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CHAPTER 1

INTRODUCTION

11 DESIGN AND ANALYSIS OF A COMPONENT

Mechanical design is the design of a component for optimum size, shape, etc.,
against failure under the application of operational loads. A good design should
also minimise the cost of material and cost of production. Failures that are
commonly associated with mechanical components are broadly classified as:

(a) Failure by breaking of brittle materials and fatigue failure (when
subjected to repetitive loads) of ductile materials.

(b) Failure by yielding of ductile materials, subjected to non-repetitive
loads.

(c) Failure by elastic deformation.

The last two modes cause change of shape or size of the component
rendering it useless and, therefore, refer to functional or operational failure.
Most of the design problems refer to one of these two types of failures.
Designing, thus, involves estimation of stresses and deformations of the
components at different critical points of a component for the specified loads
and boundary conditions, so as to satisfy operational constraints..

Design is associated with the calculation of dimensions of a component to
withstand the applied loads and perform the desired function. Analysis is
associated with the estimation of displacements or stresses in a component of
assumed dimensions so that adequacy of assumed dimensions is validated.
Optimum design is obtained by many iterations of modifying dimensions of the
component based on the calculated values of displacements and/or stresses
vis-a-vis permitted values and re-analysis.

An analytic method is applied to a model problem rather than to an actual
physical problem. Even many laboratory experiments use models. A geometric
model for analysis can be devised after the physical nature of the problem has
been understood. A model excludes superfluous details such as bolts, nuts,



FINITE ELEMENT ANALYSIS

rivets, but includes all essential features, so that analysis of the model is no.
unnecessarily complicated and yet provides results that describe the actual
problem with sufficient accuracy. A geometric model becomes a mathematical
model when its behaviour is described or approximated by incorporating
restrictions such as homogeneity, isotropy, constancy of material properties and
mathematical simplifications applicable for small magnitudes of strains and
rotations.

Several methods, such as method of joints for trusses, simple theory of
bending, simple theory of torsion, analyses of cylinders and spheres for axi-
symmetric pressure load etc., are available for designing/analysing simple
components of a structure. These methods try to obtain exact solutions of
second order partial differential equations and are based on several assumptions
on sizes of the components, loads, end conditions, material properties, likely
deformation pattern etc. Also, these methods are not amenable for
generalisation and effective utilisation of the computer for repetitive jobs.

Strength of materials approach deals with a single beam member for
different loads and end conditions (free, simply supported and fixed). In a space
frame involving many such beam members, each member is analysed
independently by an assumed distribution of loads and end conditions.

For example, in a 3-member structure (portal frame) shown in Fig. 1.1, the
(horizontal) beam is anaiysed for deflection and bending stress by strength of
materials approach considering its both ends simply supported. The load and
moment reactions obtained at the ends are then used to calculate the deflections
and stresses in the two columns separately.

P P R R,
‘ ( i \ vw f v
2 / M, 2 M, M, M,
R, R,
1 3 - + 1 3
777777 777777 77%/77' 77T

FIGURE 1.1 Analysis of a simple frame by strength of materials approach

Simple supports for the beam imply that the columns do not influence slope
of the beam at its free ends (valid when bending stiffness of columns = 0 or the
column is highly flexible). Fixed supports for the beam imply that the slope of
the beam at its ends is zero (valid when bending stiffness of columns = « or the
column is extremely rigid). But, the ends of the horizontal beam are neither
simply sup, s:ted nor fixed. The degree of fixity or influence of columns on the
slope of the beam at its free ends is based on a finite, non-zero stiffness value.
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Thus, the maximum deflection of the beam depends upon the relative stiffness
of the beam and the columns at the two ends of the beam.

For example, in a beam of length ‘L’, modulus of elasticity ‘E’, moment of
inertia ‘I’ subjected to a uniformly distributed load of ‘p’ (Refer Fig. 1.2).
4

Deflection, 6= > pL

n with simple supports at its two ends (case (a))

4

pL . .
= with fixed supports at its two ends (case (b
384 Bl pp (case (b))
4 Z
I I 5 z
Case (a) : Simple supports Case (b) : Fixed supports

FIGURE 1.2 Deflection of a beam with different end conditions

If, in a particular case,
L=6m, E=2 x 10" N/m?, Moment of inertia for beam I = 0.48 x 10 m*
Moment of inertia for columns Ic = 0.48 x 10 m* and distributed load
p=2kN/m,
Omax = 3.515 mm with simple supports at its two ends
and & = 0.703 mm with fixed supports at its two ends
whereas, deflection of the same beam, when analysed along with columns by
FEM,
Omax = 1.8520 mm, when [ = Ic (Moments of inertia for beam & columns)
= 1.0584 mm, when 5 Iz = I¢
and =2.8906 mm, when Iz=51I¢

All the three deflection values clearly indicate presence of columns with
finite and non-zero stiffness and, hence, the deflection values are in between
those of beam with free ends and beam with fixed ends.

Thus, designing a single beam member of a frame leads to under-designing
if fixed end conditions are assumed while it leads to over-designing if simple
supports are assumed at its ends. Simply supported end conditions are,
therefore, normally used for a conservative design in the conventional approach.
Use of strength of materials approach for designing a component is, therefore,
associated with higher factor of safety. The individual member method was
acceptable for civil structures, where weight of the designed component is not a
serious constraint. A more accurate analysis of discrete structures with few
members is carried out by the potential energy approach. Optimum beam design
is achieved by analysing the entire structure which naturally considers finite
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stiffness of the columns, based on their dimensions and material, at its ends.
This approach is followed in the Finite Element Method (FEM).

1.2 APPROXIMATE METHOD VS. EXACT METHOD

An analytical solution is a mathematical expression that gives the values of the
desired unknown quantity at any location of a body and hence is valid for an
infinite number of points in the component. However, it is not possible to obtain
analytical mathematical solutions for many engineering problems.

For problems involving complex material properties and boundary
conditions, numerical methods provide approximate but acceptable solutions
(with reasonable accuracy) for the unknown quantities — only at discrete or
finite number of points in the component.-Approximation is carried out in two
stages :

(a) In the formulation of the mathematical model, w.r.t. the physical
behaviour of the component. Example : Approximation of joint with
multiple rivets at the junction of any two members of a truss as a pin
joint, assumption that the joint between a column and a beam behaves
like a simple support for the beam,.... The results are reasonably
accurate far away from the joint.

(b) In obtaining numerical solution to the simplified mathematical model.
The methods usually involve approximation of a functional (such as
Potential energy) in terms of unknown functions (such as
displacements) at finite number of points. There are two broad
categories:

(i) Weighted residual methods such as Galerkin method,
Collocation method, Least squares method, etc.

(ii) Variational method (Rayleigh-Ritz method, FEM). FEM is an
improvement of Rayleigh-Ritz method by choosing a
variational function valid over a small element and not on the
entire component, which will be discussed in detail later. These
methods also use the principle of minimum potential energy.

(iii) Principle of minimum potential energy : Among all possible
kinematically admissible displacement fields (satisfying
compatibility and boundary conditions) of a conservative system,
the one corresponding to stable equilibrium state has minimum
potential energy. For a component in static equilibrium, this
principle helps in the evaluation of unknown displacements of
deformable solids (continuum structures).

Some of these methods are explained here briefly to understand the historical
growth of analysis techniques.
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1.3 WEIGHTED RESIDUAL METHODS

Most structural problems end up with differential equations. Closed form
solutions are not feasible in many of these problems. Different approaches are
suggested to obtain approximate solutions. One such category is the weighted
residual technique. Here, an approximate solution, in the form y=2N,.C, for

i =1 to n where C; are the unknown coefficients or weights (constants) and N;
are functions of the independent variable satisfying the given kinematic
boundary conditions, is used in the differential equation. Difference between the
two sides of the equation with known terms, on one side (usually functions of
the applied loads), and unknown terms, on the other side (functions of constants
C)), is called the residual, R. This residual value may vary from point to point in
the component, depending on the particular approximate solution. Different
methods are proposed based on how the residual is used in obtaining the best
(approximate) solution. Three such popular methods are presented here.

(a) Galerkin Method
It is one of the weighted residual techniques. In this method, solution is
obtained by equating the integral of the product of function N; and
residual R over the entire component to zero, for each N;. Thus, the ‘n’
constants in the approximate solution are evaluated from the ‘n’

conditions j‘Ni.R.dx=0 for i = 1 to n. The resulting solution may
match with the exact solution at some points of the component and may
differ at other points. The number of terms N; used for approximating
the solution is arbitrary and depends on the accuracy desired. This

method is illustrated through the following examples of beams in
bending.

Example 1.1

Calculate the maximum deflection in a simply supported beam, subjected to
concentrated load ‘P’ at the center of the beam. (Refer Fig. 1.3)

lp

TRI =P/2 R,= P/ZT
—L/2—»] _|
< L »

FIGURE 1.3
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Solution

y =0 at x = 0 and x = L are the kinematic boundary conditions of the beam. So,
the functions N; are chosen from (x — a)’.(x — b)?, with different positive integer
values forpand q;anda=0andb=L.

(i) Model-1 (I1-term approximation) : The deflection is assumed as
, y(x) =N.c
with the function, N =x(x — L),

which satisfies the end conditionsy=0atx=0andy=0atx=L.
The load-deflection relation for the beam is given by

2
EI [d 2 ) M
dx
where M= (P/2).x for 0<x<L/2
and M=(P2)x-P[x—(L2)]=PR)(L-x) for LR2<x<L
Thus, taking y =x.(x-L).c,
d2
=2c
d
d’y

and the residual of the equation, R = EI (d
x?

) M=El.2¢c-M

Then, the unknown constant ‘¢’ in the function ‘N’ is obtained from
L

jN.R.dx + fN.R.dx =0
Y =

2

(two integrals needed, since expression for M changes at x = % )

x{x-L)). [EI.Zc - ( g) de +

e~

(x-L)].[El.2c—(§].(L~x)}dx=0

“’“:.'r‘

_5PL
64 El
Therefore, y=x(x-L). 2PL
64 El
13 -P 3
At sz yzymax= ‘_SPI L

—, or
2 256 EI 51.2 El
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3

This approximate solution is close to the exact solution of

48 El
. . . d’y P .
obtained by double integration of EI o) =M= 3 X, with
X
appropriate end conditions.
(ii) Model-2 (2-term approximation): The deflection is assumed as
y(X) = N].C] + Nz.Cz
with the functions N, =x(x — L) and N, = x.(x — L)
which satisfy the given end conditions.
Thus, taking y=x.(x - L).c; +x.(x— L)’c,,
2
(d—-y{) =2¢, +2.3x-2L).c,
dx
and the residual of the equation,
2
R=EL (:—{) M =EL[2¢,+2.3x-2L).c;] - M
X
where M= (P/2).x for 0<x<L/2

and  M=(PR2)x-P[x—(L72)]=(PR)(L-x) for LR<x<L

Then, the unknown constants ‘c,” and ‘c,’ in the functions ‘N, are
obtained from

OLN,.R.dx = f[x.(x - L)]{El.[Zc, +2.(3x - 2L )¢, |- [%)x} dx
+ LjL'[x.(x - L)].{El.[Zc, +2.03x - 2L)c, |- [gj.(L - x)}dx =0

r—=l

L
and INZ.R.dx =

x(x - L)z].{El.[2cl +2(3x - 2L)c, |- (g].x}dx

0 0
‘ P
+ |lx(x-Ly ]{El.[zcl +2(3x -2L)c, |- [—2—).(L - x)}dx =0
L
2
Simplifying these equations, we get
2ci—¢c.L= —S—li and 5S¢, —4c,. L= —7—5P—L

16EI 192El
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Solving these two simultaneous equations, we get

55PL 25P
= —— and = —
192El 96EI
Thus, we get
55PL , 25P
=x(x—L). —— +x(x-L)%. —
y=x(x-D). o TX&-D o
_PU(-55+25)  PL’

d at x=L712, y= = o
an X Y= Yma T T IREL O 25.6E

Note : The bending moment M is a function of x. The exact solution of y

2
should be a minimum of 3" order fi :*ion so that :—% = M is a function
X

of x.

(b) Collocation Method
In this method, also called as the point collocation method, the residual is
equated to zero at ‘n’ select points of the component other than those at
which the displacement value is specified, where ‘n’ is the number of
unknown coefficients in the assumed displacement field, i.e., R({c},x;) =0
fori =1, ..n. It is also possible to apply collocation method on some select
surfaces or volumes. In that case, the method is called sub -domain
collocation method.

ie., fR({c},x).dS,- =0 for j=1,.m
or IR({c},x). AV, =0 for k=1,..m

These methods also result in ‘n’ algebraic simultaneous equation in ‘n’
unknown coefficients, which can be easily evaluated.

The simpler of the two for manual calculation, point collocation method,
is explained better through the following example.

Example 1.2

Calculate the maximum deflection in a simply supported beam, subjected to
concentrated load ‘P’ at the center of the beam. (Refer Fig. 1.4)

P

TR, =P R,= P/ZT
le—L/2—>] _I
< L >

FIGURE 1.4
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Solution

y =0 at x = 0 and x = L are the kinematic boundary conditions of the beam. So,
the functions N; are chosen from (x — a)’.(x — b)%, with different positive integer
values forpand q;anda=0and b=L.

(i) Model-1 (1-term approximation): The deflection is assumed as
y(x)=N.c

with the function N=x(x-L),
which satisfies the end conditionsy=0atx=0andy=0atx=L

The load-deflection relation for the beam is given by

2
El (ﬂ.] =M

dx?
where M= (P/2).x for0<x<L/2
and M=(P2)x~-P[x—-(LR2)]=(PR2)(L-x) forL2<x<L
. d’y
Thus, taking y=x.(x-L).c, — =2
dx
2 2
and the residual of the equation, R = EI d—% -M=EI i%/_ - (g]x
dx dx 2

Then, the unknown constant ‘c’ in the function ‘N’ is obtained by
choosing the value of residual at some point, say x = L/2, as zero.

ie., R(c,x)= EL2¢c~- (E)X =0 at x= —li c= &
2 2 8E!
PL
Therefore, y=x(x~L).—
y =x( ) =
L P}
At X=—, = ax =TT
2’ YT Y T T

(ii) Model-2 (2-term approximation) : The deflection is assumed as
y(x) =Nj.c; + Ny.c;
with the functions N; =x(x — L) and N, =x. (x — L),
which satisfy the given end conditions.

Thus, takingy = x. (x - L ).¢; + x. (x —=L)’.c,,
2

%:n, +2(3x - 2L)c,



10

FINITE ELEMENT ANALYSIS

(c)

and the residual of the equation,
dzy -
R =El, el M = EL[2¢,+2.(3x=2L).c;] - M
. x- -

where M =(P2).x for 0<x<1.2
and M=(P2)x-P|x~-(L2)]=(P2)(L-x) for L/22<x<L

Then, the unknown constants ‘c;’ and ‘c,” in the functions ‘N,” are
obtained from

R({c},x) = EL.[2¢, + 2.(3x - 2L).c;} - (P/2).x=0 atx=L/4
and R({c},x) = EL[2¢,+2.(3x —2L).c;] - (P/2).(L —x)} =0 at x=3L/4
or  4c,-5Lc, P and 4c, +Lc, P

4EI 4El
= ¢ PL and ¢,=0
16EI
pL’ L
ymax at =7
64El 2

. . . 2L
Choosing some other collocation points, say x =— and x = 3

¢,—Le¢, = P and ¢, +0 PL

12 12EI
c, = PL and ¢;,=0
12EI
L -pPL , :
At x= 5 Ymax = A8EL which matches exactly with closed form

solution

Least Squares Method
In this method, integral of the residual over the entire component is

minimized. i.e., —QI— =0fori=1,.n,
dc

where I= ﬂR({a}, x)]2 dx

This method also results in ‘n’ algebraic simultaneous equation in ‘n’
unknown coefficients, which can be easily evaluated.
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Example 1.3

Calculate the maximum deflection in a simply supported beam, subjected to
concentrated load ‘P’ at the center of the beam. (Refer Fig. 1.5)

Solution

Again,y=0atx=0andy =0 at x =L are the kinematic boundary conditions
of the beam. So, the functions N; are chosen from (x — a)’.(x — b)%, with different
positive integer values for p and q.

lp

TR, =P R2=P/2T

—L2—>] J

< L >
FIGURE 1.5

1-term approximation : The deflection is again assumed as y(x) =N.C,
with the function N =x(x - L),
which satisfies the end conditions y=0atx=0 and y=0atx=L

The load-deflection relation for the beam is given by

2
El[g ’2’] =M
X

where M= (P/2).x for 0<x<L/2
and M= (P2)x-P.[x~(L/2)]=(PR).(L-x) for L2<x<L

d? y
Thus, taking y=x.(x-L).c, d_2 =2c
X

d2

and the residual of the equation, R = EI (d
x?

]MEI2CM

Then, 1 = I[R( cf, x)]2 dx and the constant ‘c’ in the function y(x) is obtained from

-§-=§—j[[n( B Ly [ YO N (PR

[} i [
2

_py3
PL at x=—

PL
= c¢c=—— andy,, =
32EI 2

8EI
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1.4 VARIATIONAL METHOD OR RAYLEIGH - RITZ METHOD

This method involves choosing a displacement field over the entire component,
usually in the form of a polynomial function, and evaluating unknown
coefficients of the polynomial for minimum potential energy. It gives an
approximate solution. Practical application of this method is explained here
through three different examples, involving

(a) uniform bar with concentrated load,
(b) bar of varying cross section-with concentrated load, and
(c) uniform bar with distributed load (self-weight).

Example 1.4

Calculate the displacement at node 2 of a fixed beam shown in Fig. 1.6,
subjected to an axial load ‘P’ at node 2.

Z Z
1 22— P 3 E
Z Z
Z Z
e L2 e L2 ——
—>Xu
FIGURE 1.6
Solution
Method - 1

The total potential energy for the linear elastic one-dimensional rod with built-
in ends, when body forces are neglected, is

1 du )’
1:=—jEA(—) dx—-Pu,
2 dx
Let us assume u = a; + a,x + a;x° as the polynomial function for the
displacement field.
Kinematically admissible displacement field must satisfy the natural
boundary conditions
u=0atx=0 which implies a,;=0
and u=0 at x=L whichimplies a,=-a;L

2 2
L L L L
Al “?W”&%%ﬂ=ﬂ7
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Therefore,
n=— IEA( ) dx-Pu,
L 2
1 L
= 5[ A(a2 + 2a3x)2 dx - P(— a, TJ
L 2
—1EAq2 [x-LYdx+Pa, Ly
2 : 4
3 2
=EAa} L +Pa;— L
6
For stable equilibrium, ﬁ =0 gives a,= -3P
da, 4EAL

2
Displacement at node 2, u, =— a34L 1361;1;3

()
4 )\ 4AE
It differs from the exact solution by a factor of % . Exact solution is obtained

when a piece-wise polynomial interpolation is used in the assumption of
displacement field, u.

Stress in the bar, ¢ = E(j—u) =E(a, +a,x)=E(x-L)a,
X

_ —3PE(x-L)_3P(L-x)
4EAL  4AL

) e ) e
-

Due to the assumption of a quadratic displacement field over the system

stress is found to vary along the length of the bar. However, stress is expected

to be constant (tensile from 1 to 2 and compressive from 2 to 3). Hence, the
solution is not exact.
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Method - 2

In order to compare the accuracy of the solution obtained by Rayleigh-Ritz
method, the beam is analysed considering it to be a system of two springs in
series as shown in Fig. 1.7 and using the stiffness of the axially loaded bar in
the potential energy function.

1 2 3
FIGURE 1.7

The stiffness of each spring is obtained from
_P_ (cA) _24E

G

Total potential energy of the system is given by

1
n=(—:12—k‘u§ +—2—k2u§)+(— Pu,)=K.u2 - Pu,

For equilibrium of this 1-DOF system,
on

—=2Ku,-P=0
Ou,
P PL
or Uy ==
2K 4AE

Stress in the beam is given by,

| 28w P

A

The displacement at 2 by Rayleigh-Ritz method differs from the exact

o=Eg=E,|

solution by a factor of %, while the maximum stress in the beam differs by a

factor of % The stresses obtained by this approximate method are thus on the
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conservative side. Exact solution is obtained when a piece-wise polynomial
interpolation is used in the assumption of displacement field, u. The results are
plotted in Fig. 1.8.

Rayleigh-Ritz Exact solution

Displacement variation

Rayleigh-Ritz
B Exact solution
\\\
o~
\\\\
+ve N
\\\
~,
~,
\\\\ —Ve
\\
\\\
Stress variation N
\\.‘
FIGURE 1.8

Method - 3

If the assumed displacement field is confined to a single element or segment of
the component, it is possible to choose a more accurate and convenient
polynomial. This is done in finite element method (FEM). Since total potential
energy of each element is positive, minimum potential energy theory for the
entire component implies minimum potential energy for each element. Stiffness
matrix for each element is obtained by using this principle and these matrices
for all the elements are assembled together and solved for the unknown
displacements after applying boundary conditions. A more detailed presentation
of FEM is provided in chapter 4.

Applying this procedure in the present example, let the displacement field in
each element of the 2-element component be represented by u = a; + a;.x. With
this assumed displacement field, stiffness matrix of each axial loaded element of
length (L/2) is obtained as

1
[K]- (m)[l ]} and (P} = K] {u}

15
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The assembled stiffness matrix for the component with two elements is then
obtained by placing the coefficients of the stiffness matrix in the appropriate

locations as
JAE -1 0 {]|y P,
(———j -1 1+1 —-1|3u,=<P,
L
0 -1 1 {|uy P,

Applying boundary conditions u; =0 and u; =0, we get

(_2A—E)2u2=P2:P - UZ:E—
L 4AE

The potential energy approach and Rayleigh-Ritz method are now of only
academic interest. FEM is a better generalisation of these methods and extends
beyond discrete structures.

Examples of Rayleigh-Ritz method, with variable stress in the members

These examples are referred again in higher order 1-D truss elements, since they
involve stress or strain varying along the length of the bar.

Example 1.5

Calculate displacement at node 2 of a tapered bar, shown in Fig 1.9, with area of
cross-section A, at node 1 and A, at node 2 subjected to an axial tensile

load ‘P’.
———elp P
L —
—eX.u
FIGURE 1.9
Solution

Different approximations are made for the displacement field and comparison
made, in order to understand the significance of the most reasonable
assumption.

(a) Since the bar is identified by 2 points, let us choose a first order
polynomial (with 2 unknown coefficients) to represent the displacement
field. Variation of A along the length of the bar adds additional
computation. Let A(x) = A; + (A, — A).X/L



(b)
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Let u=a;ta.x Atx=0,u=a, =0
d

Then, u=a)x ; —u—=a2 and u,=a,.L
dx

Therefore,

| ¢ du Y
n:-jEA(x)(—) dx—Pu,
PX dx

L
IE[A, +(A, —A,).ﬂ aldx-Pa,.L
0

1
2

E[A1L+(A2 —A,)ﬂag —Pa,L

N | —

1 L
=3 E[(A, + Az)ﬂag —Pa,L

For stable equilibrium, on_ Elt(A1 + Az).%}a2 -PL=0

oa,
. P
from which a, can be evaluated as, a, =—7F———=
E(AI +A2)}
2
Then, u, =a2.L=——-—Il———-—
ES.(A]+A2):I
2
du P
and ¢, =0,=E — |[=Ea, =
e (dx) 2 [ZA,+A2$}
2

For the specific data of A; =40 mmz, A, =20 mm? and L = 200 mm, we
obtain,

u, = 6'627 P and o0,=0,=0.0333P
Choosing displacement field by a first order polynomial gave constant
strain (first derivative) and hence constant stress. Since a tapered bar is
expected to have a variable stress, it is implied that the displacement field
should be expressed by a minimum of 2™ order polynomial. Therefore,
the solution is repeated with

u=a1+a2.x+a3.x2 At x=0,u=a;=0

17
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du
Then, u=a,x+ a;.x%; a— =a, +2a;x and w=a,L+ a;.L.2
X

du

J dx—-Pu,
dx

L
Therefore, n= 1 IEA(x (
2 0

L
= % J-E{Al + (A2 - A, ).%}(a2 +2a,x) dx —P (az.L + a3.L2)
0 -
For stable equilibrium, _?_n_ =)
3a2
6P
= 3 a (3A| - A2) + 233 L (SA] 2A2) = E
and  TE0 5 ay(5A—2Ay)+ay L (A~ 3A,) = b
Oa, E

For the specific data of A; =40 mm?, A, =20 mm? and L = 200 mm, we

obtain,

u,=a,L+a,l? :6.652—2

o, = aE =(0.0339 P
and o; = E(a; + 2a31.) = 0.03518 P

(c) This problem can also be solved by assuming a 2™ order displacement
function, satisfying a linearly varying stress along the length but with 2
unknown coefficients as

u=a.+a2.x2 Atx=0,u=a; =0

2. du 2

Then, u=a,.x"; a——=2a2.x and w, = a,.LL
X

Therefore,
1 du)’
T=— IEA — | dx —Pu,
PX dx
L
=% j'E[A1 (A, - Al).i](za2 x) dx — P(a,.12)
0

[[A 2] =0 ) o)

(A +3A2)
6

1g
2

—Pa,l?
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on :azLE(A,+3A2)_0

For stable equilibrium, which gives an

0a, 3-pI?
expression for a, as
PL
82 e S —
[E (A, + 3A2)}
3
For the same set of data for A|, A, and L, we get
6P
U2 =a2.L2 :—E—
o, =E.¢g= E(gllj
dx /,
=E.(2a,x) _, =0

o, =E(2a,x) _, =2Ea,L=0.06 P

Sr.No. Displacement Displacement, Stress at 1, Stress at 2,
polynomial u, oy o,
1 u=a; +ax 6.667 P/E 0.0333 P 0.0333 P
2 u=a;+ a,X + 2;.x° 6.652 P/E 0.0339P 0.03518 P
3 u=a +ax* 6.0 P/E 0.0 0.06 P
4 o;= P/A, (Exact solution) 0.025 P 0.05P

These three assumed displacement fields gave different approximate
solutions. These are plotted graphically here, for a better understanding of the
differences. Exact solution depends on how closely the assumed displacement
field matches with the actual displacement field.

3
%

End 1 Stress End 2

The most appropriate displacement field should necessarily include
constant term, linear term and then other higher order terms.

19
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Example 1.6

Calculate the displacement at node 2 of a vertical bar, shown in Fig. 1.10, due to
its self-weight. Let the weight be w N/m of length.

Solution

Since the load is distributed, varying linearly from zero at the free end to
maximum at the fixed end, it implies that the stress also varies linearly from the
free end to fixed end. As shown in the last example, therefore, a quadratic
displacement is the most appropriate. However, work potential needs to be

calculated through integration of product of varying load and corresponding
displacement, along the length.

2 __\
i
‘\‘ Self-weight
\ Distribution
X \
\
\
1
\
1 \
\
1777777777777777
FIGURE 1.10
(a) Let u=a; +ax+ a3.x2' Atx=0, u;=a; =0
du
—=a, +2a;.Xx
X

Since applied load is zero at the free end,

Strain at x =L, (g—u) =a,+2a,L=0 = a,=-2a,L
X /2

Then, u= a;(x*-2Lx); and ;iu = 2a3.(x - L)

X
Let P =— w(L — x) acting along —ve x-direction
Therefore,

1L du 2 y
nz-IEA(——J dx—j'Pdl
2O d 0

X

= % LJ'EA.[2a3.(x ~L)fdx - I:ﬂ— w(L - x)}2a3 (x-L)dx

_ 2EAall’ 2wa,l’
3 3
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For stable equilibrium, i =0 = a; =

Oa, 2EA
2
Atx=L, u,=-a,l’= —wl
2EA
Stress, c= Efi—u— = E.[2a3.(x - L)]= (-Vl)(x ~L)
dx A

Atx=0, o= —(%) compressive
Andatx=L,0,=0

Example 1.7

Calculate the displacement at node 2 of a vertical bar supported at both ends,
shown in Fig. 1.11, due to its self-weight. Let the weight be w N/m of length.

Solution

As explained in the last example, a quadratic displacement is the most
appropriate to represent linearly varying stress along the bar.

(a) Let u=a;+ax+ a3.x* Atx=0,u;=a;=0
At x=L,u=a.L+ a3.L2 =0 = a,=-a;L
Then, u= a.(x’- Lx)
and du =a,(2x-L)

dx

Let P=-w(L —x) acting along —ve x-direction

L
2 \

-

\
\\‘ Self-weight
\ _Distribution

! \
L771777777777777777

FIGURE 1.11

21



22

FINITE ELEMENT ANALYSIS
Therefore,
1L du 2 L
nz—IEA(—J dx - IPdu
2 : dx .

= % I(;[EA.[a3 (2x - L)]2 dx +IIW(L —x)a,.(2x - L)dx

3 3
1 —EAa).— L —-2wa;.— L
2 3 3
For stable equilibrium,
on 2w
=2 -0 =
Oa, EA
2 2
At x=£, u=—a3.—]:——— . L
2 4 2EA
Stress, o=E. g— =E. [a3 (2x - L)] ( )(2x L)
X
At x=0, o;=—2w.L/A) compressive
andat x=1L, o= (2w.L/A) tensile

1.5 PRINCIPLE OF MINIMUM POTENTIAL ENERGY

The total potential energy of an elastic body (r) is defined as the sum of total
strain energy (U) and work potential (W).

ie., n=U+W,
1

where Uz(—] IcedV
2 \%

and W=—J'uTFdV—IuTTdS—Z:u,Pl
\'% S

Here, ‘F’ is the distributed body force, ‘T’ is the distributed surface force
and ‘P, are the concentrated loads applied at points i = 1, ..n. One or more of
them may be acting on the component at any instant.

For a bar with axial load, if stress ¢ and strain £ are assumed uniform
throughout the bar,

U =G)oe v =G)oe AL =Gj(c A)(e L)=(-;—) Fs =(%Jk E— (1.1)
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The work potential, W =— J.qT fdv - J.qT Tds - Z u,T P . (1.2)

1

for the body force, surface traction and point loads, respectively.

Application of this method is demonstrated through the following simple
examples. Since FEM is an extension of this method, more examples are
included in this category.

Example 1.8

Calculate the nodal displacements in a system of four springs shown in
Fig. 1.12

2
24 vy k, k,

K,

FIGURE 1.12 Example of a 5-noded spring system
Solution

The total potential energy is given by

1 1
3 5“485)"'(_}:1‘]1 _F3Q3)

where, q, gz, q3 are the three unknown nodal displacements.
At the fixed points

1 1
nz(—z-klﬁf +—k,83 +5k38§ +

q=9qs=0

Extensions of the four springs are given by
d=q-q@ ; &=q
8=q3—q ; 84 = —q3

For equilibrium of this 3-DOF system,

9" 0 fori=1,2,3
oq, -
or
on
T:kl(‘h "%)‘Fl =0
q

1
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on
a z_kl((h _Q2)+k2‘h —k; (Q3 "%):0
q,

on
B_st(‘h —Q2)+k4Q3 -K=0
3

These three equilibrium equations can be rewritten and expressed in matrix

form as
k, -k, 0 q K
-k, k,+k,+k; -k, q,r=40
0 -k, ky+k, |9 F,

Considering free body diagrams of each node separately, represented by the
following figures,

the equilibrium equations are  k;8, = F,
k282 - k]S] —k383 =0
k303 —kedy = F;

These equations, expressed in terms of nodal displacements q, are similar to
the equations obtained earlier by the potential energy approach.

Example 1.9
Determine the displacements of nodes of the spring system (Fig. 1.13).

40 N/mm 30 N/mm

60 N/mm

FIGURE 1.13 Example of a 4-noded spring system
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Solution

Total potential energy of the system is given by
1 1 1 1
n :(Eklslz + 5“25% * 2 k383 + 5“453 J +(~Fa; - Fq,)

where @y, g3, qq are the three unknown nodal displacements.
At the fixed points
q1=qs=0
Extensions of the four springs are given by,
31=Q—qi; H=qs—G; =91~z ; d4=q3— Qs
For equilibrium of this 3-DOF system,

O 6 fori=234

aq,
on
or 5—=k1q2—k2(q3—q2)=0 ----- (a)
2
on
Bq_’_'kz(Q3—Q2)"k3(Q4"Q3)+k4Q3"F3=0 ----- (b)
3
on
a—zks(Q4—Q3)_F4=0 ..... (c)
Q4
These equilibrium equations can be expressed in matrix form as
'k, +k, -k, 0 |(q, 0
-k, ky,+k;+k, —-k;|iq5;={F
. 0 -k, ky |44 F,
[40+30 ~30 0 |(qa, 0
or| —-30 30+50+60 —50{<q;,=4100
| 0 -50 50 |lq,4 60

Substituting

E

60
=4 41q.= ~)+ =12+ fromeq. (¢
Uy K, q; (50 q; q; q. (¢)
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k,q; __30g; _3q,
k,+k, (30+40) 7
in eq. (b), we get

from eq. (a)

and q,=

3
k, [q3 ——(;i}—k3 [1.2+q,]+k,q;—F, =0

which gives, q3;=2.0741 mm
and then, q2=0.8889 mm ; q4;=3.2741 mm

Wy FEM ?

The Rayleigh-Ritz method and potential energy approach are now of only
academic interest. For a big problem, it is difficult to deal with a polynomial
having as many coefficients as the number of DOF. FEM is a better
generalization of these methods and extends beyond the discrete structures.
Rayleigh-Ritz method of choosing a polynomial for displacement field and
evaluating the coefficients for minimum potential energy is used in FEM, at the
individual element level to obtain element stiffness matrix (representing load-
displacement relations) and assembled to analyse the structure.

1.6 ORrIGIN oF FEM

The subject was developed during 2™ half of 20™ century by the contribution of
many researchers. It is not possible to give chronological summary of their
contributions here. Starting with application of force matrix method for swept
wings by S. Levy in 1947, significant contributions by J.H.Argyris,
H.L.Langhaar, R.Courant, M.J). Turner, R.W.Clough, R.J.Melosh,
J.S.Przemieniecki, O.C.Zienkiewicz, J.L.Tocher, H.C.Martin, T.H.H.Pian,
R.H.Gallaghar, J.T.Oden, C.A Felippa, E.L.Wilson, K.J.Bathe, R.D.Cook etc...
lead to the development of the method, various elements, numerical solution
techniques, software development and new application areas.

Individual member method of analysis, being over-conservative, provides a
design with bigger and heavier members than actually necessary. This method
was followed in civil structures where weight is not a major constraint. Analysis
of the complete structure was necessitated by the need for a better estimation of
stresses in the design of airplanes with minimum factor of safety (and, hence,
minimum weight), during World War-11. Finite element method, popular as
FEM, was developed initially as Matrix method of structural analysis for
discrete structures like trusses and frames.
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FEM is also extended later for continuum structures to get better estimation
of stresses and deflections even in components of variable cross-section as well
as with non-homogeneous and non-isotropic materials, allowing for optimum
design of complicated components. While matrix method was limited to a few
discrete structures whose load-displacement relationships are derived from basic
strength of materials approach, FEM was a generalisation of the method on the
basis of variational principles and energy theorems and is applicable to all types
of structures — discrete as well as continuum. It is based on conventional theory
of elasticity (equilibrium of forces and Compatibility of displacements) and
variational principles.

In FEM, the entire structure is analysed without using assumptions about the
degree of fixity at the joints of members and hence better estimation of stresses
in the members was possible. This method generates a large set of simultaneous
equations, representing load-displacement relationships. Matrix notation is
ideally suited for computerising various relations in this method. Development
of numerical methods and availability of computers, therefore, helped growth of
matrix method. Sound knowledge of strength of materials, theory of elasticity
and matrix algebra are essential pre-requisites for understanding this subject.

1.7 PRINCIPLE OF FEM

27

In FEM, actual component is replaced by a simplified model, identified by a
finite number of elements connected at common points called nodes, with an
assumed behaviour or response of each element to the set of applied loads, and
evaluating the unknown field variable (displacement, temperature) at these
finite number of points.

Example 1.10

The first use of this physical concept of representing a given domain as a
collection of discrete parts is recorded in the evaluation of © from superscribed
and inscribed polygons (Refer Fig. 1.14) for measuring circumference of a
circle, thus approaching correct value from a higher value or a lower value
(Upper bounds/Lower bounds) and improving accuracy as the number of sides
of polygon increased (convergence). Value of 1 was obtained as 3.16 or 10'?
by 1500 BC and as 3.1415926 by 480 AD, using this approach.
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N,

Case (a) Inscribed polygon Case (b) Superscribed polygon

FIGURE 1.14 Approximation of a circle by an inscribed and a superscribed polygon

Perimeter of a circle of diameter 10 cm=nD=31.4cm

Case-A : The circle of radius ‘r’ is now approximated by an inscribed
regular polygon of side ‘s’. Then, using simple trigonometric concepts,
the length of side ‘s’ of any regular n-sided polygon can now be obtained
as s = 2 r sin (360/2n). Actual measurements of sides of regular or irregular
polygon inscribed in the circle were carried out in those days, in the absence of
trigonometric formulae, to find out the perimeter.

With a 4-sided regular polygon, perimeter = 4 s =28.284

With a 8-sided regular polygon, perimeter = 8 s =30.615

With a 16-sided regular polygon, perimeter =16 s=31.215
approaching correct value from a lower value, as the number of sides of the
inscribed polygon theoretically increases to infinity.

Case-B : The same circle is now approximated by a superscribed polygon of
side °s’, given by
s = 2 r tan (360/2n)
Then,  With a 4-sided regular polygon, perimeter = 4 s =40

With a 8-sided regular polygon, perimeter = 8 s =33.137

With a 16-sided regular polygon, perimeter = 16 s =31.826
approaching correct value from a higher value, as the number of sides of the
circumscribed polygon theoretically increases to infinity.



CHAPTER 1 INTRODUCTION

A better estimate of the value of m (ratio of circumference to diameter) was
found by taking average perimeter of inscribed and superscribed polygons,
approaching correct value as the number of sides increases.

Thus with a 4-sided regular polygon, perimeter = (40+28.284) / 2 = 34.142
With a 8-sided regular polygon, perimeter = (33.137+30.615)/2 = 31.876
With a 16-sided regular polygon, perimeter = (31.826+31.215)/2 =31.52C

Example 1.11

In order to understand the principle of FEM, let us consider one more example,
for which closed form solutions are available in every book of ‘Strength of
materials’. A common application for mechanical and civil engineers is the
calculation of tip deflection of a cantilever beam AB of length ‘L’ and subjected
to uniformly distributed load ‘p’. For this simple case, closed form solution is
obtained by integrating twice the differential equation.
2
Eld—f =
dx
and applying boundary conditions

y=0and %X=0 at x = 0 (fixed end, A),
X

4
we get, atx=1L, y_ =§—§I

This distributed load can be approximated as concentrated loads
(P, Py,...Py) acting on ‘N’ number of small elements, which together form the
total cantilever beam. Each of these concentrated loads is the total value of the
distributed load over the length of each element (P, =P, = ... =Py=pL/N),
acting at its mid-point, as shown in Fig 1.15. Assuming that the tip deflection
(at B) is small, the combined effect of all such loads can be obtained by linear
superposition of the effects of each one of them acting independently. We will
again make use of closed form solutions for the tip deflection values of a
cantilever beam subjected to concentrated loads at some intermediate points.

/ N A )
3A B 2 A B
Case 1 : Cantilever with Case 2 : Cantilever with
distributed load many conc. loads.

FIGURE 1.15 Cantilever beam with distributed load approximated by many
concentrated loads

29
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Tip deflection of the cantilever when subjected to concentrated load P; at a
distance L; from the fixed end is given by

o =), +( 2] dL-1)

3
Closed form solutions for (y); and (dy/dx), can be obtained by integrating the
beam deflection equation with appropriate boundary conditions, as
4
_p, Lo
3EI

)0
dx), ’2EI
Deflection at B, yg, due to the combined effect of all the concentrated loads

along the length of the cantilever can now be obtained, by linear superposition,
as

Ys

ys = [(y)h + (dy/dx); (L - L)] + [(y): + (dy/dx), (L - Ly)] +... +
[(Y)n + (dy/dx)n (L — L))
The results obtained with different number of elements are given in the table
below, for the cantilever of length 200 cm, distributed load of 50 N/cm and
EI=10°Ncm®.

S. No. | No. of elements | Tip displacement, yz (cm)
1 3 9.815
2 4 9.896
3 5 9.933
4 6 9.954
5 8 9.974
6 10 9.983
7 15 9.993
8 20 9.996

The exact value obtained for the cantilever with uniformly distributed load,
from the closed form solution, is yg = 10.0 cm. It can be seen, even in this
simple case, that the tip deflection value approaches true solution from a lower
value as the number of elements increases. In other words, the tip deflection
value even with a small number of elements gives an approximate solution.

This method in this form is not useful for engineering analysis as the
approximate solution is lower than the exact value and, in the absence of
error estimate, the solution is not practically useful.
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FEM approach, based on minimum potential energy theorem, converges to
the correct solution from a higher value as the number of elements in the
model increases. While the number of elements used in a model is selected by
the engineer, based on the required accuracy of solution as well as the
availability of computer with sufficient memory, FEM has become popular as it
ensures usefulness of the results obtained (on a more conservative side) even
with lesser number of elements.

Finite Element Analysis (FEA) based on FEM is a simulation, not reality,
applied to the mathematical model. Even very accurate FEA may not be good
enough, if the mathematical model is inappropriate or inadequate. A
mathematical model is an idealisation in which geometry, material properties,
loads and/or boundary conditions are simplified based on the analyst’s
understanding of what features are important or unimportant in obtaining the
results required. The error in solution can result from three different sources.

Modelling error — associated with the approximations made to the real
problem.

Discretisation error — associated with type, size and shape of finite elements
used to represent the mathematical model; can be reduced by modifying mesh.
Numerical error — based on the algorithm used and the finite precision of
numbers used to represent data in the computer; most softwares use double
precision for reducing numerical error.

It is entirely possible for an unprepared software user to misunderstand the
problem, prepare the wrong mathematical model, discretise it inappropriately,
fail to check computed output and yet accept nonsensical results. FEA is a
solution technique that removes many limitations of classical solution
techniques; but does not bypass the underlying theory or the need to devise a
satisfactory model. Thus, the accuracy of FEA depends on the knowledge of
the analyst in modelling the problem correctly.

1.8 CLASSIFICATION OF FEM
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The basic problem in any engineering design is to evaluate displacements,
stresses and strains in any given structure under different loads and boundary
conditions. Several approaches of Finite Element Analysis have been developed
to meet the needs of specific applications. The common methods are :

Displacement method — Here the structure is subjected to applied loads and/or
specified displacements. The primary unknowns are displacements, obtained by
inversion of the stiffness matrix, and the derived unknowns are stresses and
strains. Stiffness matrix for any element can be obtained by variational
principle, based on minimum potential energy of any stable structure and,
hence, this is the most commonly used method.
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Force method — Here the structure is subjected to applied loads and/or
specified displacements. The primary unknowns are member forces, obtained
by inversion of the flexibility matrix, and the derived unknowns are stresses and
strains. Calculation of flexibility matrix is possible only for discrete structural
elements (such as trusses, beams and piping) and hence, this method is limited
in the early analyses of discrete structures and in piping analysis

Mixed method — Here the structure is subjected to applied loads and/or
specified displacements. The method deals with large stiffness coefficients as
well as very small flexibility coefficients in the same matrix. Analysis by this
method leads to numerical errors and is not possible except in some very special
cases.

Hybrid method — Here the structure is subjected to applied loads and stress
boundary conditions. This deals with special cases, such as airplane door frame
which should be designed for stress-free boundary, so that the door can be
opened during flight, in cases of emergencies.

Displacement method is the most common method and is suitable for solving
most of the engineering problems. The discussion in the remaining chapters is
confined to displacement method.

1.9 TYPES OF ANALYSES

Mechanical engineers deal with two basic types of analyses for discrete and
continuum structures, excluding other application areas like fluid flow,
electromagnetics. FEM helps in modelling the component once and perform
both the types of analysis using the same model.

(a) Thermal analysis — Deals with steady state or transient heat transfer by
conduction and convection, both being linear operations while radiation
is a non-linear operation, and estimation of temperature distribution in the
component. This result can form one load condition for the structural
analysis.

(b) Structural analysis — Deals with estimation of stresses and
displacements in discrete as well as continuum structures under various
types of loads such as gravity, wind, pressure and temperature. Dynamic
loads may also be considered.
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1.10 SUMMARY
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Finite Element Method, popularly known as FEM, involves
analysis of the entire structure, instead of separately considering
individual elements with simplified or assumed end conditions. It
thus helps in-a more accurate estimate of the stresses in the
members, facilitating optimum design.

FEM involves idealizing the given component into a finite
number of small elements, connected at nodes. FEM is an
extension of Rayleigh-Ritz method, eliminating the difficulty of
dealing with a large polynomial representing a suitable
displacement field valid over the entire structure. Over each finite
element, the physical process is approximated by functions of
desired type and algebraic equations, which relate physical
quantities at these nodes and are developed using variational
approach. Assembling these element relationships in the proper
way is assumed to approximately represent relationships of
physical quantities of the entire structure.

FEM is based on minimum potential energy theorem. It
approaches true solution from a higher value, as the number of
elements increases. Thus, it gives a conservative solution even
with a small number of elements, representing a crude
idealisation.

OBJECTIVE QUESTIONS

1.

The solution by FEM is

(@
(©)

always exact (b) mostly approximate

sometimes exact (d) never exact

Discrete analysis covers

(a)
(b)
(©)
(d)

all 2-D trusses & frames
all 3-D trusses & frames
all 2-D and 3-D trusses & frames

no trusses; only frames
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10.

1.

12.

FEM is a generalization of
(a) Rayleigh-Ritz method (b) Weighted residual method

(c) Finite difference method (d) Finite volume method
Variational principle is the basis for

(a) Displacement method (b) Weighted residual method
(¢) Finite difference method (d) Finite volume method

Displacement method is based on minimum
(a) potential energy

(b) strain energy

(c) complementary strain energy

(d) work done

Hybrid method is best suited for problems with prescribed

(a) displacements (b) forces (c) stresses (d) temperature

Primary variable in FEM structural analysis is

(a) displacement (b) force (c) stress  (d) strain
Stress boundary conditions can be prescribed in

(a) displacement method (b) hybrid method
(c) force method (d) mixed method
Prescribed [oads can-form input data in

(a) displacement method (b) hybrid method
(c) force methed (d) mixed method
Stiffness matrix approach is used in

(a) displacement method (b) stress method

(c) force method (d) mixed method
Displacement method of FEM for structural analysis gives
(a) stiffness matrix (b) flexibility matrix
(c) conductance matrix (d) mixed matrix

Flexibility matrix approach is used in
(a) displacement method (b) stress method
(c) force method (d) mixed method
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MATRIX OPERATIONS

FEM deals with a large number of linear algebraic equations, which can be
conveniently expressed in matrix form. Matrices are also amenable to computer
programming. Knowledge of matrix algebra is essential to understand and solve
problems in FEM. A brief review of matrix algebra is given below for a good
understanding of the remaining text.

A matrix is a group of m X n numbers (scalars or vectors) arranged in
m number of rows and n number of columns. It is denoted by [A] or [A]uxn
idicating matrix of ‘m’ rows and ‘n’ columns or matrix of order m x n. Each
clement of the matrix is identified by a,, located in the i row and j™ column.

a3 3y .. By
Ay Ap 8y Ay e By,

[Al=| 2, ay, ay ay . oAy | (2.1)
Laml An2 am} Ang o amn_

2.1 TYPES OF MATRICES

Based on the number of rows and columns as well as on the nature of elements,
some matrices are distinctly identified as follows. The symbol ‘¥’ indicates
‘for all’.

(a) Square matrix is a matrix of same number of rows and columns and is
usually indicated as [A], ., or square matrix of order n i.e., matrix with
m=n.

The elements from left top to right bottom .i.e., a; .... a,, form the leading
diagonal.
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(b) Row matrix is a matrix of only one row and is usually indicated as {A}"
i.e., matrix withm=1.

(¢) Column matrix (or vector) is a matrix of only one column and is usually
indicated as {A} i.e., matrix withn= 1,

(d) Banded matrix i~ a square matrix whose off-diagonal elements beyond half
bandwidth from the diagonal element are all zeroes e, a, =0V j>i+h
and V j<i—h,
where h+1is half bandwidth  and 2h-1 isthe bandwidth
For example, a 5 x 5 matrix with half bandwidth of 2 is given by

(e) Diagonal matrix is a banded matrix of bandwidth equal to |

ie, a;=0 Vi#j or Banded matrix withh=0 ... (2.3)
For example, a diagonal matrix of order 5 is given by
[a, 0 0 0 O]
0 a,, 0 0 O
[A]= |0 0 a; O O] .. (2.4)
0 0 0 a, O
[0 0 0 0 ag]

(f) Identity matrix is a diagonal matrix with each diagonal element equal to

one and is usually indicated by [I] for any square matrix of order n.

ie., a, =1 Vi=]

and a;=0

(g) Transpose of matrix, written as [A]', is the matrix with each element a, of

matrix [A] written in j™ row and i column or interchanging its rows and

columns.

ie., a, of matrix [A] = a, of matrix [A]"

It can be seen that ([AIr )T =[A]

symmetric about its leading diagonal i.e.,

It can be seen that

[A]" = [A]

(h) Symmetric matrix, defined only for square matrices has elements
a, =a,
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(1) Skew-symmetric matrix, also defined for square matrices only, has
elements equal in magnitude but opposite in sign, about the leading

diagonal,
ie., a, = — a; and elements on leading diagonal a, = 0
It can be seen that [A]'=-[A] .. (2.8)

2.2 MATRIX ALGEBRA
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Common mathematical operations on matrices are

(a) Addition of matrices A and B (defined only when A and B are of same
order) is addition of corresponding elements of both the matrices. If C is the
resulting matrix,

[C] = [A] + [B] or c|_| = au + blj ..... (2.9)
(b) Multiplication of a matrix A by a scalar quantity ‘s’ is multiplication of
each element of matrix [A] by the scalar s
ie., s[Al=[sa,) (2.10)
Same holds good for division of a matrix A by a scalar ‘s’, since division by

a
‘s’ is equivalent to multiplication by (l) ie., [—A—] = [——“—}
s s s

(c) Matrix multiplication is defined only when number of columns in the first
matrix A equals number of rows in the second matrix B and is, usually, not
commutative. Element ¢ is the sum of the products of each element of
i™ row of matrix A with the corresponding element of the j™ column of

matrix B.
i.e., [Aln <0 [Blaxp = [Clmxp
where a,by=cx Vi=l,mjj=1,m;k=1,p ... (2.11)
It can be seen that for any matrix [A] and identity matrix [I], both of order
nxn,

(Al =[IHAl=[A} e (2.12)

(d) Transpose of product of matrices
(AIBICH =[CTI" B]' [AT" . (2.13)

(e) Differentiation of a matrix, each element of which is a function of x, is
differentiation of each element w.r.t. x

d[B(x)] _ {dbu (")] ..... (2.14)

ie.,
dx dx
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(f) Integration of a matrix, each element of which is a function of x, is integration
of each element w.r.t. x,

ic., [iBkix =| [o, ax] er(2.15)

Matrix algebra differs from algebra of real numbers in some respects
For example, matrix multiplication is, in general, not commutative even if
both the matrices are of the same order and square,

i.e., [A] [B] #[B] [A]
Matrix algebra also differs from vector algebra in some respects.

Vector product is defined as a dot product (giving a scalar result) or a cross
product (giving a vector, perpendicular to both the vectors, as the result)
whereas matrix multiplication is defined in only one way.

Trace of a matrix, defined for any square matrix of order m, is a scalar quantity
and is equal to the sum of elements of its leading diagonal.

ie., Tr[A]z a,, +ay+..+a, = ia“ ..... (2.16)

=1
Minor M, of a square matrix [A] is the determinant (defined in Section 2.3) of
sub matrix of [A] obtained by deleting elements of i™ row and j™ column from
[A]
Cofactor C, of a square matrix [A] = (1) M,
Matrix [C] with elements C, is called Cofactor matrix
Adjoint of matrix [A] is defined as [C]" and is written as Adj [A] or [A,]

Matrix approach is followed in FEM for convenience of representation.
Conventionally, stress components, strain components, displacement
components etc., are called stress vector, strain vector, displacement vector etc.;
but they actually represent column matrices. Each component of these column
matrices is a vector quantity representing the corresponding quantity in a
particular direction. Hence, matrix algebra, and not vector algebra, is applicable
in their case.

Quadratic form — If [A] is an (n X n) matrix and {x} is a (n x 1) vector, then
the scalar product {x}"[A]{x} is called a quadratic form (having terms like x,’,
Xy%... and XXy, X{X3,...).

Example 2.1

Express q =x, —6x, +3x? +5x,X, in the matrix form %XTQX +C'x
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Solution

From the data, it can be concluded that vector x has two elements x; and x,.
Therefore, matrix Q is of order 2 x 2 and C must be a vector of order 2.

1 ¢ T 1 9y 92 | X% X
= +C'x=— +
2 *Qx * z[x, X2][Q21 %J{xz} [CI 02] {xz}

1
=5[x1(‘hl X, +q; x2)+ xz(‘lzl X)+qy xz)]+(°1 X, +¢ xz)

Qi )2, D2, 92 92 |2
=C, X, +Cy X, + Xy + + XX, + X
1M 2 22 ( 2 j 1 ( 2 2 J 142 ( 2 ) 2
Comparing these coefficients with those of the given expression

X)— 6X2 + 3X12 + 5X1X2

weget ¢;=1; ¢=-6; qu=6; q»=0;, qptgu=100rqp=qy=35
1 6 5ilx X
SoX, —6x, +3x12 +5x,X, =~2-[x1 XZ][S 0} {x;}+[l —6]{);}

2.3 DETERMINANT
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It is a scalar quantity defined only for square matrices and is written as |Al or
det[A], « ». It is defined as the sum of the products (—1)™ ay M,; where a; are the
elements along any one row or column and M,; are the corresponding minors.
For example, if [A] is a square matrix of order 2,

a,, a
T =y ay . an + (<D ay . ay expanding by 1¥ row
4 ap
or (=D"'a; ay +(=D)*""ay . ap expanding by 1¥ column

=ayn an — anp.ay
If [A] is a square matrix of order 3,
a4 A
— 1+1 1+2 1+3
8y Ay, ay|=CD"apApt(1) TapApt(-1) a3 A
a3 dp Aagy

. expanding by 1* row
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a,, a a, a
= ED"an 2 B e @) an | 2 B =) an

a3, ay a3 Az as

= ay (ax.233 — ax.a3) — ap» (a21.a33 — a23.231) + a;3 (a31.83 — ax.a33)

It can also be expressed as
a ap ap
a1 axp any
a3 23 ag

by 1% column

ay apn a5, ap a;, ay

= (—1)]+l ay) Jf(‘l)%l 5] + (-l)'m a3

a3, as; a3 A 4, axp

= aj (an.a3 — a.a3) — A (a2.233 — a;3.a3) + a3 (a12.a3 — 213.8)
and so on.
It can be seen that,

(a) Det([A][B][C])=Det[A].Det[B].Det[C] s (2.17)

(b) If[L]is a lower triangular matrix with ;=1 and /, =0V i>j,

Det [L] =1,Cii +1nCro + 13Cis = 1nCri =Ly (. I3 = 0. 1) =1y 1. 53

=1

(c) Inthe same way, Det [I] =1

(d) If [A]=[L}[D] L],
where [L] is a lower triangular matrix with/,=1 and /,=0V i>j
and [D] is a diagonal matrix

then,

Det [A] =Det [L].Det [D].Det [L]" = Det[D] e (2.18)

(¢) The determinant of a matrix is not affected by row or column

modifications.
A matrix whose determinant is zero is defined as a singular matrix

Example 2.2

Given that the area of a triangle with corners at (x;,y;), (X2,y2) and (x3,y3) can

be written in the form,

Ay ap

a3,

=(=D" a; Ay + (=17 ay Ay + (=1)""" a3 Ay, expanding
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Xy
Area="2 Det |1 x, vy,

1 x5 vy,

determine the area of the triangle with corners at (1,1), (4,2) and (2,4)

Solution :

111 111 yith row modifications,

Area= |l 4 2|=%|0 3 1 R,=R,-R,
124/ |01 3 and Ry=R;-R,
=%(1x(3x3—1x1)-0x(1x3—1x1)+0x(1x1—3x1))=4

2.4 INVERSION OF A MATRIX
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It is defined only for a square and non-singular matrix and is defined as
[A]' = Adj [A]/Det[A] =[C]"/ Al .. (2.19)
It can be seen that product of any square matrix and its inverse is a unity
matrix and the unity matrix being symmetric, the product is commutative.
ie, [AT'[Al=[ANAT'=I0 . (2.20)
A necessary and sufficient condition for [A]"" to exist is that there be no
non-zero vector {x} such that [A] {x} = {0}. The converse is also true. If

there exists a non-zero vector {x} such that [A] {x} = {0}, then [A] does not
have an inverse.

2.5 METHODS OF SOLUTION OF SIMULTANEOUS EQUATIONS

Finite element method gives rise to a set of n independent equations in n
unknowns, expressed in matrix form as [K] {x} = {P}, where [K] is the stiffness
matrix, {x} is the displacement vector and {P} is the applied load vector.
This system is called a homogeneous system if all the elements of {P} are
zero. This system has a trivial solution X, =X;=Xj ....... =x,=0.
It is called a non-homogeneous system if at least one element of {P} is non-zero.
The system is said to be consistent if [K] is a square, non-singular matrix.
Most engineering problems generate a consistent system of equations and
have a unique solution for the displacements {x}. F
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These unknowns {x} can be evaluated by two basic approaches :

(a) Calculating inverse of the stiffness matrix [K] and multiplying by the
load vector ie., {x}=[K]' {P}
or

(b) Solving directly the system of equations [K] {x} = {P}.
These methods are broadly classified as:

(i) direct methods which give exact solution while requiring more
computer memory, and

(ii) iterative methods which give approximate solutions with
minimum computer memory requirement.

Some of the numerical methods, based on these approaches, are
presented here.

2.5.1 BY INVERSION OF THE COEFFICIENT MATRIX

(a) Method of Cofactors — It involves calculation of n x n cofactors and
determinant for a n x n matrix [A]. It is a costly process in terms of number
of calculations and is not commonly used with large sized matrices in finite
element analysis.

Example 2.3

Find the inverse of a square matrix [A] by the method of cofactors, if

2 3 4
[A]=[4 3 1
1 2 4
Solution
3 1
M“— =3X4—1X2=10;
2 4
4 1
M12= =4x4~1x]=15;
1 4
4 3
M]3— =4x2-3x}=5
1 2
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Similarly,
M 3 4_4. M 12 4_4 M 2 3_l
21 2 4 s 22 1 4 > 23 1 2
M—34*9'M‘24—14'M*23-—6
31 3 1 s 32 4 1 ’ 33 4 3

Al =an My—an My +ais Mis =2 x 10 -3 x 15+ 4 x 5 =20 - 45 + 20 =-5

Adi[A] i M, -My M, 1 10 -4 -9
[A]'= |i| = I‘X‘ -M;,; My -Mj, =_(§) -15 4 14
My —-My Mj, 5 -1 -6

(b) Gauss Jordan method of inverting a square matrix [A] involves adding an
identity matrix [I] of the same order as [A] and carrying out a sequence of

row operations like

D_ . b _ 1 . NN _ 1
R‘( )= R,/a” N R2( )= R2 — ayj Rl( ) 3 seeenns Rn( ) = Rn— ant Rl( )
R2(2) = Rz(l)/azz 5 Rl(z) = Rl(l) —an Rz(z) 5 seseenae Rn(z) = Rn(l) —ay Rz(z)
R3(3) = R3(2)/a33 . R1(3) = R|(2) —an R3(3) Y sesee en Rn(S) = Rn(z) — an3 R3(3) etc..

on this combination such that [A] is transformed to [I]. This will result in
the identity matrix [I] initially appended to [A] getting transformed into
[A]"

Example 2.4

Find inverse of matrix [A] by Gauss Jordan method, if

2 3 4
[A]=[4 3 1
12 4
Solution
23 4:100
[A:]={4 3 1 : 01 0
{12 4 :0 0 1



44

FINITE ELEMENT ANALYSIS

Row operations R,P= Rya;; R\ =R, -ay R and Ry =Ry — a5, R}"
will give

1 3 2 1 00

2 2
=0 -3 -7 : -2 10
0 1 2 1 0 1

2 2

Row operations R,? = RMWay : RP =R, —a;; R,¥ and Ry® =R}V — ay,
R,® will give

1o -2 L1
2 2 2

o 1 2 1y,
3 33

o0 2.3 1

i 6 6 6 |

R0w3operations Ry = RPlay; ; RP=RP-a;R;® and R,P =R
—ay; R3® will give

roo:. -2 4 2
5 5
“lo 10 3 -2 Hifan]
5 5
00 1: -1 4 8
i 5 5]
Thus,
L, 4 2
5 12 10 -4 -9
A]'=| 3 LA .3 lj ~15 4 14
5 5 5
| 1 6 5 -1 -6
| 5 s

which is same -as the inverted matrix of [A] obtained by the method of
cofactors.

2.5.2 DIRECT METHODS

Many engineering problems in FEM will result in a set of simultaneous
equations represented by [K] {x} = {P} where [K] is the stiffness matrix of the
entire structure and {x} is the vector of nodal displacements due to the applied
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loads {P}. In many situations, a component may have to be analysed for
multiple loads, represented by [P]. Corresponding to each column of [P],
representing one set of nodal loads, a particular solution vector {x} exists.
Matrix inversion approach is much faster in such cases than the direct solution
techniques presented below.

(a) Cramer’s Rule gives direct solution to a set of simultaneous equations
[Al{x} = {B}.
In a system of n equations in n unknowns, this method involves in

calculating n + 1 determinants of n x n matrices. It is a very costly method
for large sized problems and is, therefore, not popular.

AL AL A
Al Al Al

where [A)] is obtained by replacing column i of matrix [A] with the elements
of {B}.

Example 2.5

Solve the following system of equations

x+y+z=1]

2x-6y—z=0
3x+4y+2z=0
Solution

The coefficient matrix is

I B
[Al=2 -6 -1
3 4 2

and the vector of constantsis {B}=[11 0 0]

Then,
11 1 1 1 11 1 1 1 11

[Al=l 0 -6 —1|; [A)=]2 o -1}; [A]=[2 -6 ©
0 4 2 30 2 3 4 0

and
|Al=1[(-6)x2—(=1) x 4] =1 [(2) x 2= (-1) x 3] +1 [2 x 4 — (=6) x 3] = I

45
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A =11 [(6)x2~(=1)x 4] -0 [1 x2 -4 x 1]+ 01 x (1) — (=6) x 1]=-88
| Ay =11 12%x2=(=1)x3]+0[1 x2 -3 x1]=0[1 x (1) =2 x 1] = 77
|Al=11[2%x4-(-6)x3]-0[1x4-3x1]+0[l x(-6)—2x 1]= 286

Therefore, x=m=_§_8=_
|A] 11
AT
| A 3
and Z:i~A3_|:2_8_6,:26
|A] 11

(b) Gauss Jordan method for solving a set of non-homogeneous equations
involves adding the vector of constants {B} to the right of square matrix
[A] of the coefficients and carrying out a sequence of row operations
equivalent to multiplication with [A]™ like

N _ D _ 1 . 1) _ 1
R®M=Rya;, ; RP=Ry—ay RO ;... R,"” =R, —a, R ’2

2) _ 1 . 2) 1 2) . 2) _ 1
Rz( ) = Rz( )/a22 5 R|( )= Rl( ) ai R2( ) s eeaeeens Rn( )= Rn( Y an Rz( )
R3(3) = R3(2)/a33 5 R|(3) = R](z) —an R3(3) s erees .Rn(S) = Rn(z)— an3 R3(3) etc..

on this combination such that [A] is transformed to [I]. This will result in
the vector of constants {B} getting transformed into the solution vector {x}
i.e. [A:B] =2 [I:x]

3
It involves up to 2—‘;— multiplications and is a costly method for large matrices

Example 2.6

Find the solution to the following set of non-homogeneous equations by
calculating inverse of matrix [A] by Gauss Jordan method.

xt+ty+z=11

2x—6y—-z=0
3x+4y+2z=0
Solution

The set of equations can be expressed in the form [A] {x} = {B}
where,
i | 1 X 11

[A]=]2 -6 -1|; {x}={ytand{B}={0
3 4 2 z 0
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11 1l
Then, [A:B]=|2 -6 -1 : 0
3 4 2 : 0

Row operations R,;P=R//a;; ; R, = R, — a5, R,/ and R,V = R; —ay R,

will give

11 11
=0 -8 -3 : -22
0 1 -1 : =33

Row operations R, = R,(/ay, ; R\® =R, —a;, R,¥ and R;® = R}V —a;,
R, will give

8 4
o 1 3 1}
8 4
0o o -1 .14
L 8 4

Row operations R;® = R;®/a3; ; R{® = R\® —a;3 Rs® and R, = R,®—ay;
R;? will give

1 0 0 : -8
=0 1 0 : -7|=[1:x]
0 0 1 26
Thus,
-8
{x}=-7
26

which is same as the solution vector {x} obtained by the method of

cofactors.

(¢) Gauss elimination method is a direct method for solving [K]{x} = {P}
where [K] is a square matrix of order n. The method involves reduction of
the coefficient matrix to upper triangular form and back substitution.

Example 2.7

Solve the following system of simultaneous equations by Gauss elimination
method

47
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x+ty+ z=11
2x -6y —z=0
3x+4y+2z=0

Solution
The given equations can be expressed in matrix form as

11 1x) (1
2 -6 —1[{yt =40
3 4 2|lz] |o

The elements of [K] are reduced to upper diagonal form by the following
operations, performing on one column at a time.

Column-1
R2:R2—R,(]l—((l‘—) 11 1](x 11
k“ give 0 -8 -3jJyr=4-22
and R,=R,-R,| 3 0 1 -1||z] {-33
k)
1 1 I]x 11
Column-2 R;=R;R, (ka/kp) give |0 —8 —3|{ys={ —22
o o - _143
8 1|” 4

Back substitution

Row-3 2z =(—]ﬁ)(——$—) =26
4 11

Row_2 y::gz_:*‘:;—'z :—7
(-8)
Row-1 x:E:—Z_—Z =—8

which is same as the solution vector {x} obtained by the earlier methods.

(d) LU factorisation method is based on expressing square matrix [K] as a
product of two triangular matrices L. and U.

ie,  [K]=[L][U],
where [L] is a lower triangular matrix
and [U] is an upper triangular matrix
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This method involves n*/3 + n” operations and thus is an economical method
for large size problems. There are three variations of this method.

(i) Doolittle method wherein diagonal elements of lower triangular matrix
L are equal to 1

Step-1 {P} = [K}{x}=[LJUKx}=[LKv} . (2.21)
-kn kip k3. ky, 171
Ifz[ ky ky.ky, Ly 1
ks Ky kyyky, (=G Iy

Uy Up o Uy

- o ©

0
S0 0wy uy.u,
011 0 0 wuy..uy

Ky Ky Kppeko | L o ly1][ 0 0 0.u, |

The elements of matrices [L.] and [U] are obtained using the following
equations of matrix multiplication

kn=1.uy = Uy
kp=1.ujp = up
kln= 1. Ujp = Uq,
ky = by . uy = by

kn=hi.up+1.uy = up
kp=h.usz+ 1. uy = un
Koo =hy.upp + 1. up, = Uy

and so on

Step-2 : Intermediate solution vector {v} is calculated from {P} =[L]{v}

1 0 0..0](v
P (L, 1 0..0]]|v,
ve (Pip=ih L, 1.0 gy

3 r

P U Ly My.d]|v,]
from which, elements of {v} can be obtained as
vi=P
vi=Py—1by.v

V3=P3—I3] .Vl—l32.V2 and soon
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Step-3 : Actual solution vector {x} is calculated from {v} ={U]{x}

Vi Uy U Wz e Wy FEX

v, 0 uy Uy ouy X,
i, vie=| 0 0 up .. ouy, (X

Vo) LO 0 0 ou (X,

\"
—_'n

X, =—"4-

Uin
X _(Vn—l_un—l’n xn)
n-1 —

un—l’ n-1

(vf—uf X, —u_ x)

Xy = 0 n Rl S e and so on

un—2’ n-2
Example 2.8

Solve the following system of simultaneous equations by L-U factorisation

method
xty+z=11I1
2x—-6y—-z=0
3x+4y+2z=0
Solution

The coefficient matrix is

1 11 Ly 0 O0lu, u, u;
[Kl=|2 -6 -1 :[LMU]Z Iy Ly 01 0 uy uy
3 4 2 Ly Ly Lyl 0 0 uy

The elements of [} and [U] are obtained from

k”=l“.u”and luzl = u; =1
ki2=1; . u;p and I, =1 = up=1
kis=/1.u3 and [ = 1 = u3=1
ka1 =y . uy = =2
ki =5y . up+ln.uy and =1 = up=-8
k23 = 121 LUt 122. Uy3 and 122 =1 = U3 = -3
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ka1 =1l .y = =3
k32=l3| . u12+l32 .U = 1322-—]/8
k33 = 131 . U3 + 132 Uy + 133 . U3z and 133 =] = Us3 =-11/8

Thus  {P} =[K] {X} =[L] [U] [X]

11 1 0 o1 1 1] fx
or 0; =12 1 0/{0 -8 ~3|4y
0 3 1 0{f0 0 _n z

8 8

Let {P}=[LH{v}

Then, elements of vector {v} are obtained from
vi= P] =11
V2=P2—12|.V1 -o=222
V3= P3—l3] . Vi —132 .V = 143/4

Actual solution vector {x} is calculated from {v} = [U]}{x}

z="3 =26
Uss
y=l2-un2) _3
Un
X = (VI —Up YU Z) -_8
Uy

Crout’s method is another factorisation method wherein diagonal
elements of upper triangular matrix U are equal to 1. The remaining
procedure is identical to Doolittle method.

(iii) Cholesky method is also a direct method for solving [K]{x} = {P},

where [K] is symmetric and positive definite.
i.e. for any vector {x}, {(x}T[A] {x} >0

Here, {P} =[K]{x}= [L][L]T{.x} where [L] is a lower triangular matrix
This method is also a factorisation method except that upper triangular
matrix [U] is replaced by the transpose of lower triangular matrix [L].
Hence, the diagonal elements of [L] will not be equal to 1. Since one
matrix [L] only need to be stored, it requires less memory and is
especially useful in large-size problems.
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[k, ki, K.k
ky ky  ky ek
stepl |k, ki ky .ok

Lyl ({0 0 0.1

nm _J{_ nn

k,, k
The elements of matrix [L.] are obtained using the following equations of
matrix multiplication

kin=hi.In = I
k=1l . Iy = Iy
Kin=1l1 .1y = Iy

kyy=0h .l is sameas ki, =1/;.0h since [K] is symmetric and is
redundant

kp=by. bLitln. Iy = I»
kan=by . L+ b5 = Iy
kn=b1 . lntln.lp = Iln

and so on

Step-2 : Intermediate solution vector {v} is calculated from {P} =[L]{v}
P) [4, O 0.0 (v
L, I, 0..0 Vv,
i.e., P, L: Ly L, ;.0 1Vag

Pn _lnl ln2 ln3 "'lnn VnJ

from which, elements of {v} can be obtained as

il
Rt
v, = (P, ~Lvy)

Iy,

Vy= (P, - byv — 132-"2)

133

and so on
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Step-3 : Actual solution vector {x| 1» calculated from {v} =[U]{x}

i.e

Vi —ln Ly Ly . [nﬂ X
v, 0 L, Iy .. 1,][x,
TVar=1 0 0 Ly o Ly 9%s

Y 0O 0 0 .. I (ix

n L nn  {n

from which, elements of { 8 } can be obtained as

(iv)

v
X, =+

I

nn

_(vnfl_ln, n-1 Xn)
xn—l— ]

n-1, n-1
v o=l . ox =1, X

an2:(n72 o102 Xt oo Xa) and so on

In—2, n-2

Gauss Jordan method is also similar to Gauss elimination method except
that back substitution operation is avoided by transforming coefficient
matrix [K] into a unity (diagonal) matrix, instead of an upper triangular
matrix. This increases number of operations and hence is not economical.
However, this method is popular for inversion of matrix [K] which can
then be used with multiple right side vectors. In such applications, this
method is more economical.

2.5.3 ITERATIVE METHODS

There are many different approaches, but two popular methods are briefly
explained here.

(@

Jacobi iteration or Method of simultaneous corrections : In this method
also, each row is first divided by the corresponding diagonal element to
make diagonal elements equal to 1.

Then,  {x}™""={P}+([1]-[K]) {x}™

This form is used for successive improvement of the solution vector from
an initial approximation {x}'>. No component of {x}™ is replaced with
new ones, until all components are computed. All components are
simultaneously changed at the beginning of each step. For better
understanding, matrix notation is avoided in the example.
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Example 2.9

Solve the following simultaneous equations by Jacobi iteration method.
20x +y—-2z= 17
3x +20y —z=-18
2x -3y +20z= 25

Solution

These equations are rewritten as
X=(17-y"'+227")/20
yi=(-18=3x""+2")/20
Z=(5-2x"+3y"") /20
The values obtained after each step are tabulated below. Starting assumption
refersto i=0

i-> 0 1 2 3 4 5 6
X 0 0.85 1.02 1.0134 1.0009 1.0000 1.0000
y 0 -09 -0965 -0.9954 -1.0018 -1.0002 -1.0000
z 0 1.25 1.1515  1.0032 0.9993 0.9996 1.0000

Exact solutionisx=1,y=-landz=1

(b) Gauss Siedel iteration or Method of successive corrections : In this
method, each row is first divided by the corresponding diagonal element to
make diagonal elements equal to 1. Coefficient matrix is assumed as sum of
three matrices, [1], [L] and [U] where [I] is the unity matrix, [L] is a lower
triangular matrix with diagonal elements equal to 0 and [U] is an upper
triangular matrix with diagonal elements equal to 0.

Then,  [K] {x}=([I] + [L] + [UD{x} = {P}or{x}={P}—[L] {x} - [U] {x}

This form is used for successive improvement of the solution vector from
an initial approximation {x}© with

(0 = (P = [L] ()~ [U] )
replacing old terms of solution vector {x}™ with new ones, as soon as they
are computed.
For better understanding, matrix notation is avoided in the example.

Example 2.10

Solve the following simultaneous equations by Gauss Siedel iteration method.
20x+ty—2z=17
3x+20y—-z=-18
2x -3y +20z=25
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Solution

These equations are rewritten as
X=(17-y"'+22"/20
y'=(-18-3x'+2")/20
2'=(25-2x'+3y") /20
Note the change in the superscripts (iteration no), compared to the Jacobi

iteration method.

The values obtained after each step are tabulated below. Starting assumption
refersto i=0

i-> 0 1 2 3
X 0 0.85 1.0025 1.0000
0 —-1.0275 —0.9998 —-1.0000
2z 0 1.0109 0.9998 1.0000

Thus, successive correction (Gauss Siedel iteration) method converges much
faster than simul aneous correction (Jacobi’s iteration) method.

2.6 EIGEN VALUES AND EIGEN VECTORS

For every square matrix [A], there exist A and {u} such that [A]{u} = A{u} or

([A]-AD fu}={0¢ . (2.22)
For a non-trivial solution, {u} # {0},
| [A] - A[l] | = 0 is called the characteristic equation ..... (2.23)

A, s are called eigen values. Eigen values may be real or complex. Most of
the engineering problems will have real eigen values. The system of n
independent equations represented by ([A] — A[I]) {u} = {0} will have n eigen
values, where n is the order of the square matrix [A]. Some of them may be
repeated. {u,} associated with each 2, is called an eigen vector and is calculated
from the system of equations ([A]—A[I]) {u,} = {0}.

[A] is a positive definite matrix if all its A, are +ve

or if {x}'[A]{x} >0 for any non-zero vector {x}
[A] is a positive semi-definite matrix if all its A, are > zero
[A] is an indefinite matrix if its A, are —ve, zero or +ve

[A] is singular if and only if one or more of its eigen values are zero ..... (2.24)
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Eigen values and eigenvectors of an (n x n) matrix can be obtained by one of
the two approaches.

e Solving n™ order characteristic equation for the n eigen values and solving
the system of n simultaneous equations with each eigen value|for the
corresponding eigenvector.

e Solving the system by iterative method through successive
approximations of the eigen values and corresponding eigenvectors

Since eigen values in a dynamic system represent the natural frequencies and
only the first few eigen values representing the dominant modes of vibrations
are usually required, the latter approach is faster and is more commonly used.
Both these techniques are explained here through simple examples.

Example 2.11

Determine the eigen values for the equation of motion given below

2 1 1 400
1 2 1|-2|0 4 oflfe}=0
112 00 4

where A; and ¢, are eigen values and eigen vectors respectively

Solution

Characteristic equation is given by

2 1 1 4 00
Det|{1 2 1{-Af0 4 0[[{=0
11 2 0 0 4
[2-4), 1 1
or Det| 1 24, 1 =0
1 1 24,

Q- [Q-4Y-11-[Q-4)-1]1+[1-(2-40)]
=Q2-4N)’- 2-4)+2=0
or —64 4> +96A7—-36 A +4=—4(A-1)(4r-1)*=0
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This cubic equation has three real roots given by A =1, %,%
Example 2.12
Determine the eigen values and eigen vectors of the equation
{[A]-M11} {q} =0 where A =eigen value and q = eigen vector, if
2 21
A=j1 3 1
1 2 2
Solution
Characteristic equation is given by

2 11 1 00 2-A 2 1
Det ||1 2 1|(-A|0 I Of|=| 1 3-A 1 |=0
I 1 2 0 01 1 22—\

C-MHIB-HC-H-HPN-O D E-H-1)M)]
+() [(DE)-CG-MH(1)]=0
ie, MV-TA+11A-5=0
or (A-5M-2A+D=A-5A-1)A-1)=0
Therefore, eigen values of the matrix are 5, 1 and 1

Eigen vectors corresponding to each of these eigen values are calculated by
substituting the eigen value in the three simultaneous homogeneous equations.

CorrespondingtoA =135, (2-5)x;+2x,+x3=0
X;+3 -5, +x3=0

X1+2X2+(2—5)X3=0

1
which gives {x} = 41
1

This eigenvector indicates rigid body mode of vibration.
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CorrespondingtodA =1, 2-Dx;+ 2x,+ x3=0
X]+(3—])X2+X3=0
1+ 2%+Q2-Dx3=0

Since the 2™ and 3" equations are identical, we have effectively two
independent equations in three unknowns. Therefore, a unique solution does not
exist. These equations are satisfied by

1 2
{x}=4+ Ororq-—1
-1 0

In many practical applications involving many degrees of freedom, only the
fundamental mode is dominant or important. Iterative methods such as
Rayleigh’s Power method, House holder’s tri-diagonalisation method are very
commonly used for computing few dominant eigen values and eigen vectors.

Rayleigh’s Power method: This iterative method is used for calculating
fundamental or largest eigen value

[A] {x} =A {x} isrewritten for iterations as [A] {x}*V= A' {x}©
Example 2.13

Calculate largest eigen value for the matrix [A] by Rayleigh’s Power method

2 -1 O
where [A]l=]-1 2 -]
0 -1 2

Solution

Let the initial assumption be {x}®=[1 0 0]

2 -1 o}t 2 1
Then, [ANx}¥=|-1 2 —1[<0t=4-1}=2{-05}=2D {x}©
0 -1 21 0 0
[ 2 -1 o] 1] (25 1
AP ={-1 2 —1]{-05b=9-2t=2.5{-0.8}=20 }*®,
0 -1 2{{ 0] |05 0.2
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Eigen values and eigen vectors obtained after successive iterations are
tabulated below.

i-> 0 1 2 3 4 5 6 7
1 1 I 1 087 080 076 0.74
i} 0 05 -08 -1 -1 -1 -1 -1
0 0 02 043 054 061 065 067

A - 2 2.5 28 343 341 341 341

2.7 MATRIX INVERSION THROUGH CHARACTERISTIC EQUATION

Cayley-Hamilton theorem states that that every square matrix satisfies its own
characteristic equation. Let characteristic equation of square matrix [A] be
given by

DA =A"+Coy A"+ Cpy A2+ Cos A"+ A C A+ Cy = 0
Then, according to this theorem,
A"+ Coy A"+ C A"+ Cos AP+ A CLA+Co = 0
Multiplying throughout by
AL AV HC, AT HC, L AP HC, s AN L AC THC AT =0
or  Al'=—[A"+C, AV +C,, A" HC, AV . 4C 1]/ Cy

Example 2.14
Obtain inverse of the following matrix using Cayley-Hamilton theorem
1 2 3
A={2 4 5
356
Solution
Characteristic equation is given by
-2 2 3
Det| 2 4-%x 5 |=0
3 5 6-A
ie, M—11A2-40L+1=0 or A’—11A2-4A+1=0
Multiplying by A™',
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we get

A2

Then,

AT TIA-41+A"'=00orA'= —-[AT=11A-4I]

0
1 2 31 2 3] [14 25 31
=[A][aA]=12 4 sS||2 4 5|=|25 45 56
3 5 6[|3 5 6| {31 56 70
14 25 31 1 23] [1 oo

A" =-[aA2-11A-a1]=—{25 45 s6|+112 4 s|+40 1 0

31 56 70 3 56 0 0 1

1 -3 2
=-3 3 -1
2 -1 0

Note : Reader is advised to verify the solutions obtained by these various
methods with the standard check [A] [A]"' = [I], since numerical errors are
frequently encountered while practicing these methods.

2.8 SUMMARY

A matrix is a group of (m x n) numbers (scalars or vectors) arranged
in ‘m’ number of rows and ‘n’ number of columns. FEM deals with
solution to a large number of simultaneous equations, which can be
expressed more conveniently in matrix form as [K] {x} = {P}, where
[K] is the stiffness matrix of the component which is usually square,
symmetric and non-singular.

This system of equations can be solved for {x} when [K] is a square,
non-singular matrix, in the form {x} = [K]"'{P}. Direct methods such
as Gauss elimination method or factorisation method and iteration
method like Gauss Siedel method are commonly used techniques for
the solution of the system of equations.

For every square matrix [A], there exist A and {u} such that
[K{u} = A{u}.A is called the eigen value and {u} is the
corresponding eigen vector. Stiffness matrix is usually positive
definite i.e., {u}'[K] {u} > O for all non-zero {u}. Eigen values
represent the natural frequencies and eigen vectors represent natural
modes of a dynamic system. Iterative methods such as Rayleigh’s
Power method, House holder’s tri-diagonalisation method are very
commonly used for computing the first few dominant eigen values
and eigenvectors.



CHAPTER 3

THEORY OF ELASTICITY

A brief review of theory of elasticity, with specific reference to applications of
FEM, is presented here for a clear understanding of the subsequent chapters. For
a more detailed explanation, the reader may refer to other standard books on this
subject.

Every physical component is a three-dimensional solid. However, based on
the relative dimensions along three coordinate directions and nature of applied
loads / boundary conditions, they are classified as 1-D, 2-D or 3-D components.
This idealisation helps in analysing the component quickly and at lower cost.

3.1 DEGREES OF FREEDOM

The direction in which a point in a structure is free to move is defined as its
degree of freedom (DOF). In general, any point in a component can move along
an arbitrary direction in space and rotate about an arbitrary direction, depending
upon the loads applied on the component. Since specifying this arbitrary
direction through angles is tedious, the movement and rotation at any point are
identified by their components in the chosen coordinate system. Thus, in
Cartesian coordinate system, a point can at best have translation identified by its
three components along the three coordinate directions X, Y and Z; and rotation
identified by its three components about the three coordinate directions X, Y
and Z. Depending on the way a member is assembled in a structure, some or ail
of its DOF at a point may be fixed or free. Truss members are designed for only
axial loads and rotational DOFs are not relevant whereas beam is designed for
bending loads which result in displacement at each point normal to the axis. Its
derivative or slope is independently constrained and hence is considered as an
independent DOF. Similarly, in plates subjected to in-plane loads, rotational
DOFs are not significant and need not be considered as independent DOFs
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whereas in plates and shells subjected to bending loads, rotational DOF are
significant and need to be treated as independent DOFs.

3.2 RIGID BoDY MOTION

It is the motion of entire component or part under the influence of external
applied loads. Such a rigid body motion, with no relative deformation between
any two points in the component, cannot induce stresses or strains in a
component. Since design or analysis of a component involves calculation of
stresses and strains in a component, any static part with ‘n’ degrees of freedom
can not be solved unless it is restrained from moving as a rigid body by
constraining it at least at one point along each DOF. The number of DOFs to be
constrained depends on the type of component. For example, a truss has to be
constrained for rigid body motion along X and Y axes; a plane frame (in X-Y
plane) has to be constrained along X and Y axes as well as for rotation about Z
axis; a thick shell has to be constrained along X, Y and Z axes as well as for
rotation about X, Y and Z axes. In the conventional analysis by closed form
solution to the differential equation, the rigid body motion is constrained by
using relevant boundary conditions for evaluating constants of integration.

3.3 DISCRETE STRUCTURES

Structures such as trusses and frames, which have many identifiable members,
connected only at their end points or nodes are called discrete structures. Each
member of the structure is considered as a one-dimensional (1-D) element along
its length, identified by its end point coordinates. Their lateral dimensions are
reflected in element properties like area of cross section in trusses and moment
of inertia and depth of section in beams.

3.4 CONTINUUM STRUCTURES

Structures such as plates, thin shells, thick shells, solids, which do not have
distinctly identifiable members, can be modeled by an arbitrary number of
elements of different shapes viz., triangles and quadrilaterals in 2-D structures
and tetrahedron and brick elements in 3-D structures. These are called
continuum structures. In these structures, adjacent elements have a common
boundary surface (or line, if stress variation across thickness is neglected as in
the case of plates). The finite element model represents true situation only when
displacements and their significant derivates of adjacent elements are same
along their common boundary.
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3.5 MATERIAL PROPERTIES

63

FEM is ideally suited for analysing structures with varying material properties.
The variation of properties such as Modulus of elasticity (E), Modulus of
rigidity (G) and coefficient of linear thermal expansion () may be:

(a) constant (linear stress-strain relationship) or variable (non-linear stress-
strain relationship) over the range of load.

(b) same in all directions (isotropic) or vary in different directions
(anisotropic or orthotropic).

(c) constant over the temperature range or vary with temperature,
particularly when the temperature range over the component is large.

These variations may be inherent in the material or induced by the
manufacturing processes like rolling, casting. Treatment of non-homogeneous
material, with varying properties at different locations of a component, is
difficult and is also very unusual. In most cases, variation of material properties
with the direction and with temperature may not be significant and hence
neglected. So, an isotropic, homogeneous material with constant (temperature-
independent) properties is most often used in the analysis of a component.

3.6 LINEAR ANALYSIS

It is based on linear stress-strain relationship (Hooke’s law) and is usually
permitted when stress at any point in the component is below the elastic limit or
yield stress. In this analysis, linear superposition of results obtained for
individual loads on a component is valid in order to obtain stresses due to any
combination of these loads acting simuitaneously. In some designs, it is
necessary to check for many combinations of loads such as pressure and thermal
at different times of a start-up transient of a steam turbine. In such a case,
analysing for unit pressure; multiplying the stress results with the pressure
corresponding to that particular time of the transient and adding to the stresses
due to temperature distribution will be economical.

3.7 NON-LINEAR ANALYSIS

In many cases, the mathematical formulations are based on small deflection
theory. A component with large deflections due to loads, such as aircraft wing,
comes under the category of ‘geometric non-linearity’. In some aerospace
applications, where the component is designed for single use, stress level above
yield point, where stress-strain relationship is non-linear, may be permitted. In
some other cases involving non-metallic components, material may exhibit non-
linear stress-strain behaviour in the operating load range. These two cases come
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under the category of ‘material non-linearity’. In both these cases, analysis
carried out by applying the load in small steps.

(a)

(b)

Geometric non-linearity : In these problems, geometry of the
component is redefined after every load step by adding the
displacements at various nodes to the nodal coordinates for defining the
true geometry to be used for the next load step.

Material non-linearity : In these problems, total load on the
component is applied in small steps and non-linear stress-strain
relationship in the material, usually represented by the value of Young’s
modulii or Modulii of elasticity (normal stress/normal strain) Ex, Ey
and Ej; in different directions, is considered as linear in each load step.
These values are suitably modified after each load step, till the entire
load range is covered. Here, normal stress and normal strain can be
tensile (+ve) or compressive (—ve) and E has the same units as stress,

since strain is non-dimensional.
F 3

E
4
O3t ey

[ 2) N

E,

€
»

FIGURE 3.1 Stress-strain diagram of a non-linear material

3.8 STIFFNESS AND FLEXIBILITY

Loads and displacements in an element are related through stiffness and
flexibility coefficients. Stiffness coefficient (K) is the force required to produce
unit displacement, while Flexibility coefficient (F) is the displacement produced
by a unit force. They are usually defined for 1-D elements such as truss
elements or spring elements by

or

P=K.u where, K = ATE is the stiffness coefficient

u=F.P where, F =—ALE is the flexibility coefficient
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. P . .
Since © = X =[e = E(%) where, u is the change in length and,

therefore, P = (%EJU

However, a more general definition of stiffness coefficient k, is the force
required at node ‘i’ to produce unit displacement at node ‘j’. i.e., P, =k, u,.

An important feature of the stiffness coefficient is that it has different units
with reference to different loads and different displacements. For example,
units of k,, relating load at ‘i’ to displacement at °j” in a truss element are in
‘N/mm’ whereas units of k, relating moment at ‘i’ to slope at ‘j” in a beam
element are in ‘N mm’.

Stiffness coefficients k, connecting loads at ‘n’ number of nodes with
displacements at these ‘n’ number of nodes thus form a square matrix of order
n x n, represented by [K]. In structures having linear force-deflection
relationship, the flexibility and stiffness coefficients have the property k, = k;,
and f, = . This is called Maxwell’s reciprocity relationship. This makes the
flexibility and stiffness matrices symmetric.

3.9 PRINCIPLE OF MINIMUM POTENTIAL ENERGY

65

Every component subjected to external applied loads reaches stable equilibrium,
when its potential energy or the difference between work done by external
forces and internal strain energy due to stresses developed is zero. It can also be
expressed as — During any arbitrary kinematically consistent virtual
displacement from the equilibrium state, satisfying constraints prescribed for the
body, potential energy equals tozero or the work done by the external forces
equals the increment in strain energy

ie., 81 =0W,—8U =0

3.10 STRESS AND STRAIN AT A POINT

Stress is the internal reaction in a component subjected to external forces. Thus,
stress exists only when external force is applied on a component and varies
from point to point. Stress at any point in a component is defined as a tensor
with three components on each of the six faces of an infinitesimal cube around
that point, as shown in the Figure 3.2.
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g
~

+ Z face

Oy

Z
t Y

+ X face

FIGURE 3.2 Stress at a point

Stress components are identified by two subscripts, the first subscript
representing the direction of outward normal of the plane or face of the cube
and the second subscript representing the direction of stress on that plane. Thus
oxx (or ox) represents normal stress on the plane whose outward normal is
along +ve X-axis (identified as + X face) while oxy (or 1xy) and oxz (or txz)
represent shear stresses along Y and Z directions on the same plane. Stresses are
similarly defined on the other five faces of the cube.

For the equilibrium of this small element along X, Y and Z directions, it is
seen that o,,, 6,y and o, on the +X face are equal to oy, oy, and o, on the —-X
face. Similarly on the Y and Z faces. So, out of the 18 stress components on the
6 faces of the cube, only the following 9 stress components are considered
independent. These are represented as

Ox Txy Txz T,x Oy Tyz Tx Ty O

Also, for the equilibrium of the element for moments about X, Y and Z
directions, T, = Tyx, Tx; = T and T, = T,, being the complementary shear
stresses on two perpendicular faces. Thus, only three normal stress components
oy, Oy, 6, and three shear stress components 1.y, T,, and T, are identified at each
point in a component. In the following chapters, these components are written
as a stress vector {&} for convenience of matrix operations.

Normal stress on any plane whose normal is N (with components N, N, and
N, along cartesian x, y and z directions) can be obtained from the stress
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components available in cartesian coordinate system by the following
relationship.

6n=Tx Nx+TyNy+TzNZ
where, Tx =0x Nx +txy Ny +ttxz Nz
Ty =1xy Nx + oy Ny + 1yz Nz
Tz=1xzNx+TyzNy + 62Nz
In a similar way, strain at a point is defined as a tensor of 18 components,
out of which six components consisting of normal strains &,, &, and €, and shear
strains 7y, Yy, and y, are considered independent. Normal strain along a
direction is defined as the change in length per unit length along that direction
while shear strain is defined as the change in the included angle as shown in
Fig. 3.3. In the following chapters, these components are written as a strain
vector {€} for convenience of matrix operations.
In the case of 2-D and 3-D elements, general relations between
displacements and strains and between strains and stresses, as obtained in the

theory of elasticity, are used for calculating element stiffness matrices. These
relations are given later with the following notation.

Notation: u, v, w are the displacements along x, y and z directions
€« Ey, €, are the normal strains
Yxys Yyz Yox are the shear strains
Oy, Oy, O, are the normal stresses

Txys Tyz Tox A€ the shear stresses

ou
Y 4 (é‘;"\]d)’

Tk
dy % ov ov

ox 2l
_l_ w (ox) g

je dx »|
X

FIGURE 3.3 Shear strain at a point
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3.11 PRINCIPAL STRESSES

Depending on the type of structure and the load applied, three normal stresses
and three shear stresses can exist at any point in the structure. These stress
components are calculated with reference to the coordinate system used.
However, there exists a plane along which shear stress is zero and the
corresponding normal stresses (maximum and minimum) are called principal
normal stresses or principal stresses. Along some direction, inclined to the two
principal stresses, there exists maximum or principal shear stress. These are of
interest to any designer as the component has to be designed to limit these
stresses to the allowable limits of the material. They can be calculated, for a
two-dimensional stress state, from

B (o'x +°'y)+ \/@'x —Gy)2+41;2

o, =
2 2

o, = (ox +0y)_\/(°x —(sy)2 +41°
2 2

_(d1 —0'2)_\/(ax*ay)z +4r?
fmax =TT 2

From uni-axial tensile test, where ox = 0 and 1 =0,

max max

o
we get G| = Opax = Oy ; o,=0 and = =—2Y—=O.50

3.12 MOHR’S CIRCLE FOR REPRESENTATION OF 2-D STRESSES

The principal stresses can also be obtained by graphical method using Mohr’s
circle. Here, normal stresses are represented on X-axis and shear stresses on
Y-axis. Principal or maximum normal stress is inclined to the given stress state
by an angle 0, while maximum shear stress is the maximum ordinate of the
circle and exists on a plane inclined at (45 — 6)° from the given stress state or at
45° from the Principal stresses.

Procedure : Plot OA and OB to represent stresses o, and o, along X-axis.
Plot AC and BD, to represent shear stress t,,, parallel to Y-axis. With CD as
diameter, construct a circle intersecting X-axis at F and G. Then OF and OG
indicate maximum and minimum principal stresses, inclined at an angle 6 (half
of angle between EC and EA) with line CD representing the given stress state.
Length EH, radius of the circle, indicates maximum shear stress.
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It can be observed that sum of normal stresses on any plane is constant and is
called 1* stress invariant I,

ie., L[=octo, =0t o, for 2-D stress case
F 3
H
Shear T \ C
stress, T Tax
Txy

>

o
==}
™

«—— o, —> Tyy Normal
stress, o

¢ GY
D

a T, >

FIGURE 3.4 Mohr’s circle for 2-D stress representation

Two special cases of Mohr’s circle are of special importance:

(a) For uni-axial tensile test, from which material properties are usually
evaluated, the load is applied along one axis (usually Y-axis) and other
components of stress are all zero. Then,

c
6,=0y;0,=0and 1., =7y as can be seen from the Figure 3.5.

4L

Shear max

stress, T l

» Normal
o
Y stress, o

FIGURE 3.5 Mohr's circle for uni-axial tensile test
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(b) In the earlier cases, it is seen that normal stress corresponding to
maximum shear stress is not zero. If the normal stress, associated with
maximum shear stress, is zero, then it is called pure shear state. 1t is
possible when a component is subjected to torsion only. In this case of
pure shear, on a plane inclined at 45° to the plane of maximum shear
stress, radius of the circle is

O) = —0; = Tnax as can be seen from Fig. 3.6.

Shear stress, T 4

/ tl'l'lﬂx
l » Normal
G, \

O stress, G

FIGURE 3.6 Mohr's circle for pure shear

This can also be understood by consideiing stresses acting at a point,
identified by a small cube around it, when the component is subjected to
torsion. Torsion is represented by a couple formed by two equal and opposite
shear forces acting on opposite faces of the cube, as shown in Fig. 3.7 (a).
An equal and opposite couple is automatically formed, if the component is in
static equilibrium, as shown in Fig. 3.7 (b). The shear forces resulting from this
couple are called complementary shear forces (stresses). If two different free
bodies of half this cube about its diagonals are considered, resultant of the two
shear forces on adjacent surfaces will result in tensile stress on one diagonal
(BD) and a compressive stress on the other diagonal (AC), as shown in
Fig. 3.7 (c).
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IR i 1

(a) (b) (c)
FIGURE 3.7 Representation of shear, complementary shear and principal
normal stresses

If °q’ is the shear stress on the face of the cube and ‘s’ is the side of the cube, then
Resultant force on the diagonal, R = 2.q.s2.cos 0.

R 2.q.s2.cos9
O=—=— =

Stress on this diagonal, 5
4  2s°.cos8

Thus, both these stresses (maximum or principal normal stresses) are equal
in magnitude to the shear stress on the surfaces and are inclined at 45|° to the
shear stresses, as already seen in the corresponding Mohr’s circle.

Maximum shear stress theory, the most conservative and commonly used
theory of failure, suggests that a component fails when the maximum shear
stress at any point in a component exceeds the allowable maximum shear stress
value of the material.

3.13 VONMISES STRESS

71

VonMises stress or equivalent stress is related to the three principal stresses at
any point. It is used in Maximum distortion energy theory (which states that a
component fails only due to distortion in shape and is independent of
volumetric expansion or contraction). Equivalent stress is given by

Oeq =\ﬁ(°1 -6, +(02 -03F + (03— <o

2 y

It is also represented in werms of 1% and 2™ stress invariants (I, and I,) as

Geq=y17-31,

where, I,=o,+0,+t0, = 0,+0;+0;
_ 2 2 .2 _
and I,=6,6,+0,0,+0,0,-1,, —T, T4 =0,0,+0,0;+0;0,
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and

In 2-D plane stress case, ¢,=0andc; =0

IL=o,+t0, = 0,+0

= 2 _
I, =0,0, -1, =00,

In 2-D plane strain case, c,=v (o, t+cy)

j=o,toy,t0, = 0,t0;+03

= 2 _
I, =0,0,+0,0,+0,0, — T, =0;0, +0,0; + 0,0,

Comparing distortion energy of specimen in uni-axial tensile test,
where o,=o6y; o©,=03=0,

with pure shear state where T, =06, =0;,

weget, ¢ < 2Y¥-0577 o,

max — \/5

This stress value is used in the distortion energy theory of failure and is

very popular.

3.14 THEORY OF ELASTICITY

The definitions of stress, strain and the relationships between displacement,
strain and stress are explained in Strength of materials with special reference to
1-D structures. Before analysing continuum structures, a more general
understanding of these concepts is essential. In the following, a brief discussion
of these concepts is presented. Reader is advised to go through any book on
theory of elasticity for a more detailed presentation of these concepts.

@

Poisson’s ratio

Normal strain (tensile or compressive) due to an applied load along the
direction of load is called longitudinal strain. In most engineering
materials, increase of size in one direction is associated with reduction of
size in the other two directions, to minimise change in the volume of the
component. Thus tensile longitudinal strain is associated with
compressive lateral strains and vice versa. Ratio of lateral strain to
longitudinal strain is found to be a constant for each material and is called
Poisson’s ratio (usually represented by v or 1/m). With the usual notation
of tensile strains as +ve and compressive strains as —ve, this ratio is
always negative. However, this ratio is given a positive value and the
negative effect is taken care of in the corresponding equations. lts value
ranges theoretically from 0 to 1, while it varies from 1/3 to 1/4 for most
of the engineering materials. v = indicates a perfectly plastic material.

Poisson’s ratio, v = Lateral strain / Longitudinal strain



(b)

(c)
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Rigidity modulus, Bulk modulus

Shear modulus or Rigidity modulus, G = shear stress / shear strain
and Bulk modulus, K = Normal stress / Volumetric strain
where,

. . Ov
volumetric strain =—~¢, +€ +g,
v

(neglecting higher order small terms)
:(cx -vVo,-Vo, +&sy—vcz—vcx)+(oz—vox —vcy)
E E E
(l —2v)

o, 0, +0) =2

when same load is acting along x, y and z directions

(1-2v)

=0 = when load is acting along x direction only

X

Rigidity modulus and bulk modulus also have the same units as stress
(N/m? or Pa)

Bulk modulus has very limited applications in structural analysis. For
any given material, modulus of elasticity and modulus of rigidity reduce
at higher temperatures.

These material constants (modulii) are mutually related by the
following expression
E=2G (1 +v)=3K (1 -2v)
Strain-Displacement Relations

Strains can also be expressed as functions of displacement components ar
a point in the three Cartesian coordinate directions. If u, v and w (all
functions of location of point, represented by its X, Y, Z coordinates) and
represent the displacement components along X, Y and Z directions, then

Ou ov ow
gx:——- g€ = gzz———
ox Y oy oz
ou Ov ov ow ow Ou
,ny:__ll_+_ 'sz=——+_- Yn=_+_ ..... (31)
dy ox oz oy ox oz

Thermal stress

Thermal strains do not induce any stresses unless thermal expansion
is constrained.

73



74

FINITE ELEMENT ANALYSIS

For example stress in a uniform bar subjected to temperature rise by
AT, is dependent on the end condition as shown below. Let a be the
coefficient of linear thermal expansion. Total elongation of a bar of
length L due to increase in its temperature by AT is L o« AT. Then, stress
in the bar depends on the constraint (boundary condition) for its
expansion, as shown Fig. 3.8. In each case,

E . .
stress c=Eg= (E) x Restrained part of expansion.

I

AW
ANNNNNNY

je— L —>5]

Case (a) : Unconstrained Case (b) : Partially Case (c) : Fully
constrained constrained

(6 <L..AT)

Stress, =0 _ oc=E.a.AT
o= E!L.a.AT 8_}

L

ANMANANY

FIGURE 3.8

(e) Stress-strain Relations or Constitutive equations (from generalised
Hooke’s law)

¢ For linearly elastic and isotropic material

(cx —-VvVo, — VO, T,
€, = Ey ); Yoy = Gy
(— vo, +0, —vcz) T,
€, = E I weee(3.2)
, (—vox -vo, +cz); v. T
E G

where G = _E is the shear modulus or rigidity modulus
2(1+v)
Sum of the three equations gives,

o, +0,+0,
€, tE€, +E, =(l—2v(——y———-)
E

These equations can also be written in terms of stresses as functions of
strains.
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E[(l-v)ex +ve, +ve, ] Ev,
c, = ; T,y =
(1+v)(-2v) Y201 +v)
E[wv, +(1—v)e:y +ve,] Eyyz
g = . =
y A+ v){—-2v) © T l)
.= E[V[, +ve, +{1-v)e,] : . =——E——Yn _____ (3.3)
(l + v) (1 - 2v) 2(1 + v)
These equations are expressed more conveniently in matrix notation as
{o}=[D]{ey . (3.4)
Ingeneral, {o}=[D]({e}-{e}) (3.5)

where, {g,} = [0AT, aAT, AT, 0, 0, 0]" is the initial or stress-free
strain vector

and AT is the change in temperature of the component

since thermal expansion produces only normal strain (with no shear
strain and no Poisson’s effect) and thermal strains do not induce any
stresses unless thermal expansion is constrained
The 3-D stress-strain relations are simplified below for 1-D and 2-D cases.
1-D Case :

P < - »P >

FIGURE 3.9

o=Ee (3.6)
2-D cases :

(i) Plane stress case, represented by a thin plate in X-Y plane, plane
subjected to in-plane loads along X-and/or Y-direction, and no load
(and, hence, no stress) along the normal to the plane (in Z-direction).

(a) Subjected to no load (and, hence, no stress) along

ie., (6,=0,e,20) . (3.7)
1 v 0
E
Dl=g—5yv 1 ,0 | . (3.8)
1-v 0 0 (l - v)

2
{eo} =[ cAT oAT 0]" weee(3.9)
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PEttttta

P
Py < /' !——i—-—bX
/v

o, =0
on this surface

FIGURE 3.10

(i) Plane strain case, represented by a thin plate in X-Y plane, which is
constrained along the normal to the plane in Z-direction (i.e., no strain
along the normal). It is an subjected to in-plane loads along X-and/or
Y-directions, and no load (and, hence, no stress) along the normal to the
which is constrained along the normal to the plane, has no strain along
the normal. It is an approximation of a 3-dimensional solid of vary large
dimension along Z compared to its dimensions along X and Y and
loaded in X-Y plane. Example : A hydro dam between two hills, which
can be considered as a set of slices or plates in the flow direction (X).
Each slice in X-Y plane is modeled by plane strain elements.

Here, (6,#0,e,=0) (3.10)
B 1-v v 0
) [ A— 1- 0 | e 3.11
P Y Y 1% e
o o =Y
2
and {eo} =(1+V) [@AT aaT O] .. (3.12)
(— VG, — VG, +0'Z)

This is obtained by using €, = =0 to represent o,

E
in terms of o, and o, as 0z = v(ox — Oy) and substituting for o, in the
relations for g, and &,.
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£, = 0, on this face

FIGURE 3.11
Another example of plane strain is a segment of an axi-symmetric solid
which is self constrained in the circumferential or hoop direction.
e Orthotropic materials
3-D case

Eq. 3.2 is modified to account for variation of E and v along material axis
(1,2,3) as

1 =y i 0 0
E, E, E,
. ~ Vi 1 V3 e
e 0 0 0
o E, E, E, o
&2 Vi3 —Vy 1 0 0 0 2
y €3 L = E, E, E, <G3 S (3.13)
T2 0 0 1 0 0 Ti2
Y23 G, I T3
Ya o 0 00— 0 [u J
2
0 0 0 0 0 -(—}L
i 31

where, E\ vy =Eyviy ; B vy =E3vys and E3vi3=E, vy
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®

2-D Plane stress case
Eq. (3.8) is modified to account for variation of E and v along material
axes (1-2) as
| E, v,E 0
[D}=7——| v,E, E, 0 | . (3.14)
(1 —Vlz"zl)
0 0 G(l-v,vy)

where, V|2E2 = V2|E|

When an orthotropic plate is loaded parallel to its material axes, it
results only in normal strains. If the material axe< (1, 2) are oriented at an
angle 6 w.r.t. global (x,y) axes, then

[DI=ITI'[DI[T] (3.15)
where
cos0 sin’ 0 2 sin6 cosd
[T]= sin’0 cos’ 0 —2sinBcosO| ... (3.16)

2sin0cos® —2sinfcosd cos’0 —sin’0

Compatibility equations

While in 1-D elements, only one stress component and one strain
component are used in the strain energy calculation, stresses and strains
in 2-D and 3-D elements have more components due to the effect of
Poisson’s ratio even for a simple loading. While six strain components
can be obtained from the three displacement components by partial
differentiation, the reverse requirement of calculating three displacement
components is possible only when the six strain components are inter-
related through the following three additional conditions, called
compatibility equations.

628x 628), _ az‘ny

+
oy oxt owdy
628y d%, azyyz

> T 2 T o
oz Oy" Oy
%, %, 0%

Z 4 X — - 3.17
oxr 8z omdx (3.17)




CHAPTER 3 THEORY OF ELASTICITY

(g) Equilibrium equations
Stress at a point in a component is described by the stress tensor — one
normal stress component and two shear stress components on each of the
six faces of a cube around that point. For equilibrium of this cube, these
eighteen stress components should satisfy the following equilibrium
conditions, where F,, F, and F, are the forces acting on the cube along X,
Y, and Z axes.

oo ot xy

X+ =—22=F; Ty =1

aX ay az X Xy yx

o do, 0

a:: + ayy + ;yz =Fy; Tyzz'tzy ..... (3-18)
Z

ot
asz + zy + 60'2 =Fz; tzx :‘sz
ox | oy oz

A few problems are included here, based on the equations presented above.

Example 3.1

If a displacement field is described by u = —5x>— 6xy + 3y v = 4x*+ 9xy + 4y’
determine €, €, and Y,y at pointx =1 and y = -1

Solution
8x=@ =—10x-6y+0=-10x1-(-6)(—1)=—-4
ox
ov
ey=5; =0+9x+8y=9x1+8(-1)=+1
ou ov
ny=5+& =(0-6x+6y)+(8x+9y+0)=2x+ 15y

=2x1+15(1)=-13

Example 3.2
If a displacement field is described by u = — 4x>— 12xy + 3y%;

v =—3x>+ 4xy + 2y’ determine &,, gy and y,, at pointx =1 and y = -1
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Solution

£ :%“ =—8x—12y+0=—8x1-12x(—1)=+4

X

£ :% =0+4x+dy=4x1+4x(-1)=0

y

Ou Ov
Yy =5y—+& =(0-12x+6y) + (6x + 4y + 0)

=—6x+ 10y =—6x1+10(-1)=-16

Example 3.3

If a displacement field is described by u = 4x* — 4xy + 6y?; v = -2x* — 8xy + 3y’
determine €,, €, and v,, at pointx =—1 and y = -1

Solution
ex=—ai=8x—4y+0=8(—1)—4(—])=—4
ox
—av=0 8x+6y=-8x(-1)+6x(-1)=+2
=5, 0 BK 6y =8 XD T6x (D)
yxy=%+%=(0—4x+12y)+(4x—8y+O)=4y=4(—1)=—4

Example 3.4
If a displacement field is described by u = 3x*— 2xy + 6y%; v = 4x*+ 6xy — 8y’

determine g, €, and v,, at point x=—1 andy =1

Solution
ou
g, =—=6x-2y+0=6(-1)-2x1=-8
n= o y -1
e, =2 =0+6x—16y=6(1)—16x 1 =22
oy
nyzg_yhg =(0—2x + 12y) + (8x + 6y — 0) = 6x + 18y

=6(=1)+18x1=12
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Example 3.5

Ifu=2x"+3y, v=3y +y’ find the normal and shear strains

Solution

Normal strains are

8x=—qu—=4x+0=4x
ox
ov 2 2
g, =— =3+3y"=3(1 +y)
Yoy
Shear strain is
~yxy=a—u+ﬂ =(0+3)+(0+0)=3
0y 0Ox
Example 3.6

A long rod is subjected to loading and a temperature increase of 30 °C. The total
strain at a point is measured to be 1.2 x 107, If E = 200 GPa and

a =12 x 10°% °C, determine the stress at the point.

Solution
6 = E (&rotal — Ethermat) = E (€10t — @ .AT)
=200 x 10° (1.2 x 10~ = 12 x 107 x 30) =200 x 10° (- 34.8 x 107)
=—69.6 x 10° N/m*or — 69.6 N/mm’

Example 3.7

Consider the rod shown in Fig. 3.12 where the strain at any point x is given by
g,= 1 +2x’. Find the tip displacement 3.

|

L »

EERANAANNNY

b

FIGURE 3.12
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Solution
("
5, = |e dx= {1 +2x? Jdx
Jose- |
3t 3
_[x+2x} _L+2U
3 0 3
Example 3.8
In a plane strain problem, if o, = 150 N/mm?, o, = —100 N/mm?,

E =200 KN/mm? and v = 0.3, determine the value of stress o,

Solution

In a plane strain problem, strain €, =

(-vo, - vo, + c,)
E

=0

Therefore, 5, = vo, + v 6, = 0.3 x 150 + 0.3 x (~ 100) = 15 N/mm’

Note that the value of E is not required, but given only to mislead students.

3.15 SUMMARY

Based on the relative dimensions, a component may be idealised by
1-D, 2-D or 3-D elements. At every point in a component, stress and
strain are expressed by a normal component and two shear
components on each of the six faces of a small cube around that point.
Out of 18 such vector components, from equilibrium considerations,
only three normal components and three shear components in any
orthogonal coordinate system, are independent and are represented by
a column matrix of order (n x 1). Combined effect of these various
components will be different on planes, inclined to the coordinate
axes. Principal stresses are the maximum values on any such plane.
These values are significant while designing 3 component and can be
also obtained by graphical method, called Mohr’s circle.

The flexibility of movement of any point in the component is
identified by degrees of freedom (DOF). With reference to the
orthogonal coordinate system, the every point in a component can
have 1-6 DOFs, covering 3 translations along the three axes and
3 rotations about the three axes.
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Components, which can be modeled by a combination of
1-D elements, are also called discrete structures. These include truss
element for axial loads (I DOF/node, along its axis), beam element
for bending loads (2 DOFs/node in each of its two planes of bending,
deflection and slope normal to axis) and torsion element for torque
load (I DOF/node, rotation about its axis). These four modes of
deformation are mutually independent and are called uncoupled DOF.
A generalised beam element has 6 DOFs/node and is subjected to all
these loads.

Different elements of a discrete structure are joined at their end points
only and hence only modulus of elasticity of the material is relevant
(Poisson’s ratio is not relevant in their analysis). Normal stress and
normal strain are related by modulus of elasticity (E) while shear
stress and shear strain are related by modulus of rigidity (G).
Components, which are modeled by 2-D or 3-D elements, are called
continuum structures. These elements have surface contact along the
common boundary and hence Poisson’s raiio is also relevant.
Isotropic and homogeneous material is commonly used, within its
linear elastic range. Stress strain relationship is a matrix of order 3 x 3
for 2-D elements and 6 x 6 for 3-D elements. 2-D elements may be
used in plane stress condition or plane strain condition, depending on
the particular component.

2-D and 3-D elements may be used with translational DOFs only (2-D
plane stress, 2-D plane strain or 3-D thick solid) or along with
rotational degrees of freedom (2-D plate bending, 2-D thin shell and
3-D thick shell) depending on the nature of applied loads.
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CHAPTER 4

DISCRETE (1-D)
ELEMENTS

A discrete structure is assembled from a number of -easily identifiable 1-D
elements like spars, beams. Nodes are chosen at the junctions of two or more
discrete members, at junctions of two different materials, at points of change of
cross section or at points of load application. In the 1-D element, axial
dimension is very large compared to the cross section and load is assumed to act
uniformly over the entire cross-section. So, the displacement is taken as a
function of x, along the axis of the member. Stress and strain are also uniform
over the entire cross section. The solution obtained in most of these cases, is
exact.

4.1 DEGREES OF FREEDOM OF DIFFERENT ELEMENTS

Based on the relative dimensions of the element, the individual elements can be
broadly classified as 1-D, 2-D and 3-D elements. The load-displacement
relationships of these elements depend on the nature of loads (axial/in-plane
loads, torsion or bending loads) and are calculated using variational principle.
Some such elements and their degrees of freedom at each node in element
(or local) coordinate system are given below.

Axial/In-plane loads Bending (Normal loads and/or moments)
1-D  Spar or Truss (1 DOF/node) Beam (2 DOF/node for bending in 1-plane)
2-D Plane stress/Plane strain/ Plate bending (3 DOF/node)

Axisymmetric (2 DOF/node) Thin shell (6 DOF/node)
3-D  Solid (3 DOF/node) Thick shell (6 DOF/node)
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4.2 CALCULATION OF STIFFNESS MATRIX BY DIRECT METHOD

1-D elements are broadly classified based on the load applied on them as spar or
truss element for axial load, torsion element for torque load and beam element
for bending in one or two planes through neutral axis/plane. Stiffness matrix of
each of these elements can be derived based on the well known relations in
strength of materials.

(a) Truss element

Z

4 E,A,L 2 Pu
1

c=P/A=Ee=Eu/L
or P=QAEL)u =Ku = L. (4.1)
is the familiar relation for axial load carrying element fixed at one end
and load applied at the free end with displacement ‘u’ at the free

end 2.
In general, if loads P, and P, are applied at the two ends of an element

D >
Pou 1 E,A, L 2 Py, u,

resulting in displacements u; and u, at these two ends, stress is
proportional to (u; —u;)

Then, -P, =P, = (%) (w,-v) (4.2)
In matrix notation, = [K
P, u,
AE 1 -1
h Ki=[—1 . | e 4.3
where [] (L)[—l I:l (4.3)

(b) Torsion element

4 —
4 2 T,0

I
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. T GO
From strength of materials, 75T

or T:(ﬂ)ezKG
L

is the familiar relation for torsion load carrying element fixed at one end
and torque applied at the free end with rotation ‘0’ at the free end 2.

For a general element on which torque loads T, and T, are applied at
the two ends and corresponding rotations are 0, and 0,, torque is
proportional to (8, — 6,).

Then, -T,=T,=(GJ/L) (86,-0;)
| ) ra— »X
T,,Gﬂ/ \le, 0,
. . Tl 91
In matrix notation, = [K]
T, 0,
GJ 1 -1
here, Ki=l—1Il . .| e 4.4
where K] (L )[_] J (4.4)

(¢) Beam element

From simple beam theory, forces and moments required at the two ends
of a beam in X-Y plane to give,

(D) vi=landv,=0,=06,=0 and

(i) 6, =1 and v; = v, = 6, = 0 are given in the figures with upward
forces, counterclockwise moments, and corresponding
displacements and rotations as +ve.
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Similar values can be obtained for the conditions
(i) vo»=1and v;=06,=0,=0 and
(ll) 92= 1 and Vi =V2=9|=0

Arranging these values in matrix form,

P, Vi
M, _ 8,
P, - [K] v,
M, 9,

12 6L -12 6L
6L 412 -6L 212
where, [K]z%l
}|-12 —-6L 12 —6L
6L 2% -—6L 417

4.3 CALCULATION OF STIFFNESS MATRIX BY
VARIATIONAL PRINCIPLE

Stiffness matrix of each element is calculated, using the principle of minimum
potential energy which states that “Every component, subjected to some
external loads, reaches a stable equilibrium condition when its potential energy
is minimum”. So, the problem lies in identifying the set of displacements at
various points in the component which ensures that the potential energy of the
component is minimum.

This is analogous to the problem in variational calculus of finding a
stationary value y(x) such that the functional (function of functions)

X2
dy)
I= Fx,y,—ldx . 4.6
lj Ex Yo (4.6)
is rendered stationary. Integral I is stationary when its first variation vanishes
i.e.,, sfr=0 . (4.7)

There are many different approaches such as Euler-Lagrange method, for
solving such problems. Interested readers are advised to refer to the relevant
books in mathematics for a more detailed presentation of the variational
calculus.
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In Rayleigh-Ritz method, which is used in FEM, a mathematical expression
in the form of a power series in x is assumed for the unknown function y(x).

Then, eq. (4.7) becomes
ol

—=0 fori=0,1,...n (4.8)
0a,

where a, a,,...a, are the coefficients of the assumed power series.

Finite element method is based on the variational principle where the
functional I is the potential energy of the system with nodal displacements as

the independent variables y(x) and strains as the functions gy of the
X

independent variables. This method leads to an approximate solution. Potential
energy is an extensive property i.e. the energy of the entire component is the
sum of the energy of its individual sub regions (or elements). Hence eq.(4.7) can
be written as

Sl=28l,=0

Since the number and size of the elements are arbitrary, this relation is
satisfied only when
Sl.=0 (4.9)

In using this method, y(x) must be kinematically admissible i.e., y(x) must
be selected so that it satisfies the displacement boundary conditions prescribed
for the problem. Choice of a function for the entire component satisfying this
condition becomes difficult for complex problems. Finite element method
overcomes this difficulty by relating the primary unknown function to the
individual element, rather than to the total problem. Hence, geometry of the
overall component and the system boundary conditions are of no concern when
choosing the function.

For the individual element,

81, =W, ~3U =0, P}~ [Be} fo}av ... (4.10)

fou (2.}~ [K.Jfu.}) -0

where, [K.] is the stiffness matrix of the element

Since {Bue} represents the arbitrary nodal values of displacements, they can
not be identically zero in a loaded component.

{Pe} —[Ke] {ue} =0 or  {P}=[Kc] {ue}  wn (4.11)
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In the displacement method, calculation of stiffness matrix for an element
starts with an assumed displacement function over the element in each degree of
freedom, usually in the form of a polynomial. By substituting nodal coordinate
values in these polynomials, the unknown constants in the polynomial can be
evaluated in terms of nodal displacements. This condition necessitates choosing
displacement polynomial with as many coefficients as the number of nodal
DOF for that element. This procedure is explained in more detail in the
remaining sections of this chapter.

Displacement function for the element

The function shall be continuous over the entire element with no singularities
and easily differentiable to obtain strains for calculation of potential energy. The
polynomial should be symmetric in terms of the global coordinate axes, to
ensure geometric isotropy.

Strains in the element are obtained as derivatives of the displacement
polynomial, and are thus expressed in terms of the nodal displacements.
Stresses are expressed in terms of strains, using the appropriate stress-strain
relationship, given earlier. By equating work done by the external forces to the
change in internal strain energy of the element and applying variational
principle, load-displacement relationships of the element in terms of stiffness
coefficients are obtained. They represent a system of simultaneous equations in
terms of nodal loads and nodal displacements.

By using suitable transformation matrix, this stiffness matrix derived in local
coordinate system of the element, is transformed to a global coordinate system
which is common to all the elements. The stiffness matrices of all elements are
then added together such that the stiffness coefficient at a common node is the
sum of the stiffness coefficients at that node of all the elements joining at that
node. This assembled stiffness matrix is square, symmetric, singular and
positive definite. This method is described in detailed here for a truss element.

A truss element is subjected to axial load only and therefore has one degree
of freedom (axial displacement) per node. Variation of axial displacement u(x)
between the two end nodes is represented by a linear relationship in the form of
a polynomial with two constants.

Let u(x)=a, +a,x=[ x}{ }:{f(x)}T @ (4.42)

a,
a,
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Choosing node I as the origin of local coordinate system for this element
with X-axis along the axis of the element and substituting the values of x for the
two end points of the truss element, (x = 0 at node i and x = L at node j), nodal
displacement vector {u.} or [u, u, 1" can be written as

u; _1 0 al
u;{ |1 L]la,
or {u.} =[G] {a} and {a}=[G]"' {u} = . (4.13)

Solving for the coefficients {a} from eq. (4.13) and substituting in eq.(4.12),
u(x) = {f(x)"} [G]”" {u.}

o 1

=[1_-E ﬂ{ue}:[N]T 7% (4.14)

Strain,  fe}= j_:: Ee 6] =Bl e (4.15)

where, [Bl={f' G []' =0 1] H E}[_]/L ] it18)
L L

and {8e} = [B] {Suc};  {3e}" = {Bu}" [B]'
Stress,  {o} =[D] {e} =[D] [B] {u.}.

Here [D] = E, since only one axial stress component is relevant for a 1-D
truss element

From eq. (4.10),

{Bu. " {P.}- ffoe. )" {o}dv=0

A\

{ou )" {p.}- [fou. )" [B' [DI[BJ{u,}av=0

v

{Bu.}"| {P.}- [{B}" [D][BlaV {u.} | =0
Bu} (P}-[K, J{u.})=0
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Since {du.} cannot be zero,

{Pe} = [K] {uc} weee(4.17)
where, [k.]= [I8]" [D][B]av= [[lIBI" E[B]dx dy dz

= AE [[B[" [B]dx

since, [B] is not a function of y or z and de dz=A

S el 1 -1

=AE_[ L [—1 l} dx=£{ ] .(4.18)
JlilL L L|-1 1

L

4.4 TRANSFORMATION MATRIX

Stiffness matrix and load vector of any element are initially derived in the local
coordinate system, with its x-axis along the element, and can vary from one
element to another. A global coordinate system is common to all the elements.
If different elements have different local coordinate systems, stiffness
coefficients relating nodal load vector and nodal displacement vector can not be
combined together unless directions of load and displacements of different
elements joining at a common node coincide i.e., sum of two vectors is equal to
their algebraic sum only when the vectors are collinear. If the local coordinate
system of an element is inclined to the global coordinate system at an angle 0,
then transformation of load vector, displacement vector and the stiffness matrix
are to be carried out before they are assembled with other elements.

For a truss element, if P;, P;, u; and u; represent axial load and displacement
values in the local or element coordinate system at nodes i and j and {K.] is the
2 x 2 stiffness matrix of the element and (P,’);, (P,’);, u’, vi’, (PY");, (Py));, &)’
and v;” are the components of axial load and displacement along global x and y
axes at nodes i and j then [K’], stiffness matrix of the element in the global or
structure coordinate system, is derived below.

P;=(P’,)icos 8 + (P’y); sin O u= u’jcos0+v’;sinb

P, = (P’,);cos 6 + (P’)); sin O ;= u’jcos B+ v’ sinb
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These relations can be expressed in matrix form as

(p,)
S AN ?’,i

or {P.}=][T.] {P’.} and similarly, {u.} =[T.] {v’e} = ... (4.19)

These can also be expressed as
P =[Td" (P} and {u}=[T.1" {u}

{P.} = [K.] {u.} in local coordinate system can now be written in global
coordinate system as

mle, =k e, |
or  {p}=[TTIK I ) =K. Jfu)

we get
cos’0 cos0sind ~ cos?0 — cos0sind
. .2 . .2
' _ 6 —
[Ke ] =é]:3 cosO szme sin 9. cos 2sme sin .9 ..... (4.20)
L —cos“0 —cosOsind cos 0 cos 0 sin0
—cosOsin®  —sin0 cos 0 sind sin’0

By substituting / = ~—2—-12 (x W 7 %) ‘) =cosBand m= (yz % i ) sin@
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where, Lz\/&z _xl)z +(¥, Yy, )2
This can also be written in the form
? m -’ —-m
[ '] AE|im m? —/m -m?
K, |=—
L|-? -lIm P m

2

—/m -m Im m?

Transformation of truss element stiffness matrix in 3-D space

For a truss element arbitrarily oriented in 3-D space, a similar transformation
matrix can also be derived and the stiffness matrix in 3-D space can be written
using

where, L=4/(x, —Xl)z +(¥, _Y1)2 + (Zz - 21)2

in the form
P m m - - -
Im m* mn -m -m? —mn
[K '}zﬂi_ In mn ' -h -mn -n®f (4.23)
¢ L|- -lm -l P Im In
-m -m? -mn m m? mn
|- -mn -0 In mn n® |

4.5 ASSEMBLING ELEMENT STIFFNESS MATRICES

In a truss having three elements connecting nodes 1-2, 2-3 and 3-1, let the
element stiffness matrices (each of 4 x 4) after transformation to global
- coordinate system be:

Y
4

3
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For element-1 joining nodes 1 and 2, the local coordinate system coincides
with global coordinate system (/ = 1, m = 0) and, so, displacement components
v, and v, are zero.

(P,

o~

( ;1 (kll)l 0 (k13)1 0f|u,
P 0 0 0 0l|v
Therefore, Yalz !
(Px )2 (k31 )1 0 (k33 )1 0ffu,
(), o 0 0 olly,

For element-2 joining nodes 2 and 3, the member is inclined to the global
axes.

Therefore,

(Px)z (kn)z (kxz)z (kn)z (km)z u,
(Py)z _ (kzl)z (kzz)z (k23)2 (k24)2 Va
(P)y [ [ (ks)), Ekaz)z (k3s), (ki) (]us

(Py)3 (k41)2 k42)2 (k43)2 (k44)2 Vi

For element-3 joining nodes 1 and 3, the local coordinate system is
perpendicular to the global coordinate system (/ =0, m = 1) and so displacement
components u; and u, are zero.

PXY o o o 0 7y
(Py ), _ 0 (k 7 )3 0 (k 7 )3 Vi
®)x[ 10 o o o ||u
(Py )3 0 (k 4 )3 0 (k 44 )3 A&

Then, the process of assembling element stiffness matrices involves
combining the nodal stiffness values of all the elements joining at every
common node so that the order of the assembled stiffness matrix equals the total
number of degrees of freedom of the structure.

((PX)I —(kn)1 0 (k13)1 Y 0 0 | L
(P y )| 0 (kzz )3 0 0 Y (k24 )3 v

< (), _ (k31)1 0 (k33)1 +(kn)z (k12)2 (ky3), (ku)z %2
BLIT 0 0 G Gk Gk Gk |
(Px )3 0 0 (k31 )2 (ksz )2 (kss )2 (k34 )2 u,
\(Py )3 J L O (k24)3 (k4|)2 (k42)2 (k43)2 (k44 )2 +(k44)3~ LV3)

or {P}=I[K] {u}



FINITE ELEMENT ANALYSIS

which represents a set of n simultaneous equations, where n is the total number
of degrees of freedom in the structure. In the case of mechanical structures, the
assembled stiffness matrix is symmetric, singular and positive definite.

4.6 BOUNDARY CONDITIONS

The singularity of the matrix indicates possibility of rigid body movement of
the structure in different directions and hence the possibility of many solutions
for the unknown nodal displacements. Boundary conditions, in terms of fixed
degrees of freedom or known values of displacements at some points of the
structure, are therefore applied. In some structures, where no part of the
structure is fixed, it is possible to apply different boundary conditions. Each
solution gives displacements at other points in the structure, with reference to
the chosen fixed points.

(a) Elimination method

The columns and rows of the stiffness matrix, displacement vector and load
vector are rearranged so that the set of equations can be written as

{H}{Kn Kanl} ..... (4.24)
P, Ky Ky l4:

where q, is the set of unknown displacements and q; is the set of specified
displacements.

From static equilibrium considerations, terms in the load vector {P,}

corresponding to the fixed or specified values of degrees of freedom {q,}
represent reactions at those degrees of freedom to balance the applied loads.

Taking all known values to the left side, first set of these equations can be
rewritten as

{Pi} - [Kpl{q:} =[Ku}{a:} e (4.25)

The reduced stiffness matrix of the structure [ K;;] is usually non-singular
and can be inverted so that unknown displacements {q,} and the reactions
{R} can be evaluated from

{g} =[Kal" (P }-[Kpl @) e (4.26)
{R} = {Pz } = [Kzl Kzz]{zl } = [K21 ] {‘h } + [Kzzl{‘h} ---- (4.27)

2
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In case of specified zero displacements {q,}, eq.(4.24) reduces to
{Pi}=[Kul{qi} or {P}=[KJ{u} .. (4.28)

This procedure is equivalent to deleting rows and columns corresponding to
the fixed degrees of freedom from the assembled stiffness matrix,
displacement vector and load vector. The reduced stiffness matrix [K;] is a
non-singular matrix.

The unknown displacements are now obtained by using a suitable matrix
inversion algorithm like Gauss elimination method or Gauss-Jordan method
or Cholesky method. Eq. (4.26) and (4.27) thus simplify to

{ql} = [I(ll]"I {Pl} or {ur } =[Kr]v] {Pr} ..... (4.29)
and {R}={P}=[Kyl{qst . (4.30)

In the displacement formulation, displacements are calculated in the global
coordinate system for the entire structure while the stresses are calculated in
each element, in the local or element coordinate system, from the nodal
displacements of that element using

{c.} =[D} {e} =[D][B.] {uc}

In a structure with ‘m’ fixed degrees of freedom, assembling the complete
stiffness matrix and then deleting some rows and columns will involve more
computer memory as well as more time. It is therefore a common practice to
ignore the rows-and columns of element stiffness matrices corresponding to
the fixed degrees of freedom during the assembly process, thus storing [K,]
of order (n—m) x (n—m) only. In that case, calculation of reaction values
corresponding to the fixed degrees of freedom requires storing appropriate
terms [K,,] in a different matrix.

(b)Penalty approach

In this technique, a quantity C is added to the diagonal term in the row
corresponding to the specified displacement (n™ DOF) while (C x q,) is
added to the force term of the corresponding equation, where C is a large
stiffness value, usually max (k;) x 10*. The assembled stiffness matrix is
then inverted by any one of the conventional approaches. This method gives
a very small value of the order of 10™* for the displacement q, corresponding
to the fixed degree of freedom. This displacement value can be reduced
further by using a smaller value of C. This may give rise to numerical errors
during the inversion of the stiffness matrix. Reaction is then obtained from
R, = C x q,. This approach was used in the first general purpose software
(SAP-1V) developed by Prof. Wilson and his associates at the University of
Southern California. This method is equivalent to adding a spring of very
large stiffness value in the direction of the fixed degree of freedom. Member
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force calculated for the spring element indicates reaction corresponding to
the fixed degree of freedom. The size of the matrix to be inverted is large in
this approach of order n x n, without deletion of rows and columns
corresponding to the fixed degrees of freedom and is, therefore, not usually
adopted now.

(c) Multi-point constraints

There are many situations in trusses where the end supports are on inclined
plane and do not coincide with the coordinate system used to describe the
truss. In such cases, the displacement and force components along the
coordinate axes have to be resolved along and perpendicular to the inclined
plane and necessary conditions specified on them.

Ur=Ucos0+Vsinb
Pr=Pycos8+Pysind
Vy=-UsinB8+Vcos8=0
or V=tan 6 U

Some other types of multi-point constraints are those linking
displacement of one node with that of another. A few of them are shown
below, with node 1 as the fixed point and node 2 as the point of load
application. If ‘6’ is the gap, U; = U, — 8 can be substituted in the load-
displacement relations to reduce the number of unknowns by 1 and
corresponding columns of stiffness matrix are modified. Accordingly, order
of the stiffness matrix also reduces by 1.

o I [ = I | -

[_____
—phe— e ol
23__________ ! o 23_____ 1
Case- 1 Case -2 Case-3

4.7 BEAM ELEMENT STIFFNESS MATRIX BY VARIATIONAL APPROACH

Let us consider bending of a typical beam of uniform cross section in a plane
perpendicular to its axis, due to load and moment applied at its two ends. From
strength of materials, it is well known that its deformed shape is a curve and can
not be represented by a linear function. Considering 2™ order polynomial
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having three coefficients, with deflection alone as the nodal degree of freedom
fails to express the three coefficients in terms of the two nodal deflections. Also,
natural boundary conditions at the ends of the beam may include not only
deflection but also the slope. Hence, a cubic polynomial is generally used and
its four unknown coefficients are represented in terms of deflection and slope
(first derivative of deflection) at each end.

If X-Y is the plane of bending, Py and M; are the loads applied while v and
0, are the deflection and slope in the plane of bending,

Let v(X)=a +ax+ax’+ax =[1 x x xX]{a} .= (4.37)
dv

2 odx

or {g } S A Y S (4.38)

4

and © [0 1 2x 3x2]{a}

Choosing node i as the origin of local coordinate system for this element
with X-axis along the axis of the element and substituting x = 0 at node i and
X =,L at node j, we get the nodal displacement vector,

vv ] [1 0 0 0 ]fa
@) o1t o o |la,

i =[Gl {a}  eoem :
B A i R e
©,),] [0 1 2L 312]|a,

Solving for the coefficients {a} and substituting in eq. (4.38)

u={fx)}" {a} = (F)}T [G] {ue} 0 e (4.40)
From theory of bending,
o e S _y_do_ fdv)
strain, €= £ R- y. i y(dxz J =Bl{u.} 0 . (4.41)

2
where,:—Z-=[o 0 2 6xjfaj=fo 0 2 e&x][G]" {u.}
X .
1 0 0 0

0 1 0 0
and so, [B]=y[0 0 2 6x] 312 —2/L 312 —1/L

2/ vt -2/ 1/
=(y/L)[6(2x—L) 2L(3x-2L) —6(2x—L) 2LBx-L)] e (4.42)



100 FINITE ELEMENT ANALYSIS

Then, {PJ=[KJful (4.43)

where,

[k.]= [[B]" E[B]dv= [[fIB]" E[B]dx dy dz

6(2x-L)
K ]= (fF;J Aj y? (dy dz) LJ' 2_L6((3;x__25)) [6(2x -L) 2L(3x-2L) —6(2x—L) 2L(3x ~L)]dx
2L(3x L)

12 6L -12 6L
EI | 6L 417 -6L 212
L} |-12 —-6L 12 —6L
6L 212 -6L 412

4.8 GENERAL BEAM ELEMENT

A beam in a space frame is generally subjected to axial load, torsion load and
bending loads in two planes, due to the combined effect of loads acting at
different locations of the space frame and in different directions, as shown in the
figure.

Y
A

v

>Y
A
w
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If a single beam AB in a space frame with concentrated loads P, P,, P; and
P, acting on some members is considered, load P, contributes to axial load
giving rise to displacement u; load P, contributes to bending in X-Y plane
giving rise to deflection V and slope 6z, load P; contributes to bending in
X-Z plane giving rise to deflection w and slope 6, and load P, contributes to
torsion in AB giving rise to 0,. Therefore, general stiffness matrix for beam AB
in its local coordinate system should include response of the beam for these four
types of deformations, which are mutually independent. Such DOFs are called
uncoupled degrees of freedom i.e. torsion of a beam does not result in axial
elongation or compression of the beam; deflection of the beam in X-Y plane
does not cause any displacement of the beam in X-Z plane etc. Hence, stiffness
contribution of a beam in these 6 DOFs can be placed directly, without any
modifications, in the appropriate positions of the general stiffness matrix of
order 12 (2 nodes x 6 DOF/node) .

v,, DOF 2 ’
' 6,,, DOF 11 x> DOF8
9,,, DOF S
/b u,,DOFl 0,5, DOF 10
{— u, DOF7
N, DOF 4 ‘7{
w,, DOF3 0., DOF 6 w. DOF9 = g 'DOF 12

Stiffness matrix with only axial load response (relating load P, and
displacement u) is

P, ) [EA 00000 -EA 00 0 0 0}y,
P, 0 00000 0 000 O0 O]]v
P, 0 00000 O 0000 Of]w,
M, 0 00000 0O 00O O O]{0,
M,, 0 00000 0O 00O O Of]6,
M,| 1] 0 00000 O 00O O O0}]d,
JUA L2 Y n(4.45)
P,| LI-EA 0 0 0 00 EA 00 0 0 0f]u,
P,, 0 00000 O 00O0OOf]v,
P, 0 00000 0 0O0O0O0O0f]|w,
M,, 0 00000 0 0O0O0O 0|0,
M,, 0 00000 O 00O O 0](b,
M,, 0 00000 0O O0O0O0OO](0,

101
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Stiffness matrix with only torsion load response (relating load M, and

displacement 6y) is

P, (000 0 00000 0 0 0]y,
P, 000 0 00000 0 0 0|]|v,
P, 000 0 00000 0 00]|w,
M, 000 GI 00000 -GJ 006,
M,, 000 0 00000 0 00|]|6,
M,| 1/0 00 0 00000 0 0 0|6,
Te. ["Tlooo o 00000 o oof)u [ #*®
P, 000 0 00000 0 00|y,
P, 000 0 00000 0 0 0||w,
M, |000-GIoo0o000O0 GI 0oflo,
M, (000 0 00000 0 00|,
M,] Jooo 0o 00000 0 o0 0o,

Stiffness matrix for bending in X-Y plane (relating P, and M, with

displacements v and 9,) is

1

P, o o 000 © 0 0 000 0 u,
P, 0 I12EL/L* 0 0 0 6EL,/L O —I2EL/I> 0 0 0 6EL/L ||v,
P, © o0 000 0 0 0 000 0 w,
M,] lo o o000 0 0 0 000 0 0,
M, [0 o o000 o 0o 0o o000 0 0,
M, | .1]/0 6EL/L 0 0 0 4B, 0 -6EL/L 0 0 0 2B, |6,
P, { Lo 0 000 0 0 0 000 0 u, |
P, 0 -12EL/I2 0 0 0 —6EL/L 0 I2EL/L* 0 0 0 —6EL/L||v,
P, o o0 000 0 06 0 000 0 W,
M, [0 o o000 o o o 000 o |lo,
Myl [0 o o000 o 0o o o000 o |,
M, |0 6EL/L 00 0 2B, 0 -6EL/L 0 0 0 4EI |0,

..... (4.47)

Stiffness matrix for bending in X-Z plane (relating P, and M, with
displacements w and 6,) is
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r

P, 0 0 0 0 0 000 0 0 0 o} u,
P, 00 0 0 0 000 0 0 0 0l |v,
P, 0 0 128L,/L 0 6EL,/L 0 0 O —12EI,/L’ O 6EL /L O]|w,
M, 00 0 0 0 000 0 0 0 0| {9,
M, 00 G6EIL/L O 4B, 0 0 0 -6EL,/L 0 2EI, 0f]e,
My|_1/0 0 0 0 0 000 0 0 0 0f]6.|
P, | Li0o 0 0 0 0 000 0 0 0 0l u,
P, 00 0 0 0 000 0 0 0 0l |v,
P, 0 0 —12EI,/I’ 0 —-6EL/L 0 0 0 12EI, /L’ 0 -6EL /L 0f|w,
M,, 00 0 0 0 000 0 0 0 0} |6,,
M,, 0 0 6EL/L 0 -12EL/L* 0 0 0 -6EL,/L 0 4El, 0f|0,
M,,] [0 0 0 0 0 000 0 0 0 0} {6,
-...(4.48)

The combined stiffness matrix of a general beam element thus includes
stiffness coefficients linking loads along the three coordinate axes and moments
about the three axes at each end of the beam to the corresponding displacements
and rotations, and is obtained by a simple addition of the coefficients of the
above four matrices.

P, [ EA [ 0 0 0 0 ~EA 0 0 0 0 oy
P, 0 12EL,A? 0 0 0 6ELLAI. 0 -12ELA7? 0 0 0 6EI/L | {v,
P, 0 0 12EL,A* 0 6EL /L 0 0 0 -12EL/Y 0 GBI /L 0 w,
M, 0 0 0 GJ 0 0 0 0 0 GJ 0 0 0,
M, 0 0 6El, /L 0 4EL, 0 0 0 -6EL/AL 0 2EI, 0 0,
M,{ 1] © 6EL/L 0 0 0 4El, 0  -6E,L 0 0 0 2EL, | |6,
P, | L|-EA 0 0 0 0 0 EA 0 0 0 0 0 u;
P, 0 -12ELA7 0 0 0 -6EI/L. 0  I12EI /2 0 0 0 -6EL/L| |v,
P, 0 0 ~12BL,/A* 0 —6EI /L 0 0 0 12ELA° 0 -G6EI/L 0 w,
M,, 0 0 0 ~GI 0 0 0 0 0 GJ 0 0 0,
M, o 0 6EL/L 0 281, 0 0 0 ~GEL/L 0  4EI 0 8,
M,, L 0 6EL/L 0 0 0 12EL,Y 0  -6EL/L 0 0 0 4E1, |0,
..(4.49)

4.9 PIPE ELEMENT

A pipe element is essentially a one-dimensional element subjected to:
(i) distributed load due to self weight and weight of fluid inside,
(ii) concentrated loads in the form of pipe fittings like valves,

(iii) axial loads due to change of direction of fluid flow in pipe bends,
T-joints etc. and due to restrained thermal expansion.

It is thus similar to a generalised beam element, except that stiffness of a
beam member is a function of a geometric properties (I, L) and material
property (E), whereas stiffness of a pipe element is a function of load (internal
pressure) also. Stiffness increases due to internal fluid at high pressure (also
called pressure stiffening).
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For these reasons, this is listed as a different element, in many general
purpose software even though the analysis is completely similar to that of a
three-dimensional frame (with general beam elements).

4.10 SUMMARY

Finite Element Method (FEM) is based on minimum potential
energy of the system, as applied to a model of the component
consisting of finite number of elements connected at common
nodes. In the displacement method, which is commonly used in the
solution of mechanical problems, load-displacement relations (or
stiffness coefficients) are calculated for each element satisfying the
condition that variation of potential energy (sum of work done and
strain energy) for any virtual displacement is zero.

In 1-D elements, a polynomial expression is assumed for the
variation of displacement along its axis. Axial load carrying truss
element is identified by its axial displacement (1 DOF/node) at its
two end points (nodes) and is modeled by a linear variation of
displacement along its axis. A torsion element is similarly identified
by the rotation about its axis (1 DOF/node) at its two end points
(nodes) and is modeled by a linear variation of rotation along its
axis. Beam element is identified by deflection normal to the axis
and slope (derivative of displacement) at its two end points
(2 DOF/node) and is modeled by a cubic polynomial for the
deflection, in each of its two planes of bending. Stiffness matrix of
a general beam element with 6 DOF per node is obtained by a
combination of the above, treating them as uncoupled responses.

Stiffness coefficients relate nodal displacement components with
nodal load components, both being vectors. These vector
components of different elements can be combined only when they
are all oriented in the same directions. Hence, element stiffness
matrix obtained in its local coordinate system, defined w.r.t. its
axis, is transformed into a common or global coordinate system,
using a transformation matrix (function of orientation of the
member w.r.t. global coordinate system) if different elements are
inclined to each other.

The assembled stiffness matrix represents unconstrained system
(with rigid body modes included) and hence can not be inverted (or
has infinite solutions). Specified displacement boundary conditions
are applied to avoid rigid body modes and thus obtain a unique
solution for the given problem.
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e  Onc’of the standard techniques for the solution of simultaneous
equations will give primary unknowns (nodal displacements) in
global coordinate system, since the nodes are common to many
elements. Using stress-displacement relationship of each element,
stresses in local coordinate system are obtained from the nodal
displacements.

OBJECTIVE QUESTIONS

1. Transformation matrix __ for all elements
(a) is always same (b) is different
(c) depends on element axes (d) depends on material
2. Transformation matrix relates _ in element coordinate system with
structural coordinate system
(a) displacements (b) stresses
(c) stiffness coefficients (d) material properties

3. Primary variable in FEM structural analysis is
(a) displacement (b) force (c) stress (d) strain
4. A singular stiffness matrix means
(a) unstable structure
(b) one or more DOF are unrestrained
(c) wrong connectivity of elements
(d) wrong solution expected
5. One possible load in structural analysis is the specified
(a) nodal temperature (b) stress in an element
(¢) heat flow (d) strain in an element
6. Assembled stiffness matrix after applying boundary conditions is NOT
(a) square (b) symmetric  (c) banded (d) singular

7. Determinant of assembled stiffness matrix before applying boundary
conditions is

(a) <0 (b) =0 (c) >0 (d) depends on the problem

8. Determinant of assembled stiffness matrix after applying boundary
conditions is

(a) <0 (b) =0 (c) >0 (d) depends on the problem
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9. A pipe with internal pressure behaves a hollow pipe of same section

10.

.

12.

13.

14.

15.

16.

17.

(a) with exactly same deflection as

(b) with lesser bending deflection than

(c) with more bending deflection than

(d) with a different type of deflection

Any point in a structure can have maximum of __ DOF
(@ 2 (b) 3 (c) 4 d) 6
A 1-D structural element is a

(a) trusselement (b) beam element (c) pipe element (d) all of them

Meshing for 1-D elements is

(a) essential (b) optional

(c) reduces input data (d) depends on other data

A structure with loads at joints only is usually modeled by
(a) truss elements (b) beam elements

(c) pipe elements (d) any one of them

A frame with nodal loads only is modeled as an assembly of truss elements,
if resistance to rotational degree of freedom of joints is

(a) very small (b) very large
(c) not related (d) depends on other data

A frame with nodal loads only is modeled as an assembly of beam elements,
if resistance to rotational degree of freedom of joints is

(a) very small (b) very large
(c) not related (d) depends on other data

A frame with distributed loads along members is modeled by an assembly
of elements

(a) truss (b) beam (c) pipe (d) any one of them
A frame with welded joints can be approximated by truss elements
(a) always (b) sometimes

(c) never (d) depends on assumed flexibility of rotation



18.

19.

20.

21.

22.

23.

24,

25.

26.

27.
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A structure assembled by multiple bolts/rivets at each joint is modeled by
truss elements

(a) always (b) sometimes

(c) never (d) depends on assumed flexibility of rotation
Stress across any 1-D element is assumed to be constant

(a) true for beam elements (b) true for truss elements

(c) true for pipe element  (d) true for all 1-D elements

A bar is madeled as 1-D element only if its

(a) area of cross section is small

(b) moment of inertia is small

(c) length is very large compared to cross section dimensions

(d) all the above

A truss element in space has a stiffness matrix of order

(a) 2x2 (b) 4 x4 (c) 6x6 (d 1x1
A spring element is similar to element
(a) truss (b) beam (c) pipe (d) any one of them

A plane truss element has a stiffness matrix of order
(a) 2x2 (b) 4x4 (c) 6x6 d) tx1

A pipe element differs from a beam element by inclusion of

(a) cold cut (b) internal pressure stiffening

(c) anchors (d) sliding supports

Stiffness matrix of a torsion element is of the same order as

(a) truss element (b) beam element

(c) pipe element (d) none of them

A spring of - stiffness at the supports is used for calculating support
reactions in penalty approach

(a) very small (b) same as other connected members
(c) very large (d) sum of connected members
Penalty approach leadsto __ displacements at supports

(a) zero (b) very small

(c) significant (d) depends on stiffness of connected members

107
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28. Penalty approach takes time

(a) more (b) less

(¢) depends on other data (d) no change

29. Accuracy of solution with increase of number of beam elements
(a) improves (b) reduces
(c) no change (d) depends on other data

SOLVED PROBLEMS

Example 4.1

Determine the nodal displacements and element stresses by finite element
formulation for the following figure. Use P=300 k N; A=0.5 m%, A=l m%
E=200 GPa

S
[~
300 kN N A, =05m’

.

------ A, > A, S A2=1m2
X E=200GPa
s
[~

}t——lm—td——lm—’(—-———- 2m P

Solution

The structure is modeled with 3 axial loaded elements connected by nodes 1-2,
2-3 and 3-4 as shown below

1 2 3 4

Stiffness matrices of elements 1, 2 and 3 are given by

k, -k k, -k k, -k
K l=| Wik, =l M K, ]=| T2 2 4.31
S Tl 1S B Bl 1O R g YO
where, k;=A,E/L; =0.5 x 200 x 10°/1.0=1.0 x 10"
and k;=A,E"y=1x 200 x 10°/2.0=1.0 x 10"
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Assembled stiffness matrix is obtained by adding corresponding terms as,

k, -k 0 0 1 -1 0 0
=[] ki kitky k0| =l 2 10
0 -k k+k, —k, 0 -1 2 -l

0 0 ~k, Kk, 0 0 -1 |

..... (4.32)

Corresponding assembled nodal load vector and nodal displacement vector
are

0 u,
300,000 u,
P: ;q: ..... (4-33)
0 u,
R u,
Thus,
(K] {q} = {P}
or
1 -1 0 0]y 0
nl- -1 0}ju, 300,000
1.0x10 =9 e (4.34)
-1 2 -1fju,s 0
0 0 -1 1]|u, R

After applying boundary condition, u,=0, the fourth row and fourth column
are removed resulting in

I -1 0]y 0
1.0x10"| -1 2 -1|Ju,{=4300,000, ... (4.35)
0 -1 2|y, 0

Solving the above set of equations gives,
u=6x10%m; uL=6x10%m; u;=3x10°m ... (4.36)
Stress in element-1,

o1 =E[B]{q}=E[/L /L] {“‘} = 0 N/m”

2



110

FINITE ELEMENT ANALYSIS

Stress in element-2,

0;=E[By] {qx}=E[-1/L; 1/L4] {32} =—6x 10° N/m*
3

Stress in element-3,

U

o;=E[Bs] {q; }=E[-1/L, 1/L,] { } =-3 x 10° N/m’

U,

Example 4.2

An axial load P=200x10°> N is applied on a bar as shown. Using the penalty
approach for handling boundary conditions, determine nodal displacements,
stress in each material and reaction forces.

—>P 2 1 I -A,=2400 mmn’; E, =70 x 10’ N/m"

2 - A, - 600 mm2; E, - 200 x 10” N/m’

ARRRRARARNNN

ANRANANANANY

fe— 200 —dle— 300 —le— 200 —»

Solution

1 2 3 4

Considering a 3-element truss model, stiffness matrices of elements 1, 2 and 3
(connected by nodes 1, 2; 2,3 and 3, 4 respectively) are given by,

k, -k k, -k k, -k
[KI]=[_k: kj; [K3]=[_k: kj; [K2]=[_k2 kj .(4.37)
where
ki = AE, /L, = 2400 x 70 x 10°/200 = 84 x 10*
and k,= A, E, /L, =600 x 200 x 10*/300 = 40 x 10*

Assembled stiffness matrix is obtained by adding corresponding terms as,

k, -k, 0 0 84 -84 0 0
K- ki ktky <k 0| -84 84440 40 0
0 -k k+k, -k, 0 —40 40+80 —84

0 0 -k, k, 0 0 -84 84
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Corresponding assembled nodal load vector and nodal displacement vector
are

0 u,
_]200,000{ _u,
- 0 ' N u,

0 u,

For the penalty approach, C = max(k,) x 10* = 124 x 10*

Since the bar is fixed at nodes | and 4, the equations are then modified using
C as,

0 84+124x10" -84 0 0 u,
200,000 _ —84 124 —40 0 u,
0 0 —40 124 —84 u,
0 0 0 —84 84+124x10%||u,

From4™eqn. 0= 10°[-84 u; + (84 + 124 x 10*) u,]
or ug = 6.7737 x 107 us
From3“eqn 0= 10*[-40 u,+ 124 u;— 84 uy]
substituting for uy from the above,
u;=0.3226 u,
2" eqn now becomes,
200,000 = 10* [-84 u; +124 u, — 40 u3]
or —0.64u,+ 1.111u,=0.2
1 equation gives,
0=10"[(84+ 124 x 10 u; -84 u, ]
From these two equations,
u=1.2195 x 10°mm; u,=0.180034 mm
Substituting in 3" and 4" eqn.,
u;= 0.058079 mm; us=3.9341 x 10° mm
Reactions, Ry=—-Cu; = (124 x 10%).(1.2195 x 107°)=-151.22 x 10° N
R, =—Cus = (124 x 10%).(3.9341 x 10%) = —48.78 x 10° N
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Stresses in the elements,

o; =Ei,=EBiqi,
-5
—70x10° [_1_ _1_} 1.2195x10
200 200 || 0.180034
= 63.01 N/mm’
;= Eyer, = EaBoqas

_a00xi0}| =L _1_][0-180034
300 300 0.058079

= —81.3 N/mm?
03=E;e3=EBq34

-1 1 0.058079
=70x10°| — — Py

200 200 |]3.9341x10
=-20.3 N/mm?

Elimination method

—

Since the bar is fixed at nodes 1 and 4, corresponding rows and columns of the
assembled stiffness matrix are deleted, resulting in {P}z = [K]r {u}r

200,000 2| 124 —40|fu,
or =10
0 -40 124 |u,
Solving these two simultaneous equations, we get
u; = 155/861 =10.180023 mm

and u; = 50/861=0.058072 mm

Reactions can now be obtained by substituting the nodal displacements in
the deleted equations of the assembled stiffness matrix.

Ri=10*[(84+124x10) -84 0 0] [y w u; u)

=-84 x 10* u, =_84 x 10* (155/861) =151219N
Ry=10'[0 0 -84 (84+124x10% J[u; w us ugl"
= —84 x 10* u, =—_84 x 10* (50/861) = 48780 N

These reaction values are identical to hose obtained by the penalty approach
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Check : For force equilibrium of the structure,

R, + R4 = Applied load P =200 kN
This equation is satisfied with the results obtained

Note that results by penalty approach match very closely with those by
elimination approach.

Example 4.3

Consider the truss element with the coordinates 1 (10,10) and 2 (50,40). If the
displacement vector is q=[15 10 21 43]" mm, then determine (i) the vector q’
(ii) stress in the element and (iii) stiffness matrix if E=70 GPa and A=200 mm’

Solution :

(i) The nodal displacement vector in local coordinate system

m:[’ m 0 0}@}

0 0 / m

where / = (x,-x,)/L. and m=(y,-y,)/L are the direction cosines of the element

Length of the element,
L=y, =X)* + (¥, —1)> =(50-10)? + (40— 10)? =50 mm

12(50“°J=i (40-10) 3

;  m=
50 )5 50 S

15

@)[4s 35 0 ool _foos

V=0 0 a5 3s5)21] 213/
43

-1

2 iy

—1 17 90/5
=70,000| — —
50 50 |213/5

=34.44 x 10° N/mm?

(ii) Stress in the element, c=Ee= E[
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(iii) Stiffness matrix of the element,

I? Im  -1> —Im 16 12 -16 -12

[K]_@ Im m’ -im -m’] 200x70,000} 12 9 -12 -9

L|-1? —Im [? /m 50x25 |-16 =12 16 12

~Im -m?> Im m? -12 -9 12 9
Example 4.4

Determine the stiffness matrix, stresses and reactions in the truss structure
shown below, assuming points 1 and 3 are fixed. Use E =200 GPa and A =
1000 mm”’.

Solution

Stiffness matrix of any truss element is given by

1? Im -1 —Im
[K]_ﬂi— Im m?> —-/m -m?
L= -im [* Im

—Im -m? Im m?

lP“«SOkN
|

500mm Y

=

|<-——— 750 mm P
In the given problem, L, = 750 mm; L, =4/[750 + 5002} =250 /13

For element-1, l:—(—xz—_x'—)=1 and m=

1 1

Y27 % _p
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10 =10
AE| 0 0 0 0
[K]l:_
750|-1 0 1 0
00 00
£=266.67x]03
750
(x;-x,)_ 3 Ys—Yy _ 2
For element-2, /=3 "2/ - and m=23_22_-_%
L, \/]_5 L, J13
9 6 -9 -6
AE 6 4 -6 —4
KL=——"—
250x13x4/13|-9 -6 9 6
-6 -4 6 4
———AE—~=17.07><103
250x134/13

The assembled stiffness matrix is given by appropriate addition of stiffness

coefficients of the two elements,

-

[ 266.67 0 ~266.67 0 0 0
0 0 0 0 0 0
K]=10° —266.67 0 266.67—153.63 10242 —153.63 —102.42
0 0 ~102.42 6828 —10242 -68.28
0 0 ~153.63 -102.42 153.63 102.42
0 0 -102.42 -6828 10242  68.28 |

After applying boundary conditions that u, = v, = u; = v; = 0, the load-

displacement relationships reduce to  {P}r = [K]r {u}r
0 _10° —266.67+153.63 102.421 ju,
~50000] 102.42 68.28 ||v,
Solving these two simultaneous equations gives

u, =0.2813 mm and v,=-1.154 mm

115
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Displacements of element-1 in local coordinate system are given by
0

{,}_1 00 0 o 0
DI5=0 0 1 0])o02813[ 02813

~1.154
Stress in element-1, 6, =E¢, =E[-1/L 1/L]{q,}
=200 x 10° x 0.2813 / 750 = 75 N/mm?

Displacements of element-2 in local coordinate system are given by
0.28313

fa ,}:[B/\/l—i 2130 o} ~1.154 _{—0.406}

0 0 313 2413 o 0
0
) -1 1
Stress in element-2, 5, =E¢, =E| — — |{q,’}
L. L
=200x10° XLM =90.08 N/mm?
250413

Reactions at the two fixed ends are obtained from the equations of the
assembled stiffness matrix corresponding to the specified zero displacements

0
Ry 266.67 0 —-266.67 0 0 0 | 0
Riy|_of 0 0 0 0 0 0 | o283
Ry 0 0 —153.63 —10242 153.63 102.42| |—1.154
Ry 0 0 —10242 —-6828 10242 6828 0
L0
~75014.3
0
~1 74976.6
49984.4

The exact solution can be obtained from the equilibrium conditions as
follows -

The force in element-2 is such that its vertical component 1s equal to the
applied load P. Horizontal component of this force is given by

P x (750/500) = 75000 N
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R3_y +P=0 or R3-Y = 50,000 N
R3_X + RI-X =0 or R|~x = R3-x = 75,000 N

It can be seen that the approximate solution obtained by FEM is in close
agreement with the exact solution obtained from equilibrium consideration.

Example 4.5

Determine the nodal displacements, element stresses and support reactions in
the truss structure shown below, assuming points 1 and 3 are fixed. Use E =
70 GPa and A =200 mm’.

Solution

Stiffness matrix of any truss element is given by

? m - -Im

: 2
[K]i‘\_F: Im m Im m
L{-7* -lm [I? Im

-Im -m? Im m?

In the given problem, L;=500mm; L, =+/[400 +300] = 500 mm

For element-1, l=£x—2—:§‘—)=l and m=£¥2—1—)=0
Ll Ll
1 0 -1 0
00 00
[K] =AE
5001-1 O 1 0
00 00
AE _8xi0?
500

N~

P—12kN

—
AN
(]

'
\

300 mm

JL 3

S 500 mm bl 400 mm ———b

<

— X
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For element-2, /= M = 4 and m= (3'3_".)122 = _?3

2 5 L2
16 -12 -16 12
_AE |12 9 12 -9
T500x25{-16 12 16 -12
2 -9 -12 9

K],

AE  28x10°
25x 500 25

The assembled stiffness matrix is given by appropriate addition of stiffness
coefficients of the two elements,

10 -1 0 0 0]
00 0 0 0 0
-1 0 1+(16/25) -12/25 —16/25 12/125
0
0

[K]=28x10°
0 -12/25  9/25 12/25 —9/25

0 ~16/25 12/25 16/25 —12/25
0 0  12/25 -9/25 -12/25  9/25]

After applying boundary conditions that u, = v; = u; = v; = 0, the load-
displacement relationships reduce to {P}r = [K]r {u}r

0 ,[1+(6/25) -12/257 (u,
=28x10

-12000 —12/25 9/25]|v,

Solving these two simultaneous equations gives

u; =~ 4/7 mm and : va=—-41/21 mm

Displacements of element-1 in local coordinate system are given by

0
[t o000 ol [ o
,{q‘}"[o 0 1 .o} 417 _{—4/7}
-41/21
Stress in element-1, 6,=ESI=E[——-l -l—:l{(h}
LL L
4

3
_10x10 x(—_—) =-—80 N/mm?
500 7
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Displacements of element-2 in local coordinate system are given by

—-4/7

4/5 -=-3/5 0 0f|-41/21 [15/21
{‘h}: =

0 0 4/5 -3/5 0 0
0
. -1 1
Stress in element-2, 6, =Eg, = El:— —:l {a,}
L L
3
Sl X(Ej=—]00N/mm2
500 21

Reactions at the two fixed ends are obtained from the equations of the

assembled stiffness matrix corresponding to the specified zero displacements

-

0
R, 1 0 -1 0 0 0 0
Ry _28x10° 00 0 0 0 0 ‘ —4/7 >
R, x 0 0 —16/25 12/25 16/25 —12/25]|-41/21
R,y 0 0 12/25 -9/25 -12/25 9/25 0
0 J
16000
3 0
—16000
12000
Example 4.6

Estimate the displacement vector, stresses and reactions for the truss structure as
shown below.

Solution

Stiffness matrix of any truss element is given by

12 Im -1 —-1m
2 2

[K]: AE ln21 m lnz\ m

L |-/ —~Im l Im

2

—-Im -m Im m?2
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S00N

400 mm

200N

le
I~
In the given problem,
L; =400 mm ;
., =300 mm;

and L, =v400’ +300° =500 mm

For element-1, 1=M:land m=(yz—)’1):0
! 1
For element-2, zzﬁs_;’i)z()and m_(y3 y2)= 1
2 L,
10 -1 0 0 0 0 0
AE[ 0 0 0 O AE|O 1 0 -1
[K]l Py ;[K]zz——
400{-1 0 1 0 3000 0 0 O
00 00 0 -1 0 1
For element-3, 1=(x3 xl):i and m=(Y3_y‘)=___§
L, 5 L, 5
16 —-12 —-16 12
-12 9 12 -9
K], =-AE
12500|{-16 12 16 -12
12 -9 -12 9
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The assembled stiffness matrix is given by appropriate addition of stiffness
coefficients of the two elements,

[1/4+16/25 —12/125 —1/4 0 -16/125  12/125
~12/125  9/125 0 0 12/125  -9/125
[K]ziE. -1/4 0 /4 0 0 0
100 0 0 0 /3 0 ~1/3
-16/125  12/125 0 0 16/25  -12/125
12/125  -9/125 0 -1/3 —12/125 1/3+9/125]

After appiying boundary conditions that u; = vy = v, = 0, the load-
displacement relationships reduce to  {P} = [K]r {u}r

500Cos 30 AE 174 0 0 u,
—-500Sin 30 =100 0 1/3 0 v,
—-200 0 0 16/125]|u,
These three equations give u, =400x 500 B3 =100000 R} mm
2AE AE
—500x300 75000 -200x12500  —250000
V, = =— mm u;= =—
2AE AE 16 AE 16 AE
Displacements of element-3 in local coordinate system are given by
0

{’4 }_ 4/5 -3/5 0 0 0 3 0
5= 0 0 4/5 -3/5||-250000/16 AE 200000/16 AE
0

Stress in element-1,

E¥s  Ex100000 3 =250‘/§N/mm2
L, (400AE) A

c,=Eg, =

Stress in element-2,
Ev, Ex75000 250 2

= = N/mm
L, (300AE) A
Stress in element-3,
6, =Ec, = Eq, _Ex200000 _ 400
L, (S00AE) A

o, =Eg, =

N/mm?
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Reactions are obtained from the equations corresponding to the fixed DOFs
in the assembled stiffness matrix as given below:

(AE) (1 16) 12 -1 -16 12| |u,
R, =l —|||-4+—=| ~— — 0 — =
100 )]\4 125) 125 4 125 125] | v,

Al )

= —-250+/3 +200N
fu]
vy
R, =(AEJ Z1209 4 0 12 v
100 )] 125 125 125 125] |v,
Uz
(V3 )

= %[(12/125)(—250000/16 AE)|=-150N

(AE) 12 -9 -1 -12 (1 9) u,
100 /| 125 125 3 125 \3 125 v,

ool R 55 e oo
Check : For equilibrium of the truss, from basic strength of materials,
R;x =-500 cos 30 +200 N
and R, y+R3;y=500sin30=250 N
These two equations are satisfied by the results obtained
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Example 4.7

For the three bar truss shown in figure below, determine the displacements of
node ‘A’ and the stress in element 3.

fe—— 450 —ple— 450 —ple—350—
A
Y D
B ¢ T
1 3 600
2
A X
A\ 4
I8KN

A =250 mm?’; E=200GPa

For a truss element with direction cosines | and m, w.r.t. global X-axis,

? Im - —-Im
[K '}ZAE Im m? -lm -m’
‘L~ -im I Im
-Im —-m’ Im m?
where, Elem.No. Nodes L (mm) I=X,/L m = (Y,/L)

1 A B 750 0.6 0.8

2 AC 1000 0.8 0.6

3 AD 750 0.6 0.8

After assembling and applying boundary conditions,u=v=0 at b,candd
we get

0.36/3 +0.64/4 + 0.36/3

0 10° ~0.48/3 +0.48/4 + 0.48/3 | [u,
=|250x200x —
~18000 250 )| —0.48/3 +0.48/4 + 0.48/3

0.64/3 +0.36/4 + 0.64/3 | | v,

Solving these two equations, we get

u; = 0.06036 mm; v; =-0.2012 mm
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Stress in element 3,

os=Bas e liohy =8 2 Llrhe=(E)l1 -m 1 mlahye

L L
0.06036
~0.2012
M[—06 ~08 06 0.8]
750 0.0
0.0
= 33.264 N/mm’
Example 4.8

A concentrated load P = 50 kN is applied at the center of a fixed beam of length
3m, depth 200 mm and width 120 mm. Calculate the deflection and slope at the
mid point. Assume E =2 x 10° N/mm’.

lP

L—— 1500 —d¢— 1500 —»

ANNANANNNNNY

AVULRRRNAAY

Solution

The finite element model consists of 2 beam_elements, as shown here, with
nodes 1 and 3 at the two fixed supports and node 2 at the location where load P
is applied.

1 2 3

0]

Stiffness matrices of elements 1 and 2 (connected by nodes 1 and 2 ; 2 and 3
respectively, each with L = 1500 mm) are given by,

12 6L -12 6L ) (120><2003) 12 6L -12 6L
(JEL| 6L 47 —eL 21’ x0T 6L 47 —6L 2L’
[]_? ~12 —6L 12 —6L| i ~12 -6L 12 -6L
oL 2I* -6L 412 6L 217 —6L 41’
Assembling the element stiffness matrices, we get
:n [ 12 6L -12 6L 0 0 1{w,
M, 120x200° | 6L 4 -6L 212 0 0 ||6
p,| 2XI0°xTET 1 6L 12412 -6L+6L 12 6L Jwe
M,[ 1500° 6L 212 —6L+6L 4I2+412 —6L 20 ||e, |
P, 0 o0 -12 ~6L 12 —16L||w,
(M; ] | 0 0 6L 212 6L 412 |6,
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After applying boundary conditions v| = v; = 0 aud (8,); = (6,); = 0, the
equations reduce to

s hzoxzooﬂ
p, | 2x10 12412 —o6L+6L][v,
M, 1500° —6L+6L 4L2+412]((6,),

The applied loads are P,=— 50000 N and M, =0

3

Therefore, v, = — 50000 15003 =-—0.4395 mm

[2x 10° x '20’1‘2200 x 24}
and ©.),=20
3 3
Check : From strength of materials approach, v, = PL or P (2 L)
24 El 192 El
=~0.4395 mm

and the deflection being symmetric, slope at the center (8,), = 0.
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CHAPTER 5

CONTINUUM (2-D & 3-D)
ELEMENTS

51 2-D ELEMENTS SUBJECTED TO IN-PLANE LOADS

When one of the cross sectional dimensions, width is significant compared to
the length of the member while the thickness is very small, it is considered as a
2-D element. Displacement variation is therefore neglected across the thickness.
Let us consider the element in the X-Y plane while dimension in the Z-direction
represents the thickness of the element. The load is assumed to be acting in the
plane of the element, along X-direction and/or Y-direction. Such a plane
element has two degrees of freedom per node, displacements along X and
Y directions.

|

a ” ' :
P<—F——-—————'—‘———ﬁ-—>P Pe—! H—>P

i I

1-D element b e X, u

2-D element

If a concentrated load is applied at a point on the width of the plate, load can
not be considered as uniformly distributed over the width and hence the
displacement ‘u’ at any point is a function of its x and y coordinates. Load
along X-direction produces lateral strain and, hence, a displacement ‘v’ in the y-
direction (because of Poisson’s effect). Thus, displacements u and v are
functions of x and y coordinates of the point.
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In the case of discrete structures, with each member treated as a 1-D
element, nodes af® chosen at junctions of two discrete members, junctions of
two different materials, at points of change of cross section or at points of load
application. However, in the case of continuum, which is modeled by 2-D or
3-D elements, there is no unique finite element model for analysis. Each
engineer may use a particular number of nodes and a particular orientation
of elements. Hence, the results obtained by different engineers may vary.
Mandatory safety codes for the design of pressure vessels are not therefore
based on the results of FEM. The results obtained by FEM have to be suitably
modified for compliance with mandatory safety codes. Varying number or type
of elements, but at a higher computational cost, may improve accuracy.
A judicial compromise has to be made between better accuracy of results and
computational cost. This aspect is further discussed under ‘modelling techniques’

5.2 SIMPLEX, COMPLEX AND MULTIPLEX ELEMENTS

Finite elements are classified into three categories.

e Simplex elements are those obtained by joining n + 1 nodes in
n-dimensional space. Displacement functions of such elements consist of
only constant terms and linear terms, if nodal DOFs include only
translational modes.

Ex: 2-noded truss (1-D) element, displacement represented by u = a; + a,x
3-noded triangular (2-D) element, displacement represented by
u=a taxtay
4-noded tetrahedron (3-D) element, displacement represented by
u=a; ta)x+azytasz

¢ Complex elements are those elements whose displacement function consists
of quadratic or higher order terms. Such elements naturally need additional
boundary nodes and, sometimes, internal nodes.

Ex : Quadratic models like 6-noded triangular element and
10-noded tetrahedron element
Cubic models like 10-noded triangular element and
20-noded tetrahedron element
¢ Multiplex elements are those elements whose boundaries are parallel to the
coordinate axes and whose displacement function consists of higher order
terms.
Ex : 4-noded rectangle (2-D) element
8-noded hexahedron (3-D brick) element
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Calculation of stiffness matrix for a triangular element is first considered
since triangular elements are the simplest and can be used to define arbitrary
boundaries of a component more conveniently, by approximating curved
boundary with a large number of elements having straight edges.

5.3 STIFFNESS MATRIX OF A CST ELEMENT

129

Let u(x, y) = a; + a,.x + a;.y and v(x,y) = a4 + as.x + as.y be the displacements in
the element. Displacement function f(x,y), representing u or v, can be
graphically represented by the following figure. In general, 1-1°, 2-2° and 3-3°
are not equal.

fix,y) 4

FIGURE 5.1 Graphical representation of displacement function on a triangle

Substituting nodal coordinates, while the element 1-2-3 displaces to 1°-2°-3’
on application of load, we get nodal displacement vector as
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X) Y1 |94
Xy ¥Y21i8;s

X3 Y;||ag

<
o = =
o

3 <
»>
<
-m 3 (%)

ay

Vi

» X, u

fu.)=[G]{a} = PA] [O]} (a

(0] [A]

1 x 0
where, [A]l=|1 x, vy, and [O]=10
I X3 y; 0

e 1| [AT (O]
or {a} =[G] {Ue}—[[O] [A]_.}{Uc}

{ } e, )] o = [ G T u.)

o o O
oS © O

u
\'%
e. | (oulox

e, r={0v/dy =[rx, y]lG]"

Yy | lOu/dy+oviox

01 0000

fe}={0 0 0 0 0 1/[G]"{u,} =[B]{uc}
001010




CHAPTER § CONTINUUM (2-D & 3-D) ELEMENTS

where, strain-displacement matrix,

ys 0 vy 0 y, O

[B]:E]E 0 x35 0 x5 0 x, |where[]]isJacobian
e
X32 Y23 X13 Yn X1 Y2

Exy w0 x-x5 y-ys| |0 X3y
and DetJ={1 x, y,|=[0 X;-%X;3 y,—-y;|=|0 X535 ¥p

1 x5y, 1 X3 Y3 1 %3y,

=Xi3 Y3 Y3 X3

: 0 x5 yp;
It can be seen that area of the triangle, A = 5 Det J = (Ej 0 X5 Yy
I %3 y;

If nodes are numbered counter-clockwise, in right-handed coordinate system
DetJ is +ve.

Stiffness matrix of the 3-node triangular element can now be obtained from
K], = 1B [Dliskv - ¢ [iBT ][k y

where t= Idz is the thickness of the element and

[B] is a function of X and Y only.

Here, matrix [D] corresponding to the particular deformation pattern of the
component (plane stress, plane strain or axi-symmetric) is to be used. An
explicit evaluation of the stiffness matrix is not generally feasible (except for a
few special cases).

This triangular element, with 3 nodes and 2 DOF per node chooses linear
displacement functions for u and v and hence gives constant strain terms over
the entire element as seen from [f '(x,y)] or [B] and hence is popularly known

as ‘Constant Strain Triangle (CST) element.

5.3.1 Stiffness Matrix of Right Angled Triangle

For the particular case of a right angled triangle with coordinates 1(0,0), 2(a, b)
and 3(0, b), let u = a; + a, x + a; y and v = a4 + a5 x + ag y represent the
displacement field. Substituting nodal coordinates, vector of nodal
displacements can be written as

131
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}{a} =[G] {a}

u] 1 00 0 0 0]fa
u, 1 ab 00 0fja,
u, 1 0b 0 0 0fla, [[A] [0]
< = 3 “por{u}=
v, 0 001 0 0fja, O] [A]
v, 0 0 01 a bjja
' 0 0 0 1 0 bjlag
y. v
; 3(0,0) 2a, b)
410,0)
é X, U

Evaluating coefficients a, to a4 in terms of nodal displacements,

a, 1 0 0 0 0 0 u,
a, 0 /a ~-1/a 0 0 0 u,
a, -1/b 0 1/b 0 0 0 us
a0 o o 1 o o [|v
a 0 0 0 0 1/a —1/a] |v,
ag) | 0 0 0 —-1/b 0 1/b | |v,

R [A]' [O]
or {a}={G} {u} ={a} [[O] [A] 1}{ o)
ou/ox 01 00 00
Strain, {g} =<0u/dy =0 0 0 0 0 1} {a}=1[B] {ue}
Ou/oy+0ov/ox 001 010
0 b -b 0 0 0
where, [B]=(—l—) 0 0 0 —-a 0 a
ab

-a 0 a 0 b -b

a b
[K]= I[B]T [D][B]dv =t j j[B]T [D][B]dx dy = tA [B]" [D][B]
A

0 0

since elements of matrices [B] and [D] are not functions of x or y
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For a plane stress case, stress-strain relationship is given by

1 v 0
[D]=1E2 v 1 0 Let B:“—;V—)
=vI1o o (1-v)/2

CONTINUUM (2-D & 3-D) ELEMENTS

Then, with element DOFs arranged in the sequence of [u; uy u3 v; v, v3]"

Ba’
0
K]= EtA —Ba’ -b*> b*+pa’ Symmetric
a’b’(1-v*)| 0 —vab vab a’
~Bab 0 Bab 0 Bb?
| Bab vab -—ab(v+P) —-a’ —Bb’
If the element DOF's are arranged in the sequence of [u; v, u; v,
the elements of stiffness matrix are rearranged as
[ Ba’
0 a’
EtA 0 -vab b’ Symmetric
[Kl=—~5 2
a‘b"(l-v’)|—Pab 0 0 Bb
—~Ba’ vab -b’> Pab b’ +Pa’
| Bab —a’® vab -Bb’> —ab(v+B) a’+Bb’]

5.4 CONVERGENCE CONDITIONS
(To BE SATISFIED BY THE DISPLACEMENT FUNCTION)

a’ +Bb2—

u3 VB]T’

While choosing the function to represent u and v displacements at any point in
the element, care should be taken to ensure that the following conditions are satisfied.

(i) The function should be continuous and differentiable (to obtain strains)
within the element. This is automatically satisfied with polynomial

functions.

(ii)

The displacement

polynomial  should

include

constant

term,

representing rigid body displacement, which any unrestrained portion of a
component should experience when subjected to external loads.

133
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(iii)

(iv)

v)

The polynomial should include linear terms, which on differentiation
give constant strain terms. Constant strain is the logical condition as the
element size reduces to a point in the limit.

Compatibility of displacement and its derivatives. up to the required
order, must be satisfied across inter-element boundaries. Otherwise the
displacement solution may result in separated or overlapped inter-
element boundaries when the displacement patterns of deformed
elements with a common boundary are plotted separately (explained in
more detail in section 5.7).

The polynomial shall satisfy geometric isotropy (terms symmetric in
terms of coordinate axes x, y and z). Otherwise, different users
analysing the same component may get different results by following
different node number sequence to define the elements (different local
coordinate systems).

Terms used in the polynomial, satisfying all the above conditions, are

represented by Pascal triangle given below, for a 2-D element.

1

Constant term

Linear terms

Quadratic terms

Cubic terms

Quartic terms

¢—— Axis of symmetry
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Similarly, the polynomial for a 3-D element is represented by the terms of
Pascal tetrahedron, as given below.

Constant term

Linear terms

Quadratic terms

y .
= - > ~> Cubic terms
N Xy Xy e
~ 72
AN v

Z
2 ~ // Y

This can also be represented by the nodes of a hypercube, as given below.

Here, terms with other combinations are on the invisible sides of the cube.

A

’5 El
1 ¥ 37 3t
N / / . .
1,/5 ;1 3 o
Yq o q }1 :ﬁ
< 3§ ) e
v
. VAN B ayes
VAR 3 i 4
1
’51, k1
+ Py X 53 +
) s
)
P
s} *
> +
B ——s
i)
i N a
S N

135
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5.5 GEOMETRIC ISOTROPY

If all the terms of a particular order are included in the polynomial, it is called
the complete set. If the terms are symmetric w.r.t. x and y, it is called geometric
isotropy.

Based on the terms included in the polynomial, the function may be termed
as

complete and isotropic
complete and non-isotropic
incomplete and isotropic

or incomplete and non-isotropic

As the number of terms in the polynomial depend on the number of DOF
and the sumber of nodes, use of complete set of terms of a particular order may
not be possible in all cases. But, isotropy can be maintained in all the cases and
is preferable so that user of a general-purpose program can start with any
particular node of his choice for defining the nodal sequences (which decide the
local coordinate systems) of different elements of the structure.

For each element, local coordinate system is usually defined with node 1 as
the origin; X-axis along 1-2 and Y-axis perpendicular to X-axis in the plane of
nodes 1-2-3.

The displacement function u(x) = a, + a,.x + as.y of a triangular element is
complete and isotropic while u(x) = a; + a,.x + as.y + a4.xy of a quadrilateral
element is incomplete but isotropic.

Higher order elements are'broadly classified as -
¢ Serendipity elements — These are the elements having no internal nodes

Ex : 8-noded quadrilateral, 12-noded quadrilateral, etc.
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e Lagrange elements — These are the elements having internal nodes which
can be condensed out at the element level before assembling.

Ex : 9-noded quadrilateral, 16-noded quadrilateral, etc.

//\ T

Polynomials used for some 2-D elements (subjected to in-plane loads),
satisfying the convergence and isotropy conditions, are given below.

Element 'Order of No.of Terms included Polynomial
Displacement nodes type

Triangle Linear 3 at aX+ayy Complete &
(Fig.5.2 a) Isotropic
Triangle Quadratic 6 gty x+aytax’tasxytay’ Complete

(Fig.5.2 b) & Isotropic

Triangle Cubic 9 it ax+aytaxitasxytay + Incomplete,
(Fig.5.2¢) a,.X°y + agxy’ + ay x’y? Isotropic
a) + ax + ayy + ax’ + asxy + agy’ Incomplete

+ a7y + agxy’ + ax’ (Not preferred) Non-Isotropic

Triangle * Cubic 10 atax+aytax’tasxytay + Complete,
(Fig.5.2 d) ;. + ag. Xy + a9 Xy + 8,0 Isotropic

Quadrilateral Linear 4 a+ a.x + a3y + agxy Incomplete,
(Fig.5.2¢) Isotropic

a+ ax +agy + a’ Incomplete,

(Not preferred) Non-Isotropic

Quadrilateral Quadratic 8 at @ X +ay +agxitasxy+ay’ + Incomplete,
(Fig.5.2 ) a7.X°y + ag Xy Isotropic

Quadrilateral Cubic 12 at+ ax + a3y + aux+asxy+agy’ + Incomplete,
(Fig52g) .+ ag Xy + ae.xy ™+ 4.y’ + ay Xy Isotropic

+apxy’
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. . ) ./'\.
/ \\ / N, / \°\
\ .
o N \.\./././\.

(e}
FIGURE 5.2 Some 2-D elements for in-plane loads

5.6 ASPECT RATIO

In 2-D and 3-D elements, the displacement function is symmetric in X, y and z,
whether it is complete or not in terms of coefficients of a particular order as
given by Pascal triangle or Pascal tetrahedron. Hence, the shape of the finite
element in the idealised structure should also be oriented equally to all the
relevant axes. For this purpose, certain conditions are generally specified in the
standard packages on the sizes and included angles for various elements.
Aspect ratio is defined for this purpose as the ratio of the longest side to the

e N

Angleat A <45°

b b
a wb>5
a ab <5
A/u\\ ﬁ\
Angle at A <60

Shapes of elements, not preferred Preferred shapes of elements



CHAPTER S CONTINUUM (2-D & 3-D) ELEMENTS

shortest side. It is usually limited to 5, while the included angle is usually
limited to 45° to 135° for a triangular element and to 60° to 120° for a
quadrilateral or 3-D element. A few 2-D elements with valid and invalid shapes
are shown here.

5.7 INTER-ELEMENT COMPATIBILITY

139

The polynomial used to represent variation of displacement over the element
should ensure compatibility of displacement along inter-element boundary.
If this condition is not satisfied, inter-element boundary of two adjacent
elements may overlap or show void on application of external loads, when
the displacement pattern of different elements with a common boundary are

(c) Loaded mcompatible overlapping (d) Loaded incompatible elements with void
elements

plotted separately. The inter-element compatibility condition is satisfied when
displacement at any point along a common edge, of all elements joining along
that edge, is a function of displacements of nodes on that edge only. This
concept is demonstrated here for displacement along x axis of a right angled
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triangular element, with the two sides of lengths a and b coinciding with the
coordinate axes.

<

a4 Uy

Y

1

1
u=[1 x y]Ja2 SAuy =1 a, r by substituting nodal coordinates
1

0
a 0
0 b

a, | | 1 0 0 [y

or a,r=(—1/a 1/a 0 |qu,

Then,

o

3

1 0 0 ||y u
u=[l x y}|-1/a 1/a 0 |Ju,p=[l-x/a—-y/b x/a y/bu,

~1/b 0 1/b]||u, u,
U,
u
AtR(x,0), u=[l-x,/7a x,/7a 0]{u,t=[l-x/a xl/a]{ 1}
[25)
u;

or u at R(xy, 0) is a function of u; and u,, displacements of the two end nodes of

that edge only.
Similarly, at S(x;, yi), LA (a_x‘)or l—(ﬁ]—(h)=0
b a a b
u
u
Then, u=[0 x,/a y,/bJdu,t =[x,/a y]/b]{ 2}
u;
u;

or u at S(x;, y,) is a function of u, and us, displacements of the two end
nodes of that edge only.
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Similarly,
u
U,
at T(0, y)), u=[l-y,/b 0 vy, /b]iu,t = [i-y,/b y,/b]{ }
u;
u;

or u at T(0,y;) is a function of u; and us, displacements of the two end
nodes of that edge only.

The same logic holds good for v, displacement at any point of the element in
y direction,

To adequately represent stress concentration in some local regions, it is a
common practice to either increase number of elements or increase the order of
the polynomial of the displacement function. The first method ensures inter-
element displacement compatibility but at a higher computational cost. The
second method may not always ensure inter-element displacement
compatibility. Transition elements are commonly used in such situations. These
are covered in more detail in section 7.10 of this book.

5.8 2-D ELEMENTS SUBJECTED TO BENDING LOADS

141

Plate bending element : It is a plate element in X-Y plane subjected to
bending load P, and/or bending moments M, , M,. A thin plate (span > 10 x
thickness) with small deflection (< thickness/10) follows Kirchhoff’s theory and
is an extension of 1-D beam element into two dimensions. It will have three
degrees of freedom at each node, displacement normal to the plate (w) and
rotations about the two major axes of the element represented by derivatives of
w about x and y (0, and 0,).

For a triangular Plate bending element, normal deflection is assumed by the
polynomial.

w=a;tax+azy+t a4.x2+ a5.y2 + a(,.x2y + a7.xy2 + ag.x3 + ag.y3

e:aw

o =a,+2a,.x+2a,xy+a,y’ +3a,x
0 _ow =a,+2a,y+a,.x> +2a,.xy+3a,.y’

y

Displacement function of triangular plate bending element is incomplete but
isotropic.
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X

Plate bending element Thin shell element

Thin plate with large deflection is characterised by large tensile or
compressive stresses in the middle plane. The corresponding u and v

displacements are given by

gy
o [ZU_ wa}
Rl

w3 3){55)

The stress-strain matrix is given by {c} =[D] {&}

o 1 v 0 €,

X

or 0, p= =lv o1 0 g,

y 2
Ty 0 0 (-v)/2 Tay
This is more commonly expressed in terms of moments per unit width (b=1),

also called stress resultants, using

3 3 2
M, = l).cx = ﬁ—/E O, = h/12 .(E.sx): Eh —a—ﬂ
4 z z 12 1 ox?

M 1 v 0 o*w/ox’

x @Rl
Thus, {M, ]2 ]Eh 1 0 d’w /dy?
(-v ) 0 0 (1-v)/2]||3*w/ox0dy

Xy

'Z
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Thin shell element : It is a 2-D element subjected to in-plane loads as well as
bending loads. As in the case of a general beam, these two behaviours represent
uncoupled degrees of freedom. It can therefore be considered as a combination
of plane stress element and plate bending element. In the local coordinate
system, this element will have five degrees of freedom since moment about
normal to the plate is not included. However, if different elements are inclined
to each other, transformation of the combined stiffness matrix of each element
with five degrees of freedom per node in local coordinate system results in six
degrees of freedom per node in the global coordinate system.

5.9 3-D ELEMENTS

Similar to the elements described above, 3-D elements are of two types based
on the type of function used — solid element with three translational
displacement degrees of freedom per node without significant bending
behaviour and thick shell element with six degrees of freedom. The
displacement functions normally used are given below.

For a 4-noded 3-D solid tetrahedron element
u=a;+a,xtaytaz
v=astas,x+a.y+tagz
w=agtagxta).y+ta;pz

These functions are complete and isotropic.

4

2
For a 8-noded 3-D solid hexahedron element

u=a, +ayx+ayy+asztasx’ +agy +a.zZ° +agxyz
v=ay +apX+ay tapz+tanx’+agy’+asz +agxyz

w=aptagXxtapy tayzt az..x2 + 322.)’2 + 323.12 + ay4.XyZ
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The function used is therefore incomplete but isotropic.

Isotropy condition in these elements involves symmetry w.rt. X, Y and Z
axes. The displacement field can also be chosen by a different polynomial

u=a +ag.x+a3.y+a4.z+a5.x2 +aﬁ.y2 +a;.zz +ag.XyzZ; ...

Thus, there is no unique way of choosing an incomplete polynomial

5.10 AXI-SYMMETRIC ELEMENTS

These are special cases of 3-D components where 2-D analysis can be carried
out for evaluating displacements and stresses, saving lot of time and effort.
There are many components such as turbine casings, compressor casings,
pressure vessels, cylindrical heat exchangers etc., which are 3-D components by
the relative dimensions of the component in the three coordinate directions.
However, each is symmetric about its axis of rotation and thus deflection and
stress along any 2-D radial plane (imaginary section planes A, B,.. in the
figure), will be identical. It is often more convenient to represent such
components in cylindrical coordinate system, consisting of axial (usually
represented by z-axis), radial (or r-axis) and hoop (or circumferential or 0)
direction. A section through r-z plane is considered for analysis. Unlike in the
case of plane stress or plane strain analysis of 2-D components, it need not be
constrained in the radial direction at any point in the component to suppress
rigid body motion. This is automatically taken care of by the closed geometry in
the hoop direction, thus providing a natural boundary condition.




CHAPTER S CONTINUUM (2-D & 3-D) ELEMENTS

~.
~. .
o e e e

Also, displacement in the radial direction at any point in the component by
*dr’ gives rise to a corresponding change in circumferential length by
27(dr) dr

or —.
2nr T
Thus the stress-strain relation is a 4 x 4 matrix relating o,, 6,, 6, and 14

2n(r+dr)—2nr or2n(dr). It amounts to a hoop strain of

with €, €y, €, and y4 given by

o, I-v v Y 0 €,
l-v v 0
Og E €y
= — =|D
o, (1+v)(1-2v) I-v 1_02\, g, or {o}=[plte}
0 0 0
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Sometimes, components like shell nozzle junction are analysed as
axisymmetric solids, to save time and effort, even though it is not symmetric
about nozzle axis or shell axis. For this purpose, cylindrical shell is replaced by
a spherical shell of double the radius, because the larger stress component (hoop
stress) in a sphere is half the corresponding stress of a cylinder of the same
radius. The same is not true for thermal stresses and needs some modification.

5.11 SuMMARY

While 1-D elements generally form a discrete structure, 2-D and
3-D elements form part of a continuum. In the 1-D element, where
axial dimension is very large compared to the cross section, load is
assumed to act uniformly over the entire cross section. When one of
the cross sectional dimensions, width, is significant compared to the
length of the member, it is considered as a 2-D element.

Finite elements are classified into three categories - Simplex
elements obtained by joining n+1 nodes in n-dimensional space;
Complex clements whose displacement function consists of
quadratic or higher order terms; Multiplex elements whose
boundaries are parallel to the coordinate axes.

The function chosen to represent u and v displacements at any point
in the 2-D element should satisfy the following conditions - The
function should be continuous and differentiable within the
element; should include constant term and linear terms; should
satisfy compatibility of displacement and its derivatives, across
inter-element boundaries and should satisfy geometric isotropy.

A model with less number of higher order elements (with more than
two nodes along edges of the element) will give better results than
more number of lower order elements and is economical in terms of
computer memory and time.

2-D Plane stress element and 3-D solid element are similar to 1-D
truss element, whose degrees of freedom do not include slopes
while 2-D Plate bending element and 3-D thick shell element are
similar to 1-D beam element, whose degrees of freedom include
slopes.

Plane stress element applies to a thin plate with in-plane loads,

having zero stress in the normal direction, while plane strain
element is a thin slice of a large 3-D solid, where load acts in the
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plane of slices and analysis of one slice represents solution of the
3-D solid, and has zero strain in the normal direction.

e Axisymmetric element is also a 2-D model of a 3-D solid with
axisymmetric geometry, loads and boundary conditions. It differs
from plane strain element, in having finite strain normal to the
plane of analysis as a function of radial displacement.

o Thin shell element is a superposition of plane stress element and
plate bending element, representing uncoupled degrees of freedom.

OBJECTIVE QUESTIONS

1.

Complete polynomial is _  important, compared to symmetry of
displacement polynomial w.r.t. coordinate directions

(a) equally (b) more (c) less (d) unrelated

. A triangular element with cubic displacement function requires nodes

to represent the complete and symmetric polynomial
(a) 3 (b) 6 (c) 9 (d) 10

. A triangular element with quadratic displacement function requires

nodes to represent the complete polynomial

(a) 3 (b) 6 (c) 9 (d) 10

A triangular 9-noded element will usually have _ cubic displacement
function

(a) symmetric & complete (b) symmetric & incomplete

(c) unsymmetric & complete (d) unsymmetric & incomplete

A constant term in the displacement function ensures
(a) rigid body mode (b) constant strain mode
(c) zero stress (d) zero deformation

Number of terms in the displacement function in relation to the number of
nodes in that element is

(a) more (b) equal (c) less (d) unrelated
A linear term in the displacement function ensures

(a) rigid body mode (b) constant strain mode

(c) strain varying in the element  (d) stress varying in the element
All stiffness coefficients of a plate bending element have ___ units

(a) same (b) different (c) anysetof (d) depend on other data
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

All stiffness coefticients of an axisymmetric element have ____ units

(a) same (b) different (c) any setof (d) depend on other data
Displacement method can NOT be used with __ boundary conditions
(a) pressure (b) temperature(c) stress (d) displacement

A triangular plane stress elementhas __ D.O.F

(a) 6 (b) 9 (c) 12 (d) 15

A thin shell element has __ no. of DOF, compared to a plate bending
element

(a) same (b) more (c) less (d) unrelated

A plane stress element has __ no. of DOF, compared to a plate bending
element

(a) same (b) more (c) less (d) unrelated

An axisymmetric element has __ no. of DOF, compared to a plate bending
element

(a) same (b) more (c) less (d) unrelated

A structural thin shell triangular element has __ DOF

(a 3 (b) 6 () 9 (d) 18

A triangular plane strain element has __ DOF

(@ 3 (b) 6 () 9 ) 15

Number of displacement polynomials used for an element depends on
(a) No. of nodes/element (b) No. of DOF/node

(c) No. of DOF/element (d) type of element

For a plate bending element, number of displacement polynomials and
number of D.O.F/node are

(a) 1,2 () 1,3 (c) 2,3 (d) 2,4
Accuracy of solution*in a 2-D component depends on

(a) included angle of elements  (b) size of the component
(¢) no. of DOF/ node (d) type of load

Displacement of any point on a side is related to displacements of nodes on
that side only, ensures

(a) equilibrium (b) compatibility

(c) energy balance (d) continuity along inter-element boundary
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22.

23.

24.

25.

26.

27.

28.

29.

30.
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Continuum analysis covers
(a) all 2-D trusses & frames (b) all 3-D trusses & frames
(c) all 2-D and 3-D plates, solids  (d) only 3-D solids

Optimum number of elements in finite element model depends on
assessment of ___ distribution in the component

(a) displacement (b) stress (c) strain (d) potential energy

Displacement function which matches function value at the specified nodes
is classified as

(a) Lagrange interpolation function (b) Serendipity function
(c) Hermite interpolation function  (d) Pascal function

Displacement function which matches function value as well as its
derivatives (slopes) at the specified nodes is classified as

(a) Lagrange interpolation function (b) Serendipity function

(c) Hermite interpolation function  (d) Pascal function

Continuum analysis includes

(a) trusses (b) beams (c) plates (d) plates & solids

Continuum elements and discrete members can be included in a single
model for analysis

(a) always true (b) sometimes true

(c) never true (d) depends on matching DOF
Continuum elements in different analysis may vary in

(a) size (b) shape (c) size or shape (d) size & shape
Element formed with edges parallel to coordinate axes is called

(a) simplex element (b) complex element

(c) multiplex element (d) compound element

An element with no internal nodes is classified as

(a) serendipity element (b) Lagrange element
(¢) Hermite element (d) Laplace element
An element with internal nodes is classified as

(a) serendipity element (b) Lagrange element

(c) Hermite element (d) Laplace element
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31

32.

33.

34.

35.

36.

37.

38.

39.

A concrete pedestal is represented by
(a) plane stress elements ,(b) plane strain elements
(c) 3-D solid elements (d) 3-D shell elements

Combination of plane stress element behaviour and plate bending behaviour
forms

(a) 3-D solid element (b) 3-D shell element
(c) Thin shell element (d) thick shell element
A 3-D dam is usually modeled with

(a) 2-D plane stress elements (b) 2-D plane strain elements

(c) 3-D solid elements (d) 3-D shell elements

Element formed by joining n+1 nodes in n-dimensional space is called
(a) simplex element (b) complex element

(c) multiplex element (d) compound element

Element formed with quadratic or higher order displacement polynomial
isa

(a) simplex element (b) complex element

(c) multiplex element (d) compound element

Elements connecting lower order elements and higher order elements in a
mesh are called

(a) transition elements (b) sub-parametric elements
(c) iso-parametric elements (d) super-parametric elements
Elements having mid-side nodes only on some sides are called
(a) transition elements (b) sub-parametric elements
(c) iso-parametric elements (d) super-parametric elements

Stress-strain matrix for plane stress element, if strain is represented by s;
and stress is represented by st,;, is obtained from the condition

(a) s,=0 (b) s=0 (c) st,=0 (d) st,=0

Stress-strain matrix for plane strain element, if strain is represented by s;;, is
obtained from the condition

(a) s=0 (b) sx=0 (c) stx=0 (d) st,,=0



40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
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Stress-strain matrix for axisymmetric element is of order

(a) 3x3 (b) 4x4 (c) 6x6 (d)9x9
Stress-strain matrix for plate bending element is of order

(a) 3x3 (b) 4x4 (c) 6x6 (d) 9x9
Elasticity matrix for ___ behaviour is similar to 3-D elasticity matrix
(a) plane stress (b) plane strain

(c) plate bending (d) axisymmetric

Plane stress element is an extension of

(a) truss element (b) beam element

(c) pipe element (d) spring element

Plate bending element is an extension of

(a) truss element (b) beam element

(c) pipe element (d) spring element

Wrong sequencing of nodal connectivity in 2-D & 3-D problems leads to
(a) +ve Jacobian (b) zero Jacobian

(c) —ve Jacobian (d) No relation with Jacobian

Axisymmetric structures are usually modeled in

(a) element local coordinates (b) global cartesian coordinates
(c) global cylindrical coordinates (d) user specified system

A plate of 1cm thickness with in-plane loads is modeled by

(a) . plane stress element (b) plane strain element

(c) plate bending element (d) any one of them

Actual thickness of plane strain element is

(a) very small (b) very large

(c) any specified value (d) assumed by software

Order of stiffness matrix for a plane stress model with 20 nodes is
(a) 10 (b) 20 (c) 40 (d) 60

Order of stiffness matrix for an axisymmetric model with 20 nodes is
(a) 10 (b) 20 (c) 40 (d) 60

Number of stress components per node calculated for a plane stress
quadrilateral element is

(a) 2 (b3 (c) 4 d 5

151



152

FINITE ELEMENT ANALYSIS

52. Number of stress components per node calculated for a triangular
axisymmetric element is

(@ 2 () 3 () 4 (d) 5
53. A general plate element is a superposition of elements
(a) plane stress & plane strain (b) plane strain & plate bending

(c) plane stress & plate bending  (d) plate bending only

54. An element with in-plane loads having 3 nodes along each side is a

(a) constant strain element (b) linear strain element

(c) quadratic strain element (d) constant displacement method
SOLVED PROBLEMS
Example 5.1

Calculate displacements and stress in a triangular plate, fixed along one edge
and subjected to concentrated load at its free end. Assume E = 70,000 MPa,
t=10 mm and v=0.3.

Solution
v A 100N ,

A3 .

I é 50N
4
4
]

20 mm A

7

l Z
~]
2
a1
4 i 30 |
~¢ mm >
A I

If the element DOFs are arranged in the sequence of [u; v, u; v, u; vs]',
the stiffness matrix from 5.3.1 is

Ba?
0 a’
EtA 0 —vab b2 Symmetric

K= vl pab 0 0 pv?

-Ba? vab -b®> PBab b’ +pa’
Bab —a’> vab -Bb> —ab(v+PB) a’+Bb’]
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Substituting the given dimensions and material properties,

[ 315
30><29] 0
0
~-210
-315
| 210

70000x10x(
[Kl=

30% x20% x (1-0.3?)

900
—-180
0
180
-900

400 Symmetric
0 140
-400 210 715
180 -140 -390 1040 |

After applying boundary conditions, u; = v; = u; = v;3 = 0, these equations

reduce to

an 50 400 0 u,
= =641.026
P,,[ |-100 0 140|]v,

Therefore,

t, = 0.000195 mm and v,=-0.001114 mm

Note : The given thick plate, from university question paper, should not be

analysed as a 2-D problem. It can not be solved as a 3-D problem manually.

Example 5.2

Compute the plane strain stiffness matrix in terms of the ratio r = a/b for the

rectangular element of sides a and b, using v = 0.2, r = 1 and displacement

model

u=a;tayxtay+asxy

Solution

and

v=astasxtajytagxy

By substituting coordinates of the four corner nodes in the displacement model,

With origin (0,0) at node 1,

aw) [1 00 0 000
w| [1 a0 0000
u;| {1 a b ab 0 0 O
w| 1 0b 0000
v lo oo o 100
v,/ 000 0 1 a0
vil [0 0 0 0 1 a b
v, loo0o 0 1 00b

SO O OO
0
“w

<
oo
o

o =) o]

[O] [A]
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YV
4
4 3
! 2

»x, u

. a . . .
For the particular case of r :B =1, evaluating coefficients a, to ag in terms

of nodal displacements,

~

a, 1 0 0 0 0 0 0 0 u,
a, —1/a 1/a 0 0 0 0 0 0 u,
a, —1/a 0 0 1/a 0 0 0 0 u,
ﬁa4>_ 1/a> —1/a*> 1/a> —1/a®> 0 0 0 0 | ]ug
ag 0 0 0 0 1 0 0 0 v,
a 0 0 0 0 -1l/a 1/a 0 0 Vv,
a, 0 0 0 0 ~1/a 0 0 1/a ||v,
ag] | 0 0 0 0 wa® -la® 1/a® -l/a’]|y,
or {a}={[A] | [O],}{ o}
[O] [A]
ou/ox 01 0y 0000
Strain, {€} =<0v/0y =0 0 0 0 0 1 x|{a}=[Bl{u,}
Ou/0y +0y/ox 001 x 01 0y
where,
y—-a —(y-a) y -y 0 0 0 0
[B]=(—12—) 0 0 0 0 Xx—a -X X —(x-—a)
a X—a -X X —(x—a) y—-a —(y—a) y -y

For a plane strain case, stress-strain relationship is given by
I-v v 0

v l-v 0
0 0 (-2v)/2

E

PI= a2y
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8§ 2 0
=—E— 2 8 0| forv=0.2
0 0 3
a b
[K1= [(BT" [DI[Bldv=t [ [[BI" [D][B]dxdy
v 090

a b
= j [B]" [D]{B]dx dy since t'=1 for plane strain elements
00

[ 44 1
~26 44 Symmetric
-22 4 44

E| 4 -22 -4 44

864 15 3 -15 -3 44

-3 -15 3 15 4 44

15 -3 -3 3 -22 -26 44
3 15 15 15 -4 -22 4 44]

when written corresponding to the displacement vector [u; v; u; v, 3 v3 ug v4]"

Example 5.3

Compute the plane strain stiffness matrix ot a square, treating this as an
assembly of two triangular elements with the displacement field in these
elements expressed as u=a;+ax+ay and v=atasx+tay.
Assume v=0.2

Solution

Let the square of side ‘a’ be represented by two triangular elements identified
by nodes 1, 2, 3 and 1, 3, 4 respectively. Choosing node 1 as the origin of the
X-Y coordinate system,

Y,ve

4 3

155
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For element-1,

3 r

w)] 1 0 0]fe

Uy p=[1 a 0|5a,
U] |1 a ajjo,
Then
a,] [ 1 0 0 |(u
0, p=|=1/a 1/a 0 |ju,
(O3 ] I —1/a 1/a||u,
6u/6x 61 0000
Strain, f{e}=4ov/dy =0 0 0 0 0 1|{a}=[B]{u.}
Oou/oy+ov/ox| [0 0 1 0 1 O
-1 0

I 0 0
0 0 0
0o -1t -1 1 0

where, [B]= —J 0
a

For a plane strain case, stress-strain relationship is given by
I-v v 0
Dl=——— | v 1=v o

HWA=291 0 a—2wi2

8§ 2 0
=——|2 8 0| forv=0.2
0 0 3

72
a b
[K1= [(BI" (D] (B] dv=t [ [(BI"[D] [B] dx dy
v 0 0

b

= I [B]" [D] [B] dx dy since t=1 for plane strain elements
0 0

g -
0 4 Symmetric
E|-2 4 6

144/ 2 -4 -6 12
0 -4 -4 4 4
-2 0 2 -8 0 8]
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when written corresponding to the displacement vector [u; v, u; v, u3 v3]T

For element-2,

-

u, 1 0 0ffe,
) u; r=|1 a ajja,
u, {1 0 aflo,

a, ] [ 1 0 0 ][y

Then, o, ={ 0 1/a —1/aqu,
as;) {—-l/a 0 1/a ||u,
0 I -1t 0 0 O

[B]=(l) 0 0 0 =10 1
a

-1 0 1 0 t -1

r —

3
0 8 Symmetric
E|O0 -2 8
[Kl=—
144{-3 0 0 3
-3 2 -8 3 12
'3 -8 2 -3 -5 11

when written corresponding to the displacement vector [u; v; us v3 uyg val'

The stiffness matrix of the square plate is obtained by adding relevant
coefficients of the stiffness matrices of elements 1 and 2, as

[3+8

0+0 8+4

] 4 6 Symmetric

[K]zi_ 2 -4 -6 12
144 0+0 -2-4 -4 4 8+4

-3-2 0+0 2 -8 0+0 3+8

-3 2 0 0 -8 3 12
| 3 -8 0 0 2 -3 =5 11j

corresponding to the displacement vector [u; v; u; vy uz v3 Uy v4]"
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Note :

1.

The stiffness matrix obtained for the combination of two triangular
elements in Ex. 5.3 is different from the one obtained for the square
element in Ex. 5.2.

In the first case, node 2 and node 4 are not linked and hence terms ki,
kas, K47, kag, K73, kus, kg3 and kg4 are equal to zero.

Even other terms are different, indicating that the results obtained for a
given problem will depend on the model used for analysis and differ
marginally.



CHAPTER 6

HIGHER ORDER AND
ISOPARAMETRIC
ELEMENTS

6.1 HIGHER ORDER ELEMENTS

When geometry is modeled with CST elements, large number of small-size
elements need to be used, in order to accommodate variation of strains over the
entire geometry. In view of the constraints on computer memory and time for
solving large size problems, an alternative method of using a small number of
higher order (refined) elements can also be considered. In these elements, a
higher order polynomial is used to include variation of strain over the element
by choosing additional nodes.

In most cases, axially loaded spars or truss elements have uniform cross
section and hence stress/strain in the element is constant along the length of the
member. A few special cases may involve stress/strain varying along the length
of a truss element, such as a vertical column with distributed self weight. For
such applications, a 3-noded truss element is used. However, in the case of
beam elements, elementary beam equation predicts deflection of a beam varying
parabolically along the length. Basic beam element in FEM caters to this
variation. Higher order beam element is not of any practical use and is,
therefore, not discussed further.

(a) 3-noded truss element : This element has 3 nodes including one extra
node in the middle of the element. 2" order displacement function is
used. Stiffness matrix for this element is derived here for an
understanding of the subject.
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a
Let u(x)=a +ayx+a.xX’=[1 x x] a,r = (0] fa}
a,
» X
i K | P, u

Substituting the values of x for the two end points and middle point of the
truss element, (x = 0 at node i, x = L at node j and x = L/2 at node k), nodal
displacement vector is written as

u; 1 0 0 a,
u r=1 L 12 [Ra,; or {u}=[G]l{a}
u | LI L/2 L}/4]|a,)

Solving for the coefficients a and substituting in the earlier equation,
u() =[fx)]" [G]" {u}
1 0 0 u,
={1 x x’] |-3/L -1/L  4/L [{u, { =[NJ" {u}

2712 2/ -4/17 ||y,

Strain, € = 3—: =[f')]" [G]" {uc} =[B] {u.}

] 0 0
where, [B]=[0, | 2x]|-3/L -1/L 4/L
2/12 2/12 -4/12

=(£—2~)[(—3L+4x) (-L+4x) (41.-8x)]

and {8} =[B] {8u.} ; {8e}"= {Su}'[B]'
Stress, {o} =[D] {e} =E {e} =E[B] {u}

5o {Pe} = [Ko] {ue}
where, [K ]= I[B]T [D][B]dv = j ﬂ[B]T E[B]dx dy dz

= AE I[B]T [B]dx

since [B] is independent of y and z and de dz=A
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7 1 -8
:-?—LF: 1 7 -8
-8 -8 16

A higher order truss element, which accounts for variable stress/strain, has
very few applications. Some of them are shown here.

Example 6.1

Calculate the displacement at the free end of a 50cm long tapered bar of area of
cross section 1000 mm? at its fixed end and 600 mm? at the free end, subjected
to an axial tensile load of 1kN at the free end. Assume E = 200GPa.

Solution

In order to explain the advantage of a higher order element, the problem is
solved first by using basic truss element and then by using higher order element.

(a) The bar is identified by two 2-noded elements and mean area of cross
section is considered for both elements.

At mid-point of the bar (node 2),
A= (1000+600) _ 800mm?
2
For element 1, connecting nodes 1 and 2,

(1000 +800)
= {1000+3800)

A =900 mm?*=9 cm’

Stiffness matrix for element-1 is,
AEl 1T -1 EM 9 -9
K], = = -+
L {-1 1 L)|-9 9

[2] _3]

oy
g

- P

Wi

LHRRIIRRRRY
=l
[\S]
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For element 2, connecting nodes 2 and 3,

M 700 mm?*= 7 cm?

Stiffness matrix for element-1 is,

AE[ 1 -1] E[ 7 -7
KL ==~ [—1 l]zf[—7 7]

Assembled stiffness matrix is then obtained as

9 -9 0 P, 9 -9 07(y,
[K]=% -9 9+7 -7 or 1P :% -9 16 -7|{u,
0o -7 7 P, 0 -7 7 ||u,

Applying boundary condition u, = 0, reduced stiffness matrix is obtained as

ISR e

Solving these two simultaneous equations, we get

u | 1|7 7 0
u,| Det|7 161000
63E

where, Det— — (7x 16-7x7)= -

7x1000 L
u, =——w—=111 =
COR
L
and u, =_____16x1000 =254 L
o) e
L
Corresponding stresses are

| = E(u2 w) _ =111-0= 111 N/em’ constant along element-1

— 111 = 143 N/cm’ constant along element-2

and o, =5(“3—L_—‘Q =254
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(b)The bar is modeled by one 3-noded element with uniform area of cross
section (mean of max and min areas). Thus, with A, = 800 mm’, element
stiffness matrix is derived as

=
-
-
-
-

[K]:(i) 17 -8{{u,
-8 -8 16/|u,
z

Since the chosen model has only one element, assembled stiffness matrix
is also the same. Therefore,

P, AE 7 1 -8y
P,r= 32L 17 -8{<u,
P, -8 -8 16| |u,

Note : Care should be taken while numbering the load and displacement
components, since the 3 rows of the stiffness matrix correspond to the
end nodes at x = 0, x = L and the mid point (at x = L/2) respectively.

Applying the boundary condition, u, = 0, the above equations reduce to
{g}_{woo}_ A,E [ 7 —~8]{u3}
P, 0 3L |~-8 16]|u,
Solving these equations, we get
u;] 1 [16 87[1000
ot Lo

AL (6.7 gxg)= 128E
3L L

where, Det =

Therefore, u,= =62.5
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and u, =—~—-—1(61);:;I)30)0=125 (%)

L

Stress in the bar is given by
u,

6=E[B] {u;} =E ( j [(3L+4x) (-L+4x) (4L-8x)] {u,

u,

=E ( J [(3L +4x) u; + (L + 4x) u3 + (4L. — 8x) u;]
=E (L ) [(-3L + 4x).0 + (-L + 4x).(125 L/E) + (4L — 8x).(62.5 L/E)]
= (%) [(-125L + 500x) + (250L — 500x)]

= (%) (125L) = 125 N/cm?

Since a single element model with constant area of cross section is used,
stress along the element remains constant and is not realistic.

(c) The bar is modeled by one 3-noded element with area of cross section
varying along the length of the bar. The element stiffness matrix is obtained

from
[K.1= [[BI"[DI[B]dv = [[B]"E[B] A(x)dx =E [[BI"[B] A(x) dx
v L L

where [B]= (%) [(-3L +4x) (-L+4x) (4L - 8x) ] as derived earlier.

On integration of the above with A(x) = A, — (A, — A3).xL=a-bx,
where, a=A; and b= (A, — A;)/L, we get
912 —24Lx+16x> 312 -16Lx+16x> —12L2 +40Lx -32x’

[K]= IE(a )| 312 _16Lx+16x 12_8Lx+16x>  —4L2+24Lx-32x> |dx
L’ —1212 +40Lx -32x> —4L% +24Lx—32x> 1612 - 64Lx + 64x*
14a-3bL 2a—-bL —16a+4bL

:E— 2a-bL l14a—-11bL —-16a+12bL
—16a+4bL -16a+12bl. 32a—-16bL
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C[UAEIA AA —12A-dA ) T128 16 -1
=—| A+A;  3A+11A, —4A -12A,|=—| 16 96 112
6L

—12A,—4A, —4A,—-12A; 16A,+16A, ~144 —112 256

Since the chosen model has only one element, assembled stiffness matrix
is also the same. Therefore,

Pyp=—1| 1 6 -Tiqu
3 3L 3
P, -9 -7 16 ||u,
1 2 3 P

Note : Care should be taken while numbering the load and displacement
components, since the 3 rows of the stiffness matrix correspond to the
end nodes at x =0, x = L and the mid point (at x = L/2) respectively.

Applying the boundary condition, u; = 0, the above equations reduce to

RS )

Solving these equations, we get
u;| 1 |16 7]1000
u, " Det|7 6] 0

where, Det = (E‘E) (6+16—-7x7)~125 (E)
3L L

Therefore, u, = 7x IOé)O =5—;L—
(125£]
L

16x1000 128L
and U, = =

3
(IZSE] E
L
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Stress in the bar is given by

2
c=E[B] {u} = E &) [(3L+4x) (-L+4x) (4L-8x)] {u,

1

=E (E—) (-3L + 4x) u; + (-L + 4x) u; + (4L — 8x) uy]

2

128L

uy

U,

= E(é) [(—3L+4x).0+ (—L+4x).(—E~J+(4L-8x).(S—]63£j]

= (%) [(-128L + 512x) + (224L — 448x)] = (

16
L

) (6L + 4x)

Stressatnode 1, forx=0,is o;= (%) (6L+4x0) =96N/cm?

16

16

L

j (6L+4><——
L 2

Stress at node 2, for x = 121 ,is o0, = (—

J =128 N/cm?

Stress at node 3, forx =L, is o03;= (f) (6 L+4 x L)= 160 N/cm?

Analysis of results

All the three models have 3-nodes, but gave different solutions. Exact solution
depends on how closely the assumed displacement field or stress distribution
matches with the actual displacement field. In this example, it is clear from
basic equilibrium condition that stress is linearly increasing from P/A; at node-1
to P/A; at node-3 and hence, displacement must increase in a parabolic form.

The results are tabulated below.

Model Displacements at Stresses (N/mm?) at
Node-2 Node-3 Node-1 Node-2 Node-3
Two 2-noded 111 LVE 254 L/IE 111 111/143 143
Ave 127
One 3-noded, Constant area 62.5 L/E 125 L/E 125 125 125
One 3-noded, varying area 56 L/E 128 L/E 96 128 160
Exact P/A =100 ' P/A,=125 | P/A;=167
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(i) The 1* model assumes linear displacement field and hence constant
stress over each of the two elements. At the common node between
elements, stress has a step function and the average value can be
taken to represent stress at that node. Results can be improved by
taking more such elements in the model.

(ii) The 2™ model uses a single 3-noded element, assuming constant
(mean) area of cross section along the element. Hence, even though
parabolic displacement is considered, linear displacement field and
constant stress are obtained.

(iti) The 3™ model consisting of a single 3-noded element, whose stiffness
matrix is derived for varying cross section area along the element,
gives parabolic displacement and linear stress representing the true
situation. Hence, this model gives best results.

(b) Higher order Continuum elements

Higher order elements are more commonly used for analysing 2-D and 3-D
structures. Linear strain triangle (LST) will have six unknown coefficients
to include all terms upto second order, as shown in Pascal’s triangle. For
evaluation of these six coefficients, six nodal values are required in each
element. Thus, the 6-noded element is formed by including midpoints of the
three sides as the additional nodes. The functions for u and v displacements

are
- 2

u(x) =a;+ a,.x +a;y +a,x" +as. xy + as. y2 N

and wv(x)=a;+agx+agy+ aj0.X> + a). Xy + app. y2

The function for LST element, as in the case of CST element, is also
complete and isotropic.

/N VAN
' N /. \'\

[ > Lol

6-noded CST element 10-noded QST elemem

Quadratic strain trlangle (QST) will have ten unknown coefficients to include
all terms upto third order, as shown in Pascal’s triangle. For evaluation of these
ten coefficients, ten nodal values are required in each element. Thus, the 10-
noded element is formed with 6 additional mid-side nodes and 1 internal node.
The functions for u and v displacements (complete and isotropic) are

u(x)=a; + o X +azy+ax +as. xy+a.y +ax + ag. X’y + ag Xy’ +aj .y’
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and

V(X) =a; tapx+ aps.y + a]4.x2 + ags. Xy + 816.y2 + a,7.x3 + a,s.xzy + alg.xy2
3
+ ax.y

Similarly, the displacement functions for a 10-noded 3-D solid tetrahedron
element with additional mid side nodes along its 6 sides (complete and isotropic
function) are

A LA
/ \/ / I ...... l//
N

\ ./_:—______-—— * —
[ ]

10-noded tetrahedron clement 20-noded hexahedron element

u=a;ta;x+asytagz+ a5.x2 + a6.y2 + a7.z2 + ag.Xy t+ao.yz + ajp.zx
v=ajtapx+ apy tayz+ a|5.x2 + a|6.y2 + a17.Z2 + a;s.Xxy + aj9.YZ + ay).ZX
wW=ay t+anpxtayytayzt a25.x2 + a26.y2 + a27.z2 + a8.Xy + 839.yZ + 23p.2X

and the displacement functions for a 20-noded 3-D solid hexahedron element
with additional mid side nodes along its 12 sides (incomplete but isotropic) are

u= a,  +tax +ayy “+az +asx’ +agy +a,Z +agxy
+ag.yz +app.zx + a“.x3 + alz.xzy + a13.xy2 + a14.y3 + a15.yzz + a16.yz2
+ a”.z3 + alg.xzz + a|9.XZZ + 839.XyZ
V= ay +apx tany tayz + a25.x2 + a26.y2 + a27.z2 + ay3.Xy
+az.yz +az.zx + a31.x3 + a32.x2y + a33.xy2 + a34.y3 + a35.y2z + a36.y22
+ a37.z3 + a3g.x2z + a39.x22 + a40.Xyz
W= a +tapX tapy ‘auz FagxX tagy tagz +agxy
+ag.yz +asp.zx + a51.x3 + a52.x2y + a53.xy2 + a54.y3 + a55.yzz + a56.yz2
+ag.Z +apXz +as.XZ" + 26.XyZ
Note : Whenever possible, complete and isotropic displacement polynomial is
used. If, however, it is not possible, preference is given to isotropy rather than
completeness of terms of a particular order. In the above cases of higher order
elements with incomplete polynomials, there is no unique combination of the

terms and many other combinations of terms in the selected polynomial are
possible. Different software may thus use different polynomials.
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6.2 ISOPARAMETRIC ELEMENTS

169

The derivation of stiffness matrix by the method described so far involves
integration of the strain energy over the surface or volume. For straight
boundaries, this integration can be carried out by numerical techniques. Higher
order elements are developed with better displacement functions so that
accurate results can ‘be obtained with lesser number of elements. Inherent
disadvantage with these elements is that as the size of the element increases,
accuracy of boundary representation reduces since edges of element boundary
are always assumed as straight lines. Also, as the size of the polynomial
increases, inversion of G matrix, linking nodal displacements to the coefficients
of the polynomial, takes more time.

(a) Unrefined elements (b) Refined elements (c) Refined elements
of simple shapes of simple shapes of complicated shapes

FIGURE 6.1 Representation of curved boundaries

A need was therefore felt to improve the method, in order to idealise the
given structure with curved boundaries more accurately. In this method, element
geometry as well as displacements are interpolated over the element using
shape functions or interpolation functions N; in terms of natural or
intrinsic or non-dimensional coordinates.

Two types of shape functions are commonly used.
e Lagrange interpolation function, which matches the function value
(displacement) at specified points or nodes
e Hermite interpolation function, which matches function value
(displacement) as well as its derivatives (slopes) at the specified nodes.



170

FINITE ELEMENT ANALYSIS

Curvilinear orthogonal coordinates &, n and £, whose magnitudes vary from
—1 to +1 in any element, are used in place of cartesian coordinates x, y and z or
cylindrical coordinates R, 6 and Z. The shape functions are then defined in
terms of the natural coordinates, which link displacement at any point in the
element to the nodal displacements thus avoiding the need for inversion of G
matrix. It is obvious that there will be as many shape functions as the number of
nodes in the element. Each shape function will have a value equal to unity at
one node and a value equal to zero at all other nodes

Three types of elements are possible.

e If a higher order function is used to represent displacement and a lower
order function is used to represent geometry, it is called a sub-
parametric element.

o If a lower order function is used to represent displacement and a higher
order function is used to represent geometry, it is called a sui)er-
parametric element.

¢ If functions of same order are used to represent displacement as well as
geometry, then the element is called an iso-parametric element.

Of these, iso-parametric elements are most commonly used.

6.3 STIFFNESS MATRICES OF SOME ISO-PARAMETRIC ELEMENTS

(a) 1-D linear interpolation for a truss element
Let the non-dimensional coordinate for the 1-D element be defined by
g 20mx)
(x, —x,)

so that at node 1, x = x, and £ = — 1 whileat node ."Z, x=xyand { =1

Then, the shape functions N, and N, are defined in terms of &, as shown in
Fig.6.2, by

(1-¢) (1+8)
NE=L12; N -2
It can be seen that the shape function N, = 1 for x =x,; and { =— 1 at node 1

and N; = 0 for x = x, and § = + 1 at node 2, while N, = 0 at node 1 and
N, =1 at node 2.
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Then, cartesian coordinate ‘x’ and axial displacement ‘u’ at any point on the
element are given by

x =N x;+ Ny x; = [N] {x}
and u=Nju +N,u; =[N] {q}

3 g=-1 g=0 &=+l ¢
FIGURE 6.2 Shape functions of a 2-noded truss element (Case-1)
. du . . . e
The strain € = i can now be expressed, using chain rule of differentiation, as
X

8_dug_[dm, , AN, }dg
dx

de dx | dg de

_jou uy 2 _Tutuy
SERE e

-1
where, [B]=]— l and L=x,-x
L L

Then, Kel= ;ﬂB]T [D][B]dV = Z[A [B]T E [B]dx Zé[:EI:—l] _11}

This stiffness matrix is identical to the one obtained by polynomial method
described earlier.

Alternative coordinates — There is no restriction on the choice of the origin of
local coordinate system. For example, if the origin is taken at the left end of the
truss element, as shown in Fig. 6.3, then the non-dimensional coordinate & is
given by
E=(x-x1)/(x2~xy)
Atnode 1, x=x, and { =0 while at node 2, x =x; and § = 1
The shape functions are now defined by N((§) = 1-§ ; Ny(§)=¢&

which give the values N; = 1 for £ = 0 at node 1 and N, = 0 for £ = 1 at node 2
while N, =0 at node 1 and N, = 1 at node 2.

171
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The Cartesian coordinate x and displacement u are again defined by
x=N; x;+ Ny x, = [N] {x}

and u=N;u; +Nyu, =[N] {q}

N,

Jry
Nash 4

£=0 =+

FIGURE 6.3 Shape functions of a 2-noded truss element (Case-2)

_du d§ 1 —uy +u,
=@ ) e =Bl

where, [B]= (—L—j -1 1]1; L=x3—

LAE J’[B [D][B]dv = I[B]T E [B]A dx ALE {_1 —1}

1
This stiffness matrix is also identical to the one obtained by polynomial
method described earlier.

(b) 1-D Quadratic interpolation for a truss element

The non-dimensional coordinate, with mid-point of the element (node 3) as

the origin, is given by £ = 2x=x3)

(x; —xy)
so that with x, — x; = L, x; — x3 = - L/2 and x, — x5 = L/2 the non-
dimensional coordinates at the three nodes are §; =—1; &,=1; & =0

€2 2

Then,
dx (x,-x;) L

Corresponding shape functions Ny, N, and N; are given by

Ni®)=-8(1-8)2; Ny(E)=&E(1+8)2; Ny =(1+&(1-¢)



CHAPTER 6 HIGHER ORDER AND ISOPARAMETRIC ELEMENTS 173

They are graphically represented in Fig. 6.4.

AN; N,
!
1 : 1
E £=-1 t=0 t-+1 gk/l‘f‘] E=+1 &

FIGURE 6.4 Shape functions of a 3-noded truss element
The local Cartesian coordinate x and the displacement u are then given by
x =N x1+ Ny x; + N3 x3=[N] {x}
u=Nyu +Nyu + Ny u; = [N] {q}
Strain, expanded by the chain rule of differentiation, is given by

_dug_[dN, LN, N, }g
- 3

g=— u, u, + u
dg dx | dg dg dg | dx
:%{_ (] —22§)ul + (1 +22E.>)u2 _2§u3:, :[B] {q}
where, [B]zg[— (1-2¢) (1+2) —2&}
L 2 2
. AEEREE
[Ke]=J'[BHD][B]alV:OIA[B]TE[B]dx:I 178
: -8 =8 16

This stiffness matrix is identical to the matrix obtained earlier for the 3-
noded truss element.

(c) 1-D interpolation for a beam element

Shape functions for the beam elements differ from those of truss elements,
since derivatives of displacement (slopes) are also involved. Hermite
functions, H,, which satisfy deflection and slope continuity, are used so that
deflection at any point is given by

W= H]W\ + Hzel + H3W2 + H492 or H]W] + Hz(dW/dX)| + H3W2 + m(dW/dX)z
= H,w; + (2/L) Hy(dw/d€), + H3yw, + (2/L) Hy(dw/dE),
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e LG

Here, Cartesian coordinate x of any point in the element is related to non-
dimensional coordinate & by

where, x:x,(]_§)+x,(]+§]=(xl+x2)+§(x2“xu)
2 2 2 2
for -1<E<+1
and .d_x:M:(L/z) or 4e_2
dg 2 dx L
Hizal+bl§+cl§2+d|é3 v i:l,2,3,4

By imposing the end conditions

w; =0 and dw =0 at £=-1
dg ),

and w; =0 and (@—J =0 at &, =1
dg ),

these H, functions and their derivatives take the following values.

at E=-1 at&=+1 até =-1 at&=+1
Hl 1 0 H]’ 0 0
H, 0 0 Hy 1 0
H, 0 Hy’ 0 0
H, 0 0 Hy’ 0 |
Coefficients a, b, ¢, d can then be obtained as

1 3 |
a,=— ; b, =—= ; =0 ; d,=—
) g ' 'y

1 -1 -1 ]
a,=— ; b,=— ; c,=— ; d,=—
2 24 24 2 g

1 3 -1
a, =— ; b =— N —0 5 d = e
373 27 o 377

-1 -1 1 1
a, =— ; b, =— ; Cy=— 3 d, =—
‘g ‘4 g g
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Thus, 1 20=8°Q+8 - Q-%+E)

4 4
PR GtV ) N Ut o S0

4 4
g, #0°Q-9H - Q+3-8)

4 4
H4=<1+§):(z;—1) or (~1—&2&2+§3)

Variation of these functions over the beam element is plotted in Fig. 6.5.

FIGURE 6.5 Hermite Shape functions of a 2-noded beam element

(d)2-D linear interpolation for a triangular element

The non-dimensional coordinates £ and 1 and the shape functions N;, N,
and N; are also at any point P are given by above the figures.
A A A

1= A 3 2T, n 3T A
Where A is the area of the triangle; A, is the area of the triangle formed by
points P, 2 and 3; A, is the area of the triangle formed by points P, 3 and 1;
and A; is the area of the triangle formed by points P, 1 and 2, as shown in
Fig. 6.6. Hence, the shape functions N;, N, and Nj; are also called area
coordinates.

It can be seen that for any point P, A=A;+A,+A;
and so N|+N2+N3=l or N3=1*N|.—N2=1—§—'ﬂ

175
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The local Cartesian coordinates x and y and displacements u and v along
these Cartesian coordinates are given by

x=NixitNoxp+ Ny x3 =x 8+ x,m+x;(1-§-1)
=Xi3E +Xam + X3 where, X3 =X; —X;and X,; =X, —X;
Similarly, y = yis§ +yzm +ys where, y;; =y, —y; and yy; =y, —y;
The Cartesian coordinates as well as corresponding non-dimensional
coordinates are shown in Fig. 6.6 for a 3-noded triangular element.

Y4 3(x3,y) n4

2(0,1)

2(x5,y7)

l(xl!YI)

A\ &

§

3(0,0) 0,0

FIGURE 6.6 Mapping of a triangular element in {&-n coordinate system

The displacements u and v can be represented in terms of the same non-
dimensional coordinates as
u=Nju;+Noup, + Ny us
= (u;— w3)€ + (uz—uz)n +us
v=N;vi+N; vy + Ny,
=(Vi— v+ (va—van +v;
These equations can also be represented in matrix form by
U
v
ul] |N, 0 N, 0 N; 0 lju
{v}=[ oN 0 N, 0 NJJ v [ O W=

Shape functions are plotted in Fig. 6.7 with non-dimensional coordinates
indicated for each node. The three shape functions have a value of unity at
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one node and a value of zero at all other nodes. In the figure, A, A; and A,
indicate areas used for the calculation of non-dimensional coordinates & and
n of any point P.

o

200.1)

7 3(0,0)

20.1)

FIGURE 6.7 Shape functions of a 3-noded triangular element

(e) 2-D quadratic interpolation for a triangular element

The non-dimensional coordinates &, n and C remain same as above but the
number of shape functions are increased to six corresponding to the six
nodes of the element and are given below

N =8@28-1)
No=n(2n-1)
N3=C2C-1)
Ny=4&n
Ns=4ng
N¢=4CE

Lines with constant values of Ny, N, and N; are shown in Fig. 6.8 while
variation of shape functions is plotted in Fig. 6.9.

The cartesian coordinates x and y and displacements u and v in the element
are given by

K=N| X1+N2X2+N3X3+N4X4+N5X5+N(,Xﬁ
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y=Niy1+N2ys+ N3 y3+Ngys+Nsys+Ng ys
u=N; u+ Ny u; + N3 uz+ Ngug+ Nsus+ N ug
v=N; vi+t No vy + N3y vi+ Ny vyt Ns vs+ Ng vg

-~ by
“N=1 N;=172

FIGURE 6.8 Lines of constant shape function value over the triangular element

u(N,, Ny- Ny

N, =1 (2n-1)

FIGURE 6.9 Shape functions of a 6-noded triangular element

(f) 2-D linear interpolation for a quadrilateral element

Unlike in the case of triangular element, which is identified by three non-
dimensional coordinates each having values in the range 0 to 1, a
quadrilateral element is identified by two non-dimensional coordinates each
having values in the range —1 to +1, as shown in Fig. 6.10.

K=N| X|+N2x2+N3X3+N4X4

y=Niyi+Nay: + N3ys+ Nyys
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Na
Y4 3()(3.)!3) 4(_1 [) 3“ ”
4x4,Ye) z
2(x3¥) 1(=1,-1) 2(1,-1)
t(":I.vyl)' X

FIGURE 6.10 4-noded quadrilateral element in £ — i coordinate system

The coordinates and displacements at every point in the element are
expressed in terms of nodal values, using shape functions Ny, N, N3 and N4 as
U=N; U]"‘Nz [15) +N]. U3+N4U.|
V=N| V]“'Nsz""N; V3+N4V4
Shape functions at each node of a 2-D element can be derived as the product

of shape functions along & direction and n direction passing through the

particular node.
TT“.IS, N| =N;§.N|n
where Nj¢ and N, are the shape functions of 1-D elements with

E=-ltotlandn=—-1to+1

w208 (-n)_(1-9)-n)
2 2 4

(+&1-1) . N, = 1+E6)1+n)
4 =2 4

and N, =w

Similarly, we can get N, =

Their values are graphically represented in Fig. 6.11.
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i ' ! ~>

FIGURE 6.11 Shape functions of a 4-noded quadrilateral element

(g) 2-D quadratic interpolation for a quadrilateral element

This quadrilateral element, with 4 comer nodes and 4 mid-side nodes, is also
identified by two non-dimensional coordinates each having values in the
range -1 to +1. But, the coordinates and displacement of any point in the
element are expressed by using 8 shape functions (Ref. Fig. 6.12), as

X=N] X|+N2 X2 +N3 X3+N4 X3t N5 K5+N|§ x6+N7X7+Ng Xg
y=Niy1tNoy2+Nay3+ Nyyst Nsys+ Negys+ N7ys+ Ny ys
u=N; u;+ N;uy +N3uz+Ngug+ Nsus+ Ng ug + N7uy+ Ng ug

V=N| V|+N2 Vg+N3V3+N4V4+N5V5+N6V5+N7V7+N3Vg

where,
N ==0=00-n0+E+m) . (A-EN0-n)
4 2
N, - Z0OA-m-E+m) o _(+8)(0-n)
i 4 2
N3=—(1+§)(1+:)(1-é—n) ; N?=(l—é2;(l+n)

-

2
Nﬁ-ﬂ-ﬁ)(”:t)(“é—ﬂ) : N3=(1-§)(21—T1)
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Na

Y 4(-1,1) (LD

t 0093k, 7(0,1)
4(x4,Y,4)
6(x6:Y6) 8-1.0) 0|
5(0,-1)
3(xy.Y,) H-1-1) 21-1)
S(x5,y5) a ?
1(x},y}) X

FIGURE 6.12 Mapping of 8-noded quadrilateral in £&-n coordinate system

(h)  3-D linear interpolation

A 8-noded 3-D element is identified by three non-dimensional coordinates
each having values in the range —1 to +1, as shown Fig. 6.13.

Y
4 3(x3,¥1.223)
. —Li-1
e R
B(xy.Y120)
4Ux,y,.2,)
6(X4,YerZs)
X3 ¥2,Zy) &
7 225 1-1,-1- 1)
HxLyu7) 5(x5,Y5e25)
> X S(-1,-1,1)

FIGURE 6.13 Mapping of 8-noded 3-D solid element in £~ 1 coordinate system

The coordinates and displacement functions are given by
x=Nj X3+ Ny % + N3 X3+ Ny x4+ N5 x5+ Ng X6 + N7 X7+ Ng Xg
Y=Niy1+*+Noy; + N3 y3+ Ny ys+ Nsys+ Neys + Ny y7+ N ys
z2=Nyz;+ Ny + N3 z3+ Ny 24 + N5 25+ Ng 26 + Ny 2, + Ny 23

and
u=Nyu; +Nyu, +Nzus +Nguy + Nsus + Ngug +N;uy +Ng ug
v=N;vi +Nyv; +N3v3 +Nyvg +Nsvs +Ngvg + Nyvy +Ngvg

W=N| W]+N2W2+N3W3+N4 W4+N5W5+N(,W6+N7W7+N8W3
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Shape functions at each node of a 3-D element can be derived as the product
of shape functions of 1-D elements along & direction, n direction and
{ direction passing through the particular node.

Thus,
N1 = N]g . N]TI B N]c

where Nj; , N;, and Ny are the shape functions of 1-D elements with
E=—1to+l,n=-1to+l and {=-1to +1
N, (=8 1-m -0

2 2 2
_(a-8ad ;11)(1 -0)

Similarly, we can get N, =08 . (-6
N, = d+&)d ; m(i-6)

SIS S

N, =090+

N, =0+ 901+

N, - 049000

N, - 0804140

6.4 JACOBIAN

In order to have unique mapping of elements, there should be only one set of
cartesian coordinates for each set of corresponding non-dimensional coordinates.

For-a 2-D plate element in x and y coordinates, using chain rule for partial
derivatives,

]
%

X Y gimilarly for
Ox 0§ oy & on
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Expressing them in matrix form,

Ou/E| |Ox/0E Oy/dk ||ouldx -] Ou/ox
duldn| |ox/on dylom||euldy] T |ouldy
where [J] is called the Jacobian or a matrix of partial derivatives of Cartesian

coordinates of the element w.r.t. non-dimensional local coordinates of the
element

From eq. 6.1, [J]=[x|3 yB] or [J]' = I [hs —st]
X3 Y DetJ|-xy3 X3

If nodes are numbered counter-clockwise, in a right-handed coordinate
system, det J is +ve.

For a 3-noded triangular plate element, from eq. 6.1

ox oy
[J]—_— o€ Ok ={X13 Ynjl
& Oyl Xy Y
on on
or [J]—lz__l__[ Yy "‘Y13:|
DetJ|{-X,; X3

where, DetJ=X;3Y53-X3Yn
It can also be expressed as
L xp oy [0 x4-x3 yi-y3| |0 %3 yi3
Deti=|1 x; y,[=0 X,-X3 Y,-Yy3|={0 Xp3 yp
1 x5 y3 1 x5 Y3 b x5 y;

= X13¥23 Y13 X3

Area of the element, A =% Det J =% (x13 Y23 —X23.13)

1 1 1
and [K]= [[B]" [DI[(BIdV = | [ [(BI" [D}[B]Det[J]d& dndg

-1 -1 -1

For a 3-D element in x, y and z coordinates, these relations can be expressed
in matrix form in a similar way as

ou/dk) [ox/dk oy/oE 0z/dE ] (ouldx Bu/dx
du/dnb=|ox/om dylon oz/on|{ouldy}=[I]{u/dy
auldc| |ox/at oyiac dylac||ouloz u/dz
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where,

Ox/05 0Oy/ot 0z/dg X4 Yia Zy
[J1={0x/0n Oy/on 0z/0M|={Xy Y Zxu
ox/of oylog oylog X34 Y Zy

The same Jacobian relates derivatives of displacement components v and w

also.

6.5 STRAIN-DISPLACEMENT RELATIONS

(a) For a 3-noded triangular element

Bu/dx Bu/ ot
{e} =q0v/oy = [J1'{ov/on
ou/0y+0v/ox Ou/on+ov/ok
Bulk
. Y3 0 y; O ovidn
0 x3, 0 x4

~ DetJ du/dn

X3 Y23 X13 Y31 ovidE

Y23 OW/EE +(-y,3) Bulon
=(6e—t—.l_) (=X 23) OVIOE + x,, Bulon Since
(=X 3 ) OW/BE + X3 Du/ON + Y 53 OVIBGE +(=y,3) Ov/on
u=Nu+ N +Nyus=(u—uz) £+ (1z—u3) n + s
Ou/dE=u—uz=uy3 ; OUWON=wm—U;=Uy
Similarly, ov/6 =v,—v3;=vy3 ; ovion =v—v3=vp

Therefore,
0 0 U3
Yn bET Ya3-Ui3 Y30y
{e}= : 0 x 0 x,[{"™" =——l—x Vi3 +X)3.V
Det] 32 13 uy [~ DetJ 32-Vi3 +X|3.Vy3

X3 Y3 X3 Yy v X32-Uy3 +¥23.Vy3 + X)3.Up3 + Y31V
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'Ul
Vi
]Y230)’310)’120u
= 0 xp 0 x53 0 xy[ 2t=[Bl{qg}
Det J v,
X312 Y23 Xi3 Y1 X1 Yn2
LE!
V3

where strain-displacement matrix,

Yz 0 yy3 0 yp, O
0 xp 0 x3 0 xy

X32 Y23 X13 Y1 Xt Y2

1
B]= ——
[B] Det J

The elements of [B] are constants and not functions of coordinates (since
shape functions are linear in x and y) and hence, strain in a 3-node triangular
element is constant over the entire element.

Element stiffness matrix [K.] is obtained from [K.] = | [B]" [D] [B] dV.
Here, the integration is carried out on non-dimensional coordinates with the
limits 0to+1 or -1 to+l1, depending on the particular case. Element with
curved edges also is mapped into an element with straight edges in the non-
dimensional coordinate system. Hence, for an element with curved boundaries,
integration becomes much simpler in non-dimensional coordinate system
compared to the integration in Cartesian coordinate system.

(b) For a 4-noded quadrilateral (2-D) element

Following the same procedure, we can get [B] matrix. The local non-
dimensional coordinates & and 1 take values from -1 to +1.

Here, X=N| X1+N2X2+N3 X3+N4X4
Yy=Ni1y1+*tNay: +N3y3+ Nyys

and u=N; uy+Noyuy + N3y us+ Ny uy

V=N1 V1+N2V2+N3V3+N4V4

SR EIEL
L L IR L)

185



186

FINITE ELEMENT ANALYSIS

Then o[/ /%] [
’ oxion dylon| [ I

where, )l (d=mx+(1=m)xa+ (1 +m)xs— (1 +1)x]

w3
Ji2= ()[—(1 MWyt -n)y2+ (1 +n)ys—( +n)yi
)[—(1 —)x-(1+§) % +(1+8)x3+(1 -8 x4
) F-8y ~(1+8y:+(1+E)ys+(1 -5yl
Now, {6u/6x} (l/DtJ)[ —le]{au/ag}

du/dy Jyr I |ou/on

Bv/ox -1, (ovice
w Laromen s T e

ou/ox
{e}={ov/oy
Ou/0y +ov +0x
Ou/ok
: Iy, =y 0 0 dulén
0 =Jy Iy =[Bl{q}
DetJ Ov/OE
“dy Iy Jn Bvin

where,

([l 00
B]l=——{ 0 0 -J J X
(B] Det ] 21 In

-Jy In Jn -l

-1a-n) .0 I-m 0 (@d+my 0 —(4m) O

11 -0-5 0 -(1+% 0 1+ 0 (-9 0

4 0 -(t-m 0 - 0 (+m) 0  ~(i+m)
0 -(1-& 0 -(1+& 0 (1+§ 0 (1-¢)



CHAPTER 6

Elements of this matrix are functions of coordinates, since shape functions
include higher order terms and hence strain in this element is not constant

over the element.

HIGHER ORDER AND ISOPARAMETRIC ELEMENTS

(c) For a 8-noded quadrilateral (2-D) element

Following the same procedure, we can gei [B] matrix. The local non-

dimensional coordinates £ and n take values from —1 to +1.
X =N x;+ N3 x5 + N3 X3+ Ny x4+ Ns X5+ Ng xg + N7 x5+ Ng xg
Y=NiyitNoy, + N3ys+ Nyys + Nsys+ Neys + Noy, + Ny ye
u=N; u;+ Ny u, + N3 uz+ Ny uy+ Ns us+ Ng ug + N7 u;+ Ng ug
v=N; vi+ N v + N3 v3+ Ny vs + Ns vs+ Ng v + Ny vo+ Ng vy

where,

N,

_—(-8)1-n)1+&+m)
4

_—(+5)0-n)1-§+n)
4

_—(1+&)1+m)(-&-n)
4

_—(-5)+n)(I+E-n)
4

N, =480

(d) For a 4-noded tetrahedron (3-D) element

Following the same procedure, we get

{e}

(Ou/ox )

du/dy

ow/ oz .

=1 r:[J] <
| Bu /By + v/ dx

ov/ oz +0w /by

2

|, 0+80-1)
2

5 )
2

NS
2

- ‘

ou/on

ow 8¢ )

ou/on+ov/ae [~ B

ov/ K, +ow/on

ow /08 +du/at

0w /0% +du/ oz

Xia Y Zy

Here, [J]=[X,, ¥y 2y

X3 Y Zy

If the elements of [J]™' are designated by the constants Aj;, then

187
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An Ay A|3
[J]_l = AZI Azz A23
Ay Ay Ay

and A =Apt+Apt+tAp; A=A +tARn+t AR Ay = A+t Ant Ay

then,
(A, O 0 A, 0 0 A; 0 0 -A 0 0 ]
0 A, 0 0 A, 0 0 A, 0 0 =A, 0
0 0 A, 0 0 A, O O A, O 0 -A,

[B]=

0 Ay Ay 0 Ay Ay 0 Ay Ay 0 —A} -A)
Az 0 Ay Ay 0 A, Ay 0 A, _A'3 0 _A;
Ay Ay 0 Ay Ay 0 Ay Az 0 -A) -A 0

Here again, elements of [B] matrix are constants since shape functions are
linear functions and, hence, strain in this element is also constant throughout the
element.

6.6 SUMMARY

e Higher order elements are broadly classified as - Serendipity
elements, having no internal nodes and Lagrange elements, having
internal nodes which can be condensed out at the element level before
assembling.

e Higher order elements use higher degree displacement polynomial
and can represent true situation with lesser number of elements than a
model with lower order elements.

e Isoparametric elements model displacement as well as boundary with
the same polynomial. A small number of higher order isoparametric
elements can model curved boundaries of component accurately.
Even a large number of lower order and non-isoparametric elements
can only approximate curved boundary by a set of straight lines.

e [soparametric elements use non-dimensional coordinates / shape
functions and facilitate programming for numerical integration on a
computer.
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OBJECTIVE QUESTIONS

189

I.

Curved boundary is better modeled by using
(a) non-dimensional shape functions  (b) higher order elements
(c) more number of simple elements  (d) isoparametric elements

Sum of shape functions at a point is

(a) 1 (b) 0 (c) any +ve integer (d) any —ve integer
When fewer nodes are used to define the geometry than are used to define
the displacement, the element is called  element

(a) subparametric (b) isoparametric

(c) superparametric (d) complex

When same number of nodes are used to define the geometry and
displacement, the element is called _ element

(a) subparametric (b) isoparametric

(c) superparametric (d) simple

When more nodes are used to define the geometry than are used to define the
displacement, the element is called ___ element

(a) subparametric (b) isoparametric

(c) superparametric (d) complex

Derivatives of displacement function with respect to element coordinate
system and non-dimensional coordinate system is given by

(a) Lagrangian (b) Poisson
(c) Gaussian (d) Jacobian

Number of shape functions for a triangular plane stress element are

(@ 2 (b) 3 (c) 4 d) 6
Number of shape functions for a quadrilateral plane stress element are
(a) 2 ()3 (c) 4 (d) 8

Number of shape functions for a 8-noded quadrilateral plane stress element
is

(a) 2 (b) 3 (c) 4 (d) 8

10. Shape functions for a triangular plane stress element are also called

(a) r-s coordinates (b) area coordinates

{c) volume coordinates (d) x-y coordinates
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SOLVED PROBLEMS

Example 6.1

For a point P located inside the triangle shown in figure, the shape functions N,
and N; are 0.15 and 0.25 respectively. Determine the x and y coordinates of
point P.

Solution

A triangular element will have three natural or non-dimensional coordinates N,
N, and N3 such that N; + N, + N3 =1 orN;=1 ~N;—N,.

Y4 3

Hence, coordinates of point P i.e., (X, y,) are given by
Xp = NiX; + Noxp + Nax3 = Nix; + Noxp + (1 = N1 = Ny) x;
=0.15x1+025x4+(1-0.15-025)%x3=0.15+1.0+1.8=295
yr=Niy; + Noy2 +* Nays =Ny, + Noy, + (1 =N~ Ny)ys
=0.15x1+025%x2+(1-0.15-0.25)x5=0.15+0.5+3.0=3.65

Example 6.2

The coordinates and function values at the three nodes of a triangular linear
element are given below. Calculate the function value at (20,6).

Node 1 Coordinates (13,1)  Function value 190
Node 2 Coordinates (25,6)  Function value 160
Node 3 Coordinates (13,13)  Function value 185

Y4 3
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Solution

A triangular element will have three natural or non-dimensional coordinates N,
N2 and N3 such that N] +N2 +N3 =1 or N3= 1 —N]—Nz

Hence, coordinates of point P i.e., (X, y,) are given by
Xp = Nyx; + Npxp + N3xz = Nj (X — x3) + Na (X2 — X3) + X3
20=N;(13-13)+N,(25-13) + 13

=12N,+13 or Np=7/12
Yr=Niy1 + Noy2 + Nays = Ni(y1 —y3) +* Na(y2 - y3) + s
6 =N;(1-13)+N,(6-13)+13
35
144

Hence, N3;=1-N;_N,=1- (}i]_(ljzﬁ
144 12) 144

Function value at (xp, yp) = N;V; + NV, + N3V,

- (3_5)X190+(l)x]60+(2)x]85=l71.632
12 144

=—12N;-7x (—z-j +13 or N;
12

144

Examiple 6.3

The nodal coordinates of the triangular element are (1,2), (5,3) and (4,6). At the
interior point P, the x-coordinate is 3.3 and the shape function at node 1 is 0.3.
Determine the shape functions at nodes 2 and 3 and also the y-coordinate at the
point P.

Solution

A triangular element will have three natural or non-dimensional coordinates N;,
N2 and N3 such thatN1 + N2 +N3 =] OFN3= 1 —N1~N2.

Hence, coordinates of point P i.e., (x,, y,) are given by
Xp= NiXp + Noxy + N3x3 = N (x; — X3) + Ny (X2 — X3) + X3
33=N;(1-4)+Ny(5—4)+4=03 x (-3) + N, + 4
=N, +3.1 or N,=02
Hence, N3=1-N,=N; = 1 = (0.3)—(0.2) = 0.5
Yp=Niy1 + Noya * N3y3 = Ny (y1 —y3) + No(y2 - y3) tys
=03x(2-6)+02x(B-6)+6=-12-06+6=4.2

191
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Example 6.4

Triangular elements are used for stress analysis of a plate subjected to in plane
load. The components of displacement along x and y axes at the nodes i, j and k
of an element are found to be (-0.001, 0.01), (-0.002, 0.01) and (-0.002, 0.02)
cm respectively. If the (x, y) coordinates of the nodes i, j and k are (20, 20),
(40, 20) and (40, 40) in cm respectively, find (a) the distribution of the two
displacement components inside the element and (b) components of
displacement of the point (xp, yp) = (30, 25) cm.

Solution

(a) Distribution of displacement components u and v inside the element are
given by

Up = N| u; + N2 [V 5] +N3 U3 = —0.001 N] -0.002 N2 -0.002 N3
and vp=N; vi + Ny vy +N3 vz =0.01 N; +0.01 N, + 0.02 N3

(b) A triangular element will have three natural or non-dimensional coordinates
N;, NpandNssuchthat Ny +N;+N3=1 or N;=1-N;—-N;,

Hence, coordinates of point P i.e., (x,, yp) are given by
Xp = Nixj + Noxp + Nax; = Nixy + Noxp + (1 =N = Ny)x3
30=20N; +40 N, +40 (1 =N, —N,)
=40-20N,
Therefore, 20N, =10 or N;=0.5
Similarly, yp=Njy; +Noy, + N3y3 =Nyy; + Noy, + (1 =N —Ny) y;
25=20N,+20 N, + 40 (1 =N, —Ny)
=40-20N, -20N,
Therefore, 20N, =15-20N,=15-10 or N,=0.25
and N3=1-N;—N; = 1-05-0.25 =0.25
The displacements u and v at (xp, yp) are given by
up=N; u; + Ny uy + N3 us
=0.5 x (-0.001) + 0.25 x (-0.002) + 0.25 x (—0.002)
=-0.0015 cm
and vp=N; v+t Ny v, N3 v;
=0.5%0.01+0.25x0.01 +0.25x0.02=0.0125 cm
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Example 6.5

The nodal coordinates and the nodal displacements of a triangular element,
under a specific load condition are given below.

X=0,Y,=0, X, =1mmY;=3mm,Xy=4mm,Y,=1mm
U=1mm, V,=0.5mm, U =-0.05 mm, V,= 1.5 mm, Uy =2 mm, V=~ mm

IfE=2 x 10° N/mm” and p = 0.3, find the stresses in the element

Solution

On plotting coordinates of the three nodes of the triangular element, the nodes I,
J and K are identified as 1, 3 and 2 respectively to represent the nodes in the
counter-clockwise direction around the element.

Y23:YKJ=]—3=—2 N Y3|=Y_1[=3—0:3 5 Y|2:Y|K=0—l:—1
X32=XJK=I_4=—3 N X13=X]J=0—l=—] N X21=XK]=4'—0=4

: . X3 Yy -1 -3
Jacobian of the triangular element, J = =
23 Y23 3 -2

Y4
J(1,3)

K@4,1)

1(0,0) > X

Determinant of Jacobian, [J] =(-1)(-2)-(-3)(3)=11

In a 3-noded triangular element, stresses are constant throughout the
element. The three stress components in the element are given by

{o} =[D] {e} =[D] [B] {u}
Y, 0 Y, 0 Y, 0
=[D]|TI 0 X, 0 X, 0 X, |{uw
. X32 Y23 XIB Y31 X2| YIZ

193
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1.0
05
1 v 0 2 0 3 0 -1 0
_E_ 1 ~0.05
1 0 |—|0o -3 0 -1 0 4 4
R 1 15
0 0 (1-v)/2 -3 -2 -1 3 4 -1
2.0
~1.0
2105 1 03 0 1(-4.15
== :‘032 03 1 0 |[{-70
W= 0. 0 035]]9.55
_— ~625
=2 8245 N/ mm?
10.01
3.3425
Example 6.6

X, y, z coordinates of nodes of a tetrahedron element are (30,0,0), (0,10,0),

(0,0,20) and (20, 20, 10). Formulate strain-displacement matrix [B].

Solution

X4 Yu -20 -10
DI=| X ¥ ={-20 -10 -10
X34 Y3 -20 -20 10
A, A, Ay , ~300 400 100
DT =[Al=| Ay Ap Ay (m) 400 —100 300
A, Ay, A, 200 600 -500
and Ao ButApTAL) ~(-300+400+100) -2
! 13000 13000 T 130
_ (A, +A,+A,) _—(400-100+300) -6
2 13000 13000 130
A ,=—(A31 +A,, +A33):—(200+600—500)=—_3
3 13000 13000 130
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A, 0 0 A, 0 0 A, 0 0 -A 0 0
0 0 0 A, O 0 A, O 0 -A, O
[B]: 0 0 A, O 0 A, O 0 A;; O 0' —A:3

0 0 A, A, 0 —AL —A)
A3| 0 An A32 0 A12 A33 0 A13 _A; 0 _Al
A2l All 0 A22 AIZ 0 A23 A13 0 —A,Z _A; 0 J

Thus,
-3 0 0 4 0 0 1 0 O -2 0 O]
0 4 0 0 -1 0 0 3 0 0 -6 0
“t1yO 0 2 0 0 6 0O 0 -5 0 0 -3
H=(T3—o 0 2 4 0 6 -1 0 -5 3 0 -3 —6
2 0 -3 6 0 4 -5 0 1 -3 0 -2
(4 -3 0 -1 4 0 3 1 0 -6 -2 0|

Example 6.7
Determine the deflection at the point of load application using a one-element
mode! for the configuration shown in figure.
Solution
Numbering the nodes of the element in counter-clockwise direction as shown,
Yn=-20; Y5 =0 ; Y;2=20
X3=30; X;3=-30; X3 =0

Jacobian of the triangular element, [J] =% v. |7 30 20
23 23 - -

Determinant of Jacobian [J} = (-30) (-20) = 600

— 2 >
g 50N
2
3
20 mm A t=10 mm
]
9 E =70 Gpa
l 3, v=03
g2
4
e 30 mm —
A l
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The nodal displacements {u} can be calculated from {P} = [K] {u}. So, the

stiffness matrix [K] has to be calculated from [K] =

where,
| Y3 0 Y, 6
[B]:[m) 0 X32 0 X13
X32 Y23 XIS Y3I
-20 0 0 0
=L 0 30 0 -30
600
30 -20 -30 0
B I v
[D][B]=(l_ Sl v
00 (- v)/2
qoxior |20 0
" 60 i); 032) 6 30
OxU=0.3") 105 —7
[-20
0

[K]=tA[B]" [D][B]=

10x300x70x10°| O

600x 600x0.91 0

[BI' [D][B]

20

| 0

[ 715 -390
-390 1040

a1 -315 210
180  —900

~400 180

| 210 —140

After applying boundary conditions, u; = v; = u, =

{P}r = [K]r {u}r

50 ] _gyq[400 0] fus
~100 0 140|]v,

20 0
0 0
0 20

-9 20 0
-30 6 O
o 0 7

Y, O
0 X,
XZI le
20 0
0 0
0 20
-20 0
-20 -30 0
0 -9 20 0
0 -30 6 0
-105 0 0 7
0 30 ]
3(? :ig -20 9 0
“30 0 —6_ 30 0
0 0 10.5 -7 -10.5
0 20 |
-315 180 —400 210 |
210 -900 180 —140
315 0 0 -210
0 900 -180 0
0 —180 400 0
-210 0 0 140

v, =0, we get




CHAPTER 6 HIGHER ORDER AND ISOPARAMETRIC ELEMENTS

which give the displacements at node 3 as

Uy =0~ (.000195 mm
(641x400)
and v, _ 100 -0.0011143 mm
(641x140)

By the conventional displacement polynomial method

(Note : This solution was already given in chapter-5. However, for a quick
comparison between these two methods, it has been repeated here.)

{up=[1 x yJ{a} and {v}=[1 x y] {B}
The coefficients a;, a,, a3, By, P, and B; are evaluated from the above in
terms of nodal displacements as

-

u, 1 0 20]|a
Juyp=t1 0 0 [sa,
u, 30 20 |a,
a, 000u,]0600u|
or 30, 600 0 20(ju, =50 -2 0 2|ju,
A Lso -30 0 |iu, 3 -3 0f|u,
Similarly,
(v, 0 20](B,
Va2 (= 0 |{B,
vi] |1 30 20[|B,
B, 000v,10600v,
or <ﬁ2 -6—06 -20 0 20 V) Zg_d -2 0 2 V2
B, -30 0 ||v, 3 -3 0||v,
(1]\
Q,
du/ox 01 0000
a
{e} =1 ovioy ZOOOOOHBST
duwoy+oviox| {0 0 1 0 1 Off"
P2
Bs

197
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[0 60 0 0 0 0]y
-2 0 2 0 0 0ffu,
01 0000
I 3 =30 0 0 O0f|u
=—1/0 0 0 0 0 1 =[B]{q}
60 0 0 0 0 60 0]y,
001 010
0 0 -2 0 2i}v,
0 0 0 3 -3 0]|v,

-2 0 2 0 0 O
where, [B]:é 60 0 0 3 -30
3 -30 -2 0 2
This matrix is same as the one obtained through iso-parametric approach,
except that the elements of the stiffness matrix in this method correspond to the
displacement vector [u; u, us v, v, v;]' whereas in the previous method
they correspond to the displacement vector [u; v, u v, u3 v;]T. The
sequence of load components in the load vector has to be correspondingly
modified. Rewriting the [B] matrix to correspond with the displacement vector
[ur vi v vy u; v,
715 -390 -315 180 —400 210 ]
-390 1040 210 -900 180 -—140
-315 210 315 0 0 -210
180 -900 O 900 -180 0
-400 180 0 180 400 0
| 210 —-140 -210 O 0 140

[K]=tA [B]' [D] [B]=640

After applying boundary conditions, u; = v| = u, = v, = 0, we get
{P}r =[K]r {u}r

50 1 )400 0 1(u,
or =
~100{ ~10.00156){ 0 140]]v,

or u; = 0.000195 mm
vy =—-0.001114 mm

Check Reactions are obtained from the assembled stiffness matrix,
corresponding to the fixed degrees of freedom, and checked with

Rlx+R2x+50=O N Rly+R2y—lOO:0
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0
Ry 715 -390 —-315 180 —400 210 0
Riv [_ (4 [~39 1040 210 -900 180 -140 o |
R,y 315 210 315 0 0 -210 0
R,y 180 -900 0 900 ~180 O || 0.000195
~0.001114
~199.96
122.47
7 149.96
~22.50

Static equilibrium relations using calculated reactions are
Rix + Rox +50=-199.86 + 149.96 + 50 ~ 0
Riy + Ryy =100 = 122.47 -22.50 - 100 ~ 0

Note : The given rhick plate, from university question paper, should not be
analysed as a 2-D problem. It can not be solved as a 3-D problem manually.

Finite element analysis gives approximate results for the engineering
problems. In this simple example, this was evident from the fact that the first
condition was completely satisfied while a small discrepancy was seen in the
second condition with the results obtained. The discrepancy increases with the
order of the reduced stiffness matrix due to numerical rounding off errors
associated with matrix inversion techniques using digital computers.
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CHAPTER 7

FACTORS INFLUENCING
SOLUTION

7.1 DISTRIBUTED LOADS

In the discussion so far, analysis has been confined to structures subjected to
specified nodal loads. But, many engineering problems include distributed loads
like
e Loads along the length of 1-D elements such as wind load on columns,
self weight of beams

e Loads along the edges of 2-D elements such as in-plane pressure on
edges of plates or axi-symmetric solids; pressure (bending) load normal
to the surface of the plate

e Loads on surfaces of 3-D elements such as pressure on one or more
surfaces of a thick solid component

e Loads on volumes of 3-D elements such as self weight, centrifugal
force on a rotating component.

Such loads are usually represented by equivalent loads, based on force
equilibrium, in strength of materials.

For example, a uniformly distributed load ‘p’ on a beam AB of length ‘L’, as
shown in case-1 of Fig. 7.1, is approximated by two equal parts of the beam as
shown in case-2. The distributed load on both the parts is transferred to the ends
of the beam as point load of pL/2 and moment due to the distributed load
represented by the resultant load of pL/2 acting at a distance of L/4 from beam
end, as shown in case-3. Thus,

2
onett e ()
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These statically equivalent loads are shown in case-4.

poverL
A Case-1 B
L/2 at L/4
p over L2 p over L2 P pL/2atL/4
O A YR
A ; B
A Case-2 B Case-3

Pl PZ
N ya
A l Case-4 t B

FIGURE 7.1 Statically equivalent loads

If beam AB is simply supported at its two ends, then the reactions based on
the static force equilibrium conditions XF=0 and XM =0 will be equal and
opposite to these equivalent loads.

Finite element method is based on minimum potential energy theory for the
calculation of stiffness matrix or load-displacement relations. It will, therefore,
be consistent if the equivalent loads are also based on energy. It is noticed that
consistent loads used in FEM, give displacements identical with those from
closed form solutions.

7.2 STATICALLY EQUIVALENT LOADS VS. CONSISTENT LOADS

Statically equivalent loads, even though satisfy force and moment equilibrium,
do not give the same nodal displacements as the actual loads. Consistent loads,
based on energy equivalence, give the same displacements as obtained with the
actual loads, in addition to satisfying force and moment equilibrium. For this
reason, consistent loads are used in FEM. This can be verified by the following
example.

Consider a simple cantilever AB of length L, fixed at end A and subjected to
uniformly distributed load p, as shown in case-1 of Fig. 7.2. The statically
equivalent load system is shown in case-2 of Fig. 7.2 while the consistent load
system is shown in case-3 of Fig. 7.2. In these two cases, a point load and a
moment at ends A and B can replace the distributed load. Since end A is fixed,
the load and moment at A add to the reactions at A without contributing to
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displacement at any point on the cantilever. Hence, load and moment at end B
only are shown in these figures.

144 iy 7 "z o
?f\ N /”j A pLs X %/\ pl z/12v/ |
Case-1 ) ‘_—{ Casc-2 “_‘ Cuase-3 x<—<|

FIGURE 7.2 Distributed and equivaient loads

Case-1: Actual load

At any section, distance x from B, from simple theory of bending

2
Bending moment M = p.x.(—)ij =—El i—);—
= 2 dx

where v is the displacement normal to the axis of the beam

E is the modulus of elasticity of beam material

and [ is the moment of inertia of the beam cross section

Integrating, — EI g—: = Pf +C,

The constant C, is evaluated from the boundary condition g—: =0 atx=L
Thus, C, =—E6L—3 and - El %‘xi = p: - p6L3

Integrating again, — Elv = % _P [;x +C,

The constant C, is evaluated from the boundary conditionv=0atx =L
_pL! +pL4 _3pL* pLt

24 6 24 8
The maximum displacement is obtained at the free end, i.e.,atx=0
_pl

8EI

Thus, C,=

—-Elv=C;, or v=

Case-2 : Statically equivalent loads
2

As explained in section 7.1, loads Py :EZL and M, = p_;_ , which satisfy static

equilibrium conditions, are used as equivalent loads.

203
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At any section, distance x from B, from simple theory of bending

2 2
Bending moment M = EIi).x—p—L—z—El E—Z
2 8 dx

dv_psz_psz

Integrating, — EI — +C
srating dx 4 8 ‘
The constant C, is evaluated from the boundary condition ((:_v =0atx=L
X
3 2 2 3
Thus, C, = pL and—EIE]—\izpLx _pL x_pL
dx 4 8 8
3 2.2 3
. . pLx” pL°x® pL x
Integrating again, — El v= - - +C
srafing a8 12 16 g
The constant C, is evaluated from the boundary conditionv=0atx =L
4 4
Thus, cfsﬁk—.p4+3+a=éﬂk—
48 48

The maximum displacement is obtained at the free end, i.e., at x=10

4
—Elv=C, or v= SpL.
48 El
It can be seen that the displacement v in this case is different from that of
case-1 o
Case-3 : Consistent loads
pL pL? . .
Loads Py =—2—and Mg =? , based on energy equivalence, as explained

later are used to represent distributed load.
At any section, distance x from B, from simple theory of bending

2 2
P_L_],X_P_E___Eld_v

Bending moment M = = >
2 12 dx

2 2
Integrating, — EI dv_pLx” pl'x
dx 4 12

+C,

The constant C, is evaluated from the boundary condition ?— =0atx=L
X
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13 2 2 3
pL and—Elﬂ:pLx _pL x pL
dx 4 12 6

Thus, C, =

pLx’ pL’x* pL’x
12 24 6
The constant C, is evaluated from the boundary conditionv=0atx=L

4 4 =
Thus, C, =| PE | (c2+144)=3PL _PL
24 24 8

Integrating again, —El v =

+C,

The maximum displacement is obtained at the free end, i.e.,at x=0

4
—Elv=C, or v= pL

It can be seen that the displacement ‘v’ in this case is identical to the
correct value represented by case-1 and hence consistent loads, based on
work or energy equivalence, are preferred in FEM.

The shape functions used to define displacement, in natural coordinate

system, over a finite element can also be used to calculate nodal loads

vector consistent with the loads distributed over an edge or a surface of

an element. These consistent loads are calculated for different types of

distributed loads (on edge, area or volume), as explained below.

(a)  Consistent nodal loads corresponding to distributed body forces are
given by

{Pa}= [INT (X}

where {X} indicates distributed load over the volume of the body
For a beam element with uniformly distributed self weight,

[N]=[L’(3 - 2Ly) Li’L, L’3-2Ly) -LiL]
‘1
- g _(bhpL)} L
(=i [INF oo 2525 ¢
-L

(b) Consistent nodal loads corresponding to distributed surface or traction
forces are given by

)= INT {ras

where {T} indicates distributed load over the surface of the body

205
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For a beam element with uniformly distributed pressure load {p}, in
units of force per unit length (w), assuming that the load is uniformly
spread across the width ‘b’ of the cross-section,

jpds=bj'de=jde
S L

L
Thus,

{py}=b [INT fp}a

6 6
_bLp|L| wLjL
12 |6 126

-L -L

7.3 CONSISTENT LOADS FOR A FEW COMMON CASES

(a) Loadon a beam

1. Beam of length ‘L’ with a concentrated load ‘P’ at distance ‘a’

from node 1 (r=4a/L)

lP

lk__a__ﬂ -

P,=P(1-32+2r); P,= P@3r-2r)
M;=—PL(T-2r'+r); M,=—PL(-r*+r)

For the particular case when the load is at the center of the beam,

r=%and
lP
v | 2
P P
P =— pP.=—
) )
M;=-PL/8 M,=+PL/8
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2. Beam of length ‘L’ with a uniformly distributed load, w. Let P =
w L be the total load

wl |

I 2
p_PwL P _wL
2 2 2 2
Mlz_PL MZ:—P—E
12 12

3. Beam with a linearly varying load (0 to w). Let P = w L. / 2 be the

total load
1 2
p_3P p 1P
10 10
Mlz_PL M2:E
15 10

(b) Load along an edge of a plate

Moments at nodes are not relevant here, since rotations of nodes are not
treated as DOFs.

4. Plate (modeled with CST elements) subjected to uniform pressure
‘w’ along an edge. Let P = w L be the total load

L | w

| T 2

5. Plate (modeled with CST element) subjected to linearly varying

pressure (0 to w) along an edge. Let P = XVQE be the total load
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6. Plate (modeled with LST elements) subjected to uniform pressure
‘w’ along an edge. Let P = w L be the total load

w |

Note : Corresponding statically equivalent nodal loads would be P, = ;;

P, = Z— and P; = g, distributing equally —]2)— over each half of

beam (1-3 & 3-2).
7. Plate (modeled with LST element) subjected to linearly varying

pressure (0 to w) along an edge. Let P = %I—i be the total load.

(¢) Load normal to the surface of a plate

8. 3-noded Triangular Plate with uniform pressure normal to the
surface, w. Let P =w A be the total load.
3

1

N

At corner nodes, P, =P, =P, -_—g

9. 6-noded Triangular Plate with uniform pressure normal to the
surface, w. Let P = w A be the total load.

3

o

1 4
At corner nodes, Pi,=P,=P3;=0

At mid-side nodes, P, =P;=P =—l3i
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10. 4-noded Quadrilateral Plate with uniform pressure normal to the
surface, w. Let P = w A be the total load.

3

19

P
At corner nodes, P, =P, =P, =P, =7

11. 8-noded Quadrilateral Plate with uniform pressure normal to the
surface, w. Let P =w A be the total load.

3

7
4
6
8

1 5 2

l)

At corner nodes, P, =P, =P, =P, =- 5
p

At mid-side nodes, P, =P, =P, =P, = 3

7.4 ASSEMBLING ELEMENT STIFFNESS MATRICES

209

Solution of any practical problem by finite element method involves a very
large number of simultaneous equations and hence, computer memory needs to
be effectively utilised. The following techniques are therefore utilised to
effectively use the available computer memory.

Element stiffness matrices are symmetric. Therefore, assembled stiffness
matrix of the entire structure is also symmetric. Storing half the matrix is hence
adequate. But, for storing even half of n x n stiffness matrix allocation of as
many memory locations for the variable K(n, n), no saving of computer memory
required.

(a) Storing a banded matrix — Stiffness matrix is usually a banded matrix,

in addition to being symmetric, depending on the nodal connectivity of
the elements, as explained in Fig. 7.3 for the simple case of a
rectangular plate modeled with 4-noded quadrilateral elements.
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Element-1 is linked to nodes 1, 2, 7 and 6. Hence, contribution of
element-1 in the assembled stiffness coefficients will be found in the
rows and columns associated with these four nodes only. Likewise, each
of the other elements will have contributions in the rows and columns of
the assembled stiffness matrix corresponding to their respective four
corner nodes only. None of the elements 2-8 are linked to node-1.
Hence, assembled stiffness matrix will not have non-zero terms in (i, j)
positions, where row ‘i’ and column ‘j’, correspond to the degrees of
freedom associated with nodes 3, 4, 5, 8, 9, 10, 11, 12, 13, 14 and 15.
While assembling such a stiffness matrix in the computer, significant
number of memory locations can be saved by avoiding entries
corresponding to these zero values.

1 2 3 4 5
1 2 3 4
9
6 7 8 10
5 6 7 8
1 12 13 14 15

FIGURE 7.3 Numbering of nodes in a model

Half Bandwidth ‘b’ = (Max. node number difference for any one
element + 1) x Number of DOF per node

"Storing a symmetric banded matrix requires n x b memory locations as

against n X n memory locations required otherwise. It is a rectangular
matrix of n rows and b columns, first column representing diagonal
elements of the square matrix. The algorithm in the program properly
identifies elements of the matrix. For example, k, 4 is stored as kq; ; Ky s
as kq; kqs as ky3 and so on till all non-zero elements are covered. In
general, k,, of the assembled matrix is identified by kymn+1 in the
banded matrix. The banded matrix of order 12 x 7, as stored in this way,
is represented below with diagonal element indicated by ‘d’. Since the
symmetric half of the band matrix has width ‘b’ in the first few rows
and reduces to 1 in the last row, the banded matrix will have some zero
values in the last few rows as shown in Fig. 7.4.



CHAPTER 7 FACTORS INFLUENCING SOLUTION 211

1
]
1
J

d x x x x x d x x x x X
d x x x x x Osbey.ond d x x x x x
bandwidth
d x x x x x d x x x x x
d x x x x x d x x x x x

d x x x x X d x x x x x

d x x x x d x x x x X

d x x x x x d x x x x x

d x x x'x d x x x x 0

symmetric d x X d x x x 00

d x x d x x 0 0 0

d x d x 00 0 0

i d{f |[d 0 0 0 0 O]
Half of a symmetric matrix Storing in band matrix form

FIGURE 7.4 Storing half of a banded matrix in different forms

(b) Minimising bandwidth of stiffness matrix - Bandwidth of the
assembled stiffness matrix can be minimised by renumbering node
numbering sequence of a finite element model.

As an example, let us consider a ring modeled by a number of curved
beam elements. Case-1 and case-2, shown in Fig. 7.5, follow two
different node numbering schemes.

Case 1 Case 2
FIGURE 7.5 Minimising bandwidth by renumbering nodes of a simple ring
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(0

In case-1, Maximum node number difference = 9 - 1 = 8
and half bandwidth b = (8 + 1) x No. DOF/node

while, in case-2, Maximum node number difference =3 -~ 1 or 5-3,. =2
and b=(2+ 1) x No. of DOF/node

For all other elements, node number difference is less than or equal to
the above values.

Let us consider one more example of a plate with 2 DOF per node. It is
shown with two node numbering sequences as case-1 and case-2 in
Fig.7.6.

23 24 25 26 27 28 29 30 31 32 33 3 6 9 121518 21 24 27 30 33

12 {13 [i14 {i5 i6 {17 {18 {19 [20]2] [22 2 S |8 111114 {17 20 {23]26]29 132

{1 23 4 5 6 78 9 1011 1 4 7 1013 16 19 22 25 28 3]
Case-1 Case-2

Figure 7.6 Minimising bandwidth by renumbering nodes of a plate

In case-1, Half bandwidth, b = (24— 12 + 1) x 2 = 26 for top left element
In case-2, Half bandwidth, b = (6 — 2 + 1) x 2 = 10 for the same element

The bandwidth of this element happens to be equal to the bandwidth of
any other element in the model and, hence, represents the maximum
bandwidth for these two cases.

In this simple model, total number of DOF =33 x 2 = 66.
If entire stiffness matrix is stored, computer memory required = 66 x 66
If banded stiffness matrix is stored,

computer memory required = 66 x 26 in case-1 and 66 x 10 in case-2.

Several algorithms are developed for selecting appropriate node
numbering sequence in an actual problem so as to minimise bandwidth.
Some of thém are used, even without the knowledge of the end user, in
many general purpose commercial software.

Skyline method of assembly - Bandwidth may not be the same for all
the elements in a practical problem with irregular geometry. Then
within the maximum bandwidth, b, used for computer memory
requirement starting zeroes of all columns can be avoided by following
a different method of assembly. Thus, requirement of computer memory
can be minimised. This method also avoids the need to store the zero
values of the last few rows of the banded matrix. Here, the banded
matrix K is stored as a column vector A, with columns of banded matrix
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stored one after the other. Each column is of variable length and starts
with the first non-zero value in that column. Intermediate zeroes need to
be stored. Another array variable (ID) stores the sequential address of
the last term of each column (diagonal elements) so that the program
can identify location of each stiffness coefficient in the column vector.

The elements are identified as shown in the following example, for a
simple 7 x 7 stiffness matrix. In actual practice, the saving of computer
memory will be very large, since the stiffness matrix will be of a very
large size. The square and banded stiffness matrix

[k, k, 0 %k, 0 0 0]
k22 k23 k24 k25 0 0
k33 k34 k36 0
[K]= ky 0 k, O
symmetric koo ks kg
k66 k67
L k774

is stored in a single column matrix as
{K} ={kii ki2 koo ky3 k33 k|4,k24 K34 kas kos
00 k55 k36 k46 k56 k66 k57 k67 k77 ]T

Note that staﬂing elements k13, k15, k]é, kz(,, k]7, k27, k37 and k47 in 3rd’ Sth,
6™ and 7" columns having value zero, are not stored while elements ks
and kys, also having value zero, are stored since they are included in
between elements of a particular column with non-zero value.

Another vector {ID}, i element of which corresponds to the position of
the i" diagonal element in [K], helps in identifying each element of {K}
with its corresponding position in [K}

(ID}y=[1 3 59 1317 207"

Position of any element in the j™ column of the original stiffness matrix
is identified by its position w.r.t. the diagonal element in the ™ column
represented by ID(j). Position of element in i row of this column (i <j)

is given by [ ID(3) - (§-i) ].

Ex: Position of kj; in the array {K} =1D(3) =5
Position of ky; in the array {K} =ID(3)-(3-2)=5-1=4
Position of kg in the array {K} =ID(6) - (6 -4)=17-2=15

213



214

FINITE ELEMENT ANALYSIS

7.5 AUTOMATIC MESH GENERATION

One of the difficult tasks in the analysis of a component by finite element
method is the need to discretise the component into a large number of elements
connected by nodes and specifying the nodal coordinates as well as element
connectivity. In most commercial software, this is done by the program from
the description of the component geometry as a solid model either as a
combination of some primitive shapes or through key points, lines connected by
key points, areas connected by lines and volumes specified by the enclosing
areas. Type of element (1-D truss, 1-D beam, Plane stress element, plate
bending element, thick shell element,...) that the component closely matches in
its behaviour, also needs to be specified by the user.

An automatic mesh generation program generates the locations of the node
points and elements, labels the nodes and elements and provides the element
node connectivity relationships. A set of nodes is identified to represent the
component, based on the relative dimensions of the component, choosing a
minimum number of nodes across the smallest dimension, which varies with the
software. In many programs, the user can also specify the minimum size of the
elements to be generated and the ratio of sizes of adjacent elements, for
generating mesh which varies from coarse to fine, in the areas of stress

concentration.

Two methods are explained here for forming elements, from the given set of
nodes.

In the Tessellation method, program starts connecting user defined nodes
starting with an arbitrary point on the boundary. It creates a simplex element
using the neighbouring nodes which give the least distorted element shape.
Then, it proceeds to form the next element. An example of Tesselation method
is given here. Fig. 7.7 (a) gives nodal set of a component while Fig. 7.7 (b),
Fig. 7.7 (c) and Fig. 7.7 (d) show one simplex element formed by joining three
nodes. The element in Fig. 7.7 (d) is the least distorted element and is
finally selected before generating other elements (shown by dotted lines) in a

similar way.
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(a) (b)

(c) (d)
FIGURE 7.7 Mesh generation by Tesseilation method

In the Octree method, a three dimensional cube is assumed around the
object. If the object is partially occupied by the cube, it is subdivided into small
cubes and each cube is checked. If any cube is full (completely occupied by the
object) or empty, then the cube is not subdivided further. It gives elements of
different sizes, irrespective of the stress distribution in the object and hence, is
not very much popular.

7.6 OpriMuM MESH MODEL

215

Best possible mesh has to be used to obtain solutions as accurately as possible,
while minimising the requirement of computer resources. In many cases, it can
not be decided before the analysis is completed. In time-dependent iterative
problems, mesh refinement between different steps becomes very important to
ensure convergence of the solution. There are many mesh refinement methods
available.

(a) Mesh refinement method or h-method — Refines the element size
based on solution gradients.

(b) Mesh movement method or r-method — Grid points are moved around
(mesh redistribution) to provide clustering in certain regions, based on
error indicators.

(¢) Mesh enrichment method or p-method — Refines degree of
polynomial (interpolation function) based on user-specified error
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tolerance. It is particularly important when singularities are encountered,
such as near crack tips in fracture analysis. Side or interior nodes are not
installed physically, but higher order modes of the polynomial
corresponding to these nodes are combined with corner nodes by means
of static condensation (similar to elimination of rows associated with
DOFs corresponding to the specified nodal displacements), so that
compatibility with adjacent elements is not affected.

7.7 GAUSSIAN POINTS & NUMERICAL INTEGRATION

Closed form solutions for integration, associated with many FEM problems, are
not possible using digital computers. Hence, numerical integration is generally
used in FEM. Integration of a simple function f(x) over the range (r,, r)
amounts to calculating area under the curve. In numerical" integration, this is
approximated by the sum of areas of a few rectangles (products of functions
values and the local range or weight) at a few sampling points as shown. This
sum naturally approaches true value of the function area as the number of
sampling points increase. Gauss quadrature method of numerical integration is
proved to be the most useful in finite element applications.

1 n
I= If(r)dr=2wi f(r,) with Zw, =1—(-1)=2
-1 i=l

where w, is the “weight” or range associated with the i™ sampling point and n is
the number of sampling points within the element.

f(r)
A A
b 1
AT M1
AT AN
i 1 i |
) ) l 1
w,| iw, I w,l
| ] | i
i i 1 i
( | i i
1 1 ! o [
I, N r, o
For 1-point integration, r, =0.0 w; =20

2-point integration, r, 1, =10.5774 (or + %) wy, Wy = 1.0

3-point integration, ry, r; =1 0.7746 wi, W3=0.5556
rn=00 w, =0.8889
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4-point integration, 1y, rs==0.8613 wi, ws =0.3479
rh,r; == 0.34 Wy, W3 = 0.6521

\/

X P > ! i
» i
w 3
2
; i
0 W ]
» » » | ]
'y T,

-1 4l 0 N+ -1 Ty 410 T Lo

L)
W < ' anlanl g
! i » W, [P a-p
w b wt W, W W3l W,

In a similar way, for double integration involving two shape functions r and s,

11

1= [[7r9)ards= 33w w, (r.s,)

—1-1 1=l =1

and for triple integration involving three shape functions r, s and t,
1

11 I m n
II f(r,s,t)dr dsdt EZZZW wiwy f (,, J,tk)
-1-1- i=]

1 1 j=1 k=1

Since an arbitrary 2-D quadrilateral element is mapped into a square element
and an arbitrary 3-D solid element is mapped into a cube in natural (non-
dimensional) coordinate system, m =n and /=m = n are commonly used.

(a) Integration in Natural coordinate system
In terms of non-dimensional shape functions (area coordinates),

[ b= Eo )
A 1=1

(i) For n=1 (3-noded triangle), Gaussian point of integration is at
the center ‘O’ of the triangle given by the coordinates L,' = L,' =
= 1/3 with the associated weight w, = 1
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(i)) For n =2 (6-noded triangle), Gaussian points of integration are at
the mid-points of the three sides of the triangle given by the
coordinates

1 1
B(Lzl =0, L :5;L23 =5)

and C(L31 :l; L} =0;L} =l)
2 2

. . 1
The associated weights are w; =w, =w;=—

(c) For aquadrilateral, with two Gaussian points along each coordinate, 2 x
2 points of integration are obtained by extrapolation of 1-D two-point
values to 2-D in natural coordinates £ (+ 0.5774) and 1 (+ 0.5774) as :

1 (-0.5774,-0.5774); 2 (+0.5774,-0.5774)
3(+0.5774,+0.5774) and 4 (-0.5774,+ 0.5774)
The associated weights with each point are w; =w; = 1.0

i.e.,, the function value calculated at the above Gaussian points is
associated with a quarter of the square area.

Similarly, with three Gaussian points along each coordinate, 3 x 3
coordinates and weights are obtained as extensions of 1-D three-point
values

§

—0.7746 at points 1, 4, 7 with weights w; = 0.5556
0.0 at points 2, 5, 8 with weights w; = 0.8889
and =+ 0.7746 at points 3, 6, 9 with weights w; = 0.5556
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Similarly,
n =—-0.7746 at points 1, 2, 3 with weights w, = 0.5556
= 0.0 at points 4, 5, 6 with weights w; = 0.8889

and =+0.7746 at points 7, 8, 9 with weights w, = 0.5556
n 4
4 ] 3
i
i 2

2 x 2 Gaussian integration points

nt
i
8

L

—
4 5 6 5
1 2 3

3 x 3 Gaussian integration points

In finite element method, displacement over an element is assumed by
an algebraic polynomial and integration of terms of [B] matrix for
evaluating element stiffness matrix is carried out term by term, each
term being a product of different coordinates in various powers (in

general, of the form L.Lf.L, L. Some mathematicians have derived

simple formulae for such integrations.

. p!q!
(i) Llldi=L—"—
i‘- ) (p+q+1)
Ex: Ju L,dL=L; jfL2,dL=£
6 3
L L
.. 2Apiqir! .
(ii) L dA=r———T—"—+ (Felippa)
JI (p+q+r+2)
LILT
By . “-LlL2L3dA=2A.1..1..I.=ﬁ:A
b 5! 120 60
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2A31.0L00 2Ax6 A
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J 5! 120 10

1.01.00
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4! 24 6
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7.8 MODELLING TECHNIQUES

Finite element method does not give a unique solution for any problem. The
accuracy of solution depends on many aspects like modelling of the actual
component, number and type of elements used, approximation of loads and
boundary conditions, solution techniques, etc.. It is for this reason that design
validation of products by the statutory safety codes of many countries is not
based on FEM results. Therefore, the engineer who uses this method (or uses
any general purpose software based on this method) should check for the
correctness of the results with the expected trend at select locations. In this
chapter, important aspects of modelling and boundary conditions are discussed.

An element library is created, in each FEM based software, with each
element assumed to have a particular type of deformation. Appropriate types of
elements are selected to represent the component, based on the dimensions of
the component in different directions as well as on the nature of deformation of
the component.

For example, if a component has very small dimensions in the transverse
directions compared to its length, it can be modeled by 1-D elements. In
addition, these 1-D elements may be treated as axial ioaded elements (truss
elements or torsion elements), laterally loaded elements (beam elements or pipe
elements), depending on how close behaviour of the component is to the
behaviour assumed for these elements. It may be recalled that most of the
trusses analysed do not have pin joints, but their resistance to bending is
negligible. A water tank, shown in Fig. 7.8, is an example of one dimensional
idealisation when it is analysed for wind loads or seismic loads. In this case,
nodal displacements normal to the axis alone are significant. Stresses around th»



CHAPTER 7 FACTORS INFLUENCING SOLUTION 221

circumference at any particular section have to be obtained from beam theory
(6 = M y /1), based on the bending moment obtained from this analysis and
geometric properties at that section.

FIGURE 7.8 Modelling of a water tank for dynamic analysis

Similarly, 2-D elements with very small thickness compared to the other two
dimensions may be modeled with plane stress, plane strain, plate bending or
thin shell elements depending on the shape of the component as well as the
loads and boundary conditions applicable to the component.

Component with equally significant dimensions in all the three directions
can be modeled with 3-D solid elements or thick shell elements depending on
whether the component is subjected to significant bending deformation or not. It
may be noted that 3-D solid element will also have bending deformation
included but of a lesser degree (usually first order) whereas shell element has a
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more significant bending deformation (displacement modeled by a cubic
polynomial) as well as restraining slopes independently (simple supports or
fixed supports).

The number of nodes and elements required for modelling a discrete
structure leave very little flexibility or ambiguity to the engineer. But, the
number of nodes and elements used in the analysis of a continuum model leaves
lot of flexibility to the analyst. The number of elements should be
commensurate with the criticality of the component or the desired accuracy of
results and is also dependent on the computer time and memory available for
this analysis. A lot of work is done to assess whether using a large number of
lower order elements is preferable or using a small number of higher order
elements is preferable. In addition, aspect ratios and included angles of 2-D and
3-D elements affect the results significantly. Their effect is demonstrated
through the following two examples. Rigid guidelines applicable to all kinds of
problems can NOT be specified. These examples are only meant to highlight
dependence of results on various parameters.

Example 7.1

A simple beam subjected to bending moment is simulated through a varying
load on the ends of a small rectangular plate. It is analysed, with the boundary
conditions u = 0 at all nodes along x (neutral axis) and along y (symmetry) and
v = 0 at the origin (for suppressing rigid body modes), using six different mesh
models. Displacement u at A and v at B obtained using FEM are tabulated
below.

Case 1 Case 2
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» X +» X
Case 3 Casc 4
Y Y
'y A
¢
» X - » X
Case 5 Case 6
Case Element Number of FEM Value / Exact Value
type Nodes Elements uatA vatB
1 CST 12 12 0.84 0.812
2 CST 12 12 0.812 0.916
3 CST 15 16 0.778 0.825
4 CST i8 24 0.940 0.951
5 CST 35 49 0.946 0.960
6 LST 9 2 1.0 1.0
Example 7.2

A square plate in x-y plane simply supported on ail four sides and subjected to a
uniformly distributed normal load p is analysed using plate bending elements. A
quarter plate is modeled taking advantage of symmetry about x and y axes. The
results obtained at the center of the plate (C) are tabulated below with

quadrilateral elements (cases 1-3) and triangular elements (cases 4-7).

223
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Case 1 Case 2

;
—

/V\

» X » X
Case 3 Case 4
Y Y
4 3
) ®
» X - X
Case 5 Case 6
Case -> 1 2 3 4 5 6 7
Element type Quad Quad Quad | Triangle Triangle | Triangle Triangle
No. of nodes 9 15 25 9 15 25 25
No. of elements 4 8 16 8 16 32 32
Displacement, w 1.07 1.045 1.02 0.966 0.989 0.995 0.996
at C (FEM Value
/Exact Value)

7.9 BOUNDARY CONDITIONS FOR CONTINUUM ANALYSIS

Another important choice is to select the region of analysis. If the entire
component is not modeled, care should be taken to apply suitable end
conditions to simulate the true situation. For example, while analysing a nozzle
between a cylindrical shell and a fluid pipe, axial load across the cross section
due to fluid pressure need to be applied. Also, reasonable length of the
component has to be included in the model around the region of geometric
discontinuity to ensure that the results of analysis in the region of discontinuity
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are not adversely influenced by the imposed end conditions. Some design codes
indicate guidelines for the same.

This aspect is explained through the example of a long cylindrical shell, such
as a boiler drum, shown in Fig. 7.9. The cylindrical shell is made up of two
parts with a circumferential joint and has a mismatch of radius of the two parts
by & at the joint. This joint has been analysed to calculate the stresses generated
due to this change of radius. l.ength of the cylinder considered on either side of
the joint influences the stresses at the joint. Analyses carried out with three
different models (L) have given three different results. The model in which
uniform stresses are observed at the two ends is considered as the most
appropriate, since stresses without this discontinuity are uniform along the
length and the effect of any local discontinuity should vanish beyond some

distance.
e+ —— |
Offset L

]
AN
W
e

- Stress ——» \

\\ L,
T

Offset

FIGURE 7.9 Effect of size of model around a discontinuity
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(a) Symmetric boundary conditions

In some components with one or more lines or planes of symmetry,
modelling the entire component for analysis will result in waste of time
without any additional information regarding displacements or stresses
as compared to the analysis of a symmetric part of the component.
Boundaries of this model along these lines/planes of symmetry are
represented by a suitable boundary condition to indicate that the model
is only a part of the component. Displacements of corresponding nodes
on either side of the line of symmetry in the direction normal to the line
of symmetry are equal and opposite. Hence, on nodes along the line of
symmetry, displacement normal to the line of symmetry is zero. A
rectangular plate with a circular hole at the center, shown in Fig. 7.10,
is a typical example of symmetry along two lines and hence, only a
quarter of the plate can be modeled for analysis, saving time and effort.

DD C 2D, ¢

T111

L

Actual plate

LN S
v=0atall points  u =0 at all peints L/
along this line along this line —|
[ Symmetry about X-axis l | Symmetry about Y-axis

u=90atall points/B

along this line \

v =90 at all points
along this line

Quarter plate model - Using symmetry about X and Y axes

FIGURE 7.10 Symmetric boundary conditions
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it should be noted that symmetry should exist not only in the
geometry of the component but also in the loads and boundary
conditions of the component, so that results of one part of the
component are applicable to the remaining parts of the component. A
few such models, where syminetry can be used in modelling the
component for analysis, are shown below.

This aspect is explained through the example of arch of a factory gate,
Fig. 7.11. One half of the arch about the vertical line of symmetry can
be modeled, if the arch is analysed for a symmetric load such as self
weight (Case-a). But the model will not be adequate if it is to be
analysed for wind load, say from right to left (Case-b).

TN N

Case (a) Symunetric arch with Case {b) Symmetric arch with
symmetric (gravity) load unsymmetric {wind) load

FIGURE 7.11 Dependence of model on geometry and loads

Symmetry of a component to be analysed need not be limited to the
coordinate axes. If an octagonal structure such as a chimney is to be
analysed for 2-D heat conduction through its wall, symmetry can be
used to model just 1/16™ of the cross section as shown in Fig. 7.12.

C
D
._*_’:: ________ A B
Actual geometry Model for analysis

Figure 7.12 Model of a chimney for 2-D heat conduction

{b) Cyclic or Sector symmetry

In rotary components like turbines, fans, compressors, ... one sector
covering hub, one blade and rim can be modeled and the boundary
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condition will be different from that of the symmetry boundary
condition. Displacements of nodes along one boundary (A-A) of the
sector in cylindrical coordinate system are equal to the displacements of
corresponding nodes on the other end (B-B) of the sector. The example
of a fan, shown in Fig. 7.13, explains the cyclic symmetry condition.

FIGURE 7.13 Cyclic symmetry of a fan

7.10 TRANSITION ELEMENT

The purpose of any analysis is to evaluate stresses at all points in a component
when subjected to external or internal loads. Uniform mesh model is adequate
when the stress variation in the component is small. However in areas of
structural discontinuity or localised loads of high intensity such as thermal
stresses during welding, uniform mesh model may not be appropriate. Such
situations can be effectively modeled either by choosing fine mesh in the areas
of high stress or by using higher degree displacement model for elements in the
high stress areas. The latter option will require less computer memory and time.
Compatibility conditions are not satisfied on the common edges if elements
with linear displacement formulation (with 2 nodes along the common edge) are
used on one side and elements with quadratic displacement formulation (with
more than 2 nodes along the common edge) are used on the other side.
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n4

(]
=
v
A
> =]

FIGURE 7.14 An example of a transition element

Transition elements, satisfying inter-element compatibility along the
common edges, are used to connect different types of elements. These elements
will not have same number of nodes on all their edges. For example, a
quadrilateral element 1, shown in Fig. 7.14, connecting linear displacement
elements 2, 3 and 4 with a quadratic displacement element 5 is one such
transition element. Displacement polynomiais

u=a +a2x+a3y+a4x2+asy2

and V=agta; X t+agy+agX +ay’
are used for that element, ensuring symmetry w.r.t. coordinate axes x and y. In
iso-parametric formulation, shape functions of this particular 35-node
quadrilateral transition element are given by

N -5E-10-7)
‘ 4

N EE+)(-n)
? 4

N, &0
4

N 2 0=80+n)  _ (1-8)0-n)
4 4 > 5 3

We can have, in a similar way, transition quadrilateral elements with 6 or
7 nodes depending on the displacement function used in elements 2, 3 and

229
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4 surrounding the transition element 1. The terms in the displacement
polynomial for each type of such elements will be different to ensure symmetry
w.r.t. coordinate axes. The same logic can also be extended to other 2-D and
3-D elements. Transition elements are not relevant for discrete structures.

7.11 SUBSTRUCTURING OR SUPER ELEMENT APPROACH

In the finite element analysis of large systems, the number of equations to be
solved for an accurate solution will be very large. Computational cost of matrix
inversion is proportional to cube of the order of stiffness matrix. Thus, it is
cheaper to invert three square matrices of order 500 than inverting one square
matrix of order 1500. It also reduces computer memory requirement, since all
substructures are not simultaneously processed. Method of substructures can be
used to reduce the number of equations. In this method, the structure is divided
into a number of parts, called substructures or super elements, each of which
can be subdivided into a large number of elements. Each substructure is treated
as one large element with many interior and boundary nodes. Assembled
stiffness matrix of a substructure is rearranged to group displacements of all
boundary nodes (elements with suffix ‘b’) and displacements of internal nodes
(elements with suffix ‘i’) separately. Using static condensation procedure, this
stiffness matrix is reduced to include modified contributions of boundary nodes
only, depending on the type of elements being used, as explained below.

I:[Kli] [Klb ]J {{ux}} :{{Pn }}
[Km] [Kbb] {“b} {Pb}
From the first set of equations [K,] {u,} + [Kp] {up,} = {P,}, we can express
{u} as
{u} = [Ki" ({P} — [Ka] {us})
Substituting these values of {u,} in the 2™ set of equations
[KuJ{u} + [Kepl{un} = {Pp},
we get [Kul[Ku] " ( {P} = [Kip] {us} )+ [Kep] {us}= {Ps}
or ( [Kop] = [Kod[Kal '[Kin} ) {up} = {Py} - [KuJ[Ki] ' {P}
This can be written in a different notation as  [K'] {u,} = {P"}

where  [K'] is the condensed stiffness matrix of the substructure, including
DOFs associated with boundary nodes only

and {P"} is the corresponding modified load vector.
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This process of condensation is carried out, in many software, by Gauss
elimination procedure. These reduced matrices of different substructures can be
assembled together to get the stiffness matrix of the complete structure. The
remaining procedure of applying boundary conditions and solving for the
unknown displacements and stresses is same. There can be many levels of
substructures, the highest level substructure consisting of ordinary finite
elements only.

A typical application of this procedure can be seen in the case of an aircraft,
where fuselage (central body), nfain wings, tail wings, etc.. are meshed as
independent substructures. They are assembled together, after static
condensation of the stiffness matrix of each substructure, to analyse the entire
aircraft structure for the specific loads. This method saves considerable time and
memory of the computer.

7.12 DEFORMED AND UNDEFORMED PLOTS

231

One problem with FEM is the generation of a large output consisting of
displacement at all nodes and in all active degrees of freedom. It is difficult to
scan for useful values from this large output to arrive at any meaningful
conclusion. To overcome this difficulty, many general purpose software include
options for plotting deformed shape as well as iso-stress and iso-temperature
contours. Deformed shape of the component is better appreciated when the
same is superimposed on undeformed geometry, with or without node/element
numbers. Data errors related to load direction and area of application as well as
boundary conditions are often checked with these deformed plots.

Within the elastic limit, the displacements in a component are so small that
the deformed and undeformed plots coincide. Hence, nodal displacements are
usually multiplied by a factor so that maximum displacement at any point in the
element is about 20% of the component size or about 1 cm on A-4 size plot.
Thus, deformed plot forms a vital check on the analysis of the component, to
assess whether the results are sensible and meaningful or not. Deformed plot is
qualitative and not quantitative, since physical dimensions of the component
and nodal displacements are not plotted to the same scale.

Another visual anomaly is in the deformation of frames. Plots are generated
by the post processor of the software from the nodal displacements obtained in
the solution phase. Thus, the deformed plot of a beam member is a straight line,
generated from its two nodal displacements, irrespective of the end conditions
(simply supported or fixed ends). Cubic displacement polynomial as well as end
conditions on slope are not reflected in these plots. (Ref. Fig. 7.15).
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(a) With sample supports (b) With fixed supports

FIGURE 7.15 Plot of deformation of beam

Note : Plots of deformation of beam between nodes 1 & 3 as well as between
2 and 3 in both the cases of end conditions are linear even through both of them
are cubic functions. Even the displacement value at node 3 appears to be of the
same magnitude in both cases, though the calculated values are different.

7.13 SUMMARY

Consistent loads, based on energy equivalence, are used in FEM to
represent distributed loads and give better results than equivalent loads

Nodes, forming elements, are numbered to minimise maximum node
number difference in the elements. This affects bandwidth of assembled
stiffness matrix

Many Software, based on FEM, store one half of banded, symmetric
stiffness and mass matrices to minimise computer memory requirement

Modelling a physical problem involves selection of proper types of
elements, from the element library of any commercial software, which
assume same displacement behaviour as the actual problem. Details, with
zero or less influence on the results, can be omitted to simplify the
physical model while ensuring a meaningful analysis with minimum
computer cost

Shape and size of elements influence the results significantly

Use of symmetry in geometry, loads and boundary conditions help in
modelling a smaller part of the component, saving computer time and
memory

Substructuring helps in the analysis of very large components by
reducing size of matrices

Deformation plots in many FEM software are qualitative (with magnified
displacements), plotting only displacements without indicating correct
slopes.
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OBJECTIVE QUESTIONS
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1.

A symmetric structure can be analysed by modelling one symmetric part
(a) depending on applied loads

(b) depending on boundary conditions

(c) alwaysyes

(d) depending on applied loads & boundary conditions

Anti-symmetric boundary condition along an edge of a 2-D structure

implies, applied loads are ____ on either side of the edge

(a) opposite (b) equal

(c) equal and opposite (d) unrelated

Sector symmetry boundary condition implies _ along two radial

edges of the sector
(a) same radial displacements in cartesian coordinate system

(b) same circumferential displacements in cylindrical coordinate
system

(c) equal and opposite radial displacements in cartesian coordinate
system

(d) equal and opposite circumferential displacements in cylindrical
coordinate system

Cyclic symmetry boundary condition implies along two edges of
the sector

(a) same radial displacements in cartesian coordinate system

(b) same circumferential displacements in cylindrical coordinate
system

(c) equal & opposite radial displacements in cartesian coordinate
system

(d) equal and opposite circumferential displacements in cylindrical
coordinate system

An octagonal section chimney with hot gases inside can be analysed
using __ model

(a) full section (b) one half of section

(c) one quarter of section (d)  1/8" of section
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6. Use of non-dimensional coordinates helps in
(a) numerical integration (b) displacement calculation
(c) stress calculation (d) strain calculation
7. Gaussian points are used for
(a) numerical integration (b) displacement calculation
(c) stress calculation (d) strain calculation
8. Quadrature means
(a) calculation of area of element
(b) calculation of element stress
(c) numerical integration for getting stiffness coefficients
(d) calculation of nodal displacements
9. Accuracy of stiffness matrix improves with
(a) more number of Gaussian points
(b)  more number of nodes
(c) size of elements
(d) shape of elements
10.  Sector symmetry and cyclic symmetry differ
(a) in the shape of sector edges
(b) in the size of sector edges
(c) inradial displacements along two sector edges
(d) in circumferential displacements along two sector edges
11.  Using symmetry condition ____; but gives same solution
(a) saves computer time
(b) saves computer memory
(c) saves effort of data preparation
(d) all of them
12.  Symmetry boundary condition about an edge is applicable when

(a) normal loads & normal displacements at nodes along the edge are
zero

(b) loads & displacements along the edge are zero

(c) normal loads & normal displacements at nodes on either side of the
edge are equal & opposite

(d) loads & displacements along the edge are same
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A cantilever beam can be analysed as a plate with boundary
conditions

(a) Cartesian symmetric (b) sector symmetry

() cyclic symmetry (d) cartesian anti-symmetric

Number of DOF for 2-node cantilever and propped cantilever are

(a 1.2 (b) 2,1 () 34 (d 24
Number of DOF for 3-noded simply supported beam and fixed beam are
(a 1,2 by 23 () 34 d) 42

Small region of interest in a big component can be analysed using free
body end conditions

(a) always true (b) sometimes true
(c) never true (d) depends on other data

___model of a rectangular plate with a circular hole at the center, and
loaded uniformly along the four edges, is adequate for analysis

(a) full b 12 () 1/4 @ 178

____model of a square plate with a circular hole at the center, and loaded
uniformly along the four edges, is adequate for analysis

@@ full  (b) 12 () 1/4 (d 1/8

___model of a square plate with a rectangular hole at the center (edges
parallel to the edges of the plate), and loaded uniformly along the four
edges, is adequate for analysis

(a) full b 12 () % d 178

In statically equivalent loads, free end moment of a cantilever of length
‘L’ with uniformly distributed load of value ‘p’ is

(a) pL¥74 (b) pLY8 (¢) pL¥12 (d) pLY16

In consistent loads, free end moment of a cantilever of length ‘L> with
uniformly distributed load of value ‘p’ is

(@) pL¥4 (b)) pLY8 (c) pL12 (d) pL/16

In statically equivalent loads, end moment of a simply supported beam of
length ‘L’ with a concentrated load ‘P’ at the mid point is

(a) PL/A4 (b) PL/S (¢) PL/I2 (d) PLA6

235
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23.

24.

25.

26.

27.

28.

29.

In consistent loads, end moment of a simply supported beam of length ‘L’
with a concentrated load ‘P’ at the mid point is

(a) PL/4 (b) PL/8 (¢) PL/I2 (d) PL/16

In statically equivalent loads, end moment of a simply supported beam of
length ‘L’ with a uniformly distributed load of value ‘p’ is

(a) pL%4 (b) pLY8 (c) pLYI12 (d) pLY16

In consistent loads, end moment of a simply supported beam of length ‘L’
with a uniformly distributed load of value ‘p’ is

(a) pLY4 (b) pLY8 (c) pL¥Y12 (d) pLY/16

Consistent loads for a LST element with uniform pressure ‘p’ along an
edge of length ‘L’, at the two end nodes and mid-node are

(a) pL/2,pL/2,0 (b) pL/3,pL/3, pL/3
(c) pL/4,pL/4,pL/2 (d) pL/6, pL/6, 2pL/3

The process of reducing number of mid-side or internal nodes before
assembling element stiffness matrices is called

(a)  Gauss reduction (b) Jacobi reduction
(¢) Choleski reduction (d) static condensation

Lengths of longest side and shortest side of a 2-D or 3-D element decide
the

(a) aspect ratio

(b) shape function

(c) order of displacement polynomial

(d) included angle

Number of nodes along the side of a 2-D or 3-D element decide the
(a) aspectratio

(b) shape function

(c) order of displacement polynomial

(d) nature of deformation



CHAPTER 8

DYNAMIC ANALYSIS
(UNDAMPED FREE VIBRATION)

Dynamics is a special branch of mechanics where inertia of accelerating masses
must be considered in the force-deflection relationships. In order to describe
motion of the mass system, a component with distributed mass is approximated
by a finite number of mass points. Knowledge of certain principles of dynamics
is essential to the formulation of these equations.

Every structure is associated with certain frequencies and mode shapes of
free vibration (without continuous application of load), based on the distribution
of mass and stiffness in the structure. Any time-dependent external load acting
on the structure, whose frequency matches with the natural frequencies of the
structure, causes resonance and produces large displacements leading to failure
of the structure. Calculation of natural frequencies and mode shapes is therefore
very important.

Consider i" mass m, of a system of connected rigid bodies and the force
components F; (j = 1,2,..6) acting upon it in three-dimensional space. If the mass
m; is in equilibrium at rest, thenZF, =0.

If mass m, is not in equilibrium, it will accelerate in accordance with
Newton’s second law i.e., F;=m; i,

The force (—m;.ii)) is called the reversed effective force or inertia force.
According to D’Alembert’s principle, the net external force and the inertia
force together keep the body in a state of ‘fictitious equilibrium’
ie., 2(F, ~mii,)=0.

If the displacement of the mass m; is represented by du, (j = 1,2,..6), then the
virtual work done by these force components on the mass m; in equilibrium is
given by

8Wi = ZFJ . 5[]] =0.
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D’Alembert’s principle rewritten in the form,

OW; =73 Fj.du; - (mi).du, =0 is a statement of virtual work
Sfor a system in motion.

For a simple spring of stiffness ‘k’ and a lumped mass ‘m’ under steady state
undamped condition of oscillation without external force, the force equilibrium
condition of the system is given by

ku(t) +mi(t)=0,
where, F, = —k u(t) is the reactive elastic force applied to the mass.

Displacement in vibration is a simple harmonic motion and can be
represented by a sinusoidal function of time as

u(t) = u sin ot
where, o is the frequency of vibration in radians/sec

It is more often expressed in ‘f* cycles/sec or Hertz (Hz) where © =2xn f

Then, velocity u(t)= —wu cos wt

and acceleration  1(t)=—u sin ot = —ou(t)

K.u(t) + mi(t) = (k— o’'m) u(t) =0

In general, for a system with ‘n’ degrees of freedom, stiffness ‘k’ and mass
‘m’ are represented by stiffness matrix [K] and mass matrix [M] respectively.

Then, (K] -0’ [M]) {u} = {0}
or (IMI'[K] - o’ [1]) {u} = {0}

Here, [M] is the mass matrix of the entire structure and is of the same order,
say n x n, as the stiffness matrix [K]. This is also obtained by assembling
element mass matrices in a manner exactly identical to assembling element

stiffness matrices. The mass matrix is obtained by two different approaches, as
explained subsequently.

This is a typical eigenvalue problem, with @’ as eigenvalues and {u} as
eigenvectors. A structure with ‘n’ DOF will therefore have ‘n’ eigenvalues and
‘n’ eigenvectors. Some eigenvalues may be repeated and some eigenvalues may
be complex, in pairs. The equation can be represented in the standard form,
[A){x}, = A, {x}.. In dynamic analysis, o, indicates i" natural frequency and {x};
indicates i™ natural mode of vibration. A natural mode is a gualitative plot of
nodal displacements. In every natural mode of vibration, all the points on the
component will reach their maximum values at the same time and will pass
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through zero displacements at the same time. Thus, in a particular mode, all the
points of a component will vibrate with the same frequency and their relative
displacements are indicated by the components of the corresponding
eigenvector. These relative (or proportional) displacements at different points
on structure remain same at every time instant for undamped free vibration
(Ref. Fig. 8.1). Hence, without loss of generality, {u(t)} can be written as {u}.

t=t, t=t, t=t, t=t, ~ %

FIGURE 8.1 Mode shape

Since {u} = {0} forms a trivial solution, the homogeneous system of
equations ( [A] —A[I] ) {u} = {O}gives a non-trivial solution only when
([A]-A[11) = {03,
which implies Det ([A]-A[I})=0.
This expression, called characteristic equation, results in n™ order
polynomial in A and will therefore have n roots. For each A, the corresponding
eigenvector {u}, can be obtained from the n homogeneous equations

represented by ([K] — A [M]) {u} = {0}. The mode shape represented by {u(t)}
gives relatives values of displacements in various degrees of freedom.

It can also be represented as
[AJX] = [X][A]
where, [A] = [M]"' [K]
[X] is called the modal matrix, whose i column represents i eigenvector
{x}i
and [A] is called the spectral matrix with each diagonal element

representing one eigenvalue, corresponding to the eigenvector of that column,
and off-diagonal elements equal to zero.

8.1 NORMALISATION OF EIGENVECTORS

239

The equation of motion of free vibrations ([K] — > [M]) {u} = {0} is a system
of homogeneous equations (right side vector zero) and hence does not give
unique numerical solution. Mode shape is a set of relative displacements in
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various degrees of freedom, while the structure is vibrating in a particular
frequency and is usually expressed in normalised form, by following one of the
three normalisation methods explained here.

(a) The maximum value of any one component of the eigenvector is
equated to ‘1’ and, so, all other components will have a value less than
or equal to ‘1°.

(b) The length of the vector is equated to ‘1’ and values of all components
are divided by the length of this vector so that each component will have
a value less than or equal to 1°.

(c) The eigenvectors are usually normalised so that
{u}' IM] {u}i=1 and {u}' [K]{u}i=A

For a positive definite symmetric stiffness matrix of size n x n, the
eigenvalues are all real and eigenvectors are orthogonal

ie, {u},'[M]{u},=0 and {u}"[K]{u},=0 V i#j

8.2 MODELLING FOR DYNAMIC ANALYSIS

Solution for any dynamic analysis is an iterative process and, hence, is time —
consuming. Geometric model of the structure for dynamic analysis can be
significantly simplified, giving higher priority for proper representation of
distributed mass. An example of a simplified model of a water storage tank is
shown in Fig. 8.2, representing the central hollow shaft by long beam elements
and water tanks at two levels by a few lumped masses and short beam elements
of larger moment of inertia.

8.3 MAss MATRIX

Mass matrix [M] differs from the stiffness matrix in many ways:

(i) The mass of each element is equally distributed at all the nodes of that
element

(i) Mass, being a scalar quantity, has same effect along the three
translational degrees of freedom (u, v and w) and is not shared

(iii) Mass, being a scalar quantity, is not influenced by the local or global
coordinate system. Hence, no transformation matrix is used for
converting mass matrix from element (or local) coordinate system to
structural (or global) coordinate system.
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Actual structure ldealised structure
FIGURE 8.2 Finite Element Model of a water tank for dynamic analysis

Two different approaches of evaluating mass matrix {[M] are commonly
considered.
(a) Lumped mass matrix

Total mass of the element is assumed equally distributed at all the nodes
of the element in each of the translational degrees of freedom. Lumped
mass is not used for rotational degrees of freedom. Off-diagonal
elements of this matrix are all zero. This assumption excludes dynamic
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coupling that exists between different nodal displacements. Lumped
mass matrices [M] of some elements are given here.

Lumped mass matrix of truss element with 1 translational DOF per
node along its local X-axis

e

Lumped mass matrix of plane truss element in a 2-D plane with
2 translational DOF per node (Displacements along X and Y coordinate
axes)

Please note that the same lumped mass is considered in each
translational degree of freedom (without proportional sharing of mass
between them) at each node.

Lumped mass matrix of a beam element in X-Y plane, with its axis
along x-axis and with two DOF per node (deflection along Y axis and
slope about Z axis) is given below. Lumped mass is not considered in
the rotational degrees of freedom.

1 000
0000

[m]- 22
210010
0000

Note that lumped mass terms are not included in 2™ and 4™ rows, as
well as columns corresponding to_rotational degrees of freedom.

Lumped mass matrix of a CST element with 2 DOF per node. In this
case, irrespective of the shape of the element, mass is assumed equally
distributed at the three nodes. It is distributed equally in all DOF at each
node, without any sharing of mass between different DOF

100000
010000
[M]< PAL[0 0 1 0 0 0
31000100
000010
00000 1
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(b) Consistent¥nass matrix

Element mass matrix is calculated here, consistent with the assumed
displacement field or element stiffness matrix. [M] is a banded matrix of
the same order as the stiffness matrix. This is evaluated using the same
interpolating functions which are used for approximating displacement
field over the element. It yields more accurate results but with more
computational cost. Consistent mass matrices of some elements are
given here.

Consistent mass matrix of a Truss element along its axis (in local coordinate
system)

(w'=1lu vl
INI'=[N; Nj
where, le(—]“—é)
2
and N =£]—+-Q
)

1= JNlo INT av = [AINIo [N]

dx = j A p[N]IN]" (det J)(dx/de )dE
(x, + x2)+ (xz —'xl)a

Here, x=Nx,+N,x,= 5 5

and dngi.dcf_‘:detJd&:[L) dg
d§ 2
Using the values of integration in natural coordinate system,

Ml-pa(2) [ l0-012  (e2lee

_paL| fo-eyar fl-z)a
8 | fi-g2)ae [+e) a

_pAL[le-g2+£213) (e-£213)
"8 |e-¢'13) E+E2+ED/3)
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_pAL[8/3 4/3] pAL[2 1
8 |4/3 831 6 |1 2

Consistent mass matrix of a Plane Truss element, inclined to global X-axis -
Same elements of 1-D mass matrix are repeated in two dimensions (along X and
Y dircctions) without sharing mass between them. Mass terms in X and Y
directions are uncoupled.

2010
0201

[M]-£2=
6 |1 020
010 2

Consistent mass matrix of a Space Truss element, inclined to X-Y plane) —
Same elements of 1-D mass matrix are repeated in three dimensions (along X, Y
and Z directions) without sharing mass between them.

2 00 00

0
1
0
0

[=))
(= R e — A =]
SO N OO -

2
0
0
1
0

-0 O N O
(=2 S e -

L 2]
Consistent mass matrix of a Beam element

[M]:pA(%j I {H}T {H}d& with Hermite shape functions {H} as used in a

beam element.
2238 +83)
_pAL { L{i-E+£2+¢?)
T8 9 2f+3e-g?)
L(—l—é‘,+E_,2 +§3)

bl-3e+8) Li-g-g2+2) 20+3e-8) L{-1-g+&2+8 )
156 22L 54 —13L

_pAL| 22L 42 13L  -31°

T 420] 54 13L 156 -22L
|-13L -31* -22L 417
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Consistent mass matrix of a CST element in a 2-D plane
[N]r= N, 0 N, 0 N; O
0

N, 0 N, 0 N,
M]= [INJo[NT" av =t [IN]p[NT" da
0 i
2 !
1

N O -

0
ptA 0
12

N o= O

1
0
1
0
Sym 2 0
2

Note : Natural frequencies obtained using lumped mass matrix are LOWER

than exact values.

Example 8.1 : Find the natural frequencies of longitudinal vibrations of the
unconstrained stepped shaft of areas A and 2A and of equal lengths (L), as

shown below.

2A A

— L e L —— ]

Solution : Let the finite element model of the shaft be represented by 3 nodes
and 2 truss elements (as only longitudinal vibrations are being considered) as

shown below.

245
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Using consistent mass matrix approach

i )

6 |1 2 6 |2 4

-2 ]

Assembling the element stiffness and mass matrices,
AE 2 -2 0
K]===-2 3 -1;
L
0 -1 1
4 2 0
2 6 1
0 1 2

Eigenvalues of the equation ([K] — @’ [M] ) {u} = {0} are the roots of the
characteristic equation represented by

[M]-22=

2AF/L—-w?4ppAL/ —2AE/L - w?2ppAL/ 0
2AE/L-w%2ppAL/  3AE/L-w0?6ppAL/ —1AE/L-w’pAL/€=0
0 —~ AE/L-0?pAL/6  AE/L-0?2ppAL
- I pLlw?

Multiplying all the terms by (L/AE) and substituting = <E

2(1-2B) -20+B) O

-2(1+B) 3(1-2B) -(+B)=0

o -(+p) (1-2p)
or 18B(B-2)(1-2p)=0
The roots of this equationare B=0,2or 1 or o’ =0, 1—2-153— or ‘3%
2 pL pL

Corresponding eigenvectors are obtained from ( [K] — ® [M] ) {u} = {0} for
different values of o’ as[I 1 1]"forf=0,{1 0 2] forp= % and

[1-1 11 forp=2.

The first eigenvector implies rigid body motion of the shaft. One component
(u; in this example) is equated to ‘1’ and other displacement components
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(u; and u; in this example) are obtained as ratios w.r.t. that component,
following one method of normalisation. Alternatively, they may also be
expressed in other normalised forms.

Note : Static solution for such an unconstrained bar, with rigid body motion,
involves a singular [K] matrix and can not be solved for {u}, while dynamic
analysis is mathematically possible.

Example 8.2

Find the natural frequencies of longitudinal vibrations of the same stepped shaft
of areas A and 2A and of equal lengths (L), when it is constrained at one end, as
shown below.

ALLRLREARIRRARRRRARAY

— L :{: L *J'

Solution

Let the finite element model of the shaft be represented by 3 nodes and 2 truss
elements (as only longitudinal vibrations are being considered) as shown below.

7 E] 2 3
(23 (45
k() )

Using consistent mass matrix approach

R e R S

Assembling the element stiffness and mass matrices,
2 -2 0

247
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After applying boundary condition at node 1, 1* row and 1* column of the
assembled matrix can be deleted. Eigenvalues of the equation ( [K] — o [M] )
{u} = {0} are the roots of the characteristic equation represented by

3AE/L-0*6pAL/6 —AE/L-w’pAL/6|
—~AE/L-w’pAL/6 AE/L-w*2pAL/6

2 2
Multiplying all the terms by (L/AE) and substituting 3= p];;)
‘3(1 -2B) —(1+ ﬂ _
~(1+p) (-2p)
or HEP-14p+2=0  =B=(7x27)1
The roots of this equation are § = 0.164, 1.109 or »° = 0. 9?; E or 6'6? E
P p

Corresponding elgenvectors are obtamed from ([K] - m [MD {u} = {0} for
different values of o’ as [0 1 1.732 ]

Example 8.3

Find the natural frequencies of longitudinal vibrations of the constrained
stepped shaft of areas A and 2A and of equal lengths (L), as shown below.
Compare the results obtained using lumped mass matrix approach and
consistent mass matrix approach.

Solution

Let the finite element model of the shaft be represented by 3 nodes and 2 truss
elements (as only longitudinal vibrations are being considered) as shown below.

2A A

ALLESLERRRRRRRNANNNY

[\™)
(5]
(PSS )
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2AE)| 1 -1 AEY)l 2 -2
[K]‘z( L )[—1 1]=(T)L2 0]
AE)|l 1 -1
KL= —
Kkb-(25)) ) ]
(a) Using lumped mass matrix approach

p 28] 0] 0, -t

Assembling the element stiffness and mass matrices,

2 -2 0 2 00
[K]=iLE— -2 3 -1 [M]:ﬁ\—lio 30
0 -1 1 00 1

Application of boundary condition (node 1 constrained) eliminates row
1 and column 1, thus reducing the size of stiffness and mass matrices to
2 x 2. Eigenvalues of the equation ([K] — ® [M]) {u} = {0} are the
roots of the characteristic equation represented by

3AE/L-0’3pAL/2 ~AE/L |
~AE/L AE/L -w’pAL/2
o . pL’w’
Multiplying all the terms by (L/AE) and substituting = >F

=0

3(1-p) -1
-1 (-8
or 3pE-6P+2=0

+
The roots of this equation are (= i3__§\/_§) or 0.423, 1.577

Corresponding eigenvectors are [0 —0.57734 11" for  =1.577
and [0 057734 11" for p=0.423

(b) Using consistent mass matrix approach

M], = p(2A)L |:2 l]z;_)i\_Lr 2}

6 |1 2 6 {2 4

249
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M1, = pAL [2 1]

6 |1 2

Assembling the element stiffness and mass matrices,

2 -2 0 420
[K]:ﬁLE 23 -1y M]=RALL, 6
0 -1 1 0 1 2

Application of boundary condition (node 1 constrained) eliminates row
1 and column 1, thus reducing the size of stiffness and mass matrices to
2 x 2. Eigenvalues of the equation ( [K] — o’ [M]) {u} = {0} are the
roots of the characteristic equation represented by

3AE/L-®°6pAL/6 —AE/L-w’pAL/6|
~AE/L-0’pAL/6 AE/L-0’2pAL/6

2w’

6E

Multiplying all the terms by (L/AE) and substituting =2

]3(1—26) —(1+B)I:
-(+p) (1-28)
or 1MP=14p+2=0

74343

The roots of this equation are = T or 1.10874, 0.16399

Corresponding eigenvectors are [0  —0.57734 ‘I]T for 3 =1.577
and [0 057734 1]" forp=10.423

Note : Natural frequencies obtained with lumped mass matrices are
LOWER than those obtained with consistent mass matrices, while the mode
shapes are practically same.

Example 8.4

Find the natural frequencies of vibrations of a simple cantilever beam.

ALEARERRARARTANANRRANNS



CHAPTER 8 DYNAMIC ANALYSIS 251

Solution

Let the finite element model of the beam be represented by 2 nodes and 1beam
element to facilitate manual calculation. After applying boundary conditions,

[K]= (%J [_‘;L :“6; } ; [M]= (%%HL) [_]2526L ”42L22L}

Eigenvalues of the equation ([K] — * [M]) {u} = {0} are the roots of

1200— 788 —6La+11L
—6La+11L3 4120217

2

where o :—ETI and B= pAL®
L 210

or 35p-2040B+12a’=0

The roots of this equation are Bz% or 2(;25(1

, 12El 1212EI
ol =

or = or
pAL pAL'

Corresponding eigenvectors are [ 0.983  1.36/L]" for = 2?(51
and [1.006 7.716/LT" for p= 2‘;25“

8.4 SUMMARY

e A distributed mass system will have as many natural frequencies and
mode shapes as the number of DOF, ‘n’.

e Free undamped vibrations involve a set of n homogeneous equations.
Such equations will not give a unique solution. A mode shape consists of
relative displacement values at (n-1) DOF, obtained w.r.t. the chosen
displacement value at one DOF. The mode shapes (eigen vectors) are
usually normalised.

e The n natural frequencies may be real or complex (in pairs). Some of
them may be zero (indicating rigid body mode) or repeated.

e Only first few frequencies (lower values) are significant and are usually
calculated by iterative methods. Hence, a coarse mesh is adequate for
dynamic analysis.
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e They can be calculated using lumped mass matrix or consistent mass

matrix, based on shape functions used for assumed displacement field.
Each element of mass matrix of an element represents scalar mass,
associated with a particular DOF and no transformation is involved
between element (local) coordinate system and structure (global)
coordinate system unlike stiffness matrix of vector elements.

Lumped mass matrix is diagonal; has no components in the rotational
DOF; mass of element is equally distributed at all the nodes of the
element, irrespective of shape of the element; same mass at a node is
taken along all translational DOF at the node and not shared in fractions.

Consistent mass matrix is square, symmetric and banded, just like
stiffness matrix.

OBJECTIVE QUESTIONS
1. An unconstrained 3-D frame with 4 nodes has ___ number of zero

frequencies
(a) 1 by 2 () 3 d 6

2. A frequency of value __indicates rigid body motion along one dof
(a) zero b)) 1 (c) infinity (d) less than zero

3. Principal modes of vibration of a multi-dof system are
(a) parallel (b) orthogonal
(c) integer multiples (d) fractional multiples

With lumped mass matrix, the differential equation of vibration refers to
(a) elastic coupling (b) inertia coupling
(c) mode superposition (d) both inertia and elastic coupling

With consistent mass matrix, the differential equation of vibration refers
to

(a) elastic coupling (b) inertia coupling

(¢)  mode superposition (d) both inertia and elastic coupling
Normalising eigenvector w.r.t. mass matrix is useful in

(a) mode superposition (b) evaluating natural frequencies

(c) frequency response (d) damped vibrations
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An unconstrained 2-D frame with 4 nodes has __ number of zero
frequencies

(@ 1 (by 2 (© 3 (d 6

A 4-noded cantilever gives ___ number of frequencies

(@ 3 (b) 4 (c) 6 d 9

A 3-noded simply supported beam gives _ number of frequencies

(@ 3 (b) 4 () 5 d 7

A natural mode of vibration represents __at each node

(a) absolute displacements
(b) relative displacements
(c) proportional displacements

(d) absolute strain.
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CHAPTER 9

STEADY STATE HEAT
CONDUCTION

Application of FEM is not limited to structural analysis. Availability of faster
computers with large memory have facilitated in generalising mathematical
concepts involved in finite element analysis and applying them to many
different engineering fields. It is now possible to use the same finite element
model of the component for steady state as well as transient thermal analysis,
structural analysis due to static loads as well as dynamic loads etc.

The major difference between structural analysis and thermal analysis by
FEM is in the number of unknowns. While in a structural analysis, the primary
unknowns are vector displacement components ranging from 1 to 6 at any node
in the model depending on the type of component and loads, thermal analysis
deals with a single unknown, scalar temperature, at every node in the model.

In many practical situations, thermal load as well as mechanical loads will be
simultaneously acting on a component. It is to be understood that thermal
expansion of a component induces stresses only when the expansion is
partially or completely constrained.

9.1 GOVERNING EQUATION

In Cartesian coordinates

Consider a small element (a cube of dimensions dx, dy and dz) in a solid body.
The energy balance during time “dt’ can be stated by,

Heat inflow + Heat generated = Heat outflow + Change in internal energy
(gx + qy + qz) dt +q (dx dy dz) dt
=(Gx+ax t Qy+ay T qz+az) dt + pC, dT (dx dy dz)

or  [(gx —Qqx+ax) + (Qy —qy +ay) + (Qz — qz+4z)] dt + q (dx dy dz) dt
=pC, dT (dx dy dz)
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where, k = Thermal conductivity
C, = Specific heat at constant pressure
and p = Mass density

Considering heat flow through the body along X-direction and using
Fourier’s law of heat conduction q = ——k.A(%I] along each direction,
X

oq
=q, +| —= |dx
qx+dx qx 8x j

{3
N e

or  (gx —Qqx+ax) dt =(0/0x) [ kx (0T/0x) ] dx dy dz dt

Considering similar expressions for qy.qy and qz.4z and dividing all terms
by dx dy dz dt

S (5 ) e (3

For a homogeneous material, k, = k, =k, = k and hence
2 2 2 C
ar+az+6f+(g)= [ (?_T.):(l)[ﬂ] ..... (9.1)
ox~ oy° oz k k ot o\ ot

where, o= L is called thermal diffusivity
PCy

For the steady state condition, the time differential on the right hand side
becomes zero.

Then,
2 2 2
or, o1, o1 (ﬂj—o ..... (9.2)
ox® 0oy° oz k
ie, kVT+q =V.(kVT) +q =0 wn(9.3)
2 2 2
where, V’T= Zxrf + gy]; + gzrf for 3-D heat conduction
2 2
= _6_’[ + 6_T for 2-D heat conduction
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_dT

= d—2 for 1-D heat conduction
X

Laplace equation VT = 0 is a particular case of steady state problem when
q=0
Helmholtz equation

In general, a static field variable problem in terms of the umknown scalar
Junction 0 can be represented by Helmholtz equation, given by

ﬁ(kx@}.i k Ll +—q(kzgq)+7\.6+q=0
ox\ "ox) oyl Yoy) o0z\ “oz

This equation represents steady state heat conduction problem when 0
represents nodal temperature; k, , k, and k, are thermal conductivities of the
material along x, y and z directions; A = 0 and q is the heat source or sink. The
equation can then be written as

—(?—(kxg—r)Jri(k ﬂ)+£(kzgj+q:0
0x ox) oy\ Yoz) oz 0z

Boundary conditions associated with a thermal analysis are:

e Specified temperature T=T, (atx=x)
e Specified heat flux (insulated boundary) q =0 (atx=x)
e Convection heat transfer q=h(TL-T,) (atx=1x)

(on fluid solid interface)
In Cylindrical coordinate system

In the case of solids of revolution, eq. (9.1) can be used more conveniently in
cylindrical coordinates (r, 6, z coordinates) as given below

2 2 2
?_T+(1)§+(L)Qi+6_T+g=(L)(ﬁ) (9.0)
or? r)or 2002 o022 k \a/\ ot

.

9.2 1-D HEAT CONDUCTION

In this case, temperature is considered along the length of a rod or thickness of
wall representing the direction of heat flow through conduction. Therefore,
temperature is a function of only one linear dimension, x. Heat conduction in
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the other two directions is neglected. Steady state equation with no heat source
then reduces to

dq d°T
—=—==0
dx dx

where, heat flux q =—k(j—T) is the Fourier’s law with —ve sign indicating
X

reduction of temperature with increasing x.

The geometric model consists of 2-noded elements with heat conduction
along the element. Such problems are broadly categorised into three types,
depending on the possibility of convection heat transfer along the length of the
element.

9.2.1 HEAT CONDUCTION THROUGH A WALL

In this case, conduction across the wall thickness through unit area of cross
section is considered and the wall is assumed to have very large dimensions in
the other two directions. On the two surfaces of the wall, specified temperature
or specified convective heat transfer from the ambient fluid medium form the
boundary conditions.

Using the iso-parametric method of derivation of element stiffness matrix,
we can now obtain thermal conductivity matrix, designated as [Ky], for an
element of length L between nodes 1 and 2. A comparison of the method of
deriving element stiffness matrix and element conductivity matrix for a 1-D
element is given below for better appreciation.

Thermal conductivity matrix,
[Krl

Stiffness matrix,
(K]

Q/A= q=-k (dT/dx)

P/A=0=E (dwdx)

TE)=N, T, + N, T, = [N]" {T}

u(€) =N, u; + N, u, = [N]" {q}

dT/dx = [B+]" {T}

du/dx = [B]" {q}

dx = (L/2) d&

dx = (L/2) dt

N=(1-8)2; No=(1+&)72

Ni=(1-&)/2; Ny=(1 +§)/2

[Kr] = [[B1]" k [Br] (L/2)dE

(k[ 1 -1
TLl-1 1

[K] = | [BI"E[B] A (L/2) d¢

_AE[ 1 -1
TL[-1 1
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For a 2-element model (Ref. Figure 9.1),

Element - 1 Element - 2
k) k,
T, mmmm—— Heat flow T,
L, L,

FIGURE 9.1 1-D heat conduction through a wall

Temperature T at any point in the element is defined by T = [N] {T.}
where [N] are the shape functions, as used for displacement function

and {T.} is the nodal temperature vector
ar(41)(&)
dx L dte )ldx
d[N]T] 2
= AT, 5.
( & ) )
2
—(E}[—l 1.4}
=[Bq] {T.}
where [Ble(Z).[—l 1]
L
Element conductivity matrix,

oL = BT oo lex= I ki, 1 2o

Since x=Npx+ Noxp = (1 = E)x, /2 + (1 + E) x,/2
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dx _ x x, L

& 2 2 2

k[ 1 -1

[KTL:‘]: [_1 J
QL

QL +1 i
Element heat rate vector, {RT }e == I[N]T dE=——
-1

and

2 |1

Assembling conductivity matrices and heat vectors of all the elements of a
structure,

K] {T} = {R}

Similar to the assembled stiffness matrix, assembled conductivity matrix is
also symmetric, banded and singular. Number of these equations is reduced by
applying boundary conditions, as detailed below, and the equations are solved
for the unknown nodal temperatures.

(i) Specified temperature T (at node m)

e Penalty approach: A large value C = max (K;;) x 10 is added to the
m™ diagonal element (in the m™ row and m™ column) of the
conductivity matrix [K]. In addition, C x T is added to the element
in m™ row of {R}

o Elimination method: K; , x T is added to the i element of {R},
where ‘i’ ranges from 1 to total number of rows. In addition, m™ row
and m™ column of the conductivity matrix [K1] and heat vector {R}
are deleted.

(ii) Specified convection heat transfer from ambient fluid
q=h (T,— T,) from node ‘m’ to the ambient medium at T,,
The film coefficient value ‘h’ is added to the element in the m"™ row and

m™ column of the conductivity matrix and the value h T,, is added to the
m" element of {R}.

Example 9.1

Consider a brick wall of thickness 0.3 m, k = 0.7 W/m °K. The inner surface is
at 28 °C and the outer surface is exposed to cold air at —15 °C. The heat transfer
coefficient associated with the outside surface is 40 W/m? °K. Determine the
steady state temperature distribution within the wall and also the heat flux
through the wall. Use two elements and obtain the solution.
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Solution

Considering a two-element model across half the thickness as shown, heat
conduction matrix of the two elements is obtained as

! m 3‘ 3 Free

convection

e =ted= 5 ]

kl
where k, k07 14 w/°C
L 015 3
Assembled conductivity matrix is obtained by adding corresponding terms
as, -

1 1 -1 0
[KT]=—3~ -1 1+1 -1
0o -1 1

We have 2 boundary conditions of constant temperature T, = 28 °C and
convection at free end (node 3) with heat flow q given by

q=h (T3~ Tx). =40 [T3 - (-15) ] =40 T; + 600

To include these effects, 40 T; is added on the left side while — 600 and
contribution of T, are added on the right side.

Using these conditions, we get modified relations for the 2 unknown
temperatures as

14)[ 2 ~1][T,] _ ((43)xT,
3 J|-1 1+40x3/14||T,{ | -600
Solving them, we get T,=7.68°C and T;=-12.63°C

Heat flow Q can be calculated from the first equation as
Q= G;) (T, —T2)=(~13ﬁ)(28 —17.68 )=94.83 W/m?
'k 14 )
Check: Q= (f) (T, - T3)=(-—3—) [7.68 - (~12.63)]=94.78 W/m

Q = h(T; - Ty)=40[(-12.63)- (- 15)]=94.8 W/m’
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Example 9.2

A composite slab consists of three materials with thermal conductivities of 20
W/m °K, 30 W/m °K, 50 W/m °K and thicknesses 0.3 m, 0.15 m and 0.15 m
respectively. The outer surface is at 20 °C and the inner surface is exposed to
the convective heat transfer coefficient of 25 W/m* °K and a medium at 800 °C.
Determine the temperature distribution within the wall.

Solution

Since the plate can be considered infinite, heat transfer can be assumed to be
one-dimensional across the thickness. Heat conduction matrices of the three
elements covering the three materials are obtained as

1 2x 2x3 4 Free

convection
k., -k k -k k -k
K - 1 1 : K = 2 2 : K - 3 3
[ T]] {‘“kl k]} [ T]Z l:_kz k2 [ T]3 __k3 k3
where k,=%:03%= 66.7 W /°C
k2=£:—39——=200=66.7x3 w/°C
L 0.15 .
k3=£=——5——=333=66.7x5 w/°C
L 0.15

The equations after assembling conductivity matrix and heat vector are
obtained by adding corresponding terms as,
[Kq] {T} = {R}
1 -1 0 --0||T,
-1 1+3 -3 0]||T,
0 -3 3+5 -5||T,
0 0 -5 S5]|T,

(=B R e N

We have 2 boundary conditions of constant temperature T, = 20 °C and
convection at free end (node 1) with heat flow q given by

q=h (T,~ T.). =25 (T, — 800) = 25 T, — 20000
=66.7 x 0.375 T, — 20000
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Penalty method of applying boundary conditions
C = max (K;) x 10*=66.7 x (3 + 5) x 10* = 66.7 x 80000
Then

1+0375 -1 0 0||T, 20000
-1 1+3 -3 0(|T, 0
66.7 =
0 -3 3+5 -5 0

0 0 -5 5+80000||T, 66.7 x 80000 x 20

Solving them, we get T, =304.6 °C; T, =119 °C; T; =57.1 °C; T4 = 20 °C.
Elimination method of applying boundary conditions

To include the effect of boundary conditions, 25 T, is added on the left side
while 20000 and contribution of T, are added on the right side.

Using these conditions, we get modified relations for the 3 unknown
temperatures as

1+0375 -1 O[T, 20000
66.7 -1 4 -3|4T,¢ = 0
0 -3 8T, 5T, x66.7
Simplifying, we get
1375 -1 0T, 300
-1 4 -3|KT,,=3 0
0 -3 8||T, 100

or T,;=304.6°C

T,=119°C
T, =57.14°C
Example 9.3

Heat is generated in a large plate (K = 0.4 W/m °C) at the rate of 5000 W/m’
The plate is 20 cm thick. Outside surface of the plate is exposed to ambient air
at 30 °C with a convective heat transfer coefficient of 20 W/m” °C. Determine
the temperature distribution in the wall.

Solution
Since heat transfer through convection takes place on both the sides of the plate,

half the plate can be considered for analysis with the mid-plane as the plane of
symmetry. Heat transfer can be assumed to be one-dimensional across the
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thickness while the other dimensions of the plate can be considered infinite.
Considering a two-element model across half the thickness as shown, heat
conduction matrix and heat generation vector of the two elements are obtained
for unit area of cross section.

Line of /': ! m i 3 Free

Symmetry i convection
i

[KT],=[KT]2:[_';1 —u

1
k 0.4

where k,=—= =8 W/°C
L 5x1072)

Assembled conductivity matrix is obtained by adding corresponding terms

as,
8§ -8 0
[K]=|-8 8+8 -8
0 -8 8
The nodal load vector consists of heat generation and is given by
QL) (1 125
R = R =] — =
= o) =( =1 e
-2
Since %P—:SOOOxﬁs—Xle—) =125W
We have the boundary condition of convection at free end (node 3) with heat
flow q given by

q=h (T5~T,)=20(T3-30)=20 T5 - 600
To include this effect, 20 T; is added on the left side while 600 is added on
the right side.

Using these conditions, we get modified relations for the 3 unknown
temperatures as

8 -8 0] (T, 125
-8 8+8  —8[{T,1=4125+125
0 -8 8+20||T,| [125+600

Solving them, we get T; =117.5°C; T,=101.9°C and T5; =55 °C
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Cautlon : Previous type of check on nodal temperatures, based on heat
conducted through different elements, is not applicable here, since the quantity
of heat flowing through node-1 is increased by generation of heat between
nodes 1 and 2 and so heat entering 2™ element at node-2 will be more. Similar
inequality exists between heat flowing through node-2 and node-3.

Example 9.4

A composite bar of 3 different materials, rigidly fixed at both the ends, is
subjected to a uniform temperature rise of 80 °C. In addition, axial loads are
applied at two points on the bar as shown. Determine the displacements,
stresses and support reactions.

Solution

The finite element model of this problem consists of 3 axial loaded elements as
shown.

60 kN

TR

Zl

0
%m*—m
2

Section-1 Section-2 Section-3
Material Bronze Aluminium Steel
Area of cross section (mm?) 2400 1200 600
Length (mm) 800 600 400
Modulus of elasticity(GPa) 83 70 200
Coefficient of thermal 18.9 x 10°® 23 x 107 11.7x10°¢

expansion ( / °C)
o , [ 4
X <+ X

I 60 kN 75 kN l

Stiffness matrices of elements 1, 2 and 3 (connected by nodes 1 & 2; 2 & 3
and 3 & 4 respectively) are given by,

[K]F[E]k] ;lk]} [K]Zz[ljzkz 1:21(2} [Kl,=t3k3 ‘:jﬂ

_AE, 2400x83x10’
L, 800

[88)

4 —

where  k, =249x10°
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_AE, 1200x70x10°
L, 600

k, =140x10

A E;  600x200x10
L, 400

and ki, =300x10°

Assembled stiffness matrix is obtained by adding corresponding terms as,

k, -k 0 0
K] ~k, k,+k, -k, 0
0 -k, k,+k, —k,
0 0 -k, Kk

249 -249 0 0

_ om0 2494140 - 140 0

0 —140 140+300 —300

0 0  -300 300

The nodal load vector consists of loads applied at nodes 2 and 3 as well as
loads due to constrained expansion. These loads are calculated for each element
based on thermal expansion of that element.

Load in element 1

= A E; a; AT =2400 x 83 x 10’ x 18.9 x 10 x 80 =301.2 kN
Load in element 2

= A B, AT=1200x 70 x 10 x 23 x 106 x 80 =154.6 kN
Load in element 3

=A;E;a3 AT =600 x 200 x 10°> x 11.7 x 10 x 80 =112.3 kN
Direction of load at the ends of each element should result in expansion of

the element. At nodes 2 and 3, mechanical load also should be added to the
thermal load from elements on either side.

Load-displacement relations can thus be written now as

249 -249 0 0] [u, -301.2+R,
—249 389 —140 0llu 301.2-154.6-60

10° 2L=10°
0 —140 440 —-300]u, 154.6-112.3-75

0 0 -300 300]}u, 1123.+R,
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Applying the condition that nodes 1 and 4 are fixed and hence displacements
at these nodes are zero, load-displacement relations corresponding to the
unknown displacements u, and u; can be written as

389 -140|fu,| [301.2-154.6-60
-140 440 |u,4 |154.6-1123-75
Solving these two simultaneous equations, we get
u, = 0.222 mm and

U3 =-0.0012 mm

Reactions can be calculated from the two deleted equations
Uy

249 -249 0 0]ju,| [-3012+R,
0 0 —300 300||us|[ | 1123+R,

u,
Therefore. R;=245kN and R;=-111.9kN
Stresses in the elements,

o,=Eie=E/[Bi}{q} 1

0
=83x10° NI
800 800 |]0.222

=22.62 N/mm’
6, = Exe, = E; [B,] {q}23
=70x10’ [——1— LH 0.222 }
600 600 ||—0.0012
=-26.04 N/mm’
o3= Ese3= E;3[Bs] {q}3.4

=200x10° [—L L} ~0.0012
400 400 0

=0.6 N/mm’
Check : Zon or Ri+R;+P,+P;=245-111.9-60-75=0
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9.2.2 HEAT TRANSFER THROUGH A FIN

A fin is of finite lateral dimensions (Fig. 9.2), unlike infinite lateral dimensions
of'a wall. A rod of small cross sectional area, an axi-symmetric plate around the
periphery of an L.C. engine cylinder with heat flow in the radial direction and a
flat plate with its ends across the width insulated can be analysed as 1-D fins.
The heat transfer is essentially 1-D heat conduction along the length with heat
loss through its periphery. Equations relating heat flow to nodal temperatures
will therefore include additional matrix of convection heat transfer to represent
heat flow Q through periphery of each element. This convection matrix [H] is a
function of variable temperature over the element, which can be expressed in
terms of nodal temperatures using shape functions, and is a square symmetric
matrix of the same order as [Kr]. It forms the first (unknown) part ‘h. T* of
convective heat transfer h (T-T,) where T, is the ambient temperature, while the
known second part ‘h T,” is added to the heat flux vector on the right side of the
equation ([KrJ+[H]) {T} = {R}.

Insulated edge

‘ — 1 Finite plate with _{_,
L.C. Engine Heat flow insulated edges
cylinder direction

Insulated edge

g Rod fin
FIGURE 9.2 Different models of heat transfer by conduction and convection
kA 1 -1
where, K] ===
L -1 1

aest
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1-x

[H]= ffn[NT [N]dS:LJ’h L [liLi %]de

X

L
_PhL[2 1
6 [1 2

L X 2 y 2x  x?
since h(l———) Pdx=hP }j1~"~+— |dx
; L L

2
; L
o2 3
=hP X—X +__).(___ =E£
L3 3

L L 2
and | (1—5)(i)pdx=hp 2 lax
SU AL AL LT

x: X - hPL
= hP|—-"r| =——
2L 317 X 6

where, P is the perimeter of the cross section of the element or fin
and A = Area of cross section of fin

The coefficients of [Ky], [H] and {R} can all be divided by A. These

coefficients are thus modified respectively to {—, PhL and PhTL

6A 2A
books.

For a fin of rectangular cross section of width ‘w’> and thickness ‘t’,
(Ref. Fig. 9.3)

in some

P=2(w+t)=2w; A=wt
Then P/A =2/t
For a fin of circular section of radius ‘r’
P=2nr;A=nrand P/A=2/r

For a tapered fin of length ‘L’ and rectangular cross section,
A —A,
A(X) = Ai + (—‘J“L—I'—)f‘

and P(x)=P, N, (x)+ PN, (x)
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where P, and P, are the perimeters at nodes I and J

Wall .
Perimeter P
Cross-sectional area A
/’I
/ Fin
4
4
7 w
7/
/
4
v ’ \/
i
t — L e —»X

FIGURE 9.3 Rectangular and circular section fins

Following the same procedure as earlier explained and integrating the terms,

we get
KAL[ 1 -1 hL)[3P +P, P +P
[KT]: — ;[H]: e ! )
L -1 1 12 P1+PJ Pl+3Pj
~ (A +A)
where, A=t
2
hT. L [2P-+P
R — 0 ]
and { } 6 {P|+2PJ}
Example 9.5

A metallic fin, with thermal conductivity 360 W/m °K, 0.1 c¢m thick and 10 cm
long extends from a plane wall whose temperature is 235 °C. Determine the
temperature distribution along the fin if heat is transferred to ambient air at
20 °C with heat transfer coefficient of 9 W/m? °K. Take width of the fin as | m.

Solution

Neglecting temperature variation across thickness as well as along thy width,
conduction can be considered along the length of the fin only while heat loss
through convection takes place around the periphery. of the flat fin. Thus, using
1-D model, heat conduction and heat convection matrices of the three elements
are obtained as

1 0] 3 4

X X Free
convection

12
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kA] 1T -1
Kil|l=—
k=521
2 1 2 1
[n]-Tht _hL
6A[1 2 3t 2

-2

For each element, L= 93—1~ m

E:.ﬂzlogoo

L (0.1/3)

1_1&:9(0.1/3):100

3t 3x0.001

hTwL:9x20x@;‘/—3)zﬁooo
t 0.001

Assembling the element matrices, we get  ([K]+ [H] ) {T} = {R}

or

1 -1 0 0 2 1 0 0)}{T,

-1 1+ -1 0 1 2+2 1 o/,
10800 +100

0 -1 1+1 -1 0 1 242 1}||T,

0 0o -1 1 0 0 1 2])(T,

1+1
=6000
1+1

1

Substituting the boundary condition of constant temperature T, = 235 °C
and dividing throughout by 100, we get
220 -107 0T, 120 +107 T,
-107 220 -107 3Ty = 120
0 -107 110]]T, 60
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Solving these equations, we get
T,=20735°C; T;=190.2°C and T,=1856°C

Caution : Previous type of check on nodal temperatures, based on heat
conducted through different elements, is not applicable here, since part of the
heat entering the fin through node-1 is lost through convection between nodes 1
and 2 and so heat entering 2™ element at node-2 will be less. Similar inequality
exists between heat entering node-2 and node-3.

Example 9.6

A metallic fin, with thermal conductivity 70 W/m °K, 1 c¢m radius and 5 cm
long extends from a plane wall whose temperature is 140 °C. Determine the
temperature distribution along the fin if heat is transferred to ambient air a
20 °C with heat transfer coefficient of 5 W/m* °K. Take two elements along the
fin.

Solution

Neglecting temperature variation across the cross section of the fin, conduction
can be considered along the length of the fin only while heat loss through
convection takes place around the periphery of the round fin. Thus, using 1-D
model, heat conduction and heat convection matrices of the two elements are
obtained as

1 2 3
el
w2l ]
{R}= PhT, L

at

For each element, L = 9% =0.025m

2
2
=70x1072 xan—=s.sx10-3
0.025

Free
convection

—_ N

| =

~
=2

L

—6—=",7r><(0.01)x5x10“‘ x =13.1x1078

0.025
6
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PhT_L 0.025

2°° =27x(0.01)x5x107* x 20 =785.7x107®

Assembling the element matrices, we get ([Kt] + [H]) {T} = {R}

or
1 -1 0 2 1 ol\(T,
8.8x107° 1+1 =1 1+1 —1[+13.1x10%|1 242 1||1T,
0 -1 1 0 120},

1
=785x 10781 +1
1

Substituting the given boundary condition of constant temperature
T, = 140 °C and dividing throughout by 10, we get

176 -88||T,| 1232

-88 17.6||T,| 10.00786

Solving these equations, we get
T,=933°C and T;=46.67"°C.

9.3 2-D HEAT CONDUCTION IN A PLATE

Heat conduction through a finite plate needs a 2-D model for estimating
temperatures at various points. Temperature variation across the thickness of a
thin plate at any location is negligible and hence 2-D heat transfer is assumed.
Similar to 2-D structural analysis, we use iso-parametric triangular elements for
this analysis.

Temperature field within a triangular element is given by
T=NTi+ NI, +NsT; = ETi+n T+ {1 -&-m)Ts
and x=N X+ Noxo v Nyxs = Ex+nx+(1-§-1)x3
Y=Niyi+Noy2*Nay; = Eyitny+(1-&-m)ys
{ﬂ/@i}:[xn y]3:|{5T/6x}:[J]{6T/8x} where  y,=y,-y,
OT/on} | Xy Y. ||0T/0y dT/oyj and X, = X,— X

T

aT/ax 1 6]76& 1 y23 —¥Yi3 1 0 —1i
or =[Jr = T,
5T/5y ar/af] Det ] — X3 X13 0 1 -1 T
3
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_ I 1¥Ys Yu Yo
DetJi{x,; X3 Xy
1
where, [B]=

Y23 Y1 Y2
Det)J X32 Xl3 X21

T,

T\ = [Blfr,)

T

and [Kr]l =k A [B]" [B]
1
_QA
R}=21

1

2 1
Convection along any edge I-J, [H]: h I;I—J I:] 2]
Example 9.7

Two dimensional simplex elements have been used for modelling a heated flat
plate. The (%, y) coordinates of nodes i, j and k of an interior element are given
by (5,4), (8,6) and (4,8) respectively. If the nodal temperatures are found to be
Ti=110°C, T;= 70 °C and T\ = 130 °C, find

(i) the temperature gradients inside the element and

(ii) the temperature at point P located at (xp, yp) = (6,5)

Solution

A triangular element will have three natural or non-dimensional coordinates N;,
N, and Ny such that N, + N; + Ny =1 or Ny=1-N,—-N;,

(a) Temperature gradient inside the element is given by

T;
or/ox| 1 |Yx Yu Yy T
6T/6y DetJ X Xk Xj !
Tk

110
70
130

1 [6-8 8-4 4-6
" DetJ|4-8 5-4 8-5
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11-2 4 =2

= 70
14|-4 1 3

since DetJ=x, yx—xxyxa=(5-4)(6-8)-(8-4)(4-8)=14

oT/ox 1 )(—200
{aT/ay} B (ﬁ){ 20}
(b) To find out temperature at point (xp, yp), the shape functions (N,, N;, Ny)
of that point are calculated .as given below.
Xp= N, x, + Nyx; + Niexg = N, x, + Ny x; + (1 =N, - N)) x
6=5N,+8N,+4(1-N—N)
=4+N,+4N; or N,+4N,=2
Similarly, yp=N,y,+ Ny, +Niyi =N,y, + Nyy, + (1 =N = N)yy
S5=4N,+6N+8(1-N,—N)
=8—-4N,-2N, or 4N, +2N,=3
5 1
VR
Then temperature at (xp, yp) is given by
Tp=N, T, + N, T, +N, Ty

:GJ (t10)+ (]—54—) (70)+ (T]Z) (130)

(880+350+130)
14

=914°C

which give N, =f;—; N

9.4 SUMMARY

275

e Many engineering problems involve stresses due to change in
temperature of the component or surrounding fluid : 1-D conduction
problem through composite walls and fins; and 2-D conduction problems
through plates.

e To solve for nodal temperature of a finite element model, element

conductivity matrix (due to conduction within the component) is calculated
for steady state problems, in the same way as element stiffness matrix.
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The problem may also involve convection on the boundary or periphery
with the ambient fluid.

Thermal problems and stress analysis probiems can be solved with the
same finite clement model, same distribution of nodes and elements in
the component; Thermal problem involves only one nodal unknown
temperature unlike 1 to 6 nodal DOF in structural analysis and hence size
of the assembled matrix is smaller.

Thermal problems deal with scalar temperature as the nodal unknowns
and, hence, do not require transformation of element matrices from
element (local) coordinate system to structure (global) coordinate system.

Transient problems are solved in multiple time steps by iterative methods
and accuracy depends on the selected time step duration.

OBJECTIVE QUESTIONS

1.

Conductance matrix is the equivalent of stiffness matrix in

(a) thermal analysis (b)  dynamic analysis

(c) fluid flow analysis (d) static structural analysis
problem is solved through iterative method

(a) transient thermal (b) steady state thermal

(¢) structure with thermal loads (d) static structural analysis

. No. of DOF for a 4-noded quadrilateral thermal element is

(a 4 (b) 8 () 12 d 16
. No. of DOF for a 3-noded triangular thermal element is

(@ 3 (b) 6 )y 9 @ 12

No. of DOF for a 6-noded triangular thermal element is

(@ 3 b)) 6 )y 9 dy 12

No. of DOF for a 4-noded tetrahedran thermal element is

(a) 4 (b) 8 () 12 (d 16

No. of DOF for a 8-noded quadrilateral thermal element is

(a 4 (b) 8 () 12 d) 16

No. of DOF per node in a triangular thermal element is

(a 1 b 2 () 3 d 4

No. of DOF per node in a quadr.lateral thermal element is

(@ 1 (by 2 () 3 d 4



CHAPTER 10

DESIGN VALIDATION AND
OTHER TYPES OF
ANALYSIS

10.1 CoMPLIANCE WITH DESIGN CODES

Every component may not be analysed for displacements and stresses under the
influence of external applied loads. Standard components like bearings, springs,
bolts,.. are selected from design data books or manufacturer’s catalogues.
However, when components are to be manufactured to meet specific needs of
customers, they need to be analysed. If the equipment in operation pose danger
to the people working or living around those equipment, design of all
components have to satisfy prescribed design (safety) codes. Different countries
prescribe different design codes for equipment working in their countries. One
of the most popular codes is Boiler & Pressure Vessel Code (Section VIII) for
pressure vessels such as boiler drum, steam or gas turbine, valves, heat
exchanger, condenser,... formulated by American Society of Mechanical
Engineers (ASME). This code or its modified version is followed in many
countries.

Many theories have been proposed to explain failure of components when
subjected to external loads, based on maximum normal stress, maximum shear
stress, maximum strain, maximum strain energy, maximum distortion energy
etc.. ASME code is based on the most conservative theory i.e., maximum shear
stress theory. According to this, a component fails when the maximum shear
stress at any point exceeds prescribed limit for the particular material at the
temperature of operation.

Limiting values of all materials are usually based on the values obtained
from uni-axial tensile test. As explained in chapter-3, this specimen is subjected
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to tensile stress o, along its length by the application of a tensile load. Its other
stress components o, and t,, are equal to zero. By recording the elongation
corresponding to different values of load P, until the specimen breaks, yield
stress (S,), maximum tensile stress (S;), maximum elastic strain, maximum
plastic strain and modulus of elasticity (E) are calculated. These values are
tabulated in the code for each material, at different temperatures. To obtain
material property value at any other intermediate temperature, linear
interpolation is carried out from the values at the nearest lower temperature and
nearest higher temperature.

ASME code defines stress intensity, S,, = min (2S,/3, S/3) for comparison
with the maximum shear stress in the component, with built-in factor of safety.
In the uni-axial tensile test, using Mohr’s circle, we get maximum shear stress
Tmax = Sm/2. Maximum shear stress at any point in the component is equal to
half of the difference between algebraically largest (o;) and algebraically
smallest (0,) principal normal stresses.

(o1 —0)/2<8,/2 or P,<8S,

Thus, stress intensity (P) is defined as twice the maximum shear stress.
Different components of stress intensity are calculated, as detailed below, from
the three normal stresses and three shear stresses at each point of a component.
Assuming that the magnitudes of stress components vary across the cross
section of any component, mean stress is defined as the membrane stress while
the varying part is defined as the bending stress. Stress intensity P calculated
from the membrane part of the six stress components is called membrane stress
intensity P, while the maximum stress intensity calculated from the bending
part (observed on the outermost layers) is called bending stress intensity P,.
These are checked against different limits as given below,

P,<S, and P,+P, <158,

The reason behind specifying two different limits for these components can
be easily understood from the following logic (Refer Fig.10.1). In the case of
membrane stress, equal stress at every point in the cross-section will lead to
simultaneous failure of the entire cross-section. In the case of bending stress,
stress varies linearly throughout the cross-section. If the maximum bending
stress exceeds the allowable limit, only the outer layer yields without failure of
the entire cross section. As the load increases, more and more outer layers start
yielding. Finally, at a particular load, the entire cross-section will reach the
same stress value, in opposite directions in the top and bottom layers. Thus, the
cross-section can withstand larger load in bending mode and hence the
allowable limit can be more.
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— S, je—
> -
/
N »
4
4
’
e /
//
N
P A
/
/
» Q......._..
ACYU“)' WC:S Membrane ¢ Membrane Bending Bending stress near failure
with P+ P+ Q bending stress stress (P) stress (Py)

FIGURE 10.1 Varying influence of membrane and bending stresses across
thickness

The membrane stress is again classified as general membrane stress (P,,)
applicable over a large area of the component and local membrane stress (P;)
applicable near the areas of structural discontinuity or stress concentration. Here
again local yielding results in readjustment of stresses without causing failure of
the entire component and thus a higher load can be sustained.

So, P <158,
and P L+ P, <158, -(10.1)

In some components, stress variation across the cross section may not be
linear. In such cases, total stress is considered as the sum of membrane stress,
bending stress and peak stress (Q). Peak stress is not considered in design
checks. It influences only fatigue and creep damages.

Then, P,+P,+Q<38S,
and P P, +Q<38S, weea{10.2)

All the above checks, in addition to checks related to fatigue failure or creep
Sfailure wherever applicable, have to be satisfied for validating design of any
product. Quiput of any FEM software includes stresses at various points of a
product while code check is_based on_stresses across some typical cross
sections of the product. Hence, the six components of stresses (3 normal
stresses and 3 shear stresses) obtained from Finite element analysis at every
node point in a continuum structure need to be categorised considering their
variation across each critical cross section into membrane(uniform),
bending(linearly varying) and peak stress (non-linear part) components for
validating the design by such codes. Stress categorisation procedure varies
with relevant code. An example of typical stress classification line (A-B) across
the thickness of a shell-nozzle junction and categorisation of total stress across
the thickness into membrane, bending and peak stress components is shown in
Fig.10.2
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Ror XLocul

Total stress

Nozzle axis

FIGURE 10.2 Categorisation of Stresses across thickness

The procedure is summarised below.

e Each of the six stress components calculated by the software in Cartesian
coordinate system is categorised into membrane, bending and peak stress
values.

¢ Principal normal stresses o), 6, and o3 are calculated separately from the
six stress components Oy, Oy, Oy, Tyy, Ty, and T, belonging to membrane,
bending and peak categories in a 3-D stress analysis.

e Principal normal stresses 6;, 6, and o5 are calculated from the four stress
components- oy, Gy, 6, (hoop) and 1,, in an axi-symmetric analysis of 3-D
component, with the hoop stress o, equal to the principal stress o3

¢ Principal normal stresses 6, and o, are calculated from the three stress
components G,, 6, and Ty, in a 2-D stress analysis (plane stress or plane
strain).

e Absolute maximum difference of any two principal stresses | 6; — o, | ,
| 6, — 63| or | 63 — 6, | is calculated for the membrane, bending and peak
categories and designated as P, or P, Py, and Q respectively.

Principal normal stresses and stress intensities (P, or P, P, and Q) have to
be calculated separately for membrane, bending and peak stress components.
Depending on the type of analysis carried out using any general-purpose
software, these values have to be compared with the allowable values of the
material at the operating temperature.
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Note : This categorisation of stresses is not relevant for discrete structures
involving truss, beam, torsion or pipe elements, because stress is either constant
across their cross section (truss or pipe elements) or varies linearly across every
cross section and is maximum where bending moment or torque is maximum
(beam, torsion or pipe elements).

10.2 TRANSIENT HEAT CONDUCTION
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Time-dependent heat transfer problems are very common in engineering. A
brief explanation is given about this topic. Detailed presentation is not included
here, as this topic is outside the scope of syllabus in many universities. The
solution follows iterative method in multiple time steps and the accuracy
depends on the selected time step duration. The governing equation for transient
heat conduction problem is

2 2 2
0T oT. 2 Tz(ﬂ)z Sy (aljz(l)(@) ..... (10.3)
x? oy? oz \k k ot a )\ ot

where, a=k/pC, is called thermal diffusivity

k = Thermal conductivity
C, = Specific heat at constant pressure
and p = Mass density

In solving this problem, we get an additional matrix, related to the capacity
of a material to absorb heat, called capacitance matrix [Kc]

[Kel=pC, [[INT IN]av

pC. AL[2 1 . .
= "6 - for 1-D element of uniform section
pC, ALl 1 -1 . )
= e 1.1 1 for 1-D element of varying section
~ A +A)

where, A=
2

and (K] {T} +[Kc] {T’} = {R}

where  {T’}=[dT,/dt dT,/dt....['
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10.3 BUCKLING OF COLUMNS

The truss element discussed in chapter 4 is assumed to be stable and extend or
shorten, due to the tensile or compressive load applied along its axis. This is not
always true. Slender columns, subjected to axial compressive load, are found to
bend. This phenomenon is called elastic instability or elastic buckling
(implying that the bending vanishes when load is removed) and occurs due to
the difficulty of applying load exactly along the axis (without any eccentricity)
or due to non-homogeneity of most practical materials (resulting in non-uniform
stress distribution across the cross section).

A slender member AB of length ‘L’ and having hinged ends at A and B,
subjected to axial load ‘P’, bends as shown in Fig.10.3. The bending behaviour
depends on the end conditions of the member (free, hinged or fixed) as well as
its dimensions.

FIGURE 10.3 Buckling of a slender member due to axial compressive load
Governing equation for this deformationis M/I = E/R

where, M=—P.y and /R =d%/dx’

i% Yoo (10.5)
dx EIl

or

The general solution is y = C, sin ax + C, cos ax where a =

The constants are evaluated from the end conditions.
y=0atx=0 leadstoC,=0
while y=0atx=L leadsto C,;sinaL=0

C, = 0 is a trivial solution; while sin aL =0 or L waP]— =nx where ‘n’ is

any integer

2
is called critical load or Euler load.

o 2
L

This is an eigenvalue problem and the function y = C,; sin ax is called an
eigen function. Discrete values of buckling load P = n’a’EI/L? are called
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eigenvalues and corresponding mode (or displacement) shapes are eigen
vectors, similar to natural modes of vibration, as shown in Fig. 10.4.

P, =mEIL’ P, =4 EIL’ P, =9n EIL’
T TN —%& ______ —
n=1
n=2 n=3

FIGURE 10.4 Buckling mode shapes

Corresponding buckling stress,

where p= (%] is the radius of gyration.

For loads smaller than P, the deflection C, or 8 is zero, implying that the
column remains straight and shortens due to the applied compressive load.

For a given material of modulus of elasticity ‘E’, the critical stress o,
increases as the slenderness ratio (L/p) decreases i.e., as the column becomes
shorter and thicker. Thus, below a particular value of ‘L/p’, for which o, > o,,
Gy = 1t2E/(L/p)2 is not reached and the column .does not buckle, before the
column starts yielding. For mild steel, this limiting slenderness ratio is = 100.

10.4 FATIGUE ANALYSIS
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Fatigue life depends on fluctuating stress cycle, identified by stress amplitude
over a mean stress at a point in the component, and the number of such cycles
the product is designed for. All points of a component may not experience same
stress amplitude or same mean stress. Also, a single point may experience stress
cycles of different amplitude, for example due to cold start, warm start and hot
start or due to load change in a steam turbine casing.

Some components are subjected to more than 10° stress cycles, for example
due to flexural stress cycles of rotating components or stresses due to vibration
in static components. They fall in the category of high cycle fatigue and are
designed for infinite life by limiting stress amplitude below endurance limit
(Sg). Components subjected to pressure and temperature fluctuations, such as
due to different start-up procedures of power plant components, experience less
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than 10° stress cycles. Such components are designed for finite life, based on
the stress amplitude (>Sg) at critical points of the component.

For example, a turbine casing or rotor experiences zero stress, when shut
down and very high stress during start-up, when it comes in contact with steam
at high temperature and pressure. Start-up procedure for a typical 110 MW
steam turbine, from cold condition, is given in Fig. 10.5. Change of stress from
stress-free cold condition to the high stress value during transient and back to
zero stress after shut-down forms one stress cycle, with stress range (S,) and the
turbine is designed for a particular number of such cold starts (n;) during its
design life of about 40-50 years. Similarly other transients like warm start, hot
start, load fluctuation due to varying demand between day and night etc.. all
give different stress ranges (S,, S;,..) and each of them may occur for a different
number of cycles (ny, n3, ..).

A

= 360 T/hr
v o
e 535 °C
————— 130 ata
- - - 110MW
— v =« Load
— = = = Steam flow
3600c VI T L ek b e Pressure
3sam | Temp
30 75 110 130 Time in min

FIGURE 10.5 Typicai cold start diagram of a 110MW thermal power plant

The stress range will vary at different points of the structure, for the same
transient. Corresponding to each stress amplitude, number of cycles to cause
fatigue failure (N;) is read from Stress amplitude (S) Vs Number of cycles (N)
curve of the material (Refer Fig.10.6, for a typical curve), assuming it acts
alone. Due to large scatter in the experimental data of S-N values from uni-axial
fluctuating load test, a factor of 2 on stress and 20 on number of cycles is used
in some codes, while preparing S-N curve of a material. Then, fatigue usage
fraction ‘U’ is obtained from the most widely used model (Palmgren-Miner
hypothesis, popularly known as Miner’s rule), for validating safe design of a
component. ‘
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FIGURE 10.6 Typical S-N curve of a material

Fatigue usage fraction, U, = Z[%] zl 0 (10.7)

i=1 i

The finite element analysis gives us 6 stress components (3 normal stresses
and 3 shear stresses) at each node point of a 3-D continuum structure or 4 stress
components (3 normal stresses along axial, radial and hoop directions and 1
shear stress) in an axisymmetric analysis, while S-N curve of a material is
given for one particular stress. Usually vonMises stress or maximum principal
stress difference is used with the S-N curve. This stress value is obtained at each
point and at each time step of the transient. Stress amplitude (S;), half of stress
range, is calculated over the complete transient, consisting of many time steps.
Corresponding to this stress amplitude, number of cycles to failure (N;) is
obtained from the S-N curve of the material and fatigue usage fraction
calculated to validate the design.

10.5 CREEP ANALYSIS

Creep is a phenomenon in which a component, stressed well within its yield
point by the applied loads, yields when the load is applied for a prolonged
period. A constant stress state for a prolonged period is naturally feasible when
the equipment is operating in steady state condition. The time in which the
material starts yielding, at a particular stress level, is called rupture time (Refer
Fig. 10.7). Creep is prominently observed in equipment operating at elevated
temperatures.
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Stress
A
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S! \

CTI la Time to rupture, t,
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>

FIGURE 10.7 Typical Stress vs. rupture time curve of a material

If a structure, during its life time, works for periods of time (t;) at different
stress levels, life fraction rule (similar to Miner’s rule) states that

Creep usage fraction, U, = Z(—t‘—] <t 0 Vsl (10.8)

1=1 n

The finite element analysis gives us 6 stress components (3 normal stresses
and 3 shear stresses) at each node point of a 3-D continuum structure or 4 stress
components (3 normal stresses along axial, radial and hoop directions and |
shear stress) in an axisymmetric analysis, while S-t, curve of a material is given
Jor one particular stress. Usually vonMises stress or maximum principal stress
difference is used with the S-t; curve. This prolonged duration stress (S;) is
calculated at each point during steady state operation of the component.
Corresponding to this stress value and operating temperature, rupture time (t;)
is obtained for the particular material and the creep usage factor calculated to
validate the design.

Cumulative damage due to fatigue and creep

There are components, as in a hydro turbine, which are subjected to fatigue only
and creep at the operating temperature is insignificant. There are also
components, as in a steam turbine, where fatigue due to load transients and
creep due to prolonged steady load operation at high operating temperature
are significant. It is well known that fatigue damage and creep damage are inter-
related; but, the interaction effect is not well understood. Hence, some design
codes suggest calculation of cumulative usage as the algebraic sum of damages
due to fatigue and creep. Thus,
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m k
Cumulative usage fraction, U = Z(E‘—J + Z(L) ..... (10.9)

1=1 n, 1=t tr

and it is usually limited to = 0.5 to account for the unknown interaction
effects.

10.6 DAMPED FREE VIBRATION
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Every structure, when excited with some force, vibrates with a particular
frequency and amplitude. In most cases, amplitude of vibration reduces with
passage of time and finally reaches zero value. This is called damping —
inherent structural damping (usually considered as a function of mass and
stiffness) or external damping with spring and/or viscous dashpot.

In a single degree of freedom system,
ku@®)+cuty+miy=0 .. (10.10)

. du . . .
where U= pm is the velocity at that point

¢ = damping coefficient, which is usually a function of velocity

du d*u . . .
and ii= m or T is the acceleration at that point
t

A solution of the form u =ae™ will satisfy the equation.

Then, m A> + ¢ A + k = 0 is the characteristic equation of the governing
equation and its roots are

o 2 (o), [T

2m

2m

m

2m

The type of motion depends on the nature of the roots or on the value of
(c/2m)? — (k/m)

2
(i) If (z—c—j >(£) or ¢ > 2+km, the roots A; and ), are real and
m m
negative.

Then, u(t) decays as a function of time and no vibration occurs
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2
() If (—29—) <(£) or ¢ <2+km, the roots A; and A, are a pair of
m m

complex conjugate solutions. The real part represents exponential decay
of the amplitude of vibration and imaginary part represents oscillatory
part of motion with a damped free vibration frequency given by

J(k/m)-(c/2my

2
(iii) (_c_) = (EJ or ¢ =2+km , is called critical damping
m

2m

Any linear combination of these roots is also a solution. Thus, in general,
u=a, e\t +a, ehyt isalso a solution
By assuming sinusoidal function for u(t) and expressing u(t) and i(t) in
terms of u(t), the above equation can be rewritten as
(k+bc+b>m)ut)=0
In a multi-degree of freedom system, the stiffness, damping and mass terms

take the form of matrices and the governing equation can be expressed in the
matrix form as

(K]+b[C]+b*[M]) {u()} ={0} .. (10.11)
where, structural damping is assumed to be a function of mass and stiffness,
given by

[C]=a[M]+B[K] withaand § being real constants.

The elements C; of the damping matrix [C] have a physical significance
analogous to elements k, of the stiffness matrix [K]. C; is equal to the external
force required at node I in direction u; to produce unit velocity at node J in
direction u, with velocities at all other masses zero. Analogous to stiffness
matrix, C, = C;,.

Damping force {F}p=—[C] {u}.

10.7 FORCED VIBRATION

When a structure is subjected to dynamic (time dependent) loads such as wind
load, the displacements, strains and stresses will also vary with time. The
solution can be obtained by marching in a series of time steps At and evaluating
accelerations, velocities and displacements at each step. Modal matrix can be
used in the mode superposition method to diagnose mass, damping and stiffness
matrices and thus uncouple the equations of motion.

(K] +b[C]+b* [MD) {u(®)} = {F(t)} -=(10.12)
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The calculation of nodal displacements Vs time is called time history
response.

Sometimes, the dynamic load may not be known in the form of Force Vs
time, but as random vibration (such as earthquake) in the form of frequency Vs
acceleration. This frequency spectrum is treated as a linear combination of
individual acceleration (amplitude) Vs time of specific frequencies. Each
acceleration Vs time is equivalent to applying force F,(t) at node [ in J® DOF
given by F; = mass at node I x acceleration in J" DOF. This analysis is called
response spectrum analysis.

10.8 TORSION OF A NON-CIRCULAR BAR
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A bar of circular cross section, subjected to pure torsion, is analysed using the
assumption that plane section before applying torsion remains plane after
applying the load. i.e. there is no warping of the section or all points on the
cross section will have either zero or equal displacements along the axis of the
bar. The same is not true with a bar of non-circular cross section. Displacements
at different points of a bar of non-circular cross section subjected to torsion are
defined by

u—_—._ezy; v=0zx and w=9\ll(x,)’)

where y(x,y) is the movement of cross section in the axial direction (z-axis) per
unit twist and is called warping function

and 0 is the angle of twist per unit length

For pure torsion, &= &, =&, =Y, =0

ow oOu Ow
Yo =+ =———ty

ox 0z Ox

ow ov ow
Yy =——+—=—+0x
y: ay oz

Applying Hooke’s law, the stress components become o, =6, =0, =1,,= 0

ow
Ty =q’sz —Gl:a—ey}

ow
Ty =nyz=G[E+Ox:t
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The general equation of motion,

du
Pipto;,=p (d—tlj

simplifies for the case of body force P,=0 to

gtiz— +—22=0 since displacement u; is independent of time t
ox oy
Substituting for the shear stresses, from the above, yields Laplace’s equation
’w  d’w
i
. o’y o°
Using y(x,y), we get &%j— + —6_y% =0

The stress-free condition of the periphery of the cross section requires that
the tangential stress be zero on the lateral surface of the prism. Thus, the
boundary condition is of Neumann type,

sz)\'x_*_tyz)\‘y:o

d -d . .
where, A, = d_y and A, = d—x are the direction cosines of the tangent vector
s s

Substituting the above, we get

L)

Integral of the variational problem is given by

I
1=U =(§) vj'cij g; dV

We use finite element idealisation over the cross section and interpolate the
unknown solution function y(x,y) by a polynomial over each element through
10dal values ;. From variational principle,

=0
a

or =0 Vv i=1,n
oy,
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This condition leads to a system of linear algebraic equations to be solved
for y, in the usual manner.

Alternatively, a hybrid finite element model can be developed by introducing
stress function @(x.y) interpolated over each element (satisfying equilibrium
conditions) and warping function y(x,y) specified along inter element boundary
(satisfying compatibility conditions). This model gives more accurate stress
solutions, particularly in the vicinity of external boundary. The stress
components, in terms of the stress function, are given by

sz_g(_g 5 Tz:_a—(?_
dy ¥ dx

Complete restraint of warping of a member, of non-circular cross section and
subjected to torque, reduces rotation at the end but introduces axial normal
stresses much larger than the torsional shear stress. Even in a simple portal
frame, shown below, warping is at least partially restrained at nodes A, B, C
and D. Such restraint influences response due to loads normal to plane of the
frame. Full or partial restraint of warping is experienced at every joint of a
frame and can be included with an additional DOF (rate of twist, d6,/dx) at each
node. Most commercial software do not include this 7" DOF at a node and
warping restraint as well as associated axial stress are ignored.

EN

7%
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CHAPTER 11

COMPUTATIONAL FLUID
DYNAMICS

11.1 INTRODUCTION

The physics of almost every fluid flow and heat transfer phenomenon is
governed by three fundamental principles — mass conservation, momentum
conservation (or Newton’s second law) and energy conservation — taken
together with appropriate initial or boundary conditions. These three principles
may be expressed mathematically in most cases through integral or partial
differential equations (PDE) whose closed form solutions rarely exist. The
ability to seek numerical solutions of these governing equations has led to the
development of Computational Fluid Dynamics (CFD).

To obtain numerical solution to the physical variables of the fluid field,
various techniques are employed:

e manipulating the defining equations

o dividing the fluid domain into a large number of small cells or control
volumes (also called mesh or grid)

o transforming partial derivatives into discrete algebraic forms and
e solving the sets of linear algebraic equations at the grid points

Modern CFD can handle fluid flow associated with other phenomenon such
as chemical reactions, multi-phase or free surface problems, phase change
_ (melting, boiling, freezing), mass transfer (dissolution) and radiation heat
transfer. A CFD code has three basic components — preprocessor, solver and
postprocessor. The solver is the heart of a CFD code and is usually treated as a
‘black box’ while the other two components provide user/computer interface.
Solver is based on one of the three major discrete methods — finite difference
method (FDM), finite element method (FEM) or finite volume method (FVM).



294

FINITE ELEMENT ANALYSIS

Over 90% of CFD codes are based on FDM or FVM. FVM is now very well
established and is used in most commercial CFD packages like FLUENT,
FLOW-3D.

FEM was initially developed for structural analysis but has been extended to
fluid flow problems as it offers the advantage of non-regular grid, capable of
simulating complex boundary geometries. Also, the methodology used for
describing flow conditions within each cell, though more complex than FDM,
have a higher degree of accuracy. FVM draws together best attributes of FDM
and FEM. It is capable of simulating complex boundary geometries while
utilising relatively straight forward finite difference relationships to represent
the governing differential equations. Complete presentation of FDM and FVM
are not in the scope of this book. FDM is detailed below as some of these ideas
are also used in FVM.

11.2 GOVERNING EQUATIONS

Partial differential equation is an equation involving one or more partial
derivatives of an unknown function of two or more independent variables.
Order of the highest derivative in the equation is the order of the equation. The
partial differential equation is termed linear if the dependent variable (unknown
function) and its partial derivatives are of first degree. The equation is termed
homogeneous if each term of the equation contains either the dependent
variable or one of its derivatives.

Some important linear partial differential equations in fluid dynamics are :

1. 1-D wave equation PY i c o
2
2. 1-D heat conduction equation a = (6—2—) where o =
ot ox rC,)
2 2
3. 2-D Laplace equation ou +_8__y_ =VZu=0
q 6X2 ayZ
2 2
4. 2-D Poisson equation ) gx—t;+gy—g = Viu =f(x,y)
2 2 2
5._3-D Laplace equation Olu Ou U _g2y =g
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A single partial differential equation can have more than one solution.
Unique solution of a partial differential equation, corresponding to a given
physical problem, depends on additional information like:

(a) Boundary conditions: values of the required solution on the boundary
of some domain

(b) Initial conditions: values of the solution, when time t is an independent
variable, at time = 0.

Superposition : For a homogeneous linear partial differential equation with
known solutions u; and u, , any linear combination of these solutions is also a
solution.

i.e. u=c;u; +cyu, isalso asolution,
where  c¢; and ¢, are constants.

Any PDE which is linear in the highest derivative is termed as quasilinear.

Ex: Auy+Buy+Cuy=FX y,u,u,u) .. (11.1)
ou Ju d%u
where u =— ;u,=— u, =
ox 7 oy Y Oxoy

2 2
Using duxz(au").dx+ My gy = 9_‘; dx+] 29| gy
ox dy ax ox.3y

= Uy dX + U,y dy

and du =[—aiy—].dx+(?iy—j.dy=( o j.dx+(—a—2—u}.dy
Y 193 oy 0x.0y dy?

= Uy, dx + uy, dy

A B C]lu, F
eq. (11.1) can be rewritten as |dx dy 0 [Ju, ¢r=1qdu,
0 dx dy u,, du,

For a non-trivial solution,

2
A (dy)’ - B (dx) (dy) + C (dx)* =0 or A(d—y] —B(d—yj +C =0
dx dx

295
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This can be expressed in matrix form as

A B C
dx dy o0|=0 .. (11.2)
0 dx dy
[B +vB? - 4ACJ
which gives — =
dx 2A

Characteristic curves, represented by this equation, can be real or imaginary
depending on the value of (B’ — 4AC).

Partial differential equations (PDEs) (in particular, governing equations in
fluid dynamics) are classified into three categories:

e  Elliptic, when B>—4AC <0

2 2
[Laplace equation, gx—l; + Zy—‘: =0

. 3u 8%
Poisson equation, — +—=1(x,
q o ' oy? xy)]

° Parabolic, when B2—4AC =0

2
[Heat equation, %tr_ = a[%) and a> 0]

e  Hyperbolic, when B> —~4AC >0

2 2
[2" order Wave equation, i;—;l =c? gx—lzl

11.3 FINITE DIFFERENCE METHOD (FDM)

Basic idea of FDM is that derivatives in differential equations are written in
terms of discrete quantities of dependent and independent variables, resulting in
simultaneous algebraic equations with all unknowns prescribed at discrete mesh
points covering the entire domain. Appropriate types of differencing schemes
and suitable methods of solution are chosen, depending on the particular
physics of the flows which may include:

o inviscid or viscous flow
e incompressible or compressible flow
e irrotational or rotational flow
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¢ laminar or turbulent flow
e subsonic or transonic or supersonic or hypersonic flow etc.

FDM utilises a time distance grid of nodes and a truncated Taylor series
approach to determine the conditions at any particular node one time-step in the
future based on the conditions at adjacent nodes at the current time.

There are two schemes of using Finite Difference type approximations to
convert the governing Partial Differential Equation into an algebraic format —
Explicit and Implicit. In the explicit method, required value of variable at one
time-step in the future is calculated from known current values. It requires
selection of a very small time-step based on the grid size and hence takes more
computer time. Implicit methods allow arbitrarily large time-step thus reducing
computer time required for solution. However, these methods do not give direct
solution and require iterative solution which sometimes may lead to
convergence problems (for control volumes with large aspect ratios). Also,
these methods are not accurate for convective processes.

11.4 EvrLIPTIC EQUATIONS (OR BOUNDARY VALUE PROBLEMS)
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First boundary value (Dirichlet) problem —
u is prescribed on the boundary curve C of region R

Second boundary value (Neumann) problem —

u, =gn—u (normal derivative of u) is prescribed on the boundary curve C of
region R
Third boundary value (Mixed) problem —

u is prescribed on a part of the boundary curve C and u, on the remaining
part of C of region R

C is usually a closed curve or sometimes consists of two or more such
curves.

To obtain numerical solution, partial derivatives are replaced by difference
quotients. Using Taylor’s expansion,

2 3
u(x +h,y)=u(x,y) +hu_(x,y) + (%—)uxx (x,y)+ [J—;—)um (x,y)+... .(11.3)
Similarly,

2 3
u(x —h,y)=u(x,y)—hu,(x,y) + (h?)uxx (x,y)— [%—jum (x,¥)+... (11.4)
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Subtracting eq. (4) from eq. (3) and neglecting higher order terms in h,
[U(X + ha )') - U(X - h, )’)]

S Y) R = 115
u, (x,y) Sh (11.5)
Similarly, uy (X, y) ~ [U(X, )’ + k)2';(U(X, y - k)] ..... (1-1-6)

These are called central difference formulae for the first derivative.

On the same lines, two other forms can also be derived based on Taylor
series expansion at some other points

u, (x,y)~ [u(x+y, hh) —u(y)] or Forward difference formula ..... (11.7)
u, (x,y)= [u(x,y)—u(x~h,y)] or Backward difference formula ..... (11.8)

h
Second derivative can also be expressed, in a similar way, as

[u (x+hy) ~ux=hy)] - [u,x+hy)-u, )]

Uy (X,y) % o )
h,y) - -
~ fu(x+h,y) 2u:§,y)+u(x hyl (11.9)
uyy(x,y)z[uy(x,)’+k)2—kuy(x,)'—k)] or [uy(x,y+kz_uy(x,y)]

_ [u(x,y + k) —2u(x,y) + u(x,y + k)]
~ %

These are called central difference formulae for the second derivative.
Substituting eq. 11.9 and eq.11.10 in Laplace equation and using h =k,

o’u 8%

V2U=&7+55 =u(x+h,y)tu(x-h,y)

+ux,y+tk)+tux,y—-k)-4u(x,y)=0 ....(11.11)

or u at (x, y) equals the mean of values of u at the four neighbouring mesh
points.

This is called 5-point regular operator
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Laplace equation can also be expressed using some other difference
formulae as

Vai=ux+hy+k)+ux—hy+k)+ux+hy-k)+
u(x-h,y-k)-4(x,y)=0 .. (11.12)
This is called 5-point shift operator
Combining eq.11.11 & eq.11.12, we get 9-point formula, given by
u(x+h y)tux-hy)+tuxy+k)+tuxytk+
u(x+hy+tk)+tu(x-hy+k)+tu(x+hy-k)+
u(x-h,y-k)-8ux,y)=0 .. (11.13)

The coverage of 5-point operators and 9-point operator are shown below on
the model,

xyt+k x—-h,y+k x+hy+k
1 1 1 | 1 1
1 -4 1 4 1 1
X, h+ K {x,y) xhly X,y Xy
x,h-k|l ! 1 1 1 1
x hy k x+hy-k%k
5-point regular operator 5-point shift operator 9-point formula

Similarly, Poisson equation can be rewritten in central difference form as

u(x+h,y)+ux—h,y)+ux,y+k)+ulxy-k)
—dux,y)=hfxy) (11.14)
Use of polar coordinates (r-0) may be more convenient with some

geometries. For those situations, Laplace equation in polar coordinates can be
obtained by substituting
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where

@

Qu_j (0 —uie)

or 2Vr

o’u _ (42 —20; +u,.,)
(Vr)?

azu] - (i —2u; +1;)

002 (V9)?
i+2
Vr
Vo i r \:)
i+3 i+1
i+4

Numerical solution of Dirichlet problem

A grid consisting of equidistant horizontal and vertical straight lines of
distance h is introduced in the given region R. Then, the unknown
values of u at each of the grid intersection pdints or mesh points are
related to the neighbouring points. This yields a system of linear
algebraic equations. The coefficients of the system form a sparse matrix.
It can be changed to a band matrix by numbering mesh points in such a
way that all non-zero elements are arranged around the principal
diagonal. The system of linear algebraic equations can be solved by
Gauss elimination method or Gauss-Siedel iteration method.

Alternating Direction Implicit (ADI) method uses Equation (11.9) and
rewritten as

u(x+h,y)—4u(x,y) +u(x—h,y)=-u(x, y + k) - u(x, y—l;)
or Uy j—4u ;U= —U =i e (11.16)
and u(x,yt+k)—4du(x,y)+ux,y—-k)=—u(x+h,y)—u(x—-h,y)
T | | T ) N — (1;1?) ‘

Solution is obtained by iteration method from an arbitrary starting value
u; at all mesh points. Eq.(11.11) for a fixed row j, gives a system of p-
linear equations, corresponding to n columns, in n unknowns which can”
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be solved for u, by Gauss elimination. This can be repeated, row by
row, for all the rows. In the next step, Eq.(11.12) for a fixed column i,
gives a system of m linear equations, corresponding to m rows, in m
unknowns which can be solved for u, by Gauss elimination. This can
be repeated, column by column, for all the columns.

Convergence can be improved by modifying eqs. 11.11 and 11.12 as
Ui, —CHpiu,t o, = U tC-plu,,— U 1 e (11.18)
ul,]+] —_ (2+p)u‘)1 + ul,]“ = - uH.]’J + (2'—p) U,’J - u|_|,J ----- (11.19)

where p is a positive number

Example 11.1

A rectangular plate is subjected to temperatures on the boundary as shown. Find
the temperature distribution inside the plate.

Solution

Let us divide the plate into a 3 x 3 mesh, for ease of calculation, as shown

4 T=0°C
L3 N\
I
|
0°C 0.2 1,2 l 2,2 3,2
T=10 C\ ! /T=100°C
1
]
1
0,1 . 3,1
1,1 ! 2,1
1
|
1,0 2,0/'
|
B Q
T=100°C

(a) Gauss elimination method

Applying eq.(11.9) at (1,1) -4 T11+ Ty + Tip=-(T1p + Toy) =-200
Applying eq.(11.9) at (2,1) T\ —4 Ty + Tyy ==(Tyo+ Ty;) =-200
Applying eq.(11.9) at (1,2) Ty, —4T 5+ Ty =—(Ty3+ To2) =—100

1+ Applying eq.(11.9) at (2,2) Ty, + T3 -4Ty5 =—(T32+Ty3)=-100
Solving these 4 simultaneous equations, we get

Tii=T,,=875°C; T ,=T,,=625°C

Note that the results also satisfy symmetry about the center line AB
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(b) Gauss-Siedel iteration method or Liebmann’s method
Starting with an initial approximation of Ty; =Ty, = Ty, = T, = 100,
and substituting the most recent values on the right side of the modified
equations, we get improved values for the unknowns on the left side,
after each iteration.

-4 TU + T2,l + Tl’g + 4T2,2 =-200 or TU = (TZ,I + T|’2 + 200)/4

Ty1—4 Ty, + T, =200 or Ty, = (T, + T, +200)/4
Ty, —4T,+ Ty =-100 or Ty, = (Ty,+To,+100)/4
Ty + T, —4T,,=-100 or T,; = (T, + T, +100)/4
Iteration T, T, T, T

1 100 100 75 68.75

2 93.75 90.62 6562 64.06

3 89.06 8828 6328 62.89

4 87.89 8794 6294 62.72

5 87.72 87.61 62.61 62.55

6 87.55 87.52 6252 6251

7 87.51 8750 6250 62.50

8 87.50 87.50 62.50 62.50
(c) Alternating Direction Implicit (ADI) method
Let us start with initial approximate solution of
Ti1=Ty1 =T, =Ty, =100
Iteration number is not indicated in the following equations for the
terms whose values are specified (on the boundary and hence, constant).

Step 1:Using Ty j— 4T, + Tij=—T, ju — "i“,, -1 with different rows
and columns,
For _] =1 and fOI‘ i= l, T2,1(]) - 4T1’1(]) + T())] =— T])o — Tl’z(o)
fori= 2, T3,| - 4T2’](1) + Tu(]) == Tz,o - Tz,z(o)

Solution of these two simultaneous equations in two unknowns give,
Tl,l = T2,1 =100

For j=2 and fori=l, Ty, —4T W+ To=-T, Q- Ty;
fori=2, Ty—-4T,0+T,0=-T,,9-T,,
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Solution of these two simultaneous equations in two unknowns give,

TLZ = Tg)z =66.67

Step 2: Using T,y — 4T, +T,,.1 =~ T, — T, 1, withdifferent rows

and columns,

(b)

Fori=1 and forj=1, T,2-4T, P+ T o==Ty -Ty,"
forj=2, T,3- 4T|,2(2) + Tl,l(z) =—"Top— Tz,z(l)
Solution of these two simultaneous equations give,
T, =91.11; Ty, =64.44
For i=2 and forj=1, T5®—4T,,P+Tyo=-T,,"-Ts,
forj=2, Ty3- 4T2,2(2) + TZ,l(Z) =- lez(n) -Ts,
Solution of these two simultaneous equations give,
T =9L.11; T,,=64.44
Steps 1 & 2 are repeated until reasonably accurate solution for the
unknowns is obtained
Numerical solution of Neumann problem and Mixed problem

In order to take into effect the values of normal derivatives specified on
the entire (or part of the) boundary, the region is extended to some
imaginary mesh points outside the given region and central difference
formula for the derivative on the boundary is used to express the
unknown value at the imaginary mesh point in terms of the values on
the actual geometry. The simultaneous equations so obtained are solved
by one of the standard numerical method for computing the required

solution.

Example 11.2

o’u  0°u

Solve the equation Py + —5y—2— = V2u =f(x,y) = 12 xy for a rectangular plate

of 1cm x 1.5 cm with boundary conditions u =0 on x = 0; u=0ony=

O;u=3y’onx=15andu,=6xony=1.

303
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Solution :

y

—
L)

4 | 12,3

u, = 6x 1,21 12,2
/ 0,2 i i 3,2

u=10 u=3y3 . 21
/ 0,1 : . 3t

» 0,0
T\ X 1,0 2.0 3.0
u=0

Plate of 1 cm x 1.5 ¢m is divided into a mesh of 2 x 3. So each cell is of
0.5c¢cm x 0.5 cm.

or h=0.5 and h’f(x,y)=

12 xy
=3x
2 Y

From the given boundary condition u = 3y, U3p=0; uy, = % =0.375;u3,=3

From the given boundary condition u, = 6x,
at U1’2=6x0.5=3
and at uyp,=6x1=6

ou;, (u3—uy)

Using central difference formula, on 3
or u3=wy 3 (11.20)
P -
Similarly, a2 (U35 ~03,) =6
2h
or wmi3=w,+*6 . (11.21)

Using 5-point regular operator and retaining only unknowns on the left side,
at  (L,1), up; tupp—4u,;=3xy—ujo—ug
=3x05%x05-0-0=0.75 ... (11.22)
and at (2,1), uj+tup—4uy; =3xy—up—u3;=3x1x05-0-0375
=1125 . (11.23)
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To use normal derivative as the boundary condition, 5-point operator with

imaginary points in the extended region is applied at (1,2) and (2,2) as follows:
At (1,2), wu+tuptu—4u=3xy—ug, =3x05x1-0=1.5
or substituting u; 3= u;; + 3 from eq.11.22,
2u,tuyy -4y, =15-3=-15 ... (11.24)
At (2,2), Uptuy tups—4u=3xy—us, =3x1x1-3=0
or substituting u,;=uy;+ 6 from eq.11.23,
2uytup, 4wy, =0-6=-6 ... (11.25)

Eqns 11.22, 11.23, 11.24 and 11.25 can also be written in matrix form as

—4 1 1 oTu| (075
I -4 0 1 |juy| |r12s
2 0 -4 1 llu,| |-15

0o 2 1 -4 -6

By solving them, we get u;; = 0.077; u;, = 0.866; uy; = 0.191 and
Uy = 1.812

11.5 FINITE VOLUME METHOD (FVM)
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This method utilises control volumes and control surfaces. Finite Volume
formulations can be obtained either by a finite difference basis or by a finite

element basis. The control volume, in a 1-D problem covering nodes i — 1, i and

i+ 1, for node i covers -AE)E to the right of node i and ézi to the left of node

i with the control surface CS; and CS, being located at i —% and i +% .

| o1
1—5 l+-5
i+ 1
X X

i
* XCS c CS
Ax 1 cv 3, Ax
L—-“z —»L—— Ax = —>|

i—-1
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(a) FVM via FDM

2
Consider the earlier example j—l; -2=0 for 0<x<I1
X

with Dirichlet Boundary conditions u=0atx=0&atx=1

L Y]
J{d—g—Z]dx=0 0<x<l1
d

0 X

P
Integrating, (d—u)l - JIZ dx=0
dx /o
> (35]-22&(:0 ati=2
csrosy \AX )

Diffusion flux (g—u) is conserved between i—1 and i through control
X

surface at i—% or CS; and between i and i + 1 through control surface
.1
at i+— orCS,
2
This can also be written, in terms of finite differences, as
U~ U J_ U —u )=2AX
Ax Ax

or Ui —2utuy_;=2Ax
This is identical to the equation obtained by FDM.
(b) FVM via FEM

In the same example, let u=N, u; + Ny u, [1 —%:]ul +[%] u
o) (B4
dx Jcsy h ) dx Jcso h

(duj _(du]

d2u~2= dx Jog, \dx /g _2=(u3—2u2+u,)_2=0
2 2

dx h h

or us —2up + uy =2 h?

This is also identical to the equation obtained by FDM.
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11.6 FDM vs. FEM
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S.No. Finite Difference Method Finite Element Method
1. Finite difference approximation Interpolation functions and
from Taylor series expansion is polynomial expansion are used
used
2. Equations are written for structured | Equations are written for grids, not
grids and less complicated. Hence, | necessarily structured, with nodes
need lesser computer time irregularly connected around the
entire domain resulting in a large
) sparse matrix system for solution
3. Treatment of governing equation | Variational formulation employed not

and different boundary conditions is
not uniform. The solution method is
tailor-made for each situation

only for the governing equation but
for all constraint conditions — useful
for solution stability and accuracy
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CHAPTER 12

PRACTICAL ANALYSIS
USING A SOFTWARE

12.1 USING A GENERAL PURPOSE SOFTWARE

Many general purpose software are readily available for analysis of mechanical,
civil and aircraft structures based on FEM. Even though actual commands may
vary from one software to another, the general features can be broadly classified
under the following three categories.

(i) Pre-processor Phase
In this phase, data is input by the user regarding
(a) Idealised 1-D, 2-D or 3-D geometric model consisting of :

¢ clement type (discrete structure with truss, 2-D beam, 3-D beam
or pipe elements; continuum with 2-D plane stress, plane strain,
thin shell, 3-D solid or thick shell elements)

e appropriate nodal coordinates
¢ element attributes and element connectivity.

In some large components, it is also possible to create a large 2-D
or 3-D model using key points and Boolean operations on areas or
volumes. These areas or volumes can be meshed by the software
into many elements of equal or different sizes depending on user’s
choice as per the expected stress distribution. The software makes
sure that the generated elements satisfy aspect ratio norms.

(b) Properties of materials such as

¢ modulus of elasticity, Poisson’s ratio, mass density, coefficient
of linear thermal expansion etc. for structural analysis
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e thermal conductivity, specific heat etc. for a thermal analysis;
with options of :
— isotropic or orthotropic
— constant or temperature-dependent material data.

Some softwares have standard material properties in their database.
User need to specify the material type only. Care must be taken to
see that the units in the material database correspond to the units of
the other data input by the user.

(¢) Section properties like:
e area for a truss element
e moment of inertia and section depth in a beam element
e thickness in a 2-D plate etc.
Some software include the facility of choosing a standard section
shape such as C, I, L, H, from its database with their dimensions
specified by the user and then calculate values like area, moment of
inertia etc.
Material and section properties may be identified with material
numbers and section numbers so that each element can be associated
with a particular material number and a particular section number
(called element attributes). In this way, material data and section
data, common to many elements, need not be input repeatedly,
saving considerable time and effort in data preparation.

(d) Load particulars such as:

e distributed loads due to self weight, wind load

e concentrated or point loads

e steady-state or transient temperature distribution over the entire
model, for a structural analysis

e free-stream temperature, constant temperature on some part of
boundary for a thermal analysis etc.

It is also possible to analyse the same structure for different sets of

loads (defined in some software as load steps or load cases)

(e) Boundary conditions or restraints for translation or rotation DOF
at various nodes (including restraints on rigid body motion),
indication of symmetry for a structural analysis or insulated wall
for a thermal analysis etc.

Most software use consistent dimensions without any conversion of
units inside the program. It is, therefore, user’s responsibility to input
data and interpret the output in appropriate units. For example, if
coordinates are input in ‘mm’ and loads in ‘Newton’, then area of cross
section should be in ‘sq. mm’, moment of inertia should be in ‘mm*’ and
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modulus of elasticity should be in ‘N/sq. mm’, Correspondingly, the
displacements calculated at nodes will be in ‘mm’ and stresses will be in
‘N/sq.mm’.

Most programs also check for validity as well as sufficiency of the
given data either in the pre-processor phase or in the solution phase
before proceeding with the actual solution to save computer time as well
as user’s time. The pre-processor phase generates a data file in the
sequence required by the solution phase

(ii) Solution Phase

In this phase, the program uses the data file generated By the pre-
processor stage and carries out desired analysis.

Different options usually available are:
(a) static structural analysis, which calculates nodal displacements

(b) dynamic structural analysis, which calculates natural frequencies
and mode shapes or time history response (corresponding to load
Vs time data) or response to earthquake (corresponding to
frequency Vs amplitude data)

(c) thermal analysis, which calculates nodal ‘temperatures due to
thermal conduction in a solid body with specified temperature and/
or convection boundary conditions.

(iii) Post-processor phase
The output of solution phase is a large set of nodal displacement or
temperature values. The post processor phase reads these values as well
as geometry data of pre-processor phase and presents in a more easily
readable form such as iso-stress or iso-temperature contours, plots of
deformed shape etc. Some software also has the facility of presenting
output for a specific combination of different loads (or load steps).

Many general purpose software, such as ANSYS, ADINA,
NASTRAN, PAFEC, NISA, PAFEC, STRUDL, etc., are commercially
available in the market. The specific format and sequence of input data
may vary between them. Also, modelling options as well as loads and
boundary conditions that each of the software can handle may also vary.
But, data to be input generally remains the same.

12.2 SOME EXAMPLES WITH ANSYS
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An attempt is made, through simple exercises, to make the students understand
various features of a general purpose finite element software. ANSYS software
has been chosen for this purpose. The input commands or their format may
change in different versions of this software or between different software. So,
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this should only be taken as a model. Till the students understand proper
method of giving necessary data and using appropriate commands, they are
advised to cross-check the results obtained using any general purpose
software with those calculated by conventional strength of materials
approach. This will ensure that the data input by them is interpreted by the
software in the way they desired.

ANSYS is a general purpose software developed by Swanson Analysis
Systems Inc, USA for analysis of many different engineering problems. Input
sequence for solving the following problems are given here. Theoretical results
from conventional methods are also given here for verifying the output of
ANSYS and thus ensure that the features of this software are properly utilised.
These problems are not exhaustive of the features of the software but only
meant to link the theory covered so far with some typical problems.

ANSYS software has been used here for explaining some examples, with
their explicit permission.

Example 12.1

Simple truss with concentrated loads

DATA: A=25cm’ Lio=L,3=100cm L,4=60cm

E=2x10"N/em?> P=10000N Six=81y=83x=0
4
1 6 2l 0 3 I
P
Case - 1

ANSYS model

The truss is assumed to be in X-Y plane with X in the horizontal direction, Y in
the vertical direction and origin at node 1. The truss is analysed for two steps
(or load cases), with a concentrated load P acting along —Y direction at node 2
(case-1) and same load acting at node 4 (case-2). In both the cases, node 1 is
fixed in all DOF while node 3 is fixed in Y direction only (roller support). To
explain different input commands, this problem is solved 2 times with one load
acting at a time while problem 3 is solved in a single run with loads acting
separately in 2 different load steps.
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The method of solving as multiple load cases gives results for the these load
cases separately, while saving computer time in the calculation of element
stiffness matrices in element local coordinate system, transformation of these
matrices to the common global coordinate system, assembling these element
matrices, and applying boundary conditions on the assembled stiffness matrix.

Input Data in ANSYS
Preferences — Structural
Preprocessor —

Element type — Add — Structural link — 2D spar 1

Real constants — Add — Set No. 1; Area 25

Material props — Constant Isotropic — Material No 1; EX 2e7

Modeling create — Nodes — on Working plane —

(0,0),(100,0),(200,0),(100,60)

Elements — Thru Nodes — (1,2),(2,3),(1,4),(2,4),(3,4)

Loads — Loads Apply — Structural Displacement — on Nodes — 1 FX, FY

-3 FY

** Case-1 ** Structural Force/Moment — on Nodes - 2
FY Constant value -10000

*¥* Case-2 ¥*  Structural Force/Moment — on Nodes - 4
FY Constant value -10000

Solution — Analysis type — New Analysis — Static
Solve current LS — Solution is done — Close

General Postproc — Plot results — Deformed shape — Def + undeformed
List results — Nodal solution — DOF solution — All DOFs

Node UX uy
1,2,3,4,5 - —-
Element solution — Line Elem results — Structural ELEM
EL MFORX  SAXL
1,2,3,4,5 — -—
Reaction solution — All items
Node FX FY

1,3
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Results Obtained : Consistent with units of input data, the displacements are
read in ‘cm’ and the member forces/reactions are read in ‘N’.

Case 1 Case 2
S,y =-0.0083834 8,y =-0.0083834
64=-0.0071834 5, =-0.0071834
Ry = R3y = 5000 Ry =R3y =5000

Fi,=F,3=283333 F,,=F,3;=83333
Fi4=F;,=-97183 Fy4=F34,=-97183
Fy 4=10000 F24=0
Check of Results : Solving by the method of joints and applying the conditions
Z F, =0 and Z F, =0 at each joint or node.

Case 1 Case 2
At node 2 F> 4= 10000 N Fy4=0N
At node 4 Fila=F;4=F,4/2sin0 Fi4=F;4=P/sin0
=9718.25N =9718.25N
At node 3 Fy3=F34cos 0=8333.3N Fy3=F;4cos 6 =8333.3N
R3y =F;34sin0 Riy=F;4sin 0
=5000 N =5000 N
At node 2 Fi,=F,3=83333N Fi»,=F,3=8333.3N
At node | Riy =F,4sin 6=5000 N Rjy = Fj_4 sin 6 = 5000 N
Rix=F,4c080_F, Rix=F,4c0s0-F,,
=0N =0N

Example 12.2

Stepped shaft subjected to temperature change.

DATA: Elementl- A=24cm’;a=20x10°%/°C; E=1x 10" N/em’
Element2- A=18cm’;a=12x10"%/°C; E=2 x 10’ N/em®
Element3- A=12cm’;a=12x10°/°C ; E=2x 10" N/cm?
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AT=80°C fromAtoD .
8, ~ 8,0
* ® ’ @ O
< 80 cm 60 cm ——ple—— 40 cmy ——
ANSYS Model
R, M, R, M, Ry, M,
xl @ % @ ’3( @ 4 R - Real constant set

X M — Material properties set

Input Data in ANSYS

Preferences — Structural
Preprocessor —
Element type — Add — Structural link — 2D spar 1
Real constants — Add — Set No. 1; Area 24
Set No. 2; Area 18
SetNo. 3; Area 12
Material props — Constant Isotropic — Material No 1; EX 1e7 ; ALPX 20e-6
Material No 2 ; EX 2e7 ; ALPX 12e-6
Modeling create — Nodes — on Working plane — (0,0),(80,0),(140,0),(180,0)
Elements —Elem attributes — Real const. Set no.1, Matl No.1
Thru Nodes — (1,2)
Elem attributes — Real coust. Set no.2, Matl No.2
Thru Nodes - (2,3)
Elem attributes — Real const. Set no.1, Matl No.1
Thru Nodes — (3,4)
Loads — Loads Apply — Structural Displacement — on Nodes — 1,4 FX
Structural Temperature — on Nodes — Pick ALL
Temp Constant value 80

Solution — Analysis type — New Analysis — Static
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Solve current LS — Solution is done — Close
General Postproc — Plot results — Deformed shape — Def + undeformed
List results — Nodal solution — DOF solution — Translation UX

Node UXx
1,234 -

Element solution — Line Elem results — Structural ELEM
EL MFORX SAXL

1,2,3 - -
Reaction solution — Structural force FX
Node FX
1,4 -—-
Results Obtained: 65 =0.016 8¢ =0.0176
Ra =—Rp=336000 F, =F,=F;=-336000
Example 12.3
Beam With Concentrated & Distributed Loads
DATA: A =20cm’ Li2=L;3=100cm
1=50cm* h=5cm E=2x 10" N/em®
P = 10000 N (Case-1) p = 60 N/cm (Case-2) Oy =03,=0
P
1 21 37 ¥ L 24 T 4 15
T Case -1 T Case -2

Input Data in ANSYS
Preferences — Structural
Preprocessor —

Element type — Add — Structural Beam — 2D Elastic 3

Real constants — Add — Set No. 1; Area (A) 25 ; Moment of Inertia(IX) 50
Height of section(h) 5

Material props — Constant Isotropic — Material No 1; EX 2e7

Modeling create — Nodes — on Working plane — (0,0), (100,0), (200,0)
Elements — Thru Nodes — (1 ,2),(2/,3)

Loads — Loads Apply — Structural Displacement — on Nodes - 1,3 FY
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Structural Force/Moment — on Nodes - 2
FY Constant value - 10000
Write LS file — LS file No. 1
Loads — Delete — Structural Force/Moment — on Nodes — 2 - All
Apply — Pressure — on Beams — 1,2 — Face No. 1 — value =— 60
Write LS file — LS file No. 2
Solution — Analysis type — New Analysis — Static
Solve from LS files — Start file No 1; End file No. 2; Increment 1
General Postproc — Read First set -
Plot results — Deformed shape — Def + undeformed
List results — Nodal solution — DOF solution — All DOFs
Node UX Uy
Element solution — Line Elem results — Structural ELEM
EL MFORX  SAXL
Reaction solution — All items
Node FX FY
Plot Ctrls — Animate — Deformed shape — Def + undeformed —- Play
Read Next set -
Plot results — Deformed shape — Def + undeformed
List results — Nodal solution — DOF solution — All DOFs
Node”™ UX [0 ¢
Element solution — Line Elem results — Structural ELEM
EL MFORX  SAXL
Reaction solution — All items
Node FX FY

Plot Ctrls — Animate — Deformed shape — Def + undeformed — Play

317
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Results Obtained :

Case 1 Case 2
8, =— 1.6667 8, =-125
6,=-6;=-0.025 0,=-0;=-0.02
Riy = R3y = 5000 Ry = R3y = 6000
Check of Results :
_PL 5 _pL
T 48E1 T 384E1
= 1.6667 cm =1.25cm
_Pp 0 pL’
" 16EI " 24E1
=0.025 =0.02

l')
Riy =Ry = =5000N Ry =Ryy =P§E60x%=6000N

- -
- -
- - -
o -
(LT ~w, - "
- ~u A

Deformed shape
as plotted True shape of
deformed plot
Note : Deformed plot of the beam in both the cases will show straight lines
between nodes 1 & 2 as well as between nodes 2 & 3, eventhough a cubic
displacement polynomial is used while calculating stiffness matrix of each
beam element. This is not reflective of the formulation used but a limitation
of the post processor to represent displacement distribution between any
two points. Mathematically, with the displacement data at two nodes, only a
straight line can be fit.-

Example 12.4

Natural frequencies and mode shapes of a cantilever

DATA: A=20cm’ I=50cm* h=5cm
Lin=l,3=134=L4s5=25¢cm
E=2 x 10" N/cm? p=8x10"kg/em® &;x=8y=0=0

T S S S
]
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input Data in ANSYS

Preferences — Structural
Preprocessor —
Element type — Add — Structural Beam — 2D Elastic 3
Real constants — Add — Set No. 1; Area(A) 20 Moment of Inertia(Ix) 50
Height of section(h) 5
Material props — Constant Isotropic — Material No 1; EX 2e7; Density 8¢-3

Modeling create—Nodes—on Working plane —
(0,0),(25,0),(50,0),(75,0),(100,0)

Elements — Thru Nodes — (1,2),(2,3),(3,4),(4,5)
Loads — Loads Apply — Structural Displacement — on Nodes — 1 ALL
Solution — Analysis type — New Analysis — Modal
Analysis options — Subspace ; No. of modes to extract — 4 ;
No. of modes to expand — 4
Expansion pass - on
Solve current LS — Solution is done — Close
General Postproc — Results summary— Freq 1 to 4
Read First set — Plot Ctrls — Animate — Mode shape — Play !
Repeat for all modes
Read Next set — Plot Ctrls — Animate — Mode shape — Play !
Results Obtained : Natural frequencies — 4.4215,27.645, 77.476, 125.80

Check of Results : In this problem, number of frequencies calculated and the
accuracy of results depend on the number of elements used in the model.

Least frequency, o, :(5—]——) ,/ig/&i
74

where 8 = max deflection of the cantilever
4

pL
8EI
Then, o =3.557 r:«.\ld/sec

and p=p A g is the distributed load

Example 12.5

1-D heat conduction through a composite wall

DATA: L;=30cm Ly=15cm L;=15cm
K; =20 W/m°C K;=30 Wm°C K;=50W/m°C
E=2x10"N/em* h=25W/m’°C T,=800°C; Ts=20°C
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ANSYS Model
Fluid at Wall of Wall ot Wall ot
T, =800 °C Material 1 Materal 2 Matenal 3
T-20°C

L~-i0cm L, M L., M, L3, M,
2 3 -7 4 S
X X X X X
Convection l¢——————  Conduction elementsy  ——eep|

element

Real constants — Area of cross section, A = | cm?® for all the 4 elements

M — Material properties set

Input Data in ANSYS

Preferences — Structural
Preprocessor — Element type — Add — Thermal link — Convection;
2D conduction
Real constants — Add — Set No. 1 ;Area 25
Material props — Constant Isotropic — Material No 1; HF 25
Material No 2 ; KX 20
Material No 3 ; KX 30
Material No 4 ; IKX 50
Modeling create — Nodes — on Working plane —
(0,0),(0.1,0),(0.4,0),(0.55,0),(0.7,0)
Elements — Elem attributes — Elem type 1 ; Matl No. 1
Thru Nodes — (1,2)
Elem attributes — Elem type 2 ; Matl No. 2
Thru Nodes — (2,3)
Elem attributes — Elem type 2 ; Matl No. 3
Thru Nodes - (3,4)
Elem attributes — Elem type 2 ; Matl No. 4
Thru Nodes — (4,5)
Loads — Loads Apply — Temperature —on Nodes—1 800; 5 20
Solution —  Analysis type — New Analysis — Steady state

Solve current LS — Solution is done — Close
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General Postproc —~ Plot results — Nodal solution - DOF solution - Temperatures
List results — Nodal solution — DOF solution — Temperatures
Node  Temperature
Element solution — Line Elem results — Heat flow
EL Heat flow
Reaction solution — All items
Node  Heat flow

Other option
Preprocessor -.Element type — Add — Thermal link

Convection — Option — K3 — SFE command - 2D conduction
Loads — Loads Apply — Temperature —on Nodes—-1 800; 5 20
Convection —on elem — 1 - HF 25 ; TBulk 800
Results Obtained: T,=304.76°C ; T;=119.05°C ; T,;=57.14°C
Heat flow = 12380.95 W
Check of Results
1

1 L, L, L,
— Ly
h K, K, K,

=15.873

Overall thermal resistance, U = {

Heat flow, Q=U (T, Ts)=15.873 (800 — 20) = 12380.95
Q=h(T,~Ty) ‘= T,=304.76 °C
(r,-T1,)

= K]
L]

= T;=119.05°C

=K2(T%T“) = T,=57.14°C
2

=K3—(I“—L:T—5) = T,=57.14°C
3
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Results with scaling correction factors of the program
T, =798.31°C T5=1290.72 °C T4=121.52°C

When SFE command option is used for the convection element, effective
film coefficient, h,-‘rr = Ty hy (where, Ty is the Bulk temperature value input in
SFE command and hg is the film coefficient value input in SFE command) is
used. This results in a higher temperature drop across wall thickness and
consequently in higher thermal stresses. Design based on these temperatures
will be conservative.

Example 12.6

Stress concentration factor in a plate with hole

DATA: L =160cm H=100cm Plate thickness, t = 0.8 cm
Holedia=20cm E=2x 10" N/cm® Poisson’s ratio = 0.3
P=10240 N

T

H

1

ANSYS Model: Since the geometry as well as loads are symmetric about the
two major dimensions of the plate, a quarter plate can be modeled for analysis.
To ensure uniform loading along the small side, the load P is applied as uniform

P
ressure. p = —
p p Hi

v
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Note: In the case of continuum analysis, unlike in the case of discrete
structures, accuracy of results obtained by Finite Element Method improves
in general by the use of more number of elements as well as by the use of
higher order elements such 8-noded quadrilateral or 6-noded triangle. Due to
the limitations of number of DOF in the educational version of ANSYS,
refinement of solution is not attempted here.

Input Data in ANSYS
Preferences — Structural
Preprocessor —
Element type — Add — Structural solid — Quad 4 node
— option — Plane stress w/thk
Real constants — Add — Set No. 1;  Thickness 0.8
Material props — Constant Isotropic — Material No 1; EX 2¢7; NUXY 0.3
Modeling create — Rectangle — By 2 corners - X,Y, L, H 0,0,80,50
Circle — Solid circle — X,Y, Radius 0,0, 10
Operate — Boolean subtract — Areas
— Base area ; Area to be subtracted
Loads — Apply — Structural Displacement — Symmetry B.C. — on lines
Pressure — on line — constant value ; 80
Meshing — Size cntrls — Global size — Element edge length 3
Mesh — Areas Free
Solution — Solve current LS — Solution is done - close

General postproc - Plot results — Deformed shape — Def + Undeformed shape
Plot results — Nodal solution — DOF solution — Translation UX

Element solution — Stress — X-direction SX
Sorted listing — Sort Nodes — Descending order — Stress X-direction
List results - Element solution — Stress — X-direction SX
Max value 238.63 N/cm’
Sorted listing — Sort Nodes — Descending order — Stress Y-direction
List results - Element solution — Stress — Y-direction SY
Max value 29.147 N/cm®
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Alternative method of creating model

Preprocessor — Modeling create — Lines — Arcs — By Cent & Radius — (0,0),
(10,0)

Arc length in degrees 90
Key points — On Working plane - (80,0), (80,50), (0,50)
Lines — Straight line - By key points
Area — Arbitrary - By lines
Results Obtained :
Normal stress along X-axis (SX) Max value = 238.63 N/cm’
Max normal stress, in the absence of stress concentration
P 10240
(H-d)t (100-20)
238.63

x 0.8 =160 N/cm?

Stress concentration factor = =1.4914375

Check of Results : For D/H = 0.2, Stress Conc. factor for a rectangular plate
with circular hole = 2.51 (from Mechanical design Handbooks).

Example 12.7

Centrifugal stresses in an axisymmetric solid

Data: E=2x10'N/cm’ Poisson’s ratio = 0.3 Mass density = 8 gm/cm’
Speed, N = 3000 rpm All dimensions are in mm

ANSYS Model : Since the geometry and loads are axi-symmetric, any one
section in axis-radius plane can be modeled. Also, since the geometry as well as
loads is symmetric about the mid plane along the axis, half the flywheel can be
modeled for analysis with symmetry boundary conditions applied on the plane
of symmetry. ANSYS program assumes X-axis to be along the radius while Y-
axis represents the axis of symmetry. Also, the program requires that the
model be input in the right handed coordinate system (1% quadrant of X-Y
plane is more convenient). For this purpose, a quarter of the component on the
bottom side of the right half is modeled as shown. This quarter section is rotated
by 90° to represent this in the familiar way with horizontal x-axis and vertical y-

axis. Angular velocity m=2—67%\l=314rad/sec is input about the axis of

revolution (Y-axis).
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300 _.190 ______________________________ I‘}S).Axis of rotation

Y 2

.

3

! 4 3
i

1

i

Input Data in ANSYS

Preferences — Structural
Preprocessor — Element type — Add — Structural solid — Quad 4 node
— option — Axisymmetric
Material props — Constant Isotropic — Material No 1
EX 2e5; NUXY 03 ; DENS 8e-3
Modeling - create — Key points — On Working plane
(20,0),(150,0),(150,25),(50,25),(50,50),(20,50)
Lines — Straight line - By key points —
(1,2),(2,3),(3,4),(4,5),(5,6),(6,1)
Area — Arbitrary - By lines — Pick lines 1,2,3,4,5,6
Meshing — Size cntrl — Global size — Element edge length 5
Mesh — Areas — Free — Pick area 1
Loads — Apply — Structural Displacement — Symmetry B.C. — on lines - 1
Others — Angular velocity - OMEGY about Y-axis 314
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Solution — Solve current LS — Solution is done - close

General postproc — Plot results — Deformed shape — Def + Undeformed shape
Nodal solution — DOF solution — Translation UX

Translation UY
Element solution — Stress — X-direction SX
Y-direction SY
Z-direction SZ
Sorted listing — Sort Nodes — Descending order — Stress X-direction SX
Y -direction SY
Z-direction SZ

Results Obtained : Max Min
UX (mm) 7.767 1.477
UY (mm) 0 -5.054

SX (N/mm?) 0.337¢3  —0.119¢2
SY (N/mm?) 0.121e3  —0.145¢3
SZ (N/mm?) 0.543¢3  0.6005¢2

OBJECTIVE QUESTIONS

1. ANSYS uses
(a) frontal solution (b) banded matrix solution
(c) ‘Cramer’s rule (d) Cholesky decomposition

2. A single analysis with 3 similar load steps takes ____ time compared to
3 analyses with single load case in each
(a) 3 times more (b) <3 times less
(c) same (d) not related

3. An analysis with | load step takes ____ time compared to analysis with
3 similar load cases
(a) 1/3 times less (b) > 1/3 times less
(c) same (d) not related

4. Consistent loads are based on
(a) stress equilibrium (b) displacement continuity

(c) energy equivalence (d) force balance
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Within elastic limit, results due to a combination of loads is same as
linear superposition of results by each of those loads

(a) always true (b) always false

(c) sometimes true (d) needs repeated analysis
A truss element in ANSYS is identified as

(a) line element (b) spar element

(c) truss element (d) beam element

A uniformly distributed load on a beam is indicated in ANSYS as
(a) udl (b) uvl

(c) pressure (d) equivalent nodal loads

Uniform préssure along an edge of a plate element is specified in
ANSYS as

(a) pressure on element (b) pressure along edge
(c) pressure at each node (d) same pressure at all nodes

Deformed shape of a simply supported beam with concentrated load at
the mid-point appears in ANSYS as

(a) circular arc

(b) triangle with max displacement at mid-point

(c) parabolic arc

(d) straight line

Deformed shape in ANSYS is drawn with

(a) actual nodal displacements

(b) normalised nodal displacements

(c) magnified nodal displacements

(d) reduced nodal displacements

Loads command in ANSYS includes

(a) loads & displacements (b) loads & stresses

(c) loads only (d) loads or displacements
As a default option, mesh is refined in ANSYS using

(a) g-method (b) h-method (c) p-method (d)r-method
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13.  Real constants in ANSYS indicate
(a) material properties (b) section properties
(c) thermal properties (d) nodal loads

14.  “Attributes” in ANSYS refer to

(a) section & material properties (b)  section properties

(c) material properties (d) applied loads

15.  Basic shapes of area / volume in ANSYS modelling are called
(a) Basics (b)  Primitives
(c) Primaries (d) Areas and volumes

16.  Most FEM software reduce computer memory requirement by storing
(a) half of symmetric stiffness matrix
(b) half of banded matrix
(c) stiffness matrix as a column vector
(d) complete stiffness matrix
17.  Most FEM software use

(a) displacement method (b) force method

(c) stress method (d) hybrid method
18.  Stresses in most FEM software are given in

(a) N/mm’ (b) Pascal

(c) units based on input data (d) user specified units
19.  Most FEM software analyse a structure using

(a) displacement method (b) stress method

(c) force method (d) mixed method
20.  Displacements in most FEM software are given in

(a) mm (b) m

(c) units based on input data (d) user specified units

21.  Distributed load along an edge of a plane stress element is usually
specified as

(a) pressure at nodes along the edge
(b) pressure along the edge
(c) equivalent nodal loads at the nodes on the edge

(d) different values of pressure applied at all nodes of the element
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23.

24.
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A tensile distributed load along an edge of a plane stress element is
represented by at the nodes

(a) +ve pressure (b) —ve pressure
(c) +ve nodal loads (d) —venodal loads
Generalised load means

(a) load (b) displacement
(c) load or displacement (d) temperature
Attributes in ANSYS referto _ for the elements
(a) material property set number

(b) section property set number

(c) material & section property set numbers

(d) load set number

ANSYS accepts section properties set based on
(a) element type (b) element size
(c) type of load (d) type of material
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Approximate method 4
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- minimization 211

Boundary conditions 96,224
- cyclic symmetry 227
- elimination method 96,263
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Buckling
- elastic buckling 282

Bulk modulus 73
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Capacitance matrix 281
Characteristic equation 239
Collocation method 8
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Conductivity matrix 258
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Continuum structures 27, 62
Convergence 27,133

Coordinate system
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- natural /non-dimensional 169
- transformation matrix 92
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Index

Critical load 282
- elastic buckling 282

D

D’Alembert’s principle 237
Damped free vibration 287
Damping 287

Deformed plots 231
Degree of fixity 2,27

Degrees of freedom (DOF) 61, 85

- uncoupled 101
Design codes 277
Discrete structures 3, 26, 62
Displacement field 12,90
Displacement method 31, 32
Distortion energy 72
Distributed loads 201

- consistent 204

- equivalent 201

Dynamic coupling 241

E
Eigen values & Eigen vectors
- matrices 35
Elastic Buckling 282

- critical load 282
- mode shapes 283

Elastic instability 282

Elements 27

complex 128

constant strain triangle (CST) 129
linear strain triangle (LST) 167
multiplex 128

quadratic strain triangle (QST) 167
simplex 128

transition 228

Elements - shapes

hexahedron 143, 168, 181
quadrilateral 178, 180, 185, 187
tetrahedron 143, 168, 187

triangular element 129, 175,177, 184,273

Elements - types

3-D solid 143
axisymmetric 144

beam 87,98, 173

general beam 100

pipe 103

plate bending 141

thick shell 143

thin shell 143

torsion 86

truss 86,90, 159,170, 172

Equilibrium equations 79

Equivalent stress

vonMises stress 71

Errors 30

discritisation 31
modelling 31
numerical 31

Exact method 4

Extensive property 89
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F I

Fatigue 283 Interpolation functions
Finite difference method 293 - hermite 169
- lagrange 169

Finite element method (FEM) 4, 15

displacement method 31 Isoparametric elements 169, 170

i

force method 32

1

J
- hybrid method 32
- mixed method 32 Jacobian 131, 182
Finite volume method 293 L

Flexibility 64
Lagrange elements 137
Forced vibration 288 ]
. . Laplace equation 257,290
- time-history response 289
. Least squares method 10
- response spectrum analysis 289

Fourier’s law 256,258 Linear analysis 63

. Lower bounds 27
Frequencies

- natural frequencies 311 M
G Mass matrix 238, 240
- consistent 243

i hod 5
Galerkin method - lumped 241

Gaussian points 216 Mathematical model 1,2, 4

Geometric Isotropy 134, 136 Matrices-operations

- characteristic equation 55, 59

H - cholesky method 51
Helmho]tz equation 257 - cramer’s rule 45
Higher order elements 167 - direct method 44
Hybrid method 32 - eigen values 55,238

- eigen vectors 55,238
Hyper cube 135 L
- normalisation 239



338

Index

- orthogonal 240
- gauss elimination method 47
- gausss Jordan method 43, 46, 53
- iterative method 53, 58
- LU factorization 48
- method of cofactors 42
- solution of simultaneous equations 41
Matrices — properties 36
- determinant 39
- inversion 41
- multiplication 37
- positive definite 55
- quadratic form 38
- transpose 36,37
Matrices-types 35
Matrix method 26
Mesh generation 214
- h-method 215
- optimum mesh 215
- p-method 215
- r-method 215
Miner’s rule 284
Mixed method 32
Modelling 220,240
Modulus of elasticity 64

Mohr’s circle 68

N

Natural coordinates 170
Natural frequencies 237
- modal matrix 239

- mode shapes 237, 239

- spectral matrix 239
Nodes 27
Non-dimensional coordinates 169

Non-linear analysis 63
- geometric non-linearity 64

- material non-linearity 64
Normalisation 239

Numerical integration 216

O

Optimum design 1,33

Orthotropic material 77

P

Parametric elements 169
Pascal tetrahedron 135
Pascal triangle 134
Plane strain 72

Plane stress 72
Poisson’s ratio 72
Postprocessor 311
Potential energy 12, 14
Preprocessor 309

Principal stress 68

- stress at a point 79
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Rayleigh-Ritz method 12

Response spectrum analysis 289
- forced vibration 288

Rigid body motion 62
Rigidity modulus 63
Rupture time 285

S-N curve 284
- fatigue 284

S-t curve 286

- creep 285
Serendipity elements 136
Solution phase 311
Static condensation 230

Stiffness 14, 64
- infinite/zero 2
- relative 3
Strain at a point 67
- hoop 145
- normal 67
- shear 67

Strain-displacement relations 73, 184

Strain energy 22

Strength of materials approach 2, 3

Stress at a point 65
- complementary shear 70
- max shear 71
- normal 66
- principal 68

- pure shear 70
- shear 66
- vonMises 71

Stress categorisation 279
- bending 278
- classification line 279
- membrane 278
- peak 279

Stress function 291
Stress intensity 278

Stress-strain relations 74
- plane strain 76
- plane stress 75, 78

Structural analysis 32
Substructuring 230

Super elements 230

T

Thermal analysis 32

Thermal stress 73

Time history response 289,311

- forced vibration 288
Transformation matrix 92

Transition element 228

U

Upper bounds 27

Usage fraction 285
- creep 286
- cumulative 286
- fatigue 284
- miner’s rule 284
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Index

- cumulative 286
- fatigue 284
- miner’srule 284

\Y%

Variational method 4, 12

W

Weighted residual methods 4

Warping function 289

Y

Young’s modulus

modulus of elasticity 63, 64
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