
T H E
S E C R E T L I F E O F
P R O G R A M S

T H E
S E C R E T L I F E O F
P R O G R A M S

U N D E R S T A N D C O M P U T E R S —
C R A F T B E T T E R C O D E

J O N A T H A N E . S T E I N H A R T

T H E T H I N G
W O R K S

L I K E T H I S .

T H E T H I N G
W O R K S

L I K E T H I S .

Many coders are unfamiliar with the underlying technol-
ogies that make their programs run. But why should you
care when your code appears to work? Because you
want it to run well and not be riddled with hard-to-find
bugs. You don’t want to be in the news because your
code had a security problem.

Lots of technical detail is available online but it’s not orga-
nized or collected into a convenient place. In The Secret
Life of Programs, veteran engineer Jonathan E. Steinhart
explores—in depth—the foundational concepts that under-
lie the machine. Subjects like computer hardware, how
software behaves on hardware, as well as how people
have solved problems using technology over time.

You’ll learn:

• How the real world is converted into a form that
computers understand, like bits, logic, numbers,
text, and colors

• The fundamental building blocks that make up a
computer including logic gates, adders, decoders,
registers, and memory

• Why designing programs to match computer hardware,
especially memory, improves performance

• How programs are converted into machine language
that computers understand

• How software building blocks are combined to create
programs like web browsers

• Clever tricks for making programs more efficient, like
loop invariance, strength reduction, and recursive
subdivision

• The fundamentals of computer security and machine
intelligence

• Project design, documentation, scheduling, portability,
maintenance, and other practical programming realities.

Learn what really happens when your code runs on
the machine and you’ll learn to craft better, more
efficient code.

A B O U T T H E A U T H O R

Jonathan E. Steinhart has designed graphics hardware
and software, and built CAD systems, graphics work-
stations, circuit simulators, power plants, and languages
for integrated circuit design. He has consulted for Apple,
Intel, Sun, Welch-Allyn, Lulu, and many others.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN: COM
PUTERS/

PROGRAM
M

ING

$44.95 ($59.95 CDN)

S
T

E
IN

H
A

R
T

T
H

E
 S

E
C

R
E

T
 L

IF
E

 O
F

 P
R

O
G

R
A

M
S

T
H

E
 S

E
C

R
E

T
 L

IF
E

 O
F

 P
R

O
G

R
A

M
S

THE SECRET LIFE OF PROGRAMS

T H E S E C R E T L I F E
O F P R O G R A M S
U n d e r s t a n d C o m p u t e r s —

C r a f t B e t t e r C o d e

by Jonathan E. Steinhart

San Francisco

THE SECRET LIFE OF PROGRAMS. Copyright © 2019 by Jonathan E. Steinhart.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-970-1
ISBN-13: 978-1-59327-970-7

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editors: Corbin Collins and Annie Choi
Technical Reviewer: Aubrey Anderson
Copyeditor: Rachel Monaghan
Compositor: Happenstance Type-O-Rama
Proofreader: Paula L. Fleming
Indexer: JoAnne Burek

The following images are attributed as follows: Composition in Figure 6-36 courtesy of Hanalei Steinhart.
Brick wall in Figures 11-3, 11-4, 11-7 and 11-8 from www.cadhatch.com. Figure 14-25 from The Rocky Horror
Picture Show (1975).

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Steinhart, Jonathan E., author.
Title: The Secret Life of Programs / Jonathan E. Steinhart.
Description: San Francisco : No Starch Press,Inc., [2019]
Identifiers: LCCN 2019018295 (print) | LCCN 2019021631 (ebook) | ISBN
 9781593279714 (epub) | ISBN 159327971X (epub) | ISBN 9781593279707 (print)
 | ISBN 1593279701 (print)
Subjects: LCSH: Computer programming. | Programming languages (Electronic
 computers) | Browsers (Computer programs)
Classification: LCC QA76.6 (ebook) | LCC QA76.6 .S735 2019 (print) | DDC
 005.1--dc23
LC record available at https://lccn.loc.gov/2019018295

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

To Julie and Hanalei for making
me learn how to explain complex

technologies to laypeople.

To the amazing place that was Bell
Telephone Laboratories and all the

people who worked there, especially to
Carl for making a place for me there

when I was a teenager.

About the Author
Jonathan E. Steinhart has been involved in engineering since the 1960s.
He started designing hardware in middle school and software in high
school, which led to summer jobs at Bell Telephone Laboratories. He
received his BSEE in Electrical Engineering and Computer Science from
Clarkson University in 1977. After graduation, he worked for Tektronix
before trying his hand at startup companies. He became a consultant in
1987, focused on safety-critical systems engineering. He cut back a bit
starting in the 1990s to start Four Winds Vineyard.

About the Technical Reviewer
Aubrey Anderson has a BSEE in Electrical Engineering and Computer
Science from Tufts University. While there, he was a Teaching Fellow and
helped to improve curricula for introductory computer science courses.
He started programming at 14 and since then has worked on a variety of
robotics, system design, and web programming projects. Aubrey currently
works as a Software Engineer at Google.

B R I E F C O N T E N T S

Acknowledgments . xix

Preface . xxi

Introduction . xxv

Chapter 1: The Internal Language of Computers . 1

Chapter 2: Combinatorial Logic . 33

Chapter 3: Sequential Logic . 69

Chapter 4: Computer Anatomy . 93

Chapter 5: Computer Architecture . 117

Chapter 6: Communications Breakdown . 141

Chapter 7: Organizing Data . 183

Chapter 8: Language Processing . 217

Chapter 9: The Web Browser . 237

Chapter 10: Application and System Programming . 259

Chapter 11: Shortcuts and Approximations . 283

Chapter 12: Deadlocks and Race Conditions . 335

Chapter 13: Security . 351

Chapter 14: Machine Intelligence . 385

Chapter 15: Real- World Considerations . 413

Index . 445

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xix

PREFACE xxi

INTRODUCTION xxv
Why Good Programming is Important .xxvi
Learning to Code is Only a Starting Place . xxvii
Importance of Low-Level Knowledge . xxviii
Who Should Read This Book? . xxviii
What Are Computers? .xxix
What Is Computer Programming? .xxix
Coding, Programming, Engineering, and Computer Science xxxii
The Landscape . xxxiii
What’s in This Book . xxxv

1
THE INTERNAL LANGUAGE OF COMPUTERS 1
What Is Language? . 2
Written Language . 2
The Bit . 3
Logic Operations . 3

Boolean Algebra . 4
De Morgan’s Law . 5

Representing Integers Using Bits . 6
Representing Positive Numbers . 6
Binary Addition . 8
Representing Negative Numbers . 10

Representing Real Numbers . 14
Fixed-Point Representation . 14
Floating- Point Representation . 15
The IEEE Floating- Point Standard . 17

Binary- Coded Decimal System . 18
Easier Ways to Work with Binary Numbers . 18

Octal Representation . 18
Hexadecimal Representation . 19
Representing the Context . 20

Naming Groups of Bits . 20
Representing Text . 22

The American Standard Code for Information Interchange 22
The Evolution of Other Standards . 24
Unicode Transformation Format 8-bit . 24

Using Characters to Represent Numbers . 25
Quoted-Printable Encoding . 26
Base64 Encoding . 26
URL Encoding . 27

xii Contents in Detail

Representing Colors . 27
Adding Transparency . 29
Encoding Colors . 30

Summary . 31

2
COMBINATORIAL LOGIC 33
The Case for Digital Computers . 34

The Difference Between Analog and Digital . 35
Why Size Matters in Hardware . 36
Digital Makes for More Stable Devices . 37
Digital in an Analog World . 38
Why Bits Are Used Instead of Digits . 40

A Short Primer on Electricity . 41
Using Plumbing to Understand Electricity . 41
Electrical Switches . 44

Building Hardware for Bits . 47
Relays . 47
Vacuum Tubes . 50
Transistors . 51
Integrated Circuits . 52

Logic Gates . 53
Improving Noise Immunity with Hysteresis . 54
Differential Signaling . 55
Propagation Delay . 57
Output Variations . 58

Building More Complicated Circuits . 60
Building an Adder . 60
Building Decoders . 63
Building Demultiplexers . 64
Building Selectors . 65

Summary . 67

3
SEQUENTIAL LOGIC 69
Representing Time . 70

Oscillators . 70
Clocks . 71
Latches . 71
Gated Latches . 73
Flip- Flops . 74
Counters . 77
Registers . 78

Memory Organization and Addressing . 79
Random- Access Memory . 82
Read- Only Memory . 83

Block Devices . 85
Flash Memory and Solid State Disks . 88
Error Detection and Correction . 88
Hardware vs . Software . 90
Summary . 91

Contents in Detail xiii

4
COMPUTER ANATOMY 93
Memory . 94
Input and Output . 96
The Central Processing Unit . 97

Arithmetic and Logic Unit . 97
Shiftiness . 99
Execution Unit . 100

Instruction Set . 102
Instructions . 102
Addressing Modes . 104
Condition Code Instructions . 105
Branching . 105
Final Instruction Set . 106

The Final Design . 109
The Instruction Register . 109
Data Paths and Control Signals . 109
Traffic Control . 110

RISC vs . CISC Instruction Sets . 113
Graphics Processing Units . 114
Summary . 115

5
COMPUTER ARCHITECTURE 117
Basic Architectural Elements . 118

Processor Cores . 118
Microprocessors and Microcomputers . 119

Procedures, Subroutines, and Functions . 120
Stacks . 122
Interrupts . 125
Relative Addressing . 128
Memory Management Units . 130
Virtual Memory . 132
System and User Space . 133
Memory Hierarchy and Performance . 133
Coprocessors . 135
Arranging Data in Memory . 136
Running Programs . 137
Memory Power . 138
Summary . 139

6
COMMUNICATIONS BREAKDOWN 141
Low- Level I/O . 142

I/O Ports . 142
Push My Buttons . 144
Let There Be Lights . 146
Lights, Action, 147
Bright Ideas . 148
2n Shades of Gray . 149

xiv Contents in Detail

Quadrature . 150
Parallel Communication . 152
Serial Communication . 152
Catch a Wave . 154
Universal Serial Bus . 156

Networking . 156
Modern LANs . 158
The Internet . 158

Analog in the Digital World . 160
Digital- to- Analog Conversion . 160
Analog- to- Digital Conversion . 162
Digital Audio . 165
Digital Images . 173
Video . 174

Human Interface Devices . 176
Terminals . 176
Graphics Terminals . 177
Vector Graphics . 178
Raster Graphics . 180
Keyboard and Mouse . 181

Summary . 181

7
ORGANIZING DATA 183
Primitive Data Types . 184
Arrays . 185
Bitmaps . 187
Strings . 188
Compound Data Types . 189
Singly Linked Lists . 191
Dynamic Memory Allocation . 195
More Efficient Memory Allocation . 196
Garbage Collection . 197
Doubly Linked Lists . 198
Hierarchical Data Structures . 199
Storage for the Masses . 203
Databases . 204
Indices . 206
Moving Data Around . 206
Vectored I/O . 210
Object- Oriented Pitfalls . 211
Sorting . 212
Making a Hash of Things . 213
Efficiency vs . Performance . 215
Summary . 216

8
LANGUAGE PROCESSING 217
Assembly Language . 217
High- Level Languages . 219

Contents in Detail xv

Structured Programming . 220
Lexical Analysis . 221

State Machines . 223
Regular Expressions . 224

From Words to Sentences . 226
The Language- of- the- Day Club . 228
Parse Trees . 228
Interpreters . 231
Compilers . 232
Optimization . 234
Be Careful with Hardware . 236
Summary . 236

9
THE WEB BROWSER 237
Markup Languages . 238
Uniform Resource Locators . 239
HTML Documents . 240
The Document Object Model . 242

Tree Lexicon . 243
Interpreting the DOM . 244

Cascading Style Sheets . 244
XML and Friends . 248
JavaScript . 251
jQuery . 253
SVG . 254
HTML5 . 255
JSON . 255
Summary . 256

10
APPLICATION AND SYSTEM PROGRAMMING 259
Guess the Animal Version 1: HTML and JavaScript . 262

Application- Level Skeleton . 263
Web Page Body . 263
The JavaScript . 264
The CSS . 267

Guess the Animal Version 2: C . 267
Terminals and the Command Line . 267
Building the Program . 268
Terminals and Device Drivers . 268
Context Switching . 269
Standard I/O . 271
Circular Buffers . 272
Better Code Through Good Abstractions . 273
Some Mechanics . 274
Buffer Overflow . 275
The C Program . 275
Training . 281

Summary . 282

xvi Contents in Detail

11
SHORTCUTS AND APPROXIMATIONS 283
Table Lookup . 284

Conversion . 284
Texture Mapping . 285
Character Classification . 288

Integer Methods . 290
Straight Lines . 292
Curves Ahead . 298
Polynomials . 301

Recursive Subdivision . 301
Spirals . 301
Constructive Geometry . 304
Shifting and Masking . 311

More Math Avoidance . 313
Power Series Approximations . 313
The CORDIC Algorithm . 313

Somewhat Random Things . 318
Space- Filling Curves . 319
L- Systems . 320
Going Stochastic . 322
Quantization . 323

Summary . 333

12
DEADLOCKS AND RACE CONDITIONS 335
What Is a Race Condition? . 336
Shared Resources . 337
Processes and Threads . 337
Locks . 339

Transactions and Granularity . 340
Waiting for a Lock . 341
Deadlocks . 341
Short- Term Lock Implementation . 342
Long- Term Lock Implementation . 343

Browser JavaScript . 343
Asynchronous Functions and Promises . 346
Summary . 350

13
SECURITY 351
Overview of Security and Privacy . 352

Threat Model . 352
Trust . 353
Physical Security . 355
Communications Security . 356
Modern Times . 357

Contents in Detail xvii

Metadata and Surveillance . 359
The Social Context . 359
Authentication and Authorization . 361

Cryptography . 362
Steganography . 362
Substitution Ciphers . 363
Transposition Ciphers . 365
More Complex Ciphers . 366
One- Time Pads . 367
The Key Exchange Problem . 367
Public Key Cryptography . 368
Forward Secrecy . 369
Cryptographic Hash Functions . 369
Digital Signatures . 370
Public Key Infrastructure . 370
Blockchain . 371
Password Management . 371

Software Hygiene . 372
Protect the Right Stuff . 372
Triple- Check Your Logic . 373
Check for Errors . 373
Minimize Attack Surfaces . 373
Stay in Bounds . 374
Generating Good Random Numbers Is Hard . 375
Know Thy Code . 376
Extreme Cleverness Is Your Enemy . 378
Understand What’s Visible . 378
Don’t Overcollect . 379
Don’t Hoard . 379
Dynamic Memory Allocation Isn’t Your Friend . 379
Garbage Collection Is Not Your Friend Either . 381
Data as Code . 382

Summary . 384

14
MACHINE INTELLIGENCE 385
Overview . 386
Machine Learning . 388

Bayes . 389
Gauss . 390
Sobel . 393
Canny . 398
Feature Extraction . 399
Neural Networks . 401
Using Machine Learning Data . 406

Artificial Intelligence . 407
Big Data . 409
Summary . 412

xviii Contents in Detail

15
REAL- WORLD CONSIDERATIONS 413
The Value Proposition . 414
How We Got Here . 416

A Short History . 416
Open Source Software . 419
Creative Commons . 420
The Rise of Portability . 420
Package Management . 421
Containers . 422
Java . 422
Node .js . 424
Cloud Computing . 424
Virtual Machines . 425
Portable Devices . 425

The Programming Environment . 425
Are You Experienced? . 426
Learning to Estimate . 426
Scheduling Projects . 426
Decision Making . 427
Working with Different Personalities . 428
Navigating Workplace Culture . 429
Making Informed Choices . 430

Development Methodologies . 430
Project Design . 432

Writing It Down . 432
Fast Prototyping . 432
Interface Design . 433
Reusing Code or Writing Your Own . 436

Project Development . 436
The Talk . 437
Portable Code . 439
Source Control . 440
Testing . 440
Bug Reporting and Tracking . 441
Refactoring . 441
Maintenance . 441

Be Stylish . 442
Fix, Don’t Re- create . 443
Summary . 444

INDEX 445

A C K N O W L E D G M E N T S

There are a lot of influences that contributed to mak-
ing this book possible. That starts with my parents
Robert and Rosalyn Steinhart for making me pos-
sible and then encouraging my interest in science, at
least up to the point at which it started to scare them.
Many awesome teachers took it from there including
Beatrice Seagal, William Mulvahill, and Miller Bugliari. Much thanks to
Paul Rubenfield for telling me about both Civil Defense and the Bell Labs
Explorer Scout post.

It’s impossible to give enough credit to my Explorer Scout advisors
Carl Christiansen and Heinz Lycklama. They changed my life. Through
them I met many amazing people at Bell Telephone Laboratories includ-
ing Joe Condon, Sandy Fraser, Dave Hagelbarger, Dick Hause, Jim Kaiser,
Hank McDonald, Max Mathews, Dennis Ritchie, Ken Thompson, and Dave
Weller. I learned a lot from each of them.

Thanks to Aubrey Anderson, Clem Cole, Lee Jalovec, A.C. Mendiones,
Ed Post, and Betsy Zeller for making it through the whole thing at least
once. And especially to Aubrey for technical editing.

xx Acknowledgments

Thanks also to Matt Blaze, Adam Cecchetti, Sandy Clark, Tom Duff,
Natalie Freed, Frank Heidt, DV Henkel-Wallace (a.k.a Gumby), Lou Katz,
Sara-Jaye Terp, Talin, and Paul Vixie for providing feedback on particular
chapters.

And thanks to all of the people who answered the phone when I called
with general questions including Ward Cunningham, John Gilmore, Evelyn
Mast, Mike Perry, Alex Polvi, Alan Wirfs-Brock, and Mike Zuhl. And of
course, Rakel Hellberg, the girl on the ski lift, for providing one of the
nudges that motivated me finish this project.

This book would not have been possible without the support and
encouragement of people in various geek communities including AMW,
Hackers, and TUHS.

Thanks to Hanalei Steinhart for the composition in Figure 6-36 and to
Julie Donnelly for the scarf in Figure 11-41.

Thanks to Tony Cat for allowing me to use his image and for keeping
my keyboard full of fur.

P R E F A C E

I was born a geek. According to my father,
I used an imaginary switch to turn on the

swings before using them, and I would turn
them off when I was done. Machinery just spoke

to me about its inner workings. I resembled C-3PO
understanding “the binary language of moisture vapo-
rators.” I was fortunate to grow up in a time in which
one could examine the workings of most things with-
out a microscope.

In hindsight, I had a very surreal childhood growing up in New Jersey.
I tinkered with everything, often to the detriment of my mom’s nervous
system. My parents gave me lots of “50-in-one” project kits but became
uncomfortable when I started hooking them together for projects that
weren’t in the books. This culminated with the Pillow Burglar Alarm,
which caught the tooth fairy in action—a poor economic choice that was
nevertheless emotionally satisfying. I collected broken televisions and

xxii Preface

other appliances that people would leave out on garbage day so that I could
take them apart, learn how they worked, and build things out of the parts.
One of my favorite toys was my dad’s 1929 Erector Set. The space program
made it a great time to be interested technology; I remember standing in
our front yard with my father one night watching Echo 1 fly over.

Most kids had paper routes; I repaired televisions and stereos. My
father worked for IBM, and I occasionally went with him to work and was
awed by the big computers. He took me with him to the Electro Show in
Atlantic City when I was eight, and I remember playing with an IBM 1620. I
also remember being fascinated by the equipment at the Tektronix booth,
which may have influenced my later choice to work for them. A year later
I went to the World’s Fair in New York and was awed by the Bell System
exhibit; by chance I later worked with one of its designers.

I received an amazing post-Sputnik public school education, the likes
of which no longer exists in America. We passed around the jug of mercury
in fifth grade. I blew up the chemistry lab in sixth grade and learned from
the experience instead of being locked away. (I can still quote the recipe for
making nitrogen triiodide.) I remember my eighth-grade science teacher
marching us out of the classroom and taking us into New York City to see
the movie 2001: A Space Odyssey because he thought that it was important.
He did this with no parental notes or permissions slips; a teacher who did
that today would likely lose their job, or worse. We made gunpowder in high
school chemistry, shot rockets at each other on the football field in physics
class, lanced our own fingers to do blood typing in biology. A far cry from
today when so many millions are drowning in five-gallon buckets that warn-
ings are required, wet floors strike fear into the hearts of man, and govern-
ment officials are dismissive of science and unable to distinguish tinkering
from terrorism.

Outside of school, my parents signed me up for the Boy Scouts, which I
loved, and Little League, which I hated. Scouting taught me a lot about the
physical world from horseback riding to safely playing with fire to outdoor
survival. Little League taught me that I didn’t like team sports.

Ham radio was big in those days; it was where tinkering happened. I
volunteered for the local Civil Defense emergency radio communications
group just so I could play with the equipment. They had a primitive radio-
teletype system, which I redesigned and ended up building units for other
municipalities. I loved the three-dimensional mechanical contraption that
was a Teletype.

When I was in high school, a friend told me about an Explorer Scout
post that met every Monday evening at Bell Telephone Laboratories in nearby
Murray Hill. I joined and got to play with computers back when they were the
size of large houses. I was hooked. It wasn’t long before I was leaving school
early, hitchhiking up to the Labs, and talking people into letting me in. This
turned into a series of amazing summer jobs working with incredible people
that changed my life. I learned a lot just by poking my head into people’s labs
and asking them what they were doing. I ended up writing software for them
even though I planned to study electrical engineering, because hardware
projects just couldn’t be finished in a summer.

Preface xxiii

I felt that the best way to honor my scout advisors was to follow in their
footsteps by trying to help newer generations of budding young technolo-
gists along their path once I was in a position to do so. This turned out to
be difficult, as the heyday of American research has given way to increasing
shareholder value; products themselves are not valued as highly as the prof-
its they generate, which makes research hard to justify. Companies rarely
let kids run wild on their premises anymore, for liability reasons. I had
originally thought I would work through scouting, but realized I couldn’t
because scouting had adopted some polices that I couldn’t support, as I had
never gotten my sexual discrimination merit badge. Instead, I volunteered
in my local school system.

I started writing this book to supplement a class that I volunteered to
teach. I did this before the internet was as readily accessible as it is today. I
currently live in a fairly poor rural farming community, so the original draft
of this book tried to be all-inclusive under the assumption that students
wouldn’t be able to afford supplementary materials. That turned out to be
an impossible task.

Lots of material about different programming languages and concepts
is now available online, and most people have internet access at home or at
their school or library. I’ve rewritten the material with the expectation that
readers can now much more easily find additional information online. So,
if something isn’t clear or you want more information, look it up.

Recently, a number of students I know have expressed frustration with
the way they’re being taught programming. Although they can find infor-
mation online, they keep asking where they can find everything they need
in one place. This book is written to be that resource.

I was lucky to grow up contemporaneously with computers. We devel-
oped together. I have a hard time imagining what it must be like to jump
into the mature field that computing is today without having the back-
ground. The most challenging parts of writing this book were deciding
how far to reach back into the past for examples and choosing elements of
modern technology to discuss. I settled on sort of a retro feel, as one can
learn most of what’s necessary from older, simpler technology that’s easier
to understand. Newer, more complex technologies are built using the same
building blocks as the older ones; knowing those blocks makes understand-
ing new technologies much easier.

It’s a different age now. Gadgets are much harder to take apart, repair,
and modify. Companies are abusing laws such as the Digital Millennium
Copyright Act (DMCA) to prevent people from repairing devices they own,
which is fortunately resulting in “right to repair” laws in some places. As
Americans, we get mixed messages from our government; on the one hand
we’re encouraged to go into STEM careers, while on the other hand we see
science denigrated and STEM jobs outsourced. It’s not clear that the US
would have ever become a technology powerhouse if this environment had
existed a half-century ago.

Then again, there are bright spots. Maker spaces are proliferating.
Some kids are being allowed to build things and are discovering that it’s
fun. Electronic parts are cheaper than they’ve ever been, as long as you

xxiv Preface

don’t want ones with wires on them. Smartphones have more processing
power than all the computers in the world combined when I was a kid.
Computers are cheaper than anybody ever imagined; small computers
such as the Raspberry Pi and Arduino cost less than a pizza and have a
huge variety of available toppings.

With such power available, it’s tempting to just play with the high-level
functionality. It’s like playing with LEGO. My parents gave me one of the
first LEGO sets made; it pretty much just had rectangular blocks. But I had
my imagination and I could build anything I wanted. Today, you can get a
Star Wars LEGO set and deploy a prefabricated Yoda. It’s much harder to
invent new characters. The fancy pieces hamper the imagination.

There’s a great scene in the classic 1939 movie The Wizard of Oz in which
the wizard is exposed and bellows, “Pay no attention to that man behind the
curtain.” This book is for those of you who aren’t going to listen to that and
want to know what’s behind the curtain. My intent is to shine light on the fun-
damental building blocks on which high-level functionality is built. This book
is for those whose imagination isn’t satisfied by high-level functionality alone;
it’s for those who are drawn to creating new high-level functionality. If you’re
interested in becoming a wizard in addition to being a mere wielder of magic
items, then this book is for you.

I N T R O D U C T I O N

A few years ago, I was riding on a ski lift
with our Swedish exchange student. I

asked her if she had thought about what
she was going to do after high school. She said

that she was considering engineering and had taken
a programming class the previous year. I asked her
what they taught. She replied, “Java.” I instinctively
responded with “That’s too bad.”

Why did I say that? Took me a while to figure it out. It’s not that Java is
a bad programming language; it’s actually pretty decent. I said it because of
the way in which Java (and other languages) are typically used to teach pro-
gramming today—without teaching anything about computers. If this strikes you
as a bit odd, then this book is for you.

The Java programming language was invented by James Gosling, Mike
Sheridan, and Patrick Naughton in the 1990s at Sun Microsystems. It was
modeled in part after the C programming language, which was widely
used at the time. C doesn’t include automatic management of memory, and

xxvi Introduction

memory management errors were a common headache at the time. Java
eliminated that class of programming errors by design; it hid the underlying
memory management from the programmer. That’s part of what makes
it such a good programming language for beginners. But it takes much
more than a good programming language to produce good programmers
and programs. And it turned out that Java introduced a whole new class
of harder-to-debug programming problems, including poor performance
resulting from the hidden memory management system.

As you’ll see in this book, understanding memory is a key skill for pro-
grammers. When you’re learning to program, it’s easy to develop habits
that become hard to break. Studies have shown that children who grew up
playing at so-called “safe” playgrounds have a higher rate of injuries later in
life than those who didn’t, presumably because they didn’t learn that falling
hurts. Programming is an analogous situation. Safe programming environ-
ments make getting started less scary, but you also need to prepare for the
outside world. This book helps you make that transition.

Why Good Programming is Important
To understand why it’s problematic to teach computer programming with-
out also teaching about computers, first consider how ubiquitous computers
have become. The price of computers has fallen so dramatically that using
them is now the cheapest way to build many things. For example, using a
computer to display an image of an old-fashioned analog clock on a car
dashboard costs much less than a mechanical clock. This is a result of how
computer chips are manufactured; they’re more or less printed. It’s no
longer a big deal to stamp out a chip that contains billions of components.
Note that I’m talking about the price of computers themselves, not the
price of things that contain computers. In general, a computer chip today
costs less than the packaging in which it’s shipped. Computer chips are
available that cost pennies. There will likely come a time when it will be
difficult to find anything that doesn’t contain a computer.

Lots of computers doing lots of things means lots of computer programs.
Because computers are so ubiquitous, the field of computer programming is
incredibly diverse. As in medicine, many programmers become specialists.
You can specialize in areas such as vision, animation, web pages, phone apps,
industrial control, medical devices, and more.

But the strange thing about computer programming is that unlike in
medicine, in programming you can become a specialist without ever being
a generalist. You probably wouldn’t want a heart surgeon who never learned
anatomy, but the equivalent has become normal for many programmers
today. Is this really a problem? In fact, there’s plenty of evidence that this
isn’t working very well, with almost daily reports of security breaches and
product recalls. There have been court cases in which people convicted of
drunk driving by breathalyzer have won the right to have the breathalyzer
code reviewed. It turned out that the code was full of bugs, which resulted
in overturned convictions. Recently, a piece of antivirus software crashed a

Introduction xxvii

piece of medical equipment in the middle of a heart surgery. Lives were lost
due to design issues in the Boeing 737 MAX airplane. The large number of
incidents like these don’t inspire a lot of confidence.

Learning to Code is Only a Starting Place
Part of the reason for this state of affairs is that it’s not all that difficult to
write computer programs that appear to work, or work much of the time. Let’s
use the changes in music (not disco!) in the 1980s as an analogy. People used
to have to develop a foundation in order to make music. This included learn-
ing music theory, composition, and how to play an instrument; ear training;
and lots of practicing. Then the Musical Instrument Digital Interface (MIDI)
standard, originally proposed by Ikutaro Kakehashi of Roland, came along,
which let anyone make “music” from their computer without ever having to
develop calluses. It’s my opinion that only a small percentage of computer-
generated “music” is actually music; it’s mostly noise. Music is produced by
actual musicians—who may or may not use MIDI to build on their founda-
tion. Programming these days has become a lot like using MIDI. You no
longer have to sweat much or spend years practicing or even learn theory in
order to write programs. But that doesn’t mean these are good or reliable
programs.

This situation is likely to get worse, at least in the United States. Wealthy
people with vested interests, like those who own software companies, have
been lobbying for legislation mandating that everybody learn to code in
school. This sounds great in theory, but it’s not a great idea in practice
because not everybody has the aptitude to become a good programmer. We
don’t mandate that everybody learn to play football because we know that
it’s not for everybody. The likely goal of this initiative is not to produce great
programmers but rather to increase software company profits by flooding
the market with large numbers of poor programmers, which will drive
down wages. The people behind this push don’t care very much about code
quality—they also push for legislation that limits their liability for defective
products. Of course, you can program for fun just like you can play football
for fun. Just don’t expect to be drafted for the Super Bowl.

In 2014, President Obama said that he had learned to code. He did drag
a few things around in the excellent visual programming tool Blockly, and he
even typed in one line of code in JavaScript (a programming language unre-
lated to Java, which was invented at Netscape, the predecessor to the Mozilla
Foundation that maintains numerous software packages, including the Firefox
web browser.) Now, do you think that he actually learned to code? Here’s a
hint: if you do, you should probably work on honing your critical thinking
skills in addition to reading this book. Sure, he may have learned a teensy bit
about programming, but no, he didn’t learn to code. If he could learn to code in
an hour, then it follows that coding is so trivial that there wouldn’t be a need
to teach it in schools.

xxviii Introduction

Importance of Low-Level Knowledge
An interesting and somewhat contrary view about how to teach programming
was expressed in a blog post titled “How to Teach Computational Thinking”
by Stephen Wolfram, the creator of Mathematica and the Wolfram language.
Wolfram defines computational thinking as “formulating things with enough
clarity, and in a systematic enough way, that one can tell a computer how to
do them.” I completely agree with this definition. In fact, it’s in large part my
motivation for writing this book.

But I strongly disagree with Wolfram’s position that those learning
to program should develop computational thinking skills using powerful
high-level tools, such as those that he’s developed, instead of learning the
underlying foundational technologies. For example, it’s clear from the ris-
ing interest in statistics over calculus that “data wrangling” is a growing
field. But what happens when people just feed giant piles of data into fancy
programs that those same people don’t intimately understand?

One possibility is that they generate interesting-looking but meaning-
less or incorrect results. For example, a recent study (“Gene Name Errors
Are Widespread in the Scientific Literature” by Mark Ziemann, Yotam Eren,
and Assam El-Osta) showed that one-fifth of published genetics papers have
errors due to improper spreadsheet usage. Just think of the kinds of errors
and ramifications that more powerful tools in the hands of more people
could produce! Getting it right is crucial when people’s lives are affected.

Understanding underlying technologies helps you develop a sense of
what can go wrong. Knowing just high-level tools makes it easy to ask the
wrong questions. It’s worth learning to use a hammer before graduating to
a nail gun. Another reason for learning underlying systems and tools is that
it gives you the power to build new tools, which is important because there
will always be a need for tool builders, even if tool users are more common.
Learning about computers so that the behavior of programs isn’t a mystery
enables you to craft better code.

Who Should Read This Book?
This book is for people who want to become good programmers. What
makes a good programmer? First and foremost, a good programmer has
good critical thinking and analysis skills. To solve complex problems, a
programmer needs the ability to evaluate whether or not programs actually
solve the right problem correctly. This is more difficult than it sounds. It’s
not uncommon for an experienced programmer to look at someone else’s
program and snarkily comment, “Why, that’s a complex nonsolution to a
simple nonproblem.”

You may be familiar with a classic fantasy trope of wizards acquiring
power over things by learning their true names. And woe be to the wizard
who forgets a detail. Good programmers are like these wizards who can
hold the essence of things in their minds without dropping details.

Good programmers also have some degree of artistry, like skilled
craftspeople. It’s not uncommon to find code that is completely

Introduction xxix

incomprehensible, just like many English speakers are baffled by James
Joyce’s novel Finnegans Wake. Good programmers write code that not only
works but is also easy for others to understand and maintain.

Finally, good programmers need a deep understanding of how com-
puters work. You can’t solve complex problems well using a shallow base of
knowledge. This book is for people who are learning programming but are
unsatisfied with the lack of depth. It’s also for people who are already pro-
gramming but want more.

What Are Computers?
A common answer is that computers are appliances that people use for
tasks such as checking email, shopping online, writing papers, organizing
photos, and playing games. This definition is partly the result of sloppy
terminology that became commonplace as consumer products began to
incorporate computers. Another common answer is that computers are the
brains that make our high-tech toys, such as cell phones and music players,
work. This is closer to the mark.

Sending email and playing games are made possible by programs run-
ning on computers. The computer itself is like a newborn baby. It doesn’t
really know how to do much. We hardly ever think about the basic machin-
ery of human beings, because we mostly interact with the personalities that
are running on that basic machinery, just like programs running on com-
puters. For example, when you’re on a web page, you’re not reading it using
just the computer itself; you’re reading it using programs someone else
wrote that are running on your computer, the computer hosting the web
page, and all of the computers in between that make the internet function.

What Is Computer Programming?
Teachers are people who train the basic human machinery to perform cer-
tain tasks. Similarly, programming is about becoming a teacher of computers.
Programmers teach computers to do what the programmers want them to do.

Knowing how to teach computers is useful, especially when you want a
computer to do something that it doesn’t know how to do and you can’t just
go buy a program for it because nobody has created one yet. For example,
you probably take the World Wide Web for granted, but it was invented not
long ago, when Sir Tim Berners-Lee needed a better way for scientists at the
European Organization for Nuclear Research (Conseil Européen pour la
Recherche Nucléaire, or CERN) to share information. And he got knighted
for it. How cool is that?

Teaching computers is complicated, but it’s easier than teaching people.
We know a lot more about how computers work. And computers are a lot
less likely to throw up on you.

xxx Introduction

Computer programming is a two-step process:

1. Understand the universe.

2. Explain it to a three-year-old.

What does this mean? Well, you can’t write computer programs to do
things that you yourself don’t understand. For example, you can’t write a
spellchecker if you don’t know the rules for spelling, and you can’t write a
good action video game if you don’t know physics. So, the first step in becom-
ing a good computer programmer is to learn as much as you can about every-
thing else. Solutions to problems often come from unexpected places, so
don’t ignore something just because it doesn’t seem immediately relevant.

The second step of the process requires explaining what you know to
a machine that has a very rigid view of the world, like young children do.
This rigidity in children is really obvious when they’re about three years
old. Let’s say you’re trying to get out the door. You ask your child, “Where
are your shoes?” The response: “There.” She did answer your question. The
problem is, she doesn’t understand that you’re really asking her to put her
shoes on so that you both can go somewhere. Flexibility and the ability to
make inferences are skills that children learn as they grow up. But comput-
ers are like Peter Pan: they never grow up.

Computers are also like young children in that they don’t know how to
generalize. They’re still useful because once you figure out how to explain
something to them, they’re very fast and tireless about doing it, though they
don’t have any common sense. A computer will tirelessly do what you ask
without evaluating whether it’s the wrong task, much like the enchanted
broomsticks in “The Sorcerer’s Apprentice” segment of the 1940 movie
Fantasia. Asking a computer to do something is like asking the genie from
a magic lantern (not the FBI version) to grant a wish. You have to be really
careful how you phrase it!

You may doubt what I’m saying here because computers seem more
capable than they are. When you use a computer, for example, it knows
how to draw pictures, correct your spelling, understand what you’re saying,
play music, and so on. But keep in mind, that’s not the computer—it’s a
complicated set of computer programs that someone else wrote that allows
the computer to do all of those tasks. Computers are separate from the pro-
grams that run on them.

It’s like watching a car on the road. It seems pretty good at stopping
and starting at the right times, avoiding obstacles, getting where it’s going,
eating when it gets hungry, and so on. But it’s not just the car. It’s the car
and the driver packaged together. Computers are like the cars, and pro-
grams are like the drivers. Without knowledge, you can’t tell what’s done by
the car and what’s done by the driver. (See “Southbound on the Freeway”
by May Swenson. You might change your answer to the question posed at
the end of the poem during your lifetime.)

In sum, computer programming involves learning what you need to
know to solve a problem and then explaining it to a young child. Because
there are lots of ways to solve a problem, programming is just as much an

Introduction xxxi

art as it is a science. It involves finding elegant solutions as opposed to using
brute force. Yes, you can get out of a house by bashing a hole in the wall, but
it’s probably a lot easier to go out the door. Many can write something like
HealthCare.gov in millions of lines of code, but it takes skill to do it in thou-
sands of lines.

Before you can instruct a three-year-old, though, you need to learn
about three-year-olds and what they understand. And this isn’t any ordi-
nary three-year-old—it’s an alien life form. A computer doesn’t play by the
same rules that we do. You may have heard of artificial intelligence (AI),
which tries to get computers to act more like people. Progress in that field
has moved much slower than originally anticipated. That’s mainly because
we don’t really understand the problem; we don’t know enough about how
humans think. As you can imagine, it’s pretty hard to teach an alien to
think as we do when we ourselves don’t know how exactly it’s done.

The human brain lets you do things without consciously thinking
about them. Your brain started out as just a piece of hardware, which then
got programmed. For example, you learned to move your fingers and then
you learned to grab things. After practice, you can just grab things without
thinking about all the steps that make it possible. Philosophers such as Jean
Piaget (French psychologist, 1898–1980) and Noam Chomsky (American
linguist born in 1928) have developed different theories about how this
process of learning works. Is the brain just a general piece of equipment, or
does it have special hardware for functions like language? This issue is still
being studied.

Our incredible ability to perform tasks unconsciously makes learning
how to program difficult, because programming requires breaking down
tasks into smaller steps that a computer can follow. For example, you prob-
ably know how to play tic-tac-toe. Get a group of people together and have
each of you independently list the steps a player should take in order to
make a good move for any configuration of the board. (I’m sure you can
find this online, but don’t look it up.) After everybody has made their lists,
hold a playoff. Find out whose rules rule! How good were your rules? What
sort of things did you miss? Do you actually know what you’re doing when
you play the game? Chances are, there were a number of factors that you
didn’t think to spell out because you understand them intuitively.

In case it’s not obvious, the first step, understanding the universe, is
much more important than the second, explaining it to a three-year-old.
Think about it: what good is it to know how to talk if you don’t know what
to say? Despite this, current education focuses on the second step. This is
because it’s much easier to teach and grade the mechanical aspects of the
task than the creative elements. And in general, teachers have little train-
ing in the field and are working from curricula developed elsewhere that
they were given to use. This book, however, focuses on the first step. While
it can’t cover the universe in general, it examines problems and their solu-
tions in the computer universe instead of dwelling on the exact program-
ming syntax needed to implement those solutions.

xxxii Introduction

Coding, Programming, Engineering, and Computer Science
A number of different terms are used to describe working with software.
These terms have no exact definitions, although they have acquired some
rough meanings.

Coding, a fairly recent term popularized as part of “learning to code,”
can be viewed as the somewhat mechanical work of translation. Let’s com-
pare it to the job of medical coding. When you visit a doctor, getting a diag-
nosis is the easy part. The hard part is translating that diagnosis into one of
the over 100,000 codes in the ICD standards, ICD-10 at the time of writing.
A Certified Professional Coder who has learned these codes knows that,
when a doctor comes up with a diagnosis of “struck by cow,” it should be
assigned code W55.2XA. This is actually harder than many coding jobs in
the programming space due to the sheer number of codes. But the process
is similar to what a coder would do if directed to “make that text bold” on a
web page; a coder knows which code to use to make that happen.

The ICD-10 standard is so complicated that few coders know it all.
Instead, medical coders get certified in specialty areas such as “Diseases of
the nervous system” or “Mental and behavioral disorders.” This is analogous
to a coder being proficient in a language such as HTML or JavaScript.

But programming—that is, being a programmer—means knowing more
than a specialty area or two. The doctor in this scenario is analogous to a
programmer. The doctor determines a diagnosis by evaluating the patient.
This can be pretty complex. For example, if a patient has burns and is
soaking wet, is it a “bizarre personal appearance” (R46.1) or a “burn due
to water skis on fire, initial encounter” (V91.07XA)? Once the doctor has
a diagnosis, a treatment plan can be devised. The treatment plan must be
effective; the doctor probably doesn’t want to see the same patient suffering
from a bad case of “parental overprotection” (Z62.1).

Just like the doctor, a programmer evaluates a problem and determines
a solution. For example, maybe there’s a need for a website that allows
people to rank ICD-10 codes in terms of silliness. A programmer would
determine the best algorithms for storing and manipulating the data, the
structure of the communication between the web client and server, the user
interface, and so on. It’s not a simple “plug in the code” sort of thing.

Engineering is the next step up in complexity. In general, engineering
is the art of taking knowledge and using it to accomplish something. You
could consider the creation of the ICD standards to be engineering; it took
the large field of medical diagnoses and reduced them to a set of codes that
could be more easily tracked and analyzed than doctor’s notes. It’s a matter
of opinion as to whether or not such a complex system represents good engi-
neering. As an example of computer engineering, many years ago I worked
on a project to build a low-cost medical monitor such as those that you
see in hospitals. The charge I was given was to make a system that a doc-
tor or nurse could figure out how to use in less than 5 minutes without any
documentation. As you might imagine, this required much more than just
knowledge of programming. And I beat the goal—my solution ended up
taking about 30 seconds to learn to use.

Introduction xxxiii

Programming is often confused with computer science. While many
computer scientists program, most programmers aren’t computer scientists.
Computer science is the study of computing. Computer science discoveries are
used by engineers and programmers.

Coding, programming, engineering, and computer science are indepen-
dent but related disciplines that differ in the type and amount of knowledge
required. Being a computer scientist, engineer, or coder doesn’t automati-
cally make someone a good programmer. While this book gives you a taste of
how engineers and computer scientists think, it’s not going to make you one;
that typically requires a college education combined with some hard-earned
relevant experience. Engineering and programming are similar to music or
painting—they’re part skill and part art. The exposition of both aspects in
this book should help you to improve your skills as a programmer.

The Landscape
Computer design and programming is a huge field of study, which I won’t
be able to cover here. You can visualize it in layers, as shown in Figure 1.

Computer hardware

Users

Application programming

System programming

Logic design

Circuit design

Basic science (physics and chemistry)

This book

Figure 1: Computer landscape

Keep in mind that Figure 1 is a simplification and that the lines divid-
ing the various layers are not as clean in reality.

The majority of people are users of computer systems. You’re probably
in that camp right now. There are specialized sorts of users called system
administrators whose job is to keep computer systems working. They install
software, manage user accounts, do backups, and so on. They typically have
special powers not granted to normal users.

The people who write programs like web pages, phone apps, and music
players are called application programmers. They write the software that users
use to interact with the computers, using blocks that others have created.
Application programming is being taught in most “learn to code” classes

xxxiv Introduction

as if all programmers have to learn is how to import these other blocks and
glue them together. Although you can get away with that a lot of the time,
it’s much better to actually understand both those blocks and the glue.

Application programs don’t talk to the computer hardware directly;
that’s where system programming comes into play. System programmers make
the building blocks used by application programmers. System programmers
need to know about hardware because their code interacts with it. One of
the goals of this book is to teach you things you need to know in order to be
a good system programmer.

Computer hardware includes not only the part that does the actual
computing but also how that part connects to the world outside. Computer
hardware is expressed as logic. It’s the same logic used to write computer
programs, and it’s key to understanding the workings of the computer. The
logic is constructed from various types of electronic circuits. Circuit design is
beyond the scope of this book, but you can learn more about it by studying
electrical engineering. Consider a double major in electrical engineering and
computer science if you want to rule the world.

Of course, basic science underpins it all, providing everything from
our understanding of electricity to the chemistry needed to create chips.

As shown in Figure 1, each level builds on the one beneath it. This
means that poor design choices or errors at lower levels affect everything
above. For example, a design error in Intel Pentium processors circa 1994
caused some division operations to produce incorrect results. This affected
all software that used floating-point division in these processors.

As you can see, system programming is at the bottom of the software
hierarchy. It’s similar to infrastructure, like roads, electricity, and water.
Being a good programmer always matters, but it matters more if you’re a
system programmer, because others rely on your infrastructure. You can
also see that system programming is sandwiched between application pro-
gramming and computer hardware, which means you need to learn some-
thing about both of those. The Sanskrit word yoga translates to “union,” and
just as yoga practitioners seek to unify their mind and body, system pro-
grammers are techno-yogis who unify the hardware and software.

You don’t have to learn system programming in order to work at one of
the other levels. But if you don’t, you’ll have to find someone else to help you
deal with issues out of your domain rather than being able to figure them
out for yourself. An understanding of the core technology also leads to better
solutions at higher levels. This isn’t just my opinion; check out the 2014 blog
post “The Resource Leak Bug of Our Civilization” by Ville-Matias Heikkilä
for a similar view.

This book also aims to cover a lot of retro history. Most programmers
aren’t learning the history of their craft because there is so much material
to cover. The result is that a lot of people are making mistakes that have
already been made. Knowing some of the history allows you to at least make
new and better mistakes rather than repeat past ones. Bear in mind that the
hot new technology you’re using today will quickly become retro tomorrow.

Speaking of history, this book is jam-packed with interesting technolo-
gies and the names of their inventors. Take some time to learn more about

Introduction xxxv

both the technologies and the people. Most of the people mentioned solved
at least one interesting problem, and it’s worth learning about how they per-
ceived their world and the way in which they approached and solved prob-
lems. There’s a great exchange in Neal Stephenson’s 2008 novel Anathem:

“Our opponent is an alien starship packed with atomic bombs.
We have a protractor.”

“Okay, I’ll go home and see if I can scrounge up a ruler and a
piece of string.”

Note the reliance on fundamentals. It’s not “Let’s look up what to do
on Wikipedia” or “I’ll post a question on Stack Overflow” or “I’ll find some
package on GitHub.” Learning to solve problems that nobody else has
solved is a crucial skill.

Many of the examples in this book are based on old technology such as
16-bit computers. That’s because you can learn almost everything you need
to know from them and they’re easier to fit on a page.

What’s in This Book
The book is conceptually divided into three parts. The first part explores
computer hardware, both what it is and how it’s built. The second part exam-
ines the behavior of software running on hardware. The last part covers the
art of programming—working with others to produce good programs.

Chapter 1: The Internal Language of Computers
This chapter starts exploring the three-year-old mentality. Computers
are bit players; they herd bits for a living. You’ll learn what they are and
what can be done with them. We’ll play make-believe to ascribe mean-
ing to bits and to collections of bits.

Chapter 2: Combinatorial Logic
This chapter examines the rationale for using bits instead of digits and
explores the justification for digital computers. This includes a discus-
sion of some of the older technologies that paved the way for what we
have today. It covers the basics of combinatorial logic. You’ll learn how
to build more complicated functionality from bits and logic.

Chapter 3: Sequential Logic
Here you’ll learn how to use logic to build memory. This includes
learning how to generate time, because memory is nothing but state
that persists over time. This chapter covers the basics of sequential
logic and discusses various memory technologies.

Chapter 4: Computer Anatomy
This chapter shows how computers are constructed from the logic
and memory elements discussed in the earlier chapters. A number of
different implementation methodologies are examined.

xxxvi Introduction

Chapter 5: Computer Architecture
In this chapter, we’ll explore some of the add-ons to the basic computer
that we saw in Chapter 4. You’ll learn how they provide essential func-
tionality and efficiency.

Chapter 6: Communications Breakdown
Computers need to interact with the outside world. This chapter covers
input and output. It also revisits the difference between digital and ana-
log and how we get digital computers to work in an analog world.

Chapter 7: Organizing Data
Now that you’ve seen how computers work, we’ll look at how to use them
effectively. Computer programs manipulate data in memory, and it’s
important to map the way memory is used to the problem being solved.

Chapter 8: Language Processing
Languages have been invented to make programming computers easier
for people. This chapter looks at the process of converting languages
into something that actually runs on computers.

Chapter 9: The Web Browser
A lot of programming is done for web browsers. This chapter looks at
how a web browser works and teases out its main components.

Chapter 10: Application and System Programming
In this chapter, we’ll write two versions of a program that runs at two of
the different levels from Figure 1. The chapter exposes many of the dif-
ferences between application- and system-level programming.

Chapter 11: Shortcuts and Approximations
Making programs efficient is important. This chapter explores some of
the ways in which we can make programs more efficient by having them
avoid unnecessary work.

Chapter 12: Deadlocks and Race Conditions
Many systems include more than one computer. This chapter examines
some of the problems that can occur when we’re trying to get computers
to cooperate.

Chapter 13: Security
Computer security is an advanced topic. This chapter covers the basics
while punting on the heavy math.

Chapter 14: Machine Intelligence
This chapter also covers an advanced topic. New applications
result from the combination of big data, artificial intelligence, and
machine learning—from driving your car to driving you nuts with
advertisements.

Introduction xxxvii

Chapter 15: Real-World Considerations
Programming is a very methodical and logical process. But humans
are involved in the determination of what and how to program, and
humans are often lacking in logic. This chapter discusses some of the
issues of programming in the real world.

When reading this book, bear in mind that many of the explanations
are simplified and therefore not correct down to the smallest detail. Making
the explanations perfect would require too much distracting detail. Don’t be
surprised if you discover this as you learn more. You can consider this book
to be a glossy travel brochure for a trip to computer-land. It can’t cover every-
thing in detail, and when you go visit, you’ll find plenty of subtle differences.

1
T H E I N T E R N A L L A N G U A G E

O F C O M P U T E R S

The whole point of language is to be able
to communicate information. Your job as a

programmer is to give instructions to com-
puters. They don’t understand our language,

so you have to learn theirs.
Human language is the product of thousands of years of evolution.

We don’t know a lot about how it evolved, since early language development
wasn’t advanced to the point that history could be recorded. (Apparently
nobody wrote ballads about language development.) Computer languages are
a different story, as they’re a fairly recent invention that occurred long after
the development of human language, which enables us to write about them.

Human and computer languages share many of the same elements,
such as written symbols and rules for their proper arrangement and usage.
One thing that they don’t share is nonwritten language forms; computers
have written language only.

2 Chapter 1

In this chapter, you’ll start to learn the language of computers. This
process happens in stages just like with human language. We have to start
with letters before building up to words and sentences. Fortunately, com-
puter languages are much simpler than their human counterparts.

What Is Language?
Language is a convenient shortcut. It allows us to communicate complex
concepts without having to demonstrate them. It also allows concepts to be
conveyed at a distance, even via intermediaries.

Every language—whether written, spoken, or expressed in a series of
gestures or by banging two rocks together—is meaning encoded as a set
of symbols. Encoding meaning as symbols isn’t enough, though. Language
only works if all communicating parties have the same context, so they
can assign the same meaning to the same symbols. For example, the word
Toto might suggest the dog from The Wizard of Oz to many people, while
others might think of the Japanese manufacturer of heated toilet seats. I
recently encountered much confusion while discussing clothing with my
French exchange student. It turns out that the common interpretation
of the word camisole in America is undershirt, but in France it’s straitjacket!
In both of these examples, the same symbols can be distinguished only
by context, and that context is not always readily discernible. Computer
languages have this issue too.

Written Language
Written language is a sequence of symbols. We form words by placing sym-
bols in a particular order. For example, in English we can form the word
yum by placing three symbols (that is, letters) in order from left to right as
follows: y u m.

There are many possible symbols and combinations. There are 26 basic
symbols (A–Z) in English—if we ignore things like upper- and lowercase,
punctuation, ligatures, and so on—which native English speakers learn as
toddlers. Other languages have different types and numbers of symbols.
Some languages, such as Chinese and Japanese as written in kanji, have a
very large number of symbols where each symbol is a word unto itself.

Languages also use different ordering, such as reading right to left in
Hebrew and vertically in Chinese. Symbol order is important: d o g is not
the same as g o d.

Although style can in some ways be considered a language unto itself,
we don’t distinguish symbols based on typeface: a, a, and a are all the same
symbol.

The Internal Language of Computers 3

Three components frame the technology of written language, includ-
ing computer language:

•	 The containers that hold symbols

•	 The symbols that are allowed in the containers

•	 The ordering of the containers

Some languages include more complicated rules that constrain the per-
mitted symbols in containers based on the symbols in other containers. For
example, some symbols can’t occupy adjacent containers.

The Bit
We’ll begin with the container. This might be called a character in a human
language and a bit for computers. The term bit is an awkward marriage
between binary and digit. It’s awkward because binary is a word for something
with two parts, whereas digit is a word for one of the 10 symbols (0–9) that
make up our everyday number system. You’ll learn why we use bits in the
next chapter; for now, it’s enough to know that they’re cheap and easy to
build.

A bit is binary, which means a bit container can hold only one of two
symbols, kind of like the dot and dash from Morse code. Morse code uses
just two symbols to represent complex information by stringing those symbols
together in different combinations. The letter A is dot- dash, for example.
B is dash- dot- dot- dot, C is dash- dot- dash- dot, and so on. The order of the
symbols is important just like in a human language: dash- dot means N, not A.

The concept of symbols is abstract. It really doesn’t matter what they
stand for; they could be off and on, day and night, or duck and goose. But
remember, language doesn’t work without context. Things would get weird
fast if a sender thought they were saying U (dot- dot- dash), but the recipient
heard duck- duck- goose.

In the remainder of this chapter, you’ll learn about some of the common
ways in which meaning is assigned to bits for computing. Keep in mind that
there is a lot of make- believe involved—for example, you may run into things
like, “Let’s pretend that this bit means blue.” Programming actually works
that way, so even though you’ll be learning some standard bit uses, don’t be
afraid to invent your own when appropriate.

Logic Operations
One use of bits is to represent the answers to yes/no questions such as “Is
it cold?” or “Do you like my hat?” We use the terms true for yes and false for
no. Questions like “Where’s the dog party?” don’t have a yes/no answer and
can’t be represented by a single bit.

In human language, we often combine several yes/no clauses into a single
sentence. We might say, “Wear a coat if it is cold or if it is raining” or “Go
skiing if it is snowing and it’s not a school day.” Another way of saying those

4 Chapter 1

things might be “Wear coat is true if cold is true or raining is true” and
“Skiing is true if snowing is true and school day is not true.” These are logic
operations that each produce a new bit based on the contents of other bits.

Boolean Algebra
Just as algebra is a set of rules for operating on numbers, Boolean algebra,
invented in the 1800s by English mathematician George Boole, is a set of
rules that we use to operate on bits. As with regular algebra, the associative,
commutative, and distributive rules also apply.

There are three basic Boolean operations, NOT, AND, and OR,
as well as one composite operation, XOR (short for “exclusive- or”), as
described here:

NOT This operation means “the opposite.” For example, if a bit is
false, NOT that bit would be true. If a bit is true, NOT that bit would
be false.

AND This operation involves 2 or more bits. In a 2-bit operation, the
result is true only if both the first AND second bit are true. When more
than 2 bits are involved, the result is true only if all bits are true.

OR This operation also involves 2 or more bits. In a 2-bit operation,
the result is true if the first OR second bit is true; otherwise, the result is
false. With more than 2 bits, the result is true if any bit is true.

XOR The result of an exclusive- or operation is true if the first and second
bits have different values. It’s either but not both. Because “exclusive- or” is
a mouthful, we often use the abbreviation XOR (pronounced “ex- or”).

Figure 1-1 summarizes these Boolean operations graphically in what are
known as truth tables. The inputs are outside of the boxes and the outputs
are inside. In these tables, T stands for True and F stands for False.

NOT AND OR XOR

F

T

T

F

F

F

F

T

F

F T

T

F

T

T

T

F

F T

T

F

T

T

F

F

F T

T

Figure 1-1: Truth tables for Boolean operations

Figure 1-2 shows how this works for the NOT and AND operations. We
can find the output by tracing a path from the input or inputs.

F

F

F

T

NOT F = T

F

F T

T

NOT T = F T AND T = TF AND T = FT AND F = FF AND F = F

F

T

T

F

F

T

T

F

F

F

F

T

F

F T

T

F

F

F

T

F

F T

T

F

F

F

T

F

F T

T

Figure 1-2: Using truth tables

The Internal Language of Computers 5

As you can see, the NOT operation simply reverses the state of the
input. On the other hand, the AND operation returns true only when
both inputs are true.

N O T E The XOR operation is built from other operations. For example, the XOR of 2 bits,
a and b, is the same thing as (a OR b) AND NOT (a AND b). This shows that
basic Boolean operations can be combined in different ways to yield the same result.

De Morgan’s Law
In the 1800s, British mathematician Augustus De Morgan added a law that
applies only to Boolean algebra, the eponymous De Morgan’s law. This law
states that the operation a AND b is equivalent to the operation NOT(NOT a
OR NOT b), as shown in Figure 1-3.

a b

F
T

F F

T

a AND b NOT a NOT b NOT a OR NOT b NOT (NOT a OR NOT b)

F F
F
F

FF

F

F
FF

F
F

T
T

T
T
T

TT

T
T
T
T

Figure 1-3: The truth table for De Morgan’s law

Notice that the results of a AND b in the second column are identical
to the results listed in the final NOT(NOT a OR NOT b) column. This
means that with enough NOT operations, we can replace AND operations
with OR operations (and vice versa). This is useful because computers
operate on real- world input that’s not under their control. While it would
be nice if inputs were of the form cold or raining, they’re often NOT cold
or NOT raining. Similar to double negatives in languages such as English
(“We didn’t not go skiing”), De Morgan’s law is a tool that lets us operate
on these negative logic propositions in addition to the positive logic that
we’ve already seen. Figure 1-4 illustrates the coat- wearing decision for
both positive and negative logic forms.

F
T

F F

T
F
T

T

cold raining wear-coat not-cold not-raining not-wear-coat

T
T

F

T
T
F
F

T

F

F
T

T
F
F
F

T

Figure 1-4: Positive and negative logic

On the left (positive logic) side, we can make our decision using a
single OR operation. On the right (negative logic) side, De Morgan’s law
allows us to make our decision using a single AND operation. Without
De Morgan’s law, we’d have to implement the negative logic case as NOT

6 Chapter 1

not- cold OR NOT not- raining. Although that works, there is a cost in price
and performance to each operation, so minimizing operations minimizes
costs. The hardware that performs the NOT operation costs real money and,
as you’ll learn in the next chapter, cascading operations slows things down.

De Morgan tells us that this is equivalent to “cold and raining,” which is
much simpler.

Representing Integers Using Bits
Let’s move up the food chain and learn how to use bits to represent
numbers. Numbers are more complicated than logic but much simpler
than words.

Representing Positive Numbers
We commonly use the decimal number system because it corresponds to
our anatomy. Ten different symbols called digits can go into the containers:
0123456789. Containers are stacked right to left. Each container has a
name that is separate from its contents; we call the rightmost container
the ones, next is the tens, then the hundreds, thousands, and so on. These
names are aliases for powers of 10; 100 is one, 101 is ten, 102 is one hundred,
103 is one thousand. This system is called base-10 since 10 is the base hold-
ing up the exponents. The value of a number is derived from the sum
of the product of each container value and the value of its contents. For
example, the number 5,028 is the sum of 5 thousands, 0 hundreds, 2 tens,
and 8 ones, or 5 × 103 + 0 × 102 + 2 × 101 + 8 × 100, as shown in Figure 1-5.

10 101010

5 820

1 023

Figure 1-5: The number
5,028 in decimal notation

We can use a similar approach to make numbers using bits. Since
we’re using bits instead of digits, we only have two symbols: 0 and 1. But
that’s not a problem. In decimal, we add a container whenever we run
out of room; we can fit a 9 in a single container but need two containers
for 10. That works in binary too; we just need a new container for any-
thing greater than a 1. The rightmost container would still be the ones,
but what’s the next one? It’s the twos. The value of a container in decimal
where there are 10 symbols is 10 times that of the one on the right. Thus,
in binary where there are two symbols, the container value is two times
that of the one on the right. That’s all there is to it! The container values
are powers of 2, which means it’s a base-2 system instead of base-10.

Table 1-1 lists some of the powers of 2. We can use it as a reference to
understand the binary representation of the number 5,028.

The Internal Language of Computers 7

Table 1-1: Powers of 2

Expansion Power Decimal

2 ÷ 2 20 1

2 21 2

2 × 2 22 4

2 × 2 × 2 23 8

2 × 2 × 2 × 2 24 16

2 × 2 × 2 × 2 × 2 25 32

2 × 2 × 2 × 2 × 2 × 2 26 64

2 × 2 × 2 × 2 × 2 × 2 × 2 27 128

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 28 256

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 29 512

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 210 1,024

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 211 2,048

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 212 4,096

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 213 8,192

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 214 16,384

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 215 32,768

Each number in the far- right column of Table 1-1 represents the value
of a binary container. Figure 1-6 shows how the number 5,028 can be written
in binary, using essentially the same process that we used earlier for decimal
notation.

2 222

1 100

2 222

1 101

2 222

0 010

2

0

012312 4567891011

Figure 1-6: The number 5,028 in binary

The result of the conversion to binary is:

1 × 212 + 0 × 211 + 0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 = 5,028

As you can see, the number 5,028 in binary has one 4,096 (212), zero
2,048s (211), zero 1,024s (210), one 512 (29), one 256 (28), and so on to make
up 1001110100100. Performing the same sort of calculation that we do for
decimal numbers, we write 1 × 212 + 0 × 211 + 0 × 210 + 1 × 29 + 1 × 28 + 1 ×
27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20. Substituting the
decimal numbers from Table 1-1, we get 4,096 + 512 + 256 + 128 + 32 + 4,
which is equal to 5,028.

8 Chapter 1

We would say that 5,028 is a four- digit number in decimal. In binary it’s
a 13-bit number.

The number of digits determines the range of values that we can rep-
resent in decimal. For example, 100 different values in the range 0–99 can
be represented by two digits. Likewise, the number of bits determines the
range of values we can represent in binary. For example, 2 bits can repre-
sent four values in the range 0–3. Table 1-2 summarizes both the number
and range of values that we can represent with different numbers of bits.

Table 1-2: Ranges of Binary Number Values

Number of bits Number of values Range of values

4 16 0…15

8 256 0…255

12 4,096 0…4,095

16 65,536 0…65,535

20 1,048,576 0…1,058,575

24 16,777,216 0…16,777,215

32 4,294,967,296 0…4,294,967,295

64 18,446,744,073,709,551,616 0…18,446,744,073,709,551,615

The rightmost bit in a binary number is called the least significant bit and
the leftmost bit is called the most significant bit, because changing the value
of the rightmost bit has the smallest effect on the value of the number and
changing the value of the leftmost bit has the greatest effect. Computer
people are fond of three- letter acronyms, or TLAs as we call them, so these
are commonly referred to as the LSB and MSB. Figure 1-7 shows an example
of the number 5,028 held in 16 bits.

0 0 0 1 0 0 1 11 0 1 0 0 1 0 0
15 67891011121314 12345 0

LSBMSB

Figure 1-7: MSB and LSB

You’ll notice that while the binary representation of 5,028 takes 13 bits,
Figure 1-7 shows it in 16 bits. Just like in decimal, we can always use more
containers than the minimum required by adding leading zeros on the left.
In decimal, 05,028 has the same value as 5,028. Binary numbers are often
represented this way because computers are built around blocks of bits.

Binary Addition
Now that you know how to represent numbers using binary, let’s look
at how to do simple arithmetic with binary numbers. In decimal addi-
tion, we add up each digit from right (least significant digit) to left

The Internal Language of Computers 9

(most significant digit), and if the result is greater than 9, we carry the 1.
Similarly, we add together each bit in a binary number, going from the
least significant to the most significant bit, and if the result is greater
than 1, we carry the 1.

Addition is actually a bit easier in binary because there are only 4 pos-
sible combinations of 2 bits compared to 100 combinations of 2 digits. For
example, Figure 1-8 shows how to add 1 and 5 using binary numbers, show-
ing the number being carried above each column.

5
1

6
1 0 1
1 1 0

0
0

0
1 0

1

Figure 1-8: Binary addition

The number 1 is 001 in binary, while the number 5 is 101 because
(1 × 4) + (0 × 2) + (1 × 1) = 5. To add the binary numbers 001 and 101
together, we start with the least significant bit in the rightmost column.
Adding the binary numbers 1 and 1 in that column gives us 2, but we don’t
have a symbol for 2 in binary. But we know that 2 is actually 10 in binary
([1 × 2] + [0 × 1] = 2), so we put 0 as the sum and carry the 1 to the next
digit. Because the middle bits are zeros, we only have 1, which we carried
over from before, as the sum. Then we add the digits in the leftmost col-
umn: 0 plus 1 is simply 1 in binary. The final result is the binary 110, or 6
in decimal notation, which is what you would get by adding 1 and 5.

You might notice that the rules for binary addition can be expressed in
terms of the logical operations that we discussed previously, as Figure 1-9
illustrates. We’ll see in Chapter 2 that this is in fact how computer hardware
does binary addition.

A + B

0
0

A

1
1

B

0
1

1
0

A

0
0

1
1

B

0
1

1
0

A AND B

0
0

1
0

A XOR B

0
1

0
1

00
01

10
01

Figure 1-9: Binary addition using logical operations

When we add 2 bits together, the value of the result is the XOR of the
2 bits, and the value of the carry is the AND of the 2 bits. You can see that
this is true in Figure 1-9, where adding 1 and 1 in binary results in 10. This
means that the carry value is 1, which is what you get by performing the
expression (1 AND 1). Likewise, the expression (1 XOR 1) yields 0, which
is the value that we assign to the bit position itself.

Adding 2 bits is an operation that rarely happens in isolation. Referring
back to Figure 1-8, it appears that we’re adding 2 bits together in each col-
umn, but we’re really adding 3 because of the carry. Fortunately, we don’t

10 Chapter 1

need to learn anything new to add 3 bits together (because A + B + C is the
same as (A + B) + C, according to the associative rule), so we can add 3 bits
together using a pair of 2-bit adds.

What happens when the result of addition doesn’t fit in the number of
bits that we have? This results in overflow, which happens whenever we have
a carry from the most significant bit. For example, if we have 4-bit num-
bers, and add 1001 (910) to 1000 (810), the result should be 10001 (1710),
but it will end up being 0001 (110) because there’s no place for the most
significant bit. As we’ll see in more detail later, computers have a condition
code register, which is a place that holds odd pieces of information. One of
these is an overflow bit, which holds the carry value from the most signifi-
cant bit. We can look at this value to determine whether or not overflow
occurred.

You’re probably aware that you can subtract one number from another
by adding the negative of that number. We’ll learn how to represent nega-
tive numbers in the next section. Borrowing beyond the most significant bit
is called underflow. Computers have a condition code for this too.

Representing Negative Numbers
All of the numbers we represented using binary in the last section were
positive. But lots of real- world problems involve both positive and negative
numbers. Let’s see how we can use bits to represent negative numbers. For
example, let’s assume that we have 4 bits to play with. As you learned in the
last section, 4 bits can represent 16 numbers in the range of 0 through 15.
Just because we can hold 16 numbers in 4 bits doesn’t mean that those
numbers have to be 0 through 15. Remember, language works through
meaning and context. That means that we can devise new contexts in
which we can interpret bits.

Sign and Magnitude

A sign is commonly used to distinguish negative numbers from positive
ones. The sign has two values, plus and minus, so it can be represented
using a bit. We’ll arbitrarily use the leftmost bit (MSB) for the sign, leaving
us 3 bits that can represent a number between 0 and 7. If the sign bit is 0,
we treat that number as positive. If it’s 1, we treat it as negative. This lets
us represent 15 different positive and negative numbers in total, not 16,
because there is both a positive 0 and a negative 0. Table 1-3 shows how
this allows us to represent the numbers between −7 and +7.

This is called sign and magnitude representation because there’s a bit
that represents a sign and bits that represent the magnitude, or how far the
value is from zero.

Sign and magnitude representation is not used much for two reasons.
First, bits cost money to build, so we don’t want to waste them by having two
different representations for zero; we’d much rather use that bit combina-
tion to represent another number. Second, arithmetic using XOR and AND
doesn’t work using this representation.

The Internal Language of Computers 11

Table 1-3: Sign and Magnitude Binary Numbers

Sign 22 21 20 Decimal

0 1 1 1 +7
0 1 1 0 +6
0 1 0 1 +5
0 1 0 0 +4
0 0 1 1 +3
0 0 1 0 +2
0 0 0 1 +1
0 0 0 0 +0
1 0 0 0 –0
1 0 0 1 –1
1 0 1 0 –2
1 0 1 1 –3
1 1 0 0 –4
1 1 0 1 –5
1 1 1 0 –6
1 1 1 1 –7

Let’s say that we want to add +1 to −1. We’d expect to get 0, but using
sign and magnitude representation we get a different result, as shown in
Figure 1-10.

0
1

1

0
0

0

0
0

1

1
1

0

+1
–1

–2

+

Figure 1-10: Sign and magnitude
addition

As you can see, 0001 represents positive 1 in binary, because its sign
bit is 0. The 1001 represents –1 in binary, because the sign bit is 1. Adding
these together using XOR and AND arithmetic gives us 1010. This evaluates
to –2 in decimal notation, which is not the sum of +1 and –1.

We could make sign and magnitude arithmetic work by using more com-
plicated logic, but there’s value in keeping things as simple as possible. Let’s
explore a few other ways of representing numbers to find a better approach.

One’s Complement

Another way to get negative numbers is to take positive numbers and flip
all the bits, which is called one’s complement representation. We partition the
bits in a manner similar to sign and magnitude. In this context, we get a
complement using the NOT operation. Table 1-4 shows –7 through 7 using
one’s complement.

12 Chapter 1

Table 1-4: One’s Complement Binary Numbers

Sign 22 21 20 Decimal

0 1 1 1 +7
0 1 1 0 +6
0 1 0 1 +5
0 1 0 0 +4
0 0 1 1 +3
0 0 1 0 +2
0 0 0 1 +1
0 0 0 0 +0
1 1 1 1 –0
1 1 1 0 –1
1 1 0 1 –2
1 1 0 0 –3
1 0 1 1 –4
1 0 1 0 –5
1 0 0 1 –6
1 0 0 0 –7

As you can see, flipping each bit of 0111 (+7) yields 1000 (–7).
One’s complement representation still has the problem of two different

representations for zero. It still doesn’t let us perform addition easily, either.
To get around this, we use end- around carry to add 1 to the LSB if there is a
carry out of the most significant position in order to get the correct result.
Figure 1-11 illustrates how this works.

0
0

0

0
0

0

0
0

0

0
1

1

0
1

+1

+

1 1 1
0
0

+2
–1+

1

(End-around carry)

0
1

0
1 0

1

Figure 1-11: One’s complement addition

To add +2 and –1 using one’s complement, we perform binary addition
of 0010 and 1110 as we would normally. Because adding the digits in the
most significant bit (sign bit) results in 10, we bring down 0 and carry the 1
as the end- around carry for each digit. But we only have 4 bits to work with,
so when we get to the MSB, we bring the carry back to the first bit to give
us 0001, or +1, which is the correct sum of +2 and −1. As you can see, making
this work adds a significant amount of complexity.

While this works, it still isn’t a great solution because we need addi-
tional hardware to add the end- around carry bit.

The Internal Language of Computers 13

Neither sign and magnitude nor one’s complement representation is
used in modern computers. Arithmetic using these methods doesn’t work
without extra hardware, and extra hardware costs money. Let’s see if we can
come up with a representation that solves this problem.

Two’s Complement

What would happen if we didn’t add any special hardware and just stuck
with the XOR and AND operations? Let’s figure out what bit pattern, when
added to +1, would result in 0 and call that –1. If we stick with 4-bit numbers,
+1 is 0001. Adding 1111 to it results in 0000, as shown in Figure 1-12, so
we’ll use that bit pattern to represent –1.

1 1 1 0
+1
–1

0 0 0 00

0
10

1
0

1
0

1

Figure 1-12: Finding −1

This is called two’s complement representation, and it’s the most com-
monly used binary representation for signed integers. We can obtain the
negative of a number by complementing the number (that is, doing a NOT
of each bit) and then adding 1, throwing away any carry from the MSB. The
complement of +1, 0001, is 1110, and adding 1 gives us 1111 for –1. Likewise,
+2 is 0010, its complement is 1101, and adding 1 gives us 1110 to represent
–2. Table 1-5 shows –8 through 7 using two’s complement representation.

Table 1-5: Two’s Complement Binary Numbers

Sign 22 21 20 Decimal

0 1 1 1 +7
0 1 1 0 +6
0 1 0 1 +5
0 1 0 0 +4
0 0 1 1 +3
0 0 1 0 +2
0 0 0 1 +1
0 0 0 0 +0
1 1 1 1 –1
1 1 1 0 –2
1 1 0 1 –3
1 1 0 0 –4
1 0 1 1 –5
1 0 1 0 –6
1 0 0 1 –7
1 0 0 0 –8

14 Chapter 1

Let’s try this using 0 to see if two’s complement fixes the issue of dupli-
cate representations for zero. If we take 0000 and flip every bit, we get 1111
as its complement. Adding 1 to 1111 gives us [1]0000, but because this is a
5-bit number that exceeds the number of bits available to us, we can disre-
gard the 1 in the carry bit. This leaves us with 0000, which is what we started
with, so zero has only one representation in two’s complement.

Programmers need to know how many bits are required to hold the
numbers they need. This will eventually become second nature. In the
meantime, you can refer to Table 1-6, which shows the range of values
that we can represent using two’s complement numbers of various sizes.

Table 1-6: Ranges of Two’s Complement Binary Number Values

Number of bits Number of values Range of values

4 16 –8…7

8 256 –128…127

12 4,096 2,048…2,047

16 65,536 –32,768…32,767

20 1,048,576 –524,288…524,287

24 16,777,216 –8,388,608…8,388,607

32 4,294,967,296 –2,147,483,648…2,137,483,647

64 18,446,744,073,709,551,616 –9,223,372,036,854,775,808
…9,223,372,036,854,775,807

As you can see from Table 1-6, as the number of bits increases, the
range of values that can be represented increases exponentially. It’s impor-
tant to keep in mind that we always need context to determine whether a
4-bit number that we’re looking at is a 15 instead of a –1 using two’s comple-
ment, a –7 using sign and magnitude, or a –0 using one’s complement. You
have to know which representation you’re using.

Representing Real Numbers
So far, we’ve managed to represent whole numbers using binary. But what
about real numbers? Real numbers include a decimal point in base 10. We
need some way to represent the equivalent binary point in base 2. Once
again, this can be accomplished by interpreting bits in different contexts.

Fixed-Point Representation
One way to represent fractions using binary is by choosing an arbitrary place
for a binary point, the binary equivalent of the decimal point. If we have 4 bits,
for example, we can pretend that two of them are to the right of the binary
point, representing four fractional values, and two are to the left, represent-
ing four whole values. This is called a fixed- point representation, because the
location of the binary point is fixed. Table 1-7 shows how this would work.

The Internal Language of Computers 15

Table 1-7: Fixed- Point Binary Numbers

Whole Fraction Value

0 0 . 0 0 0

0 0 . 0 1 ¼

0 0 . 1 0 ½

0 0 . 1 1 ¾

0 1 . 0 0 1

0 1 . 0 1 1¼

0 1 . 1 0 1½

0 1 . 1 1 1¾

1 0 . 0 0 2

1 0 . 0 1 2¼

1 0 . 1 0 2½

1 0 . 1 1 2¾

1 1 . 0 0 3

1 1 . 0 1 3¼

1 1 . 1 0 3½

1 1 . 1 1 3¾

The whole numbers to the left of the point should look familiar from
binary notation. Similar to what we saw with integers, we have four values
from the 2 bits to the right of the point; they represent fourths instead of
the familiar tenths from decimal.

While this approach works pretty well, it’s not often used in general-
purpose computers because it takes way too many bits to represent a use-
ful range of numbers. Certain special- purpose computers, called digital
signal processors (DSP), still use fixed- point numbers. And, as you’ll see in
Chapter 11, fixed-point numbers are useful in certain applications.

General- purpose computers are built to solve general- purpose problems,
which involve a wide range of numbers. You can get an idea of this range
by skimming a physics textbook. For example, there are tiny numbers such
as Planck’s constant (6.63 × 10−34 joule- seconds) and huge numbers such as
Avogadro’s constant (6.02 × 1023 molecules/mole). This is a range of 1057,
which comes out to about 2191. That’s almost 200 bits! Bits just aren’t cheap
enough to use a few hundred of them to represent every number, so we
need a different approach.

Floating- Point Representation
We solve this using a binary version of the scientific notation used to rep-
resent the wide range of numbers that includes Planck’s and Avogadro’s
constants. Scientific notation represents a large range of numbers by (how
else?) creating a new context for interpretation. It uses a number with a
single digit to the left of the decimal point, called the mantissa, multiplied

16 Chapter 1

by 10 raised to some power, called the exponent. Computers use the same
system, except that the mantissa and exponent are binary numbers and 2 is
used instead of 10.

This is called floating- point representation, which is confusing because
the binary (or decimal) point is always in the same place: between the ones
and halves (tenths in decimal). The “float” is just another way of saying
“scientific notation,” which allows us to write 1.2 × 10–3 instead of 0.0012.

Note that we don’t need any bits to indicate that the base is 2, because
the floating- point definition says that it’s there by default. By separating the
significant digits from the exponents, the floating- point system allows us to
represent very small or very large numbers without having to store all those
zeros.

Table 1-8 shows a 4-bit floating- point representation with 2 bits of man-
tissa and 2 bits of exponent.

Table 1-8: Floating- Point Binary Numbers

Mantissa Exponent Value

0 0 . 0 0 0 (0 × 20)

0 0 . 0 1 0 (0 × 21)

0 0 . 1 0 0 (0 × 21)

0 0 . 1 1 0 (0 × 23)

0 1 . 0 0 0.5 (½ × 20)

0 1 . 0 1 1.0 (½ × 21)

0 1 . 1 0 2.0 (½ × 22)

0 1 . 1 1 4.0 (½ × 23)

1 0 . 0 0 1.0 (1 × 20)

1 0 . 0 1 2.0 (1 × 21)

1 0 . 1 0 4.0 (1 × 22)

1 0 . 1 1 8.0 (1 × 23)

1 1 . 0 0 1.5 (1½ × 20)

1 1 . 0 1 3.0 (1½ × 21)

1 1 . 1 0 6.0 (1½ × 22)

1 1 . 1 1 12.0 (1½ × 23)

While this example uses only a few bits, it reveals some inefficiencies
present in this floating- point system. First, you’ll notice that there are a lot
of wasted bit combinations. For example, there are four ways to represent 0
and two ways to represent 1.0, 2.0, and 4.0. Second, there aren’t bit patterns
for every possible number; the exponent makes numbers farther apart as
they get bigger. One of the side effects is that, while we can add 0.5 and 0.5
to get 1.0, we can’t add 0.5 and 6.0 because there’s no bit pattern that repre-
sents 6.5. (There is a whole subbranch of mathematics, called numerical analy-
sis, that involves keeping track of how inaccurate calculations are.)

The Internal Language of Computers 17

The IEEE Floating- Point Standard
Strange as it is, the floating- point system is the standard way to repre-
sent real numbers in computing. More bits are used than in Table 1-8,
and there are two signs, one for the mantissa and a hidden one that is
part of the exponent. There are also a lot of tricks to make sure that things
like rounding work as well as possible and to minimize the number of
wasted bit combinations. A standard called IEEE 754 spells all of this
out. IEEE stands for the Institute of Electrical and Electronic Engineers,
which is a professional organization whose activities include producing
standards.

We want to maximize our precision given the available bits. One
clever trick is called normalization, which adjusts the mantissa so that there
are no leading (that is, on the left) zeros. Every left adjustment of the
mantissa requires a corresponding adjustment of the exponent. A second
trick, from Digital Equipment Corporation (DEC), doubles the accuracy
by throwing away the leftmost bit of the mantissa since we know that it
will always be 1, which makes room for one more bit.

You don’t need to know all of the gory details of IEEE 754 (yet). But
you should know about two types of floating- point numbers that you’ll
run into a lot: single precision and double precision. Single- precision
numbers use 32 bits and can represent numbers approximately in the
range ±10

±38 with about 7 digits of accuracy. Double- precision numbers
use 64 bits and can represent a wider range of numbers, approximately
±10

±308, with about 15 digits of accuracy. Figure 1-13 shows how they’re
laid out.

Mantissa

0

Single precision

Exponent

223031

S

Mantissa (high)

32

Double precision

Exponent

63

S

Mantissa (low)

5162

23

031

52

Figure 1-13: IEEE floating- point number formats

Both formats have a sign bit for the mantissa—the S in Figure 1-13. You
can see that double- precision numbers have three more exponent bits than
single precision, giving eight times the range. Double- precision numbers
also have 29 more mantissa bits than single- precision ones, yielding greater
accuracy. This all comes at the cost of taking twice as many bits as single-
precision numbers, however.

18 Chapter 1

You might have noticed that there is no explicit sign bit for the expo-
nent. The designers of IEEE 754 decided that the exponent values of all
0s and all 1s would have special meaning so the actual exponent had to be
crammed into the remaining bit patterns. They did this by using a biased
(offset) exponent value. For single- precision numbers, the bias is 127, which
means that the bit pattern for 127 (01111111) represents an exponent of 0.
The bit pattern for 1 (00000001) represents an exponent of –126, and 254
(11111110) represents +127. Double precision is similar except that the bias
is 1023.

One other handy part of IEEE 754 is that it has special bit patterns to
represent things like division by zero, which evaluates to positive or negative
infinity. It also specifies a special value called NaN, which stands for “not a
number”—so if you find yourself in the NaNny state, it probably means that
you did some illegal arithmetic operation. These special bit patterns use the
reserved exponent values discussed previously.

Binary- Coded Decimal System
You’ve just seen some of the more common ways to represent numbers in
binary, but there are many alternative systems. One is binary- coded decimal
(BCD), in which we use 4 bits to represent each decimal digit. For example,
the number 12 in binary is 1100. But in BCD, it’s 0001 0010, where 0001
represents 1 in the tens digit and 0010 represents 2 in the ones digit. This
is a much more familiar and comfortable representation for people who
are used to working in decimal.

Computers used to know how to operate on BCD numbers, but that
system is no longer mainstream. However, it does crop up in many places, so
it’s worth knowing about. In particular, many devices with which computers
interact, such as displays and accelerometers, use BCD.

The main reason the BCD system has fallen out of favor is that it doesn’t
use bits as efficiently as binary. You can see that BCD needs more bits than
binary to represent a number. While bits are much cheaper than they used
to be, they’re not so cheap that we want to throw away 6 out of every 16 bit
combinations, as that would be equivalent to wasting a whopping 37.5 per-
cent of available bits.

Easier Ways to Work with Binary Numbers
It’s a well- known fact that manipulating binary numbers leads to blindness;
it can be visually exhausting! People have come up with a few ways to make
binary numbers easier to read. We’ll look at a few of them here.

Octal Representation
One eyeball-friendly approach is octal representation. Octal means base-8,
and the idea behind octal representation is to group bits in threes. As

The Internal Language of Computers 19

you should know by now, 3 bits can be used to represent 23, or eight values
from 0 through 7. Let’s say that we have some monster binary number
like 100101110001010100. This hurts my eyeballs. Figure 1-14 shows how to
transform it into octal representation.

100 010001110101 100

4 5 4216

Figure 1-14: Octal representation
of binary numbers

As you can see, we divide the bits into groups of three, and we assign the
octal value to each group to get 456124, which is a lot easier to read. To get
the octal value of 100, for example, we simply treat it as a binary number:
(1 × 22) + (0 × 21) + (0 × 20) = 4.

Hexadecimal Representation
Octal representation is still in use, but not as widely as in the past. Hexadecimal
representation (meaning base-16) has pretty much taken over because the
insides of computers are built in multiples of 8 bits these days, which is
evenly divisible by 4 but not by 3.

It was easy to repurpose some of the symbols from our familiar digits for
binary because we needed only two of them, the 0 and 1. We needed only 8
of the 10 for octal. But we need 16 for hexadecimal, which is more than
we have. We need a symbol to represent 10, another for 11, all the way up
through 15. We make believe (I told you that we’d be doing that) that the sym-
bols abcdef (or ABCDEF) represent the values 10 through 16. For example,
let’s say we have another scary binary number like 11010011111111000001.
Figure 1-15 shows how to convert it into hexadecimal.

1101 0001110011110011

d 3 1cf

Figure 1-15: Hexadecimal representation
of binary numbers

In this example, we divide the bits into groups of four. Then we assign
one of the 16 symbol values (0123456789abcdef) to each group. For example,
1101 (the first group of 4 bits) would be d because it evaluates to 1(23) + 1(22)
+ 0(21) + 1(20) = 13 in decimal notation and d represents the number 13.
We map the next group of 4 bits (0011) to another symbol, and so on. For
example, 11010011111111000001 converts to d3fc1 in hexadecimal. Table 1-9
shows a handy list of hexadecimal values that you can refer to until they
become second nature.

20 Chapter 1

Table 1-9: Binary- to- Hexadecimal Conversion

Binary Hexadecimal Binary Hexadecimal

0000 0 1000 8
0001 1 1001 9
0010 2 1010 a
0011 3 1011 b
0100 4 1100 c
0101 5 1101 d
0110 6 1110 e
0111 7 1111 f

Representing the Context
How do you know how to interpret a number? For example, the number 10
is 2 if it’s a binary number, 8 if it’s octal, 10 if it’s decimal, and 16 if it’s
hexadecimal. Math books use subscripts, so we can use those to distinguish
between them like this: 102, 108, 1010, or 1016. But subscripts are inconvenient
to type on a computer keyboard. It would be nice if we could use a consistent
notation, but unfortunately lots of people think they have a better way and
keep inventing new ones. The following notations are used by many computer
programming languages:

•	 A number that begins with a 0 is an octal number—for example, 017.

•	 A number that begins with one of the digits 1 through 9 is a decimal
number—for example, 123.

•	 A number that’s prefixed with 0x is a hexadecimal number—for
example, 0x12f.

Note that we can’t tell the difference between octal and decimal 0, but
that’s not important because they have the same value. And few programing
languages have a notation for binary because it really isn’t used very much
anymore and can usually be determined by context. Some languages, such
as C++, use a 0b prefix to represent binary numbers.

Naming Groups of Bits
Computers are not just unorganized buckets of bits. The people who
design them have to make decisions about the number of bits and their
organization for cost reasons. Just as with number representations, many
ideas have been tried, and only some have survived.

Bits are too small a unit to be very useful, so they’re organized into
larger chunks. For example, the Honeywell 6000 series of computers
used 36-bit chunks as its basic organization and allowed those to be par-
titioned into 18-, 9-, or 6-bit chunks or combined into 72-bit chunks. The

The Internal Language of Computers 21

DEC PDP-8, the first commercial minicomputer (introduced in 1965), used
12-bit chunks. Over time the world has settled on 8-bit chunks as a funda-
mental unit, which we call a byte.

Chunks of different sizes have names to make them easier to reference.
Table 1-10 summarizes the names and sizes of some of the common units in
use today.

Table 1-10: Names for Bit Collections

Name Number of bits

Nibble 4

Byte 8

Half word 16

Long word 32

Double word 64

You might be wondering why we have half, long, and double words
but no plain words. Word is used to describe the natural size of things in
a particular computer design. The natural size refers to the largest chunk
that can be operated on quickly. For example, although you could access
bytes, half words, and long words on the DEC PDP-11, it had a 16-bit internal
organization, making the natural size 16 bits. Programming languages
such as C and C++ allow variables to be declared as int (short for integer),
which makes them the natural size. You can also declare variables using a
set of supported specific sizes.

There are some standard terms that make it easy to refer to big num-
bers. Well, there was a standard, and now it’s been replaced with a new
one. Engineers have a habit of finding words that mean something close
to what they want, and then using them as if they mean what they want.
For example, in the metric system kilo means thousand, mega means million,
giga means billion, and tera means trillion. These terms have been borrowed
but changed a little because we use base-2 in computing instead of base-10.
When we talk about a kilobit or kilobyte (K or KB) in computing, however, we
don’t actually mean a thousand. We mean the closest thing to a thousand in
base-2, which would be 1,024, or 210. The same goes for megabyte (M or MB),
which is 220; giga (G or GB), which is 230; and tera (T or TB), which is 240.

But sometimes we do mean the base-10 version. You need to know the
context in order to know which interpretation to apply. Traditionally, the
base-10 version was used to refer to the size of disk drives. An American
lawyer feigned ignorance about this and sued (Safier v. WDC), claiming that
a disk drive was smaller than advertised. (In my opinion, this was just as
dumb as the lawsuits claiming that 2 × 4 lumber doesn’t actually measure
2 inches by 4 inches, despite the fact that those have always been the dimen-
sions of the unplaned, unfinished lumber.) This led to the creation of new
IEC standard prefixes: kibi (KiB) for 210, mebi (MiB) for 220, gibi (GiB) for 230,
and tebi (TiB) for 240. These are slowly catching on, although “kibis” sounds
like dog food to me.

22 Chapter 1

The term character is often used interchangeably with byte because, as
we’ll see in the next section, characters’ codes have typically been designed
to fit in bytes. Now, with better support for non-English languages, there’s
often a need to talk about multibyte characters.

Representing Text
At this point, you’ve learned that bits are all we have to work with in com-
puters and that we can use bits to represent other things, such as numbers.
It’s time to take it to the next level and use numbers to represent other
things, such as the letters and other symbols on your keyboard.

The American Standard Code for Information Interchange
There were several competing ideas for representing text, just like we saw
for number representations. The winner, from back in 1963, is called the
American Standard Code for Information Interchange (ASCII), which assigns
7-bit numeric values to all of the symbols on the keyboard. For example, 65
means capital A, 66 means capital B, and so on. The losing idea was IBM’s
Extended Binary- Coded Decimal Interchange Code (EBCDIC), which was based on
the encoding used for punched cards. And, yes, the “BCD” part of EBCDIC
stands for the same binary- coded decimal that we saw earlier. Table 1-11
shows the ASCII code chart.

Table 1-11: ASCII Code Chart

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 SP 64 40 @ 96 60 `

1 01 SOH 33 21 ! 65 41 A 97 61 a

2 02 STX 34 22 " 66 42 B 98 62 b

3 03 ETX 35 23 # 67 43 C 99 63 c

4 04 EOT 36 24 $ 68 44 D 100 64 d

5 05 ENQ 37 25 % 69 45 E 101 65 e

6 06 ACK 38 26 & 70 46 F 102 66 f

7 07 BEL 39 27 ' 71 47 G 103 67 g

8 08 BS 40 28 (72 48 H 104 68 h

9 09 HT 41 29) 73 49 I 105 69 i

10 0A NL 42 2A * 74 4A J 106 6A j

11 0B VT 43 2B + 75 4B K 107 6B k

12 0C FF 44 2C , 76 4C L 108 6C l

13 0D CR 45 2D - 77 4D M 109 6D m

14 0E SO 46 2E . 78 4E N 110 6E n

15 0F SI 47 2F / 79 4F O 111 6F o

16 10 DLE 48 30 0 80 5 P 112 70 p

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r

The Internal Language of Computers 23

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ^ 126 7E ~
31 1F US 63 3F ? 95 5F _ 127 7F DEL

Let’s find the letter A in this table. You can see that it has a decimal
value of 65, which is 0x41 in hexadecimal—that’s also 0101 in octal. As it
turns out, ASCII character codes are one place where octal is still used a
lot, for historical reasons.

You’ll notice a lot of funny codes in the ASCII table. They’re called
control characters because they control things as opposed to printing. Table 1-12
shows what they stand for.

Table 1-12: ASCII Control Characters

NUL null SOH start of heading

STX start of text ETX end of text

EOT end of transmission ENQ enquiry

ACK acknowledge BEL bell

BS backspace HT horizontal tab

NL new line VT vertical tab

FF form feed CR carriage return

SO shift out SI shift in

DLE data link escape DC1 device control #1

DC2 device control #2 DC3 device control #3

DC4 device control #4 NAK negative acknowledgment

SYN synchronous idle ETB end of transmission block

CAN cancel EM end of medium

SUB substitute ESC escape

FS file separator GS group separator

RS record separator US unit separator

SP space DEL delete

24 Chapter 1

Many of these were intended for communications control. For example,
ACK (acknowledgment) means “I got the message,” and NAK (negative acknowl-
edgment) means “I didn’t get the message.”

The Evolution of Other Standards
ASCII worked for a while because it contained the characters necessary for
the English language. Most of the early computers were American, and the
ones that weren’t were British. The need to support other languages grew
as computers became more widely available. The International Standards
Organization (ISO) adopted ISO-646 and ISO-8859, which are basically ASCII
with some extensions for the accent symbols and other diacritical marks
used in European languages. The Japanese Industrial Standards (JIS) com-
mittee came up with JIS X 0201 for Japanese characters. There are also
Chinese standards, Arabic standards, and more.

One reason for all of the different standards is that they were created at
a time when bits were a lot more expensive than they are today, so charac-
ters were packed into 7 or 8 bits. As the price of bits began to fall, a newer
standard called Unicode was crafted that assigned 16-bit codes to characters.
At the time, it was believed that 16 bits would be enough to hold all of the
characters in all languages on Earth with room to spare. Unicode has since
been extended to 21 bits (of which 1,112,064 values are valid), which we
think will do the job, but even that might not last given our propensity to
create new cat emojis.

Unicode Transformation Format 8-bit
Computers use 8 bits to store an ASCII character because they’re not
designed to handle 7-bit quantities. Again, while bits are a whole lot
cheaper than they used to be, they’re not so cheap that we want to use
16 of them to store a single letter when we can get by with using just 8.
Unicode addresses this problem by having different encodings for the
character codes. An encoding is a bit pattern that represents another bit
pattern. That’s right—we’re using abstractions like bits to create numbers
that represent characters and then using other numbers to represent those
numbers! You see what I meant by make- believe? There’s one encoding
in particular called Unicode Transformation Format–8 bit (UTF-8), invented
by American computer scientist Ken Thompson and Canadian program-
mer Rob Pike, that we use most commonly for its efficiency and backward
compatibility. UTF-8 uses 8 bits for each ASCII character so that it doesn’t
consume any additional space for ASCII data. It encodes non- ASCII char-
acters in a way that doesn’t break programs that expect ASCII.

UTF-8 encodes characters as a sequence of 8-bit chunks, often called
octets. A clever aspect of UTF-8 is that the number of most significant ones
in the first chunk yields the length of the sequence, and it’s easy to recognize
the first chunk. This is useful because it allows programs to easily find char-
acter boundaries. The ASCII characters all fit in 7 bits, so they take one
chunk apiece, which is pretty convenient for us English speakers because
it’s more compact than for other languages that need non- ASCII symbols.
Figure 1-16 illustrates how UTF-8 encodes characters compared to Unicode.

The Internal Language of Computers 25

0 0 0 0 0 0 0 00 0 1 0 0 0 1 1

15 67891011121314 12345 0
Unicode A
(0x0041)

0 0 1 0 0 0 1 1

67 12345 0

UTF-8 A
(0x41)

0 0 0 0 0 0 1 11 1 0 0 0 0 0 0

15 67891011121314 12345 0
Unicode �
(0x03C0)

1 0 0 0 0 0 0 0

67 12345 0

1 1 0 0 1 1 1 1

67 12345 0

UTF-8 �
(0xCF 0x80)

0 0 1 0 0 1 1 00 1 1 0 0 0 1 1

15 67891011121314 12345 0
Unicode �
(0x2663)

1 0 1 0 0 0 1 1

67 12345 0

1 0 0 1 1 0 0 1

67 12345 0

1 1 1 0 0 0 1 0

67 12345 0

UTF-8 �
(0xE2 0x99 0xA3)

Figure 1-16: Examples of UTF-8 encoding

In Figure 1-16, we can see that the numeric code for the letter A is
identical in ASCII and Unicode. To encode A in UTF-8, we say that what-
ever codes that fit in 7 bits get a single UTF-8 chunk with the MSB set to 0.
This is why there’s a leading 0 in the UTF-8 for the letter A. Next we see the
Unicode for the π symbol, which does not fit in 7 bits but does fit into 11.
To encode π in UTF-8, we use two 8-bit chunks with the first chunk start-
ing with 110 and the second with 10, which leaves 5 and 6 bits left over in
each chunk respectively to hold the remaining code. Finally, we see the
Unicode for ♣, which fits in 16 bits and so takes three UTF-8 chunks.

Using Characters to Represent Numbers
UTF-8 uses numbers to represent numbers that represented numbers made
from bits that represented characters. But we’re not done yet! Now we’re
going to use characters to represent some of those numbers. People wanted
to send more than text between computers in the early days of computer-to-
computer communication; they wanted to send binary data. But doing this
wasn’t straightforward because, as we saw earlier, many of the ASCII values
were reserved for control characters, and they weren’t handled consistently
between systems. Also, some systems supported transmission of only 7-bit
characters.

26 Chapter 1

Quoted-Printable Encoding
Quoted-Printable encoding, also known as QP encoding, is a mechanism that
allows 8-bit data to be communicated over a path that only supports 7-bit data.
It was created for email attachments. This encoding allows any 8-bit byte value
to be represented by three characters: the character = followed by a pair of
hexadecimal numbers, one for each nibble of the byte. Of course, in doing
this, the = now has special meaning and so must be represented using =3D,
its value from Table 1-11.

Quoted-Printable encoding has a few extra rules. The tab and space
characters must be represented as =09 and =20, respectively, if they occur
at the end of a line. Lines of encoded data can’t be more than 76 characters
in length. An = at the end of a line is a soft line break that is removed when
the data is decoded by the recipient.

Base64 Encoding
While Quoted-Printable encoding works, it’s not very efficient because it takes
three characters to represent a byte. Base64 encoding is more efficient,
which was really important when computer-to-computer communication
was much slower than it is today. Base64 encoding packs 3 bytes of data into
4 characters. The 24 bits of data in the three bytes is partitioned into four
6-bit chunks, each of which is assigned a printing character, as shown in
Table 1-13.

Table 1-13: Base64 Character Encoding

Number Character Number Character Number Character Number Character

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

The Internal Language of Computers 27

The bytes 0, 1, 2 would be encoded as AAEC. Figure 1-17 shows how this
is accomplished.

0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0

2(C)4(E)0(A)0(A)

21

Figure 1-17: Base64 encoding

This encoding converts every set of 3 bytes to four characters. But
there’s no guarantee that the data will be a multiple of 3 bytes in length.
This is solved with padding characters; a = would be tacked on to the end if
there were only 2 bytes at the end and == if there were only 1 byte.

This encoding is still commonly used for email attachments.

URL Encoding
You saw above that the Quoted-Printable encoding gave special power to
the = character, and that the encoding included a mechanism for represent-
ing the = without its special powers. An almost identical scheme is used in
web page URLs.

If you’ve ever examined a web page URL, you may have noticed char-
acter sequences such as %26 and %2F. These exist because certain charac-
ters have special meaning in the context of a URL. But sometimes we need
to use those characters as literals—in other words, without those special
meanings.

As we saw in the last section, characters are represented as a sequence
of 8-bit chunks. Each chunk can be represented by two hexadecimal
characters, as Figure 1-16 demonstrated. URL encoding, also known as
percent- encoding, replaces a character with a % followed by its hexadecimal
representation.

For example, the forward slash character (/) has special meaning in a
URL. It has an ASCII value of 47, which is 2F in hex. If we need to use
a / in a URL without triggering its special meaning, we replace it with %2F.
(And because we’ve just given a special meaning to the % character, it needs
to be replaced by %25 if we literally mean %.)

Representing Colors
Another common use of numbers is to represent colors. You already know
that numbers can be used to represent coordinates on a graph. Computer
graphics involves making pictures by plotting blobs of color on the equiva-
lent of electronic graph paper. The blob plotted at each coordinate pair is
called a picture element or, more commonly, pixel.

28 Chapter 1

Computer monitors generate color by mixing red, green, and blue
lights using the aptly named RGB color model. The colors can be repre-
sented by a color cube, in which each axis represents a primary color, as
shown in Figure 1-18. A value of 0 means that a particular light is off,
and 1 means that it’s as bright as it can get.

Blue
(0, 0, 1)

(0, 1, 1)

(1, 1, 1)

(0, 0, 0)

(1, 1, 0)(1, 0, 0)

(1, 0, 1)

Red

Magenta

(0, 1, 0)
Green

Gray line

White

Black

Cyan

Yellow

Figure 1-18: An RGB color cube

You can see that the color is black if no lights are on and white if all of
the lights are fully up, meaning they’re at maximum brightness. A shade
of red results if only the red light is on. Mixing red and green creates
yellow. Gray results from setting all three lights to the same level. This way
of mixing colors is called an additive color system, as adding the primaries
produces different colors. Figure 1-19 shows the coordinates of a few colors
in the color cube.

Maroon (0.5, 0, 0)

B

G

R Purple (0.5, 0, 0.5)

B

G

R Olive (0.5, 0.5, 0)

B

G

R

Figure 1-19: RGB color cube examples

If you’ve tried your hand at painting, you’re probably more familiar
with a subtractive color system, in which the primaries are cyan, magenta,
and yellow. A subtractive color system produces colors by removing

The Internal Language of Computers 29

wavelengths from white light rather than by adding colored light as in the
additive system. While neither color system can produce all of the colors
that your eye can see, the subtractive system can produce more than the
additive system. A whole set of prepress technologies exists to make it possible
for artists to work on computer monitors and still have their designs look
correct when printed in magazines. If you’re really interested in color,
read A Field Guide to Digital Color by Maureen Stone.

The human eye is a very messy piece of machinery that evolved for
survival, not computing. It can distinguish around 10 million colors, but it’s
not linear; doubling the light level doesn’t necessarily translate to doubling
perceived brightness. Even worse, the eye’s response changes slowly over
time in response to overall light level. This is called dark adaptation. And the
response is different for different colors; the eye is very sensitive to changes
in green but relatively insensitive to changes in blue, a phenomenon that
was exploited in the National Television System Committee (NTSC) stan-
dard. Modern computers have settled on rounding up 10 million to the
nearest power of 2 and using 24 bits to represent color. These 24 bits are
divided up into three 8-bit fields, one for each of the color primaries.

You might have noticed that there is no name for 24 bits in Table 1-10.
That’s because modern computers aren’t designed to operate on 24-bit
units (although there were a few 24-bit machines, such as the Honeywell
DDP-224). As a result, colors get packed into the nearest standard size,
which is 32 bits (long word), as shown in Figure 1-20.

Blue

7 016 15232431

GreenRedUnused

8

Figure 1-20: RGB color packing

You can see that this scheme leaves 8 unused bits for every color. That’s
a lot, considering that computer monitors today have in excess of 8 million
pixels. We can’t just let those bits go to waste, so what can we do with them?
The answer is that we can use them for something that’s missing from our
discussion of color above: transparency, meaning how much you can “see
through” the color. So far, we’ve only discussed opaque colors, but those
can’t be used for rose- colored glasses, for example.

Adding Transparency
In early animated movies, each frame was drawn by hand. Not only was
this very labor- intensive, but there was also a lot of visual “ jitter,” because
it was impossible to exactly reproduce the background on each frame.
American animators John Bray (1879–1978) and Earl Hurd (1880–1940)
solved this problem with their invention of cel animation in 1915. In cel ani-
mation, moving characters were drawn on transparent sheets of celluloid,
which could then be moved over a static background image.

30 Chapter 1

Although computer animation traces its roots back to the 1940s, it
really took off in the 1970s and 1980s. Computers weren’t fast enough back
then to do everything that movie directors wanted (and likely never will be
because, well, directors). And a mechanism was needed to combine objects
generated by different algorithms. Like cel animation, transparency allows
for compositing, or combining together images from different sources. You’re
probably familiar with this concept if you’ve ever played with an image edi-
tor like GIMP or Photoshop.

In 1984, Tom Duff and Thomas Porter at Lucasfilm invented a way to
implement transparency and compositing that has since become standard.
They added a transparency value called alpha (α) to each pixel. The α is a
mathematical value between 0 and 1, where 0 means that a color is com-
pletely transparent and 1 means that a color is completely opaque. A set of
compositing algebra equations define how colors with different alphas com-
bine to produce new colors.

Duff and Porter’s implementation is clever. Since they’re not using
a floating- point system, they represent an α value of 1 using 255, taking
advantage of those extra 8 bits in Figure 1-20. Rather than storing red,
green, and blue, Duff and Porter store the color values multiplied by α. For
example, if the color were medium red, it would have a value of 200 for
red and 0 for green and blue. The red value would be 200 if it were opaque
because the α would be 1 (with an α value represented by 255). But the α of
a medium red color that was half transparent would be 0.5, so the stored
value for red would be 200 × 0.5 = 100 and the stored α would be 127 (255 ×
0.5 = 127). Figure 1-21 shows the storage arrangement for pixels with α.

�Blue × �Green × �Red × �

7 016 15232431 8

Figure 1-21: RGBα color packing

Compositing images, therefore, involves multiplying the color values
by α. Storing colors in premultiplied form means we don’t have to do these
multiplications every time a pixel is used.

Encoding Colors
Because web pages are primarily text documents, meaning they’re a
sequence of human- readable characters often in UTF-8, we need a way
of representing colors using text.

We do this in a manner similar to URL encoding, specifying colors
using hex triplets. A hex triplet is a # followed by six hexadecimal values
formatted as #rrggbb where rr is the red value, gg is the green value, and
bb is the blue value. For example, #ffff00 would be yellow, #000000 would
be black, and #ffffff would be white. Each of the three 8-bit color values is
converted to a two- character hexadecimal representation.

Although α is also available in web pages, there is no concise format for
its representation. It uses yet another set of schemes entirely.

The Internal Language of Computers 31

Summary
In this chapter, you learned that although bits are conceptually simple, they
can be used to represent complex things like very large numbers, characters,
and even colors. You learned how to represent decimal numbers in binary,
perform simple arithmetic using binary numbers, and represent negative
numbers and fractions. You also learned different standards for encoding
letters and characters using bits.

There’s a geek joke that goes, “There are 10 types of people in the
world—those who understand binary and those who don’t.” You should
now be in the first of those categories.

In Chapter 2, you’ll learn some hardware basics that will help you
understand the physical components of a computer and why computers
use bits in the first place.

2
C O M B I N A T O R I A L L O G I C

In the 1967 Star Trek episode “The City
on the Edge of Forever,” Mr. Spock says,

“I am endeavoring, ma’am, to construct a
 mnemonic memory circuit using stone knives

and bearskins.” Like Mr. Spock, people have come up
with all sorts of ingenious ways to build computing
 devices using the resources available to them. Few fundamental technolo-
gies were invented explicitly for computing; most were invented for other
purposes and then adapted for computing. This chapter covers some of
this evolution, leading up to the convenient but fairly recent innovation
of electricity.

In Chapter 1, you learned that modern computers use binary containers
called bits for their internal language. You may wonder why computers use
bits when decimal numbers work fine for people. In this chapter, we’ll start
by looking at some early computing devices that didn’t use bits to learn why
bits are the right choice for the technology available today. Bits aren’t found
naturally in a useful form for computing, so we’ll talk about what’s needed

34 Chapter 2

to make them. We’ll work through some older, simpler technologies like
relays and vacuum tubes, then compare them to the modern implementation
of bits in hardware using electricity and integrated circuits.

The discussion of bits in Chapter 1 was pretty abstract. Here we’ll
be getting down to the nitty- gritty. Physical devices, including those that
operate on bits, are called hardware. We’ll talk about hardware that imple-
ments combinatorial logic, another name for the Boolean algebra discussed
in Chapter 1. And just as you did in that chapter, here you’ll learn about
the simple building blocks first and then we’ll combine them to yield more
complex functionality.

The Case for Digital Computers
Let’s begin by looking at some gear- based mechanical computing devices
that predate the modern era. When two gears are meshed together, the ratio
of the number of teeth on each gear determines their relative speed, making
them useful for multiplication, division, and other calculations. One gear-
based mechanical device is the Antikythera mechanism, the oldest known
example of a computer, found off a Greek island and dating back to around
100 bce. It performed astronomical calculations whereby the user entered
a date by turning a dial and then turned a crank to get the positions of the
sun and the moon on that date. Another example is World War II–era artil-
lery fire control computers, which performed trigonometry and calculus
using lots of strangely shaped gears with a complex design that made them
works of art as well.

An example of a mechanical computer that doesn’t use gears is the slide
rule, invented by English minister and mathematician William Oughtred
(1574–1660). It’s a clever application of logarithms that were discovered by
Scottish physicist, astronomer, and mathematician John Napier (1550–1617).
The basic function of a slide rule is to perform multiplication by exploiting
the fact that log(x × y) = log(x) + log(y).

A slide rule has fixed and moving scales marked in logarithms. It com-
putes the product of two numbers by lining up the fixed x scale with the
moving y scale, as shown in Figure 2-1.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

log(1.5)

log(1.5) + log(3) = log(4.5)

log(3)

Figure 2-1: Slide rule addition

Considered by many to be the first mass- produced computing device,
the slide rule is a great example of how people solved a problem using the
technology available to them at the time. Today, airplane pilots still use

Combinatorial Logic 35

a circular version of the slide rule called a flight computer that performs
navigation- related calculations as a backup device.

Counting is a historically important application of computing devices.
Because of our limited supply of fingers—and the fact that we need them for
other things—notched bones and sticks called tally sticks were used as com-
puting aids as early as 18,000 bce. There is even a theory that the Egyptian
Eye of Horus was used to represent binary fractions.

English polymath Charles Babbage (1791–1871) convinced the British
government to fund the construction of a complex decimal mechanical cal-
culator called a difference engine, which was originally conceived by Hessian
army engineer Johann Helfrich von Müller (1746–1830). Popularized by
the William Gibson and Bruce Sterling novel named after it, the difference
engine was ahead of its time because the metalworking technologies of the
period were not up to the task of making parts with the required precision.

Simple decimal mechanical calculators could be built, however, as they
didn’t require the same level of metalworking sophistication. For example,
adding machines that could add decimal numbers were created in the mid-
1600s for bookkeeping and accounting. Many different models were mass-
produced, and later versions of adding machines replaced hand- operated
levers with electric motors that made them easier to operate. In fact, the
iconic old- fashioned cash register was an adding machine combined with a
money drawer.

All of these historical examples fall into two distinct categories, as we’ll
discuss next.

The Difference Between Analog and Digital
There’s an important difference between devices such as the slide rule versus
tally sticks or adding machines. Figure 2-2 illustrates one of the slide rule
scales from Figure 2-1 compared to a set of numbered fingers.

1

2
3

4

5
10

9
8

7

6

1 2 3 4 5 6 7 8 9 10

1.1

Figure 2-2: Continuous and discrete measures

36 Chapter 2

Both the slide rule scale and the fingers go from 1 to 10. We can rep-
resent values such as 1.1 on the scale, which is pretty handy, but we can’t
do that using fingers without some fancy prestidigitation (sleight of hand
or maybe doing the hand jive). That’s because the scale is what mathema-
ticians call continuous, meaning that it can represent real numbers. The
fingers, on the other hand, are what mathematicians call discrete and can
only represent integers. There are no values between integers. They jump
from one whole number value to another, like our fingers.

When we’re talking about electronics, we use the word analog to mean
continuous and digital to mean discrete (it’s easy to remember that fingers
are digital because the Latin word for finger is digitus). You’ve probably
heard the terms analog and digital before. You’ve been learning to pro-
gram using digital computers, of course, but you may not have been aware
that analog computers such as slide rules also exist.

On one hand, analog appears to be the better choice for computing
because it can represent real numbers. But there are problems with preci-
sion. For example, we can pick out the number 1.1 on the slide rule scale
in Figure 2-2 because that part of the scale is spacious and there’s a mark
for it. But it’s much harder to find 9.1 because that part of the scale is more
crowded and the number is somewhere between the tick marks for 9.0 and
9.2. The difference between 9.1 and 9.105 would be difficult to discern
even with a microscope.

Of course, we could make the scales larger. For example, we could get
a lot more accurate if the scale were the length of a football field. But it
would be hard to make a portable computer with 120-yard- long scales, not to
mention the huge amount of energy it would take to manipulate such large
objects. We want computers that are small, fast, and low in power consump-
tion. We’ll learn another reason why size is important in the next section.

Why Size Matters in Hardware
Imagine you have to drive your kids to and from school, which is 10 miles
away, at an average speed of 40 miles per hour. The combination of distance
and speed means that only two round trips per hour are possible. You can’t
complete the trip more quickly without either driving faster or moving
closer to school.

Modern computers drive electrons around instead of kids. Electricity
travels at the speed of light, which is about 300 million meters per second
(except in the US, where it goes about a billion feet per second). Because we
haven’t yet discovered a way around this physical limitation, the only way
we can minimize travel time in computers is to have the parts close together.

Computers today can have clock speeds around 4 GHz, which means
they can do four billion things per second. Electricity only travels about
75 millimeters in a four- billionth of a second.

Figure 2-3 shows a typical CPU that measures about 18 millimeters
on each side. There’s just enough time to make two complete round trips
across this CPU in four- billionths of a second. It follows that making things
small permits higher performance.

Combinatorial Logic 37

Figure 2-3: CPU photomicrograph (Courtesy of Intel Corporation)

Also, just like driving kids to and from school, it takes energy to travel,
and coffee alone is insufficient. Making things small reduces the amount of
travel needed, which reduces the amount of energy needed. That translates
into lower power consumption and less heat generation, which keeps your
phone from burning a hole in your pocket. This is one of the reasons why
the history of computing devices has been characterized by efforts to make
hardware smaller. But making things very small introduces other problems.

Digital Makes for More Stable Devices
Although making things small allows for speed and efficiency, it’s pretty
easy to interfere with things that are very small. German physicist Werner
Heisenberg (1901–1976) was absolutely certain about that.

Picture a glass measuring cup with lines marked for 1 through 10 ounces.
If you put some water in the cup and hold it up, it may be hard to tell how
many ounces are in the cup because your hand shakes a little. Now imagine
that the measuring cup was a billion times smaller. Nobody would be able to
hold it still enough to get an accurate reading. In fact, even if you put that
tiny cup on a table, it still wouldn’t work because at that size, atomic motion
would keep it from holding still. At very small scales, the universe is a noisy
place.

Both the measuring cup and the slide rule are analog (continuous)
devices that don’t take much jiggling to produce incorrect readings. Distur-
bances like stray cosmic radiation are enough to make waves in microscopic
measuring cups, but they’re less likely to affect discrete devices such
as fingers, tally sticks, or mechanical calculators. That’s because discrete
devices employ decision criteria. There are no “between” values when you’re
counting on your fingers. We could modify a slide rule to include decision

38 Chapter 2

criteria by adding detents (some sort of mechanical sticky spots) at the inte-
ger positions. But as soon as we do that, we’ve made it a discrete device and
eliminated its ability to represent real numbers. In effect, decision criteria
prevent certain ranges of values from being represented. Mathematically,
this is similar to rounding numbers to the nearest integer.

So far, we’ve talked about interference as if it comes from outside, so
you might think we could minimize it by using some sort of shielding. After
all, lead protected Superman from kryptonite. But there is another, more
insidious source of interference. Electricity affects things at a distance, just
like gravity—which is good, or we wouldn’t have radio. But that also means
that a signal traveling down a wire on a chip can affect signals on other wires,
especially when they’re so close together. The wires on a modern computer
chip are a few nanometers (10−9 meters) apart. For comparison, a human
hair is about 100,000 nanometers in diameter. This interference is a bit
like the wind you feel when two cars pass each other on the road. Because
there’s no simple way to protect against this crosstalk effect, using digital
circuitry that has higher noise immunity from the decision criteria is essen-
tial. We could, of course, decrease the impact of interference by making
things bigger so that wires are farther apart, but that would run counter
to our other goals. The extra energy it takes to jump over the hurdle of a
decision criterion gives us a degree of immunity from the noise that we
don’t get by using continuous devices.

In fact, the stability that comes from using decision criteria is the pri-
mary reason we build digital (discrete) computers. But, as you may have
noticed, the world is an analog (continuous) place, as long as we stay away
from things that are so small that quantum physics applies. In the next
section, you’ll learn how we manipulate the analog world to get the digital
behavior necessary for building stable computing devices.

Digital in an Analog World
A lot of engineering involves clever applications of naturally occurring transfer
functions discovered by scientists. These are just like the functions you learn
about in math class, except they represent phenomena in the real world. For
example, Figure 2-4 shows a graph of the transfer function for a digital
camera sensor (or the film in an old- style analog camera, for that matter).

Toe

Linear region

Light (in)

Shoulder

Recorded
brightness
(out)

Figure 2-4: Camera sensor or film transfer function

Combinatorial Logic 39

The x- axis shows the amount of light coming in (input), and the
y- axis represents the amount of recorded brightness, or the light
registered by the sensor (output). The curve represents the relationship
between them.

Let’s play transfer function pool by bouncing an input ball off of the
curve to get an output. You can see that the transfer function produces
different values of recorded brightness for different values of light. Notice
that the curve isn’t a straight line. If too much of the light hits the shoulder
of the curve, then the image will be overexposed, since the recorded
brightness values will be closer together than in the actual scene. Likewise,
if we hit the toe of the curve, the shot is going to be underexposed. The
goal (unless you’re trying for a special effect) is to adjust your exposure
to hit the linear region, which will yield the most faithful representation of
reality.

Engineers have developed all manner of tricks to take advantage of
transfer functions, such as adjusting the shutter speed and aperture on a
camera so that the light hits the linear region. Amplifier circuits, such as
those that drive the speakers or earbuds in your music player, are another
example.

Figure 2-5 shows the effect that changing the volume has on an ampli-
fier transfer function.

Input

Gain

7
5 9
4

3
0

2

8

1

6
Output

Input

Output

Gain

3
1 5
0

9
6

8

4

7

2

Figure 2-5: Effect of gain on amplifier transfer function

The volume control adjusts the gain, or steepness of the curve. As
you can see, the higher the gain, the steeper the curve and the louder the
output. But what if we have one of those special amplifiers from the 1984
movie This Is Spinal Tap on which the gain can be cranked up to 11? Then
the signal is no longer confined to the linear region. This results in distor-
tion because the output is no longer a faithful reproduction of the input,
which makes it sound bad. You can see in Figure 2-6 that the output doesn’t
look like the input because the input extends outside the linear region of
the transfer function.

40 Chapter 2

Input

Output

Figure 2-6: Amplifier clipping

A small change in the input causes a jump in the output at the steep
part of the curve. It’s like jumping from one finger to another—the sought-
after decision criterion, called a threshold. This distortion is a useful phe-
nomenon because the output values fall on one side of the threshold or the
other; it’s difficult to hit those in between. This partitions the continuous
space into discrete regions, which is what we want for stability and noise
immunity—the ability to function in the presence of interference. You can
think of analog as aiming for a big linear region and digital as wanting a
small one.

You may have intuitively discovered this phenomenon while playing
on a seesaw as a child (if you had the good fortune to grow up in an era
before educational playground equipment was deemed dangerous, that
is). It’s much more stable to be in the toe region (all the way down) or the
shoulder region (all the way up) than it is to try to balance somewhere in
between.

Why Bits Are Used Instead of Digits
We’ve talked about why digital technology is a better choice for computers
than analog. But why do computers use bits instead of digits? After all,
people use digits, and we’re really good at counting to 10 because we have
10 fingers.

The obvious reason is that computers don’t have fingers. That would
be creepy. On one hand, counting on your fingers may be intuitive, but
it’s not a very efficient use of your fingers because you use one finger per
digit. On the other hand, if you use each finger to represent a value as you
did with bits, you can count to more than 1,000. This is not a new idea;
in fact, the Chinese used 6-bit numbers to reference hexagrams in the
I Ching as early as 9 bce. Using bits instead of fingers improves efficiency by
a factor of more than 100. Even using groups of four fingers to represent
decimal numbers using the binary- coded decimal (BCD) representation
we saw in Chapter 1 beats our normal counting method in the efficiency
department.

Combinatorial Logic 41

Another reason why bits are better than digits for hardware is that
with digits, there’s no simple way to tweak a transfer function to get 10 dis-
tinct thresholds. We could build hardware that implements the left side of
Figure 2-7, but it would be much more complicated and expensive than 10
copies of the one that implements the right side of the figure.

0

7
6

5
3

4

1
2

9
8

0 7653 41 2 98 0

1

1
0

Threshold

Figure 2-7: Decimal versus binary thresholds

Of course, if we could build 10 thresholds in the same space as one,
we’d do that. But, as we’ve seen, we’d be better off with 10 bits instead of one
digit. This is how modern hardware works. We take advantage of the transfer
function’s toe and shoulder regions, called cutoff and saturation, respectively,
in electrical engineering language. There’s plenty of wiggle room; getting
the wrong output would take a lot of interference. The transfer function
curve is so steep that the output snaps from one value to another.

A Short Primer on Electricity
Modern computers function by manipulating electricity. Electricity makes
computers faster and easier to build than other current technologies would.
This section will help you learn enough about electricity that you can under-
stand how it’s used in computer hardware.

Using Plumbing to Understand Electricity
Electricity is invisible, which makes it hard to visualize, so let’s imagine that
it’s water. Electricity comes from an energy source such as a battery just like
water comes from a tank. Batteries run out of energy and need recharging,
just like water tanks go dry and need refilling. The sun is the only major
source of energy we have; in the case of water, heat from the sun causes
evaporation, which turns into rain that refills the tank.

Let’s start with a simple water valve, something like Figure 2-8.

0

1

Figure 2-8: A water valve

42 Chapter 2

As you can see, there’s a handle that opens and closes the valve.
Figure 2-9 shows a real- life gate valve, which gets its name after the gate
that is opened and closed by the handle. Water can get through when the
valve is open. We’ll make believe that 0 means closed and 1 means open.

Figure 2-9: Closed and open gate valve

We can use two valves and some pipe to illustrate the AND operation,
as shown in Figure 2-10.

0 0

0

1

1

0

1 1

Figure 2-10: Plumbing for the AND operation

Combinatorial Logic 43

As you can see, water flows only when both valves are open, or equal
to 1, which as you learned in Chapter 1 is the definition of the AND oper-
ation. When the output of one valve is hooked to the input of another, as
in Figure 2-10, it’s called a series connection, which implements the AND
operation. A parallel connection, as shown in Figure 2-11, results from con-
necting the inputs of valves and the outputs of valves together, which
implements the OR operation.

0

0

1

0

0

1

1

1

Figure 2-11: Plumbing for the OR operation

Just as it takes time for electricity to make its way across a computer
chip, it takes time for water to flow or propagate through a pipe. You’ve
probably experienced this when waiting for the water temperature to
change in the shower after you’ve turned the knobs. This effect is called
propagation delay, and we’ll talk more about it soon. The delay is not a con-
stant; with water, the temperature causes the pipes to expand or contract,
which changes the flow rate and thus the delay time.

Electricity travels through a wire like water travels through a pipe. It’s
a flow of electrons. There are two parts to a piece of wire: the metal inside,
like the space inside a pipe, is the conductor, and the covering on the out-
side, like the water pipe itself, is the insulator. The flow can be turned on
and off with valves. In the world of electricity, valves are called switches.
They’re so similar that a mostly obsolete device called a vacuum tube was
also known as a thermionic valve.

Water doesn’t just trickle passively through plumbing pipes; it’s pushed
by pressure, which can vary in strength. The electrical equivalent of water
pressure is voltage, measured in volts (V), named after Italian physicist

44 Chapter 2

Alessandro Volta (1745–1827). The amount of flow is called the current (I),
and that’s measured in amperes, named after French mathematician André-
Marie Ampère (1775–1836).

Water can course through wide pipes or narrow ones, but the narrower
the pipe, the more that resistance limits the amount of water that can flow
through. Even if you have a lot of voltage (water pressure), you can’t get
very much current (flow) if there’s a lot of resistance from using too nar-
row a conductor (pipe). Resistance (R) is measured in ohms (Ω), named after
German mathematician and physicist Georg Simon Ohm (1789–1854).

These three variables—voltage, current, and resistance—are all related
by Ohm’s law, which says I = V/R, read as “current equals voltage divided by
resistance (ohms).” So, as with water pipes, more resistance means less
current. Resistance also turns electricity into heat, which is how everything
from toasters to electric blankets works. Figure 2-12 illustrates how resistance
makes it harder for voltage to push current.

Volts

Ohms

Amperes

Volts

Ohms

Amperes

Volts

Ohms

Amperes

Volts

Ohms

Amperes

Figure 2-12: Ohm’s law

An easy way to understand Ohm’s law is to suck a milkshake through
a straw.

Electrical Switches
Making a switch (valve) for electricity is just a matter of inserting or removing
an insulator from between conductors. Think of manually operated light
switches. They contain two pieces of metal that either touch or are pushed
apart by the handle that operates the switch. It turns out that air is a pretty
good insulator; electricity can’t flow if the two pieces of metal aren’t touching.
(Notice I said air is a “pretty good” insulator; at a high enough voltage, air
ionizes and turns into a conductor. Think lightning.)

The plumbing system in a building can be shown on a blueprint.
Electrical systems called circuits are documented using schematic diagrams,
which use symbols for each of the components. Figure 2-13 shows the
symbol for a simple switch.

Combinatorial Logic 45

Figure 2-13: Single- pole,
single- throw switch schematic

This kind of switch is like a drawbridge: electricity (cars) can’t get from
one side to the other when the arrow on the diagram (the bridge) is up. This
is easy to see on the old- fashioned knife switches, shown in Figure 2-14 and
often featured in cheesy science fiction movies. Knife switches are still used
for things like electrical disconnect boxes, but these days they’re usually
hidden inside protective containers to make it harder for you to fry yourself.

Figure 2-14: Single- pole, single- throw
knife switch

Figures 2-13 and 2-14 both show single- pole, single- throw (SPST) switches.
A pole is the number of switches connected together that move together.
Our water valves in the preceding section were single pole; we could make a
double- pole valve by welding a bar between the handles on a pair of valves so
that they both move together when you move the bar. Switches and valves
can have any number of poles. Single- throw means that there’s only one point
of contact: something can be either turned on or off, but not one thing
off and another on at the same time. To do that, we’d need a single- pole,
double- throw (SPDT) device. Figure 2-15 shows the symbol for such a beast.

Figure 2-15: SPDT switch
schematic

46 Chapter 2

This is like a railroad switch that directs a train onto one track or
another, or a pipe that splits into two pipes, as shown in Figure 2-16.

Figure 2-16: SPDT water valve

As you can see, when the handle is pushed down, water flows through
the top valve. Water would flow through the bottom valve if the handle were
pushed up.

Switch terminology can be extended to describe any number of poles
and throws. For example, a double- pole, double- throw (DPDT) switch would
be drawn as shown in Figure 2-17, with the dashed line indicating that the
poles are ganged, meaning they move together.

Figure 2-17: DPDT switch
schematic

Figure 2-18 shows what a DPDT knife switch looks like in real life.

Figure 2-18: DPDT knife switch

Combinatorial Logic 47

I left out a few details about our waterworks earlier: the system won’t
work unless the water has somewhere to go. Water can’t go in if the drain is
clogged. And there has to be some way to get the water from the drain back
to the water tank, or the system will run dry.

Electrical systems are similar. Electricity from the energy source passes
through the components and returns to the source. That’s why it’s called an
electrical circuit. Or think about it like this: a person running track has to
make it back to the starting line in order to do another lap.

Look at the simple electrical circuit in Figure 2-19. It introduces two
new symbols, one for a voltage source (on the left) and one for a light bulb
(on the right). If you built such a circuit, you could turn the light on and
off using the switch.

Voltage
source

Light
bulb

+
V
–

Figure 2-19: A simple electrical circuit

Electricity can’t flow when the switch is open. When the switch is closed,
current flows from the voltage source through the switch, through the light
bulb, and back to the voltage source. Series and parallel switch arrangements
work just like their water valve counterparts.

Now you’ve learned a little about electricity and some basic circuit ele-
ments. Although they can be used to implement some simple logic func-
tionality, they’re not powerful enough by themselves to do much else. In
the next section, you’ll learn about an additional device that made early
electrically powered computers possible.

Building Hardware for Bits
Now that you’ve seen why we use bits for hardware, you’re ready to learn
how they’re built. Diving straight into modern- day electronic implemen-
tation technologies can be daunting, so instead I’ll build up the discus-
sion from other historical technologies that are easier to understand.
Although some of these examples aren’t used in today’s computers, you
may still encounter them in systems that work alongside computers, so
they’re worth knowing about.

Relays
Electricity was used to power computers long before the invention of elec-
tronics. There’s a convenient relationship between electricity and magne-
tism, discovered by Danish physicist Hans Christian Ørsted (1777–1851)

48 Chapter 2

in 1820. If you coil up a bunch of wire and run some electricity through it,
it becomes an electromagnet. Electromagnets can be turned on and off and
can be used to move things. They can also be used to control water valves,
which is how most automatic sprinkler systems work. There are clever ways
to make motors using electromagnetism. And waving a magnet around
a coil of wire produces electricity, which is how a generator works; that’s
how we get most of our electricity, in fact. Just in case you’re inclined to
play with these things, turning off the electricity to an electromagnet
is equivalent to waving a magnet near the coil very fast. It can be a very
shocking experience, but this effect, called back- EMF, is handy; it’s how a
car ignition coil makes the spark for the spark plugs. It’s also how electric
fences work.

A relay is a device that uses an electromagnet to move a switch.
Figure 2-20 shows the symbol for a single- pole, double- throw relay,
which you can see looks a lot like the symbol for a switch grafted
to a coil.

This part moves

Iron

Coil

Figure 2-20: SPDT relay schematic

Figure 2-21 shows a real- life example of a single- pole, single- throw relay.
The switch part is open when there is no power on the coil, so it’s called
a normally open relay. It would be a normally closed relay if the switch were
closed without power.

Figure 2-21: Normally open SPST relay

Combinatorial Logic 49

The connections on the bottom go to the coil of wire; the rest looks
pretty much like a variation on a switch. The contact in the middle moves
depending on whether or not the coil is energized. We can implement logic
functions using relays, as shown in Figure 2-22.

Input 1 Input 2
Output
AND

Input 1 Input 2
Output

OR

Figure 2-22: Relay circuits for AND and OR functions

On the top of Figure 2-22, you can see that the two output wires are
connected together only if both relays are activated, which is our definition
of the AND function. Likewise, on the bottom, the wires are connected
together if either relay is activated, which is the OR function. Notice the
small black dots in this figure. These indicate connections between wires
in schematics; wires that cross without a dot aren’t connected.

Relays allow us to do things that are impossible with switches. For
example, we can build inverters, which implement the NOT function, with-
out which our Boolean algebra options are very limited. We could use the
output from the AND circuit on the top to drive one of the inputs on the
OR circuit on the bottom. It’s this ability to make switches control other
switches that lets us build the complex logic needed for computers.

People have done amazing things with relays. For example, there is a
single- pole, 10-throw stepper relay that has two coils. One coil moves the con-
tact to the next position every time it’s energized, and the other resets the
relay by moving the contact back to the first position. Huge buildings full
of stepper relays used to count out the digits of telephone numbers as they
were dialed to connect calls. Telephone exchanges were very noisy places.
Stepper relays are also what give old pinball machines their charm.

Another interesting fact about relays is that the transfer function thresh-
old is vertical; no matter how slowly you increase the voltage on the coil, the
switch always snaps from one position to the other. This mystified me as a
kid; it was only when studying Lagrange- Hamilton equations as a junior in
college that I learned that the value of the transfer function is undefined at
the threshold, which causes the snap.

50 Chapter 2

The big problems with relays are that they’re slow, take a lot of electricity,
and stop working if dirt (or bugs) get onto the switch contacts. In fact, the
term bug was popularized by American computer scientist Grace Hopper
in 1947 when an error in the Harvard Mark II computer was traced to a
moth trapped in a relay. Another interesting problem comes from using the
switch contacts to control other relays. Remember that suddenly turning
off the power to a coil generates very high voltage for an instant and that
air becomes conductive at high voltages. This phenomenon often results in
sparks across the switch contacts, which makes them wear out. Because of
these drawbacks, people began looking for something that would do the
same work as relays but without moving parts.

Vacuum Tubes
British physicist and electrical engineer Sir John Ambrose Fleming (1849–
1945) invented the vacuum tube. He based it on a principle called thermionic
emission, which says that if you heat something up enough, the electrons want
to jump off. Vacuum tubes have a heater that heats a cathode, which acts like
a pitcher in baseball. In a vacuum, electrons (baseballs) flow from the cath-
ode to the anode (catcher). Some examples of vacuum tubes are shown in
Figure 2-23.

Figure 2-23: Vacuum tubes

Electrons have some properties in common with magnets, including
the one where opposite charges attract and like charges repel. A vacuum
tube can contain an additional “batter” element, called a grid, that can
repel the electrons coming from the cathode to prevent them from getting
to the anode. A vacuum tube that contains three elements (cathode, grid,
and anode) is called a triode. Figure 2-24 shows the schematic symbol for a
triode.

Combinatorial Logic 51

Anode

HeaterCathode

Grid

Figure 2-24: Triode schematic

Here, the heater heats up the cathode, making electrons jump off. They
land on the anode unless the grid swats them back. You can think of the
grid, then, as the handle on a switch.

The advantage of vacuum tubes is that they have no moving parts and
are therefore much faster than relays. Disadvantages are that they get very
hot and are fragile, just like light bulbs. The heaters burn out like the fila-
ments in light bulbs. But vacuum tubes were still an improvement over
relays and allowed the construction of faster and more reliable computers.

Transistors
These days transistors rule. A contraction of transfer resistor, a transistor is
similar to a vacuum tube but uses a special type of material, called a semi-
conductor, that can change between being a conductor and being an insula-
tor. In fact, this property is just what’s needed to make valves for electricity
that require no heater and have no moving parts. But, of course, transistors
aren’t perfect. We can make them really, really small, which is good, but
skinny conductors have more resistance, which generates heat. Getting rid
of the heat in a transistor is a real problem, because semiconductors melt
easily.

You don’t need to know everything about the guts of transistors. The
important thing to know is that a transistor is made on a substrate, or slab,
of some semiconducting material, usually silicon. Unlike other technolo-
gies such as gears, valves, relays, and vacuum tubes, transistors aren’t indi-
vidually manufactured objects. They’re made through a process called
photolithography, which involves projecting a picture of a transistor onto a
silicon wafer and developing it. This process is suitable for mass production
because large numbers of transistors can be projected onto a single silicon
wafer substrate, developed, and then sliced up into individual components.

There are many different types of transistors, but the two main types
are the bipolar junction transistor (BJT) and the field effect transistor (FET). The
manufacturing process involves doping, which infuses the substrate material
with nasty chemicals like arsenic to change its characteristics. Doping cre-
ates regions of p and n type material. Transistor construction involves mak-
ing p and n sandwiches. Figure 2-25 shows the schematic symbols that are
used for some transistor types.

52 Chapter 2

Collector

Emitter

Base

Emitter

Collector

Base

NPN Bipolar PNP Bipolar N-channel MOSFET P-channel MOSFET

Drain

Source

Gate

Source

Drain

Gate

Figure 2-25: Transistor schematic symbols

The terms NPN, PNP, N -channel, and P-channel refer to the sandwich
construction. You can think of the transistor as a valve or switch; the gate (or
base) is the handle, and electricity flows from the top to the bottom when the
handle is raised, similar to how the coil in a relay moves the contacts. But
unlike the switches and valves we’ve seen so far, electricity can flow only in
one direction with bipolar transistors.

You can see that there’s a gap between the gate and the rest of the tran-
sistor in the symbols for the FETs. This gap symbolizes that FETs work using
static electricity; it’s like using static cling to move a switch.

The metal- oxide semiconductor field effect transistor, or MOSFET, is a variation
on the FET that’s very commonly used in modern computer chips because
of its low power consumption. The N -channel and P -channel variants are
often used in complementary pairs, which is where the term CMOS (com-
plementary metal oxide semiconductor) originates.

Integrated Circuits
Transistors enabled smaller, faster, and more reliable logic circuitry that
took less power. But building even a simple circuit, such as the one that
implemented the AND function, still took a lot of components.

This changed in 1958, when Jack Kilby (1923–2005), an American electri-
cal engineer, and Robert Noyce (1927–1990), an American mathematician,
physicist, and cofounder of both Fairchild Semiconductor and Intel, invented
the integrated circuit. With integrated circuits, complicated systems could be
built for about the same cost as building a single transistor. Integrated cir-
cuits came to be called chips because of how they look.

As you’ve seen, many of the same types of circuits can be built using
relays, vacuum tubes, transistors, or integrated circuits. And with each new
technology, these circuits became smaller, cheaper, and more power- efficient.
The next section talks about integrated circuits designed for combinatorial
logic.

Combinatorial Logic 53

Logic Gates
In the mid-1960s, Jack Kilby’s employer, Texas Instruments, introduced the
5400 and 7400 families of integrated circuits. These chips contained ready-
made circuits that performed logic operations. These particular circuits,
called logic gates, or simply gates, are hardware implementations of Boolean
functions we call combinatorial logic. Texas Instruments sold gazillions of
these. They’re still available today.

Logic gates were a huge boon for hardware designers: they no longer had
to design everything from scratch and could build complicated logic circuits
with the same ease as complicated plumbing. Just like plumbers can find bins
of pipe tees, elbows, and unions in a hardware store, logic designers could
find “bins” of AND gates, OR gates, XOR gates, and inverters (things that do
the NOT operation). Figure 2-26 shows the symbols for these gates.

InverterAND gate

A

B
Y

OR gate

A

B
Y

Exclusive-OR gate

A

B
Y A Y

Figure 2-26: Gate schematics

As you would expect, the Y output of the AND gate is true if both the
A and B inputs are true. (You can get the operation of the other gates from
the truth tables shown back in Figure 1-1.)

The key part of the symbol for an inverter in Figure 2-26 is the ○ (circle),
not the triangle it’s attached to. A triangle without the circle is called a buffer,
and it just passes its input to the output. The inverter symbol is pretty
much used only where an inverter isn’t being used in combination with
anything else.

It’s not efficient to build AND and OR gates using the transistor- transistor
logic (TTL) technology of the 5400 and 7400 series parts, because the output
from a simple gate circuit is naturally inverted, so it takes an inverter to
make it come out right side up. This would make them more expensive,
slower, and more power- hungry. So, the basic gates were NAND (not and)
and NOR (not or), which use the inverting circle and look like Figure 2-27.

NAND gate

A

B
Y

NOR gate

A

B
Y

Figure 2-27: NAND and NOR gates

54 Chapter 2

Fortunately, this extra inversion doesn’t affect our ability to design logic
circuits because we have De Morgan’s law. Figure 2-28 applies De Morgan’s
law to show that a NAND gate is equivalent to an OR gate with inverted
inputs.

Figure 2-28: Redrawing a NAND gate using De Morgan’s law

All the gates we’ve seen so far have had two inputs, not counting the
inverter, but in fact gates can have more than two inputs. For example, a
three- input AND gate would have an output of true if each of the three
inputs was true. Now that you know how gates work, let’s look at some of
the complications that arise when using them.

Improving Noise Immunity with Hysteresis
You saw earlier that we get better noise immunity using digital (discrete)
devices because of the decision criteria. But there are situations where
that’s not enough. It’s easy to assume that logic signals transition instanta-
neously from 0 to 1 and vice versa. That’s a good assumption most of the
time, especially when we’re connecting gates to each other. But many real-
world signals change more slowly.

Let’s see what happens when we have a slowly changing signal. Figure 2-29
shows two signals that ramp slowly from 0 to 1.

0 1

Quiet input

Output

0 1

Noisy input

Output

0 0

1 1

Figure 2-29: Noise glitch

The input on the left is quiet and has no noise, but there’s some noise
on the signal on the right. You can see that the noisy signal causes a glitch
in the output because the noise makes the signal cross the threshold more
than once.

We can get around this using hysteresis, in which the decision criterion
is affected by history. As you can see in Figure 2-30, the transfer function is
not symmetrical; in effect, there are different transfer functions for rising

Combinatorial Logic 55

signals (those going from 0 to 1) and falling signals (those going from 1 to 0)
as indicated by the arrows. When the output is 0, the curve on the right is
applied, and vice versa.

0 1
Falling threshold Rising threshold

Figure 2-30: Hysteresis transfer function

This gives us two different thresholds: one for rising signals and one for
falling signals. This means that when a signal crosses one of the thresholds,
it has a lot farther to go before crossing the other, and that translates into
higher noise immunity.

Gates that include hysteresis are available. They’re called Schmitt triggers
after the American scientist Otto H. Schmitt (1913–1998), who invented
the circuit. Because they’re more complicated and expensive than normal
gates, they’re used only where they’re really needed. Their schematic symbol
depicts the addition of hysteresis, as shown for the inverter in Figure 2-31.

Figure 2-31: Schmitt trigger
gate schematic symbol

Differential Signaling
Sometimes there’s so much noise that even hysteresis isn’t enough. Think
about walking down a sidewalk. Let’s call the right edge of the sidewalk the
positive- going threshold and the left edge the negative- going threshold. You might
be minding your own business when someone pushing a double- wide stroller
knocks you off the right- hand edge of the sidewalk and then a pack of joggers
forces you back off the left side. We need protection in this case, too.

So far, we’ve measured our signal against an absolute threshold, or
pair of thresholds in the case of a Schmitt trigger. But there are situations
in which there is so much noise that both Schmitt trigger thresholds are
crossed, making them ineffective.

Let’s try the buddy system instead. Now imagine you’re walking down
that sidewalk with a friend. If your friend is on your left, we’ll call it a 0;
if your friend is on your right, we’ll call it a 1. Now when that stroller and
those joggers come by, both you and your friend get pushed off to the side.
But you haven’t changed positions, so if that’s what we’re measuring, then

56 Chapter 2

the noise had no effect. Of course, if the two of you are just wandering
around near each other, one of you could get pushed around without the
other. That’s why holding hands is better, or having your arms around
each other’s waists. Yes, snuggling yields greater noise immunity! This is
called differential signaling, because what we’re measuring is the difference
between a pair of complementary signals. Figure 2-32 shows a differential
signaling circuit.

Driver Receiver

Figure 2-32: Differential signaling

You can see that there’s a driver that converts the input signal into com-
plementary outputs, and a receiver that converts complementary inputs back
into a single- ended output. It’s common for the receiver to include a Schmitt
trigger for additional noise immunity.

Of course, there are limitations. Too much noise can push electronic
components out of their specified operating range—imagine there’s a build-
ing next to the sidewalk and you and your friend both get pushed into the
wall. A common- mode rejection ratio (CMRR) is part of a component specifi-
cation and indicates the amount of noise that can be handled. It’s called
“common- mode” because it refers specifically to noise that is common to
both signals in a pair.

Differential signaling is used in many places, such as telephone lines.
This application became necessary in the 1880s when electric streetcars
made their debut, because they generated a lot of electrical noise that
interfered with telephone signals. Scottish inventor Alexander Graham
Bell (1847–1922) invented twisted- pair cabling, in which pairs of wires were
twisted together for the electrical equivalent of snuggling (see Figure 2-33).
He also patented the telephone. Today, twisted pair is ubiquitous; you’ll
find it in USB, SATA (disk drive), and Ethernet cables.

Conductor

Insulator

Jacket

Figure 2-33: Twisted- pair Ethernet cable

Combinatorial Logic 57

An interesting application of differential signaling can be found in the
Wall of Sound concert audio system used by the American band The Grateful
Dead (1965–1995). It addressed the problem of vocal microphone feedback
by using microphones in pairs wired so that the output from one microphone
was subtracted from the output of the other. That way, any sound hitting
both mics was common- mode and canceled out. Vocalists would sing into
one of the mics in the pair so their voice would come through. An artifact of
this system, which can be heard in the band’s live recordings, is that audience
noise sounds tinny. That’s because lower- frequency sounds have longer wave-
lengths than higher- frequency sounds; lower- frequency noise is more likely to
be common- mode than higher- frequency noise.

Propagation Delay
I touched on propagation delay back in “Using Plumbing to Understand
Electricity” on page 41. Propagation delay is the amount of time it takes
for a change in input to be reflected in the output. It is a statistical measure
due to variances in manufacturing processes and temperature, plus the
number and type of components connected to the output of a gate. Gates
have both a minimum and maximum delay; the actual delay is somewhere
in between. Propagation delay is one of the factors that limits the maxi-
mum speed that can be achieved in logic circuits. Designers have to use
the worst- case values if they want their circuits to work. That means they
have to design assuming the shortest and longest possible delays.

In Figure 2-34, gray areas indicate where we can’t rely on the outputs
because of propagation delay.

A

B
C

D

A

B

C

D

1
0
1
0
1
0
1
0

Figure 2-34: Propagation delay example

The outputs could change as early as the left edge of the gray regions,
but they’re not guaranteed to change until the right edge. And the length
of the gray areas increases as more gates are strung together.

There is a huge range of propagation delay times that depends on
process technology. Individual components, such as 7400 series parts, can
have delays in the 10-nanosecond range (that is, 10 billionths of a second).
The gate delays inside modern large components, such as microprocessors,
can be in picoseconds (trillionths of a second). If you’re reading the speci-
fications for a component, the propagation delays are usually specified as
tPLH and tPHL for the propagation time from low to high and high to low,
respectively.

58 Chapter 2

Now that we’ve discussed the inputs and what happens on the way to
the outputs, it’s time to look at the outputs.

Output Variations
We’ve talked some about gate inputs, but we haven’t said much about
outputs. There are a few different types of outputs designed for different
applications.

Totem- Pole Output

A normal gate output is called a totem pole because the way in which one
transistor is stacked on top of another resembles a totem pole. We can
model this type of output using switches, as shown in Figure 2-35.

1

Output

0

1

0

Output (0)

1

0

Output (1)

Figure 2-35: Totem- pole output

The schematic on the left illustrates how totem- pole outputs get their
name. The top switch in the figure is called an active pull- up because it con-
nects the output to the high logic level to get a 1 on the output. Totem- pole
outputs can’t be connected together. As you can see in Figure 2-35, if you
connected one with a 0 output to one with a 1 output, you would have con-
nected the positive and negative power supplies together—which would be
as bad as crossing the streams from the 1984 movie Ghostbusters and could
melt the components.

Open- Collector Output

Another type of output is called open- collector or open- drain, depending on
the type of transistor used. The schematic and switch model for this output
are shown in Figure 2-36.

Combinatorial Logic 59

Output

0

0 0Output (0) Output (?)

Figure 2-36: Open- collector/open- drain output

This seems odd at first glance. It’s fine if we want a 0 output, but when
it’s not, 0 the output just floats, so we don’t know what its value is.

Because the open- collector and open- drain versions don’t have active
pull- ups, we can connect their outputs together without harm. We can use
a passive pull- up, which is just a pull- up resistor connecting the output to the
supply voltage, which is the source of 1s. This is called VCC for bipolar tran-
sistors and VDD for MOS (metal- oxide- semiconductor) transistors. A passive
pull- up has the effect of creating a wired- AND, shown in Figure 2-37.

Open-collector outputs

Resistor

VCC

Figure 2-37: Wired- AND

What’s happening here is that when neither open- collector output is
low, the resistor pulls the signal up to a 1. The resistor limits the current so
that things don’t catch fire. The output is 0 when any of the open- collector
outputs is low. You can wire a large number of things together this way,
eliminating the need for an AND gate with lots of inputs.

Another use of open- collector and open- drain outputs is to drive devices
like LEDs (light- emitting diodes). Open- collector and open- drain devices
are often designed to support this use and can handle higher current than
totem- pole devices. Some versions allow the output to be pulled up to a
voltage level that is higher than the logic 1 level, which allows us to interface
to other types of circuitry. This is important because although the threshold
is consistent within a family of gates such as the 7400 series, other families
have different thresholds.

60 Chapter 2

Tri- State Output

Although open- collector circuits allow outputs to be connected together,
they’re just not as fast as active pull- ups. So let’s move away from the two- state
solution and introduce tri- state outputs. The third state is off. There is an
extra enable input that turns the output on and off, as shown in Figure 2-38.

OutIn Out

Enable

In

Enable

Figure 2-38: Tri- state output

Off is known as the hi- Z, or high- impedance, state. Z is the symbol for
impedance, the mathematically complex version of resistance. You can imag-
ine a tri- state output as the circuit from Figure 2-35. Controlling the bases
separately gives us four combinations: 0, 1, hi- Z, and meltdown. Obviously,
circuit designers must make sure that the meltdown combination cannot be
selected.

Tri- state outputs allow a large number of devices to be hooked together.
The caveat is that only one device can be enabled at a time.

Building More Complicated Circuits
The introduction of gates greatly simplified the hardware design process.
People no longer had to design everything from discrete components. For
example, where it took around 10 components to build a two- input NAND
gate, the 7400 included four of them in a single package, called a small- scale
integration (SSI) part, so that one package could replace 40.

Hardware designers could build anything from SSI gates just as they
could using discrete components, which made things cheaper and more
compact. And because certain combinations of gates are used a lot, medium-
scale integration (MSI) parts were introduced that contained these combina-
tions, further reducing the number of parts needed. Later came large- scale
integration (LSI), very large- scale integration (VLSI), and so on.

You’ll learn about some of the gate combinations in the following
sections, but this isn’t the end of the line. We use these higher- level
functional building blocks themselves to make even higher- level compo-
nents, similar to the way in which complex computer programs are con-
structed from smaller programs.

Building an Adder
Let’s build a two’s- complement adder. You may never need to design one of
these, but this example will demonstrate how clever manipulation of logic
can improve performance—which is true for both hardware and software.

Combinatorial Logic 61

We saw back in Chapter 1 that the sum of 2 bits is the XOR of those
bits and the carry is the AND of those bits. Figure 2-39 shows the gate
implementation.

A

B Sum

Carry

Figure 2-39: Half adder

You can see that the XOR gate provides the sum and the AND gate
provides the carry. Figure 2-39 is called a half adder because something is
missing. It’s fine for adding two bits, but there needs to be a third input so
that we can carry. This means that two adders are needed to get the sum
for each bit. We carry when at least two of the inputs are 1. Table 2-1 shows
the truth table for this full adder.

Table 2-1: Truth Table for Full Adder

A B C Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

A full adder is a bit more complicated to build and looks like
Figure 2-40.

A
B Sum

Carry

C

Figure 2-40: Full adder

62 Chapter 2

As you can see, this takes many more gates. But now that we have the
full adder, we can use it to build an adder for more than one bit. Figure 2-41
shows a configuration called a ripple- carry adder.

0
B0

A0

S0

A1

S1

B1

B2

A2

S2

. . .

C
B
A

C
B
A

C
B
A

Sum

Carry

Sum

Carry

Sum

Carry

Figure 2-41: Ripple- carry adder

This ripple- carry adder gets its name from the way that the carry ripples
from one bit to the next. It’s like doing the wave. This works fine, but you
can see that there are two gate delays per bit, which adds up fast if we’re
building a 32- or 64-bit adder. We can eliminate these delays with a carry
look- ahead adder, which we can figure out how to make work using some
basic arithmetic.

We can see in Figure 2-40 that the full- adder carry- out for bit i that is
fed into the carry- in for bit i + 1:

C A B A C B Ci i i i i i i� � � � � � � �1 AND OR AND OR AND

The big sticking point here is that we need Ci in order to get Ci+1, which
causes the ripple. You can see this in the following equation for Ci+2:

C A B A C B Ci i i i i i i� � � � � � �� � � � � � �2 1 1 1 1 1 1AND OR AND OR AND

We can eliminate this dependency by substituting the first equation
into the second, as follows:

C A B

A A B A C B

i i i

i i i i i i

� � �

�

� � �
� � � �

2 1 1

1

AND

 OR AND AND OR AND OR ANDCC

B A B A C B C

i

i i i i i i i

� �� �� �
� � � � � �� �� �� OR AND AND OR AND OR AND1

Note that although there are a lot more ANDs and ORs, there’s still
only two gates’ worth of propagation delay. Cn is dependent only on the
A and B inputs, so the carry time, and hence the addition time, doesn’t
depend on the number of bits. Cn can always be generated from Cn−1,

Combinatorial Logic 63

which uses an increasingly large number of gates as n increases. Although
gates are cheap, they do consume power, so there is a trade- off between
speed and power consumption.

Building Decoders
In “Representing Integers Using Bits” on page 6, we built or encoded num-
bers from bits. A decoder does the opposite by turning an encoded number
back into a set of individual bits. One application of decoders is to drive
displays. You may have seen nixie tubes (shown in Figure 2-42) in old science
fiction movies; they’re a really cool retro display for numbers. They’re essen-
tially a set of neon signs, one for each digit. Each glowing wire has its own
connection, requiring us to turn a 4-bit number into 10 separate outputs.

Figure 2-42: A nixie tube

Recall that octal representation takes eight distinct values and encodes
them into 3 bits. Figure 2-43 shows a 3:8 decoder that converts an octal
value back into a set of single bits.

. . .

S0

S1

S2

Y0

Y1

Y7

Figure 2-43: A 3:8 decoder

64 Chapter 2

When the input is 000, the Y0 input is true; when the input is 001,
Y1 is true; and so on. Decoders are principally named by the number of
inputs and outputs. The example in Figure 2-43 has three inputs and eight
outputs, so it’s a 3:8 decoder. This decoder would commonly be drawn as
shown in Figure 2-44.

S0

S1

S2

Y0

Y1

Y7

Y6

Y5

Y4

Y3

Y2

Figure 2-44: The 3:8 decoder
schematic symbol

Building Demultiplexers
You can use a decoder to build a demultiplexer, commonly abbreviated as
dmux, which allows an input to be directed to one of several outputs, as you
would do if sorting Hogwarts students into houses. A demultiplexer com-
bines a decoder with some additional gates, as shown in Figure 2-45.

S0

S1

Y0

Y1

Y3

Y2Y0

Y1

Y3

Y2

S0

S1

D

Figure 2-45: A 1:4 demultiplexer

The demultiplexer directs the input signal D to one of the four outputs
Y0–3 based on the decoder inputs S0–1. The symbol in Figure 2-46 is used in
schematics for demultiplexers.

Combinatorial Logic 65

S0 S1

Y0

Y1

Y3

Y2

D

Figure 2-46: The demultiplexer
schematic symbol

Building Selectors
Choosing one input from a number of inputs is another commonly per-
formed function. For example, we might have several operand sources for
an adder and need to choose one. Using gates, we can create another func-
tional block called a selector or multiplexer (mux).

A selector combines a decoder with some additional gates, as shown in
Figure 2-47.

S0

S1

Y

Y0

Y1

Y3

Y2

S0

S1

D1

D0

D2

D3

Figure 2-47: A 4:1 selector

Selectors are also used a lot and have their own schematic symbol.
Figure 2-48 shows the symbol for a 4:1 selector, which is pretty much the
reverse of the symbol for a decoder.

66 Chapter 2

S0

S1

D0

D1

D3

D2

Y

Figure 2-48: The 4:1 selector
schematic symbol

You’re probably familiar with selectors but don’t know it. You might
have a toaster oven that has a dial with positions labeled Off, Toast, Bake,
and Broil. That’s a selector switch with four positions. A toaster oven has two
heating elements, one on top and another on the bottom. Toaster oven
logic works as shown in Table 2-2.

Table 2-2: Toaster Oven Logic

Setting Top element Bottom element

Off Off Off

Bake Off On

Toast On On

Broil On Off

We can implement this logic using a pair of 4:1 selectors ganged
together, as shown in Figure 2-49.

Off 0

1
1
0

0

Broil 1

Toast 1
Bake 0 To top heating element

To bottom heating element

Figure 2-49: Toaster oven selector switch

Combinatorial Logic 67

Summary
In this chapter, you learned why we use bits instead of digits to build hard-
ware. You also saw some of the developments in technology that have allowed
us to implement bits and combinatorial digital logic. You learned about mod-
ern logic design symbols and how simple logic elements can be combined
to make more complex devices. We looked at how the outputs of combinato-
rial devices are a function of their inputs, but because the outputs change in
response to the inputs, there’s no way to remember anything. Remembering
requires the ability to “freeze” an output so that it doesn’t change in response
to inputs. Chapter 3 discusses sequential logic, which enables us to remember
things over time.

3
S E Q U E N T I A L L O G I C

The combinatorial logic you learned about
in the last chapter “goes with the flow.” In

other words, the outputs change in response
to the inputs. But we can’t build computers out

of combinatorial logic alone, because it doesn’t give
us any way to remove something from the flow and
remember it. You can’t add up all the numbers from
1 to 100, for example, unless you can keep track of
where you are.

You’ll learn about sequential logic in this chapter. The term comes from
the word sequence, which means “one thing after another in time.” As a
human, you have intuitive knowledge about time, just as you do about count
ing on your fingers, but that doesn’t mean that time is natural for digital cir
cuitry. We have to create it somehow.

Combinatorial logic deals only with the present state of inputs. Sequen
tial logic, however, deals with both the present and the past. In this chapter,

70 Chapter 3

you’ll learn about circuitry both for generating time and for remembering
things. We’ll trace some of the various technologies that have been used for
these purposes from their early roots through the present day.

Representing Time
We measure time using some sort of periodic function, such as the rota
tion of the Earth. We call one full rotation a day, which we subdivide into
smaller units such as hours, minutes, and seconds. We could define a second
as 1/86,400th of an Earth rotation, since there are 86,400 seconds in a day.

In addition to using an external event like the rotation of the Earth, we
can also generate our own periodic functions by applying certain elements
of physics, such as the time that it takes for a pendulum to swing. This tech
nique produced the “tick tock” sound in old grandfather clocks. Of course,
to be useful, the pendulum has to be calibrated to the measured length of
a second.

With computers, we’re working with electronics, so we need a periodic
electrical signal. We could generate one by placing a switch so that it’s
whacked by a pendulum. But unless you’re a serious steampunk geek, you
probably don’t want a pendulum powered computer. We’ll learn about
more modern approaches in the next section.

Oscillators
Let’s look at a trick we can do with an inverter: we can connect the output
to the input, as shown in Figure 31.

1
0

Time

Figure 3-1: An oscillator

This produces feedback, just like what you get when a microphone is too
close to a loudspeaker. The output of the inverter bounces back and forth,
or oscillates, between 0 and 1. The speed at which it oscillates is a function
of the propagation delay (see “Propagation Delay” on page 57), and that
tends to vary with temperature. It would be useful to have an oscillator with
a stable frequency so that we could generate an accurate time reference.

A cost effective way to do this is with a crystal. Yes, very new age. Crystals,
like magnets, have a relationship with electricity. If you attach electrodes
(wires) to a crystal and give it a squeeze, it’ll generate electricity. And if you
put some electricity on those wires, the crystal will bend. This is called the
piezoelectric effect, and it was discovered by brothers PaulJacques (1855–1941)
and Pierre (1859–1906) Curie in the late 1800s. The piezoelectric effect
has all sorts of applications. A crystal can pick up sound vibrations, making

Sequential Logic 71

a microphone. Sound vibrations generated by applying electricity to crystals
are responsible for the annoying beeps made by many appliances. You can
spot a crystal in a circuit diagram by the symbol shown in Figure 32.

Figure 3-2: The crystal
schematic symbol

A crystal oscillator alternately applies electricity to a crystal and receives
electricity back, using electronic single pole, double throw switches. The
time it takes a crystal to do this is predictable and very accurate. Quartz is
one of the best crystal materials to use. That’s why you see advertisements
for accurate quartz timepieces. Keep in mind when you see the price tag on
a fancy watch that a really good crystal retails for only about 25 cents.

Clocks
Oscillators give us a way to measure time, as you’ve seen. Computers need
to keep time for obvious reasons, like being able to play a video at a consis
tent speed. But there’s another, lower level reason why time is important.
In Chapter 2, we discussed how propagation delay affects the time that it
takes circuitry to do things. Time gives us a way to wait, for example, for the
worst case delay in an adder before looking at the result so that we know it’s
stable and correct.

Oscillators supply clocks to computers. A computer’s clock is like the
drummer in a marching band; it sets the pace for the circuitry. The maxi
mum clock speed or fastest tempo is determined by the propagation delays.

Component manufacturing involves a lot of statistics because there’s a
lot of variance from part to part. The binning process puts components into
different bins, or piles, depending on their measured characteristics. The
fastest parts that fetch the highest price go into one bin; slower, less expen
sive parts go into another; and so on. It’s not practical to have an infinite
number of bins, so there’s variance within the parts in a bin, although it’s
less than the variance for the whole lot of parts. This is one reason why
propagation delays are specified as a range; manufacturers provide mini
mum and maximum values in addition to a typical value. A common logic
circuit design error is to use the typical values instead of the minimums
and maximums. When you hear about people overclocking their computers,
it means they’re gambling that their part was statistically in the middle of
its bin and that its clock can be increased by some amount without causing
the part to fail.

Latches
Now that we have a source of time, let’s try to remember a single bit of infor
mation. We can do that with feedback, such as tying the output of an OR
gate back to an input, as shown in Figure 33. This doesn’t create an oscilla
tor such as we saw in Figure 31, since there’s no inversion. Assume that out

72 Chapter 3

starts off at 0 in the circuit in Figure 33. Now, if in goes to 1, out does too,
and because it’s connected to another input it stays that way, even if in goes
back to 0. In other words, it remembers.

in

in
out

out

Figure 3-3: An OR gate latch

Of course, this scheme needs some work because there’s no way to
make out be 0 again. We need a way to reset it by disconnecting the feed
back, as shown in Figure 34.

set

resetreset
reset

set

out

out

Figure 3-4: An AND- OR gate latch

Note that we’ve labeled the output of the inverter reset. Putting a line
over a symbol is hardware speak meaning “the opposite.” It means that
something is true when it’s a 0 and false when it’s a 1. Sometimes this is
referred to as active low instead of active high, meaning that it does its thing
when it’s 0 instead of 1. The line is pronounced “bar,” so in speech the sig
nal would be referred to as “reset bar.”

When reset is low, reset is high, so the output from the OR gate is fed
back into the input. When reset goes high, reset goes low, breaking that
feedback so that out goes to 0.

Figure 35 shows an S- R latch, a slightly cleverer way of building a bit of
memory. S- R stands for set- reset. It has active low inputs and complementary
outputs, meaning one is active low and one is active high. You could build
a version of this that has active high inputs by using NOR gates, but NOR
gates are often more power hungry than NAND gates, in addition to being
more complicated and expensive to build.

QS

R

set

0

0

1

reset

0

1

0

Q

1

0

QQ

0

1

1 1

1 1

memory memory

set

reset
Q

Figure 3-5: An S- R latch

Sequential Logic 73

The case where both set and reset are active is weird and not intended
for use, because both outputs are true. Also, if both inputs become inactive
(that is, transition from 0 to 1) at the same time, the state of the outputs is
not predictable because it’s dependent on the propagation delays.

The circuit in Figure 35 has a nice property that the circuit in Figure 34
does not, which is that its design is symmetrical. That means the propagation
delays are similar for both the set and reset signals.

Gated Latches
Now that we have some way of remembering information, let’s look at what
it takes to remember something at a point in time. The circuit in Figure 36
has an extra pair of gates added to the inputs.

set

gate

QS

R

reset

Q

Figure 3-6: A gated S- R latch

As you can see, when the gate input is inactive (high), it doesn’t matter
what set and reset are doing; the outputs won’t change because the inputs to
the S and R gates will both be 1.

Because we want to remember one bit of information, the next improve
ment we can make is to add an inverter between the set and reset inputs so
that we need only a single data input, which we’ll abbreviate as D. This
modification is shown in Figure 37.

D

gate

QS

R
reset

set

Q

Figure 3-7: A gated D latch

Now, if D is a 1 when the gate is low, the Q output will be set to 1. Likewise,
if D is a 0 when the gate is low, the Q output will be set to 0. Changes on D

74 Chapter 3

when gate is high have no effect. That means we can remember the state of
D. You can see this in the timing diagram shown in Figure 38.

D ignored D ignored D ignored

D

Q

gate

Q D Q D Q D Q D

Figure 3-8: A gated D latch timing diagram

The problem with this circuit is that changes in D pass through whenever
the gate is low, as you can see in the shaded section. This means we have to
count on D being “wellbehaved” and not changing when the “gate” is “open.”
It would be better if we could make the opening instantaneous. We’ll see how
to do that in the next section.

Flip- Flops
As we discussed in the last section, we want to minimize the chances of get
ting incorrect results due to changing data. The way that’s commonly done is
to use the transition between logic levels to grab the data instead of grabbing
it when the logic level has a particular value. These transitions are called
edges. You can think of an edge as a decision criterion for time. Back in
Figure 38, you can see the almost instantaneous transition between logic
levels. Edge triggered latches are called flip- flops.

Latches are a building block used to make flip flops. We can construct
a positive edge triggered flip flop called a D flip- flop by cleverly combining
three S R latches, as shown in Figure 39. Positive edge- triggered means that the
flip flop operates on the transition from a logic 0 to a logic 1; a negative edge-
triggered flip flop would operate on the transition from a logic 1 to a logic 0.

clock

Q

D

Q

S

R

Figure 3-9: A D flip- flop design

Sequential Logic 75

This circuit can be somewhat mind boggling. The two gates on the right
form an S R latch. We know from Figure 35 that those outputs won’t
change unless either S or R goes low.

Figure 310 shows how the circuit behaves for various values of D and
clock. The thin lines show logic 0s; the thick lines are logic 1s.

0

S

R

1

0

1

1

1

0

1

1

S

R

S

R

S

R

S

R

Figure 3-10: A D flip- flop operation

Starting at the left, you can see that when the clock is 0, the value of D
doesn’t matter because both S and R are high, so the state of the latch on
the right hand side of Figure 39 is unchanged. Moving toward the right,
you can see in the next two diagrams that if R is low, changing the value of
D has no effect. Likewise, the two rightmost diagrams show that if S is low,
changing the value of D has no effect. The upshot is that changes to D have
no effect when the clock is either high or low.

Now, let’s look at what happens when the clock changes from low to
high, as shown in Figure 311.

0 1

11

0

0

1

0

S

R

S

R

S

R

S

R

Figure 3-11: A D flip- flop positive edge operation

76 Chapter 3

You can see on the left that when the clock is low and D is high, S and R
are high, so nothing changes. But when the clock changes to 1, S goes low,
which changes the state of the flip flop. On the right, you can see similar
behavior when D is low and the clock goes high, causing R to go low and
changing the flip flop state. You saw in Figure 310 that no other changes
matter.

In 1918 British physicists William Eccles and Frank Jordan invented the
first electronic version of a flip flop, which used vacuum tubes. Figure 312
shows the diagram for a slightly less antique D flip- flop called the 7474.

S
D Q

R
QCK

Figure 3-12: A D flip- flop

The D flip flop has complementary Q and Q (outputs and S (set) and R
(reset) inputs. It’s a little confusing, as the diagram shows S and R ; it’s the
combination of those with the ○ that make them S and R. So, except for
the mysterious things on the left hand side, it’s just like our S R latch. The
mysterious things are two extra inputs, D for data and CK for clock, which
is represented by the triangle. It’s positive edge triggered, so the value of
the D input is stored whenever the signal on the CK goes from a 0 to a 1.

Edge triggered devices have other timing considerations in addition
to propagation delay. There is the setup time, which is the amount of time
before the clock edge that the signal must be stable, and the hold time,
which is the amount of time after the clock edge that the signal must be
stable. These are shown in Figure 313.

D

CK

Q

Don’t care Don’t caresetup hold

Prior state Propagation Valid output

Figure 3-13: Setup and hold times

As you can see, we don’t have to care what’s happening on the D input
except during the setup and hold times surrounding the clock edge. And,
as with all other logic, the output is stable after the propagation delay time
and stays stable independent of the D input. Setup and hold times are typi
cally denoted by tsetup and thold.

The edge behavior of flip flops works well with clocks. We’ll see an
example in the next section.

Sequential Logic 77

Counters
Counting is a common application of flip flops. For example, we could
count time from an oscillator and drive a display with a decoder to make a
digital clock. Figure 314 shows a circuit that produces a 3bit number (C2,
C1, C0) that is the count of the number of times the signal changes from
0 to 1. The reset signal can be used to set the counter to 0.

S
D

signal

reset

Q

R
QCK

S
D Q

R
QCK

S
D Q

R
QCK

C0 C1 C2

Figure 3-14: A 3-bit ripple counter

This counter is called a ripple counter because the result ripples from
left to right, not because it’s useful for counting bottles of cheap wine. C0
changes C1, C1 changes C2, and so on if there are more bits. Since the D
input of each flip flop is connected to its Q output, it will change state on
every positive transition of the CK signal.

 This is also called an asynchronous counter because everything just
happens when it gets around to it. The problem with asynchronous systems
is that it’s hard to know when to look at the result. The outputs (C2, C1, C0)
are invalid during rippling. You can see how it takes longer to get a result
for each successive bit in Figure 315, where the gray areas represent unde
fined values due to propagation delay.

signal

C0

C1

C2

signal

C0

Time Time

C1

C2

Figure 3-15: Ripple counter timing

The timing diagram on the left shows that we get a valid 3bit number
after the propagation delays settle out. But on the right, you can see that
we’re trying to count faster than the propagation delays permit, so there
are times where no valid number is produced.

This is a variation of the problem we saw with the ripple carry adder
back in Figure 241. Just as we were able to solve that problem with the carry
look ahead design, we can address the ripple problem with a synchronous
counter design.

78 Chapter 3

Unlike the ripple counter, the synchronous counter outputs all change
at the same time (in sync). This implies that all the flip flops are clocked in
parallel. A 3bit synchronous counter is shown in Figure 316.

clock

C0 C1 C2

D Q
Q

D Q D Q

Figure 3-16: A 3-bit synchronous counter

You can see that all the flip flops in the counter change state at the
same time because they’re all clocked at the same time. Although propaga
tion delay is still a factor in knowing when the outputs are valid, the cascade
effect has been eliminated.

Counters are yet another functional building block, which means they
have their own schematic symbol. In this case it’s yet another rectangular
box, as you can see in Figure 317.

D0–n Counter

CK
CLR U/D EN LD

Q0–n

Figure 3-17: A counter schematic symbol

The figure includes a number of inputs we haven’t seen before. Counters
are available that have some or all of these inputs. Most counters have a
CLR input that clears the counter, setting it to 0. Also common is an EN
input that enables the counter—the counter doesn’t count unless enabled.
Some counters can count in either direction; the U/D input selects up or
down. Finally, some counters have data inputs D0–n and a load signal LD
that allows the counter to be set to a specific value.

Now that we have counters, we can use them to keep track of time. But
that’s not the only thing we can do with flip flops. We’ll start learning how
to remember large amounts of information in the next section.

Registers
D flip flops are good for remembering things. It’s a common enough
 application that you can get registers, which are a bunch of D flip flops
in a single package that share a common clock. Figure 318 shows an
example of a register holding the result of addition using the adder
circuit discussed earlier.

Sequential Logic 79

Operand1

Adder Result

clock enable

EN

D0 Q0

Operand2

D1 Q1

D2 Q2

D3 Q3

D4 Q4

D5 Q5

D6 Q6

D7 Q7

Figure 3-18: A register holding an adder result

Once the output of the adder has been clocked into the register, the
operands can change without changing the result. Note that registers often
have enable inputs similar to those we saw for counters.

Memory Organization and Addressing
We’ve seen that flip flops are useful when we need to remember a bit and
that registers are handy when we need to remember a collection of bits.
What do we do when we need to remember a lot more information, though?
For example, what if we want to be able to store several different addition
results?

Well, we can start with a big pile of registers. But now we have a new
problem: how to specify the register we want to use. This situation looks
like Figure 319.

Register0

Register1

input output
Register2

Registern

Figure 3-19: Multiple registers

One way to solve this problem is to assign each register a number, as
in the figure. We can have this number or address specify the register using
one of our standard building blocks, the decoder from “Building Decoders”
on page 63. The decoder outputs are connected to the enable inputs on
the registers.

Next we need to be able to select the output from the addressed register.
Fortunately, we learned how to build selectors in “Building Selectors” on
page 65, and they’re just what we need.

80 Chapter 3

Systems often have multiple memory components that need to be
hooked together. Time for yet another of our standard building blocks:
the tri- state output.

Putting it all together, a memory component looks like Figure 320.

input Registers

Decoder

Selector output

read enable

write enable

address

Figure 3-20: A memory component

Memory components have a lot of electrical connections. If we want to
do something with 32bit numbers, we would need 32 connections each for
the inputs and the outputs, plus connections for the address, control sig
nals, and power. Programmers don’t have to worry about how to fit circuitry
into packages or how to route wires, but hardware designers do. We can cut
down on the number of connections by realizing that memory rarely needs
to be read and written at the same time. We can get by with one set of data
connections plus a read/ write control. Figure 321 shows a schematic of a
simplified memory chip. The enable control turns the whole thing on and
off so that multiple memory chips can be connected together.

address

read/write enable

Memory data

Figure 3-21: A simplified memory chip

You’ll notice that the figure uses big fat arrows for the address and data
instead of showing the individual signals. We call groups of related signals
buses, so the memory chip has an address bus and a data bus. Yup, it’s mass
transit for bits.

The next challenge in memory chip packaging comes when the mem
ory size increases and lots of address bits need connections. Referring back
to Table 12 in Chapter 1, we’d need 32 address connections for a 4GiB
memory component.

Memory designers and road planners deal with similar traffic
management issues. Many cities are organized into grids, and that’s also
how memory chips are laid out internally. You can see several rectangular

Sequential Logic 81

regions that are chunks of memory in the CPU photomicrograph shown back
in Figure 23. The address is partitioned into two chunks: a row address
and a column address. A memory location is addressed internally using the
intersection of the row and column, as shown in Figure 322.

A0

A1

A2

A3

A0

A1

Y0

Y1

Y2

Y3

Column
address
decoder

A0

A1

Y0

Y1

Y2

Y3

Row
address
decoder

Memory
array

Figure 3-22: Row and column addressing

Obviously we don’t need to worry about the number of address lines in
the 16location memory shown in this figure. But what if there were a lot
more? We could halve the number of address lines by multiplexing the row
and column addresses. All we would need is registers on the memory chip
to save them, as shown in Figure 323.

A0

A1

Y0

Y1

Y2

Y3

Column
address
decoder

A0

A1

Y0

Y1

Y2

Y3

Row
address
decoder

A0/2

A1/3

D0

D1

Column
address
register

Column address strobe (CAS)

Row address strobe (RAS)

D0

D1

Row
address
register

Memory
array

Q0

Q1

Q0

Q1

Figure 3-23: Memory with address registers

Since the address comes in two parts, it follows that performance would
be better if we only had to change one part, such as by setting the row address
and then varying the column address. This is what we find in today’s large
memory chips.

Memory chips are described by their size in depth × width format. For
example, a 256 × 8 chip would have 256 8bit wide memory locations; a
64 Mib × 1 chip would have 64 mebibits.

82 Chapter 3

Random- Access Memory
The memory we’ve talked about so far is called random- access memory, or
RAM. With RAM, the entire width of any memory location can be read or
written in any order.

Static RAM, or SRAM, is expensive but fast. It takes six transistors for
each bit. Because transistors take up space, SRAM isn’t a great choice for
storing billions or trillions of bits.

Dynamic memory (DRAM) is a clever hack. Electrons are stored in micro
scopic buckets called capacitors, using only one transistor for the lids. The
problem is, these buckets leak, so it’s necessary to refresh the memory every
once in a while, which means regularly topping off the buckets. You have
to be careful that the topping off doesn’t occur at a critical time that would
conflict with accessing the memory; this was a problem with one of the first
DRAM based computers, the DEC LSI11. One of the interesting side effects
of DRAM is that the buckets leak more when light shines on them. This
enables them to be used as digital cameras.

DRAM is used for large memory chips because of its high density
(number of bits per area). Large memory chips mean lots of addresses,
which means that DRAM chips use the multiplexed addressing scheme
discussed in the previous section. Because of other internal design consid
erations, it’s only faster to save the row address using the row address strobe
and then to vary the column address via the column address strobe. It’s
an overused term, but rows are sometimes called pages. It’s comparable to
reading a book like this one; it’s much easier to scan a page than it is to
flip pages. Or, as stated by the great performance pioneer Jimmy Durante,
best performance is a ras ama cas. This is a very important consideration
in programming: keeping things that are used together in the same row
greatly improves performance.

Both SRAM and DRAM are volatile memory, which means that data
can be lost when the power is interrupted. Core memory is an antique non-
volatile type of RAM that stores bits in toroidal (doughnut shaped) pieces
of iron, which you can see in Figure 324. Toroids were magnetized in
one direction for a 0 and the other for a 1. The physics of toroids is cool
because they’re very resistant to electromagnetic interference from outside
the doughnut. In this type of memory, cores were arranged in a grid called
a plane with row and column wires through them. There was also a third
wire, called the sense wire, because the only way to read the state of a bit
was to try to change it and then sense what happened. Of course, if you
sensed that it changed, you had to change it back or the data would be lost,
making the bit useless. That required a lot of circuitry in addition to all
the stitching. Core was actually three dimensional memory, as planes were
assembled into bricks.

While core is antique technology, the nonvolatile characteristic is still
prized, and research continues making commercially practical magneto-
resistive memory that combines the best of core memory and RAM.

Sequential Logic 83

Figure 3-24: Core memory

Read- Only Memory
Read- only memory, or ROM, is not a very accurate name. Memory that could
only be read but never written wouldn’t be useful. Even though the name has
stuck, it’s more accurate to say that ROM is write once memory. ROM can be
written once and then read multiple times. ROM is important for devices that
need to have a program built in, such as a microwave oven; you wouldn’t want
to have to program your microwave every time you needed popcorn.

One of the early forms of ROM was the Hollerith card, which later
became known as the IBM card, shown in Figure 325. Bits were punched
into pieces of paper. Really! They were pretty cheap because American
inventor Herman Hollerith (1860–1929) was big into cutting corners.
Hollerith invented the card in the late 1800s, although it might be more
accurate to say that he appropriated the idea from the Jacquard loom, which
was invented by Joseph Marie Jacquard in 1801. The Jacquard loom used
punched cards to control the weaving pattern. Of course, Jacquard bor
rowed the idea from Basile Bouchon, who had invented a punched paper
tape–controlled loom in 1725. Sometimes it’s hard to distinguish between
invention and appropriation, because the future is built on the past. Keep
this in mind when you hear people arguing for longer and more restrictive
patent and copyright laws; progress slows if we can’t build on the past.

Figure 3-25: An IBM card

84 Chapter 3

Early IBM card readers used switches to read the bits. Cards would be
slid under a row of springy wires that poked through the holes and made
contact with a piece of metal on the other side. Later versions, which worked
by shining light through the holes onto a row of photodetectors on the other
side, were considerably faster.

Punched paper tape is a related ROM technology; rolls of paper tape
with holes punched in it were used to represent bits (see Figure 326). Tape
had an advantage over cards in that dropping a deck of cards would scramble
the data. Then again, tape could tear and was difficult to repair; many a
masking tape repair job clogged up the works.

Figure 3-26: Punched paper tape

Cards and tape were very slow because they had to be physically moved
in order to be read.

A ROM variation called core rope memory was used in the Apollo flight
computer (see Figure 327). Because it could be written only by sewing, it
was impervious to interference—which is important in the harsh environ
ment of space.

Figure 3-27: Core rope memory from the Apollo guidance computer

Sequential Logic 85

IBM cards and paper tape were sequential memory; that is, the data was
read in order. Card readers couldn’t go backward, so they were really only
good for long term storage of data. The contents had to be read into some
sort of RAM in order to be used. The first commercial availability of a single
chip microprocessor, the Intel 4004 in 1971, created demand for better pro
gram storage technology. These first microprocessors were used for devices
like calculators that ran a fixed program. Along came mask- programmable
ROM. A mask is a stencil used as part of the integrated circuit–manufacturing
process. You’d write a program and send the bit pattern off to a semicon
ductor manufacturer along with a really big check. They’d turn it into a
mask, and you’d get back a chip containing your program. It was read only
because there was no way to change it without writing another big check and
having a different mask made. Mask programmable ROM could be read in a
random access manner.

Masks were so expensive that they could be justified only for high volume
applications. Along came programmable read- only memory (PROM), ROM chips
that you could program yourself, but only once. The original mechanism
for PROM involved melting nichrome (a nickel chromium alloy) fuses on
the chip. Nichrome is the same stuff that makes the glowing wires in your
toaster.

People would go through a big pile of PROM chips quickly when devel
oping a program. Engineers are pain adverse, so next came erasable program-
mable read- only memory (EPROM). These chips were like PROMs, except that
they had a quartz window on top and you could erase them by putting them
under a special ultraviolet light.

Life got better with the introduction of electrically erasable programmable
read- only memory (what a mouthful!), or EEPROM. This is an EPROM chip that
can be erased electrically—no light, no quartz window. Erasing EEPROM is
comparatively very slow, though, so it’s not something you want to do a lot.
EEPROMs are technically RAM, since it’s possible to read and write the con
tents in any order. But because they’re slow to write and more expensive than
RAM, they’re used as a substitute for ROMs.

Block Devices
It takes time to talk to memory. Imagine you had to go to the store every
time you needed a cup of flour. It’s much more practical to go to the store
once and bring home a whole sack of flour. Larger memory devices use this
principle. Think warehouse shopping for bits.

Disk drives, also known as mass storage, are great for storing immense
amounts of data. An 8TB drive cost less than $200 when this book was
written. They’re often referred to as mass storage. Some religious institutions
use mass storage for their ceremonies in between use. Disk drives store bits
on rotating magnetic platters, sort of like a lazy Susan. Bits periodically
come around to where you’re sitting, and you use your hand to pluck them
off or put them on. In a disk drive, your hand is replaced by the disk head.

86 Chapter 3

Disk drives are relatively slow compared to other types of memory. If
you want something that just passed by the head, you have to wait almost an
entire rotation for it to come around again. Modern disks spin at 7,200 rota
tions per minute (RPM), which means a rotation takes slightly longer than
8 milliseconds. The big problem with disk drives is that they’re mechanical
and wear out. Bearing wear is one of the big causes of disk failure. The
difference between commercial and consumer grade devices is primarily
the amount of grease in the bearing—manufacturers are able to charge
hundreds of dollars for something that costs less than a penny. Disk drives
store data by magnetizing areas on the disk, which makes them nonvolatile
just like core memory.

Disk drives are a trade off between speed and density. They’re slow
because of the time it takes for the bits you want to show up under the head,
but because the data is being brought to the head, no space is required for
address and data connections, unlike, for example, in a DRAM. Figure 328
shows the insides of a disk drive. They’re built in sealed containers because
dust and dirt would cause them to fail.

Figure 3-28: A disk drive

Disks are block addressable rather than byte addressable. A block
(historically called a sector) is the smallest unit that can be accessed.
Disks have historically had 512byte sectors, although newer devices
have 4,096byte sectors. That means in order to change a byte on a
disk, you have to read an entire block, change the byte, and then write
back the entire block. Disks contain one or more platters that are laid
out as shown in Figure 329.

Sequential Logic 87

Geometric sector
Track

Cluster Sector

Figure 3-29: Disk layout

Since all of the sectors contain the same number of bits, the bit density
(bits/mm2) is greater at the center of each platter than it is at the outer
edge. This is wasteful because there’s clearly room to cram more bits onto
the outer tracks. Newer disks address this problem by dividing the disk into
a set of radial zones, effectively having more sectors in the outer zones than
in the inner ones.

There are a couple of numbers that describe the performance of disk
drives. Modern disks have a head on an actuator arm that moves radially
across the disk; the position of the head divides the disks into tracks. The
seek time is the amount of time that it takes to move the head from one track
to another. It would, of course, be much faster to have one head per track so
that seeking wasn’t necessary; you could get that on very old disk drives, but
the tracks are too close together on modern disks to make that practical.
In addition to the seek time, there’s the time it takes for the part of the disk
you’re interested in to rotate so that it’s under the head, called rotational
latency, which as we saw above is in the millisecond range.

Disk drives are often called hard drives. Originally, all disk drives were
hard drives. The distinction arose when cheap removable storage devices
called floppy disks appeared on the scene. Floppy disks were bendable, so
calling the other type “hard” made them easy to differentiate.

An antiquated variation on disk drives is magnetic drum storage, which
was just what it sounds like: a rotating magnetic drum with stripes of heads
on it.

Magnetic tape is another nonvolatile storage technology that uses reels
of magnetized tape. It is way slower than a disk drive, and it can take a long
time to wind the tape to the requested position. Early Apple computers
used consumer grade audio cassettes for magnetic tape storage.

Optical disks are similar to magnetic disks except that they use light
instead of magnetism. You know these as CDs and DVDs. A big advantage
of optical disks is that they can be mass produced via printing. Preprinted

88 Chapter 3

disks are ROMs. PROM equivalent versions that can be written once (CD R,
DVD R) are also available, as are versions that can be erased and rewritten
(CD RW). Figure 330 shows a close up of a portion of an optical disk.

Figure 3-30: Optical disk data

Flash Memory and Solid State Disks
Flash memory is the most recent incarnation of EEPROM. It’s good solution
for some applications, like music players and digital cameras. It works by stor
ing electrons in buckets just like DRAM. In this case, the buckets are bigger
and better built so they don’t leak. But the lid hinges on the buckets eventu
ally wear out if they’re opened and closed too many times. Flash memory
can be erased more quickly than EEPROM and is cheaper to make. It works
like RAM for reading and also for writing a blank device filled with 0s. But
although 0s can be turned into 1s, they can’t be turned back without being
erased first. Flash memory is internally divided into blocks, and only blocks
can be erased, not individual locations. Flash memory devices are random
access for reads, and block access for writes.

Disk drives are slowly being replaced by solid- state disk drives, which
are pretty much just flash memory packaged up to look like a disk drive.
Right now their price per bit is much higher than spinning disks, but that’s
expected to change. Because flash memory wears out, solid state drives
include a processor that keeps track of the usages in different blocks and
tries to even it out so that all blocks wear out at the same rate.

Error Detection and Correction
You never know when a stray cosmic ray is going to hit a piece of memory
and corrupt the data. It would be nice to know when this happens and even
nicer to be able to repair the damage. Of course, such improvements cost
money and are not typically found in consumer grade devices.

We’d like to be able to detect errors without having to store a com
plete second copy of the data. And that wouldn’t work anyway, because we
wouldn’t know which copy was correct. We could store two extra copies and
assume that the matching pair (if any) is the right one. Computers designed
for very harsh environments do this. They also use a more expensive circuit

Sequential Logic 89

design that doesn’t burn up when hit by a proton. For example, the space
shuttle had redundant computers and a voting system in the event that an
error was detected.

We can test for a 1bit error using a method called parity. The idea is
to add up the number of bits that are set to 1 and use an extra bit to store
whether that sum is an odd or even number. We can do this by taking the
XOR of the bits. There are two forms of this: in even parity the sum of the
bits is used, and in odd parity the complement of the sum of the bits is used.
This choice may seem, well, odd, but the nomenclature comes from the
number of 1s or 0s including the parity bit.

The left half of Figure 331 shows the calculation of even parity; there
are four 1s, so the parity is 0. The right half shows the checking of the par
ity; a 0 out means that the data is good, or at least as good as we can tell
with parity. The big problem with parity is that it’s one place where two
wrongs sure look like a right; it only catches odd numbers of errors.

0

0

0
8

0
7

1
6

1
5

0
4

0
3

0
2

1
1

1
0

1 1 0 0

0

0 0

0

0
8

0
7

1
6

1
5

0
4

0
3

0
2

1
1

1
0

1 1 0 0

0

Figure 3-31: Even parity generation and checking

There are more complicated methods, such as Hamming codes,
invented by American mathematician Richard Hamming (1915–1998),
which take more bits and allow for more errors to be detected and for
some to be corrected. Error checking and correcting (ECC) memory chips
are available that include this circuitry. They’re typically used in big
data centers, not in consumer devices.

Methods like parity are good for data that is constantly changing.
There are less expensive methods that allow for verification of static block
data, such as a computer program. The simplest of these is the checksum,
where the contents of every data location are summed into some nbit value
and the overflow bits are thrown away. The checksum can be compared
against the program, usually just before it is run. The larger the checksum
value (that is, larger n), the lower the chance of getting a false positive.

Cyclic redundancy checks, or CRCs, are a mathematically better replace
ment for checksums. Hash codes are another. The goal is to calculate a
verification number that is unique enough for the data so that for most
changes, the check will no longer be correct.

90 Chapter 3

Hardware vs. Software
The techniques used to make PROMs, EEPROMs, and flash aren’t just
limited to memory. We’ll soon see how computer hardware is constructed
from logic circuits. And since you’re learning programming, you know
that programs include logic in their code, and you may know that computers
expose logic to programs via their instruction sets. What’s the difference
between doing that in hardware versus software? It’s a blurry line. To a
large degree, there is little distinction except that it’s much easier to build
software since there are no additional costs other than design time.

You’ve probably heard the term firmware, which originally just referred
to software in a ROM. But most firmware now lives in flash memory or
even RAM, so the difference is minimal. And it’s even more complicated
than that. It used to be that chips were designed by geeks who laid out cir
cuits by sticking colored masking tape on big sheets of clear Mylar. In 1979
American scientists and engineers Carver Mead and Lynn Conway changed
the world with their publication of Introduction to VLSI Systems, which helped
kick start the electronic design automation (EDA) industry. Chip design
became software. Chips today are designed using specialized programming
languages such as Verilog, VHDL, and SystemC.

Much of the time, a computer programmer is simply given a piece of
hardware to use. But you might get the opportunity to participate in the
design of a system that includes both hardware and software. The design
of the interface between hardware and software is critical. There are count
less examples of chips with unusable, unprogrammable, and unnecessary
features.

Integrated circuits are expensive to make. In the early days, all chips
were full custom designs. Chips are built up in layers, with the actual com
ponents on the bottom and metal layers on top to wire them together. Gate
arrays were an attempt to lower the cost for some applications; a set of pre
designed components was available, and only the metal layers were custom.
Just like with memory, these were supplanted by PROM equivalent versions
that you could program yourself. And there was an EPROM equivalent that
could be erased and reprogrammed.

Modern field- programmable gate arrays (FPGAs) are the flash memory
equivalent; they can be reprogrammed in software. In many cases, using
an FPGA is cheaper than using other components. FPGAs are very rich
in features; for example, you can get a large FPGA that contains a couple
of ARM processor cores. Intel recently purchased Altera and may include
FPGAs on its processor chips. There’s a good chance you’ll work on a
project containing one of these devices, so be prepared to turn your
software into hardware.

Sequential Logic 91

Summary
In this chapter, you’ve learned where computers get their sense of time. You
were introduced to sequential logic, which, along with combinatorial logic
from Chapter 2, provides us with all of the fundamental hardware building
blocks. And you’ve learned something about how memory is built. We’ll put
all of this knowledge together to make a computer in Chapter 4.

4
C O M P U T E R A N A T O M Y

You learned about the properties of bits and
ways of using them to represent things in

Chapter 1. In Chapters 2 and 3, you learned
why we use bits and how they’re implemented in

hardware. You also learned about a number of basic
building blocks and how they could be combined into
more complex configurations. In this chapter, you’ll
learn how those building blocks can be combined into
a circuit that can manipulate bits. That circuit is called a
computer.

There are many ways of constructing a computer. The one we’ll build
in this chapter was chosen for ease of explanation, not because it’s the best
possible design. And although simple computers work, a lot of additional

94 Chapter 4

complexity is required to make them work well. This chapter sticks to
the simple computer; the next two chapters cover some of the extra
complications.

There are three big pieces in a modern computer. These are the memory,
the input and output (I/O), and the central processing unit (CPU). This section
covers how these pieces relate to each other. Chapter 3 introduced memory,
and Chapter 5 covers computers and memory in more detail. I/O is the
subject of Chapter 6. The CPU lives in what I’m calling “City Center” in this
chapter.

Memory
Computers need someplace to keep the bits that they’re manipulating. That
place is memory, as you learned in Chapter 3. Now it’s time to find out how
computers use it.

Memory is like a long street full of houses. Each house is exactly the same
size and has room for a certain number of bits. Building codes have pretty
much settled on 1 byte per house. And just like on a real street, each house
has an address, which is just a number. If you have 64 MiB of memory in your
computer, that’s 64 × 1,024 × 1,024 = 67,108,864 bytes (or 536,870,912 bits).
The bytes have addresses from 0 to 67,108,863. This numbering makes sense,
unlike the numbering on many real streets.

It’s pretty common to refer to a memory location, which is just memory
at a particular address, such as 3 Memory Lane (see Figure 4-1).

210

City
Center

Memory Lane

Byte address n. . . 3

Figure 4-1: Memory Lane

Just because the basic unit of memory is a byte doesn’t mean we
always look at it that way. For example, 32-bit computers usually organize
their memory in 4-byte chunks, while 64-bit computers usually organize their
memory in 8-byte chunks. Why does that matter? It’s like having a four- or
eight- lane highway instead of a one- lane road. More lanes can handle more
traffic because more bits can get on the data bus. When we address memory,
we need to know what we’re addressing. Addressing long words is different
from addressing bytes because there are 4 bytes to a long word on a 32-bit
computer, and 8 bytes to a long word on a 64-bit computer. In Figure 4-2,
for example, long-word address 1 contains byte addresses 4, 5, 6, and 7.

Another way to look at it is that the street in a 32-bit computer con-
tains fourplexes, not single houses, and each fourplex contains two
duplexes. That means we can address an individual unit, a duplex, or
a whole building.

Computer Anatomy 95

11

Bus
route

City
Center

Byte address

Half-word
address

Long-word
 address

10

54

2

9876

32

1

5432

10

0

10

Figure 4-2: Memory highway

You may have noticed that each building straddles the highway such
that each byte has its own assigned lane, and a long word takes up the
whole road. Bits commute to and from City Center on a bus that has four
seats, one for each byte. The doors are set up so that there’s one seat for
each lane. On most modern computers, the bus stops only at one building
on each trip from City Center. This means we can’t do things like form a
long word from bytes 5, 6, 7, and 8, because that would mean that the bus
would have to make two trips: one to building 0 and one to building 1.
Older computers contained a complicated loading dock that allowed this,
but planners noticed that it wasn’t all that useful and so they cut it out of
the budget on newer models. Trying to get into two buildings at the same
time, as shown in Figure 4-3, is called a nonaligned access.

5

210

Aligned

10 118 9

3

Nonaligned

6 74 5

1 420

2 30 1

Figure 4-3: Aligned and nonaligned accesses

There are lots of different kinds of memory, as we saw in the previous
chapter. Each has a different price/performance ratio. For example, SRAM is
fast and expensive, like the highways near where the politicians live. Disk is
cheap and slow—the dirt road of memory.

Who gets to sit in which seat when commuting on the bus? Does byte 0
or byte 3 get to sit in the leftmost seat when a long word heads into town? It
depends on the processor you’re using, because designers have made them
both ways. Both work, so it’s pretty much a theological debate. In fact, the

96 Chapter 4

term endian—based on the royal edicts in Lilliput and Blefuscu in Jonathan
Swift’s Gulliver’s Travels regarding which was the proper end on which to
crack open a soft- boiled egg—is used to describe the difference.

Byte 0 goes into the rightmost seat in little- endian machines like Intel
processors. Byte 0 goes into the leftmost seat in big- endian machines like
Motorola processors. Figure 4-4 compares the two arrangements.

Big-endianLittle-endian

Byte 3Byte 2Byte 1Byte 0Byte 0Byte 1Byte 2Byte 3

Figure 4-4: Big- and little- endian arrangements

Endianness is something to keep in mind when you’re transferring infor-
mation from one device to another, because you don’t want to inadvertently
shuffle the data. A notable instance of this occurred when the UNIX oper-
ating system was ported from the PDP-11 to an IBM Series/1 computer. A
program that was supposed to print out “Unix” printed out “nUxi” instead,
as the bytes in the 16-bit words got swapped. This was sufficiently humorous
that the term nuxi syndrome was coined to refer to byte- ordering problems.

Input and Output
A computer that couldn’t communicate with the outside world wouldn’t be
very useful. We need some way to get things in and out of the computer.
This is called I/O for input/output. Things that connect to the I/O are called
I/O devices. Since they’re on the periphery of the computer, they’re also
often called peripheral devices or just peripherals.

Computers used to have a separate I/O avenue, as shown in Figure 4-5,
that was similar to Memory Lane. This made sense when computers were
physically huge, because they weren’t squeezed into small packages with a
limited number of electrical connections. Also, Memory Lane wasn’t very long,
so it didn’t make sense to limit the number of addresses just to support I/O.

I/O bus route Memory bus routeCity
Center

Figure 4-5: Separate memory and I/O buses

Memory Lane is much longer now that 32- and 64-bit computers are com-
mon. It’s so long that there aren’t houses at every address; many empty lots are
available. In other words, there are addresses that have no memory associated
with them. As a result, it now makes more sense to set aside a portion of Mem-
ory Lane for I/O devices. It’s like the industrial district on the edge of town.
Also, as more circuitry is crammed into a package that has a limited number
of connections, it just makes sense for I/O to be on the same bus as memory.

Many computers are designed with standard input/output slots so that
I/O devices can be connected in a uniform manner. This is done sort of

Computer Anatomy 97

like how property was distributed in the Old West; the unincorporated ter-
ritory is partitioned into a set of land grants, as shown in Figure 4-6. Each
slot holder gets the use of all addresses up to its borders. Often there is a
specific address in each slot that contains some sort of identifier so that
City Center can conduct a census to determine who’s living in each slot.

Memory

City
Center Bus route

I/O
device

I/O
device

I/O
device

Figure 4-6: Shared memory and I/O bus

We often use a shipping metaphor and say that things are hooked up to
I/O ports.

The Central Processing Unit
The central processing unit (CPU) is the part of the computer that does the
actual computing. It lives at City Center in our analogy. Everything else is
the supporting cast. The CPU is made up of many distinct pieces that we’ll
learn about in this section.

Arithmetic and Logic Unit
The arithmetic logic unit (ALU) is one of the main pieces of a CPU. It’s the
part that knows how to do arithmetic, Boolean algebra, and other opera-
tions. Figure 4-7 shows a simple diagram of an ALU.

Operand A

Operand B

Operation code

ALU

Condition codes

Result

Figure 4-7: A sample ALU

The operands are just bits that may represent numbers. The operation
code, or opcode, is a number that tells the ALU what operator to apply to the
operands. The result, of course, is what we get when we apply the operator
to the operands.

98 Chapter 4

The condition codes contain extra information about the result. They
are usually stored in a condition code register. A register, which we saw back in
Chapter 3, is just a special piece of memory that’s on a different street from
the rest of the memory—the street with the expensive, custom homes. A
typical condition code register is shown in Figure 4-8. The numbers on top
of the boxes are the bit numbers, which is a convenient way to refer to them.
Note that some of the bits are not used; this is not unusual.

7 6 5 4 3 2 1 0

N Z O

Negative
Zero

Overflow

Figure 4-8: A condition code register

The N is set to 1 if the result of the last operation is a negative number.
The Z bit is set to 1 if the result of the last operation is 0. The O bit is set to
1 if the result of the last operation created an overflow or underflow.

Table 4-1 shows what an ALU might do.

Table 4-1: Sample ALU Opcodes

Opcode Mnemonic Description

0000 clr Ignore the operands; make each bit of the result 0 (clear).
0001 set Ignore the operands; make each bit of the result 1.
0010 not Ignore B; turn 0s from A to 1s and vice versa.
0011 neg Ignore B; the result is the two’s complement of A, –A.
0100 shl Shift A left by the low 4 bits of B (see next section).
0101 shr Shift A right by the low 4 bits of B (see next section).
0110 Unused.
0111 Unused.
1000 load Pass operand B to the result.
1001 and The result is A AND B for each bit in the operands.
1010 or The result is A OR B for each bit in the operands.
1011 xor The result is A XOR B for each bit in the operands.
1100 add The result is A + B.
1101 sub The result is A – B.
1110 cmp Set condition codes based on B – A (compare).
1111 Unused.

Computer Anatomy 99

 The ALU may appear mysterious, but it’s really just some logic gates
feeding a selector, which you’ve seen before. Figure 4-9 shows the general
design of an ALU, omitting some of the more complicated functions for the
sake of simplicity.

0

1

A

B
A
B
A
B

Opcode

Result

clr

set

not

load

and

or

Figure 4-9: ALU partial internals

Shiftiness
You may have noticed the shift operations in Table 4-1. A left shift moves
every bit left one position, throwing away the leftmost bit and moving a 0
into the vacated rightmost position. If we left- shift 01101001 (10510) by 1,
we’ll get 11010010 (21010). This is pretty handy because left- shifting a number
one position multiplies it by 2.

A right shift moves every bit right one position, throwing away the right-
most bit and moving a 0 into the vacated leftmost position. If we right- shift
01101001 (10510) by 1, we’ll get 00110100 (5210). This divides a number by 2,
throwing away the remainder.

The value of the MSB (most significant bit) lost when left- shifting or
the LSB (least significant bit) when right- shifting is often needed, so it’s
saved in the condition code register. Let’s make believe that our CPU saves
it in the O bit.

You might have noticed that everything in the ALU looks like it can be
implemented in combinatorial logic except these shift instructions. You can
build shift registers out of flip- flops where the contents are shifted one bit
position per clock.

A sequential shift register (shown in Figure 4-10) is slow because it
takes one clock per bit in the worst case.

C0

D

clock

Q D Q D Q D. . . Q

C1 Cn

Figure 4-10: A sequential shift register

100 Chapter 4

We can solve this by constructing a barrel shifter entirely out of combina-
torial logic using one of our logic building blocks, the selector (refer back
to Figure 2-47). To build an 8-bit shifter, we would need eight of the 8:1
selectors.

There is one selector for each bit, as shown in Figure 4-11.

I0
0
0

S0

A0 A1 A2

Selector
8:1

S1
S2

0
0

O0

0
0
0

O7

I1
I0
0

A0 A1 A2

Selector
8:1

0
0

O1

0
0
0

I2
I1
I0

A0 A1 A2

Selector
8:1

Selector
8:1

0
0

O2 . . .

0
0
0

I7
I6
I5

A0 A1 A2

I4
I3
I2
I1
I0

Figure 4-11: A combinatorial barrel shifter

The amount of right shift is provided on S0-2. You can see that with
no shift (000 for S), input bit 0 (I0) gets passed to output bit 0 (O0), I1 to O1,
and so on. When S is 001, the outputs are shifted right by one because that’s
the way the inputs are wired up to the selector. When S is 010, the outputs
are shifted right by two, and so on. In other words, we have all eight possi-
bilities wired and just select the one we want.

You may wonder why I keep showing these logic diagrams as if they’re
built out of old 7400 series parts. Functions such as gates, multiplexors,
demultiplexors, adders, latches, and so on are available as predefined
components in integrated circuit design systems. They’re used just like
the old components, except instead of sticking lots of the 7400 series parts
I mentioned in Chapter 2 onto a circuit board, we now assemble similar
components into a single chip using design software.

You may have noticed the absence of multiplication and division opera-
tions in our simple ALU. That’s because they’re much more complicated
and don’t really show us anything we haven’t already seen. You know that
multiplication can be performed by repeated addition; that’s the sequen-
tial version. You can also build a combinatorial multiplier by cascading
barrel shifters and adders, keeping in mind that a left shift multiplies a
number by 2.

Shifters are a key element for the implementation of floating- point
arithmetic; the exponents are used to shift the mantissas to line up the
binary points so that they can be added together, subtracted, and so on.

Execution Unit
The execution unit of a computer, also known as the control unit, is the
boss. The ALU isn’t much use by itself, after all—something has to tell it
what to do. The execution unit grabs opcodes and operands from the

Computer Anatomy 101

right places in memory, tells the ALU what operations to perform, and
puts the results back in memory. Hopefully, it does all that in an order
that serves some useful purpose. (By the way, we’re using the “to perform”
definition of execute. No bits are actually killed.)

How might the execution unit do this? We give it a list of instructions,
things like “add the number in location 10 to the number in location 12 and
put the result in location 14.” Where does the execution unit find these
instructions? In memory! The technical name for what we have here is a
stored- program computer. It has its genesis in work by English wizard Alan
Turing (1912–1954).

That’s right, we have yet another way of looking at bits and interpreting
them. Instructions are bit patterns that tell the computer what to do. The bit
patterns are part of the design of a particular CPU. They’re not some gen-
eral standard, like numbers, so an Intel Core i7 CPU would likely have a
different bit pattern for the inc A instruction than an ARM Cortex- A CPU.

How does the execution unit know where to look for an instruction
in memory? It uses a program counter (often abbreviated PC), which is sort
of like a mail carrier, or like a big arrow labeled “You are here.” Shown in
Figure 4-12, the program counter is another register, one of those pieces
of memory on the special side street. It’s constructed from a counter (see
“Counters” on page 77) instead of a vanilla register (see “Registers” on
page 78). You can view the counter as a register with additional counting
functionality.

Program counter Memory

7

6

5

4

3

2

1

00

. . .

Figure 4-12: A program counter

The program counter contains a memory address. In other words, it
points at, or references, a location in memory. The execution unit fetches an
instruction from the location referenced by the program counter. There
are special instructions that change the value of the program counter,
which we’ll see shortly. Unless we’re executing one of these, the program
counter is incremented (that is, the size of one instruction is added to it)
after the instruction is executed so that the next instruction will come
from the next memory location. Note that CPUs have some initial program
counter value, usually 0, when the power is turned on. The counter we saw
in Figure 3-17 has inputs to support all these functions.

102 Chapter 4

It all works kind of like a treasure hunt. The computer goes to a
certain place in memory and finds a note. It reads that note, which tells
it to do something, and then goes someplace else to get the next note,
and so on.

Instruction Set
The notes that computers find in memory during their treasure hunt are
called instructions. This section goes into what those instructions contain.

Instructions
To see what sort of instructions might we find in a CPU, and how we choose
bit patterns for them, our example assumes a computer with 16-bit- wide
instructions.

Let’s try dividing our instruction into four fields—the opcode plus
addresses for two operands and result—as shown in Figure 4-13.

Opcode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operand B Operand A Result

Figure 4-13: Three- address instruction layout

This may seem like a good idea, but it doesn’t work very well. Why?
Because we only have room for 4 bits of address for each of the operands
and the result. It’s kind of hard to address a useful amount of memory
when you have only 16 addresses. We could make the instruction bigger,
but even if we went to 64-bit- wide instructions, we’d have only 20 bits of
address, which would reach only a mebibyte of memory. Modern machines
have gibibytes of memory.

Another approach would be to duplicate the DRAM addressing trick
we saw in Figure 3-23. We could have an address extension register and load it
with the high- order address bits using a separate instruction. This technique
was used by Intel to allow its 32-bit machines to access more than 4-GiB
of memory. Intel called it PAE, for physical address extension. Of course, it
takes extra time to load this register, and lots of register loads are required
if we need memory on both sides of the boundary created by this approach.

There’s an even more important reason why the three- address format
doesn’t work well, though: it counts on some magic, nonexistent form of
memory that allows three different locations to be addressed at the same
time. All three memory blocks in Figure 4-14 are the same memory device;
there aren’t three address buses and three data buses.

Computer Anatomy 103

Memory

Memory

Memory

Opcode Operand B Operand A Result

ALU

Condition code register

Instruction

Figure 4-14: Unworkable computer architecture

We could make this work by having one register hold the contents of
operand A and another hold the contents of operand B. The hardware
would need to do the following:

1. Load the instruction from memory using the address in the program
counter.

2. Load the operand A register using the address from the operand A
portion of the instruction.

3. Load the operand B register using the address from the operand B
portion of the instruction.

4. Store the result in memory using the address from the result portion of
the instruction.

That’s a lot of complicated hardware. If each of these steps took a clock
cycle, then it would take four cycles just to get something done. We should
take a hint from the fact that we can access only one memory location at a
time and design our instruction set accordingly. More address bits would be
available if we tried to address only one thing at a time.

We can do that by adding another house to the register street. We’ll call
this register the accumulator, or A register for short, and it will hold the
result from the ALU. Rather than doing an operation between two memory
locations, we’ll do it between one memory location and the accumulator.
Of course, we’ll have to add a store instruction that stores the contents of the
accumulator in a memory location. So now we can lay out our instructions as
shown in Figure 4-15.

Opcode Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4-15: Single- address instruction layout

104 Chapter 4

This gets us more address bits, but it takes more instructions to get
things done. We used to be able to have an instruction that said:

C = A + B

But now we need three instructions:

Accumulator = A
Accumulator = Accumulator + B
C = Accumulator

You might notice that we just replaced one instruction with three,
effectively making the instruction bigger and contradicting ourselves.
That’s true for this simple case, but it’s not true in general. Let’s say we
needed to calculate this:

D = A + B + C

We couldn’t do that in a single instruction even if it could access three
addresses because now we need four. We’d have to do it like this:

Intermediate = A + B
D = Intermediate + C

Sticking with 12 bits of address, we’d need 40-bit instructions to handle
three address plus the opcode. And we’d need two of these instructions
for a total of 80 bits to calculate D. Using the single-address version of the
instructions requires four instructions for a total of 64 bits.

Accumulator = A
Accumulator = Accumulator + B
Accumulator = Accumulator + C
D = Accumulator

Addressing Modes
Using an accumulator managed to get us 12 address bits, and although being
able to address 4,096 bytes is much better than 16, it’s still not enough. This
way of addressing memory is known as direct addressing, which just means that
the address is the one given in the instruction.

We can address more memory by adding indirect addressing. With indirect
addressing, we get the address from the memory location contained in the
instruction, rather than directly from the instruction itself. For example,
let’s say memory location 12 contains the value 4,321, and memory location
4,321 contains 345. If we used direct addressing, loading from location 12
would get 4,321, while indirect addressing would get 345, the contents of
location 4,321.

This is all fine for dealing with memory, but sometimes we just need to
get constant numbers. For example, if we need to count to 10, we need some

Computer Anatomy 105

way of loading that number. We can do this with yet another addressing
mode, called immediate mode addressing. Here the address is just treated as
a number, so, using the previous example, loading 12 in immediate mode
would get 12. Figure 4-16 compares these addressing modes.

Opcode

Opcode

Opcode

12 12

12345

4321

Memory

Memory Memory

345

12

12 12

Direct

Indirect

Immediate

Figure 4-16: Addressing modes

Clearly, direct addressing is slower than immediate addressing as it
takes a second memory access. Indirect is slower still as it takes a third
memory access.

Condition Code Instructions
There are still a few things missing from our CPU, such as instructions that
work with the condition codes. We’ve seen that these codes are set by addi-
tion, subtraction, and comparison. But we need some way of setting them
to known values and some way of looking at the values. We can do that by
adding a cca instruction that copies the contents of the condition code reg-
ister to the accumulator and an acc instruction that copies the contents of
the accumulator to the condition code register.

Branching
Now we have instructions that can do all sorts of things, but all we can do
is execute a list of them from start to finish. That’s not all that useful. We’d
really like to have programs that can make decisions and select portions of
code to execute. Those would take instructions that let us change the value
of the program counter. These are called branch instructions, and they cause
the program counter to be loaded with a new address. By itself, that’s not
any more useful than just being able to execute a list of instructions. But
branch instructions don’t always branch; they look at the condition codes
and branch only if the conditions are met. Otherwise, the program counter
is incremented normally, and the instruction following the branch instruc-
tion is executed next. Branch instructions need a few bits to hold the cond-
ition, as shown in Table 4-2.

106 Chapter 4

Table 4-2: Branch Instruction Conditions

Code Mnemonic Description

000 bra Branch always.
001 bov Branch if the O (overflow) condition code bit is set.
010 beq Branch if the Z (zero) condition code bit is set.
011 bne Branch if the Z condition code bit is not set.
100 blt Branch if N (negative) is set and Z is clear.
101 ble Branch if N or Z is set.
110 bgt Branch if N is clear and Z is clear.
111 bge Branch if N is clear or Z is set.

Sometimes we need to explicitly change the contents of the program
counter. We have two special instructions to help with this: pca, which
copies the current program counter value to the accumulator, and
apc, which copies the contents of the accumulator to the program
counter.

Final Instruction Set
Let’s integrate all these features into our instruction set, as shown in
Figure 4-17.

Mode Opcode Address
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4-17: The final instruction layout

We have three addressing modes, which means that we need 2 bits in
order to select the mode. The unused fourth-bit combination is used for
operations that don’t involve memory.

The addressing mode and opcode decode into instructions, as you
can see in Table 4-3. Note that the branch conditions are merged into the
opcodes. The opcodes for addressing mode 3 are used for operations that
involve only the accumulator. A side effect of the complete implementation
is that the opcodes don’t exactly match the ALU that we saw in Table 4-1.
This is not unusual and requires some additional logic.

Computer Anatomy 107

Table 4-3: Addressing Modes and Opcodes

Addressing mode

Opcode Direct (00) Indirect (01) Immediate (10) None (11)

0000 load load load
0001 and and and set
0010 or or ore not
0011 xor xor xor neg
0100 add add add shl
0101 sub sub sub shr
0110 cmp cmp cmp acc
0111 store store cca
1000 bra bra bra apc
1001 bov bov bov pca
1010 beq beq beq
1011 bne bne bne
1100 blt blt blt
1101 ble bge ble
1110 bgt bgt bgt
1111 bge bge bge

 The shift- left and shift- right instructions put some of the otherwise
unused bits to use as a count of the number of positions to shift, as shown
in Figure 4-18.

Count shl

Count shr

15 14 13 12 11 10
1 1 0 1 0 0

1 1 0 1 0 1

9 8 7 6 5 4 3 2 1 0

Figure 4-18: Shift instruction layout

Now we can actually instruct the computer to do something by writing
a program, which is just a list of instructions that carry out some task. We’ll
compute all Fibonacci (Italian mathematician, 1175–1250) numbers up to
200. Fibonacci numbers are pretty cool; the number of petals on flowers,
for example, are Fibonacci numbers. The first two Fibonacci numbers are
0 and 1. We get the next one by adding them together. We keep adding the
new number to the previous one to get the sequence, which is 0, 1, 1, 2, 3, 5,
8, 13, and so on. The process looks like Figure 4-19.

108 Chapter 4

Start

Yes

No

Set first number to 0

Set second number to 1

Set third number to sum of first and second numbers

Set first number to second number

Set second number to third number

Third number less than 200?

Done

Figure 4-19: Flowchart for Fibonacci sequence program

The short program shown in Table 4-4 implements this process. The
Instruction column is divided into fields as per Figure 4-17. The addresses
in the comments are decimal numbers.

Table 4-4: Machine Language Program to Compute Fibonacci Sequence

Address Instruction Description

0000 10 0000 0000000000 Clear the accumulator (load 0 immediate).
0001 00 0111 0001100100 Store the accumulator (0) in memory location 100.
0010 10 0000 0000000001 Load 1 into the accumulator (load 1 immediate).
0011 00 0111 0001100101 Store the accumulator (1) in memory location 101.
0100 00 0000 0001100100 Load the accumulator from memory location 100.
0101 10 0100 0001100101 Add the contents of memory location 101 to the

accumulator.
0110 00 0111 0001100110 Store the accumulator in memory location 102.
0111 00 0000 0001100101 Load the accumulator from memory location 101.
1000 00 0111 0001100100 Store it in memory location 100.
1001 00 0000 0001100110 Load the accumulator from memory location 102.
1010 00 0111 0001100101 Store it in memory location 101.
1011 10 0110 0011001000 Compare the contents of the accumulator to the

number 200.
1100 00 0111 0000000100 Do another number if the last one was less than

200 by branching to address 4 (0100).

Computer Anatomy 109

The Final Design
Let’s put all the pieces that we’ve seen so far together into an actual com-
puter. We’ll need a few pieces of “glue” to make it all work.

The Instruction Register
You might be fooled into thinking that the computer just executes the
Fibonacci program one instruction at a time. But more is happening
behind the scenes. What does it take to execute an instruction? There’s
a state machine doing the two- step, shown in Figure 4-20.

Fetch Execute

Figure 4-20: The fetch- execute cycle

The first thing that we have to do is to fetch an instruction from memory.
Once we have that instruction, then we can worry about executing it.

Executing instructions usually involves accessing memory. That means
we need someplace to keep the instruction handy while we’re using memory
for some other task. In Figure 4-21, we add an instruction register to our CPU
to hold the current instruction.

MemoryProgram counter Address bus Data bus Instruction register

Figure 4-21: Adding an instruction register

Data Paths and Control Signals
Here comes the complicated part. We need a way to feed the contents of
the program counter to the memory address bus and a way to feed the
memory data into the instruction register. We can do a similar exercise to
determine all the different connections required to implement everything
in our instruction set as detailed in Table 4-4. We end up with Figure 4-22,
which probably seems confusing. But it’s really just things we’ve seen before:
some registers, some selectors, the ALU, and a tri- state buffer.

Although this looks pretty complicated, it’s just like a road map. And
it’s way simpler than a real city map. The address selector is just a three-
way intersection, and the data selector is a four- way. There are connections
hanging off of the address bus and data bus for things like the I/O devices
that we’ll discuss in Chapter 6.

110 Chapter 4

Program counter

enable

enable

Address bus

0

0
1
2
3

2

address source

data source

data bus
enable

Operand B

Operand A

opcode

opcode

instruction

Condition
codes

Result

Condition code register

Accumulator

enable

enable

enable

ALU

Memory Data bus

clear enable Id/cnt

Instruction register

1Indirect address register

r/w

Figure 4-22: Data paths and control signals

The only new part is the indirect address register. We need that because we
need somewhere to hold indirect addresses fetched from memory, similar
to how the instruction register holds instructions fetched from memory.

For simplicity, Figure 4-22 omits the system clock that goes to all of the
registers and memory. In the simple register case, just assume the register
is loaded on the next clock if enabled. Likewise, the program counter and
memory do what their control signals tell them to do on each clock. All the
other components, such as the selectors, are purely combinatorial and don’t
use the clock.

Traffic Control
Now that you’re familiar with all the inputs and outputs, it’s time to build
our traffic control unit. Let’s look at a couple of examples of how it needs to
behave.

Computer Anatomy 111

Fetching is common to all instructions. The following signals are
involved:

•	 The address source must be set to select the program counter.

•	 The memory must be enabled, and the read- write signal r/w must be
set to read (1).

•	 The instruction register must be enabled.

For our next example, we’ll store the contents of the accumulator at the
memory address pointed to by the address contained in the instruction—
in other words, using indirect addressing. Fetching works as before.

Get the indirect address from memory:

•	 The address source must be set to select the instruction register, which
gets us the address portion of the instruction.

•	 Memory is enabled, and r/w is set to read (1).

•	 The indirect address register is enabled.

Store the accumulator in that address:

•	 The address source must be set to select the indirect address register.

•	 The data bus enable must be set.

•	 Memory is enabled and r/w is set to write (0).

•	 The program counter is incremented.

Since multiple steps are involved in fetching and executing instructions,
we need a counter to track them. The counter contents plus the opcode and
mode portions of the instruction are all we need to generate all the control
signals. We need 2 bits of counter because three states are needed to execute
our most complicated instructions, as illustrated in Figure 4-23.

clock

Clear
Program counter clear
Program counter enable
Program counter ld/cnt
Program address enable
address source

opcode

Condition code register enable
Accumulator register enable
data bus enable

data source

Instruction register enable

Memory r/w
Memory enable

Counter

Random
logic

instruction

Figure 4-23: Random logic traffic control

112 Chapter 4

This is a big box full of what’s called random logic. All the logic dia-
grams we’ve seen so far follow some regular pattern. Functional blocks,
such as selectors and registers, are assembled from simpler blocks in a clear
manner. Sometimes, such as when we’re implementing our traffic control
unit, we have a set of inputs that must be mapped to a set of outputs to
accomplish a task that has no regularity. The schematic looks like a rat’s
nest of connections—hence the descriptor “random.”

But there’s another way we could implement our traffic control unit.
Instead of random logic, we could use a hunk of memory. The address would
be formed from the counter outputs plus the opcode and mode portions of
the instruction, as shown in Figure 4-24.

256x19
Memory

Counter clear

Program counter clear

Program counter ld/cnt
Program address enable

Indirect address enable
address source

opcode

Condition code register enable
Accumulator register enable
data bus enable

data source

Instruction register enable

Memory r/w
Memory enable

D0

D1
D2
D3

D4

D9

D10–13
D14

D15

D16
D17–18

D5–6
D7

D8

counter0 A0

counter1 A1

instruction10 A2

instruction11 A3

instruction12 A4

instruction13 A5

instruction14 A6

instruction15 A7

Opcode

Mode

Figure 4-24: Memory- based traffic control

Each 19-bit memory word is laid out as shown in Figure 4-25.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DS1 DS0 DBE ARE CCRE OP3 OP2 OP1 OP0 ME R/W IRE
LD/
CNT

AS1 AS0 IAE PCE PCC CC

Figure 4-25: The layout of a microcode word

This might strike you as somewhat strange. On the one hand, it’s just
another state machine implemented using memory instead of random
logic. On the other, it sure looks like a simple computer. Both interpre-
tations are correct. It is a state machine because computers are state
machines. But it is also a computer because it’s programmable.

This type of implementation is called microcoded, and the contents of
memory are called microcode. Yes, we’re using a small computer as part of
the implementation of our larger one.

Let’s look at the portion of the microinstructions, shown in Figure 4-26,
that implement the examples we’ve discussed.

Computer Anatomy 113

18

Store

Indirect

Fetch

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1
DS 1 DS 0

DBE ARE CCRE
OP 3

OP 2
OP 1

OP 0 ME
R/

W
IRE

LD
/

CNT
AS 1 AS 0 IAE PC

E
PC

C
CC

Figure 4-26: Microcode example

As you might expect, it’s hard to avoid abusing a good idea. There are
machines that have a nanocoded block that implements a microcoded block
that implements the instruction set.

Using ROM for the microcode memory makes a certain amount of
sense, because otherwise we’d need to keep a copy of the microcode some-
where else and we’d require additional hardware to load the microcode.
However, there are situations where RAM, or a mix of ROM and RAM, is
justified. Some Intel CPUs have writable microcode that can be patched to
fix bugs. A few machines, such as the HP-2100 series, had a writable control
store, which was microcode RAM that could be used to extend the basic
instruction set.

Machines that have writable microcode today rarely permit users to
modify it for several reasons. Manufacturers don’t want users to rely on
microcode they themselves write for their applications because once users
become dependent on it, manufacturers have difficulty making changes.
Also, buggy microcode can damage the machine—for example, it could
turn on both the memory enable and data bus enable at the same time in
our CPU, connecting together totem- pole outputs in a way that might
burn out the transistors.

RISC vs. CISC Instruction Sets
Designers used to create instructions for computers that seemed to be
useful but that resulted in some pretty complicated machines. In the 1980s,
American computer scientists David Patterson at Berkeley and John Hennessey
at Stanford did statistical analyses of programs and discovered that many of
the complicated instructions were rarely used. They pioneered the design
of machines that contained only the instructions that accounted for most
of a program’s time; less used instructions were eliminated and replaced
by combinations of other instructions. These were called RISC machines, for
reduced instruction set computers. Older designs were called CISC machines,
for complicated instruction set computers.

One of the hallmarks of RISC machines is that they have a load- store
architecture. This means there are two categories of instructions: one for
accessing memory and one for everything else.

Of course, computer use has changed over time. Patterson and
Hennessey’s original statistics were done before computers were

114 Chapter 4

commonly used for things like audio and video. Statistics on newer programs
are prompting designers to add new instructions to RISC machines. Today’s
RISC machines are actually more complicated than the CISC machines
of yore.

One of the CISC machines that had a big impact was the PDP-11
from Digital Equipment Corporation. This machine had eight general-
purpose registers instead of the single accumulator we used in our example.
These registers could be used for indirect addressing. In addition, auto-
increment and autodecrement modes were supported. These modes enabled
the values in the registers to be incremented or decremented before or
after use. This allowed for some very efficient programs. For example,
let’s say we want to copy n bytes of memory starting at a source address to
memory starting at a destination address. We can put the source address
in register 0, the destination in register 1, and the count in register 2.
We’ll skip the actual bits here because there’s no real need to learn the
PDP-11 instruction set. Table 4-5 shows what these instructions do.

Table 4-5: PDP-11 Copy Memory Program

Address Description

0 Copy the contents of the memory location whose address is in register 0
to the memory location whose address is in register 1, then add 1 to each
register.

1 Subtract 1 from the contents of register 2 and then compare the result to 0.

2 Branch to location 0 if the result was not 0.

Why should we care about this? The C programming language, a
follow- on to B (which was a follow- on to BCPL), was developed on the
PDP-11. C’s use of pointers, a higher- level abstraction of indirect addressing,
combined with features from B such as the autoincrement and autodecre-
ment operators, mapped well to the PDP-11 architecture. C became very
influential and has affected the design of many other languages, including
C++, Java, and JavaScript.

Graphics Processing Units
You’ve probably heard about graphics processing units, or GPUs. These are
mostly outside the scope of this book but are worth a quick mention.

Graphics is a massive paint- by- numbers exercise. It’s not uncommon
to have 8 million color spots to paint and need to paint them 60 times per
second if you want video to work well. That works out to around a half- billion
memory accesses per second.

Graphics is specialized work and doesn’t require all the features of a
general- purpose CPU. And it’s something that parallelizes nicely: painting
multiple spots at a time can improve performance.

Computer Anatomy 115

Two features distinguish GPUs. First, they have large numbers of simple
processors. Second, they have much wider memory buses than CPUs, which
means they can access memory much faster. GPUs have a fire hose instead
of a garden hose.

GPUs have acquired more general- purpose features over time. Work
has been done to make them programmable using variants of standard
programming languages, and they are now used for certain classes of
applications that can take advantage of their architectures. GPUs were
in short supply when this book was written because they were all being
snapped up for Bitcoin mining.

Summary
In this chapter, we’ve created an actual computer using the building blocks
introduced in previous chapters. Though simple, the machine we designed
in this chapter could actually be built and programmed. It’s missing some
elements found in real computers, however, such as stacks and memory
management hardware. We’ll learn about those in Chapter 5.

5
C O M P U T E R A R C H I T E C T U R E

Chapter 4 walked through the design of
a simple computer system and discussed

how the CPU communicates with memory
and I/O devices over the address and data

buses. That’s not the end of the story, however. Many
improvements over the years have made computers
run faster while requiring less power and being easier
to program. These improvements have added a lot of
complexity to the designs.

Computer architecture refers to the arrangement of the various compo-
nents into a computer—not to whether the box has Doric or Ionic columns
or a custom shade of beige like the one American entrepreneur Steve Jobs
(1955–2011) created for the original Macintosh computer. Many different

118 Chapter 5

architectures have been tried over the years. What’s worked and what hasn’t
makes for fascinating reading, and many books have been published on the
subject.

This chapter focuses primarily on architectural improvements involving
memory. A photomicrograph of a modern microprocessor shows that the vast
majority of the chip area is dedicated to memory handling. It’s so important
that it deserves a chapter of its own. We’ll also touch on a few other differ-
ences in architectures, such as instruction set design, additional registers,
power control, and fancier execution units. And we’ll discuss support for
multitasking, the ability to run multiple programs simultaneously, or at least
to provide the illusion of doing so. Running multiple programs implies the
existence of some sort of supervisory program called an operating system (OS)
that controls their execution.

Basic Architectural Elements
The two most common architectures are the von Neumann (named after
Hungarian- American wizard John von Neumann, 1903–1957) and the
Harvard (named after the Harvard Mark I computer, which was, of course,
a Harvard architecture machine). We’ve already seen the parts; Figure 5-1
shows how they’re organized.

von Neumann

ALU
CPU

Execution unit

I/O

Memory

Harvard

ALU
CPU

Execution unit

I/O

Instruction
memory

Data
memory

Figure 5-1: The von Neumann and Harvard architectures

Notice that the only difference between them is the way the memory
is arranged. All else being equal, the von Neumann architecture is slightly
slower because it can’t access instructions and data at the same time, since
there’s only one memory bus. The Harvard architecture gets around that
but requires additional hardware for the second memory bus.

Processor Cores
Both architectures in Figure 5-1 have a single CPU, which, as we saw in
Chapter 4, is the combination of the ALU, registers, and execution unit.
Multiprocessor systems with multiple CPUs debuted in the 1980s as a way to
get higher performance than could be achieved with a single CPU. As it

Computer Architecture 119

turns out, though, it’s not that easy. Dividing up a single program so that it
can be parallelized to make use of multiple CPUs is an unsolved problem in
the general case, although it works well for some things such as particular
types of heavy math. However, it’s useful when you’re running more than
one program at the same time and was a lifesaver in the early days of graph-
ical workstations, as the X Window System was such a resource hog that it
helped to have a separate processor to run it.

Decreasing fabrication geometries lowers costs. That’s because chips
are made on silicon wafers, and making things smaller means more chips
fit on one wafer. Higher performance used to be achieved by making the
CPU faster, which meant increasing the clock speed. But faster machines
required more power, which, combined with smaller geometries, produced
more heat- generating power per unit of area. Processors hit the power wall
around 2000 because the power density couldn’t be increased without
exceeding the melting point.

Salvation of sorts was found in the smaller fabrication geometries. The
definition of CPU has changed; what we used to call a CPU is now called a
processor core. Multicore processors are now commonplace. There are even sys-
tems, found primarily in data centers, with multiple multicore processors.

Microprocessors and Microcomputers
Another orthogonal architectural distinction is based on mechanical
 packaging. Figure 5-1 shows CPUs connected to memory and I/O. When
the memory and I/O are not in the same physical package as the processor
cores, we call it a microprocessor, whereas when everything is on a single chip,
we use the term microcomputer. These are not really well- defined terms, and
there is a lot of fuzziness around their usage. Some consider a microcom-
puter to be a computer system built around a microprocessor and use the
term microcontroller to refer to what I’ve just defined as a microcomputer.

Microcomputers tend to be less powerful machines than microprocessors
because things like on- chip memory take a lot of space. We’re not going to
focus on microcomputers much in this chapter because they don’t have
the same complexity of memory issues. However, once you learn to program,
it is worthwhile to pick up something like an Arduino, which is a small
Harvard architecture computer based on an Atmel AVR microcomputer
chip. Arduinos are great for building all sorts of toys and blinky stuff.

To summarize: microprocessors are usually components of larger
systems, while microcomputers are what you find in things like your
dishwasher.

There’s another variation called a system on a chip (SoC). A passable
but again fuzzy definition is that a SoC is a more complex microcomputer.
Rather than having relatively simple on- chip I/O, a SoC can include things
like Wi- Fi circuitry. SoCs are found in devices such as cell phones. There
are even SoCs that include field- programmable gate arrays (FPGAs), which
permit additional customization.

120 Chapter 5

Procedures, Subroutines, and Functions
Many engineers are afflicted with a peculiar variation of laziness. If there’s
something they don’t want to do, they’ll put their energy into creating some-
thing that does it for them, even if that involves more work than the original
task. One thing programmers want to avoid is writing the same piece of code
more than once. There are good reasons for that besides laziness. Among
them is that it makes the code take less space and, if there is a bug in the
code, it only has to be fixed in one place.

The function (or procedure or subroutine) is a mainstay of code reuse.
Those terms all mean the same thing as far as you’re concerned; they’re
just regional differences in language. We’ll use function because it’s the
most similar to what you may have learned in math class.

Most programming languages have similar constructs. For example, in
JavaScript we could write the code shown in Listing 5-1.

function
cube(x)
{
 return (x * x * x);
}

Listing 5-1: A sample JavaScript function

This code creates a function named cube that takes a single parameter
named x and returns its cube. Keyboards don’t include the multiplication (×)
symbol, so many programming languages use * for multiplication instead.
Now we can write a program fragment like Listing 5-2.

y = cube(3);

Listing 5-2: A sample JavaScript function call

The nice thing here is that we can invoke, or call, the cube function mul-
tiple times without having to write it again. We can find cube(4) + cube(6)
without having to write the cubing code twice. This is a trivial example, but
think about how convenient this capability would be for more complicated
chunks of code.

How does this work? We need a way to run the function code and then
get back to where we were. To get back, we need to know where we came
from, which is the contents of the program counter (which you saw back in
Figure 4-12 on page 101). Table 5-1 shows how to make a function call using
the example instruction set we looked at in “Instruction Set” on page 102.

Computer Architecture 121

Table 5-1: Making a Function Call

Address Instruction Operand Comments

100 pca Program counter → accumulator

101 add 5 (immediate) Address for return (100 + 5 = 105)

102 store 200 (direct) Store return address in memory

103 load 3 (immediate) Put number to cube (3) in accumulator

104 bra 300 (direct) Call the cube function

105 Continues here after function

...

200 Reserved memory location

...

300 … ... The cube function

... Remainder of cube function

310 bra 200 (indirect) Branch to stored return address

What’s happening here? We first calculate the address of where we want
execution to continue after returning from the cube function. It takes us
a few instructions to do that; plus, we need to load the number that must
be cubed. That’s five instructions later, so we store that address in memory
location 200. We branch off to the function, and when the function is done,
we branch indirect through 200, so we end up at location 105. This process
plays out as shown in Figure 5-2.

Save return address

Load argument

Go to the function

Continue after function

Return address

cube function

. . .

Branch indirect (return)

Figure 5-2: A function call flow

This is a lot of work for something that is done a lot, so many machines
add helper instructions. For example, ARM processors have a Branch with
Link (BL) instruction that combines the branch to the function with saving
the address of the following instruction.

122 Chapter 5

Stacks
Functions aren’t limited to simple pieces of code such as the example we
just saw. It’s common for functions to call other functions and for them to
call themselves.

Wait, what was that? A function calling itself? That’s called recursion,
and it’s really useful. Let’s look at an example. Your phone probably uses
JPEG (Joint Photographic Experts Group) compression to reduce the file size of
photos. To see how compression works, let’s start with a square black- and-
white image, shown in Figure 5-3.

7

0

1

2

3

4

5

6

70 1 2 3 4 5 6

Figure 5-3: A crude smiley face

We can attack the compression problem using recursive subdivision: we
look at the image, and if it’s not all one color, we divide it into four pieces,
then check again, and so on until the pieces are one pixel in size.

Listing 5-3 shows a subdivide function that processes a portion of the
image. It’s written in pseudocode, an English- like programming language
made up for examples. It takes the x- and y-coordinates of the lower- left
corner of a square along with the size (we don’t need both the width and
the height, since the image is a square). “Takes” is just shorthand for what’s
called the arguments to a function in math.

function
subdivide(x, y, size)
{
 IF (size ≠ 1 AND the pixels in the square are not all the same color) {
 half = size ÷ 2
 subdivide(x, y, half) lower left quadrant
 subdivide(x, y + half, half) upper left quadrant
 subdivide(x + half, y + half, half) upper right quadrant
 subdivide(x + half, y, half) lower right quadrant
 }
 ELSE {
 save the information about the square
 }
}

Listing 5-3: A subdivision function

Computer Architecture 123

The subdivide function partitions the image into same- colored chunks
starting with the lower- left quadrant, then the upper left, upper right, and
finally the lower right. Figure 5-4 shows things that need subdividing in
gray and things that are solidly one color in black or white.

Figure 5-4: Subdividing the image

What we have here looks like what computer geeks call a tree and
what math geeks call a directed acyclic graph (DAG). You follow the arrows.
In this structure, arrows don’t go up, so there can’t be loops. Things with
no arrows going out of them are called leaf nodes, and they’re the end of
the line, like leaves are the end of the line on a tree branch. If you squint
enough and count them in Figure 5-4, you can see that there are 40 solid
squares, which is fewer than the 64 squares in the original image, mean-
ing there’s less information to store. That’s compression.

For some reason, probably because it’s easier to draw (or maybe because
they rarely go outside), computer geeks always put the root of the tree at the
top and grow it downward. This particular variant is called a quadtree because
each node is divided into four parts. Quadtrees are spatial data structures.
Hanan Samet has made these his life’s work and has written several excellent
books on the subject.

There’s a problem with implementing functions as shown in the previ-
ous section. Because there’s only one place to store the return value, func-
tions like this can’t call themselves because that value would get overwritten
and we’d lose our way back.

We need to be able to store multiple return addresses in order to make
recursion work. We also need a way to associate the return addresses with
their corresponding function calls. Let’s see if we can find a pattern in how
we subdivided the image. We went down the tree whenever possible and
only went across when we ran out of downward options. This is called a
depth- first traversal, as opposed to going across first and then down, which is
a breadth- first traversal. Every time we go down a level, we need to remember
our place so that we can go back. Once we go back, we no longer need to
remember that place.

What we need is something like those gadgets that hold piles of plates
in a cafeteria. When we call a function, we stick the return address on a
plate and put it on top of the pile. When we return from the call, we remove
that plate. In other words, it’s a stack. You can sound important by calling it

124 Chapter 5

a LIFO (“last in, first out”) structure. We push things onto the stack, and pop
them off. When we try to push things onto a stack that doesn’t have room,
that’s called a stack overflow. Trying to pop things from an empty stack is a
stack underflow.

We can do this in software. In our earlier function call example in
Table 5-1, every function could take its stored return address and push it
onto a stack for later retrieval. Fortunately, most computers have hardware
support for stacks because they’re so important. This support includes limit
registers so that the software doesn’t have to constantly check for possible
overflow. We’ll talk about how processors handle exceptions, such as exceed-
ing limits, in the next section.

Stacks aren’t just used for return addresses. Our subdivide function
included a local variable where we calculated half the size once and then
used it eight times to make the program faster. We can’t just overwrite this
every time we call the function. Instead, we store local variables on the
stack too. That makes every function call independent of other function
calls. The collection of things stored on the stack for each call is a stack
frame. Figure 5-5 illustrates an example from our function in Listing 5-3.

subdivide(0, 0, 8) return address

half = 4

subdivide(4, 4, 4) return address

half = 2

subdivide(4, 4, 2) return address

half = 1

subdivide(5, 5, 1) return address

Stack

7

0

1

2

3

4

5

6

70 1 2 3 4 5 6

Figure 5-5: Stack frames

We follow the path shown by the heavy black squares. You can see that
each call generates a new stack frame that includes both the return address
and the local variable.

Several computer languages, such as forth and PostScript, are stack- based
(see “Different Equation Notations”), as are several classic HP calculators.

Computer Architecture 125

Stacks aren’t restricted to just computer languages, either. Japanese is stack-
based: nouns get pushed onto the stack and verbs operate on them. Yoda’s
cryptic utterances also follow this pattern.

DIF F E R E N T EQUAT ION NOTAT IONS

There are many different ways in which operators and operands can be
arranged. You’re probably used to doing math using what’s called infix
 notation. Infix puts operators between operands, such as 4 + 8. Infix notation
needs parentheses for grouping—for example, (1 + 2) × (3 + 4).

Polish logician Jan Łuskasiewicz invented prefix notation in 1924. It’s
also known as Polish notation because of his nationality. Polish notation puts
the operator before the operands—for example, + 4 8. The advantage of
Polish notion is that parentheses are not required. The preceding infix example
would be written as × + 1 2 + 3 4.

American mathematician Arthur Burks proposed reverse Polish notation
(RPN), also called postfix notation, in 1954. RPN puts the operator after the
operands, as in 4 8 +, so the previous example would look like 1 2 + 3 4 + ×.

RPN is easy to implement using stacks. Operands are pushed onto a
stack. Operators pop operands off the stack, perform their operation, and
then push the result back onto the stack.

HP RPN calculators have an enter key that pushes an operand onto the stack
in ambiguous situations; without it, there would be no way to know that 1 and 2
were separate operands instead of the number 12. Using such a calculator, we
would solve the equation using the key sequence 1 ENTER 2 + 3 ENTER 4 + ×. An
infix notation calculator would require more keystrokes.

The example equation would look like 1 2 add 3 4 add mul in the
PostScript language. No special enter is required because the whitespace
does the trick.

Interrupts
Imagine that you’re in the kitchen whipping up a batch of chocolate chip
cookies. You’re following a recipe, which is just a program for cooks. You’re
the only one home, so you need to know if someone comes to the door.
We’ll represent your activity using a flowchart, which is a type of diagram
used to express how things work, as shown in Figure 5-6.

126 Chapter 5

Start

Make cookies

Someone
at

door?

Yes

No

Answer door

Next project

Figure 5-6: Home alone making cookies #1

This might work if someone really patient comes to the door. But let’s
say that a package is being delivered that needs your signature. The delivery
person isn’t going to wait 45 minutes, unless they can smell the cookies and
are hoping to get some. Let’s try something different, like Figure 5-7.

Start

Get out mixer

Someone
at

door?

Yes

No

Answer door

Beat 2 sticks butter

Someone
at

door?

Yes

No

Answer door

Add 3/4 cup sugar

. . .

Figure 5-7: Home alone making cookies #2

Computer Architecture 127

This technique is called polling. It works, but not very well. You’re less
likely to miss your delivery, but you’re spending a lot of time checking
the door.

We could divide up each of the cookie- making tasks into smaller subtasks
and check the door in between them. That would improve your chances of
receiving the delivery, but at some point you’d be spending more time check-
ing the door than making cookies.

This is a common and important problem for which there is really no
software solution. It’s not possible to make this work well by rearranging the
structure of a program. What’s needed is some way to interrupt a running
program so that it can respond to something external that needs attention.
It’s time to add some hardware features to the execution unit.

Pretty much every processor made today includes an interrupt unit.
Usually it has pins or electrical connections that generate an interrupt when
wiggled appropriately. Pin is a colloquial term for an electrical connection
to a chip. Chips used to have parts that looked like pins, but as devices and
tools have gotten smaller, many other variants have emerged. Many processor
chips, especially microcomputers, have integrated peripherals (on- chip I/O
devices) that are connected to the interrupt system internally.

Here’s how it works. A peripheral needing attention generates an inter-
rupt request. The processor (usually) finishes up with the currently executing
instruction. It then puts the currently executing program on hold and veers
off to execute a completely different program called an interrupt handler.
The interrupt handler does whatever it needs to do, and the main program
continues from where it left off. Interrupt handlers are functions.

The equivalent mechanism for the cookie project is a doorbell. You can
happily make cookies until you’re interrupted by the doorbell, although it
can be annoying to be interrupted by pollsters. There are a few things to
consider. First is your response time to the interrupt. If you spend a long time
gabbing with the delivery person, your cookies may burn; you need to make
sure that you can service interrupts in a timely manner. Second, you need
some way to save your state when responding to an interrupt so that you can
go back to whatever you were doing after servicing it. For example, if the
interrupted program had something in a register, the interrupt handler
must save the contents of that register if it needs to use it and then restore
it before returning to the main program.

The interrupt system uses a stack to save the place in the interrupted
program. It is the interrupt handler’s job to save anything that it might
need to use. This way, the handler can save the absolute minimum neces-
sary so that it works fast.

How does the computer know where to find the interrupt handler?
Usually, there’s a set of reserved memory addresses for interrupt vectors,
one for each supported interrupt. An interrupt vector is just a pointer, the
address of a memory location. It’s similar to a vector in math or physics—an
arrow that says, “Go there from here.” When an interrupt occurs, the com-
puter looks up that address and transfers control there.

Many machines include interrupt vectors for exceptions including stack
overflow and using an invalid address such as one beyond the bounds of

128 Chapter 5

physical memory. Diverting exceptions to an interrupt handler often allows
the interrupt handler to fix problems so that the program can continue
running.

Typically, there are all sorts of other special interrupt controls, such as
ways to turn specific interrupts on and off. There is often a mask so that you
can say things like “hold my interrupts while the oven door is open.” On
machines with multiple interrupts, there is often some sort of priority order-
ing so that the most important things get handled first. That means that
the handlers for lower- priority interrupts may themselves be interrupted.
Most machines have one or more built- in timers that can be configured to
generate interrupts.

Operating systems, discussed in the next section, often keep access to
the physical (hardware) interrupts out of reach from most programs. They
substitute some sort of virtual or software interrupt system. For example, the
UNIX operating system has a signal mechanism. More recently developed
systems call these events.

Relative Addressing
What would it take to have multiple programs running at the same time?
For starters, we’d have to have some sort of supervisor program that knew
how to switch between them. We’ll call this program an operating system or
operating system kernel. We’ll make a distinction between the OS and the
programs it supervises by calling the OS a system program and everything
else user programs, or processes. A simple OS might work something like
Figure 5-8.

Load user program

Restore state

Run user program

Timer interrupt

Stop user program

Save state

Figure 5-8: A simple operating system

Computer Architecture 129

The OS here is using a timer to tell it when to switch between user pro-
grams. This scheduling technique is called time slicing because it gives each
program a slice of time in which to run. The user program state or context
refers to the contents of the registers and any memory that the program is
using, including the stack.

This works, but it’s pretty slow. It takes time to load a program. It would
be much faster if you could load the programs into memory as space allows
and keep them there, as shown in Figure 5-9.

User program n

. . .

User program 2

User program 1

Operating system

Address

3000

2000

1000

0

Figure 5-9: Multiple programs in memory

In this example, user programs are loaded into memory one after
another. But wait, how can this work? As explained back in “Addressing
Modes” on page 104, our sample computer used absolute addressing, which
means that the addresses in the instructions referred to specific memory
locations. It’s not going to work to run a program that expects to be at
address 1000 at a different address, such as 2000.

Some computers solve this problem by adding an index register
(Figure 5-10). This is a register whose contents are added to addresses
to form effective addresses. If a user program expects to be run at address
1000, the OS could set the index register to 2000 before running it at
address 3000.

Address

Index register

+ Effective address

Figure 5-10: An index register

Another way to fix this is with relative addressing—which is not about send-
ing a birthday card to your auntie. Instead of the addresses in instructions
being relative to 0 (the beginning of memory in most machines), they can
be relative to the address of their instruction. Go back and review Table 4-4
on page 108. You can see that the second instruction contains the address
100 (110100 in binary). With relative addressing, that would become +99,

130 Chapter 5

since the instruction is at address 1 and address 100 is 99 away. Likewise, the
last instruction is a branch to address 4, which would become a branch to
−8 with relative addressing. This sort of stuff is a nightmare to do in binary,
but modern language tools do all the arithmetic for us. Relative addressing
allows us to relocate a program anywhere in memory.

Memory Management Units
Multitasking has evolved from being a luxury to being a basic requirement
now that everything is connected to the internet, because communications
tasks are constantly running in the background—that is, in addition to what
the user is doing. Index registers and relative addressing help, but they’re
not enough. What happens if one of these programs contains bugs? For
example, what if a bug in user program 2 (Figure 5-9) causes it to overwrite
something in user program 1—or even worse, in the OS? What if someone
deliberately wrote a program to spy on or change other programs running
on the system? We’d really like to isolate each program to make those
scenarios impossible. To that end, most microprocessors now include memory
management unit (MMU) hardware that provides this capability. MMUs are
very complicated pieces of hardware.

Systems with MMUs make a distinction between virtual addresses and
physical addresses. The MMU translates the virtual addresses used by pro-
grams into physical addresses used by memory, as shown in Figure 5-11.

Program

Virtual
address

Memory management unit

Physical
address

Memory

Figure 5-11: MMU address translation

How is this different from an index register? Well, there’s not just one.
And the MMUs aren’t the full width of the address. What’s happening here
is that we’re splitting the virtual address into two parts. The lower part is
identical to the physical address. The upper part undergoes translation via
a piece of RAM called the page table, an example of which you can see in
Figure 5-12.

Memory is partitioned into 256-byte pages in this example. The page
table contents control the actual location of each page in physical memory.
This allows us to take a program that expects to start at address 1000 and
put it at 2000, or anywhere else as long as it’s aligned on a page boundary.
And although the virtual address space appears continuous to the program,
it does not have to be mapped to contiguous physical memory pages. We
could even move a program to a different place in physical memory while
it’s running. We can provide one or more cooperating programs with shared
memory by mapping portions of their virtual address space to the same phys-
ical memory. Note that the page table contents become part of a program’s
context.

Computer Architecture 131

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

A15 A14 A13 A12 A11 A10 A9 A8A0 Y0

. . .

A1 Y1

A2 Y2

A3 Y3

A5 Y5

A6

A7 Y255

A4 Y4

Virutal address

Physical address

Address decoder Page table

Figure 5-12: Simple page table for a 16-bit machine

Now, if you’ve been paying attention, you might notice that the page
table just looks like a piece of memory. And you’d be correct. And you’d
expect me to tell you that it’s not that simple. Right again.

Our example uses 16-bit addresses. What happens if we have a modern
machine with 64-bit addresses? If we split the address in half, we need 4 GiB
of page table, and the page size would also be 4 GiB—not very useful since
that’s more memory than many systems have. We could make the page size
smaller, but that would increase the page table size. We need a solution.

The MMU in a modern processor has a limited page table size. The
complete set of page table entries is kept in main memory, or on disk if memory
runs out. The MMU loads a subset of the page table entries into its page
table as needed.

Some MMU designs add further control bits to their page tables—for
example, a no- execute bit. When this bit is set on a page, the CPU won’t execute
instructions from that page. This prevents programs from executing their
own data, which is a security risk. Another common control bit makes pages
read only.

MMUs generate a page fault exception when a program tries to access
an address that isn’t mapped to physical memory. This is useful, for example,
in the case of stack overflow. Rather than having to abort the running
program, the OS can have the MMU map some additional memory to
grow the stack space and then resume the execution of the user program.

132 Chapter 5

MMUs make the distinction between von Neumann and Harvard
architectures somewhat moot. Such systems have the single bus of the
von Neumann architecture but can provide separate instruction and data
memory.

Virtual Memory
Operating systems manage the allocation of scarce hardware resources
among competing programs. For example, we saw an OS manage access to
the CPU itself in Figure 5-8. Memory is also a managed resource. Operating
systems use MMUs to provide virtual memory to user programs.

We saw earlier that the MMU can map a program’s virtual addresses
to physical memory. But virtual memory is more than that. The page fault
mechanism allows programs to think that they can have as much memory
as they want, even if that exceeds the amount of physical memory. What
happens when the requested memory exceeds the amount available? The
OS moves the contents of memory pages that aren’t currently needed out
to larger but slower mass storage, usually a disk. When a program tries to
access memory that has been swapped out, the OS does whatever it needs to
in order to make space and then copies the requested page back in. This is
known as demand paging. Figure 5-13 shows a virtual memory system with
one page swapped out.

Mass storage swap area

Page 0

Page 1

Page 2

Page n

. . .

Virtual memory MMU page table Physical memory

Page n contents

Figure 5-13: Virtual memory

System performance takes a big hit when swapping occurs, but it’s still
better than not being able to run a program at all because of insufficient
memory. Virtual memory systems use a number of tricks to minimize the
performance hit. One of these is a least recently used (LRU) algorithm that
tracks accesses to pages. The most frequently used pages are kept in physical
memory; the least recently used are swapped out.

Computer Architecture 133

System and User Space
Multitasking systems give each process the illusion that it’s the only pro-
gram running on the computer. MMUs help to foster this illusion by giving
each process its own address space. But this illusion is difficult to maintain
when it comes to I/O devices. For example, the OS uses a timer device to
tell it when to switch between programs in Figure 5-8. The OS decides to
set the timer to generate an interrupt once per second, but if one of the
user programs changes it to interrupt once per hour, things won’t work
as expected. Likewise, the MMU wouldn’t provide any serious isolation
between programs if any user program could modify its configuration.

Many CPUs include additional hardware that addresses this problem.
There is a bit in a register that indicates whether the computer is in system
or user mode. Certain instructions, such as those that deal with I/O, are
privileged and can be executed only in system mode. Special instructions
called traps or system calls allow user mode programs to make requests of
system mode programs, which means the operating system.

This arrangement has several advantages. First, it protects the OS
from user programs and user programs from each other. Second, since
user programs can’t touch certain things like the MMU, the OS can control
resource allocation to programs. System space is where hardware exceptions
are handled.

Any programs that you write for your phone, laptop, or desktop will run
in user space. You need to get really good before you touch programs run-
ning in system space.

Memory Hierarchy and Performance
Once upon a time, CPUs and memory worked at the same speed, and there
was peace in the land. However, CPUs got faster and faster, and although
memory got faster too, it couldn’t keep up. Computer architects have come
up with all sorts of tricks to make sure that those fast CPUs aren’t sitting
around waiting for memory.

Virtual memory and swapping introduce the notion of memory hierarchy.
Although all memory looks the same to a user program, what happens
behind the scenes greatly affects the system performance. Or, to para-
phrase George Orwell, all memory accesses are equal, but some memory
accesses are more equal than others.

Computers are fast. They can execute billions of instructions per
second. But not much would get done if the CPU had to wait around for
those instructions to arrive, or for data to be retrieved or stored.

We’ve seen that processors include some very fast, expensive memory
called registers. Early computers had only a handful of registers, whereas
some modern machines contain hundreds. But overall, the ratio of registers

134 Chapter 5

to memory has gotten smaller. Processors communicate with main memory,
usually DRAM, which is less than a tenth as fast as the processor. Mass stor-
age devices such as disk drives may be a millionth as fast the processor.

Time for a food analogy courtesy of my friend Clem. Registers are like
a refrigerator: there’s not a lot of space in there, but you can get to its con-
tents quickly. Main memory is like a grocery store: it has a lot more space
for stuff, but it takes a while to get there. Mass storage is like a warehouse:
there’s even more space for stuff, but it’s much farther away.

Let’s milk this analogy some more. You often hit the fridge for one
thing. When you make the trip to the store, you fill a few grocery bags. The
warehouse supplies the store by the truckload. Computers are the same way.
Small blocks of stuff are moved between the CPU and main memory. Larger
blocks of stuff are moved between main memory and the disk. Check out
The Paging Game by Jeff Berryman for a humorous explanation of how all
this works.

Skipping a lot of gory details, let’s assume the CPU runs about 10 times
the speed of main memory. That translates to a lot of time spent waiting for
memory, so additional hardware (faster on- chip memory) was added for a
pantry or cache. It’s much smaller than the grocery store, but much faster
when running at full processor speed.

How do we fill the pantry from the grocery store? Way back in “Random-
Access Memory” on page 82, we saw that DRAM performs best when access-
ing columns out of a row. When you examine the way programs work, you
notice that they access sequential memory locations unless they hit a branch.
And a fair amount of the data used by a program tends to clump together.
This phenomenon is exploited to improve system performance. The CPU
memory controller hardware fills the cache from consecutive columns in a
row because, more often than not, data is needed from sequential loca-
tions. Rather than getting one box of cereal, we put several in sacks and
bring them home. By using the highest- speed memory- access mode avail-
able, CPUs are usually ahead of the game even when there is a cache miss
caused by a nonsequential access. A cache miss is not a contestant in a Miss
Cache pageant; it’s when the CPU looks for something in the cache that
isn’t there and has to fetch it from memory. Likewise, a cache hit is when the
CPU finds what it’s looking for in the cache. You can’t have too much of a
good thing.

There are several levels of cache memory, and they get bigger and slower
as they get farther away from the CPU (even when they’re on the same chip).
These are called the L1, L2, and L3 caches, where the L stands for level. Yup,
there’s the spare freezer in the garage plus the storeroom. And there’s a dis-
patcher that puts air traffic control to shame. There’s a whole army of logic
circuitry whose job it is to pack and unpack grocery bags, boxes, and trucks
of different sizes to make all this work. It actually takes up a good chunk of
the chip real estate. The memory hierarchy is outlined in Figure 5-14.

Computer Architecture 135

CPU

L1 cache

L2 cache

L3 cache

Main memory

Mass storageSlow and cheap

Fast and expensive

Registers

Figure 5-14: Memory hierarchy

Additional complicated tweaks have improved performance even further.
Machines include branch prediction circuitry that guesses the outcome of
conditional branch instructions so that the correct data can be prefetched
from memory and in the cache ready to go. There is even circuitry to handle
out- of- order execution. This allows the CPU to execute instructions in the most
efficient order even if it’s not the order in which they occur in a program.

Maintaining cache coherency is a particularly gnarly problem. Imagine a
system that contains two processor chips, each with four cores. One of those
cores writes data to a memory location—well, really to a cache, where it will
eventually get into memory. How does another core or processor know that
it’s getting the right version of the data from that memory location? The
simplest approach is called write through, which means that writes go directly
to memory and are not cached. But that eliminates many of the benefits of
caching, so there’s a lot of additional cache- management hardware for this
that is outside of the scope of this book.

Coprocessors
A processor core is a pretty complicated piece of circuitry. You can free up
processor cores for general computation by offloading common operations
to simpler pieces of hardware called coprocessors. It used to be that coproces-
sors existed because there wasn’t room to fit everything on a single chip.
For example, there were floating- point coprocessors for when there wasn’t
space for floating- point instruction hardware on the processor itself. Today
there are on- chip coprocessors for many things, including specialized
graphics processing.

In this chapter we’ve talked about loading programs into memory to
be run, which usually means that the programs are coming from some slow
and cheap memory, such as a disk drive. And we’ve seen that virtual memory
systems may be reading from and writing to disks as part of swapping. And
we saw in “Block Devices” on page 85 that disks aren’t byte- addressable—
they transfer blocks of 512 or 4,096 bytes. This means there’s a lot of copying

136 Chapter 5

between main memory and disk that’s straightforward, because no other
computation is needed. Copying data from one place to another is one of
the biggest consumers of CPU time. Some coprocessors do nothing but
move data around. These are called direct memory access (DMA) units. They
can be configured to do operations like “move this much stuff from here to
there and let me know when you’re done.” CPUs offload a lot of grunt work
onto DMA units, leaving the CPU free to do more useful operations.

Arranging Data in Memory
We learned from the program in Table 4-4 that memory is used not only
for the instructions but for data as well. In this case, it’s static data, meaning
that the amount of memory needed is known when the program is written.
We saw earlier in this chapter that programs also use memory for stacks.
These data areas need to be arranged in memory so that they don’t collide.

Figure 5-15 illustrates the typical arrangement for both von Neumann
and Harvard architecture machines without MMUs. You can see that the
only difference is that instructions reside in separate memory on Harvard
architecture machines.

Stack

Static

Instructions

von Neumann

Stack

Static

Instructions

Harvard

Figure 5-15: Memory arrangement

There’s one more way in which programs use memory. Most programs
have to deal with dynamic data, which has a size that is unknown until the
program is running. For example, an instant messaging system doesn’t
know in advance how many messages it needs to store or how much storage
will be needed for each message. Dynamic data is customarily piled into
memory above the static area, called the heap, as shown in Figure 5-16.
The heap grows upward as more space is needed for dynamic data, while
the stack grows downward. It’s important to make sure they don’t collide.
There are a few minor variations on this theme; some processors reserve
memory addresses at the beginning or end of memory for interrupt vectors
and registers that control on- chip I/O devices.

Computer Architecture 137

Stack

Heap

Static

Instructions

Figure 5-16: Memory arrangement
with the heap

You’ll find this memory layout when using microcomputers, as they typi-
cally don’t have MMUs. When MMUs are involved, the instructions, data,
and stack are mapped to different physical memory pages whose size can
be adjusted as needed. But the same memory layout is used for the virtual
memory presented to programs.

Running Programs
You’ve seen that computer programs have a lot of pieces. In this section,
you’ll learn how they all come together.

Earlier I said that programmers use functions for code reuse. That’s
not the end of the story. There are many functions that are useful for more
than one program—for example, comparing two text strings. It would be
nice if we could just use these third- party functions rather than having to
write our own every time. One way to do that is by grouping related func-
tions into libraries. There are a large number of libraries available for every-
thing from string handling to hairy math to MP3 decoding.

In addition to libraries, nontrivial programs are usually built in pieces.
Though you could put the entirety of a program into a single file, there are
several good reasons to break it up. Chief among these is that it makes it
easier for several people to work on the same program at the same time.

But breaking programs up means we need some way to hook or link all
the different pieces together. The way we accomplish this is by processing
each program piece into an intermediate format designed for this purpose
and then running a special linker program that makes all the connections.
Many intermediate file formats have been developed over the years. Executable
and Linkable Format (ELF) is currently the most popular flavor. This format
includes sections similar to want ads. There might be something in the For
Sale section that says, “I have a function named cube.” Likewise, we might see
“I’m looking for a variable named date” in the Wanted section.

A linker is a program that resolves all the ads, resulting in a program
that can actually be run. But of course, there are complications in the name
of performance. It used to be that you treated libraries just like one of your

138 Chapter 5

files full of functions and linked them in with the rest of your program.
This was called static linking. Sometime in the 1980s, however, people noticed
that lots of programs were using the same libraries. This was a great testa-
ment to the value of those libraries. But they added to the size of every
program that used them, and there were many copies of the libraries using
up valuable memory. Enter shared libraries. The MMU can be used to allow
the same copy of a library to be shared by multiple programs, as illustrated
in Figure 5-17.

Program 1 Physical memory

Library

Program 2

Figure 5-17: A shared library

Keep in mind that the instructions from the shared library are common
to the programs that use it. The library functions must be designed so that
they use the heap and stack of the calling programs.

Programs have an entry point, which is the address of the first instruction
in the program. Though it’s counterintuitive, that instruction is not the first
one executed when a program is run. When all the pieces of a program are
linked to form an executable, an additional runtime library is included. Code
in this library runs before hitting the entry point.

The runtime library is responsible for setting up memory. That means
establishing a stack and a heap. It also sets the initial values for items in the
static data area. These values are stored in the executable and must be copied
to the static data after acquiring that memory from the system.

The runtime library performs many more functions, especially for com-
plicated languages. Fortunately, you don’t need to know any more about it
right now.

Memory Power
We’ve approached memory from a performance perspective so far. But
there’s another consideration. Moving data around in memory takes power.
That’s not a big deal for desktop computers. But it’s a huge issue for mobile
devices. And although battery life isn’t an issue in data centers such as
those used by large internet companies, using extra power on thousands
of machines adds up.

Balancing power consumption and performance is challenging. Keep
both in mind when writing code.

Computer Architecture 139

Summary
You’ve learned that working with memory is not as simple as you might
have thought after reading Chapter 4. You got a feel for how much addi-
tional complication gets added to simple processors in order to improve
memory usage. You now have a pretty complete idea of what’s in a modern
computer with the exception of I/O—which is the topic of Chapter 6.

6
C O M M U N I C A T I O N S B R E A K D O W N

Computers don’t compute just for the
thrill of it. They take in input from various

sources, do their computations, and pro-
duce output for use by a huge range of devices.

Computers might be communicating with people, talk-
ing to each other, or running factories. Let’s explore
this a bit more.

I briefly mentioned input and output (I/O) in “Input and Output”
on page 96, referring to getting things into and out of the processor core.
Doing that isn’t all that difficult; all we need are some latches (see “Latches”
on page 71) for output and tri- state buffers (refer to Figure 2-38) for input.
It used to be that each and every aspect of an I/O device would be hooked
up to some bit on a latch or buffer, and the computer would be the puppeteer
responsible for the articulation of every limb.

Processor cost reduction has changed that. Many formerly complex
I/O devices now include their own microprocessors. For example, you can
purchase a three- axis accelerometer or temperature sensor that provides a

142 Chapter 6

nice digital output for a few dollars. I won’t bother talking about devices like
those because they’re not interesting from a programming standpoint—the
interface is just reading and writing bytes as described in the device specifi-
cation. But that doesn’t get you off the hook. You might work on the code for
a device with an integrated processor. If you’re designing the next internet-
connected hairbrush, you’ll likely bristle at its hairy control algorithm.

This chapter examines techniques for interacting with some of the I/O
devices that are still interesting from a programming standpoint. It also
covers sampling, because that’s how we convert real- world analog data into a
digital form usable by computers and vice versa.

Low- Level I/O
The simplest forms of I/O involve connecting things to bits that can be
read and written by the CPU. These forms began evolving into more com-
plicated devices when they started getting used a lot. This section looks at a
few examples.

I/O Ports
The easiest way to get a computer to talk to something is to hook it up to
an I/O port. For example, Atmel makes the AVR family of small processors.
They include a large number of built- in I/O devices. In Figure 6-1, we’re
hooking some things up to port B.

+
V AVR

VCC

GND

LED

PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0

–

Figure 6-1: Light and switch on port B

You should recognize the switch in Figure 6-1 from Chapter 2. The LED
is a light- emitting diode. A diode is a semiconductor device that works like an
amusement park turnstile: it lets electricity through only in one direction,
indicated by the direction of the hollow arrow. LEDs have the nice side effect
that they glow.

Note the resistor in series with the LED. It’s there to limit the amount
of current that flows through the LED so that neither it nor PB0 burns
up. You can calculate the resistor value using Ohm’s law, introduced in
Chapter 2. Let’s say that V is 5 volts. One of the characteristics of the sili-
con sandwiches discussed in “Transistors” on page 51 is that the voltage

Communications Breakdown 143

across one is 0.7 volts. The AVR processor’s datasheet says that the output
voltage for a logic 1 when V is 5 volts is 4.2 volts. We want to limit the current
to 10 mA (0.01 A) because that’s what the LED expects; the AVR is capable
of 20 mA. Ohm’s law says that resistance is voltage divided by current, so
(4.2 – 0.7) ÷ 0.01 = 350Ω. As you can see, PB7 can be switched between the
voltages for 0 and 1. No electricity flows through PB0 when it’s set to 0.
Electricity flows through the LED when PB0 is 1, making it glow. Make
sure that you read the datasheet for any LED or other component that you
use, because characteristics such as the voltage drop may be different.

Port B is controlled by three registers, as shown in Figure 6-2. DDRB,
the data direction register, determines whether each pin is an input or an
output. PORTB is a latch that holds the output data. PINB reads the values
of the pins.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

DDB7

PORTB7

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

PORTB

PINB

Figure 6-2: AVR PORTB registers

This may appear really complicated, but as you can see in Figure 6-3, it’s
just another arrangement of our standard building blocks: demultiplexers,
flip-flops, and tri- state buffers.

PBn

PINBn

D Q

DDRBn

D Q

PORTBn

Address bus

Data busn

R/W

Figure 6-3: AVR port B construction

DDRB is the data direction register for port B. Putting a 1 in any bit
turns the associated pin into an output; if set to 0, it’s an input. PORTB
is the output part of the port. Writing a 0 or a 1 into any bit makes the

144 Chapter 6

associated output a low voltage or a high voltage. Reading PINB supplies
the state of the associated pins, so if pins 6 and 0 are pulled high and the
rest are pulled low, it’ll read 01000001, or 0x41.

As you can see, it’s pretty easy to get data in and out of the chip. You can
read the switch by looking at PINB7 in the PINB register. You can turn the
LED on and off by writing to PORTB0 in the PORTB register. You could
write a simple program to blink the LED for the perpetual entertainment of
yourself and all your friends.

Push My Buttons
Lots of devices have buttons or switches of some sort. They’re not as easy for
a computer to read as you might think because of the way they’re designed.
A simple push button consists of a pair of electrical contacts and a piece of
metal that connects them when the button is pressed. Take a look at the
circuit in Figure 6-4.

+
V R Processor

IRQ
–

Figure 6-4: Simple push-button circuit

R is what’s called a pull- up resistor, just like we saw earlier in Figure 2-37.
When the button is not pushed, the resistor pulls the voltage on the processor
interrupt request (IRQ) pin up to the voltage supplied by V, making it a logic 1.
When the button is pressed, the resistor limits the current from V so that it
doesn’t burn up, allowing a logic 0 to be presented to IRQ.

Seems simple, but Figure 6-5 shows that it isn’t. You would think that
when you pushed and released the button, the signal at IRQ would look like
the picture on the left, but it actually looks more like the one on the right.

Voltage Voltage

Press

Time

Release Press

Time

Release

Figure 6-5: Button bounce

What’s going on here? When the piece of metal connected to the
button hits the contacts, it bounces and comes off the contacts for a short
time. It might bounce several times before settling down. Since we connected
the button to an interrupt- generating pin on the processor, we might get
several interrupts from a single button push, which is probably not what we
want. We need to debounce the button. (You can get bounce- free buttons,
but they often cost more.)

Communications Breakdown 145

A simple way to debounce is to have the interrupt handler set a timer,
and then you test the state of the button after the timer expires, as Figure 6-6
illustrates. We can approach this in two different ways: setting a timer on
the first interrupt or replacing an existing timer with a new one on each
interrupt.

Timer

Press

Voltage

Test Release

Time

Figure 6-6: Button debounce timer

This approach works but isn’t necessarily the best one. It’s hard to choose
a timer value because button bounce time can change over time due to
mechanical wear. You’ve probably had a reviled alarm clock where the
buttons were worn to the point that setting the time was difficult. Also,
most devices have more than one button, and it’s unlikely that a processor
has enough interrupt pins to go around. We could build circuitry to share
interrupts, but we’d rather do it cheaply in software. Most systems have
some sort of timer that can generate periodic interrupts. We can piggy-
back on that interrupt for button debouncing.

Let’s assume that we have eight buttons hooked up to some I/O port,
such as we saw in Figure 6-1, and that the state of the I/O port is available
in a variable named INB that is an 8-bit unsigned char. We can construct a
finite impulse response (FIR) filter out of an array, as shown in Figure 6-7. A
FIR is a queue; on each timer tick, we discard the oldest element and shift
in a new one. We OR the array elements together to form the current state
as part of a two- element queue; current is moved to previous before we calcu-
late the new current. All we have to do now is XOR the current and previous
states to find out which buttons have changed state.

1

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

INB filter [0] filter [1] filter [2] current previous

Figure 6-7: FIR filter button debouncer

146 Chapter 6

It’s a pretty simple piece of code, as shown in the C programming lan-
guage in Listing 6-1.

unsigned char filter[FILTER_SIZE];
unsigned char changed;
unsigned char current;
unsigned char previous;

previous = current;
current = 0;

for (int i = FILTER_SIZE - 1; i > 0; i--) {
 filter[i] = filter[i - 1];
 current |= filter[i];
}

filter[0] = INB;
current |= filter[0];
changed = current ^ previous;

Listing 6-1: FIR button debouncer

FILTER_SIZE is the number of elements in the filter, the choice of which
depends on how noisy the buttons are and the timer interrupt rate.

Let There Be Lights
Many widgets have some sort of display. I’m not talking about things with
computer screens here—more like alarm clocks and dishwashers. There are
often several indicator lights and possibly some simple numeric displays.

A common type of simple indicator is the seven- segment display shown
in Figure 6-8. These displays have seven LEDs arranged in a figure-8 pattern
plus maybe an additional decimal point.

DP
Common

AA

G

F

B

D

C

E

B C D E F G DP

Figure 6-8: Seven- segment display

The eight LEDs in a display require 16 electrical connections (pins).
But that’s not how they’re typically constructed; there’s a pin for one end
of each LED and a common connection for the other. Since we only need
to control one end to turn an LED on or off, this common connection saves
on pins, which reduces cost. Figure 6-8 shows a common cathode display in
which the cathodes are all tied together and the anodes each have their
own pins.

Communications Breakdown 147

We could just hook up the anodes to output pins on a processor and the
cathodes to the ground or negative end of the voltage source or power sup-
ply. A high (1) voltage on a pin would light up the corresponding LED. In
practice, most processors don’t supply enough current for that to work, so
an additional driver circuit is used. Open- collector outputs (shown back in
Figure 2-36) are often used.

The software to drive one of these displays is pretty simple. All we need
is a table that maps numbers (and maybe letters) to the appropriate segments
to light. But it should come as no surprise that there are complications. We
rarely have a single display; for example, an alarm clock has four. Though
we could hook each display up to its own I/O port, it’s unlikely that there
are that many ports. The solution is to multiplex the displays by connecting
the anodes to port A and the cathodes to port B, as shown in Figure 6-9.

A0–7

B0

B1

B2

B3

Processor

Figure 6-9: Multiplexed displays

The display anodes are wired in parallel; all of the A segments are
 connected together, all of the B segments are connected together, and so
on. The cathode connection for each display is connected to its own output
pin. A display segment can light up only if its anode is a 1 and its cathode
a 0. You might wonder why, for example, segments A and B wouldn’t light
up if A were a 1 and B were a 0. Remember that the D in LED stands for
diode, and diodes are one- way streets for electricity.

We take advantage of the human persistence of vision to make the dis-
plays work. A display doesn’t have to be on all the time for us to perceive it
as lit. Our eyes and brain will tell us that it’s lit if it’s on for as little as 1/24
of a second. This is the same effect that makes movies and video work. All
we have to do is switch which display is on by setting the associated cathode
pin to 0 and the segment anodes to whatever we want to display. We can
switch displays in a timer interrupt handler similar to the one we used in
the earlier push-button example.

Lights, Action, . . .
It’s common for devices to include both buttons and displays. As it turns
out, we can save some pins by multiplexing the buttons as well as the dis-
plays. Let’s say we have a 12-button telephone- style keypad in addition to
our four displays, as shown in Figure 6-10.

148 Chapter 6

1 2 3

4 5 6

7 8 9

* 0 #

A0–7

+

B0

B1

B2

B3

C0

C1

C2

Processor

Figure 6-10: Multiplexed buttons and displays

What have we accomplished with all this complexity? We’ve only had
to use three additional pins for the 12 push-buttons instead of 12. All the
push-buttons are pulled up to logic 1s by the pull- up resistors. Pushing a
button has no effect if no displays are selected, because the B outputs are
also all 1s. When the leftmost display is selected, B0 is low, and pushing any
button in the top row will cause the associated C input to go low, and so on.
Since the display and push buttons are scanned with the same set of signals,
the code that does the scanning can be combined in the timer interrupt
handler.

Note that Figure 6-10 is a simplified diagram. In practice, the B pins
would need to be open- collector or open- drain (see “Output Variations”
on page 58) devices; otherwise, if two buttons in different rows but the
same columns were pushed, we’d be connecting a 1 to a 0, which might
damage the parts. However, it’s not normally implemented that way, since
the aforementioned display driver circuitry handles that for us.

You can find out whether some device is constructed in a manner similar
to Figure 6-10 by pushing multiple buttons at the same time and watching
the displays. The displays will look strange. Think about why.

Bright Ideas
Your alarm clock might have a brightness adjustment for the display.
How does that work? By varying the duty cycle of the display, illustrated
in Figure 6-11.

Communications Breakdown 149

B0

B1

B2

B3

t0 t1 t2 t3

B0

B1

B2

B3

t0 t1 t2 t3 t4 t5 t6 t7

Figure 6-11: Duty cycle

Each display is lit one- quarter of the time in the left part of Figure 6-11.
The right part shows each display lit only one- eighth of the time; no displays
are lit half of the time. The result is that the displays on the right appear
approximately half as bright as those on the left. The “brightness” is related
to the average time that the display is on. Note that the relationship between
duty cycle and perceived brightness is unlikely to be linear.

2 n Shades of Gray
A common sensor task is to determine the position of a rotating shaft—
think motors, wheels, and knobs. We could determine the position by
using switches on the shaft or by using black and white spots that could
be read with a photosensor. Whatever approach we take, we’d encode
each shaft position as a binary number. The encoder might look like
Figure 6-12 if we cared about eight different positions. If the white sectors
are 0s and the black sectors are 1s, then you can see how we can read the
position value. The radial lines are not part of the encoder; they’re just
there to make the diagram easier to understand.

2

3

4

5 6

7

0

1

Figure 6-12: Binary rotary encoder

As usual, this seems simple, but it isn’t. In this case, the problem is
mechanical tolerances. Note that even with a perfectly aligned encoder,
we’d still have issues resulting from propagation delay differences in the cir-
cuitry reading each bit. What happens if the encoder isn’t perfectly aligned,
as in Figure 6-13?

150 Chapter 6

2

3

4

5 6

7

0

1

Figure 6-13: Binary rotary
encoder alignment error

Rather than reading 01234567 as we’d expect, we get 201023645467.
American physicist Frank Gray (1887–1969) at Bell Telephone Laboratories
took a look at this problem and came up with a different encoding in which
only the value of a single bit changes for each position. For the 3-bit encoder
we’ve been looking at, the eponymous Gray code is 000, 001, 011, 010, 110,
111, 101, 100. The code can easily be translated to binary using a small table.
Figure 6-14 shows a Gray code version of our encoder wheel.

3

2

6

7 5

4

0

1

Figure 6-14: Gray code
rotary encoder

Quadrature
There’s a twist on 2-bit Gray codes we can use when we don’t really need to
know the absolute position of something, but need to know when the position
changes and in which direction. Some of the knobs on your car dashboard,
such as the volume control on the stereo, are likely to work this way. A good
indicator is if turning a knob while the ignition is off has no effect once the
car is started. The twist is called quadrature encoding because there are four
states. The 2-bit Gray code pattern is repeated multiple times. For example,
there are cheap quadrature encoders that are good to 1/4,096 of a revo-
lution. Quadrature takes only two sensors, one for each bit. An absolute
4,096-position encoder would take 12 sensors.

Communications Breakdown 151

The quadrature waveform is shown in Figure 6-15.

ClockwiseCounterclockwise

X
Y

0 1 3 2 0 1 3 2 0 1

Figure 6-15: Quadrature waveform

As you can see, when the shaft is rotated clockwise, it produces the
sequence 0132; counterclockwise yields 2310. We can form a 4-bit number
out of the current position and the previous position. This number tells us
the direction of rotation, as Table 6-1 shows.

Table 6-1: Quadrature Rotation Detection

Current Previous Combined Meaning

00 00 0 Illegal
00 01 1 Clockwise
00 10 2 Counterclockwise
00 11 3 Illegal
01 00 4 Counterclockwise
01 01 5 Illegal
01 10 6 Illegal
01 11 7 Clockwise
10 00 8 Clockwise
10 01 9 Illegal
10 10 a Illegal
10 11 b Counterclockwise
11 00 c Illegal
11 01 d Counterclockwise
11 10 e Clockwise
11 11 f Illegal

Note that this is a state machine, where the combined value is the state.
What do you get when you take a pair of quadrature encoders, orient

them at 90 degrees from each other, and stick a rubber ball in the middle?
A computer mouse.

152 Chapter 6

Parallel Communication
Parallel communication is an extension of what we saw earlier when lighting
up LEDs. We could hook up eight LEDs to port B and flash ASCII character
codes. Parallel means we have a wire for each component and can control
them all at the same time.

You may have an IEEE 1284 parallel port on your computer if it’s an
old model. These were commonly used for printers and scanners before
Universal Serial Bus (USB) came along. And yes, there were eight data lines
on the parallel port so you could send ASCII character codes.

There’s a problem with all of this, though: how do you know when the
data is valid? Let’s say you send the characters ABC. How do you know when
it’s the next character? You can’t just look for some change, because it could
be AABC. One way is to have another “look at me” signal. IEEE 1284 had a
strobe signal for this purpose. In Figure 6-16, the data on bits 0 through 7 is
valid whenever the strobe is low or 0.

Bit 7

0x42
B

0x6f
o

0x6f
o

0x21
!

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Strobe

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0Time

Figure 6-16: Parallel data strobe timing

Another parallel interface that has pretty much gone by the wayside is
IDE. This is what’s used to communicate with older disk drives.

Parallel interfaces are expensive because they require many I/O pins,
connector pins, and wires. The parallel port had a 25-pin connector and a
big fat cable. IDE had 40 wires. There’s a limit to how fast a signal can be
sent down a wire, and when that’s exceeded, multiple wires are needed.

Serial Communication
It would be nice to be able to communicate using fewer wires because wires
cost money, which adds up, especially when you’re talking about long
distances. Two wires is the minimum number required because we need a
return signal path for the electricity, as you learned in Chapter 2. We’re not
going to show that return path in the diagrams for simplicity.

Communications Breakdown 153

How could we send the eight signals over a single wire? We can get a
hint by looking at the timing diagram in Figure 6-16. Even though each bit
is on its own wire, the characters are spaced out in time. We can space out
the bits in time too.

I talked about shift registers in “Shiftiness” on page 99. On the trans-
mitting end, the strobe or clock signal shifts all the bits over one position
and sends the bit that falls off the end out on the wire. On the receiving
end, the clock shifts all the bits over by one position and puts the state of
the data line into the newly vacated position, as shown in Figure 6-17.

Input Output

Transmitter Receiver
shift register shift register

Data

Clock

Figure 6-17: Serial communications using shift registers

We’d use a counter to tell us whenever we get to 8 bits, and then we
could do something with the value. This approach takes two wires, not one,
and it’s pretty error- prone. It requires that the transmitter and receiver be
synchronized, or in sync—which has nothing to do with the boy band. All
we’d have to do is miss one clock, and everything would be garbled. We could
add a third wire that said when we were starting a new character, but our
goal is to minimize the number of wires.

A long time ago (in the early 1900s), the telegraph was married to the
typewriter to make the teletype, a machine that allowed typing to a printer
far away. Teletype machines were initially used to allow stock market infor-
mation to be sent over telegraph wires.

The data was sent using a serial protocol (set of rules) that worked using
just one wire in addition to the return path. The clever thing about this
protocol is that it worked sort of like the timers at a swim meet. Everybody
starts their individual timers when the starting gun goes off, and they’re
close enough that it works. Figure 6-18 illustrates the protocol.

First character

Start Stop

Time

0 1 2 3 4 5 6 7

Start

0 1 2 3 4 5 6 7

Second character

Stop

Figure 6-18: Mark- space signaling

The line here is in a 1, or high, state when nothing is happening. The
high state is called mark, and the low state is called space, after the way early
telegraph equipment either made a mark or left a space on a strip of paper.
The line going low in Figure 6-18 is the starting gun, and it’s called the
start bit. Following the start bit, the 8 bits of data are sent. The character

154 Chapter 6

ends with a pair of high stop bits. Each bit is allotted the same amount of
time. Synchronization errors can occur, but all the transmitter has to do is
to be quiet for a character time and the receiver will sync up. We’re dividing
up time so that we have a slot for each bit and then multiplexing the data
onto the single wire. This technique, called time division multiplexing, can be
implemented using a selector (see “Building Selectors” on page 65) instead
of a shift register. The speed in bits per second, by the way, is known as the
Baud rate, named after French engineer Émile Baudot (1845–1903).

Teletypes were awesome machines. They didn’t contain any electronics
and worked by having a motor spin a shaft. An electromagnet released the
shaft when a start bit came in so it could spin. At each place in the rotation
for the bit position, all sorts of cams and levers and pushrods would move
around, ultimately whacking a metal character onto an inked ribbon and
then onto a piece of paper. You knew that a message was coming in when
stuff started rattling off the shelves. The keyboard worked in a similar fashion.
Pressing a key started a shaft spinning that would move an electrical contact,
depending on which keys were pressed, to generate an ASCII code.

Another cool trick, called a half- duplex connection, is where a trans-
mitter and a receiver on each end share the same wire. Only one can talk
at a time, or gibberish results. That’s why radio operators said things like
“over.” You know all about half- duplex communications if you’ve ever used a
walkie- talkie. A collision results when more than one transmitter is active at
the same time, garbling the data. A full- duplex connection is when there are
two wires, one going in each direction.

All of the circuitry to implement this eventually became available
in a single integrated circuit called a UART, which stands for Universal
Asynchronous Receiver- Transmitter. Software can also implement a UART
with an approach called bit- banging.

A standard called RS-232 defined the voltage levels used for mark and
space on old serial ports, as well as many additional control signals. It’s
pretty much been replaced by USB now, although a variant called RS-485,
which uses differential signaling (refer back to Figure 2-32) for greater
noise immunity, is used in industrial environments. The parallel IDE inter-
face to disks has been replaced by SATA, the serial equivalent. Electronics
are now fast enough that we can do many things serially that we used to
have to do in parallel. Also, wires remain expensive. The world is running
low on copper extractable from the earth, which is what’s used for the
conductor in wires. Recycling existing copper products is now a major
source of copper. Chips are mostly silicon, which is found in sand and
very abundant.

There are a number of serial interfaces designed for connecting periph-
erals up to small microcomputers. These include SPI, I2C, TWI, and OneWire.

Catch a Wave
There’s a big problem with mark- space signaling, which is that it’s not good
for very long distances. It doesn’t work over telephone lines for reasons that
are beyond the scope of this book. That was a big deal because once the

Communications Breakdown 155

telegraph was replaced by better technologies, the only remaining long-
distance communication technologies were telephone and radio. This mark-
space signaling problem is solved with the same trick that makes radio work.

The universe contains all kinds of different waves. There are waves in
the ocean, sound waves, light waves, microwaves, and all sorts of stuff in
between. The fundamental wave is a sine wave. All other wave shapes can be
made from combinations of sine waves. You get a sine wave by plotting the
height of a point on a circle versus the angle. It looks like Figure 6-19.

1

0

–1
0° 90° 180° 270° 360° 720°

Figure 6-19: Sine wave

The height of the sine wave is the amplitude. The number of same-
direction zero crossings per second is the frequency, measured in Hertz,
after German physicist Heinrich Hertz (1857–1894). Hertz is abbrevi-
ated Hz and is synonymous with cycles per second. The distance between
two same- direction zero crossings is the wavelength. They’re related as
follows:

� �
v
f

In this equation, λ is the wavelength in meters, f is the frequency in
Hertz, and v is the speed of the wave in the medium in which it’s traveling.
That’s the speed of light for radio waves. The higher the frequency, the
shorter the wavelength. Just as a reference point, middle C is about 261 Hz
these days.

If you stop to think about it, you’ll realize that different waves have
different properties. Sound waves don’t travel very far and are stopped by
a vacuum but go around corners. Light waves go a very long way but are
stopped by a wall. Some frequencies of radio waves go through walls, but
others don’t. There’s a lot of variation in between.

Time to surf. Let’s find a wave that does what we want and hitch a ride.
We’ll call this wave the carrier, and what we want to do is modulate or change
it based on the signal we care about, such as our mark- space waveform.

AT&T introduced the Bell 103A data set in the early 1960s. It provided
full duplex communications at a whopping 300 Baud over a telephone
line by using four audio frequencies; each end of the connection got its
own pair of mark and space tones. This is called frequency shift keying (FSK)
because the frequency shifts with the marks and spaces. You can see it in
Figure 6-20.

156 Chapter 6

Start 0 1 2 3 4 5 6 7 Stop

Figure 6-20: Frequency shift keying—ASCII letter A

The receiving end has to turn the audio back into marks and spaces,
called demodulation, the opposite of modulation. Devices that do this are called
modems. The weird noises you hear when someone uses a dial- up connection
to the internet or sends a fax in a cheesy movie are the frequencies used by
modems.

Universal Serial Bus
USB is not all that interesting, but it’s worth a mention because it’s so
common. It features more incompatible and hard- to- use connectors than
any other standard and is arguably more important for device charging
than for data transfer.

USB replaced many of the bulky connectors that were proliferating on
computers in the mid-1990s, such as the PS/2, RS-232, and parallel ports
with a single four- wire connector. There were two power wires and a twisted
pair for data using differential signaling. USB repeats the pattern we’ll see
more of soon of “can’t stop there,” so now USB Type- C is up to 24 wires,
just shy of the old parallel port.

USB is not a free-for-all. There is a controller that is in charge of all of the
endpoints, as opposed to everything having equal footing. The data transfer is
structured; it’s not just shoveling uninterpreted bits around. It uses a common
technique: data is transferred in packets, which are equivalent to packages
sent through the mail. Packets contain a header and optional payload. The
header is essentially the information that you’d find on the outside of a
package—where it came from, where it’s going, the class of postage, and so
on. The payload is the contents of the package.

USB handles audio and video via isochronous transfers. An endpoint can
ask to reserve a certain amount of the bandwidth (data transfer rate), yield-
ing a guarantee that data can be transferred. The controller refuses the
request if there isn’t enough bandwidth.

Networking
It’s difficult to get a clear picture of the modern world of networking without
knowing its origins. It drives me crazy when my daughter says, “The Wi- Fi is
down” or, “The internet isn’t working,” because they’re not the same thing.
Attempts to explain this to her are met with the patented teenage eye roll
and hair toss.

Two general classifications are used to describe networks. A local area net-
work (LAN) is a network that covers a small geographic area such as a home
or an office. A wide area network (WAN) covers a large geographic area. These
terms are somewhat fuzzy since there is no exact definition of small and large.

Communications Breakdown 157

The original network was the telegraph network, which evolved into the
telephone network. It didn’t start as a computer network because computers
didn’t exist at the time. The original telephone network was a circuit- switched
network. When a call was made between parties, their wires were effectively
connected together, forming a circuit. It was switched because that connec-
tion existed only for the duration of the conversation. Once a call was com-
pleted, new circuits could be created.

With a few exceptions, such as the remaining landlines, the phone sys-
tem is now a packet- switched network. I mentioned packets in the last section.
Communications are divided up into packets that include sender and recip-
ient addresses. Packets can share wires using time division multiplexing
(covered earlier in “Serial Communication” on page 152), which allows for
more efficient use of circuits; this became possible when the amount of data
that could be sent over a wire became more than was needed just for voice.

One of the earliest computer networks was part of Semi- Automatic Ground
Environment (SAGE), a Cold War–era defense system. It used modems on the
telephone network for communications between sites.

Many organizations started experimenting with LANs in the late 1960s.
For example, my lab at Bell was developing graphics terminals that were
connected to our department’s Honeywell DDP-516 computer using a LAN
called the ring. At the time, peripherals such as tape drives and printers were
very expensive, and most departments didn’t have their own. But they
were available in the main computer center. Our computer was connected
to a modem, and when it needed something it didn’t have, it would just call
up the computer center. It was effectively a WAN. Not only could we send
things off to be printed, we could also send programs that would be run,
and the computer center would call our machine back with the results.

Similar activity was occurring at many research labs and companies.
Many different LANs were invented. Each was its own private universe,
though—they couldn’t talk to each other. Modems and phone lines were
the basis for wide- area communications.

A set of computer programs developed at Bell Labs called UUCP (for
UNIX- to- UNIX copy) was released to the outside world in 1979. UUCP
allowed computers to call each other to transfer data or run programs
remotely. It formed the basis for early email and news systems such as
USENET. These systems were an interesting hack. If you wanted to send
data across the country, it would hop from machine to machine until it
got to its destination. This usually allowed long-distance phone charges
to be avoided.

Meanwhile, ARPA, the Advanced Research Projects Agency of the US
Department of Defense, was funding the development of the ARPANET,
a packet- switched WAN. The ARPANET evolved into the internet in the
1990s. Most people take the internet for granted today, and like my daughter,
they probably think it’s synonymous with networking. But its real nature
is indicated right there in the name. It’s a contraction of inter and net. The
internet is a network of networks—it’s the WAN that connects the LANs
together.

158 Chapter 6

Modern LANs
A lot of other stuff that we take for granted these days was invented at the
Xerox Palo Alto Research Center (PARC) in the mid-1970s. For example,
an American electrical engineer by the name of Bob Metcalfe invented
Ethernet, which is a LAN because it’s not designed to go very far.

N O T E Check out Adele Goldberg’s book A History of Personal Workstations (Addison-
Wesley, 1988) for more about the history of PARC.

The original Ethernet was a half- duplex system. Every computer was
connected to the same wire. Each computer network interface had a unique
48-bit address called a Media Access Control (MAC) address, and that’s still
the case today. Data is organized into packets, called frames, of about 1,500
bytes. Frames have a header that includes the sender address, the recipient
address, and some error checks (for example, cyclic redundancy checks,
or CRCs, as discussed in “Error Detection and Correction” on page 88)
along with the data payload.

Normally, one computer would talk, and the others would listen.
Computers that didn’t match the recipient’s MAC address would ignore
the data. Each machine listened to what was going on and didn’t transmit
if someone else was transmitting. When machines did start transmitting at
the same time, the collision resulted in garbled packets, just like the half-
duplex collisions described earlier. One of Metcalfe’s big innovations was
random back- off- and- retry. Each machine that was trying to talk would wait a
random amount of time and then try to resend.

Ethernet is still in use today, though not the half- duplex version. Now
machines are connected to routers that keep track of which machine is at
which connection and routes packets to the right places. Collisions no longer
happen. Wi- Fi is essentially a version of Ethernet that uses radio instead of
wires. Bluetooth is another popular LAN system. Think of it as a version
of USB that ditches the wires for radio.

The Internet
As you now know, the internet is not actually a physical network; it’s a set of
layered protocols. It’s designed in such a way that the lower layers specify-
ing the physical network can be replaced without affecting the upper layers.
That design allows the internet to function over wires, radio, optical fibers,
and whatever new technologies come along.

TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) is the pair of protocols
on which the internet is built. IP gets packets from place to place. These
packets, called datagrams, are like telegrams for computers. As with real
telegrams, the sender doesn’t know when or even whether the recipient
got the message. TCP is built on top of IP and makes sure that packets get
reliably delivered. This is a pretty complicated job, because large messages

Communications Breakdown 159

span many packets that may not arrive in order since they may have taken
different routes—not much different from ordering some stuff and having
it shipped in multiple boxes that may not all arrive on the same day or even
be sent via the same carrier.

IP Addresses

Each computer on the internet has a unique address known as its IP address.
Unlike MAC addresses, IP addresses aren’t tied to the hardware and can
change. The IP address system is a hierarchical system in which someone
gives out blocks of addresses, who in turn give out blocks of addresses, and
so on until it gets down to whoever gives your machine its address.

The internet pretty much runs on IPv4, version 4 of IP, which uses 32 bits
of address. Addresses are written in octet notation of xxx.xxx.xxx.xxx, where
each xxx is 8 of the 32 bits written in decimal. That’s over 4 billion addresses,
yet that’s not enough. Now that everyone has an address for their desktop,
their laptop, their tablet, their cell phone, and their other gadgets, there are
no more addresses to give out. Hence, the world has been slowly migrating to
IPv6, which has 128-bit addresses.

Domain Name System

How can you be found if your address can change? That’s handled by
the Domain Name System (DNS), which is like a phone book, for those
who remember what those are. DNS maps names to addresses. It knows
that whitehouse.gov has the IP address 23.1.225.229 at the time that I’m
writing this. It’s sort of like the address book in your phone, except you
have to keep that up-to-date; DNS takes care of everything whenever
anybody moves.

The World Wide Web

Many other protocols are built on top of TCP/IP, such as the Simple Mail
Transfer Protocol (SMTP) that makes email work. One of the most used pro-
tocols is HTTP, short for HyperText Transfer Protocol, which is used for web
pages, along with HTTPS where the S stands for secure.

Hypertext is just text with links. American engineer Vannevar Bush
(1890–1974) came up with the idea in 1945. It didn’t really take off until
Tim Berners- Lee, a scientist at CERN (the European Organization for
Nuclear Research), invented the World Wide Web so that physicists could
share information.

The HTTP standard defines how web browsers interact with web servers.
Web browsers are what you use to view web pages. Web servers send you
those pages upon request. Web pages are found and fetched by a Uniform
Resource Locator (URL), the website address in the address bar of your browser.
It’s how you locate the information you want and includes the domain
name of a machine on the internet and a description of where to find the
information on that machine.

160 Chapter 6

Web pages typically start their lives as HTML (short for HyperText
Markup Language), the most common language in which web pages are
written. HTML has gotten a lot of stuff stuck onto it over time and is now
a pretty complicated mess. More on this in Chapter 9.

Analog in the Digital World
Computers are in lots of entertainment devices, from audio players to televi-
sions. You may have noticed that digital photos don’t look very good when
they’re magnified beyond a certain point. Our real- world experience of
sound and light is continuous, but computers have no way to store continu-
ous things. The data must be sampled, which means we have to take readings
at points in time and/or space. An analog (continuous) signal must then
be reconstructed from those samples for playback.

N O T E There’s a good video called “Episode 1: A Digital Media Primer for Geeks” that you can
find online that is a good introduction to sampling. There’s a second episode, which is
also good, but it’s very misleading. While everything said is technically correct, it only
applies to mono, not stereo. The presenter implies that it’s good for stereo, but it isn’t.

Sampling isn’t a new thing; even back in the days of silent movies, the
scene was sampled at about 16 frames per second. There’s an entire field
called discrete mathematics that deals with sampling. Discreetly, of course.

We talked about the differences between analog and digital way back
in Chapter 2. This book is about digital computers, and many real- world
applications require computers to generate analog signals, interpret
analog signals, or both. The following sections discuss how computers
accomplish this.

Digital- to- Analog Conversion
How might we generate an analog voltage based on a digital number? The
blithe and correct answer is: by using a digital- to- analog converter. How
would we construct one of these?

Let’s go back to Figure 6-1, where we have an LED connected to an I/O
port. In Figure 6-21, we hook an LED to each of the eight pins of port B.

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

Figure 6-21: Digital- to- analog converter using LEDs

Communications Breakdown 161

Now we can generate nine different light levels—from no LEDs on to
eight LEDs on. But nine levels from 8 bits isn’t a very good use of bits; with
8 bits, we should be able to get 256 different levels. How? Just like we do
with numbers. Figure 6-22 hooks one LED to bit 0, two to bit 1, four to
bit 2, and so on.

PB7

. . . 128 LEDs total . . .

. . . 64 LEDs total . . .

. . . 32 LEDs total . . .

. . . 16 LEDs total . . .

PB6

PB5

PB4

PB3

PB2

PB1

PB0

Figure 6-22: Better digital- to- analog converter using LEDs

That’s a whole lotta LEDs. You could hang this circuit from a balloon to
make a LED zeppelin. Moving on, you can see that this mirrors our binary
representation of numbers. Bit 1 produces twice as much light as bit 0, bit 2
four times as much, and so on.

We used the LED example to illuminate the workings of a digital- to-
analog converter. A real digital- to- analog converter (D/A or DAC) produces
a voltage instead of light. The term resolution is loosely used to describe the
number of “steps” a DAC can produce. I say “loosely” because it’s common
to say that a DAC has, for example, 10 bits of resolution, which really means
that it has a resolution of 1 part in 210. To be completely correct, the resolu-
tion is the maximum voltage that the DAC can produce divided by the
number of steps. For example, if a 10-bit DAC could produce 5V maximum,
then it has a resolution of approximately 0.005V.

Figure 6-23 shows the symbol used for a DAC.

Vout
D0–n

Figure 6-23: DAC
schematic symbol

162 Chapter 6

We can generate analog waveforms using a DAC. This is how audio
players and music synthesizers work. All we need to do is to change the DAC
inputs at a regular rate. For example, if we had an 8-bit DAC connected to
port B, we could generate the sawtooth wave shown in Figure 6-24.

int i = 0;

while (true)
 PORTB = i++;

Figure 6-24: Synthesized sawtooth wave

For more complex waveforms, devices usually incorporate memory that
can be written with the data, which is then read out by additional circuitry.
This ensures a constant data rate that is independent of whatever else the
CPU is doing. A typical way of implementing this is by creating a FIFO (“first
in, first out”) configuration, as shown in Figure 6-25. Note that a FIFO is the
same thing as a software queue.

Data bus In

Memory

High-water mark Low-water mark

Out DAC Analog out

Figure 6-25: FIFO with high- and low-water marks

Two triggers are associated with the FIFO memory: a high-water mark and
a low-water mark, which borrow their terminology from tides. The low-water
mark triggers an interrupt when the FIFO is close to empty; the high-
water mark triggers when it’s close to full. This way, higher- level software
can keep the memory filled so that the output is continuous. Though it’s
not exactly a FIFO because newly added water mixes with the old, this is how
water towers work; when the water is below the low-water mark, the pump
turns on to fill the tank; when the high-water mark is reached, the pump turns
off. FIFOs are really handy for connecting things that operate at different
speeds.

Analog- to- Digital Conversion
Analog- to- digital conversion, the opposite process, is done using an A/D, or
ADC, which is more complicated than a DAC. The first problem that arises
is getting the analog signal to hold still, because we can’t measure it if it’s
wiggling around. (You know the problem if you’ve ever tried to take a little
kid’s temperature.) In Figure 6-26, we need to take a sample of the input
waveform—more than one if we want our digitized version to resemble the
analog original. We do this using a circuit called a sample and hold, which is
the analog equivalent of a digital latch (see “Latches” on page 71).

Communications Breakdown 163

Holding
tank

Sample

Analog in Analog sample

Figure 6-26: Sample and hold

When we take a sample by closing the switch, the current value of the
analog signal is stored in the holding tank. Now that we have a stable signal
in the holding tank, we need to measure it so we can generate a digital value.
We need something that compares the signal to a threshold similar to what
we saw in the right half of Figure 2-7, back in Chapter 2. Fortunately, an
analog circuit called a comparator can tell us when one voltage is greater than
another. It’s just like a logic gate except that we can choose the threshold.

The schematic symbol for a comparator is shown in Figure 6-27.

Out
+

–

Figure 6-27: Analog comparator

The output is 1 if the signal on the + input is greater than or equal to
the signal on the − input.

We can use a stack of comparators with different reference voltages on the
− inputs to build a flash converter, as shown in Figure 6-28.

1.000V
D7

+
–

+
–

+
–

+
–

+
–

+
–

+
–

+
–0.875V

From sample and hold D6

0.750V
D5

0.625V
D4

0.500V
D3

0.375V D2

0.250V D1

0.125V D0

Figure 6-28: Flash converter

It’s called a flash converter because it generates results quickly, in a flash.
As you can see, the outputs are 00000000 for a voltage less than 0.125V,
000000001 for a voltage between 0.125V and 0.250V, 00000011 for a voltage

164 Chapter 6

between 0.250V and 0.375V, and so on. This works, but it has the same
problem as our DAC in Figure 6-25: it doesn’t use the bits very efficiently.
Flash converters are also relatively expensive parts due to the number of
comparators, but they’re the way to go when extreme speed is required. How
might we construct a cheaper ADC that better utilizes the bits?

Our flash converter used a set of fixed reference voltages, one for each
comparator. We could use a single comparator if we had an adjustable refer-
ence voltage. Where might we get one of those? With a DAC!

In Figure 6-29, you can see that we’re using a comparator to test the
sampled value in the holding tank against the value of the DAC. Once cleared,
the counter counts up until the DAC value hits the sampled value, at which
time the counter is disabled and we’re done. The counter contains the digi-
tized value of the sample.

D0–n

Q0–n Enable
Counter

Clear

Vout

Out Done
+

–

Holding
tank

Sample

Analog in

Figure 6-29: Analog- to- digital converter

Once cleared, the counter counts up until the DAC value hits the
sampled value, at which time the counter is disabled and we’re done.
The counter contains the digitized value of the sample.

You can see how this works in Figure 6-30. The analog signal wiggles
around, but the output of the holding tank is stable once a sample is taken.
The counter is then cleared, and it counts up until the DAC output hits the
sampled value, at which time the counter stops and we’re done.

Clear
counter

Done

Holding tank

Take
sample

Analog in

Figure 6-30: ADC in operation

Communications Breakdown 165

This ADC is called a ramp converter because of the way in which the DAC
output generates a ramp. One of the problems with a ramp converter is that
it can take a long time since the conversion time is a linear function of the
sampled signal value. If the sampled signal is at its maximum value and we
have an n-bit ADC, conversion can take 2n clocks.

One way around this is to use a successive approximation converter, which
performs a binary search in hardware, as you can see in Figure 6-31.

Clear
counter

DoneTake
sample

Analog in

Figure 6-31: Successive approximation ADC in operation

The first clock sets the DAC to one- half of the full range. Since that’s
less than the sampled signal, it’s adjusted upward by one- quarter of the
full range. That’s too much, so next it’s adjusted downward by one- eighth
of the full range. That’s too low, so it’s adjusted up by one- sixteenth of the
full range, and we’re there. Worst case, it takes log2 n clocks. That’s quite
an improvement.

The term resolution is used for ADCs in a manner similar to how it’s
used for DACs. The schematic symbol is shown in Figure 6-32.

Vin
D0–n

Figure 6-32: ADC schematic symbol

Digital Audio
Audio involves sampling in one dimension—that is, measuring the amplitude
or height of the signal at points in time. Look at the sine wave in Figure 6-33.
We have a square wave with some sampling frequency, and we record the height
of the signal on each rising edge using an A/D.

0.743
1

0

–1

0.588 –0.866 –0.407

Time

0.951 0.208 –0.995 0.000

Figure 6-33: Sampling a sine wave

166 Chapter 6

Now that we have a set of samples, we should be able to reconstruct
the original signal by feeding them to a D/A. Let’s give it a try, as shown in
Figure 6-34.

Time

1

0

–1

Figure 6-34: Reconstructed sine wave from samples

Wow, that looks terribly distorted. Looks like we’d need a lot more
samples to improve the result so that it looked more like Figure 6-35.

Time

1

0

–1
1

0

–1

Figure 6-35: Higher- frequency sampling and reconstruction

But we don’t need to. The sampling and reconstruction in Figures 6-33
and 6-34 is actually okay. I’m about to tell you why, but be warned: there’s
some heavy theory ahead.

A sine wave is relatively easy to describe, as mentioned in “Catch a
Wave” on page 154. But we need a way to describe more complicated wave-
forms, such as the one in Figure 6-31.

The graphs so far plot amplitude against time, but we can look at it in
other ways. Take a look at the musical score in Figure 6-36.

Time

Frequency

Figure 6-36: A musical score

Communications Breakdown 167

You can see that the score plots musical notes against time, but there’s
more happening. We don’t just have notes at each point in time; we have
chords, which are constructed from multiple notes. Let’s look at the first
chord, which contains the notes G4 (400 Hz), B4 (494 Hz), and D5 (587 Hz).
Pretend we’re playing the chord on a synthesizer that can generate sine
waves for the notes. You can see in Figure 6-37 that although each note is
a sine wave, the chord itself is a more complex waveform, being the sum of
the three notes. It turns out that any waveform can be represented as the
weighted (multiplied by some scale factor) sum of a set of sine waves. For
example, if the square wave in Figure 6-33 has a frequency of f, it can be
represented as the sum of sine waves:

sin sin sin sin
. . .

f f f f� �
�

� �
�

� �
�

� �
�

1

3

3

5

5

7

7

D5 (587 Hz)

B4 (494 Hz)

G4 (400 Hz)

G major chord

Figure 6-37: G major chord waveform

If you have a good ear, you can listen to a chord like this and pick out
the component notes. Tone- deaf people have to rely on some mathematical
acrobatics called the Fourier transform, invented by French mathematician
and physicist Jean- Baptiste Joseph Fourier (1768–1830), who also discovered
the greenhouse effect. All the graphs we’ve seen in this section so far plot
amplitude against time. The Fourier transform allows us to plot amplitude
against frequency. It’s a different way of looking at things. The Fourier
transform of our G major chord would look like Figure 6-38.

Amplitude

0 400
Frequency

494 587

G4 B4 D5

Figure 6-38: G major chord Fourier transform plot

168 Chapter 6

You’ve probably seen this sort of thing before without knowing it. Many
media players have spectrum analyzer eye candy that displays the volume in
different frequency bands using the Fourier transform. Spectrum analyzers
originated as complicated pieces of electronic equipment. Now they can be
implemented on computers using the Fast Fourier Transform (FFT) algorithm.
One of the coolest applications of Fourier analysis is the Hammond B-3
organ.

T HE H A MMOND B-3 ORG A N

The Hammond B-3 is an amazing application of electromagnetics and Fourier
analysis. The way it works is that a motor drives a shaft on which 91 “tone
wheels” are mounted. Each tone wheel has an associated pickup, similar to
what’s used on electric guitars, that generates a specific frequency as deter-
mined by the bumps on the tone wheels. Since all of the tone wheels are
mounted on the same shaft, they can’t get out of tune with each other.

Pressing a key on a B-3 doesn’t just generate the frequency produced by
a tone wheel. There are nine eight- position “drawbars” that are used to mix
the signal produced by the “fundamental” tone (the note being played) with
signals from other tone wheels. The drawbars set the level of the sub- octave,
fifth, fundamental, 8th, 12th, 15th, 17th, 19th, and 22nd harmonics.

The sound produced is the weighted sum of these nine signals as set by
the drawbars in a manner similar to how we produced our G major chord in
Figure 6-37.

Another feature of many media players is the graphic equalizer, which lets
you adjust the sound to your taste. A graphic equalizer is a set of adjustable
filters, devices that include or exclude certain frequencies. They’re akin to the
transfer functions that we saw in “Digital in an Analog World” on page 38,
but for frequency instead of voltage or light. There are two main types of
filters: low pass, which pass everything below a certain frequency, and high
pass, which pass everything above a certain frequency. They can be combined
to make bandpass filters that include everything between a low and high
frequency, or notch filters that exclude a particular frequency. You can see
in Figure 6-39 that the filter edges are not sharp; they roll off. Perfect filters
don’t exist. Note that the button debouncer in Figure 6-7 is a low-pass filter.

Low pass

Frequency

High pass

Frequency

Bandpass

Frequency

Notch

Frequency

G
a
i
n

G
a
i
n

G
a
i
n

G
a
i
n

Figure 6-39: Filters

Communications Breakdown 169

We could, for example, apply a low- pass filter to our G major chord, as
seen in Figure 6-40. Applying a filter effectively multiplies the curves; the
filter adjusts the sound level at different frequencies.

G4 B4 D5

4000 494 587

Figure 6-40: Low- pass filtered G major
chord Fourier transform plot

As you can imagine, it no longer sounds the same. The B4 is slightly
quieter, and the D5 is all but gone.

Why does all this matter? Figure 6-41 shows the Fourier transform of
our reconstructed sine wave from Figure 6-34. I didn’t completely specify
everything in that figure, so let’s assume that it’s a 400 Hz sine wave sam-
pled at 3 kHz.

400

0 1000 2000 3000 4000 5000 6000 7000

Figure 6-41: Reconstructed sine wave Fourier transform plot

Note that the x- axis goes on to infinity with frequencies at every
multiple of the sampling frequency, plus or minus the frequency of the
sampled signal.

What happens if we take that reconstructed sine wave and apply a
low- pass filter, as shown in Figure 6-42?

400

0 1000 2000 3000 4000 5000 6000 7000

Figure 6-42: Low- pass filtered reconstructed sine wave Fourier
transform plot

All the distortion disappears; what’s left is our 400 Hz sine wave. It
appears that sampling works, as long as we have appropriate filtering. How
do we choose a sample rate and filter?

Harry Nyquist (1889–1976), a Swedish electronic engineer, came up with
a theorem that says you have to sample at a rate at least twice the highest
frequency if you want to be able to faithfully capture the signal. It’s a nice

170 Chapter 6

theory, but because electronics doesn’t follow ideal mathematics, it helps to
sample faster than that in order to have the result sound good. The human
hearing range is something like 20 to 20,000 Hz.

Based on all that, we should be able to capture anything that we can
hear with a 40 kHz sampling rate. What if we accidentally get a 21 kHz
sound, which is undersampled according to Nyquist’s theorem? In that case,
we get folding or aliasing. Imagine that the sampling frequency is a mirror
and any information greater than that frequency is reflected. Looking back
at Figure 6-41, you can see that there are artifacts at the sampling frequency
plus or minus the sampled frequency. Because the sampling frequency is
much greater than the sampled frequency, these artifacts are far away. A
21 kHz input sampled at 40 kHz would produce an artifact at 19 kHz
(40–21). This false signal is called an alias. We don’t get out what we put
in. A low- pass filter must be applied before sampling to avoid aliasing.

Compact discs take 16-bit samples at 44,100 Hz—times 2, of course,
because it’s stereo. That produces a little more than 175KB/second. That’s a lot
of data. Some standard audio-sampling rates are 44.1 kHz, 48 kHz, 96 kHz,
and 192 kHz. Why would we bother to sample at the higher rates, since doing
so would generate a lot more data and Nyquist says it’s not necessary?

Although the frequency and amplitude of a signal sampled near the
Nyquist rate can be reconstructed, the phase cannot. Another new term!
Think of the phase as a small shifting in time. You can see in Figure 6-43
that the fatter signal lags (as opposed to leads) the skinnier signal by
45 degrees, making it slightly later in time.

1

0

–1

0° 45° 90° 180° 270° 360° 450° 540° 630° 720°

Figure 6-43: Phase difference in signals

Why does this matter? Well, it doesn’t except for stereo. The phase difference
causes a time delay between a signal hitting your left and right ears that tells
you where it is in space, as illustrated in Figure 6-44.

Sound

CenterLeft Right

SoundSound

Figure 6-44: Phase difference in real life

Communications Breakdown 171

You do a better job with high frequencies because they have shorter
wavelengths relative to the thickness of your head. If your head were so
narrow that your ears were in the same place, then there would be no time
delay. Fat- headed people get better stereo! That’s one of the reasons why
you can get away with a single subwoofer: you can’t really tell where the
sound is coming from because the wavelength is so long compared to the
thickness of your head that the phase difference is undetectable.

When you’re listening to stereo sound, the phase difference between
sounds coming out of the speakers creates the image, the ability to “see” where
the musicians are in space. The image is “muddy” without accurate phase.
Thus, the rationale for higher sampling rates is better reproduction of phase
and stereo imaging. You may never notice this if your listening experience
involves cheap earbuds on a cell phone.

S A MPL ING A ND F ILT E R ING FOR F M S T E R EO

FM stereo is an interesting application of sampling and filtering. It’s also a
great example of how new functionality was wedged into a system that was
never designed for it in a backward- compatible way, meaning that the old
system still worked fine.

Back in Figure 6-20, you saw how bits could be used to modulate a fre-
quency. FM stands for frequency modulation. FM radio works by modulating a
carrier frequency by an analog signal instead of a digital one.

Carrier frequencies for FM radio stations are allocated every 100 kHz.
You saw in Figure 6-41 that sampling generates additional frequencies up to
infinity; the same thing happens with modulation. As a result, a low- pass filter
has to be applied to the modulated signal or there will be interference with
other stations. You saw filter rolloff in Figure 6-39. The steeper the rolloff, the
more the filter perturbs the phase, which has a negative effect on the sound.
This is shown in part of the radio spectrum in Figure 6-45.

98.3 98.4 98.5

Figure 6-45: Radio spectrum

Before stereo, the audio information in a monaural FM signal occupied
approximately 15 kHz above the carrier frequency. A receiver removed the
carrier, resulting in the original audio. This characteristic had to be preserved
in the move to stereo; otherwise, all existing receivers would have stopped
working.

(continued)

172 Chapter 6

Figure 6-46 gives an overview of how FM stereo works. A 38 kHz square
wave is used to take alternate samples of the left and right channels. A 19 kHz
pilot tone is generated that’s synchronized with the sampling square wave.
The pilot tone is mixed at a low level that’s hard to hear over music and com-
bined with the samples to make a composite signal that’s broadcast.

Left

Sampled

+

=
Pilot

Composite

left
right

left
right

left
right

left
right38 kHz

sampling
Right

19 kHz pilot

Figure 6-46: FM signal generation

The clever part is that if we look at the Fourier analysis result in Figure 6-47,
the first set of frequencies on the left is the sum of the left and right channels—
just what we want for mono. Not a problem for old receivers. The next set of
frequencies is the difference between the left and right channels, which would
not be picked up on an old mono receiver. However, a stereo receiver can use
some simple arithmetic to separate out the left and right channels producing
stereo.

Carrier +19 kHz +38 kHz +57 kHz +76 kHz +100 kHz

L + R L – R

Figure 6-47: FM stereo spectrum

I mentioned earlier that audio involves a lot of data. It would be nice
to be able to compress that data so that it takes up less space. There are
two classes of compression: lossless and lossy. Lossless compression preserves
all the original data. As a result, it can compress things only to about half
of their original size. The most popular lossless compression today is FLAC,
short for Free Lossless Audio Codec. A codec is a coder- decoder, which is sort of
like a modem that knows how to translate things from one coding system to
another.

MP3, AAC, Ogg, and their ilk are lossy compression codecs. Some fidelity
is lost. They work on psychoacoustic principles. People who have studied the
workings of the ear and brain have decided that there are certain things that

Communications Breakdown 173

you can’t hear, like something quiet that happens right after a loud drum
beat. These codecs work by removing these sounds, and that gives them a
much better compression ratio than FLAC. But not everybody’s ears are the
same. I think MP3s sound horrible.

Digital Images
Visual images are more complicated than audio because we need to sample
a two- dimensional space. Digital images are represented as rectangular
arrays of picture elements, or pixels. Each pixel in a color image is a triad
of red, green, and blue lights. Common displays available today have 8 bits
each of red, green, and blue. We saw a commonly used representation back
in Figure 1-20.

Computer displays use the additive color system, which can produce
almost any color by combining (or adding, hence the name) different
amounts of the red, green, and blue primaries. This differs from the
subtractive color system used for printing, which makes colors by mixing
different amounts of the cyan, magenta, and yellow primaries.

Sampling an image is akin to placing a window screen over the image
and recording the color in each square. It’s somewhat more complicated
because of point sampling, which means we don’t record the entire square,
just a point in the center of each one. Figure 6-48 shows an image sampled
using three screens of different resolutions.

Figure 6-48: Sampling an image at different resolutions

174 Chapter 6

You can see that the sampled image looks better with finer, higher-
resolution screens, but of course that greatly increases the amount of data.
Even with a high- resolution screen, however, we still get jaggy edges. This is
due to undersampling and aliasing as per Nyquist, although the math for it
is too advanced for this book. As with audio, maybe filtering helps. One way
we can filter is by supersampling, or taking multiple samples per square and
averaging them together, as shown in Figure 6-49.

Figure 6-49: Supersampling

This doesn’t look great all blown up, but if you hold it far away from
your face, you’ll see that it doesn’t look too bad. If you think about it,
supersampling is equivalent to upping the sampling rate, as we saw for
audio in Figure 6-35.

Images are getting bigger and bigger and take up a lot of space. It’s not
clear if enough storage will ever exist for the world’s cat photos and videos.
As with audio, we’d like images to take less space so we can fit more of
them in the same amount of memory and so they’re faster to transmit over
a network. This is addressed, once again, by compression.

The most common image compression right now is JPEG, a standard
by the Joint Photographic Experts Group. It involves a lot of mathematical
heavy lifting that I’m not going to cover here. A rough approximation of
how JPEG works is that it looks for adjacent pixels that are pretty close to
the same color and stores a description of that area instead of the individual
pixels that it contains. You may have a camera that includes an image quality
setting; this setting adjusts the definition of “pretty close.” It’s a color version
of our example from “Stacks” on page 122.

JPEG uses knowledge about human perception in a manner similar
to lossy audio codecs. For example, it takes advantage of the fact that our
brains are more sensitive to changes in brightness than to changes in color.

Video
Yet another step up in multidimensional space, video is a sequence of two-
dimensional images sampled at regular time intervals. The time interval
is a function of the human visual system. Old movies got by with 24 frames
per second (fps); the average person today is pretty happy with 48 fps.

Sampling video isn’t much different than sampling images, except that
different artifacts are visually annoying and therefore need to be minimized.
The problem is that the sampling artifacts along edges, which we saw in
Figure 6-48, don’t stay still when objects are moving.

Communications Breakdown 175

To understand this better, take a look at Figure 6-50, which shows a
diagonal line that is moving from left to right over time. It’s only moving a
fraction of a pixel per frame, which means it doesn’t get sampled the same
every time. It still looks like an approximation of a line, but each one is a
different approximation. This makes edges “swim,” which is visually dis-
turbing. Filtering using supersampling is one way to reduce such unpleasant
visual artifacts.

Time

Frame 0 Frame 1 Frame 2 Frame 3

Figure 6-50: Swimming edges

Video produces a lot more data than images or audio. UHD video has
a resolution of 3,840×2,160 pixels. Multiply that by 3 bytes per pixel and
60 frames per second, and you end up with a whopping 1,492,992,000 bytes
per second! Obviously compression is very important.

The observation that only part of the image normally changes from
frame to frame is the key to video compression. Look at Figure 6-51, in
which Mr. Sigma is on his way to pick up a package.

Gaussian
Distribution
Company

Frame 1 Frame 2 Area of change

Gaussian
Distribution
Company

Gaussian
Distribution
Company

Ring Bell
for Service

Ring Bell
for Service

Ring Bell
for Service

Figure 6-51: Interframe motion

176 Chapter 6

As you can see, very little of the image changes between frames. Much
less data needs to be stored or transmitted if we only need the data from
the area of change. This technique is called motion compression.

One of the problems with representing video as a set of changes from an
original image is that sometimes data can get garbled. You’ve probably seen
some blocky artifacts on digital TV or when playing a damaged video disc.

We need some way to recover the data. This is done by regularly including
keyframes in the data. A keyframe is a complete image, so even if damage
accumulates due to corrupted change data, recovery takes place when the
next keyframe is encountered.

The algorithms to detect differences between frames are complicated
and very compute intensive. Newer compression standards such as MPEG4
include support for layering, which takes advantage of the fact that a lot of
video is now computer generated. Layering works just like the old hand- drawn
cel animation that we discussed in Chapter 1, where objects painted on
transparencies were moved over a stationary background image.

Human Interface Devices
Computers are a lot like teenagers with cell phones. They spend most
of their time messaging each other but occasionally have time to talk
to people. This section covers some of how computers interact with
people.

Terminals
Not that long ago, the keyboard, mouse, and display or touchscreen you’re
so used to were unimaginable luxuries.

There was a time when the way you interacted with a computer was to
write a program or data down on paper using special coding forms. You’d
hand those to someone who would use a keypunch to turn the forms into
a stack of punched cards (refer back Figure 3-25). You’d take those cards,
being careful not to drop them, and give them to a computer operator who
would put them into a card reader, which would read them into the com-
puter and run the program. This approach, known as batch processing, was
used because computers were really slow and expensive, making computer
time really valuable, so while your cards were being punched, somebody
else’s program was being run.

Computers got faster, smaller, and cheaper. By the late 1960s, it was
possible to have a small computer for your company or department. Small
as an RV. Computer time became a bit less scarce. The obvious thing hap-
pened, which is that people started hooking them up to teletypes. Teletypes
were called terminals because they were at the end of the line. A particu-
larly popular model, the Teletype ASR-33, had a keyboard, printer, paper
tape (Figure 3-26) punch, and a paper tape reader. The paper tape was the

Communications Breakdown 177

equivalent of a USB memory stick. An ASR-33 was good for a jaw- dropping
10 characters per second! The term TTY is still with us today as an abbreviation
for teletype.

Time-sharing systems were invented to keep these smaller computers
busy. Yes, they really were like time-share vacation rentals. You can pretend
that it’s your place, and it is your place while you’re there, but other people
use it when it’s not your turn.

A time-sharing system has an operating system program that runs on
the computer. The OS program is like the booking agent for a time-share
rental. Its job is to allocate the various resources of the computer to each
user. When it was your turn to use the machine, the other user’s programs
would get swapped out to disk, and yours would be loaded into memory
and would run for a while. This all happened fast enough that you’d think
that you had the machine to yourself, at least until things got busy. At some
point, things would start to thrash, as the operating system spent more time
swapping things in and out than it did running users’ programs.

Thrashing made time-sharing systems pretty slow when there were a
lot of users. Programmers started working late at night because they could
have the machines to themselves after everybody else went home.

Time-sharing systems are multitasking in that the computer is presenting
the illusion that it’s doing more than one thing at a time. All of a sudden,
lots of terminals were connected to the same machine. And the concept of
a user appeared so that machines could tell what belonged to who.

Time marched on, and better versions of teletype- like things appeared,
and each generation was faster and quieter. But they were still printing things
on paper, or hard copy. And they were pretty much only good for text. The
Teletype model 37 added Greek characters so that scientists could print
math. IBM Selectric terminals had interchangeable typeballs that allowed
the user to change fonts. This included a font with dots in different posi-
tions that enabled graph drawing.

Graphics Terminals
There were a lot of reasons to move away from hard-copy terminals, includ-
ing speed, reliability, and noise. Screens existed for things like radar and
television; it was time to make them work with computers. This happened
slowly due to the evolution of electronics. Memory was just too expensive
and slow.

Graphics terminals were originally built around a variation of the
vacuum tube (see “Vacuum Tubes” on page 50) called a cathode ray tube
(CRT). The inside of the glass is coated with a chemical phosphor, which
glows when it’s hit by electrons. By having more than one grid or deflection
plate, it’s possible to draw pictures on the phosphor. It’s like having a really
talented batter who can hit any target with a ball.

There are actually two ways to make this display work. The deflection
plate version, called electrostatic deflection, uses the same principle that gives

178 Chapter 6

you the dreaded static cling. The other option is the electromagnet version,
called electromagnetic deflection. In either case, bits need to be translated into
voltages, which is yet another application for our D/A building block.

Today the CRT is mostly a relic that has been replaced by the liquid
crystal display (LCD). Liquid crystals are substances that can change their
light transmission properties when electricity is applied. A typical flat- screen
display is much like a CRT in that there are three blobs of liquid crystal at
every raster point with red, green, and blue filters and a light that shines
through from the back. We still talk to LCD devices as if they’re CRTs, but
that’s just a historical artifact. LCDs are now ubiquitous and have replaced
CRTs in most applications; LCDs have made cell phones, laptops, and flat-
screen TVs possible.

Early screen- based terminals were called glass ttys because they could
display only text. These terminals displayed 24 rows of 80 characters each,
for a total of 1,920 characters. Since a character fit into a byte, that was less
than 2 KiB of memory, which was affordable at the time. Over time, more
features got added, such as on- screen editing and cursor motion, which
were eventually standardized as part of ANSI X3.64.

Vector Graphics
A CRT works pretty much like a piece of graph paper. An electron beam
moves to some point based on the x- and y- axis voltages. There’s also a z- axis
that determines the brightness. Originally there was no color, so these were
black- and- white, or grayscale, displays. The number of coordinate locations
per inch is called the resolution.

Vector graphics is all about drawing lines, or vectors. You make a picture by
drawing a set of lines from here to there. The skinny arrows in Figure 6-52
are drawn with the brightness all the way down or off.

1

2 4

5

6

7 8

10
11

12

3

9

Figure 6-52: House of vector graphics

The white arrow with the black outline is drawn twice, once with the
brightness on and then again with the brightness off. Drawing the same
line twice with the brightness on makes it twice as bright, which we don’t
want to do just because we’re changing position.

Communications Breakdown 179

The house in Figure 6-52 is drawn from a display list, which is a list of
drawing instructions. It looks like Figure 6-53.

Move to (2, 0)
Draw to (2, 5)
Draw to (7, 5)
Draw to (7, 0)
Draw to (2, 0)
Move to (2, 5)
Draw to (8, 7)
Draw to (7, 5)
Move to (6, 0)
Draw to (5, 3)
Draw to (4, 3)
Draw to (4, 0)
Restart at step 1

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Figure 6-53: Display list

Note the last instruction. We start over again because the image on the
screen fades pretty quickly. This works only because of the persistence of the
CRT phosphor, which is how long it stays lit once the beam moves away, and
the slow response of the human eye. We have to keep doing this over and
over to keep the image displayed on the screen.

There’s more to this instruction, however. There’s a lot of 60 Hz radia-
tion around us because that’s the frequency of American alternating current
electric power (it’s 50 Hz in some other countries). Despite our best attempts
at shielding, this radiation affects our display and makes it wiggle. Thus,
graphics terminals like the GLANCE G developed at Bell Telephone Lab-
oratories had a “restart at step 1 after the next time the power line crosses 0
from the positive to the negative” instruction. This synchronized the drawing
to the interference so that it always wiggled exactly the same and therefore
wasn’t noticeable.

Drawing the image took time, a nasty side effect of which was that
everything looked fine until the display list got long enough that it couldn’t
be drawn in one- sixtieth of a second. It suddenly got very flickery when it
drew only once every one- thirtieth of a second.

A company called Tektronix had an interesting solution to the flicker
problem, called the storage tube. This was the electronic equivalent of an
Etch- a-Sketch. You could draw very complicated images, but you had to elec-
tronically shake it up to erase it. It was very hard to draw solid images on
a GLANCE G because it took huge numbers of vectors and ended up with
display flicker. Storage tubes could handle solid images since there was no
limit to the number of vectors, but the centers of the solid areas tended to
fade. You could erase a single line on a GLANCE G by removing it from the
display list. That wasn’t possible on a storage tube. It gave off a bright green
flash when the screen was erased, which has been burned into many an
aging programmer’s eyeballs.

180 Chapter 6

Raster Graphics
Raster graphics is a completely different approach than vector graphics. It’s
how television originally worked. The raster is a continually drawn pattern,
as shown in Figure 6-54.

Figure 6-54: A raster

The raster starts at the upper left and goes across the screen. Then a
horizontal retrace takes it down to the start of the next line. Finally, a vertical
retrace takes it back to the beginning once the last line is drawn.

This works very much like the starting-gun analogy I used earlier when
discussing serial communications. Once the raster is off and running, all
you have to do is to change the brightness at exactly the right time to get
the image you want, as you can see in Figure 6-55.

Figure 6-55: House of raster graphics

I also used the analogy of a window screen back in “Digital Images” on
page 173. A raster display is an actual screen, which means we can’t draw
between the dots. This can result in unpleasant visual artifacts, such as
the roof not looking quite right. That’s because the resolution of a typical
raster display is fairly low—on the order of 100 dots per inch. The low resolu-
tion results in undersampling and aliasing similar to what we saw for digital
images. Sufficient compute power now exists to make anti- aliasing common-
place using techniques such as supersampling.

Raster scanning is also used for things like fax machines, laser printers,
and scanners. Pull up the lid of a scanner and watch it go. Wear sunglasses.
Back when printers had more moving parts and were louder, people figured
out how to play raster music on them by carefully choosing what to print.

Communications Breakdown 181

Raster displays don’t use display lists, although display lists are still used
behind raster displays. As we’ll see later, web pages are display lists. The
OpenGL graphics language includes display lists, and support for the lan-
guage is often included in graphics hardware. Monochrome displays use a
piece of memory with 1 bit for each position on the raster. This was a huge
amount of memory back in the day; now, it’s not such a big deal. Of course,
that memory could get big fast. If you wanted a raster display that could
do 256 different levels of gray, you’d need 8 bits of memory for each raster
position.

Color was discovered in the Land of Oz and quickly made it onto the
screen. Monochrome or grayscale displays were easy: all you had to do was to
coat the inside of the screen with a layer of phosphor. Color displays needed
three different color dots at each location on the raster—red, green, and
blue—and three electron beams that could hit these spots with great preci-
sion. This meant you needed three times the display memory for a typical
display.

Keyboard and Mouse
Terminals have a way for you to input data in addition to the display that
outputs data to you. You know them as the keyboard and mouse, the touch-
pad on your laptop, and the touchscreen on your phone and tablet.

Keyboards are pretty easy. They’re just a bunch of switches and some
logic. A common way to build a keyboard is to put the key switches on a grid,
multiplexing them kind of like in Figure 6-10. Power is sequentially applied
to the rows of the grid, and the values of the columns are read out.

The mouse as we know it was invented by American engineer Douglas
Engelbart (1925–2013) at the Stanford Research Institute. I mentioned
in “Quadrature” on page 150 that you can make a mouse using a pair of
quadrature encoders, one each for the x and y directions.

There are a lot of touchpad and touchscreen technologies. The main
difference is that touchscreens have to be transparent so that the display
can be seen. Touch devices are row- and column- scanning devices, like
keyboards but on a much finer scale.

Summary
In this chapter, you learned about the interrupt system that allows processors
to handle I/O efficiently. We talked about how various types of I/O devices
work and how they interact with computers. We also discussed the complex
area of sampling analog data so that it can be processed using digital com-
puters. At this point, you know enough about how computers work, so starting
with the next chapter, we’ll look at the relationship between hardware and
software with the goal of learning how to write software that runs well on the
hardware.

7
O R G A N I Z I N G D A T A

If you’ve been paying attention, you may
have noticed a bit of an obsession when

it comes to dealing with memory. Back in
Chapter 3, you learned that the order in which

memory devices such as DRAM, flash memory, and
disk drives are accessed affects their speed. And in
Chapter 5, you learned that performance also depends
on whether or not the data that you need is present in cache memory. Keep
ing these characteristics of the memory system in mind when organizing
your data leads to better performance. To help you do this, in this chapter
we’ll examine a number of data structures, or standard ways of organizing
data. Many of these exist to support the efficient use of different types of
memory. This often involves a space/time trade off wherein more memory
is used to make certain operations faster. (Note that higher level data struc
tures are provided by programming languages, not the computer hardware
itself.)

184 Chapter 7

The phrase locality of reference sums up much of what this chapter covers
in a fully buzzword compliant manner. Or “keep the data you need close,
the data you’ll need soon even closer.”

Primitive Data Types
Programming languages offer a variety of primitive data types. There are
two aspects to these types: their size (number of bits) and their interpreta
tion (signed, unsigned, floating point, char, pointer, Boolean). Figure 71
shows the data types available to programmers on a typical modern machine
via the C programming language. Different implementations of C on the
same machine, as well as different languages such as Pascal or Java, may
present these data types differently. Some language environments include
facilities that allow the programmer to query the endianness (see Figure 44
on page 96), number of bits per byte, and more.

char

7 0 15 0 31 0

7 0 15

31 0

31 0

31 0

0 31 0

63 0

63 0

63 0

63 0

short

long long

unsigned long long

float

double

int

unsigned int

pointer (assumes 64-bit machine)

long

unsigned char unsigned short unsigned long

Figure 7-1: Typical C language primitive data types

We saw all of these in Chapter 1 except the pointer; the only difference
here is that we’re using the C language names for them.

American engineer Harold Lawson invented the pointer for the PL/I
(Programming Language One) in 1964. A pointer is just an unsigned

Organizing Data 185

integer of some architecture dependent size, but it’s interpreted as a memory
address. It’s like the address of your house—it’s not the house itself, but it can
be used to find your house. We’ve seen how this works before; it’s indirect
addressing from “Addressing Modes” on page 104. A zero valued, or NULL,
pointer is not generally considered a valid memory address.

C popularized pointers. Some languages have implemented more abstract
references in order to try to avoid problems resulting from sloppy pointer use,
a subject I’ll touch on this later in the chapter. Pointers tend to be the size
of the natural word on a machine so that they can be accessed in a single
cycle.

Advances in chip technology spurred the development of a large number
of new machines in the 1980s, which included the transition from 16bit to
32bit computers. A lot of code written in the 1970s and early 1980s was very
cavalier about pointer use; for example, it assumed that pointers and integers
were the same size and used them interchangeably. This code broke in often
difficult to debug ways when ported to these new machines, spawning two
independent remediation approaches. First, people started paying a lot more
attention to portability issues. This solution was quite successful; portability
and pointer issues are much less of a problem today. Second, languages that
eliminated pointers were developed, such as Java. This approach has helped
in some places but is not always worth the price.

Arrays
The data types you saw in the previous section are simple; you can think
of them as houses. Languages also support arrays, which can instead be
likened to apartment buildings. Apartment buildings have an address, and
the individual apartments have unit numbers. Programmers call the unit
number the index (starting at 0, unlike most apartments), and the individ
ual apartments are called array elements. Typical computer building codes
mandate that all apartments in a building be identical. Figure 72 shows a
building that contains ten 16bit apartments in C.

Array 0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

element
0

element
1

element
2

element
3

element
4

element
5

element
6

element
7

element
8

element
9

Figure 7-2: Ten- element array of 16-bit numbers

186 Chapter 7

Each box in Figure 72 is a byte. In this array of 16bit items, therefore,
each element occupies two 8bit bytes. The element subscript indicates the
array’s index.

An alternative way to view an array is the through the lens of relative
addressing (see “Relative Addressing” on page 128). Each element is an
offset from the address of the 0th element, or base address. Thus, element1
is 2 bytes away from element0.

The array in Figure 72 is a one- dimensional array—an ugly one story
building with all the apartments on one hall. Programming languages also
support multidimensional arrays—for example, a building with four floors
of three byte sized apartments. This would be a two dimensional array
with two indices, one for the floor number and another for the apartment
number on that floor. We can even make three dimensional buildings with
indices for wing, floor, and apartment; four dimensional buildings with
four indices; and so on.

It’s important to know how multidimensional arrays are laid out in
memory. Let’s say we’re putting a flyer under every door in a 4×3 apartment
building. We could do that in one of two ways. We could start on floor 0
and put a flier in apartment 0, then go to floor 1 and put a flier into apart
ment 0, and so on. Or we could start on floor 0 and put a flier under every
door on that floor, then do the same on floor 1, and so on. This is a locality
of reference issue. The second approach (doing all the doors on one floor)
has better locality of reference and is much easier on the legs. You can see
this in Figure 73, where the numbers in parentheses are the addresses
relative to the start of the array.

Array

element
0

element
1

element
2

element
3

element
0,0

(0)

element
1,0

(3)

element
2,0

(6)

element
3,0

(9)

element
0,1

(1)

element
1,1

(4)

element
2,1

(7)

element
3,1

(10)

element
0,2

(2)

element
1,2

(5)

element
2,2

(8)

element
3,2

(11)

Figure 7-3: Two- dimensional array layout

The column index moves between adjacent columns, whereas the row
index moves between rows, which are farther apart in the address space.

This approach extends to higher dimensions. If we had a five building
complex with four floors of three apartments per floor, Figure 73 would
be replicated five times, once for each building. In address space, adjacent
buildings are farther apart than adjacent rows, which are farther apart than
adjacent columns.

Going back to Figure 72, think about what would happen if you tried
to access element10. Some programming languages, such as Pascal, check to
make sure that array indices are within the bounds of the array, but many
others (including C) don’t. Without being checked, element10 would land
us at bytes 20 and 21 relative to the start of the array. That could crash a
program if there’s no memory at that address, or it could be a security hole

Organizing Data 187

allowing unintended access to data stored past the end of the array. It’s
your job as a programmer to stay within bounds if the language doesn’t do
it for you.

Bitmaps
You’ve seen how you can construct arrays out of the primitive data types,
but sometimes there isn’t a primitive data type that’s small enough for your
purposes. For example, say Santa needs to track naughty versus nice for a
large number of innocent children. Two values means that we need only
1 bit per child. We could easily use a byte for each value, but that’s less
efficient—which translates into more warming at the North Pole and bad
news for Frosty the Snowman because meltiness is considered a preexisting
condition and not covered. What we really need is an array of bits, or a bitmap.

Bitmaps are easy to create. For example, say we want to keep track of
35 bits. We know that an array of five 8bit bytes would be enough memory,
as shown in Figure 74.

bits
0

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8

23 22 21 20 19 18 17 16

31 30 29 28 27 26 25 24

34 33 32

bits
1

bits
2

bits
3

bits
4

Figure 7-4: Array as bitmap

There are four basic operations that we can do on bitmaps: set a bit,
clear a bit (set it to 0), test a bit to see if it is set, and test a bit to see if it
is clear.

We can use integer division to find the byte containing a particular bit;
all we have to do is divide by 8. We can do that quickly on machines with
barrel shifters (see “Shiftiness” on page 99) by right shifting the desired bit
number by 3. For example, bit number 17 would be in the third byte because
17 ÷ 8 is 2 in integer division, and byte 2 is the third byte counting from 0.

The next step is to make a mask for the bit position. Similar to its
physical counterpart, a mask is a bit pattern with holes that we can “see
through.” We start by ANDing our desired bit number with a mask of 0x07
to get the lower three bits; for 17, that’s 00010001 AND 00000111, which
yields 00000001, or bit position 1. We then left shift a 1 by that amount,
giving us a mask of 00000010, which is the position of bit 17 in byte 2.

Using the array index and bit mask, we can easily perform the following
operations:

Set a bit bitsindex = bitsindex OR mask

Clear a bit bitsindex = bitsindex AND (NOT mask)

Test for set bit (bitsindex AND mask) ≠ 0

Test for clear bit (bitsindex AND mask) = 0

188 Chapter 7

There’s another useful application of bitmaps: to indicate whether
resources are available or busy. If a set bit represents a busy resource, we
can scan the array looking for a byte that’s not all 1s. This lets us test eight
at a time. Of course, we would need to find the clear bit once we find a
byte that contains one, but that’s much more efficient than testing each bit
individually. Note that in cases like this, it’s more efficient to use an array
of the largest primitive data type, such as C’s unsigned long long, instead of
an array of bytes.

Strings
You learned about encoding characters in “Representing Text” on page 22.
A sequence of characters, such as those in this sentence, is called a string.

As with arrays, we often need to know a string’s length in order to be able
to operate on it. Usually, it’s not enough to just make an array for each string,
because many programs operate on variable length string data; large arrays
are often used when the length of a string isn’t known in advance. Since the
array size is unrelated to the string length, we need some other method to
track the string length. The most convenient way to do that is to somehow
bundle the string length in with the string data.

One approach is to store the length in the string itself—for example,
in the first byte. This works well but limits the length of the string to a
maximum of 255 characters, which is insufficient for many applications.
More bytes can be used to support longer strings, but at some point, the
amount of overhead (bookkeeping bytes) exceeds the length of many
strings. Also, because strings are bytes, they can have any alignment, but
if multibyte counts are needed, strings would have to be aligned on those
boundaries.

C uses a different approach, borrowed from the PDP11 assembly lan
guage’s .ASCIZ pseudo instruction, which doesn’t have a special data type for
strings like some languages do. It just uses one dimensional arrays of bytes;
the fact that strings are arrays of characters is why the byte sized data type in
C is a char. But there’s a twist: C doesn’t store a string length. Instead, it adds
an extra byte at the end of the array of characters for a NUL terminator.
C uses the ASCII NUL character (refer back to Table 111), which has a
value of 0, as a string terminator. In other words, the NUL terminator is used
to mark the end of a string. This works both for ASCII and UTF8, and it
looks like Figure 75.

0 1 2 3 4 5 6

C h e e s e NUL

Figure 7-5: C string storage and termination

As you can see, C uses 7 bytes of memory for the string, even though it’s
only six characters long, because an extra byte is needed for the terminator.

Organizing Data 189

NUL turns out to be a good choice for the terminator because most
machines include an instruction that tests whether or not a value is 0. Any
other choice would involve extra instructions to load the value against
which we’d be testing.

The use of a string terminator instead of an explicit length has its ben
efits and drawbacks. On one hand, storage is compact, which is important,
and there’s essentially no overhead to do something like “print each char
acter in the string until the end is reached.” But when you need the string’s
length, you have to scan the string for the end, counting the characters.
Also, with this approach you can’t have a NUL character in a string.

Compound Data Types
Although simple rooms are good for some things, the market often demands
fancier accommodations, such as suites. Most modern languages include
facilities that allow you to roll your own data types—the “suites,” often
called structures. The various rooms in each suite are its members.

Let’s say we’re writing a calendar program that includes a list (array) of
events with their starting and ending dates and times. If we were doing this
in C, the day, month, hours, minutes, and seconds would each be held in an
unsigned char, but the year would need to be in an unsigned short. Figure 76
creates a structure for the date and time.

hours minutes seconds year month day

Figure 7-6: Structure for date and time

Note that this isn’t strictly necessary; we could just have arrays of hours,
minutes, and so on. But it’s certainly more convenient to have an array of
date time structures, and it makes programs easier to read and understand.
British computer scientist Peter Landin coined the term syntactic sugar in 1964
for constructs such as this that make programs “sweeter.” Of course, one
person’s sweetener is often another person’s essential functionality, leading
to intense philosophical debates. Many would argue that syntactic sugar
is limited to things like replacing a = a + 1 with a += 1 or a++, while fewer
would claim that arrays of structures are syntactic sugar for sets of arrays.
Time further complicates this fuzzy definition: a += 1 and a++ were not syn
tactic sugar when they were introduced, as compilers weren’t as good and
these constructs generated better machine language. On the other hand,
structures were more sugary when they were introduced, because prior
code used arrays; they’re more essential now that programs are designed
with structures in mind.

We can use compound data types, such as our date time structure, as if
they’re primitive data types. Figure 77 combines a pair of date time struc
tures with a small array to hold an event name string to make a complete
calendar event structure.

190 Chapter 7

hoursstart

end

event_name

minutes seconds year

Array of characters (string)

month day

hours minutes seconds year month day

Figure 7-7: Structure for calendar entry

Structures often take up more memory space than you might expect. I
discussed aligned and nonaligned memory in “Memory” on page 94. Say
we built our date time structure in an area zoned for 32bit computers, as
in Figure 42 on page 95. The language keeps the structure members in
the order specified by the programmer because it might matter. But the lan
guage also has to respect the alignment (Figure 43 on page 95), which
means that it can’t put the year in the fourth and fifth bytes, as shown in
Figure 77, because that crosses a boundary. The language tools solve this
problem by automatically adding padding as needed. The actual memory
layout of our structure would look like Figure 78.

hours minutes seconds yearpadding month day

Figure 7-8: Structure for date and time with padding

You could rearrange the structure members to make sure that you ended
up with a 7byte structure with no padding. Of course, when you combine
a pair of these into the calendar structure, the language tools will likely pad
them out to 8 bytes anyway.

It’s worth mentioning that this is a contrived example and you shouldn’t
necessary handle dates and times this way. The standard in many systems,
which came from UNIX, is to use a 32bit number to represent the number
of seconds since the “UNIX epoch” began on January 1, 1970. This scheme
will run out of bits in 2038, but many systems have expanded this to 64 bits
in preparation.

Figure 121 showed a way to use four 8bit values to represent color with
transparency. That’s a great use for a structure, but it’s not always the best
way to view that data. For example, if we needed to copy a color, it would be
much more efficient to copy all 32 bits at once rather than doing four 8bit
copies. Another compound data type to the rescue.

Not only can we have suites, as we saw in the previous section, but we
can also have offices with movable partitions, which are called unions in C.
A union allows multiple views of the same space or content. The difference
between a structure and a union is that everything in a structure takes mem
ory, whereas everything in a union shares memory. Figure 79 combines the
RGBα structure with an unsigned long to form a union.

pixel

color

components.red components.green components.blue components.alpha

Figure 7-9: Pixel union

Organizing Data 191

Using the union and C language syntax, we could set the pixel.color to
0x12345678 and then pixel.components.red would be 0x12, pixel.components.green
would be 0x34, and so on.

Singly Linked Lists
Arrays are the most efficient way to keep lists of things. They only hold actual
data, without requiring any additional bookkeeping information. But they
don’t work as well for arbitrary amounts of data, because if we didn’t make
the array large enough, then we have to create a new, larger array and copy
all the data into it. And they waste space if we make them larger than neces
sary. Similarly, copying is required if you need to insert an element into the
middle of a list or delete an element.

Linked lists can perform better than arrays when you don’t know in
advance how many things you’ll be tracking. Singly linked lists, imple
mented using structures, look like Figure 710.

head next

data

next

data

next

data

NULL

Figure 7-10: Singly linked list

Note that next is a pointer that holds the address of the next element in
the list. The first thing in the list is known as the head; the last thing is the
tail. We can recognize the tail because next is a value that can’t be another
list element, usually a NULL pointer.

A big difference between the list shown in Figure 710 and an array is
that all array elements are contiguous in memory. List elements can be any
where in memory and look more like Figure 711.

Memory

next

data

next

data

next

data

NULL

head

Figure 7-11: Singly linked list in memory

Adding an element to a list is easy; just pop it on the head, as shown in
Figure 712.

192 Chapter 7

Insert

next

data

next

data

next

data

head

Figure 7-12: Singly linked list insertion

Deleting an element is a bit more complicated because we need to make
the next of the previous element point to the following element, as shown in
Figure 713.

Delete

next

data

next

data

next

data

Figure 7-13: Singly linked list deletion

One way to do that is by using a pair of pointers, as shown in Figure 714.

Start

Yes

Yes

Yes No

No

No

Is
current
NULL?

Is
current the node

to delete?

Is
previous
NULL?

previous NULL

current head

previous.next

Done

current.next

current current.next

previous current

head current.next

Figure 7-14: Singly linked list deletion using a pair of pointers

The current pointer walks the list looking for the node to delete. The
previous pointer allows us to adjust the next of the node before the one to
delete. We use a dot (.) to indicate a member of a structure, so current.next
means the next member of the current node.

Organizing Data 193

N O T E Figure 7-14 isn’t a great example; although to be fair, I looked online while writing
this section and found algorithms that were much worse. The problem with the code
shown here is that it’s complicated because a special test is needed for the list head.

The algorithm in Figure 715 shows how the power of double indirect
addressing eliminates the special case, resulting in simpler code.

Does
memory addressed by current

contain NULL?

Does current
contain address of node

to delete?

Start

Done

Yes

Yes

No

Nocurrent Address of current.next

Memory addressed by current node to delete.next

current Address of head

Figure 7-15: Singly linked list deletion using indirect addressing

Let’s examine how this algorithm works in more detail. Have a look
at Figure 716. The subscripts show how current changes as the algorithm
proceeds.

head

current
0

current
1

current
2

current
3

current
4

BA C D E

head A.next B.next C.next

Delete me

Figure 7-16: Singly linked list deletion in action

The steps shown in Figure 716 are complicated, so let’s walk through
them.

1. We start by setting current0 to the address of head, which results in current1,
which in turn points to head. This means that current points to head, which
points to list element A.

2. We’re not looking for element A, so we move along.

194 Chapter 7

3. As shown by the dashed arrow, we set current to the address of the next
pointer in the element pointed to by whatever current points to. Since
current1 points to head, which points to element A, current2 ends up point
ing to A.next.

4. It’s still not the element that we want to delete, so we do it all again,
causing current3 to reference B.next.

5. It’s still not the element that we want to delete, so we do it all again,
causing current4 to reference C.next.

6. C.next points to element D, which is the one we want to delete. Following
the light dashed arrow, we follow current to C.next to D, and replace C.next
with the contents of D.next. Since D.next points to element E, C.next now
points to E as shown by the heavy dashed arrow, removing D from the list.

We could modify the preceding algorithm to insert links into the middle
of the list. That might be useful if we, for example, wanted the list to be
ordered by date, name, or some other criteria.

Earlier I mentioned that this second algorithm produced better code.
Let’s compare the two as written in the C programming language. You don’t
have to understand this code to see the difference between Listing 71 and
Listing 72.

struct node {
 struct node *next;
 // data
};

struct node *head;
struct node *node_to_delete;
struct node *current;
struct node *previous;

previous = (struct node *)0;
current = head;

while (current != (struct node *)0) {
 if (current == node_to_delete) {
 if (previous == (struct node *)0)
 head = current->next;
 else
 previous->next = current->next;
 break;
 }
 else {
 previous = current;
 current = current->next;
 }
}

Listing 7-1: C language code for singly linked list deletion using a pair of pointers

Organizing Data 195

struct node {
 struct node *next;
 // data
};

struct node *head;
struct node *node_to_delete;
struct node **current;

for (current = &head; *current != (struct node *)0; current = &((*current)->next))
 if (*current == node_to_delete) {
 *current = node_to_delete->next;
 break;
 }
}

Listing 7-2: C language code for singly linked list deletion using double indirect addressing

As you can see, the indirect addressing version of this code in Listing 72
is much simpler than the code using a pair of pointers in Listing 71.

Dynamic Memory Allocation
Our discussion of linked list insertion conveniently omitted something
important. I showed how to insert a new node but didn’t say where the
memory for that node came from.

We saw back in Figure 516 that program data space starts with a section
for statically allocated data followed by the heap that the runtime library
sets up for the program. This is all of the data memory available to a program
(except for the stack and interrupt vectors) on machines that don’t have
memory management units (MMUs). On systems with MMUs, the runtime
library requests the amount of memory it thinks it needs, because tying
up all of the main memory doesn’t make sense. The break is the end of the
memory available to a program, and there are some system calls that grow
or shrink the amount of available memory.

Memory for variables such as arrays is static; that is, it’s assigned an
address that doesn’t change. Things like list nodes are dynamic; they come
and go as needed. We get memory for them from the heap.

A program needs some way to manage the heap. It needs to know what
memory is in use and what’s available. There are library functions for this
so that you don’t have to write your own. In C, they’re the malloc and free
functions. Let’s look at how they can be implemented.

One implementation of malloc works by using a singly linked list data
structure. The heap is divided up into blocks, each of which has a size and
a pointer to the next block, as shown in Figure 717.

196 Chapter 7

next

size

data

next

size

data

next

size

data

Figure 7-17: malloc structure for heap management

Initially there’s just one block for the entire heap. When a program
asks for memory, malloc looks for a block that has enough space, returns the
caller a pointer to the requested space, and adjusts the size of the block to
reflect the memory that it gave away. When a program frees memory using
the free function, it just puts the block back in the list.

At various times, malloc scans the list for adjacent free blocks and
coalesces them into a single larger block. One way of doing this is when allo
cating memory (calling malloc) because allocation requires going through
the list looking for a large enough block. Over time, the memory space can
become fragmented, which means there’s no available block of memory large
enough to satisfy a request, even if not all memory has been used up. On
systems with MMUs, the break is adjusted to get more memory if needed.

You can see that there’s a certain amount of overhead to this approach:
next and size add 16 bytes to each block on a 64bit machine.

Freeing unallocated memory is a common error that inexperienced pro
grammers make. Another is continuing to use memory that has already been
freed. As you can see in Figure 717, if you write data outside the bounds of
allocated memory, you can corrupt the size and next fields. That’s particu
larly insidious because the problems this causes may not show up until a later
operation needs to use the information in those fields.

One side effect of technological advances is that small machines often
come with way more RAM than your program needs. In these cases, it’s
better to just statically allocate everything because that reduces overhead
and eliminates memory allocation bugs.

More Efficient Memory Allocation
Linked lists that include text strings are common. Suppose we have a linked
list where the node includes a pointer to a string, as shown in Figure 718.

node

string

c a t NUL

next

string

Figure 7-18: List node with string

Organizing Data 197

We have to allocate memory not only for each node but also for the
string attached to the node. The malloc overhead can be significant, espe
cially on a 64bit machine where we would have 16 bytes of overhead for the
16byte node, and then another 16 bytes of overhead for a string such as the
4byte cat in Figure 718.

We can reduce the overhead by allocating the node and string at the
same time. Instead of allocating the node and then the string, we can allo
cate space for the sum of the node and string sizes plus whatever padding
might be necessary for alignment. This means that nodes are of variable
size, which is okay. This trick cuts the overhead in half. The result looks like
Figure 719, with a string of cat.

Less efficient

pointer

size

pointer

size

c a t NUL

c a t NUL

next

pointer

size

next

string

More efficient

string

Figure 7-19: More efficient memory allocation

This approach is also more efficient when you are deleting nodes. In
the less efficient case, two calls to free would be required, one for the string
and another for the node. In the more efficient case, both get freed with a
single call.

Garbage Collection
Two problems can arise from explicit dynamic memory management that
are really problems of sloppy pointer use. Remember, a pointer is just a
number that represents a memory address. But not all numbers are valid
memory addresses. Using a pointer to try to access nonexistent memory
or memory that doesn’t meet the processor alignment rules can cause an
exception and crash a program.

You might be learning a programming language such as Java or JavaScript
that doesn’t have pointers but supports dynamic memory allocation without
equivalents to malloc and free. These languages instead implement garbage
collection, a technique invented in 1959 by American computer and cognitive
scientist John McCarthy (1927–2011) for the LISP programming language.
Garbage collection has experienced a renaissance, partly as a proscriptive
remedy for bad pointer use.

198 Chapter 7

Languages like Java use references instead of pointers. References are an
abstraction for pointers that provide much of the same functionality with
out actually exposing memory addresses.

Garbage collected languages often have a new operator that creates
items and allocates memory for them (this operator also appears in non
garbage collected languages such as C++). There is no corresponding oper
ator for item deletion. Instead, the language runtime environment tracks
the use of variables and automatically deletes those it deems no longer in
use. There are many ways in which this is done, one of which is to keep a
count of references to variables so the variables can be deleted when there
are no references left.

Garbage collection is a trade off; it’s not without its issues. One issue
is similar to the LSI11 refresh problem (see “Random Access Memory” on
page 82) in that the programmer doesn’t have much control over the gar
bage collection system, which may decide to run even though the program
needs to do something more important. Also, programs tend to take a lot
of memory because it’s easy to leave unnecessary references around, which
prevents memory from being reclaimed. This makes programs run slowly as
opposed to just crashing due to bad pointers. It turns out that despite good
intentions of solving the pointer problem, tracking down unnecessary refer
ences is actually harder to debug.

Doubly Linked Lists
Our singly linked list delete function can be pretty slow because we have to
find the element before the one we want to delete so that we can adjust its
pointer. This could involve traversing a very long list. Fortunately, there’s a
different type of list that solves this problem at the expense of some extra
memory.

A doubly linked list includes a link not only to the next element but also
to the previous element, as you can see in Figure 720. This doubles the per
node overhead, but it eliminates the need for list walking in the delete case,
so it’s a space/time trade off.

previous

next

data

previous

next

data

previous

next

data

Figure 7-20: Doubly linked list

The advantage of a doubly linked list is that you can insert and delete
anywhere without having to spend time traversing the list. Figure 721 shows
how you’d add a new node into a list after element A.

Organizing Data 199

New

Element A

previous

next

data

previous

next

data

previous

next

data

Figure 7-21: Doubly linked list insertion

Figure 722 shows that deleting an element is just as simple.

Old
previous

next

data

previous

next

data

previous

next

data

Figure 7-22: Doubly linked list deletion

As you can see, these operations on doubly linked list elements don’t
require traversal.

Hierarchical Data Structures
So far, we’ve looked only at linear data structures. They’re great for many
applications, but at some point their linearity can be a problem. That’s
because storing data is only half of the work; we also need to be able to
retrieve it efficiently. Let’s say we have a list of things stored in a linked list.
We might need to walk the entire list to find a particular one; for a list of
length n, it could take n lookups. This is fine for small numbers of things
but impractical for large values of n.

Earlier we saw how pointers could be used to connect nodes into linked
lists. We’re not restricted to any number of pointers, so the ways in which we
can organize data are limited only by our imagination and memory space.
For example, we could come up with a hierarchical arrangement of nodes,
as in the example back in Figure 54.

The simplest hierarchical data structure is the binary tree—“binary”
not because of binary numbers but because a node can connect to two
other nodes. Let’s make a node that contains a number arranged as shown
in Figure 723.

200 Chapter 7

root

number

left right

number

left right

number

left right

Figure 7-23: Binary tree nodes containing numbers

The root is the tree equivalent of a linked list’s head.
We’re going to hang out in a bingo parlor and record the numbers in

a binary tree as they’re called out. We’ll then be able to look up numbers
to see if they’ve been called. Figure 724 shows an algorithm that inserts
a number into a tree. It works in a manner similar to our singly linked list
deletion in that it relies on indirect addressing.

Start

Does
current

point to something
whose value is

NULL?

Compare
number

to number in
current node

make a new node

It‘s a duplicate.
Somebody‘s cheating!

Done

Yes

No

=

store number in new node

current address of root

of current.left
current address current address< >

of current.right

Done

address of new node
memory addressed by current

Figure 7-24: Binary tree insertion algorithm

Organizing Data 201

Let’s look at this in action by inserting the numbers 8, 6, 9, 4, and 5.
Nothing is attached to the root when we insert the 8, so we attach it there.
When we insert the 6, the root spot is taken, so we compare that node; then
because 6 is less than 8, we hit the left side. It’s vacant, so we plop a new node
there. The 9 goes on the right hand side of the 8, the 4 on the left hand side
of the 6, and so on, as shown in Figure 725.

root

8

6 9

4 5

Figure 7-25: Binary tree

You can see that even though there are five things in this data structure,
worst case we can find one by checking three nodes. This beats a linked list,
where we may have to check all five. It’s easy to look something up in a binary
tree, as shown in Figure 726. Note that we don’t need a pointer to a pointer
to a node here because we don’t have to modify the tree.

Start

Is
current
NULL?

Compare
number to number

in current
mode

< >

=

Found it!

current root

Yes
Done, number is not in tree

current current.left current current.right

Done

Figure 7-26: Binary tree look- up algorithm

202 Chapter 7

You may have noticed that the arrangement of the tree depends on
insertion order. Figure 727 shows what happens if we insert the numbers
in order: 4, 5, 6, 8, and 9.

root

4

5

6

8

9

Figure 7-27: Poorly balanced binary tree

This degenerate case looks a lot like a singly linked list. Not only do we
lose the benefits of a binary tree, but now we have the additional overhead
of the unused left pointers as well. We’d really prefer that our tree ended
up looking like the one on the right in Figure 728.

Figure 7-28: Unbalanced versus balanced
binary trees

Searching for something in a binary tree is a function of the depth
in the tree; if it’s n levels down, then it takes n tests to find it. It takes only
log2n in a balanced binary tree as opposed to n in a linked list. Putting that
in perspective, in the worst case you’d have to visit 1,024 nodes in a linked
list containing 1,024 nodes, but you’d need to visit only 10 nodes in a bal
anced binary tree.

There are numerous tree balancing algorithms, which I’m not going to
cover here in detail. It takes time to rebalance a tree, so there’s a trade off
between algorithm speed, insert/lookup time, and rebalancing time. Tree
balancing algorithms have more computational overhead, and some have

Organizing Data 203

additional storage overhead. That overhead is quickly overcome, however, as
the size of the tree increases, because log2n becomes much smaller than n.

Storage for the Masses
We talked about disk drives back in “Block Devices” on page 85. Let’s look
at them in more detail so we can understand their data organization pecu
liarities. Warning: we’re going to go pointer crazy here!

I mentioned that the basic unit on a disk is a block and consecutive
blocks are called clusters. It would be nice if we could just store data in
clusters, which are contiguous sectors on a track. Although that’s done in
certain circumstances where very high performance is required, it’s not a
good general purpose solution, and there might be more data than would
fit on a track anyway. Instead, data is stored in whatever sectors are available;
the operating system’s device driver provides the illusion of contiguous
storage. Now we’re sort of in familiar territory, with a twist: instead of finding
a block of storage to hold an object, we now have to find enough fixed size
blocks to hold an object and divide the object up among them.

Linked lists are not a great solution for keeping track of which disk
blocks are free and which are in use, because traversing a list would be too
slow. An 8 TiB disk has almost 2 billion blocks, and with worst case behavior,
250 blocks can be accessed per second. That adds up to more than 15 years,
which makes it impractical. That sounds really bad, but keep in mind that’s
1 MiB of data per second.

When we’re managing data in memory, it suffices to reference it using
a pointer. But those are transient, and because disks are used for long term
data storage, we need something more persistent. You’ve already seen the
answer: filenames. We need some way to both store those filenames on the
disk and associate them with the blocks used to store the file data.

One way to manage all of this comes from—yup, you guessed it—UNIX.
A number of blocks are set aside as inodes, a contraction of the disk block
index and node ; thus, inodes are index nodes. An inode contains various
pieces of information about a file, such as its owner, size, and permissions.
It also contains the indices of the blocks containing the file data, as you
can see in Figure 729.

Inode
Direct blocks Indirect blocks

Double indirect blocks
Triple indirect blocks

Info

. . .

. . .
. . .

. . .

. . .

. . .

Figure 7-29: Filesystem data structure

204 Chapter 7

This looks really complicated, but it isn’t. An inode typically has 12 direct
block pointers (they’re really not pointers, just block indices), which support
files up to 4,096 × 12 = 49,152 bytes in length. That’s good enough for most
files. If a file is larger, it uses indirect blocks. Assuming 32bit indices (though
these will need to be 64bit soon), 1,024 indirect blocks which at 4 bytes each
fit in one block, add another 4 MiB to the maximum file size. If that’s not
enough, 4 GiB are available via the double indirect blocks, and finally another
4 PiB via the triple indirect blocks.

One piece of information an inode indicates is whether the blocks con
tain directory information instead of other data. A directory maps filenames
to the inodes that reference the file data. One of the nice things about the
way UNIX does things is that a directory is really just another type of file.
That means a directory can reference other directories, which is what gives
us our familiar tree structured hierarchical filesystems.

At this point, you may be thinking that all this looks a lot like an arbi
trary tree, which was true for a while. One of the features of this arrange
ment is that multiple inodes can reference the same blocks. Each reference
is called a link. Links allow the same file to appear in multiple directories.
It turns out that it’s very convenient to also be able to link to directories, so
symbolic links were invented to make that possible. But symbolic links allow
loops in the filesystem graph, so we need special code to detect that to pre
vent infinite looping. In any case, we have this complex structure that tracks
the blocks used, but we’re still missing an efficient way to track the free space.

One way to accomplish this is by using a bitmap (see “Bitmaps” on
page 187) with 1 bit for each disk block. A bitmap can be pretty large: an
8 TB disk drive would need almost 2 billion bits, which would consume about
256 MiB. It’s still a reasonable way to go—it’s way less than 0.01 percent of the
total disk space, and it doesn’t all have to be in memory at the same time.

Working with bitmaps is pretty simple and efficient, especially if they’re
stored in 64bit words. Assuming that a 1 indicates a block in use and a 0
indicates a free block, we can easily look for words that are not all 1s to find
free blocks.

But there is a problem with this approach: it’s possible for the filesystem
graph and the free space bitmap to get out of sync. For example, the power
could fail while data is being written to the disk. In the dark ages when
computers had front panels with switches and blinking lights, you’d have to
repair a damaged filesystem by inputting inode numbers through the front
panel switches. This ordeal was remedied by programs such as fsck, which
traverse the filesystem graph and compare it to the free block data. That’s
a better approach, but it’s increasingly time consuming as disks get larger.
New journaling filesystem designs make damage control more efficient.

Databases
Binary trees are a great way to store data in memory, but they don’t work as
well when it comes to storing huge amounts of data that doesn’t fit in mem
ory. That’s partly because tree nodes tend to be small and therefore don’t
map well to disk sectors.

Organizing Data 205

A database is just a collection of data organized in some way. A database
management system (DBMS) is a program that allows information to be stored
in and retrieved from a database. A DBMS usually includes a number of
interfaces layered on top of the underlying storage mechanism.

Databases are a common application of the B- tree data structure invented
by German computer scientist Rudolf Bayer and American computer scientist
Ed McCreight at Boeing in 1971. The B tree is a balanced tree, but not a
binary tree. It’s a bit less space efficient than a balanced binary tree but per
forms better, especially when data is stored on disk. This is yet another case
where an understanding of memory architecture leads to more efficient code.

Say we have a balanced binary tree of names sorted alphabetically. It
would look something like Figure 730.

Ken

Dennis

Brian Doug

Rob

Mike Steve

Figure 7-30: Balanced binary tree

A B tree node has many more legs (children) than a binary tree node.
The number of legs is chosen such that a node fits exactly into a disk block,
as shown in Figure 731.

A–Z
. . .

.
A–M N–Z

Rob SteveMikeKenDougDennisBrian

Figure 7-31: B- tree

As you can see, the interior nodes are balanced, which yields a predict
able search time. There are unused child links in Figure 731 that consume
space. You can easily rebalance the tree when child links run out by chang
ing the range covered by the node. For example, if the A M node ran out of
children, it could be subdivided into A G and H M nodes. This isn’t a great
example, because power of2 subdivision is most often used but we don’t
have an even number of things to subdivide here.

More keys per node means less fetching of nodes. The larger nodes
aren’t a problem because they’re the size of a disk block, which is fetched
as a unit. There is some wasted space because of unused child links, but it’s
a reasonable trade off.

206 Chapter 7

Indices
Accessing sorted data is efficient, but we often need to access data sorted in
more than one way. We might have both first and last names, or names and
favorite bands.

Figure 731 shows nodes organized by name. These nodes are often
referred to as the primary index. But we can have more than one index, as
shown in Figure 732, which allows us to efficiently search for things in dif
ferent ways.

Brian Kernighan

A–M

N–Z

A–M

N–Z

. . .

. . .

. . .

. . .

. . .

A–ZA–Z . . .

Last name indexFirst name index

Dennis Ritchie

Doug McIlroy

Ken Thompson

Mike Lesk

Rob Pike

Steve Bourne

Figure 7-32: Multiple indices

The trade off with indices is that they need maintenance. Every index
must be updated when the data changes. That’s a worthwhile cost when
searching is a more common activity than modification.

Moving Data Around
I mentioned earlier that using arrays instead of linked lists requires copying
data if the array needs to grow in size. You need copying in order to move
page tables in and out of MMUs, free disk bitmaps on and off disk, and so
on. Programs spend a lot of time moving data from one place to another, so
it’s important to do it efficiently.

Let’s start with a half measure: setting a block of length memory bytes to
all 0s, as shown in Figure 733.

Organizing Data 207

Start

current address of first byte to zero

length > 0?
No

Done

Yes

memory pointed to by current 0

current current + 1

length length – 1

Figure 7-33: Zeroing a block of memory

That algorithm works fine, but it’s not very efficient. Assuming that each
box in Figure 733 takes the same amount of time to execute, we spend more
time bookkeeping than zeroing memory locations. The loop unrolling tech
nique can make this more efficient, as shown in Figure 734. For example,
assuming that length is an even number, we can unroll the loop so that now
more of the time is spent zeroing and less is spent on other things.

current current + 1

length length – 2

memory pointed to by current

Start

current address of first byte to zero

length > 0?
No

Done

Yes

memory pointed to by current 0

0

current current + 1

Figure 7-34: Zeroing a block of memory with
loop unrolling

It would be nice to have a more general implementation, and fortu
nately there is one. When he worked at Lucasfilm, Canadian programmer

208 Chapter 7

Tom Duff invented Duff’s Device to speed up the copying of data; Figure 735
shows a variant for zeroing memory. This approach works only if the length
is greater than zero.

Start

Done

0?

7?

6?

5?

4?

3?

2?

length AND 0x7

eights > 0?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No (1)

current address of first byte to zero

eights length÷8

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

memory pointed to by current 0

current current + 1

eights eights – 1

Figure 7-35: Zeroing a block of memory using a modified Duff’s Device

Organizing Data 209

Duff’s Device unrolls the loop eight times and jumps into the middle to
handle any leftover bytes. Though you might be tempted to unroll the loop
further, this approach must be balanced with the code size because having
it fit into the instruction cache is worth a lot of speed.

You can see on the loop side of the figure that the ratio of memory
zeroing time to bookkeeping time is much improved. Though the initial
setup and branching to the proper place in the loop looks complicated, it
really isn’t. It doesn’t take a pile of conditional branches, just some address
manipulation as follows:

1. Mask off all but the lower 3 bits of the length by ANDing with 0x7.

2. Subtract the result from 8.

3. Mask off all but the lower 3 bits by ANDing with 0x7.

4. Multiply by the number of bytes between zeroing instructions.

5. Add the address of the first zeroing instruction.

6. Branch to that address.

Another way to increase the efficiency is to recognize that, for example,
on a 64bit machine, 8 bytes can be zeroed at a time. Of course, a bit of extra
code is needed to handle leftover bytes at the beginning and the end. We
need to use the algorithm from Figure 736 without the loop on the eights
for the beginning and end. In the middle, we zero as many 8byte chunks as
possible.

This all becomes more complicated when we’re copying a block of data
instead of just setting it to a value, because chances are, the source and des
tination won’t have the same byte alignment. It’s often worth testing for the
case where both the source and destination are word aligned because it’s a
pretty common case.

Copying has yet another complication, which is that it’s common to
use copying to move data around in a region of memory. For example, we
may have a buffer full of space separated words in which we want to read
the first word out of the buffer and then cram everything else down so that
there’s room for more at the end. You have to take care when copying data
in overlapping regions; sometimes you have to copy backward in order to
avoid overwriting the data.

An interesting historical case was an early raster graphics terminal
(see “Raster Graphics” on page 180) called the blit, designed by Canadian
programmer Rob Pike at Bell Telephone Laboratories in the early 1980s,
an era before it became practical to make custom integrated circuits to do
this sort of thing. Source and destination data could overlap, such as in
the case of dragging a window, and the data could be of any bit alignment.
Performance was very important because processors weren’t very fast com
pared to today; the blit used a Motorola 68000. There was no MMU, so Pike
wrote code that looked at the source and destination and generated optimal
code on the fly to do the fastest copy. I did a similar implementation on a sys
tem that used the Motorola 68020. This achieved even better performance
because the 68020 had an instruction cache into which the generated code

210 Chapter 7

fit, so it didn’t have to keep accessing instruction memory. Note that this
was a precursor to the JIT (just in time) techniques used in many virtual
machines, including Java.

Vectored I/O
Copying data efficiently is important for system performance, but avoid
ing copying altogether helps even more. A lot of data is moved through the
operating system to and from user space programs, and this data is often
not in contiguous memory.

For example, say we’re generating some audio data in the mp3 format
that we want to write to an audio device. Like many file formats, mp3 files
consist of a number of frames, each of which includes a header followed by
some data. A typical audio file contains multiple frames that, in many cases,
have identical headers, as shown in Figure 736.

Header

CRC

Side information

Main data

Ancillary data

Figure 7-36: mp3 frame layout

We could build each frame by copying all the data into a buffer, but
then when we write that data to an audio device, we’ll have to copy it yet
again. Alternatively, we could write each portion of each frame separately,
but that would increase the context switching overhead and might cause
problems for an audio device if only a partial frame gets written.

It would be more efficient if we could just hand the system a set of
pointers to each piece of the frame and let the system gather the pieces
together as they’re written, as shown in Figure 737. This is sufficiently
worthwhile to justify system call (readv, writev) support.

Header

CRC

Side information

Main data

Vector
size

size

size

size

size

Ancillary data

Figure 7-37: Data gather

The idea is to hand a vector of sizes and data pointers to the operating
system, which then assembles them in order. There are versions for both

Organizing Data 211

reading and writing: writing is known as gathering because data is collected
from many places, while reading is known as scattering because data is dis
persed to many places. The whole concept is called scatter/gather.

Scatter/gather became mainstream with the Berkeley networking code
that became a foundation of the internet. I mentioned back in “TCP/IP” on
page 158 that IP data is sent in packets and TCP is responsible for making
sure that the packets arrive and are in the correct order. Packets arriving
from a communications endpoint (well, it might be a communications end
point to you, but it’s a socket to me) are gathered into a contiguous stream
for presentation to user programs.

Object- Oriented Pitfalls
Since you’re learning to code, you may be learning an object- oriented lan
guage such as Java, C++, Python, or JavaScript. Object oriented program
ming is a great methodology, but it can lead to performance issues if not
used judiciously.

Object oriented programming first gained serious traction with C++.
C++ is an interesting case because it was initially built on top of C, which
gives us an opportunity to see how it works.

Objects have methods, which are equivalent to functions, and properties,
which are equivalent to data. Everything needed for an object can be col
lected into a single data structure. C’s support for type casting and pointers,
especially pointers to functions, wins big here. A C structure for an object
might look something like Figure 738.

Parent object
struct object *new() { . . . }

void gozer() { . . . }

void method_1() { . . . }

void method_2() { . . . }

Object

self

parent

constructor

destructor

method 1

method 2

method . . .

property 1

property 2

property . . .

Figure 7-38: A C structure for an object

Some properties, such as those with integer values (property 1), reside
in the object structure itself, whereas others require additional memory
allocation (property 2) that’s referenced by the object structure.

Clearly this structure could get quite large, especially if there are a lot
of methods. We can address that by breaking the methods out into a sepa
rate structure—another space/time trade off—as shown in Figure 739.

212 Chapter 7

Parent object Methods

struct object *new() { . . . }

void gozer() { . . . }

void method1() { . . . }

Object

self

parent

methods

property 1

property 2

property . . .

constructor

destructor

method 1

method 2

method . . .

Figure 7-39: Separate method structure

Programmers used this sort of approach to object oriented program
ming long before Danish programmer Bjarne Stroustrup invented C++.
The original C++ was a wrapper around C that did things like this.

Why does this matter? Object oriented ideologues believe that objects
are the answer for everything. But as you can see in the previous figures,
there’s a certain amount of overhead associated with objects. They have to
carry around their own methods instead of using globally available func
tions. The upshot is that objects don’t pack as densely as pure data types, so
stick to classic arrays when performance is paramount.

Sorting
There are many reasons to sort data. Sometimes we just want sorted results,
like when we alphabetize names to make them easier for people to find.
Many times we want to store data in sorted form because it speeds up
searching by reducing the number of memory accesses.

I’m not going to go into sorting algorithms in depth here, because it’s
a pretty mature subject covered in many books. And plenty of good sort
functions are available, so it’s not likely that you’ll need to write your own
except as a homework problem. But there are a few important points to
keep in mind.

One is that if the size of the things you’re sorting is larger than the
size of a pointer, you should sort by rearranging the pointers to the data
instead of by moving the data itself around.

Also, a convention for sorting has evolved. Our bingo parlor tree
example enabled decisions based on an arithmetic comparison; we made
decisions based on whether one number was less than, equal to, or greater
than another. This method of decision making is rooted in the FORTRAN
programming language from 1956, which included a statement that looked
like Listing 73.

IF (expression) branch1, branch2, branch3

Listing 7-3: A FORTRAN arithmetic IF statement

Organizing Data 213

This IF statement evaluated the expression and went to branch1 if the result
was less than zero, branch2 if it was zero, and branch3 if it was greater than zero;
the branches are similar to what we saw in “Branching” on page 105.

Sorting numbers is straightforward. It would be nice to apply this same
methodology to sorting other things. We saw back in Figure 710 that a list
node can include arbitrary data; the same is true with tree nodes and other
data structures.

UNIX version III introduced a library function called qsort that imple
mented a variation of the classic quicksort algorithm. The interesting thing
about the qsort implementation is that although it knew how to sort things,
it didn’t know how to compare them. Therefore, it took advantage of C’s
pointers to functions; when calling qsort with a list of things to sort, you also
provided a comparison function that returned <0, 0, or >0 for less than, equal
to, or greater than, just like the FORTRAN arithmetic IF. This approach
allowed the caller to use qsort to sort things however they wanted. For
example, if a node contained both a name and an age, the supplied function
could compare first by age and then name so that qsort would produce
results organized by age first and name second. This approach worked well
and has been copied by many other systems.

The standard C library string comparison function strcmp was designed
with this in mind; it returns a value of less than, equal to, or greater than
zero. This has also become the de facto way of doing things.

The original ASCII version of strcmp just walked the strings, subtracting
the character of one from the other. It kept going if the value was zero and
returned 0 if the end of the strings was reached. Otherwise, it returned the
subtraction result.

This is all well and good if you’re just sorting to distribute data in a
tree, but it falls apart if you’re sorting to put things into alphabetical order.
It worked in the ASCII days—you can see in Table 110 that the numerical
order and alphabetical order are the same. Where it falls apart is with
support for other locales. A side effect of support for other languages com
ing later is that only the ASCII characters are numerically in the correct
collating order, or language specific sorting rules.

For example, what value should be assigned to the German letter ß, the
sharp S (Eszett or scharfes S)? Its Unicode value is 0x00DF. Because of that,
the word Straße would get sorted after the word Strasse using a vanilla string
comparison. But these are actually different representations of the same
word. The ß is equivalent to ss. A string comparison that heeded the locale
would say that the two words are equal.

Making a Hash of Things
All the searching methods we’ve seen so far involve repeated testing while
traversing a data structure. There’s another approach that performs better
in some circumstances, called hashing. Hashing has many applications.
We’re talking about in memory storage and retrieval here, not mass storage.
The general concept is to apply some hash function to the search keys that
evenly splatter them onto the wall. If the hash function is easy to compute

214 Chapter 7

and transforms a key into a splat in a unique location on the wall, then
single step lookup should be fast. Of course, there are some practical
realities to consider.

Each splat represents the storage for the object associated with the key.
The hash function must produce values that fit in memory. And it shouldn’t
splatter things across too much memory or performance will suffer, both
from using too much memory and from lack of locality of reference. Coming
up with a perfect hash function isn’t really possible because we don’t have
any prior knowledge of our keys.

One way to bound the storage is to have a hash function that maps keys
into array indices. The array is called a hash table, shown in Figure 740. The
array elements are called buckets.

Search key Hash function
Index

Hash table

. . .

Figure 7-40: Hashing

What makes a good hash function? It needs to be easy to compute, and it
needs to distribute keys evenly into the buckets. A simple hash function that
works pretty well for text is just to sum up the character values. That’s not
quite enough, because the sum might produce an index that’s beyond the
end of the hash table, but we can easily solve this by making the index the
sum modulo the hash table size. Let’s look at how this works in practice. We’ll
use a table size of 11; prime numbers make good table sizes because multiples
of the sum end up in different buckets, improving the splatter pattern.

Say we have an application that keeps track of songs played at our
favorite jam band concerts. Maybe it stores the last played date. We’ll just
use the first word of each song name.

As you can see in Figure 741, we start with Hell in a bucket—in this
case, bucket 4. Next is Touch in bucket 9, followed by Scarlet in 3. But when
we get to Alligator, we have a problem because the value of the hash func
tion is the same as it was for Scarlet. This is called a collision.

1: Hell in a Bucket

Hell Hell Hell Hell
Scarlet ScarletAlligator

Touch Touch Touch

0
1
2
3
4
5
6
7
8
9

10

2: Touch of Grey 3: Scarlet Begonias 4: Alligator

Figure 7-41: Hash collision

Organizing Data 215

We solve this by replacing the buckets with hash chains, which in their
simplest form are singly linked lists, as shown in Figure 742.

Hash table

Alligator

1
0

2
3
4
5
6
7
8
9

10

Scarlet
Hell

Touch

Figure 7-42: Hash chains

There are a number of trade offs in hash chain management. We can
just insert collisions at the head of the chain, as in Figure 742, because it’s
fast. But lookup can slow down as the chains get longer, so we could also do
an insertion sort, which takes longer but means we don’t have to traverse a
chain to the end to determine whether or not an item exists. There are also
many different collision handling methods—for example, eliminating hash
chains and using some algorithm to find an empty slot in the table.

It’s difficult to pick a good hash table size without knowing the expected
number of symbols in advance. You can keep track of chain length and grow
the hash table if the chains are getting too long. This can be an expensive
operation, but it can pay off because it doesn’t need to be done very often.

There are many variations on hash functions. The holy grail of hash
functions is the perfect hash, which maps each key to a unique bucket. It’s
pretty much impossible to create a perfect hash function unless all of the
keys are known in advance, but mathematicians have come up with much
better functions than the one used in this example.

Efficiency vs. Performance
A lot of effort has gone into making efficient search algorithms. Much of
this work was done in an era when computers were expensive. Performance
and efficiency were linked.

The cost of electronics has plunged so dramatically that it’s almost
impossible to purchase anything that doesn’t include a gratuitous blue
LED. Performance and efficiency are decoupled; there are cases where
better performance can be achieved by using less efficient algorithms on
more processors than more efficient algorithms on fewer processors.

216 Chapter 7

One application of this decoupling is database sharding, also called hori-
zontal partitioning. Sharding involves breaking up a database into multiple
shards, each of which lives on its own machine, as shown in Figure 743.

Shard 1
Storage

Storage

. . .

Storage

Processor 1

Processor 2 Controller Interface

Processor n

Shard 2

Shard n

Figure 7-43: Database sharding

Database operations requested over the interface are sent to all of
the shards, and the results are assembled by a controller. This technique
improves performance because operations are split across multiple workers.

A variation on sharding is called MapReduce, which essentially allows you
to provide code to the controller for assembly of the intermediate results.
This makes it possible to do operations such as “count the number of stu
dents in all math classes” without having to first request a list of students and
then count them.

Databases aren’t the only application of this multiple processor approach.
A historically interesting use is the Electronic Frontier Foundation’s DES
(Data Encryption Standard) cracker built in 1998; see the book Cracking
DES (O’Reilly, 1998) for the full story. A machine was constructed that used
1,856 custom processor chips, each of which tried a range of keys on the
encrypted data. Any “interesting” results were forwarded to a controller for
further analysis. This machine could test 90 billion keys per second.

Summary
This chapter introduced you to a number of ways in which data can be
organized to take advantage of what you’ve learned so far about computer
hardware. In the next chapter, you’ll see how your programs get converted
into forms that computer hardware can understand.

8
L A N G U A G E P R O C E S S I N G

It’s pretty clear that only crazy people would
try to write computer programs. That’s always

been true, but programming languages at least
make the job a lot easier.

This chapter examines how programming languages are implemented.
Its aim is to help you develop an understanding of what happens with your
code. You’ll also learn how the code you write is transformed into an exe-
cutable form called machine language.

Assembly Language
We saw a machine language implementation of a program to compute
Fibonacci numbers back in Table 4-4 on page 108. As you might imagine,
figuring out all the bit combinations for instructions is pretty painful.
Primitive computer programmers got tired of this and came up with a
better way to write computer programs, called assembly language.

218 Chapter 8

Assembly language did a few amazing things. It let programmers use
mnemonics for instructions so they didn’t have to memorize all the bit combi-
nations. It allowed them to give names or labels to addresses. And it allowed
them to include comments that can help other people read and understand
the program.

A program called an assembler reads assembly language programs and
produces machine code from them, filling in the values of the labels or symbols
as it goes. This is especially helpful because it prevents dumb errors caused
by moving things around.

Listing 8-1 shows what the Fibonacci program from Table 4-4 looks like
in the hypothetical assembly language from Chapter 4.

 load #0 ; zero the first number in the sequence
 store first
 load #1 ; set the second number in the sequence to 1
 store second
again: load first ; add the first and second numbers to get the
 add second ; next number in the sequence
 store next
 ; do something interesting with the number
 load second ; move the second number to be the first number
 store first
 load next ; make the next number the second number
 store second
 cmp #200 ; are we done yet?
 ble again ; nope, go around again
first: bss 1 ; where the first number is stored
second: bss 1 ; where the second number is stored
next: bss 1 ; where the next number is stored

Listing 8-1: Assembly language program to compute the Fibonacci sequence

The bss (which stands for block started by symbol) pseudo- instruction reserves
a chunk of memory—in this case, one address—without putting anything
in that location. Pseudo-instructions don’t have a direct correspondence
with machine language instructions; they’re instructions to the assembler.
As you can see, assembly language is much easier to deal with than machine
language, but it’s still pretty tedious stuff.

Early programmers had to pull themselves up by their own bootstraps.
There was no assembler to use when the first computer was made, so pro-
grammers had to write the first one the hard way, by figuring out all the
bits by hand. This first assembler was quite primitive, but once it worked, it
could be used to make a better one, and so on.

The term bootstrap has stuck around, although it’s often shortened to
boot. Booting a computer often involves loading a small program, which
loads a bigger one, which in turn loads an even bigger one. On early com-
puters, people had to enter the initial bootstrap program by hand, using
switches and lights on the front panel.

Language Processing 219

High- Level Languages
Assembly language helped a lot, but as you can see, doing simple things
with it still takes a lot of work. We’d really like to be able to use fewer words
to describe more complicated tasks. Fred Brooks’s 1975 book The Mythical
Man- Month: Essays on Software Engineering (Addison- Wesley) claims that on
average, a programmer can write 3 to 10 lines of documented, debugged
code per day. So a lot more work could get done if a line of code did more.

Enter high- level languages, which operate at a higher level of abstraction
than assembly language. Source code in high- level languages is run through
a program called a compiler, which translates or compiles it into machine
language, also known as object code.

Thousands of high- level languages have been invented. Some are very
general, and some are designed for specific tasks. One of the first high- level
languages was called FORTRAN, which stood for “formula translator.” You
could use it to easily write programs that solved formulas like y = m × x + b.
Listing 8-2 shows what our Fibonacci sequence program would look like in
FORTRAN.

C SET THE INITIAL TWO SEQUENCE NUMBERS IN I and J
 I=0
 J=1
C GET NEXT SEQUENCE NUMBER
5 K=I+J
C DO SOMETHING INTERESTING WITH THE NUMBER
C SHIFT THE SEQUENCE NUMBERS TO I AND J
 I=J
 J=K
C DO IT AGAIN IF THE LAST NUMBER WAS LESS THAN 200
 IF (J .LT. 200) GOTO 5
C ALL DONE

Listing 8-2: Fibonacci sequence program in FORTRAN

Quite a bit simpler than assembly language, isn’t it? Note that lines that
begin with the letter C are comments. And although we have labels, they
must be numbers. Also note that we don’t have to explicitly declare memory
that we want to use—it just magically appears when we use variables such as
I and J. FORTRAN did something interesting (or ugly, depending on your
point of view) that still reverberates today. Any variable name that began
with the letter I, J, K, L, M, or N was an integer, which was borrowed from
the way mathematicians write proofs. Variables beginning with any other
letter were floating- point, or REAL in FORTRAN- speak. Generations of
former FORTRAN programmers still use i, j, k, l, m, and n or their upper-
case equivalents as names for integer variables.

FORTRAN was a pretty cumbersome language that ran on the really
big machines of the time. As smaller, cheaper machines became available
(that is, ones that only took up a small room), people came up with other
languages. Most of these new languages, such as BASIC (which stood for

220 Chapter 8

“Beginner’s All- purpose Symbolic Instruction Code”), were variations on the
FORTRAN theme. All of these languages suffered from the same problem.
As programs increased in complexity, the network of line numbers and GOTOs
became an unmanageable tangle. People would write programs with the
label numbers all in order and then have to make a change that would
mess it up. Many programmers started off by using labels 10 or 100 apart so
that they’d have room to backfill later, but even that didn’t always work.

Structured Programming
Languages like FORTRAN and BASIC are called unstructured because there
is no structure to the way that labels and GOTOs are arranged. You can’t build
a house by throwing a pile of lumber on the ground in real life, but you can
in FORTRAN. I’m talking about original FORTRAN; over time, the lan-
guage has evolved and incorporated structured programming. It’s still the
most popular scientific language.

Structured programming languages were developed to address this
spaghetti code problem by eliminating the need for the nasty GOTO. Some went
too far. For example, Pascal got rid of it completely, resulting in a program-
ming language that was useful only for teaching elementary structured
programming. To be fair, that’s actually what it was designed to do. C, the
successor to the Ken Thompson’s B, was originally developed by Dennis
Ritchie at Bell Telephone Laboratories. It was very pragmatic and became
one of the most widely used programming languages. A large number of
later languages—including C++, Java, PHP, Python, and JavaScript—copied
elements from C.

Listing 8-3 shows how our Fibonacci program might appear in JavaScript.
Note the absence of explicit branching.

var first; // first number
var second; // second number
var next; // next number in sequence

first = 0;
second = 1;

while ((next = first + second) < 200) {
 // do something interesting with the number
 first = second;
 second = next;
}

Listing 8-3: JavaScript program to compute Fibonacci sequence

The statements inside the curly brackets {} are executed as long as the
while condition in the parentheses is true. Execution continues after the }
when that condition becomes false. The flow of control is cleaner, making
the program easier to understand.

Language Processing 221

Lexical Analysis
Now let’s look at what it takes to process a language. We’ll start with lexical
analysis, the process of converting symbols (characters) into tokens (words).

A simple way of looking at lexical analysis is to say that a language has
two types of tokens: words and separators. For example, using the above
rules, lex luthor (the author of all evil programming languages) has two word
tokens (lex and luthor) and one separator token (the space). Figure 8-1 shows
a simple algorithm that divides its input into tokens.

Start

No

No NoYes

Empty
token
buffer

Separator?

Get
character

Append
to token
buffer

Empty
token?Got token

Figure 8-1: Simple lexical analysis

It’s not enough to just extract tokens; we need to classify them because
practical languages have many different types of tokens, such as names,
numbers, and operators. Languages typically have operators and operands,
just like math, and operands can be variables or constants (numbers). The
free- form nature of many languages also complicates things—for example,
when separators are implied, as in A+B as opposed to A + B (note the spaces).
Both forms have the same interpretation, but the first form doesn’t have any
explicit separators.

Numeric constants are astonishingly hard to classify, even if we ignore
the distinctions among octal, hexadecimal, integer, and floating- point
numbers. Let’s diagram what constitutes a legitimate floating- point number.
There are many ways to specify a floating- point number, including 1., .1,
1.2, +1.2, –.1, 1e5, 1e+5, 1e–5, and 1.2E5, as shown in Figure 8-2.

222 Chapter 8

digit
1 2 3 4 5 6 7

digit

digit

+ –

digit

E e

+ – digit

digit

digit

Start E e

Figure 8-2: Diagram for floating- point numbers

We start at the bubble labeled 1. A + or − character brings us to
bubble 2, while a . sends us to bubble 4. We leave bubble 2 for bubble 4
when we get a . character, but we go to bubble 3 when we receive a digit.
Bubbles 3 and 4 accumulate digits. We’re done if we get a character for
which no transition is shown. For example, if we received a space while at
any of the bubbles, we’d be done. Of course, leaving bubble 2 without a
digit or decimal point, bubble 6 without a digit, or bubble 5 without a sign
or digit is an error because it doesn’t produce a complete floating- point
number. These paths are absent from the diagram for simplicity’s sake.

This is a lot like trying to find treasure using a pirate map. As long as
you’re following directions, you can get from one place to another. If you
don’t follow directions—for example, with a Z at bubble 1—you fall off the
map and get lost.

You could view Figure 8-2 as the specification for floating- point num-
bers and write software to implement it. There are other, more formal ways
to write specifications, however, such as Backus- Naur form.

BACKUS - N AUR FOR M

Backus- Naur form (BNF) has its roots in the work of Indian Sanskrit scholar
Pāṇini (approximately fifth century bce). BNF is named after American computer
scientist John Backus (1924–2007), who was also the inventor of FORTRAN,
and Danish computer scientist Peter Naur (1928–2016). It’s a formal way to
specify languages. We’re not going to go into great detail about it here, but it’s
something you should be familiar with because it’s used in the RFC (request for
comments) documents that define internet protocols, among other things. Here’s
the BNF for a floating- point number:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<digits> ::= <digit> | <digits> <digit>

<e> ::= "e" | "E"

<sign> ::= "+" | "-"

Language Processing 223

<optional- sign> ::= <sign> | ""

<exponent> ::= <e> <optional- sign> <digits>

<optional- exponent> ::= <exponent> | ""

<mantissa> ::= <digits> | <digits> "." | "." <digits> | <digits> "." <digits>

<floating- point> ::= <optional- sign> <mantissa> <optional- exponent>

Things on the left of the ::= can be substituted for things on the right. The |
indicates a choice, and things inside of quotes are literals, meaning that they
must appear exactly as written.

State Machines
Based just on the complexity of numbers, you can imagine that it would
take a substantial amount of special case code to extract language tokens
from input. Figure 8-2 gave us a hint that there’s another approach. We
can construct a state machine, which consists of a set of states and a list of
what causes a transition from one state to another—exactly what we saw in
Figure 8-2. We can arrange this information as shown in Table 8-1.

Table 8-1: State Table for Floating- Point Numbers

Input State

1 2 3 4 5 6 7

0 3 3 3 4 7 7 7

1 3 3 3 4 7 7 7

2 3 3 3 4 7 7 7

3 3 3 3 4 7 7 7

4 3 3 3 4 7 7 7

5 3 3 3 4 7 7 7

6 3 3 3 4 7 7 7

7 3 3 3 4 7 7 7

8 3 3 3 4 7 7 7

9 3 3 3 4 7 7 7

e error error 5 5 error error done

E error error 5 5 error error done

+ 2 error done done 6 error done

− 2 error done done 6 error done

. 4 4 4 done error error done

other error error done done error error done

224 Chapter 8

Looking at the table, you can see that when we’re in state 1, digits move
us to state 3, e or E moves us to state 5, + or − to state 2, and . to state 4—
anything else is an error.

Using a state machine allows us to classify the input using a simple
piece of code, as shown in Listing 8-4. Let’s use Table 8-1, replacing done
with 0 and error with -1. For simplicity, we’ll have an other row in the table
for each of the other characters.

state = 1;
while (state > 0)
 state = state_table[state][next_character];

Listing 8-4: Using a state machine

This approach could easily be expanded to other types of tokens.
Rather than have a single value for done, we could have a different value for
each type of token.

Regular Expressions
Building tables like Table 8-1 from diagrams like Figure 8-2 is very cumber-
some and error- prone for complicated languages. The solution is to create
languages for specifying languages. American mathematician Stephen Cole
Kleene (1909–1994) supplied the mathematical foundation for this approach
way back in 1956. Ken Thompson first converted it into software in 1968 as
part of a text editor and then created the UNIX grep (which stands for “glob-
ally search a regular expression and print”) utility in 1974. This popularized
the term regular expression, which is now ubiquitous. Regular expressions are
languages themselves, and of course there are now several incompatible
regular expression languages. Regular expressions are a mainstay of pattern
matching. Figure 8-3 shows a regular expression that matches the pattern for
a floating- point number.

[+-]?([0-9]*\.?[0-9]+)|([0-9]+\.?[0-9]*)[Ee][+-]?[0-9]+

Or
Group Group

One or more of the preceding 0 through 9
0 through 9
Zero or one of the preceding decimal point
Decimal point
Removes special meaning of the following character
0 or more of the preceding 0 through 9
0 through 9
Zero or one of the preceding sign
+ or –

Figure 8-3: Regular expression for floating- point number

Language Processing 225

This looks like gibberish but really only relies on a few simple rules. It’s
processed from left to right, meaning that the expression abc would match
the string of characters “abc”. If something in the pattern is followed by ?, it
means zero or one of those things, * means zero or more, and + means one
or more. A set of characters enclosed in square brackets matches any single
character in that set, so [abc] matches a, b, or c. The . matches any single char-
acter and so needs to be escaped with a backslash (\) so that it matches the .
character only. The | means either the thing on the left or the thing on the
right. Parentheses () are for grouping, just like in math.

Reading from left to right, we start with an optional plus or minus
sign. This is followed by either zero or more digits, an optional decimal
point, and one or more digits (which handles cases like 1.2 and .2), or by
one or more digits, an optional decimal point, and zero or more digits
(which handles the 1 and 1. cases). This is followed by the exponent, which
begins with an E or e, followed by an optional sign and one or more digits.
Not as horrible as it first looked, is it?

Having a regular expression language that processed input into tokens
would be more useful if it automatically generated state tables. And we have
one, thanks again to research at Bell Telephone Laboratories. In 1975,
American physicist Mike Lesk—along with intern Eric Schmidt, who today
is executive chairman of Google’s parent company, Alphabet—wrote a pro-
gram called lex, short for “lexical analyzer.” As The Beatles said in “Penny
Lane:” “It’s a Kleene machine.” An open source version called flex was later
produced by the GNU project. These tools do exactly what we want. They
produce a state table driven program that executes user-supplied program
fragments when input matches regular expressions. For example, the simple
lex program fragment in Listing 8-5 prints ah whenever it encounters either
ar or er in the input and prints er whenever it encounters an a at the end of
a word.

[ae]r printf("ah");
a/[.,;!?] printf("er");

Listing 8-5: Bostonian lex program fragment

 The / in the second pattern means “only match the thing on its left
if it is followed by the thing on its right.” Things not matched are just
printed. You can use this program to convert regular American English
to Bostonian: for example, inputting the text Park the car in Harvard yard
and sit on the sofa would produce Pahk the cah in Hahvahd yahd and sit
on the sofer as output.

Classifying tokens is a piece of cake in lex. For example, Listing 8-6
shows some lex that matches all of our number forms plus variable names
and some operators. Instead of printing out what we find, we return some
values defined elsewhere for each type of token. Note that several of the
characters have special meaning to lex and therefore require the backslash
escape character so that they’re treated as literals.

226 Chapter 8

0[0-7]* return (INTEGER);
[+-]?[0-9]+ return (INTEGER);
[+-]?(([0-9]*\.?[0-9]+)|([0-9]+\.?[0-9]*))([Ee][+-]?[0-9]+)? return (FLOAT);
0x[0-9a- fA- F]+ return (INTEGER);
[A- Za- z][A- Za- z0-9]* return (VARIABLE);
\+ return (PLUS);
- return (MINUS);
* return (TIMES);
\/ return (DIVIDE);
= return (EQUALS);

Listing 8-6: Classifying tokens using lex

Not shown in the listing is the mechanism by which lex supplies the
actual values of the tokens. When we find a number, we need to know its
value; likewise, when we find a variable name, we need to know that name.

Note that lex doesn’t work for all languages. As computer scientist
Stephen C. Johnson (introduced shortly) explained, “Lex can be easily
used to produce quite complicated lexical analyzers, but there remain
some languages (such as FORTRAN) which do not fit any theoretical
framework, and whose lexical analyzers must be crafted by hand.”

From Words to Sentences
So far, we’ve seen how we can turn sequences of characters into words. But
that’s not enough for a language. We now need to turn those words into
sentences according to some grammar.

Let’s use the tokens from Listing 8-6 to create a simple four- function
calculator. Expressions such as 1 + 2 and a = 5 are legal, whereas 1 + + + 2
isn’t. We once again find ourselves in need of pattern matching, but this
time for token types. Maybe somebody has already thought about this.

That somebody would be Stephen C. Johnson, who also—unsurpris-
ingly—worked at Bell Labs. He created yacc (for “yet another compiler
compiler”) in the early 1970s. The name should give you an idea of how
many people were playing with these sorts of things back then. It’s still in
use today; an open source version, called bison, is available from the GNU
project. Just like lex, yacc and bison generate state tables and the code to
operate on them.

The program yacc generates is a shift- reduce parser using a stack (see
“Stacks” on page 122). In this context, shift means pushing a token onto
the stack, and reduce means replacing a matched set of tokens on the stack
with a token for that set. Look at the BNF for the calculator in Listing 8-7—
it uses the token values produced by lex in Listing 8-6.

<operator> ::= PLUS | MINUS | TIMES | DIVIDE
<operand> ::= INTEGER | FLOAT | VARIABLE
<expression> ::= <operand> | <expression> PLUS <operand>
 | <expression> MINUS <operand>
 | <expression> TIMES <operand>
 | <expression> DIVIDE <operand>

Language Processing 227

<assignment> ::= <variable> EQUALS <expression>
<statement> ::= <expression> | <assignment>
<statements> ::= "" | <statements> <statement>
<calculator> ::= <statements>

Listing 8-7: Simple calculator BNF

Shift- reduce is easy to understand once you see it in action. Look at what
happens when our simple calculator is presented with the input 4 + 5 – 3 in
Figure 8-4. Referring back to “Different Equation Notations” on page 125,
you can see that processing infix notion equations requires a deeper stack
than postfix (RPN) requires because more tokens, such as parentheses, must
be shifted before anything can be reduced.

Shift

4

Start Shift

4
+

4

Shift

+
5

Reduce

9

Shift

9
–

9

Shift

–
3

Reduce

6

Figure 8-4: Shift- reduce in action

Listing 8-8 shows what our calculator would look like when coded in
yacc. Note the similarity to the BNF. This is for illustration only; it’s not a fully
working example, as that would introduce far too many nitpicky distractions.

calculator : statements
 ;

statements : /* empty */
 | statement statements
 ;

operand : INTEGER
 | FLOAT
 | VARIABLE
 ;

expression : expression PLUS operand
 | expression MINUS operand
 | expression TIMES operand
 | expression DIVIDE operand
 | operand
 ;

assignment : VARIABLE EQUALS expression
 ;

statement : expression
 | assignment
 ;

Listing 8-8: Partial yacc for a simple calculator

228 Chapter 8

The Language- of- the- Day Club
Languages used to be difficult. In 1977, Canadian computer scientist Alfred
Aho and American computer scientist Jeffrey Ullman at Bell Labs published
Principles of Compiler Design, one of the first computer- typeset books published
using the troff typesetting language. One can summarize the book as
follows: “languages are hard, and you had better dive into the heavy math,
set theory, and so on.” The second edition, published in 1986 along with
Indian computer scientist Ravi Sethi, had a completely different feel. Its
attitude was more like “languages are a done thing, and here’s how to do
them.” And people did.

That edition popularized lex and yacc. All of a sudden, there were lan-
guages for everything—and not just programming languages. One of my
favorite small languages was chem, by Canadian computer scientist Brian
Kernighan at Bell Labs, which drew pretty chemical structure diagrams
from input like C double bond O. The diagrams in the book you’re reading, in
fact, were created using Brian Kernighan’s picture- drawing language pic.

Creating new languages is fun. Of course, people started making new
languages without understanding their history and reintroduced old mis-
takes. For example, many consider the handling of whitespace (the spaces
between words) in the Ruby language to be a replay of a mistake in the
original C language that was fixed long ago. (Note that one of the classic
ways to deal with a mistake is to call it a feature.)

The result of all this history is that a huge number of languages are now
available. Most don’t really add much value and are just demonstrations of the
designer’s taste. It’s worth paying attention to domain- specific languages, partic-
ularly little languages such as pic and chem, to see how specific applications are
addressed. American computer scientist Jon Bentley published a wonderful
column about little languages called “Programming Pearls” in Communications
of the ACM back in 1986. These columns were collected and published in
updated book form in 1999 as Programming Pearls (Addison- Wesley).

Parse Trees
Earlier I talked about compiling high- level languages, but that’s not the
only option. High- level languages can be compiled or interpreted. The
choice is not a function of the design of the language but rather of its
implementation.

Compiled languages produce machine code like you saw back in
Table 4-4 page 108. The compiler takes the source code and converts it into
machine language for a particular machine. Many compilers allow you to
compile the same program for different target machines. Once a program
is compiled, it’s ready to run.

Interpreted languages don’t result in machine language for a real
machine (“real” as in hardware). Instead, interpreted languages run on

Language Processing 229

 virtual machines, which are machines written in software. They may have
their own machine language, but it’s not a computer instruction set imple-
mented in hardware. Note that the term virtual machine has become over-
loaded recently; I’m using it to mean an abstract computing machine. Some
interpreted languages are executed directly by the interpreter. Others are
compiled into an intermediate language for later interpretation.

In general, compiled code is faster because once it’s compiled, it’s in
machine language. It’s like translating a book. Once it’s done, anyone who
speaks that language can read it. Interpreted code is ephemeral, like some-
one reading a book aloud while translating it into the listener’s language.
If another person later wants the book read to them in their own language,
it must be translated again. However, interpreted code allows languages
to have features that are really difficult to build in hardware. Computers
are fast enough that we can often afford the speed penalty that comes with
interpreters.

Figure 8-4 depicted the calculator directly executing the input. Although
this is fine for something like a calculator, it skips a major step used for com-
pilers and interpreters. For those cases, we construct a parse tree, which is a
DAG (directed acyclic graph) data structure from the calculator grammar.
We’ll build this tree out of node structures, as depicted in Figure 8-5.

leaf
. . .

node

leaf
0

code

leafn

node pointer

union

integer
floating-point

array-of-characters

.f

.s

.n

.i

Figure 8-5: Parse tree node layout

Each node includes a code that indicates the type of node. There is also
an array of leaves; the interpretation of each leaf is determined by the code.
Each leaf is a union since it can hold more than one type of data. We’re using
C language syntax for the member naming, so, for example, .i is used if we’re
interpreting a leaf as an integer.

We’ll assume the existence of a makenode function that makes new nodes.
It takes a leaf count as its first argument, a code as its second, and the values
for each leaf afterward.

Let’s flesh out the code from Listing 8-8 a bit more while still omitting
some of the picky details. To keep things simple, we’ll only handle integer
numbers. What was missing earlier was code to execute when matching
grammar rules. In yacc, the value of each of the right- hand- side elements
is available as $1, $2, and so on, and $$ is what gets returned by the rule.
Listing 8-9 shows a more complete version of our yacc calculator.

230 Chapter 8

calculator : statements { do_something_with($1); }
 ;
statements : /* empty */
 | statement statements { $$.n = makenode(2, LIST, $1, $2); }
 ;
operand : INTEGER { $$ = makenode(1, INTEGER, $1); }
 | VARIABLE { $$ = makenode(1, VARIABLE, $1); }
 ;
expression : expression PLUS operand { $$.n = makenode(2, PLUS, $1, $3); }
 | expression MINUS operand { $$.n = makenode(2, MINUS, $1, $3); }
 | expression TIMES operand { $$.n = makenode(2, TIMES, $1, $3); }
 | expression DIVIDE operand { $$.n = makenode(2, DIVIDE, $1, $3); }
 | operand { $$ = $1; }
 ;
assignment : VARIABLE EQUALS expression { $$.n = makenode(2, EQUALS, $1, $3); }
 ;
statement : expression { $$ = $1; }
 | assignment { $$ = $1; }
 ;

Listing 8-9: Simple calculator parse tree construction using yacc

Here, all the simple rules just return their values. The more compli-
cated rules for statements, expression, and assignment create a node, attach
the children, and return that node. Figure 8-6 shows what gets produced
for some sample input.

LIST

INTEGER

1

TIMES

INTEGER

2

INTEGER

3

PLUS LIST

LISTEQUALS

INTEGER

5

DIVIDE

INTEGER

6

VARIABLE

foo

"foo"

Input:
 1 + 2 * 3
 foo = 5
 6 / foo

Figure 8-6: Simple calculator parse tree

As you can see, the code generates a tree. At the top level, we use the
calculator rule to create a linked list of statements out of tree nodes. The
remainder of the tree consists of statement nodes that contain the operator
and operands.

Language Processing 231

Interpreters
Listing 8-9 includes a mysterious
do_something_with function invocation
that is passed the root of the parse
tree. That function causes an inter-
preter to “execute” the parse tree.
The first part of this execution is
the linked- list traversal, as shown in
Figure 8-7.

The second part is the evalua-
tion, which we do recursively using
depth- first traversal. This function
is diagrammed in Figure 8-8.

node ≠ NULL?

evaluate node leaf
0

node � root

node � node leaf
1

Done
No

Yes

Figure 8-7: Parse tree linked- list traversal

PLUS?

MINUS?

TIMES?

DIVIDE?

EQUALS?

INTEGER?

VARIABLE?

Error

evaluate

node code

a � evaluate leaf
0

b � evaluate leaf
1 return a + b

a � evaluate leaf
0

b � evaluate leaf
1 return a - b

a � evaluate leaf
0

b � evaluate leaf
1 return a × b

a � evaluate leaf
0

b � evaluate leaf
1 return a ÷ b

a � evaluate leaf
1

store a in evaluate leaf
0 return a

return leaf
0

a � look up leaf
0

return a

Done

Figure 8-8: Parse tree evaluation

232 Chapter 8

As you can see, it’s easy to decide what to do since we have a code in our
node. Observe that we need an additional function to store a variable (symbol)
name and value in a symbol table and another to look up the value associated
with a variable name. These are commonly implemented using hash tables
(see “Making a Hash of Things” on page 213).

Gluing the list traversal and evaluation code into yacc allows us to
immediately execute the parse tree. Another option is to save the parse
tree in a file where it can be read and executed later. This is how languages
such as Java and Python work. For all intents and purposes, this is a set of
machine language instructions, but for a machine implemented in software
instead of hardware. A program that executes the saved parse tree must
exist for every target machine. Often the same interpreter source code
can be compiled and used for multiple targets.

Figure 8-9 summarizes interpreters.
The front end generates the parse tree, which is represented by some

intermediate language, and the back ends are for various machines to execute
that language in their target environments.

Program
input

Front end

Parse tree
(intermediate

language)

Lexical
analysis

Grammar
parsing

Back end for
machine n

Back end for
machine 2

Back end for
machine 1

Figure 8-9: Interpreter structure

Compilers
Compilers look a lot like interpreters, but they have code generators instead
of backend execution code, as shown in Figure 8-10.

Lexical
analysis

Grammar
parsing

Parse tree
(intermediate

language)

Code
generator

for
machine 1

Code
generator

for
machine 2

Code
generator

for
machine n

Assembly
language

for
machine 1

Program
input

machine 1
assembler

Machine
language

for
machine 1

machine 2
assembler

machine n
assembler

Assembly
language

for
machine n

Assembly
language

for
machine 2

Machine
language

for
machine n

Machine
language

for
machine 2

Front end

Figure 8-10: Compiler structure

Language Processing 233

A code generator generates machine language for a particular target
machine. The tools for some languages, such as C, can generate the actual
assembly language (see “Assembly Language” on page 217) for the target
machine, and the assembly language is then run through that machine’s
assembler to produce machine language.

A code generator looks exactly like the parse tree traversal and evalua-
tion we saw in Figures 8-7 and 8-8. The difference is that the rectangles in
Figure 8-8 are replaced by ones that generate assembly language instead
of executing the parse tree. A simplified version of a code generator is shown
in Figure 8-11; things shown in bold monospace font (like add tmp) are emitted
machine language instructions for our toy machine from Chapter 4. Note
that the machine there didn’t have multiply and divide instructions but, for
this example, we pretend that it does.

PLUS?

MINUS?

TIMES?

DIVIDE?

EQUALS?

INTEGER?

VARIABLE?

Error

evaluate

node code

evaluate leaf
1
, store tmp evaluate leaf

0 add tmp

evaluate leaf
1
, store tmp evaluate leaf

0 sub tmp

evaluate leaf
1
, store tmp evaluate leaf

0 mul tmp

evaluate leaf
1
, store tmp evaluate leaf

0 div tmp

evaluate leaf
1 leaf

0
: bss 1 store leaf

0

load #leaf
0

load leaf
0

Done

Note: added at end of code

store tmp

Figure 8-11: Assembler generation from parse tree

Applying Figure 8-11 to the parse tree in Figure 8-6, we get the assembly
language program shown in Listing 8-10.

234 Chapter 8

 ; first list element
 load #3 ; grab the integer 3
 store tmp ; save it away
 load #2 ; grab the integer 2
 mul tmp ; multiply the values subtree nodes
 store tmp ; save it away
 load #1 ; grab the integer 1
 add tmp ; add it to the result of 2 times 3
 store tmp ; save it away
 ; second list element
 load #5 ; grab the integer 5
 store foo ; save it in the space for the "foo" variable
 store tmp ; save it away
 ; third list element
 load foo ; get contents of "foo" variable
 store tmp ; save it away
 load #6 ; grab the integer 6
 div tmp ; divide them
 store tmp ; save it away
tmp: bss 1 ; storage space for temporary variable
foo: bss 1 ; storage space for "foo" variable

Listing 8-10: Machine language output from code generator

As you can see, this generates fairly bad- looking code; there are a lot
of unnecessary loads and stores. But what can you expect from a contrived
simple example? This code would be much improved via optimization, which
is discussed in the next section.

This code can be executed once it’s assembled into machine language.
It will run much faster than the interpreted version because it’s a much
smaller and more efficient piece of code.

NUM

1

TIMES

NUM

2

NUM

3

PLUS NUM

7

Optimize

Figure 8-12: Optimizing a parse tree

Optimization
Many language tools include
an additional step called an
optimizer between the parse
tree and the code generator.
The optimizer analyzes the
parse tree and performs trans-
formations that result in more
efficient code. For example, an
optimizer might notice that all
the operands in the parse tree
on the left in Figure 8-12 are
constants. It can then evaluate
the expression in advance at
compile time so that evaluation
doesn’t have to be done
at runtime.

Language Processing 235

The preceding example is trivial because our example calculator
doesn’t include any way to do conditional branching. Optimizers have a
whole bag of tricks. For example, consider the code shown in Listing 8-11
(which happens to be in C).

for (i = 0; i < 10; i++) {
 x = a + b;
 result[i] = 4 * i + x * x;
}

Listing 8-11: C loop code with assignment in loop

Listing 8-12 shows how an optimizer might restructure it.

x = a + b;
optimizer_created_temporary_variable = x * x;
for (i = 0; i < 10; i++) {
 result[i] = 4 * i + optimizer_created_temporary_variable;
}

Listing 8-12: Loop code with loop invariant optimization

This example gives the same results as Listing 8-11 but is more efficient.
The optimizer determined that a + b was loop invariant, meaning that its
value didn’t change inside the loop. The optimizer moved it outside the
loop so it would need to be computed only once instead of 10 times. It also
determined that x * x was constant inside the loop and moved that outside.

Listing 8-13 shows another optimizer trick called strength reduction, which
is the process of replacing expensive operations with cheaper ones—in this
case, multiplication with addition.

x = a + b;
optimizer_created_temporary_variable = x * x;
optimizer_created_4_times_i = 0;
for (i = 0; i < 10; i++) {
 result[i] = optimizer_created_4_times_i + optimizer_created_temporary_variable;
 optimizer_created_4_times_i = optimizer_created_4_times_i + 4;
}

Listing 8-13: C loop code with loop- invariant optimization and strength reduction

Strength reduction could also take advantage of relative addressing to
make the calculation of result[i] more efficient. Going back to Figure 7-2,
result[i] is the address of result plus i times the size of the array element.
Just like with the optimizer_created_4_times_i, we could start with the address
of result and add the size of the array element on each loop iteration
instead of using a slower multiplication.

236 Chapter 8

Be Careful with Hardware
Optimizers are wonderful, but they can cause unexpected problems with
code that manipulates hardware. Listing 8-14 shows a variable that’s actually
a hardware register that turns on a light when bit 0 is set, like we saw back
in Figure 6-1.

void
lights_on()
{
 PORTB = 0x01;
 return;
}

Listing 8-14: Example of code that shouldn’t be optimized

This looks great, but what’s the optimizer going to do? It will say, “Hey,
this is being written but never read, so I can just get rid of it.” Likewise, say
we have the code in Listing 8-15, which turns on the light and then tests to
see whether or not it’s on. The optimizer would likely just rewrite the function
to return 0x01 without ever storing it in PORTB.

unsigned int
lights_on()
{
 PORTB = 0x01;
 return (PORTB);
}

Listing 8-15: Another example of code that shouldn’t be optimized

These examples demonstrate that you need to be able to turn off
optimization in certain cases. Traditionally, you’d do so by splitting up
the software into general and hardware- specific files and running the
optimizer only on the general ones. However, some languages now
include mechanisms that allow you to tell the optimizer to leave certain
things alone. For example, in C the volatile keyword says not to optimize
access to a variable.

Summary
So far in this book, you’ve learned how computers work and how they run
programs. In this chapter, you saw how programs get transformed so that
they can be run on machines and learned that programs can be compiled
or interpreted.

In the next chapter, you’ll meet a monster of an interpreter called a
web browser and the languages that it interprets.

9
T H E W E B B R O W S E R

You probably don’t think of it this way, but
the web browser you use every day is a vir-

tual machine—an abstract computer with an
incredibly complicated instruction set imple-

mented entirely in software. In other words, it’s one
of those interpreters you learned about in the last
chapter.

In this chapter, you’ll learn about some of the functionality of this
virtual machine. You’ll learn about the input language and how it’s
interpreted by the browser. Browsers are extremely complicated beasties,
however, so I can’t cover every feature.

One thing that makes browsers interesting to learn about is that, on
one hand, they’re big, complex applications, and on the other, they’re
software- implemented computers that you can program. Browsers have a
developer console, which you can use while playing with the examples from
this chapter. This allows you to get a real- time view of how the browser
operates.

238 Chapter 9

Understanding the web browser also teaches us something about
system design, which is arguably more important than programming
(Chapter 15 covers system design in more detail). The popularity of the
web has turned the browser into a magnet for new features. Many of these
features have extended browser functionality in a compatible manner by
adding to the original instruction set. Other features have duplicated exist-
ing functionality in incompatible ways, the result being that browsers now
support multiple instruction sets, and the complete set of features is not
available in any of them. It should become clear in this chapter that I’m not
thrilled by the latter category of features—those that are merely different
instead of adding value.

For starters, having multiple ways to do things means you as a program-
mer have a lot more to learn, which isn’t a great use of your time for fea-
tures that don’t add value. And you need to expend energy choosing which
way to do your code. Adding multiple approaches also increases the com-
plexity of programs. Industry statistics show a direct relationship between
the amount of code in a program and the number of bugs. Browsers crash
often. And, as Chapter 13 covers in more detail, more complex code is more
likely to contain security problems.

Incompatible ways of doing things makes programmers more prone to
errors. It’s like an American driving a car in New Zealand: some of the con-
trols are in different places because New Zealanders drive on the left- hand
side of the road. People from countries where you drive on the right are
easy to spot, as they turn on their windshield wipers when making a turn.
You don’t want to program in an environment that facilitates these sorts of
avoidable errors.

In my opinion, the fact that many of the web standards have become
living documents is a clear sign of trouble. If you’re not familiar with that
term, I’m referring to online documents that are constantly being updated.
Standards exist to provide stability and interoperability. Living documents
don’t; at best, they capture a moment in time. It’s difficult to program to
constantly changing specifications. In this context, living documents make
life easier for a few document creators (because those documents and the
software that they reference never have to be “done”) and more difficult for
a much larger number of consumers.

Markup Languages
Had this book been written 15 years earlier, this chapter would have started
with an introduction to HTML, the HyperText Markup Language. But, as
I’ve already implied, the browser has a lot in common with the Great Pacific
Garbage Patch: it keeps getting bigger by attracting features that stick to it.
Among these are multiple markup languages, so we’ll begin with an over-
view of them.

Markup is a system for annotating or adding marks to text in a way
that can be distinguished from that text—like homework that a teacher
has written snarky comments in red pencil on.

The Web Browser 239

Markup languages are not new; they existed long before computers.
They were developed as a side effect of the printing press so that authors
and editors could describe what they wanted to the “pressmen” who set the
type. This useful notion was carried forward when computers automated
typesetting. Today’s markup languages are just the latest incarnations of an
old idea.

There are a large number of markup languages. For example, I origi-
nally wrote this book in a markup language for typesetting called troff.
The source for this paragraph is shown in Listing 9-1.

.PP
There are a large number of markup languages.
For example, I originally wrote this book in a markup language for
typesetting, called \fCtroff\fP.
The source for this paragraph is shown in Listing 9-1.

Listing 9-1: troff for the preceding paragraph

As you can see, most of it is just the text, but there are three elements of
markup. The .PP tells troff to start a paragraph. The \fC tells troff to push
the current font onto a stack and replace it with font C, for Courier. The \fP
tells troff to pop the font stack (see “Stacks” on page 122), which restores
the previous font.

Web pages are regular text files, just like the troff example. You don’t
need a fancy program to create them; you can do it in any text editor. As a
matter of fact, fancy web page creation programs produce bloated results
that you can easily beat by handcrafting them yourself.

How do you mark up a regular text file when the only tool available is
more text? By giving superpowers to some characters, the way Superman
has superpowers even though he’s also a mild- mannered reporter. For
example, troff gives superpowers to any line that begins with a . or ' and
to anything that begins with a \.

IBM rolled its own markup language, called GML (short for Generalized
Markup Language, though it’s really named for its developers, Goldfarb,
Mosher, and Lorie), which the company used for its ISIL publishing tool.
This work was expanded into the Standard Generalized Markup Language
(SGML), which was adopted by the International Standards Organization
in the 1980s. SGML was so “generalized” that it’s not clear that anybody was
ever able to produce a complete working implementation of the standard.

eXtensible Markup Language (XML) is a more practical subset of SGML.
Support for it was a later addition to browsers.

HTML and XML both have their roots in SGML. They borrow some of
the same syntax but don’t conform to the standard.

XHTML is a modified form of HTML that conforms to the XML rules.

Uniform Resource Locators
The first web browser (called WorldWideWeb), invented by English engi-
neer and computer scientist Sir Tim Berners- Lee in 1990, was pretty

240 Chapter 9

straightforward in how it worked, as shown in Figure 9-1. The browser used
a Uniform Resource Locator (URL) to request a document from a server using
the HTTP protocol discussed in “The World Wide Web” on page 159. The
server sent the document to the browser, which would display it. The docu-
ment used to be written in HTML, but now it can be written in a variety of
languages.

URL

Document

Browser Server

Figure 9-1: Web browser interaction with
web server

URLs are text strings that have some structure. Right now we just care
about the three parts of that structure shown in Figure 9-2.

https://www.nostarch.com/catalog/general-computing

PathHostScheme

Figure 9-2: Anatomy of a URL

The scheme indicates the communication mechanism—for example,
https selects HyperText Transfer Protocol (Secure). The server that we want
to communicate with is the host. It can be a numeric internet address (see
“IP Addresses” on page 159) but is most commonly specified as a domain
name (see “Domain Name System” on page 159). The location of the doc-
ument to be retrieved is the path, which looks just like a filesystem path.

One of the schemes is file. When it’s used, the host/path portion of the
URL is a local filename—the name of a file on the same system on which
the browser is running. In other words, the file scheme points to a file on
your computer.

There are an ever- growing number of schemes, such as bitcoin for
cryptocurrencies and tv for television broadcasts. These are similar, and
in many cases identical, to the protocols that we saw back in “The World
Wide Web.”

HTML Documents
As mentioned, the first web pages were documents written in HTML.
HTML utilized hypertext—text that links to something else, such as other
web pages. Sci- fi buffs can think of it like combining hyperspace with text:
you hit a link and, zap, you’re someplace else. Hypertext has been around
for quite some time, but the web was its compelling application.

Take a look at the simple HTML document in Listing 9-2.

The Web Browser 241

<html>
 <head>
 <title>
 My First Web Page
 </title>
 </head>
 <body>
 This is my first web page.

 <big>
 Cool!
 </big>

 </body>
</html>

Listing 9-2: My First Web Page

Enter the HTML shown in Listing 9-2 into a file and open it in your
browser. You should see something like Figure 9-3.

Figure 9-3: Browser display of My First Web Page

You can see that the display in Figure 9-3 doesn’t look much like the text
in Listing 9-2. That’s because the less- than sign (<) is a character with super-
powers. In this case, it begins an element of markup. You might notice that
elements come in pairs; for each start <tag> there is a matching end </tag>.

The tag determines how the browser interprets the markup element.
Tags are essentially virtual machine instructions. For example, <title> puts
its contents—what’s between the start and end tags—into the browser title
bar. The and <big> elements make the word “Cool!” bold and big, and
it’s part of the <body> of the web page.

Because the < has superpowers, you may wonder how to use that charac-
ter without the superpowers—for example, if you wanted to display This is
my first web page with a <. HTML includes its own form of kryptonite called
an entity reference, which is an alternate form of a character. In this case, the
sequence < represents the < character without triggering its superpowers.
(Of course, now there’s a new superpowered character &, which can itself be
represented using the & sequence.) Using an entity reference, you could
type This is my first web page with a < and it would look correct.

HTML elements aren’t quite as simple. There are a number of random
exceptions where end tags are not required, and there’s a <tag/> form for

242 Chapter 9

elements with no content. XHTML eliminates these exceptions. The only
complication that we care about here is attributes, which are optional sets of
name/value pairs, as shown in Listing 9-3.

<tag name1="value1" name2="value2" ...>
 element content
</tag>

Listing 9-3: HTML elements with attributes

Some attribute names have predefined behaviors; you can include arbi-
trary attributes for any that aren’t predefined. Attribute values are treated
identically, with the exception of class, whose value is treated as a space-
separated list of values.

The Document Object Model
Web browsers process documents according to the Document Object Model
(DOM). You can think of a web page as a series of elements that enclose
other elements as illustrated by the indentation in the Listing 9-2 HTML.
Figure 9-4, which looks sort of like an aerial cutaway view of a twisted
matryoshka (Russian nesting) doll, shows what this structure looks like for
the code in Listing 9-2.

html

title
head body

This
is my
first
web
page.

My First
Web Page

big
b

Cool!

Figure 9-4: Nested elements in an HTML document

Let’s grab that picture by the edge of the HTML and tilt it so that all of
the innards hang out the bottom, as shown in Figure 9-5.

Look familiar? It’s our old friend, the directed acyclic graph, or DAG
(from “Stacks” on page 122), and a tree structure too (see “Hierarchical
Data Structures” on page 199). Not only that, but the HTML can be pro-
cessed using techniques from Chapter 8 and the result is a parse tree (see
“Parse Trees” on page 228).

The Web Browser 243

html

head

title

My First
Web Page

body

b

big

Cool!

This is my
first

web page.

Figure 9-5: HTML document as a tree structure

Tree Lexicon
Tree structures like the DOM are so common that an entire lexicon
has developed around them. The examples in Table 9-1 are taken from
Figure 9-5.

Table 9-1: Tree Lexicon

Term Definition Example

Node An element in the tree html, head, body

Interior node An element in the tree that has
arrows entering and leaving

title

Terminal node An element in the tree that has
no arrows leaving it

Cool!

Root The top of the tree html

Parent A node whose arrow points
directly to another node

html is the parent of head and body

Child A node directly pointed to by
another node

head and body are children of html

Descendant A node directly or indirectly
pointed to by another node

title is a descendent of html

Ancestor A node that directly or indi-
rectly points to a node

body is an ancestor of big

Sibling A node with a common parent head is a sibling of body

Nodes in a tree are ordered. For example, head is the first child of html,
and body is the second and also last child of html.

244 Chapter 9

Interpreting the DOM
What does a browser do with a document tree? Although it’s possible that
someone could build a piece of computing hardware with instructions cor-
responding to the HTML elements, nobody has done so yet. That rules out
compiling the DOM parse tree into machine language. The other choice is
to interpret it using depth- first traversal, as shown in Figure 9-6.

html

head

title

My First
Web Page

body

b

big

Cool!

This is my
first

web page.

Figure 9-6: HTML document traversal order

As you can see, the browser starts at the root, descends to the first child,
then to its first child, and so on until it hits a terminal node. It then goes up
to the closest ancestor that has another child and does the same thing from
there, and so on until every node in the tree is visited. Note that the order-
ing follows the way in which the HTML is written. Depth-first traversal is yet
another application of stacks.

Cascading Style Sheets
An original idea behind HTML was that authors wrote web pages and
browsers figured out how to display them. This made sense because there
was no way for the author to know things like the size of a browser’s window,
the screen resolution, or the number of available colors and fonts.

Once the web became popular, the marketing types got their hands
on it. Glitz became important. All sorts of stuff got added (mostly via the
creation of a new CSS specification) to allow authors to finely control how
their pages are displayed. Of course, this is exactly the opposite of the
original intent. The result is messy.

HTML web pages originally included styling information. For example,
the font element that selected a text font had a size attribute that controlled

The Web Browser 245

the size. This approach didn’t work as well when pages were displayed on
a diverse set of devices from desktops to cell phones. Cascading Style Sheets
(CSS) separates the styling from the HTML so that the HTML can be written
once and have different styles applied depending on the target device.

Figure 9-7 shows a data structure that could be used to represent an
HTML element in memory.

tag

next

attributes

last child

previous

first child

next
name
value

"name
1
"

"value
1
"

next
name
value

"name
2
"

"value
2
"

. . .

next

previous

element

next

previous

next

previous

"name"

element element

element

Figure 9-7: HTML element data structure

This diagram looks really complicated, but it simply glues together a
few things you’ve already learned about. There’s a compound data type (see
“Compound Data Types” on page 189) for elements and another for attri-
butes. The attributes are organized as a singly linked list (see “Singly Linked
Lists” on page 191). Elements are arranged in a tree (see “Hierarchical
Data Structures” on page 199). Because there are an arbitrary number of
children whose ordering matters, they’re organized using a doubly linked
list (see “Doubly Linked Lists” on page 198).

This organization matters because CSS uses a variation of regular
expressions (see “Regular Expressions” on page 224) called selectors to
locate elements in the DOM, similar to how yacc matches tokens on a stack.
CSS then allows attributes to be associated with the selected elements. This
enables a web page designer, for example, to change the text size depend-
ing on the target device or to collapse a side menu into a drop- down menu
for devices with smaller screens.

CSS muddies up the terminology. It defines a large number of
properties—things like color, font size, and so on. Once these properties
are associated with a DOM element, they’re called attributes.

Table 9-2 shows some of the CSS selectors. Originally there were only a
few, but new ones are being added at an alarming rate.

246 Chapter 9

Table 9-2: CSS Selectors

Pattern Meaning

* Matches any element

E Matches any element of type E (that is, <E>...</E>)

F Matches any element of type F (that is, <F>...</F>)

E F Matches any element F that is a descendent of an E element

E > F Matches any element F that is a child of an E element

E + F Matches any element F with an immediate sibling element E

E - F Matches any element F preceded by any sibling element E

E[name] Matches any element E that has attribute name

E[name=value] Matches any element E that has attribute name with value

E[name~="value"] Matches any E element whose name attribute is a space-
separated list of words, one of which matches value

E#id Matches any E element that has an ID attribute with a value
of id

E.class Matches any E element that has a class attribute with a value
of class

E:first- child Matches element E if it is the first child of its parent

E:last- child Matches element E if it is the last child of its parent

E:nth- child(n) Matches element E if it is the nth child of its parent

E:empty Matches element E if it has no children

E:link Matches element E if it is a hyperlink anchor such as <a>

E:visited Matches element E if it is a hyperlink anchor such as <a> that
has been visited

E:hover Matches element E when the mouse hovers over it

E:active Matches element E on which the mouse is down

E:focus Matches element E if it has the input focus, meaning that it’s
listening to the keyboard

HTML includes a <link> element that can be used to associate a separate
file containing CSS with a web page. That’s the preferred usage because it
conforms to the principle of keeping the content separate from the styling.
But that’s overkill for what we’re doing here. HTML also includes a <style>
element that allows CSS to be embedded directly in HTML documents.
That’s what we’ll use for our examples.

Let’s modify our web page from Listing 9-1 to include some simple styl-
ing, which is shown in bold in Listing 9-4.

<html>
 <head>
 <title>
 My First Web Page
 </title>
 <style>

The Web Browser 247

 body {
 color: blue;
 }
 big {
 color: yellow;
 font- size: 200%;
 }
 </style>
 </head>
 <body>
 This is my first web page.

 <big>
 Cool!
 </big>

 </body>
</html>

Listing 9-4: Web page with embedded CSS

You can see that there are two selectors in Listing 9-4: body and big.
Each selector is followed by a list of property names and values; a colon
separates each name from its value, there is a semicolon after the value,
and the list of names and values for each selector is enclosed in curly
brackets. First, we set the color of all text in the document body to blue.
Next, we set the color of the text inside the <big> element to yellow, and
we set the font- size to 200% of normal. Give it a try!

CSS was an afterthought; nobody had it in mind when developing
HTML. There are some quirks as a result. HTML has all sorts of elements
with defined meanings. For example, there is a element that makes text
bold and a <i> element for italics. But the CSS snippet in Listing 9-5 changes
their meanings to be the opposite.

b {
 font- style: italic;
 font- weight: normal;
}
i {
 font- style: normal;
 font- weight: bold;
}

Listing 9-5: Swapping bold and italic using CSS

For all intents and purposes, CSS eliminates the distinction between
many HTML elements. You can think of HTML elements as having a default
set of styles, but once those styles are changed via CSS, the element name
may no longer have any relation to to its original purpose.

CSS originally just provided a more flexible mechanism for attaching
attributes to elements, but then it started adding new attributes. These
new attributes were not retrofitted into HTML. As a result, some attributes

248 Chapter 9

can be specified in both HTML and CSS, and others only in CSS. There’s
a bit of an attitude among the programming community that the old way
should no longer be used, but that ignores the issues of maintaining exist-
ing code.

XML and Friends
XML looks a lot like HTML. However, like SGML it requires well- formed ele-
ments. This means that each <tag> must have a matching </tag>. Implicit
end tags are not permitted. The big distinction between HTML and XML
is that HTML was created for a specific application: web pages. XML is a
general- purpose markup language that can be used for many different
applications.

Most XML tags don’t have preassigned meanings. You can assign any
meaning to them that you want. XML provides structure you can use to
create your own application- specific markup languages. For example, sup-
pose you want to keep track of vegetables in your garden. You could create a
Vegetable Markup Language (VML) that looks like Listing 9-6.

<xml>
 <garden>
 <vegetable>
 <name>tomato</name>
 <variety>Cherokee Purple</variety>
 <days- until- maturity>80</days- until- maturity>
 </vegetable>
 <vegetable>
 <name>rutabaga</name>
 <variety>American Purple Top</variety>
 <days- until- maturity>90</days- until- maturity>
 </vegetable>
 <vegetable>
 <name>rutabaga</name>
 <variety>Helenor</variety>
 <days- until- maturity>100</days- until- maturity>
 </vegetable>
 <vegetable>
 <name>rutabaga</name>
 <variety>White Ball</variety>
 <days- until- maturity>75</days- until- maturity>
 </vegetable>
 <vegetable>
 <name>rutabaga</name>
 <variety>Purple Top White Globe</variety>
 <days- until- maturity>45</days- until- maturity>
 </vegetable>
 </garden>
</xml>

Listing 9-6: XML- based markup language example

The Web Browser 249

Conflicts can arise from allowing people to create their own markup
languages, however. For example, suppose that in addition to VML, some-
one else creates a Recipe Markup Language (RML) that also includes a
<name> element, as in Listing 9-7.

<xml>
 <garden>
 <vegetable>
 <name>tomato</name>
 <variety>Cherokee Purple</variety>
 <days- until- maturity>80</days- until- maturity>
 <name>Purple Tomato Salad</name>
 </vegetable>
 </garden>
</xml>

Listing 9-7: XML- based markup language example with name conflict

There is no way to tell whether the <name> elements are vegetable names
or recipe names. We need a mechanism to allow us to combine VML and
RML without confusing the <name> elements. This mechanism is an element
tag prefix known as a namespace.

As you’d expect from something browser related, there are multiple
ways to specify namespaces, but I cover only one of them here. Each
namespace is associated with a URL, although there’s no requirement
that it be a valid URL; it just has to be distinct from the others. The xmlns
attribute on the <xml> element associates a namespace prefix with a URL.
Listing 9-8 shows our combined garden and recipe markups with distin-
guishing namespaces.

<xml xmlns:vml="http://www.garden.org" xmlns:rml="http://www.recipe.org">
 <vml:garden>
 <vml:vegetable>
 <vml:name>tomato</vml:name>
 <vml:variety>Cherokee Purple</vml:variety>
 <vml:days- until- maturity>80</vml:days- until- maturity>
 <rml:name>Purple Tomato Salad</rml:name>
 </vml:vegetable>
 </vml:garden>
</xml>

Listing 9-8: XML- based markup language example with namespaces

You can see that the elements from both fictitious markup languages are
combined and that they are distinguished by prefix. The namespace prefix
is arbitrary and left up to whatever is combining the different markup lan-
guages together. There’s no requirement that rml be the prefix for the Recipe
Markup Language; we could choose recipe if we needed to combine this code
with another RML, such as Ridiculous Markup Language.

Plenty of tools are available to help you write applications that under-
stand custom markup languages such as the ones just described. There are
also libraries for many programming languages that create and operate on
parse trees from XML documents.

250 Chapter 9

One tool is a Document Type Definition (DTD). You can think of this as
meta- markup. A DTD is an XML- looking document (there are no ending
tags for some reason) that defines the legal elements in a markup language.
XML includes a mechanism that allows an XML document to reference
a DTD. You could, for example, make a DTD that says that one or more
<vegetable> elements are allowed in a <garden> element and that a <vegetable>
can contain only <name>, <variety>, and <days- until- maturity> elements. XML
parsers can validate the XML against the DTD. Although this is useful,
it doesn’t do the most important part. For example, although a DTD can
ensure that a required <variety> exists, it can’t test for a valid variety.

The XML Path Language (XPath) provides selectors for XML documents
by, as you might guess, creating yet another incompatible syntax; it has essen-
tially the same functionality of CSS selectors but in a completely different
syntax that you may need to learn. XPath isn’t very useful by itself but is an
important component of Xtensible Stylesheet Language Transformations (XSLT).

XSLT is yet another XML- based language. When combined with XPath,
it allows you to write a piece of XML that transforms an XML document into
other forms by searching and modifying the parse tree. Listing 9-9 shows a
simple example where an XPath expression is used to match any vegetable
in the garden and then output the name and variety of each, separated by
a space.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/garden/vegetable">
 <xsl:value- of select="variety"/>
 <xsl:text> </xsl:text>
 <xsl:value- of select="name"/>
 </xsl:template>
</xsl:stylesheet>

Listing 9-9: Call any vegetable using XSLT and XPath

Applying the XSLT in Listing 9-9 to the XML in Listing 9-6 produces
the results in Listing 9-10.

Cherokee Purple tomato
American Purple Top rutabaga
Helenor rutabaga
White Ball rutabaga
Purple Top White Globe rutabaga

Listing 9-10: Call any vegetable results

Another example is shown in Listing 9-11, which selects only vegetables
when the value of the name is rutabaga.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/garden/vegetable[name/text()='rutabaga']">
 <xsl:value- of select="name"/>
 <xsl:text> </xsl:text>
 </xsl:template>

The Web Browser 251

 <xsl:template match="text()"/>
</xsl:stylesheet>

Listing 9-11: Call it by name

Applying the XSLT from Listing 9-11 to the XML in Listing 9-6 pro-
duces what you see in Listing 9-12.

rutabaga rutabaga rutabaga rutabaga

Listing 9-12: Call it by name results

XSLT is especially useful for transforming markup containing arbitrary
data into HTML for display in a browser.

JavaScript
Our example web page is static—that is, all it does is display some format-
ted text. Going back to Figure 9-1, the only way to change what’s displayed
is to send another URL to a web server to get a new document. Not only is
this a slow process, but it also wastes resources. If you entered a phone num-
ber into a form, the data would have to be sent to a server to determine
whether it contained all numbers, and the server would have to send back
a page with an error message if it didn’t.

In 1993, Mark Andreesen created the graphical Mosaic web
browser, which fueled the consumer internet boom. He went on to
found Netscape, which released the Netscape Navigator browser in 1994.
Realizing the need for more interactive web pages, Netscape introduced
the JavaScript programming language in 1995. JavaScript has since been
standardized by the Ecma International standards organization, formerly
the European Computer Manufacturers Association, as ECMA-262. It’s also
known as ECMAScript, which sounds like a skin condition and has since
been known to make browsers flaky. JavaScript borrowed from both the C
programming language and from Java, which itself borrowed from C.

JavaScript allows web pages to contain actual programs that run
on your computer instead of on the server. These programs can modify
the DOM and can communicate directly with a web server, as shown in
Figure 9-8.

DOM JavaScript
program Server

Browser

Figure 9-8: Web browser interaction with JavaScript and web server

252 Chapter 9

The interaction between the JavaScript program and the server is not the
same as the browser/server communication we saw in Figure 9-1. Instead, it
takes place via Asynchronous JavaScript and XML (AJAX). Let’s break that down.
Asynchronous is related to what we saw with ripple counters in “Counters” on
page 77; in this instance, it means the browser has no control over when
(and if) a server responds. The JavaScript part just means it’s under the con-
trol of a JavaScript program. I’m not going to explain the and. Finally, the
data from the server to the JavaScript program was initially encoded using
XML, not HTML.

You can include JavaScript in an HTML document by enclosing it in
<script> elements. Let’s add some to what we had in Listing 9-4, again show-
ing the changes in bold, in Listing 9-13.

<html>
 <head>
 <title>
 My First Web Page
 </title>
 <style>
 body {
 color: blue;
 }
 big {
 color: yellow;
 font- size: 200%;
 }
 </style>
 <script>
 window.onload = function() {
 var big = document.getElementsByTagName('big');
 big[0].style.background = "green";
 }
 </script>
 </head>
 <body>
 This is my first web page.

 <big>
 Cool!
 </big>

 </body>
</html>

Listing 9-13: Web page with embedded JavaScript

Let’s see what this does without going into all the nitpicky details. Part
of the browser definition is that there is a window.onload variable that can
be set to a function to execute when the initial page has finished loading.
Another part of the definition says that there is a document.getElementsByTagName
function that returns an array of all matching elements in the DOM. Here
it returns the one <big> element. Finally, it allows us to change various ele-
ment properties. In this case, we set the background color to green.

The Web Browser 253

There are a large number of defined functions for DOM manipula-
tion. They allow us to do more than just change CSS styles from a program.
There are also functions that allow you to rearrange the DOM tree, includ-
ing the ability to add and delete elements.

jQuery
Using the browser DOM functions from the previous section has two prob-
lems. First, the DOM functions don’t have exactly the same behavior on dif-
ferent browsers. Second, they’re pretty cumbersome to use—not exactly a
user- friendly interface.

Enter jQuery, a library introduced by American software engineer John
Resig in 2006. It solved both of the problems just mentioned. It smoothed
over the incompatibilities between browsers so that the programmers using
it didn’t have to. And it supplied a DOM manipulation interface that was
much easier to use.

The jQuery library combines selectors with actions. The code in
Listing 9-14 does exactly the same thing as the code in Listing 9-13 but
in a more programmer- friendly way.

<html>
 <head>
 <title>
 My First Web Page
 </title>
 <style>
 body {
 color: blue;
 }
 big {
 color: yellow;
 font- size: 200%;
 }
 </style>
 <script type="text/javascript" src="https://code.jquery.com/jquery-3.2.1.min.js"> </script>
 <script>
 $(function() {
 $('big').css('background', 'green');
 });
 </script>
 </head>
 <body>
 This is my first web page.

 <big>
 Cool!
 </big>

 </body>
</html>

Listing 9-14: Web page with embedded JavaScript and jQuery

254 Chapter 9

The first <script> element imports the jQuery library; the second con-
tains our code. The “document ready” function that the browser calls when
the page is loaded contains a single jQuery statement. The first part of it,
$('big'), is a selector. It’s similar to the CSS selectors we saw in Table 9-2.
The remainder of the statement, .css('background', 'green'), is an action to
perform on the selected elements. In this case, the css function modifies the
background property, setting it to green.

Let’s add the piece of jQuery in Listing 9-15 to the document ready
function to add some interactivity.

$('big').click(function() {
 $('big').before('<i>Very</i>');
 $('big').css('font- size', '500%');
});

Listing 9-15: jQuery event handler

This simple piece of code attaches an event handler to the <big> element
that is executed when the mouse clicks it. This handler does two things: it
inserts a new <i> element before the <big> element, and it increases the <big>
font size.

As you can see in this example, jQuery makes it easy to manipulate the
DOM using JavaScript. You can open up your browser’s debugging console
and watch these changes occur when you click.

jQuery blazed a path, and a very popular one at that; the library is very
widely used. However, as seems endemic in the web community, some pro-
grammers decided to create parallel, incompatible paths. There are now a
number of JavaScript libraries that do the same things, only differently.

SVG
Scalable Vector Graphics (SVG) is kind of an odd duck in the collection of
browser additions. It’s yet another completely different language that allows
you to produce nice- looking graphics and text in a manner that is com-
pletely incompatible with everything else.

John Warnock and Chuck Geschke founded Adobe Systems in 1982 and
developed the PostScript language. Warnock had been working on more
complicated versions of the ideas in PostScript for years, and the develop-
ment of PostScript was similar to the way that the overly complex SGML
was simplified to HTML. The duo caught a lucky break when Steve Jobs
requested that they use PostScript to drive laser printers. The PostScript-
based Apple LaserWriter was a major factor in the formation of the desktop
publishing industry and was responsible for Adobe’s success.

PostScript had some issues with portability—getting the same results
everywhere. The Portable Document Format (PDF), based on PostScript, was

The Web Browser 255

created to address these issues. SVG is more or less PDF wedged into browsers.
Of course, SVG and PDF aren’t completely compatible because that would
make too much sense.

In general, SVG is more automatic than the recently added canvas (cov-
ered in the next section). You can tell it to do things, and it will, whereas
with a canvas you have to write a program to manipulate it. Add the con-
tents of Listing 9-16 to the body of your web page and give it a spin, because
every web page needs a red pulsing circle.

<svg xmlns="http://www.w3.org/2000/svg" width="400" height="400">
 <circle id="c" r="10" cx="200" cy="200" fill="red"/>
 <animate xlink:href="#c" attributeName="r" from="10" to="200" dur="5s" repeatCount="indefinite"/>
</svg>

Listing 9-16: SVG animated circle

HTML5
As I mentioned at the beginning of this chapter, it seems that in the
browser world, there’s no idea that should be implemented only once.
HTML5 is the latest incarnation of HTML. Among other things, it adds
a big pile of semantic elements, including <header>, <footer>, and <section>,
which—if used as intended—would add consistent structure to documents.

HTML5 introduces the canvas, which provides pretty much the same
functionality as SVG but in a completely different way. The major differ-
ence is that canvases can be manipulated only with a new set of JavaScript
functions, unlike SVG, which can use the existing DOM functions. In other
words, you would have to write a JavaScript program in order to duplicate
Listing 9-16 using a canvas.

HTML5 also adds <audio> and <video>, which provide somewhat stan-
dard mechanisms for audio and video.

JSON
I touched on AJAX back in “JavaScript” on page 251 and mentioned that
asynchronous XML- formatted data is sent from the server to the browser
JavaScript program. Well, that’s so four sections ago. The X in AJAX is now a
J for JSON. Although the acronym AJAJ floats around, the technique is still
called AJAX.

JSON stands for JavaScript Object Notation. It’s essentially a human-
readable text format for a JavaScript object, which is one of JavaScript’s com-
pound data types. The theory is that data in this format can be exchanged
in an interoperable manner, although problems with the specification mean
that this exchange is possible only if you adhere to certain unspecified rules
such as avoiding certain characters. Programmers also need to work around
the fact that JSON doesn’t support all the JavaScript data types.

256 Chapter 9

Listing 9-17 builds a JavaScript object and converts it to JSON format.
It then shows the result that was stored in the variable the_quest, shown in
bold below.

var argonauts = {};
argonauts.goal = "Golden Fleece";
argonauts.sailors = [];
argonauts.sailors[0] = { name: "Acastus", father: "Pelias" };
argonauts.sailors[1] = { name: "Actor", father: "Hippasus" };
argonauts.sailors[2] = { name: "Admentus", father: "Pheres" };
argonauts.sailors[3] = { name: "Amphiarus", father: "Oicles" };
argonauts.sailors[4] = { name: "Ancaeus", father: "Poseidon" };

var the_quest = JSON.stringify(argonauts);

"{
 "goal": "Golden Fleece",
 "sailors": [
 { "name": "Acastus", "father": "Pelias" },
 { "name": "Actor", "father": "Hippasus" },
 { "name": "Admentus", "father": "Pheres" },
 { "name": "Amphiarus", "father": "Oicles" },
 { "name": "Ancaeus", "father": "Poseidon" }
]
}"

Listing 9-17: JSON and the Argonauts

JSON has an advantage over XML when using JavaScript, and not
just because converting JavaScript objects into JSON is trivial, as shown in
Listing 9-17. The companion JavaScript eval function can execute JSON
directly, because it’s data, as if it’s a JavaScript program. JSON is popular
because it eliminates the need for extra code to handle data export and
import.

Just because it’s easy to use JSON doesn’t mean you can be cavalier about
it, however. Blithely importing JSON data using eval can allow an attacker to
execute arbitrary code in a browser. More recently, a companion JSON.parse
function has been added that safely converts JSON back into a JavaScript
object.

Summary
In this chapter, you’ve learned the basics of how many of the components
comprising a web browser work. Figure 9-9 illustrates the pieces we’ve dis-
cussed. Of course, browsers include a lot more functionality that isn’t par-
ticularly interesting, such as bookmarks and history.

The Web Browser 257

Communications interface

Language parser JavaScript interpreter

XHTMLHTML XML

CSSSVG JavaScript

JSON XML

Document object model data

User interface engine

PointerKeyboard Drawing VideoAudio

Figure 9-9: Browser block diagram

The diagram may look pretty complicated, but it’s just an assemblage of
parts that you’ve already seen. These include language parsers, parse trees,
regular expressions, interpreters, networking, input, and output.

It also illustrates a distinction between hardware and software design.
Designing hardware is more expensive than designing software. It’s unlikely
that a hardware designer would construct a system that used six different
incompatible methods to do the same thing before breakfast. But because
there isn’t the same up- front cost in software, software designers are often
less careful. The result is often a larger, more complex result that might
cost less up front but often costs more later because of the number of
complicated interoperating parts that must be maintained.

Now that you’ve learned something about the workings of this complex
interpreter, in the next chapter we’ll write some programs for it. You’ll see a
program written for a browser in JavaScript and the same program written
in C. This will illustrate some of the important system- level considerations
that are hidden from web programmers but are important for system- level
programming.

10
A P P L I C A T I O N A N D S Y S T E M

P R O G R A M M I N G

Chapter 9 covered how web browsers work.
You learned that browsers are complex

application programs that provide software-
implemented “computers” that support very

high- level “instructions.” In this chapter, we’ll write
a program that runs in a browser, followed by a similar
program that doesn’t use the browser. The structure
of the two programs is shown in Figure 10-1.

The operating system hides much of the I/O device complexity from user
programs. In a similar manner, a complex user program such as a browser
hides much of the complexity of dealing with operating systems from appli-
cation programs that are built on top of them. This is fine if you’re going to
limit yourself to being a high- level application writer. But you need to know
more if you’re going to be a system programmer.

260 Chapter 10

Program #1
(application level)

Program #2
(system level)

Browser
(system level)

Operating system

I/O devices

Figure 10-1: Two program scenarios

This chapter includes lengthier JavaScript and C code examples than
you’ve seen before. Don’t worry if you’re not fluent in these languages—you
don’t need to know all the details to follow along.

Let’s look at a game in which the computer asks the user a series of
questions to try to guess an animal. New animals and questions that distin-
guish them are added to the program as needed. The program “learns” by
constructing a binary tree of knowledge.

The interaction between the computer (the literal text) and the user
(the literal bold text) looks something like this:

Think of an animal.
Does it bark?
Yes
Is it a dog?
Yes
I knew it!
Let's play again.
Think of an animal.
Does it bark?
Yes
Is it a dog?
No
I give up. What is it?
giant purple snorklewhacker
What's a question that I could use to tell a giant purple snorklewhacker from a dog?
Does it live in an anxiety closet?
Thanks. I'll remember that.
Let's play again.
Think of an animal.
Does it bark?

Application and System Programming 261

Yes
Is it a dog?
No
Does it live in an anxiety closet?
Yes
Is it a giant purple snorklewhacker?
Yes
I knew it!
Let's play again.

Figure 10-2 shows the implementation plan.

Start

Set node to root

Say Guess the animal

Ask node question

Get answer

No Yes
Leaf node?

Answer Answer

No YesNo Yes

Set node to
no branch

Set node to
yes branch

Get new
animal name

Get new
question

Brag

Insert new
question node

Insert new
animal node

Figure 10-2: Guess the Animal flowchart

262 Chapter 10

As you can see, we ask questions that guide our descent through the
tree of knowledge. We congratulate ourselves when we guess correctly.
Otherwise, we ask the user to supply the answer and a question, add them
to the tree, and start over.

The program follows a path down the tree of knowledge on the left
side. When it reaches the end of the path on the right, it either brags or
adds to the knowledge base.

Guess the Animal Version 1: HTML and JavaScript
On to the program. We’ll go about this in a way that, although convenient,
will upset some of my colleagues. This is a clever hack—something that
works but is a bit twisted and ugly. As you saw in the previous chapter,
the DOM is a tree that is a subset of a DAG—same with a binary tree.
We’re going to build the binary tree of knowledge in the DOM as a set
of nested, invisible <div>s. We could create a data structure in JavaScript,
but the browser already has something easy that works. As Figure 10-3
shows, our program starts off with an initial question and two answers in
the knowledge tree.

Does it bark? <div string="Does it bark?">
 <div string="dog"></div>
 <div string="cat"></div>
</div>

No Yes

cat dog

Figure 10-3: Initial knowledge tree

Let’s play the game. We answer yes in response to Does it bark? and
when the program guesses Is it a dog? we answer no. The program then
asks What is it? and we respond with giant purple snorklewhacker. The pro-
gram then asks us what question would distinguish a giant purple snorkle-
whacker from a dog and uses our response of Does it live in an anxiety
closet? to modify the knowledge tree, as shown in Figure 10-4.

<div string="Does it bark?">
 <div string="Does it live in an anxiety closet?"></div>
 <div string="giant purple snorklewhacker"></div>
 <div string="dog"></div>
 </div>
 <div string="cat"></div>
</div>

Does it bark?

No Yes

cat Does it live in
an anxiety closet?

No Yes

dog giant purple
snorklewhacker

Figure 10-4: Modified knowledge tree

Application and System Programming 263

Application- Level Skeleton
Listing 10-1 shows the web page skeleton into which we’ll add the code.
Purists would be very upset at this because it combines HTML, CSS, and
JavaScript into a single file. But we’re building a simple program, not a
website, so it’s convenient to have everything in one place.

 1 <html>
 2 <head>
 3 <!-- include jQuery -->
 4 <script type="text/javascript" src="https://code.jquery.com/jquery-3.1.1.min.js"> </script>
 5
 6 <title>Web Page Skeleton</title>
 7
 8 <style>
 9 <!-- CSS goes here -->
10 </style>
11
12 <script type="text/javascript">
13
14 <!-- JavaScript goes here -->
15
16 $(function() {
17 <!-- JavaScript to run when document ready -->
18 });
19
20 </script>
21 </head>
22
23 <body>
24 <!-- HTML goes here -->
25 </body>
26 </html>

Listing 10-1: Web page skeleton

You can change the title to something like Guess the Animal yourself.
You learned about web browser components in the last chapter (see

Figure 9-9). Now we’ll put some of them to use.

Web Page Body
Let’s start by looking at the <body> of the program in Listing 10-2. This
replaces the <!-- HTML goes here --> from line 24 of Listing 10-1.

 1 <!-- This is the knowledge tree that is never visible -->
 2
 3 <div id="root" class="invisible">
 4 <div string="Does it bark">
 5 <div string="dog"></div>
 6 <div string="cat"></div>
 7 </div>
 8 </div>
 9

264 Chapter 10

10 <div id="dialog">
11 <!-- The conversation will go here -->
12 </div>
13
14 <!-- Get new animal name dialog -->
15
16 <div id="what- is- it" class="start- hidden">
17 <input id="what" type="text"/>
18 <button id="done- what">Done</button>
19 </div>
20
21 <!-- Get new animal question dialog -->
22
23 <div id="new- question" class="start- hidden">
24 What's a good question that I could use to tell a
25 from a ?
26 <input id="question" type="text"/>
27 <button id="done- question">Done</button>
28 </div>
29
30 <!-- Yes and no buttons -->
31
32 <div id="yesno" class="start- hidden">
33 <button id="yes">Yes</button>
34 <button id="no">No</button>
35 </div>

Listing 10-2: Guess the Animal HTML

You can see in lines 3 through 8 that the knowledge tree is preloaded
with an initial question and answers. The string attribute is the question,
except for leaf nodes where it is the animal name. The question contains
two <div>s, the first being for the yes answer and the second for the no. The
tree is wrapped in a <div> styled so that it’s never visible.

The dialog in lines 10 through 12 holds the conversation between
the computer and the player. Then what- is- it (lines 16–19) contains a text
field for the name of a new animal and a button the player presses when
done. After that, new- question (lines 23–28) contains a text field for the
new question and a button the player presses when done. The yes and no
buttons are in yesno (lines 32–35). The three user input <div>s (lines 16, 23,
and 32) have a start- hidden class that is used to make these values invisible
at the beginning of a game.

The JavaScript
Let’s move on to the actual JavaScript. The first part is shown in Listing 10-3.

The first thing we do is declare the variable node where the skeleton says
<!-- JavaScript goes here --> on line 14 of Listing 10-1. Although it could
go inside the document ready function, putting it outside makes it easier to
access using the browser developer console. We also declare two functions
outside of the document ready function since they don’t rely on the page
being loaded.

Application and System Programming 265

 1 var node; // current position in tree of knowledge
 2
 3 // Append the supplied html to the dialog. Bail if the new node has
 4 // no children because there is no question to ask. Otherwise, make
 5 // the new node the current node and ask a question using the string
 6 // attribute of the node. Turn the animal name into a question if a
 7 // leaf node. Returns true if the new node is a leaf node.
 8
 9 function
10 question(new_node, html)
11 {
12 $('#dialog').append(html); // add the html to the dialog
13
14 if ($(new_node).length == 0) { // no question if no children
15 return (true);
16 }
17 else {
18 node = new_node; // descend to new node
19
20 if ($(node).children().length == 0)
21 $('#dialog').append('Is it a ' + $(node).attr('string') + '?');
22 else
23 $('#dialog').append($(node).attr('string') + '?');
24
25 return (false);
26 }
27 }
28
29 // Restarts the game. Hides all buttons and text fields, clears
30 // the text fields, sets the initial node and greeting, asks the
31 // first question, displays the yes/no buttons.
32
33 function
34 restart()
35 {
36 $('.start- hidden').hide();
37 $('#question,#what').val('');
38 question($('#root>div'), '<div>Think of an animal.</div>');
39 $('#yesno').show();
40 }

Listing 10-3: Guess the Animal JavaScript variable and functions

Next, the <!-- JavaScript to run when document ready --> from line 17 of
Listing 10-1 gets the five things shown in Listing 10-4.

 1 restart(); // Sets everything up the first time through.
 2
 3 // The user has entered a new question. Make a node with that
 4 // question and put the old no- node into it. Then, make a node
 5 // with the new animal and put it into the new question node ahead
 6 // of the old no- node so that it becomes the yes choice. Start over.
 7

266 Chapter 10

 8 $('#done- question').click(function() {
 9 $(node).wrap('<div string="' + $('#question').val() + '"></div>');
10 $(node).parent().prepend('<div string="' + $(what).val() + '"></div>');
11 $('#dialog').append("<div>Thanks! I'll remember that.</div><p>");
12 restart();
13 });
14
15 // The user has entered a new animal name and clicked done. Hide
16 // those items and make the new- question text field and done button
17 // visible. Plug the old and new animal names into the query.
18
19 $('#done- what').click(function() {
20 $('#what- is- it').hide();
21 $('#new').text($('#what').val());
22 $('#old').text($(node).attr('string'));
23 $('#new- question').show();
24 $('#dialog div:last').append(' <i>' + $('#what').val() + '</i>');
25 });
26
27 // The user clicked yes in answer to a question. Descend the tree
28 // unless we hit bottom in which case we boast and start over.
29
30 $('#yes').click(function() {
31 if (question($(node).children(':first- child'), ' <i>yes</i>
')) {
32 $('#dialog').append("<div>I knew it! I'm so smart!</div><p>");
33 restart();
34 }
35 });
36
37 // The user clicked no in answer to a question. Descend the tree
38 // unless we hit bottom, in which case we hide the yes/no buttons
39 // and make the what- is- it text field and done button visible.
40
41 $('#no').click(function() {
42 if (question($(node).children(':last- child'), ' <i>no</i>
')) {
43 $('#yesno').hide();
44 $('#dialog').append('<div>I give up. What is it?</div>');
45 $('#what- is- it').show();
46 }
47 });

Listing 10-4: Guess the Animal document ready function JavaScript

We invoke the restart function (line 1) to start the game. The other four
things are event handlers, the JavaScript equivalent of the interrupt handlers
introduced in Chapter 5. There is one event handler for each of the four
button elements. Each handler calls an anonymous function (an inline
function that doesn’t have a name) when the associated button is pressed.

Practice your text-editing skills by typing in the program. Save the
results in a file named something like gta.html and then open the file in
your browser. Play the game. Open up the developer tools in your browser
and find the HTML inspector; this allows you to look at the HTML that
makes up the web page. Watch the tree of knowledge get built as you play.

Application and System Programming 267

The CSS
As we touched on in Chapter 9, classes give us a way to label elements so
that they can be easily selected. CSS is primarily used for static declarations
of properties; it becomes dynamic mostly via programmatic manipulation.
The HTML in Listing 10-2 has two CSS classes: start- hidden is dynamic, and
invisible is static.

The class attribute is used to make several of the HTML elements in
Listing 10-5 members of the start- hidden class. This isn’t just to make our
program classy; it’s to give us a way to locate all of these elements with a
simple selector. These elements are made invisible whenever the program
is started or restarted. They’re made visible as the program runs, and
start- hidden allows us to reset everything simply.

The element with the invisible class is always invisible, as it’s the
tree of knowledge. Thus, the CSS shown in Listing 10-5 replaces the
<!-- CSS goes here --> in line 9 of Listing 10-1.

1 invisible {
2 display: none; /* elements with this class are not displayed */
3 }

Listing 10-5: Guess the Animal CSS

Note that you can use inline style for simple CSS instead, because of
course there has to be more than one way to do things in a browser. Writing
line 3 of Listing 10-2 as <div id="root" style="display: none"> would have the
same effect.

Guess the Animal Version 2: C
As I’ve mentioned, browsers are high- level virtual machines—all their func-
tionality is implemented in software. This enables us to quickly and easily
construct our program in part by hiding some of the important underpin-
nings. Let’s rewrite the program in C so that more of the primitive actions
that browsers hide are exposed. This discussion assumes a UNIX- derived
operating system.

Terminals and the Command Line
Our C program is going to be extremely retro in that it’s not going to have
any fancy buttons or graphics. It will use the command line in a manner
similar to the ancient game of Adventure. This is a great opportunity to
learn more about how input and output work rather than relying on the
fancy widgets built into browsers.

What do I mean by “retro” and “command line”? As Chapter 1 mentions,
human language likely started as sounds and gestures, with writing being
invented much later. Computer language is the opposite. While interaction
did start with pushing buttons and flipping switches when computers still had

268 Chapter 10

front panels, it quickly evolved to written language, with gesture and sound
recognition coming later. Humans would type and computers would “type
back” on terminals (see “Terminals” on page 176).

You probably use a graphical user interface (GUI) to communicate with
your computer. It’s actually pretty Stone Age if you think about it. “Ugh!
Look! Button! Press! Friend! Cat video! Like! Tweet Tweet Tweet!” GUIs mostly
use gestural language, which works well for casual computer users because
it doesn’t rely too much on users’ memories—or at least it didn’t in the days
before all the icons were changed to be universally unrecognizable.

Most computer systems still support a written command line interface
behind all the fancy graphics. Terminals are now implemented in software
instead of being a piece of hardware external to the computer. You’ll get a
command prompt if you open up the terminal application on your computer;
you can type in it, and it will respond.

Instead of using buttons for yes and no, the C version of our program
expects the player to type y or n into the terminal program, followed by the
enter, return, or ↵ key (depending on keyboard). The player similarly types
in new animal names and questions. The program also accepts q to quit.

Building the Program
Because C is a compiled language, we can’t just “run” the source code
like we could with the interpreted JavaScript version. We have to convert
it into machine language first. We can do this pretty easily using the com-
mand line. If the source is in a file named, for example, gta.c, you can gen-
erate a machine language file called gta by typing the command shown in
Figure 10-5 into your terminal.

cc gta.c -o gta

Output file name comes next

Source file name

C compiler

Output file name

Figure 10-5: Building the program

Once you have the output file, you can typically just type its name to
run it.

Terminals and Device Drivers
A terminal is an I/O device, and—as mentioned in “System and User Space”
on page 133—user programs don’t talk to I/O devices directly; the operat-
ing system mediates, as shown in Figure 10-6.

Application and System Programming 269

User
program

System calls

Terminal Device
driver

Operating
system

Figure 10-6: I/O device mediation

Back when terminals were separate devices, the computer and the ter-
minal were connected through an RS-232 serial connection (see “Serial
Communication” on page 152). There were physical wires connecting
terminals and computers. Operating systems still pretend that this type
of connection exists today, mimicking it in software so that legacy pro-
grams continue to work unmodified.

Context Switching
The device driver is more complicated than it seems because a primary
reason we have operating systems is so that more than one user program
can run at the same time. Because the computer has only one set of registers,
the OS must save and restore their contents when switching between user
programs. There’s actually a lot of stuff that needs to be saved and restored
other than the CPU registers, including the MMU registers and state of any
I/O. The whole pile is called the process context, or just context. We don’t want
to do context switching frivolously because the size of the context makes it
comparatively expensive. The system call process is shown in Figure 10-7.

Can we
do what’s
requested?

Sleep user program

Save context

Find ready program

Fulfill request

Wake up program

Restore context

Operating system

User program

No

Yes

Figure 10-7: Context switching

As you can see, a lot of work happens behind the scenes when a sys-
tem call is made. And, as mentioned back in “Relative Addressing” on
page 128, sometimes the OS will sleep a user program, even when it can
fulfill a request, in order to give another user program a chance to run.

270 Chapter 10

We don’t want to do a context switch every time a user presses a key.
One way to minimize context switching in this case is to realize we usually
don’t care what the user is typing until they hit enter. The user program
uses a system call to indicate that it wants to read from the terminal. This
puts the user program to sleep, because it can’t do anything while it’s
waiting, which allows the OS to perform some other operation, such as
switching to run another program. The device driver that handles the idio-
syncrasies of the physical device can save characters from the terminal in a
buffer and wake up the user program only when the user hits enter instead
of on every keypress.

What’s a buffer? We saw one back in Figure 6-25; it’s a first- in, first- out
(FIFO) data structure, at least in software land. (In hardware land, a buffer
is often a circuit used to protect delicate components from buffoons.)
Figure 10-8 depicts a FIFO, also known as a queue, which is similar to
being in line at the grocery store. As with stacks, a FIFO can overflow
by running out of space and underflow by fetching from an empty queue.

In Outg do

Figure 10-8: Dog in queue

Terminals usually operate in full- duplex mode (see “Serial Communica-
tion” on page 152), which means there is no direct connection between the
keyboard and the display; the keyboard sends data to the computer, and the
display receives data from the computer. Originally, as mentioned earlier,
there were separate physical wires for each direction. It’s not enough, then,
for the terminal device driver to buffer up the input because the user will
get confused unless what they type is echoed so they can see it. And terminals
are often slower than programs that write to them, so an output buffer is used
in addition to the input buffer. A program is put to sleep if it tries to write to
a full output buffer. The driver might provide the user some feedback, such
as beeping if the input buffer becomes full. The part of the driver that we’ve
been discussing looks like Figure 10-9.

Input buffer

Echo

Output buffer

Terminal

Device driver

Figure 10-9: Terminal device driver buffering and echoing

Application and System Programming 271

Real device drivers are more complicated. Additional system calls
are used to modify the driver settings. Echoing can be turned on and off.
Buffering can be turned off, which is known as raw mode, whereas turning
it on is known, of course, as cooked mode. The key(s) that wake up the user
program can be set, along with much more, such as which key erases char-
acters (usually backspace or delete).

Standard I/O
Buffering in the device driver solves only part of the problem. User pro-
grams have similar issues. It doesn’t do any good to have the device driver
buffer up input just to have a user program make a system call for each char-
acter. The output buffer doesn’t help too much if the user program makes a
system call to write each character. This is a common enough situation that
it prompted the creation of the standard input/output library (stdio), which
contains buffered I/O functions for user programs.

The stdio library supports buffered input, in which as much input as
possible is read from the device driver in a single system call and placed
into a buffer. The user program gets characters from the buffer until it’s
empty, then tries to get more. On the output side, characters are buffered
until either the buffer is full or an important character such as a newline
occurs. Together it looks like Figure 10-10.

Input buffer

Echo

Output buffer

Terminal

Device driver

Input buffer

Output buffer

User
code

stdio

Operating system User program

System Calls

Figure 10-10: User program with stdio buffering

Seems like a lot of work just to make things run efficiently! And we’re
not done yet. How does the user program get connected to the terminal
device driver?

It’s way easier to reference someone by their name than it is to provide
their complete description, and operating systems take a similar approach
to access files. The open system call converts a filename into a handle or file
descriptor that can be used to reference the file until it is closed via the close
system call. This is akin to getting a claim ticket when you check your back-
pack in a museum. The stdio library includes analogous fopen and fclose

272 Chapter 10

functions that use the system calls but also set up and tear down the buffer-
ing system. Because the UNIX abstractions treat devices just like files, you
can open a special file such as /dev/tty to access a terminal device.

Circular Buffers
Earlier I said queues are like being in line at a grocery store. Although they
do have that outward appearance, that’s not how buffers such as the stdio
output buffer in Figure 10-10 are actually implemented.

Think about what happens in a grocery line. When the person in front
is done, everybody else in line must move forward one position. Let’s queue
up a frog, as shown in Figure 10-11. As you can see, we need to keep track of
the end of the line so we know where to insert things.

frog rog

f gorf

og

rf

g

orf

Figure 10-11: Inserting into a queue

Now let’s look at what happens when the frog is removed from the
queue (Figure 10-12).

gorf

f

gor go

fr

g

fro frog

Figure 10-12: Removing from a queue

As you can see, a lot of work is involved. When the f is removed, the r
must be copied to where the f was, then the o to where the r was, and so on.
Let’s try a different approach. Rather than everyone in the line moving, let’s
have the checker get some exercise in Figure 10-13.

gorf

f

or g go

fr

g

fro frog

Figure 10-13: Removing from a queue by moving the checker

This is a lot less work, except for the checker. But it causes a new problem.
At some point, the line backs up to the door even though there’s space at
the front. Nobody else can get in line.

Application and System Programming 273

What we need is some way to funnel new people into the space at the
front of the line. We can do this by bending the line so that it’s circular, as
shown in Figure 10-14.

g o

r

f

In

Out

Figure 10-14: Circular buffer

As you can see, data can be added to the queue as long as the in arrow
is clockwise from the out arrow. Likewise, data in the queue can be removed
as long as the out arrow is counterclockwise from the in arrow. A bit of arith-
metic is needed to wrap around from the end of the buffer to the beginning.
The next location is the current one plus 1, modulo the buffer size.

These structures have many names, including circular buffers, circular
queues, and ring buffers. They’re a pretty standard approach, and not just in
stdio or device drivers.

Better Code Through Good Abstractions
Every time we play the Guess the Animal game, we start over from scratch
with a program that knows only about cats and dogs. It would be nice if we
could remember our game and continue where we left off. That’s easy to do
in our C program; it’s a side benefit that results from the file abstraction.

Adding such a feature to the JavaScript version is much more difficult.
Figure 10-15 illustrates why.

Guess the animal

Browser

Operating system

Input Files

FilesDevices

Guess the animal

Operating system

FilesDevices

Figure 10-15: Browser and operating system interfaces

274 Chapter 10

You can see that the OS has a single interface that works for both devices
and files. This interface is used both by the browser on the left and by the
C version of the program on the right. That means the C program, like the
browser, can use the same code to read input from a file as it does to read
user input from a device. But the browser doesn’t pass this abstraction on
to the JavaScript programmer. Instead, a completely separate piece of code
using a completely different interface would be needed to add the new fea-
ture there. The choice of interface can have a big impact on both the ease
of programming and the clarity of the result.

Some Mechanics
Back to our C program. Getting a C program ready to run requires compil-
ing it and then linking it to other code that it uses, such as the stdio library.
The section “Running Programs” on page 137 mentions that a runtime
library is also included; the C version is often named crt0. It’s responsible
for tasks like setting up the stack and the heap so they’re ready to use. It
also opens up a pair of files that are connected to the terminal device driver
by default, one for input and one for output.

The stdio library maps the system file descriptors into file pointers,
addresses that reference the data structures that it uses for buffering and
bookkeeping. It starts with three: stdin (standard input), stdout (standard
output), and stderr (standard error). The intent is for things that are
important to go to stderr instead of stdout; they both go to the same place,
but stderr is unbuffered and stdout is buffered. If you use stdout for error
messages, they get buffered, and you may never see them if your pro-
gram crashes. The file pointers stdout and stderr share the same file
descriptor, as shown in Figure 10-16, unless changed.

stdin

stdout

stderr

File descriptor 0

File descriptor 1

User program

Operating
system

Figure 10-16: The file pointers stdin, stdout, and stderr

Invention is often sparked by strange events. According to Steve Johnson,
stderr was not part of the original stdio library; it was added as a side effect
of the development of the first computer typesetting software (troff, written
by Joseph Ossanna, 1928–1977) for the C/A/T photoypesetter. You take
laser and inkjet printing for granted, but this beast projected images onto
silver photographic paper, which then had to be developed. That became

Application and System Programming 275

very expensive when the Hunt brothers cornered the silver market, and
folks were asked to cut down on phototypesetter use. It was not uncommon
to send a job to the typesetter only to get back a beautifully formatted page
containing a cannot open file error message. The stderr file pointer was born
so that error messages could go to the terminal instead of to the typesetter
in order to save money.

Buffer Overflow
As long as we’re on the subject of stdio, let’s talk about a class of very serious
system programming errors called buffer overflow. When stdio was originally
written, it included a function called gets that read a string up to the next
newline character from stdin into a user- supplied buffer. We could use it as
shown in Listing 10-6 to read the y, n, or q response; there’s room in buffer
for the character and a NUL terminator.

1 char buffer[2];
2
3 gets(buffer);

Listing 10-6: Using gets to read input

Why might this be a problem? Because gets doesn’t check to make sure
that the input doesn’t run off the end of the buffer. Say we have a more
serious program that also has a variable named launch_missiles, which just
happens to be the next thing in memory (Figure 10-17).

Memory

buffer[1]

buffer[0]

launch_missiles

Figure 10-17: Buffer
overflow in memory

A malicious user might discover that answering yyy would store a y in
launch_missiles, which for all intents and purposes is the same as the non-
existent buffer[2]. That could get really ugly. As a matter of fact, it has. A
very large number of discovered security issues result from exactly this sort
of buffer overflow bug. This was fixed in stdio by the addition of an fgets
function that checks bounds. But be careful—there are many, many ways
in which buffer overflow bugs can occur. Never, ever assume that buffer sizes
are big enough! There’s more detail about buffer overflows in Chapter 13.

The C Program
There are many C libraries in addition to stdio. The string library, for
 example, includes functions for comparing and copying strings, and the
catchall standard library stdlib includes functions for memory management.

276 Chapter 10

Listing 10-7 shows the C program for our game’s prologue. The first
part brings in the library information we need (lines 1–3). Next, a node
structure is declared (lines 5–9) that contains pointers to two leaves and a
placeholder for the question or animal string. Note that we didn’t have to
do something like this in our JavaScript version because we took advantage
of the existing HTML <div>; had we not done that, there would have been
a JavaScript equivalent. Notice that the node structure is defined such that
we can allocate the node and string together, as in “More Efficient Memory
Allocation” on page 196.

1 #include <stdio.h> // standard I/O library
2 #include <stdlib.h> // standard library for exit and malloc
3 #include <string.h> // string library
4
5 struct node {
6 struct node *no; // references no answer node
7 struct node *yes; // references yes answer node
8 char string[1]; // question or animal
9 };

Listing 10-7: Guess the Animal in C: prologue

Next, we define a function to help with memory allocation (Listing 10-8).
Although memory allocation is no big deal, we need to do it in several places,
and it gets tedious to check for errors each time. More recent languages
include exception- handling constructs that make this sort of thing simpler.

Since the only time that we need to allocate memory is when making
a new node, we use a function that takes the string to install in the node. In
addition to allocating memory, the string is copied into the node, and the
yes and no pointers are initialized.

10 struct node *
11 make_node(char *string)
12 {
13 struct node *memory; // newly allocated memory
14
15 if ((memory = (struct node *)malloc(sizeof (struct node) + strlen(string))) == (struct node *)0) {
16 (void)fprintf(stderr, "gta: out of memory.\n");
17 exit(-1);
18 }
19
20 (void)strcpy(memory->string, string);
21 memory->yes = memory->no = (struct node *)0;
22
23 return (memory);
24 }

Listing 10-8: Guess the Animal in C: memory allocator

Application and System Programming 277

We use the fprintf function in stdio for our error message because, as
discussed earlier, things sent to stderr are unbuffered, which gives us a better
chance of seeing the message if the program fails unexpectedly.

Note that the cast operator is used to cast the fprintf as void on line 16.
When fprintf returns a value that we’re ignoring, the cast tells the compiler
that we’re doing it deliberately, instead of forgetting to check something,
so that it doesn’t generate warning messages. It also informs someone read-
ing the code that the return value is being deliberately ignored, so it’s not a
mistake. Recent changes to some compilers eliminate these warnings unless
explicitly requested.

The call to exit on line 17 terminates the program. That’s the only
 reasonable option when there isn’t enough memory available to continue
running the program.

The printf (print formatted) function is part of stdio and has made its
way into many other languages. The first argument is a format string that
determines the interpretation of the remainder of the arguments. A % fol-
lowed by a code means “replace me with the next argument according to
the code.” In this case, %s means “treat the next argument as a string.”

The rest of the program is shown in Listing 10-9.

 25 int
 26 main(int argc, char *argv[])
 27 {
 28 char animal[50]; // new animal name buffer
 29 char buffer[3]; // user input buffer
 30 int c; // current character from buffer
 31 struct node **current; // current tree traversal node
 32 FILE *in; // input file for training data or typing
 33 struct node *new; // newly created node
 34 FILE *out; // output file for saving training data
 35 char *p; // newline removal pointer
 36 char question[100]; // new question buffer
 37 struct node *root; // root of the tree of knowledge
 38
 39 // Process the command line arguments.
 40
 41 in = out = (FILE *)0;
 42
 43 for (argc--, argv++; argc > 1 && argc % 2 == 0; argc -= 2, argv += 2) {
 44 if (strcmp(argv[0], "-i") == 0 && in == (FILE *)0) {
 45 if ((in = fopen(argv[1], "r")) == (FILE *)0) {
 46 (void)fprintf(stderr, "gta: can't open input file `%s'.\n", argv[1]);
 47 exit(-1);
 48 }
 49 }
 50
 51 else if (strcmp(argv[0], "-o") == 0 && out == (FILE *)0) {

278 Chapter 10

 52 if ((out = fopen(argv[1], "w")) == (FILE *)0) {
 53 (void)fprintf(stderr, "gta: can't open output file `%s'.\n", argv[1]);
 54 exit(-1);
 55 }
 56 }
 57
 58 else
 59 break;
 60 }
 61
 62 if (argc > 0) {
 63 (void)fprintf(stderr, "usage: gta [-i input- file- name] [-o output- file- name]\n");
 64 exit(-1);
 65 }
 66
 67 // Read from standard input if no input file was specified on the command line.
 68
 69 if (in == (FILE *)0)
 70 in = stdin;
 71
 72 // Create the initial tree of knowledge.
 73
 74 root = make_node("Does it bark");
 75 root->yes = make_node("dog");
 76 root->no = make_node("cat");
 77
 78 for (;;) { // play games until the user quits.
 79
 80 if (in == stdin)
 81 (void)printf("Think of an animal.\n");
 82
 83 current = &root; // start at the top
 84
 85 for (;;) { // play a game
 86
 87 for (;;) { // get valid user input
 88 if (in == stdin) {
 89 if ((*current)->yes == (struct node *)0)
 90 (void)printf("Is it a ");
 91
 92 (void)printf("%s?[ynq] ", (*current)->string);
 93 }
 94
 95 if (fgets(buffer, sizeof (buffer), in) == (char *)0 || strcmp(buffer, "q\n") == 0) {
 96 if (in != stdin) {
 97 (void)fclose(in);
 98 in = stdin;
 99 }
100 else {
101 if (in == stdin)
102 (void)printf("\nThanks for playing. Bye.\n");
103 exit(0);
104 }
105 }

Application and System Programming 279

106 else if (strcmp(buffer, "y\n") == 0) {
107 if (out != (FILE *)0)
108 fputs("y\n", out);
109
110 current = &((*current)->yes);
111
112 if (*current == (struct node *)0) {
113 (void)printf("I knew it!\n");
114 break;
115 }
116 }
117 else if (strcmp(buffer, "n\n") == 0) {
118 if (out != (FILE *)0)
119 fputs("n\n", out);
120
121 if ((*current)->no == (struct node *)0) {
122 if (in == stdin)
123 (void)printf("I give up. What is it? ");
124
125 fgets(animal, sizeof (animal), in);
126
127 if (out != (FILE *)0)
128 fputs(animal, out);
129
130 if ((p = strchr(animal, '\n')) != (char *)0)
131 *p = '\0';
132
133 if (in == stdin)
134 (void)printf(
135 "What's a good question that I could use to tell a %s from a %s? ",
136 animal, (*current)->string);
137 fgets(question, sizeof (question), in);
138
139 if (out != (FILE *)0)
140 fputs(question, out);
141
142 if ((p = strchr(question, '\n')) != (char *)0)
143 *p = '\0';
144
145 new = make_node(question);
146 new->yes = make_node(animal);
147 new->no = *current;
148 *current = new;
149
150 if (in == stdin)
151 (void)printf("Thanks! I'll remember that.\n");
152
153 break;
154 }
155
156 else
157 current = &((*current)->no);
158 }
159 else {

280 Chapter 10

160 if (in == stdin)
161 (void)printf("Huh? Please answer y for yes, n for no, or q for quit.\n");
162
163 while ((c = getc(in)) != '\n' && c != EOF)
164 ;
165 }
166 }
167
168 break;
169 }
170
171 if (in == stdin)
172 (void)printf("Let's play again.\n\n");
173 }
174 }

Listing 10-9: Guess the Animal in C: mainline

There’s nothing particularly interesting about this code except the
memory management, as the program does pretty much the same thing
as the JavaScript version. Lines 28 through 37 declare variables. Lines 74
through 76 create the initial nodes depicted in Figure 10-18. Note that all
the strings are NUL- terminated ('\0').

root

D o e s i t b a r k \0

cat

c a t \0

dog

d o g \0

no yes

yesno no yes

Figure 10-18: Guess the Animal in C: initial nodes

Let’s play the game as we did earlier in “Guess the Animal Version 1:
HTML and JavaScript” on page 262. After the player supplies a new ques-
tion, a new node is allocated for it. There are a couple of points of interest
here. Be careful getting the length of a string using the strlen (string length)
function. It returns the actual length of the string, not the amount of
memory used, which is 1 byte more to account for the NUL terminator.
But notice that we don’t add 1 when allocating memory for strings because
of the way we’re allocating memory for the node, which already includes
the extra byte.

Whenever we descend the tree in response to a yes or no answer, we
keep a current pointer to make it easy to insert the new question node. We
need to detach either the yes or no, which we do by having current point to

Application and System Programming 281

whatever node pointer is being replaced. Because current points to a node
pointer, it’s a pointer to a pointer. When we say *current = new; we’re deref-
erencing the pointer and saying “replace whatever the pointer is pointing
to.” In Figure 10-19, the no pointer in the new node is set to current, which is
the old answer, and current points to the yes pointer in the root node, which
gets replaced with the pointer to the new node.

root

no yes

D o e s i t b a r k \0

cat

no yes

c a t \0

*current = new

dog

no yes

d o g \0

yesno

D o e s i t l i v e i n a a x i e t yn n l o s e tc \0

yesno

p u r p l e p o t t e d n k e w h a co l re \0s s r k

current
new

new->no =*current

Figure 10-19: Guess the Animal in C: adding new nodes

Training
Recall that our C program can be run with command line options for read-
ing and writing training data. We can run the program as follows:

prompt> gta -o training
Think of an animal.
Does it bark?
n
Is it a dog?
n
I give up. What is it?
giant purple snorklewhacker
What's a question that I could use to tell a giant purple snorklewhacker from a dog?
Does it live in an anxiety closet?
Thanks. I'll remember that.
Let's play again.
Think of an animal.
Does it bark?
q
Thanks for playing. Bye.

282 Chapter 10

Now, if you look in the training file, you’ll see that it contains exactly what
you typed:

n
n
giant purple snorklewhacker
Does it live in an anxiety closet?

If we rerun the program as:

prompt> gta -i training

the contents of the training file will get read in so that the program starts
where we left off.

Way back in “What Is Computer Programming?” on page xxix, I men-
tioned that you need to know a lot about everything in order to be a good
programmer. Our program isn’t very good grammatically. It works fine if
the animal is a dog, because it will ask Is it a dog?. But what if it’s an ele-
phant? It’s not grammatically correct to ask Is it a elephant?. What are the
rules for making sure the grammar is correct? Can you modify the code to
make it grammatically more better?

Summary
In this chapter, you’ve seen a program written in two ways: once as a high-
level application and once as a lower- level system program. On one hand,
writing high- level application programs can be easier because many small
details are handled automatically. On the other hand, some features, such
as recording and playback, are much more difficult to implement in envi-
ronments that don’t include uniform interfaces.

Furthermore, using very complex application environments for simple
applications increases the likelihood of bugs. The probability of bugs is the
sum of your application code and the code for the environment in which
it runs. How many times has your browser begun running very slowly and
needed to be restarted, usually due to internal memory management errors?
How often has your browser just crashed?

You’ve seen that system programming involves much more attention
to detail, such as the management of strings, memory, and buffers. But these
details are important when the goal is to craft code that is concise and
secure. In the next chapter, we’ll look at a different type of detail: struc-
turing problems so that they’re easier to solve.

11
S H O R T C U T S A N D

A P P R O X I M A T I O N S

So far, we’ve spent a lot of time looking at
how to compute efficiently, especially with

regard to memory usage. But there’s one
thing that’s better than computing efficiently,

and that’s not computing at all. This chapter looks
at two ways to avoid computing: taking shortcuts and
approximating.

We think of computers as very exact and precise. But, as we saw in
“Representing Real Numbers” on page 14, they really aren’t. We can write
code to be as exact as we want. For example, the UNIX bc utility is an arbi-
trary precision calculator that’s perfect if you need lots of accuracy, but it’s
not a very efficient approach because computer hardware doesn’t support
arbitrary precision. This leads to the question, how close is good enough
for a particular application? Effective use of computing resources means
not doing more work than necessary. Calculating all the digits of π before
using it is just not rational!

284 Chapter 11

Table Lookup
Many times it’s simpler and faster to look something up in a table than to
do a calculation. We’ll look at a few examples of this approach in the follow-
ing subsections. Table lookup is similar to the loop-invariant optimization
that was discussed in Chapter 8 in that if you’re going to use something a
lot, it often makes sense to calculate it once in advance.

Conversion
Suppose we need to read a temperature sensor and display the result in
tenths of a degree Celsius (°C). A clever hardware designer has given us a
circuit that produces a voltage based on the measured temperature that we
can read using an A/D converter (see “Analog- to- Digital Conversion” on
page 162). The curve looks like Figure 11-1.

Temperature

Voltage

Figure 11-1: Temperature sensor curve

You can see that the curve is not a convenient straight line. We can
calculate the temperature (t) from the voltage (v) using the following
formula, where A, B, and C are constants determined by the particular
model of sensor:

t
A B v C ve e

�
� � � �� �

1
2

log log

As you can see, a lot of floating- point arithmetic is involved, including
natural logarithms, which is costly. So let’s skip it all. Instead, let’s build a
table that maps voltage values into temperatures. Suppose we have a 10-bit
A/D and that 8 bits is enough to hold our temperature value. That means
we only need a 1,024-byte table to eliminate all the calculation, as shown in
Figure 11-2.

Conversion table

TemperatureVin D0–n

Figure 11-2: Table lookup conversion

Shortcuts and Approximations 285

Texture Mapping
Table lookup is a mainstay of texture mapping, a technique that helps provide
realistic- looking images in video games and movies. The idea behind it is
that pasting an image onto an object such as a wall takes a lot less computa-
tion than algorithmically generating all the detail. This is all well and good,
but it has its own issues. Let’s say we have a brick wall texture such as the one
in Figure 11-3.

Figure 11-3: Brick wall texture

Looks pretty good. But video games aren’t static. You might be run-
ning away from a brick wall at high speed because you’re being chased by
zombies. The appearance of the brick wall needs to change based on your
distance from it. Figure 11-4 shows how the wall looks from a long distance
away (on the left) and from very close (on the right).

Figure 11-4: Brick wall texture at different distances

As you might expect, adjusting the texture for distance is a lot of work.
As the viewpoint moves farther away from the texture, adjacent pixels must
be averaged together. It’s important to be able to do this calculation quickly
so that the image doesn’t jump around.

Lance Williams (1949–2017) at the New York Institute of Technology
Graphics Language Laboratory devised a clever approach called MIP mapping
(named from the Latin multum in parvo, meaning “many things in a small
place”). His paper on this topic, entitled “Pyramidal Parametrics,” was pub-
lished in the July 1983 SIGGRAPH proceedings. His method is still in use
today, not only in software but also in hardware.

286 Chapter 11

As we saw in “Representing Colors” on page 27, a pixel has three 8-bit
components, one each for red, green, and blue. Williams noticed that on
32-bit systems, a quarter of the space was left over when these components
were arranged in a rectangular fashion, as shown in Figure 11-5.

B G

R

Figure 11-5: Color component
arrangement with leftover space

He couldn’t just let that space go to waste, so he put it to good use
in a different way than Tom Duff and Thomas Porter did (see “Adding
Transparency” on page 29). Williams noticed that because it was one-
fourth of the space, he could put a one- fourth- size copy of the image into
that space, and then another one- fourth- size copy into that space, and so
on, as shown in Figure 11-6. He called this arrangment a MIP map.

R R
RB

B

B

G
R

B G

G

G

Figure 11-6: Multiple
image layout

Making a MIP map out of our brick wall texture results in the image
shown in Figure 11-7 (you’ll have to imagine the color components in this
grayscale image).

Figure 11-7: MIP mapped texture

Shortcuts and Approximations 287

As you can see, there’s a lot more detail in the closer- up images, where
it’s important. This is interesting, but other than being a clever storage mech-
anism, what use is it? Take a look at Figure 11-8, which unfolds one of the
colors of the MIP map into a pyramid.

Figure 11-8: MIP map pyramid

The image at the tip of the pyramid is what things look like from far
away, and there’s more detail as we head toward the base. When we need
to compute the actual texture to display for the position of the eye in
Figure 11-8, we don’t need to average together all the pixels in the base
image; we just need to use the pixels in the nearest layer. This saves a lot
of time, especially when the vantage point is far away.

288 Chapter 11

Precomputing information that’s going to be used a lot—in this case,
the lower-resolution versions of the texture—is equivalent to loop-invariant
optimization.

Character Classification
Table lookup methods had a big influence on the addition of libraries to
the programming language C. Back in Chapter 8, we saw that character
classification—deciding which characters were letters, numbers, and so on—
is an important part of lexical analysis. Going back to the ASCII code chart
in Table 1-10, you could easily write code to implement classification, such
as that shown in Listing 11-1.

int
isdigit(int c)
{
 return (c >= '0' && c <= '9');
}

int
ishexdigit(int c)
{
 return (c >= '0' && c <= '9' || c >= 'A' && c <= 'F' || c >= 'a' && c <= 'f');
}

int
isalpha(int c)
{
 return (c >= 'A' && c <= 'Z' || c >= 'a' && c <= 'z');
}

int
isupper(int c)
{
 return (c >= 'A' && c <= 'Z');
}

Listing 11-1: Character classification code

Some at Bell Labs suggested putting commonly useful functions, such
as the ones in Listing 11-1, into libraries. Dennis Ritchie (1941–2011) argued
that people could easily write their own. But Nils- Peter Nelson in the com-
puter center had written an implementation of these routines that used a
table instead of a collection of if statements. The table was indexed by char-
acter value, and each entry in the table had bits for aspects like uppercase,
lowercase, digit, and so forth, as shown in Figure 11-9.

Shortcuts and Approximations 289

HEXADECIMAL
DIGIT

LOWER
UPPER

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0

0 0 1 1 0 1 0 0
0 0 1 1 0 1 0 0

0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 0

0 1 0 0 0 1 0 0

1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0

1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1

48
49

65
66

97
98

90

122

127

32
33
34

PUNCTUATION
PRINTING
CONTROL
SPACE

NUL
SOH

0
1

A
B

a
b

Z

z

DELETE

SPACE
!
"

Figure 11-9: Character classification table

Classification, in this case, involved looking up the value in the table
and checking the bits, as shown in Listing 11-2.

unsigned char table[128] = [...];

#define isdigit(c) (table[(c) & 0x7f] & DIGIT)
#define ishexdigit(c) (table[(c) & 0x7f] & HEXADECIMAL)
#define isalpha(c) (table[(c) & 0x7f] & (UPPER | LOWER))
#define isupper(c) (table[(c) & 0x7f] & UPPER)

Listing 11-2: Table- driven character classification code

As you can see, the functions in Listing 11-2 are simpler than those in
Listing 11-1. And they have another nice property, which is that they’re all
essentially the same code; the only difference is the value of the constants
that are ANDed with the table contents. This approach was 20 times faster
than what anybody else had done, so Ritchie gave in and these functions
were added as a library, setting the stage for additional libraries.

290 Chapter 11

N O T E You’ll notice that I use macros in Listing 11-2 but functions in Listing 11-1. In case
you haven’t seen macros before, they’re a language construct that substitutes the code
on the right for the code on the left. So, if your source code included isupper('a'),
the language preprocessor would replace it with table[('a') & 0x7f] & UPPER.
This is great for small chunks of code because there’s no function call overhead. But the
code in Listing 11-1 couldn’t reasonably be implemented using macros because we have
to handle the case where someone does isupper(*p++). If the code in Listing 11-1 were
implemented as macros, then in ishexdigit, for example, p would be incremented six
times, which would be a surprise to the caller. The version in Listing 11-2 references
the argument only once, so that doesn’t happen.

Integer Methods
It should be obvious from the earlier discussion of hardware that some opera-
tions are cheaper to perform in terms of speed and power consumption than
others. Integer addition and subtraction are inexpensive. Multiplication and
division cost more, although we can multiply and divide by 2 cheaply using
shift operations. Floating- point operations are considerably more expensive.
Complex floating- point operations, such as the calculation of trigonometric
and logarithmic functions, are much more expensive. In keeping with the
theme for this chapter, it would be best if we could find ways to avoid using
the more expensive operations.

Let’s look at some visual examples. Listing 11-3 modifies the web page
skeleton from Listing 10-1 to have style, a script fragment, and a body.

 1 <style>
 2 canvas {
 3 border: 5px solid black;
 4 }
 5 </style>
 6 ...
 7 <script>
 8 $(function() {
 9 var canvas = $('canvas')[0].getContext('2d');
10
11 // Get the canvas width and height. Force them to be numbers
12 // because attr yields strings and JavaScript often produces
13 // unexpected results when using strings as numbers.
14
15 var height = Number($('canvas').attr('height'));
16 var width = Number($('canvas').attr('width'));
17
18 canvas.translate(0, height);
19 canvas.scale(1, -1);
20 });
21 </script>
22 ...
23 <body>
24 <canvas width="500" height="500"></canvas>
25 </body>

Listing 11-3: Basic canvas

Shortcuts and Approximations 291

I briefly mentioned canvases back in “HTML5” on page 255. A canvas
is an element on which you can do free- form drawing. You can think of it as
a piece of graph paper.

The canvas “graph paper” isn’t exactly what you’re used to because it
doesn’t use the standard Cartesian coordinate system by default. This is
an artifact of the direction in which the raster was drawn on televisions
(see “Raster Graphics” on page 180); the raster starts at the upper left.
The x- coordinate behaves normally, but the y- coordinate starts at the top
and increases downward. This coordinate system was kept when television
monitors were repurposed for computer graphics.

Modern computer graphics systems support arbitrary coordinate sys-
tems for which graphics hardware often includes support. A transformation is
applied to every (x, y) coordinate you specify and maps your coordinates to
the screen coordinates (x', y') using the following formulas:

� � � �x Ax By C

� � � �y Dx Ey F

The C and F terms provide translation, which means they move things
around. The A and E terms provide scaling, which means they make things
bigger and smaller. The B and D terms provide rotation, which means they
change the orientation. These are often represented in matrix form.

For now, we just care about translation and scaling to convert the can-
vas coordinate system into a familiar one. We translate downward by the
height of the canvas on line 13 and then flip the direction of the y- axis on
line 14. The order matters; if we did these translations in the reverse order,
the origin would be above the canvas.

Graphics are effectively created from blobs of primary colors plopped
on a piece of graph paper (see “Representing Colors” on page 27). But
how fine a piece of graph paper do we need? And how much control do we
need over the color blob composition?

The width and height attributes on line 19 set the size of the canvas in
pixels (see “Digital Images” on page 173). The resolution of the display is
the number of pixels per inch (or per centimeter). The size of the canvas
on your screen depends on the resolution of your screen. Unless it’s a real
antique, you probably can’t see the individual pixels. (Note that the reso-
lution of the human eye isn’t a constant across the field of vision; see “A
Photon Accurate Model of the Human Eye,” Michael Deering, SIGGRAPH
2005.) Even though current UHD monitors are awesome, techniques such
as supersampling are still needed to make things look really good.

We’ll start by drawing things at a very low resolution so we can see the
details. Let’s make some graph paper by adding a JavaScript function that
clears the canvas and draws a grid, as shown in Listing 11-4. We’ll also use
a scaling transformation to get integer value grid intersections. The scale
applies to everything drawn on the canvas, so we have to make the line
width smaller.

292 Chapter 11

 1 var grid = 25; // 25 pixel grid spacing
 2
 3 canvas.scale(grid, grid);
 4 width = width / grid;
 5 height = height / grid;
 6 canvas.lineWidth = canvas.lineWidth / grid;
 7 canvas.strokeStyle = "rgb(0, 0, 0)"; // black
 8
 9 function
10 clear_and_draw_grid()
11 {
12 canvas.clearRect(0, 0, width, height); // erase canvas
13 canvas.save(); // save canvas settings
14 canvas.setLineDash([0.1, 0.1]); // dashed line
15 canvas.strokeStyle = "rgb(128, 128, 128)"; // gray
16 canvas.beginPath();
17
18 for (var i = 1; i < height; i++) { // horizontal lines
19 canvas.moveTo(0, i);
20 canvas.lineTo(height, i);
21 }
22
23 for (var i = 1; i < width; i++) { // vertical lines
24 canvas.moveTo(i, 0);
25 canvas.lineTo(i, width);
26 }
27
28 canvas.stroke();
29 canvas.restore(); // restore canvas settings
30 }
31
32 clear_and_draw_grid(); // call on start- up

Listing 11-4: Drawing a grid

Straight Lines
Now let’s draw a couple of lines by placing colored circles on the grid in
Listing 11-5. One line is horizontal, and the other has a slope of 45 degrees.
The diagonal line blobs are slightly bigger so we can see both lines at the
point where they intersect.

 1 for (var i = 0; i <= width; i++) {
 2 canvas.beginPath();
 3 canvas.fillStyle = "rgb(255, 255, 0)"; // yellow
 4 canvas.arc(i, i, 0.25, 0, 2 * Math.PI, 0);
 5 canvas.fill();
 6
 7 canvas.beginPath();
 8 canvas.fillStyle = "rgb(255, 0, 0)"; // red
 9 canvas.arc(i, 10, 0.2, 0, 2 * Math.PI, 0);
10 canvas.fill();
11 }

Listing 11-5: Horizontal and diagonal lines

Shortcuts and Approximations 293

As you can see in Figure 11-10 and by running the program, the pixels
are farther apart on the diagonal line than they are on the horizontal
line (2 1− farther apart, according to Pythagoras). Why does this matter?
Because both lines have the same number of pixels emitting light, but when
the pixels are farther apart on the diagonal line, the light density is less,
making it appear dimmer than the horizontal line. There’s not much you
can do about it; designers of displays adjust the shape of the pixels to mini-
mize this effect. It’s more of an issue on cheaper displays than on desktop
monitors and phones.

1

1

2

Figure 11-10: Pixel spacing

The horizontal, vertical, and diagonal lines are the easy cases. How
do we decide what pixels to illuminate for other lines? Let’s make a line-
drawing program. We’ll start by adding some controls after the canvas ele-
ment in the body, as shown in Listing 11-6.

1 <div>
2 <label for="y">Y Coordinate: </label>
3 <input type="text" size="3" id="y"/>
4 <button id="draw">Draw</button>
5 <button id="erase">Erase</button>
6 </div>

Listing 11-6: Basic line- drawing program body

Then, in Listing 11-7, we’ll replace the code from Listing 11-5 with
event handlers for the draw and erase buttons. The draw function uses the
dreaded y = mx + b, with b always being 0 in our case. Surprise! Some stuff
from math is actually used.

 1 $('#draw').click(function() {
 2 if ($('#y').val() < 0 || $('#y').val() > height) {
 3 alert('y value must be between 0 and ' + height);
 4 }
 5 else if (parseInt($('#y').val()) != $('#y').val()) {
 6 alert('y value must be an integer');
 7 }
 8 else {
 9 canvas.beginPath(); // draw ideal line
10 canvas.moveTo(0, 0);
11 canvas.setLineDash([0.2, 0.2]); // dashed line
12 canvas.lineTo(width, $('#y').val());
13 canvas.stroke();
14
15 var m = $('#y').val() / width; // slope

294 Chapter 11

16
17 canvas.fillStyle = "rgb(0, 0, 0)";
18
19 for (var x = 0; x <= width; x++) { // draw dots on grid
20 canvas.beginPath();
21 canvas.arc(x, Math.round(x * m), 0.15, 0, 2 * Math.PI, 0);
22 canvas.fill();
23 }
24
25 $('#y').val(''); // clear y value field
26 }
27 });
28
29 $('#erase').click(function() {
30 clear_and_draw_grid();
31 });

Listing 11-7: Floating- point line- drawing and erase functions

Let’s try this with a y- coordinate of 15. The result should look like
Figure 11-11.

Figure 11-11: Line drawn using
floating- point arithmetic

This looks pretty bad, but if you stand way back, it looks like a line. It’s
as close as we can get. This is not just a computer graphics problem, as any-
one who does cross-stitching can tell you.

Although the program we just wrote works fine, it’s not very efficient.
It’s performing floating- point multiplication and rounding at every point.
That’s at least an order of magnitude slower than integer arithmetic, even
on modern machines. We do get some performance from computing the
slope once in advance (line 15). It’s a loop invariant, so there’s a good chance
that an optimizer (see “Optimization” on page 234) would do this for you
automatically.

Way back in 1962, when floating- point was cost- prohibitive, Jack
Bresenham at IBM came up with a clever way to draw lines without using
floating- point arithmetic. Bresenham brought his innovation to the IBM
patent office, which didn’t see the value in it and declined to pursue a pat-
ent. Good thing, since it turned out to be a fundamental computer graphics
algorithm, and the lack of a patent meant that everybody could use it.

Shortcuts and Approximations 295

Bresenham recognized that the line- drawing problem could be approached
incrementally. Because we’re calculating y at each successive x, we can just
add the slope (line 9 in Listing 11-8) each time through, which eliminates
the multiplication. That’s not something an optimizer is likely to catch; it’s
essentially a complex strength-reduction.

 1 var y = 0;
 2
 3 canvas.fillStyle = "rgb(0, 0, 0)";
 4
 5 for (var x = 0; x <= width; x++) { // draw dots on grid
 6 canvas.beginPath();
 7 canvas.arc(x, Math.round(y), 0.15, 0, 2 * Math.PI, 0);
 8 canvas.fill();
 9 y = y + m;
10 }

Listing 11-8: Incrementally calculating y

We need floating- point arithmetic because the slope
�
�

y
x is a fraction.

But the division can be replaced with addition and subtraction. We can
have a decision variable d and add ∆y on each iteration. The y value is incre-
mented whenever d ≥ ∆x, and then we subtract ∆x from d.

There is one last issue: rounding. We want to choose points in the middle
of pixels, not at the bottom of them. That’s easy to handle by setting the
initial value of d to ½m instead of 0. But we don’t want to introduce a frac-
tion. No problem: we’ll just get rid of the ½ by multiplying it and everything
else by 2 using 2∆y and 2∆x instead.

Replace the code that draws the dots on the grid with Listing 11-9’s
“integer- only” version (we have no control over whether JavaScript uses
 integers internally, unlike in a language like C). Note that this code works
only for lines with slopes in the range of 0 to 1. I’ll leave making it work for
all slopes as an exercise for you.

 1 var dx = width;
 2 var dy = $('#y').val();
 3 var d = 2 * dy - dx;
 4 var y = 0;
 5
 6 dx *= 2;
 7 dy *= 2;
 8
 9 canvas.fillStyle = "rgb(255, 255, 0)";
10 canvas.setLineDash([0,0]);
11
12 for (var x = 0; x <= width; x++) {
13 canvas.beginPath();
14 canvas.arc(x, y, 0.4, 0, 2 * Math.PI, 0);
15 canvas.stroke();
16
17 if (d >= 0) {
18 y++;
19 d -= dx;

296 Chapter 11

20 }
21 d += dy;
22 }

Listing 11-9: Integer line drawing

One interesting question that arises from Listing 11-9 is, why isn’t the
decision arithmetic written as shown in Listing 11-10?

1 var dy_minus_dx = dy - dx;
2
3 if (d >= 0) {
4 y++;
5 d -= dy_minus_dx;
6 }
7 else {
8 d += dy;
9 }

Listing 11-10: Alternate decision code

At first glance, this approach seems better because there’s only one
addition to the decision variable per iteration. Listing 11-11 shows how
this might appear in some hypothetical assembly language such as the one
from Chapter 4.

 load d load d
 cmp #0 cmp #0
 blt a blt a
 load y load y
 add #1 add #1
 store y store y
 load d load d
 sub dx_plus_dy sub dx
 bra b
a: add dy a: add dy
 store d store d
b:

Listing 11-11: Alternate decision code assembly language

Notice that the alternate version is one instruction longer than the
original. And in most machines, integer addition takes the same amount of
time as a branch. Thus, the code we thought would be better is actually one
instruction time slower whenever we need to increment y.

The technique used in Bresenham’s line algorithm can be applied to a
large variety of other problems. For example, you can produce a smoothly
changing color gradient, such as that shown in Figure 11-12, by replacing y
with a color value.

Shortcuts and Approximations 297

Figure 11-12: Color gradient

The gradient in Figure 11-12 was generated using the code shown in
Listing 11-12 in the document ready function.

 1 var canvas = $('canvas')[0].getContext('2d');
 2 var width = $('canvas').attr('width');
 3 var height = $('canvas').attr('height');
 4
 5 canvas.translate(0, height);
 6 canvas.scale(1, -1);
 7
 8 var m = $('#y').val() / width;
 9
10 var dx = width;
11 var dc = 255;
12 var d = 2 * dc - dx;
13 var color = 0;
14
15 for (var x = 0; x <= width; x++) {
16 canvas.beginPath();
17 canvas.strokeStyle = "rgb(" + color + "," + color + "," + color + ")";
18 canvas.moveTo(x, 0)
19 canvas.lineTo(x, height);
20 canvas.stroke();
21
22 if (d >= 0) {
23 color++;
24 d -= 2 * dx;
25 }
26 d += 2 * dc;
27 }

Listing 11-12: Color gradient code

298 Chapter 11

Curves Ahead
Integer methods aren’t limited to straight lines. Let’s draw an ellipse. We’ll
stick to the simple case of ellipses whose axes are aligned with the coordinate
axes and whose center is at the origin. They’re defined by the following
equation, where a is one- half the width and b is one- half the height:

x
a

y
b

2

2

2

2 1� �

Assuming that we’re at the solid black point in Figure 11-13, we need to
decide which of the three possible next points is closest to the ideal ellipse.

(x, y) (x + 1, y)

(x, y – 1) (x + 1, y – 1)

Figure 11-13: Ellipse decision points

Defining A = b2 and B = a2, we can rearrange the ellipse equation as
Ax2 + By2 – AB = 0. We won’t be able to satisfy this equation most of the
time because the points we need to draw on the integer grid aren’t likely
to be the same as those on the ideal ellipse. When we’re at (x, y), we want to
choose our next point to be the one in which Ax2 + By2 – AB is closest to 0.
And we’d like to be able to do it without the seven multiplications in that
equation.

Our approach is to calculate the value of the equation at each of the
three possible points and then choose the point where the equation value
is closest to 0. In other words, we’ll calculate a distance variable d at each of
the three points using d = Ax2 + By2 – AB.

Let’s start by figuring out how to calculate d at the point (x + 1, y)
without the multiplications. We can plug (x + 1) into the equation for x,
as follows:

d A x By ABx � � �� � � �1
2 21

Of course, squaring something is just multiplying it by itself:

d A x x By ABx � � �� � �� � � �1
21 1

Multiplying it all out, we get:

d x Ax A By ABx � � � � � �1
2 22

Shortcuts and Approximations 299

Now, if we subtract that from the original equation, we see that the dif-
ference between the equation at x and x + 1 is:

dx Ax A� �2

We can add dx to d to get dx + 1. That doesn’t quite get us where we
want to be, though, because there’s still a multiplication. So let’s evaluate
dx at x + 1:

dx A x Ax � � �� � �1 2 1

dx Ax A Ax � � � �1 2 2

Just like before, subtraction gives us:

d x A2 2=

This yields a constant, which makes it easy to calculate d at (x + 1, y)
without multiplication by using the intermediates dx and d2x :

2 2 21A Ax d xx � � �

That gets us the horizontal direction—the vertical is almost identical,
except there’s a sign difference since we’re going in the –y direction:

dy By B� � �2

d y B2 2=

Now that we have all these terms, deciding which of the three points
is closest to the ideal curve is simple. We calculate the horizontal differ-
ence dh to point (x + 1, y), the vertical difference dv to the point (x, y – 1),
and the diagonal difference dd to the point (x + 1, y – 1) and choose the
smallest. Note that although dx is always positive, dv and dd can be nega-
tive, so we need to take their absolute value before comparing, as shown in
Figure 11-14.

Our ellipse- drawing algorithm draws the ellipse only in the first
quadrant. That’s okay because there’s another trick that we can use:
symmetry. We know that each quadrant of the ellipse looks the same
as the first; it’s just flipped horizontally, vertically, or both. We could
draw the whole ellipse by drawing (–x, y), (–x, –y), and (x, –y) in addition
to drawing (x, y). Note that we could use eight- way symmetry if we were
drawing circles.

300 Chapter 11

Start

draw (0, y)

No
Done

Yes

Yes

Yes

No

No

y < 0 and x < a?

dv < dh or dd < dh?

dh < dv or dd < dv?

draw (x, y)

dh d + dx
dv |d + dy|
dd |d + dx + dy|

x x + 1
d d + dx

dx dx + d2x

x 0
y b
A b × b
B a × a

dx A
d2x 2 × A
dy −2 × B × y + B

d2y 2 × B
d 0

y y – 1
d d + dy

dy dy + d2y

Figure 11-14: Ellipse- drawing algorithm

This algorithm includes some comparisons that could be simplified,
which result from drawing one- quarter of the ellipse. The one- quarter ellipse
could be partitioned into two sections at the point where the slope of the
curve is 1. By doing so, we’d have one piece of code that only had to decide
between horizontal and diagonal movements and another that had to
decide between vertical and diagonal movements. Which one got executed
first would depend on the values of a and b. But a lot more time is spent
inside the loop making decisions than in the setup, so it’s a good trade- off.

The preceding algorithm has one serious deficiency: because it starts
from the half- width (a) and half- height (b), it can draw only ellipses that
are odd numbers of pixels in width and height, since the result is 2a wide
and 2b high plus 1 for the axes.

Shortcuts and Approximations 301

Polynomials
The method we used to draw ellipses by incrementally calculating differ-
ences doesn’t scale well beyond conic sections (squared things). That’s
because higher- order equations can do strange things, such as change
direction several times within the space of a single pixel—which is pretty
hard to test for efficiently.

But incrementally calculating differences can be generalized to any
polynomials of the form y = Ax0 + Bx1 + Cx2 + . . . Dxn. All we have to do is
generate n sets of differences so that we start our accumulated additions
with a constant. This works because, unlike with the ellipse- drawing code,
the polynomials have only a single independent variable. You may remember
Charles Babbage’s difference engine from “The Case for Digital Computers”
on page 34. It was designed to do just this: evaluate equations using incre-
mental differences.

Recursive Subdivision
We touched briefly on recursive subdivision back in “Stacks” on page 122.
It’s a technique with many uses. In this section, we’ll examine how to use it
to get by with the minimum amount of work.

Spirals
Our line- drawing code can be leveraged for more complicated curves. We
can calculate some points and connect them together using lines.

Your math class has probably covered the measurement of angles in
degrees, so you know that there are 360 degrees in a circle. You may not
be aware that there are other systems of measurement. A commonly used
one is radians. There are 2π radians in a circle. So 360 degrees is 2π radians,
180 degrees is π radians, 90 degrees is π/2 radians, 45 degrees is π/4 radians,
and so on. You need to know this because many trigonometric functions
available in math libraries, such as the ones in JavaScript, expect angles in
radians instead of degrees.

We’ll use curves drawn in polar coordinates for our examples because
they’re pretty. Just in case you haven’t learned this yet, polar coordinates
use radius r and angle θ instead of x and y. Conversion to Cartesian coor-
dinates is easy: x = rcosθ and y = rsinθ. Our first example draws a spiral
using r = θ × 10; the point that we draw gets farther away from the center
as we sweep through the angles. We’ll make the input in degrees because
it’s not as intuitive for many people to think in radians. Listing 11-13
shows the body for the controls.

<canvas width="500" height="500"></canvas>
<div>
 <label for="degrees">Degrees: </label>
 <input type="text" size="3" id="degrees"/>
 <button id="draw">Draw</button>
 <button id="erase">Erase</button>
</div>

Listing 11-13: Spiral body

302 Chapter 11

We’ll skip the grid here because we need to draw more detail. Because
we’re doing polar coordinates, Listing 11-14 puts (0, 0) at the center.

canvas.scale(1, -1);
canvas.translate(width / 2, -height / 2);

$('#erase').click(function() {
 canvas.clearRect(-width, -height, width * 2, height * 2);
});

$('#draw').click(function() {
 if (parseFloat($('#degrees').val()) == 0)
 alert('Degrees must be greater than 0');
 else {
 for (var angle = 0; angle < 4 * 360; angle += parseFloat($('#degrees').val())) {
 var theta = 2 * Math.PI * angle / 360;
 var r = theta * 10;
 canvas.beginPath();
 canvas.arc(r * Math.cos(theta), r * Math.sin(theta), 3, 0, 2 * Math.PI, 0);
 canvas.fill();
 }
 }
});

Listing 11-14: Dotted spiral JavaScript

Enter a value of 10 for degrees and click Draw. You should see some-
thing like Figure 11-15.

Notice that the dots get farther apart as
we get farther from the origin, even though
they overlap near the center. We could make
the value of degrees small enough that we’d
get a good- looking curve, but that means
we’d have a lot of points that overlap, which
is a lot slower, and it’s difficult to guess the
value needed for an arbitrary function.

Let’s try drawing lines between the points.
Swap in Listing 11-15 for the drawing code.

Figure 11-15: Dotted spiral

canvas.beginPath();
canvas.moveTo(0, 0);

for (var angle = 0; angle < 4 * 360; angle += parseFloat($('#degrees').val())) {
 var theta = 2 * Math.PI * angle / 360;
 var r = theta * 10;
 canvas.lineTo(r * Math.cos(theta), r * Math.sin(theta));
}

canvas.stroke();

Listing 11-15: Spiral line JavaScript

Shortcuts and Approximations 303

Enter a value of 20 for degrees and click Draw. Figure 11-16 shows what
you should see.

Not very pretty. Again, it looks good near
the center but gets worse as we progress out-
ward. We need some way to compute more
points as needed—which is where our old
friend recursive subdivision comes into play.
We’re drawing lines using the spiral function
between two angles, θ1 and θ2. What we’ll do is
have some close enough criterion, and if a pair of
points is not close enough, we’ll halve the dif-
ference in the angles and try again until we
do get close enough. We’ll use the distance for-
mula d x x y y� �� � � �� �2 1

2

2 1

2 to find the distance
between points, as shown in Listing 11-16.

Figure 11-16: Spiral line

var close_enough = 10;

function
plot(theta_1, theta_2)
{
 var r;

 r = theta_1 * 10;
 var x1 = r * Math.cos(theta_1);
 var y1 = r * Math.sin(theta_1);

 r = theta_2 * 10;
 var x2 = r * Math.cos(theta_2);
 var y2 = r * Math.sin(theta_2);

 if (Math.sqrt(((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))) < close_enough) {
 canvas.moveTo(x1, y1);
 canvas.lineTo(x2, y2);
 }
 else {
 plot(theta_1, theta_1 + (theta_2 - theta_1) / 2);
 plot(theta_1 + (theta_2 - theta_1) / 2, theta_2);
 }
}

$('#draw').click(function() {
 if (parseFloat($('#degrees').val()) == 0)
 alert('Degrees must be greater than 0');
 else {
 canvas.beginPath();

 for (var angle = 0; angle < 4 * 360; angle += parseFloat($('#degrees').val())) {
 var old_theta;
 var theta = 2 * Math.PI * angle / 360;

304 Chapter 11

 if (angle > 0)
 plot(old_theta, theta);
 old_theta = theta;
 }
 }

 canvas.stroke();
});

Listing 11-16: Recursive spiral line JavaScript

You’ll notice that as long as close_enough is small enough, the size of
the increment in degrees doesn’t matter because the code automatically
generates as many intermediate angles as needed. Play around with differ-
ent values for close_enough; maybe add an input field so that it’s easy to do.

The determination of close enough is very important for certain applica-
tions. Though it’s beyond the scope of this book, think about curved objects
that you’ve seen in movies. Shining light on them makes them look more real-
istic. Now imagine a mirrored sphere approximated by some number of flat
faces just like the spiral was approximated by line segments. If the flat faces
aren’t small enough, it turns into a disco ball (a set of flat surfaces approxi-
mating a sphere), which reflects light in a completely different manner.

Constructive Geometry
Chapter 5 briefly mentioned quadtrees and showed how they could repre-
sent shapes. They’re an obvious use of recursion because they’re a hierar-
chical mechanism for dividing up space.

We can perform Boolean operations on quadtrees. Let’s say we want to
design something like the engine gasket in Figure 11-17.

Figure 11-17: Engine gasket

We’ll need a data structure for a quadtree node, plus two special leaf
values—one for 0, which we’re coloring white, and one for 1, which we’re
coloring black. Figure 11-18 shows a structure and the data it represents.
Each node can reference four other nodes, which is a good use for pointers
in languages such as C.

Shortcuts and Approximations 305

root

BlackBlack

White

Black

Black White

White

Figure 11-18: Quadtree node

We don’t need to keep track of the size of a node. All operations start
from the root, the size of which is known, and each child node is one- quarter
the size of its parent. Figure 11-19 shows us how to get the value at a location
in the tree.

Start

white node?
Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

(ne)

black node?

(x, y) in what quadrant?

nw?

sw?

se?

node root

White

Black

node nw child

node sw child

node se child

node ne child

Figure 11-19: Get value of (x, y) coordinate in quadtree

306 Chapter 11

Figure 11-20 shows how we would set the value of (that is, make black)
an (x, y) coordinate in a quadtree. Note that “done” means “return from
the function” since it’s recursive.

Start

is size 1?

Done

Done
Yes

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

No

No

No

No

white node?

black node? all children black?

(x, y) in what quadrant?

nw?

sw?

se?

(ne)

Done

node
size

root
dimension

node black

all four children are white
node new node

remove node
node black

node nw child

node sw child

node se child

node ne child

size size ÷ 2

Figure 11-20: Set value of (x, y) coordinate in quadtree

Shortcuts and Approximations 307

This is similar to the value- getting code in Figure 11-19. At a high
level, it descends the tree, subdividing as it goes, until it reaches the
1×1 square for the (x, y) coordinate and sets it to black. Any time it hits
a white node, it replaces it with a new node having four white children so
there’s a tree to keep descending. On the way back up, any nodes having
all black children are replaced by a black node. This happens any time
a node with three black children has the fourth set to black, as shown in
Figure 11-21.

Set

Figure 11-21: Coalescing a node

Coalescing nodes not only makes the tree take less memory, but it also
makes many operations on the tree faster because it’s not as deep.

We need a way to clear (that is, make white) the value of an (x, y) coor-
dinate in a quadtree. The answer is fairly similar to the setting algorithm.
The differences are that we partition black nodes instead of white ones and
we coalesce white nodes instead of black ones.

We can build some more complicated drawing functions on top of our
value- setting function. It’s easy to draw rectangles by invoking the set func-
tion for each coordinate. We can do the same for ellipses using the algo-
rithm from “Curves Ahead” on page 298 and symmetry.

Now for the fun stuff. Let’s create quadtree versions for some of our
Boolean logic functions from Chapter 1. The NOT function is simple: just
descend the tree and replace any black nodes with white ones and vice versa.
The AND and OR functions in Figure 11-22 are more interesting. These
algorithms aren’t designed to perform the equivalents of C = a AND b
and C = a OR b. Instead, they implement dst &= src and dst |= src, as in the
assignment operators found in many languages. The dst operand is the
one modified.

308 Chapter 11

dst black?

src white?

dst white?

src black?

nw quadrant

sw quadrant

se quadrant

ne quadrant

all children
black?

Start

Yes
Done

Yes

Yes

Yes

No

No

No

No

Done

Done

Done

Done

Yes

No

Done

dst black

remove node
node black

dst src copy

dst white?

src black?

dst black?

nw quadrant

sw quadrant

se quadrant

ne quadrant

all children
white?

Start

Yes
Done

Yes

Yes

No

No

No

Done

Done

Done

Yes

No

Done

dst dst copy

remove node
node white

size size ÷ 2

size size ÷ 2

Figure 11-22: Quadtree AND and OR functions

Now that we have all these tools, let’s build our gasket. We’ll do it at
low resolution so the details are visible. We’ll start with an empty gasket
quadtree on the left and a scratch quadtree in the center in which we draw
a big circle. The scratch quadtree is OR’d with the gasket, producing the
result on the right as shown in Figure 11-23. Note how the coalescing keeps
the number of subdivisions to a minimum.

Shortcuts and Approximations 309

Figure 11-23: Gasket, circle, circle OR gasket

Next we’ll make another circle in a different position and combine it
with the partially completed gasket, as shown in Figure 11-24.

Figure 11-24: Adding to the gasket

Continuing on, we’ll make a black rectangle and combine it with the
gasket, as shown in Figure 11-25.

Figure 11-25: Adding the rectangle

310 Chapter 11

The next step is to make a hole. This is accomplished by making a black
circle and then inverting it using the NOT operation to make it white. The
result is then ANDed with the partially completed gasket, resulting in the
hole as seen in Figure 11-26.

Figure 11-26: ANDing a NOT- hole

It’s getting boring at this point. We need to combine another hole, in
the same way as shown in Figure 11-26, and then eight smaller holes in a
similar fashion. You can see the result in Figure 11-27.

Figure 11-27: Completed gasket

As you can see, we can use Boolean functions on quadtrees to con-
struct objects with complicated shapes out of simple geometric pieces.
Although we used a two- dimensional gasket as our example, this is more
commonly done in three dimensions. Twice as many nodes are needed
for three dimensions, so the quadtree is extended into an octree, an
example of which is shown in Figure 11-28.

Building complex objects in three dimensions using the preceding
techniques is called constructive solid geometry. The three- dimensional coun-
terpart to a two- dimensional pixel is called a voxel, which sort of means
“volume pixel.”

Shortcuts and Approximations 311

Figure 11-28: Octree

Octrees are a common storage method for CAT scan and MRI data.
These machines generate a stack of 2D slices. It’s a simple matter to peel
away layers to obtain cutaway views.

Shifting and Masking
One of the downsides of quadtrees is that the data is scattered around
memory; they have terrible locality of reference. Just because two squares
are next to each other in the tree doesn’t mean they’re anywhere near each
other in memory. This becomes a problem when we have to convert data
from one memory organization to another. We could always move data 1
bit at a time, but that would involve a large number of memory accesses—
which we want to minimize, because they’re slow.

One task where this situation arises is displaying data. That’s because
the display memory organization is determined by the hardware. As men-
tioned back in “Raster Graphics” on page 180, each row of the raster is
painted one at a time in a particular order. A raster row is called a scan
line. The whole collection of scan lines is called a frame buffer.

Let’s say we want to paint our completed gasket from Figure 11-27 on
a display. For simplicity, we’ll use a monochrome display that has 1 bit for
each pixel and uses 16-bit- wide memory. That means the upper- leftmost
16 pixels are in the first word, the next 16 are in the second, and so on.

The upper- left square in Figure 11-27 is 4×4 pixels in size and is white,
which means we need to be clearing bits in the frame buffer. We’ll use the
coordinates and size of the quadtree square to construct a mask, as shown
in Figure 11-29.

312 Chapter 11

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure 11-29: AND mask

We can then AND this mask with all the affected rows, costing only
two memory accesses per row: one for read and one for write. We would do
something similar to set bits in the frame buffer; the mask would have 1s in
the area to set, and we would OR instead of AND.

Another place where this comes into play is when drawing text charac-
ters. Most text characters are stored as bitmaps, two- dimensional arrays of
bits, as shown in Figure 11-30. Character bitmaps are packed together to
minimize memory use. That’s how text characters used to be provided; now
they come as geometric descriptions. But for performance reasons, they’re
often converted into bitmaps before use, and those bitmaps are usually
cached on the assumption that characters get reused.

Figure 11-30: Bitmap
text characters

Let’s replace the character B on the display shown in Figure 11-31 with a C.

Figure 11-31: Bitmap
text characters

The C is located in bits 10 through 14 and needs to go into bits 6
through 10. For each row, we need to grab the C and then mask off every-
thing else in the word. Then we need to shift it into the destination position.
The destination must be read and the locations that we want to overwrite
masked off before combining with the shifted C and being written, as shown
in Figure 11-32.

Source Mask Masked Shifted Destination Masked Combined

Figure 11-32: Painting a character

This example uses three memory accesses per row: one to fetch the
source, one to fetch the destination, and one to write the result. Doing this
bit by bit would take five times that amount.

Keep in mind that there are often additional complications when the
source or destination spans word boundaries.

Shortcuts and Approximations 313

More Math Avoidance
We discussed some simple ways to avoid expensive math in “Integer Methods”
on page 290. Now that we have the background, let’s talk about a couple of
more complicated math- avoidance techniques.

Power Series Approximations
Here’s another take on getting close enough. Let’s say we need to generate
the sine function because we don’t have hardware that does it for us. One
way to do this is with a Taylor series:

sin
! ! ! !

x x
x x x x� � � � � � �

3 5 7 9

3 5 7 9

Figure 11-33 shows a sine wave and the Taylor series approximations for
different numbers of terms. As you can see, the more terms, the closer the
result is to an ideal sine.

Figure 11-33: Taylor series for sine

It’s a simple matter to add terms until you get the desired degree of
accuracy. It’s also worth noting that fewer terms are needed for angles more
acute than 90 degrees, so you can be more efficient by using symmetry for
other angles.

Note that we can reduce the number of multiplications required by ini-
tializing a product to x, precomputing –x2, and multiplying the product by –x2
to get each term. All the denominators are constants that could reside in a
small table indexed by the exponent. Also, we don’t have to compute all of
the terms. If we need only two digits of accuracy, we can stop when comput-
ing more terms doesn’t change those digits.

The CORDIC Algorithm
Jack Volder at Convair invented the Coordinate Rotation Digital Computer
(CORDIC) algorithm in 1956. CORDIC was invented to replace an analog
part of the B-58 bomber navigation system with something more accurate.
CORDIC can be used to generate trigonometric and logarithmic functions

314 Chapter 11

using integer arithmetic. It was used in the HP-35, the first portable scien-
tific calculator, released in 1972. It was also used in the Intel 80x87 family
of floating- point coprocessors.

The basic idea of CORDIC is illustrated in
Figure 11-34. Because it’s a unit circle (radius of 1)
the x- and y- coordinates of the arrow ends are the
cosine and sine of the angle. We want to rotate the
arrow from its original position along the x- axis
in smaller and smaller steps until we get to the
desired angle and then grab the coordinates.

Let’s say we want sin(57.529°). As you can see,
we first try 45 degrees, which isn’t enough, so we
take another step of 25.565 degrees, getting us to
71.565 degrees, which is too much. We then go
backward by 14.036 degrees, which gets us to our
desired 57.529 degrees. We’re clearly performing
some sort of subdivision but with weird values for
the angles.

We saw the equations for transformation earlier in “Integer Methods,”
where we cared only about translation and scaling. The CORDIC algorithm
is based on rotation. The following equations, the general form of which
you’ve seen, show us how (x, y) is rotated by angle θ to get a new set of coor-
dinates (x', y'):

� � � � � � � � �x x ycos sin� �

� � � � � � � � �y x ysin cos� �

Although this is mathematically correct, it seems useless because we
wouldn’t be discussing an algorithm that generates sines and cosines if they
were already available.

Let’s make it worse before making it better by rewriting the equations
in terms of tangents using the trigonometric identity:

tan
sin

cos
�

�
�

� � � � �
� �

Because we’re dividing by cos(θ), we need to multiply the result by
the same:

� � � � � � �
� �

�
� �
� �

�

�
�

�

�
� � � � � � �x x y x ycos

cos

cos

sin

cos
cos tan�

�
�

�
�

� ��� ��� ��

� � � � � � �
� �

�
� �
� �

�

�
�

�

�
� � � � � � �y x y xcos

sin

cos

cos

cos
cos tan�

�
�

�
�

� ��� ��� ��y

y

x

45°

Θ1

Θ2

Θ0

57.529°
71.565°

Figure 11-34: CORDIC
algorithm overview

Shortcuts and Approximations 315

That looks pretty ugly. We’re making a bad situation worse, but that’s
because we haven’t talked about the trick, which goes back to the weird angles.
It turns out that tan(45°) = 1, tan(26.565°) = ½ , and tan(14.036°) = ¼. That
sure looks like some simple integer division by 2, or as Maxwell Smart might
have said, “the old right shift trick.” It’s a binary search of the tangents of
the angles.

Let’s see how this plays out for the example in Figure 11-34. There are
three rotations that get us from the original coordinates to the final ones.
Keep in mind that, per Figure 11-34, x0 = 1 and y0 = 0:

x x y x
y

1 0 0 0
045 45 45

1
� �� � � � � �� ��� �� � �� � � ��

��
�
��

cos tan cos

y x y
x

y1 0 0
0

045 45 45
1

� �� � � � �� � ��� �� � �� � � ��
��

�
��

cos tan cos

x x y x
y

2 1 1 1
126 565 26 565 26 565

2
� �� � � � � �� ��� �� � �� � � �cos . tan . cos . ��

��
�
��

y x y
x

y2 1 1
1

126 565 26 565 26 565
2

� �� � � � �� � ��� �� � �� � � �cos . tan . cos . ��
��

�
��

x x y x3 2 2 214 036 14 036 14 036� � �� � � � � � �� ��� �� � � �� � � �cos . tan . cos .
yy2

4
�
��

�
��

y x y
x

3 2 2
214 036 14 036 14 036� � �� � � � � �� � ��� �� � � �� � �cos . tan . cos . �

44 2��
��

�
��

y

Note the sign change in the last set of equations that result from
going the other (clockwise) direction; when we’re going clockwise, the
sign of the tangent is negative. Plugging the equations for (x1, y1) into the
equations for (x2, y2) and plugging that into the equations for (x3, y3) and
then factoring out the cosines (and cleaning out the multiplications by 1)
gives us the following:

x x y
x y

x y

3 0 0
0 0

0

45 26 565 14 036
2

� �� � � �� � � � �� � � �� � � �
�

�

cos cos . cos .

00
0 02

4

� �� ��

�
��

�
�
�

�

�
��

�
�
�

x y

y
x y

x y

3

0 0
0 0

45 26 565 14 036 2
4

� �� � � �� � � � �� � �
� �� � � �� �

�cos cos . cos .
xx y

x y0 0
0 02

�� �
� �� �

�

�
��

�
�
�

�

�
��

�
�
�

316 Chapter 11

So what about those cosines? Skipping the mathematical proof, it turns
out that as long as we have enough terms:

cos cos . cos .45 26 565 14 036 0�� � � �� � � � �� � � �. . . .6072529350088811

That’s a constant, and we like constants. Let’s call it C. We could multiply
it at the end like this:

x C x y
x y

x y
x y

3 0 0
0 0

0 0
0 0

2
2

4
� � �� � � �

�

�
� �� ��

�
��

�
�
�

�

�
��

�
�
�

y C
x y

x y
x y

x y3

0 0
0 0

0 0
0 0

2
4 2

� � �
�� � � �� �

�
�� �

� �� �
�

�
��

�
�
�

�

�
��

�
�
�

But we could save that multiplication by just using the constant for x0, as
shown next. We’ll also eliminate y0, since it’s 0. It ends up looking like this:

x C
C

C
C

3 2
2

4
0 531� � �

�
� .

y
C

C
C

C3
2

4 2
0 834� �

�
� � � .

If you check, you’ll discover that the values for x3 and y3 are pretty close
to the values of the cosine and sine of 57.529 degrees. And that’s with only
three terms; more terms gets us closer. Notice that this is all accomplished
with addition, subtraction, and division by 2.

Let’s turn this into a program that gives us a chance to introduce several
additional tricks. First, we’ll use a slightly different version of CORDIC called
vectoring mode; so far, we’ve been discussing rotation mode because it’s a little
easier to understand. We’ve seen that in rotation mode we start with a vector
(arrow) along the x- axis and rotate it until it’s at the desired angle. Vectoring
mode is sort of the opposite; we start at our desired angle and rotate it until we
end up with a vector along the x- axis (angle of 0). Doing it this way means we
can just test the sign of the angle to determine the direction of rotation for a
step; it saves a comparison between two numbers.

Second, we’re going to use table lookup. We’ll precompute a table of
angles with tangents of 1, ½, ¼, and so on. We only need to do this once.
The final algorithm is shown in Figure 11-35.

Shortcuts and Approximations 317

Start

index < 32?

angle < 0?

Precompute
angles table

No

NoYes

Yes

Done

angle desired angle
x 0.607252935008881

y 0
index 0

x x ′
y y ′

index index + 1

y
2index

x ′ x +
y

2indexy ′ x –

angle angle + table[index]

y
2index

x ′ x –
y

2indexy ′ x +

angle angle – table[index]

Figure 11-35: CORDIC flowchart

Now let’s write a C program that implements this algorithm using even
more tricks. First, we’re going to express our angles in radians instead of in
degrees.

The second trick is related to the first. You may have noticed that we
haven’t encountered any numbers greater than 1. We can design our pro-
gram to work in the first quadrant (between 0 and 90 degrees) and get
the others using symmetry. An angle of 90 degrees is π/2, which is ≈ 1.57.
Because we don’t have a wide range of numbers, we can use a fixed- point
integer system instead of floating- point.

We’re going to base our sample implementation on 32-bit integers.
Because we need a range of ≈ ±1.6, we can make bit 30 be the ones, bit 29
the halves, bit 28 the quarters, bit 27 the eighths, and so on. We’ll use the
MSB (bit 31) as the sign bit. We can convert floating- point numbers (as long
as they’re in range) to our fixed- point notation by multiplying by our ver-
sion of 1, which is 0x40000000, and casting (converting) that into integers.
Likewise, we can convert our results into floating- point by casting them as
such and dividing by 0x40000000.

318 Chapter 11

Listing 11-17 shows the code, which is quite simple.

 1 const int angles[] = {
 2 0x3243f6a8, 0x1dac6705, 0x0fadbafc, 0x07f56ea6, 0x03feab76, 0x01ffd55b, 0x00fffaaa, 0x007fff55,
 3 0x003fffea, 0x001ffffd, 0x000fffff, 0x0007ffff, 0x0003ffff, 0x0001ffff, 0x0000ffff, 0x00007fff,
 4 0x00003fff, 0x00001fff, 0x00000fff, 0x000007ff, 0x000003ff, 0x000001ff, 0x000000ff, 0x0000007f,
 5 0x0000003f, 0x0000001f, 0x0000000f, 0x00000008, 0x00000004, 0x00000002, 0x00000001, 0x00000000
 6 };
 7
 8 int angle = (desired_angle_in_degrees / 360 * 2 * 3.14159265358979323846) * 0x40000000;
 9
10 int x = (int)(0.6072529350088812561694 * 0x40000000);
11 int y = 0;
12
13 for (int index = 0; index < 32; index++) {
14 int x_prime;
15 int y_prime;
16
17 if (angle < 0) {
18 x_prime = x + (y >> index);
19 y_prime = y - (x >> index);
20 angle += angles[index];
21 }
22 else {
23 x_prime = x - (y >> index);
24 y_prime = y + (x >> index);
25 angle -= angles[index];
26 }
27
28 x = x_prime;
29 y = y_prime;
30 }

Listing 11-17: CORDIC implementation in C

Implementing CORDIC uses many of the goodies in our growing bag
of tricks: recursive subdivision, precomputation, table lookup, shifting for
power- of- two division, integer fixed- point arithmetic, and symmetry.

Somewhat Random Things
It’s very difficult to do completely random things on computers because
they have to generate random numbers based on some formula, and
that makes it repeatable. That kind of “random” is good enough for most
computing tasks though, except for cryptography, which we’ll discuss in

Shortcuts and Approximations 319

Chapter 13. In this section, we’ll explore some approximations based on
pseudorandomness. We’re choosing visual examples because they’re interest-
ing and printable.

Space- Filling Curves
Italian mathematician Giuseppe Peano (1858–1932) came up with the first
example of a space- filling curve in 1890. Three iterations of it are shown in
Figure 11-36.

Figure 11-36: Peano curve

As you can see, the curve is a simple shape that is shrunk and repeated
at different orientations. Each time that’s done, it fills more of the space.

Space- filling curves exhibit self- similarity, which means they look about
the same both up close and far away. They’re a subset of something called
fractals, which were popularized when Benoit Mandelbrot (1924–2010) pub-
lished The Fractal Geometry of Nature (W. H. Freeman and Company, 1977).
Many natural phenomena are self- similar; for example, a coastline has the
same jaggedness when observed from a satellite and from a microscope.

The term fractal comes from fraction. Geometry includes numerous
integer relationships. For example, doubling the length of the sides of a
square quadruples its area. But an integer change in lengths in a fractal
can change the area by a fractional amount, hence the name.

The Koch snowflake is an easy- to- generate curve first described in
1904 by Swedish mathematician Helge von Koch (1870–1924). It starts
with an equilateral triangle. Each side is divided into thirds, and the cen-
ter third is replaced by a triangle one- third of the size, with the edge in
line with the original side omitted, as shown in Figure 11-37.

Figure 11-37: Four iterations of the Koch snowflake

320 Chapter 11

You can see that complex and interesting shapes can be generated with
a tiny amount of code and recursion. Let’s look at slightly more complex
example: the Hilbert curve, first described in 1891 by German mathemati-
cian David Hilbert (1862–1943), as shown in Figure 11-38.

Figure 11-38: Four iterations of the Hilbert curve

The rules for the next iteration of the Hilbert curve are more compli-
cated than for the Koch snowflake, because we don’t do the same thing
everywhere. There are four different orientations of the “cup” shape that
are replaced by smaller versions, as shown in Figure 11-39. There’s both a
graphical representation and one using letters for right, up, left, and down.
For each iteration, each corner of the shape on the left is replaced with the
four shapes on the right (in order) at one- quarter the size of the shape on
the left and then connected by straight lines.

R U R R U

D L D D R

L D L L U

U R U U L

Figure 11-39: Hilbert curve rules

L- Systems
The rules in Figure 11-39 are similar to the regular expressions we saw back
in “Regular Expressions” on page 224, but backward. Instead of defining
what patterns are matched, these rules define what patterns can be pro-
duced. They’re called L- systems or Lindenmayer systems, after Hungarian bota-
nist Aristid Lindenmayer (1925–1989), who developed them in 1968. Because
they define what can be produced, they’re also called production grammars.

You can see from Figure 11-39 that replacing an R with the sequence
U R R U transforms the leftmost curve in Figure 11-38 into the one next to it.

The nice thing about production grammars is that they’re compact
and easy to both specify and implement. They can be used to model a lot of
phenomena. This became quite the rage when Alvy Ray Smith at Lucasfilm
published “Plants, Fractals, and Formal Languages” (SIGGRAPH, 1984);
you couldn’t go outside without bumping into L- System- generated shrubbery.
Lindenmayer’s work became the basis for much of the computer graphics
now seen in movies.

Shortcuts and Approximations 321

Let’s make some trees so this book will be carbon- neutral. We have four
symbols in our grammar, as shown in Listing 11-18.

E draw a line ending at a leaf
B draw a branch line
L save position and angle, turn left 45°
R restore position and angle, turn right 45°

Listing 11-18: Symbols for tree grammar

In Listing 11-19, we create a grammar that contains two rules.

B → B B
E → B L E R E

Listing 11-19: Tree grammar rules

You can think of the symbols and rules as a genetic code. Figure 11-40
shows several iterations of the grammar starting from E. Note that we’re not
bothering to draw leaves on the ends of the branches. Also, beyond the first
three, the set of symbols that define the tree are too long to show.

E BLERE BBLBLERERBLERE

Figure 11-40: Simple L- system tree

As you can see, we get pretty good- looking trees without much work.
L- systems are a great way to generate natural- looking objects.

Production grammars have been used to generate objects since long
before computers. Knitting instructions are production grammars, for
example, as shown in Listing 11-20.

k = knit
p = purl
s = slip first stitch purl wise
row1 → s p k k p p k k p p k p p k k p p k k p k k p p k k p p k p p k k p p k k p k
row2 → s k p p k k p p k k p k k p p k k p p k p p k k p p k k p k k p p k k p p k k
row5 → s p p k k p p k k p p p k k p p k k p p p k k p p k k p p p k k p p k k p p k
row6 → s k k p p k k p p k k k p p k k p p k k k p p k k p p k k k p p k k p p k k k
section → row1 row2 row1 row2 row5 row6 row5 row6 row2 row2 row2 row2 row6 row5 row6 row5
scarf → section ...

Listing 11-20: Production grammar for scarf in Figure 11-41

Executing the grammar in Listing 11-20 using the knitting needle I/O
device for some number of sections yields a scarf, as shown in Figure 11-41.

322 Chapter 11

Figure 11-41: Scarf produced by production
grammar

Going Stochastic
Stochastic is a good word to use when you want to sound sophisticated and
random just won’t do. Alan Fournier and Don Fussell at the University of
Texas at Dallas introduced the notion of adding randomness to computer
graphics in 1980. A certain amount of randomness adds variety. For example,
Figure 11-42 shows a stochastic modification of the L- system trees from the
last section.

Figure 11-42: Stochastic L- system trees

As you can see, it generates a nice set of similar- looking trees. A forest
looks more realistic when the trees aren’t all identical.

Loren Carpenter at Boeing published a paper that pioneered a
simple way to generate fractals (“Computer Rendering of Fractal Curves
and Surfaces,” SIGGRAPH, 1980). At SIGGRAPH 1983, Carpenter and
Mandelbrot engaged in a very heated discussion about whether Carpenter’s
results were actually fractals.

Carpenter left Boeing and continued his work at Lucasfilm. His fractal
mountains produced the planet in Star Trek II: The Wrath of Khan. An inter-
esting factoid is that the planet took about six months of computer time to

Shortcuts and Approximations 323

generate. Because it was generated using random numbers, Spock’s coffin
ended up flying through the side of the mountain for several frames. Artists
had to manually cut a notch in the mountain to fix this.

Carpenter’s technique was simple. He randomly selected a point on a
line and then moved that point a random amount. He recursively repeated
this for the two line segments until things were close enough. It’s a bit like
adding randomness to the Koch curve generator. Figure 11-43 shows a few
random peaks.

Figure 11-43: Fractal mountains

Once again, pretty good for not much work.

Quantization
Sometimes we don’t have a choice about approximating and must do the
best we can. For example, we may have a color photograph that needs to be
printed in a black- and- white newspaper. Let’s look at how we might make
this transformation. We’ll use the grayscale image in Figure 11-44, since this
book isn’t printed in color. Because it’s grayscale, each of the three color
components is identical and in the range of 0 to 255.

Figure 11-44: Tony Cat

324 Chapter 11

We need to perform a process called quantization, which means taking
the colors that we have available in the original image and assigning them
to colors in the transformed image. It’s yet another sampling problem, as
we have to take an analog (or more analog, in our case) signal and divide it
among a fixed set of buckets. How do we map 256 values into 2?

Let’s start with a simple approach called thresholding. As you might guess
from the name, we pick a threshold and assign anything brighter than that
to white, and anything darker to black. Listing 11-21 makes anything greater
than 127 white, and anything not white is black.

for (y = 0; y < height; y++)
 for (x = 0; x < width; x++)
 if (value_of_pixel_at(x, y) > 127)
 draw_white_pixel_at(x, y);
 else
 draw_black_pixel_at(x, y);

Listing 11-21: Threshold pseudocode

Running this pseudocode on the image in Figure 11-44 produces the
image in Figure 11-45.

Figure 11-45: Threshold algorithm

That doesn’t look very good. But there’s not a lot we can do; we could
monkey around with the threshold, but that would just give us different bad
results. We’ll try to get better results using optical illusions.

Shortcuts and Approximations 325

British scientist Henry Talbot (1800–1877) invented halftone printing
in the 1850s for just this reason; photography at the time was grayscale,
and printing was black and white. Halftone printing broke the image up
into dots of varying sizes, as shown in the magnified image on the left in
Figure 11-46. As you can see on the right, your eye interprets this as shades
of gray.

Figure 11-46: Halftone pattern

We can’t vary the dot size on a computer screen, but we want the same
type of effect. Let’s explore some different ways to accomplish this. We can’t
change the characteristics of a single dot that can be either black or white,
so we need to adjust the surrounding dots somehow to come up with some-
thing that your eye will see as shades of gray. We’re effectively trading off
image resolution for the perception of more shades or colors.

The name for this process is dithering, and it has an amusing origin going
back once again to World War II analog computers. Someone noticed that
the computers worked better aboard flying airplanes than on the ground. It
turns out that the random vibration from the plane engines kept the gears,
wheels, cogs, and such from sticking. Vibrating motors were subsequently
added to the computers on the ground to make them work better by trem-
bling them. This random vibration was called dither, based on the Middle
English verb didderen, meaning “to tremble.” There are many dithering
algorithms; we’ll examine only a few here.

The basic idea is to use a pattern of different thresholds for different
pixels. In the mid-1970s, American scientist Bryce Bayer (1929–2012) at
Eastman Kodak invented a key technology for digital cameras, the epony-
mous Bayer filter. The Bayer matrix is a variation that we can use for our
purposes. Some examples are shown in Figure 11-47.

326 Chapter 11

2x2
0
4

2
4

3
4

1
4

0
9

7
9

4
9

1
9

6
9

5
9

3
9

8
9

2
9

0
16

8
16

12
16

4
16

2
16

10
16

14
16

6
16

3
16

11
16

15
16

7
16

1
16

9
16

13
16

5
16

3x3 4x4

Figure 11-47: Bayer matrices

These matrices are tiled over the image, meaning they repeat in both
the x and y directions, as shown in Figure 11-48. Dithering using tiled pat-
terns is called ordered dithering, as there’s a predictable pattern based on
position in the image.

Figure 11-48: 2×2
Bayer matrix tiling pattern

Listing 11-22 shows the pseudocode for the Bayer matrices from
Figure 11-47.

for (y = 0; y < height; y++)
 for (x = 0; x < width; x++)
 if (value_of_pixel_at(x, y) > bayer_matrix[y % matrix_size][x % matrix_size])
 draw_white_pixel_at(x, y);
 else
 draw_black_pixel_at(x, y);

Listing 11-22: Bayer ordered dithering pseudocode

On to the important question: what does Tony Cat think of this?
Figures 11-49 through 11-51 show him dithered using the three matrices
just shown.

Shortcuts and Approximations 327

Figure 11-49: Tony dithered using the 2×2 Bayer matrix

Figure 11-50: Tony dithered using the 3×3 Bayer matrix

328 Chapter 11

Figure 11-51: Tony dithered using the 4×4 Bayer matrix

As you can see, these are somewhat acceptable if you squint, and they
improve with larger matrices. Not exactly the cat’s meow, but a lot better than
thresholding. Doing more work by using larger matrices yields better results.
But the tiling pattern shows through. Plus it can produce really trippy arti-
facts called moiré patterns for certain images. You might have seen these if
you’ve ever grabbed a stack of window screens.

How can we eliminate some of these screening artifacts? Instead of
using a pattern, let’s just compare each pixel to a random number using the
pseudocode in Listing 11-23. The result is shown in Figure 11-52.

for (y = 0; y < height; y++)
 for (x = 0; x < width; x++)
 if (value_of_pixel_at(x, y) > random_number_between_0_and_255())
 draw_white_pixel_at(x, y);
 else
 draw_black_pixel_at(x, y);

Listing 11-23: Random- number dithering pseudocode

Shortcuts and Approximations 329

Figure 11-52: Tony dithered using random numbers

This eliminates the patterning artifacts but is pretty fuzzy, which is not
unusual for cats. It’s not as good as the ordered dither.

The fundamental problem behind all these approaches is that we can
only do so much making decisions on a pixel- by- pixel basis. Think about
the difference between the original pixel values and the processed ones.
There’s a certain amount of error for any pixel that wasn’t black or white in
the original. Instead of discarding this error as we’ve done so far, let’s try
spreading it around to other pixels in the neighborhood.

Let’s start with something really simple. We’ll take the error for the cur-
rent pixel and apply it to the next horizontal pixel. The pseudocode is in
Listing 11-24, and the result is shown in Figure 11-53.

for (y = 0; y < height; y++)
 for (error = x = 0; x < width; x++)
 if (value_of_pixel_at(x, y) + error > 127)
 draw_white_pixel_at(x, y);
 error = -(value_of_pixel_at(x, y) + error);
 else
 draw_black_pixel_at(x, y);
 error = value_of_pixel_at(x, y) + error;

Listing 11-24: One- dimensional error propagation pseudocode

330 Chapter 11

Figure 11-53: Tony dithered using one- dimensional error propagation

Not great, but not horrible—easily beats thresholding and random
numbers and is somewhat comparable to the 2×2 matrix; they each have
different types of artifacts. If you think about it, you’ll realize that error
propagation is the same decision variable trick that we used earlier for
drawing lines and curves.

American computer scientists Robert Floyd (1936–2001) and Louis
Steinberg came up with an approach in the mid-1970s that you can think
of as a cross between this error propagation and a Bayer matrix. The idea
is to spread the error from a pixel to some surrounding pixels using a set of
weights, as shown in Figure 11-54.

7
16

3
16

5
16

1
16

Figure 11-54: Floyd- Steinberg
error distribution weights

Listing 11-25 shows the Floyd- Steinberg pseudocode. Note that we have
to keep two rows’ worth of error values. We make each of those rows 2 longer
than needed and offset the index by 1 so that we don’t have to worry about
running off the end when handling the first or last columns.

Shortcuts and Approximations 331

for (y = 0; y < height; y++)
 errors_a = errors_b;
 errors_b = 0;
 this_error = 0;

 for (x = 0; x < width; x++)
 if (value_of_pixel_at(x, y) > bayer_matrix[y % matrix_size][x % matrix_size])
 draw_white_pixel_at(x, y);
 this_error = -(value_of_pixel_at(x, y) + this_error + errors_a[x + 1]);
 else
 draw_black_pixel_at(x, y);
 this_error = value_of_pixel_at(x, y) + this_error + errors_a[x + 1];

 this_error = this_error * 7 / 16;

 errors_b[x] += this_error * 3 / 16;
 errors_b[x + 1] += this_error * 5 / 16;
 errors_b[x + 2] += this_error * 1 / 16;

Listing 11-25: Floyd- Steinberg error propagation code

This is a lot more work, but the results, as shown in Figure 11-55, look
pretty good. (Note that this is unrelated to the Pink Floyd–Steinberg algo-
rithm that was used to make album covers in the 1970s.)

Figure 11-55: Tony dithered using the Floyd- Steinberg algorithm

332 Chapter 11

Post–Floyd- Steinberg, numerous other distribution schemes have been
proposed, most of which do more work and distribute the error among
more neighboring pixels.

Let’s try one more approach, this one published by Dutch software
engineer Thiadmer Riemersma in 1998. His algorithm does several interest-
ing things. First, it goes back to the approach of affecting only one adjacent
pixel. But it keeps track of 16 pixels’ worth of error. It calculates a weighted
average so that the most recently visited pixel has more effect than the least
recently visited one. Figure 11-56 shows the weighting curve.

Weight
Oldest pixel

Age

Newest pixel

Figure 11-56: Riemersma pixel weights

The Riemersma algorithm doesn’t use the typical adjacent pixels grid
that we’ve seen before (see Listing 11-26). Instead, it follows the path of a
Hilbert curve, which we saw in Figure 11-38.

for (each pixel along the Hilbert curve)
 error = weighted average of last 16 pixels

 if (value_of_pixel_at(x, y) + error > 127)
 draw_white_pixel_at(x, y);
 else
 draw_black_pixel_at(x, y);

 remove the oldest weighted error value
 add the error value from the current pixel

Listing 11-26: Riemersma error propagation pseudocode

The result is shown in Figure 11-57. Still not purr- fect, but at this point
we’ve seen enough cats. Try the example code on a gradient such as the one
in Figure 11-12. You’ve learned that there are many different ways to deal
with approximation required by real- life circumstances.

Shortcuts and Approximations 333

Figure 11-57: Tony dithered using the Riemersma algorithm

Summary
In this chapter, we’ve examined a number of tricks you can use to increase
performance and efficiency by avoiding or minimizing computation. As
Jim Blinn, one of the giants in the field of computer graphics, said, “A tech-
nique is just a trick that you use more than once.” And just as you saw with
hardware building blocks, these tricks can be combined to solve complex
problems.

12
D E A D L O C K S A N D

R A C E C O N D I T I O N S

We’ve talked about multitasking, or com
puters doing more than one thing at a

time. Originally we were just pretending that
computers could do this, because really there was

only one computer switching between tasks. But now
that multicore processors are the norm, computers are
actually doing more than one thing at a time. Multi
processing isn’t a particularly new concept; single core
processors have long been connected together to achieve higher perfor
mance. It’s just easier and more common now. A multiprocessor system
isn’t an expensive special purpose machine anymore—it’s your phone.

Sometimes the order in which things are done is important. For
example, let’s say you have a joint bank account (one that you share with
someone else) that has a balance of $100. The other account owner goes
to an ATM to withdraw $75 at the same time that you go into the bank to
withdraw $50. This is what’s known as a race condition. The bank software
needs to be able to lock one of you out so that only one withdrawal can

336 Chapter 12

be processed at a time to prevent the account from becoming overdrawn.
This essentially means turning off multitasking for certain operations. It’s
tricky to do that without losing the benefits of multitasking, however, as
this chapter will show.

What Is a Race Condition?
A race condition occurs when two (or more) programs access the
same resource and the outcome is dependent on timing. Take a look
at Figure 121, where two programs are trying to deposit money into
a bank account.

Program 1 Program 2 Balance

write $160

add $50

read $110

$110

$100

$100

$100

$160

$110

$110

write $110

add $10

read $100

Correct result

Program 1 Program 2 Balance

read $100

write $150

add $50

$100

$100

$100

$100

$150

$110

$100

add $10

read $100

write $110

Incorrect result

Figure 12-1: Race condition example

The shared resource in this example is the account balance. As you can
see, the result depends on the timing of the two programs accessing this
resource.

Another way of looking at it is best expressed by the T shirt shown in
Figure 122.

Figure 12-2: Racing attire

Deadlocks and Race Conditions 337

Shared Resources
What resources can be shared? Pretty much anything. In the previous
section, we saw memory being shared. Memory is always involved in shar
ing, even if the end result of the sharing isn’t memory. That’s because
there must be some indication that a shared resource is in use. This
memory may not be what we typically think of as memory; it may just be
a bit in some piece of input/output (I/O) device hardware.

Sharing I/O devices is also very common—for example, sharing a
printer. It obviously wouldn’t work very well to mix pieces of different docu
ments together. I mentioned back in “System and User Space” on page 133
that operating systems handle I/O for user programs. That really only applies
to I/O devices that are part of the machine, like the USB controller. While
the operating system ensures that USB connected devices communicate cor
rectly, it often leaves the control of these devices up to user programs.

Field- programmable gate arrays, or FPGAs (see “Hardware vs. Software”
on page 90), are an exciting frontier in resource sharing. You might want
to program an FPGA to provide a special hardware function to speed up a
particular piece of software. You’d want to make sure that nothing replaces
the hardware programming that’s expected by the software.

It’s less obvious that programs running on different computers commu
nicating with each other can also share resources.

Processes and Threads
How can multiple programs get access to the same data? We briefly touched
on operating systems back in “Relative Addressing” on page 128. One of
the functions of an operating system is to manage multiple tasks.

Operating systems manage processes, which are programs running in user
space (see “System and User Space” on page 133). Multiple programs can be
running simultaneously with multicore processors, but that’s not enough for
a race condition by itself—programs must have shared resources.

There’s no magic way, at least since Thor took the Tesseract back to
Asgard, for processes to share resources; they must have some kind of
arrangement to do so. This implies that processes sharing resources must
somehow communicate, and this communication can take many forms. It
must be prearranged either by being built into a program or via some sort
of configuration information.

Sometimes a process needs to pay attention to multiple things. A good
example is a print server—a program that other programs can communi
cate with to get things printed. Before networking, it was difficult to use a
printer that wasn’t connected to an I/O port on the machine you wanted to
print from. The networking code developed in the 1980s at the University
of California, Berkeley, made it easier to for computers to communicate with
each other by adding several system calls. In essence, a program could wait
for incoming activity from multiple sources and run the appropriate handler

338 Chapter 12

code. This approach worked pretty well, mainly because the handler code
was fairly simple and was run before waiting for the next activity. Print server
code could print an entire document before worrying about the next one.

Interactive programs with graphical user interfaces changed all that.
Activity handlers were no longer simple tasks that ran from start to finish;
they may have to pause and wait for user input in multiple places. Although
programs could be implemented as a swarm of cooperating processes,
that’s pretty cumbersome because they need to share a lot of data.

What’s needed is a way for handlers to be interruptible—that is, for
them to be able to stop where they are, saving their state so that they can
resume execution where they left off at a later time. Well, this is nothing
new. Where is that state? On the stack. Problem is, there’s only one stack
per process, and it sounds like we need one for every handler in a process.
Enter threads of execution. We saw how operating systems arrange process
memory in “Arranging Data in Memory” on page 136. A thread is a piece
of a program that shares the static data and heap but has its own stack, as
shown in Figure 123. Each thread believes it has sole access to the CPU
registers, so the thread scheduler must save and restore them when switching
from one thread to another, in a manner similar to what the OS does when
switching from one process to another. Threads are also called lightweight
processes because they have much less context than a regular process, so
switching between threads is faster than switching between processes.

Thread 1 stack

Thread 2 stack

Thread n stack

Heap

Static

Figure 12-3: Memory
layout for threads

Early implementations of threads involved some custom assembly lan
guage code that was by definition machine specific. Threads turned out to
be sufficiently useful that a machine independent API was standardized.

Deadlocks and Race Conditions 339

Threads are interesting to us here because they make race conditions within
a single process possible. Not only is this an issue in low level C programs,
but JavaScript event handlers are also threads.

But just because threads exist doesn’t mean they’re the right solution
for everything. Thread abuse is responsible for a lot of bad user experience.
When Microsoft first introduced Windows, it was a program that ran on top
of MS DOS, which was not a state of the art operating system that supported
multitasking. As a result, Microsoft built parts of an operating system into
each of its applications so that users could, for example, have several docu
ments open at once. Unfortunately, some people brought this approach to
programs running on complete operating systems. This method shows up in
tabbed applications (for example, LibreOffice and Firefox) and user inter
faces (for example, GNOME).

Why is that a bad idea? First of all, threads share data, so it’s a security
issue. Second, as you’ve probably experienced, a bug or problem with one
tab often kills the entire process, resulting in lost work in what should be
unrelated tasks. Third, as you’ve also likely experienced, a thread that takes
a long time to complete prevents all other threads from running, so, for
example, a slow loading web page often hangs multiple browser instances.

The moral of the story here is to code smartly. Use the operating system;
that’s why it’s there. If it doesn’t perform as needed or is missing a critical
feature, fix that. Don’t make a mess of everything else.

Locks
The problem at hand isn’t really sharing resources. It’s how to make opera
tions atomic (that is, indivisible, uninterruptible) when they’re made up of a
series of smaller operations.

We wouldn’t be having this discussion if computers had instructions
like adjust the bank balance. But of course they don’t, because we’d need an
infinite number of such instructions. Instead, we have to make critical sec
tions of code appear atomic using some sort of mutual exclusion mechanism.
We do that by creating advisory locks that programs follow to avoid conflicts
(see Figure 124).

Lock
balance

Read
$100

Add
$10

Write
$110

Unlock
balance

Lock
balance

Read
$110

Add
$50

Write
$160

Unlock
balance

Failed

Figure 12-4: Advisory lock

340 Chapter 12

As you can see in Figure 124, the upper program grabbed the lock
first, so the lower program had to wait until the lock was released. The lock
is advisory because it’s up to the programs to follow it; there is no enforce
ment mechanism. This might seem pretty useless because it wouldn’t stop
anyone from robbing a bank. But it’s a matter of where the lock resides. As
you can see in Figure 125, the lock is at the bank, which does the enforce
ment, so that makes it work.

Program #1

Program #2

Lock Bank

Figure 12-5: Lock location

This solves one problem but creates others. What happens if the commu
nication between program #1 and the bank is slow? Clearly, program #2 is
going to have to wait a while, which means we’re losing some of the benefits
of multitasking. And what happens if program #1 dies or just behaves badly
and never releases the lock? What does program #2 do while it’s waiting?

We’ll look at these issues in the next few sections.

Transactions and Granularity
Every operation performed by program #1 in Figure 125 requires some sort
of communication with the bank. This needs to be two way communication
because we need to know whether or not each operation succeeds before
doing the next. The easy way to improve the performance is to bundle the set
of operations into a transaction, which is a group of operations that either all
succeed or all fail (see Figure 126). The term transaction stems from the data
base world. Rather than sending each operation separately, we’ll bundle them.

Lock
balance

Read
$100

Add
$10

Write
$110

Unlock
balance

Lock
balance

Read
$110

Add
$50

Write
$160

Unlock
balance

Failed

Transaction

Transaction

Figure 12-6: Transactions

An obvious guideline is to minimize the amount of time in which some
thing is locked, because that reduces concurrency. One guideline that’s not
quite so obvious, however, is to minimize the granularity of locks—that is,
the amount of stuff covered by the lock. We’re locking the balance in our
example; it’s implied that we’re just locking the balance of one account.
Locking the entire bank every time one customer needs to update a balance

Deadlocks and Race Conditions 341

would not be a great solution. The X Window System is an example of
poorly designed locking. Although it has many types of locks, there are
many instances where locking everything is the only option, but that elimi
nates concurrency.

Locks that cover a small part of a system are called fine- grained; locks
covering larger parts are called coarse- grained.

N O T E Processor interrupt handling includes a locking mechanism. When an interrupt is
received, a mask is set that prevents the processor from receiving any more interrupts
of the same type, unless explicitly allowed, until the interrupt handler is done.

Waiting for a Lock
It doesn’t do a lot of good to use transactions and fine grained locks if a
program waiting for a lock can’t do anything useful while waiting. After all,
the “multi” is the whole point of multitasking.

Sometimes there’s nothing useful to do while waiting for a lock, which
is why you have to stand in the rain waiting for an ATM to respond. There
are two ways of doing nothing, though. We can spin, which means we can try
the lock over and over until we successfully grab it. Spinning often involves
using a timer to space out the tries. Going full speed on a machine chews
up a lot of power unnecessarily. Going full speed on a network can be like
having a mob of people trying to get into a store on Black Friday. In some
circumstances—and this is the second way of doing nothing—an entity
requesting a lock can register that request with the lock authority and get
notified when the request is granted. This allows the requestor to go do
something more useful while waiting. This approach doesn’t scale particu
larly well and is explicitly not supported by the architecture of the internet,
although it can be layered on top.

We learned in Chapter 6 that Ethernet takes an interesting approach to
waiting. It doesn’t have locks, but if multiple devices collide while trying to
access the shared resource (the wire), they each wait a random amount of
time and then try again.

Some operating systems provide locking functionality, usually associ
ated with a handle similar to a file descriptor. Locking can be attempted in
blocking or nonblocking modes. Blocking means that the system suspends
the calling program (that is, stops it from executing) until the lock is avail
able. Nonblocking means that the program keeps running and receives some
indication that it did not get the lock.

Deadlocks
You’ve seen that programs must do some sort of waiting around when they
need locks that aren’t available. Complicated systems often have multiple
locks, though, so what happens in the case shown in Figure 127?

Program #1 successfully grabs Lock A, and program #2 successfully
grabs Lock B. Next, program #1 tries to grab Lock B but can’t because pro
gram #2 has it. Likewise, program #2 tries to grab Lock A but can’t because

342 Chapter 12

program #1 has it. Neither program can proceed to the point where it
releases the locks it holds. This is situation is called a deadlock, which is
not a multithreaded hairstyle.

Program #1

Grab Lock A

Grab Lock B

Release Lock A

. . .

Program #2

Grab Lock B

Grab Lock A

Release Lock B

. . .

Figure 12-7: Deadlock

There are few great solutions to deadlocks other than to write code
well. In some situations, it’s possible to manually clear a lock without caus
ing a lot of damage. You’ve probably come across some situation where a
program refuses to run because it can’t get a lock and prompts you as to
whether or not you’d like to clear it. This situation arises when a program
that holds a lock croaks unexpectedly without releasing it.

Short- Term Lock Implementation
There is really only one way to implement locks, but there are many ways to
present them to programs. Lock implementation requires hardware support
in the form of special instructions to support locking. Software solutions
designed decades ago no longer work due to advances in processor tech
nology, such as out of order execution and multiple cores.

Many processors have a test and set instruction that exists explicitly for
locking. This is an atomic instruction that tests to see whether a memory
location is 0 and sets it to 1 if it isn’t. It returns a 1 if it was successful in
changing the value and 0 otherwise. Thus, it directly implements a lock.

An alternate version that works better in situations where lots of pro
grams are contending for a lock is compare and swap. This instruction is
similar to test and set, but instead of just using a single value, the invoker
provides both an old and a new value. If the old value matches what’s in the
memory location, it’s replaced by the new value and the lock is grabbed.

Use of these instructions is usually restricted to system mode, so they’re
not available to user programs. Some of the more recent language standards,
such as C11, have added user level support for atomic operations. Various lock
ing operations have also been standardized and made available in libraries.

Additional code can be attached to locks to make them more efficient.
For example, queues can be associated with locks to register programs wait
ing for locks.

Deadlocks and Race Conditions 343

Long- Term Lock Implementation
We’ve mostly been talking about locks that are held for as short a time as
possible, but sometimes we want to hold a lock for a long time. This is usu
ally in situations where access by multiple programs is never permitted—for
example, a word processor that’s designed to prevent multiple parties from
editing the same document at the same time.

Long term locks need to be kept in more persistent storage than
memory. They’re often implemented through files. System calls exist that
allow exclusive file creation, and whatever program gets there first succeeds.
This is equivalent to acquiring a lock. Note that system calls are a high level
abstraction that uses atomic instructions underneath the hood.

Browser JavaScript
Writing JavaScript programs that run in a browser is the first place where,
as a new programmer, you’re likely to have to pay attention to concurrency.
This may sound surprising if you’ve read any JavaScript documentation,
because JavaScript is defined as single threaded. So how can concurrency
be an issue?

The reason is that JavaScript wasn’t originally designed for the uses it’s
being put to today. One of its original purposes was to provide faster user
feedback and to reduce internet traffic, back when the internet was much
slower. For example, imagine a web page containing a field for a credit
card number. Before JavaScript, the number would have to be sent to a
web server that would verify that it contained only digits and either send
an error response or further process the number if it was okay. JavaScript
allowed the credit card number to be checked for digits in the web browser.
This meant that the user didn’t have to wait in the event of a typo and that
no internet traffic was required in order to detect and report the typo. Of
course, there’s still lots of bad JavaScript out there that can’t handle spaces
in card numbers, as you’ve probably discovered.

Since JavaScript was created to run short programs in response to user
events, it’s implemented using an event loop model, the workings of which
are shown in Figure 128.

Event queue
Pull event from queue

Execute event code

Wait for an event

Figure 12-8: JavaScript event loop

344 Chapter 12

What happens is that tasks to be performed are added to the event queue.
JavaScript pulls these tasks from the queue one at a time and executes them.
These tasks are not interruptible because JavaScript is single threaded. But
you as the programmer don’t have control over the order in which events
are added to the queue. For example, say you have an event handler for each
mouse button. You don’t control the order in which mouse buttons are
clicked, so you can’t control the ordering of events. Your program must reli
ably deal with events in any order.

Asynchronous communications weren’t designed into JavaScript when it
debuted in 1995. Up until that point, browsers submitted forms and servers
returned web pages. Two things changed that. First came the publication of
the Document Object Model (DOM) in 1997, although it didn’t become stable
(more or less) until around 2004. The DOM allowed existing web pages to be
modified instead of just being replaced. Second, the XMLHttpRequest (XHR)
arrived on the scene in 2000, which became the basis of AJAX. It provided
background browser server communications outside of the existing “load a
page” model.

These changes triggered a dramatic increase in the complexity of web
pages. Much more JavaScript was written, making it a mainstream program
ming language. Web pages became increasingly reliant on background
asynchronous communication with servers. There were a lot of growing
pains, because this wasn’t something JavaScript was designed to do, espe
cially because the single threaded model was at odds with asynchronous
communications.

Let’s contrive a simple web application to display the art for an album
by an artist. We’ll use some hypothetical website that first requires us to
convert the album and artist name into an album identifier and then uses
that identifier to fetch the album art. You may try writing the program as
shown in Listing 121, where the code in italics is supplied by the user.

var album_id;
var album_art_url;

// Send the artist name and album name to the server and get back the album identifier.

$.post("some_web_server", { artist: artist_name, album: album_name }, function(data) {
 var decoded = JSON.parse(data);
 album_id = decoded.album_id;
});

// Send the album identifier to the server and get back the URL of the album art image.
// Add an image element to the document to display the album art.

$.post("some_web_server", { id: album_id }, function(data) {
 var decoded = JSON.parse(data);
 album_art_url = decoded.url;
});

$(body).append('');

Listing 12-1: First- try album art program

Deadlocks and Race Conditions 345

The jQuery post function sends the data from the second argument to
the URL in the first argument, and calls the function that’s the third argu
ment when it gets a response. Note that it doesn’t really call the function—it
adds the function to the event queue, so that the function gets called when
it reaches the front.

This seems like a nice, simple, orderly program. But it won’t work
reliably. Why not? Let’s look at what’s happening in detail. Check out
Figure 129.

Post #1 responds

Received
responseStart

listener threadPost #1 Add function to
event queueSend to server

Received
responseStart

listener threadPost #2 Add function to
event queueSend to server

Append

Post #2 responds Set
album_art_url

Set album_id

Figure 12-9: Album art program flow

As you can see, the program doesn’t execute in order. The post opera
tions start threads internally that wait for the server to respond. When the
response is received, the callback functions are added to the event queue.
The program shows the second post responding first, but it could just as
easily be the first post responding first; that’s out of our control.

There’s a good chance, then, that our program will request the album
art before it obtains the album_id from the first post. And it’s almost guaran
teed that it will append the image to the web page before it obtains the
album_art_url. That’s because, although JavaScript itself is single threaded, we
have concurrent interactions with web servers. Put another way: although the
JavaScript interpreter presents a single threaded model to the programmer,
it’s actually multithreaded internally.

Listing 122 shows a working version.

346 Chapter 12

$.post("some_web_server", { artist: artist_name, album: album_name }, function(data) {
 var decoded = JSON.parse(data);

 $.post("some_web_server", { id: decoded.id }, function(data) {
 var decoded = JSON.parse(data);
 $(body).append('');
 });
});

Listing 12-2: Second- try album art program

Now we’ve moved the image append to be inside of the second post call
back, and we’ve moved the second post callback to be inside of the first post
callback. This means we won’t make the second post until the first one has
completed.

As you can see, nesting is required to ensure that the dependencies are
met. And it gets uglier with error handling, which I didn’t show. The next
section covers a different way to approach this issue.

Asynchronous Functions and Promises
There’s absolutely nothing wrong with the program in Listing 122. It
works correctly because jQuery implemented the post function correctly.
But just because jQuery did it correctly doesn’t mean other libraries do,
especially in the Node.js world, where bad libraries are being created at an
astonishing rate. Programs that use libraries that don’t properly implement
callbacks are very difficult to debug. That’s become a problem because, as
I mentioned in the book’s introduction, so much of programming is now
taught as if it’s just the process of gluing together functions in libraries.

JavaScript has recently addressed this by adding a new construct called
a promise. The computing concept of a promise stems from the mid1970s
and is having a renaissance since its addition to JavaScript. Promises move
the mechanics of asynchronous callbacks into the language proper so that
libraries can’t screw them up. Of course, it’s a moving target because you
can’t add to the language every time a programmer makes a mistake. This
particular case, however, seemed common enough to be worthwhile.

Explanations of JavaScript promises can be hard to understand because
two independent things are jumbled together. Promises are easier to under
stand if these components are separated out. The important part is that
there’s a better chance that libraries for asynchronous operations will function
correctly if they use promises. The less important part, which gets talked
about more, is a change in the programming paradigm. There’s a lot of
“religion” around programming paradigms, which I talk about more in the
final chapter. At some level, the promise construct is syntactic sugar, a sweet
ener that makes certain types of programming easier at the expense of
fattening the programming language.

Taken to extremes, code for JavaScript asynchronous requests starts
to look like what some call the pyramid of doom, as shown in Listing 123. I
personally don’t see anything wrong with writing code this way. If indenting

Deadlocks and Race Conditions 347

offends you, then stay away from the Python programming language; it’ll
bite your legs off.

$.post("server", { parameters }, function() {
 $.post("server", { parameters }, function() {
 $.post("server", { parameters }, function() {
 $.post("server", { parameters }, function() {
 ...
 });
 });
 });
});

Listing 12-3: Pyramid of doom

Of course, some of this results from the way the program was written.
The anonymous functions require all the code to be written inline. These
can be eliminated, as shown in Listing 124, which eliminates the pyramid
of doom but is harder to follow.

$.post("some_web_server", { artist: artist_name, album: album_name }, got_id);

function
got_id(data)
{
 var decoded = JSON.parse(data);
 $.post("some_web_server", { id: decoded.id }, got_album_art);
}

function
got_album_art(data)
{
 var decoded = JSON.parse(data);
 $(body).append('');
}

Listing 12-4: Rewrite eliminating anonymous functions

What programmers really want is a more straightforward way of writ
ing code. This is easy in many other programming languages but difficult
in JavaScript because of its single threaded model. In a hypothetical multi
threaded version of JavaScript, we would just create a new thread to run the
code in Listing 125. This code assumes that the post blocks until completed;
it’s synchronous instead of asynchronous. The code is clear and easy to follow.

var data = $.post("some_web_server", { artist: artist_name, album: album_name });
var decoded = JSON.parse(data);

var data = $.post("some_web_server", { id: decoded.id }, got_album_art);
var decoded = JSON.parse(data);

$(body).append('');

Listing 12-5: Hypothetical blocking JavaScript example

348 Chapter 12

If you could write code like this in JavaScript, it wouldn’t work well.
The single threaded nature of JavaScript would prevent other code from
running while the posts were waiting, which means that event handlers
for mouse clicks and other user interactions wouldn’t get run in a timely
manner.

JavaScript promises have some similarity to Listing 124 in that the defi
nition of a promise is akin to the function definitions; the definition of a
promise is separated out from its execution.

A promise is created as shown in Listing 126. Although this doesn’t
look much different from other JavaScript code, such as a jQuery post that
takes a function as an argument, the function is not executed. This is the
setup phase of a promise.

var promise = new Promise(function(resolve, reject) {
 if (whatever it does is successful)
 resolve(return_value);
 else
 reject(return_value);
});

Listing 12-6: Promise creation

Let’s look at this in more detail. You supply the promise with a function
that performs some asynchronous operation. That function has two argu
ments that are also functions: one (resolve in Listing 126) that’s appended
to the JavaScript event queue when the asynchronous operation completes
successfully, and one (reject in Listing 126) that’s added to the JavaScript
event queue if the asynchronous operation fails.

The program executes a promise using its then method, as shown
in Listing 127. This method takes a pair of functions as arguments that
are matched to the resolve and reject functions supplied during promise
creation.

promise.then(
 function(value) {
 do something with the return_value from resolve
 },
 function(value) {
 do something with the return_value from reject
 }
);

Listing 12-7: Promise execution

This isn’t very exciting. We could write code to do this without
using promises, as we did before. So why bother? Promises come with
a bit of syntactic sugar called chaining. It allows code to be written in a
something().then().then().then() . . . style. This works because the then method

Deadlocks and Race Conditions 349

returns another promise. Note that, in a manner similar to exceptions, the
second argument to then can be omitted and errors can be fielded with a catch.
Listing 128 shows the album art program rewritten using promise chaining.

function
post(host, args)
{
 return (new Promise(function(resolve, reject) {
 $.post(host, args, function(data) {
 if (success)
 resolve(JSON.parse(data));
 else
 reject('failed');
 });
 }));
}

post("some- web- server, { artist: artist_name, album: album_name }).then(function(data) {
 if (data.id)
 return (post("some- web- server, { id: data.id });
 else
 throw ("nothing found for " + artist_name + " and " + album_name);
}).then(function(data) {
 if (data.url)
 $(body).append('');
 else
 throw (`nothing found for ${data.id}`);
}).catch(alert);

Listing 12-8: Album art program using promise chaining

Now, I don’t find this code easier to follow than the pyramid of doom
version, but you may feel differently. The versions of code in Listings 122 and
128 raise another point about the art of programming: trading off the ease
of code development versus maintenance. In the grand scheme of a product’s
lifecycle, maintainability is more important than writing code in some per
sonally preferred style. I talk about this a little more in Chapter 15. Promise
chaining allows you to write code in a function().function().function() . . .
style instead of the pyramid of doom style. While the first style makes keeping
track of parentheses slightly easier, JavaScript—unlike Ruby, for example—
was designed with the second style, and having two styles in the same language
likely increases confusion, resulting in decreased programmer productivity.
Although promises might reduce the instances of one class of programming
errors, don’t mistake them as a cure all for poorly written code.

Promises are syntactic sugar that reduce the amount of nesting. But
if we really want code that’s easier to follow, we want something more like
Listing 125. JavaScript includes yet another way to write “asynchronous”
programs that builds on promises but mirrors the synchronous coding
style: async and await.

350 Chapter 12

Listing 129 shows an implementation of the album art program using
async and await.

function
post(host, args)
{
 return (new Promise(function(resolve, reject) {
 $.post(host, args, function(data) {
 if (success)
 resolve(JSON.parse(data));
 else
 reject('failed');
 });
 }));
}

async function
get_album_art()
{
 var data = await post("some- web- server, { artist: artist_name, album: album_name });

 if (data.id) {
 var data = await post("some- web- server, { id: data.id });

 if (data.url)
 $(body).append('');
 }
}

Listing 12-9: Album art program using async and await

To me, this looks more straightforward than Listing 128.
Of course, what’s going on here is that the single threaded JavaScript

model has been severely bent, if not broken. Asynchronous functions are
essentially threads that are not interruptible.

Summary
In this chapter, you learned about some of the issues that result from
using shared resources. You learned about race conditions and deadlocks,
and about processes and threads. You also learned a little bit about concur
rency in JavaScript and new ways in which it’s being approached. At this
point, we’ve covered the basics. We’ll move on to one of our two advanced
topics—security—in the next chapter, which uses many of the technologies
that you’ve learned about so far.

13
S E C U R I T Y

Security is an advanced topic. The cryp-
tography component in particular involves

lots of esoteric mathematics. But it’s a really
important topic. Rather than go into all the gory

details, this chapter gives you the lay of the land. While
this isn’t enough for you to qualify as a security expert,
it should enable you to ask questions about the viabil-
ity of security implementations. And there are lots of
things that you can do without having to be a security
expert to make both you and your code more secure.

For the most part, computer security is not very different from regu-
lar old security, such as home security. In many respects, the advent of
networked computers transformed security issues from those needed for
a small apartment to those required to secure a large castle. As you can
imagine, a large castle has many more entrances that need guarding and

352 Chapter 13

more inhabitants who can compromise the defenses. And it’s bigger, so
a lot more trash accumulates, making it harder to keep clean and giving
bugs more places to hide.

At its core, security is about keeping you and your stuff safe by your
definition of safe. It’s not just a technological issue—it’s a social issue. You
and your stuff, along with your definition of safe, must be balanced against
everybody else, their stuff, and their definitions.

Security and privacy are intertwined, in part because security comes
from keeping your information private. For example, your bank account
wouldn’t be secure if everybody had the password. Privacy is difficult to
maintain given the number of inane practices at organizations with which
we are forced to interact. Every time I see a new doctor, their office asks me
for all my personally identifying information. I always ask them, “Why do
you need this information?” They always reply, “To protect your privacy.” To
which I always ask, “How does giving you and everybody else who asks for it
all my personal information protect my privacy?” They just give an exasper-
ated sigh and say, “We just need it.” And whether they do or not, they’re not
required to give you a truthful answer. Nowadays, privacy is also impacted
by the ease of connecting disparate pieces of information (a topic covered
in more detail in the next chapter) resulting from pervasive data collection,
which includes surveillance cameras, automatic license plate readers (ALPRs),
cell phone surveillance including IMSI catchers (StingRays), internet sur-
veillance (room 641A), facial recognition, and so on. Protecting your privacy
is increasingly difficult, which negatively impacts your security.

Good security is hard. The old adage that “a chain is only as strong as
its weakest link” describes the situation perfectly. Think about online bank-
ing. There are many components ranging from computer hardware, soft-
ware, and communications networks to people. The best technology won’t
protect you if you leave your password written down next to your computer!

Overview of Security and Privacy
This section provides a nontechnical introduction to the issues involved in
security and privacy. It defines many of the terms that later sections cover in
more depth.

Threat Model
We wouldn’t be talking about security in the absence of threats. There
wouldn’t be security worries if everybody behaved nicely. But they don’t.

Security doesn’t exist in a vacuum; it’s relative to a threat model, which lists
the things to be secured and enumerates the possible attacks on whatever
needs securing so that appropriate defenses can be designed. Contrary to
what you might infer from the behavior of “smart devices” such as internet-
connected televisions, security cameras, light bulbs, and such, “What could
possibly go wrong?” is not a valid threat model.

For example, at the time of writing, Fender had recently introduced
a Bluetooth- enabled guitar amplifier. But the company didn’t bother to

Security 353

implement the Bluetooth pairing protocol, which would secure the wireless
connection between a performer’s guitar and amp. That means a crafty
audience member could connect to the stage amp as well from a cell phone
if they were close enough, broadcasting whatever they wanted. (This could
become a new art form, but that was likely not Fender’s intent.)

Understanding the threat model is important because there’s no
such thing as 100 percent security. You have to design defenses that are
appropriate for the threat model. For example, it might be nice to have
your own personal armed guard to keep your backpack safe when you’re
in class, but it’s not cost- effective and probably wouldn’t go over well with
the school administration. A locker is a more appropriate defense for this
particular threat.

Here’s another example: I live on a farm in the middle of nowhere. I
can put all the expensive locks I want on the doors, but if someone wanted
to cut through a wall with a chainsaw or dynamite their way in, nobody would
notice because those are normal country sounds. Of course, I do have locks,
but in this case, carrying good insurance is a large component of my security
because I’m protecting the value of my property, which would be too expen-
sive to secure by physical means.

Many of my neighbors don’t really understand this and engage in prac-
tices that decrease their security. It’s unfortunately common for people to
move to the country and immediately install streetlights on their property.
I’ve asked many of them why they installed the lights, because part of liv-
ing in the country is being able to see the stars at night and light pollution
interferes. The answer is always “for security.” I’ve tried to explain that those
lights are just a big advertisement that something is worth stealing and that
nobody is home.

Self- defeating security measures are common in the computer world
too. For example, many organizations choose to have rules dictating the
composition of passwords and how often they must be changed. The result
is that people either choose easily guessable passwords or write them down
because they can’t remember them.

The upshot is that you can’t do effective security without defining the
threat model. There has to be a balance between threats and defending
against them. The goal is have inexpensive defenses that are expensive to
attack. A side effect of the internet is that it has dramatically reduced attack
costs but not defense costs.

Trust
One of the hardest things to do when determining a threat model is decid-
ing what you can trust. Trust in a bygone era came from face- to- face interac-
tions, although people still got taken by charismatic grifters. Deciding who
and what to trust is much harder in the modern world. Can you recognize
an honest Wi- Fi access point by looking it in the eyes? Not very likely, even if
you know where to find its eyes.

You know how important trust is if you’ve ever asked friends to keep a
secret. There’s a 50/50 chance that a friend will violate your trust. Probability
math tells us that there’s a 75 percent chance that your secret will get out if

354 Chapter 13

you tell it to two friends. The odds of your secret getting out increase with
each friend; it’s 87 percent with three friends, 94 with four, 97 with five,
and so on. You can see that putting trust in anything that you don’t control
reduces security; it starts off bad and gets worse from there.

With friends, you get to decide who is worthy of your trust. Your ability
to make that choice is very limited in the networked computer world. For
example, if you’re one of those rare people who reads terms and conditions
before accepting, you might have noticed that almost all of them say some-
thing like “Your privacy is very important to us. As a result, you’re going to
hold us harmless for breaches of your privacy.” Doesn’t sound very trust-
worthy. But you have no choice if you want to use the service.

In the computer security world, trust refers to those components that
you have no choice but to rely on. Your security depends on the security of
those components. As you saw earlier, you want to keep these to the abso-
lute minimum necessary for the greatest security.

When you’re using computers, you’re relying on a huge collection of
third- party hardware and software. You don’t have access to the hardware
or the software and have no choice but to rely on them, even though they’ve
done nothing to earn your trust. Even if you had access, would you really
have the time and knowledge to review it all?

The notion of trust comes up again and again in security. For now, con-
sider three classes of trust violations:

Deliberate Examples include the 2005 rootkit (a collection of software
that bypasses protections) that Sony BMG installed on customers’ com-
puters and the pop- up ad delivering malware (malicious software) in
Lenovo laptops a few years ago. These weren’t programs accidentally
installed by users; they were installed by the computer suppliers.

Incompetent Examples of incompetence include unencrypted wire-
less tire pressure sensors that make it possible for your car to be tar-
geted, the unencrypted RFID tags in newer U.S. passports that make
it simple to detect someone carrying one or the proposed vehicle- to-
vehicle communications standards being discussed for “safety” that
would allow vehicles to be targeted by bad information. Attackers have
found a way to get access to and change the settings in a large number
of Wi- Fi routers without having to know the administrator password. In
the extremely dangerous category, Siemens included a hardcoded pass-
word in some of its industrial control systems, meaning that anyone with
that password could access equipment that was thought to be supposedly
secured. A hardcoded password was just found in some of Cisco’s prod-
ucts as well. The largest DDoS (discussed shortly) attack to date lever-
aged default passwords in IoT devices made by Hangzhou XiongMai.
These sadly all harken back to the “What could possibly go wrong?”
threat model combined with the “security by obscurity” mindset (more
on this in a moment).

Disingenuous This is when people flat out lie. I talk about this
more in “The Social Context” on page 359. A good example is when
the American National Institute of Standards and Technology (NIST)

Security 355

was working on encryption standards with the assistance of “experts”
from the American National Security Agency (NSA). It turns out
that the NSA experts deliberately weakened the standard instead of
strengthening it. This made it easier for them to spy while also making
it easier for someone to break into your bank account. Trust violations
are so common that the term kleptography has been coined to describe
the class of violations in which an adversary secretly and securely steals
information.

The phrase security by obscurity is used to categorize claims that things
are secure because the secret sauce is, well, secret. That’s been repeatedly
demonstrated not to be the case. In fact, better security comes from trans-
parency and openness. When as many people as possible are educated about
the security methods being used, it fosters discussion and discovery of flaws.
History tells us that no one person is perfect or will think of everything. In
computer programming, we sometimes call this the thousands of eyeballs
principle. This is evident in the industry statistic that Windows has a hundred
times more critical vulnerabilities than Linux.

This stuff isn’t easy; it sometimes takes years or even decades to discover
security issues, even when smart people are looking for them. For example,
the recent “Spectre” and “Meltdown” exploits have their genesis in CPU
architectural design decisions made in the 1960s.

Physical Security
Think about a school locker. You put your belongings in it to keep them
safe from other people. It’s made of fairly heavy steel and designed to
be hard to pry open. Security folks would call the door an attack surface
because it’s something that someone trying to break into your locker can
attack. It’s a pretty good response to the threat of theft, because you can’t
break it open without making a lot of noise. Lots of people are around
during the day when your stuff is in your locker, and they would probably
notice. Although someone could break in after hours, it’s less likely that
things of value would be in the locker at those times.

The combination lock on the door opens only with the correct combina-
tion, which you know. When the school gave you the combination, they gave
you authorization to open that particular locker. The lock is another attack
surface. The lock is designed so that breaking the dial off doesn’t cause
it to open and so that it’s hard to get to the innards of the lock with the
locker closed. Of course, now some new issues arise. You need to keep the
combination secret. You can write it down on a piece of paper somewhere,
but someone else might find it. You have to make sure that someone else
doesn’t learn your combination by watching you open your locker. And, as
you know from watching movies, safecrackers can open combination locks,
and it’s not practical for the school to spend the money for really good locks.
Devices called autodialers can be attached to a combination lock to try all the
possible combinations. They used to be specialty devices, but people have
built their own using small, inexpensive microcomputers such as Arduinos
combined with cheap stepper motors. But just like with the door, enough

356 Chapter 13

people are roaming the halls that a break- in attempt would likely be noticed.
It would take either a talented safecracker or a bad lock design (as many
“tough- looking” locks are all show). Note that there is a popular brand of
combination lock that can easily be opened in less than a minute by anyone
with easily obtainable knowledge.

There’s a third attack surface that may have escaped your notice. There’s
a keyhole in the middle of the lock. It’s what security people would call a back-
door, even though in this case it’s on the front door. It’s another way of getting
into your locker that’s not under your control. Why is it there? Obviously the
school knows the combination to your locker, or they wouldn’t have been able
to give it to you. This backdoor is there for their convenience so that they can
quickly open everybody’s lockers. But it reduces everybody’s security. Locks
with keyholes are pretty easy to pick in seconds. And because one key opens
everybody’s locker, they’re all vulnerable if someone gets a copy of the key,
which isn’t as hard as you might think.

When the school gave you the combination to your locker, they
conferred a privilege on you—namely, the ability to get into your locker.
Someone with the key has a higher privilege level, as they’re authorized to
open all lockers, not just one. Acquiring a copy of the key would raise your
privilege level. Many budding engineers, including this author, discovered
locksmithing and found ways to become “privileged” in our youths.

Communications Security
Now that we’ve learned a little about keeping stuff secure, let’s tackle a
harder problem. How do you transfer something of yours to someone else?
Let’s start with an easy case. You have a homework assignment about Orion
that’s due, but you have to miss class for a doctor’s appointment. You see
your friend Edgar in the hall and ask him to turn in your homework for
you. Seems simple enough.

The first step in this process is authentication. This is you recognizing
that the person you’re handing your homework to is indeed Edgar. But in
your rush, you may have forgotten that Edgar has an evil twin brother. Or
“Edgar” could be something wearing Edgar, like an Edgar suit. You really
don’t want to accidentally authenticate something buggy (see the 1997
movie Men in Black)!

Edgar impersonators aren’t the only attack surface. All bets are off once
your homework is out of your hands; you’re trusting Edgar to act in your best
interest. But Edgar could space out and forget to hand it in. Evil Edgar could
change your homework so that some of the answers are wrong, or worse,
he could make it look like you copied someone else’s work. There’s no way
to prove authenticity—that Edgar turned in what you handed him. If you
had planned ahead, you could have put your homework into an envelope
secured by a wax seal. Of course, these can often be opened and resealed
without leaving a trace.

This becomes a much more difficult problem when you don’t have an
authenticated, trusted courier delivering your homework. Maybe you had
an unplanned absence and your teacher said that you could mail in your

Security 357

homework. Any number of unknown people may handle your letter, mak-
ing it vulnerable to a man- in- the- middle attack, which is when an attacker
gets between parties and intercepts and/or modifies their communications.
You don’t know who’s handling your mail, and, unlike with Edgar, you don’t
even have an opportunity for authentication.

The solution to these issues is cryptography. You can encrypt your commu-
nication using a secret code known only to you and the intended recipient,
who can use that code to decrypt it. Of course, like your locker combination,
the secret code must be kept secret. Codes can be broken, and you have
no way to know if someone knows or broke your code. A properly designed
cryptosystem reduces the need to trust components between parties; leaked
communications that can’t be read aren’t as big a risk.

Codes get changed when their users figure out that they’ve been broken.
An interesting aspect of World War II code breaking was the various ruses
concocted to camouflage actions resulting from broken codes. For example,
sending out an airplane to “accidentally” spot fleet movements so that the
fleet could be attacked hid the fact that code breaking was how the location
of the fleet was actually determined. Neal Stephenson’s novel Cryptonomicon
is a highly entertaining read about this type of information security.

Modern Times
The “connected computer” age combines the problems of physical security
with those of communications security. Psychedelic cowboy, poet, lyricist,
and futurist John Perry Barlow (1947–2018) remarked that “cyberspace is
where your money is” during a 1990 SIGGRAPH panel. And it’s not just
your money. People used to purchase music on records or CDs and movies
on videotape or DVDs. Now, this entertainment is mostly just bits on a com-
puter. And of course, banking has moved online.

It would be one thing if those bits were just sitting on your various com-
puters. But your computers, including your phone, are connected to the
global internet. This is such a huge attack surface that you have to assume
that trust will be violated in at least one place. And the attackers are essen-
tially invisible.

In ancient times, someone who wanted to annoy you could ring your
doorbell and run away. You had a good chance of catching them if you were
in the right place at the right time and could see them. And there was a
limit to how many times someone could do that in a day. On the internet,
even if you could see the annoying attacker, there’s not much you could do
about it. The attackers are rarely even people anymore; they’re programs.
Because they’re programs, they can try to break into your machines thou-
sands of times per second. That’s a whole different game.

Attackers don’t need to break into a machine in order to cause problems.
If our doorbell ringer were persistent enough, they’d block others from
reaching your door. This is called a denial of service (DoS) attack, because
it keeps legitimate folks away. This could put you out of business if you’re
running a store. Most attacks of this nature today are distributed denial of
service (DDoS), where large numbers of bell ringers coordinate their actions.

358 Chapter 13

One of the things that makes tracking attackers mostly useless is that
they’re often using proxies. Launching millions of attacks from their own
computer would leave a trail that would be easy to follow. Instead, attackers
break into a few machines, install their software (often called malware), and
let these other machines do their dirty work for them. This often takes the
form of a multilevel tree containing millions of compromised machines.
It’s much harder to catch the relatively few command and control messages
that tell the other compromised machines what to do. And attack results
don’t have to be sent back to the attacker; they can just be posted on some
public website in encrypted form, where the attacker can fetch them at their
convenience.

How is all this possible? Primarily because a large number of machines
in the world run software from Microsoft, which set a standard for buggy
and insecure software. This wasn’t accidental. In an October 1995 Focus
magazine interview, Bill Gates said, “I’m saying we don’t do a new version
to fix bugs. We don’t. Not enough people would buy it.” Microsoft has made
some recent improvements, and it’s also losing market dominance in the
insecure software sector to Internet- of- Things devices, many of which have
more processing power than was available on a desktop computer not that
long ago.

There are two major classes of attacks. The first, breaking a cryptogra-
phy system, is relatively rare and difficult in a well- designed system. Much
more common are “social” attacks in which a user is tricked into install-
ing software on their system. The best cryptography can’t protect you if
some malicious piece of code that you installed is watching you type your
password. Some common social attack mechanisms represent some of the
dumbest things ever done by supposedly smart people—running arbitrary
programs sent via email or contained on whatever USB drive you find on
the ground, for example, or plugging your phone into a random USB port.
What could possibly go wrong? These avoidable mechanisms are being
replaced by attacks via web browsers. Remember from Chapter 9 how com-
plex these are.

One example of an extremely clever and dangerous attack was a 2009
online banking exploit. When someone logged into their bank account, the
attack would transfer some of their money out of their account. It would
then rewrite the web page coming back from the bank so that the transfer
wouldn’t be detected by the account owner. This made the theft something
you’d never notice unless you still received paper statements and carefully
checked them.

Another modern-era problem is that messing with bits can have physical
repercussions. In the name of progress or convenience, all sorts of crit ical
infrastructure is connected to the internet now. This means an attacker can
make a power plant fail or simply turn off the heat in your house in winter so
the pipes freeze. And, with the rise of robotics and the Internet of Things,
an attacker could potentially program your vacuum cleaner to terrorize
your cats or set off burglar alarms when you’re away.

Finally, modern technology has greatly complicated the ability to
determine whether something is authentic. It’s pretty trivial to create deep

Security 359

fakes—realistic fake photographs, audio, and video. There’s a theory that a
lot of the current batch of robocalls is just harvesting voice samples so that
they can be used elsewhere. How long will it be before voice- search data is
converted into robocalls that sound like one of your friends is calling?

Metadata and Surveillance
There’s another big change brought about by modern technology. Even
if cryptography can keep the contents of communications secret, you can
learn a lot by observing patterns of communication. As the late Yogi Berra
said, “You can observe a lot by just watching.” For example, even if nobody
ever opens your letters, someone can glean a lot by examining who you’re
writing to and who’s writing to you, not to mention the size and weight of
the envelopes and how often they’re sent. This is unavoidable in America
where the post office photographs every piece of mail.

The information on the outside of the envelope is called metadata. It’s
data about the data, not the data itself. Someone could use this informa-
tion to deduce your network of friends. That may not sound so bad to you
if you live in a modern Western society. But imagine for a minute if you and
your friends lived in a more oppressive society, where having this informa-
tion about you known could endanger your friends. An example of this is
China’s “social credit” score.

Of course, hardly anybody needs to do such things by tracking mail any-
more. They can just look at your social media friends. Makes the job much
easier. Also, tracking you and yours no longer depends on having a lot of
manpower. Nobody has to follow you when you leave your house because your
online activities can be tracked remotely, and your movements in the real
world can be tracked using an increasing variety of spy cameras. Of course,
if you carry a cell phone, you’re tracked all the time because the information
that’s used to make the cell phone system function is metadata too.

The Social Context
It’s hard to talk about security without getting political. That’s because
there are really two prongs to security. One is the techniques for building
robust security. The other is trading off one’s personal security against the
security of society as a whole. That’s where it gets complicated, because it’s
hard to discuss technical measures absent societal goals.

Not only is security a social issue, but it’s different from country to
country because of different laws and norms. That gets especially compli-
cated in an age where communications easily cross national borders and
are subject to different regulations. There’s no intent to start a political
argument here; it’s just that you can’t discuss security from a solely tech-
nological perspective. The political part of this chapter is written from a
mostly American perspective.

It’s a common misperception that “national security” is enshrined in
the US Constitution. This is understandable because courts routinely dis-
miss cases about constitutional rights when government officials raise
the specters of “national security” and “state secrets.” The Fourth

360 Chapter 13

Amend ment to the US Constitution has the clearest expression of national
security when it says, “The right of the people to be secure in their persons,
houses, papers, and effects against unreasonable searches and seizures,
shall not be violated.” Unfortunately, unreasonable wasn’t defined, probably
because reasonable people understood it at the time. Note that this amend-
ment confers security on the people, not the state—that whole “by the
people, for the people” thing.

The heart of the issue is whether or not the government’s duty to pro-
tect people is stronger than the rights of those people.

Most people would like to be able to relax knowing that someone else
was keeping them safe. One could consider it a social contract. Unfortunately,
that social contract has been undermined by violations of trust.

There’s a bias, completely unsupported by fact, that people in govern-
ment are “better” or “more honest” than everyone else. At best, they’re
like people everywhere; some are good, some are bad. There’s more than
enough documented evidence of law enforcement personnel committing
crimes. An aggravating factor is secrecy; positions lacking oversight and
accountability tend to accumulate bad people, which is exactly why the
notions of transparency and openness are the foundation of a good trust
model. For example, as part of mind- control experiments in the 1960s, the
CIA illegally dosed men with LSD and observed their reactions. Known
as MKUltra, this program had no oversight and led to at least one known
death of an unwitting test subject. After MKUltra was shut down, agent
George White said, “Where else could a red- blooded American boy lie,
kill, cheat, steal, rape, and pillage with the sanction and blessing of the
All- Highest?” And the FBI under J. Edgar Hoover had quite the history of
political abuse—not just spying for political purposes but actively sabotag-
ing perceived enemies.

In case you’ve been sleeping under a rock, more and more trust abuses
have recently come to light, and these are likely only a small fraction of actual
abuses, given the secrecy and lack of oversight. Most relevant to this chapter
are Edward Snowden’s revelations about illegal government surveillance.

Without oversight, it’s difficult to tell whether government secrecy is
covering up illegal activities or just incompetence. Back in 1998, the US
 government encouraged the use of an encryption scheme called the Data
Encryption Standard (DES). The Electronic Frontier Foundation (EFF)
built a machine called Deep Crack for about $250,000 (which was way less
than the NSA budget) that broke the DES code. Part of the reason they did
so was to be able to point out that either agency experts were incompetent
or they were lying about the security of the algorithm. The EFF was trying to
expose the disingenuous violation of trust perpetrated for the convenience
of American spies. And it worked somewhat—while it didn’t change the
behavior of the agency experts, it did spur the development of the Advanced
Encryption Standard that replaced DES.

It’s easy to argue that “it’s a dangerous world.” But if lots of bad folks were
being caught by these secret programs, we’d be hearing about it. Instead,
what we hear about is the entrapment of “clueless and broke” people who
weren’t actual threats. Another thing people often say is, “I don’t care if the

Security 361

government looks at my stuff; I have nothing to hide.” That may be true,
but it’s a reasonable guess that people saying that do want to hide their bank
account password. It often seems like those raising the scariest arguments
are actually the ones behaving badly.

Trust violations have international implications. There’s a reluctance
to purchase products whose security might be compromised. Outsourcing
poses threats too. There may be laws in your country protecting your infor-
mation, but someone elsewhere might have access to that data. There have
been cases of outsourced data being sold. There are recent indications that
personal data acquired by outside actors has been used to meddle in politi-
cal processes, possibly spelling the end of “Westphalian sovereignty.”

Trust violations also impact freedom. A “chilling effect” results when
people engage in self- censorship or become afraid of being tracked when
meeting or communicating with others online. There’s plenty of historical
evidence showing the impact of chilling effects on political movements.

Modern cell phones have several different unlocking options: passcode
or pattern, fingerprint reader, facial recognition. Which should you use? At
least in America, I recommend using a passcode or pattern, even though
they’re slightly less convenient. There are three reasons for this. First, some
courts have interpreted the portion of the Fifth Amendment that states “No
person . . . shall be compelled in any criminal case to be a witness against
himself” to mean that you can’t be ordered to give “testimonial” information
that’s in your head. In other words, you can’t be forced to divulge passwords,
passcodes, patterns, and so on. But some courts have ruled that you can
be compelled to provide your fingerprint or face. Second, there is a trust
issue. Even if you don’t mind unlocking your phone on request, how do you
know what your phone is doing with your fingerprint or facial data? Is it
just unlocking your phone, or is it uploading it to databases for some future
undisclosed uses? Will you start getting targeted ads when walking in front
of stores that recognize your face? Third, plastic fingerprints and fake
retinas, long staples of cheesy movies, have actually been demonstrated in
real life. Biometric data is easier to fake than a password.

Authentication and Authorization
I’ve mentioned authentication and authorization. Authentication is proving
that someone or something is what it claims to be. Authorization is limiting
access to something unless proper “credentials” are presented.

Authorization is arguably the easier of the two; it requires properly
designed and implemented hardware and software. Authentication is much
trickier. How can a piece of software tell whether it was you who entered a
password or someone else?

Two- factor authentication (2FA) is now available on many systems. A factor
is an independent means of verification. Factors include things hopefully
unique to you (such as a fingerprint), things in your possession (for example,
a cell phone), and things that you know (for example, passwords or PINs).
Two- factor authentication therefore uses two of these. For example, using a
bank card with a PIN or entering a password that sends a message to your

362 Chapter 13

phone to supply a one- time code. Some of these systems work better than
others; obviously, sending a message to a cell phone that others can access
isn’t secure. Parts of the cell phone infrastructure make relying on 2FA
dangerous. Attackers can use your email address and other easily available
information to port your phone number to a SIM card in a phone that they
control. This not only gives them access to your data but locks you out.

Cryptography
As I mentioned earlier, cryptography allows a sender to scramble a com-
munication so that only the designated recipients can decode it. It’s pretty
important when you’re taking money out of your bank account; you don’t
want someone else to be able to do it too.

Cryptography isn’t important just for privacy and security, however.
Cryptographic signatures allow one to attest to the veracity of data. It used
to be that physical originals could be consulted if there was some question
as to the source of information. Those don’t often exist for documents,
audio, video, and so on because the originals were created on computers
and never reduced to physical form. Cryptographic techniques can be used
to prevent and detect forgeries.

Cryptography alone doesn’t turn your castle into a mighty fortress,
though. It’s part of a security system, and all parts matter.

Steganography
Hiding one thing within another is called steganography. It’s a great way to
communicate secrets because there’s no traceable connection between the
sender and the recipient. This used to be done through newspaper classi-
fied ads, but it’s now much easier to do online since there’s a near- infinite
number of places to post.

Steganography is not technically cryptography, but it’s close enough for
our purposes. Take a look at Figure 13-1. On the left is a photo of Mister Duck
and Tony Cat. In the center is that same photo that includes a hidden secret
message. Can you tell the two photos apart? On the right is the secret message.

Help!!! Space aliens have
invaded Mister Duck and are
sucking out Tony Cat’s brains
while he’s sleeping.

Figure 13-1: Secret message hidden in image

How was this accomplished? On the left is an 8-bit grayscale image. The
center image was made by replacing the least significant bit on each pixel of
the image with the corresponding least significant bit from the secret mes-
sage on the right. Recovering the secret message, then, is just a matter of
stripping away the seven most significant bits from the center image.

Security 363

This isn’t the best way to hide a message. It would be much less obvious
if the secret message were given in ASCII character codes instead of images
of the characters. And it would be pretty much impossible to discover if
the secret message bits were scattered throughout the image or encrypted.
Another approach, recently published by researchers Chang Xiao, Cheng
Zhang, and Changxi Zheng at Columbia University, encodes messages by
slightly altering the shape of text characters. This isn’t a completely novel
idea; “America’s first female cryptanalyst,” Elizebeth Smith Friedman
(1892–1980), used a similar technique to include a secret message on her
husband’s tombstone.

Steganograpy is used by advertisers to track web pages that you visit
because they don’t get that “no means no” when you block ads. Many web-
sites include a single- pixel image hidden on web pages linked to an identi-
fying URL. This isn’t always innocuous; this type of tracking software was
abused to accuse thousands of treason in Turkey in 2016.

This technique isn’t limited to images. Secret messages could even be
encoded as the number of blank lines in a blog posting or web page com-
ment. Messages can be scattered among frames in a video or hidden in
digital audio in a similar manner to the previous one- pixel example. One
crazy- sounding example of the latter is dog- whistle marketing, in which web
pages and ads play ultrasonic sounds, which are above the human audio
range. These sounds can be picked up by the microphone on your cell
phone, allowing advertisers to make connections between your various
computing devices and determine what ads you have seen.

Steganography has other uses, too. For example, a studio might
embed unique identifying marks in unreleased movies that it sends to
reviewers. This would allow them to track down the source if the movie
gets leaked. This use is akin to the practice of using a watermark on paper.

Steganography is used in almost every computer printer. The EFF
received a document in response to a Freedom of Information Act request
that suggests the existence of a secret agreement between governments
and manufacturers to make sure that all printed documents are traceable.
Color printers, for example, add small yellow dots to each page that encode
the printer’s serial number. EFF distributed special LED flashlights that one
could use to find them. This could be considered an invasion of privacy.

Substitution Ciphers
If you ever had a secret decoder ring, it probably implemented a substitu-
tion cipher. The idea is pretty simple: you build a table that maps each char-
acter to another, such as that shown in Figure 13-2. You encrypt a message by
replacing each original character with its counterpart from the table and
decrypt by doing the reverse. The original message is called cleartext, and the
encrypted version is called ciphertext.

q r s t u v w x y zg h i j k l m n o pa b c d e f

u t m v l b r h j ie n y d p f c x k gq s a o z w

Figure 13-2: Substitution cipher

364 Chapter 13

This cipher maps c to a, r to t, y to j, and so on, so the word cryptography
would be enciphered as atjgvketqgnj. The reverse mapping (a to c, t to r, and
so on) deciphers the ciphertext. This is called a symmetric code, since the
same cipher is used to both encode and decode a message.

Why isn’t this a good idea? Substitution ciphers are easy to break using
statistics. People have analyzed how often letters are used in various lan-
guages. For example, in English the most common five letters are e, t, a, o,
n, in that order—or at least they were when Herbert Zim (1909–1994) pub-
lished Codes & Secret Writing in 1948. Breaking a substitution cipher involves
looking for the most common letter in the ciphertext and guessing that it’s
an e, and so on. Once a few letters are guessed correctly, it’s easy to figure
out some words, which makes figuring out other letters easy. Let’s use the
plaintext paragraph in Listing 13-1 as an example. We’ll make it all lower-
case and remove the punctuation to keep it simple.

theyre going to open the gate at azone at any moment
amazing deep untracked powder meet me at the top of the lift

Listing 13-1: Plaintext example

Here’s the same paragraph as ciphertext using the code from
Figure 13-2:

vnzjtz ekyxe vk kgzx vnz eqvz qv qikxz qv qxj ckczxv
qcqiyxe ozzg lxvtqapzo gkrozt czzv cz qv vnz vkg kw vnz fywv

Listing 13-2 shows the distribution of letters in the enciphered version
of the paragraph. It’s sorted by letter frequency, with the most commonly
occurring letter at the top.

zzzzzzzzzzzzzzzz
vvvvvvvvvvvvvv
qqqqqqqqq
kkkkkkkk
xxxxxxx
ccccc
eeee
gggg
nnnn
ooo
ttt
yyy
ii
jj
ww
a
f
l
p
r

Listing 13-2: Letter frequency analysis

Security 365

A code breaker could use this analysis to guess that the letter z in the
ciphertext corresponds to the letter e in the plaintext, since there are more
of them in the ciphertext than any other letter. Continuing along those
lines, we can also guess that v means t, q means a, k means o, and x means
n. Let’s make those substitutions using uppercase letters so that we can tell
them apart.

TnEjtE eOyNe TO OgEN TnE eATE AT AiONE AT ANj cOcENT
AcAiyNe oEEg lNTtAapEo gOroEt cEET cE AT TnE TOg Ow TnE fywT

From here we can do some simple guessing based on general knowl-
edge of English. There are very few three- letter words that begin with t and
end with e, and the is the most common, so let’s guess that n means h. This
is easy to check on my Linux system, as it has a dictionary of words and a
pattern-matching utility; grep '^t.e$' /usr/share/dict/words finds all three-
letter words beginning with a t and ending with an e. Also, there is only one
grammatically correct choice for the c in cEET cE, which is m.

THEjtE eOyNe TO OgEN THE eATE AT AiONE AT ANj MOMENT
AMAiyNe oEEg lNTtAapEo gOroEt MEET ME AT THE TOg Ow THE fywT

There are only four words that match o□en: omen, open, oven, and oxen;
only open makes sense, so g must be p. Likewise, the only word that makes
sense in to open the □ate is gate, so e must be g. There’s only one two- letter
word that begins with o, so ow must be of, making the w an f. The j must be a
y because the words and and ant don’t work.

THEYtE GOyNG TO OPEN THE GATE AT AiONE AT ANY MOMENT
AMAiyNG oEEP lNTtAapEo POroEt MEET ME AT THE TOP OF THE fyFT

We don’t need to completely decode the message to see that statistics
and knowledge of the language will let us do so. And so far we’ve used only
simple methods. We can also use knowledge of common letter pairs, such
as th, er, on, and an, called digraphs. There are statistics for most commonly
doubled letters, such as ss, and many more tricks.

As you can see, simple substitution ciphers are fun but not very secure.

Transposition Ciphers
Another way to encode messages is to scramble the positions of the charac-
ters. An ancient transposition cipher system supposedly used by the Greeks
is the scytale, which sounds impressive but is just a round stick. A ribbon of
parchment was wound around the stick. The message was written out in a row
along the stick. Extra dummy messages were written out in other rows. As a
result, the strip contained a random- looking set of characters. Decoding the
message required that the recipient wrap the ribbon around a stick with the
same diameter as the one used for encoding.

We can easily generate a transposition cipher by writing a message out
of a grid of a particular size, the size being the key. For example, let’s write

366 Chapter 13

out the plaintext from Listing 13-1 on an 11-column grid with the spaces
removed, as shown in Figure 13-3. We’ll fill in the gaps in the bottom row
with some random letters shown in italics. To generate the ciphertext shown
at the bottom, we read down the columns instead of across the rows.

tttaatehihoenzrrefeoayiamttyptmnceoareaogkepsenzmdetodgtoeedmffohnnepetgieetpoahhngaauwteigatmndtlj

t h e y r gnioge

t o o p e agehtn

t e a t a taenoz

a n y m o matnem

a z i n g nupeed

t r a c k dwopde

h e t o p lehtfo

i f t a s jihgfd

e r m e e ttaemt

Figure 13-3: Transposition cipher grid

The letter frequency in a transposition cipher is the same as that of
the plaintext, but that doesn’t help as much since the order of the letters
in the words is also scrambled. However, ciphers like this are still pretty easy
to solve, especially now that computers can try different grid sizes.

More Complex Ciphers
There’s an infinite variety of more complex ciphers that are substitution
ciphers, transposition ciphers, or combinations of the two. It’s common
to convert letters to their numeric values and then convert the numbers
back to letters after performing some mathematical operations on the
numbers. Some codes include extra tables of numbers added in to inhibit
letter- frequency analysis.

The history of code breaking during World War II makes fascinating
reading. One of the methods used to break codes was to listen to messages
that were transmitted by radio. These intercepts were subjected to exhaustive
statistical analysis and were eventually broken. The human mind’s ability to
recognize patterns was also a key factor, as was some clever subterfuge.

Clues were also gleaned from messages that were sent about known
events. The Americans won a major victory at the Battle of Midway because
they knew that the Japanese were going to attack, but didn’t know where.
They had broken the code, but the Japanese used code names for targets,
in this case AF. The Americans arranged to have a message sent from
Midway that they knew could be intercepted, saying that the island was
short on fresh water. Shortly, the Japanese re-sent this message in code,
confirming that AF was Midway.

Security 367

The complexity of ciphers was limited by human speed. Although
the Americans had some punch- card tabulating machines available to
help with code breaking, this was before the computer age. Codes had to
be simple so that messages could be encoded and decoded quickly enough
to be useful.

One- Time Pads
The most secure method of encryption, called a one- time pad, harkens back
to the work of American cryptographer Frank Miller (1842–1925) in 1882.
A one- time pad is a set of unique substitution ciphers, each of which is only
used once. The name comes from the way in which the ciphers were printed
on pads of paper so that the one on top could be removed once it was used.

Suppose we want to encode our earlier message. We grab a page from
our pad that looks something like Listing 13-3.

FGDDXEFEZOUZGBQJTKVAZGNYYYSMWGRBKRATDSMKMKAHBFGRYHUPNAFJQDOJ
IPTVWQWZKHJLDUWITRQGJYGMZNVIFDHOLAFEREOZKBYAMCXCVNOUROWPBFNA

Listing 13-3: One- time pad

The way it works is that each letter in the original message is converted to
a number between 1 and 26, as is each corresponding letter in the one- time
pad. The values are added together using base-26 arithmetic. For example,
the first letter in the message is T, which has a value of 20. It’s paired with the
first letter in the one- time pad, which is F with a value of 6. They’re added
together, giving a value of 26, so the encoded letter is Z. Likewise, the sec-
ond letter H has a value of 8 and is paired with G, which has a value of 7, so
the encoded letter would be O. The fourth letter in the message is Y with a
value of 24, which when paired with a D with a value of 4 results in 28. Then,
26 is subtracted, leaving 2, making the encoded letter B. Decryption is per-
formed with subtraction instead of addition.

One- time pads are perfectly secure provided they’re used properly,
but there are a couple of problems. First, both parties to a communication
must have the same pad. Second, they must be in sync; somehow they need
to both be using the same cipher. Communication becomes impossible if
someone forgets to tear off a page or accidentally tears off more than one.
Third, the pad must be at least as long as the message to prevent any repeat-
ing patterns.

An interesting application of one- time pads was the World War II–era
SIGSALY voice encryption system that went into service in 1943. It scram-
bled and unscrambled audio using one- time pads stored on phonograph
records. These were not portable devices; each one weighed over 50 tons!

The Key Exchange Problem
One of the problems with symmetric encryption systems is the need for
both ends of a communication to be using the same key. You can mail a
one- time pad to somebody or use a hopefully trusted courier, but you won’t
know if it was intercepted along the way and a copy made. And it’s useless

368 Chapter 13

if it gets lost or damaged. It’s just like mailing a house key to a friend; you
have no way to know whether or not someone made a copy along the way.
In other words, it’s vulnerable to a man- in- the- middle attack.

Public Key Cryptography
Public key cryptography solves many of the problems we’ve discussed so far. It
uses a pair of related keys. It’s like a house with a mail slot in the front door.
The first key, called the public key, can be given to anybody and allows them
to put mail in the slot. But only you, who can unlock the front door using
the second or private key, can read that mail.

Public key cryptography is an asymmetric system in that the encoding
and decoding keys are different. This solves the key exchange problem
because it doesn’t matter if people have your public key since that can’t be
used to decode messages.

Public key cryptography relies on trapdoor functions, mathematical func-
tions that are easy to compute in one direction but not in the other without
some piece of secret information. The term originates from the fact that it’s
easy to fall through a trapdoor, but climbing back out is difficult without a
ladder. As a really simple example, suppose we have a function y = x2. Pretty
easy to compute y from x. But computing x from y using x y= is harder. Not
a lot harder, because this is a simple example, but you’ve probably discovered
that multiplication is easier than finding a square root. There is no math-
ematical secret for this function, but you could consider having a calculator
to be the secret because that makes solving for x as easy as solving for y.

The idea is that the public and private keys are related by some com-
plicated mathematical function, with the public key as the trapdoor and
the private key as the ladder, making messages easy to encrypt but hard to
decrypt. A high- level view of this is to have the keys be factors of a really
large random number.

Asymmetric encryption is computationally expensive. As a result, it’s
often used only to secretly generate a symmetric session key that’s used for
the actual message content. A common way to do this is with the Diffie–
Hellman Key Exchange, named after American cryptographers Whitfield
Diffie and Martin Hellman.

Diffie and Hellman published a paper about public key cryptography
in 1976. But it wasn’t until 1977 that an implementation became available
because, although the concept of a trapdoor function is relatively simple, it
turns out to be very difficult to invent one. It was solved by cryptographer
Ronald Rivest in 1977, reportedly after a Manischewitz drinking binge, thus
proving that mathematical prowess is unrelated to taste buds. Together with
Israeli cryptographer Adi Shamir and American scientist Leonard Adleman,
Rivest produced the RSA algorithm, whose name derives from the first letter
of each contributor’s last name. Unfortunately, in a trust violation exposed
by government contractor- leaker Edward Snowden, it turns out their com-
pany, RSA Security, took money from the NSA to install a kleptographic
backdoor in their default random- number generator. This made it easier
for the NSA, and anyone else who knew about it, to crack RSA- encoded
messages.

Security 369

Forward Secrecy
One of the problems with using a symmetric cipher session key for actual
communications is that all messages can be read if that key is discovered.
We know that many governments have the technical capability to record
and store communications. If, for example, you’re a human rights activist
whose safety depends on the security of your communications, you don’t
want to take a chance that your key could be discovered and all your mes-
sages decoded.

The way to avoid this is with forward secrecy, wherein a new session key is
created for each message. That way, discovering a single key is useful only
for decoding a single message.

Cryptographic Hash Functions
We touched on hash functions back in Chapter 7 as a technique for fast
searching. Hash functions are also used in cryptography, but only functions
with certain properties are suitable. Just like with regular hash functions,
cryptographic hash functions map arbitrary inputs into fixed- size numbers.
Hash functions for searching map their input into a much smaller range of
outputs than their cryptographic cousins, as the former are used as memory
locations and the latter are just used as numbers.

A key property of cryptographic hash functions is that they’re one- way
functions. That means that although it’s easy to generate the hash from the
input, it’s not practical to generate the input from the hash.

Another important property is that small changes to the input data
generate hashes that aren’t correlated. Back in Chapter 7, we used a hash
function that summed the character values modulo some prime number.
With such a function, the string b would have a hash value 1 greater than
that of the string a. That’s too predictable for cryptographic purposes.
Table 13-1 shows the SHA-1 (Secure Hash Algorithm #1) hashes for three
strings that differ in only one letter. As you can see, there’s no discernible
relationship between the input and the hash value.

Table 13-1: Corned Beef Hash

Input SHA-1 Hash Value

Corned Beef 005f5a5954e7eadabbbf3189ccc65af6b8035320

Corned Beeg 527a7b63eb7b92f0ecf91a770aa12b1a88557ab8

Corned Beeh 34bc20e4c7b9ca8c3069b4e23e5086fba9118e6c

Cryptographic hash functions must be hard to spoof; given a hash
value, it should be very difficult to come up with input that generates it.
In other words, it should be difficult to produce collisions. Using the hash
algorithm in Chapter 7 with prime number of 13, we’d get a hash value of 4
for an input of Corned Beef. But we’d get the same hash value for an input of
Tofu Jerky Tastes Weird.

370 Chapter 13

For a long time, the MD5 hash function was the most widely used algo-
rithm. But in the late 1990s, a way was found to produce collisions, which
you saw back in “Making a Hash of Things.” At the time of writing, MD5
has been replaced by variants of the SHA algorithm. Unfortunately, the
SHA-0 and SHA-1 variations of this algorithm were developed by the NSA,
which makes them untrustworthy.

Digital Signatures
Cryptography can help to verify the authenticity of data though digital sig-
natures, which provide integrity, nonrepudiation, and authentication.

Integrity verification means we can determine whether or not a message
was altered. For example, in ancient times, report cards were actual printed
paper cards that listed classes and grades, which students brought home to
their parents. I remember a poorly performing classmate in fourth grade
adding vertical lines to the right side of his Fs to turn them into As. His par-
ents couldn’t tell that the message was altered.

Integrity verification is accomplished by attaching a cryptographic
hash of the data. But, of course, anybody can attach a hash to a message.
To prevent this, the sender encrypts the hash using their private key, which
the recipient can decrypt using the corresponding public key. Note that for
signatures, the roles of the public and private keys are reversed.

The use of the private key provides both nonrepudiation and authen-
tication. Nonrepudiation means it would be hard for a sender to claim that
they didn’t sign a message that’s signed with their private key. Authentication
means that that the recipient knows who signed the message since their
public key is paired with the signer’s private key.

Public Key Infrastructure
There’s a big gaping hole in public key encryption. Suppose you use your
web browser to connect to your bank using a secure (HTTPS) connection.
The bank sends its public key to your browser so that your browser can
encrypt your data, such that the bank can decrypt it using its private key.
But how do you know that that public key came from your bank instead
of some third party tapping into your communications? How does your
browser authenticate that key? Who can it trust if it can’t trust the key?

Though unfortunately not a great solution, what’s used today is a public
key infrastructure (PKI). Part of such an infrastructure is a trusted third
party called a certificate authority (CA) to vouch for the authenticity of keys.
In theory, a CA makes sure that a party is who they say they are and issues
a cryptographically signed document called a certificate that one can use to
validate their key. These certificates are in a format called X.509, a stan-
dard defined by the International Telecommunications Union (ITU).

While PKI generally works, it comes back to the trust problem. CAs have
been hacked. Sloppy mistakes at CAs have caused their private keys to be
accidentally published, making it possible for anyone to sign bogus certificates
(fortunately, there’s a mechanism to revoke certificates). Some CAs have been

Security 371

found to be insecure in that they didn’t authenticate parties requesting
certificates. And one can reasonably assume that governments believe that
they have the right to force CAs to generate bogus certificates.

Blockchain
Blockchain is another application of cryptography. It’s a pretty simple idea
backed by a lot of complicated math. Much of the media discussion of
blockchain in connection to Bitcoin and other cryptocurrencies is about
its applications, not about how it works.

You can think of blockchain as a mechanism for managing a ledger, sim-
ilar to your bank account statement. A problem with ledgers is that they’re
easy to alter on paper, and even easier to alter electronically since computers
don’t leave eraser smudges.

A ledger usually consists of a set of records, each on subsequent lines.
The blockchain equivalent of a ledger line is a block. Blockchain adds a
cryptographic hash of the previous block (line) and a block creation time-
stamp to the next block. This makes a chain of blocks (hence the name)
linked by the hashes and timestamps, as shown in Figure 13-4.

Block n – 1 hash

Block creation timestamp

Block data

Block n

Block n + 1 hash

Block creation timestamp

Block data

Block n + 2

Block n hash

Block creation timestamp

Block data

Block n + 1

Figure 13-4: Simplified blockchain

As you can see, if the contents of block n were modified, it would change
its hash so that it wouldn’t match the one stored in block n + 1. The proper-
ties of cryptographic hashes make it unlikely that a block could be modi-
fied in any useful way and still have the same hash. Each block effectively
includes a digital signature of the prior block.

The only effective way to attack a blockchain is to compromise the
software that manages it, an approach that can be somewhat mitigated by
having the blockchain data be both public and duplicated on multiple sys-
tems. Attacking such a distributed system would require collusion among a
number of people.

Password Management
Another application of cryptography is password management. In the good
old days, computers maintained a file of passwords as cleartext. When some-
one logged in, the password they entered would be compared to the one
stored in the file.

This is a bad approach primarily because anyone with access to the file
knows everybody’s passwords. Keep in mind that this doesn’t have to be the
result of an attack on the computer. Many organizations send their backups

372 Chapter 13

to third parties for storage (it’s a good idea to have at least three backups
geographically far from each other, preferably on different tectonic plates).
We’re back to trust again because someone could access the password file or
any other data on these backups. You can encrypt your backups, but that’s a
bit more fragile, as small-storage medium defects (such as a bad disk drive
block) can render the entire backup unrecoverable. There’s a trade- off
between protecting your data and being able to recover it.

A simple solution to this problem is to store the passwords in an encrypted
format such as a cryptographic hash. When a user tries to log in, their pass-
word is converted to the cryptographic hash, which is then compared to the
one on file. The properties of cryptographic hashes make it very unlikely that
a password could be guessed. As an additional precaution, most systems
prevent the password file from being accessible by normal users.

Passwords are problematic even with these practices, though. In the early
days of shared computing, you might have needed passwords for a handful
of systems. But now, you need countless passwords for bank accounts, school
websites, many different online stores, and so on. Many people navigate this
situation by using the same password everywhere; it turns out that the most
common password is password, followed by password123 for sites that require
numbers in the password. Reusing a password is equivalent to not using
forward secrecy; if one site is compromised, your password can be used on
every other site. You can have a different password for each site, but then
you have to remember them all. You can use a password manager that stores
all of your various passwords in one place protected by a single password,
but if that password or the password manager itself is compromised, so are
all of your other passwords. Probably the most effective but problematic
approach is two- factor authentication, mentioned earlier. But that often
relies on something like a cell phone and prevents you from accessing your
accounts when you’re somewhere without cell service. Also, it’s cumbersome,
which causes people to stay logged in to many sites.

Software Hygiene
Now that you know a little about security and cryptography, what can you
do about it as a programmer? You don’t need to be a cryptography expert
or security wizard to be able to avoid many common pitfalls. The vast major-
ity of security flaws in the wild result from easily avoidable situations, many
of which can be found in Henry Spencer’s The Ten Commandments for C
Programmers. We’ll look at some of these in this section.

Protect the Right Stuff
When designing a system that keeps things secure, it’s tempting to make it
keep everything secure. But that’s not always a good idea. If, for example,
you make users log in to view things that don’t need to be secure, it makes
users log in and stay logged in. Since logged- in users can access the “secure”
content, that increases the chances that someone else can get access—for
example, if the user walks away from their computer for a short time.

Security 373

This is illustrated by the way in which many cell phones work. For the
most part, everything is locked up, except possibly the camera. There are
things that should be locked up; you don’t necessarily want someone to be able
to send messages in your name if you lose your phone. But suppose you and
your friends are listening to music. You have to hand your unlocked phone
to someone else if they’re picking the tunes, giving them access to every-
thing. Texting a code to your phone is a common second factor in two- factor
authentication, and handing that factor to a third party defeats the purpose.

Triple- Check Your Logic
It’s pretty easy to write a program that you think does something when in fact
it doesn’t. Errors in logic can be exploited, especially when an attacker has
access to the source code and can find bugs that you didn’t. One method
that helps is to walk through your code with someone else out loud. Reading
aloud forces you to go through things more slowly than when reading silently,
and it’s always amazing what you find.

Check for Errors
Code that you write will use system calls and call library functions. Most
of these calls return error codes if something goes wrong. Don’t ignore
them! For example, if you try to allocate memory and the allocation fails,
don’t use the memory. If a read of user input fails, don’t assume valid input.
There are many of these cases, and handling every error can be tedious,
but do it anyway.

Avoid library functions that can silently fail or overflow bounds. Make
sure that error and warning reporting is enabled on your language tools.
Treat memory allocation errors as fatal because many library functions rely
on allocated memory and they may fail in mysterious ways after an alloca-
tion failure elsewhere.

Minimize Attack Surfaces
This section paraphrases some of the April 19, 2016, testimony by crypto-
graphy researcher Matt Blaze to a US House of Representatives subcommittee
following the San Bernardino shootings. It’s worth reading the whole thing.

We have to assume that all software has bugs because it’s so complex.
Researchers have tried to produce “formal methods,” akin to mathematical
proofs, that could be used to demonstrate that computer programs are
“correct.” Unfortunately, to date this is an unsolved problem.

It follows that every feature added to a piece of software presents a new
attack surface. We can’t even prove that one attack surface is 100 percent
secure. But we know that each new attack surface adds new vulnerabilities
and that they add up.

This is the fundamental reason that actual security professionals, as
opposed to politicians, are against the notion of installing backdoors for
law enforcement. Not only does it make the software more complicated by

374 Chapter 13

adding another attack surface, but just like the locker example earlier in
this chapter, there’s a pretty good chance that unauthorized parties will
 figure out how to access such a backdoor.

It turns out that Matt Blaze really knows what he’s talking about here.
The NSA announced its development of the Clipper chip in 1993. The
NSA’s intent was to mandate that it be used for encryption. It contained
a government- access backdoor. This was a difficult political sell because
people in other countries would be reluctant to use American products
that could spy on them. The Clipper sank both because of political opposi-
tion and because Blaze published a paper titled “Protocol Failure in the
Escrowed Encryption Standard” in 1994 that showed how easy it was to
exploit the backdoor. As an aside, Blaze found himself completely unpre-
pared to be hauled in front of Congress to testify but is now very good at it.
It was a part of the universe that he didn’t understand at the time. Consider
learning to speak in public, as it might come in handy someday.

Good security practice is to keep your code as simple as possible, thus
minimizing the number of attack surfaces.

Stay in Bounds
Chapter 10 introduced the concept of buffer overflows. They’re one example
of a class of bugs attackers can exploit that can remain undetected in pro-
grams for a long time.

To recap, a buffer overflow occurs when software doesn’t check for
boundaries and can end up overwriting other data. For example, if a “you’re
authorized” variable exists past the end of a password buffer, a long pass-
word can result in authorization even if it’s not correct. Buffer overflows on
the stack can be especially troublesome because they can allow an attacker
to change the return address from a function call, allowing other parts of
the program to be executed in an unintended manner.

Buffer overflows aren’t just limited to strings. You also must ensure that
array indices are in bounds.

Another bounds problem is the size of variables. Don’t just assume, for
example, that an integer is 32 bits. It might be 16, and setting the 17th bit
might do something unexpected. Watch out for user input, and make sure
to check that any user-supplied numbers fit into your variables. Most systems
include definitions files that your code can use to ensure that you’re using
the correct sizes for things. In the worst case, you should use these to pre-
vent your code from building when the sizes are wrong. In the best case,
you can use these definitions to automatically choose the correct sizes.
Definitions exist for the sizes of numbers and even the number of bits in a
byte. Don’t make assumptions!

It’s also important to stay in memory bounds. If you’re using dynami-
cally allocated memory and allocate n bytes, make sure that your accesses
are in the range of 0 to n – 1. I’ve had to debug code in which memory was
allocated and then the address of memory was incremented because it was
convenient for the algorithm to reference memory[-1]. The code then freed
memory instead of memory[-1], causing problems.

Security 375

Many microcomputers designed for embedded use include much
more memory than is needed by a program. Avoid dynamic allocation in
these cases and just use static data; it avoids a lot of potential problems. Of
course, make sure that your code respects the bounds of the data storage.

Another bounds area is timing. Make sure your program can handle
cases where input comes in faster than your interrupt handlers can
respond. Avoid allowing your interrupt handlers to be interrupted so that
you don’t blow off of the end of the stack.

There’s a testing technique called fuzzing for which tools are available
that can help catch these types of bugs. But it’s a statistical technique and
not a substitute for writing good code. Fuzzing involves hitting your code
with a large number of variations on legal input.

Generating Good Random Numbers Is Hard
Good random numbers are important for cryptography. How do you
get them?

The most common random- number generators actually generate pseu-
dorandom numbers. That’s because logic circuits can’t generate true random
numbers. They’ll always generate the same sequence of numbers if they
start at the same place. A simple circuit called a linear feedback shift register
(LFSR), such as that shown in Figure 13-5, can be used as a pseudorandom-
number generator (PRNG).

D Q D QD Q D QD QD Q D Q D Q

clock

Figure 13-5: Linear feedback shift register

You can see that as the number is shifted right, a new bit comes in
from the left that is generated from some of the other bits. The version
in the figure generates only 8-bit numbers, but larger versions can be
constructed. There are two problems here. The first is that the numbers
repeat cyclically. The second is that if you know the most recent random
number, you always know the next one; if it just generated 0xa4, the next
is always 0x52. Note that although this is a problem for cryptography, it’s
useful when debugging programs.

The initial value in the register is called the seed. Many software imple-
mentations allow the seed to be set. There have been many improvements
on the LFSR, such as the Mersenne Twister, but in the end they all have the
same two problems I mentioned. There’s no true randomness.

Modern software addresses this problem by harvesting entropy from
a variety of sources. The term entropy was co- opted from thermodynamics,
where it refers to the universal tendency toward randomness.

376 Chapter 13

One of the first entropy sources, called LavaRand, was invented at SGI
in 1997. It worked by pointing a webcam at a couple of lava lamps. It could
generate almost 200Kb of random data per second. The performance of
entropy sources is important; if you’re a website generating lots of session
identifiers for lots of clients, you need lots of good random numbers quickly.

It’s not practical to ship a pair of lava lamps with every computer, even
though it would be groovy. Some chip manufacturers have added random-
number generators to their hardware. Intel added an on- chip thermal
noise generator random- number generator in 2012 that produced 500MB
of random numbers per second. But people refused to use it because it was
released right after the Snowden revelations and couldn’t be trusted.

There’s another factor in trusting on- chip random- number generators.
A manufacturer could publish its design so that it could be reviewed. You
could even decap, or remove the lid from, a chip and examine it using an
electron microscope to verify that it matches the design. But it’s possible to
undetectably change it during manufacturing. This is the hardware equiva-
lent of a doping scandal. Chapter 2 mentioned doping in our discussion of
transistors; dopants are the nasty chemicals that are used to create p and n
regions. The behavior of the circuit can be altered by subtly adjusting the
dopant levels. The result would be undetectable even through a microscope.

Security professionals have realized that they can’t trust hardware
random- number generators. Entropy is harvested from random occur-
rences that are independent of computer programs, such as mouse move-
ments, time between keyboard clicks, disk access speeds, and so on. This
approach works pretty well, but quickly producing large quantities of ran-
dom numbers is difficult.

Entropy harvesting has run afoul of some major dumb bugs, especially
in the Linux- based Android operating system. It turns out that Android
phones don’t generate entropy quickly, so random numbers used shortly
after booting up aren’t so random. And it turns out that some of the early
implementations copied code that harvested entropy from disk access
times. Of course, cell phones don’t have disks; they have flash memory
with predictable access times, making for predictable entropy.

If your security depends on good random numbers, make sure you
understand the system that’s generating them.

Know Thy Code
Large projects often include third- party code, code not written by members of
the project team. In many cases, your team doesn’t even have access to the
source code; you have to take the vendor’s word that their code works and is
secure. What could possibly go wrong?

First of all, how do you know that that code really works and is secure?
How do you know that someone working on that code didn’t install a secret
backdoor? This isn’t a hypothetical question; a secret backdoor was found
in a major networking vendor’s products in 2015. An extra account with a
hardcoded password was found in another vendor’s products in 2016. The
list goes on, and will continue to grow as long as bad practices are tolerated.
Plan for future abuses that are worse than the ones already known.

Security 377

Ken Thompson’s 1984 Turing Award Lecture entitled “Reflections on
Trusting Trust” gives an idea of how much damage a malicious actor can do.

Using third- party code causes another, subtler problem, which shows up
with terrifying frequency in physical infrastructure software—the stuff that
makes power plants and such work. You would think that critical software
like this would be designed by engineers, but that’s the rare case. Engineers
may specify the software, but it’s usually constructed by “system integrators.”
These are people whose training is similar to what you’re getting under the
auspices of “learning to code”; system integration pretty much boils down to
importing code that others have written and gluing function calls together.
The result is that product code ends up looking like Figure 13-6.

Product
code

Vendor #1 code

Vendor #2
code

Vendor #3
code

Figure 13-6: Unused vendor code and
product code

This means a lot of unused code is included in products; in the figure,
there’s more nonproduct code than product code. I once gave a series of
talks about this where I labeled it “digital herpes,” because there’s all this
code coiled around the central nervous system of your product, waiting for
an external stimulus in order to break out, just like the human version of
the virus.

This puts a coder into a difficult situation. How do you decide what
third- party code is safe to use? Not everybody working on a power plant is
an expert in cryptography or networking protocols.

First, this is an area in which open source code has an advantage. You
can actually look at open source code and, because you can, there’s a good
chance that others are looking at it too. This “more eyeballs” principle means
that there’s at least a better chance of bugs being found than in closed source
code that is seen by only a few. Of course, this isn’t a panacea. A major bug
was discovered in the popular OpenSSL cryptography library in 2014. On the
bright side, the discovery of this bug caused a large number of people to eye-
ball that code plus other security- critical packages.

Another good practice is to keep an eye on the ratio of code that you’re
actually using in a third- party package to the overall size of the package. I
once worked on a medical instrument project where management said,
“Let’s use this cool operating system that we can get for a good price.” But

378 Chapter 13

that operating system included all sorts of functionality we weren’t going
to use. I pushed back, and we just wrote our own code for the stuff that we
needed. This was a couple of decades ago, and bugs have just been found in
some deployments of this operating system.

One more area to watch is debugging code. It’s common to include
extra code for debugging during product development. Make sure it gets
removed before it’s shipped! That includes passwords. If you included
default passwords or other shortcuts to make your code easier to debug,
make sure that they’re gone.

Extreme Cleverness Is Your Enemy
If you’re using third- party code, avoid using obscure, clever facilities. That’s
because vendors often discontinue support for features that aren’t widely
used by their customers. When that happens, you’re often locked out of the
upgrade path. Vendors often provide fixes only for the latest version of their
products, so if your code depends on a no- longer- supported feature, you
may not be able to install critical security fixes.

Understand What’s Visible
Think about the ways in which sensitive data can be accessed by programs
other than yours—and not just data but metadata too. Who else can see
your program’s data? This is an important part of defining a threat model.
What could be compromised if someone absconds with your otherwise
perfectly secure system? Can an attacker bypass protections by pulling the
memory chips out of your device and accessing them directly?

Apart from making your code secure, you need to watch out for side-
channel attacks—exploits based on metadata, or side effects, of the imple-
mentation. For example, say you have code that checks a password. If it takes
longer to run on a password that’s close to correct than it does on one that
isn’t, that gives clues to an attacker. This sort of thing is called a timing attack.

A camera pointed at the keypad on an ATM is a side- channel attack.
Attacks based on electromagnetic emissions have been documented. A

cool one is called van Eck phreaking, which uses an antenna to pick up the
radiation from a monitor to generate a remote copy of the displayed image.
It has been demonstrated that ballot secrecy in some electronic voting sys-
tems can be compromised in this manner.

Side- channel attacks are really insidious and take serious systems think-
ing to ameliorate; just knowing how to write code isn’t enough. Examples
abound, especially from the World War II era, which was the beginning
of modern cryptography. The Germans were able to determine that Los
Alamos National Laboratory existed because several hundred Sears cata-
logs were all being mailed to the same PO box. And British chemical plant
locations were determined from the scores of the plant soccer team games
published in local newspapers.

In general, make sure that your critical security code’s externally visible
behavior is independent of what it’s actually doing. Avoid exposing informa-
tion via side channels.

Security 379

Don’t Overcollect
This is so obvious that I shouldn’t need to say anything, but experience
demonstrates that few people get this. The best way to keep things secure
is not to keep them at all. Don’t collect sensitive information unless you
really need to.

A classic example is found on a lot of medical forms. I’m always per-
plexed when the forms ask for both my birthdate and my age. Do I really
want a doctor who can’t figure out one from the other? If you collect them
both, you have to protect them both, so collect only the one that you need.

Don’t Hoard
Just because you’ve collected sensitive information doesn’t mean you should
keep it around forever. Get rid of it as soon as possible. For example, you
may need somebody’s password to log them in to some system. Once you’re
done checking the password, it’s no longer needed. Clean it up. The longer
you leave it around, the better the chances of someone discovering it.

Cleaning up is becoming more legally important as the world struggles
to understand the European Union’s General Data Protection Regulation
(GDPR), which adds consequences for leaking personal information.

Dynamic Memory Allocation Isn’t Your Friend
Chapter 7 talked about dynamic memory allocation using the heap. In this
section, we’ll look at the C standard library functions malloc, realloc, and
free, which can cause a number of different problems.

Let’s start by looking at what happens when dynamically allocated
memory is freed; see Figure 13-7.

free()

Memory

Heap

secret

malloc()

Memory

Heap

Allocated

secret

strcpy("secret")

Memory

Heap

Allocated
secret

malloc()

Memory

Heap

Allocated

Start

Memory

Heap

Figure 13-7: Freeing memory

On the left side of Figure 13-8, you can see the heap sitting in memory.
Moving to the right, a piece of memory from the heap is allocated for use
by the program. Continuing toward the right, a piece of secret information
is copied into the allocated memory. At some point later, that memory is no
longer needed, so it’s freed and goes back onto the heap. Finally, on the far
right, memory is allocated from the heap for some other purpose. But the
secret is still in that piece of memory where it can be read. Rule #1 of using
dynamic memory is to make sure you erase any sensitive information in
memory before freeing.

380 Chapter 13

The realloc function lets you grow or shrink the size of allocated
memory. Look at the shrink case in Figure 13-8.

realloc()

Memory

Heap

secret

malloc()

Memory

Heap
Allocated
secret

strcpy("secret")

Memory

Heap

Allocated
secret

malloc()

Memory

Heap

Allocated

Start

Memory

Heap

AllocatedAllocated

Figure 13-8: Memory shrink

The first steps are the same as in the previous example. But then the
amount of allocated memory is shrunk. The secret was in the excess memory,
so it goes back onto the heap. Then a later allocation of memory gets a block
that contains the secret. Rule #2 of using dynamic memory is to make sure that
any memory that’s going back on the heap due to a shrink is erased. This is
similar to Rule #1.

There are two cases to consider when using realloc to grow the size of
an allocated memory block. The first case is easy and isn’t a security problem.
As shown in Figure 13-9, if there’s room above the already allocated block
on the heap, the size of the block is increased.

realloc()

Memory

Heap
Allocated

secret

strcpy("secret")

Memory

Heap

Allocated
secret

malloc()

Memory

Heap

Allocated

Start

Memory

Heap

Figure 13-9: Good memory grow

Figure 13-10 shows the case that can cause security problems.

realloc()

Memory

Heap

secret

malloc()

Memory

Heap
Allocated
secret

strcpy("secret")

Memory

Heap

Allocated
secret

malloc()

Memory

Heap

Allocated

Start

Memory

Heap

Allocated

Allocated

Allocated
AllocatedAllocated Allocated Allocated

secretsecret

Figure 13-10: Bad memory grow

Security 381

In this example, there’s another piece of memory that has already
been allocated for some other purpose. When we try to increase the size of
our allocated memory block, there’s not enough space because of the other
block, so the heap is searched for a large enough contiguous block of memory.
The memory is allocated, the data from the old block is copied in, and the
old block is freed. Now there are two copies of the secret in memory, and one
is in unallocated memory that could be allocated. The big problem here is
that the realloc caller has no visibility into what’s happening. The only way to
tell whether or not the memory block was moved is to compare its address
to the original address. But even if it moved, you’ve found out too late because
the old block is no longer under your control. This leads to rule #3: Don’t use
realloc when security is critical. Use malloc to allocate new memory, copy the
old to the new, erase the old, and then call free. Not as efficient, but much
more secure.

Garbage Collection Is Not Your Friend Either
I’ve talked about erasing critical data once it’s no longer needed. The
preceding section showed that this isn’t as easy to do as it sounds with
explicit memory management. Garbage- collected systems have their own
set of unique problems. Let’s say we have a program in C that contains
something “sensitive,” as shown in Figure 13-11.

s e n s i t i v e \0char *secret

Figure 13-11: C string of sensitive data

How do we clean this up once we’re done with it? Because C strings are
NUL terminated, we can make it an empty string by setting the first character
to NUL, as in Figure 13-12.

\0 e n s i t i v e \0char *secret

Figure 13-12: Poorly erased C string of sensitive data

It wouldn’t be hard for a nefarious individual to guess the contents. We
really need to overwrite the entire string.

This string could be in a memory array, or it could be in memory dynam-
ically obtained using malloc. Make sure the string is set to NULs or some
recognizable value that’s easy to spot when debugging, erasing every character
before calling free; otherwise, the sensitive data just ends up back on the
heap and might be given out on a later malloc call.

What if we’re using a language that uses garbage collection instead of
explicit memory management? Something like secret = "xxxxxxxxxxxxxxx"
doesn’t do what you think in languages like JavaScript, PHP, and Java. Rather
than overwrite the sensitive data, these languages might just make a new

382 Chapter 13

string for you and add the sensitive data string to the list of things to be
garbage- collected. The sensitive data isn’t erased, and you have no ability
to force it to be erased.

It would be nice if these sorts of issues were limited to programming
languages and environments, but that’s not the case. Flash memory is used
in more and more places. One of those places is in solid- state disk drives
(SSDs). Because flash memories wear out, these drives use load leveling to
equalize the usage among the various flash memory chips. That means that
writing something to one of these devices doesn’t guarantee that the old ver-
sion was erased. It’s just like freeing allocated memory and having it end up
on the heap.

As you can see, even the act of erasing something securely is more com-
plex than anything you’re being taught while “learning to code.” You need a
thorough understanding of all aspects of an environment in order to do the
job well, which is of course why you’re reading this book.

Data as Code
You should be aware by now that “code” is just data in a particular format
that’s understood by a computer. That originally meant computer hard-
ware, but now many programs, such as web browsers, execute data includ-
ing in the form of JavaScript programs. And JavaScript can also execute
data; its eval statement treats any string as if it’s a program and runs it.

In Chapter 5, we looked at some of the hardware that prevents comput-
ers from treating arbitrary data as code. Memory management units or
Harvard architecture machines keep code and data separate, preventing
data from being executed. Programs that can execute data don’t have that
sort of protection, so you have to provide it yourself.

A classic example is SQL injection. SQL, short for Structured Query
Language, is the interface to many database systems. The structured part
allows data to be organized into, for example, personnel records. The
query part allows that data to be accessed. And, of course, the language is
how it’s done.

SQL databases organize data as a set of tables, which are rectangular
arrays of rows and columns. Programmers can create tables and specify the
columns. Queries insert, remove, modify, or return rows in tables.

You don’t need to know all the details of SQL to understand the following
example. What you do need to know is that SQL statements are terminated
with semicolons (;) and that comments begin with the number or hash sign (#).

Your school probably has a website you can use to check your grades.
Our example uses a SQL database that includes a table called students, as
shown in Table 13-2.

Security 383

Table 13-2: Students Table in Database

student class grade

David Lightman Biology 2 F

David Lightman English 11B D

David Lightman World History 11B C

David Lightman Trig 2 B

Jennifer Mack Biology 2 F

Jennifer Mack English 11B A

Jennifer Mack World History 11B B

Jennifer Mack Geometry 2 D

The website offers an HTML text field in which a student can enter the
name of a class. A bit of JavaScript and jQuery sends the class name to the
web server and displays the returned grade. The web server has some PHP
code that looks up the grade in the database and sends it back to the web
page. When a student logs in, the $student variable is set to their name so
that they can access only their own grades. Listing 13-4 shows the code.

HTML
<input type="text" id="class"></input>

JavaScript
$('#class').change(function() {
 $.post('school.php', { class: $('#class').val() }, function(data) {
 // show grades
 });
});

PHP
$grade = $db->queryAll("SELECT * FROM students
 WHERE class='{$_REQUEST['class']}' && student='$student'");

header('Content- Type: application/json');
echo json_encode($grade);

Listing 13-4: Student website code fragments

The database query is straightforward. It selects all (*) columns from
all rows in the students table where the class column matches the class field
from the web page and the student column matches the variable containing
the logged- in student name. What could possibly go wrong?

Well, David may not be paying much attention to Biology, but he’s good
with computers. He logs in to his account. Instead of entering Biology 2 for
a class, he enters Biology 2' || 1=1 || '; #. This turns the select statement
into what’s shown in Listing 13-5.

384 Chapter 13

SELECT * FROM students WHERE class='Biology 2' || 1=1 || ''; # && student='David Lightman'

Listing 13-5: SQL injection

This reads as “select all columns from students where class is Biology 2
or 1 equals 1 or an empty string.” The semicolon ends the query early, and
the rest of the line is turned into a comment. Because 1 always equals 1,
David has just gained access to the entire set of student grades. I could
go on to show you how David impresses Jennifer by changing her Biology
grade, but you can just watch the 1983 movie WarGames. As a teaser, he
could enter something in the field with a semicolon, then follow that with
a database update command.

These aren’t just theoretical science fiction movie scenarios; see xkcd
cartoon #327. As recently as 2017, a major SQL injection bug was found
in the popular WordPress website software, which was used by a very large
number of websites. This should further demonstrate the problems that
can occur when you rely on third- party code.

As another example, many websites allow users to submit comments.
You must be careful to sanitize every comment to make sure it doesn’t
contain JavaScript code. Otherwise, a user viewing those comments would
inadvertently run that code. And if you don’t prevent users from submitting
comments in HTML, you’ll likely find the comments filled with advertise-
ments and links to other websites. Make sure user input can never be inter-
preted as code.

Summary
In this chapter, you’ve gained a basic understanding of security principles. You
learned a bit about cryptography, a key computer security technology. You
also learned about a number of things that you can do to make your code
more secure.

In addition, hopefully you’ve learned that security is very difficult and
not for amateurs. Consult experts until you’ve become one. Don’t go it alone.

Just like security, machine intelligence is another advanced topic that’s
worth knowing a bit about. We’ll turn our attention to it in the next chapter.

14
M A C H I N E I N T E L L I G E N C E

How many times a day do you submit some-
thing like “cats and meetloafs” to a search

engine only to have it come back with, “Did
you mean cats and meatloaves?” You probably take

this for granted, without pausing to consider how the
search engine knew not only that there was an error
in your input, but also how to fix it. It’s not very likely
that someone wrote a program to match all possible
errors with corrections. Instead, some sort of machine
intelligence must be at work.

Machine intelligence is an advanced topic that includes the related
fields of machine learning, artificial intelligence, and big data. These are all
concepts you’ll likely encounter as a programmer, so this chapter gives you
a high- level overview.

Artificial intelligence was first out of the gate when the term was coined
at a Dartmouth College workshop in 1956. Machine learning was a close

386 Chapter 14

second with the perceptron in 1957, which we’ll discuss shortly. Today, machine
learning has a huge lead, thanks in part to two trends. First, technological
progress has dramatically increased storage size while reducing the price
of it, and it has also led to faster processors and networking. Second, the
internet has facilitated the collection of large amounts of data, and people
can’t resist poking at all of it. For example, data from one large company’s
book-scanning and translation project was used to dramatically improve
a separate language translation project. Another example is a mapping proj-
ect that fed into the development of self- driving cars. The results from these
and other projects were so compelling that machine learning now is being
applied to a large number of applications. More recently, people have also
realized that these same two trends—cheaper storage and more computing
power, and the collection of large amounts of data—support revitalizing
artificial intelligence, resulting in a lot of new work in that area as well.

The rush to employ machine intelligence, however, mimics the “What
can possibly go wrong?” philosophy that already pervades the computer
security world. We don’t yet know enough to avoid producing psychotic
systems such as HAL from the 1968 movie 2001: A Space Odyssey.

Overview
You should know by now that programming is the grunt work needed to
implement solutions to problems. Defining the problems and their solutions
is the interesting and harder part. Many would rather devote their entire
careers trying to get computers to do this work instead of doing it themselves
(another example of the “peculiar engineering laziness” mentioned in
Chapter 5).

As noted earlier, it all started with artificial intelligence; machine learn-
ing and big data came later. Though the term wasn’t coined until the 1956
Dartmouth workshop, the notion of artificial intelligence goes all the way
back to Greek myths. Many philosophers and mathematicians since have
worked to develop formal systems that codify human thought. While this
hasn’t yet led to true artificial intelligence, it has laid a lot of groundwork. For
example, George Boole, who gave us our algebra in Chapter 1, published
An Investigation of the Laws of Thought on Which Are Founded the Mathematical
Theories of Logic and Probabilities in 1854.

We’ve accumulated a lot of information about human decision making
but still don’t really know how humans think. For example, you and your
friends can probably distinguish a cat from a meatloaf. But you might be
taking different paths to reach that distinction. Just because the same data
yields the same result doesn’t mean that we all processed it the same way.
We know the inputs and outputs, we understand parts of the “hardware,”
but we don’t know much about the “programming” that transforms one
into the other. It follows that the path that a computer uses to recognize
cats and meatloaves would also be different.

One thing that we do think we know about human thought processing
is that we’re really good at statistics unconsciously—not the same thing as
consciously suffering through “sadistics” class. For example, linguists have

Machine Intelligence 387

studied how humans acquire language. Infants perform a massive amount
of statistical analysis as part of learning to tease important sounds out of
the environment, separate them into phonemes, and then group them into
words and sentences. It’s an ongoing debate as to whether humans have
specialized machinery for this sort of thing or whether we’re just using
general- purpose processing for it.

Infant learning via statistical analysis is made possible, at least in part,
by the existence of a large amount of data to analyze. Barring exceptional
circumstances, infants are constantly exposed to sound. Likewise, there is
a constant barrage of visual information and other sensory input. Infants
learn by processing a big amount of data, or just big data.

The massive growth in compute power, storage capacity, and various
types of network- connected sensors (including cell phones) has led to the
collection of huge amounts of data, and not just by the bad guys from
the last chapter. Some of this data is organized and some isn’t. Organized
data might be sets of wave height measurements from offshore buoys.
Unorganized data might be ambient sound. What do we do with all of it?

Well, statistics is one of those well- defined branches of mathematics,
which means that we can write programs that perform statistical analysis.
We can also write programs that can be trained using data. For example,
one way to implement spam filters (which we’ll look at in more detail
shortly) is to feed lots of collected spam and nonspam into a statistical
analyzer while telling the analyzer what is spam and what isn’t. In other
words, we’re feeding organized training data into a program and telling
the program what that data means (that is, what’s spam and what’s not).
We call this machine learning (ML). Kind of like Huckleberry Finn, we’re
“gonna learn that machine” instead of “teaching” it.

In many respects, machine learning systems are analogous to human
autonomic nervous system functions. In humans, the brain isn’t actively
involved in a lot of low- level processes, such as breathing; it’s reserved for
higher- level functions, such as figuring out what’s for dinner. The low- level
functions are handled by the autonomic nervous system, which only bothers
the brain when something needs attention. Machine learning is currently
good for recognizing, but that’s not the same thing as taking action.

Unorganized data is a different beast. We’re talking big data, meaning
that it’s not something that humans can comprehend without assistance.
In this case, various statistical techniques are used to find patterns and rela-
tionships. For example, this approach—sometimes known as data mining—
could be used to extract music from ambient sound (after all, as French
composer Edgard Varèse said, music is organized sound).

All of this is essentially finding ways to transform complex data into
something simpler. For example, one could train a machine learning system
to recognize cats and meatloaves. It would transform very complex image
data into simple cat and meatloaf bits. It’s a classification process.

Back in Chapter 5, we discussed the separation of instructions and
data. In Chapter 13, I cautioned against allowing data to be treated as
instructions for reasons of security. But there are times when it makes
sense, because data- driven classification can only get us so far.

388 Chapter 14

One can’t, for example, create a self- driving car based on classification
alone. A set of complicated programs that acts on classifier outputs must
be written to implement behavior such as “Don’t hit cats, but it’s okay and
possibly beneficial to society to drive over a meatloaf.” There are many ways
in which this behavior could be implemented, including combinations of
swerving and changing speed. There are large numbers of variables to con-
sider, such as other traffic, the relative position of obstacles, and so on.

People don’t learn to drive from complex and detailed instructions such
as “Turn the wheel one degree to the left and put one gram of pressure on
the brake pedal for three seconds to avoid the cat,” or “Turn three degrees
to the right and floor it to hit the meatloaf dead on.” Instead, they work
from goals such as “Don’t hit cats.” People “program” themselves, and, as
mentioned earlier, we have no way yet to examine that programming to
determine how they choose to accomplish goals. If you observe traffic,
you’ll see a lot of variation in how people accomplish the same basic tasks.

People are not just refining their classifiers in cases like this; they’re
writing new programs. When computers do this, we call it artificial intelligence
(AI). AI systems write their own programs to accomplish goals. One way to
achieve this without damaging any actual cats is to provide an AI system with
simulated input. Of course, philosophical thermostellar devices such as
Bomb 20 from the 1974 movie Dark Star show that this doesn’t always work
out well.

A big difference between machine learning and artificial intelligence is
the ability to examine a system and “understand” the “thought processes.”
This is currently impossible in machine learning systems but is possible with
AI. It’s not clear if that will continue when AI systems get huge, especially as
it’s unlikely that the processes will resemble human thought.

Machine Learning
Let’s see if we can come up with a way to distinguish a photograph of a cat
from a photograph of a meatloaf. This is a lot less information than a human
has available with real cats and meatloaves. For example, humans have
discovered that cats typically run away when chased, which is not common
meatloaf behavior. We’ll try to create a process that, when presented with
a photograph, will tell us whether “it sees” a cat, a meatloaf, or neither.
Figure 14-1 shows the original images of a meatloaf- looking Tony Cat on
the left and an actual meatloaf on the right.

Figure 14-1: Original Tony Cat and meatloaf

Machine Intelligence 389

There’s a high probability that you’ll encounter statistics at all levels of
machine intelligence, so we’ll start by reviewing some of the basics.

Bayes
English minister Thomas Bayes (1701–1761) must have been concerned
about the chances of his flock getting into heaven because he thought a
lot about probability. In particular, Bayes was interested in how the prob-
abilities of different events combined. For example, if you’re a backgammon
player, you’re probably well aware of the probability distribution of numbers
that result from rolling a pair of six- sided dice. He’s responsible for the
eponymous Bayes’ theorem.

The part of his work that’s relevant here is what’s called a naive Bayes
classifier. Leaving our meatloaf with the cat for a while, let’s try to separate
out messages that are spam from messages that aren’t. Messages are collec-
tions of words. Certain words are more likely to occur in spam, from which
we can infer that messages without those words might not be spam.

We’ll start by collecting some simple statistics. Let’s assume that we have
a representative sample of messages, 100 that are spam and another 100 that
aren’t. We’ll break the messages up into words and count the number of
messages in which each word occurs. Since we’re using 100 messages, that
magically gives us the percentage. Partial results are shown in Table 14-1.

Table 14-1: Words in Messages Statistics

Word Spam percentage Nonspam percentage

meatloaf 80 0

hamburger 75 5

catnip 0 70

onion 68 0

mousies 1 67

the 99 98

and 97 99

You can see that some words are common to both spam and nonspam.
Let’s apply this table to an unknown message that contains “hamburger
and onion:” respectively, the spam percentages are 75, 97, and 68, and the
nonspam percentages are 5, 97, and 0. What’s the probability that this
message is or isn’t spam?

Bayes’ theorem tells us how to combine probabilities (p) where p0 is
the probability that a message containing the word meatloaf is spam, p1
is the probability that a message containing the word hamburger is spam,
and so on:

p
p p p p

p p p p p p p
n

n
combined

 . . .
 . . .

�
� �� � �� � ��

0 1 2

0 1 2 0 1 21 1 1 �� �� � . . . 1 pn

390 Chapter 14

This can be visualized as shown in Figure 14-2. Events and probabilities
such as those from Table 14-1 are fed into the classifier, which yields the
probability that the events describe what we want.

Event0

Naive
Bayes

classifier
Output

Probability0

Event1
Probability1

Event2
Probability2

. . .

Eventn
Probabilityn

Figure 14-2: Naive Bayes classifier

We can build a pair of classifiers, one for spam and one for non-
spam. Plugging in the numbers from the above example, this gives us a
99.64 percent chance that the message is spam and a 0 percent chance
that it’s not.

You can see that this technique works pretty well. Statistics rules! There
are, of course, a lot of other tricks needed to make a decent spam filter. For
example, understanding what’s meant by “naive.” It doesn’t mean that Bayes
didn’t know what he was doing. It means that just like rolling dice, all of the
events are unrelated. We could improve our spam filtering by looking at the
relationship between words, such as the fact that “and and” appears only
in messages about Boolean algebra. Many spammers try to evade filters by
including a large amount of “word salad” in their messages, which is rarely
grammatically correct.

Gauss
German mathematician Johann Carl Friedrich Gauss (1777–1855) is
another statistically important person. You can blame him for the bell
curve, also called a normal distribution or Gaussian distribution. It looks like
Figure 14-3.

68%
95%

99.7%

m–3s m–2s m–s m m+s m+2s m+3s

Figure 14-3: Bell curve

Machine Intelligence 391

The bell curve is interesting because samples of observed phenomena
fit the curve. For example, if we measure the height of basketball players
at a park and determine the mean height μ, some players will be taller and
some will be shorter. (By the way, μ is pronounced “mew,” making it the
preferred Greek letter for cats.) Of the players, 68 percent will be within
one standard deviation or σ, 95 percent within two standard deviations, and
so on. It’s more accurate to say that the height distribution converges on
the bell curve as the number of samples increases, because the height of
a single player isn’t going to tell us much. Carefully sampled data from a
well- defined population can be used to make assumptions about larger
populations.

While that’s all very interesting, there are plenty of other applications of
the bell curve, some of which we can apply to our cat and meatloaf problem.
American cartoonist Bernard Kliban (1935–1990) teaches us that a cat is
essentially a meatloaf with ears and a tail. It follows that if we could extract
features such as ears, tails, and meatloaves from photographs, we could feed
them into a classifier that could identify the subject matter for us.

We can make object features more recognizable by tracing their outlines.
Of course, we can’t do this unless we can find their edges. This is difficult
because both cats and a fair number of meatloaves are fuzzy. Cats in par-
ticular have a lot of distinct hairs that are edges unto themselves, but not the
ones we want. While it might seem counterintuitive, our first step is to blur
the images slightly to eliminate some of these unwanted aspects. Blurring
an image means applying a low- pass filter, like we saw for audio in Chapter 6.
Fine details in an image are “high frequencies.” It’s intuitive if you think
about the fine details changing faster as you scan across the image.

Let’s see what Gauss can do for us. Let’s take the curve from Figure 14-3
and spin it around μ to make a three- dimensional version, as shown in
Figure 14-4.

Figure 14-4: Three- dimensional Gaussian distribution

392 Chapter 14

We’ll drag this across the image, centering μ over each pixel in turn.
You can imagine that parts of the curve cover other pixels surrounding the
center pixel. We’re going to generate a new value for each pixel by multiply-
ing the values of the pixels under the curve by the value of the curve and
then adding the results together. This is called a Gaussian blur. You can see
how it works in Figure 14-5. The image in the middle is a magnified copy of
what’s in the square in the image on the left. In the right- hand image, you
can see how the Gaussian blur weights a set of pixels from the center image.

Figure 14-5: Gaussian blur

The process of combining the value of a pixel with the values of its
neighbors might seem convoluted to you, and in fact it’s mathematically
known as convolution. The array of weights is called a kernel or convolution
kernel. Let’s look at some examples.

Figure 14-6 shows a 3×3 and a 5×5 kernel. Note that the weights all add
up to 1 to preserve brightness.

3×3
1
16

4
256

16
256

24
256

16
256

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

5×5
1

256

6
256
4

256
1

256

4
256

24
256
16

256
4

256

6
256

36
256
24
256

6
256

4
256

24
256
16
256

4
256

1
256

4
256

6
256

4
256

1
256

Figure 14-6: Gaussian convolution kernels

Figure 14-7 shows an original image on the left. Your eye can trace the
outline of the tree trunks even though there are many gaps. The center
image shows the results of a 3×3 kernel. While it’s fuzzier, the edges are
easier to discern. The right image shows the results of a 5×5 kernel.

You can think of the image as if it’s a mathematical function of the
form brightness = f(x, y). The value of this function is the pixel brightness
at each coordinate location. Note that this is a discrete function; the values
for x and y must be integers. And, of course, they have to be inside the
image boundaries. In a similar fashion, you can think of a convolution
kernel as a small image whose value is weight = g(x, y). Thus, the process of
performing the convolution involves iterating through the neighboring
pixels covered by the kernel, multiplying the pixel values by the weights,
and adding them together.

Machine Intelligence 393

Figure 14-7: Gaussian blur examples

Figure 14-8 shows our original images blurred using a 5×5 Gaussian
kernel.

Figure 14-8: Blurred cat and meatloaf

Note that because the convolution kernels are bigger than 1 pixel,
they hang off the edges of the image. There are many approaches to deal-
ing with this, such as not going too close to the edge (making the result
smaller) and making the image larger by drawing a border around it.

Sobel
There’s a lot of information in Figure 14-1 that isn’t really necessary for
us to identify the subject matter, such as color. For example, in his book
Understanding Comics: The Invisible Art (Tundra), Scott McCloud shows that
we can recognize a face from just a circle, two dots, and a line; the rest of
the details are unnecessary and can be ignored. Accordingly, we’re going
to simplify our images.

Let’s try to find the edges now that we’ve made them easier to see by
blurring. There are many definitions of edge. Our eyes are most sensitive to
changes in brightness, so we’ll use that. The change in brightness is just the
difference in brightness between a pixel and its neighbor.

394 Chapter 14

About half of calculus is about change, so we can apply that here. A
derivative of a function is just the slope of the curve generated by the func-
tion. If we want the change in brightness from one pixel to the next, then
the formula is just brightness = f(x + 1, y) – f(x, y).

Take a look at the horizontal row of pixels in Figure 14-9. The bright-
ness level is plotted underneath, and beneath that is plotted the change
in brightness. You can see that it looks spiky. That’s because it only has a
nonzero value during a change.

Pixels

Brightness

Change in brightness

Figure 14-9: Edges are changes in brightness

There’s a problem with measuring brightness changes this way—the
changes happen in the cracks between the pixels. We want the changes to
be in the middle of the pixels. Let’s see if Gauss can help us out here. When
we were blurring, we centered μ on a pixel. We’ll take the same approach,
but instead of using the bell curve, we’ll use its first derivative, shown in
Figure 14-10, which plots the slope of the curve from Figure 14-3.

m

Figure 14-10: Slope of the Gaussian curve
from Figure 14-3

If we call the positive and negative peaks of the curve +1 and −1 and
center those over the neighboring pixels, the change of brightness for a
pixel is �brightness pixel pixeln n n� � � �� �1 11 1. You can see how this plays
out in Figure 14-11.

Magnitude of change in brightness

Magnitude of change in brightness

Pixels

Brightness

Change in brightness

Figure 14-11: Brightness change centered on pixels

Machine Intelligence 395

Of course, this has the same image edge problem that we saw in the
last section, so we don’t have values for the end pixels. At the moment, we
don’t care about the direction of change, just the amount, so we calculate
the magnitude by taking the absolute value.

Detecting edges this way works pretty well, but many people have tried
to improve on it. One of the winning approaches, the Sobel operator, was
announced by American scientist Irwin Sobel along with Gary Feldman in a
1968 paper.

Similar to what we did with our Gaussian blur kernel, we generate
a Sobel edge detection kernel using values from the slope of the Gaussian
curve. We saw the two- dimensional version in Figure 14-10, and Figure 14-12
shows the three- dimensional version.

m=0

Figure 14-12: Three- dimensional slope of Gaussian curve from Figure 14-10

Since this isn’t symmetrical around both axes, Sobel used two versions—
one for the horizontal direction and another for the vertical. Figure 14-13
shows both kernels.

+1 0 –1 +1 +1
+2 0 –2 0 0
+1 0 –1 –1

+2
0
–2 –1

Sobelx Sobely

Figure 14-13: Sobel kernels

Applying these kernels produces a pair of gradients, Gx and Gy, for
each pixel; you can think of a gradient as a slope. Since we have a gradi-
ent in each Cartesian direction, we can use trigonometry to convert them
into polar coordinates, yielding a magnitude G and a direction θ, as shown in
Figure 14-14.

396 Chapter 14

G
G = G +2 G 2

yx

U = tan–1Gy

GxU
Gx

Gy

Figure 14-14: Gradient magnitude
and direction

The gradient magnitude tells us how “strong” an edge we have, and
the direction gives us its orientation. Keep in mind that direction is per-
pendicular to the object; a horizontal edge has a vertical gradient.

You might have noticed that the magnitude and direction calculation
is really just the transformation from Cartesian to polar coordinates that
we saw in Chapter 11. Changing coordinate systems is a handy trick. In
this case, once we’re in polar coordinates, we don’t have to worry about
division by zero or huge numbers when denominators get small. Most math
libraries have a function of the form atan2(y, x) that calculates the arc-
tangent without division.

Figure 14-15 shows the gradient magnitudes for both images.

Figure 14-15: Sobel magnitudes for blurred cat and meatloaf

There’s an additional issue with the direction, which is that it has more
information than we can use. Take a look at Figure 14-16.

Horizontal Diagonal down Vertical Diagonal up

Figure 14-16: Pixel neighbors

As you can see, because a pixel has only eight neighbors, there are really
only four directions we care about. Figure 14-17 shows how the direction is
quantized into the four “bins.”

Machine Intelligence 397

Vertical

112.5° 67.5°

247.5°

157.5°

202.5°

22.5°

337.5°

292.5°

Vertical

Diagonal
up

Diagonal
down

Diagonal
down

Diagonal
up

HorizontalHorizontal

Figure 14-17: Gradient direction bins

Figure 14-18 shows the binned Sobel directions for the blurred images.
You can see the correspondence between the directions and the magnitudes.
The top row is the horizontal bin followed by the diagonally up bin, the
vertical bin, and the diagonally down bin.

Figure 14-18: Sobel directions for blurred cat and meatloaf

398 Chapter 14

As you can see, the Sobel operator is finding edges, but they’re not
great edges. They’re fat, which makes it possible to mistake them for object
features. Skinny edges would eliminate this problem, and we can use the
Sobel directions to help find them.

Canny
Australian computer scientist John Canny improved on edge detection
in 1986 by adding some additional steps to the Sobel result. The first is
nonmaximum suppression. Looking back at Figure 14-15, you can see that
some of the edges are fat and fuzzy; it’ll be easier later to figure out the
features in our image if the edges are skinny. Nonmaximum suppression is
a technique for edge thinning.

Here’s the plan. We compare the gradient magnitude of each pixel
with that of its neighbors in the direction of the gradient. If its magnitude
is greater than that of the neighbors, the value is preserved; otherwise, it’s
suppressed by being set to 0 (see Figure 14-19).

Keep Suppress

Figure 14-19: Nonmaximum
suppression

You can see in Figure 14-19 that the center pixel on the left is kept, as it
has a greater magnitude (that is, it’s lighter) than its neighbors, while the
center pixel on the right is suppressed because its neighbors have greater
magnitude.

Figure 14-20 shows how nonmaximum suppression thins the edges
produced by the Sobel operator.

Figure 14-20: Nonmaximum suppression cat and meatloaf results

This is looking pretty good, although it makes a good case for meatloaf
avoidance. Nonmaximum suppression found a lot of edges in the images. If
you look back at Figure 14-15, you’ll see that many of these edges have low
gradient magnitudes. The final step in Canny processing is edge tracking with
hysteresis, which removes “weak edges,” leaving only “strong edges.”

Back in Chapter 2, you learned that hysteresis involves comparison
against a pair of thresholds. We’re going to scan the nonmaximum sup-
pression results looking for edge pixels (white in Figure 14-20) whose

Machine Intelligence 399

gradient magnitude is greater than a high threshold. When we find one,
we’ll make it a final edge pixel. We’ll then look at its neighbors. Any neighbor
whose gradient magnitude is greater than a low threshold is also marked as
a final edge pixel. We follow each of these paths using recursion until we
hit a gradient magnitude that’s less than the low threshold. You can think
of this as starting on a clear edge and tracing its connections until they
peter out. You can see the results in Figure 14-21. The strong edges are
white; the rejected weak edges are gray.

Figure 14-21: Edge tracking with hysteresis

You can see that a lot of the edges from nonmaximum suppression are
gone and the object edges are fairly visible.

There is a great open source library for computer vision called OpenCV
that you can use to play with all sorts of image processing, including what
we’ve covered in this chapter.

Feature Extraction
The next step is easy for people but difficult for computers. We want to
extract features from the images in Figure 14-21. I’m not going to cover
feature extraction in detail because it involves a lot of math that you prob-
ably haven’t yet encountered, but we’ll touch on the basics.

There are a large number of feature extraction algorithms. Some, like
the Hough transform, are good for extracting geometric shapes such as lines
and circles. That’s not very useful for our problem because we’re not look-
ing for geometric shapes. Let’s do something simple. We’ll scan our image
for edges and follow them to extract objects. We’ll take the shortest path if
we find edges that cross.

This gives us blobs, ears, cat toys, and squigglies, as shown in Figure 14-22.
Only a representative sample is shown.

Figure 14-22: Extracted features

400 Chapter 14

Now that we have these features, we can do just what we did with our
earlier spam detection example: feed them into classifiers (as shown in
Figure 14-23). The classifier inputs marked + indicate that there’s some
chance that the feature is indicative of our desired result, while – means
that it’s counterindicative and 0 means that it has no contribution.

MeatloafMeatloaf
classifier

–

+

Cat

0

0

0

–

Cat
classifier

+

–

0

0

0

+

Figure 14-23: Feature classification

Notice that there’s information in our images that can be used to
improve on naive classification, such as the cat toys. They’re commonly
found near cats but rarely associated with meatloaves.

This example isn’t good for much other than showing the steps of
feature classification, which are summarized in Figure 14-24.

Edge
detection

Non-maximum
suppression

Edge tracking
with hysteresis

Feature
extraction ClassificationBlur

Figure 14-24: Image recognition pipeline

While meatloaves are mostly sedentary, cats move around a lot and have
a plethora of cute poses. Our example will work only for the objects in our
sample images; it’s not going to recognize the image in Figure 11-44 on
page 323 as a cat. And because of context issues, it has little chance of
recognizing that the cat in Figure 14-25 is Meat Loaf.

Figure 14-25: Cat or Meat Loaf?

Machine Intelligence 401

Neural Networks
At a certain level, it doesn’t really matter what data we use to represent
objects. We need to be able to deal with the huge amount of variation in
the world. Just like people, computers can’t change the inputs. We need
better classifiers to deal with the variety.

One of the approaches used in artificial intelligence is to mimic human
behavior. We’re pretty sure that neurons play a big part. Humans have about
86 billion neurons, although they’re not all in the “brain”—nerve cells are
also neurons, which is possibly why some people think with their gut.

You can think of a neuron as a cross between logic gates from Chapter 2
and analog comparators from Chapter 6. A simplified diagram of a neuron
is shown in Figure 14-26.

Dendrites

Axon

Axon terminals

Figure 14-26: Neuron

The dendrites are the inputs, and the axon is the output. The axon
terminals are just connections from the axon to other neurons; neurons
only have a single output. Neurons differ from something like an AND
gate in that not all inputs are treated equally. Take a look at Figure 14-27.

×

Weight0

Weight1

Weight2

Weight...

Weightn

Dendrite0

Dendrite1

Dendrite2

Dendrite... Action potential CLR
Q

Q AxonD1

Dendriten

×

× + +

–

×

×

Figure 14-27: Simplified gate model of a neuron

402 Chapter 14

The value of each dendrite input is multiplied by some weight, and
then all of the weighted values are added together. This is similar to a
Bayes classifier. If these values are less than the action potential, the compara-
tor output is false; otherwise, it’s true, causing the neuron to fire by setting
the flip- flop output to true. The axon output is a pulse ; as soon as it goes to
true, the flip- flop is reset and goes back to false. Or, if you learned neuro-
science from Mr. Miyagi: ax- on, ax- off. Neuroscientists might quibble with
the depiction of the comparator as having hysteresis; real neurons do, but
it’s time- dependent, which this model isn’t.

Neurons are like gates in that they’re “simple” but can be connected
together to make complicated “circuits,” or neural networks. The key take-
away from neurons is that they fire based on their weighted inputs. Multiple
combinations of inputs can cause a neuron to fire.

The first attempt at an artificial neuron was the perceptron invented by
American psychologist Frank Rosenblatt (1928–1971). A diagram is shown
in Figure 14-28. An important aspect of perceptrons is that the inputs and
outputs are binary; they can only have values of 0 or 1. The weights and
threshold are real numbers.

Input0
×

× +

Threshold

+

–
Output

×

Weight0
Input...

Weight...
Inputn

Weightn

Figure 14-28: Perceptron

Perceptrons created a lot of excitement in the AI world. But then it
was discovered that they didn’t work for certain classes of problems. This,
among other factors, led to what was called the “AI winter” during which
funding dried up.

It turns out that the problem was in the way that the perceptrons
were being used. They were organized as a single “layer,” as shown in
Figure 14-29, where each circle is a perceptron.

OutputsInputs

Figure 14-29: Single- layer neural network

Machine Intelligence 403

Inputs can go to multiple perceptrons, each of which makes one
decision and produces an output. Many of the issues with perceptrons
were solved by the invention of the multilayer neural network, as shown
in Figure 14-30.

Inputs Outputs

Input layer Hidden layer Output layer

Figure 14-30: Multilayer neural network

This is also known as a feedforward network since the outputs produced
from each layer are fed forward into the next layer. There can be an arbitrary
number of hidden layers, so named because they’re not connected to either
the inputs or outputs. Although Figure 14-30 shows the same number of
neurons in each layer, that’s not a requirement. Determining the number
of layers and number of neurons per layer for a particular problem is a black
art outside the scope of this book. Neural networks like this are much more
capable than simple classifiers.

Neuroscientists don’t yet know how dendrite weights are determined.
Computer scientists had to come up with something because otherwise
artificial neurons would be useless. The digital nature of perceptrons makes
this difficult because small changes in weights don’t result in proportional
changes in the output; it’s an all- or- nothing thing. A different neuron design,
the sigmoid neuron, addresses this problem by replacing the perceptron
comparator with a sigmoid function, which is just a fancy name for a function
with an S- shaped curve. Figure 14-31 shows both the perceptron transfer
function and the sigmoid function. Sure looks a lot like our discussion of
analog and digital back in Chapter 2, doesn’t it?

Step function Sigmoid function

1s(x) = 1 + e–x

Figure 14-31: Artificial neuron transfer functions

404 Chapter 14

The guts of a sigmoid neuron are shown in Figure 14-32.

Input0
×

× + s Output

×

Weight0
Input...

Weight...
Inputn

Weightn

Figure 14-32: Sigmoid neuron

One thing that’s not obvious here is that the sigmoid neuron inputs
and outputs are “analog” floating- point numbers. Just for accuracy, there’s
also a bias used in a sigmoid neuron, but it’s not essential for our under-
standing here.

The weights for neural networks built from sigmoid neurons can be
determined using a technique called backpropagation that’s regularly lost and
rediscovered, the latter most recently in a 1986 paper by David Rumelhart
(1942–2011), Geoffrey Hinton, and Roland Williams. Backpropagation
uses wads of linear algebra, so we’re going to gloss over the details. You’ve
probably learned how to solve simultaneous equations in algebra; linear
algebra comes into play when there are large numbers of equations with
large numbers of variables.

The general idea behind backpropagation is that we provide inputs
for something known, such as cat features. The output is examined, and if
we know that the inputs represent a cat, we’d expect the output to be 1 or
pretty close to it. We can calculate an error function, which is the actual out-
put subtracted from the desired output. The weights are then adjusted to
make the error function value as close to 0 as possible.

This is commonly done using an algorithm called gradient descent,
which is a lot like Dante’s descent into hell if you don’t like math. Let’s get
a handle on it using a simple example. Remember that “gradient” is just
another word for “slope.” We’ll try different values for the weights and plot
the value of the error function. It might look something like Figure 14-33,
which resembles one of those relief maps that shows mountains, valleys,
and so on.

All that’s involved in gradient descent is to roll a ball around on the
map until it lands in the deepest valley. That’s where the value of the error
function is at its minimum. We set the weights to the values that represent
the ball’s position. The reason that this algorithm gets a fancy name is that
we’re doing this for very large numbers of weights, not just the two in our
example. And it’s even more complicated when there are weights in mul-
tiple layers, such as we saw in Figure 14-30.

Machine Intelligence 405

Figure 14-33: Gradient topology

You might have noticed the mysterious disappearance of the output
pulsing mechanism that we saw in Figure 14-27. The neural networks that
we’ve seen so far are essentially combinatorial logic, not sequential logic,
and are effectively DAGs. There is a sequential logic variation called a
recurrent neural network. It’s not a DAG, which means that outputs from
neurons in a layer can connect back to the inputs of neurons in an earlier
layer. The storing of outputs and clocking of the whole mess is what keeps
it from exploding. These types of networks perform well for processing
sequences of inputs, such as those found in handwriting and speech
recognition.

There’s yet another neural network variation that’s especially good for
image processing: the convolutional neural network. You can visualize it as
having inputs that are an array of pixel values similar to the convolution
kernels that we saw earlier.

One big problem with neural networks is that they can be “poisoned”
by bad training data. We can’t tell what sort of unusual behavior might
occur in adults who watched too much television as kids, and the same is
true with machine learning systems. There might be a need for machine
psychotherapists in the future, although it’s hard to imagine sitting down
next to a machine and saying, “So tell me how you really feel about pictures
of cats.”

The bottom line on neural networks is that they’re very capable clas-
sifiers. They can be trained to convert a large amount of input data into a
smaller amount of outputs that describe the inputs in a way that we desire.
Sophisticates might call this reducing dimensionality. Now we have to figure
out what to do with that information.

406 Chapter 14

Using Machine Learning Data
How would we build something like a self- driving ketchup bottle using
classifier outputs? We’ll use the test scenario shown in Figure 14-34. We’ll
move the ketchup bottle one square at a time as if it’s a king on a chessboard
with the goal of hitting the meatloaf while avoiding the cat.

Figure 14-34: Test scenario

In this “textbook example,” the classifiers give us the positions of
the cat and meatloaf. Since the shortest distance between two points is a
straight line, and since we’re on an integer grid, the most efficient way to
reach the meatloaf is to use the Bresenham line- drawing algorithm from
“Straight Lines” on page 292. Of course, it’ll have to be modified as shown
in Figure 14-35, because cats and condiments don’t go well together.

Start

Set up Bresenham line from starting point to meatloaf

At meatloaf?

Make next move

Done

Next move hits cat?

Move at angle to next move

Set up Bresenham line from current position to meatloaf

Yes

Yes

No

No

Figure 14-35: Autonomous ketchup bottle algorithm

As you can see, it’s pretty simple. We make a beeline for the meatloaf,
and if the cat’s in the way, we jog and make another beeline for the meatloaf.
Of course, this gets much more complicated in the real world, where the cat
can move and there may be other obstacles.

Now let’s look at one of the other machine intelligence subfields to see
a different way to approach this problem.

Machine Intelligence 407

Artificial Intelligence
Early artificial intelligence results, such as learning to play checkers and
solve various logic problems, were exciting and produced a lot of funding.
Unfortunately, these early successes didn’t scale to harder problems, and
funding dried up.

One of the attendees at the 1956 Dartmouth workshop where the term
was coined was American scientist John McCarthy (1927–2011), who designed
the LISP programming language while at the Massachusetts Institute of
Technology. This language was used for much of the early AI work, and
LISP officially stands for List Processor—but anybody familiar with the
language syntax knows it as Lots of Insipid Parentheses.

LISP introduced several new concepts to high- level programming
languages. Of course, that wasn’t hard back in 1958, since only one other
high- level language existed at the time (FORTRAN). In particular, LISP
included singly linked lists (see Chapter 7) as a data type with programs
as lists of instructions. This meant that programs could modify themselves,
which is an important distinction with machine learning systems. A neural
network can adjust weights but can’t change its algorithm. Because LISP can
generate code, it can modify or create new algorithms. While it’s not quite
as clean, JavaScript also supports self- modifying code, although it’s dangerous
to do in the minimally constrained environment of the web.

Early AI systems quickly became constrained by the available hardware
technology. One of the most common machines used for research at the
time was the DEC PDP-10, whose address space was initially limited to 256K
36-bit words, and eventually expanded to 4M. This isn’t enough to run
the machine learning examples in this chapter. American programmer
Richard Greenblatt and computer engineer Tom Knight began work in the
early 1970s at MIT to develop Lisp machines, which were computers opti-
mized to run LISP. However, even in their heyday, only a few thousand of
these machines were ever built, possibly because general- purpose computers
were advancing at a faster pace.

Artificial intelligence started making a comeback in the 1980s with the
introduction of expert systems. These systems assist users, such as medical
professionals, by asking questions and guiding them through a knowledge
database. This should sound familiar to you; it’s a serious application of our
“Guess the Animal” game from Chapter 10. Unfortunately, expert systems
seem to have matured into annoying phone menus.

We’re going to attack our self- driving ketchup bottle problem
with a genetic algorithm, which is a technique that mimics evolution (see
Figure 14-36).

408 Chapter 14

Start

Make many random cells

Move each cell avoiding obstacle

Calculate distance of each cell from goal

Kill off worst-performing cell

Cross-breed new cell from two best performers

Randomly mutate a random cell

Any cell at goal?
Yes

Done

No

Figure 14-36: Genetic algorithm

We randomly create a set of car cells that each have a position and a
direction of movement. Each cell is moved one step, and then a “goodness”
score is calculated, in this case using the distance formula. We breed the
two best- performing cells to create a new one, and we kill off the worst-
performing cell. Because it’s evolution, we also randomly mutate one of
the cells. We keep stepping until one of the cells reaches the goal. The steps
that the cell took to reach the goal are the generated program.

Let’s look at the results from running the algorithm with 20 cells.
We got lucky and found the solution shown in Figure 14-37 in only
36 iterations.

Figure 14-37: Good genetic algorithm results

Our algorithm created the simple program in Listing 14-1 to accom-
plish the goal. The important point is that a programmer didn’t write this
program; our AI did it for us. The variables x and y are the position of the
ketchup bottle.

Machine Intelligence 409

x++;
x++;
x++; y++;
x++;
x++;
x++;
x++;
x++;
x++;
x++;
x++;
x++;
x++; y--;

Listing 14-1: Generated code

Of course, being genetics, it’s random and doesn’t always work out so
cleanly. Another run of the program took 82 iterations to find the solution
in Figure 14-38. Might make the case for “intelligent design.”

Figure 14-38: Strange genetic algorithm results

You can see that AI programs can generate surprising results. But they’re
not all that different from what children come up with when exploring the
world; it’s just that people are now paying more attention. In fact, many
AI results that surprise some people were predicted long ago. For example,
there was a lot of press when a company’s AI systems created their own pri-
vate language to communicate with each other. That’s not a new idea to any-
body who has seen the 1970 science fiction film Colossus: The Forbin Project.

Big Data
If it’s not obvious from the examples so far, we’re processing a lot of data. An
HD (1920×1080) video camera produces around a third of a gigabyte of data
every second. The Large Hadron Collider generates about 25 GiB/second.
It’s estimated that network- connected devices generate about 50 GiB/second,
up from about 1 MiB/second a quarter- century ago. Most of this information
is garbage; the challenge is to mine the useful parts.

Big data is a moving target; it refers to data that is too big and complex
to process using brute- force techniques in the technology of the day. The

410 Chapter 14

amount of data created 25 years ago is fairly trivial to process using current
technology, but it wasn’t back then. Data collection is likely to always exceed
data analysis capabilities, so cleverness is required.

The term big data refers not only to analysis but also to the collection,
storage, and management of the data. For our purposes, we’re concerned
with the analysis portion.

A lot of the data that’s collected is personal in nature. It’s not a great
idea to share your bank account information or medical history with
strangers. And data that is collected for one purpose is often used for
another. The Nazis used census data to identify and locate Jews for persecu-
tion, for example, and American census data was used to locate and round
up Japanese Americans for internment, despite a provision in the law keep-
ing personally identifiable portions of that data confidential for 75 years.

A lot of data is released for research purposes in “anonymized” form,
which means that any personally identifying information has been removed.
But it’s not that simple. Big data techniques can often reidentify individuals
from anonymized data. And many policies designed to make reidentification
difficult have actually made it easier.

In America, the Social Security number (SSN) is regularly misused
as a personal identifier. It was never designed for this use. In fact, a Social
Security card contains the phrase “not for identification purposes,” which
was part of the original law—one that’s rarely enforced and now has a huge
number of exceptions.

An SSN has three fields: a three- digit area number (AN), a two- digit
group number (GN), and a four- digit serial number (SN). The area number
is assigned based on the postal code of the mailing address on the applica-
tion form. Group numbers are assigned in a defined but nonconsecutive
order. Serial numbers are assigned consecutively.

A group of Carnegie Mellon researchers published a paper in 2009
that demonstrated a method for successfully guessing SSNs. Two things
made it easy. First is the existence of the Death Master File. (That’s “Death”
“Master File,” not “Death Master” “File.”) It’s a list of deceased people made
available by the Social Security Administration ostensibly for fraud preven-
tion. It conveniently includes names, birth dates, death dates, SSNs, and
postal codes. How does a list of dead people help us guess the SSNs of the
living?

Well, it’s not the only data out there. Voter registration lists include birth
data, as do many online profiles.

Statistical analysis of the ANs and postal codes in the Death Master File
can be used to link ANs to geographic areas. The rules for assigning GNs
and SNs are straightforward. As a result, the Death Master File information
can be used to map ANs to postal codes. Separately obtained birth data can
also be linked to postal codes. These two sources of information can be
interleaved, sorting by birth date. Any gap in the Death Master SSN sequence
is a living person whose SSN is between the preceding and following Death
Master entries. An example is shown in Table 14-2.

Machine Intelligence 411

Table 14-2: Combining Data from Postal Code 89044

Death Master File Guessed SSN Birth records

Name DOB SSN DOB Name

John Many Jars 1984-01-10 051-51-1234

John Fish 1984-02-01 051-51-1235

John Two Horns 1984-02-12 051-51-1236

051-51-1237 1984-02-14 Jon Steinhart

John Worfin 1984-02-20 051-51-1238

John Bigboote 1984-03-15 051-51-1239

John Ya Ya 1984-04-19 051-51-1240

051-51-1241 1984-04-20 John Gilmore

John Fledgling 1984-05-21 051-51-1242

051-51-1243 1984-05-22 John Perry Barlow

John Grim 1984-06-02 051-51-1244

John Littlejohn 1984-06-03 051-51-1245

John Chief Crier 1984-06-12 051-51-1246

051-51-1247 1984-07-05 John Jacob
Jingleheimer Schmidt

John Small Berries 1984-08-03 051-51-1250

Of course, it’s not quite as straightforward as this example, but it’s
not much more difficult either. For example, we only know the range for
SSN SNs if there’s a gap in the Death Master data, such as the one shown
between John Chief Crier and John Small Berries. Many organizations
often ask you for the last four digits of your SSN for identification. As you
can see from the example, those are the hardest ones to guess, so don’t
make it easy by giving these out when asked. Push for some other means
of identification.

Here’s another example. The Massachusetts Group Insurance
Commission (GIC) released anonymized hospital data for the purpose
of improving health care and controlling costs. Massachusetts governor
William Weld assured the public that patient privacy was protected. You
can probably see where this is going, with the moral being that he should
have kept his mouth shut.

Governor Weld collapsed during a ceremony on May 18, 1996, and was
admitted to the hospital. MIT graduate student Latanya Sweeney knew that
the governor resided in Cambridge, and she spent $20 to purchase the
complete voter rolls for that city. She combined the GIC data with the
voter data, much as we did in Table 14-2, and easily deanonymized the
governor’s data. She sent his health records, including prescriptions and
diagnoses, to his office.

412 Chapter 14

While this was a fairly easy case since the governor was a public figure,
your phone probably has more compute power than was available to
Sweeney in 1996. Computing resources today make it possible to tackle
much harder cases.

Summary
We’ve covered a lot of really complicated material in this chapter. You
learned that machine learning, big data, and artificial intelligence are
interrelated. You’ve also learned that many more math classes are in store
if you want to go into this field. No cats were harmed in the creation of this
chapter.

15
R E A L - W O R L D C O N S I D E R A T I O N S

Since this book is intended as a companion
for someone learning to code, you hopefully

know something about software at this point
and about the hardware on which it runs as well.

You might think that you’re ready to be a programmer.
But programming involves more than knowing about
hardware and writing code. How do you know what
code to write, and how do you go about writing it? How
do you know that it works?

Those aren’t the only important questions you face. Can others figure
out how to use your code? How easy is it for others to add features or find
and fix bugs? How hard is it to make your code run on hardware other
than that for which it was originally written?

414 Chapter 15

This chapter covers various topics related to the creation of software.
While you can do small projects yourself sitting in a dark room with a suf-
ficient quantity of junk food, most projects are a team sport that involves
dealing with people. That’s harder than you might think—the hardware/
software systems that we call people are way buggier than even the most
terrifying internet- of- things abomination. And forget about documentation;
even if you could find any, it would be out-of-date.

That’s why this chapter also covers some of the philosophical and
practical issues around being a programmer. Yup, this is where the old
curmudgeon tries to pass on some hard- earned wisdom.

The Value Proposition
There’s an overarching question that you should keep in mind when
working on a project: “Am I adding value?” I’m not talking about the
intrinsic value of accomplishing some task here; I’m talking about
increasing productivity.

If you’re programming for a living, you need to meet whatever goals
your employer has set. But, of course, there’s more than one way to meet
those goals. You could just do what you need to do to get by. Or, you could
put a little thought into things that might not have occurred to management.
For example, you might realize that your code would be useful in another
project and structure it so it’s easily reusable. Or, you might sense that you
were tasked to implement a special case of a more general problem and
solve that general problem instead, paving the way for future enhancements.
Of course, you should talk about this with management so that they’re not
surprised.

You can add value to yourself by making sure that you’re proficient in a
variety of technologies. Side projects are a common way to get experience;
it’s equivalent to doing homework but more fun.

One classic way in which people attempt to add value is by creating
tools. This is trickier than it seems because sometimes adding value for
yourself reduces value for others. People often create new tools because
some feature that they think they need is missing from existing ones. A
good example is the make utility (invented by Stuart Feldman at Bell Labs
in 1976), which is used to build large software packages. As time went on,
new features were needed. Some of these were added to make, but in many
other cases, people created well- intentioned but incompatible new utilities
that performed similar functions. (For example, I consulted for a company
once that wrote their own solely because they didn’t bother to completely
read the make documentation and were unaware that it would do exactly
what they needed.) Now there’s make, cmake, dmake, imake, pick- a-letter-make,
and other programs that all do similar things in incompatible ways. The
result is that practitioners like you need to learn multiple tools in each cat-
egory. It makes everyone’s life harder, not easier. It doesn’t add value—it
detracts. Figure 15-1 sums up the situation nicely.

Real- World Considerations 415

Figure 15-1: Not adding value (courtesy of Randall Munroe, xkcd.com)

Creating burdens for others doesn’t add value. Experienced program-
mers know that doing something that’s already been done in a way that
they personally prefer rarely adds value. Instead, it shows off one’s imma-
turity as a programmer. Improve existing tools wherever possible because
more people will be able to use the result. Save making new tools for new
things. Make sure that you fully understand existing tools because they
might be more capable than you realized at first glance.

Mucking up the ecosystem into which you release code does not add
value. Many developers behave as if they’re stereotypical Americans vaca-
tioning in another country, or for that matter my father- in- law visiting—the
“I just came to your place, so do things my way” attitude.

For example, UNIX systems have a command that displays manual
pages for programs. You can type man foo and it’ll show you the page for the
foo command. There’s also a convention that really complex commands,
such as yacc, have both a manual page and a longer, more in- depth docu-
ment that describes the program in more detail. When the GNU project
(which I’ll discuss shortly) added commands to UNIX, it used its own texinfo
system for manuals, which wasn’t compatible with the man system. The result
was that users would have to try both the man and info commands to find
documentation. Even if, as some believe, the GNU approach was superior,
any possible benefits were outweighed by the UNIX community’s huge loss of
productivity that resulted from the fragmented ecosystem.

There are many other examples, such as the replacement of the init
system with systemd. A big part of the UNIX philosophy, as discussed later
in this chapter, is modular design, but systemd replaced the modular init
system with a huge monolithic beast. There was no attempt to retrofit new
features into the existing system. The entire user base lost productivity
because they had to learn a new system that mostly did just what the old
one did. It would have added more value to add multithreading and other
new features to the existing system.

416 Chapter 15

Yet another example is the jar utility, which is part of the Java program-
ming environment. The tar utility was created in the 1970s to pack multiple
files into a single one. This solved a problem caused by using magnetic tape
for storage. Mag tape is a block device, and packing files together allowed
full blocks to be used thereby increasing efficiency. ZIP files, which first
made their appearance on Windows, are similar. Rather than using either
of these existing formats, though, Java made its own. The result was that
users now needed to learn yet another command for no particularly good
reason.

So don’t be the programmer equivalent of an “ugly American.” Work
with the ecosystem, not against it. Use the rule of “least astonishment” as
a guide. You’ve added value if your work seems a natural extension of the
existing environment.

How We Got Here
Before we get going on more practical issues, let’s look at how we got here.
Much more has happened in the field than we can cover here, so we’ll
just touch on some important historical highlights and a few more recent
developments.

A Short History
A long time ago, people made money selling computers, which were really
expensive. Software was written and given away in order to help sell com-
puters. There was a culture of sharing and working together to improve
software. More and more people wrote and shared software as computers
became more accessible.

The Multics operating system, which ran on the huge GE645 mainframe
computer, was collaboratively developed in the 1960s by Bell Telephone
Laboratories, General Electric, and the Massachusetts Institute of Tech-
nology. Bell pulled out of the project, and some of the people there who
had worked on it—most notably, Ken Thompson and Dennis Ritchie—went
off to experiment with some filesystem ideas they’d had when working on
Multics using the smaller computers produced by the Digital Equipment
Corporation (DEC). Their work resulted in an innovative new operating
system called UNIX, which embodied a new minimalist and modular
philosophy for software. While not planned at the outset, it became the
first portable operating system, meaning it could run on more than one
type of computer. The term UNIX in this book refers to all similar systems
including Linux, FreeBSD, NetBSD, OpenBSD, and the modern macOS.
Microsoft Windows is the only major outlier, but even it is incorporat-
ing more and more UNIX features—for example, the socket model for
networking.

Bell wasn’t the only Multics participant to go their own way. The
Incompatible Timesharing System (ITS) was developed over at MIT.
While ITS included a number of groundbreaking features, its most
influential contribution is arguably the Emacs (Editor MACroS) text

Real- World Considerations 417

editor, which began as a set of macros for the DEC TECO (Text Editor and
Corrector) text editor. The user interface for ITS and Emacs influenced the
GNU project, also started at MIT.

Ken Thompson brought a copy of UNIX with him in 1975 when he
took a sabbatical year to teach at the University of California, Berkeley. This
had a huge effect that still reverberates today. Students had access to a real
working system. They could examine the code to see how things worked, and
they could make changes. Not only that, but they were exposed to the phi-
losophy as well. Berkeley produced its own version of UNIX, called BSD
for Berkeley Software Distribution.

Students added many new important features to the system. BBN’s
networking stack, which is the foundation of the internet, was integrated
into UNIX at Berkeley, where the now- ubiquitous socket interface was
born. University graduates started to use the BSD version of UNIX and
formed companies such as Sun Microsystems, which made commercial
UNIX- based systems.

Personal computers changed this. All of a sudden the people writing
software weren’t the people selling computers, so they needed to charge for
it. But there was still an attitude of “it’s great that we make a living doing
this cool stuff.” This changed dramatically when Bill Gates (one of the
founders of Microsoft) came on the scene. As is evident from numerous
court depositions, his focus was on making money. If he had to do some-
thing cool to make money, he would, but his priorities were opposite
those of others in the industry. How did this change things?

Software development began to be driven more by politics, lawyers,
and sometimes- underhanded behavior than by superior engineering. This
approach frequently focused on suppressing innovation that competed
with existing products. For example, Microsoft started with MS- DOS, a
program that they bought from its developer, American computer pro-
grammer Tim Paterson. Microsoft let the program languish, as they were
making plenty of money from it. A company called Digital Research came
out with an improved version called DR- DOS. When Microsoft released
Windows, the original version of which ran on top of DOS, they included
a hidden, encrypted piece of code that checked to see whether the system
was running MS- DOS or DR- DOS and generated phony errors if it found
DR- DOS. This made DR- DOS unsuccessful in the marketplace even though
it was arguably a better product for the money.

It wasn’t just Microsoft, however. Apple also sued Digital Research for
“copying” their user interface in a product called GEM. Digital Research
would probably have prevailed eventually, but would have gone bankrupt in
the process because Apple had much deeper pockets. It’s somewhat ironic
when you realize that the Apple user interface was substantially copied
from the Xerox Alto.

Unfortunately, this mindset continues today with threatened big players
resorting to the courts instead of innovating their way out of their difficulties.
Examples abound, such as SCO versus IBM, Oracle versus Google, Apple
versus Samsung, Samsung versus Apple, Intellectual Ventures shell com-
panies versus the world, and so on.

418 Chapter 15

Personal computers started becoming popular in the mid-1980s. It
wasn’t practical to run UNIX on them because the hardware lacked a
memory management unit (see Chapter 5), although there was a variant
called Xenix that did run on the original IBM PC hardware.

Colleges started using personal computers running Microsoft Windows
to teach computer science because they were cheaper. However, unlike the
UNIX- era graduates from UC Berkeley and other schools, these students
weren’t able to look at the source code of the system they were using. And
the system with which they became familiar was considerably less advanced
than UNIX. As a result, graduates from this era are often not of the same
quality as their earlier counterparts.

In part as a reaction to the closed nature of the source code, Richard
Stallman started the GNU (Gnu’s Not Unix) project in 1983. Among
other things, the goal was to create a freely available and legally unen-
cumbered version of UNIX. Today we call this “free and open source
software,” or FOSS. Open source means that the source code is available for
others to see, and more importantly, modify and improve. Stallman, work-
ing with his lawyer, created the copyleft, a variant of the copyright used by
others to protect their software. The copyleft essentially said that others
were free to use and modify the code as long as they made their modifi-
cations available under the same terms. In other words, “we’ll share our
code with you if you share yours with everyone else.” The GNU project did
a great job of re- creating the UNIX utilities such as cp and, possibly most
important, the gcc C compiler. But the project team was slow to create an
operating system itself.

Linus Torvalds began work on what is now known as the Linux operat-
ing system in 1991, partly because there was no GNU operating system.
To a large degree, this work was made possible by both the existence of
the GNU tools such as the C compiler and the nascent internet, which
enabled collaboration. Linux has become extremely popular. It’s used
heavily in data centers (the cloud), it’s the underlying software in Android
devices, and it’s used in many appliances. This book was written on a
Linux system.

Large companies were originally skeptical about using open source
software. Who would fix the bugs? This is somewhat ludicrous; if you’ve ever
reported a bug to Microsoft, Apple, or any other large company, you know
how much attention it gets. In 1989, John Gilmore, DV Henkel-Wallace
(a.k.a. Gumby), and Michael Tiemann founded Cygnus Support to provide
commercial support for open source software. Its existence greatly increased
the willingness of companies to use open source software.

In many ways, Linux and GNU have brought us a new golden era similar
to the Berkeley UNIX days. It’s not quite as shiny, though, because some of
the people from the PC era are making changes without really understand-
ing the philosophy. In particular, some programmers who didn’t grow
up with UNIX are reducing the value of the ecosystem by replacing small
modular components with huge monolithic programs.

Real- World Considerations 419

Open Source Software
Open source software is widely successful despite alarmist propaganda by
some established closed source companies. For example, senior Microsoft
personnel claimed, “Open source is an intellectual property destroyer. I
can’t imagine something that could be worse than this for the software busi-
ness and the intellectual property business,” despite the fact that they were
secretly using open source tools in- house. A main advantage of open source
software is that many more eyeballs are available to look at the code, which
translates into benefits such as greater security and reliability. Another is
that it allows programmers to build on work that others have done instead
of having to reinvent everything. Even if you use a closed source computer
system, there’s a pretty good chance that you’re still using some open source
components. Even Microsoft recently appears to have seen the light and
makes many UNIX tools available on their systems.

The development of open source software was greatly enhanced by the
internet and cloud services. It’s trivial to find open source projects or to start
your own. But—and this is a big but—the majority of open source projects
out there are garbage just like their closed source counterparts.

A lot of open source software comes from student projects. Since they’re
often first projects, the authors haven’t yet mastered the art of writing good
code. And much of this software is unfinished, as the student programmers
completed their class, graduated, or just moved on. It’s often easier to rewrite
something than it is to decipher someone else’s poorly written and docu-
mented code. This is a vicious cycle because the rewrite often doesn’t get
done, so there are multiple versions that don’t work in different ways. For
example, I recently needed to extract tags from MP3 files and tried six
different open source programs, each of which failed in a different way. It’s
often difficult to determine whether or not there is a good working version
of something because there is so much litter.

When Richard Stallman started the GNU project, he assumed that the
world was filled with programmers of similar quality to him and his peers.
That assumption didn’t turn out to be valid. There is still a belief that one
of the advantages of open source software is that you can add features and
fix bugs that you find. Unfortunately, much of this software is poorly written
and completely undocumented, making the amount of effort too great for a
casual user or even an experienced programmer.

Just because something is open source doesn’t mean that it’s a great
example of the craft. But you can learn what not to do just as well as you
can learn what to do from looking at other people’s code.

Here are two indicators, one positive and one negative, that you can use
to help determine the quality of a piece of code.

The positive indicator is whether or not a project is under active devel-
opment with more than one contributor. This doesn’t apply to projects that
have been around for a long time and are actually “done.” It often helps if a
project is supported by some organization. Many of the major open source

420 Chapter 15

projects originated at companies that still support their development.
However, you must be wary of open source projects created at companies
that are later acquired by other companies with different philosophies.
For example, Sun Microsystems was a prodigious developer of open source
software, including OpenOffice, Java, and VirtualBox. However, Sun was
acquired by Oracle, which ended support for some of these projects and
tried to find ways to control and monetize others; see the Oracle versus
Google lawsuit for details. Other projects have been donated by companies
to foundations that support their development. This often yields a consis-
tent vision that keeps the project on track. This indicator is not completely
reliable, so take it with a grain of salt. For example, the code base for the
Firefox web browser is a poorly documented mess.

The negative indicator is the type and quantity of dialog that you’ll see
at various programmer “self- help” websites. If you see lots of “I can’t figure
out how to make this work” and “Where do I start to make this change?”
questions, then it’s probably not a great piece of code. Furthermore, if the
responses are mostly useless nonanswers or are snarky and unhelpful,
then the project probably lacks good developers. Developers who blame
the questioner for their own lack of quality work are not good role models.
Of course, it’s also a bad sign if there are no comments or questions at all,
as it means that the code is probably not used.

Cautionary tales aside, open source is a great thing. Make your code
open source when it makes sense to do so. But first, learn how to do a good
job so that your code becomes a good example to others.

Creative Commons
The copyleft worked well for software, but software isn’t the only area in
which society benefits from the ability to build on the past. When the
copyleft was first created, most computer applications were text based;
graphics, images, audio, and video were too expensive for the average
consumer. Today, the sounds and visuals that are part of programs are
arguably as important as the programs themselves.

American lawyer and academic Lawrence Lessig recognized the impor-
tance of artistic works and created a set of licenses for them similar to the
copyleft called Creative Commons. There are many variants of these licenses,
just like there are a variety of open source licenses for software. These range
from “you can do anything you want” to “you have to give the creator credit”
to “you have to share all of your changes” to “noncommercial use only” to
“no derivative works allowed.”

The Creative Commons legal framework has greatly enhanced our
ability to build on the work of others.

The Rise of Portability
The term portability has a specific meaning for software. Code that is portable
can run in a different environment than the one for which it was developed.
That may be a different software environment, different hardware, or

Real- World Considerations 421

both. Portability wasn’t an issue in the early days of computing when there
were just a handful of computer vendors, although standard languages
like COBOL and FORTRAN allowed programs to be run on different
machines. It became more important in the 1980s when the EDA industry
(see “Hardware vs. Software” on page 90) and the availability of UNIX
enabled the formation of a much larger number of computer companies.

These new computer vendors ported UNIX to their products; their
customers didn’t have to worry about it. But another change happened at
about the same time, which is that these less- expensive UNIX systems made
inroads into the commercial market instead of being limited to academia.
Source code was not shipped with many of these systems since the end users
would never be building programs themselves. And, in an effort to increase
profits, some companies started charging extra for certain UNIX tools, such
as the C compiler. People who needed these tools started turning to the
GNU tools since they were free, and often at least as good—and in many
cases better than—the original UNIX tools.

But now, users had to port these tools to different systems themselves,
which quickly became a huge pain point. Different systems had header files
and libraries in different places, and many of the library functions had
subtle differences in their behavior. This was addressed in two different
ways. First, standards such as POSIX (portable operating system interface)
were created to bring some consistency to the APIs and user environ-
ments. Second, the GNU project created a set of build tools, such as automake,
autoconf, and libtool, to automate some of the system dependency checking.
Unfortunately, these tools are incredibly cryptic and hard to use. Plus, they
have their own dependencies, so code built with a particular version often
can’t be built with another.

This is the state of the world today. Modern systems are more similar
than they used to be because the world is pretty much UNIX based. And,
while they’re clunky, the GNU build tools get the job done most of the time.

Package Management
Open source software, especially Linux, exacerbated the problem of distrib-
uting software. While people refer to Linux as if it’s a single system, there
are many different configurations—from what’s used in data centers to
desktops to the base for Android phones and tablets. Even if all systems had
the same configuration, there are many different versions of each system.
While source code is available, a lot of code is now distributed in precom-
piled, ready- to- run form.

We talked about shared libraries back in “Running Programs” on
page 137. A precompiled program won’t work unless the system includes
the right versions of the libraries on which it depends. Some large programs
use huge numbers of libraries, and all of them need to be present and of
the versions that the programs expect.

While there were some earlier attempts, package management really took
off with Linux. Package management tools allow programs to be bundled
into packages that include a list of dependencies. Package management tools

422 Chapter 15

such as apt, yum, and dnf not only download and install software but also
check the target system for dependencies, downloading and installing them
as necessary.

These tools work a good part of the time. But they tend to run into
problems when different programs need different versions of the same
dependencies. And, since package managers aren’t compatible, it’s a lot of
work to get software ready to be installed on different systems.

Containers
Containers are a more recent, different approach to the package management
problems. The idea is that an application and all of its dependencies are
bundled up into a container. The container is then run in an environment
where all of its pieces, such as data files, are kept isolated from the rest of
the system.

Containers simplify software deployment because they bundle up all
of the dependencies (libraries and other programs) required by an applica-
tion into a single package. This means that, provided your type of container
is supported, you can just install a containerized application without having
to worry about other things that it needs. A downside of this approach is
that it effectively eliminates shared libraries (see “Running Programs” on
page 137), resulting in less efficient memory utilization. Containers are also
larger than applications by themselves.

Security is touted as a benefit of containers. The idea is that running
multiple applications on the same operating system allows applications to
interfere with each other by leveraging OS bugs. While that may be true, it
just means that a different class of bugs needs to be exploited.

Containerized applications called snaps are an option on many Linux
systems. CoreOS, now Container Linux, is one of the major Linux container
efforts. One of the developers was among the first people to suffer through
the course notes that were the foundation of this book, so you’re in good
company.

Java
The Java programming language was created by a team at Sun Microsystems
led by James Gosling starting in 1991. Gosling has a track record of recogniz-
ing when technology has changed to the point where a different approach
becomes practical. In this case, he realized that machines were fast enough
that interpreters were a practical alternative to compiled code in many
circumstances. The Java language looks a lot like C and C++.

One of the ideas behind Java was that rather than recompiling your code
for every target machine, someone would do that for the Java interpreter
and then your code would just run. You would only have to write your code
once and run it anywhere. This wasn’t a completely original concept, as Java
wasn’t the first interpreted language.

Java was originally designed for television set–top boxes (back when it
was called Oak). It was repurposed as a way to run code in browsers that was
independent of the machine on which the browser was running. It has been

Real- World Considerations 423

somewhat eclipsed by JavaScript in that environment, although it’s still
used. JavaScript is unrelated to Java, and is not quite as nice a language,
but it’s much easier to write since it doesn’t require any special tools.

Java is important because it has become a popular teaching language.
This is partly due to the fact that it uses garbage collection, which frees
beginners from the complexity of explicit memory management. It’s a great
place to start as long as you don’t stop there.

Java has become much more than a language; there is a whole ecosystem
of software that surrounds it. That ecosystem includes a lot of custom tools
and file formats, making life more difficult for programmers. The ecosystem
is so complicated and fragmented that it’s not uncommon to hear pro-
grammers grumble that while they only have to write code once, getting
the ecosystem installed and functional so that they can actually run that
code is often pretty difficult.

Another downside to Java is the programming culture that has grown
up around it. Java programmers tend to use hundreds of lines of code where
one would suffice. When looking at someone else’s Java code, you often
wonder where to find the line that actually does something. Some of this
stems from Java being a good object- oriented language. Fanatics obsess
over having a beautiful class hierarchy and often prioritize that over getting
a job done.

A good example is a Java database tool called Hibernate, which, as far as
I can tell, tries to solve two “problems.” The first is that Java classes and sub-
classes do a great job of data hiding, or limiting the visibility of internal
variables. But, despite the data hiding, code at the bottom of the class hier-
archy accesses a global database, which causes some people to freak out
philosophically. Hibernate uses special comments in Java to provide data-
base manipulation, hiding reality from the programmer. Of course, this is all
well and good until something breaks, at which time reality must be faced.

The second thing that Hibernate does is to provide an abstraction called
HQL (Hibernate Query Language) on top of the underlying database API,
which is usually SQL (Structured Query Language). In theory, this allows
programmers to perform database operations without having to worry about
the differences between database systems.

Back before the C programming language was formally standardized,
there were a number of incompatibilities between compilers. Rather than
invent a “meta- C,” people came up with programming guidelines like “don’t
use this feature.” By following these guidelines, code would work on any
compiler.

The differences between SQL implementations can be handled in a
similar way without introducing yet another mechanism. It’s also worth not-
ing that most serious SQL projects include something called stored procedures
for which there is no compatibility among implementations. And HQL
doesn’t provide support for them, so it missed out on the one place where
it could have been really useful.

The feel- good value of hiding the underlying database system is not
balanced out by having to learn a new language that doesn’t do everything
you need.

424 Chapter 15

Node.js
As you’ve seen in this book, JavaScript began life as a scripting language for
browsers. Node.js is the latest environment that allows JavaScript to be run
outside of a browser. One of its primary attractions is that it allows both the
client and server sides of an application to be written in the same program-
ming language.

While the idea is good, the results vary. I avoid Node.js for a couple of
reasons. First, Node.js invented its own package manager. Just what every-
one needed—another incompatible method making it harder to maintain
systems. As a contrast, even though Perl has its own package manager, it
avoids decreasing value by making its packages available via system package
managers such as apt and dnf.

Second, there are hundreds of thousands of Node.js packages with
twisty interdependencies. The vast majority are not suitable for serious
work. For some reason, Node.js attracts bad code.

Cloud Computing
Cloud computing means using someone else’s computers over a network.
It’s not really a new concept; it’s an updated version of the 1960s invention
of time sharing. Two factors make cloud computing interesting:

•	 Networks have become more ubiquitous and speeds have increased
dramatically. This makes functionality like streaming audio and video
possible, not to mention offloading storage for things like email.

•	 Hardware prices have come down to the point where an incredible
amount of computing power and storage is available. This has led to
new algorithms and ways to solve problems that were previously not
practical. Of course, the same can be said for desktop computers. My
current machine has eight processor cores, 64GB of RAM, and 28TiB
of disk. This was neither practical nor economical when I started pro-
gramming. Another way of looking at it is that the machine on which
I’m writing this book has more RAM than the total amount of disk stor-
age on the machine that I used 20 years ago.

There’s nothing really magical about cloud computing; it’s just hard-
ware and software. It has created new business models for renting comput-
ing resources.

Cloud computing has sparked a lot of innovation in hardware packag-
ing. Data centers have completely different economies of scale, and reliability
is important. Cramming huge numbers of machines into a space means
paying a lot of attention to power and cooling. One creative scheme pio-
neered by Sun Microsystems involves building data centers in shipping
containers instead of buildings.

Real- World Considerations 425

Virtual Machines
It used to be that one program would run on one computer at a time.
Operating systems made it possible to run multiple programs via time
sharing. But not all application programs that users wanted were available
on all operating systems, especially when closed source systems became
the norm. Many users had to resort to using multiple computers running
different operating systems, or having to reboot their machine to run dif-
ferent operating systems.

Hardware is now fast enough that entire operating systems can be
considered applications, making time sharing between multiple operat-
ing systems practical. Keep in mind that this might require interpreting
an instruction set that is different than that of the underlying physical
machine. Also, it’s not enough just to be able to run the instruction set—
the expected hardware environment must be present as well.

Since these operating systems aren’t necessarily running directly on
the physical machine hardware, they’re called virtual machines. Virtual
machines provide many advantages other than eliminating the proprietary
operating system lockout. They’re really useful for development, especially
for operating system development. That’s because when the system under
development crashes, it doesn’t also crash your development system.

Virtual machines are a mainstay of the cloud-computing world. You can
rent space in the cloud and run whatever mix of operating systems you desire.

The operating system that supports the virtual machines is often called
a hypervisor.

Portable Devices
Just as with cloud computing, improvements in communication technology
and hardware price/performance have made it possible to build portable
devices with great power and functionality. A single modern cell phone has
more computing power and storage than all of the computers in the world
combined a few decades ago. Other than the portability, there’s nothing
new or magical about these devices. Each has its own ecosystem and tools.

The big challenge with portable device programming is power manage-
ment. Because portable devices are battery powered, great care must be
taken to minimize operations such as memory accesses, as they consume
power and run down the battery.

The Programming Environment
Programming for a living is not the same thing as working on personal or
school projects. Working as a programmer means taking direction from,
giving direction to, and working with others. Little if anything is taught
about this aspect of the field in school. It’s often learned through a series
of weird on- the- job experiences.

426 Chapter 15

Are You Experienced?
So here you are, a new programmer with little or no experience. What is
experience and how do you acquire it?

Employers are always looking for “experienced professionals.” What
does that mean? The simplest definition is that a candidate has exactly the
sought- after skills. But that’s not really a very good definition, and it’s often
impractical. For example, I received a call in 1995 from a recruiter look-
ing for someone with five years of Java programming experience. I had to
explain that even the authors of Java didn’t have that level of experience
because it hadn’t been around that long.

One of the satisfying things about programming is that you get to do
things that have never been done before. So how can you start with the
skills that you won’t have until you’re done? What’s a good definition of
experience?

First of all, you need to be grounded in the fundamentals. If all you
know is how to build a website, you’re unlikely to be able to successfully
contribute to a surgical robot project. But more importantly, experience is
knowing what you can do and what you can’t do. How do you know what you
can do when you haven’t done it yet? You need to learn to estimate. It’s not
just guesswork; it’s heuristics.

Learning to Estimate
One of the most damaging things you can do as a member of a project team
is to fail to deliver your work on time without warning. The key here is
without warning; nobody delivers everything on time, but when being late
is a surprise, it’s difficult for other team members to work around.

How do you learn to estimate? With practice. Start with this: before you
do a task, such as a homework assignment, jot down your estimate of how
long it will take. Then keep track of how long the task actually took. After
a while, you might discover that you’re getting better at estimating. This is
good practice because with homework, just like with programming, you’re
always doing something that you haven’t done before.

An oft- abused but worthwhile management technique is status report-
ing: you regularly generate a short list of what you accomplished since
the last report, what problems arose, and what your plans are for the
next reporting period. This is just a more formal method of tracking
your homework predictions. When a status report shows that the plans
were not achieved but no problems were encountered, that’s a red flag.
Status reporting gives you a way to adjust your estimates by comparing
them to actual results.

Scheduling Projects
Programming projects are generally more complex than your homework
(with the possible exception of your programming class homework). How
do you estimate a more complex project?

Real- World Considerations 427

A fairly simple method is to make a list of all of the pieces in the project.
Put them into three appropriately sized bins, such as 1 hour, 1 day, and
1 week. Add up the results. You will probably be wrong about most of your
guesses, but on average the total estimate will be pretty close. Status report-
ing is key here, because it shows that some things take more time than
expected while others take less time, making it possible to track the original
estimate.

Approaches like this are an important trade- off, because generating a
complete and accurate schedule for a complex project often takes longer
than just doing the project. And it still wouldn’t account for things like
snow days.

Related to this is how projects actually get planned in the industry,
which I explained when answering a question from the audience at an ACM
lecture in 2004 at Oregon State University. It’s not really possible to convey
the slack- jawed silence that followed. Goes to show, you don’t learn every-
thing you need to know in class. What happens is that you’ll distinguish
yourself by doing a great job on some project. Your manager will take you
aside and say, “Hey, nice job. We’re thinking about doing this new thing.
Can you tell me how long it will take and how much it’ll cost?” You’ll feel
so honored that you’ll give up your social life for a while to figure it all out
in detail. You’ll do this without knowing (except you will, because you’ve
read this) that before your manager talked to you, they already had some
numbers in mind, possibly given to them by their manager. You’ll show
your results to your manager, who will respond with, “Oh. Well, you know,
if it’s going to take this long and cost this much, we just won’t do it.” A light
will go on in your head and you’ll ask yourself, “Do I want to have a job next
week?” You’ll say, “Well, this was conservative, I can pull it in here and there.”
Now, a very interesting thing is taking place. You’re lying to your manager,
who knows that you’re lying. Your manager also knows that your original
numbers are correct, and that the project would come in on time and on
budget if you were allowed to use them. Furthermore, they know that forc-
ing you to use the more aggressive numbers will make the project late and
over budget. But sadly, that’s the way it’s often done.

While this scenario may be hard to believe, keep in mind the popularity
of Dilbert comics.

As this example indicates, a common challenge in scheduling is man-
agement that refuses to accept schedules and true costs. Nonengineers
often view schedules as something that can be negotiated; managers often
feel that engineers are too conservative in scheduling and try to negotiate
down the estimated time. This almost always leads to bigger problems down
the road. The only legitimate way in which to decrease the time is to remove
features.

Decision Making
There are many possible ways to do most projects. There are choices of
programming languages, data structures, and more. Engineers are famous
for having heated debates over the “right” way to do something. Sometimes

428 Chapter 15

projects don’t happen and people lose their jobs because they can never
stop arguing and get down to work. Heated discussions often make man-
agement uncomfortable.

An otherwise unexceptional manager taught me something very use-
ful about resolving these sorts of problems. At the beginning of a project,
he took all of us into a conference room and told us how he worked. He
said that decisions were going to be made first and foremost on technical
grounds. But, he said, many times there is no technical reason for doing
things one way or another. He said that in those cases, it was perfectly okay
to say, “I want to do it this way because I like it.” He explained that as long
as nobody else preferred a different way, then he’d go along. He didn’t want
to hear complicated pseudotechnical arguments that in reality were just
someone justifying their particular preference but not saying so. In that
case, not only would that person not get their way, but they’d probably also
lose their job. The moral of this story is to keep technical necessities separate
from personal preferences.

You’ve already gotten a taste of this sort of behavior in Chapter 12,
where you learned that the actual rationale for and benefits of JavaScript
promises are obfuscated by a fear of pyramid- of- doom rationalization.

Working with Different Personalities
I mentioned earlier in this chapter that programming usually involves
working with other people.

Numerous “learn to code” boosters emphasize that “programming is
fun.” I don’t agree; my sympathies are more in line with those expressed
by Italian researcher Walter Vannini in his article “Coding Is Not ‘Fun’,
It’s Technically and Ethically Complex.” Recall the two- step programming
process from the book’s introduction. The second step, explain it to a
three- year- old (that is, doing the actual programming), requires meticulous
attention to detail. You’re probably at a stage where you have trouble keep-
ing your room clean; that doesn’t translate to programming. I would say
that programming is satisfying. The fun comes in the first step, understand-
ing the problem. But even that’s not a barrel of laughs.

People in any profession have a wide range of personalities, not all of
which would be described as “well adjusted.” Programmers are no exception.
While many programmers have balanced personalities, some favor techni-
cal prowess over social skills. There is a wide spectrum between Richard
Stallman and Dennis Ritchie, with Linus Torvalds somewhere in between.
This can be a source of problems, especially in this age where people are
highly sensitive to word choices.

 There’s a lot of discussion in the media these days about abusive behav-
ior in the workplace. Let me be clear: workplace abuse is never acceptable,
so don’t be an abuser and don’t allow yourself to be abused. But it can often
be difficult to determine what is abuse and what isn’t. That’s because people
don’t have the same worldviews, and something that might be fine for one
person might not be for another. The classic example is Apple founder
Steve Jobs.

Real- World Considerations 429

You might think that this issue could be addressed with some simple
rules. And it can, but there are trade- offs. Many years ago, I worked with a
manager who expressed it pretty well. He said that while he could force the
people in his group into “good behavior,” such as being less argumentative,
the result would be losing much of the creative manic energy for which he
hired those people. He felt that a large part of his job was to smooth over
personality differences so that people would be productive.

A big source of problems is that programmers who are passionate
about their work may be intensely critical of someone else’s. A hard lesson
to learn is that it’s not personal. I once had an employee who—as I eventually
learned—if I pointed out a bug in his code, he would interpret that as me
telling him he was a bad person. As a contrast, when that same employee
took delight at pointing out bugs in my code, my reaction was, “Let’s fix it
because we want this to succeed.” At the core, this is about people having
confidence in themselves. Try to build the confidence of your team members,
as confident people are less likely to take things personally.

Related to this, I once worked for someone who regularly told me that
what I was doing was stupid. Eventually, I figured out what was happening
and said the following: “You know, I finally realized that when you tell me
that what I’m doing is stupid, you’re really saying that you don’t understand
what I’m doing. Now that I know that, I’ll ignore you as best I can. But I’m
human, so every time you say ‘stupid,’ I get less work done for the next few
days. So if you want to get your money’s worth, you might try to just tell me
that you don’t understand things.”

Communication is important. A characteristic of insecure people is that
they try to make others feel inferior either by talking way above their level or
by being condescending. The job of a secure person is to figure out how to
speak to others at their level of understanding. As an example, I was at a party
at the 1989 SIGGRAPH (Special Interest Group on Computer Graphics)
conference and overheard someone there ask another person for help in
understanding a paper written by Loren Carpenter, the first geek to win an
Academy Award. This other person patiently explained the paper. Afterward,
the first person said, “Hey, thanks. That really helped. My name is Joe, what’s
yours?” to which the other person replied, “I’m Loren.” Be like Loren.

One more thing to keep in mind if you do end up in a difficult situation
at work: Human Resources is not your friend. Their job is not to protect you;
it’s to protect the company from liability.

Navigating Workplace Culture
Each workplace has its own unique culture. Finding one that matches your
personality is key to having a successful and enjoyable career. Results- based
and personality- based cultures are opposite ends of the spectrum.

Amy Wrzesniewski, Clark McCauley, Paul Rozin, and Barry Schwartz’s
1997 article “Jobs, Careers, and Callings: People’s Relations to Their Work”
partitions people’s work into the three categories in the article’s title. In
short, people get financial rewards from jobs, advancement from careers,
and enjoyment from callings. Matching your category and personality to
your workplace is a key component of success.

430 Chapter 15

Jobs and careers work better in personality- based cultures. These
cultures reward drama- free personal interactions. People treat each other
well, at least face- to- face.

Callings and results- based cultures go together. Getting the best job
done is the reward even if doing so involves heated arguments and intense
discussions.

As an example, this book’s technical editor and I spent a month having
an intense argument about a paragraph in Chapter 7. We were both happy
that we reached a great solution, and that happiness made up for all of the
arguing. We were both annoyed that it took so long to find a solution, but
that’s the way it is; sometimes solutions are not obvious. If that sort of pro-
cess and outcome makes you happy, you want to find a workplace that values
such behavior.

It’s worth taking a step back to reframe the problem when a solution is
elusive. However, it’s difficult to remember to do this in the middle of a
passionate discussion.

Making Informed Choices
You may have noticed that I haven’t exactly had glowing things to say about
certain parts of the technology spectrum, such as the web. This may have you
wondering why you’d want to work in this field. A lot depends on what
you want to get out of your work, as per the previous section. Keep in mind
that all endeavors have their good and bad aspects. Choose your work situa-
tions with your eyes open.

There’s often a trade- off between interesting work and making lots
of money. People with callings prefer interesting work and would do it for
free if necessary. People with jobs or careers often get paid handsomely
for working with cumbersome or broken technology. A good example is
the large number of people who remembered how to program in COBOL,
who found and fixed Y2K bugs. These were bugs in antiquated code that
involved dates and kept only the last two digits of the year. The transition
from 1999 to 2000 would have broken this code, which was in use for lots
of critical infrastructure.

Development Methodologies
It seems like every field of endeavor spawns “methodology experts.” Pro-
gramming is no different, except possibly that there is such zeal that ideology
is a more appropriate term than methodology. And every methodology seems
to come with its own uniform, hairstyle, terminology, and secret handshakes.
To a large degree, this just makes it easier for adherents to exclude the non-
believers, the opposite of the Loren Carpenter example earlier. And it can
become ridiculous: I was discussing methodology with a client who finally
blurted out, “As long as we have a completely Agile pivoting scrum, things
should be okay.”

Real- World Considerations 431

My expert advice is to not take any ideology too seriously. None of them
work in pure form; you need to cherry- pick the ideas and use those that make
sense for your project. How do you decide what works for your project? Let’s
look at the various stages of development (Figure 15-2).

Begin End
How

are we
doing it?

Testing

Peers

Users
#2

Users
#1

What
are we
doing?

How do
we know
it works?

Figure 15-2: Project development cycle

We have the three questions with which we began this chapter. A big
distinction between ideologies is the role of the user.

Contrary to what you might believe from observing the world around
you, software is written for things other than entertainment. An ideology
that works for a website or video game is probably not appropriate for a sat-
ellite, power plant, pacemaker, or car.

It’s important to know exactly what you’re doing for projects in which
the cost of failure is high, so the users (#1) are involved early on in order to
come up with a clear definition. Once you have a definition, you can begin
coding, which is usually—and should be—reviewed by peers. The result is
tested against the definition.

When the cost of failure is low, there’s less incentive to come up with
a clear definition in advance. It’s common to take more of a “We’ll know it
when we see it” attitude. Users (#2) play a more important role in looking at
results and deciding whether or not the right thing has been done. Testing
to determine whether or not the code actually works is often confused with
testing to determine whether or not users like the current definition.

Laziness and incompetence are not good development methodologies.
Many people don’t write specifications because they don’t know how. Choose
a methodology that’s right for the project first and the people second.

432 Chapter 15

Project Design
A project starts with an idea. It might be your idea, or it might come from
someone else. How does that turn into code?

You can, of course, just start coding. And that’s just fine for small per-
sonal projects. But for anything significant, there are some processes that
you can follow that lead to better results.

Writing It Down
Start by writing the idea down. You’ll be surprised by how that gets you to
fill in a lot of missing details.

It’s important for your documentation to be at the correct level. Talk
about what you’re going to do, not how you’re going to do it.

As an example of how not to go about it, I was once asked to help out
on a project to design a new blood pressure monitor. The client sent me
about 5,000 pages of documentation and asked me to estimate the cost,
which I was unable to do. It turns out that, due to prior problems, company
management had issued an edict that no code would be written without
documentation. Sounds good, but they ignored the fact that none of their
people knew how to write documentation, and they didn’t provide any
training. So the engineers wrote code without telling management and
then described their code in longhand English. Nowhere did their docu-
ments even mention that the product was a blood pressure monitor.

Another example is the Apache web server. Good piece of software. Tons
of documentation on how to set this or that configuration parameter. Never
says that it’s a web server or describes how the pieces relate.

Fast Prototyping
One development methodology that deserves a mention is fast prototyping.
This involves whipping out a partially working version of your project. Just
like writing things down, prototyping helps you to understand your idea in
more depth. A prototype can also be a useful tool to help explain your idea
to others.

Watch out for these pitfalls:

•	 Don’t mistake your prototype for production code. Throw it out and
write new code using what you learned from doing the prototype.

•	 Don’t allow yourself to be forced into coming up with a hard schedule
for the prototype. After all, a big reason for prototyping is that you
don’t know enough to be able to generate a realistic schedule.

•	 Most difficult, don’t let your management mistake your prototype for a
shippable product.

One of the hallmarks of prototype code that got shipped is a lack of
coherency. In his book The Stuff of Thought (Penguin), Steven Pinker dis-
cusses the difference between working with blocks and working with the
principles that govern the behavior of those blocks. You’re mainly working

Real- World Considerations 433

with blocks during prototyping. It’s important to take a step back after the
prototype is functional to observe those governing principles and then
reimplement the code to use those principles consistently.

Interface Design
Your project will occupy some place in a software stack; you saw an overview
of this in Figure 1 on page xxxiii. Software is the filling in a sandwich that
communicates with things above and below it. The interfaces that your
application uses make up the bottom piece of bread. You need to define
the top piece.

System programming occupies the space between the hardware and the
applications. System programs communicate with hardware using whatever
combination of registers and bits are detailed in the device manufacturer’s
datasheets. But system programs also have to communicate with applications.
The line between them is called the application program interface (API). An
API is called a user interface (UI) if it’s used by people instead of by other
programs. There are numerous APIs since programs are built in layers;
there may be an operating system at the bottom with an API that is used by
libraries, which in turn are used by applications. How is an API designed?
What makes a good one?

A good way to start is to document the use cases, situations in which the
API is used to accomplish some task or set of tasks. You can collect use cases
by querying the eventual users of a program. But keep in mind that users
often give shortsighted answers because they’re already using something. A
lot of their feedback tends to be of the “make it like this with that change”
variety. And a pile of discrete requirements doesn’t make for a clean result.

Now, you could just do what the users request, and it might work out for a
while. But for an API to have legs, you need to abstract the user requirements
and synthesize an elegant solution. Let’s look at a few examples.

The original Apple Macintosh API was published in 1985 in a three-
volume set of books called Inside Macintosh (Addison- Wesley). The set was
over 1,200 pages long. It’s completely obsolete; modern (UNIX- based)
Macs don’t use any of it. Why didn’t this API design last?

The Mac API could be described as very wide and shallow. It had a huge
number of functions, each of which did one particular thing. An argument
could be made that this interface didn’t last because it was too specific; the
lack of abstractions, or generalizations, made it impossible to extend as new
use cases arose. Of course, more functions could have been added, making
it even wider, but that’s not a very practical approach.

By contrast, version 6 of the UNIX operating system was released 10 years
earlier in 1975, with a 321-page manual. It embodied a completely different
approach that sported a narrow and deep API. The narrowness and depth
were made possible by a good set of abstractions. What’s an abstraction?
It’s a broad category of things; for example, rather than talking individually
about cats, dogs, horses, cows, and so on, you could use the abstraction
“animals.” These abstractions were evident not just in the system calls (see
“System and User Space” on page 133) but also in the applications.

434 Chapter 15

For example, you’re probably familiar with the concept of a file as a place
to store data. Many operating systems had different system calls for each
type of file. UNIX had a single type of file with a handful of system calls. For
example, the creat system call could create any type of file. (When asked if
he would do anything different if he were redesigning the UNIX system, Ken
Thompson replied, “I’d spell creat with an e.”) As part of the file abstraction,
even I/O devices were treated as files, as you saw in Chapter 10.

Compare this abstraction to the pip (Peripheral Interchange Program)
utility on contemporary DEC systems. It was a hugely complicated and
ungainly tool that had special commands that allowed users to copy files.
There were specific commands to copy files to tapes, printers, and more.
By contrast, UNIX had a single cp (copy) command that users could use to
copy files independent of their type and where they lived. You could copy a
file to an I/O port connected to a printer as easily as you could copy a file
from one place to another.

The UNIX abstractions supported a novel programming philosophy:

•	 Each program should do one thing and do it well. Make another pro-
gram to do something new instead of adding complication to old ones.

•	 Build programs to work together; the output of programs should be
usable as input to other programs. Do complicated things by hooking
simple programs together instead of writing huge monolithic programs.

Both the UNIX API and a large number of the original applications are
still in widespread use today, more than 40 years later, which is a testament
to the quality of the design. Not only that, but a large number of the libraries
are still in use and essentially unchanged, though their functionality has
been copied into many other systems. And the book The UNIX Programming
Environment (Prentice Hall) by Brian Kernighan and Rob Pike is still worth
a read even though it’s decades old.

A more subtle advantage of this modular approach is that new programs
not only have intrinsic value but also add to the value of the ecosystem as a
whole.

Switching gears slightly, I mentioned earlier that a UI is an API for
users instead of other programs. In his 2004 book The Art of Unix Usability,
Eric Raymond supplies an interesting case study of the Common Unix
Printing System (CUPS), which gives numerous insights on how not to
design user interfaces.

Designing a great interface is hard. Here are a few points to keep
in mind:

•	 An API should not expose implementation internals. It should not
depend on a particular implementation.

•	 APIs should exhibit conceptual heaviness, which is another way of saying
that there should be good abstractions.

•	 APIs should be extensible, or adaptable to future needs. Good abstractions
help here.

Real- World Considerations 435

•	 APIs should be minimal, meaning that they shouldn’t be larded with
multiple ways to do the same thing.

•	 Modularity is good; if an API provides related sets of functionality,
make them as independent as possible. This also makes it easier to
break a project into pieces so that multiple people can work on it
simultaneously.

•	 Functionality should be composable ; that is, it should be easy to combine
the pieces in useful ways. (Don’t misread this as compostable. The world
already has too many poorly designed interfaces rotting away.) For
example, if you had an interface that returned sorted search results, it
might make sense to separate out the searching and sorting so that
they could be used both independently and in combination.

Unless you’ve been asleep, you’ve noticed that I’m a fan of the UNIX
philosophy. This is because it works, not because it’s flashy and trendy. And
it illuminates the previous points.

As we discussed earlier, one UNIX feature that is now also available on
many other systems is the file abstraction. Most operations on files are not
performed using the filename; instead, the filename is converted into a
handle called a file descriptor, which is used instead. This abstraction allows
users to perform file operations on things that are not technically files,
such as connecting to something over a network.

As we saw in Chapter 10, when a program is started on UNIX, it is passed
a pair of file handles called standard input and standard output. You can
think of a program as a water filter in a pipe; unfiltered water flows into
standard input, and filtered water pours from standard output. One of the
clever things about UNIX is that the standard output of one program can
be hooked to the standard input of another via something called a pipe.
For example, if you had a water filter program and a water heater program,
you could hook them together to get heated, filtered water without having
to write a special program to do that. You can think of UNIX as a crate full
of random tools and parts from which things can be built.

An amusing illustration of this philosophy occurred in 1986, when
Don Knuth (professor emeritus of computer science at Stanford University
and author of The Art of Computer Programming series, which you should own
a copy of) wrote an article for Communications of the ACM that included
more than 10 pages of code to cleverly solve a particular problem. This
was followed by a critique from Doug McIlroy (Ken Thompson and Dennis
Ritchie’s boss at Bell Laboratories) showing how the entire solution could
be written as a single line of six pipelined UNIX commands. The moral
of the story is that good general- purpose tools that can be interconnected
beat one- off special solutions.

One of the things that made pipelining work was that programs mostly
worked on text and thus had a common format. Programs didn’t rely on
much structure in the data other than a line of text or fields separated

436 Chapter 15

by some character. Some claim that this approach only worked because
in “simpler times,” text could be a common format. But again, the API
has legs. Program suites such as ImageMagick provide complex image-
processing pipelines. Programs also exist to handle data with a more com-
plex structure, such as XML and JSON.

Reusing Code or Writing Your Own
While defining the top- slice- of- bread interface is critical to a project, you’ll
also face difficult decisions in selecting the bottom slice of bread. On what
code that you didn’t write are you going to rely?

Your program will likely use libraries (see “Running Programs” on
page 137) other people have written that include functions you can use
instead of writing your own. How do you know when to use a library function
and when to write something yourself?

At one level, this is the same problem as finding good open source
software, as we discussed earlier in “Open Source Software” on page 419.
If a library doesn’t have a stable API, then it’s likely that future releases will
break your code. Multiply this by the number of libraries, and it’s clear that
all of your time will go into fixing things instead of writing your own code.
Too many libraries can make your code fragile. For example, a package
on which many other packages depended was broken in Node.js recently,
affecting a large number of programs.

Sometimes you need to use libraries because they implement some-
thing that takes really specialized knowledge that you don’t have. A good
example of this is the OpenSSL cryptography libraries.

Some argue that using libraries is better than writing your own code
because libraries in wide use have been debugged. Unfortunately, that’s
not always true; the OpenSSL library is a notable example.

Normally I would say that you shouldn’t use a library when the number
of lines of code to include the library exceeds the number of lines of code
needed to write it yourself—for example, using glibc to implement singly
linked lists. However, you also need to think about the environment in which
the library is used; glibc is used by so many programs that it likely resides
in memory as a shared library, so it effectively gets you code without using any
memory space.

It’s often very difficult to find useful libraries. A recent article men-
tioned that there are over 350,000 Node.js packages. It’s probably faster to
write your own code than it is to find the right needle in such a gargantuan
haystack.

Project Development
At this point, you can hopefully create a specification for a project and a
schedule for implementation. How do you turn this into reality?

Real- World Considerations 437

Consider using Linux or some other UNIX derivative for your pro-
gramming. There are many ways to do this. If you have a Mac, you’re all set
because there’s a variant of UNIX underneath. You can install Linux on
your PC. If that’s not practical, you can run a live image, which means run-
ning from a DVD and not changing anything on your PC’s hard drive. A
better option is to run Linux in a virtual machine, which is a piece of soft-
ware that lets you run a different operating system within a window on your
computer. For example, you can install VirtualBox on a Windows machine
and then run Linux there.

The Talk
Okay, it’s time for the talk. Maybe your parents were too embarrassed; maybe
they thought that you’d hear about it at school. Or maybe they think that
you’ll find out what you need on the internet. That’s all pretty lame. If you’re
going to be a serious code slinger, you need to have an adult relationship
with computers. You need to put down the mouse and learn to use a text
editor.

Adult Relationships with Computers

Your relationship with computers has been pretty childlike so far. You’ve
been pointing, clicking, poking, and otherwise tickling the computer and
watching it giggle in response. That doesn’t cut it for programming.

Programming involves a pretty intense relationship with a computer.
You’ll be doing a lot more than just typing up a paper or watching a video—
so much more that you’re going to need to be much more productive.
That means that it’s time to learn how to use power tools.

Many of these tools are cryptic and a bit difficult to learn. Too bad. Once
you get the hang of them, you’ll never go back because you can get so much
more accomplished with much less effort. So, grit your teeth and put in the
up-front work; it’ll pay off big-time later!

Terminals and Shells

Remember all that stuff about terminals in Chapter 6? Well, guess what?
Real programmers still use ’em. Terminals don’t make a racket or do the
green flash anymore. And they’re not a separate machine; they’re a piece
of software that runs on the computer.

All desktop computer systems have terminals, even if they make them
hard to find. By default, terminals run command interpreters. You’ll be pre-
sented with a command prompt. As you might expect, you enter commands
at a command prompt. Systems rooted in UNIX—such as Apple products,
Linux, and FreeBSD—have a command interpreter or shell named bash. Of
course, Windows does its own thing, but it’s possible to install bash on
Windows systems.

438 Chapter 15

T HE BA SH SHE L L

One of the original UNIX shells, named sh, was written by Stephen
Bourne. Over the years, other shells were created that had more features.
Unfortunately, these new features came with personalities that were completely
incompatible with sh. Eventually, a new version of sh was written that incorpo-
rated these additional features in a compatible way. This version was named
bash for “Bourne- again shell.” Retaining the legacy Bourne identity was a
huge value- add that resulted in supremacy among shells.

Many of the commands have cryptic names, such as grep (global reg-
ular expression printer). It’s a lot like anatomy, where many body parts
are named after something else they resemble or after the person who
first discovered them. For example, the awk command was named after its
authors: Alfred Aho, Peter Weinberger, and Brian Kernigan. It all makes a
compelling case for evolution. It’s hard to distinguish people talking about
these commands from grunting cavemen.

A big reason to learn these cryptic commands is automation. A powerful
shell feature is that you can put commands into a file, creating a program
that runs those commands. If you find yourself doing something a lot, you
can just make a command to do it for you. This is way more productive than
sitting at a fancy graphical program clicking buttons and waiting for results.

Text Editors

Text editors are programs that let you create and modify vanilla ASCII data,
which is the stuff of which programs are made (I am completely unqualified
to comment on programming languages that use non- ASCII characters such
as Chinese). A main advantage of text editors is that they operate using
commands, which is way more efficient than cutting and pasting stuff with
a mouse—at least, once you learn them.

There are two popular text editors: vi and Emacs. Learn to use one (or
both). Each has its fanatical following (Figure 15-3).

Figure 15-3: vi vs. Emacs

Real- World Considerations 439

Eclipse and Visual Studio are examples of fancy programming tools
known as integrated development environments, or IDEs. (Check their release
date: beware the IDEs of March.) While IDEs are great for untangling some-
one else’s poorly written code, you’re already lost if you need them. Going
way back to the book’s introduction, learn the fundamentals before losing
sight of them in fancy tools. Also, you’ll find that such tools are pretty slow
and you can be much more effective with simple but powerful alternatives.
For example, you can edit a program with a text editor and rebuild it faster
than you can start one of these tools.

Portable Code
While you may never intend to use a piece of software elsewhere, it’s surpris-
ing how often it happens. And if your code is open source, others may want to
use it (or pieces of it) elsewhere. How do we write code so that it’s not overly
difficult to port? The short answer is to avoid hardwiring where possible.

As you learned earlier in this book, there’s a wide variety of ways in
which hardware can differ, such as the bit and byte ordering and word size.
Separate from the hardware, there are differences in how programming
languages present the hardware to the programmer. For example, a trouble
spot in C and C++ is that the language standards don’t define whether or not
a char is signed or unsigned. The workaround is to be explicit in your code.

You can use the sizeof operator in C to determine the number of bytes
in a data type. Unfortunately, you need to write small programs to deter-
mine the bit and byte order. Many languages include ways to find out, for
example, the largest and smallest numbers that can be stored in a particu-
lar data type.

Character sets are another troublesome area. Using UTF-8 avoids many
problems.

Many programs use external libraries and other facilities. How do you
insulate something like string comparison from system differences? One way
is to stick to standard functionality. For example, standards such as POSIX
define the behavior of library functions.

There will be differences between target environments that can’t be dealt
with easily. Put as many of these dependencies as possible in a single place
instead of scattering them throughout your code. That makes it easy for
someone else to make the needed changes.

Just because code can be built for another system doesn’t mean that
it’s a good idea. A classic example is the X Window System. In the early
1980s, Stanford graduate student Andy Bechtolsheim designed a special
workstation- like personal terminal to run on the Stanford University Net-
work. Stanford licensed the hardware design, which became the foundation
of SUN Microsystems’ line of Sun Workstation products. Stanford professors
David Cheriton and Keith Lantz developed the V operating system, which ran
on the SUN. It featured a very fast synchronous interprocess communication
mechanism, which meant that programs could communicate with each other
very quickly. Paul Asente and Brian Reed developed the W window system,

440 Chapter 15

which ran on the V system. This code eventually made it to MIT, where it was
ported to UNIX and renamed X. But UNIX didn’t have the fast synchronous
IPC; it had a slower asynchronous IPC designed for the embryonic internet.
X’s performance was worse than awful, and it took a major redesign to get it
up to terrible.

Source Control
Programs change: you add to them, you modify them to fix bugs, and so on.
How do you keep track of all of your old versions? It’s important to be able
to go back in time, because you may introduce a bug in a new version and
need to see what changed.

Time to flog more UNIXisms. Doug McIlroy created a program called
diff in the early 1970s that compared two files and generated a list of dif-
ferences. This program could optionally produce output in a form that
could be piped into a text editor so that users could take a file and a list of
differences and produce a changed file, leveraging composability. Mark
Rochkind built on this idea to create the Source Code Control System (SCCS).
Rather than storing a complete copy of every changed file, SCCS stored the
original and a list of changes for each version. This allowed users to request
any version of the file, which would get constructed on the fly.

SCCS had an awkward user interface, and it was slow because as revi-
sions piled up, more sets of changes had to be applied to reconstruct a ver-
sion. Walter Tichy released Revision Control System (RCS) in 1982. RCS had
a better user interface and used backward differencing instead of SCCS’s
forward differencing, meaning that RCS kept the most recent version and
the changes needed to generate older versions. Since the current version
was mostly what users wanted, it was much faster.

SCCS and RCS only worked well on a single computer. Dick Grune
developed the Concurrent Versioning System (CVS), which essentially provided
network access to RCS- like functionality in addition to being the first system
to use merges instead of locks.

The original SCCS and RCS tools didn’t scale well because they relied
on file locking; users would “check out” a file, edit it, and then “check in.”
A checked- out file couldn’t be edited by others. This was especially prob-
lematic if someone locked a file and went on vacation. In response to this
limitation, distributed systems such as Subversion, Bitkeeper, and Git were
created. These tools replace the lock problem with the merge problem.
Anyone can edit files, but they must reconcile their changes with changes
made by others when checking back in.

Use one of these programs to track your code. RCS is very simple and
easy to use if you’re just working on a project by yourself on your own system.
Right now, Git is the most popular for distributed projects. Learn it.

Testing
You can’t really know if a program is working unless you test it. Develop a
set of tests along with your program. (Some methodologies espouse starting
with the tests.) Keep the tests under source control. Again, one of the great

Real- World Considerations 441

things about UNIX automation is that you can craft a single command that
fires off a complete batch of tests. It’s often useful to do a nightly build, where
the program build is started at a particular time every day and tests are run.
Regression testing is a term used to describe the process of verifying that code
changes didn’t break anything that used to work. Regress in this context
means “to go backward”; regression testing helps to make sure that fixed
bugs aren’t reintroduced.

Several programs are available to help you do testing. While it’s com-
plicated, there are frameworks that allow you to test user interfaces by
programmatically typing and clicking.

Where possible, have someone else also generate tests for your code.
It’s natural for the person writing the code to be subconsciously blind to
known problems and to avoid writing tests for them.

Bug Reporting and Tracking
Users will find bugs in your code independent from your own testing. You
need some way for them to report bugs and some way to track how and
whether those bugs were fixed.

Again, there are many tools available to support this.

Refactoring
Refactoring is the process of rewriting code without changing the behavior
or interfaces. It’s sort of like fast prototyping slowly. Why would you do
this? Primarily because when the code was fully fleshed out, it became a
mess and you think you know how to do it better. Refactoring can reduce
maintenance costs. However, you need a good set of tests to make sure that
the refactored code works like it’s supposed to. Also, any time things are
being rewritten, there’s a temptation to add new features—don’t give in to
it. Refactoring is a good time to reexamine the principles behind what’s
already been done as mentioned earlier in “Fast Prototyping” on page 432.

Maintenance
One programming fact that’s not obvious is that for any serious piece of
code, the cost of maintenance greatly exceeds the cost of development.
Keep this in mind. Avoid doing cute twisty things that might impress your
peers. Remember that if people doing maintenance were as smart as you,
they’d be doing design, not maintenance.

In Chapter 12, you saw several different ways to write asynchronous
JavaScript code. Some of these ways keep everything in one place, while
others separate setup from execution. It takes longer for maintainers to
find and fix bugs when they have to track down all of the pieces.

Some programmers believe that a program is a work of art that must
be understood in its fullness before being touched. This is a great- sounding
philosophy. But in reality, it’s more important that someone be able to look

442 Chapter 15

at any part of the code and quickly understand what it does. Writing beauti-
ful code that can’t be maintained often leads to failure. Find the beauty in
making code that’s easy to understand.

Something that really helps maintainers if your code talks to hardware
is to include references to the hardware datasheets in your code. If you’re
poking at some register, include the datasheet page number(s) where that
register is described.

Be Stylish
People often learn about programming without understanding the environ-
ment in which it exists. There are a few things to keep in mind here.

You may not have thought too much about the educational system. Right
now it’s spewing knowledge at you, some of which you’ll actually absorb.
Where did this knowledge come from? Other people discovered it. At some
point, especially if you pursue an advanced degree, it’ll be your turn to
discover things that other people will learn. One of the great things about
open source software projects is that you can contribute to them. Even if
you’re not ready to code, many of these projects need help with documen-
tation, so if there’s some program that you use or that interests you, get
involved. It’s a great way to meet people, and it also looks good on college
and job applications. Be cautious, as many programmers are not particu-
larly adept socially. Have a thick skin.

When you write software, write it clearly and document it well. Make
sure that others can understand what’s going on, or nobody will be able to
help you. Get your “ job security” by garnering a reputation for doing good
work instead of by making sure that nobody but you can work on your code.
Again, bear in mind that, as I said before, the cost of maintaining software
greatly exceeds the cost of development.

Where possible, make your software open source. Give back to the
body of work on which you rely.

Learn to write coherent, correctly spelled English (or the human
language of your choice). Write real documentation for your code. Avoid
documentation- generating tools such as Doxygen. You may have noticed
that those are wonderful tools for generating large volumes of worthless
documentation.

Documentation needs to describe what the code is doing. It should
illuminate the structure of the data and how it is manipulated by the code.
My first job writing code was at Bell Telephone Laboratories when I was in
high school. Lucky me! My boss told me that every line of code should be
commented. Not being very smart at the time, I did things like this:

lda foo ; load foo into the accumulator
add 1 ; add 1
sta foo ; store the result back in foo

Real- World Considerations 443

As you can probably see, these comments were completely worthless. It
would have been better to say something like:

; foo contains the number of gremlins hiding in the corner.
; Bump the count because we just found another.
lda foo
add 1
sta foo

Way back in 1985, I had the idea that it would be cool to be able to
extract documentation from source code files, especially because you could
change the documentation in the same place where you were changing the
code. I wrote a tool called xman (extract manual) that generated troff-format
typeset manuals from the source code. It used a special C comment that
began with /** to introduce documentation. On a different world- track, my
proposal to teach a course at the 1986 SIGGRAPH conference was accepted.
I needed some additional speakers and contacted James Gosling, later an
inventor of Java. I demonstrated xman for him. A short time later, we aban-
doned xman because it became clear that, while it could produce lots of
pretty documentation, it was the wrong type of documentation. While cor-
relation does not demonstrate causation (and Gosling doesn’t remember),
Java included Javadoc, a way to include documentation in source files, and
documentation was introduced by /** comments. This technique was cop-
ied by many other tools. So maybe I’m responsible for this mess.

When you look at automatically generated documentation, it tends to
be of the “add 1” variety. There are volumes of documentation that contain
only function names, plus the names and types of the arguments. If you
can’t figure this out just by glancing at the code, you shouldn’t be program-
ming! Little of this documentation says what the function does, how it does
it, and how it relates to the rest of the system. The moral is, don’t be fooled
into thinking that fancy tools are the same thing as good documentation.
Write good documentation.

One last comment on documentation: include things that are obvious
to you, the things that you don’t think about at all. People reading your
documentation don’t know the things that are obvious to you. There is a
famous comment in UNIX version 6—which had few comments—that
said, “You are not expected to understand this.” Not the most helpful!

Fix, Don’t Re- create
The software universe, especially the open source part, is littered with par-
tially working programs and programs that do many but not all of the same
things. Avoid this type of behavior.

Try to finish both your own projects and those started by others. If you
don’t finish yours, at least leave them in good enough shape that someone
else can easily take over the development. Remember, it’s about adding value.

444 Chapter 15

Summary
Now you’ve learned that programming involves more than just knowing
about hardware and software. It’s a complex and rewarding endeavor
that requires a lot of disparate knowledge. We’ve covered a lot of ground
together. You’ve seen how to represent and operate on complex infor-
mation using bits. You’ve learned why we use bits and how we build them
in hardware. We’ve explored fundamental hardware building blocks and
how to assemble those blocks into computers. We looked at the additional
functionality needed to make computers more usable and various tech-
nologies for connecting computers to the outside world. This was followed
by a discussion of how to organize data to take advantage of memory archi-
tectures. We looked at the process for converting computer languages into
instructions that the hardware can understand. You learned about web
browsers and how they organize data and process languages. High- level
applications were compared to lower- level system programs. A number of
interesting tricks for solving problems were examined, along with a lot of
cat pictures. Some of the issues resulting from multitasking were discussed.
We looked at the advanced topics of security and machine intelligence, which
involved even more cats. Hopefully you noticed that the fundamental build-
ing blocks and tricks are used again and again in different combinations.
Finally, you learned that the task of programming involves people in addi-
tion to hardware and software.

This is all just the beginning. It puts what you’ve learned or are learn-
ing about programming into perspective and gives you a foundation. Don’t
stop here; there is much, much more to learn.

You might recall that way back in the book’s introduction I mentioned
the need to understand the universe. It’s not possible for any one person to
understand everything about the universe. One of the parts that I’ve never
been able to figure out is how to nicely end a book. So that’s it. We’re done.
The end.

A
absolute addressing, 129
abstractions, 273–274, 433–434, 435
accumulator register, 103–104
active high and low, 72
active pull-up switch, 58
ADC (analog-to-digital) converters,

162–165
adders, 60–63
addition, 8–10, 10–14
additive color system, 28, 173
addressing

and I/O devices, 96–97
memory, 79–81
modes, 104–105
with pointers, 184–185
relative and absolute, 128–130

Adleman, Leonard, 368
advisory locks, 339–340
Aho, Alfred, 228, 438
AI. See artificial intelligence (AI)
AJAX (Asynchronous JavaScript and

XML), 252
algorithm efficiency vs. performance, 215
aliasing, 170, 180
ALU (arithmetic logic unit), 97–99
American Standard Code for

Information Interchange
(ASCII), 22–24, 213

Ampère, André-Marie, 44
amplitude, 155, 165
analog comparators, 163, 164
analog devices

characteristics, 35–36, 37–38
and transfer functions, 38–40

analog-to-digital (ADC) converters,
162–165

Anathem (Stephenson), xxxv
ancestor node, 243
AND

logic gates, 53–54, 59
operation, 4–5, 5–6, 9

in plumbing example, 42–43
with relays, 49

Andreesen, Mark, 251
Android operating system, 376
animation, 29–30
anodes, 50
anonymized data mapping, 410–411
anonymous functions, 266
APIs (application program interfaces),

433–436
Apple, 417, 433
application program interfaces (APIs),

433–436
application vs. system programming,

259, 282
approximations and shortcuts

CORDIC algorithm, 313–318
efficiency goals, 283
integer methods, 290–301
of power series, 313
quantization, 323–333
randomness, 318, 322–323
recursive subdivision, 301–312
table lookups, 284–290

Arduino, 119
arithmetic logic unit (ALU), 97–99
Armel processors, 142
ARPANET, 157
arrays, 185–187
artificial intelligence (AI)

concepts, 388
development, 385–386, 407
and neural networks, 402
self-driving ketchup bottle

example, 407–409
ASCII (American Standard Code for

Information Interchange),
22–24, 213

Asente, Paul, 439
assemblers, 218, 233–234
assembly language, 217–218
asynchronous counters, 77

I N D E X

446 Index

asynchronous functions and promises,
346–353

Asynchronous JavaScript and XML
(AJAX), 252

AT&T, 155
atomic operations, 339, 342, 343
attack surfaces, 355, 373–374
audio

amplifier transfer function, 39–40
differential signaling applications, 57
digital representation, 165–173
frame layout, 210

audio filters, 168–169
authentication, 356, 358–359,

361–362, 370
authorization, 361
autodialers, 355
autoincrement/autodecrement

modes, 114
axon terminals, 401

B
B-trees, 205
Babbage, Charles, 35
back-EMF effect, 48
backdoors and security, 356, 368,

373–374
backpropagation, 404
Backus, John, 222
Backus-Naur form (BNF), 222–223

examples, 226–227
bandpass filters, 168
bandwidth, 156
Barlow, John Perry, 357
barrel shifters, 100
base-2 system, 6
Base64 encoding, 26–27
bash shell, 437–438
BASIC, 219–220
batch processing, 176
Battle of Midway code breaking,

366–367
Baud rate, 154
Baudot, Émile, 154
Bayer, Bryce, 325
Bayer matrix, 325–326
Bayer, Rudolf, 205
Bayes’ theorem, 389–390
Bayes, Thomas, 389
BCD (binary-coded decimal) system, 18
Bechtolsheim, Andy, 439

Bell, Alexander Graham, 56
bell curve, 390–391
Bell Telephone Laboratories, 150, 179,

209, 220, 225, 416, 442
Bentley, Jon, 228
Berners-Lee, Sir Tim, 159, 239–240
Berryman, Jeff, 134
big data, 387, 409–412
binary-coded decimal (BCD) system, 18
binary, defined, 3
binary numbers

addition with, 8–10
coded as decimals, 18
context notation, 20
as integers, 6–8
as negative numbers, 10–14
octal and hexadecimal forms, 18–20
as real numbers, 14–18

binary thresholds, 41
binary trees, 199–203
binning, 71
bipolar junction transistors (BJTs), 51
bison program, 226
bit density, 87
bitmaps, 187–188, 204, 312
bits

as binary numbers, 6, 8
defined, 3
groupings, 20–22
overflow, 10
page table control, 131
as right choice for technology,

33–34, 40–41
BJTs (bipolar junction transistors), 51
Blaze, Matt, 373–374
blits (terminals), 209
block storage devices

addressing, 203–204
hardware, 85–88

blockchain, 371
blocking mode, 341
Bluetooth, 158, 352–353
Boole, George, 4, 386
Boolean algebra, 4–5
booting, 218
bootstrap, defined, 218
Bourne, Stephen, 438
branch prediction, 135
branching instructions, 105–106
Bray, John, 29
breadth-first traversal, 123
break statement (C), 195, 196

Index 447

Bresenham, Jack, 294–295
browsers. See web browsers
buffer overflows, 275, 374–375
buffers

in logic gates, 53
program, 270–273, 274
raster frame, 311

bugs. See also errors
buffer overflow, 275
likelihood of, 282
reporting and tracking, 441
term origin, 50

build tools, 421
Burks, Arthur, 125
buses, 80, 94–95, 96–97
Bush, Vannevar, 159
button circuits, 144–146, 147–148
bytes, defined, 21

C
C programming language

brief overview, 114, 220
compiler, 268
input and output, 274–275
optimized code examples, 235
primitive data types, 184–189
runtime libraries, 275–276
sorting functions, 213
unions, 190

C++ language concepts, 211–212
CA (certificate authorities), 370–371
cache management, 134–135
calculator program examples, 226–227,

229–230
Canny, John, 398
canvas, 255, 290–291
card reader technologies, 84, 85
career success

decision-making, 427–428
estimating and scheduling,

426–427
job/career vs. calling, 430
and open source projects, 442–443
working with people, 428–429
and workplace culture, 429–430

Carpenter, Loren, 322–323, 429
carrier waves, 155–156
Cartesian coordinate mapping, 291, 301
Cascading Style Sheets (CSS),

244–248, 267

cat vs. meatloaf image example, 388,
391–393, 396–400

cathode ray tube (CRT) terminals,
177–179

cathodes, 50
CDs, 87–88, 170
cel animation, 29–30
cell phone programs, 425
cell phone systems

security exposures, 361–362,
373, 376

surveillance, 359
central processing unit (CPU), 97–102,

118–119
certificate authorities (CAs), 370–371
chaining code, 348–349
Chang Xiao, 363
Changxi Zheng, 363
characters

classification, 288–290
control, 23–24
defined, 22
graphics display, 311–312
and language variations, 439
numbers as, 25–27
sorting, 213
and steganography, 362–363

checksum method, 89
chem (language), 228
Cheng Zhang, 363
Cheriton, David, 439
child nodes, 243
chips. See also specific types

design, 90, 119, 127, 376
economics, 154
invention of, 52

chord construction, 166–167, 168
ciphers

complex, 366–367
one-time pads, 367
substitution, 363–365
transposition, 365–366

ciphertext and cleartext messages, 363
circuit-switched networks, 157
circuits, 44, 47
circular buffers, 272–273
CISC. See complicated instruction set

computers (CISC)
class attribute (CSS), 267

448 Index

classifiers
and artificial intelligence, 387–388
feature recognition, 399–400
ketchup bottle example, 406
naive Bayes classifier, 389–390
neural networks as, 405

cleartext and ciphertext messages, 363
Clipper chip, 374
clocks, 71, 77
cloud computing, 424
clusters, 87, 203
CMOS (complementary metal oxide

semiconductor), 52
CMRR (common-mode rejection

ratio), 56
coalescing nodes, 307
code

data as, 382–384
maintainable, 441–442
portable, 439–440
refactoring, 441
self-modifying, 407
source control and distribution, 440
testing, 440–441
third-party, 376–378
writing vs. reusing, 436

code breaking, 366–367
code (machine language) generators,

233–234
codecs, 172
coding tools, 437–439
collisions

Ethernet, 158
half-duplex, 154
in hash tables, 214–215

color displays, 173–174, 181
color gradients, 296–297
color representations, 27–30, 190–191
Colossus: The Forbin Project (film), 409
combinatorial logic, 53
command and control messages, 358
command interpreters, 437–438
command line interface, 268
common-mode rejection ratio

(CMRR), 56
communications security, 356–357
compact discs, 87–88, 170
compare and swap instruction, 342

compilers
defined, 219
execution, 232–234
vs. interpreters, 228–229

complicated instruction set computers
(CISC), 113, 114

compositing, 30
compound data types

doubly linked lists, 198–199
and memory allocation, 195–198
singly linked lists, 191–195
suites/structures, 189–190

computer animation, 30
computer architecture

basic elements, 118–119
defined, 117–118

computer vision libraries, 399
computers

brief history, 416–418
languages, 1–3, 217–218, 219–220
major components of, 93–94,

109–113
resource usage efficiencies, 283
stored-program, 101

computing devices
analog vs. digital, 35–36, 37–38
mechanical, 34–35

Concurrent Versioning System
(CVS), 440

condition code instructions, 105
condition code register, 10, 98
conductors, 43
constants, 221
constructive solid geometry technique,

304–310
containers, 422
context

switching, 269–270
and symbols, 2, 3

continuous values, 36, 37–38
control characters, 23–24
control unit. See execution unit
conversion tables, 284
convolution kernels, 392–393
convolutional neural network, 405
Conway, Lynn, 90
cooked buffer mode, 271
Coordinate Rotation Digital Computer

(CORDIC) algorithm,
313–318

Index 449

coprocessors, 135–136
CORDIC (Coordinate Rotation Digital

Computer) algorithm,
313–318

core memory, 82–83
core rope memory, 84
counters, 77–78
CPU. See central processing unit (CPU)
CRCs (cyclic redundancy checks), 89
Creative Commons, 420
crosstalk effect, 38
CRT (cathode ray tube) terminals,

177–179
cryptography. See also ciphers;

encryption/decryption
blockchain, 371
concepts, 357, 362
and digital signatures, 370
hash functions, 369–370
and password management,

371–372
public key, 368
steganography, 362–363

Cryptonomicon (Stephenson), 357
crystals, 70–71
CSS. See Cascading Style Sheets (CSS)
CSS selectors, 245–247
Curie, Jacques and Pierre, 70
current (I), 44
cutoff regions, 41
CVS (Concurrent Versioning

System), 440
cyclic redundancy checks (CRCs), 89

D
D/C converters, 161–162
D flip-flops, 74–76
DAC converters, 161–162
DAGs. See directed acyclic graphs (DAGs)
dark adaptation, 29
Dark Star (film), 388
data. See also big data; encryption/

decryption; personal data
as code, 382–384
compression, 172
copying and moving, 206–211
machine training, 387, 405, 406
protection of, 352, 354–355, 359–

360, 378–379
static and dynamic, 136

data centers, 424
Data Encryption Standard (DES)

cracker, 216
data mining, 387
data paths, 109–110
data structures

linear vs. hierarchical, 199
and performance, 183–184
spatial, 123

data types. See compound data types;
primitive data types

database management systems
(DBMS), 205

databases, 204–206, 216
datagrams, 158–159
date-time structure, 189–190
DBMS (database management

systems), 205
DDoS (distributed denial of service)

attacks, 357
De Morgan’s law, 5–6, 54
deadlocks, 341–342
debouncing, 144–146
debugging practices. See also error

checking, 378
DEC. See Digital Equipment

Corporation (DEC)
decimal number system, 6, 18, 20
decision criteria, 37–38, 54–55
decision-making skills, 427–428
decoders, 63–64
demand paging, 132
demodulation, 156
demultiplexers (dmux), 64–65
dendrites, 401
denial of service (DDoS) attacks, 357
depth-first traversal, 123, 244
DES (Data Encryption Standard)

cracker, 216
descendant node, 243
desktop publishing, 254
detents, 38
development methodologies, 430–431
device drivers, 269, 270–273
diff program, 440
difference engine, 35
differential signaling, 55–57
Diffie–Hellman Key Exchange, 368
Diffie, Whitfield, 368
digital audio, 165–173
digital camera technology, 38–39,

82, 325

450 Index

digital devices, characteristics, 35–36,
37–38

Digital Equipment Corporation (DEC)
systems

PDP-10, 407
PDP-11, 21, 114
vs. UNIX, 434

digital images, 173–176
digital signal processors (DSP), 15
digital signatures, 370
digital-to-analog (DAC, D/C)

converters, 161–162
digits, 3, 6
digraphs, 365
diodes, defined, 142
direct addressing mode, 104
direct memory access (DMA) units, 136
directed acyclic graphs (DAGs), 123,

229, 242–243
directories, 204
discrete values, 36, 37–38
disk drives, 85–87, 95, 203–204
display lists, 179, 181
displaying

characters, 312
ellipses, 298–300
gasket example, 304–310
images, 173–176
polynomial shapes, 301
spirals, 301–304
straight lines, 292–296

displays
flat-screen, 178
LED, 146–148

distortion, 39–40, 169
distributed denial of service (DDoS)

attacks, 357–358
dithering, 325–333
division by zero, 18
DMA (direct memory access) units, 136
DNS (Domain Name System), 159
Document Object Model (DOM)

brief history, 344
and CSS selectors, 245
manipulation, 252–253
structure, 242–244

Document Type Definition (DTD), 250
documentation, 432, 442–443
dog-whistle marketing, 363
DOM. See Document Object

Model (DOM)
Domain Name System (DNS), 159

domain-specific languages, 228
doping, 51, 376
DoS (denial of service) attacks, 357
double-pole, double-pole (DPDT)

switches, 46
double-precision numbers, 17–18
doubly linked lists, 198–199
DRAM (Dynamic RAM), 82, 134
drawing. See graphics
DSPs (digital signal processors), 15
Duff, Tom, 30, 208
Duff’s Device, 208–209
duty cycle, 148–149
DVDs, 87–88
dynamic data, 136
dynamic memory (DRAM), 82, 134
dynamic memory management,

195–198, 379–381

E
EBCDIC (Extended Binary-coded

Decimal Interchange
Code), 22

Eccles, William, 76
echoing, 270, 271
edges

detection, 393–398
logic transition, 74
tracking with hysteresis, 398–399

EEC (error checking and correcting)
chips, 89

EEPROM (electrically erasable
programmable read-only
memory), 85, 88

EFF. See Electronic Frontier
Foundation (EFF)

electricity
plumbing analogy, 41–44
switches and circuits, 44–47

electromagnetic deflection, 178
electromagnets, 48
Electronic Frontier Foundation (EFF),

216, 360, 363
electrostatic deflection, 177–178
ELF (Executable and Linkable

Format), 137
encoding

bit patterns, 24–25
color and light, 30, 149–151
defined, 2

Index 451

encryption/decryption. See also
cryptography

asymmetric, 368
cipher types, 363–367
concepts, 356–357
forward secrecy, 369
key exchange, 367–368
one-time pads, 367
Public Key Infrastructure (PKI),

370–371
standards development, 360

end-around carry, 12
endianness, 96, 184
Engelbart, Douglas, 181
entity references, 241
entropy harvesting, 375–376
EPROM (erasable programmable read-

only memory), 85
equation notations, 125
error checking. See also debugging

practices
in memory allocation, 276–277
practices, 373

error checking and correcting (ECC)
chips, 89

error message output, 274–275, 277
error propagation, 329–333
errors. See also bugs

dynamic memory allocation, 196,
197–198

and logic circuit design, 71
in memory, 88–89

estimation skills, 426
Ethernet, 158, 341
event handlers, 254, 266
event loops, 343
event queues, 344
events, 128
exception handling, 276
exclusive-OR (XOR) operation, 4–5,

9, 53
Executable and Linkable Format

(ELF), 137
execution unit, 100–102
expert systems, 407
exponent, 16, 17–18
Extended Binary-coded Decimal

Interchange Code
(EBCDIC), 22

eXtensible Markup Language (XML),
239, 248–251

F
Fantasia (film), xxx
feedback, 70, 72
feedforward networks, 403
Feldman, Gary, 395
Feldman, Stuart, 414
Fender Bluetooth guitar exposure,

352–353
fetch-execute cycle, 109, 111
FETs (field effect transistors), 51–52
Fibonacci sequence program code,

107–108, 218, 219, 220
field effect transistors (FET), 51–52
field-programmable gate arrays

(FPGA), 90, 337
FIFO (first-in, first-out) applications,

162, 270
file descriptors, 271, 274, 435
file pointers, 274
filenames, 203, 271–272
files

as locks, 343
treatments of, 434

filesystems, 204
filters, voltage frequency, 168
finite impulse response (FIR) filters,

145–146
firmware, 90
first-in, first-out (FIFO) applications,

162, 270
fixed-point numbers, 14–15
FLAC (Free Lossless Audio Codec),

172–173
flash converters, 163–164
flash memory, 88, 382
Fleming, Sir John Ambrose, 50
flex program, 225
flight computers, 35
flip-flops, 74–76
floating-point arithmetic, 100, 290, 294
floating-point numbers, 15–18,

221–225
floppy disks, 87
flowcharts, 125–126
Floyd, Robert, 330
Floyd-Steinberg dithering algorithm,

330–331
FM stereo, 171–172
folding. See aliasing
forth (programming language), 124
FORTRAN, 212–213, 219–220, 226

452 Index

forward secrecy, 369
Fourier, Jean-Baptiste Joseph, 167
Fourier transform, 167
Fournier, Alan, 322
FPGAs (field-programmable gate

arrays), 90, 337
fprintf function (C), 277
fractals, 319–323
fragmentation of memory, 196
frame buffers, 311
free function (C), 195–196, 197,

379–381
Free Lossless Audio Codec (FLAC),

172–173
free space tracking, 204
frequencies

defined, 155
filtering, 168–170

frequency shift keying (FSK), 155–156
Friedman, Elizebeth Smith, 363
fsck program, 204
FSK (frequency shift keying), 155–156
full adder, 61
full-duplex connection, 154
function calls, 120–121
functions

and libraries, 137–138
vs. macros, 290
trapdoor, 368

Fussell, Don, 322
fuzzing, 375

G
garbage collection, 197–198, 381–382
gate arrays, 90
gated latches, 73–74
Gates, Bill, 358
gates. See logic gates
Gauss, Johann Carl Friedrich, 390
Gaussian blur, 391–393
Gaussian distribution, 390–391, 394
General Data Protection Regulation

(GDPR), 379
General Electric, 416
general purpose computers, 15
Generalized Markup Language

(GML), 239
genetic algorithms, 407–409
Geschke, Chuck, 254
Ghostbusters (film), 58
gigabytes, defined, 21

Gilmore, John, 418
Git, 440
GLANCE G terminals, 179
glass ttys, 178
glibc function, 436
GML (Generalized Markup

Language), 239
GNU project, 415, 418, 421
Goldberg, Adele, 158
Gosling, James, 422, 443
governments and privacy, 359–361,

373–374
GPUs (graphics processing units),

114–115
gradient descent algorithm, 404
gradients

color, 296–297
in edge detection, 395–396

granularity of locks, 340–341
graphic equalizers, 168
graphical user interface (GUI), 268, 338
graphics

canvas, 290–292
color gradients, 296–297
constructive solid geometry,

304–311
drawing curves, 298–304
drawing straight lines, 292–296
and randomness, 322–323
shifting and masking, 311–312

graphics processing units (GPUs),
114–115

graphics rotations, 291
graphics terminals, 177–178
Grateful Dead recordings, 57
Gray code, 150
Gray, Frank, 150
grayscale

displays, 178
quantization, 323–333

Greenblatt, Richard, 407
grep utility (UNIX), 224
“Guess the animal” program, 260–262,

263–266, 276–282
GUI (graphical user interface), 268, 338

H
half adder, 61
half-duplex connection, 154
halftone printing, 325
Hamming codes, 89

Index 453

Hamming, Richard, 89
Hammond B-3 organ, 168
hard drives, 87
hardware. See also logic gates

and code optimizers, 236
computing technology

components, 47–52
design issues, 36–38, 60, 119
electrical switches and circuits,

44–47
logic gates, 53–60
manufacturing issues, 71
and software, 90

hardware exception handling, 133
Harvard architecture, 118
hash code checking, 89
hash functions, 213–215, 369–370
heap, 136–137
Hellman, Martin, 368
Henkel-Wallace, DV, 418
Hennessey, John, 113
Hertz, Heinrich, 155
Hertz (Hz), 155
Hewlett Packard (HP)

microcode implementations, 113
reverse Polish notation

calculators, 125
hex triplets, 30
hexadecimal representation, 19–20
hi-Z (hi-impendance) state, 60
Hibernate tool (Java), 423
hidden layers, 403
hierarchical data structures, 199–203
hierarchical filesystems, 204
high pass filters, 168
Hilbert curve, 320
Hilbert, David, 320
Hinton, Geoffrey, 404
A History of Personal Workstations

(Goldberg), 158
hold time, 76
Hollerith cards, 83–84
Hollerith, Herman, 83
Honeywell computers, 20
Hopper, Grace, 50
horizontal partitioning, 216
host (URL), 240
Hough transform, 399
HTML. See HyperText Markup

Language (HTML)
HTML5, 255

HTTP. See HyperText Transfer Protocol
(HTTP)

human interface devices, 176–181
humans. See also programmers

hearing, 170–171, 172–173
language, 1–3
nervous system, 387
thought processing, 386–387
vision, 29, 147, 174, 291, 393

Hurd, Earl, 29
hypertext, 159, 240
HyperText Markup Language (HTML)

documents, 240–242, 243
elements and attributes, 241–242,

245–248
evolution, 160, 238, 239

HyperText Transfer Protocol
(HTTP), 159

hypervisor, 425
hysteresis applications, 54–55, 398–399

I
I/O. See also input and output

vectored, 210–211
I/O devices

computer access to, 96–97, 141–142
mediation, 268–269
on-chip, 127
sharing, 337

I/O ports, 142–144
IBM

Hollerith cards, 83, 84
Selectric terminals, 177

IDE interface, 152, 154
IDEs (integrated development

environments), 439
IEEE floating-point numbers, 17–18
IF statements, 212–213
image processing and recognition

edge detection, 393–398
edge tracking with hysteresis,

398–399
feature extraction, 399–400
Gaussian blur, 390–393
nonmaximum suppression, 398

ImageMagick, 436
images. See also graphics

digital representation, 173–176
texture mapping, 285–288

immediate addressing mode, 105
impedance (Z), 60

454 Index

index register, 129
indices

array, 185
database, 206
hash table, 214–215

indirect address registers, 110
indirect addressing

and linked lists, 193–194
mode, 104

indirect blocks, 204
infix notation, 125, 227
inline styles, 267
inodes, 203–204
input and output

computer access to, 96–97
device drivers, 268–269, 270–273
in UNIX file abstraction, 435

inputs. See also noise
error-checking, 373, 374
and transfer functions, 39–40

Institute of Electrical and Electronic
Engineers (IEEE), 17

instruction register, 109
instructions. See also code

addressing modes, 104–105
as bit patterns, 101
branching, 105–106
condition codes, 105
data as, 382–384, 387–388
layouts, 102–104, 106–107

insulators, 43
integer methods

in CORDIC algorithm, 313–318
drawing curves, 298–300
drawing gradients, 296–297
drawing straight lines, 295–296
and performance, 290
with polynomials, 301

integer representations, 6–8
integrated circuits. See also chips; logic

gates, 52, 53, 100
integrated development environments

(IDEs), 439
integrated peripherals, 127
integrity verification, 370
Intel, 90, 113
interface design, 433–436
interference, 37–38
interior node, 243
International Standards Organization

(ISO) characters, 24

internet
accessing, 158–160
as attack surface, 357–359

interpreters
vs. compilers, 228–229
execution, 231–232
web browsers as, 237

interrupt handlers, 129–130, 375
interrupts, 125–128, 341
inverters, 49, 53–54, 70, 72
IP addresses, 159
isochronous transfers, 156

J
Japanese Industrial Standard (JIS)

characters, 24
Java programming language, 198, 416,

422–423
Javadoc, 443
JavaScript language

and asynchronous issues, 343–346
function example, 120
and garbage collection, 198,

381–382
“Guess the animal” game,

264–266, 276
and jQuery, 254
and JSON, 255–256
promise construct, 346–350
as self-modifying code, 407
and web browser, 251–253

JavaScript Object Notation (JSON),
255–256

Johnson, Stephen C., 226
Jordan, Frank, 76
JPEG compression, 122–124, 174
jQuery, 253–254, 345–346
JSON (JavaScript Object Notation),

255–256

K
Kernighan, Brian, 228, 434, 438
ketchup bottle AI example, 406,

408–409
key exchanges, 367–369
keyboards, 181
keyframes, 176
Kilby, Jack, 52
kilobytes, defined, 21
Kleene, Stephen Cole, 224

Index 455

kleptography, 355, 368
knife switches, 45
Knight, Tom, 407
Knuth, Donald, 435
Koch, Helge von, 319
Koch snowflake, 319

L
L-systems (Lindenmayer systems),

320–322
LAN. See local area networks (LAN)
Landin, Peter, 189
languages. See also programming

languages
human vs. computer, 1–3, 267–268
markup, 238–239, 248–251

Lantz, Keith, 439
large-scale integration (LSI) parts, 60
latches, 71–74
LavaRand, 376
Lawson, Harold, 184
layering video, 176
LCD (liquid crystal display), 178
leading zeros, 8
leaf nodes, 123
least recently used (LRU) algorithm, 132
least significant bit (LSB), 8
LEDs. See light-emitting diodes (LEDs)
Lesk, Mike, 225
lex program, 225–226
lexical analysis, 221–226
LFSR (linear feedback shift

register), 375
libraries, 137–138, 288–289, 399, 436
LIFO (last in, first out) structure, 124
light-emitting diodes (LEDs), 59,

142–144, 146–148, 160–161
limit registers, 124
Lindenmayer, Aristid, 320
Lindenmayer systems (L-systems),

320–322
linear feedback shift register

(LFSR), 375
linear region, 39–40
linked lists, 191–195, 198–199
linker programs, 137–138
<link> element (HTML), 246
links

directory, 204
hypertext, 240

Linux, 418, 437

liquid crystal display (LCD), 178
LISP programming language, 407
living documents, 238
load-store architecture, 113
local area networks (LAN), 156–157, 158
locality of reference, 184
lock authorities, 341
locks

advisory, 339–340
deadlocks, 341–342
granularity, 340–341
implementations, 342–343

logic gates
concepts, 53–54
and hardware design, 60
output variations, 58–60
and propagation delay, 57
Schmitt triggers, 55, 56

logic operations
binary addition as, 9–10
concepts and laws, 3–6

loop-invariant optimization, 235, 288
lossless and lossy compression, 172
low pass filters, 168–169, 170
LRU (least recently used) algorithm, 132
LSB (least significant bit), 8
Łuskasiewicz, Jan, 125

M
MAC (Media Access Control)

addresses, 158
McCarthy, John, 198, 407
McCauley, Clark, 429
McCreight, Ed, 205
machine intelligence. See also artificial

intelligence (AI); big data;
machine learning (ML), 385

machine language, 218, 233–234
machine learning (ML). See also image

processing and recognition
concepts, 386–388
edge detection, 390–399
feature extraction, 399–400
naive Bayes classifier, 389–390
and neural networks, 405
technology trends, 385–386
training data, 406

McIlroy, Doug, 435, 440
Macintosh API, 433
macros, 290
magnetic tape, 87

456 Index

maintenance, 441–442
malloc function (C), 195–196, 197,

379–381
man-in-the-middle attacks, 357, 368
Mandelbrot, Benoit, 319
mantissa, 15–16, 17–18
MapReduce, 216
mark-space signaling, 153–154,

155–156
markup languages, 238–239, 248–251
mask-programmable ROM, 85
masking. See shifting and masking
masks

bitmap, 187
defined, 85
interrupt controls, 128
in raster graphics, 311–312

mass storage, 85–87
Massachusetts Institute of Technology,

407, 416
MD5 hash function, 370
Mead, Carver, 90
Media Access Control (MAC)

addresses, 158
medium-scale integration (MSI)

parts, 60
megabytes, defined, 21
memory. See also storage technologies

arranging data in, 136–137
computer access to, 94–96
error detection and correction,

88–89
hierarchy and performance,

133–135, 138
organization and addressing, 79–81
random access, 82
read-only, 83–85
relative addressing, 129–130
as shared resource, 337

memory chips, 81
memory controller, 134
memory management. See also buffer

overflows
bug prevention, 373, 374–375
in C programming, 276–280
dynamic allocation, 195–197,

379–381
garbage collection, 197–198,

381–382
memory management units (MMUs)

design and operations, 130–132, 133
and libraries, 138, 195

Men in Black (film), 356
messages, command and control, 358
metadata and security exposure, 359
metal-oxide semiconductor field effect

transistors (MOSFETs), 52
Metcalfe, Bob, 158
methodology vs. ideology, 430–431
methods, C++, 211–212
microcode, 112–113
microcomputers, 119, 137, 375
microprocessors, 119, 141–142
Microsoft, 339, 355, 358, 417
Miller, Frank, 367
MIP mapping, 285–288
MIT. See Massachusetts Institute of

Technology
MKUltra government program, 360
ML. See machine learning (ML)
MMUs See memory management

unit (MMUs)
modems, 156
modulation/demodulation, 155–156
moiré artifacts, 328
MOSFETs (metal-oxide semiconductor

field effect transistors), 52
most significant bit (MSB), 8
motion compression, 176
mouse technology, 151, 181
MP3 frame layout, 210
MSB (most significant bit), 8
multicore processors, 119
multiplexers (mux), 65–66
multiplexing, examples, 81, 147
multiplication, 100
multiprocessor systems, 118–119, 216
multitasking, 118, 133, 177, 335–336
The Mythical Man-Month: Essays on

Software Engineering
(Brooks), 219

N
naive Bayes classifier, 389–390
namespaces, 249
NaN (not a number), 18
NAND gates, 53–54
Napier, John, 34
National Security Agency (NSA), 355,

368, 374
Naur, Peter, 222
negative logic, 5–6
negative number representation, 10–14

Index 457

Nelson, Nils Peter, 288
networking, 156–160
neural networks, 401–406
new operator, 198
nixie tubes, 63
no-execute bit, 131
Node.js, 424
nodes. See also trees

adding new, 280–281
in C programming, 276
coalescing, 307
leaf, 123
lexicon, 243

noise
and differential signaling, 55–57
immunity, 38, 54–55

nonaligned access, 95
nonblocking mode, 341
nonmaximum suppression, 398
nonrepudiation, 370
NOR gates, 53–54, 72
normalization, of numbers, 17
NOT

operation, 4–5, 5–6, 11
with relays, 49

notch filters, 168
Noyce, Robert, 52
NUL terminator, 188, 189
numbers as characters, 25–27
nuxi syndrome, 96
Nyquist, Harry, 169

O
object code, 219
object-oriented programming

concepts, 211–212
octal representation, 18–19, 20
octets, 24–25
octrees, 310–311
Ohm, Georg Simon, 44
Ohm’s law, 44
one-time pads, 367
one’s complement representation, 11–13
opcodes, 97, 98
open-collector (or open-drain)

outputs, 58–59, 148
open source software, 377, 418,

419–420, 436, 442, 443
OpenCV library, 399
OpenGL graphics language, 181
OpenSSL cryptography library, 377, 436

operands, 97, 221
operating systems (OS)

context switching, 269–270
and files, 271–272
and I/O devices, 259–260, 268–269
locking functionality, in, 341
operations, 118, 128–129
with programs vs. browsers, 273–274
threads, 337–339
time-sharing, 177

optical disks, 87–88
optimizers, 234–236
OR

logic gates, 53–54
operation, 4–5, 5–6
in plumbing example, 43
with relays, 49

Ørsted, Hans Christian, 47
OS. See operating systems (OS)
oscillators, 70–71
Ossanna, Joseph, 274
out-of-order execution, 135
outputs

in differential signaling, 56
of gates, 58–60
and transfer functions, 39–40

overclocking, 71
overflow condition, 10

P
package management, 421–422
packet-switched networks, 157
packets (USB), 156
padding, 190
page fault exception, 131
page swapping, 132
page tables, 130–131
pages, 82, 130–131
The Paging Game (Berryman), 134
parallel communications, 152, 154
parallel connections, 43
parallel processing, 119
PARC. See Xerox Palo Alto Research

Center (PARC)
parent node, 243
parity checking, 89
parse trees

construction and evaluation,
229–230, 231

examples, 242–243
optimizing, 234

458 Index

Pascal (programming language), 220
passive pull-ups, 59
password exposures, 353, 354, 378
password management, 371–372
path (URL), 240
pattern matching, 224–225
Patterson, David, 113
PCs. See personal computers (PCs)
PDF (Portable Document Format),

254–255
Peano, Giuseppe, 319
perceptrons, 402–403
periodic signals, 70
peripherals, 96, 127
personal computers (PCs), 417, 418
personal data

privacy, 352, 359–361, 410–412
and trust, 353–355, 361

phase difference, 170
phone security, 359, 361, 362, 373
phones. See cell phone programs; cell

phone systems
photolithograpy, 51
physical security, 355–356
piezoelectric effect, 70
Pike, Robert, 24, 209, 434
pins, defined, 127
pip (Peripheral Interchange Program,

DEC), 434
pixels

in Gaussian blur, 392–393
as image representation, 27, 173
and MIP mapping, 286
unions, 190–191
in video, 175
voxels, 310

PKI (public key infrastructure),
370–371

pointers, 114, 184–185, 212
polar coordinates, 301–304
Polish notation, 125
polling, 127
pop and push, 124
portable device programming, 425
Portable Document Format (PDF),

254–255
portable operating system interface

(POSIX), 421
portable software, 416, 420–421,

439–440
Porter, Thomas, 30

ports
I/O, 97, 142–144
IEEE 1284 parallel, 152
RS-232 serial, 154

positive logic, 5–6
positive number representation, 6–8
POSIX (portable operating system

interface), 421, 439
post function (jQuery), 345–346
postfix notation, 125, 227
PostScript language, 124, 254
power consumption vs. performance, 138
power series approximations, 313
power wall, 119
prefetching, 135
prefix notation, 125
prepress technologies, 29
primitive data types

arrays, 185–187
bitmaps, 187–188
overview, 184–185
strings, 188–189

Principles of Compiler Design (Aho and
Ullman), 228

print servers, 337–338
printers

color system, 173
and steganography, 363

printf (print formatted) function
(C), 277

priority interrupts, 128
privacy. See also personal data

and data visibility, 378–379
as security, 352

privileged instructions, 133
privileges, and security, 356
PRNGs (pseudorandom number

generators), 375
procedures. See functions
processes, 337–338
processor cores, 119, 135
processor interrupt handling, 341
production grammars, 320–322
program counter, 101–102
programmable read-only memory

(PROM), 85
programmers. See also career success

adding value, 414–416, 442, 443
finishing projects, 419
productive environment for,

437–439
training, 418, 426

Index 459

programming. See also software hygiene
discipline of, 428, 443
Linux environment, 437
productivity tools, 437–439

programming languages
assembly language, 217–218
compiler execution, 232–234
compilers vs. interpreters, 228–229
domain-specific, 228
grammar, 226–227
and hardware, 236
high level, 219–220
interpreter execution, 231–232
and lexical analysis, 221–226
optimizers, 234–235
structured vs. unstructured, 220

Programming Pearls (Bentley), 228
programming projects

documentation, 432
fast prototyping, 432–433
interface design, 433–436
and library code, 436

programs. See also user programs
development vs. maintenance, 349
machine learning, 281–282
running, 137–138
testing, 440–441
third-party code, 376–378
and value proposition, 414–416

PROM (programmable read-only
memory), 85

promise construct, 346–350
propagation delay, 43, 57, 70, 71
properties (C++), 211–212
prototyping, 432–433
proxies, 358
pseudo-instructions, 218
pseudocode, 122
pseudorandom number generators

(PRNGs), 375
pseudorandomness, 318–319, 375–376
public key cryptography, 368
public key infrastructure (PKI), 370–371
punched paper tape, 84
push and pop, 124

Q
qsort function (UNIX), 213
quadrature encoding, 150–151
quadtrees, 123, 304–310
quantization, 323–333

queues, 270, 272–273, 344
Quoted Printable (QP) encoding, 26

R
race conditions, 335–336
radial zones, 87
radians, 301
RAM (random-access memory), 82
ramp converters, 165
random back-off-and-retry, 158
random logic, 112
random number generators, 368,

375–376
randomness

approximating, 318, 322–323
dithering as, 325

raster graphics, 180–181, 311–312
raw buffer mode, 271
Raymond, Eric, 434
RCS (Revision Control System), 440
read-only memory (ROM), 83–85
real numbers, 14–18, 283
realloc function (C), 195–196, 379–381
recurrent neural network, 405
recursion, 122–125
recursive subdivision

and constructive solid geometry,
304–311

defined, 122
drawing spirals with, 301–304

reduced instruction set computers
(RISC), 113–114

Reed, Brian, 439–440
refactoring, 441
reference addressing, 101, 185, 198
reference voltages, 163–164
registers

accumulator, 103–104
in computer design, 133–134
condition code, 10, 98
index, 129
indirect address, 110
instruction, 109
limit, 124
memory, 79–81
program counter, 101–102
schematic, 78–79

regression testing, 441
regular expressions, 224–225
relative addressing, 129–130, 186
relays, 47–50

460 Index

reset bar, 72
Resig, John, 253
resistance (R), 44
resolution

CRT screen, 178
digital-analog conversion, 161, 165
graphics, 180, 291

reverse Polish notation, 125
Revision Control System (RCS), 440
RGB color model, 28
Riemersma dithering algorithm,

332–333
Riemersma, Thiadmer, 332
ring buffers, 272–273
ripple-carry adder, 62
ripple counters, 77
RISC (reduced instruction set computer)

machines, 113–114
Ritchie, Dennis, 220, 288–289, 416
Rivest, Ronald, 368
ROM (read-only memory), 83–85
root (tree), 200, 243
rootkits, 354
Rosenblatt, Frank, 402
rotary encoders, 149–151
rotation mode, 316
rotational latency, 87
routers, 158
Rozin, Paul, 429
RSA algorithm, 368
Ruby language, 228
Rumelhart, David, 404
runtime libraries, 138, 274, 275–276

S
S-R (set-reset) latches, 72–73
Samet, Hanan, 123
sample and hold circuit, 162–163
sampling

audio, 165–166, 168–170, 171
circuits for, 162–163
defined, 160
images, 173–174

SATA interface, 154
saturation regions, 41
Scalable Vector Graphics (SVG),

254–255
scaling (graphic), 291
scan lines, 311
scanners, 180
scatter/gather, 211

SCCS (Source Code Control
System), 440

schematic diagrams, 44
scheme (URL), 240
Schmidt, Eric, 225
Schmitt, Otto H., 55
Schmitt triggers, 55, 56
Schwartz, Barry, 429
scientific notation, 15–16
<script> elements (HTML), 252
searching

databases, 205–206
with hash functions, 213–215
tree traversing, 199–203

security. See also cryptography; software
hygiene

authentication and authorization,
361–362

of communications, 356–357
and internet, 357–359
metadata and surveillance, 359
objectives, 351–352
physical, 355–356
and society, 359–361
threat model, 352–353
trust violations, 353–355

seed, 375
selectors, 65–66
self-similarity, 319
Semi-Automatic Ground Environment

(SAGE), 157
semiconductors, 51
sensors

digital camera, 38–39
rotating shaft, 149–151

sequential logic, defined, 69–70
sequential memory, 85
sequential shift register, 99
serial communications, 152–154
series connections, 43
set-reset (S-R) latches, 72–73
Sethi, Ravi, 228
setup time, 76
SHA-1 algorithm, 369–370
Shamir, Adi, 368
sharding, 216
shared libraries, 138
shared resources, 336, 337
shells, 437–438
shift operations, 99–100, 153
shift-reduce parsers, 226–227
shift registers, 99–100, 153

Index 461

shifting and masking, 311–312
shortcuts See approximations and

shortcuts
sibling node, 243
side-channel attacks, 378
sigmoid neurons, 403–404
sign and magnitude representation,

10–11
SIGSALY voice encryption system, 367
Simple Mail Transfer Protocol

(SMTP), 159
sine waves

approximation, 313
characteristics, 155
digital reconstruction, 165–166

single-pole, double-throw (SPDT)
switches, 45–46

single-pole, single-throw (SPST)
switches, 45, 48

single-precision numbers, 17–18
singly linked lists, 191–195
slide rules, 34–35
small-scale integration (SSI) parts, 60
SMTP (Simple Mail Transfer

Protocol), 159
Snowden, Edward, 360, 368
Sobel edge detection, 395–398
Sobel, Irwin, 395
SoC (system on a chip), 119
social attack mechanisms, 358
society and security, 359–361
software distribution, 421–422
software hygiene

and attack surfaces, 373–374
data as code, 382–384
error checking, 373
memory management, 374–375,

379–382
random number generation,

375–376
security measures, 372–373, 378–379
third-party code, 376–378

solid-state disk drives, 88, 382
sorting, 212–213
source code control, 440
Source Code Control System

(SCCS), 440
space-filling curves, 319–320
spaghetti code, 220
spam filters, 387, 389–390
spatial data structures, 123
spectrum analyzers, 168

spinning, 341
SQL implementations, 423
SQL injection, 382–384
square waves, 165–166
SRAM (static RAM), 82
stacks, 122–125
Stallman, Richard, 418, 419
standards proliferation, 238, 415
Star Trek II: The Wrath of Khan (film),

322–323
state machines, 109, 112, 223–224
state tables, 223, 224–226
static data, 136
static linking, 138
static RAM (SRAM), 82, 95
statistical analysis applications, 387,

410–411
stderr file pointer, 274–275
stdio (standard input/output) library,

271–272, 274
stdlib library, 271–272, 274, 275
steganography, 362–363
Steinberg, Louis, 330
stepper relays, 49
stereo, 170–172
stochastic processes, 322–323
Stone, Maureen, 29
storage technologies

block devices, 85–88
mixed devices, 88
read-only memory, 83–85

storage tubes, 179
stored procedures, 423
strcmp function (C), 213
strength reduction, 235
string library, 275
string terminators, 188–189
strings

in C, 276–280
data structure, 188–189
sorting, 213

strobe signals, 152
Stroustrup, Bjarne, 212
student projects, 419
The Stuff of Thought (Pinker), 432
<style> element (HTML), 246–247
subroutines. See functions
substrates, 51
subtractive color system, 28–29, 173
successive approximation converters, 165
Sun Microsystems, 420, 439
supersampling, 174

462 Index

surveillance, 359
SVG (Scalable Vector Graphics), 254–255
switches

electrical, 44–47
networking, 157
in plumbing example, 43

symbols, 2, 3, 221
symmetric encryption, 364, 367–368
synchronous counters, 77–78
syntactic sugar, 189, 346, 347
system calls, 133, 269–271, 343
system integrators, 377
system on a chip (SoC), 119
system programming vs. application

programming, 259, 282
system space, 133

T
table lookups

character classification, 288–290
conversion tables, 284
texture mapping, 285–288

tags, 241–242, 248
Talbot, Henry, 325
tape technologies, 84, 85, 87
Taylor series, 313
TCP/IP (Transmission Control

Protocol/Internet
Protocol), 158–159

Tektronix storage tubes, 179
telephone networks, 157
telephone technologies, 155
teletype technology, 153–154, 176–177
The Ten Commandments for C Programmers

(Spencer), 372
terabytes, defined, 21
terminal node, 243
terminals

blit, 209
and buffering, 270–271
as coding interface, 437
hardcopy output, 176–177
screen based, 177–178
software implemented, 268–269

test and set instruction, 342
testing, 440–441
Texas Instruments, 53
text editors, 438–439
text. See characters
texture mapping, 285–288
third-party code, 376–378, 436

This Is Spinal Tap (film), 39
Thompson, Ken, 24, 224, 377, 416,

417, 434
thrashing, 177
threads, 338–339
threat model, 352–353, 378
thresholds

binary vs. decimal, 41
in graphics, 324
in hyperesis, 55
negative- and positive-going, 55–56
and transfer functions, 49

Tiemann, Michael, 418
time and date structure, 189–190
time division multiplexing, 154, 157
time references, 70–71
time-sharing systems, 177
timers, 128, 133
timing attacks, 378
tokens, 221, 225–226
Torvalds, Linus, 418
totem-pole outputs, 58
touch devices, 181
traffic control unit, 110–113
transactions, 340–341
transfer functions, 38–40, 49, 54–55, 168
transformations (graphic), 291
transistors, 51–52
translations (graphic), 291
Transmission Control Protocol/

Internet Protocol (TCP/IP),
158–159, 211

transparency
color, 29–30
open source code, 376–378
and security, 355

transposition ciphers, 365–366
trapdoor functions, 368
tree balancing, 202–203
tree lexicon, 243
tree of knowledge, 260, 262
tree traversal, 123, 244, 280–281
trees. See also nodes; octrees; quadtrees

B-tree, 205
binary, 199–203
defined, 123
examples, 229–230, 242–243

tri-state outputs, 60
trigonometric functions, 301, 313–318
triodes, 50–51
troff (typesetting language), 228, 239,

274–275

Index 463

trust
and third-party code, 376–378
violations, 353–354, 361

truth tables, 4
Turing, Alan, 101
twisted-pair cabling, 56
two-factor authentication (2FA),

361–362, 373
2001: A Space Odyssey (film), xxii, 386
two’s complement adder, 60–63
two’s complement representation, 13–14
typeballs, 177
typesetting languages, 228, 239, 274–275

U
UART (Universal Asynchronous

Receiver-Transmitter), 154
Ullman, Jeffrey, 228
underflow condition, 10
Unicode standards, 24
Unicode Transformation Format 8-bit

(UTF-8), 24–25, 439
Uniform Resource Locators (URLs),

27, 159, 239–240
unions, 190
Universal Asynchronous Receiver-

Transmitter (UART), 154
Universal Serial Bus (USB), 152, 156
UNIX

API, 433–435
brief history, 415, 416–418
derivative operating systems, 437
interrupt mechanism, 128
sorting functions, 213
tools, 421

The UNIX Programming Environment
(Kernighan and Pike), 434

UNIX-to-UNIX copy (UUCP), 157
URL. See Uniform Resource

Locator (URL)
USB (Universal Serial Bus), 152, 156
user interfaces (UI), 433
user programs. See also C programs;

“Guess the animal” program
vs. browsers, 259–260, 273–274, 282
and operating system, 268–269

user space, 133, 337
UTF-8 (Unicode Transformation

Format 8-bit), 24–25, 439
UUCP (UNIX-to-UNIX copy), 157

V
vacuum tubes, 50–51
van Eck phreaking, 378
Vannini, Walter, 428
variables

FORTRAN naming conventions, 219
local, 124
and size assumptions, 374

vector graphics, 178–181
vectored I/O, 210–211
vectoring mode, 316
video, 174–176
virtual machines, 229, 237, 425
virtual memory, 132
voice encryption, 367
volatile keyword (C), 236
Volder, Jack, 313
Volta, Alessandro, 44
voltage (V), 43–44
von Neumann architecture, 118
von Neumann, John, 118
voxels, 310

W
Wall of Sound concert audio system, 57
WAN (wide area networks), 156–157
WarGames (film), 383–384
Warnock, John, 254
wave characteristics, 154–157
waveform generation, 162
web browsers

overview, 256–257
vs. programs, 259–260, 273–274, 282
and standards, 238
as virtual machines, 237
and World Wide Web, 159

web pages. See also Cascading Style
Sheets (CSS)

advertising pixels in, 363
asynchronous issues, 344
canvas, 290–291
comment sanitization, 384
Document Object Model, 242–244
“Guess the animal” game, 263–267
HTML documents, 240–242
and markup languages, 238–239
overview, 159–160
styling, 244–248, 267

Weinberger, Peter, 438
whitespace, 228

464 Index

Wi-Fi, 158
wide area networks (WAN), 156–157
Williams, Lance, 285–286
Williams, Roland, 404
wired-AND gates, 59
Wizard of Oz, The (film), xxiv
word, defined, 21
World War II code breaking, 357,

366–367, 378
World Wide Web, 159
writable control store, 113
Wrzesniewski, Amy, 429

X
X Window System, 341, 439–440
x-y coordinates. See Cartesian

coordinate mapping
Xerox Palo Alto Research Center

(PARC), 158

XHR (XMLHttpRequest), 344
XHTML, 239, 242
XML Path Language (XPath), 250
XML. See eXtensible Markup Language

(XML)
XMLHttpRequest (XHR), 344
XOR (exclusive-OR)

logic gates, 53
operation, 4–5, 9

Xtensible Stylesheet Language
Transformations (XSLT),
250–251

Y
yacc program, 226–227, 229–230

Z
Zim, Herbert, 364

The Secret Life of Programs is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

T H E
S E C R E T L I F E O F
P R O G R A M S

T H E
S E C R E T L I F E O F
P R O G R A M S

U N D E R S T A N D C O M P U T E R S —
C R A F T B E T T E R C O D E

J O N A T H A N E . S T E I N H A R T

T H E T H I N G
W O R K S

L I K E T H I S .

T H E T H I N G
W O R K S

L I K E T H I S .

Many coders are unfamiliar with the underlying technol-
ogies that make their programs run. But why should you
care when your code appears to work? Because you
want it to run well and not be riddled with hard-to-find
bugs. You don’t want to be in the news because your
code had a security problem.

Lots of technical detail is available online but it’s not orga-
nized or collected into a convenient place. In The Secret
Life of Programs, veteran engineer Jonathan E. Steinhart
explores—in depth—the foundational concepts that under-
lie the machine. Subjects like computer hardware, how
software behaves on hardware, as well as how people
have solved problems using technology over time.

You’ll learn:

• How the real world is converted into a form that
computers understand, like bits, logic, numbers,
text, and colors

• The fundamental building blocks that make up a
computer including logic gates, adders, decoders,
registers, and memory

• Why designing programs to match computer hardware,
especially memory, improves performance

• How programs are converted into machine language
that computers understand

• How software building blocks are combined to create
programs like web browsers

• Clever tricks for making programs more efficient, like
loop invariance, strength reduction, and recursive
subdivision

• The fundamentals of computer security and machine
intelligence

• Project design, documentation, scheduling, portability,
maintenance, and other practical programming realities.

Learn what really happens when your code runs on
the machine and you’ll learn to craft better, more
efficient code.

A B O U T T H E A U T H O R

Jonathan E. Steinhart has designed graphics hardware
and software, and built CAD systems, graphics work-
stations, circuit simulators, power plants, and languages
for integrated circuit design. He has consulted for Apple,
Intel, Sun, Welch-Allyn, Lulu, and many others.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN: COM
PUTERS/

PROGRAM
M

ING

$44.95 ($59.95 CDN)

S
T

E
IN

H
A

R
T

T
H

E
 S

E
C

R
E

T
 L

IF
E

 O
F

 P
R

O
G

R
A

M
S

T
H

E
 S

E
C

R
E

T
 L

IF
E

 O
F

 P
R

O
G

R
A

M
S

	Brief Contents
	Contents in Detail
	Acknowledgments
	Preface
	Introduction
	Why Good Programming is Important
	Learning to Code is Only a Starting Place
	Importance of Low-Level Knowledge
	Who Should Read This Book?
	What Are Computers?
	What Is Computer Programming?
	Coding, Programming, Engineering, and Computer Science
	The Landscape
	What’s in This Book

	Chapter 1: The Internal Language of Computers
	What Is Language?
	Written Language
	The Bit
	Logic Operations
	Boolean Algebra
	De Morgan’s Law

	Representing Integers Using Bits
	Representing Positive Numbers
	Binary Addition
	Representing Negative Numbers

	Representing Real Numbers
	Fixed-Point Representation
	Floating-Point Representation
	The IEEE Floating-Point Standard

	Binary-Coded Decimal System
	Easier Ways to Work with Binary Numbers
	Octal Representation
	Hexadecimal Representation
	Representing the Context

	Naming Groups of Bits
	Representing Text
	The American Standard Code for Information Interchange
	The Evolution of Other Standards
	Unicode Transformation Format 8-bit

	Using Characters to Represent Numbers
	Quoted-Printable Encoding
	Base64 Encoding
	URL Encoding

	Representing Colors
	Adding Transparency
	Encoding Colors

	Summary

	Chapter 2: Combinatorial Logic
	The Case for Digital Computers
	The Difference Between Analog and Digital
	Why Size Matters in Hardware
	Digital Makes for More Stable Devices
	Digital in an Analog World
	Why Bits Are Used Instead of Digits

	A Short Primer on Electricity
	Using Plumbing to Understand Electricity
	Electrical Switches

	Building Hardware for Bits
	Relays
	Vacuum Tubes
	Transistors
	Integrated Circuits

	Logic Gates
	Improving Noise Immunity with Hysteresis
	Differential Signaling
	Propagation Delay
	Output Variations

	Building More Complicated Circuits
	Building an Adder
	Building Decoders
	Building Demultiplexers
	Building Selectors

	Summary

	Chapter 3: Sequential Logic
	Representing Time
	Oscillators
	Clocks
	Latches
	Gated Latches
	Flip-Flops
	Counters
	Registers

	Memory Organization and Addressing
	Random-Access Memory
	Read-Only Memory

	Block Devices
	Flash Memory and Solid State Disks
	Error Detection and Correction
	Hardware vs. Software
	Summary

	Chapter 4: Computer Anatomy
	Memory
	Input and Output
	The Central Processing Unit
	Arithmetic and Logic Unit
	Shiftiness
	Execution Unit

	Instruction Set
	Instructions
	Addressing Modes
	Condition Code Instructions
	Branching
	Final Instruction Set

	The Final Design
	The Instruction Register
	Data Paths and Control Signals
	Traffic Control

	RISC vs. CISC Instruction Sets
	Graphics Processing Units
	Summary

	Chapter 5: Computer Architecture
	Basic Architectural Elements
	Processor Cores
	Microprocessors and Microcomputers

	Procedures, Subroutines, and Functions
	Stacks
	Interrupts
	Relative Addressing
	Memory Management Units
	Virtual Memory
	System and User Space
	Memory Hierarchy and Performance
	Coprocessors
	Arranging Data in Memory
	Running Programs
	Memory Power
	Summary

	Chapter 6: Communications Breakdown
	Low-Level I/O
	I/O Ports
	Push My Buttons
	Let There Be Lights
	Lights, Action, . . .
	Bright Ideas
	2n Shades of Gray
	Quadrature
	Parallel Communication
	Serial Communication
	Catch a Wave
	Universal Serial Bus

	Networking
	Modern LANs
	The Internet

	Analog in the Digital World
	Digital-to-Analog Conversion
	Analog-to-Digital Conversion
	Digital Audio
	Digital Images
	Video

	Human Interface Devices
	Terminals
	Graphics Terminals
	Vector Graphics
	Raster Graphics
	Keyboard and Mouse

	Summary

	Chapter 7: Organizing Data
	Primitive Data Types
	Arrays
	Bitmaps
	Strings
	Compound Data Types
	Singly Linked Lists
	Dynamic Memory Allocation
	More Efficient Memory Allocation
	Garbage Collection
	Doubly Linked Lists
	Hierarchical Data Structures
	Storage for the Masses
	Databases
	Indices
	Moving Data Around
	Vectored I/O
	Object-Oriented Pitfalls
	Sorting
	Making a Hash of Things
	Efficiency vs. Performance
	Summary

	Chapter 8: Language Processing
	Assembly Language
	High-Level Languages
	Structured Programming
	Lexical Analysis
	State Machines
	Regular Expressions

	From Words to Sentences
	The Language-of-the-Day Club
	Parse Trees
	Interpreters
	Compilers
	Optimization
	Be Careful with Hardware
	Summary

	Chapter 9: The Web Browser
	Markup Languages
	Uniform Resource Locators
	HTML Documents
	The Document Object Model
	Tree Lexicon
	Interpreting the DOM

	Cascading Style Sheets
	XML and Friends
	JavaScript
	jQuery
	SVG
	HTML5
	JSON
	Summary

	Chapter 10: Application and System Programming
	Guess the Animal Version 1: HTML and JavaScript
	Application-Level Skeleton
	Web Page Body
	The JavaScript
	The CSS

	Guess the Animal Version 2: C
	Terminals and the Command Line
	Building the Program
	Terminals and Device Drivers
	Context Switching
	Standard I/O
	Circular Buffers
	Better Code Through Good Abstractions
	Some Mechanics
	Buffer Overflow
	The C Program
	Training

	Summary

	Chapter 11: Shortcuts and Approximations
	Table Lookup
	Conversion
	Texture Mapping
	Character Classification

	Integer Methods
	Straight Lines
	Curves Ahead
	Polynomials

	Recursive Subdivision
	Spirals
	Constructive Geometry
	Shifting and Masking

	More Math Avoidance
	Power Series Approximations
	The CORDIC Algorithm

	Somewhat Random Things
	Space-Filling Curves
	L-Systems
	Going Stochastic
	Quantization

	Summary

	Chapter 12: Deadlocks and Race Conditions
	What Is a Race Condition?
	Shared Resources
	Processes and Threads
	Locks
	Transactions and Granularity
	Waiting for a Lock
	Deadlocks
	Short-Term Lock Implementation
	Long-Term Lock Implementation

	Browser JavaScript
	Asynchronous Functions and Promises
	Summary

	Chapter 13: Security
	Overview of Security and Privacy
	Threat Model
	Trust
	Physical Security
	Communications Security
	Modern Times
	Metadata and Surveillance
	The Social Context
	Authentication and Authorization

	Cryptography
	Steganography
	Substitution Ciphers
	Transposition Ciphers
	More Complex Ciphers
	One-Time Pads
	The Key Exchange Problem
	Public Key Cryptography
	Forward Secrecy
	Cryptographic Hash Functions
	Digital Signatures
	Public Key Infrastructure
	Blockchain
	Password Management

	Software Hygiene
	Protect the Right Stuff
	Triple-Check Your Logic
	Check for Errors
	Minimize Attack Surfaces
	Stay in Bounds
	Generating Good Random Numbers Is Hard
	Know Thy Code
	Extreme Cleverness Is Your Enemy
	Understand What’s Visible
	Don’t Overcollect
	Don’t Hoard
	Dynamic Memory Allocation Isn't Your Friend
	Garbage Collection Is Not Your Friend Either
	Data as Code

	Summary

	Chapter 14: Machine Intelligence
	Overview
	Machine Learning
	Bayes
	Gauss
	Sobel
	Canny
	Feature Extraction
	Neural Networks
	Using Machine Learning Data

	Artificial Intelligence
	Big Data
	Summary

	Chapter 15: Real-World Considerations
	The Value Proposition
	How We Got Here
	A Short History
	Open Source Software
	Creative Commons
	The Rise of Portability
	Package Management
	Containers
	Java
	Node.js
	Cloud Computing
	Virtual Machines
	Portable Devices

	The Programming Environment
	Are You Experienced?
	Learning to Estimate
	Scheduling Projects
	Decision Making
	Working with Different Personalities
	Navigating Workplace Culture
	Making Informed Choices

	Development Methodologies
	Project Design
	Writing It Down
	Fast Prototyping
	Interface Design
	Reusing Code or Writing Your Own

	Project Development
	The Talk
	Portable Code
	Source Control
	Testing
	Bug Reporting and Tracking
	Refactoring
	Maintenance

	Be Stylish
	Fix, Don’t Re-create
	Summary

	Index

