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PREFACE

The finite element method is a numerical method that can be used for the accurate
solution of complex engineering problems. The method was first developed in 1956 for
the analysis of aircraft structural problems. Thereafter, within a decade, the potentiali-
ties of the method for the solution of different types of applied science and engineering
problems were recognized. Over the years, the finite element technique has been so well
established that today it is considered to be one of the best methods for solving a wide
variety of practical problems efficiently. In fact, the method has become one of the active
research areas for applied mathematicians. One of the main reasons for the popularity of
the method in different fields of engineering is that once a general computer program is
written, it can be used for the solution of any problem simply by changing the input data.

The objective of this book is to introduce the various aspects of finite element method
as applied to engineering problems in a systematic manner. It is attempted to give details
of development of each of the techniques and ideas from basic principles. New concepts are
illustrated with simple examples wherever possible. Several Fortran computer programs
are given with example applications to serve the following purposes:

- to enable the student to understand the computer implementation of the theory
developed;

~ to solve specific problems;

— to indicate procedure for the development of computer programs for solving any
other problem in the same area.

The source codes of all the Fortran computer programs can be found at the Web site
for the book, www.books.elsevier.com. Note that the computer programs are intended for
use by students in solving simple problems. Although the programs have been tested, no
warranty of any kind is implied as to their accuracy.

After studying the material presented in the book, a reader will not only be able to
understand the current literature of the finite element method but also be in a position to
develop short computer programs for the solution of engineering problems. In addition, the
reader will be in a position to use the commercial software, such as ABAQUS, NASTRAN,
and ANSYS, more intelligently.

The book is divided into 22 chapters and an appendix. Chapter 1 gives an introduction
and overview of the finite element method. The basic approach and the generality of
the method are illustrated through simple examples. Chapters 2 through 7 describe the
basic finite element procedure and the solution of the resulting equations. The finite
element discretization and modeling, including considerations in selecting the number
and types of elements, is discussed in Chapter 2. The interpolation models in terms of
Cartesian and natural coordinate systems are given in Chapter 3. Chapter 4 describes the
higher order and isoparametric elements. The use of Lagrange and Hermite polynomials
is also discussed in this chapter. The derivation of element characteristic matrices and
vectors using direct, variational, and weighted residual approaches is given in Chapter 5.

xiii
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The assembly of element characteristic matrices and vectors and the derivation of system
equations, including the various methods of incorporating the boundary conditions, are
indicated in Chapter 6. The solutions of finite element equations arising in equilibrium,
eigenvalue, and propagation (transient or unsteady) problems, along with their computer
implementation, are briefly outlined in Chapter 7.

The application of the finite element method to solid and structural mechan-
ics problems is considered in Chapters 8 through 12. The basic equations of solid
mechanics — namely, the internal and external equilibrium equations. stress—strain rela-
tions, strain-displacement relations and compatibility conditions—-are summarized in
Chapter 8. The analysis of trusses. beams. and frames is the topic of Chapter 9. The
development of inplane and bending plate elements is discussed in Chapter 10. The anal-
ysis of axisymmetric and three-dimensional solid bodies is considered in Chapter 11. The
dynamic analysis, including the free and forced vibration. of solid and structural mechanics
problems is outlined in Chapter 12.

Chapters 13 through 16 are devoted to heat transfer applications. The basic equations
of conduction. convection. and radiation heat transfer are summarized and the finite
element equations are formulated in Chapter 13. The solutions of one-. two-, and three-
dimensional heat transfer problems are discussed in Chapters 14--16. respectively. Both
the steady state and transient problems are considered. The application of the finite
element method to fluid mechanics problems is discussed in Chapters 17-19. Chapter 17
gives a brief outline of the basic equations of fluid mechanics. The analysis of inviscid
incompressible flows is considered in Chapter 18. The solution of incompressible viscous
flows as well as non-Newtonian fluid flows is considered in Chapter 19. Chapters 20-22
present additional applications of the finite element method. In particular, Chapters 20-22
discuss the solution of quasi-harmonic (Poisson), Helmholtz. and Reynolds equations,
respectively. Finally, Green-Gauss theorem. which deals with integration by parts in two
and three dimensions. is given in Appendix A.

This book is based on the author’s experience in teaching the course to engineering
students during the past several years. A basic knowledge of matrix theory is required
in understanding the various topics presented in the book. More than enough material
is included for a first course at the senior or graduate level. Different parts of the book
can be covered depending on the background of students and also on the emphasis to
be given on specific areas. such as solid mechanics. heat transfer, and fluid mechanics.
The student can be assigned a term project in which he/she is required to either modify
some of the established elements or develop new finite elements, and use them for the
solution of a problem of his/her choice. The material of the book is also useful for self
study by practicing engineers who would like to learn the method and/or use the computer
programs given for solving practical problems.

I express my appreciation to the students who took my courses on the finite element
method and helped me improve the presentation of the material. Finally, I thank my wife
Kamala for her tolerance and understanding while preparing the manuscript.

Miami S. S. Rao
May 2004 srao@miami.edu



PRINCIPAL NOTATION

length of a rectangular element

components of acceleration along z, y. z directions of a fluid
area of cross section of a one-dimensional element; area of a triangular
(plate) element

cross-sectional area of one-dimensional element e
cross-sectional area of a tapered one-dimensional element at node ()
width of a rectangular element

body force vector in a fluid = {B., By, B.}"

specific heat

specific heat at constant volume

constants

compliance matrix; damping matrix

flexural rigidity of a plate

elasticity matrix (matrix relating stresses and strains)
Young’s modulus; total number of elements

Young’s modulus of element e

Young’s modulus in a plane defined by axis 7
functions of x

shear force in a beam

acceleration due to gravity

shear modulus

shear modulus in plane ij

convection heat transfer coefficient

Lagrange polynomial associated with node @

jth order Hermite polynomial

(-1)* /2

functional to be extremized;

potential energy;

area moment of inertia of a beam

unit vector parallel to z(X) axis

contribution of element e to the functional I

area moment of inertia of a cross section about z axis
polar moment of inertia of a cross section

unit vector parallel to y(Y) axis

Jacobian matrix
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unit vector parallel to 2(Z) axis

stiffness matrix of element e in local coordinate system

stiffness matrix of element e in global coordinate system

stiffness {characteristic) matrix of complete body after incorporation

of boundary conditions

stiffness (characteristic) matrix of complete body before
incorporation of boundary conditions

length of one-dimensional element

length of the one-dimensional element e

direction cosines of a line

direction cosines of r axis

direction cosines of a bar element with nodes i and j
total length of a bar or fin: Lagrangian

natural coordinates of a line element

natural coordinates of a triangular element

natural coordinates of a tetrahedron element

distance between two nodes

mass of beam per unit length

bending moment in a beam: total number of degrees of freedom
in a body

bending moments in a plate

torque acting about z axis on a prismatic shaft

mass matrix of element ¢ in local coordinate system
mass matrix of element e in global coordinate system
mass matrix of complete body after incorporation of
boundary conditions

mass matrix of complete body before incorporation of
boundary conditions

normal direction

interpolation function associated with the ith nodal degree of freedom

matrix of shape (nodal interpolation) functions

distributed load on a beam or plate: fluid pressure
perimeter of a fin

vector of concentrated nodal forces

perimeter of a tapered fin at node i(j)

external concentrated loads parallel to x. y. 2 axes

load vector of element e in local coordinate system

load vector due to body forces of element e in local (global)

coordinate system
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load vector due to initial strains of element e in local (global)
coordinate system

load vector due to surface forces of element e in local (global)
coordinate system

vector of nodal forces (characteristic vector) of element e in global
coordinate system

vector of nodal forces of body after incorporation of
boundary conditions

vector of nodal forces of body before incorporation of
boundary conditions

rate of heat flow

rate of heat generation per unit volume

rate of heat flow in z direction

mass flow rate of fluid across section i

vertical shear forces in a plate

external concentrated moments parallel to z, y, z axes

vector of nodal displacements (field variables) of element e in local
(global) coordinate system

vector of nodal displacements of body before incorporation of
boundary conditions

mode shape corresponding to the frequency w;

natural coordinates of a quadrilateral element

natural coordinates of a hexahedron element

radial, tangential, and axial directions

values of (r,s,t) at node 1

radius of curvature of a deflected beam;

residual;

region of integration;

dissipation function

surface of a body

part of surface of a body

surface of element ¢

part of surface of element e

time; thickness of a plate element

temperature;

temperature change;

kinetic energy of an elastic body

temperature at node ¢

temperature at the root of fin

surrounding temperature

temperature at node i of element e

vector of nodal temperatures of element e
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Yj vector of nodal temperatures of the body before incorporation of
boundary conditions
flow velocity along x direction: axial displacement
U, v, w components of displacement parallel to z, y, z axes: components of
velocity along z, y, z directions in a fluid (Chapter 17)
U vector of displacements = {u.v.w}”
Vv volume of a body
1% velocity vector = {u, v, w}” (Chapter 17)
w transverse deflection of a beam
W amplitude of vibration of a beam
Wi value of W at node 7
Wy work done by external forces
W vector of nodal displacements of element e
T x coordinate:
axial direction
(Zc, Ye) coordinates of the centroid of a triangular element
(i, 91, 24) (z,y. z) coordinates of node 1
(X, Y5, 2Z) global coordinates (X.Y. Z) of node i
a coefficient of thermal expansion
Q; ith generalized coordinate
é variation operator
£ii normal strain parallel to ith axis
€ij shear strain in 7 plane
gle) strain in element e
g strain vector = {€,z.£yy.E2ar frysEyzy 2z} fOT @
three-dimensional body;
= {e,r.€06.€22.5r.}" for an axisymmetric body
€0 initial strain vector
0 torsional displacement or twist
[Al)] coordinate transformation matrix of element e
77;!) jth generalized coordinate
I dynamic viscosity
v Poisson’s ratio
Vij Poisson’s ratio in plane ij
T potential energy of a beam:
strain energy of a solid body
Me complementary energy of an elastic body
Tp potential energy of an elastic body
TR Reissner energy of an elastic body
7l® strain energy of element e
P density of a solid or fluid
Tii normal stress parallel to ith axis
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1

OVERVIEW OF FINITE ELEMENT
METHOD

1.1 BASIC CONCEPT

The basic idea in the finite element method is to find the solution of a complicated problem
by replacing it by a simpler one. Since the actual problem is replaced by a simpler one
in finding the solution, we will be able to find only an approximate solution rather than
the exact solution. The existing mathematical tools will not be sufficient to find the exact
solution (and sometimes, even an approximate solution) of most of the practical problems.
Thus, in the absence of any other convenient method to find even the approximate solution
of a given problem, we have to prefer the finite element method. Moreover, in the finite
element method, it will often be possible to improve or refine the approximate solution by
spending more computational effort.

In the finite element method, the solution region is considered as built up of many
small, interconnected subregions called finite elements. As an example of how a finite
element model might be used to represent a complex geometrical shape, consider the
milling machine structure shown in Figure 1.1(a). Since it is very difficult to find the
exact response (like stresses and displacements) of the machine under any specified cutting
(loading) condition, this structure is approximated as composed of several pieces as shown
in Figure 1.1(b) in the finite element method. In each piece or element, a convenient
approximate solution is assumed and the conditions of overall equilibrium of the structure
are derived. The satisfaction of these conditions will yield an approximate solution for the
displacements and stresses. Figure 1.2 shows the finite element idealization of a fighter
aircraft.

1.2 HISTORICAL BACKGROUND

Although the name of the finite element method was given recently, the concept dates
back for several centuries. For example, ancient mathematicians found the circumference
of a circle by approximating it by the perimeter of a polygon as shown in Figure 1.3.

In terms of the present-day notation, each side of the polygon can be called a
“finite element.” By considering the approximating polygon inscribed or circumscribed,
one can obtain a lower bound S or an upper bound S for the true circumference S.
Furthermore, as the number of sides of the polygon is increased, the approximate values

3
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Figure 1.2. Finite Element Mesh of a Fighter Aircraft (Reprinted with Permission from Anamet
Laboratories, inc.).
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Figure 1.3. Lower and Upper Bounds to the Circumference of a Circle.

converge to the true value. These characteristics. as will be seen later. will hold true in
any general finite element application. In recent times, an approach similar to the finite
element method, involving the use of piecewise continuous functions defined over trian-
gular regions, was first suggested by Courant [1.1] in 1943 in the literature of applied
mathematics.

The basic ideas of the finite element method as known today were presented in the
papers of Turner, Clough, Martin, and Topp [1.2] and Argyris and Kelsey [1.3]. The name
finite element was coined by Clough (1.4]. Reference [1.2] presents the application of simple
finite elements (pin-jointed bar and triangular plate with inplane loads) for the analysis of
aircraft structure and is considered as one of the key contributions in the development of
the finite element method. The digital computer provided a rapid means of performing the
many calculations involved in the finite element analysis and made the method practically
viable. Along with the development of high-speed digital computers, the application of the
finite element method also progressed at a verv impressive rate. The book by Przemieniecki
[1.33] presents the finite element method as applied to the solution of stress analysis
problems. Zienkiewicz and Cheung [1.5] presented the broad interpretation of the method
and its applicability to any general field problem. With this broad interpretation of the
finite element method, it has been found that the finite element equations can also be
derived by using a weighted residual method such as Galerkin method or the least squares
approach. This led to widespread interest among applied mathematicians in applying the
finite element method for the solution of linear and nonlinear differential equations. Over
the years, several papers, conference proceedings, and books have been published on this
method.

A brief history of the beginning of the finite element method was presented by
Gupta and Meek [1.6]. Books that deal with the basic theory, mathematical foundations,
mechanical design, structural, fluid flow. heat transfer. electromagnetics and manufac-
turing applications, and computer programming aspects are given at the end of the
chapter {1.10-1.32]. With all the progress. today the finite element method is consid-
ered one of the well-established and convenient analysis tools by engineers and applied
scientists.



6 OVERVIEW OF FINITE ELEMENT METHOD

Figure 1.4.

Example 1.1 The circumference of a circle (S) is approximated by the perimeters of
inscribed and circumscribed n-sided polygons as shown in Figure 1.3. Prove the following:

lim SY =S5 and lim S =5

n—+2C n—oc

where S and S denote the perimeters of the inscribed and circumscribed polygons,
respectively.

Solution If the radius of the circle is R, each side of the inscribed and the circumscribed
polygon can be expressed as (Figure 1.4)

r=2Rsin ~. s=2Rtan ~ (E1)
n n
Thus, the perimeters of the inscribed and circumscribed polygons are given by

SY = nr = 2nRsin ~. 5 = ns = 2nRtan % (E2)
n
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which can be rewritten as

sin s tan Gl
S =orR|-=2], Ss™=27R |1 (Ea)
n n
m
As n — oo, i 0, and hence
SO L orR =8, S™ L 27R=§ (E4)

1.3 GENERAL APPLICABILITY OF THE METHOD

Although the method has been extensively used in the field of structural mechanics, it
has been successfully applied to solve several other types of engineering problems, such
as heat conduction, fluid dynamics, seepage flow, and electric and magnetic fields. These
applications prompted mathematicians to use this technique for the solution of compli-
cated boundary value and other problems. In fact, it has been established that the method
can be used for the numerical solution of ordinary and partial differential equations. The
general applicability of the finite element method can be seen by observing the strong
similarities that exist between various types of engineering problems. For illustration, let
us consider the following phenomena.

1.3.1 One-Dimensional Heat Transfer

Consider the thermal equilibrium of an element of a heated one-dimensional body as shown
in Figure 1.5(a). The rate at which heat enters the left face can be written as [1.7]

4 = ~kATL (1.1)

where k is the thermal conductivity of the material, A is the area of cross section through
which heat flows (measured perpendicular to the direction of heat flow), and 87/0x is the
rate of change of temperature T with respect to the axial direction.

The rate at which heat leaves the right face can be expressed as (by retaining only
two terms in the Taylor’s series expansion)

— — — - 1.2
Qr+dz — g4z + 5 dz = kA + < kA ) dzx ( )

The energy balance for the element for a small time dt is given by
Heat inflow 4 Heat generated by = Heat outflow + Change in internal
in time dt internal sources in time dt¢ energy during

in time dt time dt

That is,

T .
gz dt + gAdx dt = qpra. dt + cp%t‘ dx dt (1.3)
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Cross sectional area = A

—x bg
* * pe— dix ——={

X Cross sectional area = A(x)

(b)

Cross sectional area = A(x)
(c)

Figure 1.5. One-Dimensional Problems.

where ¢ is the rate of heat generation per unit volune (hy the heat source). ¢ is the specific
heat, p is the density. and 6T /0tdt = dT is the temperature change of the element in
time dt. Equation (1.3) can be simplified to obtain

J aT oT
— 1 =cp— 1.4
Py (k 4- ) + g4 </)0t (1.4)

Special cases
If the heat source ¢ = 0. we get the Fourier equation

d aT ()T
< 15
dx (I\A dr > ot (15)

If the system is in a steadv state. we obtain the Poisson equation

J aT
74 = 1.6
o (kl() >+q—l 0 (1.6)
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If the heat source is zero and the system is in steady state, we get the Laplace equation

0 orT
il e = 1.7
Ox (kA Oz > 0 (L.7)

If the thermal conductivity and area of cross section are constant, Eq. (1.7) reduces to
o°T
e (1.8)

1.3.2 One-Dimensional Fluid Flow

In the case of one-dimensional fluid flow (Figure 1.5(b)), we have the net mass flow the
same at every cross section: that is,

pAu = constant (1.9)

where p is the density, A is the cross-sectional area, and u is the flow velocity.
Equation (1.9) can also be written as

%(pAu) =0 (1.10)

If the fluid is inviscid, there exists a potential function ¢(x) such that [1.8]

Lo 40

= 1.11
I (1.11)
and hence Eq. (1.10) becomes
d do
= bk 1.12
dz (pA dx) 0 ( )
1.3.3 Solid Bar under Axial Load
For the solid rod shown in Figure 1.5(c), we have at any section z,
Reaction force = (area)(stress) = (area)(E){strain)
= AEZ—E = applied force (1.13)

where E is the Young's modulus, u is the axial displacement, and A is the cross-sectional
area. If the applied load is constant, we can write Eq. (1.13) as

0 du
9 ouy _ 1.14
P (AEOI) 0 (1.14)

A comparison of Eqgs. (1.7), (1.12), and (1.14) indicates that a solution procedure applica-
ble to any one of the problems can be used to solve the others also. We shall see how the
finite element method can be used to solve Eqgs. (1.7), (1.12), and (1.14) with appropriate
boundary conditions in Section 1.5 and also in subsequent chapters.
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1.4 ENGINEERING APPLICATIONS OF THE FINITE ELEMENT METHOD

As stated earlier, the finite element method was developed originally for the analysis of
aircraft structures. However, the general nature of its theory makes it applicable to a
wide variety of boundary value problems in engineering. A boundary value problem is
one in which a solution is sought in the domain (or region) of a body subject to the
satisfaction of prescribed boundary (edge) conditions on the dependent variables or their
derivatives. Table 1.1 gives specific applications of the finite element method in the three
major categories of boundary value problems, namely, (i) equilibrium or steady-state or
time-independent problems, (ii) eigenvalue problems, and (iii) propagation or transient
problems.

In an equilibrium problem, we need to find the steady-state displacement or stress
distribution if it is a solid mechanics problem, temperature or heat flux distribution if it
is a heat transfer problem, and pressure or velocity distribution if it is a fluid mechanics
problem.

In eigenvalue problems also. time will not appear explicitly. They may be considered
as extensions of equilibrium problems in which critical values of certain parameters are
to be determined in addition to the corresponding steady-state configurations. In these
problems, we need to find the natural frequencies or buckling loads and mode shapes if it is
a solid mechanics or structures problem, stability of laminar flows if it is a fluid mechanics
problem, and resonance characteristics if it is an electrical circuit problem.

The propagation or transient problems are time-dependent problems. This type of
problem arises, for example, whenever we are interested in finding the response of a body
under time-varying force in the area of solid mechanics and under sudden heating or
cooling in the field of heat transfer.

1.5 GENERAL DESCRIPTION OF THE FINITE ELEMENT METHOD

In the finite element method. the actual continuum or body of matter, such as a solid,
liquid, or gas, is represented as an assemblage of subdivisions called finite elements. These
elements are considered to be interconnected at specified joints called nodes or nodal
points. The nodes usually lie on the element boundaries where adjacent elements are con-
sidered to be connected. Since the actual variation of the field variable (e.g., displacement,
stress, temperature, pressure, or velocity) inside the continuum is not known, we assume
that the variation of the fleld variable inside a finite element can be approximated by
a simple function. These approximating functions (also called interpolation models) are
defined in terms of the values of the field variables at the nodes. When field equations
(like equilibrium equations) for the whole continuum are written, the new unknowns will
be the nodal values of the field variable. By solving the field equations, which are gener-
ally in the form of matrix equations, the nodal values of the field variable will be known.
Once these are known, the approximating functions define the field variable throughout
the assemblage of elements.

The solution of a general continuum problem by the finite element method always
follows an orderly step-by-step process. With reference to static structural problems, the
step-by-step procedure can be stated as follows:

Step (i): Discretization of the structure

The first step in the finite element method is to divide the structure or solution region
into subdivisions or elements. Hence, the structure is to be modeled with suitable finite
elements. The number, type, size, and arrangement of the elements are to be decided.



Table 1.1. Engineering Applications of the Finite Element Method

Area of study

Equilibrium problems

Eigenvalue problems

Propagation problems

1. Civil engineering
structures

2. Aircraft structures

3. Heat conduction

4. Geomechanics

5. Hydraulic and water

resources engineering;
hydrodynamics

Static analysis of trusses,
frames, folded plates, shell
roofs, shear walls, bridges,
and prestressed concrete
structures

Static analysis of aircraft wings,

fuselages, fins, rockets,
spacecraft, and missile
structures

Steady-state temperature
distribution in solids and
fluids

Analysis of excavations,
retaining walls, underground
openings, rock joints and
$0il structure interaction
problems; stress analysis in
soils, dams, layered piles, and
machine foundations

Analysis of potential flows, free
surface flows, boundary layer
flows, viscous flows, transonic
aerodynamic problems;
analysis of hydraulic
structures and dams

Natural frequencies and
modes of structures;
stability of structures

Natural frequencies, flutter,
and stability of aircraft,
rocket, spacecraft, and
missile structures

Natural frequencies and
modes of dam-reservoir
systems and soil-structure
interaction problems

Natural periods and modes of
shallow basins, lakes, and
harbors; sloshing of liquids
in rigid and flexible
containers

Propagation of stress waves;
response of structures to
aperiodic loads

Response of aircraft structures to
random loads; dynamic response
of aircraft and spacecraft to
aperiodic loads

Transient heat flow in rocket
nozzles, internal combustion
engines, turbine blades, fins, and
building structures

Time-dependent soil-structure

interaction problems; transient
seepage in soils and rocks; stress
wave propagation in soils and
rocks

Analysis of unsteady fluid flow and
wave propagation problems;
transient seepage in aquifers and
porous media; rarefied gas
dynamics; magneto-
hydrodynamic flows

(continued)



Table 1.1 (continued). Engineering Applications of the Finite Element Method

Area of study Equilibrium problems Eigenvalue problems Propagation problems
6. Nuclear engineering Analysis of nuclear pressure Natural frequencies and Response of reactor containment
vessels and containment stability of containment structures to dynamic loads;
structures; steady-state structures; neutron flux unsteady temperature
temperature distribution in distribution distribution in reactor
reactor components components; thermal and
viscoelastic analysis of reactor
structures
7. Biomedical Stress analysis of eyeballs, Iinpact analysis of skull;
engineering bones, and teeth; load-bearing dynamics of anatomical
capacity of implant and structures

prosthetic systems: mechanics
of heart valves

8. Mechanical design Stress concentration problems; Natural frequencies and Crack and fracture problems under
stress analysis of pressure stability of linkages, gears, dynamic loads
vessels, pistons, composite and machine tools
materials, linkages, and gears

9. Electrical machines Steady-state analysis of Transient behavior of

and electromagnetics synchronous and induction electromechanical devices such as

machines, eddy current, and motors and actuators,
core losses in electric magnetodynamics

machines, magnetostatics
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Step (ii): Selection of a proper interpolation or displacement model

Since the displacement solution of a complex structure under any specified load condi-
tions cannot be predicted exactly, we assume some suitable solution within an element to
approximate the unknown solution. The assumed solution must be simple from a com-
putational standpoint, but it should satisfy certain convergence requirements. In general,
the solution or the interpolation model is taken in the form of a polynomial.

Step (iii): Derivation of element stiffness matrices and load vectors

From the assumed displacement model, the stiffness matrix [K(®)] and the load vector
P of element e are to be derived by using either equilibrium conditions or a suitable
variational principle.

Step (iv): Assemblage of element equations to obtain the overall equilibrium equations

Since the structure is composed of several finite elements, the individual element stiff-
ness matrices and load vectors are to be assembled in a suitable manner and the overall
equilibrium equations have to be formulated as

(K] =P (1.15)

where (K] is the assembled stiffness matrix, & is the vector of nodal displacements, and

}? is the vector of nodal forces for the complete structure.

Step (v): Solution for the unknown nodal displacements

The overall equilibrium equations have to be modified to account for the boundary condi-
tions of the problem. After the incorporation of the boundary conditions, the equilibrium
equations can be expressed as

(K]® =P (1.16)

For linear problems, the vector d_; can be solved very easily. However, for nonlinear prob-
lems, the solution has to be obtained in a sequence of steps, with each step involving the
modification of the stiffness matrix [K] and/or the load vector P.

Step (vi): Computation of element strains and stresses

From the known nodal displacements o, if required, the element strains and stresses
can be computed by using the necessary equations of solid or structural mechanics.

The terminology used in the previous six steps has to be modified if we want to extend
the concept to other fields. For example, we have to use the term continuum or domain
in place of structure, field variable in place of displacement, characteristic matrix in place
of stiffness matrix, and element resultants in place of element strains. The application
of the six steps of the finite element analysis is illustrated with the help of the following
examples.

Example 1.2 (Stress analysis of a stepped bar) Find the stresses induced in the axially
loaded stepped bar shown in Figure 1.6(a). The bar has cross-sectional areas of A% and
A® over the lengths [ and I?| respectively. Assume the following data: A" = 2 cm®
A® =1 em* 1Y =P =10em; BV = E® = E=2x10" N/em®: P3=1N.
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Solution
(i) Idealization

Let the bar be considered as an assemblage of two elements as shown in Figure 1.6(b). By
assuming the bar to be a one-dimensional structure. we have only axial displacement at
any point in the element. As there are three nodes, the axial displacements of the nodes,
namely, 1, ®2, and $3, will be taken as unknowns.

(i) Displacement model

In each of the elements, we assume a linear variation of axial displacement ¢ so that
(Figure 1.6(c))

o(r) =a+br (E1)

where a and b are constants. If we consider the end displacements <I>§">(cb at z = 0) and
cbée)(ﬁﬁ at z = l(e)) as unknowns. we obtain

a=d and b= () — &)

where the superscript e denotes the element number. Thus,

€ € € T
olz) = & + () - &) (E2)

(iii) Element stiffness matrix

The element stiffness matrices can be derived from the principle of minimum potential
energy. For this, we write the potential energy of the bar (I) under axial deformation as

I = strain energy — work done by external forces

=74 2® -y, (Es)

where 7(®) represents the strain energy of element e. and W}, denotes the work done by
external forces. For the element shown in Figure 1.6(c).

I(e, 1(6)

(e} (e)
e = 4® / %J(” e dr = AR 2E /5(”2 dr (E4)
o 0

where A'® is the cross-sectional area of element e, ['°) is the length of element e = L/2,
o is the stress in element e, £/’ is the strain in element e, and E'®) is the Young’s
modulus of element e = E. From the expression of ¢(x). we can write

e 00 _ ol — @l

T oz I (Es)
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A“), E(U A(2), E(2)
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