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Programs Included in the CD-ROM

- CH-2 CH-3 CH-4 CH-5 CH-6
et GAUSS FEMID TRUSS2D CST AXISYM
CGSOL TRUSSKY
SKYLINE
CH.? CH-8 CH-9 CH-10 CH-11 CH-12
QUAD BEAM TETRA3D HEATID INVITR MESHGEN
QUADCG FRAME2D HEXAFRON HEAT2D JACOBI PLOT2D, BESTFIT
AXIQUAD FRAME3D TORSION BEAMKM BESTFITQ
CSTKM CONTOURA
GENEIGEN CONTOURB
CD-ROM Contents
Directory Description
VQBASIC Programs in QBASIC
\FORTRAN Programs in Fortran Language
\C Programs in C
\VB Programs in Visual Basic
\EXCELVB Programs in Excel Visual Basic
MATLAB Programs in MATLAB
\EXAMPLES

Example Data Files (.inp extension)

List of Key Symbols Used in the Text

Description

r

T

dlx,y. )

W

N.D.and B

Symbol

uix.y. 2} = [ulx.y, 2),v(x, 5. 2.),
wix, y,z)]"

t={f f. 1]

T=[7,T,.T,]"

€= [‘1‘ EyrEon T_v:“}':n"’xy]r

OOy O, T, Ty, T

I xy]

displacements along coordinate directions at point (%, ¥, z}

components of body force per unit volume, at point {x, v, z)

components of traction force per unit area, at point (.x, y, 7) on the surface
strain components; € are normal strains and y are engineering shear strains
Siress COmMponcnts; o are normal stresses and 7 are engineering shear stresses
Potential energy = I/ + WP, where I/ = strain energy, WP = work potential

vector of displacemenis of the nodes (degrees of freedom or DOF) of an

element, dimension (NDN*NEN, 1 )—see next Table for explanation of
NDNand NEN

vector of displacements of ALL the nodes of an element, dimension
(NN*NDN, 1)—see next Table for explanation of ¥N and NDN

element stiffriess matrix; strain energy in element, U, = 1q"kq

global stiffness matrix for entire structure:TI = 1Q'KQ - Q'F

body force in element e distributed to the nodes of the element

traction force in element e distributed to the nodes of the element

virtual displacement variable; counterpart of the real displacement u(x, y, z)
vecior of virtual displacements of the nodes in an element; counterpart of g

shape functions in é7¢ coordinates, material matrix, strain-displacement
matrix. respectively. u = Ng, ¢ = Bgand o — DBq




Structure of Input Files'

TITLE (®)
PROBLEM DESCRIPTION (*)
NN NE NM NDIM NEN NDN (*)

4 2 2 2 3 12 -~- 1 Line of data, 6 entries per Tine

ND NL NMPC (*)

5 2 0 -—-= 1 Line of data, 3 entries

Node# Coordinate#l ... Coordinate#NDIM  (*)

1 3 0

2 3 2

3 0] 2 --—NN Lines of data, (NDIM+1)entries

4 0 0

Elem# Node#l ... Node#NEN Mat# Element Characteristics'™ (%)

1 4 1 2 1 0.5 0.1 --~NE Lines of data,

2 3 4 2 2 0.5 0. | (NEN+2+ #of Char.)entries

D(z)F# Specified Displacement (¥
0

5 0

6 0 -~-ND Lines of data, 2 entries

7 0

8 0

DOF# Load (*)

4 -7500 ---NL Lines of data, 2 entries

3 3000

MAT# Material Propertiest! (*)

1 30eb 0.25 12e-6 --NM Lines of data, (1+ # of prop.Jentries

2 20eb . 0.3 0.

Bl i B2 j B3 {(Multipoint constraint: 81*Qi+B2*Qj=B3) (*)

} -——NMPC Lines of data, 5 entries

'"HEAT1D and HEAT2D Programs need extra boundary data about flux and convection. (See Chapter 10.)
(*) = DUMMY LINE - necessary

Note: No Blank Lines must be present in the input file

"See below for description of element characteristics and material properties

Main Program Variables

NN = Number of Nodes; NE = Number of Elements; NM = Number of Different Materials

NDIM = Number of Coordinates per Node (e.g. NDIM = 2 for 2-D, or = 3 for 3-D): NEN = Number of Nodes per
Element (c.g., NEN = 3 for 3-noded triangular element, or = 4 for a 4-noded quadrilateral)

NDN = Number of Degrees of Freedom per Node (e.g., NDN = 2 for a CST element, or = 6 for 3-D beam element)

ND = Number of Degrees of Freedom along which Displacement is Specified = No. of Boundary Conditions

NL = Number of Applied Component Loads (along Degrees of Freedom)

NMPC = Number of Multipoint Constraints; NQ = Total Number of Degrecs of Freedom = NN * NDN

Frogram Element Characteristics Material Properties
FEMI1D, TRUSS, TRUSSKY Area, Temperature Rise E
CST. QUAD Thickness, Temperature Rise Ervo
AXISYM Temperature Rise Ev e
FRAME2D Area, Inertia, Distributed Load E
FRAME3D Area, 3-inertias, 2-Distr. Loads E
TETRA, HEXAFNT Temperature Rise Ev,o
HEAT2D Element Heat Source Thermal Conductivity,
BEAMKM Inertia, Area Ep
CSTKM Thickness Evap
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Preface

The first edition of this book appeared over 10 years ago and the second edition fol-
lowed a few years later. We received positive feedback from professors who taught
from the book and from students and practicing engineers who used the book. We
also benefited from the feedback received from the students in our courses for the
past 20 years. We have incorporated several suggestions in this edition. The underly-
ing philosophy of the book is to provide a clear presentation of theory, modeling, and
implementation into computer programs. The pedagogy of earlier editions has been
retained in this edition.

New material has been introduced in several chapters. Worked examples and
exercise problems have been added to supplement the learning process. Exercise prob-
lems stress both fundamental understanding and practical considerations. Theory and
computer programs have been added to cover acoustics, axisymmetric quadrilateral
elements, conjugate gradient approach, and eigenvalue evaluation. Three additional pro-
grams have now been introduced in this edition. All the programs have been developed
to work in the Windows environment. The programs have a common structure that
should enable the users to follow the development easily. The programs have been pro-
vided in Visual Basic, Microsoft Excel/Visual Basic, MATLAB, together with those pro-
vided earlier in QBASIC, FORTRAN and C. The Solutions Manual has also been
updated.

Chapter 1 gives a brief historical background and develops the fundamental con-
cepts. Equations of equilibrium, stress—strain relations, strain—displacement relations,
and the principles of potential energy are reviewed. The concept of Galerkin’s method
1s introduced.

Properties of matrices and determinants are reviewed in Chapter 2. The Gaussian
elimination method is presented, and its relationship to the solution of symmetric band-
ed matrix equations and the skyline solution is discussed. Cholesky decomposition and
conjugate gradient method are discussed.

Chapter 3 develops the key concepts of finite element formulation by consider-
ing one-dimensional problems. The steps include development of shape functions,
derivation of element stiffness, formation of global stiffness, treatment of boundary
conditions, solution of equations, and stress calculations. Both the potential energy
approach and Galerkin’s formulations are presented. Consideration of temperature
effects is included.

xv




Xvi

Preface

Finite element formulation for plane and three-dimensional trusses is developed
in Chapter 4. The assembly of global stiffness in banded and skyline forms is explained.
Computer programs for both banded and skyline solutions are given.

Chapter 3 introduces the finite ¢lement formulation for two-dimensional plane
stress and plane strain problems using constant strain triangle (CST) elements. Problem
modeling and treatment of boundary conditions are presented in detail. Formulation
for orthotropic materials is provided. Chapter 6 treats the modeling aspects of axisym-
metric solids subjected to axisymmetric loading. Formulation using triangular elements
is presented. Several real-world problems are included in this chapter.

Chapter 7 introduces the concepts of isoparametric quadrilateral and higher order
elements and numerical integration using Gaussian quadrature. Formulation for axi-
symmetric quadrilateral element and implementation of conjugate gradient method for
quadrilateral element are given.

Beams and application of Hermite shape functions are presented in Chapter 8.
The chapter covers two-dimensional and three-dimensional frames.

Chapter 9 presents three-dimensional stress analysis. Tetrahedral and hexahe-
dral elements are presented. The frontal method and its implementation aspects are
discussed.

Scalar field problems are treated in detail in Chapter 10. While Galerkin as well
as energy approaches have been used in every chapter, with equal importance, only
Galerkin's approach is used in this chapter. This approach directly applies to the given
differential equation without the need of identifying an equivalent functional to mini-
mize. Galerkin formulation for steady-state heat transfer, torsion, potential flow, seep-
age flow, electric and magnetic fields, fluid flow in ducts, and acoustics are presented.

Chapter 11 introduces dynamic considerations. Element mass mairices are given.
Techniques for evaluation of eigenvalues (natural frequencies) and eigenvectors (mode
s_hapes) of the generalized eigenvalue problem are discussed. Methods of inverse itera-
tion, Jacobi, tridiagonalization and mplicit shift approaches are presented.

_ Preprocessi['lg and postprocessing concepts are developed in Chapter 12. Theory
and implementation aspects of two-dimensional mesh generation, least-squares ap-

proach to obtain nodal stresses from element values for triangles and quadrilaterals,
and contour plotting are presented.

At the undergraduate level some to
ent order without breaking the continuit
tion of the Chapter 12 programs at the
prepare the data in an efficient manner,

We thank Nels Madsen, Auburn University;
Chicago; Robert L. Rankin, Arizona State Universit
v_ersity; and Hormoz Zareh, Portland State Unive

pics may be dropped or delivered in a differ-
y of presentation. We encourage the introduc-
end of Chapter 5. This helps the students to

Arif Masud, University of Illinois,
¥ John S. Strenkowsi, NC State Uni-
1sity, who reviewed our second edi-
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tion of the book.

Ashok Belegundu thanks his students at Penn State for their feedback on the
course material and programs. He expresses his gratitude to Richard C. Benson, chair-
man of mechanical and nuclear engineering, for his encouragement and appreciation. He
also expresses his thanks to Professor Victor W. Sparrow in the acoustics department and
to Dongjai Lee, doctoral student, for discussions and help with some of the material in
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CHAPTER 1

Fundamental Concepts

1.7 INTRODUCTION

The finite element method has become a powerful tool for the numerical solution of a
wide range of engincering problems. Applications range from deformation and stress
analysis of automotive, aircraft, building, and bridge structures to field analysis of heat
flux, fluid flow, magnetic flux, seepage, and other flow problems. With the advances in
computer technology and CAD systems, complex problems can be modeled with rela-
tive ease. Several alternative configurations can be tested on a computer before the first
prototype is built. All of this suggests that we need to keep pace with these develop-
ments by understanding the basic theory, modeling techniques, and computational as-
pects of the finite element method. In this method of analysis, a complex region defining
a continuum is discretized into simple geometric shapes called finite elements. The ma-
terial properties and the governing relationships are considered over these elements
and expressed in terms of unknown values at element corners. An assembly process,
duly considering the loading and constraints, results in a set of equations. Solution of
these equations gives us the approximate behavior of the continuum.

1.2 HISTORICAL BACKGROUND

Basic ideas of the finite element method originated from advances in aircraft structur-
al analysis. In 1941, Hrenikoff presented a solution of elasticity problems using the
“frame work method.” Courant’s paper, which used piecewise polynomial interpolation
over triangular subregions to model torsion problems, appeared in 1943. Turner, et al.
derived stiffness matrices for truss, beam, and other elements and presented their find-
ings in 1956. The term finite element was first coined and used by Clough in 1960.

In the early 1960s, engineers used the method for approximate solution of prob-
lems in stress analysis, fluid flow, heat transfer, and other areas. A book by Argyris in 1955
on energy theorems and matrix methods laid a foundation for further developments in
finite element studies. The first book on finite elements by Zienkiewicz and Cheung was
published in 1967. 1n the late 1960s and early 1970s, finite element analysis was applied
to nonlinear problems and large deformations. Oden’s book on nonlinear continua ap-
peared in 1972.



2 Chapter Fundamental Concepts

Mathematical foundations were laid in the 1970s. New element development, con-
vergence studies, and other related areas fall in this category.

Today, the developments in mainframe computers and availability of powerful mi-
crocomputers has brought this method within reach of students and engineers working
in small industries.

1.3 OUTLINE OF PRESENTATION

In this bock, we adopt the potential energy and the Galerkin approaches for the pre-
sentation of the finite element method. The area of solids and structures is where the
method originated, and we start our study with these ideas to solidify understanding. For
this reason, several early chapters deal with rods, beams, and elastic deformation prob-
lems. The same steps are used in the development of material throughout the book, so
that the similarity of approach is retained in every chapter. The finite element ideas are
then extended to field problems in Chapter 10. Every chapter includes a set of problems
and computer programs for interaction,

We now recall some fundamental concepts needed in the development of the fi-
nite element method.

1.4 STRESSES AND EQUILIBRIUM

A. three-diqlens.ional body occupying a volume V and having a surface § is shown in
Flg.’l.l. Points in the_: body are located by x, ¥, z coordinates. The boundary is con-
strained on some region, where displacement is specified. On part of the boundary, dis-

FIGURE 1.1 Three-dimensiong| body.

_




Section 1.4 Stresses and Equilibrium 3

tributed force per unit area T, also called traction, is applied. Under the force, the body
deforms. The deformation of a point x ( = [x, y, z]7) is given by the three components
of its displacement:

u = [u,v,w]" (1.1)

The distributed force per unit volume, for example, the weight per unit volume, is the vec-
tor f given by

f=[f.f.f] (1.2)

The body force acting on the elemental volume dV is shown in Fig. 1.1. The surface trac-
tion T may be given by its component values at points on the surface:

T=[T,.T,T]" (1.3)
Examples of traction are distributed contact force and action of pressure. A load P act-
ing at a point / is represented by its three components:

Pr' = [vaPy'!Pz];r (1‘4)

The stresses acting on the elemental volume dV are shown in Fig. 1.2. When the volume
dV shrinks to a point, the stress tensor is represented by placing its components in a

FIGURE 1.2 Equilibrium of elemental volumne,
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{3 X 3) symmetric matrix. However, we represent stress by the six independent com-
ponents as in

o= [O.xso-}n o-zbfyz!fxszxy]T (1.5)

where o, 0, o, are normal stresses and 7,,, 7,,, 7.y are shear stresses. Let us consid-
er equilibrium of the elemental volume shown in Fig. 1.2. First we get forces on faces by
multiplying the stresses by the corresponding areas, Writing =F, = 0, 2F, =0, and
%F, = 0 and recognizing dV = dx dy dz, we get the equilibrium equations

Ba'x + aTxy Bsz

+ f, =0
éx  ay 0z 2
or Jdo orT
oIy L fy =0 (1.6)
X ay é
dr,, a8r ]
z yz o, +f=0

1.5 BOUNDARY CONDITIONS

Referring to Fig. 1.1, we find that there are displacement boundary conditions and sur-
face-loading conditions. If u is specified on part of the boundary denoted by §,, we have

u=490ons, (1.7}

We can also consider boundary conditions such asy = a, where ais a given displacement.

We now consider the equilibrium of an elemental tetrahedron ABCD, shown in
Fig. 1.3, where DA, DB, and DC are parallel to the x-, y- and z-axes, respectively, and
area ABC, denoted by dA, lies on the surface. If p = [7,,n,,n,]T is the unit normal to

dA, then area BDC = n,dA, area ADC = g ydA, and area ADB = n.dA, Considera-
tion of equilibrium along the three axes directions gives

on, + Tty + 70, =T,
Tl T o, + o0, = T, (1.8)
Taclte + Tty + o, =T,

These conditions must be satisfied on the boundary,

) . X Sr, where the tractions are applied.
In this description, the point loads must be treated as loads distributed over small, but
finite areas,

1.6 STRAIN-DISPLACEMENT RELATIONS

We represent the strains in a vector form that corresponds to the

stresses in Eq. 1.5,

€= g6y Yy, (1.9)

where e, €,, and e, are normal strajns andy,,,y,,,
Figure 1.4 gives the deformation of the gy

we consider here. Also considering other faces,

and y,, are the engineering shear strains.
~dy face for small deformations, which
W¢ can write
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FIGURE 1.3 An elemental volume at surface.

v+ 9%y
¥ ,;yy

dy

FIGURE 1.4 Deformed elemental surface.
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du v aw dv dw du  Ow ou a_vT

) 3 + . » (110)
dx 9y dz dz dy 9z 8x 8y ox

These strain relations hold for small deformations.

1.7 STRESS-STRAIN RELATIONS

For linear elastic materials, the stress—strain relations come from the generalized Hooke’s
law. For isotropic materials, the two material properties are Young’s modulus (or mod-
ulus of elasticity) E and Poisson’s ratio ». Considering an elemental cube inside the
body, Hooke’s law gives

_O_ 0o
““E 'EVE
_ Ty U-J" o,
“TVETEVE
=% 9 O 1
G s (111)
Tyz
Yz 5 E
TXZ
Yz = E_
Tay
yxy = _(}_
The shear modulus {(or modulus of rigidity), G, is given by
E
G=—o—o
2(1 +v) (1.12)
From Hooke’s law relationships (Eq. 1.11), note that
(1-2)
&xte te = —-—JE':———(«:J'Jr +o,+a,) (1.13)

Substituting for (o, + o) and so on into Eq. 1.11, we get the inverse relations

o = De (1.14)
D is the symmetric (6 X 6) material matrix given by
1-v » v 0 0 0 —‘
v 1 - v 0 0 0
_ E v v 1-» 0 0 0
(I+v)1~-2) 0 0 0 05-3 0 0 (1.15)
0 0 0 0 05 -» 0
L 0 0 0 0 0 05-w»
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Special Cases

One dimension. In one dimension, we have normal stress o along x and the
corresponding normal strain €. Stress-strain relations (Eq. 1.14) are simply

o= Ee (1.16)
Two dimensions. In two dimensions, the problems are modeled as plane stress
and plane strain.

Plane Stress. A thin planar body subjected to in-plane loading on its edge sur-
face is said to be in plane stress. A ring press fitted on a shaft, Fig. 1.5a, is an example. Here
stresses o7z, 7., and 7, are set as zero. The Hooke’s law relations (Eq. 1.11) then give us

- %
“"F VE
o
&=-vZ+ (1.17)
2(1 +»)
YT T E y
14
€, =- E(a, +,)

N\

lL— —
t— I hy- QE—
[— —
|
&

§Q

(b)
FIGURE 1.5 (a) Plane stress and (b} plane strain.
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The inverse relations are given by

1 » 0
o, €y
o b=—tolv 1 0 (118)
Y 1 -4 1-»
Txy 0 0 2 yxy

which is used as ¢ = De.

Plane Strain. I a long body of uniform cross section is subjected to transverse
loading along its length, a small thickness in the loaded area, as shown in Fig. 1.5b, can
be treated as subjected to plane strain. Here €, v,,, v, are taken as zero. Stress o,
may not be zero in this case. The stress—strain relations can be obtained directly from
Eqgs. 1.14 and 1.15:

o, E 1—-» » 0 €,
(T A+ria-m| » 70 6 (1.19)
Ty 0 0 72— ¥ Yy

D here is a (3 X 3) matrix, which relates three stresses and three strains,

Anisotropic bodies, with uniform orientation, can be considered by using the ap-
propriate D matrix for the material.

1.8 TEMPERATURE EFFECTS

If the temperature rise AT(x, y, z) with respect to the original state is known, then the
associated deformation can be considered easily. For isotropic materials, the tempera-
ture rise AT results in a uniform strain, which depends on the coefficient of linear ex-
pansion a of the material. o, which represents the change in length per unit temperature
rise, is assumed to be a constant within the range of variation of the temperature. Also,

this strain does not cause any stresses when the body is free to deform. The temperature
strain 1s represented as an initial strain:

€ = [@AT, aAT, 0AT, 0,0,0]" (1.20)
The stress—strain relations then become
o =D{e — g (1.21)
In plane stress, we have
€ = [::nrz&'ft",-anﬁir"',[)]T (1.22)

In plane strain, the constraint that €, = 0 results in a different €

€ =(1+ v)[«AT, aAT,0]" (1.23)

For plane stress and plane strain, note that o = [
and that I matrices are as given in Eqs.1.18and 1

T T
0.,0,,7,) and e = [Ex,E_v,?_ry] ’
19, respectively.
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1.9 POTENTIAL ENERGY AND EQUILIBRIUM:
THE RAYLEIGH-RITZ METHOD

In mechanics of solids, our problem is to determine the displacement u of the body shown
in Fig. 1.1, satisfying the equilibrium equations 1.6. Note that stresses are related to strains,
which, in turn, are related to displacements. This leads to requiring solution of second-
order partial differential equations. Solution of this set of equations is generally referred
to as an exact solution. Such exact solutions are available for simple geometries and load-
ing conditions, and one may refer to publications in theory of elasticity. For problems of
complex geometries and general boundary and loading conditions, obtaining such solutions
is an almost impossible task. Approximate solution methods usually employ potential en-
ergy or variational methods, which place less stringent conditions on the functions.

Potential Energy, 11

The total potential energy IT of an elastic body, is defined as the sum of total strain
energy (U) and the work potential:

[T = Strain energy + Work potential
) (WP) (1.24)

For linear elastic materials, the strain energy per unit volume in the body is ;o'e. For
the elastic body shown in Fig. 1.1, the total strain energy U is given by

U= 1/0Tedv (1.25)
2 ‘_.'

The work potential WP is given by
WP =— /uTl‘dV - fu"‘TdS - > u'P, (1.26)
v $ q
The total potential for the general elastic body shown in Fig. 1.1 is

= %/UTG dav — f"-]-fdv N _/"TTdS - 2 u'P (1.27)
v v 5 !

We consider conservative systems here, where the work potential is independent
of the path taken. In other words, if the system is displaced from a given configuration
and brought back to this state, the forces do zero work regardless of the path. The po-
tential energy principle is now stated as follows:

Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement fields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is a minimum, the equilibrium state is stable.
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Kinematically admissible displacements are those that satisfy the single-valued
nature of displacements (compatibility) and the boundary conditions. In problems where
displacements are the unknowns, which is the approach in this book, compatibility is
automatically satisfied.

To llustrate the ideas, let us consider an example of a discrete connected system.

Example 1.1
Figure E1.1a shows a system of springs. The total potential energy is given by

T = k8 + 3k,83 + 3kodh + 3k,8% ~ Figy — Fagy

where 8, 3,, 8,, and 8, are extensions of the four springs. Since 8, = ¢, — ¢, & = @,
83 = g3 — q,and 8; = —g;, we have

= Ski(q — @) + 3k} + 3kalgy — @) + Lkogl — Figy, — Fogs

where g, ¢, and ¢; are the displacements of nodes 1,2, and 3, respectively.

DAY
-
%
x
1
i
Y

(a) F;
FIGURE E1.1a

For equilibrium of this three degrees of freedom system, we need to minimize IT with
respect 10 gy, 4;, and ¢;. The three equations are given by

a—II-=CI i=123
aq'. re {1'28)
which are
T _
3?1_ g —g)~F =0
al
g Kl @)t kg - k(g - g) =0
M _ o
Y Wb~ @) v kg - Fo =0

These equilibrium equations can be put in the form of Kq = F as follows:

. i ¢ q F
ke ki tk bk g, B=40 (1.29)
0 _'kj k3 + k4 q3 F3

If, on the other hand, we proceed to write

T the equilibri : .
sidering the equilibrium of each separate equilibrium equations of the system by con

node, as shown in Fig. E1.1b, we can write
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k8, = F,
kady — ki — kb = 0
k3dy — k8, = Fy
which is precisely the set of equations represented in Eq. 1.29.

1
k1814ﬁ~\.—0—> F

k18,
ey 2
3
k333 ‘—%/VV—E:VV\)r—»}QSQ
®) A
FIGURE E1.1b

We see clearly that the set of equations 1.29 is obtained in a routine manner using the
potential energy approach, without any reference to the free-body diagrams. This makes the
potential energy approach attractive for large and complex problems. [

Rayleigh-Ritz Method

For continua, the total potential energy IT in Eq. 1.27 can be used for finding an ap-
proximate solution. The Rayleigh-Ritz method involves the construction of an assumed
displacement field, say,

u= >abdi(x,y,z) i=1tof

v = Dab(x,y,2) j=€¢+1tom (1.30)

w= Yadlr.y.z) k=m+1lton
n>m>¢

The functions ¢, are usually taken as polynomials. Displacements i, », w must be kine-
matically admissible. That is, #, v, w must satisfy specified boundary conditions. Intro-
ducing stress-strain and strain-displacement relations, and substituting Eq. 1.30 into
Eq.1.27 gives

IT =I(a,.a,,...,a,) (1.31)

where # = number of independent unknowns. Now, the extremum with respect to a;,
(i = 1tor) yields the set of r equations

oIl _ i=1,2,....r (1.32)
oa;
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Example 1.2
The potential energy for the linear elastic one-dimensional rod (Fig. E1.2), with body forc

neglected, is

1 - du\?
H—E‘i EA(dx)dx 2,
where u;, = u(x = 1).

Let us consider a polynomial function

u=a+ax+ ayxt
This must satisfy u = 0at x = Oand u = Qat x = 2, Thus,

0=a,
0=a +2a, + 4a,
Hence,
a; = —2{13

#=a(-2x+x}) 4 = -g,

¥

3

. E=1A4=1

4 \‘ ;
—_—A— . —_— S o ——— e ]

2 r74 2 9——*'.!

Solution from
mechanics

Approximate
solution

+1.5
Solution from
mechanics
Stress from
+1 .
Stress + — approximate
solution

FIGURE E1.2

___
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Then du/dx = 2a,(—1 + x) and
1 2
Inm= E/ dai{~1 + x)2dx — 2(—a;)
[H

=20§/ (1~ 2x + x*) dx + 2a,
0

= 243(3) + 24,
We sct o[1/dny = 403(§] + 2 = 0, resulting in
as= =075 u = —a; =075
The stress in the bar is given by

0=E%=1.5(1—x) [ |

We note here that an exact solution is obtained if piecewise polynomial interpo-
lation is used in the construction of u.

The finite element method provides a systematic way of constructing the basis
functions ¢, used in Eq. 1.30,

1.10 GALERKIN'S METHOD

Galerkin’s method uses the set of governing equations in the development of an inte-
gral form. It is usually presented as one of the weighted residual methods. For our dis-
cussion, let us consider a general representation of a governing equation on a region V:

Lu=P (1.33)

For the one-dimensional rod considered in Example 1.2, the governing equation is the
differential equation

d du
— | EAZ | =
dx ( A dx ) 0
We may consider L as the operator
dpad
dy  dx

operating on u.
The exact solution needs to satisfy (1.33) at every point x. If we seek an approxi-
mate solution ¥, it introduces an error €(x), called the residual:

e(x)=1Lu—-P (1.34)

The approximate methods revolve around setting the residual relative to a weighting
function W,, to zero:

/w,-(Lir ~P)dVv=0 i=1lton (1.35)
v
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The choice of the weighting function W, leads to various approximation methods. In the
Galerkin method, the weighting functions W, are chosen from the basis functions used for
constructing 5. Let # be represented by

U= 2 Q.G; (1.36)
i=1

where G;,i = 1to n,are basis functions (usually polynomials of x, y, z). Here, we choose
the weighting functions to be a linear combination of the basis functions G,. Specifical-
ly, consider an arbitrary function ¢ given by

¢ = E &G, (1.37)
i=1

where the coefficients ¢; are arbitrary, except for requiring that ¢ satisfy homogeneous

(zero) boundary conditions where 1 is prescribed, The fact that ¢ in Eq. 1.37 is constructed

in a similar manner as % in Eq. 1.36 leads to simplified derivations in later chapters.
Galerkin’s method can be stated as follows:

I
Choose basis functions G,. Determine the coefficients Q;inT = > Q,G, such that
=

/ H(LT - P)dv =10 (138)
v

fi
for every ¢ of the type ¢ = > 6,G;, where coefficients ¢; are arbitrary except
i=1

for requiring that ¢ satisfy homogeneous (zero} boundary conditions. The so-
lution of the resulting equations for Q; then yields the approximate solution ¥.

Usually, in the treatment of Eq. 1.38 an integration by parts is involved. The order of the

derivatives is reduced and the natural boundary conditions, such as surface-force con-
ditions, are introduced.

Galerkin's method in elasticity. Let us turn our attention to the equilibrium
equations 1.6 in elasticity. Galerkin’s method requires

o a'rxv BTXZ aTx dor ar
fp——4—4 "o, + ¥ Ty vI
[ R o

ay
ar, dr do
= 22 a
( ax * dy + oz + f:)%:‘ dv =0 (1.39)

where

é = [qb" (;by, d)z]T
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is an arbitrary displacement consistent with the boundary conditions of w. Ifn = [A,, ny. A, -] T
is a unit normal at a point x on the surface, the integration by parts formula is

]—edv -- /aa—dV + /n,deds (1.40)
v X 5

where a and ¢ are functions of (x, y, z). For multidimensional problems, Eq. 1.40 is usu-
ally referred to as the Green-Gauss theorem or the divergence theorem. Using this for-
mula, integrating Eq. 1.39 by parts, and rearranging terms, we get

- ./O'FIG((,b) dv + /¢]fdv + f[(n_rﬂ_r + HyTyy + nzfxz)‘;bx
v Vv 5

+ (nxT.r_v + n_\’o'v + n:T_vz}¢)- + (nxf.rz + n_vT_v: + n:az)¢:] ds =10
(1.41)

where

_ a¢’4 a(ﬁv a¢' a('b* a¢z a¢x ad’ aqbl (}5 T
€(¢) = |:_“;" ay ’E' 9z By az T ax ’ dy * ax:’ (1:42)

is the strain corresponding to the arbitrary displacement field ¢.
On the boundary, from Eq. 1.8, we have (1,0, + n,7,, + n,7..) = T,, and so on.
Atpoint loads (n,0, + n,7,, + n_7,.) dS is equivalent to P,, and 50 on. These are the

natural boundary conditions in the problem. Thus, Eq. 1.41 yiclds the Galerkin's “vari-
ational form™ or “weak form™ for three-dimensional stress analysis:

fa"‘e(qs)dv - /qb"'fdv - /¢T’rds - > ¢P=0 (1.43)
Vv JV 5 i

where ¢ is an arbitrary displacement consistent with the specified boundary conditions
of u. We may now use Eq. 1.43 to provide us with an approximate solution.

For problems of linear elasticity, Eq. 1.43 is precisely the principle of virtual work.
¢ is the kinematically admissible virtual displacement. The principle of virtual work may
be stated as follows:

Principle of Virtual Work

A body is in equilibrium if the internal virtual work equals the external virtu-
al work for every kinematically admissible displacement field (¢, €(¢)).

We note that Galerkin’s method and the principle of virtual work result in the
same set of equations for problems of elasticity when same basis or coordinate func-
tions are used. Galerkin’s method is more general since the variational form of the typc
Eq. 1.43 can be developed for other governing equations defining boundary-value prob-
lems. Galerkin’s method works directly from the differential equation and is preferred
to the Rayleigh-Ritz method for problems where a corresponding function to be min-
imized is not obtainable.
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Example 1.3

Let us consider the problem of Example 1.2 and solve it by Galerkin’s approach. The equi-
librium equation is

d du =0 atx=0
EEAE;_O u=10 atx=2

Multiplying this differential equation by ¢, and integrating by parts, we pet
2
du do ( dnt)1 ( du)2 _
L EAd.rdxdx+ ¢EAdx0+ quAdxl—O

where ¢ is zero at x = 0 and x = 2. EA (du/dx) is the tension in the rod, which takes a
jump of magnitude 2 at x = 1 (Fig. E1.2). Thus,

2
du d¢

Now we use the same polynomial (basis) for u and . If u, and ¢, are the values at
x = 1, we have

— = (2x — x%)u,
b = (2x — 2%}

Substituting these and £ = 1, A = 1in the previous integral yields

¢1[—u, /02 (2 - 2x)dx + 2] =0

& —tu, +2) =0
This is to be satisfied for every ¢,. We get

1.11  SAINT VENANT'S PRINCIPLE

We often have to r.r_lakc approximations in defining boundary conditions to representa
support-structure interface. For instance, consider a cantilever beam, free at one end
a'nd atla.cllwd toa column with rivets at the other end. Questions arise ;s to whether the
rwe.ted joint is ‘totally rigid or partially rigid, and as to whether each point on the cross
section at the fixed end is specified to have the same boundary conditli)ons Saint Venant
copmdered the eflfec.t of different approximations on the solution to the t'()tal problem.
Saint Yenant‘s principle states that as long as the different approximations are statical-
ly equivalent, the resulting solutions will be valid provided we focus on regions suffi-

ciently far away from the support. That i i i
ent : ‘ . 8, the sol ifi i
within the immediate vicinity of the support. utions may significantly differ only

e
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VON MISES STRESS

Von Mises stress is used as a criterion in determining the onset of faiture in ductile ma-
terials. The failure criterion states that the von Mises stress o, should be less than the
yield stress oy of the material. In the inequality form, the criterion may be put as

Oy = Oy (1.44)
The von Mises stress oy is given by

oy = VI -3l (1.45)

where /; and 1, are the first two invariants of the stress tensor. For the general state of
stress given by Eq. 1.5, 1) and [, are given by

h=o,+t0,+0o,
L=ogw,+o0 +o,0, - Tf,z -7, - ri}, (1.46)
In terms of the principal stresses o, o, and o5, the two invariants can be written as
=0 +0,+ 0,
L = o104 + o304, + 040,

It is easy to check that von Mises stress given in Eq. 1.45 can be expressed in the form

oyy = %\/(0’1 = 0) + (0, — a3)* + (03 — ay)? (1.47)

For the state of plane stress, we have
L=0,+0,
L =00, -1, (1.48)
and for plane strain
5
hL=0g0,+to,0, +0,0, — *riy (1.49)

I

o, to, + o,

where o, = v(o, + o,).

1.13  COMPUTER PROGRAMS

Computer use is an essential part of the finite element analysis. Well-developed, well-
maintained, and well-supported computer programs are necessary in solving engineer-
ing problems and interpreting results. Many available commercial finite element
packages fulfill these needs. It is also the trend in industry that the results are acceptable
only when solved using certain standard computer program packages. The commercial
packages provide user-friendly data-input platforms and elegant and easy to follow dis-
play formats. However, the packages do not provide an insight into the formulations
and solution methods. Specially developed computer programs with available source
codes enhance the learning process. We foltow this philosophy in the development of this
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book. Every chapter is provided with computer programs that parallel the theory. The
curious student should make an effort to see how the steps given in the theoretical de-
velopment are implemented in the programs. Source codes are provided in QBASIC,
FORTRAN, C,VISUALBASIC, Excel Visual Basic,and MATLAB. Example input and
output files are provided at the end of every chapter. We encourage the use of com-
mercial packages to supplement the learning process.

1.14 CONCLUSION

In this chapter, we have discussed the necessary background for the finite element
method. We devote the next chapter to discussing matrix algebra and techniques for
solving a set of linear algebraic equations.
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PROBLEMS

L1 El)it:alinllt;le D matrix given by Eq. 1.15 using the generalized Hooke's law relations

1.2. In a plane strain problem, we have
oy = 20000 psi, o, = —10000 psi
E =30 % 100psi,p = 03
Determine the value of the stress o,
L.3. If a displacement field is described by
u=(-x+2y ¢ 6xy)107
v =(3x + 6y — y2)10™
determine ¢, , €,, v,, at the point x = Ly=o

14. Develop a deformation field ulx
s ¥) v(x, y) that descri i ini
element shown. From this determine £, e‘,}: )-yry. Intii;rrl:f ;(t):f :I(:::LT&“O“ ofthe Bt

h_———-_——
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0,10) (5.10) (5,10) (10,10)

(0,0) (5.0) (4,0) 9.0y
FIGURE P1.4

L5. A displacement field
u=1+3x+4x° + 6xy°
xy — x?

v

is imposed on the square element shown in Fig. P1.5.

y

A

(1.1}

(-L-1
FIGURE P1.5

(a) Write down the expressions for ,, ¢, and ,,.
(b) Plot contours of ¢, , €,, and y,, using, say, MATL AB software.
(¢) Find where €, is a maximum within the square.

L6. In a solid body, the six components of the siress at a point are given by o, = 40 MPa,
o, = 20MPa,a, = 30 MPa,r,, = —30MPa,r,, = 15MPa,andr,, = 10 MPa. Determine
the normal stress at the point, on a plane for which the normatl is (n,, n,,n,) = (%, %, 1/\/5).
(Hint: Note that normal stress o, = Ton, + Ton, + Tyn. )
1.7. Forisotropic materials, the stress—strain relations can also be expressed using Lame’s con-
stants A and ., as follows:
oy = Ag, + 21e,
o, = A€, + 2ue,
T, = A€, + Zue,
fyz = MVuzs Txzg = Bz Tx‘v = "vyxy
Here €, = ¢, + €, + &_. Find expressions for A and u in terms of E and ».
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1.8. A long rod is subjected to loading and a temperature increase of 30°C. The total s(raiq at
a point is measured to be 1.2 X 107, If £ = 200 GPa and & = 12 X 107%/°C, determine
the stress at the point.

19. Consider the rod shown in Fig. P1.9, where the strain at any point x is given by
€, = 1 + 2x7 Find the tip displacement 8.

2

ANy

=X

3
]

3

FIGURE P1.9

1.10. Determine the displacements of nodes of the spring system shown in Fig. P1.10.

/1 40 N/mm
1 2

60N ———r 0 AAAAAN——— G 50N

80 N/mm
% 50 N/mm

FIGURE P1.10

LIL Use the Rayleigh-Ritz method to find the displacement of the midpoint of the rod shown
in Fig. P1.11.

777777

J¢

Body force per unit volume, pg = 1

V| E=1
A=1
7 X =2
X
FIGURE P1.11

L12. A rodfixed at its ends is subjected to a va
method with an assumed displacement
ment #(x) and stress o(x).

1L.13. Use the Rayleigh-Ritz method to find the dis
Element 1 is made of aluminum, and elemen

rying body force as shown. Use the Rayleigh-Ritz
fieldu = a, + a,x + a,x? to determine displace-

placement field u( x) of the rod in Fig, P1.13.
t 2 is made of steel. The properties are

E, =70GPa, A, = 900mm? L, = 200mm
£y = 200GPa, A, = 1200mm?, L, = 300 mm
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f=x*N/m
FIGURE P1.12
7
VY
=y waN
7 7
/

O O,

FIGURE P1.13

Load P = 10,000 N. Assume a piecewise linear displacement field u = a4, + a,x for
0=y =<200mmandu = a; + a,x for 200 = x = 500 mm. Compare the Rayleigh-Ritz
solution with the analytical strength-of-materials solution.
114, Use Galerkin’s method to find the displacement at the midpoint of the rod (Figure P1.11).
L15. Seclve Example 1.2 using the potential energy approach with the polynomial u = a, + a.x
+ a3 x? + agx’,
1.16. A steel rod is attached to rigid walls at each end and is subjected to a distributed load
T(x) as shown in Fig. P1.16.
(a) Write the expression for the potential energy, I1.

T(x) = 300 Ib/in.
A ”‘: ; Traction, T(x)

>

E=30x100psi A=2in?
FIGURE P1.16
(b) Determine the displacement «{x) using the Rayleigh-Ritz mcthod. Assume a dis-

placement field u{x) = a; + a;x + a;x°. Plot u versus x.
(c) Plot o versus x.

1.17. Consider the functionat [ for minimization given by

L d 2
I= / %k(—y) dx + Lh(ag — 800)?
n dx

with y = 20at x = 60. Given k = 20, & = 25, and L = 60, determine a,, 4, and a; using
the polynomial approximation y{x) = a, + a;x + a.x* in the Rayleigh-Ritz method.




CHAPTTER 2

Matrix Algebra and Gaussian
Elimination

2.1 MATRIX ALGEBRA

The study of matrices here is largely motivated from the need to solve systems of si-
multaneous equations of the form

a11%; + 12X + -+ ay X, = bl

a1 X + 37X + -+ X, = bz (213)

@uiX T 8%y + - + 4, x, = b,

where x,, x,, ..

' ., X, are the unknowns, Equations 2.1 can be conveniently expressed in
matrix form as

Ax=b (2.1b)

where A is a square matrix of dimensions {(nxXn

v 1 ), and x and b are vectors of dimen-
sion (n X 1), given as

a]] a12 e alﬂ x] b1

~ | %1 o oay, x
A=y = X = .2 b= b2
Q1 Gy e Anyn X, b
Hn

From this information, we see that am

: atrix is simpl trix
A is also denoted as [A). An element | by on array of clements. The ma

ocated at the ith row and jth column of A is de-

ct allows us to solve large-scale problems because
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ing linear simuitaneous equations is also discussed, and a variant of the Gaussian elim-
ination approach, the skyline approach, is presented.
Row and Column Vectors

A matrix of dimension (1 X n} is called a row veector, while a matrix of dimension
{m X 1) is called a column vector. For example,

d=[1 -1 2]

isa (1 X 3) row vector, and

is a (4 X 1) column vector.

Addition and Subtraction

Consider two matrices A and B, both of dimension (m X n).Then,thesumC = A + B
is defined as

C” = aij + b”. (2.2)

That is, the (ij)th component of C is obtained by adding the (ij)th component of A to
the (if)th component of B. For example,

Multiplication by a Scalar
The multiplication of a matrix A by a scalar ¢ is defined as

cA = [ca;;] (2.3)
For example, we can write

[10000 4500]_103[ 10 4.5]
4500 -6000] 45 —6

Matrix Multiplication
The product of an (s X n) matrix A and an (n X p) matrix B resultsin an {m X p) ma-
trix C. That is,
A B = C
(mXxn}) (nXp) (mXp)
The (if)th component of C is obtained by taking the dot product
¢;; = (ithrow of A) - (jth column of B} (2.5)

i}

(2.4)
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For example,
[2 13] ;_;*[715}
0 -2 1 0 3 -10 7
(2 x3) (3x2) (2 X 2)

It should be noted that AB # BA; in fact, BA may not even be defined, since the num-
ber of columns of B may not equal the number of rows of A.

Transposition

If A = [a;], then the transpose of A, denoted as A", is given by AT = [a;;]. Thus, the
rows of A are the columns of A". For example, if

1 -5

A = 0 6
-2 3

4 2

then

-3 6 32

In general, if A is of dimension (m x n), then AT

The transpose of a product is given as the
order;

AT___[I 0 -2 4]

is of dimension (n X m).
product of the transposes in reverse

(ABC)" = CTBTAT (2.6)

Differentiation and Integration

The components of a matrix do

not have to be ; ions.
For example. scalars; they may also be function

B= [I ty ooy
6+ x ¥
In this regard, matrices may be differentiated and inte

" . . i i i l
of a matrix is simply the derivative (or integral) B eod- The derivative (or integrs )

of each component of the matrix. Thus,

d .
&;B(x) = ‘:M:I (2.7)

ax

/dedy: [/b,-!-drdy] (28)
The formula in Eq. 2.7 wil] now

be speciali :
(n X n) matrix of constynts.ang : pecialized to an important case. Let A be a8

- . X1, x 1. T i
Then, the derivative of Ax with respect 1t :] \::ari +%,]" be a column vector of n variables

able x 18 given by
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%(Ax) = 2’ 2.9)

where a” is the pth column of A. This result follows from the fact that the vector {Ax)
can be written out in full as
411X, + daXa + -+ ﬂ]pxp + o+ a X,
71X, + 832X0 + -+ aszp + -+ X,
Ax = (2.10)

a1 X + apox, + 000+ BppXp, t -+ a,,.x,
Now, we see clearly that the derivative of Ax with respect to x » yields the pth column
of A as stated in Eq.2.9.
Square Matrix

A matrix whose number of rows equals the number of columns is called a square matrix.

Diagonal Matrix

A diagonal matrix is a square matrix with nonzero elements only along the principal
diagonal. For example,
2\0 0

A=|0 0
0 03
Identity Matrix

The identity (or unit) matrix is a diagonal matrix with 1’s along the principal diagonal.
For example,

1 000
I = 0100
0 010
0 001
If Lis of dimension (n X n) and xis an (n X 1) vector, then
Ir=x

Symmetric Matrix
A symmetric matrix is a square matrix whose elements satisfy
a,-;- = a‘“‘ (2.113)

or equivalently,
A=A (2.11b)
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That is, elements located symmetrically with respect to the principal diagonal are equal.
For example,

2 1 0
A=|1 6 -2
0 -2 8

Upper Triangular Matrix

An upper triangular matrix is one whose elements below the principal diagonal are all
zero. For example,

Determinant of a Matrix

The determinant of a square matrix A is a scalar quantity denoted as det A. The determi-
nants of a (2 X 2) and a (3 X 3) matrix are given by the method of cofactors as follows:

det all_‘y‘alz _
g, 3y, | T Gudn T anay, (212)

iy Gz @y,

det| @21 a4y 6y = ay1(ara33 = a3a,;) (2.13)

ay, a3, a -
3 M2 Gy “12(“21“33_331023)

+ ayy(ay,85, — a318y,)
Matrix inversion

Consider a square matrix A. If det A 2 0,t

¢ hen A has an i "' The
inverse satisfies the relations annverse, denoted by A

A'A = AAT = (2.14)
Hdet A # 0, then we say that A is non.

gular, for which the inverse is not defin,
terminant of the (n — 1 X p — 1)

singular. I_f det A = 0, then we say that A is sif*
ed.The minor M,; of a square matrix A is the de-
matrix obtained by eliminating the ith row and the

jth column of A.The cofactor C, ; of matrix A is given by
Cy = (-1y"n,

Matrix C with elements C, . is cal : o A
e 7 18 called the cofactor matrix. The adjoint of matrix A 5
AdjA =T

The inverse of a square matrix A is given as
Al = E'Ell'_i&_
det A
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For example, the inverse of a (2 X 2) matrix A is given by
[an alz]_l _ 1 [ a3y —dy3
a1 da detA | dn a4y
Quadratic Forms Let A bean (n X n) matrix and xbe an (n X 1) vector. Then,
the scalar quantity

x'Ax (2.15)
is called a quadratic form, since upon expansion we obtain the quadratic expression

X1411%; + X1a15X5 + - 4 X1@ 10X,
_+ Xad731X, + x2a22x2 + e+ Xaa,X,

xTAx (2.16)
+ x,a,x + X@p%y + oo+ Xnllyn Xy,
As an example, the quantity
u = 3x} — 4x.x; + 6x,x3 — x} + 5x3
can be expressed in matrix form as
3 =2 3]|Ix
u=[x, x x)-2 -1 0[Kx
3 0 55 x
= xTAx
Eigenvalues and Eigenvectors
Consider the eigenvalue problem
Ay = Ay (2.17a)

where A is a square matrix, (n X n). We wish to find a nontrivial solution. That is, we
wish to find a nonzero eigenvector y and the corresponding eigenvalue A that satisfy
Eq.2.17a. If we rewrite Eq, 2.17a as

(A-Ay=¢0 (2.17b)
we see that a nonzero solution for y will occur when A — Al is a singular matrix or
det(A - AI}) =0 (2.18)
Equation 2.18 is called the characteristic equation. We can solve Eq. 2.18 for the n roots
or eigenvalues Ay, A,,..., A,. For each eigenvalue A, the associated eigenvector y* is
then obtained from Eq. 2.17b:
(A-Ally =0 (2.19)

Note that the eigenvector ¥ is determined only to within a multiplicative constant since
(A — A]) is a singular matrix.
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Esample 2.1
Consider the matrix

—2.236 8
The characteristic equation is
det[ 4- —2.236]
-223 8-—a
which yields

s 3]

=0

(4= A)(B~A)-5=0

Solving this above equation, we get

)l|=3 1\2=9

To get the eigenvector y' = (1, y3]" corresponding to the eigenvalue A,, we substitute

A = 3into Eq. 2.19:

{(4-3) -223% {y{}
~2236 (8 - 3)|\y}

"Thus, the components of y' satisfy the equation

yi— 2236y = 0

at

We m?y now nom:m!iz.e the eigenvector, say, by making y' 3 unit vector. This is done by set-
ting y; = 1, resulting iny' = [2.236,1]. Dividing y' by its length yields

y' = [0913, 0.408]"
Now, ¥’ is obtained in a similar manner by substituting A, into Eq.2.19. After normalization

¥y = (-0.408,0.913)T ]

Eigenvalue problems in finite element

analysis are of the type Ay = ABy. Solution

techniques for these problems are discussed jn Chapter 11.

Positive Definite Matrix

| A symmetric matrix is said to be
f tive (greater than zero), In the p

Ao [ 4 223
—2.236 8
had eigenvalues A, = 3 > 0 and A =
native definition of a positive definite

A symmetric matrix A of dimension (n X n)
vector X =[x, x,,...,x,]",

xTAx > 0

positive definite if al] its eigenvalues are strictly posi-
Tevious example, the symmetric matrix

|

9 >0 and, hence, is positive definite. An alter-
matrix is as follows:

is positive definite if, for any nonzer®

(2.20)
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Cholesky Decomposition
A positive definite symmetric matrix A can be decomposed into the form
A =LLT (2.21)

where L is a lower triangular matrix, and its transpose L is upper triangular. This is Cholesky
decomposition. The elements of L are calculated using the following steps: The evaluation
of elements in row &k does not affect the elements in the previously evaluated & — 1 rows.
The decomposition is performed by evaluating rows from k& = 1 to n as follows:

i1
i . — I‘.!‘)
L0 R
v 4 T ekl (2.22)

f i-1
- —_ 2
Liw = 1 Qi 2 I
i=1

In this evaluation, the summation is not carried out when the upper limit is less than the
lower limit.

The inverse of a lower triangular matrix is a lower triangular matrix. The diagonal
elements of the inverse L™ are inverse of the diagonal elements of L. Noting this, for a
given A, its decomposition L can be stored in the lower triangular part of A and the el-
ements below the diagonal of L™! can be stored above the diagonal in A. This is imple-
mented in the program CHOLESKY.

2.2 GAUSSIAN ELIMINATION

Consider a linear system of simultaneous equations in matrix form as
Ax=h

where Ais (n X n) andband xare (2 X 1).If det A # 0, then we can premultiply both
sides of the equation by A™! to write the unique solution forx as x = A™'b. However, the
explicit construction of A™', say, by the cofactor approach, is computationally expensive
and prone to round-off errors. Instead, an elimination scheme is better. The powerful
Gaussian elimination approach for solving Ax = b is discussed in the following pages.

Gaussian elimination is the name given to a well-known method of solving simul-
taneous equations by successively eliminating unknowns. We will first present the method
by means of an example, followed by a general solution and algorithm. Consider the si-
multaneous equations

X - 2x2 + 613 =0 (I)
2%, + 26, + 35, = 3 (1I) (2.23)
—x, + 3x, =2 (m)

The equations are labeled as 1, I1, and 111. Now, we wish to eliminate x, from II and IiI.
We have, from Eq. 1, x; = +2x; — 6x;. Substituting for x, into Egs. IT and 11 yields
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X — sz + 6x3 = 0 (I)
0+6x, —9x; =3 (I (229
0+ x+6x, =2 (IIW)

It is important to realize that Eq. 2.24 can also be obtained from Eq. 2.23 by row oper-
ations. Specifically, in Eq. 2.23, to eliminate x, from II, we subtract 2 times I from II, and
to eliminate x, from III we subtract -1 times I from II1. The result is Eq.2.24. Notice the
zeroes below the main diagonal in column 1, representing the fact that x, has been elim-
inated from Eqs. IT and HI.The superscript (1) on the labels in Egs. 2.24 denotes the fact
that the equations have been modified once.

We now proceed to eliminate x, from III in Eqs. 2.24. For this, we subtract é times
Il from II1. The resulting system is

X - ZX2 + 6x3 =0 (I)
0+ 6x; —9x, = 3 (11 (2.25)
0 0 Fx=3] an®

The coefficient matrix on the left side of Eqgs. 2.25 is upper triangular. The solution now
is virtually complete, since the last equation yields X3 = 3, which, upon substitution into
the second equation, yields x, =% and then X = % from the first equation. This process
of obtaining the unknowns in reverse order isca

lled back-substitution.
These operations can be expressed more co

. ’ : ncisely in matrix form as follows:; Work-
ing with the augmented matrix [A, b), the Gaussiag elimination process is

1 -2 6 0 1 -2 6 ¢ 1 -2 6 0
2 23 3|=|o0 6 -9 31510 6 -9 3 (2.26)
-1 30 2 0 1 6 2 0 0 152 32

which, upon back-substitution, yields

¥3=5 ;=% =2 (227)

Let the original system of €quations be as given in Eqs.2.1, which can be restated as
4y A1z 4y a; aln- rx]\ |’b’l\

ayy iy a3 T2n %) b,

31 Q33 day iy 3, X3 b;
=== T o = =Ry Y (208)
oWt a,; a; aq ¥

il iz i3 aij an Xj b,

SRCNYINNE FUS I ) Gnn \ *n ) ¥y

Column




|
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Gaussian elimination is a systematic approach to successively eliminate variables x, x5,
X3, ..., X, until only one variable, x,,, is left. This results in an upper triangular ma-
trix with reduced coefficients and reduced right side. This process is called forward
climination. It is then easy to determine x,, x,—,, ..., X3, X3, X; successively by the
process of back-substitution. Let us consider the start of step 1, with A and b written
as follows:

ran _ ﬂ‘_ln_ (b,
a; o ' ._ .l'izzn Start bz
: i 3L of ste :
SV P \ (2.29)
an @y @izt gy v Gy | k=1 f_’s
_anl “nz : -an?; . o . anj' . E a’rm_ \ b.'l /

The idea at step 1 is to use equation 1 (the first row) in eliminating x, from remaining
equations. We denote the step number as a superscript set in parentheses. The reduction
process at step 1 is

1 i
“EJ) =G 4
11
and (2.30)
a;
b = b — b,
ay

We note that the ratios a;,/a, , are simply the row multipliers that were referred to in the
example discussed previously. Also, a, ; is referred to as a pivot. The reduction is carried
out for all the elements in the shaded area in Eq. (2.29) for which { and j range from 2
to n. The elements in rows 2 to n of the first column are zeroes since x, is eliminated. In
the computer implementation, we need not set them to zero, but they are zeroes for our
consideration. At the start of step 2, we thus have

dyy By Wy e Wy a1, b,
o fulf et ) b
o ) o) o a o | sumor (8
: : P : : stepk = 2 : (2.31)
0iay afy - af o ayla b
|0y o e e d) 8 |

The elements in the shaded area in Eq. 2.31 are reduced at step 2. We now show the
start of step k and the operations at step & in
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_ - (b 3
By &y 3 o o aH) ﬂ}l,.} {11)
0 o) &b ... ... oyl b{zz)
o0 0 ag? af-) aﬁ,f b
0 0 0 Startof < b o
S step k P
k-~
Rowi|0 0 0 b* "
0 0 o LB
(2.32)

At step k, elements in the shaded area are reduced. The general reduction scheme with
limits on indices may be put as follows:

Instep k,
a(k—l)
k) _ {k-1} i k k=1 ..
aij = ay; - f(k_l}aij ‘ Lj=k+ 1,....n
Ay,
a(k*ll
(k) (k-1 ik k-t .
e = S S A R 2.33)
Bk
After (n — 1) steps, we get
[ T¢ r
Gy a3 a3 ay - a, X, b, )
y 1
@ a4 af) - gl X2 by
2 2 2
a3 034) a;,,,) X3 b_‘;z)
@ o [§ =X 3 (2.34)
Q44 - Ay, X, by
0 ; :
- in-1)
L Aun | e \bn”

The superscripts are for the convenience of presentation, In the computer implemen-

tation, these supersgripts can be avoided. We now drop the superscripts for convenience,
and the back-substitution process is given by

X, = by
" (2.35)
and then
bi' - 2 ;X
_ f=i+1 .
I,-“'_'T-—- 1=n—1,n—-2,._.,1 (2.36)

This completes the Gauss elimination algorithm.

The algorithm discussed earlier is given next in the form of computer logic.



Section 2.2 Gaussian Elimination 33

Algorithm 1: General Matrix
Forward elimination (reduction of A, b)
—D0O k=1, n-1

—DO i=k+1,n
iy
c=—
Ay
DO j=k+1n
L a"}' = a”_cakj
bi = bj - Cbk
Back-substitution
b
b, = L
aﬂﬂ

—DO {i=1n-1
i=n-—ii
sum = 0
I:DO j=it+1Ln

sum = sum + a;;b;

b, — sum

a;;

5,

[Note: b contains the solution to Ax = b.]

Symmetric Matrix

If A is symmetric, then the previous algorithm needs two modifications. One is that the
multiplier is defined as

¢ = 2K 237)
Qe x

The other modification is related to the DO LOOP index (the third DO LOOP in the
previous algorithm):

DO j=in (2.38)

Symmetric Banded Matrices

In a banded matrix, all of the nonzero elements are contained within a band; outside of
the band all elements are zero. The stifiness matrix that we will come across in subse-
quent chapters is a symmetric and banded matnix.
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Consider an (7 X »n) symmetric banded matrix:

_ k-nbw —
XX XX

XX XXX 0
XXXXX
XXNXXX

XX XXX

Symmetric X X X X X {2.39)

XXXXX

XX XX

X

X \
\an diagonal

Main (1st) diagonal

In Eq.2.39, nbw is called the half-bandwidth. Since only the nonzero elements need to

be stored, the elements of this matrix are compactly stored in the (n X nbw) matrix
as follows:

15t 2nd nbw_
XXXXX
XXX XX
XXX XX
XX XXX
XX XXX
XX XXX (2.40)
XXXXX
XX XX
X X X
xx 0
X

The principal diagonal or 1st diagonal of E
eral, the pth diagonal of Eq.2.39 is stored
correspondence between the cle

4-2.39 is the first column of Eq. 2.40. In gen-

as the pth column of Eq. 2.40 as shown. The
ments of Eqs. 2.39 and 2.40 s given by

a;;
(>0 = Qifiieyy (2.41)
(2.39) (.40

Also, we note that a;; = 4. in Eq.2.39, and that th - W
of Eq.2.40 is min(n — k + 1, nbw), We € number of elements in the kth 10

. . Can now prese . ctoation al
gorithm for symmetric banded matrix. present the Gaussian elimination

i H
i
1
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Algorithm 2: Symmetric Banded Matrix

Forward elimination
— DO

~— DO

k=1,n-1

nbk = min(n — k& + 1,nbw)

i=k+1,nbk+k—1

il=i—k+1
"=ﬂk,f1/ﬂk,1
DO j=inbk+k-—-1

fl=f—-i+1
2=j-k+1
Qi1 = Qi1 T Cay g
b b" = bj - Cbk
Back-substitution
b, = b,
" an,l
— DO ii=1n—-1
i=n-—1ii

sum
DO
[ sum

b =

nbi = min(rn — i + 1,nbw)

=0
j = 2,nbi
= sum + a;;b;4;-,
b; — sum
a;,

Gaussian Elimination 35

[Note: The DO LOOP indices are based on the original matrix as in Eq. 2.39; the

correspondence in Eq.2.41 is then used while referring to elements of the banded ma-
trix A. Alternatively, it is possible to express the DO LOOP indices directly as they refer
to the banded A matrix. Both approaches are used in the computer programs.]

Solution with Multiple Right Sides

Often, we need to solve Ax = b with the same A, but with different b’s. This happens
in the finite element method when we wish to analyze the same structure for different
loading conditions. In this situation, it is computationally more economical to separate
the calculations associated with A from those associated with b. The reason for this is
that the number of operations in reduction of an (n X n} matrix A to its triangular form
is proportional to r°, while the number of operations for reduction of b and back-sub-
stitution is proportional only to »”. For large n, this difference is significant.
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The previous algorithm for a symmetric banded matrix is modified accordingly
as follows:

Algorithm 3: Symmetric Banded, Multiple Right Sides

Forward elimination for A

— DO k=1n-1
nbk = min(n — &k + 1, nbw)
— DO i=k+1nbk+ k-1
l=i~-k+1
¢ =y in/ae
DO j=inbk + k-1
A=j—-i+1
R=j-k+1
= & T B T

Forward elimination of each b
— DO k=1n-1

nbk = min(n - k + 1,nbw)
DO i=k+1,nbk+k—-1

il=i-k+1
€= ayafa,
— bi = bi - Cb;_.

Back-substitution This algorithm is the same as in Algorithm 2

Gaussian Elimination with Column Reduction




B
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We can understand the motivation behind the column approach by referring back
to Eq. 2.41, which is

_011 @17 3 &y aln_ (-"1\ I’bl \
ROR R Y| Y

@ o |n| e |
A A EA R

i am O [Uxa) 6077

Let us focus our attention on, say, column 3 of the reduced matrix. The first element in
this column is unmodified, the second element is modified once, and the third element
is modified twice. Further, from Eq. 2.33, and using the fact that a;; = a;, since A is as-
sumed to be symmetric, we have

&Y = _ alza
23 = O3 — — dj3
i1
(y _ a3
a3y = d33 — — dy3 (2.42)
i1
(1)
2y _ (1) _ %23 (1)
@33 = 33 T a3

22

From these equations, we make the critical observation that the reduction of column 3
can be done using only the elements in columns I and 2 and the already reduced elements
in column 3. This idea whereby column 3 is obtained using only elements in previous
columns that have already been reduced is shown schematically:

. @2 3 a;p 4y

(1} (1)
35 sy |~ dz;

az; (2.43)

833

The reduction of other columns is similarly completed. For instance, the reduction
of column 4 can be done in three steps as shown schematically in

34 a4 iy dra

(1) {13 i}

amy a4 a4 a4
d AU R And WAL B A R (2.44)

sy ET aszy a3y

() (23 (3)

tday Ayq 44 Ayq



Chapter 2 Matrix Algebra and Gaussian Elimination

We now discuss the reduction of column j,2 = j = n, assu@g that colum_ns tothe
left of j have been fully reduced. The coefficients can be represented in the following form:

Column
J -
apy 413 a3 ot g @1, Stepk = 1
aff aff el ey " Siepk =
ay - afl, @ D 3 (2.45)
: Stepk  iF3t0f| i=2 0]
ain
i—1j-1 f::k-}-l

The reduction of column j requires only elements from columns to the left of j and ap-
propriately reduced elements from column j. We note that for column j,the number of

steps needed are j — 1. Also, since g, is not reduced, we need to reduce columns 2 to
n only. The logic is now given as

— DO j=2ton
DO k=1toj-1
DO i=k+1toj (2.46)
l: W _ ety _ Gy
o - L3 -
=4 = ay - k=1 jck; Y
kk

Interestingly, the reduction of the ri

ght side b can be considered as the reduction of one
more column. Thus, we have

DO k=1ton-1

[DO£=k+lmn (247)
(k=1
pk) ple- _ Ay )b{k—l)
! ! (k~1y %
Ay y

From Eq. 2.46, we observe that if there are
erations need to be carried out on}
ement to the diagonal. This leads

a setof zeroes at the top of a column, the op-

y on the elements ranging from the first nonzero el-
naturally to the skyline solution.

Skyline Solution

p of a column, onl
nonzero value need be stored. Thel

clement is cailed the skyline. Cansi

¥y the elements starting from the first

ine separating the top zeroes from the first nonzero
der the example
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—
Column height

112|214]4]

ayy ﬂlzl 0 Ial-t

32 833
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(2.48)

For efficiency, only the active columns need be stored. These can be stored in a column

vector A and a diagonal pointer vector ID as

agg

Diagonal pointer {ID})

—1

3

—25

F=RR T R

13

17
20
25

(2.49)

The height of column [ is given by ID(/) — ID({ ~ 1). The right side, b, is stored in a
separate colurnn. The column reduction scheme of the Gauss elimination method can

be applied for solution of a set of equations. A skyline solver program is given.

Frontal Solution

Frontal method is a variation of the Gaussian elimination method that uses the struc-
ture of the finite element problem. The elimination process is handled by writing the
eliminated equation to the computer hard disk, thus reducing the need for a large amount
of memory. Large finite element problems can thus be solved using small computers. The
frontal method is presented in Chapter 9 and implemented for the hexahedral element.

2.3 CONJUGATE GRADIENT METHOD FOR EQUATION SOLVING

e

The conjugate gradient method is an iterative method for the solution of equations. This
method is becoming increasingly popular and is implemented in several computer codes.
We present here the Fletcher-Reeves version of the algorithm for symmetric matrices.
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Consider the solution of the set of equations

Ax=b
where A is a symmetric positive definite (# X n) matrix and b and x are (n X 1). The
conjugate gradient method uses the following steps for symmetric A.

Conjugate Gradient Algorithm

Start at point x;:
B=Ax -b, dy=-g
d;Ad,
Xpy = X + ayd,
Bt = 8 + aAd, (2.50)
B, = g1+;gk+1
8i 8Bk

A = ~giuy + Bid,

Here k = (,1,2,.... The iterations are continued until gfg « Teaches a small value. This
method is robust and converges in # iterations. This procedure is implemented in the pro-
gram CGSOLVE, which is included on the disk. This procedure is adaptable to parallel

Processing'in finite element applications and can be accelerated by using precondition-
ing strategies. The program input and output are as follows:

INPUT FOR GAUSS, CGSOLVE

EIGHT EQUATICNS ]
'~-— Number of Equations —--
|
'--- Matrix A{) in Ax = B --~
6 01 2 0 0 2 1
g0 5 1 1 0 0 3 0
11 6 1 2 0 1 2
2 1 1 7 1 2 1 1
0 0 2 1 6 0 2 1
0 0 0 2 0 4 1 0
2 3 1 1 2 1 5 1
1L 0 2 11 0 1 3
'=-- Right hand side B{) in Ax = B ---
1 1 1 1 1 1 1
QUTPUT
Program Gauss - CHANDRUPATLA & BELEGUNDY T
EIGHT EQUATIONS
X0 1 1= 3,9255E-01
X{ 2 I= 6.3%974E~-01
X{ 3 )= -1.4303E-01
X{ 4 )= -2.1723E-01
Xt % )= 3.B019E-0C1
X{ 6 }= 5.1182E-01
X{ T }= -6_12B1E-01
X{ 8 )= 4.47T79E-01
—_— ]
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PROBLEMS
2.1. Given that
8 -2 ¢ 2
A=[-2 4 =3 d=4¢ -1
0 -3 3 3

2.2,

2.3.

24,

2.5,

2.6.

determine the following;

(a) 1—dd"

(b) detA

(c) the eigenvalues and eigenvectors of A. Is A positive definite?

(d) the solution to Ax = d using Algorithms 1 and 2, by hand calculation.

Given that

N= [591 - gZ}

find

1
(a) / Nd¢

-1

1
(b) / NTN d¢

-1

Express g = x; — 6x, + 3x} + 5x,x, in the matrix form ; xTQx + ¢'x.

Implement Algorithm 3 in BASIC. Hence, solve Ax = b with A as in Problem 2.1, and
each of the following bs:

b = [5,-10,3]"
b=[22-13]

Using the cofactor approach, determine the inverse of the matrix
211
1 21
i1 2
Given that the area of a triangle with corners at {x,, ), (X2, y2), and (x5, y;) can be writ-

ten in the form

1 I x5 »

Area==det] 1 x» ¥
2

L x5 »n

determine the area of the triangle with corners at {1,1), (4,2), and (2, 4).
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2.7. For the triangle in Fig. P2.7, the interior point P at (2, 2) divides it into three areas, A, A;,
and A,, as shown. Determine A,/ A, A,/ A, and A,/ A.

3(25,5)

2(3,1.5)
y

1L, 1)

FIGURE F2.7

28. A symmetric matrix [A ], has a bandwidth nbw and is stored in the matrix [B]xnpe-

(a) Find the location in B that corresponds to A, 4.
(b) Find the location in A that corresponds to B, ;.

2.9. For asymmetric (10 X 10) matrix with ali no .
: nzero element lo-
cations needed for banded and skyline storage me ::n 5, determine the number of 1o

2.10. Perform the Cholesky decomposition of the positive definite matrix

4
3
1

B ON W

1
2
3

2.11 A square matrix A can be decom,

is upper triangular. Let posedinto A = LU where L is lower triangular and U

; 431 ; = } ¢ 0 Mipowy o owg
Sl 1 0flo U3ty
2 1 6 13, 1’32 1 0 0 Uss
=LU '

Determine L and U,
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o dedkdede e b e m mss LA E R E R &L 2L K
t GAUSS ELIMINATION METHOD *
' GENERAL MATRIX *
'* T, R.Chandrupatla and A.D.Belegundu *

Ude deve e e e o deoe e e de ke W e W e e o e e e e s i e i T o d ok o e e

Private Sub cmdStart_Click(}
Call InputData
Call Gausskow
Call Output
cmdView.Enabled = True
cmaStart.Enabled = False
End Sub

‘emooz======== INPUT DATA
Private Sub InputDataf{)
Filel = InputBox{"Input File d:\dir\fileName.ext", “"Name
Cpen Filel For Input As #1
Line Input #1, Title: Line Input #1, Dummy
Input #l1, N
Line Input #1, Dummy
Rebim A{N, N}, B(N)
e rrwrsoo=== RELD DATA
For T =1 Te N
For J = 1 To N: Input #1, A(I, J}): Next J
Hext I
Line Input #1, Dummy
For I = 1 To N: Input #1, B(I): Next I
Close ¥l
End Sub

of File"}

‘\============ GAUSSIAN ELIMINATION
Frivate Sub GaussRow{}
fm——— Forward Elimination ----—-
For K=1Te N -1
For I = K + 1 To N
C = A{I, K} / A(K, K)
For J = K+ 1 To N
AlY, J) = A{I, J) - C * A{K, )
Next J
B{I}) = B(I) - C * B(K)
Next I
Next K
Te———- Back-substitution ————-
B{N} = B{(N) / A(N, N)
For II = 1 To N - 1
I =N-11I
c=1/A(I, I}: B(I}) = C * B{I}
For K=1 + 1 To N
B{l) = B(I) - C * A(I, K} * B(K)
Next K
Next II
End Sub

f
It
i
[
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T F e deve ook e e PROGRAM CGSOL e v g v e
' CONJUGATE GRADIENT METHOD *
'* FOR SOLVING AX=B, A Symmetric *
'* T.R.Chandrupatla and A.D.Belegundu *

Fodr sk sk e s drdeak ok b de sk e e ok ot o e ek e o o e W oo e e

R Y F T MATIN PROGRAM
Private Sub cmdStart_Click{)
Call InputData
Call CgScl
Call Cutput
cmcdView.Enabled = True
cmdStart.Enabled = False
End Sub

CONJUGATE GRADIENT METHOD
FOR SOLVING EQUATIONS

Private Sub CgSol{)
DIM G{N}, Di(N}, AD(N)
FOR I =1 TON

X(I) =0
G(I) = -B(I}
DI(I) = B{I}
NEXT I
GGl = 0
FORI =1TC0ON
GGl = GEL + G(I}) * G(I}
REAT I

02 WHILE GGL > 002001
ITER = ITER + 1
DAD = 0
FOR I =1 TON
cC=2a
FOR I =1TON
€C=C+AlI, J) * D)

NEXT J
AD{I}) = C
DAD = DAD + € * DI(I}
NEXT I
AL = GGl / DAD
GG2 = 0
FOR I = TG N

1
K{I} = X(I) + AL * D{(T})
G({I) = G{I} + AL * AD (I}
GG2 = GGZ + G(I] * G{I}
NEXT I
BT = GG2 / GGl
FORI =1TOoN

D{I} = -G(I) + BT * D(1)
NEXT I
GGl = GG2
LOOP
ERASE G, D, AD
End Sub




CHAPTER 3

One-Dimensional Problems

3.7 INTRODUCTION

The total potential energy and the stress—strain and strain—displacement relationships
are now used in developing the finite element method for a one-dimensional problem.
The basic procedure is the same for two- and three-dimensional problems discussed
later in the book. For the one-dimensional problem, the stress, strain, displacement, and
loading depend only on the variable x. That is, the vectors u, o, €, T, and f in Chapter 1
now reduce to

u=u(x) wo=a(x) €=u(x}
T=T(x) f=f(x) 3.1)
Furthermore, the stress—strain and strain—displacement relations are

du

o = Ee €= (3.2)
For one-dimensional problems, the differential volume 4V can be written as
dV = Adx (3.3)

The loading consists of three types: the body force f, the traction force 7', and the point
load P.. These forces are shown acting on a body in Fig. 3.1. A body force is a distributed
force acting on every elemental volume of the body and has the units of force per unit
volume. The self-weight due to gravity is an example of a body force. A traction force is
a distributed load acting on the surface of the body. In Chapter 1, the traction force
is defined as force per unit area. For the one-dimensional problem considered here,
however, the traction force is defined as force per unit iength. This is done by taking the
traction force to be the product of the force per unit area with the perimeter of the cross
section. Frictional resistance, viscous drag, and surface shear are examples of traction
forces in one-dimensional problems. Finally, F; is a force acting at a point i and u, is the

x displacement at that point.
The finite element modeling of a one-dimensional body is considered in Section

3.2 The basic idea is to discretize the region and express the displacement field in terms

45
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FIGURE 3.1  One-dimensional bar loaded by traction, body, and point loads.

of values at discrete points. Linear elements are introduced first. Stiffness and load con-
cepts are developed using potential energy and Galerkin approaches. Boundary condi-

tions are then considered. Temperature effects and quadratic elements are discussed
later in this chapter.

3.2 FINITE ELEMENT MODELING

The steps of element division and node numbering are discussed here.

Element Division

f:onsider ‘the bar in Fig. 3.1. The first step is to model the bar as a stepped shaft, consist-
ing of a discrete number of elements, each having a uniform cross section. Specifically,

let us model the bar using four finite elements, A simple scheme for doing this is to di-
vide the bar into four regions, as shown ;

! ! ‘ sed to define an element with uniform cross
section. The resulting four-element, five-node finite element model is shown in Fi g 3.2b.

In the finite elemcnt. model, every clement connects to two nodes. In Fig, 3.2b, the ele-
ment numbers are circled to distinguish them from node numbers. In addition to the

Cross section, traction and body forces are als ithi
’ o (normally) tr t within
each element. However, CToss-sectional y) treated as constan

.
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FIGURE 3.2 Finite element modeling of a bar.

Numbering Scheme

We have shown how a rather complicated looking bar has been modeled using a discrete
number of elements, each element having a simple geometry. The similarity of the var-
ious elements is one reason why the finite element method is easily amenable to com-
puter implementation. For easy implementation, an orderly numbering scheme for the
model has to be adopted.

In a one-dimensional problem, every node is permitted to displace only in the +x
direction. Thus, each node has only one degree of freedom (daf). The five-node finite
element model in Fig. 3.2b has five dofs. The displacements along each dof are denoted
by 01, Q.. ..., Qs. In fact, the column vector Q = [, 0;,- .-, O ]" is called the global
displacement vector. The global load vectoris denoted by F = [F}, B, ..., F;]". The vec-
tors Q and F are shown in Fig. 3.3. The sign convention used is that a displacement or
load has a positive value if acting along the +x direction. At this stage, conditions at the
boundary are not imposed. For example, node 1 in Fig. 3.3 is fixed, which implies O, = 0.
These conditions are discussed later.

Each element has two nodes: therefore, the element connectivity information can
be conveniently represented as shown in Fig. 3.4. Further, the element connectivity table
is also given. In the connectivity table, the headings 1 and 2 refer to local node numbers
of an element, and the corresponding node numbers on the body are called global num-
bers. Connectivity thus establishes the local-global correspondence. In this simple ex-
ample, the connectivity can be casily generated since lecal node 1 is the same as the
element number e, and local node 2 is e + 1. Other ways of numbering nodes or more
complex geometries suggest the need for a connectivity table. The connectivity is intro-

duced in the program using the array NOC.
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FIGURE 3.4 Element connectivity,

lacements, nodal loads,

and element connectivity are
od and should be clearly

understood,

3.3 COORDINATES AND SHAPE FUNCTIONS
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1 2 i 2

Fe

£E=-1 £= +1
@ ®)
FIGURE 3.5 Typical element in x- and £-coordinates.

* 1

\.,_._
R

2

(=T - m) -1 (3.4)

From Fig. 3.5b, we see that § = —1 at node 1 and £ = 1 at node 2. The length of an
element is covered when & changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacement field.

Now the unknown displacement field within an element will be interpolated by a
linear distribution {Fig. 3.6). This approximation becomes increasingly accurate as more
elements are considered in the model. To implement this linear interpolation, lincar
shape functions will be introduced as

Ni(€) = (3.5)
1

sk
|
wry

+ W
ry

Ny(§) = (3.6)

M 1

The shape functions N, and N, are shown in Figs. 3.7a and b, respectively. The graph of
the shape function N, in Fig. 3.7a is obtained from Eq. 3.5 by noting that ¥, = 1 at
£= ~1,N, = 0at £ = 1,and M, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements g, and ¢, as

u=Ng + Ng, (3.7a)

Hynknown Winear

q2

|

by f )

q

1 @ 2 1 @ 2

FIGURE 3.6 Linear interpolation of the displacement field within an element.

i)




I {b)

4,
u=Ng + Ng,
q1

-—_...E

1 2
(<}

FIGURE 3.7 (a) Shape function My, (b) shape function N,, and (c) linear interpolalion using

N,and N,,

or, in matrix notation, as

u = Ng (3.7b)
where
N=[N,N] and q =g, q] (398

In these equations, q is referred to as the element displacement vector. It is readily veri
fied from Eq. 3.7a that u = qratnode 1, 4 = g, at node 2, and that u varies linearly

(Fig. 3.7¢).

It may be noted that the transformation from x 1o ¢ in Eq. 3.4 can be written in
terms of N, and N, as

X = Npux, + Nox, (39)

Comparing Egs. 3 7a and 3.9, we see that both the displacement u and the coordinate ¥
are interpolated within the element using the same shape functions N, and N,. This 8
referred to as the isoparametric formulation in the literature 1 A

Though linear shape functiong have been useqd iou

need to satisfy the following:

1. First derivatives must be finite within an element

Us across the

2. Displacements must be continug
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Example 3.1
Referring to Fig. E3.1, do the following:

{a) Evaluate £, N, and N, at point P,
(b} If g, = 0.003in. and g, = —0.005 in., determine the value of the displacement ¢ at
point P,

1 P 2
—_————————» X

x; =20in. x = 24in. Xy = 36in..

FIGURE E3.1

Solution
(a) Using Eg. 3.4, the £ coordinate of point P is given by
£ =5(24-20) -1
= -05
Now Eqgs. 3.5 and 3.6 vield

M =075 and N, =025

(b) Using Eq.3.7a, we get
u, = 0.75(0.003) + 0.25(-0.005)
= 0.001 in. n

The strain—displacement relation in Eq. 3.2 is

ool
dx
Upon using the chain rule of differentiation, we obtain
du d&
=—— 3.10
€ = % dr (3.10)
From the relation between x and £ in Eq. 3.4, we have
i3 -2 (3.11)
de X3 — X
Also, since
1- 1+¢
u=Ng + Nog; = 541 + 4
2 2
we have
—-g +
EE = ___QI_.._.EE (3_12)

d¢ 2
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Thus, Eq. 3.10 yields

= (ata) (313)

The Eq. 3.13 can be written as
€ = Bq (3.14)
where the (1 X 2) matrix B, called the efement Strain—displacement matrix, is given by
B 1 Zl-1 1) (.15)

Note: Use of linear shape functions results in a constant B matrix and, hence, in a
constant strain within the element. The stress, from Hooke's law, is

o = EBq (3.16)

The stress given by this equation is also constant within the element. For interpolation

purposes, however, the stress obtained from Eq. 3.16 can be considered to be the value
at the centroid of the element.

The expressions # = Nq, € = Bq, and o = EBq relate the displacement, strain
and stress, respectively, in terms of nodal values, These expressions will now be substi-

tuted into the potential-energy expression for the bar to obtain the element stiffness
and load matrices.

3.4 THE POTENTIAL-ENERGY APPROACH

The gencral expression for the potential energy given in Chapter 1 is

1
In=- TeAdx — T - T _
5 [U’ € ; u fAdx A u'Tdx 2 u; P (3.17)
The quantities o, e, 4, f, and T in Eq. 3.17 are discussed at the beginning of this
chapter. In the .last term, £ represents a force acting at point {, and u; is the x displace-
ment at that point. ’I:he Summation on gives the potential energy due to all point loads.
Since the continuum has been discretized into finite elements, the expression for

H=IE,EV[UIEAdx_-;[“rfAdx_E/uTde‘_EQ;E (3183)

The last_term in Eq. 3.18a assumes that point loads P, are applied at the nodes. This
ation simpler with

respect to notation and is also a
on 3.18a can be Written as

M= EU - 2 [u‘fAdx - fuTde -S> 0P (3.18b)

common modeling practice, Equati
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where

U, =%/UTEAd.X

is the element strain energy.

Element Stiffness Matrix

Consider the strain energy term

U, = E/aTeAdx (3.19)
2 Je
Substituting for o = EBgand € = Bq into Eq. 3.19 yields
U= %quBTEBqA dx (3.20a)
or
U, = %qT f [BTEBA dx]q (3.20b)

In the finite element model (Section 3.2), the cross-sectional area of element e, denot-
ed by A,, is constant. Also, B is a constant matrix. Further, the transformation from x

to £ in Eq. 3.4 yields

dx = 2 ; iy (321a)
or
£,
de = St (3.21b)

where —1 = £ =< 1,and €, = |x; — x;| is the length of the element.
The element strain energy U/, is now written as

Y A !
U, :%qr[Ae—ﬁE,BrB / dg:lq (3.22)
-1

where E, is Young’s modulus of element e. Noting that fv'] d¢ = 2 and substituting for
B from Eq. 3.15, we get

1 . 1 —1}
= = e -1 1 23
U =54 A,e‘,E,fg{ L 1 (3:23)
which results in
_1 TA,E,{ 1 —1}
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This equation is of the form
1
U, = Equeq (3.25)

where the element stiffness matrix k° is given by
EA|l 1 -1
= L3 € . 6
K ¢, Ll 1] (3.26)

We note here the similarity of the strain energy expression in Eq. 3.26 with the strain
energy in a simple spring, which is given as U = 2kQ*. Also, observe that k* is linearly
proportional to the product A E, and inversely proportional to the length £,.

Force Terms

The element body force term j; u"fA dx appearing in the total potential energy is con-
sidered first. Substituting u = Nyq, + N,g,, we have

f u'fAdx = Af f (Mg + Nogp) dx (3.27)
Recall that the body force f has units of force per unit volume. In the Eq. 3.27, A, and

[ are constant within the element and were consequently brought outside the integral.
This equation can be written as

Af le dx

Af / N, dx

The integrals_ of the shape functions described earlier can be readily evaluated by mak-
ing the substitution dx = (€,/2) d¢. Thus,

¢ 1 -
/.N,dx=*E 1—-—-§d§=f£
e 2 2 2

-1
€ "1+¢ ¢
N.odx = -2 = £
[ 2dx 2/_] > d{f—z (3.29)

Alternatively, L N, dx is simply the area under the N, curve as shown in Fig. 3.8, which

equals$- £, 1= £,/2. Simi NP
r(e]duce‘é to (-'/ Sl.l'llllal’l)'sf dex 2 fe'l = ee/z_The body t‘orce temlm Eq-3°28

[ W"fA dx = T (3.28)

¢

FIGURE3.8 Integralofa shape function,
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l WfAds = q'=2 f{} (3.30a)

which is of the form

f u'fA dx = q'f* (3.30b)

£

The right side of this equation is of the form Displacement X Force. Thus, the element
body force vector, f*, is identified as

) -

The element body force vector above has a simple physical explanation. Since A £, is the
volume of the element and f is the body force per umt volume, we see that A €ef gives
the total body force acting on the element. The factor in Eq. 3.31 tells us that this total
body force is equally distributed to the two nodes of lhe element.

The element traction force term [, u'T dx appearing in the total potential energy
is now considered. We have

/uTde = /(qul + Nyg, )T dx (3.32)

Since the traction force T is constant within the element, we have

T [ Nd
f wTdx=gq’ y (3.33)
: T | Nydx

-4

We have already shown that [, N, dx = [, Nodx = €,/2. Thus, Eq.3.33 is of the form

f uw'Tdx = q'T* (3.34)
where the element traction-force vector is given by
TE, {1
€= 335
= Te01 (335)

We can provide a physical explanation for this equation as was given for the element

body force vector.
At this stage, element matrices k%, £¢, and T* have been obtained. After we account

for the element convectivity (in Fig. 3.3, for example, q = [@;,Q]" for element 1,
= [Q,, 0s]" for element 2, etc.), the total potential energy in Eq. 3.18b can be written as
1 = ;Q'KQ ~ Q'F (3.36)

where K is the global stiffness matrix, F is the global load vector, and Q is the global
displacement vector. For example, in the finite element model in Fig. 3.2b,Kisa (5 X 5)

.
|
!
N
-
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matrix, and Q and F are each (5 X 1) vectors. Kiis obtained as follows: Using the element
connectivity information, the elements of each k° are placed in the appropriate loca-
tions in the larger K matrix, and overlapping elements are then summed. The F vector
is similarly assembled. This process of assembling K and F from element stiffness and
force matrices is discussed in detail in Section 3.6.

3.5 THE GALERKIN APPROACH _
Following the concepts introduced in Chapter 1, we introduce a virtual displacement field
¢ = é(x) (3.37)

and associated virtual strain

e(¢) = % (3.38)

where ¢ is an arbitrary or virtual displacement consistent with the boundary conditions.

Galerkin’s variational form, given in Eq. 1.43, for the one-dimensional problem consid-
ered here, is

1 oTe(p)Adx — l S fAdx - l T dx - 2 P =0 (3.39)

This equation should hold for every ¢ consistent with the boundary conditions. The first

term represents the internal virtual work, while the load terms represent the external
virtual work.,

On the discretized region, Eq.3.3%a becomes

T — T
p) [e Ee(¢)ads - [rbfAdx -2 j;qum ~S¢P=0 (339)
Note that € is the strain due to the actual loads in i i i
e that ¢ : the probl al
strain. Similar to the interpolation steps in Eqgs. 3.7, 3.{’4, an?in;,. ;h:i fe(x(;)rt::sa e
¢ = Ng
€(¢) = By (340)

where % = [, Y] " represents the arbitrary nodal d
‘ ; ald
global virtual displacements at the nodes ge represéﬁl:dcebr:ems of elemene. Also 0

¥ = [dﬂl,!,&z,...,l,bN]T (3.41)

Element Stiffness

Consider the first term, representing intern

Eq. 3.40 into Eq. 3.39b, and noting that ¢ = g - "ok in Eq. 3.39b. Substituting

Bq, we get

[ e'Ee(¢)A dx = f 9'BTEBy Adx (3.42)
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In the finite element model (Section 3.2), the cross-sectional area of element e, denot-
ed by A,, is constant. Also, B is a constant matrix. Further, dx = (¢,/2) d¢. Thus,

¢ !
/ €' Ee(dp)Adx = qT,:EEA,_,EBTB / d§:|d; (3.43a)
[4 -1
= qTk*yr (3.43b)
= ¢'k'q
where k* is the (symmetric) element stiffness matrix given by
k= E,ALB'B (3.44)
Substituting B from Eq. 3.15, we have
EA T 1 1
k' = .
7 {_ . 1] (3.45)

Force Terms

Consider the second term in Eq. 3.39a, representing the virtual work done by the body
force in an element. Using ¢ = N and dx = €,/2 d;, and noting that the body force in
the element is assumed constant, we have

1
f ¢ FA dx = f 1 :{:TNTfAe%dg (3.46a)
S (3.46b)

1
f N, de
Cans)

2 )
f N, d¢
-1

is called the element body force vector. Substituting for M = (1 — §)/2 and
1

N, = (1 + £)/2, we obtain fhl N, d¢ = 1. Alternatively, f_Il N, d¢ is the area under the
N, curve =%>< 2x1= landf_Ilde§= 1. Thus,

where

I (3.47a)

Al
= ‘“T'f{}} {3.47b)
The element traction term then reduces to
f &'Tdx = "I (3.48)

where the element traction-force vector is given by

TE, [1
T = T{l} (3.49)
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At this stage, the element matrices k°, f*, and T* have been obtained. After accounting
for the element connectivity (in Fig. 3.3, for example, = [, ,]" for element 1,
W = [¥,, ¥,]" for element 2, etc.), the variational form

Sukq- DT - ST - S ¥R =0 (3.50)
can be written as

Y(KQ~F) =0 (351)

which should hold for every ¥ consistent with the boundary conditions. Methods for han-
dling boundary conditions are discussed shortly. The global stiffness matrix K is assem-
bled from element matrices k° using element connectivity information. Likewise, F is

assembled from element matrices f* and T°. This assembly is discussed in detail in the
next section.

3.6 ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX AND LOAD VECTOR

We noted earlier that the total potential energy written in the form

—_ -]; T g
=259k - ;qTf - quT’ - 2 PO,
can be written in the form
I = }Q'KQ - QF

bfr taking element connectivity inFo account. This step involves assembling K and F from
element stlffncs:v) and force .matnce& The assembly of the structural stiffness matrix K
from element stiffness matrices k* will first be shown here

Referring to the finite element model in F i '
gy in, say, element 3. We have 1n Fig. 3.2b, let us consider the strain ener-

Us = 14"k} (3.523)
or, substituting for k>,
1 E.A -
U. = ZgT 3433 1 1
) e [_ . 1].] (3.52b)
For element 3, we have q = [©,, Q.. Thus, we can write U, as
_1 - '
U?i‘i[QlaQ:»Q}stQs] 0 0 0 0 0] "Q Y
1
A, -E
0D g = 3A3 3
¢, 2, 01} Qs \ (35 )
. 83 €3 0 4
L9 0 0 0 0\ Os )
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From the previous equations, we see that elements of the matrix k® occupy the third and
fourth rows and columns of the K matrix. Consequently, when adding element-strain
energies, the elements of k° are placed in the appropriate locations of the global K ma-
trix, based on the element connectivity; overlapping elements are simply added. We can
denote this assembly symbolicaily as

K Sk (3.54a)

Similarly, the global load vector F is assembled from element-force vectors and
point loads as

F—> (F+T)+P (3.54b)

The Galerkin approach also gives us the same assembly procedure. An example is now
given to illustrate this assembly procedure in detail. In actual computation, K is stored
in banded or skyline form to take advantage of symmetry and sparsity. This aspect is
discussed in Section 3.7 and in greater detail in Chapter 4.

Example 3.2

Consider the bar as shown in Fig. E3.2. For each clement i, A; and £, are the cross-sectional
area and length, respectively. Each element { is subjected to a traction force 7; per unit
length and a body force f per unit volume. The units of 7;, f, A;, and so on are assumed to
be consistent. The Young’s modulus of the maternial is E. A concentrated load P is applied
at node 2. The structural stiffness matrix and nodal load vector will now be assembled.

LSS AL A A
1

1r,4 ' AL

-
———
[ o%]

{

\
7z IPZ ALy
| 13
T
Ty j An Ly
|
1
T Ta
| TS E, f = constant
X

FIGURE E3.2
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The element stiffness matrix for each element  is obtained from Eq. 3.26 as

EA.-[l —1]
¢ -1 1

The element connectivity table is the following:

[k =

Element

Bt B
E- i S
th fa L M

The element stiffness matrices can be “cxpanded” using the connectivity table and then
summed {or assembled) to obtain the structural stiffness matrix as follows:*

-1

0

1 000 0 0 000
-1 1000 0 1 -100
EA A
K==21 0 0000+ETZ-0‘1 10 0
1o 0000 10 0o 00 0
6 0000 0 0 000
00 0 00 000 0 0
00 0 00 000 0 o0
EA
+“€—300 1*—10+—£§3{}00 0 0
100 -1 10 ‘looo 1 -1
00 0 00 000 -1 1
which gives
-4 4 0 _
{ ¢, 0 0
Al A-] Az A
-0 |+ _fh
fl (1‘31 fz) fz 0 0
K=E| 0 A (é_2+:‘}3 A .
¢ £, £, e
0 0 L (A, A A
£ &8, ¢,
0 0 0 4 A
— ¢ "34'_‘

*This “expansion” of element stiffness
purposes and is never explicitly carried out in
assembled directly from k*

matrices as shown in
. the computer, sj
using the connectivity table
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The global load vector is assembled as

[ A6f 4T '
2 2
Af &7, Ayl £,T,
(llf+_¥)+(22f+£) Pz
2 2 2 2
Af £,1; A;é £,T
F= ( “f+—?~3)+(—-———”f+~i—3) F+ 10 ¢
2 2 2 2
Al £T AL £.7.
(7). (25| |,
2 2 2 2
Adsf 4T
= 0
2 2

3.7 PROPERTIES OFK

Several important comments will now be made regarding the global stiffness matrix for
the linear one-dimensional problem discussed earlier:

1. The dimension of the global stiffness Kis (N X N), where N is the number of
nodes. This follows from the fact that each node has only one degree of freedom.

2. K is symmetric.

3. K is a banded matrix. That is, all elements outside of the band are zero. This can
be seen in Example 3.2, just considered. In this example, K can be compactly
represented in banded form as

4, _A
¢ &
A A A
e, g &
_ A, A A;
Kionges = £ 6 + 2 A
4 A _Ad
ea ‘64 84
Ay
— 0
; e

Note that Ky,4.q 15 of dimension [N X NBW], where NBW is the haif-bandwidth. In
many one-dimensional problems such as the example just considered, the connectivity
of element i is #, i + 1. In such cases, the banded matrix has only two columns
(NBW = 2). In two and three dimensions, the direct formation of K in banded or skyline
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NBW =4

»
=

(a)

-
[N ]
N
L
th @

(b)
FIGURE 3.9 Node numbering and its effect on the half-bandwidth.

form from the element matrices involves some bookkeeping. This is discussed in detail
at the end of Chapter 4. The reader should verify the following general formula for the
half-bandwidth:

NBW = max(DLfferencc between dof numbers) i1 (355)

connecting an element

For example, consider a four-element model of a bar that is numbered as shown in
Fig. 3.9a. Using Eq. 3.55, we have

NBW = max(4 - 1,5-4,5-33 -2} +1=4

The numbering scheme in Fig. 3.9a is bad since K is almost “filled up” and consequently
requires more computer storage and computation. Figure 3.9b shows the optimum
numbering for minimum NBW.

Now the potential energy or Galerkin’s approach has to be applied, noting the
boundary conditions of the problem, to yield the finite element (equilibrium) equa-
tions. Solution of these equations yields the global displacement vector Q. The stresses

and reaction forces can then be recovered. These steps will now be discussed in the
next section.

3.8 THE FINITE ELEMENT EQUATIONS; TREATMENT OF B
CONDITIONS OUNDARY

Finite element equations are now develo

1 ped after a consistent treatment of the bound-
ary conditions,

Types of Boundary Conditions

After u_sing a discretization scheme to mode| the continuum, we have obtained an
expression for the total potential energy in the body as ,
= loy
I1=3Q'KQ - Q"F
where K is the structural stiffness matrix, F
displacement vector. As discussed previous}

is the global load vector, and Q is the global
,K and F are assembled from element stiff-
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The minimum potential-energy theorem (Chapter 1) is now invoked. This theorem
1s stated as follows: Of all possible displacements that satisfy the boundary conditions of
a structural system, those corresponding to equilibrium configurations make the total po-
tential energy assume a minimum valuse. Consequently, the equations of equilibrium can
be obtained by minimizing, with respect to @, the potential energy I1 = %QTKQ - Q'F
subject to boundary conditions. Boundary conditions are usually of the type

Qp, = 01,Qp, = 2., Qp, = 2, (3.56)

That is, the displacements along dofs py, p,,..., p, are specified to be equal to g,
ay, ..., a,, respectively. In other words, there are r number of supports in the structure,
with each support node given a specified displacement. For example, consider the bar
in Fig. 3.2b. There is only one boundary condition in this problem, Q, = 0.

It is noted here that the treatment of boundary conditions in this section is applicable
to two- and three-dimensional problems as well, For this reason, the term dof is used
kere instead of node, since a two-dimensional stress problem will have two degrees of
freedom per node. The steps described in this section will be used in all subsequent chap-
ters. Furthermore, a Galerkin-based argument leads to the same steps for handling
boundary conditions as the energy approach used subsequently.

There are multipoint constraints of the type

BlQpl + BZsz = BU (357)

where 8, B, and B, are known constants. These types of boundary conditions are used
in modeling inclined roller supports, rigid connections, or shrink fits.

It should be emphasized that improper specification of boundary conditions can
lead to erroneous results. Boundary conditions eliminate the possibility of the structure
moving as a rigid body. Further, boundary conditions should accurately model the phys-
ical system. Two approaches will now be discussed for handling specified displacement
boundary conditions of the type given in Eq. 3.56: the elimination approach and the
penalty approach. For multipoint constraints in Eq. 3.57, only the penalty approach will
be given, because it is simpler to implement.

Elimination Approach

To illustrate the basic idea, consider the single boundary condition Q; = a,. The equi-
librium equations are obtained by minimizing IT with respect to Q, subject to the boundary
condition @, = a,. For an N — dof structure, we have

Q= [Qlans“'!QN]T
F=[R.F. . .F]
The global stiffness matrix is of the form
J{(Il KIZ Ki N
K = ‘K'Zl Ky 0 Ky (3.58)

Kny K.vz KNN
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Note that K is a symmetric matrix. The potential energy I1 = 1Q'KQ — Q'Fcanbe
written in expanded form as

=3 (Q1K11Q1 + Q1K + -+ QK ROy
+ QK0 + KOy + -+ + Ko w0y
- (3.59)

+ OnKy Q1 + QnEnoQr + - + QuKnnQy)
—(QF, + OF + -+ QyFy)

If we now substitute the boundary condition Q; = a, into this expression for [1, we obtain

Il = %(“1K11“1 + 0 K0+ + a K vQy
+ K80 + QK00 + - + QKo Q0

(3.60)
+ OuKniay + OnKnaQs + - + O KxyOn)
—(aF, + QF + - + QuFy)

Note that the displacement Q; has been eliminated in the potential-energy expression.
Consequently, the requirement that [T take on a minimum value implies that

dll _
a0, -

We thus obtain, from Eqgs. 3.60 and 3.61,

i=23,... N (3.61)

KyoQr + KnQy + - + K, 00y = F, — Kja
KOy + K305 + - + K3~Q~r = Fx K3|ﬂ|

- (3.62)
Ky + KysQy + - + KNNQN = Fy ~ Ky
These finite element equations can be expressed in matrix form as
Ez: 1;23 o K [ O F, - Ka
:32 o K | g, = B - Kya (3.63)
K. e : :
n2 Ky Kuv ]| Oy v —~ Ky

We now observe thatthe (N - 1 x § - 1)
ing or eliminating the first row angd colum
(N X N) stiffness matrix. Equation 3.63 may

stiffness matrix is obtained simply by delet-

n (in view of Q, = 4,) from the original
be denoted as

KQ=F (3.64)
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where K is a reduced stiffness matrix obtained by eliminating the row and column
corresponding to the specified or “support” dof Equation 3.64 can be solved for the
displacement vector Q using Gaussian elimination. Note that the reduced K matrix is
nonsingular, provided the boundary conditions have been specified properly; the orig-
inal K matrix, on the other hand, is a singular matrix. Once Q has been determined, the
element stress can be evaluated using Eq. 3.16: 0 = EBq, where q for each element is
extracted from Q using element connectivity information.

Assume that displacements and stresses have been determined. It is now necessary
to calculate the reaction force R, at the support. This reaction force can be obtained
from the finite element equation (or equilibrium equation) for node 1:

KnQi + KO+ + KinOv=F + Ry (3.65)

Here, Qy, Q,,...,0y are known. F,, which equals the load applied at the support
(if any), is also known. Consequently, the reaction force at the node that maintains

equilibrivm, is
Ry =Ky + KppQe + -+ KjyOy — R (3.66)

Note that the elements K;,, K.,..., K; 5, which form the first row of K, need to be
stored separately. This is because K in Eq. 3.64 is obtained by deleting this row and col-

umn from the original K.
The modifications to K and F discussed earlier are also derivable using Galerkin’s

variational formulation. We have Eq. 3.51 in which
YHKQ - F) =0 (3.67)

for every ¥ consistent with the boundary conditions of the problem. Specifically, con-
sider the constraint

O =a (3.68)

Then, we require

¥, =0 (3.69)

Choosing virtual displacements ¥ = [0,1,0,...,0], ¥ =([0,0, 1: 0,... ,-O]T, ens
¥ =[0,0,...,0,1 |7, and substituting each of these into Eq. 3.67, we obtain precisely the
equilibrium equations given in Eqgs. 3.63. 3 .

The preceding discussion addressed the boundary condition _Ql = a,.This procedure
can readily be generalized to handle multiple boundary conditions. 'I.‘he general proce-
dure is summarized subsequently. Again, this procedure is also applicable to two- and

three-dimensional problems.
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Summary: Elimination Approach

Consider the boundary conditions

Qp = 21,0, =3y...,Qp, = 3,

and force vector F. These rows will be used subsequently.

Step 2. Delete the p,th row and column, the p,th row and column, ..., and the
prth row and column from the K matrix. The resulting stiffness matrix
K'is of dimension (N — r, N — r). Similarly, the corresponding load vec-
tor Fis of dimension (N — r, 1). Modify each load component as

‘ Step 1. Store the pyth, p,th,..., and p,th rows of the global stiffness matrix K

Fi=Fi= (Kip21 + Kipay + - + K, pa,) (3.70)
for each dof j that is not a support. Solve
KQ=F
for the displacement vector Q.

- Step 3. For each elemen-t, extract the element displacement vector q from
the Q vector, using element connectivity, and determine element
stresses.

Step 4. Using the information stored in step 1, evaluate the reaction forces at
each support dof from
Ro, = Kp1Qy + Ko2Q; + - + KonQn — F,
R = K + N ‘
p,no, B %t KoQy (3.71)
SR
Pr pr1o1 + KP;ZQZ + + KprNQN - Fpr
R
Example 3.3

Consider the thin (steel) plate in F

‘ g E3.3a, Th
Young's modulus £ = 30 x 106 Psi, and weigh .
self-weight, the plate is subjecte

Plate has a uniform thickness ? = 11n
! veight density p = (.2836 Ib/in.". In addition to it
102 point load P = 100 I 41 its midpoint.
(a) Model the plate with two finite elements.
(b) Write down ex ressi i

force vectors, Pressions for the element stiffness matrices and element body

+S0lve for the global displacement vector Q.
each elemeny,

(f) Determine the reactiog force at the support

{¢) Evaluate the stresses in
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[e—s25i0—]

— '////////////{//////// /IS
1 ‘lQ
| 1

F

12in.

b ¥

2 le

12in. @

3 le
X X
3 in: M—3.75 in.—»
(a) (b)
FIGURE E3.3

Solution
(a) Using two elements, each of 12 in. in length, we obtain the finite element model in
Fig. E3.3b. Nodes and elements are numbered as shown. Note that the area at the
midpoint of the plate in Fig. E3.3a is 4.5in.”. Consequently, the average area of
element 1 is A; = (6 + 4.5)/2 = 5.25in.?, and the average area of clement 2 is
A; = (45 + 3)/2 = 3.75in.2. The boundary condition for this model is Q; = 0.
(b) From Eq. 3.26, we can write down expressions for the element stiffness matrices of

the two elements as
1 2 < Global dof
l‘1_3(}!)(1(]5)(5.25 1 -1]1
12 -1 12
and
2 3
l‘2_3.(:»><10*°><3.75 1 ~1|2
- 12 -1 1]3
Using Eq. 3.31, the element body force vectors are
Global dof

|
p o 528X 12X 0.2836{1} 1

2 1 2

and
p - 375 % 12 x 02836 |1 2
- 2 1 3
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(c) The global stiffness matrix K is assembled from k' and k° as

1 2 3

525 =525 O 1
-525 900 -375(2

0 =375 375])3

The externally applied global load vector F is assembied from f', [*, and the point load
P = 100 1b; as

_ 30X 105
12

K

89334
F=¢153144 + 100
6.3810
(d) In the elimination approach, the stiffness matrix K is obtained by deleting rows and
columns corresponding to fixed dofs. In this problem, dof 1 is fixed. Thus, K is ob-

tainefi by delf:,ting the first row and column of the original K. Also. F is obtained by
deleting the first component of the original F. The resulting equations are

2 3

30 x10°1 900 -375|{Q,] [1153144
12 =375 375 (1o, T 1 63810
Solution of these equations yields

Q> = 09272 X 107%in,
O; = 09953 x 105 in.
Thus, © = [0,0.9272 X 107, 09953 x 10°5]" i,
(e} Using Eqs. 3.15 and 3.16, we obtain the stress in each element:

o =30x10°x 471 14°
a1 1] 0.9272 x 10°°
= 23.18 psi

and

72= 30 X 10° x §[-1 1]{3332 g ig}

= 170 psi

{f) The reaction force R, at node | is obtained from Eq. 3.71. This calculation requires

the first row of K from part {c). Al
* 80, fl'()]'n . N , o ed
load (due 10 the self-weight) at note 1 i F Trz;;;%;ge&]:: the extenally 00t

R = 30x10f s
' D [525 =525 q)(o ~8.9334
0.9272 x 10°°
0.9953 x 10 *
= =130.61b
Evid ion i
Plalz:nﬂy’ the reaction is ¢qual and opposite 1o the total downward load on ‘h:
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Penalty Approach

A second approach for handling boundary conditions will now be discussed. This ap-
proach is easy to inplement in a computer program and retains its simplicity even when
considering general boundary conditions as given in Eq. 3,57, Specified displacement
boundary conditions will first be discussed. The method will then be shown to apply to
problems with multipoint constraints.

Specified displacement boundary conditions. Consider the boundary condition
O =a

where a, is a known specified displacement along dof 1 of the support. The penalty
approach for handling this boundary condition is now presented.

A spring with a large stiffness C is used to model the support. The magnitude of
C is discussed subsequently. In this case, one end of the spring is displaced by an amount
a,, as shown in Fig, 3.10, The displacement Q, along dof 1 will be approximately equal
to a,, owing to the relatively small resistance offered by the structure. Consequently, the
net extension of the spring is equal to (Q, — a;). The strain energy in the spring equals

U, = :C(Q1 ~ &) (3.72)
This strain energy contributes to the total potential energy. As a result,
Iy = %QTKQ +3C(Q) — @) - Q'F (3.73)

The minimization of Il can be carried out by setting 8[1,/8Q; = 0,i = 1,2,...,N.The
resulting finite element equations are

FIGURE 3.10 The penalty approach, where & spring with s large stiffness is used to model
the boundary condition @, = a,.
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(Kn+C) K - Ky || Q F+ Ca,
Ko R e k& (3.74)
Ky Kny - Kyw || Qw Fy

Here, we see that the only modifications to handle Q, = a, are that a large number ¢
gets added on to the first diagonat element of K and that Ca, gets added on to F,. So-
lution of Eqs. 3.74 yields the displacement vector Q.

The reaction force at node 1 equals the force exerted by the spring on the struc-
ture. Since the net extension of the spring is (@, ~ «,). and the spring stiffness is C, the
reaction force is given by

Ry =-C(Q) — a}) (3.75)

The modifications to K and F given in Eqs. 3.74 are also derivable using Galerkin's
approach. Consider the boundary condition @, = a,. To handle this, we introduce a
spring with a large stiffness C with the support given a displacement equal to a, (Fig. 3.10).
The virtual work done by the spring as a result of an arbitrary displacement ¥ is

8W, = virtual displacement X force in Spring
or
W, = ¥,C(Q, - a;) (376)
Thus, the variational form is

YKQ - F) + ¥,C(Q; - a)) = 0 377
whichshouldbevaljdforany"lf.Choosmg"I' =[1,0,...,0]",% = [0,1,0,...,0]%... ¥

— T . . .
= [0,...,0,1]" and substituting each in turn into Eq.3.77, we obtain precisely the modi-
ure i$ now summarized as follows:

fications shown in Eqgs. 3.74. The general proced

Summary: Penalty Approach
Consider the boundary conditions

Qp, =a1stz =ay...,0

' Pe = &
Step 1. gﬂoglﬁ; me structural stiffness matrix K by adding a large number Cto
i f?;cthg Io?:: .0|1;Eh, Poth, ..., and p,th diagonal elements of K. Also, mod-
global load vector F by adding Ca, to Fou Cayto F, and Ca,
1 FLAA

to £,,. Solve KQ = F for the disp|a
. ce
modified stiffness and load mat:)ices. ment Q. where K and F are the

Step 2. For each element, extract the ef
vector, using element connecti
Step 3. Evaluate ther

ement displacement vector q from the Q

. vity, and determine the element stresses-
eaction force at each Support from

Ro=-CQ-a) =1, (3.78)
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It should be noted that the penalty approach presented herein is an approximate

approach. The accuracy of the solution, particularly the reaction forces, depends on the
choice of C.

Choice of C. Let us expand the first equation in Eq. 3.74. We have

(Kiy +C)YO + K0y + -+ KipQy = F, + Cay (3.79a)
Upon dividing by C, we get
K K, K F
(% + 1)91 Lt O =Tt (3.79b)

From this equation, we see that if C is chosen large enough, then Q; = a,. Specifically,
we see that if C is large compared to the stiffness coefficients X, K1,..., Ky, then
0, =~ a,.Note that F, is a load applied at the support (if any), and that F,/C is general-
ly of small magnitude.

A simple scheme suggests itself for choosing the magnitude of C:
€ = max|K| x 10*

for
1l=i=<N (3.80)
1=sj=N

The choice of 10* has been found to be satisfactory on most computers, The reader may
wish to choose a sample problem and experiment with this (using, say, 10° or 10°) to
check whether the reaction forces differ by much.

Example 3.4
Consider the bar shown in Fig. E3.4. An axial load P = 200 X 10° N is applied as shown.
Using the penalty approach for handling boundary conditions, do the following:

(2) Determine the nodal displacements.
{b) Determine the stress in each material.
(c) Determine the reaction forces.

|-——300 mm—r+——— 400 mm ——
/
2 ;
Z ? . x
- - > s ——
1 2 2 K17
2 @ Z
4 ©
Aluminum Steel
Ay = 2400 mm? A,= 600 mm?

E;=70 X 10°Nim*  E;=200 X 10° Nya?

FIGURE E3.4




72 Chapter 3 One-Dimensional Problems

Solution

(a) The element stiffness matrices are

1 2 < Giobal dof

L _T0Xx10°PX 2400 1 -1
k= 300 -1 1
and
2 3
oo 20010 x60f 1 -1
B 400 -1 1
The structural stiffness matrix that is assembled from k' and k2 is
1 2 3
056 —-0.56 0

K =105 -056 08 -030
0 -030 030

The global load vector is

F=[0, 200 x 10}, OJf

Now dofs 1 and 3 are fixed. When using
ber C is added to the first
Eq. 3.80, we get

C = [0.86 x 10°] x 10
Thus, the modified stiffness matrix is

8600.56 —0.56 0
K=10° -056 o086 -0.30
0 -030 860030

The finite element equations are given by

860056 -056 ¢ (g, 0

10° -056 08 g3 @: p =14 200 x 10°
0 -030 860030 o, 0

which yields the solution

Q= [15.1432 X 10, 023257, 81127 1077 mm

{b)} The element stresses (Eq.3.16) are

300 0.23257
= 54.27MP3

o =70 x 1¢* x L [-1 1]{15.1432 X 10‘6}

the penalty approach, therefore, a large nunr
and third diagonal elements of K. Choosing C based o8
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where 1 MPa = 10° N/m* = 1 N/mm?. Also,
1 {~1 1]f023257
=200 X 10° X —
72 = 200X 10° X 255 {8.1127 X 10*}
= —116.29 MPa
{c} The reaction forces are cbtained from Eq.3.78 as
R, = -CQ, )
= —[0.86 X 10'°] X 15.1432 X 10°°
= —13023 X 10°

Ry=-CQ,
— —[0.86 X 10'] x 8.1127 X 10
= —69.77 X 1®°N [ ]

Example 3.5
In Fig. E3.5a,aload P = 60 X 10°N is applied as shown. Determine the displacement field,
stress, and support reactions in the body. Take E = 20 X 10°N/mm’.

1.2 mm
2 N
250"{“ — Wall
%>| \ i P By B X
«——150 mm 150 mm —— Z
(a)
=
%>. —> P $ |—— %
-1
1 @ @ 3
1.2 mm
(&)
FIGURE E3.5

Seolntion In this problem, we should first determine whether contact occurs between the bar
and the wall, B. To do this, assume that the wall does not exist. Then, the solution to the
problem can be verified to be

Qp = 1.8mm

where Q is the displacement of point B'. From this result, we see that contact does oocur. The
problem has to be re-solved, since the boundary conditions are now differeat The displacement
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at B' is specified to be 1.2 mm. Consider the two-element finite element model in Fig. 3.5b.
The boundary conditions are Q; = 0and @; = 1.2 mm. The structural stiffness matrix K is

0x10Px2se] . LY
0 -1 1

and the global load vector F is
F=[0, 60x10% 0]

In the penalty approach, the boundary conditicns ¢, = 0 and @, = 1.2 imply the following
modifications: A large number C chosen here as C = (2/3) X 10'°, is added on to the 1st
and 3rd diagonal elements of K, Also, the number (C x 1.2) gets added on to the 3rd
component of F, Thus, the modified equations are

o 20001 -1 0 o} 0
10 .
3 -1 2z -1 ;¢ =4 60.0 X 10
0 -1 20001 || Qs 80.0 x 107

The sclution is
Q = [7.49985 x 1077, 1.500045, 1.200015]Tmm

The element stresses are

o = 200 x 16° x L[ 1]{7‘49985 X m—i} |

150 1.500045
= 199.996 MPa
0‘2=200x103><—!~[-_1 1]) 1.500045
150 1.200015 :
= —40.004 MPa
The reaction forces are
Ry = —=C X 749985 x 10°°

It

—4999% X 10°N
and H

Ry

Il

~C X (1200015 - 12)
= -10.001 X 10°N
The results obtained from the penalty approach have a small approximation error due 10

the flexibility of the support introduced. In fact, the reader may verify that the elimination

approach for handling boundary conditi i ' :
and R, = 100 x 13@ N Ty conditions yields the exact reactions, Ry = -50.0 X 10‘:1

Multipoint Constraints

In problems where, for example, inclined rolle

IS or rigid connections are to be modeled.

the boundary conditions take the form i

‘G]‘QP] + BZsz = BD
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where 8;, 81, and B, are known constants. Such boundary conditions are referred to as
multipoint constraints in the literature. The penalty approach will now be shown to apply

to this type of boundary condition.
Consider the modified total potential-energy expression
My = ;Q"KQ + %C(ﬁIQpl + B2y, — Bo)® — Q'F (3.81)

where C is a large number. Since C is large, Iy takes on a minimum value only when
(B1Q2,, + B:0Qp, — Bo)isvery small—thatis, when 8,0, + B2, ~ By, as desired. Set-
ting all,,/0Q; = 0,i = 1,..., N yields the modified stiffness and force matrices. These
modifications are given as

Kom KPle] N I:Kmpx +CBE Kyt Cﬁlﬁz] (3.82)
KPzPl KP:P: szpl + CB].BZ szpz + CB%
and
F, F, + Cﬁuﬁl}
13— 3.83
{sz} {sz + CPoBs ¢8)

If we consider the equilibrium equations 311y,/8Q, = 0andally/8Q,, = 0and rearrange
these in the form

> K, 0 = F, = R, and ;‘,K,,ﬂ ,—~F, =R,
!

we obtain the reaction forces R, and R,,,, which are the reaction components along dofs
p, and p,, respectively, as

RPI = __‘?_[%C(Blgm + ﬁZsz - BO)Z] (3.843)
4]
and
R,, = -gg—"[%c (B1Q,, + B:Qp, — Bo)’] (3.84b)
2
Upon simplification, Eqs. 3.84 yield
Rpl = _Cﬁl(ﬁIQp, + BZQm - Bl}) (3.853)
and
R,, = —CBy(B:1Q,, + B2y, — Bo) (3.85b)

We see that the penalty approach allows us to handle multipoint constraints and is
again easy to implement in a computer program. A nonphysical argument is used here to
arrive at the modified potential energy in Eq. 3.81. Multipoint constraints are the most gen-
eral types of boundary conditions, from which other types can be treated as special cases.

Example 3.6
Consider the structure shown in Fig. E3.6a. A rigid bar of negligible mass, pinned at one end,
is supported by a steel rod and an alumisium rod.Aload P = 30 x 10° N is applied as shown.
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{a) Model the structure using two finite elements. What are the boundary conditions for
your model?

(b) Develop the modified stiffness matrix and modified load vector. Solve the equations
for Q. Then determine element stresses.

Steel i Aluminum
A = 1200 mm? 3 A = 900 mm?
E = 200 % 10° N/mm? @ E =170 x 10° Ntmm?
£ =45m £ =3m
1
§ [ .)5

1
szm——-«——sm z
X P

(a) {b)
FIGURE E3.6
Solution
(a) Ti';; problem is modeled using two elements as shown in the following connectivity
table:

CONNECTIVITY TABLE
Element no. Node 1 Node 2
1 3 1
2 4

The boundary conditions at nodes 3 and 4 i
. = are obvious: 0, = = {). Now,
since the rigid bar has to remain straight Jous: 0 = 0 and 9, = 0. Mo

e Q1 @y, and Q; are related as shown in
Fig. E3.6b. The multipoint constraints due to the rigid bar éonfiguration are given by

0, - 03330, =0
Q; - 08330, = 0
(b) First, the element stiffness matrices are given by

1 3 1

P 200X ‘:;}on 1200[ 1 —1] _ 0| B3 -s333) 3
-1 1 -5333 5333 |1

and

4 2
70x1(}‘><900|: _
k= ) L 1} 21 -217 4
3000 - =10}
Lo [~21 21}2
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The global stiffness matrix K is
1 2 3 4 5
5333 0 -5333 o0 o071
0 21 0 -21 0|2
K=10 -5333 0 5333 o0 0{3
0 -21 0 21 0]4
0 0 0 0 0]S5

The K matrix is modified as follows: a number C = [53.33 X 10°] x 10, large in
comparison to the stiffness values, is chosen. Since @5 = @, = 0, C is added on to
the (3, 3) and (4, 4) locations of K. Next, multipoint constraints given in part (a) are
considered, For the first constraint, &, — 0.333Q; = 0,wenote that 8, = 0, 8, = 1,
and B, = —0.333. The addition to the stiffness matrix is obtained from Eqs. 3.82 as

1 5
CB CBB:|_ 107 5333 -17.77 |1
CB.8, CB} -17.77 5925926 | 5

The force addition is zero since 8, = 0. Similarly, the consideration of the second
multipoint constraint @, — (.833Q; = 0 yields the stiffness addition

2 §
107 53.33' —4444 |2
—44.44 37037037 | §
On addition of all the preceding stiffnesses, we obtain the final modified equations as
533386.7 0 —53.33 0 =177771.7 || Oy 0
0 5333543 0 =210 —4444444 |1 @, ]
103 —53.33 0 533386.7 1] 0 0y 7= 0
0 -21.0 0 5333543 0 Q. 0
1771177 —444444 .4 0 0 429629.6 Qs 30 x 10°

The solution, obtained from a computer program that solves matrix equations, such
as the one given in Chapter 2,is

Q = [0486 1215 4.85 X 105 4.78 x 10°° 1.457] mm
The element stresses are now recovered from Eqgs. 3.15 and 3.16 as

200 X 10‘~‘[_1 1 485 % 10”5
717 T 4500 0.486

= 21.60 MPa
and

a, = 2835MPa |

In this problem, we note that the introduction of the multipoint constraints by the
penalty approach makes all the diagonal stiffness values large. Thus, the results become
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sensitive to errors in the calculations. Double-precision arithmetic on the computer is rec-
ommended when there are several multipoint constraints.

3.9 QUADRATIC SHAPE FUNCTIONS

| So far, the unknown displacement field was interpolated by linear shape functions within
i each element. In some problems, however, use of quadratic interpolation leads to far
more accurate results. In this section, quadratic shape functions will be introduced, and
the corresponding element stiffness matrix and load vectors will be derived. The reader
| should note that the basic procedure is the same as that used in the linear one-dimensional
| element earlier.

Consider a typical three-node quadratic element, as shown in Fig. 3.11a, In
the local numbering scheme, the left node will be numbered 1, the right node 2, and the
midpoint 3. Node 3 has been introduced for the purposes of passing a quadratic fit and
is called an internal node. The notation x; = x-coordinate of node i, i = 1, 2,3, is used.

Further, q = [f?l y G Gslh th:re 1, 42, and g; are the displacements of nodes 1,2,
anc_i 3, .respectlvely. The x-coordinate system is mapped onto a ¢-coordinate system,
which is given by the transformation

— _ 2(I - X3)
£= " (3.86)

From Eq. 3.86, we see that ¢ = —1,0,and +1

‘ : at nodes 1,3, ig. 3. .
Now, in £-coordinates, guadratic shape functio e 2 (Fig 3.11b)

ns Ny, Ny, and N, will be introduced as

Ni(&) = —3£(1 - ¢) (3.87a)
N(€) = 3¢(1 + ¢) (3.87b)
N =(1+g(1-¢ (3.87)

The shape function ¥, is equal to unit

: y at node 1 imi
N, equals unity at node 2 and equals and zero at nodes 2 and 3. Similatly

Zero at the other two nodes: N, equals unity at
node 3 and equals zero at nodes 1 and 2.The shape functions N, N, .an:j A(i arc graphed

in Fig. 3.12. The expressions for these sha i
r e fu i i -
tion. For exampie, siee ut- o) Pl End ;::t;ogsaian be written down by inspe¢

contain the product &1 ~ ). That is, M, is of the form € = 1. we know that N mes

M= (1 - ¢) (3.88)
1@;“——___:—___———_—_-_:2 ! 3 2
— i m——
— =
. £=0 |
(a) = §=

(b)

FIGURE 3.11 Quadratic etemeny in x- and £-coordinat
- es.
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Nl N?.
m=-tea-o ] [ m=1ea+9
11 i ]
| I
1 1
§ I
t |
1 ' ¢ Ly £
1 | 3 2 1 3 2
=-1 £=0 £=+1
Ny
| M= +e)3a-9
F
1
- &
1 3 2
FIGURE 3.12 Shape functions N;, Ny, and N;.
The constant ¢ is now obtained from the condition N; = 1 at § = —1, which yields
¢ = —1, resulting in the formula given in Eq. 3.87a. These shape functions are called
Lagrange shape functions.

Now the displacement field within the element is written in terms of the nodal

displacements as
u=Ng + Ng, + Nyg5 (3.89a)

or
u = Nq (3.89b)

where N = [Ny, Ny, N;]isa (1 X 3) vector of shape functions and q = [, ¢, ¢ ]Tis the
(3 X 1) element displacement vector. Atnode 1, we see that ¥, = LN, = N; = 0, and
hence u = g,. Similarly,u = g, at node 2 and 4 = @, at node 3. Thus,# in Eq.3.89ais a
quadratic interpolation passing through g, ¢, and ¢, (Fig. 3.13).

The strain € is now given by

€ = % (strain—displacement relation)
= d_“fié (chain rule)
d¢ dx
.2 du (using Eq. 3.86) (3.90)
X2 — X df

L2 | 4N dN, dN i
_xz-x1|:d£’d§’df:| q (using Eq.3.89)
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F
u=Ng + Ny + Naga

F 3

Vbl

q3
U}

1 3 2 =&

FIGURE 3.13  Interpoiation using quadratic shape functions.

Using Eqgs. 3.87, we have
2 1-281+2¢
= - - 39
€ xz—xl[ TR ,2§]q (3.91)
which is of the form
e = Byq (3.92)
where B is given by
""' 2 1-2¢1+2¢
B=_—— |- — 21t 9
X3 — xl[ 27 2 J (393
Using Hooke’s law, we can write the stress as
o = EByq (3.94)

Note that since N; are quadratic shape functions, B in Eq. 3.93 is linear in £. This means
that the strain and stress can vary linearly within the element, Recall that when using lin-
car shape functions, the strain and stresg tame out to be constant within the element.

We now have expressions for u, €, and o in Eqs.3.89b,3.92, and 3.94, respectively.
Also, we have dx = (£,/2) d¢ from Eq. 3.86.

Again, in the finite element model con
sectional area A,
Substituting for u

onsidered here, it will be assumed that cross-
, body force F, and traction force T are constant within the element.
, €, 0,and dx into the potential-energy expression yields

1
1= ;E[JTEAdx“ E/HTfAdx—- E]uTde_ S op
1 e/l 1 ‘
= — e 8
; qu(E(Arz /_I [BTB] df)q - zp: qT(Ae_iif [I Nrdf) (395)
ee L
‘EGETLN”QHEQa

Comparing the above equation with the general form

1 .
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yields
EAL, [
k= —”;— / (BT B]d¢ (3.963)
-1
which, upon substituting for B in Eq. 3.93, yields
1 2 3 *Localdof
7 1 -811

1 7 -B|2
-8 —8 16 3

The element body force vector f° is given by
ALS [
r= Tf / NTag (3.97a)

_E,A,
3¢,

» (3.96b)

which, upon substituting for N in Eqgs. 3.87, yields
| Local dof
1/6 ] 1
fr=ALf{1/6 ¢ 2 (3.97b)
2/3) 3

Similarly, the element traction-force vector T* is given by

eT [
T = f NTd¢ (3.98a)
-1
which results in
| Local dof
1/6) 1
T = €74 1/6 ¢ 2 (3.980)
2/3) 3
The total potential energy is again of the form IT = }Q"KQ — QF, where the
structural stiffness matrix K and nodal load vector F are assembled from element stiff-
ness matrices and load vectors, respectively.

Example 3.7
Consider the rod (a robot arm} in Fig. E3.7a, which is rotating at constant angular velocity
@ = 30rad/s. Determine the axial stress distribution in the rod, using two quadratic ele-

ments. Consider only the centrifugal force. Ignore bending of the rad.
Solution A finite element model of the rod, with two quadratic elements, is shown in
Fig. E3.7b. The model has a total of five degrees of freedom. The element stiffness matrices
are (from Eq. 3.96b)

3 2 = Global dof

1
7 1 -871
7
W =10 ><0.6|: L7 _8]3
-8

Ix21 -8 1612
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A=06in2

E =107 psi
Weight density,
p = 0.2836 Ibfin.’

FIGURE E3.7

3 5 4

7 1 -8]3

1 7 -81|s

-8 -8 16|24

1 2 4 s
7 -5 1 0 07 1
B -8 o g,
1 -8 14 -g 113
0 0 -8 16 —g|q
0 {} 1 -8 7.5
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The body force f(1b/in.%) is given by

2
F = E oy
where p = weight density and g = 32.2 ft/s”. Note that f is a function of the distance 7

from the pin. Taking average values of f over each element, we have
02836 X 10.5 x 30*

fi= 322X 12
= 6.94
and
_ 02836 X 315 X 307
h= 322X 12
= 20.81
Thus, the element body force vectors are (from Eq. 3.97b)
| Global dof
i1
fl=06x21Xf13}3
2] 2
and
| Global dof
il 3
P=06%X21Xfi?5
2] 4

Assembling f' and %, we obtain
F = {14.57, 58.26, 58.26, 174.719, 43.70]T

Using the elimination method, the finite element equations are

16 -8 0 o|fo 5826

10 x06|-8 14 -8 1(}0, 58.26
63 0 -8 16 -8| o, Y1779
0 1 -8 7[|O; 43.7

which yields

Q = 1079[0, .5735, 1.0706, 14147, 1.5294]"mm
The stresses can now be evaluated from Eqs. 3.93 and 3.94. The element connectivity table
is as follows:

Element Number 1 2 3 + Local Node Nos.

1 i 3 2 t
2 3 5 4 i Global Node Nos,
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Thus,
q=[0.0:.Q:]"

for element 1, while

q= [Q};Q&-Q—t]T
for element 2. Using Eqs. 3.93 and 3.94, we get

o

2 1-28 1+ 2¢
J1=IUTXE"T, 2 =2\ s
0,

where —1 = ¢ =< 1, and o, denotes the stress in element 1. The stress at node 1 in element
1 is obtained by substituting £ = —1 into the previous equation, which results in

0
ol = 107 X & X 107[-1.5,-0.5, +2.0§ 1.0706
5735
= 583 psi

The stress at node 2 (which corresponds to the midpoint of element 1) is obtained by sub-
stituting for £ = O

0
il = 10" X 3 X 107-05,0.5,014 1.0706

5735
= 510 psi

Similarly, we obtain

oih = oy = 437psi oyl = 218 psi osy = 0

The axial distribution is sh!awn in Fig. E3.7c. The stresses obtained from the finite element
model can be compared with the exact solution, given by

2

(&)
a'g;m(x) = %g_(LZ - 12)

The exact stress distribution based og this quation is also shown in Fig. E3.7c. L

3.10 TEMPERATURE EFFECTS

In this section, the stresses induced by temperature changes in an isotropic linearly
elastic n:nat(_arlal_ will be considered. That is, the thermal Stressg roblern will be E onsidered
If the distribution of the change in temperature, AT x), is Pkn tr the strain due
to this temperature change can be treated as an injtja] S;I‘ain eow;i; ! r:;l;s

15

€ = AT (399
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o = E(€ — €))

s

FIGURE 3.14 Stress—strain law in the presence of an initial strain.

where a is the coefficient of thermal expansion. Note that a positive AT implies a rise
in temperature. The stress—strain law in the presence of €, is shown in Fig. 3.14. From this

figure, we see that the stress—strain relation is given by

o = E(e ~ €) (3.100)
The strain energy per unit volume, o, is equal to the shaded area in Fig. 3.14 and is given by
uy = 30(€ — €) (3.101)

By using Eq. 3.100, we find that Eq. 3.101 yields
uy = 5(e ~ &) "E(e ~ &) (3.102a)

The total strain energy U in the structure is obtained by integrating u, over the volume
of the structure:

U= f 3(€ — €)"E(e ~ e)Adx (3.102b)
L
For a structure modeled using one-dimensional linear elements, this equation becomes
1, ¢ [
U= EEA’E/ (€ ~ ) E,(e — €)d¢ (3.102¢c)
¢ -1
Noting that ¢ = Bq, we gel
U= 21 Tl E.A fﬂfn"ndg - 3 ¢'E.A L, flang
- ; zq gl e 2 » q = q £.A, 1] -
1 £,
+ 2 EAG % (3.102d)

Examining the strain energy expression, we see that the first term on the right side yields
the element stiffness matrix derived earlier in Sectioa 3.4; the last term is a constant
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term and is of no consequence since it drops out of the equilibrium equations, which
are obtained by setting dI1/dQ = 0. The second term yields the desired element load
vector €°, as a result of the temperature change:
e
o° = EeAe_EEU/ BT d¢ (3.103a)
-1

. This equation can be simplified by substituting for B = [~1 1]/(x, — x,) and noting
that ¢ = a AT. Thus,

6!

E,ALaAT (-
=~_._f“__{ 1} (3.103b) |

X —x 1

In Eq. 3.103b, AT is the average change in temperature within the element. The
temperature load vector in Eq. 3.103b can be assembled along with the body force,

traction-force, and point load vectors to yield the global load vector F, for the structure.
This assembly can be denoted as

F=>({F+T+0)+p (3.104)
f\fter solving the finite element equations KQ = F for the displacements Q, the stress
— in each element can be obtained from Eq. (3.100) as
o =E(Bq - aAT) (3.1052)
or
o= L%l 14~ EaaT (3.105b)
Example 3.8

An axialload P = 300 X 10°N is applied at 20°

perature is then raised to 60°C. Ctothe rod as shown in Fig. E3.8. The tem-

(a) Assemble the K and F matrices,

(b) Determine the nodal displacements and element stresses

Aluminum Steel
£, =70 X 10% N/m? E; = 200 x 10° Nym?
= 2 B
AL =900 mm_ﬁ Ay = 1200 mny?
@ = 23x10 % per'C %= 117 x 10 6 per*C
FIGURE E3.8

h—_ | - i
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Solution

(a) The element stiffness matrices are
70x10°x90f 1 -1
1 AV A AN
k 200 [_1 1] N/mm
200 % 10° x 1200f 1 -1
K= 300 [_1 1] N/mm
Thus, .
315 =315 ¢
K=10° =315 1115 -800 |N/mm
0 =800 800

Now, in assembling F, both temperature and point load effects have to be considered.
The element temperature forces due to A7 = 40°C are cbtained from Eq. 3.103b as

| Global dof

01=70x103x900x23x10"x40{_11}; N

and

02 = 200 X 10° X 1200 X 11.7 X 107 X 40{_11}2 N

Upon assembling 6, ©7, and the point Joad, we get

—57.96
F = 10°¢ 57.96 — 112.32 + 300
112.32

or
F = 10°7[-57.96, 24564, 112.32]TN

(b) The elimination approach will now be used to solve for the displacements. Since dofs
1 and 3 are fixed, the first and third rows and columns of K, together with the first and
third components of F, are deleted. This results in the scalar equation

10°9[1115]Q, = 10° x 245.64
yielding
@, = 0.220mm

Thus,
Q ={0, 0220, ¢]"mm

In evaluating element stresses, we have to use Eq. 3.105b:

70 X 10° 0
o= s [-1 1}{0m}—70x10’x23x10‘°><40

= 12.60 MPa
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and
200 X 10° 0.220 »
=2 - T x X 40
o oL 1]{ 0 } 200 x 10° X 11.7 X 10
= —240.27 MPa n
input Data File

<< 1D BTRESS ANALYSIS USING BAR ELEMENT >>
EXBMPLE 3.3
NN NE NM NDIM NEN NDN

3 2 1 1 2 1

ND NI, NMPC
1 3 ¢ !
Node# X-Cooxdinate ‘
1 0
2 12
3 24
Elem¥ N1 NZ Mat# Area TempRise
1 1 2 1 5.25 0
2 2 3 1 3.75 v}
DOF# Displacement
1 0
— COF¥¢ Load
1 8.9334
2 115.3144
3 6.36810
MAT# E Alpha
1 30B6 O
Bl i B2 j B3 (Multi-point constr. B1+*(i+B2*Qj=R3) ]
EXAMPLE 3.3
NGDE NG, DISPLACEMENT
1 5.8057E-10
2 9.2726E-086
3 9,9532E-06
ELEM RO, STRESS
; 1 2.3180E+01
i 2 1.7016E+00D
NODE NG. REACTION
’ 1 -1.3063E+D2 :
PROBLEMS

kS B gons;’t;l;:;tligﬁbal" i;] Fig. P3.1. cross-sectional area A, = 1.2in.%, and Young's modulus
L i psi. I g, = 0.02in. and ¢, = 0025 In., determine the following (by hand
(a) the displacement at point P,
{b}) the strain € and stress o,
(¢} the element stiffness matrix, and
(d) the strain energy in the element.
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Lyl q2
+ - + — X
1 | 2
x=20in.
x; =15in. x;=23in.
FIGURE P3.1

3.2. Find the bandwidth NBW for the one-dimensional model whose nodes are numbered as
shown in Fig. P3.2.

©0_@ 00

— =
1 3 4 5 2

FIGURE P3.2

3.3. A finite element solution using one-dimensional, two-noded elements has been obtained
for a rod as shown in Fig. P3.3:

.- —— —® ® » X
1 2 3 4
FIGURE P3.3

Displacements are as follows: Q = [~0.2, 0, 06, —0.1]"mm, E = 1N/mm’, Area of
each element = 1 mm?, L, = 50mm, L, ; = 80mm, L,, = 100 mm.
(i) According to the finite element theory, plot displacement u(x) vs x.
(i) According to the finite element theory, plot strain e(x) vsx.
(ili) Determine the B matrix for element 2-3.
(iv) Determine the strain energy in element 1-2 using U = iq'kq.
3.4. Consider a finite element with shape functions N;(¢) and Ny(£) used to interpolate the
displacement field within the element (Fig. P3.4).

*— 8
1 € 2
> g2-->
g= -1 £=+1
RGURE P3.4

Derive an expression for the strain-displacement matrix B, where strain € == B g, i terms
of N, and N,. (Do not assume any specific form for Ny or N,.) (Note: q = [¢1, )"
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3.5, It is desired to attach a spring to node 22 of a structure modeled using 1-D elements, as
shown in Fig. P3.5. The banded stiffness matrix $ in program FEM1D can be modified to
attach the spring as follows:

§( : )=§( , )+
(Fill in the blanks.)

Fixed | ——»X
L Node 22 \ 1-D Structure

FIGURE P3.5

Spring, £ = 150 Nfm

3.6. Consider the 1-D model of the structure shown in Fig, P3.6.
(a) Show that the assembled stiffness matrix K is singular.
(b} Give asample displacement vector Q, # 0 that satisfies K Qg = F = 0. With the help
of a sketch, discuss the significance of this displacement. What is the strain energy in
the structure?

{€) Pr‘ove, in gel?eral, that any nonzero solution Q to a system of equations KQ = 0im-
plies that K is singular.

| [ ) ——x

1 2 3

FIGURE P3.6

3.7. Consider the bar in Fig. 3.7 loaded as shown. Determine the nodal displacements, element
stresses, and support reactions. Solve this problem by

L hand calculation, adopting the elim-
ination method f i o : ) .
i 1\1{ l1-1D ! ethod for handling boundary conditions. Verify your results using program

250 mm? 400 mm?

y l P =300kN
 E——— ey
150 mm | 150 mm

7,
i 300 mm ‘—>|

E =200 X 10 N/m2
{1 kN = 1000 N)

FIGURE P3.7

3.8. Repeat Example 3.5 in the text, but ys imni
. : t . i
conditions. Solve by hand calculation, © the elimination approach for handling boundary
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39, Anaxial lt?ad P = 385kN is applied to the composite block shown in Fig. P3.9. Determine
the stress in each material. (Hine: You may name the nodes 1-2 for both the elements.)

Pl / Rigid plate

Brass
30mm 0mm E=105000MPa
. S —
Aluminum
E =70000 MPa T
@ 60 mm

1

Section a-a

FiGURE P3.9

3.10. Consider the bar in Fig. P3.10. Determine the nodal displacements, element stresses, and
support reactions.

2
250 mm?2 wfm
2 300 kN G0N é
i L o —_— X
%
|150mm 150mm | 200mm | 200mm |
- - + o35

E =200 x 10% N/m?
FIGURE P3.10

3.11. Complete Example 3.7 in the text using:
(a) two linear finite elements and
(b) four linear finite elements.
Plot the stress distributions on Fig. E3.7c.

312, A tapered rod s subjected to a body force f = x? acting in the x-direction and also a point

load P = 2 as shown in Fig. 3.12.
(a) Use the Rayleigh-Ritz method with an assumed displacement fieldu = a; + a;x + a2
to determine expressions for dispiacement #(x) and stress a{x).
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(b) Solve this problem using a finite element solution with two (2) two-noded elements.
Show all work such as element matrices, assembly, boundary conditions, and solution.
Compare finite element and Rayleigh-Ritz solutions by providing plots of u{x) vs. x
and o(x} vs. x by the two methods.

body force,
£, = X! Nim?

be
I

4m —>
Thickness = 0.2 m, E = 50 N/m?
FIGURE P3.12

3.13. Consider the multipoint constraint 3Q, — @, = 0, where p and g are the degree of free-
d(?m numbers. Indicate what modifications need 1o be made to the banded stiffness ma-
trix § to implement this constraint. Also, if the bandwidth of the structure is 1. . what will
be the new bandwidth when the constraint is introduced? :

3.14. The rigid beam in Fig P3.14 was level before the load was applied. Find the stress in each
vertical member. (Hint: The boundary condition is of the multipoint constraint type.)

Yz,

Steel i J
. Al
1XTin = Ix 1
lin
E=30x 10%psi E =10 % 108 psi

@ @ 36 in.

[«————15 in. Zin— sl 9in— o

AR
0)

Rigid and weightless

15000 b
FIGURE P3.14

3.15. A brass bolt is fitted inside an aluminum tub
> Hne €, as shown in Fi a
ﬁt'ted snugly, it is tightened one-quarter of 5 full turp Given1 %hm'f. Afm'» lh'e ut bae b;:d
with 2 2-mm pitch, determine the stress ; . 2t the bolt i single threa

is of the multipoint constraint type.) i boltand tube, (Hine: The boundary condition
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(L 1) i e
| N A {Area = 140 mm?,

N 4 E =70 000 MPa)
3} Z

400 mm N %
} % Brass bolt
=1 ™ comm diom,
"' E = 105 000 MPa)
=

FIGURE P3.15

3.16. This problem reinforces the fact that once the shape functions are assumed, then alt other
element matrices can be derived. Certain arbitrary shape functions are given, and the
reader is asked to derive the B and k matrices.

Consider the one-dimensional element shown in Fig. P3.16. The transformation

£ = 2

X — N
is used to relate x and £ coordinates. Let the displacement field be interpolated as
u(€) = Mgy + Nogy
where shape functions N, and N, are assumed o be
w(1 + £) 71 ~ £)

N=cs———— N, =
1 4 2 = CO8 4

(a) Develop the relation € = Bq. That is, develop the B matrix.
(b) Develop the stiffness matrix, k°. (You need not evaluate the integrals.)

(x—xl)—l

L)

u=Ng +No3z _—/

1 q
1

1 2 ¢
£=-1 g=+1

FIGURE P3.16

3.17. Derive the element stiffness matrix k for the one-dimensional tapered elements shown in
Fig. P3.17a and P3.17b. (Hine: Introduce the linearity of width for part a and diameter for
pert b using the shape functions used for the displacement interpolation.)
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/ [
! T
e :
dia. dl dia. dz
- 1
by
\ 4 !
¥ ~ |
4 di? f ] e 5? |
t _ T —Tad;°
e 4= =3
Al= blf A2= bzf
() (b)

FIGURE P3.17

3.18. For plotting and extrapolation purposes (see Chapter 12), it is sometimes necessary 1o
obtain nodal stress values from element stress values that are obtained from a computer
_ run. Specifically, consider the element stresses, oy, g, and o5, which are constant within
each element, as shown in Fig, P3.18. 1t is desired to obtain nodal stresses §;,f = 1,2,3,4,
which best fit the elemental values. Obtain S, from the least-squares criterion,

Minimize I = 3 ]%[0' - o) dx

where o is expressed in terms of the nodal values s;, using linear shape functions as
o = Ns + Ny,
where 1 and 2 are the local numbers,

Plot the distribution of stress from the nodal values.

Stress
4
—
—_———
—
T 72 =90MPa 5= 8 MPa
o = 50 MPa
———-—Ih——_________-
1

® e’ g 7
"F—Zﬂﬁmm‘»i-‘—mmm——}'\3mmm '

FIGURE P3.18
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3.19. Determine the stresses in the 4 in. long bar in Fig. P3.19, using the following models:
(a) One linear element,
{b) Two linear elements. (Note: x in, T kips/in.)

T
T=x?
————- X
T per unit length
7z ..a...._-._n....a......-.._(_-._...-..
= =
A=2in?
E =30 X 10%psi
FIGURE P3.19

320. For the vertical rod shown in Fig. P3.20, find the deflection at 4 and the stress distribution.
Use E = 100 MPa and weight per unit volume = 0.06 N/cm®. (Hint: Introduce weight
contribution to the nodal loads into the program and solve using two elements and four
elements.) Comment on the stress distribution.

<~——— Area = 2500 cm?

FIGURE P3.20

3.21. For Fig. P3.21, find the deflection at the free end under its own weight, using divisions of

(a) 1element,
(b) 2 elements,
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(¢} 4 clements,

(d) 8 elements, and

{e) 16 elements.

Then plot number of elements vs. deflection.

s

%

1000 mm

3

E=200GPa
f =77 kNm®

S

100

100

FIGURE P3.21

3.22, Consider the quadratic element shown i
‘ hrati in Fig. P3.22, subj i ’
:rz;ctéon force (which is defined as force per %mit lengiﬁ?]ecwd 10 8 quadraiially vannne :
a) Express the traction f i : i |
NN, and Ny e asatuetion of £,7,, T, and T, using the shape functions |
{b) Derive, from the potential term

T
Lu"T dx,ane i i
T¢. Leave your answer in termg o xpression for the element traction force,

Ole, Tf'z‘ TJ, and 81..
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(¢} Re-solve Problem 3.19 using the exact traction load derived previously, with one qua-

dratic element, by hand calculations.
:‘: Quadratic 12
T,
n
1 3 2 X
T per unit {ength

.....-._..-.._-......-._-..d.....a-.._l-._-/

') E P} X
1| 3| 2|
£=—1 £=0 £=+1
» M|
[« £ |
FIGURE P3.22

3.23. The structure in Fig. P3.23 is subjected to an increase in temperature, AT = 80°C. Deter-
mine the displacements, stresses, and support reactions. Solve this problem by hand cal-
culation, using the elimination method for handling boundary conditions.

P1=60kN
! P,=75kN

2 AT =80°*C
400
j+—800 nnn—b--ﬂ—600mm+»—m4

Bronze Aluminum Steel
A = 2400 mm? 1200 mm? 600 mm?
E=83GPa 70 GPa 200 GPa
a=189 X 10-6°C 23 X10-%°C 11.7 X 10-%°C

(1 GPa = 10° Nim?)
FIGURE P3.23
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Program Listing

B AR ERE L ETEEELEEEE LR TR LY L 2 R T R arap g TEr I

P PROGRAM FEM1D *
' 1-D BAR ELEMENT *
il WITH MULTI-POINT CONSTRAINTS *

'* T.R.Chandrupatla and A.D.Belequndu *
Fardrdedrvedrrdr ook e e e e de S b de gk e o e ok e e e e e e e e
DefInt I-N
DefDbl A-H, O~Z
Dim NN, NE, NM, NDIM, WEN, NDN
Dim ND, NL, NMPC, NBW
Dim X(}), NOC(}, F{), AREA{), MAT(), DT{), S§{(J
Dim PM{), NU{}, U{), MPC(), BT(), Stress{), React(}
Dim CNST
Dim Title As String, Filel As String, File? &s String
Dim Dummy As String
Private Sub cmdEnd_Click()
End
End Sub

Private Sub cmdStart Click(}
Call InputData
Call Bandwidth
Call Stiffness
— Call MedifyForBC
Call BandSolver
Call StressCalc
Call ReactionCalc
Call Qutput
cmdView.Enabled = True
cmdStart.Enabled = False
End Sub

1

V== DATA INPUT FROM A FILE

Private 5Sub InputData()

Open Filel For Input As #1
Lire Input #1, Dummy: Input #1, Title
Line Input #1, Dummy: Input 1, NN, NE, NM, NDIM
Line Input #1, Dummy: Input #1, ND, NL. NMpe
ReDim X(RN), NOC(NE, NEN}, F(NM), AREA(NE),
ReDim PM(NM, 2), NU(ND), UiND), MPC (NMPC, 2)
Vo e i BREAD DATA T S o gt oy
P Coordinates —----
Line Input #1, Dummy
For I = 1 To NN

Input #1, N

Input #1, X(NY
Next T

Filel = InputBox("Input File d: \dir\.tilnum.uc',

"Name of Fila”)

NEN, NDN

MAT(NE), DT(NE}
» BT(NMPC, 13}
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continued

----- Connectivity —-—-——
Line Input #1, Dummy
For I = 1 To NE
Input #1, H
Input #1, HOC{N, 1), NOC{N, 2)
Input #1, MAT({N), AREA(N), DT({N)
Next I .
| —— Specified Displacements —-——-
Line Input #1, Dummy
For I = 1 To ND
Input #1, NU{I), U{I}
ext I
Ve Component Loads ----- -
Line Input #1, Dummy
For I = 1 To NL
Input #1, N
Input #1, F(N)
Next I
----- Material Properties —--—---
Line Input #1, Dummy
For I = 1 To NM
Input #1, N
For J =1 To 2
Input #1, PM{N, J)
Next J
Next I
Vommm— Multi-point Constraints BI*Qi+B2*Qj=Bg —--—--
If WMPC > O Then
Line Input #1, Dummy
For I = 1 To NMPC
Input #1, BT(I, 1), MPC(I, 1), BT(I, 2), MPC{I, 2), BT{I, 3}

Naxt I

End If

Close $1
End Sub
' BANDWIDTH EVALUATION
Private Sub Bandwidth()

*——w-~ Bandwidth Evaluation ---—-

NEW = 0

For N = 1 To NE
NABS = NDN * Abs{NOC(N, 1} - NOC{N, 2}) + 1
If NBW < NABS Then MBW = NABS

Next N

For I = 1 To NMPC
NABS = hbs(MPC(I, 1) - MPC(I, 21} + 1
If NBW < NABS Then NBW = NABS

Next I

End Sub
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* ELEMENT STIFFNESS AND ASSEMBLY
Private Sub Stiffness()
ReDim 5{NN, HNBW)
P Stiffness Matrix -———-
For N = 1 To NE
N1l = NOC{N, 1}: N2 = NOC(N, 2): N3 = MAT(N)
%21 = X({N2) - X(Ml): EL = Abs{¥21)
EAL = PM(N3, 1} * AREA(N) / EL
TL = PM(N3, 1) * PM(M3, 2) * DT{(N} * AREA(N) * EL / X21
fommae Temperature Loads —-—--
F(Nl) = F{N1} - TL
F(NZ) = F{N2} + TL
f o Elament Stiffness in Global lLocations -----
S(Ni, 1) = S(Nl1, 1) + EAL |
S{N2, 1) = S(NZ, 1) + EAL ;
IR = Wl: If IR » N2 Then IR = N2
IC = Absi{N2 - N1) + 1 :
5{IR, IC) = S{IR, IC) - EAL
Next N
End Sub
L]

— ‘asxr=cszses MODIFICATION FOR BOUNDARY CONDITIONS ====oanz=c=
Private Sub ModifyForEC()

----- Decide Penalty Parameter CNST ~==——
CNST = {
For I = 1 To RN
If CNST < S({I, 1) Then CNST = S{I, 1)
Next I
CNST = CHST * 10000
----- Modify for Boundary Conditions -e-—-
‘==~ Displacemant BC -—-
For I =1 To ND
N = NU(I}
S{N, 1) = S(N, 1) + CNST
F(R} = F{N) + CNST * U{I)
Next I
'=-- Multi-point Counstraints ---
For I = 1 To NMPC
Il = MPC(I, 1): I2 = MPC(I, 2)
S{Il, 1) = 5{I1, 1) + CNST * BT(I, 1) *

BT(I, 1

S(IZ, 1) = S(I2, 1) + CNST + BT(I, 2} + BT(I' 2;
IR = Il: If IR > I2 Then IR = 12 ’
IC = Absi(I2 - I1) + 1
3{IR, IC) = S(IR, IC) + CHNST + BT (I, 1}y =
F(I1) = F(I1) + ONST * BT(T, 1) » ap(] 3y 0 2
F{I2}) = F{I2} + CNST * BT (I, 2} +

Next T ¢+ 2) BT {1, 3

End Sub
Al
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' SOLUTION OF EQUATIONS BARDSOLVER »ssxawmmnazxs
Private Sub BandSolver({)
fm——— Equation Solving using Band Solver -----
N = NN

lom——— Fozrvaxd Elimination ~----
For K=1ToN-1
NBK = N - K + 1
IfN-K+ 1 > NBW Then NBK = WNBW
For I =K+ 1 To NBK + K -1

I1=I-K+1

C = S(K, Il) / S(K, 1}

For J =1 To NBK + K - 1
Jl=J-1I+1
J2=J-K+1
s{I, J1) = 5{I, Jl) - € * B(K, J2)

Next J

F{I) = F(T} - C * F(K)

Next I :
Next K
‘eocw= Back Substitution -----
F(N) = F(N) / 8(N, 1)
For II « 1 To ¥ - 1
I =N-1II
NBI = N-TI+1
If N -1+ 1> NBW Then NBI = NEW
Sum = 0!
For J = 2 To NBI
Sum = Sum + S(I, J) * F{I + J - 1)

Next J
F{I} = (F{I} - Sum) / S(I, 1)
Next IT
End Sub
' STRESS CALCULATIONS

Private Sub StressCalc{)
ReDim Stress(NE}
teeew— Stress Calculation =~-=--
For N = 1 To NE
Nl = NOC(N, 1}: N2 = NOC(N, 2): N3 = MAT(N)
EPS = (F(N2) - F[R1})} / (X(N2Z) - X(N1)}
Stress{N) = PM{N3, 1} * {EPS - PM{N3, 2} * DT{N))
Next N
End Sub
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REACTION CALCULATIONS

Private Sub ReactionCalc({)
ReDim React (ND)

————— Reaction Calculation =-—--
For T = 1 To ND
N = NU(I)
React (I} = CNST * (U{I} - F{N})
Next I
End Sub
L]
* OUTPUT

Private Sub Qutput(}
trwmm= Print Displacements, Stresses, and Reactions
File2 = InputBox ("Output File d:\dir\fileName.ext", "Rame of File")
Open File2 For Cutput As #2
print #2, "Program FEM1D - CHANDRUPATLA & BELEGUNOU"
Print #2, Title
e Displacements -----
Print #2, "NODE NO."”, "DISPLACEMENT"
For I = 1 To NN
Print #2, I, Format(F{I), "0.0000E+00")
Next I
Pmmm Stresses ====-
Print #2, "ELEM NHCG.", "STRESS®
For K = 1 To NE
Print #2, N, Format(Stress(N), "0.0000E+00™)
Next N
Teme—— Reactions ~=-==
Print #2, "NODE NG.", "REACTION*
For I = 1 To ND
N = RU(I}
Print #2, N, Format {React(I), "0.Q000E+00"}
Next I
Close ¥2
picBox.Print "RESULTS ARE IN FILE ®; File2

End Sub

Private Sub cmdView Click()
Dim ALine As String, CRLF As Stri i
CRLF = Chr${13} + Chr$(10) ing. Fllel As String
picBox.Visible = False
txtView.Visible = True
txtView.Text = ""
Open File2 For Input As #1
Do While Not EOF({1)
Line Input #1, ALine
txtView.Text = txtView.Text + Aline + CRLF
Loop
Close #1
End Sub
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Trusses

4.1 INTRODUCTION

The finite element analysis of truss structures is presented in this chapter. Two-
dimensional trusses (or plane trusses) are treated in Section 4.2. In Section 4.3, this treat-
ment is readily generalized to handle three-dimensional trusses. A typical plane truss is
shown in Fig. 4.1. A truss structure consists only of two-force members. That is, every truss
element is in direct tension or compression (Fig. 4.2). In a truss, it is required that all loads
and reactions are applied only at the joints and that all members are connected togeth-
er at their ends by frictionless pin joints. Every engineering student has, in a course on
statics, analyzed trusses using the method of joints and the method of sections. These
methods, while iltustrating the fundamentals of statics, become tedious when applied to
large-scale statically indeterminate truss structures. Further, joint displacements are not
readily obtainable. The finite element method on the other hand is applicable to stati-
cally determinate or indeterminate structures alike. The finite element method also pro-
vides joint deflections. Effects of temperature changes and support settlements can also

be routinely handled.

P, P, P,

FIGURE 4.1 A two-dimensional truss.
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~

P
FIGURE 4.2 A two-force member.

4.2 PLANE TRUSSES

Modeling aspects discussed in Chapter 3 are now extended to the two-dimensional truss.
The steps involved are discussed here.

Local and Global Coordinate Systems

The main difference between the one-dimensional structures considered in Chapter 3
and trusses is that the elements of a truss have various orientations. To account for these
different orientations, local and global coordinate systems are introduced as follows:
A typical plane-truss element is shown in local and global coordinate systems in
Fig. 4.3. In the local numbering scheme, the two nodes of the element are numbered 1
and 2. The local coordinate system consists of the x'-axis, which runs along the element
from node 1 toward node 2. All quantities in the local coordinate system will be denot-
ed by a prime ('). The global -, y-coordinate system is fixed and does not depend on
the orientation of the element. Note that x,y, and z form a right-handed coordinate sys-
tem with the z-axis coming straight out of the paper. In the global coordinate system,

x A

Deformed
B ® element

SRS

1A8 47 = ¢ cosé + ¢, sing
o 42 = g3 058 + g, sinfd

{a)

(b)
FIGURE 43 A two-dimensienal truss element ;
glohal coordinate system, et in (2) a local coordinate system and (b) a
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every node has two degrees of freedom (dofs). A systematic numbering scheme is adopt-
ed here: A node whose global node number is j has associated with it dofs 2j — 1 and
2j. Further, the global displacements associated with node j are @;_; and Q,;, as shown
in Fig. 4.1.

Let g1 and g5 be the displacements of nodes 1 and 2, respectively, in the local
coordinate system. Thus, the element displacement vector in the local coordinate system
is denoted by

q =[ana] (4.1)

The element displacement vector in the global coordinate system is a (4 X 1) vec-
tor denoted by

q9=[¢,492,95. 9" 4.2)

The relationship between q' and q is developed as follows: In Fig. 4.3b, we see that g}
equals the sum of the projections of ¢; and g, onto the x’-axis. Thus,

g1 = q,cos @ + g,sind (4.3a)
Similarly,
g> = g1c088 + q,sind (4.3h)

At this stage, the direction cosines £ and m are introduced as £ = cos@and m = cos ¢
(= sin 6). These direction cosines are the cosines of the angles that the local x’'-axis
makes with the global x-, y-axes, respectively. Equations 4.3a and 4.3b can now be writ-
ten in matrix form as

q ~1q (44
where the transformation matrix L is given by
€ m 0 0
= 4.5
L [0 0 ¢ m:| (43)

Formuilas for Calculating € and m

Simple formulas are now given for calcuiating the direction cosines € and in from nodal
coordinate data, Referring to Fig. 4.4,1et (x;, y;) and (x;, ) be the coordinates of nodes
1 and 2, respectively. We then have

2
d (12’ J’Z) X3 X

(- m = cosp= 22— (=

te=Vizxg— 5P+ 0 - n)

(xa~ x1)

FIGURE 4.4 Direction cosines.
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Xy — X h—hn
=2 71 = 4.6
¢ 7 m . (4.6)

where the length £, is obtained from
&= Vi —x)2+ (»-n’ 4.7

The expressions in Egs. 4.6 and 4.7 are obtained from nodal coordinate data and can
readily be implemented in a computer program.

Element Stiffness Matrix

An important observation will now be made: The truss element is a one-dimensional
element when viewed in the local coordinate system. This observation allows us to use pre-
viously developed results in Chapter 3 for one-dimensional elements. Consequently,
from Eq. 3.26, the element stiffness matrix for a truss element in the local coordinate sys-

tem is given by
EAl 1 -1
k=—— .
= s

where A, is the element cross-sectional area and E, is Young’s modulus. The problem
at hand is to develop an expression for the element stiffness matrix in the global coor-
dinate system. This is obtainable by considering the strain energy in the element. Specif-
ically, the element strain energy in local coordinates is given by

U =3q"k'q (4.9)
Substituting for q" = Lq into Eq. 4.9, we get
U, = 3q"[L'k'L]q (4.10)

The strain energy in global coordinates can be written as

U, = 3q'kgq (4.11)
vyhere k is the element stiffness matrix in global coordinates. From the previous equa-
tion, we obtain the element stiffness matrix in global coordinates as

k = LTk'L (4.12)
Substituting for L from Eq. 4.5 and for k’ from Eq. 4.8, we get

4 m - —tm

k = él_qﬁ tm mz —£m —mz
L[ -€¢ -em g &m
—tm -m* ot 2

(4.13)

The element stiffness matrices are assembled j
tural stiffness matrix. This assembly is illustrat
for directly placing element stiffness matrices i
line solutions is explained in Section 4.4.

n ﬂje usual manner to obtain the struc-
ed in Example 4.1. The computer logic
nto global matrices for banded and sky-
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The derivation of the result k = LTk’L also follows from Galerkin’s variational
principle. The virtual work 6W as a result of virtual displacement W’ is

W = ¥'T(k'q") (4.14a)
Since §s’ = Ly and q' = Lq, we have
W = ¢T[L'k'L]q (4.14b)
= ¥'kq

Stress Calculations

Expressions for the element stresses can be obtained by noting that a truss element in
local coordinates is a simple two-force member (Fig. 4.2). Thus, the stress ¢ in a truss
element is given by

o= FE.e (4.15a)

Since the strain ¢ is the change in length per unit original length,

LG q
o= E'_te

_E, i
= 8,[ 1 1]{q,2} (4.15b)

This equation can be written in terms of the global displacements q using the transfor-
mation q' = Lq as

E
o=-"[-1 1]Lq (4.15¢c)
£, .
Substituting for L from Eq. 4.5 yields
E
o= 1?"'[—6’ -m € m]q {4.16)

Once the displacements are determined by solving the finite element equations, the
stresses can be recovered from Eq.4.16 for each element. Note that a positive stress im-
plies that the element is in tension and a negative stress implies compression.

Example 4.1
Consider the four-bar truss shown in Fig. E4.1a. It is given that E = 29.5 X 10°psi and
A, = 1in.? for all elements. Complete the following:
(a) Determine the element stiffness matrix for each element.
(b} Assemble the structural stiffness matrix K for the entire truss.
(¢} Using the elimination approach, solve for the nodal displacement.
(d) Recover the stresses in each element.
(e) Calculate the reaction forces.

SRS SR I
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E =295 X 10° psi
A=10in?

20 000 16

(a)

0 25000
Y
4167
Forces: 1b

326 21879

{b)

FIGURE E4.1

Solution

(a) It is recommended that a tabular form be used for representing nodal coordinaté
data and element information. The noda] coordinate data are as follows:

Naode X

b L b =
c&8o

30
30
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The element connectivity table is

Element i 2
1 1 2
2 3 2
3 1 3
4 4 3

Note that the user has a choice in defining element connectivity. For example, the con-
nectivity of element 2 can be defined as 2-3 instead of 3-2 as in the previous table. How-
ever, calculations of the direction cosines will be consistent with the adopted connectivity
scheme. Using formulas in Eqs. 4.6 and 4.7, together with the nodal coordinate data and
the given element connectivity information, we obtain the direction cosines table:

Element £, £ m
1 40 1 0
2 30 0 -1
3 50 08 0.6
4 40 1 0

For example, the direction cosines of elements 3 are obtained as € =
(x3— x)/€, = (40 — 0)/50 = 0.8 and m = (3 — wp)/€. = (30 — 0)/50 = 06.
Now, using Eq. 4.13, the element stiffness matrices for element 1 can be written as

12 3 4 < Globaldof
10 -1 0] 1
6
kl=——_—zg‘54:1° o0 00| 2
-10 10|3
0o 0ofa

The global dofs associated with element 1, which is connected between nodes
1 and 2, are indicated in k! earlier. These global dofs are shown in Fig. E4.1a and as-
sist in assembling the various element stiffness matrices

The element stiffness matrices of elements 2, 3, and 4 are as follows:

5 6 3 4
[0 0 o o] s
k2=29'—5~3->(—:~19j 0 1 0 -1 6
o 0 o0 .o 3
0 -1 o 1 4
1 2 5 6
64 48 -84 —48] 1
1;3=2—9'-5—53<61—06 48 36 —-48 -36| 2
-64 —-48 64 48| 5
| -48 -36 48 36| 6
7 8 5 6
1 o0 -1 o] 7
4=29.5><10° o 0 o ol 8
O 1.4 o0 1 ol s
| 0o 0o o o] s
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(b) The structural stiffness matrix K is now assembled from the element stiffness matrices.
By adding the element stiffness contributions, noting the element connectivity, we get

1 2 3 4 5 6 7 8

—768 576 0 0 2268 576 -1
—-5.76 —-432 0 -200 57 2432
0 0 0 0 -150 0 15.0
0 0 0 0 0 0 0 0 8

(c) The structural stiffness matrix K given above needs to be modified to account for
the boundary conditions. The elimination approach discussed in Chapter 3 will be
used here. The rows and columns corresponding to dofs 1,2, 4,7, and 8, which corre-

spond to fixed supports, are deleted from the K matrix. The reduced finite element
equations are given as

bl

0

o

(2268 576 -150 ¢ -768 —-576 0 0} 1

576 432 0 0 -576 -432 0 0| 2

-150 ¢ 15.0 6 0 0 0 of 3
L]

k=220 4 9 o 20 o0 -20 0 of 4
600

ol s

0| 6

0| 7

205 % 10° 15 0 0 Qs 201000
e 0 2268 576 Q57 = 0
0 57 2432 |1 Q —25000
Solution of these equations yields the displacements
O 27.12 x 107
Q¢ = 565 x 107 3in.
Os —-2225 x 107

The nodal displacement vector for the entire structure can therefore be written as
Q = [0,0,27.12 X 10°%,0,5.65 X 107%, ~2225 x 10°%,0,0" in.

{d) The stress in each element can now be determined from Eq.4.16, as shown below.

The connectivity of element 1is 1 ~ 2, Consequently, the nodal displace-
ment vector for element 1is given by q = [0,0,27.12 x 107,0]", and Eq. 4.16 yields

0
. 29.5 x 1[}“[ 10 1 0
1= ————[- 0
40 ] 2712 % 107®
0
= 20 000.0 psi
The stress in member 2 is given by
5.65 x 1073
29.5 X 10 -
o = = 01 ¢ 1] -22.25 x 1073
:‘ +27.12 x 1073
‘ 0

{ = 218800 psi j
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Following similar steps, we get
oy = —52080psi
o = 4167.0 psi

(e) The final step is to determine the support reactions. We need to determine the reac-
tion forces along dofs 1,2, 4,7, and 8, which correspond to fixed supports. These are
obtained by substituting for Q into the original finite element equation R = KQ — F.
In this substitution, only those rows of K corresponding to the support dofs are need-
ed,and F = O for these dofs. Thus, we have

4 0 3
¢
R, 2268 576 —-150 0 -768 -576 0 O 4
Rl osxqg| 576 432 0 0 576 432 0 0 2712 ’; lo
R, ='T 0 0 0 200 0 -200 0 04 5.65 X 10°° >
Ry 0 0 0 0 ~-150 0 150 0 _22'25 x 1073
Ry 0 0 o 0 0 0 ¢ 0 ) 0
; 0 )
which results in
Ry —15833.0
R, 3126.0
Ryt = 21879.0 2 ib
R, -4167.0
Rs 0
A free body diagram of the truss with reaction forces and applied loads is shown
in Fig. E4.1b. N
Temperature Effects

The thermal stress problem is considered here. Since a truss element is simply a one-
dimensional element when viewed in the local coordinate system, the element temper-

ature load in the local coordinate system is given by (see Eq. 3.103b)

o' = E,Aceo{_i} . (4.17)
where the initial strain €, associated with a temperature change is given by
€ = a AT (4.18)

in which a is the coefficient of thermal expansion, and AT is the average change in tem-
perature in the element. It may be noted that the initial strain € can also be induced by
forcing members into places that are either too long or too short, due to fabrication errors.

We will now express the load vector in Eq. 4.17 in the global coordinate system.
Since the potential energy associated with this load is the same in magnitude whether
measured in the local or global coordinate systems, we have

qTe' = ¢'6 _ _ (4.19)
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where O is the load vector in the global coordinate system. Substituting for q" = Lgq
into Eq. 4.19, we get

q"L'e' = q'e (4.20)
Comparing the left and right sides of this equation, we obtain
8 =LTo’ (4.21)

Substituting for L from Eq. 4.5, we can write down the expression for the element tem-
perature load as

¢
'"; @2 |

m

ee = EeAeeu

The temperature loads, along with other externally applied loads, are assembled in the
usual manner to obtain the nodal load vector F. Once the displacements are obtained

by solving the finite element equations, the stress in each truss element is obtained from
(see Eq.3.100)

o= E(e ~ €,) (4.23)

This equation for the element stress can be simplified by using Eq. 4.16 and noting that
€ = a AT, to obtain i

F =

E,
?[‘f -m { mlq- EaAT (424

Example 4.2

The four-bar truss of Example 4.1 is considered here. b ing is di

: , but t . Take
E =295 % 10°psiand &« = 1/150 000 per °F. he loading s different
(a) There is an increase in temperature of 50°F in bars 2 and 3 only (Fig. E4.2a). There
are no other loads on thf: structure, Determine the nodal displacements and element

stresses as a result of this temperature increase. Use the elimination approach.
(b) g\ support settlement effect is considered here. Node 2 seitles by 0.12 in. vertically
\;wtn, ;md in addition, two point loads are applied on the structure (Fig. E4.2b).
rite down .(\.mthout solvmg).the equilibrium equations KQ = F, wherc K and F
are the modified structural stiffness matrix and load vector, respectively. Use the
penalty approach, TP Y

(¢) Use the program TRUSS2 to obtain the solution to part (b)

Solution

(a) The stiffness matrix for the truss struc Examp
s t i
- Only the load vestor same S ure has already been developed in Exa le

Using Eq. 4.22, the temperature load as
2 and 3 are. respectively,

assembled due to the temperature increasc:
aresult of temperature increases in elemetts
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250001b

= 20 000 Ib
0.121in.

FIGURE E4.2
| Global dof
0 5
o2 = 29.5 X 10% x 50 1 6
150,000 0 3
-1 4
and
—-08 1
o’ = 29.5 X 10° X 50 | —0.6 2
150,000 0.8 5
0.6 6

The 62 and ©° vectors contribute to the global load vector F. Using the elimination
approach, we can delete all rows and columns corresponding to support dofs in K
and F, The resulting finite element equations are

150 0  07]{Q 0
295 X100 nes s {0, s =1 78667
60 | o 576 2432]l g, 157333
which yield
o 0
O, b = { 0.003951 {in.
0, 0.01222

The element stresses can now be obtained from Eq. 4.24. For example, the
stress in element 2 is given as

0.003951
29.5 X 10° o Jooim2 | 295 x 10 x 50
=g 10 10 o 150,000
0

= ~8631.7 psi
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The complete stress solution is

o, 0

o, ) 2183
a [ ] 3643
o, 2914

{b) Support 2 settles by 0.12 in. vertically down, and two concentrated forces are applied
(Fig. E4.2b). In the penalty approach for handling boundary conditions (Chapter 3),
tecall that a large spring constant C is added to the diagonal elements in the struc-
tural stiffness matrix at those dofs where the displacements are specified. Typically,
C may be chosen 10* times the largest diagonal element of the unmodified stiffness
matrix (see Eq. 3.80). Further, a force Ca is added to the force vector, where a is the
specified displacement. In this example, for dof 4,4 = -0.12 in., and consequently, a
force equal to —0.12C gets added to the fourth location in the force vector. Conse-
quently, the modified finite element equations are given by

‘0 +C S6 -150 0 768 —576 o0 ol(g) { 0 )

432+Cc 0 0 -57 -42 o ol||o, 0
150 0 0 0 o o|]o, 20000

295 x 10° 200+C 0 200 0 0|]o, ~0.12¢ |
600 268 576 -150 0 |] o[ o

412 o ol]g —~25000.0
150+C 0 || o, 0

| Symmetric ClLQ:) L 0 |

(c) Obviously, thf_: equat.ions in (b} are too large for hand calculations. In the program
TRUSS, that is provided, these equations are automatically generated and solved
from the wser’s input data. The output from the program is

o 0.0271200

Q.| }-0.1200145 |

O "} oo32z282 (™

Qs ~0.1272606

and

7 20000.0

o | ) -71283|

as[ ) -297017 (PM .
74 238333

4.3 THREE-DIMENSIONAL TRUSSES

The 3-D truss element can be treated as a straj
truss element discussed earlier. The local and ;

e . global coordinat D truss
element are shown in Fig. 4.5, Note that the | inate systems for a 3-D

) ocal coordinate system is again the x'-axis
running along the element, since a truss ele: Y g

: ment is simply a two-force member. Conse-
quently, the nodal displacement vector in local coordinafes is

ghtforward generalization of the 2-D

¢ = [g),¢5)" (4.25)

N
!
;
[
;
H
i
;
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(g4 + 25§ + g6K)

/x' (21 + mj + nk) ‘m)\
&

2 2
Deformed
clement
1
(gi + g2j + g2k)
g1 = (g} + 421 + g3k)- (€ + mj + nk)
=&q +mg; +ng
q; =44+ mgs+ngs
f=co(x X)m=cos(x\Y)rn=cos(x".Z)
I R h 274
el ee ee
(a) (b)

FIGURE 4.5 A three-dimensional truss element in local and global coordinate systems.
The nodal displacement vector in global coordinates is now (Fig, 4.5b)

q = (91, %, 4 94,45, 96" (4.26)

Referring to Fig. 4.5, we find that the transformation between local and global co-
ordinates is

q =Lg (4.27)

where the transformation matrix L is given by

€ mn 0 00
I“[c ooemn] (4.28)

in which €, m, and » are the direction cosines of the local x’-axis with respect to the
global x-, y-, and z-axes, respectively. The element stiffness matrix in global coordinates
is given by Eq. 4.12, which yields

[ & tm tn - —tm —¢n]
m m mn —-tm -m* —mn
EA| &n mn nt  ~én ~mn -1
e | - -tm —tn & {fm fn
~fm -m? -mn tm nt mn

—tn ~-mn ~-n* & mn o

(4.29)

—
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The formulas for calculating ¢, m, and n are

Xz — X =)b_y1 n L~ 4 (430)

t="% = ™ 7 :.

where the length €, of the element is given by

=V —x)+h-n+(n- ) (431)

Generalizations of the element stress and element temperature load expressions are
left as an exercise.

4.4 ASSEMBLY OF GLOBAL STIFFNESS MATRIX FOR THE BANDED
AND SKYLINE SOLUTIONS

The solution of the finite element equations should take advantage of symmetry and
sparsity of the global stiffness matrix. Two methods, the banded approach and the sky-
line approach, are discussed in Chapter 2. In the banded approach, the elements of each
element stiffness matrix k° are directly placed in a banded matrix S. In the skyline
approach, the elements of k® are placed in a vector form with certain identification

pointers. The bookkeeping aspects of this assembly procedure for banded and skyline
solution are discussed in the sections that follow.

Assembly for Banded Solution

The assembly of elements of k* into a banded global stiffness matrix § is now discussed

for a two-dimensional truss element. Consider an element e whose connectivity is indi-
cated as follows:

Element 1 2 «— Local Node Nos.

€ f J « Global Node Nos.

The element stiffness with its associated degrees of freedom are

2i—1 2 2j -1 2j

*~ Global dofs |
k“ kll kl3 k14 2i— 1
k' = ki Ky kag | 2§ (4.32) :
Kyy kg 2i—1
Symmetric ki 2

The principal diagonal of k' is placed in the first col
diagonal is placed in the second column, and so on,
elements ink* and § is given by (see Eq. 2.39)

umn of §, the next-to-principa]
Thus, the correspondence between

kas— Spa-p1 (4.33)

- i
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where a and 8 are the local dofs taking on values 1,2,3, and 4, while p and g are global
dofs taking on values of 2i — 1, 2{, 2j — 1, 2;. For instance,

ki3> 8ai-1,2(j-iy+1
and
k4= 81 (4.39)

This assembly is done only for elements in the upper triangle owing to symmetry. Thus,
Eq. 433 is valid only for ¢ = p. We can now follow the assembly steps given in pro-
gram TRUSS2D.

A formula for the half-bandwidth, NBW, in 2-D truss structures can be readily
derived. Consider a truss element ¢ connected to, say, nodes 4 and 6. The degrees of
freedom for the element are 7, 8, 11, and 12. Thus, the entries in the global stiffness

matrix for this element will be
12...7 8 ... 11 12._ N
1
< m { 2
¥ X s X X 7
X - X X 8 (4.35)
Symmetric X X "
X 12
| | N

We see that the span 7 of nonzero entries is equal to 6, which also follows from the con-
necting node numbers: m = 2[6 — 4 + 1). In general, the span associated with an ele-
ment e connecting nodes i and j is

m, =2{li — j| +1] (4.36)
Thus, the maximum span or half-bandwidth is
NBW = max m, {4.37)
1=5esNE

In the banded approach, we see that differences in node numbers connecting an ele-
meant should be kept to a minimum for computational efficiency.

Skyline Assembly As discussed in Chapter 2, the first step in skyline assembly
involves the evaluation of the skyline height or the column height for each diagonai lo-
cation. Consider the element e with the end nodes i and j shown in Fig. 4.6. Without loss
of generality, let i be the smaller node number; that is, i < j. Then, starting with a vec-
tor of identifiers, ID, we look at the four degrees of freedom 2i — 1,2, 2j — 1, and 2j.
At the location corresponding to one of these four dofs represented by J, the previous
value is replaced by the larger of the two numbers ID(J) and I - (2 — 1) + 1. This is
precisely represented in the table given in Fig. 4.6. The process is re.peatcd over all the
elements. At this stage all the skyline heights have been determined and placed in
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2j
2j-1 Element ¢
Location No. Skyline Height
I ID()

2i-1 max (1, OLD)
2i max (2, OLD)

2j-1 max {2j — 2{ +1,0LD)
2j max (2j — 2{ +2,0LD)

max (X, OLD) = REPLACE by X if X > OLD
¢ Lowest dof (start value of OLD = 0)
i<j

FIGURE 4.6 Skyline heights.

the vector ID. Then, starting from location I = 2, replacing the location at J by the sum
ID(1) + ID{] — 1) gives the pointer numbers as discussed in Chapter 2.

The next step involves assembling the element stiffness values into the column
vector A.The correspondence of the global locations of the square stiffness matrix com-
ing from an element shown in Fig. 4.6 are clearly presented in Fig. 4.7, using the diago-
nal pointers discussed previously. The details presented earlier have been implemented

in program TRUSSKY. Other programs provided may be similarly modified for skyline
solution instead of banded solution.

Column

-1 2 -1 b Row

Column - . A[ID{y -1 A[TD{2f .
vector A ADC = D] | AID(2) - 1] —[(2;( ! 2:‘)]) - (2j[~ e )| i

& Amea) | AIDGI -1 | AIDE) |
§§ ~@-1-2)| - @i-20) | X
-

AlID - 1)]| A[ID(2)) — 1]} 25 - 1

X

AP 2y

FIGURE 4.7  Stiffness locations in colump vector form for skyline solution.
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Input Data File

<< 2D TRUSS ANALYSIS >>»
EXAMPLE 4.1
NN NE NM NDIM NEN NDN

4 4 1 2 2 2

ND NL NMPC
5 2 0
Node# X Y
1 0 0
2 40 0O
3 40 30
4 0 30
Elem# N1 N2 Mat# Area TempRise
1 1 2 1 1 0
2 3 2 1 1 ]
3 3 1 1 1 o]
4 [} 3 1 1 0
DOF$# Displacement
1 0
2 o]
4 0
7 D
8 o
DOF# Load
3 20000
6 ~-25000
MAT¢ E Alpha
1 29,.5E6 12E-6
Bl i B2 j B3I (Multi-point constr. Bl*Qi+B2*Qj=B3)

Program TrussZD - CHANDRUPATLA & HELEGUNDU

Output
EXAMPLE 4.1
NODE# X-Displ Y-Displ
1 1.3241E-06 -2,613BE-07

2 2.7120E~02 -1.B294E-06
3 5.6507E-03 -2.2247E-02
3.4850E-07 0.0000E+00

4
Elem# Streas
2.0000E+04
=2.1875E+04
=5.20B9E+03
4.1671E+03
DOF# Reaction
=-1.5833E+04
3.1254E+03
2.1875E+04
~4.1671E+D3
0.0000E+00

[ L A ]

00 bk N
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PROBLEMS

4.1, Consider the truss element shown in Fig. P4.1. The x-, y-coordinates of the two nodes are
indicated in the figure. If g = [1.5,1.0,2.1,4.3]" X 10~ in., determine the following:
(a) the vecior g’,
{b) the stress in the element,
(c) the k matrix, and
(d) the strain energy in the element.

0

E =30 X 10° psi ol

A=21in? 2 (50.0,40.0)
Y y
[—> X 1(10.0,10.0)
FIGURE P4.1

4.2. A truss element, with local node numbers 1 and 2, is shown in Fig. P4.2.
(a) What are the direction cosines € and m.

(b) Show the x'-axis, g1,4,, 43, 44,4}, g5 on the figure.
(c) Ifq = [0.,0.01, —0.025, —0.05]", determine g}, g3

(2,14}

2

(5.8}

FIGURE P4.2

4.3, For the pin-jointed configuration shown in Fig.

P43, determi i lues
K11, K3, and K;; of the global stiffness matrix. crermine the stiftness va

Qs
1 ; gl S5
500 mm
1250 mm?
E =200 GPa
FIGURE P4 3
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44. For the truss in Fig. P4.4, a horizontal load of P = 4000 Ib is applied in the x direction at
node 2.

(a) Write down the clement stiffuess matrix k for each element.
(b) Assemble the K matrix.

{¢) Using the elimination approach, solve for Q.

(@) Evaluate the stress in elements 2 and 3.

(e) Determine the reaction force at node 2 in the y direction.

1 =X@ %ﬁ
30 in ]

E =30 x 10%psi
A = 1.5in.2 for each member

FIGURE P4.4

4.5. For Fig. P4.4, determine the stresses in each element due to the following support move-
ment: support at node 2,0.24 in. down.

4.6, For the two-bar truss shown in Fig. P4.6, determine the displacements of node 1 and the
stress in element 1-3.

| 12kN
r 500 mm
Y1
N !
!
E=T0GPa for both {
A=200mm?/ members 300 mm :
|
. 3
400 mm
72
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4.7, For the three-bar truss shown in Fig. P4.7, determine the displacements of node 1 and the
stress in element 3,

Area of cross @

section of

each member = 250 mm?
E =200 GPa

FIGURE P4.7

4.8. For th_e two-dimcnsio_nal truss configuration shown in Fig. P4.8, determine the bandwidth
for stiffness storage in a banded form. Choose an alternative numbering scheme and

determine the corresponding bandwidth, Comment o
’ th for
decreasing the bandwidth. n the strategy that you use

QZI

? QZI—I

4 3 10 2 1 p >

FIGURE P4.8 ,




Problems 123

4.9. A smallrailroad bridge is constructed of steel members, all of which have a cross-sectional
area of 3250 mm? A train stops on the bridge, and the loads applied to the truss on one side
of the bridge are as shown in Fig. P4.9. Estimate how much the point R moves horizontally
because of this loading, Also determine the nodal displacements and element stresses.

—36m——+e——36m 3.6m—-|

FIGURE P4.9

4.10. Consider the truss in Fig. P4.10 loaded as shown. Cross-sectional areas in square inches are
shown in parentheses. Consider symmetry and model only one-half of the truss shown.
Determine displacements and element stresses. Let E = 30 X 10° psi.

30000 Ib
- 01t 20 ft ——»

aw ¥ o

o

154t

l (10)
T

(10)

151t

4

FIGURE P4.10

4,11. Determine the nodal displacements and element stresses in the truss in Fig. P4.11, due 10
each of the following conditions:
(a) Increase of temperature of 50°F in elements 1,3,7, and 8.
(b) Elements 9 and 10 are }in. too short and element 6 is § in. too long, owing to errors in
fabrication, and it was necessary to force them into place.
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FIGURE P4.11

(¢) Support at node 6 moves 0.12 in. down. Data: Take E = 30 X 10° psi, « = 1/150 000
per °F. Cross-sectional areas for each element are as follows:

Element Area (in.)
L3 25
24 12
5 1
6 4
789 17
1 5

4.12. A two-member truss is subjected to a load P = 8000 N. Member 1-2 is 400 mm long.
Member 1-3 was manufactured to be 505 mm long instead of 500 mm. However, it was
forced into place. Determine
(a) the stresses in the members assuming that member 1-3 was manufactured to its correct

length of 500 mm and
(b) the stresses in the members as a result of member 1
load P, of course).

(Hint. ’_l“reat this as an initial strain problem and use the temperature load vector
expression in the text.) Take cross-sectional areas = 750 mm? E = 200 GPa.

~3 being forced into place (and the

300 mm

FIGURE P4.12

N
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4.13. Expressions for the element stress (Eq. 4.16), and element temperature load (Eq. 4.22)
were derived for a two-dimensional truss element. Generalize these expressions for a
three-dimensional truss element.

4.14. Find deflections at nodes, stresses in members, and reactions at supports for the truss shown
in Fig. P4.14 when the 150-kip load is applied.

18in.2

18in.% 18in2

9ft 9t

i

150 kips (kip = 1000 1b) E = 30 x 105psi
FIGURE P4.14

4.15. Find the deflections at the nodes for the truss configuration shown in Fig. P4.15. Area = 8in?2
for each member.

10 kips
2{][(-———-»'4——————21]&———-—»'-1’*—20&‘1
9 10
25 - 10kips
1 i5ft
/ 1
5 6 7 8
! 20 ft
4 4
201t
2
%}
81t

40 ft
FIGURE P4.15
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4.17. If the members in the truss in Problem 4.9 h

Chapter4  Trusses

4,16, Modify program TRUSS2ZD to handle 3-D trusses and sclve the problem in Fig. P4.16.

¥
P =52801b - T
(uniferm along . ¥
z direction}

L=1x1x} -

(Area = 0.438 in.2)

:
—.-I

L=3X3X7p -
{Area = 2.43in.%)

131t }‘_a»_-i

‘*; L=axaxi
J

L=6x6x—i— e

(Area = 844 in?)

This bracing pattern '
shown is repeated K 7[
on all four -
sides of the 3-D truss. L=6x6x3|198f

FIGURE P4.16 3-D truss model

of a stee] tower, supportin .
wind loads. Pporling a water tank, and subjected to

qi
_ ‘ ave a moment of inertia I of 8.4 X 10° mm
?bout the axis perpendicular to the plane of the truss, check the compression members
or E_uler buckling. The Euler buckling load P, is given by (7E[) /€. 1f o, is the com

safety for buckling may be taken as P,/ A%

RUSS2D to calculate the factors of safety i?
e output file.
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4.18. (a) Analyze the three-dimensional truss shown in Fig. P4.18. Identify the tetrahedral pat-
terns in the truss,
(b) Generate the coordinates and connectivity if the two-stage truss shown is extended to
10 stages.

cross-sectional area 900 mm?

E = 200 GPa
8
l Coordinates units: meters

SkN -
Connectivity Node X b 4 Z
1-2 4-5 7-8 1 0 0 G
1-3 [ 4-6 | 7-9 2 0.25 ] 0
2-3 | 5-6 | 8-9 .3 __|. .6 _l0x | O
1-4 4-7 4 0 0 0.5
2-5 5-8 5 0.2s 0 0s
3-6 6-9 [ .6 [ 0 102 | 05
2.4 5.7 7 0 [¥] 1.0
3.4 6-7 8 025 ] 1.0
2-6 5-9 9 0 0.25 1.0

FIGURE P4.18
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Program Listing
Thaddkd bk bbb bbb hh b b hwddd b ah
b PROGRAM TRIISS2D *
i TWO-DIMENSIONAL TRUSSES *

'* T.R.Chandrupatla and A.D.Belegundu *

R E AT S22 S RS RS LA LSRR AL LELE LY 22yl

A MAIN PROGRAM
Private Sub cmdStart Click(}

Call InputData

Call Bandwidth

Call Stiffrness

Call ModifyForBC

Call BandSolver

Call StressCalc

Call ReactionCalc

Call Qutput

crdView.Enabled = True

cmdStart.Enabled = False
End Sub

Al

' ELEMENT STIFFNESS AND ASSEMBLY
Private Sub Stiffness()
ReDim 5(NQ, NBW]
Temm—— Global Stiffness Matrix ———--—
For N = 1 Te NE
picBox.Print “Forming Stiffness Matrix of Element "
Il = NOC(N, 1}: I2 = NGC(N, 2}
I3 = MAT(N)
X21 {12, L - X(11, 1}
Y21 {12, 2) - X(11, 2}
EL = 3qri{X21 * X21 + ¥21 * y21j
EAL = PM(I3, 1} * AREA(N} / EL
€5 = X21 / EL: B3N = Y21 / EIL
e ZTlement Stiffness Matrix SB() -—-——w---__

i N

SE{1, 1} = C3 * C5 * EAL
SE{l, 2) = C5 * SN * EAL: SE(2, 1) = SE(1l, 2
SE{l, 3} = -C5 * CS * EAL: SE[E‘I, i} = SE'.I;l, 13}
SE(l, 4} = -C3 * SN * EAL: SEf4, 1) = sE(1 4y
SE{2, 2) = SN * SN * gaf ’
SE{2, 3) = -CS5 * SN * BAL: SE(3 ‘2) = SE

H B 2
SE{2, 4) = -SN * SN * EAL: SE(4, 2) = sziz' 431;
SE{3, 3) = CS * CS * EaL !
SE(3, 4) = CS * SN * BAL: SE(4, 3} =
SE(4, 4) = SN * SN * EAL SEQ3, 43

~--;; --------- Tenperature Load TL() =~ _
E = PM{I3, 2} * DTN} * BM(I3, 1} + ARERX
TL{l)y = -EEQ0 * (5: TL{2) = -EEQ * SN W
TL(3} = EEQ * C5: TL{d) = EEQ * sN
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picBox.Print ".... Placing in Global Ioaaticus"
For II = 1 To NEN
NRT = NDN * (NOC(N, II} - 1}
For IT = 1 To NDN
NR = NRT + IT
I = NDN * {II - 1) + IT
Fer JJ = 1 To NEN
NCT = NDN * (NOCIN, J7 - 1)
For JT = 1 To NDN
J = NDN * {(JJ - 1) + JT
NC = NCT + JT -~ NR + 1
If NC > 0 Than
S(NR, NC) = S5(NR, NC) + SE{I, &

End If
Next JT
Next JJ
F(NR) = FINR) + TL{I}
Neaxt IT
Next II
Next N

End Sub
L]
b STRESS CALCULATIORS

Private Sub StressCalc{)

ReDim Stress (NE)
————— Stress Calculations
For I =1 To NBE

Il = NOC(I, 1)
I2 = NOC({I, 2)
I3 = MAT(I)

X21 = X{I2, 1} - X(I1, 1): Y21 = X(I2, 2) -~ X(I1l, 2}

EL = 3qr (X2l * X21 + Y21 * Y21}
C8 = X21 / EL

8N = Y21 / EL

Jz =2 * Il

Jl =J2 -~ 1

K2 =2 *» 12

Kl=K2 -1

DLT = {(F(Kl) - F{(J1)) * C5 + (F{K2) - F(J2)) * SN
Stress(I) = PM(I3, 1) * (DLT / EL - PM(I3, 2) * DT(I})
Next I
End sub
L]

P
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CHAPTER 5

Two-Dimensional Problems
Using Constant Strain Triangles

INTRODUCTION

The two-dimensional finite element formulation in this chapter follows the steps used
in the one-dimensional problem. The displacements, traction components, and distrib-
uted body force values are functions of the position indicated by (x, y). The displacement
vector u is given as

u = [u,o]" (5.1)

where u and v are the x and y components of w, respectively. The stresses and strains
are given by

o=lo.0,7,]" (5.2)
€= [€,,€,,7,]" (5.3)

From Fig, 51 representing the two-dimensional problem in a general setting, the body
force, traction vector, and elemental volume are given by

t = thickness at (x, y)
fiof, = body foree components
Per unit volume at (x. y)

FIGURE 5.1 Two-dimensional problem.

|
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f=[f.f, T T=[T.T,] and dV =tdA (5.4)

where ¢ is the thickness along the z ditection. The body force f has the units force/unit
volume, while the traction force T has the units force/unit area. The strain-displacement
relations are given by

du dv fou dv\|'
€= [ax’ay’(ay + Bx)] G.5)
Stresses and strains are related by (see Eqs. 1.18 and 1.19) _
o = De (5.6) ‘

The region is discretized with the idea of expressing the dispiacements in terms of
values at discrete points. Triangular elements are introduced first. Stiffness and load
concepts are then developed using energy and Galerkin approaches.

5.2 FINITE ELEMENT MODELING

The two-dimensional region is divided into straight-sided triangles. Figure 5.2 shows a
typical triangulation, The points where the corners of the triangles meet are called nodes,
and each triangle formed by three nodes and three sides is called an element. The ele-
ments fill the entire region except a small region at the boundary. This unfilled region
exists for curved boundaries, and it can be reduced by choosing smaller elements or el-
ements with curved boundaries The idea of the finite element method is to solve the con-
tinzous problem approximately, and this unfilled region contributes to some part of this

X

FIGURE 5.2 - Finite slement discretization. lﬁ

' Pl [
m- I [P I I
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approximation. For the triangulation shown in Fig. 5.2, the node numbers are indicated
at the corners and element numbers are circled.

In the two-dimensional problem discussed here, each node is permitted to displace
in the two directions x and y. Thus, each node has two degrees of freedom (dofs). As seen
from the numbering scheme used in trusses, the displacement components of node j are
taken as ;; , in the x direction and (; in the y direction. We denote the global dis-
placement vector as

Q = [QIJQZs"'!QN]T (57)

where N is the number of degrees of freedom.

Computationally, the information on the triangulation is to be represented in the
form of nodal coordinates and connectivity. The nodal coordinates are stored in a two-
dimensional array represented by the total number of nodes and the two coordinates per
node. The connectivity may be clearly seen by isolating a typical element, as shown in
Fig. 5.3. For the three nodes designated locally as 1, 2, and 3, the corresponding global
node numbers are defined in Fig. 5.2. This element connectivity information becomes an
array of the size and number of elements and three nodes per element. A typical con-
nectivity representation is shown in Table 5.1. Most standard finite element codes use
the cqnvention of going around the element in a counterclockwise direction to avoid cal-
culating a negative area. However, in the program that accompanies this chapter,
ordering is not necessary.

Table 5.1 establishes the correspondence of local and global node numbers and the
corresponding degrees of freedom. The displacement components of a local node j in

Fig.53are represented asgy;—,and gy; in the x and y directions, respectively. We denote
the element displacement vector as

9=1[0,9, ..,q]" (5.8)

Note that from the connectivity matrix in Table 5.1, we can extract the q vector from the
global Q vector, an operation performed frequently in a finite element program. Also,

9

T (x3!y3)

3———)-%

4y
¥ d, T
q.
T 2 (x3,3)
L '
q .
Gy j

X

FIGURE 5.3 Triangular element,
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TABLE 5.1 Element Connectivity

Three nodes
Element number
¢ 1 2 3
1 1 2 4
2 4 2 7
11 6 7 10
20 13 16 15

the nodal coordinates designated by (x;, y1) (x;, y»} and (x3, 3} have the global corre-
spondence established through Table 5.1. The local representation of nodal coordinates
and degrees of freedom provides a setting for a simple and clear representation of ele-
ment characteristics.

5.3 CONSTANT-STRAIN TRIANGLE (CST)

The displacements at points inside an element need to be represented in terms of the
nedal displacements of the element. As discussed earlier, the finite element method uses
the concept of shape functions in systematically developing these interpolations. For
the constant strain triangle, the shape functions are linear over the element. The three
shape functions N, N,, and N; corresponding to nodes 1,2, and 3, respectively, are shown
in Fig. 5.4. Shape function N, is 1 at node 1 and linearly reduces to 0 at nodes 2 and 3.
The values of shape function N, thus define a plane surface shown shaded in Fig. 5.4a.
N, and N, are represented by similar surfaces having values of 1 at nodes 2 and 3, re-
spectively, and dropping to 0 at the opposite edges. Any linear combination of these
shape functions also represents a plane surface. In particular, ¥, + N, + N, represents
aplane at a height of 1 at nodes 1, 2, and 3, and, thus, it is parallel to the triangle 123. Con-
sequently, for every N;, N,, and N,

N+N+N=1 (5.9)

N,, N;, and Nj are therefore not linearly independent; only two of these are indepen-
dent. The independent shape functions are conveniently represented by the pair £, 77 as

M=¢ N=n3 M=1-§(-7% (5.10)

where £,  are natural coordinates (Fig. 5.4). At this stage, the similarity with the one-
dimensional element (Chapter 3) should be noted: in the one-dimensional problem the
x-coordinates were mapped onto the £ coordinates, and shape functions were defined
as functions of ¢. Here, in the two-dimensional problem, the x-, y-coordinates are mapped
onto the £-, p-coordinates, and shape functions are defined as functions of £ and ».

The shape functions can be physically represented by area coordinates. A point
(x, y) in a triangle divides it into three areas, 4,, A, and A,, as shown in Fig. 5.5. The
shape functions Ny, Ny, and N, are precisely represented by
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—

T

(a)

FIGURE 5.4 Shape functions.

n=0

RV
A
1

|+A2+A3 =A
n=1
N
\\ / §=0

7

o~

FIGURE 5.5 Area coordinates,
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A A, As
M=7 MN=7 N-= Y (5.11)

where A is the area of the element. Clearly, N, + N, + N; = 1 at every point inside
the triangle.
Isoparametric Representation

The displacements inside the element are now written using the shape functions and
the nodal values of the unknown displacement field. We have

u = Mg + Nygs + Nags
v = Nig; + Nogy + Nygg (5.12a)
or, using Eq. 5.10,
u={(q1—gs)€ + (gs—gs)n + gs
v = (g —46)§ + (9 — ge)n t+ g5 (5.12b)
The relations 5.12a can be expressed in a matrix form by defining a shape function matrix
=0 a e o G
and
u = Nq (5.14)
For the triangular element, the coordinates x, y can also be represented in terms of nodal
coordinates using the same shape functions. This is isoparametric representation, This ap-

proach lends to simplicity of development and retains the uniformity with other com-
plex elements. We have

x = Nx; + Noxy + Nyxs
y=MNMn+ Ny + Noyy (5.15a)
or
x=(n—xn)}t+tn-—unntn
= -+t -nn+y (5.15b)
Using the notation, x;; = x; — x;and y; = ¥ - ¥;, we can write EqQ. 5.15b as
x = x13€ + X3m + X5
y=ynx +t ymnty (5.15¢)

This equation relates x- and y-coordinates to the £- and #-coordinates. Equation 5.12
expresses u and v as functions of £ and 5.

Example 5.1
Evaluate the shape functions N;, N;, and N; at the interior point P for the triangular ele-
ment shown in Fig. E3.1,

. T
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1(15.2)

3(4,7)

.
P (3.85,4.8)

2(7,3.5)

FIGURE ES.1

Examples 5.1 and 5.2.

Solution Using the isoparametric representation (Egs. 5.15), we have

3.85 = L5N, + 7N, + 4Ny = ~2.5¢ + 3n + 4
48 = 2N, + 35N, + TN, = ~5¢ ~ 35n + 7

These two equations are rearranged in the form

Solving the equations, we obtain £ = 0.3 and 5 =

238 -3 =015
536 +359=22

Nl =03

In evaluating the strains, partial derivatives of
tox and y. From Egs. 5.12 and 5.15, we sce that u,

0.2, which implies that

N,=02 N, =05 o

and » are to be taken with respect
vand x, y are functions of £ and n. That

is,u = u(x(£,m), y(£, ) and similarly v = p(x(¢, 1), ¥(£,m)). Using the chain rule for

partial derivatives of u, we have

du _duax
8  ox of
du _ duax
on _5;:?;

which can be written in matrix notation as

du

¢

du
on

"

dx
3
ax
on

dudy
dy 9
4 dudy
dy an

3y || ou
o0& ax
9y [ du
9 J{ 8y

(5.16)
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where the (2 X 2) square matrix is denoted as the Jacobian of the transformation, J:
ox dy
_| 9% o
J ax ay (517)
n an
Some additional properties of the Jacobian are given in the appendix. On taking the
derivative of x and y,
J = [xl3 .Vls] (5.18)
X;3 s
Also, from Eq. 5.16,
ou ou
ox | _ ..} 9¢
ou J ou (5.19)
ay an
where J~! is the inverse of the Jacobian J, given by
1 -
=Xz Xj3
detJ = x13¥23 — X33)13 (5.21)

From the knowledge of the area of the triangle, it can be seen that the magnitude of
det J is twice the area of the triangle. If the points 1, 2, and 3 are ordered in a counter-

clockwise manner, det J is positive in sign. We have

A = j|det]| (5.22)
where | | represents the magnitude. Most computer codes use a counterclockwise order
for the nodes and use det J for evaluating the area.

Example 5.2
Determine the Jacobian of the transformation J for the triangular element shown in Fig. ES.1.

J= X3 y13 - "2-5 _5.0
X123 M3 30 -35

Thus, det J = 23.75 units. This is twice the area of the triangle. If 1,2, 3 are in a clockwise
order, then det J will be negative. ™

Solution We have

From Eqgs. 5.19 and 5.20, it follows that

ou ou_  ou
ox 1 b %) Y J’w(.m

= — (5.23a)
ou detJ x du +x du
3y 23 2k ’361]
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Replacing u by the displacement v, we get a similar expression

av av av
o - y23¥ ) 3"13"6; 5.23b
dv | detd av av (5.23)
7y _xzsg + II3'6_7?'

Using the strain-displacement relations (5.5) and Egs. 5.12b and 5.23, we get

4 h'
du

ax
av
3y
du v

hay ax)

| ! visldr — g5)  — wislas — gs)
= Jets —x23(q2 — gs) + x13(qs ~ gg) {5.24a)
~x23(¢ — Gs) T x3(qs ~ gs) + ys(g — 4s) — Y13(qs — gs)

| From the definition of x;; and y,;, we can write Y1 = —y;zand y; = 3~ Vs
- and so on. The foregoing equation can be written in the form

1 Yasth + Yags + ¥iags
€= Jorg ) %2 T X394 + X546 (5.24b)
Y3291t Yoso + Xi3gs + yaiq, + X395 + Y1295

This equation can be written in matrix form as

€ = Bq (5.25)

where Bis a (3 X 6) element strain-displacement matrix relating the three strains to the
six nodal displacements and is given by

~ 1 Ya3 0 ¥ ) Y1z 0
2 Y3 Xnoya ox oy,

It may be noted that all the elements of the
of the nodal coordinates.

B matrix are constants expressed in terms

Example 5.3

Find the strain—nodal displacement matrices B¢
. es B* { in Fi ocal
numbers given at the corners, O the clements shown in ig. B53. Usel I
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i 2 e

e 3in.

FIGURE E5.3
Solution We have

1 | B 0 »m 0 2 O
B' = 0 x 0 x5 0 x

T det]
X3z a3 Xy Y X1 N2

1 2 ¢ 0 0 -2 0
== & -3 0 3 0 0
-3 2 3 0 0 -2

where det J is obtained from x;3343 — %303 = (3)(2) — (3)(0) = 6. Using the local num-
bers at the corners, B? can be written using the relationship as

-2 0 0 ¢ 2 0

¢ 3 0 -3 0 0 |
3 -2 -3 0 0 2

Potential-Energy Approach

The potential energ}r of the system, I1, is given by

n:%/eTDetdA— fqutdA— /uTTtd-‘,’-— Su®, (527
A A L ¢

In the last term in Eq. 5.27, i indicates the point of application of a point load P; and
P, =[P, P,];r. The summation in # gives the potential energy due to all point loads.

Using the triangulation shown in Fig. 5.2, the total potential energy can be written
in the form

= Zl/eTDetdA -> fuTrdi - fuTTtde— S uP.  (528a)
[ e I3 L i

e 2
or

= ;u, - E [qutdA - EfLuTTtdC - 21:,??,- (5.28b)

where U, = 3 [ €"Det dA is the element strain energy.




140

Chapter 5 Two-Dimensional Problems Using Constant Strain Triangles

Element Stiffness

We now substitute for the strain from the element strain—displacement relationship in
Eq. 5.25 into the element strain energy U, in Eq. 5.28b, to obtain

U, = % / «"Det dA (5.292)

1
= f q'BDBqt dA
£

Taking the element thickness ¢, as constant over the element and remembering that all
terms in the D and B matrices are constants, we have

U, = %qTBTDBrL,( ] dA)q (5.29b)
Now, j; dA = A,, where A, is the area of the element. Thus,
U, = 3q',A.B"DBq (5.29¢)
or
U, = 3q"k%q (5.29d)

where k° is the element stiffness matrix given by
k* = 1,A.B'DB (5.30)

' For plane stress or plane strain, the element stiffness matrix can be obtained by tak-
ing the a_ppropriate material property matrix I defined in Chapter 1 and carrying out
the previous multiplication on the computer. We note that k¢ is symmetric since D is
symmetric. The element connectivity as established in Table 5.1 is now used to add the

element sFiffness values in k“ into the corresponding global locations in the global stiff-
ness matrix K, so that

1
/= E‘Equeq (531)
= lQFK
5 KQ

ffhe glob;l stiffness matrix K is Symmf:tric and banded or sparse. The stiffness value Ki;

is zdeI:o when the dedgrees of freedom ; and j are not connected through an element. Ifi
.. ¢ global dof numbering shown in Fj TR t-
: . - g. 5.2, the bandwidth is rela

ed to the maximum difference in node numbers of an element, over all the elements. If

{1, 1z, and i; are node numbers of an element i i
e e, the max dif-
ference is given by s imum ¢lement node number

m, = max(|i, - i,

o = &), 1~ i) (5323)
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The half-bandwidth is then given by
NBW = 2(1 ggxm(m,) + 1) (5.32b)
where NE is the number of ¢lements and 2 is the number of degrees of freedom per node.

The global stiffness K is in a form where all the degrees of freedom Q are free. It
needs to be modified to account for the boundary conditions.

Force Terms

The body force term [ u”fz dA appearing in the total potential energy in Eq. 5.28b is con-
sidered first. We have

[uTﬂM =1, f (uf, + vf,) dA

Using the interpolation relations given in Eq. 5.12a, we find that

[uTﬂM = ql(tefxlNldA) + qz(tJy[Nlﬂ)
+a(is [mda) +ais, [maa) 63
+ qs(t,fx[NsdA) + qﬁ(tJ,[Nsﬂ)

From the definition of shape functions on a triangle, shown in Fig. 5.4, /. N, dA represents
the volume of a tetrahedron with base area A, and hcnght of comer equal to 1 (nondi-
menmonal) The volume of this tetrahedron is given by} X Base area X Height (Fig. 5.6)

as in
f NdA = A, (5.34)

Similarly, [, N;dA = [, N;dA = }A,, Equation 5.33 can now be written in the form

f w'fr dA = q'f (5.35)

€

where £ is the element body force vector, given as
tBAE
= T[fnf,,fx,fy,f,.f,]T (5.36)

These element nodal forces contribute to the global load vector F. The connectivity in
Table 5.1 needs to be used again to add f£* to the global force vector F. The vector f° is
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-t 1 pl-¢
°‘L”1‘*A‘LJ; Ny detJdndt=24, fgfn gandg=1 A,

FIGURE 5.6 Integral of a shape function.

of dimension (6 X 1), whereas Fis (N x 1). This assembly procedure is discussed in
Chapters 3 and 4. Stating this symbolically,

Fe— Y r (5.37)

A traction force .is a distributed load acting on the surface of the body. Such a force
acts on edges connecting boundary nodes. A traction force acting on the edge of an ¢l

ement cc?ntributes 10 ‘the global load vector F. This contribution can be determined by
considering the traction force term [ wTT

] e trac tdf. Consider an edge ¢,_,, acted on by a
traction T, 7, in units of force per unit surface area, shown in Fii 5.3?:: ’We have

/L w'Tedt = £ (T, + oT,)t de (5.38)

1-2
Using the interpolation relations involving the shape functions
u = Mgy + N,
V= Ng, + Nyg, (539
Tx = N:ITA'I. + Nszz
Ty = N1Ty1 + NzTyz
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(a) Component distribution

&2 =x~x1) +(y3 — y)*
_NTh s ]
R 7

Thn=—cpr Tnp=-cp;

Ty=-sp1 Typp=-spy

S
—_——
—————

(b) Normal pressure
FIGURE 5.7 Traction load.

and noting that
1 2 1 1
Nide = S8, Nydt =36, NNy dt = <6
-2 f-2 61-z
ti=Vin—x)f+(n-n’ (5.40)
we get
/ 0Tt dl = [q), @ G3, 4] T° (5.41)
fi-2
where T¢ is given by
T = fel- 2[2Tx1 + T;-Z,ZT,,] + TstTxl + 2T, Tyl + 2Ty2]T (5'42)

1t P B e
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If p, and p, are pressures acting normal to the line directed to the right as we move
from 1 to 2, as shown in Fig. 5.7b, then

Txl i Tx! = —Cp, T}'l = —§p, Tv2 = -8

where

PR R ¢ Sl )}

81—2 81—2

In Eq. 5.42, both normal and tangential distributed loads can be considered. The trac-
tion load contributions need to be added to the global force vector F.

The programs given in this book expect the loads in component point load form.
For distributed loads, we need to determine the equivalent point load components as
illustrated in the following example.

Example 5.4

A two-dimensional plate is shown in the Fig. E5.4. Determine the equivalent point loads at
nodes 7, 8, and 9 for the lincarly distributed pressure load acting on the edge 7-8-9.

3 MPa

(70, 60)
9

(85, 40)

(100, 20)
Thickness = 10 mm
FIGURE E5.4

Solution We consider the two edges 7-8 and §

For edge 7-8
7 =1MPa, p,=2MPa, x, =

-9 separately and then merge them.

lmmms n= 20 mm, Xy = 85 mm, ¥ = 40 mm,

G2= Vi —xF+ M = %) =25mm
=N X1 —x
C = = = 0.8, 5= ‘—‘1—'————2 =
€ €. 0.6
T = -pc=-08, T = —ps= ~0.6, T,

x2 = —pe = —~1.8,
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Ty2 =—D = -12

- 10 X 25

(2T + T3, 2T, + T2, T + 2T, T, + 2]

= [—133.3, ~100, -166.7, -125]*N
These loads add to Fy, F,, F5, and F¢, respectively.
For edge 8-9
Pr=2MPa, p,=3MPa, x;=85mm, y =40mm, x, =70mm, » = 60mm,
Gio= Vix - xf + (3 — pu)f =25mm

- N X, — X3
-08 s=2"%

'el—z 81—2
Ta=-pe=-16, Ty=-ps=-~12, Ty=—pe=-24

¢ = = 0.6

T =—pps = —18
x
T = 10 25
= [—233.3. —175, -266.7, ~200]TN
These loads add to Fi5, F g, Fi7, and Fj 4, respectively. Thus,
[FRs Re Fs FRs F; Fs}=[-1333 -100 —400 -300 -266.7 -200]N
|

[2Txl + Tx2s2T 23 Txl + 2T:2: + 2T, 2]

The point load term is easily considered by having a node at the point of applica-
tion of the point load. If i is the node at which P, = [P,, P,]" is applied, then

WP =0 P + QP ¥ (5.43)
Thus, P, and P,, the x and y components of P;, get added to the (2 — 1)th and (2i)th

components of the global force F.
The contribution of body forces, traction forces, and point loads to the global force

F can be represented as F < Y (f* + T*) + P.

Consideration of the stra;n energy and the force terms gives us the total potential
energy in the form
= }Q"KQ - Q'F (5.44)
The stiffness and force modifications are made to account for the boundary con-
ditions. Using the methods presented in Chapters 3 and 4, we have
KQ=F (5.45)
where K and F are modified stiffness matrix and force vector, respectively. These equa-
tions are solved by Gaussian elimination or other techniques, to yield the displace-
ment vector Q.
Example 5.5

A CST clement is shown in Fig. ES.5. The element is subjected to a body force f, = x*N/m’.
Determine the nodal force vector £*. Take element thickness = 1m.
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3(0,3)

1(0,0) 2(40)
FIGURE E5.5

The work potentialis — f f'udV, where f* = [f,,0]. Substituting foru = Ng. we obtain
the work potential in the form —q"f, where f* = f NTfdV, where N is given in Eq. 5.13.

£

All y components of f are zero. The x components at nodes 1,2,3 are given, respectively, by

[etav. [y, Ja-e-mpav

We now make the following substitutions: f, = x%, x = gx; + nx, + (1 — £ — 5)x; = 40,
dV = detJdnd{, det] = 24,,and A, = 6. Now, integration over a triangle is iltustrated
in Fig. 5.6. Thus,

lEfde= foi [_‘55{161,2)(12)(3,”35 = 32N

Similarly, the other integrations result in 9.6 N and 3.2 N. Thus,

£ = [32,0,9.6,0,32,0]'N u
Galerkin Approach
Following the steps presented in Chapter 1, we introduce
¢ =[6.4,] (5.46)
and
d¢, 0 ¥
«($) = [%%% + aai-‘] (547)

where ¢ is an arbitrary (virtual) displaceme i
h ot ot vector, cons i -
ditions. The variational form is given by 1stent with the boundary cont

r _
l[;o- ()t dA — (/;thft dA + jL¢fT; de + E ¢‘.Tpf.) =0 (5.48)

where the first term represents the internal vi
ses represents the external virtual work. On ¢
tion becomes

; [qne(‘b)tdA -~ (2 ]ed)Tt‘tdA + [,brhdf + Ecb?l’.-) 0 (549

rtual work. The expression in parenthe-
he discretized region, the previous equa-
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Using the interpolation steps of Egs. 5.12-5.14, we express

& = Niy (5.50)
«(d) = By (5.51)

where
4’ = [‘I’I! ‘l’Za "’3!‘1’4; "I'SS lpﬁ]'r (5'52)

represents the arbitrary nodal displacements of element e. The global nodal displacement
variations ¥ are represented by

¥ = [0, ¥, TN (5.53)
The element internal work term in Eq. 5.49 can be expressed as

'[ €' De(d)t dA = f q"B"DBYt dA

Noting that all terms of B and D are constant and denoting ¢, and A, as thickness and
area of element, respectively, we find that

f e"De(d)t dA = "B'DBy, / dA g
| = q".AB'DBY (5.54)
= Tk“b
where k? is the clement stiffness matrix given by
k* = 1,A,B"DB (5.55)

The material property matrix D is symmetric, and, hence, the element stiffness matrix
is also symmetric. The element connectivity as presented in Table 5.1 is used in adding
the stiffness values of k* to the global locations. Thus,

3 [ eDe(oyda = 3 ake = S vy
= PYKQ (5.56)

The global stiffness matrix K is symmetric and banded. The treatment of external vir-
tual work terms follows the steps involved in the treatment of force terms in the potential

energy formulation, where u is replaced by ¢. Thus,
f Tt dA = ' (5:57)

which foliows from Eq. 5.33, with f* given by Eq. 5.36. Similarly, the traction and point load
treatment follows from Eqs. 5.38 and 5.43. The terms in the variational form are given by

Internal virtual work = ¥'KQ (5.58a)
External virtual work = ¥TF : (5.58b)
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The stiffness and force matrices are modified to use the full size (all degrees of free-
dom), using methods suggested in Chapter 3. From the Galerkin form (Eq. 5.49), the ar-
bitrariness of ¥ gives

KQ =F (5.59)

where K and F are modified to account for boundary conditions. Equation 5.59 turns out
to be the same as Eq. 5.45, obtained in the potential-energy formulation.

Stress Calculations

Since strains are constant in a constant-strain triangle (CST) element, the correspond-
ing stresses are constant. The stress values need to be calculated for each element. Using
the stress-strain relations in Eq. 5.6 and element strain-displacement relations in
Eq. 5.25, we have

o = DBq (5.60)

The connectivity in Table 5.1 is once again needed to extract the element nodal dis-
placements g from the global displacements vector Q. Equation 5.60 is used to calculate
the element stresses. For interpolation purposes, the calculated stress may be used as the
value at the centroid of the element.

Principal stresses and their directions are calculated using Mohr’s circle relation-
ships. The program at the end of the chapter includes the principal stress calculations.

Detailed calculations in Example 5.6 illustrate the steps involved. However, it is ex-
pected that the exercise problems at the end of the chapter will be solved using a computer.

Example 5.6

For the two-dimensional loaded plate shown in Fig. E5.6, determine the displacements of

nodes 1 aI}d 2 and t}‘le element stresses using plane stress conditions, Body force may be
neglected in comparison with the external forces,

y 1000 1t

—

Thickness ¢ = 0.5 n.,
E =30 % 10° psi, v = 0.25

FIGURE E5.6
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Solation For plane stress conditions, the material property matrix is given by

E 1 ;’ g 32%10° 08x 10" 0O
D=m 1—» =|08x 107 32 x107 0
00 = 0 0 12x10

Using the local numbering pattern used in Fig. ES.3, we establish the connectivity as
follows:

Nodes
Element No. 1 2 3
i 1 2 4
2 3 4 2

On performing the matrix multiplication DB*, we get

1.067 -04 0 04 -1067 O
DB' = 10"/ 0267 —-16 0 16 -0267 0
-06 04 06 0 0 —0.4

and

-1.067 04 ¢ -04 1067 0O
DB = 107 —0.267 1.6 0 -16 0267 0O
0.6 04 -06 O 0 04

These two relauonshlps will be used later in calculating stresses using o° = DB*q. The mui-
tiplication 1,4 ,B’ DB° gives the element stiffness matrices,

1 2 3 4 7 8 = Globai dof
[0983 —-05 —045 02 -0533 03
14 03 -12 02 -02

k! = 107 045 0 0 -0.3
1.2 -0.2 0
Symmetric 0533 0
- : 0'2 =~
5 6 7 8 3 4 + gGlobal dof

(0983 -05 —045 02 —0533 03 ]
14 03 =12 02 -02

K =10 0.45 0 H ~0.3
1.2 ~02 0
Symmetric 0533 0
02

In the previous element matrices, the global dof associatioa is shown on top, In the

problem under consideration, ;, Qs, @5, Oy, and Oy, are all zero. Using the elimination ap-
proach discussed in Chapter 3, it is now sufficient to consider the stiffnesses associated with
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the degrees of freedom Q;, @, and . Since the body forces are neglected, the first vector
has the component F, = —1000 b, The set of equations is given by the matrix representation

0983 —045 027](0, 0
107] -045 0983 0 Qb =4 0O
02 o 14ilo, —1000

Solving for (0, Oy, and @, we get
Q =1913x10%in. Q;=0875x10%n. @, = -7436 X 107in
For element 1, the element nodal displacement vector is given by
q' = 1079[1.913,0,0.875, ~7.436,0,0]7

The element stresses o are calculated from DB'q as

o' = [-933,-1138.7, -62.3]) psi
Similarly,

¢° = 10750, 0,0,0,0.875, —7.436]"

= [93.4,234,-297.4]  psi

The computer results may differ slightly since the penalty approach for handling boundarY
conditions is used in the computer program.

Temperature Effects

If the distribution of the change in temperature AT(x, y) is known, the strain due to

this change in temperature can be treated as an initial strain €. From the theory of me-
chanics of solids, €, can be represented by

€ = [aAT, aAT, 0T (5.61)
for plane stress and
€ = (1 + v)[@AT,aAT,0]T (5.62)
for plane sirain. The stresses and strains are related by
o = D(e — ¢) (5.63)

The effect of temperature can be accounted for b

y considering the strain energy
term. We have &

1 .
U= 2 / (€ — €)' D(e - €)1 dA

1 :
=5 / (€'De ~ 2¢"De, + ] Dey)r dA (5.64)

The first term in the previous expansion gives the stiffness matrix derived earlier. The
last term is a constant, which has no effect on the minimization process. The middle

term, which yields the temperature load, is now considered in detail. Using the strain-
displacement relationship € = Bq, '
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l eDeytdA = 3 qT(B"Dey)t, A, (5.65)

This stepTis directly obtained in the Galerkin approach where T will be €"(¢) and g7
will be J'.
It is convenient to designate the element temperature load as
©° = 1,A B"D¢, (5.66)
where _
o° = [el’ 62, 63’ 640 65! BG}T (5'67)

The vector €, is the strain in Eq. 5.61 or 5.62 due to the average temperature change in
the element. ©° represents the element nodal load contributions that must be added
to the global force vector using the connectivity.

The stresses in an element are then obtained by using Eq. 5.63 in the form

o = D(Bq — &) (5.68)

Example 5.7
Consider the two-dimensional loaded plate shown in Fig. E5.6. In addition to the condi-
tions defined in Example 5.6, there is an increase in temperature of the plate of 80°F The
coefficient of linear expansion of the material a is 7 X 107%/°F. Determine the additional
displacements due to temperature. Also, calculate the stresses in element 1.

Solution We have a = 7 X 107%/°Fand AT = 80°F. So

alAT 56
€ = | «AT | = 104 56
0 0

Thicknesst equals 0.5, and the area of the element A is 3 in®. The element temperature loads are
o' = 1A(DB") ¢,
where DB is calculated in the solution of Example 5.5. On evaluation, we get
(01 = [11206 ~16800 0 16800 —11206 0)"
with associated dofs 1,2,3,4,7,8,and
(0%)T = [-11206 16800 O —16800 11206 0]"

with associated dofs 5,6,7,8,3,and 4.
Picking the forces for dofs 1,3, and 4 from the previous equations, we have

FT=(F F F]=[11206 11206 16800}
On solving KQ = F, we get
(@ @5 @]=[1862X 1077 1.992 x 107 0.934 X 107*]in

The displacements of element 1 due to temperature are
g =[1862X 107 0 1992 X107 0934 x 107 ¢ o)”

T o+ et e o
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The stresses are calculated using Eq. 5.68 as
o = (DB))'¢' - De,
On substituting for the terms on the right-hand side, we get
ol =10°1.204 -2.484 0.78] psi
We note that the displacements and stresses just calculated are due to temperature change. B

54 PROBLEM MODELING AND BOUNDARY CONDITIONS

The finite element method is used for computing displacements and stresses for a wide
variety of problems. The physical dimensions, loading, and boundary conditions are
clearly defined in some problems, similar to what we discussed in Example 5.4. In other
problems, these are not clear at the outset.

An example is the problem illustrated in Fig. 5.8a. A plate with such a loading can
exist anywhere in space. Since we are interested in the deformation of the body, the
symmetry of the geometry and the symmetry of the loading can be used effectively. Let
x and y represent the axes of symmetry as shown in Fig, 5.8b. The points along the x-axis
move along x and are constrained in the y direction and points along the y-axis are con-
strained along the x direction. This suggests that the part, which is one-quarter of the full
area, with the loading and boundary conditions as shown is all that is needed to solve
the deformation and stresses.

As another example, consider an octagonal pipe under internal pressure, shown in
Fig. 5.9a. By symmetry, we observe that it is sufficient to consider the 22.5° segment
shown in Fig. 5.9b. The boundary conditions require that points along x and n are con-
strained normal to the two lines, respectively. Note that for a circular pipe under inter-
nal or external pressure, by symmetry, all points move radially. In this case, any radial
segment may be considered. The boundary conditions for points along the x-axis in
Fig. 5.9b are easily considered by using the penalty approach discussed in Chapter 3.
The boundary conditions for points along the inclined direction n, which are considered
perpendicular to », are now treated in detail. If node ; with degrees of freedom Q;;_, and

F

30 MPa 30 mm ‘”‘ 30 MPa

!

30 mm

|

le——— 60 mm -—-_>4 ________________________ K
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FIGURE 5.8 Rectangular plate.
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FIGURE 5.9 Octagonal pipe,

FIGURE 5.10 Inclined roller support.

Q,; moves along n as seen in Fig. 5.10 and 8 is the angle of inclination of 7 with respect
to x-axis, we have

QZi—l sing - QZ[COS 6=0 (5.69)
This boundary condition is seen to be a multipoint constraint, which is discussed in

Chapter 3. Using the penalty approach presented in Chapter 3, this amounts to adding
a term to the potential energy as in

I1 = }Q™KQ ~ QF + ;C(Qy;_ sin 0 — @y, cos §)’ (5.70)

where Cis a large number.
The squared term in Eq. 5.70 can be written in the form

_ Csin’8 —Csin8cosd | Qs
3C(Qai-15in 0 — Q;c0860)? =3[0y, Qz"][—C sinfcos@  Ccos’d ]{ Qs

(5.71)

The terms C sin® 8, —C sin 8 cos 8, and C cos’ @ get added to the global stiffness matrix,
for every node on the incline, and the new stiffness matrix is used to solve for the dis-
placements. Note that these modifications can also be directly obtained from Eq. 3.82
by substituting 8, = 0, B; = sinf, and B, = —cos 8. The contributions to the banded
stiffness matrix S are made in the locations (2i — 1,1), (2/ — 1,2), and (2i, 1) by adding
C sin? 8, —C sin 8 cos 8, and C cos? 8, respectively.
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Some General Comments on Dividing into Elements

When dividing an area into triangles, avoid large aspect ratios. Aspect ratio is defined
as the ratio of maximum to minimum characteristic dimensions. Observe that the best
elements are those that approach an equilateral triangular configuration. Such config-
urations are not usually possible. A good practice may be to choose corner angles in the
range of 30° to 120°.

In problems where the stresses change widely over an area, such as in notches and
fillets, it is good practice to decrease the size of elements in that area to capture the stress
variations. The constant-strain triangle (CST), in particular, gives constant stresses on the
element. This suggests that smaller elements will better represent the distribution. Bet-
ter estimates of maximum stress may be obtained even with coarser meshes by plotting
and extrapolating. For this purpose, the constant element stresses may be interpreted as
the values at centroids of the triangle. A method for evaluating nodal values from con-
stant element values is presented in the postprocessing section of Chapter 12.

Coarse meshes are recommended for initial trials to check data and reasonable-
ness of results. Errors may be fixed at this stage, before running larger numbers of ele-
ments. Increasing the number of elements in those regions where stress variations are
high should give better results. This is called convergence. One should get a feel for con-
vergence by successively increasing the number of elements in finite element meshes.

ORTHOTROPIC MATERIALS

Certain naturally occurring materials such as crystals of topaz and barite are orthotropic.
Wood may also be considered to be orthotropic as a first approximation. Unidirection-
al fiber-reinforced composites also exhibit orthotropic behavior. Orthotropic materials
have three mutually perpendicular planes of elastic symmetry. We will denote 1,2, and
3 as the principal material axes that are normal to the planes of symmetry. For example,
Fig. _5.11 shows a cross section of a tree, with 1 being the axis along the wood fibers
{grain), 2 being the axis tangential to the annual rings, and 3 the axis along the radial di-

rec:tion. The generalized Hooke's law as referred to coordinate system 1, 2, 3 can be
written as* T

1 LY vy 1
€ =—o ~ =g, - >t -
E' E? E, T3 T Gn'rza
Y12 1 120 1
€25 — L0 T a0y — = =
E E, 2 E, T3y Y13 G, T3 (5.72)
_ "3 V23 1 1
&= —-——g, — — i _
. E, ! E, o2 5303: Yiz2 = a':TIE

gh'ere Ey, E;, and E; are the Young's moduli along the principal material axes; ¥4, is the
oisson’s ratio that characterizes the decrease in the 2-direction during tension applied in
the 1-direction; »,, is the Poisson’s ratio that characterizes the decrease in the 1-direction

*S. G. Lekhnitskii, Anisotropic Plates, Gordon and By

lated by $. W.Tsai and T. Cheron) each Science Publishers, New York, 1968 (trans-
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('Ihng;ntial) 1 (Along the grain)

2

(Longitudinal)

1
Fiber Matrix
(b)

Slices

()
FIGURE 5.12 Plane stress orthotropic bodies. (a) wood planks, (b) unidirectional composites.

due to tension in the 2-direction, and sc on; and G5, G|, and G, ; are the shear moduli
that characterize changes of angles between principal directions 2 and 3,1 and 3,and 1 and

2, respectively. Due to symmetry of Eqs. 5.72, the following relations obtain:
Ewy = By, Eyvy; = Es, Esv ; = Epsy,, (5.73)

Thus, there are nine independent material constants. In this chapter, we will con-
sider only the problem of plane stress. Thus, we consider a thin body that lies in the 1,2
plane. Examples of such thin bodies are shown in Figs. 5.12a and b. Figure 5.12a shows
how thin planks are obtained from a tree. Figure 5.12b shows a unidirectional compos-
ite that can be modeled as a plane stress orthotropic problem. In actual design, many lay-
ers of these unidirectional composites are stacked at different fiber orientations to form
a laminate. A single-layer composite may be viewed as a building block for laminate
constructions. In a unidirectional composite, the Young’s modulus along the fibers
is greater than that across. That is, E, > E;. The axis 1 is often referred to as the
longitudinal axis, and 2 is referred to as the transverse axis. In plane stress, ail stresses and
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displacements are assumed to be averaged across the thickness and are consequently
only functions of 1,2. The loading is confined to be in the 1, 2 plane.
Neglecting the z-component stresses, we have, from (5.72),
1 1 1
P e (5.74)

= —d o 0 €& =——0+ 0o =7
E, 1 E % E, E, 23 Y12 Gi 12

These equations can be inverted to express stress in terms of strain as

€;

E, Eyyy 0
0 1—wvpry 1 —pan €
o, P = Ev, E, & (5.75)
Ti2 L=wpry 1= vy Y12

0 0 Gy,

The 3 X 3 coefficient matrix in expression 5.75 will be denoted by D™, the super-
script m denoting the material axes. Thus, D]} = E,/(1 — vo04), DTy = Gy3, and 50
on. D™ is symmetric since E;»,; = E,v,,. Four independent constants are involved here.

When an orthotropic plate is loaded parallel to its material axes, it results only in
normal strains and not in shear strains. When the load is not parallel to any of its mate-
rial axes, it results in both normal and shear strains. To be able to analyze general prob-
lems of this sort, we will consider an orthotropic material with its material axes oriented
at an angle 8 with the global x-, y-axes as shown in Fig. 5.13. Note that 8 is measured coun-
terclockwise from the x-axis to the 1-axis. A transformation matrix T is introduced as

cos’ § sin’ @ 2sin 6 cos &
T= sin? ¢ cos’ o ~2sinfcos § (5.76)
~sinfcosf sin@cos® coslf — sinZ@

The relation§ between the stresses (strains) in the material coordinate system and the
global coordinate system are

2] o, €1 €y

o =T a,?, 1‘2 =1d & (5.77)
1

T2 Txy :2")'12 zyx}

FIGURE 5.13 Orientation of material axes with res

wise angje from x-axis 1o 1-axis. Nofe: 4 = 330° 45 pect to global axes; & is the counterclock-

equivalent to § = —3(°,
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The important relation we need is the D matrix, which relates stress and strain in the
global system as

oy Dy Dy, Dy €,
oyt =|Dn Dy Dy €, (5.789)
Try Dy Dyy Dy Yy

It can be shown* that the D matrix is related to the D™ matrix as

Dy = Dfcos*@ + 2(DP, + 2D, sin* @ cos’ 8 + DI, sin' 6

Dy, = (D}, + D, — 4DJ5) sin’ 6 cos’ @ + Dyy(sin* @ + cos* )

Dy; = (D7, - DY -~ 2D%)sinfcos’6 + (D[ — D3, + 2D%;) sin’ 6 cos 8

D,, = D} sin* 0 + 2(D] + 2D3) sin’ 6 cos® 0 + D, cos* o

D,y = (D, — Doy — 2D%)sin*@cos@ + (D7 — DT, + 2D7) sinf cos’ @

Dys = (D + D2 — 2D7, ~ 2D7,)sin*fcos® 8 + DI(sin'0 + cos*d)  (5.79)

Implementation of (5.79) into the finite element program CST2 is straightforward. The
existing isotropic P matrix is replaced by that given in E. (5.79). The angle 8 will be as-
sumed to be constant within each finite element, aithough the angle can vary from one
element to another. This variation in § makes it possible to tailor the material so as to
be most effective in resisting the loads. After equation solving and obtaining the stress-
¢s in the global coordinate system, the stresses in the material coordinate system can be
obtained using Eqs. 5.77 and then inserted into an appropriate failure theory to deter-
mine the factor of safety.

Temperature Effects

We have studied how temperature strains are handled for isotropic materials, The
stress-strain law is of the form ¢ = D(e — €). This same relation also holds for or-
thotropic materials. In material coordinates, an increase in temperature AT will cause
normat strains, but no shearing strain. Thus, €} = @, AT and €3 = «,AT. The T-matrix in
Eq. 5.76 can be used to transform the coefficients of thermal expansion as

o, o
1“5’ =T a (5.80)
2% 0
The initial strain vector €° is now given by
el a, AT
&€ t=Sa, AT (5.81)
Yo a,, AT

*B.D. Agarwal and L. J. Brouiman, Analysis and Performance of Fiber Composites, John Wiley & Sons,
Inc., New York, 1980,
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TABLE 5.1 'Typical Properties for Some Orthotropic Materials

Material E 10°psi EJE, ¥ E /G, ay, 107°/°F @, 107%/°F
Balsa wood 0.125 20.0 0.30 29.0 — —
Pine wood 1.423 238 0.24 133 — —_
Plywood 1707 20 0.07 171 — —
Boron Epoxy 33.00 157 023 4714 3.20 11.0
S-glass epoxy 7.50 4412 0.25 9.375 350 11.0
Graphite 23.06 14.587 0.38 24.844 0.025 112
{Thornel 300}

Kevlar-49 12.04 14.820 0.34 39.500 -12210 -1.28 19.4

Typical values of the elastic constants for some orthotropic materials, that is, wood

materials and unidirectional composites, are given in Table 5.1. The unidirectional com-
posites are made from embedding fibers in a matrix. In the table, the matrix is an epoxy

resin

with £ ~ 0.5 X 10°psi, v = 0.3.

Example 5.8

This example shows how more detailed models can be analyzed using program CST with
pre- and postprocessing programs of Chapter 12.

Consider the problem shown in Fig.E5.8a. It is necessary to determine the location
and magnitude of the maximum y stress in the plate.

Use of the mesh generation program MESHGEN requires mapping the region into
a checkerboard and specifying the number of subdivisions for discretization. The detailed
explanation of using MESHGEN is given in Chapter 12. Here, the emphasis is only on using
the program to generate input data for CST. Thus, using the checkerboard in Fig. ES.8b, 2
36-node, 48-clement mesh is created as shown in Fig. E5.8¢. Program PLOT2D has been used
to generate the plot after executing MESHGEN, A text editor is then used to define the
boundary conditions, loads, and material properties. The MESHGEN input file is listed
subsequently. MESHGEN is run using this input file. The output of MESHGEN is then
edited using any text editor, The changes and additions are shown in bold face in the CST
input file, which follows the MESHGEN input file listing, Note that the structure of input
files is shown in the inside front cover of the book. The resulting data file is input into CST.
:n sum;'lggl.ﬂ the order in which programs are executed is MESHGEN, PLOT2D. text edi-

or,and CST .

From the output. we note the maxi ; i ing i
batched o e Pig_ e aximum y stress 1o be 1768.0 psi occurring in the

The rn.::ader is urged to follow these steps, which will help in the solution of complex
problems }Mth less effort. Programs BESTFIT and CONTOURA or CONTOURB can be
used at this stage for obtaining nodal stresses and contour plots, as discussed in Chapter 12,
Contour plotting with programs BESTFIT and CONTOUR’ is shown schematically it
Fig. E5.8d. Aiso, the stresses in the elements may be considered to be accurate at the centroids

of the elements and can be extrapolated to obtain j '
the maxim, ; E6.3cor
E7.2b for examples of such extrapolation, o siresses, See Figs "
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{a) Region
STEPS
1. Divide the region into four-sided
subregions

2. Create a block diagram
3. Number the blocks, corer nodes and
sides on the block diagram
4, Transfer these numbers onto the region
5. Create input file and run MESHGEN.BAS
6. Run PLOTZD.BAS
7. Use text editor to prepare cst. inp
see front pages of book for the structure of
input file
8. Run CST
9. Run BESTFIT followed by
CONTOURA. BAS and CONTOURB.BAS
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(¢) Finite clement mesh viewed using PLOT2D.BAS

STEP1

Mesh data file Prog[am Nodal stress file
e

Element stress file BESTFIT

STEP 2

Mesh datz file COP;I?l%a{nJ]RA Contour plots

Nodal stress file or CONTDUR.B

(d) Contour plotting using programs BESTFIT and CONTOUR

FIGURE £5.8
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Input Data File

MESHGEN Input File
Example E5.8
Number of Nodes per Element <3 or 4>

3

BLOCK DATA

§5-Spans (NS} #W-Spans (NW) #PairsOfEdgesMergedN3J)
1 4 0

SPAN DATA

S-Span# Num-Divisijons (for each S-Span/ Single division = 1)
1 3

W-Span# Num-Divisions (for each W-Span/ Single division = 1)
1 2

2 2
3 2
4 2

BLOCK MATERIAL DATA (for Material Number cother than 1)

Block# Material (Void => 0 Blocki#f = 0 completes this data)
o]

BLOCK CORNER DATA

Cornerxr# X-Coord Y-Coord {Corner# = 0 completes this data)

i [t} 4

2 0 0

3 1.4142 4.5858
4 ) 0

5 2 6

6 5 &

2 1.4142 7.4142
8 5 12

9 0 8
10 Q 12

0

MID POINT DATA FQOR CURVED OR GRADED SIDES

S5-3ide# X-Coord Y-Coord (Side# = 0 completes this data)
0

W-5ide§ X-Coord Y-Coord (Side# = 0 completes thi
1 . 7654 4,1522 o s data)

3 1.8478 5.2346
5 1.6478 6.7654
7 L1654 7.8478
0

MERGING SIDES (Nodel is the lower number)
Pair# SidelNodel SidelNodel Side2Nodel SideZ2node2
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Exarpls E5.8

3 48 1 2 3 2
ND NL NMPC
[ 3 0
Nodeft X

1 0 4

2 0 2.666667

Y

35 0 10.66667
3 0 12
Elem¥$ Nodel Node2 Node3

CST INPUT FILE (MESHGEN OUTPUT FILE AITER TEXT IDITING)

NN NE NM NDIM NEN NIN
———

—

Hatér.:l.al# Thickneas TempChange

Enter data

1 2
6 5
2 3
35

31
36

34
32
35

.4
-4
-4
30 1
36 1
3l 1

5 1
2 1
6 1

Spacified Displacement

0

0

0
.4
-4
4

THICKNESS,
AND TEMP.
CHANGE

0
0
e

8
16
24

pboré Load
-200

OO0 0O0oO0Q

? Data Added

-400
=200

MATE B

PNU CTE

J

<< BTRESS AMALYSIS USING CONETANT STRAIN TRIMNGLE >>
EXAMPIE 5.5

NN NE NM NDIM NEN NDN

4 2 1 2 3 2

ND NL NMPC
5 1 0

Noded X

1 e .3 O

1
2
3
4

Elem# N1

1
2
DOF#

oW~ oh N

DOF#
4

Y

a o
3 2
o 2
4] 0
N2 N3 Mar# Thickness TempRise

4 1 2 1 .5 0

3 a4 2 1 .5 0
Displacement

0

0

0

0

0
Load
-1000
Nu

E
3086 .2
Bl 1 B2 3§ 83

MAT#
1

5

Alpha
12E-6
{Multi-point constr. B1+Qi+B2*Q)=B3)




.
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Progzam Cst2D - CHANDRUFATLA & EELEGUNDU

Output

EXAMPLE 5.5

Plane Stress Analysis

NODE# X-Displ Y-Displ

1 1.9076E-05 -5.B61BE-0Q9

2 8.7326E-06 -7.4160E-05

3 1.9216E-09 -1.1840E-09

4 =-1.9216E-4% -9.7090E-11
ELEM# sX sY TXY sl 52 ANGLE SK->51

1 -9.3122E+01 ~-1.1356E+03 —6.2082E+01 -8.943BE+01 -1.1393E+03 -
3.39€1E+00

2 9,3122E+01 2.3264E+01 -2.9661E+02 3.5685E+02 -2.4047E+02 -—4.1642E+01
DOF# REACTION

2 B.2065E+02

5 =~2.6802E+02

6 1.6575E+02

7 2.68902E+02

B 1,3593E+{1

PROBLEMS

5.1 Th:e nodal coordinates of the triangular element are shown in Fig. P5.1. At the interior
point P, the x-coordinate is 3.3 and N, = 0.3. Determine N,, N,, and the y-coordinate
at point P.

3(4,6)

2(5,3)

1{L,2)

——- X

FIGURE P5.1

5.2. Determine the Jacobian for the (x,y) — (& : i
. . , 1) transformat m hown I
Fig. P5.2. Also, find the area of the triangle. ) ton for the element 5

0

0
y A

3(7,9)

. /

2=

éu,s)
£

1(3,2)

/ \§=1

=1{

—

FIGURE PS.2
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5.3, For point P located inside the triangle shown in Fig, F'5.3, the shape functions N, and N;
are 0.15 and (.25, respectively. Determine the x- and y-coordinates of point P.

33,9

2(4,2)

1(1,1)

FIGURE P5.3

£.4. In Example 5.1, determine the shape functions using the area coordinate approach. (Hint:
Use Area = 0.5(x;3023 — Xa3045) for triangle 1-2-3.)

5.5, For the triangular element shown in Figure P5.5, obtain the strain-displacement relation

matrix B and determine the strains €., €,, and y,,.

qi = {001 g = _'G.W
@3 =0003 g4 =0.002
i gs=—0002 g¢ = 0,005

) &4

q

.

Note: q and x have the same units.

FIGURE P5.5
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8.6. Figure P5.6 shows a 2-D region modeled with 12 CST elements.
(#) Determine the bandwidth NBW {also referred to as the “half-bandwidth”).
(b) If the multipoint constraint Q; = Qy, is imposed (1 and 18 are degree of freedom num-
bers corresponding to x displacement of node 1 and y displacement of node 9,
respectively), what is the new value of NBW?

1 2 3 4 5
] 7
8 9 10
11 12 13
FIGURE P5.6

5.7. Indicate all the mistakes in the following finite element models with CST elements:

load

(a) -

(b)

) e
FIGURE P5.7
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5.8. For a two-dimensional triangular element, the stress—displacement matrix DB appearing
in o = DBq is given by

2500 2200 ~1500 1200 -4400 1000
DB = | 5500 4000 4100 2600 ~-1500 1200 (N/mm’
2000 2500 —4000 1800 2200 4400

If the coefficient of linear expansion is 10 X 1076/°C, the temperature rise of the element
is 100°C, and the volume of the element is 25 mm®, determine the equivalent temperature
load @ for the element.

5.9, For the configuration shown in Fig. P.5.9, determine the deflection at the point of load
application using a one-element model. If a mesh of several triangular elements is used,
comment on the stress values in the elements close to the tip,

100N

30 mm

l———b-SUN

20mm

f=10mm
E = 70,000 MPa
v=1{3

FIGURE P5.9

5.10. Determine the bandwidth for the two-dimensional region for the triangular element divi-
sion with the node numbering shown in Fig. P5.10. How do you proceed to decrease the

bandwidth?
1 2 3 4 5
/ 8 10

& 9
15

12 14

11 13
Qs1
I pa—— s
16 17 18

FIGURE P5.10

PR




|
;
!f
.
{

166

Chapter 5 Two-Dimensional Problems Using Constant Strain Triangles

5.11. Consider the four-element CST model in Fig. P5.11 subjected to a body force f = »* N/m’
in the y direction. Assemble the global load vector Fy,,, for the madel.

1 4 Coordinates. m
Node x- ¥-
1 0 2
5 2 0 1
2 5 30 0
4 15 2
5 15 1
6 13 0
3 6

thickness = 1m

FIGURE P5.11

5.12. Assemble the load vector Fg, at the three nodes on the inner boundary, which is subjected
to a pressure p = 0.9MPa. (See Fig, P5.12.)

FIGURE P5.12
5.13. Consider th_e thr‘ec-noded triangular element in Fig. P5.13. Express the integral for area
moment of inertia [ = [ y*dA as
3
Y
W 4 g
¥
1
-+ X
FIGURE Ps,13




Problems 167

1 =y[R]y,

where ¥, = [y, 1317 = a vector of y-coordinates of the three nodes, and Risa 3 x 3
matrix. (Hint: Interpolate y using shape functions N;,)

514, Compute the integral = LNIMN; dA, where N; are the linear shape functions for a
three-noded CST element.

5.15. Solve the plane stress problem in Fig. P5.15 using three different mesh divisions. Compare
your deformation and stress results with values obtained from elementary beam theory.

10 EN

E=T0GPa

30 mm v =033
Thickness = 10 mm

e omm

FIGURE P5.15

5.16. For the plate with a hole under plane stress (Fig. P5.16),find the deformed shape of the hole
and determine the maximum stress distribution along AB by using stresses in elements
adjacent to the line. (Note: The result in this problem is the same for any thickness. You

may use f = 1in.)

E =30 x 10° psi
ve=03

:

r vy v

|
\nhi{nhl*u
|
|
|
|
|
|
F Y ¢
|

2000 psi . | 2000 psi

FIGURE P5.16
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5.17. Model a half of the disk with a hole (Fig. P5.17) and find the major and minor dimensions
after compression. Also, plot the distribution of maximum stress along AB.

1000 1b

l E=30x10
v=0.3
Thickness = 0.25 in.

2
FIGURE P5.17

5.18. Consider the multipoint constraint

305 - 20, = 0.1

where Qs is the displacement along degree of freedom 5, and Q, is the di t aton
dof 9. Write the penalty term randQyis the displacemen :

L0(30s — 205 ~ 01)2as ¢ Os
” 9 - 7 QS9Q‘J)k O, - (stQg)f

and, hence, determine the stiffness additions k and force additions f. Then, fill in the fol-

lowing blanks to show how these additions are made i g
a banded stiffness matrix S: in the computer program that us

5(5.1) = §(5,1} +
S =seny+
§(5.__)=8(5_ )+ L
F(5) = F(5) +
F(9) = F(9) +
519 ?idodel the 22.5% segment of the octagonal pipe shown in Fig. P5.19. Show the deformed cot
guration of the segment and the distribution of maximum in-plane shear stress. (H#

For all points along CD, use stiffness modification suggested in Eq. 5.71. Also, maximu®

in-plane shear stress = (o, — ¢,)/2. w
plane steain.) |~ 02)/2, Where ¢ and o, are the principal stresses. AsSUI




Prablems

E=210GPa
v=(28

|

{ octagon
|

FIGURE P5.19

5.20. Determine the location and magnitude of maximum principal stress and maximum shear-
ing stress in the fillet shown in Fig, P5.20.

[e—9.0 m,—™

4
120 000 Ibfin. = 10in.
5 E = 30 X 100 pai
KN 90in. ™03
45in Plane stress
_ 1
N
Zﬂ.ﬂin. i
FIGURE P5.20

521, The torque arm in Fig. P5.21 is an automotive component, fixed at left bolt hole. Determine
the location and magnitude of maximum von Mises stress, oy, given by

O'VM=\/0'3_O"'0"+U§+31J”

5000 N
[
420
. ¢ 2!0 43 2800 N
20 : — Jao
t=10cm
(Al dimensions in em) E =200 x 16° Nim?
v=03

FIGURE PS.21
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5.22. A large, flat surface of a steel body is subjected to a line load of 100 Ib/in. Assuming plane
strain, consider an enclosure as shown in Fig, P5.22 and determine the deformation of the
surface and stress distribution in the body. (Note: Choose small elements close to the load
and assume that deflection at 10 in. away is negligible.)

100 Ib/in.

\

100 1b/in.

10 in. 10in.

0 | %
% | 2 E=30x 10°psi
10inf | 2 v=03
/ | 7
g | ﬁ
LI LI LS L UL L SIN LS LD
50Ib
p 10in.
10 in.
Rl
1in. thick
Modei
FIGURE P5.22

5.23. In Problem 5.2, the load is changed to a distributed load 400 Ib/in.2 on a 1/4-in.-wide long
region, as in Fig. P5.23. Model the problem as above with this loading and find deforma-

ti01j| of the §urface and stress distribution in the body. (Note: Assume that deflection at
10 in. away is negligible.)

400 Ib/in?

-»{‘Iirqe

FIGURE P5.23
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524. Al X 5-in. copper piece fits snugly into a short channel-shaped steel piece at room tem-
perature, as shown in Fig. P5.24. The assembly is subjected to a uniform temperature
increase of 80°F. Assuming that the properties are constant within this change and that
the surfaces are bonded together, find the deformed shape and the stress distribution.

Copper

a= 10 X 1076PF
E =18 x 10°psi -
v=025

ol | Wi | ..,

a= 65X 10~°F
3in. E =30 X 106psi
b v=03

(10
.E.

¥

- 6in.

FIGURE P5.24

525, In the slotted ring shown in Fig. P5.25, two loads of magnitude P and load R are applied
such that the 3-mm gap closes. Determine the magnitude of P and show the deformed
shape of the part. (Hint: Find the deflection of gap for, say, 7 = 100 and multiply the
deflections proporticnately.)

P
‘Thickness = 6 mm

FIGURE P5.25
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5.26. A titanium piece (A) is press-fitted into a titanium workpiece (B) as shown in Fig. P5.26.
Determine the location (show on a sketch) and magnitude of maximum von Mises stress
in both the parts {(from your CST output file). Then, provide contour plets of the von Mises
stress in each part. Data are as follows: E = 101 GPa, v = 0.34.

The guidelines are (a} use less than 100 elements in alt, (b) mesh each part inde-
pendently, but without duplicating node or element numbers, (¢) choose a value foT Liyitace
and then enforce multipoint constraints (MPCs) between the coincident nodes on this
interface—the choice of Li e Will involve trial-and-check as nodes that want to sepa-
rate should not be forced together through the MPC, and (d) use symmetry. Assume a
no-slip interface, a fixed base, and plane strain.

40

20
all dimensions in mm. pe-—]

30 15

60

L

interface

15

|
i
i | S
L
E
!
!
|
|
|
|
|
!
bt i

R
FIGURE P5.26
5.27. Anedge crack of length a in a rectangular

in Fig. P3.27. Using a half-symmetry mod
{2) Determine the crack opening angle,

plate is subjected to a tensile stress o s sShowo
el, complete the following:
610 = 0before the load is applied).
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L)
& 4 A A A ALSE A SALS
IJ': Crack L2
—a i tip
Crack s 0 x --A_F_
Plane strain (f = 1 mm)
L = 400.0 mm
a=95mm
b == 95.0 mm
oy = 450.0MPa
YYYYYFYY Y YY
Ty
FIGURE P5.27
(b) Plot the y stress ¢, versus x, along the line A-Q. Assuming that o, = _K_ use
Y SHess 7y S ' 8 Ry Ve
regression to estimate X;. Compare your result for infinitely long plates, for which X,
of = 12aVirais used.
(¢) Repeat part (b) for increasingly fine meshes near the crack tip.
5.28. Use the geometry of the plate for the plane-stress problem in P5.13. If the material of the

plate is graphite-epoxy resin with fiber orientation at an angle 8 to the horizontal, deter-
mine the deformation and stress values o,, o,, and oy, o, for & = 0°, 30°, 45°, 60°, and
90°. Properties of graphite in epoxy resin are given in Table 5.1. (Hint: The problem solu-
tion requires modification of program CST to incorporate the I» matrix defined in Eq. 5.79.)

529, The plate with a hole in Problem 5.16 is made of pine wood. For 8 = 0°, 30°,45°, 60°, and
90°, complete the following:
{8) Determine the deformed shape of the hole.
(b) Find the stress distribution along AB and, hence, the stress concentration factor K,. Plot
K, versus 6.
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Program Listing
T o de e e e dedeode i g e ok ko e e e e de ek e e e e e ke ke
' FROGRAM C3T *
bl CONSTANT STRAIN TRIANGLE *

'+ T,R.Chandrupatla and A.D.Belagundu *
Fhkddrdhhkddrdrd bbbk kbbb bbb d
Private Sub cmdStart Click{}
Call InputData
Call Bandwidth
_ Call Stiffness
; Call ModifyForBC
! Call BandSolver
Call StressCalc
Call ReactionCalc
Call Output
cmdView,Enabled = True
cmdStart.Enabled = False

End Sub
L]

* BANDWIDTH EVALUATION =
Private S5Sub Bandwidthi(}
fomm—— Bandwidth Tvaloation —----
For I = 1 To NE
NMIN = NOC{I, 1}): NMAX = NOC({I, 1}
For J = 2 Tg NEW
If NMIN > NOC(I, J) Then NMIN = NOCI(I, I}
If NMAX < NOC(I, J) Then NMAX = NoC(I, J}
Next J
NTMP = NDN * {NMAX — NMIN + 1)
If NBW < RTMP Then NBW = NTMP
Next I
For I = 1 To NMPC
NABS = Abs (MPC{I, 1) - MPC(I, 2)} + 1
If NBW < NABS Then NBW = HARBS
Next I
picBox.Print "The Bandwidth is"; NBW
End Sub

1

’7‘__ ELEMENT STIFFNESS AND ASSEMBLY =—===———===—===
Private Sub Stiffness()

ReDim S {NQ, NEW)
Ve — Global Stiffness Matrix ———--
For N = 1 To NE

picBox.Print "Forming Stiffness Matrix o
'——~ Element Stiffness

Call DbMat (N, 1)

For T =1To 6

For J =1 To 6

L_ c=290

f Element "; N




continuead

For K=1To 3
C=C+ 0.5 * Aba(DJ) * B(K, I} * DB{K, J} * TH(N)
Next K
SE{I, i =C
Next J
Next I
'=-~ Fanperatuce Load Vedator
AL = PM{MAT (N), 3}
C=AL * DI'(N): If LC = 2 Then C = C * (1 + PNU)
For 1 =1 Toc 6
TL{I) = 0.5 * C * TH(N) * Abs{DJ)} * (DB{l, I) + DB({2, I})
Next I
picBox.Print ".... Placing in Global ILocatiops"
Call PlaceGlobal {K)
Next N
End Sub

L]

‘===== PLACING ELEMENT STIFFRESS IN GLOBAL LOCATIONS =====
Private Sub PlaceGlcbal (N}
For II1 = ]1 To NEN
NRT = NDN * (NOC{N, II} - 1)
For IT = 1 To NDN
NR = NRT + IT
I =NDN * (II - 1} + IT
For JJ = 1 Toc NEN
NCT = NDN * (NOC{N, JJ) - 1}
For JT = 1 To KDN
J = NDN * (JJ - 1) + JT
NC = NCT + JT - NR + 1
If NC > 0 Then
S{NR, NC) = S{NR, NC) + SE(I, T}
End If
Next JT
Next JJ
F(NR}) = F(NR) + TL(I)
Next IT
Next II
End Sub
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* STRESS CALCULATIONS
Private Sub StressCalc(]
ReDim Stress(NE, 3), PrinStress(NE, 3}, PltStress{NE)
————— Stress Calculations
For N = 1 To NE
Call DbMat (N, 2)
'--- Principal Stress Calculations
1£ STR(3} = 0 Then
51 = 3TR(1l): S2 = STR{2}: ANG = 0
If 52 > 51 Then
51 = 5TR(2}: 52 = STR{l): BANG = 9{

End If
Else
C=0.5* (STR{l) + STR(2))
R = 8qr{0.25 * ([STR(l) - STR{2)] *~ 2 + (STR{3)) *~ 2}

51=C+R: 52=C-R

If ¢ » STR{1l) Then
ANG = 57.2957795 * Atn{STR(3) / {31 - STR{l)1}
If STR{3) > 0 Then AENG = 90 - ANG
If STR{3} < 0 Then ANG = -90 - ANG

Else
ANG = 57.29577551 * Atn{STR{3} / (STR(1l} - S§2})
End If
End If
v Stress{N, 1} = STR(L)
Stressi{N, 2} = STR{2)
Stress (N, 3} = 3TR(3)

PrinStress (N, 1) = 51

Prinstresg (N, 2} 52

PrinStress (N, 3} = ANG

1f IPL = 2 Then PltStress(N) = 0,5 * (5] - 52}

If IPL = 3 Then
83 = 0: If LC = 2 Then S3 = PNU * (S1 + S2}
C= ({51 -582) ~ 2+ {52 ~83] ~ 2+ (53 -351) » 2
PltsStress (N} = sSqr(0.5 * C)

End If

Next N
End 3ub

‘============== B AND DB MATRICES FOR B'DB
Private Sub DbMat (N, ISTR)
P D{}, B(} and DB{} matrices
'--— First the D-Matriwx
M = MATI(N!: E = PM{M, 1': PNU =
'‘--- D{) Matriz
If LC = 1 Then
'~—~ Plane Stress
Cl=E/ (1 -PNU " 2): C2 =] * FNU
Else

EM(M, 2): AL = PM(M, 3)
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‘—-—- Plane Strain
C=E/ ({1 +PFNU) * (1~ 2 * PNU})
Cl =C* (1 - PNU): C2 = C * PNU
End If
C3 =0.5*E/ (1 + PNU}
D{l, 1) = C1l: D{1, 2} = C2: D(1l, 3) =0
D{2, 1) = c2: D{2, 2) = Cl: D(2, 3) =0
p{3, 1} = 0: D(3, 2) = 0: D(3, 3} = C3
{m~= Strain-Displacement Matrix B({)
Il = NOC{N, 1}: I2 = NOC(N, 2): I3 = NQC(N, 3}
X1 = X{I1l, 1): Y1 = X{T1, 2)
X2 = X{I2, 1): ¥2 = X(12, 2)
-

X3 X{I3, 1}: Y3 = X(I3, 2}
¥21 = X2 - ¥1: X32 = X3 -~ X2: X13 = X1 - X3
Y12 = ¥1 - ¥2: Y23 = Y2 - Y3: Y31 = ¥3 ~ Y1

DJ = X13 * ¥23 - X32 + Y3l 'DJ is determinant of Jacobian
'-—— Definition of B() Matrix
B{l, 1) = ¥23 / DJ: B(2, 1} = 0: B(3, 1) = ¥32 / DJ

B{l, 2) = 0: B(2, 2) = ¥32 / DJ: B(3, 2) = ¥23 / DJ

B{l, 3} = ¥31 / DJ: B(2, 3) = 0: B(3, 3) = X13 / DJ
B(1l, 4} = 0: B{2, 4) = X13 / DJ: B(3, 4) = Y31l / DJ
B(l, 5) = Yi2 / DJ: B{2, 5) = 0: B{3, 5) = ¥X21 / bJ
B(l, 6) = 0: B(2, 6} = X21 / DJ: B{(3, 6) = Y12 / DJ

‘eww OB Matrix DB = D*g
For I =1 To 3
For 3 =1To 6
c=10
For K=1To 3
C=¢C+ D{I, K) * B{(K, O}
Next K
DB(I, J) = C
Next J
Next I
If ISTR = 2 Then
e Strass Evaluation
Q1) = F(2 * Il - 1): Q{2} = F{2 * Il)
Q(3) = F{2 * I2 ~ 1): Q{4) = F{2 * 12}
Q{5 = F(2 * I3 - 1): Q{6) = F(2 * I3}
¢l = AL * DT{N}: If LC = 2 Then C1l = C1 * {]1 + PNII)
For I =1To 3
cC=0
Fer K=1Te &
C=2C+ DB(I, K} * QI(K)
Next K
STR{I} = C ~ Cl1 * (DI{I, 1) + DI(I, 2})
Next I
End If
End Sub

kbt e i m = e




CHAPTEHR 6

Axisymmetric Solids Subjected
to Axisymmetric Loading

6.1 INTRODUCTION

Problems involving three-dimensional axisymmetric solids or solids of revolution, sub-
jected to axisymmetric loading, reduce to simple two-dimensional problems. Because
of total symmetry about the z-axis, as seen in Fig. 6.1, all deformations and stresses are
independent of the rotational angle 8. Thus, the problem needs to be looked at as a two-
dimensional problem in rz, defined on the revolving area (Fig. 6.1b). Gravity forces can
= be considered if acting in the z direction. Revolving bodies like flywheels can be ana-
lyzed by introducing centrifugal forces in the body force term. We now discuss the
axisymmetric problem formulation.

FIGURE 6.1 Axisymmetric problem,

2 u = [u,w|T z
T=I[7,T]"
t=[f £
P=(p,P]T
P;distributed P;
on circle
! Revolving
———— X area A
% dA
i - , T - Boundary
s Seacls (r.2) L
N
> N
F ——— A —_—
-
: (a)
| (b)
]

i .‘ 178
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6.2 AXISYMMETRIC FORMULATION

179

Considering the elemental volume shown in Fig. 6.2, the potential energy ¢an be writ-

ten in the form

2t 2ar 29
= l./. /cTerdA dae - f /anr dAdg — f /“TT"de dg ~ E “?Pf
200 Ja 0 Ja 0 JL !

(6.1)

where r 4¢ df is the elemental surface area and the point load P, represents a line load

distributed around a circle, as shown in Fig. 6.1.

All variables in the integrals are independent of #. Thus, Eq. 6.1 can be written as

= 2«(1/uTerdA - fqurdA - /u""rrde) - S uP,
2 A A L i

where
u=[u,w]
f=[f.£.]"
T=(7,T,]"

(6.2)

(6.3)
(6.4)
(6.5)

From Fig. 6.3, we can write the relationship between strains € and displacements u as

€ = [E,., € Yras eﬂ]T
_ [6‘_u dw ou | dw z]"
or’dz’ ez  ar’r
The stress vector is correspondingly defined as
o= [0’,, O'z +Trrs UG]T

The stress—strain relations are given in the usual form, viz.,

o =De
F4
|
L dv=rdodrdz
=rdo dA

FIGURE 6.2 Elemental volume.

(6.6)

(6.7)

(6.8)
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dr -

FIGURE 6.3 Deformation of slemental volume.

where the (4 X 4) matrix D can be written by dropping the appropriate terms from the
three-dimensional matrix in Chapter 1, as

— y LT
1
1-» 0 1—-v»
v v
_ E(1 -v) 1-» 1 0 1 —» 69)
G-z 1-2
i 2(1 - »)
v 14
| 1-v 1~y 0 1 )

In the Galerkin formulation, we require

zw/ﬂT€(¢)r dA — (217/6"& dA + 2“/¢TTrd€ + E d);rP;) =0 (6.10)
A A L

where
$ = [d,.¢,]" (6.11)
- - ?_ﬁ 6_(& ?_‘E{ 6‘1’2 ¢r T
() [ R *?*?} (612
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6.3 FINITE ELEMENT MODELING: TRIANGULAR ELEMENT

The two-dimensional region defined by the revolving area is divided into triangular
elements, as shown in Fig. 6.4. Though each element is completely represented by the area
in the rz plane, in reality, it is a ring-shaped solid of revolution obtained by revolving the
triangle about the z-axis. A typical element is shown in Fig, 6.5.

The definition of connectivity of elements and the nodal coordinates follow the
steps involved in the CST element discussed in Section 5.3. We note here that the »- and
z-coordinates, respectively, replace x and y.

Using the three shape functions N, N,, and N;, we define

u = Nq (6.13)
where u is defined in (6.3) and
NI 0 Nz 0 N3 0
= .14
N [0 NO N O NJ (6.14)
q = [ql! G2, G35, 4, dgs, %]T (6.15)

If we denote N, = {and N, = n, and note that Ny = 1 — £ — %, then Eq. 6.13 gives
u=éq+mg+ (- £ ngs
w=Eégp+tng+ (1&g (6.16)

Qi

FIGURE 6.4 Triangulation.
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FIGURE 6.5 Axisymmetric triangular element.

By using the isoparametric representation, we find
r=¢n+an+(1-£§(-9)n
z=dn 0+ (1 - - n)z (6.17)
The chain rule of differentiation gives

u)  fou
o or
= .18
bu b ou (6.18)
an / 5 az
and
sw)  (ow
13 or
y =
ow J9 . (6.19)
an | | 92
where the Jacobian is given by
J=1" Zw:l (6.20)
L3 ;s

In the definition of J earlier, we have used the notation r;

=r—randz; =% "4
The determinant of J is i i i j i

detd = 1323 — 1z, (6.21)
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Recall that |det J| = 2A,. That is, the absolute value of the determinant of J equals twice
the area of the element. The inverse relations for Eqs. 6.18 and 6.19 are given by

du du ow w
ar 1) o€ ar ) o
=] 1 = 1 :
ou ou and o I sw (6.22)
dz an 9z on
where
- 1 223 —213
]‘ —
J dct-' [_rz_'; Z13 ] (6'23)

Introducing these transformation relationships into the strain—displacement relations
in Eq. 6.6 and using Eqs. 6.16, we get

[ 233(qh = 4s) ~ 213(g3 — gs)
detJ
—n3(@ — ge) + nis(ds — G)
ny detJ
7Y nala — @)+ rs(es — @) + 5@~ g6 — zixlas — a6) [
det]
Mg, + Nogs + Nags
. ¥ /

'This can be written in the matrix form as

where the element strain-displacement matrix, of dimension (4 X 6), is given by

[ <23 23t 212 ]
detJ detd det]J
0 P32 0 a3 21
B = detJ det] detJ (625)
Iy 223 f3 231 721 212
detJ detd detJ detJ detJ detl]
N,
ﬁ 0 LA_{E 0 3 0
| r r r |

Potential-Energy Approach

The potential energy IT on the discretized region is given by

n= >3 [% (Zw/eTDerdA) - ZquTfrdA - 2w/uTTrd€]
-4 € b ¢

~ S P (6.26)

e A s b e
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The element strain energy U, given by the first term can be written as
U = -;:qT(Z'rr f B'DBr dA)q (6.27)
The quantity inside the parentheses is the element stiffness matrix,
w=2wfnﬁmum (6.28)
¢
The fourth row in B has terms of the type N;/r. Further, this integral also has an additional

rin it. As a simple approximation, B and r can be evaluated at the centroid of the trian-
gle and used as representative values for the triangle. At the centroid of the triangle,

N=N=N, =} (6.29)
and
- r1+f2+r3
lr:—-——-—
3

where 7 is the radius of the centroid. Denoting B as the element strain-displacement ma-
irix B evaluated at the centroid, we get

k* = 2n7B'DB f dA

e

or
k* = 277ABTDB (6.30)

We note here that 277 A, is the volume of the ring-shaped element shown in Fig. 6.5.
Also, A, is given by

4, = ldety] (631)

We also use this centroid or midpoint ruie* for body forces and surface tractions as dis-
cussed in the following section. Caution must be exerted for elements close to the axis
of symmetry. For better results, smaller elements need to be chosen close to the axis of
symmetry. Another approach is to introduce r = Nty + Ny, + Nyr; in the following

fsquatiops and pt_‘:rform claborate integration. More elaborate methods of numerical
mtegration are discussed in Chapter 7.

Body Force Term

We first consider the body force term 24 _f; u'fr dA. We have

Zﬁ/u"'fr dA = Zw/(uf, + wf.)rdA
= 21’?[[(”’1% + Nszg + N3q5)f, + (leh + Nz‘h + N3Q6)fz]r dA

*Suggested by O. C. Zienkiewicz, The Finite Element Method, 3d ed. New York: McGraw-Hill, 1983.
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Once again, approximating the variable quantities by their values at the centroid of the
triangle, we get

2m f v'frdA = q'f° (6.32)
where the element body force vector £° is given by
2AFA, = = = = = -
= 3 [ﬁ"fvﬁ:fz’fn.ﬁ,]r (6.33)

The bar on the f terms indicates that they are evaluated at the centroid. Where body force
is the primary load, greater accuracy may be obtained by substituting r = Nyr, +
Nor, + Nyr;into Eq. 6.32 and integrating to get nodal loads.

Rotating Flywheel
As an example, let us consider a rotating flywheel with its axis in the z direction. We
consider the flywheel to be stationary and apply the equivalent radial centrifugal (in-
ertial) force per unit volume of pre?, where p is the density (mass per unit volume), and
w the angular velocity in rad/s. In addition, if gravity acts along the negative z-axis, then

£=[f,.£]" = [pra?, —pg]" (634)
and _ _

fr = pio. f. = —pg (6.35)

For more precise results with coarse meshes, we need to use r = Niry + Nyr, + Ny
and integrate.

Surface Traction

For a uniformly distributed load with components 7, and 7, shown in Fig. 6.6, on the
edge connecting nodes 1 and 2, we get

27 / w'Trdé = q"F° (6.36)

r= lel + Nzrg
2=V = PG - o)

FIGURE 6.6 Surface traction.
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where
Q= [q1.¢. 5. 4] (6.37)
T¢ = 278, ,[aT,, aT,, bT,,bT,]" (6.38)
2?‘1 + rz ?’1 + 2"2
= = 39
MY 6 (639)
b= V(n—n)?+(z-z)? (6.40)

In this derivation, r is expressed as Nyr; + N, and then integrated. When the line 1-2
is parallel to the z-axis, we have r; = r,, which givesa = b = 0.5r,.

Example 6.1

An axisymmetric body with a linearly distributed load on the conical surface is shown in
Fig. E6.1. Determine the equivalent point loads at nodes 2, 4, and 6.

(.25 MPa

F4
Axis of t
symmetry Yy 02MPa

FIGURE E6.1

Solution We approxirnate the linearly distributed load by the average uniformly distrib-
uted loads on the edges 64 and 4-2 as shown in Fig E6.1. Relationships for more precise

modeling of a linearly distributed load are provided in Problem 6.12. We now consider the
two edges 6-4 and 4-2 separately and then merge them.

For edge 6-4

p=035MPa, r,=60mm, gz = 40mm, r, = 40mm, z; = 55mm
o=V —nl+ (g - ) = 25mm

T _ 2
€= ‘s 06, s=-—"2-p8

Tr =-—pc= —0'2], T‘E = —ps = -028

2ntr o+ 2
= - | ¥,

T' = 2wt J[aT, aT, »T, bT.IT
=[~879.65 -1172.9 -769.69 -1026.25]" N
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These loads add to F,, Fy,, F;, and F;, respectively.
For edge 4-2
p=025MPa, r, =40mm, z =55mm, » =20mm, z; =70mm

= v("l - ?'2)2 + (2 - 22)2 = 25mm

L4 h—n
c=——=104 §=—-"==08
el-Z €1-2
L=—-pc=-015 T,=-ps=-02
+ +
a= 2 s =166, b=1""2 62’2 = 1333

T =278, ,[aT, of, BT, BL,J"
=[~3927 -5236 -314.16 -41888]" N
These loads add to F;, F;, F;, and F;, respectively. Thus,
[/, F, /i, K F; F;]=[-3142 -4189 -11624 -16965 -879.7 -11729] N
|

The load distributed along a circumference of a circle on the surface has to be
applied at a point on the revolving area. We may conveniently locate a node here and

add the load components.
On summing up the strain energy and force terms over all the elements and mod-

ifying for the boundary conditions while minimizing the total potential energy, we get

KQ =F (6.41)
We note here that axisymmetric boundary conditions need be applied only on the
revelving area shown in Fig. 6.1.

Galerkin Approach
In the Galerkin formulation, the consistent variation ¢ in an element is expressed as
¢ = Ny (6.42)
where
Y= [0, d,... ,%JT (6.43)
The corresponding strain €(¢) is given by
€(dp) = By (6.44)
The global vector of variations ¥ is represented by
¥ = [V, ¥, ¥,,... . ¥]T (6.45)

We now introduce the interpolated displacements into the Galerkin variational
form (Eq. 6.10). The first term representing the internal virtual work gives

Internal virtual work = 2 / aTe(p)rda
A
=2 / q"B"DBur dA
¢ ¢

= 3 gk (6.46)
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ﬁ
I
|

| . where the element stiffness k° is given by
‘ k = 277A,B"DB (6.47)

We note that k¢ is symmetric. Using the connectivity of the elements, the internal virtual
work can be expressed in the form

Internal virtual work = >, ¢"k“b = > ¥'k’q

where K is the global stiffness matrix. The external virtual work terms in Eq. 6.10
involving body forces, surface tractions, and point loads can be treated in the same way
as in the potential-energy approach, by replacing q with Jr. The summation of all the
force terms over the elements then yields

|
|
‘ { = ¥TKQ (6.48)
|

External virtual work = ¥'F (6.49)

'The boundary conditions are considered using the ideas discussed in Chapter 3. The stiff-
ness matrix K and the force F are modified, resulting in the same set of equations as (6.41).

Detailed calculations in the example that follows are provided for illustrating the
steps involved. However, it is expected that the exercise problems at the end of the chap-
ter will be solved using program AXISYM, which is provided.

Example 6.2

l'n Eig. E6.2,a long‘cylinder of inside diameter 80 mm and outside diameter 120 mm snugly
fits in a hole over its full length. The cylinder is then subjected to an internal pressure of

2 MPa. Using two elements on the 10-mm length shown, find the displacements at the inner
radius.

10 mm

120 mm diarn——l |

FIGURE E§,2
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Solution
Consider the following table:

Connectivity Coordinates

Element 1 A 3 Node r z
1 1 2 4 1 40 10

2 2 3 4 2 40 g

3 60 0

4 60 10

We will use the units of millimeters for length, newtons for force, and megapascals for stress
and E. These units are consistent. On substituting £ = 200 000 MPa and » = 0.3, we have
269 x 10° 115 X 10° 0 115 x 1¢0°
115 x 10° 2.69 x 10° 0 115 x 10°

0 0 0717 x 10° ¥
115 x 10° 1.15 x 10° 0 269 x 1¢°

for both elements, det J = 200 mm® and A, = 100 mm® From Eq. 6.31, forces F, and F;
are given by

D=

2and,p;  27{40)(10)(2
FI=F},= W]epl= ( )( )()=2514N
2 2
The B matrices relating element strains to nodal displacements are obtained first. For ele-

ment 1,7 = 3(40 + 40 + 60) = 46.67 mm and

—0.05 0 0 0 005 0
5= 0 0.1 0 -01 0 0
1 oo01 —-005 -01 0 0 0.05

00070 0 00071 0 00071 0O
For element 2,7 = (40 + 60 + 60) = 53.33 mm and

~0.05 0 0.05 0 0 0
o 0 0 0 —0.1 0 0.1
B* = 0 -0.05 -0.1 0.05 01 0

0.00625 0 0.00625 0 0.00625 0
The element stress—displacement matrices are obtained by muliiplying DB:

[ —12¢ 1.15 0082 -1.15 143 0
Sio g 049 269 00 269 0657 ol
DB'=10° .2 _g385 —-077 0 0 0385
| —0384 115 0191 -115 0766 0
[ 127 0 142 -115 0072 115
_ -0503 O 0.647 ~2.69 0.072 2.69
b
DB’ =109 " _385 —077 0385 077 0
—0407 0 0.743 ~115 0.168 1.15 |

T




I o

190 Chapter 6 Axisymmetric Solids Subjected to Axisymmetric Loading

The stiffness matrices are obtained by finding 2#¥ A, B "DB for each element:

Giobal dof — 1 2 3 4 7 8

(403 -258 -234 145 —1.932 1.137]
845 137 -78% 193 -0.565
k' =107 230 -024 016 -113
789 -193 0
Symmetric 225 0
L 0.565 |
Global dof — 3 4 5 6 7 8
[2.05 0 =222 169 —0.085 —1.69]
0.645 129 0645 -129 0
K =107 511 346 -242 217
9.66 105 -9.01
Symmetric 262 0241
B 9.01 |

Using the elunination approach, on assembling the matrices with reference to the degrees
of freedom 1 and 3, we get

— 107 = 403 -234 ()@, _ 2514
—234 435 ||@s 2514
so that

2, = 0014 X 102 mm
Q.= 00133 X 10 mm [ ]

Stress Calculations

From the set of nodal displacements obtained above, the element nodal displacements
q can be found using the connectivity. Then, using stress-strain relation in Eq. 6.8 and

strain—displacement relation in Eq. 6.24, we have
o = DBq (6.50)

where B is B._gi\lren in Eq. 6.25, evaluated at the centroid of the element. We also note
that o' is a principal stress. The two principal stresses o, and oy corresponding t0 o, 72

and 7,. can be calculated using Mohr’s circle,
Example 6.3
Calculate the element stresses in the problem discussed in Example 6.2

Solution We need to find o' = [o,,0.. 7, 0,]

: * for each el . tivit
established in Example 6.2, ch element. From the connectiviy

q' = {00140, 0, 0.0133, o0, g 0]7 % 1072
9 ={00133, 0, 0, 0, o 01" x 1072
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Using the product matrices DB and q in the formula

o = DB*q
we get
o! = [~166, —582, 54, -284]" X 10°MPa
o = [~169.3, —669, 0, —541]" X 10>MPa |
Temperature Effects
Uniform increase in temperature of AT introduces initial normal strains €, given as
€ = [@AT, aAT, 0, «AT]T (6.51)
The stresses are given by
o = D(e — &) (6.52)
where e is the total strain.

On substitution into the strain energy, this yields an additional term of —€"De, in
the potential energy I1. Using the element strain—displacement relations in Eq. 6.24, we

find that
27 _/ e'Deyr dA = D q(2n7AB"DE,) (6.53)
A 3

The consideration of the temperature effect in the Galerkin approach is rather
simple. The term €” in Eq. (6.53) is replaced by €"(¢).

The expression in parentheses gives element nodal load contributions. The vector
&, is the initial strain evaluated at the centroid, representing the average temperature rise
of the element. We have

0 = 277 A B"Dg, (6.54)

where
o= [els BZ’ e3s 64, 05, es]T L (655)

6.4 PROBLEM MODELING AND BOUNDARY CONDITIONS

We have seen that the axisymmetric problem simply reduces to consideration of the re-
volving area. The boundary conditions need to be enforced on this area. § independence
arrests the rotation. Axisymmetry also implies that points lying on the z-axis remain ra-
dially fixed. Let us now consider some typical problems with a view to modeling them.

Cylinder Subjected to Internal Pressure

Figure 6.7 shows a hollow cylinder of length L subjected to an internal pressure. One end
of the cylindrical pipe is attached to a rigid wall. In this, we need to model only the rec-
tangular region of the length L bound between r; and ry. Nodes on the fixed end are
constrained in the z and 7 directions. Stiffness and force modifications will be made for

these nodes.
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{ B “ "
\i
e

FIGURE 6.7 Hollow eylinder under internal pressure.

Infinite Cylinder

In Fig. 6.8, modeling of a cylinder of infinite length subjected to external pressure is
shown. The length dimensions are assumed to remain constant. This plane strain con-

dition is modeled by considering a unit length and restraining the end surfaces in the
z direction.

Press Fit on a Rigid Shaft

Press fit of a ring of length L and internal radius 7, onto a rigid shaft of radius r, + & is con-
sidered in Fig, 6.9. When symmetry is assumed about the midplane, this plane is restrained
in the z direction. When we impose the condition that nodes at the intemal radius have
to displace radially by 8, a large stiffness C is added to the diagonal locations for the ra-
dially constrained dofs and a force €3 is added to the corresponding force components.
Solution of the equations gives displacements at nodes; stresses can then be evaluated.

Pu

TR E R 4 FEATAES

§/\(_

e FIGURE 6.8 Cylinder of infinite length under external pressure.
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Fi +3§

Ring of length L Rigid shaft

FIGURE 6.9 Press fit on a rigid shaft.

Press Fit on an Elastic Shaft

The condition at the contacting boundary leads to an interesting problem when an elas-
tic sleeve is press fitted onto an elastic shaft. Take the problem of Fig. 6.9 stated above
with the shaft also treated as elastic. A method to handle this is considered by referring
to Fig. 6.10. We may define pairs of nodes on the contacting boundary, each pair consisting
of one node on the sleeve and one on the shaft. If Q; and Q; are displacements of a typ-
ical pair along the radial degrees of freedom, we need to satisfy the multipoint constraint

Q;-Qi=8 (6.56)
When the term %C(Q = 8)? is added to the potential energy, the constraint is ap-

proximately enforced. The penalty approach for handling multipoint constraints is
discussed in Chapter 3. Note that C is a large number. We have
Boundaries of shaft

and sleeve are shown
separated for clarity

Qj_Q¢'=6

FIGURE 6.10 Elastic sieeve on an elastic shait.
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L, - @ - 8) = 1C0? + 3C07 ~ 3C(00; + QQ)

+C08 - CQB + 1c#? (6.57)
This implies the following modifications:
K'i K} K“ + C K” - C
! I , 8
|:Kf=' Kn:| - |:Kﬁ -C K+ C:| ©39
and
£ F—-Cé
[FJ *[F; . 66} 6
Belleville Spring

The Belleville spring, also called the Belleville washer, is a conical disk spring. The load
is applied on the periphery of the circle and supported at the bottom as shown in
Fig. 6.11a. As load is applied in the axial direction, the supporting edge moves out. Only
the rectangular area shown shaded in Fig, 6.11c needs to be modeled. An axisymmetric
load P is placed at the top corner, and the bottom supporting comer is constrained in
the z direction. Load—deflection characteristics and stress distribution can be obtained
by dividing the area into elements and using a computer program. In the Belleville
spring, the load-deflection curve is nontinear (Fig. 6.11b). The stiffness depends on the
geometry. We can find a good approximate solution by an incremental approach. We

P

o
'
'
S,
e

(b)

FIGURE 6,11 Belleville spring,
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find the stiffness matrix K(x) for the given coordinate geometry. We obtain the dis-
placements AQ for an incremental loading of AF from

K(x) AQ = AF (6.60)

The displacements AQ are converted to the components Au and Aw and are added to
X to update the new geometry:

X< X+ An (6.61)

K is recalculated for the new geometry, and the new set of equations 6.60 is solved. The
process is continued until the full applied load is reached.
This example illustrates the incremental approach for geometric nonlinearity.

Thermal Stress Problem

Shown in Fig. 6.12a is a steel sleeve inserted into a rigid insulated wall. The sleeve fits
snugly, and then the temperature is raised by A7. The stresses in the sleeve increase
because of the constraint. The rectangular area of length £./2, bounded by r; and 7, is con-
sidered (Fig. 6.12b), with points on the outer radius constrained radially and points on
r constrained axially. The load vector is modified using the load vector from Eq. 6.55, and
the finite element equations are solved.

Modeling of simple to complex problems of engineering importance have been
discussed. In real life, each problem poses its own challenge. With a clear understand-
ing of the loading, boundary conditions, and the material behavior, the modeling of a
problem can be broken down into simple and easy steps.

N\
) |

Rigid insulated wall

00

”Sleeve (steel) [ NN ™
E v N L

Temperature rise of sleeve = AT

!

‘N
T

j A —— - -

()

FIGURE 6.12 Thermal stress problem.




196 Chapter 6 Axisymmetric Solids Subjected to Axisymmetric Loading

Example 6.4
A steel disk flywheel rotates at 3000 rpm. The outer diameter is 24 in., and the hole
diameter is 6 in. (Fig. E6.4a). Find the value of the maximum tangential stress under the
following conditions: thickness = lin., £ = 30 X 108 psi, Poisson’s ratio = 0.3, and
weight density = 0.283 Ib/in.>.
A four-element finite element model is shown in Fig. E6.4b. The load vector is cal-
culated from Eq. 6.34, neglecting gravity load. The result is

F = [3449, 0, 9580, 0, 23380, 0, 38711, O, 32580, 0, 18780, 0]'Ib

The input data for program AXISYM and output are given subsequently.

The computer cutput gives us the tangential stresses in each of the four elements.
Treating these values as centroidal values and extrapolating as shown in Fig. E6.4c, the max-
imum tangential stress occurring at the inner boundary is obtained as o, ,,, = 8700psi. W

z
A

|: w = 3000 rpm

4 |
Vin 772720~V — R
_f_l 6 in.—| I

I 24 in. —-

(<)
FIGURE E6.4
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<< AXISYMMETRIC STRESS ANALYSIE >>
EXAMPLE 6.4
NN NE NM NDIM NEN NDN

6 4 1 2 3 2

ND NL HMPC
3 6 0
Node# X Y {r z -coordinates)
1 3 1]
2 3 .5
3 7.5 0
4 7.5 .5
5 12 0
1] 12 .3
Elem¥ NI N2 N3 Mati TempRise
1 1 3 2 1 0
2 2 3 4 1 0
3 4 3 5 1 0
4 4 5 6 1 o
DOF# Displacement
2 0
6 [V}
10 Q
DOF# Load
1 3449
3 9580
5 23380
7 38711
9 32580
11 18780
MAT¥ E Nu Alpha
1 30E6 .3 12E-6
Bl i B2 4 B3 {(Melti-point constr. Bl*Qi+B2*Qj=R3)
Progran Axisya - CHANDRUPATLA & EELEGUNDU
Quitput
EXAMPLE 6.2
NODE#  R-Displ Z-Displ
1 9.0031E-D4 3.1892E-12
2 B.9898E-04 -4.2757E-05
3 9.,0119E-04 -2.5588E-12
4 9,0291E-04 -2.6520E-05
5 9.1979E-04 —6.3050E-lg
. - =1.9314E-0
ELEM: ? ;;305 o4 52 TRZ 5T 51 s2 ANGLE
SR->81
1 1.9900E+03 1.2044E+01 -3.0815E+01 6.6017E+03 1.9904E+03 1.1564E+01
-8.9234E-01
2 1,7164E+03 4.7222E+02 B.1294E+01 5,1617E+03 1.7217E+03 4.6693E+02
3.?2§?E;?2499E+U2 ~3.2439E+02 3.9660E+01 3.2277E+03 9.961BE+D2 -3,2556E+02
1.?2223;?2084E+02 3.0468E4+00 ~2.7421E+01 2.9%022E+03 9.7162E+02 2.270SE+00
| —1.6217E+00
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PROBLEMS

6.1. In an axisymmetric problem, the element coordinates and displacements are as shown in

the Fig. P6.1.

(a) Whatwill be the value of the tangential (hoop) stress printed out by Program AXISYM?

(b) What are the three principal stresses, ¢y, 0, and o3?
(¢) What is the vonMises stress in the element?
Take £ = 30E6 psi and » = 0.3. Coordinates and displacements are in inches.

1
Point (R,Z-coord) (R,Z-disp.)
1 (1) {0.0)
2 (10,4) (-0.2,-0.1}
> 3 (6.7) (0.6,0.8)

FIGURE P6.1

6.2. The open-ended steel cylinder shown in Fig. P6.2 is subjected to an internal pressure of

1 MPa. Find the deformed shape and the distribution of principal stresses.

1 200 mm ,i

QY
100

T E =200GPa
16 mm v=03
FIGURE P6.2

6.3. Find the deformed configuration and the stress distribution in the walls of the closed cylin-

der shown in Fig. P6.3,

6.4. Determine the digm}atf:rs after deformation and the distribution of principal stresses along
the radius of the infinite cylinder subjected to internal pressure as shown in Fig, P6.4.

p=1MPa
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- 240 mm - -
fe— 200 mm »
' A*—.
'
fmemme- e .
I 1 )
| 1 |
100 mm { - —4—- -—l- - - - - !
] 1 r
| ! !
o F—— [ !
1 !
A~ om |
GPa 16
v=03
FIGURE P6.3
1 MPa
_____________________________ ] y {
100 mm - S —  —— ——
R \
T E =200GPa
16 mm v=103
FIGURE P6.4

6.5, The steel sleeve of internal diameter 3 in. is press fitted onto a rigid shaft of diameter
3.01 in., as shown in Fig. P6.5. Determine (a) the outer diameter of the sleeve after fitting
and (b) the stress distribution. Estimate the contact pressure by interpolating the radial
stress in the neighboring elements. o

o

3inAg—-—f

4in.

- igid shaft
4z E =130 % 10° psi Rigi
ve(Q3
Elastic sleeve

FAGURE P6.5
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6.6. Solve Problem 6.5 if the shaft is also made out of steel.

6.7. The steel flywheel shown in Fig. P6.7 rotates at 3000 rpm. Find the deformed shape of the
flywheel and give the stress distribution.

27

_ 25in. 4in. 12in.
diam diam diam

I+

lin| 2in [Lin| 300 wpm

E = 30 % 10° psi

v=03

FIGURE P6.7 Flywheel.

6.8. The circular pad hydrostatic bearing shown in Fig. P6.8 is used for supporting slides sub-
jected to large forces. Qil under pressure is supplied through a small hole at the center
and flows out through the gap. The pressure distribution in the pocket area and the gap is
shown in the figure. Find the deformed configuration of the pad and determine the stress
distribution. (Note: Neglect the dimension of the oil supply hole.)

Circular pad
bearing

100 mm diam—————

30 mm
diam
3

4

N

..-':__—_._-_-_:.’__"."—

Wlll
hY

A A& Ju1 4

\

12 MPa
FIGURE P6.8

Axisymmetric pressure
distribution on pad

Hydrostatic bearing.
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6.9. A Belleville spring is a conical disk spring, For the spring shown in Fig. P6.9, determine the
axial load required to flatten the spring, Solve the problem using the inczemental approach
discussed in the text and plot the load—deflection curve as the spring flattens.

E =30 X 10% psi
v=03

FIGURE P6.9 Belleville spring.

6.10. The aluminum tube shown in Fig. P6.10 fits snugly into a rigid hole at rocom temperature.
If the temperature of the aluminum tube is increased by 40°C, find the deformed config-
uration and the stress distribution.

Aluminum rod

AT = 40°C
a=23x107%C
E=70GPa
=033
2 _

= |

| 30mm 50 mm

i

40

77

FIGURE P6.10

[+— 40 mm —~

//%

6.11. The steel water tank shown in Fig. P6.11 is bolted to a 5-m circular support. If the water is
at a height of 3 m as shown, find the deformed shape and stress distribution. (Nore:
Pressure = pgh, water density p = 1Mg/m’, and g = 9.8 m/s’.)
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te——————— 8 m diam

Steel |
tank 4m
N % = =
75 mm J’&\T\\\\\\\\\\\\\\\\\\\&\\\\\\\\
7 Support
S m diam E = 200 GPa
v=103

FIGURE P6.11 Water tank.

6.12. For the axisymmetric pressure loading shown in Fig. P6.12, determine the equivalent point
loads F,, F,, F;, F,, F;,and Fg.

(b 0.5 MPa
B | 2111215 !
| ZOIn ' %:‘_‘
™o T~ 0.5 MPa
| | o=
| ’ !
!*—— 30 mm -—'-L— 30 mm —>|
——r FR F‘t
LF—; Fy
4 2
- .
1 F
FIGURE P6.12

6.13. For the linearly varying distributed load on the axisymmetric conical surface shown i
Fig. P6.13, complete the following:

(a) Prove that the equivalent point load vector T is given by
T = [al,, + bT,5. aT., + bT.s, BT, + T, bT, + CTzz]T
where

_2mt 2wt ol
ROtk b=THin, o= T+ 3n)

(b) Solve the example problem 6.1 (given in Fig. E6.1) and check by how much the more

precise calculations from part (a) differ from the approximation of piecewise uniform
loads.
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T:2

F

2
(r2 22)/
ra

Trl
r i, 2))

FIGURE P6.13

6.14. A cup-shaped steel die block, snugly fit in a shrink ring. is shown in Fig. P6.14a. The punch .
applies force on a slug placed in the dic block to produce a cup-shaped par(. If the process N a.
is modeled by linearly varying pressures (use the results from Problem 6.13 to compute Lo
nodat loads) on the die block as shown in Fig. P6,14b, determine the location and magni-
tude of maximum principal stresses in the dic block for the following cases:

(a) the die block modeled without the shrink ring,

(b} the die block modeled with the shrink ring with no slip between the shrink ring and
the die block, and

(¢) the die block modeled with the shrink ring with the assumption of frictionless axial
slip. (Hinr: You need duplicate nodes on the interface between the die block and the
shrink ring. If f and J are a pair of nodes on the interface, then the multipoint con-
straintis @, _; — @y, = 0. Use MESHGEN and DATAFEM programs followed by

AXISYM).

r\%m@, Punch

Workpiece

Die block (tool steel)
\ Shrink ring
{alloy steel)

E

l
¥ |
I
|

N
v

7

py = 1200 MPa
pa = 900 MPa i
p» = 9 MPa '

_ i E
', ‘ X : : I- [
- ' \\ "\ 10{}%"1 E = 20X GPa 1R N
_’ § NN { v=13 \
- — 4220 mm —>] }\O NNV
$320 mm ———~ | IR
$420 mo —~ s

{a) (b
FIGURE P5.14

320 mm
‘ 300 mm

)
KK

SRR

R

2,

AN

}
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6.15. A 90-mm outside diameter steel disk held at 200°C above the room temperature fits snugly
onto a steel shaft of 40-mm diameter at room temperature, as shown in Fig. P6.15. Determine
the maximum stresses in the disk and the shaft when the assembly reaches room temperature.

Axisymmetric Solids Subjected to Axisymmetric Loading

— dia. 40 mm ——]

F

dia. 90 mm

30 mm —

6.16. A syringe—plunger.assernbly is shown in Fig. P6.16. Model the glass syringe assuming that
the 4 mm hole enq is closed under test conditions. Obtain the deformation and stresses and
compare the maximum principal stress with the ultimate tensile strength of glass.

50 mm

AFON

100

—t o — e — -

MIRTITHTIHIHHNM

—_—— = — =

T,

N

__— Plunger

| Liquid

Material : Glass

FIGURE P6.15

FIGURE P6.15
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Program Listing
lt**i****i*******tii*ﬁ**ttiﬁﬁﬁ*****ttiiit
it FROGRAM AXIBYM *
T AXISYMMETRIC STRESS ANALYSIS *
- WITH TEMPERATURE .

'* T.R.Chandrupatla and A.D.Belegunduy *
't***ﬁ*ti**iﬁiiii**ii****ﬁtiti***tii****i
N MAIN PROGRAM
Private Sub cmdStart Click()

Call InputData

Call Bandwidth

Call stiffness

Call ModifyFerBC

Call BandSclver

Call StressCalc

Call ReactionCalc

Call Output

credView.Enabled = True

cmdStarct,.Enabled = False
End S5ub

N ELEMENT STIFFNESS AND ASSEMBLY

Private Sub Stiffness(}
ReDim S{NQ, NBW)
' Global Stiffness Matrix ————-
For N = 1 To NE
picBox.Print "Forming Stiffness Matrix of Element "; N
'—--- Elamant Stiffness
Call phMat(N, 1, RBAR)
For I = 1To 6
For J=1To 6
c=0
For K=1To 4
C=C + Abs(DJ} * B{(K, I| * DB(K, J} * PI * RBAR
Hext K
S5E{I, J} = C
Next J
Next I
'v—— Tamparature Load Veotor
AL = PM(MRT{N}: 3,
C=aAL * DT(N) * PI * RBAR * Abs(DJ)
For I =1 Te &
TL(I) = C * (DB{l, I} + DB(2, I) + DB(4, I))
Next I
picBox.Print ".... Placing in Global Locations"
Call PlaceGlobal (W)
Next N
End sub
L]

e




i
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N STRESS CALCULATIONS
Private Sub StressCalci)
ReDim Stress (NE, 4), PrinStress(NE, 3), PltStress(NE}
fmmm Stress Calculations
For N = 1 To NE
Call DbMat{N, 2, RBAR)
'-—— Principal Stress Calculationws
If STR{3] = 0 Then
51 = STR(1}: 52 = S8TR{2): ANG = 0
If 52 > 51 Then
51 = BTR({2): 52 = STR{1l}: ANG = 90

End If
Else
cC= 0.5 * {8TR(1) + STR{2))
R = 8qr{0.25 * (STR(1l) - STR(2)) *~ 2 + [STR{3}) ~ 2)
51 =« C + R: S2 = C - R
If C > STR{1l) Then

ANG = 57.2957795 * Aen(STR({3) / (51 - STR(1l)}}
If STR{32) » 0 Then ANG = 90 - ANG
If STR{3) <« 0 Then ANG = ~-90 - ANG
Else
ANG = 57,29577951 * Atn(STR(3} / {STR{1) - 32))
End If
End Tf
Stress (N, 1) = STR(l}: StressiN, 2) = STR{2}
Stress(N, 3) = STR(3): Stress(N, 4) = STR{4}
PrinStress(N, 1) = Sl: PrinStress(N, 2) = 52
PrinStress(N, 3) = ANG
If IPL = 2 Then
'-—— vonMises Stress
53 = S5TR(4)
C= {51 - 52} ~ 2+ (5 - 83) ~ 2 + (83 - 51y ~ 2
PltStress (N) = Sqri0.5 * C)
End If
Next N
End Sub

B AND DB MATRICES FOR B'DB
Private Sub DbMat (N, ISTR, RBAR)
ST D{}, B{) AND DB(} matrices
'-—- First the D-Matrix
M = MAT(N): E = PM{M, 1): PNU = PM{M, 2}: AL = PM([M, 3
Cl=E* (L -PNUl / ({1 + PNU) * (1 ~ 2 * BNU}): C2 = PNU /

NrI==lTo4:FM.I=1TO4:Dﬂ,J]=Q:N“tJ=N“tI
D(l, 1) = Cl: D(1, 2) =Cl * C2: D(1, 4) = €1 * ¢2

Di2, 1) = D{1, 2): D2, 2) = Cl: D(2, 4) = C1 * c2

D(3, 3) = 0.5 *E / (1 + BNU}

D4, 1) = D(1, 4): Dtd, 2) = D{2, 4}: D{4, 4) = 1

{1 - PNU}
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'-=- Strain-Displacement Matrix B()

Il = ROC{N, 1}): I2 = NOC{N, 2): I3 = NOC(N, 3)
Rl = X(I1l, 1): R2 = ¥X(I2, 1): R3 = X(I3, 1)

21 = X(Il1, 2}:22 = X{12, 2): 23 = X(13, 2)

R21 = R2 - Rl: R32 = R3 - R2: R13 = Rl - R3
212 = Z1 - Z2: 223 = 22 - Z3: 231 = 23 - 2}

REAR = (R1 + R? + R3) / 3

'-—- Definition of B(} Matrix

B{l, 1} = 223 / DJ: B(2, 1} = 0: B{(3, 1) = R32
B(4, 1) =1/ (3 * RBAR)

Bi{l, 2) = 0: B{(2, 2) = R32 / DJ: B(3, 2) = £23

B{l, 3) = 231 / DJ: B(2, 3} = 0: B{3, 3) = R13

/ D3

/

/
B{4, 3) =1 / {3 * RBAR)

/

/

/

DJ

Bil, 4) = 0: B{2, 4} = R13 / DJ: B{3, 4) 231
B{l, 5) = z12 / DJ: B{2, 5) = 0: B{3, 5) R21
B{4, 5] = 1 / {3 * RBAR}
B(l, &) = 0: B(2, 6) = R21 / DJ: B(3, 6) = 212
'——— DB Matxiyx IIB = DB
For I =1 To 4
For J = 1To 6
DB{I, J} = 0
For K=1 To 4
DB(I, J} = DB{I, I} + D{I, K) * B{K, J)
Next K
Next J
Next I
If ISTR = 2 Then
fo——- Stress Fvalvation -----
Q1) = F{(2 * I1 - I): Qi{2) = F{2 * 11}
Q3) = F(2 * I2 - 1): Q{4) = F(2 * I2)
Q{5) = F{2 * I3 - 1}: Q{6) = F{2 * 13}
Cl = AL * DT({N}
For I =1 To 4
cC=10
For K=1To 6: C = € + DB(I, K} * Q{K): Next K
STR{I} = C - Ccl * {D{I, 1) + D{I, 2} + D(XI, 4]}
Next I
End If
End Sub

DJ

DJ:

DJ = R13 * 723 — R32 * 231 'Detarminant of Jacobian

B4,

DJ: B4, 2) = O

DJ: B{i, 4) = O

§) =0
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CHAPTER 7

Two-Dimensional
Isoparametric Elements
and Numerical Integration

INTRODUCTION

In Chapters 5 and 6, we have developed the constant-strain triangular element for stress
analysis. In this chapter, we develop four-node and higher order isoparametric elements
and apply them to stress analysis. These elements have proved effective on a wide vari-
ety of two- and three-dimensional problems in engincering. We present the two-
dimensional four-node quadrilateral in detail. Development of higher order elements
follow the same basic steps used in the four-node quadrilateral. The higher order ele-
ments can capture variations in stress such as occur near fillets, holes, etc. We can view
the isoparametric family of elements in a unified manner due to the simple and versa-
tile manner in which shape functions can be derived, followed by the generation of the
element stiffness matrix using numerical integration.

7.2 THE FOUR-NODE QUADRILATERAL

208

Consider the general quadrilateral element shown in Fig.7.1. The local nodes are numbered
as 1,2,3,and 4 in a counterclockwise fashion as shown, and (x;, y,) are the coordinates of
node i. The vectorq = [q,,¢s,. .., gs]" denotes the element displacement vector. The dis-
placement of an interior point Plocated at {x, y) is represented asu = [s(x, ). v(x.y )"

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a master
element, shown in Fig. 7.2.The master element is defined in £-, m-coordinates (or natural
coordinates) and is square shaped. The Lagrange shape functions where i = 1, 2,3, and

4, are defined such that A, is equal to unity at node ; and is zero at other nodes. [n par-
ticular, consider the definition of N;:

N =1 atnodel
=0 atnodes2 3 and4 (7.1)
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FIGURE 7.1 Four-node quadrilateral element.

0
ot
—
—
—r—-

(1.1
3

p(t.,ﬂ)

mﬁF — ¢

1 -2
{(-1,-1) (1,-1)

FIGURE 7.2 The quadrilateral element in £, % space (the maser alement),

Now, the requirement that N, = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N, = O along edges £ = +1 and n = +1 (Fig. 7.2). Thus, M, has to be of the form

Ny=c(l—§)(1 - ) (7.2)

where ¢ is some constant. The constant is determined from the condition &, = 1 at
node 1. Since § = —1,n = —1 at node 1, we have

1 = ¢(2)(2) (7.3)
which yields ¢ = ;. Thus,
N ={l-861 - (7.4)

St tirpei
DS FERIN T O
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All the four shape functions can be written as
N o=3(1-6€01-7)
=31+ 61 - n) (7.5)
=1+ 61 +7)
=11 -1 +7)

While implementing in a computer program, the compact representation of Eqs. 7.5 is
useful

N =31 + &)1 + mmy) (7.6)

where (£;,n,) are the coordinates of node i.

We now express the displacement field within the element in terms of the nodal
values, Thus, if w = [1, v]" represents the displacement components of a point located
at (£, 1), and g, dimension (8 X 1), is the element displacement vector, then

U= Mg + Ng; + Nigs + Nugy

v = Nig, + Mg, + Nygg + Nygg (7.7a)
which can be written in matrix form as
u = Ngq (7.7b)
where
N ON ON 0N 0
N= : ‘ 8
|: 0OM ON 0N 0 N (78)

In the isoparametric formulation, we use the same shape functions N, to also ex-
press the coordinates of a point within the element in terms of nodal coordinates. Thus,

X = N]xl + Nzxz + N3x3 + N4x4
y =My + Ny, + Nyys + Ny, (7.9)

Subsequently, we will need to express the derivatives of a function in X-
y-coordinates in terms of its derivatives in ¢-, p-coordinates. This is done as follows: A
function f = f(x, y), in view of Egs. 7.9, can be considered to be an implicit function of
£andnas f = f[x(£ n), y(£,1)]. Using the chain rule of differentiation, we have

of _3fax  ofay
¥  oxdf  ay oL
af _ofox  afoy

i " axen oy (7.10)
or
of)  (u
g6\ _ ) ox
of { Naf (7.11)
on dy




where J is the Jacobian matrix

In view of Eqs. 7.5 and 7.9, we have

4
= [Jll JIZ}
JZI 122

Equation 7.11 can be inverted as

af
ax
af
dy
or
af
ax 1
of [~ detd
3y
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dx 0y
€ OF
dx 9y
an o

(7.12)

_ 1[—(1—n)x1+(1-n)xz+(1+n)x3—(1+n)x4 ~(I=myt(l-n)yt(1+n)y—(1+n)y
~(1=8)x~(1+E)xt (1+E)x+(1=E)xs | —(1-En—(1+8)3+(1+E) y+(1-8)y,

{7.13a)
(7.13b)
2
d
= J £ (7.14a)
on
3f
by —Jp|) 0
|:_le J”:| of (7.14b)
n

These expressions will be used in the derivation of the element stiffness matrix.
An additional result that will be needed is the relation

dxdy = detJdf dn (7.15)

The proof of this result, found in many textbooks on calculus, is given in the appendix.

Element Stiffness Matrix

The stifiness matrix for the quadrilateral element can be derived from the strain energy

in the body, given by

U.—.

or

/ga'fe av (7.16)
v

U = Et!,/gchedA (717
3 ¢

where ¢, is the thickness of element e.

!
!
!
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The strain—displacement relations are

¢ du W
c dx
o v
€ = €, ¢ = L 5 ?
Yey du  ov
- + -
\ ay ax F
By considering f = u in Eq. 7.14b, we have
rgji\ (au 1
) ox \ — 1 JZZ _le BE \
B_L{ det] _le Jll W a_u
©y [ 91
Similariy,
’a_v\ fav it
) ax L 1 Jzz "J’lz ) 6{‘ \
3_1) detJ "‘fz[ J“ dv
\ay 7 \ an y
Equations 7.18 and 7.19a,b yvield
f@E\
o
du
on
€ = A
Yoo {
9§
v
\ 01

where A is given by
1| 22 e 00
= detJ 0 0 ~-&h Jy
_"’21 Jl 1 122 _"'12
Now, from the interpolation equations Egs. 7.7a, we have

( k'

du
3¢
du
an
dv
E3
v
Cuy

(7.18)

(7.19a)

(7.19b)

(7.20)

(7.21)

(71.22)
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where
—(1 ~n) 0 (1—1n) 0 (L+m) 0 ~(1+4) 0

_1j-a-&€ o -@a+&€ o0 (1+¢ o0 1-& 0

4 0 -(1-% o0 (I-m) 0 (d+qm) 0 —(1+79
0 -(-& 0 -1+ 0 (1+¢ 0 (1-8
(7.23)
Equations 7.20 and 7.22 now yield
€ = Bq : (7.24)
where |
B =AG (7.25)

The relation € = Bqis the desired result. The strain in the element is expressed in terms
of its nodal displacement. The stress is now given by

o = DBq (7.26)
where D is a (3 X 3) material matrix. The strain energy in Eq. 7.17 becomes
1 1
1qT|:t, / f BTDB detJ d¢ dn:lq (7.27a)
-1 J-1
= 3 id'Kq (7.275)
where
1 1
k=1, / / BTDB detJ d¢ dy (7.28)
= J~1

is the element stiffness matrix of dimension (8 X 8}.
We note here that quantities B and det J in the integral in Eq (7.28) are involved
functions of £ and #, and so the integration has to be performed numerically. Methods

of numerical integration are discussed subsequently.

Element Force Vectors

Body Force A body force that is distributed force per unit volume, contributes
to the global load vector F. This contribution can be determined by considering the body

force term in the potential-energy expression

/ u'EdV (7.29)
v

Using n = Ng, and treating the body force { = [f,,£,]" as constant within each ele-
ment, we get

[IE I
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f u'fav = q'f (7.30)
v e

where the (8 X 1) element body force vector is given by

£ = r"[/,: f: NTdetdedn]{;"} (7.31)

As with the stiffness matrix derived earlier, this body force vector has to be evaluated
by numerical integration.

Traction Force Assume that a constant traction force T = [T, T,}"-—a force per
unit area—is applied on edge 2-3 of the quadrilateral element. Along this edge, we have
¢ = 1. If we use the shape functions given in Eq. 7.5, this becomes N, = N, = 0,
N, = (1 — n)/2,and N; = {1 + 73)/2. Note that the shape functions are linear func-
tions along the edges. Consequently, from the potential, the element traction load vec-

| tor is readily given by

| . _ Ll -

| T==-00T T I, T, 0 0] (732)
— where £,_; = length of edge 2-3. For varying distributed loads, we may express T, and

T, in terms of values of nodes 2 and 3 using shape functions. Numerical integration can
be used in this case.

Finally, point loads are considered in the usual manner by having a structural node
at that point and simply adding to the global load vector F.

7.3 NUMERICAL INTEGRATION

Consider the problem of numerically evaluating a one-dimensional integral of the form

I= / Sl de (733)

The Gaussian quadmm{e approach for evaluating I is given subsequently. This method
has proved most useful in finite element work. Extension to integrals in two and three
dimensions follows readily.

Consider the #-point approximation

I = [l f(g) df = wlf(&) + wlf(gz) + et wnf(§r|) (7_34)

where w, w, .. ., and w, are the weights and £, £,, ..., and £, are the sampling points
or Gauss points. The idea behind Gaussian quadrature is to sele,::t the # Gauss points and
n weights such that Eq. 7.34 provides an exact answer for polynomials f(&) of as large
a degree as possible. In other words, the idea is that if the »-point integration formul
is exact for all polynomials up to as high a degree as possible, then the formula will work
well even if fis not a polynomial. To get some intuition for the method. the one-point
and two-point approximations are discussed in the sections that follow. 1
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One-Point Formula. Consider the formula with n = 1 as

[ S dE ~ w8 (7.35)

Since there are two parameters, w, and £,, we consider requiring the formula in Eq. 7.35
to be exact when f(£) is a polynomial of order 1. Thus,if f (¢} = a4, + a,£, then we require

Error = /: (ap + &) dE — w f(£) =0 (7.36a)
Error = 2a; — w(ag + a,¢;) =0 (7.36b)
or
Error = ay(2 — w) — w,&, = 0 {7.36¢)
From Eq. 7.36¢c, we see that the error is zeroed if
w =2 =0 (7.37)

For any general £, then, we have
1
I= fl f(&)dg ~ 2f(0) (7.38)
which is seen to be the familiar midpoint rule (Fig. 7.3).

Two-Point Formula. Consider the formula with 1 = 2 as

./:1 f(&) dE = w f(&) + wuf(€2) (7.39)

We have four parameters to choose: w,, w,, £, and §,. We can therefore expect the for-
mula in Eq. 7.39 to be exact for a cubic polynomial. Thus, choosing f(£) = @y + a,& +
ﬂzfz + ﬂ3§3 yields

Error = [/:l (ap + aif + @ + asf) df} = [wf(&) + wof(&)] (7.40)

f
I Fx)
Approximate  f-----"- 23 _--—4—'—-;--
area =2f(0) ~= Y Sa 4
L A& 4 KRN _
. .. -. A N d _D Y | 4 a f(O)
Exact area =Jl fx)dx .Aa A h o, ¥ - . o
) a 4 .dl 4 ? -

FIGURE 7.3 One-point Gauss quadrature.
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Requiring zero error yields

w +w, =2
wi§ + unéy = 0
wiE + wfl = %
wé + wé =0

These nonlinear equations have the unique solution

Two-Dimensional Isoparametric Elements and Numerical Integration

wo=w, =1 & = £ =1/V3 = 05773502691 ...

From this solution, we can conclude that n-point Gaussian quadrature will pro-
vide an exact answer if fis a polynomial of order (2n — 1) or less. Table 7.1 gives the val-
ues of w; and §; for Gauss quadrature formulas of orders # = 1 through n = 6. Note that
the Gauss points are located symmetrically with respect to the origin and that symmet-
rically placed points have the same weights. Moreover, the large number of digits given
in Table 7.1 should be used in the calculations for accuracy (i.e., use double precision on

the computer).

TABLE 7.1 Gauss Points and Weights for Gaussian Quadrature

A

[ @ = 3 (e

Number of points, n Location, §; Weights, w;

1 0.0 24

2 +1/V3 = £0.5773502692 1.0
3 +0.7745966692 0.5555555556
0.0 0.B888388889
4 +0.8611363116 0.3478548451
+0.3399810436 0.6521451549
5 *0.9061798459 02369268851
+0.5384693101 0.4786286705
¢.0 0.5688388889
6 +0.9324695142 0.1713244924
+0.6612093865 0.3607615730
+0.23861918461 0.4679139346

Example 7.1
Evaluate

1
f=f[3e‘+x2+ !
-1 (x +2)

using one-point and two-point Gauss quadrature.

Solation For#n = 1, we have w, = 2, x; = 0, and

I~ 2f(0)
= 7.0
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Forn =2, wefind w, = w, = 1, x; = —057735..., x, = +0.57735..., and | ~ 8.7857.
This may be compared with the exact solution

Iz = 88165 [ ]

Two-Dimensional Integrals

The extension of Gaussian quadrature to two-dimensional integrals of the form

i~ f : / : F(& ) dédn (7.43)

follows readily, since

I~ _/I[E:WJ(fs,n)]dn

~ 2 w{z wf (6 |

or

4]

I= 21 2; wiwjf(fis "Tj) (7.44)
i=] j=
Stiffness Integration
To illustrate the use of Eq. 7.4, consider the element stiffness for a quadrilateral element

t 1
£ =, / / BTDB det J d¢ dn
-1 J-1

where B and det J are functions of £ and 7. Note that this integral actually consists of
the integral of each element in an (8 X 8) matrix. However, using the fact that k* is sym-
metric, we do not need to integrate elements below the main diagonal.

Let ¢ represent the ijth element in the integrand. That is, let

$(£.1) = 1(B'DB det J), (7.45)

Then, if we use a 2 X 2 rule, we get

ki = wid(&,m) + wwd(£1, )
+ wyw (€, M) + wid(m., m) (7.46a)
where w, = w, = 10, = n; = ~057735...,and &, = 7, = +0.57735 ... The Gauss

points for the two-point rule used above are shown in Fig. 7.4. Alternatively, if we label
the Gauss points as 1,2, 3, and 4, then &;; in Eq. 7.46a can also be written as

4
k= X Wby (7.46)

where ¢yp is the value of ¢ and Wyp is the weight factor at integration point IP. We note
that W;p = (1)(1) = 1. Computer implerentation is sometimes easier using Eq. 7.46b.
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M=

-
i) (8
o
[F%]

S

L/

&=- &=
J:ll J-_'lf@,n) dedn =~ whf(&,m1) + wow, FlEam,

v (S
Cafm

—

+ wif(érmy) + wiws f(E11)

FIGURE 7.4 Gaussian quadrature in two dimensions using the 2 X 2 rule.

— We may readily follow the implementation of the previous integration procedure in
: program QUAD provided at the end of this chapter.
The evaluation of three-dimensional integrals is similar. For triangles, however,
the weights and Gauss points are different, as discussed later in this chapter.

Stress Calculations

Unlike the constant-strain triangular element (Chapters 5 and 6), the stresses
o = DBq in the quadrilateral element are not constant within the element; they are
functions of £ and 7, and consequently vary within the element. In practice, the stress-
es are evaluated at the Gauss points, which are also the points used for numerical eval-
uation of k°, where they are found to be accurate. For a quadrilateral with 2 X 2
integration, this gives four sets of stress values. For generating less data, one may eval-

tate stresses at one point per element, say,at £ = Oand n = 0. The latter approach is
used in the program QUAD.

Example 7.2

Consider a rectangular element as shown in Fig. E7.1. Assume plane stress condition,

E =30 X 10°psi,» = 0.3,and q = [0,0, 0.002, 0.003, 0.006, 0.0032, 0,0]" in. Evaluate J, B
andoatfé = 0andn = 0.

Solution Referring to Eq. 7.13a, we have

=l[ 21~ 7) + 2(1 + n)
4 =201+ &) +2(1 + ¢

(1+35) - (1+n)
1+&)+(1-¢

[10
0 1
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Y
[ 3
IQS 44s
4
4 K
0,1 @1
+
) C(1,0.5) a0
L ] L 43
1 2 "X
©.0 ' 2,0
FIGURE E7.1
For this rectangular element, we find that ¥ is a constant matrix. Now, from Eqs. 7.21,
. 3 000
A=—[0 0 0 1
17214 4 1o

Evaluating G in Eq.7.23 at § = n = 0 and using B = QG, we get

- 0 3 030 -f 0
B°=}| 0 -} 0 -0} o 1}
-1 _1 _1 1 11 i _1
2 4 F] 4 2 4 2 4
The stresses at £ = 5 = ( are now given by the product
¢ = DR
For the given data, we have
I 03 o0
X
p- 2% 0 1 o
’ 0 0 035
Thus,
o® = [66 920,23 080, 40 960]" psi |

Comment on Degenerate Quadrilaterals Insome situations, we cannot avoid
using degenerated quadrilaterals of the type shown in Fig. 7.5, where quadrilaterals

3.4
4
3
2
1 1 2
(a)

a (b}
FIGURE 7.5 Degenerate four-note quadrilateral elements.
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degenerate into triangles. Numerical integration will permit the use of such elements, but
the errors are higher than for regular elements. Standard codes normally permit the use
of such elements.

7.4 HIGHER ORDER ELEMENTS

The concepts presented earlier for the four-node quadrilateral element can be readily
extended to other, higher order, isoparametric elements. In the four-node quadrilater-
al element, the shape functions contained terms 1, £, , and £. In contrast, the elements
to be discussed later also contain terms such as ¢2n and £v%, which generally provide
greater accuracy. Only the shape functions N are given in Eqs. 7.47. The generation of
clement stiffness follows the routine steps

u = Ng (7.47a)

€ = Bq (7.47b)
1 1

ke =¢, / f B'DB det ) d¢ dn (7.47¢c)
-1 J-1

where k° is evaluated using Gaussian quadrature.
Nine-Node Quadrilateral

The nine-node quadrilateral has been found to be very effective in finite element prac-
tice. The local node numbers for this element are shown in Fig. 7.6a. The square master
element is shown in Fig. 7.6b. The shape functions are defined as follows:

Consider, first, the £-axis alone as shown in Fig. 7.6c. The local node numbers 1,2,
and 3 on this axis correspond to locations £ = ~1, 0, and +1, respectively. At these
nodes, we define the generic shape functions L,, L;, and L, as

L{&y=1 atnode §
=0  atother two nodes (7.48)

Now, consider L,. Since L, = 0at £ = 0 and at £ = +1, we know that L, is of the
form L, = ¢£(1 — £). The constant ¢ is obtained from L, = 1at¢ = ~1as¢ = —5. Thus
L,(£§) = —£(1 - £)/2. L, and L; can be obtained by using similar arguments. We have

1 —_
Li(¢) = _______5( 5 &)
L) =(1+&6)(1-¢) (7.492)
_f+¢
L) = =——
Similarly, generic shape functions can be defined along the »-axis (Fig. 7.6¢) as
1 -
Li(n) = “E(_‘Z—F—)
Ly(m) = (1 + ) (1 - ) (7.49b)
1
Li(n) = 1_?(_.5_1?_1
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4
=1
i i
(a) :-. 8
ik
(_1' 1) 4 {1§1} ;

Lstm) :

LoGp) g e 9 5 —f

L .

10m) . : :
(-1-1) (1.-1)
|
Ly(&) L&) L&)
{b)
T, L3
i3 n=1
l{— ? —?-—-- £ T2 n=0
£= -1 =0 £=1 J
L l n= —1
()
FIGURE 7.6 Nine-node quadrilateral (a) in x, y space and (b) in £, n space. (c) Definition of
general shape functions.
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Referring back to the master element in Fig. 7.6b, we observe that every node has the
coordinates § = —1,0,0r +1 and 5 = —1, 0, or +1. Thus, the product rule that follows
yields the shape functions N, N;,..., N;, as

N = Li(£)Ly(n) N = Ly(£)Lq(n) Ny = Ly(€)Ly(n)
Ny = L(£)Ly(m) Ny = Ly(€)Lx{m) Ny = L3(£}Ly(n) (7.50)
Ny = Ly(§)La(n) Ny = Ly(€)L+(m) Ny = Ly(€)Ls(n)

By the manner in which L, are constructed, it can be readily verified that N; equal one
at node { and equal zero at other nodes, as desired.

As noted in the beginning of this section, the use of higher order terms in N leads
to a higher order interpolation of the displacement field as given by u = Nq. In addi-

tion, since x = 2 Nx;and y = E N;y;, it means that higher order terms can also be
j i

!
used to define geometry. Thus, the elements can have curved edges if desired. Howev-
er, it is possible to define a subparametric element by using nine-node shape functions
to interpolate displacement and using only four-node quadrilateral shape functions to
define geometry.

Eight-Node Quadrilateral

This element belongs to the serendipity family of elements. The element consists of eight
nodes (Fig. 7.7a), all of which are located on the boundary. Our task is to define shape
functions N, such that N; = 1 at node i and 0 at all other nodes, In defining N, we refer
to the master element shown in Fig. 7.7b. First, we define N; — N,. For N,, we note that
N = 1 at node 1 and 0 at other nodes. Thus, N, has to vanish along the lines £ = +1,
n=+l,and{ + n = -1 (Fig, 7.7a). Consequently, N, is of the form

Ni=c(l-&(1-n)(1+¢+y) (7.51)

— JON 2
(b}

¥ space and (b) in £, % space.

FIGURE 7.7  Eight-node quadrilateral {a} in x,
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Atnode 1, N, = land § = n = —1.Thus,c = —%.We thus have

(1-&1-n){l+§f+n)
4

PR I(ER CEEAL) 052

O+ -£—n)
4

(1- U +m)(1+E—n)
4

N1=_

N4=_

Now, we define Ni, N, N7, and N at the midpoints. For N;, we know that it vanishes
along edges £ = +1,n = +1,and £ = —1. Consequently, it has to be of the form

Ns=c(1 - &)1 —m)(+¢§) (7.53a)
=c¢(1 - &) (1 - n) (7.53b)

The constant ¢ in Eq. 7.53 is determined from the condition N; = 1atnode 5,0r Ns =
at£ = 0,7 = —1.Thus,c = 5 and

Ny = o 52)2(1 — 1) (7.53¢)
We have :
N5=(1—§2(1—n)
- 0ro0-m 050
N, = (1-8)1+m)
2
(1-6€1-7)
N = 2

Six-Node Triangle

The six-node triangle is shown in Figs. 7.8a and b. By referring to the master clement in
Fig. 7.8b, we can write the shape functions as

Ny =¢g(26~1)  No=dn
Nz =127 - 1) N. = 4{n (7.55)
=2 -1 N=4

where [ = 1 — £ — n. Because of terms £ o, etc. in the shape functions, this element
is also called a quadratic triangle. The 1sopararm,mc representation is

,i u = Ngq
‘ x=2Nx y= XNy (7.56)
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FIGURE 7.8 Six-node triangular element.

The clement stiffness, which has to be integrated numerically, is given by

f =1, / f B'DB detJ d¢ dn (7.57)
A

. _The Gauss points for a triangular region differ from the square region considered ear-
lier. The sxmplels.t is the one-point rule at the centroid with weight w, = ; and
¢ =m = {, = 3. Equation 7.57 then yields

k= 31,B"DBdetJ (7.58)

where B and J are evaluated at the Gauss point. Other choices of weights and Gauss
points are given in Table 7.2. The Gauss points given in Table 7.2 are arranged symmet-
rically within the triangle. Because of triangular symmetry, the Gauss points occur in
groups or multiplicity of one, three, or six. For multiplicity of three, if £-, n-, and

TABLE 7.2 Gauss Quadrature Formulas for a Triangle

1 1-£ I
[ﬁ f(&n}dndsfmzw;f(f”m)

No. of points, Weight,
" 0, Multipticity & n, L
One i 1 ! 1 1
3 ; i
Three A 3 % _: 1
R f
Three . 3 ! ;‘ 0
2 z

Four -5 1 L ! !
ﬁg 3 d . !
Six 3 : . 5

i i 6 06590276223 02319333685 01090390090
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it

FIGURE 7.9 Restrictions on the location of a midside node.

I-coordinates of a Gauss point are, for instance, (%, L é) then the other two Gauss points
are located at (%, %, é) and (%, é %) Note that = 1 — ¢ — m, asis discussed in Chapter 5.
For multiplicity of six, all six possible permutations of the &-, n-, and {-coordinates are used.

Comment on Midside Node In the higher order isoparametric elements dis-
cussed previously, we note the presence of midside nodes. The midside node should be
as near as possible to the center of the side. The node should not be outside of
I < s/€ < 3, as shown in Fig. 7.9. This condition ensures that det J does not attain a

value of zero in the element.

Comment on Temperature Effect Using the temperature strain defined in Eqgs.
5.61 and 5.62 and following the derivation in Chapter 5, the nodal temperature load can

be evaluated as
1 1
¢ =4, f / B'DeydA =1, / / B'Deg/det J| dé dy (7.59)
A -1 -1

This integral is performed using numerical integration.

7.5 FOUR-NODE QUADRILATERAL FOR AXISYMMETRIC PROBLEMS

The stiffness development for the four node-quadrilateral for axisymmetric problems
follows steps similar to the quadrilateral element presented earlier. The x-, y-coordinates
are replaced by r, z. The main difference occurs in the development of the B matrix,
which relates the four strains to element nodal displacements. We partition the strain

vector as
Er
| e=|° =[‘] (7.59)
Y. €y
€,y
where € = [€,€.7,.]"-
B .
Now in the relation € = Bq, we partition Bas B = |:B‘i|, suchthat Byisa3 X 8

matrix relating € and q by

é = B,g (7.60)
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and B, is a row vector 1 X 8 relating €, and q by

€ = B,q (7.61)
Noting that r ,z replace x, y, it is clear that B, is same as the 3 X 8 matrix given in Eq. 7.24
for the four-node quadrilateral. Since €, = u/r and u = Nyjg, + Ng + Nig; + Ny,
B, can be written as

| M _
Bz—|:r 020 =0 - 0} (1.62)

On introducing these changes, the element stiffness is then obtained by performing
numerical integration on

1 1
k* = 27 f ] rBTDB det J d¢ dn (7.63)
-1 J-1

The force terms (in Eq. 7.31 and 7.32) are to be maltiplied by the factor of 27 as in the
axisymmetric triangle.

The axisymmetric quadrilateral element has been implemented in the pro-
gram AXIQUAD.

7.6 CONIUGATE GRADIENT IMPLEMENTATION

OF THE QUADRILATERAL ELEMENT

The ic.ieas of the conjugate gradient method have been presented in Chapter 2. The
equations are reproduced here using the notation for displacements, force and stiffness:

g = KQ, — F, dy = —g;

_ i
; = S —
dKd,
Qk+1 = Qk + akdk (764)

T
8, = Bi+18k+1
o = 2rIokt]

Bl
d|fc+1 = TBiy + Bkdk
Here k = 0,1,2,.... The iterations are carried out until 28 reaches a small value.

We state here the steps in its implementation in finite element analysis. The main
difference in this implementation is that the stiffness of each element is first generated
and stored in a three-dimensional array. The stiffness of an element can be recalled from
this array without recalculating for the iterations carried out. We start with the initial dis-
placc’n_lents at QU = 0.1In the evaluation of g,, the force modifications for the boundary
conditions are implemented. The term Kd, is evaluated by performing directly usiog

element stiffness values by using E k‘d;. The conjugate gradient approach is imple-
mented in QUADCG. )
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Concluding Note

The concept of a master element defined in &-, n-coordinates, the definition of shape
functions for interpolating displacement and geometry and use of numerical integra-
tion are all key ingredients of the isoparametric formulation. A wide variety of elements
can be formulated in a unified manner. Though only stress analysis has been considered
in this chapter, the elements can be applied to nonstructural problems quite readily.

Example 7.2

The problem in Example 5.8 (Fig. E5.8) is now solved using four-node quadrilateral ele-
ments using program QUAD. The loads, boundary conditions, and node locations are the
same as in Fig. E5.8. The only difference is the modeling with 24 quadrilateral elements,
as against 48 CST elements in Fig. E5.8. Again, MESHGEN has been used to create the
mesh (Fig. E7.2a) and a text editor to define the loads, boundary conditions, and material
properties.

The stresses output by program QUAD correspond to the (0, 0) location in the nat-
ural coordinate system {master element). Using this fact, we extrapolate the y-stresses in
elements 13, 14, and 15 to obtain the maximum y-stress near the semicircular edge of the

plate, as shown in Fig. E7.2b. n
p——— 5 in, ———™
T 7 2,
4 in,
1o
2l®°
4in + A B
- oy (psi)
|
E =30 x 10°psi
4in. v=03
t=04in.
EEEEENEENE
400 psi

(a)
FIGURE E7.2

-
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Input Data File

<¢ =—— 2D STRESS ANALYSIS USING QUAD —-=- 2>
PROBLEM 7.4

<< NN NE NM NDIM NEN NDB >>

941242

<< ND NL KMPC >>

610

<< Node4 Coordinates >>

100

AW @ -don Uy
o
©
o

TempRise >>

10 ¢

B WA B WM

OO0 oD

<< DOF$# Load >>

18 -10000

<< MAT# E Nu Alpha >>
1 70000 .33 12E-6

Bl i 82 j B3 (Multi-point constr., Bl*Qi+B2*Q3=B3)

Two-Dimensional Isoparametric Elements and Numerical Integration

Program Quad - CHANDRUPATLA & EELEGUNDU

Cutput
PROBLEM 7.4
Flane SBtress Analysis
NODE# X-Displ Y-Displ
1 ~-8.BYB4E-07 -2.8335E-07
2 1.7736E-08 1.5071E-07
3 B.7210E-07 -3.0784E-07
4 ~-8.8095E-02 -1.3105E-01
5 -1.2B26E-03 ~1.2305E-01
6 B8.7963E~-02 -1.2696E-01
7 ~1.1692E-01 =3.6519E-01
8 3.5222E-04 -3,7014E-01
g 1.2512E~01 -3.8686E-01
ELEM# vonMises Stresses at 4 Integration points
1 2.1336E+02 1,.6028E+02 5.3779E+01 1.4114E+02
2 1.3696E+02 4.8523E+01 1.5995E+02 2,0832E+02
3 9.3736E+01 5.8816E+01 3.B024E+01 9,147SE+Q1
4 9.2307E+01 6.8321E+01 9.41B3E+01 1.2010E+0?
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<< AXISYMMETRIC STRESS ANALYSIS >>
EXAMPLE 6.4
NN NE NM NDIM NEN NDN

€ 2 1 2 4 2

WD NL NMPC
3 6 0
Noded X Y {r 2z coordinatas)
1 3 0
2 3 .5
3 7.5 0
4 7.5 .5
5 12 0
1 12 N
Elem$# N1 N2 N3 N4 Matd# TempRise
1 ] 3 4 2 1 0
2 3 5 6 [ 1 0
DOF# Displacement
2 0
6 0
-10 0
DOF# Load
1 3449
3 9580
5 23380
7 38711
g 32580
11 187480

MAT# PROP1 PROP2 PROP3

1 J0E6 .3 12E-6
Bl i B2 3j B3 (Multi-polnt constr. B1*Qi+B2*0i=B3)

Program AxiQuad - CHANDRUPATIA & BELEGONDU
Qutput

EXAMPLE 6.4

NODE4  R-Displ Z-Displ

1

Mo e O s L) N

8.2970E-04
8.2992E~04
B.8546E-04
8.8799E-04
9,0356E~04
8.9886E-04

vonMises
6,2713E403
3.0942E+03

9.0276E~12
~5.4296E-05
-1.4325E~11
-2.5290E-05
5,2976E-12
-1.6127E-05

3.9595E+03
2,3915E+03

Stresses at 4 Integration points

3.9642E+03 6.2701E+03
2.3908E+03 3.1003E+03
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PROBLEMS

7.1.

7.2

71.3.

74,
7.5

Figure P7.1 shows a four-node quadrilateral. The (x, y) coordinates of each node are given
in the figure. The element displacement vector q is given as

q = [0,0,0.20,0,0.15,0.10, 0, 0.05]"

’ —
Y (1,1) (5,1) ?
|_L X
FIGURE P7.1
Find the following:
(a) the x-, y-coordinates of a point P whose location in the master element is given by
£=105andn =05and .

{(b) the u, v displacements of the point P.

Using a 2 X 2 rule, evaluate the integral

A/(xz + xy%) dx dy

by Gaussian quadrature, where A denotes the region shown in Fig. P7.1.

State whether the following statements are true or false:
(a) The shape functions are linear along an edge of a four-node quadrilateral element.
(b} For isoparametric elements, such as four-, eight-, and nine-node quadrilaterals, the

point £ = 0, 7 = 0in the master element corresponds to the centroid of the element
in x- and y-coordinates.

(c)} The maximum stresses within an element occur at the Gauss points.

(d) The integral of a cubic polynomial can be performed exactly using two-point Gauss
quadrature.

Solve Problem P5.15 with four-node quadrilaterals, Use program QUAD.

A half-symmetry model of a culvert is shown in Fig, P7.5. The pavement load is a uniformly
distributed load of 5000 N/m", Using the MESHGEN program (discussed in Chapter 125
develop a finite element mesh with four-node quadrilateral elements. Using program
QUAD determine the location and magnitude of maximum principal stress. First, try 2
mesh with about six elements and then compare results using about 18 elements.




7.6.

1.1
7.8.
7.9.

1.10.

|__, X £=-1 £=+1
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le—32m
5000 N/m?

%

Plain strain
E =200 GPa
v=03

—m ]

FIGURE P7.5

Solve Problem P5.16 using four-node quadrilateral elements (program QUAD). Compare
your results with the solution obtained with CST elements. Use comparable-size meshes.
Solve Problem P5.17 using four-node quadrilaterals (program QUAD).

Solve Problem P5.20 using four-node quadrilaterals (program QUAD).

Develop a program for axisymmetric stress analysis with four-node quadrilateral elements.
Use your program to solve Example 6.1. Compare results. [Hint: The first three rows of the
B matrix are the same as for the plane stress problem in Eq. 7.25, and the last row can be
obtained from €, = u/r.]

This problem focuses on a concept used in the MESHGEN program discussed in Chap-
ter 12. An eight-node region is shown in Fig. P7.10a. The corresponding master element or
block is shown in Fig. P7.10b. The block is divided into a grid of 3 X 3 = 9 smaller blocks
of equal size, as indicated by dotted lines. Determine the corresponding x- and
y-coordinates of all the 16 nodal points, and plot the 9 subregions in Fig. P7.10a. Use the
shape functions given in Eqs. 7.52 and 7.54.

(3,6} n

=+l 14] 15} 16
I I
(0.6,3.0) (4,3.5) e ]
9 1000 111 12
] | i ¢ — §
I I
0.8,2.0 A SRR SR
©8.20 S G
. | I
o . = - | |
an (25,1) G =1 ] PR 2

(a) (b)

FIGURE P7.10
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7.11. Develop a computer program for the eight-node quadrilateral. Analyze the cantilever
beam shown in Fig. P7.11 with three finite elements. Compare results of x stress and center-
line deflections with
(a) the six-element CST model and
(b) elementary beam theory.

}/ P=100001b
A :
* ) ) -
04in. .,
St O 1 @ 4 @ {—x
04in. |
fe— 2.0 in——«— 2.0 in. 2.0in.
t=10in.
E =30 x 10° psi
v=103

— FIGURE P7.11

7.12. Solve Problem 6.16 using axisymmetric quadrilateral elements (Program AXIQUAD).




Problems

Program Listings
T dddd ok hh PROGRAM QUAD e e e v K B e o o
te 2-D 5TRESS ANALYSIS USING 4-NODE *
'* QUADRILATERAL ELEMENTS WITH TEMPERATURE *
C* T.R.Chandrupatla and A.D.Belegundu *
Uode e i e ok g e e e ok ok e e ok e e o b e e ke e g e o e e e i e e e e o e e e o

Private Sub cmdStart_click()
Call InputData
Call Bandwidth
Call stiffness
Call ModifyForBC
Call BandSclver
Call StressCalc
Call ReactionCalc
Call Cutput
cmdView.Enabled = True
cmdStart. Enabled = False
End Sub

1

r=== === ELEMENT STIFFNESS AND ASSEMBLY

Private Sub Stiffnessi)

EeDim 35 (NQ, NBW)

P Global Stiffness Matrix -----

Call IntegPoints

For N = 1 Toe KE
picBox.Print "Forming Stiffness Matrix of Element "; N
Call DMatrix{N)
Call ElemStiffness (N)

R e Tl s e e E R
. L TR T b 1

picBox.Print ".... Placing in Glabal Locations"
Call PlaceGlobal {N})
Next N
End Sub
* STRESS CALCULATIONS

Private Sub StressCalc(])
ReDim vonMisesStress(NE, 4), maxShearStress{NE, 4}
f - Stress Calculations
For N = 1 To NE
Call DMatrix{N)
For IP = 1 To 4

call DbMat (N, 2, IP) '--- Get DB Matrix with Stress calculaticn

'_-- Von Mises Stress at Integration Point
¢ = 0: If LC = 2 Then C = PNU * ({STR({l) + STR(2]}]
€1 = {STR(1) - STR{2)} * 2 + (STR({2} - C} ™~ 2 + (C - STR{1))}
SV = 8qr{0.5 * C1 + 3 * STR(3) "~ 2}
'--— Maximum Shear Stress R
R = 5qr(0.25 * (STR(1) - STR{2}) " 2 + {3TR{3)} ~ 2}

i

maxShearStress (N, IP) = R
vonMisesStress (N, IB) = SV
Next IP
Next N

End Sub

~

2
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N INTEGRATICN POINTS

FPrivate Sub IntegPointsi)

fmmm e Integration Points XNI{) —--—--=--
Cc = 0,57735026919

XN1({1l, 1} = -C: XN1(1l, 2} = -C
XNI(2, 1} = C: XNI(2, 2) = -C
¥NI(3, 1) = C: XNI{(3, 2} = C
KNI (4, 1) = -C: XNI({4, 2) =C
End Sub
N D-MATRIX
Private Sub DMatrix(N)
Bttt D{} Matrix -----

'——- Material Properties
MATN = MAT [N}
E = PM(MATN, 1): BNU = PM{MATN, Z)
Al = FM{MATN, 3)
f--- D[} Matrix
If 1C = 1 Then
'-—- Plane Stress
Cl =8/ (1 - PNU ~ 2}: C2 = C1 * PNU
Else
'——- Plane Strain
¢C=E/ ({1 + BNU) * (1 - 2 * PNU)}
€l =c¢c* (1 - BPNU: C2 =C * PNU

End If

C3=10.5*E/ (1 + PNU)

D{l, 1) = C1: D{1, 2} =C2: D(1, 3} =10

D{2, 1} = c2: D(2, 2) =Cl: D{2, 3) =0

D{3, 1) = 0: D(3, 2) = 0: D3, 3) = C3
End Sub

' == ELEMENT STIFFNESS MATRIX
Private Sub ElemStiffness(N)
fmmmm e Flement Stiffness and Temperature Load -----

For T = 1 To B: For J = 1 To 8: SE(I, J} = 0: Next J: TL{I} = 0: Next I
DTE = DT(N)

'--- Weight Factor is ONE
'~-- locp on Integration Points
For IF = 1 To 4
'--- Get DB Matrix at Integration Point IP
Call DbMat(N, 1, IP)
‘~-- Element Stiffness Matrix SE
Fer I =1 Te 8
For 3 =1To 8
c=20
For K =1 To 3
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continued
C=C+ B{(K, I) ~ DRIK, J) * DJ * TH(N)
Next K
SE{I, J) = SE{I, J) + C
Next J
Next I

'-—- Datarmins Temperaturs Load TL
AL = PM{MAT(N), 3)

C= AL * DTE: If L.C = 2 Then C =
For I =1 To 8

(L + PNU} * C

ke m e i m———

e dm

TL{I} = TL(I) + TH{N) * DJ * ¢ * (DB(l, I) + DB{2, I}}
Next I
Next IP
End Sub
B AND DB MATRICES FOR B'DB
Private Sub DbMat (N, ISTR, IP)
i DB({) MATRIX ------—
XI = XNI{IP, 1): ETA = XNI{IP, 2]
'-—— Nodal Coordinates
THICK = TH{N)
Nl = NOC(N, 1): N2 = NOC{N, 2)
N3 = NOC(N, 3): N4 = NOC(N, 4)
X1 = X{N1, 1): Y1 = X(N1, 2): X2 = X(N2, 1): YZ = X(N2, 2}
X3 = R(N3, 1): Y3 = X(N3, 2): X4 = ¥(N4, 1): Y4 = X (N4, 2}
f--- Foxmation of Jacchian TJ
TJ11 = {{1 - ETA} * {X2 - X1) + {1 + ETA} * (X3 - X4)) / 4
TJ12 = {(1 - ETA} * (Y2 - Y1) + (1 + ETA} * (Y3 - Y4)} / 4
TJI21 = ((1 - XI) * (%4 - X1} + {1 + XI} * (X3 - X2}) / 4
TI22 = ({1 - XI) * (¥4 - ¥1) + {1 + XI} * (¥3 - Y2}} / 4

1—-- Determinapt of the JACOBIAN
DJ = TJ11 * TJ22 - TJL2 * TI21
'—-— A(3,4) Matrix relates Strains to Local Darivatives of u

A{i, 1y = TJ22 / DJ: Af2, 1) = 0: A(3, 1} = -TJ21 / DJ
A(l, 2y = -TJ12 / DJ: A2, 2) = 0: A(3, 2} = TJ11 / DJ
A(l, 3) = 0: A(2, 3) = -TJ21 / DJ: A(3, 3} = TJ22 / DJ

= 0: A{2, 4y = TJL11 / DJ: A(3, 4) = -TJlz / DJ

A(l, 4)
‘-—- G{4,8) Matrix relates Local Derivatives of u
~~— to Local Nodal Displacements q(8)

For I =1 To 4: For J =1 To &

G(I, J) = 0: Next J: Next I

G(l, 1) = -{1 - ETA} / 4: G{2, 1} = —-{1 - XI) /4

G{3, 2) = -{1 - EPA) / 4: G4, 2} = -(1 - XI) /4

G(1l, 3) = {1 - ETA) / 4: G2, 3) = —-({1 + XIy / 4

G(3, 4} = {1 - ETA) / 4: G4, 4) = -(1 + XI) / 4

G{l, 51 = {1 + ETA} Jd: G{2, 5) = {1 + I} / ¢

G(3, 6} = {1 + ETA)} / 4: G{4, &) = (1 + XI) / 4

G{i, 7} = -{1 + ETA} / 4: G{2, 7} = {1l - XI} / 4

G{3, 8} = -{1 + ETA)} / A: G{4, B) = {1 — %I} / 4 )

e,




236 Chapter7 Two-Dimensional Isoparametric Elements and Numerical Integration

continued

1——— B(3,8) Matrix Relates Strains to g
For I = 1 To 3
For J =1 To 8
C =20
For K=1To 4
C=C + A(I, K} * G(K, J}
Next K
B{I, J¥y =C
Next J
Next I
‘--- DE(3,8) Matrix relates Strasses to g(8)
For I =1 To 3
For J =1To 8
c=20
For K=1To 2
C=20C+ D(I, K} * B(K, J)
MNext K:
DB{I, J} =C
MNext J
Next I
If ISTR = 2 Then
‘-—— Stress Evaluation
For I = 1 To NEN
IIN = NDN * (ROCIN, I} - 1)
II = RDN * (I - 1)
For J = 1 To HDN
QIII + J} = F{IIN + J)
Next J
Next I
AL = PMIMAT (N), 3)
Cl =AL * DT(N): If LC = 2 Then C1 = C1 * {1 + PNU}
For I =1 To 3
c =9
For K =1 To 8
C=0C + DBII, K) * Q{K}
Next K
STR{I) = C - C1 * {D{I, 1) + DB{I, 2}}
Next I
End If
End Sub
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CHAPTEHR 8

Beams and Frames

8.1 INTRODUCTION

Beams are slender members that are used for supporting transverse loading. Long hor- T
izontal members used in buildings and bridges, and shafts supported in bearings are :
some examples of beams. Complex structures with rigidly connected members are called ]
frames and may be found in automobile and acroplane structures and motion- and force- i
transmitting machines and mechanisms. In this chapter, we first present the finite clement
formulation for beams and extend these ideas to formulate and solve two-dimensional
frame problems.

Beams with cross sections that are symmetric with respect to plane of loading are
considered here. A general horizontal beam is shown in Fig. 8.1. Figure 8.2 shows the
cross section and the bending stress distribution. For small deflections, we recall from

elementary beam theory that

¥
F By ‘
4
T ke
e —_—— Y — 1 — ———-—X
oW R
R Mk ~ :
- L
()
vV
4
[\
/
—
(®)

FIGURE 8.1 () Beam loading and (b} deformation of the neutral axis.
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Chapter 8 Beams and Frames

Centroid

M
== 8.1
o 7Y (8.1)
o
= — g2
€=F (8.2)
dv M
o= 83
dx>  EI ( )

where o is the normal stress, € is the normal strain, M is the bending moment at the sec-
tion, v is the deflection of the centroidal axis at x, and I is the moment of inertia of the
section about the neutral axis (z-axis passing through the centroid).

Potential-Energy Approach

The strain energy in an element of length dx is

1
dU:‘/O'EdAdx
2 A

_l(i’fi/ A
2\EP J,” x

Noting that fA y? dA is the moment of inertia I, we have

dU = ———dx (84)
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v-1 [ o2 ©3)

The potential energy of the beam is then given by

L
H=%f EI( ) fpvdx EPU EMkvk (8.6)

where p is the distributed load per unit length, P,, is the point load at point m, M, is the
moment of the couple applied at point k, v,, is the deflection at point m, and vj is
the slope at point &.

Galerkin Approach

For the Galerkin formulation, we start from equilibrium of an elemental length. From
Fig. 8.3, we recall that
dav
P (8.7)
aM
dx

When Eqs. 8.3, 8.7, and 8.8 are combined, the equilibrium equation is given by

a (Eldz ) —-p=0 (8.9)

=v (8.8)

dx? dx?
For approximate solution by the Galerkin approach, we look for the approximate solu-
tion v constructed of finite element shape functions such that

L 2
l [diz(ﬂ%) ~ p}pdx =0 (8.10)

v M+ dM

V+dv

ES

e

FIGURE 8.3 Free body diagram of an elemental length dx.
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where ¢ is an arbitrary function using same basis functions as v. Note that ¢ is zero
where v has a specified value. We integrate the first term of Eq. 8.10 by parts. The inte-
gral from 0 to L is split into intervals 0 to x,,, x,, to x;, and x; to L. We obtain

2 2 T .
Ef_f"_‘kdx / pbdx + = (Eld )¢ di(ﬂ%)qb

¥ v dx?
dvde|n  dwde|t
- El o =0 (8.11)
dx* d e dx |,

We note that EI(d’v/dx?) equals the bending moment M from Eq. 8.3 and
(d/dx)[ EI(d*v/dx*)] equals the shear force V from (8.8). Also, ¢ and M are zero at the
supports. At x,,, the jump in shear force is £,, and at x,, the jump in bending moment
is —M, . Thus, we get

d*v d* -
f gyt a - [ pdi- Sha, - Smei=0  G1)
4 " k

For the finite element formulation based on Galerkin’s approach, v and ¢ are con-

structed using the same shape functions. Equation 8.12 is precisely the statement of the
principle of virtual work.

8.2 FINITE ELEMENT FORMULATION

The beam is divided into elements, as shown in Fig. 8.4. Each node has two degrees of
freedom. Typically, the degrees of freedom of node i are Q,;_, and Q,,. The degree
of freedom Q,;_, is transverse displacement and Q,, is slope or rotation. The vector

Q=[0.2...., QIO]T (8.13)

Ter—l

LY
0 15! Qs Oy Qi Qo

Q2<1x Q‘*’t\ Qﬁff\ stf\ Qu rfw

OIENOERNCRERNG S M

e |12
1112
q
I 4 21213 Global
111 2 3134
]
a - \) 2 4145

dj U sza

FIGURE 8.4 Finite element discretization.
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Slope =0
¥
T e
1
Slope = H, Slope = 0
1- | 2 ¢ 1/_[\ \"1'2 :
§=-1 £=0 £=+1 -3 Stope =1 © +1
Slope =0
Slope = H, } Slope = 0 Slope =1
15/ | 24, u!/ | 2 .
-1 0 +1 -1 0 i
H,

FIGURE 8.5 Hermite shape functions.

represents the global displacement vector. For a single element, the local degrees of
freedom are represented by

q = [QI s 2. G, %]T (814)

The local—global correspondence is easy to see from the table given in Fig. 8.4. q is same
as [v, v, 2, 'vz] . The shape functions for interpolating » on an element are defined in
terms of £ on —1 to +1, as shown in Fig. 8.5. The shape functions for beam elements
differ from those discussed earlier. Since nodal values and nodal slopes are involved, we
define Hermite shape functions, which satisfy nodal value and slope continuity
requirements. Each of the shape functions is of cubic order represented by

H=a+bt+ct +dg, i=1234 (8.15)

The conditions given in the following table must be satisfied:

H | # | H, | H | H | H | H | H}
=-1]1 0 0 1 o |l o | o | o
£=1 o | 0 0 0 1 o | o 1

The coefficients a;, b;, ¢;, and d; can be easily obtained by imposing these conditions. Thus,

Ho=11-&%2+§ o {2-3+§8)
Ho=i(1 =X e+1) or [(I-&-§+8&)
H,=41+8*2~-¢ or L2+ 3-8 (8.16)
Ho= 1+~ 1) or j(-1-¢+8+8)
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The Hermite shape functions can be used to write v in the form

dv dv
v(&) = Hyv +H(-——)+H +H(—) 8.17
(€) 1% A7/, 32 \az/, (8.17)
‘The coordinates transform by the relationship
1~¢ 1+¢
X = 5 X1 3 Xz
_ X1 + X2 Xy — Xy
3 3 ¢ (8.18)
Since €, = x; — x, is the length of the element, we have
£.
dr = —Ldg (8.19)

The chain rule dv/d¢é = (dv/dx){(dx/d¢) gives us
dv  {.dv

d_§ = (8.20)
Noting that dv/dx evaluated at nodes 1 and 2 is ¢, and g,, respectively, we have
£ £,
wé) = Hig + Equ’z T Hqs + 5”4‘14 (821)
which may be denoted as
v = Hyq (8.22)
where
£, £,
H =\ H,~ Hy, Hy,— H, (8.23)

In tl}e total potential energy of the system, we consider the integrals as summations over
the integrals over the elements. The element strain energy is given by

dZ 2
U, = }EI / (Ex—f) dx (8.24)
From Eq. 8.20,
dv 2 dv dv 4 d%
aTLE ™ @t wE
Then, substituting v = Hgq, we oblain
v\ L16( PR\  &*H
(dxz) - q “\ag —&?—)q (8.25)
dHY |3, -1+36¢ 3 1+3¢¢
(dgz) [25’7——5"55’“&—?} 620
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On substituting dx = (£,/2) d¢ and Eqs. 8.25 and 8.26 in Eq. 8.24, we get

8 36(-1+36)8, —18 6L+ 360, |
—1+3¢)2 —~1 + 9¢
—— 2@ (-1 436, ——¢
o= Ll [ = TR T
¢t 8 ), Symmetric & —3E(1 + 3£)¢, ¢q
(1+3§)2€2
| — 4 ‘
(827)

Each term in the matrix needs to be integrated. Note that

+1 2 +1
/ gdE =7 / £dg =0 f
-1 -1 -1

This results in the element strain energy given by
U, = 39'kg (8.28)
where the element stiffness matrix is
12 66, -12 6L,
_ EI| 6L, 42 —6¢,  2€]
el =12 —6f, 12 -6¢,
6¢, 268 -6f, 4¢]

1
de=12

K (8.29)

which is symmetric.
In the development based on Galerkin's approach (see Eq. 8.12), we note that

Cos_, 15(dn)( o8
Bl i ae ~ YV EG ( dE* ) ( dg? )q (8.30)
where -

U= ¥ s 4] (8.31)

is the set of generalized virtual displacements on the element, v = Hq, and ¢ = Hir.
Equation 8.30 yields the same element stiffness as Eq. 8.28 on integration, with W'k'q
being the internal virtual work in an element.

83 LOAD VECTOR

The load contributions from the distributed load p in the element 1s first considered.
We assume that the distributed load is uniform over the element:

¢, [
/ pvdx = (%— / Hd.f)q (8.32)
¢ -t

On substituting for H from Egs. 8.16 and £.23 and integrating, we obtain

/ podx = £7q (8.33)
Ff‘

P
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P
4 A & A & 11 & A 4 A 4 &

1 2
& ¢, I
fall pée
2 2

pe2 (I - Pt
s ] e 2 T2

FIGURE 8.6 Distributed koad on an element.

where

(8.34)

po = | Ple pte Pl —pEC T
21272 12

This equivalent load on an element is shown in Fig. 8.6. The same result is obtained by con-
sidering the term fe p¢é dx in Eq. 8.12 for the Galerkin formulation. The point loads F,, and
M, are readily taken care of by introducing nodes at the points of application. On intro-
ducing the local-global correspondence, from the potential-energy approach, we get

I = 1Q"KQ ~ Q'F (8.35)
and from Galerkin’s approach, we get
¥KQ - ¥'F =0 (8.36)

where ¥ = arbitrary admissible global virtual displacement vector.

8.4 BOUNDARY CONSIDERATIONS

When the generalized displacement value is specified as a for the degree of freedom
(dof) r, we follow the penalty approach and add }C(Q, - a)?to [T and W,C(Q, — a) 10
the left side of the Galerkin formulation and place no restrictions on the degrees of
freedom. The number C represents stiffness and is large in comparison with beam stiff-
ness terms. This amounts to adding stiffness Cto K, and load Ca to F, (see Fig. 8.7). Both
Eqgs. 8.35 and 8.36 independently yield

KQ=F (8.37)

These equations are now solved to get the nodal displacements.
Reactions at constrained degrees of freedom may be calculated using Eq.3.71 or 375
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dof = 2i - 1 Ca

a = known generalized displacement

FIGURE 8.7 Boundary conditions for a beam.

8.5 SHEAR FORCE AND BENDING MOMENT
Using the bending moment and shear force equations
d*v dM a
M—EIE V—E and ’U—Hq '4

we get the element bending moment and shear force:

El

M = ?[6&31 + (3¢ — 1)4,q — 6éqs + (3¢ + 1)E.qu] (8.38)
6E1

V=" Qo+l —2g + L) (8.39)

These bending moment and shear force values are for the loading as modeled using
equivalent point loads. Denoting element end equilibrium loads as R,, R., R;. and R,,
we note that

It is easily seen that the first term on the right is k’q. Also note that the second term needs
to be added only on elements with distributed load. In books on matrix structural analy-
sts, the previous equations are written directly from element equilibrium. Also. the last
vector on the right side of the equation consists of terms that are called fixed-end reac-

tions. The shear forces at the two ends of the element are V; = R, and V» = —R;. The
end bending moments are M; = —R,and M, = R,.

4 A . 7 b ( _pfe b |
R, 12 66, -12 66 || q 5 |
- f;‘:
R, £ 6, 42 —6f, 202 || q 1‘;
J ;= il 4 p + 3 —p€ f (8.40)
R; i -12 —6f, 12 —6¢, || g5 —2-
%
R, 6, 200 —6¢, 4¢|]as P
\ J L A\ / \, 12 F,
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Example 8.1

For the beam and loading shown in Fig. E8.1, determine (1) the slopes at 2 and 3 and (2} the
vertical deflection at the midpoint of the distributed load.

12 kN/m

1 FIIINRTRERY
% O 4 @ gy

g
! im 1m e
E = 200GPa I =4 % 106 mm*
6000 N 6000 N
(TN 1000 Nm 1000 Nm &
|
2 3

FIGURE E8.1

Solution We consider the two elements formed by the three nodes. Displacements O,
Q:.0s, E{nd Q; are constrained to be zero, and @, and (; need to be found. Since the lengths
and sections are equal, the element matrices are calculated from Eq. 8.29 as follows:

EI (200 x 10°)(4 x 107%)
T v =8 x 1°N/m

12 6 —12 6
6 4 =6 2
-12 -6 12 -6
6 2 -6 4
e=1 g O Q
e=2 s Q, O 0O

' We note tlzlat global applied loads are F, = -1000N.m and F, = +1000N.i1
obtained from pt°/12, as seen in Fig. 8.6. We use here the elimination approach presented
in Chapter 3. Using the connectivity, we obtain the global stiffness after elimination:

1
ki + k% il
kS &R

8 x 10“[8 2]
4

2
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The set of equations is given by
8 2|fo —1000
oxof; 1{G - {(Fow)
2 4)lQs +1000
{Q4} _ {—2.679 X 10"‘}
Qs 4,464 x 1074

Forelement 2,4, = 0,4, = Q4,45 = 0,and g, = (. To get vertical deflection at the mid-
point of the element, use v = Hqat £ = 0:

The solution is

fe €.
v=10+ ‘2'H2Q4 +0+ EH-iQt’:

(5)(5)(—2.679 x 107) + (1)(-1)(4.464 x 107)
-893 X 10°m
—0.0893 mm a

8.6 BEAMS ON ELASTIC SUPPORTS

In many engineering applications, beams are supported con elastic members. Shafts are
supported on ball, roller, or journal bearings. Large beams are supported on elastic walls,
Beams supported on soil form a class of applications known as Winkler foundations.

Single-row ball bearings can be considered by having a node at each bearing lo-
cation and adding the bearing stiffness kg to the diagonal location of vertical degree of
freedom (Fig. 8.8a). Rotational (moment) stiffness has to be considered for roller bear-
ings and journal bearings.

p 1 . I?iaring |

T

{a)

Efastic ’-""JI ¢, ,

support

s = stiffness per unit length
(b)
FIGURE 8.8 Elastic support.
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In wide journal bearings and Winkler foundations, we use stiffness per unit length,
s, of the supporting medium (Fig. 8.8b). Over the length of the support, this adds the
following term to the total potential energy:

1 4
1 f s dx (8.41)
2 J

In Galerkin’s approach, this term is j;f sv dx. When we substitute for v = Hq for the
discretized model, the previous term becomes

1
5 >.q's / H'™Hdx g (8.42)
€ €
We recognize the stiffness term in this summation, namely,
Y +1
ki=s / H™Hdx = 7’/ H™H d¢ (8.43)
€ -1

On integration, we have

156 22¢, 54 —13e,
st | 22¢, 48 13¢, -38
T 420 54 13¢, 156 -22¢,

—-13¢, —362 -22¢, 4

k;

(8.44)

For elements supported on an elastic foundation, this stiffness has to be added to the
clement stiffness given by Eq. 8.29. Matrix k¢ is the consistent stiffness matrix for the elas-
tic foundation.

8.7 PLANE FRAMES

Here, we consider plane structures with rigidly connected members. These members
will be similar to the beams except that axial loads and axial deformations are present.
The elements also have different orientations. Figure 8.9 shows a frame element. We

have two displacements and a rotational deformation for each node. The nodal dis-
placement vector is given by

q= [ql 22, 43, 44, ds, %]T (845)

We als.o de.ﬁne _the local or body coordinate system x’, y’, such that x’ is oriented along
1-2, with direction cosines €,m (where £ = cos @, m = sin #). These are evaluated using

relationships given for the truss element, shown in Fig, 4.4. The nodal displacement vec-
tor in the local system is

9 = [91.92.95 94 g% q3]" (8.46)

Recognizing that 3 = g, and g¢ = g, which are rotations with respect to the body, %€
obtain the local-global transformation

f

q = Lg (8.47)

where
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FIGURE 89 Frame element.

T ¢ m 0 0 0 0]
-m € 0 0 0 0
o 0 1 0 0 0

L= 0O 0 0 € m O (8.48)
0 0 0 -m € O
. 0o 0 0 0 0 1]

It is now observed that g5, g3, g5, and g;, are like the beam degrees of freedom, while
g’ and ¢, are similar to the displacements of a rod element, as discussed in Chapter 3.
Combining the two stiffnesses and arranging in proper locations, we get the element
stiffness for a frame element as

[ EA —-EA
0 0

2 0 0 ‘.
12EI  6EI ~12EI 6EI |
0 e ¢ & &
6EI  4FE] ~6EI  2E1
0 3 7 Pz ¢ |
K¢ = e ‘ ¢ ‘ (8.49) |
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As discussed in the development of a truss element in Chapter 4, we recognize that the
element strain energy is given by

U = }a"k*q = iq'L'k"Lq (8.50)
or in Galerkin’s approach, the internal virtual work of an element is
w. = wTk'*q = ¢'L'k"“Lyg (8.51)

where &' and s are virtual nodal displacements in local and global coordinate systems,
respectively. From Eq.8.50 or 851, we recognize the element stiffness matrix in global

coordinates to be
l k' = LTk"L (8.52)

In the finite element program implementation, k' can first be defined, and then this
matrix multiplication can be carried out.
If there is distributed load on a member, as shown in Fig. 8.10, we have

q’Tf' = TLTf' (853)
where
, pt.  pte pt. _pte[f
I = 01 ) ] b - : -
[ 2 12 0 2’ 12 (854)
The nodal loads due to the distributed load p are given by
f=L"f (8.35)
e,
P>
pti
12

FIGURE B.10 Distributed load on a frame element.
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H
The values of f are added to the global load vector. Note here that positive p is in the [ I"f
¥y’ direction. :
The point loads and couples are simply added to the global load vector. On gath-
ering stiffnesses and loads, we get the system of equations

KQ=F

where the boundary conditions are considered by applying the penalty terms in the a j |
energy or Galerkin formulations. '

Example 8.2 1t
Determine the displacements and rotations of the joints for the portal frame shown in re  :
Fig. E8.2. i

il

y i

| |

e 500 b/t e L i
aclea / o¢l-o Hh
swon— VLTI,
by 17

1 € 2 E = 30 X 10° psi dil

I=65in’ i

A =68in? R

8 fit L
@ ® e

3 4
W/}A mﬁ _1 o
L 12 1t —|‘

{a) Porta) frame

3000 1b 3000 1b

Y ¥
HOO0 Eb-Tt
s, = Dt

(b) Equivalent load for element 1

FIGURE E8.2 (a) Portal frame. (b} Equivalent load for Element 1.

i_I‘
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Solution We follow the steps given below:

Step 1. Connectivity
The connectivity is as follows:

Node
Element No. 1 2
1 1 p
2 3 1
3 4 2

Step 2. Element Stiffnesses

Element I. Using the matrix given in Eq.8.45 and noting that k' = k', we find that

R 01 02 03 Qq
141.7 0 0 -141.7

0 0.784 564 0

k' =10 x 0 564 5417 0
—141.7 1] 0 1417

0 -0.784 -564 0

L 0 564 2708 0

—0.784
—56.4

0.784
—56.4

Qs
0

0

Q¢
0
o |
2708

0
—56.4
5417

Elements 2 and 3. Local element stiffnesses for elements 2 and 3 are obtained by

substituting for E, A, ! and £, in matrix k' of Eq. 8.49:

2125 0 0 -2125
0 265 127 0
0 127 8125 0
12-___'
k 30 X —212.5 4] 0 212.5
0 -2.65 -127 0
| o 127 4063 0

—2.65
-127

=127

0

0
2.65

0
127
4063
0
—127
8125 |

Transformation matrix L. We have noted that for element 1,k = k' For elements2 and
3, which are oriented similarly with respect to the x- and y-axes, we have £ = 0,m = 1. Then,

0 1 0 0 0
-1 0 0 0 0
Lol 0 0 1 0 o
)] 0 0 0 1
0 ¢ 0 -1 0
Lo 0o o o o
Noting that k?* = LYK"’L, we get
€= 3 Qd QS Qﬁ
e = 2 - 01 02 03

0

- o o o O
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[~ 2.65 0 —127 =265 0 —127]
] 2125 0 0 -2125 ©
-127 0 8125 127 0 4063
-265 0 127 265 0 127
0 -2125 0 0 2125 0
| —-127 0 4063 127 0 8125

k=10 x

Stiffness k' has all its elements in the global locations, For elements 2 and 3, the shaded
part of the stiffness matrix shown previously is added to the appropriate global locations
of K. The global stiffness matrix is given by

[ 144.3 0 127 -1417 0 0
0 2133 564 0 -0784 564
127 564 13542 0 -564 2708
_ )
K=10"X1 117 o 0 1443 0 127
0  —0784 —564 0 2133 -564
0 564 2708 127  —564 13542

From Fig. E8.2, the load vector can easily be written as 4
(3000
-3 000
—72 000
Q0
—3000
| +72 000

The set of equations is given by
KQ=F

On solving, we get

[ 0.092in.

—0.00104 in.

~0.00139 rad -
0.0901 in.

-0.0018 in.

[ -3.88 X 107%rad

8.8 THREE-DIMENSIONAL FRAMES

Three-dimensional frames, also called as space frames, are frequently encouptered in
the analysis of multistory buildings. They are also to be found in lhe‘ modeling of car
body and bicycle frames. A typical three-dimensional frame is shown in Fig. 8.11. Each

node has six degrees of freedom (dofs) (as opposed to only three dofs in a plane frame).
The dof numbering is shown in Fig. 8.11: for node J, dof 6/-5, 6/-4, and 6/-3 represent

N
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S o 6 b,
x / Qes-3
A
Ocs
L
Qo2 }—€7>Q61—4
2 Qs
D575
dof s at node F

FIGURE 8.11 Degrees of freedom numbering for a three-dimensional frame.

the x-, y-,and z-translational dofs, while 6/-2,6/-1, and 6J represent the rotational dofs
along the x-, y-, and z-axes. The element displacement vectors in the local and global
coordinate systems are denoted as q' and g, respectively. These vectors are of dimension
(12 X 1) as shown in Fig, 8.12.

Orientation of the local x’-, y'-, and z'-coordinate system is established with the
use of three points. Points 1 and 2 are the ends of the element; the x'-axis is along the lin€
from point 1 to point 2, just as in the case of two-dimensional frames. Point 3 is any ref-
erence point not lying along the line joining points 1 and 2. The y’-axis is to lie in the plan®
defined by points 1,2, and 3. This is shown in Fig. 8.12. The z’-axis is then automatical*
ly defined from the fact that x', y', and z' form a right-handed system. We note that Y
and z’ are the principal axes of the cross section, with /, and 7. the principal moments
of inertia. The cross-sectional properties are specified by four*parameters: area A and
moments of inertia Iv, Iy, and J. The product G/ is the torsional stiffness, wheré
G = shear modulus. For circular or tubular cross sections, J is the polar moment of in-
ertia. For other cross-sectional shapes, such as an I-section, the torsional stiffness is given
in strength of materials texts.

oy



Section 8.8

Plane formed
by1,2,3
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— - —

1.2

v

transla‘;mi‘ls rotations iranslations rotations
y at no' e' , atnodel at node 2 at node 2
alongx'.y', z

q = [91: @31 - 912]" = displacement vector
in global (x, ¥, 7) system

FIGURE 8.12 Three-dimensional frame element in local and global coordinate systems.

9 =[a ' ¢ 94 95" 96" 47" 95", 92"- G20’ 911 Qiz'lT

Endview

The (12 X 12) element stiffness matrix k' in the local coordinate system is obtained

by a straightforward generalization of Eq. 8.49 as

AS 0 0 0 0 0 -AS ¢ 0O 0 0
ar 0 0 0 b 0 —as O 0 0

ay, 0 -by O 0 0 -ar 0 by

s 0 0 0 0 0 -T§ 0O

¢, 0 0 0 by 0 d,

K — ¢y 0 —-bs O 0 0
AS ] 0 0 0

a. 0 0 0

c, 0 b,

TS 0

Symmetric Cy'

t
o

*

Of.a“OOOrP'CJ

oo oo

L

|

(8.56)
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where AS = EA/L,, I, = length of the element, TS = Gi/l,, a. = 12EL/L,
by = 6EL/I}, ¢, = 4EL /I, . d; = 2EL /L, ay = 12EI,/#}, and so on. The global-local
transformation matrix is given by

qg =1Lg (8.57)
The (12 X 12) transformation matrix L is defined from a (3 X 3)A matrix as
A 0
A
L= N (8.58)
0 A
The A is a matrix of direction cosines:
i L
A= !2 My N (8‘59)
L my m

Here, I, m,, and n, are the cosines of the angles between the x'-axis and the global x-,
y-,and z-axes, respectively. Similarly,;, m,, and #,, are the cosines of the angles between
the y’-axis and the x-, y-, and z-axes, and /;, m,, and n, are associated with the z’-axis.
These direction cosines and hence the A matrix are obtainable from the coordinates of
the points 1,2, and 3 as follows. We have
!1=x2[_x1 m1=}’2_}’1 n=zz_Z1
15

l, ! L
\/(xz —xYH(m-n)P (- )

Now,let Vo = [ m; n,])" denote the unit vector along the x'-axis. Also, let

Vi3 = [xfi !-_ XY M—wn Iz~ Zl:|
13 I{13 113

where /5 = distance between points 1 and 3, The unit vector along the z'-axis is
now given by

It

I,

Vo= (b my ]l = XV
Vo X V4
The cross product of any two vectors is given by the determinant
i j ok uY, —~ v,
uXv=|u, B, U = |vu, - u._rv:
v, 11'_\. v, u’xpy — v,

Finally, we have the direction cosines of the y'-axis given by
Voe=[L m m]'=V.x A\

These calculations to define the L matrix are coded in program FRAME3D. The element
stiffness matrix in global coordinates is
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k = L'k'L (8.60)

where k’ has been defined in Eq. 8.56.
If a distributed load with components w,s and w_ (units of force/unit length) is
applied on the element, then the equivalent point loads at the ends of the member are

w"’l‘»’ wz'Ie —w-ﬁ w\"llt’z w}"zt’ w"ie wz'lcz' _w}"lg T
rr = bl y L 1 09 - L - ¥ 4 Ll - ki } 1 (8'61)
2 2 12 12 2 2 12 12

These loads are transferred into global components by f = L'F'. After enforcing
boundary conditions and solving the system equations KQ = F, we can compute the
member end forces from

R’ = k'q' + fixed-end reactions (8.62)

where the fixed-end reactions are the negative of the £ vector and are only associated with
those elements having distributed loads acting on them. The member end forces provide
the bending moments and shear forces from which the beam stresses can be determined.

Example 8.3
Figure E8.3 shows a three-dimenstonal frame subjected to various loads. Our task is to run
program FRAME3D to obtain the maximum bending moments in the structure. The input
and output files are as given in the third data set, which follows the BEAM and FRAME2D
data sets. From the output, we obtain the maximum M,» = 3.680E + (L3N m occurring in

member 1 at node 1 (the first node) and maximum M. = —1.413E + 0.5 N-m occurring
in member 3 at node 4. |
Steel

A =001 m?
I, =L =000lm

¥
4
- 240k
J=002 m4 (0‘ 3'0}
2 3./

¢ O (reference node)
[}
)

N 60 kN
180 kN-m
{—ve c-axis)

OIEUIE) @30
40 kN/m [S(1)
T x
{reference 11(0.6,0)
d
no e)z 5(9.0.3)
FIGURE EB.3

8.9 SOME COMMENTS

Symmetric beams and plane and space frames have becn discussed in this chapter. In
engineering applications, there are several challenging problems._such as frames and
mechanisms with pin-jointed members, unsymmetric beams, buckling gf members dl._le
to axial loads, shear considerations, and structures with large deformations. For help in
formulating and analyzing such problems, the reader may refer to some _a(.jvanced pub
lications in mechanics of solids, structural analysis. elasticity and plasticity, and finite

clement analysis.

[ _N
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Input Data File

<< Baam Analysia >>

EXAMPLE 6.1

NN NE MM NDIM NEN NDN
a2 11 2 2

ND NL HNMEC
4 4 0
Node#% Coordinates
1 o
2 1000
3 2000
Elem$ N1 N2z Mat# Mom _Inertia
1 1 2 1 426
2 2 3 1 4eb
DOF4 Displacemant
1 o
2 0
3 0
5 0
DOF# Leoad
3 -g000
4 -leéb
5 =-6000
[ leb
MAT# E
1 200000

Multi-point Constraints Bl*Qi+B2*Qj=B3

Progras Beam - CHANDRUPATLA & BELEGUNDU
Output
EXAMPLE B.1
NCDE# Displ. Rotation(radians)
1 2.0089%E-11 6.6961E-09
2 -1.2723E-10 =-2.6786E-04
3 -B.0357E~11 4.4643E-04
DOF# Reaction
-1 _2857E+03
-4 .2855E+05
B8.1429E+03
5 5.1429E+03

(AL

<<2-D Frama Analysis >>
EXMMPLE 8.2

NN NE NM NDIM NEN NDNH
4 31 2 2 3
ND NL NMPC

& 1 o]
Node# X Y

1 0 96

2 144 96

3 1] 0

4 144 0
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continued
ELEM¥ N1 N2 MATH# Area Inertia Distr_load
1 2 1 1 6.8 65 41.6667
2 3 1 1 6.8 65 0.
3 4 2 1l 6.8 65 0.
DOF¥ Displacement
7 0
a 0
9 0
10 0
11 0
12 0
DOF¢ Load
1 3000
MAT# E
1 30et

Bl i B2j B3

{(Multi-point constr. Bl*Qi+B2+*Qj=B3)

Progras Frame2D -
Cutput
EXAMPLE 8.2
NODE#  X-Displ
1 9.1770E=-02
2 9.0122E-02
3 4.9167E-10
4 1.7237E-09
Member End-Forces
Member# 1

Member$# 2

Member$ 3

2.2012E+03
9 6.0139E+04

11 3.7988E+03
12 1.1283E+05

CHANDRUPATLA & BELEGUNDU

Y-Displ Z-Rotation
-1.0358E-03 -1.3874E-03
-1.7877E-03 -3.8835E-05
~1.6255E-09 -4.4410E-08
-2.8053E-0G9 -8.3320E-08B

2.3342E+03 -7.9884E+02 -3.9255E+04
-2.3342E+03 7.9884E+02 -7.5778E+04

2.2012E+03 &.6580E+02 6.0135E+04
=~2.2012E+03 -6.6580E+02 3.7778E+03

3.798BE+03 2.3342E+03 1,1283E+05
-3.7988E+03 -2.3342E+D3 1.1125E+05
DOF#% Reaction

7 =6.6580E+02

8

10 -2.3342E+03

EXAMPIE 8.3
NN NE NM NDIM NEN

<<3-D Frawe Analysis >>

NDN NNREF

5 4 1 3 2 6 2
ND NL NMPC
12 3 0o
Node¥ X Y 2
1 6 0 0
2 0 3 0
| 3 i 3 0

Some Comments

TR L e e e s
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continued
4 6 3 0
5 9 0 3
[ 6 6 0
7 -3 0 0
Elem$ N1 N2 Ref Pt Mat¥ RArea Iy Iz J upLy' UDLz'
1 1 2 7 1 .01 1E-3 1E-3 ZE-3  =40000. ©O.
2 2 3 6 1 .01 1E-3 1E~-3 2E-3 0. 0.
3 3 4 6 1 .01 1E-3 1E-3 2E-3 0. 0.
4 4 5 6 1 .0 1E-3 1E-3 2E-3 0. 0.
DOF# Displacemsnt
1 u]
2 0
3 0
4 0
5 0
6 0
25 0
26 Q
27 ¢]
28 Q
29 0
30 o
pors  Load
15 240000
20 =-60000
24 -180000
MAT$# Propl({E} Prop2(G)
1 200E9 BOES
Bl i Bz j B3 {Multi-point constr. B1*Di+B2+*Qi=B3) ]
Progran Frame3D - CHANDRUPATLA & EELEGUNDU
Output
EXAMPLE 8.3
Node$) X-Displ ¥Y=-Displ Z-Displ X=-Rot Y-Rot Z-Rot
1) 3.127E=09 1.972E-09 9.900E-09 2.760E-08 -7.145E-09 5.348E-09
2 ) -1.86BE-03 3.944E-05 5.310E-03 2.550E-03 -1.786E-03 1.108E-03
3 ) -1.985E-03 3.141E-03 9.B42E-03 2.025E-03 -2.452E-04 7.624E-D4
4 ) -2.103E-03 3.431E-03 6.241E-03 1.500E-03 1.836E-03 -7.662E-04
5 ) 5.873E-09 -6.472E-0% 8.100E-09 &.985%E-0% @€.42%E-09 -1.101E-09
Member End-Forces
Merber$ 1
—2.629E+04 -1.830E+D4 -~1.320E+05 9.526E+04 3.6B80B+05 =-1.013E+05
2.629E+04 1.B30E+04 1,.320E+05 -9.526E+04 2.BO0E+04 4.641E+04
Member¥ 2
7.930E+04 -2.629E+04 -1.320E+05 2.BOOE+04 9.526E+04 -1.641E+04
-7.830E+04 2.629E+04 1.320E+05 -2.800E+04 3.007E+05 -6.247E+04
Memberd 3
7.830E+04 -2.629E+04 1.0BOE+05 2.800E+04 =3.007E4+05 6.2475+04
~7.830E+04 2.629E+04 -1.080E+05 -2.800E+04 -2.328E+04 -1,413E+05
Member# 4
1.574E+05 5.600E+03 2.100E+04 -1.959E+04 1.465E+04 =4.713E+04
—1.574E+05 -5.600E+03 -2.100E+04 1.939E+04 -1.23BE+D5 7.623E+D4
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PROBLEMS

8.1. Find the deflection at the load and the slopes at the ends for the steel shaft shown in . =
Fig. P8.1. Consider the shaft to be simply supported at bearings 4 and B. B

L=125x10°mm* 300N ::
\ L =4x10*mm*
\ ‘ '
AN . '

4
'——ISOmm 75 mm |‘ 125 mmﬁb‘ o

E =200 GPa

b—

FIGURE P8.1 Problems 8.1 and 8.4.

8.2. A three-span beam is shown in Fig. P8.2. Determine the deflection curve of the beam and
evaluate the reactions at the supports.

50[10 b 1200 Ib/fi

A A[ 1212 1
X 55 *H B
an 5 it ri; 8 ft ]| '

E =30 x 10° psi o
I=305in? -

P .
.  erasbriah

ty

iy

6 ft

FIGURE P8.2

8.3. A reinforced concrete slab floor is shown in Fig. P8.3. Using a unit width of the slab in the
z direction, determine the deflection curve of the neutral surface under its own weight.

slab

URRR

For concrete use E = 4.5 X 10° psi
Weight per cubic foot = 145 ib

FIGURE P8.3

L _N
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8.4. In the shaft shown in Fig. P8.1, determine the deflection at the loads and the slopes at the
ends if the bearings at A and B have radial stiffnesses of 20 and 12 kN/mm, respectively.

8.5. Figure P8.5 shows a beam AD pinned at A and welded at B and C to long and slender
rods BE and CF. A load of 3000 Ib is applied at D as shown. Model the beam AD using
beam elements and determine deflections at B, C, and D and stresses in rods BE and CF.

V%
F
2

E | | Material: steel
Area 0.08 in?

Length 12 in.\* / \

Length 20 in.

Material: steel

I=064in!
g A B C / D
©; -
I 4in ,|| 4in, ! 6in l
3000 ib

E for steel = 30 x 10° psi
FIGURE P8.5

8.6. Figure P8.6 shows a cantilever beam with three rectangular openings. Find the deflections
for the beam shown and compare the deflections with a beam without openings.

10000 1b

| 22y
T

4
6i'n. 12in. 12in.

Tt !

N

6in.| (2in. |6in] 12in. |6in| 12in. |6in.
|

E =30 x 10 psi
FIGURE P8.6

8.7. A simplified section of a machine tool spindle is shown in Fig. P8.7. Bearing B has a radial
stiffness of 60 N/um and a rotational stiffness {against moment) of & X 10° N.m/rad-
Bearing C has a radial stiffness of 20 N/um and its rotational stiffness can be neglected
For a load of 1000 N, as shown. determine the deflection and slope at A. Also, give the de-
flected shape of the spindle center line (1 pm = 107 m). ' '
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50 mm diam

80 mm diam

42 mm diam 50 mm diam 60 mm diam
P=10K0ON

C Bm r _
At ‘3/““’"“"3"‘

22287777777, /////////////////////////%

20 mr-{'lr 300 mm J|§0 mnll‘ }

15 mm

[+— & mm

Machine tool spindle

FIGURE P8.7

8.8. Determine the deflection at the center of BC for the frame shown in Fig. P8.8. using pro- o
grarn FRAME2D. Also determine the reactions at A and D. l

1200 Ib/At
BY T YY T Y Y lr {rC

I=305in* \ I =305 in*
Azls\‘i” [=125in! A= 15in:

A= 7.5 in‘! 20 ft

f J
A" D
101t 20 ft wte—1() n—‘
FIGURE P8.8

8.9. Figure P8.9 shows a hollow square section with two loading conditions. Using a 1-in. width
perpendicular to the section, determine the deflection at the load for each of the two cases.

E = 30 X 10 psi

FIGURE P8.9

. .
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8.10. Figure P8.10 shows a five-member steel frame subjected to loads at the free end. The cross
section of each member is a tube of wall thickness ¢ = 1cm and mean radius R = 6 cm.
Determine the following:

(a) the displacement of node 3 and
(b) the maximum axial compressive stress in a member.

1
-
%\2
7
; 3 10000N
60 cm 7/ 35cm
7
?/ 4 6000 N
_1
5
'r 80 cm te——45 cm
{Steel)
(a)
3 R
R=6cm
t=1cm
t
)]

FIGURE P8.10

8.11. Dimensions of a common paper staple are shawn in Fig. P8.11. While the staple is pene-
trating into the paper, a force of about 120 N is applied. Find the deformed shape for the
foliowing cases:

(a) load uniformly distributed on the horizontal member and pinned condition at A at entry:
{b) load as in {(a) with fixed conditien at A after some penetration;

(¢} load divided into two point loads, with A pinned; and

(d) load as in {c) with A fixed.

Total load
—12.73 mm 120N
\ ]
0.5mm radius; A
! 6.31 mm A
—+] [+—0.502 mm diam Model 1
60N 60N
AL X
*——‘—-12.63] mm—————
| A
© Model 2

FIGURE P8.11



L

{b) with tie rod BC.

%-in. diam rod

__{

—

ey,

=5

C

1-in. diam tube, L-in.
wall thickness

E =30 x 10¢ psi
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8.12. A commonly used street light arrangement is shown in Fig. P8.12. Assuming fixed condi-
tion at A, compare the deformed shapes for the following two cases:
(a) without the rod BC (that is, only member ACD supports the light) and

Electric tight-
fixture weight

151b

3 ft

b
AU

FIGURE P8.12

8.13. Figure P8.13a shows a cab of a van. A simplified finite element frame model is shown in
Fig. P8.13b. The model consists of 28 nodes. x—z is a plane of symmeiry; thus, nodes 1 ~13'
have the same x- and z-coordinates as nodes 1-13, with y-coordinates reversed in sign. Each
beam element is made of steel with A = 0.2in.. [, = I = 0.003in.",and / = 0.006 in.".
The loading corresponds to a frontal impact test based on Swedish standards and consists
of a load at node 1 (only) with components F, = —3194.0lb and F,
nodes 11,117, 12, and 12’ as fixed (boundary conditions). Nodal coordinates in inches are

—856.01b. Treat

as follows:

Neode X ¥ I Node x ¥ H
1 58.0 38.0 ] 9 0 38.0 750
2 48.0 380 Q 10 580 170 420
3 31.0 380 0 11 58.0 17.0 0
4 17.0 380 2248 12 0 17.0 0
5 0 38.0 24.0 13 0 17.0 24.0
6 58.0 380 42.0 14 180 0 720
7 48.0 38.0 42.0 i5 0 i) 37.5
8 36.0 380 70.0

{Npie: Number the nodes 1o keep bandwidth to a minimum.)

Determine the deflections at nodes 1,2.6.7,10.and 11 and the location and magnitude of
the maximum bending moments using program FRAME3D.

L _=
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FIGURE P8.13 ({a) Van Frame. (b) Frame finite element model.

8.14. Consider the steel frame in Figure P8.14, which is subjected to a wind load and roof load
as shown. Determine the bending moments in the structure (maximum M, and M.).

s 100 Tb/sq.ft

Y4

3001k =2, -

e e e el = i

iii
|

. ]
_— —
lf—  — [—

o] e ff— et

(
L

Me=2p,

- 10 >
Areﬂa I L. F Y
(in)  {nY  (nY (inH !
Columns | 60 375 510 024 .
Beams | 30 126 170 008 T2

FIGURE PB.14
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1o o o e e e ol o oo e de ok ol o o U o ol ke e sl o o e e o o e v e o e o e e e
e FROGRAM BEARM *
' Beam Bending Analysis *
'+ T.R.Chandrupatla and A.D.Belegundu *
IEZ R EEREE RIS LTE SRR R SR RS L L bR k]
Private Sub cmdStart_Click(}

Call InputData

Call Bandwidth

Call sStiffness

Call ModifyForBC

Call BandSclver

Call ReactionCalc

Call OQutput

cmdView. Enabled = True

cmcdStart.Enabled = False
End 3Sub

b ELEMENT STIFFNESS AND ASSEMBLY
Private Sub Stiffness()
ReDim S (NQ, NBW}
fm——— Glabal Stiffness Matrix ----—-
For N = 1 Toc NE
picBox.Print "Forming Stiffness Matrix of Element “; N
N1 = NQCI[N, 1)
N2 = NOC{N, 2)
M = MAT(N)
EL = Abs{X(N1)] - X({N2})
EIL = PM{M, 1) * SMI{N} / EL " 3

Y ——— Eleamant Stiffness Matrix ———
SE(l, 1) = 12 * EIL
SE{l, 2) = EIL * &6 * EL
S5E{1, 3) = -12 * EIL
SE{l, 4} = EIL * 6 * EL
SE{2, 1) = SE(l, 2)
5E{2, 2} = EIL * 4 * EL * EL
SE{2, 3) = -EIL * 6 * EL
SE{2, 4) = EIL * 2 * EL * EL
SE(3, 1) = SE(l, 3)
3E(3, 2} = SE{2, 3)
SE{3, 3) = EIL * 12
SE(3, 4) = -EIL * € * EL
sg(4, 1} = SE(l, 4
SE(4, 2) = 5E{2, 4}
SE{4, 3} = SE{3, 4}
SE(4, 4) = EIL * 4 * EL * EL

picBox.Print ".... Placipg in Glabal Locaticns™

Call Placei)obal (N)
Next H
End Sub
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V‘emmmo—====—== MAIN PROGRAM
Private Sub cmdstart_Click()

Call InputData

Call Bandwidth

Call Stiffness

Call AddLoads

Call MedifyForBC

Call BandSolver

Call EndActions

Call ReactionCalec

Call Qutput

cmedView.Enabled = True

cmdStart.Enabled = False
End Sub

Ve ELEMENT STIFFNESS AND ASSEMBLY
Private Sub Stiffness(}

ReDim S (NQ, NBW)

e Global Stiffness Matrix ---—-

For N = 1 To NE

ISTF = 2
Call Elstif(N)
picBox.Print “.... Placing in Global Locations™
Call PlaceGlobal (R)
Next N
End Sub

picBox.Print "Forming Stiffness Matrix of Element ";

N

‘= ELEMENT STIFFNESS =
Private Sub Elstif (N}
fmmm Elameant Stiffness Matrix ——-—--
Il = NOC(N, li: IZ2 = NOCI{N, 2}): M = MATI{N)
®21 = %(I2, 1) - X(Il, 1)
Y21 = (12, 2} - X({Il, 2}
EL = Sgr{X21 * X21 + Y21 * Y2l
i EAL = PM{M, 1) * ARININ, 1) / EL
: EIZL = PM(M, 1} * ARIN(N, 2) / EL
For I = 1 To &
for J =1 To 6
SEP(I, J} = Q!
Next J
Next I
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continued

SEP{l1, 1) = EAL: SEP(l, 4) = -EAL: 5EP(4, 4) = EAL

SEP(2, 2) = 12 * EIZL / EL ~ 2: SEP{2, 3} = 6 * EIZL / EL

SEF{2, 5) = -SEP{2, 2): SEP(2, 6) = SEP{2, 3}

SEP{3, 3} = 4 * EIZL: SEF({3, 5) = -6 * EIZL / EL: SEP(3, 6} = & * EIZL

SEP(5, S} = 12 * EIZL / EL ~ 2: SEP(5, 6} = -6 * EIZL / EL

SER(6, 6} = 4 * EIZL

For I =1To 6
for J =1 To 6
SEP{J, I} = SEP(I, J)
Next J: Hext I
----- CONVERT ELEMENT STIFFNESS MATRIX TO GLOBAL SYSTEM
pcos{l, 1} = %21 / EL: DCos{l, 2) = ¥21 / EL: DCOS{l, 3} =0
pcos{2, 1)y = -DCo3{l, 2): DCCS(2, 2} = DCOS(l, 1): DCOS(2, 3) = 0
DCosS{3, 1) = 0: DCOS(3, 2y = 0: DCOsS(3, 3) =1
For I =1 To 6
For J =1To 6
ALAMBDA(I, J} = 0!
Nezt J: Next I
For K =1 To 2
IK = 3 * (K- 1)
For I = 1 Toe 3
For J=1To 3
ALAMEDA{I + IK, J + IK) = DCOS{I, J}
Next J: Next I

Next K
If ISTF = 1 Then Exit Sub
For I =1 Te 6
For I =1 To &
SE(I, J) =0
For K =1 Te 6
SE{I, J) = SE(I, J) + SEP{I, K} * ALAMBDA(K, J)
Next K

Next J: Next I

For 1 = 1 To 6: Fer J

For I = 1 To 6: For J
For K= 1To 6

SE{I, J) = SE(I, J} + ALAMBDA(K, I} * 3EF(K, J)

Next K

Next J: Next I

End Sub

1 Ta &: SEP{I, J) = SE(I, J): Next J: Next I
1 Te &:; SE(I, J} =0

‘======== LOADS DUE T¢O UNIFORMLY DISTRIBUTED LOAD ========
Private Sub AddLoads!(}
o Loads dne to uniformly distributed load on alament
For N = 1 To HE
If Abs{UDL(N}} > O Then
ISTE = 1
Call Elstif(N])
I1 = NQCI{N, 1): I2 = NOC{N, 2}
%21 = %(I2, 1) - X(Il, 1): ¥21 = X1z, 2y - X(I11, 23
EL = Sqr(%21 * X21 + Y21 * Y21)
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continued
ED(1} = 0: ED({4} = 0
ED(2) = UDL(N) * EL / 2: ED(5}) = ED(Z2)
ED(3) = UDL(N} * EL ~ 2 / 12: ED(&) = -ED(3)
For I =1To &
EDPII} = 0

For K =1 To 6
EDP{I) = EDP(I) + ALAMBDA{K, I} * ED{K)
Hext K
Hext I
For I =1 To 3
F{3 * I1 -3 + I}
F{3 + 12 - 3 + I)

F[3 * Il - 3 + I} + EDP{I}
F(3 * I2 - 3 + I) + EDE{I + 3}

HNext I
End If
Next N
End Sub
v MEMBER END FORCES

Private Sub EndActions()
ReDim EF{NE, &}
P Calonlating Mamber End-Forces
For N = 1 Te NE
ISTF = 1
Call Elstif (N}
I1 = NOC(N, 1)}: I2 = NOC(N, 2}
For I =1 To 3

Next I
For I = 1 To 6: EDP(I} =0
For K=1 To 6
EDP(TI) = EDPI(I) + ALAMBDA(L, K} * ED(K)
Next K: Next I
fe—m— END FORCES DUE TO DISTRIBUTED LOADS
If Abs (UDL(N}) > 0 Then

Else
For K

End If

For I =1 To 6 : EFI(N, I} = ED(I}
For K= 1 To 6

1 To 6: ED(K} = 0: Next K

Next K: Next T

ED(I) = F{3 * I} - 3 + I): ED(I + 2) = F({3 * I2 - 3 + I)

ED(1) = 0: ED{4) = 0: ED{2) = -UDL(N) * EL / 2: ED{5)
ED(3} = -UDL(N} * EL ~ 2 / 12: ED(6) = -ED(3}

EF{N, I} = EF(N, I} + SEF{I, K) * EDP(K}

Next N
End Sub
EER S AL A PROGRAM FRAME2D LALAS AL RS
L 3-D FRAME ANALYSIS BY FEM *

'+ T,.R.Chandrupatla and A.D.Belegundu *

l+ti*ii—-i*i--i**i**i‘**i********ii**ii*i**i***

V\zo========== MAIN PROGRAM

private Sub cmdStart_Clickl()
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Call InputData
Call Bandwidth

Call Stiffness

Call AddLoads

Call ModifyForBC

Call BandSolver

Call EndActions

Call ReactionCalc

Call Cutput

cmdView.Enabled = True

cmdStart.Enabled = False
End Sub

ELEMENT STIFFNESS AND ASSEMBLY
Private Sub Stiffness()
RaeDim 5 (NQ, NBW)
T Glopal Stiffness Matrix —-———-—
For N = 1 To NE
picBox.Print “"Forming Stiffness Matrix of Element "; N
ISTF = 2
Call Elstif (W)
picBox.Print ".... Flacing in Global Locations"
Call PlaceGlobal (N)
Next N
End Sub

Al

ELEMENT STIFFNLESS
Private Sub Elstif(N)
P Elament Stifiness Matrix -----
Il = NOC'(N, 1l}: I2 = NOC(N, 2}: I3 = NOC(N, 3): M = MAT(N]
X21 = X{I12, 1} - X(I1, 1)
Y21l = ¥({I2, 2} - X(I1, 2)
221 = X(I2, 3) - ¥X(Ii, 3)
EL = SqriX21 * X21 + Y21 * Y21l + 221 * Z21)
EAL = PM(M, 1} * ARIN{N, 1} / EL
EIYL = PM{M, 1) * ARIN(N, 2} / EL: EIZL = PM(M, 1) * ARINI(N,
GJL = PM(M, 2) * ARIN(N, 4] / EL
Fer I = 1 To 12
For J = 1 To 12
SEP{I, J} = 0!
Next J: Next I
SEF(1, 1} = EAL: SEP(1, 7} = -EAL: SEP({7, V) = EAL
SEP({4, 4] GJL: SEP(4, 10) = -GJL: SEP{l0, 10} = GJL
SEP (2, 2] 12 * EIZL / EL ~ 2: SEP{2, 6} = & * EIZL / EL
SEP(2, B} ~SEP{2, 2): SEP{2, 12) = SEP{Z, &}
SEP(3, 3} 12 +* EIYL / EL ~ 2: SEP{3, 5} = -6 * EIYL / EL
SEP({3, 9} -SEP{3, 3): SEP(3, 11} = SEP(3, 5]
SEP {5, 5} 4 * EIYL: SEF(S, %) = € * EIYL / EL: SEP(5, 1l)

wuwmy

3} / EL

= 2 * EIYL

- e

R

s m m smman ek g e B Ay e e
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coptinued
SEF{G, 6} = 4 * EIZL: SEP(6, 8) = -6 * EIZL / EL: SEP(6,
SEP(8, 8) = 12 * EIZL / EL *~ 2: SEP({8, 12) = -6 * EIZL / EL
SEP(S%, 9) = 12 * EIYL / EL ~ 2: SEP{9, 11} = 6 * EIYL / EL

SEF(11, 11) = 4 * EIYL: SEP({l2, 12) = 4 * EIZL
For T = 1 To 12
For J = 1 To 12
SEP(J, 1) = SEP({I, IJ)
Next J: Next I
CCONVERT ELEMENT STIFFNESS MATRIX TO GLOBAL SYSTEM

pces(l, 1) = %21 / EL: DCOS{l, 2) = Y21 / EL: DCOS(1,

EIFl = X{I3, 1) - X({Il, 1): EIPZ = X(I3, 2) - X(Il,
EIF2 = X{I3, 3} X{1l, 2

cl = pcos(l, 2) * EIP3 - DCOS(1l, 3) * EIPZ

c2 = pCos{l, 3) * EIPl - DCOS{l, 1) * EIP3

C3 = DCOS(1l, 1) * EIPZ - DCOS(1l, 2} * EIPl

CC = 5qri{Cl * Cl + C2 * C2 + C3 * C3)

pcos(3, 1) = Cl / CC: DCOS(3, 2) = C2 / CC: DCOS({3,

pcos(2, 1) = DCOS(3, 2) * DCOS(1l, 3) - DCOS{l, 2} * DCOS{3,
pcos(2, 2) = DCOS(l, 1) * DCOS(3, 3) - DCOS({3, 1) * DCOS(1,
peosi2, 3) = DCOS(3, 1) * DCOs(l, 2) - DCOS({l, 1) * DCOS(3,

For I =1 To 12 For J =1 To 12
ALAMBDA (I, J) = 0!
Hext J: Next I
For K =1 To 4
IK = 3 * (K - 1}
For I =1 To 32
For J =1 Te 3
ALAMBDA(I + IK, J + IK) = DCOS(I, J)
HNext J: Hext I

Next K
If ISTF = 1 Then Exit Sub
Foer T = 1 To 12
For J =1 Te 12
SE(I, JY =0
For K = 1 To 12

SE{I, J} = SE(I, J) + SEFI(I, K) * ALAMBDA(K, J)
Next K
Next J: HNext I

For I = 1 To 12: For J = 1 To 12: SEP{I, J} = SE({I,
For I = 1 To 12
For J =1 To 12

SE{I, J}) =0
For K =1 To 12
SE(I, J) = SE(I, J) + ALAMEDA(K, 1) + SEP{K, J)
Next K
Next J: Next I

End Sub

Next J: Next I
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Private Sub AddLoads ()

‘======== LOADS DUE TO UNIFORMLY DISTRIBUTED LOAD ======

P Ioads due to mniformly distrikbuted load on elemant

For N =

1 Toc NE

1f Abs{UDL (N,

14}

» 0 Or Abs{UDL(N, 2})) > 0O Then

ISTF = 1
Call Elstif(N}
Il = NOC(N, 1): I2 = NOC(N, 2)

x21 = X(I2, 1} - X{I1, 1]
Y21l = X(12, 2} - X{1l, 2)
z21 = X{I2, 3} - Xi11, 3)

EL = 5gr({X21 * X21 + Y21 * Y21 + Z21 * 221}

ED{l} = 0O: ED{4) = 0O: ED(7) = 0: ED{10} = O
ED(2) = UDL(N, 1) * EL / 2: ED(8) = ED(2}
ED{¢) = UDL(N, 1) * EL "~ 2 / 12: ED(12} = -ED{6]
ED{3) = UDL(N, 2) * EL / 2: ED{9) = ED(3]
ED{5) = -UDL(N, 2) * EL * 2 / 12: ED{11) = -ED(5)
For I =1 To 12

EDF(I) = 0

For K =1 To 12
EDP(I) = EDP{I) + ALAMBDA (K, I} * ED(K)
Nezt K
Next I
For I =1 To 6
F{6 * I1 - 6 + I}
F{6 * 12 - 6 + I)

F(6 * I1 - 6 + I) + EDE(I}
F(é6 * I2 — 6 + I} + EDP{I + 6)

Next I
End If
Next N
End Sub
‘= MEMBER END FORCES

Private 5ub EndActions ()
ReDim EF{NE, 12)
Yo talculating Member End-Forces
For N = 1 To NE
ISTF = 1
Call Elstif (N}
I1 = NOC(N, 1}: I2 = NOC{N, 2]
for I =1 To &

ED(I} = F(6 * 11 - 6 + Id: EDII + &) = F(6 * I2 - 6 + 1)
Next I
For I = 1 To 12

EDP(I} = 0

For K= 1 To 12
EDE(I) = EDP(I} + ALAMBDA(I, X) * ED{K}
Next ¥
Next I

v-——--l
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ED(l)
ED{2)
ED{6}
ED{3)}
ED(5)
Else
Fexr K
End If
For I =
EF (N,
For K

Next I
Hext N
End Sub

1
I

EF (N,
Next K

' -~ END FORCES DUE TO DISTRIBUTED LOADS
If Abs{UDL(N, 1)) > ©¢ Or Abs{UDL(N, 2)} > 0O Then

0: ED(4) = 0: ED(7) = 0: ED(10) = 0
~UDL{N, 1) * EL / 2: ED{8} = ED{2}
~UDL{N, 1) * EL *~ 2 / 12: ED{12} = -ED{6)
-UDL(N, 2) * EL / 2: ED(9) = ED{3}

UDL[N, 2) * EL *~ 2 / 12: ED(1l} = -ED{5)

1 Po 12: ED{K} = 0: Next K

Tao 12

} = ED{I}

1 To 12
I} = EF(N, I) + SEF({I, K} * EDP(K)
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CHAPTEHR 9

Three-Dimensional Problems
in Stress Analysis

INTRODUCTION

Most engineering problems are three dimensional. So far, we have studied the possibil-
ities of finite element analysis of simplified models, where rod elements, constant-strain
triangles, axisymmetric elements, beams, and so on give reasonable results. In this chap-
ter, we deal with the formulation of three-dimensional stress-analysis problems. The
four-node tetrahedral element is presented in detail. Problem modeling and brick ele-
ments are also discussed. In addition, frontal solution method is introduced.

We recall from the formulation given in Chapter 1 that

u = lu,v,w]" (9.1)
where i, v, and w are displacements in the x, y, and z directions, respectively. The stress-
es and strains are given by

o=[o, O, O, Ty Ty o)’ (9.2)
e=[e, € € Yo Vi Yul (9.3)

The stress—strain relations are given by
o =De (9.4)

where D is a {6 X 6) symmetric matrix. For isotropic materials, D is given by Eq. 1.15.
The strain-displacement relations are given by

o[ 20w ie su o dusn, B ©5)
ax'9y' @z 8z dy 9z dx dy ox
The body force and traction vectors are given by
f=[f.f £ (9.6)
T=[T,T.T.] (9.7)

The total potential and the Galerkin/virtual work form for three dimensions are given

in Chapter 1.

275
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9.2 FINITE ELEMENT FORMULATION

We divide the volume into four-node tetrahedra. Each node is assigned a number and
the x-, y-, and z-coordinates are read in. A typical clement e is shown in Fig. 9.1. The
connectivity may be defined as shown in Table 9.1.

For each local node i we assign the three degrees of freedom gy, g3, and g,
and for the corresponding global node I, we assign Qs;_2, 031, Q5. Thus, the ele-
ment and global displacement vectors are

9= (909, q]" (9.8)
Q = [QlaQZ!QS!"':QN]T (99)

where N is the total number of degrees of freedom for the structure, three per node. We
define four Lagrange-type shape functions N, N, N5, and N;, where shape function N;
has a value of 1 at node i and is zero at the other three nodes. Specifically, N, is 0 at

412

FIGURE 9.1 Tetrahedral element.

TABLE 8.1 Connectivity

Nodes
Element No. 1 2 3 g4
2 I J K L
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3(0,0,1)

2(6,1,0)

N2='-"]
Ny=1{(
Ny=1-&-m

1(1,0,0)

FIGURE 9.2 Master element for shape functions.

nodes 2, 3, and 4 and linearly increases to 1 at node 1. Using the master element shown
in Fig. 9.2, we can define the shape functions as

N=¢ Ny=m Ny=¢ Ny=1-¢-n9-¢ (9.10)
The displacements i, », and w at X can be written in terms of the unknown nodal values as
u = Nq (9.11)

where
N 0O 0 N 0 0 N 0 0 N O 0
N=|0 N 0 0 N 0 0 N 0 0 N 0 (9.12)
0 0 N 0 ¢ N 0 0 N 00 N,

It is easy to see that the shape functions given by Eq. 9.10 can be used to define the
coordinates x, y, and z of the point at which the displacements i, ¥, and w are interpo-

lated. The isoparametric transformation is given by
x = Nixy T Noxg + Naxs + Nexg
y =Ny + Noyz + Noys + Ny, (9.13)
2= Nz + Nz + Nzt Nazg

which, on substituting for N; from Eq. 9.10 and using the notation x;, = x; — X;.
Y =N T Yl T L z;, yields

x = x4+ X Xt Xl

y =yt Y€+ vt Yaag (9.14)
Zat Dk + am t g

fl

I
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Using the chain rule for partial derivatives, say, of u, we have

(ou)  [2u)
LT3 ax
G 1
an ay
ou du
. ag A . azJ

(9.15)

Thus, the partial derivatives with respect to £, 7, and { are related to x, y, and z deriva-
tives by the foregoing relationship. The Jacobian of the transformation is given by

[ox 3y oz ]
ag o8¢ I

yo 9x a_y B_Z _ im Vg Z1s
an an om 24 Ya 24
ax 8y az X34 M n
Lol ol o |

We note here that

detd = x;(¥24234 — YsaZaa) t Mal224X30 = ZaaXzs) + ZialX2a)s — X34¥24)

The volume of the element is given by

1 1-¢ 1—é—7
/ f / detdednds*‘
0 i) 4]
Since det J is constant,

Lopl=g pl-gen
V, = idetflf / / d¢ dn d¢
0] L] [i]

Using the polynomial integral formula

boprtE it 1l pt
1] HiLH P!

]/ / ELP dE dn df = =P

0 Jo o {(m+n+p+3)

Vv, =

we get
V, = ¢|det J|
The inverse relation corresponding to Eq. 9.15 is given by
r {?‘E{ w ; a_uw

ax aE
du

A PV L] S
dy an
du du

\ az E \ a{ J

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)
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where A is the inverse of the Jacobian matrix J given in Eq. 9.16:

Y24Z34 — YaqZ24  Y34%14 T Y1434 V1adz4 T Yeal14

Z224X34 — Z34%24  Z34X14 — Z14Xag LpaX2e T L24%04 (9.23)
X244 — Xaqdoa X3a¥ia T Xi4Yia XiaYes T X24M4

Using the strain—displacement relations in Eq. 9.5, the relation between derivatives m
x, v, and z and £, 1, and ¢ in Eq. 9.22 and the assumed displacement field u = Nq in
Eq.9.11, we get

1

A=J1=—
detJ

€ = Bq (9.24)
where B is a (6 X 12) matrix given by

P 0
_Az 0

A, 0 0 A, 0 0 A; 0 0 -A

0 Ay 0 0 Ay O 0 Ay 00
0 0 Ay, O 0 Ay, 0 0 Ay 0 0 —A

0

A

— | (9.25)
0 A3| A21 0 A32 A 0 A33 Az _AA -A,

As 0 Ay Az 0 Ay Ay 0 A -
Ay A 0 Ay Ap 0 Ay Az 0 *Zz —21 0

L.

3 0 ‘:‘il

where Zl = All + A.12 + A|3,22 = AZI + A22 + A23,al'ld 23 = A_‘H + A32 + A_‘.\3.
All the terms of B are constants. Thus, Eq. 9.24 gives constant strains after the nodal
displacements are calculated.

Element Stiffness

The element strain energy in the total potential is given by

U, = %/STDGdV

= 14'B"DBq ] dv (9.26)
= 1q'V.B'DBq
=3q'k'q
where the element stiffness matrix k7 is given by
k' = V,B'DB 9.27)

in which V, is the volume of the element given by !|det J]. In the Galerkin approach. the
internal virtual work of the element comes out to be

/o'TE(q&) dV = W V.B'DBqg (9.28)

[

which gives the element stiffness in Eq.9.27.

L _N
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Force Terms

The potential term associated with body force is

f ufdv=q' //f NTtdetJ dé dndl (9.29)

= qTfe

Using the integration formula in Eq. 9.20, we have

v,
r= f[fx’fwfz-fnfy-fz,---,fz]T (9.30)

For Eq. 9.30, the element body force vector f° is of dimension 12 X 1. Note that V,f, is
the x component of the body force, which is distributed to the degrees of freedom

4y, 44> 47, and gp.
Let us now consider uniformly distributed traction on the boundary surface. The

boundary surface of a tetrahedron is a triangle. Without loss of generality, if A, is
the boundary surface on which traction is applied, formed by local nodes 1,2, and 3, then

f w'TdA =q" f N'TdA = q'T* (9.31)
A A

L3 €

The element traction load vector is given by

A,
T = '_3_[sz Ty: Tz$ Txa T}" TZ’ Tx, Ty, TZJ 0, 0, 0] (9.32)

The stiffnesses and forces are gathered into global locations using element connectivity.
Point loads are added into proper locations of the force vector. Boundary conditions

are considered using penalty or other approaches. The energy and Galerkin approaches
yield the set of equations

KQ=F (9.33)

9.3 STRESS CALCULATIONS

After these equations are solved, the element nodal displacements g can be obtained.
Since o = De and € = Bq, the element stresses are given by

o = DBq (9.34)

The three principal stresses can be calculated by using the relationships in Eq. 9.35. The
three invariants of the (3 X 3) stress tensor are

Il = O‘x + U)‘ + a’z
=00, to0, towe, -7, -7, - 2, (9.39)

= — g
L=o00, 421,17, ~ 01, - 0,12~ T,
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We define ! g
B B
a= _3"‘ - 1’2 !
b= *Z(E) 5 I (9.36)
c-2
3
6= -l—cos“(—%)
ac
The principal stresses are given by
_hy s b
oy =3 *ccos .
i 2w ?
oy = 5‘ + ccos(e + T) (9.37) ‘
I 4m
a3=§1-+ccos(6+?) '

MESH PREPARATION

While complex three-dimensional regions can be effectively filled by tetrahedral ele- e
ments, similar to triangular elements filling a two-dimensional region, it is a tedious pi
affair to carry out manual data preparation. To overcome this, for simple regions, it is eas-
ier to divide the regions into eight-node blocks. Consider the master cube shown in
Fig. 9.3. The cube can be divided into five tetrahedra, as shown in Fig. 9.4, with the con-
nectivity as given in Table 9.2.

In this division, the first four elements are of equal volume and element 5 has twice
the volume of other elements. In this case, care must be taken to match element edges -

on adjacent blocks.

(-1L-L,1)¢
5

x 7(-1,1,1)

(1,-1,1)6 ¢

4(1,1,-1})
FIGURE 9.3 Cube for tetrahedral division.
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FIGURE 9.4 Division of a cube into five tetrahedra.

TABLE 9.2 Five Tetrahedra

4

Nodes
Element No. 1 2 3 4
1 1 4 2 6
2 1 4 3 7
3 6 7 5 1
4 6 7T 8 4
5 1 4 & 7
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The master cube can also be divided into six elements with equal volume. A typi-
cal division is given in Table 9.3. The element division of one-half of the cube is shown
in Fig. 9.5. For the division shown in Table 9.3, the same division pattern repeats for

adjacent elements.

FIGURE 9.5 Division of a cube into six tetrahedra.

TABLE 9.3  Six Tetrahedra

Nodes
Element No. 1 2 3 4
1 1 2 4 8
2 1 2 8 5
3 2 8 5 &
4 1 3 4 7
5 1 7 8 5
6 1 & 4 7
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Use of det J in the calculation of B in Eq. 9.24 and use of [det J l in the estimation
of element volume V, enables us to use element node numbers in any order. Among
solid elements, this holds for four-node tetrahedra, since every node is connected to the
other three. Some codes may still require consistent numbering schemes.

Program TETRA is included in the disk.

Example 9.1
Figure E9.1 shows a four-node tetrahedral object. The coordinate dimensions shown are in
inches. The material is steel with E = 30 X 10° psi and » = 0.3. Nodes 2, 3, and 4 are fixed,
and a 1000 b load is applied at node 1 as shown. Determine the displacement of node 1 using
a single element.

2
©00.1) 1000 1b
I
I
3 | 1
(1.0.1) ll (0.1,1)
|
I
I
|
4
{0,00) FIGURE E9.1

Solution The Jacobian J given in Eq. 9.16 is easily calculated using the nodal coordinates:

11
J={0 01
i 01

and detJ = 1. The inverse of the Jacobian, A, is calculated using Eq. 6.23:

0 -3 1
A=|1 -1 0
o 1 0

Using the elements of A, the strain—displacement matrix B can be evaluated using Eq. 9.25.
In the product, Bg, oaly the first three columns multiply the first three components of 4. The
last six components of q are zero. When we use the strike-off approach in assembling
the stiffness matrix k = V,B'DB, we need to deal with the first three columns of B. Parti-
tioning B = [B, B;] with B, representing the first three columns, the modified 3 x 3 stiff
ness matrix K is given by B{DB, . The volume of the element V, is given by }.

B, is calculated using the first three columns of B defined in Eq. 9.25 ;s

[0 o ﬂ

o=

[l == e B e T v
o o o O =
B e B ]
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The stress—strain relation matrix D is evaluated using Eq. 1.15 from Chapter 1:

(4038 1731 1731 O 0 0

1731 4.038 1731 D 0 0

D = 10 1731 1,731 4038 0 0 0
0 0 0 1154 0 0

0 0 0 0 1154 0

(] 0 0 0 0 1.154

The modified stiffness matrix is given by

1923 0 0
K=VBDB =10° 0 6731 0
0 0 1923

The force vectorisF = [0 0 —1000]". SolvingforKQ = F,wegetQ = [0 0 —.00052]",
We note that for this one-element case, the modified stiffness is a diagonal matrix
for the geometry of the problem chosen. |

9.5 HEXAHEDRAL ELEMENTS AND HIGHER ORDER ELEMENTS

In the hexahedral elements, a consistent node-numbering scheme must be followed for
defining the connectivity. For an eight-node hexahedral or brick element, we consid-
er the mapping onto a cube of 2-unit sides placed symmetrically with £-,%-, and
Z-coordinates as shown in Fig. 9.6. The corresponding element in two dimensions is the
four-node quadrilateral discussed in Chapter 7.

On the master cube, the Lagrange shape functions can be written as

N=1+ &) +9m)(1+4L)  i=1t08 (9.38)

where (&, n;, {;) represents the coordinates of node i of the element in the (£.7.¢)
system. The element nodal displacements are represented by the vector

q9=[9,% - @] (9.39)

We use the shape functions N, to define displacements at any point inside the element
in terms of its nodal values:
u=Ng + Ng, + -+ Neg
v=Ng; + Ngs + -+ N (9.40)
w = Nigy + Nyge + -+ + N
Also,
x = Nx; + Npxy + -+ Nexy
y = Ny + Noyn + 0 Nayy (9.41) ‘
2= Ny + N+ Ny

I _n
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8(-1,1,1)

4(-1,1,-1)

FIGURE 9.6 Hexahedral element.

Following the steps used in the development of the quadrilateral element in Chapter 7,
we can get the strains in the form

€ = Bq {9.42)
The element stiffness matrix is given by
+1 o a4l
k= / 1 / / B'DB|det ¥| d¢ dn ds (9.43)
-1 J-1 Ja

where we have used dV = |det J| d¢ dnd{ and ¥ is the (3 X 3) Jacobian matrix. The
integration in Eq. 9.43 is performed numerically using Gauss quadrature.

Higher order elements, for example, 10-node tetrahedral elements or 20-node and
27-node hexahedral elements, can be developed using the ideas discussed in Chapter 7
Temperature effect is treated in a very similar manner, as in the case of the quadrilat-
eral in Chapter 7. Program HEXAFRON is included in the disk.
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9.6 PROBLEM MODELING

In solving a problem, the first step is to start with a coarse model. The data needed wil
be nodal coordinates, element nodal connectivity, material properties, constraint condi-
tions, and nodal loads. In the three-dimensional cantilever shown in Fig. 9.7, the geom-
etry and loading conditions demand a three-dimensional model. Element and
connectivities can easily be established by defining the four 8-cornered blocks. We can
meodel the first block, near the base of the cantilever, as a hexahedral element with con-
nectivity 2-1-5-6-3-4-8-7. For each subsequent block, the connectivity can be generated
by increasing each number in the current set by four. Coordinates of nodes can be gen-
erated using the shape functions of Eq. 9.38 for geometry definition. These aspects will
be discussed in Chapter 12. Alternatively, each block in the 3-D cantilever can be mod-
eled using tetrahedral elements. For the repeating block pattern shown in Fig. 9.6, the
six-element division given in Table 9.3 may be used.

The consideration of boundary conditions follows those presented for one- and
two-dimensional problems. However, to give a general idea of constraints and their con-
sideration in finite element analysis, we refer to Fig. 9.8. A point fully restrained is a

2kN
3

| | ‘L
| | | 1 p 19

—-418

FIGURE 9.7 Threc-dimensional elastic body.

t. normal
(€. m. n) Plane

FIGURE 9.8 Nodal constraints: (@) point constraint. (b) line constraint. (C) plane canstraint.
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point constraint. This is considered by adding a large stiffness C to the diagonal locations
corresponding to degrees of freedom of node 7. When the node is constrained to move
along a line, say, t, with direction cosines (¢, m, n), the penalty term comes from set-
ting w X t = 0. This resuits in the addition of following stiffness terms when the node
is constrained along a line:

3r-2 371 -1 3r
-2 [C1-6) —Ctm  —Ctn
3 /-1 Cl-nm?) —Cmn
37 Symmetric C(1 - n%)

When a node is forced to lie on a plane with normal direction t, shown in Fig. 9.8c¢,
the penalty terms come from u-t = 0. This requires that the following terms be added
to the stiffness matrix:

3 -2 3I1-1 31
37 -2 ce? Ctm Cén
37 -1 Cm* Cmn
3 Symmetric Cn?
Figure 9.9 shows a pyramid-shaped metal part and its finite element model. We
— observe here that nodes at A and B are line-constrained and nodes along C and D are

plane-constrained. This discussion should help one to handle the modeling of three-
dimensional problems with relative ease.

e —— i

4 A Z
Thickness
B
x 4

Problem Model

FIGURE 9.9 Mctal part with a pyramid surface.
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9.7 FRONTAL METHOD FOR FINITE ELEMENT MATRICES

In three-dimensional problems, the size of the stiffness matrix increases rapidly even with
the banded method of handling. An alternative direct method that results in considerable
saving in the use of computer memory is called the frontal method. In this method, the
order of element numbering plays a more important role than the order of node num-
bering. The frontal method relies on the fact that a degree of freedom can be eliminated
as soon as all stiffness values in rows and columns for that dof are complete. Irons* ob-
served that all of the dof for a node can be eliminated when it appears for the last time
as we assemble in the ascending order of elements. In the example illustrated in Fig. 9.10,
nodes 1,2, 3, and 4 appear for the last time in clement 1.The dof corresponding to all these
nodes can be eliminated as soon as element 1 is assembled. Once a dof is eliminated, the
corresponding equation is no more necessary until backsubstitution. This equation can
be written to an external device such as a tape or hard disk for backsubstitution in the

ﬁ100 mm 100 mm 4100 mm
3 7 1 15

S0 kN :
1
1
8
k
4 i
1
I
I
2 - -
//
-
,
@
P
// I r
- Z i
rd s
1
5
)/ '
x
E = 200 GPa
v=03
Nodes Front Size
Element Na. 1 2 E 4 5 [ 7 8 Assembled | Eliminated
1 -1 -2 -3 -4 5 6 7 8 8 4
2 -5 -6 -7 -8 9 10 11 12 8 4
3 9 10 -11 -12 13 14 -15 -16 3 4
4 -9 -10 —14 -13 -17 -20 -19 -—18 3 0

Biock size = 8 X dof per node

FIGURE 9,10 Example for frontal method.

*Bruce M. Irons, “A frontal solution program for finite element analysis.” fnz. L for Numerical Methods

in Eng.,Vol. 2.5-32 (1970).
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reverse order. As we assemble an element, the active matrix size grows, and when some
degrees of freedom are eliminated, the matrix size shrinks. The active matrix size can be
compared to the action of an accordion. The largest block size needed can be determined
using a prefront routine that employs a modified element connectivity matrix.

Connectivity and Prefront Routine

The first step is to determine the last appearance of a node. This is simplified by looking
for the first appearance of the node as we proceed in the descending order of elements.
In the element where this occurs, a negative sign is added to the node number in the con-
nectivity array. The node-number modification is shown in the table in Fig. 9.10 for the
hexahedral element example. After this operation is carried out for all the node numbers,
we are ready to determine the block size. Let us first evaluate the front size in terms of
the number of nodes. At the assembly of the first element, the nodal front size is 8. The
dofs corresponding to four nodes are now eliminated. The nodal front size shrinks to 4.
The assembly of element 2 adds four new nodes; thus, the front grows to size 8. As seen
from the table in Fig. 9.10, the maximum nodal front size is 8, which corresponds to 24 dofs.
The block size IBL needed is 24 X 24. By the banded storage method, the maximum
matrix size for the problem is 60 X 36 (verify this using bandwidth evaluation). The pre-
front routine in the program uses a simple algorithm to evaluate this block size. In the ac-
tual program, a small modification is introduced to handle multipoint constraints. This
aspect is discussed later. First, the stiffness matrix S(IBL,IBL) is defined. An index array
INDX(IBL). initialized as INDX(I)=Ifor I=1 to IBL is defined. We also define the glob-
al dof array ISBL(IBL) initialized to all zeros and IEBL() of size equal to the number
of dofs per element. The front size NFRON and number of variables ready for elimina-
tion NTOGO are initialized to zero. The element assembly starts at this initial setting.

Element Assembly and Consideration of Specified dof

Consider now the assembly of a new element when NFRON is at some level and all the
variables ready for elimination have been eliminated: that is, NTOGO is zero. We con-
sider the dof of each node of an element using connectivity. Consider the jth dof, say, IDF,
of an element and, say, the corresponding node is i. The first search is made in the
NFRON locations ISBL{INDX(L)),L=1 to NFRON if the dof IDF is already in the
set. If IDF is already in the set at L=K, then we set IEBL(j)=INDX(K). If IDF is not
in the set, then we find the next open location as follows: We set K=NFRON+1 and set
ISBL(NDX(K))=IDF and [EBL(j)=INDX(K). NFRON is incremented by 1 (thatis,
set NFRON=NFRON+1).If node i is negative in the element connectivity, then this dof
will be ready for elimination and must be floated into NTOGO. If IDF is a dof that has
a specified value, a large penalty number CNST is added into the location
S(INDX{K),INDX(K)). and CNST times the specified value is added into the global
force location F(IDF}. If K > NTOGO, the floating operation is carried out as follows:
The number in INDX(NTOGO+1) is exchanged with the number in INDX(K). and
NTOGO is incremented by 1. When all the element dofs are completed, IEBL() will
have the locations in S() where the element stiffness is to be assembled. The element stiff-
ness matrix SE() 1s added into the S() locations using 1EBLY(). The variables in INDX(I)
from I=1 to NTOGO are now ready for elimination. The relationships of various arrays
used in the assembly process are shown in Fig. 9.11.

e
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Row and column
management

Trrrroerrrirrrrd

[1]

NTOGO

NFRON ,_L

rT T T T T T T T T TT17

_ ] s IBL
] IEBL()
L] IBL Element local dof
| to row/column
INDX{) ISBL(} locations in §{)

Location  Global
nambers  active
of ISBL{) dot

FIGURE 9.11 Stiffness assembly for rontal method.

Elimination of Completed dof

We eliminate the variable in the location INDX(1) by reducing the active equations
INDX(2) through INDX(NFRON). The equation INDX(1) is written to the disk by
writing the stiffness values and the corresponding dof numbers. In the BASIC program,
the data are written to a random-access file. Now INDX(1) is open. A few integer ex-
change operations are done to simplify the elimination process. First, the number at
INDX(NTOGO) is exchanged with the number at INDX(1); then the number
at INDX(NTOGO) is exchanged with the number at INDX(NFRON). NTOGO and
NEFRON are each decremented by 1. Once again, the reduction is carried out from
INDX(2) through INDX(NFRON). The process continues for each e¢lement until
NTOGO is zero or NFRON is 1.

Backsubstitution

Backsubstitution is a straightforward process. In the last equation, there is a stiffness
value, a variable number, and the right-hand side. This variable is eastly determined. The
last but one equation will have two stiffnesses and two variable numbers and the right-
hand side. Since one of the variables has already been determined, the other one is cal-
culated and so on. The backsubstitution can even be carried out independently, if needed.

Consideration of Multipoint Constraints

Multipoint constraints of the type 8:0; + B.0, = By are easily con_sidered b.y treat%ng
each constraint as an element of 2 dof. The penalty parameter CNSTis deternnped using
the first element diagonal stiffness values. The equivalent element stiffness and right-hand

side for the multipoint constraint are, respectively,

B BiB: NS [Blﬁo:[
CNST|:»31B: B%:] and CNST 8.5,

1n the implementation of this boundary condition, these stiffnesses are first introduced into
S() and then the regular ¢clement stiffnesses are introduced. The same procedure introduced
into the PREFRONT with dofs used instead of node numbers gives the needed block
size. Assembly and elimination are then similar to the procedure discussed previously.
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v Example 9.2
! The L-shaped beam shown in Fig. 9.10 is analyzed using program HEXAFRON. The input
; and output data and the program listing are given below. |
Input Data File
<< PROGRAM HEXAFRON >>
3-D ANALYSIS USING HEXAHEDRAL ELEMENT
MN NE KM NDIM NEN NDN
20 4 1 3 8 3
ND NL NCH NPR NMBEC
12 1 1 3 0
Hode¥ X ¥ z
1 100 0 100
2 0 0 100
3 o 0 200
4 100 0 200
5 100 100 100
6 0 100 100
- 7 0 100 200
B 100 100 200
9 100 200 100
10 0 200 100
11 0 200 200
12 100 200 200
13 100 300 100
14 0 300 100
15 0 300 200
16 100 300 200
17 100 200 0
18 100 300 0
19 0 300 0
20 0 200 0
Elem$ N1 N2 NI H4 WNE N6 N7 N8 MATH# Temprise
1 1 2 3 4 5 & 7 B 1 0
2 5 6 7 8 5 10 11 12 1 0
3 9 10 11 12 13 14 15 16 1 0
4 9 10 14 13 17 20 19 1B 1 0
DOF%# Displacement
43 0
50 0
51 0
52 0
53 0
54 |
55 0
56 0
57 0
58 0
59 0
60 0
port  Load
12 -80000
MAT# E Wu Alpha
1 200000 0.3 0
Bl i B2 3 B3 (Multi-point constr. BI1*Qi+B2+(j=R3)
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Frogram HexaFront - CHANDRUPATLA & BELEGUNDU
Ocutput
3-D ANALYSIS USING HEXAHEDRAL ELEMENT
NODE#  X-Displ Y-Displ Z-Displ
1 -2.156%E-02 -3,7B94E-03 -4.0983E-01
2 ~2.3306E-02 -3.3079E-03 ~3,3229E-01
3 5,7350E-02 -1.78%6E~01 -3.2676E-0L
4 5.7756E-02 -1.8449E-01 ~4.2780E-01
5 -6€6.8253E-03 -1.0487E-02 -2,230S5E-01
§ -1.0750E-02 -1.1683E-02 ~1.6711E-01
T 4.%09€E-02 -1,7250E-01 ~1.6707E-01
8 4.2791E-02 ~1,7376E~01 ~-2.1738B-01
9 1.3643E-02 <~3.3666B-02 -4.7867E-02
10 -6.0295E-05 -3.2558E-02 -2,8%338E-02
11 3.2541E-02 -1.4954E-01 -3.7397E-02
12 2.7862E-02 -1.4B04E-01 -6.3003E-02
13 3.6578E-03 -3.8342E-02 2.9Q87E-02
14 1.1886E-02 -4.1411E-02 3.9684E-02
15 2.6633E-02 -1.3B42E-01 5.5799%B-02
16 2.06068-02 -1.3484E-01 3.9583E-02
17 2.8995E-15 -1.8921E-15 -1.2335E-14
18 -1.6015E-15 1,9503E-15 5,2437E-15
1% 1.6597E-15 S.6746E-16 8.9381E-15
20 -2.9577E-15 -1.0256E-15 -8.9381lE-15
vonMises Stresses at B Integration points in ELEM# i
2.3359%E+01 1.59B4E+01 1.8545E+01 4.0582E+01
2.9929E401 1.7910E+01 1.4849E+01 4.339%6GE+01
vonMises Stresses at § Integration points in ELEM# 2
3.1416E+401 2.6193E+01 3.5722E+01 2,.8272E+01
6.1174E+01 3.8615E+401 3.5948E+01 5.1608E+01
vonMises Stresses at 8 Integration points in ELEM$# 3
4.5462E+01 5.23%3E401 3.448€6E+D1 3.2530E+01
3.0872E+01 4.1080E+01 2.6155E+01 2.1BS2E+01
vonMises Stresses at 8 Integration points in ELEM# [
5.6590E+01 4.6398E+01 4.8482E+01 4.1407E+01
5.1148E+01 3.B8S3E+01 4.9%391E+01 3.8936E+01
PROBLEMS
9.1. Determine the deflections at the corner points of the steel cantilever beam shown in
Fig. P9.1.
z
JTSﬁin
P
¥
x

20 flﬂ, —-—-._______‘_‘_____‘_-_‘_“P/ﬂv

E = 30 x 10° psi
v=13

FIGURE P9.1
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9.2. A cast iron hollow member used in a machine tool structure is fixed at on¢ end and loaded
at the other, as shown in Fig. P9.2. Find the deflection at the load and maximum principal
stresses. Compare the values with the structure without an opening.

1000 o
AR
‘/
E =165 GPa
v =025
FIGURE P9.2

9.3. An S-shaped block used in force measurement is subjected to a toad as shown in Fig. P9.3.
Determine the amount by which the block is compressed. Take E = 70 000 N/mm? and
v = 0.3,

Uniform load = 20 N/mm?
on top surface

24 mm

Fixed base

FIGURE P9.3
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9.4. A device is hydraulically loaded as shown in Fig. P9.4. Plot the deformed configuration
and determine the magnitude and iocation of the maximum principal siresses.

S, -

— [ 0.6in.

6.2 in.

T _'_J_I_J ‘I‘ J%“TT_
Fixed/ . T}-o—z.s in.—-‘

hase

0.8 inI %//% Material: steel

%/// 0 P=120001b
—|  |j—o0sin.

a—a

FIGURE P9.4

9.5. A portion of the brake pedal in an automobile is modeled as shown in Fig. P3.5. Determine
the deflection at the pedal for a 500-N load.

- 150 mam »-
4 mm 500N

pd
/ : 110 mm 40 mm

20 mm ~

=TT T 'I 3mm
,_l_ o 15 mm

FIGURE P9.5

|
|
|
r
v
|
|
|
i
F
|
|

9.6. Determine the axial elongation and location and magnitude of maximum von Mises stress
in the connecting rod shown in Fig. P9.6.

L _ 3
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V27,

Section a-a

—

N ——f-—

% Symmetry model: x, z and x, y are planes of symmetry.
Dimensions {mm}
R =20 R,=126 R;=12 R,=18 L =140
f”:4 ffp_:ﬁ fw=5 hb=
h, =14 hy, =23 Dy =10 D,=15 b =121
P = 30000-N compression
Material: steel

FIGURE P9.6

9.7 An overhanging beam made of rigidly bonded steel and aluminum plates is shown in
Fig. P9.7. The aluminum piate has a constant thickness of 10 mm. Due to a manufacturing
defect, the steel plate has straight edges, a thickness of 9 mm at one of the free ends, and
10 mm at other corners. From the position shown, if the temperature is raised 60°C,
determine the following:

(a) the deformed shape,
(b) the maximum vertical deflection and its location, and
{c) the maximum von Mises stress and its location.

/- Aluminum

., v f
10 mm § g :POmm
., 'y 42ty -
. 10 mm : /_Y_Qmm
mm| g b e Pt =
n /i 10 mm
10 mm | @J | 10 mm
—__EQ“\ S —
/
AT = 6°C

FIGURE P9.7
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Program Listings

Prawes PROGRAM HEXAFRON wwEr
'*  3-D STRESS ANALYSIS USING 8-NODE -
"+ ISOPARAMETRIC HEXAHEDRAL ELEMENT *
v USING FRONTAL SOLVER *

't T.R.Chandrupatla and A.D.Belegundu *

Thkdehd kbbb bddddbdrdhdrdddbddrdrrrrdrrrdrhrhd

Private Sub cmdStart_Click(}
Call InputData
Call PreFront
RecordLen = Len(Adat)
‘—--— Sgratch file for writing
Open "SCRATCH.DAT" For Random As #3 Len = RecordLen
Call Stiffness
Call BacksSub
Close #3
Kill "SCRATCH.DAT"
Call StressCalc
Call ReacticnCalc
Call Output
cmdView.Enabled = True
cmdStart.Enabled = False
End Sub

‘=====s====== SUBROUTINE PREFRONT ===
Private Sub PreFraont(}
f———— Mark Last Appearance of Node / Make it negative in NOC()
' Last appearatice is firat appearance for reverss slamsct order
NEDF = NEN * HNDN
For I = 1 To NN
IT =0
For J = NE To 1 Step -1
For K = 1 To NEN
If I = NOoc{(J, K} Then
ir =1
Exit For
End If
HNext K
If IT = 1 Then Exit For
Next J
Noc(J, K} = -I
Next I
't===== Block Sizre Determination
N = NN * NDN
ReDim IDE{NQ)
For I = 1 To NQ: IDE(I} = 0: Next I
For I = 1 To NMPC: Fer J = 1 To 2: IDE(MPC(I, J}) = 1: Next J: Next I
IFRON = 0: For I = 1 To NQ: IFRON = IFRON + IDE{I!: Next I

IBL = IFRON
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continued

For N = 1 Te NE
INEG = 0
For I = 1 To NEN
I1 = NOC{N, I}: IA = NDN * {Abs{Il)} - 1}
For J = 1 To NDN
IA=TIA + 1
If IDE{IA) = 0 Then
IFRON = IFRON + 1: IDE(IA) =1
End If
Naxt J
If I1 < 0 Then INEG = INEG + 1
Next I
If IBL < IFRON Then IBL = IFRON
IFRON = IFRON - NDN * INEG
Next N
Erase IDE
ReDim ISBL{IBL), S{IBL, IBL}, IEBL{NEDF}, INDX{IBL}

NFRON = 0: NTOGO = 0: NDCNT = §

For I = 1 To IBL: INDX(I' = I: Next I
End Sub
\m=========== GLOBAL STIFFNESS MATRIX

Private Sub Btiffnessi)
P Global Stiffness Matrix -----
Call IntegPoints
MTN1l = 0O
For N = 1 To NE
picBox.Print "Forming Stiffness Matrix of Element "; N
MTN = MAT (N)
If MIN <> MTN1 Then
Call DMatrix{¥)
End If
Call ElemStiffness (N)
If K =1 Then
CNST = 0
For I =1 To NEDF: CNST = CNST + SE(I, I): Next I
CNST = 1000000000004 * CHNST
Call MpcFron
End If
P Account for temperature lcads OT()
For I = 1 To NEN
IL =2 * (I - 1): IG = 3 * (Rbs{NOCI(N, I})) - 1)
For J =1 To 3
IL = IL + 1: IG=1IG + 1
F{IG} = F{IG) + QT(IL}
Next J
Next I
Call Front (N} ‘Fxontal assembly and Forward Flimination
Next N
End Sub
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‘===mmm==co== STRESS CALCULATIONS
Frivate Sub StressCalci{)
ReDim vonMisesStress (NE, §8)
o Streass Calculations
MTH1 = 0
For W = 1 To HE
MTN = MAT (NI
If MTN <> MIN1 Then
Call DMatrix(N)
End If
For IP = 1 To &
1-—- Von Mises Stress at Integration Points
Call DhMat({N, 2, IP} '--- Get DB Matrix with Stress calcunlation
'——— Caleunlation of Voo Mises Strass at IP
SIV1 = STR{1) + STR(2} + STR(3}
sIVZ = STR{1l} * STR({2} + STR(2} * STR({3) + STR(3) * STR({1)
§IVZ? = SIV2 - STR{4} ~ 2 - STR(S) ~ 2 - STR{6} ~ 2
vonMisesStress({N, IP) = Sqr(sSIVl * SIV1 - 3 * SIV2)
Next IF

‘m=mz==m===== INTEGRATION POINTS =========== ====
Private Sub IntegPoints()}
T Integration Peoints XNI{} ——------

C = 0.57735026918

XI(1, 1) = -1: XI{2, 1} = -1: ¥I{3, 1) = ~1
XT(1, 2) = 1: XI1(2, 2} = -1: XI(3, 2} = -1
¥I{1l, 3) = 1l: XI(2, 3} = 1: XI(3, 3} = -1
XI(1, 4) = -1: XI{2, 4} = 1: XI(3, 4) = -1
¥I(l, 5} = -1: XI{2, 5) = -1l: XI(3, 5} =1
XI{l, 6} = 1: XI{2, 6} = —1: XI(3, &) =1
®I{1, 7} = 1: XI{2, 73 = 1: ¥Ii{3, 7} =1
XI{l, 8}y = ~t: XI{2, 8y = 1: XI{3, 8) =1
For I =1To 8
¥NI(l, I) = C * XI{l, I}: XNI{2, I} = C * XI{Z, I}
XNI{3, I) = C * XI{3, I}
Next I
End Sub
‘mo==—===c===== D-MATRIX

Private Sub DMatrix(N)
'-—- D() Matrix relating Stresses to Strains

E = PM(MTN, 1): PNU = PM(MTN, 2): AL = PM{MIN, 3)
E / ({1 + PNU) * (1 - 2 * PNU})

¢2 = 0.5 * E/ {1+ ENU}
Toe 6: For J = 1 To 6: D{I, J) = O: Next J: Next I

For I =1
D(l, 1} = €1 * (1 - PNU}: D{1, 2) = €L * PNU: DI{1, 3y = Di(l, 2}
p(z, 1) = D{1, 2}: D{2, 2) = DB(1, 1): D{2, 3} = p{l, 2}
p(3, 1) = D(l, 3}: D{(3, 2} = D(2, 3): D{3, 3! = Dil, 1}
D(4, 4) = €2: D(5, §) = C2: D(6, &} = C2
MTN1 = MTN
End Sub
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V============ ELEMENT STIFFNESS MATRIX

Prlvate Sub ElemStiffness N}
-------- Elemant Stiffpess -——-—-
For I = 1 To 24: For J =1 To 24
SE(I, J) = 0: Next J: QT{(I) = 0: Next I
DTE = DTN}
1-—- Weight Factor is ONE
'~—- Loop on Integration Points
For IFP = 1 To B
'-—- Get DF Matrix at Integration Poiat IP
Call DbMat(N, 1, IP)
'--- Flement Stiffness Matrix 5%
For I = 1 To 24
For J =1 To 24
For K=1To 6
sE({I, J) = SE{(I, J) + B(K, I} * DE(K, J) * DJ
Next K
NHext J
Next I
'—-—= Datermine Texmperaturs Load QT()
C = AL * DTE
For I = 1 To 24
DSUM = DB{1l, I) + DB(Z2, I] + DB(3, I)
QT{I) = QT(I} + C * Abs(DJ) * DSUM / &
MNext I
Next IP
End Sub

‘===z=======x DB MATRIX

Private Sub DbMat(N, ISTR, IPF)

e DE{) MATRIX ----—-
'—-- Gradient of Shape Functions - The GN() Matrix

For I =1 To 3
For J = 1 To 8

c=1
For K
If

=1 To 3
K <> I Then
C=C* (1 +XI(K, J) * XNI{K, IP})
End If
Next K
GN(I, J) = 0.125 * XI{I, J} * C
Next J
Next I
'—--- Formation of Jacobisn TJ
For I =1 Toc 3
Fer J = 1 To 3
TJ({I, J) =0
For K=1To 8
KN = Abs {NOCIN, K))
TI(I, J) = TJ(I, J) + GNI(I, K} * X{KN, J)
Next K
Next J
Next I
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continued

'--- Determinant of the JACUBIAN

DJ1 = TJ{1, 1) * {TJ3{2, 2} * TI(3, 3} - TI{3, 2) * TI(2, 3)})
DJ2 = TJ(1, 2) * (TJ(2, 3) * TJI(3, 1) - TI(2, 3) * TI{2, 1})
DJ3 = TJ{l, 3} * (TJ{2, 1) * TJ(3, 2) - TJ(3, 1) * TI{2, 2})
DF = DJ1 + DJZ + DJ3

'-—— Inverse of the Jacabian AJ()

AJ{l, 1} = (TJ{2, 2) * TJ(3, 3) - TJ(2, 3} * TJI{(3, 2)) 7/ DI
AJ(1l, 2} = {TJ({3, 2) * TI{1, 3) - TJI{3, 3) * TJ{1, 2)) /7 DJ
AJ{l, 3 = (TJ(l, 2} * TJ{2, 3) - TJ{1, 3} * DI{2, 2y / DJ
AJ(2, 1) = (TJ{2, 3) * TJ{3, 1} - TJ(2, 1) * TI{3, 3}) / DI
AJ(2, 2) = (T?J(1, 1) * TJ(3, 3} - TJ(1, 3) * TJi(3, 1)) / DJ
AJ(2, 3) = (TJ(1, 3) * TJ(2, 1) - TJ{i, 1) * TJ(2, 3)) / DI
AJ(3, 1} = (TFi2, 1} * TJI{3, 2) - TJ{2, 2} * TI{(3, 1)} /
AJi3, 2 = (TJ{1l, 2} * To(3, 1) - TI{l, 1) * TJ(3, 20} / DJ
AJ(3, 3) = (TJ(1, 1) * TJ{(Z, 2} - TJ{(1, 2) * TJ(2, 1)) / DJ

'-—- H{) Matrix relates local derivatives of u to local
! displacaments ¢
For I = 1 To 9

For J = 1 To 24

H{(I, J} = ¢ 2
Next J 'é

Next I :
For I =1 To 3
For J=1To 3
IR=3* (I -1} +J

For K. = 1 To 8
Ic=3* (K-1) +1
H{IR, IC} = GN{J, K}
Next K
Next J
Next I
'—-- G{¢) Matrix relates strains to local darivatives of =

For 1 =1To 6

For J =1 Tc 9
G(I, J} =0

Next J
Next I
G@{l, 1y = AJ{1l, 1): G(1l, 2) = AJ{1, 2): G(l, 3) = AJ(1l, 3}
G{2, 4} = AJ(2, 1): @(2, 5) = AJ(2, 2}: G{2, 6] = AJ(2, 3}
G{3, 7y = AJ(2, L): G{3, B) = AJ(3, 2): G{3, 9 = AJ(3, 3)
G4, 4) = AJ(3, 1): G4, 5} = AJ(3, 2}: G(4, &) = AJ(3, 3}

G4, 7} = AJ(2, 1}: G(4, 8) = AJ(2, 2): G(4, %) = AJ(2, 3)
G{5, 1) AJ(3, 1y: G(5, 2) = AJ({3, 2): (5, 3} AJ{3, 3)
G{S, 7) = AJ{l, 1): Gi(53, 8) = AJ{l, 2}: G{5, 9} = AJ(1, 3)
G{6, 11 = AJI2, 1): G(&, 2} = AJ{2, 2): G{6, 3) = AJ(2, 3}

G(6, 4) = AJ(1, 1): G(6, 5] = AJ{l, 2): G{&, 6) = RJ{1, 3}
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continued

'——~ B{) Matrix relatas strains to ¢
For I =1 To 6
For J =1 To 24
B(I, J) =0
for K =1 To 9
B{I, J) = B{I, J) + G(I, K} * H(K, T}
Next K
Nezt J
Next I
'——- DR({) Matrix relatas stresses tco gq
For I =1 To 6
For J = 1 To 24
De{I, J) =0
For K =1 To 6
DB(I, J) = DB({I, J) + B{I, K} * EB(K, J)
Next K
Next J
Next
If ISTR = 1 Then Exit Sub
' - Element Nocdal Displacements stored in QT()
For I =1 To B
IIN = 3 * (Abs (NOC(N, I)) - 1)
II = 3 * (1 - 1}
For J =1 To 3
QT(II + J) = FIIIN + J)
Next J
Next I
'-—— Stress Caleulation SIR = DB * Q
For I =1To 6
STR{I} = 0O
For J = 1 To 24
STR{I} = STR{I) + DB{I, J} * QT(J

Next J
S5TR{I} = STRI(I} -~ CAL * (D{I, 1} + Di(I, 2} + DII, 2))
Mext I
End Sub
‘e=========== MULTIPOINT CONSTRAINTS

Private Sub MpcFren(}

————— Modificationw for Mualtipoint Constraints by FPanalty Method
= 1 To NMEC

Il = MPC{I, 1}

IFL = 0

1 To NFRON

INDX (J)

If Il = ISBL(J1} Then
IFL = 1: Exit For

End If
Next J
Iif IFL = 0 Then
NFRON = NFRON + 1: J1 = INDX(NFRON}: ISBL{JL) = I1

End If
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continued
I2 = MPC({I, 2)
IFL = 0
For K 1 To NFRON
K1l INDX (K)
If Kl = ISBL{Kl} Then
IFL = 1: Exit Fer

End If
Next K
If IFL = O Then

NFRON = NFRON + 1: Kl = INDX(NFRON): ISBL(Kl} = I2
End If

P Stiffness Modification

3{J1, J1) = S5(J1, J1} + CNST * BT(I, 1) ~ 2

S{Kl, K1) = S(Kl, K1} + CNST * BT({I, 2) "~ 2

S(JL, K1) = s{J1, K1) + CNST * BT(I, 1} * BT{I, 2)

S(Kl, J1} = S5(J1, K1}

e Foxrce Modification

F({Il} = F(I1}) + CNST * BT{I, 3} * BT{I, 1}

F{IZ} = F(I2} + CNST * BT{I, 3} * BT{I, 2}

Next I

End sub .
‘============ FRONTAL METHOD '

Private Sub Front(N)
e Frontal Method Assenmbly and Elimination -—————
B e e Asgembly of Elewent N -—--————-vo—cmm o
For I = 1} To NEN
Il = NOC(N, I}): I&A = Abs{Il}l: I31 = Sgn{Il}
IDF = NODN * {(IA - 1): IE> = HDN * (I - 1}
For J = 1 To NODN
IDF = IDF + 1: IEl = IEl + 1: IFL = 0
If NFRON > NTOGQO Then
For II = NTOGO + 1 To NFRON
IX = INDX(II)
If IDF = ISBL{IX} Then
IFL = 1: Exit For

End If
Next II
End If
If IFL = O Then
NFRON = NFRON + 1: II = NFRON: IX = INDX{II)
End If
ISBL{IX) = IDF: IEBL{IEl} = IX

If ISl = -1 Then
NTQGO = NTOGO + 1
ITEMP = INDX({NTOGO)
INDX (NTOGO} = INDX{II)
INDX (IT} = ITEMP

End If

Hext J
Next I
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continued

For I 1 To NHEDF
Il IEBL{I}
For J = 1 To NEDF
J1 = IEBL(J)
$(Il1, J1} = S{I1l, Ji} + SE{I, J)
Next J

If NDCNT < ND Then
————— Modification for displacement BCa / Penalty Approcachk -—----

For I = 1 To NTOGO
I1 = INDX(I)
IG = ISBL(I1)

For J = 1 To ND
If 16 = NU{J} Then
s{11, Il} = 5{Ii, 11} + CNST
F(IG) = F{IG) + CNST * U{J}

NDCNT = NDCNT + 1 ' Connter for check
Exit For
End If
Next J
Next I
End If

Ve Flimination of completed variables --—-----—-—-----—-
NTGl = NTOGO
For II = 1 To NTGl
IPY = INDX(l): IPG = ISBL{IFV)
Pivot = S{IPV, IPV}
Ve Write separator "0" and PIVOT value to disk -----
Adat.VarNum = ¢
2dat.Coeff = Pivet
ICOUNT = ICOUNT + 1
Put #3, ICOUNT, Adat
S(1IPV, IPV) = 0
For I = 2 To NFRON
Il = INDX(I): IG = ISBL{Il}
If Stil, IPV) <> 0 Then
C = 5{1I1, 1PV} / Pivot: S(Il, IEV) = 0
For J = 2 To NFRON
J1 = INDX(J}
I1f S({IPV, J1} <> 0 Then
5(I1, J1) = 5{(I1, J1) - C * S{Ipv, J1)

End If
Next J
F{IG} = F(IG)} -~ C * F{IPG)
End If
Next I

For J = 2 To NFRON




1N i

Problems 305

continved

- Write Variabled# and Redoced Coaff/PIVOT to disk -----
J1 = INDX(J)
If S(IPV, J1) <> O Then
ICOUNT = ICOUNT + 1: IBA = ISBL{J1)
Adat.VarNum = IBRA
Adat.Coeff = S{IPV, Jl} / Pivot
Put #3, ICOUNT, Adat
s{Ipv, J1) = O
End If
Next J
ICOUNT = ICOUNT + 1
B Write Fliminated Variable# and RHS/PIVOT to disk -----
Adat.Varlum = IEG
Adat.Coeff = F{IPG} / Pivot
F(IPG) = 0
Put #3, ICOUNT, Adat
P {NTOGO) inte (1); {(NFRON] intoc (NTOGQ}
P IPV into (NFRON) and reduce front & NTOGQ sizes by 1
If NTOGC > 1 Then :
INDK ({1} = INDX(NTOGO) !
End If
IND¥ (NTOGD) = INDX{NFRON): INDX{NFRCN) = IPV
WEFRON = NFRON - 1: NTOGO = NTOGO - 1 ;
Next II :

End Sub

B e BACKS‘JBSTITUTION :
Private Sub BackSub({]
| ma=m== Backsubstitution
Do While ICOUNT > O
Get #3, ICOUNT, Adat
ICOUNT = ICQUNT - 1 |
N1 = Adat.VarNum '
F{N1l} = Adat.Coeff

Do
Get #3, ICOUNT, Adat |
ICOUNT = ICOUNT - 1 ' 5
N2 = Adat.VarNum |
1f N2 = 0 Then Exit Do
F(N1l) = F(N1l) - Adat.Coeff * FI(NZ}

Loop

Loop

End Sub
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CHAPTER 10

Scalar Field Problems

INTRODUCTION

In previous chapters, the unknowns in the problem represented components of a vector
field. In a two-dimensional plate, for example, the unknown quantity is the vector field
u(x, y),whereuisa (2 X 1) displacement vector. On the other hand, quantities such as
temperature, pressure, and stream potentials are scaler in nature. In two-dimensional
steady-state heat conduction, for example, the temperature field 7'(x, y) is the unknown
to be determined.

In this chapter, the finite element method for solving such problems is discussed.
In Section 10.2, one-dimensional and two-dimensional steady-state heat conduction are
considered, as well as temperature distribution in fins. Section 10.3 deals with torsion of
solid shafts. Scalar field problems related to fluid fiow, seepage, electric/magnetic fields,
and flow in ducts are defined in Section 10.4.

The striking feature of scalar field problems is that they are to be found in almost
all branches of engineering and physics. Most of them can be viewed as special forms of
the general Heimholtz equation, given by

B 8N 9, 9PN\ & [ 3¢ _
ax(k‘ ax) + ay(k-" ay) + az(k‘* az) +x+0=0 (10.1)

together with boundary conditions on ¢ and its derivatives. In the Eq. 10.1,¢ = é{x, ), 2 )
is the field variable that is to be determined. Table 10.1 lists some of the engineering
problems described by Eq. 10.1. For example,if we set ¢ = T, k, = k, = k,and A = 0
and consider only x and y, we get *T /ox* + @*T/8y® + Q = 0, which describes the heat-
conduction problem for temperature T, where & is the thermal conductivity and € is
the heat source/sink, Mathematically, we can develop the finite element method for var-
ious field problems in a general manner by considering Eq. 10.1. The solution to specif-
ic problems can then be obtained by suitable definition of variables. We discuss bere the
heat-transfer and torsion problems in some detail. These are important in themselves,
because they provide us an opportunity to understand the physical problem and how to
handle different boundary conditions needed for modeling. Once the steps are under-
stood, extension to other areas in engineering should present no difficulty, While in other
chapters, both energy and Galerkin approaches were used to derive element matrice, by
Galerkin’s approach is used here owing to its greater generality for field problems.
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10.2 STEADY-STATE HEAT TRANSFER

We now discuss the finite element formulation for the solution of steady-state heat-
transfer problems. Heat transfer occurs when there is a temperature difference within
a body or between a body and its surrounding medium. Heat is transferred in the form
of conduction, convection, and thermal radiation. Only conduction and convection modes
are treated here.

The heat flow through the wall of a heated room on a winter day is an example of
conduction. The conduction process is quantified by Fourier’s law. In a thermally isotropic
medium, Fourier’s law for two-dimensional heat flow is given by

aT oT

q, k P q, = —k 2y (10.2)
where T = T{x, y) is a temperature field in the medium, ¢, and ¢, are the components
of the heat flux (W/m’), k is the thermal conductivity (W/m. °C), and 8T /ax, 9T/9y are
the temperature gradients along x and y, respectively. The resultant heat flux q = g,i
+ g¢,) is at right angles to an isotherm or a line of constant temperature (Fig. 10.1). Note
that 1W = 1J/s = 1 N-m/s, The minus sign in Eq. 10.2 reflects the fact that heat is
transferred in the direction of decreasing temperature. Thermal conductivity & is a
material property.

In convection heat transfer, there is transfer of energy between a fluid and a solid
surface as a result of a temperature difference. There can be free or natural convection,
such as the circulation pattern set up while boiling water in a kettle due to hot water ris-
ing and cooler water moving down, or there can be forced convection, such as when the
fluid flow is caused by a fan. The governing equation is of the form

q = KT, - Tx) (10.3)

where ¢ is the convective heat flux (W/m?), & is the convection heat-transfer coefficient
or film coefficient (W/m?+°C), and 7, and T, are the surface and fluid temperatures,
respectively. The film coefficient £ is a property of the flow and depends on various fac-
tors, such as whether convection is natural or forced, whether the flow is laminar or tur-
bulent, the type of fluid, and the geometry of the body.

In addition to conduction and convection, heat transfer can also occur in the form
of thermal radiation. The radiation heat flux is proportional to the fourth power of the

L X Isotherm

FIGURE 10.1 Heat flux in two dimensions,
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absolute temperature, which causes the problem to be nonlinear. This mode of heat
transfer is not considered here.

One-Dimensional Heat Conduction

We now turn our attention to the steady-state heat-conduction problem in one dimen-
ston. Our objective is to determine the temperature distribution. In one-dimensional
steady-state problems, a temperature gradient exists along only one coordinate axis, and
the temperature at each point is independent of time. Many engineering systems fall
into this category.

Governing equation Consider heat conduction in a plane wall with uniform
heat generation (Fig. 10.2). Let A be the area normal to the direction of heat flow and
let Q (W/m’) be the internal heat generated per unit volume. A common example of heat
generation is the heat produced in a wire carrying a current / and having a resistance R
through a volume V, whichresultsin Q = / 2R/V . A control volume is shown in Fig. 10.2.
Since the heat rate (heat flux X area) that is entering the control volume plus the heat
rate generated equals the heat rate leaving the control volume, we have o

d
gA + QAdr = (q + —&%dx)A (10.4)
Canceling gA from both sides yields
dq
== 10.5
Q=" (105)
Substituting Fourier’s law
dT
= —k—— 10.6
q=~k (106)
Left Right
face face
Wali \ /// /
| 7
. N
T 2
___é A df f— —X
i
Heat flow[—) ” (0 2 e e
et @
X / /
2%
Left L™ Right ﬁ///ﬁ
face face
X ot (X ]

FIGURE 10.2 One-dimensional heat conduction.
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Galerkin's approach for heat conduction The clement matrices will now be
derived using Galerkin’s approach. The problem is

d dT
dx( dx) Q=0
T|x=0 = Ti] Q|1=L = h(Tf - TDO) (1015)

If an approximate solution 7 is desired, Galerkin’s approach is to solve

[qb{d%(k%) + Q]dx =0 (10.16)

for every ¢ constructed from the same basis functions as those of T, with ¢(0) = 0.
& can be thought of as a virtual temperature change that is consistent with boundary con-
ditions. Thus, ¢ = 0, where T is specified. Integrating the first term by parts, we have

ar|- " dédT ‘
(bka; . - £ ka-d;dx + \/n. ¢Qdx =10 (10.17)
Now,
dT|t dar dT
(j)k—dx . = ¢(L)k(L) T (L) - (ﬁ)(O)k(U)E(O) (10.18a)

Since $(0) = Oand g = —k(L)(dT (L)/dx) = h(T, — Tx), we get

daT |-
d;kd— = —¢(L)W(T, — To) (10.18b)
X |0
Thus, Eq. 10.17 becomes
L L
dé dT
-¢(LYR{T, — Tw) — k—— = .19
S(L)K(T, ) A dxdxdx+£¢gdx 0 (10.19)
We now use the isoparametric relations T = NT¥, ete., defined in Eqs. 10.1 1-10.14. Fur-
ther, a global virtual-temperature vector is denotedas ¥ = [V, ¥,...., ¥, 1. and the
test function within each element is interpolated as ’ -
¢ = Nis (10.20)
Analogous to dT/dx = B;T in Eq. 10.13b, we have
dé
<. = By (10.21)

Thus, Eq. 10.19 becomes

(kL. [t !
~ W (T~ T} = t!f‘( 5 ] BrB; dg)'r" +Sgr@le [NTag =0
¢ -1 e 2 -1
(10.22)
—W, kT, + ¥, ATy — ¥K,T + ¥R = 0 (1023)

_—
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which should be satisfied for all ¥ with ¥, = 0. The global matrices K and R are
assembled from element matrices ky and ry, as given in

_k| 1 -1
k; = f}[— X 1] (10.24)
rp = %‘i{:} (10.25)

When each ¥ is chosen in turn as [0, 1,0,...,0]%,[0,0,1,0,...,0}%,...,[0,0,...,0,1]"
and since T} = Ty, then Eq. 10.23 yields

Ky Ky - Ky T, R, Ky Ty
K:z-z Kiy - K;; T1 _ 83 _ K3:1 1y (10.26)
Kiy Kiy - (Kpp +h) (T, (R, + hly) KTy

We observe that Eq. 10.26 can be solved for T, T, . . ., T; . We thus note that the Galerkin
approach naturally leads to the elimination approach for handling nonzero specified
temperature T = T, at node 1. However, it is also possible to develop Galerkin's method
with a penalty approach to handle T, = T;,. In this case, the equations are as given by

i
(Knh+C) Ky; -+ Kt T (R, + CT) i
':KZI Ky, oo f‘T(zL 7;2 - I:-\’z (10.27) |
K;, Kin o (Kpp +BYJ\TL (R, + AT)
Example 10.1

A composite wall consists of three materials, as shown in Fig. E10.1a. The outer tempera-
ture is T, = 20°C. Convection heat transfer takes place on the inner surface of the wall with
T, = 800°C and # = 25 W/m?- °C. Determine the temperature distribution in the wall.

uil o

k= 3 Wi C
k_)' =50 WJ’mZC
A L A = 25Wm¥C
--._____../-_‘-1 Tx = A C
0.3 m—=
0.15m |05 m
(a}

I r——
r—
—
~g—

2 300 4
0 L)L QG) T, =20°C
(h)
FIGURE E10.1

;____—-—a
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Solufion A three-element finite element mode} of the wall is shown in Fig. E10.1b. The
element conductivity matrices are

k{n:E[ 1 —1] k(2)=_3.0_[ 1 ‘1]
T T p3l-1 1 I “o1sl-1 1

k‘”;&[ 1 *1}
T 7051 1

The global K = 3k is obtained from these matrices as

1 -1 ¢ 0
-1 -3 0
K = 66.7
6 0 -3 8 -5
0 0 -5 5

Now, since convection occurs at node 1, the constant A = 25 is added to the (1, 1} location
of K. This results in

1375 -1 0 0O
-1 4 -3 0

0 -3 8 -5

0 0 -5 3

K = 66.7

Since no heat generation O occurs in this problem, the heat rate vector R consists only of
hT.. in the first row. That is,

R =[25 X 800, 0, 0, O]

The specified temperature boundary condition 7, = 20°C, will now be handled by the
penalty approach. We choose C based on

€ = max [K;| x 10
66.7 < 8 x 10*

Now, C gets added to (4,4) location of K, while C7, is added to the fourth row of R.The
resulting equations are

1375 -1 0 o] 25 X 800
s 14 3 o\l _ 0
0 -3 8 -5||T 0

0 0 -5 80005 |\T, 10672 x 10°

The solution is

T = {3046, 1190, 57.1. 20.0]"°C

Comment. The boundary condition 7; = 20°C can also be handled by the elimination

approach. The fourth row and column of K is deleted, and R is modified according 10
Eq. 3.70. The resulting equations are
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1375 -1 o[T 25 % 800
67 -1 4 =3|T1=| 0
0 -3 8% 0 + 6670

which yields
(7, T, T3] =[3046, 119.0, 57.1)°C ]

Heat flux boundary condition Certain physical situations are modeled using
the boundary condition

qg=q atx = 0 (10.28)

where g, is a specified heat flux on the boundary. If g = 0, then the surface is perfectly
insulated. A nonzero value of g, occurs, for example, due to an electrical heater or pad
where one face is in contact with the wall and the other face is insulated. It is important
to note that the input heat flux g, has a sign convention associated with it: g is input as
a positive value if heat is flowing out of the body and as a negative value if heat is flow-
ing into the body. The boundary condition in Eq. 10.28 is handled by adding ( —g) to the
heat rate vector. The resulting equations are

G

KT =R + ? (10.29)

0

The sign convention for specified heat flux given in Eq. 10.29 is clear if we consider the
heat transfer occurring at a boundary. Let n be the outward normal (in 1-D problems,
n = +x or —x). The heat flow in the body towards the +n direction is ¢ = —k a7/dn,
where 37/on < 0. Thus, g is> 0 and since this heat flows out of the body, we have the
boundary condition g = g; with the stated sign convention.

Comment on forced and natural boundary conditions In this problem,
boundary conditions of the type T’ = T;,, which is on the field variable itself, are called
forced boundary conditions. On the other hand. the boundary condition gl,—p = go, 0T
equivalently, —k dT/dx,_q = gpis called a natural boundary condition involving the de-
rivative of the ficld variable. Further, it is evident from Eq. 10.29 that the homogeneous
natural boundary condition ¢ = g, = 0 does not require any meodifications in the ele-
ment matrices. These are automatically satisfied at the boundary, in an average sense.

Example 10.2

Heat is generated in a Jarge plate (¢ = 0.8 W/m* °C) at the rate of 4000 W/m". The plate
is 25 em thick. The outside surfaces of the plate are exposed to ambient air at 30°C with a
convective heat-transfer coefficient of 20 W/m’ - °C. Detcrmine the temperaturc distribu-
tion in the wall.

Solution The problem is symmetric about the centerline of the plate. A two-element finite
clement model is shown in Fig. E10.2. The left end is insulated (g = 0) because na heat can
flow across a line of symmetry. Noting that k/€ = (.8/.0625 = 12.8. we have

L____--—g
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The heat rate vector is assembled from the heat source (Eq. 10.25) as well as due to

Scalar Field Problems

|
5
.

L~
]

convection as

g = 4000 Wim®

; s 1t
h T,
6.25cm —»F— 6.25cm ——l

! k=08 WmC
G B =20 W/m™C
T.=30°C
FIGURE E10.2
128 128 0
K=|-128 236 ~-12.8

0 -128 (128 + 20)

R =[125 250 (125 + 20 x 30)]

Solution of KT = R yields

In concluding 1-D heat conduction, we note that all element matrices described earlier were
derived using Galerkin’s approach. It is also possible to derive these matrices using an

(T,.. T, T,]=1{940, 843, 55.0]°C

energy approach based on minimizing the functional

Iy

Lo fdTy t
1
/ ik(dx) dx = / QTdx + KT, - T.)? (1030) ®
0 0

One-Dimensional Heat Transfer in Thin Fins

A fin is an extended surface that is added onto a structure to increase the rate of heal
removal. A familiar example is in the motorceycle where fins extend from the cylinder
head to quickly dissipate heat through convection. We present here the finite element
method for analyzing heat transfer in thin rectangular fins (Fig. 10.5). This problem dif-
fers from the conduction problem discussed previously in that both conduction and con-

vection oceur within the body.

Consider a thin rectangular fin as shown in Fig. 10.6. The problem can be treated
as one dimensional, because the temperature gradients along the width and across the
thickness are negligible. The governing equation may be derived from the conduction

equation with heat source, given by

i(ki{‘ + —
dx \ dx e=10
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Heat dissipation

/A
e

—

Hot gases

FIGURE 10.5 An array of thin rectangular fins.

Convection

-

X

P=2(uw+1)
A, =wit
Z
t

-£=s
A

FIGURE 10.6 Heat Row in a thin rectangulas fin.
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The convection heat loss in the fin can be considered as a negative heat source
(Pdx)h(T — Tw)

B A dx
Ph

-1 (1031)

Q:

where P = perimeter of fin and A. = area of cross section. Thus, the governing
equation is
4
dx

We present our analysis for the case when the base of the fin is held at 7; and the tip of
the fin is insulated (heat going out of the tip is negligible). The boundary conditions are
then given by

(k%) - %’(T ~T) =0 (1032)

T=T atx=0 (10.33a)
g=10 atx =L (10.33b}

The finite element method: Galerkin approach The element matrices and
heat-rate vectors for solving Eq. 10.32 with the boundary conditions in Eqs. 10.33 will
now be developed. Galerkin’s approach is attractive since we do not have to set up the
functional that is to be minimized. Element matrices can be derived directly from the dif-
ferential equation. Let ¢(x) be any function satisfying ¢(0) = 0 using same basis as T.

We require that
L
d ar Ph
A ¢[dx(k dx) - Ac(T - Too)i|dx = () (10.34)

Integrating the first term by parts, we have

dT |t L dgdr Ph [ Ph
pk—| — k———-dx-—-/ Tdx + ——T,,
i i} dx dx Ac 0 ¢ ACT

L
o l ddx =0 (1039

Using ¢(0) = 0, k(L)[dT(L)/dx] = 0, and the isoparametric relations

<. daT de
dx =—d T = NT* = Ni — = 3 — = B
2 ¢ ¢ v =BT — B
we get
k('{)e : T Ph ! -
- E 'IJT[T [1 Ber-d§]T’ A 2 g [l N'Nd¢T
Pl g yrle lNTd = 6
A(. = ""' 2 . g - 0 (10-3 )
We define
Prt, [, Phe,[2
hy = ——= [ N'Ndg=-2%2 1 37a
TTA2 L, £ 461 2 (10 )
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or, since P/ A, = 2/t (Fig. 10.6),

i

b~ P {2 1]
T30 2 (10.37b)
and
Ph_ ¢ ' PhT €, {1
o = Too_e T = e
r YD) ./:1 N d¢ A 2 {1} (10.38a)
or
- hToof,_,{l}
o : 1 (10.38b) '
Equation 10.36 reduces to :
= S UT(kr + h)T + 3 W're = 0 (10.39)
or
_‘I’T(Kr + HT) + ‘I’TRw = 0
which should hold for all ¥ satisfying ¥, = 0.
Denoting K;; = (Ky + Hr);;, we obtain _
Ky Kypy o Ky || T2 KTy 13
Ky, K33 - K T :
:32 :33 :SL :3 = Roo K3:1T0 (10'40) ‘I ;
Ki; Ky - Kpy T, K. Ty %

|
|
which can be solved for T. These equations incorporate the elimination approach for han- : 1
dling the boundary condition 7 = T;. Other types of boundary conditions as discussed f i
for heat conduction can also be considered for fin problems. ;
Example 10.3
A metallic fin, with thermal conductivity £ = 360 W/m-°C,0.1cm thick, and 10 cm long,
extends from a plane wall whose temperature is 235°C. Determine the temperature distri-
bution and amount of heat transferred from the fin to the air at 20°C with = 9 W/m?-°C.

Take the width of fin to be 1 m.

Solution Assume that the tip of the fin is insulated. Using a three-element finite ele-
ment model (Fig. E10.3) and assembling K7, Hr, R.. as piven previously, we find that
Eq. 10.40 yields

_ 4 1 0 T,

360 2 710 g 333 %10 i

P e—— -1 2 -1+ —-W_ 1 41 I8
333x 1072 4 ] o1 2|z

2 —~10711 x 23
_9xm)x3.33x10‘*_{ ﬁ{ ;1 3

2
-3
10 1 0

L - . — J
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h = FW/m®C

)‘/yn —20°C

g=20
1 2 3 4

T, =1235°C
i‘———3% X3= 10cm———1
t=0lcm
w=1lm
k=360 W/im°C

FIGURE E10.3
The solution is
(72, T3, T;]=[2008, 1952, 1905]°C

The total heat loss in the fin can now be computed as
H=>H,
The loss H, in each element is
Hs’ = h(Tav - Tw)As

where A, = 2 X (1 X 0.0333) m*, and T,, is the average temperature within the element.
We obtain

Hy = 3343 W/m u

Two-Dimensional Steady-State Heat Conduction

Our objective here is to determine the temperature distribution T(x, y) in a long, pris-
matic solid in which two-dimensional conduction effects are important. An example is
a chimney of rectangular cross section, as shown in Fig. 10.7. Once the temperature dis-
tribution is known, the heat flux can be determined from Fourier's law.

.._...‘.X

Section a-a

_._Jlll r—._.—._.__i.JI \ A

FIGURE 10.7 Two-dimensional mode for heat conduction in a chimney.
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o
+ 2 d
4y 3y ¥

qx_‘[ _hhqx-i—?ﬂﬁdx
X

dy 10,

1N
PP N

Gy

FIGURE 10.8 A differential control volume for heal transfer.

Differential equation Consider a differential control volume in the body, as
shown in Fig. 10.8. The control volume has a constant thickness in the z direction. The
heat generation Q is denoted by Q (W/ m®). Since the heat rate (= heat flux X area) en-
tering the control volume plus the heat rate generated equals the heat rate coming out,

we have (Fig. 10.8)

aq, 04,
g, dyt + qydxq' + Qdxdyr = (qx + a‘i dx) dyr + (Q_v + a—y’dy)dxr

(10.41)
or, upon canceling terms,
d d
@, oy (10.42)
dx ay
Substituting for ¢, = —k 8T/dx and g, = —k 8T /dy into Eq. 10.42, we get the heat-
diffusion equation
E_(kal) N i(kﬂ) +0=0 (10.43)
dx '\ dx ay\  dy

We note that this partial differential equation is a special case of the Helmholtz equa-
tion given in Eq. 10.1.

Boundary conditions The governing equation, Eq. 10.43. has to be solved
together with certain boundary conditions. These boundary congditions are _o_f three types.
as shown in Fig, 10.9: (1) specified temperature T=T1T0n S_T, (2) specified hca% flux
g, = ggon S, and (3) convection g, = #(T — Tx) on §,.The interior of the pody is de-
noted by A, and the boundary is denoted as § = (57 + S, + S.) Furthe_r.q_r,, is thfa heat
flux normal to the boundary. The sign convention adopted here for specifying g 1s that
go > 0 if heat is flowing out of the body, while g, < 0if heat is flowing into the body.

L——-————g
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ST:T= Tu

Sq:Qr::q{'}

FIGURE 10.9 Boundary conditions for 2-D heat conduction.

The triangular element The triangular element (Fig. 10.10) will be used to solve
the heat-conduction problem. Extension to quadrilateral or other isoparameteric ele-
ments follows in a similar manner as discussed earlier for stress analysis.

Consider a constant length of the body perpendicular to the x, y plane. The tem-
perature field within an element is given by

T = NITI + N2T2 + N3T:‘;
or (10.44)
T = NT

where N = [€, n, 1 — £ — 7] are the element-shape functions and T = [T}, T, T.)"
Referring to Chapter 5, we also have

X = lel -+ N2x2 + N3x3
y =Ny + Ny, + Ny, (10.45)

FIGURE 10.10  The linear triangular element for scalar field problems.
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Further, the chain rule of differentiation yields
8T _8Tax aTdy
06  ovof oy ok
0T _0Tox T dy

in T oax an  dy dn (10.46)
or
o7) (o
o6 | _ ) ox
o =1 o (10.47)
an oy
In Eq. 10.47, J is the Jacobian matrix given by
x
J =[ 13 y”] (10.48)
X23 ¥n

where x;; = X, — X;, ¥; = ¥~ Vps and |detJ| = 2A,, where A, is the area of the trian-
gle. Equation 10.47 yields

eT eT
ax { ) 0
_‘31 J £ (10.49a)
ay an
1 Y23 “}’13]{1 0 "1]
=— T .49b
detJ I:_X23 X3 01 1 (10 49 )
which can be written as
E
ox
= ¢ 10.50
oT B; T { )
ay
where
1 Vi ~Na (s }’zs)J
- : 10.51a
B detJ{—xzs x3 {x23 = x13) ( )
= 1 |:y23 Y5 ,"'12] (IO.SIb)
detd X3 Xz X
Galerkin approach’ Consider the heat-conduction problem
d aT 3 aT)
(k=) +—lk—])+Q2=0 10.52
0x ( ox ) ady ( ay Q ( )

"The functional approach would be based on minimizing

2 2 1 ;
= lf /[;‘(ﬂ) +k(£) - 2QT]dA + fqudS+ /EJ:(T - T ds
2 Ja dx ay Sa 5,

¥-——-—-———~
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with the boundary conditions
T=T, on § ¢g,=qy on §, g, = h(T —Tx) on §, (10.53)

In Galerkin's approach, we seek an approximate solution T such that

// [Bx( 6x) ay( aTﬂ‘“*//chdA—O (10.54)

for every ¢(x, y) constructed from the same basis functions as those used for T and sat-
isfying ¢ = 0 on §7. Noting that

aT d apoT
‘bax(kax) ax(d’ ax) "53

we find that Eq. 10.54 gives

o (. 8T 9T 33T
R R o | R R 1 R
+ / / $QdA =0  (10.55)
A

From the notation g, = —k(37/dx) and g, = —k(87T/dy), and the divergence theorem,
the first term in Eq. 10.55 above is

- f f {j—x(w_J +-§;(¢qy)]dA -- f $laun, + q,n,]dS

- / bq, dS (10.56)
5

where n, and n, are the direction cosines of the unit normal n to the boundary and
4. = g1, + q,n, = q*nis the normal heat flow along the unit outward normal, which
is specified by boundary conditions. Since § = S; + §;+S.¢=00nSp,q, =qon
S,.and g, = (T — T.) on §, Eq. 10.55 reduces to

/¢qu3— fd;hT To.) dS — //( 3697 kaﬁﬂ)m
dx dx dy oy
+ / / O dA =0 (10.57)

Now, we introduce the isoparametric relations for the triangular element such as
T = NT, given in Eqs. 10.47-10.55. Further, we denote the global virtual-temperature
vector as ¥ whose dimension equals number of nodes in the finite element model. The
virtual temperature distribution within each element is interpolated as

® = Nibs (10.58a)
Moreover, just as [0T/ax  3T/ay]" = B, T, we have

dd o’
{E’E] = Byl (10.58b)
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FIGURE 10.11 Specified heat flux boundary conduction on edge 2-3 of a triangular element.
Now, consider the first term in Eq. 10.57:
] dgdS = 2, WgNTdS (10.59)
54 €

If edge 2-3 is on the boundary (Fig. 10.11),we have N = [0, %, 1 — 7]dS§ = {,;4dn,
and it follows that

1
[ dands = S wats [ wran (10.60a)
) € 0
= > ¥'r, (10.60b)
where
¢ ,
r, = %[0 1 1] (10.61)
Next, consider
f Sh(T — Tw) dS = / SHT dS — / SHT dS (10.62a)
S, . 5.

If edge 2-3 is the convection edge of the element, then

i 1
/¢h(T - Toc) ds = 2 d’TI:h'f’Z-}/ NTN dﬂ:’Te - 2 lehTmfz,3./ NTd"q
s, ¢ 0 e n

= > WhT = D d'rs (10.62b)
Substituting for N = [0, 7, 1 — n], we get
0 00
hy = %—‘ 0 2 1 (10.63)
a1 2
[/ ¥ P9 S

=250 1 17 (10.64)
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Next,
E\
ada
k(a_?i£+ @‘E)M - //k[_‘f’—‘b] 34 (10.659)
A dx dx  dy dy A ox ay || 8T
ay )
=3 ¢T{ke / B;B;dA [T°  (10.65b)
= 3 YTk, T¢ (10.65¢)
where
k; = k,A,B;B; (10.66)

Finally, if ¢ = @, is constant within the element,

f/tﬁQdA = 2¢TQedeA = > ¥'r,
A 4 e e
where
rg=%[l 1 17 (10.67)

Other distributions of @ within the element are considered in the exercises at the end
of this chapter. Thus, Eq. 10.57 is of the form

- 2 lerq — 2 Yh,T¢ + 2 $Trs — 2 l’JTkTT" + 2 '-’JTI'Q =0 (10.68)

or
YR — R, +Ry) - ¥I(H; + K,)T = 0 (10.69)
which is to hold for all ¥ satisfying ¥ = 0 at nodes on §; . We thus obtain
K"TE = R? (10.70)

where K = 2 (k; + hy), R = Z,(rc - 1, + 1), and superscript E represents the
familiar modifications made to K and R to handle T = T, on Sy by the elimination
approach. Alternatively, the Penalty approach can also be used to handle T = T;.

Example 10.4

A long bar of rectangular cross section, having thermal conductivity of 1.5 W/m °C is sub-
jected to the boundary conditions shown in Fig. E10.4a. Two opposite sides are maintained
at a uniform temperature of 180°C; one side is insulated, and the remaining side is subjected
to a convection process with T'c = 25°C and # = S0W/m? - °C. Determine the tempera-
ture distribution in the bar.

Solution A five-node, three-element finite element model of the problem is shown in
Fig, E1_0.4b. where. symmetry about the horizontal axis is used. Note that the line of sym-
metry is shown as insulated, since no heat can flow across it.
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r=18°C

/

k =50 W/m?°C
k=15Wm°C T, = 25°C

04 m \ |
T =180°C
@) ,.

{b)
FIGURE E10.4

The element matrices are developed as follows, The element connectivity is defined
as in the following table:

Element 1 2 3 «—local
1 1 2 3 1
2 5 i 3 global
3 5 3 ]

‘We have
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For each element,

B(,)_L'—D.IS 0.15
T 006l D -0.4
B — 1 {-015 -0.15
T 012104 -0.4
B = -1f015 015 0
T T o06|l0 -04

Then, k; = kA BIB, yields
ki

1
0.28125

—0.28125
0

5
114
~0.86
| -0.28125
5
0.28125
-0.28125
0

k=

3
K =

(1.5)(0.03)BY'BY

2
—0.28125
2.28125
=20

1
—0.86
1.14
—~0.28125
4
—~(.28125
2.28125
-2.0

0

o4

3
0
=20

20

3
—0.28125
—-0.28125

0.5625
3
0
=20
20

Now the matrices hy for elements with convection edges are developed. Since both ele-
ments 1 and 3 have edges 2-3 (in local node numbers) as convection edges, the formula

0 00
heE,
llT= 623 0 2 1
01 2
can be used, resulting in
1 2 3 5 4 3
R = [00 0 w2 [0 0 0
0 25 125 ! 0 25 125
0 125 25 0 125 25

The matrixK = 2 (k; + hr}is now assembled. The elimination approach for handling the
boundary conditions 7 = 180°C at nodes 4 and 5 results in striking out these rows and

columnns. However, these fourth and fifth rows are used subsequently for modifying the R
vector. The result is

1 2 3
1.42125 028125 —0.28125

—~0.28125 478125 -0.75
—0.28125 -075 9.5625

Now the heat-rate vector R is assembled from element convection contributions. The formula
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I = 5 0 1 1]
results in
1 2 3
ay _ (50)(25)(0.15)
= D
and
5 4 3
@ _ (50)(25)(0.15)
= I 1)
Thus,
1 2 3

R=9375[0 1 2]

In the elimination approach, R gets modified according to Eq. 3.70. Sotution of KT = R
then yields

[T,, T, T3)=[1245, 340, 454)°C

Note: A large temperature gradient exists along the line connecting nodes 2 and 4.
This is because node 4 is maintained at 180°C, while node 2 has a temperature close to the
ambient temperature of 7o, = 25°C because of the relatively large value of . This fact im-
plies that our finite element model should capture this large temperature gradient by hav-
ing sufficient number of nodes along line 2-4. In fact, a model with only two nodes (as
opposed to three as used here) will lead to an incorrect solution for the temperatures. Also,
with the three-element model considered here, heat-flow values (see computer output) are
not accurate. A more detailed model is necessary.

It is also noted that a thermal-stress analysis can now be performed ence the tem-
perature distribution is known, as discussed in Chapter 5.

Two-Dimensional Fins

In Fig. 10.12a, a thin plate is receiving heat from a pipe and then dissipating it to the
surrounding media (air) by convection. We may assurne that the temperature gradients
are negligible in the z direction. Thus, the problem is two-dimensional. Qur interest is
to determine the temperature distribution T'(x, y) in the plate. The plate is the fin here.
Considering a differential area dA, the convection heat loss from both lateral surfaces
of the finis 2A(7 — T) dA. Treating this heat loss as a negative heat source per unit vol-
ume, @ = —2k(T — Tx)/t. where t = thickness of the plate. Equation 10.43 yields the
differential equation for two-dimensional fins. namely.

a—(kgz) + f—(ka—t) (T -Tu) Q=0 (10.71)
ax ox ay ay

~2h/t. Another example of a two-dimensional fin may be found in ¢lec-
shown in Fig. 10.12b is subjected to a heat source from

d from electronic chips or other circuitry. Pin fins are

where C =
tronic packaging. The thin plate
the surface underneath generate

attached to the top surface to dissipate the heat. As shown in the figure, the plate may
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Convection

bl T T —y
x] .
pal
T'(x,y)
{a)

pin fin
[’ A pin fin

%)

0/~ %
m hplaie

Heat source

i
N
NN .

N
N

{(b)
FIGURE 10.12 Two-dimensional fins.

be considered as a two-dimensional fin with higher convective heat-transfer coefficients
where the pin fins are attached. In fact, these coefficients may be related to the fin si;e
and material. Maximum temperature at the surface of the chip will be of importance 10
this analysis. The conductivity matrix k in Eq. 10.66 and the right-hand-side heat-rate vec-
tor r, in Eq. 10.67 get augmented by the matrices

211 1

C ,

+1—‘;“ 12 1| and +CTM% | (10.72)
11 2 1

respectively.

Preprocessing for Program Heat2D

The input data file for program HEAT2D can be created, in most part, using the MESH-
GEN program. Mesh generation is as usual. Treat specified temperatures as «constrained
degrees of freedom,” nodal heat sources as “loads,” element heat sources as “elv&:nin’f_ﬂl
characteristics” (enter zero if there are none), and thermal conductivity as “material
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property.” The only thing that remains is the heat flux and convection boundary condi- i
tions along the edges; for this, simply edit the data file that you have created and enter 3
this information as per the format of Example 10.4 that has been provided at the end ?
of this chapter. Note that in heat conduction each node has only one degree of freedom. i

10.3 TORSION % .
Consider a prismatic rod of arbitrary cross-sectional shape, which is subjected to a twist- !
ing moment M as shown in Fig. 10.13. The problem is to determine shearing stresses 7.,
and 7,, (Fig. 10.14) and the angle of twist per unit length, . It can be shown that the so-
lution of such problems, with simply connected cross sections, reduces to solving the
two-dimensional equation
2 2
0,%%42-0 ina (10.73)
ax ay

=0 onS (10.74) ¥

Il

where A is interior and § is the boundary of the cross section. Again, we note that i
Eq. 10.73 is a special case of Helmholtz’s equations given in Eq. 10.1. In Eq. 10.74,8 is 3 :
called the stress function, since once ¢ is known, then shearing stresses are obtained as t
T.. = Ga— 7, = —CGa— (10.75)

with a determined from

M= ZGa] /edA (10.76)
A

where G is the shear modulus of the material. The finite element method for solving
Eqs. 10.73 and 10.74 will now be given.

FIGURE 10.13 A rod of arbitrary cross section subjected 10 a torque.
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~

FIGURE 10.14 Shearing siresses in torsion.

Triangular Element
The stress function # within a triangular element is interpolated as
0 = N§° (10.77)

where N = [£, n, 1 — £ — n] are the usual shape functions,and 8¢ = [§,, 8., 8;]"
are the nodal values of 8. Furthermore, we have the isoparametric relations {Chapter 5)

X = lel + N2x2 + N3x3
y =Ny + Ny + Nyys

a0] [ax 2y]fee]
o aE  af ) ax
= .78
00 [~ [ax ayl)ae| a0
on i om || dy
or
[ae ae}T [ao ag"
- — | =y — —
a&  an dx Ay
where the Jacobian matrix is given by
J = ]ixll J’|3] (10.79)
Y21 ¥y
with x,; = % = X, %, = ¥ — ¥, and |[det}| = 24,. The preceding equations yield
80 a6 |" .
[ ” ‘é}] = BO (10.80)
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or
[-7); 7u)' = GaBO (10.80b)
where
1 |»m: Jﬁz]
B=—— :
detJ[xu Xi3 X9 (10.81)

The fact that identical relations also apply to the heat-conduction problem in the previ-
ous section show the similarity of treating all field problems by the finite element method.

Galerkin Approach’

The problem in Eqs. 10.73-10.74 will now be solved using Galerkin’s approach. The
problem is to find the approximate solution § such that

f] (—-+—+2)dA=0 (10.82)

for every ¢(x, y) constructed from the same basis as § and satisfying ¢ = Oon §. Since

’ 2
(ng_a:i(éae) ¢ 06

ox

dx dx ox

we have

G (on= [ (o 55)
o[ froan=o  comy

Using the divergence theorem, the first term in the previous expression reduces to

Y a8 o
= i —- =0 10.84
/f[ax( ax) ay(d’ay)]dA jq¢(8x"’+ ayny)ds ¢ )

where the right side is equated to zero owing to the boundary condition ¢ = O on S.
Equation 10.83 becomes

j/[ﬂd}&ﬁ adraﬂ]dA //2¢dA—0 (10.85)
dx dx ay gy

Now, we introduce the isoparametric relations 8 = N#@*, etc., as given in Eqs. 10.77-10.81.
Further, we denote the global virtual-stress function vector as ‘¥ whose dimension equals
number of nodes in the finite element model. The virtual-stress function within each

element is interpolated as
& = N (10.86)

The functional approach would bc based on minimizing

r-ce [ [HIGE) - ()]s

L;_——-g
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Moreover, we have

T
[@ %} - By (10.87)
x dy
Substituting these into Eq. 10.85 and noting that
a6
(%Qﬂ + %@) - (f{? %) (3
éx dx  dy ay dx oy/| 86
dy
we get
Swker - > W'f=0 (10.88)
€ €
where
k= ABB (10.89)
2A,
f= -5*[1, 1, 17 (10.90)
Equation 10.88 can be written as
YHKO -F) =0 (10.91)
which should hold for all ¥ satisfying ¥, = 0 at nodes i on the boundary. We thus have
Ko =F (10.92)

where rows and columns of K and F that correspond to boundary nodes have been deleted.

Example 10.5

Consider the shaft with a rectangular cross section shown in Fig, E10.5a. Determine. in
terms of M and G, the angle of twist per unit length.

v '
5
B kN 4
3
6cm M 'A—"‘ X 3cm 4 2 2
1
PRP— Ia o x
!“ 4 cm ‘Ju
(@) (®)

FIGURE E10.5
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Solution A finite element mode! of a quadrant of this cross section is shown in Fig. E10.5b.

We define the element connectivity as in the following table:

Element 1 2 3
1 1 3 2
2 3 4 2
3 4 5 2
4 5 1 2
Using the relations
B = _1_[}’23 Y51 )’1:]
detTlxy; X3 X
and
k= ARB'B
we get
1 2
B = 1/-15 15 0} K1) = 1] 1.042 0.292
6 -2 -2 4 2 1.042
Symmetric
Similarly,
3 4 2
2 1.042 —0.75
_Symmetric 1.5
4 5 2
L@ = L 1042 0292  —1.333
1.042 -1.333
| Symmetric 2.667
5 1 2
@ _ 1[1.042 —0292 -075
k=2 142 075
| Symmetric 1.5

3
—1.333
-1.333

2.667

Similarly, the element load vector f = (24,/3)[1, 1, 1,]" for each element is
2
2
2

We can now assemble K and F. Since the boundary conditions are

6_1:94'—'95:0

f = i=1, 2, 3, 4

PRI -

[ S

s [e——

i T
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we are interested only in degrees of freedom 1 and 2. Thus, the finite element equations are
1[ 2.084 —2.033}{91 } ) {4}
212083 833416, 8
[Gl y 82] = [7.6?6, 3.838]

M=ZGa//6dA
A

Using § = N6¢, and noting that [, NdA = (A,/3)[1, 1, 1] weget

The solution is

Consider the equation

A,
M = 2Ga 2?(9‘;+9~5+9§) X 4

This multiplication by 4 is because the finite element model represents only one-quarter of
the rectangular cross section. Thus, we get the angle of twist per unit length to be

M
= 0.004—
o 004

For given values of M and G, we can thus determine the value of «. Further, the shearing
stresses in each element can be calculated from Eq. 10.30b. u

10.4 POTENTIAL FLOW, SEEPAGE, ELECTRIC AND MAGNETIC FIELDS,

AND FLUID FLOW IN DUCTS

We have discussed steady-state heat conduction and torsion problems in some detail.
Other examples of field problems occurring in engineering are briefly discussed subse-
guently. Their solution follows the same procedure as for heat conduction and torsion
problems, since the governing equations are special cases of the general Helmholtz equa-
tion, as discussed in the introduction to this chapter. In fact, the computer program
HEAT?2D can be used to solve the problems given in this section.

Potential Flow

Consider steady-state irrotational flow of an incompressible, nonviscous fluid around 2
cylmder, as shown in Flg_. 10.15a. The velocity of the incoming flow is «,. We want to
determine the flow velocities near the cylinder. The solution of this problem is given by

Fi Py

— t+ — = 93

P 0 (10.93)
where i is a stream fllmction (m’/s) per meter in the z direction. The value of ¥ is con®
stanl‘a!ong a stream line. A stream line is a line that is tangent to the velocity vector. BY
definition, there is no flow crossing a stream line. The flow between two adjacent stream
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FIGURE 10.15 (a) Flow of an ideal fluid around a cylinder, and (b) boundary conditions for
the finite element model.

lines can be thought of as the flow through a tube. Once the stream function ¢ = ¢(x, y)
is known, the velocity components « and » along x and y, respectively, are obtained as

_Y v = %y {10.94)

u =
ay ax

Thus, the stream function ¢ is analogous to the stress function in the torsion problem.
Further, the rate of flow Q through a region bounded by two stream lines A and B is
Q=1dg— ¥a (10.95)
To illustrate the boundary conditions and use of symmetry, we consider one quadrant
of Fig. 10.15a as shown in Fig. 10.15b. First, note that velocities depend only on deriva-
tives of . Thus, we may choose the reference or base value of ¢ in Fig, 10.15b, we have
chosen ¢ = 0 at all nodes on the x-axis. Then, along they y-axis, we have u = u, or
/3y = ug-Thisis integrated to give the boundary condition ¢ = u,y. That s, for each
node i along the y-axis, we have ¢ = Upy,- Alongallnodesony = H,we therefore have
W = upH. On the cylinder we now know that the velocity of the flow into the cylinder
is zero. That is, a/as = 0 (Fig. 10.15b). Integrating this with the fact that ¢ = 0 at the
bottom of the cylinder results in ¢ = 0 at all nodes along the cylinder. Thus, the fixed

boundary is a stream line, as is to be expected.
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Seepage

Flow of water that occurs in land drainage or seepage under dams can, under certain con-
ditions, be described by Laplace’s equation

é‘_(kxﬁf) N f"_(ky?_‘ﬁ) -0 (10.96)
ox dx ay ay

where ¢ = ¢(x, y) is the hydraulic potential (or hydraulic head) and k, and &, are the
hydraulic conductivity in the x and y directions, respectively. The fluid velocity compo-
nents are obtained from Darcy’s law as v, = —k,(3¢/0x),v, = —k,(3¢/dy). Equa-
tion 10.96 is similar to the heat conduction equation. Lines of ¢ = constant are called
equipotential surfaces, across which flow occurs. Equation 10.96 can include a source
or sink Q (see Table 10.1), representing discharge per unit volume, to solve problems
where pumps are removing water from an aquifer.

The appropriate boundary conditions associated with Eq. 10.96 are illustrated in
the problem of water seepage through an earth dam (Fig. 10.16). The region to be mod-
eled is shown shaded in the figure. Along the left and right surfaces, we have the bound-
ary condition

¢ = constant (10.97)

The impermeable bottom surface corresponds to the natural boundary condition,
dp/on = 0, where n is the normal, and does not affect the element matrices; the values
of ¢ there are unknowns. The top of the region is a line of seepage (free surface) where
a¢/an = 0 and ¢ has its value equal to the y-coordinate:

=y (10.982)

This boundary condition requires iterative solution of the finite element analysis since
the location of the boundary is unknown. We first assume a location for the linc of seep-
age and impose the boundary condition ¢ = y, at nodes i on the surface. Then, we solve
for¢ = ¢ and check the error (¢; — y,). Based on this error, we update the locations of
the nodes and obtain a new line of seepage. This process is repeated until the error is

o
!

iR i B L S

lmpermeable

FIGURE 10.16  Scepage through an earth dam.
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sufficiently small. Finally, portion CD in Fig. 10.16 is a surface of seepage. If no evapo-
ration is taking place in this surface, then we have the boundary condition

b=3 (10.98b)

where ¥ is the coordinate of the surface.

Electrical and Magnetic Field Problems

In the area of electrical engineering, there are several interesting problems involving
scalar and vector fields in two and three dimensions. We consider here some of the typ-
ical two-dimensional scalar field problems. In an isotropic dielectric medium with a per-
mittivity of e (F/m) and a volume charge density p (C/ m?), the electric potential u (V)

must satisfy (Fig. 10.17)
Fu  u
Iu  ouy_ _ 10.99
e( Py ayz) p (10.99)
where

w=a on S wu=5b on §

Unit thickness may be assumed without loss of generality.
Finite element formulation may proceed from the minimization of the stored

field energy
2 2
0 =l/fe (."’_“) + (i‘i) dxdy — ]pudA (10.100)
2 /4 ox ay A

In Galerkin’s formulation, we seek the approximate solution u such that

dudd Qg@) _j - 10.101
l/e(axax+6‘y&y dxdy — [ ppdd =0 (10.101)

Dielectric medium
£= permittivity
p = charge density

FIGURE 10.17 Electric potential problem.

g___—
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FIGURE 10.18 Rectangular coaxiaj cable.

for every ¢ constructed from the basis functions of u, satisfying ¢ = O on S, and S,. In
Eq. 10.101, integration by parts has been carried out.

Permittivity ¢ for various materials is defined in terms of relative permittivity ey
and permittivity of free space €(=8.854 X 1072F/m) as € = ez¢,. Relative permittiv-
ity of rubber is in the range of 2.5-3. The coaxial cable problem is a typical example of
Eq. 10.99 with p = 0. Figure 10.18 shows the section of a coaxial cable of rectangular
cross section. By symmetry, only a quarter of the section need be considered. On the sep-
arated boundary, du/dn = 0 is a natural boundary condition, which is satisfied auto-
matically in the potential and Galerkin formulations. Another example is the
determination of the electrical field distribution between two parallel plates (Fig. 10.19).
Here, the field extends to infinity. Since the field drops as we move away from the plates,
an arbitrary large domain D is defined, enclosing the plates symmetrically. The dimen-
sions of this enclosure may be 5-10 times the plate dimensions. However, we may use
larger elements away from the plates. On the boundary S, we may typically set 4 = 0.

If u is the magnetic field potential, and u is the permeability (H/m), the field

equation is
Fu  2u
Ty RN 102
“(aﬁ ay?) 0 (10.102)

where u is the scalar magnetic potential (A). Permeability u is defined in terms relative
permeability p and permeability of free space uy( —4m X 107H/m) as . = pgito- MR

€

Arbitrary boundary
surface u = (

FRGURE 10.19  Paraliel strips separated by dielectric medium.
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Field coil

Conductor 3! _
Stator 3 l‘
(iron) ; i
_______ u=c ; o
Ju Lo
an= 90 1
!
Rotor _ g i
(iron) Conductor .f E

FIGURE 10.20 Model of a simple electric motor.

for pure iron is about 4000, and for aluminum or copper it is about 1. Consider a typi-
cal application in an electric motor with no current flowing through the conductor, as
shown in Fig. 10.20. We have u = a and u = b on the iron surface;u = ¢ is used on an
arbitrarily defined boundary. (4 = 0 may be used if the boundary is set at a large distance
relative to the gap.)

The ideas may be easily extended to axisymmetric coaxial cable problems. Prob-
lems in three dimensions can be considered using the steps developed in Chapter 9.

1 o e g bt o m L de

Fluid Flow in Ducts

The pressure drop occurring in the flow of a fluid in long, straight, uniform pipes and
ducts is given by the equation

L
D,

where fis the Fanning friction factor, p is the density, v, is the mean velocity of fluid, L
is the length of duct, and D, = (4 X area)/perimeter is the hydraulic diameter. The fi-
nite element method for determining the Fanning friction factor f for fully developed
laminar flow in ducts of general cross-sectional shape will now be discussed.

Let fluid flow be in the z direction, with x, y being the plane of the cross section.

A force balance (Fig. 10.21) yields

Ap = 2fpi, (10.103)

d
0=pA - (p + £A2)A - 7 PAZ (10.104a)
T
T
Fiow = | | ——>Z
Az

P = Perimeter

FIGURE 10.21 Force balance for fluid flow in a duct.
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or
dp 41,
Tdz T Dy
where 7,, is the shear stress at the wall. The friction factor is defined as the ratio
f = 7./(pvi/2). The Reynolds number is defined as R, = v, [h/v, where v = w/p is

the kinematic viscosity, with p representing absolute viscosity. Thus, from previous equa-
tions, we get

(10.104b)

dp  2uvofR,
—— = 10.
dz Di (10-105)
The momenturmn equation is given by
w  w dp
—+—5]-—=0 .106
u( O ) 0 (10.106)

where w = w(x, y) is the velocity of the fluid in the z direction. We introduce the nondi-
mensional quantities

x y w

X = D, Y = D, W= 2. 7R. (10.107)
Equations 10.105-10.107 result in
rw + ﬂ +1=0 (10.108)
ax?  aY?

Since the velocity of the fluid in contact with the wall of the duct is zero, we have w = 0
on the boundary, and hence,

W =0  onboundary (10.109)

The solution of Eqs. 10.108 and 10.109 by the finite element method follows the same
steps as for the heat conduction or torsion problems. Once W is known, then its aver-
age value may be determined from

_ [iwdA
JadA
The integral [, W dA may be readily evaluated using the element-shape functions. For

example, with CST elements, we get fA WdA = 3 [A(w, + ws + w;)/3). Once W, is
obtained, Eq. 10.107 is used to get

(10.110)

L3

Wy - v

= =_— 111
2v,fR, 2v.fR. (10110)
which yields
1/(2W,,
f= /T)— (10.112)
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Our aim is to determine the constant 1/(2W,,), which depends only on the cross-sectional
shape. In preparing input data to solve Egs. 10.108-10.109, we should remember that
the nodal coordinates are in nondimensional form, as given in Eq. 10.107.

Acoustics

A very interesting physical phenomenon that can be modeled using Helmholtz’s equation
in Eq. 10.1 occurs in acoustics. Consider the wave equation in linear acoustics, given by

1&p
2o =0 (10.113)

V2p -
where p is a scalar quantity, a function of position and time, representing the change in
pressure from some ambient value, and ¢ = speed of the sound wave in the media. In
many situations, the acoustical disturbance and hence the response is sinusoidal (har-
monic) in time. That is, we may represent p as

P(X. 1) = Ponp(X) cOS(0t — $) (10.114)

where p,.,, is the amplitude or peak pressure, w is the angular frequency in radians/s,
and ¢ is the phase. Substituting Eq. 10.114 into Eq. 10.113, we obtain the Helmholtz

equation
Viupp + K Pamp =0 IV (10.115)

where k = w/c is called the wave number, and V represents the acoustic space. Upon
solving Eq. 10.115 for the pressure amplitude, we may obtain the pressure function from
Eq.10.114.

Use of complex arithmetic greatly simplifies the handling of amplitude and phase
in acoustics. Note the following complex arithmetic concepts: First, a complex number
is represented as a + ib, where a is the real part and & is the imaginary part, with
i = V=1 being the imaginary unit. Second, e ® = cos ¢ — isin ¢. We may now write p
in Eq. (10.114) as

p = R Pure” @ 9} = R{pumpe™®e™} = RAp™) (10.116)
where Re denotes the real part of the complex pumber. In Eq. 10.116, p =
PamplCOS ¢ + isin ¢). For example, assume that

p=3—-4

Then we have pam, = V(37 + 4% = 5and ¢ = tan”'(—4/3) = -53.1° = —0.927 rad.

resulting in the pressure p =3 cos{wt + 0.927). _
If we substitute for p = R.{pe "} into the wave equation, we see that the com-

plex pressure term p also satisfies Helmholtz equation

Vp+ kp=0 inV (10.117)
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Boundary Conditions

A vibrating or stationary surface § adjacent to the fluid imposes boundary conditions,
which must be accounted for while solving Eq.10.117. Common types of boundary con-
ditions are as follows:

(i) Specified pressure: p = pyon S;. For example, p = 0is a pressure release condition
that occurs when a sound wave encounters the atmosphere (ambient surrounding).

(i) Specified normal velocity: v, = v, on Sz, where », = »-n. This states that the
normal component of the wave velocity at the solid {(impenetrable) surface must
be the same as that of the surface itself. Noting that velocity at a point may be
specified as a complex quantity, just as in Eq. 10.116, with » = R,{ve"}, the
boundary condition can be written as », = Do 0n S,. Equivalently, this condition
can be written as

—  Vph-m=1p )
iKpe pen = vy, (10.118a)
If the surface is stationary, then the condition takes the form

ap

o =Vhm=0 (10.118b)

(iii) There is also the “mixed” boundary condition involving both p and 3‘;—’, which
n

occurs when the surface is porous. The impedance Z is specified, where
p = Z{w)p,, where », is the inward normal velocity.

Finally, acoustics in an open region (with no enclosed surface) requires the pressure
field to satisfy the Sommerfeld conditions at a distance far from the sound source. How-
ever, boundary-element methods are more popular in such situations. Later, we focus on
interior acoustic cavities (closed regions) with impenetrable surfaces. Thus, we consider
only solution of Eq. 10.117 with the boundary conditions in (i) and (i1).

One-Dimensional Acoustics

In one dimension, Eq. 10.117 reduces to

I

d’p

dxl

Assume that the problem is a duct or tube, with a piston vibrating the air at the Jeft end
(at x = 0) and a rigid wall at the right end at x = L. Thus, the boundary conditions are
dp

dx

+ k=0 (10.119)

=0 and i
r=L dx

Galerkin’s approach requires the equation

L 24

d°p

—_ ! —
/ﬂd{ > kp}dx 0

to be satisfied for every choice of an arbitrary pressure field ¢{x). If the pressure pwas
specified at a point, then ¢ must equal zero at that point. Here, however, pressuré

ikpcvn (10.120}

x=0

——
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boundary conditions are absent. Now, following the Galerkin procedure, identical to
1-D heat transfer in thin fins (see Eq. 10.33 and Eq. 10.121), we obtain

dp dp “dp d¢ ‘
LYy——(L) =~ $(0)=—(©0) - | — ? pdx =
sy Ly - o0 F0) - [[Fax+we [ shax=0 o2
Using two-node elements with the usual linear shape functions, we have

. . dp . do
=N1 =N,—-—-= =
¢ = Nik.p = Np,— Bp.-; B

where § = [#,4,]" is the arbitrary pressure field at the ends of an element and, as

before, N = [N, N,], B =

[~1,1],p = [p1, P2]" = nodal pressure vector.
Xy T X

Using these, we get

dp d - . ,.
/—p—?-dx = p'ky, /qbp dx = p'mds
¢ ¢,

L dx dx
where k and m are the acoustic stiffness and mass matrices, respectively, given by
1{1 -1 €12 1
k_€e|:—1 1} m—6|:1 2} (10.122)

The integral over the entire length of the tube leads to the usual assembly of element
matrices as

Ldp do N L, S
L2 4x = ¥'KP and pddx = WTMP (10.123)
] dxdx 0

where P and ¥ are global nodal vectors of dimension (N X 1), with N = number of
nodes in the model. Referring to Eq. 10.121, and using Eq. 10.120, we have

dp
dx

Denoting F = —ikpcwy[1,00, 0,...,0]" and noting that ¢(0) = ¥,, we can write
—¢(0)ikpev, = WTF. Substituting this and Eq. 10.120 into Eq. 10.121, and noting that

¥ is arbitrary, we get

(L) (L) - ¢(0)%(0) = —$(0)ikpevy

KP — K'MP = F (10.124)

Equation 10.124 may be solved as P = [K — k°M]'F. However. determining modes of
the system {as explained subsequently) and then using these to solve for P is more
efficient and gives better physical understanding.

1-D Axial Vibrations

As is well known in dynamic systems, if the forcing function F coincides witl_1 th_e natural
frequency of the system, resonance occurs. In the present context o_f acoustics in a tube,
if the piston vibrates the air in the tube at certain frequencies, thf? air reflected from tl}e
fixed end will arrive at the piston face just as the piston begins its next stroke. That is,
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successive echoes reinforce the pressure on the piston face. The shape of these waves are
called eigenvectors or mode shapes, and the corresponding values k: = wi/c’? are eigen-
values; w, /27 is the n™ resonance frequency in cycles per second (cps or Hz). Determi-
nation of the mode shapes and frequencies is of interest in itself and also useful to
efficiently solve Eq. 10.121 using the “method of modal superposition,” especially for
large finite element models. The eigenvalue problem is obtained by setting F = 0, which
in effect is a tube with both ends rigid. The resulting free-vibration problem is similar to
perturbing a spring-mass system and observing its natural vibrations. We obtain the
cigenvalue problem

KP" = k;MP" (10.125)
In Eq. 10.122, A, = k2 is the #™ eigenvalue. The solution P = 0is called the “trivial”
solution and is of no interest. Qur interest is in nonzero pressures that satisfy Eq. 10.125,
which imply that det| K — &M | = 0. Techniques for solving eigenvalue problems are

given in Chapter 11. Here, in Example 10.6, we simply use the Jacobi solver from that
chapter and present the solution.

Example 10.6

Consider a tube with both ends rigid, of length 6 m as shown in Fig. E10.6a. Fluid in the tube
is air, thus ¢ = 343 m/s. Determine the mode shapes and natural frequencies and compare
them with analytical solution.

1 2 7
. y
dx 0 d_i =0
FIGURE E10.6A

Adopting a six-element model, we have

1 -1 (2 1 |
-1 2 -1 1 41
~1 2 -1 1 41
K= -1 2 -1 ,M=l 1 41
-1 2 -1 6 1 41
-1 2 -~ 1 41
L -1 1] L 1 2]
The banded versions of these matrices are
(1 -1 2 17
2 - 4 1
2 -1 4 1
Kiomiea = | 2 =1 |, Myguges = L 4 1
2 -1 14 1
2 -1 4 1
L1 90 (2 0
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The following input data file was created for use with Program Jacobi:

Banded Stiffness and Mass for 1-P Acoustic Vibrations

Num. of COF

7
Banded
1

[ AV LV R PR )

1
Banded
. 333333
. 666667
.6666H7
. b6BB67
. bbB667
. 666667
. 333333

Bandwidth

2

Stiffness Matrix

-1

-1

-1

-1

-1

-1

0

Mass Matrix
.166667
.166667
.166667
.166667
. 166667
.166667
.166667

Solution The solution for the eigenvalues and eigenvectors are plotted in Fig. E10.6b.

c*\//\

Note that frequency in cps is obtained from the eigenvalue as f.eps = -~ by

L

1-D Acoustic Modes

S.00E-01

6.00E—01

4.00E—01

—r—f =)
--a-=f =289
——{ = 504
—-——f=1337

200E-01

0LOE+00

[=

-2.00E—-01 A

-4,(0E-01

-6.00E—01

~8.00E-01
FIGURE E10.6B

e first few frequencies match the theoretical values. f, = mc/2L,
ments that better maintain the boundary conditions
igher frequencies. Comparison between finite ¢l-
] frequencies in cps is tabulated as follows:

We note that th
m = 1.2.... quite well. Higher order ele
are indicated for accurate prediction ofh
ement solution and theory for the various natura

1337
1143

94.6
85.8

59.8
572

289
286

Finite Element
Theory
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Two-Dimensional Acoustics

The two-dimensional problem considered here is

#p ¥p .
Pyl kp=0 in A (10.126)
ax 3y
together with the boundary conditions
p=p, on S§
and
e Vp-n=p, on S, (10.127)
Galerkin’s variational principle requires that the equation
*p  o'p
— + — + k% = 10.128
Atb(axz 5y pldA =10 (10.128)

must be satisfied for every ¢, ¢ = 0 on S,. Following the procedure used in the heat
conduction problem earlier, with three-node triangles, the student should be able to
arrive at the equations

(K — *MJP = F (10.129)
where K and M are assembled from element matrices
k = AB'B,

where

2 11

_ b iy oy ona A,
B = 24, X2 X3 Xoq | m=5fr 21
el¥32 X13 X2 11 2

F = —ikpcfﬁ,,uNdS (10.130)
5

Computation of F is similar to the computation of force vector from surface tractions
in Chapter 5. As in the one-dimensional case, acoustic modes can be obtained by setting
F = 0 and solving the resulting eigenvalue problem.

10.5 CONCLUSION

We have seen that all the field equations stem from the Helmholtz equations. Qur pre-
sentation stressed the physical problems rather than considering one general equation
with different variables and constants. This approach should help us identify the proper
boundary conditions for modeling a variety of problems in engineering.
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Input Data File

HEATLD DATA FILE
EXAMPLE 10.1
NE #BOUNDARY CONDITIONS (B.C.'S) #NODAL HEAT SOURCES

3 2 0
ELEM# THERMAL CONDUCTIVITY

1 20.

2 30.

3 50.
NODE COORDINATE

1 0

2 .3

3 .45

4 &

NODE BC-TYPE followed by TO([if TEMP)} or g0{if HFLUX} or H and Tinf(if CONV)
1 CONV
25 800
4 TEMP
20
NODE HEAT SO0URCE

Program HeatlD - CHANDRUPATEA & EELEGUNDU
Cutpat

EXAMPLE 10.1

NODE# TEMPERATURE

1 3.0476E+02
2 1.1905E+02
3 5.7145E+01
4 2.0002E+01

TWO-DIMENSIONAL HEAT ANALYSIS
EXAMPLE 10.4
NN NE NM NDIM WEN NDN

5 3 1 2 3 i
ND NL NMPC
2 Q 0
Node# X Y
1 ] 0
2 .4 0
3 .4 .15
4 .4 .3
5 0 .3
Elem# N1 K2 N3 MAT# Elem Heat Source
1 1 2 3 1 0
2 1 3 5 1 0
3 4 3 5 1 0
DOF4 Displacement {SPECIFIED TEMPERATURE)
1 180Q.
5 180.

DOF4 Load (NODAL HEAT SOURCE)
MAT# ThermalCenductivity

1 1.5 A .
No. of edges with Specified Heat flux FOLLOWED BY two edges & g0 (peositive if
out}

0
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continued

No.of Edges with Convection FOLLOWED BY edge (2 nodes} & h & Tinf
2

2 3 50 25

3 4 50 25

Program Heat2D - CHANDRUPATLA & BELEGUNDU
Qutput
EXEMPLE 10.4
NODE# Temperature
1 1.2450E+02

2 3.4045E+01
3 4.5351E+01
4 1.8000E+02
5 1.8000E+02

===== Copduction Heat Flow per Unit Area in Each Element =====
ELEM# Q= -K*DT/Dx QY= -K*DT/Dy

1 3.3919E+02 -1.1l306E+0Z

2 4.0086E+02 -2.7752E+02

3 5,0925E-04 -1.3465E+03

PROBLEMS

10.1. Consider a brick wall (Fig. P10.1) of thickness L = 30 cm, k = 0.7 W/m - °C. The inner
surface is at 28°C and the outer surface is exposed to cold air at —15°C. The heat-transfer
coefficient associated with the outside surface is b = 40 W/ m?- ¢C. Determine the steady-
state temperature distribution within the wall and also the heat flux through the wall. Use
a two-element model, and obtain the solution by hand calculations. Assume one-
dimensional flow. Then prepare input data and run program HEAT1D.

30 em
k =07Wm°C

h =40 Wm®'C
28°C .=~ 15°C

FIGURE P10.1

10.2. Heatis entering into a large plate at the rate of ¢, = —300 W/m? as in Fig. P10.2. The plate
is 25 mm thick. The outside surface of the plate is maintained at a temperature of 10°C.
Using two finite elements, solve for the vector of nodal temperatures T. Thermal conduc-
tivity k = 1.0W/m-°C.

10.3. Refer to Fig. P10.3. The outside of a heating tape is insulated, while the inside is attached
to one face of a 2-cm-thick stainless steel plate (k = 16.6 W/m"C). The other face of the
plate is exposed to the surroundings, which are at a temperature of 20°C. Heat is supplied
at a rate of 500 W/m’. Determine the temperature of the face to which the heating tape is
attached. Use program HEAT1D.
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L] E— |10

! !4 25 mm

FIGURE P190.2

Heating
element
% i 4 Stainless steel |
‘// | (k=166 W/m'C)
9
Air
f h = 5Wm?'C
= T.=20C
B
1.
B
/ -
FIGURE P10.3

10.4. Consider a pin fin (Fig. P10.4) having a diameter of % in. and length of 5 in, At the root,

the temperature is 150°F. The ambient temperature is 80°F and # = 6 BTU/(h - ft®- °F).
Take k = 24.8 BTU/(h- ft+°F). Assume that the tip of the fin is insulated. Using a two-
element model, determine the temperature distribution and heat loss in the fin (by hand

calculations).

FIGURE P10.4
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10.5. In our derivation using Galerkin’s approach for straight rectangular fins, we assume that the
fin tip is insulated. Modify the derivation to account for the case when convection occurs
from the tip of the fin as well. Repeat Example 10.4 with this type of boundary condition.

10.6. A point P is located inside the triangle as shown in Fig. P10.6. Assuming a linear distribu-
tion, determine the temperature at P. Coordinates of the various points are given in the
following table:

Point X-coordinate ¥-coordinate

1 1 1

2 10 4

3 6 7

P 7 4
Temperatures at nodes 1,2,3 are 120, 140, 80 degrees C
respectively

3
Y
2
1
= X
FIGURE P10.6

10.7. Consider a mesh for a heat-conduction problem shown in Fig. P10.7. Determine the (half)
bandwidth, NBW.

] 4

2 5

1 3
FIGURE P10.7
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10.8. Using Galerkin’s approach on a heat conduction problem has resulted in the equations

6 -2|/T 10
ool KTZ) (20)] =
{a) Determine the temperature T, if 7, = 30°.
{b) Determine the temperatures (77, 5} if T, — T, = 20°.
10.9. Assume that the heat source vector is linearly distributed within a three-noded triangu-
lar element with Q¢ = [@,, O, 0;]" being the nodal values.
(a) Derive an expression for the heat-rate vector ry. Show whether your expression
reduces to Eq. 10.67 when Q is a constant or @y = @ = (5.
(b) Derive the element heat-rate vector t;, due to a point heat source of magnitude (%
located at {£;, n;) within the element.

10.10. A long steel tube (Fig. P10.10a} with inner radius ; = 3cm and outer radius r, = 5cm
and k = 20 W/m-°C has its inner surface heated at a rate ¢, = —100 000 W/m’. (The
minus sign indicates that heat flows into the body.) Heat is dissipated by convection from
the outer surface into a fluid at temperature T, = 120°C and £ = 400 W/m’ - °C. Con-
sidering the eight-element, nine-node finite element model shown in Fig, P1 0.6b, deter-
mine the following:

(a) The boundary conditions for the model.
(b) The temperatures 7;, T; at the inner and outer surfaces, respectively. Use program

) : ﬁ
):(ZZ‘S ‘

(a) (h)
FIGURE P10.10

10.11. Solve Example 10.4 with a fine mesh consisting of about 100 elements. View the isotherms
using CONTOUR. Plot temperature as a function of x, y. Also. calculate the total bhcat
flow into the plate and the total heat leaving the plate. Is the difference zero? Explain.

10.12. In P10.10. assume that the steel tube is free of stress at a room temperature 7 = 30°C.
Determine the thermal stresses in the tube using program AXISYM.Take E = 200,000 MPa
andv = 0.3,

10.13. The brick chimney shown in Fig. P10.131s 6 m high. The inside surfaces are at a uniform
temperature of 100°C and the outside surfaces are held at a uniform temperature of 30°C.
Using a quarter-symmetry model and preprocessing program MESHGEN (plus a thle
editing as discussed in the text), determine the total rate of heat transfer through the chim-

ney wall, Thermal conductivity of the brick used is 0.72 W/m + °C. (For thermal conduc-
ials, see F. W. Schmidt et al.. futroduction to Thermal Sciences. 2nd

tivities of various materi
ed., John Wiley & Sons, Inc., New York. 1993.)
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y
]
4 30°C
Tw
F | N ]
oam | I

y  foeiiin s s Brick chimney

!ﬂ {.8 m l

FIGURE P10.13

10.14. A large industrial furnace is supported on a long column of fireclay brick, whichis1 X 1m
on a side (Fig. P10.11). During steady-state operation, installation is such that three sur-
faces of the column are maintained at 600 °K while the remaining surface is exposed to an
airstream for which 7. = 300°K and # = 12W/m’+°K. Determine, using program
HEAT2D, the temperature distribution in the column and the heat rate to the airstream
per unit length of column. Take k¥ = 1 W/m- °K.

T =600°"K

in__/

T=600°K\ /T:(maK

1m

. —
Ajr =——————

——e
T. = 300 °K
B =12Wm' K

FIGURE P10.14

10.15. Figure 10.15 shows a two-dimensional fin. A hot pipe running through the thin plate results
in the inner surface being maintained at a specified temperature of 80°C. Thickness of
plate = 02em, k = 100 W/m-°C,and 7., = 20°C. Determine the temperature distn'bu-
tion in the plate. ( You will need to madify program HEAT2D to account for the matrices
in Eq. 10.72.)

10.16. A thermal diffuser of axisymmetric shape is shown in Fig. P10.16. The thermal diffuser
receives a constant thermal flux of magpitude ¢, = 400 000 W/m?-°C from a solid—slat"3
device on which the diffuser is mounted. At the opposite end, the diffuser is kept at a un
form value of T = 0°C by isothermalizing heatpipes. The lateral surface of the diffuser 15
insulated, and thermal conductivity k = 200 W/m - °C. The differential equation is

14 ( aT) 2T
o Ll ey
rar ar 0z

ey
i B 3
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t=02cm

F

2 mm l

i

Diffuser
& mm

L—Gmm%

ar
! -k on - T
3
FIGURE P10.16

Develop an axisymmetric element to determine the temperature distribution and the out-
ward heat flux at the heatpipes. Refer to Chapter 6 for details on the axisymmetric element.

Develop a four-node quadrilateral for heat conduction and solve problem 10.11. Refer to
Chapter 7 for details pertaining to the quadrilateral element. Compare your solution with

use of three-node triangles.

The L-shaped beam in Fig. P10.18, which supports a floor slab in a building, is subjected
to a twisting moment T in - Ib. Determine the following, using program TORSION:

(a) The angle of twist per unit length, a.

(b) The contribution of each finite element to the total twisting moment.

Leave your answers in terms of torque 7 and shear modulus G. Verify your answers by

refining the finite element grid.
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o]
7 (e

.
80 %@T

NN

i

20 mm

FIGURE P10.18

10.19. The cross section of the steel beam in Fig. P10.19 is subjected to a torque T = 5000 in/Ib.
Determine, using program TORSION, the angle of twist and the location and magnitude
of the maximum shearing stresses.

2in. _.1|

6

T

=
in
=1

¢
FIGURE P10.19

10.20. For Fig. 10.14ain the text, let &° = I m/s, L = 5m, D = 1.5 m, and H = 2.0 m. Deter
mine the velocity field using a coarse grid and a fine grid {with smaller elements nearel the
cylinder). In particular, determine the maximum velocity in the flow. Comment ol the
relation of this problem to a stress-concentration problem.

10.21. Determine and plot the stream lines for the flow in the venturi meter shown in Fig. p1021-

The incoming flow has a velocity of 100 cm/s. Also plot the velocity distribution at the
waist a-a.
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iy = 100 cm/s s ‘%’ Sevaet %’%ﬁ- Il o
Gem -‘

FIGURE P10.21

A

10.22. The dam shown in Fig. P10.22 rests on a homogeneous isotropic soil which has confined
impermeable boundaries as shown. The walls and base of the dam are impervious. The
dam retains water at a constant height of 5 m, the downstream level being zero. Deter-
mine and plot the equipotential lines, and find the quantity of water seeping underneath
the dam per unit width of the dam. Take hydrautic conductivity k = 30 m/day.

4.-{ o |‘7 Impermeable
= dam

FIGURE P10.22

10.23. For the dam section shown in Fig. P10.23, & = 0.003 ft/min. Determine the following:
(a) The line of seepage.
(b) The quantity of seepage per 100-ft length of the dam.
(e} The length of the surface of seepage a.

T A T

Impervious
base

FIGURE P10.23

&-——-ﬁ
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10.24. For the triangular duct shown in Fig. P10.24, obtain the constant C, which relates the Fan-
ning friction factor f to the Reynolds number R, as f = C/R,. Use triangular finite ele-
ments. Verify your answer by refining the finite element model. Compare your result for
€ with that for a square duct having the same perimeter.

* 10 mm -

FIGURE P10.24

10.25. Figure P10.25 shows the cross section of a rectangular coaxjal cable. At the inner surface
of the dielectric insulator (€; = 3}, a voltage of 100V is applied. If the voltage at the outer
surface is zero, determine the voltage field distribution in the annular space.

0

|¢————15 mm ——»

77

u= 100V

2000

_L—zs mm~—4

FIGURE P10.25

_~Dielectric e, = 3

B

10 mm

N\

N

NN
L

10.26. A Pair of strip lines, shown in Fig. P10.26, is separated by a dielectric medium €z = 5.4.The
strips are enclosed by a fictitious box 2 X 1 m with enclosed space having e = 1. Assuming
u = {} on the boundary of this box. find the voltage field distribution. {Use large elements
away from the strip plates.)
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FIGURE P10.26

1027. Determine the scalar magnetic potential « for the simplified model of the slot in an electric-
motor armature shown in Fig. P10.27.

Line of symmetry
min

FIGURE P10.27

10.28. Repeat Example 10.6 with
(a) 12 clements,
{b) 24 elcments, and
(c) 48 elements.

Plot convergence curves of frequency, ¢ps Vs Number of elements.
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10.29.

10.30,

10.31.

Consider a tube of length 6 m as in Fig. P10.29. Fluid in the tube is air; thus,¢c = 343 m/s,
One end is rigid while the other end is a pressure-release condition, as shown. Determine
the mode shapes and natural frequencies, and compare then with the analytical solution

1} ¢ .
= + - = - .
s (m 2) > Adopt a six-element model

FIGURE P10.29

Derive the element matrices in Eq. 10.130 from Galerkin's variational statement in
Eq.10.128.

Solve the eigenvalue problem resulting from the two-dimensional problem in Eq. 10.129
and solve for the first four modes of the rectangular room/cavity shown in Fig. 10.31. Di-
mensions of the cavity are L,,L,, L, = (20 m, 10 m, 0.1 m). Provide plots of the mode
shapes, and compare the natural frequencies with the analytical solution ¢ = 343 m/s.Try
a coarse mesh and a fine mesh. Use the equation

f =£\/i2+£1-2+iz ¢ 0,1
&m.n 2 Lx Ly Lz <ps, MmN =10, ,2,..‘.

n 2_DJ|'
cavity

FIGURE P10.31



Problems

Program Listings

361

IEEEFE RN EE LR AR A R SRS R R SR AR AR R EE R LR

il PROGRAM HEAT1D *
i FOR 10 HEAT AND FIELD PROBLEMS *
** T R.Chandrupatla and A.D.Belegundu *

L Y2 L2 L 2 AR R A R R LA LR LSl E L A

T =====T mN mcm
Private Sub cmdStart_Click()
Call InputData
Call Stiffness
Call ModifyForBC
Call BandSolver
Call Qutput
cmdView.Enabled = True
cmdStart.Enabled = False
End Sub
T

' DATA INPUT FROM A FILE
Private Sub InputDataf()

Filal = InputBox{"Input Fila d:\dir\fileName.ext”, "Nane of File")

Open Filel For Input As #1

Line Input #1, Dummy: Input #1, Title

Line Input #1, Dummy

Input #1, NE, NBC, NQ

NN = NE + 1

NBW = 2 'NBW is half the bandwidth

ReDim X (NN), S(NN, NBW), TC(NE}, F{(NN), V(NEC), H(NBC), WB(NBC)

ReDim BC (NBC)

¥ o a2 READ DATA

Yoo Element Thermal Conductivity ——---

Line Input #¥1, Dummy

For I = 1 To NE

Input #1, N
Input #1, TC(N)

Hext I

o Coordinates —--———

Line Input #¥1, Dummy

For I = 1 To NN

Input #1, N
Input #1, X(N}
Next I
fomom- Boundary Conditions —--=--

Line Input %1, Dummy
For I = 1 To NBC
Input #1, NB{I}, BC3{L)

1f BC(I) = "TEMP" Or BC(I) = *temp” Then Input #1, Vi(I}
If BC(I) = "HFLUX" Or BC{I) = "hflux" Then Input #1i, vi(I)
If BC(I) = "CONV" Or BC(I) = *conv" Then Input #1, R{I), V(I)

Next I
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Eo continued

Pt Line Input #1, Dummy

bl For I = 1 To NN: F{I} = 0: Next I
' For T = 1 To NQ

P Input #1, W

P Input ¥1, F(N)

fmmeee Calculate and Input Nodal Heat Source Vector ---

P Next I
' Close #1
End Sub
- ' ELEMENT STIFFNESS AND ASSEMBLY

. Private Sub Stiffness(}

i ReDim S{NN, NBW)

i R Stiffness Matrix -----

For J = 1 To HNEW

For I = 1 To WN: S{I, J} = 0: Next I: WNext J
For I = 1 To NE

Il=1I: I2 =1+ 1

ELL = Abs(X({I2) - X(I1})

EKL = TC{I)} / ELL

5{I1, 1} = S(Il1, 1) + EKL

S(12, 1) = ${I2, 1) + EKL
- S(I1, 2} = S{I1, 2) - EKL: Next I
N End Sub

'mzm======== MODIFICATION FOR BOUNDARY CONMDITIONS
Private Sub ModifyForBC()
e Decide Penalty Parameter CNST ----—-
AMAY = O
For T = 1 To NN
If S(I, 1) > AMAX Then AMAX = S5{I, 1)
Next I
CNST = AMAX * 10000
For I = 1 To NBC
N = NB({I)
If BC(I) = "CONV" Or BC(I} = "conv" Then
S(N, 1} = S(N, 1) + H{I)
F(N) = F(N) + H(I} * V{I)
ElseIf BC(I) = "HFLUX"™ Or BC{I} = "hflux™ Then
F(N) = F(N} - V{I}
Elze
S(N, 1} = S{N, 1) + CNST
Fi{H) = F{N} + CHNST * V(1)
End If
Next I
End Sub

3
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IR X R R R R AR AR AL EEEE R EEEL TRl R ERL S L RS AR SN

i PROGRAM HEAT2D *
t*  REAT 2-D WITH 3-NODED TRIANGLES *
'*  FOR 2D HEAT AND FIELD PROBLEMS *
'* T.R.Chandrupatla and A.D.Belegundu *
IET TR TR EEEE T EEY e R LR e SRR RN R
M MAIN PROGRAM
Private Sub cmdStart_Clicki}

Call InputData

Call Bandwidth

Call Stiffness

Call ModifyForBC

Call BandSclver

Cazll HeatFlow(Calc

Call Output

cmdView.Enabled = True

cmdStart.Enabled = False
End Sub
L)

‘== DATA INPUT FROM A FILE
Private Sub InputDataf()
Dim msg As String, Filel As String
Filel = InputBox("Input File d:\dir\fileName.ext"”, "Name of File")
Open Filel For Input As ¥l
msg = " 1) No Fleot Data"™ & Chr(l3}
msg = msg + " 2) Create Data File Containing Nodal Temperatures” & Chr(13)
msg = msg + " Choose 1 or 27
IPL = InputBox(msg, “Plot Cheoice”, 1) '——= default is ng¢ data
Line Input #1, Dummy: Input #1, Title
Line Input #1, Dummy: Input #1, NN, NE, NM, NDIM, NEN, NDN
Line Input #1, Dummy: Input #1, ND, NL, NMPC
NMPC = O
'ewe ND = NO. OF EPECIFIED TEMPERATURES
'——— NL = NO. OF NODAL HEAT SOURCES
TNOTE!! MNMPC = 0 FOR THIS PROGRAM
'——~ EHS(I) = ELEMENT HEAT SCURCE, I = 1,...,NE
ReDim X (NN, 2}, NOC(NE, 3], MAT(NE), PM(NM, 1}, F(NN}
ReDim NU(ND), U(ND}, EHS(NE}
lerraxss=sor=x READ DATA
Trore—— Coordinates
Line Input #1, Dummy
For I = 1 To NN
Input #1, N
For J = 1 To NDIM
Input #1, X(N, J}
Next J
Next I
----- Copnectivity, Material#, Elemant Heat Scurce
Line Input #1, Dummy
For I = 1 To HNE
Input #1, N
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continued

For J = 1 To NEN
Input #1, NOC(NW, J}

Next J

Input #1, MAT(N}, EHS {N)
Next I
————— Tamperature BC
Line Input #¥1, Dummy
For I =1 Te ND

Input #1, NU(I}, U(I}
Next I
e Nodal Heat Sources
Line Input #1, Dummy
For I = 1 To NN: F(I) = 0: Next I
For I = 1 To NL

Input #1, N
Input #1, F(N)}
Next 1

T Thermal Conductivity of Material
Line Input #1, Dummy
For I = 1 To KM
Input %1, N, PM(N, 1}
Next I

'No. of edges with Specified Heat flux FOLLOWED BY two sdges
'¢ g0 (positive if cut)
Line Input #1, Dummy
Input #1, WHF
If MHE > 0 Then

ReDim NFLUX(NHF, 2}, FLUX(NHF}

For I = 1 To NHF

Input %1, NFLUX{(I, 1), NFLUX(I, 2}, FLUX(I)

Next 1

End If

'No. of Edges with Convection FOLLOWED BY edge(2 nodes} & h & Tinf
Line Input #1, Dummy
Input #1, NCV
If NCV > 0 Then
ReDim NCONV(NCV, 2}, H{NCV), TINF(NCV)
For I = 1 To RCV
Input #1, NCONV{I, 1), NCONV(I, 2), H(I), TINF(I)
Next I
End If
Close #1
End Sub

L]
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* ELEMENT STIFFNESS AND ASSEMBLY
Private Sub Stiffness()
f e Initialization of Conductivity Matrix and Heat Rate Vector
ReDlim S (NN, NBW)
For I = 1 To NN
For J = 1 To NBEW
S5(I, H =0
Next J
Next 1
If WHE > 0 Then
For I = 1 To NHF
N1 = NFLUX({I, 1}: N2 = NFLUX({I, 2}
Vv = FLUX(I)
ELEN = Sqr((X(N1, 1) - X(N2, 1}) ~ 2 + (X(Nl, 2) - X(N2, 2)} " 2}
FiNl} = F{N1) - ELEN * Vv / 2
F{N2} = F{N2) - ELEN * ¥ [ 2
Next I
End If
If NCV > 0 Then
For I = 1 To NCV
N1 = NCONV(I, 1): N2 = NCONV{I, 2)
ELEN = S5qr{(X(Ni, 1} - X{N2, 1)) ~ 2 + (X(N1l, 2} - X{N2, 2)) ~ 2)
F{N1} = F{N1) + ELEN * H({I) * TINF{I) [/ 2 '
F{N2) = F{N2) + ELEN * H(I} * TINF{I) / 2 :
S(N1, 1) = S(Ni, 1) + H{I} * ELEN / 3
$(N2, 1) = S(N2, 1} + H(I} * ELEN / 3
If N1 >= N2 Then
N3 = N1: N1 = N2: N2 = N3
End If
S(N1, N2 - N1 + 1) = S(Nl, N2 - N1 + 1) + H(I} * ELEN / 6
Next I
End If
P Conductivity Matrix
ReDim BT(2, 3)
For I = 1 To NE
Il = HOC{I, 1): IZ2 = NOC({I, 2): I3 = NCOC(I, 3)

X32 = X(I3, 1) - X(I2, 1): X13 = X(Il, 1) - Xi{I3, 1)
X21 = X(I2, 1) - X{Il, L}
¥23 = X({I2, 2) - X(I3, 2): ¥31 = X{I3, 2} - X{Il. 2}
Y1z = X{Il, 2} - X{I2, 2)

DETJ = X13 * ¥23 - ¥X32 * Y31
AREA = 0.5 * Abs(DETJ)
1w~ Element Heat Scurces
If EHS(I} <> 0 Then
¢ = EHS(I) * AREA / 3
F{I1) = F(Il) + C: F{I2) = F{I2} + C: F{I3)} = F(I3) + C

End If

BT(1l, 1) = ¥23: BT{l, 2) = ¥Y31: BTi{l, 3) = Y12
BP(2, 1) = X32: BT{2, 2) = X13: BT{2, 3) = X21
for II = 1 To 3

For JJ =1 To 2
BT (JJ, II} = BT(JJ, II) / CETJ

Next JJ
Next II
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continued

For II1 = 1 To 3
For Ji =1 To 3

II1l = WOC{I, II): II2 = NOCI(I, JI

If II1 <= II2 Then
Sum = 0
For J =1 To 2

Sum = Sum + BT{J, II) * BT(J, JJ}

Next J
IC = IIZ2 - II1 + 1
S{IIl, IC}) = S{II1, IC) + Sum * AREA * PM{MATI(I), 1)

End If
Next JJ
Next II
Next I
End Sub
N HEAT FLOW CALCULATIONS

Private Sub HeatFlowCalc{)
ReDim Q(NE, 2}
For I = 1 To HE
T1 = NOC{I, 1l): I2 = NOC({I, 2): I3 = NOC(I, 3)
X32 = X(I3, 1) - X{I2, 1): %13 = X{Il, 1} - X({I3, 1}
X2l = X(I2, 1) - X{Il, 1)
Y23 = X({I2, 2) -~ X({I3, 2}: Y31 = X(I3, 2) - X{Il, 2}
Yl2 = X(I1, 2) - X({IZ2, 2} .
DETJ = K13 * Y23 - X32 * Y31
BT{l, 1) = ¥23: BT(1l, 2} = ¥31: BT{1, 3) = Y12
BT (2, 1) = X32: BT(2, 2} = X13: BT{2, 3) = X21
For II = 1 To 3
For JJ = 1 Ta 2
BT{JJ, II) = BT{JJ, II) / DETJ
Next JJ
Next II
OX = BT{1l, 1) * F(I1) + BT{l, 2) * F(I2) + BT(1, 3) * F(I®)
QX = -OQX * PM(MAT(I}, 1)
QY = BT{2, 1) * F(I1) + BT(2, 2) * F(I2) + BT(2, 3) * F(I3}
QY = 0¥ * PM(MAT(I}, 1)

Q{I, 1) = QX
O(I, 2) = QY
Next I

End Sub

L




CHAPTER 11

Dynamic Considerations

11.1 INTRODUCTION

In Chapters 3-9, we have discussed the static analysis of structures. Static analysis holds
when the loads are slowly applied. When the loads are suddenly applied, or when the
loads are of a variable nature, the mass and acceleration effects come into the picture.
If a solid body, such as an engineering structure, is deformed elastically and suddenly re-
leased, it tends to vibrate about its equilibrium position. This periodic motion due to
the restoring strain energy is called free vibration. The number of cycles per unit time
is called the frequency. The maximum displacement from the equilibrium position is
the amplitude. In the real world, the vibrations subside with time due to damping action.
In the simplest vibration model, the damping effects are neglected. The undamped free-
vibration model of a structure gives significant information about its dynamic behavior.
We present here the considerations needed to apply finite elements to the analysis of

undamped free vibrations of structures.

11.2 FORMULATION

We define the Lagrangean by
L=T-1 (11.1)

where T'is the kinetic energy and I1 is the potential energy.

Hamilton’s principle For an arbitrary time interval from ¢, to r,, the state of
motion of a body extremizes the functional

I‘!
I= /‘Ldr (11.2)
f

1f L can be expressed in terms of the generalized variab_lcs (G1 Gaerves Gnn 4
.. q,) Where g, = dg,/dt, then the equatioos of motion are given by

4 —6—11 -QE=0 i=1lton (11.3)
de\ aq, g,
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Chapter 11 Dynamic Considerations

To illustrate the principle, let us consider two point masses connected by springs.
Consideration of distributed masses follows the example.

Example 11.1
Consider the spring-mass system in Fig. E11.1. The kinetic and potential energies are given by

T RN T
T =3mk7 + 3mk;

M= Ykx] + jholx; ~ )

m; P2
Txrfz

FIGURE E11.9

Using L. = T — 1, we obtain the equations of motion

dfaL oL .
—| = T EmX tkx - k(- x)=0

dt\ ox) - ax,
dfoL oL .,
ailan,) " TR e m ) = 0

which can be written in the form

m 0]f% (ky + k) —ky |[x,
O G Rl WAL

which is of the form

Mx + Kx=0 (11.4)
where M is the mass matrix, K is the stiffness matrix, and ¥ and x are vectors representing
accelerations and displacements. n

Solid Body with Distributed Mass

We now consider a solid body with distributed mass (Fig. 11.1). The potential-energy term
has already been considered in Chapter 1. The kinetic energy is given by

1 f .
T = ~/u‘;fupdv (11.3)
2 Jy
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p = density

FIGURE 11,1 Body with distributed mass.

where p is the density (mass per unit volume) of the material and
w = [, 9, w] (11.6)

is the velocity vector of the point at x, with components it, ¥, and w. In the finite element
method, we divide the body into elements, and in each element, we express u in terms

of the nodal displacements g, using shape functions N. Thus,

u = Ngq (11.7)
I.n dynamic analysis, the elements of q are dependent on time, while N represents (spa-
tial) shape functions defined on a master element. The velocity vector is then given by
n = Ng (11.8)

When Eq. 11.8 is substituted into Eq. 11.5, the kinetic energy 7. in element e is
T. = qu[ f pNTN vaq (11.9)

where the bracketed expression is the element mass magrix

m’ = /pNTNdV (11.10)

ape functions chosen and is called the consistent
lements are given in the next section. On sum-

This mass matrix is consistent with the sh
mass matrix. Mass matrices for various e
ming over all the elements, we get

r=37=3imq=3:QMQ

(11.11)
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The potential energy is given by

I1 =1Q"KQ - Q'F (11.12)
Using the Lagrangean L = T — I, we obtain the equation of motion:
MQ +KQ=F (11.13)

For free vibrations the force F is zero. Thus,
MQ +KQ =20 (11.14)
For the steady-state condition, starting from the equilibrium state, we set
Q = Usinwt (11.15)

where U is the vector of nodal amplitudes of vibration and w (rad/s) is the circular fre-
quency {=2wf, f = cycles/s or Hz). Introducing Eq. 11.15 into Eq. 11.14, we have

KU = o'MU (11.16)
This is the generalized eigenvalue problem
KU = \MU (11.17)

where U is the eigenvector, representing the vibrating mode, corresponding to the eigen-
value A. The eigenvalue A is the square of the circular frequency w. The frequency fin
hertz (cycles per second) is obtained from f = w/(27).

The previous equations can also be obtained by using D’ Alembert’s principle and
the principle of virtual work. Galerkin’s approach applied to equations of motion of an
elastic body also yields this set of equations.

11.3 ELEMENT MASS MATRICES

Since the shape functions for various elements have been discussed in detail in the ear-
lier chapters, we now give the element mass matrices. Treating the material density p to
be constant over the element, we have, from Eq. 11.10,

m* = prTNdV (11.18)

One-dimensional bar element For the bar element shown in Fig. 11.2,

q =[q ¢
N={N N] (11.19)
where
1 —
Nl = __é N, = 1 * é
2 c 2
R X A f +1
m = p N1NAdx=‘—)—25—"/ NTN d¢

1
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dv = A dx
q e J " 9

1= e f—>q;

N, _

1 M N]=1 £

2z

= 1+

Ny=%5

1 2 ¢ 23

-1 +1 dx__;;,‘g

FIGURE 11.2 Bar element.

On carrying out the integration of each term in N™N, we find that

e_PALI2 1
m - [1 ) (11.20) :_
Truss element  For the truss element shown in Fig. 11.3, :
w' =[u v]
g =[a @ & ) (11.21)
N = N O N O
0N 0 AN
where
1—-¢£ _1+¢
N=—— M= |
in which £ is defined from —1 to +1. Then,
2010
e_pAefe 0 2 0 1 1122
M= 11020 (11.22)
01 0 2

FIGURE 11.3 Truss element.

:
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CST element For the plane stress and plane strain conditions for the CST ele-
ment shown in Fig. 11.4, we have, from Chapter 5,

u' =[x ]
9 =[a & - g (11.23)

No|M 0N 0N o
0N ON 0N

The element mass matrix is then given by
m’ = pt, / NTNdA

Noting that f, N7dA = ; A,, [ NNN,dA = 5 A, etc., we have

201010
2 0101
pt.A, 2010
R 24
" T2 20 1 (11.24)
Symmetric 2 0
a 2]
Axisymmetric triangular element For the axisymmetric triangular element,
we have
u' = [u w]
46
3 gs
4
. q3
42
¥
1 1

FIGURE 11.4 CST element.
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where u and w are the radial and axial displacements, respectively. The vectors qand N
are similar to those for the triangular element given in Eq. 11.23, We have

m® = / pNTNJV = / oN™N2zr dA (11.25)
Since r = Nir, + Nory + Nyr;, we have

mé = 217.0 / (Mrl + Nzrz + N3r3)NTNdA

Noting that
24, 24, 24,
/.NfdA =20 jN%NZdA = H,/NIMN;dA = —1-2*0-,ctc.
4 £ L3
we get
— ) o _n -
in +2F 0 r — 3 0 2r 3 0
— - n )
in+2f 0 2r -3 0 27 -3
4 - =_h
ir, +2F 0 2r 3 0
m, = TPA: | a126)
10 it 0 -3
Symmetric i+ 27 0
3r + ZU
where
g_nrntn (11.27)
3

Quadrilateral element For the guadrilateral element for plane stress and
plane strain,

u' = [u v

qT=[‘?1 g qs}

No | N 0 N 0 N 0 N UJ (11.28)
“lo N 0N O N O N

The mass matrix is then given by
1 1
m® = pi, / f NTNdetJ dé dn (11.29)
-1 J-1

This integral needs to be evaluated by numerical integration.
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Uf 1 y '\D

FIGURE 1.5 Beam element.

Beam element For the beam element shown in Fig. 11.5, we use the Hermite
shape functions given in Chapter 8. We have

v = Hgq
+1 ¢
m = / H™HpA,— d¢ (11.30)
-1

On integrating, we get
156 22¢, 54 -13¢,

. PAL, 4¢3 13¢, -3¢
T 420 |Symmetric 156 -22¢, (1L31)
4¢2

Frame element We refer to Fig. 8.9, showing the frame element. In the body co-
ordinate system x’, ', the mass matrix can be seen as a combination of bar element
and beam element. Thus, the mass matrix in the prime system is given by
(22 0 0 & 0 0 |
156b 22€6 0 S54b -13eh

4p 0 13¢,b -3¢

"= 2¢ 0 0 (11.32)
Symmetric 156b  —-22¢.b
L 4¢€2b |
where
a= PAL, and b = pAL
6 420

Using the transformation matrix L given by Eq. 8.48, we now obtain the mass matrix m’
in the global system:

m* = L'm‘L (11.33)

Tetrahedral element For the tetrahedral element presented in Chapter 9,
u'=[u v w
M D ON 0 0N 0 0N 0 0
N=[ 0N 0 0N 0 0N 0 0N o0 (11.34)

00N|00N200N300N4
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The mass matrix of the element is then given by

200100100100

2 0010010010

2001001001

200100100

200100120

, oV, Symmetric 2 0 0 1 0 0 1
=% 200100 (11.33)

20010

2001

2 00

2 0

- 2—

Lumped mass matrices Consistent mass matrices have been presented. Prac-
ticing engineers also use lumped mass techniques, where the total element mass in each
direction is distributed equally to the nodes of the element, and the masses are associ-
ated with translational degrees of freedom only. For the truss element, the lumped mass

approach gives a mass matrix of

1 0 0 0 |
pAeee 1 0 0 i
¢ = 11.36
mT 1 0 (11.36)
| Symmetric 1 |
For the beam element, the lumped element mass matrix is
1 0 0 0]
c_pAfL 0 00 11.37
" 1 0 (130

| Symmetric 0 |

stent mass matrices yield more accurate results for flexural elernents such as beams.
¢ is easier to handle since only diagonal elements are in-
from lumped mass techniques are lower than
discuss techniques for determining the eigen-
formulations. The programs presented can

Consi
The lumped mass technigu
volved. The natural frequencies obtained
the exact values. In our presentation, we
values and eigenvectors with consistent mass
be used for lumped mass cases also.

11.4 EVALUATION OF EIGENVALUES AND EIGENVECTORS

ibration is that of evaluating an eigenvalue A (= w?),
y of vibration together with the corresponding eigen-
1.17, restated here:

The generalized problem infreev
which is a measure of the frequenc _
vector U indicating the mode shape, as 10 Eq.1

KU = AMU (11.38)
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We observe here that K and M are symmetric matrices. Further, K is positive definite
for properly constrained problems.

Properties of Eigenvectors

For a positive definite symmetric stiffness matrix of size n, there are n real eigenvalues
and corresponding eigenvectors satisfying Eq. 11.38. The eigenvalues may be arranged
in ascending order:

C=sA =SS, (11.39)
If U, U,,... U, are the corresponding eigenvectors, we have
KU; = AMU; (11.40)

The eigenvectors possess the property of being orthogonal with respect to both the stiff-
ness and mass matrices:

UMU, =0  ifi #j (11.41a)
UKU, =0 ifi#j (11.41b)
The lengths of eigenvectors are generally normalized so that
U/MU, = 1 (11.42a)
The foregoing normalization of the eigenvectors leads to the relation
U/KU, = A, (11.42b)

In many codes, other normalization schemes are also used. The length of an eigenvec-
tor may be fixed by setting its largest component to a preset value, say, unity.

Eigenvalue-Eigenvector Evaluation
The eigenvalue-eigenvector evaluation procedures fall into the following basic categories:

1. Characteristic polynomial technique
2. Vector iteration methods
3. Transformation methods

Characteristic polynomial From Eq. 11.38, we have
(K- MU =0 (11.43)
If the eigenvector is to be nontrivial, the required condition is
det(K — AM) = 0 (11.44)

This represents the characteristic polynomial in A.
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Example 11.2

Determine the eigenvalues and eigenvectors for the stepped bar shown in Fig. E11.2a.

Solution Gathering the stiffness and mass values corresponding to the degrees of free-

dom , and O,, we get the eigenvalue problem

A Ay A
E L L Ly |JU L _ . p| 2(A\L + Azly}y Agl,
A Ay 6 AsL, 24,L,

L L,
We note here that the density is

f 0.283

= = —""__ = 7324 % 10"*1bs¥/in.*
P T max12 i

Substituting the values, we get

02 -01]fuv, J2 25w
= Al22 X 10
30)(106[—0.1 0.1]{[;3} M2 X [2‘5 s o

=11in?
1 Al;““- ) Ay =05 in?
% 4 / 3
74— —= 0, >0
: L
L :
 IE— | T tt—— 5 i1, —

E =30 % 10%psi
Specific weight f = 0.283 Ib/in’

(a)

i

11.572

U
U

1 2 3
First mode

Second mode

(b}
FIGURE E11.2

-37.45
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The characteristic equation is

(6 X 108 — 30.5 X 107*a) (=3 X 10° — 3.05 X 1074)
det —d 1] —d
(=3 % 105 — 3.05 X 107*A) (3 X 10° — 6.1 X 107x)

which simplifies to
177 X 107547 — 1.465 X 10°A + 9 X 10¥ =0
The cigenvalues are
A = 6.684 X 10°
A, = 7.61 X 10°

Note that A = &, where w is the circular frequency given by 2z f and f = frequency in
hertz (cycles/s)-
These frequencies are

fi = 4115Hz
fr=13884Hz
The eigenvector for A, is found from

(K~ AM)U, = 0

10° 39 -3204 ||Up| _ 0
-3204 2592 || 4],
The two previous equations are not independent, since the determinant of the matrix is
zero. This gives

which gives

3.960), = 3.204,
Thus,
Uy = [, 1.23600)
For normalization, we set
UMU, = 1

On substituting for U;, we get

Ul = [14.527 17.956]
The eigenvector corresponding to the second eigenvalue is similarly found to be

Uj = [1L572 —37.45]
The mode shapes are shown in Fig. E11.2b, u
Implementation of characteristic polynomial approach on computers is rather

tedious and requires further mathematical considerations. We now discuss the other two0
categories.
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Vector iteration methods Various vector iteration methods use the properties
of the Rayleigh quotient. For the generalized eigenvalue problem given by Eq. 11.38, we
define the Rayleigh quotient

vIKv
v My

Qv) = (11.45)
where v is arbitrary vector. A fundamental property of the Rayleigh quotient is that it
lies between the smallest and the largest eigenvalue:

A = Q(V) = A, (11.46)

Power iteration, inverse iteration, and subspace iteration methods use this prop-
erty. Power iteration leads to evaluation of the largest eigenvalue. Subspace iteration
technique is suitable for large-scale problems and is used in several codes. The inverse
iteration scheme can be used in evaluating the lowest eigenvalues. We present here the
inverse iteration scheme and give a computer program for banded matrices.

Inverse Iteration Method In the inverse iteration scheme, we start with a trial vec-
tor u’. The iterative solution proceeds as follows:

Step 0. Estimate an initial trial vector u’. Set iteration index k = 0.
Step 1. Setk = k + 1.

Step 2. Determine right side v~ = Mu*~".

Step 3. Solve equations Ki* = v*~".

Step 4. Denote ¥ = Mi*.
kT k-1

Step 5. Estimate eigenvalue A* = — (11.47)
AR}
ﬁk
Step 6. Normalize eigenvector u* = W
k _ 3 k1
Step 7. Check for tolerance I = tolerance.
If satisfied, denote the eigenvector u® as U and exit. Otherwise, go

to step 1.

onverges to the lowest eigenvalue, provided the trial
f the eigenvectors. Other eigenvalues can be evalu-
vector from a space that is M orthogonal to the

The algorithm just described ¢
vector does not coincide with one o
ated by shifting, or by taking the trial
calculated eigenvectors.

Shifting We define a shifted stiffness matrix as
K.=K+sM (11.48)
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where K, is the shifted matrix. Now the shifted eigenvalue problem is
KU = AMU (11.49)

We state here without proof that the eigenvectors of the shifted problem are the
same as those of the original problem. The eigenvalues get shifted by s:

A=A+s (11.50)

Orthogonal Space Higher eigenvalues can be obtained by the inverse iteration
method by choosing the trial vector from a space M-orthogonal to the calculated eigen-
vectors. This can be done effectively by the Gram-Schmidt process. Let U,, U, .. ., U,
be the first m eigenvectors already determined. The trial vector for each iteration is
then taken as

0! = ot — (@ UMUDU, - (i UMU)U; - - (0t UMU,)U,,  (11.51)

This is the Gram-Schmidt process, which results in the evaluation of A, and U,,,,.,. This
is used in the program given in this chapter. Equation 11.51 is implemented after step 1
in the algorithm given in Eq. 11.51.

Example 11.3
Evaluate the lowest eigenvalue and the corresponding eigenmode for the beam shown in
Fig. E11.3a.

Solution Using only the degrees of freedom @, Q. (s, and Oy, we obtain the stiffness
and mass matrices:

35556 0 —-177.98  26.67

10.67 —26.67 2.667
Symmetric 17778 —26.67
5.33

K =10

0.4193 0 0.0726 -.0052
000967 0052 —.00036

Symmetric 0.2097 —.0089
00048

The inverse iteration program requires the creation of a data file. The format of the
file for the preceding problem is as follows:

Data File:
TITLE

NDOF NBW
4 4

Banded Stiffness Matrix
3.556E5 0 -1.778E5S 2.667E4
1.067E4 -2.667E4 2.667E3 ¢
1.778E5 -2.667E4 0 0]
5.333E3 0 0 0]
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a1 5 3 E=200GPa
P = 7840 kg/m®
% ] I = 2000 mm*
L ‘.I A = 240 mm?
300 mm —sj+— 300 mm

(a)

“
2 0.6395

) 1.884

3.65
Mode for A, U
433
(b}
FIGURE E11.3
Banded Mass Matrix
0.4193 0 0.0726 -0.0052
0.000967 0.0052 -0.00036 0
0.2097 -0.0089 0 0
0.00048 o 0 [\

The first line of data contains the values of n = dimension of the matrices and nbw = half-
band width. This is followed by K and M matrices in banded form. (See Chapter 2.) The two
titles are part of the data file. Though these data were created by hand calculations, it is
possible to write a program, as discussed at the end of this chapter.

Feeding this data file into the inverse iteration program, INVITR, gives the lowest

eigenvalue,
A =203 x 10

and the corresponding eigenvector or mode shape,
Ul = [064, 365 188, 4.32]

A, corresponds to a circular frequency of 142.48 rad/s or 22.7 Hz ( = 142.48/2).
The mode shape is shown in Fig. E11.3b. [ ]

Transformation methods The basic approach here is to transform the matrices
form and then determine the eigenvalues and eigenvectors. The major meth-
ed Jacobi method and the QR method. These
biems. In the QR method, the matrices are first
holder matrices. The generalized Jacobi method
ly diagonalize the stiffness and mass matrices.
d is quite efficient for calculating all

to asimpler
ods in this category are the generaliz
methods are suitable for large-scale pro
reduced to tridiagonal form using House
uses the transformation to simultaneous
This method needs the full matrix locations an
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eigenvalues and eigenvectors for small problems. We present here the generalized Jacobi
method as an illustration of the transformation approach.

If all the eigenvectors are arranged as columns of a square matrix U and all eigen-
values as the diagonal elements of a square matrix A, then the generalized eigenvalue
problem can be written in the form

KU = MUA (11.52)
where
U=[U, U,...,U,] (11.53)
Ay

A 0

A= 2 (11.54)
0 .
Ay

Using the M-orthonormality of the eigenvectors, we have

U'KU = A (11.55a)
and

UT™MU =1 (11.55b)
where I is the identity matrix.
Generalized Jacobi Method
In the generalized Jacobi method, a series of transformations P, P,, . .., P, are used such
that if P represents the product

P=PP. .. P (11.56)

then the off-diagonal terms of P'KP and PTMP are zero. In practice, the off-diagonal
terms are set to be less than a small tolerance. If we denote these diagonal matrices as

K = P'KP (11.57a)
and

M = PTMP (11.57b)
then the eigenvectors are given by

U=PM2 (11.58)

and

-

A=M'K (11.59)
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where
[ M} 0
M= Mz y (11.60)
0 s
s 0
M2 = M3 _ (11.61)
0 oy

Computationally, Eq. 11.58 indicates that each row of P is divided by the square roog of
the diagonal element of M, and Eq. 11.59 indicates that each diagonal element of Kis

divided by the diagonal element of M. _,
We mentioned that the diagonalization follows in several steps. At step k, we choose f

a transformation matrix P, given by

_ Column — § i -
Row| 1
1 1
1
i 1 o
1
P = | (11.62)
1
i B 1
1
1

P, has all diagonal elements equal to 1, has a value of a at row i and column j and B at
row j and column /, and has all other elements equal to zero. The scalars a and 8 are r..'hcla-
sen so that the ij locations of PIKPk and P,MP, are simultaneously zero. This is

represented by

oK, + (1 + aB)K;, + BK;; = 0 (11.63)
aM, + (1 + af)M; + BM;; = 0 (11.64)
, M., ... areelements of the stiffness and mass matrices. The solution

where K, K, . .-
of these equations is as follows:
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j Denote

1 .

| A = KM, — M;K;;
B = KM — M;Ky;
C= .K,:_.'MH - M"'"KH

Then a and B are given by

~0.5C + sgn(C)\V0.25C% + AB
; A#0,B#0: a=
A
! Aa
i — =
N #=78
! A=0: B=0
. Tk
Kij
B=0 a=10
oo
— fi

When both A and B are zero, any one of the two values listed can be chosen.
{Note: There is no summation on repeated indices these expressions.)

In the generalized Jacobi program given at the end of the chapter, the elements of
K and M are zeroed out in the order indicated in Fig. 11.6. Once P, is defined by deter-
mining « and S, Pk [ 1P, can be performed on K and M as shown in Fig. 11.7. Also by

Symmetric

FIGURE 11.6 Diagonalization.
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Column:> i i

coli+Blcolj) colj+a(coli)

Row
Y B
J /)y
2 %
Z %
; %
i T T Y A L A Al W
row i + fB{row j) | é %
% %
%
7 ]
//’ 7
i I, % LALLLLS SIS SIS S0 o TS SIS LA LS L 7,
z 2
row j + af{row i} — %
/ %
2 .
% 7

FIGURE 11.7 Multiplication P |P.

starting with P = I, the product PP, is computed after each step. When all elements are
covered as shown in Fig. 11.6, one pass is completed. After the operations at step &, some
of the previously zeroed elements are altered. Another pass is conducted to check for
the value of diagonal elements. The transformation is performed if the element atijis
larger than a tolerance value. A tolerance of 1078 X smallest K, is used for stiffness, and
1078 X largest M;; is used for the mass. The tolerance can be redefined for higher accu-
racy. The process stops when all off-diagonal elements are less than the tolerance.

If the diagonal masses are less than the tolerance, the diagonal value is replaced
by the tolerance value; thus, a large eigenvalue will be obtained. In this method, K need

not be positive definite.

Example 11.4
Determine all the eigenvalues and eigenvectors for the beam discussed in Example 11.3

using program JACOBL

Solution The input data for JACOBI is same as that for INVITR, However, the program
converts to full matrices in calculations. Convergence accurs at the fourth sweep. The

solution is as follows:
A, = 20304 X 10°(22.7 Hz)
UT = [0.64.3.65.1.88.4.32]
A, = 8.0987 x 10°(143.2 Hz)
Ul = [~1.37,139,1.901.15.27]

' .
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A = 9.2651 X 10° (484.4 Hz)

3 = [-0.20,27.16, —2.12, —33.84]
Ay = 7.7974 X 107 (1405.4 Hz)
U, = [0.8986,30.89,3.546,119.15)

Note that the eigenvalues are arranged in ascending order after they are evaluated. I

Tridiagonalization and Implicit Shift Approach

We present here a powerful method for evaluating eigenvalues and eigenvectors using
the implicit shift approach. We first bring the problem Kx = AMx to the standard form
Ax = Ax. Householder reflection steps are then applied to bring the matrix to a tridi-
agonal form. Implicit symmetric QR step is applied with Wilkinson shift* to diagonal-
ize the matrix. These steps are now provided in detail.

Bringing Generalized Problem to Standard Form

We observe that the mass matrix M is positive semidefinite, Positive semidefinite matrices
have the property that if the diagonal element is zero, all the nondiagonal elements in
the row and column are zero. In such a case, a small mass equal to the tolerance value
say 10 X largest M;; is added af the diagonal location. This makes the mass matrix
positive definite. Correspondingly, this yields a higher eigenvalue. The first step in bring-
ing the problem to the standard form is to perform the Cholesky decomposition of M
using the calculations presented in Chapter 2:

M=LL! (11.65)
Symmetric manipulation of the generalized eigenvalue problem yields the form
L7K(LY)'Lx = ALx (11.66)
Denoting A = LT'K(L™! )T and y = Ex, we get the standard form
Ay = Ay (11.67)

This problem has the same eigenvalues as the gencralized problem. The eigenvectors X
are evaluated by the forward substitution performed on

Lx =y (11.68)

In the computer implementation, A is obtained in two steps LB = K and LA = BT
These two forward-substitution steps arc more efficient than finding the inverse and
performing the multiplication steps.

*Golub, H. G.,and C. F. Van Loan, Matrix Computations, Third Edition, (Baltimore: The Johns Hopkins
University Press, 1996},
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Example 11.5
Bring the generalized problem Kx = AMx to standard form Ay = Ay, given that
4 1 21 1112
1 31 2 1 21 2
K= =
2142 ™M M= 22
1 22 4 2225

Solution We make use of the Cholesky decomposition aigorithm given in Chapter 2 to
decompose M = LL”. L is obtained as

—
e B e |

0
0
1

[l R = =

b
=

0

Solving for LK = B, which is a forward-substitution operation, we get

4 1 2 1
-3 2 -1 1
B*—2021
-7 0 -2 2

Another forward-substitution step of solving LA = BT gives
4 -3 -2 -7

-3 5 2 7
A=l 5 2 4 s
-7 7 5 16

The standard form is now Ay = Ay, with Lx = y.

Tridiagonalization

There are several different methods available to transform a symmetric matrix to tridi-
agonal form. We use the Householder reflection ideas in the tridiagonalization process.
Given a unit vector w normal to a hyperplane, the reflected vector b of vector a, shown

in Fig. 11.8, is given by

b=a-2(wa)w {11.69)
This can be put in the form
b = Ha (11.70)
where
H=1-2ww" with wiw=1 (11.71)

tion. This transformation, which reflects a vector about

is the Householder transforma : '
al direction, has some interesting propertics:

a plane for which w is the norm
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wk

hyperplane

Reflected vector b=a~2(wTa)a
=(I-2ww')a

FIGURE 11.8 Householder reflection.

1. The Householder transformation is symmetric (i.e., H' = H).
2. Itsinverse is itself (i.e., HH = I).

It is thus an orthogonal transformation.

If a vector a has to be along the unit vector e, after reflection, it is easy to see from
Fig. 11.8 that w is the unit vector in the direction given by a + |ale,. The reflected vector
is along —e,, if wis along a + |ale,. We choose vector a + |aje, or a — |ale;, whichever
has a larger magnitude. This reduces numerical errors in the calculation. We note that
this is accomplished by taking w along a + sign(a, )|ale,, where a, is the component of
a along the unit vector e,. The steps involved in the tridiagonalization process are
illustrated by extending the Example 11.5. The symmetric matrix in Ay = Ayis

4 -3 -2 7

-3 5 2 7
A =

-2 2 4 5

-7 7 5 16

To start the tridiagonalization, we make use of the vector [~3 —2 —7|T, which is made
up of the elements below the diagonal in column 1. Consider this as vector a, which we

would like to bring to e; = [100]™. We have |a] = V3% + 22 + 72 = 7.874. w, is then
the unit vector along a — |ale, = [-10.874 ~2 ~7]. The length of this vector is

V10.8747 + 2% + 7° = 13.086. The unit vectorisw, = [~0.831 —0.1528 —0.5349]".
Denoting H; = [I — 2w, w,]", we have

-3 7.874
H1 _2 = U
=7 0

in the first column and [-3 -2 -7H, = [7.874 0 0] in the first row. Thus the
first row of the tridiagonal matrix Tis [4 7.874 0 0]7 and this matrix is symmetric.
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Multiplication from both sides on the 3 X 3 partition is performed as follows:

52 7 210161 —0.7692 0.9272
Hi|2 4 5 H =/|-07692 24395 0.2041
7 5 16 09272 02041 15443

H, is not formed at this stage. If the partitioned matrix is designated as B, the multipli-
cation is easily implemented by using the formula

H,BH, = [I - 2w,w,|B[I — 2w,w, ] = B — 2w,b" — 2bw| + 48ww, (11.72)

where b = Bw,, 8 = w,b.

At the next step, the vector [—0.7692 0.9272]7 is reflected to line up
along [1 0]T. The magnitude of the vector is 1.2047. w, is the vector along
[(—0.7692 — 1.2047)0.9272]". The unit vector w; for thisis [~0.9051 0.4252]". On per-
forming the multiplication with the partitioned 2 X 2 matrix and placing in the 4 X 4
matrix T, we get the tridiagonal matrix

4 7874 0 0 d b 0 0
7874 210161 1.2047 | b 0
12047 17087 —0.4022 0 b dy b

—04022 2271 0 0 b d

In this development, the tridiagonal matrix is stored in two vectors d and b. The origi-
nal matrix A is used for storing the Householder vectors w;, w,, etc. as follows:

1 0 0 0

| —0831 1 0 0
A= _o1528 —09051 1 0
-0.5349 04252 O 1

The product of H,H, is easily performed in place inside A. First, it is the product of H,
and the lower right 2 X 2 identity matrix, to obtain

1 0 t 0
-0831 1 0 0
-0.1528 0 —0.6385 0.7696
—0.5349 0 0.7696 0.6385 ]

A=

Then the multiplication of H, and the lower right 3 X 3 matrix gives

1 0 0 0

0 -0.381 -0522 -07631
0 —0254 —0.7345 06292
0 —0889 04336 01473

A=

This matrix represents the current contribution to the eigenvectors. We now discuss the
steps to diagonalize the matrix and finding the eigenvectors.
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implicit Symmetric QR Step with Wilkinson Shift for Diagonalization*

The inverse iteration may be applied to the tridiagonal matrix to get desired eigenval-
ues. If all eigenvalues and eigenvectors are desired, the implicit shift ideas of Wilkinson
provide a remarkably fast algorithm. The order of convergence with this method is cubic.
The shift value p for the Wilkinson shift is taken as the eigenvalue of the bottom 2 X 2
matrix of the tridiagonal matrix close to d,, viz.,

w=d,+t—sign(t) Vb + 1 (11.74)

where ¢ = 0.5(d,-, — d,). The implicit shift is carried out by performing a Givens
rotation G,. ¢ (=cos 8) and s (=sin 8) are chosen such that we get zero in the second

position as follows:
dy — p ¢ —-s|ld—n X
G = = a
l[ by } L ¢ }[ by 0 (11.75)

We note thatifr = VB + (d, — u)?,¢ = —(d; — p)/r ands = b;/r. We perform the
rotation GITG',r on the tridiagonal matrix on the first two rows from the left and first two
columns from the right. Note that the rotation is calculated based on shift ., but the
shift itself is not performed. This is implicit shift. We refer to the tridiagonal matrix in
Eq.11.73. With d, = 1.7087,d, = 2.2751, and by = —0.4022, we have ¢+ = —0.2832 and
p = 24838, With d, — p = 1.5162, b, = 7874, and r = 8.0186, we get ¢ = —0.1891

and s = 0.982. We then get from Eq. 11.75, G, = ¢ —si_| 0189 —0.982 .
5 ¢ 0982 -0.1891

After this rotation, two additional elements, each with value a = —1.18297, are intro-
duced at (3,1) and (1,3), and the matrix is no longer tridiagonal.
233317 41515 118297 0
—-41515 1.6844  —0.2278 0
-1.18297 --0.2278 17087 —0.4022
0 0 —-0.4022 22751

Givens rotation G, is then applied to rows 2, 3 and columns 2, 3 with reference 10
—4.1515 and —1.18297 such that the elements at (3,1) and (1,3) become zero. We get

- 09617 0.274
G, = liz S] = [ ].This leads to

G,TG| =

¢ -0.274 0.9617
23.3317 -—4.3168 0 0
. —4. - _
G,1G = 3168  1.5662 0.1872 —0.1102
0 —0.1872 1.8269 —0.3868
0 -0.1102 -~0.3868 2.2751

Givens rotation G; is then applied with respect to elements at (3,2) and (4.2} t

"Sj| [0.861? 0.5074

make the locations (4,2) and (2.4) zero. We get G, = ¢ = .
) and (24) e L c ~0.5074 0.8617

+Wilkinson, ]. H., “Global Convergence of Tridiagonal QR Algorithm with Origin Shifts,” Linear
Algebra and Its Applications, T: 405420 {1968).
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After this application, the resulting matrix is tridiagonal. The off-diagonal elements at
the bottom become smaller:

233317 —4.3168 0 0
-43168 15662 —02172 0
G.TG, =
35 0 -02172 1.6041 0.00834
0 0 0.00834  2.498

The eigenvector matrix is updated by multiplying A with the Given’s rotations AG, G, G5 .

The iteration process is repeated until the off diagonal element b, (b,-,; forn X n
matrix) becomes small in magnitude (say, less than 107%). d, is an eigenvalue. The process
is now repeated on the 3 X 3 tridiagonal matrix obtained by excluding row 4 and col-
umn 4. This is continued till each of the off-diagonal terms approaches zero. All eigen-
values are thus evaluated. Wilkinson has shown that this procedure cubically converges
to diagonal form. The eigenvalues are 24.1567, 0.6914, 1.6538, and 2.4981, and the cor-
responding eigenvectors, after multiplying by L™ ( a forward-substitution operation
given by Eq. 11.68), are the columns of the matrix

-2.6278 —0.1459 0.0934  0.2543
0.3798 01924 03112 0.4008
02736 01723 -0.2780 -—0.9045
0.8055 -—05173 02831  0.0581

This algorithm for finding the eigenvalues and eigenvectors of the generalized eigenvalue
problem is implemented in the program GENEIGEN.

11.5 INTERFACING WITH PREVIOUS FINITE ELEMENT PROGRAMS

AND A PROGRAM FOR DETERMINING CRITICAL SPEEDS OF SHAFTS

Once the stiffness matrix K and mass matrix M for a structure are known, then the in-
verse iteration or Jacobi programs that are provided can be used to determine the nat-
ural frequencies and mode shapes. The finite element programs for rod, truss, beam, and
elasticity problems that we used in previous chapters can be readily modified to output
the banded K and M matrices onto a file, This file is then input into the inverse iteration
program, which gives the natural frequencies and mode shapes.

We have provided the BEAMKM program, which outputs the banded K and M
matrices for a beam. This output file is then provided to program INVITR, which cal-
culates the eigenvalues and eigenvectors (mode shapes). Example 11.5 illustra_ltes the
use of these two programs. Program CSTKM, which outputs K and M matrices for

the CST element, has also been provided.

Example 11.5
Determine the lowest critical speed (or transverse natural frequency) of the shaft shown

in Fi i h ing flywheels
in Fig. E11.5. The shaft has two lumped weights, W, and W, representing flywheels,
as shgown. Take £ = 30 X 10°psi and mass density of shaft p = 0.00073241b- s%/in.?
{ = 0.2831b/in").

i i lumped masses W,/g and W/g.
Solution The lumped weights W, and W, correspond 1o lumpe !
r;spectively where g = 386 in./s’. Program BEAMKM is executed, fnll()\fwed by program
[NVITR. The input data and solution are given at the end of the next section.
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by W, =2801b
P 2in diam —801 T

> .

\ 30in. \ 40 in. | 20in. |
| - -

FIGURE E11.5

Now, we can obtain the critical speed in rpm from the cigenvalue 4042 as

60
= )tX'-—
n=va 3 rpm

60
= V4042 X —
2 2

= 607 rpm

This example illustrates how the inverse iteration and Jacobi programs given in this chap-
ter can be interfaced with other programs for vibration analysis. u

11.6 GUYAN REDUCTION

Often, large finite element models with thousands of degrees of freedom {dof) are used
for stress and deformation analysis of ships, aircraft, automobiles, nuclear reactors, and
the like. It is clearly impractical and unnecessary to perform dynamic analyses using the
detailed representation that is required for static analysis. Furthermore, design and con-
trol methods work best for systems with a small number of degrees of freedom. To over-
come this difficulty, dynamic reduction techniques have been developed to reduce the
number of degrees of freedom prior to performing dynamic analysis. Guyan reduction
is one of the popular methods for dynamic reduction.* We have to make the decision
as to which dof are to be retained and which are to be omitted. For example, Fig. 11.9
shows how a reduced model is obtained by omitting certain dof. The omitted dof cor-
respond to those at which the applied and inertial forces are negligible.

The reduced stiffness and mass matrices are obtained as follows: The equations of
motion (see Eq.11.13) are MQ + KQ = F. If we group the inertial force together with
the applied force, we can write the equations as KQ = F. We will partition Qas

Q-= {g} (11.76)

where Q, = retained set and Q, = omitted set. Typically, the retained set is about 20%
of the total dof. The equations of motion can now be written in partitioned form as

Krr Kro Qr _ F,-
[KI, KE,J{QO} - {F} (1.7

*Guyan, R. I.*Reduction in stiffness and mass matrices,” AIAA Journal, vol. 3,no. 2, p. 380, Feb. 1965
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[ r 4] r 0 r o r
16-dof 4 ofi\ o/f\ off'\ 0)"1'\ of't\ o/f\ 0)4\ oft\ r = retain
model - - - ® * . . * o =omit

L e

1

FIGURE 11.% Guyan reduction.

& —

4-dof I

model

The idea is to choose the omitted set such that the components of F, are small. Thus, we
should retain those dof in the r-set with large concentrated masses, which are loaded (in
transient-response analysis) and which are needed to adequately describe the mode
shape. Setting F, = 0, the lower part of Eq. 11.76 yields

Q, = -K,K.,Q, (11.78)

The strain energy in the structure is U = %QTKQ. This can be written as
_ _1_ T T Krr Kro Qr
v=3l@ Q"][KL KJ[QD

1. .
Upon substituting Eq. 11.77 into the equation just described, we can write U = ) Q'K.Q,.

where
Kr = Krr - KroK;JK};J (1179)

is the reduced stiffness matrix. To obtain an expression for the reduced mass matrix, we
consider the kinetic energy V = 3 Q™™Q. Upon pz}rgitionipg the mass matrix and using
Eq. 11.78, we can write the kinetic energy as V = ;Q/M,Q,, where

M, = Mrr - MroK;;K;ro - K,OK;;ML + KroK;ngK;(}*K-rro (1180)

is the reduced mass matrix. With the reduced stiffness and mass matrices, only a smaller
eigenvalue problem needs to be solved:

KU, = MU, (11.81)
Then we 1ecover
U, = -K; KLU, (11.82)

Example 11.6 .
In Example 11.3, the eigenvalues and mode shapes of a cantilever beam were determincd

based on a four-dof model. We will apply Guyan reduction to this problem based on Iornit-
ting the rotational dofs and see how our results compare with the full model. Referring to
Fig. E11.3,Q+ and Qs refer to the translational dofs while O, and Q refer to the rotational
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dofs. Thus, the retained set is Qs and Qs and the omitted set is Q, and Q. Extracting the
appropriate components from the full 4 X 4 K and M matrices, we obtain

3556 —177.78 0 2667
""_mm[—m.vs 17?.78] ""’_1000[—26.67 —26.6?}

1067 2667 04193 0.0726
Koo = 1000[ 2667 533 ] e = [0.0726 0.2097]
o 0 -0.0052 __[ 0000967 -0.00036
© = | 0.0052 —0.0089 © = | —0.00036  0.00048

From Eqgs. 11.68 and 11.69, we obtain the reduced matrices
20,31 -6.338 0. 0.1
K = 10000[ -6.338 2.531}’ M, = [0.?02 0.155]

An input data file is prepared and program JACOBI is used to solve the eigenvalue prob-
lem in {1 1.70). The sclution is

Ay = 2025 X 10°, Ul =[0.6401 1.888]"

A= 8183 x 105,  U2=[1370 -1.959]"
Using Eq.11.71, we obtain the eigenvector components corresponding to the omitted dof as

Ul = [361 4.438]" and U2=[-0838 -16.238]

In this example, the Tesults correlate quite well with the solution of the unreduced system.

11.7 RIGID BODY MODES

In certain situations (such as in helicopter frames, flexible spacecraft structures, or flat
panels that are placed on soft supports), we are faced with the task of determining mode
shapes of structures that are freely suspended in space. These structures have rigid body
modes as well as deformation modes. The rigid body modes correspond to translations
and rotations of the entire structure along the x-, y-, and z-axes, respectively. Thus, there
are six (6) rigid body modes for a three-dimensional body in space. Modes 7, 8, ... ¢0T-
respond to deformation modes, which are to be determined from an eigenvalue analy-
sis. It should be recognized that the stiffness matrix K is singular when rigid body modes
are present. This follows from the fact that a finite translation or rotation U does not
create any internal forces or stresses in the structure. Thus, KU® = 0. Since U= 0K
has to be a singular matrix. Further, we can write KU® = 0 as KU = (O)MUO from
which we see that a rigid mode is associated with a zero eigenvalue. Specifically, the first
six rigid body modes are associated with six zero eigenvalues.

Steps in many eigenvalue evaluation algorithms given require that K be nonsin-
gular and also positive definite (i.e., that all eigenvalues be positive). This can be effected
by shifting as given in Eqs. 11.48-11.50. Thus, with a shift factor s > 0, we work with 2
positive definite matrix K, even though the original stiffness matrix is singular.
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Using JACOBI or GENEIGEN These methods do not require that the stiffness

matrix be positive definite. Thus, they may be directly used on the unconstrained struc-

ture. Note that the first six eigenvalues (for a three-dimensional structure) will be zero

representing the rigid modes, If small negative values are output as a result of round-off,
these may be ignored—avoid taking their square root in computing the frequency within |
the programs. !
|

Using INVITR Using the inverse iteration program to handle rigid body modes
is more involved. We need to define the rigid body modes in the program and then mass-
normalize them. Let U, US, ..., Ul represent six rigid body modes. After defining these,
each is mass normalized as

o__ U
L (UML)

Subsequently, each trial eigenvector is chosen as in Eq. 11.51 from a space M-orthogonal
to all previously calculated eigenvectors including the six normalized rigid body modes.
Rigid body modes may be readily defined as follows: Consider a general three-
dimensional body as shown in Fig. 11.10. In general, a node [ will have six degrees of
freedom, labeled Qgx;—s, Qeki—a» - - - » Oerks , corresponding x, y, and z translations and ro-
tations about x-, y-, and z-axes, respectively. Defining the first mode to be a translation
along x-axis, we have Q(6*I —5,1) =1 and Q(6*] — 4,1) = Q(6* ~3,1) =
Q6% —2,1) = Q(6*1 ~ 1,1} = O(6*1,1) = 0, where the first subscript is the
degree-of-freedom number and the second is the mode number. Similarly, translations
along y- and z-axes define modes Q( ., 2) and Q( ., 3}, respectively. Now, consider the
sixth rigid body mode corresponding to a rotation of the body about the z-axis, by an
angle 6. That is, a rotation in the x-y plane. We can choose an arbitrary value for 6.
Choosing the centroid as a reference point about which the body rotates, we can write
the translational displacement vector & of any node / in the body as

i=1,....6 (11.83)

§=V' ~V, where V' =[R]V

FIGURE 11.10 Rigid body rotation about z-axis.
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For this equation,V = x; — x_and R = |:

Dynamic Considerations

cos @
sin @

—sin 8
cos

} is a rotation matrix. From §,

we obtain Q(6*I — 5,6) = &, and Q(6*/ — 4,6) = 8,. Remaining components are
Q(6*I — 3,6) = 0,0(6*1 — 2,6) = 0,Q(6*] - 1,6) = 0,and Q(6*1,6) = 0 (inradi-
ans). Rotations about x- and y-axes can similarly be considered.

An example problem involving rigid body modes is presented in Example 11.7.

Example 11.7

Censider a two-dimensional steel beam, modeled using four elements as shown in
Fig, E11.7a. In this beam model, each node has a vertical translational and a counter-
clockwise rotational dof. No axial dofs are included. Taking the beam length to be 60 mm,
E as 200 Gpa, and p as 7850 kg/m" rectangular cross section of width 6 mm and depth 1 mm
(thus, inertia I = 0.5 mm*), and the shift factor s = —10%, we obtain the first three natural
frequencies to be 1440 Hz, 3997 Hz, and 7850 Hz, respectively. The corresponding mode
shapes are shown in Fig. E11.7b. Both programs JACOBI and INVITR give similar results.
Program JACOBI is easier to implement. In program INVITR, two rigid bedy modes cor-
responding to vertical translation and rotation were introduced. Mass normalization of
these involved Eq. 11.82, which needed special care as M is in banded form. [ |

11.8 CONCLUSION

1 2

4

I L
T

FIGURE E11.7a Unconstrained beam.
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FIGURE E11.7b  Mode shapes for unconstrained beam,

In this chapter, the application of finite elements for free vibrations is discussed in a
general setting using consistent mass matrices. Solution techniques and computer pro-
grams arc given. These programs can be integrated with static analysis programs to get
dynamic behavior of structures. Natural frequencies and mode shapes of structures give
us the needed data concerning what excitation frequencies should be avoided.
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Input Data File
<< PROGRAM BEAMKM >> é
EXAMPLEL1.5 |
NN NE NM NDIM NEN NDN
4 3 1 i 2 2
ND NL HNMPC
2 Q 0
Node# X
3 4]
2 30
3 70
4 90
Elem# N1 N2 MAT# Mom_Inertia RArea
1 1 2z 1 .7854 3.1416
2 2 3 1 .7854 3.141¢
3 3 q i .7854 3.1416
DOF¥ Displacement
1 0
7 0
DOF$# Load
MAT# E MassDensity
1 AE+D7 .0007324

OUTPUT FROM BEAMKM FOR INFUT TO INVITR, JACOBI, OR GENEIGEN
Stiffriess and Mass for Data in File exll5.inp
Num. of DOF Bandwidth
9 4
Banded Stiffness Matrix
7.068601E+10 157080 -10472 157080
3141600 -157080 1570800 O
14969.088 -68722.5 -4417.875 B8357.5
5497800 -88357.5 1178160 0
39760.88 265072.5 -35343 353430
7068600 -353430 2356200 O
7.068603E+10 -353430 ¢ O
4712400 0 0 0O
Banded Mass Matrix
2.563869E-02 .1084714 8.87493E-03 -6.409672E-02
,581662 6.409672E-02 ~-.4437465 0
.2670774 9.436662E-02 1.183324E-02 -.1139497
1.99412 .1139497 -1.051844 o]
.3621584 -.1446285 5.91662E-03 -2.848743E=-02
1.577765 2.894B743E-02 -,1314804 0
1.709246E-02 -.0482095 0 O
.1753073 0 0 O
Starting Vector for Inverse Iteration
11111111

OUTPYUT FROM INVITR
Name of Input File Eigen.inp
Name of OQutput File InvItr.out
Tolerance <default 1E-6.

Number Eigenvalues Desired 2
Program Invitr - CHANDRUPATLA & BELEGUNDU ) .
Eigenvalues & Eigenvectors for data in file: Eigen.inp
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continued

Eigenvalue Number 1 Iteration Number 3

Eigenvalue = 4.0420E+03 COmega = 6.3577E+01 Freq Hz = 1.0119E+01
Eigenvector

5.1040E-08 5.5269E-02 1.3783E+00 2.7573E-02 1.0495E+00 -4.21
2.6005E-08 -5.7648E-02

Eigenvalue Number 2 Iteration Number 4
Eigenvalue = 4,3104E+04 Cmega = 2.0781E+02 Freq Hz = 3.3074E+01
Eigenvector

§_.9643E-08 B8.1562E-02 1.3010E+00 -2.%044E-02 -1.2374E+00 5.0
1.4669E-07 9.0721E-02

93E-02

888BE-03 -

Program Geneigen - CHANDRUPATLA & BELEGUNDU
Eigenvalues & Eigenvectors for data in file: Eigen.inp

Eigenvalue Number 1

Eigenvalue = 4.0420E+03 Omega = 6§,3577E401 Freg Hz = 1.011%E+01
Eigenvector

_2.1038F-08 -5.5266E-02 ~-1.3783E+00 -2.7576E-02 -1.049%6E+00
2.6009E-08 5.7650E-02

Eigenvalue Humber 2

Eigenvalue = 4,3184E+04 Omega = 2.0781E+402 Freq Hz = 3.3074E+01
Eigenvector

_8.9646E-08 -8.1578E-02 -1.3015E+00 2.9034E-02 1.2370E+00 -5
1.4669E-07 -9.0704E-02

Eigenvalue Number 3

Eigenvalue = 1.2073E+06 Omega = 1.0588E+03 Freq Hz = 1.7488E+02
Eigenvector

1.3652E-06 3.9771E-01 1.1407E-01 -4.4556E-01 3.6412E-01 2.61
9.130BE-07 ~-1.7764E-0l

Eigenvalue Number 4

Eigenvalue = 4.5038E+06 Omega = 2.1222E+03 Freq Hz = 3.3776E+02
Eigenvector

4_.3420E-06 7.7777E-01 -5.3689E-01 -1.7096E-01 -1.2843E-01 -6
3.4292E-06 4.843%BE-01

Eigenvalue Number 5

Eigenvalue = 1.4837E+07 Cmega = 3.8518E+03 Freq Hz = 6.1304E+02
Eigenvector

-1.1403E-05 ~1.1700E400 3.6043E-01 -7.5974E-01 1.5876E-01 -4
9.6374E-06 9.1415E-01

Eigenvalue Number €

Eigenvalue = 4.344%E+(Q7 Omega = €.5916E+03 Freg Hz = 1.0491E+03
Eigenvector

-5.8104E-06 -5.0560E-01 ~1.1210E-02 -5.4875E-01 -3.8044E-01
3.8771E-05 -2.3383E+00

4.2193E-02

.0751E-03

T6E-01

.2376E-01

. 1676E-01

-7.6675E-01
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continue
Eigenvalue Number 7
Eigenvalue = 1.3157E+13 Omega = 3.6272E+06 Freq Hz = 5.7729E+05
Eigenvector
-1.3618E+01 2.7177E+400 -2.1183E-01 2.,6427E-01 ~4.1855E-03 1.6685E-01 -
B.2693E-01 -1.0293E-01
Eigenvalue Number 8
Eigenvalue = 1,8936E+13 Cmega = 4.3515E+06 Fregq Hz = 6.95256E+405
Eigenvector
-9,9205E-01 2.6900E-01 3.69%73E~03 1.1670E-01 1.3534E-01 1.8317E-01
1.6337E+01 4.6521E+00
PROBLEMS
11..1. Consider axial vibration of the steel bar shown in Fig. P11.1.

(a) Develop the global stiffness and mass matrices.
(b) By hand calculations, determine the lowest natural frequency and mode shape using

the inverse iteration algorithm.
(¢) Verify your results in (b) using programs INVITR and JACOBI.
(d) Verify the properties in Eqs. 11.41a and 11.41b.
=12 2
A 00 mm A, = 900 mm?
/
¥ I—r x

}wSﬂDmm 400 mm

Steel bar
FIGURE P11.1

%

By hand calculations, determine the natural frequencies and mode shapes for the rod in
P11.1 using the characteristic polynomial technique.

Use a lumped mass model for the rod in P11.1,and compare the results obtained with the
consistent mass model. Use program INVITR or JACOBL

Determine all natural frequencies of the simply supported beam shown in Fig. P11.4. Com-
pare the results obtained using the following:

(a) a one-element model and

(h) a two-element model.
Use either program INVITR or JACOBL

aﬁa*j‘ZSmm

5 K3
7 “  75mm
SOOmm————"I

Steel beam
FIGUREP11.4

) 3
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1L5. Determine, with the help of program BEAMKM, the two lowest natural frequencies {crit-

ical speeds) of the steel shaft shown in Fig. P11.5, considering the following cases:
(a) The three journals are like simple supports.
(b) Each journal bearing is like a spring of stiffness equal to 25,000 Ib/in.

Bearing i 120016 4, diam
-1 ]
om o  p——l
’ L | ‘
30in.__|_ 18in | 18in ! 30in.
T il

! ]
FIGURE P11.5

11.6. The existence of a crack renders an overall reduction in the stiffness of a structure. A crack

L7,

118.

in a bending member, such as a beam, suggests a slope discontinuity at the section con-

taining the crack, even though the displacement is still continuous there. Thus, the effect

of a fracture at a section may be represented by torsional spring connecting two elements,
whose torsional stiffness k may be determined analytically or experimentally.

Consider the cracked cantilever beam shown in Fig. P 11.6.

(s) Discuss how you will model this using beam elements. Write down the boundary
conditions at the cracked section, and the resulting modifications to the stiffness
matrix.

(b) Determine the first three natural frequencies and mode shapes and compare these
with those of an uncracked beam of same dimensions. Take & = 8 X 10%in.-Ib and
E = 30 X 10P psi.

2

-

FiGURE P11.6

Wiz

4
2in.
o

A simplified model of a steel turbine blade is shown in Fig. P11.7, We want to determine
the lowest resonant frequency with motion in x direction and corresponding mode shape.
It is important that we do not excite this resonant frequency to avoid contact of the blades
with the casing. The outer ring connecting all the blades is represented as a lumped mass.
Use programs CSTKM and INVITR.

Figure P11.8 shows a beam modeled using four-node quadrilateral elements. Develop a pro-
gram that will generate the banded K and M matrices. Then use program INVITR to
determine the two lowest natural frequencies and mode shapes. Compare your results
with those obtained using beam elements.

- s e E
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™~ .
~ Casing
N

/< o
& P
\-@ﬁ&/ \/
FIGURE P11.7

7
’ t
/i 3in
w
e—————75% 4=30in,~— t=1lin
FIGURE P{11.8 Stee! beam.

11.9. Determine the two lowest natural frequencies and mode shapes for the one-bay, two-story
planar steel frame shown in Fig. P11.9. You need to develop a program, analogous to
BEAMKM, that will generate the banded K and M matrices and then use program INVITR.

T L 5
120 in. “03in
b i
b
Line of } .
symmetry — 12in.
240 in. 02in. —= [f+—
a—
¥

— T T

te———— 240in. — ™

Cross section of

Steel frame
- frame element

FIGURE P11.9

4_____—-—-—-J
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11.10. For the signal pole arrangement shown in Fig. P11.10, a two-dimensional frame, determine
the natural frequencies and mode shapes. (Note: Develop a program in line with
BEAMEKM to write stiffness and mass matrices to a file. Then an eigenvalue routine like

INVITR can be run.)

6 in. diam
b
n— &
8 ft
8in. diam
_L 40 Ib 301b 30ib
L o Q Q
4in.d Q
in. diam T Q § 8 f ‘ -
N 5 ft v 8f | 8ft |
Thickness of pipe = ﬁ in.
E =30 x 10° psi,v=0.3
Unit weight for steel = 0.282 [b/in? 18 ft
v/
— e
12 in.

11.11. Consider the shaft in Example 11.5. Using Guyan reduction, reduce the cight-dof beam
model to a two-dof model retaining the translational dof at the flywheels. Compare these
frequencies and mode shapes with those obtained from the eight-dof model. Use BEAMKM

FIGURE P11.1D

and JACOBI programs, Also state which modes are missing in the reduced model.
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11.12. Reduce the following symmetric matrix to tridiagonal form:

1 200

o D o= o
oo

1
2
1
0

oo = W
Ll o I 8]
LV

11.13. Reduce the following two matrices simultaneously to diagonal form using Jacobi’s approach:

4 320 3120
3310 1 210
K“2121 M=, 131
001 4 001 2

11.14. Consider the beam model shown in Fig. P11.14. Each beam node has a vertical translational

11.15.

degree of freedom (dof) and a counter-clockwise rotational dof. No axial dofs are includ-

ed. Take the beam length to be 60 mm, rectangular cross section of width 6 mm and depth

1 mm (thus,I = 0.5 mm®*), and obtain the first three natural frequencies for the different

cases that follow. Plot the mode shapes. {After obtaining the output from eigensolver,

which contains nodal displacements of the mode shapes, you can interpolate using Hermite

cubic shape functions and then use MATLAB or other programs to plot the discretized

curve.) Take material to be steel, with E = 200 GPa and p = 7850 kg/m”.

{a) Left end is fixed.

(b) Left end is fixed and a concentrated mass M is attached to the right end (node 5).
Take M = 5% of the beam mass.

() Beam is unconstrained, and a mass M is attached to the right end as in (b).

For cases (a) and (b}, you can use program INVITR, JACOBI, or GENEIGEN. For (¢),

use program JACOBI or GENEIGEN.

1 2 5
- } t i i FIGURE P11.14

A rigid body with mass M and inertia /- about its center of gravity is welded on to the end
of a planar beam element as shown in Fig. P11.15. By writing the kinetic energy of the

mass as lM v+ %[cwz, and relating v and w to Q, and (., determine the (2 X 2) mass

matrix contribution to the beam node.

o]
|
1/ cc
¥ 7~
'
4]

FIGURE P11.15
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. g
Program Listings

li*t**ti**it*i*****t***t**t**t***tt**i*

e PROGRAM BEAMEM *

T STIFFNESS AND MASS GENERATION *
** T R.Chandrupatla and A.D.Belegundu *
'**tt*i*******ﬁ****i*****t***********ti
» MAIN PROGRAM
Private Sub cmdStart Click()

Call InputData

Call Bandwidth

Call stiffnMass

Call ModifyForBC

Call AddSprMass

Call Output

cmdView. Enabled = True

cmdsStart .Enabled = False
End Sub

\ceom==rzuac== STIFFNESS AND MASS
Private Sub StiffnMaas()
ReDim S(NQ, NEW}, GM{NQ, NBW)
————— Global Stiffuness and Mass Matrices -—---
For N = 1 To NE
picBox.Print "Forming Stiffness and Mass Matrices of Element "; N
Call ElemstiffMaas (N}
picBox.Print ".... Placing in Global Locations™
For I1 = 1 To NEN
NRT = NDN * (NOC{N, II} - 1}
For IT = 1 To NDN
NR = NRT + IT
I = NDN * (II - 1) + IT
For J7 = 1 To NEN
NCT = NDN * (NOC(N, JJ} - 1}
For JT = 1 To NDN
J = NDN * (J0 - 1) + JT
NC = NCT + JT - NR + 1
If NC > 0 Then
S(NR, NC) = S{NR, NC) + SE{I, J)
GM(NR, NC) = GM{NR, NC) + EM(I, J)
End TIf
Next JT
Next JJ
Next IT
Next TII
Next N
End Sub
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\============ ELEMENT STIFFNESS AND MASS
Prlvate Sup ElemStiffMass {N)
-------- Element Stiffness and Mass Matrices ----—--—-
NOC(N, 1)}
NOC (N, 2}
M = MAT (NE)
= Abs (X (N1l) - X(N2})
t-—- Element Stiffness
EIL = PM{M, 1) * SMI{N) / EL "~ 3
SE{l, 1} 1z * EIL
SE{l, 2} EIL * 6 * EL
SE(1l, 3} -l2 * EIL
SE(1l, 4) EIL * 6 * EL
SEf{2, 1} SE(1, 2}
sE{2, 2) EIL * 4 * EL * EL
SE(2, 3} -EIL * & * EL
SE(2, 4} EIL * 2 * EL * EL
SE(3, 1} SE{l, 3
3E{3, 2) SE(2, 3}
SE(3, 3) = EIL * 12
3E{3, 4) -BIL * & * EL
SE{4, 1) = S5E(1, 4}
SE(4, 2) = SE(2, 4}
SE({4, 3) = SE{3, 1)
SE(4, 4) = EIL * 4 * EL, * EL
'-—- Element Mass
RHOC = PM(Hr 2)
cl = RHO * AREA(N) * EL / 420
EM{1, 1) = 156 * Cl
EM(1l, 2) =22 * EL * Cl
EM{1l, 3) = 54 * Cl
EM({1, 4} = =13 * EL * Cl
EM{2, 1} EM{l, 2}
EM(2, 2} 4 * EL * EL * Cl
EM{2, 3) = 13 * EL * Cl
EM{2, 4) -3 * EL * EL * Cl
EM{3, 1) EM{1l, 3}
EM{3, 2) EM(2, 3}
EM{3, 3) 156 * C1
EMI3, {) ~22 * EL > Cl
EM({4, 1} EM({1, 4)
EM{4, 2} EM{2., 4
EM{4, 3) EM(3, 4)
EM({4, 4) =4 * EL * EL* C1

non
LI I |

Boaono

hnown

End Sub

Ver e e === ADD SPRINGSIWSES

Prlvate Sub AddsprMassi{}
---- Additional Springs and Lumped Masses

b “pof# = 0 Exits this”, vnoF# with Spring Suppeort™,

N = InputBox{
1f N = 0 Then Exit Do )
€ = InputBox (N, "support stiffness at Dof ¥, 0}

S(N, 1) = 8{N, 1} + c

0}

Loop

-
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Do ’
N = InputBox("Dof# = 0 Exits this", "DOF# with Lumpecd Mass™, 0)

If N = 0 Then Exit Do
C = InputBox{N, "Lumped Mass at”, 0}
GM(N, 1) = GM(N, 1} + C

Loop

End Sub

b MODIFY FOR BC
Private Sub ModifyForBC(}
Ve Decide Penalty Parameter CNST -—-—-
CNST = 0
For I = 1 To NO
If CNST < S{I, 1) Then CN5T = S(I, 1)
Next 1
CNST = CNST * 10000
Vo Modify for Boundary Conditions —----
'-—- Displacement BC -—-
For I = 1 To ND
N = NU{I)
S({N, 1) = 5(N, 1} + CNsT
F(N} = F{N} + CN3IT * U(I)
¥ext I
'——- Multi-point Constraints ——-
For I = 1 To NMPC
I1 = MPC{I, 1}: I2 = MPC(I, 2)
8{11, 1) = 8{Il1l, 1) + CNST * BT{(I, 1) * BT{I, 1}
§{I2, 1} = 8(I2, 1) + CNST * BT{I, 2} * BT(I, 2)
IR = I1l: If IR > I2 Then IR = I2
IC = Abs(I2 - Il} + 1
S{IR, IC) = S(IR, IC) + CNST * BT(I, 1) * BT(I, 2)
F(Il) = F{(I1) + CNST * BT(I, 1) * BT(I, 3}
F(I2) = F(I2) + CNST * BT({I, 2) * BT(I, 3)

Naxt I

End Sub

hfdol FROGRAM IMVITR e

b Inverse Iteration Method *

'+ for Eigenvalues and Eigenvectors *

v Searching in Subapace *

i for Banded Matrices *
*

'+ 7.R.Chandrupatla and A.D.Belegundu
[prarargegrpnear T r TR T TR L E L E S L L LA LA A 4 & g a g
DefInt I-N
DefDbl A-H, O-Z
Dim NQ, NBW
Dim S{}, GM{}, EV1{), EV2{}, EVC(), EVL()
pDim EVT{), EVS{}, S5T{}, NITER{}
Dim TOL, SH, NEV, NEV1, ITMRX, FI
Dim Title As String, Filel As String, File2 As String
Dim Durnmy As String
Private Sub cmdEnd Click({)
End
End Sub
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‘=== oamms== MAIN PROGRAM
Private Sub cmdStart_Click()
Call InputData
Call BanSolvel V¢———-Stiffness to Upper Triangle
Call Inverselter
Call Cutput
cmdView.Enabled = True
cmdStart.Enabled = False
End Sub

3

* DATA INPUT FROM A FILE
Private Sub InputData(}
Filel = InputBox("Input File d:\dir\fileName.ext", "Name of File™}
TOL = InputBox("Enter Value', "Tolerance”, 0.0C0001)
NEV = InputBox{"Enter Number”, "Humber of Eigenvalues Desired”, 1)
S5 =0
Open Filel For Input As #l
Line Input #1, Title: Line Input #1, Dummy: Input #1, NQ, NBW
ReDim S{NQ, NBW), GM(NQ, NBW}, EV1(NQ}, EVZ(NQ), NITER{NEV)
ReDim EVT(NQ}, EVS(NQ}, ST (NQ}, EVC(NQ, NEV}, EVL{NEV)
le===csra==—=== READ DATA
fmm Raead in Banded Stiffness Matrizx --—--—-
Line Input #1, Dummy
For I = 1 To NQ: For J = 1 To NBW
Input #1: S':I: J)
Next J: Next I
Voo Read ip Banded Mass Matrix
Line Input #1, Dummy
For I = 1 To NQ: For J =1 To NBW
Input #1, GM{I, J)
Next J: Next I
form Starting Vector for Inverse Iteazation
Line Input #1, DPummy
For I = 1 To NQ: Input #1, ST{I): Next I
Close #1
$H = InputBox{"SHIFT", "Shift Value for Eigenvalue”, 0)
If sH <> 0 Then
For I = 1 To Ng: For 7 =1 To NBW
5tI, J1 = S{I, J} - SH * GM{1, J}
Next J: Next I
| End IfEnd Sub

‘== INVERSE ITERATION
Private Sub Inverselter({}

ITMAX = 50: NEV1 = NEV

pPI = 3,14159

For NV = 1 To NEV
‘- Starting Value For Eigenvestor
For I = 1 To NQ: EVi{I} = ST{I): HNext I

EL? = 0: ITER = O
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continued

Do

ELl1 = EL2
ITER = ITER + 1
If ITER > ITMAX Then
picBox.Print "No Convergence for Eligenvalue$# "; NV
HEV1 = NV - 1
Exit Sub
End If
If NV > 1 Then
'——m-  Ftarting Vector Orthcgonal to
e — Evaluated Vectors
For I =1 To NV - 1
cv =0
For K = 1 Te RQ
KA = K - NBW + 1: KZ = K + NBW - 1
If KA < 1 Then KA =1
If KZ > NQ Then K& = NQ
For L = KA To K2
If L < K Then
Kl=1L: L1 =K-L +1

Else
Kl=K: L1l =L-K+1
End If
CV = CV + EVS(K) * GM(K1, L1} * EVC(L, I}
Next L
Next K
For K =1 To NQ
EV1{K) = EV1(K) - CV * EVC(K, I}
Next K
Next I
End If

For I = 1 To NQ
IA =T - NBW + 1: IZ = I + NBW — 1: EVT(I) = 0
If IA < 1 Then IA = 1
If IZ > HNQ Then IZ = NQ
For X = IA To IZ
If K < I Then
Il=K: Rl=1I-X+1
Else
Il =I: Kl=K-1I+1
End Tf
EVT (I} = EVT(I) + GM{Il, K1) * EV1(K)
Next K
EVZ(I) = EVI(I)
Next I

Call BanSclvel '<——- Raduce Right Side acnd Solve
cl=0:¢Cc2 =240
For I = 1 To NQ
Cl =Cl + EV2(I) * EVTII)
Next I
For I = 1 To NQ
IA = I - NBW + 1: IZ = I 4 NBW - 1: EVT(I) = 0
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If IA < 1 Then IA = 1
If IZ > NQ Then IZ
K

NQ
For K IA To IZ
1f < I Then
Tl =K: K1l=I - K+ 1
Else
I1=I: K1=K-I+1
End If
EVT({I) = EVT(I) + GMI{IL, Ki} * EVZ(K)
Next K

To NQ
2 + EV2{I) * EVT(I)

0 e

Hext 1
ELZ = C1 / C2
c2 = 5qr{c2)
For I = 1 Te NQ
EV1(I) = EV2(I) / C2
EVS{I) = EV1(I!}
Next I
Loop While Abs(ELZ - EL1l] / Abs{ELZ} > TOL
For I = 1 To NQ
EVC{I, NV) = EV1(I)
Next I
NITER(NV} = 1TER
EL2 = EL2 + SH
EVL{NV) = EL2
Next NV
End Sub

‘"————= BAND SOLVER FOR MULTIPLE RIGHT HAND SIDES =====
Private Sub BanSolvel({)
T Gauss Elimination LDU Approach (fox Symmetzic Bandsd Matrices)
[ Multiple Right hand sides
e Reduotion to Dpper Triangular Form
For K= 1 To NQ - 1
NK =HNQ - K+ 1

If NK > NBW Then NK = NEBW
For I = 2 To NK
¢l = StK, I} / Si{K, 1}
I1=K+I1I-1

For J = I To HK
Jl=Jd-I+1
s{r1, J1) = s{Il, Ji) - CL * S(K, J)
Next J
Next T
Next K
End Sub
Private Sub BanSolve2()
to—— Raduction of the right band sids
1 To NQ - 1
He - K+ 1
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continued

If NK > NBW Then NK = NEW
For I =2 Toe NK: Il =K+ I -1
cl =1/ 5{K, 1)
EVZ(Il} = EV2{Il) - €1 * S(K, I} * EV2(K)
Next I
Next K
1 ee——r Backsubstitution
EVZ(NQ} = EV2(NQ) / S(NQ, 1}
For II = 1 To NQ - 1
I =Ng-II:Cl=1 / 8(I, 1}
NI =Ro-I+1
If NI > NBW Then NI = NEW
EVZ2(I} = Cl * EV2(I)
For K = 2 To NI
EVZ{I} = EV2{(I} - C1L ~* §(I, K) * EV2(I + X - 1}
Next K
Next II
End Sub

' OUTPUT
Private Sub Output ()
Isz=== Print Displacemants, Stresses, and Reactions
Fila2 = InputBox {"Cutput Tile d:\dir\fileFame.ext", "Hame of Fila")
Open FileZ For Output As #2
Print #2, "Program InvItr - CHANDRUPATLA & BELEGUNDU"
Print #2, "Eigenvalues & Eigenvectors for data in file: ™; Filel
Vo Eigenvalues and Figexvectors —-———-
If NEV1 < NEV Then
Pprint #2, "Convergence for “; NEV1; " Eigenvalues Only."
NEV = NEV1
End If
For NV = 1 To NEV
Print #2,
Print #2, "Eigenvalue Number "; NV;
Print #2, ™ Iteration Number “; NITER(NV)
Print #2, "Elgenvalue = ";
pPrint #2, Format(EVL(NV), "0.0000E+00 ™);
OMEGA = Sqr(EVL(NV)): FREQ = 0.5 * OMEGA / PI
Print #2, "Omega = “:
Print #2, Format{OMEGA, "0.COOOE+00 ™);
Print #2, "Freg Hz = ";
Print 42, Format{FREQ, "0.000G0E+00"}
Print #2, "Eigenvector "
For I = 1 Tc NQ
Print #2, Format(EVC(I, NV}, "0.0000E+30 ");
Next I
Print #2,
Next NV
tlose #2
picBox.Print "RESULTS RRE IN FILE "; File2
End Sub
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Preprocessing
and Postprocessing

INTRODUCTION

Finite element analysis involves three stages of activity: preprocessing, processing, and
postprocessing. Preprocessing involves the preparation of data, such as nodal coordi-
nates, connectivity, boundary conditions, and loading and material information. The pro-
cessing stage involves stiffness generation, stiffness modification, and solution of
equations, resulting in the evaluation of nodal variables. Other derived quantities, such
as gradients or stresses, may be evaluated at this stage. The processing stage is present-
ed in detail in earlier chapters, where the data were prepared in a formatted input file.
The postprocessing stage deals with the presentation of results. Typically, the deformed
configuration, mode shapes, temperature, and stress distribution are computed and dis-
played at this stage. A complete finite element analysis is a logical interaction of the
three stages. The preparation of data and postprocessing require considerable effort if
all data are to be handled manually. The tedium of handling the data and the possibili-
ty of errors creeping in as the number of elements increase are discouraging factors for
the finite element analyst. In the following sections, we presenta systematic development
of preprocessing and postprocessing considerations. This should make finite element
analysis a more interesting computational tool. We first present a general-purpose mesh
generation scheme for two-dimensional plane problems.

12.2 MESH GENERATION

Region and Block Representation

The basic idea of a mesh-generation scheme is to generate element connectivity data and
nodal-coordinate data by reading in input data for a few key points. We present here the
theory and computer implementation of a mesh-generation scheme suggested by
Zienkiewicz and Philips.* In this scheme, a complex region is divided into eight-noded
quadrilaterals, which are then viewed in the form of a rectangular blo_ck pattern. Con-
sider the region shown in Fig. 12.1. The full rectangular block pattern is convenient for

*Zienkiewicz, 0. C..and D.V. Philips, “An automatic mesh generation scheme for plane and curved sur-
faces by ‘iso]:»arameuic’ coordinates.” Jrternational Journal for Numerical Methods in Engineering 3: 519-528

(1971).

41
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FIGURE 12.1 (a) Region and (b} block diagram.

node numbering. To match the pattern in the region, the block number 4 is to be treated
as void and the two hatched edges need to be merged. In general, a complex region is
viewed as a rectangle, composed of rectangular blocks, with some blocks left as void
and some edges identified to be merged.

Block Corner Nodes, Sides, and Subdivisions

A general configuration of the full rectangle composed of blocks is shown in Fig. 12.2.
We represent the sides of the rectangle as § and W, with respective numbers of spans of
NS and NW. For consistent coordinate mapping, S, W, and the third coordinate direc-
tion Z must form a right-hand system. For mesh generation, each span is subdivided.
Spans K§ and KW are divided into NSD(KS) and NWD(KW) divisions, respectively.
Since the node numbering will be carried out in the S direction first and incremented in
the W direction next, the bandwidth of resulting matrices will be small if total number
of divisions in the S direction is less than the total number in the W direction. S and W
are chosen to represent short and wide directions in this sense. In this scheme, the band-
width is a minimum when there are no void blocks and there is no side merging. We
note here that the total number of nodes in the S and W directions are

NS
NNS =1+ D NSD(KS)

K5=1

NW
NNW =1+ > NWD(KW) (12.1)

KW=1
The maximum possible nodes for quadrilateral or triangular division is taken as
NNT(= NNS X NNW). We define an array NNAR(NNT) to define the nodes in the
problem. We also define a block identifier array /DBLK(NSW), which stores the ma-
terial number in the location representing the block. A zero is stored in the location
corresponding to a void bleck. The x- and y-coordinates of all valid block corner nodes
are read into XB(NGN, 2). The program is given for planar regions, By introducing the
z-coordinate, three-dimensional surfaces can be modeled. Two arrays, SR(NSR, 2) and
WR(NWR,2), are used for storing the coordinates of the nodes on the corresponding
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FIGURE 12.2 Numbering of corner nodes and sides.

sides. First, we generate the nodes for all sides, assuming that the side is a straight line
and the node is at the midpoint between the corner nodes. This represents the default
configuration. Then, for sides that are curved and for those straight sides with nodes not
located at physical midpoints, the x- and y-coordinates are read into SR(..2) and WR(..2},
at appropriate locations. The sides to be merged are identified by the end node numbers
of the sides. We now discuss the node numbering and coordinate-generation schemes.

Generation of node numbers  We present the node-numbering strategy by
means of an example. Consider the region and block representation shown in Fig. 12.1.
The node numbering scheme is shown in Fig. 12.3. We have two blocks in the § direction
and two in the W direction. Block 4is void. Array NNAR(30) has all the locations defined.
Edges 18-20 and 18-28 are to be merged. We first initialize the array NNAR(30) by
putting —1 at each of its locations. We then cover each of the void blocks and put zero
where nodes do not exist. Existence of neighboring blocks is checked in implementing
this process. For side merging, at the node locations of the side with higher node num-
bers, the location numbers of the corresponding nodes of the merging side are entered.
The final node numbering is a simple process. We sweep along S and then increment
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along W.The node numbers are increm

sary in this process.

FIGURE 12.3 Node numbering.

ented by 1 whenever the location has ane gative
value. When the value is zero, it is skipped. If the location has a positive value, it i
cates side merging and the corresponding node number from the location indicated by
the value is inserted. The scheme is simple and nodal coordinate checking is not neces-
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Generation of coordinates and connectivity Here we use the shape functions
for isoparametric mapping for an eight-noded gquadrilateral developed in Chapter 7. We
refer to Fig. 12.4, which establishes the relationships for the master block or §{—r block,
the S-W block, and the region block or x—y block. The first step is one of extracting the
global coordinates of corner and midside nodes of the block under consideration. For a
general node N1, the £- and 9-coordinates are obtained using the number of divisions.

6

5
7
)
£
7 6 -'{ 5 4
8
8 N1 7 ¢
4
3
y
2
1 2 3 1
x
(a) (c)
KSW + NS
K1+NS ,~  KL¥NS+1
N4 N3
NWD(KW) N1 N2
K1 K1+ 1

K1 T— KSW Kl+1
NSD(KS)
N (b

FIGURE 12.4 Coordinates and connectivity: () master block for shape functions. (b) block
for node numbers, and (c) block in region.
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The coordinates of N1 are given by
= i SH(I)-X(I)
!;l

)
SH(I)-Y(I) (12.2)

X
y
where SH( ) are shape functions and X( ) and Y( ) are corner node coordinates. For
the small rectangular shaded division with lower left corner N1, shown in Fig. 12.4, the
other three nodes N2, N3, and N4 are computed. For quadrilateral elements, we use
N1-N2—N3—-N4 as the element, with the first element of the block starting at the lower
left corner. The element numbers for the next block start after the last number of the pre-
vious block. For triangular element division, each rectangle is divided into two trian-
gles, N1-N2-N3 and N3-N4-N1. The triangular division is readjusted to connect the
diagonal of shorter length. The process of coordinate and connectivity generation is
skipped for void blocks.

This is a general-purpose mesh-generation scheme with the capability to model
complex problems. This scheme can be readily generalized to model three-dimensional
surfaces by introducing the z-coordinate. To illustrate the use of the program, we con-
sider a few examples.

Examples of mesh generation In the first example shown in Fig. 12.5, there
are four blocks. The default material number for all blocks is 1. Material number for

w

5 6
8 -
3
7
2
.S 4 1
Void 4 1 5 .
() {b}
43 26 28
39
22
1 5 7

(©)
FIGURE 12.5 Example mesh 1: (a) block diagram, (b} region, and (c) mesh.
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block 4 is read in as zero to represent void space. S spans 1 and 2 are divided into four
and two divisions, respectively. W spans 1 and 2 are each divided into three divisions. The
coordinates of corner nodes 1-8 and the coordinates of midpoints of curved sides W1
and W4 are read in. The generated mesh with node numbers is also shown in Fig. 12.5.
If triangular mesh is desired, the shorter diagonal of each quadrilateral will be joined.

In the second example, shown in Fig. 12.6, we model a full annular region. To
achieve a minimum bandwidth, the block diagram shown in Fig. 12.6a is suggested.
Blocks 2 and 5 are void space. The side 1-2 merges with 4-3, and side 9-10 merges with
12-11. Coordinates of all corner nodes and the midpoints of W1, W2,..., W8 of the
block diagram need to be given. The resulting mesh for the span divisions shown in
the block diagram is given in Fig. 12.6¢.

S ld 1 12
%W?ﬁ ws
3 W5 4%%é
3W: 1WZ%;33 jv4
[ 1 % e

(a) (b)

FIGURE 12.6 Example mesh 2: (a) block diagram. {b) region, and (¢} mesh.
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21
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Void 2,4, 10,12
Merge 1-2,19-20

{a)

220 3

=

N
N

38

19 39
6 8
29
9 12 15 20 ' 30 a0
(b) {©

FIGURE 12.7 FExampie mesh 3: {a} block diagram, {b) region, and (c} mesh.

Figure 12.7 shows an eyelet. The full geometric shape is modeled. The block dia-
gram shows void blocks and span divisions. Merging sides are indicated. Coordinates of
all corner points of the block diagram are to be read in. The coordinates of midpoints
of curved sides W1, W2, W4, W7, W10, W13, W16, and W17 have to be input. The mesh
is shown for quadrilateral elements.

Division of a region and making a block diagram form the first step in the prepa-
ration of data for mesh generation.

Mesh plotting The generated data are saved in a file. The convenient way of
reviewing the coordinate and connectivity data is by plotting it using the computer. The
plots will quickly reveal if there are any errors. Points to be readjusted can easily be
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identified. The program PLOT2D can be used for plotting two-dimensional meshes on
the screen. In mesh plotting, we scan each element and draw the element boundaries
using the connectivity information. The coordinate bounds must first be adjusted for
the screen resolution and size,

Data handling and editing In simple problems with small number of elements
and nodes, it is convenient to prepare data directly using a text editor. For larger prob-
lems, the user may generate the data files by using the MESHGEN program. Output of
the MESHGEN program essentially consists of nodal coordinates and element con-
nectivity. A text editor is then used to add loading, boundary conditions, material prop-
erties, and some other information to the mesh data file. The format for the data file is
common for all problems and is given on the inside front cover of this book. Impor-
tantly, an example input file is provided at the end of every chapter. For two-dimensional
problems, the program PLOT2D can be used to read the data and plot meshes on
the screen.

The data thus created can be processed by the finite element programs presented
in earlier chapters. The finite element program processes the data and calculates nodal
variable quantities, such as displacements and temperatures, and element quantities,
such as stresses and gradients. The stage is now set for postprocessing,

12.3 POSTPROCESSING

We discuss here the aspects of plotting a displaced configuration, plotting nodal data in
the form of contour plots, such as isotherms and isobars, and conversion of element-
oriented data into best fitting nodal values. We restrict our discussion here to two-
dimensional problems; however, the ideas can be extended to three-dimensional

problems with some additional effort. |

Deformed Configuration and Mode Shape

Plotting a deformed or displaced shape is a simple extension of PLOT2D. If the dis-
placements or components of the eigenvector are read into the matrix U (N{V: 2) and tlfe
coordinates are stored in X(NN,2), we can define the displaced position matrix

XP(NN,2) so that

XP(I,J) = X(IJ) + aU(1,]) 7 =12 (12.3)
1=1,....NN

factor so chosen that the largest component ofal/ (1. J)isof

reasonable proportion in relation to the body size and NN represents thq number of
nodes. One may try this largest component to be about 10% of the body-size parame-

ter. In the program PLOT2D, we need to make changes to read displacements U(NN. 2},

decide the value of &, and replace X by X + aU.

where o is a magnification
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Contour Plotting

Contour plotting of a scalar nodal variable such as temperature is straightforward for
three-noded triangular elements. We consider the variable f on one triangular element
shown in Fig. 12.8. The nodal values are f;, />, and f; at the three nodes 1, 2, and 3,
respectively. The function fis interpolated using the linear shape functions used for the
constant strain triangle. f represents a plane surface with values f;, f;, and f; at the three
nodes. We check for each desired level. Say f represents a typical level for contour map.
If f lies in the interval f,—f;, it also lies in one of the intervais f—f, or fi~ f5. Say it lies
in the interval f,—f;, as shown in Fig. 12.8. Then f has the value of f at points A and B
and is constant along the line AB. Determination of the coordinates of points A and B
will give us the contour line AB.The coordinates of point A can be obtained from

_ -5
¢ LF-F
Xa=§€x3+ (1= £)x,
ya=én+{(1-6On (12.4)

il

FIGURE 12. nstant level of variation £
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The coordinates of point B can be obtained by replacing the indices 2 and 3 by 1 and 3,
respectively.

The program CONTOURA plots the variable FF represented by its nodal values.
The coordinate, connectivity, and function data are read in from data files. In the first part
of the program, the boundary limits are set on the screen. The function limits are found
and the number of contour levels is read in. The boundary of the region is plotted on the
screen. Each element is then scanned for the function levels and the constant value lines
are drawn. The result is a contour map.

In addition, in CONTOURA, the number of levels is fixed at 10 and each level is
associated with a distinct color. Violet is the lowest level, and red is set as the highest level,
with intermediate colors roughly in the order of the rainbow spectrum. CONTOURB
uses the idea of filling the color in a closed subregion of an element. Thus, for the same
data used for CONTOURA, CONTOURRB plots color bands. Both CONTOURA and
CONTOQURSB also work for four-noded quadrilateral elements. The contour plot idea
presented for the triangle is also used for the quadrilateral by introducing an interior
point and considering the four triangles. There are other contour algorithms specifical-
ly for quadrilaterals, and interested readers are encouraged to search the literature in
this area.

There are also some quantities, such as stresses, temperature, and velocity gradi-
ents, which are constant over triangular elements. For these, the contour mapping re-
quires the evaluation of nodal values. We present here the procedure for evaluating the
nodal values for least-squares fit. The procedure discussed is useful in diverse situations,
such as smoothing data obtained in image processing. The least squares fit for a four-
noded quadrilateral is also presented following the best fit for the triangle.

Nodal Values from Known Constant Element Values for a Triangle

We evaluate the nodal values that minimize the least-squares error. We cqnsider hzere
triangular elements with constant function values. A triangular element hav.mg function
value f,is shown in Fig. 12.9. Let f,, 5, and £, be the local nodal values. The interpolated

function is given by
f =Nf (12.5)

2
x fa

FIGURE 12.9 Triangular element for jeast-squares fit study.
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where
. N = [N, Ny, N3] (12.6)
 is the vector of shape functions and
f= [flaf:afs]T ' (12.7)
The squared error may be represented by | |

E= 33 [~ fras (128)

£

On expanding and substituting from Eq. 12.5, we get

E= 2 [grl'( f NTNd.A)f— tT(f, [, NTdA) + %sz] (12.9)

Noting that the last term is a constant, we write the equation in the form

E = 3 [4™W — f'R*] + constant (12.10)
where
a2 11
W = /NTNdA =1—2’ 121 (12.11)
e 11 2
fal
R =f / NTaa = fed 4 12.12)
e 1

J.NTN dA is similar to the evaluation of mass matrix for a triangle in Chapter 11. On
assembling the stiffness W* and load vector from R®, we get

E = }F™WF — F'R + constant (12.13)

where F is the global nodal-value vector given by
F=[FbB. . Fu (12.14)
For least-squares error, setting the derivatives of E with respect to each F; to be zero, we get
WF =R (12.15)

Here W is a banded symmetric matrix. The set of equations is solved using the equation
solving techniques used in other finite element programs. The program BESTFIT takes
the mesh data and element value data FS(NE) and evaluates the nodal data F{NN) for
a three-noded triangle.
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Least Squares Fit for a Four-Noded Quadrilateral

Letq = [q; ¢» s q4]" represent the element nodal values to be determined for least-
squares fit defined using error at four interior points. If s = [s, s, s; 5,]" represents the
vector of interpolated values at the four interior points, and a = [e, @, a; a,]" repre-
sents the actual values of the variable (see Fig. 12.10), the error may be defined as

€= > (s—a)(s—a)

4
= > (s"s — 2s"a — a'a) (12.16)
€
The four interior points are generally taken as the Gaussian integration points. The
stress values match well at these points, If
N} N} N} Ni
N = N} NI N3 Nj
N} N3 M N
N{ Ni Ni N}
where N represents the shape function N, evaluated at interior point , then s can
be written as

(12.17)

§ = Ng (12.18)
Inserting this into Eq. 12.16, we find that the error becomes
e =Y q'N'Nqg - 2q¢'N"a + a’a (12.19)

Noting that NN is similar to element stiffness k*, and NTa is similar to the element
force vector, the stiffness and force-vector assembly can be made. The assembled matrix

equations can be put in the form

KQ=F (12.20)
The solution of this set of equations gives Q, which is the vector of nodal values of th.e
variable considered for least squares fit of the element values. This least-squares fit is
implemented in the program BESTFITQ.

Element quantities such as maximum shear stress, von Mises stress, and tempera-
ture gradient can be converted to nodal values and then contour plotting can be done.
K
|
24 '

4 | 3
S4 ! $3
_.-______.'__-___ . §

+-1%
|

FIGURE 12.10 Least squares fit for a quadrilateral,

q
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The use of computer programs BESTFIT and CONTOUR has already been dis-
~ cussed in Chapter 5 (Example 5.6).

12.4 CONCLUSION

- Preprocessing and postprocessing are integral parts of finite element analysis. The
general-purpose mesh-generation scheme can model a variety of complex regions. One
needs to use some imagination in preparing the block representation of the region. De-
finition of void blocks and merging of sides enables one to model multiple-connected
regions. The node numbering gives sparse matrices and in many cases should give min-
imum bandwidth by proper block representation. Mesh plotting shows the element lay-
out. The data handling program is a dedicated routine for finite element data preparation
and data editing. Ideas for the plotting of deformed configuration and mode shapes can
be readily implemented into the programs included here. Contour plottings for triangular
and quadrilateral elements have been presented, and programs are included. The com-
putation of nodal values that best fit the element values takes some of the very same steps
used in the development of finite elements in earlier chapters.

Finite element analysis involves solution of a wide variety of problems in solid
mechanics, fluid mechanics, heat transfer, electrical and magnetic fields, and other areas.
Problem solving involves large amounts of data that must be systematically handled
and clearly presented. The ideas developed in this chapter should make preparation and
handling of input and output data an interesting endeavor rather than a tedious task.

Example 12.1
The quadrant shown in Fig. E12.1 is meshed using program MESHGEN. The input data
given are constructed from the display in Fig. E12.1. Connectivity and nodal coordinate
data are contained in the output file, and a plot of the mesh can be obtained by running pro-
gram PLOT2D. :

W4 ¢

W1 s

Quadrant (radius = 5)

FIGURE E12.1
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Input Data File

Mesh Generation
Exarple 12.1
Number of Nodes per Element <3 or 4>

3

BLOCK DATA

fis-Spans (N5] #W-Spans(NW) #PairsQfEdgesMergedNSJ)
2 2 1

SPAN DATA

S-Span# Num-Divisfions (for each S-Span/ Single division = 1)
1 2
2 2

W-Spanf Num-Pivisions (for each W-Span/ Single division = 1)
1 3
2 2

BLOCK MATERIAL DATA (for Material Number other than 1}

Block# Material (Void => 0 Block# = 0 completes this data}
4 0
0

BLOCK CCRNER DATA

Corner# X-Coord Y-Coord {Corner# = 0 completes this data)

1 0 0
2 2.5 0
3 5 0

. 1 0 2.5

: 5 1.8 1.8
6 3.536 3.536
7 0 5
8 3.536 3.536
0

MID POINT DATA FOR CURVED OR GRADED SIDES
S-Side# X-Coord Y-Coord {Side$# = 0 completes this data)

5 1,913 4.619
0

W-Side$ XH-Coerd Y-Coord {Side# = 0 completes this data)
3 4.619 1.513

0

MERGING SIDES [Nodel is the lower number)

Pair$ SidelNodel SidelNode2 Side2?Nodel SideZnodel
1 5 6 S ;]

PROBLEMS

12.1. Use program MESHGEN to generate finite clement meshes for the regions in Figs. I.’lz.%a
and b. Generate meshes using both triangular and quadrilateral elements, For the fillet in

P12.1a,use y = 425 — 0.5x + x3/360.

12.2. Generate a “graded” mesh for the region in Fig. P12.1a so that there are more e}em;nts
near the left edge of the region. That is, the mesh density reduces along the +x direction,
Use MESHGEN with displaced midside nodes.
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y

- |
o TT'
— s

(2) {b)
FIGURE P12.1

—3

12.3. Use program CONTOUR to draw isotherms for the temperature distribution obtained
in Example 10.4.

124. After solving Problem 5.15 using program CST, complete the following:

(a) Use program PLOT2D to plot the original and deformed shape. The deformed shape
requires selecting a scaling factor and using Eq. 12.3.
{b) Use programs BESTFIT and CONTOUR and plot contours of maximum principal stress.

12.5. Plot the mode shapes of the beam in Problem 11.4. For this, you will need to modify
PLOT2D and interface with INVITR.

12.6. This problem illustrates the concept of a dedicated finite element program. Only design re-
lated parameters are input to the program, while mesh generation, boundary conditions and
loading definition, finite element analysis, and postprocessing are automatically performed.

Consider the flywheel in Fig. P12.6. By modifying and interfacing programs MESHGEN,
PLOT2D, AXISYM, BESTFIT, and CONTOUR, develop a dedicated program that re-
quires the user to input only the overall dimensions 7, r;, 7,, t,,and 1, and the values of E,
v, p, and «. Your program may consist of independent programs executed through a batch
or command file or can consist of one single program. Include the following features:
(a) aprintout of all input data and output displacements and stresses and
(b} aplot of original and deformed shapes.
Solve Problem 6.7, Provide contour plots of stress components.

12.7. Plot shearing-stress contours for the torsion problem P10.18.

i
|

To

|
|
i T
A e e  wL A —— .
| {
|
o4
: FIGURE P12.6
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Program Listings

R AR R S R A L R e e s L R L RS R L E

v PROGRAM MESHGEN *
'* MESH GENERATOR FOR TWO DIMENSIONAL REGIONS ~
i {c) T.R,CHANDRUPATLA & A.D.BELEGUNDU *
IREAES S IER R A X EER A LRI R SRR S AL 2 R 2 2 2 R 2 X L X
DefInt I-N

DefSng A-H, O-Z
Dim NS, NW, NSJ, HNSR, NWR, NNS, NNW, NNT, NGN, NODE
Dim MN, HE, NM, NEN
Dim IDBLK({), NSD{}), NWD(), NGCHN(), SR{), WR{), SH{)
Dim X{}, XB{), XP{), WOC{), MAT(), MERG{), N¥NAR()
Dim Title As String, Filel As String, File2 As String
Dim Dummy As String
Private Sub cmdEnd_Click()

End

‘o==== m PROGRAM =====2
Private Sub cmdStart_Click()
Call InputData
Call GlobalNede
Call CoordConnect
Call Cutput
cmdView.Enabled = True
cmdStart.Enabled = False
End Sub

\

Private Sub InputData(}
Filel = InputBox("Input File d:\dir\fileName.ext™, "Name of File")
Open Filel For Input As #1
' mmmmas=ee=e=s  READ DATA
Line Input #1, Dummy: Line Input #1, Title
Line Input #1, Dummy
Input #1, NEN * NEN = 3 for Triangle 4 for Quad
If NEN < 3 Then NEN = 3

If NEH > 4 Then NEN = 4
"Hints: A region is divided into 4-cornered blocks viewed as a

! mapping from a Checkerboard pattarn of S— and W- Sides

! §- Side is one with lower number of final divisiens

! Blocks, Corners, 5- and W- Sides are labeled as shown in Fig. 12.2
! Make a sketch and identify void blocks and merging sides
oo Block Dats —-——=-

145-5pans (NS}  #W~Spans (NW)} #PairsOfEdgesMerged (N5J}

Line Input #1, Dummy: Line Input #1, Dummy

Input #1, N5, NW, HSJ

NSW = NS * NW: NGN = (NS + 1) * {NW + 1): NM = 1

ReDim IDBLK{NSW}, NSD{N3}, NWD(NW), NGCH(NGN}, SH(8}

L ittt Span Divisions =~-—=<-====--="

Line Input #¥1, Dummy

NN§ = 1: NNW = 1

*——- Number of divisions for each $-Span

Line Input #1, Dummy
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continued

For KS = 1 To N5
Input #1, H
Input #1, NSD(N)
NN5S = NN5 + NSD{N)
Next KS
| === Number of divisions for each W-Span
Line Input #1, Dummy
For KW = 1 To NW
Input #1, N
Input #1, NWD(N)
HNW = NNW + HWD{N)
Next XW

'~== Block Matexrial Data
Input #iI, Dummy: Input #1, Dummy

Vo —amss Rlock Identifier / Materialf (Defaultf is 1)} --—----—-
For I = 1 To NSW: IDBLK{I) = 1: Next I
Do

Input #1, NTMP

If NTMP = 0 Than Exit Do

Input #1, IDBLK(NTMF)

If "M < IDBLK(NTMF} Then WM = IDBLK{NTMF)
Loop

' Block Corner Deta
NSR = NS ¥ {(NW + 1): NNR = NW * (NS + 1}
ReDim XB(NGN, 2), SR(NSR, 2), WR{NWR, 2}
Input #1, Dummy: Input #1, Dummy
Dey

Input #1, NTMP

If NTMP = 0 Then Exit Do

Input #1, XB(NTMP, 1}

Input #1, XB(NTMP, 2}
Loop

e Evaluate Mid-points of B-Bideg ---~=+eew—ea=
For I =1To NW + 1
For J = 1 To NS
IJ= (I - 1) * N8 + J
SR{1J, 1) = 0.5 * (XB({IJ + I - 1, 1} + XB{IJ + I, 1)}
SR{IJ, 2) = 0.5 * [(XB{IJ + I -1, 2) + XB{IJ + I, 2)}
Next J
Hext I
e Evalvate Mid-points of W-8ides ~--—-=-==== -
For I =1 To NW
For J=1 Ta NS + 1
IJ={I -1) * (N5 + 1) + J
WR{IJ, 1) = 0.5 * {XB(IJ, 1) + XB{IJ + N5 + 1, 1))
WR(IJ, 2) = 0.5 * (XB{IJ, 2} + XB{IJ + NS + 1, 2))
Next J
Next I
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Mid Pointas for Sides that are curved or graded
Line Input #1, Dummy: Line Input #1, Dummy
'——= 5~Sides
Do
Input #1, NTMP
If NTMP = 0 Then Exit Do
Input #1, SR{NTMP, 1)
Input #1, SR{NTMP, 2)
Loop
Line Input #1, Dummy
'——— W-Sides
Do
Input #1, NTMP
i If NTMP = 0 Then Exit Do
Input #1, WR{NTMP, 1)
Input #1, WR{RTMP, 2)

Marging Sides
If NSJ > 0 Then
Input #1, Dummy: Input ¥1, Dummy
ReDim MERG (NSJ, 4)
For I = 1 To N5J
Input #1, N
Input #1, Ll
Input #1, L2
Call SideDiv(Ll, L2, IDIV1)
Input #1, L3
Input #1, L4
Call SidebDiv(L3, 14, IDIV2)
If IDIV1 <> IDIV2 Then
picBox.Print "#Div don't match. Check merge data.”
End
End If
MERG(I, 1) = Li: MERG(I, 2) = L2
MERG(I, 3) = L3: MERG{I, 4) = L4
Next I
End If
Close #1
End Sub

GLOBAL NODE RUMBERS FOR THE MESH =a=z===

Private Sub GlebalNode()
Glabal Node lLocations of Corner Nodes

NTMPI = 1
For T =1 To NW + 1
If I = 1 Then IINC = 0 Else IINC = NNS * NWD({I - 1)

NTMPI = NTMPI + IINC: NTMPJ = Q
For J =1 To N§ + 1
IJ = (NS + 1) * (I - 1y + J
If J = 1 Then JINC = 0 Else JINC = NSD(J - 1}
NTMPJ = NTMPJ + JINC: NGCN({IJ) = NTMPI + NTMEJ
Next J

Next I
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cont inued

' Bode Polnt Array
NNT = NNS * NNW
ReDim NNAR (NNT)
For I = 1 To NNT: NMAR({I) = -1: Next I
Yoo Zare Non-Exdsting Node lLocations ——-—=-==w=
For KW = 1 To NW
For KS = 1 To NS
KSW = NS * (KW - 1) + KB
If IDBLK(KSW) <= 0 Then
'ewwee——- Oparation within an Epty Blook —-—===—-
Kl = (KW - 1) * (NS + 1) + KS: N1l = NGCN(K1l)
NSl = 2: If KS = 1 Then NS1 = 1
NWL = 2; If KW = 1 Then NWl1 = 1
NS2 = NSD(KS) + 1
If KS < NS Then
If IDBLK(KSW + 1) > 0 Then NS2 = HSD({KS}
End If
NWZ = NWD(KW) + 1
If KW < NW Then
If IDBLK(KSW + NS) > 0 Then NW2Z = NWD(KW)
End If
For I = NWl1l To NW2
IN1 = N1 + (I - 1) * NNS
For J = NS1 To NS2
IJ = IN1 + J - 1: NMAR(IJ} = O
Next J
Next I
ICT = 0
If NS2 = NSD(KS) Or NWZ2 = MWD(KW) Then ICT = ]
If KS =~ NS Or KW = NW Then ICT = ]
If ICT = O Then
If IDBLK{KSW + NS + 1) > 0 Then NWNAR(IJ} = -1

End If
End If
Next K5
Next KW
!mmm—me== Node Idantification for Side Merging ------

If NSJ > 0 Then
For I = 1 To NSJ
Il = MERG(I, 1l): I2 = MERG(I, 2)
Call 8ideDiv(Il, I2, IPIV)
IAl = NGCN({Il): IAZ = NGCN(I2)
IASTP = (IA2 - IAl} / IDIV
I1 = MERG(I, 3): I2 = MERG(I, 4)
Call Bidabiv(Il, I2, IDIV)
IB]l = NGCN(Il): IBZ2 = NGCN(I2)
IBSTP = (IBZ - IBl} / IDIV
IAAR = IAl - IASTP
For IBB = IBl To IB2 Step IBSTP
IAR = IAR + IASTP
If IBB = IAA Then NHAR(IAR) = -1 Else NNAR{IBE) = IAA
Next IBB
Next I
End If
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continued

—————————— Final Node Numbers in the Array --------
NODE = 0
For I = 1 To NNT
If NNAR{I} > 0 Then
IT = NNAR(I}: NMAR(I) = NNAR{II)
ElseIf NNAR(I) < 0 Then
HODE = NODE + 1: NNAR(I} = NODE
End If
Next I
End Sub
Private Sub SideDiv{Il, 12, IDIV)
'sxczzucc=cs Nimmber of Divisions for Side I1,1I2 =emsmsazaman i
IMIN = Il: IMARX = I2 '
If IMIN > I2 Then :
12 !

IMIN = |
IMARX = Il :
End If

If (IMAX — IMIN} = 1 Then
IDIV = NGCN(IMAX) - NGCN{IMIN)

Else ;
IDIV = (NGCN(IMAX) - NGCN{IMIN)} / NNS :
End If
End Sub
i ‘u==== COORDINATES AND CONNECTIVITY —o=xam=

Private Sub CoordConnect ()
; B it Nodal Coordinates -
‘ NN = NODE: NELM = 0

ReDim X{NN, 2}, XP{8, 2], NOC(2 * NNT, NEN), MAT{2 * NNT}
For KW = 1 To NW
For K§ = 1 Te NS
KSW = NS * (KW - 1) + KS
If IDBLK{KSW) <> (O Then
o Extraction of Block Data --—-——=--==
' NODW = NGCM(KSW + KW - 1) ~ NNS - 1 :
For JW = 1 To NWD(KW]) + 1 g
ETA = -1 + 2 * {JW - 1) / NWD(KW) :
NODW = NODW + NNS: NODS = NODW
; For JS = 1 To NSD(KS} + 1
XI = -1 + 2 * {J8 - 1) / HSD{KS)
NODS = NODS + l: NODE = NNAR(NQODS)
Call BlookXY(XW, X3W)
Call Shape(XI, ETA)
i For J = 1To 2
! c1 =20
For I =1 Ta B
Cl = Cl + SH{I) * XP{I, J)
Next I
; ¥ (NODE, J) = Cl
| Next J

» e J
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continued
' Connectivity
If J5 <> NSD(KS) + 1 And JW <> NWD(KW) + 1 Then
N1l = NODE: N2 = NNAR(NODS + 1)
N§ = NNAR(NODS + NNS}: N3 = NNAR{NODS + NNS + 1)
NELM = NELM + 1
If NEN = 3 Then
e —— ~= Priangular Elements ----—------—--
NOC(NELM, 1) = Nl: NOC{RELM, 2) = N2
NOC{NELM, 3} = N3: MAT{NELM) = IDBLK{KSW)
NELM = NELM + 1: NOC(NELM, 1) = N3: NOC(NEIM, 2} = N4
NOC(NELM, 3} = N1: MAT{NELM) = IDBLK (KSW)
Else
Ve —- Cuadrilsteral Elementy --—-——-w-m=—
NOC(NELM, 1) = N1l: NOC(NELM, 2) = N2
MAT (NELM) = IDBLK (KSW)
NOC{NELM, 3) = N3: NOC(KELM, 4) = N4
End If
End If
Next JS
Next JW
End If
Next XS
Next KW
HE = HELM
If NERN = 3 Then
!==ew==—=- Readjusiment for Triangle Connsctivity ---—-=====
NE2 = NE / 2

For I = 1 To NE2
11 = 2 # 1 - 1: N1 = HOC{Il, 1}: N2 = NOCI(Il, 2)
N3 = NOC(Il, 3): N4 = NOC{2 * I, 2}
X13 = X(N1, 1) - X(N3, 1}): Y13 = X{N1l, 2) -~ X(N3, 2)
24 = X(N2, 1) -~ X{Nd, 1): Y24 = X(N2, 2) - X(N4, 2)
If (X3 * X13 + Y13 * Y13) > 1.1 * (X24 * X24 + Y24 * ¥24) Then

NOC{Il, 3} = N4: NOC(2 * I, 3) = N2

End If

Next T

End If
End Sub

Private Sub BlockXY{KW, KSW)

N1 = KSW + KW - 1
XP(1, 1) = XB(N1, 1}: XP(l, 2) = XB{(N1, 2)

XP({3, 1) = XB(N1 + 1, 1): XP(3, 2) = XB(N1 + 1, 2)

XP(5, 1) = XB(NL + NS + 2, 1}: XP(5, 2) = XB(N1 + NS + 2, 2)
XP(7, 1) = XB(N1 + NS + 1, 1): XP(7, 2) = XB(N] + NS + 1, 2)
XP{2, 1) = SRIKSW, 1): XP(2, 2) = SR{KSW, 2)

XP{6, 1) = SR(KSW + NS, 1): XP(6, 2) = SR{KSW + NS, 2}

XP{8, 1) = WR(NI, 1): XP(8, 2) = WR(N1, 2)

XP(4, 1) = WR(NI + 1, 1): XP(4, 2) = WR(N1 + 1, 2)
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Private Sub Shape(XI, ETR)

L e e o ah.p. Fanctions

SH(l) = -{1 ~ XI} * {1 - ETA) * (1 + XI + ETA) / 4
SH{2) = (1 - XI * XI) + (1 - ETAR) / 2
SH(3) = -f1 + XI) * (1 - ETA) * (1 - XI + ETA) / 4
SH(4) = (1L - ETA * ETR) * (1 + XI} / 2
SH{5) = -{1 + XI) * (1 + ETA) * (] - XI - ETA) / 4
SH(6) = (1 - XI * XI) * (1 + ETA) / 2
SH{7) = -{1 - XI) * {1 + ETA) * (1 + XI - ETA) / 4
SH{8) = {1 - ETA * ETA) * (1 - XI) / 2

End Sub

N QUTFUT

Private Sub Output()

Vmmmm= OQutput from this program is input for FE programs after scme changes

File2 = InputBox{™Output File d:\dir\fileName.ext™, "Name of File")

Cpen File2 For Cutput As $#2

Print 42, "Program MESHGEN - CHANDRUPATLA & BELEGUNDU®

Print $2, Title
NDIM = 2: NDN = 2
Print ¥2, "NN NE NM NDIM NEN NDN"
Print %2, NN; NE; NM; NDIM; NEN; NDN
Print #2, "ND NL RMPC™
Print #2, ND; NL; NMPC
Print #2, “Hode# X b4
For I =1 To NN

Print #2, I;

For J = 1 Toe NDIM

Print #2, X{(I, J);

Hext J

Print #2,
Next I
Print #2, "Elem¥ HNodel Node? Node3"™;
If NEN = 3 Then Print #2, " Materialj”
If NEN = 4 Then Print #2, " Noded Material#”
For I = 1 To NE

Print %2, I:

For J = 1 Te NEN

Print #2, NOC(I, J);

Next J

Print #2, MAT{I)
Next I
Close #2
picBox.Print "Data has been gtored in the file

End Sub

"; File2
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¥ ***iti**ﬁ*i******i**l‘*ti*i***’********i******i**

T PROGRAM PLOTZD *
' PLOTS 2D MESHES - TRIANGLES AND QUADS  *
o {c) T.R.CHANDRUPATLA & A.D.BELEGUNDU +

1 ******t*t*t********tt********ﬁ********t*********

he L PROGRAM MATIN Ea=mREEE
Private Sub cmdPlot_Click(}
Call InputData
Call Drawhimits (XMIN, YMIN, XMAX, YMAX)
Call DrawElements
camdPlot .Enabled = False
cmdULeft.Enabled = True
cmdURight . Enabled = True
endlLeft .Enabled = True
cmedLRight.Enabled = True
End Sub

‘mxoms INPUT DATA FROM FE INPUT FILE mmz==
Private Sub InputDatal(}
Filel = InputBox{"Input File d:\dir\fileName"”, "Name of File")
Open Filel For Input As #1
Line Input #1, Dummy: Input #1, Title )
Line Input #1, Dummy: Input #1, NN, NE, NM, RDIM, NEN, NDR
Line Input #1, Dummy: Input #1, ND, NL, NMPC
If NDIM <> 2 Then
picBox.Print ™THE PROGRAN SUPPORTS IWCO DIMENEIONAL PLOTS oNLY"
picBox.Print "THE DIMENSION OF THE DATA IS ™; NDIM
End
End If
ReDim X (NN, NDIM), NCC{NE, NEN)
"mumasasssssax READ DATA
Line Input #1, Dummy
For I = 1 To NN:; Input #1, N: For J = 1 To RDIM
Input #1, X(N, J): Next J: Next I
Line Input #1, Dummy
For I = 1 To NE: Input #1, N: For J = 1 To KEN
Input #1, NOC(N, J}: Next J: Input #1, NTMP
For J = 1 To 2: Input #1, C: Next J
Next 1
Close #1
End Sub

‘===aanwm DETERMINE DRAN LIMITS IR

Private Sub DrawLimits (XMIN, YMIN, XMAX, YMAX)
XMAX = X(1, 1): ¥YMAX = X{1, 2): XMIN = X{1, 1): YMIN « X({1, 2}
For I = 2 To NN

If XMAX < X(I, 1) Then XMBX = X{I, 1)
If YMAX < X({I, 2) Then YMARX = X{I, 2)
If XMIN > X{I, 1) Then XMIN = X(I, 1)
I1f YMIN > X({I, 2) Then YMIN = X(I, 2}

Next I
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iL = (XMAX - XMIN): YL = (YMAX - YMIN)
A = XL: If A < YL Then A = YL
¥B = 0.5 * ([XMIN + XMAX)
YB = 0.5 * (YMIN + YMAX)
¥MIN = XB - 0.55 * A: XMARX = XB + 0.55 * A
YMIN = YB - 0.55 * B YMAX = YB + 0.55 = B
XL = XMIN: YL = YMIN: XH = XMAX: YH = YMAX
XOL = XL: YOL = YL: XOH = XH: YOR = YH

End Sub

L

‘wo=—=—==== DRA' ELE“ENTS ===
Private Sub DrawElements()
' mmwmszzznes  Drav Elements
picBox.5cale (XL, YR)-(XH, YL)
picBox.Cls
For IE = 1 To NE
For II = 1 To NEN
I2 = II + 1
If II = NEN Then I2 = 1
X1 = X(NOC(IE, II), 1): Y1 = X(NOC(IE, II), 2}
¥2 = X(NOC(IE, I2), 1): Y2 = X(NOC(IE, I2), 2}
picBox.Line (X1, Y1l)-(X2, Y2), {BColor{l)
If NEN = 2 Then Exit For

Naxt II
Rext IE
cmdNode .Enabled = True
End Sub
Tk PROGRAM BESTFIT whEE
' BEST FIT PROGRAM *
' FOR 3-NODED TRIANGLES *

*

*# T R.Chandrupatla and A.D.Belegundu
L) *i*****i***ﬁi*********t*t*****ti****t*i
Ve—mmar== PROGRAM MARIN T .
Private Sub cmdstart_Click{)

Call InputData

Call Bandwidth

Call Btiffness

Call BandSolver

Call Qutput

cmdView.Enabled = True

ecmdStart . Enabled = False
End Sub

3
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Vemm= STIFFRESS FOR INTERPOLATION o
Privata Sub Stiffness()
ReDim S({NQ, NBW), F{NQ)
‘+-- Global Stiffness Matrix
For N=1 To NE
Call ElemBtiff (W)
For 11 = 1 To 3
NR = NOC{N, II): F{NR) = F(NR] + FE(II)
For JJ =1 To 3
HC = HOC(N, JJ) - NR + 1
I£ NC > 0 Then
S(NR, NC) = S{NR, NC) + SE(II, JJ)
End If
Next JJ
Next II
Next N
picBox.Print "Stiffness Formation completed...”
End Sub
Private Sub ElemStiff (W)
'mw=- Element Stiffness Formation
I1 = NOC{N, 1)}: I2 = NOC(M, 2): I3 = NOC(N, 3}
X1 = X{I1, 1}: Y1l = X({(Il1, 2)
A2 = X{I2, 1}: Y2 = X{I2, 2}
X3 = X{I3, 1}: Y3 = X(I3, 2)
X21 = X2 - X1: X32 = X3 - X2: X13 = X1 - X3
Y12 = Y1 - ¥2: Y23 = Y2 - ¥3: Y31 = ¥3 - Y1
DJF = X13 + Y23 - X3Z * Y3l 'DETEFMINANT OF JACOBIAN
AE = Abs(DJ) / 24
SE({l, 1) = 2 * ARE: SE{l, 2) = BAE: SE(l, 3) = &F
SE({2, 1) = RE: SE(2, 2) = 2 * BE: SE(2, 3) = AE
SE{(3, 1} = AE: SE(3, 2) = AE: SE{3, 3} = 2 * AE
Al = FS(N} * Rbs(DJ) / 6
FE(l} = Al: FE{2} = Al: FE{3) = Al

End Sub

Vardddr bbbk m o o e o e e
i CONTOUR PLOTTING ~ CONTOUR LINES *
il FOR 2D TRIANGLES AND QUADRILATERALS  *
fh T.R.Chandrupatla and A.D.Belegundu *

IThdddhdddddbdddddhhhhdbdr b hbhddbbddddhdhdddirdr

‘\mom=m= PROGRAM MAIN e Y Y
Private Sub cmdPlot Click()
Call InputData
Call FindBoundary
Call Drawlimits(XMIN, YMIN, XMAX, YMAX)
Call DrawBoundary
Call DrawContours
End Sub
L]
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===== INPUT DATA FROM PILES ===
Private Sub InputData()

Filel = InputBox("FE Input File", "d:\dir\Name of File™)
File2 = InputBox("Contour Data File™, ™d:\dir\Name of File™)
Open Filel For Input As #1
Line Input #1, D$: Input #1, Title$
Line Input #1, D§: Input #1, NN, NE, NM, NDIM, NEN, NDN
Line Input #1, D$: Input #1, ND, NL, NMEC
If NDIM <> 2 Or NEN < 3 Or KEN > 4 Then
picBox,.Print "This program supports triangular and quadrilateral®
picBox.Print "Elements only."®
End
End If
ReDim X (NN, NDIM), NOC(NE, NEN), FF(NN), NCON{NE, NEN}
ReDim XX {3), YY(3), U(3}, IC(10), ID(10)
'megooooooones COLOR DATA
IC{1l) = 13: IC(2) = 5: IC(3) = 9: IC({4} = 1: IC(5) = 2
IC{6) = 10: IC(7} = 14: IC(8) = &: IC{9) = 4: IC{1Q) = 12
For I = 1 To 10: ID(I} = 0: Next I
Tammmoossncx== READ DATA
Ve Coordinates
Line Input #1, D$§
For I = 1 To NN
Input #1, n
For d = 1 To ROIM:Input #1, X(n, J): Next J
Next I
Voo Connectivity
Line Input #1, DS
For I = 1 To NE
Input #1, n: For J = 1 To NEN
Input #1, NOCin, J): Next J: Input #1, NTMP
For J = 1 To 2: Input #1, C: Next J: Next I
Close #1
Opan File2 For Input As #2
Ve Nodal Valuas
Line Input #2, D$
For I = 1 Tc NN
Input #2, FF(I)

Next T
Close #2
End Sub
‘eoma= FIND BOUNDARY LINES =mmm=

Private Sub FindBoundary()
'eecoruscxwrwex Find W Lines

'Edges defined by nodes in NOC to nodes in NCON
For IE = 1 To NE
For I = 1 To NEN
Il = I + 1: If Il > NEN Then Il = 1
NCON(IE, I) = NOC{IE, Il;
Next I
Next IE
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continued
For 1E = 1 To NE
For I = 1 To NEN
T1 = NCON{IE, I}: 12 = NOC{IE, I)
INDE = O
For JE = IE + 1 To NE
For J = 1 To NEN
If NCON(JE, J) <= 0 Then
1f I1 = NCON(JE, Jy or I1 = NOC{(JE, J) Then
If I2 = NCON(JE, J} Or I2 = NGC(JE, J} Then
NCOW({JE, J} = 0: INDX = INDX + 1

End If
End If
End If
Next J
Next JE
1f INDX > 0 Then NCON(IE, I) = 0
Next I
Next IE
End Sub
4
’7‘======—_== DRAW Bommz =E==mm===

Private Sub DrawBeoundary ()
picBox.Scale (XL, YH)-{XH, YL}
picBox.Cls
| emc—mme—mz=== Draw Boundary ss=csssm=ss===
For IE = 1 To NE
For I = 1 To NEN
If NCON(IE, I) > 0 Then
11 = NCOM(IE, I): I2 = NOC(IE, I)
picBox.Line (X({I1, 1}, ®(I1l, 2))-(X{I2, 1}, X(I2, 2))

End If
Next I
Hext IE
End Sub
tom=m=—=== DRAW CONTOUR LINES ======x=

Private Sub DrawContoursi)
Vmmmoem=sa==  Contour Plotting =====ssm=x=
For IE = 1 To NE

If HEN = 3 Then
For IEN = 1 To HEN
IEE = NQC(IE, IEN)
U(1EN} = FF(IEE)}
XX {IEN} = X(IEE, 1)
¥YY(IEN} = X(IEE, 2}
Next IEN
Call ElementPlot
Elself NEN = 4 Then
XB = 0: YB=0: UB = 0
For IT 1 To NEN
NIT NOC{1IE, IT)

i
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¥B = XB + 0.2%5 * X(NIT, 1}
YB = YB + 0,25 * X(NIT, 2}
UB=0UB + 0,25 * FF(NIT)
Next IT
For IT = 1 To NEN
ITl = IT + 1: If IT1 » 4 Then IT1 = 1
X¥X(1) = XB: ¥YY(l) = ¥YB: U{l) = UB
NIE = NOC{IE, IT)
XX {2) = X{NIE, 1l}: YY(2) = X[NIE, 2}: U(2) = FF{NIE)
NIE = NOC{IE, IT1)
XX(3) = X{NIE, 1) YY(3) = X{NIE, 2): 0(3) = FF(NIE}
Call ElementFlot

Next IT
Else :
Print "NUMBER OF ELEMENT NODES > 4 1S NOT SUPPORTED"
End
End If
Next IE

For I = 1 To 10: ID(I) = 0: Next I
End SubPrivate Sub ElementPlot()
'THREE PQINTS IN ASCENDING CRIER
For I =1 To 2
C=U(I): II =1
For =1+ 1To 3
If C » U(J) Then
C=U(J): IIT = J
End If
Next J
U(II) = O(I}): U(I} =C
Cl = XX{II): XX(II} = XX{I): XX(I) = Cl
Cl = YY(II): YY(II} = YY({I): ¥YY{I) = Cl

Next I
SU = (U({l) - FMIN) / STP
II = Int({SU)

If II <= S Then II = II + 1
OT = FMIN + II * STp
Do While UT <= U(3)
ICO = IC(II)
X1 = ({U{3} - UT) * XX(1} + {OT - U{l)) * XX(3)} 7/ (U(3) - O(1})
Y1 = {{(U{3) - DT) * ¥YY(1l) + (0T - U{1)) * YY(3)) / (U3} U{l}}
L =1; If UT > U(2) Then L = 3
X2 = {(U(L) - UT) * XX(2) + {UT - U{2]) * XX(L)) / (UL}
Y2 = ({U(L) - UT) * ¥¥(2) + (UT = U{2)) * YY{L}} / (U{L}
picBox.Line (X1, Y1)-(X2, Y¥2), QBColor{ICO)
If ID{II}) = 0 Then
picBox.CurrentX = Xl: picBox.CurrentY = Y1
If (XL < X1 And X1 < XH) And (YL < ¥l And Y1 < YH) Then

picBox.Print II

u(2))
U{2}}

ID{II} =1
End If
End If
UT = UT + STP: II = II + 1

Loop
End Sub




APPENDIX

Proof of dA = detJ dé dn

Consider a mapping of variables from x, y to u,, u,, given as

x=x(u,m) ¥ = Yn,w) (ALD)

We assume that these equations can be reversed to express u,, u,, in terms of x, y and
that the correspondence is unique.

If a particle moves from a point P in such a way that u, is held constant and only
u, varies, then a curve in the plane is generated. We call this the u, curve (Fig. A1.1).
Similarly, the u; curve is generated by keeping #, constant and letting u, vary. Let

r=x+ yj (Al12)

represent the vector of a point P where i and J are unit vectors along x and y, respectively.
Consider the vectors

T=r Tp=— (A13)

FIGURE A1.1

e B im e mm eem
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Pt
Ar
P

r+ Ar
Yooy

X

FIGURE A1.2
or, in view of Eq. Al.2,
ax dy ax ay
T, =—i+ —j T, =—i4 —j .
! duy au1’ z auzl auz" (AL4)

We can show that T, is a vector tangent to the u, curve and T, is tangent to the u, curve
(Fig. A1.1), To see this, we use the definition

ar Ar
— = lim — Al,
aigy mlcl,@-o Au, (A1)

where Ar = r(u; + Au;) — r{u,). In the limit, the chord Ar becomes the tangent to the
u, curve (Fig. A1.2). However, dr/ou, (or 8r/3u,) is not a unit vector. To determine its
magnitude {length), we write
dr _drads, (AL6)
6u1 6.5'] dul
where s, is the arc length along the u; curve and ds, is the differential arc length. The mag-
nitude of the vector
r _ .. Ar

m
aS] As;—0 ﬁsl

is the limiting ratio of the chord length to the arc length, which equals unity. Thus, we con-
clude that the magnitude of the vector r/du, is ds,/du,. We have

_{ds Al7
T, = (dul)" (ALT)

ds,
T2 o (duz)‘z
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where t, and t, are unit vectors tangent to the «, and &, curves, respectively. Using
Eq.A1.7, we have the following representation of the vectors ds, and ds, whose lengths
are ds, and ds, (Fig. A1.1):
ds, = tyds, = Tydu,
*2 = tzdSz = Tzduz (A1_8)
The differential area dA is a vector with magnitude dA4 and direction normal to the
element area, which in this case is k. The vector dA in view of Eqs. Al.4 and A18is
given by the determinant rule
dA =ds, X ds;
= T; X T,du,du,
i j k
dx 9oy
= o, o 0! du,du, (AL9)
ax 9y
ouy duy

= (a_xa_y_ Eia—y)du dusk
10U,

0

du, du,  ouy du,y

We denote the Jacobian matrix as

ax 2y
| uy 0wy
J= ax 2y (A1.10)
duy Oy
The magnitude dA can now be written as
dA = detJdu,du, (A1.11)

which is the desired result. Note that if we work with ¢- and n-coordinates instead of
u,- and u,-coordinates, as in the text, then

dA = detJdf dn
This relation generalizes to three dimensions as
dV = detJdfdnd]

where the Jacobian determinant det J expresses the ratio of the volume element dx dy 42
to d dndi.
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Answers to Selected Problems

(12)
(1.6)
(1.10)
111)

(2.1¢)

(2.2b)

23
(2.8)

31
37
(3.10)
(3.22)

4.1}

4.3}
44)
(4.6)
(4.9)

3000 psi.

o, = 2429 MPa.

g1 = 1.222mm and g, = 1.847 mm.
u(x;) = 0.5

A, = 0.2325, A, = 5.665, and A; = 9.103.
Matrix is positive definite.

¥, = [0.172,0.668,0.724]",

¥, = [0.495,0.577, —0.65]7, and

y, = [0.85,—0.47,0.232]".

1 2 9
T —_ 3
[lN Ndg = [0 1-3:!
3 25 1
Q= [2.5 0 ]’“ B [*6:|'

Ay Bpaand By — Ag

(a) g = 0.023125 in. (b) & = 0.000625.
(d) U, = 56.251b-in.

Q, = 0.623mm and Q; = 0.346 mm.
Stress in element 1 = 2,691 MPa.

£
T = 56[47‘1 —T, 42Ty, -T,+4T.+2N,. 2L +2 + 167317

¢ =08.m=06,q = 1071.80. 4.26]"in.,
o = 14,760 psi,and U, = 381.3in.-Ib.

K, = 4586 X 10°%.

Q, = 219.3 X 107%in.

Stress in element 1-3 = —100.0 MPa.
Point R moves horizontally by 3.13 mm.
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448  Answers to Selected Problems

5.1)
52
(5.5)
9

6.3)
()
(6.5)
6.7
(6.14)

.1)
72

3.1
8.2)
(8.8)
(8.12)

9.7

(10.1)
(10.3)
(10.13)
(10.18)
(10.21)
(10.24)

3Ly
(11.3)
(1L.7)

n= =02andy =42
Area = 25.5.

€ = 5897 X 107,
x-displ. = 0.000195 mm.

Use &, = 3.036E6 psi.

Outer diameter after deformation = 107.8 mm.

Contact pressure = 21,120 psi based on 18-element mesh.

Peak radial stress = 10,000 psi and peak hoop stress ~ 54,000 psi.

Hoop stress reduces from about 990 MPa without a shrink ring to 650 MPa with aring.

x = 45625 and y = 4.375.
Value of integral = 3253.8.

Deflection under the load point = —0.13335 mm.

Deflection under load = —0.01376 in.

Deflection at midpoint of BC = -0.417 in.

Vertical deflection of point D without tie rod = —11.6 in and with tie rod = —0.87 in.

Max. vertical disp. = —{.0148 in, based on a four-element hexahedral mesh.

(T, T, T3] = [28,12.6, —2.89]°C. (More elements will give better answer.)
Peak Temperature = 120.6°C.

Heat flow out of chimney = 1,190 W/m.,

& = 5.263 X 10°°T/G rad/mm, where T is in N-mm and G is in MPa.
Velocity at waist e—a varies from 345 cm/s to 281 cm/s.

C = 13.5.

Lowest natural frequency = 2039 Hz {cps).

Lumped mass results are A, = 14684E + 08 and A, = 6.1395E + 08
Stretch mode eigenvalue = 440 Hz.

{Bending mode natural frequency = 331 Hz.)
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A
Acoustics, 343-45, 348
Area coordinates, 133-34
Aspect ratio, 154
Assembly:
of global stiffness K and load
vector F, 58-62
of global stiffness for banded
solution, 116-17
of global stiffness for skyline
solution, 117-18
of global stiffness for frontal
solution, 289-91

Adxial vibrations, 34547
Axisymmetric elements, 178~207, 354-55

B
B matrix, 52, 80, 138, 183,213,
279,323
Back-substitution 30
Bandwidth, 34, 61,116-17
Banded matrix, 34, 61, 116-17
Beams, 237
Beams on elastic supports,
24748
Bending moment, 245
Bibliography, 18, 443
Body forces 3, 54-55, 57, 81, 141-42,184-85,
213-14,280
Boundary Conditions:
continuum, 4
elimination approach, 63-66

|

heat conduction, 308-336

multipoint constraints, 63, 74-77, 153,
193-94, 287-88

natural, 315

penalty approach, 63, 69-74

scalar field problems, 30666

C
Characteristic equation, 27, 376-78
Cholesky decomposition, 29, 386 .
Composite materials (see orthotropic
materials)
Computer programs:
AXIQUAD, 226
AXISYM, 188, 196, 20507
BEAM, 267
BEAMKM, 391, 404-06
BESTFIT, 158, 422, 435-36
BESTFITQ, 423
CHOLESKY, 29
CONTOURA, 158, 421,436-39
CONTOURB, 158, 421
CST, 158,174-77
CSTKM, 391
CGSOL 40,44
FEM1D 98-102
FRAME2D 263-270
FRAME3D 257,270-74
GAUSS, 40, 43
GENEIGEN, 391
HEATID, 361-62
HEAT2D, 330, 363-66
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Computer programs: (continued)
HEXAFRON, 286, 297-305
INVITR, 381, 406-10
JACOBI, 385
MESHGEN, 158, 227, 419,427-33
PLOT2D, 158, 419, 434-35
QUAD, 227,233-36
QUADCG, 226
SKYLINE, 38
TETRA3D, 284
TORSION, 355
TRUSS2D, 117,128-29
TRUSSKY, 118

Concentrated force, 3, 52, 58, 59

Conical (Belleville) Spring, 194-95

Conjugate gradient method, 39-40,226

Constant strain triangle (CST), 133,174

Contact, 73

Contour plotting, 420-24

D

D matrix, 68,157,180

Data handling, 419

Degenerate quadrilaterals, 219

Degrees of freedom, 47,105, 114-15, 132,
240,248,253-57

Displacement vector (see degrees of freedom)

Ducts, flow in, 341-43

Dynamic analysis, 367410

E

Eigenvalue-cigenvectors, 27-28, 375-76
Eight-node quadrilateral element, 222-23
Electric field problems, 33941
Element:
beam, 23747
beam on elastic support, 24748
frame:
planar, 247-53
3-D,253-57
hexahedral, 285-86
one-dimensional linear, 46-78, 309-20
one-dimensional quadratic, 78-84
quadrilateral:
axisymmetric, 225-26
four-node, 208-220

eight-node, 222-23
nine-node, 220-22
tetrahedral, 27685
triangle, axisymmetric, 181-85
triangle, heat, 322
triangle, CST, 130
triangle, six-node, 223-24
truss, 103
Element connectivity, 47-48
Element mass matrices:
axisymmetric triangle, 372
beam element, 374
constant strain triangle (CST), 372
frame element, 374
one-dimensional bar, 370-71
quadrilateral, four-node, 373
tetrahedral element, 374-75
truss, 371
Element matrices for heat conduction,
313-14,326-28
Element stiffness matrices:
axisymmetric solids, 184
beam, 243
beam on elastic supports, 248
constant strain triangle (CST), 140
frame, 249-50, 255
hexahedron, 286
isoparametric, higher order, 220
one-dimensional, linear, 54
one-dimensional, quadratic, 81
quadrilateral, four-node, 213
tetrahedron, 279
trusses, 106,115
(see also element matrices for heat
conduction)
Elimination approach for handling boundary
conditions, 63-68
Equation solving, 29-40 (see also Gaussian
elimination,
skyline, conjugate gradient, frontal)
Equilibrium equations, 4, 9
Examples of scalar field problems, table, 307
F
Fins:

1-D, 316-20
2-D, 329-30

Pt 1,

WPl . bt 8- e
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Fixed-end reactions, 245, 257
Flow, 306, 336-39
Flywheel, 185, 196, 426
Forces (see body forces, surface traction,
concentrated forces)

Fourter’s law, 308
Forward eliminaticn, 36
Frames:

planar, 248-53

3-D, 253-57
Friction factor in ducts, 341
Frontal method, 289-91°
Functional approach, 323

G
Galerkin approach, 13-16:
in elasticity, 14-15, 56-58, 146-48, 187,
24344
for handling boundary cenditions, 65, 70
in scalar field problems, 312-13, 318-19,
323-26,333-34
Gaussian elimination, 29-36
with column reduction, 36-38 (see also
skyline)
Gauss points and weights, tables, 216, 224
Gaussian quadrature, 214-17
Generalized eigenvalue problem, 370
Givens rotation, 390
Global stiffness matrix, assembly, 58-59, 61,
116-18
Gram-Schmidt process, 380
Grid point stresses, 421-23
Guyan reduction, 392-94

H

Half-bandwidth, (see Bandwidth)

Hamilton’s principle, 367

Heat transfer, 306:
one-dimensional fins, 316-20
one-dimensional heat conduction, 309-16
two-dimensional fins, 329-30
two-dimensional heat conduction, 320-29

Helmholtz equation. 306

Hermite shape functions, 241 Hexahedral

element, 285-87
Higher-order elements, 220

Index

Historical background, 1-2, 18
Householder reflection, 387-389
Hydraulic potential, 338

I
Implicit shift, 386
Inclined roller, 153 (see also multipoint
constraints)
Initial strain (see temperature effects)
Input data format:
AXIQUAD, 229
AXISYM. 197
BEAM, 258
BEAMKM, 397
CST. 160-161
FEMID, 88
FRAME2D, 259
FRAMES3D, 259
GENEIGEN, 397
HEATI1D, 349
HEAT2D, 350
HEXAFRON, 292
INVITR, 397
JACOBI 397
MESHGEN. 161, 330,425
QUAD, QUADCG. 228
TRUSS2D, TRUSSKY. 119
Integration formula, tetrahedron, 278
Inverse iteration, 379-80
Isoparametric representation:
one-dimensional, 50
quadrilateral, 210
three-dimensional, 277
triangle, 135
Isotherm. 308

J

Jacobi method, 38286
Jacobian, 137.211.278.48)

K
Kinetic energy. 367

L

Lagrangean. 367-68

Lagrange shape function. 49.78. 285
Lame's constants, 19
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452 Contents

Least square fit, 421-23

Loads (see body forces, surface tractions,
concentrated forces)

LU decomposition, 42

Lumped (diagonal) mass matrices, 375

M

Magnetic field problems,
33941
Mass matrix, derivation,
368-70:
matrices (see element
mass ratrices)
Matrices:
eigenvalue-eigenvectors, 27-28,
375-76
diagonalization, 38182, 390-91
tridiagonalization, 387Matrix
adjoint, 26
Cholesky decomposition, 29
cofactor, 26
determinant, 26
LU decomposition, 42
positive definite, 28
singular, 26
upper triangular, 26,32
Matrix algebra, 21
Matrix form, quadratic, 27
Mesh generation, 411-18
Mesh preparation with tetrahedra, 281-83
Modeling:
axisymmetric solids, 191-95
three-dimensional problems, 287-88
two-dimensional problems in
elasticity, 152-54
(see also boundary conditions)
Mode shapes (see eigenvalue-eigenvectors)
Multipoint constraints, 74-75, 153,193-94,
287-88

N

Natural coordinates, 48, 133-35, 208-09, 277,
285-86

Natural frequencies (see eigenvalue-
eigenvectors)

Nine-node quadrilateral element, 220-22

Nonlinearity, 194-95
Numerical integration, 214-18

0
One-dimensional problem:
elasticity, 45
fin, 316-20
heat conduction, 309-16
Orthogonal space, 380
Orthotropic materials, 154-57

P
Penalty approach, 69-75
summary, 70
Plane strain, 8
Plane stress, 7-8
Plotting, 418
Potential energy, 52, 139,179-80, 238
(see also functional approach)
Potential flow, 336-37
Preprocessing and
Postprocessing, 411
Press fit, 192-94
Principal stresses, 280-81
Principles:
Galerkin, 13
Hamilton’s, 372
Minimum potential energy, 9
Saint Venant, 16
Virtual work, 15

Q
QR step, 390
Quadratic shape functions, 79
Quadratic triangle, 223
Quadrilateral elements

(see element)

R

Rayleigh Ritz method, 11-13
Rayleigh quotient, 379
Reaction force, 66, 70, 75
Reynolds number, 342

Rigid body modes, 394-96
Row operations, 30




T

S
Saint Venant’s principle, 16
Scalar field problems, 306
Seepage, 338-39
Serendipity elements, 222-23, 415-16
Shape functions:
axisymmetric, 181
beam, 240-41
constant strain triangle (CST), 13335
hexahedron, 285
linear one-dimensionai, 49-50
quadratic one-dimensional, 78-79
quadrilateral:
four-node, 208
eight-node, 222
nine-node, 220
tetrahedron, 277
triangle, six-node, 223
Shear force, 245
Shifting, 379
Shrink fit, (see Press fit)
Six-node triangular element, 223-24
Skyline:
stiffness assembly for, 117-18
theory (38-39) (see also computer
programs SKYLINE, TRUSSKY)
Stiffness matrix (see element stiffness
matrices, global stiffness matrix)
Strain-displacement relations, 4
Stream function, 336-37
Stress computations, 6-8, 53, 86, 107, 148,
190,218, 280
Stress extrapolation, 196
Stress function, 331
Stress-strain relation, 6-8 (see also D matrix)
Stress tensor, component representation, 34

Contents 453

Sub-parametric element, 222

Summary of the finite element method,
6667, 71

Surface Traction, 3, 55, 81, 142-44,
185-86,280

T

Temperature effects
axisymmetric solids, 191
constant strain triangle, 150-51
initial strain, 8
one-dimensional problems, 84-88
trusses, 111-14
Tetrahedral element, 275
Three-dimensional problems, 114, 253,275
Torsion, 331-36
Transformation matrix, 105, 156,
249-50, 256
Triangular element
linear, 130, 178, 322
quadratic, 223-24
Tridiagonalization, 386389
Trusses, 103
Two-dimensional problems:
elasticity, 130,178
scalar field problems, 306
trusses, 103

A’

Vibration, 367

Virtual work, principle, 15
Von Mises stress, 17

W

Winkler foundations, 247
Wilkinson shift, 390
Wood, 154-57




TYPICAL PHYSICAL PROPERTIES OF SOME MATERIALS

Ultimate Strength
Yield | Modubus of Coef. of Thermal
Density | Tensicn | Comp. | strength | elasticity Poisson™s | thermal exp. | conductivity
Material kg/m* | MPa | MPa MPa E GPa ratio 107%°C W/mC
Aluminum 2014-Té 2800 40 410 72 033 pi e
(alloy) 6061-T6 2800 8 k]| 70 0.33 7 210
Brass cold rolled 8470 540 420 105 0.35 19 105
annealed 8470 330 100 105 0.35 19 103
Branze Mangancse 8800 450 170 100 0.4 20 58
Cast Iron
Gray 7200 170 650 95 025 12 45
Maileable 7200 370 250 170 0.25 12 45
Concrete
Low streagth 2400 2 )] 2 015 1 1
Medium strength 2400 3 41 2 0.15 1 1
High strength 2400 4 62 40 0.15 i 1
Copper hard-drawn 8900 380 330 120 0.33 17 380
Glass Silicon 2400 g0 | 40 70 017 8 08
Magnesium 8.5% Al 1800 350 250 45 0.35 26 160
Steel 0.2%C HR 7850 410 250 200 0.30 12 4
02%C CR 7850 550 350 200 0.3 12 42
0.6%C HR 7850 690 370 200 0.30 12 4
0.8%C HR quenched | 7850 830 700 200 0.30 12 42
Stainless 32 CR 7920 600 194 .30 17 18
Titanium 6% Al4% V | 4460 900 230 1O .34 9 14
,_..___._.—--"'"'-—

Properties vary widely depending on changes in composition. iemperature, and ireatment conditions.
CR = Cold rolled HR = Hot rolled



Quantity Units/Conversion
General
Acceleration lin/&® = 00254 m/s®
Area 1in.? = 645.16 mm®
Density (i) 1lbm/in? = 27679.905 kg/m*
(ii) 1slug/it® = 515379 kg/m®
Force 11b = 4448 N (N = Newton)
Frequency Hz (hertz = cycle/s)
Length lin, = 0.0254 m; 1 ft = 03048 m
Mass (i} 11bm = 0.45359 kg
(ii) Lslug = 14,594 kg
Moment lin.-lb = 0.1130N-m

Moment of inertia (area}
Moment of inertia (mass) (i)
(ii}

Power (i}

ii)
Pressure
Stiffness
Stress (i)

(i)

Time
Velocity
Volume
Work, energy

Heat Transfer
Convection coefficient

Heat
Heat flux
Specific heat
Temperature (i)

(ii)
Thermal conductivity

Fluid Flow
Absolute viscosity
Kinematic viscosity

Electric and Magnetic Fields

1int = 4162314 mm*

1Ibm-in? = 2.9264E-4 kg m*
1slug-in? = 0.009415 kg - m®
lin.-Ib/s = 0.1130 W (watt = J/s)
1hp = 0.746 kW (1 hp = 550 ft-Ib)

1psi = 6894.8 Pa (psi = pounds/in.%; Pa = N/m?)

1Ib/in. = 175.1N/m

1 psi = 68948 Pa

1ksi = 68948 MPa; 1 MPa = 145.04 psi
(ksi = 1000 psi; MPa = 10¢ Pa)

s {(second)

1in./s = 0.0254 m/s

1in? = 16.3871E-6 m®

lin-b = 0.1130J (joule = N+-m)

1 Btu/h+ f12-°F = 5.6783 W/m?®* °C

1 Btu = 1055.06 J (1 Bru = 778.17 ft-Ib)
1 Biu/h« ft* = 3.1546 W/m?

1 Btu/°F = 1899.108 J/°C

TOF = [(¥/5)T + 32]°C

T°K = T°C + 273.15 (K = kelvin)

1 Btu/h-ft - °F = 1.7307 W/m « °C

1 1b-s/ft* = 478.803 P (poise = gfcm s}
1 ft¥/s = 929.03 St (stoke = cm?/s)

Capacitance F {farad)
Charge C {coulomb)
Electric charge density C/m’

Electric potential v {volt)
Inductance H (henry)
Permeability H/m

Permittivity F/m

Scalar magnetic potential A (ampere)




INTRODUCTION TO

FINITE ELEMENTS
IN ENGINEERING
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