

Contents
1 Introduction to database systems

What is a database?
Relationships between tables
Normal forms
Database transactions
Exercise

2 Creating simple queries
Select columns (SELECT)
Selecting rows (WHERE)
Using calculations and functions
Combining multiple filters
Sorting results
Exercises

3 Querying multiple tables
Cross product
Inner joins
Left / Right / Full outer joins

4 Grouping and aggregation
Aggregate functions
Groupings using GROUP BY
Selecting groups for the result (HAVING)
Exercises

5 Subqueries
Nested queries
Subqueries and the IN operator
Subqueries in the WHERE clause
Linking a subquery with the main query
Subqueries using the EXISTS operator

Subqueries in DML operations
TOP-N queries
Exercises:

6 Set operations
UNION and UNION ALL
INTERSECT
Difference (MINUS)
Exercises

7 Introdcution of the training database
Technical framework conditions
Deriving a logical model
Deriving a relational database model

8 Creating (DDL) and filling (DML) tables
Creating and deleting tables
Creating foreign key relationships using constraints
Changing the table structure afterwards
Adding datasets
Editing datasets
Deleting datasets
Exercises

9 Miscellaneous
Classic views
Permissions in Oracle
Additional useful functions
Overview and introduction of analytical functions
Exercises

1 Introduction to database systems

What is a database?
Almost everyone is familiar with Excel and has used it at least once in their
lifetime. In Excel, you have worksheets consisting of many cells where you can
enter different values (numbers, text, dates, etc.). These cells are organized in
columns and rows.

For instance, if you wanted to manage addresses in Excel, you would probably
enter the different data in different columns, e.g.:

First name
Surname
Street
ZIP code
City

You could arrange the address data in rows, and the whole thing would have
the following format:
First name Surname Street ZIP

code
City

Hugo Schmidt Sylter Weg 15 24145 Kiel
Bert Meier Schanzenstraße 1 20357 Hamburg
Egon Müller Exerzierplatz 3 24103 Kiel
Ivonne Müller Oldendorfer Weg

22
25524 Itzehoe

This constitutes an address table. We also have tables in databases, the so-
called database tables. Every table consists of several columns, each
containing different data. The rows are called datasets in database
terminology. A dataset contains all columns that belong together. In our
example, a dataset would consist all the columns of an address. Database
tables contain different forms of data depending on the application.

In practice, you usually need more than one table (just like in Excel). You
could have one table for customers, one for sold products, and another for the

billings. The three tables contain very different data, but all three tables could
be important for the order management of a pizza delivery service. When you
combine several tables, we speak of a database. Different databases for
diverse applications are managed in a database management system
(DBMS). Common examples include Oracle, Microsoft SQL Server, IBM
DB2, etc.

One uses the so-called query language for easy access of the data in the tables.
The query language enables you to tell the database the datasets that you need.
Assuming you wanted to view Hugo’s address from our previous example, you
can use the Structured Query Language (SQL). A simple example would
look like this:

SELECT *
FROM TBL_ADDRESSES
WHERE Surname=‘Schmidt‘

This would return all columns of the dataset that contain the surname
‘Schmidt’. Such a language is particularly advantageous if you have tables
containing millions of datasets or if you want to view specific data from
multiple tables at the same time (will be described in detail later). With that,
we have successfully used our very first SQL in this course. Many more will
follow. ;)

In addition to SQL as a query language, we also have the Data Definition
Language (DDL) and Data Manipulation Language (DML). The DDL is
used to define the structure of a database, i.e. tables and their structures.
Furthermore, a database also has numerous other objects (e.g., views, indices,
etc.), which will only be touched on marginally in this course. The DML is
used to fill, edit, or delete data in tables.

Relationships between tables

Most databases contain diverse tables in order to structure the data in an
organized manner and avoid redundancies (see chapter on normalization).

The different tables are hereby related to each other. For example, if you have
one table containing information about your customers and another for the
orders, you would only need to add the customer numbers in the orders table
and not the entire information about the customer. Having this customer number
in both tables creates a relationship between these two tables. All the
information about a customer (e.g., address, phone no., etc.) is only saved and
managed once in the customers table instead of saving it multiple times in the
database. For example, you can use SQL to determine how many orders have
been placed by customers from a specific region by simply linking the
customers table (containing the customers’ place of residence) and the orders
table. If a customer changes his/her address, you only need to update the table
at a single point.

We use ER models (ER = entity relationship) to illustrate the relationship
between tables via their columns. Below is an example of such a model:

Figure 1: A simple ER model

The relationships or links between tables are established via so-called keys.
Here, a distinction is made between primary and foreign keys. Primary keys
uniquely identify a dataset in a table. In the case of the customers table, this
would be the ‘customer no.’. This is marked with a “P” in the ER model to
highlight the primary key. A foreign key is a reference to the primary key of

another table (marked with “F” in the ER model), i.e. which dataset in the
other table is linked to that of the current table. In the above example: Which
customer dataset (primary key) is linked to which order (via the foreign key).
Relationships are therefore always defined by linking a foreign key to a
primary key.

There are different types of relationships in different tables:

1. 1:1 – relation
2. 1:n – relation
3. N:m – relation
4. Recursive relations

In the 1:1 relation, you only have one dataset in the foreign table for every
dataset in the primary table and vice versa. As for the 1:n relation, you have 1
to n datasets in the primary table for every dataset in the foreign table. And for
every dataset in the primary table, you only have 1 dataset in the foreign table.
This is the most common case in practice. In our example, we have a 1:n
relationship between customers and orders. Every customer can appear
several times in the orders table. However, there only exists one customer for
every order. N:m relationships mean that for every dataset in one table, you
have n datasets in the other table. In relational databases, such a situation can
only be modeled using an intermediate table.

Most DBMS allow you to ensure that the referential integrity is upheld. This
means that every foreign key must always have a corresponding dataset in the
referenced table. In such a case, it would not be possible to delete this dataset
from the foreign table as long as it is referenced by another dataset. You can
only delete it after you delete all the other datasets first. The same also applies
in reverse. You must first create this dataset in the foreign table before
referencing it from another table.

For you to always ensure this referential integrity, you must set up the so-called
foreign key constraints. This simply means defining the foreign-key
relationships between two tables at a database level. We also have the so-
called check constraints. These are used to ensure that only certain values can
be entered in specific columns such as if the column is only meant for the

salutations ‘Mr., Mrs., & Ms.’.

Normal forms

The following properties must always be ensured for easy and correct data
evaluation:

non-redundancy
unique
consistency

To make sure these properties are upheld, there are certain rules that must be
adhered to in data models. These rules are referred to as normal forms. There
are five normal forms, each of which can be used to avoid specific
redundancies that can arise in the data model. The first three normal forms are
usually the most relevant and are described in detail using the contact
information table below:

Figure 2: Example of customer data – starting point

A table in the 1st normal form cannot have repetition groups and each of its
attributes must be atomic (i.e. cannot be subdivided into other attributes).

Applied to our example, this means that we cannot have “Address” as an
attribute since the address can be subdivided into street, ZIP code, and city
(atomicity). If a contact can have several phone numbers, these should not be
saved in the “Phone no.” field (repetition group). We also cannot have fields
“Phone_number1” … “Phone_numberX” (repetition group). Instead, we could
add an attribute called PHONE_NUMBER as part of the key (from a
combination of the CUSTOMER_NUMBER and PHONE_NUMBER).

Figure 3: Example of customer data – 1st normal form
The 1st NF basically makes sure that the data can be evaluated. If you were to
save the entire address in a single attribute, it would be difficult, e.g., to sort
and filter the data based on the place of residence.

The 2nd normal form stipulates that given the table is in the 1st NF, every non-
key field is dependent on the entire key and not just a part of the key. This
ensures that a table only contains relational data. It also helps avoid
inconsistencies since the attributes can only occur once.

In our example, this means that NAME, STREET, CITY, GENDER, and
SALUTATION depend only on the CUSTOMER_NUMBER but not the
TELEPHONE_NUMBER. If a contact was to have several phone numbers, the
contact information would be redundant in the table thus consuming too much
space (no longer a big problem today) and can also lead to inconsistencies.
You would now create an extra table for phone numbers.

Figure 4: Example of customer data – 2nd normal form

To comply with the 3rd normal form, a table must already be in the 2nd NF and
non-key fields must be independent of other non-key fields. The 3rd NF
prevents further redundancies.

In our example, this would mean that fields ‘City’ and ‘Salutation’ would be
outside the attribute since the city is dependent on the ZIP code and the
salutation dependent on the gender. This additionally helps avoid redundancies
that would lead to inconsistencies.

Figure 5: Example of customer data – 3rd normal form

The normalization increases the number of tables in a data model. Thus,
queries can take longer since the tables must be linked to each other. In case
the response times become too long, you can also de-normalize the data
models. This is usually common in data warehouse applications that have
tables in the so-called star schema.

Database transactions

When adding or changing data in tables, it must be ensured that the data remain
consistent. Here, one usually talks of the ACID paradigm:

Atomicity
Consistency
Isolation
Durability

The paradigm dictates that data changes must be atomic, meaning that a set of
operations is either performed completely or not at all. In addition, it must also
be ascertained that after the changes, the dataset remains consistent (as long as
it was consistent before). The changes should be isolated so that different
operations do not to interfere with each other (e.g., simultaneous deletion and
reading of a dataset). The edited data must be saved permanently.

For all this to be upheld, we have the so-called transactions in modern
DBMS. A transaction is more like a bracket with which one or more DML
(insert, update, delete) instructions are handled as a block. The results are only
saved after the individual instructions have been executed. After a transaction,
the results can either be saved permanently using COMMIT or rolled back
using ROLLBACK. The changes are only visible after a successful COMMIT.

Exercise

1. Modify the following data structure to obtain the 3rd NF. The data are

hereby arranged in columns:
Country ISO

code
State City Branch Employee Contact data

Germany GER Hamburg Hamburg Spitaler
Straße

Mr.
Schmidt
Mrs.
Müller
Mr. Meyer
…

Tel: 040-1234
Fax.: 040-1235
Email:
Hamburg@enterprise.com

Denmark DEN n/a Copenhagen … Mrs.
Sörensen
…

…

…

2 Introdcution of the training database

This chapter is based on the theoretical principles of databases covered in the
1st chapter and introduces the test database used in this course. It should also
serve as a rough illustration of how database models are usually structured to
meet actual departmental requirements.

Technical framework conditions

Schmidt Imbiss Group would like to save records of its customers and orders
in a central database for practical data evaluation. Currently, the company has
4 branches in Hamburg, Kiel, Lübeck, and Flensburg. They sell a number of
products, which can be categorized in product groups. This fact should also be
depicted to maintain a clear overview if the number of products increase in
future. Currently, every product has a price.

Customers can either pick up their orders directly at the store or have the
products delivered to them. For this purpose, Schmidt Imbiss Group currently
has 5 drivers, 2 cooks, and 3 sellers tasked with the order intake and
processing. The employees receive a monthly base salary as well as a
commission based on the respective service. For drivers, the commission is
based on the number of deliveries whereas for the sellers, it is based on the
respective sales. At the moment, cooks only receive a fixed salary.

In addition, it should also be possible to evaluate the following attributes for
the customers:

ZIP code and city
Gender
Date of birth

A customer can place more than one order. Each of these orders is processed
by one seller.

Deriving a logical model

Here, we can derive a simple logic model. We can first identify the key
substantives (underlined and highlighted in blue). These include the candidates
for subject-specific objects, e.g., customers, orders, etc. They have various
attributes (customer no., first name, surname, order date, etc.) and are related
to each other. Below is an illustration of only the substantive objects described
above:

[A1]
Figure 6: Logical model – 1st step
In the text with the technical description, additional interesting facts are written
in italics and highlighted in red-brown. These can be verbs, but what should
we do with them? They are properties of certain objects e.g., there seems to be
chefs, sellers, and drivers. These are all employees but all have different tasks.
You could now introduce individual objects for each employee type or an
attribute type for the employee object describing this characteristic more
precisely.
In practice, you will often be faced with the question whether to model certain
aspects as a separate object or just as properties of an object. Here, it is
important to ask yourself whether multiple attributes can be bundled under one
new object. The golden mean is often the best option, i.e. not creating too many
separate objects, and congesting everything under one object (keyword:

normalization).
Now, if we were to add our known relationships in the logical model, we get
the following model:

[A2]
Figure 7: Logical model – 2nd step
The model is slowly [A3]taking after an ER model. We can now add
cardinalities to the arrows between the objects and attributes. You will notice
that this raises many questions. These must be clarified with the department
and the model adapted accordingly.

Figure 8: Logical model – final version with open questions
As you can see, we’ve added attributes to the objects. Some attributes will
automatically come to mind e.g., the [A4]need for a customer to have a
customer no., first name, surname, and delivery address. Other attributes were
named explicitly in the technical description.
The same applies to the relationships and cardinalities. The fact that a
customer can place several orders and that a product group can contain
different products was mentioned explicitly. The same with the fact that an
order processed by a specific employee is also assigned to the employee. I
have added the second relationship between employee and order to specify the
driver who delivered the order. Since this is a can-relationship, a dashed line
is used.
Nothing was mentioned about the relation between product and order. Inquiries
with the department revealed that every order can include multiple products
and every product can also be ordered several times. Every product can also
be assigned to several orders. This thus results in an n:m relationship between
order and product, with the relation having one attribute, i.e. the number.

Deriving a relational database model

The next step would be to create a relational database model from the logical
model. Here, a lot of information can be adopted. The n:m relation must be
resolved via an intermediate table (TBL_ORDER_POS) since n:m relations
cannot be modelled directly in relational databases.
The rest of the relations and cardinalities result in the foreign key relationships
in the relational database model:

A customer can place multiple orders. Every order is attributable to
exactly one customer.
An order has multiple items. Every item is attributable to exactly one
order.
Every item has exactly one product. Every product can appear in
multiple items.
Every product group contains multiple products. Every product appears
in exactly one product group.
Every order is processed by exactly one employee. An employee
processes multiple orders.
Each order can be delivered by one driver. A driver can deliver
multiple orders.
Every employee is assigned to exactly one branch. Every branch has
multiple employees.
Every order is assigned to exactly one branch. Every branch has
multiple orders.

The final database model is shown on the next page.

Figure 9: Final database model for this course

3 Creating simple queries

Select columns (SELECT)

In this chapter, we will create our first simple queries. We will only query data
from a single table and gradually get to learn the basic structure of an SQL
statement. The simplest example looks like this:

SELECT *
FROM TBL_CUSTOMERS

Result:

CUSTOMER_NO FIRST_NAME SURNAME STREET ZIP
CODE CITY GENDER DoB[A5]
--

1 1 Horst Huber ….. 20357 Hamburg M
2 2 Erika Schmidt ….. 22512 Hamburg F
3 3 Bert Müller ….. 22123 Hamburg M
4 4 Hubertus Meyer-
Huber ….. 24106 Kiel m …..
5 5 Hanna von
Bergmann ….. 24145 Kiel f …..
6 6 Tobias Maier ….. 26105 Flensburg M
7 7 Fabian Lindemann ….. 23809 Lübeck m

The asterisk stands for all columns in the table. FROM <Table name> defines
the table from which the data should be selected. If we only want to view
specific columns, we can specify this by entering the column name. We can
also use commas to select multiple columns:

SELECT CUSTOMER_NO,

FIRST_NAME,
SURNAME

FROM TBL_CUSTOMERS

This returns the following three columns:

Result:

 CUSTOMER_NO FIRST_NAME SURNAME

1 1 Horst Huber
2 2 Erika Schmidt
3 3 Bert Müller
4 4 Hubertus Meyer-Huber
5 5 Hanna von Bergmann
6 6 Tobias Maier
7 7 Fabian Lindemann

If we now query the column CITY, the result would be:

Result:

CITY

1 Hamburg
2 Hamburg
3 Hamburg
4 Kiel
5 Kiel
6 Flensburg
7 Lübeck

This returns the city for all datasets in the table. Using the keyword DISTINCT
changes the result as follows:
SELECT DISTINCT CITY
FROM TBL_CUSTOMERS

Result:

CITY

1 Hamburg
2 Kiel
3 Flensburg
4 Lübeck

As you can see, using DISTINCT removes all duplicates and the different
cities are only listed once. Here, all columns are always considered. This
means that if you use DISTINCT for CITY and GENDER, the different
combinations from the two columns will be displayed once. Duplicates in the
combinations of the different column values are thus excluded.

-- Selecting distinct combinations

SELECT DISTINCT CITY, GENDER
FROM TBL_CUSTOMERS

Result:

CITY GENDER
--
1 Hamburg M
2 Hamburg F
3 Kiel m
4 Kiel f
5 Lübeck M
6 Flensburg m

Here, you have 2 rows for Hamburg and Kiel respectively since two columns
have been selected and the duplicates eliminated for both CITY and GENDER.

You can use a double minus ‘--’ to add comments in SQL statements.

Selecting rows (WHERE)

The next component of an SQL statement that you can use is the WHERE
clause. This makes it possible to define the so-called filters, whereby you can
select specific rows:
SELECT CUSTOMER_NO, FIRST_NAME, CITY
FROM TBL_CUSTOMER
WHERE CITY=‘Hamburg‘

Result:

CUSTOMER_NO FIRST_NAME SURNAME CITY

1 1 Horst Huber Hamburg
2 2 Erika Schmidt Hamburg
3 3 Bert Müller Hamburg

This statement returns all rows with “Hamburg” as the city. In our example,
this corresponds to the first three customers. There are different operators with
which you can define filters:

Operator Function
= Equal
<> Unequal
> Greater than
< Less than
>= Greater or equal
<= Less or equal
IS (NOT) NULL Checks whether a column is (not) NULL
BETWEEN <value1>
AND <value2>

Between <value1> and <value2>

IN (<value1>, <value2>,
…)

Contained in (…)

LIKE ‘…..’ Text similarity. % can be used as a placeholder
for multiple arbitrary characters. _ is used as a
placeholder for exactly one character.

<Operator> ANY
(<value1>,…)

<Operator> can be: =, <, >, <>, <=, >=

Oracle translates it to: <Operator> <value1>
OR <Operator> <value2> OR …

In practice, it is mostly replaced by other
comparisons and hence rather uncommon.

<Operator> ALL
(<value1>,…)

<Operator> can be: =, <, >, <>, <=, >=

Oracle translates it to: <Operator> <value1>
AND <Operator> <value2> AND …

In practice, it is mostly replaced by other
comparisons and hence rather uncommon.

 Table 2: SQL comparison operators
For example, if you want to view all customers whose surname starts with an
M, you could use the following SQL statement:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMERS
WHERE SURNAME LIKE ‘M%’

Result:

CUSTOMER_NO FIRST_NAME SURNAME

1 3 Bert Müller
2 4 Hubertus Meyer-Huber
3 6 Tobias Maier

‘M%’ means that the first letter in the string must be an M. The rest of the
characters after that do not matter. This is achieved by the % sign. It is a

placeholder for any number of characters. If you want a placeholder for exactly
one character, you should use an underscore _.

Exercise 1: Display all products whose price is greater than 10€.

Exercise 2: Display all customers with their FIRST_NAME, SURNAME, and
ZIP code if they come from ZIP code regions 24 + 25 (Tip: Do not use the
LIKE operator).

Using calculations and functions

You can also perform calculations on the columns in the SELECT section as
follows:

SELECT PRODUCT_NO, NAME, PRICE, PRICE/1.19 AS NET,
PRICE/1.19*0.19 AS VAT
FROM TBL_PRODUCT
WHERE PRICE/1.19*0.19 > 2

Result:

PRODUCT_NO NAME PRICE NET VAT

1 1 Rump steak 20.95 17.6054… 3.344…
2 2 Grill platter 14.95 12.5630… 2.386…
3 3 Pizza Salami 5.60 4.70… 0.894…

In the example above, the third dataset in the product table is excluded since
the VAT is less than 2€ (highlighted in red and crossed out).

As the example shows, you can also perform normal and well-known
computational operations in SQL – both when using SELECT and the WHERE
clause. In the above example, this has been used to only display rows with a
VAT of more than 2 euros. You can use AS to rename columns. You can also
use brackets.

The following math operators are hereby available:
Operator Function
+, -, *, / Addition, subtraction, multiplication, division with

decimal places
mod (x,y) Modulo division
^ Power

Table 3: Math operators

There are different functions that are implemented in databases. These can be
used for rounding values, replacing characters in character strings, type
conversion, computation with date values, etc. Below is a description of the
most important functions:

Function/Syntax Description
To_Date(<Value> [, <Format>]) Converts a string into a date. Here,

you can specify a format string to
define the structure of the value. For
example, if you want to convert
string ‘20120201’ into a date, you
must specify the format string
‘YYYYMMDD’.

To_Char(<Value> [, <Format>]) Converts a date into a character
string. You can specify a format
string to define how the character
string should appear. For example,
you can easily convert date
01.02.2012 into ‘201202’ using the
format string ‘YYYYMM’.

To_Number (<character string>) Converts a character string into a
number

Round (<number>, <figures>) Rounds the number <number>
commercially to <figures> figures

Substr (<Text>, <Start>, <no. of
characters>)

Returns a text section from <Text>,
starting from position <Start> and
with <no. of characters> characters

Length (<Text>) Returns the length of a character
string in <Text>

InStr (<Text>, <character string>,
<Start Pos.>)

Searches <character string> in
<Text> starting from <Start Pos.>
and returns the position

Replace (<Text>, <characters>,
<new_characters>)

Replaces all <characters>
characters with <new_characters>
in <Text>

Concat (<Text1>, <Text2>, …) Connects text 1 … n to a character
string. Alternatively, you can also
use the || operator.

LTrim/RTrim (<Text> [,
<characters>])

Trims all <characters> characters to
the left/right of <Text>. If no
characters are specified, empty
spaces are removed.

NVL (<field>,
<null_value_characters>)

Replaces NULL values in <field>
with <null_value_characters>

ADD_MONTHS (<date>,
<months<)

Adds <months> months to <date>
and returns the corresponding date

LAST_DAY (<date>) Returns the last day of the month
from <date>

UPPER / LOWER (<text>) Converts all characters from <Text>
to upper/lower case

LPad/RPad(<text>, <width> [,
<characters>])

Fills string <text> with <characters>
up to <width> characters. If no
characters are specified, the string
is filled with empty spaces.

ABS (<number>) Returns the absolute number
SYSDATE / SYSTIMESTAMP Returns the current system

date/current system stamp (i.e. date
and time)

TRUNC (<number>, <count>) Truncates the <number> up to
<count> decimal places. It is not
rounded. If you do not specify the
<count>, the number is cut off at the
decimal point.

Table 4: Standard functions in Oracle

You can find a comprehensive overview of all possible format string
components at:
http://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_commands_1029.htm#OLADM780

You can use the functions both in the SELECT as well as the WHERE section
of an SQL statement, thus allowing you further filter options:
SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, Date_of_Birth
FROM TBL_CUSTOMERS
WHERE to_number(to_char(Date_of_Birth, ‘YYYY‘))>=1980

Result:

CUSTOMER_NO
FIRST_NAME SURNAME Date_of_Birth

1 2 Erika Schmidt 05.10.1985
2 6 Tobias Maier 03.03.1992

As you can see, one can also combine multiple functions. This example selects
all customers born after 1980. The string function can then be used to filter out
all male customers:
SELECT FIRST_NAME, SURNAME, GENDER
FROM TBL_CUSTOMERS
WHERE UPPER(GENDER)=‘M‘

http://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_commands_1029.htm#OLADM780

Result:

FIRST_NAME SURNAME GENDER

1 Horst Huber M
2 Bert Müller m
3 Hubertus Meyer-Huber M
4 Tobias Maier M
5 Fabian Lindemann m

Why use the UPPER function? An uppercase M and a lowercase m could have
been used interchangeably for the gender. Alternatively, you can also do the
same using the ‘IN’ operator: IN(‘M’, ‘m’).

Exercise 3: Select all customers who celebrate their birthday in the first
quarter of a year.

Exercise 4: Use SQL functions to display all customers whose first name
starts with an F (do not use the LIKE operator)!

Exercise 5: Use SQL functions to select all customers whose surname end
with ‘mann’ (do not use the LIKE operator). Tip: substr + length

Combining multiple filters

It is often necessary to select datasets based on multiple criteria. For example,
you might want to view all female customers who were born after 1970:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, GENDER,
DATE_OF_BIRTH
FROM TBL_CUSTOMERS
WHERE to_number(to_char(DATE_OF_BIRTH, ‘YYYY’))>=1970
AND GENDER IN(‘F’, ‘f’)

 CUSTOMER_NO
 FIRST_NAME SURNAME GENDER DATE_OF_BIRTH

1 2 Erika Schmidt F 05.10.1985
 5 Hanna von Bergmann f 17.09.1965

You can combine multiple filters using AND. This means that both conditions
must be met for the required dataset to be returned. The second dataset is not
displayed in this case since the Date_of_Birth does not meet the requirements.

You can also combine conditions using OR. This means that the dataset is
returned if A or B is met:

SELECT FIRST_NAME, SURNAME, GENDER, DATE_OF_BIRTH
FROM TBL_CUSTOMERS
WHERE GENDER IN(‘F’, ‘f’)
OR to_number(to_char(DATE_OF_BIRTH, ‘YYYY’))>=1970

Result:

CUSTOMER_NO FIRST_NAME SURNAME GENDER
DATE_OF_BIRTH

1 2 Erika Schmidt F 05.10.1985
2 3 Bert Müller M 03.02.1979
3 5 Hanna von Bergmann f 17.09.1965
4 6 Tobias Maier M 03.03.1992
5 7 Fabian Lindemann m 01.09.1973

This returns all customers who are female or customers who were born after
1970. The whole thing becomes more complex if you combine AND and OR.
In this case, the AND operator takes precedence over the OR operator:

SELECT FIRST_NAME, SURNAME, CITY, GENDER
FROM TBL_CUSTOMERS
WHERE CITY=‘Hamburg’ OR CITY=‘Kiel’ AND GENDER IN(‘M’,
‘m’)

Result:

CUSTOMER_NO
FIRST_NAME SURNAME CITY GENDER

1 1 Horst Huber Hamburg M
2 2 Erika Schmidt Hamburg F
3 3 Bert Müller Hamburg M
4 4 Hubertus Meyer-Huber Kiel m

Sometimes you need to use brackets depending on what you want to evaluate.
According to the statement defined above, the query returns customers who
live in Hamburg (whether male or female) or male customers from Kiel.

If you want to view male customers who come from Kiel or Hamburg, you
must extend the SQL as follows:

SELECT FIRST_NAME, SURNAME, CITY, GENDER
FROM TBL_CUSTOMERS
WHERE (CITY=‘Hamburg’ OR CITY=‘Kiel’) AND GENDER IN(‘M’,
‘m’)

Result:

CUSTOMER_NO

FIRST_NAME SURNAME CITY GENDER

1 1 Horst Huber Hamburg M
2 3 Bert Müller Hamburg M
3 4 Hubertus Meyer-Huber Kiel m

The dataset “Erika Schmidt” is now excluded since the datasets to be returned
must now fulfill the following conditions:

1. male
2. from Kiel or Hamburg

This was achieved by using brackets. The condition (CITY=‘Hamburg’ OR
CITY=‘KIEL’) is evaluated first. The result is then analyzed to see which of
the customers are male.

In the context of AND and OR, we also have the NOT operator. For example,
this can be used to check which customers do not come from Kiel, Flensburg,
or Lübeck:

SELECT FIRST_NAME, SURNAME, CITY
FROM TBL_CUSTOMERS
WHERE CITY NOT IN (‘Hamburg’, ‘Flensburg’, ‘Lübeck’)

Result:

CUSTOMER_NO FIRST_NAME SURNAME CITY
--
1 4 Hubertus Meyer-Huber Kiel
2 5 Hanna von Bergmann Kiel

Exercise 6: Select all products with product group 1 and a price greater than
15€.

Exercise 7: Select all products with a VAT value <0.75€ or >2€ from product
groups 1, 2, or 4. Make sure to display all columns of the product table and
additionally display the VAT (VAT rate: 19%).

Sorting results
You can also use different criteria to sort the displays query results, e.g., based
on the ZIP code:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, ZIP_code
FROM TBL_CUSTOMERS
ORDER BY PLZ ASC

Result:

CUSTOMER_NO FIRST_NAME SURNAME ZIP_code
--
1 1 Horst Huber 20357
2 3 Bert Müller 22123
3 2 Erika Schmidt 22512
4 7 Fabian Lindemann 23809
5 4 Hubertus Meyer-Huber 24106
6 5 Hanna von Bergmann 24145
7 6 Tobias Maier 26105

Below is another example on sorting results:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, CITY
FROM TBL_CUSTOMERS
ORDER BY 4 DESC, 1 ASC

Result:

CUSTOMER_NO FIRST_NAME SURNAME CITY
--
1 7 Fabian Lindemann Lübeck
2 4 Hubertus Meyer-Huber Kiel
3 5 Hanna von Bergmann Kiel
4 1 Horst Huber Hamburg

5 3 Bert Müller Hamburg
6 2 Erika Schmidt Hamburg
7 6 Tobias Maier Flensburg

As you can see, you can use ASC or DESC to define the direction in which you
want to sort the data. Sorting columns can be specified either by name or
position. You can combine multiple sorting criteria using commas.
NULLS FIRST and NULLS LAST enables you to place zeroes at the start or
end of a list during sorting. The rest is then sorted as described.
One brief topic to conclude this chapter: Oracle has a table called DUAL. This
has exactly one dataset. This small table can be helpful at times since in
Oracle, you must specify a table in the FROM clause in Oracle. For example,
if I want to quickly try out a function, I can use the following statement:
SELECT SYSDATE
FROM dual;

This returns exactly one value, i.e. the system date in this case.

Exercises

1) Generate a list of all female customers from Hamburg.

2) Your driver, Liese, is always too slow getting to customers. As a result,
most pizzas are cold and there have been many complaints from these
customers. In order to offer all customers who were served by Liese a free
tiramisu as compensation, you need a list of all orders from the 1st quarter
of 2013 that were delivered by Liese (employee no.). No pick-ups. (Tip:
First get Liese’s employee no. in TBL_EMPLOYEES and then use the
query)

3) Display all customers who are older than 40 years. In addition, make
sure to also display their respective age. (Tip: You can also subtract date
fields)

4) Select all orders (order no.) with at least two pieces of products 1…5
or at least three pieces of products 6… 15. (Tip: Use TBL_ORDER_POS)

5) Create a report showing the orders for customers from Hamburg in the
1st quarter of 2013. (Tip: First look up the relevant customers in
TBL_CUSTOMERS and then use the corresponding customer no. in the
query)

6) Which customers were served by seller Emil Iversen and driver Liese
Müller or by seller Emil Iversen and driver Peter Peters in February or
August 2013? Only use the AND, OR, NOT operators.

7) Display all customers whose street name contains ‘weg’. Do not use the
LIKE operator.

4 Querying multiple tables

We now know how to create simple queries in a table. However, most
applications require access to multiple tables. Looking at the customers or
products alone is somehow boring. We want to know where and how often the
products were sold. For us to be able to do this, this chapter describes the
different ‘Join’ types for relational databases.

Cross product

The simplest way to query data from multiple tables is by simply writing a
second table in the FROM clause. However, in most cases, this does not return
what you want. This is because, in this case, relational databases combine all
datasets from table A with all datasets from table B. For large tables, this can
result in very large outputs that can push your database performance to its
limits.

However, you also have cases where cross products can be useful. Let us first
look at the syntax for a cross product:

SELECT

TBL_CUSTOMERS.CUSTOMER_NO,
TBL_CUSTOMERS.SURNAME,
TBL_PRODUCT_GROUP.PRODUCT_GROUP_NO AS PG_NO,
TBL_PRODUCT_GROUP.NAME AS PG_NAME

FROM TBL_CUSTOMERS, TBL_PRODUCT_GROUP
ORDER BY 1,3

Result:

CUSTOMER_NO SURNAME PG_NO PG_NAME

1 1 Huber 1 Meat dishes
2 1 Huber 2 Pizzas
3 1 Huber 3 Pasta
4 1 Huber 4 Drinks
5 1 Huber 5 Desserts
6 2 Schmidt 1 Meat dishes
7 2 Schmidt 2 Pizza
8 2 Schmidt 3 Pasta
9 2 Schmidt 4 Drinks
10 2 Schmidt 5 Desserts

11 3 Müller 1 Meat dishes
…. … … …
34 7 Lindemann 4 Drinks
35 7 Lindemann 5 Desserts

As you have seen, you only need to specify the tables that you want to define a
cross product for in the FROM clause. You can also do the same in SELECT
and specify which columns should be taken from which table using the
following syntax: <Table name> . <Column name>
The above example also shows the effect of the cross product. We have exactly
seven datasets in TBL_CUSTOMERS, five in TBL_PRODUCT_GROUP. In
total, each dataset from TBL_CUSTOMERS will be combined with every
dataset from TBL_PRODUCT_GROUP, resulting in 35 datasets.

Inner joins

Contrary to the cross product, inner joins links the two tables via one or more
columns. This is illustrated in the example of the inner join between products
and order positions:

Figure 11: Inner join between TBL_PRODUCT and TBL_ORDER_POS

The two tables should be linked via the PRODUCT_NO. To do this, the
database searches for datasets in which the values are identical in the link
columns. These two datasets are then merged to get the resulting set. The links
are indicated by the thin blue arrows. The red arrows have no correspondence
in the other table and are therefore excluded from the resulting datasets.

Let us look at another simple example and assume we want to know the
product group to which our products belong. Here, we have the product group
number in the product table. However, this number is not exactly meaningful
for most users and it would be better to also display the name of the product

group from the product group table. For us to do this, we must link
TBL_PRODUCT with TBL_PRODUCT_GROUP. We can do this via the
PRODUCT_GROUP_NO column since, according to the data model, this
column provides a link between the two tables.

Figure 12: Section of product and product group from the data model

The following SQL creates a link between the two tables and returns all
columns:

SELECT *
FROM TBL_PRODUCT prd

JOIN TBL_PRODUCT_GROUP grp
ON prd.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO

WHERE grp.PRODUCT_GROUP_NO IN(1,5)

Result:

 PRODUCT_NO
NAME PRICE PRODUCT_GROUP_NO PRODUCT_GROUP_NO1
NAME1
--
--
1 1 Rump steak 20.95 1 1 Meat dishes
2 2 Grill platter 14.95 1 1 Meat dishes
3. 14 Fruit salad 3.00 5 5 Desserts
4 15 Tiramisu 4.00 5 5 Desserts

This lets us view the product groups 1 and 5 with their products. The link is

established using <Table 1> JOIN <Table 2> ON <Conditions>. Prd and grp
are called table aliases. They allow us to give the tables different, simpler
names and then access the columns. In the above example, the DBMS first goes
through all columns of the product table while checking the product_group_no
in each row. The database then uses this number to link to the product_group
table and selects all datasets with this number. The fields of the dataset from
TBL_PRODUCT and TBL_PRODUCT_GROUP are added to a new, resulting
dataset. This is done for each row in the product table. In the end, only the
datasets that belong to product group 1 or 5 are displayed. If you do not limit
the fields, all fields from both tables are taken. For fields that have the same
name (e.g., PRODUCT_GROUP_NO), the DBMS automatically adds a number
at the end to make them unique.

In the case of an inner join, only the datasets that have a corresponding dataset
in both table A and table B are returned. Datasets that do not have a referenced
dataset in table B are excluded from the result. This is illustrated in the
example below. There is no product assigned to product group 6 (=others):

SELECT grp.NAME AS GROUP, prd.NAME AS PROD
FROM TBL_PRODUCT prd

JOIN TBL_PRODUCT_GROUP grp
ON prd.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO

WHERE grp.PRODUCT_GROUP_NO IN(5,6)

Result:

GROUP PROD
--
1 Desserts Fruit salad
2 Desserts Tiramisu
3 Desserts Yoghurt

Let’s now look at a small effect with joins and use it to manipulate the data in
the product group table:

ALTER TABLE TBL_PRODUCT DISABLE CONSTRAINT
FK_PROD_PROD_GROUP;

ALTER TABLE TBL_PRODUCT_GROUP DISABLE CONSTRAINT
PK_PROD_GROUP;

INSERT INTO TBL_PRODUCT_GROUP VALUES (1, ‘Test group’);

COMMIT;

SELECT *
FROM TBL_PRODUCT prd

JOIN TBL_PRODUCT_GROUP grp
ON prd.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO

WHERE grp.PRODUCT_GROUP_NO=1;

Result:

 PRODUCT_NO NAME PRICE PRODUCT_GROUP_NO

PRODUCT_GROUP_NO1 NAME1
--
--
1 1 Rump steak 20.95 1 1 Meat dishes
2 1 Rump steak 20.95 1 1 Test group
3. 2 Grill platter 14.95 1 1 Meat dishes
4 2 Grill platter 14.95 1 1 Test group

What just happened here? There are two entries for the same
PRODUCT_GROUP_NO in the product group table, i.e. 1 meat dishes and 1
test group: With join, all datasets from TBL_PRODUCT_GROUP are taken if
the join condition is met. Since both groups have 1 as the number, they both
fulfill the criterion and are therefore returned. Thus, the database combines
every product from group no. 1 with both groups and hence result in
duplicates. This is a very common phenomenon, especially if you have
deactivated foreign key constraints (which we have already covered with the
ALTER commands).

Next, we will use the following brief script to restore to the former state:

DELETE TBL_PRODUCT_GROUP WHERE NAME=‘Test group’;

COMMIT;

ALTER TABLE TBL_PRODUCT_GROUP ENABLE CONSTRAINT
PK_PROD_GROUP;

ALTER TABLE TBL_PRODUCT ENABLE CONSTRAINT
FK_PROD_PROD_GROUP;

Exercise 1: Create a query that shows you the name of the customers who
placed an order in February 2013.

You can also create queries for more than two tables. This basically works the
same way as with just two tables. The only difference is that each additional
table must be added using a separate join in the query.

Exercise 2: Which drivers (no., name) delivered to customer ‘Müller’ in
April 2013?

Exercise 3: Which products (name, price) were purchased by customers from
Kiel in the 2nd quarter of 2013?

Sometimes, you also need to create joins over more than one column. The
additional join conditions (join columns) are linked using the AND operator in
the ON clause.

Left / Right / Full outer joins

Whereas the inner join only returns datasets with references in table A (left
table) and table B (right table), the outer join returns all datasets from one
table and, if the join conditions are met, the corresponding datasets from table
B as well. If there is no correspondence in table B, the fields from table B are
filled with NULL.

SELECT grp.NAME AS GROUP, prd.NAME AS PROD
FROM TBL_PRODUCT_GROUP grp

LEFT JOIN TBL_PRODUCT prd ON
grp.PRODUCT_GROUP_NO=prd.PRODUCT_GROUP_NO

WHERE grp.PRODUCT_GROUP_NO IN (5,6)
ORDER BY 1,2

Result:

GROUP PROD
--
1 Desserts Fruit salad
2 Desserts Tiramisu
3 Others <NULL>

Compared to the same SQL statement for inner joins (see page 29[A6]), group
6(=others) is now also included in the result. The only difference is the small
word, LEFT before JOIN. This converts the inner join into a LEFT OUTER
JOIN, i.e. an outer join with the leading table on the left-hand side (to the left
of the join). All datasets from this table as well as the matching ones from the
table on the right-hand side are taken. Here, the only matching products are in
the desserts group. You can use outer joins to easily find out which datasets are
not used in other tables. To do this, add a WHERE filter that filters the NULL
values in the join column of the table on the right. A RIGHT OUTER JOIN
works in the same way, except that the leading table, i.e. the table from which
all datasets are taken, is to the RIGHT of JOIN.

Below is a graphical illustration of the outer join:

Figure 13: Outer join between TBL_PRODUCT (leading) and
TBL_ORDER_POS

Here as well, attempts are made to link the datasets of both tables. The linking
columns are compared with one another and in the case of similarities, the
corresponding datasets combined. The figure shows the links between the thin
blue arrows. In this case, only the one dataset in TBL_ORDER_POS is
excluded since TBL_PRODUCT is defined as the leading table and hence all
its datasets are taken. Datasets 3+6 in the product table do not have
correspondents. They are therefore filled with <null> in the result set with
table TBL_ORDER_POS.

Exercise 4: Which products were not sold?

Outer joins and inner joins can be used in queries simultaneously. We also
have the so-called full outer joins. Here, all datasets from both tables are taken
and either combined in the case of intersections or filled with NULL if there
are no intersections.

Exercises

1) Which driver delivered to which customer in April 2013?

2) Display the different products that customer ‘Maier’ ordered in April
2013.

3) Which customers from Hamburg ordered ‘Rump steak’ in February
2013?

4) Which employees have not yet delivered any orders?

5) Which orders (order no.) include products from the ‘meat dishes’?

5 Grouping and aggregation

Aggregate functions

So far, all our queries have returned individual datasets. For example, we have
managed to view all orders placed by customers from a specific city, but not
the respective sums for each city. To do so, we need to calculate the sum of the
individual sets from the different cities. This is called aggregating. There are
different aggregate functions for this purpose. In our example, it is e.g.
advisable to simply sum up all the individual sales. You could also view the
largest, smallest, or average sales. Below is a list of available aggregate
functions:

Aggregate
function

Description

SUM (<value>) Sum of the values. Only available for numeric
columns.

AVG (<value>) Average of the values. Only available for numeric
columns.

MIN (<value>) Minimum value. Also available for text and date
values.

MAX (<value>) Maximum value. Also available for text and date
values.

Count (<value>) Number of values. Also available for text and date
values.

Count (DISTINCT
<value>)

Number of different values. Also available for text
and date values.

Count(*) Number of datasets.
Table 5: Aggregate functions
Let us take a simple example. If we want to know how many servings of
Spaghetti Bolognese were sold in March 2013, we can use the following SQL:

SELECT SUM(bpos.COUNT)
FROM TBL_ORDER best

JOIN TBL_ORDER_POS bpos ON
best.ORDER_NO=bpos.ORDER_NO

WHERE bpos.PRODUCT_NO=8
AND to_char(best.ORDER_DATE, ‘YYYYMM’)=‘201303’

Result:

COUNT

1 12[A7]

According to SQL, there were two servings. We can verify this by simply
replacing SUM(bpos.COUNT) with bpos.* in the above query:

Result:

ORDER_NO PRODUCT_NO COUNT
--
1 30 8 3
2 60 8 2
3 114 8 1
4 120 8 2
5 130 8 3
6 155 8 1

As you can see, there are two datasets in the table TBL_ORDER_POS that
fulfil the conditions, each with a count of 1 and hence a sum of 2. However,
instead of 6 individual datasets, we have received a single summarized
dataset.

Exercise 1: How many cooks are there?

Exercise 2: What is the average price of all products?

Groupings using GROUP BY

Sometimes, you are not just interested in the total sum. You may also want to
find out the individual sums for different categories, e.g., sum per product or
minimum and maximum price per product group. You can do this using the so-
called groupings. The aggregate function is then applied to the corresponding
group. Groupings are defined using the GROUP BY statement. Here is an
example:

On the left-hand side, we have the sales numbers of products and product
names. For every order item (i.e. each different product in a purchase order),
there is a dataset in the TBL_ORDER_POS table. We are now going to create
a query for a grouping based on the product. This is illustrated on the right-
hand side and shows all columns that belong to the product. In this case, we
have the product no. and product name. As a result, we get the sum of all
associated datasets from the purchase orders in each row.

The following condition must always be fulfilled when working with aggregate
and grouping functions:

Every column in SELECT must use an aggregate function (i.e. SUM,
MAX, MIN, AVG, …) or GROUP BY.

If this is not fulfilled, corresponding error messages are displayed. Aggregate

functions may only appear in SELECT but not in GROUP BY. In addition,
when creating queries through aggregation and grouping, you should always
consider the level at which you want to find the sums. In this case, no other
columns that result in grouping at a more detailed level may be used.

For example, if you want to create a list showing all product groups and their
average prices, you cannot use elements from the products in the grouping
columns. This would create groups at a product level and you would therefore
return a row for each product. However, you can use columns from the product
within the aggregate function since these columns are aggregated by the
aggregate function.

Below is another example of groupings and aggregation:

SELECT grp.NAME AS GROUP, Count(*) AS AMT, MIN(prd.PRICE),
MAX(prd.PRICE)
FROM TBL_PRODUCT prd

JOIN TBL_PRODUCTGROUP grp
ON prd.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO

GROUP BY grp.NAME

Result:

GROUP COUNT MIN MAX
--
1 Meat dishes 2 14.95 20.95
2 Pizzas 5 5.60 6.95
3 Pasta 3 4.50 4.50
4 Drinks 3 1.75 2.00
5 Desserts 3 3.00 4.00

We have calculated the corresponding number of products as well as the
minimum and maximum values for our 5 product groups. Group 6 is not
included in the result due to the use of an inner join. Otherwise, we can see that
in SQL the grouping is only done using the name of the product group, i.e. a

row is generated for every product group name.

Exercise 3: Generate a list showing all orders with their respective sales
(count * price).

Exercise 4: Which city had the most sales in the 1st quarter of 2013? Create a
list of the cities showing their total sales, sorted in descending order.

Selecting groups for the result (HAVING)

Sometimes, it might be necessary to exclude certain groups based on their
aggregates. This is done using the HAVING clause. For example, you can use
this clause to list down all products with total sales of €3000 [A8]or more:

SELECT

prd.PRODUCT_NO AS NO,
prd.NAME AS PRODUCT,
SUM(bpos.COUNT) AS VK_ITEMS,
SUM(prd.PRICE*bpos.COUNT) AS SALES

FROM TBL_PRODUCT prd
JOIN TBL_ORDER_POS bpos ON
prd.PRODUCT_NO=bpos.PRODUCT_NO

GROUP BY prd.PRODUCT_NO, prd.NAME
HAVING SUM(prd.PRICE*bpos.COUNT)>=3000

Result:

NO PRODUCT VK_ITEMS SALES

1 1 Rump steak 217 4546.16
2 2 Grill platter 221 3303.95

This filters out all groups with sales < €3000.

Exercise 5: Create a list showing product groups with an average price of
more than €6.

Exercises

1) Which driver delivered the most pizzas?

2) Which customer placed the most orders in the 2nd quarter of 2013 and
how many?

3) Which product was the least popular (based on the sales figures) among
customers in March 2013?

4) What were the sales per product group and per month in the period
between March 2013 and May 2013?

5) Create a ranking of the products based on the sales from the 1st quarter
of 2013. You should also include products that have not been sold so far.
[A9]

6) How many different customers did every driver deliver to? How many
deliveries did every driver manage?

7) Which city had the highest average sales per order? Which city had the
lowest?

8) Create a list of all sellers showing their sales and commissions. Also,
list down those without any sales or commissions. Sort the results by
commissions in descending order.

6 Subqueries

In chapter 5, we learnt the different join types that we can use to query data
from multiple tables. In this chapter, we will be dealing with another variant,
the so-called subqueries. This involves combining two queries, whereby one
of the queries is based on the results of the other.

Nested queries

Sometimes, you want to calculate specific things and then evaluate the result
further. In such a case, you can use nested queries where a query accesses the
result of another query instead of re-accessing the table. In the example below,
the first query first lists down the number of products per product group
whereas the other finds the average number of products:

SELECT AVG(COUNT)
FROM (

SELECT PRODUCT_GROUP_NO, Count(PRODUCT_NO) AS
COUNT
FROM TBL_PRODUCT
GROUP BY PRODUCT_GROUP_NO

)

Result:

AVG(COUNT)

1 3.2

First, the initial query returns the following result:

PRODUCT_GROUP_NO COUNT
--
1 1 2
2 2 5
3 3 3
4 4 3
5 5 3

Next, the superordinate query takes these 5 values and calculates their average.

You can therefore use queries in the place of tables. You can also assign an

alias to queries and join them with other queries or tables. Here is an example:
We need a list of all products and their total sales. This should then be used to
calculate the respective product group sales and then determine the sales share
of each product in the respective product group.

SELECT products.*,
 prod_group.SALES_PG,
 round(products. SALES/prod_group.SALES_PG*100,1) AS
SHARE

FROM (
 SELECT p.PRODUCT_NO,
 p.NAME AS PROD_NAME,
 p.PRODUCT_GROUP_NO AS PG_NO,
 SUM(bp.COUNT*p.PRICE) AS SALES
 FROM TBL_ORDER_POS bp
 JOIN TBL_PRODUCT p ON
bp.PRODUCT_NO=p.PRODUCT_NO
 GROUP BY p.PRODUCT_NO, p.NAME,
p.PRODUCT_GROUP_NO
) products

JOIN (
 SELECT p.PRODUCT_GROUP_NO,
 SUM(bp.COUNT*p.PRICE) AS SALES_PG
 FROM TBL_ORDER_POS bp
 JOIN TBL_PRODUCT p ON
bp.PRODUCT_NO=p.PRODUCT_NO
 GROUP BY p.PRODUCT_GROUP_NO
) prod_group

ON products.PG_NO=prod_group.PRODUCT_GROUP_NO

ORDER BY 3, 1

Result:

Product no Name
PG_NO SALES SALES_PG SHARE

1 Rump steak 1 4546.15 7850.1 57.9
2 Grill platter 1 3303.95 7850.1 42.1
3 Pizza - salami 2 1181.6 6603.1 17.9
4 Pizza - Hawaii 2 1250.5 6603.1 18.9
5 Pizza - tuna 2 1195.6 6603.1 18.1
6 Pizza special 2 1612.4 6603.1 24.4
….

In this example, we have used two subqueries. The yellow one calculates the
sales per product whereas the blue one calculates the sales per product group.
In the yellow query, we still have the product group number, with which we
can later link these two queries.

Each of these subqueries can be executed on its own, then using the main query
instead of tables. Both subqueries are linked to the main query using brackets
(….) and are assigned corresponding alias names. For subqueries, you must
always use an alias name since they of course initially have no name in the
system (unlike tables, which have a unique name in the database). The linking
[A10]is done just as if one were linking two tables. In this regard, the linking
columns from both subqueries must be specified in the ON clause.
The database first checks if there is a corresponding dataset in the product
group subquery for every dataset in the product subquery (i.e. for every dataset
per product) and assigns any findings accordingly. We therefore get the product
group sales assigned to the respective products and can now also calculate the
corresponding sales shares.

In summary, we have seen that you can also use queries in queries instead of
tables. The columns from SELECT in the subquery correspond to the column in
the tables. One can thus use these for links, filters, and calculations just as with
tables. Now a small exercise on this.

Exercise 1: Create a list of all customers with their total sales. Calculate the
sales share of each customer in the total shares from his/her place of residence.

Exercise 2: Create a query that determines the average product price for each
product group. Create a link between this query and the product table to only
display products whose price is above the average of their product group.

Subqueries and the IN operator

We now want to list down the products groups that are not assigned any
product. We can either do this using an outer join construct (like in chapter 5)
or with a subquery:

SELECT PRODUCT_GROUP_NO AS NO, NAME AS GROUP
FROM TBL_PRODUCT_GROUP
WHERE PRODUCT_GROUP_NO NOT IN (

SELECT DISTINCT PRODUCT_GROUP_NO
FROM TBL_PRODUCT

)

Result:

NO GROUP
--
1 6 Others

Here, we have used two SQLs. The statement within the IN operator returns a
list of the product group numbers used in the product table. This result is then
used as the content of the list within the IN statement in the product table. This
returns the product groups whose number is not in the list returned by the
second SQL.

You can also use more complex SQLs as expressions within the IN operator.
Here, the most important thing is for them to only have one column in SELECT.

Exercise 3: Which orders (order no.) include products whose price is > €8 ?
Use subqueries.

Exercise 4: Which orders (order no.) include products from product groups
whose average price is > €6 ?

Subqueries in the WHERE clause

In some cases, you might need to calculate a certain value and then use it as a
comparison value in filters. For instance, let’s assume you wanted to list down
all products with prices higher than the average price of all products. To do
this, you would need a subquery that first calculates the average price of all
products and then compares the prices in the price table with this value:

SELECT PRODUCT_NO, NAME, PRICE
FROM TBL_PRODUCT
WHERE PRICE>= (

SELECT AVG(PRICE)
FROM TBL_PRODUCT

)

Result:

PRODUCT_NO NAME PRICE

1 1 Rump steak 20.95
2 2 Grill platter 14.95
3 6 Pizza special 6.95

With the average price of all products being €6.18, we have three products that
are more expensive than this average. For these subqueries, it is important to
make sure that only a single value is returned. Otherwise, if your initial query
returns several values, it would be unclear which comparison value should be
used by the database.

Exercise 5: Which employees earn less than 75% of the average salary?

Linking a subquery with the main query

In exercise 2, you should first determine the average price per product group
and then link the result to the product table to list down only the products
whose price is greater than or equal to the average price of their respective
product group. You can also do this using a subquery that is linked to a filter:

SELECT grp.NAME AS GROUP,

PRODUCT_NO AS NO,
p_main.NAME AS PRODUCT,
PRICE,
(

SELECT AVG(PRICE)
FROM TBL_PRODUCT p_sub
WHERE
p_sub.PRODUCT_GROUP_NO=p_main.PRODUCT_GROUP_NO

) AS GRP_AVG

FROM TBL_PRODUCT p_main

JOIN TBL_PRODUCT_GROUP grp
ON p_main.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO

WHERE p_main.PRICE>=(

SELECT AVG(PRICE)
FROM TBL_PRODUCT p_sub
WHERE
p_sub.PRODUCT_GROUP_NO=p_main.PRODUCT_GROUP_NO

)

Result:

GROUP NO PRODUCT PRICE GRP_AVG

1 Meat dishes 1 Rump steak 20.95 17.95
2 Pizzas 6 Pizza special 6.95 6.11
3 Pasta 7 Spaghetti Bolognese 4.50 4.50
4 Pasta 8 Lasagna 4.50 4.50
5 Pasta 9 Tagliatelle carbonara 4.50 4.50
6 Drinks 12 Beer - Holsten 0.5L 2.00 1.92
7 Drinks 13 Water 1.5L … 2.00 1.92
8 Desserts 15 Tiramisu 4.00 3.50

In this query, we have combined several techniques that we have learnt so far
(joins, grouping, subquery). In the subquery, we have something new. We use it
to determine the average value for a specific product group. We have first
applied a filter to the product group, which is based on the product group of
the superordinate query. Oracle therefore goes through the datasets of the
product table in the superordinate query and executes the subquery for each
dataset. Here, the respective value of the product group of the superordinate
query is used as a filter criterion for the subquery.

Exercise 6: Create a list showing employees who earn 20% more than the
average in their employee group (drivers, sellers, etc.). (Tip: You should
calculate three average salaries (for each employee group) and compare with
the employees in that group.)

Subqueries using the EXISTS operator

The EXISTS operator checks if there is a valid value for a specific dataset.
This requires linking the main query to the subquery:

SELECT *
FROM TBL_PRODUCT_GROUP grp
WHERE NOT EXISTS (

SELECT 1
FROM TBL_PRODUCT prd
WHERE
prd.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO

)

Result:

PRODUCT_GROUP_NO NAME

1 6 Others

The subquery is performed on every dataset returned by the main query, with a
filter based on the product group number in the main query. If there are any
products belonging to this group, the subquery returns the corresponding
values, the EXISTS operator returns “TRUE”, and the corresponding dataset is
included in the result. In our example, we have used NOT EXISTS to
determine the datasets without a result in the subquery and that are therefore
not used in this product group since they do not have corresponding products.

Subqueries in DML operations

You can also use subqueries in INSERT, UPDATE, and DELETE statements.
Let us look at one simple example for each of these cases.

Sometimes, you might want to create a table using data obtained from another
table via SELECT. For illustration purposes, we will first create a test table:

CREATE TABLE TBL_CUSTOMER_TEST AS
SELECT *
FROM TBL_CUSTOMER;

This statement creates the table called TBL_CUSTOMER_TEST with the
structure from the SQL query. In this case, we have selected all fields from the
table TBL_CUSTOMER and TBL_CUSTOMER_TEST will therefore be
structurally similar to TBL_CUSTOMER. In addition, the data provided in the
SQL statement are added in the new table. We do not need to use COMMIT
since this is a DDL command. This is a simple way to copy a table with its
contents. If you are only interested in the structure but not the contents, you can
add a condition [A11]such as WHERE 1=2. This can never be fulfilled for any
data record and thus no data is copied.

Let us now delete the table and add the CUSTOMER_NO, FIRST_NAME, and
SURNAME columns into the new table for all customers.

TRUNCATE TABLE TBL_CUSTOMER_TEST;

INSERT INTO TBL_CUSTOMER_TEST (CUSTOMER_NO,
FIRST_NAME, SURNAME)
SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMERS;

COMMIT;

The INSERT INTO statement has the same structure as usual. The only

difference is that instead of using the VALUES clause, we now have an SQL
statement. Here, you can use arbitrarily complex SQL statements if they have
the same structure (i.e. same number of fields and same data types).

Next, we are going to delete two customers and then re-add the two missing
customers using a somewhat more complex SQL statement. We can do this
using the following subquery:

DELETE TBL_CUSTOMER_TEST
WHERE CUSTOMER_NO IN(5,6,7);

COMMIT;

INSERT INTO TBL_CUSTOMER_TEST
SELECT *
FROM TBL_CUSTOMER customer_old
WHERE NOT EXISTS (

SELECT 1
FROM TBL_CUSTOMER_TEST customer_new
WHERE
customer_new.CUSTOMER_NO=customer_old.CUSTOMER_NO

);

COMMIT;

Using a simple SELECT *, we can now check if all datasets are once again
available in the table. Here, you can identify the last datasets to be added as all
their fields are filled. Here, all records from TBL_CUSTOMER are selected
in the last SQL. Each of them is checked to see if the same customer number
already exists in TBL_CUSTOMER_TEST. If it doesn’t, the dataset is added.
If the customer number already exists, the dataset is ignored. The result is then
added to the table via INSERT INTO.

You can also complement the UPDATE statement with subqueries:

UPDATE TBL_CUSTOMER_TEST customer_new
SET GENDER=(

SELECT UPPER(GENDER)
FROM TBL_CUSTOMER customer_old
WHERE
customer_old.CUSTOMER_NO=customer_new.CUSTOMER_NO

);

COMMIT;

In this example, we have gone through all seven datasets in the new table
TBL_CUSTOMER_TEST and used the subquery to select the corresponding
dataset from TBL_CUSTOMER (using the customer number) and then returned
the GENDER field. Here, all values have also been converted to uppercase
letters. When using UPDATE, you must make sure that the subquery only
returns one value. Otherwise, you get corresponding error messages.

You can also combine DELETE with subqueries. Below is an example. We
will first create a copy of the product table and then delete it in the product
table again:

CREATE TABLE TBL_PRODUCT_TEST AS
SELECT *
FROM TBL_PRODUCT;

DELETE TBL_PRODUCT
WHERE PRODUCT_NO NOT IN(

SELECT PRODUCT_NO
FROM TBL_ORDER_POS

);

COMMIT;

Here, we have used the IN operator and deleted all products that are not in
TBL_ORDER_POS.

Exercise 7: To simplify future evaluations, we need a special table listing
down the sales and commissions of each seller. The table should consist of
four columns (EMPLOYEE_NO, MONTH, SALES, COMMISSION):

1. Create a corresponding table (TBL_COMM_SALES)
2. Use INSERT to first fill the fields EMPLOYEE_NO, MONTH, and

SALES for all employees.
3. UPDATE [A12]the commission column

TOP-N queries
In practice, you often need to create a TOP-N report. For example, you might
need a report with the top three selling products. So far, we have been able to
calculate the sales per product as well as sort these in descending order. What
is missing is a way to select the first three items, i.e. some kind of numbering.
To do this, we can use the ROWNUM pseudo-column. This gives you a row
numbering from a table or subquery. Below is a simple example that sorts the
customers by age and displays the 3 oldest customers:
SELECT *
FROM (
 SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, DoB
 FROM TBL_CUSTOMERS
 ORDER BY 4 ASC
)
WHERE ROWNUM<=3

Result:

 CUSTOMER_NO FIRST_NAME SURNAME DoB

1 4 Hubertus Meyer-Huber 15.07.58
2 5 Hanna von Bergmann 17.09.65
3 7 Fabian Lindemann 01.09.73

Exercises:

1) Create a list with all orders that are above the average sales of all
orders. Proceed as follows:

a) Calculate the average sales for all orders (not the order item)
b) Use the result from a) to create the entire list

2) Create a list with the sales per day for the 1st quarter of 2013. In
addition, display the daily sales share in the monthly sales. Use subqueries!

3) Calculate the sales share of each city in the total sales.

4) Which product group has not had any product orders? Use a subquery!

5) Which customers have had more sales than 66% of the sales of the
customer with the highest sales?

6)

a) Create a copy of the table TBL_PRODUCT without data. Next, add
the products that are priced above the average price of all products.
b) Add a column called AVG_PRICE_GROUP of the type
NUMBER(10,2) in the table from (a) and fill it with the average price of
the respective price group.

7) Create a list of the TOP 3 products.

8) Create a list of the drivers and add a column showing the number of
orders delivered by each driver in April and May 2013. Also, calculate the
variance between these two months.

9) Create a list of the cities with their respective flop product.

7 Set operations

Every SQL query usually returns a result set consisting of datasets. In each
relational database, we have the so-called set operations with which you can
create the standard sets already known from algebra (union, intersection,
difference, etc.). This chapter will focus on these set operators.

UNION and UNION ALL

UNION returns all datasets from query 1 plus all datasets from query 2. Here,
both queries (1 & 2). Otherwise, a corresponding error message is returned.

Figure 14: UNION ALL

UNION ALL returns a set consisting of the blue circle plus the green circle. If
there are any duplicates, they are also included in the end result.

Figure 15: UNION

UNION returns a set consisting of the blue circle plus the green circle plus the
orange circle. Any duplicates are eliminated and these datasets only appear
once in the result set. These are represented by the orange section.

The example below should provide a clear illustration of the syntax:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, 1 AS QUERY
FROM TBL_CUSTOMER
WHERE CITY=‘Hamburg’

UNION

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, 2 AS QUERY
FROM TBL_CUSTOMER
WHERE CITY<>‘Hamburg’

Result:

CUSTOMER_NO FIRST_NAME SURNAME QUERY

1 1 Horst Huber 1
2 2 Erika Schmidt 1
3 3 Bert Müller 1
4 4 Hubertus Meyer-Huber 2
5 5 Hanna von Bergmann 2
6 6 Tobias Maier 2
7 7 Fabian Lindemann 2

In the above example, we have two simple queries. One of them returns the
customer numbers, first names, and surnames of all customers from Hamburg.
The second returns the details of all the other customers. We have also added
an extra column with the value 1 for all datasets from the 1st query and 2 for
those from the 2nd query. As you can see, the result set equals the datasets from
the 1st query plus those from the 2nd query.

Using UNION creates this result set and removes any duplicates. In the
example, both queries return disjoint sets (i.e. no dataset in the 1st query is in
the 2nd and vice versa). Thus, no datasets are eliminated.

On the contrary, UNION ALL does not eliminate duplicates. Below is a second
example to help illustrate the difference between UNION and UNION ALL:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMER
WHERE CUSTOMER_NO IN(1,2)

UNION

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMER
WHERE CUSTOMER_NO IN(2,3)

Result:

CUSTOMER_NO FIRST_NAME SURNAME

1 1 Horst Huber
2 2 Erika Schmidt
3 3 Bert Müller

As we can see, customer number 2 is only listed once in the result set, although
she appears in both subqueries. We had to remove the column with the query
number for the UNION operator to function properly in our example. If we
now use UNION ALL instead of UNION, we get the following result from our
example above:

Result:

CUSTOMER_NO FIRST_NAME SURNAME
--
1 1 Horst Huber
2 2 Erika Schmidt
3 2 Erika Schmidt
4 3 Bert Müller

Customer 2 now appears twice in the result set i.e., once from the 1st query and
once from the 2nd.

Exercise 1: Create a list with the 2 best and 2 worst selling products. Mark
them as TOP and FLOP respectively and display the number, name, and sales

of each of the products.

INTERSECT

The INTERSECT operation returns the datasets that are true for both query 1
and query 2. This is illustrated by the figure below. Here, the intersection is
represented by the yellow area:

Figure 16: INTERSECTION
INTERSECT has the same structure as UNION – it needs to be similar. If we
take our last query in the UNION section and replace UNION ALL with
INTERSECT, we get:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMER
WHERE CUSTOMER_NO IN(1,2)

INTERSECT

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMER
WHERE CUSTOMER_NO IN(2,3)

Result:

CUSTOMER_NO FIRST_NAME SURNAME
--
1 2 Erika Schmidt

This returns customer no. 2 since she appears in both subqueries. Customers 1
and 3 only appear once in one of the two queries and are therefore not in the
intersection of the two result sets.

Exercise 2: Which products (no., name) were purchased by both male and
female customers? Use set operations!

Difference (MINUS)

The MINUS operator can be used to determine differences in the two query
results quite easily.

Figure 17: Difference (MINUS)

Let us assume that we are interested in the blue query MINUS the green query.
Our result would be the blue area. The orange part and the green areas are
hereby excluded.

Below is an example:

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMER
WHERE CUSTOMER_NO IN(1,2)

MINUS

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME
FROM TBL_CUSTOMER
WHERE CUSTOMER_NO IN(2,3)

Result:

CUSTOMER_NO FIRST_NAME SURNAME

1 1 Horst Huber

This takes the result set from the 1st query and subtracts that of the second

query. Customer no. 2 is now excluded since she appears in both sets.
Customer no. 3 is not in the first set and is therefore not included.

Exercise 3: Use set operations to generate a list of products (no. + name) that
have never been sold.

Exercises

1) Display the best-selling product in Hamburg and best-selling product in
Kiel using a query. Make sure to also include the respective sales.

2) Which of the two cities ranks higher in terms of the number of orders
and total sales?

3) Add the missing products in the table TBL_PRODUCT_TEST (created
in chapter 7). Fill the AVG_PRICE_GROUP column with zeroes. Use
appropriate set operators!

4) Create a list showing the sales per product, per product group, and the
total sales. You should first display the sales of the products in the 1st

group, then the sales for product group 1, then the sales for the products of
the 2nd group, the total sales of product group 2, and so on. The last row
should be the total sales.

8 Creating (DDL) and filling (DML)
tables

In this chapter, we will learn how you can use DDL to create and delete tables
as well as modify the structure. We will also use DML to fill tables with data
as well as delete and modify data.

Creating and deleting tables

To create tables, we use the CREATE TABLE statement. For example, you can
generate the structure for TBL_CUSTOMER using the following statement:

CREATE TABLE TBL_CUSTOMER(

CUSTOMER_NO NUMBER(10,0) NOT NULL,
FIRST_NAME VARCHAR2(25) NOT NULL,
SURNAME VARCHAR2(25) NOT NULL,
STREET VARCHAR2(50),
ZIP_Code VARCHAR2(5),
CITY VARCHAR2(20),
GENDER VARCHAR2(1) CHECK (GENDER IN(‘M’, ‘F’, ‘m’,
‘f’)),
DoB DATE DEFAULT TO_DATE(’01.01.1900’
,’DD.MM.YYYY’)

);

This lists down all columns separated by commas. Every column must have at
least a name and data type. Oracle offers diverse data types. You can find a
comprehensive list at:
 http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements001.htm#SQLRF50951

We will use the data types listed below for our examples in this book. These
are also the most commonly used data types:

NUMBER ([total no. of digits][, decimal places]) for numbers
VARCHAR2 (Max. no. of characters) for text
DATE for date/time

You can specify the total no. of digits and the decimal places in NUMBER
columns, but it is not mandatory. However, you must specify the maximum
number of characters for VARCHAR2 fields.

You can define standard values using DEFAULT for every column. In our
example, we have done this for the date of birth. If, for example, the date of

http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements001.htm#SQLRF50951

birth is not entered when adding new datasets, the specified standard value is
used.

Similarly, you can also specify the so-called CHECK constraints[A13] for
each column. These check the data for specific conditions. If the conditions are
not fulfilled, the respective dataset cannot be added or edited. For example,
we have used the NOT NULL constraint for the columns CUSTOMER_NO,
FIRST_NAME, and SURNAME. Thus, these fields must be filled with data
when adding or modifying the datasets. The fields in the other columns can be
left empty. In the gender column, we have a CHECK (condition). This makes
sure that only values M, F, m, f can be added in this column.

Conditions can be any expression, just like when using the WHERE condition
in an SQL statement. This is described in more detail in the [A14]4th chapter.
Assuming we have made an error and would like to rename the table we just
created, we use the following statement:
RENAME TBL_CUSTOMERS TO TBL_CUSTOMERS2;

To delete the table that we have just created, we need the following statement:
DROP TABLE TBL_CUSTOMERS2;

Exercise 1: Create the table TBL_EMPLOYEES as per the data model, but
without primary keys and foreign keys.

Creating foreign key relationships using
constraints[A15]

Chapter 1 described relationships between tables as well as the referential
integrity, which can be ensured in the database using foreign key constraints. In
this section, we will enhance our data model using corresponding constraints.
We will use tables TBL_PRODUCT and TBL_PRODUCT_GROUP as
examples. According to the data model (chapter 2), the two tables are related
via the PRODUCT_GROUP_NO column.

To be able to add foreign key constraints, the referenced table must have a
defined primary key. In addition, the table must already be existent. The
following statement first creates the table TBL_PRODUCT_GROUP with the
corresponding PRIMARY KEY:

CREATE TABLE TBL_PRODUCT_GROUP(

PRODUCT_GROUP_NO NUMBER(5,0) NOT NULL,
NAME VARCHAR2(25),
CONSTRAINT PK_PROD_GROUP PRIMARY KEY
(PRODUCT_GROUP_NO)

);

Since every product group must have a number for it to be referenced by the
products, we have defined a CHECK NOT NULL constraint. The primary key
is then created using the CONSTRAINT …. PRIMARY KEY clause. The
constraint requires a name, in our case PK_PROD_GROUP. With the primary
key, it is automatically checked if every row has a unique value in the
PRODUCT_GROUP_NO column. This is important to ensure that the product
table has a unique link to the PRODUCT_GROUP. The DBMS now checks
every new product group to ensure that it has a unique number. If it doesn’t, it
returns a corresponding error message.

We can now create the table TBL_PRODUCT, define the foreign key, and then
add a reference to the table TBL_PRODUCT_GROUP:

CREATE TABLE TBL_PRODUCT(
PRODUCT_NO NUMBER(5, 0) NOT NULL,
NAME VARCHAR2(25),
PRICE NUMBER(10,2),
PRODUCT_GROUP_NO NUMBER(5, 0) NOT NULL,
CONSTRAINT PK_PRODUCT PRIMARY KEY (PRODUCT_NO),
CONSTRAINT FK_PROD_PROD_GROUP FOREIGN KEY
(PRODUCT_GROUP_NO)
REFERENCES
TBL_PRODUCT_GROUP(PRODUCT_GROUP_NO)

);

In this table as well, we have already defined the primary key, CHECK NOT
NULL constraints on the PRODUCT_NO and PRODUCT_GROUP_NO
columns. The foreign key is defined using the CONTRAINT … FOREIGN
KEY statement. REFERENCES is then used to establish a link to the table
TBL_PRODUCT_GROUP.

Next, we will try to add the following dataset to check whether the foreign key
relation is working:

INSERT INTO TBL_PRODUCT VALUES(1, ‘Rump steak’, 20.95, 1);
COMMIT;

This returns the following error message:

Figure 10: Error message due to violated FK constraint
The problem is that there is still no dataset in the product group. Thus, the

referential integrity cannot be ensured and the dataset is rejected. We could
modify the above example and start by first creating a corresponding product
group and then try to add ‘Rump steak’ in the product table:
INSERT INTO TBL_PRODUCT_GROUP VALUES(1, ‘Meat dishes’);
COMMIT;

INSERT INTO TBL_PRODUCT VALUES(1, ‘Rump steak’, 20.95, 1);
COMMIT;

This works quite well and we get the message that the new dataset has been
added successfully.

Sometimes, it is easier to deactivate the constraints for a short time if you want
to perform extensive data manipulation. You can then reactivate the constraints
afterwards. Your new datasets will then be checked to see if they meet the
condition of the constraints. However, this can result in problems that might be
very difficult to solve. To deactivate a constraint, use the following syntax:
ALTER TABLE TBL_PRODUCT DISABLE CONSTRAINT
FK_PROD_PROD_GROUP;

To reactivate the constraint, use the following syntax:
ALTER TABLE TBL_PRODUCT ENABLE CONSTRAINT
FK_PROD_PROD_GROUP;

Exercise 2: Create the table TBL_ORDER as per the data model, including
the primary key and add the foreign key constraint to the table
TBL_CUSTOMER. Here, first delete TBL_CUSTOMER and then re-create
the table including the primary key.

Changing the table structure afterwards

You can also change the table structure later. This means that you can add,
delete[A16], or modify columns and constraints later. This is generally done
using the ALTER TABLE statement with different options:

ALTER TABLE option Description
ADD CONSTRAINT … PRIMARY
KEY (…)

Adds a PRIMARY KEY constraint
to the table

ADD CONSTRAINT … FOREIGN
KEY (…) REFERENCES …

Adds a FOREIGN KEY constraint
to the table

ADD CONSTRAINT CHECK … Adds a CHECK constraint to the
table

ADD (col1def, col2def, …) Adds one or more columns to the
table. Col1def, col2def corresponds
to the syntax of the ‘Defs’ column in
the CREATE TABLE statement.

MODIFY (col1def, col2def, …) Changes one or more columns in the
table. Col1def, col2def corresponds
to the syntax of the ‘Defs’ column in
the CREATE TABLE statement.

DROP (col1name, col2name, …) Deletes the columns with the names
col1name, col2name, … from the
table.

DROP CONSTRAINT const_name Removes the constraint const_name
from the table

Table 1: ALTER TABLE options
For example, if we want to add a column to the TBL_CUSTOMER table, we

would use the following statement:
ALTER TABLE TBL_CUSTOMER ADD (TEST VARCHAR2(10)
DEFAULT ‘n/a’ NOT NULL);

If we now noticed that the column should be of NUMBER type, we can alter it
as follows using MODIFY:
ALTER TABLE TBL_CUSTOMER MODIFY (TEST NUMBER
DEFAULT -1);

Changing columns afterwards can be problematic at times, especially if the
table has already been filled with data. If you want to keep these data and at
the same time need to modify the data type of a specific column, you can start
by first adding the column and then use update to copy the values from the old
column while performing any necessary transformations at the same time. Once
done, you can then delete the old column.

You can do this for all the other modification options, i.e. using the basic
syntax ALTER TABLE <tab_name> <ALTER option>.

Exercise 3: First, delete the TEST column from the table TBL_CUSTOMER
and then add a CREATED_ON column. This new column should contain the
date on which the respective dataset was added in the table. Here, the date
should be inserted automatically without you having to enter it manually, i.e.
using the ‘sysdate’ function.

Exercise 4: Add a primary key in the table TBL_EMPLOYEES and a foreign
key in TBL_ORDER (sellers[A17]).

Adding datasets

Once we have created the data structures, we can then proceed to add
corresponding data into the tables. We had already looked at two simple
INSERT INTO statements when learning about the foreign key constraints. The
example below should help illustrate the more detailed syntax:
INSERT INTO TBL_CUSTOMER
VALUES (1, ‘Horst’, ‘Huber’, ‘Karolinenweg 11a’, ‘20357’, ‘Hamburg’,
‘M’, to_date(’01.05.1947’, ‘DD.MM.YYYY’), null);

COMMIT;

The above statement has been used to add a dataset to the table
TBL_CUSTOMER. The second COMMIT command physically inserts the
data. If you were to omit the COMMIT statement, other users would not be
able to see this dataset in the table. The inserted values are entered after
“Values (” and must be in the same order as the columns in the table. All
columns must be filled with values. If you want to use a different order or only
wish to fill certain columns, you can do this by specifying the respective
columns after the name of the table. Below is an example:

INSERT INTO TBL_CUSTOMER (CUSTOMER_NO, FIRST_NAME,
SURNAME)
VALUES (2, ‘Erika’, ‘Schmidt’);

INSERT INTO TBL_CUSTOMER (CUSTOMER_NO, FIRST_NAME,
SURNAME)
VALUES (3, ‘Bert’, ‘Müller’);

COMMIT;

This adds two datasets. However, only the specified [A18]columns are filled
(NOT NULL constraint) and the two datasets saved simultaneously.

Result:

 CUSTOMER_NO FIRST_NAME SURNAME STREET ZIP_Code CITY
GENDER DoB CREATED_ON
--

1 1 Horst Huber Karolinenw… 20357
Hamburg M 01.05.1947 <null>
2 2 Erika Schmidt <null> <null> <null>
<null> <null> 16.06.2014
3 3 Bert Müller <null> <null> <null>
<null> <null> 16.06.2014

As we can see from the above result, we have three datasets in the table. In the
first one, we added data in all columns–except for the creation date which is
<null> (since we were required to enter something else). As for the other two
datasets, we only filled the CUSTOMER_NO, FIRST_NAME, and
SURNAME fields. All the other fields are <null>–except for the creation date.
Although we did not enter any data into this field, but we had defined the
column such that the system date should be inserted if no data is entered. Thus,
we have the date on which the dataset was added (i.e. on 16.06.2014 in the
above example).

Editing datasets

The UPDATE statement is used to edit datasets. Let us look at the following
example where we add the columns STREET, ZIP_Code, and CITY for the
customers with customer numbers 2 and 3:
UPDATE TBL_CUSTOMER
SET STREET=‘Goethestrasse 5’, ZIP_Code=‘22512’, CITY=‘Hamburg’
WHERE CUSTOMER_NO=2;

UPDATE TBL_CUSTOMER
SET STREET=‘Schwedenweg 22’, ZIP_Code=‘22123’,
CITY=‘Hamburg’
WHERE CUSTOMER_NO=3;

COMMIT;

The columns to be edited are assigned the new values after the SET command.
Here, you can also enter calculations or other columns. The WHERE clause
enables you to define where you want to update the respective datasets. The
WHERE clause is described in more detail in chapter 4. Here is another
example of an UPDATE statement:
ALTER TABLE TBL_PRODUCT ADD (PRICE_NEW NUMBER);

UPDATE TBL_PRODUCT
SET PRICE_NEW=PRICE*5;

COMMIT;

SELECT *
FROM TBL_PRODUCT;

Result:

PRODUCT_NO NAME PRICE PRODUCT_GROUP_NO

1 1 Rump steak 20.95 1 104.75

We have first added a new column. The column is initially empty. We then
update it using the UPDATE statement and calculate PRICE_NEW by
multiplying the value in the PRICE column by 5. This is performed for every
dataset in the product table since no restriction was specified using the
WHERE clause.

Deleting datasets

There are two ways of deleting datasets. The first is by using the DELETE
statement:
DELETE TBL_CUSTOMER
WHERE CUSTOMER_NO=2;

COMMIT;

SELECT *
FROM TBL_CUSTOMER

Result:

CUSTOMER_NO FIRST_NAME SURNAME STREET ZIP_Code
CITY GENDER DoB
--

1 1 Horst Huber <null> <null> <null> <null>
<null>
3 3 Bert Müller <null> <null> <null> <null>
<null>

The statement deletes the datasets with the specified customer number. In our
example, this corresponds to exactly one dataset. If you were to omit the
WHERE clause, the statement would delete all the datasets in the table. You
must use COMMIT to save changes when using DELETE as well. If you later
notice that you made an error during the deletion (e.g., in the WHERE clause),
you can go back to the original status using ROLLBACK. However,
ROLLBACK only works if you have not yet used COMMIT.

Another way of deleting data from a table is using the TRUNCATE TABLE
command:
ALTER TABLE TBL_ORDER DISABLE CONSTRAINT FK
_ORDER_CUSTOMER;

TRUNCATE TABLE TBL_CUSTOMER;

ALTER TABLE TBL_ORDER ENABLE CONSTRAINT FK
_ORDER_CUSTOMER;

SELECT *
FROM TBL_CUSTOMER;

When using truncate, you must make sure that the constraints are deactivated.
Truncate is not a DML action and therefore does not run within a transaction.
This is why you should not use this command if the constraints are activated.

Result:

The query does not return any data.

What do you notice? COMMIT is missing. This is because, strictly speaking,
TRUNCATE TABLE is not a DML command (data manipulating language) but
rather a DDL command (e.g., CREATE TABLE). This command therefore does
not run within a transaction. For large amounts of data, this is very
advantageous in terms of the runtime for deleting an entire table. However, no
ROLLBACK can be performed for TRUNCATE TABLE commands. The data
are deleted immediately and permanently.

Exercises

1) Add one dataset to the table TBL_CUSTOMER:
Customer no.: 1
FIRST_NAME: Hugo
SURNAME: Schmidt

2)

Create the table TBL_ORDER_POS according to the data model,
including a primary and foreign key constraint referencing to the table
TBL_ORDER
Next, add one dataset to the tables TBL_ORDER_POS and
TBL_ORDER:

TBL_ORDER_POS: (Order:1, product:25, number:1)
TBL_ORDER: (Order:1, date: 01.01.2014, picked up:0,
customer:1, driver:1, employee:1)

3) Create a foreign key between TBL_PRODUCT and
TBL_ORDER_POS. This will probably return an error. What is the cause
of this error? Change the data to eliminate this error.

4) Clear the tables TBL_ORDER_POS and TBL_ORDER using the
DELETE statement. What do you need to look out for?

5) Look at the INSERT statements in the TBL_CUSTOMER_INSERT.SQL
file. How should you change the structure of the TBL_CUSTOMER table
for you to be able to add the data using the INSERT statements without an
error?

6) The following files are available in the course directory. They contain
INSERT statements that are used to fill the respective table with data:

TBL_ORDER_INSERT.SQL
TBL_ORDER_POS_INSERT.SQL
TBL_CUSTOMER_INSERT.SQL

TBL_EMPLOYEE_INSERT.SQL
TBL_PRODUCT.SQL
TBL_PRODUCT_GROUP.SQL

What must you look out for before running these scripts?

9 Miscellaneous

Classic views

Next, we will look at the concept of views. A view can basically be described
as an SQL statement saved under a name in the database. It can be used in other
SQLs just like a normal table. In the example below, we will first create a
simple view showing us the customers from Hamburg and then access this
result using another SQL:
CREATE VIEW V_CUSTOMERS_HAMBURG AS
SELECT *
FROM TBL_CUSTOMER
WHERE CITY=’Hamburg’;

SELECT CUSTOMER_NO, FIRST_NAME, SURNAME, ZIP_Code,
CITY
FROM V_CUSTOMERS_HAMBURG;

Result:

CUSTOMER_NO

FIRST_NAME SURNAME ZIP_Code CITY …..

1 1 Horst Huber 20357 Hamburg ….
2 2 Erika Schmidt 22512 Hamburg
3 3 Bert Müller 22123 Hamburg

You can use views just like you can use tables. You can also update views, but
only if they are related to a certain table. The following example uses the view
created above and links it with the order data. The result is saved in a new
view:

CREATE VIEW V_NO_OF_ORDERS_CUSTOMERS_HH AS
SELECT k.CUSTOMER_NO, k.FIRST_NAME, k.SURNAME,
 Count(distinct b.ORDER_NO) AS NO_OF_ORDERS

FROM V_CUSTOMER_HAMBURG k
 JOIN TBL_ORDER b ON k.CUSTOMER_NO=b.CUSTOMER_NO
GROUP BY k.CUSTOMER_NO, k.FIRST_NAME, k.SURNAME;

SELECT *
FROM V_NO_OF_ORDERS_CUSTOMERS_HH;

Result:

CUSTOMER_NO FIRST_NAME SURNAME NO_OF_ORDERS

1 1 Horst Huber 39
2 2 Erika Schmidt 32
3 3 Bert Müller 37

To delete a view, use the following syntax:
DROP VIEW V_NO_OF_ORDERS_CUSTOMERS_HH;

Since views are only a saved SQL and therefore do not contain any data, the
results are always up to date. This means that if we use the view
V_NO_OF_ORDERS_CUSTOMERS_HH on two different days, the contents
can be totally different – depending on whether new orders were added in the
underlying table during the period in between.

Clearly, this offers the great advantage of e.g. being able to store certain,
recurring queries as views in the database and then access them easily using,
for example, Excel or have other colleagues access them.

Exercise 1: Create a new view named V_SALES_PRODUCT, which returns
the total sales per product. All product’s columns should hereby be output.

Permissions in Oracle

Oracle has diverse options with which you can manage and control access
writes to objects, thus enabling you to exactly specify who is allowed to
access which object. Here, there are two commands, GRANT and REVOKE,
which you can use to grant and revoke access rights. The owner of an object,
i.e. the DB administrator or person who created the object, can therefore
specify specific rights. In the following example, we will assign the users
named TEST2 and TEST3 read access rights to the table TBL_CUSTOMERS.
This requires us to be logged in as TEST (owner of TBL_CUSTOMER). You
can also simply specify a certain user, or use the keyword PUBLIC to grant
access to all users:

GRANT SELECT ON TBL_CUSTOMER TO TEST2, TEST3;

We can now log in as the user TEST2 or TEST3 and check the tables that we
can access. We can do this either by going to the SQL developer and navigating
to Other user -> TEST -> Tables in the object browser (left-hand side) or by
trying out the following SQL:

SELECT *
FROM TEST.TBL_CUSTOMER;

Result:

FIRST_NAME SURNAME STREET ZIP_Code City

1 Horst Huber Karolinenweg
11a 20357 Hamburg ….
2 Erika Schmidt Goethestraße
5 22512 Hamburg
3 Bert Müller Schwedenweg 22 22123 Hamburg
4 Hubertus Meyer-Huber Hamburger Straße 6724106 Kiel

5 Hanna von Bergmann Werftstraße 22 24145 Kiel
6 Tobias Maier Fördeweg 2 26105 Flensburg
7 Fabian Lindemann Kieler Straße 102 23809 Lübeck

As we can see, we have access to all the data in TBL_CUSTOMER. Please
note that you must write the name of the other users or schema for Oracle to
address the correct table.

Rights are revoked in a similar manner:

REVOKE SELECT ON TBL_CUSTOMER FROM TEST2;

The table below lists down all possible access rights:
Privilege Description
SELECT Read access. Columns cannot be

specified.

UPDATE <column1, column2, …> Changing access. You can specify
the columns that can be accessed.
Grants access to all columns if no
column is specified

DELETE Deleting datasets

INSERT Adding new datasets

REFERENCE <column1, column2,
…>

Creating foreign keys. You can
specify the columns that can be
accessed. Grants access to all
columns if no column is specified.

ALL PRIVILEGES All access rights to the table

Table 6: Overview of access rights

These rights are specifically intended for tables and views. There are other

rights for other objects such as procedures and so on, but we will not cover
them in this course. Creation of users and assignment of roles will also not be
covered in this course since this is primarily a task for database
administrators.

Exercise 2: Write a construct that grants user TEST2 access to only the
columns CUSTOMER_NO, FIRST_NAME, and SURNAME in the table
TBL_CUSTOMERS?

Additional useful functions

This section will introduce a few more useful functions. We will first start by
learning how to use IF THEN ELSE constructs in calculations e.g., to
categorize products in three groups based on their sales. Here, you can use the
following command:

CASE
WHEN <CONDITION1> THEN <EXPRESSION1>
WHEN <CONDITION2> THEN <EXPRESSON2>

….
ELSE <EXPRESSION>
END

Here is a simple example:

SELECT PRODUCT_NO, NAME, SALES,
 CASE
 WHEN SALES<700 THEN ‘A’
 WHEN SALES BETWEEN 700 AND 1000 THEN ‘B’
 ELSE ‘C’
 END AS SALES_GROUP
FROM V_SALES_PRODUCT
ORDER BY 3 ASC

Result:

PRODUCT_NO NAME SALES SALES_GROUP

…..
5 14 Fruit salad 696 A
6 15 Tiramisu 832 B
7 8 Spaghetti [A19]Bolognese 873 B

8 9 Lasagne 873 B
9 10 Tagliatelle Carbonara 1062 C
…..

Next, we will look at the DECODE function. This enables you to perform IF
comparisons relatively easily – for example, if you wanted to extend the above
example to specify the sales bandwidth for the respective groups. You can
have multiple arguments in this function:

DECODE (<column>, <value1>, <replacement value1>, <value2>,
…., <other value>)

In our example, this would look like this:
SELECT x.*,
 DECODE(SALES_GROUP, 'A', '€0 ... €700', 'B', '>€700 ... €1000', '>
€100 ... ')
 AS GROUP_NAME
FROM (
 SELECT PRODUCT_NO, NAME, SALES,
 CASE
 WHEN SALES<700 THEN 'A'
 WHEN SALES BETWEEN 700 AND 1000 THEN 'B'
 ELSE 'C'
 END AS SALES_GROUP
 FROM V_SALES_PRODUCT
 ORDER BY 3 ASC
) x

Result:

PRODUCT_NO NAME SALES SALES_GROUP GROUP_NAME

…..
4 14 Fruit salad 696 A €0 ... €700

5 15 Tiramisu 832 B >€700 ... €1000
…..

The subquery is identical to the query in the CASE WHEN END example. The
DECODE function now sits on top and checks the SALES_GROUP column
from the subquery. If it has the value ‘A’, the function returns ‘€0 … €700’. If
the column has the value ‘B’, the function returns ‘>€700 … €1000’, etc.

Exercise 3: Create a view that checks all customers (customer no.) and
displays per customer whether the customer has placed more than 5 orders or
not.

Overview and introduction of analytical functions

Next, we will take a brief look at analytical functions. In chapter 6, we learned
about groupings and aggregations. However, these are quite rigid and
sometimes complex and cumbersome, e.g., if you wanted to combine a product
sum and the total sum in a query. This is only possible via subqueries and a
corresponding link.

Analytical functions now make it possible to create different calculations via
different groupings and display them in a query. We will illustrate this using a
simple example. Let us assume that we want to display the product groups with
their respective sales and share in the total turnover:

SELECT DISTINCT
 grp.PRODUCT_GROUP_NO AS GROUP_NO,
 grp.NAME,

 SUM(sal.SALES) OVER() AS TOTAL_SALES,

 SUM(sal.SALES) OVER(PARTITION BY
grp.PRODUCT_GROUP_NO) AS TOTAL_SALES

 round(SUM(sal.SALES) OVER(PARTITION BY
grp.PRODUCT_GROUP_NO)
 / SUM(sal.SALES) OVER(),2) AS SHARE

FROM V_SALES_PRODUCT ums
 JOIN TBL_PRODUCT_GROUP grp ON
sal.PRODUCT_GROUP_NO=grp.PRODUCT_GROUP_NO
ORDER BY 1

Result:

GROUP_NO NAME TOTAL_SALES SALES_GROUP SHARE

1 1 Meat dishes 20097.45 7850.10 0.39
2 2 Pizzas 20097.45 6603.10 0.33
3 3 Pasta 20097.45 2808.00 0.14
4 4 Drinks 20097.45 1308.25 0.07
5 5 Desserts 20097.45 1528.00 0.08

If you look at the calculation of the SALES_GROUP column, you notice right
away the typical structure of an analytical calculation:

Function(<column>) OVER(PARTITION BY <column 1>, <column 2>,
…)

In our example, we have used the SUM function. You can also use other
functions (e.g., AVG, MIN, MAX, count, count (distinct), etc.). <column>
should be the column to be evaluated by the function. OVER (…) generally
specifies the grouping level. If you leave it empty, the function is executed for
all the evaluation data. You can see this in the calculation of the
TOTAL_SALES column. Here, it has been left empty to calculate the total sum.
If we wanted to specify groupings, we could do this using PARTITION BY
and 1 to n columns. In this case, the function would be executed on each of
these groups and assigned to the corresponding group. For example, we have
calculated the sum per product group, i.e. we have specified the
PRODUCT_GROUP_NO as the column in PARTITION BY. You can also use
these calculations to generate more structuring calculations. This has been
done in the SHARE column. Here, the two previous calculations have been
reused to calculate the respective sales share.

Exercise 4: Create an evaluation that calculates the product sales and product
group sales for every product. Sort your results by the product number. Do not
use the V_SALES_PRODUCT view.

Another application example would be to calculate a cumulated sum, i.e. an

evaluation showing the monthly sales as well as the cumulative sales from
January to the current month. To do this, the analytical calculation would have
to be extended using additional components:

SELECT DISTINCT
 x.*,
 SUM(SALES) OVER(
 ORDER BY MONTH ASC
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW
) AS SALES_CUM
FROM (
 SELECT DISTINCT
 to_char(b.ORDER_DATE,'MM/YYYY') AS MONTH,
 SUM(bp.COUNT*p.PRICE) OVER(
 PARTITION BY to_char(b.ORDER_DATE,'MM/YYYY')
) AS SALES
 FROM TBL_ORDER b
 JOIN TBL_ORDER_POS bp ON b.ORDER_NO=bp.ORDER_NO
 JOIN TBL_PRODUCT p ON bp.PRODUCT_NO=p.PRODUCT_NO
 WHERE to_char(b.ORDER_DATE,'YYYY')='2013'
) x
ORDER BY 1

Result:

MONTH SALES SALES_CUM
--
1 201301 2126.05 2126.05
2 201302 1381.35 3507.4

3 201303 1921.20 5428.6
4 201304 1804.10 7232.7
….

Looking at the result shows us that the cumulation works quite well. In the
subquery, we have first used an analytical function to calculate the monthly
sales. This was done for the year 2013. In the next query, we have then used
another analytical function that goes through all the data from 2013.

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW is
used to define a so-called window. In our case, this window has been applied
dynamically, i.e. always runs from the 1st dataset of the partition to the current
dataset. The general syntax is:

ROWS BETWEEN <limit 1> AND <limit 2>

with <limit>= <expression> PRECEDING | FOLLOWING or
CURRENT ROW

with <expression>= UNBOUNDED or a numerical expression

UNBOUNDED is hereby used to specify that the window should run up to the
start/end of the partition. PRECEDING refers to datasets before the current
dataset whereas FOLLOWING refers to those after the current dataset.
CURRENT ROW refers to the current dataset. This therefore enables you to
define any window.

Due to the way the window function works, we must first create a subquery. If
we fail to do this, the query granularity would no longer be at a monthly level
since the data in the table is at a daily level and the analytical function would
therefore be performed for every dataset. To this extent, we first calculate the
first monthly sums and then use this result as a basis for a second analytical
function.

In certain calculations, the order in which the datasets are added to the
calculation also plays a role. You can sort the datasets using ORDER BY. This

is important when calculating cumulative sums since the datasets must be
sorted chronologically for the sums to be correct.

This is why we sorted the cumulative total by the MONTH in our calculation.
When calculating the monthly sales in the subquery, the order does not matter
since we are simply summing up all the datasets in a group.

Exercise 5: Create an evaluation that, instead of calculating the cumulative
sum, displays the value of the previous month if existent (i.e. not possible for
January).

The following functions are hereby available:
Function Description
SUM, AVG, MAX, MIN, COUNT,
COUNT(distinct)

Standard aggregate functions. Can
be [A20]specified with and without
a window as well as with and
without sorting.

FIRST_VALUE (<column>)
LAST_VALUE(<column>)

Returns the first/last dataset in a
partition after sorting.

ROW_NUMBER()

Returns a numbering of the datasets
within a partition.

RANK()
DENSE_RANK()

Returns a ranking based on the
sorting within a partition. In the case
of RANK, a corresponding number
of positions [A21]is left out if there
are several datasets that have the
same value. Example: If there are
two first places, there wouldn’t be a
second with RANK. For
DENSE_RANK, we will have two
first places and then a second, third,
etc. Always requires sorting.

Table 7: Overview of important analytical functions

There are many other functions and extensions of analytical functions. These
will be presented and explained in detail in the second part of my SQL training
series.

Exercises

(1) You have been tasked with reordering the rights for all tables
of the user called TEST. To do this, first log in as user TEST and:

(a) revoke all access rights that had been granted for the table
TBL_CUSTOMER,
(b) grant user TEST2 read access to the table TBL_PRODUCT,
(c) grant the user TEST2 the right to edit the PRICE column in
the table TBL_PRODUCT,
(d) test the access rights granted above by logging in as TEST2
and accessing tables TBL_CUSTOMER and TBL_PRODUCT.
Try to change the price of the product number 16 to 1.

(2)

(a) Create a view that calculates the total sales based on the
previously created V_PRODUCT_SALES view
(b) Next, add a SALES_PRODUCT (NUMBER(10,2)) column
to the table TBL_PRODUCT and fill it using the
V_PRODUCT_SALES view
(c) Add another column, SALES_SHARE (NUMBER(10,2))
and fill it using the view created above and the
SALES_PRODUCT column added above. (Round them to 2
decimal places.)

(3) Create an evaluation that displays the best-performing product
in every product group, once based on its sales and again based
on the number of orders. Use the FIRST_VALUE function.

(4) Create a list showing the [A22]product groups with their
products. Make sure to include the product sales as well as a
ranking within the product group and a second ranking for all
products. Include an extra column where you mark the best
product in every product group with an ‘*’.

[A1]Deutsch Englisch

Bestellung Order

FilialeBranch

ProduktProduct

Mitarbeiter Employee

Produktgruppe Product group

Kunde Customer

[A2]Deutsch Englisch

gehört zu ordered at

angestellt in works at

liefert aus delivers from

bearbeitet processed

bestellt ordered

besteht aus consists of

beinhaltet contains

[A3]im Original steht näher statt nähert.

[A4]error in original text, missing “s”

[A5]Date of Birth

[A6]There is no page 29.

[A7]wir sind uns nicht ganz sicher, ob hier 12 oder 2 gemeint wird. Im nachfolgenden Text
wird nämlich „zwei“ gesagt?

[A8]Error in original text, 30€ instead of 3000€

[A9]im Originaltext steht hier ein Fragezeichen, war vllt ein Punkt gemeint?

[A10]hier ist es im Originaltext ein Tippfehler.

[A11]im Original steht Bedinung statt Bedingung.

[A12]hier gibt es im Original einen Tippfehler.

[A13]hier ist das s im Original nicht fett.

[A14]hier steht im Original das statt des.

[A15]Typo in original text

[A16]entfernen steht zwar nicht im Original, aber wird in der nachfolgenden Tabelle auch
verwendet.

[A17]wird hier Verkäufer und Mitarbeiter Plural oder Singular gemeint? Falls Singular,
einfach s bei Sellers und Employees entfernen.

[A18]hier steht im Original notwendige statt notwendigen.

[A19]hier steht im Original Spagetti statt Spaghetti.

[A20]hier steht warden statt werden im Original.

[A21]hier steht im Original Postitionen statt Positionen.

[A22]„die die“ im Original statt „die“.

