exact solution of the equations.

(5.121b)



528 PARALLEL ALGORITHMS

Thus a modest error reduction of 10" 3 on a typical 128 x 128 mesh would 
require about 24000 iterations. Such slow convergence makes the Jacobi 
method useless for practical computation, even though it is highly suitable 
for implementation on parallel computers.

The most commonly used iterative method on serial computers is the 
method of successive over-relaxation by points or s o r . In this method a 
weighted average of the ‘old’ and starred values is used as the ‘new’ value 
according to

K :  = + ( 1 -  (5A22a)

where a> is a constant relaxation factor, normally in the range 1 ^  co ^  2 , that 
is chosen to improve the rate of convergence. For the model problem, it may 
be shown that the best rate of convergence is obtained with:

(5.122b)

when X = cob — 1 and where p is the convergence factor of the corresponding 
Jacobi iteration. Hence p = cos(n/n) for the model problem. Normally the 
mesh points are processed sequentially point-by-point and line-by-line, as in 
reading the words of a book or typing a page of text. The improved 
convergence relies on the fact that new values replace old values as soon as 
they are computed; hence the values on the right-hand side of equation 
(5.120), that are used to calculate </>*, are a mixture of old and new 
values, and equation (5.120) cannot be computed for all points in parallel 
as it can in the Jacobi method. It would appear therefore that the sor  method, 
although it has superior convergence properties, is essentially a sequential 
method and unsuitable for implementation on parallel computers. However, 
Hunt (1979) has shown how the principle of macroscopic pipelining can be 
used to implement sor  with a maximum parallelism of n2/2.

Fortunately the improved convergence of the sor  method can be obtained 
for other patterns of sweeping the mesh points. One of the best procedures 
is odd/even ordering with Chebyshev acceleration. In this method the mesh 
points are divided into two groups according to whether p + q is odd or 
even. This is shown in figure 5.23(a), where the even points are shown as 
circles and the odd points as crosses. The method proceeds in half iterations, 
during each of which only half the points are adjusted (alternately the odd 
and even set of points) according to equations (5.120) and (5.122). In addition 
the value of co changes at each half iteration according to:

co(0) -  1

(5.123a)
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FIGURE 5.23 The pattern of related data in various iterative methods:
(a) point successive over-relaxation (sor ); (b) successive line over-
relaxation (sl o r ); (c ) and (d ) the alternating direction implicit 
method (a d i). The multiple Fourier transform direct method (m f t ) relates 
data in the same way as ad i. The arrowed lines link data that are related 
in either a Fourier transform or a tridiagonal system of equations.

where the superscript t designates the iteration number. It may be shown 
that a) tends, for large i, to the limit cu(oo) = cub, the constant relaxation factor 
that is used throughout the traditional s o r  procedure of equation (5.122b). 
The asymptotic convergence factor is therefore the same for both methods 
of formulating s o r  and is given by :

(5.123b)

The number of iterations for a 10 ~p error reduction is therefore

(5.123c)
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Using equation (5.123c) we conclude that a 10“ 3 error reduction on a 
128 x 128 mesh would require about 128 iterations, compared with 24000 
for the Jacobi method. The importance of using a well convergent iterative 
method is apparent. It may also be shown (see Varga 1962) that the maximum 
norm of the error vector is bound to decrease in the Chebyshev accelerated 
s or  method with variable ao that has just been described, whereas it may and 
frequently does increase in the early stages of the traditional sor  with constant 
a) and typewriter ordering (see Hockney 1970, figures 7 and 9). Since the 
Chebyshev s or  method requires no extra arithmetic yet has more favourable 
initial error decay properties, there seems to be no sound reason for not 
always using it.

The Chebyshev sor  method has additional advantages when one considers 
its implementation on parallel computers. We note from equation (5.120) 
that the starred value at an odd mesh point depends only on old values at 
the neighbouring even points that were computed during the last half 
iteration. Thus all the odd points can be adjusted in parallel with parallelism 
n212  during one half iteration, and similarly all the even points in parallel 
during the next half iteration. The time for one complete iteration on a 
computer with a half-performance length of n 1/ 2 is therefore proportional 
to

since equations (5.120) and (5.122a) require 12 arithmetic operations per 
mesh point (note: 1 — co is precalculated and stored as a single constant). 
The sor  method can alternatively be implemented with a parallelism of n/2 
by defining a vector to be the n i l  odd (or even) values from a line of the 
mesh, and progressing sequentially through the n lines. The time for a 
complete iteration is then proportional to

An alternative strategy of Chebyshev over-relaxation is illustrated in figure 
5.23(b). The points are divided into odd and even sets by lines, as indicated 
by the broken and full lines. The adjustment equation (5.120) is written for 
all points of a line, assuming all points in the line above and the line below 
are correct. The starred values are then computed a line at a time for 
p =  1 , 2 , . . . ,n  from:

Equation (5.125) is a tridiagonal system for all the starred values along a

(5.124a)

(5.124b)

(5.125)
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line, with the right-hand side depending on known values from the line above 
and below. The Chebyshev accelerated successive line over-relaxation (s l o r ) 
proceeds line-wise using equations (5.122) and (5.123a), only now p the 
convergence factor of the Jacobi method performed line-wise is, for the model 
problem,

p = cos(7r/n)/[2 — cos(7c/n)] ~  1 — n2/n2. (5.126a)

Equation (5.122b) still applies with this revised value of p, leading to

¿ s l o r  = o)h -  1 -  1 -  y/2(2n/n) , (5.126b)

and

¿s l o r  =  ¿so r / \ / 2  — np/4. (5.126c)

Thus, asymptotically, the number of iterations required for a given error 
reduction in the slo r  method is 2 " 1 / 2 = 0.7 of the number of iterations 
required by s o r .

The sl o r  method therefore requires the solution of n/2 tridiagonal systems 
of length n each half iteration. If the systems are solved in parallel with the 
best serial algorithm (the MULTGE procedure of §5.4.4 with m = n/2) we 
have a parallelism of n/2 and a computer time for a complete iteration 
proportional to

(5.127a)

In arriving at this estimate we have taken four arithmetic operations per 
point to form the right-hand side of equation (5.125) in addition to the eight 
operations per point to solve the general tridiagonal system. A factor of two 
is introduced because there are two half iterations in the complete iteration. 
Alternatively the systems can be solved with parallelism n1 /2 by solving the 
systems in parallel with the parallel PARACRpar algorithm (see §5.4.4). The 
computer time per complete iteration is now proportional to

(5.127b)

where the four in the last factor is for calculating the right-hand sides and 
the logarithmic term is for solving the tridiagonal system with the PARACR 
algorithm [see equation (5.66b)].

We have seen that both the sor  and sl o r  methods can be implemented 
with a parallelism of either n/2 or n2 / 2. Which of these implementations is 
the best will depend primarily on whether n/2 or n2/2 more closely matches 
the natural hardware parallelism of the computer. We will consider the two 
extreme cases of the ICL DAP with natural parallelism of 64 x 64, and the 
CRAY X-MP with a natural parallelism of 64. Practical finite-difference meshes
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with useful resolution are likely to have between 32 and 256 mesh points 
along each dimension. Thus it is natural to match the parallelism of the 
CRAY X-MP with a side of the mesh and use algorithms which have a 
parallelism of n or n/2. On the other hand it is more natural to match the 
parallelism of the ICL DAP with two dimensions of the problem and use 
algorithms which have a parallelism of n2 or n2/ 2. This choice is made even 
more compelling when one considers that the ICL DAP is wired as a 
two-dimensional array of processors.

Having chosen the level of parallelism that is best suited to the computer, 
one may ask whether Chebyshev s or  or Chebyshev slo r  is the best algorithm 
to use. On the CRAY X-MP using n/2 parallelism, sor  will be the best 
algorithm if

(5.128a)

where the factor takes into account the better convergence of the slor  
method. Since t 2 = t3 [see equations (5.124b) and (5.127a)], the above 
condition (5.128a) can never arise, and we conclude that the slor  will always 
be the best on the CRAY X-MP. Put another way, the time per iteration is the 
same when computed with a parallelism of n /2 , and slor  therefore wins 
because of its faster convergence.

For the ICL DAP using n2/ 2 parallelism, we find that sor  will be the best 
algorithm if

(5.128b) 

or

(5.128c)

This condition is satisfied for n ^  2, that is to say for all useful meshes. We 
thus find the s or  method the best implementation on the ICL DAP. This is 
because the parallel solution of tridiagonal equations by cyclic reduction that 
is required if we use the slo r  method introduces extra arithmetic that is not 
needed in the simpler sor  scheme. The better convergence of slo r  is not 
enough to make up for this.

The last iterative method to be considered is the alternating direction 
implicit method or a d i. This is illustrated in figure 5.23(c and d). When it is 
applied to the solution of the difference equation,

where Lx and Ly are matrices representing the finite-difference operators in 
the x and y directions, the solution is obtained iteratively from a guess 4>(0)

(5.129a)
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by solving repeatedly

(5.129b)

(5.129c)

where w = 0 , 1 , . . . ,  is the iteration number and the parameter r„, which 
changes every double sweep, is adjusted to improve the convergence of the 
approximations </>(n) to the solution </>. If we are concerned with the general 
linear second-order pd e  (equation (5.119a)) Lx and Ly are tridiagonal matrices. 
Equation (5.129b) involves computing a right-hand side at a cost of seven 
operations per mesh point, followed by the solution of n independent 
tridiagonal systems (one for each horizontal line of the mesh) each of length 
n (see figure 5.23(c)). Clearly these systems may be solved in parallel either 
with a parallelism of n o r « 2, as in the case of the slor  method. The iteration 
is completed by performing a similar process, only now the tridiagonal systems 
are solved along every vertical line of the mesh (see figure 5.23(d)).

If a parallelism of n is used (e.g. on the CRAY X-MP) we use the MULTGE 
method and the computer time for a complete iteration is proportional to

On the other hand using a parallelism of n2 (e.g. on the ICL DAP) and the 
PARACRpar method the computer time is proportional to:

The fact that data is first referenced by horizontal lines and then by vertical 
lines may complicate the implementation of adi  on some computers. If the 
mesh is stored so that adjacent elements in vertical lines are adjacent in the 
computer memory (FORTRAN columnar storage) then the solution of 
equation (5.129b) will present no problems because the increment between 
vector elements is unity (remember we run the vector across the systems 
being solved). However, in solving equation (5.129c) the increment between 
vector elements will be equal to the number of variables in a column. If n is 
a power of two, memory-bank conflicts can be a problem even in computers 
such as the CRAY X-MP, that allow increments other than unity. This may be 
overcome by storing the mesh as though it had a column length one greater 
than its actual length. On the other hand, on computers such as the CDC 
CYBER 205 which only permit vectors with an increment of unity, the second 
step of the a di  can only be performed after a rotation of the whole mesh in 
the store. The cost of this manipulation may make adi  an unattractive method 
on such machines, compared with the slo r  method that only references data 
in the horizontal direction. Experience with ad i and slo r  is varied and there

(5.130a)

(5.130b)
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is no a priori way of determining which will be the most effective method on 
a particular problem. It may be necessary to try both methods.

5.6.2 Direct methods: m f t , FACR (/)
Direct methods are those which obtain the solution in a finite number 
of steps or arithmetic operations. Since no iteration is involved, their 
effectiveness does not depend on the quality of the initial guess for the solution 
or on one’s ability to judge correctly when to stop the iteration. On the other 
hand direct methods for the solution of the general linear finite-difference 
equation (5.119b) can only be applied to relatively coarse meshes with up 
to about a thousand points which do not give a great deal of scope 
for effective parallel computation. We will therefore discuss the special 
transform techniques that are available for the solution of the Poisson 
equation in the square or rectangle with simple boundary conditions:

in which the coefficients are constant and given by: apq = bpq = cpq = dpq = 1 

and epq = — 4. These techniques, often called rapid elliptic solvers or r e s  
algorithms, are an order of magnitude faster than the iterative methods 
described in §5.6.1 and can be applied to meshes containing 10000 or more 
points, r e s  methods are inherently highly parallel and therefore especially 
well suited to exploiting the architecture of parallel computers. Rapid elliptic 
solvers have been reviewed by Swarztrauber (1977) and by Hockney (1980), 
and the performance of different algorithms compared by Hockney (1970, 
1978) and Temperton (1979a) for serial computers, and Grosch (1979) and 
Temperton (1979b, 1980) for parallel computers.

Rapid elliptic solvers are defined as those methods with an operation count 
of order n log2n or better [some e.g. FACR(/) are of order n log2 (log2 n)], 
which immediately suggests the involvement of fast transform algorithms (see 
§5.5). The simplest method is obtained by taking the double Fourier transform 
of equation (5.131):

(5.131)

(5.132a)
where

(5.132b)

and

(5.132c)
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and similarly for J k,t and f pq. Equation (5.132a) permits the calculation of 
the Fourier harmonic amplitudes of the solution, </>k,z, by dividing the 
harmonics of the right-hand side, J kJ, by the known numerical factors in the 
square brackets. The following method of multiple Fourier transform (m f t ) 
therefore suggests itself:

(a) Fourier an a ly se /^  using f f t

(b) Parallel divide by [ . . . ]  of equation (5.132a), J ktl-><j>k'1; (5.133)

(c) Fourier synthesis 0 k,z using f f t , <i>k’1-+(f>Ptq-

Both the double Fourier analysis and the synthesis can conveniently be 
performed by first transforming all lines of data in the x direction as in 
figure 5.23(c) and then transforming the resulting data by lines in the y 
direction as in figures 5.23(d). This may clearly be seen by re-expressing 
equation (5.132b) equivalently as

(5.134)

where the inner summation is the transform in x and the outer summation 
the transform in y. We have assumed doubly periodic boundary conditions 
in the above explanation. However, Dirichlet (given value) conditions can 
be achieved if the finite sine transform is used and Neumann (given gradient) 
conditions if the finite cosine transform is used. These refinements do not 
affect the issues involved in parallel implementation.

The line transforms in equation (5.134) are all independent and may be 
performed in parallel with a parallelism of n or n2. In the first option we 
perform n real transforms in parallel using the best serial algorithm, that is 
to say the MULTFT method of equation (5.100a) with m = n. The total time 
for the algorithm is therefore:

(5.135a) 

(5.135b)

The factor of four in equation (5.135a) comes from the need to transform all 
points four times—an analysis and synthesis in both x and y directions—and 
the factor j  arises because we are performing real rather than complex 
transforms. Alternatively if we perform n transforms in parallel using the 
parallel PARAFTpar algorithm then we have a parallelism of n2 and

(5.136a)

(5.136b)
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The choice between w o r n 2 parallelism will follow the same rationale as 
used in the choice of iterative methods. We would expect to use n parallelism 
on computers such as the CRAY X-MP and n2 parallelism on computers such 
as the ICL DAP. Given, however, that both levels of parallelism are equally 
suited to the hardware of the computers, as would be the case for the CDC 
CYBER 205, we may still ask which algorithm is the best. The PARAFTpar 
algorithm will have the higher performance if:

¿MULTFT > ¿PARAFTp^ (5.137a)

whence

(5.137b)

The regions of the (n 1/2 /w, n) plane which favour the use of the two algorithms, 
using equation (5.137b), are shown in figure 5.24. We see that, for vectors of 
any reasonable length (say n>  10), the PARAFTpar method is favoured if 
(w 1/2 /^) ^  0.5. That is to say, not surprisingly, that if the computer ‘looks’ 
parallel when measured on the scale of the vector (n1/2> n / 2 ), then an 
algorithm that is designed to maximise the extent of parallel operation is 
favoured.

FIGURE 5.24 Regions of the (nlj2/n, n) plane favoured for the imple-
mentation of the m f t  method b y  either the MULTFT algorithm or the 
PARAFTpar algorithm. From equation (5.137b).
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The multiple Fourier transform is also used in the solution of related 
problems that are posed as convolutions. For example, the potential at a 
mesh point may be expressed as a sum of contributions from sources at all 
the other mesh points, multiplied by a known influence or Green’s function 
G which is a function only of the separation between the source and potential 
mesh point. Thus

(5.138)

This manner of expressing a potential problem is appropriate when the 
sources form an isolated cluster and the only boundary condition is that the 
potential decays to infinity correctly. An example of such a problem is the 
calculation of the potential of a cluster of galaxies or stars (see Hockney 1970), 
in which case G is the coulombic r “ 1 interaction, where r is the separation 
between the source and potential points. The above expression is also used 
in the P 3M method (Hockney and Eastwood 1988) for the calculation of 
the potential in large systems of interacting ions.

Equation (5.138) is equivalent to the statement that the potential (j) is the 
convolution of the source distribution /  with the Green’s function G. The 
convolution theorem (see Brace well 1965) states that the Fourier transform 
of a convolution is proportional to the product of the Fourier transforms of 
the items convolved. Hence taking the transform of equation (5.138) we 
obtain:

(5.139a)

(5.139b)

This is the same as the procedure (5.133) with multiplication by G replacing 
division by [ ] of equation (5.132a), and the MULTFT or PARAFT 
algorithms may be used, as described above.

The transform method outlined in the previous paragraph relies only on 
the existence of the convolution theorem for converting the multiple sum 
(5.138) to the simple parallel multiplication in equation (5.139a). It may 
easily be shown from equation (5.111) that the Fermat number theoretic 
transform ( n t t ) also has a convolution theorem. The method described by 
equation (5.139b) may therefore be used with the f f t  replaced by an n t t , 
and the floating-point arithmetic replaced by the integer modulo arithmetic 
of §5.5.6. The details of this method are given by Eastwood and Jesshope 
(1977), who recommend it for the solution of certain three-dimensional
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pd e s  on computers such as the ICL DAP. James and Parkinson (1980) have 
assessed the effectiveness of the method in the solution of the Poisson equation 
for a gravitational problem on a 65 x 65 x 65 mesh.

One of the earliest and most successful rapid elliptic solvers is the method 
of Fourier analysis and cyclic reduction or FACR algorithm (Hockney 1965, 
1970, Temperton 1980). This was devised to minimise the amount of 
arithmetic on serial computers by reducing the amount of Fourier trans-
formation, and has an asymptotic operation count equal to 4.5n2 log2(log2/i), 
when optimally applied (see Hockney and Eastwood 1988). The FACR 
algorithm also proves to be highly effective on parallel computers.

The discrete Poisson equation (5.131) may be rewritten line-wise as follows:

(5.140)

where the elements of the column vectors (f)q and f q are, respectively, the 
values of the potential and the right-hand side along the qth horizontal line 
of the mesh. The matrix A is an n x n tridiagonal matrix with a diagonal of 
— 4 and immediate upper and lower diagonals of unity. It is a matrix that 
represents the differencing of the differential equation in the x direction.

If we multiply every even-line equation like equation (5.140) by — A, and 
add the equation for the odd line above and the odd line below, we obtain 
a set of equations relating the even lines only, namely:

< t > q - l  +  A(1)0 , + 4>q + 2  =  f {q \ (5.141a)

where

A(1) =  21 -  A 2 =  (n/2I +  A)(V2I -  A), (5.141b)

and

/ i 1) = / , - i - A / ,  + / , + 1. (5.141c)

This constitutes one level of cyclic reduction, line-wise, of the original 
equations. The resulting equations (5.141a) are half in number (even lines 
only) and have the same form as the original equations (5.140). The process 
of cyclic reduction may therefore be repeated recursively, yielding reduced 
sets of equations for every fourth, eighth, sixteenth line etc at levels r = 2,3,4 
etc. At each level there is a new central matrix A(r) that can be expressed as 
a product of 2r tridiagonal matrices:

(5.142)

The factorisation for r = 1 is shown directly in the second equality of equation 
(5.141b).
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If cyclic reduction is stopped at level r = /, the resulting equations are

(5.143a)

These equations are solved by Fourier analysis in the x direction, along the 
vectors, leading to independent harmonic equations for each harmonic k :

(5.143b)

where Xk is a constant for each harmonic, depending on the boundary 
conditions in x and the roots of equation (5.142). Equations (5.143b) are
n tridiagonal systems of length n2~l and are easily solved. The procedure 
for solving equation (5.143a) is therefore

(5.143c)

Having found the solution of every 2*th line from equation (5.143c), the 
intermediate lines can be filled in successively from the intermediate level 
equations

It will be found, when applied to the n2~(r+1) unknown lines, that the values 
of 0 on the right-hand side of equation (5.144) are values that have been 
found at the previous deeper level. Because of the factorisation (5.142), the 
solution of equation (5.144) requires the successive solution of 2r tridiagonal 
systems.

The above algorithm is referred to as FACR(/) where the argument gives 
the number of levels of cyclic reduction that are performed before the 
equations are solved by Fourier analysis. It was shown numerically by 
Hockney (1970) and proved analytically by Swarztrauber (1977) that there 
is an optimum value 1 = 1* & log2(log2n) which leads to the minimum total 
number of arithmetic operations. As more cyclic reduction is performed 
(increasing /) less Fourier transformation takes place (there are fewer lines 
to do it on); however, it is necessary to solve more tridiagonal systems in 
using equation (5.144) to fill in the intermediate lines. The exact position of 
the optimum /* therefore depends on the relative efficiencies of the computer 
codes that are used for the f f t  and the solution of tridiagonal systems. A 
better f f t  code will lead to lower /* and a better tridiagonal solver to higher 
/*. The best strategy is probably to write a computer code for general / and 
measure the optimum value. This has been done by Temperton (1980) with 
his code PSOLVE on the IBM 360/195 (optimum /* = 2), and by Temperton 
(1979b) on the CRAY-1 (optimum /* = 2 in scalar mode, /* = 1 in vector 
mode). It is evident that the introduction of parallelism into the implemen-

(5.144)
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tation of FACR(/) drives the optimum /* to a smaller value. We shall see 
that this empirical result agrees well with the simple theoretical estimates of 
performance that we shall derive below.

It will be evident from the above description that if cyclic reduction is 
taken to /% log2n level, there remains only a single equation to be solved 
for the central line. This is of the form of equation (5.144) where the values 
of </> on the right-hand side are, depending on the boundary conditions, either 
known boundary values or the same as the line on the left-hand side. The 
equation may therefore be solved without Fourier analysis, as may those for 
all intermediate lines. This method of complete line cyclic reduction (CLCR), 
which can therefore be described as a FACR(log2n) procedure, was devised 
by Buneman (1969), who showed how, at the expense of extra arithmetic, 
the procedure could be made numerically stable. The theoretic analysis of 
the numerical stability of line cyclic reduction was developed afterwards by 
Buzbee et al (1970).

The FACR(/) method may be programmed using either the unstable form 
of cyclic reduction described above or the stabilised procedure of Buneman, 
and this has a marginal effect on the optimum value of /*. In practice it is 
found that unstabilised reduction may be used for the small values of / = 1,2 
that are used by FACR(/), but that the stabilised reduction must be used if 
cyclic reduction is taken to completion with / typically in the range 5 to 7. 
Because the CLCR method works with a value of / which is far from the 
optimum and requires extra arithmetic for stabilisation, we will not consider 
it further here. Notwithstanding these facts, that were both known and 
published in 1970, the development of the CLCR method dominated the 
numerical analysis literature during the 1970s (see e.g. the review by 
Swarztrauber 1977). The relative performance of complete reduction of CLCR 
and the partial reduction of FACR(/) was put to the test in a competition 
between about 20 different Poisson-solvers held at Karlsruhe in 1977 
(Schumann 1978). This was won by Temperton’s program PSOLVE, a 
stabilised FACR(3) algorithm, which was 1.8 times faster than the best 
program using complete cyclic reduction. It is also interesting that the 
measured rounding error in the whole calculation was actually less for an 
‘unstabilised’ FACR(l) procedure POT1, than for the stabilised program. 
The above results favouring the FACR(/) method were all obtained on 
serial computers. We point out that the arguments against the use of 
complete reduction are stronger when we consider implementation on parallel 
computers, as we now see.

The steps in the FACR(/) algorithm are now summarised and the time of 
execution estimated on a parallel computer with a half-performance length 
of n l/2. The patterns of related data in the different steps are illustrated in
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FIGURE 5.25 The patterns of related data in the different steps of the 
FACR(l) algorithm. The arrows link data that are related in either a 
Fourier transformation or a tridiagonal system of equations.

figure 5.25 for the case of a FACR(l) algorithm, in which there is one level 
of initial cyclic reduction.

The FACR(/) algorithm consists of five stages, and can be implemented 
either to minimise the total amount of arithmetic, s (serial variant), or to 
minimise the number of vector operations, q (parallel variant), as was 
described in §5.1.6. The serial variant is called SERIFACR and the parallel 
variant PARAFACR. We will now describe both methods, and then compare 
the two, using the n i/2 method of algorithm analysis. The objective of the 
analysis is first to find which variant is best on a particular computer, and 
secondly to choose the optimum value of /. This will be done by drawing 
the appropriate algorithmic phase diagrams (Hockney 1983).

(/) The SERIFACR algorithm
In this version of the algorithm the vector length is proportional to n, the
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number of points along one side of the mesh. The five stages of the FACR(/) 
algorithm are:

(a) Modify r h s —for r = l , 2 , . . . , /  modify the right-hand side on n2~r 
lines in parallel using the generalisation of equation (5.141c), namely:

(5.145a)

at the cost of (3 x 2r~1 + 2)n arithmetic operations per line:

(5.145b)

(b) f f t  analysis— on n2~l lines in parallel using the MULTFT algorithm. 
Each transform is real and of length n :

(5.145c)

(c) Solve harmonic equations— n tridiagonal equations, each of length n2~\  
solved in parallel using the MULTGE algorithm:

(5.145d)

The leading coefficient is taken as five, rather than eight, because the equations 
(5.143b) have two coefficients that are unity (a, = c, = 1).

(d) f f t  synthesis—on n2~l lines in parallel using the MULTFT algorithm. 
Each transform is real and of length n:

(5.145e)

(e) Filling-in—of the intermediate lines by solving equations (5.144), 
involving (2-1-5 x 2r)n operations per line on n2~ir+1) lines, for r = l — 1, 
/ — 2, . . . ,  0

(5.145f)

(5.145g)

(5.146a)

The total time for the FACR(/) algorithm is therefore:
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Evaluating the sums we obtain the time per point:

(5.146b)

where the first square bracket is the normal serial computer operation count! 
and the second square bracket takes into account the effect of implementation 
on a parallel computer. We note that the first bracket has a minimium for 
positive Z ~  log2(log2n) but that the second bracket increases monotonically 
with /. Thus, for parallel computers which have n1/2> 0, the minimum in 
¿se r if a c r  moves to smaller Z, as asserted earlier.

The equal performance line between the algorithm with Z levels of reduction 
and that with Z + 1 is easily found to be given by

(5.147)

The form of equation (5.147) suggests that a suitable parameter plane for 
the analysis of SERIFACR is the (w1/2/n, n) phase plane, and this is shown 
in figure 5.26. The equal performance lines given by equation (5.147) divide 
the plane into regions in which Z = 0,1,2,3 are the optimum choices. Lines 
of constant value of n1/2 in this plane lie at 45° to the axes, and the lines for 
nl/2 = 20,100,2048 are shown broken in figure 5.26. These lines are considered 
typical for the behaviour, respectively, of the CRAY-1, the CYBER 205, and 
the average performance of the ICL DAP. For practical mesh sizes (say 
n < 500) we would expect to use Z = 1 or 2 on the CRAY-1, Z = 0 or 1 on the 
CYBER 205, and Z = 0 on the ICL DAP. The lower of the two values 
for Z applies to problems with n < 100. Temperton (1979b) has timed a 
SERIFACR(Z) program on the CRAY-1 and measured the optimum value 
of Z = 1 for n = 32, 64 and 128. This agrees with our figure except for Z = 128, 
where figure 5.26 predicts Z = 2 as optimal. This discrepancy is probably 
because Temperton uses the Buneman form of cyclic reduction (see Hockney 
1970) which increases the computational cost of cyclic reduction and tends 
to move the optimum value of Z to smaller values. For a given problem size 
(value of n), figure 5.26 shows more serial computers (smaller n1/2) to the

t  Hockney (1970, 1980) quoted 4.5Z for the leading term of the first bracket. This was 
because scalar cyclic reduction (6 operations per point) was assumed for the 
solution of the tridiagonal systems, instead of Gaussian elimination as assumed here 
(5 operations per point). Other assumptions can make minor and unimportant 
differences to this equation.
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FIGURE 5.26 The (n^^/n^n) parameter plane for the SERIFACR(Z) 
algorithm. The full curves delineate regions where the stated values of / 
lead to the minimum execution time. The broken lines are lines of constant 
nll2 corresponding to the CRAY-1 (n1/2 =  20), CYBER 205 (nl/2 =  100), 
and the average performance of the ICL DAP (n1/2 =  2048). (From 
Hockney (1983), courtesy of IEEE.)

left and more parallel computers (larger n 1/2) to the right. We see, therefore, 
that the more parallel the computer, the smaller is the optimum value of /.

In the SERIFACR algorithm the vectors are laid out along one or other 
side of the mesh and never exceed a vector length of n. It is an algorithm 
suited to computers that perform well on such vectors, i.e. those that have 
n1/2 < n, and/or which have a natural parallelism (or vector length) which 
matches n. The latter statement refers to the fact that some computers (e.g. 
CRAY X-MP) have vector registers capable of holding vectors of a certain 
length (64 on the CRAY X-MP). There is then an advantage in using an 
algorithm that has vectors of this length and therefore fits the hardware 
design of the computer. For example, the SERIFACR algorithm would be 
particularly well suited for solving a 64 x 64 Poisson problem on the 
CRAY X-MP using vectors of maximum length 64, particularly as this 
machine is working at better than 80% of its maximum performance for
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vectors of this length. On other computers, such as the CYBER 205, there 
are no vector registers and nl/2 ~  100. For these machines it is desirable to 
increase the vector length as much as possible, preferably to thousands of 
elements. This means implementing the FACR algorithm in such a way that 
the parallelism is proportional to n2 rather than n. That is to say, the vectors 
are matched to the size of the whole two-dimensional mesh, rather than to 
one of its sides. The PARAFACR algorithm that we now describe is designed 
to do this.

(ii) The PARAFACR algorithm
Each of the stages of the FACR algorithm can be implemented with vector 
lengths proportional to n2.

(a) Modify r h s —at each level, r, of cyclic reduction, the modification of 
the right-hand side can be done in parallel on all the n22~r mesh points that 
are involved. Hence, the timing formula becomes

(5.148a)

(b) Fourier analysis—the n2~l transforms of length n are performed in 
parallel as in SERIFACR, but now we use a parallel algorithm, PARAFT, 
for performing the f f t  with a vector length of n. The vector length for all 
lines becomes n22~l and the timing equation is

(5.148b)

The factor 4 replaces the 2.5 in (5.145c) because extra operations are 
introduced in order to keep the vector length as high as possible in the 
PARAFT algorithm (see §5.5.4). We also note that the factor n has moved 
inside the parentheses in comparing equation (5.145c) with (5.148b), because 
the vector length has increased from n2~l to n22~l.

(c) Solve harmonic equations—the harmonic equations are solved in parallel 
as in SERIFACR, but we use a parallel form of cyclic reduction, PARACR, 
instead of Gaussian elimination, for the solution of the tridiagonal systems 
(see §5.4.3). For the special case of the coefficients previously noted, there 
are three parallel operations at each of log2« levels of cyclic reduction. The 
vector length is n22~l giving

(5.148c)

(5.148d)

(d) Fourier synthesis—as stage (b):



546 PARALLEL ALGORITHMS

(e) Filling-in—at each level, r,n2_r tridiagonal systems of length n are to 
be solved. Using PARACR, as in stage (c), the vector length is n22~r. 
Afterwards a further two operations are required per point, which may also 
be done in parallel, giving

(5.148e)

Summing the above, we find that the time per mesh point for the PARAFACR 
algorithm is proportional to

(5.149a)

where

(5.149b)

The equal performance line between the level Z and Z + 1 algorithms is 
given by

n ll2/n 2 = [(11 log2n -  4)2“<,+ '> - ¿ ( 3  log2n + 1 ) ] /[4  + (3 log2n + 1 )2'].

(5.149c)

The form of equation (5.149c) leads us to choose to plot the results for 
the PARAFACR algorithm on the (n u i /n 2,n) parameter plane, and this 
is done in figure 5.27. We find that the equal performance lines are 
approximately vertical in this plane, and conclude that Z = 2 is optimal for 
n 1/ 2 < 0.1 n2, l = 1 for 0.1 n2 < n1/2 < n2, and / = 0 for n1/2 > n2. There are no 
circumstances when more than two levels of reduction are worthwhile, thus 
justifying our use of the unstabilised FACR algorithm. In particular, for a 
processor array with as many or more processors than mesh points (N ^  n2), 
we take n 1/2 = oo and find Z = 0. This case corresponds to the solution of a 
64 x 64 problem on the ICL DAP which is an array of 64 x 64 processors. 
The broken line for n l/2 = 100 is shown in figure 5.27, corresponding to the 
CYBER 205. For all but the smallest meshes (i.e. for n ^  30) we find / = 2 
optimal. The line for n l/2 = 20 is also given, from which we conclude Z = 2 
is optimal in all circumstances if this algorithm is used on the CRAY-1.

(iii) SERIFACR/PARAFACR comparison
So far we have considered the choice of the best value of Z for each algorithm. 
Having optimised each algorithm, we now consider which is the best 
algorithm to use. This is done by plotting ISe r if a c r  and ¿par afacr  against



PARTIAL DIFFERENTIAL EQUATIONS 547

FIGURE 5.27 The (nl/2/ n2, n) parameter plane for the PARAFACR(Z) 
algorithm. Notation as in figure 5.26. (From Hockney (1983), courtesy 
of IEEE.)

(nn2 / n) for a series of values of n, in order to determine approximately which 
algorithms abut each other in different parts of the parameter plane. One 
can then calculate the equal performance line between PARAFACR(Z) and 
SERIFACR(Z') from

The interaction of the two algorithms is shown in figure 5.28 on the 
(n1/2/n, n) parameter plane. This division between the two algorithms is about 
vertical in this plane showing that SERIFACR is the best algorithm for 
smaller n l/2 (less than 0.4m, the more serial computers), and that PARAFACR

where

(5.150b)

(5.150a)
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FIGURE 5.28 Comparison between the SERIFACR(Z) and PARAFACR(Z), 
showing the regions of the (nl/2/n, n) parameter plane where each has the 
minimum execution time. (From Hockney (1983), courtesy of IEEE.)

is the best for large n1/2 (greater than OAn, the more parallel computers). 
Lines of constant n l/2 are shown for the CRAY-1 and CYBER 205. We 
conclude that SERIFACR should be used on the CRAY-1, except for small 
meshes with n < 64 when PARAFACR(2) is likely to be better. On the 
CYBER 205, PARAFACR is preferred except for very large meshes when 
SERIFACR(2) (300 < n < 1500) or SERIFACR(l) (n > 1500) is better.

5.6.3 Three-dimensional methods
The number of different strategies for solving the three-dimensional equivalent 
of the difference equation (5.119b) is large. We indicate here only the most 
obvious possibilities and leave it to the reader to estimate the best procedure 
for his purpose using the results of §5.6.1 and §5.6.2 as appropriate.

Iterative methods should only be considered for the case of general 
coefficients. The point s or  method obviously generalises to three dimensions. 
The slor  method of line relaxation may also be used in three dimensions by 
assuming that all surrounding lines are correct and making a line correction. 
The adjustment of a whole plane of values, assuming the adjacent planes are
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correct (i.e. s po r ), may be performed if a program is available for solving a 
plane of values. This, of course, is the two-dimensional problem of §5.6.1 and 
§5.6.2, and an appropriate method should be selected. It will be iterative if 
the coefficients are general, or a direct method if the two-dimensional problem 
is the two-dimensional Poisson equation. Clearly the best choice will depend 
strongly on the coefficients of the difference equation. There is an advantage 
in solving as many of the dimensions of the problem as possible with direct 
methods. This will be possible for any dimension which has only even 
derivatives differenced on a uniform mesh.

In discussing wholly direct methods in three dimensions we limit 
ourselves to the solution of the discrete Poisson equation [generalisation 
to three dimensions of equation (5.131)]. The following possibilities suggest 
themselves:

(a) mf t — the multiple Fourier transform method of (5.133) or (5.139b) 
can be applied if a three-dimensional transform replaces the two-dimensional 
transform previously discussed. This method is used in the P3M algorithm 
of Hockney and Eastwood (1988). The method does not have the minimum 
execution time but would be used if other circumstances demand a knowledge 
of the three-dimensional wave spectrum of the source that is calculated by 
the algorithm. This occurs frequently in plasma physics.

(b) FACR(l)—this method generalises to three dimensions if we replace 
the one-dimensional Fourier transform in the x direction with a two- 
dimensional transform in the (x, z) plane. Cyclic reduction is then performed 
plane-wise in the y direction. Since Fourier transformation is now twice as 
expensive per mesh point (data must be transformed in both x and z 
directions), the optimum value of / will be larger than for the two-dimensional 
case. A FACR(O) procedure was adopted by Kascic (1983) to solve a 643 
problem on the CYBER 205, although he used a form of lu  decomposition 
for the solution of the tridiagonal systems.

(c) ID transform—if a one-dimensional Fourier transform is performed, 
say in the z direction, then each harmonic obeys a discrete Helmholtz equation 
(V2</>-/c</> = / )  in the other two dimensions. This may be solved by any 
Helmholtz-solver. If this happens to be a FACR(Z) procedure with Fourier 
transformation in the x direction and cyclic reduction in the y direction, one 
has in fact re-invented option (b) above.

In considering the implementation of the above options on particular 
computers, one must consider the use of n, n2 and n3 parallelism. In the 
simplest case of m f t  we may transform n lines of length n in parallel using 
the best serial algorithm and repeat this n times in all three directions. 
Alternatively we may transform n2 lines of length n in parallel using the best
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serial algorithm and repeat this in all directions. Finally, we may transform 
n2 lines in parallel using the parallel algorithm PARAFT and obtain a 
parallelism of n3. Similar considerations can be applied to the levels of 
parallelism used in the implementation of the iterative methods. There is 
clearly not space here to develop and contrast these alternatives; however 
all the necessary data and principles have been developed earlier in the 
chapter for the reader to do it himself for his particular problem.



6 Technology and the  Future

Over the last five years, since the publication of the first edition of this book, 
we have seen major advances in the use of parallel processing. Up until that 
time the dominant architectures in the supercomputer market were the 
pipelined vector machines, such as the CRAY-1. The 1980s, however, have 
seen many manufacturers turning to replication in order to meet computational 
demands. All of the vector computer manufacturers of the late 1970s have 
looked for more performance by including multiple processors, usually 
coupled by shared memory. Another major development has been the 
INMOS transputer and other similar single-chip solutions to the use of 
multiple processors in a single system. The T800 transputer, for example, can 
perform at a continuous rate of 1 Mflop/s, and can be connected into 
four-connected networks of other transputers. The N-cube (Emmen 1986) 
processor can perform at about 0.5 Mflop/s and can be connected in 
ten-connected networks (hypercubes containing up to 1024 processors). In 
both cases 1000 chips is not an excessive number to be included into a single 
system, and therefore these c m o s  v l s i devices will compete in performance 
with the more expensive ecl  supercomputers.

Indeed, it is instructive to look at the technological aspects of the 
improvements in supercomputer performance. In the CRAY-1 range of 
machines, for example, although performance is up by a factor of six during 
this period, only a factor of 1.5 of this is due to an improvement in clock 
rates; the other factor of 4 comes from the use of multiple processors. This 
amply illustrates the diminishing returns in very high-speed logic implemen-
tations of large monolithic machines. It is quite likely that gate delays in 
this range of machines have improved by considerably more than the
1.5 times that the clock rate would imply; however, the length of wire in 
this range of machines has not been significantly reduced. It is this that is 
limiting the greater improvements in clock rate. The CRAY-2, by clever 
refrigeration engineering, has been able to reduce its clock because of a more

551
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compact physical size. This engineering, however, does not tend to produce 
cheap machines.

It can be said, therefore, that replication has become accepted as a necessary 
vehicle (desirable or not) towards greater computational power. Where we 
should go now that this barrier has been overcome is the purpose of this 
chapter. We will restrict ourselves mainly to architectural considerations, 
although the impact on algorithms and applications will not be ignored, as 
the latter is the main driving force behind the continuing quest for more 
computational power.

From the introduction to this book we have seen that increases in 
computational power have averaged a factor of ten every five years or so 
(see figure 1.1). This has been due to demand and there is no reason to 
suspect that this demand should suddenly abate. In fact the signs indicate 
that this demand for more computational power is increasing. The US 
Department of Defense launched a programme to develop v l s i processors, 
with capacities of 3 x 109 operations per second (Sumney 1980). Other 
more important applications are also begging for more computational 
power (Sugarman 1980), many of which are important to our life style (e.g. 
modelling energy resources, weather and climate, and even people in 
computer-assisted tomography).

Like all new developments, the use of parallelism in computer systems 
started at the top end of the computer market. The scientific main-frame or 
supercomputer, as it now seems to be called, is costly but provides a state- 
of-the-art performance (currently around 500 Mflop/s). However, as with all 
developments that prove cost effective, they soon find niches in a more general 
market, and become accepted in wider ranges of applications.

Applications which will provide large markets in the future have moved 
away from the scientific and simulation areas and are likely to be concerned 
with the more immediate aspects of many people’s lives. For example, expert 
systems and database applications will become more frequently used. The 
Japanese fifth-generation program, and following this the UK Alvey and 
EEC ESPRIT programs, has provided a large amount of activity in this area. 
Other examples are: human interfaces, such as speech input and natural 
language understanding; image processing applications, for office systems or 
factor automation; and of course other signal processing applications for 
systems as diverse as mobile cellular radio and radar guidance systems.

There is no doubt that the provision of processing power for these 
applications will come from parallel processing. It is also obvious that this 
demand is being driven by the cheap processing power provided by the 
high-volume v l s i end of the semiconductor market. We therefore direct most 
of this chapter towards the technological trends, their effectiveness and
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limitation in the parallel and distributed systems that are described in 
Chapters 2 and 3 of this book.

6.1 CHARACTERISATION

Recent advances in integrated circuit design, in particular the levels of 
integration now possible, will allow many new architectural ideas to be put 
into practice. Technology also becomes a key component in some of the 
parameters we have defined. In particular the specific performance of a parallel 
computer, defined in §1.3.4 as the performance per unit parallelism, will be 
very technology-dependent. The most obvious contribution to this will be 
made in terms of circuit speed. This may, in well designed systems, be 
measured by the propagation delay of a single logic gate, i d. More indirect 
influences will be made in terms of power dissipation, as this is a major factor 
in determining packing densities and levels of integration.

The power required per gate, PD, is made up from a static and transient 
power requirement. In the case of a ‘demand’ logic gate the static requirement 
is very small and the gate only draws power when switched. The power 
requirements here will therefore be a function of clocking frequency. Other 
logic is termed ‘loss load’ and here the transients are small compared with 
the static power requirements. In general the power requirement varies with 
logic output, thus average power dissipation is usually given.

In any technology there will always be some trade-off between power and 
gate delay, as devices will switch faster if driven harder. The operation point 
on this power delay curve is sometimes fixed in production, alternatively it 
may be varied using resistors external to the chip. The product rdPD is another 
parameter associated with a given technology and gives a measure of the 
switching energy of a gate, e.g.

( 6. 1)

To illustrate the importance of switching energy or power dissipation 
parameters, we will consider the power requirements for a single integrated 
circuit. In general the power limit for a single integrated circuit is around 
2W, although this may be more than doubled using bonded heat sink 
packaging and possibly fluid cooling. However, assuming 2 W per package, 
how many gates can be assembled onto a single chip? For the loss load gate 
this is given by equation (6.2) where PD is the average power dissipation per 
gate:

( 6.2 )
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In the case of demand gates, power dissipation will depend on the average 
clocking frequency per gate,Jc. Thus assuming two logic transitions per cycle 
iVa will be limited by equation (6.3).

(6.3)

The average clocking frequency will generally be less than the system clock, 
as not all gates will make transitions every clock period. This is particularly 
important in memory technology, where only a few memory cells are accessed 
in each memory cycle. However, because of circuit size, static memory cells 
usually use loss load logic. Tables 6.1 and 6.2 summarise the above 
relationships.

There are other considerations which limit the number of gates on a single 
chip, the most obvious being gate area. Gate area is a deciding factor for the 
cost of the chip, it measures the ‘silicon real estate’ required. However as 
minimum dimensions on devices approach the 1 /xm barrier, area usage is 
more dominated by interconnections, as will be discussed later.

Thus we now have three parameters which characterise a given technology: 
gate delay t d, power dissipation per gate PD (alternatively switching energy 
£ s w  = t ^ d ) and finally gate area. In the following discussion we will use 
these as figures of merit in the comparison of technologies. We will also show 
how advances in processing techniques will affect these parameters for a given 
technology.

The technologies we consider fall broadly into two categories: logic made 
from bipolar transistors and logic made from field effect transistors, in 
particular m o s f e t s . In the latter, current flow is in the plane of the chip, 
whereas in bipolar technologies, currents also flow perpendicular to the 
surface between regions which have been doped by different impurities, as

TABLE 6.1 Levels of integration possible for different switching 
energies and clocking frequencies for a demand gate technology.

/ c (MHz)

ŝw (pj)

1 0 1 1 10 102 103 104

K T 1 108 107 106 105 104 103
1 107 106 105 104 103 102

10 106 105 104 103 102 10
102 105 104 103 102 10 1
103 104 103 102 10 1 —
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TABLE 6.2 Levels of integration possible for a loss load gate technology 
as a function of average gate power dissipation.

FIGURE 6.1 Cross section of the two basic switching transistors:
(a) bipolar transistor; (b) m o s f e t .

shown in figure 6.1. ‘Free electrons’ are introduced into the silicon crystal 
lattice by n-type impurities and ‘free holes’ are created in the lattice by p-type 
impurities. Holes are the absence of an electron, which move and create 
currents exactly as free electrons but of course in the opposite direction. They 
are, however, less mobile. It is because the boundaries between these regions 
can be controlled with great precision ( ~  0.1 fim) when compared with planar 
dimensions ( ~  1 fim) that bipolar technologies tend to be faster. Their logic 
circuits, however, are more complex.

There are many different technologies within these two broad categories, 
depending on circuits, materials and processing features. For example, many 
of the experimental technologies rely on novel processing steps. These reduce 
device dimensions and consequently reduce power and increase speed.
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6.2 BIPOLAR TECHNOLOGIES ( t t l , e c l , i l )

The three major bipolar technologies are transistor-transistor logic ( t t l ), 
emitter coupled logic (e c l ) and integrated injection logic ( i2l ). ecl  is 
sometimes referred to as current mode logic (c m l ) and i2l  as merged transistor 
logic (m t l ).

t t l  was the first integrated circuit logic to be produced. In 1964 Texas 
Instruments announced the first t t l  family of circuits. The basic gate is the 
NAND gate, which operates with logic voltage levels of 0 and 2 V for logic 
0 and 1 respectively, t t l  is slow and has a high power dissipation; because 
of this it is now virtually obsolete. However other t t l  series, namely Schottky 
t t l  and low-power Schottky t t l , and f a s t , are still used in small- and 
medium-scale applications.

The t t l  market, however, is rapidly declining; the replacement technologies 
are provided by customisable chips, which provide a higher packing density 
for small random logic (glue logic). One low-cost solution is the pa l , which 
is a field programmable logic array, blown in a similar manner to an e pr o m . 
If more complex circuits are required, the extremely bouyant market in gate 
arrays is providing the solution. These are user-customisable circuits (usually 
c m o s  but also made in bipolar technologies), which require the last fabrication 
stage to be generated from the users’ own requirement specification. These 
chips contain from 500-20000 logic gates, arranged in regular arrays, and 
the users’ circuits are wired in metal to connect the gates as required. This 
process is usually automatic, and can be generated from a computer-captured 
circuit diagram. Turn-around times can be very rapid, as the metallisation 
pattern can be implemented by exposing the silicon wafers using electron 
beams. The entry level costs for a run can also be very cheap, and at least 
one company offers a service for a few hundreds of pounds.

e cl  is another bipolar logic family, but one which prevents the transistors 
from going into the saturation regime. Current is switched in the basic e cl  
circuit, which is the logic inverter. The inverter can be augmented to give 
the dual OR/NOR gate. Logical 0 and 1 are represented by —1.7 and —0.8 V 
respectively, ecl  is often customised by the manufacturer for particular 
requirements. However, this does not mean that the entire chip will be built 
to a customer’s specification, as gate array technology using OR/NOR gates 
is now a standard technology.

The principal advantage of e cl  is its very small gate delay time, which 
can be as small as 100 ps for off-the-shelf components. Its other advantage 
is a large fan-out ratio, although a speed penalty will be paid for this. The 
disadvantages of ecl  are its large power dissipation, around 1 mW per gate 
for sub-nanosecond delays, and its relatively large gate area (>  300 /xm2).
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Currently therefore, ecl  is not a good candidate for l s i circuits. Typical 
packages contain around 1000 gates.

6.3 MOS TECHNOLOGIES ( n m o s  AND c m o s )

The field effect transistor ( f e t ) is a relatively simple device (figure 6.1(b)), in 
which a field generated by a gate electrode controls the flow of current in a 
channel between source and drain electrodes. The most common f e t  is 
called the m o s f e t  as the gate electrode is formed by a sandwich of 
metal-oxide-semiconductor. More recently, polysilicon has been substituted 
for metal in the fabrication process, leaving the metal for a second level of 
interconnections. The channel is formed from either n- or p-type charge 
induced in doped silicon of the opposite polarity, giving the n m o s  and pm o s  
technologies. Although n m o s  is still used, the third and major mo s  technology 
uses both n m o s  and pm o s  transistors. This is called complementary m o s  or 
c m o s . This is a good v l s i technology as it has very favourable power 
dissipation properties.

The major advantages of all mo s  technologies are their relatively simple 
fabrication processes and high packing densities. Thus mo s  has been used 
almost exclusively for l s i applications, giving extremely low-cost products 
(e.g. microprocessors and large memory chips). The disadvantage of mo s  
devices is their slow operating speed, although m o s  technologies are rapidly 
gaining ground in this respect. Typical c m o s  circuits will operate at around 
20-40 MHz clock rates.

The basic n m o s  gate is the inverter, which uses only two transistors, one 
of which is always on, either by biasing as in enhancement mode logic or by 
process control as in depletion mode logic. Thus this transistor acts as a fixed 
high-value resistor, while the second acts as a switch (figure 6.2). The 
operation of the gate is simple: the two transistors act as a resistance network, 
giving a voltage division between supply and ground. Thus when Ti is on 
(Fin^ 5 V ), Vout is near ground potential (Fout» 0 V ) and when 7\ is off* 
( Vin % 0 V), Vout is near supply potential ( Vout % 5 V). NAND and NOR gates 
may be constructed using pairs of switching transistors (T1A and T1B), 
connected either in parallel or series to ground (figure 6.3).

Because of the large resistances involved, m o s  technologies consume very 
little power. For example when Tx is on ( Vin % 5 V) the total resistance between 
supply and ground is typically 100 kQ. Thus with a supply of 5 V,

PD = 0.25 mW,
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FIGURE 6.2 Circuit o f  a  m o s  inverter.

FIGURE 6.3 Combining m o s  transistors to give dual input logic 
functions: (a) NAND gate; (b) NOR gate.

and similarly when Ti is off

Thus it can be seen that n m o s  gates only draw significant power when their 
output is low; also transient power spikes are not significant.

The packing density of the basic n m o s  inverter gate using 2 /im rules is 
about 25 000 gates per mm2 based on the geometries of an inverter, although 
this density is rarely found in practice.
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In n m o s  circuits, because transistor T2 does not switch but only acts as a 
passive resistor, there is an asymmetry in the rise and fall times associated 
with this technology. The pull-down is active and typically requires 1-5 ns, 
whereas the pull-up is passive and requires 4-20 ns. This is shown in 
figure 6.5(a), which shows transient voltage and current characteristics. (Note: 
gate delay in mo s  technologies is very sensitive to gate loading; these figures 
represent well-loaded gates.)

c m o s  technology avoids the long pull-up delay by using active pull-up and 
pull-down. As pm o s  has opposite polarity to n m o s , they can be used in a 
complementary pair to form the basic inverter gate (see figure 6.4(a)). This 
forms an almost symmetrical inverter (there are differences in carrier mobility) 
in which only one gate is ever turned on. The NAND and NOR gates are 
constructed using two complementary pairs of transistors. The NAND gate, 
shown in figure 6.4(h), uses the p-type transistors in parallel and n-type

FIGURE 6.4 Complementary m o s  ( c m o s )  logic circuits: (a) basic 
inverter; (b) NAND gate.
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transistors in series. The NOR gate is constructed with series p-type and 
parallel n-type transistors.

Another attractive feature of c m o s  technology is that it only draws current 
when switching (figure 6.5(6)). This is simply verified by noting that in any 
complementary transistor pair, one device is always off. This means that the 
power dissipation will be a function of average clocking rate. This is a great 
advantage in memory technology, where currently n m o s  is approaching the 
thermal barrier of about 1-2W  per package (Wollesen 1980). c m o s  has 
slightly poorer packing densities than n m o s  and is a more expensive process. 
However, c m o s  is now more competitive and has become the major process 
of the 1980s.

One disadvantage of all mo s  processes, which is not shared by bipolar 
devices, is that they cannot be run hot. m o s  devices suffer a decrease in speed 
of a factor of two over a 100°C temperature rise. This means that mo s  
technologies are more firmly bound to the 1-2W  per package thermal 
dissipation, whereas bipolar technologies are not.

FIGURE 6.5 Dynamic characteristics of m o s f e t  switching gates: 
( a )  n m o s ; (b) c m o s . Broken curves Kout, full curves IDD.
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6.4 SCALING TECHNOLOGIES

Parallel computers, especially large replicated designs, are very well suited 
to the continuous revolution that is taking place in the micro-electronics 
industry. Very large-scale integration (v l s i), with 105 or even 106 gates on 
a single integrated circuit, is now commonplace and the technology marches 
on with the continuing advances in processing facilities, in particular the 
resolution of printing or ‘writing’ of the circuits on the silicon slice.

The effects of scaling down device sizes have been a topic of much interest 
and, for mo s  transistors, rules which maintain well behaved devices have 
been known for some time (Dennard et al 1974, Hoeneisen and Mead 1972). 
For a scaling factor of K (>  1), if all horizontal and vertical distances are 
scaled by 1 /K  and substrate doping levels are scaled by K, then using voltage 
levels also scaled by 1 /K  the characteristics of devices should scale as given 
in table 6.3 (Hayes 1980).

As we have already seen, it is desirable to decrease the propagation delay, 
but not at the expense of the power dissipated. With these scaling rules, the 
delay is scaled by 1 /K  and the power dissipated per device is scaled by a 
factor of \ / K 2, both very favourable. However it should be noted that the 
packing density is increased by \ / K 2 and thus the power density remains 
the same. Thus it is possible to increase packing densities by device scaling, 
without the problems of approaching the thermal dissipation barrier.

There are problems in this scaling, as the current density increases by a 
factor of K , which may cause reliability problems. If current densities become

TABLE 6.3 Characteristic scaling factors for a m o s  technology, scaled 
by K ~ 1 in both horizontal and vertical dimensions and voltages, and 
with impurity densities scaled by K.

Characteristic Scaling

Device current / K ~ l
Propagation delay i d K ~ l
Power dissipation PD K ~ 2
Power delay product t dPD K ~ 3
Resistance R K
Interconnect current density J K
Packing density K ~ 2
Power density 1
ir  drop 1
r c  constant 1
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too high, metal connections will migrate with the current flow. Other problems 
occur because voltages must be scaled with devices, reducing the difference 
between logic levels. Noise levels remain constant due to the thermal energy 
of the discrete particles, and this can be a very critical problem. Scaling 
devices without scaling voltages lead to a K 3 increase in power density.

A final problem in device scaling occurs in the increased relative size and 
delay of the devices required to drive the external environment. Thus the full 
benefit of scaling may be found inside the chip but as soon as signals must 
leave the chip, only diminishing returns for scaling will be observed.

Although scaling is very attractive and may seem to be unlimited, there 
are certain fundamental limitations due to the quantum nature of physics. 
These are discussed in some detail in Mead and Conway (1980). In practice 
these limits should not be approached until devices shrink to 0.25 ¡im size, 
a further ten-fold reduction over current mainstream processes.

In contrast, the scaling for bipolar transistors is neither so rigorous nor 
so well defined. Bipolar transistors may be scaled without scaling vertical 
dimensions; indeed with present technologies it would be very difficult to 
scale this dimension to a very great extent. As transit times in bipolar 
transistors are dependent on the vertical dimension, e c l  propagation delay 
times will not scale linearly with planar dimensions. However there will be 
some reduction in propagation delay due to capacitative effects and power 
scaling will be similar to mo s  devices.

A paper by Hart et al (1979) has looked at the simulation of both bipolar 
and mo s  devices as they are scaled down. Their results are summarised in 
figures 6.6 and 6.7. Experimental sub-micron devices which have already been 
fabricated confirm these simulated trends (e.g. Fang and Rupprecht 1975, 
Sakai et al 1979). How soon such devices will be in production is a difficult 
question to answer. The seemingly simple scaling rules presuppose many 
improvements in processing technologies and there is a great deal of 
development between the yields suitable for experimental devices and the 
yields suitable for v l s i production.

6.5 THE PROBLEMS WITH SCALING

In Chapters 2, 3 and 5 we have seen that communication is fundamental to 
both computer and algorithm design. Also from the above section we have 
hinted at communication problems found at the chip level. Therefore the 
communication problem is not something which magically disappears when 
we wave the v l s i wand; its emphasis is merely shifted from the system level 
to the microelectronic level. Thus communication is the key to any successful 
computer design.
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Minimum d i m e n s i o n  (urn)

FIGURE 6 . 6  Simulated scaling of gate delay for e c l ,  i 2 l  and various 
m o s  technologies (data taken from Hart et al 1979).

Communication in an electronic digital computer is the propagation of 
‘square’ and hence high-frequency electronic signals, along wires or printed 
circuits, or in impurity patterns in silicon. The fact that these signals take a 
finite time to propagate between the various components in a computer and 
that this time could be significant was discovered the hard way in one of the 
early MU designs. Manchester University had severe timing problems in 
constructing the first ATLAS computer. Since then the physical layout of a 
computer has become more and more important and is now a major design 
consideration.

The CRAY-1 epitomises this design limitation and all features of the 
machine are designed to minimise and equalise propagation delay. The most 
obvious feature is the strikingly unusual cabinet shape (see figure 2.1). This 
can be considered as a topological transformation of a rectangular cabinet 
which reduces backwiring lengths. Figure 6.8 gives an equal area transformation
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FIGURE 6.7 Simulated scaling of power gate delay product for e c l , 

i 2 l  and various m o s  technologies (data taken from Hart et al 1979).

similar to that used in the CRAY cabinet. It can be seen that one dimension 
of the backwiring plane is reduced by a half. The ideal shape is one with 
complete spherical symmetry as this minimises wire lengths. Perhaps the 
CRAY-2 will come in this shape!

Other features in the CRAY-1 which minimise propagation delay are 
matched transmission lines which are resistively terminated and the extremely 
high chip packing densities. These features cause considerable cooling 
problems, and in excess of 100 kW of heat power must be extracted from 
the 100 or so cubic feet of cabinet space. To give some feeling for this power 
density, imagine putting a 1 kW electric element into a biscuit tin and trying 
to keep it just above room temperature. Even with such a feat of refrigeration 
50% of the 12.5 ns clock period on the CRAY-1 is an allowance for 
propagation delay.

To given an idea of the scales involved in this problem consider the 
following: in a perfect transmission line signals travel at the speed of light
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FIGURE 6.8 A constant area mapping used to reduce backplane wire 
lengths.

which is 952 x 106 ft/s, i.e. a little under 1 ft/ns. In practice, transmission lines 
have capacitance and resistance and the speed of propagation of a signal will 
be attenuated. For an RC network the diffusion equation describes the 
propagation of signals:

(6.4)

where R and C are the resistances and capacitances per unit length. The 
diffusion delay varies quadratically with length for constant R and C, and is 
the critical delay for on-chip signal propagation.

Returning to table 6.3, we see that although the RC delay remains constant 
during scaling, this figure is based on a scaled-down wire. It is reasonable 
to assume that the chip itself will remain the same size, so as to reap the 
benefits of the increased packing density. If this is so, distances will be 
relatively larger, with the net effect that tracks spanning the chip will be 
slower to respond by a factor of K 2, using the same drive capability. Indeed 
the situation is worse than this, for this absolute delay must really be compared 
to the now faster gate delay, which has scaled by X -1, giving an overall 
perceived degradation of K 3 in the responsiveness of a global wire. Although 
the effects of this unfavourable scaling are only just being felt, this factor is 
likely to have a major effect on the design of systems exploiting the new 
technologies. They will be blindingly fast at a local level, but increasingly
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sluggish at the global or off-chip levels. The implications of this are now 
considered.

As processing techniques improve and more devices are integrated onto 
single circuits, the scaling factors described above will have a major effect on 
the architectures implemented, and indeed on the design methodologies. The 
problems that must be overcome include:

(a) increase in design effort;
(b) greater wire delays;
(c) greater wire density;
(d) discrepancy between on- and off-chip performance.

The latter problem arises because of the constant view of the world that 
is presented by external components, such as pads, pins, and circuit tracking. 
It introduces a discrepancy between on- and off-chip performance. On-chip 
circuits may cycle at 25-50 MHz, but it is difficult to cycle pad driver outputs 
at this rate, without using excessive power.

The problems associated with wire density can be illustrated by considering 
the effects of scaling on the interconnection of abstract modules on a 
chip. If we assume the same scaling as for the electrical parameters, 
then we could obtain K 2 more modules of a given complexity on a 
scaled chip. If we assume that each module is connected to every other 
module on the chip, then for n modules n2 wires are required. The 
scaled circuit requires (nK2)2 wires giving a K 4 increase in wire density 
for a corresponding K 2 increase in module density. This is obviously 
a worse case, as in general the modules will not all be fully connected. 
However, the best case, which maintains a balance between wire and 
gate density, would require each module to be connected to one and 
only one other module. As mentioned earlier, the problem of communications 
is thus traded between system and implementation levels; the linear network 
that would result is only suitable for a few applications (see §3.3). However, 
this is known to be a major problem, and mandates design styles and 
architectures to be adapted to meet or ameliorate it. The solutions, as 
in most engineering situations, are found in squeezing the problem on all 
fronts, which may (for example) include the introduction of new interconnect 
techniques employing optical connections (Goodman et al 1984).

Looking at these problems in terms of design, we can find styles which 
can be used to advantage at both the circuit and systems levels. At the circuit 
level we can employ large and regular gate structures, which overcome the 
problems of wire density. Effectively, they increase module size and ameliorate 
the wire density problem by containing a regular network of local or bused
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connections. Examples are: r a m ; r o m ; programmable logic array (pla ); 
switch array; gate matrix.

To illustrate this consider figure 6.9, which shows an early and a modern 
microprocessor. In the former, the module is effectively the gate, and logic 
is built up randomly, as one would do using t t l  chips. In the latter, there is 
much more structure evident, including large blocks of r a m and r om , and 
regular datapaths in the a l u s .

Although r o m and r a m are ideal structures for v l s i, due to their regular 
structure, there is little processing that can be accomplished using r a m alone; 
processing architectures that also exploit this fine and regular structure are 
also prime contenders for good v l s i chips. At the system level, therefore, we 
can use the techniques which create this regular and preferably local structure. 
Pipelining and replication have been extensively discussed as architectural 
techniques for increasing machine performance without requiring increased 
component speed. It is fortuitous, therefore, that these same techniques 
provide for regular structure and can be designed with regular and local 
communications. Figure 6.10 illustrates a pipelined data path, where it can

(a)
FIGURE 6.9 A comparison of different generations of microprocessors. 
(a) An Intel 8080 8-bit microprocessor.
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FIGURE 6.9 coni, (b) A T800 transputer 32/64-bit microprocessor.

be seen that the introduction of registers for storing partial results within the 
data path creates local temporal regions instead of a global temporal region. 
The clocks required to synchronise the flow of data through the pipeline are 
still global signals; however, their latency does not prejudice the operation 
of the system, providing any delays to different modules can be equalised. 
Indeed, if required, the system may be made asynchronous or self-timed, by 
providing a local agreement between stages as to when data should be passed. 
This requires a handshake between adjacent modules. Asynchronous pipelines 
are a programming technique which is described in §4.5.2.

Figure 6.11 illustrates the chip floor-plan of a typical processor array, 
which uses replication as a means of improving performance. Again it can 
be seen that connections between the replicated modules have been chosen 
to reflect the planar nature of the medium and are therefore local. The same 
arguments concerning control apply equally to the processor array structure.
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( a )

FIGURE 6.10 A diagram comparing the conventional a l u (a) with a 
pipelined a l u (b). It can be seen that the latter has locally distributed 
communication.

Co n t r o l  bu s
FIGURE 6.11 Diagram showing the floor-plan and regular local 
communications in the RPA pe  chip.
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Either a synchronous system is used, in which case a clock and even the 
control word will be globally distributed from a single source. Otherwise the 
system may be made self-timed, in which case each processor would have its 
own clock and local control store. The former is typical of a sim d  computer 
and the latter would correspond to a multi-transputer chip. Such designs 
have been considered by INMOS, and (moreover) it has been proposed that 
they could be automatically generated from OCCAM programs by a silicon 
compiler (Martin 1986).

6.6 SYSTEM PARTITIONING

It seems ironic that the problems found in v l s i systems’ design seem to reflect 
those in society at large. Chips are rapidly evolving into a two-class 
society—as in systems comprising many v l s i circuits there are the privileged, 
who can communicate locally or on-chip, and the unfavoured, who must 
resort to slow off-chip communications. With these inequalities the partitioning 
of a system becomes very important. There are three main considerations 
when partitioning a system into integrated circuits. These are yield, pin-out 
and power dissipation, which are considered below. However, the problems 
above concerning the discrepancy between on- and off-chip performance will 
also constrain the partitioning. Points of maximum bandwidth must now be 
maintained on-chip.

It is interesting to note that components from most semiconductor 
companies maintain the point of maximum bandwidth in a system off-chip, 
and then add complexity to the system in order to minimise the bandwidth 
through this bottleneck. The interface is, of course, the memory-processor 
interface, which carries code and data between memory parts and processor 
parts in all microprocessor systems. The complexity introduced to combat 
the excessive bandwidth at this point includes on-chip cache memories, 
instruction prefetch and pipelining, and more complex instruction sets. There 
are of course exceptions to this approach, which involve an integration 
of memory and processor function, and a deliberate attempt to reduce 
unnecessary complexity. A good example of this style can be found in the 
INMOS transputer, described in §3.5.5.

6.6.1 Yield
Ideally one would like to implement the whole of a system onto a single 
integrated circuit, as driving signals off-chip is slow, consumes a great deal 
of power, is inherently unreliable and requires a large volume to implement.
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However, defects are introduced into the silicon during processing which can 
cause circuits not to work as expected. These defects include:

(a) crystal defects in the materials used;
(b) defects in the masks used to pattern the silicon;
(c) defects introduced during processing (e.g. foreign particles);
(d) defects introduced by handling (e.g. scratching, photoresist damage);
(e) defects introduced by uneven processing (e.g. metal thinning);
(f) pinholes between layers;
(g) crystal defects introduced during processing.

Because of the presence of these defects, only a fraction of the chips on a 
processed wafer will be completely functional (assuming a correct design). 
For example, consider a 3 inch wafer with 100 chip sites fabricated in a mo s  
technology. A typical yield for such wafers would be around 30%, implying 
an average of 30 working chips per wafer. The number of defects occurring 
on a wafer is usually assumed to be distributed randomly and expressed 
as a number per cm2. During the last 20 years, major advances have been 
made in clean room technology, equipment used, and materials and masks. 
As a consequence it is now possible to produce reasonable yields on chips 
up to and even over 1 cm2.

The simplest yield model assumes a random distribution of point defects 
and, furthermore, assumes that a single defect anywhere on the chip will 
cause that chip to fail. In this case the probability of finding any defects on 
a given chip can be calculated using the Poisson distribution and the 
parameters D (the defect density) and A (the area of the chip). The probability 
of a chip being good using Poisson statistics is given by

P(D,A) = exp( — DA).

This model, however, does not accurately reflect the real behaviour of a 
fabrication process, although it gives a fair approximation to the region of 
very low yield. Chips of an area of many times 1 /D will have a vanishingly 
small probability of not containing a defect. Areas must be kept to a few 
times l /D  to give reasonable yields. The defect densities found in a good 
process will vary from 1 -5  cm " 2. Thus chips of around 1 cm2 will give modest 
yields.

In reality the defects are not randomly distributed and many more defects 
will be found in the periphery of the wafer when compared with the centre. 
Also the assumption that all defects can be modelled as points is not valid 
and many defects are large compared with the feature sizes found on the 
chip. These are called area defects. Mathematically, points are very much 
easier to deal with than areas. Area defects may be modelled with modifications
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to Poisson statistics by considering the area to contain a number of point 
defects. This effect is therefore modelled as a defect clustering, and the 
distribution can no longer be considered as being random. The system can 
be modelled by the superposition of a number of random distributions. The 
final flaw in the simple Poisson model is that the defects are distributed over 
a number of process steps, some of which are more critical than others. For 
example, a masking defect on the metal 1-metal 2 interface via the mask 
will not be fatal unless it is included in the union of metal 1 and metal 2. It 
is clear from this that not all defects will cause a chip fatality.

Although it may not be possible to avoid defects entirely, it is possible to 
design circuits which can operate in the presence of some defects. These 
techniques, which are considered in §6.7 below, enable larger chips to be 
economically fabricated. The techniques have been successfully exploited in 
memory design for some time. The regular structure of memory gives 
particularly efficient schemes for avoiding faults introduced during processing. 
The ultimate goal, of course, is to achieve the situation where the complete 
silicon wafer can be used for a single system. At current levels of complexity, 
this would imply systems containing hundreds of millions of gates. The need 
for replication in such systems is clear.

6.6.2 Pin-out
Another limitation on the partitioning of systems is the number of pins that 
may be provided between the integrated circuit and the outside world. This 
is constrained by packaging and power dissipation requirements, and also 
contributes to the bandwidth limitation at the chip boundary.

A good design for a v l s i chip is therefore a portion of the system that is 
to some extent self-contained, and has as few wires as possible to the outside 
world. However, this often conflicts with other design requirements for v l s i, 
as found in partitioned, regularly connected structures such as grid-connected 
processor arrays. The problem is that as more and more processors are 
included onto a single silicon substrate, then the bandwidth required between 
chips also becomes larger. This increase can either vary with the area of 
processors enclosed, as in the case of external memory connections found in 
many simd  chips, or as the perimeter of the array, which is a partitioning of 
the grid network.

External connections to a chip are expensive; on-chip pads consume a 
relatively large area, and the size of a pad (100-150 /im2) must remain 
constant, despite any scaling of the circuit. The driver circuits also remain 
constant in size, to maintain drive capabilities. Pad drivers also consume a 
large amount of power, which can also cause considerable noise on the supply 
rails if many pads change state at the same time (as in a bus for example).
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Externally, large packages are expensive and consume valuable board area. 
Although packaging technologies are now providing dense, low-area chip 
carriers, such as pin grid arrays, and surface mount packages, the density of 
pins makes circuit boards more expensive due to the additional layers required 
to handle the track density.

Single-chip packaging is not the only boundary that can be drawn in 
system partitioning, as many chips may be mounted on a substrate before 
packaging. Manufacturers are experimenting with packages containing 
hybrids for commercial use. They have been used in military applications for 
some time. Examples are ceramic thick film and even metallised silicon. 
Although these techniques are relatively new and still expensive when 
compared to conventional packaging technologies; however, their obvious 
advantages will force their development.

To find a good partitioning in a system, graph theory may be used. At a 
given level of description, any system may be described by a connected graph, 
where the system components are the nodes (these may be gates or functional 
blocks, for example) and the wires connecting them are the edges of the 
graph. A good system partitioning divides the graph into subgraphs, where 
each subgraph contains a high degree of connectivity and the graph formed 
by the partitioning has a low degree of connectivity.

The situation is not quite so simple as this, however, as no system has 
only a single implementation and there are always a number of trade-offs 
that may be made to reduce the pin-out of a given partitioning. For example, 
at the expense of additional delay, signals may be encoded and then decoded 
on-chip prior to use. Also a single pin may be used for many signals by 
time-multiplexing the data.

The INMOS link implemented on the transputer provides a good example 
of such a trade-off. The transputer has four links to connect it to other 
transputers, each implemented as a pair of wires transmitting a byte of data 
in an 11-bit data packet. The link is bidirectional and can transmit data and 
acknowledge packets in any order. A large proportion of chip area has been 
used to optimise the speed of this link (20 MHz). This is a good compromise, 
however, as the alternative parallel implementation would have required at 
least ten wires per link. Scaling this figure by a factor of eight to provide the 
four bidirectional links gives a large difference in pin count. Thus, some speed 
has been lost in return for a massive pin reduction and a modest use of chip 
area, the non-critical resource.

6.6.3 Power dissipation
Power dissipation is the final constraint on system partitioning. There is a 
limit of about 2 W per package for conventional packaging technologies,
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i.e. printed circuit boards and forced air or convected cooling. Beyond this, 
more sophisticated packaging technologies are required, such as hybrid 
ceramic substrates, cooling fins, heat clamps, and liquid immersion technology. 
All of these techniques increase system costs.

As an aside, low-voltage, low-temperature cm o s  provides a very fast 
technology, which is now comparable to e c l . ETA are building super-
computers from VLSI cm o s  gate arrays, using liquid nitrogen temperatures 
(77 K) and low voltages. They are obtaining 100-200 MHz system speeds.

In any system there is a dynamic power dissipation (Pd), which is due to 
capacitative loading and is proportional to the number of gates (Ng), their 
average frequency of operation < /) ,  and the voltage through which they are 
switched ( Id d ):

where C is the load capacitance.
This is the major dissipation in a c mo s  circuit. However, in n m o s , in addition 

to this, there is a constant power dissipation on all gates whose output is low. 
This is given by

A typical value for Pdep in an nmos  circuit (the effective gate load) is about 
50 kQ, giving a power dissipation for a single gate of about 0.1 mW.

6.6.4 Techniques for reducing power dissipation
There are a number of techniques that can be used in order to reduce the 
power consumption of an integrated circuit. In general these are more 
appropriate to the loss load technology, such as n m o s .

(1) The first technique is to reduce pin-out. Pad drivers may consume 
many orders of magnitude more power than logic gates. If there are many 
drivers, then this can represent a large proportion of the power dissipated 
on-chip.

(2) Pad drivers can be designed so that the power spikes on transitions 
are minimised. This can be achieved using non-overlapping phases on the 
push-pull output stage.

(3) Another technique is to use dynamic logic, which has no static power 
dissipation. This technique gives a space reduction in cm o s  systems, with 
little power reduction. In n m os , however, it gives considerable improvements 
in power dissipation.

(4) There are techniques for reducing the static loss in nmo s  systems, such 
as transistor switch arrays, which again use no static power. These can be
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used in c mo s  also, although an n-well process is preferred, as the ‘good’ 
devices are n-channel, which have the better mobility.

6.7 WAFER-SCALE INTEGRATION

Wafer-scale integration (wsi) is the effective use of an entire processed wafer 
of silicon on a single system. Many of the disadvantages encountered in the 
scaling of v l s i  technologies will disappear (some will remain). However, in 
order to utilise a circuit with certain faults, special techniques need to be 
adopted.

There has always been a trend in ic manufacture to get as much circuitry 
as possible onto a single chip. The two to three orders of magnitude increase 
in complexity that has been achieved over the last decade in the semiconductor 
industry (Augarten 1983) has been brought about by decreases in circuit 
feature sizes. Chip sizes have remained more or less constant, at a little under 
1 cm2. However, because of the statistics of yield, the harvest of good chips 
from a wafer will decrease rapidly with larger chip sizes. Therefore, the leading 
edge of the industry, typified by memory manufacturers, has used fault- 
tolerant techniques and redundancy to increase yields of the larger chips. By 
using extensive redundancy, and relaxing design rules where critical, it is 
feasible to increase the chip area further, until the circuit covers the complete 
wafer. The earliest reported attempt at a whole wafer circuit was over 
20 years ago. In the UK, Sinclair Research has started a project to investigate 
the feasibility of wafer-scale products. This project is still continuing under 
the company Anamartic (without fault). The first products produced will be 
solid state mass memory devices (Pountain 1986b). Later products will have 
processing power distributed throughout this memory; they will be parallel 
computers.

Potential advantages of wafer-scale circuits are:

(a) higher speed through shorter interconnect and smaller loads;
(b) lower power through fewer pad drivers;
(c) greater density of interconnections possible;
(d) smaller volume;
(e) higher reliability through fewer mechanical connections;
(f) lower system costs.

Against these can be set the known disadvantages:

(a) yield statistics work against very large circuits;
(b) high power densities;
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(c) testing difficulties;
(d) configuration costs (may need special process);
(e) slower and more expensive prototyping;
(f) problems in mixing technologies;
(g) not appropriate for all systems.

Many of the potential difficulties in wafer-scale integration can be 
ameliorated by the choice of the correct architecture. It is clear, however, 
that these architectures must be regular and replicated.

6.7.1 Architecture for wsi
Architectures suitable for wsi are regular, contain few highly replicated 
modules and ideally contain only regular local communications. In 
this way both design effort, a major consideration, and the adverse effects of 
wire scaling are minimised. Some good architectures for wsi are memory, 
systolic arrays and processor arrays. But how good are these for processing 
data?

(i) Memory
Memory is one of the most ideal structures for wsi implementation. It is very 
regular, consists of a very small replicated module (a transistor and capacitor 
in dynamic r a m ) and has regular interconnections, i.e. word and bit lines. It 
is not surprising, therefore, that it has been one of the most successful products 
to exploit redundancy. Although many experiments have been undertaken 
to construct wafer-scale circuits, it is in the area of yield enhancement of 
marginal state-of-the-art chips that the successes in memory design have been 
made commercially. However, memory does not perform processing, and the 
availability of cheap memory has perpetuated the von Neumann architecture, 
with its separate processor, control and memory unit.

(ii) Systolic arrays
Systolic arrays are regular arrays of simple finite state machines ( f s m s ), where 
each finite state machine in the array is identical. The name is derived from 
‘systole’ a medical term describing the heart. A systolic algorithm relies on 
data from different directions arriving at cells in the array at regular intervals 
and being combined. Some state other than for the control of the local f s m  
may be involved. The algorithm therefore relies on the position of data and 
its propagation through the array. Although these machines are regular and 
contain simple cells, they do not perform very general purpose computations, 
or not until the f s m  becomes a stored program machine, when they can be 
considered as processor arrays. See Moore et al (1987) for more information.
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(iii) Processor arrays
When the replicated element becomes a computer, rather than a simple finite 
state machine, the structure can be called a processor array. In replicated 
computer systems, the most important issues are a matter of scale (see 
Chapter 3). Whereas a processor containing small numbers may communicate 
efficiently using bused systems or by shared memory, in systems using larger 
numbers the inherent sequentiality of these methods produces bottlenecks. 
The designer is then forced to consider systems in which data is switched 
between processors. This switching takes place either in a fixed topology 
network, in which distances grow with the number of processors involved, 
or in programmable connection networks, in which the costs of the switch 
follow a square law. In silicon, the planar nature of the connection medium 
will tend to favour a planar network.

6.7.2 Review of techniques
The techniques for increasing the area of chips of adequate yield fall into 
two categories—fault-tolerant circuit techniques and redundancy.

(i) Fault-tolerant circuits
Circuits can be designed to tolerate faults, usually by including redundant 
coding into the circuit operation. In this way certain faults or fault 
combinations can be detected and masked during the circuit’s normal 
operation. These techniques are usually expensive in area and are not 
appropriate by themselves for building whole wafer circuits. They can, 
however, be used to ensure the integrity of critical circuits using other schemes. 
One area where this technique is particularly effective is in the implementation 
of memory circuits, where redundancy codes can be used to detect and correct 
a single bit in error in any word (unit of protection) in the memory. The 
overhead for this is (log2n)/n, 50% for 8-bit data.

(ii) Modular redundancy
Modular redundancy requires a circuit to be duplicated, triplicated or 
otherwise replicated, and combined with circuits to detect differences in 
outputs. With two circuits, if the circuits agree over a range of tests, then we 
can be confident that they are functioning. However, the yield of the functioning 
circuit has been decreased. With triple circuits, any two of three agreeing can 
be confidently accepted as a correct result. A voter circuit is therefore required 
for this. A single voter will not, however, detect a wide range of common 
failure modes. This can be overcome using triple redundancy and triple voter 
circuits. However, this technique imposes a massive overhead, which may be 
unacceptable. It is typically used in situations where continuous operation



5 7 8  T E C H N O L O G Y  A N D  T H E  F U T U R E

is required from a system, where provision has been made to off-line and 
repair the faulty module when detected.

(iii) Other redundancy schemes
Other redundancy schemes are only appropriate where there is a high degree 
of regularity within a circuit. These are, however, the most suitable schemes 
and can be exploited by all regular architectures, such as memory or arrays 
of processor of some description. Because of the regular structure, it is 
possible to implement a set of spares, which may be included in the system 
in the event of failure of one of the system’s modules. An example would be 
the use of spare rows and/or columns of processors in a rectangular array 
of processors. This is now done routinely by most memory manufacturers 
and involves little overhead. The spares can be included in the system in a 
permanent (fabrication step after test) or volatile manner. In the latter case 
the system can be ‘repaired’ after in-field faults.

An example of such a replacement scheme is shown in figures 6.12 and 6.13, 
taken from experimental work performed at Southampton University 
(Bentley and Jesshope 1986). Figure 6.12 gives a schematic diagram of one 
quadrant of the wafer shown in figure 6.13. Each of the blocks is serial 
memory, and the overall system provides a parallel-access, solid state disc 
memory. In each quadrant one of eight virtual columns can be addressed 
and enabled onto the output bus. However, each cell receives four adjacent

FIGURE 6.12 A schematic diagram of the operation of a wafer-scale 
memory circuit containing two-dimensional redundancy.
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F I G U R E  6 . 1 3  A  p l a t e  o f  t h e  f a b r i c a t e d  w a f e r - s c a l e  c i r c u i t  s h o w n  i n  
f i g u r e  6 . 1 1 .  ( A p p r o x i m a t e  d i a m e t e r  7 . 5  c m . )

word lines, and coded configuration control information indicating the 
number of bad cells to the left (0,1,2, or 3 bad). Using this control information, 
the appropriate decoded word line is used to select the cell. Because each 
row has its own control bus, each row may discard any three bad cells. Should 
a row contain more than three bad cells, an error control signal will tell the 
sparing network to ignore that row. Only one complete bad row may be 
dropped in each quadrant. Thus each quadrant of the memory may be 
configured by any eight good cells from eleven in each row and eight good 
rows from the nine implemented.

The wafer can be self-configuring, as when in test mode, a coded signal 
can be written to all blocks in parallel. This signal is recognised after having 
exercised the bus and storage logic, and a status latch stores a good/bad 
status on leaving the test mode. It is this status latch that is then used to 
generate the control signals in each row. Obviously the status latch and 
control logic have not been tested by this process, but there will always be a 
core of logic in any self-tested system, which must be verified by externally 
verified test equipment.

This experimental wafer does not have the correct communication structure 
for a grid-connected array. However, modifications to this scheme have been
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proposed (Jesshope and Bentley 1986, 1987) and are being implemented in 
silicon. These schemes would allow arrays of up to 16 x 16 RPA pe s  to be 
fabricated on a single 3 inch wafer, using 3 /mi cm o s  technology. More 
aggressive design rules (1 /mi, say) and a larger wafer (5 inches, say), could 
be expected to give a 25-fold increase in density over the above estimate. 
This would give up to 200 Mflop/s for floating-point operations and up to 
2 Gflop/s for 16-bit integer operations—quite an impressive performance for 
a computer that you could slip into your pocket!

We do not have the space for a complete treatment of this subject here, 
but for further reading those interested are referred to the recent book edited 
by Jesshope and Moore (1986). This is the proceedings of a conference held 
at Southampton University, at which no fewer than three prototype wafer 
designs were displayed; one from Sinclair Research was demonstrated while 
configuring itself. Like the Southampton design, this demonstration was a 
memory circuit, but configured from a linear chain of cells, constructed from 
a spiral of good sites on the wafer.

6.8 THE LAST WORD

With technology making advances that seem to have no prospective limit, 
there is no doubt that, with all their problems, parallel computers are here 
to stay. It is perhaps unfortunate that software technology has not kept pace 
with the rapid advances made in hardware developments. The reason for 
this seems to be the driving force behind these developments; the almost 
insatiable thirst for more processing power. This has led to the rejection of 
the more abstract developments in software technologies, in favour of highly 
optimised, but mature (long in the tooth one might say), systems. However, 
with applications for the superspeed computers opening out into areas where 
systems are more complex, there has been a large impetus in the development 
of more abstract programming methodologies (Harland 1984, 1986). What 
is required before these developments mature is a raising of the level of 
abstraction of the hardware of the machine, while at the same time exploiting 
the nature of the technology, its powers and limitations. This is not a trivial 
task, however, as both sides of the equation are rapidly moving targets. The 
recent trend in higher education, in which these disciplines are converging 
(information engineering), is a good omen for the future in this respect.
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SYNTAX OF asn — AN ALGEBRAIC-STYLE STRUCTURAL 
NOTATION

The syntax of the structural notation for computer architecture is defined 
below in the Backus Naur Form (b n f ) as used in the ALGOL60 report 
(Backus et al 1960). Angular brackets (( >) delimit metalinguistic terms and 
the vertical bars (|) separate alternatives (read as ‘or’). The double-colon 
equals (:: = )  is to be read as ‘may be’.

A.l MISCELLANEOUS

(empty):: =
(digit):: = 0| 112|3|4|5|6|7|8|9
(lower case letter):: = a |b |c |d |e |f |g |h |i |j |k |l |m |n |o |p |q |r |s |t |u |v |w |x |y |z  
( pipelined >:: = p | ( empty >
(SI prefix):: = K |M |G |T |(em pty)
(unsigned integer):: = ( digit>|(unsigned integer)(digit)
( power>::= (unsigned integer)|(em pty>|(lower case letter) 
(multiplier):: = (lower case letter>| ( unsigned integer)(SI prefix)

|(unsigned integer>•(unsigned integer>|( comment>
( factor >:: = ( multiplier >< powcr > | ( factor > * ( factor >
(comment):: = ((any sequence of symbols>)|(empty)
( statement separator >:: = ;
( statement >:: = ( definition > | ( highway definition > | ( structure >

Examples 
< empty >:: =
<digit >:: = 3;9 
(lower case letter):: = c;z 
(pipelined):: = ;p 
(unsigned integer):: = 34; 128
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(p o w er )::  =  ; 2; s 
(m u ltip lier):: =  n; 16;8G;9.5 
(fa c to r )::  =  n*m ; 642; n* 128*322 
(com m en t):: =  ; (bipolar ECL)

A.2 E UNITS

(E  symbol):: = B |C h |D |E |F |IO |P |U |S
(E  identifier):: = (E  symbol)( pipelined)|(E  identifier)(digit) 
(operation time in ns>:: = (m ultiplier)|(com m ent)
(bit width of operation):: = (multiplier)

|(b it width of operation),(m ultiplier)|(com m ent)
<E unit):: = <E identifier>^T/w'dTho™ r̂anon><comment>

Examples
(E  identifier):: = E; F12; Bp46 
(operation time in ns>:: = t;(4  milliseconds)
(bit width of operation):: = b ;(4 Bytes); 16,32 
(E  unit):: = E; F12^°(*); S(omega)

A.3 M UNITS

(M  symbol):: = M |0
(M  identifier):: = (M  symbol> (pipelined>|( M identifier)(digit) 
(access time in ns>:: = (m ultiplier)|(com m ent)
(number of words):: = (multiplier)*

|(number of words> (number of words>|(comment)* 
(bits in word accessed>::= (m ultiplier)|(com m ent)
(size of memory):: = (number of w ords)(bits in word accessed)

| (comment)
<M unit):: = <M identifier>/^ofmemory"8><comment>

Examples
(M  identifier):: = Mp; M l; M2; M3; 016 
(access time in ns>::= 100;(4 milliseconds)
(number of words):: = n * ;(l,2  or 4 MBytes)*;
(bits in word accessed):: = b; 32
(size of memory):: = n*b; n*32; ; n*; *32; 2K*8*64
<M unit):: = M; 016J& ; M2K.8(2716 EPROM);
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A.4 COMPUTERS

(control symbol):: = I|Iv|C |Cv
(control identifier):: = (control symbol> (pipelined>

|(control identifier)(digit)
(clock time in ns>::= (m ultiplier)|(com m ent)
(bits in instruction):: = (multiplier)

Kbits in instruction) , ( multiplier)|(comment)
( number of streams > :: = ( multiplier > * | (  comment > * | ( empty > 
(instruction streams>::= (number of streams> (bits in instruction) 
( connectivity > :: = ( multiplier > -nn | (  comment >
(control type):: = a|h |/|r|(com m ent>
( controlled elements >:: = [ (  structure > ] I ( empty >
(computer):: = (control identifier>^ ^ rku'™enTtreaL ̂ com m ent) 

(controlled elements)

Examples
(control identifier):: = I; Ivp3; Cvl2
(controlled elements):: = ; [64P]; [C l [64P], C2]; [ lOFp -  4M]
(connectivity):: = (2D hexagonal mesh); c-nn;2-nn 
(control type>::= a ;h ;/;r ;  ;
(computer):: = Cl [642P ]? nn; C l[16F x 17M]; C 4i50;

Ivp[ lOFp -  4M ]h; Ivp}2,32; Ip5o*6 4(HEP)

A.5 DATA PATHS

(highway identifier):: = H ( unsigned integer) ( comment>
I ( comment >

(time per word in ns>:: = ( multiplier>|(comment)
( data bits >:: = ( multiplier> | ( comment >
( address bits > :: = ( multiplier ) | ( comment >
(number of paths):: = ( multiplier>|(comment)
(size of path>::= (number of paths)* {(data bits) + (address bits)}

I (number of paths)*(data  bits>| (data bits)
I (data bits) + (address bits)

(data bus):: = <,imeperwordinns>|(data  bus) -  | - ( d a t a  bus)
<size of path)

<time per word in ns>
( cross connection > :: = x | ( cross connection > x

< size of path >
I x ( cross connection >

(connection):: = (data bus)|(d a ta  bus)(highway identifier)(data bus)
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|<cross connection >| (cross connection)(highway identifier) 
( cross connection >

< no connection > :: = |
< simplex left >:: = ( ( connection >
< simplex right >:: = < connection > >
( duplex >:: = (simplex left>>|( simplex left),(simplex right)
(half duplex):: = (simplex left> /( simplex right)
(data path):: = (connection)|(simplex left>| ( simplex right)

| (  duplex > | (  half duplex > | ( no connection >
(highway definition):: = (highway identifier) = (structure)

Examples
(highway identifier):: = H; H3 (twisted pair)
(time per word in ns):: = t; 12.5;(lms)
(data bits):: = 64;n
(address bits>:: = 16;a
( number of paths >:: = 4; n
(size of path):: = 4*{64 + 16}; 4*64; 64; 64 + 16

(data bus):: = —; -----—----
4 * { 6 4  + 1 6 }

(cross connection):: = x ; x x x
(connection):: = -H 3 (twisted pair)----- ; x x (Banyan Network) x x

-H 3 -
( no connection >:: = |
( simplex left >:: = ( ----- ; ( x  x ; (  - ;  (  x
(simple right):: = ----- >; x x > ;-> ; x >

(duplex):: = < -> ;<  lg -.,-3l >; < —'“  -  >
(half duplex >:: = ( - / - > ; ( ---------H 2— / — H 3-------- )
(data  path) ::= x

(highway definition ):: = H3 = { { - -> , ( - } / (  ~4 }

A.6 STRUCTURES

( unit > :: = ( E unit > | (  M unit > | ( computer > | (  lower case letter >

( primary > :: = ( unit > | { structure} <connec,ivi,y><pipeiined>

|(parallel structure)(pipelined)
( secondary > : : = ( primary > | (  factor > ( primary > | ( factor > ( primary > 

| (em pty)
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<structure ):: = <secondary) | <structure) <data path ) <secondary ) 
(concurrent list):: = (structure)|(concurrent lis t) ,(structure) 
(sequential list):: = (s tru c tu re ) |(sequential l is t) /(structure)
(lis t>:: = (concurrent list>| ( sequential list)
(parallel structure):: =  {<list>}<connect,v,ty>
(definition):: = (secondary) = (structure)

Examples
(unit):: = E; C[64P]; a
(primary):: = { - E - M - a } p ;{ - E l - ,  E2};{E1 /E2/E3}; IO 
(secondary):: = 16*322P;4{3F,2P}
(structure):: = -E -M -a ;  { E -{ -M l-M 2 - ,- > } -----M3}-  a;

{322P},nn
(concurrent list):: = I, E, M 
(sequential list):: = 3E1 /E2/E3
(parallel structure):: = {I, E, M}; {3E1 /E2/E3}; { -E -, |M —, —} 
(definition):: = 3E1 = {E( + ), E(*), E( -  )}; E2 = {F(*)/F( + )/B}; 

c  = I [64P ]fnn; M 1 = {- M —  >} -  M|{J&
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I/O  s e c t io n , 127
I/O  Subsystem (IOS), 19, 119, 121, 

125, 126-7
locks software, 140-1



INDEX 615

mask instruction, 135 
memory 

ports, 123 
system, 125-6, 438 

merge instruction, 135-6 
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