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PREFACE 

The finite element method is a numerical method that can be used for the accurate 
solution of complex engineering problems. The method was first developed in 1956 for 
the analysis of aircraft structural problems. Thereafter, within a decade, the potentiali- 
ties of the method for the solution of different types of applied science and engineering 
problems were recognized. Over the years, the finite element technique has been so well 
established that today it is considered to be one of the best methods for solving a wide 
variety of practical problems efficiently. In fact, the method has become one of the active 
research areas for applied mathematicians. One of the main reasons for the popularity of 
the method in different fields of engineering is that once a general computer program is 
written, it can be used for the solution of any problem simply by changing the input data. 

The objective of this book is to introduce the various aspects of finite element method 
as applied to engineering problems in a systematic manner. It is at tempted to give details 
of development of each of the techniques and ideas from basic principles. New concepts are 
illustrated with simple examples wherever possible. Several Fortran computer programs 
are given with example applications to serve the following purposes: 

- to enable the student to understand the computer implementation of the theory 
developed; 

- to solve specific problems; 
- to indicate procedure for the development of computer programs for solving any 

other problem in the same area. 

The source codes of all the Fortran computer programs can be found at the Web site 
for the book, www.books.elsevier.com. Note that the computer programs are intended for 
use by students in solving simple problems. Although the programs have been tested, no 
warranty of any kind is implied as to their accuracy. 

After studying the material presented in the book, a reader will not only be able to 
understand the current literature of the finite element method but also be in a position to 
develop short computer programs for the solution of engineering problems. In addition, the 
reader will be in a position to use the commercial software, such as ABAQUS, NASTRAN, 
and ANSYS, more intelligently. 

The book is divided into 22 chapters and an appendix. Chapter 1 gives an introduction 
and overview of the finite element method. The basic approach and the generality of 
the method are illustrated through simple examples. Chapters 2 through 7 describe the 
basic finite element procedure and the solution of the resulting equations. The finite 
element discretization and modeling, including considerations in selecting the number 
and types of elements, is discussed in Chapter 2. The interpolation models in terms of 
Cartesian and natural coordinate systems are given in Chapter 3. Chapter 4 describes the 
higher order and isoparametric elements. The use of Lagrange and Hermite polynomials 
is also discussed in this chapter. The derivation of element characteristic matrices and 
vectors using direct, variational, and weighted residual approaches is given in Chapter 5. 
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The assembly of element characteristic matrices and vectors and the derivation of system 
equations, including the various methods of incorporating the boundary conditions, are 
indicated in Chapter 6. The solutions of finite element equations arising in equilibrium, 
eigenvalue, and propagation (transient or unsteady) problems, along with their computer 
implementation, are briefly outlined in Chapter 7. 

The application of the finite element method to solid and structural mechan- 
ics problems is considered in Chapters 8 through 12. The basic equations of solid 
mechanics--namely, the internal and external equilibrium equations, stress-strain rela- 
tions, strain-displacement relations and compatibility condi t ions--are  summarized in 
Chapter 8. The analysis of trusses, beams, and frames is the topic of Chapter 9. The 
development of inplane and bending plate elements is discussed in Chapter 10. The anal- 
ysis of axisymmetric and three-dimensional solid bodies is considered in Chapter 11. The 
dynamic analysis, including the free and forced vibration, of solid and structural mechanics 
problems is outlined in Chapter 12. 

Chapters 13 through 16 are devoted to heat transfer applications. The basic equations 
of conduction, convection, and radiation heat transfer are summarized and the finite 
element equations are formulated in Chapter 13. The solutions of one-. two-, and three- 
dimensional heat transfer problems are discussed in Chapters 14-16. respectively. Both 
the steady state and transient problems are considered. The application of the finite 
element method to fluid mechanics problems is discussed in Chapters 17-19. Chapter 17 
gives a brief outline of the basic equations of fluid mechanics. The analysis of inviscid 
incompressible flows is considered in Chapter 18. The solution of incompressible viscous 
flows as well as non-Newtonian fluid flows is considered in Chapter 19. Chapters 20-22 
present additional applications of the finite element method. In particular, Chapters 20-22 
discuss the solution of quasi-harmonic (Poisson), Helmholtz, and Reynolds equations, 
respectively. Finally, Green-Gauss theorem, which deals with integration by parts in two 
and three dimensions, is given in Appendix A. 

This book is based on the author's experience in teaching the course to engineering 
students during the past several years. A basic knowledge of matrix theory is required 
in understanding the various topics presented in the book. More than enough material 
is included for a first course at the senior or graduate level. Different parts of the book 
can be covered depending on the background of students and also on the emphasis to 
be given on specific areas, such as solid mechanics, heat transfer, and fluid mechanics. 
The student can be assigned a term project in which he/she is required to either modify 
some of the established elements or develop new finite elements, and use them for the 
solution of a problem of his/her choice. The material of the book is also useful for self 
study by practicing engineers who would like to learn the method and/or use the computer 
programs given for solving practical problems. 

I express my appreciation to the students who took my courses on the finite element 
method and helped me improve the presentation of the material. Finally, I thank my wife 
Kamala for her tolerance and understanding while preparing the manuscript. 

Miami S.S .  Rao 
May 2004 srao~miami.edu 
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OVERVIEW OF FINITE 
M E T H O D  

ELEMENT 

1.1 BASIC CONCEPT 
The basic idea in the finite element method is to find the solution of a complicated problem 
by replacing it by a simpler one. Since the actual problem is replaced by a simpler one 
in finding the solution, we will be able to find only an approximate solution rather  than 
the exact solution. The existing mathemat ica l  tools will not be sufficient to find the exact 
solution (and sometimes, even an approximate solution) of most of the practical problems. 
Thus, in the absence of any other convenient method to find even the approximate solution 
of a given problem, we have to prefer the finite element method.  Moreover, in the finite 
element method,  it will often be possible to improve or refine the approximate solution by 
spending more computat ional  effort. 

In the finite element method,  the solution region is considered as built up of many 
small, interconnected subregions called finite elements. As an example of how a finite 
element model might be used to represent a complex geometrical shape, consider the 
milling machine s t ructure  shown in Figure 1.1(a). Since it is very difficult to find the 
exact response (like stresses and displacements) of the machine under any specified cut t ing 
(loading) condition, this s t ructure  is approximated as composed of several pieces as shown 
in Figure 1.1(b) in the finite element method. In each piece or element, a convenient 
approximate  solution is assumed and the conditions of overall equilibrium of the s t ructure 
are derived. The satisfaction of these conditions will yield an approximate solution for the 
displacements and stresses. Figure 1.2 shows the finite element idealization of a fighter 
aircraft. 

1.2 HISTORICAL BACKGROUND 
Although the name of the finite element method  was given recently, the concept dates 
back for several centuries. For example, ancient mathemat ic ians  found the circumference 
of a circle by approximating it by the perimeter  of a polygon as shown in Figure 1.3. 

In terms of the present-day notation, each side of the polygon can be called a 
"finite element." By considering the approximating polygon inscribed or circumscribed, 
one can obtain a lower bound S (z) or an upper  bound S (~) for the true circumference S. 
Furthermore,  as the number of sides of the polygon is increased, the approximate values 
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(a) Milling machine structure 
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(b) Finite element idealization 

Figure 1.1. Representation of a Milling Machine Structure by Finite Elements. 

Figure 1.2. Finite Element Mesh of a Fighter Aircraft (Reprinted with Permission from Anamet 
Laboratories, Inc.). 
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~ ~ ,  ~ S (u) 

Figure 1.3. Lower and Upper Bounds to the Circumference of a Circle. 

converge to the true value. These characteristics, as will be seen later, will hold true in 
any general finite element application. In recent times, an approach similar to the finite 
element method, involving the use of piecewise continuous functions defined over trian- 
gular regions, was first suggested by Courant [1.1] in 1943 in the literature of applied 
mathematics. 

The basic ideas of the finite element method as known today were presented in the 
papers of Turner, Clough, Martin, and Topp [1.2] and Argyris and Kelsey [1.3]. The name 
finite element was coined by Clough [1.4]. Reference [1.2] presents the application of simple 
finite elements (pin-jointed bar and triangular plate with inplane loads) for the analysis of 
aircraft structure and is considered as one of the key contributions in the development of 
the finite element method. The digital computer provided a rapid means of performing the 
many calculations involved in the finite element analysis and made the method practically 
viable. Along with the development of high-speed digital computers, the application of the 
finite element method also progressed at a very impressive rate. The book by Przemieniecki 
[1.33] presents the finite element method as applied to the solution of stress analysis 
problems. Zienkiewicz and Cheung [1.5] presented the broad interpretation of the method 
and its applicability to any general field problem. With this broad interpretation of the 
finite element method, it has been found that the finite element equations can also be 
derived by using a weighted residual method such as Galerkin method or the least squares 
approach. This led to widespread interest among applied mathematicians in applying the 
finite element method for the solution of linear and nonlinear differential equations. Over 
the years, several papers, conference proceedings, and books have been published on this 
method. 

A brief history of the beginning of the finite element method was presented by 
Gupta and Meek [1.6]. Books that  deal with the basic theory, mathematical foundations, 
mechanical design, structural, fluid flow, heat transfer, electromagnetics and manufac- 
turing applications, and computer programming aspects are given at the end of the 
chapter [1.10-1.32]. With all the progress, today the finite element method is consid- 
ered one of the well-established and convenient analysis tools by engineers and applied 
scientists. 
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Figure 1.4. 

S 

E x a m p l e  1.1 The circumference of a circle (S) is approx imated  by the per imeters  of 
inscribed and circumscribed n-sided polygons as shown in Figure 1.3. Prove the following: 

lim S ill - - S  and lim S ( ~ ) - S  
r~ - - - ,  3 c  r l  - - - .  ~ 

where S (Z) and S (~) denote  the per imeters  of the inscribed and circumscribed polygons, 
respectively. 

S o l u t i o n  If the radius of the circle is R, each side of the inscribed and the circumscribed 
polygon can be expressed as (Figure 1.4) 

r 2R sin 7r _ 2R tan  7r (p, = - ,  s - , - 1 ,  
n n 

Thus,  the per imeters  of the inscribed and circumscribed polygons are given by 

S (z) - n r  = 2 n R s i n  ~ .  S (~) - n s  - 2 n R  tan  7r (E2) 
rl n 
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which can be rewri t ten as 

[sin51 
S ( l ) - 2 7 r R  L ~ ' 

tan -- 
S (~) - 27rR L n (e~) 

71" 
As n ---, ec, - ~ 0, and hence 

n 

S (z) ---, 27rR = S, S (~) ~ 27rR = S (E4) 

1.3 GENERAL APPLICABILITY OF THE METHOD 
Although the method has been extensively used in the field of s t ructural  mechanics, it 
has been successfully applied to solve several other types of engineering problems, such 
as heat conduction, fluid dynamics, seepage flow, and electric and magnetic fields. These 
applications prompted  mathemat ic ians  to use this technique for the solution of compli- 
cated boundary  value and other problems. In fact, it has been established tha t  the method 
can be used for the numerical solution of ordinary and part ial  differential equations. The 
general applicability of the finite element method can be seen by observing the strong 
similarities tha t  exist between various types of engineering problems. For illustration, let 
us consider the following phenomena. 

1.3.1 One-Dimensional Heat Transfer 
Consider the thermal  equilibrium of an element of a heated one-dimensional body as shown 
in Figure 1.5(a). The rate at which heat enters the left face can be wri t ten as [1.7] 

qx = - k A  ~OT (1.1) 
Ox 

where k is the thermal  conductivity of the material,  A is the area of cross section through 
which heat flows (measured perpendicular  to the direction of heat flow), and OT/Ox is the 
rate of change of t empera ture  T with respect to the axial direction. 

The rate at which heat leaves the right face can be expressed as (by retaining only 
two terms in the Taylor's series expansion) 

Oqx OT 0 ( _ k A O T )  
qz + dz -- qz + ~ z  d x - - k A -~z + -~x -~z d x (1.2) 

The energy balance for the element for a small time dt is given by 

Heat inflow + Heat generated by = Heat outflow + Change in internal 
in time dt internal sources in time dt energy during 

in time dt time dt 

Tha t  is, 

OT 
qx dt + OA dx dt = qx+dz d t +  c p - ~  dx dt (~.3) 
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�9 . - - x4  L a x  

(a) 

(b) 

Cross sectional area = A 

qx. i ~  qx + dx 

~ ~ - d x ~  

u 

Cross sectional area = A(x) �9 ~ - - - - ~  x 

L 
x 

Cross sectional area = A(x) 

(c) 

Figure  1.5.  One-Dimensional Problems. 

where 0 is the  rate  of heat generat ion per unit voluine (by tile heat source), c is the specific 
heat ,  p is the density, and OT/Ot dt = dT  is the t e m p e r a t u r e  change of the e lement  in 
t ime dt. Equa t ion  (1.3) can be simplified to obta in  

O ( k A O T  ) OT 
Ox ~ + qA - cp o t (1.4) 

Specia l  cases 

If the heat  source c) = 0. we get the Fourier  equat ion 

Ox ~x - cp Ot (1.5) 

If the  sys tem is in a s teady state,  we obta in  tile Poisson equat ion 

~ ( k A O T )  
0-- ~ ~ + 0.4 - 0 (1.6) 



GENERAL APPLICABILITY OF THE METHOD 

If the  heat  source is zero and the sys tem is in s teady state,  we get the Laplace equat ion  

0(0 ) 
am k A --o-zx - 0 (1.7) 

If the  the rma l  conduct iv i ty  and area of cross section are cons tant ,  Eq. (1.7) reduces to 

0 2 T  
Oz 2 

= 0 (1.8) 

1.3.2 One-Dimensional Fluid Flow 
In the  case of one-dimensional  fluid flow (Figure 1.5(b)), we have the net mass flow the 
same at every cross section; t ha t  is, 

p A u  - cons tan t  (1.9) 

where p is the  density, A is the cross-sectional area, and u is the flow velocity. 
Equa t ion  (1.9) can also be wr i t t en  as 

d 
d z ( P A u )  = 0  (1.10) 

If the  fluid is inviscid, there  exists a potent ia l  function O(x) such tha t  [1.8] 

d~ 
u - (1.11) 

dx 

and hence Eq. (1.10) becomes 

d( d0 / 
dx  PA-~z - 0 (1.12) 

1.3.3 Solid Bar under Axial Load 

For the  solid rod shown in Figure  1.5(c), we have at any section z, 

React ion  force - (area) (stress) - ( a rea ) (E) ( s t r a in )  

Ou 
= AE--z -  = applied force 

u x  
(1.13) 

where E is the  Young's  modulus ,  u is the axial d isplacement ,  and A is the cross-sectional 
area. If the  applied load is constant ,  we can write Eq. (1.13) as 

0( 
Ox A E ~  - 0 (1.14) 

A compar ison of Eqs. (1.7), (1.12), and (1.14) indicates t ha t  a solut ion procedure  applica- 
ble to any one of the  problems can be used to solve the others  also. We shall see how the 
finite e lement  m e t h o d  can be used to solve Eqs. (1.7), (1.12), and (1.14) with appropr ia te  
b o u n d a r y  condit ions in Section 1.5 and also in subsequent  chapters .  
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1.4 ENGINEERING APPLICATIONS OF THE FINITE ELEMENT METHOD 
As stated earlier, the finite element method was developed originally for the analysis of 
aircraft structures.  However, the general nature  of its theory makes it applicable to a 
wide variety of boundary  value problems in engineering. A boundary  value problem is 
one in which a solution is sought in the domain (or region) of a body subject to the 
satisfaction of prescribed boundary  (edge) conditions on the dependent  variables or their 
derivatives. Table 1.1 gives specific applications of the finite element method in the three 
major categories of boundary  value problems, namely, (i) equilibrium or s teady-sta te  or 
t ime-independent  problems, (ii) eigenvalue problems, and (iii) propagat ion or transient  
problems. 

In an equilibrium problem, we need to find the s teady-sta te  displacement or stress 
distr ibution if it is a solid mechanics problem, t empera tu re  or heat flux distr ibution if it 
is a heat transfer problem, and pressure or velocity distr ibution if it is a fluid mechanics 
problem. 

In eigenvalue problems also. time will not appear  explicitly. They may be considered 
as extensions of equilibrium problems in which critical values of certain parameters  are 
to be determined in addition to the corresponding s teady-sta te  configurations. In these 
problems, we need to find the natural  frequencies or buckling loads and mode shapes if it is 
a solid mechanics or s t ructures  problem, stability of laminar flows if it is a fluid mechanics 
problem, and resonance characteristics if it is an electrical circuit problem. 

The propagat ion or transient  problems are t ime-dependent  problems. This type of 
problem arises, for example, whenever we are interested in finding the response of a body 
under t ime-varying force in the area of solid mechanics and under sudden heating or 
cooling in the field of heat transfer. 

1.5 GENERAL DESCRIPTION OF THE FINITE ELEMENT METHOD 
In the finite element method,  the actual continuum or body of mat ter ,  such as a solid, 
liquid, or gas, is represented as an assemblage of subdivisions called finite elements. These 
elements are considered to be interconnected at specified joints called nodes or nodal 
points. The nodes usually lie on the element boundaries where adjacent elements are con- 
sidered to be connected. Since the actual variation of the field variable (e.g., displacement, 
stress, temperature ,  pressure, or velocity) inside the continuum is not known, we assume 
tha t  the variation of the field variable inside a finite element can be approximated by 
a simple function. These approximating functions (also called interpolat ion models) are 
defined in terms of the values of the field variables at the nodes. When field equations 
(like equilibrium equations) for the whole continuum are written, the new unknowns will 
be the nodal values of the field variable. By solving the field equations, which are gener- 
ally in the form of matr ix equations, the nodal values of the field variable will be known. 
Once these are known, the approximating functions define the field variable throughout  
the assemblage of elements. 

The solution of a general continuum problem by the finite element method always 
follows an orderly step-by-step process. With  reference to static s t ructural  problems, the 
step-by-step procedure can be s tated as follows: 

Step (i): Discretization of the s t ructure 

The first step in the finite element method is to divide the s t ructure or solution region 
into subdivisions or elements. Hence, the s t ructure  is to be modeled with suitable finite 
elements. The number,  type, size, and arrangement  of the elements are to be decided. 
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Step (ii): Selection of a proper interpolat ion or displacement model 

Since the displacement solution of a complex s t ructure under any specified load condi- 
tions cannot be predicted exactly, we assume some suitable solution within an element to 
approximate the unknown solution. The assumed solution must be simple from a com- 
puta t ional  s tandpoint ,  but  it should satisfy certain convergence requirements.  In general, 
the solution or the interpolat ion model is taken in the form of a polynomial.  

Step (iii): Derivation of element stiffness matrices and load vectors 

From the assumed displacement model, the stiffness matr ix [K (~)] and the load vector 
/3(r of element e are to be derived by using either equilibrium conditions or a suitable 
variational principle. 

Step ( iv) :  Assemblage of element equations to obtain the overall equilibrium equations 

Since the s t ructure  is composed of several finite elements, the individual element stiff- 
ness matrices and load vectors are to be assembled in a suitable manner  and the overall 
equilibrium equations have to be formulated as 

[ K ] ~ -  ~ (1.15) 

where [K] is the assembled stiffness matrix, ~ is the vector of nodal displacements, and 

P is the vector of nodal forces for the complete structure.  

Step (v):  Solution for the unknown nodal displacements 

The overall equilibrium equations have to be modified to account for the boundary  condi- 
tions of the problem. After the incorporation of the boundary  conditions, the equilibrium 
equations can be expressed as 

[K](P - - /3  (1.16) 

For linear problems, the vector 0 can be solved very easily. However, for nonlinear prob- 
lems, the solution has to be obtained in a sequence of steps, with each step involving the 
modification of the stiffness matr ix  [K] and /o r  the load vector P. 

Step (vi) :  Computa t ion  of element strains and stresses 

From the known nodal displacements (I), if required, the element strains and stresses 
can be computed by using the necessary equations of solid or s t ructural  mechanics. 

The terminology used in the previous six steps has to be modified if we want to extend 
the concept to other fields. For example, we have to use the term continuum or domain 
in place of structure,  field variable in place of displacement, characteristic matr ix  in place 
of stiffness matrix, and element resultants  in place of element strains. The application 
of the six steps of the finite element analysis is i l lustrated with the help of the following 
examples. 

E x a m p l e  1.2 (Stress analysis of a stepped bar) Find the stresses induced in the axially 
loaded stepped bar shown in Figure 1.6(a). The bar has cross-sectional areas of A (1) and 
A (2) over the lengths/(1) and l(2), respectively. Assume the following data: A (1) = 2 cm 2 
A (2) = 1 cm2;/(1) = 1(2) = 10 cm; E (1) - E (2) - E - 2 • 10 7 N/cm 2" P3 - 1 N. 
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S o l u t i o n  

(i) Idealization 

Let the  bar  be considered as an assemblage  of two e lements  as shown in F igure  1.6(b). By 
assuming  the  bar  to be a one-d imens iona l  s t ruc tu re ,  we have onlv axial  d i sp lacement  at 
any point  in the  e lement .  As there  are th ree  nodes,  the  axial  d i sp lacements  of the  nodes,  

namely,  (I)1, (I)2, and (I)3, will be taken  as unknowns .  

(ii) Displacement model 

In each of the  e lements ,  we assume a l inear var ia t ion  of axial  d i sp lacement  O so t h a t  
(F igure  1.6(c)) 

o(x) = a + bx (E l )  

where  a and  b are cons tants .  If we consider  the  end d i sp lacements  q)~:)(6 at  x - 0) and 

(I)~ r (~b at  x - 1 (r as unknowns ,  we ob ta in  

a - (I)(1 r and b - ((I)~ ~) - (I)(1~))//(e' 

where  the  supersc r ip t  e deno tes  the  e lement  number .  Thus .  

x (E2) 
- r  + - 

(iii) Element stiffness matrix 

T h e  e lement  stiffness mat r ices  can be der ived from the principle of m i n i m u m  poten t ia l  
energy. For this, we wri te  the  po ten t ia l  energy of the  bar  ( I )  under  axial  de fo rma t ion  as 

I -  s t ra in  e n e r g y -  work done bv ex te rna l  forces 

= 7r (1) + 7r (2) - ll,"p (E3) 

where  7r (~) represents  the  s t ra in  energy of e lement  e. and I l p  denotes  the  work done by 

ex te rna l  forces. For the  e lement  shown in F igure  1.6(c), 

l(~ ) 1 ( ( )  

7r(e) _ A(et ~ ( c l  ) . s  d x  - -  ~"( 

0 0 

~)~dx (E4) 

where  A (~) is the  cross-sect ional  a rea  of e lement  e, l (e) is the  length  of e lement  e - L / 2 ,  

a(~) is the  s t ress  in e lement  e, c (~) is the  s t ra in  in e lement  e, and E (~) is the  Young 's  
modu lus  of e lement  e - E.  F rom the  express ion of 0(x) .  we can wri te  

= : (E5) 
Ox I (~) 
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A(1), E (1) A(2), E (2) 

, /  . . . .  , / 

, , J 
.I 

3]~----~ P3 

,,I ..... 02 ~,, 
L_ )_ __ ,.._L_ , /(2) r-" / (1 = -m- - - - - ' O  

- 0 3  

- X 

(a) Element characteristics 

1 ~ , ,  O1 2 ~ '  O2 

element [[] 

2 ~ - ' - ' ~  '02 ,, 3j'['~'---'D" O3 
element [ ~  

(b) Element degrees of freedom 

r'-l- i( e) 

. . . .  

ml (e) -----~ { ~ q~(X) 
node 1 

' - X  

A(e), E (e) 
/ . .  

element "e" 

_ J  
v 1 

node 2 

-~(e) ~0, I e) ;(e) tp, te) 
= [ 0 2 / '  = P2I 

(c) Displacements and loads for element e 

Figure 1.6. A Stepped Bar under Axial Load. 

and hence 

7r (~) = A(~)E(~) ~ ) 2  + ~ ) 2  _ 2~t(~)(I)(2~) dx 
2 l(~) 2 

o 

2l(~) 
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This  expression for rr (~) can be wr i t ten  in mat r ix  form as 

rr(~, ) _ 21 6(~)r [A.(~)]~(~) (Er) 

where } q)~) is the vector of nodal  d isplacements  of element  e 

- = { q ) l } f ~  {q)2} f ~  a n d ( I ) 2  ~3 

[K(e)] -- A(e)E(e) [ I -ii] 1(e) --1 is called the stiffness mat r ix  of e lement  e. 

Since there  are only concent ra ted  loads act ing at the nodes of the  bar (and no d is t r ibu ted  
load acts on the bar),  the work done by external  forces can be expressed as 

where Pi denotes  the force applied in the direct ion of the displacement  ~i  (i - 1, 2, 3). In 
this example,  P1 - react ion at fixed node. P2 - 0. and P3 - 1.0. 

If ex terna l  d is t r ibuted  loads act on the elements,  the corresponding element  load 
vectors,  /3(a~) , will be genera ted  for each element  and the individual  load vectors will be 
assembled to genera te  the global load vector of the svs tem due to d is t r ibu ted  load,/3d. This  
load vector is to be added to the global load vector due to concent ra ted  loads./5c, to gener- 
ate the to ta l  global nodal  load vector of the system. ~ - Pd + Pc. In the present  example,  
there  are no d is t r ibuted  loads on the element:  external  load acts only at one node and 
hence the global load vector t5 is taken to be same as the vector of concent ra ted  loads 

act ing at the  nodes of the system. 

If the  bar as a whole is in equi l ibr ium under  the loads i 6 = P2 �9 

m i n i m u m  potent ia l  energy gives P3 

OI 
= o. i =  1 , 2 , 3  (E9) 

cgq), 

the principle of 

This  equat ion  can be rewr i t ten  as 

0q~ 0(I) rr - I I p  . . 
Z ~ (['--1 

where the s u m m a t i o n  sign indicates the addi t ion of the s train energies (scalars) of the 
elements.  Equa t ion  (El0) call be wr i t ten  as 

2 

e = l  

where the  s u m m a t i o n  sign indicates tile assembly of vectors (not tile addi t ion of vectors) 
in which only the  e lements  corresponding to a par t icular  degree of freedom in different 
vectors are added. 
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(iv) Assembly of element stiffness matrices and element load vectors 

This step includes the assembly of element stiffness matrices [K (c)] and element load 
vectors/~(~) to obtain the overall or global equilibrium equations. Equation (Ell)  can be 
rewritten as 

[K]~ - fi - 0 (E~2) 

{Ol} 
where [K]~ is the assembled or global stiffness matrix _ }-~2e=l [K (c)], and ~ - 02 is the 

03 
vector of global displacements. For the data given, the element matrices would be 

A(1)E (1) [ 1 
[K(1)] - i ( ~  - 1  

(1) 1  110G[: 
A (2)E (2) [ 1 - 1  

[K(2)] - 1(2) - 1  1 

02  

- 1 0 6 [  2 

- 2  

02  :] 
02 

03  

-22] 02 
03 

(E13) 

(E14) 

Since the displacements of the left and right nodes of the first element are 01 and 02, the 
rows and columns of the stiffness matrix corresponding to these unknowns are identified 
as indicated in Eq. (E13). Similarly, the rows and columns of the stiffness matrix of the 
second element corresponding to its nodal unknowns O2 and 03 are also identified as 
indicated in Eq. (El4). 

The overall stiffness matrix of the bar can be obtained by assembling the two element 
stiffness matrices. Since there are three nodal displacement unknowns (~1, 02, and 03), 
the global stiffness matrix, [K], will be of order three. To obtain [h'], the elements of [K (1)] 

and [K (2)] corresponding to the unknowns 01, 02, and 03 are added as shown below: 

q)l 02 O3 

[ K ] = 1 0 6  - 4  4 + 2  - 02 

0 - 2  <1)3 [22 i] = 2 x 106 - 2  3 - 

0 - 1  

(E~)  

The overall or global load vector can be written as 

P -  P2 - 0 

P3 1 
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where P~ denotes the reaction at node 1. 
Eqs. (E12), become 

Thus, the overall equil ibrium equations,  

[2_2 !] {Ol} 
2 • 10  6 - - 2  3 - -  (1)2 - -  0 ( E 1 6 )  

0 - 1  ~3 1 

Note tha t  a sys temat ic  s tep-by-step finite element procedure  has been used to derive 
Eq. (E16). If a s tep-by-s tep procedure  is not followed, Eq. (E16) can be derived in a much 
simpler way, in this example,  as follows: 

The  potent ia l  energy of the s tepped bar. Eq. (E3). can be expressed using Eqs. (E6) 
and (E8) as 

I = 7t -(1) + 71 .(2) - I,~/p 

1 A(~)E (~) 1 A(2)E (2) 
/(1) ( (I)2 + (:I)22 -- 2(:I)1(I)2) + ~ l(2) ( (I)22 + (I:):~ -- 2(I)2(I)3) 

- -  P 1  ( I )1 - P2( I )2  - -  P 3 ~ 3  (E~7) 

Equat ions  (Eg) and (E17)yie ld  

OI A(~)E (~) 
= ((I)l -- (I)2) -- P1 - - 0  

0~1 1 (1) 

OI A(~)E (~) A(2)E (2) 
Oep2 l(~) ((P2 - ~1) + 1~2) 

OI A(2)E (2) 

O(I) 3 / (2)  

( E 1 8 )  

((I)2 - -  (I)3) - -  P 2  - -  0 ( E 1 9 )  

((P3 - (P2) - P3 - 0 (E2o) 

For the given data,  Eqs. (E18)-(E20) can be seen to reduce to Eq. (E~6). 

(v) Solution for displacements 

If we t ry  to solve Eq. (El6) for the unknowns (I)1. (I)2, and (I)3, we will not be able to do 
it since the mat r ix  

[K] = 2 x  10 6 - 2  3 - 

0 - 1  

is singular. This is because we have not incorpora ted  the known geometric  boundary  
condition, namely  (I)1 - 0. We can incorporate  this by set t ing (I)1 - 0 or by delet ing the 
row and column corresponding to (I)1 in Eq. (E16). The  final equil ibrium equat ions can be 
wri t ten  as 

[K ]~ -  P 

o r  

2x106131 11{~ o3 ,E21, 
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T h e  so lu t ion  of Eq.  (E21) gives 

(I)2 - - 0 . 2 5  X 10 -6  cm a n d  (I) 3 = 0.75 x 10 -6  c m  

(vi) Element strains and stresses 

Once  the  d i s p l a c e m e n t s  are  c o m p u t e d ,  t he  s t r a in s  in the  e l e m e n t s  can  be found  as 

s ___ 0 0  f o r  e l e m e n t  1 - (I)21) ( --  (I)(1)1 ~_~ (I)2 -- (I)1 " - - 0 . 2 5  X 10--7  
Ox I(1) 1(1) 

a n d  ~(2) = 0 0  for e l e m e n t  2 - {22) ( --  (I)12) ( -- -- (I)3 -- (I)2 = 0.50 X 10 -7  
OX 1( 2 ) -- l( 2 ) 

T h e  s t resses  in the  e l e m e n t s  are  g iven by  

a n d  

0 "(1) = J~(1)E(1) - - ( 2  X 107)(0.25 x 10 -7 )  - 0 . 5  N / c m  2 

(7 (2) = E(2)c  (2) - (2 x 107)(0.50 x 10 -7 )  - 1.0 N / c m  2 

E x a m p l e  1 .3  (Temperature distribution in a fin) F i n d  the  d i s t r i b u t i o n  of t e m p e r a t u r e  

in t h e  o n e - d i m e n s i o n a l  fin s h o w n  in F i g u r e  1.7(a) .  

T h e  d i f fe ren t ia l  e q u a t i o n  gove rn ing  the  s t e a d y - s t a t e  t e m p e r a t u r e  d i s t r i b u t i o n  T(z)  
a long  a u n i f o r m  fin is g iven by  [1.7] 

d 2 T  - h p ( T -  Too) - 0 k A ~  

d 2 T  hp ( T -  T~)  - 0 
or d z  2 kA 

w i t h  t he  b o u n d a r y  c o n d i t i o n  T ( z -  O) - To 

( E l )  

Surrounding temperature T= 

L T(x) ~ Area A, perimeter p 

To I 
t.. . . |  
i- L 1 

(a) 

element 1 element 2 

7-, r~ r~ 
L i (1) _l_ 1(2) _11 
i -  T 1 

(b) 

Figure 1.7. A One-Dimensional Fin. 
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where h is the convection heat transfer coefficient, p is the perimeter ,  k is the thermal  
conductivity, A is the cross-sectional area, T~  is the surrounding tempera ture ,  and To is 
the t empera tu re  at the root of the fin. The derivation of Eq. (El)  is similar to tha t  of 
Eq. (1.4) except tha t  convection term is also included in the derivation of Eq. (El)  along 
with the assumption of 0 = cgT/Ot = 0. The  problem sta ted in Eq. (El)  is equivalent 
to [1.11] 

L l 1 /  [(dT) 2 hp 
Minimize I -  ~ ~ + ~ ( T  2 - 2 T T ~ )  dx 

x - ' 0  

with the boundary  condition T ( z -  0) = To. 

(E~) 

Assume the following data: h - 10 W / c m 2 - ~  k - 70 W / c m - ~  T~. = 40~ To = 
140~ and L = 5 cm, and the cross section of fin is circular with a radius of 1 cm. 

S o l u t i o n  

Note: Since the present problem is a heat transfer problem, the terms used in the case of 
solid mechanics problems, such as solid body. displacement,  strain, stiffness matrix,  load 
vector, and equilibrium equations,  have to be replaced by terms such as body, tempera-  
ture, gradient of tempera ture ,  characteristic matrix,  characteristic vector, and governing 
equations, respectively. 

(i) Idealization 

Let the fin be idealized into two finite element.s as shown in Figure 1.7(b). If the tem- 
peratures  of the nodes are taken as the unknowns, there will be three nodal t empera tu re  
unknowns, namely T1, 7'2, and T3, in the problem. 

(ii) Interpolation (temperature distribution) model 

In each element e (e = 1.2). the t empera tu re  (T) is assumed to vary linearly as 

where a and b are constants.  If the nodal t empera tures  T~ ~) (T at x - 0) and T2 (e) (T at 
z = l (~)) of element e are taken as unknowns, the constants  a and b can be expressed as 

a = T1 (~) and b- (T(2 ~)- T~ ~))/l (e), where l (e) is the length of element e. Thus,  

l(~) (E4) 

(iii) Element characteristic matrices and vectors 

The element characterist ic matrices and vectors can be identified by expressing the func- 
t ional I in matr ix  form. When  the integral in I is evaluated over the length of element e, 
we obtain 

i ( e ) _  1 dT 

x = 0  

] + ~-d(T ~ - 2 T ~ T )  
dx (E~) 
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Substitution of Eq. (E4) into (Es) leads to 

z--0 

2hpTo~ { T ~ ) +  (T2(~)- T ~ ) ) / - ~  dz 
kA 

x}2 

Equation (E6) can be expressed, after evaluating the integral, in matrix notation as 

where 

and 

} f(~) -- Tg(c ) is the vector of nodal temperatures of 

{T1} fo re - -1  and {T2} f o r e - 2  element e = T2 T3 ' 

[K (~)] is the characteristic matrix of element e 

1 [ 1 -11 hpl (~) [21:1 
= l(~) -1 1 + 6kA 

p(~) is the characteristic vector of element e 

- { P 1 }  f O r e = l P 2  and {P2} f o r e = 2 p 3  

-- hpT~l(~)2kA { 11 } 

(E8) 

(iv) Assembly of element matrices and vectors and derivation of governing equations 

As stated in Eq. (E2), the nodal temperatures can be determined by minimizing the 
functional I. The conditions for the minimum of I are given by 

OI ~=1 OI (~) 
OT~ = OT~ = OT~ = 0, i = 1, 2, 3 (El0) 

e=l 

where I has been replaced by the sum of elemental contributions, I (~). Equation (El0) 
can also be stated as 

2([ ] ) 
e=l ~r(e) = Ee__l K(e) ~(e) __ p(e) __ [ K ] ~ -  ~ = 0 (El l )  
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where [K],,~ --X2=I[K (e)] is the assembled characteristic matrix, /5 -- E~=2 1/5(~) is the 
assembled characteristic vector, and T is the assembled or overall nodal temperature  

{} T1 

v e c t o r -  7'2 . Equation (Ell)  gives the governing matrix equations as 

T3 
[~']~- ~ (E12) 

From the given data  we can obtain 

111 [ K ( 1 ) ]  - -  - 1  

T1 
= 0.6382 

-0.2809 

i] 10x2 x25 
+ 6 x  7 0 x r r  

T2 
-0.2809 r l  

0.6382 7"2 
(El3) 

[K(2)] _ 

T2 T3 
0.6382 -0.2809 

-0.2809 0.6382 
T2 (El4) 

T3 

p(1) = 10 • 27r • 40 x 2.5 1 - 14.29 (E15) 
2 x  70x  7r 1 1 T2 

/3(2)_ 14.29 1 T3 (E16) 

where the nodal unknowns associated with each row and column of the element matrices 
and vectors were also indicated in Eqs. (E13)-(E16). The overall characteristic matrix of 
the fin can be obtained by adding the elements of [K (1)] and [K (2)] corresponding to the 
unknowns T1, 7'2, and T3" 

T1 T2 T3 
0.6382 -0.2809 0 ] T1 

[K] - -0.2809 (0.6382 + 0.6382) -0.2809 T2 

0 -0.2809 0.6382 T3 

(E17) 

Similarly, the overall characteristic vector of the fin can be obtained as 

14.29 } T1 

= (14.29 + 14.29) 7'2 

14.29 T3 

(E18) 

Thus, the governing finite element equation of the fin, Eq. (E12), becomes 

[ 06382 02809 0 {14 
-0.2809 1.2764 -0.2809 T2 - 28 

0 -0.2809 0.6382 T3 14 

29} 
58 
29 

(E19) 
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(v) Solution for nodal temperatures 

Equat ion (E19) has to be solved after applying the boundary condition, namely, 
T (at node 1) = T1 = To = 140~ For this, the first equation of (El9) is replaced by 
T1 = To = 140 and the remaining two equations are writ ten in scalar form as 

-0.2809T1 + 1 .2764T2-  0.2809T3 = 28.58 

-0.2809T2 + 0.6382T3 = 14.29 

o r  

1.2764T2 - 0.2809T3 = 28.58 + 0.2809 x 140 - 67.906 / 

f -0.280972 + 0.6382T3 = 14.29 

The solution of Eq. (E20) gives the nodal tempera tures  as 

(E2o) 

T2 = 64.39 o C and T3 = 50.76 o C. 

E x a m p l e  1.4 ( Inv isc id  f luid f low in a tube) Find the velocity distr ibution of an invis- 
cid fluid flowing through the tube shown in Figure 1.8(a). The differential equation 
governing the velocity distr ibution u(x )  is given by Eq. (1. 12) with the boundary  condition 
u ( x  = O) = uo. This problem is equivalent to 

L / 
Minimize I = ~ pA -~x . d x  

x : 0  

with the boundary  condition u ( x -  O) = uo 

(E,) 

Assume the area of cross section of the tube as A ( x )  = Ao �9 e - (x /L)  

Solut ion  

Note: In this case the terminology of solid mechanics, such as solid body, displacement, 
stiffness matrix, load vector, and equilibrium equations, has to be replaced by the terms 
continuum, potential  function, characteristic matrix, characteristic vector, and governing 
equations. 

area A 1 
area = Ao ~ (x) = A o ~ (X/L) [ ~ d / ~ ~ ~ ~  A 2 are? A3 

u o ~  , , - ]  % 

_[ 01 element 1 element 2 

' 7 ~_ /(1) T ~ / ( 2 ) _ . ~  

(a) (b) 

Figure 1.8. A One-Dimensional Tube of Varying Cross Section. 
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(i) Idealization 

Divide the cont inuum into two finite elements  as shown in Figure 1.8(b). If the values of 
the potent ia l  function at the various nodes are taken as the unknowns,  there  will be three 
quanti t ies,  namely  ~1, (I)2, and ~3. to be de te rmined  in the problem. 

(ii) Interpolation (potential function) model 

The potent ia l  function, O(x).  is assumed to vary linearly within an element  e (e = 1,2) as 

o(x) = a + bx (E2) 

where the constants  a and b can be evaluated using the nodal  condit ions O(x = O) = 'I'] ~) 

and r  = 1 (~)) = (I) (~) to obtain 

1 i(~) (E~) 

where 1 (~) is the length of element e. 

(iii) Element characteristic matrices 

The functional I corresponding to element e can be expressed as 

l(e) Ice) 

I<'>-'f.A('r )' ' /  _ I dx 
2 -~x d x -  -~ p A  i(~) 

x=0 x=0 

2 
( E 4 )  

where 

and 

[K (r is the characteris t ic  mat r ix  of element e 

1 (~) - 1  

A (~) is the cross-sectional area of element e (which can be taken as 

(A1 + A2)/2  for e = 1 and (,42 + ,43)/2 for e = 2 

for simplicity),  

~(e) is the vector of nodal unknowns of element  e 

(I~2 (c) (D 2 (I)3 
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(iv) Governing equat ions  

The  overall equat ions  can be wr i t t en  as 

pA (1) 

1(1) 
pA (1) ( p A  tl) 

/(1) l(1) 

pA (1) 
0 1(1) 

PA(2) ) PA(2) 
+ 1(2) i(2) 

pA (2) pA (2) 
/(2) 1(9~) 

{Ol} {QI:  Al o} 
1'2 = Q2 = 0  

493 Q3 -- pA3u3 
(EB) 

where Qi is the  mass flow rate  across section i (i = 1 ,2 ,3)  and is nonzero when fluid 
is e i ther  added to or sub t rac ted  from the tube  with Q1 = -pAl t t l  (negative since ul  is 
opposi te  to the ou tward  normal  to section 1), Q2 = 0, and Q3 = pA3u3. Since ul  = uo is 
given, Q1 is known, whereas Q3 is unknown.  

(v) Solution of governing equations 

In the  th i rd  equat ion  of (E6), bo th  493 and Q3 are unknowns  and thus  the  given sys tem 
of equat ions  cannot  be solved. Hence, we set 493 = 0 as a reference value and t ry  to find 
the  values of 491 and 492 with  respect  to this value. The  first two equat ions  of (EB) can be 
expressed in scalar form as 

pA (1) pA (1) 
/(1------~ 491 /(1) 492 - Q1 - -pA luo  (E~) 

and p A  (1) (pA(1) pA(2) I p A  (2) 
-1(1----5 - ~ 1 +  1(1) + z(2) - ~ - t ( 2 - - - 5  - ~ 3 - ~  (Es) 

By subs t i tu t ing  A (1) ~ (A1 -}- A2)/2 - 0.8032Ao, A (2) ~ (A2 + A3) /2  = 0.4872Ao, and 
/(1) _ _  / ( 2 )  = L/2, Eqs. (ET) and (Es) can be wr i t t en  as 

0.8032491 - 0.8032492 = - u o L / 2  (Eg) 

and -0.8032491 + 1.2904492 = 0 (Elo) 

The  solut ion of Eqs. (E9) and ( E l o ) i s  given by 

491 = - 1 . 6 5 0  uoL and 492 - - 1 . 0 2 7  uoL 

(vi) C o m p u t a t i o n  of  veloci t ies  of  the  fluid 

The  velocities of the  fluid in e lements  1 and 2 can be found as 

u in e lement  1 = u (1) = __d0 (element  1) 
dz  

(I) 2 -- 491 
l(1) 

= 1.246uo 
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and u in element 2 - u (2) = dO (element 2) 
dx 

(I)  3 - -  ( I )2  
= = 2.054uo 

I(2) 

These velocities will be constant  along the elements  in view of the linear relat ionship 
assumed for O(x) within each element.  The  velocity of the fluid at node 2 can be 
approx imated  as 

u2 -- (u (1/ + u ( 2 1 ) / 2 -  1.660u0. 

The third equat ion of (E6) can be wri t ten  as 

pA (2) 
pA~2) (I)2 + ~3 -- Q3 

- l(2-------y i12) 

or p(0.4872A0) 
( - ~ 2  + ~3)  = Q3 (L/2) 

or Q3 -- pAouo. 

This shows tha t  the mass flow rate  is the same at nodes 1 and 3. which proves the principle 
of conservation of mass. 

1.6 COMPARISON OF FINITE ELEMENT METHOD WITH OTHER METHODS 
OF ANALYSISt 

The common analysis methods  available for the solution of a general field problem 
(e.g., elasticity, fluid flow, and heat  transfer  problems) can be classified as follows: 

Methods  of analysis (solution of differential equat ions)  

Analyt ical  methods  

I I I 
Exact  me thods  Approx imate  Numerical  
(e.g., separa t ion methods  (e.g., solution of 
of variables and Rayle igh-Ri tz  differential 
Laplace t rans-  and Galerkin equat ions  
formation methods)  methods)  t 

I 
Numerical  
integrat ion 

Numerical  me thods  

i 
Finite 
differences 

Fini te  or 
discrete 
element  
me thod  

The  finite element  me thod  will be compared  with some of the other  analysis me thods  in 
this section by considering the beam vibrat ion problem as an example.  

tThis section may be omitted without loss of continuity in the text material. 
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p.dx 

Distributed load, p(x) 

- - - - - ~  X 

! 

! 

M+dM 

F + d F  

~'-dx "* 

Figure 1.9. Free Body Diagram of an Element of Beam. 

1.6.1 Derivation of the Equation of Motion for the Vibration of a Beam [1.9] 
By considering the dynamic equilibrium of an element of the beam shown in Figure 1.9, 
we have 

F - (F  + dF)  - p d x  = 0 (vertical force equilibrium) 

or d F  
dx = P  (1.17) 

where F and M denote the shear force and bending moment at a distance x, d F  and d M  
indicate their increments over an elemental distance dx, p represents the external force 
acting on the beam per unit length, and 

M - (M + d M )  + F d x  - p d x - ~  - 0 (moment equilibrium about point A) 

which can be written, after neglecting the term involving (dx) 2, as 

d M  

dx 
= F  (1.18) 

Combining Eqs. (1.17) and (1.18)we obtain 

d2M 
dx 2 

= p ( x )  (1.19) 

The curvature of the deflected center line of the beam, w ( x ) ,  is given by 

1 = _ ( d 2 w / d z  2) (1.20) 
R [1 + ( d w / d x ) 2 ]  3/2 
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For small deflections, Eq. (1.20) can be approximated as 

1 d 2 lt' 

R -- dx"- 
(1.21) 

From strength of materials, we know the relation 

1 ~I 
-R = E .  I ( x )  (1.22) 

where R is the radius of curvature, I is the moment of inertia of the cross section of the 
beam, and E is the Young's modulus of material.  By combining Eqs. (1.19), (1.21), and 
(1.22), we have 

and 

d 2 tt, 
M ( z )  - - dx---- 7 E I ( x )  (1.23) 

d 2 [ d 2u' 
p ( x ) -  ~ El(x)dx---5- " (1.24) 

According to D 'Alember t ' s  rule. for free vibrations, we have 

d 2 l b  , 

p ( x )  = inertia force - - m  dt-- 7- (1.25) 

where rn is the mass of beam per unit length. If the cross section of the beam is constant 
throughout  its length, we have the final beam vibration equation 

0 4 it' 02 W 
EI-==o~ + ' ~ - ~  - o  (a.26) 

Equation (1.26) has to be solved for any given beam by satisfying the associated boundary  
conditions. For example, if we consider a fixed-fixed beam. the boundary conditions to be 
satisfied are 

Ow 
Oz = 0 

at x - - 0  and x - L  (1.27) 

where L is the length of the beam. 

1.6.2 Exact Analytical Solution (Separation of Variables Technique) 
For free vibrations, we assume harmonic motion and hence 

w(~. t) - ~ ( ~ ) .  ~'"'  (1.28) 
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where W ( x )  is purely a function of x, and aa is the circular natural frequency of vibration. 
Substi tuting Eq. (1.28) into Eq. (1.26) we get 

d4W 

dx 4 
- AW - 0 (1.29) 

TytCd 2 
where A - _- 34 (1.30) 

E1 

The general solution of Eq. (1.29) can be written as 

W ( x )  - C1 sin fix + C2 cos/3x + Ca sinh 3x + C4 cosh 3x (1.31) 

where C1-C4 are constants to be determined from the boundary conditions. In view of 
Eq. (1.28), the boundary conditions for a fixed-fixed beam can be written as 

w ( ~  - 0) = w ( ~  = L) - O} 

d W ( x _ O )  = dlV 
dx ~ ( : r  = L) = 0 

(1.32) 

If we substi tute Eq. (1.31) into Eqs. (1.32), we get four linear homogeneous equations in 
the unknowns C1-C4. For a nontrivial solution, the determinant of the coefficient matrix 
must be zero. This gives the condition [1.9] 

cos 3L cosh 3L = 1 (1.33) 

Equation (1.33) is called the frequency equation and there will be infinite number of 
solutions to it. Let us call the n th  solution of Eq. (1.aa) as & L. If we use this solution in 
Eqs. (1.30) and (1.31) we obtain the natural frequencies as 

2 /34 E I  
~c~ = (1.34) 

TYt 

where f31L-  4.73, ~2L = 7.85,/33L - 11.00, and so on. and mode shapes as 

{ (COS ~ r , L -  cosh~ ,~L) (s inh  3 ,~x -  sin 3,~x)} 
W,~(x) = Bn cosh/3 ,~x-cos /3 ,~x-  s i n J , ~ L - s i n h 3 ,  L 

(1.35) 

where Bn is a constant. Finally, the solution of w is given by 

~ . ( x , t )  = w,~(~).  ~'"o', r~ -- 1, 2 . . . .  (1.36) 



30 OVERVIEW OF FINITE ELEMENT METHOD 

1.6.3 Approximate Analytical Solution (Rayleigh's Method) 
To obtain an approximate solution to the first natural frequency and the mode shape, the 
Rayleigh's method can be used. In this method we equate the maximum kinetic energy 
during motion to the maximum potential energy. For a beam. the potential energy rr is 
given by [1.9] 

L 

l / E i ( O 2 w )  2 

o 

dx (1.37) 

and the kinetic energy T by 

L 
1 /  (Ow) 2 

T = ~ re(x) --~ 
o 

dx (1.38) 

By assuming harmonic variation of w(x. t) as 

~ ( x .  t) - ~ ' ( x ) ~ o ~ , t .  (1.39) 

the maximum values of rr and T can be found as 

L 

( T r ) m a ' x  - -  2 

o 

and ( Z )  m a x  - -  

L 

w22 f mi4"2 dx 

2 

dx (1.40) 

(1.41) 

By equation (71")max t o  (T) . . . . .  we obtain 

2 

L 

J" EI(d2I,{'/dx2) 2 dx 
o 

L 

f rn(x)II'2 dx 
o 

(1.42) 

To find the value of w 2 from Eq. (1.42). we assume a certain deflection or mode shape W(x) 
known as admissible function that  satisfies the geometric boundary conditions but not 
necessarily the governing equilibrium equation, Eq. (1.29), and substi tute it in Eq. (1.42). 
Let us take 

2rrx)  
It '(x) -- 1 - cos ~ (1.43) 

This satisfies the boundary conditions stated in Eq. (1.32) and not the equation of motion, 
Eq. (1.29). By substituting Eq. (1.43) into Eq. (1.42), we obtain the approximate value of 



COMPARISON OF FINITE ELEMENT METHOD 31 

the first natural frequency (5:1) as 

5:1 __ ~22"792/~/EI (1.44) 
L 2 v rn 

which can be seen to be 1.87% greater than the exact value of 

021 --- 
22"3729 v / E I  L2 

1.6.4 Approximate Analytical Solution (Rayleigh-Ritz Method) 
If we want many natural  frequencies, we have to substitute a solution, made up of a series 
of admissible functions that  satisfy the forced boundary conditions, in Eq. (1.42). For 
example, if we want n frequencies, we take 

W(z)  = Clfl (x) + C2f2(z) +. . .  + Cnf,~ (x) (1.45) 

where C1, C2, . . . ,  Cn are constants and fl ,  f 2 , . . . ,  f~ are admissible functions. 

If we substi tute Eq. (1.45) into Eq. (1.42), we obtain 5:2 as a function of C~, C2,..., C,~. 
Since the actual frequency w will be smaller than 5: [1.9], we want to choose C1, C 2 , . . . ,  C~ 
such that  they make 5: a minimum. For this, we set 

0(�9 = O(&2) . . . . .  0(~ = 0 (1.46) 
OC1 0C2 OCT, 

This gives a set of n equations in the n unknowns C1, C 2 , . . . ,  C~, and hence we will be 
able to solve them. A typical equation in Eq. (1.46) is given by 

L L 

0 f E i ( d 2 W ) 2  0 f W 2 OCj ~ dx - w~ -~3 re(x) dx = 0 

O O 

(1.47) 

As an example, consider the following two-term solution for a fixed-fixed beam" 

w(x)-c~ 1 - r  +c~ l - c o s -  L- (1.48) 

Substitution of Eq. (1.48) into Eq. (1.42) gives 

87r4 EI 
- 2  L 3 

~ ( C ~  + 16C~) 

T F t L  
(3C12 + 3C22 + 4C1 C2) 

2 

(1.49) 

The conditions for the minimum of &2, namely, 

a(~ 2) 0(~ ~) 
0C1 OC2 

= 0  
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lead to the following algebraic eigenvalue problem: 

16rr4EI 
L 3 

,.J" lll L 
16 C2 

The solution of Eq. (1.50) is given bv 

(1.50) 

{10 / _ 
~'1 --  L---- ~ 1H C2 0 . 5 7 5 0  

and ~'2 - L---5-- m C2 -1.4488 (1.51) 

1.6.5 Approximate Analytical Solution (Galerkin Method) 
To find the approximate solution of Eq. (1.29) with the boundary  conditions s tated in 
Eq. (1.32), using the Galerkin method, we assume the solution to be of the form 

I I ' (x) - C t f , ( x )  -4- C2f2(.r) + " "  + C n f n ( x )  (1.52) 

where C1, C2 . . . . .  Cn are constants and f l .  f2 . . . . .  f ,  are functions tha t  satisfy all the 
specified boundary  conditions. Since the solution assumed. Eq. (1.52), is not an exact one, 
it will not satisfy Eq. (1.29). and we will obtain, upon subst i tut ion into the left-hand side 
of the equation, a quant i ty  different from zero (known as the residual. R). The values of 
the constants C1, C2 . . . . .  C,, are obtained by setting the integral of the residual multiplied 
by each of the functions f~ over the length of the beam equal to zero: tha t  is, 

L 

f i  R dx  = O, 

x--0 

i =  1.2 . . . . .  n (1.53) 

Equation (1.53) represents a system of linear homogeneous equations (since the problem 
is an eigenvalue problem) in the unknowns C~, C2 . . . . .  C,,. These equations can be solved 
to find the natural  frequencies and mode shapes of the problem. For illustration, let us 
consider a two-term solution as 

II ' (x) = C l f l  (x) 4- C2f2 (x )  (1.54) 

27Ca r 
where f l (x )  - cos --~ 1 (1.55) 

4n'x 
and f 2 (x )  - cos ~ 1 (1.56) 

Subst i tut ion of Eq. (1.54) into Eq. (1.29) gives the residue R as 

R = C1 T -- 3 4 COS T + Ca + C2 --~ cos  T + C2 (1.57) 
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Thus,  the  appl icat ion of Eq. (1.53) leads to 

and 

L 
- - ~  - 1 C1 L __ /~4 27rx ~4 COS COS T + C1 

x--o {(~)4 } ] 
-~- C2 _ ~4 4~X COS T @ C2~4 dx - 0 

L f (  47rz )[ {( ) 4 } --~ 1 C1 ~ __ /3 4 27I'X /34 cos - - cos-- i f -  + C1 
x--0 

(1.58) 

{(4~)4 ~4} 4~x 1 + C2 ~ c o s - - ~ + C 2 3 4  dz=O 

[ 2 { (  ) 4 } ) 271" _ ~4 /~4 or C1 ~ _/~4 _ C2 - 0 (1.60) 

(1.59) 

[1{(/4 } ] 
and - C1/~ 4 -~- C2 4_~ _ ~4 _/~4 - 0 (1.61) 

For a nontr ivial  solut ion of Eqs. (1.60) and (1.61), the  de t e rminan t  of the  coefficient ma t r ix  
of C1 and C2 must  be zero. This  gives 

- 3 4  

_34  {()4 } 
1 471" __ /34 __ ~4 

= 0  

or (SL) 8 - 15900(~L) 4 + 7771000 = 0 (1.62) 

The  solut ion of Eq. (1.62) is 

3L = 4.741 or 11.140. 

Thus,  the  first two na tu ra l  frequencies of the beam are given by 

22-48 I E I  124.1 v / E I  
- -  ~ ~ ,  w2 - ( 1 . 6 3 )  wl L 2 m L 2 

The  eigenvectors corresponding to wx and w2 can be obta ined  by solving Eq. (1.60) or 
(1.61) with  the appropr ia te  value of/3. The  results  are 

{cl} {23.0} {el} {_0.69} 
�9 -- For w2 " - (1.64) For Wl C2 1.0 ' C2 1.00 
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1.6.6 Finite Difference Method of Numerical Solution 
The main idea in the finite difference method is to use approximations to derivatives. 
We will derive finite difference approximations (similar to central difference method) to 
various order derivatives below. Let f = f (x)  be any given function. The Taylor's series 
expansion of f around any point x gives us 

df  
f (x + Ax) ~ f (x) + -~x 

d f  f (x - Ax) ~ f (x) - -~z 

d2f Ax+ 

d2f Ax+ 

(A2:~) 2 d3f 

(/Xx) 2 daf 
2! dx 3 

x 

(Az) 3 

3! 

d4f 
+ h--~ 

( A x )  4 

4~ 
x 

(1.65) 

d4f[ (AX) 4 
+ d--~z4 x 4! (1.66) 

By taking two terms only and subtracting Eq. (1.66) from (1.65), we get 

o r  

f ( x  + Ax) - f ( x -  Ax) - (~ -~Ax)  - ( -dfAx)~z 

df  
dx 

f (x + z._Nx) - f ( x -  ~x)  
2Ax 

x 

(1.67) 

Take terms up to second derivative and add Eqs. (1.65) and (1.66) to obtain 

o r  

i f ( x + A x ) + f ( x - A x ) - - 2 f ( x ) +  ~ (Ax) 2 
x 

d2f 
dx 2 

f (x + A m ) -  2 f ( x ) +  f (x - ZXx) 
(Ax) 2 

(~.68) 

Using (d2f/dx2)l x in place of f(x),  Eq. (1.68) can be expressed as 

d4f 
dx 4 

d2f 
dx 2 

x +  / X x  

d: f  
-2-~x2 

d : f  

x 

(Ax) 2 
32 

x--~_~x (1.69) 

By substituting Eq. (1.68) on the right-hand side of Eq. (1.69), we obtain 

d4f 
dx 4 

_ [ { f ( x + 2 A x ) - 2 f ( x + A x ) + f ( x ) } ( _ ~ z )  ~ 

- 2 {  f (x + Ax) - 2 f (x! + f (x - Ax) 

+ { f ( x ) -  2 f ( x -  Ax) + f ( x -  2Ax) 
(Ax) 2 J 

(Ax) (1.70) 
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L _]_ L .3_. L ~L L ~L L d 
3 T -3" T -3- .... T Y" T ~ " "  "1 

-1 :J0 1 2 ~3 4 
_ A _ . . . . _  _ . .  �9 

w_~ Wo w~ w~ w~ w,, 

Figure 1.10. Introduction of Hypothetical Nodes in Finite Differences Method of Solution. 

Equation (1.70) can be simplified to obtain the formula for the fourth derivative as 

dnf 
dx 4 

1 
= (,[-~)"AX~'4 [ f ( x  + 2~x) + f ( x  - 2Ax) + 6f(x) 

x 

- 4 f ( x  + A x ) -  4 f ( x -  Ax)] (1.71) 

To find the approximate solution of 

d4W 
dx 4 - 3 4 W  -- 0 (1.72) 

we approximate this equation around points 1 and 2 in Figure 1.10 by finite differences. For 
this, we need to imagine two hypothetical node points -1 and 4 as shown in Figure 1.10. 
We obtain, by approximating Eq. (1.72) at points 1 and 2, 

where 

( W - 1 -  4W0 + 6W1- 4W2 + W3)-~4W1 = 0 ~  (1.73) 

(Wo - 4W1 + 6W2 - 4W3 + W4) -- ~ 4 W 2  -" 0J 
( L )  4 

j34 = /34 (1.74) 

The boundary conditions are 

W0 - W3 - 0 / 

dW = 0 at nodes 0 and 3, or W_I - IVI and W2 - W4 
dx 

(:.75) 

By substituting Eqs. (1.75), Eqs. (1.73) reduce to 

7W1 - 4 W 2  - 3 4 .  W1 

- 4 W 1  + 7W2 - ;~4. ~ 

or [_~ -47] {Ww~ } - - ~  [10 01] {;12} (1.76) 
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By solving this s tandard eigenvalue problem, Eq. (1.76). we can obtain the approximate 
first two natural frequencies and mode shapes of the given beam as 

j {1) 15.59 E I  with = 
w l -  ~5 ~/--~ I t )  1 

29.85 /El with = (1.77) 
and , : 2 -  L2 ~ / - ~  l>t'~ - 1  

The accuracy of the solution can be improved by taking more node points in the beam. 

1.6.7 Finite Element Method of Numerical Solution (Displacement Method) 
In the finite element method, we divide the given structure (beam) into several elements 
and assume a suitable solution within each of the elements. From this we formulate the nec- 
essary equations from which the approximate solution can be obtained easily. Figure 1.11 
shows the beam divided into two elements of equal length. Within each element, let us 
assume a solution of the type* 

1 w ( x )  - l $ . ~ )  . ~(2x  3 _ 3 l x 2  + / 3 )  + B,~) ~1 (31x2 _ 2x 3) 

+ 14~e) 1 12 i$~)  1 :c a g ( x  3 - 2 l : c 2 +  x ) +  . f i (  _/:c2) (1.78) 

where W(~) to W4 (~) denote the displacements at the ends of the element e (to be found), 
and 1 indicates the length of the element. By writing the expressions for strain and kinetic 

w(x) 

t_ 
wl 

~W2 

W3 

" w4 

~x 1{ 

I_ 

ws 

" wo 

' 2 "  -, t'3 

L 4 

WI( 1 ) 

l ' ~ W 2  (1) 

Element []] 
Global node , 
number 

Local node 1 
number I ~ ~  I= L 

�9 - - - - - .~  X 

W3 (~) W~ 2) 

}2 2~--- 
Element 12] 

, , 

2 1 L 
L. /=2 - !  l ' - - -  

�9 - - - - - - - ~  X 

Figure 1.11. Finite Element Idealization of the Beam. 

I/V(32) 

l m 2: 

2 
L I  
- 1  

* Equation (1.78) implies that the interpolation model is a cubic equation. 
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energies of the  e lements  as 

l 

1 7r(~) - -~ / EI  ( 02 w ) 

0 

1 I~(~)T [K(~)]I~(~) d x -  (1.79) 

l 11 (o.)' 1 i,~ (~) r [,I (,) ] ,~r (~.) (1.80) and  T (~) - -~ pA --~ dx - -~ 
0 

where  p is the  mass  density, A is the  cross-sect ional  area  of the  e lement ,  and a dot  over 
l ~  (e) represents  t ime  der ivat ive  of 1s (~). One can obta in ,  after subs t i t u t i ng  Eq. (1.78) into 
Eqs. (1.79) and (1.80), the  stiffness ma t r ix  [K (~)] and mass  ma t r ix  [M (~)] as 

[K(~)] = - Y -  

[M(e)] = pAl 

31 2/2 -31 12 

- 6  -31  6 
31 12 -31 

156 22l 54 -13l ' ]  
/ 

22l 4l 2 13l - 3 1 2 |  
/ 

54 13l 156 - 2 2 l |  
[ 

- 1 3 l  - 3 l  2 - 2 2 /  412J 

(1.81) 

(1.82) 

F igure  1.11 shows t h a t  

and 

~ 7 ( 1 )  = vector  of unknown  d i sp lacements  for e lement  1 

W }  1) W 1  

W (1) _ W2 

W ( 1 )  W 3  

W ( 1 )  W 4  

I~7 (e) = vector  of unknown d isp lacements  for e lement  2 

W ( 2 )  W 3  

W2(2) _ W4 

W (2) W5 

W4 (2) W6 

By assembl ing the  stiffness mat r ices  of the  two e lements  (detai ls  are given in C h a p t e r  6), 
one obta ins  the  assembled  stiffness ma t r ix  as 

w ,  = w ~ l )  w ,  _- w~  1) , ~ ,  = w J  1 ~ _- . . ~ ' ~  ~ = , , 4  (1) ; ,,.~2~ ~ = ~ 2 )  ,,'6 = - '4  (2~ 
6 31 - 6  3t 0 0 w ~ = w } ~  

3l 2/2 --3l 12 0 0 IV 2 = tV (1} 
2EZ (2) 

[K]~ ----- ~ l  3 --6 --31 6 + 6  --3l + 3 /  --6 3l IA" 3 ----- ~V3(1) = VII I 

3t l 2 -3z+3z 2t2+2t 2 -3, z 2 w4 = w4(1) = w2 (2) 
0 0 --6 -- 3l 6 -- 31 IA; 5 = IV(2) 

0 0 3l t 2 -3z 2t2 w6 =w4 (2~ 
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After deleting the rows and columns corresponding to the degrees of freedom ~ l ,  W2, 
Ws, and W6 (since W1 - I4~ - IV5 - W6 = 0 are the boundary conditions), we obtain 
the stiffness matrix [K] of the beam as 

2EI [K]- -V- 102 0} 0] 
412 = L a 0 L 2 (1.83) 

Similarly, the assembled mass matrix is given bv 

iArl __-- i t . } l )  i t .  2 = 14:2(1) i , .  3 = i f . ( 1 )  = 14.}2) ~t. 4 = I i . ( 1 )  = i t . ; 2 )  14"5 = t i '3(2) 14"6 = 14"4 (2 )  

156  22/  5 4  - 1 3 l  0 ] 

22/  4 /2  13/ - 3 / 2  0 / [A/] p A l  

-- 13/ - - 3 / 2  - 2 2 / +  22/  4l 2 + 4/2  13/ - - 3 / 2  

0 0 54 13/ 156 -22l| 
! 

0 0 - 13/ - 3 l  2 - 2 2 /  4 / 2 J  

14"1 = t~'} 1) 

14"2 = W2( 1 ) 

W 3  = I,V(31) = I4"~ 2) 

la,  4 = l&,(1)  = 14~(2) 

14"5 = I4"(2)  

i4. 6 = 14.(2)  

By reducing this matrix (by deleting the rows and columns corresponding to fixed degrees 
of freedom), we obtain the matrix [kI] of the beam as 

4-~ 0 8l 2 - 840-- 2L 2 (1.84) 

Once the stiffness and mass matrices of the complete beam are available, we formulate 
the eigenvalue problem as 

[K]I~" - )~[l'tI]t~ ~ (1.85) 

[" ]jW3~ is the eigenvector and • is the eigenvalue. The solution of Eq. (1.85) where I/P = 
W4 

k J 

gives us two natural frequencies and the corresponding mode shapes of the beam as 

and 

22.7 I E I  
~-"1 - -  - - ~  m 

82.O V/E1 
~ ' 2  - -  - - ~  rr{  

with 

{0} 
with tV4 - 1 (1.86) 

1.6.8 Stress Analysis of Beams Using Finite Element Method 
The displacement model of Eq. (1.78) and the resulting element stiffness matrix of the 
beam, given by Eq. (1.81), can be used for the stress analysis of beams subjected to loads. 
The procedure is illustrated with the following example. 

Example 1.5 

A beam of uniform rectangular cross section with width 1 cm and depth 2 cm and length 
60 cm is subjected to a vertical concentrated load of 1000 N as shown in Figure 1.12(a). 
If the beam is fixed at both the ends. find the stresses in the beam using a two-element 
idealization. Assume the Young's modulus of the beam as E = 10 r N/cm 2. 



COMPARISON OF FINITE ELEMENT METHOD 39 

S o l u t i o n  By assuming the two fixed ends of the beam as the end nodes and introducing 
an additional node at the point of application of the load, the beam can be replaced by 
a two-element idealization as shown in Figures 1.12(a) and 1.12(b). The global degrees of 
freedom of the beam are indicated in Figure 1.12(a) so that  the vector of displacement 
degrees of freedom of the system (beam) is given by 

Wl 

W -  W4 

w~ 

(El) 

The element nodal degrees of freedom can be identified from Fig. 1.12(b) as 

w~ ~) w~ (E~) 

W4 (1) W4 

w~ ~ ) -- w4 (E3) 
W(2) - W~ 2) = Ws 

W~ 2 ) W6 

The element stiffness matrices are given by Eq. (1.81): 

2E(~/I(~)F6/31~ 31 (~/ - 6  3z  )lW} 
6 

(E4) 

where E (e) is the Young's modulus, I (e) is the area moment  of inertia of the cross section, 
and 1 (~) is the length of element e. Using E (1) - E (2) - 107 N/cm 2, I (1) - I (2) = 
(1)(23)//12 = 2//3 cm 4, /(1) = 20 cm, and 1 (2) = 40 cm in Eq. (E4), we obtain 

Wl W2 ~/~3 ~/P4 

1 10 1 1 0 1  W - -  1 

[ K ( 1 ) ] _ 1 0 4 1 0 1 4 0 0 3  - 1 0 2 ~ 0 [  B~ 

- 200 - 1 0 ]  300 ~% W5 
10 1 

/ 10 - 10 3 -5-J L 

(E~) 
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1 5 - 1  5 - 

8 2 8 2 
5 200 - 5  100 r 1 

[K(2)J- 104 2 3 2 3 

-1  - 5  1 - 5  
8 2 8 2 
5 100 - 5  200 
2 3 2 3 

W3 

W4 

W6 

(E6) 

Note that the nodal degrees of freedom associated with the various rows and columns of 
the matrices [K (e)] are also indicated in Eqs. (E4)-(E6). The assembled stiffness matrix 
of the beam can be obtained as 

[t~]- 104 

Wl W2 ~/P3 ~'~ 4 tt:5 IzV6 

1 10 - 1 10 W1 

10 400 200 lt~ 
3 -10  3 

( 1 )  ( 5)  1 5  I ~  
-1  10 l + g  - 1 0 + ~  8 

10 200 ( 5)  (400 200) 5 100 IM4 
3 - 1 0 + ~  - -~  + - -~  2 3 

1 5 1 5 }V5 
8 2 8 2 

5 100 5 200 ~;  
2 3 2 3 

(Er) 

Noting that nodes 1 and 3 are fixed, we have ~ P l  - -  ~ 2  - -  l V 5  - -  t l ~ 6  = 0 and hence by 
deleting the rows and columns corresponding to these degrees of freedom in Eq. (E7), we 
obtain the final stiffness matrix of the beam as 

W3 Ilh 

1 [ t~ ' ] -  104 ~ 2 

- - -  200 

~3 (E~) 

Since the externally applied vertical load at, node 2 (in the direction of Wa) is -1000 N 
and the rotational load (bending moment) at node 2 (in the direction of H/4) is 0, the load 
vector of the beam corresponding to the degrees of freedom t13 and lI5 can be expressed as 

fi_{P3 P 4 } - {  10000} (Eg) 

Thus the equilibrium equations of the beam are given by 

[K ]W-  P 
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or 

I 915 1 5 1 {  } { } 104 g 2 W3 = -1000  
II4 0 

- - -  200 

(Slo) 

The solution of Eq. (El0) gives 

I4~ - -0.11851852 cm. It4 = -0.00444444 radian (Ell) 

The bending stress, (r(~ ~2 (x, y). induced at a point (fiber) located at a distance x from node 
1 (left side node) in horizontal direction and Y from the neutral  axis in vertical direction 
in element e is given by (see Section 9.3)" 

a(~? - ( ~ ' ( x . g )  [E][B]II "'(~' - - y E  (~)d2w(~) (x )  
= ax. r -- dx  2 (E12) 

where w(~) (x )  is given by Eq. (1.78) so that  

dx  2 
_ 1 ) ) 1 ( 6 x - 4 / ( ~ )  I4d (~) - l(~) 3 ( 1 2 ~  - 6l ~ ) ~ ( ~  + ~ ) 

1 1 
+ l( ~)5(6l ( ~ ) -  12x)ll'3 (~) + / ( ~  (6x - 2/(~))W4 (~) (E13) 

Thus the stresses in the elements can be determined as follows" 

E l e m e n t  1: Using E (1) - 107. l (1) = 20, II'~ 1) = [ t ' 1  - -  0 .  I , I~  1) = ~ I 2  - 0 ,  l / l ~  1) = 

I4,% - -0.11851852. and lI'4 (1) - It'4 - -0.00444444. Eq. (E12) gives 

cr(~ 1) (x, y) - 1777.7778(10 - x)g + 222.2222(3x - 20)g (E14) 

The stress induced in the top fibers of element 1 is given by (with y - +1 cm) 

a ( 1 ) ( x )  -- 1 7 7 7 . 7 7 7 8 ( 1 0 -  x ) -  2 2 2 . 2 2 2 2 ( 2 0 -  2x) x z  (Ei5) 

For instance, the maximum stresses induced at x = 0 (fixed end) and x - 20 cm (point of 
load application) will be 

(i) oxx (0) -- 13.333.334 N/cm 2 and ox.~.-(1'(20) - -8.888.890 N/cm 2 

E l e m e n t  2: Using E (2) - 107 l (2) - 40. II "(2) - Ii:3 - - 0  11851852 ~ 2 )  = 1'114 = 

-0.00444444, II~ 2 ) -  l ~  - 0 .  and l;I'4 ( 2 ) -  I I'G - -0 ,  Eq. (E12) gives 

cr 2) (z. g) = 222.2222(x - 20)g + 55.5550(3z - 80)y 
xx (El6) 
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The stress induced in the top fibers of element 2 is given by (with y = +1 cm) 

O'(x2x ) (Z) -- 2 2 2 . 2 2 2 2 ( X  -- 20) Jr- 5 5 . 5 5 5 0 ( 3 X  -- 80) (E17) 

For instance, the maximum stresses induced at x = 0 (point of load application) and 
x = 40 cm (fixed end) will be 

a(~ (0) = -8.888.844 N/cm 2 and O~x-(2) (40) - 6,666.644 N/cm 2 

1.7 FINITE ELEMENT PROGRAM PACKAGES 

The general applicability of the finite element method makes it a powerful and versatile tool 
for a wide range of problems. Hence, a number of computer program packages have been 
developed for the solution of a variety of structural and solid mechanics problems. Some 
of the programs have been developed in such a general manner that the same program can 
be used for the solution of problems belonging to different branches of engineering with 
little or no modification. 

Many of these packages represent large programs that can be used for solving real 
complex problems. For example, the NASTRAN (National Aeronautics and Space Admin- 
istration Structural Analysis) program package contains approximately 150,000 Fortran 
statements and can be used to analyze physical problems of practically any size, such as 
a complete aircraft or an automobile structure. 

The availability of supercomputers (e.g., the Cray-1 and the Cyber 205) has made 
a strong impact on the finite element technology. In order to realize the full potential 
of these supercomputers in finite element computation, special parallel numerical algo- 
rithms, programming strategies, and programming languages are being developed. The 
use of personal computers and workstations in engineering analysis and design is becom- 
ing increasingly popular as the price of hardware is decreasing dramatically. Many finite 
element programs, specially suitable for the personal computer and workstation environ- 
ment, have been developed. Among the main advantages are a user-friendly environment 
and inexpensive graphics. 
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PROBLEMS 

1.1 If S (l) and S (~) denote the perimeters  of the inscribed and circumscribed polygons, 
respectively, as shown in Figure 1.3. prove that  

S (~) < S < S  (~'~ 

where S is the circumference of the circle. 

1.2 Find the stress distr ibution in the tapered bar shown in Figure 1.13 using two 
finite elements under an axial load of P = 1 N. 

1.3 Find the t empera tu re  distr ibution in the stepped fin shown in Figure 1.14 using 
two finite elements. 

1.4 Using a one-beam element idealization, find the stress distr ibution under a load of 
P for the uniform cantilever beam shown in Figure 1.15. (Hint: Use the displace- 
ment model of Eq. (1.78), the s t ra in-displacement  relation given in Eq. (9.25), 
and the s t ress-s t ra in  relation axx = Ecxx, where E is the Young's modulus).  

1.5 Find the stress distr ibution in the cantilever beam shown in Figure 1.16 using one 
beam element.  (Hint: Use the displacement model of Eq. 1.78). 

1.6 Find the stress distr ibution in the beam shown in Figure 1.17 using two beam 
elements. 

1.7 Find the stress distr ibution in the beam shown ill Figure 1.18 using two beam 
elements. 

-r- 10 cm - I 

Cross sectional area at root = 2 cm 2 
Cross sectional area at end = 1 cm 2 
Young's modulus = 2 x 107 N/cm 2 

Figure 1.13. 

P = I  

T O = 140~ 

Circular section 
(radius = 1 cm) Circular section 

"'J "' - "" q V (radius= 0.5 cm) 

I k=70. cmWatts, -~ t !  , ! . . . . .  ~ i  

..L. J 2cm - , -  " 3cm " -~ 

Watts 
h - 10 cm2-~ T== 40~ 

Figure 1.14. 
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Figure 1.17. 
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Figure 1.18. 

1.8 Find the stress d is t r ibut ion in the beam shown in Figure 1.19 using two beam 
elements.  

1.9 For the t apered  bar shown in Figure 1.20. the area of cross section changes along 
the length as A(x)  - Aoe -(x/tl. where A0 is the cross-sectional area at x - 0, 
and I is the length of the bar. By expressing the strain and kinetic energies of the 
bar  in mat r ix  forms, identifv the stiffness and mass matr ices  of a typical element.  
Assume a linear model  for the axial displacement  of the bar element.  
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L .  
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Figure 1.19. 
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Figure 1.20. 

1.10 

1.11 

1.12 

1.13 

1.14 

1.15 

1.16 

1.17 

Find the fundamental natural frequency of axial vibration of the bar shown in 
Figure 1.20 using Rayleigh's method. 

Find two natural frequencies of axial vibration of the bar shown in Figure 1.20 
using the Rayleigh-Ritz method. 

Find two natural frequencies of axial vibration of the bar shown in Figure 1.20 
using the Galerkin method. 

Find two natural frequencies of axial vibration of the bar shown in Figure 1.20 
using the finite difference method. 

Find two natural frequencies of axial vibration of the bar shown in Figure 1.20 
using the finite element method. (Use a two-element idealization.) 

For the cantilever beam shown in Figure 1.21. find the fundamental natural 
frequency using Rayleigh's method. 

For the cantilever beam shown in Figure 1.21, find two natural frequencies using 
the Rayleigh-Ritz method. 

For the cantilever beam shown in Figure 1.21, find two natural frequencies using 
the Galerkin method. 
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P,A,E,I constant 
i .  

;4 
~ L 

Figure 1.21. 

f 

& 

7/// / / ,  

Figure 1.22. 

> / /  

L2 

1.18 De te rmine  two na tu r a l  frequencies of the  cant i lever  beam shown in Figure  1.21 

using the  finite difference method .  

1.19 De te rmine  two na tu ra l  frequencies of the cant i lever  beam shown in Figure  1.21 

using the  finite element  m e thod  using a one-element  idealizat ion.  

1.20 The  differential  equa t ion  governing the, free longi tudina l  v ibra t ions  of a uniform 
bar  is given by 

E.40e ~l 0" ~l 
0a.-----7_ , - m-O-~_, - 0 

where E is Young 's  modulus .  A is tile area of cross section, r~ is the  mass per uni t  
length.  ~l is tile axial d isp lacement  (in tile d i rec t ion of x). and t is t ime. If the  bar  

is fixed at +r - 0. find tile first two na tu ra l  frequencies of tile bar  using the  finite 
difference met hod. 



P R O B L E M S  49 

1.21 Find the first two natural frequencies of the bar described in Problem 1.20 using 
the finite element method with a linear displacement model. 

1.22 Find the fundamental natural frequency of longitudinal vibration of the bar 
described in Problem 1.20 using Rayleigh's method. 

1.23 Find two natural frequencies of longitudinal vibration of the bar described in 
Problem 1.20 using the Rayleigh-Ritz method. 

1.24 Find two natural frequencies of longitudinal vibration of the bar described in 
Problem 1.20 using the Galerkin method. 

1.25 Suggest a method of finding the stresses in the frame shown in Figure 1.22 using 
the finite element method. 

1.26 The stiffness matrix of a spring (Figure 1.23(a)) is given by 

[K (~)] - k [[-1 1 -111 q)~)~) (1.87) 

where k denotes the stiffness of the spring. Using this. determine the displacements 
of nodes 1 and 2 of the system shown in Figure 1.23(b). 
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Figure 1.23. 
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DISCRETIZATION OF THE 
DOMAIN 

2.1 INTRODUCTION 
In most engineering problems, we need to find the values of a field variable such as dis- 
placement,  stress, temperature ,  pressure, and velocity as a function of spatial coordinates 
(x, y, z). In the case of transient  or unsteady state problems, the field variable has to be 
found as a function of not only the spatial coordinates (x. y,z) but also time (t). The 
geometry (domain or solution region) of the problem is often irregular. The first step of 
the finite element analysis involves the discretization of the irregular domain into smaller 
and regular subdomains,  known as finite elements. This is equivalent to replacing the 
domain having an infinite number of degrees of freedom by a system having finite number 
of degrees of freedom. 

A variety of methods can be used to model a domain with finite elements. Different 
methods  of dividing the domain into finite elements involve different amounts  of compu- 
ta t ional  t ime and often lead to different approximations to the solution of the physical 
problem. The process of discretization is essentially an exercise of engineering judgment.  
Efficient methods of finite element idealization require some experience and a knowledge 
of simple guidelines. For large problems involving complex geometries, finite element ide- 
alization based on manual  procedures requires considerable effort and time on the part  of 
the analyst.  Some programs have been developed for the automatic mesh generation for 
the efficient idealization of complex domains with minimal interface with the  analyst. 

2.2 BASIC ELEMENT SHAPES 
The shapes, sizes, number, and configurations of the elements have to be chosen carefully 
such tha t  the original body or domain is simulated as closely as possible without  increasing 
the computat ional  effort needed for the solution. Mostly the choice of the type of element is 
dictated by the geometry of the body and the number of independent coordinates necessary 
to describe the system. If the geometry, material  properties, and the field variable of the 
problem can be described in terms of only one spatial coordinate, we can use the one- 
dimensional or line elements shown in Figure 2.1(a). The tempera ture  distr ibution in 
a rod (or fin), the pressure distr ibution in a pipe flow. and the deformation of a bar 
under axial load, for example, can be determined using these elements. Although these 
elements have cross-sectional area, they are generally shown schematically as a line element 
(Figure 2.1(b)). In some cases, the cross-sectional area of the element may be nonuniform. 

53 
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Figure 2.1. 

For a simple analysis, one-dimensional elements are assumed to have two nodes, one at 
each end, with the corresponding value of the field variable chosen as the unknown (degree 
of freedom). However, for the analysis of beams, the values of the field variable (transverse 
displacement) and its derivative (slope) are chosen as the unknowns (degrees of freedom) 
at each node as shown in Figure 2.1(c). 

When the configuration and other details of the problem can be described in terms of 
two independent  spatial coordinates, we can use the two-dimensional elements shown in 
Figure 2.2. The basic element useful for two-dimensional analysis is the tr iangular  element. 
Although a quadrilateral  (or its special forms, rectangle and parallelogram) element can 
be obtained by assembling two or four tr iangular  elements, as shown in Figure 2.3, in 
some cases the use of quadri lateral  (or rectangle or parallelogram) elements proves to be 
advantageous. For the bending analysis of plates, multiple degrees of freedom (transverse 
displacement and its derivatives) are used at each node. 

If the geometry, material  properties, and other parameters  of the body can be described 
by three independent spatial coordinates, we can idealize the body by using the three- 
dimensional elements shown in Figure 2.4. The basic three-dimensional element, analogous 
to the tr iangular  element in the case of two-dimensional problems, is the te t rahedron ele- 
ment. In some cases the hexahedron element, which can be obtained by assembling five 
te t rahedrons  as indicated in Figure 2.5. can be used advantageously. Some problems, which 
are actually three-dimensional,  can be described by only one or two independent  coordi- 
nates. Such problems can be idealized by using an axisymmetric or ring type of elements 
shown in Figure 2.6. The problems that  possess axial symmetry,  such as pistons, storage 
tanks, valves, rocket nozzles, and reentry vehicle heat shields, fall into this category. 
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Figure 2.3. A Quadrilateral Element as an Assemblage of Two or Four Triangular Elements. 
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Figure 2.4. Three-Dimensional Finite Elements. 

For the discretization of problems involving curved geometries, finite elements with 
curved sides are useful. Typical elements having curved boundaries are shown in Figure 2.7. 
The ability to model curved boundaries has been made possible bv the addit ion of midside 
nodes. Finite elements with straight sides are known as linear elements, whereas those with 
curved sides are called higher order elements. 

2.3 DISCRETIZATION PROCESS 
The various considerations to be taken in the discretization process are given in the 
following sections [2.1]. 

2.3.1 Type of Elements 
Often, the type of elements to be used will be evident from the physical problem. For 
example, if the problem involves the analvsis of a truss s t ructure  under a given set of load 
conditions (Figure 2.8(a)), the type of elements to be used for idealization is obviously the 
"bar or line elements" as shown in Figure 2.8(b). Similarly, in the case of stress analysis 
of the short beam shown in Figure 2.9(a). the finite element idealization can be done 
using three-dimensional  solid elements as shown in Figure 2.9(b). However, the type of 
elements to be used for idealization may not be apparent ,  and in such cases one has to 
choose the type of elements judicially. As an example, consider the problem of analysis 
of the thin-walled shell shown in Figure 2.10(a). In this case, the shell can be idealized 
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Figure 2.5. A Hexahedron Element as an Assemblage of Five Tetrahedron Elements. 

(a) An one dimensional axisymmetric 
(shell) element 
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element 

Figure 2.6. Axisymmetric Elements. 
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(a) Original structure 

Figure 2.8. 

(b) Idealization using bar elements 
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Figure 2.9. 

(a) Original shell 

Using conical ring elements 
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(b) Idealization using different types of elements 

Figure 2. !0.  A Thin-Walled Shell under Pressure. 
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Figure 2.11. Idealization of an Aircraft Wing Using Different Types of Elements. 

by several types of elements as shown in Figure 2.10(b). Here. the nulnber of degrees 
of freedom needed, the expected accuracy, the ease with which the necessary equations 
can be derived, and the degree to whicll the pl~ysical s tructure can be modeled without 
approximation will dictate the choice of the element type to be used for idealization. In 
certain problems, the given bodv cannot be represented as an assemblage of only one 
type of elements. In such cases, we may have to use two or more types of elements 
for idealization. An example of this would be the analysis of an aircraft wing. Since 
the wing consists of top and bot tom covers, stiffening webs. and flanges, three types of 
elements, namely, triangular plate elements (for covers), rectangular shear panels (for 
webs), and frame elements (for flanges), have been used in the idealization shown in 
Figure 2.11. 

2.3.2 Size of Elements 
The size of elements influences the convergence of the solution directly and hence it has to 
be chosen with care. If the size of tl~e elements is small, the final solution is expected to be 
more accurate. However. we have to remember that the use of elements of smaller size will 
also mean more computat ional  time. Sometimes. we may have to use elements of different 
sizes in the same body. For example, in the case of stress analysis of the box beam shown 



DISCRETIZATION PROCESS 61 

P1 

ri in I r r (b) Finite element idealization 

Figure 2.12.  

-1 ( ~  _ 

_ 1  I 
- ]  ,, J 7  

(a) Original structure (b) Idealization using elements of different sizes 

Figure 2.13.  

in Figure 2.12(a), the size of all the elements can be approximately  the same. as shown 
in Figure 2.12(b). However, in the case of stress analysis of a plate with a hole shown in 
Figure 2.13(a), elements of different sizes have to be used. as shown in Figure 2.13(b). 
The size of elements has to be very small near the hole (where stress concentrat ion is 
expected) compared to far away places. Ill general, whenever steep gradients of the field 
variable are expected, we have to use a finer mesh in those regions. Another  characteristic 
related to the size of elements tha t  affects the finite element solution is the aspect ratio 
of the elements. The aspect ratio describes the shape of the element in the assemblage 
of elements. For two-dimensional elements, the aspect ratio is taken as the ratio of the 
largest dimension of the element to the smallest dimension. Elements  with an aspect ratio 
of nearly unity generally yield best results [2.2]. 

2.3.3 Location of Nodes 
If the body has no abrupt  changes in geometry, material  properties, and external  condi- 
tions (e.g., load and tempera ture) ,  the body can be divided into equal subdivisions and 
hence the spacing of the nodes can be uniform. On the other hand. if there are any discon- 
tinuities in the problem, nodes have to be introduced at these discontinuities, as shown in 
Figure 2.14. 
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Figure 2.15. Effect of Varying the Number of Elements. 

2.3.4 Number of Elements 
The number  of elements to be chosen for idealization is related to the accuracy desired. 
size of elements,  and the number  of degrees of freedom involved. Al though an increase 
in the number  of elements generally means more accurate results, for any given problem, 
there will be a certain number  of elements beyond which the accuracy cannot  be improved 
by any significant amount .  This behavior is shown graphically in Figure 2.15. Moreover, 
since the use of large number  of elements involves a large number  of degrees of freedom, 
we may not be able to store the resulting matrices in the available computer  memory.  

2 . 3 . 5  S i m p l i f i c a t i o n s  A f f o r d e d  by t h e  Phys ica l  C o n f i g u r a t i o n  o f  t h e  B o d y  

If the configuration of the body as well as the external  conditions are symmetric ,  we may 
consider only half of the body for finite element idealization. The symmet ry  conditions, 
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Figure 2.16. A Plate with a Hole with Symmetric Geometry and Loading. 

however, have to be incorporated in the solution procedure. This is il lustrated in Figure 
2.16, where only half of the plate with hole, having symmetry' in both geometry and load- 
ing, is considered for analysis.* Since there cannot be a horizontal displacement along the 
line of symmetry  AA, the condition that  u = 0 has to be incorporated while finding the 
solution. 

2.3.6 Finite Representation of Infinite Bodies 
In most of the problems, like in the case of analysis of beams, plates, and shells, the 
boundaries of the body or continuum are clearly defined. Hence. the entire body can 
be considered for the element idealization. However, in some cases, as in the case of 
analysis of dams, foundations, and semiinfinite bodies, the boundaries are not clearly 
defined. In the case of dams (Figure 2.17). since the geometry is uniform and the 

* In this example, even one-fourth of the plate can be considered for analysis due to symmetry 
about both horizontal and vertical center lines. 
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Figure 2.17. A Dam with Uniform Geometry and Loading. 

loading does not change in the length direction, a unit slice of the dam can be con- 
sidered for idealization and anah 'zed  as a plane strain problem. However, in the case 
of the foundat ion problem shown in Figure 2.18(a). we cannot  idealize the complete  
semiinfinite soil bv finite elements.  Fortunately.  it is not really necessary to idealize 
the infinite body. Since the effect of loading decreases gradual ly  with increasing dis- 
tance from the point of loading, we can consider onh" that  much of the cont inuum in 
which the loading is expected  to have significant effect as shown in Figure  2.18(b). Once 
the significant extent  of the infinite body is identified as shown in Figure 2.18(b), the 
bounda ry  condit ions for this finite body have to be incorpora ted  in the solution. For 
example,  if the  horizontal  movement  only has to be res t ra ined for sides AB and CD (i.e., 
u - 0), these sides are supposed to be on rollers as shown in Figure  2.18(b). In this 
case, the b o t t o m  bounda ry  can be ei ther completely  fixed (u = ~' - 0) or const ra ined 
only against  vertical movement  (u - 0). The  fixed condit ions (u - t' - 0 along BC) 
are often used if the lower bounda ry  is taken at the known location of a bedrock 
surface. 

In Figure 2.18 the semiinfinite soil has been s inmlated by considering only a finite 
por t ion of the soil. In some applications,  the de te rmina t ion  of the size of the finite domain  
may pose a problem. In such cases, one can use infinite elements  for modeling [2.3 2.5]. 
As an example.  Figure 2.19 shows a four-node element that  is infinitely long in the x 
direction. The  coordinates  of the nodes of this infinite element can be t ransformed to the 
na tura l  coordinate  sys tem (.s. t) as [see Section 4.3.3 for the definition of na tura l  coordinate  
system] 

s -- 1 - 2 { 1-x " (Y3 -g )x l+(Y-Y l )X4}  m ' ( y a  - -  Y l  ) r e > l _  

t - - l - 2 {  g3-g  } 
Y3 - -  Yl 
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2.4 NODE NUMBERING SCHEME 
As seen in Chapter  1, the finite element analysis of practical problems often leads to 
matrix equations in which the matrices involved will be banded. The advances in the 
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finite element analysis of large practical systems have been made possible largely due 
to the banded nature of the matrices. Furthermore.  since most of the matrices involved 
(e.g., stiffness matrices) are symmetric,  the demands on the computer  storage can be 
substantial ly reduced by storing only the elements involved in half bandwidth instead of 
storing the whole matrix. 

The bandwidth of the overall or global characteristic matr ix depends on the node 
numbering scheme and the number of degrees of freedom considered per node [2.6]. If we 
can minimize the bandwidth,  the storage requirements as well as solution time can also 
be minimized. Since the number of degrees of freedom per node is generally fixed for any 
given type of problem, the bandwidth can be minimized by using a proper node numbering 
scheme. As an example, consider a three-bay frame with rigid joints. 20 storeys high, 
shown in Figure 2.20. Assuming tha t  there are three degrees of freedom per node, there 
are 240 unknowns in the final equations (excluding the degrees of freedom corresponding 
to the fixed nodes) and if the entire stiffness matrix is stored in the computer  it will 
require 2402 = 57.600 locations. The bandwidth (strictly speaking, half bandwidth)  of the 
overall stiffness matr ix is 15 and thus the storage required for the upper half band is only 
15 x 240 = 3600 locations. 
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Figure 2.21. Banded Nature of the Stiffness Matrix for the Frame of Figure 2.20. 

Before we a t t empt  to minimize the bandwidth,  we discuss the method of calculating 
the bandwidth.  For this, we consider again the rigid jointed frame shown in Figure 2.20. 
By applying constraints to all the nodal degrees of freedom except number 1 at node 1 
(joint A), it is clear tha t  an imposed unit displacement in the direction of 1 will require 
constraining forces at the nodes directly connected to node A - - t h a t  is, B and C. These 
constraining forces are nothing but the cross-stiffnesses appearing in the stiffness matr ix 
and these forces are confined to the nodes B and C. Thus. the nonzero terms in the first 
row of the global stiffness matr ix (Figure 2.21) will be confined to the first 15 positions. 
This defines the bandwidth (B) as 

Bandwidth  (B) = (maximum difference between the numbered degrees 

of freedom at the ends of any member  + 1) 

This definition can be generalized so as to be applicable for any type of finite element as 

Bandwidth  (B) = (D + 1). f (2.1) 

where D is the maximum largest difference in the node numbers occurring for all elements 
of the assemblage, and f is the number of degrees of freedom at each node. 

The previous equation indicates that  D has to be minimized in order to minimize 
the bandwidth.  Thus, a shorter bandwidth can be obtained simply by numbering the 
nodes across the shortest  dimension of the body. This is clear from Figure 2.22 also, 
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Figure 2.22. Different Node Numbering Schemes. 

where the numbering of nodes along the shorter dimension produces a bandwidth  of 
B = 15 (D = 4), whereas the numbering along the longer dimension produces a bandwidth  
of B = 63 (D = 20). 

2.5 AUTOMATIC MESH GENERATION* 
As indicated in the previous section, the bandwidth of the overall system matr ix  depends 
on the manner  in which the nodes are numbered. For simple systems or regions, it is easy 
to label the nodes so as to minimize the bandwidth.  But for large systems, the proce- 
dure becomes nearly impossible. Hence. automatic  mesh generation algorithms; capable 
of discretizing any geometry into an efficient finite element mesh without user interven- 
tion, have been developed [2.7.2.8]. Xlost commercial finite element software has built-in 
automatic  mesh generation codes. An automatic  mesh generation program generates the 
locations of the node points and elements, labels the nodes and elements, and provides 
the e lement-node connectivity relationships, The automatic  mesh generation schemes are 
usually tied to solid modeling and computer-aided design schemes. When the user supplies 
information on the surfaces and volumes of the material  domains that  make up the object 
or system, an automatic  mesh generator  generates the nodes and elements in the object. 
The user can also specify the minimum permissible element sizes for different regions of 
the object. 

*This section may be omitted without loss of continuity in the text material. 
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The most common methods used in the development of automatic mesh generators are 
the tesselation and octree methods [2.9, 2.10]. In the tesselation method, the user gives 
a collection of node points and also an arbitrary starting node. The method then creates 
the first simplex element using the neighboring nodes. Then a subsequent or neighboring 
element is generated by selecting the node point that  gives the least distorted element 
shape. The procedure is continued until all the elements are generated. The step-by-step 
procedure involved in this method is illustrated in Figure 2.23 for a two-dimensional exam- 
ple. Alternately, the user can define the boundary of the object by a series of nodes. Then 
the tesselation method connects selected boundary nodes to generate simplex elements. 
The stepwise procedure used* in this approach is shown in Figure 2.24. 

The octree methods belong to a class of mesh generation schemes known as tree 
structure methods, which are extensively used in solid modeling and computer graph- 
ics display methods. In the octree method, the object is first considered enclosed in a 
three-dimensional cube. If the object does not completely (uniformly) cover the cube, the 
cube is subdivided into eight equal parts. In the two-dimensional analog of the octree 
method, known as the quadtree method, the object is first considered enclosed in a square 
region. If the object does not completely cover the square, the square is subdivided into 
four equal quadrants. If any one of the resulting quadrants is full (completely occupied 
by the object) or empty (not occupied by the object), then it is not subdivided further. 
On the other hand, if any one of the resulting quadrants is partially full (partially occu- 
pied by the object), it is subdivided into four quadrants. This procedure of subdividing 
partially full quadrants is continued until all the resulting regions are either full or empty 
or until some predetermined level of resolution is achieved. At the final stage, the partially 
full quadrants are assumed to be either full or empty arbitrarily based on a prespecified 
criterion. 

E x a m p l e  2.1 Generate the finite element mesh for the two-dimensional object (region) 
shown by the crossed lines in Figure 2.25(a) using the quadtree method. 

S o l u t i o n  First, the object is enclosed in a square region as shown by the dotted lines 
in Figure 2.25(a). Since the object does not occupy the complete square, the square is 
divided into four parts as shown in Figure 2.25(b). Since none of these parts are fully 
occupied by the object, each part is subdivided into four parts as shown in Figure 2.25(c). 
It can be seen that  parts 1, 3, and 4 of A, part 3 of B. parts 2-4 of C. and parts 1-3 of D 
are completely occupied by the object, whereas parts 1, 2. and 4 of B and part 1 of C are 
empty (not occupied by the object). In addition, part 2 of A and part 4 of D are partially 
occupied by the object; hence, they are further subdivided into four parts each as shown 
in Figure 2.25(d). It can be noted that  parts o and ? of part 2 (of A) and parts c~ and 

of part  4 (of D) are completely occupied while the remaining parts, namely 3 and a of 
part  2 (of A) and ~/and a of part 4 (of D), are empty. Since all the parts at this stage are 
either completely occupied or completely empty, no further subdivision is necessary. The 
corresponding quadtree representation is shown in Figure 2.25(e). Note that  the shape of 
the finite elements is assumed to be square in this example. 

t A simplex in an n-dimensional space is defined as a geometric figure having n + 1 nodes or 
corners. Thus, the simplex will be a triangle in a two-dimensional space and a tetrahedron in 
three-dimensional space. 
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Figure 2.23. Mesh Generation Using Tesselation Method. 
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(a) Nodes on the boundary of the object or region 

(b) Geometry of the object or region 

(c) Complete set of nodes and elements 

Figure 2.24. Tesselation Method with Nodes Defined on the Boundary. 
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Figure 2.25. Mesh Generation Using Quadtree Method. 
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PROBLEMS 

2.1 A thick-walled pressure vessel is subjected to an internal pressure as shown in 
Figure 2.26. Xlodel the cross section of the pressure vessel by taking advantage 
of the symmetry of the geometry and load condition. 

2.2 A helical spring is subjected to a compressive load as shown in Figure 2.27. 
Suggest different methods of modeling the spring using one-dimensional 
elements. 

2.3 A rectangular plate with a v-notch is shown in Figure 2.28. Model the plate 
using triangular elements by taking advantage of the symmetry of the system. 

2.4 A drilling machine is modeled using one-dimensional beam elements as shown 
in Figure 2.29. If two degrees of freedom are associated with each node, label 
the node numbers for minimizing the bandwidth of the stiffness matrix of the 
system. 

2.5 The plate shown in Figure 2.30 is modeled using 13 triangular and 2 quadri- 
lateral elements. Label the nodes such that the bandwidth of the system 

Figure 2.26. 
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matrix is minimum. Compute the resulting bandwidth assuming one degree 
of freedom at each node. 

2.6-2.10 Label the elements and nodes for each of the systems shown in Figures 2.31- 
2.35 to produce a minimum bandwidth. 

Figure 2.32. 

Figure 2.33. 
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Figure 2.34. 

Figure 2.35. 

l O  

Figure 2.36. 
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Figure 2.37. 

2.11 Consider the collection of node points shown in Figure 2.36 for a two- 
dimensional object. Generate the finite element mesh using the tesselation 
method. 

2.12 Generate the finite element mesh for the two-dimensional object shown in 
Figure 2.37 using the quadtree method. 



3 

INTERPOLATION MODELS 

3.1 INTRODUCTION 
As stated earlier, the basic idea of the finite element method is piecewise approx imat ion- -  
tha t  is, the solution of a complicated problem is obtained by dividing the region of interest 
into small regions (finite elements) and approximating the solution over each subregion 
by a simple function. Thus. a necessary and important  step is that  of choosing a simple 
function for the solution in each element. The functions used to represent the behavior 
of the solution within an element are called interpolation functions or approximating 
functions or interpolation models. Polynomial- type interpolat ion functions have been most 
widely used in the l i terature due to the following reasons: 

(i) It is easier to formulate and computerize the finite element equations with 
polynomial- type interpolation functions. Specifically. it is easier to perform 
differentiation or integration with polynomials. 

(ii) It is possible to improve the accuracy of the results by increasing the order of the 
polynomial, as shown in Figure 3.1. Theoretically. a polynomial of infinite order 
corresponds to the exact solution. But in practice we use polynomials of finite 
order only as an approximation. 

Although tr igonometric functions also possess some of these properties,  they are seldom 
used in the finite element analvsis [3.1]. We shall consider only polynomial- type 
interpolation functions in this book. 

When the interpolation polynomial is of order one. the element is termed a linear 
element. A linear element is called a simplex element if the number of nodes in the element 
is 2, 3. and 4 in 1, 2, and 3 dimensions, respectively. If the interpolation polynomial is 
of order two or more. the element is known as a higher order element. In higher order 
elements, some secondary (midside and /o r  interior) nodes are introduced in addition to 
the primary (corner) nodes in order to match the number of nodal degrees of freedom with 
the number of constants (generalized coordinates) in the interpolation polynomial. 

In general, fewer higher order elements are needed to achieve the same degree of 
accuracy in the final results. Although it does not reduce the computat ional  time, the 
reduction in the number of elements generally reduces the effort needed in the preparat ion 
of da ta  and hence the chances of errors in the input data. The higher order elements 
are especially useful in cases in which tile gradient of the field variable is expected to 

80 



I N T R O D U C T I O N  81 

e(x) 

Exact solution 

4)(x) = ao= constant 

=-X 

[4~subregion or element--~ 

(a) approximation by a constant 

Exact solution 

4)(x) = a o + a lx  

}*-subregion or element -7 

(b) linear approximation 

~ X  

.Exact solution 
- 4)(x) = a o + a lx  + a2x2 

_--X 

l~--subregion or element 

(c) quadratic approximation 

Figure 3.1. Polynomial Approx ima t i on  in One Dimension.  

vary rapidly. In these cases the simplex elements, which approximate the gradient by a set 
of constant  values, do not yield good results. The combination of greater accuracy and a 
reduction in the da ta  preparat ion effort has resulted in the widespread use of higher order 
elements in several practical applications. We shall consider mostly linear elements in this 
chapter. 

If the order of the interpolat ion polynomial is fixed, the discretization of the region (or 
domain) can be improved by two methods.  In the first method, known as the r-method, the 
locations of the nodes are altered without  changing the total  number of elements. In the 
second method,  known as the h-method,  the number of elements is increased. On the other 
hand, if improvement in accuracy is sought by increasing the order of the interpolation of 
polynomial,  the method is known as the p-method.  

Problems involving curved boundaries cannot be modeled satisfactorily by using 
straight-sided elements. The family of elements known as "isoparametric" elements has 
been developed for this purpose. The basic idea underlying the isoparametric elements 
is to use the same interpolation functions to define the element shape or geometry as 
well as the variation of the field variable within the element. To derive the isoparamet- 
ric element equations, we first introduce a local or natural  coordinate system for each 
element shape. Then the interpolation or shape functions are expressed in terms of the 
natural  coordinates. The representat ion of geometry in terms of (nonlinear) shape func- 
tions can be considered as a mapping procedure that  transforms a regular shape, such as a 
straight-sided triangle or rectangle in the local coordinate system, into a distorted shape. 
such as a curved-sided triangle or rectangle in the global Cartesian coordinate system. 
This concept can be used in representing problems with curved boundaries with the help 
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of curved-sided isoparametric elements. Today. isoparametric elements are extensively 
used in three-dimensional  and shell analysis problems. The formulation of isoparametric 
elements, along with the aspect of numerical integration that  is essential for compuata t ions  
with isoparametric elements, is considered in the next chapter. 

3.2 P O L Y N O M I A L  FORM OF I N T E R P O L A T I O N  F U N C T I O N S  
If a polynomial  type of variation is assumed for the field variable O(x) in a one-dimensional 
element,  r  can be expressed as 

O(X)  - -  01  "-1- 02JC + O~3X 2 - 4 - ' ' ' - 4 -  a m X  n (3.1) 

Similarly, in two- and three-dimensional  finite elements the polynomial  form of interpola- 
tion functions can be expressed as 

l]2 n �9 y )  - -  O1 q- O2X H- O 3 y  q- 0 4 . r  2 H- 0 5  + Ct6Xy + ' ' "  + a m y  

, "T 2 y2 2 ~ ( X ,  y Z) - -  01  -n t- 0 2 X  + C"t3~/ -~- 0~4 "~ -[- 0 5  -~- 0 6  -Jr- 07,2, 

-~- OLsXy -+- ~9~]Z q- o l O 2 / r  -4- " ' "  q- CtmZ n 

(3.2) 

(3.3) 

where Ctl, c~2,... ,c~m are the coefficients of the polynomial,  also known as generalized 
coordinates" n is the degree of the polynomial" and the number  of polynomial  coefficients 
m is given by 

m -- n + 1 for one-dimensional elements (Eq. 3.1) 

n + l  

m - E j for two-dimensional elements (Eq. 3.2) 
2=1 

r l+ l  

m - E j (n  + 2 -  j )  for three-dimensional  elements (Eq. 3.3) 
2=1 

(3.4) 

(3.5) 

(3.6) 

In most of the practical applications the order of the polynomial  in the interpolat ion 
functions is taken as one. two, or three. Thus, Eqs. (3.1)-(3.3) reduce to the following 
equations for various cases of practical interest. 

For n -- 1 (linear model) 
One-dimensional  case: 

o(x) - a l + 02x (3.7) 

Two-dimensional  case" 

O(X.  ~]) - -  0 1  + Ol2X' -'~ O 3 y  (3.s) 

Three-dimensional  case: 

o(x, y, z) -- 01 + a2,r + a3y + 04z (3.9) 
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For n -  2 (quadratic model)  

One-dimensional  case: 

2 O(x) - c~ + c~2x + a a z  (3.10) 

Two-dimensional  case" 

qS(x, y )  - -  Oel + c t 2 x  -+- Oeay -+- ct4X 2 -+- c t 5 y  2 + c t 6 x y  (3.11) 

Three-dimensional  case: 

r  y, z) -- a l  + o~2x + a3y -F O~4Z + Ol5X 2 + ot6y 2 -F C~TZ 2 

+ a s x y  + Oegyz + OtlOXZ (3.12) 

For n = 3 (cubic model) 
One-dimensional  case: 

(p(X) -- ~1 "n t- OL2X + ~3 x2 -}- a 4 X  3 (3.13) 

Two-dimensional  case: 

r  y) - c~1 + a2x + c~3y + a4x 2 + c~sy 2 + c~6xy 

+ o e r x  3 + c t s y  3 + O~gx2y -4- o ~ l o x y  2 (3.14) 

Three-dimensional  case: 

r  y ,  Z) - -  c t l  -4- Ct2X -+- c t 3 y  -+- Ct4z -+- Ct5x 2 -+- c t 6 y  2 + Oe7Z 2 + CtsXy q- c t9yz  

X 3 3 Z 3 2 .qt_ OLIOXZ -1 t- Otll  -+- O~12Y -+- C~13 q- C~14X2y -+- O15X Z 

+ O116y2Z + O~lrXy 2 + C~lsXZ 2 + ~ 1 9 Y Z  2 -3 t- Oe2oXyZ (3.15) 

3.3 SIMPLEX, COMPLEX, AND MULTIPLEX ELEMENTS 
Finite elements can be classified into three categories as simplex, complex, and multiplex 
elements depending on the geometry of the element and the order of the polynomial  used 
in the interpolat ion function [3.2]. The simplex elements are those for which the approx- 
imating polynomial  consists of constant  and linear terms. Thus.  the polynomials given 
by Eqs. (3.7)-(3.9) represent the simplex functions for one-. two-, and three-dimensional  
elements. Noting tha t  a simplex is defined as a geometric figure obtained by joining n + 1 
joints (nodes) in an n-dimensional  space, we can consider the corners of the elements 
as nodes in simplex elements. For example, the simplex element in two dimensions is a 
tr iangle with three nodes (corners). The three polynomial  coefficients C~l, c~e, and c~3 of 
Eq. (3.8) can thus be expressed in terms of the nodal values of the field variable r The  
complex elements are those for which the approximat ing polynomial  consists of quadratic,  
cubic, and higher order terms, according to the need, in addit ion to the constant  and 
linear terms. Thus,  the polynomials given by Eqs. (3.10)-(3.15) denote complex functions. 
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Figure 3.2. Example of a Multiplex Element. 

The complex elements may have the same shapes as the simplex elements but will have 
additional boundary  nodes and, sometimes, internal nodes. For example, the interpolat- 
ing polynomial for a two-dimensional complex element (including terms up to quadratic 
terms) is given by Eq. (3.11). Since this equation has six unknown coefficients c~,, the cor- 
responding complex element nmst have six nodes. Thus. a t r iangular  element with three 
corner nodes and three midside nodes satisfies this requirement. The multiplex elements 
are those whose boundaries are parallel to the coordinate axes to achieve interelement 
continuity, and whose approximat ing polynomials contain higher order terms. The rectan- 
gular element shown in Figure 3.2 is an example of a multiplex element in two dimensions. 
Note tha t  the boundaries of the simplex and complex elements need not be parallel to the 
coordinate axes. 

3.4 INTERPOLATION POLYNOMIAL IN TERMS OF NODAL 
DEGREES OF FREEDOM 

The basic idea of the finite element method is to consider a body as composed of several 
elements (or subdivisions) tha t  are connected at specified node points. The unknown 
solution or the field variable (e.g.. displacement, pressure, or tempera ture)  inside any 
finite element is assumed to be given by a simple function in terms of the nodal values of 
tha t  element. The nodal values of the solution, also known as nodal degrees of freedom, 
are t reated as unknowns in formulating the system or overall equations. The solution of 
the system equations (e.g.. force equilibrium equations or thermal  equilibrium equations 
or continuity equations) gives the values of the unknown nodal degrees of freedom. Once 
the nodal degrees of freedom are known, the solution within any finite element (and hence 
within the complete body) will also be known to us. 

Thus, we need to express the approximating polynomial in terms of the nodal degrees 
of freedom of a typical finite element e. For this, let the finite element have AI nodes. 
W'e can evaluate the values of the field variable at the nodes by subst i tut ing the nodal 
coordinates into the polynomial equation given by Eqs. (3.1)-(3.3). For example, Eq. (3.1) 
can be expressed as 

o(x) - ~Tff (3.16) 
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where r = r 

--,T X 2 n rj - { 1  x . . .  x }, 

and 

O~1 

O2 

Ctn+l 

The evaluation of Eq. (3.16) at the various nodes of element e gives 

! (at node 1) 

0 (at node 2) 

r (at node M) 

(e) 
r7 T (at node 1)]  

(~(~) ~T (at node 2 ) [  
- -  - . d -  [ q ] c ~  ( 3 . 1 7 )  

~r (at node M)J! 

where (P(~) is the vector of nodal values of the field variable corresponding to element e, 
and the square matrix [q] can be identified from Eq. (3.17). By inverting Eq. (3.17), we 
obtain 

d = [~]-lcP (e) (3.18) 

Substitution of Eq. (3.18)into Eqs. (3.1)-(3.3) gives 

5 -  ~ 6 -  ,7~[~]-'r ~ - [x]r ~ 

w h e r e  [N] - ~ [~]-1  

(3.19) 

(3.20) 

Equation (3.19) now expresses the interpolating polynomial inside any finite element in 
terms of the nodal unknowns of that element, (~(e). A major limitation of polynomial-type 
interpolation functions is that one has to invert the matrix [~] to find O. and [q]-I may 
become singular in some cases [3.3]. The latter difficulty can be avoided by using other 
types of interpolation functions discussed in Chapter 4. 

3.5 SELECTION OF THE ORDER OF THE INTERPOLATION POLYNOMIAL 
While choosing the order of the polynomial in a polynomial-type interpolation function, 
the following considerations have to be taken into account: 

(i) The interpolation polynomial should satisfy, as far as possible, the convergence 
requirements stated in Section 3.6. 

(ii) The pattern of variation of the field variable resulting from the polynomial model 
should be independent of the local coordinate system. 

(iii) The number of generalized coordinates (a~) should be equal to the number of 
nodal degrees of freedom of the element (q)i). 
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A discussion on the first consideration, namely, the convergence requirements to be satis- 
fied by the interpolation polynomial, is given in the next section. According to the second 
consideration, as can be felt intuitively also, it is undesirable to have a preferential coordi- 
nate direction. Tha t  is, the field variable representation within an element, and hence the 
polynomial, should not change with a change in the local coordinate system (when a linear 
t ransformation is made from one Cartesian coordinate system to another).  This property 
is called geometric isotropy or geometric invariance or spatial isotropy [3.4]. In order to 
achieve geometric isotropy, the polynomial should contain terms tha t  do not violate sym- 
metry  in Figure 3.3, which is known as Pascal triangle in the case of two dimensions and 
Pascal te t rahedron in the case of three dimensions. 

Thus, in the case of a two-dimensional simplex element (triangle). the interpolation 
polynomial should include terms containing both x and y. but not only one of them, in 
addition to the constant term. In tile case of a two-dimensional complex element (triangle), 
if we neglect the term x a (or x2y) for any reason, we should not include ya (or xy 2) also 
in order to maintain goemetric isotropy of the model. Similarly, in the case of a three- 
dimensional simplex element ( tetrahedron),  the approximating polynomial should contain 
terms involving x, y, and z in addition to the constant term. 

The final consideration in selecting the order of the interpolation polynomial is to make 
the total  number of terms involved in the polynomial equal to the number of nodal degrees 
of freedom of the element. The satisfaction of this requirement enables us to express the 
polynomial coefficients in terms of the nodal unknowns of the element as indicated in 
Section 3.4. 

3.6 CONVERGENCE REQUIREMENTS 
Since the finite element method is a numerical technique, we obtain a sequence of approx- 
imate solutions as the element size is reduced successively. This sequence will converge 
to the exact solution if the interpolation polynomial satisfies the following convergence 
requirements [3.5-3.8]: 

(i) The field variable must be continuous within the elements. This requirement is 
easily satisfied by choosing continuous functions as interpolat ion models. Since 
polynomials are inherently continuous, the polynomial type of interpolation 
models discussed in Section 3.2 satis~" this requirement. 

(ii) All uniform states of the field variable 0 and its partial  derivatives up to the 
highest order appearing in the functional I(o) must have representation in the 
interpolation polynomial when. in the limit, the element size reduces to zero. 

The necessity of this requirement can be explained physically. The uniform 
or constant value of the field variable is the most elementary type of variation. 
Thus, the interpolation polynomial must be able to give a constant value of the 
field variable within the element when the nodal values are numerically identi- 
cal. Similarly, when the body is subdivided into smaller and smaller elements, 
the part ial  derivatives of the field variable up to the highest order appearing in 
the functional* I(O) approach a constant value within each element. Thus, we 

* The finite element method can be considered as an approximate method of minimizing a 
functional I(o) in the form of an integral of tile type 

( do d2o d " o )  
I ( o )  - I O, d x  " -[tx 5 . . . . .  d x "  

The functionals for simple one-dimensional problems were given in Examples 1.2-1.4. 
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cannot  hope to obtain convergence to the extact solution unless the interpolat ion 
polynomial  permits  this constant  derivative state. 

In the case of solid mechanics and s t ructural  problems, this requirement  states 
tha t  the assumed displacement model must  permit  the rigid body (zero strain) 
and the constant strain states of the element. 

(iii) The field variable o and its partial  derivatives up to one order less than  the highest 
order derivative appearing in the functional I(o) must be continuous at element 
boundaries or interfaces. 

We know that  in the finite element method the discrete model for the continuous function 
0 is taken as a set of piecewise continuous functions, each defined over a single element.  
As seen in Examples 1.2-1.4. we need to evaluate integrals of the form 

/ d r---~~ da" 
dec ~ 

to derive the element characteristic matrices and vectors. We know tha t  the integral of a 
stepwise continuous function, say f(:r), is defined if f(:r) remains bounded in the interval 
of integration. Thus. for the integral 

/ d~-~O dx 
dac r 

to be defined, 0 must  be continuous to the order ( r -  1) to ensure that  only finite jump 
discontinuities occur in the r th  derivative of o. This is precisely the requirement  s ta ted 
previously. 

The elements whose interpolat ion polynomials satisfy the requirements (i) and (iii) 
are called "compatible" or "'conforming" elements and those satisfying condition (ii) are 
called "complete" elements. If r th  derivative of the field variable o is continuous, then 0 is 
said to have C '~ continuity. In terms of this notation,  the completeness requirement  implies 
tha t  0 must  have C ~ continuity within an element,  whereas the compatibi l i ty requirement  
implies tha t  O must  have C "-1 continuity at element interfaces.* 

In the case of general solid and s t ructural  mechanics problems, this requirement  
implies tha t  the element must deform without  causing openings, overlaps, or disconti- 
nuities between adjacent elements. In the case of beam. plate, and shell elements, the 
first derivative of the displacement (slope) across interelement boundaries also must be 
continuous. 

Al though it is desirable to satisfy" all the convergence requirements,  several interpo- 
lation polynomials tha t  do not meet all the requirements have been used in the finite 
element l i terature.  In some cases, acceptable convergence or convergence to an incorrect. 
solution has been obtained. In particular,  the interpolat ion polynomials that  are complete 
but  not conforming have been found to give satisfactory results. 

If the interpolat ion polynomial  satisfies all three requirements,  the approximate  solu- 
tion converges to the correct solution when we refine the mesh and use an increasing 
number  of smaller elements. In order to prove the convergence mathematical ly,  the 

t This statement assumes that the functional (I) corresponding to the problem contains derivatives 
of 0 up to the rth order. 
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Figure 3.4. All Previous Meshes Contained in Refined Meshes. 

mesh refinement has to be made in a regular fashion so as to satisfy the following 
conditions: 

(i) All previous (coarse) meshes must be contained in the refined meshes. 
(ii) The elements must be made smaller in such a way that  every point of the solution 

region can always be within an element. 
(iii) The form of the interpolat ion polynomial must remain unchanged during the 

process of mesh refinement. 

Conditions (i) and (ii) are i l lustrated in Figure 3.4, in which a two-dimensional region 
(in the form of a parallelogram) is discretized with an increasing number of t r iangular  
elements. From Figure 3.5, in which the solution region is assumed to have a curved 
boundary, it can be seen tha t  conditions (i) and (ii) are not satisfied if we use elements 
with straight boundaries. In s t ructural  problems, interpolation polynomials satisfying 
all the convergence requirements always lead to the convergence of the displacement 
solution from below while nonconforming elements may converge either from below or 
from above. 
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(a) Idealization with 6 elements (b) Idealization with 12 elements 

Figure 3.5. Previous Mesh Is Not Contained in the Refined Mesh. 

Notes: 
1. For any physical problem, the selection of finite elements and interpolat ion polyno- 

mials to achieve C o continuity is not verv difficult. However, the difficulty increases 
rapidly when higher order continuity is required. In general, the construct ion of 
finite elements to achieve specified continuity of order C ~ C 1 , C 2 . . . . .  requires skill, 
ingenuity, and experience. Fortunately.  most of the time, we would be able to use 
the elements already developed in an established area such as stress analysis for 
solving new problems. 

2. The construction of an efficient finite element model involves (a) representing the 
geometry of the problem accurately. (b) developing a finite element mesh to reduce 
the bandwidth,  and (c) choosing a proper interpolat ion model to obtain the desired 
accuracy in the solution. Unfortunatelv,  there is no a priori method  of creating 
a reasonably efficient finite element model tha t  can ensure a specified degree of 
accuracy. Several numerical tests are available for assessing the convergence of a 
finite element model [3.9, 3.10]. 

Some adaptive finite element methods  have been developed to employ the results 
from previous meshes to es t imate  the magni tude  and distr ibution of solution errors 
and to adaptively improve the finite element model [3.11-3.15]. There are four basic 
approaches to adaptively improve a finite element model: 

(a) Subdivide selected elements (called h-method)  

(b) Increase the order of the polynomial  of selected elements (called p-refinement) 

(c) Move node points in fixed element topology (called r-refinement) 

(d) Define a new mesh having a bet ter  distr ibution of elements 

Various combinations of these approaches are also possible. Determining which of 
these approaches is the best for a part icular  class of problems is a complex problem 
tha t  must  consider the cost of the entire solution process. 
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3.7 L INEAR I N T E R P O L A T I O N  P O L Y N O M I A L S  IN T E R M S  OF GLOBAL 
C O O R D I N A T E S  

The linear interpolat ion polynomials  correspond to simplex elements.  In this section, we 
derive the linear in terpolat ion polynomials  for the basic one-, two-, and three-dimensional  
e lements  in terms of the  global coordinates  tha t  are defined for the entire domain  or body.  

3.7.1 One-Dimensional Simplex Element 
Consider a one-dimensional  e lement  (line segment)  of length l with two nodes, one at each 
end, as shown in Figure 3.6. Let the nodes be denoted as i and j and the nodal  values of 
the field variable r as ~i  and cpj. The  variat ion of o inside the element  is assumed to be 
linear as 

0(x) = a l  + a2x (3.21) 

where a l  and a2 are the unknown coefficients. By using the nodal  condit ions 

r  at x - x ,  

D(x) = ~ j  at x = x j  

and Eq. (3.21), we obta in  

�9 i -- o~1 -Jr- O~2Xi 

~ j  -- C~1 + C~2X~ 

r 

I 

0!  

r = ~ + ~2x 

a *J 

r I 
I 
I 

i 

r 

_ _ _  J l  ~ ~/1~ 

I i  . . . . .  X 

x~ - ; 1 -  

. . . .  

F 

/ =  ( x ] -  x~) 

x j  _ . -  - - - - I  

Figure 3.6. 
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The  solution of these equat ions  gives 

O L 1 - - -  

and a 2 = 

(PiXj 
-(p (~ j X i I 

(Ioj - -  

(3.22) 

where xi and xj denote  the global coordinates  of nodes i and j ,  respectively. By 

subs t i tu t ing  Eq. (3.22) into Eq. (3.21). we obta in  

I + l x 
(3.23) 

This equat ion can be wri t ten ,  after r ea r rangement  of terms,  as 

(3.24) 

where  I N ( a ) ] -  [N,(x) iN~(x)]. (3.25) 

X~(x) - x~ t- x ] 

f l 

(3.26) 

and ~(~) _ {(I), } (I)a - vector of nodal  unknowns of e lement  e (3.27) 

Notice tha t  the superscr ipt  e is not used for ~,  and (I)j for simplicity. 

The  linear functions of x defined in Eq. (3.26) are called in terpola t ion or shape 
functions.* Notice tha t  each in terpola t ion function has a subscript  to denote  the node 
to which it is associated. Fur thermore .  the value of N,(x) can be seen to be 1 at node i 
(x = x~) and 0 at node j (x = x3). Likewise. the value of N3(x) will be 0 at node i and 
1 at node j .  These  represent  the common character is t ics  of in terpola t ion functions. They  
will be equal to 1 at one node and 0 at each of the o ther  nodes of the element.  

3.7.2 Two-Dimensional Simplex Element 
The  two-dimensional  s implex element is a s t ra ight-s ided tr iangle with three  nodes, one 
at each corner, as indicated in Figure  3.7. Let the nodes be labeled as i, j ,  and k by 

* The original polynomial type of interpolation model 0 = ~ Tc7 (which is often called the inter- 
polation polynomial or interpolation model of the element) should not be confused with the 
interpolation functions Ni associated with the nodal degrees of freedom. There is a clear dif- 
ference between the two. The expression ~rc7 denotes an interpolation polynomial that applies to 
the entire element and expresses the variation of the field variable inside the element in terms of 
the generalized coordinates a, .  The interpolation function N, corresponds to the ith nodal degree 
of freedom (I)(e) and only the sum EzNidPi le) represents the variation of the field variable inside 

the element in terms of the nodal degrees of freedom (Pl e) In fact. the interpolation function 
corresponding to the ith nodal degree of freedom (Ni) assumes a value of 1 at node i and 0 at all 
the other nodes of the element. 
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% 

l ~ (  X,y) = % + O~2X + (z3y 

I I 

I l ~ k  J i 
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I ' I I I 
I I r ! 
I I ! 

I I �9 ! 

I I �9 

', 
I I 

I i 
x ! (x,y) (xi,Yi) 

I 

k 
(xk,~k) 

F igure  3.7. 

proceeding counterclockwise from node i, which is arbitrarily specified. Let the global 
coordinates of the nodes i, j ,  and k be given by ( x~ ,y i ) ,  (x  3, Y3), and ( x k , y k )  and the 
nodal values of the field variable r y) by (P~, Oj, and Ok, respectively. The variation of 
4) inside the element is assumed to be linear as 

The nodal conditions 

r  y )  -~- O~1 -Jr- O~2X -~- O~3y 

r  at (x--x~,y=y~) 

~ b ( x , y ) - ~ j  a t  (x-xj ,y=g3) 

r  y) - ~ ~t (z  - ~ ,  ~ - y~) 

lead to the system of equations 

~i -- a l  + a2xi + a3y~ 

~j  -- a l  + a2xj + 0t3y3 

c~k -- a l  + a2Xk  + a3yk  

(3.28) 

(3.29) 
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The solution of Eqs. (3.29) yields 

1 

al  -- 2---~(a;q ~, + a ~  + ak~k) 
1 

c t 2 -  -~A ( b , 'IP i + bag' j + b k OP k ) 

1 
a 3 -  -~A (Ci'~, + cacPj + c k ~ k )  

where A is the area of the triangle i j k  given by 

A - -~ x j gJ - -~ g3 
xk  yk 

+ x 3 y l , .  + x t , . y i  - -  X i y k  - -  X 3 y i  - -  X k y j )  

a~ - -  x j y k  - X k Y j  

a j  - -  X k  y i  - -  x i y k  

ak - -  x ~ y j  - x j y i  

b i  - y j  - y k  

b j  - y k  - y i  

bk -- yi - Y3 

Ci - -  X k - -  X 3 

c j  - -  x i  - -  X k  

c k  - -  x j  - -  x i 

Substi tution of Eqs. (3.30) into Eq. (3.28) and rearrangement yields the equation 

where 

[x( . .  y)] = [x,(x. y) .%(~. y) :%(..  y)]. 

1 

N j ( x ,  y) = ~---~(aj + bax + c j y )  

1 
Nk(x,  y) = -~A (ak + bka'+ cky) 

and 

- q~j  - 

~ k  

vector of nodal unknowns of element e. 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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Notes: 
1. The  shape funct ion N ~ ( x , y )  when evaluated at node i (x~ ,g , )  gives 

1 
N~(x i , y~ )  - -~--~(ai + bixi + c iy , )  

1 
2----~(xjyk - x k y j  + xzy j  - x i yk  -4- xky i  - x j y i )  = 1 (3.37) 

It can be shown tha t  N~(x ,  y) = 0 at nodes j and k. and at all points  on the line 
passing th rough  these nodes. Similarly, the shape functions N a and Nk have a value 
of 1 at nodes j and k, respectively, and 0 at other  nodes. 

2. Since the in terpola t ion  functions are linear in x and y. the gradient  of the field 
variable in x or y direct ion will be a constant .  For example,  

O,(x,y) 
Ox 

0 ~(e) 
= o x [ N ( x , y ) ]  - ( b~ (P ,  + ba(P, + b k ' ~ k ) / 2 A  (3.38) 

Since (I)i, (I)j, and (I)k are the  nodal  values of O ( independent  of x and y) and bi, bj, 
and bk are cons tants  whose values are fixed once the nodal  coordinates  are specified, 
(O0 /Ox)  will be a constant .  A cons tant  value of the gradient  of 0 within  an e lement  
means  t ha t  many  small  e lements  have to be used in locations where rapid changes 
are expected  in the value of r 

3.7.3 Three-Dimensional Simplex Element 
The  three-dimensional  s implex element  is a flat-faced t e t r ahedron  with four nodes, one 
at each corner, as shown in Figure  3.8. Let the nodes be labeled as i. j ,  k, and l, where 
i, j ,  and k are labeled in a counterclockwise sequence on any face as viewed from the 
vertex opposi te  this face, which is labeled as l. Let the values of the field variable be 
r ~ j ,  ~k, and (I)t and the global coordinates  be ( x ~ , y i . z , ) .  ( x j , y j . z j ) ,  ( X k , y k , Z k ) ,  and 
(xl, Yl, zt) at nodes i, j ,  k, and l, respectively. If the variat ion of O(x, g, z) is assumed to be 
linear, 

r  y, z) = a l  + a 2 x  + a3tl + a 4 z  (3.39) 

the  nodal  condit ions 0 = ~,  at  ( x i , y i , z ~ ) ,  0 = (Pa at (xa ,ya .z j ) .  o = 4Pk at ( x k , y k , z k ) ,  
and O = (Pl at (xz, yt, zl) produce the sys tem of equat ions  

(I)i = 0~1 q- ~2xi + c~3yz + c~4z, 

~ j  = ctl q-- o~2xj q'- o~3yj q-o~4z 3 

(P~ = 0~ + c~2xt + c~3gl + o~4zl 

(3.40) 
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k 
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Y 

Figure 3.8. A Three-Dimensional Element. 

Equations (3.40) can be solved and the coefficients C t l ,  Ct2,  Ct3, and c~4 can be expressed as 

1 
c~1 - -6-~ ( a ~ ~P i + a 3 0P ~ + a k (P k + a z ~ z ) 

1 (b,d#, + bjO#j + bk~k + b~d#z) (3.41) OZ2 --  - ~  

1 

1 (d~Op + djdpj + dk~k + d l~ l )  Ct4 - -  ~ i 

where V is the volume of the tetrahedron i j k l given by 

1 
v -  

1 x~ yi zi 
1 xj g3 z3 
1 xk yk zk 
1 xl yl zz 

(3.42) 

az  - -  

x 3 gj  z j  

x k  gk  z k  

x t  gl zz 

(3.43) 

b ~  ~ m 

YJ 

y k  

gl 

z j  

Zk 

Zl 

(3.44) 
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xj  1 zj 
xk 1 zk 
xz 1 zl 

(3.45) 

and 

d i  ~ 

xj  yj 

Xk Yk 
xz Yl 

1 
1 , 
1 

(3.46) 

with the other constants  defined by cyclic interchange of the subscripts in the order l, 
i, j ,  k. The signs in front of determinants  in Eqs. (3.43)-(3.46) are to be reversed when 
generat ing aj, bj, cj, dj and a~, b~, c~, d~. By subst i tut ing Eqs. (3.41) into Eq. (3.39), 
we obtain 

where 

r  = N~(x,y,z)~P~ + N 3 ( x , y , z ) ~ j  + Nk(x ,y .z )4Ok + N~(x,y,z)4Ol 

= [ g ( x , y , z ) ] ~  (~) (3.47) 

and 

[N(x, y,z)] - [N~(x, y , z )  Nj(x,y,~) Nk(x,~,,) 

1 (a~ + bix + c~y + d~z) N i ( x , y , z )  = 

1 
N j ( x ,  y, z) - --~--~(aj + bjx + cjy + d3z) 

1 
Nk(x ,  y, z) -- --6~(ak + bkx + cky + dkz) 

1 (al + blx + cly + dlz) Nl (x ,  y, z) - - ~  

N~(x, y, z)] 

(3.48) 

(~(~) = (I)y (3.49) 
':I:' k 

3.8 INTERPOLATION POLYNOMIALS FOR VECTOR QUANTITIES 
In Eqs. (3.21), (3.28), and (3.39), the field variable r has been assumed to be a scalar 
quantity. In some problems the field variable may be a vector quant i ty  having both mag- 
ni tude and direction (e.g., displacement in solid mechanics problems). In such cases, the 
usual procedure is to resolve the vector into components  parallel to the coordinate axes 
and t reat  these components  as the unknown quantities. Thus, there will be more than 
one unknown (degree of freedom) at a node in such problems. The number of degrees of 
freedom at a node will be one, two, or three depending on whether the problem is one-. 
two-, or three-dimensional.  The notat ion used in this book for the vector components  is 
shown in Figure 3.9. All the components  are designated by the same symbol, qS, with a 
subscript denoting the individual components.  The subscripts, at any node, are ordered 
in the sequence x, y, z s tar t ing with the x component.  The x, g, and z components  of the 
vector quant i ty  (field variable) r are denoted by u, v, and w, respectively. 
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(D2i= V i 
f 

i , J~  ~2i-, = ui 
( x i ' Y i / ~  

X i" -Xj :U, (~2j _... i,~. / ~ ( ~ k  - -  Vk  

y j ~ - " " ~ r  - u (x " )  (a) One-dimensional problem . . , 2j-~ - 7 k,Yk I [xj,yj) 

0 =x 

(b) Two-dimensional problem 

(~3i = Wi 

(xi,Yi, Zi) i ~ r  ~ = v i 

(D3j= i (x~,y~,z~)_ ~ = v~ 

(Xj,.~,Zj) 31 

l r k /~ " '~ r  
| �9 (Xk,Y k, Zk) 

~ . ~ y  ([~3k 2 = Uk 

x 
(c) Three-dimensional element 

Figure 3.g. Nodal Degrees of Freedom When the Field Variable Is a Vector. 

The interpola t ion function for a vector quant i ty  in a one-dimensional  element will be 

same as tha t  of a scalar quant i ty  since there is only one unknown at each node. Thus, 

, ( ~ ) -  ~-,(~)~, + %(~)% = [~(~)]~(~) (3.5o) 

where 

[~(x) ]  -- [.v, (x) %(x ) ] .  
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and u is the component  of 4) (e.g., displacement) parallel to the axis of the element tha t  is 
assumed to coincide with the x axis. The shape functions N~(x) and Nj(x) are the same 
as those given in Eq. (3.26). 

For a two-dimensional tr iangular (simplex) element, the linear interpolation model of 
Eq. (3.33) will be valid for each of the components  of 0, namely, u and v. Thus, 

u(x, y) = Ni(x, y)~2i-i + Nj(x, y)~2j-t -+- Nk(x, y)dP2k-1 (3.51) 

and 

v(x. y) - N.(x. y)~:~ + Nj(x. y),~j + N,(x. y)e:~ (3.52) 

where Ni, N3, and Nk are the same as those defined in Eq. (3.35); (I)2~-1, (I)23-1, and 
(I)2k-i are the nodal values of u (component of 0 parallel to the x axis); and (I)2i, (I)2j, and 
(I)2k are the nodal values of v (component of ~ parallel to the g axis). Equations (3.51) 
and (3.52) can be writ ten in matr ix  form as 

{~(*, y)} 5( ~ ) ~(x, y) - ~(~, y) - [X(~, ~)] (3.53) 

where 

_ [Ni(x, y) 0 Nj(x, y) 0 Nk(x, y) 0 ] (3.54) [x (~ ,  Y)] 0 X~(x,y) 0 X3(x,~) 0 X~(x,y) [ .1 

and 

(I)2i-- 1 
(I)2i 
~2j-1 
(I)2j 
(I)2k-i 
(I)2k 

-- vector of nodal degrees of freedom (3.55) 

Extending this procedure to three dimensions, we obtain for a te t rahedron (simplex) 
element, 

u(x.y.z) } 
~(x. y. z) = ~(x. y. z) = [N(~. y. z)]~ (~) 

w(x.y.z) 
(3.56) 
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where 

[ X~(x, y, ~) o o N~ (x, ~, z) 
IN(x, ~, ~)] = 0 X~(x,y.z) 0 0 

0 0 N , ( x , y , z )  0 

0 0 N k ( x , y . z )  0 
N~(x.y,z) o o N~(x.y.z) 

0 .~5(x. y. :) 0 o 

0 Nl(x. y, z) 0 0 ] 
0 0 N~(x,y ,z)  0 

Nk(x. y, z) 0 0 X~(x. y. z) 
(3.57) 

(I)3i _ 

(I)3i _ 

4 9 3 j -  

(~)33 - 

~33  

(~)3k - 

(I)3k _ 

~ 3 k  

~31 - 

(I)31 _ 

~3Z 

(3.58) 

and the shape functions N~. Nj,  Nk, and Nl are the same as those defined in Eq. (3.48). 

3.9 LINEAR INTERPOLATION POLYNOMIALS IN TERMS OF LOCAL 
COORDINATES 

The derivation of element characteristic matrices and vectors involves the integrat ion of 
the shape functions or their derivatives or both over the element.  These integrals can be 
evaluated easily if the interpolat ion functions are wri t ten in terms of a local coordinate 
system that  is defined separately for each element.  

In this section, we derive the interpolat ion functions of simplex elements in terms 
of a part icular  type of local coordinate systems, known as natura l  coordinate systems. 
A natura l  coordinate system is a local coordinate system that  permits  the specification 
of any point inside the element bv a set of nondimensional  numbers  whose magni tude  lies 
between 0 and 1. Usually, natural  coordinate systems are chosen such tha t  some of the 
natural  coordinates will have unit magni tude  at primary* or corner nodes of the element.  

3.9.1 One-Dimensional Element 
The natura l  coordinates for a one-dimensional (line) element are shown in Figure 3.10. 
Any point P inside the element is identified by two natural  coordinates L1 and L2, which 

* T h e  n o d e s  l o c a t e d  a t  p l a c e s  o t h e r  t h a n  a t  c o r n e r s  (e .g . ,  m i d s i d e  n o d e s  a n d  i n t e r i o r  n o d e s )  a r e  

c a l l e d  s e c o n d a r y  n o d e s .  
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I . . . .  
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(o,~) 

F i g u r e  3.10. Natural Coordinates for a Line Element. 

are defined as 

ll 
L I = - - =  

1 x2 - -  X l  

L 2 =  l ~ _  X - X l  (3.59) 
X 2  ~ X l  

X 2  - -  X 

where 11 and 12 are the distances shown in Figure 3.10, and l is the length of the element. 
Since it is a one-dimensional element, there should be only one independent coordinate 
to define any point P. This is true even with natural  coordinates because the two natural  
coordinates L1 and L2 are not independent but are related as 

L 1 - t - L 2 -  ~ + ~ = 1  (3.60) 

A study of the properties of L1 and L2 reveals something quite interesting. The nat- 
ural coordinates L1 and L2 are also the shape functions for the line element [compare 
Eqs. (3 .59)wi th  Eqs. (3.26)]. Thus, 

N~ = L~, Nj = L2 (3.61) 

Any point x within the element can be expressed as a linear combination of the nodal 
coordinates of nodes 1 and 2 as 

x - x l L i  + x 2 L 2  (3.62) 

where L1 and L2 may be interpreted as weighting functions. Thus, the relationship between 
the natural  and the Cartesian coordinates of any point P can be writ ten in matr ix form as 

{'}--[:1 xll{ L1 x L2} (3.63) 

o r  

{L,}_ 1 ix2 11{ } 1{ x2 1}{1} ,364, 
L2 ( x 2 - x l )  -Xl  1 = l- - xx  1 x 
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If f is a function of L1 and L2, differentiation of f with respect to x can be performed. 
using the chain rule, as 

d f  O f  OL~ O f  OL2 (3.65) 
d---x = O L 1 0 x  ~ OL2 0 x  

where, from Eq. (3.59), 

OL1 = _ ~ 1  and OL2 _- 1 (3.66) 
Ox x2 - x~ Ox x2 - x~ 

Integrat ion of polynomial terms in natural  coordinates can be performed by using the 
simple formula 

x 2  

f LTL~ d~ - 
32 1 

a!3! 

(a + 3 + 1)! 
l (3.67) 

where c~! is the factorial of a given by c~! = c~(c~ - 1)(c~ - 2 ) . . .  (1). The value of the integral 
in Eq. (3.67) is given for certain combinations of a and 3 in Table 3.1. 

3.9.2 Two-Dimensional (Triangular) Element 
A natural  coordinate system for a t r iangular  element (also known as the tr iangular  coor- 
dinate system) is shown in Figure 3.11(a). Although three coordinates L1, L2, and L3 are 
used to define a point P.  only two of them are independent.  The natural  coordinates are 
defined as 

A1 .42 L3 - A 3  (3.68) 
L1 = --A" L2 - --~-. A 

Table 3.1. 

Value of Value of the integral 
in Eq. (3.67)// 

0 0 1 
1 0 1/2 
a 1 a/6 
2 0 1/3 
1 2 1/12 
3 o 1/4 
4 0 1/5 
2 2 1/30 
3 1 1/20 
1 4 1/30 
3 2 1/60 
5 0 1/6 
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Figure 3.11. Area Coordinates for a Triangular Element. 

. u 2  
LI =o.o 

where A1 is the area of the triangle formed by the points P.  2 and 3; A2 is the area of 
the triangle formed by the points P,  1 and 3, A3 is the area of the triangle formed by the 
points P,  1 and 2; and A is the area of the triangle 123 in Figure 3.11. Because L~ are 
defined in terms of areas, they are also known as area coordinates. Since 

A I + A 2 + A a = A ,  
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we have 

.41 A2 A3 
-~ + ~ + ~ -- L1 + L2 + L3 - 1 (3.69) 

A study of the properties of L~. L2, and L3 shows that  they are also the shape functions 
for the two-dimensional simplex (triangular) element: 

N~ = L1. Nj = L2. NK = L3 (3.70) 

The relation between the natural and Cartesian coordinates is given by (see problem 3.8) 

X = XlL1 + x2L2 + x3L3[ 

I y = y~L1 + y2L2 + y3L3 
(3.71) 

To every set of natural coordinates (L1. L2. L3) [which are not independent but are related 
by Eq. (3.69)], there corresponds a unique set of Cartesian coordinates (x, y). At node 1. 
L1 = 1 and L2 = L3 = 0. etc. The linear relationship between L~ (i = 1.2,3) and (x,y) 
implies that  the contours of L1 are equally placed straight lines parallel to the side 2, 3 
of the triangle (on which L1 = 0), etc. as shown in Figure 3.11(b). 

Equations (3.69) and (3.71) can be expressed in matrix form as 

{1} El 1 11{L1 } 
X - -  :El  X 2  X 3  L2 
y yl y2 y3 L3 

(3.72) 

Equation (3.72) can be inverted to obtain 

} I-(x:Y  - 
gl 1 I(x3yl - xly3) L2 - 

L(xlu: - 
(Y2 -- Y3) 'X3 X2 ] {1} 

X l  - -  X 3  X 

( x 2 - x l  y 

(3.73) 

where A is the area of the triangle 1, 2, 3 given by 

1 A-~ 
1 x l  yl  

1 x2 Y2 

1 x3 Y3 

(3.74) 

Notice that  Eq. (3.73) is identical to Eq. (3.35). 

If f is a function of L1. L2. and L3, the differentiation with respect to x and y can be 
performed as 

O f _  ~ Of OL~ 
Ox OLz Ox 

z - -1  

Of = ~-~ Of OL~ 
Oy ~,=10Li Oy 

(3.75) 



LINEAR INTERPOLATION POLYNOMIALS OF LOCAL COORDINATES 105 

where 

OL1 y2 - y3 OL1 X 3  - -  X 2  

Ox 2 A  ' Oy 2 A  

OL2 Y3 - yl  OL2 x l  - x3 

2 A  ' Oy 2 A  

OL3 yl  - y2 OL3 12 - x l  

Ox 2 A  ' Oy 2 A  

Ox 
(3.76) 

For integrating polynomial terms in natural coordinates, we can use the relations 

L I L ~ .  ds - (a + 3 + 1)!/: (3.77) 
L 

and 

L 1 L ~ L ~ .  dA = (c~ + 3 + ~ +  2)! 2A (3.78) 
A 

Equation (3.77) is used to evaluate an integral that is a function of the length along an 
edge of the element. Thus, the quant i ty/ :  denotes the distance between the two nodes that 
define the edge under consideration. Equation (3.78) is used to evaluate area integrals. 
Table 3.2 gives the values of the integral for various combinations of a, 3, and 7. 

Table 3.2. 

Value of Value of the integral Value of the integral 
(~ ~ ~ in Eq. (3.77)//: in Eq. (3.78)/A 

0 0 0 1 1 
1 0 0 1/2 1/3 
2 0 0 1/3 1/6 
1 1 0 1/6 1/12 
3 0 0 1/4 1/10 
2 1 0 1/12 1/30 
1 1 1 1/60 
4 0 0 1/5 1,/15 
3 1 0 1/20 1/60 
2 2 0 1/30 1/90 
2 1 1 - -  1/180 
5 0 0 1/6 1/21 
4 1 0 1/30 1/105 
3 2 0 1/60 1/210 
3 1 1 - -  1/420 
2 2 1 ~ 1/630 
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3.9.3 Three-Dimensional (Tetrahedron) Element 
The natural  coordinates for a te t rahedron element can be defined analogous to those of 
a t r iangular  element.  Thus. four coordinates L1. L2. La. and L4 will be used to define 
a point P,  a l though only three of them are independent.  These natural  coordinates are 
defined as 

t5 I4 
L1 = ~i L 2 -  ~') La = -  L 4 -  (3.79) 

where V~ is the volume of the te t rahedron formed by the points P and the vertices other 
than  the vertex i (i = 1 .2 .3 .4) .  and I" is the volume of the te t rahedron element defined 
by the vertices 1.2, 3, and 4 (Figure 3.12). Because the natural  coordinates are defined in 
terms of volumes, they are also known as volume or te t rahedral  coordinates. Since 

we obtain 

v + V + V + V - L,  + L~_ + L.~ + L~ - ~ (3.S0) 

The volume coordinates L1, L2, L3, and L4 are also the shape functions for a three- 
dimensional simplex element: 

N , -  L1.  A~ - L2.  N k  = La.  Nl  - L4 (3.81) 

4 (x4,Y4,Z 4) 

) 
L2,L3,L4) 

3 
1 (x3,Y3,Z3 ~ 

(%'Yl 'zl) (0,0,1,0) 
(~ ,o,o,o) 

z 

~ Y  

2 
(x2,Y2,Z2) 
(0,1,0,0) 

vi i -  1,2,3,4 Li= --g- 

V= Volume of 1 2 3 4 
V 1 = Volume of P2  3 4 

V 2 = Volume of P 1 3 4 

V 3 -  Volume of P 1 2 4 

V 4 = Volume of P 1 2 3 

Figure 3.12. Volume Coordinates for a Tetrahedron Element. 



LINEAR INTERPOLATION POLYNOMIALS OF LOCAL COORDINATES 107 

The  Car tes ian  and na tura l  coordinates  are related as 

x = L l x z  + L 2 x 2  + L33~3 -]- L 4 x 4  / 

y -  L l y l  + L2y2 + L3y3 + L4g4 

z = LxZl + L2z2 + L3z3 + L4z4 

(3.82) 

Equat ions  (3.80) and (3.82) can be expressed in mat r ix  form as 

/1/I1111 I/LI/ 
X ~_ Xl X2 X3 X4 L2 

Y yl y2 y3 Y4 L3 
z Zl z2 z3 z4 L4 

(3.83) 

The inverse relat ions can be expressed as 

ILl/ Ial bl cl  11/1/ L2 1 a2 b2 c2 d2 x 
L3 = 6-V a3 b3 C3 d3 y 
L4 a4 b4 c4 d4 z 

(3.84) 

where 

1 V=~ 
1 xl  yx Zl 
1 x2 y2 z2 
1 x3 y3 Z3 

1 x4 y4 z4 

- volume of the t e t r ahedron  1, 2, 3 . 4  (3.85) 

a l  - -  

X2 

X3 

X4 

Y2 

Y3 

Y4 

Z2 

Z3 

Z4 

(3.86) 

1 
b , = -  1 

1 

X2 

Cl ~ -  X3 

X4 

X2 

d l  - - -  x 3  

x 4  

Y2 

Y3 

Y4 

1 

Z2 

Z3 

Z4 

Z2 

1 z3 
1 z4 

Y2 1 
93 1 
94 1 

(3.87) 

(3.88) 

(3.89) 

and the other  cons tants  are obta ined  th rough  a cyclic pe rmuta t ion  of subscripts  1, 2, 3, 
and 4. These  cons tants  are the cofactors of the terms in the de te rminan t  of Eq. (3.85) and 
hence it is necessary to give proper  signs to them. If the t e t r ahedron  element  is defined in 
a r ight -handed Car tes ian  coordinate  system as shown in Figure 3.12, Eqs. (3.86)-(3.89) 
are valid only when the nodes 1, 2, and 3 are numbered  in a counterclockwise manner  
when viewed from node 4. 
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If f is a function of the natural  coordinates, it can be differentiated with respect to 
cartesian coordinates as 

Ox- 5-s Ox 
z--1  

O f _ ~  Of OL~ 
Ou-,=~ g-Li Oy 

O f _ ~  Of OL~ 
Oz- 5-s Oz 

z = l  

(3.90) 

where 

OL, _ _ b, OL, _ _ c, O L d _  _ di (3.91) 
Ox 6V ' Oy 6V ' Oz 6V 

The integration of polynomial terms in natural  coordinates can be performed using the 
relation 

/ /  ~ ~ L~3 L~4 dV = a!3!~!6! L~ L 2 (c~ +/3  + 3' + 5 + 3)! 6V (3.92) 
V 

The values of this integral for different values of a, 3, 7, and 5 are given in Table 3.3. 

Table 3.3. 

Value of Value of the integral 
3 ~ 5 in Eq. (3.92)/V 

0 0 0 0 1 
1 0 0 0 1/4 
2 0 0 0 1/10 
1 1 0 0 1/20 
3 0 0 0 1/20 
2 1 0 0 1/60 
1 1 1 0 1/120 
4 0 0 0 1/35 
3 1 0 0 1/140 
2 2 0 0 1/210 
2 1 1 0 1/420 
1 1 1 1 1/840 
5 0 0 0 1/56 
4 1 0 0 1/280 
3 2 0 0 1/560 
3 1 1 0 1,/1120 
2 2 1 0 1/1680 
2 1 1 1 1/3360 
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PROBL 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

EMS 

What  kind of interpolation model would you propose for the field variable 0 for 
the six-node rectangular  element shown in Figure a.13. Discuss how the various 
considerations given in Section 3.5 are satisfied. 

A one-dimensional simplex element has been used to find tile t empera ture  distri- 
bution in a straight fin. It is found that  the nodal tempera tures  of the element are 
140 and 100 ~ at nodes i and j .  respectively. If the nodes i and j are located 2 
and 8 cm from the origin, find the tempera ture  at a point 5 cm from the origin. 
Also find the t empera ture  gradient inside the element. 

Two-dimensional simplex elements have been used for modeling a heated fiat plate. 
The (x,y) coordinates of nodes i. j .  and k of an interior element are given by 
(5,4), (8,6) and (4.8) cm, respectively. If the nodal tempera tures  are found to be 
Ti = 100 ~ T a = 80 ~ and Tk = 110 ~ find (i) the tempera ture  gradients inside 
the element and (ii) the tempera ture  at point P located at (Xp, Yv) = (6, 5) cm. 

Three-dimensional  simplex elements are used to find the pressure distr ibution in 
a fluid medium. The (x. y, z) coordinates of nodes i. j, /,'. and 1 of an element are 
given by (2,4,2), (0.0.0). (4.0.0). and (2.0.6) in. Find the shape functions Ni, Nj. 
Nk, and Nl of the element. 

Show that  the condition to be satisfied for constant value of the field variable is 
~ir-_=_lNi - -  1 ,  where N~ denotes the shape function corresponding to node i and r 
represents the number of nodes in the element. 

Triangular elements are used for the stress analysis of a plate subjected to inplane 
loads. The components  of displacement parallel to (x, y) axes at the nodes i, 
j ,  and k of an element are found to be (-0.001.0.01) .  ( -0 .002,0.01) .  and 
(-0 .002,0.02)  cm. respectively. If the (x. y) coordinates of the nodes shown in 
Figure 3.14 are in centimeters, find (i) the distr ibution of the (x, y) displacement 
components  inside the element and (ii) the components  of displacement of the 
point (my, Yv) = (30.25) cm. 

T 
b 

1 

Y 

t 
L 

5 4 
A 

I 2 3 

I a/2 - , - -  a/2 ' - ~  

Figure 3.13. Six-Node Rectangular Element. 
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A 
I 
I 

3 
(4040) 

A I, 
I 
L -,,, ,-- tb, 

1-  
(2020) ~'2 (4020) 

~ v X  

F i g u r e  3 . 1 4 .  

3.7 The  t empe ra tu r e s  at the  corner nodes of a rec tangular  element ,  in ~ are given 
by Ti = 90, T3 = 84, Tk = 75, and Tl = 85. If the length and width  of the e lement  
are x~j = 15 m m  and y~ = 10 m m  and the conduct ion  coetficient of the mater ia l  
is k = 42.5 W / m - C ,  de te rmine  the following: 

(a) T e m p e r a t u r e  d is t r ibut ion  in the e lement  
(b) Heat  flow rates in x and y directions (qx and qy) using the relat ion 

{::} = - k  OT 

3.8 Derive the  re la t ionship between the na tu ra l  (area) and Car tes ian  coordinates  of a 
t r i angular  e lement  (Eq. 3.71). 

3.9 The  quadra t ic  in terpola t ion  function of a one-dimensional  e lement  with three  
nodes is given by 

2 
r  --- Ctl + C[2X -~ Ct3X 

If the  z coordinates  of nodes 1, 2, and 3 are given by 1, 3, and 5 in., respectively, 
de te rmine  the  matr ices  [~], [~]-1, and IN] of Eqs. (3.17). (3.18). and (3.20). 

3.10 The  cubic in terpola t ion  funct ion for the displacement  of a beam element  is 
expressed as 

~ ( X )  - -  Ctl -~- Cs "3 I"- Ct3X 2 -~ Cs 3 

with the  nodal  degrees of freedom defined a s  O1 - -  0 ( x  - -  X l ) ,  0 2  = ( d O / d x )  

(x = xx), 03 - r  - x~), and 04 - ( d O / d x ) ( x  - x2),  where xl  and xe denote  
the  x coordinates  of nodes 1 and 2 of the  element .  If xl  - 1.0 in. and x2 - 6 in., 
de te rmine  the  matr ices  [~], [ q ] - i  and [N] of Eqs. (3.17). (3.18). and (3.20). 
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3.11 The transverse displacement of a triangular bending element (w) is expressed as 

w(x) - Ctl -F a2x + ct3y + ct4x 2 + o~5xy + ct6y 2 

+ arx a + as(x2y + xy 2) + c~9y a 

The nodal degrees of freedom are defined as 0i = w(x~, y~), Oi+3 = (Ow/oqy)(x~, yi), 
r = (Ow/Ox)(xi, yi); i = 1. 2, 3, where (x~, gz) denote the coordinates of node i. 
If the (x, y) coordinates of nodes 1.2, and 3 are given by (0, 0), (0, 5), and (10, 0), 
respectively, determine the matrices [q], [~]-1, and IN] of Eqs. (3.17), (3.18), 
and (3.20). 

3.12 Consider the displacement model of a triangular bending element given in Prob- 
lem 3.11. Determine whether the convergence requirements of Section 3.6 are 
satisfied by this model. 

Note: The expression for the functional I (potential energy) of a plate in bending 
is given by 

I : ~  [ ~  + -~y2 

A 

-//(pw) dx dy 
A 

02w 02w 
- 2 ( l - v )  Ox 2 0 y  2 

c)2w 2] dx 
i ) x O y ] }  dy 

where p is the distributed transverse load per unit area, D is the flexural rigidity, 
v is the Poisson's ratio, and A is the surface area of the plate. 

3.13 The coordinates of the nodes of a three-dimensional simplex element are given 
below: 

Node 

number 

Coordinates of the node 

x y z 

0 0 0 
10 0 0 
0 15 0 
0 0 20 

Determine the shape functions of the element. 

3.14 The shape function matrix of a uniform one-dimensional simplex element is given 
by [N] - [N~ Nj], with N~ = 1 - ( x / 1 )  and Nj - (x/l). Evaluate the integral: 
f f fv[N]Y[N]dV, where V = Adx.  A is the cross-sectional area, and / i s  the 
length of the element. 

3.15 Evaluate the integral fc,~ f f r d s  along the edge ij of a simplex triangle, where 

/2ij denotes the distance between the nodes i and j ,  and the vector of shape 
functions iV is given by f v  = (Ni ~ Nk). 

3.16 Evaluate the integral fs,~k f . ~ Y d S  on the face ijk of a simplex tetrahedron, where 

&jk denotes the surface area bounded by the nodes i, j ,  and k, and the vector of 
shape functions is given by f r _ (N, N 3 Nk Nt). 
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HIGHER ORDER AND 
ISOPARAMETRIC ELEMENTS 

4.1 INTRODUCTION 
As stated earlier, if the interpolation polynomial is of order two or more, the element 
is known as a higher order element. A higher order element can be either a complex or 
a multiplex element. In higher order elements, some secondary (midside and /or  interior) 
nodes are introduced in addition to the primary (corner) nodes in order to match the num- 
ber of nodal degrees of freedom with the number of constants (also known as generalized 
coordinates) in the interpolation polynomial. 

For problems involving curved boundaries, a family of elements known as "isopara- 
metric" elements can be used. In isoparametric elements, the same interpolation functions 
used to define the element geometry are also used to describe the variation of the field 
variable within the element. Both higher order and isoparametric elements are considered 
in this chapter. 

4.2 HIGHER ORDER ONE-DIMENSIONAL ELEMENTS 
4.2.1 Quadratic Element 
The quadratic interpolation model for a one-dimensional element can be expressed as 

, ( x )  = c~1 + a2x + c~3x 2 (4.1) 

Since there are three constants (~i, c~2, and (~3 in Eq. (4.1), the element is assumed to have 

three degrees of freedom, one at each of the ends and one at the middle point as shown 

in Figure 4.1(b). By requiring that 

r  at x - - O  

r  at x = l / 2  

r = ~ k  at x = l  

(4.2) 

we can evaluate the constants (~i, c~2, and C~3 as 

a l  = ~i,  a2 = (4~j - 3~i - ~k)/1, 

a3 = 2 ( ~  - 2 ~  + (Pk)/12 
(4.3) 

113 
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node i node j 

' . . . . .  / . . . .  - - J  
i - -  

(a) Linear element 

node i node j node k 
A , . . . . . .  L A , i , , _  , �9 " ~  

L _ I / 2  - _ ,  _ L _  i l 2  ~ - J  
[ - - -  �9 " - - - I  

(b) Quadratic element 

node i node j node k node I 
. ~  ,, . - -  _-- _ _ , C , " 

l - - - - , 3  . . . .  b �9 H3 , = b -  ~/3 - - - ' I  

(c) Cubic element 

Figure 4.1. Location of Nodes in One-Dimensional Element (Global Node Numbers Indicated). 

With the help of Eq. (4.2), Eq. (4.1) can be expressed after rearrangement as 

0 ( x ) -  [N(x)]~ (~) (4.4) 

where 

[N(x)]=[N~(x)  N3(x ) Nk(x)] .  

X X 
N,(x) = ( 1 -  2 ~ )  (1 - ~ )  , 

x j (~ )=4  T 1 - 7  ' 

Nk(x) -- ---[ 1 - 2 - [  , 

(4.5) 

and 

q~k 
(4.6) 

4.2.2 Cubic Element 
The cubic interpolation model can be expressed as 

0(~) - ~ ,  + ~ x  + ~ + ~ (4.7) 

Because there are four unknown coefficients a l ,  a2, a3, and a4, the element is assumed 
to have four degrees of freedom, one at each of the four nodes shown in Figure 4.1(c). 
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By requiring that  

r  at x = 0  

49(x)=cP3 at x = l / 3  

~ ( x ) = ~ k  at x = 2 1 / 3  

r  at x = l  

(4.8) 

the constants c~1, c~2, c~a, and c~4 can be evaluated. The substitution of values of these 
constants into Eq. (4.7) leads to 

r = [N(x)]~ (e) (4.9) 

where 

[N(x)]=[N~(x) &(x) N~(z)N~(x)], 

( 
Nj ( x ) = 9 -[ 1 -  --~ 1 - - - [  , 

g ~  ( ~ ) = - -~ -[ 1 -  -7-  1 -  -[ , 

3x)(3x) 
N , ( x ) =  T 1 - T  1 - - ~  , 

(4.10) 

and 

(~(e) = ~3 (4.11) 
~k 

(I)t 

It can be observed that the application of the previous procedure for determining the 
coefficients ai and the nodal interpolation functions Ni(x)  becomes more tedius as the 
order of the interpolation polynomial increases. The nodal interpolation functions Ni(x)  
can be constructed in a simpler manner by employing either natural coordinates or classical 
interpolation polynomials. 

4.3 HIGHER ORDER ELEMENTS IN TERMS OF NATURAL COORDINATES 
4.3.1 One-Dimensional Element 
(i) Quadratic element 
The normalized or natural coordinates L1 and L2 for a one-dimensional element were 
shown in Figure 3.10. If the values of 4) at three stations xl,  (xl + x2)/2, and x2 are taken 
as nodal unknowns, the quadratic model for r can be expressed as 

r  [N]~ ( ~ ) -  [N~ N2 N3]~ (~ (4.12) 
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where  

{ol} e {o xl }c  {0 at l lL2=0 },e,x L2 1 
(~(~) = (I)2 -- O(x~) -- 0 ( a t  LI  - ~, = 5 )  (4.13) 

(1)3 0(2 '3 )  0 (at L1 - 0 ,  L2 = 1) 

and  the  quadra t i c  nodal  in te rpo la t ion  funct ions  N~ can be expressed  in general  form as 

(i L2 + (i)L1L2" N~ -- a[~)L1 + a 2 a 3 i = 1, 2 .3  (4.14) 

For N1 we impose  the  r equ i r emen t s  

1 at  node  1 

N1 = 0 a t  n o d e 2  

0 at node  3 

(L1 = l ,  L 2 = 0 )  
1 (LI = L2 = 3) 

(L1 = 0, L2 = 1) 

/~) (~) and (1) and find the  values of the  cons tan t s  a 1 . a 2 . a 3 as 

(11 - 0 ,  (1) - 2  (~) - 1 a 2 a 3 = a 1 

so tha t  Eq. (4.14) becomes  

N1 = L 1 - 2 L I L 2  

By using the  condi t ion  L1 + L2 = 1, we ob ta in  

2u -- L I ( 2 L 1 -  1) (4.15) 

Similarly, the  o ther  two nodal  in te rpo la t ion  funct ions  can be der ived as 

A:2 = 4L1Le (4.16) 

and ~ = L 2 ( 2 L 2 -  1) (4.17) 

T h e  nodal  in te rpo la t ion  funct ions  N~ appea r ing  in Eqs. (4 .15)-(4 .17)  are shown in 
F igure  4.2. 

(ii) Cubic element 
For a cubic e lement ,  we consider  four nodal  degrees  of f reedom, one at  each of the  nodes  

shown in F igure  4.1(c). T h e  cubic in te rpo la t ion  model  can be wr i t t en  as 

0 ( 3 ? ) -  [X](~ ( e ) -  [N1 N2 N3 N4](P (r (4.18) 

where  

~ / 
~(~) rb2 O(x2) r (at L1 = 2/3, L2 1/3) 

= ~3 = 0(x3)  = O ( a t L l = l / 3 ,  L2 2/3)  
q~4 o(x4)  0 (at L1 = 0, L2 1) 
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f 
.['- 4L1L2 

] 

A t 
- - v  

- - v  

Quadratic interpolation functions 
(three nodes) used in Eq. (4.12) 

Figure 4.2. Nodal Interpolation (or Shape) Functions for a Line Element. 

and the nodal interpolation functions Ni appearing in Eq. (4.18) can be expressed in terms 
of the natural coordinates as 

Ni -- a~i)L1 + a~i>L2 + a(i>L1L2 + ai')L~L2 (4.19) 

By requiring that  Ni be equal to one at node i and zero at each of the other nodes, we 
find that  

9L L2) N 1 - L 1  ( 1 - ~  1 

9L1L (1 3L ) N 2 - - - 5  2 - -  1 

ZL) N3 --9LIL2 ( I -  5 1 

9L1L2(1 - L1) N 4 - L 2 -  5 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

4.3.2 Two-Dimensional (Triangular) Element 
(i) Quadratic element 
The natural or triangular coordinates L1, L2. and L3 of a triangular element were shown 
in Figure 3.11(a). For a quadratic interpolation model, the values of the field variable 
at three corner nodes and three midside nodes (Figure 4.3(a)) are taken as the nodal 
unknowns and r y) is expressed as 

~(x, y ) -  [N]5 (~) - [ N ~  N~ . . .  N~]r (~) (4.24) 

where N~ can be derived from the general quadratic relationship 

(i)L2L3 + (i)LIL3 N~ = a~)L~ + 4 ~)c~ + ~(3 ~)c~ + a(:)L, L~ + a~ % (4.25) 
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1 1 

4 9 
6 

4 3 3 

2 2 6 

(a) Quadratic element (b) Cubic element 

Figure 4.3. Location of Nodes in a Triangular Element. 

as 

N~ = L , ( 2 L , -  1), 

N4 = 4L1 L2 

N5 = 4LzLz 

N6 = 4L1 L3 

i = 1 ,2 ,3  

(4.26) 

and 

(i)l (e) 0(Xl, Yl) (e) 0 (at L~ -- 1, L2 - L3 = 0) (~) 

d~2 O(x2, Y2) 0 (at L2 - 1 L1 -- L3 - 0 )  
~(e) _ . - = . (4.27) 

= 1  L 2 - - O )  (I)6 r y6) 0 (at L 1 -  L3 ~, 

The  nodal  in terpola t ion or shape functions of Eq. (4.26) are shown in Figure 4.4. 

(ii) Cubic element 
If a cubic in terpola t ion model  is used, 10 nodal unknowns are required. The location of 
the  nodes is shown in Figure 4.3(b), in which the nodes 4 and 5 are located at one-third 
points  along the edge 12 with similar locations for the nodes 6 and 7. and 8 and 9 along 
the edges 23 and 31, respectively. The  node 10 is located at the centroid of the t r iangle 
123. In this case, the in terpola t ion model  is given by 

O(x,y)-[N]5 (~) - [ X ~  X~ . . .  N~o]~ (~) (4.28) 

where the general  form of the nodal  in terpolat ion function can be assumed as 

(i) L2 + (')L L3 + (i) (i)L2 + (i)L3 + a  L1 2 LIL3 Ni = a~ ~)L1 + a 2 a 3 4 a5 a6 

+ a(i)L21L2 + a~ i) L22L3 + a(oi)L3 L 1 + a(1;)L1L2L3 (4.29) 



HIGHER ORDER ELEMENTS IN TERMS OF NATURAL COORDINATES 119 

l 4 

Ll(2Ll-1) 3 

. ~ , ~ ' - -  L2(2L2-1) 

1 
4 2"- 

6 5 

1 

,•••• 4L3L1 

1 

Figure 4.4. Quadratic Interpolation or Shape Functions for a Triangular Element. 
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By imposing the conditions that  N, be equal to one at node i and zero at each of the 
remaining nine nodes, we can obtain 

N, - ! L . ( 3 L ~ -  1 ) ( 3 L , -  2) i =  1 2 3 2 z ~ ~ 

9L1L2(3L 1) N 4 = g  1 -  

N s = ~ g L 1 L 2 ( 3 L 2 - 1 )  

9 
N6 = -~L:L3(3L2- 1) (4.30) 

9L2L3(3L3 1) N T =  ~ 

9 L La(3L 1) N 8 - - ~  1 3 -  

9 (3L1 1) ~ - -~ L1La 

Nlo = 27LIL2L3 

and 

(I:'t (~) O(xt,y~) (~) 

~ ( ~ ) _  ~2 _ 0(x2,  y2) = 
�9 

'~o O(xlo, ylo) 

r (at L1 = I ,  L 2 = L a  = 0 )  

0 (at L2 = 1, L1 = L3 = 0) 

6(at ,  L1 = L 2  = L 3  = 3) 

(~) 

(4.31) 

4.3.3 Two-Dimensional (Quadrilateral) Element 
Natural Coordinates 
A different type of natural coordinate system can be established for a quadrilateral element 
in two dimensions as shown in Figure 4.5. For the local r, s (natural) coordinate system, 

Y 

I. 
~ X  

4 

(x4,Y4) r 
(-1,1) 

1 
(xl ,Yl) 
(-1,-1) 

S 

~ ~ . ~ . - - ~ ' ~ 3  (x3,y 3 ) 
-- 1 ~(1,1) 

- . ~ r  

l (r,s) ~2 
(x2,Y2) 
(1,-1) 

Figure 4.5. Natural Coordinates for a Quadrilateral Element. 
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the origin is taken as the intersection of lines joining the midpoints  of opposite sides and 
the sides are defined by r = +1 and s = +1. The natural  and Cartesian coordinates are 
related by the following equation: 

0 0 0 0 
[o 0 0 0 N1 N2 N3 54 

Ixll 
X2 

X3 

X4 

y2 
y3 
Y4 

(4.32) 

where (xi, yi) are the (x, y) coordinates of node i (i = 1, 2, 3, 4), 

1 N~ = ~(1 + rr~)(1 + ss~), i =  1 ,2 ,3 ,4  (4.33) 

and the natural  coordinates of the four nodes of the quadrilateral  are given by 

(7"1,81) - - ( - 1 , - 1 ) ,  (r2,s2) = ( 1 , - 1 ) ,  (4.34) 

(r3, s3) = (1, 1), and (7"4,84) = ( - 1 ,  1). 

If r is a function of the natural  coordinates r and s, its derivatives with respect to x and 
y can be obtained as 

oqO = [ j ] - i  oqO 
(4.35) 

where [J] is a 2 x 2 matrix,  called the Jacobian matrix,  given by 

[ J ]  = 
-Ox/Or Oy/Or- 
Ox/Os Oy/Os 

= _1 [ - (1  - s) (1 - s) 
4 L ( l - r )  - ( l + r )  

IXl 1 yl 
( l + s )  - ( l + s ) ) ]  x2 y2 (4.36) 
( l + r )  ( 1 - r  x3 Y3 

x4 y4 

The integration of functions of r and s has to be performed numerically with 

d A = d x d y = d e t  [ J ] . d r d s  (4.37) 

and the limits of both r and s will be - 1  and 1. 
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(i) Linear element 
For a quadr i la tera l  element,  it is not possible to have linear variat ion of the field variable 
(in terms of two independent  coordinates)  if one degree of freedom is chosen at each of 
the four corner nodes. Hence. we take the interpolat ion model as 

,(x. y ) -  [x]~ ~ ' -  IX, x., ~u N~]~ (~) (4.38) 

where 

Ni - (1 + r r , ) (1  + ss,)/4, i -  1 .2 .3 ,4  (4.39) 

and /o,atr 1,/'e' 
f(e) ~2 O(x2 Y2) _ 0 (at r = 1.s = - 1 )  (4.40) 

= ~3 = o(x3 y3) o (at r = 1 . s -  1) 
(I)4 O(x4 y4) o (at r = - 1 . s  = 1) 

The  nodal  shape functions represented by Eq. (4.39) are shown in Figure 4.6(a). It can be 
seen tha t  the variat ion of the field variable along the edges of the quadr i la tera l  is linear. 
Hence, this element  is often called a linear element.  

(ii) Quadratic element 
If the values of O(x, Y) at the four corner nodes and four midside nodes are taken as the 
nodal  unknowns, we get a "quadrat ic"  element  for which the variat ion of the field variable 
along any edge is given by a quadra t ic  equation.  In this case. the in terpola t ion model  can 
be expressed as 

O(x, g ) -  [N](P ( ~ ) -  [.Y~ :~:2 "'" ~\~](P(~) (4.41) 

where 

1 N i -  5(1 + r r , ) (1  + ss,)(rr, + s s , -  1). 

1 F2 N s -  ~ ( 1 -  ) ( l + s s ~ )  

1 82 N6 -- 5(1 + rr6)(1 - ) 

1 F2 N T -  5 ( 1 -  ) ( l + s s T )  

1 82 Ns - 5 ( 1 +  rrs)(1  - ) 

i - 1 . 2 . 3 . 4  

(4.42) 

(ri, si) are the na tura l  coordinates  of node i (i - 1.2 . . . . .  8). and 

(e) 
(i)1 (e) O(Xl. Yl) (() O (at 7"= --1.8 = --1) 

~ ( e ) _  ~2. = O(x2. /12) _ O (at r = . l . s = - - l )  (4.43) 

~8 O(Xs gs) 0 (at r - - - 1 ,  s = 0 )  

Typical  quadra t ic  in terpola t ion or shape functions used in Eq. (4.41) are shown in 
Figure 4.6(b). 
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N 1 = (1-r)(1-s)/4 4 
. , l  4 
i r 1 . . . s  

" lL ' i  2 ~ 5 ~  3 3 

N2 = ( l_r) (  l_s) /4  r 

4 

2 3 

(a) Linear interpolation 
functions ( 4 nodes ) 

r """ 

1 
JL_ 

N1 at 

(b) Quadratic interpolation 
functions (8 nodes) 

Figure 4.6. Interpolation Functions for a Quadrilateral Element. 

4.3.4 Three-Dimensional (Tetrahedron) Element 
(i) Quadratic element 
The natura l  or te t rahedra l  coordinates L~, L2. L3, and L4 of a te t rahedron  element were 
shown in Figure 3.12. 

For a quadrat ic  interpolat ion model, there will be 10 nodal unknowns, 1 at each of the 
nodes indicated in Figure 4.7(a). Here, the nodes 1, 2 .3 .  and 4 correspond to the corners, 
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4 4 

"~ ti 2 o 2 

(a) Quadratic element (b) Cubic element 

Figure 4.7. Location of Nodes in Tetrahedron Element. 

whereas  the nodes 5-10 are located at the midpoints  of the edges of the te t rahedron .  The  
variat ion of the field variable is given by 

O ( x , y , z )  - [ x ] ~  (~) - [x~ .~5 . . .  x~015 r (4.44) 

where Ni can be found as 

N ~ -  L ~ ( 2 L , -  1), 

~ - 4 L 1 L 2 ,  

NB - 4L2  L3 ,  

N~ - 4 L 1 L 3 ,  

i - 1 , 2 , 3 . 4  

(4.45) 

Ns - 4L1L4, 

,u -- 4L2  L4 , 

N l o  - 4 L a L 4 ,  

and 

(I) 1 

_ (I)2 

~,0 

(~) O ( x ~ . g ~ , z ~ )  (~) 

_ O(x2 .  y2. z2)  

O(Zl0, Yl0. Z10) 

0 (at L1 -- 1. L2 - L3 - L4 - O )  

O ( a t  L 2 -  1 L 1 - L 3 - L 4 - O )  

1 Lt = L 2  = 0 )  0 (at L 3 - L 4 -  ~. 

(e) 

(4.46) 
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(ii) Cubic element 
The cubic in terpola t ion model  involves 20 nodal  unknowns (nodes are shown in 
Figure 4.7(b)) and can be expressed as 

O(x, y, z) ---- [N](~ (e) -- IN1 N2 "-" N20]~  (e) (4.47) 

where the nodal  shape functions can be de te rmined  as follows: 

1 For corner nodes" N~ -- -~L~(3L~ - 1)(3L~ - 2), i = 1, 2, 3, 4 (4.48) 

9 L L2(3L 1) For one-third points of edges" N5 -- ~ 1 1 - 

9L L2(3L2 1) N 6 - - ~  1 

NT--~gL2L3(3L2 - 1) 

Ns--~9L2L3(3L3 - 1), etc. (4.49) 

For midface nodes: N17 = 27L1L2L4 

N18 = 27L2L3L4 

N19 = 27LIL3L4 

N20 = 27L1 L2 L3 

and 

(I) 1 

__ (I)2 

~20 

(e) ~ (Xl ,  y l ,  Zl) (e) 

_ r y2. z2) 

0(x2o, y2o, z2o ) 

r (at L1 = 1, L2 - 0. L3 = 0, L4 - 0) 

r  L2 1 L 3 - 0 ,  L 4 = 0 )  

(~) 

(4.50) 

(4.51) 

4.4 HIGHER ORDER ELEMENTS IN TERMS OF CLASSICAL INTERPOLATION 
POLYNOMIALS 

It is possible to const ruct  the nodal  interpolat ion functions N~ by employing classical inter- 
polat ion polynomials  ( instead of na tura l  coordinates) .  We consider the use of Lagrange 
and Hermite  in terpola t ion polynomials  in this section. 
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4.4.1 Classical Interpolation Functions 
In numerical  mathemat ics ,  an approximat ion  polynomial  tha t  is equal to the function it 
approximates  at a number  of specified s ta t ions or points is called an interpolat ion function. 
A general izat ion of the interpolat ion function is obta ined by requiring agreement  with not 
only the function value o(x) but also the first N derivatives of o(x) at any number  of 
distinct points x i. i = 1, 2 . . . . .  n + 1. \Vhen N = 0 - - t h a t  is, when only the function values 
are required to match  (agree) at each point of i n t e rpo la t ion - - the  (classical) in terpolat ion 
polynomial  is called Lagrange interpolat ion formula. For the case of N = 1 - - t h a t  is. when 
the function and its first derivative are to be assigned at each point of in te rpola t ion  
the (classical) in terpolat ion polynomial  is called the Hermite  or osculatory interpolat ion 
formula. If higher derivatives of o(x) are assigned (i.e.. when N > 1). we obta in  the 
hyperoscula tory  interpolat ion formula. 

4.4.2 Lagrange Interpolation Functions for n Stations 
The Lagrange interpolat ion polynomials  are defined as [4.1] 

l ~  ( ~ -  x~) Lk(x)- (xk-x,) 
z----O, 
zr 

( X -  XO)(X- Xl)""" ( X -  Xk-1)(X- Xk+l)""" ( X -  Xn) 
(*~ - * o ) ( * ~  - *~ )"-(*~ - : , ' ~ . _ , ) ( x ~  - ~ k + ~ ) - "  (x~ - *.) 

(4.52) 

It can be seen tha t  Lk(x) is an n th  degree polynomial  because it is given by the product  
of n linear factors. It can be seen tha t  if x = xk. the numera to r  would be equal to the 
denomina to r  in Eq. (4.52) and hence Lk(.r) will have a value of unity. On the other  hand,  
if x - zi and i r k, the numera to r  and hence Lk(z) will be zero. This proper ty  of 
Lk(x) can be used to represent  any arb i t ra ry  function O(z) over an interval on the x axis 
approximately.  

For example,  if the  values of o(x) are known only at the discrete points z0, x l ,  z2, 
and xa, the approximat ing  polynomial  o(x) can be wri t ten  as 

3 
O ( x ) -  o ( x ) -  Z dp,Lz(x) (4.53) 

z=0 

where q~i is the value of o at x = x,. i = 0, 1, 2. 3. Figure 4.8 shows the typical shape 
of L,(z). Here, the function O(x) is called the Lagrange interpolat ion formula. Thus, 
Lagrange interpolat ion functions can be used if the matching  of only the function values 
(not derivatives) is involved for a line element.  

4.4.3 General Two-Station Interpolation Functions 
We denote  a general one-dimensional  in terpolat ion polynomial  as H~,;X ')(x), where N is 
the number  of derivatives to be interpolated,  k is an index varying from 0 to N,  and 
i corresponds to the s ta t ion index (i.e., the ith point of the discrete set of points of 
interpolat ion) .  For simplicity we consider the case in which there are only two points 
of in terpola t ion (as in the case of one-dimensional  elements).  We denote  the first point  
of in terpola t ion as i = l (x l  = 0) and the second point as i = 2(x2 : l), where 1 is the 

dis tance between the two points. 
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. . . . . .  

) I ) I 
1 1 l i = x  
xo Xl x2 x3 

(a) 

tI atx-x~ 0 at x =  x 1,x2,x 3 

v ~ v - X 

xo xl x2 x3 

1 a t x = x  2 Q at ii"x"x  
v v 

Xo xl x2 xa 

tI/  ,a,x=x, Ll(x) = t0  at x = Xo,X2,X 3 

-f- 

A 
v 

x0 Xl ~ 3  =X 

(b) 

t [1 atx- x 3 
L 3 % a t  x= x 0 \ ~ 

- X l  X2' 1 ' Y "---~ = X 
X o X ~ - - ~ X  2 X 3 

Figure 4.8. (a) Lagrange Interpolation Formula (b) Lagrange Polynomials. 

Any function qS(x) shown in Figure 4.9 can be approximated by, using Hermite 
functions as 

2 N 

i - - 1  k - - O  

2 

= Z H0~ ~ (,)~I ~ +H~, (~),{ ~+. + .,-, (x)~l 
i = 1  

(4.54) 

where ~I k) are undetermined parameters. The Hermit, e polynomials have the following 
property" 

drH(N) } 
k~ (Xp)--Sipdk~ for i , p - -  1.2, and (4 55) dx r . 

k , r - O .  1,2 . . . . .  N 

where xp is the value of x at pth station, and 6r~ is the Kronecker delta having the 
property 

~,~,~_ [ 0  if m e n  (4.56) 
[ 1 if m - 7~ 
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~,(x) 
i i = 2  

2.#" I 
i I 
I I 
| 1 

xl x x> 
~'~-X 

Figure 4.9. A One-Dimensional Function to Be Interpolated between Stations xz and x2. 

By using the property of Eq. (4.55) the undetermined parameters ~(k/ appearing in l 

Eq. (4.54) can be shown to have certain physical meaning. The r th derivative of o(x) 
at x -  xp can be written as. from Eq. (4.54). 

d ~o \ d"Hk, (Xp)~(k) 
dxr(Xv) - i x  r 

z = l  k = 0  

(4.57) 

Using Eq. (4.55), Eq. (4.57) can be reduced to 

2 N 
d"o (~.} (,.) 

z = l  k = O  

(4.5s) 

Thus, ~(p~) indicates the value of r th derivative of o(x) station p. For r - 0 and 1. the 

parameters q~cp~) are shown in Figure 4.10. From Eqs. (4.58) and (4.54) the function o(x) 
can be expressed as 

2 .\" 

i = l  k-=0 

(4.59) 

~(x) 

) 

I--X 
Xl x2 

i=1 i=2  

. (~)  ( r )  
Figure 4.10 Physical Meaning of the Parameter =~ . 
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Hermite interpolation functions find application in certain one- and two-dimensional 
(structural beam- and plate-bending) problems in which continuity of derivatives across 
element interfaces is important.  

4.4.4 Zeroth-Order Hermite Interpolation Function 
The general expression given in Eq. (4.54) can be specialized to the case of two-station 
zeroth-order Hermite (Lagrange) interpolation formula as 

2 2 

r - E H(o~176 - ~ H(o~ (x)c)(x,) (4.60) 
i=1 i=1 

(0) To find the polynomials H(o~ and Ho2 (x), we use the property given by Eq. (4.55). 

For the polynomial Ho(~ ) (x), we have 

d(~ Ho(~ (xp) 
dx(O) 

= (51p(500 - -  (51p - -  H (0) (Xp) 

o r  

/4(0) (461) "01/4(0)(xl) - -  1 and * '01  (oF2) - -  0 

/4 (0) Since two conditions are known (Eq. 4.61), we assume *-ol (x) as a polynomial involving 
two unknown coefficients as 

(0) (462) H01 (X) -- al Jr- a2x 

By using Eq. (4.61), we find that  

al = 1 and a2 -- - 1 / I  

by assuming that  Xl -- 0 and x2 - I. Thus. we have 

H(0) x (4.63) 01 ( X ) -  1 1 

Similarly, the polynomial Ho (~ (x) can be found by using the conditions 

N o  (0) ( X l )  - 0 and /4(0) "~o2 ( x 2 ) - 1  (4.64) 

as 

(0 x 
No2 (x ) -  -/ (4.65) 

(o) The shape of the Lagrange po]ynomia]s H01 (x) and H(0 ~ (x)and the variation of the func- 
tion ~b(x) approximated by Eq. (4.60) between the two stations are shown in Figures 4.11 
and 4.12, respectively. Note that the Lagrange polynomials given by Eqs. (4.63) and (4.65) 
are special cases (two-station formulas) of the more general (n-station) polynomial given 
by Eq. (4.52). 
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,,, . . .  

x~=O x2= l 

Figure 4.11. Variation of Lagrange Polynomials between the Two Stations. 

r = G~(x)r162 

~(/) 

~ I 
J , 4 ~  

Xl=O X2=i 

Figure 4.12. Variation of O(x) Approximated by Lagrange Polynomials between the Two 
Stations. 

4.4.5 First-Order Hermite Interpolation Function 
If the  function values as well as the first derivatives of the function are required to 
ma tch  with their  t rue  values, the two-s ta t ion in terpola t ion  function is known as first-order 
Hermi te  (or osculatory)  in terpola t ion and is given by 

2 1 2 1 

~) (~) (~,) 0 ( x ) -  E E Hkli)(x)q)(' -- E E H(1) dkO 
~ = 1  k = O  z = l  k = O  

(4.66) 

To de te rmine  the  polynomials  Ho (1) (1) (x) and H12 1 (x), Ho2 (x) �9 H~ 11 ) , (1) (x) , four condit ions are 
it) known from Eq. (4.55) for each of the polynomials .  Thus.  to find H01 (x), we have 

~) d H  (1) (~) 
(1) ( x )  - 1, Ho(1 " dx dx U01 1 (x2) - -  0 1 (xl)  -- 0, and dH~ (x2) - 0 (4.67) 

Since four condit ions are known, we assume a cubic equat ion,  which involves four unknown 
coefficients, for H0(ll)(x) as 

/1/ x 2 3 (4.68) Hol  ( x )  - a l  + a 2 x  + a3 + a 4 x  

By using Eqs. (4.67), the cons tants  can be found as 

3 2 
al -- I. a2 -- O. a3 = 12, and a 4  = ~-~ 
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(1) (x) becomes Thus, the Hermite polynomial H01 

1 3 
Ho(l ) (x)  - g ( 2 ~  ~ - 31x ~ + l  ) (4.69) 

Similarly, the other first-order Hermite polynomials can be obtained as 

Ho 2(1) ( x ) = - ~ 1  (2x3 _ 3/x 2) (4.70) 

1 X3 2 (1) (X) : Hll  ~-~ ( - 21x 2 +l  x) (4.71) 

1 H ~  ) (x) = ~ - ~ ( x  3 - lx 2) (4.72) 

The variations of the first-order Hermite polynomials between the two stations are 
shown in Figure 4.13. The variation of the function approximated by these polynomials, 
namely, 

(1) (X)~)(0)-4- H(o12)(x)*(l) -+- H~I ~xx(0)-Jr-/-/12 (X)~x(I) qS(X) -- go1 1)(x) do .(1) dO (4.73) 

is shown in Figure 4.14. 

4.5 ONE-DIMENSIONAL ELEMENTS USING CLASSICAL INTERPOLATION 
POLYNOMIALS 

4.5.1 Linear Element 
If the field variable r varies linearly along the length of a one-dimensional element and if 
the nodal values of the field variable, namely ~1 = O(x = xl = 0) and q)2 = 0(x = x2 = 1), 
are taken as the nodal unknowns, we can use zeroth-order Hermite polynomials to express 
e(x)  as 

(~(X)-  [N](~ (e) - - [Xl  N2](~ (e) (4.74) 

where 

NI = ~ ( O ) ( x ) -  1 x **01 l '  

N2 = u ( ~  z **02 7 '  

(~(e) = {(I)1} (e) (i)2 

and 1 is the length of the element e. 
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I 
l . ~ x  

(i) 
I H01(x) 

1 I 

• L_ 
X l = O  X2= l  

i 
I~ . , ,x  
I . (1)  
I Ho2(X) 
, 

I. 
X 1 = 0  x 2 = l  
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I 

I " 

x 1 =o x2=l  
I ~ x  

I 
I 
I 
I 
I 
I 
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X 1 = 0  

t--.x / I  
Figure 4.13. Variation of First-Order Hermite Polynomials between the Two Stations, 

k 2 1 (I d (~  
~,(x) ,/,(x) = T_.. T_.. H,; ~(x). (x;) 

i=1 k=O ~ xxk 

T 
~(o) 

.k 
X I =0~ 

~(/) 

x2 = l 

Figure 4.14. Variation of O(X) Given by Eq. (4.73) between the Two Stations. 
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4.5.2 Quadratic Element 
If r is assumed to vary quadrat ical ly along x and the values of c)(x) at three points xl ,  
x2, and x3 are taken as nodal unknowns, O(x) can be expressed in terms of three-s ta t ion 
Lagrange interpolat ion polynomials  as 

(r [X](~ (e) --[Xl N2 N3](~ (e) (4.75) 

where 

N1 = L1 (x) = 

N2 = L 2 ( x ) =  

N3 = L3(x)= 

( x - ~ : ) ( x - x 3 )  

(X l -  X2)(Xl- X3)" 

( X - - X l ) ( X - - X 3 )  

( x :  - ~ l ) ( X :  - ~ 3 ) "  

( x -  x~)(x-  ~:) 
( X 3 - - X l ) ( X 3 - - Z 2 ) '  

and 

'~1 O(x - x~ ) 
~(~) - ~ - , ( x -  x~) 

(~3 O(X -- X3 ) 

(e) 

4.5.3 Cubic Element 
If O(x) is to be taken as a cubic polynomial  and if the values of o(x) and (dO/dx)(x)  at 
two nodes are taken as nodal unknowns, the first-order Hermite  polynomials can be used 
to express r as 

O ( x ) -  [N](~ (e) - I N 1  N2 N3 N4](~ (e) (4.76) 

where 

1) NI(X)-  H(ol)(x) N2(x) M(1) (1)(x) N 4 ( z ) -  H~2 (x) , --~"11 (x), N 3 ( x ) -  H02 , 

and 

(I)1 / (e) 
,~(~) _ q~2 _ 

(I)3 
(I)4 

O(x = xl  ) 

dO (x - xl  ) 

o ( x  = x2) 

dO (x - x2) 
~x 

(~) 

4.6 TWO-DIMENSIONAL (RECTANGULAR) ELEMENTS USING CLASSICAL 
INTERPOLATION POLYNOMIALS 

4.6.1 Using Lagrange Interpolation Polynomials 
The Lagrange interpolat ion polynomials defined in Eq. (4.52) for one-dimensional 
problems can be used to construct  interpolat ion functions for two- or higher 
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5,, 
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9 11- 1 

5 7, 

_ 

1 4 

(a) Bilinear element (b) Biquadratic element (c) Bicubic element 

Figure 4.15. Location of Nodes in Rectangular Elements. 

dimensional problems. For example, in two dimensions, the product of Lagrange inter- 
polation polynomials in x and y directions can be used to represent the interpolation 
functions of a rectangular element as [see Figure 4.15(a)] 

~(~. ~ ) -  [X]$ (~) - [ X l  :v~ X~ X~]5 (~) (4.77) 

where 

? r  ~ )  = L , ( , ~ )  . L , ( s ) .  i = 1, 2, 3, 4 (4.78) 

and /~ 
(1) 3 

~4 

(e) / o ( r  = -1 ,  s = - 1 ) / < e )  

o(r = 1, s = - 1) (4.79) 
= o ( r =  1, s =  1) 

O(r = - 1 , s  = 1) 

L~(r) and L~(s) denote Lagrange interpolation polynomials in r and s directions 
corresponding to node i and are defined, with reference to Figure 4.15(a), as 

- ~______z~, L ~ ( ~ )  - - -  ~ - ~-----21. L ~ ( ~ )  - ~ - ~------~. r 4 ( ~ )  - r - ~ Ll(r) 
s 1 - -  7'2 1"2 - -  F 1 r 3  - -  P 4  7"4 - -  1"3 

L I ( s )  --- 8 -  8 4  , L 2 ( s )  - s -  8 3  , L 3 ( s )  - s -  8 2  , L 4 ( 8 )  - s -  8 1  ( 4 . 8 0 )  

8 1  ~ 8 4  $ 2  - -  8 3  $ 3  ~ 8 2  8 4  ~ S 1  

The nodal interpolation functions Ni given by Eq. (4.78) are called "bilinear" since they 
are defined as products of two linear functions. 

The higher order elements, such as biquadratic and bicubic elements, can be formu- 
lated precisely the same way by taking products of Lagrange interpolation polynomials of 
degree two and three, respectively, as 
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where L~(r) and L~(s) can be obtained with the help of Eq. (4.52) and Figures 4.15(b) 
and 4.15(c). For example, in the case of the biquadratic element shown in Figure 4.15(b), 
the Lagrange interpolation polynomials are defined as follows" 

L1 (r) - -  (r - r2)(r - r3) LI(S) - (s - s4)(s - 87) (4.82) 
(~1 - ~ ) ( ~  - ~ 3 ) '  ( ~ ,  - ~ ) ( ~  - ~) 

(r - -  /'1)(/" - -  /'3) L2(s) - (s - s~)(s - ss) (4.83) 
L2(r) - (r2 - r~)(r2 - r3)' (82 - 85)(82 - ss) 

etc. In this case, node 5 represents an interior node. It can be observed that the higher 
order Lagrangian elements contain a large number of interior nodes and this limits the 
usefulness of these elements. Of course, a technique known as "static condensation" can 
be used to suppress the degrees of freedom associated with the internal nodes in the final 
computation (see problem 12.7). 

4 . 6 . 2  Using H e r m i t e  In te rpo la t ion  Po lynomia ls  

Just as we have done with Lagrange interpolation polynomials, we can form products of 
one-dimensional Hermite polynomials and derive the nodal interpolation functions N~ for 
rectangular elements. If we use first-order Hermite polynomials for this purpose, we have 
to take the values of r (0r  (0r  and (020/OxOy) as nodal degrees of freedom 
at each of the four corner nodes. Thus, by using a two-number scheme for identifying the 
nodes of the rectangle as shown in Figure 4.16, the interpolation model for (~(x, y) can be 
expressed as 

(1) (~)(~). Ho~ (y). r y) = H(o~ ) (x) . Hoj (y) . cb,j + H,~ -~x ~j 
i=l j=l 

( ) (i)(X) (I) ((020/ ] 
(1) (1) 00 + HI~ " HlJ (Y)" c~x~ ij + H0i ( x ) ' H I j  (y)" ~y ~ (4.84) 

b 

(1,2)_ 

v 

(1,1) 
�9 a - -  

! 

_(2,2) 

'0x ' 0 y ' 0 x 0 y  

. . . . .  ~ x specified at nodes 
(2,1) 

_ _ J  

- - 1  

Figure  4.1_6. Rectangular Element with 16 Degrees of Freedom. 



136 HIGHER ORDER AND ISOPARAMETRIC ELEMENTS 

where O~j, (O0/Ox)ij, (Oo/cgy)i3. and (c)2o/OxOg),j denote the values of 0, (O0/Ox), 
(O0/Oy), and (020/OxOy). respectively, at node (i.j). Equation (4.84) can be rewrit ten 
in the familiar form as 

C~(X, y) -- IN(x,  y)](~(c) _ [.u (x. V) i'~'2 (.F. V) "'" X16(x. y)]~('~) (4.85) 

where 

(1) (1) 
Ni(x.  g ) -  Hol (x)Hol (y). 

X2(x. g) - H~ 1) (1) 1 ('T)Hol (Y)" 

(~) H~ 1) x~(~ .v ) -  Ho~ (x) , (v). 

I)(x)H~ I) 

N~>(x. v) - Ho2 (v). 

:~'16(X" V ) -  H~I) ( j ' )HI  1 ) 1  2 (V). 

(4.86) 

and 

(~(e) __ I 
cPl 

r 
(1)3 
r 

l ~ 

(e) 

Oll (0o) 

020 

OxOy ) ~ ~ 

O21 

(o o 
OxOy ) 12 

(~) 

(4.87) 

4.7 CONTINUITY CONDITIONS 
We saw in Section 3.6 tha t  the interpolat ion model assumed for the field variable O has 
to satisfy the following conditions" 

1. It has to be continuous inside and between the elements up to order r -  1, where r is 
the order of the highest derivative in the functional I. For example, if the governing 
differential equation is quasi-harmonic as in the case of Example 1.3, 0 have to be 
continuous (i.e., C o continuity is required). On the other hand. if the governing 
differential equation is biharmonic (V40 - 0), o as well as its derivative (O0/On) 
have to be continuous inside and between elements (i.e.. C 1 continuity is required). 
The continuity of the higher order derivatives associated with the free or natural  
boundary conditions need not be imposed because their eventual satisfaction is 
implied in the variational s ta tement  of the problem. 
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2. As the size of the elements decreases, the derivatives appearing in the functional of 
the variational statement will tend to have constant values. Thus, it is necessary to 
include terms that represent these conditions in the interpolation model of 4). 

For elements requiring C O continuity (i.e., continuity of only the field variable 4) at element 
interfaces), we usually take the nodal values of O only as the degrees of freedom. To satisfy 
the interelement continuity condition, we have to take the number of nodes along a side of 
the element (and hence the number of nodal values of o) to be sufficient to determine the 
variation of ~b along that side uniquely. Thus. if a cubic interpolation model is assumed 
within the element and retains its cubic behavior along the element sides, then we have 
to take four nodes (and hence four nodal values of 0) along each side. 

It can be observed that the number of elements (of a given shape) capable of satisfying 
C o continuity is infinite. This is because we can continue to add nodes and degrees of 
freedom to the elements to form ever increasing higher order elements. All such elements 
will satisfy the C o continuity. In general, higher order elements can be derived by increasing 
the number of nodes and hence the nodal degrees of freedom and assuming a higher order 
interpolation model for the field variable O. As stated earlier, in general, smaller numbers 
of higher order elements yield more accurate results compared to larger numbers of simpler 
elements for the same overall effort. But this does not mean that we should always favor 
elements of very high order. Although there are no general guidelines available for choosing 
the order of the element for a given problem, elements that require polynomials of order 
greater than three have seldom been used for problems requiring C o continuity. The main 
reason for this is that the computational effort saved with fewer numbers of higher order 
elements will become overshadowed by the increased effort required in formulating and 
evaluating the element characteristic matrices and vectors. 

4.7.1 Elements with C O Continuity 

All simplex elements considered in Section 3.7 satisfy C o continuity because their interpo- 
lation models are linear. Furthermore, all higher order one-, two-. and three-dimensional 
elements considered in this chapter also satisfy the C o continuity. For example, each of 
the triangular elements shown in Figure 4.3 has a sufficient number of nodes (and hence 
the nodal degrees of freedom) to uniquely specify a complete polynomial of the order 
necessary to give C o continuity. Thus, the corresponding interpolation models satisfy the 
requirements of compatibility, completeness, and geometric isotropy. In general, for a tri- 
angular element, a complete polynomial of order n requires (1/2)(n + 1)(n + 2) nodes 
for its specification. Similarly, a tetrahedron element requires (1/6)(n + 1)(n + 2)(n + 3) 
nodes in order to have the interpolation model in the form of a complete polynomial of 
order n. For such elements, if the nodal values of 4) only are taken as degrees of freedom, 
the conditions of compatibility, completeness, and geometric isotropy will be satisfied. 

The quadrilateral element discussed in Section 4.3.3 considers only the nodal values 
of ~5 as the degrees of freedom and satisfies C o continuity. For rectangular elements, 
if the nodal interpolation functions are defined by products of Lagrange interpolation 
polynomials (Figure 4.15), then the C o continuity is satisfied. 

4.7.2 Elements with C 1 Continuity 
The construction of elements that satisfy C 1 continuity of the field variable r is much 
more difficult than constructing elements for C O continuity. To satisfy the C 1 continuity, 
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we have to ensure continuity of o as well as its normal derivative O0/On along the 
element boundaries. The one-dimensional cubic element considered in Section 4.5.3 guar- 
antees the continuity of both 0 and do/dz at the nodes and hence it satisfies the C 1 
continuity. 

For two-dimensional elements, we have to ensure that  0 and Oo/Or~ are specified 
uniquely along an element boundary by the nodal degrees of freedom associated with the 
nodes of tha t  part icular boundary. The rectangular  element considered in Figure 4.16 
(Eq. 4.84) considers 0. O0/Ox. Oo/Oy, and 02o/OxOy as nodal degrees of freedom and 
satisfies the C 1 continuity. In the case of a tr iangular  element, some authors have t reated 
the values of 0, (O0/Ox). (Oo/Oy). (020/oq.roqt/), (Oq20/Oqx2), and (020/092) at the three 
corner nodes and the values of (O0/On) at the three midside nodes (Figure 4.17) as degrees 
of freedom and represented the interpolation model of 0 by a complete quintic polynomial. 
If s denotes the linear coordinate along any boundary of the element, then 0 varies along 
s as a fifth-degree polynomial. This fifth-degree polynomial is uniquely determined by the 
six nodal degrees of freedom, namely o. (O0/Os), and (020/Os 2) at each of the two end 
nodes. Hence, 6 will be continuous along the element boundaries. Similarly, the normal 
slope (Ocb/Orz) can be seen to vary as a fourth-degree polynomial in s along the element 
boundary. There are five nodal degrees of freedom to determine this quartic polynomial 
uniquely. These are the values of (O0/Or~) and (02o/Orz 2) at each of the end nodes and 
(O0/On) at the midside node. Hence, the normal slope (O0/On) b-ill also be continuous 
along the element boundaries. In the case of three-dimensional elements, the satisfaction 
of C 1 continuity is quite difficult and practically no such element has been used in the 
literature. 

Note: 
Since the satisfaction of C 1 continuity is difficult to achieve, many investigators have 
used finite elements tha t  satisfy slope continuity at the nodes and other requirements 
but violate slope continuity along the element boundaries. Such elements are known as 
"incompatible" or "nonconforming" elements and have been used with surprising success 
in plate-bending (two-dimensional s tructural)  problems. 

n 

1 

. . . . . . IPs ~r o~r 032r 0~2r o~ 2 
r ~y c3x o ~ y ' ~ '  ~--~--- 
specified at nodes 1,2 and 3 

0r specified at nodes 4,5 and 6 
On 

. . . . . .  _ _ . m , . ,  , . .  - ~ " - X  

Figure 4.17. Triangular Element with C l Continuity. 
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4.8 C O M P A R A T I V E  S T U D Y  OF E L E M E N T S  

The relative accuracy of the results obtained by using interpolation polynomials of different 
orders was studied by Emery and Carson [4.2]. They considered the solution of a one- 
dimensional s teady-sta te  diffusion equation as a test case. The governing equation is 

d20 
dx 2 

= ~h(x), 0 _< x <_ 1 (4.88) 

with ga(x) - x 5 and the boundary  conditions are 

do (x - 1) - 0 (4.89) O ( x - O ) - O  and 

By dividing the region (x = 0 to 1) into different numbers of finite elements, they obtained 
the results using linear, quadratic,  and cubic interpolat ion models. The results are shown 
in Figure 4.18 along with those given by the finite difference method. The ordinate in 
Figure 4.18 denotes the error in the t empera ture  (0) at the point z = 1. The exact 
solution obtained by integrating Eq. (4.88) with the boundary  conditions, Eq. (4.89), 
gives the value of ~ at x = 1 as 0.1429. 

The results indicate tha t  the higher order models yield bet ter  results in this case. 
This characteristic has been found to be true even for higher dimensional problems. 
If the overall computat ional  effort involved and the accuracy achieved are compared, 

0 
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I i 

A J 
t f 

i 
. .  , - /  

f j f f f  
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Length of an element 

Figure 4.18. Solution of Steady-State Diffusion Equation [4.2]. 
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we might find the quadratic model to be the most efficient one for use in complex practical 
problems. 

4.9 ISOPARAMETRIC ELEMENTS 
4.9.1 Definitions 
In the case of one-dimensional elements. Eqs. (3.62) and (3.24) give 

X--[N1 N2]{ xl }x2 (4.90) 

and 

o (I)2 (4.91) 

where N1 = L1 and N2 = L2. In the case of a triangular element, if we consider r as a 
vector quantity with components u(x. y) and v(x. y). Eqs. (3.71) and (3.33) give 

{y}  fill N2 ~'~r::~ 0 0 0 ]  
= 0 0 N1 1~2 ~hV'3 

Xl 
X2 
3?3 
gl 

y3 

(4.92) 

and 

U1 
/12 

{ ~ } _  IN01 . ~  N3 0 0 0 ]  //3 (4.93) 
t' 0 0 N1 52 N3 v] 

U2 
U3 

where N1 = L1, N2 = L2, N3 = L3. and (x,. g,) are the Cartesian coordinates of node 
i, and ui and vi are the values of u and v. respectively, at node i (i = 1.2.3). Similarly. 
for a quadrilateral element, the geometry and field variable are given by Eqs. (4.32) and 
(4.38) as (assuming 0 to be a vector with components u and t') 

o o o 

i f  Lo y 0 0 0 :Nrl N2 N3 
(4.94) 
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and 

"l, f L O v  o o o N1 N.2 N:~ N4 J 

Illl I U2 t13 t14 (4.(1;~) 

l'2 

U3 

U4 

where Ni (i = 1, 2,3, 4) are given by Eq. (4.33). (.r,. !1,) are the ( 'ar tesian coordinates of 
node i, and (ui, vi) are the components  of o(u. t') at 1lode i. A comparison of Eqs. (4.9{}) 
and (4.91) or (4.92) and (4.93) or (4.94) and (-1.95) shows that  the geometry and fieht 
variables of these elements are described in terms of the same parameters  and of the sanle 
order. 

Such elements whose shape (or geometry) and field variables are described by the 
same interpolation functions of the same order are k~own as "'isoparametric'" elements. 
These elements have been used with great success in solving two- and three-dimensional 
elasticity problems, including those involving plates and shells [4.:g]. These elements have 
become popular  for the following reasons: 

(i) If one element is understood,  the same concepts can be extended for understandil lg 
all isoparametric elements. 

(ii) Although linear elements have straight sides. (tuadratic all(t higher order isopara- 
metric elements may have either straight or curve(t sides. Hence. these elements 
can be used for idealizing regions having curved boundaries. 

It is not necessary to use interpolat ion functions of the same or(ter for describing both 
geometry and the field variable of an element. If geon~etry is described by a lower order 
model compared to the field variable, the element is called a "subparainetric'" element. On 
the other hand, if the geometry is described by a higher order interpolation model than 
the field variable, the element is termed a "superparametric" elemel~t. 

4.9.2 Shape Functions in Coordinate Transformation 
The equations tha t  describe the geometry of tile element, nalnelv. 

{x} 0 0 0 0 0 : ]  
y -- 0 . . .  0 N1 N 2 . . .  N p 0 0 
z 0 . . . 0  0 0 . . . 0  N1 57'2 ,\'p 

(4.9(~) 
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3 
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=0 
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(b) 

4 L 1 = 0 
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3 

i[~-,..,.-, ' ' ' l~ L 1 = 0 
2 

1 3 

=IP 
z 

x 

(c) 

F igu re  4 .19 .  Mapp ing  of  Elements.  

(p = number of nodes of the element) can be considered as a t ransformation relation 
between the Cartesian (x. y,z) coordinates and curvilinear (r, s. t or L1. L2, L3, L4) coor- 
dinates if the shape functions Ni are nonlinear in terms of the natural  coordinates of the 
element. Equat ion (4.96) can also be considered as the mapping of a straight-sided element 
in local coordinates into a curved-sided element in the global Cartesian coordinate system. 
Thus, for any set of coordinates L1, L2, L3, and L4, or r. s, and t, there corresponds a 
set of x, y, and z. Such mapping permits  elements of one-, two-, and three-dimensional 
types to be "mapped" into distorted forms in the manner  i l lustrated in Figure 4.19. 

To each set of local coordinates, there will be, in general, only one set of Cartesian 
coordinates. However, in some cases, a nonuniqueness may arise with violent distortion. 
In order to have unique mapping of elements, the number of coordinates (L1, L2, L3, La) 
or (r, s, t) and (x, y, z) must be identical and the Jacobian, defined by, 

o ( z , y  . . . .  ) _ 

I[J]l = c)-(L~:Z;;. ) -  

g)x Ox 
OL1 c9L2 
Oy cog 

OL1 OLe 
�9 

(4.97) 

must not change sign in the domain. 
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f ~ 

(a) Idealization 

F- ' -  - 1  

S=- I  

S 

I s = l  
i v 

r = l  
. . . .  - ~ r  

(b) Typical curved sided element i~ 
local coordinate system 

Y 

I ~ ~  X 

(c) Curved sided element in xy plane 

Figure 4.20. 

4.9.3 Curved-Sided Elements 
The main idea underlying the development of curved-sided elements centers on mapping 
or transforming simple geometric shapes (with straight edges or fiat surfaces) in some 
local coordinate system into distorted shapes (with curved edges or surfaces) in the global 
Cartesian coordinate system and then evaluating the element equations for the resulting 
curved-sided elements. 

To clarify the idea, we shall consider a two-dimensional example. The extension of the 
idea to one- and three-dimensional problems will be straightforward. Let the problem to be 
analyzed in a two-dimensional (x, y) space be as shown in Figure 4.20(a) and let the finite 
element mesh consist of curved-sided quadrilateral elements as indicated in Figure 4.20(a). 
Let the field variable r (e.g., displacement) be taken to vary quadratically within each 
element. According to the discussion of Section 4.3.3, if we want to take only the nodal 
values of r (but not the derivatives of 0) as degrees of freedom of the element, we need 
to take three nodes on each side of the quadrilateral element. In order to derive the finite 
element equations, we consider one typical element in the assemblage of Figure 4.20(a) and 
focus our attention on the simpler "parent" element in the local (r, s) coordinate system 
as shown in Figure 4.20(b). 

We find from Section 4.3.3 that  the quadratic variation of O within this parent element 
can be expressed as 

8 
r s) ---- ~ N~(r, s)~ (4.98) 

i--1 
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where N, are tim quadratic sl~ape or il~terpolation functions used in Eq. (4.41). The eight 
nodes in the (r .s)  plane may t)e mappe(t iJ~to corresponding nodes in the (a:..9) plane by 
defining the relations 

S 

. , ' -  ~ f ,(r .  s).r, 
~-~1 

~j - ~ f , ( r . , s )v ,  

(4.99) 

where f , ( r . s )  are tl~e mappijLo< fuJ~cti(ms. These functions, in this case. must be at least 
quadratic since the curve(t t)olllMaries of the element in the (z./1) plane need at least three 
points for their specification and tlle f, should take the proper values of 0 and 1 when 
evaluated at the corner 1lodes in tile (r .s)  plane. 

If we take the quadratic sllape functions N, given in Eq. (4.41) for this purpose, we 
can write 

. F  - -  

y - -  

.\, (r. s).r, 

~ .\', ( r..s).~, 
~=1 

(4.100) 

The mapping defined by Eq. (4.100) results in a curved-sided quadri lateral  element as 
shown in Figure 4.20(c). Thus. for this element, the flmctional description of the field 
variable 0 as well as its curved boundaries are expressed by interpolation functions of 
the same order. According to the definition, this element is an isoparametric element. 
Similarly, the element is called subparametr ic  or superparametr ic  if the functional repre- 
sentation of geometry of the element [f,(~'. s)] is expressed in terms of a lower or a higher 
order polynomial than the olle used for representing the field variable o. 

4 . 9 . 4  ContinlJity and Compatibility 
\Ve need to preserve tim continuity all(t colnpatibility conditions in the global (a:.p) 
coordinate system while constructing isoparainetric elements usiIlg tile following obser- 
vations [4.4]" 

(i) If the interpolation functions in natural  (local) coordinates satisfy continuity 
of geometry and field variable both within the element and between adjacent 
elements, the compatibil i ty requirement will be satisfied in the global coordinates. 

The polynomial interpolation models discussed in Section 4.3 are inherently continu- 
ous within the element. Furthermore.  we can notice that  the field variable along any 
edge of the element depends only on the nodal degrees of free(tom occurring on tha t  
edge when interpolation fllnctioI~s in nat~lI'al coordiJlates are used. This can also be seen 
from Figures 4.4 and -1.6. where., for example, the field variable al(mg the edge 2-6-3 of 
Figure 4.6(1)) depends only ()II the rallies of tlle field variable at nodes 2. 6. and 3. 
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(ii) If the interpolation model provides constant values of 6 in the local coordinate 
system, the conditions of both constant values of 6 and its derivatives will be 
satisfied in the global coordinates. 

Let the functional relation for the components of the vector-valued field variable in an 
isoparametric element be given by 

li 

W 

= IN] (4.101) 

where 

NI...N p 0...0 0...0 ] 
[ N J  - -  0 N I . . .  Np 0 . . .  0 

0 0 . . . 0  N1 . . . N p  
(4.102) 

and p is the number of nodes in the element. Thus, the u component  of 6 is given by 

P 

- ~ N~u~ (4.103) 
z~---1 

Let the geometry be given by 

{x} 9 
Z 

= IN] (4.104) 

where (z~, 9~, z~) are the coordinates of node i (i = 1 ,2 , . . . ) .  For constant u, all points 
on the element must have the same value of u, for example, u0; hence, Eq. (4.103) 
becomes 

,4105, 
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Thus, we obtain the following necessary condition to be satisfied for constant values of r 
in local coordinates" 

P 
Xi = 1 (4.106) 

z'-i 

4.9.5 Derivation of Element Equations 
In the case of structural and solid mechanics problems, the element characteristic 
(stiffness) matrix is given by* 

[K (~)] =/ / / [B]r[D][B]  �9 dV 
V(~) 

(4.107) 

and the element characteristic (load) vector by 

~ )  - / f /[B]r[D]g'o.dV + / / / [ N ] T o . d V  + / f  [N]T~.dS1 (4.108) 

v(e) v(e) S~ e) 

where [B] is the matrix relating strains and nodal displacements, [D] is the elasticity ..+ 
matrix, ~ is the vector of distributed surface forces, o is the vector of body forces, and g'0 
is the initial strain vector. 

For a plane stress or plane strain problem, we have 

{ ' t t ( x ,Y)}__[Nj~(e  ) - [~1 N 2 . . . ~ p  0 0 . . . 0  ] 
v(x, y) o . . . o  N~ N2 Np 

and 

f Cxx } 
g'-- ~gYY -- [ ~ ] 0  (e) 

~ gxy 

ION1 ON2 ONp 
Ox "'" Ox 0 0 ... 

oqN1 oqN2 
[ B ] =  0 . . .  0 0y Oy ' 

I oqN1 ON2 ONp oqN~ ON2 
L ~ o - 7 "  oy o~ & ' 

tt 
tt 

11 
V 
V 

V 

1 
2 

p 
1 
2 

p 

(4.109) 

(4.110) 

0 

0N~ 
Oy 

Ox 

(4.111) 

* Equations (4.107) and (4.108) are derived in Chapter 8. 
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where p denotes the number of nodes of the element, (u~, v,) denote the values of (u, v) 
at node i, and N~ is the shape function associated with node i expressed in terms of 
natural  coordinates (r ,s)  or (L1, Le, L3). Thus, in order to evaluate [K (r and fi(r two 
transformations are necessary. First, the shape functions N~ are defined in terms of local 
curvilinear coordinates (e.g., r and s) and hence the derivatives of N~ with respect to the 
global coordinates x and y have to be expressed in terms of derivatives of N~ with respect 
to the local coordinates. Second, the volume and surface integrals needed in Eqs. (4.107) 
and (4.108) have to be expressed in terms of local coordinates with appropriate change of 
limits of integration. 

For the first t ransformation,  let us consider the differential of N~ with respect to the 
local coordinate r. Then, by the chain rule of differentiation, we have 

= + 
Or Ox Or Oy Or 

Similarly, 

ON~ ON~ Ox ON~ Oy 
- - - -  o 3t �9 

Os Ox cgs Oy Os 

Thus, we can express 

ON,/Os} 
-Ox/Or 
Ox/Os 

Oy/Or 
Oy/Os cgNi/Oy - [J] ONi/Oy 

(4.113) 

where the matr ix  [J], called the Jacobian matrix, is given by 

[Oz/Or Oy/Or- 
[Y] = LOx/O~ oy/o~ (4.114) 

Since x and y (geometry) are expressed as 

X 

(4.115) 
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we can obtain the derivatives of x and y with respect to the local coordinates directly and 
hence the Jacobian matr ix  can be expressed as 

i ( 0 N i  

[J] -- ~=~ (4.116) 

fi(oN, 
i=1 ~" 0 8  "Yi 

[fi ,_-~ -07/" ~') 

"~;) 

Thus, we can find the global derivatives needed in Eq. (4.111) as 

ONi/Oy ---[j]-I ON, lOs ( 4 . 1 1 7 )  

For the second t ransformation,  we use the relation d V  = t d x d y  = t det [J] dr  ds (for 
plane problems), where t is the thickness of the plate element,  and dV = d x d y d z  = 
det [J] dr  dsdt*  (for three-dimensional  problems). Assuming tha t  the inverse of [J] can be 
found, the volume integration implied in Eq. (4.107) can be performed as 

1 1 

[K (e)] = t . / " / [ B ] r [ D ] [ B ]  �9 det [J] dr  ds 

- 1  --1 

(4.118) 

and a similar expression can be wri t ten for Eq. (4.108). 

Notes: 
1. Al though a two-dimensional (plane) problem is considered for explanation,  a similar 

procedure can be adopted in the case of one- and three-dimensional  isoparametric 
elements. 

2. If the order of the shape functions used is different in describing the geometry of the 
element compared to the displacements (i.e., for subparametr ic  or superparametr ic  
elements),  the shape functions used for describing the geometry would be used 
in Eqs. (4.115) and (4.116). whereas the shape functions used for describing the 
displacements would be used in Eqs. (4.112). 

3. Al though the limits of integration in Eq. (4.118) appear  to be very simple, unfor- 
tunately,  the explicit form of the matr ix  product  [B]r[D][B] is not very easy 
to express in closed form. Hence, it is necessary to resort to numerical integra- 
tion. However, this is not a severe restriction because general computer  programs, 
not tied to a part icular  element,  can be wri t ten for carrying out the numerical 
integration. 

* For carrying out the volume integration, we assume that r, s, and t are the local coordinates 
and x, y, and z are the global coordinates so that the Jacobian matrix is given by 

F0~/0~ 0y/0~ 0~/0~ 1 
[ J ]=  IOz/Os Oy/cgs Oz/Os|  

LOx/Ot oy/ot Oz/Otj 
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4.10 NUMERICAL INTEGRATION 
4.10.1 In One Dimension 
There are several schemes available for the numerical evaluation of definite integrals. 
Because Gauss quadrature method has been proved to be most useful in finite element 
applications, we shall consider only this method in this section. 

Let the one-dimensional integral to be evaluated be 

1 

I - f f ( r )dr  
- -1  

(4.119) 

The simplest and crudest way of evaluating I is to sample (evaluate) f at the middle point 
and multiply by the length of the interval as shown in Figure 4.21(a) to obtain 

I -  2fl (4.120) 

This result would be exact only if the curve happens to be a straight line. Generalization 
of this relation gives 

1 

I - f f ( r )dr  ~ w,f, - E wif(r~) 
i - -1 i = 1  --1 

(4.121) 

where wi is called the "weight" associated with the ith point, and n is the number of 
sampling points. This means that in order to evaluate the integral, we evaluate the function 
at several sampling points, multiply each value fi by an appropriate weight wi, and add. 
Figure 4.21 illustrates sampling at one, two, and three points. 

In the Gauss method, the location of sampling points is such that for a given number 
of points, greatest accuracy is obtained. The sampling points are located symmetrically 
about the center of the interval. The weight would be the same for symmetrically located 
points. Table 4.1 shows the locations and weights for Gaussian integration up to six points. 

f 

f(r) 

1 

-I 0 I 

(a) Using one point 

~ r  

f 
f(n 

~ r  
-1 0 1 

(b) Using two points 

f 
f(r) 

I 

I 
I 1 _--r 

-1 0 1 
(c) Using three points 

Figure 4.21. 
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Thus ,  for example ,  if we use the  t h ree -po in t  Gauss• formula ,  we get  

I ~ 0 .555556f l  + 0.888889f2 + 0.555556f3 

which is the  exact  resul t  if f ( r )  is a p o l y n o m i a l  of order  less t h a n  or equal  to 5. In general ,  

Gauss• q u a d r a t u r e  using n po in ts  is exac t  if the  in tegrand  is a p o l y n o m i a l  of degree 

2 n -  1 or less. 

T h e  pr inciple  involved in der iv ing the  Gauss  q u a d r a t u r e  fo rmula  can be i l lus t r a t ed  by 

consider ing  a s imple  funct ion,  

f (r) = a l  -'[- a2r + a3r  2 + a4r  3 

If f ( r )  is i n t eg ra t ed  be tween  - 1  and 1. the  area under  the  curve f ( r )  is 

2 
I -  2al  + 5a3 

By using two s y m m e t r i c a l l y  loca ted  po in ts  r - •  we p ropose  to ca lcu la te  the  a rea  as 

2 
I = w .  f ( - r i )  + w .  f ( r , )  = 2zt,(a, + a3ri ) 

If we want  to min imize  the  error  e = I -  I for any values of a l  and  a3. we mus t  have 

0e 0e 

Oal Oa3 
= 0  

These  equa t ions  give 

IL' - -  1 

Table 4.1. Locations ( r i )  and Weights (w,) in  Gaussian Integration (Eq. 4.121) 

N u m b e r  of 

po in t s  (n) Loca t ion  (ri)  Weight  (w/) 

r l -- 0.00000 00000 00000 

r l ,  r2 -- •  02691 89626 

r l ,  y3 - - •  66692 41483 

r2 = 0.00000 00000 00000 

r l ,  r4 = •  63115 94053 

r2, r3 = •  10435 84856 

r l ,  r5 = •  98459 38664 

r2, r4 = •  93101 05683 

F3 ~-~ 0.00000 00000 00000 

r l .  r6 = •  95142 03152 

r2. r5 = •  93864 66265 

r3. r4 ----- •  91860 83197 

2.00000 00000 00000 

1.00000 00000 00000 

0.55555 55555 55555 

0.88888 88888 88889 

0.34785 48451 47454 

0.65214 51548 62546 

0.23692 68850 56189 

0.47862 86704 99366 

0.56888 88888 88889 

0.17132 44923 79170 

0.36076 15730 48139 

0.46791 39345 72691 
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2�9 i t, 3 

1 4 

w - - - - - t ~  [ 

Figure 4.22. Four-Point Gaussian Quadrature Rule. 

and 

1 
ri = = 0 .577350. . .  

,/5 

4.10.2 In Two Dimensions 
(i) In rectangular regions 
In two-dimensional (rectangular)  regions, we obtain the Gauss quadra ture  formula 
by integrat ing first with respect to one coordinate and then with respect to the 
second as 

11 ] 
I - / / f ( r , s )  d r d s -  wi f (r i , s )  ms 

- -1  - -1  - -1  i = 1  

= ~ w j  wi f ( r i , s , )  - w, w j f ( r , . s , )  
= i = l  i = 1  3 = 1  

(4.122) 

Thus,  for example, a four-point Gaussian rule (Figure 4.22) gives 

I ~ (1.000000)(1.O00000)[f(rl,sl)+ f(r2,82) -t- f(r3,83) + f(r4,  s4)] (4.123) 

where the four sampling points are located at r,. si = -t-0.577350. In Eq. (4.122), the 
number  of integration points in each direction was assumed to be the same. Clearly, it 
is not necessary and sometimes it may be advantageous to use different numbers  in each 
direction. 

(ii) In triangular regions 
The integrals involved for t r iangular  elements would be in terms of t r iangular  or area 
coordinates and the following Gauss- type formula has been developed by Hammer  and 
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S t r o u d  [4.5]" 

I - - / / f (Lx ,L2 ,  L3)dA ~" ~'~wif(L~i),L~i),L~ i)) 
.4 ~= i 

w h e r e  

for n -  1 ( l i nea r  t r i a n g l e ) "  

W l  - -  I" L (1) - L~ 1) -- L (1) -- ! 
1 - -  3 

for n -  3 ( q u a d r a t i c  t r i a n g l e ) :  

1 
W l = 5  �9 

i 
W2 - -  3" 

1 
W3 - -  3" 

L ( 1 __ LO 1 ) I (31) 1 . - ~ . L  - 0  

L(21 - - 0 ,  L ;  2 ) -  L ( 2 ) - - 2 1  

1 L(31 _ 0 L(13 -- L3 3) - 2" 2 

for  n -  7 ( c u b i c  t r i a n g l e ) :  

27 .  (11 ) ~1) (1) 1 
wl  = g-d L - L  - L 3  = 5 

w 2  = ~-~ - - 3 '  

8 . L(13) - -  O, L ~  3) - L[33) - 1 W3 = 60 - -  3 

11"74 = ~ ~ 3  - -  3 "  

3 . (151 (5) __ 0 w s -  g6 L - 1, L ~ 5 ) - L 3  

3 .  L(161 - L (61 - O,L~ 6) - 1 W 6 - - -  

L?> w v =  g-d -- - O , L  - 1  

T h e  l o c a t i o n s  of  t h e  i n t e g r a t i o n  p o i n t s  a r e  s h o w n  in F i g u r e  4.23.  

(4.1241 

5 

1 2 

7 
(i) Linear triangle (ii) Quadratic triangle (iii) Cubic triangle 

n = l  n=3 n=3 

Figure 4.23. Integration Points inside a Triangular Region According to Eq (4124)  
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4.10.3 In Three Dimensions 
(i) In rectangular prism-type regions 
For a right prism, we can obta in  an integrat ion forinula siniilar to Eq. (4.122) as 

1 1 1 

- 1  - 1  - 1  

7~ n s 
=EX ,,.) 

t = l  g = l  k--- i  

(4.125) 

where an equal number  of integrat ion points (n) in each direction is taken only for 
convenience. 

(ii) In tetrahedral regions 
For t e t rahedra l  regions, four volume coordinates  are itivolved alld the integral cat: t)e 
evaluated as in Eq. (4.125)" 

?1 

'). LI,". 
i - - 1  

(4. ~'_)(~) 

where 

for n -  1 (linear te t rahedron)"  

21)1 -- I" 
L (1) _ L(1) _ L~ 1) _ r(ll) - -  ! 

I ' -- ~ -- 4 

for n -  4 (quadrat ic  te t rahedron)"  

1 
W l = ~  " 

1 
W 2  - -  ~ "  

1 
W 3  - -  ~ "  

1 
W 4  = ~" 

L(: t~ - a . L ;  1) - L!~ l' - L(I j) - t ,  

L !, ' '- ~ - . .  L : -"  ! ,~ ' ' (-" 1 - L  - L  - b  

L(~ 31. - a . L : : S l l  -LI,:s/= - L:l :~1- t ,  

L(4 ~) - a . L  :~11 - L!,~t_ - L(~ ~1 - t ,  

with 

a = 0.58541020. 

and 

b - 0.13819669. 

for n -  4 (cubic te t rahedron)-  

4 
'W 1 - ~  - " 

o 

9 
W 2  = 2 0 "  

L~ : ) _ L / ~ _ L :  ~ ) _ L ' , ~ , _  • 
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n = l  n=4 n=5 

Figure 4.24. Location of Integration Points inside a Tetrahedron According to Eq. (4.126). 

9 
l/)3 = ~- d " 

9 
W 4 =  2--0" 

9 
w5 -- Yd" 

1 L i3 )  __ L~3) ___ L i 3 )  _ 1 L2  3 ) =  5 '  - -  g 

L~4) - 5, _ g 

Li5)  - -  3,1 L i 5 ) _ L ( 2  5) ~___L 3,'(5) 1 - -  6 

The locations of the integration points used in Eq. (4.126) are shown in Figure 4.24. 
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PROBLEMS 

4.1 Consider the shape functions, Ni(x), Nj(x), and Nk(x), corresponding to the 
nodes i, j ,  and k of the one-dimensional quadratic element described in 
Section 4.2.1. Show that  the shape function corresponding to a particular node i 
(j or k) has a value of one at node i (j or k) and zero at the other two nodes j (k 
or i) and k (i or j) .  

4.2 Consider the shape functions described in Eq. (4.10) for a one-dimensional cubic 
element. Show that  the shape function corresponding to a particular node i, N, (x), 
has a value of one at node i and zero at the other three nodes j,  k, and 1. Repeat  
the procedure for the shape functions Nj(x), Nk(x), and N1 (x). 

4.3 The Cartesian (global) coordinates of the corner nodes of a quadrilateral element 
are given by (0, - 1 ) ,  ( - 2 ,  3), (2, 4), and (5. 3). Find the coordinate transfor- 
mation between the global and local (natural) coordinates. Using this. determine 
the Cartesian coordinates of the point defined by (r, s) = (0.5, 0.5) in the global 
coordinate system. 

4.4 Determine the Jacobian matr ix for the quadrilateral element defined in Prob- 
lem 4.3. Evaluate the Jacobian matr ix  at the point. (r, s) = (0.5.0.5). 

4.5 The Cartesian (global) coordinates of the corners of a tr iangular element are given 
by ( -2 ,  - 1 ) ,  (2, 4), and (4, 1). Find expressions for the natural  (triangular) 
coordinates L1, L2, and L3. Determine the values of L1, L2, and L3 at the point, 
(x, y) = (0, 0). 

4.6 Consider a tr iangular element with the corner nodes defined by the Cartesian coor- 
dinates ( -2 ,  - 1 ) ,  (2, 4), and (4, 1). Using the expressions derived in Problem 4.5 
for L1, L2, and L3, evaluate the following in terms of the Cartesian coordinates x 
and y: 

(a) Shape functions N1, N2, and Na corresponding to a linear interpolation model. 
(b) Shape functions N1, N 2 , . . . ,  N6 corresponding to a quadratic interpolation 

model. 
(c) Shape functions N1, N 2 , . . . ,  N10 corresponding to a cubic interpolation model. 

4.7 The interpolation functions corresponding to node i of a tr iangular element can 
be expressed in terms of natural  coordinates L1, L2, and La using the relationship 

N~ = f(~)(L1)f(~)(L2)f(~)(La) (E,) 

where 

I-I l ( r n L j - k + l )  
f(i)(Lo) = 

k = l  

1 

if p _ > l  

if p = 0  

(E~) 

with i - 1 , 2 , . . . , n ;  n - total number of nodes in the element, p = mL(j '1. 
m = order of the interpolation model (2 for quadratic, 3 for cubic, etc.), and 

L~ ~) = value of the coordinate L 2 at node i. 

Using Eq. (El),  find the interpolation function corresponding to node 1 of a 
quadratic tr iangular element. 
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1.8 Using Eq. (Ex) giv(u~ in Prot)leln 1.7. find tile interpolation fl~nction corresponding 
to node 4 of a cut)ic triangular element. 

4.9 Using Eq. (Et) given in Problem 4.7. find the interpolation flmction corresponding 
to node 10 of a c~bic triangular element. 

4.10 Using Eq. (El) given in Probleln 4.7. find the interpolation function corresponding 
to node 4 of a qua(tratic l;riang~lar eleInent. 

4.11 Using Eq. (El) given in Prot)lem 4.7. find the i~lterpolation fl~nction corresponding 
to node 1 of a cubic triangular element. 

4.12 The interpolatio~ functions corresponding to node i of a tetrahedron element can 
be expressed in t(u'ms of tlw llat~ral coordinates L~. L~. L:~. and L.~ using the 
relationship 

X, = f" ' (L,)J""(L._,) f~"(L:~)fI~)(L~) (E,) 

where fl , t(L3) is defilled t)v Eq. (E2) of Problem 4.7. Using this relation, find the 
interpolation function corresponding to node 1 of a quadratic tetrahedron element. 

4.13 Using Eq. (El) given in Problem 4.12. find the interpolation function correspond- 
ing to node 5 of a qlla(tratic tetrahe(tron element. 

4.14 Using Eq. (El) givell in Prot)leln 4.12. find the interpolatioll function correspond- 
ing to node 1 of a Clll)ic tetrahe(h'on eh,Inent. 

4.1,5 Using Eq. (El) givell in Pr~)t)lem 1.12. fillet the interpolatioll function correspond- 
ing to node 5 of a c11t)ic tetralle(lron eh'IlleIlt. 

4.16 Using Eq. (El) gi\ell ill Prot)lem 1.12. fill(t the interpolatioll function correspond- 
ing to node 17 of a cut)ic tetrahedron elemeilt. 

4.17 The Cartesian (global) coordinates of the corners of a tetrahedron element are 
given by (0. 0. 0). (1. 0, 0). (0. 1. 0). and (0. 0. 1). Eilld expressions for the 
natural (tetrahedral) coordinates. L1. L2. L:~. and L4. Determine the values of L1, 
L2. L:~. and L~ at the point (,r..~1. z ) =  (0.25.0.25.0.25). 

4.18 The nodes of a qlladratic one-dimensiolml element are located at x = 0. z = 1/2, 
and . r =  1. Express the shape functions using Lagrange interpolation polynomials. 

4.19 Derive expressions for ttle stlape filllctions of tim rectanglllar eleinent shown in 
Figure 4.2.5 using Lagrange interpolation polvllomials. 

4.20 The Cartesian coordinates of ttw llo(tes of a quadratic qlmdrilateral isoparametric 
element are showll in Figure 4.26. Determine the coordinate transformation rela- 
tion between tlle local al~(t glol)al coordinates. Using this relation, find the global 
coordinates correspo~lcti~g to tt~e point (r. s) = (0.0). 

4.21 A bo~ndary value problem, gover~e(t t)v tlle Laplace eq~latio~, is stated as 

0"o 0~o 
O.r2 + ~ - -0  ill A 

0 - -  0 ~  011 C 
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2 4 6 

, ~ .  ,, , , ~  . . . . .  , , , .  

1 3 5 

i . . . . . . . . . . .  I , I 

xl x2 x3 

Figure 4.25. 

r - X  

The  character is t ic  (stiffness) mat r ix  of an element corresponding to this problem 
can be expressed as 

[K (~] -/f[<~[Dl[< a~4 
.4(~ ) 

where 

[: o] 

I 
ON1 
Ooc 

09 

ON2 

ON2 
O.V 

ON" 1 O,r 
0 Nt, 
Oy 

and A (~) is the area  of the element.  Derive the matr ix  [B] for a quadra t ic  
quadr i la tera l  i soparametr ic  element whose nodal coordinates  are shown in 
Figure  4.26. 

4.22 Evalua te  the integral 

1 

/ = (ao + a l x  + a2x 2 + a3X 3 + a4 ) dx 
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(-2.0, 1.0) 

Y 

(-1.2, 3.2) [ 

i 

(-2.2, - 1 . 7 ) ~ ' ~  

" ~ . , . . ~ . 4 ,  2.1) ,2.2) 

�9 (3.9, 0.2) 

... ~ (3.3, -1.9) 
v 

(0.8, -2.4) 

Figure 4.26. 

using the following methods and compare the results: 

(a) Two-point Gauss integration 
(b) Analytical integration 

4.23 Evaluate the integral 

1 

I - f ( a o  + alX + a2x ~ + a3x 3) dx 

- 1  

using the following methods and compare the results: 

(a) Three-point Gauss integration 
(b) Analytical integration 

4.24 Evaluate the integral 

1 1 

I - -  / / ( r 2 s 3 + r s 4 ) d r d , s  

-1 -1 
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(2, 7) 

(~o, 5) 

Figure 4.27. 

, h - - - -  x 

4.25 

4.26 

4.27 

using the following methods and compare the results: 

(a) Gauss integration 
(b) Analytical integration 

Determine the Jacobian matrix for the quadratic isoparametric triangular element 
shown in Figure 4.27. 

How do you generate an isoparametric quadrilateral element for C 1 continuity? 
(Hint: In this case we need to transform the second-order partial derivatives and 
the Jacobian will be a variable matrix.) 

Consider a ring element with triangular cross section as shown in Figure 4.28. If 
the field variable r does not change with respect to 0. propose linear, quadratic, 
and cubic interpolation models for C o continuity. Develop the necessary element 
equations for the linear case for solving the Laplace's equation 

020 1 0o 02 o 
Or 2 + -  + - 0  

4.28 Evaluate ON4/Ox and 0N4/09  at the point (1.5. 2.0) for the quadratic triangular 
element shown in Figure 4.29. [Hint" Since the sides of the element are straight. 
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--K..j_.5 

J 

r 

J "  o 

Figure 4.28. Ring Element. 

3 (1,5) 

(1.5,2.0) 
l 

(3,2) 

1 
(o,o) 

Element geometry defined 
by 3 nodes. 

1 

Interpolation polynomial 
with 6 nodes 

Figure 4.29.  

define the geometry of the element using Eq. (3.73). Evaluate the Jacobian 
matrix 

[.Ji - 

L~2 
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(50, 60) 

(15, 50) 

Y 4-- 
(40, 30) 

(20, 20) 

. . . . .  ~ x  

Figure 4.30. Quadrilateral Element. 

Differentiate the quadratic shape function N4 given by Eq. (4.26) with respect to 
x and y. Use the relation 

ON~ - [ J ] - ~  ON~ 

and obtain the desired result.] 

4.29 Evaluate the partial derivatives (0N1/0x) and (0.~1/09) of the quadrilateral ele- 
ment shown in Figure 4.30 at the point (r = 1/2. s = 1/2) assuming that the 
scalar field variable 0 is approximated by a quadratic interpolation model. 

4.30 Derive Eqs. (4.16) and (4.17) for a one-dimensional quadratic element. 

4.31 Derive Eqs. (4.20)-(4.23) for a one-dimensional cubic element. 

4.32 Derive Eqs. (4.26) for a quadratic triangular element. 

4.33 Derive Eqs. (4.30) for a cubic triangular element. 

4.34 Derive Eq. (4.36) for a quadrilateral element. 

4.35 Derive the Hermite polynomials indicated in Eqs. (4.70)-(4.72). 
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DERIVATION OF 
MATRICES AND 

ELEMENT 
VECTORS 

5.1 INTRODUCTION 
The characteristic matrices and characteristic vectors (also termed vectors of nodal 
actions) of finite elements can be derived by using any of the following approaches: 

1. Direct approach 
In this method, direct physical reasoning is used to establish the element properties (char- 
acteristic matrices and vectors) in terms of pertinent variables. Although the applicability 
of these methods is limited to simple types of elements, a study of these methods enhances 
our understanding of the physical interpretation of the finite element method. 

2. Variational approach 
In this method, the finite element analysis is interpreted as an approximate means for 
solving variational problems. Since most physical and engineering problems can be formu- 
lated in variational form, the finite element method can be readily applied for finding their 
approximate solutions. The variational approach has been most widely used in the liter- 
ature in formulating finite element equations. A major limitation of the method is that 
it requires the physical or engineering problem to be stated in variational form, which 
may not be possible in all cases. 

3. Weighted residual approach 
In this method, the element matrices and vectors are derived directly from the governing 
differential equations of the problem without reliance on the variational statement of 
the problem. This method offers the most general procedure for deriving finite element 
equations and can be applied to almost all practical problems of science and engineering. 
Again. within the weighted residual approach, different procedures, such as Galerkin 
method and least squares method, can be used in deriving the element equations. 

The details of all these approaches are considered in this chapter. 

5.2 DIRECT APPROACH 
Since the basic concept of discretization in the finite element method stems from the phys- 
ical procedures used in structural framework analysis and network analysis, we consider 
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a few simple examples from these areas to i l lustrate the direct method  of deriving finite 
element equations. 

5.2.1 Bar Element under Axial Load 
Consider a s tepped bar as shown in Figure 5.1(a). The different steps are assumed to have 
different lengths, areas of cross section, and Young's modulii. The way to discretize this 
system into finite elements is immediate ly  obvious. If we define each step as an element,  
the system consists of three elements and four nodes [Figure 5.1(b)]. 

The force-displacement equations of a step const i tute  the required element equations. 
To derive these equations for a typical element e. we isolate the element as shown in 
Figure 5.1(c). In this figure, a force (P)  and a displacement (u) are defined at each of the 
two nodes in the positive direction of the x axis. The field variable 0 is the deflection u. 
The element equations can be expressed in matr ix  form as 

[k]~ - P (s. 1) 

o r  

k21 k22J ~2 P2 

E1 ,A1 __ E2,A2 E3'A3 

J( _~r- : . ~_~ - ~ m " - - - " ~ P o  
_ . 

~P'~I I - ~ .... I 2 . . . . .  __~- / 3 ~ ' ~  

(a) Physical system 

node 1 node 2 node 3 node 4 

element 1 element 2 element 3 
(/1 ,A1, E1 ) (12,A2, E2) (13,A3' E3) 

(b) Finite element discretization 

Pl,Ul node I node 2 P2,u2 
element e 
(le,Ae, Ee) 

(c) One element of the system 

u 1 = 1 u 2 = 0 reaction -- k 1 
- - - - - . . . 4 -  k - - - - -  1 

A .. ,., 

e- - - "~n0de  1 node 2 " [ ;  
f o r c e ~ k l l  force = k21 = - k l l  

(d) Finding kl l  and k21 

Figure 5.1. A Stepped Bar under Axial Load. 
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where [k] is called the stiffness or characteris t ic  matr ix,  ff is the vector of nodal displace- 
. _ +  

ments,  and P is the vector of nodal forces of the element.  We shall derive the element 
stiffness mat r ix  from the basic definition of the stiffness coefficient, and for this no assumed 
interpolat ion polynomials  are needed. In s t ruc tura l  mechanics [5.1], the stiffness influence 
coefficient k;j is defined as the force needed at node i (in the direction of ,z;) to produce a 
unit displacement  at node j (uj = 1) while all other  nodes are restrained.  This definition 
can be used to generate  the matr ix  [k]. For example,  when we apply a unit d isplacement  
to node 1 and restrain node 2 as shown in Figure 5.1(d). we induce a force (k l l )  equal to* 
A~ - (A~E~/l~) at node 1 and a force (/,'21) equal to -(A~E~/l~) at node 2. Similarly. we 
can obtain the values of k22 and k12 as (A~E~/l~) and -(A~E~/l~). respectively, by giving 
a unit  displacement  to node 2 and restraining node 1. Thus.  the characteris t ic  (stiffness) 
mat r ix  of the element is given by 

Fk11 1,.,~ 1 _ [ (A~E~/t~) -(.4~E,,/t~) 
[k]- L 

 e  El'e 1:1 
Notes: 

1. Equat ion  (5.1) denotes  the element equat ions regardless of the type of problem, the 
complexi ty of the element,  or the wav in which the element,  characteris t ic  matr ix,  
[k], is derived. 

2. The  stiffness mat r ix  [/,'] obeys the I~Iaxwell-Betti reciprocal theorem [5.1], which 
s tates  tha t  all stiffness matr ices  of linear s t ructures  are symmetr ic .  

5.2.2 Line Element for Heat Flow 

Consider a composi te  (layered) wall th rough which heat flows in only the a: direction 
[Figure 5.2(a)]. The left face is assumed to be at a uniform t empera tu r e  higher than  tha t  
of the right face. Each laver is assumed to be a nonhomogeneous  mater ia l  whose thermal  
conduct ivi ty  is a known function of the x. Since heat flows only in the a: direction, the 
problem can be t rea ted  as one-dimensional  with each layer considered as a finite element.  
The  nodes for any element will be the bounding planes of the layer. Thus.  there are 
four elements  and five nodes in the system. The field variable o is t empe r a t u r e  T in this 
problem. Thus,  the nodal  unknowns denote  the t empera tu re s  tha t  are uniform over the 
bounding  planes. 

We can derive the element equat ions by considering the basic relation between the 
heat  flow and the t empe ra tu r e  gradient without  using any interpolat ion polynomials.  The 
quant i ty  of heat  crossing a unit  area per unit t ime in the z direction (q) is given by 
Eq. (1 .1 )as  

dT  
q - - a - ( z / � 9  (5 .4)  

d.r 

where k(x) is the thermal  conduct ivi ty  of the mater ia l  and (dT/dx) is the t empe r a t u r e  
gradient.  

* Force = stress • area of cross section - strain x Young's modulus x area of cross section = 
(change in length/original length) x Young's modulus x area of cross section = (1/le)" Ee" Ae = 
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(a) 

I t / 

how , I" 

" - ' ~ X  - - - - I ~ X  
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I--,o --t 
(b) 

Figure 5.2. Heat Flow through a Composite (Layered) Wall. 

Equa t ion  (5.4) can be in tegra ted  over the  thickness of any e lement  to ob ta in  
a re la t ion be tween  the  nodal  heat  fluxes and the  nodal  t empe ra tu r e s .  The  integra-  
t ion can be avoided if we assume the  t h e r m a l  conduct iv i ty  of a typical  e lement  e to 
be a cons tan t  as k ( x ) - k ' ~ .  The  t e m p e r a t u r e  gradient  at  node 1 can be wr i t t en  as 
( d T / d x )  (at node  1) = (T~ - T1)/(x2 - x~) = (T2 - T~)/t~ and the t e m p e r a t u r e  gradi-  
ent at  node 2 as ( d T / d x )  (at node  2 ) =  - ( d T / d x )  (at node 1 ) =  - ( T 2  - T~)/t~.  Thus,  
the  heat  fluxes en ter ing  nodes 1 and 2 can be wr i t t en  as 

F1 - q (at node 1) - -k'~(T2 - T1)/ t~ I 

/ /'2 -- q (at node 2) = +k'~(T2 - T~)/t~ 
(5.5) 

By defining k~ - k'~/t~, Eq. (5.5) can be r ewr i t t en  as 

(5.6) 

Equa t ion  (5.6) can be expressed in ma t r ix  no ta t ion  as 

[k]T- P (5.r) 

where 

ke - k e  I 
- - e l e m e n t  conduc t iv i ty  (character is t ic)  ma t r i x  

vector  of nodal  t e m p e r a t u r e s  
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and 

F -  F2 - vector of nodal  heat fluxes 

Note tha t  Eq. (5.7) has tile same form as Eq. (5.1). 

5.2.3 Line Element for Fluid Flow 
Consider a fluid flow network consisting of several pipeline segments  as shown in 
Figure 5.a(a). If we assume tha t  there is a source such as a pump at some point in the net- 
work, the  problem is to find the pressures and flow rates in various pa ths  of the network. 
For this we discretize the network into several finite elements,  each element represent ing 
the flow pa th  between any two connected nodes or junctions.  Thus,  the network shown in 
Figure 5.a(a) has 7 nodes and 10 finite elements.  In this case, the pressure loss-flow rate  
relations cons t i tu te  the element equat ions and can be derived from the basic principles of 
fluid mechanics wi thout  using any interpolat ion polynomials.  

For a circular pipe of inner d iameter  d and length l. and for laminar  flow, the pressure 
drop between any two nodes (sections) 1 and 2. p2 - p l .  is related to the flow (F)  by [5.2] 

128F//~ (5.8) 
P2 -- Pl = ,"r d 4 

where # is the dynamic viscosity of the fluid. For a typical e lement  e shown in Figure 5.3(b), 
the  flows entering at nodes 1 and 2 can be expressed using Eq. (5.8) as 

rrd~4 ( p l - p 2 )  
F1 = 128/-----~ 

rrd~4 (p2 - pl)  
F2 = 128l~/1 

(5.9) 

2 

Outflow 

--'t- 
(P2,F2) 

(Pl ,F1) 

(a) (b) 

Figure 5.3. A Fluid Flow Network 
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Equations (5.9) can be writ ten in matr ix form as 

[k]/Y - fi (5.10) 

where 

7rd 4 

[ k ] -  128l~# 
1 

- 1  
-11] - e l e m e n t  fluidity (charac ter i s t ic )mat r ix  

I7 = vector of nodal pressures, and F - vector of nodal flows. It can be seen tha t  Eq. (5.10) 
has the same form as Eqs. (5.1) and (5.7). 

5.2.4 Line Element for Current Flow 

Consider a network of electrical resistances shown in Figure 5.4(a). As in the previous case, 
this network is discretized with 7 nodes and 10 finite elements. The current flow-voltage 
relations const i tute  the element equations in this case. 

To derive the element equations for a typical element e shown in Figure 5.4(b), we use 
one of the basic principles of electrical engineering, namely, Ohm's  law. This obviously does 
not need any interpolation functions. Ohm's  law gives the relation between the currents 
entering the element at the nodes and the voltages of the nodes as 

o r  

1 
h = ~(Vl - v~) 

t 
h = ~ ( ~  - v , )  

1% 

[k]I~ - f (5.11) 

[~ ~'SC'-u-rrent 
outflow 

Current S m ~!~/~1 " [~ ~[[~ 
inflow _ , , � 9  

El 

(a) 

R e 

1 (12'v2) 

(b) 

Figure  5 .4 .  An Electrical Network.  
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where 

1[1 
[k] -  ~ -  -1  - element characteristic matr ix 

-~ { I 1 }  { I ]  } = vector of nodal voltages. R~ is the I -  I2 - vector of nodal currents, f" = I:, 

resistance of element e. I, is the current entering n o d e /  ( i -  1.2). and ~} is the voltage 
at node i (i - l, 2). 

5.3 VARIATIONAL APPROACH 
In the previous section the element equations were derived using the direct approach. 
Although the approach uses the basic principles of engineering science and hence aids in 
understanding the physical basis of the finite element method, insurmountable difficulties 
arise when we try to apply." the method to complex problems (such as tr iangular  elements). 
In this section we take a broader view and interpret the finite element method as an 
approximate method of solving variational problems. ~lost of the solutions reported in 
the l i terature for physical and engineering problems have been based on this approach. 
In this section we derive the finite element equations using the variational approach. 

5.3.1 Specification of Continuum Problems 
Most of the continuum problems can be specified in one of two ways. In the first, a 
variational principle valid over the whole domain of the problem is postulated and an 
integral I is defined in terms of the unknown parameters  and their derivatives. The correct 
solution of the problem is one that  minimizes the integral I. In the second, differential 
equations governing the behavior of a typical infinitesimal domain are given along with 
the boundary conditions. These two approaches are mathemat ical ly  equivalent, an exact 
solution of one being the solution of the other. The final equations of the finite element 
method can be derived by proceeding either from the differential equations or from the 
variational principle of the problem. 

Although the differential equation approach is more popular, the variational approach 
will be of special interest in s tudying the finite element method. This is due to the fact tha t  
the consideration of the finite element method as a variational approach has contr ibuted 
significantly in formulating and solving problems of different branches of engineering in a 
unified manner.  Thus, a knowledge of the basic concepts of calculus of variations is useful 
in understanding the general finite element method. 

5.3.2 Approximate Methods of Solving Continuum Problems 
If the physical problem is specified as a variational problem and the exact solution, which 
minimizes the integral I. cannot  be found easily, we would like to find an approximate 
solution tha t  approximately minimizes the integral I. Similarly, if the problem is specified 
in terms of differential equations and boundary conditions, and if the correct solution, 
which satisfies all the equations exactly, cannot be obtained easily, we would like to find an 
approximate solution that  satisfies the boundary conditions exactly but not the governing 
differential equations. Of the various approximate methods available, the methods using 
trial functions have been more popular. Depending on the manner in which the problem is 
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specified, two types of approximate  methods,  namely variational methods  (e.g.. l:/ayleigh- 
Ritz method)  and weighted residual methods  (e.g.. Galerkin method) ,  are available. The 
finite element can be considered as a variational (Rayleigh-Ritz)  method  and also as a 
weighted residual (Galerkin) method.  The consideration of the finite element method  as 
a variational approach (which minimizes the integral I approximately)  is discussed in this 
section. The consideration of the finite element method  as a weighted residual approach 
(which satisfies the governing differential equations approximately)  is discussed in the next 
section. 

5.3.3 Calculus of Variations 
The calculus of variations is concerned with the determinat ion  of ex t rema (maxima and 
minima) or s ta t ionary values of functionals. A functional can be defined as a function of 
several other functions. The basic problem in variational calculus is to find the function 
r  tha t  makes the functional (integral) 

x 2  

I - / F ( x . o .  ox.ox~).dx 
,r  1 

(5.12) 

stationary. Here, x is the independent  variable, o.r - do/dx, oxx - d2o/dx 2. and I and 
F can be called functionals. The functional I usually possesses a clear physical meaning 
in most of the applications. For example, in s t ructural  and solid mechanics, the potential  
energy (rr) plays the role of the functional (rr is a function of the displacement vector o, 
whose components  are u, v, and w, which is a function of the coordinates x, y, and z). 
The integral in Eq. (5.12) is defined in the region or domain Ix1. x2]. Let the value of 
r be prescribed on the boundaries as O(Xl) - Ol and o(x2) - 02. These are called the 
boundary  conditions of the problem. 

One of the procedures tha t  can be used to solve the problem in Eq. (5.12) will be as 
follows" 

(i) Select a series of trial or tentat ive solutions O(x) for the given problem and express 
the functional I in terms of each of the tentat ive solutions. 

(ii) Compare  the values of I given by the different tentat ive solutions. 
(iii) Find the correct solution to the problem as tha t  part icular  tentat ive  solution 

which makes the functional I assume an extreme or s ta t ionary value. 

The mathemat ica l  procedure used to select the correct solution from a number  of tentat ive 
solutions is called the calculus of variations. 

Stationary Values of Functionals 
Any tentat ive solution r  in the neighborhood of the exact solution o(x) may be 
expressed as (Figure 5.5) 

~;(x) o(~) ~0(~) = + (5.13) 
tentat ive solution exact solution variation of 0 

The variation in q5 (i.e., a0) is defined as an infinitesimal, arbi t rary change in ~5 for a 
fixed value of the variable x (i.e., for am - 0). Here. a is called the variational operator  
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Figure 5.5. Tentative and Exact Solutions. 

Solution 

(similar to the differential opera tor  d). The  opera t ion  of variat ion is commuta t ive  with  
respect  to bo th  in tegrat ion and differentiation" 

5 ( f f F . d x )  = / ( 6 F )  dx 

and 

do) d (6o) ~ ~ = ~  

Also, we define the variat ion of a functional  or a function of several variables in a manne r  
similar to the  calculus definition of a to ta l  differential as 

OF OF OF OF f 0 (5.~4) 

(since we are finding variat ion of F for a fixed value of x. 5x = 0). 

Now, let us consider the variat ion in I(6I) corresponding to variat ions in the  solut ion 
((~0). If we want  the condi t ion for the s ta t ionar iness  of I, we take the necessary condi t ion 
as the  vanishing of first derivative of I (similar to maximiza t ion  or min imiza t ion  of simple 
functions in calculus): 

x 2  X 2  

6I= r-~6O+ ~ 6 O x  + ~ 6 O x x  d x -  6F dx=O 
X 1 X l  

(5.15) 
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Integrate the second and third terms by parts to obtain 

x 2  X 2  X 2  

f OF f OF (0o)  f OF O(50)dx ~r 0--~ 5 0 x  d x -  0-0-~0x ' 
Xl  Xl  Xl  

x 2  

O~F s o - -~z - ~  5 o d x 
X l  

(5.16) 

and 

x 2  x 2  

/ / ol,O ld x 
O--g~ 5 r  dz  = OCxx Oz 

X l  X l  

a:2 

X2 f d (  OF ) _- O~Y a o~ _ ~ O ci~ 5 o~ d x 
O ~ x  21 

2:1 

i 00 F x2 d ( 0 F )  62 OF 
= 502: --~z 00;2:~0 + 50dx 

"~2:2: X l  X l  x 1 ' 

x 2  

/ [ O F  d ( 0 F )  d 2 ( O F ) ]  
. .51-  0r dx - ~  + ~  04)~2 5odx 

2:1 

[OF d ( 00@~)]50 
+ 0 ~  dx 

x 2  

+ 
x i  

X2 

Xl  

- 0  

(5.17) 

(5.18) 

Since 54) is arbitrary, each term must vanish individually so that 

OF 
0r  

d ( 0 F )  d2 ( 0 F )  
dx ~ +d-~--~z 2 ~ - 0  

002: dx 

(5.19) 

i 
x 2  

50 - o  (5.20) 
Xi  

X2 

OF 60x - 0 (5.21) 

Equation (5.19) will be the governing differential equation for the given problem and is 
called the Euler equation or Euler-Lagrange equation. Equations (5.20) and (5.21) give 
the boundary conditions. The conditions 

&b2: dx I ~ - 0  (5.22) 
Xl 
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and 

0 F  ": _ 0 (5.23) 

are called na tura l  boundary  condit ions (if they are satisfied, thev are called flee boundary  
conditions).  If the na tura l  boundary  conditions are not satisfied, we should have 

do(x~  ) - 0. do(z .e)  - 0  

and (,5.24) 

( 5 0 . r ( X l )  - -  O. (50a-(.Z"2) = 0 

in order to satisfy Eqs. (5.20) and (5.21). These are called geometric or essential or forced 
boundary  conditions. Thus.  the boundary  conditions. Eqs. (5.20) and (5.21), can be sat- 
isfied by any combinat ion of free and forced boundary  conditions. If the finite element 
equat ions are derived on the basis of a variat ional principle, the na tura l  boundary  con- 
ditions will be au tomat ica l ly  incorporated in the formulation; hence, only the geometric  
boundary  condit ions are to be enforced on the solution. 

5.3.4 Several Dependent Variables and One Independent Variable 
Although Eqs. (5.19)-(5.21) were derived for a single dependent  variable, the me thod  
can be extended to the case of several dependent  variables o,(:r) to obtain the set of 
Eu le r -Lagrange  equations:  

d , ~  O(o,). , . , .  - ~ O(o, /~ .  ~ ~ ;  - 0. i - ~. 2 . . . . .  , ~  ( 5 .25 )  

In general,  the integrand F will involve derivatives of higher order than  the second order 
so tha t  

a" 2 

I - / F[~ .  O , .  Ol 1). 0 (2/, . . . . . . . . . .  O, dz.  i -- 1 2. J~ (5.26) 

where d) ()) indicates the j t h  derivative of oi with respect  to x. The corresponding Euler -  
Lagrange equat ions call be expressed as [5.3] 

s  1)"-J d"-J { c)F } - 0 " d z ' '  -j ~" ,~~ t . . . .  ,,-.~ / i - 1 . 2  . . . . .  n (5.27) 
3:0 

5.3.5 Several Independent Variables and One Dependent Variable 
Consider the following functional with three independent  variables: 

I - / F(x.  y. z. o. ox. o~,. o~) dV (5.28) 

I." 
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where ~ = (OO/Oz), ~y = (O0/Oy), and o:  - (Oo/c)z). The variation of I due to an 
arbi t rary small change in the solution o can be expressed as 

/ ( O F  OF OF O F )  

/ [ O F  OF 0 (60)+ OF 0 OF t) ] -- -~60 + ~ ~ ~-~y(6o) + ~ ~(6o) dV (5.29) 

since a0~ = a(oqo/oz) - (ig/O:r)(aO), etc. Integrating the second term in Eq. (5.29) by" 
parts  and applying the Green-Gauss  theorem (given in Appendix A) gives 

/o o /o(o  ) 
O-~-70-7(a0)dV- ~ O-0-7, ao d~,'- ~ ~ aodV 

V ~" V 

= l ~ ~ 6 0 a s -  Oa- ~ a o d i "  

S '~ 

(a.30) 

where 1~ is the direction cosine of the normal to the outer surface with respect to the a" 
axis. Similarly, the third and fourth terms in Eq. (5.29) can be integrated and 6I can be 
expressed as 

/[oF 
6I = (90 

V 

0(0 ) 0<o ) 

+ + + j<ol:  o.ds 

S 

(5.31) 

The functional I assumes a s ta t ionary value only if the bracketed terms within the inte- 
grals vanish. This requirement gives the governing differential equation and the boundary 
conditions of the problem. Equat ion (5.31) is the one that  is applicable to the finite element 
formulation of most field problems according to the variational approach. 

5.3.6 Advantages of Variational Formulation 
From the previous discussion it is evident that  any continuum problem can be solved using 
a differential equation formulation or a variational formulation. The equivalence of these 
formulations is apparent  from the previous equations, which stlow that  the functional I is 
extremized or made s tat ionary only when the corresponding Euler-Lagrange equations and 
boundary  conditions are satisfied. These equations are precisely the governing differential 
equations of the given problem. 

The variational formulation of a continuum problem has tile following advantages over 
differential equation formulation" 

1. The functional I usually possesses a clear physical meaning ill most practical 
problems. 
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2. The functional I contains lower order derivatives of the field variable compared 
to the governing differential equation and hence an approximate solution can be 
obtained using a larger class of flmctions. 

3. Sometimes the problem may possess a dual variational formulation, in which case 
the solution can be sought either by minimizing (or maximizing) the functional I 
or by maximizing (or minimizing) its dual functional. In such cases, one can find an 
upper and a lower bound to the solution and est imate the order of error in either 
of the approximate solutions obtained. 

4. Using variational formulation, it is possible to prove the existence of solution in 
some cases. 

5. The variational formulation permits  us to treat, complicated boundary conditions 
as natural  or free boundary  conditions. Thus, we need to explicitly impose only 
the geometric or forced boundary conditions in the finite element method,  and the 
variational statement, implicitly imposes the natural  boundary conditions. 

As s tated in Section 1.4, the finite element method is applicable to all types of con- 
t inuum problems, namely, equilibrium, eigenvalue, and propagation problems. We first 
present the solution of all three categories of problems using the variational approach and 
then derive the finite element equations using the variational approach. 

5.4 SOLUTION OF EQUILIBRIUM PROBLEMS USING VARIATIONAL 
(RAYLEIGH-RITZ) METHOD 

The differential equation formulation of a general equilibrium problem leads to the 
following equations: 

Ao = b in V (5.32) 

BjO = 93. j = 1.2 . . . .  ,p on S (5.33) 

where 0 is the unknown field variable (assumed to be a scalar for simplicity), A and Bj 
are differential operators,  b and 9j are functions of the independent variables, p is the 
number of boundary  conditions. V is the domain, and S is the boundary of the domain. 

In variational formulation, a functional I(O) for which the conditions of stationariness 
or extremization give the governing differential equation, Eq. (5.32), is identified and the 
problem is s tated as follows: 

Minimize I(O) in I'" (5.34) 

subject to the essential or forced boundary conditions 

B,O = g~, j = 1 . 2 , . . . , p  (5.35)  

The functional I is some integral of O and its derivatives over the domain V and /o r  the 
boundary S. If the integrand of the functional is denoted by F so tha t  

I = / F(x, O, Ox). dx (5.36) 

V 
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it can be seen from the previous discussion tha t  F satisfies the Euler -Lagrange  equation, 
Eq. (5.19). This Euler -Lagrange  equation in 0 is the same as the original field equation, 
Eq. (5.32). 

In the most  widely used variational method,  the Rayle igh-Ri tz  method,  an approxi- 
mate  solution of the following type is assumed for the field variable 0(x): 

yt 

,(x) = Z c,/,(x) (5.a7) 
i = 1  

where fi(x) are known linearly independent  functions (also called trial functions) defined 
over V and S and Ci are unknown parameters  to be determined.  When  0(x) of Eq. (5.37) is 
subst i tuted,  Eq. (5.36) becomes a function of the unknowns C,. The necessary conditions 
for the functional to be s ta t ionary are given by 

01(r  

OC~ 
= O, i -- 1, 2 , . . . ,  n (5.38) 

which yields n equations in the n unknowns Ci. If I is a quadrat ic  function of 0 and 0x, 
Eq. (5.38) gives a set of n linear s imultaneous equations. 

It can be seen tha t  the accuracy of the assumed solution O(x) depends on the 
choice of the trial functions f~(x). The functions fj(x), j - 1,2..~.. , n  have to be con- 
t inuous up to degree r -  1, where r denotes the highest degree of differentiation in the 
functional I [r - 1 in Eq. (5.36)] and have to satisfy the essential boundary  conditions, 
Eq. (5.35). In addition, the functions fj(x) must be part  of a complete set for the solution 
to converge to the correct solution. To assess the convergence of the process, we need to 
take two or more trial functions, f3(x). When the method  is applied for the stat ionariness 
of a given functional I, we can s tudy the convergence by comparing the results obtained 
with the following sequence of assumed solutions: 

r  ) - -  c}l)fl(x) 

r = C~2) fl(x) + C~2) f2(x) 

(5.39) 

r - c~i) fl(x) + C~i) f2(x) +...-+- C[i) f,(x) 

where the i th  assumed solution includes all the functions fj(x) included in the previous 
solutions. Usually, the functions fj (x) are taken as polynomials or t r igonometric  functions. 
If I is a quadrat ic  functional, the sequence of solutions given by Eq. (5.39) leads to 

1 (1) > 1 (2) > . . .  > 1 (~/ (5.40) 

This behavior is called monotonic convergence to the min imum of 1. 
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p per unit length 
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Figure 5.6. A Simply Suppe-ted Beam under Uniformly Distributed Load. 

E x a m p l e  5.1 Find the approximate deflection of a simply supported beam under a 
uniformly distr ibuted load p (Figure 5.6) using the Rayleigh-Ritz  method. 

S o l u t i o n  Let, w(a:) denote the deflection of the beam (field variable). The differential 
equation formulation leads to the following s ta tement  of the problem: 

Find w(z) that  satisfies the governing equation [Eq. (1.24) with constant p and El] 

dl  ~1, 
E [ ~  - - p - -  0. 0 < . r  < I (El)  

and the boundarv conditions 

w(z -- 0) - w(z - l) - 0 (deflection zero at ends) } 

EI~,x2d2w(x - 0) = EI d2tc'~-gz2 (,r - l) = 0 (bending moment zero at ends) 
(E2) 

where E is the Young's modulus, and I is the moment of inertia of the beam. The 
variational formulation gives the following s ta tement  of the problem: 

Find w(z) that  miniInizes the integral* 

/[ < ) 1 1 E I  d 2u' 2 
A -  F . d . r -  ~ ~ - 2 p . u '  dx 

a - = 0  0 

(E~) 

and satisfies the boundary conditions s tated in Eq. (E2). 

We shall approximate the solution u'(,r) by orthogonal functions of the sinusoidal type. 
For example, 

~'(27) - -  C1 sin T + ('2 sin ~ - Clfl(x) + C2f.2(x) (E4) 

* It can be verified that the Euler-Lagrange equation corresponding to the functional A is the 
same as Eq. (El). The functional A represents the potential energy' of the beam. 
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where the functions fl(x) - sin(rex~l) and f2(x) - sin(37rx/l) satisfy the boundary 
conditions, Eq. (E2). The substitution of Eq. (E4) into Eq. (Ea) gives 

A = 6'1 ( 1 )  sin (-1-,) + C2 T sin T 
o 

-p  C1 sin T + c2 sin - -~  dx 

/ [ E l {  zr zrx (3T~) 4 ( ~ )  zc 2 ( / ) 2  = - -  C12 (T) 4sin2 (-l-) + c ;  sin 2 + 2C1 C2 (1) 
o 

. sin (__~_)sin ( 3 ; z ) } -  { 7rx }]  7rx _ _  P Clsin(_T_)_]_C2sin(87rx -y-)  dz (E~) 

By using the relations 

l /sin(  x {0 __w) sin 
o 

if m -r n 
if m - n 

(E~) 

and 

l 

sin ~ dx - rn r c  
o 

if m is an odd integer. (E~) 

Eq. (Es) can be written as 

A -  F'I {C~ (7r)4 l ~  --[ -~ +C~ (37r)4 [ } { 2 / - - / -  ~ - p  C1--~ -+-C2--37r2/} (E~) 

where C1 and C2 are independent constants. For the minimum of A. we have 

OA E1 
m 

OC1 2 

OA 
0C2 

EI 
2 

4 / }  21 - 0  

2c2 ~ - p ~  = 0 

(E~) 

The solution of Eqs. (Eg) gives 

4pl 4 
C1 = 7r~E I and 

4pl 4 
C2 = 2437rSEi (E~o) 
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Thus, the deflection of the beam is given by 

4p14 [ ( r rx )  1 ( _ ~ z ) ]  
uj(x)  - rrSE I sin -/-  + ~ s i n  (Ell)  

The deflection of the beam at the middle point is given by 

968 pl 4 1 pl 4 

u ' (x  = 1 / 2 ) =  243rr5 E I  - 76.5 E I  
(E12) 

which compares well with the exact solution 

5 p/4 1 pl 4 (El3) 
w ( x  - I /2 )  - 384 E I  - 76.8 E I  

We can find a more accurate solution by including more terms in Eq. (E4). The n term 
solution converges to the exact solution as 7~ ---, ~ .  

5.5 SOLUTION OF EIGENVALUE PROBLEMS USING VARIATIONAL 
(RAYLEIGH-RITZ) METHOD 

An eigenvalue problem, according to tile differential equation formulation, can be stated as 

,40  = A B O  in I" (5.41) 

subject to the boundary conditions 

E r  = A F j o ,  j = 1, 2 . . . .  , p on o c (5.42) 

where A, B, Ej,  and Fj are differential operators, and A is the eigenvalue. Although the 
methods discussed for the solution of equilibrium problems can be extended to the case in 
which the boundary conditions are of the type shown in Eq. (5.42). only the special case 
in which Fj = 0 is considered here so that Eq. (5.42) becomes 

E j o  = 0. j - 1, 2 . . . . .  p on S (5.43) 

It is assumed that  the solution of the problem defined by Eqs. (5.41) and (5.43) gives real 
eigenvalues A. 

In the variational formulation corresponding to Eq. (5.41). a flmctional I ( O , A )  to be 
made stationary is identified as 

I(o,  A) = I a ( o ) -  I B ( o )  (5.44) 

where the subscripts of the functionals 1.4 and IB indicate that they are derived from A 
and B, respectively. It can be shown [5.4] that the stationary value of a function AR, called 
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the Rayleigh quotient,  defined by 

I~(o) 
~ = (5.45) 

~B(o) 

gives the eigenvalue, and the corresponding o gives the eigenfunction. The trial solution 
r is chosen as 

o(x) = ~ C~fi(x) (5.46) 
i = 1  

where f~(x)  satisfy only the essential boundary conditions. In this case. the conditions for 
the stat ionariness of A~ can be expressed as 

_ ( OIA OIu OaR _ 0 i=1 = ~ I B - ~ i  -- I A - ~ , ]  - - 0  i = l 2. n (5 47) 

which shows tha t  

09IA OIB 
-- ~ ~  i - -  1,2 . . . . .  n (5.48) 

OCi OCi ' 

Equat ion (5.48) yields a set of n simultaneous linear equations. Moreover, if the functions 
f~(z )  also satisfy the natural  (free) boundary conditions, then the Rayleigh-Ritz  method 
gives the same equations as the Galerkin method discussed in Section 5.9. The example in 
Section 1.6.4 il lustrates the Rayleigh-Ritz  method of solution of an eigenvalue problem. 

5.6 SOLUTION OF PROPAGATION PROBLEMS USING VARIATIONAL 
(RAYLEIGH-RITZ) METHOD 

The differential equation formulation of a general propagat ion problem leads to the 
following equations" 

Field equation: A 0 -  e in V for t > to (5.49) 

Boundary  conditions" B i r  gi, i - 1.2 . . . . .  k on o c for t _> to (5.50) 

Initial conditions" E 3 6 - -  hj ,  j - 1.2 . . . . .  1 in V for t - to (5.51) 

where A, Bi, and E a are differential operators: e, g,. and h a are functions of the inde- 
pendent  variable; and to is the initial time. In variational methods,  the functionals I 
associated with specific types of propagation problems have been developed by several 
authors, such as Rosen, Biot, and Gurt in  [5.5]. 
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In the case of propagat ion problems, the trial solution o(a'. t) is taken as 

d(a-. t) = s C,(t)f,(.r) (5.52) 

where Ci is now a function of t ime t. Alternatively. C, can be taken as a constant and f, 
as a function of both z and t as 

r t) - s (',f,(a'.t) (5.53) 

As in the case of equilibrium and eigenvalue problems, the functions f, have to satisfy the 
forced boundary  conditions. 

The solution given by Eq. (5.52) or Eq. (5.53) is subst i tu ted into the functional, and 
the necessary conditions for the stat ionariness are applied to derive a set of equations in 
the unknowns C,(t) or C,. These equations can then be solved to find the functions C,(t) 
or the constants  C,. 

5.7 EQUIVALENCE OF FINITE ELEMENT AND VARIATIONAL 
(RAYLEIGH-RITZ) METHODS 

If we compare the basic steps of the finite element method  described in Section 1.5 with 
the Rayleigh-Ri tz  method discussed in this section, we find that  both are essentially 
equivalent. In both methods,  a set of trial functions are used for obtaining an approxi- 
mate  solution. Both methods  seek a linear combiImtion of trial functions that  extremizes 
(or makes s tat ionary)  a given functional. The main difference between the methods  is 
tha t  in the finite element method,  the assumed trial functions are not defined over the 
entire solution domain and they need not satisfy any boundary  conditions. Since the trial 
functions have to be defined over the entire solution domain, the 1Rayleigh-Ritz method  
can be used only for domains of simple geometric shape. Similar geometric restrictions 
also exist in the finite element method,  but for the elements. Since elements with sim- 
ple geometric shape can be assembled to approximate  even complex domains, the finite 
element method  proves to be a more versatile technique than  the Rayleigh-Ritz  method.  
The only l imitat ion of the finite element method is that  the trial functions have to satisfy 
the convergence (continuity and completeness) conditions stated in Section 3.6. 

5.8 DERIVATION OF FINITE ELEMENT EQUATIONS USING VARIATIONAL 
(RAYLEIGH-RITZ) APPROACH 

Let the general problem (either physical or purely mathemat ica l ) ,  when formulated accord- 
ing to variational approach, require the extremizat ion of a functional I over a domain V. 
Let the functional I be defined as 

H I  ~ / =  F 5. ~ ( o ) . . . .  d ~ . +  g o . ~  . 
S 

(5.54) 
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where, in general, the field variable or the unknown function C~ is a vector. The finite 
element procedure for solving this problem can be s tated by the following steps: 

S t e p  1: The solution domain 1 / i s  divided into E smaller parts  called subdomains  that  
we call finite elements. 

S t e p  2: The field variable 0, which we are t rying to find. is assumed to vary in each 
element in a suitable manner  as 

e2= [x]~ ~) (5.55) 

where [N] is a matr ix  of shape functions ([N] will be a function of the coordinates),  and 

~(c) is a vector representing the nodal values of the function o associated with the element. 

S t e p  3: To derive the elemental  equations, we use the conditions of extremizat ion of 
the functional I with respect to the nodal unknowns ~ associated with the whole domain. 
These are 

"01 /01 ,1  

OI _ 01 /01 ,2  
- 0  (5.56) 

where M denotes the total  number  of nodal unknowns in the problem. If the functional I 
can be expressed as a summat ion  of elemental  contr ibut ions as 

E 

I - E I(~) 
e- -1  

(5.57) 

where e indicates the element number,  then Eq. (5.56) can be expressed as 

OI _ k 0I(~) 
o ~  b--c;; = o. ; - ~. 2 . . . . .  .~t (5 .58)  

e -= l  

In the special case in which I is a quadrat ic  functional of 0 and its derivatives, we can 
obtain the element equations as 

Oi (~) 

01,(~) 
= [Kr _/5(e) (5.59) 

where [K (c)] and/6(e)  are the element characteristic matr ix  and characteristic vector (or 
vector of nodal actions), respectively. 

S t e p  4: To obtain the overall equations of the system, we rewrite Eq. (5.56) as 

o i  = [ K J ~ -  # -  ~ (5 .60)  
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where 
E 

[ A ' ] - E [ K  ~e)] (5.61) 
e = l  

E 

(5.62) 
e = l  

and the summation sign indicates assembly over all finite elements. The assembly 
procedure is described in Chapter  6. 

S t e p  5" The linear sinmltaneous equations (5.60) can be solved, after applying the 
boundary conditions, to find the nodal unknowns (P. 

S t e p  6: The function (or field variable) c] in each element is found by using Eq. (5.55). 

If necessary, the derivatives of o are found by differentiating the function r in a suitable 
manner. 

Convergence Requirements 
As stated in Section 3.6. the following conditions have to be satisfied in order to achieve 
convergence of results as tile subdivision is made finer: 

(i) As the element size decreases, the functions F and g of Eq. (5.54) must tend 
to be single valued and well behaved. Thus. the shape functions [N] and nodal 

unknowns (~(~) chosen must be able to represent any constant value of 0 or its 
derivatives present in the functional I in the limit as the element size decreases 
to zero. 

I(~~ valid, we must ensure that  terms (ii) In order to make the summation I - ~ e E = l  

such as F and 9 remain finite at interelement boundaries. This can be achieved 
if the highest derivatives of the field variable o that occur in F and g are finite. 
Thus. the element shape functions [.\'} are to be selected such that  at element 

interface, 4) and its derivatives, of one order less than that  occurring in F and g. 
are continuous. 

The step-by-step procedure outlined previously can be used to solve any problem 
provided that  the variational principle valid over the domain is known to us. This is 
illustrated by the following example. 

E x a m p l e  5.2 Solve the differential equation 

d2o 
dx 2 

+ o + x - 0 .  0 < x _ <  1 (El) 

subject to the boundary conditions o(0) - o(1) - 0 using the variational approach. 

Solut ion  The functional I corresponding to Eq. (El) is given by* 

1 / [  ( d o )  2 02 ] 
I -  -~ - -~x + + 2 o z  d z  

0 

(E~) 

* The Euler-Lagrange equation corresponding to Eq. (E2) can be verified to be same as Eq. (El). 
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0 1 A 1- v 

I ; - x  
(a) Solution region 
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(b) Two elements idealization 
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_-iT= ~ 1 ( 3 ) _ _ s  
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~pj ) 04 

(c) Three element idealization 

Figure 5.7. Discretization for Example 5.2. 

Step  1: We discretize the domain (x - 0 to 1) using three nodes and two elements of 
equal length as shown in Figure 5.7. 

S tep  2: We assume a linear interpolation model within an element, e as 

, ( , )  = [N(,)](~ (~) - N,(~) .  ~,I ~) + N , ( , ) .  ~ )  (E~) 

where, from Eq. (3.26), 

N i ( s  - (xj - ./?)//(c) (E4) 

N,(~) - ( ~ -  , , ) /1  (~) (E~) 

~(~) = { ~{~) } is the vector of nodal degrees of freedom: l(~-) is the length: ~l~) and ~(j ~ ) ~ j ( ~ )  

are the values of r at nodes i (x - x,) and j (m = xj), respectively: and i and j are 
the first and the second (global) nodes of the element e. 
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Step  3: We express the functional I as a sum of E elemental quantities I (~) as 

E 

I -  ~--~I (') 
e = l  

(E~) 

where 

I l~) _if do 2 

s 

+ 0 2 + 2xO] dx (E~) 

By substituting Eq. (E3) into Eq. (E7), we obtain 

x 3 

2 
,.r z 

+ [x]~[x]  + z~ [x ]~  (~, . (E~) 

For the stationariness of I, we use tile necessary conditions 

OI ~ OI ( ~ ) 
0--~, -- ~--(~- -- 0. i - -  1.2 . . . . .  ~1I (E9) 

c - -  1 

where E is the number of elements, and 3I is the number of nodal degrees of freedom. 
Equation (E9) can also be expressed as 

. r j  

e = l  ~ ' t " e )  e = l  , 

(~'~" + [X]r[X](~ I~) + x[N] r } dx - t~ 

o r  

E E 

c--i e ' = l  

(Elo) 

where 

[K (e)] - e l e m e n t  characteristic m a t r i x -  / 

l" z 

d X ] T [  dA" - [ X ] T [ . \ ; ] }  dx (E~I) 

and 

J ' /  

/~ (~ , /e lement  characteristic v e c t o r -  / x [ X ]  T dx 
x l  

(E12) 
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By substituting [X(x)] = [Ni(x) Nj(x)] =- 

obtain 
(-ii l ( '  ) 

- - ]  into Eqs. (E l l )  and (El2). we 

[K(~)]_ / 1 1 _ 
l(~) l(~) 

111 1] 
= / ( ~ ) - 1  1 - - - 6 -  

/] l ( ~ )  " x j  - -  x x - -  x ,  

x -  x, 1(;) i(~) 
" 1(~) 

dx 

(EI~) 

and 

/~(~) - -  x 
X - - X i  

' i(~) 

1 {(x~+x'xj-2x~)} 
dx - ~ (2~5 - x,-x~ - ~,,~) (El4) 

We shall compute the results for the cases of two and three elements. 

For E =  2 

Assuming the elements to be of equal length, we have 1 r = 1 (2~ = 0.5: x, = 0.0 and 
xj = 0.5 for e = 1; xi = 0.5 and zj = 1.0 for c = 2. Equations (E13) and (El4) yield 

111 [K(1)]_ [/s ~.5 -1 

f i (1 )  = 1__24 {~} 

/6(2)__ 124 {45} 

22 -2s2] 
-25  2 

For E =  3 
Assuming the elements to be of equal length, we have /(1) = l(2) = /(3) = 1/3: xi = 0.0 
a n d z j  = 1/3 f o r e =  1; z~ = 1/3 a n d z j  = 2 / 3  f o r e =  2: x, = 2 / 3 a n d . r j  = 1 for e = 3 .  
Equations (E13) and (El4) give 

[K (1)]= [K (2)] -  [K ( 3 ) ] - 3  [ 1 
- 1  

_ 1 
fi(1) - 54 {~ } 

f i (2)= 1 54 {4 

f i (3 )_  1 7 

52 -551 
-55  52 
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Step  4- We assemble the element characteristic matrices and vectors and obtain the 
overall equations as 

[K](~- ~ (E15) 

where 

E~1-1 [_ 

q)a 

0j 1[ i -25 - - 2  44 - 25 (22 + 22) �89 
o -25  22 -25  22j 

and 

1{1} 
_ P - x - ;  2 + 4  = 6 

5 5 
for E = 2 ,  and 

I 52 -55 0 1 1 -55  (52 + 52) -55 00 
[ K ] -  i~  0 .55 (52 + 52) - -55  

0 0 55 52 

I 52 -55  0 1 _ 1 -55  104 -55 00 
18 0 -55 104 -55  

0 0 -55 52 /~ 
~P4 

and 

-. 1 2 + 4  
- P - N  5 + r  - 

8 8 

for E -  3. 

S tep  5: We can solve the s3"stem equations (Ex.5) after incorporating the boundary 
conditions. 

For E - 2, the boundary conditions are (I)1 - e-oa - 0. 
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The incorporation of these boundary conditions in Eq. (E15) leads to (after deleting 
the rows and columns corresponding to 01 and 03 in [K], ~, and ~) 

1(44)12 02 = 2-~(6) 

or O2 -- 3 _ 0.06817 (E16) 
44 

For E = 3, the boundary conditions are O1 = O4 = 0. 

After incorporating these boundary conditions, Eq. (El5) reduces to 

1 

18 
104 -55104] {02 

the solution of which is given by 

03 0.06751J 

There is no necessity of Step 6 in this example. 

The exact solution of this problem is 

0(x / : (  x 

which gives 

0(0.5) = 0.0697 (E18) 

and 

O ( 1 )  --0.0536, 0 ( ~ )  =0.0649 (E19) 

Thus, the accuracy of the two- and three-element discretizations can be seen by comparing 
Eqs. (El6) and (E18), and Eqs. (E17) and (E19). respectively. 

5.9 WEIGHTED RESIDUAL APPROACH 
The weighted residual method is a technique that can be used to obtain approximate 
solutions to linear and nonlinear differential equations. If we use this method the finite 
element equations can be derived directly from the governing differential equations of the 
problem without any need of knowing the "functional." V~Te first consider the solution of 
equilibrium, eigenvalue, and propagation problems using the weighted residual method 
and then derive the finite element equations using the weighted residual approach. 
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5.9.1 Solution of Equilibrium Problems Using the Weighted Residual Method 
A general equil ibrium problem has been s ta ted  in Section 5.4 as 

. 4 0 -  b in I" (5.63) 

B j o  - g3. j - 1.2 . . . . .  p on S (5.64) 

Equat ion  (5.63) can be expressed in a more general form as 

F ( o ) -  G(o)  in ~" (5.65) 

where F and G are functions of the field variable o. In fact, E qs. (5.63). (5.64): (5.41), 
(5.42)" and (5.49)-(5.51) can be seen to be special cases of Eq. (5.65). In the weighted 

residual method ,  the field variable is approx imated  as 

r~ 

o(x)  - Z ( ' , f~(x)  (5.66) 
t - - 1  

where Ci are constants  and f i ( x )  are linearly independent  functions chosen such tha t  
all bounda ry  condit ions are satisfied. A quant i ty  R. known as the residual or error, is 

defined as 

R = G ( o ) -  F(o)  (5.67) 
. . . .  . . .  

which is required to satisfy certain condit ions that  make this error  R a min inmm or 
mainta in  it small in some specified sense. Xlore generally, a weighted function of the 
residual, w f ( R ) ,  where u' is a weight or weighting function and f ( R )  is a function of R, is 
taken to satisfy the smallness criterion. The  function f ( R )  is chosen so tha t  f ( R )  - 0 when 
H = 0 - - t h a t  is, when o(x)  equals the exact solution o(x) .  As stated,  the  trial function O 

..._ ..- 

i s  chosen so as to satisfy the bounda ry  condit ions but not the governing equat ion in the 

domain  V, and the smallness cri terion is taken as 

f . , f ( R ) ,  d ~  - 0 ( 5 . 6 8 )  

where the integrat ion is taken over the domain  of the problem. In the following subsections,  
four different methods ,  based on a weighted residual criterion, are given. 

5.9.2 Collocation Method 
In this method ,  the residual R is set equal to zero at n points in the domain  V. thereby 
implying tha t  the pa ramete r s  C~, are to be selected such that  the trial function O(x) 
represents  cS(x) at these 7~ points exactly. This  procedure  yields n s imul taneous  algebraic 
equat ions in the unknowns C, (i = 1.2 . . . . .  n). The  collocation points x~ at which cO(x 2) = 
O(x0). j - 1.2 . . . . .  n are usually chosen to cover the domain  1." more or less unifo}mly in 
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some simple pa t te rn .  This  approach is equivalent  to taking, in Eq. (5.68), 

f ( R ) = R  and w = ~ ( x  3 - x )  (5.69) 

where  a indicates the Dirac del ta  function, xj denotes  the posit ion of the j t h  point,  and 
x gives the posit ion of a general  point  in the domain  V. Thus.  w = 1 at point  x = x j and 
zero elsewhere in the domain  V (j = 1, 2 . . . . .  n). 

5.9.3 Subdomain Collocation Method 
Here, the domain  V is first subdivided into n subdomains  E ,  i - 1,2 . . . .  ,n ,  and the 
integral  of the residual over each subdomain  is then  required to be zero: 

/ 
�89 

R d E  = O, i = 1.2 . . . . .  n (5.70) 

This  yields n s imul taneous  algebraic equat ions  for the n unknowns Ci, i = 1,2 . . . .  ,n .  
It can be seen tha t  the me thod  is equivalent to choosing 

1 if x is in E (5.71) 
f ( R )  - R and w = 0 if x is not in E ,  i - 1.2 . . . . .  n 

5.9.4 Galerkin Method 
Here, the  weights wi are chosen to be the known functions f i (x)  of the trial  solution and 
the following n integrals of the weighted residual are set equal to zero: 

/ f i R d V - O .  i -  1 , 2  . . . . .  n (5.72) 

V 

Equat ions  (5.72) represent  n s imul taneous  equat ions  in the n unknowns.  C1. (72 . . . . .  Cn. 
This  me thod  general ly gives the best  approx ima te  solution. 

5.9.5 Least Squares Method 
In this method ,  the integral  of the weighted square  of the residual over the domain is 
required to be a minimum; tha t  is, 

f w R 2 d V - minimum (5.73) 

V 

By using Eqs. (5.66) and (5.63), Eq. (5.73) can be wri t ten  as 

f w b -  A dI . . . .  min imum 

V i = 1  

(5.74) 
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where the unknowns in the integral are only C,. The necessary conditions for minimizing 
the integral can be expressed as 

] n, ' ,  w b -  A C, f i ( x )  dV - 0. 
k ~ = l  

i -  1.2 . . . . .  n 

o r  

~,- l = l  

i -- 1, 2 . . . . .  n (5.75) 

The weighting function u, is usually taken as unity ill this method. Equation (5.75) leads 
to n simultaneous linear algebraic equations in terms of the unknowns C1, C2 . . . . .  Cn. 

E x a m p l e  5.3 Find the approximate deflection of a simply supported beam under a 
uniformly distr ibuted load p (Figure 5.6) using the Galerkin method. 

S o l u t i o n  The differential equation governing the deflection of the beam (w)  is given by 
(see Example 5.1) 

641/3 
E;h-~x ~ - p -  0. 0 _< x _<t (E~) 

The boundary  conditions to be satisfied are 

~,,(~ - o )  - . , ( x  - l )  - o 

d 2w(x - O) - E I  d 2 w  
E I -~x 2 --d-f 2 ( X - l ) - 0 

(deflection zero at, ends) / 

f (bending moment zero at, ends) 
(E2) 

where E is the Young's modulus, and I is the moment of inertia of the beam. 

We shall assume the trial solution as 

(~x) (37rx) 
w ( x )  - Cl  sin ---[- + C 2 s i n  ---/--- - C l f l ( x )  + C 2 f 2 ( x )  (E3) 

where fl  (x) and f2(x) satisfy the boundary  conditions. Eq. (E2), and C1 and C2 are the 
unknown constants. By subst i tut ing the trial solution of Eq. (E3) into Eq. (El),  we obtain 
the residual, R, as 

t ~ - E I C I ( - [ ) s i n ( - - [ - ) + E [ C 2  sin - - ~  - p  (E4) 
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By applying the Galerkin procedure, we obtain 

l 

/ f l ( x ) R d x  - ElC1 T -2 - prr 
o 

l 
f (3r r )4  / 2l 

f 2 ( x )R  dx -- EIC2 --i- -~ - p - ~  -- 0 
o 

(E~) 

The solution of Eqs. (E5) is 

C 1  - -  4p14 4p14 (E6) 
roSE I and C2 = 243rraEi 

which can be seen to be the same as the one obtained in Example 5.1. 

Example  5.4 Find the approximate deflection of a simply supported beam under a 
uniformly distributed load p (Figure 5.6) using tile least squares method. 

Solution The governing differential equation and the boundarv conditions are the same 
as those given in Eqs. (Et) and (E2). respectively, of Example 5.3. By assuming the trial 
solution as 

w(x) -- C l f l  (x) + C2f2(x) (El) 

where 

7rx 
f l ( X ) -  sin ( T )  

3rrx) (E2) and fe (x )=s in  - - ~  

the residual, R, becomes 

d4w rc 4 rrx (37r) 4 ( 3 / x )  
R -  E I ~  - p =  E I C ,  ( -[)  sin ( r )  + EIC2 -- [- s i n -  - p  

The application of the least squares method gives the following equations: 

0C1 
d x - - ~ - / ! ( E I  C12 (-~-)8 siIl2 ( T )  

+ ( E l )  2C~ --/- sin 2 - - ~  + p  

+ 2(E1)2C1C2 ( - / )  sin (--(-) .s in 3_@ 

(E3) 
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7r 4 71"X 

(7) (T) 
-2EIpC2(8-F)4s in(  3rrx ] } ---[-) dz - 0  

o r  

(EI)2C1 -[ l -  4 E I P -rr --[ = 0 

0(22 - ~ 2  ! (EI ) -C2 ( 1 )  sin2 ( -1 - )  

+ ( E I )  9-C2 -/- -sin 2 - - ~  + 

rr sin (_T_) sin (__7_) +2(E1)2C, C2(__[) 8 rca" 3rrx 

\ ,I \ ] rr 4 ,-rz ( 3 ~ )  4sin __/_(3~x)1 } -2E!p. CI(T~ ~i~(T3-2EIpC2 T dx -0  

( E 4 )  

o r  

(EI )2C ( 3 r r )  s . 2  -7- l - 4 u I p  T - 0  

The solution of Eqs. (E4) and (Es) leads to 

4p14 and C~ = 4pl4 
C1 -- 7.C5 EI 2437r '5 EI 

which can be seen to be identical to the solutions obtained in Examples 5.1 and 5.3.* 

5.10 SOLUTION OF EIGENVALUE PROBLEMS USING WEIGHTED 
RESIDUAL METHOD 

An eigenvalue problem can be stated as 

Ao= ABo in l" 

Eao = 0. j = 1.2 . . . . .  p oll S 

(5.76) 

(5 . r r )  

* Although the solutions given by tile Rayleigh-Ritz. Galerkin. and least squares methods happen 
to be the same for the example considered, in general they lead to different solutions. 



SOLUTION OF PROPAGATION PROBLEMS 193 

where A, B, and Ej are differential operators. By using Eqs. (5.66) and (5.76), the residual 
R can be expressed as** 

R - A B r  0 - ~ C,(ABf, - A f t )  (5.78) 
i = 1  

If the trial solution of Eq. (5.66) contains any true eigenfunctions, then there exists sets of 
Ci and values of A for which the residual R vanishes identically over the domain V. If O(x) 

does not contain any eigenfunctions, then only approximate solutions will be obtained. 

All four residual methods discussed in the case of equilibrium problems are also appli- 
cable to eigenvalue problems. For example, if we use the Galerkin method, we set the 
integral of the weighted residual equal to zero as 

/ f i ( x ) . R d V = O ,  i - 1 , 2  . . . . .  n (5.79) 

V 

Equation (5.79) gives the following algebraic (matrix) eigenvalue problem: 

[A]C = ~[B]c (5.s0) 

where [A] and [B] denote square symmetric matrices of size n x n given by 

[ A ] = [ A ~ j ] -  [ / f ~ A f a d V  1 

[/ J [B] - [Bo] = fi B f j  d V  

(5.81) 

(5.s2) 

and C denotes the vector of unknowns Ci. i - 1.2 . . . . .  n. Now the solution of Eq. (5.80) 
can be obtained by any of the methods discussed in Section 7.3. 

5.11 SOLUTION OF PROPAGATION PROBLEMS USING WEIGHTED 
RESIDUAL METHOD 

A propagation problem has been stated earlier as 

A r  V f o r t  > t o  

B i d ) -  gi, i =  1,2 . . . . .  k o l l  S for t >_to 

E j ~ -  hi,  j = 1.2 . . . . .  l in V for t - to 

(5.s3) 

(5.84) 

(5.S5) 

** The trial functions f i (x)  are assumed to satisfy the boundary conditions of Eq. (5.77). 
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The  tr ial  so lut ion of the  p rob lem is t aken  as 

n 

0(.r. t) - ~ C,(t)f,(.r) (5.86) 
~=1 

where  fi(a:) are chosen to satisfy the  b o u n d a r y  condi t ions.  Eq. (5.84). Since Eqs. (5.83) 
and (5.85) are not satisfied by o(a'. t). there  will be two residuals,  one cor responding  to 

each of these equat ions .  For simplicity, we will assume tha t  Eq. (5.85) gives the  init ial  

condi t ions  expl ic i t ly  as 

o(a ~ , t ) -  o0 at t - - 0  (5.87) 

Thus,  the  residual  co r respond ing  to the  init ial  condi t ions  (R1) can be fo rmula ted  as 

R1 -- O o -  O(.r. t - -0 )  for all x in I (5.88) 

where  

r~ 

o(x. t - 0) - ~ C , (0 ) f , ( x )  (5.89) 
~=1 

Similarly, the  residual  co r respond ing  to the  field equa t ion  (R2) is defined as 

R2 = C - - . 4 0 ( , F ,  t )  fo r  a l l  .r in I" (5.90) 

Now any of the  four residual  m e thods  discussed ill tile case of equi l ibr ium problems can 
be appl ied to find the  unknown  funct ions  ( ' , ( t ) .  For example ,  if we apply  the  Galerk in  

p rocedure  to each of the  residlmls R~ and Re. we ob ta in  

/ f , (a ' )R1  �9 d I  - 0. i = 1.2 . . . . .  n (5.91) 
~- 

f f,(x)R.,_ �9 d~," - 0. i = 1.2 . . . . .  n (5.92) 

Equa t ions  (5.91) and (5.92) lead to 212 equa t ions  in the  2n unknowllS C,(o) and C, ( t ) ,  
i - 1, 2 . . . .  , n, which can be solved ei ther  ana ly t ica l ly  or nunmricallv.  

5.12 DERIVATION OF FINITE E L E M E N T  EQUATIONS USING W E I G H T E D  
RESIDUAL (GALERKIN)  APPROACH 

Let the  governing differential  equa t ion  of the  (equi l ibr ium) problenl  be given by 

A(o) = b in I" (5.93) 
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and the boundary  conditions by 

Bj(d;)) = gj, j = 1.2 . . . . .  p on S (5.94) 

The Galerkin method requires tha t  

/ [ A ( r  d V  - 0 .  

V 

i - -  1.2 . . . . .  n (5.95) 

where the trial functions f i  in the approximate solution 

0 = ~ C~f~ (5.96) 
~ 1  

are assumed to satisfy the boundary  conditions. Eq. (5.94). Note that  f, are defined over 
the entire domain of the problem. 

Since the field equation (5.93) holds for every point in the domain V, it also holds for 
any set of points lying in an arbi t rary subdomain or finite element in V. This permits us to 
consider any one element and define a local approximation similar to Eq. (5.96). Thus, we 
immediately notice tha t  the familiar interpolation model for the field variable of the finite 
element will be applicable here also. If Eq. (5.96) is interpreted to be valid for a typical 

element e, the unknowns Ci can be recognized as the nodal unknowns (I)l e) (nodal values 

of the field variable or its derivatives) and the functions f~ as the shape functions N~ ~). 
Equations (5.95) can be made to be valid for element e as 

/ [ A ( 0  (~)) - b (~) ]N~ ~) d i  .'(~) = 0. i - 1 , 2  . . . . .  n ( 5 . 9 7 )  

V(e)  

where the interpolat ion model is taken in the s tandard  form as 

~/ (5.98) 

Equat ion (5.97) gives the required finite element equations for a typical element. These 
element equations have to be assembled to obtain the system or overall equations as 
outlined in Section 6.2. 

Notes: 
The shape functions of individual elements ~(~) need not satisfy any boundary  conditions, 
but  they have to satisfy the interelement continuity conditions necessary for the assembly 
of the element equations. As s ta ted earlier, to avoid anv spurious contributions in the 
assembly process, we have to ensure that  the (assumed) field variable O and its derivatives 
up to one order less than the highest order derivative appearing under the integral in 
Eq. (5.97) are continuous along element boundaries. Since the differential operator  A in 
the integrand usually contains higher order derivatives than the ones tha t  appear  in the 
integrand of the functional I in the variational formulation, we notice tha t  the Galerkin 
method places more restrictions on the shape functions. The boundary conditions of the 
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problem have to be incorpora ted  after assembling the element  equat ions as out l ined in 
Chap te r  6. 

E x a m p l e  5.5 Solve the differential equat ion 

d20 

dx e 
~ + O + x - O .  0 < x <  1 

subject  to the boundary  condit ions r - o(1) - 0 using the Galerkin method.  

S o l u t i o n  In this case the residual is given by 

2~ ) (El) R -  -d-ffix2 + O + x 

Equat ion  (5.95) can be expressed as 

o r  

1 

/ 
0 

620 ] 
+ O + X N t , , ( x )  d x  - O: k - i, j 

[N(~)] r + o ~l + x dx - O 
_ dx 2 

1" 2 

(E2) 

where E is the number  of elements,  and x, and xj are the values of x at the first and the 

second nodes of element  e, respectively. 

We shall assume a linear in terpola t ion model  for 0 (e) so tha t  

e (e) o~)(.) = x,(.)~ ~, )+ ~\5(.)% (E~) 

and hence 

where 

N i ( . )  - x j  - z z -  x i  
l(~) and N j ( z ) -  lie) (E~) 

X 2 

The te rm f [ N ( e ' ] T ( d 2 0 ( e ) / d x 2 ) d x  can be wri t ten,  after subs t i tu t ion  of Eqs. (E3) and 
x, 

(E4) and integrat ion by parts ,  as 

x 3 

d 2 o ( ~ )  
[N(e)]  r d x  2 

x i  

dx - [:\-t~/]r d o  C~t 

d .  

.r 2 
3"3 _ j "  

J" z 
:r 1 

d[N(~)]r do(~) 
~ d x  (E6) 

dx dx 
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Substitution of Eq. (Ea) into Eq. (E2) yields, for element e. 

x j  

[X(~)]:r d x  x, - dx dx 
x i  

[x (~ ) ]~o (~ )  [x(~)] ~ } - x d x  = 0  (ET) 

as the governing equation. 

The first two terms in the integral of Eq. (E7) yield the element characteristic matrix 
[K (c)] and the last term in the integral produces the element characteristic vector/5(~) in 
the equation 

[K(~)]~ (~)- P(~) (E~) 

The left-most term in Eq. (ET) contributes to the assembled vector P provided the deriva- 
tive (dr is specified at either end of the element e. This term is neglected if nothing 
is known about the value of (dO/dx) at the nodal points. The evaluation of the integrals 
in Eq. (ET) proceeds as follows: 

d [N(~]T_ d {(xj-x)/l(':) } /~) { - 1 }  
dx ~x ( x -  xi)/1 (~) = 1 

(E~) 

dx dx ~3 

111{o  ' } d iN(C) T - -  (Ell) 
~x ] dx d x -  /-~ -1  ~ 

:r/  

[N(e)] Tr dx - --6- (I); ~) 
xz 

2 2x 2 } _ 1 ( x ~ + x ~ x j +  ) 
2 x d x  -d ( 2 ~  2 _ ~ ' x ~  _ ~ ' )  

x j  

x i  

(E12) 

(E~3) 

Since the value of (dcS/dx) is not specified at any node, we neglect the left-most term in 
Eq. (ET). Thus, we obtain from Eq. (E7) 

E E 

e : l  e = l  

(E14) 

where 

[K(e)] = -1  - - 6  

p(~)  _ l ( z j  + x ~ x ~  - 

(E15) 

(E16) 
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It can be seen tha t  Eqs. (E14)-(E1G) are identical to those obta ined  in Example  5.2 and 
hence the solut ion will also be the same. 

5.13 DERIVATION OF FINITE ELEMENT EQUATIONS USING WEIGHTED 
RESIDUAL (LEAST SQUARES) APPROACH 

Let the differential equat ion  to be soh'ed be s ta ted  as 

A(o) = f (x .  y. z) in ~ (5.99) 

subject  to the bounda ry  condit ions 

with 

o = o0 on So (5.100) 

0o  Oo 0o  ) 
B, o, t )x '  })7" 0-Tz . . . .  - g j (z .  y. z) on Sj (5.101) 

Sa - S (5.102) 
j = 0 . 1  . . . .  

where A( ) and B , (  ) are linear differential opera tors  involving the (unknown) field 
variable and its derivatives with respect to x. y. and z: f and 9j are known functions of 
x, y, and z; and V is the  solution domain  with boundary  S. 

S t e p  1: Divide the solution domain  into E finite e lements  each having n nodal  points  
with m unknowns (degrees of freedom) per node. Thus.  m denotes  the number  of 
parameters ,  such as o. (Oo/Ox) .  (Oo/Og) . . . . .  taken as unknowns at each node. 

S t e p  2: Assume an in terpola t ion  model  for the field variable inside an element  e as 

o(~)(~.y.z) = ~ x,(~.  y. ~)~I ~) - [ ~ ( ~ .  y. ~)]5(~) 
l 

(5.103) 

where Ni is the shape function corresponding to the i th degree of freedom of e lement  
e, (I)l c) . 

S t e p  3: Derive the element  character is t ic  matr ices  and vectors. Subs t i tu t ion  of the ap- 
proximate  solut ion of Eq. (5.103) into Eqs. (5.99) and (5.101) yields the residual errors as 

R(~)(x. g .z )  - A([N](~ (')) - f(~') - A (~) - f(~) 

( r  ( r  - t 3  9 - g j  r j  

(5.104) 

(5.105) 

(e) where R (r and rj represent  the residual errors due to differential equat ion  and j t h  
(e) bounda ry  condit ion,  respectively, and A/~'/ and Bj can be expressed in te rms  of the 

vector of nodal  unknowns as 

A(~, _ [C(~)(~. y. z)]6 ~) 

B]"-[o;~'(x. y. :)]~ ~ 

(5.106) 

(5.107) 
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In the  least squares m e t h o d  we minimize tile weighted square of the  residual error over 
the  domain;  tha t  is, 

I=a/ / /R2dV+ Eb~ //r~dSr -minimum 
V J Sj 

(5.108) 

where a and bx, b2 , . . ,  are the weighting factors, all of which can be taken to be uni ty for 
simplicity; and the errors R and rj can be expressed as the sum of e lement  cont r ibut ions  
a~ 

E E 

(~) (5.109) 
e = l  j : l  

The condit ions for the  m i n i m u m  of I are 

01/001 
OI = 0I/0'~2 

O~ OI/ "O~O ?~I 

s 0i (~) 
= _. - -0  (5.110) 

e - - 1  C~(ID ( e ) 

where M denotes  the  to ta l  number  of nodal  unknowns in the problem (M - m x to ta l  
number  of nodes),  and I (~) represents  the cont r ibut ion  of element  e to the functional  I: 

I(~)./I/I/'R(~)~ E / /  (~)2 = d I "  + r j  dSj 

v(e )  3 S(Cl 
J 

(5.111) 

The  squares of the residues R (~) and rj can be expressed a s  

R(~)2 (e) 2 (e) (e) )2 
- A  - 2 A  f + f ( ~  

___ ~ ( e ) T [ c ( e ) ] T [ c ( e ) ] ( ~ ( e )  _ 2[C(~)](~(~)f(~) + f(~)2 

r(~)2 (~)2 _ 2 B ~  ) (~) (c)2 j - -  B j  g j  zr- g j  

_- ~(~)Y[D~.~)]y[D~r _ 2 [ D ~ ) ] ~ ( ~ / g j ( ~ )  + gJ-(c)2 

(5.112) 

(5.113) 

Equat ions  (5.110) and (5 .111) lead  to 

E O R (~)2 dV + _, 
~:1 0(~(~) 00(~ ) rj dSj  

e 3 S(e) 
3 

= 0  (5.114) 

with 

0 (R(~)2) _ 2[C(~)]T[c(~)](~(c) _ 2[C(,~)]Tf(r (5.115) 
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and 

_~ r~ - 2[D~)]T[D~C']~ ( ( ) -  2[D~)]gj (5.116) 

By defining 

{A'(1 ~) ] - / / f  [C(~)] r {C (~) ] dl, ~ 
~-(e) 

[K2(~)]- Z / / [ D ; ~ ' ] T [ D ;  ~]dS-i 
g S ( ~ )  ./ 

/5~) = f//f(,~)[C(~)Jr dV 
I'I~1 

J S ( e )  
3 

(5.117) 

(5.118) 

(5.119) 

(5.120) 

Equation (5.114) becomes 

E 

e = l .  

_ f ~ / )  _ d (5.121) 

where the summation sign indicates the familiar assembly' over all the finite elements. 

[K (~)1 -[h"~ ~)] + [h'~ ~)] - element characteristic matrix (5.122) 

and 

fi(~) - / ~ )  + / ~ )  - element characteristic vector (5.123) 

S tep  4: Derive the overall system equations. The assembled set of equations (5.121) can 
be expressed in the standard form 

[ ~ ' ] ~ -  fi (5.124) 

E E 

where [/~_J- Z[/s  and /5 - Z /~ (~ )  (5.125) 
e = l  e = l  

Step  5: Solve for the nodal unknowns. After incorporating the boundary conditions 
_+ 

prescribed on So, Eq. (5.124) can be solved to find the vector ~. 
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Table 5.1. 

Value of 0 Value of (do/dx)  

Value of x Finite element Exact Finite element Exact 

0.0 0.000 000 0.000 000 0.701 837 0.701 837 
0.2 0.142 641 0.142 641 0.735 988 0.735 987 
0.4 0.299 034 0.299 034 0.839 809 0.839 808 
0.6 0.483 481 0.483 480 1.017 47 1.017 47 
0.8 0.711 411 0.711 412 1.276 09 1.276 10 
1.0 1.000 000 1.000 000 1.626 07 1.626 07 

S t e p  6: Compute the element resultants. Once the nodal unknown vector (F, and 
hence (F(~), is determined the element resultants can be found, if required, by using 
Eq. (5.103). 

E x a m p l e  5.6 Find the solution of the differential equation (d2o/dx 2) - 0 - x subject 
to the boundary conditions ~b(0) - 0  and 0(1) - 1. 

S o l u t i o n  Here, the solution domain is given by 0 <_ x _< 1. Five one-dimensional ele- 
ments, each having two nodes with two unknowns [o and (dO/dx)] per node, are used for 
the idealization. Thus, the total number of degrees of freedom is 5I - 12. Since there are 
four nodal degrees of freedom per element, the first-order Hermit e polynomials are used 
as interpolation functions (as in the case of a beam element). The exact solution of this 
problem is given by ~b(x) = (2 sinh x~ sinh 1) - x. The finite element solution obtained by 
Akin and Sen Gupta  [5.6] is compared with the exact solution at the six nodes in Table 5.1. 
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PROBLEMS 

5.1 Derive the Euler -Lagrange  equation corresponding to the functional 

l j// [(00) 2 (00) 2 (00) 2 ] 
I - - ~  . ~ + ~ + ~ - 2 C 0  dV 

W h a t  considerations would you take while selecting the interpolat ion polynomial  
for this problem? 

5.2 Show tha t  the equilibrium equations [K].'( - / 5 .  where [K] is a symmetr ic  matrix,  
can be interpreted as the s ta t ionary requirement  for the functional 

5.3 The deflection of a beam on an elastic foundation is governed by the equation 
(d4w/dx 4) -+- w = 1, where z and w are dimensionless quantities.  The boundary  
conditions for a simply supported beam are given by transverse deflection = w = 0 
and bending moment  = (d2u,/dz 2) = 0. Bv taking a two-term trial solution as 

W(X) = V i i i ( x ) +  C2f2(x)with fl(x) = sinrrx and f2(x) = sin3rrx, find the 
solution of the problem using the Galerkin method.  

5.4 Solve Problem 5.3 using the collocation method  with collocation points at x = 1/4 
and x = 1/2. 

5.5 Solve Problem 5.3 using the least squares method.  

5.6 Find the solution of the differential equation 

d20 
dx 2 
~ + 6 + x - - O ,  O < x <  1 

subject to the boundary  conditions 0(0) = 0(1) = 0 using the collocation method  
with z = 1/4 and z = 1/2 as the collocation points. 

5.7 Solve Problem 5.6 using the least squares method.  

5.8 Solve Problem 5.6 using the Galerkin method.  

5.9 Solve Problem 5.6 using the Rayle igh-Ri tz  method.  

5.10 Derive the finite element equations for a simplex element in two dimensions using a 
variational approach for the biharmonic equation V4r = C. Discuss the continuity 
requirements  of the interpolat ion model. 

5.11 Derive the finite element equations for a simplex element in two dimensions using 
a residual method  for the biharmonic equation. 

5.12 The Rayleigh quotient ( IR) for the vibrat ing tapered beam. shown in Figure 5.8, 
is given by [5.7] 

I~(o) 
AR = z~(o) 
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z y 

t / 
I /  

' / " ~r  

F 1 
F i g u r e  5 . 8 .  

X 

where 

l 
1 / [d2o(z) 

IA (r = -~ E1 L dx2 
o 

l 

1 f ]~ IB(O) = -~ pA[O(x) dx 
o 

2 

dx 

q5 is the assumed solution for the deflection of the beam, E is the Young's modulus. 
I is the area moment of inertia of the cross section - (1/12)b[dx/l] a, p is the 
density, and A is the area of cross section = b[dx/l]. Find the eigenvalues (AR) of 
the beam using the Rayleigh-Ritz method with the assumed solution 

[ x]2 [x][ x]2 
r  1 -  7 + C 2  -/ 1 -  7 

5.13 The differential equation governing the free transverse vibration of a string 
(Figure 5.9) is given by 

d20 

d x  2 
~ + A o - O ,  O<_x<_l 

with the boundary conditions 

4 ) ( x ) = 0  at x - - O , x = l  

where A - (pw212/T) is the eigenvalue, p is the mass per unit length, 1 is the 
length, T is the tension in string, w is the natural frequency of vibration, and 
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J 

r 
I~X 

Z 

Figure 5.9. 

/ -  Load: w per unit length 

~~~t"~ ~ ....... 

/ 

, , ~  ~ " . . . .  

. . . . . . . . .  1 

. . . . . . . . . . . . . . .  d 
t l  - ~ "  ' - ! " ' - - - n  

Figure 5.10. 

x - ( y / 1 ) .  Using the trial solution 

o ( x )  - C t x ( 1  - x )  + C 2 x 2 ( l  - x )  

where Ct and C2 are constants,  determine the eigenvalues of the string using the 
Galerkin method.  

5.14 Solve Problem 5.13 using the collocation method  with x = l / 4  and x = 3 1 / 4  as 

the collocation points. 

5.15 The cantilever beam shown in Figure 5.10 is subjected to a uniform load of w per 
unit  length. Assuming the deflection as 

7r.r 37rx 
o(x) - cl sin -~- + c2 sin 2--~ 

determine the constants  cl and c2 using the Rayle igh-Ri tz  method.  

5.16 Solve Problem 5.15 using the Galerkin method.  

5.17 Solve Problem 5.15 using the least squares method.  

5.18 A typical stiffness coefficient, k, 3. in the stiffness matrix.  [K]. denotes the force 
along the degree of freedom i that  results in a unit displacement along the degree 
of freedom j when the displacements along all other degrees of freedom are zero. 
Using this definition, beam deflection relations, and static equilibrium equations, 
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ql = v(x = O) 

dv (x = O) q2 = ~-E r - - - - - - -  

0 �9 . . . .  .---.t~,-x 

q3 = v(x= I) 

L 
d V ( x = l ) , j l r  I - ~ ,  

q4 = -d-~ 

I_..Jl 
V" 

/ 

Figure 5.11. 

.J 

ql ~ q2 

k 

Figure 5.12. 

5.19 

5.20 

5.21 

5.22 

5.23 

5.24 

5.25 

generate expressions for kl l ,  k21. kal. and k41 for the uniform beam element shown 
in Figure 5.11. The Young's modulus, area moment of inertia, and length of the 
element are given by E. I, and 1. respectively. 

For the beam element considered in Problem 5.18. generate expressions for the 
stiffness coefficients k12, k22, k32. and k42. 

For the beam element considered in Problem 5.18. generate expressions for the 
stiffness coefficients kla, k2a, kaa. and k43. 

For the beam element considered in Problem 5.18. generate expressions for the 

stiffness coefficients k14, k24, k34, and k44. 

Consider a spring with stiffness k as shown in Figure 5.12. Determine the stiffness 
matr ix of the spring using the direct method. 

Derive the stiffness matr ix of a tapered bar. with linearh' varying area of cross 
section (Figure 5.13), using a direct approach. 

The heat transfer in the tapered fin shown in Figure 5.14 can be assumed to be 
one-dimensional due to the large value of II" compared to L. Derive the element 
characteristic matr ix of the fin using the direct approach. 

Consider the differential equation 

d20 
dx 2 

+ 4 0 0 x  2 - 0 .  O < x _ <  1 

with the boundary conditions 

o ( o )  - o .  0 ( 3 )  - o 
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1 

1 

A - - - - . - - ' " " - - " - - -  

b . . . . .  ~ q2 
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The functional, corresponding to this problem, to be extremized is given by 

1 /{' 
0 

do]2 } 
dxx + 400x 2o dx 

Find the solution of the problem using the Rayle igh-Ri tz  me thod  using a one- term 

solution as o ( x )  = ClX(1 - x). 

5.26 Find the solution of Problem 5.25 using the Rayle igh-Ri tz  me thod  using a two- 
te rm solution as o(x)  = ClX(l - ot") + c2x2(1 - .l"). 

5.27 Find the solution of Problem 5.25 using the Galerkin me thod  using the solution 

O ( X )  : C l X ( 1  --  X) -~- c2x2(1 - x )  

5.28 Find the solution of Problem 5.25 using the two-point collocation me thod  with 
the trial solution 

o ( x )  - clx(1 - x) + c2x2(1 - x) 

Assume the collocation points as x = 1/4 and x =  3/4. 

5.29 Find the solution of Problem 5.25 using the least squares approach with the trial 
solution 

O(x)  -- c l  x (1  - x )  + c2x2(1 - x )  
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5.30 F ind  the  so lu t ion  of P r o b l e m  5.25 using s u b d o m a i n  co l loca t ion  wi th  the  t r ia l  

so lu t ion  

~ ( x )  - ~1 x ( 1  - x )  + ~ x  ~ (1 - ~ )  

A s s u m e  two s u b d o m a i n s  as x = 0 to 1 /4  and  a ~ = 3 / 4  to 1. 

5.31 Cons ide r  t he  coaxia l  cable  shown in F igu re  5.15 wi th  inside r ad ius  ri = 7 m m ,  

in te r face  r ad ius  rm = 15 m m ,  and  ou t e r  r ad ius  r0 = 22 mm.  The  p e r m i t t i v i t i e s  of 

the  inside and  ou t s ide  layers  are  c1 = 1 and  ~2 = 2, respect ively ,  and  the  charge  

dens i t ies  of t he  inside and  ou t s ide  layers  are  cr, = 50 and  a0 = 0, respect ively .  If 

the  e lect r ic  p o t e n t i a l  is specif ied at  t he  inner  and  ou t e r  surfaces  as Oi = 400 and  

r = 0, d e t e r m i n e  the  va r i a t ion  of o ( r )  using the  finite e l emen t  m e t h o d  based  on 



Figure 5.15. 
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the variational (Flayleigh 1Ritz) approactl. Use two linear finite elements in each 
layer. 

H in t :  The equation governing axisvmmetric electrostatics is given by 

d ' o  c (to 
c~r2  -}- -r (--i-rr -t- p -- 0 (El) 

where c is the permitt ivity of the material, o is the electric potential, p is 
the charge density, and r is the radial distance. The variational function. I. 
corresponding to Eq. (El) is given bv 

r2 I I(o)- / rrrc 
r. 1 

 '~ } 

where the relation, d l ' -  27rr dr. has been used. 

5.32 Solve Problem 5.31 using the finite element method by adopting the Galerkin 
approach. 

5.33 Solve Problem 5.31 using the finite element method by adopting the least squares 
approach. 
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ASSEMBLY OF ELEMENT 
MATRICES AND VECTORS 

AND DERIVATION OF 
SYSTEM EQUATIONS 

6.1 COORDINATE TRANSFORMATION 
The various methods of deriving element characteristic matrices and vectors have been 
discussed in Chapter  5. Before considering how these element matrices and vectors are 
assembled to obtain the characteristic equations of the entire svstem of elements, we 
need to discuss the aspect of coordinate transformation.  The coordinate transforma- 
tion is necessary when the field variable is a vector quant i ty  such as displacement and 
velocity. Sometimes, the element matrices and vectors are computed in local coordinate 
systems suitably oriented for minimizing the computat ional  effort. The local coordi- 
nate system may be different for different elements. When a local coordinate system 
is used, the directions of the nodal degrees of freedom will also be taken in a con- 
venient manner.  In such a case, before the element equations can be assembled, it is 
necessary to transform the element matrices and vectors derived in local coordinate sys- 
tems so tha t  all the elemental equations are referred to a common global coordinate 
system. The choice of the global coordinate system is arbitrary, and in practice it is 
generally taken to be the same as the coordinate system used in the engineering draw- 
ings, from which the coordinates of the different node points of the body can easily be 
found. 

In general, for an equilibrium problem, the element equations in a local coordinate 
system can be expressed in the s tandard form 

[k(~)]g (~) =fi(~)  (6.1) 

where [k (~)] and /7  (c) are the element characteristic matr ix and vector, respectively, and 

4~ (c) is the vector of nodal displacements of element e. We shall use lowercase and capital 
letters to denote the characteristics pertaining to the local and the global coordinate 
systems, respectively. Let a t ransformation matr ix [)~(~)] exist between the local and the 

209 
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global coordinate  systems such that  

and 

o (r [k' ~)](P (~' (6.2) 

/7(~) _ [~,()]/3(c) (6.3) 

By subst i tu t ing Eqs. (6.2) and (6.3) into Eq. (6.1). we obtain 

(6.4) 

Premul t ip lying this equat ion throughout  by" [A(')] -1 yields* 

o r  

[K '~']4(~' - P~" (6.5) 

where the element characterist ic matr ix  corresponding to the global coordinate  system is 
given by 

[~<~,] _ [a(, ,]-,[k(~,][a,~,] (6.6) 

Notes :  

1. If the vectors O(~) and fi(~) are directional quanti t ies  such as nodal displacements 
and forces, then the t ransformat ion  matr ix  [s will be the matr ix  of direction 
cosines relating the two coordinate  systems. In this case. the t ransformat ion  matr ix  
will be or thogonal  and hence 

[k(' '] -~ = [A(~'] r (6.7) 

and 

(6.8) 

2. In s t ructural  and solid mechanics problems. Eq. (6.8) can also be derived by 
equat ing the potent ial  energies of the element in the two coordinate  systems (see 
Problem 6.15). 

* This assumes that [~(e)] is a square matrix and its inverse exists. 



ASSEMBLAGE OF ELEMENT EQUATIONS 211 

6.2 ASSEMBLAGE OF ELEMENT EQUATIONS 
Once the element characteristics, namely, the element matrices and element vectors, are 
found in a common global coordinate system, the next step is to construct the overall or 
system equations. The procedure for constructing the system equations fl'om the element 
characteristics is the same regardless of the type of problem and the number and type of 
elements used. 

The procedure of assembling the element matrices and vectors is based on the require- 
ment of "compatibility" at the element nodes. This means that  at the nodes where elements 
are connected, the value(s) of the unknown nodal degree(s) of freedom or variable(s) is 
the same for all the elements joining at that  node. In solid mechanics and structural prob- 
lems, the nodal variables are usually generalized displacements, which can be translations. 
rotations, curvatures, or other spatial derivatives of translations. When the generalized 
displacements are matched at a common node. the nodal stiffnesses and nodal loads of 
each of the elements sharing the node are added to obtain the net stiffness and the net 
load at that  node. 

Let E and M denote the total number of elements and nodal degrees of freedom 
(including the boundary and restrained degrees of freedom), respectively. Let (~ denote 
the vector of M nodal degrees of freedom and [/~'] the assembled system characteristic 
matrix of order ]~I x M. Since the element characteristic matrix [K (~)] and the element 
characteristic vector /~(~) are of the order T~ x n and 7~ x 1. respectively, they can be 
expanded to the order M x M and 2~I x 1. respectively, by including zeros in the remaining 
locations. Thus, the global characteristic matrix and the global characteristic vector can 
be obtained by algebraic addition as 

E 

e----1 

(6.9) 

and 

E 

e = i  

(6.10) 

where [K (*)] is the expanded characteristic matrix of element e (of order 2~I x hi).  and 

/ 3(*) is the expanded characteristic vector of element e (of order ~I x l). Even if the 
assemblage contains many different types of elements. Eqs. (6.9) and (6.10) will be 
valid, although the number of element degrees of freedom, n. changes from element to 
element. 

In actual computations, the expansion of the element matrix [K (~)] and the vector 
/~(r to the sizes of the overall [K] a n d / 5  is not necessary. !K] and /5 can be generated 
by identifying the locations of the elements of [K (r and /~( ~in [/~'] and/5.~ respectively. 
and by adding them to the existing values as e changes from 1 to E. This procedure 
is illustrated with reference to the assemblage of four one-dimensional elements for the 
planar truss structure shown in Figure 6.1(a). Since the elements lie in the X Y  plane. 
each element has four degrees of freedom as shown in Figure 6.1(b). It is assumed that  
a proper coordinate transformation (Section 6.1) was used and [K (r of order 4 x 4 
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(a) Geometry of truss (assembly of 
four one - dimensional elements) 
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(b) Local and corresponding global d.o.f, of different elements 

Figure 6.! .  A Planar Truss as an Assembly of One-Dimensional Elements. 

and /5(e) of order 4 x 1 of element e (e - 1-4) were obta ined in the global coordinate  
system. 

For assembling [K (e)] and/5(r  we consider the elements  one after another .  For e = 1, 
the element stiffness mat r ix  [K (1)] and the element load vector /5(1/ can be wri t ten  
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as shown in Table 6.1. The  location (row l and column m) of any component  K}] ) in 
the global stiffness mat r ix  [K] is identified by the global degrees of freedom (I)t and (I)m 

~ (1) respectively, for i = 1-4 and corresponding to the local degrees of freedom (I)11) and (I)3 . 
. ( 1 )  

j = 1-4. The  correspondence between (I)l and 4)I 1) and tha t  between (I),~ and (I)j . is also 

shown in Table 6.1. Thus, the location of the components  K (1) ~j in [K] will be as shown 

in Table 6.2(a). Similarly, the location of the components  of the element load vector/3(1) 
i n / 5  will also be as shown in Table 6.2(b). For e = 2. the element stiffness mat r ix  [K (2)] 
ancl the element  load vector fi(2) can be wri t ten  as shown in Table 6.3. As in the case of 
e = 1, the locations of the elements  K~} ) for i = 1-4 and j = 1-4 in the global stiffness 

mat r ix  [K] and p(2) for i - 1-4 in the global load vector t5 can be identified. Hence, these 
elements  would be placed in [K] and /5~ at appropr ia te  locations as shown in Table 6.4. 
It can be seen tha t  if more than  one element  contr ibutes  to the stiffness Klm of [K], 

then the stiffnesses K}] ) for all the elements  e cont r ibut ing  to Kim are added together  to 
obta in  K~,~. A similar procedure  is followed in obtaining Pt of /5 .  

For e = 3 and 4, the element  stiffness matr ices  [K (3'] and [K (4)] and the element load 
vectors/~(3) and /6(4) are shown in Table 6.5. By proceeding with e - 3 and e = 4 as in 
the cases of e - 1 and e = 2, the final global stiffness matr ix  [A'] and load vector ~ can be 
obta ined as shown in Table 6.6. If there is no contr ibut ion from any element to any Klm in 
[K], then the coefficient Kl,~ will be zero. Thus.  each of the blank locations of the mat r ix  
[K] in Table 6.6 are to be taken as zero. A similar a rgument  applies to the blank locations, 
if any, of the vec tor /5 .  It is impor tan t  to note tha t  a l though a s t ruc ture  consisting of only 
four elements  is con~dered  in Figure 6.1 for i l lustration, the same procedure  is applicable 
for any s t ruc ture  having any number  of finite elements.  In fact. the procedure  is applicable 
equally well to all types  of problems. 

Table 6.1. Stiffness Matrix and Load Vector of Element 1 

[K(~)]  = 
4 x 4  

tO( 1 ) 
4 x l  

Local 
d.o.f. 
(~1/) 

1 
1 

2 

3 

4 

t)1 (1) 

_ P2 (1) 

p4 (~) 

Corresponding 

global d.o.f. 
(~) 

1 

2 

5 

6 

Local 
d.o.f. 
(~I ~)) 

1 

2 

3 

4 

,1 2 3 4 

((I)m) ---~1 2 5 6 

K(1)I "'32/4"(1) K(13 ) K~I ) 

Corresponding 
global d.o.f. 



Table 6.2. Location of the Elements o f  [K (1)] and P(') in [K] and /~ 

Global--q 
d.o.f. 

l 
1 -K} 1 1 

2 
3 

[K(1)] 4 
5 

6 
7 
8 

,-(1 
K21 

t%"( 1 
31 

/x-( 1 
41 

2 3 4 5 6 7 8 

1) /((1) 
h'(1) KI3 14 ~ 1 2  

- ( I )  h~( l /  K ( ] )  
22 *'~23 24 

K:(:112 } K(1'33 -~34"(1) 

h-~,2) N(1) -(1) 
~43 /&44 

(a) Location of [I{(t)] in [K] 

Global 
d.o.f. 

l 
1 

2 
3 
4 p(1 )  __ 
5 

6 
7 
8 

11311 

p1 

p 1  

p 1  

(b) Location of/5(1) ill 

Table 6.3. Stiffness Matrix and Load Vector of Element 2 

[K(2)] - 

4 x 4  

~ ( 2 )  

4 x 1  

Local ((0~2)) 
d.o.f. Corresponding 
((0 (2)) global d o.f. z 

l (r 
l 

1 5 

2 6 

3 3 

4 4 

(2) 

_ P2 (2) 
p3( 2 ) 

p4 (2) 

Local 
d.o.f. 
((0(2/ ) 

1 

2 

3 

4 

1 2 3 4 

(~. , )  --5 6 3 4 

* '22 
/K(2/ (21 

L,J~, 41 K4(2= ) 

Corresponding 
global d.o.f. 

5 

-t 2 ) 
13 
(2~ 
23 
(2) 
33 

-(2) 
K43 

(2)-] 
t4 / 

. (2) / 
K24 | 

.(2) 
/&34 ] 
- ( ~ ) |  
ts 4 j 
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6.3 COMPUTER IMPLEMENTATION OF THE ASSEMBLY PROCEDURE 
The assembly procedure  outl ined in the previous section is shown ill Figure 6.2 in the 
form of a flow chart.  We define the following quanti t ies  for the compute r  implementa t ion  
of the assembly procedure:  

NB = bandwid th  of the overall characterist ic  matr ix  
NE = number  of elements  
NNE = number  of nodes in each element 
NN = total  number  of nodes in the coinplete bodv (one degree of freedom is assumed 

for each node) 
GK = global or overall sys tem characteris t ic  matr ix  (size: NN x NN if stored as a 

square matrix;  NN x NB if stored in band form) 
EK = element  characterist ic  mat r ix  (size = NNE x NNE) 
ID(I ,J)  = global node number  corresponding to the J th  corner of Ith element (size of ID: 

NE x NNE) 

Table 6.7 gives the For t ran s t a t ements  tha t  can be used for the assembly process. In a 
similar manner ,  the vectors of element nodal actions can also be assembled into a global 
or sys tem action vector. 

Table 6.4. Assembly of [KI1)], p(1), [/42)], and ~2) 

Global--+ 1 2 3 4 5 6 7 8 
d.o.f. 

1 

1 

2 

3 

[K(1)] + [K(2)] = 4 

5 

6 

7 
8 

K~ 1 
1 

(1 
/~21 

.(1 
/I~31 

(i 
/-s 

1s I) .(i) 
12 /k" (I 3 /% 14 

K2(12 ) A'( 2:3 l) 1t-;1 ) 4 

K(2) t.(~) .(2) .(2) 
33 �9 34 k 31 k 32 

A-(2) 1s .(2) /%-4(2) 
43 44 /%41 2 

%-(1) /%-12) 1-(2) t - ( l )  tk-(12 ) -(1) 1~- 1.22 ) 32 3 �9 14 tX :~3 + i IX 34 Jr- 
1) ~-(2) -(2) -(1) (') 1~-(1 -('~ 

K ( 2 "'23 1(24 /% 13 + K',. -1 ) "44) +/%2-'e) 

(a) Locat ion of  [K (1)] and [/%-(2)] in [/~'] 

p ( 1 )  _nt_ p (2 )  

Global 
d.o.f. 

1 

2 

3 

- 4  

5 

6 
7 
8 

p~l) 

(b) Locat ion of p ( 1 )  and /6(2)in # 
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6.4 INCORPORATION OF BOUNDARY CONDITIONS 
After  assembl ing the  e lement  character is t ic  matr ices  [K (+)] and the  e lement  charac ter is t ic  
vec tors /3 (~1  the  overall or sys tem equa t ions  of the ent ire  domain  or body  can be wr i t t en  

(for an equi l ibr ium problem)  as 

[g.] + _ /5 
- - (6.11) 

AI x AI AI x 1 AI x 1 

These  equa t ions  cannot  be solved for <~ since the  ma t r ix  [/3"] will be s ingular  and hence 
its inverse does not  exist. The  physical  significance of this. in the case of solid mechanics  
problems,  is t h a t  the  loaded body  or s t ruc tu re  is free to undergo  unl imi ted  rigid body  
mot ion  unless some suppor t  cons t ra in t s  are imposed  to keep the  body  or s t ruc tu re  in 
equi l ibr ium under  the loads. Hence. some b o u n d a r v  or suppor t  condi t ions  have to be 

Table 6.5. Element Stiffness Matrices and Load Vectors for e -  3 and 4 

[/.s _ 

4 x 4  

Local  (+(33) ) 
d.o.f. 
(+I ~>) 

l 
1 

2 

3 

4 

Local  (q)~4>) 

d.o.f. 
(4) (++) 

1 
1 

[K(4)] _ 2 

4 x 4  3 
4 

, 1 2 3 4 

Cor respond ing  

global d.o.f. (+,,,) --, 5 6 7 8 

(e,) 

5 K l l  "+12 
-(3) ~.(3) ~ ( 3 )  

6 /~21 *'22 *'23 
-i3) h-(3) . (3) 

7 /%31 *'32 /X33 

8 L/~-4( 31 ) .~ ' ( 3 ) ,  42 K(3) 43 
1 2 3 

Cor respond ing  

global d.o.f. (+,,,) ---+ 3 4 
(+,) 

I 
3 "/.14) /((4) K~4) 1 *~12 

h,-(4 ) h-(4) /4-( 4 ) 
4 --2t *'22 *"23 
7 ~.(4) .(4) . (4) 

"'31 /~32 /4~33 

(a) E lement  stiffness mat r ices  

Cor res pond i ng Local 
global d.o.f, d.o.f. 

(+t) (+(4~) 
1 

l 1 
5 p~4) 1 

7 4 x  1 p~4) 3 

8 p14) 4 

Local 
d.o.f. 
((1)13)) 

l 
p~3) 1 

/:~(3)_ p(3) 2 

4 x 1 p3 (3) 3 
(3) 4 

(b) Load vectors 

(3) 
14 / 
(3)| 

K24 / 
K(3)| 

t~'44 _1 
4 

I,- l>l 
..(4) / 
/~24 / 
~.(4) / 
t*34 | 
1-(4)| 

I{44 .] 

Corresponding 
global d.o.f. 

l 
3 

4 

7 

8 
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applied to Eq. (6.11) before solving for ~. In nons t ruc tura l  problems, we have to specify 
the value of at least one and sometimes more than  one nodal degree of freedom. The  
number  of degrees of freedom to be specified is d ic ta ted  by the physics of the problem. 

As seen in Eqs. (5.20) and (5.21), there are two types of boundary  conditions: forced 
or geometr ic  or essential and free or natural .  If we use a variat ional  approach for deriving 
the sys tem equations,  we need to specify only the essential boundary  condit ions and the 

Table 6.6. Assembled Stiffness Matrix and Load Vector 

Global  : 
d.o.f, i 

1 

4 

8 x 8  ~=1 

1 2 3 4 5 6 7 8 

K} 1)1 
K2(ll ) 

0 

(1 
K31 

< I  

1) Kla 4 h'~2 0 0 ~) h'~ ~) 0 
.(1) h-(1) 0 /4"(1) 0 0 /~23 *'24 ''`22 

0 f((2) .(2) h.(2) . .(2) ~.(4) 
""33 4- /4s 4- ''`31 /X32 ''`13 

(4) i((4) 
11 ~'`12 

.(2) .(2) ('~ -(2) A-(4) 
0 t(43 4- /~44 4- ti41 / /x.12 **23 

21 
/-(1)  -(2) t ( ~ )  ,-(1) -,1) (3 

32 R 13 h 33 4- h 34 4- K13 

1s .(2) ] +  R 1 2 +  

/311 3)1 /3"I 3)2 

-(1) /4,-(2) h,-(2) h,-(1) /((1) /.4-(3) 
/(42 ""23 *'`24 *'`43 4- *'44 4- " '23 

K(2) R.r 21 4- *'22 4- 

X-(a) h-(3) 
21 *~22 

/-((4) .(4) ,-.-(3) h-(3) ,-(3) 
0 *'`31 /k32 IX31 ""32 /~33 4- 

i((4)  
* "33 
.(3) 

t~43 + 
.(4) 

Iv4a 

0 /'7(4) -(4) -(3) . .(3) 
--41 /(42 /X41 *x12 

(a) Global  stiffness matr ix  

P 

8 x l  

p1 (1) 

4 p4(2) p(4)  
= ~ p(~) - + 

e=l p3(1) 4- p~2) + p~3) 

e4( ) + 
(b) Global  load vector 

Global (1.o.f. 

l 
1 

2 

3 

4 

5 

6 

7 

8 

0 

0 
(4) 
14 

.(4 
/~24 

.(3 
h24 

K( 3) 
34 ~ 

(4) 
34 

K44 + 
.(4 

/{44 
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Initialize the system characteristic_~ matrix [k] a n d  
characteristic vector P, i.e. set [k] = [0] and P = 0 

l Set element number e = 1 I 

Compute [k (e)] and ~(e)in local coordinate system 
Note: ~(e) should not include externally applied 

concentrated actions (loads) 

( Ale the local and global coordinates same for this element? ) 
YES ~ NO 

Sei [K (e)] - [ k  (e ) ]  Transform [k (e)] and ~e) to a 
and/~(e) _ ~(e) common (global) coordinate system 

and obtain [K (e)] and ,B(e) 
I 

, .  

From a knowledge of the global degrees of freedom ~/ 
and ~m that correspond to the local degrees of freedom 
Oi and Oj, add the element K!. e) of [K (e)] to the 

IJ (e) ~( e) 
current value of Klmof[K]and Pi of tothe 
current value of PI of P. 

l Se,  o - - o  + 1 1 

No 

I YES 

Add the externally applied concentrated actions 
(loads) to P at appropriate locations and obtain 

the final P 

Desired [K] and P in global system are obtained 
. . . . . .  

Figure 6.2. Assembly Procedure. 

natural boundary conditions will be implicitly satisfied in the solution procedure. Thus, 
we need to apply only tile geometric boundary conditions to Eq. (6.11). The geometric 
boundary conditions can be incorporated into Eq. (6.11) by several methods as outlined 
in the following paragraphs. The boundary conditions involving more than one nodal 
degree of freedom are known as multipoint constraints. Several methods are available to 
incorporate linear multipoint constraints (see Problems 6.5 and 6.6). The processing of 
nonlinear multipoint constraints is described bv Narayanaswamy [6.1]. 

Method 1 

To understand this method, we partition Eq. (6.11) as 

[ [/~'11 ] [/~'12] {~1} _ {/~1} (6.12) 
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Table 6.7. Assembly of Element Matrices 

(i) W h e n  GK is s tored as a square mat r ix  (ii) When  GK is stored in a band form 

DO I0 I=l, NN 

DO I0 J=l, NN 

iO SK (I,J)=O.O 

DO 20 I=l, NE 

GENERATE ELEMENT MATRIX EK 

FOR ELEMENT I 

DO 30 J=l, NNE 

IJ=ID(I,J) 

DO 30 K=I, NNE 

IK=ID (I ,K) 

GK (IJ,IK)=GK (IJ,IK)+EK(J,K) 

30 CONTINUE 

20 CONTINUE 

DO i0 I=l, NN 

DO i0 J=l, NB 

I0 SK (l,J)=O.O 

DO 20 I=i, NE 

GENERATE ELEMENT MATRIX EK 

FOR ELEMENT I 

DO 30 J=l, NNE 

IJ=ID(I,J) 

DO 30 K=I, NNE 

IK=ID(I,K) 

IKM=IK-IJ+I 

IF (IKM. LT. I) GO TO 30 

GK (IJ,IKM)=GK (IJ,IKM)+EK(J,K) 

30 CONTINUE 

20 CONTINUE 

where (~2 is assumed to be the vector of specified nodal  degrees of freedom and (bl as the 
vector of unres t r ic ted  (free) nodal  degrees of freedom. Then  P~ will be the vector of known 
nodal  actions, and /32 will be the  vector of unknown nodal  actions.* Equa t ion  (6.12) can 
be wr i t t en  as 

[K l l ] ( I ) I  Jr-[/~'12](I)2 = P1 

or 

. ~  . . . ,  . . . ,  

[K l l ] ( I )1  -- P1 - [K12]( : I )2  (6.13) 

and 

[K,~]~6, + [I,'~]6~ - f~ (6.14) 

Here, [/'s will not  be singular and hence Eq. (6.13) can be solved to obta in  

(6.15) 

Once (~1 is known, the  vector of unknown nodal  actions t52 can be found from Eq. (6.14). 
In the special case in which all the prescribed nodal  degrees of freedom are equal to 

* In the case of solid mechanics problems, (~2 denotes the vector of nodal displacements that 
avoids the rigid body motion of the body,, P1 the vector of known nodal loads, and /32 the 
unknown reactions at points at which the displacements ~2 are prescribed. 
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zero, we can delete the i'o~,vs and columns corresponding to ~2 and state  the equations 
simply as 

[/-~'11 ] (~ 1 - - P 1  (6.16) 

Method 2 

Since all the prescribed nodal degrees of freedom usually do not come at the end of the 
vector ~, the procedure of method 1 involves an awkward renumbering scheme. Even when 
the prescribed nodal degrees of freedom are not zero. it can be seen that  the rearrange- 
ment of Eqs. (6.11) and solution of Eqs. (6.13) and (6.14) are t ime-consuming and require 
tedious bookkeeping. Hence. the following eq~fivalent method can be used for incorporat- 
ing the prescribed boundary  conditions ~2. Equations (6.13) and (6.14) can be writ ten 
together as 

[/,-,,] 

[01 t I~ [I]] 
{ (~__~1 --[K12] (~2 (6 .17)  

In actual computations,  the process indicated in Eqs. (6.17) can be performed without 
reordering the equations ilnplied by the part i t ioning as follows" 

S t e p  (i)" If q~a is prescribed as r the characteristic vec tor /3  is modified as 

t)~ - -  P i  - I s  dDj fo r  i - -  1 . 2  . . . . .  3 1  

S t e p  (ii): The row and column of [/3_'] corresponding to cI, a are inade zero except the 
diagonal element, which is made unity: that  is. 

/X'j, -- /X',j -- 0 for i -- 1.2 . . . . .  :~I 

t ~  3. I ~ 1 

S t e p  (iii): The prescribed value of ~j  is inserted in the characteristic vector as 

P~ -g, j  

This procedure [steps (i)-(iii)] is reI)eated for all prescribed nodal degrees of freedom. ~J. 
This procedure retains the symmetry  of the equations and the matr ix [/)'] can be stored 
in the band format with little extra progralnining effort. 

Method 3 
Another  method of incorporating the prescribed condition ~j  - q~j is as follows: 

S t e p  (i): Multiply the diagonal term Ka3 t)y a large number, such as 101~ so tha t  the 
new K;j - o ld  Kaj x 10 l~ 

S t e p  (ii): Take the corresponding load Pa as 

P; - n e w  K j j  x (I)j - o ld  K j j  X 10 l~ x ':I:'~. 
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S t e p  (iii): Keep all other elements of the characteristic matrix and the characteristic 
vector unaltered so that  

new Kik = old Kik for all i and k except i = k = j 

and 

new Pi --old Pi for all i except i - - j  

This procedure [steps (i)-(iii)] is repeated for all prescribed nodal degrees of freedom, ~j .  
This procedure will yield a solution in which ~Pa is very nearly equal to ~ j .  This method 
can also be used when the characteristic matrix is stored in banded form. We represent 
the equations that  result from the application of the boundary" conditions to Eq. (6.11) as 

[K]<P = / 3  (6.18) 

where [K], (~, and /3 denote the final (modified) characteristic matrix, vector of nodal 
degrees of freedom, and vector of nodal actions, respectively, of the complete body or 
system. 

6.5 INCORPORATION OF BOUNDARY CONDITIONS 
IN THE COMPUTER PROGRAM 

To incorporate the boundary conditions in the computer program according to method 2 
of Section 6.3, a subroutine called ADJUST is written. This subroutine assumes that  the 
global characteristic matrix GK is stored in a band form. If the degree of freedom "'II'" is 
to be set equal to a constant value "CONST." the following Fortran statement calls the 
subroutine ADJUST, which modifies the matrix GK and vector P for incorporating the 
given boundary condition: 

CALL ADJUST (GK,P ,NN,NB, II, C@NST) 

where NN is the total number of degrees of freedom. NB is the bandwidth of OK. P is 
the global vector of nodal actions (size" NN). and GK is the global characteristic matrix 
(size: NN x NB). 

10 

20 

SUBROUTINE ADJUST(A,B,NN ,NB, II, CONST) 
DIMENSION A (NN,NB) ,B(NN) 
DO I0 J=2,NB 
Ii=II-J+l 
I2=II+J-I 
IF(II.GE. I) B (II) =B (II)-A (If, J)*CONST 
IF(I2.LE.NN) B (I2) =B (I2)-A (II, J) *CONST 
B(II)=CONST 
DO 20 J=I,NB 
Ii=II-J+l 
IF(II.GE.I) A(II,J)=O.O 
A(II,J)=O.O 
A(II,i)=l.O 
RETURN 
END 
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Note: 

If the values of several degrees of freedom are to be prescribed, we have to incorporate 
these conditions one at a t ime by calling the subrout ine ADJUST once for each prescribed 
degree of freedom. 

To il lustrate how the program works, consider the following simple example. Let the 
original system of equations be in the form 

1.9 2.1 - 5 . 7  0.0 0.0 ( I ) l  0 
2.1 3.4 1.5 3.3 0.0 (P2 0 

--5.7 1.5 2.2 4.5 2.8 (:1)3 - -  0 
0.0 3.3 4.5 5.6 --1.8 (P4 0 
0.0 0.0 2.8 --1.8 4.7 (P5 0 

Thus,  we can identify GK and P as 

1.9 2.1 - 5 . 7  0 
3.4 1.5 3.3 0 

[GK]= 2.2 4.5 2.8 . / 5 _  0 , N N - 5 ,  N B - 3  
5.6 - 1 . 8  0.0 0 
4.7 0.0 0.0 0 

Let the boundary  condition to be prescribed be ~3 = 2.0 so tha t  II = 3 and CONST = 2.0. 
Then the calling s ta tement  

CALL ADJUST (GK,P, 5 , 3 , 3 , 2 .  O) 

returns the matr ix  GK and the vector P with the following values: 

[CK] = 

1.9 2 . 1 0 . 0  12;4 
3.4 0.0 3.3 

0 0 0  0 0 .  21o .1.  o 

o o 
4. 7 0.0 0.0 - 5 . 6  

REFERENCES 
6 . 1 0 . S .  Narayanaswamy: Processing nonlinear mult ipoint  constraints in the finite element 

method,  International Journal for Numerical Methods in Engineerin9, 21, 1283-1288, 
1985. 

6.2 P.E. Allaire: Basics of the Finite Element Method--Solid Mechanics, Heat Transfer, 
and Fluid Mechanics. Brown, Dubuque.  IA. 1985. 
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PROBLEMS 

6.1 Modi fy  and  solve the  following s y s t e m  of equa t ions  using each of the  m e t h o d s  

descr ibed  in Sect ion 6.3 for the  condi t ions  O 1  - -  01)2 = 0I) 3 - -  2 ,  01)4 = 1 ,  01)8 = 0 9  = 

01o = 10: 

1.4501 -- 0 .202 -- 1.2504 

--0.201 + 2 . 4 5 0 2 -  1 . 2 5 0 5 -  (I)6 

03 - - 0 . 5 0 6  - - 0 . 5 0 7  

--1.2501 + 2.9004 -- 0.405 -- 1.2508 

= 0  

= 0  

= 0  

= 0  

- 1 . 2 5 0 2  - 0 .404 + 4.900~ - (I)6 - 1.7509 - 0 . 5 0 1 o  - -  0 

- 0 2  - 0 .503 - (I)5 + 406 -- 07 -- 0.5010 

--0.501)3 -- 06 + 207 -- 0.50I)10 

- -1 .2504 + 1 . 4 5 0 8 -  0.209 

- -1 .7505 -- 0 .208 + 1.9509 

--0.5oi)5 -- 0.5oi)6 -- 0.5oi)7 4- 1.501o 

= 0  

= 0  

= 0  

= 0  

= 0  

6.2 Derive the  coord ina t e  t r a n s f o r m a t i o n  m a t r i x  for the  one -d imens iona l  e lement  

shown in F igure  6.3, where  q~ and  Q, denote ,  respect ively,  the  local ( x ,y )  and 

the  global  (X,  Y) noda l  d i sp lacemen t s  of the  e lement .  

[ qs9 / 
m 

Figure 6.3. 
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15 

1 

12 

11- 

11 

v 

6 

10 
A 

I 
2 

[ 1 
3 "1 

Figure 6.4. 

6.3 If the element characterist ic  Inatrix of an element in the finite element grid shown 

in Figure 6.4 is given by 

[K'~)] - i3i 113,1 3 111il 
find the overall or system characterist ic  matr ix  after applving the boundary  con- 
ditions q), - O. i - 11-15. Can the bandwid th  be reduced by renumbering the 
nodes? 

6.4 Incorpora te  the boundary  conditions o~ - 3.0 and oa - - 2 . 0  using each of the 

methods  described in Section 6.3 to the following system of equations: 

i1!5 2o 0!0il/Ol//30/ 
- . 5  2 . 5  - 1 . 0  - 1  0 2  _ - 1 . 0  

0 - 1 . 0  3.0 0 oa 1.5 

0 - 1 . 5  0.5 1 04 0.5 

6.5 Consider a node that  is suppor ted  by rollers as indicated in Figure 6.5(a). In this 

case, the displacement normal to the roller surface X Y  nmst be zero" 

Q - Q-, coso  + Q6 s ino  - 0 (El) 

where o denotes the angle betweell the norinal direction to the roller surface 
and the horizontal  [Figure 6.5(t))]. Constraints .  in tile form of linear equations,  
involving multiple variables are known as mult ipoint  constraints.  Indicate  two 

methods  of incorporat ing the bounr condit ion of Eel. (El)  in the solution of 
equations.  
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L_..o~ 
Q 

Q6 
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X 

(a) 

Q6 Q 

(~ 

(b) 
mo 

t ~ ~  

('c~ 

~ Q 5  

o7 

Figure 6.5. 
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6.6 As s tated in Problem 6.5, the displacement normal to the roller support  (surface) 
is zero. To incorporate the boundary  condition, sometimes a stiff spring element 
is assumed perpendicular  to the roller support  surface as shown in Figure 6.5(c). 
In this case, the system will have four elements and eight degrees of freedom. 
The boundary conditions Q1 = Q2 = Q7 = Qs = 0 are incorporated in this 
method. Show the s t ructure of the assembled equations for this case and discuss 
the advantages and disadvantages of the approach. 

6.7 The stiffness matr ix of a planar frame element in the local coordinate system is 
given by (see Figure 6.6) 

[ k ]  - 

- E A  - E A  
0 0 0 0 

L L 

1 2 E I  6 E I  
0 0 

L 3 L 2 

6 E I  4 E I  
0 0 

L 2 L 

- 1 2 E I  6 E I  

L 3 L 2 

- 6 E I  2 E I  

L 2 L 

- E A  E A  
0 0 0 0 

L L 

- 1 2 E I  - 6 E I  1 2 E I  - 6 E I  
0 0 

L 3 L 2 L 3 L 2 

6 E I  2 E I  - 6 E I  4 E I  
0 0 

L 2 L L 2 L 

I 
i 

~f 

O2 

I 

Z 

Z 

90 ~ X  

Figure 6.6. 
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PP 
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E =  30 x 106 psi, I=  2 in 4, A =  6 in 2 

Figure 6.7. 

where E is the  Young's  modulus ,  A is the area of cross section, I is the momen t  
of inertia,  and L is the  length.  Using this. genera te  the stiffness matr ices  of the 
three  e lements  shown in Figure  6.7 in the local coordinate  sys tem and indicate the  
respective local degrees of freedom. 

6.8 The  t rans format ion  ma t r ix  between the local degrees of freedom qi and the 
global degrees of freedom Q, for the  p lanar  frame element  shown in Figure 6.6 is 
given by 

[ ~ ]  - 

-lox m ox 0 0 0 0- 

loz rnoz 0 0 0 0 

0 0 1 0 0 0 

0 0 0 Io~. rno~ 0 

0 0 0 lo~ rno~ 0 

0 0 0 0 0 1 

where lox = cos0, rnox = sin 0, loz = cos(90+0)  = - s i n  0, and rnoz = s in(90+0)  = 
cos0. Using this, genera te  the t r ans format ion  matr ices  for the three  elements  
shown in Figure  6.7. 

6.9 Consider  the coordinate  t r ans fo rmat ion  matr ix .  [,k], of e lement  1 of Figure 6.7 in 
P rob lem 6.7. Show tha t  it is o r t h o g o n a l - - t h a t  is, show t h a t  [/~]-1 __ [/~]T 

6.10 Consider  the  coordinate  t r ans fo rmat ion  matr ix ,  [A], of e lement  2 of Figure 6.7 in 
P rob lem 6.7. Show tha t  it is o r t h o g o n a l - - t h a t  is, show that  [A] -1 = [A] T 

6.11 Consider  the  coordinate  t r ans fo rmat ion  matr ix .  [A], of e lement  3 of Figure 6.7 in 
P rob lem 6.7. Show tha t  it is o r t h o g o n a l - - t h a t  is, show tha t  [A] -1 = [A] T 
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Figure 6.8. 
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E= 30 x 106psi, A = 1 in 2 
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6.12 Using the results of Problems 6.7 and 6.8, generate the stiffness matrices of the 
three elements shown in Figure 6.7 in the global coordinate system. Derive the 
assembled stiffness matrix of the system. 

6.13 For the assembled stiffness matrix derived in Problem 6.12. apply the bound- 
ary conditions, derive the final equilibrium equations, and solve the resulting 
equations. 

6.14 The local stiffness matrix, [k], and the corresponding coordinate transformation 
matrix, [A], of a planar truss element [see Figure 6.8(a)] are given by 

_~ [1 111 [1;~ mox 0 0 
[k]= 1 �9 [A]= 0 lo.~. rnox 

where A is the cross-sectional area, E7 is the Young's modulus, L is the length. 
lox = cos0, and m o x  = sin 0. 

(a) Generate the global stiffness matrices of the two elements shown in Figure 
6.8(b). 

(b) Find the assembled stiffness matrix, apply the boundary conditions, and find 
the displacement of node P of the two-bar truss shown in Figure 6.8(b). 

6.15 Derive Eq. (6.8) using the equivalence of potential energies in the local and global 
coordinate systems. 
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NUMERICAL SOLUTION OF 
FINITE ELEMENT EQUATIONS 

7.1 INTRODUCTION 
Most problems in engineering mechanics can be stated either as continuous or discrete 
problems. Continuous problems involve infinite number of degrees of freedom, whereas 
discrete problems involve finite number of degrees of freedom. All discrete and continuous 
problems can be classified as equilibrium (static). eigenvalue, and propagation (transient) 
problems. The finite element method is applicable for the solution of all three categories 
of problems. As stated in Chapter 1. the finite element method is a numerical proce- 
dure that replaces a continuous problem by an equivalent discrete one. It will be quite 
convenient to use matrix notation in formulating and solving problems using the finite 
element procedure. When matrix notation is used in finite element analysis, the organi- 
zational properties of matrices allow for systematic compilation of the required data and 
the finite element analysis can then be defined as a sequence of matrix operations that 
can be programmed directly for a digital computer. 

The governing finite element equations for various types of field problems can be 
expressed in matrix form as follows: 

1. Equilibrium problems 

[A].~ = b (7.1a) 

subject to the boundary conditions 

[B]X = j (7.1b) 

2. Eigenvalue problems 

[A]Ys ,~[B]X (7.2a) 

subject to the boundary conditions 

[C]X - ~7 (7.2b) 

230 
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3. P r o p a g a t i o n  p rob lems  

d2.~ dX 
[A] ~ + [B]-dT + [ c ] x  = y ( x ,  t), t > O  (7.3a) 

sub jec t  to the  b o u n d a r y  condi t ions  

[D])(  = j ,  t _> 0 (7.3b) 

and  the  init ial  condi t ions  

3~ = 3~o, t = 0 (7.3c) 

d X  
= lP0. t =  0 (7.3d) 

dt 

where  [A], [B], [C], and  [D] are square  mat r ices  whose e lements  are known to us; X is 

the  vector  of unknowns  (or field variables)  in the  problem" b. ~, X0, and  Y0 are vectors  
of known constants ;  A is the  eigenvalue; t is the  t ime pa rame te r ;  and F is a vector  whose 

e lements  are known funct ions  of X and t. 

In this chapter ,  an in t roduc t ion  to m a t r i x  techniques  t h a t  are useful for the solut ion 
of Eqs. (7 .1)-(7 .3)  is given along wi th  a descr ip t ion  of the  relevant  Fo r t r an  c o m p u t e r  

p rog rams  included in the  disk. 

7.2 SOLUTION OF EQUILIBRIUM PROBLEMS 
W h e n  the  finite e lement  m e t h o d  is used for the  solut ion of equi l ibr ium or s t eady  s t a t e  or 
s ta t ic  problems,  we get a set of s imul taneous  l inear equa t ions  tha t  can be s t a t ed  in the  
form of Eq. (7.1). We shall consider  the  solut ion of Eq. (7.1a) in this sect ion by assuming  

t h a t  the  b o u n d a r y  condi t ions  of Eq. (7.1b) have been inco rpora t ed  already.  

E q u a t i o n  (7.1a) can be expressed  in scalar  form as 

a l l X l  + a12x2 -+- �9 �9 �9 -b a l n x ~  - b l  

a21xl -+- a22x2 -+- �9 �9 �9 -+- a 2 n x n  - b2 

a n l x l  + a n 2 x 2  + ' "  + a,~,~xr~ = b,~ 

(7.4) 

where  the  coefficients a~j and  the  cons tan t s  b~ are e i ther  given or can be genera ted .  T h e  
p rob lem is to find the  values of x~ (i - 1, 2 , . . . ,  n).  if t hey  exist,  which sat isfy Eq. (7.4). 

A compar i son  of Eqs. (7.1a) and (7.4) shows t h a t  

I 
a~ a~ ... alo/] Xl bi 
a21 a22 . �9 a 2 n  --. x 2  -, b2 

[A] - , X - b - 
n x n  " n x l  " ' n x l  " 

La,~l a~2 a ~ j  x~ bn 

In finite e lement  analysis,  the  order  of the  m a t r i x  [A] will be very large. T h e  solut ion of 

some of the  prac t ica l  p rob lems  involves mat r ices  of order  10,000 or more.  
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The methods available for solving systems of linear equations can be divided into two 
types: direct and iterative. Direct methods are those that.  in the absence of round-off 
and other errors, will yield the exact solution in a finite number of elementary arithmetic 
operations. In practice, because a computer  works with a finite word length, sometimes 
the direct methods do not give good solutions. Indeed. the errors arising from round-off and 
truncation may lead to extremely poor or even useless results. Hence. many researchers 
working in the field of finite element method are concerned with why and how the errors 
arise and with the search for methods that  minimize the totality of such errors. The 
fundamental  method used for direct solutions is Gaussian elimination, but even within 
this class there are a variety of choices of methods that  vary in computat ional  efficiency 
and accuracy. 

Iterative methods are those that start with an initial approximation and that  by 
applying a suitably chosen algorithm lead to successively better  approximations. When 
the process converges, we can expect to get a good approximate solution. The accuracy 
and the rate of convergence of iterative methods vary with the algorithm chosen. The 
main advantages of iterative methods are the simplicity and uniformity of the operations 
to be performed, which make them well suited for use on digital computers, and their 
relative insensitivity to the growth of round-off errors. 

Matrices associated with linear systems are also classified as dense or sparse. Dense 
matrices have very few zero elements, whereas sparse matrices have very few nonzero 
elements. Fortunately, in most finite element applications, the matrices involved are sparse 
(thinly populated) and symmetric. Hence. solution techniques that  take advantage of the 
special character of such systems of equations have been developed. 

7.2.1 Gaussian Elimination Method 
The basic procedure available for the solution of Eq. (7.1) is the Gaussian elimination 
method, in which the given system of equations is transformed into an equivalent tr iangular 
system for which the solution can be easily found. 

We first consider the following system of three equations to illustrate the Gaussian 
elimination method: 

xl -- x2 + 3x3 = 10 (El) 

2xl + 3x2 + 2 " 3  - - -  15 (E2) 

4Xl + 2x2 - -  2 " 3  - -  6 (E3) 

To eliminate the zl  terms from Eqs. (E2) and (E3). we multiply Eq. (El) by - 2  and - 4  
and add respectively to Eqs. (E2)and  (Ea) leaving the first equation unchanged. We will 
then have 

xl - x2 + 3x:~ - 10 (E4) 

5x2 - 5x3 - - 5  (Es) 

6x2 - 13x:t - - 34 (E6) 
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To el iminate the x2 te rm from Eq. (E6), mul t iply  Eq. (E,5) by - 6 / 5  and add to Eq. (E6). 
We will now have the t r iangular  sys tem 

Xl -- X2 -t'- 32"3 = 10 (Er) 

5x2 - 5x3 = - 5  (Es) 

- 7 x 3  = -{28 (E9) 

This t r iangular  sys tem can now be solved by back subst i tut ion.  From Eq. (E9) we find 
xa = 4. Subs t i tu t ing  this value for xa into Eq. (Es) and solving for x2. we obta in  x2 = 3. 
Finally, knowing x3 and x2, we can solve Eq. (El)  for x l .  obta ining xl  = 1. This solution 
can also be obta ined by adopt ing the following equivalent procedure.  

Equat ion  (El)  can be solved for Xl to obtain 

Xl = 10 + x2 - 3xa (El0) 

Subs t i tu t ion  of this expression for Xl into Eqs. (E2) and (E3) gives 

5x2 - 5xa = - 5  (El l )  

6x2 - 13xa = - 3 4  (E12) 

The solution of Eq. (E l l )  for x2 leads to 

x2 = - 1 + xa (E13) 

By subs t i tu t ing  Eq. (E13) into Eq. (E12) we obtain 

- -72 :3  - -  - - 2 8  ( E 1 4 )  

It can be seen tha t  Eqs. (El0), (El l ) ,  and (E14) are the same as Eqs. (Er),  (Es), and 
(E9), respectively. Hence, we can obtain xa = 4 from Eq. (E14). a:2 = 3 from Eq. (Ela).  

and Xl = 1 from Eq. (El0). 

Generalization of the Method 
Let the given sys tem of equat ions be wri t ten  as 

(o)_ (o)~ (o) b(O) 
a l l  x l  q- a12  a~2 q- ' ' '  + a l n  :r, ,  - -  

a(O) (o) (o) x ~ - ~(o) 
21 Xl -3 L- a22  x 2  -Jr- " ' "  + a 2 n  ,. ~'2 

a(O) _(o) (o) b(O) 
n l  X l  - J r - ~ n 2  X 2  -l t - . . .  J r - a n n X r ~  - -  

(7.5) 

where the superscr ipt  (0) has been used to denote  the original values. By solving the first 

equat ion of Eq. (7.5) for xl ,  we obtain 

(o) x2 - ~ xa . . . . .  (o---5 x,~ 
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Subst i tut ion of this Xl into the remaining equations of Eq. (7.5) leads to 

a( 1) _(i) _(i) ~i) 
22 x2 + u23 x3 + ... + u2~ x~ - b 

a(1) _(1) _(i) b(1) 
n2  X 2  ~ t l n 3  373 -Jr- " ' "  - 1 - C t n n , r n  - -  

(7.6) 

where 

(i) (o) [ (o) (o) (o)] } 
a i 3  - -  a z ]  - -  a ' l  CllJ ~all i . j  -- 2 , 3 , . . . . n  

Next, we eliminate x2 from Eq. (7.6). and so on. In general, when xk is eliminated we 
obtain 

( k - i )  ~ ( k - l )  

bk ~ a kJ (7.7) 
Xk = a(k-1) ~ (k- i )  X3 

kk 2=. 1 akk 

where 

[I } (k) (k-i) k- i )a(k- i ) / /a  
a~ - -  az3  - a k k j  k k  

[ kk 
i . j - k + l  . . . . .  n 

After applying the previous procedure n - 1 times, the original system of equations 
reduces to the following single eqau t ion  

(n--i) b(~-i) a . .  xn - 

from which we can obtain 

x , ~ -  [b(nn-1)/a(n-1)],~n 

The values of the remaining unknowns can be found in the reverse order 
(Xn-1,  Xn-2 . . . .  , Xl) by using Eq. (7.7). 

N o t e :  In the elimination process, if at any stage one of the pivot (diagonal) elements 
a(~ (2 11, a , a , . . . ,  vanishes, we a t tempt  to rearrange the remaining rows so as to obtain 
a nonvanishing pivot. If this is impossible, then the matr ix [A] is singular and the system 
has no solution. 

Computer Implementation 
A Fortran subroutine called GAUSS is given for the solution of 

[A].~ = b" (7.1a) 

based on the Gaussian elimination method.  This subroutine can be used to find the solu- 
tion of Eq. (7.1a) for several right-hand-side vectors b and /o r  to find the inverse of the 
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mat r ix  [A]. The  a rguments  of the subrout ine  are as follows: 

A = array of order N x N in which the given coefficient ma t r ix  [A] is s tored at the  
beginning.  The  array A re turned  from the subrout ine  GAUSS gives the inverse 
[A] -1 

B = array of dimension N x M.  If the  solut ion of Eq. (7.1a) is required for several 

r ight-hand-s ide  vectors b-'~ (i = 1,2 . . . . .  2%I), the vectors bl, b-'2,.., are s tored 
columnwise in the array B of order N x M. Upon re turn  from the subrout ine  
GAUSS,  the  i th  co lumn of B represents  the solut ion J<, of the problem [A]fi - 

b-'i (i - 1 , 2 , . . . , M ) .  The  array B will not be used if inverse of [A] only is 
required. 

N = order of the  square mat r ix  [A]; same as the number  of equat ions  to be solved. 

M -- number  of the  r ight-hand-side vectors b~ for which solutions are required. If 
only the  inverse of [A] is required, AI is set to be equal to 1. 

I F L A G  = 0 if only the  inverse of [A] is required. 
= 1 if the  solut ion of Eq. (7.1a) is required (for any value of M > 1). 

LP = a d u m m y  vector array of dimension N. 
LQ = a d u m m y  array of dimension N x 2. 
R = a d u m m y  vector of d imension N. 

To i l lustrate  the  use of the  subrout ine  GAUSS. we consider the following sys tem of 
equations:  

[i 10 111 {li} (El)  

Here, the  number  of equat ions  to be solved is N - 3, with M - 1 and I F L A G  = 1. The  
main  p rogram for solving Eq. (El )  using the subrout ine  GAUSS is given below. The  result  
given by the p rogram is also included at the end. 

C_ ............... 

C 

C MAIN PROGRAM TO CALL THE SUBROUTINE GAUSS 

C 

C ............. 

10 
20 
30 

DIMENSION A(3,3),B(3, I),LP(3),LQ(3,2),R(3) 
DATA((A(I,J) ,J=l,3) ,I=I,3)/I.0,i0.0,i.0,2.0,0.0,I.0,3.0,3.0,2.0/ 

DATA(B(I, I),I=i,3)/7.0,0.0,14.0/ 

DATA N,M,IFLAG/3, I, I/ 

PRINT IO,((A(I,J),J=I,3),I=I,3) 

PRINT 20, (B(I,I),I=I,3) 

CALL GAUSS (A,B, N,M, IFLAG, LP, LQ, R) 

PRINT 30, ((A(I,J),J=l,3) ,I=I,3) 

PRINT 40, (B(I,I),I=I,3) 
FORMAT(2X, c ORIGINAL COEFFICIENT MATRIX' ,//,3(E13.6, IX) ) 

FORMAT(/,2X, CRIGHT HAND SIDE VECTOR',//,3(EI3.6,1X)) 

FORMAT(/,2X, c INVERSE OF COEFFICIENT MATRIX' ,//,3(EI3.6,1X) ) 
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40 FORMAT(/, 2X, 'SOLUTION VECTOR' , / / , 3 ( E 1 3 . 6 ,  IX) ) 

STOP 

END 

ORIGINAL COEFFICIENT MATRIX 

O. IO0000E+OI O. IO0000E+02 O. IO0000E+OI 

O. 200000E+OI O. O00000E+O0 O. IO0000E+OI 

O. 300000E+OI O. 300000E+OI O. 200000E+OI 

RIGHT HAND SIDE VECTOR 

0. 700000E+01 0. 000000E+00 0. 140000E+02 

INVERSE OF COEFFICIENT MATRIX 

0.428572E+00 
0. 142857E+00 

-0 .857143E+00 

0.242857E+01 
0. 142857E+00 

-0.385714E+01 

-0 .  142857E+01 
-0 .  142857E+00 

0.285714E+01 

SOLUTION VECTOR 

-0 .  170000E+02 -0 .  100000E+01 0.340000E+02 

7.2.2 Choleski M e t h o d  

The  Choleski me thod  is a direct me thod  for soh'ing a linear sys tem tha t  makes use of 
the fact tha t  any square matr ix  [A] can be expressed as the produc t  of an upper  and a 
lower t r iangular  matr ix.  The  me thod  of expressing any square mat r ix  as a product  of two 
t r iangular  matr ices  and the subsequent  solution procedure  are given below. 

(i) Decomposition of [A] into lower and upper triangular matrices 
The  given sys tem of equat ions  is 

[A]X = b (7.1a) 

The  mat r ix  [A] can be wr i t ten  as 

[.4] = [~,~] : [L][U] (7.s) 

where [L] - [/ij] is a lower t r iangular  matr ix ,  and [U] = [u,a] is a unit upper  t r iangular  

matr ix ,  with 

I 
( / l l  a 1 2  " " " O l r ~  

a 2 1  ( / 2 2  �9 �9 �9 a 2 n  

[ A ] -  - [L i [U]  (7.9) 

L a n l  a n 2  �9 �9 �9 a r ~ n  
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[L]  = I 
ll1 0 0 
121. 122 0 

Llli I,~2 ln3 I n  N 

-- a lower t r iangular  matr ix  (7.10) 

and 

[ g ]  = 

1 ~ t 1 2  ? / 1 3  . . . .  / l i n  

1 l t 2 3  " " " ~ 2 n  

0 1 . . . .  u3,~ 
�9 . 

0 0 . .-  1 

-- a unit upper  t r iangular  mat r ix  (7.11) 

The  elements of [L] and [U] satisfying the unique factorization [A] = [L][U] can be 
de te rmined  from the recurrence formulas 

3--1 

lij - -  aij -- E l~g. ukj. 
k = l  

i>_j 

i - - 1  

au -- E likUkj 
k=l i < j  

uij - -  lii  

u~i -- 1 

(7.12) 

For the relevant indices i and j ,  these elements are computed  in the order 

l i i , u i j "  l i 2 , u 2 j "  l i 3 ,  t t 3 j "  " l . . . . .  1. U n - l . j "  I . . . .  

(ii) Solution of equations 
Once the given system of equat ions [A])~ - b" is expressed in the form [L][U]~f = b. the 
solution can be obta ined as follows: 

By let t ing 

[U]X = 2 (7.13) 

the equat ions become [L]Z = b, which in expanded form can be wri t ten as 

~IIZI ~ bl 

/21Zl +/22z2 = b2 

/31Zl -~  1322:2  -~- / 3 3 2 3  = b3 

�9 . . (7.14) 

InlZl + ln2Z2 +In3z3 + ' ' "  + l,~nZn = bn 
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T h e  first of these  equa t ions  can be solved for z~, af ter  which the  second can be solved 
for z2, the  th i rd  for za, etc. We can thus  de t e rmine  in succession Zl, z 2 , . . .  ,zn,  provided  
t h a t  none of the  d iagonal  e lements  l,~ (i = 1.2 . . . . .  n) vanishes�9 Once z, are ob ta ined  the  

values of xi can be found by wri t ing  Eq. (7.13) as 

X l  Jr- U 1 2 X 2  n t- U 1 3 X 3  ~ - ' ' " - ~ -  U l , , X n  - -  Z 1  

Z 2  + ~ / 2 3 X 3  -~- " ' "  - ~ - t t 2 n X n  z Z 2  

X 3  - ' ~ - ' ' "  ~ 2 1 3 n X n  - -  Z 3  

�9 . . 

�9 . . 

('7.15) 

X n - 1  _qk_ U n - l , n X n  - -  Z n - - 1  

X n  - -  Z n  

Jus t  as in the  Gauss i an  e l imina t ion  process,  this sys t em can now be solved by back 

subs t i t u t ion  for x~, x~_ 1 . . . . .  Xl in tha t  order.  

(iii) Choleski decomposition of symmetric matrices 
In mos t  appl ica t ions  of finite e lement  theory,  the  mat r ices  involved will be symmet r i c ,  
banded ,  and posi t ive definite�9 In such cases, the  s y m m e t r i c  posi t ive definite m a t r i x  [A] 

can be decomposed  uniquely  as* 

[A] = [U] r [U] (7.16) 

where  

r ~ l l  U 1 2  Ll13  �9 �9 �9 / - t i n  

U 2 2  U 2 3  �9 �9 �9 U 2 n  

[U] = 0 ~ 3 3  . . .  u3,~ 
�9 . 

0 0 u,~,~j 

(7.17) 

is an uppe r  t r i angu la r  m a t r i x  including the  diagonal .  T h e  e lements  of [U] = [u~j] are 

given by 

?/ '11 = (a11) (1/2) 

Ulj = al j  /Ula,  j - 2 , 3  . . . .  ,n  

k=l (7.18) 

E l s  - -  ~ a ~ j  - -  t l k 2 t l k 3  , 

k-=-l j -- i + 1, i + 2 , . . . n  

u~ 3 = 0 .  i > j .  

* The matrix [a] can also be decomposed as [A] = [L][L] T, where [L] represents a lower triangular 
matrix�9 The elements of ILl can be found in aef. [7.1] and also in Problem 7.2. 
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(iv) Inverse of a symmetric matrix 
If the inverse of the symmetric matrix [A] is needed, we first decompose it as [A] = [u]T[u] 
using Eq. (7.18), and then find [A] -1 as 

[A] -~ = [[u]T[u]] -~ - [U]- I ( [u]T)  -1 (7.19) 

The elements/kij of [U] -1 can be determined from [U][U] -1 = [I], which leads to 

,~i i  : 1 
t t i i  

)~ij = , i < j 
t t i i  

)~j -- O, i > j 

(7.20) 

Hence, the inverse of [U] is also an upper triangular matrix. The inverse of [U] T can be 
obtained from the relation 

( [u]T)  -1 ~___ ( [ U ] - I )  T (7.21) 

Finally, the inverse of the symmetric matrix [A] can be calculated as 

[A] - 1 -  [ U ] - I ( [ U ] - I )  T (7.22) 

(v) Computer implementation of the Choleski method 
A FORTRAN computer program to implement the Choleski method is given. This pro- 
gram requires the subroutines DECOMP and SOLVE. These subroutines can be used for 
solving any system of N linear equations 

[A]J( =b" (7.1a) 

where [A] is a symmetric banded matrix of order N. It is assumed that  the elements of the 
matrix [A] are stored in band form in the first N rows and N B columns of the array A, 
where N B  denotes the semi-bandwidth of the matrix [.4]. Thus. the diagonal terms a,~ of 
[A] occupy the locations A ( I ,  1). 

The subroutine DECOMP decomposes the matrix [A] (stored in the form of array 
A) into [A] - [u]T[u] and the elements of the upper triangular matrix [U] are stored in 
the array A. The subroutine SOLVE solves the equations (7.1a) by using the decomposed 
coefficient matrix [A]. This subroutine has the capability of solving the equations (7.1a) for 

different right-hand-side vectors b. If bl, b2 . . . .  , bat indicate the right-hand-side vectors* 
for which the corresponding solutions X 1 , ) ( 2 , . . . ,  )~M are to be found, all the vectors 
bl, b~ , . . . ,  bM are stored columnwise in the array B. Thus, the j t h  element of b-'/ will be 

* The right-hand-side vectors bl, b-'2,..., represent different load vectors (corresponding to different 
load conditions) in a static structural or solid mechanics problem. 
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s tored  as B ( J , I ) ,  d = 1 . 2  . . . . .  N .  T h e  equa t ions  to be solved for any r igh t -hand-s ide  

vector  g can be expressed  as [A],f  = [ [ ' ] r [ U ] , f  - b. These  equa t ions  can be solved as 

and 

[[:].~. _ ( [ [ - ] r ) - ~ g  =_ 2 (say) 

In the  subrou t ine  SOLVE.  the  vectors  Z, for different bi are found in the  forward pass and 
are s tored  in the  a r ray  B. The  solut ions .~, co r responding  to different b~ are found in the  
backward  pass and  are s tored  in the a r ray  B. Thus .  the  co lumns  of the  a r ray  B r e t u r n e d  

from SOLVE will give the  desired solut ions )<,. i = 1, 2 . . . . .  .~I. 

As an example ,  consider  the  following sys tem of equat ions:  

1 - 1  0 0 0 

i l  2 - 1  0 _. _. - 1  2 - 1  00 X, - b, 

0 - 1  2 --1 
0 0 - 1  2 

(E,) 

where  

Xl 1 0 1 
-~ x2 0 0 1 

_ ,  - - ,  - ,  

X , -  xa bl = 0 . t,2 = 0 . and b a -  1 
x4 0 0 1 
x5 ~ 0 1 1 

Here,  the  n u m b e r  of equa t ions  - A" - 5. the s e m i - b a n d w i d t h  of [.4] - N B  = 2, and the  

n u m b e r  of vectors  b~ - 11i - 3. 

The  main  p rog ram for solving the  sys tem of equat ions .  (E l ) .  a long wi th  the  results .  
is given below. 

C ......... 
C 
c MAIN PROGRAM T0 CALL DECOMP AND SOLVE 

C 
C ......... 

DIMENSION A(5,2),B(5,3) 
DOUBLE PRECISION DIFF(3) 

DATA(A(I,I) ,I=I,5)/I. ,2. ,2. ,2. ,2./ 
DATA(A(I,2) ,I=I,5)/-i. ,-I. ,-i. ,-I. ,0./ 
DATA(B(I,I) ,I=1,5)/I. ,0. ,0. ,0. ,0./ 
DATA(B(I,2) ,I=I,5)/0.,0. ,0. ,0., I./ 
DATA(B(I,3) ,I=1,5)/I., I., I., I., I./ 
DATA N,NB,M/5,2,3/ 
CALL DECOMP (N,NB, A) 



SOLUTION OF EQUILIBRIUM PROBLEMS 241 

10 
20 

CALL SOLVE (N, NB,M, A, B, DIFF) 

DO I0 J=I,M 

PRINT 2 0 , J ,  ( B ( I , J ) , I = I , N )  
FORMAT(IX, CSOLUTION: ',15,/, (6E15.8)) 

STOP 

END 

SOLUTION- 1 
0.50000000E+01 0.40000000E+01 0.30000000E+01 0.20000000E+01 0.10000000E+01 
SOLUTION" 2 
O.iO000000E+OI O.IO000000E+OI O.iO000000E+Oi O.IO000000E+OI O.iO000000E+Oi 

SOLUTION" 3 
0.i5000000E+02 0.14000000E+02 0.12000000E+02 0.90000000E+OI 0.50000000E+Oi 

7.2.3 Other Methods 
In the computer  programs DECO!XIP and SOLVE given in Section 7.2.2. advantage of 
the properties of symmet ry  and bandform is taken in storing the matr ix  [A]. In fact. the 
obvious advantage of small bandwidth  has prompted  engineers involved in finite element 
analysis to develop schemes to model systems so as to minimize the bandwidth  of resulting 
matrices. Despite the relative compactness of bandform storage, computer  core space may' 
be inadequate  for the bandform storage of matrices of extremely" large systems. In such a 
case, the matr ix  is part i t ioned as shown in Figure 7.1. and only a few of the t r iangular  
submatr ices  are stored in the computer  core at a given time: the remaining ones are kept 
in auxiliary storage, for example, on a tape or a disk. Several other schemes, such as the 
frontal or wavefront solution methods,  have been developed for handling large matrices 

[7.2-7.5]. 

I" NB..~ 

_ o , 

, I 
"~ ~ N B  (typical) 

" L \ 

N ,, 

" I �9 ~ \  I 

Figure 7.1. Partitioning of a Large Matrix. 
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The Gauss elimination and Choleski decomposition schemes fall under the category 
of direct methods.  In the class of iterative methods,  the Gauss-Seidel  method is well- 
known [7.6]. The conjugate gradient and Newton's  methods are other iterative methods 
based on the principle of unconstrained minimization of a function [7.7. 7.8]. Note tha t  
the indirect methods are less popular  than the direct methods in soh, ing large systems of 
linear equations [7.9]. Special computer  programs have been developed for the solution of 
finite element equations on small computers  [7.10]. 

7.3 SOLUTION OF EIGENVALUE PROBLEMS 
When the finite element method is applied for the solution of eigenvalue problems, we 
obtain an algebraic eigenvalue problem as s tated in Eq. (7.2). We consider the solution 
of Eq. (7.2a) in this section, assuming that  the boundary conditions, Eq. (7.2b), have 
been incorporated already. For most engineering problems. [A] and [t3] will be symmetric 
matrices of order n. t is a scalar (called the eigenvalue), and X is a column vector with 
n components  (called the eigenvector). If the physical problem is the free vibration analysis 
of a structure.  [A] will be the stiffness matrix. [B] will be the mass matrix, k is the square 
of natural  frequency, and X is the mode shape of the vibrating structure.  

The eigenvalue problem given bv Eq. (7.2a) can be rewrit ten as 

([A] - I[B])X - 6 (7.23) 

which can have solutions for 

./ ' I 

272 

Xn 

other than zero only if the determinant  of the coefficients vanishes: that  is, 

a l l  - Abll a12 - Abl.e . . .  air, - lb :n  
a2: - Ab21 a22 - kb22 . . .  a2~ - Ab2n 

a ~ : - ~ b ~ :  a ~ 2 - k b ~ 2  . . .  a n ~ - k b ~  

- 0  (7.24) 

If the determinant  in Eq. (7.24) is expanded, we obtain an algebraic equation of n th  degree 
for A. This equation is called the characteristic equation of the system. The n roots of this 
equation are the n eigenvalues of Eq. (7.2a). The eigenvector corresponding to any Aj, 
namely Xa, can be found by inserting ka in Eq. (7.23) and solving for the ratios of the 
elements in J~3. A practical way to do this is to set x~, for example, equal to unity and 
solve the first n -  1 equations for .r : ,z2 . . . . .  a'~_:. The last equation may be used as a 
check. 

From Eq. (7.2a), it is evident that  if ~ is a solution, then/ , 'X will also be a solution for 
any nonzero value of the scalar k. Thus. the eigenvector corresponding to any eigenvalue 
is arbi t rary to the extent of a scalar multiplier. It is convenient to choose this multiplier 
so tha t  the eigenvector has some desirable numerical property, and such vectors are called 
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normalized vectors. One method of normalization is to make the component of the vector 
X~ having the largest magnitude equal to unity: that is 

max (x i , )  -- 1 (7.25) 
j = 1 , 2  . . . . .  n 

where z~j is the j th  component of the vector X~. Another method of normalization 
commonly used in structural dynamics is as follows: 

X~[B]X, = 1 (7.26) 

7.3 .1  Standard Eigenvalue  Prob lem 
Although the procedure given previously for solving the eigenvalue problem appears to be 
simple, the roots of an nth degree polynomial cannot be obtained easily for matrices of high 
order. Hence, in most of the computer-based methods used for the solution of Eq. (7.2a). 
the eigenvalue problem is first converted into the form of a standard eigenvalue problem. 
which can be stated as 

[H]X = A3~ or ( [ H I -  A[I])X = (7.27) 

By premultiplying Eq. (7.2a) by [B] -1, we obtain Eq. (7.27), where 

[H] = [B]-I[A] (7.28) 

However, in this form the matrix [HI is in general nonsymmetric, although [B] and [A] are 
both symmetric. Since a symmetric matrix is desirable from the standpoint of storage and 
computer time, we adopt the following procedure to derive a standard eigenvalue problem 
with symmetric [HI matrix. 

Assuming that [B] is symmetric and positive definite, we use Choleski decomposition 
and express [B] as [B] = [U]T[U]. By substituting for [B] in Eq. (7.2a), we obtain 

[A]~ - ~[u] ~ [ u ] 2  

and hence 

([U]~)-~[A][U]-'[U]Y~ = a[U]~7 (7.29) 

By defining a new vector }7 as IP - [U]X, Eq. (7.29) can be written as a standard 
eigenvalue problem as 

( [ H I -  ,x[I] ) f  - 6 (7.30) 

where the matrix [HI is now symmetric and is given by 

[HI = ([U]~')-~[A][U] -~ (7.31) 

To formulate [H] according to Eq. (7.31), we decompose the symmetric matrix [B] as 
[ B ] -  [u]T[u], as indicated in Section 7.2.2(iii), find [U] -~ and ([u]T) -1 as shown in 
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Section 7.2.2(iv). and then carry out the matrix nmltiplication as s tated in Eq. (7.31). 
The solution of the eigenvalue problem stated in Eq. (7.30) yields )~, and Y~. Then we 
apply the inverse t ransformation to obtain the desired eigenvectors as 

2 ,  - [[']-~}7] (7.32) 

We now discuss some of the methods of solving the special eigenvalue problem stated in 
Eq. (7.27). 

7.3.2 Methods of Solving Eigenvalue Problems 
Two general types of methods,  namely t ransformation methods and iterative methods,  are 
available for solving eigenvalue problems. The t ransformation methods,  such as Jacobi, 
Givens, and Householder schemes, are preferable when all the eigenvalues and eigenvectors 
are required. The iterative methods,  such as the power method, are preferable when few 
eigenvalues and eigenvectors are required [7.11-7.13]. 

7.3.3 Jacobi Method 
In this section, we present the Jacobi method for solving the s tandard eigenvalue 
problem 

[H]?~- )~.Y (7.33) 

where [H] is a symmetric inatrix. 

(i) Method 
The method is based on a theorem in linear algebra that  states that  a real symmetric  
matr ix [H] has only real eigenvalues and that  there exists a real orthogonal matr ix [P] 
such that  [P]T[H][P] is diagonal. The diagonal elements are the eigenvalues and the 
columns of the matr ix [P] are the eigenvectors. 

In the Jacobi method, the matr ix [P] is obtained as a product of several "rotation" 
matrices of the form 

[ P , ]  - 

T~Xn 

-1 0 
0 1 

ith j t h  column 

cos 0 - sill 0 

sin 0 cos 0 

ith 
j t h  row 

(7.34) 

where all elements other than those appearing in columns and rows i and j are identical 
with those of the identity matr ix [I]. If the sine and cosine entries appear  in positions 
(i,i), (i,j). (j.i). and (j.j). then the corresponding elements of [p1]T[H] [P1] can be 
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computed  as 

If 0 is chosen as 

h__ii = hii cos 2 0 + 2hi j  sin 0 cos 0 + h~j sin 2 0 

h__ij = h__ji = (h j j  - h i i ) s i n  0 cos0 + h,3 (cos 2 0 - sin ~ 0) 

h__jj = hii sin 9 0 - 2h;j sin 0 cos 0 + hjj cos 2 0 

(7.35) 

t a n 2 0  = 2 h i ~ / ( h i i  - h j j  ) (7.36) 

then it makes h_~j - h__ji = 0. Thus,  each step of the Jacobi me thod  reduces a pair of off- 
diagonal  elements  to zero. Unfortunately.  in the next step, a l though the me thod  reduces a 
new pair of zeros, it introduces nonzero contr ibut ions  to formerly zero positions. However. 

successive matr ices  of the form 

[P3]T[P2]T[PI]:r[H][P~ ] [P2] [P.3] . . . .  

converge to the required diagonal form and the desired matr ix  [P] (whose columns give 

the eigenvectors) would then be given by' 

[ P ] -  [P1][P2][P3]. . .  (7.37) 

(ii) Computer implementation of Jacobi method 
A F O R T R A N  subrout ine  called J A C O B I  is given for finding the eigenvalues of a real 
symmetr ic  mat r ix  [H] using the Jacobi method.  The me thod  is assumed to have converged 
whenever  each of the off-diagonal elements,  h is less than  a small quant i tv  E P S .  The 

- - t J  " L 

following a rguments  are used in the subroutine:  

H = array of order N x N used to store the elements  of the given real symmetr ic  
mat r ix  [H]. The  diagonal  elements  of the array" H give the eigenvalues upon 

re turn  to the main program. 
N = order of the mat r ix  [H]. 
I T M A X  = max imum number  of rota t ions  permi t ted .  
A = an array of order N x N in which the eigenvectors are stored columnwise. 
EPS = a small number  of order 10 .6  used for checking the convergence of the method.  

To i l lustrate  the use of the subrout ine  JACOBI .  consider the problem of finding the 

eigenvalues and eigenvectors of the mat r ix  

[21 !1 [ H ]  = - 1  2 - 

0 - 1  
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The main program calling the subroutine JACOBI,  along with the output  of the program, 
is given below. 

C ........... 

c 

C MAIN PROGRAM T0 CALL THE SUBROUTINE JACOBI 

C 

C ........... 

10 

DIMENSION H ( 3 , 3 ) , A ( 3 , 3 )  
DATA N,ITMAX,EPS/3,250,I.OE-06/ 

DATA H/2.0,-I.0,0.0,-I.0,2.0,-I.0,0.0,-I.0,2.0/ 

CALL JACOBI(H,N,A,EPS,ITMAX) 

PRINT IO,(H(I,I),I=I,N),((A(I,J),J=I,N),I=I,N) 

FORMAT(IX,17H EIGEN VALUES ARE,/,IX,3EI5.6,//,IX, 

2 14H EIGEN VECTORS,/,6X,SHFIRST,IOX,6HSECOND,9X,5HTHIRD,/, 

3 ( lX ,3E15 .6) )  
STOP 
END 

EIGEN VALUES ARE 

0.341421E+01 0.200000E+OI 0.585786E+00 

EIGEN VECTORS 

FIRST SECOND THIRD 

O. 500003E+00 O. 707098E+00 O. 500009E+00 

-0. 707120E+00 O. I19898E-04 O. 707094E+00 

0.499979E+00 -0.707115E+00 0.500009E+00 

7.3.4 Power Method 
(i) Computing the largest eigenvalue by the power method 
The power method is the simplest iterative procedure for finding the largest or principal 
eigenvalue (A1) and the corresponding eigenvector of a matr ix (X1). We assume that  the 
n x n matr ix [H] is symmetric and real with 7~ independent eigenvectors X1, X 2 , . . . ,  X~. 
In this method,  we choose an initial vector Z0 and generate a sequence of vectors Z1, 
2 2  . . . .  , a s  

Z, = [H]Z,-1 (7.38) 

so that ,  in general, the pth vector is given by 

Z~ - [ H ] Z p - 1  --[H]2ffp-2 . . . . .  [H]PZo (7.39) 

The iterative process of Eq. (7.38) is continued until the following relation is satisfied: 

zp.1 ~_ zp._____~2 . . . .  _ _ Zp.,~ = A1 (7.40) 
zp_ 1, 1 zp_ 1,2 Z p - -  1, n 

where zp,j and Zp-l,j are the j t h  components  of vectors Zp and Zp_l, respectively. Here, 
A1 will be the desired eigenvalue. 



SOLUTION OF EIGENVALUE PROBLEMS 247 

The convergence of the method  can be explained as follows. Since the initial (any 
arbi trary)  vector Z0 can be expressed as a linear combinat ion of the eigenvectors, we can 
write 

Zo - a l X 1  + a2X2 --k . ' .  + a n X n  (7.41) 

where al ,  a 2 , . . . ,  a,~ are constants.  If Ai is the eigenvalue of [HI corresponding to Xi ,  then 

[H]Zo - al  [H]X1 + a2[H]X2 -+-... + an [H]X.  

= alAIX1 + a2A2X2 + - - .  + a . A . X ~  (7.42) 

and 

[H]PZo - al/~lPXl + a2/~.~2 +' '"-Jr- anA,t:.~n 

/~2 P --* 
----)~P [ a l X l q - ( ~ 1 - 1 )  a2)t'2 q - - "  q - (  ~n p--~I) an.Xn] (7.43) 

If A1 is the largest (dominant)  eigenvalue, 

/~1[ > 1~2[ > "'" > ]/~nl, 
AI 

< 1 (7.44) 

()~i ) p and hence ~ ~ 0 a s p ~ o c .  

Thus,  Eq. (7.43) can be writ ten,  in the limit as p ~ ~c. as 

[HI p- IZo -- A f - l a  1Xl (7.45) 

and 

[H]'2o - a~.,2x (746) 

Therefore, if we take the ratio of any corresponding components  of the vectors ([H]vZ0) 
and ( [H]p- Iz0) ,  it should have the same limiting value. A1. This property  can be used to 
stop the iterative process. Moreover. 

([H]'2o ) 
will converge to the eigenvector alX1 as p ~ ~c. 

E x a m p l e  7.1 Find the dominant  eigenvalue and the corresponding eigenvector of the 
matr ix  [21 

[H] = - 1  2 - 
0 - 1  
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S o l u t i o n  By choosing the  init ial  vector  as 

we have 

and 

{1} 
Zo - 1 

1 

{1} 
2, - [ H I 2 , , -  0 

1 

Z, - [ H ] Z 1  - [ H ] 2 Z ~ , -  - 2  . 

2 

{6} 
2 : , -  In]2_, -[n]~z2, ,-  - s  . 

6 

It is convenient  here to divide tile componen t s  of Z:~ by 8 to ob ta in  

Z:~ - lc - 1 , 

3/4 
where k -  8. 

In the  future,  we cont inue  to divide by some su i tab le  factor  to keep the  m a g n i t u d e  of the 

numbers  reasonable .  Con t inu ing  the procedure ,  we find 

Z= = [H]=Z~,- ~ -1~0 
99 

a l l d  

3:38 } 

aas 

where  c is a cons tan t  factor. The  rat ios  of tile co r respond ing  componen t s  of Zs and Z 7  

are 338/99 - 3.41414 and 478/140 - 3.41429, which call be assumed to be the  same 
for our purpose.  The  eigenvalue given by this me thod  is thus A1 ~ 3.41414 or 3,41429. 
whereas  the  exact  solut ion is A1 = '2 4- ~ - 3.41421. By dividing tile last vector  Zs by 

the  m a g n i t u d e  of the largest  co lnponent  (478), we ob ta in  the  e igenvector  as 

X1 ~ - 1 . 0  . which is very close to the  correct  solut ion 

X l  - w 

1//v/22 
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The eigenvalue 11 can also be obtained by using the Rayleigh quotient (R) defined as 

XT[H]X 
R - (7.47) 

2 ;Y 

If [H]X - 1 X ,  R will be equal to 1. Thus. we can compute tile Rayleigh quotient at ith 
i teration as 

R ~ -  )(~[H])(~ i -  1.2 . . . .  (7.48) 
2 2 . <  " 

Whenever  Ri is observed to be essentially the same for two consecutive iterations i -  1 
and i, we take 11 - Ri. 

(ii) Computing the smallest eigenvalue by the power method 
If it is desired to solve 

[ H I ) ( -  ~ f  (7.49) 

to find the smallest eigenvalue and the associated eigenvector, we prenmltiply Eq. (7.49) 
by [H] -1 and obtain 

(1) 
[HI - 1 Y  -- ~ X (7.50) 

Eq. (7.50) can be writ ten as 

[H])s -- A s (7.51) 

where 

[H] = [H]- '  and A -  1 -~ (7.52) 

This means tha t  the absolutely smallest eigenvalue of [H] can be found by solving the 
problem stated in Eq. (7.51) for the largest eigenvalue according to the procedure outlined 
in Section 7.3.4(i). Note tha t  [H] - [HI -1 has to be found before finding 1 ..... llest. Although 
this involves additional computat ions (in finding [HI- l ) .  it may prove to be tile best 
approach in some cases. 

(iii) Computing intermediate eigenvalues 
Let the dominant  eigenvector X1 be normalized so that  its first component is one. 

Let 

1 
1"2 

X l -- s 

l 'n 
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Let ~,r denote the first row of the matrix [H]-- that  is, ~.r _ {hll h12. . ,  hl~}. Then form 
a matrix [H] as 

1 hll h12 . . .  hl~ "1 
X2 / x 2 h l l  x 2 h 1 2  . . .  X 2 h l n  

[ H ] -  N i t  "T = x3 {h11 hi2 . . .  h l n }  - -  . (7.53) 

x , ~ h l l  x ,~h12  . . .  x , ~ h l r ~ J  
X n  

Let the next dominant eigenvalue be )~2 and normalize its eigenvector (,Y2) so that  its first 
component is one. 

If )$1 or -Y2 has a zero first element, then a different element may be normalized and 
the corresponding row ~,r of matrix [H] is used. Since [H]251 = )~13~1 and [H])$2 = )~2)$2, 
we obtain, by considering only the row g r  of these products, that  

- , T ~  __ 
~,T.J~I - -  /~ 1 a n d  r 2 ~2 

This is a consequence of the normalizations. We can also obtain 

and [HI)(2 = (XICr).Y2 - X l ( f f r3~2) -  s  (7.55) 

( [ H I -  [ H ] ) ( ~ :  - ~7~) = a ~ ) : :  - a ~ . ~  - a .~21 + a ~ : ~  - a : ( ~ :  - )71) 

(7.54) 

so that  (7.56) 

Equation (7.56) shows that  A2 is an eigenvalue and 3~2 - Xl an eigenvector of the matrix 
[ H ] -  [H]. Since [ H ] -  [H] has all zeros in its first row, whereas )~2 - X l  ha~s a z e r o  a s  

its first component, both the first row and first column of [ H I -  [HI may be deleted to 
obtain the matrix [H2]. \Ve then determine the dominant eigenvalue and the corresponding 
eigenvector of [H2], and by attaching a zero first component, obtain a vector Z1. Finally, 
?s - -  -,~1 must be a multiple of Z1 so that we can write 

X.,, - X 1  + a Z 1  (7.57) 

The multiplication factor a can be found by multiplying Eq. (7.57) by the row vector ~.r 
so that  

~2  -- ,'~1 
- ~ ( 7 . 5 8 )  

>'TZ 1 

A similar procedure can be adopted to obtain the other eigenvalues and eigenvectors. 
A procedure to accelerate the convergence of the power method has been suggested by 
Roberti [7.14]. 
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E x a m p l e  7.2 Find the second and third eigenvalues of the matrix 

[HI - 
[2 1 
- 1  2 - 

0 - 1  

{lO } 
once X1 - -1.4142 

1.0 
and ) ~ 1  - -  3.4142 are known. 

S o l u t i o n  The first row of the matrix [H] is given by F~ - {2 -1  0} and hence 

[ / -I ] -  [ U ] -  

{lO lO, f2o lO ]oo 
[H] = ) ( i t  'T - -1.4142 - -2.8284 1.4142 0.0 

1.0 L 2.0 1.0 0.0 

[ 2 - 1  i ]  [ i - 1  i l  [ i 0 !]  - 1  2 - - - .8284 1.4142 = - .8284 0.5858 - 
0 - 1  - 1  - 0 

and 

We apply the power method to obtain the dominant eigenvalue of [H2] by taking the 
-~ { } { -0 .7071}  

starting vector as X -- 1 and compute [H2]l~ - c after which there 
1 1 .0000  ' 

is no significant change. As usual, c is some constant of no interest to us. Thus, the { o~o~1} 
eigenvector of [H2] can be taken as 1.0000 " 

The Rayleigh quotient corresponding to this vector gives R10 = A2 - 2.0000. By 

attaching a zero first element to the present vector { -0"7071 } 1.0000 , we obtain 

{oo } 
Z2 - -0.7071 

1.0 

We then compute 

A2 - A1 2 .0000-  3.4142 
a - = = -2.00002 

r-~i22 (0.0 + 0.7071 + 0.0) 

Thus, we obtain the eigenvector X2 as 

~ ~ { 
X 2  -- X1  - J r - a Z 2 -  

l O } {  
-1.4142 - 2.00002 

1.0 

0.0 
-0.7071 

1.0 

} { 1 . o }  
= 0.00001 

- 1.00002 
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. 

Next, to find Xa, we take A2 - 2 and normalize the vector 1.0 

. {1o } 
vector Y2 - -1 .4142  " 

The mat r ix  [H2] is reduced as follows: 

The first row of [H2] is given by" F2 r - {0.5858 - 1.0}, and 

to obtain the 

_[0 0 
0.8284 0.5858 

11"04142 } {0.5858 - 1.0} 

By delet ing the first row and first column, we obtain tile new reduced matr ix  [H3] as 
[Ha] - [0.5858]. The eigenvalue of [Ha] is obviously A:~ - 0.,5858, and we can choose its 

eigenvector as { 1}. By a t taching a leading zero. we obtain Up - . The  value of a can 

be computed  as 

ka - A2 0 . 5 8 5 8 -  2.0000 
= = 1.4142 

~ C 2  (o - 1) 

and the corresponding eigenvector of [H2] can be obta ined as 

Y 3 - Y 2 + a U 2 -  - 1  4142 + 1 . 4 1 4 2 { 0 } - - { 1 0 0 } 1  0. 

The  eigenvector of [H] corresponding to A:~ can be obta ined bv adding a leading zero to -+ ._, 

Ya to obtain Z3 as {oo} 
Za - 1.0 

0.0 

Aa - kl 0 . 5 8 5 8 -  3.4142 
and comput ing  a as = = 2.8284 

riTZ-3 ( 0 -  1 + O) 

_.+ 

Finally, the eigenvector X3 corresponding to [HI can be found as {1o } {oo} {lO } 
X 3  - -  X l  + ( / 2 3  - - 1 . 4 1 4 2  + 2 . 8 2 8 4  1.0 - 1 . 4 1 4 2  

1.0 0.0 1.0 

7.3.5 Rayleigh-Ritz Subspace Iteration Method 
Another  i terat ive me thod  that  can be used to find the lowest eigenvalues and the asso- 
ciated eigenvectors of the general eigenvalue problem, Eq. (7.2a), is the Rayle igh-Ri tz  
subspace i terat ion me thod  [7.15. 7.16]. This me thod  is very effective in finding the first 
few eigenvalues and the corresponding eigenvectors of large eigenvalue problems whose 
stiffness ([A]) and mass ([B]) matr ices  have large bandwidths .  The  various steps of this 
me thod  are given below briefly. A detai led description of the me thod  can be found in 
Ref. [7.15]. 
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(i) Algorithm 
S t e p  1: Start  with q initial i teration vectors )(1,)(2 . . . . .  Xq, q > p, where p is the 
number of eigenvalues and eigenvectors to be calculated. Bathe and Wilson [7.15] suggested 
a value of q = min (2p, p +  8) for good convergence. Define the initial modal matr ix IX0] as 

..~ __+ ..+ 

I X 0 ] -  [x~ x~  . . .  x~] (7.59) 

and set the iteration number as k - 0. A computer  algorithm for calculating efficient 
initial vectors for subspace iteration method was given in Ref [7.17]. 

S t e p  2: Use the following subspace iteration procedure to generate an improved modal 
matr ix [Xk+ 1]" 

(a) Find [)(k+l] from the relation 

[A l [Rk+l ] -  [B][Xk] (7.60) 

(b) Compute  

[Ak+l]--[Xk+l]T[A][2k+l] 

[ B k + l ] -  [Xk+l]T[B][2k-4-1] 
(7.61) 

(7.62) 

(c) Solve for the eigenvalues and eigenvectors of the reduced system 

[A~+~][Qk+I]- [Bk.1][Q/,.+I][A/,.+I] (7.63) 

and obtain [Ak+l] and [Qk+~]. 
(d) Find an improved approximation to the eigenvectors of the original system as 

[ X k + l ] -  [2~-+l][Qk+l]. (7.64) 

Note: 

(1) It is assumed that  the iteration vectors converging to the exact eigenvectors 
~ ( e x a c t )  ~ ( e x a c t )  1 , --2 , . . . ,  are stored as the first, second . . . . .  colunms of the matr ix 

[ X k + l ] .  

(2) It is assumed that  the vectors in [X0] are not orthogonal to one of the required 
eigenvectors. 

(k+l) 
S t e p  3: If A{ k) and A~ denote the approximations to the ith eigenvalue in the iter- 
ations k -  1 and k, respectively, we assume convergence of the process whenever the 
following criteria are satisfied" 

<_ c. i - -  1.2 . . . . .  p (7.65) 
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where e ~ 10 -6. Note tha t  al though the i teration is performed with q vectors (q > p), 
the convergence is measured only on the approximations predicted for the p smallest 
eigenvalues. 

(ii) Computer implementation of subspace iteration method 
A typical F 'ORTRAN computer  program to implement the subspace iteration method is 
given. This program solves the eigenvalue problem 

[.4].f - a [B] . f  (E,)  

where [A] and [B] are symmetric banded matrices. It is assumed that  the elements of the 
matrices [A] and [B] are stored in band form in the first N rows and N B  columns of the 
arrays K and GM. respectively, where N is the order and N B  is the semi-bandwidth of 
matrices [A] and [B]. If Eq. (El)  represents a free vibration problem. [A] and [B] represent 
the stiffness and consistent mass matrices of the structure,  respectively. If a lumped mass 
matr ix is used instead of a consistent mass matrix, the matr ix  [B] will be a diagonal matr ix 
and in this case [B] is stored as a vector in the array AI (in this case. the array G M  is 
not defined). The information regarding the type of mass matrix is given to the program 
through the quant i ty  INDEX. If a lumped mass matr ix is used, the value of INDEX is 
set equal to 1, whereas it is set equal to 2 if a consistent mass matr ix is used. 

The program requires the following subroutines for computing the desired number of 
eigenvalues and eigenvectors: 

SUSPIT: 

EIGEN: 

GAUSS" 
DECOMP" 

SOLVE" 

To obtain the partial  eigen solution by Rayleigh-Ritz  subspace iteration 
method. It calls the subroutines DECOMP. SOLVE. GAUSS, and EIGEN 
for solving the generalized Ritz problem. 
To compute all the eigenvalues and eigenvectors of the generalized Ritz 
problem using power method. 
To find the inverse of a real square matrix. 
To perform Choleski decomposition of a symmetric banded matr ix [same as 
given in Section 7.2.2(v)]. 
To solve a system of linear algebraic equations using the upper tr iangular  
band of the decomposed matrix obtained from DECOXIP [same as given in 
Section 7.2.2(v)]. 

The following input is to be given to the program: 

N Number  of degrees of freedom (order of matrices [A] and [B]). 
NB Semi-bandwidth of matr ix [A] (and of [B] if [/3] is a consistent mass matrix).  
NMODE Number  of eigenvalues and eigenvectors to be found. 
INDEX = 1 if [B] is a lumped mass (or diagonal) matrix" 

= 2 if [B] is a consistent mass (or banded) matrix. 
K The elements of the banded matr ix [.4] are to be stored in the array K(N, NB). 
GM The elements of the banded matr ix [B] are to be stored in the array GM(N, NB) 

if [B] is a consistent mass matrix. 
o r  

M 

X 

The diagonal elements of the diagonal matr ix [B] are to be stored in the array 
M(N) if [B] is a lumped mass matrix. 
Trial eigenvectors are to be stored columnwise in the array X(N, NMODE).  
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Figure 7.2. 

As an example,  consider an eigenvalue problem with 

E I  
[A] = - V  

"24 0 
8/2 

Symmetr ic  

- 1 2  

-61 

24 

61 0 0 0 0 -  

212 0 0 0 0 

0 - 1 2  61 0 0 

812 -61 2l 2 0 0 

24 0 - 1 2  6l 

8l 2 -61 2l 2 

12 - 6 l  

412 

and pAl [u]- 

-312 0 

812 

.Symmetr ic  

54 

13/ 

312 

- 1 3 l  0 0 0 0 7 

-312 0 0 0 0 

0 54 -131 0 0 

8l 2 13l -312 0 0 

312 0 54 -131 

8l 2 13l -312 

156 - 2 2 l  

412 

This problem represents  the free vibrat ions of a cantilever beam shown in Figure 7.2 with 
a four-element idealization. Here, [B] is the consistent mass matr ix.  E is the Young's 
modulus,  I is the moment  of inert ia of cross section, l is the length of an element,  p is the 
mass density, and A is the area of cross section of the beam. 

If the first three eigenvalues and eigenvectors are required, we will have N = 8. 
N B = 4, N M O D E  = 3, and I N D E X  = 2. The trial eigenvectors are chosen as 

X 1 -  

0 

X 2 -  

I~ 0 
1 
0 

/~ 0 
- 1  

0 

and 

1 
0 

- 1  
2 ~ -  0 

1 
0 

1 
0 
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The main program for solving the problem of Eq. (El) and the results given by the program 
are given below. 

C ............ 

C 

C COMPUTATION 0F EIGENVALUES AND EIGENVECTORS 

C 

C .................. 

10 

DIMENSION GM(8,4),X(8,3),OMEG(3),Y(8,3),GST(3,3),GMM(3,3), 

2 VECT(3,3),ABCV(3),ABCW(3),ABCX(3),ABCY(3),ABCZ(3,3),B(3,1), 
3 LP(3),L0(3,2),R(3) 
REAL K(8,4),M(8) 

DOUBLE PRECISION SUM(3) ,DIFF(3) 

DIMENSIONS ARE: K (N,NB) ,M(N) , GM(N,NB) ,X (N, NMODE) , OMEG (NMODE) , 

Y (N, NMODE), B (NMODE, 1 ), LP (NMODE), LQ (NMODE, 2), R (NMODE) 

DIMENSIONS OF MATRICES GST,GMM,VECT AND ABCZ ARE(NMODE,NMODE) 

DIMENSION OF VECTORS ABCV,ABCW,ABCX,ABCY,SUN AND DIFF IS(NMODE) 

DATA N, NB, NMODE, INDEX/S, 4,3,2/ 

E=2. OE06 

AI=I.O/12.0 

AL=25.0 

AA=I.O 

KHO=O. 00776 

CONE=E* AI / (AL * * 3 ) 

CONM=RHO* AA* AL/420 . 0 

DO I0 I=1,8 

DO I0 J=l,4 

K(I,J)=O.O 

SS(I, J)=O.O 

K(1,1)=24.0 

K(1,3)=-12.0 
K(1,4)=6.0*AL 
K (2,1) -8. O* AL* AL 
K(2,2)=-6. O*AL 
K(2,3)=2. O*AL*AL 
K(3,1)=24.0 
K(3,3)=-12.0 
K(3,4)=6. O*AL 
K (4,1)=8.0 * AL* AL 

K(4,2)=-6. O*AL 

K(4,3)=2. O*AL*AL 
K(5,1)=24.0 
K(5,3)=-12.0 
K(5,4)=6. O*AL 

K(6, I)=8. O*AL*AL 

K(6,2)=-6. O*AL 
K(6,3)=2. O*AL*AL 
K(7,1)=12.0 
K(7,2)=-6.0*AL 
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20 

30 

K ( 8,1 ) =4.0 * AL* AL 

GM(1, I)=312.0 

GM ( i, 3) =54.0 

GM(I,4) =-13. O*AL 

GM ( 2,1 ) =8.0 * AL* AL 

GM(2,2)=13. O*AL 

GM(2,3) =-3. O*AL*AL 

GM(3, I)=312.0 

GM (3,3) =54.0 

GM(3,4)=-13. O*AL 

GM (4,1) =8. O* AL* AL 

GM(4,2)=13. O'An 

GM(4,3) =-3. O'An*An 

GM(5, I)=312.0 

GM (5,3) =54.0 

GM(5,4) =-13. O'An 

GM ( 6,1 ) =8.0 * An* An 

GM(6,2)=I3.0*AL 

GM (6,3) =-3. O* AL* AL 

GM(7, I)=156.0 

GM(7,2)=-22. O*AL 

GM (8,1) =4. O* An* AL 

DO 20 I=l, 8 

DO 20 J=l,4 

K(I, J)=CONK*K(I, J) 

GM (I, J) =CONM* GM (I, J) 

DO 30 I=1,8 

DO 30 J=l,3 

X(I,J):O.O 

X(1,1)-0.1 
X(3,1)=0.3 
X(5,1)=0.6 
X(7,1)=l.O 

x(1,2)=-o.5 
X(3,2)=-1.0 

X(7.2)=1.0 
X(1,3)=1.0 
X(3,3)=0.0 
X(5,3)=1.0 
X(7,3)=1.0 
CALL SUSPIT(K,M,GM,X,OMEG,Y,GST,GMM,VECT,SUM,INDEX,N,NB,NMODE, 

2 ABCV,ABCW,ABCX,ABCY,ABCZ,DIFF,B,LP,LQ,R) 
PRINT 40 

40 FORMAT(SX,CEIGENVALUES AND EIGENVECTORS',/) 

PRINT 45 

45 FOKMAT(6X, CJ ' ,3X, COMEG(J) ' ,8X, CEIGENVECTOR(J) ' ,/) 

DO 50 J=I,NMODE 

50 PRINT 60,J,OMEG(J),(X(I,J),I=I,N) 

60 FORMAT(4X,I3,2X,EII.5,3X,4EII.4,/,23X,4EII.4) 
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STOP 
END 

EIGENVALUES AND EIGENVECTORS 

J 0MEG ( J ) E1GENVECT 0R ( J ) 

1 0.16295E+01 0.2209E+00 0.1653E-01 0.7709E+00 0.2641E-01 
0.1493E+01 0.3059E-01 0.2271E+01 0.3125E-01 

2 0.10224E+02 -0.9495E+00 -0.5203E-01 -0.1624E+01 0.1030E-01 
-0.3074E+00 0.8856E-01 0.2276E+01 0.1088E+00 

3 0.28863E+02 0.1726E+01 0.3402E-01 -0.6768E-02 -0.1278E+00 
-0.1294E+01 0.6300E-01 0.2223E+01 0.1725E+00 

7.4 SOLUTION OF PROPAGATION PROBLEMS 
When the finite element method is applied for the solution of initial value problems (relat- 
ing to an unsteady or transient state of phenomena), we obtain propagation problems 
involving a set of simultaneous linear differential equations. 

Propagation problems involve time as one of the independent variables and initial 
conditions on the dependent variables are given in addition to the boundary condi- 
tions. A general propagation problem can be expressed (after incorporating the boundary 
conditions) in standard form as 

dX_.dt - F ( . ' f  . t > 0}  

X - X0. t - 0 

(7.66) 

where the vectors of propagation variables, forcing functions, and initial conditions are 
given by 

x ~ ( t )  f ~ ( 2 .  t )  x~((O) 
. ~ ( t )  ~ f ~ ( 2 .  t) ~ x~ o) 

X = . . F - . . X o  - . 

x,'( t ) fn (.~. t) x,,( O ) 

(7.67) 

It can be seen that  Eq. (7.66) represents a system of n simultaneous ordinary differential 
equations with n initial conditions. 

In certain propagation problems, as in the case of damped nlechanical and electrical 
systems, the governing equations are usually stated as 

d2~f d . f  -. -. -. ~1 
[ A ] ~  +[B]-~_. + [ C ] X - F ( X . t ) .  t > 0 /  (7.68) 

-- dX 
X - .fo and - ~  - Vo. t - 0  

where [A]. [B]. and [C] denote known matrices of order t, x n. In the case of mechan- 
ical and structural systems, the matrices [A i. [B]. and [C] denote mass. damping, and 
stiffness matrices, respectivelv, and the vector F represents the known spatial and time 
history of the external loads. It can be seen that Eqs. (7.68) denote a system of n coupled 
second-order ordinary differential equatiox~s with necessary initial conditions. Equation 
(7.66) can be used to represent any t~th order differential equation (see Problem 7.21). 



SOLUTION OF PROPAGATION PROBLEMS 259 

7.4.1 Solution of a Set of First-Order Differential Equations 
Equat ion  (7.66) can be wr i t t en  in scalar form as 

dxl  

dt 

dx2 

dt 

= f l ( t ,  x l .  X2 . . . . .  a'n) 

= f 2 ( t .  x l . x 2  . . . . .  a'~) 
(7.69) 

dxn 
d t  = f , ~ ( t ,  x l . x 2  . . . . .  x,~) 

with the initial condit ions 

x l ( t -  O)- xl(O) 

�9 ~ ( t -  O) -  ~(0)  
(7.70) 

�9 ~(t - o) -.~(o) 

These  equat ions  can be solved by any of the numerical  integrat ion methods ,  such as 
R u n g e - K u t t a ,  A d a m s - B a s h f o r t h ,  A d a m s - 5 I o u l t o n .  and Hamming  methods  [7.18]. In the 
four th-order  R u n g e - K u t t a  method ,  s ta r t ing  from the known initial vector X0 at t - 0, 
we compute  the vector X after t ime At  as 

where 

-+ -. 1 [R1 _qt_ 2R2 -Jr- 2R3 -~- R4] x(t + ~e)  - x ( t ) +  

..+ ._+ ..+ 

I ~ l  - -  / ~ t f ( X ( t ) ,  t )  

-" -" KI At 
K~ = /',tF :?(t) + t+ 

-. -. A t  
K a  = A t F  X ( t )  + t +  

\ / 

(7.71) 

(7.72) 

7.4.2 Computer Implementation of Runge-Kutta Method 
A compute r  program,  in the form of the subrout ine  R U N G E .  is given for solving a sys tem 
of first-order differential equat ions  based on the four th-order  R u n g e - K u t t a  method.  The  
a rguments  of this subrout ine  are as follows: 

T - independent  variable (time). It is to be given a value of 0.0 at the beginning. 
D T  - desired t ime step for numerical  integrat ion.  
NEQ - number  of first-order differential equat ions  - n. 
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XX = array of dimension NEQ that  contains the current values of 

X l ,  X 2  . . . . .  X n .  

F -= array of dimension NEQ - n that  contains the values of 
f l ,  f2 . . . . .  f,~ computed at t ime T by a subrout ine F T N  (XX, F, 
NEQ. T) supplied by the user. 

YI, Y J, YK, YL, UU = dummy arrays of dimension NEQ. 

To il lustrate the use of the subrout ine RUNGE.  we consider the solution of the following 
system of equations" 

d x l  
- -  372 

dt 

dx2 

dt 

dx3 

dt 

dx4 

dt 

2"1 

(xl 2 + x32) :3 -~ 

X3 

(x l :  + x z 2 )  3 2 

(E,)  

with the initial conditions 

xl  (0) = 1, x2(O) - O. .r3(O) = O. and x4(O) = 1 (E2) 

Equat ions  (El)  represent the equations of motion of a body moving in a plane about  a 
spherical ear th  tha t  can be wri t ten in a rectangular  planar coordinate system ( x ,  Y) as 

,> _ _ G  r Z 
r3. ~) - - G r a  

where dots indicate differentiation with respect to t ime t , r  - ( x  2 + y2)1/2, and G is 
the gravitat ional  constant.  By taking G = 1 with the initial conditions of Eq. (E2), the 
t ra jec tory  of motion described by Eqs. (El)  will be a circle with period 27r. Now we solve 
Eqs. (El)  by taking a t ime step of At = 2rr/200 -- 0.031415962 for 400 t ime steps (i.e.. up 
to t -- 47r). The main program that  calls the subrout ine RUNGE and the output  of the 
program are given below. 

C- ............. 
c 
C NUMERICAL INTEGRATION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS 

C 
C _ . . . . . . . .  

DIMENSION TIME(400) ,X(400,4) ,XX(4) ,F(4) ,YI(4) ,YJ(4) ,YK(4) ,YL(4), 

2 W(4)  
DIMENSIONS ARE: TIME(NSTEP) ,X (NSTEP,NEQ) ,XX (NEQ) ,F(NEQ) ,YI (NEQ), 
Y J (NEQ), YK (NEQ), YL (NEQ), UU (NEQ) 
INITIAL CONDITIONS 

XX(1)=I.0 
XX(2)=O.O 
XX(3)=O.O 
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xx(4)=l.O 
NEQ=4 

NSTEP=400 

DT=6. 2831853/200.0 
T=O. 0 
PRINT i0 

I0 FORMAT(2X, 'PRINTOUT OF SOLUTION' ,//,2X, 'STEP' ,3X, 'TIME' ,5X, 
2 'X(I,I)',6X,'X(I,2)',6X,'X(I,3)',6X,'X(I,4)',4X, 
3 'VALUE OF R',/) 
I=O 

R=(XX (I) ** 2+XX (3) **2) ,SQRT (XX (i) **2+XX (3) **2) 
PRINT 30,I,T, (XX(J) ,J=I,NEQ) ,R 
DO 40 I=I,NSTEP 
CALL RUNGE (T,DT, NEQ, XX, F, YI , YJ, YK, YL, UU) 

TIME(1)=T 
DO 20 J=I,NEQ 

20 X(I,J) - XX(J) 

R=SQRT(XX(1) **2+XX(3) **2) 
PRINT 30,I,TIME(I), (X(I,J),J=I,NEQ) ,R 

30 FORMAT(2X, 14,F8.4,4E12.4,E12.4) 
40 CONTINUE 

STOP 
END 

PRINTOUT OF SOLUTION 

TIME X(I,I) X(I,2) X(I,3) X(I,4) VALUE OF R 

0.0000 O.IO00E+OI O.O000E+O0 
0.0314 0.9995E+00 -0.3141E-01 
0.0628 0.9980E+00 -0.6279E-01 

0.0942 0.9956E+00 -0.9411E-01 
0.1257 0.9921E+00 -0.1253E+00 
0.1571 0.9877E+00 -0.1564E+00 

STEP 

0 
1 
2 
3 
4 
5 

O.O000E+O0 0.1000E+OI O.IO00E+01 
0.3141E-01 0.9995E+00 0.I000E+01 

0.6279E-01 0.9980E+00 O.IO00E+01 
0.9411E-01 0.9956E+00 0.1000E+01 
0.1253E+00 0.9921E+00 O.IO00E+OI 
0.1564E+00 0.9877E+00 O.IO00E+OI 

396 12.4407 0.9921E+00 0.1253E+00 -0.1253E+00 0.9921E+00 0.1000E+01 
397 12.4721 0.9956E+00 0.9410E-01-0.9410E-01 0.9956E+00 0.1000E+01 

398 12.5035 0.9980E+00 0.6279E-01 -0.6279E-01 0.9980E+00 0.1000E+01 
399 12.5350 0.9995E+00 0.3141E-01 -0.3141E-01 0.9995E+00 0.1000E+01 

400 12. 5664 0.1000E+01 -0.3792E-05 0.4880E-05 O. 1000E+01 0.1000E+01 

7.4.3 Numerical Solution of Eq. (7.68) 
Several methods are available for the solution of Eq. (7.68). All the methods can be divided 
into two classes: direct integration methods and the mode superposit ion method. 

7.4.4 Direct Integration Methods 
In these methods,  Eq. (7.68), or the special case, Eq. (7.66), is integrated numerically 
by using a step-by-step procedure [7.19]. The term direct denotes that  no t ransformation 
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of the equations into a different form is used prior to numerical integration�9 The direct 
integration methods are based on the following ideas: 

(a) Instead of trying to find a solution X(t)  that satisfies Eq. (7.68) for any time t, 
we can try to satisfy Eq. (7.68) only at discrete time intervals ,_St apart.  

(b) Within any time interval, the nature of variation of X (displacement), 
�9 . .  

X (velocity). and X (acceleration) can be assumed in a suitable manner.  
�9 . .  

Here, the time interval At and the nature of variation of X. X. and X within any At are 
chosen by considering factors such as accuracy, stability, and cost of solution. 

The finite difference. Houbolt.  Wilson. and Newmark methods fall under the category 
of direct methods [7.20-7.22]. The finite difference method (a direct integration method) 
is outlined next. 

Finite Difference Method 
By using central difference formulas [7.23]. the velocity and acceleration at any time t can 
be expressed as 

1 
2,  = g iT(  2,  ,,, + :,7,~ ,,) 

" "  1 - "  - "  - - "  

x ,  = (z t )~  [x,  , , -  2x ,  + x , + , , ]  

(7.73) 

(7.74) 

If Eq. (7.68) is satisfied at time t. we have 

[A]X, + [S]X, + [ C ] X ,  - s (7.75) 

By subst i tut ing Eqs. (7.73) and (7.74) in Eq. (7.75). we obtain 

( 1 1 )  - ( 2 ) -  
( a t )~  [A] + g i T [ B ]  ~ , . . , ,  - F, - [C] - (._Xt)' [4] X ,  

1 1 ) -. 
- ( 2 t ) ~  [.4] - 2 -27[B]  x , _ ~  (7.76) 

Equation (7.76) can now be solved for 3~t-_xt. Thus. the solution Xt+...xt is based on the 
equilibrium conditions at time t. 

Since the solution of X t - z t  involves Xt and X t - z t .  we need to know X - z t  for finding 

JI~xt. For this we first use the initial conditions X0 and X0 to find X0 using Eq. (7.75) for 
t -  0. Then we compute X-,xt  using Eqs. (7.73)-I7.75) as 

5c_,,, =.e.o- at.{'o + ( ~~~~.C (7.77) 

A disadvantage of the finite difference method is that it is conditionally s t ab le - - tha t  is. 
the time step At has to be smaller than a critical time step (At) . . . .  If the time step At is 
larger than (At)c,..i, the integration is unstable in the sense that  any errors resulting from 
the numerical integration or round-off in the computat ions grow and makes the calculation 
of X meaningless in most cases. 
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Acceleration 

X 

Xt+.xt 
. . . .  

. _ _ ~  

f l=  -~ (Stepped) 

.. ... ~ Time(t)  
t t+kt 

/3 = 1 (Linear) 

fl = 1 (Constant) 

/3 oonly  if ~t  = ~" 
- -  Xt+• constant in between t and t+At .. 

Figure 7.3. Values of 3 for Dif ferent Types of Variat ion of X. 

7.4.5 Newmark Method 
The basic equat ions  of the Newmark  m e t h o d  (or Newmark ' s  3 method)  are given by [7.20] 

�9 2_, . . . .  

X t + A t  -- X t  -+- (1 - "y)AtXt + z_~t)Xt-,-.xt (7.78) 

-. -. 1 _ 3)(At)2  ~, + .3(:.Xt)2.~t+_xt (7.79) 

where "7 and /3  are pa ramete r s  t ha t  can be de te rmined  depending  oil the desired accuracy' 
and stability. Newmark  suggested a value of 2, - 1/2 for avoiding artificial damping.  The  

� 9 1 4 9  

value of/3 depends  on the way in which the acceleration.  X,  is assumed to vary dur ing 
the t ime interval t and t + At. The  values of 3 to be taken for different types  of variat ion 

. .  

of X are shown in Figure  7.3. 

In addi t ion to Eqs. (7.78) and (7.79), Eqs. (7.68) are also assumed to be satisfied at t ime 
t + At  so t ha t  

. � 9  . - - ,  - ,  

[A]Xt+At + [B]Xt+z t  + [C]X,+=t  -[F]t+:_x t (r.80) 

�9 - _ . ,  

To find the  solut ion at the t + At,  we solve Eq. (7.79) to obta in  X t . x t  in te rms  of Xt+,_xt, 
. ~  . _ _ ,  

subs t i tu te  this X t + A t  into Eq. (7.78) to obta in  Xt+at in te rms of Xt+,,,t, and then  use 
�9 . .  

Eq. (7.80) to find .r~t+At. Once f,t+r,t is known. Xt+.xt and Xt+zt can be calculated from 
Eqs. (7.78) and (7.79). 

7.4.6 Mode Superposition Method 
It can be seen tha t  the computa t iona l  work involved in the direct in tegrat ion me thods  
is propor t iona l  to the  number  of t ime steps used in tile analvsis. Hence. in general,  the 
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use of direct integration methods is expected to be effective when the response over only 
a relatively short duration (involving few time steps) is required. On the other hand, 
if the integration has to be carried for many time steps, it may be more effective to 
transform Eqs. (7.68) into a form in which the step-by-step solution is less costly. The 
mode superposition or normal mode method is a technique wherein Eq. (7.68) is first 
t ransformed into a convenient form before integration is carried. Thus. the vector X is 
t ransformed as 

X ( t ) -  [T] }'(t) (7.81) 
T~ x 1 ~ x r r x 1 

where [T] is a rectangular matr ix of order n x r. and 17(t) is a t ime-dependent  vector of 
order r(r <_ n). The transformation matrix [r] is still unknown and will have to be deter- 
mined. Although the components  of .'( have physical meaning (like displacements), the 
components of Y need not have any physical meaning and hence are called generalized 
displacements. By subst i tut ing Eq. (7.81) into Eq. (7.68). and premultiplying throughout  
by [T] r ,  we obtain 

. .  o 

[.4]Y + [B]:~" + [ q ] f  - r (7.82) 

where [A] = [T] T[A][T]. (7.83) 

[B] = [r]~[B][r].  (7.84) 

[C] = [~r]~-[c][T] �9 (7.85) 

and /~ = IT]T/~ (7.86) 

The basic idea behind using the transformation of Eq. (7.81) is to obtain the new system 
of equations (7.82) in which the matrices [A]. [B]. and [C] will be of much smaller order 
than the original matrices [A]. [B]. and [C]. Furthermore.  the matrix IT] can be chosen 
so as to obtain the matrices [A]. [B]. and [C] in diagonal form. in which case Eq. (7.82) 
represents a system of r uncoupled second-order differential equations. The solution of 
these independent equations can be found bv s tandard techniques, and the solution of the 
original problem can be found with the help of Eq. (7.81). 

In the case of s tructural  mechanics problems, the matr ix [T] denotes the modal matrix 
and Eqs. (7.82) can be expressed in scalar form as (see Section 12.6) 

G(t) + 2; ,~ . ,?; ( t )+  ,~.YK (t) - x , ( t ) .  i = 1.2 . . . . .  r (7.87) 

where the matrices [A], [B]. and [C] have been expressed in diagonal form as 
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F i g u r e  7.4. Arb i t ra ry  Forcing Funct ion Ni(t). 

_+ 

and the vector F as 

{NI,,,} 
f -  

.~/(t) 
(7.89) 

Here, co~ is the rotational frequency (square root of the eigenvalue) corresponding to the 
ith natural mode (eigenvector). and s is the modal damping ratio in the ith natural 
mode. 

7 . 4 . 7  S o l u t i o n  o f  a G e n e r a l  S e c o n d - O r d e r  D i f f e r e n t i a l  E q u a t i o n  

We consider the solution of Eq. (7.87) in this section. In many practical problems the 
forcing functions f l( t) ,  f2 ( t ) , . . . ,  fn(t) (components of F) are not analytical expressions 
but are represented by a series of points on a diagram or a list of numbers in a table. 
Furthermore, the forcing functions N1 (t), N2(t) . . . . .  N~(t) of Eq. (7.87) are given by pre- 
multiplying F by [T] r as indicated in Eq. (7.86). Hence, in many cases, the solution of 
Eq. (7.87) can only be obtained numerically by using a repetitive series of calculations. 
Let the function N~(t) vary with time in some general manner, such as that represented 
by the curve in Figure 7.4. 

This forcing function may be approximated by a series of rectangular impulses of vari- 
ous magnitudes and durations as indicated in Figure 7.4. For good accuracy the magnitude 
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N(~ j) of a typical impulse should be chosen as the ordinate of the curve at the middle of the 
time interval Atj as shown in Figure 7.4. In any- time interval ta_l _< t _< t j, the solution 
of Eq. (7.87) can be computed as the sum of the effects of the initial conditions at time 
t j-z and the effect of the impulse within the interval Atj as follows [7.24]" 

Y/(t) - e - r  IY, (J-l) COS~d,(t- tj-1) 

~'~(j-1) _]_ r E(./-- 1) ] 
+ sin ~ ' d z  ( t  - -  t j  - 1 ) 

k"d z 

+ o,2 1 - e  -<'~''(t-ta-1) COS~,,d,(t--tj_l ) 

+-~'~" sin~'d,(t - -  t j - 1  ) 
~'d~ 

where (-Udi - -  w'i(1 - r 

(7.90) 

(7.91) 

At the end Of the interval. Eq. (7.90) becomes 

Y~(J) = Y i ( t -  t j )  - e - ( ' ~ ' a t 3  [y~(3-1)COSaad, Atj 
-al- s  1) AI__ CzCatJ, E (3-1')  

~'dz 
sin *'d, At j] 

+ w~ 1 - e - r  ' ' '  a t a  c o s  o2d i /~ t j  -Jr- COdi s i n  Wd, ,/~t 3 (7.92) 

By differentiating Eq. (7.90) with respect to time. we obtain 

~(J) -- ~ ( t  -- ta) -- C~d,e -r [_y(o-1)sinc~,di/ktj _+_ 

• COSCOdiAtj- ~,ooZ.odd, @ ( j - l )  COSWd,a_~tj + 

*'dz 

sinc0diAt 3 
~'dz 

N~J) wd~ -r (,--772--~2w2') + cc ~ e 1 + sin ,.'a; Atj (7.93) 
~ d  

Thus, Eqs. (7.92) and (7.93) represent recurrence formulas for calculating the solution 
at the end of the j th  time step. They also provide the initial conditions of Yj and 
at the beginning of step j + 1. These formulas may be applied repetitively to obtain the 
time history of response for each of the normal modes i. Then the results for each time 
station can be transformed back. using Eq. (7.81), to obtain the solution of the original 
problem. 
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7.4.8 Computer Implementation of Mode Superposition Method 
A sub rou t ine  called M O D A L  is given to i m p l e m e n t  the  m o d e  supe rpos i t i on  or no rma l  

m o d e  m e t h o d .  This  sub rou t ine  calls a m a t r i x  mul t ip l i ca t ion  sub rou t ine  called M A T M U L .  

The  a r g u m e n t s  of the  sub rou t ine  M O D A L  are as follows: 

N M O D E  - n u m b e r  of modes  to be cons idered  in the  analys is  - r of Eq. (7.81) = input .  

N = n u m b e r  of degrees of freedom - order  of the  square  mat r ices  [A]. [B]. and  

[ C ] -  input .  

G M  = a r r ay  of N x N in which the  (mass)  m a t r i x  [A] is s tored  = input .  

O M E G  - a r r a y  of size N M O D E  in which the  n a t u r a l  frequencies (square  root  of 

eigenvalues)  are s tored  - input .  

T = a r ray  of size N x N M O D E  in which the  e igenvectors  (modes)  are s tored  

c o l u m n w i s e -  m a t r i x  [T] = input .  

Z E T A  - a r ray  of size N M O D E  in which the  m o d a l  d a m p i n g  ra t ios  of var ious modes  

are s tored  - input .  

N S T E P  - n u m b e r  of in tegra t ion  p o i n t s -  input .  

XO = a r ray  of size N in which the  ini t ial  condi t ions  z~(O),z2(O),...,:cn(O) are 

s to red  = input .  

X D O  - ar ray  of size N in which the  init ial  condi t ions  

dz,, am1 dz2 (0) - I72(0) ~ ( 0 )  - Y,.,(O) 
dt  ( 0 ) - } q ( 0 ) ,  ~ ' '  dt  

are s t o r e d -  input .  

XX = a r ray  of size N M O D E  x N S T E P .  

T T  = a r r ay  of size N M O D E  x N - t r a n s p o s e  of the  m a t r i x  IT]. 
F = a r ray  of size N S T E P  in which the  m a g n i t u d e s  of the  force appl ied  at 

coo rd ina t e  M at  t imes  t l ,  t2 . . . .  ,tNSTEP are s tored  - input .  

YO,  Y D O  - a r rays  of size N M O D E .  

U, V - a r rays  of size N M O D E  x N S T E P  in which the  values of Y/(J) and ~(J)  are 

s tored.  

X = a r r ay  of size N x N S T E P  in which the  solu t ion  of the  original  p rob lem,  z} J), 

is s tored.  

T I M E  - a r r ay  of size N S T E P  in which the  t imes  t l .  t 2 , . . . ,  tNSTEP are s tored  = input .  

D T  = a r ray  of size N S T E P  in which the  t ime  intervals  At1.  At2 . . . . .  At~STEP are 

stored�9 

M = coord ina t e  n u m b e r  at  which the  force is appl ied  = input .  

T G M  - a r ray  of size N M O D E  x N used to s tore  the  p r o d u c t  [T]r[A].  

T G M T  = a r ray  of size N M O D E  x N M O D E  used to s tore  the  m a t r i x  [ A ] -  [T]r[A][T]. 

To d e m o n s t r a t e  the  use of the  sub rou t ine  M O D A L .  the  so lu t ion  of the  following p rob l em 

is considered:  

. .  o - - ,  _ . ,  

[A]X + [B]X + [C]X - F 

with  ) ( (0)  - Xo and X(O) - Yo (E l )  

Known data: 

n -- 3, r -- 3; ~i -- 0.05 for i -- 1.2, 3: 
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[A] = 1 �9 [ B ] -  [0]" 

0 

[iooo ,ooo 1ooo  
[T] = .802 0.445 - 1 . 2 4 7 |  �9 

.247 - 0 . 8 0 2  0.555J 

a21 - -  0 . 4 4 5 0 4 2 .  

Xo = 0; Yo - 0: {'1} {0} 
F -  f2 = 0 

fa f 

Value  of  t ime  t 1 

M a g n i t u d e  of f 1 

w2 = 1.246978. 

2 3 4 5 

1 1 1 1 

[21 y] 
[C] = - 1  2 - �9 

0 - 1  

-:3 = 1.801941: 

6 7 8 9 10 

1 1 1 1 1 

Thus ,  in th is  case, N M O D E  = 3. N = 3. N S T E P  = 10. ?~i = 3. T I M E ( I )  = I for 

I = 1-10,  a n d  F ( I )  = 1 for I = 1-10.  T h e  m a i n  p r o g r a m  for this  p r o b l e m  and  the  resu l t s  

g iven by the  p r o g r a m  are  given below. 

C- ........ 

c 

C RESPONSE OF MULTI-DEGREE-0F-FREEDOM SYSTEM BY MODAL ANALYSIS 

C 

C ........ 

I0 

20 

DIMENSION GM(3,3), OMEG(3),T(3,3),ZETA(3),TT(3,3),TGMT(3,3), 

2 XO (3) ,XDO (3) ,YO (3) ,YDO (3) ,WN(3, I0) ,F(IO) ,U(3, I0) ,TGM(3,3), 

3 V(3,10),X(3,10),TIME(IO),DT(IO) 

DATA NMODE, N, NSTEP,M/3,3, I0,3/ 

DATA GM/I.O,O.O,O.O,O.O, 1.0,0.0,0.0,0.0, I. O/ 

DATA OMEG/O. 445042,1.246978,1.801941/ 

DATA ZETA/0.05,0.O5,O.05/ 

DATA (T (I, i), I= I, 3)/0.445042, O. 8019375, i. O/ 

DATA(T(I,2),I=I,3)/-I.246984, -0.5549535,1.0/ 

DATA(T(I,3) , I=I,3)/1.801909,-2.246983,1.0/ 

DATA XO/O.O,O.O,O.O/ 

DATA XDO/O.O,O.O,O.O/ 

DATA TIME/I.O,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.O/ 
DATA F/I.O,I.O,I.O,I.O,I.O, 1.0,i.0,I.0,1.0,I.0/ 

DO I0 I=I,NMODE 

DO i0 J=I,NMODE 

TT(I,J) = T(J,I) 

CALL-MODAL (GM, OMEG, T, ZETA, XO, XDO, YO, YDO, WN, F, U, V, X, 

TIME, DT, TT, M, 

2 NSTEP, N, NMODE, TGMT, TGM) 

PRINT 20, M 

FORMAT(/,69H RESPONSE OF THE SYSTEM TO A TIME VARYING FORCE APPL 

2IED AT COORDINATE,I2,/) 
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30 
40 

DO 30 I=I ,N 
PRINT 4 0 , 1 ,  (X( I ,J )  ,J=I,NSTEP) 
FORMAT(/, l lH COORDINATE,I5,/, 1 X , 5 E 1 4 . 8 , / ,  1X,5E14.8) 
STOP 
END 

RESPONSE OF THE SYSTEM TO A TIME VARYING FORCE APPLIED AT COORDINATE 3 

COORDINATE 1 
O. 30586943E-020. 75574949E-010. 44995812E+O00.11954379E+010. 18568037E+01 
0.20145943E+010. 18787326E+010. 18112489E+010. 17405561E+010. 14387581E+01 

COORDINATE 2 
O. 42850435E-010. 45130622E+000.13615156E+010. 23700531E+O 10. 31636245E+01 
O. 36927490E+010. 38592181E+O 10. 36473811E+O 10. 32258503E+010. 26351447E+01 

COORDINATE 3 
O. 44888544E+000.14222714E+O 10. 24165692E+010. 33399298E+010. 42453833E+01 
O. 50193300E+010. 54301090E+O 10. 52711205E+010. 45440755E+010. 35589526E+01 

7.5 PARALLEL PROCESSING IN FINITE ELEMENT ANALYSIS 
Parallel processing is defined as the exploitation of parallel or co~murrent events in the 
computing process [7.25]. Parallel processing techniques are being investigated because 
of the high degree of sophistication of the computational models required for future 
aerospace, transportation, nuclear, and microelectronic systems. ~lost of tile present-day 
supercomputers, such as CRAY X-i~IP. CRAY-2. CYBEIt-205. and ETA-10. achieve high 
performance through vectorization/parallelism. Efforts }rove been devoted to the develop- 
ment of vectorized numerical algorithms for performing tile matrix operations, solution of 
algebraic equations, and extraction of eigenvalues [7.26. 7.27]. However. tlle progress }ms 
been slow, and no effective computational strategy exists that performs tile entire finite 
element solution in the parallel processing mode. 

The various phases of the finite element analysis can be idei~tified as (a) input of 
problem characteristics, element and nodal data. and geometry of the system: (b) data 
preprocessing; (c) evaluation of element characteristics: (d)assembly of elemental contri- 
butions" (e) incorporation of boundary conditions: (f) solution of system equations: and 
(g) postprocessing of the solution and evaluation of secondary fields. 

The input and preprocessing phases can be parallelized. Since tile element characteris- 
tics require only information pertaining to the elements in question, they can be evaluated 
in parallel. The assembly cannot utilize the parallel operation efficiently since tile element 
and global variables are related through a Boolean transformation. Tile incorporation of 
boundary conditions, although usually not tinle-consuming, can be done in parallel. 

The solution of system equations is the most critical phase. For static linear problems. 
the numerical algorithm should be selected to take advantage of tile svi~mLetric banded 
structure of the equations and the type of hardware used. A variety of efficient direct 
iterative and noniterative solution techniques have been developed for different computers 
by exploiting the parallelism, pipeline (or vector), and chaining capabilities [7.28]. For 
nonlinear steady-state problems, the data structure is essentially the same as for linear 
problems. The major difference lies in the algorithms for evaluati~lg the nonlinear terms 
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and solving the nonlinear algebraic equations. For transient problems, several parallel 
integration techniques have been proposed [7.29]. 

The parallel processing techniques are still evolving and are expected to be the domi- 
nant methodologies in the computing industry in the near future. Hence. it can be hoped 
that  the full potentialities of parallel processing in finite element analysis will be realized 
in the next decade. 
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PRORI.EMS 

7.1 Fi~_d the  inverse  of t l ,e fol lowing m a t r i x  us ing  the  d e c o m p o s i t i o n  [A] - -  [ u ] T [ u ]  �9 

[i'  11 [.a] - - 6 --~ 
- 4  3 

7.2 F i n d  the  inverse  of the  m a t r i x  [A] given in P r o b l e m  7.1 us ing  the  d e c o m p o s i t i o n  

[ A ] -  [L] [L]  T .  where  ILl is a lower t r i a n g u l a r  m a t r i x .  

H i n t :  If a s y m m e t r i c  m a t r i x  [A] of o rde r  ,~ is d e c o m p o s e d  as [A] - [L][L] r ,  the  

e l e m e n t s  of [L] are  given by 

1,i - -  a , , - -  1~. 

k = l  

1 "2) 

I m i -  ~ a .... - 1,~,.1,.k . 

]~,~ 

1 , j - O .  i < j  

i -  1 .2  . . . . .  t~ 

m - i + l  . . . . .  l~ and  i -  1 .2  . . . . .  n 

T h e  e l e m e n t s  of  [L! -1  - [A,,] c a n  be  o b t a i n e d  f r o m  t h e  r e l a t i o n  [L][L] -1  = 

[l, i j ] [ ~ i j ]  - [I] as 

1 
A, = IT," i -  1 .2  . . . . .  1~ 

k k = . /  

A;j - O. i < j 

i > ~  

7.3 E x p r e s s  the  fol lowing func t ions  in m a t r i x  form as f - ( 1 / 2 ) . Y T [ A ] . Y  and  iden t i fy  

the  m a t r i x  [A]" 

(i) f - 6x 2 + 49:r5 + .)l.r5 - S2.r._,.,':~ + 20.rl .ra - 4.rl.r2 

(ii) f - 6x~ + 3x.~ + 3.r 2 - -D'l.r2 - 2.r2.r:~ + 4xl.r:3 

7.4 F i n d  the  e igenva lues  and  e igenvec to r s  of the  fol lowing p r o b l e m  by so lv ing  the  

c h a r a c t e r i s t i c  p o l y n o n l i a l  e q u a t i o n  

[21 il{ l} Fi0 - 1  2 - .r2 - A 1 x2 

0 - 1  .r3 0 x3 
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7.5 Find the eigenvalues and eigenvectors of the following matrix by solving the 
characteristic equation: 

[A] = Ei2  102 
7.6 Find the eigenvalues and eigenvectors of the following matrix using the Jacobi 

method: 

[A] = i 2 ]21 
7.7 Find the eigenvalues and eigenvectors of the matrix [A] given in Problem 7.6 using 

the power method. 

7.8 Solve the following system of equations using the finite difference method: 

�9 - _ ,  

[A]X + [C]X = 

where [A] :  [20 01J , [C]= [6  2 42] ,  and / ~ - { O 0 }  

w i t h t h e i n i t i a l c o n d i t i o n s X ( t = 0 ) = ~ ( t - 0 ) = {  0} 
0 " 

Take the time step At as 0.28 and find the solution at t = 4.2. 

7.9 Use the subroutine GAUSS of Section 7.2.1 to find the solution of the following 
equations: 

I4! 24492 12 11 4 15 10 1051/Xl/ x2 x4 x3 Ill 1 1 1 

7.10 Use the subroutine GAUSS of Section 7.2.1 to find the solution of the following 
equations: 

i5 4 1 0il/xl/ /0/ - 4  6 -4  x2 _ 1 
1 - 4  6 - x 3  1 

0 1 - 4  x4 0 
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7.11 Use  t h e  s u b r o u t i n e s  D E C O ~ I P  a n d  S O L V E  of S e c t i o n  7 .2 .2(v)  to  find t he  inverse  

of t h e  fo l lowing m a t r i x  w i t h  n - 20" 

n + 2  1 0 0 . . .  0 0 1 - 
2n + 2 2 2n + 2 

_ Z 1 1 0 . . .  0 0 0 
2 '2 

0 1 1 1 . . .  0 0 0 
2 2 

1 1 0 0 0 0 . . .  1 2 2 

1 0 0 0 . . .  0 1 n + 2  
2n + 2 2 2n + 2_ 

H i n t :  T h e  first,  s e c o n d  . . . . .  n t h  c o l u m n s  of  [.4] -1 a re  n o t h i n g  b u t  t h e  solu-  

t i ons  3~1.3~2 . . . . .  2,~ c o r r e s p o n d i n g  to  t he  r i g h t - h a n d - s i d e  v e c t o r s  bl, b~ . . . . .  b , ,  

r e spec t ive ly .  

1 0 0 

0 1 0 

- '  0 ~ 0 ~,, 0 w h e r e  bl - . - . . . . .  - 
�9 . . 

7.12 Use  t h e  s u b r o u t i n e  G A U S S  of Sec t i on  7.2.1 to  f ind t he  inverse  of t h e  fo l lowing 

m a t r i x  w i t h  n -  10: 

[ . 4 ]  - 

n n - 1  n - 2  

n -  1 n -  1 n -  2 

n - 2 n - 2 n - 2 

2 2 2 

1 1 1 

2 1- 

2 1 

2 1 

2 1 

1 1 

7.13 Us ing  t he  s u b r o u t i n e s  S U S P I T  a n d  E I G E N  of S ec t i on  7.3.5(i i) ,  f ind t h e  first  two  

e igenva lues  a n d  t h e  c o r r e s p o n d i n g  e i g e n v e c t o r s  of t h e  fo l lowing p r o b l e m :  

 0!1 01 - 1 3  X - 2 4  0 . ~ . _ _  ~ 13 312 0 -. 

0 8 420 - 3  0 8 - 

6 2 - 1 3  - 3  

A s s u m e  t h e  t r ia l  e i g e n v e c t o r s  as 

/0/ Ill -* 1 a n d  ~f2 - 0 
X l -  0 0 

0 1 
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7.14 F i n d  the  e igenvalues  and  e igenvec tors  of the  m a t r i x  [A] given in P r o b l e m  7.12 

(wi th  n - 10) using the  s u b r o u t i n e  J A C O B I  of Sect ion  7.3.3(ii).  

7.15 Solve the  following s y s t e m  of equa t i ons  using the  Cho lesky  d e c o m p o s i t i o n  m e t h o d  

us ing  (i) [L][L] r d e c o m p o s i t i o n  and  ( i i ) [ U ] r [ U ]  decompos i t i on :  

5371 -+- 3x2 + 3?3 - 14 

3Xl q-6x2 + 2x3 = 21 

Xl ~[- 2X'2 + 3X3 -- 14 

7.16 Expres s  the  following set of equa t i ons  as a s y s t e m  of f i r s t -order  e q u a t i o n s  �9 

d2x 9. t 
dt  2 = x - !1 + e 

d2Y 2 t 
dt  2 = x - y - e 

dx  dg 
t - 0; x(0)  = - ~ ( 0 )  - 0. y(0) - 1. ~-7(0) - - 2  

O b t a i n  the  so lu t ion  of these  e q u a t i o n s  using tile s u b r o u t i n e  R U N G E  of 

Sec t ion  7.4.2. 

7.17 Solve the  following e q u a t i o n s  using the  Gaus s  e l imina t ion  m e t h o d :  

2x~ + 3x2 +/173 -~- 9 

Xl + 2x2 + 3x3 = 6 

3Xl + x 2  + 2 x 3  = 8 

7.18 T h e  finite e l e m e n t  ana lys i s  of  ce r t a in  sy s t ems  leads to a t r i d i agona l  s y s t e m  of 

equa t ions ,  [ A ] : E -  b, where  

-all 
Ct21 

0 

[A] - ' 

0 

0 

a12 0 0 . . .  0 0 0 

a22 a23 0 . . .  0 0 0 

a32 a33 034 �9 . . 0 0 0 

0 0 0 �9 �9 a n - l . n - 2  

0 0 0 . . .  0 

O n - - l , n - - 1  

Cln,n--1 

a - - 1 , n l  

Xl  b l  

x2 b2 
. - . . ,  . 

S - -  ; b -  

X n  bn 

I nd i ca t e  a m e t h o d  of solving these  equa t ions .  
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7.19 Solve the following sys tem of equat ions  using a sui table procedure  �9 

[ A ] i -  b 

wi th  

[ A ]  - 

o 
5 - 5  0 0 0 

10 - 5  0 0 

- 5  10 - 5  0 

o ~ o lO 

0 0 - 5  

2Cl 

372 

X - -  

3 :5  

and b = 

b l  

b2 

b.~ 

7.20 The  elements  of the  Hillbert  matr ix .  [ . 4 ] -  [aij]. are given by 

1 
~ "  i . j -  1.2 . . . . .  n 

azj = i + j - 1 

Find the inverse of the matr ix .  [A] -1 - [b,j]. with n - 10 using the subrout ine  

GAUSS,  and compare  the result with the exact solution given by 

( - 1 ) ~ + J ( n + i - 1 ) ! ( n + j - 1 ) !  

b~j = (i + j -  1 ) { ( i -  1 ) ! ( j -  1)!} 2 (n - i ) ! ( n -  j)!  
�9 i . j -  1 ,2  . . . . .  n 

7.21 Express  the n th-order  differential equat ion 

d'~x ( dx  d2x d ' ~ - ~ x )  
dt ~ = f t . x .  d t .  dt 2 . . . .  dt---Zuy_ ~ 

as a set of n first-order differential equations�9 
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BASIC EQUATIONS AND 
SOLUTION PROCEDURE 

8.1 INTRODUCTION 
As stated in Chapter 1, the finite element method has been nlost extensively used ill the 
field of solid and structural mechanics. The various types of problems solved by the finite 
element method in this field include the elastic, elastoplastic, and viscoelastic analysis of 
trusses, frames, plates, shells, and solid bodies. Both static and dynamic analysis have 
been conducted using the finite element Inethod. We consider the finite element elastic 
analysis of one-, two-, and three-dimensional problems as well as axisymmetric problems 
in this book. 

In this chapter, the general equations of solid and structural mechanics are presented. 
The displacement method (or equivalently the principle of nfinimum potential energy) is 
used in deriving the finite element equations. The application of these equations to several 
specific cases is considered in subsequent chapters. 

8.2 BASIC EQUATIONS OF SOLID MECHANICS 
8.2.1 Introduction 
The primary aim of any stress analysis or solid mechanics problem is to find the distribu- 
tion of displacements and stresses under the stated loading and boundary conditions. If 
an analytical solution of the problem is to be found, one has to satisfy the following basic 
equations of solid mechanics: 

Type of equations 

Number of equations 

In 3-dimensional In 2-dimensional In 1-dimensional 
problems problems problems 

Equilibrium equations 3 2 1 
Stress-strain relations 6 3 1 
Strain-displacement 6 3 1 

relations 

Total number of equations 15 8 3 

279 
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The unknown quantities, whose number is equal to the number of equations available, in 
various problems are given below: 

In 3-dimensional In 2-dimensional In 1-dimensional 
Unknowns problems problems problems 

Displacements u. v.  w u ,  t, u 

Stresses o , : z ,  o y ~ .  o z z .  oo:z,  o~, v, crxy a x .  

O'xg. O'yz. O'zx 
Strains c x x .  "~yy. ~zz. ~xg Cxx. Cyy. 5xy Cxx 

Syz. 5zx 

Total number of unknowns 15 8 3 

Thus, we have as many equations as there are unknowns to find the solution of any stress 
analysis problem. In practice, we will also have to satisfy some additional equations, such 
as external equilibrium equations (which pertain to the overall equilibrium of the body 
under external loads), compatibility equations (which pertain to the continuity of strains 
and displacements), and boundary conditions (which pertain to the prescribed conditions 
on displacements and/or forces at the boundary of the body). 

Although any analytical (exact) solution has to satisfv all the equations stated pre- 
viously, the numerical (approximate) solutions, like tile ones obtained by using the finite 
element method, generally do not satisfy all the equations. However. a sound understand- 
ing of all the basic equations of solid mechanics is essential in deriving the finite element 
relations and also in estimating the order of error involved in the finite element solution 
by knowing the extent to which the approximate solution violates the basic equations, 
including the compatibility and boundary conditions. Hence. the basic equations of solid 
mechanics are summarized in the following section for ready reference in the formulation 
of finite element equations. 

8.2.2 Equations 
(i) External equilibrium equations 
If a body is in equilibrium under specified static loads, the reactive forces and moments 
developed at the support points must balance the externally applied forces and moments. 
In other words, the force and moment equilibrium equations for the overall body (overall 
or external equilibrium equations) have to be satisfied. If ox. Or. and Oz are the body 
forces, q)~, (I)y. and (I)~ are the surface (distributed) forces. P~., P v .  and Pz are the external 
concentrated loads (including reactions at support points such as B. C. and D in Figure 
8.1), and Q,,  Qy, and Q: are the external concentrated moments (including reactions at 
support points such as B. C. and D in Figure 8.1). the external equilibrium equations can 
be stated as follows [8.1]: 

, 

S "t 1 

S I" 
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.% 

u5 x 

s 
s 

Y 

X 

Z 

I . . . _ J  b 

D 

Figure 8.1. Force System for Macroequillbriurn for a Body. 

For moment  equil ibrium' 

S "t" 

S I 

+ Z o :  -,, 

(s.'2) 

where o c is the surface and V is the volume of the solid body. 

(ii) Equations of internal equilibrium" 
Due to the appl icat ion of loads, stresses will be developed illside the body. if we consider 

an element of mater ia l  inside the body. it must be in equilibriulll due to the interllai 

stresses developed. This leads to equations known as internal eqllilibrium equations. 

Theoretically,  the s ta te  of stress at any point in a loaded body is completely defined 

in terms of the nine components  of stress c,~.~., cr~j:j. 0 : : .  cr,..,j, c~,.,., a:j:. or:,. ~:~. and or,.:. 

where the first three are the normal  components  and the la t ter  six are the components  

of shear stress. The equat ions of internal equil ibrium relat ing the' l~ille col~lpollents of 
stress can be derived by considering the equilibri~tn~ of" lllOlllOlltS alid tor('es acting on tile 

elemental  volume shown in Figure 8.2. The equilil~rium of liiol~le~lt.', at~out tile a'..q, an~t 

axes, assuming tha t  there are no body mome~ts,  leads to tt~e reiatio~s 

~y, = cr, y. v - ,  - or,:. or,.: - a:.,. (8.3) 

These equat ions show tha t  the s ta te  of stress at any point call l)e colnt)letely defined t)v 
the six components  at. , .  c~vv. or::. cr~.y, cr.~:, and cy:~.. The equilit)rimn of tbrces ill .r..q. 
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i 

0x 

gxx  ~ ! " Cxx + , ,  �9 d x  
.__..(, i ac~ 

i ) . ._ : .  ax 
] OOzx dy ~ / ~ Ozx + .dx 

Y / Ox 

/ dz 

~_.__. dx _ . ~  / 

/ " v X 

z 

Figure 8.2. Elemental Volume Considered for Internal Equilibrium (Only the Components of 
Stress Acting on a Typical Pair of Faces Are Shown for Simplicity). 

and z directions gives the following differential equilibrium equations" 

Oaxx ()ax~ Oazx 
o~ ~+-~y + ~ + o ~ = 0  

Oa~ Oa~ Oay~ 
O x ~ Tj-y + ---5Y + ~ ~ - ~ 

Oa z~ Ocr~z Oa z z 
o-V + - ~ y  + - S Y  + o~ - o  

(8 .4)  

where 0x, r and 0~- are the body forces per unit volume acting along the directions x, 
y, and z, respectively. 

For a two-dimensional problem, there will be only three independent stress components 
(axx, ayy, oxy) and the equilibrium equations, Eqs. (8.4). reduce to 

OO'xx ()O'xy 
0~ +-~y +0~-0 

Oaxy Oa~ 
Ox ~-Ty-y + O ~ - O  

(8 .5)  

In one-dimensional problems, only one component of stress, namely axx, will be there and 
hence Eqs. (8.4) reduce to 

Ocrxx 
+ o~ - 0 (8 .6)  

Ox 
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(iii) Stress-strain relations (constitutive relations) for isotropic materials 
T h r e e - d i m e n s i o n a l  c a s e  In the case of linearity elastic isotropic three-dimensional 
solid, the stress-strain relations are given by Hooke's law as 

~acx 

Kyy 

__ s  

s  

gy z  

~ z x  

= [ c ] 5  + go - [c ]  

O'x x 

(ry y 

O z  z _+_ 

Oxy 

gry z 

O'zx 

~ :r :r 0 

s 

Czz 0 

s 
s 

Ezx() 

(8.7) 

where [C] is a matrix of elastic coefficients given by 

1 - v  - v  0 0 0 
- v  1 - v  0 0 0 

1 - v  - v  1 0 0 0 (88)  
[ C ] -  E 0 0 0 2 ( 1 + v )  0 0 

o o 
0 0 0 2(1 + v) 0 
o o o o 2(1 + ~) 

s is the vector of initial strains, E is Young's modules, and v is Poisson's ratio of 
the material. In the case of heating of an isotropic material, the initial strain vector is 
given by 

~XX 0 1 

C YYO 11 
---, s z zo 
c o  - - a T  

Cxyo i 
Cyzo 

Czx 0 

(8.9) 

where c~ is the coefficient of thermal expansion, and T is the temperature charge. 

Sometimes,  the expressions for stresses in terms of strains will be needed. By including 
thermal strains, Eqs. (8.7) can be inverted to obtain 

( 7 - -  

O'yy 5gy  1 

crz~ = [D](g~_ g o ) -  [D] ~=: E a T  1 

o'xy ~ y  1 - 2~' 0 
O'yz Cyz 0 

(Tzx ~ zx 0 

(8.10) 
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where the mat r ix  [D] is given by 

[ D ]  - 
E 

(1 + ,,)(1 - 2t,) 

- 1 -  ~' ~' i' 0 
~' 1 - ~ '  ~' 0 
~' ~' 1 - ~ '  0 

1 - 2 ~ '  
0 0 0 

2 

0 0 
0 0 
0 0 

0 0 

1 - -  2~ . '  
0 0 0 0 0 

2 
1 - -  2 ~ '  

0 0 0 0 0 
- 2 - 

(8.11) 

In the case of two-dinmnsional  prol)lems, two types of stress distributioIls,  namely plane 
stress and plane strain, are possible. 

T w o - d i m e n s i o n a l  c a s e  ( p l a n e  s t r e s s )  The assumpt ion  of plmm stress is applicable 
for bodies whose dimension is very small in one of the coordinate  directions. Thus.  the 
analysis of thin plates loaded in the plane of ttw plate can be made using the assumpt ion  
of plane stress. In plane stress distr ibution,  it is assuined that  

c,:~ - c , : . , . -  or,j: - 0  (8.12) 

where 2 represents  tile direction perpendicular  to the plane of tile plate as shown in 
Figure 8.3, and the stress components  {to not vary through the thickness of tile plate (i.e.. 
in z direction).  Altho~lgh these assumpt ions  violate some of tile conlpatit)ilitv conditions. 
they are sufficiently accurate  for all practical t)~n'p{)ses provided the plate is thin. In this 
case, the s t ress-s t ra in  relations. Eqs. (8.7) and (8.10). red,we to 

~ '= [( ']d + ~, (8.13) 

y 

X 

Y 

i 

I 
i 

I 
i 

i 
! 

z - ~ - - - -  -J 

Figure 8.3. Example of a Plane Stress Problem A Thin Plate under Inplane Loading. 
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where 

{.xx} {...} 
ff" ~" s  , ~ - -  O'gy 

E x y  O'xy 

1 
[c] = 

1 - v  0 ] 
- v  1 0 

0 0 2(1 + v) { xxo} 
s  ~ s 

s  

{1} 
- c ~ T  1 

0 
ill the case of thermal strains 

(8.14) 

(8.15) 

and 

c~ = [D](g-go)-[D]g- 
E a T  

1 - v  
(8.~6) 

with 

I1 i t, 0 1 E 1 0 (8.17) 
[D] - 1 - v 2 1 - v 

0 2 

In the case of plane stress, the component of strain in the z direction will be nonzero and 
is given by (from Eq. 8.7) 

l + v  
o T  (8.18) v - t '  ( r  1 v Czz= E ( ~ x ~ + ~ Y Y ) + a T -  l - v  

while 

cy~ = ~:.. = 0 (8.19) 

T w o - d i m e n s i o n a l  case  ( p l a n e  s t r a i n )  The assumption of plane strain is applicable 
for bodies that  are long and whose geometry and loading do not vary significantly in 
the longitudinal direction. Thus, the analysis of dams. cylinders, and retaining walls 
shown in Figure 8.4 can be made using the assumption of plane strain. In plane strain 
distribution, it is assumed that  w = 0 and (Ow/Oz)  = 0 at every cross section. Here, 
the dependent  variables are assumed to be functions of only the x and y coordinates 
provided we consider a cross section of the body away from the ends. In this case. the 
three-dimensional stress-strain relations given by Eqs. (8.7) and (8.10) reduce to 

g - [ c ] 5  + Zo (8.20) 
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X 

/ / ___- ----- , _ - - - - - E l 2  i 
/ . . . . . . . .  I 

__.__. / , / , , z  

y../ //~--===-=: ..- 
/ / / / / / / / I / / / / / / / / I / / / / 1 1  Y 

(a) Dam z 

/ 
- /  / / z / / / z  ( 

/ 

x ' 1 
X / / 

z 
/ 

(c) Retaining wall 

(b) Long cylinder 

F igure  8.4.  Examples  of Plane Strain Problems.  

where  

and  

{ xx} { rx} 
g ' =  cy v . K =  a.v,v �9 

s O'xy 

I 1 - 7_, -~, i] [C] = 1 + y - r  1 - v , (8.21) 
E 0 0 { xxo} {1} 

t- 'o-- eyy o - (1-4- v ) a T  1 

Cxyo 0 

in the  case of t h e r m a l  s t r a in s  

6 -  [ D ] ( ~ - ~ o )  - [ D ] 6 -  ~ 
E a T  

1 --2r' 

(8.22) 

(8.23) 
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with 

1 - t ,  t'  0 ] 
E t, 1 - v 0 (8.24) 

[ D ] -  ( l + v ) ( l _ 2 v )  0 0 1 - 2 v  

2 

The  component  of stress in the z direction will be nonzero and is given by 

o'~z = v(o'xx + cryv) - E a T  (s.25) 

and 

ayz = c*~.x = 0 (8.26) 

O n e - d i m e n s i o n a l  c a s e  In the case of one-dimensional  problems,  all stress components  
except  for one normal  stress are zero and the s t ress - s t ra in  relat ions degenera te  to 

g -  [c]# + go (8.27) 

where 

s - { e ~ o  } - a T  in the case of the rmal  strain 

(8.28) 

(8.29) 

and 

= [ D ] ( g ' - g o ) -  [D ig ' -  E a T { l }  (8.30) 

wi th  

[D] = [E] (8.31) 

A x i s y m m e t r i c  c a s e  In the case of solids of revolution (axisymmetr ic  solids), the s t ress-  
s t rain relat ions are given by 

g -  [C]cY + s (8.32) 

where 

~,  __ s  --, 0"00 

s  ~ O" - -  O ' z z  

s  O ' r z  
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I_ l -~, -~, 0 1 1 t, 1 - v  0 
[C] -- ~ t' - c  1 0 " 

0 0 0 2(1 + ~,) 

/ Ill - 500o 1 
co - - a T  

Cz:() i 

"5,,: 0 0 

in the case of the remal  s t ra ins  

(8.33) 

(8.34) 

and 

# -  [ D ] ( g ' - ~ o ) -  [D]~'- 
E a T  

1 - 2 v  Ill 1 

1 

0 

(8.35) 

wi th  

1 - c  c t' 0 
t' 1 - t '  t' 0 

E ~' c 1 - t' 0 (8.36) 
[ D ] -  (1 + e)(1 - 2c) 1 - 2t' 

o o o ( ,, ) 

In these equat ions ,  the  subscr ip ts  r. 0, and z denote  the  radial,  t angent ia l ,  and  axial  

direct ions,  respectively.  

(iv) Stress-strain relations for anisotropic materials 
The  s t r e s s - s t r a in  relat ions given earlier are valid for isotropic elastic mater ia ls .  The  t e rm 
"isotropic" indicates  t ha t  the  mate r ia l  p roper t ies  at a point  in the  body  are not  a funct ion 
of or ienta t ion .  In o ther  words,  the mater ia l  proper t ies  are cons tan t  in any plane passing 
t h r o u g h  a point  in the  mater ia l .  The re  are cer ta in  mater ia l s  (e.g., reinforced concrete ,  

f iber-reinforced composi tes ,  brick, and wood)  for which the  mate r i a l  p roper t ies  at any 
point  depend  on the o r i en ta t ion  also. In general ,  such mater ia l s  are called anisot ropic  
mater ia ls .  The  general ized Hooke 's  law valid for aniso t ropic  mater ia l s  is given in this 
section. The  special  cases of the  Hooke 's  law for o r tho t rop ic  and isotropic mater ia l s  will 

also be indicated.  

For a l inearly elastic anisot ropic  mater ia l ,  the  s t r a in - s t r e s s  re la t ions  are given by the  

general ized Hooke 's  law as [8.7. 8.8] 

s (71 

g"2 C l l  C12 . . .  C 1 6 ]  02 

~-3 ('-'12 (7"2'2 " ' "  ('2G / 0"3 

/ ~-23 i 0"23 

::1:~ Clu ('2~ . . .  d'~uj cr13 
512 0"12 

(8.37) 
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where the matrix [C] is symmetric and is called the compliance matrix. Thus, 21 indepen- 
dent elastic constants (equal to the number of independent components of [C]) are needed 
to describe an anisotropic material. Note that  subscripts 1. 2. and 3 are used instead of 
z, y, and z in Eq. (8.37) for convenience. 

Certain materials exhibit symmetry with respect to certain planes within the body. 
In such cases, the number of elastic constants will be reduced from 21. For an orthotropic 
material, which has three planes of material property symmetry. Eq. (8.37') reduces to 

s 

s 

s 

E23 

s 

s 

-Cll 

C12 

Uia 
0 
0 
0 

C12 Cl8 0 0 0 0-1 
C22 C28 0 0 0 0-2 

C28 CaB 0 0 i 0-8 
0 0 C44 0 023 

0 0 0 C55 013 

0 0 0 0 C66J 0"12 

(8.88) 

where the elements C~j are given by 

1 U21 U31 
Cli -- ~ ,  C12 = - ~ .  Ci3 -~- 

Ell  E22 E88 

1 u82 1 
C22 = E22 '  C 2 8 -  E33 C88 = E38 

1 1 1 
- -  C5~ = - - ,  C66 - -  

C 4 4 -  G23" Gl8 G12 

(8.39) 

Here, E l l ,  E22, and Eaa denote the Young's modulus in the planes defined by axes 1. 
2, and 3, respectively; G12, G23, and G13 represent the shear modulus in the planes 12, 
23, and 13, respectively; and v12. v13, and u2a indicate the major Poisson's ratios. Thus, 
nine independent elastic constants are needed to describe an orthotropic material under 
three-dimensional state of stress. For the specially orthotropic material that  is in a state 
of plane stress, 0-a = o23 = 0-x3 = 0 and Eq. (8.38) reduces to 

LorCll c12 
s 0 C66 O"12 

(8.40) 

which involves four independent elastic constants. The elements of the compliance matrix. 
in this case, can be expressed as 

1 
Cll 

Eli 

1 
C 2 2  - 

E22 

C12 -- 
U12 

JEll 

1 
C66 = G12 

U21 

E22 

(8.41) 
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The s t ress-s t ra in  relations can be obtained by inverting the relations given by 
Eqs. (8.:37), (8.:38), and (8.40). Specifically, the s t ress-s t ra in  relations for a specially 
orthotropic material  (under plane stress) can be expressed as 

o I 
0"12 0 Q66 r 

(8.42) 

where the elements of the matr ix  [Q] are given bv 

~71 1 E22 
0 1 ~ =  �9 Q ~ -  

1 - U12/-'21 1 -- U12U21 

Q12 -- 
v21El l  t'12E22 

1 - U12U21 1 - -  U12U21 

Q66 -- 2G12 

(8.43) 

If the material  is linearly elastic and isotropic, only two elastic constants  are needed to 
describe the behavior and the s t ress-s t ra in  relations are given by Eq. (8.7) or Eq. (8.10). 

(v) Strain-displacement relations 
The deformed shape of an elastic body' under any given system of loads and t empera tu re  
distr ibution conditions can be completely described by the three components  of displace- 
ment  u, v, and w parallel to the directions x, y. and ". respectively. In general, each of 
these components  u, v, and w is a function of the coordinates x. y, and z. The strains 
induced in the body can be expressed in terms of the displacements u. c, and w. In this 
section, we assume the deformations to be small so that  the s t ra in-displacement  relations 
remain linear. 

To derive expressions for the normal strain components  exx and cyy and the shear strain 
component  cx~. consider a small rectangular  element O A C B  whose sides (of lengths dx 
and dy) lie parallel to the coordinate axes before deformation. When the body undergoes 
deformation under the action of external  load and t empera tu re  distributions,  the element 
O A C B  also deforms to the shape O ' A ' C ' B '  as shown in Figure 8.5. We can observe that  
the element O A  C B  has two basic types of deformation, one of change in size and the other 
of angular  distortion. 

Since the normal  strain is defined as change in length divided by original length, the 
strain components  cx, and e,ay can be found as 

C x x  - -  

change in length of the fiber O A  that. lies 
in the x directon before deformation 

original length of the fiber O A  

[ ( ) j d x  + u + ~ . d x  - u - d x  Ou 

= (8.44) 
dx 0x 
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dy 

�9 ~ X 

i u+~U.dy~, 
~'- o~y i 

i C" 
,B" 

v~+@ .dy 
/ 

i A" _ 

I -  v ~+ O.-@-'d,~ 
v ; 1~7xU"; lax 

O: ~ l A,[ ' q - - ~  _~ 
- . ~ - U  

Figure 8.5. Deformation of a Small Element OAC[Y. 

and 

Eyy 

change in length of the fiber OB that  lies 
in the y directon before deformation 

original length of the fiber OB 

+ Ov 
lay + (v  ~--~g. d y ) -  t , ] -  dg 0v 

= (8.45) 
dy Oy 

The shear strain is defined as the decrease in the right angle between the fibers OA 
and OB, which were at right angles to each other before deformation. Thus. the expression 
for the shear strain Cxy can be obtained as 

Cxy--01 +02 ~ tan01 + t a n  02 

Or, ) 
v + --O~x . dX - v 

[dx + (~ + cgU "dx) - u] 

u + -~y . d y - u 

If the displacements are assumed to be small, cxy can be expressed as 

OqU (~t~ 
+ (8.46) 

Cxy = Oy Ox 

The expressions for the remaining normal strain component e~z and shear strain 
components Cyz and C zx can be derived in a similar manner as 

Ow (8.47) 
E zz  (~Z 

Ow Ov 
Cyz = Oy + Oz' (8.48) 
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and 

e:,. = ~ + 0a- T (8.49) 

In the case of two-dimensional  problems. Eqs. (8.44)-(8.46) are applicable, whereas  

Eq. (8.44) is applicable in the case of one-dimensional  problems. 

In the case of an ax isymmetr ic  solid, the strain--displacement relat ions can be 
derived as 

~U 

v C r r -  c)r 

P 

Ou 
Cr: -- 

Or 

(8.,~o) 

where u and u, are the radial  and the axial displacements ,  respectively. 

(vi) Boundary conditions 
Boundary  condit ions can be ei ther on displacements  or on stresses. The  bounda ry  con- 
ditions on displacements  require certain displacements  to prevail at cer tain points  on 
the bounda ry  of the body. whereas  the bounda ry  condit ions on stresses require tha t  the  
stresses induced must  be in equil ibrium with the external  forces applied at certain points 
on the bounda ry  of the body. As an example,  consider the fiat plate under  inplane loading 
shown in Figure  8.6. 

In this case, the bounda ry  condit ions can be expressed as 

u -- t' -- 0 along the edge AB 

(displacement  bounda ry  condit ions) 

Y 
A 

~ . _ B  t 

b ! 

~- -A 5 

' '  8 Y l  

. . . .  ~ X 

Figure 8.6. A Flat Plate under Inplane Loading. 
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and 

ayy - axy - 0 along the edges BC and AD 

Crxx = - p ,  a y y - c r x v - 0 a l o n g t h e e d g e C D  

(stress boundary conditions) 

It can be observed that the displacements are unknown and are free to assume any values 
dictated by the solution wherever stresses are prescribed and vice versa. This is true of all 
solid mechanics problems. 

For the equilibrium of induced stresses and applied surface forces at point A of 
Figure 8.7, the following equations must be satisfied: 

~=a=, +~y cryy +[= ~y: - By (8.51) 

~y 

N (Normal) 
i "  

Y ~ z ~ ~  ~x 

z 

(a) Components of the surface force 

Y 

T , /  
z 

~ x  

t tz'd S 
t x . d N ~ / / ~  Normal 

i ..... 

. ~  ~ Surface area, dS 
,~ ~ y.dS 

(b) Equillibrium of internal stresses and surface forces around point A 

Figure 8.7. Forces Acting at the Surface of a Body. 
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where g~, gy, and gz are the direction cosines of the outward drawn normal (AN) at 
point A; and (I)~, ~u, and (I)~ are the components of surface forces (tractions) acting at 
point A in the directions x, Y. and z, respectively. The surface (distributed) forces (I)x, 
Ou, and (I)~ have dimensions of force per unit area. Equation (8.51) can be specialized to 
two- and one-dimensional problems without nmch difficulty. 

(vii) Compatibility equations 
When a body is continuous before deformation, it should remain continuous after defor- 
mation. In other words, no cracks or gaps should appear in the body and no part should 
overlap another due to deformation. Thus. the displacement field must be continuous as 
well as single-valued. This is known as the "'condition of compatibility." The condition of 
compatibility can also be seen from another point of view. For example, we can see from 
Eqs. (8.44)-(8.49) that the three strains ex~, eyy, and Cxy can be derived from only two 
displacements u and v. This implies that a definite relation must exist between Cx~, c~y, 
and ~xy if these strains correspond to a compatible deformation. This definite relation is 
called the "compatibility equation." Thus. in three-dimensional elasticity problems, there 
are six compatibility equations [8.2]: 

02~ - 02cuu 02~ u  
~ + = ( 8 . 5 2 )  

Oy 2 OX 2 OXOy 

02s 02-ggz 
02euY + = (8.53) 

Oz 2 Oy 2 OyOz 

02 gzz 02Cxx 02 gzx 
Ox 2 + Oz 2 = OxOz (8.54) 

1 0 (Ocxv Ocu: Oc:~)  02C~x 
2 0 x  Oz Ox ~ ~ - OyOz (8.55) 

1 0 (Oc~u 0~u: O~zx) cO2Cyu 
2 0y ~ ~ Ox o y  - ~  ( 8 . 5 6 )  

1 0 ( 0 c ~ u  0cu: 0x :x )  02cz: 

In the case of two-dimensional plane strain problems. Eqs. (8.52)-(8.57) reduce to a single 
equation as 

02 exx 02:yy~ 02e~y 
+ = (8.58) 

c)y 2 Ox 2 OxOy 

For plane stress problems, Eqs. (8.52)-(8.57) reduce to the following equations: 

02exx 02evv O2ex O2ez 02ez O2e:: 
t = ~ ~ = : = = 0 ( 8 . 5 9 )  

Og 2 Ox 2 i)xOg " Og 2 Ox 2 OxOy 

In the case of one-dimensional problems the conditions of compatibility will be automati- 
cally satisfied. 
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8.3 FORMULATIONS OF SOLID AND STRUCTURAL MECHANICS 
As stated in Section 5.3, most continuum problems, including solid and structural mechan- 
ics problems, can be formulated according to one of the two methods: differential equation 
method and variational method. Hence, the finite element equations can also be derived 
by using either a differential equation formulation method (e.g., Galerkin approach) 
or variational formulation method (e.g., Rayleigh-Ritz approach). In the case of solid 
and structural mechanics problems, each of the differential equation and variational 
formulation methods can be classified into three categories as shown in Table 8.1. 

The displacement, force, and displacement-force methods of differential equation for- 
mulation are closely related to the principles of minimum potential energy, minimum 
complementary energy, and stationary Reissner energy formulations, respectively. We use 
the displacement method or the principle of minimum potential energy for presenting the 
various concepts of the finite element method because they have been extensively used in 
the literature. 

8.3.1 Differential Equation Formulation Methods 
(i) Displacement method 
As stated in Section 8.2.1, for a three-dimensional continuum or elasticity problem, there 
are six stress-strain relations [Eq. (8.10)1, six strain-displacement relations [Eqs. (8.44)- 
(8.49)], and three equilibrium equations [Eqs. (8.4)], and the unknowns are six stresses 
(cr~j), six strains (e~j), and three displacements (u, v, and w). By substituting Eqs. (8.44)- 
(8.49) into Eqs. (8.10), we obtain the stresses in terms of the displacements. By sub- 
stituting these stress-displacement relations into Eqs. (8.4), we obtain three equilibrium 
equations in terms of the three unknown displacement components u, v, and w. Now these 
equilibrium equations can be solved for u, v, and w. Of course, the additional requirements 
such as boundary and compatibility conditions also have to be satisfied while finding the 
solution for u, v, and w. Since the displacements u, v, and w are made the final unknowns, 
the method is known as the displacement method. 

(ii) Force method 
For a three-dimensional elasticity problem, there are three equilibrium equations, Eqs. 
(8.4), in terms of six unknown stresses ai3. At the same time. there are six compatibility 
equations, Eqs. (8.52)-(8.57), in terms of the six strain components e~j. Now we take 
any three strain components, for example, cxy. cyz. and ezx, as independent strains and 

Table 8.1. Methods of Formulating Solid and Structural Mechanics Problems 

I 
Differential equation formulation methods 

I 
Displacement 
method 

Variational formulation methods 

I I 
Force Displacement- Principle Principle Principle 
method force method of minimum of minimum of station- 

(mixed method) potential complemen- ary Reissner 
energy tary energy energy 
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write the compat ibi l i ty  equat ions in terms of z~.y. ~,v:. and ~: .  only. By subs t i tu t ing  the 
known s t ress-s t ra in  relations. Eq. (8.10). we express the three independent  compatibi l i ty  
equat ions in terms of the stresses cr,j. By using these three equations,  three of the stresses 
out of cr~, cTyy. cr=:. cr~y, cry:. and or:. can be el iminated from the original equil ibrium 
equations.  Thus,  we get three equil ibrium equat ions in terms of three stress components  
only, and hence the problem can be soh'ed. Since the final equat ions are in terms of stresses 

(or forces), the me thod  is known as the force method.  

(iii) Displacement-force method 
In this method,  we use the s t ra in-d isp lacement  relations to el iminate strains from the 
s t ress-s t ra in  relations. These six equations,  in addit ion to the three equil ibrium equations,  
will give us nine equat ions in the nine unknowns a .... c~.~j, a:=. cr~y. cry:. cr:~. u. v, and w. 
Thus,  the solution of the problem can be found by using the addi t ional  condit ions such as 
compat ibi l i ty  and boundary  conditions. Since both  the displacements  and the stresses (or 
forces) are taken as the final unknowns,  the me thod  is known as the displacement-force  
method.  

8.3.2 Variational Formulation Methods 
(i) Principle of minimum potential energy 
The potent ia l  energy of an elastic body 7r~, is defined as 

7rp - 7r - II ~ (8.60) 

where 7r is the s train energy, and IIp is the work done on the body by the external  
forces. The principle of min inmm potent ia l  energy can be s ta ted  as follows" Of all possible 
displacement  s ta tes  (u. v. and u') a body can assume that  satisfy compatibi l i ty  and given 
kinematic  or displacement  boundary  conditions, the s ta te  tha t  satisfies the equil ibrium 
equat ions makes the potent ia l  energy assume a min imum value. If the potent ia l  energy. 
7rp, is expressed in terms of the displacements  u. v. and w. the principle of min imum 
potent ia l  energy gives, at the equil ibrium state.  

67rp(U. c. w) -- &r(u. v. w) - 5I I ) (u .  v. w) = 0 (8.61) 

It is impor tan t  to note tha t  the variation is taken with respect to the displacements  in 
Eq. (8.61), whereas the forces and stresses are assumed constant .  The strain energy of a 
linear elastic body  is defined as 

1 l l l Y r d d I "  (8 62) 7i"-- ~ 
J J J  

where V is the volume of the body. By USillg the s t ress-s t ra in  relations of Eq. (8.10). the 
strain energy, in the presence of initial s trains Y0. can be expressed as 

1 ///s.r[D]Kdi..~~l z'T[D]g'~ (8.63) 

V V 

The work done by the external forces can be expressed as 

"~" S 1 
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where r = - - known body force vector. ~ = ~y - vector of prescribed surface 

forces ( tract ions) ,  [7 = v = vector of displacements ,  and S1 is the surface of the body 
w 

on which surface forces are prescribed. Using Eqs. (8.63) and (8.64). the potent ia l  energy 
of the  body  can be expressed as 

7rp(U,V,W) = ~ g" [D](g ' -  2 s  o T i S .  d V -  U . d S l  (8.65) 

V V $1 

If we use the principle of m i n i m u m  potent ia l  energy to derive the finite e lement  equa- 
tions, we assume a simple form of variat ion for the displacement  field within  each element  
and derive condit ions tha t  will minimize the functional  I (same as 7rp in this case). The  
resul t ing equat ions  are the approx imate  equi l ibr ium equations,  whereas the compatibi l -  
ity condit ions are identically satisfied. This approach is called the "'displacement" or 
"stiffness" m e t h o d  of finite e lement  analysis. 

(ii) Principle of minimum complementary energy 
The complemen ta ry  energy of an elastic body (T re) is defined as 

:re = complemen ta ry  s train energy in te rms of stresses (#) - work done by the applied 
loads dur ing stress changes (14"p) 

The  principle of m i n i m u m  complemen ta ry  energy call be s ta ted  as follows: Of all possi- 
ble stress s ta tes  t ha t  satisfy the  equi l ibr ium equat ions  and the stress bounda ry  conditions.  
the s ta te  tha t  satisfies the compat ib i l i ty  condit ions will make the complemen ta ry  energy 
assume a m i n i m u m  value. 

If the  complemen ta ry  energy rrc is expressed in terms of the stresses or,j, the principle 
of m i n i m u m  complemen ta ry  energy gives, for compat ibi l i ty .  

a ~ ( ~ x ,  ~ , . . . ,  ~ )  = a ~ ( ~ ,  ~ . . . . .  ~ : , )  

- a f i ' ~ ( ~ . ~ .  ~ . . . . .  ~=~) = 0 (8 .66 )  

It is impor t an t  to note  tha t  the  var iat ion is taken with respect  to the stress components  in 
Eq. (8.66), whereas the  displacements  are assumed constant .  The  complemen ta ry  s train 
energy of a linear elastic body  is defined as 

1 / / / j r  ?r = ~ g d V  (8.67) 

V 

By using the  s t ra in-s t ress  relat ions of Eqs. (8.7). the complemen ta ry  s train energy, in 
the  presence of known initial s t rain go, can be expressed as* 

1 f f f  dr (8.68) 

v 

* The correctness of this expression can be verified from the fact that the partial derivative of ~r 
with respect to the stresses should yield the strain-stress relations of Eq. (8.7). 
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The work done by applied loads during stress change (also known as complementary  work) 
is given by 

52 S2 

(8.69) 

where $2 is the part  of the surface of the body on which the values of the displacements 

are prescribed as ~r _ f; . Equations (8.68) and (8.69) can be used to express the 
s 

complementary energy of the body as 

7 r c ( ~ ,  ayy . . . . .  ~_-~.) - ~ ([C]~ + 2Ko)- dI ~ - �9 

I $2 

(8.70) 

If we use the principle of minimum complementary energy in the finite element analysis, 
we assume a simple form of variation for the stress field within each element and derive 
conditions tha t  will minimize the functional I (same as rrc in this case). The resulting 
equations are the approximate compatibil i ty equations, whereas the equilibrium equations 
are identically satisfied. This approach is called the "force" or "flexibility" method of finite 
element analysis. 

(iii) Principle of stationary Reissner energy 
In the case of the principle of minimum potential  energy, we expressed rr~, in terms of 
displacements and permit ted  variations of u. v. and w. Similarly, in the case of the 
principle of minimum complementary energy, we expressed rrc in terms of stresses and 
permit ted  variations of cr . . . . . . .  ~:x. In the present case. the Reissner energy (rr•) is 
expressed in terms of both displacements and stresses and variations are permit ted  in 
and c7. The Reissner energy" for a linearly elastic material  is defined as 

rcR - i l I [ ( i n t e r n a l  stresses) • (strains expressed in terms of  

v 

displacements) - complementary energy in terms of stresses] �9 dV 

- w o r k  done by applied forces 

///[{ (0w ] 
-- erx . .~-~m+~rvy.~--~y+. . .+~r : .  -~r +O-Tz - #  . dV  

l l l ( O * ' u + ~  w ) . d S 1  

V $1 

s  ~ d S  2 

J o, 

$2 

= 1 j ;  ~ ; U ]  dt" 

I" 

- . f / ~ r ~ d S  1 - / / ( C  - ~ ) r ~  �9 mS2 (8.71) 

$1 $2 
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The variation of rrn is set equal to zero by considering variations in both displacements 
and stresses: 

l l 
I . . . . . .  I I , ,  I 

"%% I I I  %%% i I 

gives stress- gives equilibrium equations 
displacement and boundary conditions 
equations 

(8.72) 

The principle of stationary Reissner energy can be stated as follows: Of all possi- 
ble stress and displacement states the body can have. the particular set that makes the 
Reissner energy stationary gives the correct stress-displacement and equilibrium equa- 
tions along with the boundary conditions. To derive the finite element equations using the 
principle of stationary Reisssner energy, we must assume the form of variation for both 
displacement and stress fields within an element. 

(iv) Hamilton's principle 
The variational principle that  can be used for dynamic problems is called the Hamilton's 
principle. In this principle, the variation of the functional is taken with respect to time. 
The functional (similar to rrp, rrc, and rrR) for this principle is the Lagrangian (L) 
defined as 

L = T -  rrp = kinetic e n e r g y -  potential energy (8.73) 

The kinetic energy (T) of a body is given by 

1 ///p~Y~ dV (8.74) T - ~  
V 

where p is the density of the material, and ~) = /, is the vector of velocity components 

at any point inside the body. Thus, the Lagrangian can be expressed as 

1 / / / [  _ ~ ~ / /  

V $1 

(8.75) 

Hamilton's principle can be stated as follows: Of all possible time histories of displacement 
states that  satisfy the compatibility equations and the constraints or the kinematic bound- 
ary conditions and that  also satisfy the conditions at initial and final times (tl and t2), the 
history corresponding to the actual solution makes the Lagrangian functional a minimum. 
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Thus, Hamilton's  principle can be stated as 

jft' 
I '2 

(5 L d t  - 0 (8.76) 

8.4 FORMULATION OF FINITE ELEMENT EQUATIONS (STATIC ANALYSIS) 
W'e use the principle of minimum potential  energy for deriving the equilibrium equations 
for a three-dimensional problem in this section. Since the nodal degrees of freedom are 
t reated as unknowns in the present (displacement) formulation, the potential  energy rrp has 
to be first expressed in terms of nodal degrees of freedom. Then the necessary equilibrium 
equations can be obtained by setting the first partial  derivatives of rrp with respect to each 
of the nodal degrees of freedom equal to zero. The various steps involved in the derivation 
of equilibrium equations are given below. 

S t e p  1: The solid body is divided into E finite elements. 

S t e p  2: The displacement model within an element "'e'" is assumed as 

C - ~'(,r. y .  - I N ]  

w(x.y, z) 
(8.77) 

where (~(e) is the vector of nodal displacement degrees of freedom of the element, and 
[N] is the matr ix of shape functions. 

S t e p  3" The element characteristic (stiffness) matrices and characteristic (load) vectors 
are to be derived fl'om the principle of minimum potential  energy. For this, the potential  
energy functional of the body 7rp is writ ten as (by considering only the body and surface 
forces) 

E 
7rp ~ ~ ,'Tp 

(--I 

where rrp (~) is the potential  energy of element e given bv. (see Eq. 8.65) 

7r(pe) -- 1 / / /  ;c ~ " / /" / / / ~ r ~  [ D ] ( f -  2~'o)dI - U r ~ , d S ,  - od~,," 

S 1 

(8.78) 

where V (c) is the volume of the element, S(1 '') is the portion of the surface of the element 

over which distr ibuted surface forces or tractions, dp, are prescribed, and O is the vector 
of body forces per unit x-olume. 
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The strain vector g' appearing in Eq. (8.78) can be expressed in terms of the nodal 
displacement vector Q(~) by differentiating Eq. (8.77) suitably as 

...., C-- 

~ x x  

Cyy 
~ z z  

Cxy 
Cyz 
~ z x  

O'u 
Ox 

Ov 

Oy 

Ow 

Oz 

04 Ov 
~ + ~  

Ov Ow 

Ow Ou 
-g-; + N 

0 0 

o 
0 

0!1 

0 0 

0 0 

Oy Ox 

0 
0 

Oz 

0 

0 

0 

0 

0 

0 
Oy 

0 

U 
U_' 

--[B](~ (~) (8.79) 

where 

[B] = 

- 0  

0 

0 
0 

Oy 

0 0 

0 
Oy 0 

0 
o 

0 0 
Ox 

0 0 
0 

Oz Oy 

0 0 
o 

IX] (8.80) 

The stresses ~ can be obtained from the strains s using Eq. (8.10) as 

- [ D ] ( g ' - g o ) -  [D][B]Q (~) -  [D]~o (8.81) 

Substitution of Eqs. (8.77) and (8.79) into Eq. (8.78) yields the potential energy of the 
element as 

7c (/ ) __ - 2 1 / / /  ~ (~ )r 

V(~) 

[B]T[D][B](2 ~) d I ' - / / f  Q{~'T [B]T[D]~'o dV 
V ( c l  

-- f f  (~'(e)T[N] T~dS1 -- / / /  (~(e)T [!~'] TOdd/" 

S~ e) ~,'(,') 

(8.82) 

In Eqs. (8.78) and (8.82), only the body and surface forces are considered. However. 
generally some external concentrated forces will also be acting at various nodes. If t5 

--- c 

denotes the vector of nodal forces (acting in the directions of the nodal displacement 
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vector Q of the total structure or body), the total potential energy of the structure or 

body can be expressed as 

E 

71"p --- ~ 7rp - -  c 

e--1 

Q 1  

_. Q2 
where Q = . is the vector of nodal displacements of the entire structure or body, 

QM 
and 31 is the total number of nodal displacements or degrees of freedom. 

Note that each component of the vector (~(e), e - 1,2 . . . . .  E, appears in the global 
nodal displacement vector of the structure or body. ~). Accordingly, Q(~) for each element 

may be replaced by Q if the remaining element matrices and vectors (e.g., [B], [N], ~, and 
- ( e )  4)) in the expression for ~rv are enlarged by adding the required number of zero elements 
and, where necessary, by rearranging their elements. In other words, the summation of 
Eq. (8.83) implies the expansion of element matrices to "structure" or "body" size followed 
by summation of overlapping terms. Thus, Eqs. (8.82) and (8.83) give 

] "( JJ 1 T T 
re, = - ~  [B]r [D][B] dr" ~ - ~ E [B]r [D]g'o d V  

e = l  v ( e )  e = l  v ( e )  

-~ ~ [N]T~dS1 _1 - f//[X]r~dV ) -~T --. - Q Pc (8.84) 

S~ e) V(e)  

Equation (8.84) expresses the total potential energy of the structure or body in terms of 

the nodal degrees of freedom, Q. The static equilibrium configuration of the structures can 

be found by solving the following necessary conditions (for the minimization of potential 
energy)" 

07rp i)7r v O~r v 07r; = 6 or . . . . . . .  0 (8.85) 
0(2 001 002 OO.~I 

With the help of Eq. (8.84), Eqs. (8.85) can be expressed as 

V(e)  
J 

element stiffness 
matrix, [K (e)] 

-v- 

global or overall stiffness 
matrix of the structure or 
body, [K] 

Q 
global vector of 
nodal displacements 
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// /// ) Pc + [B]W[D]g'o dV -t- [N] T ~ dSl + [X] T OdV 
e = l  v ( e )  s ~ e )  v ( e )  

vector of ~ Y " - - " . . . .  --" 
concen- vector of element vector of element vector of element 
t rated nodal forces produced nodal forces nodal forces 

by initial strains produced by body loads fi(~) ' produced by 
surface forces, forces, 

y . . . . . . .  

vector of element nodal forces, fi(e) 
~, . . . .  , 

total vector of nodal forces, t3 

That  is, 

: L + + 8 + - 
e = l  

(8.86) 

where 

[K (r =///[B]T[D][B]dV= element stiffness matrix 

v(e) 

fi~r = [[[[B]T[D]s d V =  element load vector due to initial strains 
d J d  v(e) 

~(e) = ~ [ N ] T  (~ dS1 = element load vector due to surface forces 
J J 

S~ e) 

fi(~) = / / / [ N ]  T 5 d V -  element load vector due to body forces 

V(e) 

(8.87) 

(8.88) 

(8.89) 

(8.90) 

Some of the contributions to the load vector t3 may be zero in a particular problem. 

In particular, the contribution of surface forces will be nonzero only for those element 
boundaries that  are also part of the boundary of the structure or body that  is subjected 
to externally applied distributed loading. 

The load vectors/3(~), /3}~), and fib (~) given in Eqs. (8.88)-(8.90) are called kinemati- 

cally consistent nodal load vectors [8.3]. Some of the components of fi/(c) /3(~), and fib (~) 
may be moments or even higher order quantities if the corresponding nodal displacements 
represent strains or curvatures. These load vectors are called "kinematically consistent" 
because they satisfy the virtual work (or energy) equation. That  is, the virtual work done 
by a particular generalized load Pj when the corresponding displacement 6Qj is permit- 
ted (while all other nodal displacements are prohibited) is equal to the work done by the 
distributed (nonnodal) loads in moving through the displacements dictated by 6Qj and 
the assumed displacement field. 
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S t e p  4: The desired equilibrium equations of the overall structure or body can now be 
expressed, using Eq. (8.86). as 

where 

E 

[ K ] -  ~--~[K (~)] = assembled (global] stiffness matrix (8.92) 
e-----1 

and 

E E E 

/5 - - / 5  + ~ / 5 ( * )  + ~ / 5 . ~ ,  ' + ~ / 6 ~ '  } _ assembled (global)nodal  load vector (8.93) 
e = l  e = l  e : l  

S t e p s  5 a n d  6: The required solution for the nodal displacements and element stresses 
can be obtained after solving Eq. (8.91). 

The following observations can be made from the previous derivation: 

1. The formulation of element stiffness matrices. [K(~)], and element load vectors, 

fi}~) fi~c), and P~':'. which is basic to the development of finite element equations 
[Eq. (8.91), requires integrations ms indicated in Eqs. (8.87)-(8.90). For some ele- 
ments, the evaluation of these integrals is simple. However, in certain cases, it is 
often convenient to perform tile integrations numerically [8.4]. 

2. The formulae for the element stiffness and load vector in Eqs. (8.87)-(8.90) remain 
the same irrespective of the type of element. However, the orders of the stiffness 
matrix and load vector will change for different types of elements. For example, in 
the case of a triangular element under plane stress, the order of [K/e)] is 6 • 6 and 
of (~(e) is 6 x 1. For a rectangular element under plane stress, the orders of [K/~)] 

and (~(~) are 8 • 8 and 8 • 1, respectively. It is assumed that the displacement model 
is linear in both these cases. 

3. The element stiffness matrix given bv Eq. (8.87) and the assembled stiffness matrix 
given by Eq. (8.92) are ahvavs symmetric. In fact, the matrix [D] and the product 
[B]T[D][B] appearing in Eq. (8.87) are also symmetric. 

4. In the analysis of certain problems, it is generally more convenient to compute 
the element stiffness matrices [k I''] and element load vectors g,(~. ff2~/, and fib (~/ 
in local coordinate systems* suitably set up (differently for different elements) for 
minimizing the computational effort. In such cases, the matrices [k ~ ]  and vectors 

-~(~) 
/y(~), ,/Y~). and Pb have to be transformed to a common global coordinate system 
before using them in Eqs. (8.92) and (8.93). 

5. The equilibrium equations given by Eq. (8.91) cannot be solved since the stiff- 
ness matrices [K (~'] and [_/51 ~r~ singular, and hence their inverses do not exist. 

* When a local coordinate system is used. the resulting quantities are denoted by lowercase letters 
e -te, )] ~) . /Sb( e ) as [k(e)], /~e), /~} ) a n d  Pb instead of [K (~" . /5{ . 0~ e) and . 
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The physical significance of this is that a loaded structure or body is free to undergo 
unlimited rigid body motion (translation and/or rotation) unless some support or 
boundary constraints are imposed on the structure or body to suppress the rigid 
body motion. These constraints are called boundarv conditions. The method of 
incorporating boundary conditions was considered in Chapter 6. 

6. To obtain the (displacement) solution of the problem, we have to solve Eq. (8.91) 
after incorporating the prescribed boundarv conditions. The methods of solving the 
resulting equations were discussed in Chapter 7. 
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PROBLEMS 

8.1 Cons ider  an inf in i tes imal  e lement  of a solid b o d y  in the  form of a r ec t angu la r  

pa ra l l e lop iped  as shown in F igure  8.2. In this  figure, the  c o m p o n e n t s  of s tress  

ac t ing  on one pair  of faces only are shown for simplicity.  A p p l y  the  m o m e n t  

equ i l ib r ium equa t ions  abou t  the  x. y. and  z axes and show tha t  the  shear  s t resses  

are symmet r i c ;  t ha t  is. cT~ - ~x~. c~:~ - ~_-,  and  ~ :  = ~.-~-. 

8.2 D e t e r m i n e  whe the r  the  following s t a t e  of s t ra in  is phys ica l ly  realizable" 

~ x x  C (  x 2  + Y2)  �9 g . u u  - -  C Y  2 - -  . -2x~j = 2 C X y .  g z z  = g y z  - -  C z x  - -  0 

where  c is a cons tan t .  

8.3 W h e n  a b o d y  is hea ted  nonun i fo rmly  and each e lement  of the  b o d y  is al lowed to 

e x p a n d  nonuni formly ,  the  s t ra ins  are given by 

Zx,r =::~,~ = ~ ' : :  = a T .  Zx.~ =~ '~ :  = s  = 0  (E l )  

where  ct is the  coefficient of t h e r m a l  expans ion  (cons tan t ) .  and  T - T ( x ,  y ,  z )  is the  

t e m p e r a t u r e .  D e t e r m i n e  the na tu re  of var ia t ion  of T ( x ,  y .  z) for which Eqs. (E l )  

are valid. 

8.4 Cons ider  the  following s t a t e  of s tress  and s t ra in:  

2 2 . . . .  0 
O ' x x  - -  ~F . O ' g g  ~ y . g x g  = - - 2 X y .  C r z z  ~ Z x z  - -  s  - -  

D e t e r m i n e  whe the r  the  equ i l ib r ium equa t ions  are satisfied. 

8.5 Cons ider  the  following condition" 

2 2 crxx -- x . cr~v -- y . s = - 2 x y .  a : :  = ~x: = gy= = 0 

D e t e r m i n e  whe the r  the  c o m p a t i b i l i t y  equa t ions  are satisfied. 

8.6 Cons ider  the  following s t a t e  of strain" 

s  - -  C l X ,  s  - -  C2, s  --- C 3 X  -[- C 4 y  n L- C5, s  --- C 6 y .  s  --- s  --- 0 

where  ci ,  i - 1.2 . . . . .  6 are cons tan ts .  D e t e r m i n e  whe the r  the  c o m p a t i b i l i t y  

equa t ions  are satisfied. 

8.7 The  in terna l  equ i l ib r ium equa t ions  of a two-d imens iona l  solid body.  in po lar  

coord ina tes ,  are given by 

()(7rr 1 0Or,.0 a,-,- -- Or00 
Or ~- - + + o , . - 0  - F - - - ~ -  F 

1 0~00 0~,.0 c~0 
7 0--K+-0V-,  , + 2 ~ + ~ 1 7 6 1 7 6  

where  4)~ and O0 are tile body" forces per  unit  vo lume in the  radial  (r) and  

c i rcumferen t ia l  (0) direct ions,  respectively'.  
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If the s ta te  of stress in a loaded, thick-walled cylinder is given by 

_ [ b2] a 2 P  1 - 
cr~.~. - -  b2 a 2 ~ , 

a 2 P  1 + 
c~oo = b2 _ a 2  - / 5  �9 

(TrO = 0 

where a, b, and p denote  the inner radius, outer  radius, and internal  pres- 
sure, respectively, de termine  whether  this s ta te  of stress satisfies the equil ibrium 
equations.  

8.8 Determine  whether  the following displacement  represents  a feasible deformat ion 
s ta te  in a solid body: 

t t  ~ a x ,  U - -  a y .  W - -  a z  

where a is a constant .  

8.9 Consider a plate  with a hole of radius a subjected  to an axial stress p. The  s ta te  
of stress around the hole is given by [8.5] 

1 [ a 2 1 

1 [ ~] 1 
a00 = ~P l + T g  - ~p 

(24 a 2 ] 
1 + 3~--g - 4~-- 5 cos20 

a 4 
1 + 3 ~  cos 20 

1[  a 
c~0=-~p 1 - 3 7 ~ + 2 ~  sin 20 

node Q / ~  q2 
/>- 

node Q 

, \ \ \ \ \ \ \ '< ,  
Figure 8.8. 
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Determine whether these stresses satisfy the equilibrium equations stated in 
Problem 8.7. 

8.10 Consider a uniform bar of length I and cross-sectional area A rotating about a 
pivot point O as shown in Figure 8.8. Using the centrifugal force as the body 
force, determine tile stiffness matrix and load vector of the element using a linear 
displacement model: 

u(.r) = -\t (a')ql + A2(.r)q2 

where N1 (:r) = 1 - ( . r / l ) ,  .V2(a') = ( , r / l ) a n d  the stress strain relation, crxx 

where E is the Young's modulus. 

= Es.rx. 



9 

ANALYSIS OF TRUSSES, 
AND FRAM ES 

BEAMS, 

9.1 I N T R O D U C T I O N  
The derivation of element equations for one-dimensional s t ructural  elements is considered 
in this chapter. These elements can be used for the analysis of skeletal-type systems such as 
planar trusses, space trusses, beams, continuous beams, planar frames, grid systems, and 
space frames. Pin-jointed bar elements are used in the analysis of tr~lsses. A truss element 
is a bar tha t  can resist only axial forces (compressive or tensile) and can deform only in the 
axial direction. It will not be able to carrv transverse loads or bending moments. In planar 
truss analysis, each of the two nodes can have components of displacement parallel to 
X and Y axes. In three-dimensional truss analysis, each node can have displacement 
components  in X, Y, and Z directions. Rigidly jointed bar (beam) elements are used in the 
analysis of frames. Thus, a frame or a beam element is a bar that  can resist not only axial 
forces but also transverse loads and bending moments. In the analysis of planar flames, 
each of the two nodes of an element will have two translat ional  displacement components  
(parallel to X and Y axes) and a rotat ional  displacement (in the plane XY).  For a space 
frame element, each of the two ends is assumed to have three translat ional  displacement 
components  (parallel to X, Y. and Z axes) and three rotational displacement components  
(one in each of the three planes XY.  YZ. and ZX). In the present development, we 
assume the members to be uniform and linearly elastic. 

9.2 SPACE TRUSS ELEMENT 
Consider the pin-jointed bar element shown in Figure 9.1. in which the local x axis is 
taken in the axial direction of the element with origin at corner (or local node) 1. A linear 
displacement model is assumed as 

o r  

~ , ( x )  - q~ + (q~ - q~)~-  
l 

{ u ( x ) } -  [N] ~(~:) (9.1) 
1 •  1 • 2 1 5  

3 0 9  
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0 

,/ 
x 

Q3j 

global node j 
local node 2 

e3, 

local node 1 ' ~ Y  

,/, 

global node i ' ~  ~ Q3i-1 
\ 

Q3i -2 

. y 

Figure 9.1. A Space Truss Element. 

~3j-1 

where 

[N] -  [ ( 1 -  / )  / ]  (9.2) 

where ql and q2 represent the nodal degrees of freedom in the local coordinate system 
(unknowns), l denotes the length of the element, and the superscript e denotes the element 
number. The axial strain can be expressed as 

or 

Exx 
Ou(x) q2 - ql 

&r l 

l x l  1 • 2 1 5  
(9.4) 

where 

1 1 (9.5) 
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The stress-stain relation is given by 

axx = Eczx 

{cr~} = [D] {c~} 
l x l  l •  

(9.6) 

where [D] = [E], and E is the Young's modulus of the material. The stiffness matrix of 
the element (in the local coordinate system) can be obtained, from Eq. (8.87), as 

{11 } 
[k (~ ) ] -  [B]T[D][B]dV-A E { - 7  - / } d x  
2 x 2  x=0 

V(~) )- 

1 - 1  (9.7) 

where A is the area of cross section of the bar. To find the stiffness matr ix of the bar in 
the global coordinate system, we need to find the transformation matrix. In general, the 
element under consideration will be one of the elements of a space truss. Let the (local) 
nodes 1 and 2 of the element correspond to nodes i and j. respectively, of the global 
system as shown in Figure 9.1. The local displacements ql and q2 can be resolved into 
components  Q3i-2, Q3i-1, Qai and Qaj-2, Q33-1. Q3j parallel to the global X, Y. Z. 
axes, respectively. Then the two sets of displacements are related as 

@(~)-[I]Q (~) (9.8) 

where the transformation matrix [A] and the vector of nodal displacements of element e 

in the global coordinate system, Q(e), are given by 

l . ~ j  ~-~ 0 0 o] 
[~] = 0 0 l , j  m ,j  r~j 

0(e) _ 

Q3i--2 

Q3i--1 
Qa~ 

Qaj-2 

Q3j-- 1 

Q33 

(,9.9) 

(9.10) 

and l~j, rnij, and nij denote the direction cosines of angles between the line ij and the 
directions OX, OY, and OZ, respectively. The direction cosines can be computed in terms 
of the global coordinates of nodes i and j as 

l~j = x j  - x~  E - E z~ - zz (9 .11)  
1 ' m ~  = - - / - - .  n ,~  = l 
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where (Xi. Y~. Zi) and (X 3 . }~. Zj ) are the global coordinates  of nodes i and j .  respectively, 
and l is the length of the element ij given by 

1-- {(~u -- X , )  2 -F ( } j  -- } ] )2  _j_ ( ~  __ ~7,)2} 1/'2 (9.12) 

Thus, the stiffness matrix of the element in the global coordinate svstem can be obtained. 
using gq.  (6.8). as 

[K (~)] -[~]~ [~:<~)] Ix] 
6 x 6  6 x 2  2 x 2  2 x 6  

A E  
1 

1 1,jm,~ 1,j1~,j -li~ - l u l n ,  J -1,jn,~ 

1,jm 0 m in , jn , j  -l, j71~,j - m b  - m O r t  U 
o "2 

l u n z  J ll~tjll, tj ii~j - - l~ j t l t j  - - l l l t j l l z j  --Tttj  

-l~j -1, j~ni j  - l , ~n , j  l'~j 1, jm,j  l , jn  U 
- I u m  0 -m~j  - - l l l z j t t i j  l t j l l l~ j  m 2 tj II~ zj ~ zj 

2 - - l , jn ,  3 - m , j n . , j  -7~2,j l , j n , j  m i j n , j  n,j . 

(9.13) 

Consistent Load Vector 
The consistent load vectors can be computed  using Eqs. (8.88)-(8.90)" 

-.(e) / f /  pi - - l o a d  vector due to initial ( thermal)  s t r a i n s -  [B]T[D]~0 dV 

I 

J ' { - 1 / / }  { -1 }1  (9.14) = A 1/I [ E ] { o T } . d x - A E ~ , T  
() 

] / / -  /7b (e) -- load vector due to constant body force (o0) - [-\ ' ]TodV 
~ - ( e )  

f ' -  
= A -/ {o0} d.r - oo..tl 1 (9.15) 

0 (~'//) 2 1 

The  only surface stress that  can exist is px and this must be applied at one of the nodal  
points. Assuming that  p~. is applied at node 1. the load vector becomes 

-~(e) / /  p~, - [ . \ - ]~ { 

q , l , l  
-1  

{} / /  {'} 1 dS1 -p{}-41 0 px}dS1 - p 0  0 

,b" 1 

(9.16) 

where px - p0 is assumed to be a constant  aIld t he subscript 1 is used to denote  the node. (1} 
The mat r ix  of shape functions [N] reduces to 0 since the stress is located at node 1. 

Similarly. when px - p0 is applied at node 2. the load vector becomes 

// (}// {o} 
-.(~) T 0 dS1 - po" .4~ 1 

S.C), , $2 

(9.1"/) 
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The total consistent load vector in the local coordinate system is given by 

-~ =(~) (9.18) -, (e) Jr- PS2 P (~) = ~i (~) + fib (e) + US1 

This load vector, when referred to the global coordinate system, will be 

/5(~)_ [A]Tff{~) (9.19) 

where [A] is given by Eq. (9.9). 

9.2.1 Computation of Stresses 
After finding the displacement solution of the system, the nodal displacement vector (~(~ 
of element e can be identified. The stress induced in element e can be determined, using 
Eqs. (9.6), (9.4), and (9.8), as 

~ - E[B][A](j (~) (9.20) 

where [B] and [A] are given by Eqs. (9.5) and (9.9). respectively. 

E x a m p l e  9.1 Find the nodal displacements developed in the planar truss shown in 
Figure 9.2 when a vertically downward load of 1000 N is applied at node 4. The pertinent 
data  are given in Table 9.1. 

-[ i 
50 I 

Q6 

@1 .,J,..-"=~ Q~ 

04 

L ~  I ~''J~ 2 ~  I I Q3 I 
t I 

. . . . . .  t-~x Q I 
I ,~  ~, I 
I 
I I 

I I ~j 
_1_ - -  100 . . . . .  , 50 ,, ~ 5 0 "  q -  

08 

i P1000 N 
I 
I 
I 
i 
I 100 I 

' l 
2 

dimensions are in cm 

Figure 9.2. Geometry of  the Planar Truss of  Example 9.1. 
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S o l u t i o n  The numbering system for the nodes, members, and global displacements is 
indicated in Figure 9.2. The nodes 1 and 2 in the local system and the local x direction 
assumed for each of the four elements are shown in Figure 9.3. For convenience, the global 
node numbers i and j corresponding to the local nodes 1 and 2 for each element and the 
direction cosines of the line ij (x axis) with respect to the global X and Y axes are given 
in Table 9.2. 

Table 9.1. 

Member Cross-sectional 
number area Length Young's modulus 

"e" A ~) cm 2 l I~/ cm E f~) N/cm 2 

1 2.0 v/2 50 2 • 106 
2 2.0 v/2 50 2 • 106 
3 1.0 v~.5 100 2 • 10 6 

4 1.0 v/2 100 2 x 106 

Table 9.2. 

Global node 

Member corresponding to 

number local node 1 local node 2 
"~" (i) (j) 

Coordinates of local 
nodes 1 (i) and 2 (j) 

in global system 

X, Y, X~ Y3 1,j 

Direction 
cosines of 

line ij  

mi 3 

1 3 0.0 0.0 50.0 50.0 1 / v/-2 
3 2 5o.o 50.0 loo.o o.o 1 /v~  
3 4 50.0 50.0 200.0 100.0 1.5/V/-2.5 
2 4 100.0 0.0 200.0 100.0 1 / v ~  

l /v /2  
- l / v / 2  

0.5/v/g.5 
1 / x/-2 

2 | 

2 

| 

j x 
oi /  2 

| i 

Figure 9.3. Finite Element Idealization. 
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The stiffness matrix of element e in the global coordinate system can be computed from 
[obtained by deleting the rows and columns corresponding to the Z degrees of freedom 
from Eq. (9.13)] 

[K(~ = A(e)E (~) 
l(e) 

[ 2 -l~j - l i jmi j]  Q2,-1 Global 
lij l~jm~j degrees of 

/ 
2 I Q2i freedom I lijmij mi~ --lijmij --m U 

correspond- / 
--li 2 - - l i j m i j  1,j 

me , j ing to diff- 
L--lijrrtij - -m i  2 li3 m i j  z3 Q23 erent r o w s  

Q2i--1 Q2i  Q2j- -1  Q2j 
�9 , �9 _~.._ 

Global degrees of freedom corres- 
ponding to different columns 

Hence, 

Q1 Q2 Q5 Q6 

[K(1)]_ (2.0)(2• I_1/2 1/2 -1/2  -1/21 Q1 
v~50 1/2 1/2 -1/2  -1 /2  Q2 

1 / 2 - 1 / 2  1/2 1/2 Q.~ 
1 / 2 - 1 / 2  1/2 1/2 Q(~ 

I li 1111 lil 
-1  1 

1 1 

[K(2)] = (2.0)(2 • 106) 
v~ 50 

(2V/-2) • 10 4 N/cm 

Q5 Q~ Qa Q4 
I 1/2 -1 /2  -1 /2  1/2] 

1/2 1/2 1/2 - 1 / 2  / _ 

-1/2 1/2 1/2 -1/2 / 
1/2 -1 /2  -1 /2  1/2j 

I 1 1 1 lil 1 1 1 - 
1 1 1 

1 1 -1 

(2x/~) x 104 N/cm 

[K(3)] = (1.0)(2 x 106) 
v~.5 100 

Q5 Q6 Q7 
2.25 0.75 -2.25 
2.50 2.50 2.50 
0.75 0.25 -0.75 
2.50 2.50 2.50 

-2.25 -0.75 2.25 
2.50 2.50 2.50 

-0.75 -0.25 0.75 
2.50 2.50 2.50 

Q5 
Q~ 

Q~ 

Q8 

-0.75 - 
2.50 

-0.25 
2.50 
0.75 
2.5O 
0.25 
2.50 

Q5 

Q6 

Q7 

Q8 
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9 3 - 9  - 3  

_ 3 1 3 - 1  

- 9  - 3  9 

- 3  - 1  3 

Q3 Q4 

1 1 

2 2 [/,.(~]_ (1.o)(2 • lO ~) ~ 1 
100 2 2 

1 1 

2 2 
1 1 

2 2 

I1 1 _1 _11 _ i 1 -1 - 

1 - 1  1 

1 - 1  1 

( 8 ~ )  x 10 2 X / c m  

Q7 

1 

2 
1 

Q8 
1 

2 i Q~ 
2 
1 Qs 

(5v/2) x 103 N / c m  

These element matr ices  can be assembled to obtain  the global stiffness matr ix .  [/)']. as 

[/s = 10 8 

Q~ Q2 Q:~ Q4 Q:, 
2ovq 2Ovq o o - 2o v/52 

2Ov~ 20,/5 o o -2o, /5  

0 0 20,/~ -2ov~ -~0,/~ 
+.~,/5 +.~,/5 

o o -2o,,~ 2ov~ 

Q~ Qr Q, 
-2ov~ o o 

-2ov~ o o 

2Ov~ -5,/5 - 5 v ~  

20,/5 -2Ov~ -5~/~ -.~,/5 

-20, /5  -20v~ -2o, /5 20,/5 20,/5 2ov~ 
+20,/5 -2Ov~ 

- , - 7 . 2 ~  +2.42,/72.5 

- 2 0 , / 5  - 2 0 , / 5  20,/~ - 2o ~ 20 v/5 20 v ~  
- 20,/5 + 20,/5 

-2.4 2v~SZ.. -, +o.s~ 

0 -.~,/~2 -5,/~ -7.2 2,/5~..-, -2.4~ 

o o -.~v~ -.~v~ -2.4 2,/g~..~ -o.s~ 

- 7.2~ 2/V5.-5 -2.4 2VSZ.5 

7.2~ 2.4~ 
+.5,/5 +.~ ~/-~ 

2.4~ o.8 2,/Tg.5 
+5,/5 +5,/~ 

QI 

Q2 

Q3 

(?4 

Q5 N/cm 

Q6 

Qr 

Q~ 

Thus.  the global equat ions  of equi l ibr ium can be expressed as 

where 

Q1 

~_ (22. 

Q~ 
and 

e l  

_ P2 
p -  . 

L 
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By deleting the rows and columns corresponding to the restrained degrees of freedom 
(Q1 = Q2 = Q3 - Q4 - 0), Eq. (El) can be written as 

[K](~ - / 5  (E2) 

where 

40v/2 + 7.2v'~.5 
2.4v~.5 

[K] = 103 
-7.2v/2.5 

-2 .4~.5  

-- Q6 
Q = Q7 and 

Q~ 

2 . 4 ~  

40v~ + 0.8v/-~.5 

- 2 . 4 ~  

-o.8,/Y.5 

/ f i =  p~ _ 0 

P~ :0 
P8 -1  0 

-7.2 2~.5 - 2 . 4 ~  ] 
-2.4~.5 -o.8,/-~ ] 
5v~ + 7.2 2v'~.5 5v~ + 2 .4 , /~ |  
5V/2 + 2 . 4 ~  5V~ + 0 . 8 ~ J  

/ 

The solution of Eqs. (E2) gives the displacements as 

N/cm 

Q5 = 0.026517 cm 

Q6 -- 0.008839 cm 

Q7 --- 0.347903 cm 

Q8 = -0.560035 cm 

E x a m p l e  9 . 2  

in Example 9.1. 
Find the stresses developed in the various elements of the truss considered 

So lu t ion  The nodal displacements of the truss in the global coordinate system (including 
the fixed degrees of freedom) are given by 

Q -  

Q1 
Q2 
Q3 
Q4 = 
Q~ 
Q~ 
Q~ 
Qs 

0 
0 
0 
0 

0.026517 
0.008839 
0.347903 

-0.560035 

cm (El) 

The nodal degrees of freedom of various elements, in the global coordinate system, can be 
identified from Figures 9.2 and 9.3 and Eq. (El) as 

Q~) Q1 o 
Q~) Q~ o 

- -  - -  - -  c m  ( E 2 )  0(1) Q(1) Q5 0.026517 

QO) Q6 0.008839 
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Q~2) 

Q(?) 

Q~4) 

~ ( 4 ) _ _  Q ( 4 )  

Qi  4) 

Q5 0.026517 

= Q6 0.008839 

Qa o 

Q4 o 

Q5 0.026517 

_ Q6 _ 0.008839 

Q7 0.347903 

Q8 -0 .560035  

c m  

c n l  

Q3 o " 

Q4 0 
- -  - -  c n l  

Q7 0.347903 

Q8 -0 .560035  

(E3) 

(E4) 

(E~) 

As indicated  in Eq. (9.20), the  axial stress developed in e lement  e is given by 

= E(~) [ 1 1 

L l(~) l(~) [ 112(e) m12(e) 0 0 ] 

0 0 ll2 (e) m12 (r 

Q~e) 

Qi ~) 

(E~) 

Equa t ion  (E2) can be simplified as 

)-nt-lrt~2)Q(2e)) .+-~e)(l{2)Q~e)-t-rrl~e2)Q(e))} ( E T )  

which yields the  following results:  

E l e m e n t  1: E (1) = 2 • 106 N / c m  2 l(1) _ 70 7107 cm. l'11)' 
( 1 )  

�9 �9 2 ~ / 7 1 1 2  

i 1 ,2 ,3  4 are given bv Eq (E2) so tha t  _(1) 707.1200 N / c m  2 , , . �9 O X X  - -  . 

- 0.707107, QI 1) 

( 1 )  
E l e m e n t  2: E (2) - 2 x 106 N / c m  2�9 l (2) - 70.7107 cm, 1 (2)12 = 0.707107, rn12 -- 

-0 .707107 ,  QI 2), i -  1, 2.3,  4, are given by Eq. (E3) so tha t  cr(~2~ ) - - 3 5 3 . 5 6 0  N / c m  2. 

, 1(3) -- 0.948683, __(2) _ 0.316228, E l e m e n t  3: E (3) = 2 •  106 N / c m  2 /(3) _ 158.114 cm, ~12 'Ht12 

_(3) _ 1581 132 N / c m  2 -~i O(3), i -  1,2, 3, 4, are given by Eq. (E4) so t ha t  O x x  �9 �9 

E l e m e n t  4: E (4) 2 • 106 N / c m  2 l(4) 141.421 cm, l ~  )~ ~ ~ 4 ~ 
: - -  _ _  , / f t l  2 

i 1 2 3, 4, are given by Eq. (Es) so t ha t  _(4) - 2121 .326  N / c m  2 , , , ,i o x x  - -  . 

(4) 
- 0.707107. Q, , 
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ql = v ( x=  O) q3=v(x--I) 

q" = -dX 
dV(x=O) . . . . . . . . . . . . . . . . . . .  

I_ J 
I -"  . . . . . . . . . . .  ' . . . . . . . . . .  - I  

Figure 9.4. 

9.3 BEAM ELEMENT 
A beam is a straight bar element tha t  is primarily subjected to transverse loads. The 
deformed shape of a beam is described by the transverse displacement and slope (rotation) 
of the beam. Hence, the transverse displacement and rotat ion at each end of the beam 
element are t rea ted as the unknown degrees of freedom. Consider a beam element of 
length 1 in the zy plane as shown in Figure 9.4. The four degrees of freedom in the local 
(zy) coordinate system are indicated as ql, q2, q3, and q4. Because there are four nodal 
displacements, we assume a cubic displacement model for v(z) as (Figure 9.4) 

V(X) -- O~1 -~ ~2X -Jr- Ct3 x2 Jr- Ct4X 3 (9.21) 

where the constants al-a4 can be found by using the conditions 

dv 
v ( z ) = q l  and ~-~z(z)=q2 at z - 0  

and 

dv (z) = q 4  at z = l v(z)=q3 and ~zz 

Equat ion (9.21) can thus be expressed as 

v(x) = i x ]  
l x l  1 x 4 4 x l  

(9.22) 

where IN] is given by 

[N]-~  [N1 ~r2 N 3 - ~ 4 ]  
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~v 
o-ix I 

! 

_ _ .  J 4 _ .  . 
' 0 v  

,i.~--" u = -Y ~~ 

F i g u r e  9.5. Deformation of an Element of Beam in xy Plane. 

with  N l ( x )  - (2.r 3 - 3lz  2 + / 3 ) / l  3 

x ~ ( . )  - ( . ~  - 2z~ .~ + t ~ . ) / l  ~ 

. ~ ( . )  = _ ( 2 ~  ~ _ 3 t ~  ~ - ) / ~  

. \ ~ ( . )  = (x ~ _ t~ ~ ) / ~  

_ q2 (9.24) and  q = qa 

q4 

(9.23) 

Accord ing  to simple b e a m  theory', p lane  sections of the  beam remain  plane after  defor- 

ma t ion  and  hence the  axial  d i sp lacement  u due to the  t ransverse  d i sp lacement  v can be 

expressed as (from Figure  9.5) 

05'  

u = - g o a .  

where  y is the  d is tance  from tile neu t ra l  axis. The  axial s t ra in  is given bvt  

6) U ~)2 U 
~ ~  = Ox - - g ~  [/3]r (9.25) 

where  

g 
[ B ] - - ~ { ( 1 2 , r - 6 / )  / ( 6 a ' - 4 1 ) - ( 1 2 x - 6 1 )  / ( 6 x - 2 / ) }  (9.26) 

t If the nodal displacements of the element, ql. q2. qa and q4. are known the stress distribution in 
the element, ~xx, can be found as 

where ~ z z ( z ,  9) denotes the stress ill the element at a point located at distance z from the origin 
(in horizontal direction from the left node) and g from the neutral axis (in the vertical direction). 
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Using Eqs. (9.26) and (8.87) with [D] : [El, the stiffness matrix can be found as 

l 

[k(~)] = / / / [ t 3 ]  7 [D] [ B ] d V - E  f dx/J'[B] T [B]dA 

V(e) o .4 

EIzz 

q~ q2 q3 q4 

~ J 
61 412 -61 212 q2 
12 -61 12 [ - -61 q3 
61 212 -61 4l 2 q4 

(9.27) 

where Izz = ffA y2. dA is the area moment of inertia of the cross section about the 
z axis. Notice that  the nodal interpolation functions N,(x) of Eq. (9.23) are the same as 
the first-order Hermite polynomials defined in Section 4.4.5. 

9 .4  SPACE F R A M E  E L E M E N T  

A space frame element is a straight bar of uniform cross section that  is capable of resisting 
axial forces, bending moments about the two principal axes in the plane of its cross section, 
and twisting moment about its centroidal axis. The corresponding displacement degrees 
of freedom are shown in Figure 9.6(a). It can be seen that  the stiffness matrix of a frame 
element will be of order 12 x 12. If the local axes (xyz system) are chosen to coincide with 
the principal axes of the cross section, it is possible to construct the 12 x 12 stiffness matrix 
from 2 x 2 and 4 x 4 submatrices. According to the engineering theory of bending and 
torsion of beams, the axial displacements ql and q7 depend only on the axial forces, and 
the torsional displacements q4 and ql0 depend only on the torsional moments. However, for 
arbitrary choice of xyz coordinate system, the bending displacements in xy plane, namely 
q2, q6, q8, and q12, depend not only on the bending forces acting in that  plane (i.e., shear 
forces acting in the y direction and the bending moments acting in the xy plane) but also 
on the bending forces acting in the plane xz. On the other hand, if the xy and xz planes 
coincide with the principle axes of the cross section, the bending displacements and forces 
in the two planes can be considered to be independent of each other. 

In this section, we choose the local xyz coordinate system to coincide with the princi- 
pal axes of the cross section with the x axis representing the centroidal axis of the frame 
element. Thus, the displacements can be separated into four groups, each of which can 
be considered independently of the others. We first consider the stiffness matrices corre- 
sponding to different independent sets of displacements and then obtain the total stiffness 
matrix of the element by superposition. 

9.4 .1  Axial Displacements 
The nodal displacements are ql  and q7 (Figure 9.6b) and a lineal" displacement model 
leads to the stiffness matrix (corresponding to the axial displacement) as 

ql  q7 

[k~,]= f f f [ , ] ~ [ , ] [ , ]  d V -  -AE[ 1 - I ]  ql  
- 1 q7 

v(e) 

(9.28) 
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where A, E, and 1 are the area of cross section. Young's modulus, and length of the 
element, respectively. Notice that  the elements of the matrix [kl, ~)] are identified by the 
degrees of freedom indicated at the top and right-hand side of the matrix in Eq. (9.28). 

9.4.2 Torsional Displacements 
Here, the degrees of freedom (torsional displacements) are given by q4 and ql0. By assum- 
ing a linear variation of the torsional displacement or twist angle, the displacement model 
can be expressed as 

0 ( x ) -  [.\;]~ (9.29) 

where 

(9.30) 

% 

Y 

qs 
q4 

z 

(a) Element with 12 degrees of freedom 

Z 

.,1o 
(b) Axial degrees of freedom 

Figure 9.6. A Space Frame Element. 



(c) Torsional degrees of freedom 

qa 

q 1 2 ~  
7 x 

q~ 

~k~) q~ 

(d) Bending degrees of freedom in xy plane 

X 

y . f "  . ~ "  ~ qll 

q~ 

~ , - - - . - , , , i , z  

q3 '•q9 
ql 1 

- - - - ~ x )  

(e) Bending degrees of freedom in xz plane ", 

q5 

Figure 9.6. (Continued) 

q3 
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and 

qt - ql0 

Assuming the cross section of the frame element to be circular, the shear strain induced 
in the element can be expressed as [9.1] 

dO 
e0, - r d.r (9.32) 

where r is the distance of the fiber from the centroidal axis of the element. 
Thus, the strain-displacement relation can be expressed as 

g '= [B]q~ (9.33) 

F F] 
where ~ '={e0x} and [ B ] - - ) -  -/ 

From Hooke's law, the stress-strain relation can be expressed as 

d : [D]~" (9.34) 

where ~ = {cr0x}. [ D ] -  [G]. 

and G is the shear modulus of the material. The stiffness matrix of the element 
corresponding to torsional displacement degrees of freedom can be derived as 

[k} e)] - / / / [ B ] r [ D ] [ B ]  dI" 

~-(e) 

1 , 1 {_~_ 
= G /  d x / f  r2 dA 

x=O .4 

1 7} 
(9.35) 

Since f f A  r2 d A  -- J - polar moment of inertia of the cross section. Eq. (9.35) can be 
rewritten as 

[k~ ~)] - - ~  
q4 qlo 

1 --I] q4 
--1 qlo 

(9.36) 

Note that  the quantity G J~1 is called the torsional stiffness of the frame element [9.1]. 
If the cross section of the frame element is rectangular as shown in Figure 9.7, the torsional 
stiffness is given by (G J~1) - cG(ab3/1),  where the value of the constant c is given below: 

Value of a/b  1.0 1.5 2.0 3.0 5.0 10.0 

Value of c 0.141 0.196 0.229 0.263 0.291 0.312 
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I 

~ x 

, ~  O(x) 

\ 

1 
I 
I 
t 

%,,,,, 
�9 \ 

\ 

Figure 9.7. Rectangular Section of a Frame Element. 

9.4.3 Bending Displacements in the Plane xy 

The four bending degrees of freedom are q2. q6, q8, and q12 [Figure 9.6(d)] and the 
corresponding stiffness matrix can be derived as (see Section 9.3) 

q2 q6 q8 q12 

I 12 61 -12  6l ] q2 
EI.~z 61 412 -6 l  2/2 q6 

[ k ( ~ ) ] - 1 3  12 -61 12 - - 6 l  [ q8 
61 212 -6 l  4/2J q12 

(9.37) 

where Iz~ = f fA  ~/2 dA is the area moment of inertia of the cross section about the z axis. 

9.4 .4  Bending Disp lacements  in the Plane x z  

Here, bending of the element takes place in the xz plane instead of the xy plane. Thus, 
we have the degrees of freedom q3, qs, q9, and qll [Figure 9.6(e)] in place of q2, q6, qs, and 
q12 [Figure 9.6(d)], respectively. By proceeding as in the case of bending in the plane xy, 
we can derive the stiffness matrix as 

q3 q5 q9 qll  

Ik :)l- 6z 4t -6z  2t qa 
L ~ z J  /3 -12  -61 12 -6 l  q9 

61 212 -6 l  412 ql 1 

(9.38) 
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where I~y denotes the area moment  of inertia of the cross section of the element about  
the y axis. 

9.4.5 Total Element Stiffness Matrix 
The stiffness matrices derived for different sets of independent  displacements can now be 
compiled (superposed) to obtain the overall stiffness matr ix  of the frame element as 

[k (e) ] 

12 • 12 

ql q2 

E A  

1 
1 2 E I z z  

0 

q3 q4 q5 q6 qr q~ q9 q lo  q l l  q12 

1 2 E I u v  

S v n l l n e t r i c  

13 

G J  
0 0 0 

l 
0 - - 6 E I u u  4 E I  

0 uu 
l 2 I 

6EI=z  4 E I : :  
0 0 0 0 

12 l 
E A  E A  

0 0 0 0 0 
1 l 

- 1 2 E I  zz - 6 E I . .  1 2 E I  ~..~ 
0 0 0 0 ~" 0 

l 3 12 13 

- 1 2 E I ~  6 E I  u~ 1 2 E I ~ u  
0 0 0 0 0 0 

13 12 l 3 

- G J  G J  
0 0 0 0 0 0 0 0 

l l 
- 6 E I  2 E I  6 E I u y  

0 0 uy  0 uu 0 0 0 0 
l 2 l l 2 

6EI== 2 E I . -  - 6 E I = =  
0 0 0 0 "" 0 0 0 

12 1 l 2 

4 E I u y  

4 E I = :  

q3 

q4 

q6 

q7 

q8 

qlo  

q l l  

q:2  

(9 . 39 )  

9.4.6 Global Stiffness Matrix 
It can be seen tha t  the 12 • 12 stiffness matr ix  given in Eq. (9.39) is with respect to 
the local x y z  coordinate system. Since the nodal displacements in the local and global 
coordinate systems are related by the relation (from Figure 9.8) 

-lo~ mo~ nox 0 0 0 0 0 0 0 0 0 -  
lo, moy noy 0 0 0 0 0 0 0 0 0 
lo~ mo~ noz 0 0 0 0 0 0 0 0 0 
0 0 0 lo~ mo~ no,: 0 0 0 0 0 0 
0 0 0 lo~ moy no~ 0 0 0 0 0 0 
0 0 0 lo~ too: no~ 0 0 0 0 0 0 
0 0 0 0 0 0 lo~ mo~. no~ 0 0 0 
0 0 0 0 0 0 loy moy noy 0 0 0 
0 0 0 0 0 0 lo= too= no~ 0 0 0 
0 0 0 0 0 0 0 0 0 lo~ mo~ no~ 
0 0 0 0 0 0 0 0 0 loy mo~ noy 
0 0 0 0 0 0 0 0 0 lo~ too= no~ 

~ 6 i  

Q6z 

96~ 

9 6 i  

Q6, 
~ 6 i  

~ 6 j  

963  

~ 6 j  

~ 6 j  

~6r 
Q6:  

- 5  

3 

2 

1 

5 

4 

3 

2 

1 

(9.40) 
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Y 

0 1 . . . . .  ~ X  
I 

i 

I 
I 

Z 

6j- 4 

8 
, 

/ /  ooj_  
Q6i-4 / /  

\ 

I ~ _  ~ e6 i -  3 
t- k'%--q3 - - 

I "16 

I 

Q6i~~ 3Q6 i 

- ~ . o 6 j _  8 
O6j-2 

Figure [}.8. Local and Global Degrees of Freedom of a Space Frame Element. 

t he  t r a n s f o r m a t i o n  ma t r ix ,  [A], can  be ident if ied as 

12 • 12 

[[~] [o] [o] [o]] 
- / [ ~  [~] [o] [o]/ 

/[~ [o] [_~] [o]/ 
L[o] [o] [o] [-~]3 

(9.41) 

where  

I lox mox 11,ox 1 
[A] -- l oy m oy n o y  

3 • 3 lo~ m o ~  no~ 

(9.42) 
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and 

3 x 3  
(9.43) 

Here, lox, rnox, and no,: denote  the  direct ion cosines of the x axis (line i j  in Figure  9.8); 
loy, rnov, and noy represent  the direct ion cosines of the 9 axis: and lo:, moz, and noz 

indicate the  direct ion cosines of the  z axis with respect  to the global X,  Y, Z axes. It can 
be seen tha t  finding the direct ion cosines of the a" axis is a s t ra ightforward compu ta t ion  
since 

lo~ X j  - X ,  Yj - }; Z a - Z ,  (9.44) 
- I " t o o .  = 1 1~o~ = l 

where Xk, Yk, Zk indicate tile coordinates  of node k (k = i . j )  in the global system. 
However, the computa t ion  of the direct ion cosines of the .q and z axes requires some 
special effort. Finally. the stiffness mat r ix  of the element  with reference to the global 
coordinate  sys tem can be obta ined  as 

[A "(~'~] : [A]r[k(~/][A] (9.45) 

T r a n s f o r m a t i o n  M a t r i x  

We shall derive the  t r ans fo rmat ion  mat r ix  [A] between the local and global coordinate  
sys tems in two stages. In the first stage, we derive a t r ans format ion  mat r ix  [A1] between 
the global coordinates  X Y Z  and tile coordinates  :r 9 z bv assuming the 5 axis to be 
parallel  to the X Z  plane [Figure 9.9(a)]: 

{x} 0 --[,~1] Y" 
Z 

(9.46) 

In the  second stage, we drive a t r ans fo rmat ion  mat r ix  [A2] between the local coordinates  
z y z  (principal member  axes) and the coordinates  z y z as 

{x} 
z 5 

(9.47) 

by assuming tha t  the local coordinate  sys tem (z~Iz) can be obta ined bv ro ta t ing  the z g z 
sys tem abou t  the 2 axis bv an angle a as shown in Figure 9.9(b). Thus,  the  desired 
t r ans fo rmat ion  between the z y z  sys tem and the X Y Z  sys tem can be obta ined as 

[_~] = [k2][kl] (9.48) 

where 

{X} -[_~] ~- 
Z 

(9.49) 
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SPACE FRAME ELEMENT 
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(a) 2-axis parallelto XZ plane (principle cross sectional 
axis y and z are assumed to coincide with ,~ and z-') 

I 

,,~(x) 

9 

f j 
j J  

0~, I ,  1 1  

view as seen from +x direction 

(b) General case (y and z do not coincide with ~ and z~ 

Figure 9.9. Local and Global Coordinate Systems. 

Expression for [A1] 
From Figure 9.9(a), the direction cosines of the longitudinal  axis of the frame element  
(~ or z or first local axis) can be obta ined as 

loz  = lo~ - -  X j  - X ,  
1 

~ o ~  = m o ~  = r j  - ~ ( 9 . 5 0 )  
l 

T t o 2  - -  T t o z  - -  
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where i and j denote the first and second nodes of the element e in the global system, and 
1 represents the length of the element e: 

1 = { ( x ,  - x , )  ~ + ( ~  - ~;): + (z~  - z , ) ~ }  ' /~  ( 9 .5~ )  

Since the unit vector k (which is parallel to the 5 axis) is normal to both the unit vectors 

J (parallel to Y axis) and ~" (parallel to 2 axis), we have, from vector analysis [9.2]. 

lit x J I - ~ lo~ ~OXl n;~ = - ~ ( - f n o x  + K, lox) (9.52) 

where 

d -  (12o:~ + n~x) 1/2 (9.53) 

Thus, the direction cosines of the 2, axis with respect to the global X Y Z  system are 
given by 

los = no~ lox (9.54) d ' m o ~ - O ,  n o z -  d 

To find the direction cosines of the ~0 axis, we use the condition that  the ~ axis (unit 
_ _-~ 

vector j) is normal to the 2 axis (i) and 2 axis (k). Hence. we can express j as 

I J K 
j -  k x i -  los -rno~ nos 

lox mox nox 

1 : ( -  .2 ] 
= - no~ - l o x )  + B [ ( - m o x n o x )  (9.55) 

d 

Thus, the direction cosines of the .0 axis are given by 

Thus, the [A1] matrix is given by 

l o x ~ o x  
1oo = d 

2 2 nox + lox 

7Tl o x Tl o x 
no~ = - d 

lo2 ?Tlo~: 1lo2] 
[~ ]=  lo~ moo r~o~ 

Llo~ m,o~ no~ 

lox mox nox 1 
= -(~ox~o~)/d (tL + , , L ) / d  -(,~o~,~ox)/d 

-,~ox/d 0 lo~/d 

where lox, rno~, no~ are given by Eq. (9.50) and d by Eq. (9.53). 

(9.56) 

(9.57) 
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Expression for [X2] 
W h e n  the principal  cross-sectional axes of the frame element  (xyz axes) are arbi trary,  
making  an angle c~ with  the x y z axes (x axis is same as 2 axis), the t r ans format ion  
between the two sys tems can be expressed as 

{x}[i ~ } y = c o s a  s i n a  ~0 =[A2] 0 
z - s i n a  c o s a  2 2 

(9.ss) 

so tha t  

1 0 0 
[~] = c o ~  ~ ~ i ~  ( 9 . 5 9 )  

- s i n a  cos 

Thus,  the  t r ans fo rmat ion  between the coordina te  axes X YZ and xyz can be found 
using Eq. (9.48). 

N o t e s :  

(i) W h e n  a = 0, the  mat r ix  [A2] degenerates  to a unit  matr ix .  
(ii) W h e n  the e lement  e lies vertical  [i.e., when the x (or 2) axis coincides with the  Y 

axis], lox = nox = 0 and hence d in Eq. (9.53) becomes zero. This  makes some of 
the  te rms  in the [~2] ma t r ix  inde te rmina te .  Thus,  the previous procedure  breaks 
down. 

In this case, we can redefine the  angle c~ as the angle in the horizontal  (XZ)  plane between 
the axes Z and z, positive when tu rn ing  from Z to the X axis as shown in Figure 9.10. 
In this case, the  [_k] ma t r ix  can be derived, by going th rough  the same procedure  as 
before, as 

I 0 mox 0 1 
[__I] - - mo~ cos c~ 0 mox sin a (9.60) 

sin a 0 cos a 

where rnox = 1 for this case. 

[X] Matrix 
Finally, the  t r ans fo rmat ion  matr ix ,  [~], re la t ing the degrees of freedom in the  local and 
global coordinate  sys tems is given by Eq. (9.41). 

9.5 PLANAR FRAME ELEMENT 
In the  case of two-dimensional  (planar)  frame analysis, we need to use an element  having 
six degrees of freedom as shown in Figure  9.11. This  e lement  is assumed to lie in the  X Z  
plane and has two axial and four bending degrees of freedom. By using a l inear interpola-  
t ion model  for axial d isplacement  and a cubic model  for the t ransverse  displacement ,  and 
super impos ing  the resul t ing two stiffness matrices,  the following stiffness mat r ix  can be 
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Figure g.lO. Transformation for a Vertical Element. 

obtained (the vector 0 "(el is taken as 0 "(~r - {ql q2 . . . q 6 } ) "  

[k(e)]_ E I y y  
13 

.4l 2 
Iyy Symmetric 

0 12 
0 61 413 

AI 2 AI 2 
0 0 

Iyy Iyy 

0 -12  -61 0 12 
0 61 21' 0 -61 4l 2 

I9.61) 
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Figure 9.11. 

Note that the bending and axial deformation effects are uncoupled while deriving 
Eq. (9.61). Equation (9.61) can also be obtained as a special case of Eq. (9.39) by deleting 
rows and columns 2, 4, 5, 8, 10, and 11. In this case the stiffness matrix of the element in 
the global X Z  coordinate system can be found as 

[K (~)] -[a]~[t~(~)][~] (9.62) 

where 

VZo~ mo~ 0 0 0 0 
i 

|Zo~ ~o~. 0 0 0 0 ~ 

[A]: 100 0 1 0 0 i (9.63) 0 0 0 lox 777~ o x  

0 0 lo~ mo~ 
0 0 0 0 
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(a-~)l= q2 Ol~- . . . . . . . . . . . . . . . . . . .  

L= vY 

O 1 r  - -  4 b  X 

= J  

Figure 9.12. Degrees of Freedom of a Beam Element. 

with (lox,rno~.) denoting the direction cosines of the z axis and (lo:,moz) indicating the 
direction cosines of the z axis with respect to the global XZ system. 

{t.5.1 Beam Element 
For a beam element lying in the local zg plane, the stiffness matr ix is given by 

EI~ 6l 4l ̀2 -6l 
[kr - l 3 12 -61 12 / - -61 (9.64) 

6l 212 - 6 l  412 J 

The stiffness matr ix in the global XY plane (Figure 9.12) can be found as 

[K (~) ] -  [A] T [k/~)] [A] (9.65) 
6 x 6  6 •  4 x 4  4 x 6  

where the t ransformation matr ix [X] is given by 

loy no~ 0 0 0 Oil 
[A]__ , 0  0 1 0 0 

L: 0 0 loy noy 
0 0 0 0 

(9.66) 

where (loy, noy) are the direction cosines of the g axis with respect to the X Y  system. 

9.6 C O M P U T E R  PROGRAM FOR FRAME ANALYSIS 
A Fortran subroutine called F R A M E  is wri t ten for the displacement analysis of three- 
dimensional frame structures.  The load vector has to be either generated or given as da ta  



COMPUTER PROGRAM FOR FRAME ANALYSIS 335 

in the main program tha t  calls the subrout ine  F1RAI~IE. The subrout ine  F R A M E  requires 
the following quant i t ies  as input" 

NN 

NE 

ND 

NB 

M 

LOC 

CX,CY,CZ - 

E 

G 

A 

YI,ZI 

T J  

A L P H A  

IVERT 

NFIX 

IFIX 

= total  number  of nodes in the frame s t ruc ture  (including the fixed nodes). 

= number  of finite elements.  

= to ta l  number  of degrees of freedom (including the fixed degrees of freedom). 
Six degrees of freedom are considered at each node as shown in Figure 9.8. 

= bandwid th  of the overall stiffness matr ix.  

- number  of load conditions. 

= an array of dimension NE x 2. LOC (I,J) denotes  the global node number  
corresponding to J t h  corner of element  I. It is assumed tha t  for vertical 
e lements  the b o t t o m  node represents  the first corner and the top node the 
second corner. 

vector arrays of dimension NN each. CX (I). CY (I), CZ (I) denote  the 
global X,  Y, Z coordinates  of node I. The global (X, Y, Z) coordinate  
sys tem must  be a r ight -handed sys tem and must  be set up such tha t  the 
X Z plane represents  the horizontal  plane and the Y direction denotes  the 
vertical  axis. 

= Young's  modulus  of the material .  

= shear modulus  of the material .  

= a vector array of dimension NE. A (I) denotes  the cross-sectional area of 
element  I. 

= vector arrays of dimension NE each. YI (I) and ZI (I) denote  the area 
momen t  of inert ia  of the cross section about  the local g and z axis, 
respectively, of element  I. It is assumed tha t  the local zyz  sys tem is also 
r ight-handed,  with the line going from corner 1 toward corner 2 repre- 
senting the z axis of the element.  For convenience, we take the principal 
cross-sectional axis running parallel  to the longer dimension of the cross 
section (in the case of rectangular ,  I and H sections) as the z axis. If 
this is not possible (as in the case of circular section), we take any of the 
principal cross-sectional axes as the z axis. 

= a vector array of dimension NE. TJ  (I) denotes  the torsional  constant  (g) 
of e lement  I. 

= a vector array of dimension NE. A L P H A  (I) represents  the value of a for 
e lement  I (radians).  If the e lement  I is vertical, a denotes  the angle tha t  
the z axis makes with the Z axis as shown in Figure 9.10. For nonvert ical  
elements,  a denotes  the angle tha t  the z axis makes with the horizontal  (~" 
axis) as shown in Figure 9.9(b). 

= a vector array of dimension NE denot ing the or ientat ion of the element.  
IVERT (I) is set equal to 1 if e lement  I is vertical and 0 otherwise. 

= number  of fixed degrees of freedom (zero displacements) .  

= a vector array of dimension NFIX. IFIX (I) denotes  the I t h  fixed degree of 
freedom number.  

= an array of size ND x M to store the global load vectors. Upon re turn  from 
the subrout ine  F R A M E ,  it gives the global displacement  vectors. P (I,J) 
denotes  the I t h  component  of global load (or displacement)  vector in J t h  
load condition. 
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Figure 9.13. A Three-Dimensional Frame. 

In addit ion to the input data.  the array GS of size ND x NB and the vector array DIFF  
of size M are included as arguments  for tile subroutine FRAXIE. The array GS represents 
the global stiffness matr ix  of the s t ructure  in band form. The array DIFF  is a dummy 
array defined in double precision. The subroutine FRAI~IE calls the following subroutines: 

MATMUL �9 for mult ipl ication of two matrices 
D E C O M P  and SOLVE �9 for the solution of load deflection equations 

[Given in Section T.2.2(v)] 

E x a m p l e  9.:2 To il lustrate the use of the subrout ine FRA~IE,  tile three-dimensional  
rigid frame shown in Figure 9.13 is analyzed for the following load conditions: 

(i) V~rhen a vertically downward load of 10 N acts at node 2. 
(ii) When  a uniformly distr ibuted downward load of intensity 1 N / c m  acts on 

members  1 and 2. 

Nodes 1, 3, and 4 are fixed. The data  of the elements are 

a =  1 cm. b = 2 c m ,  l = 2 0 c m ,  

E = 2 x  106 N / c m  ~. G = 0 . S x  106 N / c m  2 
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Data for the Subroutine 
The  global (X,  Y, Z) coord ina te  sys tem is selected as shown in Figure  9.13. The  corner  
number s  and the  local (z ,p ,z)  coord ina te  axes of the various e lements  and the  global  
degrees of f reedom chosen are indica ted  in F igure  9.14. The  cross-sect ional  p roper t ies  of 
e lement  I can be c o m p u t e d  as follows: 

A (I) = cross-sect ional  area  = ab = 2 cm 2 

1 1 m4 ZI (I) - a rea  m o m e n t  of iner t ia  abou t  the  z axis = ~ba3 _ -6 c 

1 ba 2 YI (I) = area  m o m e n t  of iner t ia  abou t  the  g axis - ~-~a = ~ cm 4 

T J  (I) = cbaa(where c = 0.229 for b/a = 2) = 0.458 cm 4 

: I = 1 ,2 .3  

The  o ther  da t a  of the  p rob lem are as follows: 

NN = 4, NE = 3, ND = 24, 

M = 2 ,  N F I X = 1 8  

CX ( 1 ) = 2 0 ,  CY ( 1 ) = 2 0 ,  

CX ( 2 ) =  20, CY ( 2 ) =  20, 

c x  (3)= o, cY (3)= 2o, 

CX ( 4 ) =  20, CY ( 4 ) =  O. 

LOC(1 ,  1) = 3, LOC(1 ,  2) = 2; 

LOC(3 ,  1 ) =  4, LOC(3,  2) = 2 

N B =  ( 2 + 1 )  x 6 =  18 

CZ (1) = 0 

CZ ( 2 ) =  20 

CZ ( 3 ) =  20 

CZ ( 4 ) =  20 

LOC(2, 1) = 1. LOC(2,  2) = 2: 

I V E R T  (1) = I V E R T  (2) = 0 (since e lements  1 and 2 are not  vertical)  

I V E R T  ( 3 ) =  1 (since e lement  3 is vertical)  

A L P H A  (1) = A L P H A  (2) = 0 

A L P H A  (3) = angle m a d e  by the  z axis of e lement  3 with the  Z axis = 90 ~ 

IF IX (1), IF IX ( 2 ) , . . . ,  IF IX (18) = fixed degrees  of f reedom numbers  = 1, 2, 3, 4. 

5 , 6 , 1 3 , 1 4 , . . . , 2 4  

First load condition: 

P(I,  1 )=O for a l l I e x c e p t  I = 8 :  P ( 8 . 1 ) = - 1 0  

Second load condition: 

The  d i s t r ibu ted  load ac t ing on e lements  1 and 2 has to be conver ted  into equivalent  nodal  
forces. For this we use Eq. (8.89): 

l 

/3(e) = / / [ N ] T  ~ d S 1 - j ' [ N ] T p o ' d x  

S~e) o 

(El) 
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Figure 9.14. Global Degrees of Freedom of the Structure. 

/ 
Z 

where �9 - -po  is the intensitv of load per unit length. By subs t i tu t ing  the mat r ix  of 
in terpolat ion functions [N] defined in Eq. (9.21). we obtain 

I I P~176176 (z 3 - 2lz" + 12x)/l 2 -po12/12 
P } ~ )  - - p o  _ ( , 2 ~ 3  _ 3 1 : ~ ) / l ~  d x  - - p o l / 2  - - 

o (.r 3 - I x 2 ) / l  2 -po12/12 - 1 0 0 / 3  

(E:) 

since po = 1 and l = 20. Note tha t  the components  of the load vector given by Eq. (E2) 
act in the directions of ql. q2. q3. and q4 shown in Figure 9.15(a). In the present case, for 
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Figure 9.15. Second Load Condition for the Example Frame. 

e -- 1, we have the si tuation shown in Figure 9.15(b). Here. the degrees of freedom Q14. 
QlS, Qs, and Q12 correspond to ql, q2, qa, and q4 of Figure 9.15(a) and hence the load 
vector becomes 

/ /5 (1)_  Pls _ - 1 0 0 / 3  
Ps - 1 0  
P12 - 1 0 0 / 3  
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However, for e = 2. the situation is as shown in Figure 9.15(c). Here. the degrees of 
freedom Q2, Q4, Qs, and 01o correspond to q~. -q2. qa. and -q4 of Figure 9.15(a) and 
hence the element load vector becomes 

~ _ P~ _ 

P~ lO12/3 P10 

(E4) 

By superposing the two load vectors [~1) and/~2~ and neglecting the components corre- 
sponding to the fixed degrees of freedom (Q14. Q)ls. Q2, and Q4). we obtain the nonzero 
components of the load vector of the second load condition as 

P(S, 2) = -20 

P(10.2) = + 100/3 

P(12.2) = -100/3  

Main Program 
The main program for soh'ing the example problem (which calls the subroutine FRAlkIE) 
and the results obtained from the program are given below. 

C .......... 
c 

c THREE DIMENSIONAL FRAME ANALYSIS 
C 

C-- ......... 

iO 

DIMENSION L0C(3,2) ,CX(4) ,CY(4) ,CZ(4) ,A(3) ,YI (3) ,ZI(3), 

2 TJ(3),ALPHA(3), IVERT(3), IFIX(I8),P(24,2),GS(24,18) 
DOUBLE PRECISION DIFF(2) 
DATA NN,NE,ND,NB,NFIX,M,E,G/4,3,24,18,18,2,2. OE6,0.8E6/ 

DATA LOC/3,1,4,2,2,2/ 
DATA CX/20.0,20.0,0.0,20.0/ 

DATA CY/20.0,20.0,20.0,0.0/ 
DATA CZ/0.0,20.0,20.0,20.0/ 
DATA A/2.0,2.0,2.0/ 

DATA YI/O. 6667,0. 6667,0. 6667/ 
DATA ZI/0.1667,0.1667,0.1667/ 
DATA TJ/0.458,0.458,0.458/ 

DATA ALPHA/O.O,O.O,4.7124/ 
DATA IVERT/O,O, i/ 
DATA IFIX/I,2,3,4,5,6,13,14,15,16,17,18,19,20,21,22,23,24/ 
DO 10 I=I,ND 
DO 10 J=I,M 

P(I,J)=O.O 
p(8, i)=-io.o 
P(8,2)=-20.0 

P(12,2)=-I00.0/3.0 

P(I0,2)=I00.0/3.0 
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20 

30 
40 

CALL FRAME(NN,NE,ND,NB,M,LOC,CX,CY,CZ,E,G,A,YI,ZI,TJ, 

2 ALPHA,IVERT,NFIX,IFIX,P,GS,DIFF) 

PRINT 20 

FORMAT(IX, CDISPLACEMENT OF FRAME STRUCTURE') 

DO 30 J=I,M 

PRINT 40,J, (P(I,J),I=I,ND) 

FOKMAT(/,IX, CINLOAD CONDITION~,I4/(IX,6EI2.4)) 

STOP 

END 

DISPLACEMENT OF FRAME STRUCTURE 

INLOAD CONDITION I 

0.5926E-13 -0.3337E-10 0.4049E-13 0.2914E-11 0.4712E-14 -0.7123E-12 

0.6994E-07 -0.4981E-04 0o4049E-07 0.1644E-05 0.I068E-08 -0.7123E-06 

0.6994E-13 -0.4269E-I0 0.5116E-13 0.1644E-II -0.3570E-14 -0.3380E-II 

-0.7053E-II -0.4981E-10 -0.1640E-I0 -0.8188E-12 0.I068E-14 0.3509E-12 

INLOAD CONDITION 2 

0.8058E-II 0.2127E-08 0.5505E-II -0.I037E-09 0.6406E-12 -0.9685E-I0 

0.9510E-05 -0.I075E-03 0.5505E-05 0.2235E-03 0.1452E-06 -0.9685E-04 

0.9510E-II 0.8611E-09 0.6957E-II 0.2235E-09 -0.4855E-12 0.4037E-I0 

-0.9590E-09 -0.I075E-09 -0.2229E-08 -0.II13E-09 0.1452E-12 0.4771E-I0 

REFERENCES 
9.1 W. Weaver, Jr." Computer Programs for Structural Analysis. Van Nostrand, Princeton. 

NJ, 1967. 
9.2 M.R. Spiegel: Schaum's Outline of Theory and Problems of Vector Analysis and an 

Introduction to Tensor Analysis, Schaum. New York. 1959. 



342 ANALYSIS OF TRUSSES, BEAMS, AND FRAMES 

PROBLEMS 

9.1 Derive the t rans format ion  matr ices  for the members  of the frame shown in 
Figure  9.16. Indicate  clearlv the local and global degrees of freedom for each 
member  separately.  

9.2 Find the  deflections of nodes 2 and 3 of the frame shown in Figure  9.16 under  the 
following load conditions: 

(i) W h e n  a load of 100 N acts in the direction of -~ "  at node 2. 

(ii) W h e n  a load of 100 N acts at node 3 in the direction of Z. 

(iii) W h e n  a d is t r ibuted  load of magn i tude  1 N per unit length acts on member  2 

in the direction o f - Y .  

Assume the mater ia l  proper t ies  as E = 2 x 10 7 N,/cm 2 and G = 0.8 x 10 r N / c m  2. 

Use the subrout ine  F1RAI~IE for the purpose.  
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[ -  75 cm , 

Figure 9.17. 
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Figure 9.18. 

9.3 

9.4 

9.5 

9.6 

Derive the stiffness mat r ix  and load vector of a three-dimensional  t russ element 
whose area of cross section varies linearly along its length. 

Derive the  t ransformat ion  relation [t~r - [k]r[/,'f~}][A] from the equivalence of 
potent ia l  energy in the local and global coordinate  systems. 

Find the nodal  displacements  in the tapered  one-dimensional  member  subjected 
to an end load of 4000 N (shown in Figure 9.17). The cross-sectional area decreases 
linearly from 10 cm 2 at the left end to 5 cm e at the right end. Fur thermore ,  the 
member  experiences a t empera tu re  increase of 25 ~ Use three 25-cm elements  
to idealize the member .  Assume E - 2 • 10 r N / c m  2. t, - 0.3. and o - 6 x 
10 .6  c m / c m - ~  

Derive the equil ibrium equat ions for t he beam-spr ing  system shown in Figure 9.18. 
Star t  from the principle of min inmm potent ia l  energy a~d indicate briefly the 
various steps involved in your finite element derivation. 
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Figure 9.19. 

9.7 Write a subroutine called TRUSS for the displacement and stress analysis of three- 
dimensional truss structures. Using this subroutine, find the stresses developed in 
the members of the truss shown in Figure 9.19. 

9.8 Find the stresses developed in the members of the truss shown in Figure 9.2. 

9.9 The stiffness matrix of a spring, of stiffness c. in the local (:r) coordinate system 
is given by (see Figure 9.20): 

[k]--c[_ll -11] 

9.10 

9.11 

9.12 

9.13 

Derive the stiffness matrix of the element in the global (XY) coordinate system. 

Explain why the stiffness matrix given by Eq. (9.7) or Eq. (9.13) is symmetric. 

Explain why the stiffness matrix given by Eq. (9.7) or Eq. (9.13) is singular. 

Explain why the sum of elements in anv row of the stiffness matrix given by 
Eq. (9.7) or Eq. (9.13) is zero. 

The members 1 and 2 of Figure 9.21 are circular with diameters of 1 and 2 in., 
respectively. Determine the displacement of node P bv assuming the joints to be 
pin connected. 
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9.14 The members  1 and 2 of Figure 9.21 are circular with diameters  of 1 and 2 in., 
respectively. Determine the displacement of node P by assuming the joints to be 
welded. 

9.15 The s tepped bar shown in Figure 9.22 is subjected to an axial load of 100 lb at 
node 2. The Young's moduli  of elements 1, 2, and a are given by a0 x 106, 20 x 106, 
and 10 x 106 psi, respectively. If the cross-sectional areas of elements 1, 2, and a 
are given by 3 x 3 . 2  x 2. and 1 x 1 in.. respectively, determine the following: 

(a) Displacements of nodes 2 and 3. 

(b) Stresses in elements 1. 2. and 3. 

(c) Reactions at nodes 1 and 4. 

9.16 Loads of magni tude  100 and 200 lb are applied at points C and D of a rigid bar 
AB tha t  is suppor ted by two cables as shown in Figure 9.23. If cables 1 and 2 
have cross-sectional areas of 1 and 2 in. 2 and Young's moduli  of 30 x 106 and 

Element 1 

, , ,  

1 �9 �9 2 i , 

! 
, -  ' ioo lb 

,',1 

Element 2 Element 3 

3,1.1 1 
.... ._L 20" - T 

Figure 9.22. 
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20 x 106 psi, respectively, determine the following: 

(a) The finite element equilibrium equations of the system by modeling each 
cable as a bar element.  

(b) The boundary  conditions of the system. 

(c) The nodal displacements of the system. 

Hint: A boundary  condition involving the degrees of freedom Qi and Qj in the 
form of a linear equation: 

a~Q, + a j O ~  = ao 

where a~, aj,  and a0 are known constants  (also known as mult ipoint  boundary  
condition), can be incorporated as follows. 

Add the quanti t ies ca~, ca~aa, ca~ct~, and ca 2 to the elements located at (i, i), 
(i, j ) ,  (j, i), and (j, j ) ,  respectively, in the assembled stiffness matr ix  and add the 
quantit ies caoai and caoaj to the elements in rows i and j of the load vector. Here. 
c is a large number  compared to the magni tude  of the elements of the stiffness 
matr ix  and the load vector. 

9.17 The s tepped bar shown in Figure 9.24 is heated by 100~ The cross-sectional 
areas of elements 1 and 2 are given by 2 and 1 in. 2 and the Young's moduli  bv 
30 x 106 and 20 x 106 psi, respectively. 

(a) Derive the stiffness matrices and the load vectors of the two elements. 

(b) Derive the assembled equilibrium equations of the system and find the 
displacement of node C. 

(c) Find the stresses induced in elements 1 and 2. 

Assume the value of c~ for elements 1 and 2 to be 15 x 10 -6 and 10 x 10 -6 per ~ 
respectively. 

9.18 Consider the two-bar truss shown in Figure 9.25. The element properties are given 
below: 

Element  1 :E1 = 30 x 106 psi, At = 1 in. ~ 

Element  2 :E2  = 20 x 106 psi. A2 = 0.5 in. 2 

The loads acting at node A are given by P1 = 100 and P2 = 200 lb. 

(a) Derive the assembled equilibrium equations of the truss. 

(b) Find the displacement of node A. 

(c) Find the stresses in elements 1 and 2. 

A ~  

Element 1 
Element 2 

_ 

'1 , , .  

" - ----~ x B 

V _ . . . .  

5" - .1. - 10" d T -I 

Figure  9 . 2 4 .  
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P2 

P1 

50" 

Element 1 

t 
1 

I 

I 
I 
1 
L 

I 
X 

i__  . . . -  ....- - - .  --4~ 

Element 2 

L 

20"  ' ,...----,~ .. 20"  

F i g u r e  9 . 2 5 .  

9.19 A beam is fixed at one end, suppor ted  by a cable at the o ther  end, and subjec ted  

to a uniformly d is t r ibuted  load of 50 lb/in,  as shown in Figure 9.26. 

(a) Derive the finite element equil ibr ium equat ions  of the sys tem by using one 
finite element for the beam and one finite element  for the cable. 

(b) Find the displacement  of node 2. 

(c) Find the stress dis t r ibut ion in the beam. 

(d) Find the stress dis t r ibut ion in the cable, 

9.20 A beam is fixed at one end and is subjec ted  to three  forces and three moments  at 
the  other  end as shown in Figure 9.27. Find the stress d is t r ibut ion in the beam 

using a one-beam element  idealization. 

9.21 Dete rmine  the stress dis t r ibut ion in the two members  of the frame shown in 
Figure  9.28. Use one finite element for each member  of the frame. 

9.22 Find the displacement  of node 3 and the stresses in the two members  of the t russ  
shown in Figure 9.29. Assume the Young's  modulus  and the cross-sectional areas 
of the two members  are the same, with E = 30 x l0 G psi and ,4 = 1 in. 2 
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I 0" 

///~ 

Cable, cross-sectional area: 1 in 2 

E = 30 x 106 psi " ~  

/ 
/ 50 Ib/in 
~ "  _ , . . . . . . .  . . . . . .  

1 ~ . . . . . . . . . . . . . . . .  --~ 
- \ 
J Beam, cross-section: 2" x 2", E = 30 x 10 6 psi 

J 

. . . . . .  30 . . . . . . . . .  T--- 

Figure 9 .26 .  

PROBLEMS 

2 

Z 

t 

~I -~.jl ~,~ "-I mm 18ram 

l -" l m  "-I 

(a) (b) 

Figure 9.27. Px = 100 N, M x  - 20 N-m, Py = 200 N, M x = 30 N-m, Pz - 300 N, 

M z  = 40 N-m, E = 205 GPa. 

9.23 A simple model of a radial drilling machine s t ruc ture  is shown in Figure 9.30. Using 
two beam elements for the column and one beam element for the arm, derive the 
stiffness matr ix  of the system. Assume the material  of the s t ruc ture  is steel and 
the foundat ion is a rigid block. The cross section of the column is tubular  with 

inside d iameter  350 mm and outside diameter  400 ram. The cross section of the 
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Member 1 
cross-section: 10 mm x 10 mm 

E = 70 GPa 

. . . . . .  

Y 

I 

Py = 3,000 N 

' , 

t l m  l 

~,._X 

2 m  

r 

v Px= 2,000 N 

M o = 500 N-m 

Member 2: 

cross-section 20 mm x 20 mm 

E = 205 GPa 

\ \ \  

Figure 9.28. 

9.24 

9.25 

arm is hollow rectangular  with an overall depth  of 400 mm and overall width of 

300 ram, with a wall thickness of 10 ram. 

If a vertical force of 4000 N along the z direction and a bending moment  of 
1000 N-m in the z z  plane are developed at point A during a meta l -cu t t ing  
operat ion,  find the stresses developed in the machine tool s t ruc ture  shown in 

Figure 9.30. 

The crank in the s l ider-crank mechanism shown in Figure 9.31 rota tes  at a con- 
s tant  angular  speed of 1500 rpm. Find the stresses in the connect ing rod and the 
crank when the pressure acting on the piston is 100 psi and 0 = 30 ~ The diame- 
ter of the piston is 10 in. and the mater ial  of the mechanism is steel. Model the 
connect ing rod and the crank by one beam element each. The lengths of the crank 

and the connect ing rod are 10 and 45 iI~.. respectively. 
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12 in 

0.5m 

1.5m 

0 

24 in 

Figure 9.29. 

z 

~ ' "  2.5 m 1 

I 
~ 

Arm 

10 Ib 

" " ~  x 

Column 

Foundation (rigid) 

I 

Figure 9.30. 

9.26 A water  tank  of weight IA" is suppor ted  bv a holloa" circular steel column of inner 
d iameter  d, wall thickness t, and height h. The wind pressure act ing on the column 

can be assumed to vary linearly from 0 to p ...... as shown in Figure 9.32. Find the 
bending stress induced in the column under the loads using a one-beam element 
idealization with the following data: 

l/l/" - 15,000 lb, h -  30 ft. d -  2 ft. t - 2 in.. p ...... - 200 psi 

9.27 Find the nodal  displacements and stresses in elements 1. 2. and 3 of the system 

shown in Figure 9.33. Use three bar elements and one spring element for modeling. 
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Figure 9.32. 
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Po 

Figure 9.34. Load per Unit Length Varies from 0 to Po. 

uj 

Q1 Q3 
A �9 

~ I"- " "  

1 
~(2 

Figure 9.35. 

9.28 

9.29 

Data :  A1 = 3 in. 2, A2 = 2 in. 2. .43 = 1 in.". E1 = 30 x 106 psi, E2 = 10 x 106 psi, 

E3 = 15 x 106 psi, ll = 10 ill.. 12 = 20 in.. 13 = 30 in., k = 105 lb/ in .  

A t russ  e lement  of length 1 and cross-sect ional  a rea  A is sub jec ted  to a l inearly 
varying load act ing on the  surface in the axial d i rect ion as shown in F igure  9.34. 
Derive the  consis tent  load vector  of the  e lement  using a l inear in te rpo la t ion  model .  
Also indicate  the l u m p e d  load vector  of the  e lement .  

A b e a m  of flexural  r igidi ty El.  fixed at tile left end. is s u p p o r t e d  on a spr ing of 

stiffness k at  the  right end as shown in F igure  9.35, where  Q~, i = 1, 2 . . . .  ,6 deno te  

the  global degrees  of freedom. 

(a) Derive the  stiffness ma t r ix  of the  sys tem before apply ing  the  b o u n d a r y  
condit ions.  

(b) F ind  the stiffness ma t r ix  of the  sys tem after  app ly ing  the  b o u n d a r y  
condit ions.  

(c) F ind  the d i sp lacement  and slope of the  b e a m  at point  A for the  following 
data :  E I -  25 x l0 G lb-in. 2, 11 - 20 in.. 12 - 10 in., k - 10 a lb/ in . ,  load at  

A (act ing in a vert ical lv downward  direct ion)  - 100 lb. 

9.30 F ind  the stress in the bar  shown in Figure  9.36 using the finite e lement  m e t h o d  

wi th  one bar  and one spr ing element .  

Data :  Cross-sect ional  area  of bar  (A) - 2 in. 2. Young 's  modu lus  of the  bar  (E)  = 
30 x 106 psi, spr ing cons tan t  of the  spr ing (k) - 105 lb/ in .  
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120"  

u 1 . - - ~ u  3 

Figure 9.36. 

P2 .... J,,~ e "  

p, E, 2/, 3g, A 

30 ~ 

p,E,I,t,A 

Y 

l 
Figure 9.37. 

9.31 A two-dimensional frame is shown in Figure 9.37. Using three degrees of freedom 
per node, derive the following: 

(a) Global stiffness and mass matrices of order 9x9 before applying the boundary 
conditions. 
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(b) Global stiffness and mass matr ices  of order 3 x 3 after applying the boundary  
conditions. 

(c) Nodal displacement  vector under  the given load. 

(d) Natura l  frequencies and mode shapes of the frame. 

Data:  E = 30 x 106 psi, I = 2 in. 4. .4 = 1 in. 2, l = 30 in.. p = 0.283 lb/in.  3 (weight 

density),  9 = 384 in. /sec 2 (gravi tat ional  constant) .  P1 = 1000 lb. P2 = 500 lb. 

9.32 Derive the stiffness mat r ix  of a beam element in bending using t r ignometr ic  
functions (instead of a cubic equation)  for the interpolat ion model. Discuss the 
convergence of the result ing element.  
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ANALYSIS OF PLATES 

10.1 INTRODUCTION 

When a flat plate is subjected to both inplane and transverse or normal loads as shown 
in Figure 10.1 any point inside the plate can have displacement components  u. v, and 
w parallel to x, y, and z axes, respectively. In the small deflection (or linear) theory of 
thin plates, the transverse deflection w is uncoupled from the inplane deflections u and 
v. Consequently, the stiffness matrices for the inplane and transverse deflections are also 
uncoupled and they can be calculated independently. Thus, if a plate is subjected to 
inplane loads only, it will undergo deformation in its plane only. In this case, the plate 
is said to be under the action of "membrane" forces. Similarly, if the plate is subjected 
to transverse loads (and/or  bending moments),  any point inside the plate experiences 
essentially a lateral displacement w (inplane displacements u and ~, are also experienced 
because of the rotat ion of the plate element). In this case. the plate is said to be under the 
action of bending forces. The inplane and bending analysis of plates is considered in this 
chapter. If the plate elements are used for the analysis of three-dimensional structures.  
such as folded plate structures,  both inplane and bending actions have to be considered in 
the development of element properties. This aspect of coupling the membrane and bending 
actions of a plate element is also considered in this chapter. 

10.2 TRIANGULAR MEMBRANE ELEMENT 
The tr iangular  membrane element is considered to lie in the x y  plane of a local x y  coordi- 
nate system as shown in Figure 10.2. By assuming a linear displacement variation inside 
the element, the displacement model can be expressed as 

u ( x ,  y )  = c~l + a 2 x  + a:3y 

v ( x ,  y )  = a4  + a s x  + a(~g (10.1) 

By considering the displacements ui and vi as the local degrees of freedom of node i ( i  -- 

1, 2, 3), the constants c~1,... ,  c~6 can be evaluated. Thus, by using the conditions 

u ( x ,  y )  - Ul --  ql and v(x. y) - t'l = q2 at (xi, yl) / 
~(~ ,  v ) -  ~ -  q~ ~i~d ~(~.  v ) -  ~ ' ~ -  q~ ~t ( ~  y~) 

~ (~ ,  v) - ~ - q~ ~ d  ~(~.  v) = ~'~ - q~ ~t (x~, u~) 

(lO.2) 

357 
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Figure 10.1. 
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Figure 10.2. 

%=v3 

3 
(X3' Y3) 

q5 = u3 

we can  express  the  c o n s t a n t s  c~1 . . . . .  ct6 in t e r m s  of the  noda l  degrees  of f r eedom as ou t l i ned  

in Sect ion 3.4. This  leads to the  d i s p l a c e m e n t  model" 

(10.3) 
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where 

[N(x, y)] - [N1 (x, y) 0 N2(x, ~t) 0 ;~]3(x; y) 
0 N~(x,y) 0 X~(x, y) 0 

o ] 
Na(x,y) 

(10.4) 

1 
N l ( x , y )  - -  ~-~ [y32(x-  :;c2) - x a 2 ( y -  y2)] 

1 
N 2 ( x ,  y )  - -  ~--~ [--Y31 (X -- X3) + X31 (~] -- ~]3)] 

1 
N 3 ( x ,  Y)  - -  ~--~ [Y21 (x - Xl ) - 2721 (y - ~]1 )] 

(10.5) 

1 
A = ~ ( x 3 2 9 2 1  - x 2 1 Y 3 2 )  = area of the triangle 1 2 3 

Xi j  = Xi  -- X j  I 

J Yi j  - -  Yi -- y j  

u -  I v(z,y 

ql  (e) 111 (e) 

q2 Vl 

d,(e)  _ q3 = 112 
A t  

q4 v2 

q5 113 

q6 v3 

(10.6) 

(10.7) 

(10.8) 

(10.9) 

By using the relations 

I Ou/Ox I 
e =  eyu  = O u  Or' 

(10.10) 

and Eq. (10.3), the components of strain can be expressed in terms of nodal displace- 
ments as 

g'-- [B]~ "(r (10.11) 

where 

1 [ Y32 0 -Y31 0 Y21 0 1 
[ B ] - -  ~-~ [ 0 --X32 0 X31 0 --X21 / 

-x32 ya2 xax -ya l  -x21 921J 

(~o.12) 

If the element is in a state of plane stress, the stress-strain relations are given by 
(Eq. 8.35) 

K--  [Dig (10.13) 
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where 

O" ~ O'gg 

{Txy 

E 
and [D] = 1 - v 2 I 

1 v 0 ] 
v 1 0 
0 0 l - v ,  

2 

(10.14) 

(10.15) 

The stiffness matrix of the element [k (~)] can be found by using Eq. (8.87)" 

[k {~)] - / / / ' [B]7 [D] [B]  dV 

t-(e) 

(10.16) 

where V (e) denotes the volume of the element. If the plate thickness is taken as a constant 
(t), the evaluation of the integral in Eq. (10.16) presents no difficulty since the elements of 
the matrices [B] and [D] are all constants (not functions of x and y). Hence, Eq. (10.16) 
can be rewritten as 

[k (e'] - [ B ] r [ D ] [ B ] t / /  d A -  tA[B]r[D][B] 
.4 

(lO.17) 

Although the matrix products involved in Eq. (10.17) can be performed conveniently on 
a computer, the explicit form of the stiffness matrix is given below for convenience: 

[k (~)] -[k~/)] + [k~ ~)] (10.18) 

where the matrix [k (e)] is separated into two parts: one due to normal stresses. [k(~e/], and 

the other due to shear stresses, [/(eli. The components of the matrices [k~ el] and [k.(~ ~)] are 
given by 

Et 
[k(~)] - 4A(1_v2)  

I y~2 --zJya2x32 x~2 Symmetric 
-y32y31 /Jx32y31 y321 
L/~/32X31 ~/F32X31 --/2~]31X31 X21 
Y32Y21 --tJx32Y21 - -y31y21  /]X31Y21 Y221 

-/]Y32x21 x32x21 //y31x21 - x 3 1 x 2 1  - / ]y21x21 x21 

(10.19) 
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Figure 10.3. Local and Global Coordinates. 

and 

Et  
r ( ltksr 8 A ( l + u )  

I x~2 
--x32Y32 y22 S y m m e t r i c  

-x32x3~ g32x31 x ~  
x32Y31 --Y32Y31 --X31 y31 y21 
X32X21 --~/32X21 --X31X21 ~]31X21 X21 

--X32y21 Y32Y21  X 3 1 y 2 1  --Y31y21 --X21y21 y21 

(10.20) 

Transformation Matrix 
In actual computations,  it will be convenient, from the standpoint  of calculating the 
t ransformation matr ix  [~], to select the local xy coordinate system as follows. Assuming 
that  the triangular element under consideration is an interior element of a large structure. 
let the node numbers 1, 2, and 3 of the element correspond to the node numbers i, j .  and 
k, respectively, of the global system. Then place the origin of the local xg system at node 
1 (node i), and take the y axis along the edge 1 2 (edge i j)  and the x axis perpendicular 
to the y axis directed toward node 3 (node k) as shown in Figure 10.3. 
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To generate  the t ransformat ion  matr ix  [A]. the direction cosines of lines ox and oy 
with respect  to the global X. Y. and Z axes are required. Since the direction cosines of 

the line oy are the same as those of line i j .  we obtain 

X o - X ,  '~'j - '~; Z j  - Z,  
- , - ~ .  n, a = (10.21) lia - -  d i j  tN,j -- d,j d,j 

where the distance between the points i and j (d,a) is given by 

d , j  - [ ( X  3 - X , )  2 - + - ( } ]  - ~,;)2 + ( Z j  - Z , ) 2 ]  ' / 2  (10.22) 

and ( X i ,  Y ~ , Z , )  and ( X  3. y j .  Z j )  denote  the (X. }'. Z) coordinates  of points i and j .  respec- 
tively. Since the direction cosines of the lille o.r cannot be comp~ted  unless we know the 
coordinates  of a second point on the line ox  (in addi t ion to those of point i). we draw 
a perpendicular  line kp  from node /," onto the line i j  as shown in Figure 10.3. Then the 
direction cosines of the line o.r will be the same as those of the line pk: 

lp~. - X~. - Xp } ),. - } ], Zk - Z,, (10.23) 
d t , ~ .  mt,~. = dt,~ " n~,~. = dt,~ 

where dpk is the distance between the points p aim k. The coordinates  (Xp. I~,. Zp)  of the 
point p in the global coordinate  system can be computed  as 

X p  - X ,  + [,.1 d,p 

}~, - -  } ;  + m ,./d,,,, 

Zp -- Z,  + n, j  dip (10.24) 

where dip is the distance between the points i aim p. To find the distance dip. we  use the 
condit ion tha t  the lines i j  and pk  are perpendicular  to each other" 

1,31pk + m i j m p k  + n,jn~,k = 0 (10.25) 

Using Eqs. (10.23) and (10.24). Eq. (10.25) can be rewri t ten  as 

1 

dpk 
~ [ l ~ j ( x , ~  - x i  - t,~ d , ~ )  + m ~ ( Y ~ ,  - ~ ,  - , , , , ,  d , ~ )  + , ~ , ~ ( Z k  - Z ,  - ' , u  d ; p ) ]  - 0 

( 1 0 . 2 6 )  

Equat ion  (10.26) can be solved for d,~, as 

d;p - 1,, (X,,. - X , ) +  ,,~,, (~;,. - Y ; )  + , , < , ( Z k  - Z , )  (10.27) 

where the condit ion 12j + rn~j + n2 ij = 1 has been used. Finally. the distance dplv c a l l  be 

found by considering the right-angle tr iangle i kp  as 

dpk = (d2k -- d,2) ~/2 = [(Xk - X~) 2 + ()i- - }~)2 + (Zk -- Z,) 2 - d2p] ~/2 (10.28) 
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The transformation matrix [A] can now be constructed by using the direction cosines of 
lines i j  and pk  as 

[~] = 

-~ ._, _.j _ 

Apk 0 0 

Aij 0 0 

0 A~,k 0 
..., -.-, ..+ 
0 A~-~ 0 

0 0 kp~. 

(~ 6 2,, 

(10.29) 

where 

Apk - -  ( l p# rap1,. 
l x 3  

1 •  

6 =(o  o o) 
l x 3  

npk) (10.30) 

11i3) ( 1 0 . 3 1 )  

(10.32) 

Finally, the stiffness matr ix of the element in the global X Y Z  coordinate system can be 
computed as 

[A "(~)] - [AJr[k((:)][A] (10.33) 

Consistent Load Vector 
The consistent load vectors can be evaluated using Eqs. (8.88)-(8.90)" 

p = load vector due to initial strains 

: . / / / / ' [B] r [D]&,  die" 

V(e) 

In the case of thermal  loading, Eq. (10.34) becomes 

E a t T  
p _ r ltBjT[D]<tA_ 2 ( 1 - u )  

~32 

- - X 3 2  

- - g 3 1  

3731 

Y2~ 
- - X 2 1  

p~(r -- load vector due to constant body forces O~o and Oyo 

= I f / I N ]  ~& dV 
v(e) 

(10.34) 

(10.35) 

(10.36) 
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By using Eq. (10.4). Eq. (10.36) can be rewrittell as 

.-'Vl O xo 

I V 1 0 g o  

_,~, fff .\:.O.o di~ (10.37) ])b - -  . \ ' :  O.v ~ 

.\73 Oyo 

Substituting the expressions for N~. 3,'._,. and X3 from Eq. (10.5) into Eq. (10.37) and 
carrying out the integration yields 

O.F O 

Ogo 

_ (~  ) _ At O ~ o  t,uoo)"~.~'~ 
Pb -- 3 Oyo 

O.F O 

Ogo 

The following relations have been used ill deriviIlg Eq. (10.38)" 

/ x .  dA = a'cA and / / g .  dA - y~.A (10.39) 

.4 .4 

where x~ and 9~ are the coordinates of tile centroid of the triangle 1 2 3 given by 

xc = (xl + x2 + x3)/3 and g~,-  ( g l  + g2 -Jr- /o /3) /3  (10.40) 

( /  
The load vector due to the surface stresses ~ o =  {pxo}.  where p,o and pyo are constants. 

[pyo J 
can be evaluated as 

// { } 
Puo 

~(~1 
S 1 

(10.41) 

There are three different vectors p-'~(~) corresponding to the three sides of the element. Let 
the side between the nodes 1 and 2 be subjected to surface stresses of magnitude pxo and 
pyo. Then 

0 1 p~.o .~1 pyo 

.\-~j o 

(10.42) 
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where S~2 is the surface area between nodes 1 and 2 given by 

$1~ - t �9 d~2 (10.43) 

with dl2 denoting the length of side 12. Since the stress components p.ro and P,ao are 
parallel to the a: and g coordinate directions. Eq. (10.42) shows that  the total  fl)rce in 
either coordinate direction is (p~o" S12) and (pyo" S~.~). respectively. Thus. one-half of the 
total  force in each direction is allotted to each node on the side m~der consideration. Tt~e 
total  load vector in the local coordinate system is thus given by 

-" -~(~) + (10.44) 

This load vector, when referred to the global system, becomes 

/3(~)_ [A]T~(~,) (10.45) 

Characteristics of the Element 

1. The displacement model chosen (Eq. 10.1) guarantees continuity of displacements 
with adjacent elements because the displacements vary linearly along any side of 
the triangle (due to linear model). 

2. From Eqs. (10.11) and (10.12), we find that  the [B] matrix is independent of 
the position within the element and hence the strains are constant throughout  it. 
This is the reason why this element is often referred to as CST element (constant 
strain tr iangular  element). Obviously. the criterion of constant strain mentioned 
in the convergence requirements in Section 3.6 is satisfied by the displacement 
model. 

3. From Eq. (10.13), we can notice that  the stresses are also constant inside an element. 
Since the stresses are independent of a" and 9. tile equilibri~ml equations (Eqs. 8.1) 
are identically satisfied inside the element since there are no body forces. 

4. If the complete plate s t ructure being analvzed lies in a single (e.g.. XY)  plane as 
in the case of Figure 10.4. the vector (~(,-I will also contain six components.  In such 
a case, the matrices [A] and [K (~t] will each be of order 6 x 6. 

10.3 NUMERICAL RESULTS WITH MEMBRANE ELEMENT 
The following examples are considered to illustrate the application of the membrane 
element in the solution of some problems of linear elasticity. 

10.3.1 A Plate under Tension 
The uniform plate under tension, shown in Figure 10.4(a). is analyzed by using the CST 
elements. Due to symmetry  of geometry and loading, only a quadrant  is considered for 
analysis. The finite element modeling is done with eight t r iangular  elements as shown ill 
Figure 10.4(b). The total  number of nodes is nine and the displacement unknowns are 18. 
However, the a: components of displacement of nodes 3.4.  and 5 (namely Qs. Qr, and Qg) 
and the y components  of displacement of nodes 5. 6. and 7 (namely Q10. Q12. and Q14) 
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(thickness--0.1 cm, E= 2 x 106 N/cm 2, 
v=0.1) 
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(b) Finite element idealization 

y 
Y 

f 

Y \ .....~ x 

x . / -  

(c) Local and global coordinates of a typical element "e" 

F i g u r e  10 .4 .  A Un i f o rm  Pla te  under  Tensi le Load. 

are set equal  to zero for m a i n t a i n i n g  s y m m e t r y  condi t ions .  After  solving the  equ i l ib r ium 

equat ions ,  the  global  d i sp lacement  c o m p o n e n t s  can be ob ta ined  as 

0.020, i - - ' 2 . 4 , 6  

0.010, i - - 8 . 1 6 , 1 8  

Qi - - 0 . 0 0 2 ,  i -  1 .13 .15  

- 0 . 0 0 1 .  i - 3 . 1 1 . 1 7  
(}.000, i -- 5, 7.9,  10, 12.14 

C o m p u t a t i o n  o f  S t r e s s e s  

For finding tile s tresses inside any e lement  "e.'" shown ill Figllre 10.4(c), the  following 

p rocedure  can be adopted :  

S t e p  1" Conver t  tile global  ( t i sp lacements  of the  nodes  of e lement  e into local 

d i sp lacemen t s  as 

r - [~I d C'~ 
( i x  1 6 x 6 6 x  1 
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where 

0-. (~) 

l/1 02~-1 
U1 Q2 

__ U 2  O ( c  ) __  Q2j- - I  
1-'2 Q2.i 
U3 Q2k-i 
U3 Q2k 

and [A] is the transformation matr ix of the element given by [two-dimensional specializa- 
tion of Eq. (10.29)] 

[l~,k mp~. 0 0 0 0 

: L/0 ~ 0 0 O0 0 l,j n~, o 0 o o (10.46) 

o 0 o l,,~ m,,~ / 
0 0 0 1,1 lllij  j 

Here, (1vk,rnpk) and (lo, mij)  denote the direction cosines of lines p/," (x axis) and ij 
(y axis) with respect to the global (X. Y) system. 

S t e p  2: Using the local displacement vector #.t,') of element e. find the stresses inside 
the element in the local system by using Eqs. (10.13) and (10.11) as 

G - -  (7"99 

O'.r y 

- [ D ] [ B ] r  ('~1 (10.47) 

where [D] and [B] are given by Eqs. (10.15) and (10.12). respectively. 

S t e p  3: Convert the local stresses crxx, o-~:j, and crx:j of the element into global stresses 
G x x ,  o y y ,  and crxy by using the stress t ransformation relations [10.1]' 

2 123 + 2o,.~ lpk [i9 o'x  x -- O'xx lpk Jr-ouu 

2 H'12j Jr-2G,rg lrlpk rFlij G y y  - -  Gxx ITlpk Jr- Gyy 

G X y  -- Gxx lpk m p k  + cry~j lij ln~j + crx~j (lpk m U + m p k  1,j) 

The results of computat ion are shown in Table 10.1. It can be noticed that  the stresses in 
the global system exactly match the correct solution given by 

total tensile load (200 x 40) 2 
crzy - = = 2000 N/cm 

area of cross section (40 x 0.1) 



Table 10.1. Computation of Stresses inside the Elements 

Disp l acemen t s  (cm) 

E l e m e n t  In g lobal  In local 

e sy s t em (~(c) sys t em t~'( e ) 

Stress  vec tor  in 

local sys t em 

~y,j X / c m -  

Gzy  

Stress  vector  in 
g lobal  s y s t e m  

r  N / c m  2 

o" X ~- 

1 - 0 . 0 0 1  0.01556 1000 
0.010 - 0 . 0 1 2 7 3  1000 

- 0 . 0 0 2  0.00778 - 1000 

0.020 - 0 . 0 0 6 3 6  
- 0 . 0 0 2  0.01485 

0.010 - 0 . 0 1 3 4 4  

2 - 0 . 0 0 2  0.00636 1000 
0.020 0.00778 1000 

- 0 . 0 0 1  0.01414 1000 

0.010 0.01414 
- 0 . 0 0 1  0.01344 

0.020 0.01485 

3 - 0 . 0 0 1  - 0 . 0 1 4 1 4  1000 
0.010 - 0 . 0 1 4 1 4  1000 
0.000 - 0 . 0 0 6 3 6  1000 
0.020 - 0 . 0 0 7 7 8  

- 0 . 0 0 1  - 0 . 0 0 7 0 7  
0.020 - 0 . 0 0 7 0 7  

4 0.000 0.00778 1000 

0.020 - 0 . 0 0 6 3 6  1000 
- 0 . 0 0 1  0.0 - 1 0 0 0  

0.010 0.0 
0.000 0.00707 
0.010 - 0 . 0 0 7 0 7  

5 - 0 . 0 0 1  0.0 1000 

0.010 0.0 1000 
0.000 - 0 . 0 0 7 7 8  - 1000 

0.000 0.00636 

0.000 -0 .00071  
0.010 - 0 . 0 0 0 7 1  

6 0.000 - 0 . 0 0 6 3 6  1000 
0.000 - 0 . 0 0 7 7 8  1000 

- 0 . 0 0 1  0.00141 1000 

0.010 - 0 . 0 0 1 4 1  
- 0 . 0 0 1  0.00071 

0.000 - 0 . 0 0 0 7 1  

7 - 0 . 0 0 1  - 0 . 0 0 1 4 1  1000 
0.010 0.00141 1000 

- 0 . 0 0 2  0.00636 1000 

0.000 0.00778 
- 0 . 0 0 1  0.00566 

0.000 0.00849 

8 - 0 . 0 0 2  - 0 . 0 0 7 7 8  1000 
0.000 0.00636 1000 

- 0 . 0 0 1  - 0 . 0 1 5 5 6  - 1 0 0 0  

0.010 0.01273 
- 0 . 0 0 2  - 0 . 0 0 8 4 9  

0.010 0.00566 

0 
2000 
0 

0 
2000 
0 

0 
2000 
0 

0 
2000 
0 

0 
2000 
0 

0 
2000 

0 

0 
2000 
0 

0 
2000 
0 
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p = 8 ks i  

12" 

A 

L - I 0" "J 

Figure 10.5. Plate with a Circular Hole under Uniaxial Tension ( E -  30 x 10 ~ psi, v -  0.25, 
t -  Plate Thickness-  1"). 

10.3 .2  A Plate  with a Circular Hole [10.2]  

The performance of the membrane elements for problems of stress concentration due to 
geometry is studied by considering a tension plate with a circular hole (Figure 10.5). 
Due to the symmetry of geometry and loading, only a quadrant was analyzed using four 
different finite element idealizations as shown in Figure 10.6. The results are shown in 
Table 10.2. The results indicate that the stress concentration is predicted to be smaller 
than the exact value consistently. 

10.3.3 A Cantilevered Box Beam 
The cantilevered box beam shown in Figure 10.7 is analyzed by using CST elements. The 
finite element idealization consists of 24 nodes. 72 degrees of freedom (in global X Y Z  
system), and 40 elements as shown in Figure 10.8. The displacement results obtained for 
two different load conditions are compared with those given by simple beam theory in 
Table 10.3. It can be seen that the finite element results compare well with those of simple 
beam theory. 
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(a) Idealization I(N = 2) (b) Idealization II (N-4)  

(c) Idealization III (N= 6) (d) Idealization IV (N= 8) 

Figure 10.6. Finite Element Idealization of the Plate with a Circular Hole [10.2] ( N -  number 
1 hole) of subdivisions of ~ 

Table 10.2. Stress Concentration Factors Given by Finite Element Method 

Ideal izat ion 
(Figure 10.6) Value of ( < ~ / p )  at .4 \ ' a lue  of (cryy/p) at B 

I -0 .229  1.902 
II - 0 .610  2.585 

III  -0 .892  2.903 
IV - 1.050 3.049 

Exact  ( theory) - 1.250 3.181 
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\ \ ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ _ ' q  

P2 

! 

1 tw " "  

tc= 1.0" 
t w = 0.5" 
E -  30 x 106 psi 
v=0.3 

} ' - - - - - - 1 8 "  ' - ,  

Figure 10.7. A Cantilevered Box Beam. 

10.4 COMPUTER PROGRAM FOR PLATES UNDER INPLANE LOADS 
A For t ran  subrout ine  called CST is given for the stress analysis of plates under  inplane 
loads using CST elements.  It is assumed tha t  the plate s t ruc ture  lies in the X Y  plane. 
The subrout ine  CST requires the following quant i t ies  as input" 

NN - tota l  number  of nodes (including the fixed nodes). 
NE - number  of t r iangular  elements.  
ND - tota l  number  of degrees of freedom (including the fixed degrees of freedom). 

Two degrees of freedom (one parallel  to X axis and the other  parallel to Y 

axis) are considered at each node. 
NB - bandwid th  of the overall stiffness matr ix.  
M - number  of load conditions. 
LOC - an array of size NE x 3. LOC(I ,  J) denotes  the global node number  correspond- 

ing to J t h  corner of element  I. 
CX,CY - vector arrays of size NN each. CX (I) and CY (I) denote  the global X and Y 

coordinates  of node I. 
E = Young's  modulus  of the material .  
ANU - Poisson's ratio of the material .  
T = thickness of the plate. 
NFIX - number  of fixed degrees of freedom (zero displacements) .  
IFIX - a vector array of size NFIX. IFIX (I) denotes  the I t h  fixed degree of freedom 

number.  
P = an array of size ND x M represent ing the global load vectors. 

The  array P re turned from CST to the main program represents  the global 
displacement  vectors. P ( I , J )  denotes  the I t h  component  of global load 
(or displacement)  vector in J t h  load condition. 
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24 
l i . . ' l / l  1 t l  / i I i .".." l l t . , ' / I / Z l - / 2  3 

/i,, 
20/e/- - ', . . . .  -/~'9 ~. 
/i ~ J _ L  - - Z ~  22 

le 4 - , ~ s  -7 <- ~-:-' --Za-i 
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(b) Element numbering scheme ~ /  

14 

2 

Figure 10.8. Finite Element Idealization of the Box Beam. 

Table 10.3. Tip Deflection of Box Beam in the Direction of Load 

L o a d  c o n d i t i o n  F i n i t e  e l e m e n t  m e t h o d  S imp le  b e a m  t h e o r y  

P1 - P2 - 5000 lb 

P1 - - P 2  - 5000 lb 

0 .0195 in. 

0 .0175 in. 

0 .0204 in. 
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In addition to this input, the arrays GS of size ND x NB and STRES of size NE x 3 
and the double precision vector array DIFF of size hi are included as arguments  for the 
subroutine CST. The array GS represents the global stiffness matrix, whereas the array 
DIFF  denotes a dummy array. The array STRES represents the output  of the subroutine 
CST. STRES (I, 1), STRES (I, 2), and STRES (I, 3) denote the stresses ~ x x .  ~ r r ,  and 
~ x r  in the global coordinate system of element I. 

E x a m p l e  10.1 To il lustrate the use of the subroutine CST. the plate shown in 
Figure 10.4(a) is analyzed for the stresses. Due to the double symmetry,  only a quad- 
rant of the plate is used for idealization. The finite element idealization and the corner 
numbers used are indicated in Figure 10.4(b). The boundary (symmetry)  conditions are 

Q5 = Qr  = Q9 = 0 ( x  component  of displacement of nodes 3.4,  and 5 is zero). 

Q10 = Q12 = Q14 = 0 ( Y component  of displacement of nodes 5.6.  and 7 is zero). 

The only load condition is 

P(6, 1 ) =  1000.0 N 

P(4, 1 ) =  2000.0 N 

P(2 .1)  = 1000.0 N 

Note 
The node numbering scheme used in Figure 10.4(b) leads to a high bandwidth (NB = 18). 
We can reduce NB to 10 by relabeling the nodes 8 . 9 . 4 .  7. 6. and 5 of Figure 10.4(b) as 4, 
5, 6, 7, 8, and 9, respectively. The main program for solving this example and the output  
of the program are given below. 

C ............ 

c 

c ANALYSIS OF PLATES UNDER INPLANE LOADS 

C 

C ............ 

10 

DIMENSION L0C(8,3),CX(9),CY(9),IFIX(6),P(18,1),GS(18,18), 

2STRES (8,3) 

DOUBLE PRECISION DIFF (I) 

DATA NN,NE,ND,NB,NFIX,M,E,ANU/9,8,18,18,6,1,2.0E6,0. I/ 

DATA LOC/9,1,9,3,9,5,9,7,1,9,3,9,5,9,7,9,8,2,2,4,4,6,6,8/ 
DATA CX/20. O, I0.0,0.0,0.0,0. O, I0.0,20.0,20. O, i0.0/ 

DATA CY/20.0,20.0,20.0, I0.0,0.0,0.0,0.0, I0. O, I0. O/ 

DATA T/O. I/ 

DATA IFIX/5,7,9,10,12,14/ 
DO I0 I=I,ND 

P(I,I) = 0.0 
P(6 ,1 )  = 1000.0 
P(4,1) = 2000.0 

P(2 ,1 )  = 1000.0 
CALL CST (NN, NE, ND ,NB,M ,LOC, CX, CY, E, ANN, T, NFIX, IFIX ,P, GS, DIFF, 
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2STRES) 
PRINT 20 

20 FORMAT(IX, ~DISPLACEMENT OF NODES',/) 
PRINT 30,(P(I,I),I=I,ND) 

30 FORMAT(6EI2.4) 
PRINT 40 

40 FORMAT(/,IX,'STRESSES IN ELEMENTS',/) 
DO 50 I=I,NE 

50 PRINT 60,I,(STRES(I,J),J=I,3) 
60 FORMAT(IX,I3,5X,3EI2.4) 

STOP 
END 

DISPLACEMENT OF NODES 

-0 .2000E-02  0.2000E-O1 -0 .  lO00E-02 0.2000E-O1 -0 .  1502E-14 0.2000E-O1 
-0 .1924E-15  O.IO00E-O1 0 .2543E-15 0 .6828E-08  -O. lO00E-02 0 .6828E-08  
-0 .2000E-02  0 .6828E-08  -0 .2000E-02  O. IO00E-O1 -0 .  lO00E-02 O.IO00E-O1 

STRESSES IN ELEMENTS 

-0 .2441E-03  0.2000E+04 -0 .9155E-04  
-0 .3052E-03  0.2000E+04 -0 .3052E-04  
-0 .4883E-03  0.2000E+04 0 .9155E-04  
-0 .1221E-03  0.2000E+04 0 .1221E-03  
-0 .6104E-04  0.2000E+04 0 .2136E-03  

O.O000E+O0 0.2000E+04 O.O000E+O0 
0 .6104E-04  0.2000E+04 O.O000E+O0 

-0 .1831E-03  0.2000E+04 -0 .9155E-04  

10.5 BENDING BEHAVIOR OF PLATES 
The  following assumpt ions  are made in the classical theory  of thin plates [10.3]" 

1. The  thickness of the plate  is small compared  to its other  dimensions.  
2. The  deflections are small. 
3. The  middle plane of the plate does not undergo inplane deformation.  
4. The  t ransverse  shear deformat ion  is zero. 

The  stresses induced in an element of a flat plate subjec ted  to bending forces (trans- 
verse load and bending moments )  are shown in Figure 10.9(a). These stresses are shear  
stresses %z ,  ax=, and axy and normal  stresses axx and ayy. It can be noticed tha t  in 

beams,  which can be considered as one-dimensional  analogs of plates, the shear stress axy 
will not be present.  As in beam theory, the stresses a~.~. (and ayy) and ax.- (and ay.-) are 
assumed to vary linearly and parabolically,  respectively, over the thickness of the plate. 

The  shear stress cr~.~ is assumed to vary linearly. The  stresses a ~ .  ay.~, a~y. axz, and ay= 
lead to the following force and moment  resul tants  per unit length" 

t / 2  t / 2  

AIx - / Crxxz dz, .,Ig - / a~gz dz. 
- - t /2  --t ,'2 

t / 2  t/ '2 

1~[xy- / axyzdz. Qx - / (7xzdz. 
- - t / 2  - - t / 2  

t/2 

Qy = / ~,: dz 
- t /2  

(10.48) 
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(b) Forces and moments in a plate 

Figure 10.9. 
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These forces and moments  are indicated in Figure 10.9(b). By considering an element 
of the plate, the differential equations of equilibrium in terms of force resultants  can be 
derived. For this. we consider the bending moments  and shear forces to be functions of x 

c) /l l ~ 
and y so that ,  if AI~ acts on one side of the element.  3I~' - 3I~ + ~ �9 dx act.s on the 

opposite side. The resulting equations can be wri t ten as 

OQ~ OQ~ 
Ox t - -~y + p = 0  

0 3 I ~  O.~l~:y = Q~ 

Ox ~- Og 

OAly  _ OAl~y  + , Q~ 

Ox Oy 

(10.49) 

where p is the distr ibuted surface load. Because tile plate is thin in comparison to its 
length and width, any body force may be converted to an equivalent load p and hence no 
body force is considered separately in Eqs. (10.49). 

To derive the s t ra in-displacement  relations for a plate, consider the bending deforma- 
tion of a small element (by" neglecting shear deformation).  Any point A in this element 
experiences both  transverse (w) and inplane (u and t') displacements.  The strains can be 
expressed as 

O U  ~)2 U' 

~ x x --  c) x z c) x'-' 

Oc 02 u' 

c~y = Og - i)g ~ 

Ou 0~' 
+ = - 2 z  

-: ~:~ = Og Ox 

0 2 U' 

O x O g  

(10.50) 

Equat ions (10.50) show that  the transverse displacement u'. which is a function of x and 
y only, completely describes the deformation state. 

The moment_displacement  relations can also be derived for plates. For this. we assume 
the plate to be in a state of plane stress by" considering the transverse stress a : :  to be 
negligible in comparison to axx and avy. Thus. the s t ress-s t ra in  relations are given by 
(Eq. 8.35): 

(7 - -  Orgy - -  

O'x g 

{ } -.r.r 

5 x y  

(10.51) 

where 0] 
E 1 o (lo.52) 

[ D ] -  ( 1 - ~ 2 )  0 l - L ,  

2 
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f 
I 
b 

1o 
r ' -  

a - J  
- v  

Figure 10.10.  

- - - "  - - ' - - "  " - ' - " ~  X 

By substi tuting Eqs. (10.50) into Eqs. (10.51) and the resulting stresses into Eqs. (10.48). 
we obtain after integration, 

O2w Oeu,)  

a l .  - - >  b-7~ + .  0. ~ 

U '  

0 2 ~ :  

~I,~ - AIxv - - ( 1  - u) D -  
O.rOy 

Gt :~ 02u, 
6 OxOv 

(10.5;3) 

where D is called the flexural rigidity of the plate and is given by 

Et  s 
D - (10.54) 

12(1 -/~2) 

The flexural rigidity D corresponds to the bending stiffness of a beam (EI ) .  Ill fact. 
D = E I  for a plate of unit width when u is taken as zero. Equations (10.49) and (10.53) 
give 

Ox - - D " -~x --ff ~x 2 + O y 2 J 

o (o'w o~w) (~o.55) 

The following boundary conditions have to be satisfied for plates (Figure 10.10): 

1. Simply supported edge (along y - cons tant )  

w(x ,  y) - 0 8 2 w 8 2 ~, } 
My - - D  (-~y2 + u ~ )  - 0 

for g -- constant, an(t 0 <_ x _< a (10.56) 
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2. Clamped edge (along g -  constant)" 

~r(x.y)=Oow } 
Oy (x..v) - 0  

for g -  constant, and 0 < a'_< a (10.57) 

3. Free edge (along g = constant)" 

3 ly - - D ( 0" u' 0"- u' "~ 
or-- 7 + l , ~ /  - o  

Qv + Oz = vertical shear 

= - (2 - t,) D 0:~ u' D Oa w _ 0 

for # -- constant, and 
0 < . r < a  

(10..58) 

In the classical theory of plates, first tile displacement u'(:r, g) is found by solving the equi- 
librium equations (10.49) under the prescribed loading condition p(z. g). By substituting 
Eqs. (10.55) into Eqs. (10.49). we notice that tt~e second and third equilibrium equations 
are automatically satisfied and the first one gives 

04 w 04 w 04 w p 
&r--- i- + 2 0.r.20!1 ~ f 0g 4 = --D (10.59) 

Thus, the problem is to solve the fourth-order partial differential equation (10.59) by 
using appropriate boundary conditions. Once u'(z. 9) is found, the strains, stresses, and 
moments developed in the plate can be determined bv using Eqs. (10.50). (10.51). and 
(10.53). respectively. It can be noticed that tile closed-form solution of Eq. (10.59) cannot 
be obtained except for plates having simple configuration (e.g.. rectangular and circular 
plates) and simple loading and boundary conditions. However. the finite element method 
can be used for analyzing problems involving plates of arbitrary planform and loading 
conditions that may sometimes have cutouts or cracks. 

10.6 FINITE ELEMENT ANALYSIS OF PLATE BENDING 
A large number of plate t)ending elements tmve beell developed and reported in the liter- 
ature [10.4, 10.5]. In the classical theory of thin plates discussed in this section, certain 
simplifying approximations are made. One of the important assumptions made is that 
shear deformation is negligible. Some elements have been developed by including the 
effect of transverse shear deformation also. 

According to thin plate theory, the deformation is completely described by the trans- 
verse deflection of the middle surface of the plate (w) only. Thus. if a displacement model 
is assumed for w. the continuity of not oIflV u' t)llt also its derivatives has to be maintained 
between adjacent elements. According to tile convergence requirements stated in Section 
3.6. the polynomial for u' must be able to represent constant strain states. This means, 
from Eqs. (10.50). that the assumed displacement model must contain constant curvature 
states ( 0 2 w / & r  '-) and (O'-w/Oq"-)  and co~stant twist (O" -w /&rOg) .  Also. the polynomial 
for w should have geometric isotropy. 
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Figure I 0 . I I .  Nodal Degrees of Freedom of a Triangular Plate in Bending. 

Thus, it becomes evident that  it is nmch more difficult to choose a displacement model 
satisfying all these requirements. In surmounting these difficulties, especially for triangu- 
lar and general quadrilateral elements, different investigators have developed different 
elements, some of them quite complicated. In the following section, a simple triangular 
plate bending element is described along with its characteristics. 

10.7 TRIANGULAR PLATE BENDING ELEMENT 
At each node of the triangular plate element shown in Figure 10.11.  the transverse dis- 
placement w and slopes (rotations) about tile x and y axes [((gu,/Oy) and - ( i ) w / c g x )  l are 
taken as the degrees of freedom. The minus sign for the third degree of freedom indicates 
that  if we take a positive displacement dw at a distance dx fl'om llode 1. the rotation 
( d w / d x )  about the y axis at node 1 will be opposite to the direction of the degree of free- 
dom q3 indicated in Figure 10.11. Since there are nine displacenient degrees of freedom in 
the element, the assumed polynomial for w (x. g) must also contain nine constant terms. 
To maintain geometric isotropy, the displacement model is taken as 

, x ~ ( / 2  .~ + x y 2  ) + a9 y~ w ( x , y )  = 0~ + a 2 x  + ~ 3 y  + a 4 x  2 + a s x y  + a 6 g  2 + 07 + o s  

= [v]~ ( lo .6o)  
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where 

'2 2 3 .F2 
[ , 1 ] -  [1 ~ v . ,  .~.v .v . ,  ( .v + x ~ " )  y:~] (10.61) 

and 

(~ 2 

O - -  

(~9  

(10.62) 

The  constants  ~ 1 .  a 2  . . . . .  C~!) have to be de te rmined  from the nodal condit ions 

O U' () li' 
u,(x ,  y) -- q , ,  c~-77(.r. !1) -- q2. - i-jT.r (.r. y) -- q3 at ix , .  y,)  -- (0, 0) 

Ou' Ou' 
w ( x , y ) - q 4 ,  ( - ~ ( x . v ) - q . 5 ,  o x ( x ' y ) - q ~  at (x2, y 2 ) - ( O , w )  

Ow 0 . '  
-,(~, y) - qT. - a - ( . , ' .  :J) - q~. - . - 7 ( . ~ . . ~ )  - q9 ~t (~, >) 

o y  (J & 

(10.63) 

Note tha t  the local y axis is taken to be the same as the line connect ing the nodes 1 and 
2 with the origin placed at node 1. The  local x axis is taken toward node 3 as shown in 
Figure  10.11. The  local node numbers  1, 2. and 3 are assumed to correspond to nodes i, j ,  
and k, respectively, in the global system. By using Eq. (10.60). Eqs. (10.63) can be s ta ted  
in mat r ix  form as 

ql 
q., 

~'(" - . - [~/]g (10.64) 

q9 

where 

[~] - 

-1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 - 1 0 0 0 0 0 0 0 

1 o y ,  o o .<: o o .~ 
3,q2 0 0 1 0 0 2.q2 0 0 �9 2 

0 - 1  0 0 -.q., 0 0 - y ~  0 

1 x3 Y3 .r3 a'3.t]3 tj]~ 3? 3 (,r3,tJ3 -+- 3:'391~) y3 

0 0 1 0 a':~ 2.q3 0 (2x3 ya + x3 ) 3y~ 

0 - 1  0 - 2 x 3  - y a  0 -3x~  (-y,~ + 2x3y3) 0 

(10.6.5) 

By using Eqs. (10.60) and (10.64). Eqs. (10.50) ('an be expressed as 

(10.66) 



TRIANGULAR PLATE BENDING ELEMENT 381 

where 

and 

[ioo oo,x 
[ B ] - - z  o o o o 2 o 2x 

0 0 0 2 0 0 4 ( x + y )  
(10.67) 

[B]- [B][~] -1 (10.68) 

Finally, the element stiffness matrix in the local (xy) coordinate system can be derived as 

[k (~)] --//f[B]T[D][B] dV 

V(e) 
(10.69) 

where V (~) indicates the volume of the element, and the matrix [D] is given by Eq. (10.52). 
By substi tuting for [B] from Eq. (10.68), Eq. (10.69) can be expressed as 

[k(e)] __ ([~]-l)Z {area ~ dA [B]r[D][B] dz [~]-1 (10.70) 

\-1/2 

where t denotes the thickness of the plate. The integrals within the curved brackets of 
Eq. (10.70) can be rewritten as 

t/2 

f f f  Et3/f dxdy dA [B]T[D][B]dz= (12(1-,2))  
area - t / 2  area 

0 

0 0 

0 0 0 

0 0 0 4 

0 0 0 0 
x 

0 0 0 4u 

0 0 0 12x 

0 0 0 4(ux+y) 

0 0 0 12uy 0 

Symmetric 

2(1-u)  

0 4 

0 12ux 

4(1-u)(x+g)  4(x+uy) 

36x 2 

12x(ux+y) 

12y 36uxy 

{(12--8u){x+Y) 2 

-8(1-- b')xy} 

12(x+uy)y 36y 2. 

(10.71) 

The area integrals appearing on the right-hand side of Eq. (10.71) can be evaluated in 
the general X Y  coordinate system as well as in the particular local xy system chosen in 
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Figure 10.11 using the following relations: 

/ "  1 
dx dy - A - ~x3y2 

a r e a  

]./. 
z d z d y -  X c A -  -gx392 

a r e a  

I /  y d z d y -  ] / c A -  -~x392(92 + 93) 

a r e a  

f f  A )2 )2 x 2 d z d y - X ~ A + T ~ [ ( X , - X c  + ( X 3 - X c  + ( X k - X c )  2] 

a r e a  

1 3 
= 12x392 

/ /  A 
x y d x .  dy  - X c Y c A  + ~-~ [(X, - Xc) (E  - Yc) 

a r e a  

+ (X3 - Xr - Yc) + (Xk  - Xc ) (Yk  - Y~)] 

2 1 x392(Y2 --F 293 ) 
24 

/ / y 2  dx  . dy  - Y 2 A  + A [ ( E  - Yc) 2 + (Y3 - Yc) 2 + (Yk - Yc) 2] 

a r e a  

_ _ 1 x3y2(y2 + Y2Y3 + Y'~) 
12 

(10.72) 

(10.73) 

(10.74) 

(10.75) 

(10.76) 

(10.77) 

where 

x~ - (x, + x j  + xk) /3  (10.78) 

and 

Y c -  (E +}~ +Yk)/3 (10.79) 

It can be seen that  the evaluation of the element stiffness matrix from Eqs. (10.70) and 
(10.71) involves the numerical determination of the inverse of the 9 x9  matrix, [~], for each 
element separately. Finally, the element stiffness matrix in the global coordinate system 
(whose X Y  plane is assumed to be the same as the local xy  plane) can be obtained 
from 

[K {~)] -[~]T[k(~)][~] (10.80) 
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Y / - - - -  ..... 

q 2 ~ .  
i "  

O3i -1 

Figure 10.12. 

where the t ransformation matr ix [)q is given by 

9 x 9  

-1 

0 

0 

0 

= 0 

0 

0 

0 

~0 

0 0 0 0 0 0 0 0 

lox mox 0 0 0 0 0 0 

loy mou 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 lo~ rnox 0 0 0 

0 0 0 loy rnoy 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 lox mo~ 

0 0 0 0 0 0 lov rnoy 

(10.81) 

where (fox, too=) and (loy, rno~) represent the direction cosines of the lines ox and oy, 
respectively (Figure 10.12). 

10.8 NUMERICAL RESULTS WITH BENDING ELEMENTS 
The tr iangular  plate bending element considered in Section 10.7 is one of the simplest 
elements. Several other elements were developed for the analysis of plates. Since the 
strains developed in a plate under bending involve second derivatives of the transverse 
displacement w, the expression for w must contain a complete second-degree polynomial 
in x and y. Furthermore,  the interelement compatibil i ty requires the continuity of w as 
well as of the normal derivative (Ow/On) across the boundaries of two elements. 

For a rectangular  element (Figure 10.10), the simplest thing to do is to take the values 
of w, (Ow/Ox),  and (Ow/Oy) at each of the four corners as nodal degrees of freedom. 
This gives a total  of 12 degrees of freedom for the element. Thus, the polynomial for w 
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must  also contain 12 constants  a; .  Since a complete polynomial  of degree three in x and 
y contains 10 terms, we need to include 2 additional terms. These terms can be selected 
arbitrarily, but  we should preserve the symmet ry  of the expansion to ensure geometric 
isotropy. Thus,  we have three possibilities, namely to take xay and xy a. xay 2 and x2y a, 
or x2y: and x aya in the expression of w. All these choices satisfy the condition tha t  along 
any edge of the element w varies as a cubic. This can be verified by sett ing x = 0 or 
a (or y = 0 or b) in the expression of w. Since there are four nodal unknowns for any 
edge [e.g., along the edge x = 0. we have u' and (0w/0y)  at the two corners as degrees of 
freedom], w is uniquely specified along that  edge. This satisfies the continuity condition 
of w across the boundaries.  For the continuity of (Ou'/On), we need to have (Ow/On) 
vary linearly on a side since it is specified only at the node points. Irrespective of what  
combinat ion of 12 polynomial  terms we choose for w, we cannot  avoid ending up with a 
cubic variation for (cOw~On) (n = x for the sides defined by x = 0 and a and n = y for 
the edges defined by y = 0 and b). Therefore. it is not possible to satisfy the interelement 
compatibi l i ty  conditions [continuity of both w and (Ow/cOn)] with 12 degrees of freedom 
only. A similar reasoning will reveal that  the t r iangular  element considered in Section 10.7 
is also nonconforming. 

The displacement models of some of the plate bending elements available in the 
l i terature are given next. 

10.8.1 Rectangular Elements 
1. Nonconforming element due to Adini-Clough-lklelosh (AC~I)" 

2 W(X, y) = c~1 + c t 2 x + c ~ a y + a 4 x  2 + o~5y + O6:gy + OTX a + asY 3 

' 3 + a9a'2y + C~10Xy 2 + CtllX3y + C~12Xy (10.82) 

Degrees of freedom at each node" w, (Ow/Ox). (Ou'/Og). Ref. [10.6]. 
2. Conforming element due to Bogner-Fox-Schmi t  (BFS-16)" 

2 2 

z=l 3=1 

(1) (1) (1) (1) (OIU) Ho, (x)Hoj (Y)tt',a + H1, (x)Hoj (.9) 

(,) (,, (o~,) 
+ Ho, (* )HI ,  (V) 4- HI ,  ( x ) H I j  (y) ~ ,J (~o.s3) 

Degrees of freedom at each node" u,,j. (Ou'/Ox)ia. (Ow/Oy)o. (a2u'/OxOy)o (node 
numbering scheme shown in Figure 4.16). Ref. [10.7]. 

3. More accurate conforming element due to Bogner-Fox-Schmit  (BFS-24)" 

i 1 3=1 L Oz 

(2) H(e)(y)(Ow) 
) (x) H(2)o, (y)w,j + H1, (x) oj -~x 

+ Ho, (x)Hlj (9) ~ ,., + H2i 

+ " o ,  (x)H2j (Y) 0 - ~  ,j + H i '  (x)H19 (Y) /)x0Y i j (10.84) 
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Degrees of freedom at each node: wij, (Ow/Ox)ij, (Ow/Oy)ij. 

c)2 w 
~j ~j OxOy ) ~j 

(node numbering scheme shown in Figure 4.16). Ref. [10.7]. 

10.8.2 Triangular Elements 
1. Nonconforming element due to Tocher (T-9)" 

w(x, y) = same as Eq. (10.60) 

Degrees of freedom at each node: w. Ow/Ox, Ow/Oy. Ref. [10.8]. 
2. Nonconforming element due to Tocher (T-10)" 

= x 2 y2 3 w ( y ,  x)  Ctl ~- c t2x  ~- c t3y ~- 0:4 -+- 0:5 -4- c t 6 x y  -~- ctTx 3 -+- c t8y 

+ Ct9X2y -+- 0:~oxy 2 (10.85) 

Degrees of freedom at each node: w, Ow/Ox. cOw/Og 
(The 10th constant was suppressed using the Ritz method). Ref. [10.8]. 

3. Nonconforming element due to Adini (A)" 

W(X,  y)  = ctl + o~2x + c t3y + c t4x  2 -t- c t5y 2 + o~6x 3 -t- ctTy 3 + c t s x 2 y  + c t9xy  2 

(10.86) 

(The uniform twist term xy was neglected.) 
Degrees of freedom at each node: w, Ow/Ox, Ow/Oy. Ref. [10.9]. 

4. Conforming element due to Cowper et al. (C)" 

W(X, y)  -- OL1 + Clg2X -~- 0:3Y -t- Ct4X 2 + Ct5y 2 + a 6 X y  + O~7X 3 + CtSy 3 + 0:9x2y 

x 4 y4 3 2 2 -~- oLlOXy 2 -~- 0~11 -~- ct12 -~- 0:13x y Jr- c~14xy 3 -+- c t15x y 

x 5 y5 3 2 2 3 -t- C~16 -Jr- 0:17 -Jr- 0:18X4~ -Jr- 0:192C~/4 -t- ~20X ~/ + 0:2IX ~/ (10.87) 

(Three constraints are imposed to reduce the number of unknowns from 21 to 18. 
These are that the normal slope Ow/On along any edge must have a cubic variation.) 
Degrees of freedom at each node" w. Ow/Ox, Ow/Oy. 02w/Ox 2, 02w/Oy 2, 
02w/OxOy. Ref. [10.10]. 

10.8.3 Numerical Results 
Typical numerical results obtained for a clamped square plate subjected to uniformly 
distributed load with nonconforming and conforming bending elements are shown in 
Figure 10.13 and Table 10.4, respectively. The finite element idealizations considered are 
shown in Figure 10.14. Due to symmetry of geometry and load condition, only a quarter 
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Figure  10.13. Central Deflection of a Clamped Plate under Uniformly Distributed Load. 

of the plate is considered for analysis. Of course, the svmmetry  conditions have to be 
imposed before solving the problem. For example, if the quarter  plate 1, 2, 3. 4 shown 
in Figure 10.14 is to be analyzed, Ou'/Oa" has to be set equal to zero along line 2, 4, 
and 0w/oqy has to be equated to zero along line 3, 4. The deflection of the center of the 
clamped plate (ZVc) is taken as the measure of tile quality of the approximation and the 
deflection coefficient c~ of Figure 10.13 is defined by 

4 aqa 
~ ' c  z 

D 

where q denotes the intensity of the uniformly distr ibuted load. a is the side of the plate. 
and D is the flexural rigidity'. An important  conclusion that  can be drawn from the results 
of Figure 10.13 is tha t  monotonic convergence of deflection cannot be expected always 
from any of the nonconforming elements considered. 
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Table 10.4. Central Deflection of a Square Clamped Plate under Uniformly Distributed Load 
( .  = o.a) 
(a) Results given by the triangular element due to Cowper eta/." 

Idealizat ion 
(Figure 10.14) 

Number  of d.o.f, for 
one-quar ter  plate  Value of wc(lOaD/qa 4) 

n -- 1 5 1.14850 
n -- 2 21 1.26431 
n -  3 (not shown in Figure 10.14) 49 1.26530 
Exact  [10.3] 1.26 

(b) Results given by the rectangular elements due to Bogner et al.: 

16 d.o.f, element (BFS-16) 24 d.o.f, element (BFS-24) 

Number of elements Number of degrees Number of degrees 
in a quadrant of freedom Value of w c of freedom Value of wg 

1 1 0.042393" 
4 (2 x 2 grid) 9 0.040475" 
9 (3 x 3 grid) 25 0.040482" 

16 (4 x 4 grid) 49 0.040487" 
Exact [10.3] 0.0403" 

5 0.0405" 
21 0.0402" 

0.0403" 

*For a 20" = , q = 0.2 psi, E = 10.92 x 106 psi, t -  0.1" 

Y 

.~, 'L' .~I~L ..4__ --~ X 3 

/ ~ ~ ' I I ~ L  I 

1 "~/.~'z/N//1//7/12 

n= l  n=2 n=4 n=8 

Figure 10.14. Typical Finite Element Idealizations Considered in the Analysis of a Square 
Plate. 

10.9 ANALYSIS OF T H R E E - D I M E N S I O N A L  S T R U C T U R E S  
USING PLATE E L E M E N T S  

If three-dimensional  s t ruc tures  under  a rb i t ra ry  load condit ions are to be analyzed using 
plate  elements,  we have to provide bo th  inplane and bending load-carrying capaci ty for the 
elements.  The  procedure  to be adopted  will be i l lustrated with reference to a t r iangular  
element.  If a linear d isplacement  field is assumed under  inplane loads (as in Eq. 10.1), the 
resul t ing 6 x 6 inplane stiffness mat r ix  (in local coordinate  system) can be expressed as 

2 x 2  2 x 2 '  

[ 2 •  (lO.88) 
6 x 6  
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where the submatrices [kij]~ correspond to the stiffness coefficients associated with nodes 
i and j ,  and the subscript m is used to indicate membrane action. In this case, the 
relationship between the nodal displacements and nodal forces can be written as 

G, 
G2 

G3 

G3 

I 
U'I 

U1 

U2 

/ /3  

U3 

(10.89) 

where ui and vi denote the components of displacement of node i(i = 1, 2, 3) parallel to 
the local x and Y axes, respectively. Similarly. Px, and Py, indicate the components of 
force at node i(i = 1.2.3) parallel to the x and 9 axes. respectively. 

Similarly, the relation between the forces and displacements corresponding to the 
bending of the plate (obtained from Eq. 10.60) can be written as 

/ / '1 

ll~ b 

--//'x 

l l '2  

1L' 5 

- -  I L ' ~  

l l '3 

- -  l t ' ~  

(10.90) 

where w~ and Pz~ indicate the components of displacement and force parallel to the z axis 
at node i, Aly, and AGi represent the generalized forces corresponding to the rotations 
(generalized displacements) wy, (G, )  and u'x, (0,j,) at n o d e / ( i  = 1,2,3), respectively, and 
the subscript b has been used to denote the bending stiffness matrix. The 9 x 9 bending 
stiffness matrix (in local coordinate system) can be written as 

I 
[]C11] [/~'12] b 

3 •  3 x 3  / 

[ 3 x : ~  3 x 3  3 x 3 |  (10.91) 

[/,-~]~ [1,,~]~ [1,-~]~ / 
L 3 x 3  3 x 3  3 x 3 J  

In the analysis of three-dimensional structures the inplane and bending stiffnessses have 
to be combined in accordance with the following observations: 

(i) For small displacements, the inplane (membrane) and bending stiffnesses are 
uncoupled. 
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(ii) The inplane rota t ion 0z (rotat ion about  the local z axis) is not necessary for a 
single element.  However, Oz and its conjugate force AIz have to be considered in 
the analysis by including the appropriate  number  of zeroes to obtain the element 
stiffness mat r ix  for the purpose of assembling several elements. 

Therefore, to obtain the total  element stiffness matr ix  [k(e)], the inplane and bending 
stiffnesses are combined as shown below. 

[k(~)] = 
18 • 18 

[kll]m 
2 x 2  

0 0 
0 0 

0 0 0 

0 
"1 

0 0 

[k~l]b 
3 •  

0 
-1 

! 

0 0 , 0  0 0 
I 

"1 

0 
[k21]~ 
2 x 2  

0 0 
0 0 

0 0 

0 0 

[ ] ~ 3 1 ] m  

2 x 2  

0 0 
0 0 

0 0 0 

0 

0 
0 

0 

[k12]m 
2 •  

0 0 
0 0 

0 0 

0 0 0 

0 0 0 

[k~2]b 
3 x 3  

0 
t -  - - !  . . . . .  

i i 

[kl3]m 
2 •  

0 0 
0 0 

[k21]b 
3 x 3  

0 0 0 

0 0 0 

0 0 0 

[ k 3 1 ] b  

3 x 3  
0 

1 

o o : o  0 o 

0 
_ 1 _  _ . l  

0 
0 

0 
- i -  _ - i  

0 

0 

0 
0 0 

0 0 

- - -1 

o : o  

0 0 ,  0 
I 

"1 

0 

2 x 2  

0 0 
0 0 

0 0 

0 0 

0 0 

[ k 2 2 ] , 6  

3 x 3  

0 0 
_l  

0 0 
[kz2]m 
2 x 2  

0 0 

0 0 

0 [k32]b 
3 X 3  

0 
. . . . .  "3 

o ' , o  o 

0 , 0 , 0  
i i 

i -  - - i  . . . . .  

o o', 

' 2 x 2  
0 O '  

i 

i _  _ _ 1  . . . . .  

0 
0 

0 
i _  _ - i  . . . . .  

0 

0 0 
0 0 

0 0 

0 0 

0 0 

0 
. . . . .  --1 

0 

! 

O ,  0 
I 

- I  

0 

[ k l 3 ] b  

3 x 3  

0 0 

[k23]b 
3 x 3  

0 0 

0 0 

[ ] ~ 3 3 ] b  

0 0 0 
- - - !  - I  

o : o  o : o  o 

0 0 

0 0 
r "  - - 

0 
0 

0 
L.- 

I 

0 , 0  
! 

r 

0 0 

0 0 
k .  

0 
0 

0 

0 0 
i_  

0 0 

0 0 

0 
c 

o : o  

(10.92) 

The stiffness matr ix  given by Eq. (10.92) is with reference to the local zyz coordinate 
system shown in Figure 10.15. In the analysis of three-dimensional  s t ructures  in which 
different finite elements have different orientations, it is necessary to t ransform the local 
stiffness matrices to a common set of global coordinates. In this case, the global stiffness 
matr ix  of the element can be obtained as 

[K (e)] = [A]T[k(e)][A] (10.93) 



390 ANALYSIS OF PLATES 
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Y 
/ 

o,,  )Oz, ~ \ / 
X 

Figure 10.15. Inplane and Bending Displacements in a Local xyz Coordinate System. 

where the t ransformation matrix, [A]. is given by 

18 x 18 

F[~] [o] [o]] 
- / [o ]  [~] [o] 

L[O] [o] 
(10.94) 

and 

[_a] - 
6 x 6  

-lox rnox no.,. 0 0 0 

loy moy nov 0 0 0 

lo: too: ~Zo: 0 0 0 

0 0 0 Io~ mo~ no~ 

0 0 0 loy moy nov 

0 0 0 Io~ too.- no~ 

(10.95) 

Here, (lox, rnox, nox), for example, denotes the set of direction cosines of the z axis, and 
[0] represents a null square matr ix of order six. 
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10.10 COMPUTER PROGRAM FOR THREE-DIMENSIONAL STRUCTURES 
USING PLATE ELEMENTS 

A Fortran subroutine called PLATE is written for the equilibrium and eigenvalue analysis 
of three-dimensional structures using triangular plate elements. The description and listing 
of the program are given in Chapter 12. A numerical example is also considered to illustrate 
the use of the program. 
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PROBLEMS 

10.1 

10.2 

10.3 

10.4 

10.5 

10.6 

Find the stresses in the plate  shown in Figure 10.16 using one t r iangular  

membrane  element.  

Find the stresses in the plate shown in Figure 10.17 using two t r iangular  
membrane  elements.  

Find the coordinate  t ransformat ion  mat r ix  for the t r iangular  membrane  element 
shown in Figure 10.18. 

The plate  shown in Figure 10.16 is heated by 50~ Determine  the load vector. 
Assume the coefficient of expansion of the mater ia l  as a =  12 x 10 -6 per ~ 

The nodal  coordinates  and the nodal  displacements  of a t r iangular  element,  under  

a specific load condition, are given below: 

X i - O ,  Y / - 0 ,  X j -  1 in.. } ~ - 3 i n . ,  X ~ . - l i n . ,  Y ~ -  1 in. 

Q2i-1 - 0.001 in., Q2i - 0.0005 in., Q2j-1 = -0.000,5 in., Q2r = 0.0015 in., 
Q 2 k - 1 -  0.002 in.. Q 2 k - - 0 . 0 0 1  in. 

If E - 30 x 106 psi and r -  0.3, find the stresses in the element.  

For a t r iangular  element  in a s ta te  of plane stress, it is proposed to consider 
three corner and three midside nodes. Suggest a suitable displacement  model  
and discuss its convergence and other  properties.  

20 mm 

1000 N 

500 N 

-20 mm 

I 
!_., 
1 ~, 

! 
50 mm 

E = 2 0 5 G P a ,  v=0 .3 ,  t = 1 0 m m  

Figure 10.16. 

I 



40 mm 

j_ 

1000 N 

/ 
/ 

L. .._1 
F .... 50mm - " - I  

E =  205 GPa, v - 0.3, t = 10 mm 

Figure 10.17. 

500 N 

q4 

,/ 
(15 ,30)  ~ - - ~  v 

2 - " ~  q3 

Y 

q2 

(10,10)  mrrT~" - . . .  ~ 

q l  "~--  

q~ 

3 

(30,20)  m m  "~  ~ q5 

�9 ~ X 

Figure 10.18. 
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100 
N/cm 2 

A 

Z? 
1 cm radius 

2O cm 

1 
l _  ,, , 100 cm ,,, ~ }  
I -  - I  

E =  2 x 107 N/cm 2 , \, = 0.3, t = 0.5cm 

Figure  10 .19 .  

F 

100 
N/cm 2 

10.7 Modify the subrout ine CST so as to make it applicable for the stress analy- 
sis of three-dimensional  s t ructures  using constant  strain triangles. Using this 
subroutine,  find the deflections and stresses in the box beam of Section 10.3.3. 

10.8 Find the stress concentrat ion factors at points B and C of the plate with a hole 
shown in Figure 10.19 using the subrout ine CST. Definition: Stress concentrat ion 
factor at B or C 

poin  or ) 
stress along section AA 

10.9 

10.10 

10.11 

10.12 

Explain why the sum of coefficients of the stiffness matr ix  in any row for trian- 
gular plates with only inplane loads is equal to zero; tha t  is, Ejk~j = 0 for any 
row i. 

Consider two rectangular  plate elements joined as shown in Figure 10.20. If both 
inplane and bending actions are considered, what conditions do you impose on 
the nodal displacements of the two elements if the edge AB is (i) hinged and (ii) 
welded? 

A tr iangular  plate is subjected to a transverse load of 1000 N as shown in 
Figure 10.21. Find the transverse displacement and the stresses induced in the 
plate using a one-element idealization. Assume E = 205 GPa, v = 0.33, and 
t =  1 0 m m .  

Consider a rectangular  element in plane stress (Figure 10.22) with a bilinear 
displacement model: 

4 

i - - 1  

4 
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b 1 z2 
Y2 

b2 

C ~ a~ E 

D 

Figure 10.20. 

T 
20 mm 

t 
20 mm 

50 mm , , 

Figure 10.21. 

P = I000 N 

I 
I 

_1 
-I 

w h e r e  

N I ( ~ ,  r/) = (1 - { ) (1  - r/), N e ( { ,  r/) = {(1  - q) ,  

N 3 ( { ,  7/) = {r/, N 4 ( { ,  r/) = (1 - ~ )q  

I f  t h e  s t r a i n s  a r e  g i v e n  b y  ex = (oqu/oqx), ey = (c%,/oqy), a n d  gx~ = (oqu/oqy) + 
(Ov/oqx), d e r i v e  t h e  e l e m e n t  s t i f f n e s s  m a t r i x .  
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i 

v4 

l 
y 

q=-E 

V 1 

, ~ - = U  1 
X 

~ = ~  
a 

..__. 

3 

-I 
Figure 10.22. 

va 

I ua 

�89 

I .  , ~ U 2 
2 

10.13 A rec tangular  plate,  s imply suppor ted  on all the edges, is subjec ted  to a 

d is t r ibu ted  t ransverse  load of 

p(x,  y) -- Po sin ~ sin 
a b 

where  a and b are the dimensions of the plate (Figure 10.23). 

Y 

/ 
/ 
- ~  " I  . . . . . . .  =: ~ ~= - ~ ~ :=-- - :'~--~ f l  7 

- . .  r ~  ~ ~ / 

/ ~~~ - .  \ 

. . . .  " 4 /  - - - - ~ x  

/_ . . 2  
. .  

/~ ' ~ 7 

Figure 10.23. 
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) 
_~___--- 

1000 Ib 
"7 

I 

/ 
I 
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Base circle 

/ 

Dedendum 
circle 

Pi.~ch circle 

y 
(inch) 

I 

-1 . . . . . . . . . . .  

4 
. . . . . . . . .  - - - - , .  . . . .  

1 

-3  -2  -1 0 1 2 3 

Material Steel, E = 30 x 106 psi, v = 0.3 Face width = 1 in. 

Figure 10.24.  

(a) Verify tha t  the  displacement  solut ion 

w(x, g) - csin - -  

where 

rra" try 
sin 

a b 

C 
Po 

[ :r4D _~_i + 
a "  

satisfies the equi l ibr ium equat ion  and the bounda ry  conditions.  

x 
(inch) 

(E~) 
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(b) Using the solution of Eq. (El). find exprressions for the moments and 
reactions in the plate. 

10.14 Using the subroutine CST, find the nodal displacements and element stresses of 
the gear tooth shown in Figure 10.24. Compare the finite element solution with 
the approximate solution used in the machine design literature (Lewis solution). 
Use at least 50 finite elements for modeling the gear tooth. 
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ANALYSIS OF 
THREE-DIMENSIONAL PROBLEMS 

1 1 . 1  I N T R O D U C T I O N  

For the realistic analysis of certain problems such as thick short beams, thick pressure 
vessels, elastic half space acted on by a concentrated load. and machine foundations, we 
have to use three-dimensional  finite elements. Just  like a t r iangular  element is a basic ele- 
ment  for analyzing two-dimensional problems, the te t rahedron element,  with four corner 
nodes, is the basic element for modeling three-dimensional  problems. One of the major  
difficulties associated with the use of three-dimensional  elements (e.g., te t rahedra ,  hexa- 
hedra, and rectangular  parallelepiped elements) is tha t  a large number  of elements have to 
be used for obtaining reasonably accurate results. This will result in a very large number  
of s imultaneous equations to be solved in static analyses. Despite this difficulty, we may 
not have any other  choice except to use three-dimensional  elements in certain situations. 
Hence, the te t rahedron  and hexahedron elements are considered in this chapter  [11.1-11.3]. 

1 1 . 2  TETRAHEDRON ELEMENT 
The te t rahedron  element,  with three t ranslat ional  degrees of freedom per node, is shown in 
the global x y z  coordinate system in Figure 11.1 (the global coordinates are denoted as x, y. 
z instead of X,  Y, Z, for simplicity). For this element,  there will be no advantage in set t ing 
up a local coordinate system, and hence we shall derive all the elemental  equations in the 
global system. Since there are 12 nodal degrees of freedom Qa~-2, Q3i-1 ,  Qai, Q33-2 . . . ,  Qaz 
and three displacement components  u, v, and w, we choose the displacement variation to 
be linear as 

u(x ,  y, z) - ~: + c~2x + a3y + c~4z ] 

v(x ,  y, z) = 0~5 + o~Gx + a7y  + c~sz 

W(X, y,  Z) - -  O~9 -~ Ctl0X -~- a l l y  + O:12Z 

(::.:) 

where a : ,  a 2 , . . . ,  ct:2 are constants.  By using the nodal conditions 

u = Q 3 i - 2 ,  v = Q 3 i - 1 ,  u' = Q3, at 

u = Q3j -2 ,  v = Q,3j-1, w = Q33 at 

(xi,  y~,z~) 

399 
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z=Z I, 
ol . /-  

x=X 

O3k 

3 = ~  Q3.-1 

, I . . . .  - . . . . . .  

0 3 ( -  ~ .O3j-1 

2=(z) 
03j2 

Figure 1!.1. A Tetrahedron Element in Global xyz System. 

= Q31-1 

we can obtain 

u - O a k _ ~ .  t' - Q . ~ , : - I .  u' - Qa~,. a t  (x l , . .  gl,-. zj,.) 

u - O a l _ 2 .  , ' -Q:~l-1.  ~,'-Q:~l at (.rt.gt.zl) (11.2) 

+ N,(x. g.z)O3,-2 (11.3) 

where Ni, Nj, Nk, a,_~d ~) are given by Eq. (3.48). and similar expressions for t,(x, y, z) 
and w(x. y. z). Thus. the displacement field can be expressed in mat r ix  form as 

where 

L 7 - ~'tx.g. - [N] (~(~) (11.4) 
3• 1 w(x ,g . .  3 •  12 12 • 1 

and 

[:v, o o :V, o o .\k o o .v, o o ]  
[ x ] - [ o  ~ x,  o o ~\5 o o .~~ o o N, o ] 0 N, 0 0 . \ j  0 0 Nk 0 0 Nz 

(11.5) 

O (c) 

Q3~ 

Q3, 
m Q3t 

- ' 2  

- 1  

(11.6) 
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Noting that  all six strain components are relevant in three-dimensional analysis, the 
strain-displacement relations can be expressed, using Eq. (11.4). as 

~ X2: 

gY9 
--~ ----~ Z Z 

6 x  1 :~y 
Cyz 

~ z x  

Ou/Ox 
Ov/Oy 
Ou'/Oz 

Ou Ov 

Ov Ow 

Ow Ou 

[B] C~ (~) (11.7) 
6 x 12 12 x 1 

where 

b~ 0 0 by 0 0 bk 0 0 b~ 0 0 0 
ci 0 0 cj 0 0 ck 0 0 ct 

1 0 d~ 0 0 dj 0 0 dk 0 0 dl 
[ B ] -  ~ bi 0 cj bj 0 ck bk 0 cl bt 

di c~ 0 dj cj 0 dk ck 0 d~ cz 
kd~ o b~ dj 0 br dk 0 bk dl 0 blJ 

(11.8) 

The stress-strain relations, in the case of three-dimensional analysis, are given by 
Eq. (8.10) as 

- [D]g" (11.9) 

where 

~ T  __ {O':rx Cryy Crzz O'xy O'yz Crzx } 

and 

E 
[D] = (1 + v)(1 - 2v) 

"(1 - v)  v v 0 0 

v ( l - v )  v 0 0 
v v ( l - v )  0 

0 0 0 ~ \ ( 1 - 2 2 v )  0 

0 0 0 0 

0 0 0 0 0 
L 

0 

( 1 22-------~v ) 

(II.i0) 

The stiffness matrix of the element (in the global system) can be obtained as 

[K (e)] = / I f J ' [ B ] r [ D ] [ B ]  dV  

Vfe) 

(:I.::) 
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Since the matr ices  [B] and [D] are independent  of x, g, and z, the stiffness mat r ix  can be 
obta ined by carrying out mat r ix  mult ipl icat ions as 

(11.12) 

In this case, since the assumed displacement  model is linear, the continuity of d isplacement  
along the interface between neighboring elements  will be satisfied automatical ly.  

11.2.1 Consistent Load Vector 

The total  load vector due to initial ( thermal)  strains, body' forces o = ov , and surface 
Oz 

(dis tr ibuted)  forces ( ~ -  p .v0  can be computed  using Eqs. (8.88), (8.90), and (8.89) as 

Pz0 

1 

f(~) = [S]~fDJ ~r d r +  [=u o~ d r +  [N]~p~o(- 

E .  c~- T-  I ,'(~) 
(1 - 2 u )  

1 
1 
1 I ,'( ~ 

0 + - - ~  
0 
0 

Ox 

o q 

Oz 

O.r 

Oy 

Oz 

Ox 

Ou 

Ox 

Oy 

O= 

S (c) i jk +--7 

Pxo 

Puo 

Pzo 

P.rO 

PrO 
PzO 

Pxo 
Puo 

0 
0 

dS1 

(11.13) 

Equat ion  (11.13) shows that  the bodv force is d is t r ibuted equally between the four nodes 
of the element.  It is assumed in deriving Eq. (11.13) tha t  the surface forces are d is t r ibuted  
only on the face i j k of the element e. These surface forces can be seen to be equally 

q,(e) 
dis t r ibuted  between the three nodes i. j .  and k. which define the loaded face. ~',3k denotes  
the area of the face i j k of element  e. The last three components  of the surface load vector 
are zero since they are related to the term f f , V 1 ,  dSx and N1 is zero on the face i j k. 
Note tha t  the location of the zero terms changes in the last column of Eq. (11.13), and 
their  location depends  on which face the surface forces are acting. If more than  one face 
of the element  e is subjected  to the surface forces, then there will be addi t ional  surface 
load vectors in Eq. (11.13). 
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11.3 HEXAHEDRON ELEMENT 
In this section, we consider the simplest  hexahedron  element  having eight corner nodes 
with  three  degrees of freedom per node. For convenience, we derive the e lement  matr ices  
by t rea t ing  it as an i soparametr ic  element .  This  e lement  is also known as Zienkiewicz- 
I rons-Br ick  with eight nodes (ZIB 8) and is shown in Figure  l l . 2 (a ) .  

11.3.1 Natural Coordinate System 
As shown in Figure  l l . 2 ( a ) ,  the na tura l  coordinates  are r. s. and t with the origin of the  
sys tem taken at the centroid of the element.  It can be seen tha t  each of the coordinate  axes 
r, s, and t is associated with a pair of opposi te  faces, which are given by the coordina te  
values :kl. Thus,  in the local (na tura l )  coordinates ,  the e lement  is a cube as shown in 
Figure  l l . 2 (b ) ,  a l though  in the global Car tes ian  coordinate  sys tem it may be an arbi t rar i ly  
warped and dis tor ted  six-sided solid as shown in Figure l l . 2 ( a ) .  The  rela t ionship between 
the local and global coordinates  can be expressed as 

321 
gl 

= [ Y l  x2  
Z 

Z8 

(11.14) 

where 

and 

~il 0 0 ]~/2 . . .  0 1 IX] - u  o o o 
0 "~1 0 . . .  IV8  

1(1 + rr,)(1 + s s  )(1 + t t , )" N , ( ~ ,  s ,  t )  - -  - i 

(11.15) 

i = 1, 2 . . . . .  8 (11.16) 

t 

z = Z  t 

5 _ 8 (-1,-1,1)5_ I .... 8(-1,1,1) 

o ! i I 

s ( 1 11 i4(-1~1,-1) 

2 ~ - ' ~  " - ' " ' ' - " -~  r 3(1,1,-1) 
r 

(a) In global xyz system (b) In local rst system 

Figure 11.2. A Hexahedron Element with Eight Nodes. 
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o r  

{x} 
y 
Z 

~---1 

8 

E N, y, 

8 

E N, zi 
z--1 

(11.17) 

11.3.2 Displacement Model 
By assuming the variations of the displacements in between the nodes to be linear, the 
displacements can be expressed by the same interpolation functions used to describe the 
geometry as (analogous to Eq. 11.14) 

t '  

U~ 

U1 

U1 

//?1 

/1'8 

-[N](~ ~) (11.18) 

where (~(~) is the vector of nodal displacement degrees of freedom, and (u,, vi, wi) denote 
the displacements of node i, i - 1-8. 

11.3.3 Strain-Displacement and Stress-Strain Relations 
Using Eq. (11.18), the three-dimensional s train-displacement relations can be expressed as 

~xx 

~yy 

~zz 

Cxy 

Cyz 

~zx 

G~U 

Ox 

Ou 
Og 

oqw 
Oz 

Ou Ov 

Or, Ow 

0/1, Ou 
-87 + 

[B] (~(~) (11.19) 
6 x 24 24 x 1 

where 

[B] - [[B1][B2]... [Bs]] 
6 x 2 4  

(11.20) 
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and 

[B i ]  = 
6 x 3  

-0N~ 
0 

ON, 
0 0 

Oy 

ON, 
o o -o-z-z 

ONi ONi 
0 

Oy Ox 

ON, ONi 
0 

Oz Oy 

ONi ONi 
- -aT o --~ . 

i =  1-8 (11.21) 

The derivatives in the matrix [Bi] may be evaluated by applying the chain rule of 
differentiation as follows: 

ON~ 

O ~  = 

ON~ 

ON~ Ox ON, Oy ON, Oz ~ _+_ _~_ ~ 
Ox Or Oy Or Oz Or 

ON, Ox ON~ Oy ON~ Oz 
Ox O-U + o--u Os t Oz O-U 

ON~ Ox ON~ Oy ON, Oz 
Ox Ot Oy Ot Oz Ot 

Ox Oy (% 7 ON, 0 ~, 
-&r & Orl -Sfz - ~ x  

_ Ox Oy 0 ONi ON, 

- 0 s  ~ OsJ -~y-[J] --~y 
Ox Oy Oz ONi ON, 

(11.22) 

where [J] is the Jacobian matrix, which can be expressed, using Eq. (11.17), as 

[J] = 
3 x 3  

Ox Oy 
Or 

Ox Oy 
os 

Ox Oy 
ot 

Oz ON, ON, 0_~ 

i = l  , = 1  

O t - - ~  x i - - ~  y, - - ~  zi 
i = 1  i = 1  i = 1  

(11.23) 
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The derivatives of the interpolation functions can be obtained from Eq. (11.16) as 

ON, 1 
Or 8 r~(1 + ss~)(1 + tt ,) 

ON, 1 
Os = ~s~(1 + rr,)(1 + tt,) �9 i -  1-8 (11.24) 

O .\'i 1 
Ot 8 ti(1 + rr,)(1 + ss,) 

and the coordinates of the nodes in the local system (r,. s~. t~) are shown in Figure 11.2. 
By inverting Eq. (11.22). we obtain 

0.% 0N; 

ON, - 1 oNi 

ON, 0.%:, 
-gi- 

(11.25) 

from which the matrix [B,] can be evaluated. The stress-strain relations are the same as 
those given in Eqs. (11.9) and (11.10). 

11.3.4 Element Stiffness Matrix 
The element stiffness matrix is given by 

[K (~)] -//iI'[B]r[D][B] d~" 

I ' t ~ )  

(11.26) 

Since the matrix [B] is expressed in natural coordinates [evident from Eqs. (11.20). 
(11.21), and (11.25)]. it is necessary to carrv out the integration in Eq. (11.26) in natural 
coordinates too. using the relationship 

d~" - d x d g d z  = det[J] �9 d r d s d t  (11.27) 

Thus, Eq. (11.26) can be rewritten as 

1 1 [ 

[K(e)] - / / / ' [ B ] T [ D ] [ B ]  det[J] dr ds at 

--1 --I --I 

(11.28) 

11.3.5 Numerical Computation 
Since the matrix [B] is an implicit (not explicit!) function of r. s. and t, a numerical 
method has to be used to evaluate the multiple integral of Eq. (11.28). The Gaussian 
quadrature has been proven to be the most efficient method of numerical integration 
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for this class of problems.  By using the two-point  Gauss ian  quadra ture ,  which yields 
sufficiently accura te  results,  Eq. (11.28) can be evaluated as [11.4] 

R2 $2 :s 
[K(~)] = E E E [([B]T[D][B]" det[J])](R,.S~.T,)] (11.29) 

r = R ,  = R  1 s--Sj  = S  1 t = T  k = r  1 

where 

[([B]r[D][B] �9 det[J])[(R,.s~.T~.)] (11.30) 

indicates the value of 

([B]T[D][B] det[J])  

evaluated at r = Ri, s -  Sj,  and t -  Tk, and R1 - $1 - 7"1 = -0 .57735  and R2 - $2 - 
T2 = +0.57735. 

11.3.6 Numerical Results 
The performance  of the three-dimensional  e lements  considered in Sections 11.2 and 11.3. 
namely  the t e t r ahed ron  and hexahedron  elements,  is s tudied bv taking the short  canti lever 
beam shown in Figure  11.3 as the test  case. This canti lever is modeled as an assemblage 
of 42 identical hexahedra ,  each 2 x 2 x 3 in. In the case of the t e t r ahedron  element ,  each of 
the  42 hexahedra  is considered to be composed of 5 t e t r ahedron  elements.  The  canti lever 

I / / I / / / I  / 
2" , ~  / / / ,  ~ "  800 Ib-in 

2' 2 . . .  / 

2" ~ i 

L_ 
F- 

Z 

L__x 
/ 

Y 

7@3" -J 
-1 

Figure 11.3. A Cantilever Beam Subjected to Tip Moment. 
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beam is subjected to a tip moment  of 800 lb-in, as indicated in Figure 11.3. The numerical 
results obtained are indicated below [11.4]" 

I~laximum stress hiaximum deflection at the 

Element type crx~ cr:~ c.g. of tip 

Tetrahedron 0.606 • 10 -4 in. 
ZIB 8 31.6 psi 1.4 psi 0.734 • 10 -4 in. 
Beam theory 33.3 psi 0.0 psi 0.817 • 10 -4 in. 

It can be seen tha t  ZIB 8 is superior to the te t rahedron element. 

11.4 ANALYSIS OF SOLIDS OF REVOLUTION 
11.4.1 Introduction 
The problem of stress analysis of solids of revolution (axisymmetric solids) under axisym- 
metric loads is of considerable practical interest. This problem is similar to those of plane 
stress and plane strain since the displacements are confined to only two directions (radial 
and axial) [11.5, 11.6]. The basic element that  can be used for modeling solids of revolution 
is the axisymmetric ring element having tr iangular  cross section. This element was origi- 
nally developed by Wilson [11.7]. This element is useful for analyzing thick axisymmetric 
shells, solid bodies of revolution, turbine disks (Figure 11.4), and circular footings on a 
soil mass. In this section, the derivation of the element stiffness matr ix and load vectors 
for the axisymmetric ring element is presented. 

408 

Figure 11.4. Turbine Disk Modeled by Triangular Ring Elements. 
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Ui 
% 

Uk 

0 

Figure 11.5. An Axisymmetric Ring Element with -J-riangular Cross Section. 

11.4.2 Formulation of Elemental Equations for an Axisymrnetric Ring Eiement 
An a x i s y m m e t r i c  r ing e lement  wi th  a t r i angu la r  cross sect ion is snoa-n m cytinc,-icai cool-  

d ina tes  in F igure  11.5. For a x i s y m m e t r i c  de fo rmat ion ,  since the  ( l ispiacement  t, a long 0 

d i rec t ion  is zero (due to s y l n m e t r y ) ,  the  relevant  ( i l splacement  comi)oaen~s are o m y  u and 

w in the  r and  z direct ions,  respect ively.  By t ak ing  tile l looal  v mues oI u a , a  w as tile 

degrees of f reedom,  a l inear d i sp lacement  mode l  can be ass umecl ~n ~erms ot c rmngular  

coord ina te s  L~, L j ,  and  Lk as 

,_,(r ._ = [NjQ ~':) ( lm .a l )  

where  

I X ] -  x,  o .\5 o :v,.. 

(e) tel Q2i-1 uz 
Q2i UL' i 

Q(~) = Q 2 j - :  _ .o ( t~.a3)  
Q22 W3 

Q2k-1 tlk 
Q2k U'k 

N j  = L j  = (~j -t- b~r ~- c'j : 

N k  L k  a~. + b k r  + c ~ z  

( t J . a 4 )  

1 
A -  ~ ( r ,  zj  + raz, .  + , '~- ,  - r ' , ' k  - , 'az, - c~.z3) (1i .35)  

( r ~ , z i )  are the  ( r , z )  coord ina tes  of node  i. and  a i . a j . ~ , 1  . . . . .  ck c a n  De o b t a l , e d  h 'oal  

Eq. (3.32) by s u b s t i t u t i n g  r and  z in place of ,r and  g. respec~lveiv, ill tnls  case. t nece ace 

four re levant  s t ra ins ,  n a m e l y  c ~ ,  ce0. g~:. and g,.:. for tim axlsym~necr~c case. 

T h e  s t r a i n - d i s p l a c e m e n t  re la t ions  can be expressed as 

Iff,'r I Czz 

()tt 
Or 

U 
F 

Oz 

Ou Ou' 

~ +-gT,. 

- [B]O":'  ( 1 i . :~1  
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where 

I bi 0 b 3 0 bk 0 ] 
[ B ] - 1 2 A  ( N , / , ' ) 0  (.~5/r) 0 (N~/r)  0 

1 0 c, 0 c~ 0 ck 
ci b, c o b A ck b,,. 

(11.37) 

The stress-strain relations are given by" 

cY = [D]f (11.38) 

where c7 = {ar~ ~oo or:: c~,.~ }7- and 

1 -u u u 0 
u l - z ,  z,, 0 

E u u 1 - u 0 (11.39) 
[ D ] -  (1 + u)(1 - 2v,) / ' ' ~ 1  - 2u 

o o o ~ , - - g - - )  

Since the matr ix [B] contains terms that  are functions of the coordinates r and z the 
product  [B]7` [D] [B] cannot be removed from under the integral sign in the expression 
of the element stiffness matrix [K(~t]. Eq. (8.87). However. we can adopt an approximate 
procedure for evaluating the integral involved in the expression of [K(~/]. If we evaluate 
the matr ix [B] using the r and z values at the centroid of the element, the product  [B] r 
[D] [B] can be removed from under the integral sign as 

~-(e) 

dV (11.40) 

where the bar below [B] denotes that  the matrix [B] is evaluated at the point (_r, z_) with 

r - - ( r ,  + r  a + r k ) / 3  and k =  ( z , + z j + z k ) / 3  (11.41) 

By using the relation 

/ / "  dI" - V (') = 2rrrA (11.42) 

p ( ,  - ) 

Eq. (11.40) can be expressed as 

[K~,,]_ [_B];[D][__S]2~,-A (11.43) 

Although Eq. (11.43) is approximate,  it yields reasonably accurate results. The compo- 
nents of the load vector of the element are given by Eqs. (8.88)-(8.90). The load vector 



ANALYSIS OF SOLIDS OF REVOLUTION 411 

due to initial s trains (caused by the t empe ra tu r e  change T) can be handled as in the case 
of [K (~)] since [B] occurs in the integral. Thus. 

P~(e) - - / f / [ B ]  T [D]g'o dI :  

V ( ~ )  

Ill _ f [ f [ B ] T [ D ] E o T  1 dl~" 
JJJ  1 

Ill Ec~T 1 
-~ ~(1-2u-----~[B---] 1 27rrA (11.44) 

0 

If ~ and ~ denote  the components  of the body force in the directions of r and z. 
respectively, the load vector Pb (~) can be evaluated either exact ly using the area coordinates  
or approximate ly  using the procedure  adopted  earlier. If we use the area coordinates.  
Eq. (8.90) can be expressed as 

0] 
2 ~ r d A  (11.45) 

The  radial  distance r can be wri t ten  in terms of the area coordinates  as 

r = r ,L,  + r j L j  + rkL~. (11.46) 

By subs t i tu t ing  Eq. (11.46) into Eq. (11.45) and evaluat ing the result ing area integrals 
using Eq. (3.78), we obtain  

/~ e )  __  27r A 

12 

(2r, + r~ + rk ) o,. 

(2r, + r 3 + r~.) o:  

(r, + 2r 3 + rk) o,~ 

(r, + 2rj + rk) o:  

(ri + r.j + 2r~.) o,- 

(r, + rj + 2rA.) o :  

(11.47) 

It can be seen from Eq. (11.47) tha t  the bodv forces are not d is t r ibuted  equally between 
the three nodes i, j ,  and k. 

If (~  and ~)z denote  the applied stresses in the 7" and z directions, the load vector 
/~(e) can be evaluated using the area coordinates  as in the case of/~t~.) If we assume that  

only the edge i j lies on the surface SI e/ on which the stresses o,- and ~): are acting (this 



412 ANALYSIS OF THREE-DIMENSIONAL PROBLEMS 

implies that  L k -  0), we can write 

~ 1 // ] ~ ( ~ ' -  [N]r (~= d S 1 -  L0a/ (~= 2~rr-ds  (11.48) 

.s, L~J 

where dS1 - 2rcr ds. and .s,~ denotes the length of the edge i j .  By subst i tut ing Eq. (11.46) 
into Eq. (11.48). Eq. (3.77) can be used to evaluate the line integral of Eq. (11.48). This 
results in 

1~ ( )  7i" S z j 

,3 

(2r, + rj) ~,. 

(2ri + rj ) ~= 
(r, + 2rj ) ~ 
(r, +2to) ~= 

() 

() 

(11.49) 

Note" 
If the edge. for example, i j .  is vertical, we have r - r, 
Eq. (11.48) leads to 

~,. 

0 

0 

- rj along this edge and hence 

(11.50) 

11.4.3 Numerical Results 
An infinite cylinder subjected to an internal pressure, for which an exact solution is known. 
is selected as a means of demonstra t ing the accuracy of the finite element considered. 
In Figure l l .6 (a) ,  three finite element meshes are shown [11.7]. The resulting radial and 
hoop stresses are plotted in Figure l l .6(b) .  Except for the very coarse mesh. agreement 
with the exact solution is excellent. In this figure, stresses are plotted at the center of the 
quadrilaterals and are obtained by averaging the stresses in the four connecting triangles. 
In general, good boundary stresses are est imated bv plott ing the interior stresses and 
extrapolat ing to the boundary. This type of engineering judgment  is always necessary in 
evaluating results from a finite element analvsis. 

11.4.4 Computer Program 
A Fortran subroutine called STRESS is given for tile thermal  stress analysis of axisym- 
metric solids. It requires the following quantit ies as i n p u t  

NN - total  nulnber of nodes. 
NE --- number of elements. 
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case l 

case II 

case III 

(a) Finite element idealization 

CO 
cO 
(D 
i,_ 

cO 

c'- 
(D 
O'1 
c- 

"O 
e- 

r r  

0 
_ 1 

.5 6 

- Exact - - - " -  

case l o 

~ k  case II X 
X case III A 

- 

_ ! . 1 -  , ~ ~ i i ~ - _  

.7 .8 .9 

Radius 

1.0 

(b) Stress distribution 

F igure  1 1 . 6 .  

NB 

ND 

ANU - 

E = 

E X P A N  - 

T I N F  - 

R = 

Z = 

LOC - 

r 
NOM - 

QS 

bandwid th  of the overall stiffness matr ix .  

to ta l  number  of degrees of freedom (2NN). 

Poisson's  ratio. 

Young's  modulus.  

coefficient of expansion.  

ambient  t empera tu re .  

array of size NN: R(I) = r coordinate  of node I. 

ar ray of size NN; Z(I) = z coordinate  of node I. 

array of size NE x 3; LOC(I , J )  = global node number  corresponding to J t h  

corner of element I.  

array of size NN: T(I)  = specified t e m p e r a t u r e  at node I. 

ar ray of size NN: NOlk[(I) = number  of elements  connected to node I. 
array of size ND: QS(I) = prescribed value of displacement  of I t h  degree of 

freedom. If its value is not known, QS(I) is to be set equal to - 1 . 0  E6. It is 

assumed tha t  the radial  displacement  degrees of freedom are numbered  first 

at every node. 
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F igure  11.7. Analysis of an Axisymmetr ic Cylinder. 

The stresses computed at the various nodes are given bv the array SIGXIA of size 4 x NN 
(output).  SIGMA(1.I), SIGI~IA(2,I). SIGXIA(3.I). and SIGXIA(4 . I )denote  the radial, 
hoop, axial, and shear stresses, respectively, at node I. 

E X a m p l e  11.1 To illustrate the use of the subroutine STRESS. tile thermal stresses 
developed in an infinitely long hollow cylinder with inner radius 1 and outer radius 2 are 
considered. Since the stress distribution does not vary along the axial length, a disk with 
an axial thickness of 0.05 is considered for the analysis. The finite element idealization is 
shown in Figure 11.7. The values of NN. NE, ND. and NB can be seen to be 42. 40. 84. 
and 8, respectively. The values of ANU. E. EXPAN. and TINF are taken as 0.3. 1.0, 1.0. 
and 0.0, respectively. The axial displacements of all the nodes are restrained to be zero. 
The radial tempera ture  distribution is taken as 

Temperature  (r) = (T, - To) In r T, In R o -  To In R, 
-t,~(Ro/R,) + tn(Ro/R,) (E~) 

where r is the radial distance. T, is the tempera ture  at the inner surface, To is the tem- 
perature at the outer surface, and R; is the inner radius and Ro is the outer radius of the 
cylinder. 

Thus, the nodal temperatures  T ( I )  are computed from Eq. (El) by substi tut ing the 
appropriate value of r. The main program that calls the subroutine STRESS and the 

output  of the program are given below. 

C ............ 

c 

c STRESS ANALYSIS OF AXISYMMETRIC SOLIDS 

C 

C .......... 

DIMENSION L0C(40,3),R(42),Z(42),QS(84),T(42),NOM(42),SIGMA(4,42) 

COMMON /AREA 1/R, Z, LOC 

COMMON /AREA2/NOM 

COMMON /AREA4/QS, SIGMA 

COMMON /AREA7/T 
DATA ME, NN, NB,ND, ANU,TINF/40,42,8,84, O. 3, O. O/ 

DATA E,EXPAN/I.O, 1.0/ 

DATA T (1),T (2),T(41),T(42)/IO00.O,IO00.O,O.O,O.O/ 

LOC(1,1)=1 

LOC ( I, 2) =4 

L0C (1 ,3 )  =2 

L0C (2 ,1)  =4 

L0C(2 ,2 )=1  
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60 

C 

100 
110 

LOC(2,3)=3 
DO I0 J=l,3 

DO I0 I=3, NE 

JJ=I-2 

LOC (I, J) =LOC (J J, J) +2 

iO CONTINUE 

R(i)=l.O 
R(2)=1.0 
DO 20 I=3,NN,2 
JJ=I-2 

JK=I+I 

R(I)=R(Jm)+o.05 

R(JK)=R(1) 

20 CONTINUE 

DO 30 I=1, NN, 2 

Z (I)=O. 0 

KK=I+I 

Z (KK)=0.05 

30 CONTINUE 

CA=-(T (I) -T (42))/ALOG (R (42)/R(i) ) 

DA= (T (I) .ALOG (R (42))-r (42),ALOG (R (i)) ) / (ALOG (R (42)/R(1) ) ) 
DO 40 I=I,NN 

RR=R ( I ) 
T (I) =CA. ALOG (RR) +DA 

40 CONTINUE 

DO 50 I=I,ND 

50 QS (I)=-1. OE+6 

DO 60 I=I,NN 

NFIX=2,I 

OS (NFIX) =0.0 

NOM(1)=NUMBER OF ELEMENTS CONNECTED TO NODE I 
DO 70 I=I,NN 

70 NOM(I)=O 

DO 80 I=I,NE 

DO 80 J=l,3 

80 NOM (LOC (I, J) )=NOM (LOC (I ,J) )+I 

CALL STRESS (NN,NE,NB,ND,E,ANU,EXPAN, TINF) 

PRINT 90 

90 FORMAT (/,IX,'NODE',IX,'RADIAL',IX,'AXIAL',IX,'TEMPERATURE', 
2 3X, 'RADIAL',5X, 'HOOP',6X, 'AXIAL',7X,'SHEAR'/2X, 'NO.', IX,'COORD. ' 

3 , IX,'COORD. ', 14X,'STRESS',4X,'STRESS',5X,'STRESS',6X,'STRESS'/ 

4 73 (IH-)/) 

DO I00 I=I,NN 

PRINT II0, I,R(I),Z(I),T(I),SIGMA(I,I),SIGMA(2,I),SIGMA(3,I), 

2 SIGMA(4, I) 

CONTINUE 

FORMAT (14,2(2X,F5.2), 5(FI1.4) ,3X,F8.5) 
STOP 

END 
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NODE RADIAL AXIAL TEMPERATURE 

NO. C00RD. C00RD. 

1 1.00 0�9 1000.0001 
2 1.00 0.05 1000.0001 

3 1.05 0�9 929.6107 
4 1�9 0.05 929�9 
5 i . 1 0  0 .00  862�9 
6 1.10 0 .05  862.4966 

39 1.95 0 .00  36 .5259 
40 1.95 0 .05  36�9 
41 2 .00  0 .00  0 .0001 
42 2 .00  0 .05  0 .0001 

RADIAL 

STRESS 

-19.9552 
-31.9503 

-38.2937 
-39.1378 

-62.0330 

-70.7238 

H00P AXIAL SHEAR 

STRESS STRESS STRESS 

-803.7952 -1211.9308 -11.9011 
-835�9 -1236.6448 -18.2606 

-705.7072 -1138.2609 -4.1018 
-771.0350 -1188.6688 -9.7813 

-582.1711 -1041.8383 -0.7541 

-643.3868 -1091.9757 -2.6620 

-7 .  4387 525. 9069 127�9 0259 3. 1661 
- 18�9 4688 506. 3225 101. 3971 1�9 6569 

0.8151 544. 0840 151�9 5. 3831 
-6 .  8447 535. 4181 140. 3090 3. 7203 
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PROBLEMS 

11.1 The X, Y, Z coordinates of the nodes of a te t rahedron element, in inches, are 
shown in Figure 11.8. 

(a) Derive the matrix [B]. 

(b) Derive the stiffness matrix of the element assuming that  E = 30 x 106 psi 
and ~ = 0.32. 

11.2 Find the nodal displacements and the stress distribution in the element shown 
in Figure 11.8 by fixing the face 123. Assume the loads applied at node 4 as 
Px = 50 lb, Pv = 100 lb, and Pz = -150  lb. 

11.3 A uniform pressure of 100 psi is applied on the face 234 of the te t rahedron element 
shown in Figure 11.8. Determine the corresponding load vector of the element. 

11.4 If the tempera ture  of the element shown in Figure 11.8 is increased by 50~ while 
all the nodes are constrained, determine the corresponding load vector. Assume 
the coemcient of expansion as a = 6.5 • 10 -G per ~ 

11.5 The X, Y, Z coordinates of a hexahedron element are shown in Figure 11.9. 
Derive the matrix [J]. 

z 

3 (0, 0,10)in E= 30 x 106psi 

/1~i k v=0 .3  
p = 0.283 Ibf/in 3 

/ 
/ .." 

1 4 
,O,O)in " (10,10, 5)in 

Px 

Figure 11.8. 



418 ANALYSIS OF THREE-DIMENSIONAL PROBLEMS 

X 

(0, 0, 30)in 

I 

(0, 20, 0)in 

10, 0, 0)in 

Figure 11.9. 
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(a) 

Y 

I ~ s 

i : ! 

ii 0 = 30 ~ 

L_. . . . . . . .  L . .  

(b) 

Figure 11.11. 

11.6 An axisymmetric ring element is shown in Figure 11.10. 

(a) Derive the matr ix  [B]. 

(b) Derive the matr ix [D], for steel with E - 30 x 106 psi and t, = 0.33. 

(c) Derive the element stiffness matrix,  [K I. 
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11.7 If the element shown in Figure 11.10 is subjec ted  to an initial strain,  due to 
an increase in t e m p e r a t u r e  of 50~ de te rmine  the corresponding load vector. 
Assume a value of a = 6.5 x 10 .6  per ~ 

11.8 If the  face 23 of the element shown in Figure 11.10 is subjec ted  to a uniform 
pressure of 200 psi. de te rmine  the corresponding load vector. 

11.9 A hexagonal  plate  with a circular hole is subjec ted  to a uniform pressure on the 
inside surface as shown in Figure  l l . l l ( a ) .  Due to the s y m m e t r y  of the geomet ry  
and the load, only a 30 ~ segment  of the  plate can be considered for the  finite 
e lement  analysis [Figure l l . l l ( b ) ] .  Indicate  a procedure  for incorpora t ing  the 

bounda ry  condit ions along the X and s axes. 

Hint" The  s y m m e t r y  condit ions require tha t  the nodes along the X and s axes 
should have zero displacement  in a direction normal  to the X and s axes, respec- 
tively. If the global degrees of freedom at node are denoted as Q2,-1 and Q2i, then 
the bounda ry  condit ion becomes a mult ipoint  constra int  tha t  can be expressed 

as [11.8] 

- Q 2 , - ~  sin 0 + Q2, cos 0 - 0 

A me thod  of incorpora t ing  this type  of const ra int  was indicated in P rob lem 9.16. 

11.10 Wri te  a subrout ine  called SOLID for the analysis of three-dimensional  solid bodies 
using t e t r ahedron  elements.  Find the tip deflection of the short  canti lever beam 

discussed in Section 11.3.6 using this subrout ine  SOLID.  
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DYNAMIC ANALYSIS 

12.1 DYNAMIC EQUATIONS OF MOTION 
In dynamic problems the displacements, velocities, strains, stresses, and loads are all time 
dependent. The procedure involved in deriving the finite element equations of a dynamic 
problem can be stated by the following steps: 

S t ep  1: Idealize the body into E finite elements. 

S t ep  2: Assume the displacement model of element e as 

l ] ( x , y , z , t )  = v ( x , y , z . t )  = [X(x .y , z ) ] (~(~) ( t )  (12.1) 
w ( x , y , z . t )  

where 57 is the vector of displacements, IN] is the matrix of shape functions, and (~ (~) is 
the vector of nodal displacements that is assumed to be a function of time t. 

S t ep  3: Derive the element characteristic (stiffness and mass) matrices and character- 
istic (load) vector. 

From Eq. (12.1), the strains can be expressed as 

g ' -  [B]@ (~) (12.2) 

and the stresses as 

-[D]g-[D][B]4 ~) (12.3) 

By differentiating Eq. (19.1) with respect to time, the velocity field can be obtained as 

U ( x , y , z , t )  - [N(x . y , z ) ]~ (~ ) ( t )  (12.4) 

where (~(r is the vector of nodal velocities. To derive the dynamic equations of motion of 
a structure, we can use either Lagrange equations [12.1] or Hamilton's principle stated in 
Section 8.3.2. The Lagrange equations are given by 

d{O } {o,} 
d-t 0-~ - ~ + ~ ={0} (12.5) 

421 
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where 

L = T -  rrp (12.6) 

is called the Lagrangian function, T is the kinetic energy, rrp is the potential energy, R is 
the dissipation function. Q is the nodal displacement, and O is the nodal velocity. The 
kinetic and potential energies of an element "'e'" can be expressed as 

I'(e) 
(12.7) 

and 

rr~e)-l f f f  I f - "  / f f [ ~  T-~ ~T g dV - U T ~ dS1 - 0 dV 
V(e)  S(1 e) V (e) 

(12.8) 

where V (e) is the volume, P is the density, and ~ is the vector of velocities of element e. 
By assuming the existence of dissipative forces proportional to the relative velocities, the 
dissipation function of the element e can be expressed as 

R(~) 1 - fff,e  c dV 
,V,'~e) 

(12.9) 

where # can be called the damping coefficient. In Eqs. (12.7)-(12.9), the volume integral 
has to be taken over the volume of the element, and in Eq. (12.8) the surface integral has 
to be taken over that  portion of the surface of the element on which distributed surface 
forces are prescribed. 

By using Eqs. (12.1)-(12.3), the expressions for T. rrp. and R can be written as 

e = l  e = l  ~,'(e ) 

2 -~_ [BJT[D][B] dV O 
e = l  e = l  v(e) 

_~TliL.//[~.]T~I)(t)dSI_~_f//[N]Tg(t)dVI=I s~e)  v ( e )  - -  ~(~T ~/~c ( t )  

R__ZR(e)__ I~T T _ ~[x] [X]dV @ 
e = t  e = l  - e 

(12.10) 

(12.11) 

(12.12) 
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where Q is the global nodal displacement vector, Q is the global nodal velocity vector, 

and /3c is the vector of concentrated nodal forces of the structure or body. By defining 

the matrices involving the integrals as 

[M (~)] - e l e m e n t  mass matrix = / / / p [ N ] r [ N ]  dV (12.13) 

v(e )  

[K (~)] - e l e m e n t  stiffness matrix = / / / [ B ] r [ D ] [ B ]  a v  (12.14) 

v(e )  

[C (r - element damping matrix = j/j dV (12.15) 

~'(e) 

/ 3 ( e )  _ vector of element nodal forces produced by surface forces 

= f f [ x ]  T gO. dS1 (12.16) 

S[ e) 

/3b(~) -- vector of element nodal forces produced by body forces 

= .ff.f[Nl f , .  dV (12.17) 
v(e) 

Step  4: 
equations of motion�9 

Equations (12.10)-(12.12) can be written as 

- -  1 0 T  

,OTCclb 

Assemble the element matrices and vectors and derive the overall system 

(12.18) 

(12.19) 

(12.20) 

where 

E 

[M] = master mass matrix of the structure = E [M(r 
e-~-i 

E 

[K] = master stiffness matrix of the structure - E [K(e)] 
e = l  

E 

[C] : master damping matrix of the s t r u c t u r e -  E [C(e)] 
e = l  

E 

e~-i 



424 DYNAMIC ANALYSIS 

By substi tuting Eqs. (12.18)-(12.20) into Eq. (12.5). we obtain the desired dynamic 
equations of motion of the structure or body as 

o .  . - - .  

[~J] Q ( t ) +  [C] Q ( t ) +  [K]Q(t) = ~( t )  (12.21) 

, o  

where Q is the vector of nodal accelerations in the global system. If damping is neglected, 
the equations of motion can be written as 

�9 - - - .  

[M] Q +[~']Q - ~ (12.22) 

S t e p s  5 a n d  6: Solve the equations of motion by applying the boundary and initial con- 
ditions. Equations (12.21) or (12.22) can be solved by using any of the techniques discussed 
in Section 7.4 for propagation problems. Once the time history of nodal displacements, 
Q(t), is known, the time histories of stresses and strains in the elements can be found as 
in the case of static problems. Special space-time finite elements have also been developed 
for the solution of dynamic solid and structural mechanics problems [12.2. 12.3]. 

12.2 CONSISTENT AND LUMPED MASS MATRICES 
Equation (12.13) for the mass matrix was first derived by Archer [12.4] and is called 
the "consistent" mass matrix of the element. It is called consistent because the same 
displacement model that is used for deriving the element stiffness matrix is used for the 
derivation of mass matrix. It is of interest to note that  several dynamic problems have 
been and are being solved with simpler forms of mass matrices. The simplest form of 
mass matrix that  can be used is that  obtained by placing point (concentrated) masses m~ 
at node points i in the directions of the assumed displacement degrees of freedom. The 
concentrated masses refer to translational and rotational inertia of the element and are 
calculated by assuming that  the material within the mean locations on either side of the 
particular displacement behaves like a rigid body while the remainder of the element does 
not participate in the motion. Thus, this assumption excludes the dynamic coupling that  
exists between the element displacements, and hence the resulting element mass matrix is 
purely diagonal and is called the "'lumped" mass matrix. 

As an example, consider the pin-jointed bar element that  can deform only in the local 
z direction as shown in Figure 9.1. For a linear displacement model, we have 

u(x) - [N]~ "(e) (12.23) 

where 

[N] = [ ( 1 -  / ) ( / ) ]  

~,(~) = ql _ x = 
q2 tt(X = l) 

(12.24) 

(12.25) 
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and ~ is the axial displacement parallel to the x axis. The consistent mass matrix of the 
element is given by 

~'(e) 

(12.26) 

where A is the uniform cross-sectional area, and l is the length of the element. Thus, the 
consistent mass matrices, in general, are fully populated. On the other hand, the lumped 
mass matrix of the element can be obtained (by dividing the total mass of the element 
equally between the two nodes) as 

[ r n ( ~ } ] - - ~  [~ 01] (12.27) 

The lumped mass matrices will lead to nearly exact results if small but massive objects are 
placed at the nodes of a lightweight structure. The consistent mass matrices will be exact 
if the actual deformed shape (under dynamic conditions) is contained in the displacement 
shape functions IN]. Since the deformed shape under dynamic conditions is not known. 
frequently the static displacement distribution is used for [N]. Hence. the resulting mass 
distribution will only be approximate: however, the accllracy is generally adequate for most 
practical purposes. Since lumped element matrices are diagonal, the assembled or overall 
mass matr ix of the structure requires less storage space than the consistent mass matrix. 
Moreover, the diagonal lumped mass matrices greatly facilitate the desired computations.  

12.3 CONSISTENT MASS MATRICES IN GLOBAL COORDINATE SYSTEM 
To reduce the computat ional  effort, generally the consistent mass matrices of unassembled 
elements are derived in suitable local coordinate svstems and then transformed into the 
global system selected for the assembled structure. If [m(~)]. q( ' ) .  and q-'(~) denote the 
mass matrix, nodal displacement vector, and nodal velocity vector in the local coordinate 
system, the kinetic energy associated with the motion of the element can be expressed as 

1 @(e) T [Tyl( c 7 ' -  ~ )](7-'( ) (12.28) 

If the element nodal displacements and nodal velocities are denoted as (~ (~) and (~(~) in 
the global system, we have the transformation relations 

0 '(c) - [A](~ (~) (12.29) 

and 

q(~) = [A (() (12.30) 

By subst i tut ing Eq. (12.30) into Eq. (12.28). we obtain 

(12.31) 
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By denoting the mass matr ix of the element ill the global coordinate system as [5I(~)]. 
the kinetic energy associated with the motion of the element can be expressed as 

I ~ ( ,  )T[ . I I I ,  , e T -- =~ ]0  ( ) (12.32) 

Since kinetic energy is a scalar quantity, it must be independent of the coordinate system. 
By equating Eqs. (12.31) and (12.32). we obtain the consistent mass matr ix of the element 
in the global system as 

[M (':)] = [A]T[m (')][A] (12.33) 

Notice tha t  this t ransformation relation is similar to the one used in the case of the element 
stiffness matrix. 

Notes: 
(i) In deriving the element mass matrix from the relation 

[m " )] - . ~ / f  ~, [x] ; [x ] .  d~  (12.34) 

the matr ix [N] must refer to all nodal displacements even ill the local coordi- 
nate system. Thus. for thin plates subjected to inplane forces only (membrane 
elements), the transverse deflection nmst also be considered (ill addition to the 
inplane displacements considered ill the (terivation of element stiffness matrices) 
in formulating the matr ix [N]. 

(ii) For elements whose nodal degrees of freedom correspond to translat ional  displace- 
ments only, the consistent mass matrix is invariant with respect to the orientation 
and position of the coordinate axes. Thus. the matrices [m (~] and [~I(~)] will 
be the same for pin-jointed bars. membrane elements, and three-dimensional ele- 
ments such as solid te t rahedra  having only translat ional  degrees of freedom. On 
the other hand. for elements such as frame elements and plate bending elements. 
which have bending stiffness, the consistent mass matrices [m (~~] and [~I(~)] will 
be different. 

12.3.1 Consistent Mass Matrix of a Pin-Jointed (Space Truss) Element 
As in the case of the derivation of stiffness matrix, a linear displacement model is assumed 
as (Figure 12.1) 

~: ( ~ ) -  ,,(x) - [.u d '~- 
3 x 1 u ' ( x )  3 x 6 6 x 1 

(12.35) 

where 

x )  x 0 0 ~ - y  o o 7 (x) x: 
[N] - 0 1 - -/ 0 0 )- (12.36) 

0 0 1 - 7  0 0 l 
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t ....... / 
~ ~ S  . . . .  / .... , ,  o~;_~ 

1 = i  "~__..Jmw"- 03i_1 ~w" I 

3i -2 
z 

x 

u(x) 

Figure 12.1. A Truss Element in Space. 

and 

O(e) __ 

3i --2 
3i-1 

Q3~ 
Oaj-2 
Q3a - 1 
Qaa 

(12.37) 

where Q3i-2, Qai-1, and Qai are the components of displacement of node i (local node 1). 
and Qaj-2, Q33-1, and Qaj are the components of displacement of node j (local node 2) 
in the global XYZ system. If the density (p) and cross-sectional area (A) of the bar are 
constant, the consistent mass matrix of the element can be obtained as 

[m(*)] -- [AI (*)] - / j /  p[ N] T [ N] �9 dV 

I'(e) 

2 0 0 1 0 0 

0 0 2 0 0 1 0 1  
pAl 0 2 0 0 (12.38) 

6 i 0 0 2 0 i 
1 0 0 2 
0 1 0 0 
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12.3.2 Consistent Mass Matrix of a Space Frame Element 
A space  f rame e l emen t  will have 12 degrees  of f reedom,  six def lect ions,  and  six ro t a t i ons ,  

as shown in F igu re  9.6(a) .  By t ak ing  tile or igin of the  local  c o o r d i n a t e  sv s t em at  node  1, 

the  x axis a long  the  l eng th  of the  e le inent ,  and  the  g and  z axes a long  the  p r inc ipa l  axes 

of the  e l ement  cross sect ion,  the  d i sp l acemen t  n lodel  can  be expressed  as 

C ( . ) -  ~,(.) -[.\T(x)]g (~~ 
~,'(,r) 

(12.39) 

where  

[X(x)] - 

1 27 
l 0 

1 

0 ~ (2273 _ 31x 2 + 13 ) 

0 0 

0 0 

0 0 

1 13 l: ~(2a "3 - 3127 2 + ) 0 

0 

0 

1 12 12(X 3 - 2 l x  2 + x)  

0 
1 

12 ( z3 - 21x "2 + 1227) 

0 

32 ~- o 
1 

0 - ~ (227 3 - 31x 2) 

0 0 

0 0 

0 0 

1 
13 (2x 3 - 3/.r 2) 0 

0 

0 

~( 1,re _ ,r:~) 

0 1 1 9 
1-5 (273 _ la'- ) 

0 

(12.40) 

and  

ql  

q2 -,(e) q - -  . 

q t2  

(e) 

(12.41) 

T h e  cons i s t en t  mass  m a t r i x  of the  e lement  in tile local  27gz sys t em can  be de r ived  as 

[~(~)] - / / f  p[N]~[x] a~ 
v(e) 
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1'2 

105 
l" 

0 

112.42) 

where p is the density, A is the cross-sectional area. 1 is the length, and j is the polar 
moment  of inert ia  of the element.  

12.3.3 Consistent Mass Matrix of a Planar Frame Element 
For the planar  frame element shown in Figure 9.11. only axial and inplane bending (tegrees 
of freedom will be there and the consistent mass matr ix  will be 

[m(~)] - pAl  

1 / 3  

0 13/35 

0 11//210 

1/6 0 

0 9/70 

_ 0 - 13l/420 

Svinmet ric 

12/105 

0 J/3 

131/420 0 13/35 

- l " / 1 4 0  0 -111/210  1~/1()5 

(12.43) 

12.3.4 Consistent Mass Matrix of a Beam Element 
For a beam bending element,  tile axial displacement degrees of freedom need not be 
considered (Figure 9.12) and the consistent mass matr ix  becomes 

I 156 221 54 -131] 
[.,(~)]_ pAl 221 4l ~ 131 -31~[ 

4-~  54 131 156 -221 / 
-131 -313 -221 4l~J 

(12.44) 
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The t rans format ion  matr ices  needed for the derivat ion of element  mass matr ices  in the 
global coordinate  sys tem from those given bv Eqs. (12.42), (12.43). and (12.44) are given 
by Eqs. (9.41), (9.63). and (9.66). respectively. 

If the cross section of the frame (or beam) element  is not small, the effects of ro ta to ry  
inert ia  and shear deformat ion become impor tan t  in the dvnamic  aimlvsis. Tile derivat ion 
of stiffness and mass matr ices  of beam elen~ents, including the effects of ro ta tory  inert ia  
and shear deformation,  can be found in Flefs. [12.5] and [12.6]. 

12 .3 .5  Consistent Mass Matrix of a Triangular Membrane Element 
By considering all the nine degrees of freedoin of the element  (shown in Figure 10.3), 
linear shape functions in te rms of the local coordinates  x and y can be used to express 
the displacement  field as 

U -  c( .r .u)  - [N](~ {{) (12.-15) 

where 

I-\'1 0 0 .X2 2 0 {} -\'3 0 0 1 
[N (.r. y)] - {} .X, {} {} .V,_, 0 0 .V:~ 0 ] (12.46) 

(} () -\'1 () () 2\'2 0 0 -\;3 

with Nl(x,y), N2(x, y), and N3(,r. 9) given by Eq. (10.5), and 

(j (~ ) -  {(?:~,_~ (?~,-~ Q:~, Q~-._, (P:,~-, ( ~  (?:~,.-.., (?~._~ Q:,k} ~ (12.47) 

The  consistent mass mat r ix  of tile element (applicable in any coordinate  system) can be 

obta ined as 

t,,," 'l -/ ' / / , ,I . ' l 'Ixl ( 2.48) 

By carrying out the necessary integrat ion (i~ the local xy coordinate  system, 
simplicity),  the mass mat r ix  can be derived as 

for 

[.~I~)] _ [m{~}] _ pAt 

2 0 (} 1 0 0 1 0 0- 
0 2 0 0 1 0 0 1 0 
0 0 2 0 0 1 0 0 1 
1 0 {} 2 0 0 1 0 0 
0 1 {} 0 2 0 0 1 0 
0 0 1 0 0 2 0 0 1 
1 0 (} 1 0 0 2 0 0 
0 1 {} 0 1 0 0 2 0 
0 {} 1 0 {} 1 0 0 2 

(12.49) 

where t is the thickness of the element.  
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12.3.6 Consistent Mass Matrix of a Triangular Bending Element 
For the triangular plate bending element shown in Figure 10.11. the stiffness matrix has 
been derived in Section 10.7 by' assuming the displacement model 

w(x, g) - [,/]c~ (12.50) 

where [r/] and c~ are given by Eqs. (10.61) and (10.62). respectively. By using Eqs. (12.50) 
and (10.64), the transverse displacement u' can be expressed as 

( 1 2 . 5 1 )  

where [~] is given by Eq. (10.65). Due to rotation of normals to the middle plane about 

the z and y axes, any point located at a distance of z fi'om the middle plane will have 
inplane displacement components given by 

/ U -- --2 �9 O.F 

Oll' 
(12.52) 

Thus, the three translational displacements can be expressed, llsing Eqs. (12.51) and 
(12.52), as 

{ ~(~'. y) 

3 x 1 w ( x . t )  

I o [ , i  1 

- - 2  . 

L In] J 
__  [~71] [~]--1 r  __ [ . ~ - ] r  

3 •  9 •  9 •  
(12.53) 

where 

[Xl] - 

- - Z  

- - Z  

--2xz 

0 

X 2 

- y z  0 - 3 x  2 - 

- x z  - 2 y z  0 

xg g 2 x 3 

-z(.q 2 + 2a'g) 

-z(2x.V + x 2) 

(x2y + zg 2) 

01 --3y2z 

g3 

and 

[ x l -  [x~l[~t -~ (12.55) 
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The  consis tent  mass  ma t r i x  of the  e lement  can i~ow t)e eva lua ted  as 

[1H (~)7 -- ff/ 7 - . [ x ]  [x],t~ 
VIe) 

= . f f / D ( [ ~ ]  -1 )T[.\ ' I ]T[~\ ' I ]  [?._]]- 1 d I "  (12.56) 

E q u a t i o n  (12.56) denotes  t h e  mass  m a t r i x  ob ta ined  by cons ider ing  b o t h  t r ans l a t iona l  (due 
to u,) and r o t a t o r y  (due to u and  ~,) iner t ia  of the  e lement .  If r o t a t o r y  iner t ia  is neglected.  
as is done in most  of the  prac t ica l  c o m p u t a t i o n s ,  tlle cons is tent  mass  m a t r i x  can be 
ob ta ined  by se t t ing  s imply  [.V~] - [ ,1]  in Eq. (12.56). In this  case we have 

[.,(~] - f//,([,j]-')~[4~[,j][,] - '  dV 

= , t ( [ ,1 ] - l )  ~ f /  
a r e a  

X 

'2 
d'  3" 

y x.q ,q2 

x ) x :~ .r 2 y .r 4 

S y m m e t r i c  

,F 2 x .t/ x 2 .q .r.q2 .r:~ g ,q2 

q 2 y:~ ,r 2 q2 :~ .~ �9 xy 2 . . rq .q 

x 3 .r 1 .r 3 ,q ,r,~ . r l  !1 .r:~ .q 2 x 6 

:,, ') .q:~ q-I .r4 ( x ~ , ~ +  ( . r 2 y ) +  (.r.q:~+ (.r . q - +  (.r ~ + (.r. + ( !12-4  - ( . r ,q2+  

.rq*)  .r3.q) .r2!l  )- ) .r-~.q) .r:~ !f  -' ) .r ' - .r  ~ ) .rsq) a'2q) 2 

.~/3 .r.t/3 !l I 'r 2 !1:5 .r.ql .q5 .r2.q3 (.r!/-' + y6 

a.:~ !j3) 

dxdq[~]  -1 

(12.57) 

Thus .  the  d e t e r m i n a t i o n  of the  mass  m a t r i x  [in ~( ~] involves the  eva lua t ion  of in tegrals  of 
t he form 

/ ' .F ' !J  j ( txdg .  i - 0 6 and j - 0 6 (12.58) 

a i p a  
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Notice tha t  the highest powers of x and y appearing in the integrand of Eq. (12.58) are 
larger than  the highest powers involved in the derivation of the stiffness matr ix  of the 
same element [see Eq. (10.71)]. This characteristic is t rue for all finite elements. 

12.3.7 Consistent Mass Matrix of a Tetrahedron Element 
For the solid te t rahedron element shown in Figure 11.1, the displacement field is given by 
Eq. (11.4). The element mass matr ix  in the global coordinate system can be found from 
the relation 

[at (~)] : ]ff . [ x ]~ [ .v ]  dV 
I:(e) 

(12.59) 

After carrying out the lengthy volume integrations (using te t rahedral  coordinates, for 
simplicity), the mass matr ix  can be obtained as 

pV(~) 
20 

[M(~)] = 

"2 0 0 1 0 0 1 0 0 1 0 0" 
0 2 0 0 1 0 0 1 0 0 1 0 
0 0 2 0 0 1 0 0 1 0 0 1 
1 0 0 2 0 0 1 0 0 1 0 0 
0 1 0 0 2 0 0 1 0 0 1 0 
0 0 1 0 0 2 0 0 1 0 0 1 
1 0 0 1 0 0 2 0 0 1 0 0 
0 1 0 0 1 0 0 2 0 0 1 0 
0 0 1 0 0 1 0 0 2 0 0 1 
1 0 0 1 0 0 1 0 0 2 0 0 
0 1 0 0 1 0 0 1 0 0 2 0 
0 0 1 0 0 1 0 0 1 0 0 2 

(12.60) 

12.4 FREE VIBRATION ANALYSIS 

If we disturb any elastic s t ruc ture  in an appropr ia te  manner  initially at t ime t = 0 (i.e., by 
imposing properly selected initial displacements and then releasing these constraints),  the 
s t ructure  can be made to oscillate harmonically. This oscillatory n~otion is a characteristic 
proper ty  of the s t ructure  and it depends on the distr ibution of mass and stiffness in the 
structure.  If damping is present, the ampli tudes of oscillations will decay progressively and 
if the magni tude  of damping exceeds a certain critical value, the oscillatory character  of 
the motion will cease altogether.  On the other hand, if damping is absent, the oscillatory 
motion will continue indefinitely, with the ampli tudes of oscillations depending on the 
initially imposed dis turbance or displacement.  The oscillatory motion occurs at certain 
frequencies known as natura l  frequencies or characteristic values, and it follows well- 
defined deformation pat terns  known as mode shapes or characteristic modes. The s tudy 
of such free vibrations (free because the s t ructure  vibrates with no external  forces after 
t = 0) is very impor tan t  in finding the dynamic response of the elastic structure.  

By assuming the external  force vector fi to be zero and the displacements to be 
harmonic as 

0 = (2" ei'~t (12.61) 

Eq. (12.22) gives the following free vibration equation: 

[[K] - c,.,2 [-~l]]O = d (12.62) 
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where Q represents the amplitudes of the displacements Q (called the mode shape or 
eigenvector), and w denotes the natural frequency of vibration. Equation (12.62) is called a 
"linear" algebraic eigenvalue problem since neither [K]2~or [M] is a function of the circular 
frequency w, and it will have a nonzero solution for Q provided that the determinant of 

the coefficient matrix ( [ K ] -  w2[.lI])is zero-- that  is. 

[ [ K ] _ .  2[~i][_ 0 (12.63) 

The various methods of finding the natural frequencies and mode shapes were discussed 
in Section 7.3. In general, all the eigenvalues of Eq. (12.63) will be different, and hence 
the structure will have n different natural frequencies. Only for these natural frequencies, 
a nonzero solution can be obtained for Q from Eq. (12.62). We designate the eigenvector 

(mode shape) corresponding to the j th  natural frequency ("-'3) as Q . 
- - j  

It was assumed that the rigid body degrees of freedom were eliminated in deriving 
Eq. (12.62). If rigid body degrees of freedom are not eliminated in deriving the matrices 
[K] and [M], some of the natural f r e q u e n c i e s  ~, would be zero. In such a case, for a general 
three-dimensional structure, there will be six rigid body degrees of freedom and hence six 
zero frequencies. It can be easily seen why ,~' = 0 is a solution of Eq. (12.62). For w = 0, 
Q - Q = constant vector in Eq. (12.61) and Eq. (12.62) gives 

[A'](~rigia boa:. = t3 (12.64) 

which is obviously satisfied due to the fact that rigid body displacements alone do not 
produce any elastic restoring forces in the structure. The rigid body degrees of freedom in 
dynamic analysis can be eliminated by deleting the rows and columns corresponding to 
these degrees of freedom from the matrices [K] and [.~I] and by deleting the corresponding 
elements from displacement ((~) and load (fi) vectors. 

E x a m p l e  12.1 (Longitudinal Vibrations of a Stepped Bar) Find the natural frequen- 
cies of longitudinal vibration of the unconstrained stepped bar shown in Figure 12.2. 

So lu t i on  VVe shall idealize the bar with two elements as shown in Figure 12.2(a). The 
stiffness and mass matrices of the two elements are given by 

[K(~)] - 
A(~)E (1) 

l(1) 
1 - 1  

- 1  1 

11 [K(2)] -  ~55 -1  1 = ~ -1  

[21I(1)] - 6 2] - pAL 
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Element 1 
A (1)= 2A 

~ - ~  • 
I- _ i (1)= L /2  - W 

Element 2 
A(2)=A 

1(2)= U2 

(a) A stepped bar with axial degrees of freedom 

1T 
U2 L 

First mode shape (rigid - body mode) 

"- x 

-1 

o2=o 
i 

L/2 
L 

F - - . x  

Second mode shape (elastic - deformation mode) 

f 
'1" 

1 

-1 

1 
u2~ 

f 

L 
~ ' - X  

Third mode shape (elastic - deformation mode) 

(b)  Longitudinal vibration modes 

Figure 12.2. An Unconstrained Stepped Bar and Its Mode Shapes. 
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The assembled stiffness and mass matrices are given by 

[~-] = - 2  3 - 

0 -1  
(El) 

[M] = 6 
% 

1 

(E~_) 

Since the bar is unconstrained (no degree of freedom is fixed), the frequency equation 
(12.63) becomes 

[ i-2- _13 - i] [i2i161 - o (E~) 

By defining 

3.2= pL2  -" '- 

24E 
(E~) 

Equation (E3) can be rewrit ten as 

2(1 - 239-) -2 (1  + 32) 
-2 (1  + 32) 3(1 - 232) 

0 - ( 1  + d 2) 

0 
- ( 1  -+- 3 2) 

(1 - 2.3 2) 
- 0  (Es) 

The expansion of this determinanta l  equation leads to 

1832(1 - 2d2)(32 - 2) -- 0 

The roots of Eq. (E6) give the natural  frequencies of the bar as 

When 

When 

When 

3 2 - 0 "  a, '~--0 or "1 - - 0  

32 - 1 a,'.~- 12E 
- -  2"  7 - ~  or -'2 - 3 . 4 6 [ E / ( p L 2 ) ]  1/2 

. 48E 
32 -- 2"  w~ = ---Tv or -'3 - 6 . 9 2 [ E / ( p L 2 ) ]  ~ ,2 

p L "  

(Er 

It is to be observed that  the first frequency. "1 - 0. corresponds to tile rigid-body mode, 
whereas the second and third frequencies correspond to elastic-deformation modes. To find 
the mode shape (~i corresponding to the natural  frequency" " , .  we solve Eq. (12.62). Since 
Eq. (12.62) represents a system of homogeneous equations, we will be able to find only 
the relative magnitudes of the components  of Q .  
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{1} 
For aJ~ - 0, Eq. (12.62) gives Q1 - 1 . whereas for a. '2 - 1 2 E / ( p L  2) and ~ = 

1 {1} 
48E/ (pL2) ,  it gives ~2 - 0 and ~ s  = - 1  . respectively. These mode shapes 

- 1  1 
are plotted in Figure 12.2(b), where the variation of displacement between the nodes has 
been assumed to be linear in accordance with the assumed displacement distr ibution of 
Eqs. (9 .1 )and  (12.23). 

[M]wOrthogonalization of Modes 
Since only the relative magni tudes  of the components  of the mode shapes --Qi" i = 1.2.3. 

are known, the mode shapes can also be wri t ten as a;Q__, where a, is an arbi t rary nonzero 
constant.  In most of the dynamic response calculations, it is usual to choose the values of 
ai so as to make the mode shapes orthogonal with respect to the mass matr ix [hi] used 
in obtaining the modes Q--i" This requires that  

-~T {1 i f i - - j  (Es) 
aiQ_i [AI]aj~j = 0 if i r j 

for all i and j .  In the current example, the mass matrix is given by Eq. (E2) and it can be 
--*r --. 

verified that  the condition aiQ__, [~I]ajQ__j - 0 for i -r j is automatical ly  satisfied for any 
--*T --* 

ai and %. To satisfy the condition a~Qz [3I]%Q__j - 1 for i - j .  we impose the conditions 

[i 2 2-~r _ pALa7 -.r 
a,Q__, [AI](~i -- 12 2 ,  6 

1 

for i = 1, 2, 3 and obtain 

2 a /  
12 1 

p A L  
--~Z --. 

_Q, 0 Q_, 
1 

Equat ion (Eg) gives 

i]" Q , - 1  

i =  1.2.3 (Eg) 

2 )1/2 
a l =  

(/2 = ( p @ ~ L )  1/2 

a3 = p - ~  

(Elo) 
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Thus, the [M] orthogonal mode shapes of the stepped bar corresponding to the natural 
frequencies Wl, ~c2, and w3 are given by 

3 - ~  1 . 
1 

lOl} 
and 

- 1  , respectively. 
1 

E x a m p l e  12.2 Find the natural frequencies of longitudinal vibration of the constrained 
stepped bar shown in Figure 12.3. 

So lu t i on  Since the left end of the bar is fixed, Q1 = 0 and this degree of freedom has 
to be eliminated from the stiffness and mass matrices of Eqs. (El) and (E2) of Example 
12.1 to find the natural frequencies. This amounts to eliminating the rigid-body mode of 
the structure. For this, we delete the row and column corresponding to Q1 from Eqs. (El) 
and (E2) of Example 12.1 and write the frequency equation as 

2 A E  --i- 1 I1 ~ ~  = o  (E~) 

Equation (El) can be rewritten aN 

3(1 - 2 3  ~)  
-(1 + 32) 

- (  1 + 32) 
(1 - 232) = o (E~) 

The solution of Eq. (E2) is given by 

3v~ 3v~ /312 = 7 -  =0.1640 and 32 = 7 +  = 1.1087 
11 11 

o r  

w l - - 1 . 9 8 5 V / ~ L  2 and , . '2= 5.159~/EpL 2 (E3) 

The mode shapes corresponding to these natural frequencies can be found by solving the 
equation 

[~[~1-111 ~1~:~[~11] ~ / - 6 .  i -  1.2 (E4) 

aN 

_~1 {~775} an~ 0 =  {-0.577510 } ,Es, 
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Element 1 

A (1)= 2A Element 2 
. . . . .  [ .  z'A_ _ .  

. . . .  _ 

" ~  "" / (2)- Li2 " ~  /(1)= L / 2  - ' "3- 

1.0 

0.5 
]r o3= ~.o 

Q2 = 0"5775 

1 I _ t_ . . . . .  X 

L/2 L 

First mode shape (elastic - deformation mode) 

1.0 

0.5 

-0.5 

,! 

L =-- t .... 
! 

-0.5775 o2=.1L 

Q3= .0 

1 L _x 
L 

Second mode shape (elastic - deformation mode) 

Figure 12.3. A Constrained Stepped Bar and Its Mode Shapes. 

These mode shapes are plotted in Figure 12.3(b). These mode shapes, when orthogonalized 
with respect to the matrix [M]. give 

2 - , T  a1_~1 [ ~ I 1 ( ~ 1  : 1 



440 DYNAMIC ANALYSIS 

2 
o r  (11 ~--- 

0 5775 
( 0 5 7 7 5 1 0 )  @2L [~ ~] { 1 0  } 

or a ~ -  1 .526,~(pAL)  ~/2 (E6) 

2 - , T  
a2Q__ 2 [3I]~ 2 - i 

2 1 
or a 2 --- 

( - 0 . 5 7 7 5 1 . 0 ) ~  [ 6 1 : 1  {-0.57751.0 } 

or a2 - 2 . 0 5 3 ~ ( p A L )  ~ e (E7) 

Thus, the [5l]-orthogonal mode shapes of the stepped bar corresponding to ~,'1 and ~c2 are 
respectively given by 

1.526 { 0 . 5 7 7 5 } _  1 {0.8812} 
( p A L ) l ~  2 1.0 ( p A L ) l ~  2 1 5260 

(E8) 

and 2.053 { - 0 . 5 7 7 5 }  _ 1 { - 1 . 1 8 6 }  
( p A L ) l ~  2 1.0 (pAL)l/2 2.053 (E9) 

12.5 COMPUTER PROGRAM FOR EIGENVALUE ANALYSIS OF 
THREE-DIMENSIONAL STRUCTURES 

A Fortran subroutine called PLATE is written for the deflection and eigenvalue analysis of 
three-dimensional structures using triangular plate elements. Both membrane and bending 
stiffnesses are considered in deriving the element stiffness matrices [i.e.. Eqs. (10.92) and 
(10.93) are used]. The consistent mass matrices are used in generating the overall mass 
matrix. The subroutine PLATE requires the following input data: 

NN 
NE 
ND 

NB 
~IM 
LOC 

= total number of nodes (including the fixed nodes). 
= number of triangular elements. 
= total number of degrees of freedom (including the fixed degrees of free- 

dom). Six degrees of freedom are considered at each node as shown in 
Figure 10.15. 

= bandwidth of the overall stiffness matrix. 
= number of load conditions. 
= an array of size NE x 3. LOC (I,J) denotes the global node number 

corresponding to J th  corner of element I. 
N = number of degrees of freedom considered in the analysis (taken same as 

ND in this program). 
INDEX = 1 if lumped mass matrices are used and 2 if consistent mass matrices 

are used. 
NMODE - number of eigenvalues required. 
X = array of size N • NXIODE representing trial eigenvectors" X(I,J) - I th  

component of J th  eigenvector. 
CX, CY, CZ - vector arrays of size NN each. CX(I). CY(I). CZ(I) denote the global X. 

Y. Z coordinates of node I. 



COMPUTER PROGRAM FOR EIGENVALUE ANALYSIS 441 

E = Young's  modulus.  
ANU = Poisson's  ratio. 
RHO = mass density. 
T = a vector ar ray of size NE. T(I)  denotes  the thickness of element I. 
N F I X  = number  of fixed degrees of freedom (zero displacements) .  
IF IX  = a vector ar ray of size NFIX.  IFIX(I )  denotes  the I t h  fixed degree of freedom 

number .  
P = an a r ray  of size ND • ~I1~I represent ing tile global load vectors. The  array 

P re tu rned  from the subrout ine  P L A T E  to the main program represents  the 
global displacement  vectors. P( I . J )  denotes  the I t h  component  of global load (or 

displacement)  vector in J t h  load condition. 

In addi t ion to this input,  the following arrays are included as a rguments  for the subrout ine  
P L A T E :  

K, GS, GM : each of size N x NB 
A R E A  :s ize  NE 
M :s ize  N 
GMI~I, GST,  ABCZ, V E C T  : each of size NXlODE x NXlODE 
ABCV,  A B C W ,  ABCX.  ABCY.  OXlEG. SUXl. I ) I F F  : each of size N.klODE 

Y :s ize  N • N h l O D E  

The  arrays K and 3.I are to be declared as real. whereas  SUXl and D I F F  are to be declared 
as double precision quanti t ies.  The  subrout ine  P L A T E  requires the subrout ines  DECO~IP .  

SOLVE. and S U S P I T  given in Chap te r  7. 

To i l lustrate the use of the subrout ine  P L A T E .  the box beam shown in Figures 10.7 
and 10.8 is considered. The  deflections under  tile two load co~lditions s ta ted  i~ Table 10.3 
and the first three na tura l  frequencies are computed.  Tl~e n~ain progran~ that  gives tl~e 
da ta  of the problem and calls the subrout ine  P L A T E  and the compute r  outp~lt are 

shown below. 

C ............... 

STATIC AND DYNAMIC ANALYSIS USING TRIANGULAR PLATE ELEMENTS 

DIMENSION CX(24),CY(24),CZ(24),P(144,2),LOC(40,3),AREA(40),T(40) 

2 ,IFIX(24),GM(144,36) ,X(144,3) ,OMEG(3),Y(144,3) ,GST(3,3), 
3 SSS(3,3),VECT(3,3),ABCV(3),ABCW(3),ABCX(3),ABCY(3),ABCZ(3,3) 

DIMENSION Bl (3,1) ,LPI (3) ,LQI (3,2) ,RI (3) 

REAL K(144,36),M(144) 
DOUBLE PRECISION SUM(3) ,DIFF(3) 

E=30. OE6 
ANU=O. 3 

DATA ND,N,NE,NB,NN,MM/144,144,40,36,24,2/ 
NFIX=24 

DATA IFIX/121,122,123,124,125,126,127,128,129,130,131,132,133, 

2 134,135,136,137,138,139,140,141,142,143,144/ 
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DATA CX/0.,18.,18.,0.,0.,18.,18.,0.,0.,18.,18.,0.,0., 
2 18. , 1 8 . , 0 . , 0 . , 1 8 . , 1 8 . , 0 . , 0 . , 1 8 . , 1 8 . , 0 . /  
DATA C Y / 0 . , 0 . , 0 . , 0 . , 1 2 . , 1 2 . , 1 2 . , 1 2 . , 2 4 . , 2 4 . , 2 4 . , 2 4 . ,  

2 3 6 . , 3 6 . , 3 6 . , 3 6 . , 4 8 . , 4 8 . , 4 8 . , 4 8 . , 6 0 . , 6 0 . , 6 0 . , 6 0 . /  
DATA C Z / 0 . , 0 . , 1 2 . , 1 2 . , 0 . , 0 . , 1 2 . , 1 2 . , 0 . , 0 . , 1 2 . , 1 2 . , 0 . , 0 . ,  

2 12. ,12. ,0 . ,0 . ,12. ,12. ,0 . ,0 . ,12. ,12. /  
DATA LOC/6,6,10,10,14,14,18,18,22,22,7,7,11,11,15,15,19,19,23,23, 

2 6 ,6 ,10 ,10,14,14,18,18,22,22,5 ,5 ,9 ,9 ,13 ,13,17,17,21,21,2 ,1 ,6 ,5 ,  
3 10,9 ,14,13,18,17,3 ,4 ,7 ,8 ,11,12,15,16,19,20,2 ,3 ,6 ,7 ,10,11,14,15,  
4 18 ,19 ,1 ,4 ,5 ,8 ,9 ,12 ,13 ,16 ,17 ,20 ,1 ,5 ,5 ,9 ,9 ,13 ,13 ,17 ,17 ,21 ,4 ,8 ,8 ,  
5 12,12,16,16,20,20,24,3,7,7,11,11,15,15,19,19,23,4,8,8,12,12,16,  
6 16,20,20,24/ 
DO 11 LM=I,20 

11 T(LM)=I.0 

D0 12 LM=21,40 

12 T(LM)=0.5 

RHO=O. 28/384. 
INDEX=2 

NMODE=3 

NMODE2=6 

DO 20 I=I,ND 

DO 20 J=I,MM 

20 P(I,J)=O.O 

P(15,1)=-5000.0 
P(21,1)=-5000.0 
P(15,2)=5000.0 
P (21,2) =-5000.0 
DO 30 I=I,ND 

D0 30 J=I,NMODE 

30 X(I,J)=O.O 

DO 31 I=3,21,6 

31 X( I ,1 )= I .O 
DO 32 I=27,45,6 

32 X( I ,  1)=0.75 
DO 33 I=51,69,6 

33 X( I ,1)=0.5 
DO 34 I=75,93,6 

34 X( I ,  1)=0.25 
DO 36 I=99,117,6 

36 X(I,1)=O. 1 
DO 37 I=3,21,6 

37 X( I ,2 )= I .O 
DO 38 I=27,45,6 

38 X( I ,2)=0.6  
DO 39 I=51,69,6 

39 X(I,2)=O.O 
DO 41 I=75,93,6 

41 X(1,2)=-0.6 

DO 42 I=99,117,6 
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42 X(1,2) =-0.2 
DO 43 I=3,9,6 

43 X( I ,3)=1.0  
DO 44 I=15,21,6 

44 X(I,3)=-I.O 

DO 47 I=51,57,6 

47 X(I,3)=0.8 

DO 49 I=63,69,6 

49 X(I,3)=-0.8 

CALL PLATE(CX,CY,CZ,LOC,ND,N,NE,NB,NN,MM,T,ANU,E,RHO,NMODE,AKEA 

2 ,INDEX,NFIX,IFIX,K,M,GM,X,OMEG,Y,GST,GMM,VECT,SUM,ABCV,ABCW, 

3 ABCX,ABCY,ABCZ,DIFF,P,B1,LPI,LQI,R1) 

DO 50 J=I,MM 

50 PRINT 51,J,(P(I,J),I=l,N) 

51 FORMAT(/,'NODAL DISPLACEMENTS(INCH) IN LOAD CONDITION',I3,/ 

2(6E12.4)) 

PRINT 52 

52 FORMAT(/,~EIGENVALUES:',/) 

DO 54 J=I,NMODE 

54 PRINT 55,J,OMEG(J) 

55 FORMAT(/,'EIGENVALUE(RAD/SEC)',I3,'=',EI2.4,/) 
STOP 

END 

NODAL DISPLACEMENTS(INCH) IN LOAD CONDITION 1 

0 . 6 2 2 4 E - 0 4  0 . 1 8 2 0 E - 0 2  - 0 . 1 6 1 1 E - 0 1  

0 . 9 3 5 4 E - 0 4  0 . 1 8 1 4 E - 0 2  - 0 . 1 6 3 2 E - 0 1  

- 0 . 8 8 3 5 E - 0 4  - 0 . 1 8 0 5 E - 0 2  - 0 . 1 6 5 5 E - 0 1  

- 0 . 5 1 0 7 E - 0 4  - 0 . 1 8 1 1 E - 0 2  - 0 . 1 6 3 3 E - 0 1  

0 . 4 5 4 5 E - 0 4  0 . 1 7 6 4 E - 0 2  - 0 . 1 1 8 0 E - 0 1  

0 . 1 1 1 4 E - 0 3  0 . 1 7 6 9 E - 0 2  - 0 . 1 2 0 2 E - 0 1  

- 0 . 1 0 5 1 E - 0 3  - 0 . 1 7 4 4 E - 0 2  - 0 . 1 1 9 9 E - 0 1  

- 0 . 3 7 3 0 E - 0 4  - 0 . 1 7 4 2 E - 0 2  - 0 . 1 1 7 6 E - 0 1  

0 . 2 9 4 1 E - 0 5  0 . 1 5 3 0 E - 0 2  - 0 . 7 6 6 2 E - 0 2  

0 . 1 3 6 7 E - 0 3  0 . 1 5 5 4 E - 0 2  - 0 . 7 8 6 4 E - 0 2  

- 0 . 1 3 0 2 E - 0 3  - 0 . 1 5 3 5 E - 0 2  - 0 . 7 8 1 6 E - 0 2  

0 . 8 5 5 8 E - 0 6  - 0 . 1 5 1 4 E - 0 2  - 0 . 7 6 1 3 E - 0 2  

- 0 . 4 9 6 0 E - 0 4  0 . 1 1 4 6 E - 0 2  - 0 . 4 1 3 0 E - 0 2  

0 . 1 4 7 2 E - 0 3  0 . 1 1 8 9 E - 0 2  - 0 . 4 2 7 4 E - 0 2  

- 0 . 1 4 2 9 E - 0 3  - 0 . 1 1 7 7 E - 0 2  - 0 . 4 2 2 5 E - 0 2  

0 . 5 0 5 0 E - 0 4  - 0 . 1 1 3 8 E - 0 2  - 0 . 4 0 8 4 E - 0 2  

- 0 . 9 7 1 2 E - 0 4  0 . 6 1 8 1 E - 0 3  - 0 . 1 4 8 9 E - 0 2  

0 . 1 3 1 4 E - 0 3  0 . 6 7 5 3 E - 0 3  - 0 . 1 5 5 4 E - 0 2  

- 0 . 1 2 9 6 E - 0 3  - 0 . 6 7 1 2 E - 0 3  - 0 . 1 5 0 5 E - 0 2  

0 . 9 6 6 9 E - 0 4  - 0 . 6 1 6 0 E - 0 3  - 0 . 1 4 5 9 E - 0 2  

- 0 . 1 9 8 1 E - 1 2  0 . 6 3 1 6 E - 1 2  0 . 6 5 1 2 E - 1 3  

0 . 1 9 6 5 E - 1 2  0 . 6 2 4 5 E - 1 2  0 . 9 1 8 5 E - 1 3  

- 0 . 1 9 5 5 E - 1 2  - 0 . 6 2 4 5 E - 1 2  - 0 . 5 3 1 0 E - 1 2  

0 . 1 9 7 2 E - 1 2  - 0 . 6 3 1 6 E - 1 2  - 0 . 5 0 2 6 E - 1 2  

.3604E-03 

.3603E-03 

.3864E-03  

.3903E-03  

.3561E-03  

.3550E-03  

.3624E-03 

.3615E-03 

.3256E-03 

0 . 9 5 1 8 E - 0 5  0 . 6 9 0 2 E - 0 5  

0 . 6 6 2 9 E - 0 5  0 . 5 1 1 0 E - 0 5  

0 . 5 4 5 7 E - 0 5  - 0 . 7 8 9 1 E - 0 5  

0 . 9 1 3 5 E - 0 5  - 0 . 3 3 2 2 E - 0 5  

0 . 9 4 5 0 E - 0 5  0 . 1 4 2 7 E - 0 5  

0 . 4 1 9 1 E - 0 5  - 0 . 1 6 1 3 E - 0 5  

0 . 2 7 9 0 E - 0 5  0 . 3 1 7 1 E - 0 5  

0 . 1 1 0 9 E - 0 4  - 0 . 6 8 7 0 E - 0 5  

0 . 1 0 4 7 E - 0 4  0 . 3 7 2 2 E - 0 5  

0 

0 

0 
0 . 3 2 2 2 E - 0 3  - 0 . 2 3 0 9 E - 0 5  - 0 . 9 6 6 4 E - 0 6  

0 . 3 2 0 7 E - 0 3  - 0 . 1 3 0 2 E - 0 5  - 0 . 8 3 1 1 E - 0 5  

0 . 3 2 4 4 E - 0 3  0 . 1 2 1 3 E - 0 4  - 0 . 2 0 9 4 E - 0 5  

0 . 2 4 3 6 E - 0 3  0 . 1 2 9 8 E - 0 4  0 . 5 3 0 3 E - 0 5  

0 . 2 5 3 0 E - 0 3  - 0 . 8 0 3 4 E - 0 5  0 . 1 2 0 1 E - 0 5  

0 . 2 5 4 7 E - 0 3  - 0 . 8 2 5 7 E - 0 5  0 . 8 5 0 8 E - 0 5  

0 . 2 4 3 5 E - 0 3  0 . 1 2 6 3 E - 0 4  - 0 . 8 5 7 8 E - 0 5  

0 . 1 9 1 3 E - 0 3  0 . 5 4 3 8 E - 0 5  - 0 . 6 4 3 7 E - 0 5  

0 . 1 8 5 6 E - 0 3  - 0 . 1 5 6 2 E - 0 4  0 . 6 4 3 6 E - 0 5  

0 . 1 8 1 0 E - 0 3  - 0 . 1 4 8 4 E - 0 4  - 0 . 1 6 5 0 E - 0 4  

0 . 1 8 7 7 E - 0 3  0 . 3 4 0 9 E - 0 5  - 0 . 1 0 9 8 E - 0 4  

0 . 4 8 0 7 E - 1 3  0 . 5 4 4 7 E - 1 4  - 0 . 5 5 1 5 E - 1 4  

0 . 8 3 2 5 E - 1 3  - 0 . 2 2 9 3 E - 1 4  0 . 1 1 0 1 E - 1 3  

O. 7956E- 13 - 0 .  2458E- 14 - 0 . 6 1 9 6 E -  14 

0 . 4 6 9 8 E - 1 3  0 . 5 0 8 2 E - 1 4  0 . 4 6 5 4 E - 1 4  
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NODAL DISPLACEMENTS(INCH) IN LOAD CONDITION 2 

-0.4201E-02 0.I033E-02 -O.IO09E-OI 0.2580E-03 -0.7130E-03 -0.5733E-03 

-0.4238E-02 -0.I089E-02 -0.I033E-01 -0.2937E-03 -0.8261E-03 -0.6046E-03 

0.4213E-02 0.I094E-02 0.I056E-01 -0.3i23E-03 -0.8947E-03 0.4511E-03 

0.4166E-02 -0.I039E-02 -0.I034E-01 0.2798E-03 -0.7818E-03 0.4136E-03 

-0.2818E-02 0.I014E-02 -0.7393E-02 0.2345E-03 -0.5519E-03 -0.7400E-06 

-0.2875E-02 -0.I055E-02 0.7508E-02 -0.1734E-03 -0.6655E-03 -0.4519E-05 

0.2848E-02 0.I043E-02 0.7495E-02 -0.1770E-03 -0.7108E-03 0.2025E-03 

0.2797E-02 -0.I002E-02 -0.7380E-02 0.2419E-03 -0.6078E-03 0.1987E-03 

-0.1616E-02 0.8692E-03 -0.4820E-02 0 2i33E-03 -0.3771E-03 -0.I029E-03 

-0.1658E-02 -0.8945E-03 0.4877E-02 -0 1829E-03 -0.4264E-03 -0.I006E-03 

0.1646E-02 0.8869E-03 0.4854E-02 -0 1833E-03 -0.4466E-03 0.1826E-03 

0.1606E-02 -0.8610E-03 -0.4796E-02 0 2090E-03 -0.3973E-03 0.1724E-03 

-0.6872E-03 0.6470E-03 -0.2648E-02 0 1548E-03 -0.2050E-03 -0.3911E-04 

-0.7217E-03 -0.6607E-03 0.2667E-02 -0 13~IE-03 -0.2431E-03 -0.4226E-04 

0.7178E-03 0.6566E-03 0.2645E-02 -0.1320E-03 -0.2575E-03 0.7476E-04 

0.6832E-03 -0.6423E-03 -0.2626E-02 0 1563E-03 -0.2239E-03 0.7223E-04 

-0.I180E-03 0.3577E-03 -O.IO01E-02 0 1275E-03 -0.7815E-04 -0.1258E-04 

-0.1469E-03 -0.3619E-03 0.I005E-02 -0 I033E-03 -0.9323E-04 -0.1426E-04 

0.1471E-03 0.3607E-03 0.9855E-03 -0 I023E-03 -0.9545E-04 0.1596E-04 

0.I175E-03 -0.3562E-03 -0.9801E-03 0 1253E-03 -0.8230E-04 0.1414E-04 

-0 .1419E-12  0 .3841E-12 0 .5679E-15 0 3738E-13 -0 .5725E-14  0 .2393E-13  
0 .2363E-12 -0 .3845E-12  -0 .2801E-14  -0 4438E-13 -0 .1954E-13  0 .2588E-13  

-0 .2350E-12  0 .3846E-12 0 .3335E-12 -0 4343E-13 -0 .2208E-13  -0 .1001E-13  
0 .1408E-12  -0 .3841E-12  -0 .3268E-12  0 3631E-13 -0 .9895E-14  -0 .1053E-13  

EIGENVALUES 

EIGENVALUE(RAD/SEC) 1= 0.7070E+03 

EIGENVALUE(RAD/SEC) 2= O. 1173E+04 

EIGENVALUE(RAD/SEC) 3= 0.2023E+04 

12.6 DYNAMIC RESPONSE USING FINITE ELEMENT M E T H O D  
W h e n  a s t ruc ture  is subjected to ~tvnamic ( t ime-dependent )  loads, the displacements,  
strains, and stresses izldllce~t will also vary wittl time. Tile dynamic  loads arise for a 
variety of reasons, sllch as gust loads due to a tmospher ic  tur lmlence  and impact  forces 
due to landing on airplanes, wind and ear thquake  loads on buildings, etc. The  dynamic  
response calculations include the deter in inat ion  of displacements  and stresses as functions 
of t ime at each point of the body or s t ructure .  The  dvnamic  equat ions of mot ion for a 
damped  elastic body have already been derived in Section 12.1 using the finite element  
procedure.  These equat ions  of inotion can be solved by using any of the methods  presented 

in Section 7.4 for solving propagat ion  probleins. 

The  direct integrat ion approact~ consi(tered in Section 7.-1.4 involves the numerical  
integrat ion of the equatiolls of motion by marching ill a series of t ime steps At  evalu- 
at ing accelerations,  velocities, and displacements  at each step. The  basis of the mode 
superposi t ion me thod  discllssed in Section 7.4.5 is that  the 1nodal mat r ix  (i.e.. the mat r ix  
formed by using the modes of the system) can be used to diagonalize the mass, damping  
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and stiffness matrices and thus uncouple the equations of motion. The solution of these 
independent equations, one corresponding to each degree of freedom, can be found by 
standard techniques and, finally, the solution of the original problem can be found by the 
superposition of the individual solutions. In this section, we consider the normal mode 
(or mode superposition or modal analysis) method of finding the dynamic response of an 
elastic body in some detail. 

12.6.1 Uncoupling the Equations of Motion of an Undamped System 
The equations of motion of an undamped elastic system are given by (derived in 
Section 12.1) 

[M]Q + [K]Q = P (~2.05) 

where Q and P are the time-dependent displacement and load vectors, respectively. 
Equation (12.65) represents a system of n coupled second-order differential equations, 
where n is the number of degrees of freedom of the structure. We now present a method 
of uncoupling these equations. 

Let the natural frequencies of the undamped eigenvalue problem 

-w2[] i l ]Q + [K](~ -- 0 (12.66) 

_., ..+ _.+ 
be given by 021,(M2,... ,02n with the corresponding eigenvectors given by Q I ' - Q 2 " " '  Qn, 
respectively. By arranging the eigenvectors (normal modes) as columns, a matrix 
[Q__], known as modal matrix, can be defined as 

[1~] ~-~ [(~1 (~2 " ' "  (~n  ] (12.67) 

Since the eigenvectors are [M]-orthogonal, we have 

--r {0 for i ~: j (12.68) 
Q---i [} l ]~J- -  1 for i - - j  

Equations (12.67) and (12.68) lead to 

[Q]T[M][Q] = [I] (12.69) 

where [I] is the identity matrix of order n, and the eigenvalue problem, Eq. (12.66), can 
be restated as 

['w.2][i~I][Q] = [K1[Q] (12.70) 

where 

[ - s  - [ w12 w~.. ~,(~2J (12.71) 
L�9 
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By premultiplying Eq. (12.70) by [Q]T we obtain 

['<~][Q_]~[.~t][Q]- [Q_]~[~'][Q_] (12.72) 

which, in view of Eq. (12.69). becomes 

[. 2] = [Q]T[K][Q] (12.73) 

Since any n-dimensional  vector can be expressed by superposing the eigenvectors.* one 
can express Q(t) as 

Q(t) = [Q]g(t) (12.74) 

where r~(t) is a column vector consisting of a set of t ime-dependent  generalized coordinates 
~l(t),rl2(t),...,rln(t). By subst i tut ing Eq. (12.74) in Eq. (12.65). we obtain 

[5I][Q]~ + [K][Q]g = fi (12.75) 

Premult iply  both sides of Eq. (12.75) by [Q_]T and write 

[Q]T[M][Q]~+ [___Q] r [K] [__Q] r~ - [Q]T/~ (12.76) 

However, the normal modes satisfy Eqs. (12.69) and (12.73). and hence Eq. (12.76) 
reduces to 

7? + ['w.2]~ = f (12.77) 

where 

f = [Q]r/~(t) (12.78) 

Equat ion (12.77) represents a set of n uncoupled second-order differential equations of 
the type 

i - 1. 2 . . . . .  r~ (12.79) 

The reason for uncoupling the original equations of motion. Eq. (12.65), into the form 
of Eqs. (12.79) is tha t  the solution of n uncoupled differential equations is considerably 
easier than the solution of n coupled differential equations. 

* Because the eigenvectors are orthogonal, they will form an independent set of vectors and hence 
they can be used as a basis for the decomposition of any arbitrary n-dimensional vector (~. 
A proof of this statement, also known as the expansion theorem, can be found in Ref. [12.7]. 
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12.6.2 Uncoupling the Equations of Motion of a Damped System 
The equations of motion of a damped elastic system are given by 

. .  . - ,  

[.~I]Q + [C]Q + [K](~ - P (12.80) 

Generally little is known about the evaluation of the damping coefficients that  are the 
elements of the damping matrix [C]. However, since the effect of damping is small com- 
pared to those of inertia and stiffness, the damping matrix [C] is represented by simplified 
expressions. One simple way of expressing the damping matrix involves the representation 
of [C] as a linear combination of mass and stiffness matrices as 

[C] = a[,.~I] + b[K] (12.81) 

where the constants a and b must be chosen to suit the problem at hand. In this case, 
the equations of motion, Eq. (12.80), will be uncoupled by the same transformation 
Eq. (12.74) as that  for the undamped system. Thus. the use oi Eqs. (12.74) and (12.81) 
in Eq. (12.80) leads to 

[Q]T[M][Q]~+ (a[Q]T[M][Q] + b[Q]T[K][Q])~+ [Q] T [K] [Q__] ~ - [Q]T/5 (12.82) 

In view of Eqs. (12.69) and (12.73), Eq. (12.82) can be expressed as 

+ (a[I] + b['c~'.2])~ + ['~'.2]r 7 - ]V (12.83) 

where N is given by Eq. (12.78). Equation (12.83) can be written in scalar form as 

#~(t) + (~ + b ~ ) , ) , ( t )  + .~,7,( t)  - x , ( t ) .  i -- 1, 2 , . . . ,  n (12.84) 

The quantity (a + bw~) is known as the modal damping constant in ith normal mode, and 
it is common to define a quantity (~ known as modal damping ratio in ith normal mode as 

(i - a + bw~ (12.85) 
2~'~ 

so that  the equations of motion in terms of generalized coordinates become 

/)~(t) + 2(~w~/h(t) + w2r/~(t) - N,(t), i - 1, 2 . . . . .  n (12.86) 

Thus, Eq. (12.86) denotes a set of n uncoupled second-order differential equations for the 
damped elastic system. 

12.6.3 Solution of a General Second-Order Differential Equation 
A general second-order differential equation (or one of the uncoupled equations of motion 
of a damped elastic system) can be expressed as Eq. (12.86). The solution of Eq. (12.86) 
consists of two parts: one called the homogeneous solution and the other known as the 
particular integral. 
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Homogeneous Solution 
The homogeneous solution can be obtained by solving the equation 

2 # , ( t )  + p .~ ,# ,# , ( t )  + z ,  ~ , ( t )  - o (12.87) 

By assuming a solution of the type 

q , ( t )  = A . e ~t (12.88) 

where A is a constant, Eq. (12.87) gives the following characteristic equation: 

2 c~ + 2(~iwic~ + ,:2 - 0 (12.89) 

The roots of Eq. (12.89) are given by 

O~1,2- --~tiaJ,-Jr-~.U, ~/U~i-  1 (12.90) 

Thus, the homogeneous solution of Eq. (12.86) can be expressed as 

q , ( t )  = A l e  o ' t  + A 2 e  '~'t  (12.91) 

where A1 and A2 are constants to be determined from the known initial displacement 
and velocity. Depending on the magnitude of ~i, the system is classified as underdamped,  
critically damped, and overdamped as follows: 

1. U n d e r d a m p e d  case ( w h e n  ~i < 1): If (, < 1. the solution given in Eq. (12.91) 
can be rewritten as 

- -  ' t i ~ '  t r l , ( t  ) - -  e ~ , ~ , t ( . 4 ] e , . . ,  d + A 2 e -  ,d ) 

= e -~ ' " : ' t  ( B 1 C O S ~ , d t  + B2 s i n w i d t )  

= C l e  - ~ ' * ' ' t  cos(~:,jt - o) (!2.92) 

where coid - cci V/1 - ~ y ,  and the constants B1 and B2 or C1 and 0 (0 is also known as 
phase angle) can be found from the initial conditions. Here. CJ, d can be regarded as a 
natural  frequency associated with the damped system. 

2. Cri t ica l ly  d a m p e d  case  (~i = 1): 
(12.90) will be equal: 

In this case, the roots C~1 and a2 given by Eq. 

a l  - a2 = -- : i  (12.93) 

The solution of Eq. (12.87) is given bv 

~l,(t) - e - ~ ' ' ( A ~  + A2t)  (12.94) 
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n;(t) 
Critically 

L damped, ~i= 1 Overdamped, ~i > 1 

Undamped ({; = 0) Underdamped, {i < 1 

Figure 12.4. Response with Different Degrees of Damping. 

where A1 and A2 are constants of integration to be determined fi'om the known initial 
conditions. 

3. O v e r d a m p e d  case  (4i > 1): When 4, > 1, both the roots given by Eq. (12.90) will 
be negative and the solution given by Eq. (12.91) can be rewritten as 

rli(t ) = e-r + A2e-x/~ - l~' t)  

: e-r  cosh V / ( ~ -  lw~t + B2 sinh V / ~ -  la4t) (12.95) 

The solutions given by Eqs. (12.92), (12.94). and (12.95) are shown graphically in 
Figure 12.4. It can be noticed that  in the case of an underdamped system, the response 
oscillates within an envelope defined by ~l,(t) = +Cle <'~'t and the response dies out as 
time (t) increases. In the case of critical damping, the response is not periodic but dies 
out with time. Finally, in the case of overdamping, the response decreases monotonically 
with increasing time. 

Particular Integral 
By solving Eq. (12.86), the particular integral in the case of an underdamped system can 
be obtained as [12.7] 

t 

qi( t ) - -  ~wigl / - r ) d r  
0 

(12.96) 

Total Solution 
The total solution is given by the sum of homogeneous solution and the particular integral. 
If r/~(o ) and ~)i(o) denote the initial conditions [i.e.. values of ,/, (t) and (dq,/dt)(t)  at t = 0], 
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the total solution can be expressed as 

t 

re(t) - 1~,. f N,(T) �9 ~ 
0 

-<,~,(t-.) s i n w , d ( t -  r ) d r  + e -<'*''t 

x -.',dt + (1 -- r sinw,dt qi(O) 

[~--~d -r t ] + e ' sin-~'idt 1)/(O) (12.97) 

Solution When the Forcing Function Is an Arbitrary Function of Time 
The numerical solution of Eq. (12.96) when the forcing function N,(t) is an arbitrary 
function of time was given in Section 7.4.6. The recurrence formulas useful for computing 
the solution of Eq. (12.96) were given by Eqs. (7.90) and (7.93). Thus, by using the 
uncoupling procedure outlined in Sections 12.6.1 and 12.6.2. the response of any multi- 
degree of freedom system under any arbitrary loading conditions can be found with the 
help of Eqs. (7.90) and (7.93). 

E x a m p l e  12.3 Find the dynamic response of the stepped bar shown in Figure 12.5(a) 
when an axial load of magnitude Po is applied at node 3 for a duration of time to as shown 
in Figure 12.5(b). 

]-o , , , 

; 1 2 
r 

! 

' -  -1-- L/2 I LI2 | 

(a) Stepped bar 

n3(t) 

mo i 

I o �9 ~ t  to 

(b) Pulse loading 

Figure 12.5. 
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Solution The free vibration characteristics of this bar have already been determined in 
Example 12.2 as 

031 = 1.985[E/(pL2)] ~/2 

w2 : 5.159[E/(pL2)] ~/2 

-- 1 { 0 . 8 8 1 2 }  
~---1 : (pAL)I~') 1.5260 

-. 1 { - 1 . 1 8 6 }  
c2~ = (RAC)I/~ 2.053 

1 [0118812 
[Q] = (pAL)l~ 2 5260 

1 
[ K ] -  ~ _ 1 

(E~) 

(E2) 

(E3) 

(E4) 

-1.1860] (Es) 
2.os3ol 

(E6) 

(E~) 

Thus, it can be verified that 

~ (Es) 

and 

[Q_] ~ [K] [Q] = ) - ~  
(1.985) 2 

0 
o ] 

(5.159) ~ 
(E9) 

The generalized load vector is given by 

- [ 9 ] ~ p ( t )  = 
1 [ 0.8812 

(pAL)l~ 2 -1.1860 

1 {1.526} 
(pAL)I~ 2 2.053 �9 P3 

1 . 5 2 6 0 ] { 0 }  
2.0530] P3 

(Elo) 

The undamped equations of motion, Eq. (12.77). are given by 

�9 - E [(1.985) 2 
~]+~L -5 0 

0 ]~ 1 
(5.159)2 r ; -  (pAL)l /2  

1.526 2.053} v~ (Ell) 

which, in scalar form, represent 

3.941E 1.526P3 
pL 2 ~ 1 -  (pAL)I /2  

(E12) 
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and 

2 6 . 6 2 E  2 . 0 6 3 P a  
i)2 + r/2 - pL 2 (pAL)l~ 2 (E~) 

By assuming that all the initial displacements and velocities are zero. we obtain 

(?(t  - o) - o = [Q]g(o )  

O(t = 0) - 0 = [Q]~(0) 

so that if(0) = 13 and r~(0) - 0 

(E14) 

(EI~) 

Thus, the solutions of Eqs. (El2) and (E,3) can be expressed as [from Eq. (12.97)] 

t 
ql (t) - lw, / N, (7-) sin w, (t - T) dr 

0 
that is, 

0 (pAL-)'72 } sin (~L2) 1/2 (1.985)(t- T)} dr 

( _ ~ )  1//2 / { ( E ) 
= (0.7686) P3(r) sin 1.985 

0 

~/2 ,, T,}dT (E~6) 

and 

t 
712(t) - w21 / N2(r)s inw2(t -  T)dr 

0 
that is, 

7/2(t)_ (p~__~2)1/2 ( 1 t { 
0 (~--L)'72}sin (E~_~_~)'/2 (5.159)(t - T)} dr 

= (o.3979) P3(r)sin 0.159 ~ ( t - r )  dr 

0 
(El7) 

The solutions of Eqs. (E16) and (E17) for the given loading can be expressed as follows" 

For t < to" 

r h ( t ) - 0 . 3 8 7 2 0 P  o ~ 1 - c o s  1.985 ) -~  t (E18) 
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and 

r/2(t) = 0.07713 Po \ ~  1 - cos 5.159 ~ t (E19) 

For t > to: 

P L3 
7"/1 (t) -- 0.38720 PO ~ j cos 1.985 ( t - to)  -cos  1.985 ~ t 

(E2o) 

and 

(t~ { (EI 1/2 
r/2(t)=0.07713 Po ~ cos 5.159 ( t - to )  -cos  5.159 ~ t 

(E2,) 

The physical displacements are given by 

O(t) = O.~(t) = [2 ]~( t ) -  
1 [0~~ 

(pAL)l~ 2 . 
-1.186] {r/l(t)} 

2 053J rl~(t) 

1 {0.8812 
(pAL)l/2 1.526 

r/l(t) - 1.186 ,12(t)~ (E22) 
711 ( t )+ 2.053 712(t ) J 

Thus, for t < to: 

Q ~ ( t ) - - S g  0.2499~-0.34~40co~ 1.985 

Qa( t ) -  ~ 0.4324-0.5907cos 1.985 

t +0.09149cos 5.159 ~ t 

(E23) 

t +0.1583cos 5.159 ~ t 

(E24) 

and for t > to: 

{ Q2(t) = ~ 0.34140cos 1.985 } { ( t - t o )  -0.34140cos 1.985 ~ Z  
1/2 ,} 

- 0.09149 cos {5.159 ( ~ L 2 )  1/2 ( t - t o )  +0.09149cos 5.159 ~-~ 
1/2 ,}] 

(E25) 
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Q3(t) = ~ 0.5907 cos 1.985 ~ ( t -  to) - 0.5907 cos 1.985 

+0.1583cos 5.159 ~-~ (t-to) -0 .1583cos  5.159 ~ t 

To determine the average dynamic stresses in the two elements, we use 

L - - ~  0.24991 - 0.34140cos 1.985 

§ 0.09149cos 5.159 ~-5 t for t < to 

A 0.34140 cos 1.985 

- 0.34140 cos 1.985 ~ t 

- 0.09149 cos { 5.159 ( ~ L 2 )  1/2 

+0.09149cos 5.159 ~-5 

( t - t o ) }  

( t - t o ) }  

t for t > to 

and 

O.(2)(i~). 2E <Q3- Q2)2Po [ { / E / L - ~ 0.18249- 0.24930cos 1.985 

+0.06681cos 5.159 ~ t f o r t < t o  

2POA 0.24930 cos 1.985 ) - ~  

- 0.24930 cos 1.985 ~ t 

+ 0.24979cos 5.159 ~ 5  

- 0.24979 cos 5.159 

(t- to)} 

( t - t o ) }  

t}]  f o r t >  to 

1,2}t 

(E26) 

(E27) 

(E2s) 
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12.7 NONCONSERVATIVE STABILITY AND FLUTTER PROBLEMS 
The stability of nonconservative systems was considered by the finite element method in 
Refs. [12.8] and [12.9]. The problem of panel flutter was treated by Olson [12.10] and 
Kariappa and Somashekar [12.11]. The flutter analysis of three-dimensional structures 
(e.g., supersonic aircraft wing structures) that  involve modeling by different types of finite 
elements was presented by Rao [12.12, 12.13]. Flutter analysis involves the solution of a 
double eigenvalue problem that  can be expressed as 

[ [K]-  J I M ]  + [Q]]( -  (12.98) 

where [K] and [M] are the usual stiffness and mass matrices, respectively, a; is the flutter 

frequency, [Q] is the aerodynamic matrix, and ~'is the vector of generalized coordinates. 
The matrix [Q] is a function of flutter frequency cz and flutter velocity V. which are both 

unknown. For a nontrivial solution of ~, the determinant of the coefficient matrix of ~" 
must vanish. Thus, the flutter equation becomes 

I[ K] - ~ [~] + [Q]t - 0 (~2.99) 

Since two unknowns, namely a; and V. are in Eq. (12.99). the problem is called a double 
eigenvalue problem. The details of the generation of aerodynamic matrix [Q] and the 
solution of Eq. (12.99) are given in Refs. [12.10] and [12.12]. 

12.8 SUBSTRUCTURES METHOD 
In the finite element analysis of large systems, the number of equations to be solved for an 
accurate solution will be quite large. In such cases, the method of substructures can be used 
to reduce the number of equations to manageable size. The system (or structure) is divided 
into a number of parts or segments, each called a substructure (see Figure 12.6). Each 
substructure, in turn, is divided into several finite elements. The element matrix equations 
of each substructure are assembled to generate the substructure equations. By treating 
each substructure as a large element with many interior and exterior (boundary) nodes, 
and using a procedure known as static condensation [12.14]. the equations of the substruc- 
ture are reduced to a form involving only the exterior nodes of that particular substructure. 
The reduced substructure equations can then be assembled to obtain the overall system 
equations involving only the boundary unknowns of the various substructures. The num- 
ber of these system equations is much less compared to the total number of unknowns. 
The solution of the system equations gives values of the boundary unknowns of each sub- 
structure. The known boundary nodal values can then be used as prescribed boundary 
conditions for each substructure to solve for the respective interior nodal unknowns. The 
concept of substructuring has been used for the analysis of static, dynamic, as well as 
nonlinear analyses [ 12.15, 12.16]. 
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Figure 12.6. A Large Structure Divided into Substructures. 
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PROBLEMS 

12.1 Find the solution of Example 12.1 using the lumped mass matrix. 

12.2 Find the solution of Example 12.2 using the lumped ma,ss matrix. 

12.3-12.5 Find the natural frequencies and modes of vibration for the following cases: 

12.3 one-element cantilever beam 

12.4 one-element simply supported beam 

12.5 two-element simply supported beam by taking advantage of the symmetry 
about the midpoint. 

12.6 Find the natural frequencies and mode shapes of the rod shown in 
Figure 12.7 in axial vibration. 

12.7 Sometimes it is desirable to suppress less important or unwanted degrees 
of freedom from the original system of equations 

[/~'] .X --- /D (El) 
n x n n x l  n x l  

to reduce the size of the problem to be solved. This procedure, known 
as static condensation or condensation of unwanted d.o.f., consists of 
partitioning Eq. (El) as 

Lqxp ISllp : ?x2q I -~1 P1 , p x l  p x l  

. . . . . .  : . . . . . . . . . . . . . .  �9 p +  q - -  n ( E 2 )  

IN21 : K22 ~ 
', q x q  q x l  q x l  

where X~ is the vector of unwanted degrees of freedom. Equation (E2) gives 

[K , , ]X~ + [K,2]X-'2 =/~1 (Ea) 

[K2I]X1 Jr- [K22]X2 - /~2 (E4) 

Solving Eq. (E4) for X~2 and substituting the result in Eq. (E3) lead to the 
desired condensed set of equations 

p x p p x l  p x l  

Derive the expressions of [_K] and ~.  

j .  t r -  . v 

rF f  �9 FJ  J J  

. . . .  L ' L I 3  L I3  I , L /3 , , ,  | 

Figure 12.7. 
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12.8 Using the subrout ine PLATE,  find the displacements and the first two 
natura l  frequencies of a box beam (similar to the one shown in Figure 10.7) 
with the following data: 

Length  = 100 in., width = 20 in., depth = 10 in., tc = 0.5 in., t~ = 1.0 in., 
E = 30 x 106 psi, u = 0.3, P1 = P2 = 1000 lb 

12.9 Find the natura l  frequencies of longitudinal vibration of the s tepped bar 
shown in Figure 12.8 using consistent mass matrices. 

12.10 Solve Problem 12.9 using lumped mass matrices. 

12.11 Find the natural  frequencies of longitudinal vibration of the s tepped bar 
shown in Figure 12.9 using consistent mass matrices. 

12.12 Solve Problem 12.11 using lumped mass matrices. 

12.13 Find the mode shapes of the s tepped bar shown in Figure 12.8 correspond- 
ing to the natura l  frequencies found in Problem 12.9. 

12.14 Find the mode shapes of the s tepped bar shown in Figure 12.8 correspond- 
ing to the natura l  frequencies found in Problem 12.10. 

i 
f 
I 
f 
J 
J 
f 
I 

i I 

f 
J 

2"x  2" 
1.5"x 1.5" 

, ,, / 

- -  
, , , 

5" ~ - ' ~  10" 
- F  

l " x  1" 

1 ..... ~/ 

.| 

- F  
E=30  x 106 psi, p =0.283 Ibf/in 3 

Figure 12.8. 

1 5 "  
J 

2"x  2" 

k. 
I- 

L 

1 

v j - .  

E - 3 0  x 10 6 psi, p = 0.283 Ibf/in 3 

Figure 12.9. 

1.5"x 1.5" 

/ 

1 0  '| 
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Z 

/ /  .,-- Y 

(10, 5, 0)in 

Figure 12.10. 

(5, 10, 15)in 

E =  30 x 106 psi 

p = 0.283 Ibf/in 3 

A = 2 i n  2 

12.15 Orthogonalize the mode shapes found in Problem 12.13 with respect to the 
corresponding mass matrix.  

12.16 Orthogonalize the mode shapes found in Problem 12.14 with respect to the 
corresponding mass matrix.  

12.17 Find the consistent and lumped mass matrices of the bar element shown 
in Figure 12.10 in the X Y Z  coordinate system. 

12.18 (a) Derive the stiffness and consistent mass matrices of the two-bar truss 
shown in Figure 12.11. 

(b) Determine the natural  frequencies of the truss (using the consistent 
mass matrix) .  

12.19 (a) Derive the lumped mass matr ix  of the two-bar truss shown in 
Figure 12.11. 

(b) Determine the natura l  frequencies of the truss (using the lumped 
mass matrix) .  

12.20 The properties of the two elements in the s tepped beam shown in 
Figure 12.12 are given below: 

Element  1: E = 30 x 106 psi. p = 0.283 lbf/in. 3, cross section = circular, 
2-in. diameter  

Element  2: E = 11 x 106 psi. p = 0.1 lbf/in. 3. cross section = circular, 
1-in. d iameter  

Find the natura l  frequencies of the s tepped beam. 
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Figure 12.11. 
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Figure 12.12. 
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E= 30 x 106 psi 
\,-0.3 
p - 0.283 Ibf/in3 

3 (0, 0, 10)in 

I 

/ L ~  2 (0, 5, 0) in 

/ 

5) in 

Figure 12.14. 

Force (Ibf) 

100 

1 

Figure 12.15. 

" -  Time, t (sec) 
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Cross-section: 1 "x  1" 

~~ , ~ . L m , , ~  _ ~ , -  . . . . . . . .  

20" 

(a) 

Q1 

~,NQ 2 
] 

.J 

Force (Ibf) 

100 

r-" - - , . , .  1 
Time, t (sec) 

(b) 

Figure 12.16. 

E=30x106 psi 
v = 0 . 3  
p = 0.283 Ibf/in 3 

12.21 Find the mode shapes of the stepped beam considered in Problem 12.20. 

12.22 Find the natural h'equencies of the triangular plate shown in Figure 12.13 
using the consistent mass matrix. Use one triangular membrane element 
for modeling. 

12.23 Solve Problem 12.22 using the lumped mass matrix. 

12.24 Consider the tetrahedron element shown in Figure 12.14. Find the natural 
frequencies of the element bv fixing the face 123. 

12.25 Consider the stepped bar shown in Figure 12.9. If the force shown in 
Figure 12.15 is applied along Q1. determine the dynamic response, Q1 (t). 

12.26 The cantilever beam shown in Figure 12.16(a) is subjected to the force indi- 
cated in Figure 12.16(b) along the direction of Q1. Determine the responses 
Q~(t) and Q2(t). 
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FORMULATION AND SOLUTION 
PROCEDURE 

13.1 INTRODUCTION 
A knowledge of the t empera tu re  distr ibution within a body is impor tant  in many engineer- 
ing problems. This information will be useful in computing the heat added to or removed 
from a body. Furthermore,  if a heated body is not permi t ted  to expand freely in all the 
directions, some stresses will be developed inside the body. The magnitude of these ther- 
mal stresses will influence the design of devices such as boilers, s team turbines, and jet 
engines. The first step in calculating the thermal  stresses is to determine the tempera ture  
distr ibution within the body. 

The objective of this chapter is to derive the finite element equations for the deter- 
mination of t empera tu re  distr ibution within a conducting body. The basic unknown in 
heat transfer problems is temperature ,  similar to displacement in stress analysis problems. 
As indicated in Chapter  5, the finite element equations can be derived either by minimizing 
a suitable functional using a variational (Rayleigh-Ritz)  approach or from the governing 
differential equation using a weighted residual (Galerkin) approach. 

13.2 BASIC EQUATIONS OF HEAT TRANSFER 
The basic equations of heat transfer, namely the energy balance and rate equations, are 
summarized in this section. 

13.2.1 Energy Balance Equation 
In the heat transfer analysis of any system, the following energy balance equation has to 
be satisfied because of conservation of energy: 

E~,~ + [~g - [~o~t + f3~ (13.1) 

where the dot above a symbol signifies a time rate. Ein is the energy inflow into the 
system, E 9 is the energy generated inside the system. Eo~t is the energy outflow from the 
system, and E~  is the change in internal energy of the system. 

467 
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13.2.2 Rate Equations 
The rate equations, which describe the rates of energy flow. are given by the following 
equations. 

(i) For conduction 
D e f i n i t i o n  Conduction is the transfer of heat through materials without any net motion 
of the mass of the material. 

The rate of heat flow in x direction by conduction (q) is given by 

OT 
q - k A ~  (13.2) 

Ox 

where k is the thermal  conductivity of the material.  A is the area normal to x direction 
through which heat flows. T is the temperature ,  and x is the length parameter .  

(ii) For convection 
D e f i n i t i o n  Convection is the process by which thermal  energy is transferred between 
a solid and a fluid surrounding it. 

The rate of heat flow by convection (q) can be expressed as 

q = h A ( T -  T~) (13.3) 

where h is the heat transfer coefficient, A is the surface area of the body through which 
heat fows, T is the tempera ture  of the surface of the body, and T:~ is the t empera ture  of 
the surrounding medium. 

(iii) For radiation 
D e f i n i t i o n  Radiat ion heat transfer is the process by which the thermal  energy is 
exchanged between two surfaces obeying the laws of electromagnetics.  

The rate of heat flow by radiation (q) is governed by the relation 

q - a c A ( T  4 - T 4 )  (13.4) 

where a is the Stefan-Bol tzmann constant,  a is the emissivity of tile surface. A is the 
surface area of the body through which heat flows. T is the absolute surface tempera ture  
of the body, and T~ is the absolute surrounding temperature .  

(iv) Energy generated in a solid 
Energy will be generated in a solid body whenever other forms of energy, such as chemical, 
nuclear, or electrical energy, are converted into thermal  energy. The rate of heat generated 
(E~) is governed by he equation 

Eg = o V  (13.5) 

where q is the s t rength of the heat source (rate of heat generated per unit volume per unit 
time), and V is the volume of the body. 
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(v) Energy stored in a solid 
Whenever the temperature  of a solid body increases, thermal energy will be stored in it. 
The equation describing this phenomenon is given by 

E s  = p c V  OT Ot (13.6) 

where /~s  is the rate of energy storage in the body, p is the density of the material, c is 
the specific heat of the material, V is the volume of the body, T is the temperature  of the 
body, and t is the time parameter.  

13.3 GOVERNING EQUATION FOR THREE-DIMENSIONAL BODIES 
Consider a small element of material in a solid body as shown in Figure 13.1. The element 
is in the shape of a rectangular parallelepiped with sides dx. dy, and dz. The energy 
balance equation can be stated as follows [13.1]" 

Heat inflow Heat generated 
during time dt + by internal 

sources during dt 

Heat outflow Change in 
= during dt + internal (13.7) 

energy during dt 

With the help of rate equations, Eq. (13.7) can be expressed as 

( q x + q y + q z ) d t + o d x d y d z d t - - ( q x + d ~ + q y + d y + q z + d z ) d t + p c d T d x d y d z  (13.8) 

where 

qx = heat inflow rate into the face located at x 

= - k~ A~ OT OT 
cg---x = - k ~  ~ dg dz  

qx+dx - -  heat outflow rate from the face located at x + dx 

Oqx 
= qlx+dx ~ qx + ~ dx  

= - k x A ~  OT 0 ( k x A x O T )  
Ox Ox -~z dx  

= - k ~ -oxx d y d z - -~z k x ~ d x d y d z 

(13.9) 

(13.10) 

kx is the thermal conductivity of the material in x direction, Ax is the area normal 
to the x direction through which heat flows = d y d z .  T is the temperature,  0 is the 
rate of heat generated per unit volume (per unit time), p is the density of the material, 
and c is the specific heat of the material. By substi tuting Eqs. (13.9) and (13.10) and 
similar expressions for qy, qy+d~, qz, and qz+dz into Eq. (13.8) and dividing each term by 
dx dy dz dt, we obtain 

0 k~ + k~ + k + it = pc (13.11) 
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qx 

qz + dz 

qy+ dy 

T /" 
- -  " - V  

', z 

dy 

J_ 1 - - - i  . . . . .  - -  
I II / L/e *, / 

I 
i " 

qy 

qx + dx 

Z 

- ~ _ x  

Figure 13 .1 .  An Element in Cartesian Coordinates.  

Equat ion (13.11) is the differential equation governing the heat conduction in an 
orthotropic solid body. If the thermal  conductivities in x, y, and z directions are assumed 
to be the same, kx - ky - kz - k - constant.  Eq. (13.11) can be wri t ten as 

on2T OPT O2T il 1 OT 
Ox ----V + ~ + ~ + -s = c~ Ot (13.12) 

where the constant  a = ( k / p c )  is called the tl~ermal diffusivity. Equat ion (13.12) is the 
heat conduction equation that  governs the te~nperature distr ibution and the conduction 
heat flow in a solid having uniform material  properties (isotropic body). If heat sources 
are absent in the body, Eq. (13.12) reduces to the Fourier equation 

0 2 T 69 2 T 0 2 T 1 OT  
Ox - - V  + -Oy-~ + Oz - - - ~  = a Ot (13.13) 
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Z 

/ j  

dz , /  

. . . . .  
/ 

Figure 13.2. An Element in Cylindrical Coordinates. 

If the body is in a steady state (with heat sources present), Eq. (13.12) becomes the 
Poisson's equation 

0 2 T  

Oz 2 

0 2 T  0 2 T  O 
(13.14) 

If the body is in a steady state without any heat sources, Eq. (13.12) reduces to the 
Laplace equation 

O2T 0 2 T  0 2 T  
~ 2 ~- ~Oy 2 + ~ - 0  (13.15) 

13.3.1 Governing Equation in Cylindrical Coordinate System 
If a cylindrical coordinate system (with r. O. z coordinates) is used instead of the Cartesian 
z, !/, z system, Eq. (13.12) takes the form 

O2T 1 OT 1 0 2 T  O2T (1 1 0 T  
Or ----~ -1- - -t +- + - = (13.16) 

r -gTr r 2 0 0  .2 ~ k a Ot 

This equation can be derived by taking the element of the body as shown in 
Figure 13.2. 
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I 

J 
I 

Figure 13.3. An Element in Spherical Coordinates. 

13.3.2 Governing Equation in Spherical Coordinate System 
By considering an element of the body in a spherical r, o. ~;~' coordinate system as indicated 
in Figure 13.3, the general heat conduction equation (13.12) becomes 

( )  ( c ) T )  1 02T (t 10T 1 0 r20T 1 0 sin O �9 + = 
r 20r -~r + r 2.sinO Oo 0-0 r 2 sin 20 /)~,2 t k a Ot (13.17) 

13.3.3 Boundary and Initial Conditions 
Since the differential equation, Eq. (13.11) or (13.12). is second order, two boundary  
conditions need to be specified. The possible boundary conditions are 

T(x, y, z, t) = To for t > 0 o n S 1  (13.18) 

OT OT OT 
kx-~-~z. lx+ky.-~. . ly+k:.-O-~z . l : + q - O  for t > 0 o n S 2  (13.19) 

OT OT OT 
kx  -g-~z . Zx + k~ -g-~y . /~ + k= . -g-2z . /._ + h ( T -  r ~ )  - O for t > 0 o n S 3  (13.20) 

where q is the boundary  heat flux, h is the convection heat transfer coefficient, T~ is the 
surrounding temperature ,  Ix, ly, l= are the direction cosines of the outward drawn normal 
to the boundary, $1 is the boundarv on which tile value of t empera ture  is specified as 
To(t), $2 is the boundary on which the heat flux q is specified, and $3 is the boundary  
on which the convective heat loss h ( T -  T~ ) is specified. The boundary  condition stated 
in Eq. (13.18) is known as the Dirichlet condition and those stated in Eqs. (13.19) and 
(13.20) are called Neumann conditions. 
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Furthermore, the differential equation, Eq. (13.11) or (13.12). is first oraer in time t 
and hence it requires one initial condition. The commonly used initial condition is 

TCz, g , z , t - O ) -  To(x. g. z ) in  I" (la.2t) 
where V is the domain (or volume) of the solid body. and T0 is the specified temperature 
distribution at time zero. 

13.4 STATEMENT OF THE PROBLEM 
13.4.1 In Differential Equation Form 
The problem of finding the temperature distribution inside a solid body revolves the 
solution of Eq. (13.11) or Eq. (13.12) subject to the satisfaction of the bom~da~y conditions 
of Eqs. (13.18)-(13.20) and the initial condition given by Eq. (1:3.21). 

13.4.2 In Variational Form 
The three-dimensional heat conduction problem can be stated in all equivalent va, mclonai 
form as follows [13.2]: 

Find the temperature distribution T(oc. !l.z.t) inside the solid body titat nunltnizes 
the integral 

i=~ 
V 

+,+(+s)+ io+l+ i ~-k.: ~ -2  q-pc T dX .+ (13.2"2) 

and satisfies the boundary conditions of Eqs. (13.18)-(13.20) and the initial cotmitto~ ot 
Eq. (13.21). Here, the term (OT/Ot) must be considered fixed while taking the vartattot~s. 
It can be verified that Eq. (13.11) is the Euler-Lagrange equation cotvesponclilig to tire 
functional of Eq. (13.22). Generally it is not difficult to satisfy tile boutmavv co,dition 
of Eq. (13.18), but Eqs. (13.19) and (13.20) present sotne difficulty. To ove~co,~e tl~is 
difficulty, an integral pertaining to the boundary conditions of Eqs. (13.19) and (13.20) is 
added to the functional of Eq. (13.22) so that when the combined fiulctional is milllmized. 
the boundary conditions of Eqs. (13.19) and (13.20) would be automaticahy sacistied. 
The integral pertaining to Eqs. (13.19) and (13.20) is given by 

/ I l l  ).~ qTdS2 + ~h(T- T~ dSs 

$2 $3 

Thus, the combined functional to be minimized will be 

1 / / /  [k~ (OT) 2 (+): ( +k~ ~ +/,': ~ - 2  0-t,('/-~--t T d[," 

f l f f  )2 + qTdS2 + -~ h(T- T~ dSs 

$2 Sa 
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13.5 DERIVATION OF FINITE ELEMENT EQUATIONS 
The finite element equations for the heat conduction problem can be derived either by 
using a variational approach or by using a Galerkin approach. We shall derive the equations 
using both the approaches in this section. 

13.5.1 Variational Approach 
In this approach, we consider the minimizat ion of the functional I given by Eq. (13.23) 
subject  to the satisfaction of the boundary  conditions of Eq. (13.18) and the initial condi- 
tions of Eq. (13.21). The step-by-step procedure involved in the derivation of finite element 
equations is given below. 

S t e p  1: Divide the domain I," into E finit.e elements of p nodes each�9 

S t e p  2: Assume a suitable form of variation of T in each finite element and express 
T (e) (x, y, z, t) in element e as 

T( '~(z .y .  - t ) -  I :v (~ .~ . : )JT  (~) (13.24) 

where 

[:v(x. y, ~ ) ] -  [x~(~. y. ~) 

T~(t) 
_ T2(t) 

Tp'( t ) 

(c) 

Zi(t) is the t empera tu re  of node i. and N,(x,  y, z) is tile interpolat ion function correspond- 
ing to node i of element e. 

S t e p  3: Express the functional I as a sum of E elemental  quanti t ies I Ce) as 

E 

I -- Z I(~) (13.25) 
e = l  

where 

i (~) 
)2 (OT(())2 ( O T ( ~ ) , ~ 2 (  OT(~))T(~)]d V 

+ k~ oy + a-.. --aT-~ / - 2 0 -  p~ 02 

f / 1 / /  (Tt~) 2 + qT (~) dS2 + -~ h - T:,,. ) d,_% (13.26) 

For the minimizat ion of the functional I. use the necessary conditions 

OI _ _ ~ OI (~) 

O7", O7", 
e--1 

= 0, i - 1,2 . . . . .  M 
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where M is the total number of nodal temperature  unknowns. From Eq. (13.26). we have 

0I(~) / / f  [ OT(~) O ( oT(~) ) OT(~) O (aT  (~) ) OT(~) O (aT  (~) ) 
OT~ = k~: Ox OTi " Ox +ky Oy aT, Oy +l,.~ O~ aT, Oz 

v(e) 

OT (~)) OT(~) 
o - pc 02 

/ OT(~) / /  OT(~) 
dV + q aT, dS2 + h(T (~) - T~) aT,- dS3 

S;c)  $3( e ) 

(13.27) 

Note that  the surface integrals do not, appear in Eq. (13.27) if node i does not lie on $2 
and $3. Equation (13.24) gives 

0T (C) 
OX 

0 [" OT (~) 
OTi I v Ox 

OT (~) 
O T ,  

OT (~) 
Ot 

c)N1 ON2 O:\p 
Ox cox Ox 

_ ON, 
Ox 

= ~  
(13.28) 

where 

OT1 ~Or } 

Thus, Eq. (13.27) can be expressed as 

OI (~) 
OT(~) 

= (13.29) 

where the elements of [K~e)], [K(~)]. [K(~)]. and /6(~) are given by 

- ~- k . . . .  dV Klij kx Oar Ox ~-ky Og Og " Oz Oz 
v ( e )  

K2ij -- 

S(3 e ) 

hN~ Nj �9 dS3 

K 
( ~ )  

3ij / f  pcN~N3 �9 

v ( e )  

dV 

(13.30) 

(13.31) 

(13.32) 
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and 

P~e)-/l/oXzdI'-//qN, dS~+//hT~N~dSa 
~ ( " )  ,b~(~'2 ) $3 ~) 

(13.33) 

S tep  4: Rewrite Eqs. (13.29) in matrix form as 

OI ~ - ~ O I  (e) ~-- ([[ ] 
_, = = KI ~)] + [K,(, ' )] T (~) 

O T  e=l OT(") 

where T is the vector of nodal temperature unknowns of the system: 

(13.34) 

~ _  T2 

By using the familiar assembly process. Eq. (13.34) can be expressed as 

[I~:~] ~ +[/)'] ~ -- /~ (13.35) 

where 

E 

[K31 - ~-~[/x'3 (()] (13.36) 
(,--1 

E 

[ K ] -  E [ [A'tl~'~! + [K~'/]] (13.37) 

and 

E 

- E / 5 ( , )  (13.38) 
(,--1 

Step  5: Equations (13.35) are the desired equations that have to be solved after incor- 
porating the boundarv conditions specified over $1 [Eq. (13.18) and the initial conditions 
stated in Eq. (13.21)]. 

13.5.2 Galerkin Approach 
The finite element procedure llsing the Galerkin method can be described by the 
following steps. 

S tep  1- Divide the domain l" into E finite elements of p nodes each. 
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S t e p  2: Assume a suitable form of variat ion of T in each finite element  and express 
T (~) (x, y, z, t) in element  e as 

T (~) (x. y. ~. t) - [x(~-..~. ,)]f(~) (13.39) 

S t e p  3: In the Galerkin method,  the integral of the weighted residue over the domain of 
the element  is set equal to zero by taking the weights same as the interpolat ion functions 
Ni. Since the solution in Eq. (13.39) is not exact, subs t i tu t ion  of Eq. (13.39) into the 
differential Eq. (13.11) gives a nonzero value instead of zero. This nonzero value will be 
the residue. Hence, the criterion to be satisfied at any instant  of t ime is 

COT(r ~ 0 (1,hOT (~) + 0 

V(e) 

OT (~) 
+ 4 - p~ - - o W  

OT( ~ ) 

dV = 0. i - 1.2 . . . . .  p (13.40) 

By not ing tha t  the first integral te rm of Eq. (13.40) can be wri t ten as 

/ / /  O ( O T ( e ) ) f / /  o N , co T ( ~ ) f / coT ( ~ ) 
N , ~  k~---gy- d r = -  - b T ~ - ~ - g x - d r +  X,~x Oz t~dS 

V(e) t'(~:) S ( , ) 

(13.41) 

where lx is the x-direct ion cosine of the outward drawn normal,  and with similar 
expressions for the second and third integral terms. Eq. (13.40) can be s ta ted  as 

/ / / [  ONiOT (e) ONiOT (e) ON, COT (e) 
- kx Ox cOx 4-1, b Oy -JY kk: ~ O-z di" 

l/(e) 

+ N~ k ~ - ~ t ~  + k~--s t~ + k~ b: .t: dS 
S(e) 

+ N, ( 7 - P C ~  d I ' - O ,  i - -  1.2 . . . . .  p (13.42) 

V(e) 

Since the boundary  of the element  S (~) is composed of S[ ~) $2 (~). and $3 (~). the surface 

integral  of Eq. (13.42) over S} ~) would be zero (since T (C) is prescribed to be a constant  

To on S} ~), the derivatives of T (~) with respect to x. g. and z would be zero). On the 

surfaces S~ ~) and S~ ~), the boundary  condit ions given by Eqs. (13.19) and (13.20) are to 

be satisfied. For this, the surface integral in Eq. (13.42) over S~ ~' and S (e) is wri t ten in 
equivalent form as 

f f [ OT(~) OT (~) 

t t  
-//h(T (~)-T~) dSa 

�9 J J 

S(3 ~) 

OT(~) ] / /  
l,~+k= Oz l= d S - -  ;%qdS2 

(13.43) 
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By using Eqs. (13.39) and (13.43), Eq. (13.42) can be expressed in matrix form as 

+ + [ K y ) ] 2  - - d  (13.44) 

where the elements of the matrices [K~r [K~)]. [K3(~)], and /6(~') are the same as those 
given in Eqs. (13.30)-(13.33). 

Step 4: The element equation (13�9 can be assembled in the usual manner to obtain 
the overall equations as 

[~3] ~ +[~'] ~ - ~ (13.45) 

where [K3], [K], and ~ are the same as those defined by Eqs. (13.36)-(13.38). It can be 

seen that the same final equations, Eq. (13.35). are obtained in both the approaches. 

S tep  5: Equations (13.35) have to be soh, ed after incorporating the boundary conditions 
specified over $1 and the initial conditions. 

Notes: 

�9 ~ rK (~)1 and fi(~) 1 The expressions for [K(1 )]. [K~)], L 3 J. can be stated using matrix 
notation as 

[K[ ~)] - / J J ' [ B ] r [ D ] [ B ]  dV (13.46) 
~-(c) 

[K~ ~)] - / / h [ N ] r [ N ]  dSa (13.47) 

S (e) 

[K~ ~) ] - / / / p c [ N ]  T [N] dV (13.48) 

v(e)  

/6(~)_/3~) _ fi2(~) + t63 (~) (13.49) 

where 

P~) - f f f  q[N] T dV (13.50) 

U(C) 

/6~e) = f f  q[N]T dS2 (13.51) 

S((') 

fi(r - f l hT~[N]T dS3 (13.52) 

S(3 ':) 

[D] = k, 0 (13.53) 
0 k~ 
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0N1 ON2 ON, 
Ox Ox "'" Ox 

ON1 ON2 ONp (13.54) 
[ B ] -  oy oy ' oy 

ON1 ON2 ON, 
Oz Oz "'" Oz 

2. When all the three modes of heat transfer are considered, the governing differential 
equation becomes nonlinear (due to the inclusion of radiation term). An iterative 
procedure is presented in Section 14.7 for the solution of heat transfer problems 
involving radiation. 
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P R O B L E M S  

13.1 Derive the heat conduction equation in cylindrical coordinates, Eq. (13.16), from 
Eq. (13.12). 

Hint: Use the relations z = rcos0 ,  y = r s in0 ,  and z = z in Eq. (13.12). 

13.2 Derive the heat conduction equation in spherical coordinates. Eq. (13.17), from 
Eq. (13.12). 

Hint: Use the relations x - r s i n o c o s c ' ,  g - r s inos in• ' ,  and z - r c o s 0  in 
Eq. (13.12). 

13.3 The steady-state  one-dimensional heat conduction equation is given by: 

In Cartesian coordinate system: ~ k~-~: x - 0 

d I aT ]  In cylindrical coordinate system: d r  r k - ~ r  - 0 

In spherical coordinate system: ~ k r  ~ - 0 

Suggest a suitable tempera ture  distribution model, for each case. for use in the 
finite element analvsis. 

13.4 Express the boundary conditions of Figure 13.4 in the form of equations. 

A 

Heat flux 
= 10 BTU/hr-ft 2 

Y 

T=120,~ cF 1 

, , , ! 

Insulated 

l 
L , , _  �9 , , ,  

Convection loss 

f 
T=100 ~ 

, . . . ._ . .~ .  X 

h = 5 BTU/hr-ft2-~F, T~ = 70 cF 

F igure  13 .4 .  
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13.5 The thermal equilibrium equation for a one-dimensional problem, 
conduction, convection, and radiation, can be expressed as 

including 

d [leA dT 
dx -dTx 

- h P ( T -  T~) - ~ o P ( T  4 - T 4 )  + q A  = 0; 0 ~ x <_ L (El) 

where k is the conductivity coefficient, h is the convection coefficient, c is the 
emissivity of the surface, c~ is the Stefan-Boltzman constant, 0 is the heat gener- 
ated per unit volume, A is the cross-sectional area, P is the perimeter. T(x) is the 
temperature at location x, Tor is the ambient temperature, and L is the length 
of the body. Show that the variational functional I corresponding to Eq. (El) is 
given by 

L 

/ 
x--O 

1 h P T  2 + h P T ~  T - 1 5 4 1 kA OAT-  -~ -~caPT + ~aPT~ T - -~ dx 

(E~) 

13.6 

13.7 

13.8 

Derive the finite element equations corresponding to Eq. (El) of Problem 13.5 
using the Galerkin approach. 

Derive the finite element equations corresponding to Eqs. (El) and (E2) of 
Problem 13.5 using a variational approach. 

Heat transfer takes place by convection and radiation from the inner and outer 
surfaces of a hollow sphere. If the radii are R, and Ro, the fluid (ambient) tem- 
peratures are Ti and To, convection heat transfer coefficients are hi and ho, and 
emissivities are c, and eo at the inner (i) and outer (o) surfaces of the hollow 
sphere, state the governing differential equation and the boundary conditions to 
be satisfied in finding the temperature distribution in the sphere, T(r). 
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ONE-DIMENSIONAL PROBLEMS 

14.1 INTRODUCTION 
For a one-dimensional heat transfer problem, the governing differential equation is given by 

d2T 
k~-z2 + O = 0  (14.1) 

The boundary conditions are 

T ( x  = O) = To ( temperature specified) 

dT 
k--d--~zlx + h ( T  - T~ ) + q = 0 on the surface 

(combined heat flux and convection specified) 

(14.2) 

(14.3) 

A fin is a common example of a one-dimensional heat transfer problem. One end of the fin 
is connected to a heat source (whose temperature  is known) and heat will be lost to the 
surroundings through the perimeter surface and the end. We now consider the analysis of 
uniform and tapered fins. 

14.2 STRAIGHT UNIFORM FIN ANALYSIS 
S t e p  1: Idealize the rod into several finite elements as shown in Figure 14.1(b). 

S t e p  2: Assume a linear temperature variation inside any element "e" as 

T(~) (x )  = al + a2x = [N(x)]0 "(~) (14.4) 

where 

N , ( x )  - X l  (x)  = 1 
l(~) 

(14.5) 

(14.6) 

482 
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T.  = 40~ 

140~ 1 
•  i 

L 
I- 

watts 
h = 5 _o K cm 2 

- -  L = 5 c m  

k = 7 0  watts 
cm-OK 

(a) One dimensional  rod 

e, 
J End surface A 

-I 

1 cm radius 

" 1  - - " "  = 

L 
I- 

1 A , , �9 i , 

L 
r -  '" 2.5 cm 

- - z T 2  E = I  

__1 
5 cm " 

-1 

72 
' z  . . . . . .  : T  3 E = 2  

- ' -  
- ,  - ' 2.5 cm 

72 73 
T1 = --- - - : . . . . .  ' ' - T 4  E = 3  

i . . . _  5 c m  _ _ ,_  5 5 . _ _ . 1  r- gore + gore 

(b) Finite e lement  idealization 

F i g u r e  14 .1 .  

X 

N j ( z )  =_ N 2 ( z ) -  l(~) (14.7) 

0 " ( ~ ) : { q l } = {  T ~ } q 2  T3 (14.8) 

i and j indicate the global node numbers corresponding to the left- and right-hand-side 
nodes, and l (~) is the length of element e. 

Step  3: Derivation of element matrices: 

Since this is a one-dimensional problem, Eqs. (13.53) and (13.54) reduce to 

[D ]  = [k] and [B ]  = 
aN, a~]  _ [ 1 1 

Ox Ox l (~) I (~) 
(14.9) 
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Equations (13.46)-(13.49) become 

l (e)  

[K~e)] - f//[B]T[D][B]dV - / {-tl@)} [k] { - - - - -  
/77 

V ( e )  x = 0  

1(1) /1) } Ad x 

[1 11] 
l(e) 1 (14.10) 

l(C) 

[K~)] - / / h [ N ] T [ N ] d S ( a ~ ) -  / h { l -x / l  (~)}x/l(~) {( l_ /_77)  l_TCT}PdxX x 
s ( e )  x = 0  

(14.11) 

since dS3 = P dx, where P is the perimeter. 

[K (r --[0] since this is a steady-state problem (14.12) 

l(e) l(,  ' ) l(e) 

/ {l-xi(-~} / {l-l '-~}Pdx+ j'hT~:{l-~:l-~)} Pdx - O A d x  - q 
VTr Vat 

x = 0  x = O  x = O  

gtA1 (e) {1} qP1 (~) {1} 
2 1 2 1 + 

hT~:Pl(~){ 1 } 2  1 (14.13) 

S t e p  4: A s s e m b l e d  e q u a t i o n s :  

overall equations as [Eq. (13.45)] 
The element matrices can be assembled to obtain the 

[ K ] ~ - / 5  (14.14) 

where 

[K]-~ F7 ll--ll]+hp~le)[2112] ) (14.15) 

and 

/3_  E /6 ie )  _ E 1 ( ) 1 -~ OAf (~1 - qPl (~) + hT:,,:Pl (~ (14.16) ... 1 
e = l  e = l  

Step 5: The assembled equations (14.14) are to be solved, after incorporating the 
boundary conditions stated in Eq. (14.2). to find the nodal temperatures. 

Example 14.1 
Figure 14.1. 

Find the temperature distribution in the one-dimensional fin shown in 
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S o l u t i o n  

(i) With  one element 
Here, 0 = q = 0, and hence, for E = 1, Eq. (14.14) gives 

(E~) 

By dividing throughout by (Ak/L), Eq. (El) can be written as 

2hPL 2 

hPL 2 

1 hPL2"~ 
- + ~ )  L 2 

((1 2hPL2\  {T ,~  { } 
T2], _ hPT~ 1 

2kA 1 

+ 6kA ) 

For the data  given, P = 27r cm and A = 7r cm 2, and hence 

hPL 2 _- (5)(2~)(52) = __25 and hPT~L2 = (5)(2~)(40)(52) _- 500 

kA (70) (~) 7 2kA 2(70)(~) 7 

Thus, Eq. (El) becomes 

(E2) 

92 

- 1 7  

_171 } _ {3000} 
92 T2 3000 

(E3) 

In order to incorporate the boundary condition T1 = 140 ~ we replace the first equation 
of (E3) by T1 = 140 and rewrite the second equation of (E3) as 

927'2 = 3000 + 177'1 = 3000 + 17(140) = 5380 

from which the unknown tempera ture  7"2 can be found as T2 = 58.48 ~ 

While solving Eq. (E3) on a computer, the boundary condition T1 = 140 can be 
incoporated by modifying Eq. (E3) as 

{= 140 }{140} 
92 T2 3000 + 17 • 140 5380 

(E4) 

(ii) With two e lements  
In this case, Eq. (14.14) represents assembly of two element equations and leads to 

~ 

2al a2 T2 - 2b 

a2 al 7"3 b 

(E~) 
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where 

a l =  1-+- ~ 
2 h P L  2 

24kA  

a2 -- --1 -4- ~ 
h P L  2 

24kA  

h P T ~ L  2 
b - -  - -  

8kA 

= 1 + ~ 4  (~_5) = 10984 

= - 1 + ~ 4  ( ~ ) - - -  

5OO 
28 

143 
168 

As before, we modify Eq. (E5) to incorporate the boundary condition T1 - 140 as follows" 

o r  

Ii: ~ //14~ / 
2a1 a2 T2 - 2b - - a 2  x T1 = 2b -140a2 

a2 al T3 b - 0  x 7'1 b 

1 0 0 140 

218 143 1 0 
i 84 168 T2 = 

143 109 T3 1500 

168 84 84 

The solution of Eq. (E6) gives 

T1 - 140~ T2 - 81 .77~ and T3 = 6"/.39~ 

(E6) 

Note 
In the previous solution, it is assumed that the convection heat loss occurs only from the 
perimeter surface and not from the end surface A (Figure 14.1). If the convection loss 
from the end surface is also to be considered, the following method can be adopted. Let 
the convection heat loss occur from the surface at the right-hand-side node of the element 
e. Then the surface integral of Eq. (13.47) or Eq. (14.11) should extend over this surface 
also. Thus, in Eq. (14.11), the following term should also be included: 

//{N1} 
/ h[N]T [N] dS3 h { N1 

s ( e )  A 

corresponding to 
the surface at the 
right-side node 2. 

N2} dS3 (14.17) 
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Since we are interested in the surface at node 2 (right-side node), we substitute N1 (x = 
t (~)) = 0 and N2(x = 1 (~)) = i in Eq. (14.17) to obtain 

/ / h { 0 1 } { 0  1 } d S a = / / ' h  [00 01] d S a - h A  [00 01] (14.18) 

A A 

Similarly, the surface integral over $3 in Eq. (13.52) or Eq. (14.13) should extend over 
the free end surface also. Thus, the additional term to be included in the vector fi(~) is 
given by 

s(ae ) A 

(14.19) 

E x a m p l e  14.2 Find the temperature distribution in the fin shown in Figure 14.1 by 
including the effect of convection from the end surface A. 

S o l u t i o n  

(i) With one e l ement  
Equation (El) of Example 14.1 will be modified as 

- E  + - - g - -  + o  - - K  + W -  + o  + o  

----~- + ~ + 0 --s + - - ~  + hA 2 + hAT~ 

( E l )  

For the given data, Eq. (El) reduces to [after multiplying throughout by (L/Ak)] 

25 25 

( ~ 1~) i+N+ { T1 
500 / 

7 

500 100 
- f - + - $ -  

or  

I ]{} } 
- 17 7"1 3000 

- 17 107 T2 I, 3600 
(E:) 

After incorporating the boundary condition, Tl = 140, Eq. (E2) becomes 

{ } {14o} 
107 T2 3600 + 177'1 5980 

(E3) 
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from which the solution can be obtained as 

T1 = 140~ and 7"2 =55 .89  ~ 

(ii) With two e l e m e n t s  
The element matrices and vectors are given by 

[ 1,25,  _1 -I]-28  [1_1 
[K~I)]_ (5)(2~)(2.5) 

/3(1)_ 1 {1}  _ 5 0 0 7 r { 1 }  ~ (5) (40)(27r)(2.5) 1 1 

6 + (5)(7r) - 4.16677r 

/3(2) _ 1 (5)(40)(2:r)(2.5) 1 + (5)(40):r = 
700rr 

4.1667~] 
13.3334~-J 

The assembled equations can be written as 

I 36.33347r -23.83337r 0 

-230.83337r 72.66687r -23.83337r 

-23.83337r 41.33347r 

7"2 = 10007r 

T3 7007r 

After incorporating the boundary condition 7'1 = 140, Eq. (E4) becomes 

I 
1 0 0 

72.6668 -23.8333 

-23.8333 41.3334 

7'2 - 1000-4- 23.8333 7'1 

T3 700 

//14~ 
- 4336 

700 

The solution of Eq. (E5) gives 

T1 = 140 ~ I"2 =80 .44  ~ and T 3 = 6 3 . 3 6  ~ 

(E4) 

(E~) 

14.3 COMPUTER PROGRAM FOR ONE-DIMENSIONAL PROBLEMS 
A subroutine called HEAT1 is given for the solution of one-dimensional (fin-type) heat 
transfer problems. The arguments of this subroutine are as follows: 

NN = number of nodes (input). 
NE = number of elements (input). 



COMPUTER PROGRAM FOR ONE-DIMENSIONAL PROBLEMS 489 

NB 
l E N D  

CC 
H 
T I N F  

QD 
Q 
N O D E  

- semibandwid th  of the  overall mat r ix  GK (input).  
- 0: means  no heat  convection from free end. 
= any nonzero integer" means tha t  heat  convection occurs from the free end 

(input) .  

= the rma l  conduct iv i ty  of the mater ial ,  k ( input) .  
= convection heat  t ransfer  coefficient, h ( input) .  
= a tmospher ic  t empera tu re ,  T ~  (input) .  
= s t reng th  of heat  source, 0 ( input) .  
= bounda ry  heat  flux, q (input) .  
= ar ray of size NE x 2: N O D E  (I, J) - global node number  corresponding to J t h  

( r ight-hand side) end of element I ( input) .  
= ar ray of size NN used to store the vec to r /5 .  

P L O A D  = ar ray  of size NN x 1. 
XC 
A 
GK 
EL 
P E R I  
TS 

= ar ray  of size NN; XC(I)  = z coordina te  of node I ( input) .  
= array of size NE; A(I)  = area of cross section of element  I ( input) .  
= ar ray of size NN x NB to store the mat r ix  [/~']. 
= ar ray  of size NE; EL(I)  - length of e lement  I.  
= ar ray of size NE; P E R I  (I) - per imeter  of e lement  I ( input) .  
= array of size NN" TS (I) = prescr ibed value of t e m p e r a t u r e  of node I ( input) .  

If the  t e m p e r a t u r e  of node I is not specified, then the value of TS (I) is to be 
given as 0.0. 

This  subrout ine  requires the subrout ines  A D J U S T .  DECO~IP ,  and SOLVE. To i l lustrate  
the use of the  p rogram HEAT1.  consider the problem of Example  14.2 with two finite 
elements.  The  main p rogram for solving this problem and the numerical  results  given by 
the p rogram are given below. 

C .......... 

ONE-DIMENSIONAL HEAT CONDUCTION 

10 

20 
30 

DIMENSION NODE(2,2),P(3),PLOAD(3, I),XC(3),A(2),GK(3,2),EL(2),TS(3) 
2 ,PERI (2) 

DATA NN,NE,NB,IEND,CC,H,TINF,QD,Q/3,2,2,1,70.O,5.O,40.O,O.O,O.O/ 
DATA NODE/I, 2,2,3/ 

DATA XC/0.0,2.5,5.0/ 
DATA A/3.1416,3.1416/ 

DATA PERI/6.2832,6. 2832/ 
DATA TS/140.0,0.0,0.0/ 

CALL HEAT1 (NN, NE, NB, IEND, CC ,H, TINF, QD, Q, NODE, P, PLOAD ,XC ,A, GK, EL, 
2 PERI,TS) 
PRINT I0 

FORMAT (19H NODAL TEMPERATURES,/) 
DO 20 I=I,NN 
PRINT 30,I,PLOAD(I, I) 
FORMAT(I4, E15.8) 

STOP 
END 
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NODAL TEMPERATURES 

1 0. 14000000E+03 
2 0. 80447556E+02 
3 0. 63322582E§ 

14.4 TAPERED FIN ANALYSIS 

In a tapered  fin, the area of cross section A varies with x. By assuming a linear variat ion 
of area from node i (local node 1) to node j (local node 2) of element e, the area of cross 
section at a distance x from node i can be expressed as 

(Aj - A, )x  
A(x) - A; + l(~) = A ; N ; ( x ) +  AjNj(x) (14.20) 

where Ni and N 3 are the linear shape functions defined in Eq. (14.5). and A, and ,4.1 are 
the cross-sectional areas of element  e at nodes i and j ,  respectively. 

The  matr ices  [K}~)], [h's [K3~)]. and /5(~J can be obta ined as [from Eqs. (13.46)- 
(13.49)] 

[K[~)] = ///[B]T[D][B]d't" = i~ { (-l~-~) } [k] { (-l~) (l-~) }A(x)dx 

1 (~) 2 - 1  = i(~; - 1  (14.21) 

where A(e) is the average area of the element e. Since the evaluat ion of the integral  in 
[K2 (r involves the per imeter  P,  we can use a similar procedure.  By writ ing P as 

P(~) = P,X,(~) + P~Nj(x) (14.22) 

where Pi and Pj are the per imeters  of element e at nodes i and j ,  respectively, we obta in  

~ ) [K (e)] = h IN] IN] dSa - 

sg~, =o LN1 .% 

NI 1 
/ P dx (14.23) 

The  integrals of Eq. (14.23) can be evaluated as 

l (  ~ ) 

l(~) 
N ~ ( x ) P ( x )  dx = - i~  (3P, + P~) 

x - - O  

l ( e )  

f i(~1 N ~ ( z ) N j ( z ) P ( z )  dz  = -i-~ (P, + Pr 

x ~ O  

(14.24) 

(14.25) 
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h = 5  ~-~2o K 

T== 40~ 

J -I 
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lcrn 

F i g u r e  14.2.  A T a p e r e d  Fin.  

l(e) 
l(~) 

N] (x )P(x )dx  - 1--~(F', + 3 5 )  
x - - O  

hl(~) [(3P~ + Pj) (P, + P3)] ~r 
" [K~(~)]- - ~  (P, + P~) (P, + 3P~)] 

(14.26) 

(14.27) 

Since this is a s teady-state  problem with q - q - 0, we have 

[K~ ~)] = [0] (14.28) 

fi(~) . f / h T ~ [ X ] r  dS3 = hTzcl(~) 12P~ + PJ} (~) -- ~ (14.29) 
6 P ,+2Pj  

s (3 ~ ) 

Once the element matrices are available, the overall equations can be obtained using 
Eq. (13.35). 

E x a m p l e  14.3 
Figure 14.2. 

Find the tempera ture  distribution in the tapered fin shown in 

S o l u t i o n  

(i) For one  e l e m e n t  
If E = 1, 1 (1) = 5 cm, A~ = 2 cm 2, Aj - 1 cm 2, ,fI = 1.5 cm 2, Pi = 6 cm, and Pj = 4 cm. 
Thus, Eqs. (14.21), (14.27), and (14.29) give 

[K}~)] = (70)(1.5)5 [-11 -11 

[K(~)I = (5)(5) r(3 • 6 + 4) 
t 2 l 12 [ ( 6 + 4 )  

=[ 21 -21 ]  
-21 21 

,6+,, ] 1[ 75 125 
(6+3• g 25 225 
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.~., (~,,40,(~,{..~+4} . { s o o o } ~  ~+ . .4  ~ ~000 

Hence, Eq. (13.35) gives 

-401 - 1 
-1  351 

T1 6000 ~.}_{1 
14000 } 

(E,) 

When the boundary condition. T1 = 140~ is incorporated, Eq. (El) gets modified to 

011 {T1 T1 
[~ 35 } = { 1 4 0 0 0  

~. +~.} { 14o 
14140} 

(E~) 

The solution of Eq. (E2) gives 

T I =  140 ~ and T2 = 4 0 . 2 8 ~  

(ii) For two elements 
For e = 1:1 (1) = 2.5 cm. .4 i  = 2 cm 2. 
P3 = 5 c m .  

.43 = 1.5 cm 2. .4 = 1.75 cm 2. P, = 6 cm. and 

[K{1)] __ (70)(1.75) 
(2.5) 

_ _  

1 I] 
49 -49]  

-49  49 

[K2(1)]_ (5)(2.5)12 [(3(6 6 + +  5)5) 
(6 + 3 x 5) 11.45 

11.45] 
21.90 

For e = 2:1 (2) -- 2.5 cm, A, 
P3 = 4 cm. 

- 1.5 cm 2. Aj = 1 cm 2, /1 = 1.25 cm 2, P, = 5 cm. and 

[K}2)] _ (70)(1.25) 
(2.s) 

1 -1  
-1  1 

35 
-35  

-35  

[K~2)]_ (5)(2.5)12 [(3(5 5 ++4) 4) (5 + 3 • 4) .4 

/~(2)_ (5) (40) (2.5) { 2 x 5 - + - 4 } _  1 { 7 0 0 0 } _  6 5 + 2 x 4  6 6500 

17.7 

The overall equations (13.35) will be 

-37.55 125.70 -25.60 T2 
0 -25.60 52.70 7"3 

8500 
T 

= 15000 
6 

6500 --g- 

(E~) 
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Equat ion (E3), when modified to incorporate the boundary condition T1 - 140~ 
appears as 

[i ~ 125.70 
- 2 5 . 6 0  

r l  o1{  } { 1,oo } 
-25 .60  7"2 = ~ + 37.55T1 _ 7757.0 

52.70 J T3 6500 1083.3 

6 

The solution of Eq. (E4) gives 

T~ = 140~ T2 - 73.13~ and T..~ = 56.()7~ 

(E~) 

14.5 A N A L Y S I S  OF U N I F O R M  F INS  U S I N G  Q U A D R A T I C  E L E M E N T S  

The solution of uniform one-dimensional heat transfer problems is considered using 
a quadratic model for the variation of tempera ture  in tl~e element. The step-by-step 
procedure is given below. 

S t e p  1: 

S t e p  2: 

w h e r e  

Idealize the fin into E finite elements as shown in Figure 14.3. 

Assume a quadratic variation of tempera ture  inside any element e as 

a.2 ,) T (~) (~)  = a,  + , ~  + , : ,  = [ . \ ' ( . , - ) ] r  

[x(~)]-  [N,(~) .\~(,-) X~(:,.)] 

(t4.ao) 

(14.31) 

[ - -1  ", 2 . . . . . . . .  , , e' " 
' " ~ ( o i  

/ element number 

, E r r  ! 
dll I L  . . . .  

1 2 3 
A ~ ~ A ~ A A 

v . i i i  v , v -  v v 

1 2 3 i j k 

~.-.-Iocal node numbers of element e 

, w  w v " " l w  v 

global node numbers corresponding 
to local node numbers 1 2 3 of 
element e 

r, r, T k ~ nodal temperatures 
. . . . . .  

1 2 3 
i j k 

I(e) _ L  l ( e ) . _ ~  I ' - - g  " ,  -g 

element e 

Figure 14.3.  A Quadratic Element. 
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( 2 x )  ( 1 _  x ) (14.32) 
x , ( x )  = 1 -  l~--; F 

4a" ( a" ) (14.33) .'\~(x) = ~ 1 -  

. % ( z ) -  -/-777~ 1 -  ~ (14.34) 

and 

{ql} 
= q2 - T j  

qa Tk 

where i, j, and k denote the global node mnnbers corresponding to local nodes 1 (left 
end), 2 (middle). and 3 (right end), respectively. 

Step 3: Derivation of element matrices" 

For the quadratic element, we have 

[D] = [k] 

[B] = Fox~ 
L 01 

ONj 0N~.] = [ 4x 3 4 8x 4x 1 

(14.35) 

(14.36) 

The definitions of [K~C)]. [h 2"(~)]. [/x'3 (~)], and /5(6t remain the same as those given 
in Eqs. (13.46)-(13.49), but the integrals have to be reevaluated using the quadratic 
displacement model of Eq. (14.30). This gives 

l(e) 

x : O  

• 

dx 

3 )  2 ( 4 x  ' ) ( 8 x )  
) / ( c )  2 

,) 

l~27~ 1 I 

Symmetric 

kA 
3/(~) 

7 
-8  

1 

-8  
16 
-8  

41 

l(e) 2 

1 ) l~) ~ l (~) 

17;i l(e) 2 1 ) 

( 4 x  1 )  2 

(14.37) 
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where A is the cross-sectional area of the element. 

x:o m ( ~ ) N ~ ( ~ )  

hP1 (~) 
30 

4 2 - 1 ]  
2 16 2 

-1  2 4 

N,(x) �9 N~(x) 

.%(z) �9 Nk(x) 

x,(~) �9 x~(~)] 

:\~(x) Nk(x) |  dx 

] 

(14.3s) 

where P is the perimeter of the element. 

[K (~)] = [01 for steady-state problems 

x:o N~(~)  ~:o X~(x )  x:o  X~(~)  

(14.39) 

dx (14.40) 

where dV (r dS~ ~), and dS3 (e) were replaced by ,4 dx, P dx. and P dx, respectively. ~,Vith 
the help of Eqs. (14.32)-(14.34), Eq. (14.40) can be expressed as 

(14.41) 

If convection occurs from the free end of the element, for example, node i. then N~(x = 
o) = 1, N3(x = o) = Nk(x  = o) = 0. and hence the additional surface integral term to be 
added to the matrix [K~ ~)] will be 

f f h[N] T [N] dS3 

S3 (e) 

I x~(~ = o) 

ll~ ~ N~(x = o). Xj  (x = o) h 

~(#) N , ( x  = o) N~(x  = o) 

= hAi 0 
0 

.~-, (~ : o ) .  N~(x  = o) 

N~(x = o) .  Xk (x  = o) 

.~ (z = o) Nk(x = o)J dS3 

u o) k(X-- 

(14.42) 

where A~ is the cross-sectional area of the rod at node i. Similarly. the additional surface 
integral term to be added to p(e) due to convection from the free end (e.g.. node i) will be o,/ {1} 

hZ~c[N] T d S 3 -  hZoc ~ ]V3(x = o) dS3 = h r ~ A ,  0 

sl  ~ sl ~ :v~(~ = o) o 

(14.43) 
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E x a m p l e  14.4  Find the t e m p e r a t u r e  (tistriblltion ill the fin shown in Figure 14.1 using 
quadra t ic  elements.  

S o l u t i o n  \Ve use one element only and neglect convection from the flee end. Thus,  

Eqs. (14.a7). (14.38). and (14 .41 )become  

E i] [gs  _112 [t{.(11) ] __ (~'0)(T/') --S 16 - - -~ - 1 1 2  224 - 1 1 2  
3(5) 1 - 8  14 - 1 1 2  98 

[ ] [ 20 10 
[t(~1)] ( 5 ) ( 2 7 ) ( 5 )  4 2 1 rr 

- 2 16 2 - -  -~ 10 80 10 
3 0  - 1 2 -1 - 5 10 2 0  

/E ~(1) = (5)(~o)(_,~)(.5) {,}  {1000} 
- ~ 4000 

1 1 0 0 0  

The governing equat ions can be expressed as 

_1o2 {lOOO} 
- 1 0 2  304 - 1 0 2  7:,2 = 4000 

9 - 1 0 2  118J Ta 1000 

(El )  

where T1 = T(x  - 0). 7:.,_ - T ( ,  - 2.5). and Ta - T(a ~ - 5.0). By incorpora t ing  tile 

bounda ry  condit ion T1 - 140. Eq. (El)  can be modified as 

[i o { _  } {1 o} 
304 - 102 T, - 4000 + 102T1 - 18280 

- 102 118 T:~ 1000 - 9T1 - 260 

(E~) 

The solution of Eq. (E,,) gives T1 - 140.0 :C.  T.2 - 83.64 ~ and T..~- 70.09 ~ 

1 4 . 6  U N S T E A D Y  S T A T E  P R O B L E M S  

Time-dependen t  or uns teady  s ta te  problems are very common in heat transfer.  For some 
of these t ime-dependent  problems, the t ransient  period occurs between the s ta r t ing  of the 
physical process and tile reaching of the s teady-s ta te  condition. For some problems, the 
s teady-s ta te  condit ion is never obta ined and in these cases the t ransient  period includes 
the entire life of the process. Several finite element procedures  have been suggested for the 
solution of t ransient  heat t ransfer  problems [11.1. 14.2]. \Ve consider tile fn i t e  e lement  
solution of t ime-dependent  heat t ransfer  probh 'ms briefly in this section. Tile governing 
differential equat ion for an uns teady  s ta te  heat t ransfer  problem is given by Eq. (13.11) 
and the associated bounda ry  and initial condit ions are given by Eqs. (13.18)-(13.21).  
In general all the pa ramete r s  /,'x, /,':j. /,':. 0- and pc will be t ime dependent .  The  finite 
element  solution of this problem leads to a set of first-order linear differential equations,  
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Eq. (13.35). It can be seen that  the term [K3] ~_ is the additional term that appears because 
of the unsteady state. The associated element matrix is defined as 

V ( e  ) 

(14.44) 

which is also known as the element capacitance matrix. 

14.6.1 Derivation of Element Capacitance Matrices 
For the straight uniform one-dimensional element considered in Section 14.2. the shape 
function matrix is given by Eq. (14.5). By writing the element volume as dV = A(r 
where A (~) is the cross-sectional area of the element e. Eq. (14.44) can be expressed as 

~ ) { ( 1 - x ) }  x x 

~=o [(~) 

6 (14.45) 

where (pc) (~) is assumed to be a constant for the element e. For the linearly tapered fin 
element considered in Section 14.4, dV = A(x )dx  = [A~ + ((.4} -A , ) / l (~ ) ) x ]  dx and hence 
Eq. (14.44) becomes 

[K~ ~)] - (pc) (~) ff-~ 1 1 ,4j 
1 l(e) l(~) �9 Az + 1-(-~) A~ x dx 

x = 0  

_ (pc) (r  (r [ 1 - 1  
l(~) - 1  1 L 

(14.46) 

where fi,(~) is the average cross-sectional area of the element e. For the straight uniform fin 
considered in Section 14.5 using a quadratic model [defined by Eq. (14.30)], Eq. (14.44) 
becomes 

~(~)[ N, 2 

x=0 LN~N k 

(pc) (~)/t (~) l (~) [ 4 2 

[ 2 16 
30 - 1  2 

N, Nk 1 
N~Nk[ dx 

(14.47) 

E x a m p l e  14.5 Find the t ime-dependent temperature  distribution in a plane wall that  
is insulated on one face and is subjected to a step change in surface temperature  on the 
other face as shown in Figure 14.4. 



498 ONE-DIMENSIONAL PROBLEMS 

T=ro 
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2 2 

Figure 14.4. 

E=2 

Solu t ion  The finite element equations for this one-dimensional transient problem are 
given by (Eq. 13.35)" 

[K3] ~T -+[/t"]~ - 1~ (El) 

where the element matrices, with the assumption of linear temperature variation, are 
given by 

A(~)k(~) 
[K~r i(-~ [_1 - 1  11] 

[K~e)]- [~ 00] since no conx'ectio~ condition is specified 

/3(e) -  {00} since no q,q. and h are specified in the problem 

(E2) 

(E3) 

(E4) 

(Es) 

(i) Solution with one element 

If E = 1, T1 and T2 denote the temperatures of nodes 1 and 2, and Eq. (El) becomes 

1 -1  
-1  1 { T~ 0 

(E~) 

Equation (E6) is to be modified to satisfy tile boundary condition at x - 0. Since T2 is 
the only unknown in the problem, we can delete the first equation of (E6) and set T1 - To 
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and ( d T 1 / d t ) =  0 in Eq. ( E 6 ) t o  obtain  

dT2 _ 3k (7"2 - To) (ET) 
d t  - p c L  2 

By defining 0 - T2 - To, Eq. (E7) can be wri t ten  as 

dO 

dt 
- -  + c~0 = 0 ( E s )  

where a = ( 3 k / p c L 2 ) .  The solution of Eq. (Es) is given by 

O(t) = a l e  - a t  (E9) 

where a l is a constant  whose value can be de te rmined  from the known initial condition, 
T 2 ( t  = O) - To: 

O(t = O) = To - To = a l  . e - ~ ( ~  - al (Elo) 

Thus,  the solution of Eq. (ET) is 

T 2 ( t )  - To + (To - T o ) "  e - (3k /pcL2) t  (Ell) 

(ii) Solution with two elements 
If E = 2, T1, T2, and T3 indicate the t empera tu re s  of nodes 1, 2. and 3 and Eq. (El)  
becomes 

EZI ]41 / / 24k - 1  
/ d t  + p - - ~  1 2 

/ d t  - 1  

~ { 0 } - 1  T2 - 0 

1 T3 0 

(El2) 

As before, we delete the first equat ion from Eq. (E12) and subs t i tu te  the boundary  
condit ion T1 = To [and hence (dT1 ~dr)  - 0] in the remaining two equat ions to obta in  

d T 2  dT3 24k 
4 - -  + - -  + p - - ~  ( - T o  + 2T2 - Ta) - 0 

dT2 

d d T 3  24k ( -T2  + 7'3) = 0 
d--~- + 2 - -  + p - ~  

(E13) 

By defining 02 = T2 - To and 0a - Ta - To, Eqs. (El3) can be expressed as 

4d02 @ t  a 24k (202 - 03) : 0 / 
-d7 + +p-TP 

/ d02 d03 24k 
+ 2-=-  + - - ~ ( - 0 ~  + 0 ~ / =  0 

d---~- ( l g  p C L  ~ 

(E14) 

These equat ions can be solved using the known initial conditions. 
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14.6.2 Finite Difference Solution in Time Domain 
The solution of the unsteady state equations, namely Eqs. (13.35), based on the fourth- 
order Runge-Kut t a  integration procedure was given in Chapter 7. We now present an 
alternative approach using the finite difference scheme for solving these equations. This 
scheme is based on approximating the first-time derivative of T as 

dT 

dt 
~ - T o  

At t 
(14.48) 

where T1 - T ( t  4- (At/2)) .  To - T ( t -  (At/2)) .  and At is a small time step�9 Thus, 

T -  (d~ /d t )  can be replaced by 

d~ 

dt 

1 
- -~ ( :~  - ~ ) (14.49) 

Since ~ is evaluated at the middle point of the time interval At, the quantities T and 

t5 involved in Eq. (13.35) are also to be evaluated at this point. These quantities can be 

approximated as 

- ~(/~ + / ~ )  (14.50) 

and 

/~ - -  ~1(ff1... -+- /~o),,, ( 1 4 . 5 1 )  
t 

where 

(A,) P I - P  t+ V and  P0 - P t -  -if- (14.52) 

By substi tuting Eqs. (14.49)-(14.51)into Eq. (13.35). we obtain 

-, 1 
1 [Ka](T~ - To)4- [K](T~ 4- 70) - P At --- - - ~ . . . .  t 

o r  

( 2 ) (  2 ) 
[K] + ~--~[K3] ~ - - [K]  + ~--~[K3] ~o + (P~ + @) (14.53) 

This equation shows that  the nodal temperatures T at time t 4- At can be computed once 
the nodal temperatures at time t are known since P1 can be computed before solving 
Eq. (14.53). Thus, the known initial conditions (on nodal temperatures) can be used to 
find the solution at subsequent time steps. 
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T O = 140~ 

Too = 40~ h k, pc 

, / ,  _ , , , ,  ' ' "  ' ! 
I I I 

�9 t 1 

~ 1 ' '  2 3 4 5 

L _J , -  �9 5 cm ' 7 

Circular 
( lcm rod) 

Figure 14.5. 

Note 
Equation (14.53) has been derived by evaluating the derivative at the middle point of 
the time interval. The nodal values (i.e., at time t) of 2? can be computed after solving 
Eq. (14.53) using Eq. (14.50). In fact, by using Eq. (14.50), Eq. (14.53) can be rewritten as 

2 [/<~]) [~]+ ~ - (14.54) 

where the nodal temperatures Tit can be directly obtained. 

E x a m p l e  14.6 Derive the recursive relations. Eq. (14.53). for the one-dimensional fin 
shown in Figure 14.5 with the following data: 

k - 70 watt______~s h = 10 w a t t s  T~ = 40 ~ C, To = 140 ~ C, 
cm -~ K ' cm 2_o K 

Joules 
p c -  2 0 ~  A t -  2 minutes 

cm -~ K ' 

S o l u t i o n  We divide the fin into four finite elements (E - 4) so that  the element matrices 
and vectors become 

[1  93 
[K[~)] - ( 1 : ~  - 1  -175.93 

[ K ~ ) ] -  (10)(27r)(1"25)6 [2112]-[39"261963 

[ K ~ ) ] -  (20) (7r) [~ ~] _ [39.2619.63 

-175.931 
175.93 

19.63] 
39.26 

19.63- 
39.26 

/~(~) - /3~) - /32(c)  _t_/~(e) =/3a(~) -- (10)(40)(27r)(1.25)2 {1}=1 {1570.80}1570.80 

The assembled matrices and vectors are 

175.93 -175.93 0 0 0 
-175.93 351.86 -175.93 0 0 

0 -175.93 351.86 -175.93 0 
0 0 -175.93 351.86 -175.93 
0 0 0 -175.93 175.93 

(El) 
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-39.26 
19.63 

[ K 3 ] -  [K2] ~-- 0 

0 
0 

1570.80 
3141.60 

P -  3141.60 
3141.60 
1570.80 

19.63 0 0 0 
78.52 19.63 0 0 
19.63 78.52 19.63 0 
0 19.63 78.52 19.63 
0 0 19.63 39.26J 

Since At = 1/30 hour. we have 

2 [K3] -  [h',] + [K2] + 60[K3] [A] -  [K] + ~-~ . . . .  

I 
2570.79 1021.50 0 0 
1021.50 5141.58 1021.50 0 

= ! 1021.50 5141.58 1021.50 
0 1021.50 5141.58 
0 0 1021.50 

0 

1021.50 
2570.79J 

and 

2 
[ B ] -  -[K] + ~--~ [K3] -  - [ K 1 ] -  [K2] + 60[K3] 

I 
2140.41 1334.10 0 0 
1334.10 4280.82 1334.10 0 

-- ! 1334.10 4280.82 1334.10 
0 1334.10 4280.82 
0 0 1334.10 

0 
0 
0 

1334.10 
2140.41 

Hence, the desired recursive relation is 

(E~.) 

(E3) 

(E4) 

1 0 

where [A], [B], and t5 are given by Eqs. (E4). (Es). and (E3). respectively. 

14.7 HEAT TRANSFER PROBLEMS WITH RADIATION 
The rate of heat flow by radiation (q) is governed by the relation 

q - o - ~ A ( T  4 - T 4 )  (14.55) 

where a is the Stefan-Boltzmann constant, c is the emissivity of the surface, A is the 
surface area of the body through which heat flouts, T is the absolute surface temperature 
of the body, and To~ is the absolute surrounding temperature. Thus, the inclusion of 
the radiation boundary condition makes a heat transfer problem nonlinear due to the 
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nonlinear relation of Eq. (14.55). Hence, an iterative procedure is to be adopted to find 
the finite element solution of the problem. For example, for a one-dimensional problem, 
the governing differential equation is 

i) 2 T cTT 
k-0-~x 2 + 0 -  Pc-0}- (14.56) 

If heat flux is specified on the surface of the rod and if both convection and radiation losses 
take place from the surface, the boundary conditions of the problem can be expressed as 

T(x  = O, t) = To (14.57) 

and 

k--~xxl. + h ( T -  Tor + q + <rc(T 4 - T~)  - 0 

on the surface 
(14.58) 

The initial conditions can be specified as 

T(x,  t = O) = To (14.59) 

For convenience, we define a radiation heat transfer coefficient (h,.) as 

h,. = oe(T 2 + T2)(T + T~)  (14.60) 

so that  Eq. (14.58) can be expressed as 

k ~ I .  + h ( T -  T~)  + q + h r ( T -  T~:) = 0 

on the surface 
(14.61) 

The inclusion of the convection term h ( T -  T~)  in the finite element analysis resulted in 
the matr ix  (Eqs. 13.31) 

= ff d& 
S ( e )  

(14.62) 

and the vector (Eq. 13.33) 

/Sa(~) = I I  hT~[N]T dS3 

S (  e ) 

(14.63) 

Assuming, for the time being, that  h~ is independent of the tempera ture  T. and proceeding 
as in the case of the term h ( T -  To,:), we obtain the additional matrix 

Si e ) 

(14.64) 
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and the additional vector 

fi(4~) - l ;  h~T~[N]r dS4 

S(4 ~ ) 

(14.65) 

to be assembled in generating the matrix [K] and the vec to r /3  respectively. In Eqs. (14.64) 

and (14.65), S~ ~) denotes the surface of the element e from which radiation loss takes 
place. Since h~ was assumed to be a constant in deriving Eqs. (14.64) and (14.65), its 
value needs to be changed subsequently. Since the correct solution (~) cannot be found 
unless the correct value of h~ is used in Eqs. (14.64) and (14.65). the following iterative 
procedure can be adopted: 

1. Set the iteration number as n -- 1 and assume h}. e) = 0. 
2. Generate [K4 (e)] and fiJ~) using Eqs. (14.64) and (14.65) using the latest values 

of h (~) . 
3. Assemble the element matrices and vectors to obtain the overall equation (13.35) 

with [K]~ - E~=I [[K(1 ~ ) ] _  + [K~ ~)] + [K4(~)]] and /5 = EEe=l [p~e) _ p~e) _~_ P3(e) _jr_ P4(e)]. 

4. Solve Eqs. (13.35) and find T. 

5. From the known nodal temperatures T. find the new value of h(~ ~) using Eq. (14.60) 
[the average of the two nodal temperatures of the element, (T, + Ta)/2, can be used 

as Ta(~ ) in place of T]" 

= ,. + T~)(T~; ) + T~)  (14.66) 

If n > 1, test for the convergence of the method. If 

[h'c']T lr 
r~ 

h e) 
F 

n - - 1  

n - 1 

and 

(51 (14.67) 

(14.68) 

where ($1 and ($2 are specified small numbers, the method is assumed to have converged. 
Hence, stop the method by taking 5P . . . . . .  t = (T)~. On the other hand. if either of the 
inequalities of Eqs. (14.67) and (14.68) is not satisfied, set the new iteration number as 
n - n + 1 ,  and go to step 2. 

E x a m p l e  14.7 Find tile steady-state temperature  distribution in the one-dimensional 
fin shown in Figure 14.1 bv considering both convection and radiation losses from its 
perimeter surface. Assume ~ - 0.1 and ~ - 5.7 • 10 -8 \V/cm2-K 4. 
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So lu t i on  For linear temperature variation inside the element, the matrix [K4 (~)] and the 
vector/34(~) can be obtained as 

~(~) h, .T~ Pl C~ 
" 4  2 

{11} 
�9 [/x 2 ]. and can be By using one-element idealization (E - 1) the matrices IN 1 

derived as 

[/~1)]_ (71")(70) 
(5) 

1 - 1  

- 1  1 

[ 14 _1~] 
--rr -14  1 

[/~s (5)(27I")(5)6 [21 
= rr .33 16.67 

/3a(1) __ (5)(40)(2rr)(5)2 {1}1 -- rr { 1000}1000 

Iteration 1" 

By using h(~l)= 0, the matrices [tt'4 (1}] and P41) can be obtained as [1s 1}] - [00 

/64(1) - { 0}0 " The overall equation (13.35) becomes 

0) and 

30.67 
-5 .67 

5 ] {T1} {100()} - .67 

3 0 . 6 7  T2 1000 
(El) 

After incorporating the boundary condition T1 - 140. Eq. (El) becomes 

[10 300.67] {T1 T1 140.0 ~}-  {,000 + ~ ~1}-  { ,~ S} (E , )  

from which the solution can be obtained as 

--, {Zl} { 1~0.00} 
T -  ~ - 5s.~8 

The average temperature of the nodes of tile element can be compllted as 

T(}~) = T1 + 7"_, = 99.24 ~ 
2 

Thus, the values of T~, ) and T~ to be used ill tlle computation of h(,) ) are 372.24 and 
313 ~ respectively. The solution of Eq. (14.66) gives the value of 

hl) / - (5.7 x 10-8)(0.1)(372.242 + 313"),(372.24 + 313) - 0.9234 
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Iteration 2: 

By using the current value of h(r 1), we can derive 

[K4(1)]- (0"9234)(2rr)(5)[216 12] -- rr [31"078.539 3.07811"539] 

/~4(1)- (0"9234)(40)(2rr)(5)-- 2 {1}1 -- rr {184.68}184 68 

Thus. the overall equation (13.35) can be written as 

33.745 
-4.128 

-4"128l { T 1 } _ { 1 1 8 4 " 6 8  } 
33.745J T2 118468 

(E4) 

The application of the boundary' condition (7"1 = 140) leads to 

0 { 1 ooo 
1762.60} 

Equation (Es) gives the solution 

T -  T.~ = 52.25 
(E6) 

Thus, Ta (1)~, -96 .125  ~ - 369.125~ and the new value of h (1),. can be obtained as 

1-/(7.1) - -  ( 5 . 7  X 10-8)(0.1)(369.125 z + 3132)(369.125 + 313) 

= 0.9103 

Iteration 3: 
With the present value of h (1)r . we can obtain 

[K4(1)] = (0.9103)(2rr)(5)6 [21 :] - 7 r  .517 3.034J 

and 

(0.9103)(40)(2rr)(5) {1} { 1 8 2 . 0 6 } _ 9  1 - r r  182.06 

Thus. the overall equations (13.35) can be expressed as 

33.701 
-4.150 {} { -4.150] T1 1182 

33.701 J 7:.:  1182.06 
(E~)  



COMPUTER PROGRAM FOR PROBLEMS WITH RADIATION 507 

After incorpora t ing  the known condit ion.  T1 = 140. Eq. (ET) gives 

} - (1 ;o3oo } (E~) 

from which the  solut ion can be obta ined as 

~ { T I }  {140 .00}  
T =  T2 - 5231 

(Eg) 

This  solut ion gives Ta(1, ) - (T1 + T2)/2 = 96.155~ - 369.155~ and h(~ ') - (5.7 x 
10-s)(0.1)(369.1552 + 3132)(369.155 + 313) = 0.9104. 

Since the difference between this value of h(~ 1) and the previous value is very small. 
we assume convergence and hence the  solut ion of Eq. (E9) can be taken as the correct 
solut ion of the problem. 

14.8 COMPUTER PROGRAM FOR PROBLEMS WITH RADIATION 
A subrout ine  called R A D I A T  is given for the solution of tile one-dimensional  (fin-type) 
heat  t ransfer  problem, including the effect of convection and radia t ion losses. The  argu- 
ments  NN, NE, NB, IEND, CC, H. TINF,  QD. NODE.  P. P L O A D ,  XC, A. GK. EL, PERI .  
and TS have the same meaning  as in the case of the  subrout ine  HEAT1.  The  remaining  
a rguments  have the following meaning:  

EPSIL  = emissivity of the surface ( input) .  
EPS = a small  number  of the order  of 10 -G for tes t ing the convergence of the me thod  

( input) .  
SIG = S t e f a n - B o l t z m a n n  constant  = 5.7 x 10 - s  W / m 2 - K  4 (input) .  
HR = array of dimension NE. 
HRN = array of dimension NE. 
I T E R  = number  of i terat ions used for obta ining the convergence of the solut ion (output ) .  

To i l lustrate  the use of the  subrout ine  RADIAT.  the problem of Example  14.7 is considered. 
The  main  program and the ou tpu t  of the p rogram are given below: 

C .......................... 

c 

c ONE-DIMENSIONAL HEAT RADIATION 

C 

C ............... 

DIMENSION NODE(I,2),P(2),PLOAD(2, I),XC(2),A(1),GK(2,2),EL(I), 

2 PERI(1),TS(2) ,HR(1) ,HEN(1) 

DATA NN,NE,NB,IEND,CC,H,TINF,QD,Q/2,1,2,0,70.O,5.O,40.O,O.O,O.O/ 
DATA EPSIL,EPS,SIG/O.I,O.OOOI,5.7E-08/ 
DATA NODE/I,2/ 

DATA XC/O.O,5.0/ 
DATA A/3.1416/ 

DATA PEEI/6.2832/ 

DATA TS/140.O,O.O/ 
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10 

20 
30 

CALL RADIAT(NN,NE,NB,IEND,CC,H,TINF,QD,Q,NODE,P,PLOAD,XC,A,GK,EL, 
2 PERI,TS,EPSIL,EPS,SIG,HR,HRN,ITER) 

PRINT I0 

FORMAT (//,30H CONVERGED NODAL TEMPERATURES,/) 

DO 20 I=I,NN 

PRINT 30, I,PLOAD(I,I) 

FORMAT (2X,I6,2X,EIS.8) 

STOP 

END 

ITERATION PLOAD(I, i) PLOAD(2, i) 

1 O. 14000000E+03 0.58478268E+02 

2 0,14000000E+03 0. 52229244E+02 
3 0. 14000000E+03 0. 52310612E+02 
4 0. 14000000E+03 0.52309559E+02 

CONVERGED NODAL TEMPERATURES 

1 0. I4000000E+03 
2 0.52309559E+02 

REFERENCES 
14.1 L.G. Tham and Y.K. Cheung: Numerical solution of heat conduction problems 

by parabolic t ime-space element. Mternational ,]ourr~al for Numerical Methods in 
Engineering. 18, 467 474, 1982. 

14.2 J.R. Yu and T.R. Hsll" Anah-sis of heat condlmtion in solids by space-t ime finite 
element method, h~ternational ,]ourT~(zl fol" Numerical Methods in Engineering. 21, 
2001-2012, 1985. 
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PROBLEMS 

14.1 A composite wall, made up of two materials,  is shown in Figure 14.6. The tem- 
pera ture  on the left side of the wall is specified as 80 ~ while convection takes 
place on the right side of the wall. Find the t empera ture  distr ibution in the wall 
using two linear elements. 

14.2 A fin, of size 1 x 10 x 50 in., extends from a wall as shown in Figure 14.7. 
If the wall t empera ture  is maintained at 500 ~ and the ambient t empera tu re  
is 70~ determine the t empera ture  distr ibution in the fin using three one- 
dimensional elements in the x direction. Assume k = 40 B T U / h r - f t - ~  and 
h = 120 B T U / h r - f t 2 - ~  

14.3 Determine the amount  of heat transferred from the fin considered in 
Problem 14.2. 

14.4 One side of a brick wall, of width 5 m, height 4 m, and thickness 0.5 m is exposed 
to a t empera tu re  of - 3 0  ~ while the other side is maintained at 30 ~ If the 
thermal  conductivity (k) is 0.75 W / m - ~  and the heat transfer coefficient on the 
colder side of the wall (h) is 5 W / m 2 - ~  determine the following: 

(a) Tempera ture  distr ibution in the wall using two one-dimensional elements 
in the thickness. 

(b) Heat loss from the wall. 

Element 2 

Element 1 ~ ,  

0.75' - v l - "  ' 

Figure 14.6. 

To<, -- 500~ 

h - 100 B T U / h r -  ft 2 -  ~ 

k 1 = 1.5 B T U / h r -  f t -  ~ 

k 2 = 120 BTU/hr  - ft - ~ 
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Wall, 
To = 500~, 

�9 ~ 

Fin 

50" T = 70~ 

1 O "  

Figure 14.7. 

14.5 Figure 14.8 shows a uniform a luminum fin of diameter  2 cm. The root (left 
end) of the fin is maintained at a t empera tu re  of To = 100 ~ while convection 
takes place from the lateral (circular) surface and the right (flat) edge of the fin. 
Assuming k = 200 W / m - ~  h = 1000 W / m 2 - ~  and T~ = 20~ determine 
the t empera tu re  distr ibution in the fin using a two-element idealization. 

h, T= 2 cm dia. 

t t t 
To ~ _ - . . . .  ~--IP- x 

�9 # 

h , r  

I - "  10 cm J , ,, . . . .  - -  . . . . . . .  

F "1 

Figure 14.8. 
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h,T~ 

T .... t t I 1 ....  h,n 
. . . . . . . .  - -11- o , . ~ .  - - - I p  X 

/ / ' - /  _ 
h ,T  

F ' ' 10" -' - 

Figure 1 4 . 9 .  

14.6 

14.7 

14.8 

14.9 

14.10 

14.11 

14.12 

Solve Problem 14.5 by neglecting heat convection from the r ight-hand edge of 
the fin. 

Solve Problem 14.5 by assuming the fin diameter  to be varying linearly from 4 cm 
at the root to 1 cm at the right end. 

A uniform steel fin of length 10 in.. with a rectangular  cross section 2 x 1 in., 
is shown in Figure 14.9. If heat transfer takes place by convection from all the 
surfaces while the left side (root) of the fin is maintained at To = 500 ~ deter- 
mine the t empera ture  distribution in the fin. Assume that  k = 9 B T U / h r - f t - ~  
h = 2500 B T U / h r - f t 2 - ~  and T~ = 50~ Use two finite elements. 

Solve Problem 14.8 using three finite elements. 

Derive the finite element equations corresponding to Eqs. (14.56)-(14.59) without  
assuming the radiation heat transfer coefficient (h~) to be a constant.  

A wall consists of 4-cm-thick wood, 10-cm-thick glass fiber insulation, and 1- 
cm-thick plaster. If the tempera tures  on the wood and plaster faces are 20 ~ 
and - 2 0 ~  respectively, determine the t empera tu re  distr ibution in the wall. 
Assume thermal  conductivities of wood, glass fiber, and plaster as 0.17, 0.035, 
and 0.5 W / m - ~  respectively, and the heat transfer coefficient on the colder 
side of the wail as 25 W / m 2 - ~  

The radial t empera ture  distr ibution in an annular fin (Figure 14.10) is governed 
by the equation 

d 
d--r k t r  - 2 h r ( T -  T ~ )  - O 

with boundary  conditions 

T ( r i )  = To ( tempera ture  specified) 

dT  
d-7 (ro) = 0 (insulated) 

Derive the finite element equations corresponding to this problem. 
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h,T~ h , ~  

t 

- -  " - ~ , .  I ~ . ~  R o o t  of fin 

I 
I I 
I ro I 

h, To. h,T.  

Figure 14.10. 

Annular fin 

14.13 Derive the element matrix [K/~)] and the vector /5(~) for a one-dimensional 
element for which the thermal conductivity k varies linearly between the two 
nodes. 

14.14 Using the finite element method, find the tip temperature  and the heat loss from 
the tapered fin shown in Figure 14.11. Assume that  (i) the temperature  is uniform 

Y 

z 

BTU 
h=  10 hr_-ff-%-.o F o 

/----"- ,i "7  rTUo  
L = 2 "  

x , ~ - - . - - - .  t = 0.125" 

To = 200 o F 

" / '=  70OF 

Figure 14.11. 
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14.15 

14.16 

14.17 

14.18 

14.19 

14.20 

in the y direction, (ii) the heat transfer from the fin edges (one is shown hatched) 
is negligible, and (iii) there is no t empera tu re  variation in the z direction. 

A plane wall of thickness 15 cm has an initial t empera tu re  distr ibution given by 
T ( x , t  = O) = 500sin(rrx /L) ,  where x = 0 and x = L denote the two faces of 
the wall. The t empera tu re  of each face is kept at zero and the wall is allowed 
to approach thermal  equilibrium as t ime increases. Find the t ime variation of 
t empera tu re  distr ibution in the wall for ct = (k /pc)  = 10 cm2/hr  using the finite 
element method.  

Derive the matr ix  [K4 (e)] corresponding to radiat ion heat transfer for a tapered 
one-dimensional element.  

Derive the matr ix  [K4 (~)] corresponding to radiat ion heat transfer for a one- 
dimensional element using quadrat ic  t empera tu re  variation within the element.  

Find the s teady-s ta te  t empera tu re  distr ibution in the tapered fin shown in 
Figure 14.2 by considering both convection and radiation from its per imeter  
surface. Take ~ = 0.1 and cr = 5.7 x 10 -s  W / m 2 - ~  4. 

Modify the subrout ine RADIAT so that  it can be used to find the s teady-s ta te  
t empera tu re  distr ibution in a one-dimensional tapered fin with convection and 
radiat ion losses. 

Write a subrout ine UNSTDY to find the unsteady t empera tu re  distr ibution in a 
one-dimensional fin using a linear t empera tu re  model. 
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TWO-DIMENSIONAL PROBLEMS 

15.1 INTRODUCTION 
For a two-dimensional steady-state problem, the governing differential equation is 
(Figure 15.1(a)) 

o(o ) 0(0 ) 
Ox kx ~x + --~y ky -~y + 0 = 0  (15.1) 

and the boundary conditions are 

T = To(x ,  y) on $1 

OT OT 
kX~-x-xl~ + ky~yly + q = 0 on $2 

OT 1 OT kx-x- ~ + ky--a--ly + h ( T -  r~)  - 0 on $3 
c l x  ay 

(15.2) 

(~5.3) 

(15.4) 

where kx and kv are thermal conductivities in the principal (x and y) directions, 0 is the 
strength of heat source, q is the magnitude of boundary heat flux. h ( T -  T~) is the surface 
heat flow due to convection, and l~ and l, are the direction cosines of the outward normal 
to the surface. 

15.2 SOLUTION 
The problem stated in Eqs. (15.1)-(15.4) is equivalent to finding T(x. y), which minimizes 
the functional 

1 kx 
: = -~ -~x 

A 

( O T )  2 ] 1 L + ky -~y -2( tT  dA + -2 2 qTdS2 

+ f h (T 2 - 2TTo: ) dSa 

$3 

(15.5) 

and satisfies Eq. (15.2). The finite element solution of this problem can be obtained as 
follows. 

514 
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= X  

S 1 = boundary on which temperature is specified 

S 2 = heat flux specified 

S 3 = convection takes place 

(a) Region of interest 

, l ( x i ,  yi )  
local n o ~ ~  3 
number k,,---global node number 

(xk, Yk) 

2 
j(xj, yj) 

(b) Idealization 

k 

edge lying on boundary S 3 

(c) 

F igure 15.1. Two-Dimensional  Problem. 

Step  1: 

S tep  2: 

Idealize the solution region with triangular elements as shown in Figure 15.1(b). 

Assuming a linear variation of temperature T (~) inside the finite element "e," 

T (~) (x, y) = ~ + ~ x  + ~ y  = [N(x,  y)]~'(~) (15.6) 

where 

[ N ( x , y ) ] -  N j ( x , y )  - (.~ + x b j  + y ~ ) / 2 A (  ) 
Nk(x,y) (ak + xbk + yck)/2A (~) 

q'(e)= q2 = Tj 
q3 Tk 

(15.7) 

(15.8) 

and A (e) is the area and T~, Tj, and Tk are the nodal temperatures of element e. The 
expressions for ai, b~, c~, and A (~) are given by Eqs. (3.32) and (3.31), respectively. 
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Step  3" Derivation of element matrices: 

Once the matrix [N(x, y)] is defined, Eq. (15.7), the matrix [B] of Eq. (13.54) can be 
computed as 

[B]  = 

ON, ONj ONk 
Ox Ox Ox 1 [b~ 

ON~ ONj ONk -- 2A(~) [c~ 

Oy Oy Oy 

cjbj ckbk] (15.9) 

Using 

01 (15.10) 

Equation (13.46) gives 

[K~ ~)] = 4A(~): bj 
v(~) bk 

c lI oX olI  br bk 
cj ck �9 d r  (15.11) 

Assuming a unit thickness, the elemental volume can be expressed as d l/ = dA. Thus, 
Eq. (15.11) becomes 

] [ 2  ] [ b~ bib: b, bk ky c~ cicj cick 
[K~o)]_ k~ /b~b, bF bjbk + c ic j  2 

4A(~) Lb~bk bjbk b~ 4A(~) c, ck cjCJck c;Ckc~ 
(15.12) 

For an isotropic material with kx = ky = k, Eq. (15.12) reduces to 

[2  ] k ( b2i + c~ ) (bi bj + c~ cj ) (bi bk + ci ck ) 
- (b~ + d) (bjb~ + cjc~) 

[K~)] 4A(~) Symmetric (b~r + c~) 
(15.13) 

To determine the matrix [K2(e)]. integration over the surface Sa (r is to be performed: 

[n~ ~)] - h I f  |N,N~ 
NiNj N~Nk] 

N~ NjNk dSa 
]VjNk X~ 

(15.14) 

Thus, the surface $3 (~) experiencing convection phenomenon must be known for evaluating 
the integrals of Eq. (15.14). Let the edge ij of element e lie on the boundary $3 as shown 
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in Figure 15.1(c) so tha t  Nk = 0 along this edge. Then Eq. (15.14) becomes 

~)~-~~(~ [~o ~ ~:0 ~ (15.15) 

Note tha t  if the edge ik (or jk) is subjected to convection instead of the edge ij, N 3 = 0 
(or N~ = 0) in Eq. (15.14). To evaluate the integrals of Eq. (15.15)conveniently, we can use 
the t r iangular  or area coordinates introduced in Section 3.9.2. Because the t empera ture  is 
assumed to vary linearly inside the element, we have N~ = L1, N 3 = L2, Nk = L3. Along 
the edge ij, Nk = La = 0 and hence Eq. (15.15) becomes 

r L1L2 01 hs;s /[L 2 ds (15.16) 

where s denotes the direction along the edge ij, and dS3 was replaced by t .  ds = ds since 
a unit thickness has been assumed for the element e. The integrals of Eq. (15.16) can be 
evaluated using Eq. (3.77) to find 

EZI I 
- 2 (15.17) 

The integrals involved in Eq. (13.49) can be evaluated using tr iangular  coordinates as 
follows: 

{} g~) - / / / q [ N ] T d V  -- ( to . f /  L2 dA - (l~ ll 
v(~) A(~) L3 3 1 

(15.18) 

The integral in 

~(e) = I I  q[N]T dS2 

S (e) 

(15.19) 

depends on the edge tha t  lies on the heat flux boundary  $2. If the edge ij lies on 
$2, Nk = L3 = 0 and dS2 = t d s  = ds as in Eq. (15.16) and hence 

s~ L 1 qsj~ 1 
P~) = q d ~ = - V  0 

S---Si 

(15.20) 
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Similarly, the vector/~(~) can be obtained as 

fi(~) = f l hT~[N]r dS3 

S(a e) 

hT~s3, {i} 
1 if the edge ij lies on $3 
0 

(15.21) 

Note that if the heat flux (q) or the convection heat transfer (h) occurs from two sides of 
the element e, then the surface integral becomes a sum of the integral for each side. 

S t e p  4: The assembled equations (13.35) can be expressed as 

[K] ~ - ~ (15.22) 

where 

E 

[K] = ~ ([K~ ~)] + [K2(~)]) (15.23) 
e-=l 

and 

E 

f i -~-~( f i~) - f i~)  + fi(~)) (15.24) 
e--1 

S t e p  5: The overall equations (15.22) are to be solved, after incorporating the boundary 
conditions, to obtain the values of nodal temperatures. 

E x a m p l e  15.1 Compute the element matrices and vectors for the element shown in 
Figure 15.2 when the edges j k and ki experience convection heat loss. 

(8,~o)(~ 

h = 10 cmW---aa~2.SK 
= 40oc 

Oo: so W/cm~ Q (12,81 
(4,6)Q 2 / ' )  / ) ) ) ) ) 

" "  X watts 
h= ~ s c-E~.o K 
7"= = 40~ 

Figure 15.2. 
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Solution From the data given in Figure 15.2, 
quantities as 

we can compute the required 

b~ = ( y j  - y k )  = ( lO  - 8) = 2 

bj = ( y k - y i ) = ( 8 - 6 ) = 2  

bk = (y i  -- y j )  = ( 6 - - 1 0 )  = - -4  

c~ = x k  -- x j  = 1 2 - - 8 = 4  

cj  = x ~ - - x k = 4 - - 1 2 = - - 8  

ck = x j  -- x~ = 8 -- 4 = 4 

1 1 A (~) ~1[(-4)(2)- (-4)(-4)] I = 51(-8-  16)1- 12 

Sky = s }  - s3 - length of edge j k  - [(xk - x j )  ~ + ( yk  - y j ) ~ ] l / 2  _ 4.47 

sik = s~- sk - length of edge k i  - [(x~ - x k )  2 + (y~ - yk)2]  1/2 - 8.25 

Substitution of these values in Eqs. (15.13) and (15.17)-(15.21) gives 

6o [,4 16, ,4 32,,8 16,1 E25 35 5olO] 
(4 + 64) ( - 8 -  32)/ -35 85 

[K~)] : 4 x 12 Symmetric (16 + 16)J 10 -50 40 

[K~)]=h~[i 0 6  0 
0 

= (15)(8"25) [ i 6  

[410"2500 
= 14.900 

120.625 7.450 

i ]  + hkjskj6 [i 0 i ] 21  

000 i] + (10)(4.47)6 [i 

20.6251 
7.450| 

~6.15oj 

1 2 
1 

= 0oA  {1}3 11 =,5o,,12,{1}{2oo}3 11 2oo2OO 
fi(e) - 0 since no boundary heat flux is specified {} {1} 

0 ( h T ,  c ) i k s i k  p(e)= ( h T ~ ) k j s k j  1 + 0 

2 1 2 1 

= (10)(40)(4"47) { 0 } 2  11 + 
{1}{2475} 

(15)(40)(8.25) 0 = 894 
2 1 3369 
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L / . . .  , . i - - i  _ - -  , t ,~ T= "/'= 
/ 

/ 

/ 

/ 

/ qo T= T= ' ' ~  
aT 

J 

/ 
/ 
/ 
/ 

0 [ z  I ~ ' 2 ' I I I I I ' I I / ' r r ' I I 2 1 ~  - X 

\ ~7=0 L 
0y 

(a) A square region with uniform energy 
generation 

| 

| 

| | 
" 3 ~  3~ 

| 

| | | 

(b) Finite element idealization 

Figure 15.3. 

E x a m p l e  15.2 Find the t empera ture  distr ibution in a square region with uniform 
energy generation as shown in Figure 15.3(a). Assume tha t  there is no tempera ture  
variation in the z direction. Take k = 30 W/cm-~  L = 10 cm, T~ = 50~ and 
O = q o = 1 0 0 W / c m  3. 

S o l u t i o n  

S t e p  1: Divide the solution region into eight t r iangular  elements as shown in 
Figure 15.3(b). Label the local corner numbers of the elements counterclockwise s tar t ing 
from the lower left corner (only for convenience). The information needed for subsequent 
calculations is given below: 

Node 
number (i) 

Coordinates 
of node i 

( X i ,  y i )  

1 2 3 4 5 6 7 8 9 

L /00/ (10) L L L 

Element number (e) 

Global node numbers i, j ,  
and k corresponding to local 
nodes 1, 2, and 3 

1 2 3 4 5 6 7 8 

1 4 2 5 4 7 5 8 
2 2 3 3 5 5 6 6 
4 5 5 6 7 8 8 9 
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S tep  2: Computation of [N(x, y)] of Eq. (15.7) for various elements: 

The information needed for the computation of [N(x. y)] is given below (a,, %, and 
ak are not computed because they are not needed in the computations): 

S tep  3: Derivation of element matrices and vectors: 

(a) [K[ ~)] matrices (Eq. 15.13)" 

2k 
[K}I ) ] -  V 

L2 + L2 L 2 L 2 (~ ~)(_~+o)(o_~) 
L2 + O) (0 + O) 

Symmetric ( 0 + - ~ )  

T1 T2 T4 

= -  1 1 T2 
2 1 0 9",4 

2k 

(~:+o) 

Symmetric 

(o+o) 

L 2 (o +_~) 

T4 T2 T5 

- - 1  Ts 

2k [K[ 3)] -- 

F Y L 2 L2 "~ 

t~ +-x-) 

Symmetric 

T2 

k [_2 
- 1 

2 1 

-1 
1 

0 

T5 

0 
1 

L2 + 0 )  (--~ 
L2 + 0 )  

T2 
T3 
T~ 

L2 o) 

(i -~ + 
L 2 --~) 

L 2 L 2 

0 -  L2 

(o+o) 

L 2 
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2k [K~ 4)] -- ~-~ 

(L2 ) -~-+o (o+o) 

Symmetric 

0 + L2 

2k 

% Ta T6 

= ~  0 1 T3 
-1 -1 7"6 

- L2 L2 L2 0 )  

/ 
L2 + 0) 

Symmetric 

T4 % 
k [ 2  -1 

= -  1 1 
2 1 0 

- (-~L2 + 0 )  

2k [K~ 6)] -- ~-~ 

T7 

-i] T7 

(o+o) 

0 + L2 

Symmetric 

T7 

I x k 0 

2 - I  

% 
0 

1 

- I  

Ts 

- T5 
Ts 

L L 2 ) 

2k 

Symmetric 

75 76 T8 

L 2 (_~+o) 
L2 0) 

k [_2 -1 
- 1 1 
2 1 0 

o T6 

1 Ts 

L2 o) ( - ~ +  

0 -  L2 -~) 
~ + ~  

0 -  L2 

(o+o) 

L 2 

-L2 0) 

((o -~+ _ L 2 

L 2 L 2 

0 -  L2 ~_)" 
(o+o) 

L 2 (o+~) 
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Symmetric 

T8 T6 T9 

[ 1  0 - l l T s  
_-k_ 0 1 - 1  T6 

2 - 1  - 1  2 T9 

(0+0) 

L 2 

_ L  2 

L 2 

(b) [K~ ~)] matrices (Eq. 15.17)and /3a(~) vectors (Eq. 15.21)" 
Because no convective boundary condition is specified in the problem, 
we have 

{0} 
IK~)I  - o , ~ ' -  o 

0 0 
for e -  1.2 . . . .  ,8 

(c) /3~)vec tors  (Eq. 15.18): 
Since A (e) is the same for e -  1-8, we obtain 

qoL2 {1} 
- - -  1 . 

24 1 
e = 1.2 . . . . .  8 

(d) /~(~)vectors (Eq. 15.20)" 
Since no boundary heat flux is specified in the problem, we have 

{o} 
/3(e) _ 0 , 

0 
e =  1 , 2 , . . . , 8  

S t e p  4: The element matrices and vectors derived in Step 3 are assembled to obtain the 
overall system matrices and vectors as follows: 

8 

e = l  
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T1 
2 

- 1  

1 
k 

2 

T2 
- 1  

1 + 1 + 2  

1 

-0  + 0 

1 1 

2 
\ 

- 1  

1 

1 + 1  

0 + 0  

- 1  0 - 1  

4 - 1  
\ 

- 1  2 

- 1  0 0 

0 
\ 

4 

- 2  0 - 2  

- 1  0 

- 1  

T4 
- 1  

0 + 0  

1 + 1 + 2  

1 1 

T5 TG 

1 1 

0 + 0  1 
., 

1 1 
_, 

2 + 1 + 1  1 1 
+ 1 + 1 + 2  

1 1 2 + 1 + 1  

1 0 + 0  

1 1 0 + 0  

- 1  

O 

- 2  

0 - 1  

- 2  0 
\ 

8 - 2  
\ 

- 2  4 

- 1  

0 
\ 

2 

0 - 2  

- 2  0 - 1  

- 1  
\ 

4 

0 - 1  

- 1  0 - 1  

- 1  
\ 

2 

1 

0 + 0  

1 + 1  

1 

Ts 

1 

1 1 

0 + 0  

1 

+ 2 + 1 + 1  

- 1  

% 
T~ 

T4 

1 T6 

Tr 

1 Ts 

2 G  

(El) 

s L2 
P --- F 1  - -  E p }  e) - -  4~ 
~ ~ 24 

e = l  

1 
1 + 1 + 1  

1 + 1  
1 + 1 + 1  

1 + 1 + 1 + 1 + 1 + 1  
1 + 1 + 1  

1 + 1  
1 + 1 + 1  

1 

T~ 
T2 
Ya 
T4 
T s -  
T6 
Tr 
Ts 
T9 

@ L  2 

24 

1 

3 
2 
3 
6 
3 
2 
3 
1 

(E,~) 

Thus, the overall system equations are given by Eq. (15.22). where [K] and fi are given 
by Eqs. (El) and (E2), and 

T -  {T1 T2... rg} r (Ea) 

S t e p  5: The boundary conditions to be incorporated are T3 - T6 -- T7 - Ts - T9 - T ~ .  

The following procedure can be adopted to incorporate these boundary conditions in 
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Eq. (15.22) without destroying the symmetry  of the matrix. To incorporate the condition 
Ta = T~,  for example, transfer all the off-diagonal elements of the third column (that get 
multiplied by Ta) to the right-hand side of the equation. These elements are then set equal 
to zero on the left-hand side. Then, in the third row of [h*], the off-diagonal elements are set 
equal to zero and the diagonal element is set equal to one. Replace the third component of 
the new right-hand side by T~ (value of 7"3). Thus, after the incorporation of the boundary 
condition Ta = T~:, Eq. (15.22) will appear as follows: 

2 - 1  0 - 1  0 0 0 0 0- 
- 1  4 0 0 - 2  0 0 0 0 

0 0 1 0 0 0 0 0 0 
- 1  0 0 4 - 2  0 - 1  0 0 

0 - 2  0 - 2  8 - 2  0 - 2  0 
0 0 0 0 - 2  4 0 0 - 1  
0 0 0 - 1  0 0 2 - 1  0 
0 0 0 0 - 2  0 - 1  4 - 1  
0 0 0 0 0 - 1  0 - 1  2 

(loL 2 

12k 

1 0 
3 - 1  

0 - 1  

3 0 

6 - T ~  0 

3 - 1  

2 0 

3 0 

1 0 

Zl 
T2 

T4 
T~ 
TG 

Tr 
Ts 
% 

(E4) 

It can be observed that  the third equation of (E4) is now decoupled from the remaining 
equations and has the desired solution Ta = T~ as specified by the boundary condition. 
After incorporating the remaining boundary conditions, namely 7'6 = Tr = Ts = T9 = To~, 

the final equations will appear as follows: 

2 - 1  0 - 1  0 0 0 0 0 
- 1  4 0 0 - 2  0 0 0 0 

0 0 1 0 0 0 0 0 0 
- 1  0 0 4 - 2  0 0 0 0 

0 - 2  0 - 2  8 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

Ta 

T4 

Ts 

(toL 2 

12k 

1 0 
3 1 
D 1 
3 1 
5 + T.r 4 
D 1 
D 1 
D 1 
D 1 

(Es) 

The solution of Eq. (Es) gives the following result" 

T 1 -  133,3~ T2 = 119.4~ Ta = 5 0 . 0 ~  7"4 = 119.4~ 
T6 - 50.0 ~ T7 = 50.0 ~ Ys = 50.0~ T9 - 50.0 ~ 

T5 = 105.6 ~ 
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15.3 COMPUTER PROGRAM 
A subrout ine  called HEAT2 is given for the solution of two-dimensional  heat transfer 

problems. The arguments  of this subrout ine  are given below: 

NN - number  of nodes (input).  

NE - number  of t r iangular  elements (input).  
NB = semibandwid th  of the overall mat r ix  (input).  
NODE - array of size NE x 3" NODE (I.J) - global node number  corresponding to the 

J t h  corner of element I (input).  
XC, YC = array of size NN, XC(I),  YC(I)  - z and y coordinates  of node I (input).  

CC = thermal  conduct iv i ty  of the material ,  k (input).  
QD = array of size NE; QD (I) = value of q for element I (input).  

GK = array of size NN x NB used to store the matr ix  [K]. 
P = array of size NN used to store the vec tor /5 .  

A = array of size NE" A(I) - area of element I . 
ICON = array of size NE: ICON - 1 if element I lies on convection boundary  and - 0 

otherwise (input).  
NCON = array of size N E x 2 ;  NCON (I,J) - J t h  node of element I tha t  lies on convection 

bounda ry  (input).  Need not be given if ICON (I) - 0  for all I. 
Q = array of size NE: Q(I) - magni tude  of heat flux for element I (input).  
TS = array of size NN; TS(I)  - specified t empera tu re  for node I (input).  If the 

t empera tu re  of node I is not specified, then the value of TS (I) is to be set 

equal to 0.0. 
H = array of size NE; H(I) = convective heat transfer coetficient for element I 

( input).  
T I N F  = array of size NE; T I N F  (I) = ambient  t empera tu re  for element I (input).  
P L O A D  = array of size NN x 1 used to store the final r ight-hand-side vector. It repre- 

sents the solution vector (nodal t empera tures )  upon re turn  from the subrout ine  

HEAT2. 

To i l lustrate the use of the subrout ine  HEAT2, the problem of Example  15.2 is considered. 

The main program to solve this problem along with the results are given below. 

C ........... 
C 
C TWO-DIMENSIONAL HEAT CONDUCTION 
C 
C ........... 

DIMENSION NODE(8,3),XC(9),YC(9),QD(8),GK(9,4),P(9),A(8), ICON(8), 
2 NCON(8,2),Q(8),TS(9),H(8),TINF(8),PLOAD(9, I) 
DATA NN,NE,NB,CC/9,8,4,30.O/ 
DATA NODE/I,4,2,5,4,7,5,8,2,2,3,3,5,5,6,6,4,5,5,6,7,8,8,9/ 
DATA XC/O.O,5.0, I0.0,0.0,5.0, I0.0,0.0,5.0, i0.0/ 
DATA YC/0.0,0.0,0.0,5.0,5.0,5.0,I0.0,I0.0,I0.0/ 
DATA QD/IO0.O, I00.0, i00.0, i00. O, I00. O, I00.0, I00. O, i00.0/ 
DATA ICON/O,O,O,O,O,O,O,O/ 
DATA Q/O.O,O.O,O.O,O.O,O.O,O.O,O.O,O.O/ 
DATA TS/O. 0,0.0,50.0,0.0,0.0,50.0,50.0,50.0,50. O/ 
DATA H/O.O,O.O,O.O,O.O,O.O,O.O,O.O,O.O/ 
DATA TINF/O.O,O.O,O.O,O. 0,0.0,0.0,0.0,0. O/ 
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10 

20 
30 

CALL HEAT2(NN,NE,NB,NODE,XC,YC,CC,0D,GK,P,A,ICON,NCON,0,TS,H, 

2 TINF,PLOAD) 

PRINT I0 

FORMAT(19H NODAL TEMPERATURES,/) 

DO 20 I=I,NN 

PRINT 30,I,PLOAD(I, I) 

FORMAT(14,EI5.8) 

STOP 

END 

NODAL TEMPERATURES 

1 0.13333331E+03 
2 0.11944444E+03 
3 0.50000000E+02 
4 0.11944444E+03 
5 0.10555555E+03 
6 0.50000000E+02 
7 0.50000000E+02 
8 0.50000000E+02 
9 0.50000000E+02 

15.4 UNSTEADY STATE PROBLEMS 
The finite element equations governing the unsteady state problem are given by 
Eqs. (13.35). It can be seen that  the term [K3] ~._ represents the unsteady state part.  The 

element matr ix [K3 (e)] can be evaluated using the definition given in Eq. (13.48). Since the 
shape function matr ix used for the triangular element (in terms of natural  coordinates) is 

[N(x.g)] - [L~ L2 La] (15.25) 

for unit thickness of the element, we obtain from Eq. (13.48), 

L LIL2 L1L3"] 
L2L3| �9 

A(~) LI L3 LzL3 L3 .] 

A12 [ili]21 

dA 

(15.26) 

REFERENCES 
15.1 H-C. Huang: Finite Element Analysis for Heat Transfer: Theory and Software, 

Springer-Verlag, London. 1994. 
15.2 K.H. Huebner and E.A. Thormon:  The Finite Element Method for Engineers, 

3rd Ed.. Wiley. New York, 1995. 
15.3 F.L. Stasa: Applied Finite Element Analysis for Engineers. Holt, Rinehart  & 

Winston, New York. 1985. 
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P R O B L E M S  

15.1 Find the temperature distribution in the square plate shown in Figure 15.4. 

15.2 If convection takes place from the triangular faces rather than the edges for the 
element i j k  shown in Figure 15.5, evaluate the surface integrals that contribute 
to the matrix [K (~)] and the vector/3(~). 

15.3 The temperature distribution in an isotropic plate of thickness t is given by the 
equation 

ax Yx +~L ~ ] + q = ~  (ml) 

with boundary conditions (including radiation heat transfer) 

T = To(x, g) on S, (E2) 

OT OT 
k --.~-~x l x + k ~-~y l ~ + q --  0 on $2 (E3) 

OT OT 

OT OT 4 
k-~- l~  + k-~- l~  + ~ ( ~  - T:~) = 0 on S~ (~) 

O X  oy 

Y 

t 
,i 

T = O  

\ 

T = T O sin ~__x_x 
L / 

T = O  

lj 
_J 

L 

Figure 15.4. 

T = O  

. - - . p  x 

k 

Figure 15.5. 
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where $4 denotes the surface from which radiation heat-transfer takes place. 
Derive the variational functional I corresponding to Eqs. (E1)-(Es). 

15.4 Derive the finite element equations corresponding to Eqs. (E1)-(Es) of 
Problem 15.3 using the Galerkin method. 

15.5 Evaluate the integrals in Eq. (15.14) and derive the matrix [K~ e)] assuming that 
convection takes place along the edge j k of element e. 

15.6 Evaluate the integrals in Eq. (15.14) and derive the matrix [K~ e)] assuming that 
convection takes place along the edge ki of element e. 

15.7 If heat flux and convection heat transfer take place from the edge jk  of element e, 
derive the corresponding vectors fi2 (r and/~r  

15.8 If heat flux and convection heat transfer take place from the edge ki of element e, 
derive the corresponding vectors fi2 (r and fi3 (r 

15.9 Explain why the element matrices resulting from conduction and boundary 
convection, [K[ e)] and [K2(r are always symmetric. 

15.10 Evaluate the conduction matrix, [K[e)], for an isotropic rectangular element with 
four nodes. Use linear temperature variation in x and y directions. 

15.11 A three-noded triangular plate element from a finite element grid is shown in 
Figure 15.6. The element has a thickness of 0.2 in. and is made up of aluminum 
with k = 115 BTU/hr-ft-~ Convection heat transfer takes place from all three 
edges and the two triangular faces of the element to an ambient temperature 
of 70~ with a convection coefficient of 100 BTU/hr-ft2-~ Determine the 

characteristic matrices [K(1 ~)] and [K~ ~)] of the element. 

15.12 If an internal heat source of O = 1000 BTU/hr-ft  3 is present at the centroid and a 
heat flux of 50 BTU/hr-ft  2 is imposed on each of the three faces of the triangular 

element considered in Problem 15.11. determine the characteristic vectors / ~ ) ,  

fi(e), and fi(~) of the element. 

(3,4)in 

0.2 in 

Y 
( 2 , 3 ) i n /  

y X  

Figure 15.6. 
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Q 

e=4 Q 
o=1 

e = 2  

e=3 

Q 

Figure 15.7. 

15.13 

15.14 

Consider the trapezoidal plate discretized into four elements and five nodes as 
shown in Figure 15.7. If [K(e )] [K~ ~) ~--~3 ~ = ] denotes the characteristic (conduction) 
matr ix of element e (e = 1, 2, 3, 4), express the global (assembled) characteristic 
matrix. Can the bandwidth of the global matrix be reduced by renumbering the 
nodes? If so, give the details. 

Consider a rectangular element of sides a and b and thickness t idealized as two 
triangular elements and one rectangular element as shown in Figures 15.8(a) and 
15.8(b), respectively. 

(a) Derive the assembled characteristic (conduction) matrix. [K1], for the 
rectangle. 

(b) Compare the result of (a) with the characteristic (conduction) matrix of a 
rectangular element given by 

I 
1 1 

k tb  1 1 - 1  - 
[K1]rect-- ~ 1 - 1  1 

1 - 1  1 

15.15 The (X, Y) coordinates of the nodes of a triangular element of thickness 0.2 cm 
are shown in Figure 15.9. Convection takes place from all three edges of the 
element. If 0 = 200 W / c m  3, k = 100 W / m - ~  h = 150 W/cm2-~ and T~ = 
30~ determine the following: 

(a) Element matrices [K~ ~)] and [K2(~)]. 

(b) Element vectors /5~)  and/53(r 
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Q 

e=2 

e = l  
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Q 
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r 

Q 
(1,4) 

a 

(b) 

Figure 15.8. 
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"--X 

Q 
(3,6) 

-3 
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Q 
(5,2) 

Figure 15.9. 
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THREE-DIMENSIONAL PROBLEMS 

15.1 INTRODUCTION 
The equations governing heat transfer in three-dimensional bodies were given in 
Section 13.3. Certain types of three-dimensional problems, namely the axisymmetric 
problems, can be modeled and solved using ring elements. The solution of axisymmetric 
problems using triangular ring elements and three-dimensional problems using tetrahe- 
dron elements is considered in this chapter. For simplicity, linear interpolation functions, 
in terms of natural coordinates, are used in the analysis. 

16.2 AXISYMMETRIC PROBLEMS 
The differential equation of heat conduction for an axisymmetric case, in cylindrical 
coordinates, is given by [see Eq. (13.16)] 

o--; N + N  ~k~5~ ~ +~0=0 (16.1) 

The boundary conditions associated with the problem are 

1. T -  To(r, z) on $1 

(temperature specified on surface S1) 

OT 
2. = onS2 

On 

(insulated boundary condition on surface $2) 

OT OT 
3. krr--~-~rlr + kzr--o~zlz + rh ( T -  T~) = 0 on $3 

(convective boundary condition on surface $3) 

OT OT 
4. krr-~-~r l~ + k~r-~z lz + rq - 0 on 54 

(heat flux input specified on surface $4) 

(16.2) 

(16.3) 

(16.4) 

(16.5) 

Here, kr and kz indicate the thermal conductivities of the solid in r and z directions, 
n represents the normal direction to the surface, l~ and lz denote the direction cosines of 
the outward drawn normal (n), and h r ( T - T o )  is the surface heat flow due to convection. 

533 
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The problem defined by Eqs. (16.1)-(16.5) can be stated in variational form as follows: 
Find the temperature distribution T(r, z) that minimizes the functional 

1/7/ 
V 

k~r ~ + kzr -~z - 2 o f T  dV 

1// // 
+ hr(T 2 - 2T~ T)dS3 + rqT dS4 

$3 $4 

(16.6) 

and satisfies the boundary conditions specified by Eqs. (16.2) and (16.3). The finite element 
solution of the problem is given by the following steps. 

S tep  1: Replace the solid body of revolution by an assembly of triangular ring elements 
as shown in Figure 16.1. 

r 

Z 

~ r  

t e  

O 

Figure 16.1. Idealization of an Axisymmetric Body with Triangular Ring Elements. 
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S t e p  2: We use a natural coordinate system and assume linear variation of temperature  
inside an element e so that  the temperature  T (~) can be expressed as 

T (~) = [N]r (~) (16.7) 

where 

[ N ] = [ N i  N j  N k ] - [ L 1  L2 L3] (16.8) 

and 

0 ~(~)- T 3 (16.9) 
Tk 

The natural  coordinates L1, L2, and L3 are related to the global cylindrical coordinates 
(r, z) of nodes i, j ,  and k as 

{1}[11 1] {L1} 
r - -  r i  r )  r k  L 2  

z z ,  z 3 z k  L 3  

(16.10) 

or, equivalently, 

{,1}L2 = 1 [al bl cl]{1} 
L3 2A(~ ) a2 b2 c2 r 

a3 b3 c3 z 

(16.11) 

where 

a l  - -  r j z k  --  r k z j  

a 2  - -  r k  Z~ - -  r i  Zk  

aa  - -  r ~ z  3 - -  T j  Zi 

b l  - z 3 - z k  

b2 - z k  - zz 

b3 - z t  - z j  

(16.12) 

CI -- r k  -- F2 

C2 - -  T i  - -  r k  

C3 - - F j  - -  Pz 

and A (~) is the area of triangle i j k  given by 

1 [ r i ( z j  - z k ) +  r j ( z k  --  z , ) +  r k ( z i -  z j ) ]  A(~)= (16.13) 
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Step  3: The element matrices and vectors can be derived using Eqs. (13.46)-(13.49) as 
follows: 
Noting that 

1 (1014) 

and 

I ONi ON 3 ONk 1 
Or Or Or _ 

[ B ] -  ON~ ON, ONk -- 
Oz Oz Oz 

2A(~) 

bl b2 b3] 

C1 C2 C3 
(16.15) 

and by writing dV (~) as 27rr. dA, where dA is the differential area of the triangle ijk, 
Eq. (13.46) gives 

[K~ r - 2rr f f  r[B]T[D][B] dA 
A(e) 

2rck~ 
4A(e)2 

 lb l// 
bl b2 b~ b2b3 r 2 dA 

bib3 b2b3 b~ a(e) 

C1C2 C1C3] 
27rkz [c~2c2 c~ C2C31 ffr~dA (16.16) 

+ 4A(e)2 
LClC3 C2C3 C~ J A(~) 

The radial distance r can be expressed in terms of the natural coordinates L1, L2, and 
L3 as 

r = r, L1 + rjL2 + rkL3 (16.17) 

Thus, the integral term in Eq. (16.16) can be expressed as 

[LI   1L2 L1L3]{ } j 
~2__ [fja r 2 d A -  f[j,.l(ri rj Fk) L1L2 L22 L2L3 dA 

A(e) A(e) LIL3 L2L3 L~ rk 
(16.18) 

By using the integration formula for natural coordinates, Eq. (3.78), Eq. (16.18) can be 
written as 

/ 1 (r rj rk ) 2 rj R2 _ r 2 dA - -f~ , 1 rk 
A(e) 

(16.19) 
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and hence 

bi bl b2 b,b2b  b, b3]b2 b3 + ,c,c2rC  ClC2c  c, c3]c2c3 
[K}~)] = 2A(r L5153 5253 b~ LClC3 C2C3 C 2 

(16.20) 

For isotropic materials with k,. - kz - k, Eq. (16.20) becomes 

(b21 + c~) (blb2 + c:c2) (blb3 + c,c3)] 
7ck/~2 (blb2 + c, c2) (b~ + c'~) (b2b3 + c2c3) 

[K~e)] -- 2A(e) (51b3 -~- CLC3) (5253 + C2C3) (52 + C 2) 
(16.21) 

To evaluate the surface integral of Eq. (13.47). we assume that  the edge ij lies or: the 
surface Sa from which heat convection takes place. Along this edge, L3 - 0 and dS3 = 
2rrr ds so that  Eq. (13.47) gives 

[ K ~ e ) ] - 2 7 r h /  L2 {L1 
s--s~ 

irL  rL1L  i] L2 0}rds-2rrhs :~ , /  [,'L;L2 rL~o d~ 

(16.22) 

By substituting Eq. (16.17) for r and by using the relation 

sj 

p q P!q! L 1L 2 ds - sji (p + q + 1)! 
8---Si 

where sji = sj - s/ - length of the edge ij. Eq. (16.22) gives 

(3ri + rj) 

6 (r, + r~) 
0 

(r, + ,?) o] 
(r; + 3r 3) 

0 

(16.24) 

To evaluate the volume integral for/61(el as 

P~(~) - f f / rO[X] r d~" 
I'(e) 

(~6.25) 

we use the approximation r(t = r<q - constant, where r~ - (r, + rj + rk)/3, and tile 
relation dV = 2rrr. dA to obtain 

r L 1 }  
= 27rr<,(l ~aa r 

) 
L2 d.4 (1~.2~ ) 
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With the help of Eq. (16.17), Eq. (16.26) can be evaluated to obtain 

fi~( ~ ) = 7r rc o A ( ~ ) { ( 2 r' + r ~ + r k ) ( r, + + r r '++2 r k )) (16.27) 

The surface integral involved in the definition of/3(~) can be evaluated as in the case of 
Eq. (16.24). Thus, if the edge i j  lies on the surface o%. 

{rL1} {,2r +r3,} 
3 (r, + 2ra) 

0 
5- -  "~ s~  0 

(16.28) 

Similarly, expressions for /~)~) can be obtained as 

3 (ri -+- 2to) if the edge 
s (2,. I 0 i j  lies on $2 

(16.29) 

S t e p  4" Once the element matrices and vectors are available, the overall or system 
equations can be derived as 

[A'] ~ - fi (16.30) 

where 

E 

[ / ) ' ] -  ~ [[Kc1 e)] + [K~e)]] (16.31) 
e = l  

and 

E 

P - ~ - ~ ( - - 1  - P 2  + . ) (16.32) 
e - - 1  

S t e p  5: The solution of the problem can be obtained by solving Eq. (16.30) after the 
incorporation of the known boundary conditions. 

Example 16.1 
Figure 16.2. 

Derive the element matrices and vectors for the element shown in 

S o l u t i o n  From the data shown in Figure 16.2, the required element properties can be 
computed as 

bl = z  3 - z k  = 2 - 6 = - 4  
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- r 

qo = 50 w/cm 3 
w 

k= 60 cm-OK 
element 

"e" 

(4,2) 0 

))22 
watts 

h = 15 cm2_OK 
T =40~ 

Figure 16.2. 

(7,6) G 

i 

h = 10 watts 
cm2.OK 

L = 4 0 o c  

Q (7,2) 

A (e) 

b 2 = z k - z i  = 6 - 2 = 4  

b 3  = z ,  - z j  = 2 - 2 = 0  

c 1  - F k  - -  r j  - -  7 -  7 -  0 

c2  - -  r i  - r k  - -  4 -  7 -  - 3  

C3 = F 3 - -  F, = 7 - -  4 = 3 

- -114(2 - 6) + 7 (6  - 2) + 7 (2  - 2)1 - 6 
2 

~ :  (4 7 r) 2 r - =36.5 
1 7 12 

r c : ( r ; + ~ j + r a - ) / 3 = ( 4 + 7 + 7 ) / 3 = 6  

~,,. - [ ( , - k  - ,',.)~ + (zk - ~,-)~]~"~ - [ ( 7 -  7) ~ + ( 6 -  2)~] ~/~ - 4 

~j ,  - [ ( , . j  - ~.~)~ + (~- - ~,)~]~, '~ - [ ( 7 -  -~)~ + (2 - 2)~] ~/~ = 3 

[K~ e)] can be obtained as 

[K~~ 1 - [ -  
9175 

9175 

0 

-9175  

14330 

-5160  

01 -5160  from Eq. (16.21) 

516oj 
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Since convection occurs along the two edges ij and j k ,  the [K~ e)] matrix can be written as 

[K(~)]_ ~(h),,~j~ (~, + ~,) (~; + 3~j) + (a,-j + ~,.) (r, + r~) 
6 6 

0 0 0 (F 9 + rk) (r3 + ark) 

il [! o 0 7 rr(10)(4) (21 + 7) (7 + 7) 
-- 6 ( 4 + 7 )  (4 + 2 1 )  + 6 

0 0 ( 7 + 7 )  (7 + 21)J 

[447.7 259.2 0241 
-L252.2 1176.0 293. 

293.2 586. 

Equation (16.27) gives 

{  s+7+7, } {2073  } 
fi~) = 7r(60)(50)(6) (4 + 14 + 7) -- 23561.9 

6 (4 + 7 + 14) 23561.9 

Because no boundary heat flux is specified; fi(~) - O. From Eq. (16.28) and a similar 
equation for the edge j k ,  we obtain 

{ } { o } 
/Sa(e) -- rc(hT~),JsJi (2ri + rj) :r(hT~)3ksk, (2r j  + rk) 

- -  3 (r~ Jr- 2rj ) -Jr- 3 

0 (r 3 + 2rk) 

} { 0 } 
rr(15)(40)(3) (4 14) + rr(lO)(40)(4) (14 + 7) 

3 3 (7+14)  

28274 

= 69115 

35185 

3} 
0 

8 

Thus, 

9622.7 _Sgl~.S o 1 
8915.s 1~o6.o _4866 

o _~sG6.s 57~6 
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and 

49008.8 } 

P ( ~ ) =  P } ~ ) - / 5 2  (~) +/~3(~1 = 92676.9 

.58747.7 

16.3 COMPUTER PROGRAM FOR AXISYMMETRIC PROBLEMS 
A subroutine called HEATAX is given for the solution of axisymmetric heat transfer 
problems. The arguments  NN, NE, NB, TINF,  H. Q. and QD have the same meaning 
as in the case of the subroutine HEAT2. The remaining arguments  have the following 
meaning: 

R = array of dimension NN: R(I) = r coordinate of node I (input). 
Z = array of dimension NN: Z(I) = z coordinate of node I (input). 
LOC = array of dimension NE x 3: LOC(I.J)  = global node number 

corresponding to J t h  corner of element I (input). 
EDGE = array of dimension NE: EDGE(I)  = boundary condition specified for element I 

(input). EDGE(I)  = 0 if no boundary condition is specified for element I; 
otherwise, its value lies between 1 and 6 as explained in the comments of the 
main program. 

TS = array of dimension NN: TS(I) = specified tempera ture  at node I (input). If the 
t empera ture  of node I is not specified, then the value of TS(I) is to be set equal 
t o - 1 . 0  E6. 

GS = array of dimension NN x NB used to store the matr ix [K]. 

T E M P  = a dummy array of dimension NN x 1. 
CK = thermal  conductivity (k) of the material  (input). 

To illustrate the use of the subroutine HEATAX, an infinitely long hollow cylinder of 
inner radius i m and outer radius 2 m is considered. The tempera tures  of inner and outer 
surfaces are prescribed as 1000 and 0 ~ respectively. Since the t empera ture  distr ibution 
remains constant along the length of the cylinder, an annular disc of axial thickness 0.05 m 
is considered for the finite element analysis. The idealization is shown in Figure 11.7, where 
each triangle represents an axisymmetric ring element. The total  number of nodes (NN) is 
42 and the number of elements (NE) is 40. Only conduction heat transfer is considered in 
this problem so tha t  H(I), TINF(I) ,  Q(I), and QD(I) are set equal to zero for all elements I. 
The bandwidth of the overall matr ix [K] can be seen to be 4. The value of CK (thermal 
conductivity) is taken as 1.0. The main program, in which the data  are given/generated.  
and the results given by the program are shown below. 

C -- . . . . . . . . . . . . . .  

C 
C 
c 
C . . . .  

TEMPERATURE DISTRIBUTION IN AXISYMMETRIC SOLIDS 

INTEGER EDGE (40) 

DIMENSION L0C(40,3),R(42),Z(42),TS(42),TINF(40),H(40),Q(40),QD(40) 
2, GS (42,4), TEMP (42,1) 
DATA NE,NN ,NB, CK/40,42,4, I. O/ 
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LOC ( 1, I) = I 

LOC ( I, 2) =4 

LOC ( I, 3) =2 

LOC (2, I) =4 

L0C(2,2)=I 

L0C(2,3)=3 

DO 10 J=1,3 
DO 10 I=3,NE 

JJ=I-2 

LOC (I, J) =LOC (J J, J) +2 

10 CONTINUE 

R(1)=I.0 
R(2)=1.0 
DO 20 I=3,NN,2 
JJ=l-2 

JK=I+I 

R(I)=R(JJ)+O. 05 

R(JK)=R(I) 

20 CONTINUE 

DO 30 I=I,NN,2 
Z(I)=O.O 

KK=I+I 

Z(KK)=O.OS 

30 CONTINUE 

DO 40 I=I,NN 

40 TS(I)=-I. OE+6 

TS (1) = 1000.0 

TS(2)=1000.0 
TS(41)=0.0 

TS(42)=0.0 

EDGE(I)=1 IF BOUNDARY CONDITION IS SPECIFIED ON EDGE 1-2 

EDGE(I)=2 IF BOUNDARY CONDITION IS SPECIFIED ON EDGE 2-3 

EDGE(I)=3 IF BOUNDARY CONDITION IS SPECIFIED ON EDGE 3-1 

EDGE(I)=4 IF BOUNDARY CONDITION IS SPECIFIED ON EDGES 1-2 AND 2-3 

EDGE(I)=5 IF BOUNDARY CONDITION IS SPECIFIED ON EDGES 2-3 AND 3-1 

EDGE(I)=6 IF BOUNDARY CONDITION IS SPECIFIED ON EDGES 3-1 AND 1-2 

DO 50 I=I,NE 

50 EDGE(I)=O 

DO 60 I=I,NE 

Q(I)=O.O 
QD(I)=O.O 
H(1)=O.O 

TINF (I) =0.0 

60 CONTINUE 

CALL HEATAX (LOC, R, Z, NN, NE, NB, CK, Q, QD, H, TINF, TS, EDGE, GS, TEMP) 

PRINT 70 

70 FORMAT(39(1H-)/2X,'NODE',2X,'RADIAL',3X,'AXIAL', 3X, ' TEMPERATURE' 

2 , / ,  3X,' NO. ' ,  2X,' COOKD. ' ,  3X,' COOP, E). ' , / ,  39 (1H-) / ) 
DO 80 I=I,NN 

PRINT 90,I,R(1),Z(1),TEMP(I,I) 
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80 
90 

CONTINUE 
FORMAT (3X, 12,2X, F6.2,3X, F6.2,3X, F10.4) 
STOP 
END 

NODE RADIAL AXIAL TEMPERATURE 
NO. C00RD. C00RD. 

1 1.00 0.00 999.9999 
2 1.00 0.05 1000.0000 
3 1.05 0.00 904.8005 
4 1.05 0.05 904.7729 
5 1.10 0.00 818.2379 
6 1.10 0.05 818.2104 
7 1.15 0.00 739.1964 
8 1.15 0.05 739.1725 

38 1.90 0.05 52.6421 
39 1.95 0.00 25.6482 
40 1.95 0.05 25.6458 
41 2.00 0.00 0.0000 
42 2.00 0.05 0.0000 

16.4 THREE-DIMENSIONAL HEAT TRANSFER PROBLEMS 
The governing differential equation for the steady-state heat conduction in a solid body is 
given by Eq. (13.11) with the right-hand-side term zero and the boundary conditions by 
Eqs. (13.18)-(13.20). The finite element solution of these equations can be obtained by 
using the following procedure. 

S t e p  1: Divide the solid body into E tetrahedron elements. 

S t e p  2: We use a natural coordinate system and assume linear variation of temperature  
inside an element e so that  the temperature  T (~) can be expressed as 

T (~) = [N]0 "(~) (16.33) 

where 

[ N ] = [ N ~  ]~ Ark Nt] = I L l  L2 L3 L4] (16.34) 

and 

T, 

Tk 

TI 

(16.35) 

The natural coordinates L1, L2, L3, and L4 are related to the global Cartesian coordinates 
of the nodes i, j ,  k, and 1 by Eq. (3.84). 
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Step 3: 
follows: 

The element matrices and vectors can be derived using Eqs. (13.46)-(13.49) as 

[D] -  ky 0 
0 k~ 

[B]  = 

ON~ ON~ ONk 
Oz Ox Ox 

ON~ ON~ ONk 
Oy Oy Oy 

ON~ ON 3 ONk 
Oz Oz Oz 

[K} ~)] - / / / [ B ] r [ D ] [ B ]  dV = 

V(e) 

~y 

+ 36V(e) 

ONt 
Ox 

ONt _ 
Oy 

ONt 
Oz 

kz 
36V(e) 

kx 
36V(e) 

6V(e) 

bl b2 b3 b4] 
c1 c2 c3 c4 
dl d2 d3 d4 

] lb[bb212 b ib2  b ib3  bib4] 
b~ b2b3 b2b4I 

b3b4 / 
Lb, b4 6264 b364 52 J 

2 C3 c4 I C1 C3 C2C3 C 3 

LC~ c~4 c~c4 d J 

I d~ did2 did3 dld4- 

dld2 d~ d 2 d 3  d2d4 

did3 d2d3 d 2 d3d4 

did4 d2d4 d3d4 d] 

(16.36) 

(16.37) 

(16.38) 

For an isotropic material with kx = ku = kz = k. Eq. (16.38) becomes 

k 
[K~ ~)] - 36V(~/ 

(b21 + c~ + d~) (bib2 + clc2 + d,d2) (bib3 + clc3 + d, d3) (bib4 + C1C4 JV did4) 

(62 + c~ + d~) (b2b3 + c2c3 + d2d3) (b264 + c2c4 + d2d4) 
x 

(b~ + c~ + d~) (b3b4 + c3c4 + d3d4 

Symmetric (b~ + c4 2 + d4 2) 

(16.39) 
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The matr ix  [K~ e)] is given by 

I N] NiNj NzNk NiNt] 

x~ N,N,| 
sle) LSymmetric N? J 

dS3 (16.40) 

If the face ijk of the element experiences convection. Nl = 0 along this face and hence 
Eq. (16.40) gives 

I2i 11 ~ hAijk 2 1 
[ ( ]tK2e)]-- 12 1 2 

0 0 

(16.41) 

where Aijk is the surface area of the face ijk. There are three other forms of Eq. (16.41), 
one for each of the other faces jkl, kli, and lij. In each case the value of the diagonal terms 
will be two and the values of the nonzero off-diagonal terms will be one. The coefficients 
in the row and the column associated with the node not lying on the surface will be zero. 

qov e /l/l 
= ;;;vv~ O d V =  Nk 4 1 

u(~) Nl 1 

(16.42) 

If the face ijk lies on the surface $2 on which heat flux is specified, 

P(~) = q Nk 
s(2 ~) N~ 

Ill s~f) LLo ~ q A , j k 1 dS2 = q dS2 = 3 1 

0 

(16.43) 

and similarly, if convection loss occurs from the face ijk. 

/33(~) - I f  hT~ Nj dS3 - hT~ L2 Nk L3 
s(a ~ ) Nz s~ ~ ) 

Ill dS3 = hT~ A,3k 1 3 1 (16.44) 

0 

There are three other forms of Eqs. (16.43) and (16.44). In these equations, the zero 
coefficient will be located in the row corresponding to the node not lying on the face. 

E x a m p l e  16.2 Derive the element equations for the element shown in Figure 16.3. 
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Z 

J 
~_y 

(0,1,2) 

(2,2,4) Q 

(4,3,1) Q 

qo = 50 W/cm 3 

W 
k = 60 cm.oK 

Figure 16.3. 

h=lO W 
c m  2 -~ 

= 40 ~ 

Q( -1,0,0) 

S o l u t i o n  From the given data ,  the required element propert ies  can be computed  as 
follows: 

V(r = 1 
6 

1 0 1 2 
1 4 3 1 

1 - 1  0 0 
1 2 2 4 

5 

6 '  

1 ~ B 

1 3 1 
1 0 0 
1 2 4 

- 10 ,  

d l  m 

4 3 1 

- . - 1  0 1 

2 2 1 

- 1 ,  

2 - -  

1 0 0 
1 2 4 
1 1 2 

- 0 ,  

d 2  ~ m 

- 1  0 1 
2 2 1 
0 1 1 

m - - 1 ,  

5 3  z m 

1 2 4 

1 1 2 

1 3 l 

C 1  m _ _  

C 2  ~ 

C 3  ~ 

4 1 1 

- 1  1 0 
2 1 4 

- -  - 1 7 ,  

-11!1 2 1 = 2 ,  

0 1 

2 1 4 

0 1 2 
4 1 1 

= 10, 
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d 3  = - -  

54 = 

d 4  = 

2 2 
0 1 
4 3 

1 1 2 
1 3 1 
1 0 0 

0 1 
4 3 

- 1  0 

1 
1 - 0 ,  
1 

--- 5 ,  C4 - -  - -  

1 
1 - 2  
1 

o1 ZI 
4 1 = -11 ,  

- 1  1 

To compute  the area A j k l ,  we use the formula 

A j k t  = [ s ( s  - a ) ( s  - 3 ) ( s  - 7)]1/2 

where a,  ~, ~' are the lengths of the sides of the triangle: 

a = length j k  = [(xk - x j )  2 + (Yk -- y j ) 2  + ( z k  -- zj)2] 1/2 

= (25 + 9 + 1) (1/2) = 5.916 

/~ = length k l  = [ ( x z -  xk) 2 + ( y z -  yk) 2 + (zz - zk)2] 1/2 

= (9 + 4 + 16) (1/2) = 5.385 

7 = length l j  = [ ( x j  - x~) 2 + ( y j  - y t )  2 + ( z j  - z l )2]  1/2 

= (4 + 1 + 9) (1/2) = 3.742 

l ( a  + /3  + 7) = 1 s = ~ ~(5.916 + 5.385 + 3.742) = 7.522 

A j k z  = [7 .522(7 .522-  5 .916) (7 .522-  5 .385) (7 .522-  3.742)] (1/2) 

- -  9 . 8 7 7  

Equat ion  (16.39) gives 

6 0 •  
r ( ltKle)l __ 36 • 5 I 

(100 + 289 + 1) 

Symmetr ic  

780 

Symmetr ic  

- 7 0  

10 

- 4 4 0  

40 

250 

( 0 - 3 4 -  1) 

( 0 + 4 +  1) 

4781 
- 4 8  / 

- 2 7 0  

300J 

( - 5 0  - 170 + o) 

(0 + 20 + o) 

(25 + 100 + o) 

(50 + 187 + 2) ] 

(0-22-2)[ 
( - 2 5  - 110 + 0)[ 

( 2 5 + 1 2 1 + 4 )  J 
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The matrix [K~ ~)] will be a modification of Eq. (16.41)" 

t 2 J 12 

0 0 0 0 0 0 0 0 

-- i 2 1 i - (10)(9"877) ! 2 1 i l l  21 12 11 21 

0 0 0 
_ 0 16.462 8.231 

o ~ 8.231 16.462 
8.231 8.231 

o 

8.231 
8.231 / 

16.462J Ill/1o42/ ,~(~) 50 x 5 1 10.42 
t- 1 6 x 4 1 10.42 

1 10.42 /o/ 
/32(~ ) _ 0 

0 
0 

since no boundary heat flux is specified 

/~176 6(e) 10 x 40 x 9.877 1 1316.92 
/-3 3 1 1316.92 

1 1316.92 

780.000 

[K(~)]_ [K~)] + [K~ ~] - 

Symmetric 

-70.000 
26.462 

-440.000 
48.231 

266.462 

478.000" 
-39.769 

-261.769 
316.462 

10.42/ 
/3(~)_/~1(~) _/52(~) +/~3 (~) _ 1327.34 

1327.34 
1327.34 

The element equations are 

[K(~)]0"(~) _ p(~)  

where [K (e)] and/3(e) are given by Eqs. (Ex) and (E2), respectively, and 

(El) 

Tk 
Tt 
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16.5 UNSTEADY STATE PROBLEMS 
The finite element equations governing the unsteady state problems are given by 

Eqs. (13.35). It can be seen that the term [K3] T represents the unsteady state part. 

The element matrix [K (~)] can be evaluated using the definition given in Eq. (13.48). 

16.5.1 Axisymmetric Problems 
For a triangular ring element, the matrix [N(r,z)], in terms of natural coordinates, is 
given by 

I N ] -  ILl L2 L3] (16.45) 

By expressing dV = 2~rr dA, Eq. (13.48) can be written as 

[K~ ~)] -///pc[N] ~ [N] dv  

V(e) 

[ L~ PP 
= (pc) <~)2~ H 

~(~) LL~ L3 
J d  

L1L2 L1L3] 
L 2 L2L3 (r~L1 + rjL2 + rkL3)dA 

L2L3 L~ 
(16.46) 

where Eq. (16.17) has been substituted for r. By carrying out the area integrations 
indicated in Eq. (16.46), we obtain 

[K~ ~)] = 7r(pc)(~)A(~ ) [(6ri + 2rj + 2rk) 

30 k Symmetric 

(2ri + 2rj + rk) 

(2r~ + 6r 3 + 2rk) 
(2ri + rj + 2rk ) ] 

/ 

(r, + 2rj + 2rk) 

(2r, + 2rj + 6rk)J 

(16.47) 

16.5 .2  Three-Dimens ional  Problems 

The shape function matrix for the tetrahedron element is given by 

[N(x,y,z)]-  ILl L2 L3 L4] 

With this, the [K3 (~)] matrix can be derived as 

[ L~ 

H 
v(~) LLIL 4 

L1L2 LIL3 L1L41 
L~ L2L3 L2L4 I 

L2L3 L~ L3L4| 
L2L4 L3L4 L~ ] 

(pc)(~) V (~) 
20 

2 1 

1 

1 

1 1 

I i 2 

1 

dV 

(16.48) 

(16.49) 
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PROBLE 

16.1 

16.2 

16.3 

16.4 

16.5 

16.6 

MS 

If radiation takes place on surface S~ of an axisymmetric problem, state the 
boundary condition and indicate a method of deriving the corresponding finite 
element equations. 

Derive the finite element equations corresponding to Eqs. (16.1)-(16.5) using the 
Galerkin approach. 

If convection heat transfer takes place from the face corresponding to edge j k of 
a triangular ring element, derive the matrix [K~ e)] and the vector/~(e). 

If convection heat transfer takes place from the face corresponding to edge ki of 
a triangular ring element, derive the matrix [K~ ~)] and the vector/~(~) 

Evaluate the conduction matrix, [K~)], for an isotropic, axisymmetric ring 
element of rectangular cross section with four nodes. Use linear temperature 
variation in r and z directions. 

A three-noded axisymmetric aluminum triangular ring element from a finite 
element grid is shown in Figure 16.4. Convection heat transfer takes place 
from all the faces (edges) of the triangle with a convection coefficient of 
100 BTU/hr-f t2-~ If k = 115 BTU/hr - f t -~  determine the characteristic 

matrices [K~ ~)] and [K (~)] of the element. 

I_ 
I 

I 
�9 - - - I ~ r  

(2,3)in 

C) 

(3,5)in 

(4.4)in 

Q 

Figure 16.4. 
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Q 1 , 2 ,  3)in 

"/'. = 70 ~ 

Z 

x/ 
~ Y  

Q g 
(2, 1, 1)in 

Figure 16.5. 

C) 
(3, 2, 1)in 

Q 
(0, 3, 2)in 

16 cm 

f f ,  

' ] ~ J  
i 

L 

8 cm rad. ..J 
F 

S 

Exterior surface at 300 ~ 

Interior surface at 500 ~ 

Watts 
Krr = Kzz  = 10 cm.OK 

. /_  �9 --..-- �9 - - - - - ~  r 

~ i n s u l a t e d  

Figure 16.6. 
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16.7 

16.8 

16.9 

16.10 

16.11 

16.12 

If convection takes place from the face ijl of a tetrahedron element in a solid 
body, derive the matrix [K~ r and the vector/~3 (r 

If convection takes place from the face j kl of a tetrahedron element in a solid 
body, derive the matrix [K~ r and the vector/3}r 

If convection takes place from the face ikl of a tetrahedron element in a solid 
body, derive the matrix [Ks r and the vector/~3 (~). 

Derive the element equations for the tetrahedron element of a three-dimensional 
body shown in Figure 16.5. Assume k - 100 BTU/hr-f t  -~ h = 
150 BTU/hr- f t2-~  from face i jk,  and 00 = 500 BTU/hr-f t  a. 

Evaluate the matrix [K~ r for the triangular ring element shown in Figure 16.2. 
Assume that pc = 20 Joules/cm-~ 

Use the subroutine HEATAX to find the temperature distribution in the 
axisymmetric problem shown in Figure 16.6. 
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BASIC EQUATIONS OF 
MECHANICS 

FLUID 

17.1 INTRODUCTION 
Although  the finite element me thod  was extensivelv developed fox" s t ruc tura l  and solid 
mechanics problems, it was not considered a powerful tool for the sohltion of fluid mechan- 
ics problems until recently. One of the reasons is the success achieved with the more 
t radi t ional  finite difference procedures  in solving fluid flow problems. In recent years. 
significant contr ibut ions have been made in the solution of different types of fluid flow 
problems using the finite element method.  This chapter  presents a summary  of the basic 
concepts and equat ions of fluid mechanics. 

17.2 BASIC CHARACTERISTICS OF FLUIDS 
A fluid is a substance  (gas or liquid) tha t  will deform continuously under  the action of 
applied surface (shearing) stresses. Tile magni tude  of the stress depends on tile rate of 
angular deformation. On the other  hand. a solid call be defined as a substance that  will 
deform by an amount  propor t ional  to the stress applied after which static equil ibrium 
will result.  Here, the magni tude  of the shear stress depends on the rj~agTtitude of arz.qula~" 
deformation. 

Different fluids show different relations between stress and the rate of deformation.  
Depending  on the na ture  of relat ion followed between stress and rate  of deformation.  
fluids can be classified as Newtonian and non-Newtonian fluids. A Newtonian fluid is 
one in which the shear stress is directly propor t ional  to the rate of deformat ion s tar t ing 
with zero stress and zero deformation.  The constant  of propor t ional i ty  is defined as /~. 
the absolute  or dynamic  viscosity. Common examples  of Newtonian fluids are air and 
water.  A non-Newtonian  fluid is one tha t  has a variable propor t ional i ty  between stress 
and rate  of deformation.  Common examples  of non-lNewtonian fluids are some plastics. 
colloidal suspensions,  and emulsions. Fluids can also be classified as compressible and 
incompressible. Usually, liquids are t rea ted  as incompressible, whereas gases and vapors 
are assumed to be compressible. 

A flow field is described in terms of the velocities and accelerations of fluid particles at 
different t imes and at different points th roughout  the fluid-filled space. For the graphical  
representa t ion  of fluid motion, it is convenient to introduce the concepts of s t reamlines 

557 
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and pa th  lines. A streamline is an imaginary  line tha t  connects  a series of points in space 
at a given ins tant  in such a manner  tha t  all particles falling on the line at t ha t  ins tant  
have velocities whose vectors are tangent  to the line. Thus.  the s t reamlines  represent  the 
direction of mot ion  at each point  along the line at the  given instant .  A path line is the 
locus of points  th rough  which a fluid part icle of fixed ident i ty  passes as it moves in space. 
For a s teady flow the s t reamlines  and pa th  lines are identical,  whereas they  are, in general,  
different for an uns teady  flow. 

A flow may be t e rmed  as inviscid or viscous depending  on the impor tance  of con- 
s iderat ion of viscosity of the fluid in the analysis. An inviscid flow is a frictionless flow 
character ized by zero viscosity. A viscous flow is one in which the fluid is assumed to have 
nonzero viscosity. Al though  no real fluid is inviscid, there  are several flow s i tuat ions  in 
which the effect of viscosity of the fluid can be neglected. For example,  in the analysis of 
a flow over a body surface, the viscosity effects are considered in a th in  region close to the 
flow bounda ry  (known as bounda ry  layer), whereas the viscosity effect is neglected in the 
rest of the  flow. 

Depending  on the dynamic  macroscopic behavior  of the fluid flow, we have laminar ,  
t ransi t ion,  and tu rbu len t  motion.  A laminar flow is an orderly s ta te  of flow in which 
macroscopic fluid particles move in layers. A turbulent flow is one in which the  fluid 
particles have irregular,  f luctuat ing mot ions  and errat ic  paths.  In this case, macroscopic 
mixing occurs bo th  lateral  to and in the direction of the main flow. A transition flow 
occurs whenever  a laminar  flow becomes uns table  and approaches a tu rbu len t  flow. 

17.3 M E T H O D S  OF DESCRIBING THE M O T I O N  OF A FLUID 
The mot ion  of a group of particles in a fluid can be described by ei ther the Lagrangian  
m e t h o d  or the Euler ian method .  In the Lagrangian  method ,  the coordinates  of the moving 
part icles are represented as functions of t ime. This  means  tha t  at some arb i t ra ry  t ime to, 
the coordinates  of a part icle (z0. y0. z0) are identified and tha t  thereaf ter  we follow tha t  
part icle th rough  the fluid flow. Thus.  the posit ion of the part icle at any other  ins tant  is 
given by a set of equat ions  of the form 

x - f l  (x0, y0, z0. t), y - f2(xo, yo. zo, t). z = fa(z0,  y0. z0, t) 

The  Lagrangian  approach is not generally used in fluid mechanics because it leads to more 
cumbersome equations.  In the Euler ian method ,  we observe the flow characteris t ics  in the 
vicinity of a fixed point as the particles pass by. Thus,  in this approach the velocities at 
various points  are expressed as functions of t ime as 

u -  f l ( x , y . z , t ) ,  c -  f 2 ( x , y , z , t ) ,  w -  f 3 ( x , y , z . t )  

where u, v, and w are the  components  of velocity in z. y. and z directions,  respectively. 

The  velocity change in the vicinity of a point  in the  z direct ion is given by 

Ou Ou Ou Ou 
du - -0-Tdt + ~-~z da" + ~-~gdy + ~zzdZ (17.1) 

( total  derivative expressed in te rms of part ia l  derivatives).  
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The small distances moved by a particle in t ime dt can be expressed as 

dx = u dt, dy = v dt, dz = w dt (17.2) 

Thus,  dividing Eq. (17.1) by dt and using Eq. (17.2) leads to the total or substantial 
derivative of the velocity u (x component  of acceleration) as 

du Du Ou Ou cgu Ou 

The other  components  of acceleration can be expressed in a similar manner  as 

dv Dv Ov Ov Or Ov 
a~ = _ ~ u - z -  + v - z -  + u , - -  ( 1 7 . 3 b )  

dt Dt Ot Oz (_]x og 

dw Dw Ow Ou, Ow c)w 
a~ = dt - Dt Ot + u-~z + t'-~y + w Oz (17.3c) 

17.4 CONTINUITY EQUATION 
To derive the continuity equation,  consider a differential control volume of size dx dg dz 
as shown in Figure 17.1. Assuming tha t  the densi ty and the velocity are functions of 
space and time, we obta in  the flux of mass per second for the three directions x, g, and z. 
respectively, as - f f = ( p u ) . d y  d z , -o@(pv )  .dx  dz. and - ~  dg. From the principle 
of conservation of mat te r ,  the sum of these must  be equal to the t ime rate  of change 

[pu] dy dz -, 

/__ fit dy 

, I 

" 2 
dz 

r X 

Figure 17.1. Differential Control Volume for Conservation of Mass. 
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0 of mass, -5-i(pdx d y  dz). Since the control volume is independent  of time, we can cancel 
dx dy dz from all the te rms and obtain 

Op 0 O 0 
o-i + ~ ( ~ ' )  + ~ (P" )  + ~(P'~') = o (17.4a) 

where p is the mass density: u. t'. and u' are the x. y, and z components  of velocity, 

respectively" and t is the time. By using the vector nota t ion  

_ ,  _ _ .  - - ,  

-- ui + t'j + w k -  velocity vector 

and 

- 0 0 0 - -  
V - i" + -a-- ] + /," - gradient  vect or 

og  

where. ~, j ,  and k represent  the unit vectors in x. g. and z directions, respectivelv. Equat ion  
(17.4a) can be expressed as 

~ p  -" --t 
Ot + V p I  - - 0  (17.4b) 

This  equat ion can also be wri t ten  as 

0% O,' at,' _ 1 D(p) (17.4c) 
0at + ~ + c_gz - p D t  

where ( D / D t )  represents  the total  or subs tant ia l  derivative with respect  to time. 
Equa t ion  (17.4) represents  the general three-dimensional  continuity equat ion for a fluid 
in uns teady  flow. If the fluid is incompressible,  the t ime rate of volume expansion of a 
fluid element will be zero and hence the continuity equation,  for both  s teady and uns teady  
flows, becomes 

~ ' .  C -  0u at' 0u' ~ + ~ + ~  -0 (17.5) 

17.5 EQUATIONS OF MOTION OR M O M E N T U M  EQUATIONS 
17.5.1 State of Stress in a Fluid 
The s ta te  of stress in a fluid is character ized,  as in the case of a solid, by the six stress 
components  axe, cryy. or::. crxy. crvz. and a:~-. However. if the fluid is at rest, the shear 
stress components  axy. c,v=. and ~:.r will be zero and all the normal  stress components  will 

be the same and equal to the negative of the hydrosta t ic  pressure,  p - - t h a t  is. axx = ayy = 
c r z z  - -  _ p .  
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17.5.2 Relation between Stress and Rate of Strain for Newtonian Fluids 

Stress-Strain Relations for Solids 
In solids the stresses oij are related to the strains cia according to Hooke's law, Eq. (8.7): 

i [ ~  _ ~ ( ~  + ~z~)] / 
C x x  - -  - E  . . . .  

I O'xy  
E x y  ~ G ' " ' "  

(17.6) 

If an element of solid having sides dx, dy, and dz is deformed into an element having 
sides (1 + exx)dx,  (1 + %y)dy ,  and (1 + ezz)dz, the volume dilation of the element (e) is 
defined as 

e - -  
change in volume of the element 

original volume of the element 

(1 + e ~ ) ( 1  + e~ ) (1  + Szz)dx dy d z -  dx dy dz 

- -  C x x  + g y y  @---s 

dx dy dz 

(17.7) 

Using Eq. ( i t .6) ,  Eq. (17.7) can be expressed as 

1 - 2 v  1 - 2v 
- ~ ( ~  + ~ + ~ )  = ~ 3 e  (17.8) 

where ~ is the arithmetic mean of the three normal stresses defined as 

O"- (crx~ + ayy + or==)/3 (17.9) 

The Young's modulus and Poisson's ratio are related as 

E E 
G =  or 2 G =  (17.10) 

2(1 + v) 1 + v 

The first equation of Eq. (17.6) can be rewritten as 

1 E 
- -  = e x x  + exz -~ [crxx - v(ox~: + cr~ + o'~z) + voxx] I + t' 

3v 
l + v  

(17.11) 

Substituting for 3~ from Eq. (17.9) into Eq. (17.11) and using the relation (17.10), we 
obtain 

E Y E ' e  
~r~ = ~ e x ~  H = 2G exx + 

l + v  l + v  1 - 2 v  

2Gv 

1 - 2 v  
�9 e (17.12) 

By subtracting 5 from both sides of Eq. (17.12) we obtain 

2Gv 
~xx - ~ -  2G ex~: + ~ e -  

1 - 2v 
(17.13) 
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Using Eq. (17.8), Eq. (17.13) can be expressed as 

2Gv E 
axx -O" = 2G:xx  + e -  

1 - 2v 3(1 - 2v) 

tha t  is, 

( e) 
O x x - 6 " =  2 G s x x - - ~  (17.14) 

In a similar manner,  the following relations can be derived: 

e 
ouu - 6. - 2G (:uy - ~ )  

e 

(17.15) 

(17.16) 

The shear s tress-shear  strain relations can be written, from Eq. (17.6), as 

Crxu = G r (17.17) 

cruz = G r (17.18) 

crzx = G e : x  (17.19) 

Stress-Rate of Strain Relations for Newtonian Fluids 
Experimental  results indicate tha t  the stresses in a fluid are related to the time rate of 
strain instead of strain itself. Thus, the s t ress-ra te  of strain relations can be derived by 
analogy from Eqs. (17.14)-(17.19). As an example, consider Eq. (17.14). By replacing the 
shear modulus (G) by a quant i ty  expressing its dimensions, we obtain 

~ - ~ -  2 ~ 5) (17.20) 

where F is the force, and L is the length. Since the stresses are related to the t ime rates 
of strain for a fluid, Eq. (17.20) can be used to obtain the following relation valid for a 
Newtonian fluid: 

~ x ~ - ~ = 2  Z-r 5 : ~ - 5  (:7.2:) 

In Eq. (17.21), the dimension of time (T) is added to the proport ional i ty constant  in order 
to preserve the dimensions. The proport ional i ty constant  in Eq. (17.21) is taken as the 
dynamic viscosity # having dimensions F T / L  2. Thus, Eq. (17.21) can be expressed as 

o x x  - 6 - 2 #  0r  2 0e 
0t 3 0t (17.22) 

auu _ 6" = 2#0:~v 2 0e 
Ot 3 0t (17.23) 
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O e z z  2 0 e  
a ~  - ~ = 2 t t  Ot  3 0 t  (17.24) 

a~9 = #exv (17.25) 

a~z = #e~z (17.26) 

a~x = pe~x (17.27) 

If the coordinates  of a point  before deformat ion are given by x, y, z and after deformat ion 
by x + s c, y + r/, z + ~, the s t rains  are given by 

o~ on or / 
e ~ ~ = O z ' e ~, ,, - ~ , ~ z ~ = 0-7'  

O{  O77 On Or 0 ~ + 0 ~  

~ = ~ + 0-7' ~ = Oz + o-7' ~ = O x -giz 

(17.2s) 

The rate  of s train involved in Eq. (17.22) can be expressed as 

Ot  = 0 - 7 0 x  = -~x - ~  = O x  (17.29) 

where u is the component  of velocity in x direction, and 

Oe O (ex~ + e~,y + e z z )  = Ou  O v  O w  -. -. 
at  =05 ~ + ~ + ~ - v . v  (17.30) 

The mean stress # is generally taken as - p ,  where p is the mean fluid pressure. Thus,  
Eqs. (17.22)-(17.27) can also be expressed as 

O u  2 --, -. 
a ~ ~ - - p + 2 ~ -gTz - - g u Y .  v 

O v  2 -. --. 
~ ~ ~ - - p + 2 u -g-~ - -3 u V . v 

O w  2 -. --, 

a ~ ,  - - p  + 2u-gTz - 5 u v .  v 

( O v O u )  
~ - .  ~ + ~  

(o ov) 

(17.al) 

(17.32) 

(17.33) 

(17.34) 

(17.35) 

(17.36) 

17.5.3 Equations of Motion [17.1] 
The equat ions  of mot ion can be derived by applying Newton 's  second law to a differential 
volume (dx dy dz) of a fixed mass dm.  If the body  forces act ing on the fluid per unit  mass 
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are given by the vector 

B -  Bxi + By j  + Bzk  (17.37) 

the application of Newton's law in x direction gives 

dF,  - d m  a,: = (pdx  dg dz)a~ (17.38) 

where dFx is the differential force acting in x direction, and a~ is the acceleration of 
the fluid in x direction. Using a figure similar to that  of Figure 8.2, Eq. (17.38) can be 
rewrit ten as 

0~xx ) 
dFx = (pdx dy dz)Bx - e x ~ d y  dz + e,~ + ---0-7-x dx d y d z -  c%xdx dz 

+ c%x+--~-y d y )  d z d z - c ~ z x d x d g +  a z , + ~ d z  d x d y  

Dividing this equation throughout  by the volume of the element gives 

O0"xx O0"yx 
pBx+----~x +-~-y  + 

Oo'zx 
Oz 

= pax (17.39a) 

Similarly, we can obtain for the 9 and z directions. 

Oo'xv Oo'u u Ocr=u 
pB~ + ~ + ~ + O-T = pa~ 

Oa~ Ocruz Oa~ 
pB=+-~x +-gTy + O----7=pa= 

(17.39b) 

(17.39c) 

Equations (17.39) are general and are applicable to any fluid with gravitat ional-type body 
forces. For Newtonian fluids with a single viscosity coefficient, we subst i tute  Eqs. (17.31)- 
(17.36) into Eqs. (17.39) and obtain the equations of motion in z. g, and z directions as 

ov o(  o~ 2 ) o[ (o~, 
Pa~ = p Bx - -~x + --~x 2 # -~z - -3 # V " V + --~y # -~x 

o~) +~ o[(o  
+N"  N 

(17.40a) 

op o[ (o~  
Pay - p By - -~y + -~x p -~y 

&)] o(  ov 2 9.~) +o[  (or +~ +~ 2.~-  5 ~ "  Ow) +~ 
(17.40b) 

Paz-pB~-bTz+ ~ . b-7+N 

Inertia Body Pres- 
force force sure 

force 

o[(o  ow) +~ . ~ + ~  

Viscous force 

Ow 2u9.~?) 0 2~b-Tz 5 +Ozz 
(17.40c) 
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Equations (17.40) are called the Navier-Stokes equations for compressible Newtonian 
fluids in Cartesian form. For incompressible fluids, the Navier-Stokes equations of motion, 
Eqs. (17.40), become 

as = --~ + U-~x + V~y + W-~z -- Bx pox + p -~x + ~ + ~ j (17.41a) 

Ov Ov Ov Ov l Op p / 02v 02 v 02 v "~ 
a~ = --~ + u--~-~x + V-~y + W-~z -- By p Oy + P \ ~ + ~ + -~z2) (17.41b) 

Ow cgw Ow Ow l o p  ll / 02 w c92w 02 W ~ 
az = --~ + u--~x + V-~y + w--~z = B~ p Oz + p + ~ + ~ ) (17.41c) 

Furthermore, when viscosity # is zero, Eqs. (17.41) reduce to the Euler equations: 

ax = Bx l Op (17.42a) 
p Ox 

ay = By l Op (17.42b) 
p Oy 

az = B z l Op (17.42c) 
pOz 

For steady flow, all derivatives with respect to time will be zero in Eqs. (17.40)-(17.42). 

17.6 ENERGY, STATE, AND VISCOSITY EQUATIONS 
17.6.1 Energy Equation 
When the flow is nonisothermal, the temperature of the fluid will be a function of x, y, 
z, and t. Just as the continuity equation represents the law of conservation of mass and 
gives the velocity distribution in space, the energy equation represents the conservation of 
energy and gives the temperature distribution in space. To derive the energy equation, we 
consider a differential control volume of fluid of size dx dy dz and write the energy balance 
equation as 

Energy input = energy output + energy accumulation (17.43) 

The energy input to the element per unit time is given by 

p ~ e -  ~ ( o ~ E ) .  +~ p~(~ + ~,~ + ) -  ~ )]. 
t • , , ,  ,, �9 , , ,  , , , 

- , ~  v -  

Internal energy Kinetic energy 

{ d x }  { k O T  0 ( O T ) d x } )  
+ pu--  -~x(PU)% - -~x O-x k-~x "--2- �9 dydz 

, ,  _ J 

Y 

Pressure-volume work Heat conduction 

+ similar terms for y and z directions 

oQ 
+ ~ dx dy dz + rP dx dy dz 
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where T is the temperature, k is the thermal conductivity, Q is the heat generated in 
the fluid per unit volume, and (I) is the dissipation function--that is, time rate of energy 
dissipated per unit volume due to the action of viscosity. 

Similarly, the energy output per unit time is given by 

I [  O(puE)'dx] 1 {  pu(u2 + v2 w2 0 v 2 w2 I d x }  
puE + --~x V + -2 + ) + --~x pu(u2 + + ) " --2- 

[pu 0 _d_~] { OT 0 ( O T )  d x } )  
+ +-~x(PU) - k ~ + - ~ x  k ~  .-~- .dydz 

+ similar terms for y and z directions 

The energy accumulated in the element is given by 

0 ~(pE) 
�9 Y 1 

Internal energy 

+ -~ ~ +~) 
Y 

Kinetic energy 

dx dy dz 

By making the energy balance as per Eq. (17.43), we obtain, after some manipulation, 

O (k aT) O ( a T )  O ( a T )  OQ 
Ox ~ + ~  k N + ~  k~z +-~+~ 

0 0 0 p D v2 w2 D(E) 
: Ox (pu)+ -~y (pv)+ -~z (pw)+ -~ ~-~ (u 2 + + )+ P Dt (17.44) 

By using the relation 

OE I = specific heat at constant volume 
Cv - ~ at constant volume 

DT D(E) 
we can substitute cv. ~ in place of Dt in Eq. (17.44). 

For inviscid and incompressible fluids, V .  t ~ - 0, and the application of Eq. (17.43) 
leads to 

DT OQ 
pc,,-~ - kV2T + - ~  + dp (17.45) 

where cv is the specific heat at constant volume, T is the temperature, k is the thermal 
conductivity, Q is the heat generated in the fluid per unit volume, and �9 is the dissipation 
function (i.e., time rate of energy dissipated per unit volume due to the action of viscosity) 
given by [17.2] 

e - - ~ ,  ~ x + N + ~ z  +2. ~ + N + N 

+ .  N + N  + N + ~  + N + N  (17.46) 

It can be seen that �9 has a value of zero for inviscid fluids. 
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17.6.2 State and Viscosity Equations 
The variations of density and viscosity with pressure and temperature can be stated in 
the form of equations of state and viscosity as 

p : p(p, T) (17.47) 

tt = p(p, T) (17.48) 

17.7 SOLUTION PROCEDURE 
For a general three-dimensional flow problem, the continuity equation, the equations of 
motion, the energy equation, the equation of state, and the viscosity equation are to 
be satisfied. The unknowns are the velocity components (u, v, w), pressure (p), density 
(p), viscosity (#), and the temperature (T). Thus, there are seven governing equations 
in seven unknowns, and hence the problem can be solved once the flow boundaries and 
the boundary and initial conditions for the governing equations are known. The general 
governing equations are valid at any instant of time and are applicable to laminar, transi- 
tion, and turbulent flows. Note that the solution of the complete set of equations has not 
been obtained even for laminar flows. However, in many practical situations, the govern- 
ing equations get simplified considerably, and hence the mathematical solution would not 
be very difficult. In a turbulent flow, the unknown variables fluctuate about their mean 
values randomly and the solution of the problem becomes extremely complex. 

For a three-dimensional inviscid fluid flow, five unknowns, namely, u, v, w, p, and p, 
will be there. In this case, Eqs. (17.4) and (17.40) are used along with the equation of state 
(expressing p in terms of pressure p only) to find the unknowns. In the solution of these 
equations, constants of integration appear that must be evaluated from the boundary 
conditions of the specific problem. 

17.8 INVISCID FLUID FLOW 
In a large number of fluid flow problems (especially those with low-viscosity fluids, such 
as water and the common gases) the effect of viscosity will be small compared to other 
quantities, such as pressure, inertia force, and field force; hence, the fluid can be treated 
as an inviscid fluid. Typical problems in which the effect of viscosity of the fluid can be 
neglected are flow through orifices, flow over weirs, flow in channel and duct entrances, 
and flow in converging and diverging nozzles. In these problems, the conditions very near 
to the solid boundary, where the viscosity has a significant effect, are not of much interest 
and one would normally be interested in the movement of the main mass of the fluid. 
In any fluid flow problem, we would be interested in determining the fluid velocity and 
fluid pressure as a function of the spatial coordinates and time. This solution will be 
greatly simplified if the viscosity of the fluid is assumed to be zero. 

The equations of motion (Euler's equations) for this case are 

Du Ou Ou On Ou 10p 
D--~ = 0 ~ + ~ N + ~ N + ~ N  =B~ p o x  

Dv Ov Ov Ov Ov 10p 
D--i = o--i + ~'~x + v N  + ~ = B~ p Oy 

Dw Ow 

Dt Ot 
Ow Ow Ow 10p 

pb-Tz 

(17.49) 
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The continuity equation is given by Eq. (17.4). Thus, the unknowns in Eqs. (17.49) and 
(17.4) are u, v, w, p, and p. Since the density p can be expressed in terms of the pressure p 
by using the equation of state, the four equations represented by Eqs. (17.49) and (17.4) 
are sufficient to solve for the four unknowns u, v, w, and p. While solving these equations, 
the constants  of integration tha t  appear  are to be evaluated from the boundary  conditions 
of the specific problem. 

17.9 IRROTATIONAL FLOW 

Let a point A and two perpendicular  lines A B  and A C  be considered in a two-dimensional 
fluid flow. These lines, which are fixed to the fluid, are assumed to move with the fluid 
and assume the positions A ' B '  and A ' C '  after t ime At as shown in Figure 17.2. If the 
original lines A B  and A C  are taken parallel to the x and y axes, the angular  rotat ion of 

1('~1 + 92). and hence the rate of the fluid immediate ly  adjacent to point A is given by 
rotat ion of the fluid about  the z axis (wz) is defined as 

1 ~1 "4-32 
-Jz = ~ At  (17.50) 

If the velocities of the fluid at the point A in x and y directions are u and v, respectively, 
the velocity components  of the point C are u + ( O u / O y ) .  A y  and v + O v / O y .  A y  in x and 
y directions, respectively, where Ay = A C .  Since 22 is small. 

A'  u A t -  u +  A y  A t  
C'  C2 __ A 1 - -  CC~ _ -~y Ou At ( 17.51) 

tan  ~2 - /32  = A'  C2 - A '  C2 - A g = - O--y 

where it was assumed tha t  A'C2 ~ A C  = Ay. Similarly. 

( ov ) 
B 1 B '  _ v + ~ A x  A t - v A t  0VAt (17.52) 

tan ~ 1  - -  / 31  - -  A'B1 - Ax = 0---x 

~ . ~  x 

C P  . . . . .  1 6 2  

' I c ~  , 

T , ,, I s ~. ,~ ~ ' ' "  

1 . . . . . .  A' 

A B 

B 2  ........ .B ' 

B1 

Figure 17.2. 
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Thus, the rate of rotat ion (also called rotation) can be expressed as 

1 ~ z z A t -  ~ y A t  1 0v 

w z -  ~ At - 2 &r 
O~ (17.53) 

By proceeding in a similar manner,  the rates of rotat ion about the z. g. and z axes in 
a three-dimensional fluid flow can be derived as 

1 (Ou' Or) (17.54a) 
~'~--2 o y  - o z  

1 (Ou Ow) (17.54b) 
~Y - -2 Oz a z  

l ( 0 v  Ou)  (17.54c) 

When the particles of the fluid are not rotating, the rotat ion is zero and the fluid is called 
irrotational. The physical meaning of irrotat ional  flow can be seen from Figure 17.3. 
In Figure 17.3(a), the particle maintains the same orientation everywhere along the 
streamline without rotation. Hence, it is called irrotational flow. On the other hand. 
in Figure 17.3(b), the particle rotates with respect to fixed axes and maintains the same 
orientation with respect to the streamline. Hence. this flow is not irrotational.  The vor- 
ticity or fluid rotat ion vector (g) is defined as the average angular velocity of any two 
mutual ly  perpendicular  line segments of the fluid whose z. y. and z components are given 
by Eq. (1"/.54). 

Note 
In both Figures 17.3(a)and 17.3(b). the particles can undergo deformation without affect- 
ing the analysis. For example, in the flow of a nonviscous fluid between convergent 
boundaries, the elements of the fluid deform as they pass through the channel, but there 
is no rotat ion about  the z axis as shown in Figure 17.4. 

17.10 VELOCITY POTENTIAL 
It is convenient to introduce a function O. called the potential  function or velocity poten- 
tial, in integrating Eqs. (17.49). This function o is defined in such a way that  its partial  

a . . ~ . m  

(a) (b) 

Figure 17.3. Irrotational and Rotational Flows. 
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- [ ~ ~ T " - ' " - ' - ' ~  Streamlines 

Figure 17.4. Irrotational Flow between Convergent Boundaries. 

derivative in any direction gives the velocity in that  direction; that  is, 

Oo Oo O0 
Ox Oy Oz 

- - ' W  (17.55) 

Subst i tu t ion of Eqs. (17.55) into Eq. (17.4) gives 

(0 20 020 02o~ _ Op Op Op Op Dp 
-P ~ + ~ + ~ J u--~x + v-~9 + W-~z + 0--{ = D t (17.56) 

For incompressible fluids. Eq. (17.56) becomes 

020 020 020 
v~o= b-~ + ~ + ~ - 0  (17.57) 

By differentiating u and t, with respect, to g and x. respectively, we obtain 

0~ 020 0~, 020 
Og = OgOx" -0~ = OxOy (17.58) 

from which we can obtain 

OU OU 

Og Ox 

Ou Ow 
Oz Ox 

Ow Ov 
Og Oz 

- 0 (17.59) 

= 0  (17.60) 

- o  (::.6:) 

The terms on the left-hand side of Eqs. (17.59)-(17.61) can be seen to be equal to twice 
the rates of rotat ion of the fluid element. Thus. the assumption of a velocity potential  
defined by Eq. (17.55) requires the flow to be irrotational.  

17.11 STREAM FUNCTION 
The motion of the fluid, at every point in space, can be represented by means of a velocity 
vector showing the directiou and magni tude of the velocity. Since representat ion by vectors 
is unwieldy, we can use streamlines,  which are tile lines drawn tangent  to the velocity vector 
at every point in space. Since the velocity vectors meet the streamlines tangential ly for 
all points on a streamline, no fluid can cross the streamline. 
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~ . - - - - - - -  D 

C 

A f  B 

Figure 17.5. 

For a two-dimensional  flow, the s t reamlines can be represented in a two-dimensional  
plane. A s t ream function W may be defined (which is related to the velocity of the fluid) on 
the basis of the continui ty equat ion and the na ture  of the streamlines.  Let the s t reamlines 
AB and CD denote  the  s t ream functions ~1 and t~l, respectively, in Figure 17.5. If a 
unit  thickness of the fluid is considered, W2 - wl is defined as the volume rate  of fluid 
flow between the s t reamlines  AB and CD. Let the s t reamline C'D' lie at a small distance 
away from CD and let the flow between the s t reamlines  CD and C'D' be dt~. At a point 
P on CD, the dis tance between CD and C'D' is denoted  by the components  of distance 
- d x  and dy. Let the velocity of the fluid at point P be u and v in x and y directions, 
respectively. Since no fluid crosses the streamlines,  the volume rate  of flow across the 
element  dy is u dy and the volume rate  of flow across the element  - d x  is - v  dx. If the 
flow is assumed to be incompressible,  this volume rate  of flow must  be equal to dW 

.'. dga = u dg = - v  dx (17.62) 

Because ga is a function of bo th  x and g, 
Eq. (17.62) as 

we use part ial  derivatives and rewrite 

0~' Ov 
= u, = - v  (17.63) 

Oy Ox 

Equat ion  (17.63) defines the s t ream function W for a two-dimensional  incompressible flow. 
Physically, the s t ream function denotes  the volume rate of flow per unit dis tance normal  
to the  plane of mot ion between a s t reamline in the fluid and an arbi t rary  reference or 
base streamline.  Hence, the  volume rate  of flow between any two adjacent  s t reamlines  is 
given by 

Q --- I/-)2 - -  '/4)1 (17.64) 

where ~bl and ga2 are the values of the adjacent  streamlines,  and Q is the flow rate  per unit 
dep th  in the z direction. The  s t reamlines  also possess the proper ty  tha t  there  is no flow 
perpendicular  to their  direction. For a two-dimensional  incompressible flow, the continuity 
equat ion is given by 

oq~z Ov 
-F R----- -- 0 (17.65) 

O-T Oy 
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which is au tomat ica l ly  satisfied by the s t ream function t ' - -  
flow is i rrotat ional ,  the equat ion to be satisfied is 

that  is, bv Eq. (17.63). If the 

Oy Ox 
= 0  (17.66) 

By subs t i tu t ing  Eq. (17.63) into Eq. (17.66), we obtain 

Gq2( 6q 2 
0x----g + ~ - 0 (17.67) 

0y" 

It can be seen tha t  in a two-dimensional  i r rotat ional  and incompressible flow, the solution 
of the Laplace 's  equat ion gives either s t ream functions or velocity potent ials  depending 
on the choice. 

1 7 . 1 2  BERNOULLI EQUATION 
Bernoulli  equat ion can be derived by integrati i lg Euler 's  equat ions (17.49) with the help 
of Eqs. (17.55) and (17.59)-(17.61). By subs t i tu t ing  the relations Ov/0x  and Ow/Ox for 
Ou/09  and Ou/Oz. respectively (from Eqs. 17.59 and 17.60), and Oo/Ox for u (from 
Eq. 17.55) into the first equat ion of (17.49). and assuming that  a body force potent ia l  (f~). 
such as gravity, exists, we have B~ = - (0 ,Q/0J ' ) .  By = -(O,Q/Oy).  and B~ = - (Of~ /Oz) .  
and hence 

020 

cgxOt 

Ou 0~' Ow O.Q 10p 
+ . ~  + , , ~  + ~,-g-~.~ + ~ + p ~ - o  (17.68) 

By integrat ing Eq. (17.68) with respect to x. we obtain  

0o  u 2 1,2 u,2 p 
+ z-2- + z ~ + -6- + 9. + - -- f ~ ( y . z . t )  (17.69) 

Ot P 

where f l  cannot be a function of ,r because its part ial  derivative with respect to x must  
be zero. Similarly,, the second and third equat ions of (17.49) lead to 

Ot 

Oo 

t, 2 Oo u 2 u '2 p 
+ -2- + -2  + -4- + f~ + - = f2(x ,  z, t) (17.70) - p 

ii 2 l, 2 ll, 2 p 

0--t + -2- + --4- + - 2  + Q + - = f3(x, y. t) (17.71) - p 

Since the left-hand sides of Eqs, ( 1 7 . 6 9 ) ( 1 7 . 7 1 ) a r e  the same, we have 

f l ( y . z . t ) -  f2 ( , r , - . t )  = f 3 ( . r , . q . t ) -  f ( t )  (17.72) 

where f ( t )  is a function of t alone. Since the magni tude  of the velocity vector V is given by 

, U,2 1,/2 I-" (~12 + 2 + ) (17.73) 
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Eqs. (17.69)-(17.71)can be expressed as 

- . 2  0r ~_ p 
O---t + + ~ + - = f ( t )  (17.74) 

P 

where f ( t )  is a function of time. For a steady flow, Eq. (17.74) reduces to 

- . 2  

I V--J-~ + ~ + P = constant (17.75) 
2 p 

If the body force is due to gravity, ~ = gz, where 9 is the acceleration due to gravity 
and z is the elevation. By substi tuting this expression of ~ into Eq. (17.75) and dividing 
throughout  by g, we obtain a more familiar form of the Bernoulli equation for steady 
flows as 

~ 2 

+ z + p = c o n s t a n t  
29 

Velocity Eleva- Pres- 
head tion sure 

head head 

(17.76) 

where ~ = pg. 

REFERENCES 
17.1 J.W. Daily and D.R.F. Harleman: Fluid Dynamics,  Addison-Wesley, Reading, MA, 

1966. 
17.2 J.G. Knudsen and D.L. Katz: Fluid Dynamics  and Heat Transfer, McGraw-Hill, 

New York, 1958. 
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PROBLEMS 

17.1 Derive the continuity equation in polar coordinates for an ideal fluid by equat ing 
the flow into and out of the polar element of area r dr  dO. 

17.2 If the x component  of velocity in a two-dimensional flow is given by u - x 2 + 
2x - y2, find the y component  of velocity tha t  satisfies the continuity equation. 

17.3 The  potent ial  function for a two-dimensional flow is given by r - a l  + a 2 x  4- 

a3y  4- a 4 x  2 4- a 5 x y  4- a6y 2, where a~ (i - 1-6) are constants.  Find the expression 
for the s t ream function. 

17.4 The  velocity components  in a two-dimensional flow are u - - 2 x e  + 3y 
and v - 3x 4- 2y. Determine whether  the flow is incompressible or i rrotat ional  
or both.  

17.5 The potential  function for a two-dimensional fluid flow is r -- 8 x y  + 6. Determine 
whether  the flow is incompressible or i rrotat ional  or both.  Find the paths  of some 
of the particles and plot them. 

17.6 In the s teady irrotat ional  flow of a fluid at point P,  the pressure is 15 k g / m  2 and 
the velocity is 10 m/sec.  At point Q, which is located 5 m vertically above P,  
the velocity is 5 m/sec.  If p of the fluid is 0.001 kg /cm 3, find the pressure at Q. 

17.7 A nozzle has an inlet d iameter  of dl = 4 in. and an out let  d iameter  of d2 = 2 in. 
(Figure 17.6). Determine the gage pressure of water required at the inlet of the 
nozzle in order to have a s teady flow rate of 2 ft3/sec. Assume the density of 
water  as 1.94 slug/ft3. 

17.8 The  x and y components  of velocity of a fluid in a steady, incompressible flow 
are given by u = 4x and v - - 4 y .  Find the s t ream function corresponding to 
this flow. 

17.9 The velocity components  of a three-dimensional  fluid flow are given by 

u = a l x  4-  a 2 y  Jr- a3z ,  v - -  a 4 x  4-  a5y  4-  a6z ,  w - -  aTx  4- a s y  4-  a9z  

Determine the relationship between the constants  a l ,  a s , . . . ,  a9 in order for the 
flow to be an incompressible flow. 

17.10 The  s t ream function corresponding to a fluid flow is given by ~ ( x , y ) -  

10(z 2 _ y2). 

(a) Determine whether  the flow is irrotational.  
(b) Find the velocity potential  of the flow. 
(c) Find the velocity components  of the flow. 

I Outlet 

vl, Pl " 

Figure 17.6. 

~ v 2 , � 8 9  



INVISCID 

18 

AND INCOMPRESSIBLE 
FLOWS 

18.1 INTRODUCTION 
In this chapter, we consider the finite element solution of ideal flow (inviscid incompressible 
flow) problems. Typical examples that fall in this category are flow around a cylinder, 
flow out of an orifice, and flow around an airfoil. The two-dimensional potential flow 
(irrotational flow) problems can be formulated in terms of a velocity potential function 
(r or a stream function (r In terms of the velocity potential, the governing equation for a 
two-dimensional problem is given by [obtained by substituting Eq. (17.55) into Eq. (17.5)] 

02r 02r 
Ox 2 + ~ = 0 (18.1) 

where the velocity components are given by 

0r 0r 
Ox'  Oy 

(18.2) 

In terms of stream function, the governing equation is (Eq. 17.67) 

02r 02r 
Ox ~ + ~ = 0 

(18.3) 

and the flow velocities can be determined as 

0~ 0e 
u = v = (18.4) 

Oy ' Ox 

In general, the choice between velocity and stream function formulations in the finite 
element analysis depends on the boundary conditions, whichever is easier to specify. If the 
geometry is simple, no advantage of one over the other can be claimed. 

If the fluid is ideal, its motion does not penetrate into the surrounding body or separate 
from the surface of the body and leave empty space. This gives the boundary condition 

575 
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that  the component  of the fluid velocity normal to the surface must be equal to the 
component  of the velocity of the surface in the same direction. Hence, 

o r  

V . ~ = V B . ~  

ul~ + vly = UBlx + vBly (18.5) 

where V is the velocity of the fluid, VB is the velocity of the boundary, and ff is the outward 
drawn normal to the boundary whose components  (direction cosines) are l~ and ly. If the 
boundary  is fixed (12B = Ij), there will be no flow and hence no velocity perpendicular 
to the boundary. This implies that  all fixed boundaries can be considered as streamlines 
because there will be no fluid velocity perpendicular to a streamline. If there is a line 
of symmetry  parallel to the direction of flow. it will also be a streamline. If VB = 0, 
Eqs. (18.5), (18.4), and (18.2) give the conditions 

&p 0~  l x 0t) 
Os = O---y- - Oxx ly = 0 (18.6) 

0r  OOl~ + O0 
On = 0x N ~  = 0 

(18.7) 

Equation (18.6) states tha t  the tangential  derivative of the s tream function along a fixed 
boundary  is zero, whereas Eq. (18.7) indicates that  the normal derivative of the potential  
function (i.e., velocity normal to the fixed boundary)  is zero. 

The finite element solution of potential  flow problems is illustrated in this chapter with 
reference to the problem of flow over a circular cylinder between two parallel plates as 
shown in Figure 18.1(a). Both potential  and stream function formulations are considered. 

18.2 POTENTIAL FUNCTION FORMULATION 
The boundary  value problem for potential  flows can be stated as follows. 

18.2.1 Differential Equation Form 
Find the velocity potential  O(x, y) in a given region S surrounded by the curve C such that  

020 020 
V 2 0 =  ~ + ~  = 0 i n s  (18.8) 

with the boundary  conditions 

Dirichlet condition: 0 = 00 on C1 (18.9) 

0r Or lx + 6r 
Neumann condition: Vn = On = 0--~ ~yyly - V0 on C2 (18.10) 

where C = C1 + C2, and V0 is the prescribed value of the velocity normal to the boundary  
surface. 
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U=Uo=l 
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---4 

--..t 
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L o_ 
' 1 2  . . . .  1 2  ~ ' J  --I 

(a) Confined flow around a cylinder 

~ X  

oF (0,4) 

(o,e) ...... 0(5,8)  @ (9.~7,B) O (12,B) 

IEI 

1211 

12] 
12] 

(~  (12,5.5) 

(9.17,2.83) EB 

3 1 

~(o,o) 0(5,0) 
(b) Finite element idealization 

Figure 18.1. 

0(8,0) 

18.2.2 Variational Form 
Find the velocity potential r y) that minimizes the functional 

1 / / [ ( 0 r  2 

S 

+ ~ dS- fVo~dC~ 
C2 

(18.11) 
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with the boundary condition 

r = r on C1 (18.12) 

18.3 FINITE ELEMENT SOLUTION USING THE GALERKIN APPROACH 
The finite element procedure using the Galerkin method can be stated by the following 
steps: 

Step 1: 

Step 2: 

Divide the region S into E finite elements of p nodes each. 

Assume a suitable interpolation model for 0 (~) in element e as 

P 

r (x, y) = IN(x, y)](~(~) = E Ni(x, y)'~l ~) (18.13) 
i=1  

Step  3: Set the integral of the weighted residue over the region of the element equal to 
zero by taking the weights same as the interpolation functions N~. This yields 

N~ r9~2 ~ + Oy 2 dS = O, 
S(e) 

i = 1 , 2 , . . . , p  (18.14) 

The integrals in Eq. (18.14) can be written as (see Appendix A) 

/ /  02r dS = - / /  ON~ Or / 
N~ Ox 2 Ox Ox dS + N~ 

S(e) S(~) C(~) 

00r e) 
Ox lx dC (18.15) 

Similarly, 

/ /  N~O2r dS = - / J  " ONi 2 Oy Oy f 0r dS + N~ D' l~ dC (18.16) 

s(e)  S(e) C(~) 

Thus, Eq. (18.14) can be expressed as 

-//(ON~Or162 ( Ock(e) 0r162 d C = 0  
Ox --Ox- § Oy Oy dS + N, Ox lx + Oy 

s(e) c(e) 

i =  1 , 2 , . . . , p  (18.17) 

Since the boundary of the element C (e) is composed of C[ e) and C2 (~), the line integral of 
Eq. (18.17) would be zero on C[ ~) (since r162 is prescribed to be a constant r on C[ ~), 
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the derivatives of r with respect to x and y would be zero). On the boundary C~ ~), 
Eq. (18.10) is to be satisfied. For this, the line integral of Eq. (18.17) can be rewritten as 

/ N~(/)r l~+ Or VoNi dC2 (18.18) 

By using Eqs. (18.13) and (18.18), Eq. (18.17) can be expressed in matrix form as 

(18.19) 

where 

[K (~)1 = f/[B]T[D][B] �9 dS 

S(e) 

(~s.20) 

/5(e) = 
/ ,  

- / Vo[N] TdC2 .J 
C (e) 

(18.21) 

[B]  = I 
ON1 
Ox 

ON1 
Oy 

aN= ...  aN .1  
Ox Ox 

] ON2 . . .  ONp 

Oy Oy 

(18.22) 

and 

,o, = 01] (18.23) 

Step 4: Assemble the element equations (18.19) to obtain the overall equations as 

[K]~ = ~ (18.24) 

Step  5: Incorporate the boundary conditions specified over C1 and solve Eqs. (18.24). 

Example  18.1 (Confined Flow around a Cylinder) Find 
along the vertical center line CD in Figure 18.1(a). 

the velocity distribution 

Solut ion Due to symmetry, we can consider only the portion ABCDEA in the finite 
element analysis. The boundary condition is that r is constant along CD. This constant 
can be taken as zero for convenience. 

Step 1: Idealize the solution region using triangular elements. In the current case, 13 
elements are used for modeling the region as shown in Figure 18.1(b). This idealization, 
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although crude in representing the cylindrical boundary, is considered for simplicity. The 
local corner numbers of the elements are labeled in an arbitrary manner. The information 
needed for subsequent calculations is given in Table 18.1. 

S t e p  2: Determine the nodal interpolation functions. The variation of r inside the 
element e is assumed to be linear as 

~(~) (x, y) = [N(x, y)](~ (e) (El) 

where 

[N(x, y)] = Nj(x,  y) - (a3 + xbj + ycj) /2A (~) 
Nk(x, y) (ak + xbk + yck)/2A (~) 

(e) 

= ~j 

~k 

and the constants ai, a j , . . . ,  ck are defined by Eqs. (3.32). The information needed for the 
computation of [N(x, y)] is given in Table 18.1 (the constants a~, aj, and ak are not given 
because they are not required in the computations). 

S t e p  3: Derive the element matrices using the known values of A (e), bi, b3, . . . ,  ck. The 
element characteristic matrix is given by 

[K (e)] =//[B]T[DI[B] �9 dxdy  

A(e) 

4A(~) 
[ (b~ + c~) (b, b3 + c~cj) (bibk + cick) 1 

2 (b~ + c3 ) (bjbk + cjck )[ 
LSymmetric (b~ + c~) j 

(E2) 

Thus we obtain in this case, 

5 1 6 
[ 1.025 -0.625 -0 .400]5  

[K (1)1 = [-0.625 0.625 O.O00/ 1 
L-0.400 0.000 0.400J 6 

6 1 2 
F 0.625 0.000 -0 .625]6  

[K (21] = [ 0.000 0.400 -0 .400 |  1 
[ -0 .625 -0.400 1.025J 2 
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6 2 7 
0.7086 -0.4088 -0.2998]6 

[K (3)] = -0.4088 0.5887 -0.1799 / 2 
-0.2998 -0.1799 0.4796J 7 

7 2 3 
I 0.8340 0.0000 -0.834017 

[K (4)] = 0.0000 0.2998 -0.2998 / 2 
-0.8340 -0.2998 1.1338J 3 

7 3 4 
0.5660 -0.5660 0.0000]7 

[g (5)] = -0.5660 1.0077 -0.4417 / 3 
0.0000 -0.4417 0.4417J 4 

7 4 8 
r 0.4417 0.0000 -0.4417] 7 

[K (6)] = | 0.0000 0.5660 -0.5660| 4 
L-0.4417 -0.5660 1.0077J 8 

5 6 9 
1.025 -0.400 -0.625]5 

[K (~)] = -0.400 0.400 0.000| 6 
-0.625 0.000 0.625J 9 

9 6 10 
V 0.400 0.000 -0.400] 9 

[K (s)] = [ 0.000 0.625 -0.625[ 6 
L-0.400 -0.625 1.025.] 10 

10 6 11 
1.0417 -0.3750 -0.6667] 10 

[K (9)] = -0.3750 0.3750 0 0000| 6 
-0.6667 0.0000 0.6677J 11 

11 6 12 
0.7121 -0.0595 -0.6526] 11 

[K (1~ = -0.0595 0.3560 - 0  2965 / 6 
-0.6526 -0.2965 0 9491J 12 

6 7 12 

I_ii3201 -0.1403 -0.1799] 6 
[K(11)]= 1403 0.8424 -0.70211 7 

1799 -0.7021 0.8819J 12 
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7 12 13 
[ 0.6505 -0.4138 -0.2067] 7 

[K (12)] = | -0 .4138 0.6788 -0.2650[ 12 
[-0.2067 -0.2650 0.4717J 13 

7 8 13 
[ 0.2650 -0.2650 0.0000] 7 

[K (13)] = [-0.2650 1.2084 -0.9433|  8 
[_ 0.0000 -0.9433 0.9433J 13 

For the computation of the element characteristic vectors we use Eq. (18.21) and obtain sJ{N1} 
C1 s, 0 

2 (E~) 

if the velocity of the fluid leaving the edge i j  is specified as V0. Similarly, we obtain 

fi(~) _ Voskj { 0 }  if the velocity of the fluid leaving 
- 2 1 (E~) 1 the edge jk  is specified as Vo, and 

1} if the velocity of the fluid leaving (Es) 
f i  (~) = Vos,k 0 the edge ki is specified as Vo 2 1 

In Eqs. (E3)-(E~), s j~,skj ,  and s~k denote the lengths of the edges i j ,  j k ,  and ki, 
respectively. 

In the current case, the velocity entering the boundary A B  is prescribed as u0 - 1 
(or V0 = -1) ,  and hence the vectors/5(~) will be nonzero only for elements 1 and 7. These 
nonzero vectors can be computed as follows- 

{2}5 
/5(1) = 1 •  1 = 2 1 

2 0 0 6 

+--- global node number 

(for element 1, the specified velocity is along the edge i j ,  i.e., 12.) 

{1}{2}5 
f i ( r )=  l x 4  0 = 0 6 

2 1 2 9 

+-- global node number 

(for element 7, the specified velocity is along the edge ik, i.e., 13.) 
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S t e p  5: Solve the assembled equations 

after incorporating the boundary conditions specified on C1. In the current case, the value 
of r is set equal to zero along CD. Thus, the boundary conditions to be satisfied are 
~4 - ~s = ~13 = 0. One way of incorporating these boundary conditions is to delete 
the rows and columns corresponding to these degrees of freedom from Eqs. E(6). Another 
method is to modify the matrix [K] and vector t5 as indicated in Section 6.5 (with the 
help of the subroutine ADJUST).  The solution of~the resulting equations is given by 

q) 

(I) 

q) 

I 

2 

3 

4 

5 

6 

7 

8 

9 

L0 

El 

[2 

[3 

14.900 
9.675 
4.482 
0.000 

15.044 
10.011 

4.784 
0.000 

15.231 
10.524 

8.469 
6.229 
0.001~ 

From these nodal values of r the average value of the u component of velocity between 
the nodes 7 and 8 can be computed as 

/)r r  - ~7 0.000 - 4.784 (~)~_~ = ~ ~ = 
xs - x7 9 . 1 7 -  12.00 

= 1.690 

18.4 STREAM FUNCTION FORMULATION 
In the stream function formulation the problem can be stated as follows. 

18.4.1 Differential Equation Form 
Find the stream function r  y) in the given region S surrounded by the curve C such that  

02r 02~ 
V2r  = ~-ffx2 +~-~y2 = 0 i n S  (18.25) 

with the boundary conditions 

Dirichlet condition: ~ = ~0 on C1 (18.26) 

Neumann condition: Vs = 0 r  = V0 on C2 (18.27) 
On 

where V0 is the velocity of the fluid parallel to the boundary C2. 
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18.4.2 Variational Form 
Find the stream function r  y) that  minimizes the functional 

1 [ ( ) 2 ( ) 2 1  ,_// + 

S C2 

(18.28) 

with the boundary condition 

f; = r on C1 (18.29) 

18.4.3 Finite Element Solution 
Since the governing equations (18.25)-(18.27) and (18.28)-(18.29) are similar to 
Eqs. (18.8)-(18.10) and (18.11)-(18.12), the finite element equations will also be similar. 
These can be expressed as 

[K(~)]~ (~) = fi(~) (18.30) 

where [K (~)] and/~(e) are given by Eqs. (18.20) and (18.21), respectively, and 

= . (18.31) 

E x a m p l e  18.2 (Confined Flow around a Cylinder) Find the 
along the vertical center line CD in Figure 18.1(a). 

velocity distribution 

S o l u t i o n  Here also, we consider only the quadrant ABCDEA for analysis. The bound- 
aries AED and BC can be seen to be streamlines. We assume the value of the streamline 
along AED as zero as a reference value. Because the velocity component entering the face 
AB is constant, we obtain 

~b B Y'--YB 

/ d ~ b - - ~ b B - f J A  = / uody=uO(YB--YA) 

~bA Y-'YA 

( E l )  

Because uo = 1 and the streamline passing through A, namely ~A, is taken as 0, Eq. (El) 
gives 

C B  --  0 - -  1(4 - 0) o r  ~)B --" 4 (E~) 

Since u0 is constant along AB, the value of r varies linearly along AB, and hence the 
value of r at node 5 (~5) will be equal to 2. Thus, the Dirichlet boundary conditions are 
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given by 

Because there  is no velocity specified parallel  to any boundary,  the  e lement  characteris t ic  
vectors fi (~) will be 0 for all the elements.  The  element  character is t ic  matr ices  [K (~)] and 
the  assembled mat r ix  [K] will be same as those derived in Example  18.1. Thus,  the  final 

mat r ix  equat ions  to be solved are given by 

1 3 x 1 3  1 3 x l  1 3 x l  

where [K] is the same as the one derived in Example  18.1, ~T = (~1 ~2 ~ 3 . . .  ~z3) -- 

vector of nodal  unknowns,  and / 5T = (0 0 0 . . .  0) = vector of nodal  actions. The  bounda ry  

condit ions to be satisfied are given by Eq. (E3). The  solution of this problem can be 
obta ined as 

~ =  (E~) 

Since the  s t ream function has been assumed to vary linearly within each element,  the 
velocity will be a cons tant  in each element.  Thus,  the  u componen t  of velocity, for example,  
can be computed  between any two nodes i and j as 

Oy yj - y~ 

where yi and yj denote  the y coordinates  of nodes i and j ,  respectively. By using this 
formula, we can obta in  the value of u along the line 4-8-13  as 

~Ps - ~4 1.673 - 4.0 
(u)4-s  = = = 0.9308 

Ys - y4 5.5 - 8.0 

~P13 - ~Ps 0 -  1.673 
(u)8-13 -- ----- = 1.1153 

yl3 - ys 4 . 0 -  5.5 
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18.5 COMPUTER PROGRAM FOR POTENTIAL FUNCTION APPROACH 
A subrout ine called P H I F L O  is wri t ten for the solution of the problem of confined 
flow around a cylinder based on the potent ial  function formulation. The finite element 
idealization consists of t r iangular  elements. The arguments  of this subrout ine are as 
follows: 

NN = number  of nodes (input).  
NE = number  of elements (input).  
NB = semibandwidth  of the overall mat r ix  GK (input).  
XC, YC = array of size NN; XC(I),  YC(I) = x and y coordinates of node I (input).  
NODE -- array of size NE • 3; NODE (I, J) = global node number  corresponding to J t h  

corner of element I (input).  
GK = array of size NN • NB used to store the matr ix  [K]. 

P = array of size NN used to store the v e c t o r / 5  

Q = array of size NE; Q(I) = velocity of the fluid leaving the element I through 
one of its edges (input).  

A = array of size NE; A(I) = area of element I. 
PS = array of size NN; PS(I) = specified value of r at node I. If the value of r is 

not specified at node I, then the value of PS(I) is to be set equal to -1000.0  
(input).  

ICON = array of size NE; ICON(I)  = 1 if element lies along the boundary  on which the 
velocity is specified, and = 0 otherwise (input).  

NCON - a r r a y  of size NE • 2; N C ~ N ( I , J )  = J t h  node of element I tha t  lies on the 
boundary  on which the velocity is specified. Need not be given if ICON(I)  = 0 
for all I (input).  

P L O A D  --- array of size NN • 1 used to store the final r ight-hand-side vector. It repre- 
sents the solution vector (nodal values of 0) upon re turn  from the subrout ine 
PHIFLO.  

To i l lustrate the  use of the subrout ine PHIFLO,  the problem of Example  18.1 is considered. 
The  main program tha t  calls the subrout ine P H I F L O  and the results given by the program 
are listed below. 

C ......... 

C 
C MAIN PROGRAM TO CALL PHIFLO 

C 
C ......... 

DIMENSION XC(13),YC(13),NODE(13,3), ICON(13),NCON(13,2),GK(13,7), 
2 A(13),PS(13),PLOAD(13, I),Q(13),P(13) 
DATA NN,NE,NB/13,13,7/ 
DATA(NODE(I, l),I=l, 13)/5,6,6,7,7,7,5,9, I0, ii,6,7,7/ 
DATA (NODE (1,2), I=l, 13) / i, 1,2,2,3,4,6,6,6,6,7,12,8/ 
DATA(NODE(I,3),I=I, 13)/6,2,7,3,4,8,9, I0, Ii,12,12,13,13/ 
DATA XC/O.O,5.0,9.1Z,12.0,O.O,5.0,9.17,12.0,O.O,5.O,8.0,9.17,12.0/ 
DATA YC/8.0,8.0,8.0,8.0,4.0,4.0,5.S,5.5,0.O,O.O,O.O,2.83,4.0/ 
DATA ICON/I,O,O,O,O,O,I,O,O,O,O,0,O/ 
DATA (NCON (I, I), I=l, 13)/5, O, O, O, O, 0,9, O, O, O, O, O, O/ 
DATA(NCON(I,2),I=I, 13)/l,O,O,O,O,O,S,O,O,O,O,O,O/ 
DO I0 I=I,NN 
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10 P S ( I )  = - 1 0 0 0 . 0  

PS(4)  = 0 . 0  

PS(8)  = 0 . 0  

ms(13)  = 0 . 0  

DATA Q/-1.0,0.0,0.0,0.0,0.0,0.0,-I.0,0.0,0.0,0.0,0.0,0.0,0.0/ 

CALL PHIFLO (NN, NE, NB, NODE, XC, YC, GK ,P ,A, ICON, NCON, Q ,PS, PLOAD) 

PRINT 20 

20 FORMAT(2X,'VALUES OF POTENTIAL FUNCTION AT VARIOUS NODES',/) 

DO 30 I=I,NN 

30 PRINT 40, I, PLOAD (I, i) 

40 FORMAT(16, El5 . 8) 

STOP 

END 

VALUES OF POTENTIAL FUNCTION AT VARIOUS NODES 

1 0 . 1 4 9 0 0 3 6 5 E + 0 2  

2 0 .96753922E+01  

3 0 .44818130E+01  

4 0 . O 0 0 0 0 0 0 0 E + O 0  

5 0 .15044345E+02  

6 0 .10010671E+02  

? 0 .47837925E+01  

8 0 . O 0 0 0 0 0 0 0 E + O 0  

9 0 . 1 5 2 3 1 4 2 5 E + 0 2  

10 0 .10523736E+02  

11 0 .84687223E+01  

12 0 .62288446E+01  

13 O.O0000000E+O0 

REFERENCES 
18.1 G.F .  P i n d e r  and  W . G .  Gray :  Finite Element Simulation in Surface and Subsurface 

Hydrology, A c a d e m i c  Press ,  New York, 1977. 

18.2 J .C.  C o n n o r  and  C.A. Brebb ia :  Finite Element Techniques for Fluid Flow. 
B u t t e r w o r t h s ,  London ,  1976. 
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PROBLEMS 

18.1 The unsteady fluid flow through a porous medium (seepage flow) is governed by 
the equation 

o[ 0r 
ax kXOx 

o[ oo] o[ oo Oe 
+ 4 = a  N- (E~) 

with boundary conditions 

r = 4)0 on $I 

00 0r 0r 1 ( t ) 0 on S~ k=--~zl= + ky-~g ly + kz--~z z + q = 

(E~.) 

(E~) 

where kx, k~, ks are the coefficients of permeability in x, y, and z directions; 0 is 
the quantity of fluid added (recharge) per unit time; a is the specific storage (for 
a confined flow); O is the fluid potential; Ix, ly, l~ are the direction cosines of the 
outward normal to surface $2; O0 is the specified value of ~b on the boundary $1; 
and q(t) is the specified value of velocity of the fluid normal to the surface $2. 
Derive the finite element equations of the flow using the Galerkin approach. 

18.2 Consider the steady-state confined seepage through a rectangular soil mass sub- 
ject to a specified fluid pressure head on the left side as indicated in Figure 18.2. 
Assuming the permeabilities of the soil in the horizontal and vertical directions 

Fluid pressure 
head = 6 in 

l y Impervious surface ,,_\ \\\x 

10" 

l . . I . ~ X  "- - ~ - \ \ \ \  ~ 'X~ \ ' \ \ \ ' \  \ \ \ \ \ \ \  \ \ \ \ \ \  ~L'.'_~ 

0 L ~ ..... 15 . . . . .  "! 
' Impervious surface j @ 

!" 

Figure 18.2. 
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as k= = ku = 2 in./sec, determine the distribution of the potential in the soil 
m a s s .  

Hint" The governing equation is given by 

026 026 
= 0  

subject to r = r = 6 in. 

18.3 Determine the velocity components of the fluid for the seepage flow considered 
in Problem 18.2 using the nodal values of 4> and Darcy's law: 

0V 0O 
u = - k = o x ,  v = - k y o y  

18.4 The dam shown in Figure 18.3 retains water at a height of 12 ft on the upstream 
side and 2 ft on the downstream side. If the permeability of the soil, considered 
isotropic, is k = 10 ft /hr,  indicate a procedure for determining the following: 

(a) Equipotential lines 
(b) Quanti ty of water seeping into the soil per hour per 1-ft thickness of the dam 

(in z direction) 

T 
12' 

I 

Y 

'-  - -  - ~ " .  LL---'-" Impervious surface 

- - Water . . . . _  . .  

. . . . . . .  / J 

J 

/ 

- - - - -  - -  - ' -  - - - -  / . . . . . . .  2' 
I / f / i / / /  

8'  Soil  \ \ 
\ 

\ 
\ 

I p " rf 

F i g u r e  1 8 . 3 .  

,' ~ X 
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18.5 In the finite element analvsis of a two-dimensional flow using triangular ele- 
ments, the velocitv components u and v are assumed to vary linearly within an 
element (e) as 

U(X, /~) - -  G1 ~"~(~" ~- a2~j (e) + a3~Pk (e) 

where (U/~),I,~ (~)) denote the values of (~.t,) at node i. Find the relation- 

ship between U~ ) ~~(~) "(~) ~. . . . . .  l k that is to be satisfied for the flow to be 
incompressible. 

18.6 Develop the necessary finite element equations for the analysis of two-dimensional 
steady flow (seepage) toward a well using linear rectangular isoparametric 
elements. 

18.7 Write a subroutine called PSIFLO for the analysis of two-dimensional flow using 
triangular elements based on stream function formulation. Solve the problem of 
Example 18.2 using this subroutine. 

18.8 The fluid flow in a duct is governed bv the equation 

021t," 02W 
O x ------~- + O - ~  + 1 - 0  

I 

u / 

r - - - - t  
,........I I I ~ �9 I .~wml-I 

L.._I 
f 

/ / /  [ - s  ~ 

f 

t / I . . . . . . . . . . . . . . . . . . . . . . .  
| 
o 

11 ,, 

-r" 

/ 
/ 

/ 

v I 

t 
2 "  

�9 - - - - - - - I~ 'x  

2 "  

Figure 18.4.  
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with W -- 0 on the boundary, and W(x, y) is the nondimensional velocity of the 
fluid in the axial direction given by 

~(x, y) 
W(x, y) - 2wof R~ 

where w(x, y) is the axial velocity of the fluid, w0 is the mean value of w(x, y), f 
is the Fanning friction factor, Re is the Reynolds number [Re = (w0 dh/v)], v is 
the kinematic viscosity of the fluid, and dh is the hydraulic diameter of the cross 
section [dh = (4. area/perimeter)]. 

(a) Determine the distribution of W(x, y) in a rectangular duct using four linear 
triangles for idealization as shown in Figure 18.4. 

(b) Suggest a method of finding the value of the Fanning friction factor f in 
each triangular element using the known nodal values of W. 

(c) Find the Fanning friction factor f for a flow with Re = 200. 

18.9 Find the velocity distribution along the vertical center line CD in Figure 18.1 
using a different finite element grid. 

18.10 Write a subroutine called PSIFLO for the solution of the problem of confined 
flow around a cylinder based on the stream function formulation. Using this 
subroutine, find the velocity distribution along the vertical center line CD in 
Figure 18.1(a). 



VISCOUS 

19 

AND NON-NEWTONIAN 
FLOWS 

19.1 INTRODUCTION 
The basic equations governing the two-dimensional steady incompressible Newtonian flow 
can be obtained from Eqs. (17.41) and (17.5) as 

Conservation of momentum 
in x direction: 

Conservation of momentum 
in y direction: 

Continuity equation: 

--~x + p + v = X + # + (19.1) 

Op ( O v  Ov) ( 02v 02v'~ (19.2) 
N +~ ~N+v~ =v+"  ~xZx ~+oy~; 
Ou cgv 

+ ~ -- 0 (19.3) 
0--~ Oy 

where X and Y denote, respectively, the x and y components  of the body force per 
unit volume (X = pBx, Y = pB~). When the convective terms (terms involving p) in 
Eqs. (19.1) and (19.2) are neglected, we obtain 

(0~ 0~) 0p 
\0~ + ~  - ~  +x=~  

(o v 
" \ Ox~ + ~ - N + Y = ~  

(19.4) 

(19.5) 

which are known as Stokes equations. The boundary conditions for the problem may 
be specified in terms of pressure, velocity, and velocity gradient. Three different for- 
mulations can be used for solving Eqs. (19.1)-(19.3). These are (i) s t ream function 
formulation, in which the stream function (~) is t reated as the unknown function [19.1]; 
(ii) velocity-pressure formulation, in which u, v, and p are t reated as unknowns [19.2]; and 
(iii) s t ream function-vortici ty formulation, in which the s tream function (~) and vorticity 
(w) are taken as unknown field variables [19.3]. We consider all these formulations in this 
chapter. 

594 
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19.2 STREAM FUNCTION FORMULATION (USING VARIATIONAL APPROACH) 
By introducing the s t ream function ~ defined by Eq. (17.63), the continuity equation (19.3) 
can be satisfied exactly and the momentum equations can be combined to obtain a single 
equation in terms of ~ as (assuming the body forces to be zero) 

N - N  =0 (19.6) 

where r, = p/p, V 2 = (02/Ox 2) + (02/Oy 2) = harmonic operator,  and V 4 = (O4/Ox 4) 
+ 2(O4/Ox20y 2) + (oa/Oy 4) = biharmonic operator. The nonlinear terms in Eq. (19.6), 
which come from the convective terms of Eqs. (19.1) and (19.2), are the ones that  make 
this equation very difficult to solve. However, approximate numerical solutions may be 
obtained using the finite element method if Eq. (19.6) is recast as an equivalent variational 
problem. 

Although no universally accepted variational principle is available for the Navier-  
Stokes equations or for Eq. (19.6), Olson [19.1] developed a pseudo-variational principle 
for solving Eq. (19.6) using Cowper's 18 degrees-of-freedom triangular element (conform- 
ing bending element stated in Section 10.8). For a typical tr iangular element shown in 
Figure 19.1, if the edge 1-2 is a boundary, then the boundary conditions along the edge 
1-2 will be 

Op (19.7) either ~ = constant or ~ = 0 

and ~ 
either 0 r  = constant or ar = tt + ~-~ - 0 (19.8) 

0r/ 

where (~, 77) represents the local coordinate system, and ar denotes the shear stress (for a 
Newtonian fluid). The functional I, which on minimization gives the governing differential 
equation (19.6) and the boundary  conditions of Eqs. (19.7) and (19.8), is given by 

N N A(e) Or/ ...... / 

0~ 2 0v 0~ 0~ 2 t 0 v 0 ~ 0 v  ~ 
rl=0 

d~ (19.9) 

where A (e) is the area of the tr iangular element, and the underlined terms are to be taken 
as constants while taking the variation of I. Note that  the boundary integral appears in 
Eq. (19.9) only when the triangular element (edge 1-2) lies on a boundary where some of 
the conditions of Eqs. (19.7) and (19.8) are to be satisfied. 

Since the functional I ( r  contains derivatives up to order two, the continuity of 
and its first derivatives between elements is to be maintained to guarantee convergence 
to the correct solution as the number of elements is increased. The tr iangular bending 
element due to Cowper et al. [19.4] does provide this continuity. This element employs the 
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3(x3,Y3) 

Figure 19.1. Triangular Element. 

values of ~b, (Or (Og,/Oy), (02"g,/Ox2), (02~b/OxOy), and (02g,/Oy 2) at each of the 
three vortices as nodal variables. The interpolation function is taken as a full fifth-degree 
polynomial with 21 parameters  as 

~2 ~b({, 77) -- o~1 "~ &2~ + ct3?~ -'['- (24~ 2 + 0~5~?'1 -~- ct6~ 2 + c~r{ a + c~8 r / +  c~9{r/2 

r/3 7? 4 -t- C~lO q- C~11~ 4 -1- c~12~3r/q- Ctla~2r/2 q- c~14~r/3 q- c~15 q- c~16{ 5 

7?5 {4 + ~l r{  at/a + c~18sC2r/a + c~19{r/4 + ~2o + c~21 r/ 

21 
= ~ c~i{m~r/n~ (19.10) 

i=1 

Since the element has only 18 degrees of freedom (six at each node), the 21 constants (cn) 
of Eq. (19.10) are evaluated by using 18 nodal conditions and 3 additional conditions. The 
additional conditions are taken as that  the variation of the derivative of ~ normal to an 
edge (called normal slope) be a cubic function of the edgewise coordinate. It can be seen 
that  the condition that  the normal slope (oq~b/oqr/) be a cubic equation in { along the edge 
r / =  0 (edge 12) can be satisfied if we set c~21 = 0 in EQ. (19.10). With  this, EQ. (19.10) 
can be expressed as 

r (~,v)= [~] 
1 • 1 1 •  20 •  1 

(19.11) 

where 

[ /3] - [1  ~ r/ ~2 . . .  775] (19.12) 
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and 

-.T {al  a2 a2o} (19.13) OL ~ . o o 

The condit ions for cubic variation of normal  slope along the remaining two edges are 
somewhat  more complicated and are given by [19.4] 

For cubic variat ion of normal  slope along the edge 13: 

5b4ca16 -'b (3b2c 3 - 2b4c)a17 -+- (2bc  4 - 3b3c2)aa8 q- (c 5 - 4 b 2 c 3 ) a 1 9  - 5bc4a2o -~ 0 

(19.14) 

For cubic variat ion of normal  slope along the edge 23: 

5 a 4 c a 1 6  + (3a2c 3 - 2a4c)al~ + ( - 2 a c  4 + 3a 3c2)a18 + (c S - 4a2c3)o~19 + 5ac4c~2o -- 0 

(19.15) 

where the dimensions a, b, and c (indicated in Figure 19.1) are given by 

a = [(x2 - x 3 ) ( x 2  - x l )  + (y2 - y 3 ) ( y 2  - Yl ) ] / r ~  

C - -  [ ( X 2  - -  X l ) ( y 3  - -  Y l )  - -  ( X 3  - -  X l  ) ( Y 2  - -  Y l ) ] / r  

(19.16) 

where 

= [(x~ - x~)~  + (v~ - y , ) ~ ] ~ / ~  (19.17) 

and (x~, y~) are the global (x, y) coordinates  of node i ( i  = 1, 2, 3). The 18 nodal unknowns 
of the element are given by 

where r - ~ at node i, ~ben ~ - ( 0 2 ~ / 0 ~ 0 ~ )  at node i, etc. Using Eqs. (19.11) and (19.18), 
we can obtain 

~ ( ~ ) -  [3_] c~ (19.19) 
1 8 1  1 1 8 •  2 0 1  1 

where [fl] can be derived wi thout  much difficulty. By using Eqs. (19.14), (19.15), and 
(19.19), we get 20 equat ions in 20 unknown coefficients a~, i - 1, 2 . . . .  ,20. These equat ions 
can be expressed in mat r ix  form as 

0 - 
0 

2 0 1  1 

[fl] G (19.20) 
~ 2 0 1  1 

20 x 20 

where [/3] can be identified wi thout  much difficulty. 
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Equation (19.20) can be inverted to obtain 

= [~] -1  0 c~ (19.21) 
2 0 •  ~ 0 

20 x 20 
2 0 x  1 

and 

c~ = [R] ~(e) (19.22) 
2 0 •  1 20 •  18 18•  1 

where the 20 x 18 matr ix [R] consists of the first 18 columns of [/3]-1. The element prop- 

erties can be obtained first with respect to the polynomial coefficients a~ by subst i tut ing 
Eq. (19.10) into Eq. (19.9). For an interior element, this gives 

21 21 21 21 21 

i - -1  j-----1 z--1 j - - 1  / = 1  

(19.23) 

where 

u { m i m j ( m ~ -  1)(mj - 1)g(mi + m j  - 4 ,  ni  + n j  - 1) + [ m i n j ( m ~ -  1 ) ( n ~ -  2) 

+ m 3 n ~ ( m j  - 1)(n 3 - 2)]. g(m~ + rrtj - 2, n~ + nj  - 3) 

+ n~n j (n i  - 2)(nj - 2)-g(m~ + m j , n ~  + nj  - 5)} (19.24) 

s  = ( , ~ m ,  - m ~ n , ) [ m j ( . ~ j  - 1 ) .  g ( . ~  + m~ + m ,  - 3, ~ + , j  + , ,  - 3) 

+ n j ( n j  - 2)g(mi + m j  + r n z -  1, ni + n j  + n ~ -  5)] (19.25) 

g ( m ,  n) = f [ x m y  '' d x  dy  (19.26) 

A(e) 

and the bars over a~ in Eq. (19.23) indicate that  those terms are not varied when the 
variation of I is taken. The element properties are transformed to the global coordinate 
system by using the basic transformation relation 

~(e) e) = [A~]~I (19.27) 
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where 

r  !P, 

, and 

1 0 0 0 0 
0 cos 0 sin 0 0 0 

0 - sinO cosO 0 0 

[A~ =. 0 0 0 cos 20 2 sin 0 cos O 
0 0 0 -s inOcosO (cos 2 0 - s i n  20) 
o 0 0 sin 20 - 2  sin 0 cos 0 

0 
0 
0 

sin 2 O 
sin O cos O 

COS 2 0 

(19.28) 

The final element equations can be expressed in the familiar form as 

[K(~)]~ (~) + [F (e) (~(~))]~(~) = 13 (19.29) 

where the elements of the matrix [F (~)] are nonlinear functions of the nodal unknowns 
~(~) with 

~ ( e ) =  ~(e) (19.30) 

The overall or assembled equations can be obtained as 

[K] ~ + [F(~)] ~ = 0 (19.31) 

These equations represent a set of N nonlinear algebraic equations in the N global vari- 
ables ~i,  i = 1 ,2 , . . .  ,N.  Olson [19.1] solved these equations using the Newton-Raphson 
method. 

E x a m p l e  19.1 The finite element formulation presented previously is applied for the 
solution of the flow over a circular cylinder as shown in Figure 19.2(a) [19.1]. The following 
boundary conditions are imposed on the problem: 

Along the upstream edge: 
0~ 

~ = Y '  0x = 0  

Along the x axis: r - 0  

Along the upper edge: 

Along the downstream edge" 

0~ 
= 1  

Oy 

0~ = 0 
0z 
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i 
10 

L 6 - - - = - + A  D, 10 ~-J Grid in region ABCD 
I- - I  

(a) Finite element idealization 

U - - - ~  

U 

(b) Streamlines given by finite element method 

.1437 

(c) Streamlines given by finite difference method 

Figure 19.2. Flow over a Circular Cylinder (Re = 20) [19.1]. 

On the surface of the cylinder: 
0~ 

~P = O, On = 0 (n  denotes the normal 
to the cylinder) 

The natural boundary conditions of zero shear stress along the symmetry line (bottom 
edge) and zero pressure gradient along the top and downstream edges are not imposed 
but are left for the program to approximate. The pattern of streamlines obtained from the 
solution for a Reynolds number of 20 are shown in Figure 19.2(b). These results compare 
well with those given by an accurate finite difference solution [shown in Figure 19.2(c)]. 
It can be seen that even the separation phenomenon behind the cylinder is predicted 
accurately. 
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lg.3 VELOCITY-PRESSURE FORMULATION (USING GALERKIN APPROACH) 
First, we consider the solution of Stokes equations, Eqs. (19.4) and (19.5), and the con- 
tinuity equation (19.3). We consider the pressure (p), the velocity component parallel to 
the x axis (u), and the velocity component parallel to the y axis (v) as unknowns in the 
formulation. For a typical finite element inside the region S, the unknowns p, u, and v are 
assumed to vary as 

p(~)(~,y)- y~ N~(x, y)p(~)= [X~(~. y)]P (~) 
i 

~(~)(x,v) : ~ x:(~,y)U~ ~' -[x~(~. y)]C (~, 
i 

~(~)(~,~) = y~N;'(x,y)~ ~) - [X"(x, y)]C (~) 
i 

(19.32) 

where N/p, N~, and N/~' are the interpolation functions, which need not necessarily be of 

the same order, and/3(~), 57(~), and l v(~) are the vectors of nodal unknowns of element e. 
For simplicity, we assume N~ = N~'= Ni in the following development. 

By using Galerkin's weighted residual method, we can write at any node i of element 
e three sets of equations. The first one is given by 

f / N~(x, y) IX OP(~) 
Ox 

A(e) 

+ p .Oj 2 + Og 2 d A  - 0 
(19.33) 

where the shape function corresponding to node i, Ni(x. y). is used as the weighting 
function. Integrating Eq. (19.33) by parts, we obtain 

- N i X  - p(e) + g 7-J t- # dA + Nip(e)lx �9 dC 

A(e) C{C) 

f ( o ~  (~) o~, (~)) - #Nz Oz l x +  oy lu d C = 0  
c(e) 

(19.34) 

where l~ and ly indicate the direction cosines of the outward drawn I~ormal at the boundary 
of the element e, C (e). By substi tuting Eqs. (19.32) into Eq. (19.34). we obtain 

/ / [  v_ONi ~(~) ( ON, Ox - N ~ X  - ~ [N']  + . 

A(e) 

+ 11 Oy Oy 

f ( OrN] O[N] ) f - #N, --~-x 1, + - -~y  l~ dC + Ni[NP].fi(~)Ix dC = 0 
c ( e i  C(~) 

(19.35) 

The second equation is similar to Eq. (19.35) and can be obtained by interchanging x and 
9, U and V, and X and Y in Eq. (19.35). Tile third equation arising from Eq. (19.3). 
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by using Ni P as the weighting function, is 

/ O[N] ~(~) dA + / /N~ O[N] ~,(~) dA = 0 N$-E -Ey 
A(e) A(e) 

(19.36) 

By assuming a quadra t ic  variat ion for the velocity components  u and v and a linear 
variat ion for the pressure inside a t r iangular  element,  the element  equat ions  can be wri t ten  
in mat r ix  form as 

[K(~)]~ (~) -- / 5(~) (19.37) 

where 

[K1 (e) ] : [0] 
6 x 6  , 6 x 6  

i 

[ K ( ~ ) ]  _ [0] 
15 x 15 6 x 6 

3 x 6  

-1 

[K1 (~)] 
6 x 6  

3 z 6  

1 5 •  " "  ' 

[K~( ~)] 
6 x 3  

[K3 (~)] 
6 x 3  

[o] 
3 •  

v~ (~) vi (~) . . .  ~(~) i -P~~ -P~(~) 

1 5 x l  

~J = # Ox Ox 
A(~) 

K( e) f / ON~ 
2 , ~  = - -Ex Ny dA 

A (e) 

K (~) f / ONi 
3zj 

A(e) 

p~)= N, . bn 
c(e) 

p(el = # On 
c(e) 

5 ~ ) i  P~) ~ )  ... P ~ ) i  0 o 

ONi ON~ ~ dA 
Oy Oy / 

. . . .  p(e)) Ix dC - / /  N, X dA; 

A(e) 

- p(e)) ly dC - / /  N~Y dA; 
A(e) 

i =  1 , 2 , . . . , 6  

i = 7 , 8 , . . . , 1 2  

(19.38) 

(19.39) 

0 } f  (19.40) 

(19.41) 

(19.42) 

(19.43) 

(19.44) 

(19.45) 

The  element  equat ions (19.37) can be assembled to get the overall equat ions as 

[~] ~ = p (19.46) 
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where 

E E E 

e - -1  e = l  e - -1  

(19.47) 

and E is the number of elements. 

19.4 SOLUTION OF NAVIER-STOKES EQUATIONS 
To extend the solution of Stokes equations to the full Navier-Stokes equations, the follow- 
ing iterative procedure can be adopted. Let u . ,  v~, and p~ be an approximate solution 
(in n th  iteration) to the flow problem. Then we introduce this solution into the coefficients 
of convective terms of Eqs. (19.1) and (19.2) and write the set of equations as 

" \ Ox ~. + --Sjy~ - ~' '~" ~ + ~"~ N - ~ + x - o 

, d~-~x~+~-jy~ -o ~ N + ~  N - N +  -o 
Ou Ov 

+ = -  = o 
0---~ Vy 

(19.48) 

To start  the iterative process, un, vn, and p,~ may be the solution of the Stokes equations. 
When the Galerkin procedure is applied to Eqs. (19.48), we get 

02u(e) 02u(~) Ou(~) +v(~)Ni - N i  + N i X  d A = 0  
A(e) tt Ni Ox 2 + Ni Oy 2 - P u (r ) Ni Ox --~y ] 

p Ni cox2 +Ni Oy 2 - p  N i ~ + v , ~  Ni--~y j - N i - ~ y  + N i Y  dA=0  
A(e) 

A(~) Ni Ox +Ni Oy i d A = 0  

(19.49) 

(~) (~) 
We next integrate by parts all terms in Eqs. (19.49) except those involving u .  and vn . 

In this manner,  the natural  boundary conditions are kept identical to those for the Stokes 
equations. This leads to element equations of the same form as Eq. (19.37) except that  the 

submatr ix  [K} e)] will be different in the current case. The elements of the matrix [KI ~)] 
in the current case are given by 

K(r f f [ ( O N ~ O N j  
1 ~j = tt Ox Ox 

A(e) 

dA (~9.50) 
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Note tha t  the total  elemental matr ix [K (~)] will be unsymmetr ic  because of the presence 
of the convective terms. The overall system equations can be expressed as 

...+ 

[g(, . .  ~,.)]r =g .+ ,  (19.51) 

where the subscripts n and n + 1 indicate the successive stages of iteration. Thus, 
. .+ 

Eq. (19.51) is to be solved successively for ~n+l  using the nodal values of u and v obtained 
in the previous iteration. This process is continued until the two vectors ~,~ and ~n+l  are 
sufficiently close. 

E x a m p l e  19.2 Yamada et al. [19.5] considered the problem of flow past a circular cylin- 
der to i l lustrate the previous procedure. As indicated in Figure 19.3, the infinite field of 
flow is confined by a circle of radius r/a = 8.0 (or 20.0) and the region is divided into 
finite elements. The boundarv conditions at these radii are specified as u = 5.0, v = 0, 
and p = 0 for a Reynolds number of 30.0. The boundary conditions on the surface of 
the cylinder (r = a) are taken ms u = 0 and v = 0. The velocity distr ibution obtained 
by solving Stokes equations is given by Figure 19.4. For the Navier-Stokes equations, the 
velocity distr ibution becomes unsvmmetrical  due to the inclusion of convective terms as 
shown in Figure 19.5. The convergence of Navier-Stokes equations has been obtained in 
eight i terations s tar t ing from the Stokes solution. 

19.5 S T R E A M  F U N C T I O N - V O R T I C I T Y  F O R M U L A T I O N  
19.5.1 Governing Equations 
In the s t ream function formulation, the final equation governing the incompressible viscous 
flows is of order four (see Eq. 19.6). If we choose the s t ream function (~,) and vorticity 

u = 1.0 or 5.0 cm/s 

a = 0.75 cm 
b= 8.0a 
c = 20.Oa 

- I b  

-~ ~-.a _.j j 
,------b 
! . . . .  C ,,, [ - -  - 1  

Figure 19.3. Boundary Conditions and Finite Element Mesh for the Analysis of the Flow Past 
a Circular Cylinder [19.5]. 
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[ " " 1 ~ Q ' q D  

VELOCITY -,4 I--a _~ 
SCALE - -  ~ ' 

1.0 CM/S 

Figure 19.4. Velocity Solution of Stokes Equations [19.5]. 

V 

"qb 
. . . . . . . . . . . . . . .  ~ .  :% . . . . . . . . . . . .  _ L .  

scLOLClT Y .,~_i-- a ~ 0.0 CM/S_ , , J, 
F-- 

5.0 CM/S 

Figure 19.5. Velocity Solution of Navier-Stokes Equations (Re -- 30) [19.5]. 

(w) as the unknowns, the governing equations will be two second-order equations coupled 
in ~p and w as shown below [19.6]. From the definition of vorticity in two dimensions (see 
Eq. 17.54c), 

1 (Ov O u )  (19.52) 
-- ~ -- -2 Ox Oy 

By substituting the expressions of u and v from Eq. (17.63), Eq. (19.52) gives 

1 w = -:-V2W (19.53) 
2 

Equation (19.6) can be rewritten as 

Og, O q.2 
0x (V2W) - 0 (19.54) 

0y 
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By substituting Eq. (19.53) into Eq. (19.54), we obtain 

vV2w q &/2 Ow &12 Ow = 0 (19.55) 
Ox Oy Oy Ox 

For unsteady state problems, Eq. (19.55) will be modified as 

vV2w 4 0r  Ow OW Ow Ow = 0 (19.56) 
Ox Oy Oy Ox Ot 

Thus, Eqs. (19.53) and (19.56) represent two coupled second-order equations [Eq. (19.56) 
is nonlinear] governing the transient incompressible viscous flows. 

19.5.2 Finite Element Solution (Using Variational Approach) 
Cheng [19.3] presented an iterative procedure based on a quasi-variational approach for 
the solution of the differential equations (19.53) and (19.56). In this method, the solution 
at the nth time step (~,~, wn) is assumed to be known and the solution at the n + l th  time 
step is determined by solving the following set of linear differential equations: 

--V2~n+1 : wn 

VV2Wn_F1 _~ 0r OWn 0~[2rt+1 Own Own - 0  (19.58) 
Ox Oy Oy Ox Ot 

(19.57) 

The functionals 11 and/2 ,  whose Euler-Lagrange equations yield Eqs. (19.57) and (19.58), 
respectively, are given by 

, [( II : -~ f f  0 ~ ; 1  
S 

+ - 2Wnr dS 

1 / /  [ {(0Wn+l) 2 
12 = -~ s u Ox 

(19.59) 

( O~n+l OWn O W n ) ]  0~'n+1 OWn ~ ~ Wn+l dS (19.60) 
+ 2 Ox Oy Oy Ox 

where the underlined term in Eq. (19.60) is to be taken as a constant while taking the 
variation of /2 .  Since the functions I1 and /2 involve only the first derivatives of r and 
w, the interpolation functions need to satisfy only the C O continuity. By assuming the 
variations of ~ and w inside an element e at the time step n + 1 as 

,I,(e) (x y, t) = [N(x, Y)]-n+l (t) Wn+l 
w(~) (x y, t) [N(x, -'(~) n+l ' - -  Y)]~n+l(t) 

(19.61) 

(19.62) 

the element equations can be derived from the conditions 511 = 0 and 512 = 0 as 

[ K ~ ) ] ~  (~) + 5(~) - 6 ~-n+l " In 

[K2(~)]3 (~) 5 (*) 5(*) 6 "'n+l + [K(e)]'"n+l +" 2n = 

(19.63) 

(19.64) 
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where 

K( ~) f f ( O N ~ O N j  ONiONJ)dA 
1 ij  ---~ OX OX t O y  0~1 

A(e) 

K(~) / /  2 ~j = N ~  N j  �9 dA 

A (e) 

(19.65) 

(19.66) 

K( ~) - '~(~) (19.67) 3 i j  - -  V Z t l  i j  

0"/'(~) ) �9 ~,~+1 Own .dA 
Ox Oy 

Ply, = - / / w ( ~ ) N ~  dA 
A(e) 

A(e) 

(19.68) 

(19.69) 

and A (~) denotes the area of element e. Equations (19.63) and (19.64) can be assembled 
in the usual manner to obtain the overall system equations as 

[K1]~+I  + fil~ = 0 (19.70) 

[K2] ~-~n+l "~-[K3]~"~n+l -~/:~2n -- 6 (19.71) 

By approximating the vector of time derivatives ~-~n+l in Eq. (19.71) as 

Ow (at node 1) 
b7 

~,~ + 1 = Ow (at node 2) 

n+l 

= -~1 (fin+l - f~n) (19.72) 
At ~ ~ 

where the time interval At is given by At = t~+l - tn, Eq. (19.71) can be expressed as 

1 ) 1 -- (19.73) 

Equations (19.70) and (19.73) represent the final matrix equations to be solved after 
applying the known boundary conditions. The solution procedure starts with known initial 
values of ~ (for n = 0). Once ~n is known, Pin can be evaluated using Eq. (19.68) and 
then Eq. (19.70) can be solved~for ~n+l.  From the known values of ~n and ~,~+1, the 
vector/52~ can be determined from Eq. (19.69), and hence Eq. (19.73)~can be solved for 
~ + 1 .  This recursive procedure is continued until the solution at the specified final time 
is found. 
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.--Movable plate 
= ._  

. . . .  

T 
~ B '  ~ Velocity dy fluid ~ ,  
m,, profile L 

. . . . .  

me=Velocity (du) 

L_. Fixed plate (area = A) 

F = E  d__~u 
A g dy 

Figure 19.6. Definition of Viscosity for a Newtonian Fluid. 

19.6 FLOW OF NON-NEWTONIAN FLUIDS 
19.6.1 Governing Equations 
(i) Flow curve characteristic 
Many practical fluid flows do not follow Newton's law of viscosity and the assumption of a 
constant viscosity independent of temperature,  density, and shear rate does not hold. Such 
types of fluids are called non-Newtonian fluids. The flow of many crude oils, especially at 
low temperatures,  industrial wastes, slurries, and suspensions of all kinds fall under the 
category of non-Newtonian fluids. The shear stress r of a Newtonian fluid in uniaxial flow 
is given by (see Figure 19.6) 

# d u  
r = (19.74) 

g dy 

where > is the coefficient of viscosity [units = mass/( length x time)], g is the accelera- 
tion due to gravity, and (du/dy) is the velocity gradient that  is equivalent to the shear 
rate. Here, the quantity (la/g) is a constant and is independent of the shear rate. Equa- 
tion (19.74) is represented as a linear curve in Figure 19.7. Certain fluids, known as 
Bingham plastic fluids, behave as a rigid solid until a certain level of shear stress (r0) is 
attained and behave as a Newtonian fluid afterwards. 

Thus, they can be described by 

> d u  
g ~-~y + ro for rl > "co 

0 for Irl<ro 

(19.75) 

True Bingham fluids, which follow Eq. (19.75). are not encountered in practice, but most 
fluids exhibit pseudo-plastic characteristics. Hence, many empirical equations have been 
developed to represent their behavior. One widely used such equation, known as the power 
law, is given by 

T D 
d u  

n - - I  du 
dy (19.76) 
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Figure 19.7. Flow Curves for Uniaxial Flow. 

--~ Shear rate , . , . . -  

where k is the consistency index, and n is the flow behavior index (n < 1). Equa- 
tions (19.75) and (19.76) are also shown plotted in Figure 19.7. 

(ii) Equation of motion 
By assuming the fluid flow to be incompressible and time independent but possessing a 
variable viscosity, the steady-state equation of motion for flow through a parallel-sided 
conduit can be stated in the form of a nonlinear Poisson equation as [19.7, 19.8] 

O--x gOxx +Oyy ~yy +pg-~--~z=O (19.77) 

where u is the velocity, p is the density, and Op/Oz is the pressure gradient. If the pressure 
gradient is known, the solution of Eq. (19.77) enables us to find the velocity distribution, 
u(x, y), and the quantity of flow. 

19.6.2 Finite Element Equations Using Galerkin Method 
In the Oalerkin method, the weighted residue must be zero over the region of flow, S. 
Thus, 

l ~xx gOx + O y  gOyy + Q  W . d S = 0  (19.78) 
s 
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where 

Op 
Q = Pg- -~z (19.79) 

and W is the weighting function. By applying Green-Gauss theorem of Appendix A, 
Eq. (19.78) can be expressed as 

- ~- ~xxM+~y--~-y . d S +  WQ.dS+ Wg --O--~xl:-f---~yl..dC 
S S C 

(19.80) 

where C denotes the boundary of the region S, and lx and ly represent the direction 
cosines of the normal to this boundary at any point. The velocity u is assumed to vary 
within an element e as 

u(x,y)  = E N'U~e) = [N]U(~) (19.81) 
i 

where Ni is the shape function corresponding to the ith nodal degree of freedom U~ e) of 
element e. It can be seen from Eq. (19.80) that the shape functions Ni need to satisfy only 
the C 1 continuity. By substituting Eq. (19.81) into Eq. (19.80) and by taking W - Ni, 
we obtain 

f f  t~{ON~ 0 
- ~ -5;x~ [NIU 

A(e) 

(e) + -~Y ~yy[g] �9 dA + 

A(e) 

i tt O[N] + g N, ~ 0 (~). dC = 0 
C(~) 

(19.82) 

The boundary conditions applicable are as follows: 

(i) u=uo on C1 (19.83) 

(known value of velocity on boundary C1) 

(ii) om IZ Ou = on C2 (19.84) 
g On 

where a is the coefficient of "sliding friction" between the fluid and the boundary (fluid 
slippage at the boundary is proportional to the velocity gradient normal to the boundary 
C2). With the help of Eq. (19.84), the last term on the left-hand side of Eq. (19.82) can 
be replaced by - fc2 aN~[N], dC. Using Eq. (19.82), the element equations can be stated 
in matrix form as 

([K[ ~)] + [K~)])U (~) = fi(~) (19.85) 
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where the elements of the matrices [K~ ~)] and [K~ ~)] and the vector/5(~) are given by 

K( e) / f  # li3 --- g 

A(e) 

ONiox ONJox b oyONi ON, Joy dA (19.86) 

K( 
~) f 2i j  : 

c~(~) 

aN~[N] . dC (19.87) 

P~) = / /QN~ �9 dA 
A(e) 

(19.88) 

Note that  the matrix [K2 (e)] denotes the contribution of slippage at the boundary and is 
applicable only to elements with such a boundary condition. The assembly of the element 
equations (19.85) leads to the overall equations 

(19.89) 

19.6.3 Solution Procedure 
The elements of the matrix [K1] can be seen to be functions of viscosity # and hence 

are functions of the derivatives of the unknown velocity u(x, y). The viscosity-velocity 
relationship is nonlinear and is given by Eq. (19.75) or Eq. (19.76). Hence, Eqs. (19.89) 
represent a set of simultaneous nonlinear equations. These equations can be solved by 
using an iterative procedure. The procedure starts with the assumption of an apparent 
viscosity and Eqs. (19.75) and (19.76) are written in the form 

~- = -[~(~)]-~ (19.90) 

This apparent viscosity at any point A shown in Figure 19.7 will be the slope of the secant 
O A and can be expressed as 

{_s = TA (19.91) 
g %a 

Thus, for Bingham plastic fluids, the apparent viscosity can be expressed as 

-~% + ro 
~(~) = g = TO ~ # (19.92) 

+ g 

and for pseudoplastic fluid as 

k n - 1  r - - - I # l  # (19.93) 
g 

o r  

k --1 ~(~) = -I-~1 ~ (19.94) 
g 
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Then Eq. (19.92) or Eq. (19.94) is substituted into Eq. (19.86) to obtain 

K(e) / /  ( ON~ ONj ON~ ONj ) 
lo = ~(i) Ox Ox ~ Oy Oy dA (19.95) 

A(~) 

where 

Ou 2 Ou 2 O[N] 2 O[N] 
~ =  ~ + ~ = -~x 0(~) + -57y 0 (~) 

1/2 

(19.96) 

Usually, the initial approximation to the solution of Eq. (19.89) is based on the Newtonian 
velocity distribution. Equations (19.89) can be written as 

~'n+l = -[K(U"n)]-i .~ (19.97) 

where 57n and 0~+1 denote the solutions of 0 in nth and n + l th  iterations. The solution 
procedure can be summarized as follows [19.9]" 

1. Solve Eqs. (19.89) for Newtonian velocity distribution after applying the boundary 
conditions of Eq. (19.83). 

2. Compute the shear rate and the apparent viscosity. 
3. Calculate the matrix [K~]. 
4. Solve Eqs. (19.89) for 0n+l  after applying the boundary conditions of Eq. (19.83). 
5. Test for the convergence of the process using the criterion 

(u,)~ - (u~)~_~ 
(u~)~ < ~, i - 1, 2 , . . .  (19.98) 

where r ~ 0.01 for each nodal velocity Ui. 
If convergence of Eq. (19.98) is not satisfied, repeat steps 2-5. 

E x a m p l e  19.3 The problem of Bingham flow between parallel plates was considered by 
Lyness et al. [19.7]. The problem is shown in Figure 19.8, where the plug dimensions are 
given by 

dp (El) hp = TO J 
/ dz 

where hp defines the extent of the solid plug. For this problem, the exact solution for the 
velocity is given by 

l[ dp( 2 2) (")] 
Up = -~ dz ~ - hP -7o -~ - hp for h < hp (E2) 

u - - ;  dzz -'4 - - h 2  -To  - ~ - - h  for h > h p  (E3) 

The problem was solved for different values of true viscosity and plug sizes. Five quadratic 
rectangular elements were used for the idealization as shown in Figure 19.8. The finite 
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Figure 19.8. Bingharn Flow between Parallel Plates [19.7]. 

element (velocity) solution is compared with the exact solution given by Eqs. (E2) and (E3) 
in Figure 19.8. It can be seen that  the finite element solution compares very well with 
the exact solution. The flow rate through the section can be computed by numerically 
integrating the velocity over an element and summing over all the elements. The error 
in the flow rates predicted by the finite element method was found to be less than 1% 
compared with those obtained by explicit integration of Eqs. (E2) and (E3). 

1 9 . 7  O T H E R  D E V E L O P M E N T S  

As can be observed from Chapters 18 and 19, a majority of the finite element applications 
to fluid mechanics problems employed one of the weighted residual criteria for deriving 



614 VISCOUS AND NON-NEWTONIAN FLOWS 

the equations. The problem of laminar boundary layer flow was studied by Lynn [19.10] 
using the least squares criterion and by Popinski and Baker [19.11] using the Galerkin 
approach. The transient compressible flow in pipelines was studied by Biggard et al. [19.12]. 
A study of penalty elements for incompressible laminar flows was made by Dhatt and 
Hubert [19.13]. An optimal control finite element approximation for penalty variational 
formulation of three-dimensional Navier-Stokes problem was presented by Li et al. [19.14]. 
Numerical experiments with several finite elements were conducted for the study of viscous 
incompressible flows [19.15]. The problems of finite element mesh generation for arbitrary 
geometry, efficient solution of equations, derivation of new elements, and development of 
efficient codes for fluid flow problems have also been investigated [19.16]. An overview 
of the application of finite elements in computational fluid dynamics was presented by 
Lohner [19.17]. 
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6 1 6  VISCOUS AND NON-NEWTONIAN FLOWS 

P R O B L E M S  

19.1 Consider an incompressible viscous flow using the stream function-vorticity 
formulation of Section 19.5.1. Derive the corresponding finite element equations 
using the Galerkin method. 

19.2 A fully developed laminar forced flow of a Newtonian, incompressible fluid between 
two parallel plates is shown in Figure 19.9. Consider the energy balance of an 
infinitesimal element dx dy ,  including the energy transported by the fluid motion, 
and derive the equation governing the temperature distribution in the fluid, 
T(z, y), as 

where p is the density, c is the specific heat at constant pressure, u is the x 
component of velocity, and k is the thermal conductivity. 

19.3 Using the Galerkin method, derive the finite element equations corresponding to 
Eq. (El) of Problem 19.2 by assuming the temperature variation in an element as 

T(x,  y) = [N(x, y)]fr (El) 

Note that the components of velocity of the fluid parallel to the y and x axes are 
given by 0 and u ( y )  - (3/2)u0{1 - [y /d]2} ,  respectively, where u0 is the average 
velocity. 

19.4 Consider a fully developed laminar forced flow of a Newtonian, incompressible 
fluid in a circular duct. Axisymmetric temperature and heat fluxes are prescribed 
on different parts of the boundary (walls) of the duct. Consider the energy balance 
of an annular element of volume 27rr dr dz, including the energy transported by 

H e a t  flux, qo, added to fluid 
(specified) Temperature prescribed 

~ , ~ , ,  \ .~"~x\ Plate 
~ . \ , x ~ \ \ \ \  \ \ \ \  \ ~ \ ~ \ ~  \ \ \  \ \  ~'~ \ \  \ ~ \ x x \  \ \ ~  \ \ \ \ \  x \  

Y I r- '--* '~" -- 
' "-" u(n 

- -  v 

�9 d ~ , 

1 .---, 
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I _._1 
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t - - ~ / d x  
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the fluid motion along the axial (z) direction, and derive the equation governing 
the temperature  distribution of the fluid, T(r, z), as 

OT 1 0 [ kr OT l 0 [ cOT 
p~v ( r ) O z : ~ o~ [ ~ ] + -5;z k -52z 

(E~) 

where p is the density, c is the specific heat at constant pressure, v is the 
z component of velocity, and k is the thermal conductivity. 

19.5 Using the Galerkin method, derive the finite element equations corresponding to 
Eq. (El) of Problem 19.4 by assuming the temperature variation in an element as 

(El) 

Note that  the components of velocity of the fluid parallel to the r and z axes are 
given by 0 and v(r) = 2v0[1- [r/d]2}, respectively, where v0 is the average velocity 
and d is the radius of the duct. 



20 

SOLUTION OF QUASI-HARMONIC 
EQUATIONS 

20.1 INTRODUCTION 
A significant class of physical problems representing phenomena suct~ as heat conduction, 
torsion of shafts, and distribution of electric potential are known as field problems. These 
field problems have the characteristic that they all are governed by similar partial differ- 
ential equations in terms of the concerned field variable. This permitrS us to discuss the 
solution of the governing partial differential equation without identifying the field variable 
~b as a particular physical quantity. The steady-state (time-independent) field problems 
are governed by the quasi-harmonic equation 

0( o0) 0(oo) 0(0o) 
where q5 is an unknown function or field variable (assumed to be single valued in the 
domain), and kx,/cy, kz, and c are known functions of x. ~/. and z. 

The physical interpretation of k~, ky, k:. c. and o depends on the particular physical 
problem. Table 20.1 lists some typical field problems along with the significance of o 
and other parameters for each problem. Equation (20.1) assumes that the medium is 
inhomogeneous and/or anisotropic, and the coordinates x.y. and z coincide with the 
principal coordinates. If the medium is homogeneous, kx. ky, and k= will be constants. 
and if it is isotropic, k~ = ky = kz = k = constant. The general boundary conditions for 
Eq. (20.1) are given by 

q5- ~; value of 0 prescribed on part of the boundary. $1 
(Dirichlet condition) (2o.2) 

and 

O0 OO 00 
kx -gTzlx + ky--~V ly + k~ --~zl= + q + ro = 0 

on the remaining part of the boundary, for example. $2 
(Cauchy condition) 

(20.3) 
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where l x , l y ,  and l~ are direct ion cosines of the ou tward  drawn normal  to the surface. 
If q = r = 0, the  Cauchy bounda ry  condit ion becomes a N e u m a n n  condition. The  field 
problem s ta ted  in Eqs. (20.1)-(20.3) is called an elliptic* mixed bounda ry  value p rob lem-- -  
mixed because some por t ion of the bounda ry  S has Dirichlet conditions, whereas  the 
remaining one has Cauchy conditions. 

If k= = k~ = kz  = k = constant  and q = r = 0, Eq. (20.1) reduces to 

v ~ = _ c(~.  y, z_____J) (2o.4)  
k 

which is called Poisson's  equation.  In this case, the bounda ry  condit ion of Eq. (20.3) 
reduces to 

v--2-~ = 0 (nonconduct ing  bounda ry  on $2) (20.5) 
On 

where n indicates the  direction of ou tward  drawn normal  to the surface. Fur thermore ,  
if c = 0, Eq. (20.4) becomes 

v 2 0  = 0 (20.6) 

which is known as Laplace equation.  

20.2 FINITE ELEMENT EQUATIONS FOR STEADY-STATE PROBLEMS 
The  finite e lement  solution of the differential equat ion (20.1) subject  to the bounda ry  
conditions,  Eqs. (20.2) and (20.3), was presented  in Sections 13.5.1 and 13.5.2 using 
var iat ional  and Galerkin methods ,  respectively, in connect ion with the solution of heat  
t ransfer  problems. The  overall sys tem equat ions  can be s ta ted  as 

[K]{ = p (20.7) 

* Partial differential equations (of second order) can be classified as parabolic, elliptic, hyper- 
bolic, or some combination of these three categories, such as elliptically parabolic, hyperbolically 
parabolic, etc. To indicate the method of classification, consider the following general partial 
differential equation in two independent variables: 

024) 02r  020  ( O 0 0 o  ) 
A ~ x  2 + 2 B ~ + Cox o y ~ = D O , -~x , -~y , X , g 

where A , B ,  and C are functions of x and y, and D is a function of x, y, O, (O0/Ox) ,  and (O0/Oy) .  
The nature of expression for D will decide whether the partial differential equation is linear or 
nonlinear. Irrespective of the form of D, the partial differential equation is called parabolic if 
B 2 - A C  = 0, elliptic if B 2 - A C  < 0, and hyperbolic if B 2 - A C  > 0. Usually, the solution 
domains are defined by closed boundaries for elliptic problems and by open domains for parabolic 
and hyperbolic problems. Most of the finite element applications so far have been directed toward 
the solution of elliptic boundary value problems with irregular solution domains. 
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where the element characteristic matrices [K (~;] and characteristic vectors /5(r whose 
assembly yields Eq. (20.7). can be obtained similar to Eqs. (13.30), (13.31), and (13.33) as 

K~ ~j = j j j \k~ Ox Ox + k~ Oy Oy 
V(e )  

(r / /  K:~j = rN, N o dS2 

S(2 e) 

u S(~) 

K } ; )  _ K I ( C )  (e) , j  Jr- K 2 ~ j  

kz ONi ONj ~ dV (20.8) F 
Oz Oz ) 

(2o.9) 

(2O.lO) 

(20.11) 

The vector of nodal unknowns of element e is denoted by ~(r - {~(r162 }T and the 1 ~ " 2  " ' "  

vector ~ is given by the assemblage of ~(r The solution of Eq. (20.7), after incorporating 

the boundary conditions given by Eq. (20.2), gives the nodal values of the field variable 6. 
Once the nodal values ~, are known, the element resultants, if required, can be evaluated 
without much difficulty. 

20.3 SOLUTION OF POISSON'S EQUATION 
It can be seen that  Poisson's equation (Eq. 20.4) is a special case of the general field 
equation (20.1). We consider the solution of the Poisson's equation in the context of 
torsion of prismatic shafts in this section. 

20.3.1 Derivation of the Governing Equation for the Torsion Problem 
Consider a solid prismatic shaft having any arbitrary cross section as shown in Figure 20.1. 
When this shaft is subjected to a twisting moment 2IIz, it is usual to assume that  all stresses 
except the shear stresses c ~  and ay: are zero [20.1]. Thus. 

O'xx -'- O'gg -~ O'zz -~ O'xy ~- 0 (20.12) 

For this case. the equilibrium equations given bv Eq. (8.4) reduce, in the absence of body 
forces, to 

OOr x z O0"y z 
- = 0  (2o.13) 

Ox Oy 
(c~ O'x z 

= o  (2o.~4) 
Oz 

cg~y: _ 0 (20.15) 
Oz 

Equations (20.14) and (20.15) indicate that  the stresses axz and ~y.- do not vary with 
the coordinate z (i.e.. along a line taken parallel to the axis of the shaft). Now a stress 
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i 
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/ 

(a) 

[ ~ 

L ~  . 
0 

Oxz 

I l l  

~ x  

- ~ z  

Mz 

(b) 

Figure 20.1. A Prismatic Shaft under Torsion. 

function r known as Prandt l ' s  stress function, is defined as 

a=~ : cgy 

or 
O ' y z  = O X  

(20.16) 

so tha t  Eq. (20.13) is satisfied automatically.  If we consider strains, Hooke's law (Eq. 8.7) 
indicates tha t  only r and r will be nonzero. Thus, 

C x z  - -  ---G- 

__ O'yz 
C y z  - -  

(20.17) 



626 SOLUTION OF QUASI-HARMONIC EQUATIONS 

where G is the modulus of rigidity. Clearly, these shear strains must be independent of 
the coordinate z. If the displacement components are taken as [20.2] 

u = - O y z  (20.18a) 

= Oxz (20.18b) 

Ow 1 0r  
. . . .  t- Oy (20.18c) 

Ox G Oy 

O__~w = 1 0r  Ox (20.18d) 
Oy G Ox 

where 0 denotes the angle of twist per unit length, the stress-strain relations, Eq. (20.17), 
can be satisfied. To ensure continuity of the axial displacement w, we have, by 
differentiating Eqs. (20.18c) and (20.18d), that 

0 ( 1  c9r 0 ( 1  0 r  (20.19) 

If G is a constant, Eq. (20.19) reduces to the Poisson equation 

025  02r  
V2r = ~ x  2 -~ . . . .  2GO (20.20) 

Oy 2 

Since the shear stress normal to the external boundary must be zero, it follows from 
Eq. (20.16) that the stress function on this boundary must have a constant value. This con- 
stant can be arbitrarily fixed as zero. Thus, a sufficient and necessary boundary condition 
on the external boundary becomes 

r  (20.21) 

To find the torque acting on the section (M~), we integrate the moment due to shear 
stresses as 

Mz = / / ( x o ' y z  - yaxz ) dx  dy (20.22) 

S 

where S denotes the cross section of the shaft. By substituting Eqs. (20.16) and (20.21), 
Eq. (20.22) becomes 

Mz -- 2 / / r  dx dy (20.23) 

S 

By defining a set of nondimensional quantities as 

, x y' Y r  r (20.24) 
z = -[, = -[, GOl2 
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where I is the length of the shaft, Eqs. (20.20) and (20.21) reduce to 

V2r ' -- - 2  ~ - c  (20.25) 

with 

r = 0 on external boundary (20.26) 

Note 
The torsion problem can be formulated using a different approach. In this approach, the 
warping function r  which represents the movement of the cross section in the z 
direction per unit twist, is treated as the unknown function. Finally, a Laplace's equation 
is to be solved for determining r y). This approach was used by Herrmann [20.3] for 
the torsion analysis of irregular shapes. 

20.3.2 Finite Element Solution 
The functional corresponding to Eq. (20.25) can be written as 

I ( r  s \o~' 
+ \ Oy' dx' dy' + cr dx' dy' 

S 

(20.27) 

Let the cross section S be idealized by using triangular elements and let the nodal values 
of r namely ~ ,  ~ , . . . ,  r  be taken as unknowns. By choosing a suitable form of 
variation of r within each element as 

r (x', y') = [N(x' ,  y')]$'(~ (20.28) 

the element matrices and vectors can be obtained as indicated in Eqs. (20.8)-(20.11). The 
resulting element equations are then assembled to obtain the overall system equations as 
in Eq. (20.7) and are solved to obtain (~' It will be necessary to apply the boundary 

conditions r = 0 on the outer periphery of S before solving Eq. (20.7). 

Once ~-" and hence ~'(e) and 0~'(x, y) within all the elements are known, we can find 

O by using Eq. (20.23) as 

Mz - 2 / /  r dx dy - 2GO12 / /  r (x', y') dx ' dy' 

S S 

(20.29) 

o r  

0 = Mz _ _ M~ (20.30) 
f /  E (area of triangle e, 

2G12 r dx' dy' 2G12 ~ average of three nodal 
s e=l values of r of element e) 
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Finally, the shear stresses within any element can be computed as 

% z 0~' 
- ~ ,  

(20.31) 

where the derivatives of r can be obtained by differentiating Eq. (20.28). 

E x a m p l e  20.1 Find the stresses developed in a 4 x 4-cm square shaft when the angle 
of twist is 2 ~ in a length of 100 cm. The value of G is 0.8 x 106 N/cm 2. 

S o l u t i o n  

S t e p  1" Idealize the region by finite elements. Since the shaft has four axes of symme- 
try, we consider only one-eighth of the total cross section for analysis. The idealization 
using four elements is shown in Figure 20.2. The information needed for subsequent 
computations is given in Table 20.2. 

S t e p  2: Assume a suitable interpolation model for the field variable r [to solve 
Eq. (20.20)]. By assuming linear variation within any element, 4)(~)(x,y) can be 
expressed as 

r y) - a l  + o~2x + a3y  - N , ~ i  + N 3 ~ j  + N k ~ k  (El) 

\ 
\ 

\ 
\ 

/ 
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4 " N  5 
- -  iXcm ~ 1  cm -~ 
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N 

1 cm 

1 cm 

" ~ ' - - - ' - ~  X 
6 

G = 0.8 x 106 N/cm 2 

e= 2 ~ per 100 cm 

Figure 20.2�9 A Rectangular Shaft under Torsion. 
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Table 20.2. 

Node 1 2 3 4 5 6 

X ( x )  coordinate (cm) 2.0 1.0 2.0 0.0 1.0 

Y ( y )  coordinate (cm) 2.0 1.0 1.0 0.0 0.0 

2.0 

0.0 

Element  number  e 1 2 3 4 

Global nodes i 2 4 5 6 

corresponding j 3 5 6 3 

to local nodes k 1 2 2 2 

Element  
number  

1 1.0 2.0 2.0 1.0 1.0 2.0 1.0 0.0 - 1 . 0  

2 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 - 1 . 0  

3 1.0 2.0 1.0 0.0 0.0 1.0 1.0 - 1 . 0  0.0 

4 2.0 2.0 1.0 0.0 1.0 1.0 0.0 - 1 . 0  1.0 

Element  
number  

e b~ = (yj -- yk) bj = (Yk - Y~) bk = (y~ -- y3) 1 A (~) - -~ I x i j y j k  -- X j k Y i j l  

1 - 1 . 0  1.0 0.0 0.5 

2 - 1 . 0  1.0 0.0 0.5 

3 - 1 . 0  1.0 0.0 0.5 

4 0.0 1.0 - 1 . 0  0.5 

where (~1, ~2, and a3 are given by Eq. (3.30) and N~, Nj ,  and Nk by Eq. (3.35)" 

0 ~ 1  - "  (a~Cb~ + a j ~ j  + ak '~k ) / (2A(e ) )  ] 

a2 -- (b~cb~ + bj~bj + bkcbk) / (2A (~)) 

~ = ( ~ ,  + ~j% + ~ ) / ( 2 A  (~)) 

N~ - (a~ + b~x + c~y) / (2A  (e)) ] 

N3 = (a s + bjx + c j y ) / ( 2 A  (~)) 

Nk = (ak + bkx + c k y ) / ( 2 A  (~)) 

(E~) 

and ~i ,  ~ j ,  and ~k denote the values of r at nodes i , j ,  and k of element e, respectively. 



630 SOLUTION OF QUASI-HARMONIC EQUATIONS 

Step  3: Derive element characteristic matrices and vectors. The finite element equations 
corresponding to Eq. (20.20) can be derived as a special case of Eq. (20.7) with 

(~) = / /  [ON~ ONj t ON~ ON3 
K~  Ox Ox Oy Oy 

A(e) 

dA 

4A(~) 
[ (b~ + c2i ) (b,b~ + cicj ) (b, bk + cick ) ] 

(b~ + c~) (b3bk + cjck)l 
LSymmetric (b~+c~) J 

(E4) 

and 

/ cA(~) 
P(~) = cN, dA = 

3 
A(e) 

(E~) 

where c = 2G0. Thus, we can compute the element matrices and vectors as 

1[  1.0 
[K (1 ) ]=[K (2) ]=[K (4)]= ~ -1 .0  

0.0 

- 0.01 1.0 
2.0 -1 .0  

-1 .0  1.0 

i[ 2.0 _i.o _l.i] 
-1 .0  1.0 O. 

[K(3)] = 2 -1.0 0.0 1. 

{1} 
f~(1) =/5(2) =/5(3) =/5(4) = GO 1 

3 1 

(E~) 

(E~) 

(Es) 

S t ep  4: Derive the overall equations. By using the nodal connectivity information of 
step 1, the overall matrix [K] and vector t5~ can be derived as 

1.0 0.0 -1 .0  0.0 0.0 0.0 
0.0 4.0 -2 .0  0.0 -2 .0  0.0 

1 -1 .0  -2 .0  4.0 0.0 0.0 -1 .0  
t ~ J = 2  0.0 0.0 0.0 1.0 -1 .0  0.0 

0.0 -2 .0  0.0 -1 .0  4.0 -1 .0  
0.0 0.0 -1 .0  0.0 -1 .0  2.0 

1 

4 

,,, 1 
2 
2 

(E~) 

(E~0) 
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S t e p  5: Solve t h e  s y s t e m  e q u a t i o n s  a f t e r  a p p l y i n g  t h e  b o u n d a r y  c o n d i t i o n s .  T h e  b o u n d -  

a r y  c o n d i t i o n s  a r e  g iven  by  r = 0 on  t h e  e x t e r n a l  b o u n d a r y ;  t h a t  is, 4)1 = 4)3 - 4)6 = 0. 

B y  e l i m i n a t i n g  t h e s e  v a r i a b l e s  4)1,4)3, a n d  4)6, t h e  s y s t e m  e q u a t i o n s  c a n  be  w r i t t e n  as 

[K](~ = t5 ( E l l )  

w h e r e  

[ { } 1 4.0 0.0 -. -. 4)2 
0.0 1.0 P 1 , - - 1 . 0  , = a n d  4) 4)4 

[K] = ~ - 2 . 0  - 1 . 0  4.0 2 4)5 

T h e  s o l u t i o n  of Eqs .  ( E l l )  gives 

4)1 = 4)3 = 4)6 = O, 4)2 = 3 G 0 / 2  = 418.8,  (P4 = 7 G 0 / 3  = 651.5,  

4)5 = 5 G 0 / 3  = 465.3  

S t e p  6:  C o m p u t e  t h e  e l e m e n t  r e s u l t a n t s .  

T h e  s h e a r  s t r e s ses  i n d u c e d  a re  g iven  by Eq.  (20.16):  

o~ 
= a3 = (c~4)~ + cj4)j + c k 4 ) k ) / ( 2 A  (e)) Oxz -- O---y 

o~ 
= - a 2  = -(b~4)~ + bj4)j + b k 4 ) k ) / ( 2 A  (e)) 

(7y  z - -  (~X  

For  e = 1" i = 2 , j  = 3, a n d  k = 1" 

c r~  = - 4 ) 3  + 4)1 = 0, a ~  = 4)2 - 4)3 = 418.8 N / c m  2 

For  e = 2: i = 4 , j  = 5, a n d  k = 2: 

axz = - 4 ) 5  + 4)2 = - 4 6 . 5  N / c m  2, a ~  = 4)4 - 4)5 = 186.2 N / c m  2 

For  e = 3: i = 5, j = 6, a n d  k = 2: 

ax~ = - 4 ) 5  + 4)2 = - 4 6 . 5  N / c m  2, a ~  = 4)5 - 4)6 = 465.3  N / c m  2 

For  e = 4: i = 6 , j  = 3, a n d  k = 2" 

ax~ = - 4 ) 6  + 4)3 = 0.0, ay~ = - 4 ) 3  + 4)2 = 418.8  N / c m  2 

(E12) 

(E13) 

Computation of the Twisting Moment (Mz) 
T h e  t w i s t i n g  m o m e n t  a c t i n g  on  t h e  sha f t  c an  be  c o m p u t e d ,  u s ing  Eq.  (20.23) ,  as 

T w i s t i n g m o m e n t - 2 / / d p d x d y ~ - ~ ] / 2 ( P ( e )  d x d y  

S e--lA(e) 

(E l4 )  
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Since r is given by Eq. (El) ,  the integral in Eq. (E14) can be evaluated to obta in  

4 2A(e)(q)~ + (I)j + (I)k) (e) 
Twist ing moment  = E 3 

e - - 1  

1 
- - i [ (418.8  + 0.0 + 0.0) + (651.5 + 465.3 + 418.8) 

3 

+ (465.3 + 0.0 + 418.8) + (0.0 + 0.0 + 418.8)] 

= 1085.67 N-cm 

Since the region subdivided into finite e lements  is only one-eighth of the total  cross section, 
the total  twist ing moment  (Mz) is given by 

Mz = 8(1085.67) = 8685.36 N-cm 

The  exact  solution for a square shaft (2a x 2a) is given by [20.1] 

Mz = 0.1406 GO(2a) 4 

= 0.1406(0.8 x 10 ~) 100 x 57.3 (4) 4 - 10046.0 N-cm 

Thus,  the finite e lement  solution can be seen to be in error by 13.54%. This error can be 
reduced either by increasing the number  of e lements  or by using higher order elements  for 
idealization. 

20.4 COMPUTER PROGRAM FOR TORSION ANALYSIS 
A subrout ine  called T O R S O N  is wr i t ten  for the solution of torsion of pr ismat ic  shafts 
using t r iangular  elements.  The  following input  da t a  are required for this subroutine:  

NN - number  of nodes. 
NE = number  of elements.  
NB = semibandwid th  of the overall mat r ix  GK. 
XC, YC - array of size NN; XC(I),  YC(I)  = x and y coordinates  of node I. 
NFIX = number  of nodes lying on the outer  boundary  (number  of nodes at which 

r 
N O D E  = array of size NE x 3; NODE(I , J )  = global node number  corresponding to J t h  

corner of element  I. 
G = shear modulus  of the material .  
T H E T A  = angle of twist in degrees per 100-cm length. 
IFIX = array of size NFIX; IFIX(I)  - I t h  node number  at which ~ - 0. 

The  other  a rguments  of the subrout ine  are as follows" 

GK = array of size NN x NB used to store the mat r ix  [K]. 

P = array of size NN used to store P. 

P L O A D  = array of size NN x 1 used to store the final r ight-hand-side vector. It repre- 
sents the solution vector (nodal values of 0) upon re turn  from the subrout ine  

T O R S O N .  
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To il lustrate the use of the subrout ine TORSON,  the problem of Example  20.1 is consid- 
ered. The main program tha t  calls the subroutine TORSION and the results given by the 
program are given below. 

C ............. 
c 
c MAIN PROGRAM F0R CALLING THE SUBROUTINE TORSON 
C 
C .................. 

DIMENSION XC(6),YC(6),NODE(4,3), IFIX(3),GK(6,5) ,P(6), 
2 PLOAD (6, I) 
PRINT i 

1 FORMAT (IHT) 
DATA NN,NE,NB,NFIX,G,THETA /6,4,5,3,0.8E6,2.0/ 
DATA (NODE (I, I), I=l, 4) /2,4,5,6/ 
DATA (NODE(I, 2), I=l, 4) /3,5,6,3/ 
DATA (NODE (I, 3), I=l, 4) /1,2,2,2/ 
DATA XC /2.0,1.0,2.0,0.0,1.0,2.0/ 
DATA YC /2.0,1.0,1.0,0.0,0.0,0.0/ 
DATA IFIX /I,3,6/ 
CALL TORSON (NN, NE, NB, NODE, XC, YC, GK, NFIX, IFIX ,P, PLOAD, G, THETA) 
PRINT I0 

I0 FOKMAT(2X, ' NODE' ,2X, 'VALUE OF PHI' ,/) 
DO 20 I=I,NN 

20 PRINT 30, I, PLOAD (I, I) 
30 FORMAT (2X, I3,4X, El2 . 4) 

STOP 
END 

NODE VALUE OF PHI 

1 O.O000E+O0 
2 0.4188E+03 
3 O.O000E+O0 
4 0.6515E+03 
5 0.4654E+03 
6 O.O000E+O0 

20.5 TRANSIENT FIELD PROBLEMS 
20.5.1 Governing Equations 
Whenever  a field problem involves t ime as an independent  parameter ,  it is called a prop- 
agation, transient,  dynamic,  or t ime-dependent  problem. The transient field problems are 
governed by the quasi-harmonic equation with t ime differentials. For example, in three 
dimensions, we have 

o (k 0r ) o (0r o ( o o )  Oo O~o 
o~ ~ + ~  k ~  + ~  ~-.~ -~-~-,~b-/72 -0 (20.32/ 

where kx, ku, ks, c, c~, and/3  will be, in general, functions of x. y. z and time t. If t ime is 
not considered as a variable, Eq. (20.32) can be seen to reduce to the s teady-state  quasi- 
harmonic equation considered in the previous section. Tile boundary  conditions associated 
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with Eq. (20.32) are 

0 = 5  for t > 0 o n S 1  (20.33) 

and 

oO oo oo k ~ l .  + k~ ~l,, + k=~l= + q + ~'* = 0 for t > 0 on $2 (20.34) 

Since this is a time-dependent problem, the initial conditions also have to be specified as 

O(x,  y, z,  t = O) = Oo(x,  y, z)  in V (20.35) 

and 

d0(x  y,z t = 0 } - O 0 ( x , p , z )  i n V  
dt ' ' 

(20.36) 

Equation (20.32) represents a general damped wave equation and has application in phe- 
nomena such as electromagnetic waves, acoustic waves, and surface waves. No variational 
principle (functional I) exists for the problem stated by Eqs. (20.32)-(20.36). 

20.5.2 Finite Element Solution 
We present the finite element solution of the problem according to the weighted residual 
(Galerkin) method in this section. 

S t ep  1: Discretize the domain V into E three-dimensional finite elements having p nodes 
each. 

S t ep  2: Assume the variation of the field variable in a typical element e as 

p 

where Ni is the interpolation function corresponding to the nodal unknown ~{e) of 

element e. The nodal unknowns ~I e/ are assumed to be functions of time. 

S tep  3: Derive the finite element equations using the Galerkin method. 

In this method, the criterion to be satisfied at any instant in time is given by 

[o(oo) o(oo) o(oo) oo o2~ 
N, G b G + ~  k , ~  + G  a :G - ~ - ~ - ~ - b ~  

V(r 

dV = 0  

= ~. 2 , . . . , ;  (2o .38)  
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Each of the first three terms in the brackets in Eq. (20.38) can be integrated by parts 
using the Green-Gauss theorem of Appendix A: 

/ / / o ( o o )  // oo 
N ~ x  kx~x d V = -  - ~ x k ~ x d V +  N~k~-~xdydz 

V(e) v(e) s(e) 

/]J " ON~ O0 / /  O0 
= - ~ k x  -~x dV + 5bk~ -~xl~ as  

v(e) S(e) 

(20.39) 

where lx is the x-direction cosine of the outward normal. Thus, Eq. (20.38) can be 
written as 

I f / [  ON~ Or ON~ Or 
- k~--~xOx+k~ Oy Oy 

v(e) 

~ - -  + kz -~z ~z dV+ Ni kx ~x + ky ~y y + k~ -~z l~ as  

S(~) 

- N~ c + a - ~ t - + ~ ~  d V = 0 ,  

V(~) 

~-  1,2,... ,p (20.40) 

Since the boundary of the elements, S (e), is composed of S~ e) and S~ e), the surface integral 
in Eq. (20.40) over S[ ~) would be zero (since 0 is prescribed to be a constant O on S~ e) 
the derivative of r would be zero). On the surface S~ e), the boundary condition given by 
Eq. (20.34) is to be satisfied. For this, we express the surface integral in Eq. (20.40) over 
S~ e) in equivalent form as 

/ /  N~ [k~ 0r -~xl~ 
S (e) 

oo f /  + kv -~y l~ + kz ~ lz dS2 - N~ [-q - rO] aS2 

S (e) 

(20.41) 

By using Eqs. (20.37) and (20.41), Eq. (20.40) can be expressed in matrix form as 

[K(~)](P (~) + [K~)]~) (~) + [K~)]~) (~) + [K3(~)](P (~) +/~(~) _ {~ (20.42) 

where the elements of the various matrices in Eq. (20.42) are given by 

f f f ( ON~ ONj ON~ OX~ = kx F + k z ~ ~  Ki:' ) Ox Ox ky Oy Oy 
V(e) 

K (C) I f [  dV oL N~ N j  1 ij 
J J J  
V(e) 

K2}~ .) = / / /~Ni  Nj dV 

V(~) 

ON~ ONj ~ dV (20.43) 
Oz Oz / 

(20.44) 

(20.45) 
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K(e) ~/ 3ij = F N i N j  dS2 

( e )  
2 

P,(e) (t) = / / /  cN~ dV + / /  qN, dS2 

l" ( ~ ) S(2 '') 

(20.46) 

(20.47) 

S t e p  4: Assemble the element equations and obtain the overall equations. Equa- 
tion (20.42) represents the element equations and the assembly of these equations leads 
to the following type of ordinary differential equations" 

(20.48) 

where a dot over (I) represents the time derivative. 

S t e p  5: Solve the assembled equations. The system of equations (20.48) can be solved 
for ~(t)  with the discretized form of initial conditions stated in Eqs. (20.35) and (20.36) 
and by incorporating the boundary conditions of Eq. (20.33). The solution procedures 
outlined in Sections 7.4 and 12.6 can be used to solve Eq. (20.48). 

S t e p  6: Find the element resultants. From the known values of the nodal values of 4), 
the required element resultants can be computed with the help of Eq. (20.37). 

20.5.3 Space-Time Finite Elements 
In a general t ime-dependent or propagation problem, three spatial and one time param- 
eters will be involved. Usually. we first use the finite element method to formulate the 
solution in the physical space. Next. we use a different method, such as finite differences, 
to find the solution over a period of time. Thus. this procedure involves the idealization 
of the field variable O(z. g. z. t) in any element e (in three-dimensional space) as 

(20.49) 

where [N1] is the matrix of interpolation or shape functions in space, and (~(e) is the 
vector of t ime-dependent nodal variables. By using Eq. (20.49) and the specified initial 
conditions, we use a finite difference scheme such as 

~(~)  (t) - [5"~(t, , x t ) ] ~  (~) (t - ~ t )  (2o.5o) 

where IN2] indicates the matrix of interpolation functions in the time domain. 

Instead of solving the problem using Eqs. (20.49) and (20.50). finite elements can be 
constructed in four dimensions ( . r . g . z .  and t) and the field variable can be expressed as 
[20.4-20.6] 

o(x. y. :. t) = [x(x. y. ~.. t)]~ (~) (2o.51) 
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where [N] represents the matrix of shape functions in x, y. z, and t. and ~(~)/ is the vector 
of nodal values of element e. In this case, the time-dependent problem can be directly 
solved without using any special techniques. 
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PROBLEMS 

20.1-20.6 Identify whether  the given partial  differential equation is parabolic, elliptic, 
or hyperbolic: 

(a) Steady-s ta te  fluid (seepage) flow under a dam: 

02 h 02 h 
= 0  

(b) Laminar  flow heat exchanger equation: 

02T  1 0 T  0 2 T  puc OT 
0112 J r - -  + - -  r -~r Oz 2 k Oz 

(c) Ion exchange equation (for flow of a solution through a packed column 
containing an ion exchange resin): 

Ou Ou 
+ a(x . t ) -a- -  -- p ( x . t )  

0--[ 

(d) Transient heat conduction in two dimensions: 

OT 02T  02T  
" - + + Q(z,u) 

(e) Torsion of a prismatic shaft (Poisson's equation): 

02 o 0 2 o 
o x  2 + ~ + p(x, u) - o 

(f) Vibrat ion of a membrane:  

02 u 02 u 02 u 
t 

Ox 2 0!12 Ot 2 

20.7 A steel shaft, with elliptic cross section and length 1 m, is twisted by an 
angle of 0 = 2 ~ (Figure 20.3). Assuming the shear modulus  as G = 80 GPa,  
determine the maximum shear stress and the torque (SIz) in the shaft by 
modeling one-quarter  of the ellipse using linear t r iangular  finite elements. 
Compare  the finite element solution with the following exact solution: 

23I: 
at z = 0, y = +b 

T m a x  = 7tab 2 

GO7ra 3b 3 
~I.. = (a 2 + b2) 

20.8 Consider the torsion of a uniform shaft with an I section (Figure 20.4). Using 
the finite element method,  determine the stresses in the elements and the 
torque oil the shaft for the following data: 
L e n g t h =  l m .  G = 8 0 G P a .  0 = l  ~ 
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Figure 20.5. 

20.9 The torsion of a prismatic shaft is governed by' the equation 

02/, 02 L' 
0~"-' + - -  + 2 -  0 Oy 2 

in the interior cross section of the shaft subject to c ' =  0 on the boundary 
of the cross section. Derive the corresponding finite element equations using 
the Galerkin method. 

20.10 In the electrostatic problem, the electric potential  (0) is governed by the 
equation (Figure 20.5) 

020 020 p 
Oa.2 + ~r292 + - - 0  

with the boundary conditions 

o -  Cl o i l  $1" o -  02 o n  S.2 

where p is the cllarge density (CouloInb/ma).  and e is the permit t ivi ty  of 
the dielectric nledium (Farad/m) .  Derive the finite element equations using 
a variatiolml approacl~. 

20.11 Determine the distriblltioll of voltage in the circular coaxial cable shown 
in Figure 20.6 if a voltttge of 200 V is applied at tile inner surface of the 
dielectric insulator. Assume the voltage at the outer surface to be zero. 



PROBLEMS 641 

Y 

t 
r 

Figure 20.6. 

20.12 Consider  the  following t rans ien t  field p r o b l e m  

020 0o 
C1 ~--~X2 G- C2 -~-  --  0" 0 • 3 7 • L :  O < t < T  (E l )  

wi th  ~b - ~bx0 or (dO/dz)  - 0 at x = 0 and a" - L. and 0 - Oto(OC) at 

t - 0. Using (O0/Ot) = (0,+1 - O i ) / A t  with o, = O(t,) and o,+1 = O(ti+l = 
ti + At) ,  derive the  finite e lement  equa t ions  using the  Galerk in  approach.  

20.13 Consider  the  t rans ien t  field p rob lem descr ibed in P rob lem 20.12. Using 
l inear t r i angu la r  e lements  in a s p a c e - t i m e  coord ina te  system,  derive the  

finite e lement  equa t ions  using the  Galerk in  method .  



21 

SOLUTION OF HELMHOLTZ 
EQUATION 

21.1 INTRODUCTION 
Physical problems such as the vibration of a membrane, the propagation of electromagnetic 
waves in a waveguide, the oscillator3; or seiche motion of an enclosed mass of water in a 
lake or harbor, and the acoustic vibrations of a body of fluid enclosed in a room or vehicle 
are all governed by the Helmholtz equation given by [21.1] 

0(00) o(0o) o(00) 
Ox k ~  + ~  k~ N + ~  1,-: N +#0=0 (21.1) 

with the boundary conditions 

O -  O on 5'1 (Dirichlet condition) (21.2) 

and 

69o 
= 0 on $2 (Neumann condition) (21.3) 

On 

where n denotes the normal direction. The physical significance of kx, ky, ks, 6, and k for 
various types of problems is given in Table 21.1. In Eq. (21.1). 0 and A are both unknowns. 

21.2 FINITE ELEMENT SOLUTION 
The functional I, which on minimization gives Eq. (21.1) and the Neumann boundary 
condition, is given by 

/(| - f / / '  [a"~ ( ~ 1 7 6  . ~ )  +/% ~ +/":  07z dV (21.4) 

Thus, the function O(x. y. z). which minimizes I(o) of Eq. (21.4) and satisfies the given 
Dirichlet boundary condition, also satisfies the Helmholtz Eq. (21.1). There is no need to 

642 
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Table 21.1. Typical Problems Governed by Eq. (21.1) 

Physical  significance of 

Problem k~, ky,  kz ca A 2 

1. P ropaga t ion  of kx - ky - kz - 1 ,  A component  of the /k 2 = w 2p0Co, 

e lectromagnet ic  where Cd magnet ic  field where 

waves in a Cd = s t rength  vector w = wave frequency, 

waveguide filled permi t t iv i ty  of (when transverse p0 = permeabi l i ty  of 

with a dielectric the dielectric magnetic  modes free space, 
mater ia l  are considered) e0 = permi t t iv i ty  of 
[21.2, 21.3] free space 

471- 2 
2. Seiche motion kx - k,  = h Elevation of free sur- = 

9T2 �9 
(oscillations of kz - O, where face (or s tanding where 
an enclosed h = depth  from wave) measured g - acceleration due to 
water  mass in a the mean water  from the mean gravity, 

lake or harbor)  level to the lake water  level T - period of oscillation 
[21.4] or harbor  bed 

3. Free transverse kx = ky = kz - 1 Transverse 
vibrat ions of a displacement of 

membrane  the membrane  
[21.5] 

2 
A 2 = P  w 

T "  
where 
p -  mass per unit, area, 

w -  na tura l  frequency, 
T - tension (force per 

unit length) of 

membrane  

4. Vibrat ions  of kx - k~ = kz - 1 Excess pressure /k 2 = w 2 / c  2, 

an enclosed above ambient  where 
fluid (acoustic pressure w - wave frequency, 
vibrat ions)  c -  wave velocity in the 

[21.6, 21.7] medium 

consider the Neumann  boundary  condit ion separately  because it is na tura l ly  taken into 
account in the functional  I ,  with the addi t ional  term being identically zero. To derive the 
finite element equations,  we divide the domain V in which Eq. (21.1) is to be satisfied 

into E finite elements. We then express O within each element in terms of its nodal values. 

~(~), as 

, )e(~) [X(x. y. z)]~ ~ 
i 

(21.5) 

Next, we subs t i tu te  Eq. (21.5) into the discretized form of Eq. (21.4), namely 

E OI 
I = E 1  (~) and set ~ - ~ , - 0  for i - 1 . 2  . . . . .  M 

e = l  

(21.6) 
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where (I)i is the ith nodal unknown, and ~I is the total  number of nodal unknowns. This 
gives the system equations as 

11~'1- A~I.V]]~ - 6 (21.r) 

where 

E 

[/3"] -- ' ~ [ A  "(c) ] (21.8) 
e = l  

E 

[M]- ~-~[J~l(~)] (21.9) 
e-----1 

(~1 

"t t 

5 I ~  ) - 

a.\,, o:vj o:.\T, &\3 ox~ oN~ 
ox ox k ],.~ oy oy ~-k._ o--~ 0--2-. 

(21.10) 

dV (21.11) 

f x ; . ~  dV (21.12) 

l - ( c )  

Equation (21.7) represents an algebraic eigenvalue problem (similar to the free vibration 
equation of Chapter  7). and. in general, the number of values of A (eigenvalues) tha t  
satisfy Eq. (21.7) is equal to the total  number of degrees of fl-eedom ,~I. For each value 
of A, there will be a corresponding vector (P representing the mode or distr ibution of r 
Both the matrices [K] and [M] would be symmetric and positive semidefinite, and hence 
all the nonzero eigenvalues would be distinct and positive with all the corresponding 
eigenvectors (I) independent [21.8].* 

21.3 NUMERICAL EXAMPLES 
21.3.1 Propagation of Electromagnetic Waves in a Waveguide 
A waveguide is a system of conductors and dielectrics used to guide electromagnetic energy 
from one point to another. A simple rectangular  waveguide shown in Figure 21.1 is con- 
sidered to il lustrate the use of finite element technique for the solution of Helmholtz 
equation [21.3]. In this case. the Neumann boundary condition that  ( O d o / O n )  = 0 has to 
be satisfied for H-waves and the Dirichlet condition that  0 = 0 for E-waves. Here. use 
is made of symmetry  and the boundary conditions imposed are shown in Figure 21.1. 

* After incorporating the boundary conditions on S'1. the matrices [A'] and {M] become positive 
definite, in which case all the eigenvalues will be distinct and positive. This property is true even 
for structural eigenvalue problems. 
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dO/dn = 0 

, t ,  , 

0 = 0 I dOIdn = 0 

Y 

I x =  0 d~ ldn= 0 

L _l 
F ' I / 2  . . . . . .  1 

Figure 21.1. Rectangular Waveguide (Half Cross Section). 

Table 21.2. Results of Rectangular Waveguide H-Mode [21.3] 

Method Fini te  element Finite differences Exact  (x/ l )  

Value of (A/) 2 
Value of field 
variable 0 

9.9 
1.00000 
0.95105 
0.80902 
0.58778 
0.30902 
0.00000 

979  
1 00000 
0 95105 
0 80902 
0 58778 
0 30902 
0 00000 

9.87 
1.00000 0.5 
0.95105 0.4 
0.80902 0.3 
0.58778 0.2 
0.30902 0.1 
0.00000 0 

Table 21.2 gives the results obtained by Arlet t  et al. [21.3] along with those reported from 
finite differences and exact methods.  The exact solution is given bv 

(AI) 2 = 7r, o -  sin(Trx/1) 

Next, a T septate  lunar waveguide shown in Figure 21.2 is considered. Tile finite element 
subdivision and the field distr ibution are also indicated in Figure 21.2. Table 21.3 shows 
the finite element results given by Arlet t  et al. [21.3] along with those obtained using a 
regular grid by the finite differences and exper imental  results. 

21.3.2 Frequencies and Modes of Sound Pressure 
The problem of noise in the passenger compar tment  of an automobile  is tha t  of an acous- 
tic field in a room with a complex shape. Since the theoretical  solution of the governing 
(Helmholtz) equation is extremely difficult over irregular-shaped domains, the finite ele- 
ment  method  is used to find the frequencies and modes of sound pressure inside passenger 
cars [21.7, 21.10]. Shuku and Ishihara [21.10] used a t r iangular  element with linear and 
cubic interpolat ions for idealizing a two-dimensional acoustic field enclosed by an irregu- 
larly shaped boundary. The values of sound pressure (p) and pressure gradients [(Op/Ox) 
and (Op/Oy)] are taken as nodal unknowns in the case of the cubic interpolat ion mode]. 
After deriving the element equations in a convenient local xy coordinate system, the 
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Outer dia = d 
00' = 0.13d 

r = 0.29d 
s = 0.055d 
0 = 22 ~ 

i 
. 

Figure 21.2. T Septate Lunar Waveguide (H-Mode) [21.3]. 

Table 21.3. Results of T Septate Lunar Waveguide [21.3] 

Method  Value of (,~d) Value of (h/d) 
Fini te  element  1.052 ~ ! to ! 

- -  1 0  2 0  

1 Finite differences 1.039 s2 

Exper imenta l  [21.9] 1.042 

(a) 

0.2 m 

First node 

Second node 

Third node 

(b) (c) 

Figure 21.3. Modeling of Interior of an Automobile [21.10]. 
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Table 21.4. Comparison of Normal Frequencies of an Automobile Compartment Model [21.10] 

Triangular elements 

With cubic With linear Finite differences 
Mode interpolation interpolation met hod 
number (number of nodes = 53) (nodes = 53) (nodes = 57) Experimental 

1 86.8 86.9 88.0 87.5 
2 138.9 142.9 137.7 138.5 
3 154.6 159.1 156.4 157.0 

transformation matrix, [A], to a global X Y  coordinate system is established by using the 
relation 

{p} [! 0 0]{ p } { p } 
Op/Ox - cos0 - s i n 0  Op/OX - [A] Op/OX 

Op/Oy sin 0 cos 0 Op/OY cPp/O} ~ 

where 0 is the angle that the x axis makes with the X axis. The interior of an automobile 
is modeled as shown in Figure 21.3. In Figure 21.3(c), the solid and dotted lines indicate 
the loci of points where the sound pressure level is minimum (mode shapes). Although in 
reality, the interior of an automobile has soft boundaries, the boundaries are assumed to 
be rigid in the current analysis. The normal frequencies predicted by the finite element 
method are compared with those obtained by other methods in Table 21.4 [21.10]. 
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6 4 8  SOLUTION OF HELMHOLTZ EQUATION 

P R O B L E M S  

21.1 The equation governing the acoustical vibrations in a closed pipe (Figure 21.4) is 
given by 

d2o 

dx 2 
- -  + a o  - O" 0 <_ x < l ( E l )  

subject to 

do 
= 0  at a ' - 0 a n d l  (E2) 

dx 

where a - ( a , , 2 / c 2 ) .  , :  is the wave frequency, and c is the wave velocity in the 
medium. 

(a) Derive the finite element equations corresponding to Eq. (El) using the 
Galerkin approach. 

(b) Derive the element matrices using a linear two-noded element. 

21.2 Using a one-element idealization of the pipe shown in Figure 21.4 of Problem 21.1, 
derive the eigenvalue problem of the system. Also, find the eigenvalues and 
eigenvectors of the system. 

21.3 Using a two-element idealization of the pipe shown in Figure 21.4 of Problem 21.1, 
derive the eigenvalue problem of the system. Also. find the eigenvalues and 
eigenvectors of the system. 

21.4 Using a three-element idealization of the pipe shown in Figure 21.4 of Problem 21.1, 
derive the eigenvalue problem of the system. Also, find the eigenvalues and 
eigenvectors of the system. 

21.5 The equation governing the buckling of a uniform pin-pin colunm (Figure 21.5) is 
given by 

d 2 It' 

dz 2 
+ a u , - 0 :  0 < z < l ( E l )  

with boundary conditions 

w - 0  at z - 0  and z - I  (E2) 

~176 d--x x=o=O 

. . . .  _ _ _ . . x  

,, ,, , ,, 

k 
' �9 / " 

F i g u r e  2 1 . 4 .  

dO I =0 d-x x=l 
l "  , j  

A 



PROBLEMS 649 

7-- 

i P  
I 
11 

/ 
I / I I  

X 

t 

l~.w 

"// / , I"/ / ]  

Figure 21.5. 

where a = (P/EI), P is the axial (compressive) load. I is the area moment 
of inertia of the cross section, and E is the Young's modulus of the column. 
Derive the element matrices corresponding to Eq. (El) using a two-noded linear 
element. 

21.6 Using a two-element idealization of the column shown in Figure 21.5 of 
Problem 21.5, formulate and solve the corresponding eigenvalue problem. 



22 

SOLUTION OF REYNOLDS 
EQUATION 

22.1 HYDRODYNAMIC LUBRICATION 
Effective lubrication requires that the two surfaces should be nearly but not quite parallel 
as shown in Figure 22.1. The pressure necessary to separate the two surfaces is developed 
due to the wedge action. The applied (normal) load is resisted by the fluid pressure, thereby 
reducing friction and wear. This type of lubrication is called "'hydrodynamic lubrication" 
and is governed by the Ptevnolds equation [22.1]" 

]S vv = v h0 + ~ ~  + ~7 + Vd (22.1) 

with boundary conditions 

p =/5 on (2'1 (22.2) 

and 

ff [ ~ h + / ~  ha h a ]  12p 12H Vp -- q on C2 (22.3) 

where h is the distance of separation of the surfaces (film thickness), # is the viscosity, 
p is the pressure, L7 is the surface velocity vector. /3 is the body force vector (acting in 
the film), (Oh/Ot) = J~ - squeeze velocity, t is the time, t,d is the net outward velocity 
of diffusion flow through porous boundary surfaces located at z = 0 and z = h, ff is the 
unit outer normal vector to C2, q is the lineal normal flow across the boundary C2. C1 
is the part of the boundary over which pressure is prescribed, and C2 i8 the part of the 
boundary over which flow is prescribed. 

The assumptions made in tile derivation of Eq. (22.1) are as follows: 

1. The fluid is incompressible. 
2. The fluid is Newtonian. 

650 
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Figure 22.1. A Tapered Wedge Bearing. 

3. The curvature of the bearing components introduces only second-order negligible 
effects in journal bearings. 

4. The viscosity remains constant throughout the pressure film. 
5. The inertia terms governing the motion of the fluid are negligible. 
6. The pressure gradient through the thickness of the film is zero. 
7. The motion of the fluid in a direction normal to the surface can be neglected 

compared to the motion parallel to it. 

The problem can be stated as follows: Given the parameters Ix. h, (Oh/Ot). q. and bearing 
geometry, find the pressure distribution p(x. y) in the lubricant film. 

22.2 FINITE ELEMENT SOLUTION 
The functional I(p), which on minimization gives Eqs. (22.1)-(22.3), is given by [22.2-22.4] 

I(p) -- ~-4~VpVp- h U V p -  - ~ p B V p  + --~ + t'. p dS + qpdCz 
S Cz 

(22.4) 

Let the region of interest in the xy plane be divided into E finite elements (triangular 
element is more versatile for two-dimensional regions). By expressing the pressure and 
the distributions of the various forcing functions in terms of their respective nodal values 
through interpolation functions N,(x, y), we obtain 

i 

~/x(~, y) - ~(~,  y) - ~ : v , <  ~) - [N(x,  y)]C (~) 
i 

i 

(22.5) 
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where /3(~)  ~,,~) . . . .  are tile vectors of nodal t)ressures, x component  velocities . . . . .  respec- 
tively, of element  e. If Eq. (22.5) is subs t i tu ted  into the functional I of Eq. (22.4), we obtain  

E i~e) the discret.ized form of tile functional for element e. Bv writing I - }-~, =~ and using 
the condit ions for the min imum of I. namely 

OI 

0P, 
= 0. i -- 1.2 . . . . .  31 (22.6) 

where ~I  is the total  number of nodal unknowns, we obtain the elemental  equat ions as 

- t ( ~  ) ~ /E~(~ ) 
- [K), ~ '] [- I( ' '  - LfI<",',']I ,, (22.7) 

where the elements  of the various matr ices are given bv 

t . ( , ,  / / '  /~:~ (ox, o.v, 
P',' - - ~ Oat" Ox t 

i 

o:v, 0~% '/d.4 
0.v 0y 

(22.8) 

/<,; j "  0X, 
- h ~ N, dA (22.9) 

/ "  OX' \~ d A It:,; ) - h -~y  
A I ,  I 

(22.10) 

Kt  ~, ~ _ I f  h :~ OX,.\.j dA 
B,,j 127U Ox 

. 4 ( ,  ) 

(22.11) 

/ ha 0:\ ,  

A ( ,  ) 

(22.12) 

-t~ - K !  ':/ - - J / N , . \ ~ d A  / ~  ~' d ~ ./ h ~ j 

. 4 ( ,  J 

(22.13) 

j . 

Q(," -- qX, dC.,_ 

C,() '  ) 

(22.14) 

The element equat ions (22.7) are assembled ill the usual manner  to obtain  the overall 
system equat ions as 

where the order of the matr ix  [Kz, ] is equal to 3I.  Equat ion  (22.15) C a l l  be solved after 

applying the specified pressure boundary  conditions oil S~. 
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Once the nodal  pressures /5 and flow-s (J and ~-" are fomld, the bearing load capaci ty 

(W) and the friction force vector ( f )  can be computed  fl'Oln tl~e relat ions 

1~I" - / / p ( , r ,  g) dS 

s 

(22 .16 )  

and 

f = I a ( u i  + t ' j )  

s 
z--(),b 

(IS (22.17) 

where 7" and 5" indicate unit  vectors along 2" and g (tirectiolls. respe('tivelv. 

22.3 NUMERICAL EXAMPLES 
22.3.1 Step Bearing 
The  simple infini te-width step bear ing shown in Figure 22.2 is divided into two finite 
e lements  (idealized as a one-dimensional  problem).  The  fihn pressllre inside any elemeln 
is assumed to vary linearly as 

p(z_) - a l + a.2.s (El)  

where z -  z / l ,  p -  ( p h 2 2 / # u l ) ,  a n d  a l  and a.2 are constants .  Tile f i l ,n  pressure is a s s u m e d  

to be zero on bo th  sides of the bearing. Tile element  equat ions  for tile first element can 
be derived as 

a311 
12bl - 1  

(E~) 

and the assembled sys tem of equat ions  as 

1 0 " l(a3 1) 
0 0 P:~ 0 

(E:{)  

/1 -1-  ' 12 T 

J l  / j f  l l / l l J l J  

T ' -  g I j . L  j l I I I I I L 

._~ t E lement  1 , 
i i E lement  2 

node 1 node 2 

T I h2 

node 3 

~ u  
Figure 22.2. Geometry of Stepped Bearing. 
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where a = h l / h 2 ,  bl - l l /1 ,  b2 - 12/l, and Pl' P2' and P-a are the values of p at nodes 1, 
2, and 3, respectively. Equat ions  (Ea) give the solut ion 

6 b l b 2 ( a -  1) (E4) 
102 = p_(x_- bt)  - b2a a + bl 

The oil flow (Q) at node 2 can be computed  as [22.5, 22.6] 

Q = ha dp_ P-2 1 
-- 12dx ~ - ( h / 2 ) =  ~ + ~  (E5) 

where Q = Q / ( h 2 u ) ,  and h__ = h / h 2 .  The solut ion given by Eqs. (E4) and (E5) coincides 
with the  exact  solution for this case. 

22.3.2 Journal Bearing 
As a second example,  the journal  bear ing shown in Figure 22.3 is considered with 

R(X) -- 01 "~ a 2 x  (22.18)  

with the  bounda ry  condit ions p(0) - p(rr) - 0. The  results obta ined for eccentrici ty ratios 
of c = 0.2 and 0.8 are shown in Table 22.1. It can be seen tha t  the finite e lement  results 
are be t te r  in the case of c - 0.2 than  in the case of c = 0.8. The  reason for this is tha t  
as the eccentrici ty ratio becomes smaller,  the pressure d is t r ibut ion  tends to be flatter  and 
hence a linear variat ion for p gives be t te r  results. W h e n  the eccentrici ty rat io is large, the 
film pressure changes abrupt ly ;  therefore, the results become slightly inferior. Of course. 
be t te r  results  can be obta ined  by increasing ei ther the number  of e lements  or the  degree 
of polynomial  assumed for p within any element .  

Al though  numerical  results for simple one-dimensional  problems are given in this chap- 
ter, several complex lubricat ion problems have been solved by the finite e lement  me thod  
in the l i te ra ture  [22.7]. 

Figure 22.3. Geometry of Journal Bearing. 
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Table 22.1. Film Pressure of Journal Bearing at x = 90 ~ [22.5] 

For eccentricity ratio e = 0.2 For eccentricity ratio e = 0.8 

Number Finite Finite Finite Finite 
of finite element difference Exact element difference Exact 
elements method method solution method method solution 

2 1.132 1.397 2.449 3.021 
4 1.170 1.233 3.291 3.522 
6 1.174 1.201 3.496 3.606 
12 1.176 1.183 1.176 3.601 3. 630 
18 1.176 1.179 3.621 3.634 
24 1.176 1.178 3.627 3.635 
36 1.176 1.177 3.632 3.636 

3.636 
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PROBLEMS 

22.1 Solve tile infinite-width step-bearing problem indicated in Figure 22.2 using two 
one-dimensional quadrat ic  elements. 

22.2 Derive the finite element equations corresponding to Eqs. (22.1)-(22.3) using the 
Galerkin approach. 

22.3 Find the pressure distr ibution in the s tepped bearing shown in Figure 22.2 using 
four linear elements. Also. determine the oil flow at node 2 of Figure 22.2. 

22.4 Find the film pressure in the journal  bearing shown in Figure 22.3 using two linear 
elements for an eccentricity ratio of e = 0.2. 

22.5 Find the film pressure in the journal  bearing shown in Figure 22.3 using two linear 
elements for an eccentricity ratio of e = 0.8. 



A P P E N D I X  A 

GREEN-GAUSS THEOREM 
(Integration by parts in two and three dimensions) 

In the derivation of finite element equations for two-dimensional problems, we need to 
evaluate integrals of the type 

f c)o V~-~z dx dy (A.1) 

s 

where S is the area or region of integration, and C is its bounding curve. We can integrate 
Eq. (A.1) by parts, first with respect to x. using the basic relation 

j 'u dl, - - j[t '  
x l  x l  

du + ur (A.2) 

t o  obtain 

Y2 

/ l  O O / j  o ., / e -~z d x d y - - -~z o d x d y + ( 9 o ) 

S S y : y l  

Jc 7 - 

�9 dy (A.3) 
Xl 

where (x~, x~) and (yl, 92) denote the limits of integration for x and Y as shown in 
Figure A.1. However. d g can be expressed as 

dy = + d C .  l~ (A.4) 

where dC is an element of the boundary curve, l~ is the cosine of the angle between the 
normal n and the x direction, and the plus and minus signs are applicable to the right- 
and left-hand-side boundary curves (see Figure A.1). Thus. the last term of Eq. (A.3) can 
be expressed in integral form as 

Y 2  

f (~6) 

!11  

X r  

d y - /  
xl  

c 

~ o d C l x  (A.5) 
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dC 

~ X  

Thus, the integral of Eq. (A.1) can be evaluated as 

//0o :/  o / 
e ~ dx dy - - ~ 0 dx dy + ~r dC 

S S C 

(A.6) 

Similarly, if the integral (A.1) contains the term (Or instead of (Or it can be 
evaluated as 

:/0o :/ o / 
the9 dx dy - - -0--~9 r dx dy + WOl, dC (a.7) 

S S C 

where l~ is the cosine of the angle between the normal n and the y direction. 

Equations (A.6) and (A.7) can be generalized to the case of three dimensions as 

/ :  0r / J J "  Or 
Oxx dx dy dz - - Ox 6 dx dy dz 

V V 

+ / WOlx dS (A.8) 

S 

where V is the volume or domain of integration and S is the surface bounding the 
domain V. Expressions similar to Eq. (A.8) can be written if the quantity (O0/Oy) or 
(O0/Oz) appears instead of (O0/Ox) in the original integral. 
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Acoustic field, 645 
Acoustic vibration, 643 
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Automatic mesh generation, 68 
Axisymmetric heat transfer, 533 
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computer implementation, 221 
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Cauchy condition, 621 
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Collocation method, 188 
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Comparative study of elements, 139 
Comparison of finite element method with 
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Compatible element, 85, 88 

Complete element, 85 
Complex element, 83 
Compliance matrix, 289 
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Consistent load vector. 363, 402 
Consistent mass matrix. 424 
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Continuity conditions, 136, 144 
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approximate methods. 168 
specification, 168 
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CST element. 365. 371 
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Curved-sided elements. 143 
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C ~ continuity, 88 
C o continuity, 90. 137 
C 1 continuity. 90. 138 

Damped system, 447 
Damping matrix. 423 
Darcy law. 591 
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Decomposition of a matrix, 236 
Direct approach, 162 

bar under axial load, 163 
current flow, 167 
fluid flow, 166 
heat flow, 164 

Direct integration method, 261 
Dirichlet condition, 585. 621, 642 
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Displacement-force method, 296 
Displacement method, 36, 295 
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Discretization process, 56 
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Dynamic equations of motion. 421 
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assembly, 209 
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Expansion theorem. 446 

Field problem, 622, 633 
Field variable, 174 
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565 
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momentum equations, 560 
viscous and non-Newtonian flow, 594 

Fluids. 555 
Flutter  problem. 455 
Forced boundary condition, 172 
Force method. 295 
Fourier equation. 8. 393 
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Frame element. 321 
Frames. 309 
Free boundary condition, 172 
Free vibration analysis. 433 
Functional. 169 

Galerkin method. 32. 189. 194, 476, 578, 
601. 609 
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Gauss integration. 149 

one-dimensional region. 149 
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Geometric boundary condition, 172 
Global coordinates. 91. 425 
Green-Gauss theorem. 657 

Hamilton's principle, 299 
Harmonic operator. 595 
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HEAT1. 488 
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Heat transfer problems. 465 
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boundary conditions. 472 
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finite element equations, 474 
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initial conditions, 472 

one-dimensional problems, 482 
spherical coordinates, 472 
three-dimensional problems, 469, 543 
two-dimensional problems, 514 

Helmholtz equation, 642 
h-method, 90 
Hermite interpolation formula, 129, 135 
Hermite polynomials, 129, 135 

first-order, 130 
zeroth-order, 129 

Hexahedron element, 403 
Higher order element, 113, 125 

natural  coordinates, 115 
one-dimensional, 113 
three-dimensional, 123 
two-dimensional, 117 

Hillbert matrix, 276 
Historical background, 3 
Homogeneous solution, 448 
Hydrodynamic lubrication. 650 
Hyperosculatory interpolation formula, 126 

Incompressible flow, 575 
Infinite body, 63 
Infinite element, 65 
Initial conditions, 472 
Initial strain, 303 
Intergration by parts, 657 
Interpolation function, 82 
Interpolation model, 80 
Interpolation polynomial, 84, 91 

local coordinates, 100 
selection of the order, 85 
vector quantities, 97 

Inverse of a matrix, 239 
Inviscid fluid flow, 23, 558. 567 
Irrotational flow, 568 
Isoparametric element, 113, 140 

JACOBI,  245 
Jacobian, 142 
Jacobian matrix, 121, 147 
Jacobi method, 244 
Journal bearing, 654 

Lagrange equations, 421 
Lagrange interpolation functions, 126. 133 
Laminar flow, 558 
Laplace equation, 9, 471 
Least squares method. 189, 198 

Linear element. 82. 131 
Linear interpolation polynomials. 91. 100 
Linear model. 82 
Line element. 100 
Load vector. 30:3 
Location of nodes. 61 
Lower triangular matrix. 237 
Lumped mass matrix. 424 

Xlapping of elements. 142 
Xlass matrix 

beam element. 429 
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triangular bending element. 431 
triangular membrane element. 430 

XIATXIUL. 267 
Xlatrix inversion. 239 
Xlembrane eleinent. 357 
XIesh refinement. 89 
XIODAL. 267 
Xlode superposition method. 263 
Xlomentum equations. 560 
XI-orthogonalization of modes. 437 
Xlultiplex element. 83 
Xlultipoint constraint. 224. 347 

NASTRAN. 43 
Natural boundary conditions, 172 
Natural coordinates. 100, 403 

one-dimensional element. 100 
three-dimensional element. 106, 123, 403 
two-dimensional element. 102. 120 

Navier-Stokes equations, 603 
Neumann condition..585. 642 
Newmark method. 263 
Newtonian fluid. 557, 562 
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Octree method. 69 
One-dimensional element. 54 
One-dimensional fluid flow. 9 
One-dimensional heat transfer. 7 
Order of polynomial, 85 
Orthogonalization of modes. 437 
Osculatory interpolation formula. 126 
Overdamped case, 449 
Overview, 3 

Parallel processing, 269 
Partial differential equation 

elliptic, 623 
hyperbolic, 623 
parabolic, 623 

Particular integral, 449 
p-refinement, 90 
Pascal tetrahedron, 87 
Pascal triangle, 87 
Path line, 558 
PHIFLO, 588 
Planar frame element. 331 
Planar truss, 212 
Plane strain, 285 
Plane stress, 284 
PLATE, 391, 440 
Plate bending element. 378 
Plates, 357, 374 
Plate under tension. 365 
Plate with a hole, 369 
Poisson equation, 8, 624 
Polynomial form, 82 
Potential function formulation, 576 
Power method, 246 
Primary nodes, 80 
Principle of minimum potential energy, 296 
Principle of minimum complementary 

energy, 297 
Principle of stationary Reissner energy. 298 
Program packages, 43 
Propagation problems. 11. 193, 231. 258 

Quadratic element, 113. 115. 117. 493 
Quadratic model. 83 
Quadrilateral element. 120 
Quadtree method, 72 
Quasi-harmonic equation, 621 

RADIAT, 507 
Radiation, 468, 502 
Radiation heat transfer coefficient, 503 

Rate equation. 468 
Rayleigh-Ritz method, 31, 174, 178, 179, 180 
Rayleigh-Ritz subspace iteration, 252 
Rayleigh's method, 30 
Rectangular element. 133, 384 
Reynolds equation. 650 
Ring element, 409 
Rotational flow, 569 
r-refinement, 90 
RUNGE, 260 
Runge-Kutta  method. 259 

Secondary nodes. 80 
Second-order differential equation, 265 
Seiche motion. 643 
Semi-bandwidth, 66 
Separation of variables, 28 
Shape functions. 141 
Shape of elements, 53 
Simplex, 69 
Simplex element, 83, 91 

one-dimensional. 91 
three-dimensional. 95 
two-dimensional, 92 

Size of elements, 60 
Solid bar under axial load. 9 
Solid mechanics. 277 

basic equations, 279 
boundary' conditions, 292 
compatibility equations, 294 
constitutive relations, 283 
equilibrium equations, 280 
formulations. 295 
strain-displacement relations, 290 
stress-strain relations, 283 
three-dimensional problems, 399 

Solids of revolution, 408 
Solution of differential equations, 182, 259 
Solution of finite element equations, 230 
SOLVE. 239 
Sound pressure, 645 
Space frame element. 321 

global stiffness matrix, 326 
transformation matrix, 328 

Space-time finite element, 636 
Space truss element. 309 
Spherical coordinate system, 472 
Spring element, 344 
Stability problems. 455 
Standard eigenvalue problem, 243 
State equation, 565, 567 
Static analysis. 300 
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Static condensation, 458 
Stationary value, 169 
Steady-state field problem, 622 
Steady-state problem, 10 
Stefan-Boltzmann constant, 468 
Step bearing, 653 
Stepped bar, 13 
Stiffness matrix, 303 
Strain displacement relations, 290 
Streamline, 558 
Stream function, 570 

formulation, 585, 595 
vorticity formulation, 604 

STRESS, 412 
Stress analysis of beams, 38, 320 
Stress concentration, 370, 394 
Stress-rate of strain relations, 561 
Stress-strain relations, 283, 561 
Subdomain collocation method, 189 
Subparametric element, 141 
Subspace iteration method, 252 
Substructures method, 455 
Superparametric element, 141 
SUSPIT, 254 
Symmetric geometry, 63 
System equations, 209 

Tapered fin analysis, 490 
Tentative solution, 170 
Tesselation method, 69 
Tetrahedral coordinates, 106 
Tetrahedron element, 123, 399 
Three-dimensional elements, 56 
Three-dimensional heat transfer, 533, 543 
Three-dimensional problems, 399, 533 
Three-dimensional structures, 387 
Torsion of shafts, 624 
TORSON, 632 
Total derivative, 560 
Total solution, 449 
Transformation matrix, 209, 328 
Transient field problem, 633 
Transient problem, 10, 633 

Triangular bending element, 379. 385 
Triangular coordinates, 102 
Triangular element. 385 
Triangular membrane element, 357 
Triangular ring element, 409, 534 
Truss, 309 
Truss element, 309 
Turbulent flow, 558 
Two-dimensional elements, 55 
Two-dimensional heat transfer, 514 
Two-station interpolation functions, 126 
Types of elements, 56 

Uncoupling of equations of motion, 445 
Undamped system, 445, 448 
Uniform fin analysis, 482 
Unsteady heat transfer, 496, 528 
Unsteady state problems. 496, 528, 549 
Upper triangular matrix, 236 

Variational approach, 162, 168, 296, 474, 586, 
595.6O6 

Variational formulation. 173 
Variational operator, 169 
Vector quantities, 97 
Velocity potential. 569 
Velocity-pressure formulation, 601 
Vibration analysis, 433 
Vibration of a beam, 27 
Vibration of membrane, 643 
Viscosity equation, 565 
Viscous flow. 558, 594 
Volume coordinates, 106 
Vorticity, 604 

\Vaveguide. 644 
~Veighted residual approach, 162. 187, 

193. 198 

Zeroth-order interpolation function, 129 
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