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T a b l e d SI Units a n d P r e f i x e s 8 

SI Units Quantity Unit SI Symbol Formula 

SI base units: Length meter m — 
Mass kilogram kg — 
Time second s — 
Temperature kelvin K — 

SI supplementary Plane angle radian rad — 
unit: 

SI derived units: Energy joule J N - m 
Force newton N kg • m/s2 

Power watt W J/s 
Pressure pascal Pa N/m2 

Work joule J N • m 

SI prefixes Multiplication Factor Prefix SI Symbol 

1 000 000 000 000 = 10 1 2 tera T 
1 000 000 000 = 10" giga G 

1 000 000 = 106 mega M 
1 000 = 103 kilo k 
0.01 = io~ 2 centi* c 

0.001 = 10" 3 mi Hi m 
0.000 001 = 10" 6 micro 

0.000 000 001 = 10 9 nana n 
0.000 000 000 001 = 10" 1 2 pico P 

" Source: ASTM Standard for Metric Practice E 380-97 , 1997. 
b To be avoided where possible. 



T a b l e G . 2 C o n v e r s i o n Fac to rs a n d Defini t ions 

Fundamental English Exact Approximate 
Dimension Unit SI Value SI Value 

Length 1 in. 0.0254 m — 
Mass 1 lbm 0.453 592 37 kg 0.454 kg 
Temperature 1°F 5/9 K — 

Definitions: 
Acceleration of gravity: g = 9.8066 m/s 2 (= 32.174 ft/s2) 
Energy: Btu (British thermal unit) • amount of energy required to raise 

the temperature of 1 lbm of water 1°F (1 Btu = 778.2 ft • lbf) 
kilocalorie = amount of energy required to raise the temperature of 1 kg of water 

1 K ( l kcal = 4187 J) 
Length: 1 mile = 5280 ft; 1 nautical mile = 6076.1 ft = 1852 m (exact) 
Power: 1 horsepower ^ 550 ft • lbf/s 
Pressure: 1 bar = 105 Pa 
Temperature: degree Fahrenheit, 7V = |Tc + 32 (where TQ is degrees Celsius) 

degree Rankine, 7 R = 7p + 459.67 
Kelvin, 7/K = TC + 273.15 (exact) 

Viscosity: 1 Poise = 0.1 kg/(m • s) 
1 Stoke ^ 0.0001 m 2/s 

Volume: 1 gal = 231 in.3 (1 ft3 = 7.48 gal) 

Useful Conversion Factors: 
1 lbf = 4.448 N 
1 lbf/in.2 = 6895 Pa 
1 Btu = 1055 J 
1 hp = 746 W = 2545 Btu/hr 
1 kW = 3413 Btu/hr 
1 quart = 0.000946 m 3 = 0.946 liter 
1 kcal = 3.968 Btu 
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PREFACE 

This text was written for an introductory course in fluid mechanics. Our approach to 
the subject, as in previous editions, emphasizes the physical concepts of fluid 
mechanics and methods of analysis that begin from basic principles. The primary 
objective of this book is to help users develop an orderly approach to problem solv­
ing. Thus we always start from governing equations, state assumptions clearly, and 
try to relate mathematical results to corresponding physical behavior. We emphasize 
the use of control volumes to maintain a practical problem-solving approach that is 
also theoretically inclusive. 

This approach is illustrated by 116 example problems in the text. Solutions to 
the example problems have been prepared to illustrate good solution technique and to 
explain difficult points of theory. Example problems are set apart in format from the 
text so they are easy to identify and follow. Forty-five example problems include 
Excel workbooks on the accompanying CD-ROM, making them useful for "What 
if?" analyses by students or by the instructor during class. 

Additional important information about the text and our procedures is given in 
the "Note to Students" section on page 1 of the printed text. We urge you to study 
this section carefully and to integrate the suggested procedures into your problem 
solving and results-presentation approaches. 

SI units are used in about 70 percent of both example and end-of-chapter prob­
lems. English Engineering units are retained in the remaining problems to provide 
experience with this traditional system and to highlight conversions among unit sys­
tems that may be derived from fundamentals. 

Complete explanations presented in the text, together with numerous detailed 
examples, make this book understandable for students. This frees the instructor to de­
part from conventional lecture teaching methods. Classroom time can be used to 
bring in outside material, expand upon special topics (such as non-Newtonian flow, 
boundary-layer flow, lift and drag, or experimental methods), solve example prob­
lems, or explain difficult points of assigned homework problems. In addition, the 45 
example problem Excel workbooks are useful for presenting a variety of fluid me­
chanics phenomena, especially the effects produced when varying input parameters. 
Thus each class period can be used in the manner most appropriate to meet student 
needs. 

The material has been selected carefully to include a broad range of topics 
suitable for a one- or two-semester course at the junior or senior level. We assume a 
background in rigid-body dynamics and mathematics through differential equations. 
A background in thermodynamics is desirable for studying compressible flow. 

More advanced material, not typically covered in a first course, has been moved 
to the CD. There the advanced material is available to interested users of the book; on 
the CD it does not interrupt the topic flow of the printed text. 

iii 



iV PREFACE 

Material in the printed text has been organized into broad topic areas: 

• Introductory concepts, scope of fluid mechanics, and fluid statics (Chapters 1, 2, and 3). 
• Development and application of control volume forms of basic equations (Chapter 4). 
• Development and application of differential forms of basic equations (Chapters 5 and 6). 
• Dimensional analysis and correlation of experimental data (Chapter 7). 
• Applications for internal viscous incompressible flows (Chapter 8). 
• Applications for external viscous incompressible flows (Chapter 9). 
• Analysis of fluid machinery and system applications (Chapter 10). 
• Analysis and applications of one- and two-dimensional compressible flows (Chapters 

11 and 12). 

Chapter 4 deals with analysis using both finite and differential control volumes. 
The Bernoulli equation is derived (in an optional sub-section of Section 4-4) as an 
example application of the basic equations to a differential control volume. Being 
able to use the Bernoulli equation in Chapter 4 allows us to include more challenging 
problems dealing with the momentum equation for finite control volumes. 

Another derivation of the Bernoulli equation is presented in Chapter 6, where it 
is obtained by integrating Euler's equation along a streamline. If an instructor 
chooses to delay introducing the Bernoulli equation, the challenging problems from 
Chapter 4 may be assigned during study of Chapter 6. 

This edition incorporates a number of significant changes. In Chapter 7, the dis­
cussion of non-dimensionalizing the governing equations to obtain dimensionless pa­
rameters is moved to the beginning of the chapter. Chapter 8 incorporates pumps into 
the discussion of energy considerations in pipe flow. The discussion of multiple-path 
pipe systems is expanded and illustrated with an interactive Excel workbook. Chapter 
10 has been restructured to include separate sub-topics on machines for doing work 
on, and machines for extracting work from, a fluid. Chapter 12 has been completely 
restructured so that the basic equations for one-dimensional compressible flow are 
derived once, and then applied to each special case (isentropic flow, nozzle flow, 
Fanno line flow, Rayleigh line flow, and normal shocks). Finally, a new section on 
oblique shocks and expansion waves is included. 

We have made a major effort to improve clarity of writing in this edition. Pro­
fessor Philip J. Pritchard of Manhattan College, has joined the Fox-McDonald team 
as co-author. Professor Pritchard reviewed the entire manuscript in detail to clarify 
and improve discussions, added numerous physical examples, and prepared the Excel 
workbooks that accompany 45 example problems and over 300 end-of-chapter prob­
lems. His contributions have been extraordinary. 

The sixth edition includes 1315 end-of-chapter problems. Many problems have 
been combined and contain multiple parts. Most have been structured so that all parts 
need not be assigned at once, and almost 25 percent of sub-parts have been designed 
to explore "What if?" questions. 

About 300 problems are new or modified for this edition, and many include a 
component best suited for analysis using a spreadsheet. A CD icon in the margin 
identifies these problems. Many of these problems have been designed so the com­
puter component provides a parametric investigation of a single-point solution, to fa­
cilitate and encourage students in their attempts to perform "What if?" experimenta­
tion. The Excel workbooks prepared by Professor Pritchard aid this process 
significantly. A new Appendix H, "A Brief Review of Microsoft Excel," also has been 
added to the CD. 



PREFACE V 

We have included many open-ended problems. Some are thought-provoking 
questions intended to test understanding of fundamental concepts, and some require 
creative thought, synthesis, and/or narrative discussion. We hope these problems will 
inspire each instructor to develop and use more open-ended problems. 

The Solutions Manual for the sixth edition continues the tradition established 
by Fox and McDonald: It contains a complete, detailed solution for each of the 
1315 homework problems. Each solution is prepared in the same systematic way as 
the example problem solutions in the printed text. Each solution begins from gov­
erning equations, clearly states assumptions, reduces governing equations to com­
puting equations, obtains an algebraic result, and finally substitutes numerical val­
ues to calculate a quantitative answer. Solutions may be reproduced for classroom 
or library use, eliminating the labor of problem solving for the instructor who 
adopts the text. 

Problems in each chapter are arranged by topic, and within each topic they 
generally increase in complexity or difficulty. This makes it easy for the instructor 
to assign homework problems at the appropriate difficulty level for each section 
of the book. The Solutions Manual is available in CD form directly from the 
publisher upon request after the text is adopted. Go to the text's website at www. 
wiley.com/college/fox to request access to the password-protected online version, or 
to www.wiley.com/college to find your local Wiley representative and request the So­
lutions Manual in CD form. 

Where appropriate, we have used open-ended design problems in place of tradi­
tional laboratory experiments. For those who do not have complete laboratory facili­
ties, students could be assigned to work in teams to solve these problems. Design 
problems encourage students to spend more time exploring applications of fluid me­
chanics principles to the design of devices and systems. In the sixth edition, design 
problems are included with the end-of-chapter problems. 

The presentation of flow functions for compressible flow in Appendix E has 
been expanded to include data for oblique shocks and expansion waves. Expanded 
forms of each table in this appendix can be printed from the associated Excel work­
books, including tables for ideal gases other than air. 

Many worthwhile videos are available to demonstrate and clarify basic princi­
ples of fluid mechanics. These are referenced in the text where their use would be ap­
propriate and are also identified by supplier in Appendix C. 

When students finish the fluid mechanics course, we expect them to be able to 
apply the governing equations to a variety of problems, including those they have not 
encountered previously. In the sixth edition we particularly emphasize physical con­
cepts throughout to help students model the variety of phenomena that occur in real 
fluid flow situations. We minimize use of "magic formulas" and emphasize the sys­
tematic and fundamental approach to problem solving. By following this format, we 
believe students develop confidence in their ability to apply the material and find they 
can reason out solutions to rather challenging problems. 

The book is well suited for independent study by students or practicing engi­
neers. Its readability and clear examples help to build confidence. Answers to many 
quantitative problems are provided at the back of the printed text. 

We recognize that no single approach can satisfy all needs, and we are grateful 
to the many students and faculty whose comments have helped us improve upon ear­
lier editions of this book. We especially thank our reviewers for the sixth edition: 
Mark A. Cappelli of Stanford University, Edward M. Gates of California State Poly­
technic University (Pomona), Jay M. Khodadadi of Auburn University, Tim Lee of 

http://wiley.com/college/fox
http://www.wiley.com/college
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McGill University, and S. A. Sherif of University of Florida. We look forward to con­
tinued interactions with these and other colleagues who use the book. 

We appreciate the unstinting support of our wives, Beryl, Tania, and Penelope. 
They are keenly aware of all the hours that went into this effort! 

We welcome suggestions and/or criticisms from interested users of this book. 

Robert W. Fox 
Alan T. McDonald 
Philip J. Pritchard 
April 2003 
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Chapter 1 

INTRODUCTION 

The goal of this textbook is to provide a clear, concise introduction to the subject of 
fluid mechanics. In beginning the study of any subject, a number of questions may 
come to mind. Students in the first course in fluid mechanics might ask: 

What is fluid mechanics all about? 
Why do I have to study it? 
Why should I want to study it? 
How does it relate to subject areas with which I am already familiar? 

In this chapter we shall try to present some answers to these and similar ques­
tions. This should serve to establish a base and a perspective for our study of fluid 
mechanics. Before proceeding with the definition of a fluid, we digress for a moment 
with a few comments to students. 

1-1 NOTE T O STUDENTS 

In writing this book we have kept you, the student, uppermost in our minds; the book is 
written for you. It is our strong feeling that classroom time should not be devoted to a 
regurgitation of textbook material by the instructor. Instead, the time should be used to 
amplify the textbook material by discussing related material and applying basic princi­
ples to the solution of problems. This requires: (1) a clear, concise presentation of the 
fundamentals that you, the student, can read and understand, and (2) your willingness 
to read the text before going to class. We have assumed responsibility for meeting the 
first requirement. You must assume responsibility for satisfying the second require­
ment. There probably will be times when we fall short of these objectives. If so, we 
would appreciate hearing from you either directly (at philip.pritchard@manhattan.edu) 
or through your instructor. 

It goes without saying that an introductory text is not all-inclusive. Your instruc­
tor undoubtedly will expand on the material presented, suggest alternative approaches 
to topics, and introduce additional new material. We encourage you to refer to the 
many other fluid mechanics textbooks and references available in the library and on 
the Web; where another text presents a particularly good discussion of a given topic, 
we shall refer to it directly. 

We also encourage you to learn from your fellow students and from the graduate 
assistant(s) assigned to the course as well as from your instructor. We assume that 
you have had an introduction to thermodynamics (either in a basic physics course or 
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an introductory course in thermodynamics) and prior courses in statics, dynamics, 
and differential and integral calculus. No attempt will be made to restate this subject 
material; however, the pertinent aspects of this previous study will be reviewed 
briefly when appropriate. 

It is our strong belief that one learns best by doing. This is true whether the sub­
ject under study is fluid mechanics, thermodynamics, or golf. The fundamentals in 
any of these are few, and mastery of them comes through practice. Thus it is ex­
tremely important that you solve problems. The numerous problems included at the 
end of each chapter provide the opportunity to practice applying fundamentals to the 
solution of problems. You should avoid the temptation to adopt a "plug and chug" ap­
proach to solving problems. Most of the problems are such that this approach simply 
will not work. In solving problems we strongly recommend that you proceed using 
the following logical steps: 

1. State briefly and concisely (in your own words) the information given, 
2. State the information to be found. 
3. Draw a schematic of the system or control volume to be used in the analysis. Be sure to label 

the boundaries of the system or control volume and label appropriate coordinate directions. 
4. Give the appropriate mathematical formulation of the basic laws that you consider neces­

sary to solve the problem. 
5. List the simplifying assumptions that you feel are appropriate in the problem. 
6. Complete the analysis algebraically before substituting numerical values. 
7. Substitute numerical values (using a consistent set of units) to obtain a numerical answer. 

a. Reference the source of values for any physical properties. 
b. Be sure the significant figures in the answer are consistent with the given data. 

8. Check the answer and review the assumptions made in the solution to make sure they are 
reasonable. 

9. Label the answer. 

In your initial work this problem format may seem unnecessary and even long-
winded. However, such an orderly approach to the solution of problems will reduce 
errors, save time, and permit a clearer understanding of the limitations of a particular 
solution. This approach also prepares you for communicating your solution method 
and results to others, as will often be necessary in your career. This format is used 
in all example problems presented in this text; answers to example problems are 
rounded to three significant figures. 

Most engineering calculations involve measured values or physical property 
data. Every measured value has associated with it an experimental uncertainty. The 
uncertainty in a measurement can be reduced with care and by applying more precise 
measurement techniques, but cost and time needed to obtain data rise sharply as 
measurement precision is increased. Consequently, few engineering data are suffi­
ciently precise to justify the use of more than three significant figures. 

Not all measurements can be made to the same degree of accuracy and not all 
data are equally good; the validity of data should be documented before test results 
are used for design. A statement of the probable uncertainty of data is an important 
part of reporting experimental results completely and clearly. Analysis of uncertainty 
also is useful during experiment design. Careful study may indicate potential sources 
of unacceptable error and suggest improved measurement methods. 

The principles of specifying the experimental uncertainty of a measurement 
and of estimating the uncertainty of a calculated result are reviewed in Appendix F. 
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These should be understood thoroughly by anyone who performs laboratory work. 
We suggest you take time to review Appendix F before performing laboratory work 
or solving the homework problems at the end of this chapter. 

1-2 DEFINITION OF A FLUID 

We already have a common-sense idea of when we are working with a fluid, as op­
posed to a solid: Fluids tend to flow when we interact with them (e.g., when you stir 
your morning coffee); solids tend to deform or bend (e.g., when you type on a key­
board, the springs under the keys compress). Engineers need a more formal and pre­
cise definition of a fluid: A fluid is a substance that deforms continuously under the 
application of a shear (tangential) stress no matter how small the shear stress may be. 

Thus fluids comprise the liquid and gas (or vapor) phases of the physical forms 
in which matter exists. The distinction between a fluid and the solid state of matter is 
clear if you compare fluid and solid behavior. A solid deforms when a shear stress 
is applied, but its deformation does not continue to increase with time. 

In Fig. l .l the deformations of a solid (Fig. 1.1a) and a fluid (Fig. Life) under 
the action of a constant shear force are contrasted. In Fig. 1.1a the shear force is ap­
plied to the solid through the upper of two plates to which the solid has been bonded. 
When the shear force is applied to the plate, the block is deformed as shown. From 
our previous work in mechanics, we know that, provided the elastic limit of the solid 
material is not exceeded, the deformation is proportional to the applied shear stress, 
T = FIA, where A is the area of the surface in contact with the plate. 

To repeat the experiment with a fluid between the plates, use a dye marker to 
outline a fluid element as shown by the solid lines (Fig. \.\b). When the shear 
force, F, is applied to the upper plate, the deformation of the fluid element contin­
ues to increase as long as the force is applied. The fluid in direct contact with the 
solid boundary has the same velocity as the boundary itself; there is no slip at the 
boundary. This is an experimental fact based on numerous observations of fluid be­
havior. 1 The shape of the fluid element, at successive instants of time t2> tx> t0, is 
shown (Fig. [.lb) by the dashed lines, which represent the positions of the dye 
markers at successive times. Because the fluid motion continues under the applica­
tion of a shear stress, we can also define a fluid as a substance that cannot sustain a 
shear stress when at rest. 

1 1 
1 1 

I 1 
1 1 

1 1 
1 1 

{a) Solid [b) Fluid 

Fig. 1.1 Behav io r of a sol id and a f lu id, under the act ion of a cons tan t 
shear force. 

' The no-slip condition is demonstrated in the NCFMF video Fundamentals of Boundary Layers. A com­
plete list of fluid mechanics video titles and sources is given in Appendix C. 
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1-3 SCOPE OF FLUID MECHANICS 

Fluid mechanics deals with the behavior of fluids at rest and in motion. We might ask 
the question: "Why study fluid mechanics?" 

Knowledge and understanding of the basic principles and concepts of fluid me­
chanics are essential to analyze any system in which a fluid is the working medium. We 
can give many examples. The design of virtually all means of transportation requires 
application of the principles of fluid mechanics. Included are subsonic and supersonic 
aircraft, surface ships, submarines, and automobiles. In recent years automobile manu­
facturers have given more consideration to aerodynamic design. This has been true for 
some time for the designers of both racing cars and boats. The design of propulsion 
systems for space flight as well as for toy rockets is based on the principles of fluid 
mechanics. The collapse of the Tacoma Narrows Bridge in 1940 is evidence of the pos­
sible consequences of neglecting the basic principles of fluid mechanics. 2 It is com­
monplace today to perform model studies to determine the aerodynamic forces on, and 
flow fields around, buildings and structures. These include studies of skyscrapers, base­
ball stadiums, smokestacks, and shopping plazas. 

The design of all types of fluid machinery including pumps, fans, blowers, com­
pressors, and turbines clearly requires knowledge of the basic principles of fluid me­
chanics. Lubrication is an application of considerable importance in fluid mechanics. 
Heating and ventilating systems for private homes and large office buildings and the 
design of pipeline systems are further examples of technical problem areas requiring 
knowledge of fluid mechanics. The circulatory system of the body is essentially a 
fluid system. It is not surprising that the design of blood substitutes, artificial hearts, 
heart-lung machines, breathing aids, and other such devices must rely on the basic 
principles of fluid mechanics. 

Even some of our recreational endeavors are directly related to fluid mechanics. 
The slicing and hooking of golf balls can be explained by the principles of fluid me­
chanics (although they can be corrected only by a golf pro!). 

This list of real-world applications of fluid mechanics could go on indefinitely. 
Our main point here is that fluid mechanics is not a subject studied for purely aca­
demic interest; rather, it is a subject with widespread importance both in our every­
day experiences and in modern technology. 

Clearly, we cannot hope to consider in detail even a small percentage of these 
and other specific problems of fluid mechanics. Instead, the purpose of this text is to 
present the basic laws and associated physical concepts that provide the basis or start­
ing point in the analysis of any problem in fluid mechanics. 

1-4 BASIC EQUATIONS 

Analysis of any problem in fluid mechanics necessarily includes statement of the ba­
sic laws governing the fluid motion. The basic laws, which are applicable to any 
fluid, are: 

2 For dramatic evidence of aerodynamic forces in action, see the short video Collapse of the Tacoma Nar­
rows Bridge. 
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1. The conservation of mass. 
2. Newton's second law of motion. 
3. The principle of angular momentum. 
4. The first law of thermodynamics, 
5. The second law of thermodynamics. 

Not all basic laws are always required to solve any one problem. On the other hand, 
in many problems it is necessary to bring into the analysis additional relations that 
describe the behavior of physical properties of fluids under given conditions. + 

For example, you probably recall studying properties of gases in basic physics 
or thermodynamics. The ideal gas equation of state 

p = pRT (1.1) 

is a model that relates density to pressure and temperature for many gases under nor­
mal conditions. In Eq. 1.1, /? is the gas constant. Values of R are given in Appendix A 
for several common gases; p and T in Eq. 1.1 are the absolute pressure and absolute 
temperature, respectively; p is density (mass per unit volume). Example Problem 1.1 
illustrates use of the ideal gas equation of state. 

It is obvious that the basic laws with which we shall deal are the same as those 
used in mechanics and thermodynamics. Our task will be to formulate these laws in 
suitable forms to solve fluid flow problems and to apply them to a wide variety of 
situations. 

We must emphasize that there are, as we shall see, many apparently simple 
problems in fluid mechanics that cannot be solved analytically. In such cases we must 
resort to more complicated numerical solutions and/or results of experimental tests, 

1-5 METHODS OF ANALYSIS 

The first step in solving a problem is to define the system that you are attempting to 
analyze. In basic mechanics, we made extensive use of the free-body diagram. We 
will use a system or a control volume, depending on the problem being studied. These 
concepts are identical to the ones you used in thermodynamics (except you may have 
called them closed system and open system, respectively). We can use either one to 
gel mathematical expressions for each of the basic laws. In thermodynamics they 
were mostly used to obtain expressions for conservation of mass and the first and 
second laws of thermodynamics; in our study of fluid mechanics, we will be most in­
terested in conservation of mass and Newton's second law of motion. In thermody­
namics our focus was energy; in fluid mechanics it will mainly be forces and motion. 
We must always be aware of whether we are using a system or a control volume 
approach because each leads to different mathematical expressions of these laws. At 
this point we review the definitions of systems and control volumes. 

System and Control Volume 

A system is defined as a fixed, identifiable quantity of mass; the system boundaries 
separate the system from the surroundings. The boundaries of the system may be 
fixed or movable; however, no mass crosses the system boundaries. 
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Fig. 1.2 P is ton-cy l inder assembly . 

In the familiar piston-cylinder assembly from thermodynamics, Fig. 1.2, the gas 
in the cylinder is the system. If the gas is heated, the piston will lift the weight; the 
boundary of the system thus moves. Heat and work may cross the boundaries of the 
system, but the quantity of matter within the system boundaries remains fixed. No 
mass crosses the system boundaries. 

EXAMPLE 1.1 First Law Application to Closed System 

A piston-cylinder device contains 0.95 kg of oxygen initially at a temperature of 27°C 
and a pressure due to the weight of 150 kPa (abs). Heat is added to the gas until it 
reaches a temperature of 627°C. Determine the amount of heat added during the process. 

EXAMPLE PROBLEM 1.1 ~ 

GIVEN: Piston-cylinder containing 0 2 , m = 0.95 kg. ~ 

7", = 27°C T2 = 627°C 

FIND: e , ^ 2 . 

SOLUTION: 

p = constant = 150 kPa (abs) 

We are dealing with a system, m — 0.95 kg. 

Governing equation: First law for the system, (2, 2 — Wl2 = E2 - E{ 

Assumptions: (1) E = U, since the system is stationary 
(2) Ideal gas with constant specific heats 

Under the above assumptions, 

E2 - £, = U2 - t/| = m(u2 - iti) = mcv(T2 - 7",) 

The work done during the process is moving boundary work 

Wl2 = [¥lpdY = P(Y2-Y,) 

For an ideal gas, p¥ = mRT. Hence Wl2 = mR(T2 — T{). Then from the first law equation, 

Qn = E2- Et + Wl2 = mcv(T2 - 7,) + mR(T2 - Tx) 

Qn = m(T2 - T,)(cv + R) 

Qn = mcp{T2 ~ T,) {R = cp- cv) 
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From the Appendix, Table A.6, for 0 2 , cp = 909.4 J/(kg • K ) . Solving for Qn, we obtain 

e ] 2 = 0 . 9 5 k g x 9 0 9 _ J _ x 6 0 0 K = 5 1 8 k J 

kg-K 
4 2 

This problem: 
/ Was solved using the nine logical steps discussed earlier. 
/ Reviewed use of the ideal gas equation and the first law of 

thermodynamics for a system, 

In mechanics courses you used the free-body diagram (system approach) exten­
sively. This was logical because you were dealing with an easily identifiable rigid body. 
However, in fluid mechanics we normally are concerned with the flow of fluids 
through devices such as compressors, turbines, pipelines, nozzles, and so on. In these 
cases it is difficult to focus attention on a fixed identifiable quantity of mass. It is 
much more convenient, for analysis, to focus attention on a volume in space through 
which the fluid flows. Consequently, we use the control volume approach. 

A control volume is an arbitrary volume in space through which fluid flows. The 
geometric boundary of the control volume is called the control surface. The control 
surface may be real or imaginary; it may be at rest or in motion. Figure 1.3 shows 
flow through a pipe junction, with a control surface drawn on it. Note that some re­
gions of the surface correspond to physical boundaries (the walls of the pipe) and 
others (at locations CD, (2), and (3)) are parts of the surface that are imaginary (inlets 
or outlets). For the control volume defined by this surface, we could write equations 
for the basic laws and obtain results such as the flow rate at outlet (J) given the flow 
rates at inlet (T) and outlet (2) (similar to a problem we will analyze in Example 
Problem 4.1 in Chapter 4), the force required to hold the junction in place, and so on. 

Control surface 

Fig . 1.3 Fluid f low t h rough a p ipe junc t ion . 
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It is always important to take care in selecting a control volume, as the choice has a 
big effect on the mathematical form of the basic laws. 

Differential versus Integral Approach 

The basic laws that we apply in our study of fluid mechanics can be formulated in 
terms of infinitesimal or finite systems and control volumes. As you might suspect, 
the equations will look different in the two cases. Both approaches are important in 
the study of fluid mechanics and both will be developed in the course of our work. 

In the first case the resulting equations are differential equations. Solution 
of the differential equations of motion provides a means of determining the de­
tailed behavior of the flow. An example might be the pressure distribution on a 
wing surface. 

Frequently the information sought does not require a detailed knowledge of the 
flow. We often are interested in the gross behavior of a device; in such cases it is 
more appropriate to use integral formulations of the basic laws. An example might be 
the overall lift a wing produces. Integral formulations, using finite systems or control 
volumes, usually are easier to treat analytically. The basic laws of mechanics and 
thermodynamics, formulated in terms of finite systems, are the basis for deriving the 
control volume equations in Chapter 4. 

Methods of Description 

Mechanics deals almost exclusively with systems; you have made extensive use of 
the basic equations applied to a fixed, identifiable quantity of mass. On the other 
hand, attempting to analyze thermodynamic devices, you often found it necessary to 
use a control volume (open system) analysis. Clearly, the type of analysis depends on 
the problem. 

Where it is easy to keep track of identifiable elements of mass (e.g., in particle 
mechanics), we use a method of description that follows the particle. This sometimes 
is referred to as the Lagrangian method of description. 

Consider, for example, the application of Newton's second law to a particle of 
fixed mass. Mathematically, we can write Newton's second law for a system of 
mass m as 

v ; - dV d27 
Lt = ma = m— = m—~- (1.2) 

dt dr 
In Eq. 1.2, I f is the sum of all external forces acting on the system, a is the acceleration 
of the center of mass of the system, V is the velocity of the center of mass of the sys­
tem, and r is the position vector of the center of mass of the system relative to a 

s, fixed coordinate system. 

EXAMPLE 1.2 Free-Fail of Ball in Air 

The air resistance (drag force) on a 200 g ball in free flight is given by FD = 2 X 
10~ 4 V2, where FD is in newtons and V is in meters per second. If the ball is dropped 
from rest 500 m above the ground, determine the speed at which it hits the ground. 
What percentage of the terminal speed is the result? (The terminal speed is the 
steady speed a falling body eventually attains.) 
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EXAMPLE PROBLEM 1.2 

GIVEN: Ball, m = 0.2 kg, released from rest at y0 = 500 m 
Air resistance, FD = kV2, where k = 2 X 10~4 N • s^/m2 

Units: F C(N), V(m/s) 

FIND: (a) Speed at which the ball hits the ground, 
(b) Ratio of speed to terminal speed. 

SOLUTION: 

Governing equation: X F = ma 

Assumption: (1) Neglect buoyancy force. 

The motion of the ball is governed by the equation 

LF = ma = m — 
y y dt 

dV dy dV 
Since V = V(y), we write I.F = m — ~ = mV— Then, 

J y dy dt dy 

~LFy = FD - mg = kV2 - mg = mV 

Separating variables and integrating, 
f> , r v mVdV 

dV 
dy 

r * - r 
Jy0 Jo 

kV' - mg 

m i , , 2 J m i k-V" - mg 
y-yo=\ — Mkv2-mg)\ = — I n £ 

2k Jo 2k -mg 
Taking antilogarithms, we obtain 

Solving for V gives 

kV2-mg = -mg^y-*>)] 

1/2 

'Substituting numerical values with y = 0 yields 

v = 10.2kg x 9.81 m x m N • s 
2 x 10 N • s kg • m 

1-e 1 [ ^ ^ ( - 5 0 0 ) ] 
1/2 

V = 78.7 m/s 
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At terminal speed, ay = 0 and Z F y = 0 = kV2 - mg 

Then, V, = 
mg' 1/2 

. k . 
0.2 kg 9.81m m N • s 

W2 

s 7 " 2 x lO^N • s 2 kg • m 
= 99.0 m/s. 

The ratio of actual speed to terminal speed is 

V 78 7 
— = — = 0.795, or 79.5% 
V, 99.0 <-

V_ 

This problem: 
/ Reviewed the methods used in particle mechanics. 
/ Introduced a variable aerodynamic drag force. 

Try the Excel workbook for this Example Problem for 
variations on this problem. 

We could use this Lagrangian approach to analyze a fluid flow by assuming the 
fluid to be composed of a very large number of particles whose motion must be de­
scribed. However, keeping track of the motion of each fluid particle would become a 
horrendous bookkeeping problem. Consequently, a particle description becomes un­
manageable. Often we find it convenient to use a different type of description. Partic­
ularly with control volume analyses, it is convenient to use the field, or Eulerian, 
method of description, which focuses attention on the properties of a flow at a given 
point in space as a function of time. In the Eulerian method of description, the prop­
erties of a flow field are described as functions of space coordinates and time. We 
shall see in Chapter 2 that this method of description is a logical outgrowth of the as­
sumption that fluids may be treated as continuous media. 

1-6 DIMENSIONS AND UNITS 

Engineering problems are solved to answer specific questions. It goes without saying 
that the answer must include units. In 1999, NASA's Mars Pathfinder crashed be­
cause the JPL engineers assumed that a measurement was in meters, but the supply­
ing company's engineers had actually made the measurement in feet! Consequently, 
it is appropriate to present a brief review of dimensions and units. We say "review" 
because the topic is familiar from your earlier work in mechanics. 

We refer to physical quantities such as length, time, mass, and temperature as 
dimensions. In terms of a particular system of dimensions, all measurable quantities 
are subdivided into two groups—primary quantities and secondary quantities. We re­
fer to a small group of dimensions from which all others can be formed as primary 
quantities, for which we set up arbitrary scales of measure. Secondary quantities are 
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those quantities whose dimensions are expressible in terms of the dimensions of the 
primary quantities. 

Units art the arbitrary names (and magnitudes) assigned to the primary dimensions 
adopted as standards for measurement. For example, the primary dimension of length 
may be measured in units of meters, feet, yards, or miles. These units of length are re­
lated to each other through unit conversion factors (1 mile = 5280 feet = 1609 meters). 

Systems of Dimensions 

Any valid equation that relates physical quantities must be dimensionally homoge­
neous; each term in the equation must have the same dimensions. We recognize that 
Newton's second law (F <* ma) relates the four dimensions, F , M, L, and t. Thus 
force and mass cannot both be selected as primary dimensions without introducing a 
constant of proportionality that has dimensions (and units). 

Length and time are primary dimensions in all dimensional systems in common 
use. In some systems, mass is taken as a primary dimension. In others, force is se­
lected as a primary dimension; a third system chooses both force and mass as pri­
mary dimensions. Thus we have three basic systems of dimensions, corresponding to 
the different ways of specifying the primary dimensions. 

a. Mass [Af], length [L], time [/], temperature [T]. 

b. Force [F], length [L], time [/], temperature \T]. 
c. Force [F], mass [M], length [L], time [/], temperature [T]. 

In system a, force [F] is a secondary dimension and the constant of proportionality in 
Newton's second law is dimensionless. In system b, mass [M] is a secondary dimen­
sion, and again the constant of proportionality in Newton's second law is 
dimensionless. In system c, both force [F] and mass [M] have been selected as pri­
mary dimensions. In this case the constant of proportionality, gc, (not t o b e confused 
with g, the acceleration of gravity!) in Newton's second law (written F = md/gc) is 
not dimensionless. The dimensions of gc must in fact be [MLJFr2] for the equation to 
be dimensionally homogeneous. The numerical value of the constant of proportional­
ity depends on the units of measure chosen for each of the primary quantities. 

Systems of Units 

There is more than one way to select the unit of measure for each primary dimension. 
We shall present only the more common engineering systems of units for each of the 
basic systems of dimensions. 

a . MLtT 

SI, which is the official abbreviation in all languages for the Systeme International 
d'Unit£s, 3 is an extension and refinement of the traditional metric system. More than 
30 countries have declared it to be the only legally accepted system. 

5 American Society for Testing and Materials, ASTM Standard for Metric Practice, E380-97. 
Conshohocken, PA: ASTM, 1997. ^^Z>* 

B ' B U Q J E O i 
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In the SI system of units, the unit of mass is the kilogram (kg), the unit of length 
is the meter (m), the unit of time is the second (s), and the unit of temperature is the 
kelvin (K). Force is a secondary dimension, and its unit, the newton (N), is defined 
from Newton's second law as 

1 N = 1 kg • m/s 2 

In the Absolute Metric system of units, the unit of mass is the gram, the unit of 
length is the centimeter, the unit of time is the second, and the unit of temperature is 
the kelvin. Since force is a secondary dimension, the unit of force, the dyne, is de­
fined in terms of Newton's second law as 

1 dyne = 1 g • cm/s 2 

b. FLtT 

In the British Gravitational system of units, the unit of force is the pound (lbf), the 
unit of length is the foot (ft), the unit of time is the second, and the unit of tempera­
ture is the degree Rankine (°R). Since mass is a secondary dimension, the unit of 
mass, the slug, is defined in terms of Newton's second law as 

1 slug = 1 lbf • s2/ft 

c . FMLtT 

In the English Engineering system of units, the unit of force is the pound force 
(lbf), the unit of mass is the pound mass (lbm), the unit of length is the foot, the 
unit of time is the second, and the unit of temperature is the degree Rankine. Since 
both force and mass are chosen as primary dimensions, Newton's second law is 
written as 

F = — 
8c 

A force of one pound (1 lbf) is the force that gives a pound mass (1 lbm) an accelera­
tion equal to the standard acceleration of gravity on Earth, 32.2 ft/s 2. From Newton's 
second law we see that 

, „ , 1 lbm x 32.2 f t / s 2 

or 
gc s 32.2 ft • lbm/(lbf • s 2) 

The constant of proportionality, gc, has both dimensions and units. The dimensions arose 
because we selected both force and mass as primary dimensions; the units (and the nu­
merical value) are a consequence of our choices for the standards of measurement 

Since a force of 1 lbf accelerates 1 lbm at 32.2 ft/s 2, it would accelerate 32.2 lbm 
at 1 ft/s 2. A slug also is accelerated at 1 ft/s 2 by a force of 1 lbf. Therefore, 

1 slug =e 32.2 lbm 

Many textbooks and references use lb instead of lbf or lbm, leaving it up to the 
reader to determine from the context whether a force or mass is being referred to. 
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Preferred Systems of Units 

In this text we shall use both the SI and the British Gravitational systems of units. In 
either case, the constant of proportionality in Newton's second law is dimensionless 
and has a value of unity. Consequently, Newton's second law is written as F = ma. 
In these systems, it follows that the gravitational force (the "weight" 4) on an object of 
mass m is given by W — mg. 

SI units and prefixes, together with other defined units and useful conversion 
factors, are summarized in Appendix G. 

1-7 SUMMARY 

In this chapter we introduced or reviewed a number of basic concepts and definitions, 
including: 

/ How fluids are defined, and the no-slip condition. 
/ System/Control Volume concepts. 
/ Lagrangian & Eulerian descriptions. 
/ Units and dimensions (including SI, British Gravitational, and English Engineering 

systems), 
/ Experimental uncertainty, 

We also briefly discussed the five basic laws (three from mechanics and two 
from thermodynamics) governing the motion of fluids. 

PROBLEMS 

1.1 A number of common substances are 

Tar Sand 
"Silly Putty" Jello 
Modeling clay Toothpaste 
Wax Shaving cream 
Some of these materials exhibit characteristics of both solid and fluid behavior under 
different conditions. Explain and give examples. 

1.2 Give a word statement of each of the five basic conservation laws stated in Section 1-4, 
as they apply to a system. 

1.3 Discuss the physics of skipping a stone across the water surface of a lake. Compare 
these mechanisms with a stone as it bounces after being thrown along a roadway. 

1.4 The barrel of a bicycle tire pump becomes quite warm during use. Explain the mecha­
nisms responsible for the temperature increase. 

1.5 A tank of compressed oxygen for flame cutting is to contain 15 kg of oxygen at a pres­
sure of 10 MPa (the temperature is 35°C). How large must be the tank volume? What is 
the diameter of a sphere with this volume? 

4 Note that in the English Engineering system, the weight of an object is given by W = mg/gc. 
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1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 
1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then com­
pute this mass in lbm and kg to see how close your estimate was. 

1.7 A tank of compressed nitrogen for industrial process use is a cylinder with 6 in. diame­
ter and 4.25 ft length. The gas pressure is 204 atmospheres (gage). Calculate the mass 
of nitrogen in the tank. 

1.8 Calculate the density of standard air in a laboratory from the ideal gas equation of state. 
Estimate the experimental uncertainty in the air density calculated for standard condi­
tions (29.9 in. of mercury and 59°F) if the uncertainty in measuring the barometer 
height is ± 0 . 1 in. of mercury and the uncertainty in measuring temperature is ± 0.5°F. 
(Note that 29.9 in. of mercury corresponds to 14.7 psia.) 

1.9 Repeat the calculation of uncertainty described in Problem 1.8 for air in a freezer. 
Assume the measured barometer height is 759 ± 1 mm of mercury and the temperature 
is - 2 0 ± 0.5°C. [Note that 759 mm of mercury corresponds to 101 kPa (abs).] 

1.10 The mass of the standard American golf ball is 1.62 ± 0.01 oz and its mean diameter is 
1.68 ± 0.01 in. Determine the density and specific gravity of the American golf ball. 
Estimate the uncertainties in the calculated values. 

1.11 The mass flow rate in a water flow system determined by collecting the discharge over a 
timed interval is 0.2 kg/s. The scales used can be read to the nearest 0.05 kg and the 
stopwatch is accurate to 0.2 s. Estimate the precision with which the flow rate can be 
calculated for time intervals of (a) 10 s and (b) 1 min. 

1.12 A can of pet food has the following internal dimensions: 102 mm height and 73 mm di­
ameter (each ± 1 mm at odds of 20 to 1). The label lists the mass of the contents as 397 g. 
Evaluate the magnitude and estimated uncertainty of the density of the pet food if the 
mass value is accurate to ± 1 g at the same odds. 

1.13 The mass of the standard British golf ball is 45.9 ± 0.3 g and its mean diameter is 41.1 
± 0.3 mm. Determine the density and specific gravity of the British golf ball. Estimate 
the uncertainties in the calculated values. 

1.14 The mass flow rate of water in a tube is measured using a beaker to catch water during 
a timed interval. The nominal mass flow rate is 100 g/s. Assume that mass is measured 
using a balance with a least count of 1 g and a maximum capacity of I kg, and that the 
timer has a least count of 0.1 s. Estimate the time intervals and uncertainties in meas­
ured mass flow rate that would result from using 100, 500, and 1000 mL beakers. 
Would there be any advantage in using the largest beaker? Assume the tare mass of the 
empty 1000 mL beaker is 500 g. 

1.15 The estimated dimensions of a soda can are D = 66.0 ± 0.5 mm and H = 110 ± 0.5 
mm. Measure the mass of a full can and an empty can using a kitchen scale or postal 
scale. Estimate the volume of soda contained in the can. From your measurements esu-
mate the depth to which the can is filled and the uncertainty in the estimate. Assume the 
value of SG = 1.055, as supplied by the bottler. 

1.16 From Appendix A, the viscosity p. (N • s/m2) of water at temperature T (K) can be com­
puted from ix = AXO8^0, where A = 2.414 X 10 5 N • s/m2, B = 247.8 K, and C = 
140 K. Determine the viscosity of water at 20°C, and estimate its uncertainty if the un­
certainty in temperature measurement is ± 0.25°C. 

1.17 An enthusiast magazine publishes data from its road tests on the lateral acceleration ca­
pability of cars. The measurements are made using a 150 ft diameter skid pad. Assume 
the vehicle path deviates from the circle by ± 2 ft and that the vehicle speed is read 
from a fifth-wheel speed-measuring system to ± 0.5 mph. Estimate the experimental 
uncertainty in a reported lateral acceleration of 0.7 g. How would you improve the ex­
perimental procedure to reduce the uncertainty? 
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1.18 Using the nominal dimensions of the soda can given in Problem 1.15, determine the 
precision with which the diameter and height must be measured to estimate the volume 
of the can within an uncertainty of ± 0.5 percent. 

1.19 An American golf ball is described in Problem 1.10 Assuming the measured mass and its 
uncertainty as given, determine the precision to which the diameter of the ball must be 
measured so the density of the ball may be estimated within an uncertainty of ± 1 percent. 

1.20 The height of a building may be estimated by measuring the horizontal distance to a 
point on the ground and the angle from this point to the top of the building. Assuming 
these measurements are L = 100 ± 0.5 ft and 9 = 30 ± 0.2 degrees, estimate the 
height H of the building and the uncertainty in the estimate. For the same building 
height and measurement uncertainties, use Excel's Solver to determine the angle (and 
the corresponding distance from the building) at which measurements should be made 
to minimize the uncertainty in estimated height. Evaluate and plot the optimum meas­
urement angle as a function of building height for 50 < H £ 1000 ft. 

1.21 In the design of a medical instrument it is desired to dispense I cubic millimeter of liq­
uid using a piston-cylinder syringe made from molded plastic. The molding operation 
produces plastic parts with estimated dimensional uncertainties of ± 0.002 in. Estimate 
the uncertainty in dispensed volume that results from the uncertainties in the dimen­
sions of the device. Plot on the same graph the uncertainty in length, diameter, and vol­
ume dispensed as a function of cylinder diameter D from D = 0.5 to 2 mm. Determine 
the ratio of stroke length to bore diameter that gives a design with minimum uncertainty 
in volume dispensed. Is the result influenced by the magnitude of the dimensional un­
certainty? 

1.22 Very small particles moving in fluids are known to experience a drag force proportional to 
speed. Consider a particle of net weight W dropped in a fluid. The particle experiences a 
drag force, FD = kV, where Vis the particle speed. Determine the time required for the par­
ticle to accelerate from rest to 95 percent of its terminal speed, V„ in terms of k, W, and g. 

1.23 Consider again the small particle of Problem 1.22. Express the distance required to 
reach 95 percent of its terminal speed in terms of g, k, and W. 

1.24 For a small particle of aluminum (spherical, with diameter d — 0.025 mm) falling in 
standard air at speed V, the drag is given by FD = 'Sirp.Vd. where /x is the air viscosity. 
Find the maximum speed starting from rest, and the time it takes to reach 95% of this 
speed. Plot the speed as a function of time. 

1.25 For small spherical water droplets, diameter d, falling in standard air at speed V, the drag 
is given by FD = 377/u.Vd, where /J, is the air viscosity. Determine the diameter d of 
droplets that take 1 second to fall from rest a distance of 1 m. (Use Excel's Goal Seek.) 

1.26 A sky diver with a mass of 75 kg jumps from an aircraft. The aerodynamic drag force 
acting on the sky diver is known to be FD = kV1, where k = 0.228 N • s2/m2. Determine 
the maximum speed of free fall for the sky diver and the speed reached after 100 m 
of fall. Plot the speed of the sky diver as a function of time and as a function of distance 
fallen. 

1.27 The English perfected the longbow as a weapon after the Medieval period. In the hands 
of a skilled archer, the longbow was reputed to be accurate at ranges to 100 meters or 
more. If the maximum altitude of an arrow is less than ft = 10 m while traveling to a 
target 100 m away from the archer, and neglecting air resistance, estimate the speed and 
angle at which the arrow must leave the bow. Plot the required release speed and angle 
as a function of height h. 

1.28 For each quantity listed, indicate dimensions using the MLtT system of dimensions, and 
give typical SI and English units: 
(a) Power (b) Pressure 
(c) Modulus of elasticity (d) Angular velocity 
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(e) Energy (f) Momentum 
(g) Shear stress (h) Specific heat 
(i) Thermal expansion coefficient ( j ) Angular momentum 

1.29 For each quantity listed, indicate dimensions using the FLtT system of dimensions, and 
give typical SI and English units: 
(a) Power (b) Pressure 
(c) Modulus of elasticity (d) Angular velocity 
(e) Energy (f) Moment of a force 
(g) Momentum (h) Shear stress 
(i) Strain (j) Angular momentum 

1 3 0 Derive the following conversion factors: 
(a) Convert a pressure of 1 psi to kPa. 
(b) Convert a volume of 1 liter to gallons. 
(c) Convert a viscosity of 1 lbf • s/ft2 to N • s/m2. 

1.31 Derive the following conversion factors: 
(a) Convert a viscosity of 1 m2/s to ft2/s. 
(b) Convert a power of 100 W to horsepower. 
(c) Convert a specific energy of 1 kJ/kg to Btu/lbm. 

1.32 The density of mercury is given as 26.3 slug/ft3. Calculate the specific gravity and the 
specific volume in mVkg of the mercury. Calculate the specific weight in lbf/ft3 on 
Earth and on the moon. Acceleration of gravity on the moon is 5.47 ft/s2. 

1.33 Derive the following conversion factors: 
(a) Convert a volume flow rate in in.Vmin to ram'/s. 
(b) Convert a volume flow rate in cubic meters per second to gpm (gallons per minute). 
(c) Convert a volume flow rate in liters per minute to gpm (gallons per minute). 
(d) Convert a volume flow rate of air in standard cubic feet per minute (SCFM) to cu­

bic meters per hour. A standard cubic foot of gas occupies one cubic foot at stan­
dard temperature and pressure (T = 15°C and p = 101.3 kPa absolute). 

1.34 The kilogram force is commonly used in Europe as a unit of force. (As in the U.S. cus­
tomary system, where 1 lbf is the force exerted by a mass of 1 lbm in standard gravity, 
[ kgf is the force exerted by a mass of I kg in standard gravity.) Moderate pressures, 
such as those for auto or truck tires, are conveniently expressed in units of kgf/cm2. 
Convert 32 psig to these units. 

1.35 Sometimes "engineering" equations are used in which units are present in an inconsis­
tent manner. For example, a parameter that is often used in describing pump perform­
ance is the specific speed, /Vs , given by 

N _ A^(rpm)[(2(gpm)] l / 2 

[77(ft)]3M 

What are the units of specific speed? A particular pump has a specific speed of 2000. 
What will be the specific speed in SI units (angular velocity in rad/s)? 

1.36 A particular pump has an "engineering" equation form of the performance characteris­
tic equation given by H (ft) = 1.5 - 4.5 X 10" 5 [Q (gpm)]2, relating the head H and 
flow rate Q. What are the units of the coefficients 1.5 and 4.5 X 10" 5? Derive an SI ver­
sion of this equation. 

1.37 A container weighs 3.5 lbf when empty. When filled with water at 90°F, the mass of the 
container and its contents is 2.5 slug. Find the weight of water in the container, and its 
volume in cubic feet, using data from Appendix A. 



Chapter 2 

FUNDAMENTAL CONCEPTS 

In Chapter 1 we discussed in general terms what fluid mechanics is about, and de­
scribed some of the approaches we will use in analyzing fluid mechanics problems. 
In this chapter we will be more specific in defining some important properties of flu­
ids, and ways in which flows can be described and characterized. 

2-1 FLUID AS A CONTINUUM 

We are all familiar with fluids—the most common being air and water—and we expe­
rience them as being "smooth," i.e., as being a continuous medium. Unless we use spe­
cialized equipment, we are not aware of the underlying molecular nature of fluids. This 
molecular structure is one in which the mass is not continuously distributed in space, 
but is concentrated in molecules that are separated by relatively large regions of empty 
space. In this section we will discuss under what circumstances a fluid can be treated as 
a continuum, for which, by definition, properties vary smoothly from point to point. 

The concept of a continuum is the basis of classical fluid mechanics. The con­
tinuum assumption is valid in treating the behavior of fluids under normal condi­
tions. It only breaks down when the mean free path of the molecules 1 becomes the 
same order of magnitude as the smallest significant characteristic dimension of the 
problem. This occurs in such specialized problems as rarefied gas flow (e.g., as en­
countered in flights into the upper reaches of the atmosphere). For these specialized 
cases (not covered in this text) we must abandon the concept of a continuum in favor 
of the microscopic and statistical points of view. 

As a consequence of the continuum assumption, each fluid property is as­
sumed to have a definite value at every point in space. Thus fluid properties such as 
density, temperature, velocity, and so on, are considered to be continuous functions 
of position and time. 

To illustrate the concept of a property at a point, consider how we determine the 
density at a point. A region of fluid is shown in Fig. 2.1. We are interested in determin­
ing the density at the point C, whose coordinates are x0, y0, and ZQ. Density is defined 
as mass per unit volume. Thus the average density in volume V* is given by p = m/V. 
In general, because the density of the fluid may not be uniform, this will not be equal 
to the value of the density at point C. To determine the density at point C, we must 

1 Approximately 6 X 10 8 m at STP (Standard Temperature and Pressure) for gas molecules that show 
ideal gas behavior [1]. STP for air are 15°C (59°F) and 101.3 kPa absolute (14.696 psia), respectively. 

17 
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select a small volume, SV, surrounding point C and then determine the ratio 8m/8V. 
The question is, how small can we make the volume SV? We can answer this question 
by plotting the ratio 8m/8V, and allowing the volume to shrink continuously in size. 
Assuming that volume 8V is initially relatively large (but still small compared with 
the volume, V) a typical plot of 8m/8V might appear as in Fig. 2Ab. In other words, 
SV must be sufficiently large to yield a meaningful, reproducible value for the density 
at a location and yet small enough to be called a point. The average density tends to 
approach an asymptotic value as the volume is shrunk to enclose only homogeneous 
fluid in the immediate neighborhood of point C. If SV becomes so small that it con­
tains only a small number of molecules, it becomes impossible to fix a definite value 
for 5m/5V; the value will vary erratically as molecules cross into and out of the vol­
ume. Thus there is a lower limiting value of SV, designated SV in Fig. 2 . \b , allowable 
for use in defining fluid density at a point. 2 The density at a "point" is then defined as 

8m 
p = hm — (2.1) 

sv ->8V SV v J 

Since point C was arbitrary, the density at any other point in the fluid could be deter­
mined in the same manner. If density was measured simultaneously at an infinite 
number of points in the fluid, we would obtain an expression for the density distribu­
tion as a function of the space coordinates, p = p(x, y, z), at the given instant. 

The density at a point may also vary with time (as a result of work done on or 
by the fluid and/or heat transfer to the fluid). Thus the complete representation of 
density (the field representation) is given by 

p = p{x,y,z,t) (2.2) 

Since density is a scalar quantity, requiring only the specification of a magnitude for 
a complete description, the field represented by Eq. 2.2 is a scalar field. 

The density of a liquid or solid may also be expressed in dimensionless form as 
the specific gravity, SG, defined as the ratio of material density to the maximum 

2 The volume SV is extremely small. For example, a 0.1 mm X 0.1 mm X 0.1 mm cube of air (about the 
size of a grain of sand) at STP conditions contains about 2.5 X 10 1 3 molecules. This is a large enough 
number to ensure that even though many molecules may enter and leave, the average mass within the 
cube does not fluctuate. For most purposes a cube this size can be considered "a point." 
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density of water, which is 1000 kg/m 3 at 4°C (1.94 slug/ft 3 at 39°F). For example, 
the SG of mercury is typically 13.6—mercury is 13.6 times as dense as water. Ap­
pendix A contains specific gravity data for selected engineering materials. The spe­
cific gravity of liquids is a function of temperature; for most liquids specific gravity 
decreases with increasing temperature. 

Specific weight, y , is defined as weight per unit volume; weight is mass times ac­
celeration of gravity, and density is mass per unit volume, hence y = pg. For exam­
ple, the specific weight of water is approximately 9.81 kN/m 3 (62.4 lbf/ft3). 

In the previous section we saw that the continuum assumption led directly to the no­
tion of the density field. Other fluid properties also may be described by fields. 

In dealing with fluids in motion, we shall be concerned with the description of a 
velocity field. Refer again to Fig. 2.1a. Define the fluid velocity at point C as the in­
stantaneous velocity of the center of the volume, SY, instantaneously surrounding 
point C. If we define a fluid particle as a small mass of fluid of fixed identity of vol­
ume SV, then the velocity at point C is defined as the instantaneous velocity of the 
fluid particle which, at a given instant, is passing though point C. The velocity at any 
point in the flow field is defined similarly. At a given instant the velocity field, V, is a 
function of the space coordinates x, y, z. The velocity at any point in the flow field 
might vary from one instant to another. Thus the complete representation of velocity 
(the velocity field) is given by 

Velocity is a vector quantity, requiring a magnitude and direction for a complete 
description, so the velocity field (Eq. 2.3) is a vector field. 

The velocity vector, V, also can be written in terms of its three scalar compo­
nents. Denoting the components in the x, y, and z directions by u, v, and w, then 

In general, each component, u, v, and w, will be a function of x, y, z, and t. 
If properties at every point in a flow field do not change with time, the flow is 

termed steady. Stated mathematically, the definition of steady flow is 

dt 

where rj represents any fluid property. Hence, for steady flow, 
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V = V(x, y, z, t) (2.3) 

V = ui +vj + wk (2.4) 

dp 
dt 

0 or p - p(x, y, z) 

and 

dV 
dt 

0 or V = V(x, y, z) 
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In steady flow, any property may vary from point to point in the field, but all proper­
ties remain constant with time at every point. 

One-, Two-, and Three-Dimensional Flows 

A flow is classified as one-, two-, or three-dimensional depending on the number of 
space coordinates required to specify the velocity field.3 Equation 2.3 indicates that 
the velocity field may be a function of three space coordinates and time. Such a flow 
field is termed three-dimensional (it is also unsteady) because the velocity at any point 
in the flow field depends on the three coordinates required to locate the point in space. 

Although most flow fields are inherently three-dimensional, analysis based on 
fewer dimensions is frequently meaningful. Consider, for example, the steady flow 
through a long straight pipe that has a divergent section, as shown in Fig. 2.2. In this 
example, we are using cylindrical coordinates (r, 9, x). We will learn (in Chapter 8) 
that under certain circumstances (e.g., far from the entrance of the pipe and from the 
divergent section, where the flow can be quite complicated), the velocity distribution 
may be described by 

(2.5) 

This is shown on the left of Fig. 2.2. The velocity u(r) is a function of only one coordi­
nate, and so the flow is one-dimensional. On the other hand, in the diverging section, the 
velocity decreases in the jr-direction, and the flow becomes two-dimensional: u = u{r, x). 

As you might suspect, the complexity of analysis increases considerably with 
the number of dimensions of the flow field. For many problems encountered in engi­
neering, a one-dimensional analysis is adequate to provide approximate solutions of 
engineering accuracy. 

Since all fluids satisfying the continuum assumption must have zero relative ve­
locity at a solid surface (to satisfy the no-slip condition), most flows are inherently 
two- or three-dimensional. To simplify the analysis it is often convenient to use the 
notion of uniform flow at a given cross section. In a flow that is uniform at a given 
cross section, the velocity is constant across any section normal to the flow. Under 
this assumption, 4 the two-dimensional flow of Fig. 2.2 is modeled as the flow shown 
in Fig. 2.3. In the flow of Fig. 2.3, the velocity field is a function of* alone, and thus 

u(r) u{r,x) 

F ig . 2.2 E x a m p l e s of one - and two -d imens iona l f lows. 

5 Some authors choose to classify a flow as one-, two-, or three-dimensional on the basis of the number of 
space coordinates required to specify all fluid properties. In this text, classification of flow fields will be 
based on the number of space coordinates required to specify the velocity field only. 

4 This may seem like an unrealistic simplification, but actually in many cases leads to useful results. 
Sweeping assumptions such as uniform flow at a cross section should always be reviewed carefully to 
be sure they provide a reasonable analytical model of the real flow. 
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the flow model is one-dimensional. (Other properties, such as density or pressure, 
also may be assumed uniform at a section, if appropriate.) 

The term uniform flow field (as opposed to uniform flow at a cross section) is 
used to describe a flow in which the velocity is constant, i.e., independent of all space 
coordinates, throughout the entire flow field. 

Timel ines, Pathlines, Streaklines, and Streamlines 

Sometimes we want a visual representation of a flow [2]. Such a representation is 
provided by timelines, pathlines, streaklines, and streamlines. 5 

If a number of adjacent fluid particles in a flow field are marked at a given in­
stant, they form a line in the fluid at that instant; this line is called a timeline. Subse­
quent observations of the line may provide information about the flow field. For 
example, in discussing the behavior of a fluid under the action of a constant shear 
force (Section 1-2) timelines were introduced to demonstrate the deformation of a 
fluid at successive instants. 

A pathline is the path or trajectory traced out by a moving fluid particle. To 
make a pathline visible, we might identify a fluid particle at a given instant, e.g., by 
the use of dye or smoke, and then take a long exposure photograph of its subsequent 
motion. The line traced out by the particle is a pathline. This approach might be used 
to study, for example, the trajectory of a contaminant leaving a smokestack. 

On the other hand, we might choose to focus our attention on a fixed location in 
space and identify, again by the use of dye or smoke, all fluid particles passing 
through this point. After a short period of time we would have a number of identifi­
able fluid particles in the flow, all of which had, at some time, passed through one 
fixed location in space. The line joining these fluid particles is defined as a streakline. 

Streamlines are lines drawn in the flow field so that at a given instant they are 
tangent to the direction of flow at every point in the flow field. Since the streamlines 
are tangent to the velocity vector at every point in the flow field, there can be no flow 
across a streamline. Streamlines are the most commonly used visualization tech­
nique. For example, they are used to study flow over an automobile in a computer 
simulation. The procedure used to obtain the equation for a streamline in two-
dimensional flow is illustrated in Example Problem 2.1. 

In steady flow, the velocity at each point in the flow field remains constant with 
time and, consequently, the streamline shapes do not vary from one instant to the 
next. This implies that a particle located on a given streamline will always move 
along the same streamline. Furthermore, consecutive particles passing through a fixed 
point in space will be on the same streamline and, subsequently, will remain on this 
streamline. Thus in a steady flow, pathlines, streaklines, and streamlines are identical 
lines in the flow field. 

5 Timelines, pathlines, streaklines. and streamlines are demonstrated in the NCFMF video Flow Visualization. 
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The shapes of the streamlines may vary from instant to instant if the flow is un­
steady. In the case of unsteady flow, pathlines, streaklines, and streamlines do not 
coincide. 

EXAMPLE 2.1 Streamlines and Pathlines in Two-Dimensional Flow 

A velocity field is given by V = Axi - Ay;'; the units of velocity are m/s; x and y are 
given in meters; A = 0.3 s '. 
(a) Obtain an equation for the streamlines in the xy plane. 

(b) Plot the streamline passing through the point (x0, y0) = (2, 8). 
(c) Determine the velocity of a particle at the point (2, 8). 
(d) If the particle passing through the point {XQ, y0) is marked at time t = 0, determine the 

location of the particle at time t = 6 s. 

(e) What is the velocity of this particle at time t = 6 s? 

(f) Show that the equation of the particle path (the pathline) is the same as the equation of the 
streamline. 

EXAMPLE PROBLEM 2.1 

GIVEN: Velocity field, V = Axi - Ayj; x and y in meters; A = 0.3 s" 

FIND: (a) Equation of the streamlines in the xy plane. 
(b) Streamline plot through point (2, 8). 
(c) Velocity of particle at point (2, 8). 
(d) Position at t = 6 s of particle located at (2, 8) at t = 0. 
(e) Velocity of particle at position found in (d). 
(f) Equation of pathline of particle located at (2, 8) at / = 0. 

SOLUTION: 

(a) Streamlines are lines drawn in the flow field 
such that, at a given instant, they are tangent 
to the direction of flow at every point. 
Consequently, 

'Streamline 

V 

u 
-Ay 
Ax 

-y 

Separating variables and integrating, we obtain 

dy 
J * ~ J x 

In y = —In x + c. 
This can be written as xy = c <r. 

(b) For the streamline passing through the point (x0, y0) = (2, 8) the constant, c, has a value of 16 and the 
equation of the streamline through the point (2, 8) is 

*y = Wo = ' 6 m 2

 < 

The plot is as sketched above. 
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(c) The velocity field is V = Axi - Ayj. At the point (2, 8) the velocity is 

V = A(xi - yj) = 0.3 s"1 (2/ - 8J) m = 0.6/ - 2.4J m/s 

(d) A particle moving in the flow field will have velocity given by 

V = Axi - Ayj 

Thus 

un = — = Ax and v„ = — = -Ay 
p dt p dt 

Separating variables and integrating (in each equation) gives 

[X^=\'Adt and \'±=V-A 
ixn x Jo Jy„ y Jo 

dt 

Then 

or 

In— = At and ln- = -At 

x = x0e and y = yye Al 

At t = 6 s, 

x = 2 m e < 0 3 ) 6 = 12.1 m and y = 8 m £>-< 0 3 ) 6 = 1.32 m 

At / = 6 s, particle is at (12.1, 1.32) m < 

(e) At the point (12.1, 1.32) m, 

V = A(xi - yj) = 0.3s*'(12.1/' - 1.32))m = 3.63/" - 0.396J m/s 

(f) To determine the equation of the pathline, we use the parametric equations 

x = x0eA' and y = y0e"M 

and eliminate t. Solving for eA' from both equations 

Therefore xy = x0y0 = 16 m 2 <_ 

Notes: 
/ This problem illustrates the method for computing stream­

lines and pathlines. 
/ Because this is a steady flow, the streamlines and pathlines 

have the same shape — in an unsteady flow this would not 
be true. 

/ When we follow a particle (the Lagrangian approach), its 
position (x, y) and velocity (up = dxldt and vp = dyldt) are 
functions of time, even though the flow is steady. 
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2-3 STRESS FIELD 

In our study of fluid mechanics, we will need to understand what kinds of forces act 
on fluid particles. Each fluid particle can experience: surface forces (pressure, friction) 
that are generated by contact with other particles or a solid surface; and body forces 
(such as gravity and electromagnetic) that are experienced throughout the particle. 

The gravitational body force acting on an element of volume, dV, is given by 
p gdV, where p is the density (mass per unit volume) and g is the local gravitational 
acceleration. Thus the gravitational body force per unit volume is pg and the gravita­
tional body force per unit mass \sg. 

Surface forces on a fluid particle lead to stresses. The concept of stress is useful 
for describing how forces acting on the boundaries of a medium (fluid or solid) are 
transmitted throughout the medium. You have probably seen stresses discussed in 
solid mechanics. For example, when you stand on a diving board, stresses are gener­
ated within the board. On the other hand, when a body moves through a fluid, 
stresses are developed within the fluid. The difference between a fluid and a solid is, 
as we've seen, that stresses in a fluid are mostly generated by motion rather than by 
deflection. 

Imagine the surface of a fluid particle in contact with other fluid particles, and 
consider the contact force being generated between the particles. Consider a portion, 
8 A, of the surface at some point C. The orientation of 8A is given by the unit vec­
tor, h, shown in Fig. 2.4. The vector h is the outwardly drawn unit normal with respect 
to the particle. 

The force, 8F, acting on 8A may be resolved into two components, one norma] 
to and the other tangent to the area. A normal stress crn and a shear stress T„ are then 
defined as 

cr„ = lim 
8F„ 

M „ ^ o 8A„ 
(2.6) 

and 

T = hm — -
M „ - > 0 8An 

(2.7) 

Subscript n on the stress is included as a reminder that the stresses are associated 
with the surface 8A through C, having an outward normal in the n direction. The 
fluid is actually a continuum, so we could have imagined breaking it up any number 

F i g . 2.4 T h e concep t of s t ress in a con t i nuum. 
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of different ways into fluid particles around point C, and therefore obtained any num­
ber of different stresses at point C. 

In dealing with vector quantities such as force, we usually consider compo­
nents in an orthogonal coordinate system. In rectangular coordinates we might 
consider the stresses acting on planes whose outwardly drawn normals (again with 
respect to the material acted upon) are in the x, y, or z directions. In Fig. 2.5 we 
consider the stress on the element 8AX, whose outwardly drawn normal is in the x 
direction. The force, 8F, has been resolved into components along each of the co­
ordinate directions. Dividing the magnitude of each force component by the area, 
8AX, and taking the limit as 8AX approaches zero, we define the three stress compo­
nents shown in Fig. 2.5b: 

o-. = hm — J L 

&4 r ->0 8Ar 

(2.8) 

8F. 
= lim 

S A V - > O 8A. 
hm — -

5/W->0 8Ar 

We have used a double subscript notation to label the stresses. The first subscript (in 
this case, x) indicates the plane on which the stress acts (in this case, a surface per­
pendicular to the x axis). The second subscript indicates the direction in which the 
stress acts. 

Consideration of area element 8Ay would lead to the definitions of the stresses, ayy, 
T Y „ and TYZ, use of area element 8AZ would similarly lead to the definitions of cra, T „ , T^, . 

Although we just looked at three orthogonal planes, an infinite number of planes 
can be passed through point C, resulting in an infinite number of stresses associated 
with planes through that point. Fortunately, the state of stress at a point can be de­
scribed completely by specifying the stresses acting on any three mutually perpendicu­
lar planes through the point. The stress at a point is specified by the nine components 

Txz 

' yx ayy Tyz 

T« Tzy (TZZ 

where a has been used to denote a normal stress, and r to denote a shear stress. The 
notation for designating stress is shown in Fig. 2.6. 

SF 

SF, 

(a) Force components (M Stress components 

F ig . 2.5 Force and s t ress c o m p o n e n t s on the e lemen t of a rea SAX 
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y 

Fig. 2.6 Nota t ion for st ress. 

Referring to the infinitesimal element shown in Fig. 2.6, we see that there are 
six planes (two x planes, two y planes, and two z planes) on which stresses may 
act. In order to designate the plane of interest, we could use terms like front and 
back, top and bottom, or left and right. However, it is more logical to name the 
planes in terms of the coordinate axes. The planes are named and denoted as posi­
tive or negative according to the direction of the outwardly drawn normal to the 
plane. Thus the top plane, for example, is a positive y plane and the back plane is 
a negative z plane. 

It also is necessary to adopt a sign convention for stress. A stress component is 
positive when the direction of the stress component and the plane on which it acts are 
both positive or both negative. Thus T Y X = 5 lbf/in. 2 represents a shear stress on a pos­
itive v plane in the positive x direction or a shear stress on a negative y plane in the 
negative x direction. In Fig. 2.6 all stresses have been drawn as positive stresses. 
Stress components are negative when the direction of the stress component and the 
plane on which it acts are of opposite sign. 

2-4 VISCOSITY 

Where do stresses come from? For a solid, stresses develop when the material is elas-
tically deformed or strained; for a fluid, shear stresses arise due to viscous flow (we 
will discuss a fluid's normal stresses shortly). Hence we say solids are elastic, and 
fluids are viscous (and it's interesting to note that many biological tissues are vis-
coelastic, meaning they combine features of a solid and a fluid). For a fluid at rest, 
there will be no shear stresses. We will see that each fluid can be categorized by ex­
amining the relation between the applied shear stresses and the flow (specifically the 
rate of deformation) of the fluid. 

Consider the behavior of a fluid element between the two infinite plates shown 
in Fig. 2.7. The upper plate moves at constant velocity, 8u, under the influence of 
a constant applied force, 8Fr The shear stress, T Y X , applied to the fluid element is 
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Fluid element 
y at time, / 

M M' 

8y 

. Force, 5FX 

Velocity, 8u 

Fluid element 
at time, / + Si 

-5x 
Fig . 2.7 De fo rmat ion of a f lu id e lement . 

given by 

yx 

,. 8F. dFx hm — - = — -
8Ay->o 8Ay dAy 

where 8Ay is the area of contact of a fluid element with the plate, and 8FX is the force 
exerted by the plate on that element. During time interval 8t, the fluid element is de­
formed from position MNOP to position M'NOP'. The rate of deformation of the 
fluid is given by 

8a da 
deformation rate = lim — = — 

St->0 67 dt 

We want to express daldt in terms of readily measurable quantities. This can be 
done easily. The distance, 81, between the points M and M' is given by 

81 = 8u 8t 

Alternatively, for small angles, 

5/ = 8y 8a 

Equating these two expressions for 81 gives 

8a _ 8u 
8t ~ 8y 

Taking the limits of both sides of the equality, we obtain 

da _ du 
dt dy 

Thus, the fluid element of Fig. 2.7, when subjected to shear stress, ryx, experiences 
a rate of deformation {shear rate) given by du/dy. We have established that any fluid 
that experiences a shear stress will flow (it will have a shear rate). What is the rela­
tion between shear stress and shear rate? Fluids in which shear stress is directly 
proportional to rate of deformation are Newtonian fluids. The term non-Newtonian 
is used to classify all fluids in which shear stress is not directly proportional to 
shear rate. 
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Newtonian Fluid 

Most common fluids (the ones discussed in this text) such as water, air, and gasoline 
are Newtonian under normal conditions. If the fluid of Fig. 2.7 is Newtonian, then 

We are familiar with the fact that some fluids resist motion more than others. For ex­
ample, a container of SAE 30W oil is much harder to stir than one of water. Hence 
SAE 30W oil is much more viscous—it has a higher viscosity. (Note that a con­
tainer of mercury is also harder to stir, but for a different reason!) The constant of 
proportionality in Eq. 2.9 is the absolute (or dynamic) viscosity, p,. Thus in terms of 
the coordinates of Fig. 2.7, Newton's law of viscosity is given for one-dimensional 
flow by 

Note that, since the dimensions of T are [F/L2] and the dimensions of du/dy are [1//], 
ix has dimensions [Ft/L2]. Since the dimensions of force, F, mass, M, length, L, and 
time, /, are related by Newton's second law of motion, the dimensions of p, can also 
be expressed as [M/Lt]. In the British Gravitational system, the units of viscosity are 
lbf • s/ft2 or slug/(ft • s). In the Absolute Metric system, the basic unit of viscosity is 
called a poise [1 poise = 1 g/(cm • s)]; in the SI system the units of viscosity are 
kg/(m • s) or Pa • s (1 Pa • s = 1 N • s/m 2). The calculation of viscous shear stress is 
illustrated in Example Problem 2.2. 

In fluid mechanics the ratio of absolute viscosity, p., to density, p, often arises. 
This ratio is given the name kinematic viscosity and is represented by the symbol v. 
Since density has dimensions [M/L3], the dimensions of v are [L2/t]. In the Absolute 
Metric system of units, the unit for v is a stoke (1 stoke = 1 cm 2/s). 

Viscosity data for a number of common Newtonian fluids are given in Appendix A. 
Note that for gases, viscosity increases with temperature, whereas for liquids, viscosity 
decreases with increasing temperature. 

An infinite plate is moved over a second plate on a layer of liquid as shown. For 
small gap width, d, we assume a linear velocity distribution in the liquid. The liquid 
viscosity is 0.65 centipoise and its specific gravity is 0.88. Determine: 

du 
Tyx = V — 

dy 
(2.10) 

EXAMPLE 2.2 Viscosity and Shear Stress in Newtonian Fluid 

(a) The absolute viscosity of the liquid, > 
in lbf • s/ft2. 
The kinematic viscosity of the liquid, ~~7~ 
in m2/s. y 

The shear stress on the upper plate, in lbf/ft2. / 
The shear stress on the lower plate, in Pa. 

The direction of each shear stress calculated in parts (c) and (d). 

(b) '. - Li = 0.3 m/s 

(c) 

(d) 

(e) 
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EXAMPLE PROBLEM 2.2 

GIVEN: Linear velocity profile in the liquid between infinite parallel plates as shown. 

\x. = 0.65 cp 

SG = 0.88 

FIND: (a) p in units of lbf • s/ft2. 
(b) v in units of m2/s. 
(c) T on upper plate in units of lbf/ft2. 
(d) T on lower plate in units of Pa. 
(e) Direction of stresses in parts (c) and (d). 

U= 0.3 m/s 

d = 0.3 mm 

SOLUTION: 

du 
Governing equation: = fi— Definition: v = 

dy 

Assumptions: (1) Linear velocity distribution (given) 
(2) Steady flow 
(3) JX = constant 

(a) 

(b) 

I fe>' 

V 

(c) 

0.65 cp poise ju, = x — x lbm slug 30.5 cm lbf • s x x - — x — x -
100 cp cm s- poise 454 g 32.2 lbm 

fi = 1.36 X 10- 5 lbf • s/ft2 < 

ft slug • ft 

P s g P h , o 

1.36 x 10" 3 lbf s f t J 

ft2 (0.88)1.94 slug lbf s 2 

slug • ft (0.305)2 m 2 

X ^ - ^ i - X 

v = 7.41 x 10~7 m 2 / s <_ 

f1 
du 
d~y y=d 

Since u varies linearly with y, 

du Au 
dy ~ Ay 

1 '"upper 
U 

(d) T lower 
u 

— X 
s 0.3 mm 

x 1 0 0 0 ™ = 1000 
m 

U 1.36x10 3 lbf - s 1000 „ . , . . „ „ . 2 

2 ~ x = 0.0136 lbf/ft <_ 

U 0.0136 lbf 4.45 N ft' 
—r- x — x lbf (0.305)2 m 2 „ 2 

Pa m 2 

N 
0.651 Pa <_ 

'upper 
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(e) Directions of shear stresses on upper and lower plates. 

The upper plate is a negative y surface, so 
positive r y i acts in the negative x direction. 

The lower plate is a positive y surface, so 
positive Tyx acts in the positive x direction. 

Part (c) shows that the shear stress is: 
/ Constant across the gap for a linear velocity profile. 
/ Directly proportional to the speed of the upper plate 

(because of the linearity of Newtonian fluids). 
/ Inversely proportional to the gap between the plates. 

Note that multiplying the shear stress by the plate area in such 
problems computes the force required to maintain the motion. 

Non-Newtonian Fluids 

Fluids in which shear stress is not directly proportional to deformation rate are non-
Newtonian. Although we will not discuss these much in this text, many common fluids 
exhibit non-Newtonian behavior. Two familiar examples are toothpaste and Lucite 6 

paint. The latter is very "thick" when in the can, but becomes "thin" when sheared by 
brushing. Toothpaste behaves as a "fluid" when squeezed from the tube. However, it 
does not run out by itself when the cap is removed. There is a threshold or yield stress 
below which toothpaste behaves as a solid. Strictly speaking, our definition of a fluid 
is valid only for materials that have zero yield stress. Non-Newtonian fluids com­
monly are classified as having time-independent or time-dependent behavior. Exam­
ples of time-independent behavior are shown in the rheological diagram of Fig. 2.8. 

Numerous empirical equations have been proposed [3, 4] to model the observed 
relations between ryx and du/dy for time-independent fluids. They may be adequately 
represented for many engineering applications by the power law model, which for 
one-dimensional flow becomes 

JduT 
T ^ = k{d-y) ^ 

where the exponent, n, is called the flow behavior index and the coefficient, k, the consis­
tency index. This equation reduces to Newton's law of viscosity for n = 1 with k - \x. 

To ensure that ryx has the same sign as du/dy, Eq. 2.11 is rewritten in the form 

V = k 
du 
dy 

du _ du 
dy dy 

(2.12) 

6 Trademark, E. 1. du Pont de Nemours & Company, 
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Deformation rate, Deformation rate, =~-
dx dx 

Fig. 2.8 (a) Shear s t ress, T, and (b) apparen t v iscosi ty, TJ, as a func t ion of defor­
mat ion rate for one -d imens iona l f low of var ious non -Newton ian f lu ids. 

The term 17 = k\du/dy\n~x is referred to as the apparent viscosity. The idea behind 
Eq. 2.12 is that we end up with a viscosity 17 that is used in a formula that is the same 
form as Eq. 2.10, in which the Newtonian viscosity p is used. The big difference is 
that while /x is constant (except for temperature effects), 17 depends on the shear rate. 
Most non-Newtonian fluids have apparent viscosities that are relatively high com­
pared with the viscosity of water. 

Fluids in which the apparent viscosity decreases with increasing deformation 
rate (n < 1) are called pseudoplastic (or shear thinning) fluids. Most non-Newtonian 
fluids fall into this group; examples include polymer solutions, colloidal suspensions, 
and paper pulp in water. If the apparent viscosity increases with increasing deforma­
tion rate (n > 1) the fluid is termed dilatant (or shear thickening). Suspensions of 
starch and of sand are examples of dilatant fluids. 

A "fluid" that behaves as a solid until a minimum yield stress, T v , is exceeded 
and subsequently exhibits a linear relation between stress and rate of deformation 
is referred to as an ideal or Bingham plastic. The corresponding shear stress 
model is 

du . „ 

Clay suspensions, drilling muds, and toothpaste are examples of substances exhibit­
ing this behavior. 

The study of non-Newtonian fluids is further complicated by the fact that the ap­
parent viscosity may be time-dependent. ThLxotropic fluids show a decrease in 77 with 
time under a constant applied shear stress; many paints are thixotropic. Rheopectic 
fluids show an increase in 17 with time. After deformation some fluids partially 
return to their original shape when the applied stress is released; such fluids are 
called viscoelastic? 

7 Examples of time-dependent and viscoelastic fluids are illustrated in the NOFMF video Rheological 
Behavior of Fluids. 

11 
• i p i i n T r r r a 
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2-5 SURFACE TENSION 

You can tell when your car needs waxing: Water droplets tend to appear somewhat 
flattened out. After waxing, you get a nice "beading" effect. These two cases are 
shown in Fig. 2.9. We define a liquid as "wetting" a surface when the contact angle 6 
< 90°. By this definition, the car's surface was wetted before waxing, and not wetted 
after. This is an example of effects due to surface tension. Whenever a liquid is in 
contact with other liquids or gases, or in this case a gas/solid surface, an interface de­
velops that acts like a stretched elastic membrane, creating surface tension. There are 
two features to this membrane: the contact angle 0, and the magnitude of the surface 
tension, a (N/m or lbf/ft). Both of these depend on the type of liquid and the type of 
solid surface (or other liquid or gas) with which it shares an interface. In the car-wax­
ing example, the contact angle changed from being smaller than 90°, to larger than 
90°, because, in effect, the waxing changed the nature of the solid surface. Factors 
that affect the contact angle include the cleanliness of the surface and the purity of 
the liquid. 

Other examples of surface tension effects arise when you are able to place a nee­
dle on a water surface and, similarly, when small water insects are able to walk on the 
surface of the water. 8 

Appendix A contains data for surface tension and contact angle for common liq­
uids in the presence of air and of water. 

A force balance on a segment of interface shows that there is a pressure jump 
across the imagined elastic membrane whenever the interface is curved. For a wa­
ter droplet in air, pressure in the water is higher than ambient; the same is true for 
a gas bubble in liquid. For a soap bubble in air, surface tension acts on both inside 
and outside interfaces between the soap film and air along the curved bubble sur­
face. Surface tension also leads to the phenomena of capillary (i.e., very small 
wavelength) waves on a liquid surface [5] and capillary rise or depression, dis­
cussed below. 

In engineering, probably the most important effect of surface tension is the cre­
ation of a curved meniscus that appears in manometers or barometers, leading to a 
(usually unwanted) capillary rise (or depression), as shown in Fig. 2.10. This rise 
may be pronounced if the liquid is in a small diameter tube or narrow gap, as shown 
in Example Problem 2.3. 

(a) A "wetted" surface (b) A nonwetted surface 

F ig . 2.9 Sur face tens ion ef fects on water droplets . 

8 These and other example phenomena are illustrated in the NCFMF video Surface Tension in Fluid 
Mechanics. 
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- T u b e 

4/i 

T 
0, 

Tube 

Ah 

(a) Capil lary rise (8 < 90°) (W Capillary depression (.$> 90°) 

Fig . 2.10 Cap i l la ry rise and capi l lary depress ion inside and 
outs ide a c i rcular tube. 

EXAMPLE 2.3 Analysis of Capillary Effect in a Tube 

Create a graph showing the capillary rise or fall of a column of water or mercury, 
respectively, as a function of tube diameter D. Find the minimum diameter of each 
column required so that the height magnitude will be less than 1 mm. 

EXAMPLE PROBLEM 2.3 

GIVEN: Tube dipped in liquid as in Fig. 2.10 

FIND: A general expression for Ah as a function of D. 

SOLUTION: 

Apply free body diagram analysis, and sum vertical forces. 

Governing equation: 

1FZ = 0 

Assumptions: (1) Measure to middle of meniscus 
(2) Neglect volume in meniscus region 

Summing forces in the z direction: 

1FZ = airDcosB - pg AY = 0 

If we neglect the volume in the meniscus region: 

TTD1 

AY « Ah 
4 

Substituting in Eq. (1) and solving for Ah gives 

Ah = 4cr cos 6 
PgD 

(1) 

Ah 
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For water, cr = 72.8 mN/m and 6 » 0°, and for mercury a = 484 mN/m and 0 = 140° (Table A.4). 
Plotting, 

Capi l lary effect in smal l tubes 

Water 
Mercury 

- 1 0 
Diameter , D (mm) 

Using the above equation to compute D m i n for Ah = 1 mm, we find for mercury and water 

D 11.2 mm and LX, = 30 mm 
" m i n 

Notes: 
/ This problem reviewed use of the free-body diagram 

approach. 
/ It turns out that neglecting the volume in the meniscus re­

gion is only valid when Ah is large compared with D. 
However, in this problem we have the result that Ah is 
about 1 mm when D is 11.2 mm (or 30 mm); hence the re­
sults can only be very approximate. 

The graph and results were generated from the Excel 
workbook. 

Folsom [6] shows that the simple analysis of Example 2.3 overpredicts the 
capillary effect and gives reasonable results only for tube diameters less than 0.1 
in. (2.54 mm). Over a diameter range 0.1 < D < 1.1 in., experimental data for the 
capillary rise with a water-air interface are correlated by the empirical expression 
Ah = 0.400/c 4 3 1 0 . 

Manometer and barometer readings should be made at the level of the middle of 
the meniscus. This is away from the maximum effects of surface tension and thus 
nearest to the proper liquid level. 

All surface tension data in Appendix A were measured for pure liquids in contact 
with clean vertical surfaces. Impurities in the liquid, dirt on the surface, or surface in­
clination can cause an indistinct meniscus; under such conditions it may be difficult to 
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determine liquid level accurately. Liquid level is most distinct in a vertical tube. When 
inclined tubes are used to increase manometer sensitivity (see Section 3-3) it is impor­
tant to make each reading at the same point on the meniscus and to avoid use of tubes 
inclined less than about 15° from horizontal. 

Surfactant compounds reduce surface tension significantly (more than 40% with 
little change in other properties [7]) when added to water. They have wide commer­
cial application: Most detergents contain surfactants to help water penetrate and lift 
soil from surfaces. Surfactants also have major industrial applications in catalysis, 
aerosols, and oil field recovery. 

2-6 DESCRIPTION AND CLASSIFICATION OF FLUID MOTIONS 

In Chapter 1 and in this chapter, we have almost completed our brief introduction to 
some concepts and ideas that are often needed when studying fluid mechanics. Be­
fore beginning detailed analysis of fluid mechanics in the rest of this text, we will 
describe some interesting examples to illustrate a broad classification of fluid me­
chanics on the basis of important flow characteristics. Fluid mechanics is a huge dis­
cipline: It covers everything from the aerodynamics of a supersonic transport vehi­
cle, to the lubrication of human joints by sinovial fluid. We need to break fluid 
mechanics down into manageable proportions. It turns out that the two most difficult 
aspects of a fluid mechanics analysis to deal with are: (1) the fluid's viscous nature 
and (2) its compressibility. In fact, the area of fluid mechanics theory that first be­
came highly developed (about 250 years ago!) was that dealing with a frictionless, 
incompressible fluid. As we will see shortly (and in more detail later on), this theory, 
while extremely elegant, led to the famous result called d'Alembert 's paradox: All 
bodies experience no drag as they move through such a fluid — a result not exactly 
consistent with any real behavior! 

Although not the only way to do so, most engineers subdivide fluid mechanics 
in terms of whether or not viscous effects and compressibility effects are present, as 
shown in Fig. 2.11. Also shown are classifications in terms of whether a flow is lami­
nar or turbulent, and internal or external. We will now discuss each of these. 

Viscous and Inviscid Flows 

When you send a ball flying through the air (as in a game of baseball, soccer, or any 
number of other sports), in addition to gravity the ball experiences the aerodynamic 
drag of the air. The question arises: What is the nature of the drag force of the air on 
the ball? At first glance, we might conclude that it's due to friction of the air as it 
flows over the ball; a little more reflection might lead to the conclusion that because 
air has such a low viscosity, friction might not contribute much to the drag, and the 
drag might be due to the pressure build-up in front of the ball as it pushes the air out 
of the way. The question arises: Can we predict ahead of time the relative importance 
of the viscous force, and force due to the pressure build-up in front of the ball? Can 
we make similar predictions for any object, for example, an automobile, a submarine, 
a red blood cell, moving through any fluid, for example, air, water, blood plasma? 
The answer (which we'll discuss in much more detail in Chapter 7) is that we can! It 
turns out that we can estimate whether or not viscous forces, as opposed to pressure 
forces, are negligible by simply computing the Reynolds number Re = pVL/p, where p 
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Cont inuum 
fluid mechanics 

In . ' . J 
U=0 Viscous 

Laminar 

Compressib le Incompressible Internal 

Fig. 2.11 Possib le c lass i f ica t ion of con t i nuum f luid mechan ics . 

Turbu lent 

External 

and p, are the fluid density and viscosity, respectively, and V and L are the typical or 
"characteristic" velocity and size scale of the flow (in this example the ball velocity and 
diameter), respectively. If the Reynolds number is "large," viscous effects will be negli­
gible (but will still have important consequences, as we'll soon see), at least in most of 
the flow; if the Reynolds number is small, viscous effects will be dominant. Finally, if 
the Reynolds number is neither large nor small, no general conclusions can be drawn. 

To illustrate this very powerful idea, consider two simple examples. First, the 
drag on your ball: Suppose you kick a soccer ball (diameter = 8.75 in.) so it moves at 
60 mph. The Reynolds number (using air properties from Table A.IO) for this case is 
about 400,000—by any measure a large number; hence the drag on the soccer ball is 
almost entirely due to the pressure build-up in front of it. For our second example, 
consider a dust particle (modeled as a sphere of diameter I mm) falling under gravity 
at a terminal velocity of 1 cm/s: In this case Re ~ 0 .7—a quite small number; hence 
the drag is mostly due to the friction of the air. Of course, in both of these examples, if 
we wish to determine the drag force, we would have to do substantially more analysis. 

These examples illustrate an important point: A flow is considered to be friction 
dominated (or not) based not just on the fluid's viscosity, but on the complete flow 
system. In these examples, the airflow was low friction for the soccer ball, but was 
high friction for the dust particle. 

Let's return for a moment to the idealized notion of frictionless flow, called 
inviscid flow. This is the branch shown on the left in Fig. 2.11. This branch encom­
passes most aerodynamics, and among other things explains, for example, why 
sub- and supersonic aircraft have differing shapes, how a wing generates lift, and so 
forth. If this theory is applied to the ball flying through the air (a flow that is also in­
compressible), it predicts streamlines (in coordinates attached to the sphere) as 
shown in Fig. 2.12a. 

The streamlines are symmetric front-to-back. Because the mass flow between 
any two streamlines is constant, wherever streamlines open up, the velocity must de­
crease, and vice versa. Hence we can see that the velocity in the vicinity of points A 
and C must be relatively low; at point B it will be high. In fact, the air comes to rest 
at points A and C: they are stagnation points. It turns out that (as we'll learn in 
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{a) Inviscid flow (b) Viscous flow 

Fig . 2.12 Qual i ta t i ve p ic ture of i ncompress ib le f low over a sphere . 

Chapter 6) the pressure in this flow is high wherever the velocity is low, and vice 
versa. Hence, points A and C have relatively large (and equal) pressures; point B 
will be a point of low pressure. In fact, the pressure distribution on the sphere is 
symmetric front-to-back, and there is no net drag force due to pressure. Because 
we're assuming inviscid flow, there can be no drag due to friction either. Hence we 
have d'Alembert 's paradox of 1752: The ball experiences no drag! 

This is obviously unrealistic. On the other hand, everything seems logically con­
sistent: We established that Re for the sphere was very large (400,000), indicating fric­
tion is negligible. We then used inviscid flow theory to obtain our no-drag result. How 
can we reconcile this theory with reality? It took about 150 years after the paradox 
first appeared for the answer, obtained by Prandtl in 1904: The no-slip condition (Sec­
tion 1.2) requires that the velocity everywhere on the surface of the sphere be zero (in 
sphere coordinates), but inviscid theory states that it's high at point B. Prandtl sug­
gested that even though friction is negligible in general for high-Reynolds number 
flows, there will always be a thin boundary layer,9 in which friction is significant and 
across the width of which the velocity increases rapidly from zero (at the surface) to 
the value inviscid flow theory predicts (on the outer edge of the boundary layer). This 
is shown in Fig. 2Alb from point A to point B, and in more detail in Fig. 2.13. 

This boundary layer immediately allows us to reconcile theory and experi­
ment: Once we have friction in a boundary layer we will have drag. However, this 
boundary layer has another important consequence: It often leads to bodies having 
a wake, as shown in Fig. 2.12£> from point D onwards. Point D is a separation 
point, where fluid particles are pushed off the object and cause a wake to develop. 1 0 

Consider once again the original inviscid flow (Fig. 2.12a): As a particle moves 
along the surface from point B to C, it moves from low to high pressure. This ad­
verse pressure gradient (a pressure change opposing fluid motion) causes the parti­
cles to slow down as they move along the rear of the sphere. If we now add to this 

' The formation of a boundary layer is illustrated in the NCFMF video Fundamentals of Boundary Layers. 
°The now over a variety of models, illustrating flow separation, is demonstrated in the University of 

Iowa video Form Drag, Lift, and Propulsion. 

Inviscid flow 

Viscous 
boundary layer 

Fig. 2.13 Schema t i c of a b o u n d a r y layer. 



CHAPTER 2 / FUNDAMENTAL CONCEPTS 

the fact that the particles are moving in a boundary layer with friction that also 
slows down the fluid, the particles will eventually be brought to rest, and then 
pushed off the sphere by the following particles, forming the wake. This is gener­
ally very bad news: It turns out that the wake will always be relatively low pres­
sure, but the front of the sphere will still have relatively high pressure. Hence, the 
sphere will now have a quite large pressure drag (or form drag—so called because 
it's due to the shape of the object). 

This description reconciles the inviscid flow no-drag result with the experimen­
tal result of significant drag on a sphere. It's interesting to note that although the 
boundary layer is necessary to explain the drag on the sphere, the drag is actually due 
mostly to the asymmetric pressure distribution created by the boundary layer separa­
t ion—drag directly due to friction is still negligible! 

We can also now begin to see how streamlining of a body works. The drag force 
in most aerodynamics is due to the low-pressure wake: If we can reduce or eliminate 
the wake, drag will be greatly reduced. If we consider once again why the separation 
occurred, we recall two features: Boundary layer friction slowed down the particles, 
but so did the adverse pressure gradient. The pressure increased very rapidly across 
the back half of the sphere in Fig. 2.12a because the streamlines opened up so rap­
idly. If we make the sphere teardrop shaped, as in Fig. 2.14, the streamlines open up 
gradually, and hence the pressure gradient will increase slowly, to such an extent that 
fluid particles are not forced to separate from the object until they almost reach the 
end of the object, as shown. The wake is much smaller (and it turns out the pressure 
will not be as low as before), leading to much less pressure drag. The only negative 
aspect of this streamlining is that the total surface area on which friction occurs is 
larger, so drag due to friction will increase a little." 

We should point out that none of this discussion applies to the example of a 
falling dust particle: This low-Reynolds number flow was viscous throughout—there 
is no inviscid region. 

Finally, this discussion illustrates the very significant difference between invis­
cid flow (LI = 0), and flows in which viscosity is negligible but not zero {p. —» 0). 

Point of 
separation 

F ig . 2 .14 Flow over a s t reaml ined object . 

Laminar and Turbulent Flows 

If you turn on a faucet (that doesn't have an aerator or other attachment) at a very low 
flow rate the water will flow out very smoothly—almost "glass-like." If you increase 
the flow rate, the water will exit in a churned-up, chaotic manner. These are examples 
of how a viscous flow can be laminar or turbulent, respectively. A laminar flow is one 
in which the fluid particles move in smooth layers, or laminas; a turbulent flow is one 

'' The effect of streamlining a body is demonstrated in the NCFMF video Fluid Dynamics of Drag. 
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V = ui 

y Laminar 

x V = (u + u"l'i + v'j + w'lc 

Fig. 2.15 Particle pathl ines in one-d imensional laminar and turbulent f lows. 

in which the fluid particles rapidly mix as they move along due to random three-
dimensional velocity fluctuations. Typical examples of pathlines of each of these are 
illustrated in Fig. 2.15, which shows a one-dimensional flow. In most fluid mechanics 
problems—for example, flow of water in a pipe—turbulence is an unwanted but of­
ten unavoidable phenomenon, because it generates more resistance to flow; in other 
problems—for example, the flow of blood through blood vessels—it is desirable be­
cause the random mixing allows all of the blood cells to contact the walls of the 
blood vessels to exchange oxygen and other nutrients. 1 2 

The velocity of the laminar flow is simply u; the velocity of the turbulent flow is 
given by the mean velocity u plus the three components of randomly fluctuating ve­
locity u, v', and w' . 

Although many turbulent flows of interest are steady in the mean (w is not a 
function of time), the presence of the random, high-frequency velocity fluctuations 
makes the analysis of turbulent flows extremely difficult. In a one-dimensional lami­
nar flow, the shear stress is related to the velocity gradient by the simple relation 

For a turbulent flow in which the mean velocity field is one-dimensional, no such 
simple relation is valid. Random, three-dimensional velocity fluctuations («', v', and 
w') transport momentum across the mean flow streamlines, increasing the effective 
shear stress. (This apparent stress is discussed in more detail in Chapter 8.) Conse­
quently, in turbulent flow there is no universal relationship between the stress field 
and the mean-velocity field. Thus in turbulent flows we must rely heavily on semi-
empirical theories and on experimental data. 

Compressible and Incompressible Flows 

Flows in which variations in density are negligible are termed incompressible; when 
density variations within a flow are not negligible, the flow is called compressible. 
The most common example of compressible flow concerns the flow of gases, while 
the flow of liquids may frequently be treated as incompressible. 

For many liquids, density is only a weak function of temperature. At modest 
pressures, liquids may be considered incompressible. However, at high pressures, 
compressibility effects in liquids can be important. Pressure and density changes in 
liquids are related by the bulk compressibility modulus, or modulus of elasticity, 

du 
(2.10) 

dy 

dp 
(2.14) 

(dp/p) 

Several examples illustrating the nature of laminar and turbulent flows are shown in the NCFMF video 
Turbulence and in the University of Iowa video Cliaracteristics of Laminar and Turbulent Flow. 
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If the bulk modulus is independent of temperature, then density is only a function of 
pressure (the fluid is barotropic). Bulk modulus data for some common liquids are 
given in Appendix A. 

Water hammer and cavitation 1 3 are examples of the importance of compressibil­
ity effects in liquid flows. Water hammer is caused by acoustic waves propagating 
and reflecting in a confined liquid, for example when a valve is closed abruptly. The 
resulting noise can be similar to "hammering" on the pipes, hence the term. 

Cavitation occurs when vapor pockets form in a liquid flow because of local re­
ductions in pressure (for example at the tip of a boat's propeller blades). Depending 
on the number and distribution of particles in the liquid to which very small pockets 
of undissolved gas or air may attach, the local pressure at the onset of cavitation may 
be at or below the vapor pressure of the liquid. These particles act as nucleation sites 
to initiate vaporization. 

Vapor pressure of a liquid is the partial pressure of the vapor in contact with the 
saturated liquid at a given temperature. When pressure in a liquid is reduced to less 
than the vapor pressure, the liquid may change phase suddenly and "flash" to vapor. 

The vapor pockets in a liquid flow may alter the geometry of the flow field sub­
stantially. When adjacent to a surface, the growth and collapse of vapor bubbles can 
cause serious damage by eroding the surface material. 

Very pure liquids can sustain large negative pressures—as much as —60 at­
mospheres for distilled water—before the liquid "ruptures" and vaporization oc­
curs. Undissolved air is invariably present near the free surface of water or seawa-
ter, so cavitation occurs where the local total pressure is quite close to the vapor 
pressure. 

It turns out that gas flows with negligible heat transfer also may be considered 
incompressible provided that the flow speeds are small relative to the speed of sound; 
the ratio of the flow speed, V, to the local speed of sound, c, in the gas is defined as 
the Mach number, 

For M < 0.3, the maximum density variation is less than 5 percent. Thus gas flows 
with M < 0.3 can be treated as incompressible; a value of M = 0.3 in air at standard 
conditions corresponds to a speed of approximately 100 m/s. For example, although it 
might be a little counterintuitive, when you drive your car at 65 mph the air flowing 
around it has negligible change in density. 

Compressible flows occur frequently in engineering applications. Common ex­
amples include compressed air systems used to power shop tools and dental drills, 
transmission of gases in pipelines at high pressure, and pneumatic or fluidic control 
and sensing systems. Compressibility effects are very important in the design of 
modern high-speed aircraft and missiles, power plants, fans, and compressors. 

Internal and External Flows 

Flows completely bounded by solid surfaces are called internal or duct flows. Flows 
over bodies immersed in an unbounded fluid are termed external flows. Both internal 
and external flows may be laminar or turbulent, compressible or incompressible. 

1 5 Examples of cavitation are illustrated in the NCFMF video Cavitation. 
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We mentioned an example of internal flow when we discussed the flow out of a 
faucet—the flow in the pipe leading to the faucet is an internal flow. It turns out that 
we have a Reynolds number for pipe flows defined as Re = p VD/pu, where V is the 
average flow velocity and D is the pipe diameter (note that we do not use the pipe 
length!). This Reynolds number indicates whether a pipe flow will be laminar or tur­
bulent. Flow will generally be laminar for Re ^ 2300, and turbulent for larger values: 
Flow in a pipe of constant diameter will be entirely laminar or entirely turbulent, de­
pending on the value of the velocity V. We will explore internal flows in detail in 
Chapter 8. 

We already saw some examples of external flows when we discussed the flow 
over a sphere (Fig. 2A2b) and a streamlined object (Fig. 2.14). What we didn't men­
tion was that these flows could be laminar or turbulent. In addition, we mentioned 
boundary layers (Fig. 2.13): It turns out these also can be laminar or turbulent. When 
we discuss these in detail (Chapter 9), we'll start with the simplest kind of boundary 
layer—that over a flat plate — and learn that just as we have a Reynolds number for 
the overall external flow that indicates the relative significance of viscous forces, 
there will also be a boundary-layer Reynolds number Rex = pU^x/p where in this 
case the characteristic velocity Urj0 is the velocity immediately outside the boundary 
layer and the characteristic length x is the distance along the plate. Hence, at the lead­
ing edge of the plate Rex = 0, and at the end of a plate of length L, it will be Rex = 
pU^L/fx. The significance of this Reynolds number is that (as we'll learn) the bound­
ary layer will be laminar for Rex < 5 X 10 5, and turbulent for larger values: A 
boundary layer will start out laminar, and if the plate is long enough the boundary 
layer will transition to become turbulent. 

It is clear by now that computing a Reynolds number is often very informative 
for both internal and external flows. We will discuss this and other important dimen­
sionless groups (such as the Mach number) in Chapter 7. 

The internal flow of liquids in which the duct does not flow full—where there is 
a free surface subject to a constant pressure—is termed open-channel flow. Common 
examples of open-channel flow include flow in rivers, irrigation ditches, and aque­
ducts. Open-channel flow will not be treated in this text. (References [8] through [11] 
contain introductory treatments of open-channel flow.) 

The interna] flow through fluid machines is considered in Chapter 10. The prin­
ciple of angular momentum is applied to develop fundamental equations for fluid ma­
chines. Pumps, fans, blowers, compressors, and propellers that add energy to fluid 
streams are considered, as are turbines and windmills that extract energy. The chapter 
features detailed discussion of operation of fluid systems. 

Both internal and external flows can be compressible or incompressible. Com­
pressible flows can be divided into subsonic and supersonic regimes. We will study 
compressible flows in Chapters 11 and 12, and see among other things that super­
sonic flows (M > 1) will behave very differently than subsonic flows {M < 1). For 
example, supersonic flows can experience oblique and normal shocks, and can also 
behave in a counterintuitive way—e.g. , a supersonic nozzle (a device to accelerate 
a flow) must be divergent (i.e., it has increasing cross-sectional area) in the direc­
tion of flow! We note here also that in a subsonic nozzle (which has a convergent 
cross-sectional area), the pressure of the flow at the exit plane will always be the am­
bient pressure; for a sonic flow, the exit pressure can be higher than ambient; and for 
a supersonic flow the exit pressure can be greater than, equal to, or less than the 
ambient pressure! 
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2-7 SUMMARY 

In this chapter we have completed our review of some of the fundamental concepts 
we will utilize in our study of fluid mechanics. Some of these are: 

/ How to describe flows (timelines, pathlines, streamlines, streaklines). 
/ Forces (surface, body) and stresses (shear, normal). 
/ Types of fluids (Newtonian, non-Newtonian—dilatant, pseudoplastic, thixotropic, 

rheopectic, Bingham plastic) and viscosity (kinematic, dynamic, apparent). 
/ Types of flow (viscous/inviscid, laminar/turbulent, compressible/incompressible, 

internal/external). 

We also briefly discussed some interesting phenomena, such as surface tension, 
boundary layers, wakes, and streamlining. Finally, we introduced two very useful di­
mensionless groups—the Reynolds number and the Mach number. 
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PROBLEMS 

2.1 For the velocity fields given below, determine: 

(a) whether the flow field is one-, two-, or three-dimensional, and why. 
(b) whether the flow is steady or unsteady, and why. 
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(The quantities a and b are constants.) 

(1) V ax e 2-bi (2) V axi - byj 

(7) V 

(5) V 

(3) V ax i + bxj + ck 

[ae~bx]i + bx2] 

a(x2 + y2)U2(Vz3)k 

(4) V 

(6) V 

(8) V 

axyi - byztj 

(ax + t)i - by2j 

ax2i + bxzj + czk 

2.2 A viscous liquid is sheared between two parallel disks; the upper disk rotates and the 
lower one is fixed. The velocity field between the disks is given by V = e$rcozJh. (The 
origin of coordinates is located at the center of the lower disk; the upper disk is located 
at z = h.) What are the dimensions of this velocity field? Does this velocity field satisfy 
appropriate physical boundary conditions? What are they? 

2.3 The velocity field V = axi - byj, where a = b = I s ' , can be interpreted to represent 
flow in a corner. Find an equation for the flow streamlines. Plot several streamlines in 
the first quadrant, including the one that passes through the point (x, y) = (0, 0). 

2.4 A velocity field is given by V = axi - btyj, where a = 1 s 1 and b = 1 s~2. Find the 
equation of the streamlines at any time t. Plot several streamlines in the first quadrant at 
t = 0 s, t = 1 s, and t = 20 s. 

2.5 For the velocity field V = Axyi + By2j, where A = 1 m 's ', B = — V2 n r V , and 
the coordinates are measured in meters, obtain an equation for the flow streamlines. 
Plot several streamlines for positive y. 

2.6 A velocity field is specified as V = ax2i + bxyj, where a - 2 m 's \ b = -6 m"'s~', 
and the coordinates are measured in meters. Is the flow field one-, two-, or three-dimen­
sional? Why? Calculate the velocity components at the point (2, V2). Develop an equa­
tion for the streamline passing through this point. Plot several streamlines in the first 
quadrant including the one that passes through the point (2, V2). 

2.7 A flow is described by the velocity field V = (Ax + B)i + (-Ay)j, where A = 10 ft/s/ft 
and B = 20 ft/s. Plot a few streamlines in the xy plane, including the one that passes 
through the point (x, y) = (1,2). 

2.8 A velocity field is given by V = ax2i + bxy3j, where a = 1 m" 2 s" 1 and b = I m~3 

s '. Find the equation of the streamlines. Plot several streamlines in the first quadrant. 

2.9 The velocity for a steady, incompressible flow in the xy plane is given by 
V = iAJx + jAy/x2, where A = 2 m2/s, and the coordinates are measured in meters. 

Obtain an equation for the streamline that passes through the point (x, y) ~ ( 1 , 3). Cal­
culate the time required for a fluid particle to move from x = l m t O J t = 3 m i n this 
flow field. 

2.10 Beginning with the velocity field of Problem 2.3, verify that the parametric equations 
for particle motion are given by xp = c^e"' and yp = c2e~hl. Obtain the equation for the 
pathline of the particle located at the point (x, y) = ( 1 , 2) at the instant / = 0. Compare 
this pathline with the streamline through the same point. 

2.11 A velocity field is given by V = ayti - bxj, where a = 1 s~2 and b = 4 s ' 1 . Find the 
equation of the streamlines at any time t. Plot several streamlines at t = 0 s, t = I s , 
and t = 20 s. 

2.12 Air flows downward toward an infinitely wide horizontal flat plate. The velocity field is 
given by V = (axi - ayj)(2 + cos cot), where a = 3 s"', u> = TT S ~ ' , X and y (measured 
in meters) are horizontal and vertically upward, respectively, and / is in s. Obtain an al­
gebraic equation for a streamline at t = 0. Plot the streamline that passes through point 
(x, y) = (2, 4) at this instant. Will the streamline change with lime? Explain briefly. 
Show the velocity vector on your plot at the same point and time. Is the velocity vector 
tangent to the streamline? Explain. 
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0^ 2.13 Consider the flow field given in Eulerian description by the expression V = Ai + Btj, 
where A = 2 m/s, B = 0.6 m/s 2, and the coordinates are measured in meters. Derive the 
Lagrangian position functions for the fluid particle that was located at the point (x, y) = 
(1, 1) at the instant t = 0. Obtain an algebraic expression for the pathline followed by 
this particle. Plot the pathline and compare with the streamlines plotted through the 
same point at the instants t = 0, 1, and 2 s. 

(£t 2.14 Consider the flow described by the velocity field V = Bx(\ + Al)i + Cyj, with A = 
0.5 s _ 1 , and B = C = 1 s" 1. Coordinates are measured in meters. Plot the pathline 
traced out by the particle that passes through the point (1, 1) at time t = 0. Compare 
with the streamlines plotted through the same point at the instants t = 0, 1, and 2 s. 

2.15 A velocity field is given by V = axxi - byj, where a = 0.1 s" 2 and b = 1 s~'. For the 
particle that passes through the point (x, y) = (1, 1) at instant t = 0 s, plot the pathline 
during the interval from t = 0 to / = 3 s. Compare with the streamlines plotted through 
the same point at the instants t = 0, I, and 2 s. 

2.16 Consider the flow field V = axti + bj, where a = 0.2 s~2 and b = 3 m/s. Coordinates 
are measured in meters. For the particle that passes through the point (JC, y) = (3, 1) at 
the instant t = 0, plot the pathline during the interval from / = 0 to 3 s. Compare this 
pathline with the streamlines plotted through the same point at the instants / = 1,2, 
and 3 s. 

2.17 Consider the velocity field V = axi + by(\ + ct)j, where a = b = 2 s - 1 , and c = 0.4 
s '. Coordinates are measured in meters. For the particle that passes through the point 
(x, y) = (1, 1) at the instant t = 0, plot the pathline during the interval from t = 0 to 
1.5 s. Compare this pathline with the streamlines plotted through the same point at the 
instants t = 0, 1, and 1.5 s. 

2.18 Consider the velocity field of Problem 2.14. Plot the streakline formed by particles that 
passed through the point (1, 1) during the interval from t = 0 to / = 3 s. Compare with 
the streamlines plotted through the same point at the instants t = 0, 1, and 2 s. 

2.19 Streaklines are traced out by neutrally buoyant marker fluid injected into a flow field 
from a fixed point in space. A particle of the marker fluid that is at point (x, y) at time t 
must have passed through the injection point (x0, y0) at some earlier instant t = T . The 
time history of a marker particle may be found by solving the pathline equations for the 
initial conditions that x = x0, y = y0 when t = T . The present locations of particles on 
the streakline are obtained by setting r equal to values in the range 0 < T < t. Consider 
the flow field V = ax(l + bt)i + cyj, where a = c = I s " 1 and b = 0.2 s '. Coordinates 
are measured in meters. Plot the streakline that passes through the initial point (XQ, y0) = 
(1, 1), during the interval from I = 0 to t = 3 s. Compare with the streamhne plotted 
through the same point at the instants t = 0, 1, and 2 s. 

I^^l 2.20 Tiny hydrogen bubbles are being used as tracers to visualize a flow. All the bubbles are 
generated at the origin (x = 0, y = 0). The velocity field is unsteady and obeys the 
equations: 

u = - 1 m/s v = 1 m/s 0 < t < 2 s 
u = 0 v = 2m/s 2 ^ / ^ 4 s 

Plot the pathlines of bubbles that leave the origin at t = 0, 1, 2, 3, and 4 s. Mark the lo­
cations of these five bubbles at I = 4 s. Use a dashed line to indicate the posiuon of a 
streakline at t = 4 s. 

^jj 2.21 Consider the flow field V = axti + bj, where a = 0.2 s'2 and b = 1 m/s. Coordinates 
are measured in meters. For the particle that passes through the point (x, y) = 
(1, 2) at the instant / = 0, plot the pathline during the time interval from / = 0 to 
3 s. Compare this pathline with the streakline through the same point at the instant 
t = 3 s. 
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2.22 A flow is described by velocity field, V = ai + bxj, where a = 2 m/s and b = 1 s"1. 
Coordinates are measured in meters. Obtain the equation for the streamline passing 
through point (2, 5). At / = 2 s, what are the coordinates of the particle that passed 
through point (0, 4) at t = 0? At t = 3 s, what are the coordinates of the particle that 
passed through point (1, 4.25) 2 s earlier? What conclusions can you draw about the 
pathline, streamline, and streakline for this flow? 

2.23 A flow is described by velocity field, V = ayi + bj, where a — 1 s" 1 and b = 2 m/s. 
Coordinates are measured in meters. Obtain the equation for the streamline passing 
through point (6, 6). At / = 1 s, what are the coordinates of the particle that passed 
through point (1, 4) at f = 0? At t = 3 s, what are the coordinates of the particle that 
passed through point ( - 3 , 0) 2 s earlier? Show that pathlines, streamlines, and streak­
lines for this flow coincide. 

2.24 A flow is described by velocity field, V = ati + bj, where a = 0.4 m/s2 and b = 2 m/s. 
At / = 2 s, what are the coordinates of the particle that passed through point (2, 1) at 
r = 0? At t = 3 s, what are the coordinates of the particle that passed through point 
(2, 1) at / = 2 s? Plot the pathline and streakline through point (2, 1) and compare with 
the streamlines through the same point at the instants / = 0, 1, and 2 s. 

2.25 A flow is described by velocity field, V = ayi + btj , where a = 1 s"1 and b = 0.5 m/s2. 
At / = 2 s, what are the coordinates of the particle that passed through point (1, 2) at 
t = 0? At / = 3 s, what «re the coordinates of the particle that passed through point 
(1, 2) at / = 2 s? Plot the pathline and streakline through point (1,2) and compare with 
the streamlines through the same point at the instants / = 0, 1, and 2 s. 

2.26 The variation with temperature of the viscosity of air is correlated well by the empirical 
Sutherland equation 

bT112 

1 + 5/7 

Best-fit values of b and 5 are given in Appendix A for use with SI units. Use these val­
ues to develop an equation for calculating air viscosity in British Gravitational units as 
a function of absolute temperature in degrees Rankine. Check your result using data 
from Appendix A. 

2.27 The variation with temperature of the viscosity of air is represented well by the empiri­
cal Sutherland correlation 

bTU2 

/x -
1 + 5 / 7 

Best-fit values of b and 5 are given in Appendix A. Develop an equation in SI units for 
kinematic viscosity versus temperature for air at atmospheric pressure. Assume ideal 
gas behavior. Check using data from Appendix A. 

2.28 Some experimental data for the viscosity of helium at 1 atm are 

7, °C 0 100 200 300 400 

/x, N • s/m2(X 105) 1.86 2.31 2.72 3.11 3.46 

Using the approach described in Appendix A-3, correlate these data to the empirical 
Sutherland equation 

bT1'2 

f- = 
1 + 5/7 

(where 7 is in kelvin) and obtain values for constants b and 5. 
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2.29 The velocity distribution for laminar flow between parallel plates is given by 

where h is the distance separating the plates and the origin is placed midway between 
the plates. Consider a flow of water at 15°C, with um3X = 0.10 m/s and h = 0.25 mm. 
Calculate the shear stress on the upper plate and give its direction. Sketch the variation 
of shear stress across the channel. 

2.30 The velocity distribution for laminar flow between parallel plates is given by 

where h is the distance separating the plates and the origin is placed midway between 
the plates. Consider flow of water at 15°C with maximum speed of 0.05 m/s and h = 
1 mm. Calculate the force on a 1 m 2 section of the lower plate and give its direction. 

2.31 Explain how an ice skate interacts with the ice surface. What mechanism acts to reduce 
sliding friction between skate and ice? 

2.32 A female freestyle ice skater, weighing 100 lbf, glides on one skate at speed V = 20 
ft/s. Her weight is supported by a thin film of liquid water melted from the ice by the 
pressure of the skate blade. Assume the blade is L = 11.5 in. long and w = 0.125 in. 
wide, and that the water film is h = 0.0000575 in. thick. Estimate the deceleration 
of the skater that results from viscous shear in the water film, if end effects are 
neglected. 

2.33 Crude oil, with specific gravity SG = 0.85 and viscosity /A = 2.15 X 10" 3 lbf • s/ft2, 
flows steadily down a surface inclined 6 = 30 degrees below the horizontal in a film of 
thickness h = 0.125 in. The velocity profile is given by 

(Coordinate x is along the surface and y is normal to the surface.) Plot the velocity 
profile. Determine the magnitude and direction of the shear stress that acts on the 
surface. 

2.34 A block weighing 10 lbf and having dimensions 10 in. on each edge is pulled up an in­
clined surface on which there is a film of SAE 10W oil at 100CF. If the speed of the 
block is 2 ft/s and the oil film is 0.001 in. thick, find the force required to pull the block. 
Assume the velocity distribution in the oil film is linear. The surface is inclined at an 
angle of 25° from the horizontal. 

2.35 Recording tape is to be coated on both sides with lubricant by drawing it through a nar­
row gap. The tape is 0.015 in. thick and 1.00 in. wide. It is centered in the gap with a 
clearance of 0.012 in. on each side. The lubricant, of viscosity/x = 0.021 slug/(ft • s), 
completely fills the space between the tape and gap for a length of 0.75 in. along the 
tape. If the tape can withstand a maximum tensile force of 7.5 lbf, determine the maxi­
mum speed with which it can be pulled through the gap. 

2.36 A block of mass M slides on a thin film of oil. The film thickness is h and the area of the 
block is A. When released, mass m exerts tension on the cord, causing the block to acceler­
ate. Neglect friction in the pulley and air resistance. Develop an algebraic expression for 
the viscous force that acts on the block when it moves at speed V. Derive a differentia] 
equation for the block speed as a function of time. Obtain an expression for the block 
speed as a function of time. The mass M = 5 kg, m — I kg, A = 25 cm2, and h = 0.5 mm. 
If it takes 1 s for the speed to reach 1 m/s, find the oil viscosity /x. Plot the curve for V(t). 

u sin 0 
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2.37 A block that is a mm square slides across a flat plate on a thin film of oil. The oil has vis­
cosity fi and the film is h mm thick. The block of mass M moves at steady speed U under 
the influence of constant force F. Indicate the magnitude and direction of the shear 
stresses on the bottom of the block and the plate. If the force is removed suddenly and the 
block begins to slow, sketch the resulting speed versus time curve for the block. Obtain an 
expression for the time required for the block to lose 95 percent of its initial speed. 

2.38 A block 0.2 m square, with 5 kg mass, slides down a smooth incline, 30° below the 
horizontal, on a film of SAE 30 oil at 20°C that is 0.20 mm thick. If the block is re­
leased from rest at t = 0, what is its initial acceleration? Derive an expression for the 
speed of the block as a function of time. Plot the curve for V(/). Find the speed after 
0.1 s. If we want the mass to instead reach a speed of 0.3 m/s at this time, find the vis­
cosity \x of the oil we would have to use. 

2.39 Magnet wire is to be coated with varnish for insulation by drawing it through a circular 
die of 1.0 mm diameter. The wire diameter is 0.9 mm and it is centered in the die. The 
varnish (p. — 20 centipoise) completely fills the space between the wire and the die for 
a length of 50 mm. The wire is drawn through the die at a speed of 50 m/s. Determine 
the force required to pull the wire. 

2.40 A concentric cylinder viscometer may be formed by rotating the inner member of a pair 
of closely fitting cylinders (see Fig. P2.43). The annular gap is small so that a linear ve­
locity profile will exist in the liquid sample. Consider a viscometer with an inner cylin­
der of 4 in. diameter and 8 in. height, and a clearance gap width of 0.001 in., filled with 
castor oil at 90°F. Determine the torque required to turn the inner cylinder at 400 rpm. 

2.41 A concentric cylinder viscometer may be formed by rotating the inner member of a pair 
of closely fitting cylinders (see Fig. P2.43). For small clearances, a linear velocity pro­
file may be assumed in the liquid filling the annular clearance gap. A viscometer has an 
inner cylinder of 75 mm diameter and 150 mm height, with a clearance gap width of 
0.02 mm. A torque of 0.021 N • m is required to turn the inner cylinder at 100 rpm. De­
termine the viscosity of the liquid in the clearance gap of the viscometer. 

2.42 A shaft with outside diameter of 18 mm turns at 20 revolutions per second inside a sta­
tionary journal bearing 60 mm long. A thin film of oil 0.2 mm thick fills the concentric 
annulus between the shaft and journal. The torque needed to turn the shaft is 0.0036 
N • m. Estimate the viscosity of the oil that fills the gap. 

2.43 A concentric cylinder viscometer is driven by a falling mass M connected by a cord and 
pulley to the inner cylinder, as shown. The liquid to be tested fills the annular gap of 
width a and height H. After a brief starting transient, the mass falls at constant speed 
Vm. Develop an algebraic expression for the viscosity of the liquid in the device in 
terms of M, g, Vm, r, R, a, and H. Evaluate the viscosity of the liquid using: 

M = 0.10 kg r = 25 mm 
R = 50 mm a = 0.20 mm 
H = 80 mm Vm = 30 mm/s 
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Pulley r Cord 

z 

H — R 

P2.43, 2.44 

2.44 The viscometer of Problem 2.43 is being used to verify that the viscosity of a particular 
fluid is p = 0.1 N • s/m2. Unfortunately the cord snaps during the experiment. How 
long will it take the cylinder to lose 99% of its speed? The moment of inertia of the 
cylinder/pulley system is 0.0273 kg • m2. 

2.45 The thin outer cylinder (mass m 2 and radius R) of a small portable concentric cylinder 
viscometer is driven by a falling mass, mu attached to a cord. The inner cylinder is sta­
tionary. The clearance between the cylinders is a. Neglect bearing friction, air resist­
ance, and the mass of liquid in the viscometer. Obtain an algebraic expression for the 
torque due to viscous shear that acts on the cylinder at angular speed a>. Derive and 
solve a differential equation for the angular speed of the outer cylinder as a function of 
time. Obtain an expression for the maximum angular speed of the cylinder. 

2.46 A circular aluminum shaft mounted in a journal is shown. The symmetric clearance 
gap between the shaft and journal is filled with SAE 10W-30 oil at T = 30°C. The 
shaft is caused to turn by the attached mass and cord. Develop and solve a differen­
tial equation for the angular speed of the shaft as a function of time. Calculate the 
maximum angular speed of the shaft and the time required to reach 95 percent of 
this speed. 

2.47 A shock-free coupling for a low-power mechanical drive is to be made from a pair of 
concentric cylinders. The annular space between the cylinders is to be filled with oil. 
The drive must transmit power, J = 5 W, Other dimensions and properties are as 
shown. Neglect any bearing friction and end effects. Assume the minimum practical 
gap clearance S for the device is S = 0.5 mm. Dow manufactures silicone fluids with 

P 2 . 4 5 P 2 . 4 6 



PROBLEMS 49 

viscosities as high as 106 centipoise. Determine the viscosity that should be specified to 
satisfy the requirement for this device, 

2.48 A proposal has been made to use a pair of parallel disks to measure the viscosity of a liq­
uid sample. The upper disk rotates at height h above the lower disk. The viscosity of the 
liquid in the gap is to be calculated from measurements of the torque needed to turn the 
upper disk steadily. Obtain an algebraic expression for the torque needed to turn the disk. 
Could we use this device to measure the viscosity of a non-Newtonian fluid? Explain. 

P2.48 P2.49,2.50 

2.49 The cone and plate viscometer shown is an instrument used frequently to character­
ize non-Newtonian fluids. It consists of a flat plate and a rotating cone with a very 
obtuse angle (typically 8 is less than 0.5 degrees). The apex of the cone just touches 
the plate surface and the liquid to be tested fills the narrow gap formed by the cone 
and plate. Derive an expression for the shear rate in the liquid that fills the gap in 
terms of the geometry of the system. Evaluate the torque on the driven cone in terms 
of the shear stress and geometry of the system. 

2.50 The viscometer of Problem 2.49 is used to measure the apparent viscosity of a fluid, 
The data below are obtained. What kind of non-Newtonian fluid is this? Find the values 
of k and n used in Eqs. 2.11 and 2.12 in defining the apparent viscosity of a fluid. (As­
sume 8 is 0.5 degrees.) Predict the viscosity at 90 and 100 rpm. 

Speed (rpm) 10 20 30 40 50 60 70 80 

/x,(N • s/m2) 0.121 0.139 0.153 0.159 0.172 0.172 0.183 0.185 

2.51 A viscous clutch is to be made from a pair of closely spaced parallel disks enclosing a 
thin layer of viscous liquid. Develop algebraic expressions for the torque and the power 
transmitted by the disk pair, in terms of liquid viscosity, fi, disk radius, R, disk spacing, 
a, and the angular speeds: <w; of the input disk and u>a of the output disk. Also develop 
expressions for the slip ratio, s = A(o/coh in terms of &>• and the torque transmitted. De­
termine the efficiency, 17, in terms of the slip ratio. 
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2.52 A concentric-cylinder viscometer is shown. Viscous torque is produced by the annular 
gap around the inner cylinder. Additional viscous torque is produced by the flat bottom 
of the inner cylinder as it rotates above the flat bottom of the stationary outer cylinder. 
Obtain an algebraic expression for the viscous torque due to flow in the annular gap of 
width a. Obtain an algebraic expression for the viscous torque due to flow in the bottom 
clearance gap of height b. Prepare a plot showing the ratio, bla, required to hold the 
bottom torque to 1 percent or less of the annulus torque, versus the other geometric 
variables. What are the design implications? What modifications to the design can you 
recommend? 

2.53 Design a concentric-cylinder viscometer to measure the viscosity of a liquid similar to 
water. The goal is to achieve a measurement accuracy of ± 1 percent. Specify the con­
figuration and dimensions of the viscometer. Indicate what measured parameter will be 
used to infer the viscosity of the liquid sample. 

2.54 A conical pointed shaft turns in a conical bearing. The gap between shaft and bearing is 
filled with heavy oil having the viscosity of SAE 30 at 30°C. Obtain an algebraic ex­
pression for the shear stress that acts on the surface of the conical shaft. Calculate the 
viscous torque that acts on the shaft. 

P2.54 P2.55 

^ J l 2.55 A spherical thrust bearing is shown. The gap between the spherical member and the 
housing is of constant width h. Obtain and plot an algebraic expression for the nondi-
mensional torque on the spherical member, as a function of angle a. 

2.56 A cross section of a rotating bearing is shown. The spherical member rotates with an­
gular speed co, a small distance, a, above the plane surface. The narrow gap is filled 
with viscous oil, having /x = 1250 cp. Obtain an algebraic expression for the shear 
stress acting on the spherical member. Evaluate the maximum shear stress that acts on 
the spherical member for the conditions shown. (Is the maximum necessarily located 
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at the maximum radius?) Develop an algebraic expression (in the form of an integral) 
for the total viscous shear torque that acts on the spherical member. Calculate the 
torque using the dimensions shown. 

|- -|— R0 = 20 mm 

P2.56 

2.57 Small gas bubbles form in soda when a bottle or can is opened. The average bubble di­
ameter is about 0.1 mm. Estimate the pressure difference between the inside and out­
side of such a bubble. 

2.58 You intend to gently place several steel needles on the free surface of the water in a 
large tank. The needles come in two lengths: Some are 5 cm long, and some are 10 cm 
long. Needles of each length are available with diameters of I mm, 2.5 mm, and 5 mm, 
Make a prediction as to which needles, if any, will float. 

2.59 Slowly fill a glass with water to the maximum possible level. Observe the water level 
closely. Explain how it can be higher than the rim of the glass. 

2.60 Plan an experiment to measure the surface tension of a liquid similar to water. If neces­
sary, review the NCFMF video Surface Tension for ideas. Which method would be 
most suitable for use in an undergraduate laboratory? What experimental precision 
could be expected? 

2.61 Water usually is assumed to be incompressible when evaluating static pressure varia­
tions. Actually it is 100 times more compressible than steel. Assuming the bulk modu­
lus of water is constant, compute the percentage change in density for water raised to a 
gage pressure of 100 atm. Plot the percentage change in water density as a function of 
plpMm up to a pressure of 50,000 psi, which is the approximate pressure used for high­
speed cutting jets of water to cut concrete and other composite materials. Would con­
stant density be a reasonable assumption for engineering calculations for cutting jets? 

2.62 How does an airplane wing develop lift? 

u- P.. a. 



Chapter 3 

FLUID STATICS 

We defined a fluid as a substance that will continuously deform, or flow, whenever a 
shear stress is applied to it. It follows that for a fluid at rest the shear stress must be zero. 
We can conclude that for a static fluid (or one undergoing "rigid-body" motion) only 
normal stress is present—in other words, pressure. We will study the topic of fluid stat­
ics (often called hydrostatics, even though it is not restricted to water) in this chapter. 

Although fluid statics problems are the simplest kind of fluid mechanics prob­
lems, this is not the only reason we will study them. The pressure generated within a 
static fluid is an important phenomenon in many practical situations. Using the prin­
ciples of hydrostatics, we can compute forces on submerged objects, develop instru­
ments for measuring pressures, and deduce properties of the atmosphere and oceans. 
The principles of hydrostatics also may be used to determine the forces developed by 
hydraulic systems in applications such as industrial presses or automobile brakes. 

In a static, homogeneous fluid, or in a fluid undergoing rigid-body motion, a fluid 
particle retains its identity for all time, and fluid elements do not deform. We may ap­
ply Newton's second law of motion to evaluate the forces acting on the particle. 

3-1 THE BASIC EQUATION OF FLUID STATICS 

The first objective of this chapter is to obtain an equation for computing the pressure 
field in a static fluid. We will deduce what we already know from everyday experience, 
that the pressure increases with depth. To do this, we apply Newton's second law to a 
differential fluid element of mass dm = p dY, with sides dx, dy, and dz, as shown in 
Fig. 3.1. The fluid element is stationary relative to the stationary rectangular coordinate 
system shown. (Fluids in rigid-body motion will be treated in Section 3-7 on the CD.) 

From our previous discussion, recall that two general types of forces may be ap­
plied to a fluid: body forces and surface forces. The only body force that must be 
considered in most engineering problems is due to gravity. In some situations body 
forces caused by electric or magnetic fields might be present; they will not be consid­
ered in this text. 1 

For a differential fluid element, the body force is 

dFB = gdm = gp dV 

where g is the local gravity vector, p is the density, and dY is the volume of the 
element. In Cartesian coordinates dY = dx dy dz, so 

dFg = pg dx dy dz 

' The effect of body forces caused by magnetic fields is illustrated in the NCFMF video Magnetohydrody-
namics. 

52 
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X 
Fig . 3.1 Di f ferent ia l f lu id e l emen t and p ressu re fo rces in the y d i rect ion. 

In a static fluid no shear stresses can be present. Thus the only surface force is 
the pressure force. Pressure is a scalar field, p = p(x, y, z); the pressure varies with 
position within the fluid. The net pressure force that results from this variation can be 
evaluated by summing the forces that act on the six faces of the fluid element. 

Let the pressure be p at the center, 0, of the element. To determine the pressure 
at each of the six faces of the element, we use a Taylor series expansion of the pres­
sure about point O. The pressure at the left face of the differential element is 

PL dy 
y) = p + 

dp 
dy 

ay 
2 

dp dy 

(Terms of higher order are omitted because they will vanish in the subsequent limit­
ing process.) The pressure on the right face of the differential element is 

dp , . dp dy 
P R = P + 3y~ R ~ y dy ~2 

The pressure forces acting on the two y surfaces of the differential element are 
shown in Fig. 3.1. Each pressure force is a product of three factors. The first is the 
magnitude of the pressure. This magnitude is multiplied by the area of the face to 
give the magnitude of the pressure force, and a unit vector is introduced to indicate 
direction. Note also in Fig. 3.1 that the pressure force on each face acts against the 
face. A positive pressure corresponds to a compressive normal stress. 

Pressure forces on the other faces of the element are obtained in the same way. 
Combining all such forces gives the net surface force acting on the element. 
Thus 

dFs= p 

1 dp dy 
P-^T — dy 2 

(dx dz)(j) + 
dp dy^ 

dp dz^ 
p + yzf) 

(dxdzK-j) 

(dx dyX-k) 
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Collecting and canceling terms, we obtain 

\^dx dy dz 
dx dy dz (3.1a) 

The term in parentheses is called the gradient of the pressure or simply the pressure 
gradient and may be written grad p or Vp. In rectangular coordinates 

g radp = Vp = \ iJx

+^ + k^z dx dy dz j 

The gradient can be viewed as a vector operator; taking the gradient of a scalar field 
gives a vector field. Using the gradient designation, Eq. 3.1a can be written as 

dFs - -g rad p (dx dy dz) = - V p dx dy dz (3.1 b) 

Physically the gradient of pressure is the negative of the surface force per unit vol­
ume due to pressure. We note that the level of pressure is not important in evaluating 
the net pressure force. Instead, what matters is the rate at which pressure changes oc­
cur with distance, the pressure gradient. We shall encounter this term throughout our 
study of fluid mechanics. 

We combine the formulations for surface and body forces that we have devel­
oped to obtain the total force acting on a fluid element. Thus 

dF = dFs + dFB = ( -Vp + pg) dx dy dz = ( -Vp + pg) dY 

or on a per unit volume basis 

aT 
dY 

-Vp + pg 

For a fluid particle, Newton's second law gives dF 
fluid, a = 0. Thus 

a dm 

(3.2) 

dpdY. For a static 

dF_ 
dY 

= oa=0 

Substituting for dF/dY from Eq. 3.2, we obtain 

- V p + pg = 0 (3.3) 

Let us review this equation briefly. The physical significance of each term is 

= 0 - Vp + 
( net pressure force! 
\ per unit volume \ + 

at a point 

Pg 
body force perl 

unit volume \ ~ 0 
at a point 

This is a vector equation, which means that it is equivalent to three component equa­
tions that must be satisfied individually. The component equations are 

dp A 

ox 

dp A 

-fy+PZy=0 

x direction 

y direction • 

dp 

oz 
0 z direction 

(3.4) 
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Equations 3.4 describe the pressure variation in each of the three coordinate 
directions in a static fluid. To simplify further, it is logical to choose a coordinate sys­
tem such that the gravity vector is aligned with one of the coordinate axes. If the 
coordinate system is chosen with the z axis directed vertically upward, as in Fig. 3.1, 
then gx = 0, gy = 0, and g, — —g. Under these conditions, the component equations 
become 

dp dp dp 

d-x=° a7 = 0 T z = - p g <3-5> 

Equations 3.5 indicate that, under the assumptions made, the pressure is independent 
of coordinates x and y; it depends on z alone. Thus since p is a function of a single 
variable, a total derivative may be used instead of a partial derivative. With these sim­
plifications, Eqs. 3.5 finally reduce to 

dp 
— = -pg = -J (3.6) 
dz 

Restrictions: (1) Static fluid. 
(2) Gravity is the only body force. 
(3) The z axis is vertical and upward. 

This equation is the basic pressure-height relation of fluid statics. It is subject to the 
restrictions noted. Therefore it must be applied only where these restrictions are rea­
sonable for the physical situation. To determine the pressure distribution in a static 
fluid, Eq. 3.6 may be integrated and appropriate boundary conditions applied. 

Before considering specific cases that are readily treated analytically, it is im­
portant to remember that pressure values must be stated with respect to a reference 
level. If the reference level is a vacuum, pressures are termed absolute, as shown in 
Fig. 3.2. 

Most pressure gages indicate a pressure difference—the difference between the 
measured pressure and the ambient level (usually atmospheric pressure). Pressure 
levels measured with respect to atmospheric pressure are termed gage pressures. 
Thus 

/ ^ g a g e /^abso lute ^ a t m o s p h e r e 

Absolute pressures must be used in all calculations with the ideal gas equation 
or other equations of state. 

Pressure level 

Atmospheric pressure: 
101 .3 kPa (14.696 psia) 

at standard sea level 
conditions 

Vacuum 

Fig. 3.2 Abso lu te and g a g e p ressu res , show ing 
re ference levels. 
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3-2 THE STANDARD ATMOSPHERE 

Several International Congresses for Aeronautics have been held so that aviation 
experts around the world might communicate better. Their goal is to develop an 
acceptable model atmosphere for use as a standard; agreement is yet to be reached on 
an international standard. 

The temperature profile of the U.S. Standard Atmosphere is shown in Fig. 3.3. 
Additional property values are tabulated as functions of elevation in Appendix A. Sea 
level conditions of the U.S. Standard Atmosphere are summarized in Table 3.1. 
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Fig. 3.3 Tempera tu re var ia t ion wi th al t i tude in the U.S. 
S tanda rd A tmosphe re . 

Table 3.1 Sea Level Conditions of the U.S. Standard Atmosphere 

Property Symbol SI English 

Temperature T 15°C 59°F 
Pressure P 101.3 kPa (abs) 14.696 psia 
Density 9 1.225 kg/m3 0.002377 slug/ft3 

Specific weight y — 0.07651 lbf/ft3 

Viscosity 1.789 X l(T 5kg/(m • s) 3.737 X 10 7 lbf • s/ft2 

(Pa • s) 
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PRESSURE VARIATION IN A STATIC FLUID 

We have seen that pressure variation in any static fluid is described by the basic pressure-
height relation 

= -Pg (3.6) 
dz 

Although pg may be defined as the specific weight, y, it has been written as pg in Eq. 
3.6 to emphasize that both p and g must be considered variables. In order to integrate 
Eq. 3.6 to find the pressure distribution, assumptions must be made about variations 
in both p and g. 

For most practical engineering situations, the variation in g is negligible. Only 
for a purpose such as computing very precisely the pressure change over a large ele­
vation difference would the variation in g need to be included. Unless we state other­
wise, we shall assume g to be constant with elevation at any given location. 

Incompressible Liquids: Manometers 

For an incompressible fluid, p = constant. Then for constant gravity, 

dp 
— = -pg - constant 
dz 

To determine the pressure variation, we must integrate and apply appropriate bound­
ary conditions. If the pressure at the reference level, ZQ, is designated as p 0 , then the 
pressure, p, at level z is found by integration: 

r dp = - [ pg dz 
•>Df> Jin 'Po •'Zo 

or 

P ~ Po = ~Pg(z - Zo) = P£(zo - z) 

For liquids, it is often convenient to take the origin of the coordinate system at 
the free surface (reference level) and to measure distances as positive downward from 
the free surface as in Fig. 3.4. 

With h measured positive downward, we have 

Zo - z = h 

and 

P ~ Po = Pgh (3.7) 

r Reference 
0 — P o J level and 

I pressure 

{ Location and 
pressure of 
interest 

Fig. 3.4 Use of z and h coord ina tes . 
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Equation 3.7 indicates that the pressure difference between two points in a static in­
compressible fluid can be determined by measuring the elevation difference between 
the two points. Devices used for this purpose are called manometers. 

Use of Eq. 3.7 for a manometer is illustrated in Example Problem 3.1. 

EXAMPLE 3.1 Systolic and Diastolic Pressure 

The normal blood pressure of a human is 120/80 mm Hg. By modeling a sphygmo­
manometer pressure gage as a U-tube manometer, convert these pressures to psig. 

EXAMPLE PROBLEM 3.1 

GIVEN: Gage pressures of 120 and 80 mm Hg 

FIND: The corresponding pressures in psig. 

SOLUTION: 

Apply hydrostatic equation to points A, A', and B. 

Governing equation: 
P - Po = Pg" (3.7) 

Assumptions: (1) Static fluid, 
(2) Incompressible fluids. 
(3) Neglect air density ( < K Hg density). 

Applying the governing equation between points A' and B (and pB is atmospheric and therefore zero 
gage): 

PA- = PB + PHggh = SGngPupgh 

In addition, the pressure increases as we go downward from point A' to the bottom of the manometer, 
and decreases by an equal amount as we return up the left branch to point A. Hence points A and A' have 
the same pressure, so we end up with 

PA = PA- = SG^p^^gh 

Substituting SGHi = 13.6 and PH , , 0 = 1.94 slug/ft3 from Appendix A-l yields for the systolic pressure (h = 
120 mm Hg) 

PsysloUc ~~ PA 
13.6 1.94 slug 32.2 ft 120 mm 

X — X — X X ft 3 * s 2 * 
ft lbf-s' 

X X 

25.4 mm 12 in. slug ft 

P s y s w l i c = 334 lbf/ft2 = 2.32 psi Psystolk 

By a similar process, the diastolic pressure (h = 80 mm Hg) is 

^diastolic = 1-55 psi f diastolic 

Notes: 
/ Two points at the same level in a continuous single fluid 

have the same pressure. 
/ In manometer problems we neglect change in pressure 

with depth for a gas. 
/ This problem shows the conversion from mm Hg to psi, 

using Eq. 3.7: 120 mm Hg is equivalent to about 2.32 psi. 
More generally, I atm = 14.7 psi = 101 kPa = 760 nun Hg. 
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EXAMPLE 3.2 Analysis of Inclined-Tube Manometer 

An inclined-tube reservoir manometer is constructed 
as shown. Analyze the manometer to obtain a gen­
eral expression for the liquid deflection, L, in the 
inclined tube, in terms of the applied pressure differ­
ence, Ap. Also obtain a general expression for the 
manometer sensitivity, and determine the parameter 
values that give maximum sensitivity. 

EXAMPLE PROBLEM 3.2 

GIVEN: Inclined-tube reservoir manometer 
as shown. 

FIND: Expression for L in terms of Ap. 

•
Genera] expression for manometer 
sensitivity. 
Parameter values that give maximum 
sensitivity. 

4 p | 

lu-
;1 n 

Equil ibr ium 
liquid level 

D 

i 
\ 
Gage l iquid, p, 

SOLUI ION: Use the equilibrium liquid level as a reference. 

Governing equations: p = p0 + pgh SG = —— 
P H 2 O 

Assumptions: (1) Static fluid. 
(2) Incompressible fluid. 

Applying the governing equation between points 1 and 2 

P\= P2 + Plg(h, + n2) 

Hence we obtain 

pt - p2 = Ap = p/gih, + h2) (1) 

To eliminate h\, we recognize that the volume of manometer liquid remains constant; the volume displaced 
from the reservoir must equal the volume that rises in the tube, so 

TTD' •nd1 

4 1 4 
L or h\ 

In addition, from the geometry of the manometer, ^ = L sin 6. Substituting into Eq. 1 gives 

, (d'S2' 
Pi8 Lsin 0 + L\ — 1 = P/gL sin ( (2) 

Manometers are simple and inexpensive devices used frequently for pressure 
measurements. Because the liquid level change is small at low pressure differential, a 
U-tube manometer may be difficult to read accurately. The manometer sensitivity is 
defined as the ratio of observed manometer liquid deflection to the equivalent water 
level differential in a U-tube manometer for a given applied pressure difference. 
Sensitivity can be increased by changing the manometer design or by using two im­
miscible liquids of slightly different density. Analysis of an inclined manometer is 
illustrated in Example Problem 3.2. 
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Thus 

L = 

Pig 

Ap 

-1 — 

To obtain an expression for sensitivity, express Ap in terms of an equivalent water column height, ht. 

Ap = Pn2ogK (3) 

Combining Eqs. 2 and 3, noting that p ( = SG/p^n, gives 

PH2oghe = sg*PH-,O£L -1 

or 

s = 

SG, - I 

This expression defines the sensitivity of an inclined-tube manometer. It shows that to increase sensitivity, 
SG(, sin 9, and d/D each should be made as small as possible. Thus the designer must choose a gage liquid 
and two geometric parameters to complete a design, as discussed below. 

Gage Liquid 

The gage liquid should have the smallest possible specific gravity to increase sensitivity. In addition, the 
gage liquid must be safe (without toxic fumes or flammability), be immiscible with the fluid being gaged, 
suffer minimal loss from evaporation, and develop a satisfactory meniscus. Thus the gage liquid should 
have relatively low surface tension and should accept dye to improve its visibility. 

Tables A.l, A.2, and A.4 show that hydrocarbon liquids satisfy many of these criteria. The lowest spe­
cific gravity is about 0.8, which increases manometer sensitivity by 25 percent compared to water. 

Diameter Ratio 

The plot shows the effect of diameter ratio on sensitivity for a vertical reservoir manometer with gage liq­
uid of unity specific gravity. Note that d/D = 1 corresponds to an ordinary U-tube manometer; its sensitiv­
ity is 0.5 because half the height differential appears on either side of the manometer. Sensitivity doubles to 
1.0 as d/D approaches zero because most of the level change OCCUTS in the measuring tube. 

The minimum tube diameter d must be larger than about 6 mm to avoid excessive capillary effect. 
The maximum reservoir diameter D is limited by the size of the manometer. If D is set at 60 mm, so that 
d/D is 0.1, then (d/D)2 = 0.01, and the sensitivity increases to 0.99, very close to the maximum attainable 
value of 1.0. 



3-3 PRESSURE VARIATION IN A STATIC FLUID 61 

Inclination Angle 

The final plot shows the effect of inclination angle on sensitivity for d/D = 0. Sensitivity increases sharply 
as inclination angle is reduced below 30 degrees. A practical limit is reached at about 10 degrees: The 
meniscus becomes indistinct and the level hard to read for smaller angles. 

Summary 

Combining the best values (SG = 0.8, d/D = 0.1, and 6 = 10 degrees) gives a manometer sensitivity of 
6.81. Physically this is the ratio of observed gage liquid deflection to equivalent water column height. Thus 
the deflection in the inclined tube is amplified 6.81 times compared to a vertical water column. With im­
proved sensitivity, a small pressure difference can be read more accurately than with a water manometer, or 
a smaller pressure difference can be read with the same accuracy. 

^fcj The graphs were generated from the Excel workbook for 
this Example Problem. This workbook has more detailed 
graphs, showing sensitivity curves for a range of values 
of d/D and 6. 

Students sometimes have trouble analyzing multiple-liquid manometer situa­
tions. The following rules of thumb are useful: 

1. Any two points at the same elevation in a continuous volume of the same liquid are at the 
same pressure. 

2. Pressure increases as one goes down a liquid column (remember the pressure change on 
diving into a swimming pool). 

To find the pressure difference Ap between two points separated by a series of 
fluids, we can use the following modification of Eq. 3.7: 

(3.8) 

where p, and ht represent the densities and depths of the various fluids, respectively. 
Use care in applying signs to the depths h,; they will be positive downwards, and 
negative upwards. Example Problem 3.3 illustrates the use of a multiple-liquid 
manometer for measuring a pressure difference. 

EXAMPLE 3.3 Multiple-Liquid Manometer 

Water flows through pipes A and 
B. Lubricating oil is in the upper 
portion of the inverted U. Mer­
cury is in the bottom of the 
manometer bends. Determine 
the pressure difference, pA - pB, 
in units of lbf/in. 2 

B I B L I O T E C * 

U . E . B 
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EXAMPLE PROBLEM 3.3 

GIVEN: Multiple-liquid manometer as shown. 

FIND: Pressure difference, pA — pB, in lbf/in.2 

SOLUTION: 

z = h = 0 / O i l 

2° ~~ n — H 2 

- © 
d2 = 3" - r 

d3 = 4" 
u 

T 
d= = 8" 

- H g -

Governing equations: Ap = g £ p,7i,- SG = —-— 
' PH2O 

Assumptions: ( 1 ) Static fluid. 
( 2 ) Incompressible fluid. 

Applying the governing equation, working from point B to A 

pA - pB = Ap = g(PH2od5 + - poilrf3 + oh/II ~ PH2Ô I) 

This equation can also be derived by repeatedly using Eq. 3 .7 in the following form: 

Pi ~ Pi = Pg(h2 ~ hd 

Beginning at points and applying the equation between successive points along the manometer gives 

Pc ~ Pa = +PH2O£̂ I 

P d ~ Pc = -PUiSd? 

Pe~ Pd = +Poi\8d3 

Pf~ PE = ~PHg8d4 

Pb~ PF = ~PH208d5 

Multiplying each equation by minus one and adding, we obtain Eq. (1) 

PA~ PB = (PA ~ Pc) + (Pc ~ PD) + (PD ~ PE) + (PE ~ Pf) + (PF ~ PB) 

= -PH2OM + PHt8d

2 ~ p0\\gd<} + PHllgd4 + pH2ogd5 

Substituting p = S G p ^ o with S G H g = 1 3 . 6 and SG o H = 0 . 8 8 (Table A .2), yields 

Pa~ Pb = 8(-Pn2od\ + 13-6PH2O^2 - ° - 8 8 p H 2 o ^ + ^^Pu2od4 + PH2O<S) 

Pa~Pb= SPH 2O(-10 + 4 0 . 8 - 3 . 5 2 + 6 8 + 8 ) in. 

( 1 ) 



3-3 PRESSURE VARIATION IN A STATIC FLUID 63 

P A ~ PB = SPn.o x 103.3 in. 
32.2 ft 1.94 slug 103.3 in ft ft' lbf • s z 

12 in. 144 in / slug • ft 

PA~ PB= 3 - 7 3 Ibf/in.V PA'PB 

This Example Problem shows use of both Eq. 3.7 and Eq. 3.8. 
Use of either equation is a matter of personal preference. 

Atmospheric pressure may be obtained from a barometer, in which the height of 
a mercury column is measured. The measured height may be converted to pressure 
using Eq. 3.7 and the data for specific gravity of mercury given in Appendix A, as 
discussed in the Notes of Example Problem 3.1. Although the vapor pressure of mer­
cury may be neglected, for precise work, temperature and altitude corrections must 
be applied to the measured level and the effects of surface tension must be consid­
ered. The capillary effect in a tube caused by surface tension was illustrated in Exam­
ple Problem 2.3. 

Gases 

In many practical engineering problems density will vary appreciably with altitude, and 
accurate results will require that this variation be accounted for. Pressure variation in a 
compressible fluid can be evaluated by integrating Eq. 3.6. Before this can be done, 
density must be expressed as a function of one of the other variables in the equation. 
Property information or an equation of state may be used to obtain the required relation 
for density Several types of property variation may be analyzed. (See Example 
Problem 3.4.) 

The density of gases generally depends on pressure and temperature. The ideal 
gas equation of state, 

p = pRT (1.1) 

where R is the gas constant (see Appendix A) and T the absolute temperature, accurately 
models the behavior of most gases under engineering conditions. However, the use of 
Eq. 1.1 introduces the gas temperature as an additional variable. Therefore, an additional 
assumption must be made about temperature variation before Eq. 3.6 can be integrated. 

In the U.S. Standard Atmosphere the temperature decreases linearly with alti­
tude up to an elevation of 11.0 km. For a linear temperature variation with altitude 
given by T = T0 - mz, we obtain, from Eq. 3.6, 

dp = -pgdz = - — dz = — dz 
RT R(T0 - mz) 

Separating variables and integrating from z = 0 where p = p0 to elevation z where 
the pressure is p gives 

\ p dp. - _ fz Sdz 
Ko P ~ Jo R(T0 - mz) 
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Then 

In-£- = - * - i n 
Po mR 

TQ - mz 

To J 
mR 

•In 
( \ j mz 

~^0J 

and the pressure variation, in a gas whose temperature varies linearly with elevation, 
is given by 

P = Po 1 - mz 
g/mR 

= Po 
KT0J 

(3.9) 

EXAMPLE 3.4 Pressure and Density Variation in the Atmosphere 

The maximum power output capability of an internal combustion engine decreases 
with altitude because the air density and hence the mass flow rate of air decrease. A 
truck leaves Denver (elevation 5280 ft) on a day when the local temperature and 
barometric pressure are 80°F and 24.8 in. of mercury, respectively. It travels through 
Vail Pass (elevation 10,600 ft), where the temperature is 62°F. Determine the local 
barometric pressure at Vail Pass and the percent change in density. 

EXAMPLE PROBLEM 3.4 

GIVEN: Truck travels from Denver to Vail Pass. 

Denver: z = 5280 ft Vail Pass: z = 10,600 ft 
p = 24.8 in. Hg T = 62°F 
T = 80°F 

FIND: Atmospheric pressure at Vail Pass. 
Percent change in air density between Denver and Vail. 

SOLUTION: 

Governing equations: — = -pg p = pRT 
dz 

Assumptions: (1) Static fluid. 

(2) Air behaves as an ideal gas. 

We shall consider four assumptions for property variations with altitude. 

(a) If we assume temperature varies linearly with altitude, Eq. 3.9 gives 
/ ^ \g/mR 

P_ 
Po 

T 

Evaluating the constant m gives 

and 

m = J o Z T = ( 8 0 - 62)°F = 3 3 8 x i n - 3 

z - Zq (10.6 - 5.28)103ft 

g 32.2 ft ft lbm • °R slug lbf s 2

 c „ ° = x x x x = 5 55 
mR s 2 3.38 x 10" 3 o F 53.3 ft • lbf 32.2 lbm slug • ft 
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Thus 

p__[T_\ _ f 4 6 0 + 62^ _ ( 0 % 7 ) 5 5 5 = o g 3 0 

U 6 0 + 80J 

and 

p = 0.830p 0 = (0.830)24.8 in. Hg = 20.6 in. Hg ^ 

Note that temperature must be expressed as an absolute temperature in the ideal gas equation of state. 
The percent change in density is given by 

P ~ P o 1 = J ^ ^ _ 1 = O830 _ 1 = _ a i 4 2 o r _ U 2 % 

Po Po 

(b I For p assumed constant (= po) 

P_Jq_ 

Po T 0.967 

, \ Poc?(z-Zo) P = Po - PoS(z - Zq) = po - ^^-^r^- = Po 
RTn 

g ( z - z p ) 
RT0 

Ap 
p = 20.2 in. Hg and — = 0 

Po <-

(c) If we assume the temperature is constant, then 

dp = -pgdz = --^8dz 

and 

r - = - r 
Jon n Jzr, HI 

JPO p Jzo RT 

P = Po e x P 

For T = constant = 7 0 , 

Ap 
p = 20.6 in. Hg and = -16.9% 

Po 

(d) For an adiabatic atmosphere p/p* = constant, 

P = Po 
f T \*/*-' Ap 

= 22.0 in. Hg and = - 8.2% 
Po <-

Ap 

Po 

Ap 

Po 

Ap 

Po 

Ap 

Po 

( We note that over the modest change in elevation the predicted pressure is not strongly dependent 
on the assumed property variation; values calculated under four different assumptions vary by a maxi­
mum of approximately 9 percent. There is considerably greater variation in the predicted percent 
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change in density. The assumption of a linear temperature variation with altitude is the most reasonable 
assumption. 

This Example Problem shows use of the ideal gas equation 
with the basic pressure-height relation to obtain the change 
in pressure with height in the atmosphere under various at­
mospheric assumptions. 

3-4 HYDRAULIC SYSTEMS 

Hydraulic systems are characterized by very high pressures. As a consequence of these 
high system pressures, hydrostatic pressure variations often may be neglected. Automo­
bile hydraulic brakes develop pressures up to 10 MPa (1500 psi); aircraft and machinery 
hydraulic actuation systems frequently are designed for pressures up to 40 MPa (6000 
psi), and jacks use pressures to 70 MPa (10,000 psi). Special-purpose laboratory test 
equipment is commercially available for use at pressures to 1000 MPa (150,000 psi)! 

Although liquids are generally considered incompressible at ordinary pressures, 
density changes may be appreciable at high pressures. Bulk moduli of hydraulic fluids 
also may vary sharply at high pressures. In problems involving unsteady flow, both com­
pressibility of the fluid and elasticity of the boundary structure must be considered. Analy­
sis of problems such as water hammer noise and vibration in hydraulic systems, actuators, 
and shock absorbers quickly becomes complex and is beyond the scope of this book. 

3-5 HYDROSTATIC FORCE ON SUBMERGED SURFACES 

Now that we have determined the manner in which the pressure varies in a static 
fluid, we can examine the force on a surface submerged in a liquid. 

In order to determine completely the resultant force acting on a submerged sur­
face, we must specify: 

1. The magnitude of the force. 
2. The direction of the force. 
3. The line of action of the force. 

We shall consider both plane and curved submerged surfaces. 

Hydrostatic Force on a Plane Submerged Surface 

A plane submerged surface, on whose upper face we wish to determine the result­
ant hydrostatic force, is shown in Fig. 3.5. The coordinates have been chosen so 
that the surface lies in the xy plane, and the origin O is located at the intersection of 
the plane surface (or its extension) and the free surface. As well as the magnitude 
of the force FR, we wish to locate the point (with coordinates x\ y') through which 
it acts on the surface. 
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Since there are no shear stresses in a static fluid, the hydrostatic force on any 
element of the surface acts normal to the surface. The pressure force acting on an ele­
ment dA = dxdy of the upper surface is given by 

dF = pdA 

The resultant force acting on the surface is found by summing the contributions of 
the infinitesimal forces over the entire area. 

Usually when we sum forces we must do so in a vectorial sense. However, in 
this case all of the infinitesimal forces are perpendicular to the plane, and hence so is 
the resultant force. Its magnitude is given by 

FR = [ pdA (3.10a) 

In order to evaluate the integral in Eq. 3.10a, both the pressure, p, and the element of 
area, dA, must be expressed in terms of the same variables. 

We can use Eq. 3.7 to express the pressure p at depth h in the liquid as 

P = Po + Pgh (3-7) 

In this expression p0 is the pressure at the free surface (h = 0). 
In addition, we have, from the system geometry, h = y sin 9. Using this expres­

sion and Eq. 3.7 in Eq. 3.10a, 

FR = [ pdA = I (pQ + pgh)dA = [ (PQ + pgys\n9)dA 
JA JA JA 

FR = p0\ dA + pg sin 0 ydA = p0A + pg sin 0 y dA 

JA JA JA 

The integral is the first moment of the surface area about the x axis, which may be 
written 

\ydA = yL.A 
JA 
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where yc is the y coordinate of the centroid of the area, A. Thus, 

FR = pQA + pg sin 9 ycA = (p0 + pghc)A 

or 

FR = PcA (3.10b) 

where pc is the absolute pressure in the liquid at the location of the centroid of area A. 
Eq. 3.10b computes the resultant force due to the liquid—including the effect of the 
ambient pressure p0—on one side of a submerged plane surface. It does not take into 
account whatever pressure or force distribution may be on the other side of the 
surface. However, if we have the same pressure, p0, on this side as we do at the free 
surface of the liquid, as shown in Fig. 3.6, its effect on FR cancels out, and if we wish 
to obtain the net force on the surface we can use Eq. 3.10b with pc expressed as a 
gage rather than absolute pressure. 

In computing FR we can use either the integral of Eq. 3.10a or the resulting Eq. 
3.10b. It is important to note that even though the force can be computed from the 
pressure at the center of the plate, this is not the point through which the force acts! 

Our next task is to determine (JC', y'), the location of the resultant force. Let's first 
obtain y' by recognizing that the moment of the resultant force about the x axis must 
be equal to the moment due to the distributed pressure force. Taking the sum (i.e., in­
tegral) of the moments of the infinitesimal forces dF about the x axis we obtain 

y'pR =\ ypdA (3.11a) 

We can integrate by expressing p as a function of y as before: 

y'FR =\ ypdA=\ y(Po + Pgh)dA = \ (pQy + pgy2 sin 9) dA 
JA JA JA 

= P Q \ y dA + pg sin 9\ y2dA 
JA JA 

The first integral is our familiar ycA. The second integral, y2 dA, is the second 
JA 

moment of area about the x axis, / „ . We can use the parallel axis theorem, 
Ija =/JJJ + Ay2, to replace / „ with the standard second moment of area, about the 
centroidal x axis. Using all of these, we find 

Liquid, 
density 

Fig. 3.6 Pressu re d ist r ibut ion on p lane s u b m e r g e d 
sur face. 
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y'FR = Poyc

A + PS s i n QVa +
 Ayl) = ydPo + psyc

 s i n E ) A + PS s i r > o 1% 

= yc(Po + pghc)A + pg sin 91^ = ycFR + p g s i n 0 / ~ 

Finally, we obtain f o r / : 

/ = y ( + « E ^ L (3.11b) 

Equation 3.11b is convenient for computing the location y' of the force on the sub­
merged side of the surface when we include the ambient pressure p0. If we have the 
same ambient pressure acting on the other side of the surface we can use Eq. 3.10b 
with po neglected to compute the net force, 

and Eq. 3.11b becomes for this case 

y' = yc+l*L (3.11c) 
Ayc 

Equation 3.1 la is the integral equation for computing the location y' of the resultant 
force; Eq. 3.11b is a useful algebraic form for computing y' when we are interested in 
the resultant force on the submerged side of the surface; Eq. 3.11c is for computing y' 
when we are interested in the net force for the case when the same p 0 acts at the free 
surface and on the other side of the submerged surface. For problems that have a pres­
sure on the other side that is not p 0 , we can either analyze each side of the surface sepa­
rately or reduce the two pressure distributions to one net pressure distribution, in effect 
creating a system to be solved using Eq. 3.10b with pc expressed as a gage pressure. 

Note that in any event, y' > yc—the location of the force is always below the 
level of the plate centroid. This makes sense—as Fig. 3.6 shows, the pressures will 
always be larger on the lower regions, moving the resultant force down the plate. 

A similar analysis can be done to compute x', the x location of the force on the plate. 
Taking the sum of the moments of the infinitesimal forces dF about the y axis we obtain 

x'FR = f xpdA (3.12a) 
JA 

We can express p as a function of y as before: 

x'FR = xpdA - \ x(pQ +pgh)dA = (p0x + pgxy sin 9) dA 
JA JA JA 

- Po x dA + pg sin 9\ xy dA 
JA J A 

The first integral is xcA (where xc is the distance of the centroid from y axis). The second 

integral is xy dA = Ixy. Using the parallel axis theorem, 1^ = I~ + Axcyc, we find 

X'FR = PaxcA + PS sin 9(FXY + Axcyc) = xc(p0 + pgyc sin B)A + pg sin 6 

= xc(Po + P§hc)A + P8Sin 9 !% = XCFR + P£ s i n 0 h} 
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Finally, we obtain for.r': 

pe s in 6 l•• 
x' = x + — — - — — (3.12b) 

FR 

Equation 3.12b is convenient for computing x' when we include the ambient pressure p 0 . 
If we have ambient pressure also acting on the other side of the surface we can again use 
Eq. 3.10b with p 0 neglected to compute the net force and Eq. 3.12b becomes for this case 

xc + 
Ayc 

(3.12c) 

Equation 3.12a is the integral equation for computing the location x' of the resultant 
force; Eq. 3.12b can be used for computations when we are interested in the force on 
the submerged side only; Eq. 3.12c is useful when we have p 0 on the other side of the 
surface and we are interested in the net force. 

In summary, Eqs. 3.10 through 3.12 constitute a complete set of equations for 
computing the magnitude and location of the force due to hydrostatic pressure on any 
submerged plane surface. The direction of the force will always be perpendicular to 
the plane. 

We can now consider several examples using these equations. In Example 3.5 
we use both the integral and algebraic sets of equations. 

EXAMPLE 3.5 Resultant Force on Inclined Plane 
Submerged Surface 

The inclined surface shown, hinged along edge A, is 
5 m wide. Determine the resultant force, FR, of the 
water and the air on the inclined surface. 

EXAMPLE PROBLEM 3.5 

GIVEN: Rectangular gate, hinged along A,w = 5 m. 
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FIND: Resultant force, F R , of the water and the air on the gate. 

SOLUTION: 
In order to completely determine F R , we need to find (a) the magnitude and (b) the line of action of the 
force (the direction of the force is perpendicular to the surface). We will solve this problem by using (i) di­
rect integration and (ii) the algebraic equations. 

Direct Integration 

Governing equations: p = Po + pgh FR = \ pdA t}'Fr = -qpdA xTR = \ xp 
JA JA JA 

dA 

Because atmospheric pressure pQ acts on both sides of the plate its effect cancels, and we can work in gage 
pressures (p = pgh). In addition, while we could integrate using the y variable, it will be more convenient 
here to define a variable 77, as shown in the figure. 

Using T J to obtain expressions for h and dA, then 

h = D + 7] sin 30° and dA = wdr) 

Applying these to the governing equation for the resultant force, 

FR = pdA = pg(D + 17 sin 30° )wdrj 
JA J O 

= Pgw Dii-r-?- sin30 
2 pgw 

0 

DL + — sin 30 
2 

999 kg 9.81 m 5 m 

m 

2 m 4 m 16 m 2 1 
x + x — 

2 2 

N • s 
kg • m 

FR = 588 kN ^ 

For the location of the force we compute -n' (the distance from the top edge of the plate), 

V'FR = \ VPdA 
JA 

Then 
— \y)pdA = — \ 7)PWDT]=P^\ T J ( D + Tjsin30°)rfr7 
FR J A FRJO FR J O 

^ + ^ s i n 3 0 ° pgw 

FR 

999 ^ g _ 9.81 m 
m 

Jo 

5 m 

pgw 

FR 

s 2 X 5.88 x 105 N 

DI2 I3 

— + — sin 30° 
2 3 

2 m x l 6 m 2 64 m 3 1 N - s ' 

rj' = 2.22 m and y' D 
sin 30' 

2 3 X 2 j k g - m 

2 m „ „„ ^ „„ 
+ 2.22 m = 6.22 m 

sin 30° <-

Also, from consideration of moments about the y axis through edge A, 

x' = -jr\ xpdA 
FR JA 
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In calculating the moment of the distributed force (right side), recall, from your earlier courses in statics, that the 
centroid of the area element must be used forx Since the area element is of constant width, then x = w/2, and 

1 —pdA = pdA = — = 2.5m 

JA 2 2FB JA 2 «-
Algebraic Equations 

In using the algebraic equations we need to take care in selecting the appropriate set. In this problem we 
have p0 = p a l m on both sides of the plate, so Eq. 3.10b with pc as a gage pressure is used for the net force: 

FR = PcA = pghcA = pg\ D + - sin 30° \Lw 

FR = pgw DL + — sin 30° 
2 

This is the same expression as was obtained by direct integration. 
The y coordinate of the center of pressure is given by Eq. 3.1 lc: 

y =yc + h^ 
Ayc 

For the inclined rectangular gate 

D L _ 
sin 30° + 2 ~ sin 30° 

2m 4m 
+ = 6m 

2 
A = Lw = 4 m x 5 m = 20m 

/ „ = i vyj} = _L x 5 m x (4 m) 3 = 26.7 m 2 

I- , 26.1m* 1 
y = yr + = 6 m + x T 

c Ayc 20 m 2 

The x coordinate of the center of pressure is given by Eq. 3.12c: 

hi 
X = xc + 

Ayc 

For the rectangular gate hy = 0 and x' = xc = 2.5 m. 

6 m ' 
6.22 m 

(3.11c) 

(3.12c) 

This Example Problem shows 
/ Use of integral and algebraic equations. 
/ Use of the algebraic equations for computing the net force. 

EXAMPLE 3.6 Force on Vertical Plane Submerged Surface with Nonzero Gage 
Pressure at Free Surface 

The door shown in the side of the tank is hinged 
along its bottom edge. A pressure of 100 psfg is 
applied to the liquid free surface. Find the force, 
F„ required to keep the door closed. 

p ^ 1 0 0 lbf/ft 2 (gage) 

Liquid, r = 100 lbf/ f t 3 

H i n g e ' 



3-5 HYDROSTATIC FORCE ON SUBMERGED SURFACES 73 

EXAMPLE PROBLEM 3.6 

GIVEN: Door as shown in the figure. 

p 0 = 100 lb/ft 2 (gage) 

Z . = 3' 

PO + Palm Palm 

51 
PO + Palm + P8L 

Po (gage) 

A AZ p 0 ( g a g e ) + p « L 

Free-body diagrams of door 

A A, 

A . 

FIND: Force required to keep door shuL 

SOLUTION: 
This problem requires a free-body diagram (FBD) of the door. The pressure 
distributions on the inside and outside of the door will lead to a net force (and 
its location) that will be included in the FBD. We need to be careful in choos­
ing the equations for computing the resultant force and its location. We can ei­
ther use absolute pressures (as on the left FBD) and compute two forces (one 
on each side) or gage pressures and compute one force (as on the right FBD). 
For simplicity we will use gage pressures. The right-hand FBD makes clear 
we should use Eqs. 3.10b and 3.11b, which were derived for problems in 
which we wish to include the effects of an ambient pressure (p0), or in other 
words, for problems when we have a nonzero gage pressure at the free sur­
face. The components of force due to the hinge are Ay and Av The force F, can 
be found by taking moments about A (the hinge). 

Governing equations: 

i pg sin 0/--
FR = PcA y'= yc + — r X M „ = o 

The resultant force and its location are 

FR = (Po + Pghc)A = ^p0 + y ~\bL 

and 

f 
F, 

y 
L 

A 

• A > 

Force free-body diagram 

pg sin 9 0 ° / H i -yM?/12 L yL2fl2 
y =yc + 7. = - + — - — ; — = - + • 2 (Po+y±)bL 2 (pv+yfy 

Taking moments about point A 

1MA=F,L-FR(L-)/) = () or F, = FR\ 1 

Using Eqs. 1 and 2 in this equation we find 

F,=\Po+y^\bL l 1 y if fl2 
2 (Po + y^) 

(i) 

(2) 
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^ ( L\bL bL2 

p0bL | ybL 
2 6 

100 lbf 2ft 3ft 1 
X X X — + 

100 lbf 2ft 9 ft' 
—=- X X 

1 
X -

6 
F. = 600 lbf 

(3) 

F, 

We could have solved this problem by considering the two separate pressure distributions on each 
side of the door, leading to two resultant forces and their locations. Summing moments about point A with 
these forces would also have yielded the same value for F,. (See Problem 3.53.) Note also that Eq. 3 could 
have been obtained directly (without separately finding FR and y') by using a direct integration approach: 

1MA = FtL - \ ypdA = 0 

This Example Problem shows: 
/ Use of algebraic equations for nonzero gage pressure at 

the Liquid free surface, 
/ Use of the moment equation from statics for computing 

the required applied force. 

Hydrostatic Force on a Curved Submerged Surface 

For curved surfaces, we will once again derive expressions for the resultant force by in­
tegrating the pressure distribution over the surface. However, unlike for the plane 
surface, we have a more complicated problem—the pressure force is normal to the sur­
face at each point, but now the infinitesimal area elements point in varying directions 
because of the surface curvature. This means that instead of integrating over an element 
dA we need to integrate over vector element dA. This will initially lead to a more com­
plicated analysis, but we will see that a simple solution technique will be developed. 

Consider the curved surface shown in Fig. 3.7. The pressure force acting on the 
element of area, dA, is given by 

dF =-pdA 
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where the minus sign indicates that the force acts on the area, in the direction oppo­
site to the area normal. The resultant force is given by 

FR=-\ PdA (3.13) 
JA 

We can write 

FR = I F R X +JFRY +kFRt 

where FR , FR , and FR are the components of FR in the positive x, y, and z directions, 
respectively. 

To evaluate the component of the force in a given direction, we take the dot 
product of the force with the unit vector in the given direction. For example, taking 
the dot product of each side of Eq. 3.13 with unit vector / gives 

F R x = FRi = jdFi = -j^ pdA • i = -j^ pdAx 

where dAx is the projection of d A on a plane perpendicular to the x axis (see Fig. 
3.7), and the minus sign indicates that the x component of the resultant force is in the 
negative x direction. 

Since, in any problem, the direction of the force component can be determined 
by inspection, the use of vectors is not necessary. In general, the magnitude of the 
component of the resultant force in the / direction is given by 

FR = \ pdA, (3.14) 
JA, 

where dAt is the projection of the area element on a plane perpendicular to the / direc­
tion. The line of action of each component of the resultant force is found by recognizing 
that the moment of the resultant force component about a given axis must be equal to the 
moment of the corresponding distributed force component about the same axis. 

Equation 3.14 can be used for the horizontal forces FRx and FRf. We have the 
interesting result that the horizontal force and its location are the same as for an 
imaginary vertical plane surface of the same projected area. This is illustrated in Fig. 
3.8, where we have called the horizontal force FH. 

Figure 3.8 also illustrates how we can compute the vertical component of force: 
With atmospheric pressure at the free surface and on the other side of the curved sur­
face the net vertical force will be equal to the weight of fluid directly above the 
surface. This can be seen by applying Eq. 3.14 to determine the magnitude of the 
vertical component of the resultant force, obtaining 

FR, = Fv = J P d \ 

Fig. 3.8 Forces on cu rved s u b m e r g e d sur face. 
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Since p = pgh, 

\pghdAz=\ pgdY 

where pgh dAz = pg dY is the weight of a differential cylinder of liquid above the el­
ement of surface area, dAz, extending a distance h from the curved surface to the free 
surface. The vertical component of the resultant force is obtained by integrating over 
the entire submerged surface. Thus 

It can be shown that the line of action of the vertical force component passes through 
the center of gravity of the volume of liquid directly above the curved surface (see 
Example Problem 3 .7). 

We have shown that the resultant hydrostatic force on a curved submerged 
surface is specified in terms of its components. We recall from our study of statics 
that the resultant of any force system can be represented by a force-couple system, 
i.e., the resultant force applied at a point and a couple about that point. If the force 
and the couple vectors are orthogonal (as is the case for a two-dimensional curved 
surface), the resultant can be represented as a pure force with a unique line of action. 
Otherwise the resultant may be represented as a "wrench," also having a unique line 
of action. 

EXAMPLE 3.7 Force Components on a Curved Submerged Surface 

The gate shown is hinged at O and has constant width, 
w = 5 m. The equation of the surface is x = y^/a, 
where a = 4 m. The depth of water to the right of the 
gate is D = 4 m. Find the magnitude of the force, Fa, 
applied as shown, required to maintain the gate in 
equilibrium if the weight of the gate is neglected. 

y 

o x 

EXAMPLE PROBLEM 3.7 

GIVEN: Gate of constant width, w = 5 m. 
Fiquation of surface in xy plane is x = ^/a, where a = 4 m. 
Water stands at depth D = 4 m to the right of the gate. 
Force Fa is applied as shown, and weight of gate is to be neglected. 

(a) Sys tem F B D (6) Null fluid forces (c) Fluid forces 
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FIND: Force Fa required to maintain the gate in equilibrium. 

SOLUTION: 
We will take moments about point O after finding the magnitudes and directions of the horizontal and ver­
tical forces due to the water. The free body diagram (FBD) of the system is shown above in part (a). Before 
pioceeding we need to think about how we compute Fv, the vertical component of the fluid force—we 
have stated that it is equal (in magnitude and location) to the weight of fluid directly above. However, we 
have no fluid directly above, even though it is clear that the fluid does exert a vertical force! We need to do 
a "thought experiment" in which we imagine having a system with water on both sides of the gate (with 
null effect), minus a system with water directly above the gate (which generates fluid forces). This logic is 
demonstrated above: the system FBD(a) = the null FBD(b) - the fluid forces FBD(c). Thus the vertical 
and horizontal fluid forces on the system, FBD(a), are equal and opposite to those on FBD(c). In summary, 
the magnitude and location of the vertical fluid force Fv are given by the weight and location of the cen­
troid of the fluid "above" the gate; the magnitude and location of the horizontal fluid force FH are given by 
the magnitude and location of the force on an equivalent vertical flat plate. 

hi 
Governing equations: FH = pcA y' = yc H Fv = pg¥ x' = water center of gravity 

Ayc 

For FH, the centroid, area, and second moment of the equivalent vertical flat plate are, respectively, yc 

= hc = DI2,A = Dw and Ii% = w&l\2. 

FH = PcA = PShcA 

D D 
pg — Dw = pg — w = 

999 kg 9.81 m (4m 2 ) 5m N • s 2 

FH = 392 kN 

s 2 2 kg • m 

(1) 

, XX 
y = yc+— 

D 

Ayc 

wD3/12 
wDD/2 

D D 
2 + 6 

y' = - D = - x 4 m = 2.67m 
3 3 (2) 

For Fv, we need to compute the weight of water "above" the gate. To do this we define a differential 
column of volume (D — y) w dx and integrate 

rD2/a fD2/a ( , \ 
Fv=Pg¥ = P8]Q (D-y)wdx = pgwj^ \D-<Jax2\dx 

pgw^Dx - ^4ax^ 
rP-/a 

pgw 
D 
a 3 a i 

DJ 

„ 999 kg 9.81m 5m ( 4 ) J m j 1 N • s , „ 
Fv = — - y x x x = 261kN 

m s 3 4 m kg • m 

PgwD 
3a 

(3) 

i The location x' of this force is given by the location of the center of gravity of the water "above" the 
gate. We recall from statics that this can be obtained by using the notion that the moment of Fv, and the 
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moment of the sum of the differential weights about the y axis must be equal, so 

x' Fv = pgj x(D - y)w dx = pgwj \Dx - -Jax1 J dx 

x'Fv = P8W\ — x ^ax 
12 5 

D 

2a' 5 ' J 
•4a —r 

pgw D5 

10a' 

, pgwD5 3D2 3 „ (4) 2 m 2 

x = L-s—!j— = — x = 1.2 m 
1 0 a 2 F v 10a 10 4 m 

(4) 

Now we have determined the fluid forces, we can finally take moments about O (taking care to use the ap­
propriate signs), using the results of Eqs. 1 through 4 

Z M 0 = -IF„ + x'Fv + (D-?)FH = 0 

Fa = I[x'Fv + (D - y)FH] = y5_[l.2 m x 261 kN + (4 - 2.67) m x 392 kN] 

F„=167kN F„ 

This Example Problem shows: 
/ Use of vertical flat plate equations for the horizontal force, 

and fluid weight equations for the vertical force, on a 
curved surface. 

/ The use of "thought experiments" to convert a problem 
with fluid below a curved surface into an equivalent prob­
lem with fluid above. 

*3-6 BUOYANCY AND STABILITY 

If an object is immersed in a liquid, or floating on its surface, the net vertical force 
acting on it due to liquid pressure is termed buoyancy. Consider an object totally im­
mersed in static liquid, as shown in Fig. 3.9. 

The vertical force on the body due to hydrostatic pressure may be found most 
easily by considering cylindrical volume elements similar to the one shown in 
Fig. 3.9. 

We recall Eq. 3.7 for computing the pressure p at depth h in a liquid, 

P = Po + Pgh (3.7) 

The net vertical pressure force on the element is then 

dF. = (p0 + pghz) dA - ( p 0 + pght) dA = pg(h2 - ht) dA 

* This section may be omitted without loss of continuity in the text material. 



3-6 BUOYANCY AND STABILITY 79 

Po 

/ | 
1 

Liquid, 
density = p 

Fig. 3.9 I m m e r s e d body in stat ic l iquid. 

But (h2 - h\)dA = dY, the volume of the element. Thus 

Fz=\dFz=\vp8dY = pgY 

where Y is the volume of the object. Hence we conclude that for a submerged body 
the buoyancy force of the fluid is equal to the weight of displaced fluid, 

j o y a n c j 
= pgY (3.15) 

This relation reportedly was used by Archimedes in 220 B . C . to determine the gold 
content in the crown of King Hiero II. Consequently, it is often called "Archimedes' 
Principle." In more current technical applications, Eq. 3.15 is used to design displace­
ment vessels, flotation gear, and submersibles [1]. 

The submerged object need not be solid. Hydrogen bubbles, used to visualize 
streaklines and timelines in water (see Section 2-2), are positively buoyant; they rise 
slowly as they are swept along by the flow. Conversely, water droplets in oil are nega­
tively bouyant and tend to sink. 

Airships and balloons are termed "lighter-than-air" craft. The density of an ideal 
gas is proportional to molecular weight, so hydrogen and helium are less dense than 
air at the same temperature and pressure. Hydrogen (Mm = 2) is less dense than he­
lium (Mm = 4), but extremely flammable, whereas helium is inert. Hydrogen has not 
been used commercially since the disastrous explosion of the German passenger air­
ship Hindenburg in 1937. The use of buoyancy force to generate lift is illustrated in 
Example Problem 3.8. 

EXAMPLE 3.8 Buoyancy Force in a Hot Air Balloon 

A hot air balloon (approximated as a sphere of 
diameter 50 ft) is to lift a basket load of 600 lbf. 
To what temperature must the air be heated in 
order to achieve liftoff? 

ir at STP 

Basket 
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EXAMPLE PROBLEM 3.8 

GIVEN: Atmosphere at STP, diameter of balloon d = 50 ft, 
and load W l 0 1 l d = 600 lbf. 

FIND: The hot air temperature to attain liftoff. 

SOLUTION: 
Apply the buoyancy equation to determine the lift generated by 
atmosphere, and apply the vertical force equilibrium equation 
to obtain the hot air density. Then use the ideal gas equation to 
obtain the hot air temperature. 

Governing equations: 

buoyancy = P8V X ft = 0 p = pRT 

Assumptions: (1) Ideal gas. 
(2) Atmospheric pressure throughout. 

Summing vertical forces 

I F . , - ^ moyancy - ^hotair ~ Wjoad = patmgY - p^^r g¥ - Wload = 0 

Rearranging and solving for p^, ̂  (using data from Appendix A), 

pad _ 6W, load 
Phot air Patm , , Patm ,3 gV TTd g 

_ 0.00238 slug 6 600 lbf 
ftJ - x 

s slug • ft 
Tr^oTn3" " 32.2 ft X s 2 • lbf 

Pto ,^ = (0.00238 - 0 . 0 0 0 2 8 5 ) ^ - = 0 . 0 0 2 0 9 ^ 

Finally, to obtain the temperature of this hot air, we can use the ideal gas equation in the following form 

Phot air Patm 

Phot air^^hot f P a t e l l a e 

and with p h o l ^ = p a l 

W = Titta - ^ s b _ = (460 + 59)° R x 
Phot aii 

^hotaii = 131° F 

0.00238 
0.00209 

= 591 R 

'hot air 

Notes: 
/ Absolute pressures and temperatures are always used in 

the ideal gas equation. 
/ This problem demonstrates that for lighter-than-air vehi­

cles the buoyancy force exceeds the vehicle weight—that 
is, the weight of fluid (air) displaced exceeds the vehicle 
weight. 
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Equation 3.15 predicts the net vertical pressure force on a body that is totally 
submerged in a single liquid. In cases of partial immersion, a floating body displaces 
its own weight of the liquid in which it floats. 

The line of action of the buoyancy force, which may be found using the methods 
of Section 3-5, acts through the centroid of the displaced volume. Since floating bod­
ies are in equilibrium under body and buoyancy forces, the location of the line of ac­
tion of the buoyancy force determines stability, as shown in Fig. 3.10. 

The body force due to gravity on an object acts through its center of gravity, 
CG. In Fig. 3.10a, the lines of action of the buoyancy and the body forces are offset 
in such a way as to produce a couple that tends to right the craft. In Fig. 3.10b, the 
couple tends to capsize the craft. 

Ballast may be needed to achieve roll stability. Wooden warships carried stone 
ballast low in the hull to offset the weight of the heavy cannon on upper gun decks. 
Modern ships can have stability problems as well: overloaded ferry boats have 
capsized when passengers all gathered on one side of the upper deck, shifting the CG 
laterally. In stacking containers high on the deck of a container ship, care is needed to 
avoid raising the center of gravity to a level that may result in the unstable condition 
depicted in Fig. 3.106. 

For a vessel with a relatively flat bottom, as shown in Fig. 3.10a, the restoring 
moment increases as roll angle becomes larger. At some angle, typically that at which 
the edge of the deck goes below water level, the restoring moment peaks and starts to 
decrease. The moment may become zero at some large roll angle, known as the angle 
of vanishing stability. The vessel may capsize if the roll exceeds this angle; then, if 
still intact, the vessel may find a new equilibrium state upside down. 

The actual shape of the restoring moment curve depends on hull shape. A 
broad beam gives a large lateral shift in the line of action of the buoyancy force and 
thus a high restoring moment. High freeboard above the water line increases the 
angle at which the moment curve peaks, but may make the moment drop rapidly 
above this angle. 

Sailing vessels are subjected to large lateral forces as wind engages the sails (a 
boat under sail in a brisk wind typically operates at a considerable roll angle). The 
lateral wind force must be counteracted by a heavily weighted keel extended below 
the hull bottom. In small sailboats, crew members may lean far over the side to add 
additional restoring moment to prevent capsizing [2]. 

Within broad limits, the buoyancy of a surface vessel is adjusted automatically 
as the vessel rides higher or lower in the water. However, craft that operate fully 
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submerged must actively adjust buoyancy and gravity forces to remain neutrally 
buoyant. For submarines this is accomplished using tanks which are flooded to re­
duce excess buoyancy or blown out with compressed air to increase buoyancy [1]. 
Airships may vent gas to descend or drop ballast to rise. Buoyancy of a hot-air bal­
loon is controlled by varying the air temperature within the balloon envelope. 

For deep ocean dives use of compressed air becomes impractical because of the 
high pressures (the Pacific Ocean is over 10 km deep; seawater pressure at this depth is 
greater than 1000 atmospheres!). A liquid such as gasoline, which is buoyant in seawa­
ter, may be used to provide buoyancy. However, because gasoline is more compressible 
than water, its buoyancy decreases as the dive gets deeper. Therefore it is necessary to 
carry and drop ballast to achieve positive buoyancy for the return trip to the surface. 

The most structurally efficient hull shape for airships and submarines has a cir­
cular cross-section. The buoyancy force passes through the center of the circle. 
Therefore, for roll stability the CG must be located below the hull centerline. Thus 
the crew compartment of an airship is placed beneath the hull to lower the CG. 

3-7 FLUIDS IN RIGID-BODY MOTION (CD-ROM) 

3-8 SUMMARY 

In this chapter we have reviewed the basic concepts of fluid statics. This included: 

/ Deriving the basic equation of fluid statics in vector form. 
/ Applying this equation to compute the pressure variation in a static fluid: 

o Incompressible liquids: pressure increases uniformly with depth. 
o Gases: pressure decreases nonuniformly with elevation (dependent on other ther­

modynamic properties). 
/ Study of: 

Gage and absolute pressure. 
o Use of manometers and barometers. 

/ Analysis of the fluid force magnitude and location on submerged: 
o Plane surfaces. 
o Curved surfaces. 

/ *Derivation and use of Archimedes' Principle of Buoyancy. 
/ * Analysis of rigid-body fluid motion (on the CD). 

We have now concluded our introduction to the fundamental concepts of fluid me­
chanics, and the basic concepts of fluid statics. In the next chapter we will begin our 
study of fluids in motion. 
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* These topics apply to sections that may be omitted without loss of continuity in the text material. 
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PROBLEMS 

3.1 Compressed nitrogen is stored in a spherical tank of diameter D = 0.75 m. The gas 
is at an absolute pressure of 25 MPa and a temperature of 25°C. What is the mass in 
the tank? If the maximum allowable wall stress in the tank is 210 MPa, find the mini­
mum theoretical wall thickness of the tank. 

3.2 Ear "popping" is an unpleasant phenomenon sometimes experienced when a change 
in pressure occurs, for example in a fast-moving elevator or in an airplane. If you are 
in a two-seater airplane at 3000 m and a descent of 100 m causes your ears to "pop," 
what is the pressure change that your ears "pop" at, in millimeters of mercury? If the 
airplane now rises to 8000 m and again begins descending, how far will the airplane 
descend before your ears "pop" again? Assume a U.S. Standard Atmosphere. 

3.3 Because the pressure falls, water boils at a lower temperature with increasing 
altitude. Consequently, cake mixes and boiled eggs, among other foods, must be 
cooked different lengths of time. Determine the boiling temperature of water at 1000 
and 2000 m elevation on a standard day, and compare with the sea-level value. 

3.4 When you are on a mountain face and boil water, you notice that the water tempera­
ture is 90°C. What is your approximate altitude? The next day, you are at a location 
where it boils at 85°C. How high did you climb between the two days? Assume a 
U.S. Standard Atmosphere. 

3.5 The tube shown is filled with mercury at 20°C. Calculate the force applied to the 
piston. 

d = 0.375 in. 

Diameter, D - 2 in. 

\ 

A = 1 in. 

F 

1 1[_ 

~1 
H= 8 in. 

P 3 . 5 P 3 . 6 

3.6 A 1 ft cube of solid oak is held submerged by a tether as shown. Calculate the actual 
force of the water on the bottom surface of the cube and the tension in the tether. 

3.7 A cube with 6 in. sides is suspended in a fluid by a wire. The top of the cube is hori­
zontal and 8 in. below the free surface. If the cube has a mass of 2 slugs and the 
tension in the wire is T = 50.7 lbf, compute the fluid specific gravity, and from this 
determine the fluid. What are the gage pressures on the upper and lower surfaces? 

3.8 A hollow metal cube with sides 100 mm floats at the interface between a layer of wa­
ter and a layer of SAE 10W oil such that 10% of the cube is exposed to the oil. What 
is the pressure difference between the upper and lower horizontal surfaces? What is 
the average density of the cube? 

3.9 Your pressure gage indicates that the pressure in your cold tires is 0.25 MPa (gage) 
on a mountain at an elevation of 3500 m. What is the absolute pressure? After you 
drive down to sea level, your tires have warmed to 25°C. What pressure does your 
gage now indicate? Assume a U.S. Standard Atmosphere. 

3.10 An air bubble, 10 mm in diameter, is released from the regulator of a scuba diver 
swimming 30 m below the sea surface. (The water temperature is 30°C.) Estimate 
the diameter of the bubble just before it reaches the water surface. 
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3.11 

3.12 

3.13 

3.14 

3.15 

An inverted cylindrical container is lowered slowly beneath the surface of a pool of 
water. Air trapped in the container is compressed isothermally as the hydrostatic pres­
sure increases. Develop an expression for the water height, y, inside the container in 
terms of the container height, H, and depth of submersion, h. Plot y/H versus h/H. 
Oceanographic research vessels have descended to 10 km below sea level. At these 
extreme depths, the compressibility of seawater can be significant. One may model 
the behavior of seawater by assuming that its bulk modulus remains constant. Using 
this assumption, evaluate the deviations in density and pressure compared with val­
ues computed using the incompressible assumption at a depth, h, of 10 km in seawa­
ter. Express your answers in percent. Plot the results over the range 0 S h < 10 km. 

Assuming the bulk modulus is constant for seawater, derive an expression for the den­
sity variation with depth, h, below the surface. Show that the result may be written 

p « Po + bh 
where po is the density at the surface. Evaluate the constant b. Then using the ap­
proximation, obtain an equation for the variation of pressure with depth below the 
surface. Determine the percent error in pressure predicted by the approximate solu­
tion at a depth of 1000 m. 

A container with two circular vertical tubes of diameters dt = 39.5 mm and 
d2 = 12.7 mm is partially filled with mercury. The equilibrium level of the liquid is 
shown in the left diagram. A cylindrical object made from solid brass is placed in 
the larger tube so that it floats, as shown in the right diagram. The object is D = 37.5 
mm in diameter and H = 76.2 mm high. Calculate the pressure at the lower surface 
needed to float the object. Determine the new equilibrium level, /?, of the mercury 
with the brass cylinder in place. 

Brass 

- Mercury 

P 3 . 1 4 

A partitioned tank as shown contains water and mercury. What is the gage pressure 
in the air trapped in the left chamber? What pressure would the air on the left need to 
be pumped to in order to bring the water and mercury free surfaces level? 

0.75 m 

Wate r N 

1 m 

2.9 m 

< 3.75 m — > 

Mercury 

3 m 

3 m 

P 3 . 1 5 , 3.16 

Water-

P S . 17 

3.16 In the tank of Problem 3.15, if the opening to atmosphere on the right chamber is 
first sealed, what pressure would the air on the left now need to be pumped to in 
order to bring the water and mercury free surfaces level? (Assume the air trapped 
in the right chamber behaves isothermally.) 
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3.17 A manometer is formed from glass tubing with uniform inside diameter, D = 6.35 
mm, as shown. The U-tube is partially filled with water. Then ¥ = 3.25 cm 3 of 
Meriam red oil is added to the left side. Calculate the equilibrium height, H, when 
both legs of the U-tube are open to the atmosphere. 

3.18 Consider the two-fluid manometer shown. Calculate the applied pressure dif­
ference. 

Pi Pi P\ P2 

P 3 . 1 8 P 3 . 1 9 

3.19 The manometer shown contains two liquids. Liquid A has SG = 0.88 and liquid 
B has SG = 2.95. Calculate the deflection, h, when the applied pressure difference is 
P\~ Pi = 870 Pa. 

3.20 The manometer shown contains water and kerosene. With both tubes open to the at­
mosphere, the free-surface elevations differ by H0 = 20.0 mm. Determine the eleva­
tion difference when a pressure of 98.0 Pa (gage) is applied to the right tube, 

Kerosene 

P 3 . 2 0 P3.21 

3.21 Determine the gage pressure in psig at point a, if liquid A has SG = 0.75 and liquid 
B has SG = 1.20. The liquid surrounding point a is water and the tank on the left is 
open to the atmosphere. 

3.22 The NTH Corporation's engineering department is evaluating a sophisticated $80,000 
laser system to measure the difference in water level between two large water storage 
tanks. It is important that small differences be measured accurately. You suggest that 
the job can be done with a $200 manometer arrangement. An oil less dense than wa­
ter can be used to give a 10 : 1 amplification of meniscus movement; a small differ­
ence in level between the tanks will cause 10 times as much deflection in the oil lev­
els in the manometer. Determine the specific gravity of the oil required for 10 : 1 
amplification. (See P3.22 on next page.) 
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P 3 . 2 2 

3.23 Consider a lank containing mercury, water, benzene, and air as shown. Find the air 
pressure (gage). If an opening is made in the top of the tank, find the equilibrium 
level of the mercury in the manometer. 

0.1 m 

0.1 m 

0.1 m 

D = 0.25 m 
< >l 

Air i 
Benzene 

Water 

Mercury 

d = 0 .025 m 

0.3 m 

Water 

t , I, 

P 3 . 2 3 P 3 . 2 4 

3.24 Water flows downward along a pipe that is inclined at 30° below the horizontal, as 
shown. Pressure difference pA — pB is due partly to gravity and partly to friction. De­
rive an algebraic expression for the pressure difference. Evaluate the pressure differ­
ence if L = 5 ft and h = 6 in. 

3.25 A rectangular tank, open to the atmosphere, is filled with water to a depth of 2.5 m as 
shown. A U-tube manometer is connected to the tank at a location 0.7 m above the 
tank bottom. If the zero level of the Meriam blue manometer fluid is 0.2 m below the 
connection, determine the deflection / after the manometer is connected and all air 
has been removed from the connecting leg. 

—- — d = 6 mm 

P 3 . 2 5 , 3 .27 , 3 .33 

D = 18 m m — 

P 3 . 2 6 

• Equi l ibr ium level 

3.26 A reservoir manometer has vertical tubes of diameter D = 18 mm and d = 6 mm. 
The manometer liquid is Meriam red oil. Develop an algebraic expression for liquid 
deflection L in the small tube when gage pressure Ap is applied to the reservoir. 
Evaluate the liquid deflection when the applied pressure is equivalent to 25 mm of 
water (gage). 
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3.27 The manometer fluid of Problem 3.25 is replaced with mercury (same zero level). 
The tank is sealed and the air pressure is increased to a gage pressure of 0.5 atm. De­
termine the deflection I. 

3.28 A reservoir manometer is calibrated for use with a liquid of specific gravity 0.827. 
The reservoir diameter is -| in. and the (vertical) tube diameter is in. Calculate 
the required distance between marks on the vertical scale for 1 in. of water pressure 
difference. 

3.29 The inclined-tube manometer shown has D — 3 in. and d = 0.25 in., and is filled 
with Meriam red oil. Compute the angle, 6, that will give a 5 in. oil deflection along 
the inclined tube for an applied pressure of 1 in. of water (gage). Determine the sen­
sitivity of this manometer. 

Apt 

D -

P 3 . 2 9 , 3.30 

\ 

3.30 The inclined-tube manometer shown has D = 96 mm and d = 8 mm. Determine the 
angle, 0, required to provide a 5 : 1 increase in liquid deflection, L, compared with 
the total deflection in a regular U-tube manometer. Evaluate the sensitivity of this 
inclined-tube manometer. 

3.31 A student wishes to design a manometer with better sensitivity than a water-filled 
U-tube of constant diameter. The student's concept involves using tubes with differ­
ent diameters and two liquids, as shown. Evaluate the deflection h of this manometer, 
if the applied pressure difference is Ap = 250 N/m3. Determine the sensitivity of this 
manometer. Plot the manometer sensitivity as a function of the diameter ratio d2/d]. 

Patm Patm Patm + A P Patm 

P3.31 

3.32 A barometer accidentally contains 6.5 inches of water on top of the mercury column 
(so there is also water vapor instead of a vacuum at the top of the barometer). On a 
day when the temperature is 70°F, the mercury column height is 28.35 inches (cor­
rected for thermal expansion). Determine the barometric pressure in psia. If the am­
bient temperature increased to 85°F and the barometric pressure did not change, 
would the mercury column be longer, be shorter, or remain the same length? lustify 
your answer. 

3.33 If the tank of Problem 3.25 is sealed tightly and water drains slowly from the bottom 
of the tank, determine the deflection, /, after the system has attained equilibrium. 
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3.34 A water column stands 50 mm high in a 2.5 mm diameter glass tube. What would be 
the column height if the surface tension were zero? What would be the column 
height in a 1.0 mm diameter tube? 

3.35 Consider a small diameter open-ended tube inserted at the interface between two im­
miscible fluids of different densities. Derive an expression for the height difference 
Ah between the interface level inside and outside the tube in terms of tube diameter 
D, the two fluid densities, p, and p 2, and the surface tension a and angle 8 for the two 
fluids' interface. If the two fluids are water and mercury, find the tube diameter such 
that Ah < 10 mm. 

3.36 Compare the height due to capillary action of water exposed to air in a circular tube 
of diameter D = 0.5 mm, and between two infinite vertical parallel plates of gap 
a = 0.5 mm. 

3.37 Two vertical glass plates 300 mm X 300 mm are placed in an open tank containing 
water. At one end the gap between the plates is 0.1 mm, and at the other it is 2 mm. 
Plot the curve of water height between the plates from one end of the pair to the other. 

3.38 Based on the atmospheric temperature data of the U.S. Standard Atmosphere of Fig. 
3.3, compute and plot the pressure variation with altitude, and compare with the 
pressure data of Table A.3. 

3.39 On a certain calm day, a mild inversion causes the atmospheric temperature to re­
main constant at 30°C between sea level and 5 km altitude. Under these conditions, 
(a) calculate the elevation change for which a 1 percent reduction in air pressure oc­
curs, (b) determine the change of elevation necessary to effect a 15 percent reduction 
in density, and (c) plot p2/p\ and pnj P\ as a function of Az. 

3.40 The Martian atmosphere behaves as an ideal gas with mean molecular mass of 32.0 and 
constant temperature of 200 K. The atmospheric density at the planet surface is p = 
0.015 kg/m3 and Martian gravity is 3.92 m/s2. Calculate the density of the Martian at­
mosphere at height z = 20 km above the surface. Plot the ratio of density to surface den­
sity as a function of elevation. Compare with that for data on the earth's aunosphere. 

3.41 At ground level in Denver, Colorado, the atmospheric pressure and temperature are 83.2 
kPa and 25°C. Calculate the pressure on Pike's Peak at an elevation of 2690 m above the 
city assuming (a) an incompressible and (b) an adiabatic atmosphere. Plot the ratio of 
pressure to ground level pressure in Denver as a function of elevation for both cases. 

3.42 A hydropneumatic elevator consists of a piston-cylinder assembly to lift the elevator 
cab. Hydraulic oil, stored in an accumulator tank pressurized by air, is valved to the 
piston as needed to lift the elevator. When the elevator descends, oil is returned to the 
accumulator. Design the least expensive accumulator that can satisfy the system re­
quirements. Assume the lift is 3 floors, the maximum load is 10 passengers, and the 
maximum system pressure is 800 kPa (gage). For column bending strength, the pis­
ton diameter must be at least 150 mm. The elevator cab and piston have a combined 
mass of 3000 kg, and are to be purchased. Perform the analysis needed to define, as a 
function of system operating pressure, the piston diameter, the accumulator volume 
and diameter, and the wall thickness. Discuss safety features that your company 
should specify for the complete elevator system. Would it be preferable to use a com­
pletely pneumatic design or a completely hydraulic design? Why? 

3.43 A door 1 m wide and 1.5 m high is located in a plane vertical wall of a water tank. 
The door is hinged along its upper edge, which is 1 m below the water surface. At­
mospheric pressure acts on the outer surface of the door, (a) If the pressure at the wa­
ter surface is atmospheric, what force must be applied at the lower edge of the door 
in order to keep the door from opening? (b) If the water surface gage pressure is 
raised to 0.5 atm, what force must be applied at the lower edge of the door to keep 
the door from opening? (c) Find the ratio F/FQ as a function of the surface pressure 
ratio pjpmm. (Fn is the force required when ps = p a l J T I.) 
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3.44 A door 1 m wide and 1.5 m high is located in a plane vertical wall of a water tank. 
The door is hinged along its upper edge, which is 1 m below the water surface. At­
mospheric pressure acts on the outer surface of the door and at the water surface, (a) 
Determine the magnitude and line of action of the total resultant force from all fluids 
acting on the door, (b) If the water surface gage pressure is raised to 0.3 atm, what is 
the resultant force and where is its line of action? (c) Plot the ratios F/F0 and y'/yc 

for different values of the surface pressure ratio pjpam. (F0 is the resultant force 
when ps = pam.) 

3.45 A triangular access port must be provided in the side of a form containing liquid con­
crete. Using the coordinates and dimensions shown, determine the resultant force 
that acts on the port and its point of application. 

P 3 .45 P 3 . 4 6 

3.46 Semicircular plane gate AB is hinged along B and held by horizontal force FA ap­
plied at A. The liquid to the left of the gate is water. Calculate the force FA required 
for equilibrium. 

3.47 A plane gate of uniform thickness holds back a depth of water as shown. Find the 
minimum weight needed to keep the gate closed. 

P 3 . 4 7 P 3 . 4 8 

3.48 A rectangular gate (width w = 2 m) is hinged as shown, with a stop on the lower 
edge. At what depth H will the gate tip? 

3.49 Consider a semicylindrical trough of radius R and length L. Develop general expres­
sions for the magnitude and line of action of the hydrostatic force on one end, if the 
trough is partially filled with water and open to atmosphere. Plot the results (in 
nondimensional form) over the range of water depth 0 s dJR 1. 

3.50 A window in the shape of an isosceles triangle and hinged at the top is placed in the 
vertical wall of a form that contains liquid concrete. Determine the minimum force that 
must be applied at point D to keep the window closed for the configuration of form and 
concrete shown. Plot the results over the range of concrete depth 0 < c < a. 
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P 3 . 5 0 P3.51 

3.51 Gates in the Poe Lock at Sault Ste. Marie, Michigan, close a channel W = 110 ft 
wide, L = 1200 ft long, and D = 32 ft deep. The geometry of one pair of gates is 
shown; each gate is hinged at the channel wall. When closed, the gate edges are 
forced together at the center of the channel by water pressure. Evaluate the force 
exerted by the water on gate A. Determine the magnitude and direction of the 
force components exerted by the gate on the hinge. (Neglect the weight of the 
gate.) 

3.52 A section of vertical wall is to be constructed from ready-mix concrete poured be­
tween forms. The wall is to be 3 m high, 0.25 m thick, and 5 m wide. Calculate the 
force exerted by the ready-mix concrete on each form. Determine the line of applica­
tion of the force. 

3.53 Solve Example Problem 3.6 again using the first alternative method described on 
page 7 4 . Consider the distributed force to be the sum of a force F, caused by the uni­
form gage pressure and a force F 2 caused by the liquid. Solve for these forces and 
their lines of action. Then sum moments about the hinge axis to calculate F,. 

3.54 The circular access port in the side of a water standpipe has a diameter of 0.6 m and 
is held in place by eight bolts evenly spaced around the circumference. If the stand-
pipe diameter is 7 m and the center of the port is located 12 m below the free surface 
of the water, determine (a) the total force on the port and (b) the appropriate bolt 
diameter. 

3.55 The gate AOC shown is 6 ft wide and is hinged along O. Neglecting the weight of the 
gate, determine the force in bar AB. The gate is sealed at C. 

P 3 . 5 5 P 3 . 5 6 

3.56 As water rises on the left side of the rectangular gate, the gate will open auto­
matically. At what depth above the hinge will this occur? Neglect the mass of the 
gate. 

3.57 The gate shown is hinged at H. The gate is 2 m wide normal to the plane of the dia­
gram. Calculate the force required at A to hold the gate closed. 
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P3.57 P3.58 

3.58 The gate shown is 3 m wide and for analysis can be considered massless. For what 
depth of water will this rectangular gate be in equilibrium as shown? 

3.59 A long, square wooden block is pivoted along one edge. The block is in equilibrium 
when immersed in water to the depth shown. Evaluate the specific gravity of the 
wood, if friction in the pivot is negligible. 

P3.59 P3.60 

3.60 A solid concrete dam is to be built to hold back a depth D of water. For ease of con­
struction the walls of the dam must be planar. Your supervisor asks you to consider 
the following dam cross-sections: a rectangle, a right triangle with the hypotenuse in 
contact with the water, and a right triangle with the vertical in contact with the water. 
She wishes you to determine which of these would require the least amount of con­
crete. What will your report say? You decide to look at one more possibility: a non-
right triangle, as shown. Develop and plot an expression for the cross-section area A 
as a function of a, and find the minimum cross-sectional area. 

3.61 The parabolic gate shown is 2 m wide and pivoted at O; c = 0.25 m ', D = 2 m, and 
W = 3 m , Determine (a) the magnitude and line of action of the vertical force on the 
gate due to the water, (b) the horizontal force applied at A required to maintain the gate 
in equilibrium, and (c) the vertical force applied at A required to maintain the gate in 
equilibrium. 

Gate 

P3.61 

BLIOIESa 
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3.62 The gate shown is 1.5 m wide and pivoted at 0\ a = 1.0 m - 2 , D = 1.20 m, and H = 
1.40 m. Determine (a) the magnitude and moment of the vertical component of the 
force about O, and (b) the horizontal force that must be applied at point A to hold the 
gate in position. 

3.63 Liquid concrete is poured into the form shown (R = 0.313 m). The form is w = 4.25 m 
wide normal to the diagram. Compute the magnitude of the vertical force exerted on the 
form by the concrete and specify its line of action. 

Concrete 

P 3 . 6 3 P 3 . 6 4 

3.64 A spillway gate formed in the shape of a circular arc is w m wide. Find the magni­
tude and line of action of the vertical component of the force due to all fluids acting 
on the gate. 

3.65 A dam is to be constructed across the Wabash River using the cross-section shown. 
Assume the dam width is w = 50 m. For water height H = 2.5 m, calculate the mag­
nitude and line of action of the vertical force of water on the dam face. Is it possible 
for water forces to overturn this dam? Under what circumstances? 

3.66 An open tank is filled with water to the depth indicated. Atmospheric pressure acts 
on all outer surfaces of the tank. Determine the magnitude and line of action of the 
vertical component of the force of the water on the curved part of the tank bottom. 

3.67 A gate, in the shape of a quarter-cylinder, hinged at A and sealed at B, is 2 m wide. 
The bottom of the gate is 3 m below the water surface. Determine the force on the 
stop at B if the gate is made of concrete; R = 2 m. 

P 3 . 6 7 P 3 . 6 8 
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3.68 A Tainter gate used to control water flow from the Uniontown Dam on the Ohio 
River is shown; the gate width is w = 35 m. Determine the magnitude, direction, and 
line of action of the force from the water acting on the gate. 

3.69 A cylindrical weir has a diameter of 3 m and a length of 6 m. Find the magnitude and 
direction of the resultant force acting on the weir from the water. 

P 3 . 6 9 , 3.70 

3.70 Consider the cylindrical weir of diameter 3 m and length 6 m. If the fluid on the left 
has a specific gravity of 1.6, and on the right has a specific gravity of 0.8, find the 
magnitude and direction of the resultant force. 

3.71 A cylindrical log of diameter D rests against the top of a dam. The water is level with 
the top of the log and the center of the log is level with the top of the dam. Obtain ex­
pressions for (a) the mass of the log per unit length and (b) the contact force per unit 
length between the log and dam. 

3.72 A curved surface is formed as a quarter of a circular cylinder with R = 0.750 m as 
shown. The surface is w = 3.55 m wide. Water stands to the right of die curved sur­
face to depth H = 0.650 m. Calculate the vertical hydrostatic force on the curved 
surface. Evaluate the line of action of this force. Find the magnitude and fine of ac­
tion of the horizontal force on the surface. 

P 3 . 7 2 P 3 . 7 3 

3.73 A curved submerged surface, in the shape of a quarter cylinder, with radius R = 0.3 m 
is shown. The form is filled to depth H = 0.24 m with liquid concrete. The width is 
w = 1.25 m. Calculate the magnitude of the vertical hydrostatic force on the form 
from the concrete. Find the line of action of the force. Plot the results over the range 
of concrete depth 0 s < /}. 

3.74 The cross-sectional shape of a canoe is modeled by the curve y = ax2, where 
a = 3.89 m" 1 and the coordinates are in meters. Assume the width of the canoe is 
constant at W = 0.6 m over its entire length L = 5.25 m. Set up a general algebraic 
expression relating the total mass of the canoe and its contents to distance d between 
the water surface and the gunwale of the floating canoe. Calculate the maximum total 
mass allowable without swamping the canoe. 

P 3 . 7 4 P 3 . 7 5 
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3.75 The cylinder shown is supported by an incompressible liquid of density p, and is 
hinged along its length. The cylinder, of mass M, length L, and radius R, is immersed 
in liquid to depth H. Obtain a general expression for the cylinder specific gravity ver­
sus the ratio of liquid depth to cylinder radius, a = H/R, needed to hold the cylinder 
in equilibrium for 0 ^ a < 1. Plot the results. 

^ £ 3.76 A canoe is represented by a right circular semicylinder, with R = 0.35 m and L = 
5.25 m. The canoe floats in water that is d = 0.245 m deep. Set up a general alge­
braic expression for the maximum total mass (canoe and contents) that can be 
floated, as a function of depth. Evaluate for the given conditions. Plot the results over 
the range of water depth 0 ^ d ^ R. 

3.77 A glass observation room is to be installed at the comer of the bottom of an aquar­
ium. The aquarium is filled with seawater to a depth of 10 m. The glass is a segment 
of a sphere, radius 1.5 m, mounted symmetrically in the corner. Compute the magni­
tude and direction of the net force on the glass structure. 

^ ^ * 3 . 7 8 Find the specific weight of the sphere shown if its volume is 1 ft3. State all assump­
tions. What is the equilibrium position of the sphere if the weight is removed? 

P 3 . 7 8 P 3 . 7 9 

*3.79 A hydrometer is a specific gravity indicator, the value being indicated by the level at 
which the free surface intersects the stem when floating in a liquid. The 1.0 mark is 
the level when in distilled water. For the unit shown, the immersed volume in dis­
tilled water is 15 cm3. The stem is 6 mm in diameter. Find the distance, h, from the 
1.0 mark to the surface when the hydrometer is placed in a nitric acid solution of 
specific gravity 1.5. 

*3.80 Quantify the experiment performed by Archimedes to identify the material content of 
King Hiero's crown. Assume you can measure the weight of the king's crown in air, 
Wu, and the weight in water, Ww. Express the specific gravity of the crown as a func­
tion of these measured values. 

*3.81 The fat-to-muscle ratio of a person may be determined from a specific gravity meas­
urement. The measurement is made by immersing the body in a tank of water and 
measuring the net weight. Develop an expression for the specific gravity of a person 
in terms of their weight in air, net weight in water, and SG = f(T) for water. 

*3.82 Quantify the statement, "Only the tip of an iceberg shows (in seawater)." 

*3.83 An open tank is filled to the top with water. A steel cylindrical container, wall thick­
ness 8 = 1 mm, outside diameter D — 100 mm, and height H = 1 m, with an open 
top, is gently placed in the water. What is the volume of water that overflows from 
the tank? How many 1 kg weights must be placed in the container to make it sink? 
Neglect surface tension effects. 

*3.84 Hydrogen bubbles are used to visualize water flow streaklines in the video, Flow 
Visualization. A typical hydrogen bubble diameter is d = 0.025 mm. The bubbles 

* These problems require material from sections that may be omitted without loss of continu­
ity in the text material. 
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tend to rise slowly in water because of buoyancy; eventually they reach terminal 
speed relative to the water. The drag force of the water on a bubble is given by FD = 
3TTfj.Vd, where p, is the viscosity of water and V is the bubble speed relative to the 
water. Find the buoyancy force that acts on a hydrogen bubble immersed in water. 
Estimate the terminal speed of a bubble rising in water. 

*3.85 Gas bubbles are released from the regulator of a submerged scuba diver. What hap­
pens to the bubbles as they rise through the seawater? Explain. 

*3.86 Hot-air ballooning is a popular sport. According to a recent article, "hot-air volumes 
must be large because air heated to 150°F over ambient lifts only 0.018 lbf/ft3 com­
pared to 0.066 and 0.071 for helium and hydrogen, respectively." Check these state­
ments for sea-level conditions. Calculate the effect of increasing the hot-air maxi­
mum temperature to 250°F above ambient. 

*3.87 Scientific balloons operating at pressure equilibrium with the surroundings have been 
used to lift instrument packages to extremely high altitudes. One such balloon, con­
structed of polyester with a skin thickness of 0.013 mm, lifted a payload of 230 kg to 
an altitude of approximately 49 km, where atmospheric conditions are 0.95 mbar and 
-20°C. The helium gas in the balloon was at a temperature of approximately 
- 10°C. The specific gravity of the skin material is 1.28. Determine the diameter and 
mass of the balloon. Assume that the balloon is spherical. 

*3.88 A helium balloon is to lift a payload to an altitude of 40 km, where the atmospheric 
pressure and temperature are 3.0 mbar and — 25°C, respectively. The balloon skin is 
polyester with specific gravity of 1.28 and thickness of 0.015 mm. To maintain a 

^spherical shape, the balloon is pressurized to a gage pressure of 0.45 mbar. Deter­
mine the maximum balloon diameter if the allowable tensile stress in the skin is lim­
ited to 62 MN/m2. What payload can be carried? 

*3.89 One cubic foot of material weighing 67 lbf is allowed to sink in water as shown. A 
circular wooden rod 10 ft long and 3 in.2 in cross section is attached to the weight and 
also to the wall. If the rod weighs 3 lbf, what will be the angle, 0, for equilibrium? 

P 3 . 8 9 

*3.90 The stem of a glass hydrometer used to measure specific gravity is 6 mm in diameter. 
The distance between marks on the stem is 3 mm per 0.1 increment of specific grav­
ity. Calculate the magnitude and direction of the error introduced by surface tension 
if the hydrometer floats in ethyl alcohol. (Assume the contact angle between ethanol 
and glass is zero degrees.) 

*3.91 If the weight W in Problem 3.89 is released from the rod, at equilibrium how much 
of the rod will remain submerged? What will be the minimum required upward force 
at the tip of the rod to just lift it out of the water? 

*3.92 A sphere, of radius R, is partially immersed, to depth d, in a liquid of specific gravity SG. 
Obtain an algebraic expression for the buoyancy force acting on the sphere as a function 
of submersion depth d Plot the results over the range of water depth 0 ^ d ^ 2R. 

* These problems require material from sections that may be omitted without loss of continu­
ity in the text material. 
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*3.93 

*3.94 

*3.95 

*3.96 

*3.97 

*3.98 

*3.99 

A sphere of radius R, made from material of specific gravity SG, is submerged in a 
tank of water. The sphere is placed over a hole, of radius a, in the tank bottom. De­
velop a general expression for the range of specific gravities for which the sphere 
will float to the surface. For the dimensions given, determine the minimum SG re­
quired for the sphere to remain in the position shown. 

A cylindrical timber, with D = 0.3 m and L = 4 m, is weighted on its lower end so 
that it floats vertically with 3 m submerged in seawater. When displaced vertically 
from its equilibrium position, the timber oscillates or "heaves" in a vertical direction 
upon release. Estimate the frequency of oscillation in this heave mode. Neglect vis­
cous effects and water motion. 
A proposed ocean salvage scheme involves pumping air into "bags" placed within 
and around a wrecked vessel on the sea bottom. Comment on the practicality of this 
plan, supporting your conclusions with analyses, 
In the "Cartesian diver" child's toy, a miniature "diver" is immersed in a column of 
liquid. When a diaphragm at the top of the column is pushed down, the diver sinks to 
the bottom. When the diaphragm is released, the diver again rises. Explain how the 
toy might work, 
Consider a conical funnel held upside down and submerged slowly in a container of 
water. Discuss the force needed to submerge the funnel if the spout is open to the at­
mosphere. Compare with the force needed to submerge the funnel when the spout 
opening is blocked by a rubber stopper. 
A cylindrical container, similar to that analyzed in Example Problem 3.9 (on the 
CD), is rotated at constant angular velocity about its axis. The cylinder is 1 ft in di­
ameter, and initially contains water that is 4 in. deep. Determine the maximum rate at 
which the container can be rotated before the liquid free surface just touches the bot­
tom of the tank. Does your answer depend on the density of the liquid? Explain. 

A crude accelerometer can be made from a liquid-filled U-tube as shown. Derive an 
expression for the acceleration a, in terms of liquid level difference h, rube geome­
try, and fluid properties. 

Liquid 
density, p h 

L 

ax = 10 ft/s 2 

S 

P3.99 P 3 . 1 0 0 

* These problems require material from sections that may be omiUed without loss of continuity 
in the text material. 
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*3.100 

*3.101 

A rectangular container of water undergoes constant acceleration down an incline as 
shown. Determine the slope of the free surface using the coordinate system shown. 

The U-tube shown is filled with water at T = 20°C. It is sealed at A and open to the 
atmosphere at D. The tube is rotated about vertical axis AS. For the dimensions 
shown, compute the maximum angular speed if there is to be no cavitation. 

*3.107 

*3.108 

HI 

H = 300 m m -Water 

L = 75 mm 

P 3 . 1 0 1 , 3 .102 

*3.102 If the U-tube of Problem 3.101 is spun at 200 rpm, what will be the pressure at A? If 
a small leak appears at A, how much water will be lost at D? 

*3.103 A centrifugal micromanometer can be used to create small and accurate differential 
pressures in air for precise measurement work. The device consists of a pair of paral­
lel disks that rotate to develop a radial pressure difference. There is no flow between 
the disks. Obtain an expression for pressure difference in terms of rotation speed, ra­
dius, and air density. Evaluate the speed of rotation required to develop a differential 
pressure of 8 p,m of water using a device with a 50 mm radius. 

*3.104 A test tube is spun in a centrifuge at a> = 1000 rev/s. The tube support is mounted on 
a pivot so that the tube swings outward as rotation speed increases. At high speeds, 
the tube is nearly horizontal. Find (a) an expression for the radial component of ac­
celeration of a liquid element located at radius r, (b) the radial pressure gradient 
dp/dr, and (c) the maximum pressure on the bottom of the test tube if it contains 
water. (The free surface and bottom radii are 50 and 130 mm, respectively.) 

*3.105 A cubical box, 1 m on a side, half-filled with oil (SG = 0.80), is given a constant 
horizontal acceleration of 0.2g parallel to one edge. Determine the slope of the free 
surface and the pressure along the horizontal bottom of the box. 

*3.106 A rectangular container, of base dimensions 0.4 m X 0.2 m and height 0.4 m, is 
filled with water to a depth of 0.2 m; the mass of the empty container is 10 kg. The 
container is placed on a plane inclined at 30° to the horizontal. If the coefficient of 
sliding friction between the container and the plane is 0.3, determine the angle of the 
water surface relative to the horizontal. 

If the container of Problem 3.106 slides without friction, determine the angle of the 
water surface relative to the horizontal. What is the slope of the free surface for the 
same acceleration up the plane? 

Gas centrifuges are used in one process to produce enriched uranium for nuclear fuel 
rods. The maximum peripheral speed of a gas centrifuge is limited by stress consid­
erations to about 300 m/s. Assume a gas centrifuge containing uranium hexafluoride 
gas, with molecular mass M,„ = 352, and ideal gas behavior. Develop an expression 
for the ratio of maximum pressure to pressure at the centrifuge axis. Evaluate the 
pressure ratio for a gas temperature of 325°C. 

* These problems require material from sections that may be omitted without loss of continu­
ity in the text material. 
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*3.109 A pail, 1 ft in diameter and 1 ft deep, weighs 3 lbf and contains 8 in. of water. The pail 
is swung in a vertical circle of 3 ft radius at a speed of 15 ft/s. Assume the water 
moves as a rigid body. At the instant when the pail is at the top of its trajectory, com­
pute the tension in the string and the pressure on the bottom of the pail from the water. 

*3.110 A partially full can of soft drink is placed at the outer edge of a child's merry-
go-round, located R = 1.5 m from the axis of rotation. The can diameter and height 
are D — 65 mm and H = 120 mm. The can is half-full of soda, with specific gravity 
SG = 1.06. Evaluate the slope of the liquid surface in the can if the merry-go-round 
spins at 0.3 revolution per second. Calculate the spin rate at which the can would 
spill, assuming no slippage between the can bottom and the merry-go-round. Would 
the can most likely spill or slide off the merry-go-round? 

*3.111 When a water polo ball is submerged below the surface in a swimming pool and re­
leased from rest, it is observed to pop out of the water. How would you expect the 
height to which it rises above the water to vary with depth of submersion below the 
surface? Would you expect the same results for a beach ball? For a table-tennis ball? 

*3.112 The analysis of Problem 3.106 suggests that it may be possible to determine the co­
efficient of sliding friction between two surfaces by measuring the slope of the free 
surface in a liquid-filled container sliding down an inclined surface. Investigate the 
feasibility of this idea. 

*3.113 Cast iron or steel molds are used in a horizontal-spindle machine to make tubular 
castings such as liners and tubes. A charge of molten metal is poured into the spin­
ning mold. The radial acceleration permits nearly uniformly thick wall sections to 
form. A steel finer, of length L = 2 m, outer radius ra = 0.15 m, and inner radius 
r, = 0.10 m, is to be formed by this process. To attain nearly uniform thickness, the 
magnitude of the minimum radial acceleration should be lOg. Determine (a) the re­
quired angular velocity and (b) the maximum and minimum pressures on the surface 
of the mold. 

* These problems require material from sections that may be omitted without loss of continu­
ity in the text material. 
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BASIC EQUATIONS 
IN INTEGRAL FORM 

FOR A CONTROL VOLUME 

We begin our study of fluids in motion by developing the basic equations in integral 
form for application to control volumes. Why the control volume formulation 
(i.e., fixed region) rather than the system (i.e., fixed mass) formulation? There are two 
basic reasons. First, it is extremely difficult to identify and follow the same mass of 
fluid at all times, as must be done to apply the system formulation. Second, we are 
often not interested in the motion of a given mass of fluid, but rather in the effect of 
the fluid motion on some device or structure (such as a wing section or a pipe elbow). 
Thus it is more convenient to apply the basic laws to a defined volume in space, using 
a control volume analysis. 

The basic laws for a system are familiar to you from your earlier studies in 
physics, mechanics, and thermodynamics. We need to obtain mathematical expres­
sions for these laws valid for a control volume, even though the laws actually apply 
to matter (i.e., to a system). This will involve deriving the mathematics that converts 
a system expression to an equivalent one for a control volume. Instead of deriving 
this conversion for each of the laws, we will do it once in general form, and then 
apply it to each law in turn. 

The basic laws for a system are summarized briefly; it turns out that we will need 
each of the basic equations for a system to be written as a rate equation. 

Conservation of Mass 

Since a system is, by definition, an arbitrary collection of matter of fixed identity, 
a system is composed of the same quantity of matter at all times. Conservation of 
mass requires that the mass, M, of the system be constant. On a rate basis, we 
have 

4-1 BASIC LAWS FOR A SYSTEM 

system 
0 (4.1a) 

where 

(4.1b) 

99 
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Newton's Second Law 

For a system moving relative to an inertial reference frame, Newton's second law 
states that the sum of all external forces acting on the system is equal to the time rate 
of change of linear momentum of the system, 

dt , 
/system 

where the linear momentum of the system is given by 

(4.2a) 

System = L / ^ = L JPdV <4"2b) •'iVf(system) JV(syslem) 

The Angular-Momentum Principle 

The angular-momentum principle for a system states that the rate of change of angu­
lar momentum is equal to the sum of all torques acting on the system, 

f = — 
dt 

(4.3a) 
'system 

where the angular momentum of the system is given by 

System = f 7 X V dm = \ 7 x V p d¥ (4.3b) 
JM(system) JV(system) 

Torque can be produced by surface and body forces, and also by shafts that cross the 
system boundary, 

f = 7xFs+\ 7 x g dm + f s h a f t (4.3c) 
• W (system) 

The First Law of Thermodynamics 

The first law of thermodynamics is a statement of conservation of energy for a system, 

5(2 - SW = dE 

The equation can be written in rate form as 

G - W = — (4.4a) 
dt ) 

where the total energy of the system is given by 

system 

System = f , e d m = L , e p d ¥ ( 4 - 4 b ) 

•'/W(system) Jvfsystem) 

and 
V2 

e = u + — + gz (4.4c) 

In Eq. 4.4a, Q (the rate of heat transfer) is positive when heat is added to the system 
from the surroundings; W (the rate of work) is positive when work is done by the system 
on its surroundings. In Eq. 4.4c, u is the specific internal energy, V the speed, and z the 
height (relative to a convenient datum) of a particle of substance having mass dm. 
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The Second Law of Thermodynamics 

If an amount of heat, 8Q, is transferred to a system at temperature T, the second law 
of thermodynamics states that the change in entropy, dS, of the system satisfies 

On a rate basis we can write 
dS_ 
dt 

> —2 
T Aystem 

where the total entropy of the system is given by 

-"system s dm 
M(system) 'Vf system) 

spdY 

(4.5a) 

(4.5b) 

m 

I: 

4-2 RELATION OF SYSTEM DERIVATIVES TO THE CONTROL 
VOLUME FORMULATION 

In the previous section we summarized the basic equations for a system. We found 
that, when written on a rate basis, each equation involved the time derivative of an ex­
tensive property of the system—the mass (Eq. 4.1a), linear momentum (Eq. 4.2a), an­
gular momentum (Eq. 4.3a), energy (Eq. 4.4a), or entropy (Eq. 4.5a) of the system. 
These are the equations we wish to convert to equivalent control volume equations. 
Let us use the symbol N to represent any one of these system extensive properties: 
more informally, we can think of N as the amount of "stuff" (mass, linear momentum, 
angular momentum, energy, or entropy) of the system. The corresponding intensive 
property (extensive property per unit mass) will be designated by rj. Thus 

/V, system = I 7] dm - I 
JiW(svstem) Jv 

•qpdV (4.6) 

N = At, then V 
N = P then V 
N = H, then V 
N = E, then V 
N = s, then V 

•><W(system) JV(system) 

Comparing Eq. 4.6 with Eqs. 4.1b, 4.2b, 4.3b, 4.4b, and 4.5b, we see that if: 

= J 

= V 
= r x V 
= e 
= s 

How can we derive a control volume description from a system description of a 
fluid flow? Before specifically answering this question, we can describe the deriva­
tion in general terms. We imagine selecting an arbitrary piece of the flowing fluid at 
some time t0, as shown in Fig. 4 . 1 a — w e could imagine dyeing this piece of fluid, 
say, blue. This initial shape of the fluid system is chosen as our control volume, 
which is fixed in space relative to coordinates xyz. After an infinitesimal time Af the 
system will have moved (probably changing shape as it does so) to a new location, as 
shown in Fig. 4.1b. The laws we discussed above apply to this piece of fluid—for 
example, its mass will be constant (Eq. 4.1a). By examining the geometry of the sys­
tem/control volume pair at t = t0 and at t = t0 + At, we will be able to obtain control 
volume formulations of the basic laws. 

• iw iriTFrm 
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Streamlines 
at t ime, in Subregion (1) 

of region 1 

Subregion (3) 
of region IK 

System 

(a) T i m e , ia 

Fig. 4.1 System and control volume configuration. 

Derivation 

Control volume 
lb) T i m e , i0 + &i 

From Fig. 4.1 we see that the system, which was entirely within the control volume at 
time to, is partially out of the control volume at time t0 + At. In fact, three regions can 
be identified. These are: regions I and II, which together make up the control volume, 
and region III, which, with region II, is the location of the system at time r 0 + A/. 

Recall that our objective is to relate the rate of change of any arbitrary extensive 
property, N, of the system to quantities associated with the control volume. From the 
definition of a derivative, the rate of change of NsyMm is given by 

dN 

dt 
= lim 

# A 0 + A / ~NS) 

At 
(4.7) 

/system 

For convenience, subscript 5 has been used to denote the system in the definition of a 
derivative in Eq. 4.7. 

From the geometry of Fig. 4.1, 

and 

Ns),0 = ( # c v ) , 0 

Substituting into the definition of the system derivative, Eq. 4.7, we obtain 

dN) ( # c v - # i + # n i ) , 0 + A , - # c v ) , 0 

— = hm - -
dt ) s A / - >0 At 

Since the limit of a sum is equal to the sum of the limits, we can write 

dN) = ^ # C v ) t Q + A / - # C V ) , 0 

dt ) s A / ->0 At 
+ lim 

At 
- lim 

N 

~At 
(4.8) 

CD CD 
Our task now is to evaluate each of the three terms in Eq. 4.8. 

Term (T) in Eq. 4.8 simplifies to 

N, C V ) ( 0 + A/ ~ # c v ) r 0 dNcv d r 
lim • = - — yjpdV 

ar->o At dt dt J c v 

(4.9a) 

To evaluate term (2) we first develop an expression for Nia), ^ 4 , by looking at the en­
larged view of a typical subregion (subregion (3)) of region III shown in Fig. 4.2. The 
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vector area element dA of the control surface has magnitude dA, and its direction is 
the outward normal of the area element. In general, the velocity vector V will be at 
some angle a with respect to dA. 

For this subregion we have 

We need to obtain an expression for the volume dY of this cylindrical element. The 
vector length of the cylinder is given by Al = VAt. The volume of a prismatic cylin­
der, whose area <M is at an angle a to its length A / , is given by dY = Al dA cos a = 
Al • dA = V • dAAt. Hence, for subregion (3) we can write 

< W m \ + d J = vpVdAAt 

Then, for the entire region III we can integrate and for term'(2) in Eq. 4.8 obtain 

# . i . IcS ^ " ' V * Ics ^ ' ^ A ' 
lim - L i ^ L i ^ . = Hm I ^ I M = lim ±£M = [ v p v -dA 

A/->0 At A/->0 At A/~>0 At J C S m 

(4.9b) 
We can perform a similar analysis for subregion (1) of region I, and obtain for term 
(3) in Eq. 4.8 

At'-^O At 
lim = -[ TjpVdA (4.9c) 

Jcs, 

Why the minus sign in Eq. 4.9c? Term (3) in Eq. 4.8 is a measure of the amount of 
extensive property Af (the amount of "stuff") that was in region I, and must be a posi­
tive number (e.g., we cannot have "negative matter"). However, for subregion (1), the 
velocity vector acts into the control volume, but the area normal always (by conven­
tion) points outwards (angle a > TT/2). Hence, the scalar product in Eq. 4.9c will be 
negative, requiring the additional negative sign to produce a positive result. 

This concept of the sign of the scalar product is illustrated in Fig. 4.3 for (a) the 
general case of an inlet or exit, (b) an exit velocity parallel to the surface normal, and 
(c) an inlet velocity parallel to the surface normal. Cases (b) and (c) are obviously 
convenient special cases of (a); the value of the cosine in case (a) automatically gen­
erates the correct sign of either an inlet or an exit. 

We can finally use Eqs. 4.9a, 4.9b, and 4.9c in Eq. 4.8 to obtain 

—] = — [ V p d ¥ + \ VpVdA + \ vpVdA 

dt Aystem »V J C V J c S , J c s u l 

and the two last integrals can be combined because CS ( and C S m constitute the entire 
control surface, 
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CS CS cs 

V • dA = VdA cos a V-dA = +VdA V-dA = -VdA 

(a) General inlet/exit [b) Normal exit (c) Normal inlet 

Fig . 4.3 Eva lua t ing the sca la r p roduct . 

dt 
) = J - f r1pd¥+ f VpV-System & J C S (4.10) 

Equation 4.10 is the relation we set out to obtain. It is the fundamental relation be­
tween the rate of change of any arbitrary extensive property, N, of a system and the 
variations of this property associated with a control volume. Some authors refer to 
Eq. 4.10 as the Reynolds Transport Theorem. 

Physical Interpretation 

We have taken several pages to derive Eq. 4.10. Recall that our objective was to 
obtain a general relation between the rate of change of any arbitrary extensive prop­
erty, N, of a system and variations of this property associated with the control vol­
ume. The main reason for deriving it was to reduce the algebra required to obtain the 
control volume formulations of each of the basic equations. Because we consider the 
equation itself to be "basic" we repeat it to emphasize its importance: 

It is important to recall that in deriving Eq. 4.10, the limiting process (taking the limit 
as At —» 0) ensured that the relation is valid at the instant when the system and the 
control volume coincide. In using Eq. 4.10 to go from the system formulations of 
the basic laws to the control volume formulations, we recognize that Eq. 4.10 relates 
the rate of change of any extensive property, N, of a system to variations of this prop­
erty associated with a control volume at the instant when the system and the control 
volume coincide; this is true since, in the limit as At —» 0, the system and the control 
volume occupy the same volume and have the same boundaries. 

Before using Eq. 4.10 to develop control volume formulations of the basic laws, 
let us make sure we understand each of the terms and symbols in the equation: 

(4.10) 

is the rate of change of any arbitrary extensive property (of the 
amount of "stuff", e.g., mass, energy) of the system. 

is the time rate of change of arbitrary extensive property N within 
the control volume. 

r] is the intensive property corresponding to N; 17 = N per unit mass. 

p d¥ is an element of mass contained in the control volume. 

(cv r]pd¥ is the total amount of extensive property N contained 
within the control volume. 
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J 7}pV • dA is the net rate of flux of extensive property N out through the 
c s control surface. 

pV • dA is the rate of mass flux through area element dA per 
unit time. 

7] p V • dA is the rate of flux of extensive property N through 
area dA. 

An additional point should be made about Eq. 4.10. Velocity V is measured rel­
ative to the surface of the control volume. In developing Eq. 4.10, we considered a 
control volume fixed relative to coordinate system xyz. Since the velocity field was 
specified relative to the same reference coordinates, it follows that velocity V is 
measured relative to the control volume. 

We shall further emphasize this point in deriving the control volume formulation 
of each of the basic laws. In each case, we begin with the familiar system formulation 
and use Eq. 4.10 to relate system derivatives to the time rates of change associated 
with a fixed control volume at the instant when the system and the control volume 
coincide.' 

4-3 CONSERVATION OF MASS 

The first physical principle to which we apply this conversion from a system to a 
control volume description is the mass conservation principle: The mass of the 
system remains constant, 

dM\ 
dt J s 

= 0 
'system 

where 

M. system = f dm=\ 
JW(svstem) JY 

pdV 

dA 

'W(system) •'V(system) 

The system and control volume formulations are related by Eq. 4.10, 

dN" 

'system 

where 

i V „ , „ m = I 17 dm = 7] p d¥ 
JM(system) JV(system) 

To derive the control volume formulation of conservation of mass, we set 

N = M and 17 = 1 

With this substitution, we obtain 

8 

-1 - 4 " \ VpdV+ [ r}pV 

it System & Jcv J C S 

" system 

dt ) system 
= — [ pd¥+ \ pV dA 

dt J c v J c s 

(4.1a) 

(4.1b) 

(4.10) 

(4.6) 

(4.11) 

' Equation 4.10 has been derived for a control volume fixed in space relative to coordinates xyz. F-or the case of 
a deforrnable control volume, whose shape varies with time, Eq. 4.10 may be applied provided that the ve­
locity, V, in the flux integral is measured relative to the local control surface through which the flux occurs. 
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Comparing Eqs. 4.1a and 4.11, we arrive (after rearranging) at the control volume 
formulation of the conservation of mass: 

f pd¥ + f pV-dA = 0 (4.12) 
dt Jcv Jcs 

In Eq. 4.12 the first term represents the rate of change of mass within the control vol­
ume; the second term represents the net rate of mass flux out through the control 
surface. Equation 4.12 indicates that the rate of change of mass in the control volume 
plus the net outflow is zero. The mass conservation equation is also called the conti­
nuity equation. In common-sense terms, the rate of increase of mass in the control 
volume is due to the net inflow of mass: 

Rate of increase Net influx of 
of mass in CV _ mass 

— f pdV = - f pV dA 
3 / J c v Jcs 

In using Eq. 4.12, care should be taken in evaluating the scalar product 
V • dA = VdA cos a: It could be positive (outflow, a < -nil), negative (inflow, a > TT/2), 
or even zero ( a = 7r/2). Recall that Fig. 4.3 illustrates the general case as well as the 
convenient cases a = 0 and a = TT. 

Special Cases 

In special cases it is possible to simplify Eq. 4.12. Consider first the case of an incom­
pressible fluid, in which density remains constant. When p is constant, it is not a function 
of space or time. Consequently, for incompressible fluids, Eq. 4.12 may be written as 

a 
P J - f d¥ + p\ VdA = 0 

dt J c v J c s 

The integral of dV over the control volume is simply the volume of the control vol­
ume. Thus, on dividing through by p, we write 

VdA = 0 
dt J c s 

For a nondeformable control volume of fixed size and shape, V = constant. The con­
servation of mass for incompressible flow through a fixed control volume becomes 

VdA = 0 (4.13) 
cs v 

Note that we have not assumed the flow to be steady in reducing Eq. 4.12 to the form 
4.13. We have only imposed the restriction of incompressible fluid. Thus Eq. 4.13 is a 
statement of conservation of mass for flow of an incompressible fluid that may be 
steady or unsteady. 

The dimensions of the integrand in Eq. 4.13 are L?lt. The integral of V • dA over 
a section of the control surface is commonly called the volume flow rate or volume 
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rate of flow. Thus, for incompressible flow, the volume flow rate into a fixed control 
volume must be equal to the volume flow rate out of the control volume. The volume 
flow rate Q, through a section of a control surface of area A, is given by 

VdA (4.14a) 
A 

The average velocity magnitude, V, at a section is defined as 

V = ^ = - \ VdA (4.14b) 
A A JA 

Consider now the general case of steady, compressible flow through a fixed con­
trol volume. Since the flow is steady, this means that at most p = p(x, y, z). By defi­
nition, no fluid property varies with time in a steady flow. Consequently, the first term 
of Eq. 4.12 must be zero and, hence, for steady flow, the statement of conservation of 
mass reduces to 

1 PV-dA = Q (4.15) 

Thus, for steady flow, the mass flow rate into a control volume must be equal to the 
mass flow rate out of the control volume. 

As we noted in our previous discussion of velocity fields in Section 2-2, the ide­
alization of uniform flow at a section frequently provides an adequate flow model. 
Uniform flow at a section implies the velocity is constant across the entire area at a 
section. When the density also is constant at a section, the flux integral in Eq. 4.12 
may be replaced by a product. Thus, when we have uniform flow through some area 
A of the control volume 

[ pV • dA = pV • A 
JA 

where once again we remember that the sign of the scalar product will be positive for 
outflow, negative for inflow. 

We will now look at three Example Problems to illustrate some features of the 
various forms of the conservation of mass equation for a control volume. Example 
Problem 4.1 involves a problem in which we have uniform flow at each section, 
Example Problem 4.2 involves a problem in which we do not have uniform flow at a 
location, and Example Problem 4.3 involves a problem in which we have unsteady 
flow. 

EXAMPLE 4.1 Mass Flow at a Pipe Junction 

Consider the steady flow in a water pipe 
joint shown in the diagram. The areas are: 
Ai = 0 . 2 m 2 , A2 = 0.2 m 2 , and A 3 = 
0.15 m 2 . In addition, fluid is lost out of a 
hole at (4), estimated at a rate of 0.1 nvVs. 
The average speeds at sections (T) and 
(3) are V, = 5 m/s and V3 = 12 m/s, 
respectively. Find the velocity at sec­
tion (2). 
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EXAMPLE PROBLEM 4.1 

GIVEN: Steady flow of water through the device. 

Ai = 0.2 m 2 A2 = 0.2 m 2 A 3 = 0.15 m 2 

V, = 5 m/s V3 = 12 m/s p = 999 kg/m3 

Volume flow rate at @ = 0.1 m3/s 

FIND: Velocity at section (2). 

SOLUTION: 
Choose a fixed control volume as shown. Make an 
assumption that the flow at section © is outwards, 
and label the diagram accordingly (if this assumption 
is incorrect our final result will tell us). 
Governing equation: 
The general control volume equation is Eq. 4.12, but we can go immediately to Eq. 4.13 because of as­
sumption (2), 

f VdA = 0 
Jcs 

Assumptions: (1) Steady flow (given). 
(2) Incompressible flow. 
(3) Uniform properties at each section. 

Assumption (3) (and use of Eq. 4.14a for the leak) leads to 

Vi • Ai + V2 • A 2 + V3 • A, + Q4 = 0 (1) 

where Qn is the flow rate out of the leak. 

Let us examine the first three terms in Eq. 1 in light of the discussion of Fig. 4.3, and the directions of the 
velocity vectors: 

V, • A, = -V,A, 

V2 • A2 = +V2A2 

V3 • A, = +V3A3 

[Sign of V, • A, is 
[negative at surface 

[Sign of V2 • A 2 is 
[positive at surface © 

fs ignofy 3 A 3 is 1 
[positive at surface CD j 
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Using these results in Eq. 1, 

-V,A; + V2A2 + V3Aj + & = 0 

V, = 

5 m 0.2 m 2 12 m 0.15 m 2 0 .1m 3 

— x - — x - — 
s s 0.2 m ' 

= - 4.5 m/s 

Recall that V2 represents the magnitude of the velocity, which we assumed was outwards from the control 
volume. The fact that V2 is negative means that in fact we have an inflow at location (2)—our initial as­
sumption was invalid. 

This problem demonstrates use of the sign convention for 

evaluating V • dA .In particular, the area normal is always 
JA 

drawn outwards from the control surface. 

EXAMPLE 4.2 Mass Flow Rate in Boundary Layer 

The fluid in direct contact with a stationary solid boundary has zero velocity; there is 
no slip at the boundary. Thus the flow over a flat plate adheres to the plate surface and 
forms a boundary layer, as depicted below. The flow ahead of the plate is uniform 
with velocity, V = Ui; U = 30 m/s. The velocity distribution within the boundary 
layer (0 < y < 8) along cd is approximated as u/U = 2{y/8) - (y/8)2. 

The boundary-layer thickness at location d is 8 = 5 mm. The fluid is air with 
density p = 1.24 kg/m^. Assuming the plate width perpendicular to the paper to be 
w = 0.6 m, calculate the mass flow rate across surface be of control volume abed. 

L , 

-cv 
- Edge of 

boundary 
layer 

EXAMPLE PROBLEM 4.2 

GIVEN: Steady, incompressible flow over a flat plate, p = 1.24 kg/m3. Width of plate, w = 0.6 m. 
Velocity ahead of plate is uniform: V = U i ,U = 30 m/s. 

At x = xd: 

S = 5 mm 

FIND: Mass flow rate across surface be. 

u 
J" / " c v 

v t 

L 5 = 5 m m 

a d 

SOLUTION: 
The fixed control volume is shown by the dashed lines. 
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Governing equation: 
The general control volume equation is Eq. 4.12, but we can go immediately to Eq. 4.15 because of 
assumption (1), 

pV • dA = 0 
J c s 

Assumptions: (1) Steady flow (given). 
(2) Incompressible flow (given). 
(3) Two-dimensional flow, given properties are independent of z. 

Assuming that there is no flow in the z direction, then 
( no flow 
(^across da 

f pV-dA+ f PV-dA + f pV-dA+f • 
J Aab J / V J Acd J Afa 

;.mbc = f pV-dA = - [ pVdA - f f. 
J Afc J A a b J Aclf 

dA = 0 

pV- dA = - pVdA - | pV -

We need to evaluate the integrals on the right side of the equation. 
For depth w in the z direction, we obtain 

pV • dA = - f pu dA = - \ puw dy 
JA,b J\b 

= - puw dy = - pfAv dy 
Jo Jo 

pVdA = - [pUwyf0 = -p(/w5 
J ^ U 

pV • = f pu dA = f puw dy 
J^rf J ^ d J y j 

= r ^ W o H 2 ( f ) - ( j ] 
pV 

J / U 
G£4 = pwU y_ 

8 
= pwUS 1 - -

3 

(1) 

V • dA is negative I 
dA = wdy 

{u = U over area ab] 

V • dA is positive I 
dA = wdy 

Substituting into Eq. 1, we obtain 

nbc pUwS -
2pUw8 _ pUwS 
~~3 ~ 3 

I 1.24 kg 30 m 0.6 m 5 mm 
1000 mm 

(Positive sign indicates flowl 
mhc = 0.0372 kg/s [out across surface be. 

This problem demonstrates use of the conservation of mass 
equation when we have nonuniform flow at a section. 

EXAMPLE 4.3 Density Change in Venting Tank 

A tank of 0.05 m 3 volume contains air at 800 kPa (absolute) and 15°C. At t = 0, air 
begins escaping from the tank through a valve with a flow area of 65 mm 2 . The air 
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passing through the valve has a speed of 300 m/s and a density of 6 kg/m 3 . Determine 
the instantaneous rate of change of density in the tank at / = 0. 

EXAMPLE PROBLEM 4.3 

GIVEN: Tank of volume V = 0.05 m 3 contains air at p = 800 kPa 
(absolute), T= 15°C. At / = 0, air escapes through a 
valve. Air leaves with speed V = 300 m/s and density 
p = 6 kg/m3 through area A = 65 mm2. 

FIND: Rate of change of air density in the tank at / = 0. 

SOLUTION: 
[Choose a fixed control volume as shown by the dashed line. 

[Governing equation: \ pdY + f pV • dA - 0 
at Jcv Jcs 

Assumptions: (1) Properties in the tank are uniform, but time-dependent. 
(2) Uniform flow at section ® . 

i Since properties are assumed uniform in the tank at any instant, we can take p out from within the 
integral of the first term, 

Now, dY = Y , and hence 
\ Jcv 

I 
dA = 0 

^(P*)cv +\ pVdA = 0 
dt Jcs 

The only place where mass crosses the boundary of the control volume is at surface ® . Hence 

f pV • dA = f pV • dA and ^ - (pY) + f pV • dA = 0 
Jcs J A , at J A , 

Al surface © the sign of p V • dA is positive, so 

| - ( p V ) + f pVdA = 0 
dt J A , 

Since flow is assumed uniform over surface ® , then 

| " (pV) + P lV,A, = 0 or f (pV) = - P l V , 4 , 
dt dt 

Since the volume, Y, of the tank is not a function of time, 

and 

At / = 0, 

3p PiVjAi 
3/ Y 

dp - 6 kg 300 m 65 mm 2 

— = — T X — X X 
dt nT s 

m 
0.05 m 3 10 6 mm 2 
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— = - 2.34 (kg/m 3ys {The density is decreasing.) ^ 
dt < ol 

This problem demonstrates use of the conservation of mass 
equation for unsteady flow problems. 

5S~̂  

4-4 MOMENTUM EQUATION FOR INERTIAL CONTROL VOLUME 

We wish to develop a mathematical formulation of Newton's second law suitable for 
application to a control volume. In this section our derivation will be restricted to an 
inertial control volume fixed in space relative to coordinate system xyz that is not ac­
celerating relative to stationary reference frame XYZ. 

In deriving the control volume form of Newton's second law, the procedure is anal­
ogous to the procedure followed in deriving the mathematical form of the conservation 
of mass for a control volume. We begin with the mathematical formulation for a system 
and then use Eq. 4.10 to go from the system to the control volume formulation. 

Recall that Newton's second law for a system moving relative to an inertial co­
ordinate system was given by Eq. 4.2a as 

F = ^ 
dt 

(4.2a) 

'system 
where the linear momentum of the system is given by 

System = f / r f m = L S P < i ¥ ( 4 ' 2 b ) JM(system) •'V(system) 
and the resultant force, F, includes all surface and body forces acting on the 
system, 

F = FS + FB 

The system and control volume formulations are related using Eq. 4.10, 

dN) a 
= — f r)pd¥+ f TjpVdA (4.10) 

dt J C V J C S dt J C V J C S 

system 
dt 

To derive the control volume formulation of Newton's second law, we set 

N = P and 17 = V 

From Eq. 4.10, with this substitution, we obtain 

From Eq. 4.2a 

system (4.2a) 

= | - f Vpd¥+ \ VpV dA (4.16) 
dt Jcv Jcs ' 

system 
dP 
dt 

system 
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Since, in deriving Eq. 4.10, the system and the control volume coincided at t0, then 

system = F) 
on control volume 

In light of this, Eqs. 4.2a and 4.16 may be combined to yield the control volume for­
mulation of Newton's second law for a nonaccelerating control volume 

F=Fs + FB = - \ VpdV+[ VpVdA (4.17) 
dtJcv Jcs 

This equation states that the sum of all forces (surface and body forces) acting on a 
nonaccelerating control volume is equal to the sum of the rate of change of momen­
tum inside the control volume and the net rate of flux of momentum out through the 
control surface. 

The derivation of the momentum equation for a control volume was straightfor­
ward. Application of this basic equation to the solution of problems will not be diffi­
cult if we exercise care in using the equation. 

In using any basic equation for a control volume analysis, the first step must be 
to draw the boundaries of the control volume and label appropriate coordinate direc­
tions. In Eq. 4.17, the force, F, represents all forces acting on the control volume. It 
includes both surface forces and body forces. As in the case of the free-body diagram 
of basic mechanics, all forces (and moments) acting on the control volume should be 
shown so that they can be systematically accounted for in the application of the basic 
equations. If we denote the body force per unit mass as B, then 

FB = JBdm = j Bpd¥ 

When the force of gravity is the only body force, then the body force per unit mass is 
g. The surface force due to pressure is given by 

Fs = f -pdA 
JA 

Note that these surface forces always act onto the control surface (dA points outwards, 
and the negative sign reverses this direction). The nature of the forces acting on the 
control volume undoubtedly will influence the choice of control volume boundaries. 

All velocities, V, in Eq. 4.17 are measured relative to the control volume. The mo­
mentum flux, VpV • dA, through an element of the control surface area, dA, is a 
vector. As we previously discussed (refer to Fig. 4.3), the sign of the scalar product, 
pV- dA, depends on the direction of the velocity vector, V, relative to the area vector, dA. 
The signs of the components of the velocity, V, depend on the coordinate system chosen. 

The momentum equation is a vector equation. As with all vector equations, it may 
be written as three scalar component equations. The scalar components of Eq. 4.17, rel­
ative to an xyz coordinate system, are 

Fx = Fs< \ upd¥+ 
JCV 

[ upV • 
Jcs 

dA (4.18a) 

F> = FS> \QvVpdY + f vpV-
Jcs 

dA (4.18b) 

Fz ^ 4 wpd¥ + 
Jcv 

w pV 
Jcs 

•dA (4.18c) 
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Note that, as we found for the mass conservation equation (Eq. 4.12), the control sur­
face integrals in Eq. 4.17 and Eqs. 4.18 can be replaced with simple algebraic expres­
sions when we have uniform flow at a each inlet or exit, and that for steady flow the 
first term on the right side is zero. 

In Eq. 4.17 and Eqs. 4.18 we must be careful in evaluating the signs of the con­
trol surface integrands: 

1. The sign of pV • dA is determined as per our discussion of Fig. 4.3—outflows are posi­
tive, inflows are negative. 

2. The sign of the velocity components u, v, and w must be carefully evaluated based on 
the sketch of the control volume and choice of coordinate system—unknown velocity 
directions are selected arbitrarily (the mathematics will indicate the validity of the 
assumption). 

We will now look at five Example Problems to illustrate some features of the 
various forms of the momentum equation for a control volume. Example Problem 4.4 
demonstrates how intelligent choice of the control volume can simplify analysis of a 
problem, Example Problem 4.5 involves a problem in which we have significant body 
forces, Example Problem 4.6 explains how to simplify surface force evaluations by 
working in gage pressures, Example Problem 4.7 involves nonuniform surface forces, 
and Example Problem 4.8 involves a problem in which we have unsteady flow. 

EXAMPLE 4.4 Choice of Control Volume for Momentum Analysis 

Water from a stationary nozzle strikes a flat plate as 
shown. The water leaves the nozzle at 15 m/s; the nozzle 
area is 0.01 m 2 . Assuming the water is directed normal to 
the plate, and flows along the plate, determine the hori­
zontal force on the support. 

Plate 

Nozzle 

EXAMPLE PROBLEM 4.4 

GIVEN: Water from a stationary nozzle is directed normal to the plate; subse 
quent flow is parallel to plate. 

Jet velocity, V = 15 i m/s 

Nozzle area, An = 0.01 m 2 

FIND: Horizontal force on the support. 

SOLUTION: 
We chose a coordinate system in defining the problem above. We must now choose a suitable control vol­
ume. Two possible choices are shown by the dashed lines below. 
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In both cases, water from the nozzle crosses the control surface through area A, (assumed equal to the 
nozzle area) and is assumed to leave the control volume tangent to the plate surface in the +y or —y direction. 
Before trying to decide which is the "best" control volume to use, let us write the governing equations. 

F=Fs + FB = ^-[ VpdY + f VpVdA and ^-f pd¥+\ pV • dA = 0 
dt Jcv Jcs at Jcv Jcs 

Assumptions: (1) Steady flow. 
(2) Incompressible flow. 
(3) Uniform flow at each section where fluid crosses the CV boundaries. 

Regardless of our choice of control volume, the flow is steady and the basic equations become 

F= FS + FB= \ VpVdA and pV • dA = 0 
Jcs Jcs 

Evaluating the momentum flux term will lead to the same result for both control volumes. We should 
choose the control volume that allows the most straightforward evaluation of the forces. 

Remember in applying the momentum equation that the force, F, represents all forces acting on the 
control volume. 

. Let us solve the problem using each of the control volumes. 

CV, 
The control volume has been selected so that the area of the left surface 
is equal to the area of the right surface. Denote this area by A. 

The control volume cuts through the support. We denote the com­
ponents of the reaction force of the support on the control volume as Rx 

and Ry and assume both to be positive. (The force of the control volume 
on the support is equal and opposite to Rx and Ry.) Mz is the reaction 
moment (about the z axis) from the support on the control volume. 

Atmospheric pressure acts on all surfaces of the control volume. 
Note that the pressure in a free jet is ambient, i.e., in this case atmos­
pheric. (The distributed force due to atmospheric pressure has been shown on the vertical faces only.) 

The body force on the control volume is denoted as W. 
Since we are looking for the horizontal force, we write the x component of the steady flow momen­

tum equation 

There are no body forces in the x direction, so FB 

Jcs 
= 0, and 

= \ 1 
J c s upVdA 

To evaluate Fs , we must include all surface forces acting on the control volume 

force due to atmospheric 
pressure acts to right 
(positive direction) on 
left surface 

P a m A 

force due to atmospheric 
pressure acts to left 
(negative direction) on 
right surface 

+ 
force of support on 
control volume 
(assumed positive) 

Consequently, Fs = Rx, and 

Rr = 
Jcs 

upV dA upVdA 

u{-pVxdA, 
J Ai 

Rx = -K,pV,Aj 

jFor mass crossing top and bottom 1 
[surfaces, u = 0. 

IA t ® , pV • dA = -pVj <i4[, since direction 

of V, and dX\ are 180°apart. 
(properties uniform over A i) 
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Ry 
15 m 999 kg 15 m O.Ol m 2 N • s 

— x —r x — x x 
s m s kg • m 

Rx = -2 .25 kN 

The horizontal force on the support is 

Kx = -Rx = 2.25 kN 

C V H with Horizontal Forces Shown 

{«! = 15 m/s) 

Rx acts opposite to positive direction assumed.) 

(force on support acts to the right) Kx 

The control volume has been selected so the areas of the left surface and of the right surface are equal to 
the area of the plate. Denote this area by Ap. 

The control volume is in contact with the plate over the entire plate surface. We denote the horizontal 
reaction force from the plate on the control volume as Bx (and assume it to be positive). 

r — 7 - - ! 

.̂l j Palm I 

"I " Bx 

— ! 
L _ J _ _ _ i 

Atmospheric pressure acts on the left surface of the control volume (and on the two horizontal surfaces). 
The body force on this control volume has no component in the x direction. 
Then the x component of the momentum equation, 

yields 

Then 

Fs = \ upV-dA 
Jcs 

Fs, = P«m\ + BX=\ upV • dA = f M(-pV, dA) = -2.25kN 

5 , = ~P*tm\ ~ 2-25 kN 

To determine the net force on the plate, we need a free-body diagram of the plate: 

I F X = 0 = -Bx - pamAp + Rx 

Rx = PatmAp + Bx 
Rx = P a t m \ + ( - P 3 t m

A

P ~ 2-25 kN) = -2.25 kN 

Then the horizontal force on the support is Kx = —Rx = 2.25 kN. 
Note that the choice of CV U resulted in the need for an additional free-body diagram. In general it is 

advantageous to select the control volume so that the force sought acts explicitly on the control volume. 
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Notes: 
/ 

/ 

/ 

This problem demonstrates how thoughtful choice of the 
control volume can simplify use of the momentum equation. 
The analysis would have been greatly simplified if we had 
worked in gage pressures (see Example Problem 4.6). 
For this problem the force generated was entirely due to 
the plate absorbing the jet's horizontal momentum. 

EXAMPLE 4.5 Tank on Scale: Body Force 

A metal container 2 ft high, with an inside cross-sectional area of 1 ft2, weighs 5 lbf 
when empty. The container is placed on a scale and water flows in through an open­
ing in the top and out through the two equal-area openings in the sides, as shown in 
the diagram. Under steady flow conditions, the height of the water in the tank is 
h = 1.9 ft. Your boss claims that the scale will read the weight of the volume of water 
in the tank plus the tank weight, i.e., that we can treat this as a simple statics prob­
lem. You disagree, claiming that a fluid flow analysis is required. Who is right, and 
what does the scale indicate? 

Ay = o . i f r 

v\ = -10 j ft/s 

A, = A, = 0.1ft 2 

EXAMPLE PROBLEM 4.5 

GIVEN: 
Metal container, of height 2 ft and cross-sectional area A = 1 ft2 

rests on scale. Under steady flow conditions water depth is 
Bp= 1.9 ft Water enters vertically at section and leaves 
horizontally through sections Q) and (D. 

weighs 5 lbf when empty. Container 

A{ = 0.1ft' 

VJ = -10./ft/s 
A, = A3 = 0.1ft2 

FIND: Scale reading. 

SOLUTION: 
Choose a control volume as shown; Ry is the force of the scale on the control volume (exerted on the con­
trol volume through the supports) and is assumed positive. 

The weight of the tank is designated W ^ ; the weight of the water in the tank is W H 2 0 . 
Atmospheric pressure acts uniformly on the entire control surface, and therefore has no net effect on 

the control volume. Because of this null effect we have not shown the pressure distribution in the diagram. 

Governing equations: 
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The genera! control volume momentum and mass conservation equations are Eqs. 4.17 and 4.12, respectively,, 

= 0(1) 

Fs+ VpdV+ I VpV-dA 
9t 

= 0(1) 
cv Jcs JL 

I pdV+ pVdA=Q 
' J c v JCS 

Note that for brevity we usually start with the simplest forms (based on the problem assumptions, e.g., 
steady flow) of the mass conservation and momentum equations. However, in this problem, for illustration 
purposes, we start with the most general forms of the equations. 

Assumptions: (1) Steady flow (given). 
(2) Incompressible flow. 

(3) Uniform flow at each section where fluid crosses the CV boundaries. 

We are only interested in the y component of the momentum equation 

FSy+FBy=jcsVpV-dA (1) 

Fs = Ry {There is no net force due to atmospheric pressure.} 

FB = - W H 2 o {Both body forces act in negative y direction.) 

W H 2 O = PgY = yAh 

vPVdA=\ vpV-dA=[ vi-p^dA,) [ v • is negative at ® 1 
Jcs J/t, J/t, [v = 0 at sections (2) and (3) J 

= v (- VA ) ^ a s s u n u n 8 uniform 1 
1 P 1 1 [properties at © 

Using these results in Eq. 1 gives 

Ry - - yAh = v^-pV^) 

Note that vt is the y component of the velocity, so that vt = —Vit where we recall that V, = 10 m/s is the 
magnitude of velocity V,. Hence, solving for Ry, 

Ry = ^tank + + pV^Ay 

- I U P 62.4 lbf 1ft2 1.9 ft 1.94 slug 100 ft2 0.1ft2 M s 2 

= 5 l b f + x x + — x -=- x x 
ft 3 ft 3 s 2 slug • ft 

= 5 lbf + 118.6 lbf +19.4 lbf 
Ry = 143 lbf ^ 5l 

Note that this is the force of the scale on the control volume; it is also the reading, on the scale. We can 
see that the scale reading is due to: the tank weight (5 lbf), the weight of water instantaneously in the 
tank (118.6 lbf), and the force involved in absorbing the downward momentum of the fluid at section CD 
(19.4 lbf). Hence your boss is wrong—neglecting the momentum results in an error of almost 15%. 

This problem illustrates use of the momentum equation in­
cluding significant body forces. 
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EXAMPLE 4.6 Flow through Elbow: Use of Gage Pressures 

Water flows steadily through the 90° reducing elbow 
shown in the diagram. At the inlet to the elbow, the ab­
solute pressure is 220 kPa and the cross-sectional area is 
0.01 m 2 . At the outlet, the cross-sectional area is 0.0025 
m 2 and the velocity is 16 m/s. The elbow discharges to 
the atmosphere. Determine the force required to hold 
the elbow in place. 

EXAMPLE PROBLEM 4.6 

GIVEN: Steady flow of water through 90° reducing elbow. 

px = 220 kPa (abs) A, = 0.01 m 2 V2 = -16 ;" m/s 

FIND: Force required to hold elbow in place. 

0.0025 m 2 

SOLUTION: 
Choose a fixed control volume as shown. Note that we have several surface force computations: px on area 
A, and pim everywhere else. The exit at section (2) is to a free jet, and so at ambient (i.e., atmospheric) 
pressure. We can use a simplification here: If we subtract pam from the entire surface (a null effect as far as 
forces are concerned) we can work in gage pressures, as shown. 

Note that since the elbow is anchored to the supply line, in addition to the reaction forces Rx and Ry 

(shown), there would also be a reaction moment (not shown). 

Patm — 

Governing equations: F = Fs + FR = 

= 0(4) 

VpdV+ VpV-dA 
Cv J c s 

= 0(4) 

I p dV + J pV • dA = 0 
cv J c s 

Assumptions: (1) Uniform flow at each section. 
(2) Atmospheric pressure, pam = 101 kPa (abs). 
(3) Incompressible flow. 
(4) Steady flow (given). 
(5) Neglect weight of elbow and water in elbow. 

On, r Once again we started with the most general form of the governing equations. Writing the x component of 
momentum equation results in 

Fs = f upVdA = f upV 
" J c s J A , 

dA 0 and «2 = 0 } 
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Pi A + R, 
= f upV-

JA, 
dA 

so 

Rx = -plgAi+j upVdA 

= -P\g

A[ +ui(~PViAi) 

Rx = - f t / i - pvfa 
Note that ux is the x component of the velocity, so that u{ = V,. To find V,, use the mass conservation equation: 

pV•dA= f pV•dA+ f pV•dA=0 
Jcs J / t , J A J 

.-. (-pVlAl) + (PV2A2) = 0 

and 
„ A2 16 m 0.0025 . . 
V, = V9 — = — x = 4 m/s 

A, s 0.01 
We can now compute Rx 

Rx = -Pi A ~ PnA i 

-1 .19xl0 5 _N_ 0.01 m 2 _ 999 _kg_ 16 m^ 0.01m 2 N • s 2 

ry X X r\ X X 

m m s kg • m 
Rr = -1.35 kN 

Writing the y component of the momentum equation gives 

Fsy +FB=Ry + FB=\ vPVdA=\ vpV dA fa = 0} 

or 

= ~FBY + V2{pV2A2) 

Ry = ~FBY ~ pViA2 

Note that v2 is the y component of the velocity, so that v2 = — V2, where V2 is me magnitude of the exit 
velocity. 

Substituting known values 

Ry = -Fo - pV2

2A2 
"y 

= ~FB, 
999 kg (16) 2 m 2 0.0025 m 2 N • s 2 

— S - X — y X X 

m s kg • m 
= -FB - 639N 

Neglecting F B v gives 

Ry = - 639 N 

This problem illustrates how using gage pressures simplifies 
_ evaluation of the surface forces in the momentum equation. 
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EXAMPLE 4.7 Flow under a Sluice Gate: Hydrostatic Pressure Force 

Water in an open channel is held in by a sluice gate. Compare the horizontal force of 
the water on the gate (a) when the gate is closed and (b) when it is open (assuming 
steady flow, as shown). Assume the flow at sections (T) and (2) is incompressible and 
uniform, and that (because the streamlines are straight there) the pressure distribu­
tions are hydrostatic. 

0.429 m 
7 m/s 

EXAMPLE PROBLEM 4.7 

GIVEN: Flow under sluice gate. Width = w. 
FIND: Horizontal force (per unit width) on the closed and open gate. 
SOLUTION: 
Choose a control volume as shown for the open gate. Note that it is much simpler to work in gage pres­
sures, as we learned in Example Problem 4.6. 

V, = 1 m/s 

r 

Dy = 3 m 

Water 

D 2 = 0.429 m 
V, = 7 m/s 

mm 

\ 

1 r 

i 

h w 1 

The forces acting on the control volume include: 
• Force of gravity W. 
• Friction force Ff. 
• Components Rx and Ry of reaction force from gate. 
• Hydrostatic pressure distribution on vertical surfaces, assumption (6) 
• Pressure distribution pb(x) along bottom surface (not shown). 
Apply the x component of the momentum equation. 
Governing equation: 

F*w + F/ = 

= 0(2) = 0(3) 

pV-dA 
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Assumptions: (1) Ff negligible (neglect friction on channel bottom). 
(2) FBx = 0. 
(3) Steady flow. 
(4) Incompressible flow (given). 
(5) Uniform flow at each section (given). 
(6) Hydrostatic pressure distributions at ® and © (given). 

Then 

FS, = FR. + FRl +RX= ^ ( - p V j w D , ) + u^wL^) 

The surface forces acting on the CV are due to the pressure distributions and the unknown force RR From 
assumption (6), we can integrate the gage pressure distributions on each side to compute the hydrostatic 
forces FR] and FR, 

fOl fOi y 2 ° ' 1 o 
F R , = \ Pi dA = w pgy dy = pgw — = -pgwDf 

1 Jo Jo 2 „ 2 

where y is measured downward from the free surface of location ® , and 

f ^ 2 f0 2 v 2 

FR = \ p2dA = w\ pgy dy = pgw — 
2 Jo Jo 2 

1 2 

= -pgwFh 

where y is measured downward from the free surface of location © . (Note that we could have used the hy­
drostatic force equation, Eq. 3.10b, directly to obtain these forces.) 

Evaluating Fs gives 

F S X = R X + ^ ( F 4 - D I ) 

Substituting into the momentum equation, with w, = V, and u2 = V2, gives 

Rx + ^ y - ( ° i 2 - F>\) = -pVywDy + PV2

2wD2 

or 

RX =pw(V2

2D2 - YfDO-^iD2 

The second term on the right is the net hydrostatic force on the gate; the first term "corrects" this (and 
leads to a smaller net force) for the case when the gate is open. What is the nature of this "correction"? The 
pressure in the fluid far away from the gate in either direction is indeed hydrostatic, but consider the flow 
close to the gate: Because we have significant velocity variations here (in magnitude and direction), the 
pressure distributions deviate significantly from hydrostatic—for example, as the fluid accelerates under 
the gate there will be a significant pressure drop on the lower left side of the gate. Deriving this pressure 
field would be a difficult task, but by careful choice of our CV we have avoided having to do so! 

We can now compute the horizontal force per unit width, 

w 

w 

9 9 9 ^ | x [ ( 7 ) 2 ( 0 . 4 2 9 ) - ( l ) 2 ( 3 ) ] 4 m x 
m 1 J s 

1 999 kg 9.81 m r,„ , 2 / n „ „ „ , 2 l 2 - - x - f x — x [(3) z - (0.429)2 Jm 2 x 

N • s 
kg • m 

N - s z 

kg • m 

18.0 kN/m - 43.2 kN/m 
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s- = -25.2 kN/m 
w 

RX is the external force acting on the control volume, applied to the CV by the gate. Therefore, the force of 
the water on the gate is K„ where Kx = —Rx. Thus, 

= = 25.2 kN/m 

This force can be compared to the force on the closed gate of 43.2 kN (obtained from the second term 
on the right in the equation above, evaluated with D2 set to zero because for the closed gate there is no 
fluid on the right of the gate)—the force on the open gate is significantly less as the water accelerates 
out under the gate. 

This problem illustrates the application of the momentum 
equation to a control volume for which the pressure is not uni­
form on the control surface. 

EXAMPLE 4.8 Conveyor Belt Filling: Rate of Change of Momentum 
in Control Volume 

A horizontal conveyor belt moving at 3 ft/s receives sand from a hopper. The sand 
falls vertically from the hopper to the belt at a speed of 5 ft/s and a flow rate of 
500 lbm/s (the density of sand is approximately 2700 lbm/cubic yard). The conveyor 
belt is initially empty but begins to fill with sand. If friction in the drive system and 
rollers is negligible, find the tension required to pull the belt while the conveyor is filling. 

EXAMPLE PROBLEM 4.8 

GIVEN: Conveyor and hopper shown in sketch. 

FIND: TM, at the instant shown. 

SOLUTION: 
Use the control volume and coordinates shown. Apply the x component of the momentum equation. 
Governing equations: 
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Assumptions: (1) FSx = TMl = T. 
(2) FBl = 0. 
(3) Uniform flow at section (D. 
(4) All sand on belt moves with V^,, = Vj. -

Then 

T = lj updV + u^-pVyAy) + u2(PV2A2) 

Since w, = 0, and there is no flow at section 

dr J c v 

From assumption (4), inside the CV, u = Vb = constant, and hence 

d f dM< T=Vb-\ pd¥=Vb 

dt Jcv dtJcv 0 dt 

where Ms is the mass of sand on the belt (inside the control volume). This result is perhaps not 
surprising—the tension in the belt is the force required to increase the momentum inside the CV (which is 
increasing because even though the velocity of the mass in the CV is constant, the mass is not). From the 
continuity equation, 

dt 
pd¥ = —M,=-\ pV • dA = m, = 500 lbm/s 

Jcv dt s Jcs s 

Then 
3 ft 500 lbm slug lbf • s 2 

T = Vhmt = — x x — x 
" s s s 32.2 lbm slug • ft 

T = 46.6 lbf 
<-

This problem illustrates application of the momentum equa­
tion to a control volume in which the momentum is changing. 

'Differential Control Volume Analysis 

We have considered a number of examples in which conservation of mass and the 
momentum equation have been applied to finite control volumes. However, the con­
trol volume chosen for analysis need not be finite in size. 

Application of the basic equations to a differential control volume leads to dif­
ferential equations describing the relationships among properties in the flow field. In 
some cases, the differential equations can be solved to give detailed information 
about property variations in the flow field. For the case of steady, incompressible, 
frictionless flow along a streamline, integration of one such differential equation 
leads to a useful (and famous) relationship among speed, pressure, and elevation in a 
flow field. This case is presented to illustrate the use of differential control volumes. 

*This section may be omitted without loss of continuity in the text material. 
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Streamlines 

S 

Fig. 4 .4 Di f ferent ia l con t ro l vo lume for m o m e n t u m ana lys is of f low 
th rough a s t r eam tube. 

Let us apply the continuity and momentum equations to a steady incompressible 
flow without friction, as shown in Fig. 4.4. The control volume chosen is fixed in 
space and bounded by flow streamlines, and is thus an element of a stream tube. The 
length of the control volume is ds. 

Because the control volume is bounded by streamlines, flow across the bounding 
surfaces occurs only at the end sections. These are located at coordinates s and s + ds, 
measured along the central streamline. 

Properties at the inlet section are assigned arbitrary symbolic values. Properties 
at the outlet section are assumed to increase by differential amounts. Thus at s + ds, 
the flow speed is assumed to be V, + dVs, and so on. The differential changes, dp, 
dVs, and dA, all are assumed to be positive in setting up the problem. (As in a free-
body analysis in statics or dynamics, the actual algebraic sign of each differential 
change will be determined from the results of the analysis.) 

Now let us apply the continuity equation and the J - component of the momentum 
equation to the control volume of Fig. 4.4. 

a. Cont inu i ty Equat ion 

= 0(1) 

Basic equation: 

Assumptions: (1) Steady flow. 
(2) No flow across bounding streamlines. 
(3) Incompressible flow, p = constant. 

Then 

(-PVSA) + {p(Vs + dVs)(A + dA)) = 0 

so 

p(Vs + dVs)(A + dA) = PVSA 

On expanding the left side and simplifying, we obtain 

VsdA + A dVs + dA dVs - 0 

(4.19a) 
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But dA dVs is a product of differentials, which may be neglected compared with 
Vs dA or A dVs. Thus 

VsdA + AdVs = Q (4.19b) 

b. S t reamwise C o m p o n e n t of the Momentum Equat ion 
= 0(1) 

Basic equation: FSS + FB,= jj/l "* PDV + J "s pV • dA (4.20) 
5" J c v Jcs 

Assumption: (4) No friction, so FSB is due to pressure forces only. 

The surface force (due only to pressure) will have three terms: 

pA-(p + dp)(A + dA) + ^p + ^jdA (4.21a) 

The first and second terms in Eq. 4.21a are the pressure forces on the end faces of the 
control surface. The third term is FSb, the pressure force acting in the s direction on 
the bounding stream surface of the control volume. Its magnitude is the product 
of the average pressure acting on the stream surface, p + \dp, times the area 
component of the stream surface in the s direction, dA. Equation 4.21a simplifies to 

FSi = -Adp-^dpdA (4.21b) 

The body force component in the s direction is 

FB. = P8S dY = p ( - g s i n 0 ) [ A + ^ \ds 

But sin 6ds = dz, so that 

2 ) 

FBs =-pg^A + ̂ yz (4.21c) 

The momentum flux will be 

Jcs «, pV dA = Vs(-pVsA) + {Vs + dVs){p{Vs + dVs)(A + dA)} 

since there is no mass flux across the bounding stream surfaces. The mass flux factors 
in parentheses and braces are equal from continuity, Eq. 4.19a, so 

[ us pV • dA = V,(-pVsA) + (VS+ dVs)(pVsA) = pVsA dVs (4.22) 

Substituting Eqs. 4.21b, 4.21c, and 4.22 into Eq. 4.20 (the momentum equation) gives 

-A dp - ^dpdA - pgA dz - \pgdAdz = pVsA dVs 

Dividing by pA and noting that products of differentials are negligible compared with 
the remaining terms, we obtain 

file:///pgdAdz
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dp 

P 
gdz = VsdVs=d 

or 

+ gdz = 0 (4.23) 

For incompressible flow, this equation may be integrated to obtain 

— I — — + gz = constant 
p 2 

or, dropping subscript s, 

+ gz = constant (4.24) 

This equation is subject to the restrictions: 

1. Steady flow. 
2. No friction. 
3. Flow along a streamline, 
4. Incompressible flow. 

By applying the momentum equation to an infinitesimal stream tube control vol­
ume, for steady incompressible flow without friction, we have derived a relation 
among pressure, speed, and elevation. This relationship is very powerful and useful. 
It also makes a lot of sense. Imagine, for example, a horizontal frictionless flow. The 
only horizontal force a fluid particle in this flow can experience is that due to a net 
pressure force. Hence, the only way such a particle could accelerate (i.e., increase its 
velocity) is by moving from a higher to a lower pressure region; an increase in velo­
city correlates with a decrease in pressure (and vice versa). This trend is what is indi­
cated in Eq. 4.24: For z = constant, if V increases p must decrease (and vice versa) in 
order that the left side of the equation remains constant. 

Equation 4.24 has many practical applications. For example, it could have been 
used to evaluate the pressure at the inlet of the reducing elbow analyzed in Example 
Problem 4.6 or to determine the velocity of water leaving the sluice gate of Example 
Problem 4.7. In both of these flow situations the restrictions required to derive Eq. 4.24 
are reasonable idealizations of the actual flow behavior. The restrictions must be 
emphasized heavily because they do not always form a realistic model for flow 
behavior; consequently, they must be justified carefully each time Eq. 4.24 is applied. 

Equation 4.24 is a form of the Bernoulli equation. It will be derived again in detail 
in Chapter 6 because it is such a useful tool for flow analysis and because an alternative 
derivation will give added insight into the need for care in applying the equation. 

4.9 Nozzle Flow: Application of Bernoulli Equation 

Water flows steadily through a horizontal nozzle, discharging to the atmosphere. At 
the nozzle inlet the diameter is £>,; at the nozzle outlet the diameter is D2. Derive an 
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expression for the minimum gage pressure required at the nozzle inlet to produce a 
given volume flow rate, Q. Evaluate the inlet gage pressure if D, = 3.0 in., D 2 = 1.0 
in., and the desired flow rate is 0.7 ft 3/s. 

EXAMPLE PROBLEM 4.9 

GIVEN: Steady flow of water through ahorizontal nozzle, 
discharging to the atmosphere. 

D, = 3.0in. D 2 = 1 . 0 i n . p2 = 

FIND: (a) pig as a function of volume flow rate, Q. 
(b) pig for Q = 0.7 ftVs. 

SOLUTION: 

Governing equations: Pi v\ Pi v2 
p 2 P 2 

= 0(1) 

^ t \ c w

P d V /cs 
dA = 0 

Assumptions: (1) Steady flow (given). 
(2) Incompressible flow. 
(3) Frictionless flow. 
(4) Flow along a streamline. 
(5) z, = z2-
(6) Uniform flow at sections CD and (2). 

Apply the Bernoulli equation along a streamline between points © a n d © to evaluate p{. Then 

Pig = Pi- P a t m = Pi ~ P2 = fO ' l " f I ) = f W 

^ 1 / 

- 1 

Apply the continuity equation 

(-pV.A,) + (pV 2/l 2) = 0 

so that 

or V,A, = ^ 2 = 2 

Then 

Since A = TTD2IA, then 

V, A, 
Q 
A, 

P i * 

Pit 

PQl 
2A} 

8pf i 2 

- 1 
P U 

(Note that for a given nozzle the pressure required is proportional to the square of the flow rate—not 
surpising since we have used Eq. 4.24, which shows that p ~ V2 ~ Q2.) With D, = 3.0 in., D2 = 1.0 in., 
andp = 1.94 slug/ft3, 
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Pis 
8 1.94 slug 

1 
TT (3) 4 in . 4 

x Q 2 [ ( 3 . 0 ) 4 - l] 
lbf s z 144 in / 

x — T slug • ft 

„ „ ^ 2 lbf 
P>« = 2 2 4 2 1 T T - I 6 i n / • ft" 

With Q = 0.7 ftVs, then plg = 110 lbf/in.2 _̂ 

This problem illustrates application of the Bernoulli equation 
to a flow where the restrictions of steady, incompressible, fric-
tionless flow along a streamline are reasonable. 

Control Volume Moving with Constant Velocity 

In the preceding problems, which illustrate applications of the momentum equation 
to inertial control volumes, we have considered only stationary control volumes. Sup­
pose we have a control volume moving at constant speed. We can set up two coordi­
nate systems: XYZ, our original stationary (and therefore inertial) coordinates, and 
xyz, coordinates attached to the control volume (also inertial because the control vol­
ume is not accelerating with respect to XYZ). 

Equation 4.10, which expresses system derivatives in terms of control volume 
variables, is valid for any motion of coordinate system xyz (fixed to the control vol­
ume), provided that all velocities are measured relative to the control volume. To em­
phasize this point, we rewrite Eq. 4.10 as 

dN\ _d_ 

dt /system 

Since all velocities must be measured relative to the control volume, in using this 
equation to obtain the momentum equation for an inertial control volume from the 
system formulation, we must set 

dA (4.25) 

N = P„ and 

The control volume equation is then written as 

F=FS + FB = ~ f Vxy.pdY + f VmPVx,,2 dt Jcv *>zy Jcs xyz xyz •dA (4.26) 

Equation 4.26 is the formulation of Newton's second law applied to any inertial control 
volume (stationary or moving with a constant velocity). It is identical to Eq. 4.17 except 
that we have included subscript xyz to emphasize that velocities must be measured rela­
tive to the control volume. (It is helpful to imagine that the velocities are those that 
would be seen by an observer moving with the control volume.) Example Problem 4.10 
illustrates the use of Eq. 4.26 for a control volume moving at constant velocity. 

EXAMPLE 4.10 Vane Moving with Constant Velocity 

The sketch shows a vane with a turning angle of 60°. The vane moves at constant 
speed, U = 10 m/s , and receives a jet of water that leaves a stationary nozzle with 
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speed V = 30 m/s. The nozzle has an exit area of 
0.003 m 2 . Determine the force components that act 
on the vane. 

s0 = 60° 

= 3 f 

EXAMPLE PROBLEM 4.10 

GIVEN: Vane, with turning angle 8 = 60°, moves with constant velocity, V = lOi'm/s. Water from a con­
stant area nozzle, A = 0.003 m 2, with velocity V = 30im/s, flows over the vane as shown. 

FIND". Force components acting on the vane. 

SOLUTION: 
Select a controWolume moving with the vane at con­
stant velocity, U, as shown by the dashed lines. R X and 
R Y are the components of force required to maintain 
the velocity of the control volume at lOi m/s. 

The control volume is inertial, since it is not ac­
celerating (U = constant). Remember that all veloci­
ties must be measured relative to the control volume 
in applying the basic equations. 

Governing equations: a r f 

^ = d c v ^ H s ^ 

Assumptions: (1) Flow is steady relative to the vane. 
(2) Magnitude of relative velocity along the vane is constant: ] VJ| = = V - U. 
(3) Properties are uniform at sections CD and © . 
(4) FBt = 0. 
(5) Incompressible flow. 

The x component of the momentum equation is 

dA 

= 0(4) =0(1) 

d/ dA 

There is no net pressure force, since p a t r a acts on all sides of the CV. Thus 

Rx = f u(-pVdA) + f u(pVdA) =+ul(-pVlAi) + u2(pV2A2) 
JA, JA2 

(AH velocities are measured relative to xyz.) From the continuity equation 

f (-pVdA) + f (pVdA) = (-pV,Ai) + (PV2A2) = 0 
JA, JA7 

Therefore, 
pV,A, = pV2A2 
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All velocities must be measured relative to the CV, so we note that 

V, = V - (/ V 2 = V - < 7 
H , = V - U u2 = (V - £/)cos 6 

Substituting yields 

Rx = [(V - <7)cos 6 - (V - U)](p(V - U)AX) = (V - U)(co& 0 - l)(p(V - U\AX) 

_ (30 - 10) m (0.50 - 1) (999 kg (30 - 10) m 0.003 m 
— x 
s V m 

— x 
s ) kg kg - m 

K, = - 5 9 9 N {to the left) 

Writing the y component of the momentum equation, we obtain 

= 0(1) 

Fh

 + FBy = vnzpdV+ vmpV -dA 

IA11 velocities are 
measured relative to > xyz. \ 

) (Recall pV2A2 = pV, A,. 

Denoting the mass of the CV as M gives 

LRy-Mg=l vpVdA=f vpVdA 

= f v (pVdA) = v2{pV2A2) = v2{pVyAx 

= (V - f/)sinf?(p(V - U)Ay] 

= (30 -10) m x (0.866) x ((999) J«g (30 - 10) m x 0.003 m2\ N s 2 

s ^ m 3 s J kg•m 
Ry- Mg = 1.04 kN (upward) 

Thus the vertical force is 

Ry = 1.04 kN + Mg (upward) 

Then the net force on the vane (neglecting the weight of the vane and water within the CV) is 

R = -0.599(- +1.04;"kN < 

This problem illustrates how to evaluate the momentum equa­
tion for a control volume in constant velocity motion by eval­
uating all velocities relative to the control volume. 

R 

4-5 MOMENTUM EQUATION FOR CONTROL VOLUME 
WITH RECTILINEAR ACCELERATION 

For an inertial control volume (having no acceleration relative to a stationary 
frame of reference), the appropriate formulation of Newton's second law is given by 
Eq. 4.26, 

^ f VXV7 P d Y + l V„. • dA 
dt Jcv x y z p Jcs ^ x y z 

(4.26) 

Not all control volumes are inertial; for example, a rocket must accelerate if it is 
to get off the ground. Since we are interested in analyzing control volumes that may 
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accelerate relative to inertial coordinates, it is logical to ask whether Eq. 4.26 can be 
used for an accelerating control volume. To answer this question, let us briefly review 
the two major elements used in developing Eq. 4.26. 

First, in relating the system derivatives to the control volume formulation 
(Eq. 4.25 or 4.10), the flow field, V(x, y, z, t), was specified relative to the control 
volume's coordinates x, y, and z. No restriction was placed on the motion of the xyz 
reference frame. Consequently, Eq. 4.25 (or Eq. 4.10) is valid at any instant for any 
arbitrary motion of the coordinates x, y, and z provided that all velocities in the equa­
tion are measured relative to the control volume. 

Second, the system equation 

F = 
dP 
dt 

(4.2a) 
'system 

where the linear momentum of the system is given by 

System = L Sdm = L JpdV (4-2b) 

•'Af(system) -^(system) 

is valid only for velocities measured relative to an inertial reference frame. Thus, if 
we denote the inertial reference frame by XYZ, then Newton's second law states that 

F = 
dt 

(4.27) 
/system 

Since the time derivatives of PXYZ and P ^ are not equal when the control vol­
ume reference frame xyz is accelerating relative to the inertial reference frame, 
Eq. 4.26 is not valid for an accelerating control volume. 

To develop the momentum equation for a linearly accelerating control volume, it 
is necessary to relate P m of the system to Pm of the system. The system derivative 
dPxyJdt can then be related to control volume variables through Eq. 4.25. We begin by 
writing Newton's second law for a system, remembering that the acceleration must be 
measured relative to an inertial reference frame that we have designated XYZ. We write 

VXYZdm= [ ^ ^ d m (4.28) 
'system 

F = 
dP xrz dt --( 

dt J M ( s ; 
ystem) 'M(system) dt 

The velocities with respect to the inertial {XYZ) and the control volume coordi­
nates (xyz) are related by the relative-motion equation 

VXYZ = V M + Vrf (4-29) 

where V ryis the velocity of the control volume reference frame. 
Since we are assuming the motion of xyz is pure translation, without rotation, 

relative to inertial reference frame XYZ, then 

where 

dV XYZ 
dV, 

dt = a XYZ 
xyz dV, 

if dt dt = axyz + arf 
(4.30) 

aXYZ is the rectilinear acceleration of the system relative to inertial reference frame 
XYZ, 

d^ is the rectilinear acceleration of the system relative to noninertial reference 
frame xyz (i.e., relative to the control volume), and 
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is the rectilinear acceleration of noninertial reference frame xyz (i.e., of the 
control volume) relative to inertial frame XYZ. 

Substituting from Eq. 4.30 into Eq. 4.28 gives 

r d V x y z 
L dm + — dm 

M(system) JAf(system) dt 

or 

- f - dPxyz^ 

F - I arf dm= —— 
•W(system) ' dt 

where the linear momentum of the system is given by 

(4.31a) 
system 

Pxyz) = f vxy*dm=\ V pdV (4.31b) 
x y z > system Jw(system) y- Jv(system) y z 

and the force, F, includes all surface and body forces acting on the system. 
To derive the control volume formulation of Newton's second law, we set 

N = Pm and r, = Vm 

From Eq. 4.25, with this substitution, we obtain 

dt = o \ l ^ p d ¥ + \j^P^dA (432) 

system 

Combining Eq. 4.31a (the linear momentum equation for the system) and Eq. 4.32 
(the system-control volume conversion), and recognizing that at time t0 the system 
and control volume coincide, Newton's second law for a control volume accelerating, 
without rotation, relative to an inertial reference frame is 

* - L s * p d v = 7 , lev ̂ p d¥+L ^p^ • 
Since F = Fs + FB, this equation becomes 

ps + p*~ lev ~atpdV = \t lev ^ P d V + Ics ̂  P ^ • A ( 4 3 3 ) 

Comparing this momentum equation for a control volume with rectilinear accelera­
tion to that for a nonaccelerating control volume, Eq. 4.26, we see that the only dif­
ference is the presence of one additional term in Eq. 4.33. When the control volume 
is not accelerating relative to inertial reference frame XYZ, then drf = 0, and Eq. 
4.33 reduces to Eq. 4.26. 

The precautions concerning the use of Eq. 4.26 also apply to the use of Eq. 4.33. 
Before attempting to apply either equation, one must draw the boundaries of the con­
trol volume and label appropriate coordinate directions. For an accelerating control 
volume, one must label two coordinate systems: one (xyz) on the control volume and 
the other (XYZ) an inertial reference frame. 

In Eq. 4.33, Fs represents all surface forces acting on the control volume. Since 
the mass within the control volume may vary with time, both the remaining terms on 
the left side of the equation may be functions of time. Furthermore, the acceleration, 
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arf, of the reference frame xyz relative to an inertial frame will in general be a func­
tion of time. 

All velocities in Eq. 4.33 are measured relative to the control volume. The mo­
mentum flux, Vxyz- pVjyz • dA, through an element of the control surface area, dA, is a 
vector. As we saw for the nonaccelerating control volume, the sign of the scalar prod­
uct, pVm • dA, depends on the direction of the velocity vector, V ^ , relative to the 
area vector, dA. 

The momentum equation is a vector equation. As with all vector equations, it may 
be written as three scalar component equations. The scalar components of Eq. 4.33 are 

r d r r 
Fsx 

+ FBX~ Jcv n* dt lcs

 U*yz P^xyz ' 
dA (4.34a) 

% + - \ a^pd¥ = ^-
Jcv 17 y dt Lv^pdv+. \cs

vw Pvm • dA (4.34b) 

Fs2 

[ arfpd¥ = ^-
Jcv n- dt lcs^zPKyz •dA (4.34c) 

We will consider two applications of the linearly accelerating control volume: 
Example Problem 4.11 will analyze an accelerating control volume in which the 
mass contained in the control volume is constant; Example Problem 4.12 will analyze 
an accelerating control volume in which the mass contained varies with time. 

EXAMPLE 4.11 Vane Moving with Rectilinear Acceleration 

A vane, with turning angle 0 = 60°, is attached to a cart. The cart and vane, of mass 
M = 75 kg, roll on a level track. Friction and air resistance may be neglected. The 
vane receives a jet of water, which leaves a stationary nozzle horizontally at V = 35 
m/s. The nozzle exit area is A = 0.003 m 2 . Determine the velocity of the cart as a 
function of time and plot the results. 

EXAMPLE PROBLEM 4.11 

GIVEN: Vane and cart as sketched, with M = 75 kg. 

p = 999 k g / m 3 

—*• V = 35 m/s 
- ^ B A = 0.003 m 2 

6 0 c 

M iCV 

FIND". 1/(0 and plot results. 

SOLUTION: 
Choose the control volume and coordinate systems shown for the analysis. Note that XY is a fixed frame, 
while frame xy moves with the cart. Apply the x component of the momentum equation. 
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= 0(1) = 0(2) = 0(4) 

Governing equation: ^ S x +^Bx - j a^xpdV = Jj|" uiyzpdY+ j pV^ • dA 

Assumptions: (1) Fs = 0, since no resistance is present 
(2) FB\ = 0. 
(3) Neglect the mass of water in contact with the vane compared to the cart mass. 
(4) Neglect rate of change of momentum of liquid inside the CV. 

(5) Uniform flow at sections (T) and (2). 
(6) Speed of water stream is not slowed by friction on the vane, so | V, 
(7) A2 = A, = A. 

, - V 

Then, dropping subscripts rf and xyz for clarity (but remembering that all velocities are measured relative 
to the moving coordinates of the control volume), 

- f axpd¥ = uy (-pVyAy) + u2 (pV2 A 2) 
Jcv 

= (V - U){-p(y - U)A] + (V - [/)cos0{p(V - U)A) 

= -p(V - U)2A + p(V - U)2 A cos6 

For the left side of this equation we have 

-[ ax pd¥ = -axMcv = -axM = -^-M 
Jcv dt 

so that 

or 

-M— = -p(V - U)2A + p(V - U)2Acos8 
dt 

M^ = (\-cos 0)p(V-U)2A 

Separating variables, we obtain 

dU _ (1 - cos 0)pA 
M 

dt = bdt where b = 
(1 - cos 6)pA 

M 
(v - uy 

Note that since V = constant, dU = -d(V - U). Integrating between limits U = 0 a t ; = 0, and U = U at 
[ = / , 

r y du ru -d{v - u) cu du _ rL 

Jo (V - U)2 ~ Jo (V - U)2 ~ (V 
- U)\0

 J° bdt = bt 
I 1 U 

Solving for U, we obtain 

Evaluating Vb gives 

iV-U) V V(V-U) 

Vbt 

bt 

U_ _ 
V ~ 1 + Vbt 
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Vb = V 
(1 - cos d)pA 

V b = 35rnx ( 1 - 0 5 ) y 999 kg x 0.003 m 2

 = ^ g_, 
75 kg 

Thus 

Plot: 

U 0.699* 
V 1 + 0.699? (t in seconds) U(t) 

The graph was generated from an Excel workbook. This 
workbook is interactive: It allows one to see the effect of 
different values of p, A, M, and 6 on U/V against time t, 
and also to determine the time taken for the cart to reach, 
for example, 95% of jet speed. 

EXAMPLE 4.12 Rocket Directed Vertically 

A small rocket, with an initial mass of 400 kg, is to be launched vertically. Upon ig­
nition the rocket consumes fuel at the rate of 5 kg/s and ejects gas at atmospheric 
pressure with a speed of 3500 m/s relative to the rocket. Determine the initial acceler­
ation of the rocket and the rocket speed after 10 s, if air resistance is neglected. 

EXAMPLE PROBLEM 4.12 

GIVEN: Small rocket accelerates vertically from rest. 
Initial mass, MQ = 400 kg. 
Air resistance may be neglected. 
Rate of fuel consumption, me = 5 kg/s. / V •- X 

Exhaust velocity, V, = 3500 m/s, relative to rocket, cv J 
leaving at atmospheric pressure. 1 

FIND." (a) Initial acceleration of the rocket. 1 
(b) Rocket velocity after 10 s. 

SOLUTION: ) ( Choose a control volume as shown by dashed lines. Because the control vol­

v y ume is accelerating, define inertial coordinate system XY and coordinate sys­ v y 
tem xy attached to the CV. Apply the y component of the momentum equation. 

' 1 . . . 
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Governing equation: Fs + FB - \ arf pdY = | - f vxyzpd¥+ f » pV • dA 
Y * J C V

 y at *cv J C S 

Assumptions: (1) Atmospheric pressure acts on all surfaces of the CV; since air resistance is neglected, 
Fs = 0. 

(2) Gravity is the only body force; g is constant. 
(3) Flow leaving the rocket is uniform, and Ve is constant. 

Under these assumptions the momentum equation reduces to 

% ~ Jcv V d ¥ = | Jcv ^ P d ¥ + Jcs V x y z P ^ ^ ( 1 ) 

® ® © © 
Let us look at the equation term by term: 

® FB - - gpd¥ = -g\ p d¥ =-gMC\ {since g is constant} 
y Jcv Jcv 

The mass of the CV will be a function of time because mass is leaving the CV at rate m(. To determine 
M<y as a function of time, we use the conservation of mass equation 

d_ 
dt 

^ f pd¥+\ pV dA = 0 
at Jcv Jcs 

J c v ^ H s ^ ^ - - J J ' V * ) -
The minus sign indicates that the mass of the CV is decreasing with time. Since the mass of the CV is 

only a function of time, we can write 
dMcv 

— — = -m, 
dt 

To find the mass of the CV at any rime, /, we integrate 

dMcv = - f me dt where at / = 0, Mcv = M 0, and at t = t, M^y = M 
J O 

Then, Af — M 0 = - met, or M = M 0 - met. 

Substituting the expression for M into term @ , we obtain 

FB=-\ SPdY = -gMcy = -g(M0 - met) " Jcv 

CD - L a * > p d ¥ 

The acceleration, a^, of the CV is that seen by an observer in the XY coordinate system. Thus is not a 
function of the coordinates xyz, and 

~\cv% pd¥ = ~arfy\cv

pd¥ = - % M c v = ~%{M0 - met) 

j t L v ^ p d v 

This is the time rate of change of the y momentum of the fluid in the control volume measured relative to 
the control volume. 

Even though the y momentum of the fluid inside the CV, measured relative to the CV, is a large num­
ber, it does not change appreciably with time. To see this, we must recognize that: 
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(1) The unburned fuel and the rocket structure have zero momentum relative to the rocket. 
(2) The velocity of the gas at the nozzle exit remains constant with time as does the velocity at various 

points in the nozzle. 

Consequently, it is reasonable to assume that 

hLv>*pd¥m0 

j PVxyz-dA = \ vJpV^ dA) = - v J j p V dA) 

The velocity (relative to the control volume) is — Ve (it is in the negative y direction), and is a constant, 
so was taken outside the integral. The remaining integral is simply the mass flow rate at the exit (positive 
because flow is out of the control volume), 

and so 

xyi d A = -VeK 

Substituting terms ® through ® into Eq. 1, we obtain 

-g(M0 - met) - a* (M0 - met) = -Veme 

or 

At time / = 0, 

Veme 

V.m. 3500 m 5 kg 1 9.81 m - e e - g = — x — x 
>'t=0 M, s 400 kg 

'I t=0 

The acceleration of the CV is by definition 

33.9 m/s' 

_ dVcv 

dt 
Substituting from Eq. 2, 

dVC\ =

 Ve™e 
dt M0 - met 

- g 

Separating variables and integrating gives 

V c v = dVcy =\ / e . - gdt = -Ve In 
Jo Jo M0 - met Jo 

M0 - met gt 

At t = 10 s, 

3500 m , V c v = - — x In 

Vcv = 369 m/s _̂ 

350 kg 
400 kg 

9.81 jn x 10 s 
„2 

(2) 

^ C V ^ = 10 5 
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The position vector, r, locates each mass or volume element of the system wiujj 
respect to the coordinate system. The torque, T, applied to a system may be written 

f = F X ^ + L / x g d m + 4aft (4 .3cJ 
JAi ( sys t em) 

where Fs is the surface force exerted on the system. 
The relation between the system and fixed control volume formulations is 

=lLvpd¥+L7ip*dA (4-io] 

where 

dt System 3/ J C V 

-J, N. system 
W(system) 

r)dm 

Vpd¥+\ TxVpVdA 
Jcs 

If we set N = H, then 77 = r X V, and 

dti) 3 f -
— = — r : 
^ J dt Jcv 

y system 
Combining Eqs. 4.3a, 4.3c, and 4.45, we obtain 

'Af(system) dt Jcv 

Since the system and control volume coincide at time t0, 

f = f c v 

and 

(4.45) 

f x F. + I J Ja< r xgdm + fh.f. =— [ 7xVpdV+\ rxVpVdA 
, 5 s h a f t 3? Jcv r Jcs P 

r*Fs + ]cvr xgpd¥+Tshli{l 

r)r J( 
7xVpd¥+[ r x V pV • dA (4.46) 

9f Jcv Jcs 

Equation 4.46 is a general formulation of the angular-momentum principle for an in­
ertial control volume. The left side of the equation is an expression for all the torques 
that act on the control volume. Terms on the right express the rate of change of angu­
lar momentum within the control volume and the net rate of flux of angular momen­
tum from the control volume. All velocities in Eq. 4.46 are measured relative to the 
fixed control volume. 

For analysis of rotating machinery, Eq. 4.46 is often used in scalar form by 
considering only the component directed along the axis of rotation. This application! 
is illustrated in Chapter 10. 

The application of Eq. 4.46 to the analysis of a simple lawn sprinkler is illustrated! 
in Example Problem 4.14. This same problem is considered in Example Problem 4.151 
(on the CD) using the angular-momentum principle expressed in terms of a rotating 
control volume. 

EXAMPLE 4.14 Lawn Sprinkler: Analysis Using Fixed Control Volume 

A small lawn sprinkler is shown in the sketch below. At an inlet gage pressure of 
20 kPa, the total volume flow rate of water through the sprinkler is 7.5 liters per minute 
and it rotates at 30 rpm. The diameter of each jet is 4 mm. Calculate the jet speed 
relative to each sprinkler nozzle. Evaluate the friction torque at the sprinkler pivot. 
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Q = 7.5 L/min 
to = 30 rpm 

rei 

« = 3 0 A ; 

^ Psuppiy = 2 0 k P a (gage) 
,R = 150 mm 

EXAMPLE PROBLEM 4.14 

GIVEN: Small lawn sprinkler as shown. 

FIND: (a) Jet speed relative to each nozzle, 
(b) Friction torque at pivot. 

SOLUTION: 
Apply continuity and angular momentum 
equations using fixed control volume enclos­
ing sprinkler arms. 

Q = 7.5 L/min 
to = 30 rpm 

a 

(Control vo lume 
is f ixed 

wrt XYZ) ^ P s u p p t y = 20 kPa (gage) 

.R = 150 m m 

Governing equations: 
= 0(1) 

I p dV + f pV • dA = 0 

Jcs 
rxFs+\ rxgpdV + T^ 

JCV df J( 
r x V p d ¥ + f ? x VpVd!A (1) 

cv Jcs 

where all velocities are measured relative to the inertial coordinates XYZ. 

Assumptions: (1) Incompressible flow. 
(2) Uniform flow at each section. 
(3) a> = constant. 

From continuity, the jet speed relative to the nozzle is given by 

Q Q 4 
"rel 2A 

1 
= — X 

jet 

7.5 
2 

1 m 10 6 mm 2 

2 T 
n (4) mm 1000 L m 60s 

Vni =4.97 m / s ^ l i s l 

Consider terms in the angular momentum equation separately. Since atmospheric pressure acts on the en­
tire control surface, and the pressure force at the inlet causes no moment about O, r X Fs = 0. The mo­
ment1; of the body (i.e., gravity) forces in the two arms are equal and opposite and hence the second term 
on the left side of the equation is zero. The only external torque acting on the CV is friction in the pivot. It 
opposes the motion, so 

'shaft = -TfK (2) 

Our next task is to determine the two angular momentum terms on the right side of Fiq. 1. Consider the 
unsteady term: This is the rate of change of angular momentum in the control volume. It is clear that al­
though the position r and velocity V of fluid particles are functions of time in XYZ coordinates, because 



142 CHAPTER 4 / BASIC EQUATIONS IN INTEGRAL FORM FOR A CONTROL VOLUME 

the sprinkler rotates at constant speed the control volume angular momentum is constant in XYZ coordi-; 
nates, so this term is zero; however, as an exercise in manipulating vector quantities, let us derive this 
result. Before we can evaluate the control volume integral, we need to develop expressions for the instan­
taneous position vector, r, and velocity vector, V (measured relative to the fixed coordinate system XYZ) 
of each element of fluid in the control volume. 

Isometric v iew Plan view 

OA lies in the XY plane; AB is inclined at angle a to the XY plane; point B' is the projection of point B on 
the XY plane. 

We assume that the length, L, of the tip AB is small compared with 
the length, R, of the horizontal arm OA. Consequently we neglect the 
angular momentum of the fluid in the tips compared with the angular 
momentum in the horizontal arms. 

Consider flow in the horizontal tube OA of length R. Denote the 
radial distance from 0 by r. At any point in the tube the fluid velocity 
relative to fixed coordinates XYZ is the sum of the velocity relative to 
the tube V, and the tangential velocity « x r. Thus 

V = l(V, cos 8 - ru> sin 6) + J{Vt sin 8 + rm cos 0) 

(Note that 8 is a function of time.) The position vector is 

r = Ir cos 6 + Jr sin 8 

and 

r x V = K(r2a) cos 2 6 + r2a sin 2 8) = Kr2<o 

Then 

and 

rxVpd¥ = J " " kr2copAdr =K^-p/ 

3 ' KA 
7xVpd¥ = 

dt 
k ^ p A 

3 
= 0 (3) 

where A is the cross-sectional area of the horizontal tube. Identical results are obtained for the other hori­
zontal tube in the control volume. We have confirmed our insight that the angular momentum within the 
control volume does not change with time. 

Now we need to evaluate the second term on the right, the flux of momentum across the control 
surface. There are three surfaces through which we have mass and therefore momentum flux; the supply 
line (for which r x V = 0becauser = 0) and the two nozzles. Consider the nozzle at the end of 
branch OAB. For L « R, we have 
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I Fjet = rB = rj (IrCOS0+ J r s i n 0 ) | r = R = J/?cos0 + /Rsinfl 

and for the instantaneous jet velocity Vj we have 

Vj = 'Kei + t̂ip = 'Kei c o s « sin 0 - yv r e l cos a cos 0 + J \ V r e l sin a - IcoR sin 0 + JioR cos 0 

V,- = /(V r e l cos a - «#) sin 0 - J(VKX cos a - wR) cos 0 + KVni sin a 

FB x Vj = IRVn] sin a sin 0 - v7?Vrel sin a cos 0 - KR(Vni cos a - a>R)(s'm2 0 + cos 2 0) 

fB x V;- = //?Vrei sin a sin 0 - JRV^ sin a cos 0 - KR(Vn] cos a - w/f) 

The flux integral evaluated for flow crossing the control surface at location B is then 

J r x Vj pV • dA = [iRV^ sin a sin 0 - i / ? V r e , sin a cos 0 - KR(VK[ cos a - w f l ) ] p y 

The velocity and radius vectors for flow in the left arm must be described in terms of the same unit vectors 
used for the right arm. In the left arm the / and J components of the cross product are of opposite sign, 
since sin (0 + IT) = - s in (0) and cos (0 + TT) = - cos (0). Thus for the complete CV, 

[ 7xVjpVdA = -KR(Vni cos a - wR)pQ 
Jcs 

Substituting terms (2), (3), and (4) into Eq. 1, we obtain 

-TfK = -KR(Vn] cos a - (oR)pQ 

(4) 

or 
7} = R(Vni cos a - coR)pQ 

This expression indicates that when the sprinkler runs at constant speed the friction torque at the sprinkler 
pivot just balances the torque generated by the angular momentum of the two jets. 

From the data given, 

I 

Substituting gives 

30 rev 150 mm 2-n- rad min m 
mR - x x — x x = 0.471 m/s 

rev 60 s 1000 mm 

150 mm (4.97 m cos 30° 0.471 m ^ 999 kg 7.5 L 
— x 
s 

m 3 min N - s 3 

x x x x 

s ) m" 
m 

min 

1000 L 60s kg-m 1000 mm 

Tf = 0.0718 N • m ^ 

This problem illustrates use of the angular momentum princi­
ple for an inertial control volume. Note that in this example 
the fluid particle position vector r and velocity vector V are 
time-dependent (through 0) in XYZ coordinates. This problem 
will be solved again using a noninertial (rotating) xyz coordinate 
system in Example Problem 4.15 (on the CD). 
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4-8 THE FIRST LAW OF THERMODYNAMICS 

The first law of thermodynamics is a statement of conservation of energy. Recall thatf 
the system formulation of the first law was 

Q-W = 
''system 

where the total energy of the system is given by 

^system 
- l , 

and 

edm = e p d¥ 
M(system) Jv(system) 

e = u + — + gz 

(4.4a) 

(4.4b) 

In Eq. 4.4a, the rate of heat transfer, Q, is positive when heat is added to the system* 
from the surroundings; the rate of work.W, is positive when work is done by the sys-' 
tern on its surroundings. 

To derive the control volume formulation of the first law of thermodynamics, we set 

N - E and 17 = e 
in Eq. 4.10 and obtain 

—^ = - \ epd¥+\ epVdA 
dt Jcv Jcs dt J system 

(4.53) 

Since the system and the control volume coincide at f0, 

\q-w] =\q-w] 
Jsystem L control volume 

In light of this, Eqs. 4.4a and 4.53 yield the control volume form of the first law of 
thermodynamics, 

Q-W = ^-\ epd¥+\ epVdA 
?t Jcv Jcs 

(4.54) 

where 

e = u + — + gz 

Note that for steady flow the first term on the right side of Eq. 4.54 is zero. 
Is Eq 4.54 the form of the first law used in thermodynamics? Even for steady 

flow, Eq. 4.54 is not quite the same form used in applying the first law to control vol­
ume problems. To obtain a formulation suitable and convenient for problem solu­
tions, let us take a closer look at the work term, VV. 

Rate of Work Done by a Control Volume 

The term W in Eq. 4.54 has a positive numerical value when work is done by the 
control volume on the surroundings. The rate of work done on the control volume is 
of opposite sign to the work done by the control volume. 

Equation for Rotating Control Volume (CD-ROM) 



4-8 THE FIRST LAW OF THERMODYNAMICS 145 

The rate of work done by the control volume is conveniently subdivided into 
four classifications, 

W = WS + W n o r r a a l + Wshear + Wolher 

Let us consider these separately: 

1. Shaft Work 

We shall designate shaft work Ws and hence the rate of work transferred out through 
the control surface by shaft work is designated Ws. Examples of shaft work are the 
work produced by the steam turbine (positive shaft work) of a power plant, and the 
work input required to run the compressor of a refrigerator (negative shaft work). 

2. Work Done by Normal S t resses at the Contro l Surface 

Recall that work requires a force to act through a distance. Thus, when a force, F, 
acts through an infinitesimal displacement, ds, the work done is given by 

8W = Fds 

To obtain the rate at which work is done by the force, divide by the time increment, 
At, and take the limit as At —* 0. Thus the rate of work done by the force, F, is 

W " hm = lim or W = F • V 
A / - > 0 At A /H .0 At 

We can use this to compute the rate of work done by the normal and shear stresses. 
Consider the segment of control surface shown in Fig. 4.6. For an elementary area dA 
we can write an expression for the normal stress force dFnonni[: It will be given by 
the normal stress a,m multiplied by the vector area element dA (normal to the control 
surface), 

Hence the rate of work done on the area element is 

^ n o r m a l ' V = °"m> dA • V 

Since the work out across the boundaries of the control volume is the negative of the 
work done on the control volume, the total rate of work out of the control volume due 
to normal stresses is 

^normal = -Jcs <r„„dA-V = -J ff„„V • dA 

3 . Work Done by Shear St resses at the Contro l Surface 

Just as work is done by the normal stresses at the boundaries of the control volume, 
so may work be done by the shear stresses. 

Normal stress force Control surface 

Shear stress force 

Fig. 4.6 Normal and shear stress forces. 
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Wc shear = - f T-VdA 
Jcs 

- J , T • VdA - [ T • VdA - [ f • VdA 
A(shafls) J/t(solid surface) JA(ports) 

We have already accounted for the first term, since we included Ws previously. Atj 

solid surfaces, V = 0, so the second term is zero (for a fixed control volume). Thus, 

shear T • VdA 
A (ports) 

This last term can be made zero by proper choice of control surfaces. If we choose a 
control surface that cuts across each port perpendicular to the flow, then dA is parallel 
to V. Since T is in the plane of dA, T is perpendicular to V. Thus, for a con­
trol surface perpendicular to V, 

T • V = 0 and W s h e a r = 0 

4. Other Work 

Electrical energy could be added to the control volume. Also electromagnetic energy] 
e.g., in radar or laser beams, could be absorbed. In most problems, such contributions] 
will be absent, but we should note them in our general formulation. 

With all of the terms in W evaluated, we obtain 

(4.55) 

Control Volume Equation 

Substituting the expression for W from Eq. 4.55 into Eq. 4.54 gives 

Q-Ws+jcsa„nV-dA-Wshear - W o t h e r = Jt\cyepdV + pV • 

As shown in Fig. 4.6, the shear force acting on an element of area of the controlf 
surface is given by 

^ s h e a r = * dA 

where the shear stress vector, f, is the shear stress acting in some direction in the; 
plane of dA. 

The rate of work done on the entire control surface by shear stresses is given by 

[ rdA • V = [ T-VdA 
Jcs Jcs 

Since the work out across the boundaries of the control volume is the negative 
of the work done on the control volume, the rate of work out of the control volume ; 

due to shear stresses is given by 

This integral is better expressed as three terms 
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Rearranging this equation, we obtain 

Q-Ws- W s h M r - Wolhe! =jJcwepdY +jcsePV dA-^a^V 
dt Jcv ' JCS 

Since p = l/v, where v is specific volume, then 

dA 

\cs*nJdA = \csO-n, 

Hence 

Q-Ws- W s h e a r - VVo t h e r =-^epd¥ + (e - ann v) pV dA 

Viscous effects can make the normal stress, a„„, different from the negative of the 
thermodynamic pressure, —p. However, for most flows of common engineering inter­
est, a„„ — -p. Then 

Q - W s - W'shear " ^other = p dY +j"^ (e + pV) pV dA 

Finally, substituting e = u + V2/2 + gz into the last term, we obtain the familiar 
form of the first law for a control volume, 

Q - W s - Wshear " ^ c 'oUiei pV • dA (4.56) 

Each work term in Eq. 4.56 represents the rate of work done by the control volume 
on the surroundings. Note that in thermodynamics, for convenience, the combination 
u + pv (the fluid internal energy plus what is often called the "flow work") is usually 
replaced with enthalpy, h = u + pv (this is one of the reasons h was invented). 

EXAMPLE 4.16 Compressor: First Law Analysis 

Air at 14.7 psia, 70°F, enters a compressor with negligible velocity and is discharged 
at 50 psia, 100°F through a pipe with 1 ft 2 area. The flow rate is 20 lbm/s. The power 
input to the compressor is 600 hp. Determine the rate of heat transfer. 

EXAMPLE PROBLEM 4.16 

G l\!EN: Air enters a compressor at CD and leaves 
at © with conditions as shown. The 
air flow rate is 20 lbm/s and the power 
input to the compressor is 600 hp. 

FIND: Rate of heat transfer. 

SOLUTION: 

Tx = 70°F 

p 2 = 50 psia 

r 2 = 100°F 

Governing equations: 
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= 0(1) 

j j / J p dV + j pV 

= 0 (4) = 0(1) 

Q-Ws- Wsy/= j/j^epdV+ j j u + po 
V2 \ - -

+ y +8z\pV-dA 

Assumptions: (1) Steady flow 
(2) Properties uniform over inlet and outlet sections. 
(3) Treat air as an ideal gas, p = pRT. 
(4) Area of CV at (T) and (2) perpendicular to velocity, thus W s h e a r = 0. 
(5) Zi = Z2. 

(6) Inlet kinetic energy is negligible. 

Under the assumptions listed, the first law becomes 
V2 } 

Q-Ws=\ \u + pv + — + GZ pV • dA 

or 

r ( v2
 1 

I 
JCS\ 2 

\h + — + GZ 
LCS{ 2 J 

pV dA 

Q = WS + 

For uniform properties, assumption (2), we can write 

= 0(6) 

pV dA 

Q=W, + \hl + ^ + «z,|(-p,V,A,) + | / i2 + f + £z 2 |(p 2V 2A 2) 

For steady flow, from conservation of mass, 

f PV 
JCS 

dA = 0 

Therefore, — (pxV,A|) + (.PiV2A2) = 0, or pxVxAx = p2V2A2 = m. Hence we can write 

= 0(5) 

Q=W: + rh (/h - A,) + y + G(Z2^ZX) 

Assume that air behaves as an ideal gas with constant CP. Then h2- hx = c„(T2 - 7",), and 

Q=Ws + m vi 
From continuity V2 = rh/p2A2 . Since p 2 = p 2 /?r 2, 

V2 = x 
ftz m _ « 7 ^ _ 2 0 ] b m _ J _ 53.3 ft • lbf 560°R _m? 

Al P2 s X 1 ft 2 X lbm °R X X 50 lbf 

V2 = 82.9 ft/s 

Q=Ws + mcJT1-Tx) + m^-
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Note that power input is to the CV, so Ws = —600 hp, and 

Btu 600 hp 550 ft • lbf 
Q = - x x 

20 lbm 0.24 Btu 
+ x x 30 R 

h p s 778ft lbf s l b m ° R 
20 lbm (82.9) 2 ft 2 slug + x- -—- x - — x Btu , lbf • s 2 

s 2 s 2 " 32.2 lbm ~ 778 ft • lbf " slug • ft 

Q = - 2 7 7 Btu/s < 
{heat rejection} Q 

This problem illustrates use of the first law of thermodynam­
ics for a control volume. It is also an example of the care that 
must be taken with unit conversions for mass, energy, and 
power. 

EXAMPLE 4.17 Tank Filling: First Law Analysis 

A tank of 0.1 m 3 volume is connected to a high-pressure air line; both line and tank 
are initially at a uniform temperature of 20°C. The initial tank gage pressure is 100 
kPa. The absolute line pressure is 2.0 MPa; the line is large enough so that its temper­
ature and pressure may be assumed constant. The tank temperature is monitored by a 
fast-response thermocouple. At the instant after the valve is opened, the tank temper­
ature rises at the rate of 0.05°C/s. Determine the instantaneous flow rate of air into 
the tank if heat transfer is neglected. 

EXAMPLE PROBLEM 4.17 

GIVEN: Air supply pipe and tank as shown. At t = 0 + , 8779/ = 0.05°C/s. 

FIND: m at t = 0 + . 

SOLUTION: 
Choose CV shown, apply energy equation. 
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= 0 ( 1 ) = 0 ( 2 ) = 0 ( 3 ) = 0 ( 4 ) 

Governing equation: yf- j(- W^/- Wa^= Ĵ j" epdY+ j (e + pv)pV • dA 

= 0 ( 5 ) = 0 ( 6 ) 

Assumptions: ( 1 ) Q = 0 (given). 
( 2 ) W, = 0. 
( 3 ) ^ = 0 . 

( 4 ) W o t t K r = 0 . 

( 5 ) Velocities in line and tank are small. 
( 6 ) Neglect potential energy. 
(7) Uniform flow at tank inlet. 
(8) Properties uniform in tank. 
( 9 ) Ideal gas, p = pRT, du = cv dJ. 

Then 

V uuaApd¥ + (u +pv)\nne(-PVA) = 0 
dt Jcv 

This expresses the fact that the gain in energy in the tank is due to influx of fluid energy (in the form of en­
thalpy h = u + pv) from the line. We are interested in the initial instant, when T is uniform at 2 0 ° C , so 
"vuk = " u n e = "> the internal energy at 7"; also, pv]ix = RTllM = RT, and 

— f upd¥ + (u +RT)(-pVA) = 0 
dt Jcv 

Since tank properties are uniform, d/dt may be replaced by dldt, and 

— (uM) = (u + RT)m 
dt 

(where M is the instantaneous mass in the tank and m ' pVA is the mass flow rate), or 

dM du 
u + M— = um + RTm (\) 

dt dt K ' 
The term dMIdt may be evaluated from continuity: 

Governing equation: ^-f pd¥ + f pVdA = 0 
dt Jcv Jcs 

Substituting in Eq. 1 gives 

dM dM 
+ (-pVA) = 0 or = m 

dt dt 

• M dT „„. 
um + Mc„ — = um + Rim 

v dt 
or 

Mcv(dTldt) p¥cv(dT/dt) 
m = = 

RT RT 
But at r = 0 , p^ = 1 0 0 kPa (gage), and 

„ _ „ _Aank (l.OO + l.OQlO5 N kg K 1 9 , Q V , 3 

P — PTANK = = — T X X = Z . J V ke/m 

A-tank R T m 2 2 8 7 N • m 2 9 3 K 

( 2 ) 



Substituting into Eq. 2, we obtain 

f 2.39 kg 0 .1m 3 717 N • m 0.05 K 
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x 
m 

•m = 0.102 g/s 

kg -K 
kg • K 1 1000 g 

— x — - x x 287 N • m 293 K kg 

This problem illustrates use of the first law of thermodynam­
ics for a control volume. It is also an example of the care that 
must be taken with unit conversions for mass, energy, and 
power. 

m 
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Recall that the system formulation of the second law is 

dS} 1 

dt /system 

where the total entropy of the system is given by 

T 

Jsystem -I sdm -I spdV 

(4.5a) 

(4.5b) 
'M(system) JV(system) 

To derive the control volume formulation of the second law of thermodynamics, we set 

N = S and 17 = s 

in Eq. 4.10 and obtain 

—I = 1 \ spdY+ f spVdA 

dt Jsystem d t J c V J c S 

The system and the control volume coincide at r0; thus in Eq. 4.5a, 

(4.57) 

?6) =-A -i 
1 /system 1 / C V J { 

cv J cs T 
Q dA 

In light of this, Eqs. 4.5a and 4.57 yield the control volume formulation of the second 
law of thermodynamics 

— f spd¥+\ sPVdA>\ - I -
oVJcv r Jcs Jcs T{Aj 

1 2 dA (4.58) 

In Eq. 4.58, the factor (QIA) represents the heat flux per unit area into the control 
volume through the area element dA. To evaluate the term 

Jcs T A 
dA 
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4-10 SUMMARY 

In this chapter we wrote the basic laws for a system: mass conservation (or conti­
nuity), Newton's second law, the angular-momentum equation, the first law of ther­
modynamics, and the second law of thermodynamics. We then developed an equa­
tion (sometimes called the Reynolds Transport Theorem) for relating system 
formulations to control volume formulations. Using this we derived control volume 
forms of: 

/ The mass conservation equation (sometimes called the continuity equation). 
/ Newton's second law (in other words, a momentum equation) for: 

o An inertial control volume. 
o A control volume with rectilinear acceleration. 
o*A control volume with arbitrary acceleration (on the CD). 

/ *The angular-momentum equation for: 

0 A fixed control volume. 
o A rotating control volume (on the CD). 

/ The first law of thermodynamics (or energy equation). 
/ The second law of thermodynamics. 

We discussed the physical meaning of each term appearing in these control volume 
equations, and used the equations for the solution of a variety of flow problems. In 
particular, we used a differential control volume* to derive a famous equation in fluid 
mechanics—the Bernoulli equation—and while doing so learned about the restric­
tions on its use in solving problems. 

PROBLEMS 

4.1 In order to cool a six-pack as quickly as possible, it is placed in a freezer for a period 
of 1 hr. If the room temperature is 25°C and the cooled beverage is at a final temper­
ature of 5°C, determine the change in specific entropy of the beverage. 

4.2 A mass of 3 kg falls freely a distance of 5 m before contacting a spring attached 
to the ground. If the spring stiffness is 400 N/m, what is the maximum spring 
compression? 

4.3 A fully loaded Boeing 777-200 jet transport aircraft weighs 715,000 lbf. The pilot 
brings the 2 engines to full takeoff thrust of 102,000 lbf each before releasing the 
brakes. Neglecting aerodynamic and rolling resistance, estimate the minimum run­
way length and time needed to reach a takeoff speed of 140 mph. Assume engine 
thrust remains constant during ground roll. 

4.4 A police investigation of tire marks showed that a car traveling along a straight level 
street had skidded to a stop for a total distance of 50 m after the brakes were appUed. 

* These topics apply to a section that may be omitted without loss of continuity in the text material. 

both the local heat flux, (Q/A), and local temperature, T, must be known for each area 
element of the control surface. 
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The coefficient of friction between tires and pavement is estimated to be /* = 0.6. 
What was the probable minimum speed of the car when the brakes were applied? 

4.5 A small steel ball of radius r, placed atop a much larger sphere of radius R, begins to 
roll under the influence of gravity. Rolling resistance and air resistance are negligible. 
As the speed of the ball increases, it leaves the surface of the sphere and becomes a 
projectile. Determine the location at which the ball loses contact with the sphere. 

4.6 Air at 20°C and an absolute pressure of 1 atm is compressed adiabatically, without 
friction, to an absolute pressure of 3 atm. Determine the internal energy change. 

4.7 The average rate of heat loss from a person to the surroundings when not actively 
working is about 300 Btu/hr. Suppose that in an auditorium with volume of approxi­
mately 1.2 X 107 ft3, containing 6000 people, the ventilation system fails. How much 
does the internal energy of the air in the auditorium increase during the first 15 min 
after the ventilation system fails? Considering the auditorium and people as a system, 
and assuming no heat transfer to the surroundings, how much does the internal energy 
of the system change? How do you account for the fact that the temperature of the air 
increases? Estimate the rate of temperature rise under these conditions. 

4.8 In an experiment with a can of soda, it took 3 hr to cool from an initial temperature 
of 25°C to 10°C in a 5°C refrigerator. If the can is now taken from the refrigerator 
and placed in a room at 20°C, how long will the can take to reach 15°C? You may 
assume that for both processes the heat transfer is modeled by Q ~ -k(T - 7 ^ ) , 
where T is the can temperature, is the ambient temperature, and k is a heat 
transfer coefficient. 

4.9 The mass of an aluminum beverage can is 20 g. Its diameter and height are 65 and 
120 mm, respectively. When full, the can contains 354 milliliters of soft drink with 
SG = 1.05. Evaluate the height of the center of gravity of the can as a function of 
liquid level. At what level would the can be least likely to tip over when subjected to 
a steady lateral acceleration? Calculate the minimum coefficient of static friction for 
which the full can would tip rather than slide on a horizontal surface. Plot the mini­
mum coefficient of static friction for which the can would tip rather than slide on a 
horizontal surface as a function of beverage level in the can. 

4.10 The velocity field in the region shown is given by V = azj + bk, where a = 10 s~' and 
b = 5 m/s. For the 1 m X 1 m triangular control volume (depth w = 1 m perpendi­
cular to the diagram), an element of area ( T ) may be represented by w(-dz j + dyk) 
and an element of area (2) by wdz j . 

(a) Find an expression for V • dA,. 

(b) Evaluate 

(c) Find an expression for V • dA2 

Find an expression for V(V • dA^). (d) 

(e) Evaluate 

/1 Control 
/ v o l u m e 

V 2~rn~ 

P4.11 P 4 . 1 0 
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4.11 The shaded area shown is in a flow where the velocity field is given by 
V = axi - byj; a = b = I s - 1 , and the coordinates are measured in meters. Evaluate 
the volume flow rate and the momentum flux through the shaded area. 

4.12 Obtain expressions for the volume flow rate and the momentum flux through cross 
section (T) of the control volume shown in the diagram. 

z 

P4.12 P4.13 

4.13 The area shown shaded is in a flow where the velocity field is given by V = -axi + 
byj + ck; a = b = 1 s~' and c = 1 m/s. Write a vector expression for an element of̂  
the shaded area. Evaluate the integrals J VdA and j V(V • dA) over the shaded 
area. 

4.14 The velocity distribution for laminar flow in a long circular tube of radius R is given 
by the one-dimensional expression, 

For this profile obtain expressions for the volume flow rate and the momentum flux 
through a section normal to the pipe axis. 

4.15 For the flow of Problem 4.12, obtain an expression for the kinetic energy flux, 
\(V2/2)pV-dA, through cross section (T) of the control volume shown. 

4.16 For the flow of Problem 4.14, obtain an expression for the kinetic energy flux, 
\(V2I2) pV • dA, through a section normal to the pipe axis. 

4.17 Consider steady, incompressible flow through the device shown. Determine the mag­
nitude and direction of the volume flow rate through port 3. 

P4.17 P4.18 

4.18 Fluid with 1050 kg/m3 density is flowing steadily through the rectangular box shown. 
Given A, = 0.05 m 2, A2 = 0.01 m 2, A3 = 0.06 m 2, V; = 4im/s, and V2 =Sjm/s, de­
termine velocity V̂ . 

4.19 In the incompressible flow through the device shown, velocities may be considered 
uniform over the inlet and outlet sections. The following conditions are known: 
Ax = 0.1 m 2, A2 = 0.2 m 2, A 3 = 0.15 m 2, V, = lOe""2 m/s, and V2 = 2 cos(2ir/) 
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m/s (t in seconds). Obtain an expression for the velocity at section (3), and plot V3 as 
a function of time. At what instant does V3 first become zero? What is the total mean 
volumetric flow at section (5)? 

F l o w — j j " 

Flow 

P 4 . 1 9 P 4 . 2 0 

Surface 

4.20 Oil flows steadily in a thin layer down an inclined plane. The velocity profile is 

u = 
pg sin 6 

hy-y-
2 

Express the mass flow rate per unit width in terms of p, /A, g, 6, and h. 
4.21 Water enters a wide, flat channel of height 2h with a uniform velocity of 5 m/s. At 

the channel outlet the velocity distribution is given by 
x 2 

"ma 

where y is measured from the centerline of the channel. Determine the exit centerline 
velocity, i ^ . 

4.22 Incompressible fluid flows steadily through a plane diverging channel. At the inlet, of 
height H, the flow is uniform with magnitude V,. At the outlet, of height 2H, the ve­
locity profile is 

V, = Vm cos 

where y is measured from the channel centerline. Express V„, in terms of V,. 

4.23 Water flows steadily through a pipe of length L and radius R = 3 in. Calculate the 
uniform inlet velocity, U, if the velocity distribution across the outlet is given by 

and « m a x = 10 ft/s. P 4 . 2 3 

4.24 The velocity profile for laminar flow in an annulus is given by 

u{r) = -
Ap 

4/J.L 
RL r 2 + RL - R* 

MRJTR0) 

R, 

where Ap/L = —10 kPa/m is the pressure gradient, is the viscosity (SAE 10 oil 
at 20°C), and R A = 5 mm and RJ = 1 mm are the outer and inner radii. Find the 
volume flow rate, the average velocity, and the maximum velocity. Plot the velocity 
distribution. 
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ft, = 1.5 ft-

- Vl.ni„=10 ft/S 
9 = 60° 

*i = 2 ft 

P 4 . 2 4 P 4 . 2 5 

4.25 A two-dimensional reducing bend has a linear velocity profile at section (J). The 
flow is uniform at sections (2) and (3). The fluid is incompressible and the flow is 
steady. Find the magnitude and direction of the uniform velocity at section (3). 

4.26 Water enters a two-dimensional, square channel of constant width, h = 75.5 mm, with 
uniform velocity, U. The channel makes a 90° bend that distorts the flow to produce the 
linear velocity profile shown at the exit, with = 21%^. Evaluate v^, if U = 7.5 m/s. 

P 4 . 2 6 , 4 .78 

4.27 A porous round tube with D = 60 mm carries water. The inlet velocity is uniform 
with V, = 7.0 m/s. Water flows radially and axisymmetrically outward through the 
porous walls with velocity distribution 

v = V, -13 
where V0 = 0.03 m/s and L = 0.950 m. Calculate the mass flow rate inside the tube 
at x = L. 

4.28 A hydraulic accumulator is designed to reduce pressure pulsations in a machine tool 
hydraulic system. For the instant shown, determine the rate at which the accumulator 
gains or loses hydraulic oil. 

Q = 5.75 g p m • 

D= 1.25 in. 

V= 4 .35 ft/s 

P 4 . 2 8 
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4.29 

4.30 

4.31 

4.32 

4.33 

4.34 

A tank of 0.5 m 3 volume contains compressed air. A valve is opened and air escapes 
with a velocity of 300 m/s through an opening of 130 mm 2 area. Air temperature 
passing through the opening is - 15°C and the absolute pressure is 350 kPa. Find the 
rate of change of density of the air in the tank at this moment. 

Viscous liquid from a circular tank, D = 300 mm in diameter, drains through a long 
circular tube of radius R = 50 mm. The velocity profile at the tube discharge is 

Show that the average speed of flow in the drain tube is V = ^ umax Evaluate the rate 
of change of liquid level in the tank at the instant when « m u = 0.155 m/s. 

A rectangular tank used to supply water for a Reynolds flow experiment is 230 mm 
deep. Its width and length are W = 150 mm and L = 230 mm. Water flows from the 
outlet tube (inside diameter D = 6.35 mm) at Reynolds number Re = 2000, when 
the tank is half full. The supply valve is closed. Find the rate of change of water level 
in the tank at this instant. 

Air enters a tank through an area of 0.2 ft2 with a velocity of 15 ft/s and a density of 
0.03 slug/ft3. Air leaves with a velocity of 5 ft/s and a density equal to that in the 
tank. The initial density of the air in the tank is 0.02 slug/ft3. The total tank volume is 
20 ft3 and the exit area is 0.4 ft2. Find the initial rate of change of density in the tank. 

A cylindrical tank, 0.3 m in diameter, drains through a hole in its bottom. At the in­
stant when the water depth is 0.6 m, the flow rate from the tank is observed to be 
4 kg/s. Determine the rate of change of water level at this instant. 

A home water filter container as shown is initially completely empty. The upper 
chamber is now filled to a depth of 80 mm with water. How long will it take the 
lower chamber water level to just touch the bottom of the filter? How long will it 
take for the water level in the lower chamber to reach 50 mm? Note that both water 
surfaces are at atmospheric pressure, and the filter material itself can be assumed to 
take up none of the volume. Plot the lower chamber water level as a function of time. 
For the filter, the flow rate is given by Q = kH where k = 2 X 10" 4 m2/s and H (m) 
is the net hydrostatic head across the filter. 

-D = 150 m m -

50 m m 

20 mm 

P 4 . 3 4 

4.3S A recent TV news story about lowering Lake Shafer near Monticello, Indiana, by 
increasing the discharge through the dam that impounds the lake, gave the following 
information for flow through the dam: 

Normal flow rate 290 cfs 
Row rate during draining of lake 2000 cfs 

(The flow rate during draining was stated to be equivalent to 16,000 gal/s.) The an­
nouncer also said that during draining the lake level was expected to fall at the rate of 
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1 ft every 8 hr. Calculate the actual flow rate during draining in gal/s. Estimate the 
surface area of the lake. 

4.36 A cylindrical tank, of diameter D = 50 mm, drains through an opening, d = 5 mm, 
in the bottom of the tank. The speed of the liquid leaving the tank is approximately 
V = -J2gy, where y is the height from the tank bottom to the free surface. If the tank is 
initially filled with water to y 0 = 0.4 m, determine the water depth at t = 12 s. Plot 
y/y0 versus / with y 0 as a parameter for 0.1 ^ y 0 ^ 1 m. Plot y/y0 versus t with D/d as 
a parameter for 2 ^ D/d s 10 and y 0 = 0.4 m. 

t^£< 4.37 For the conditions of Problem 4.36, estimate the time required to drain the tank to 
depth y = 20 mm. Plot time to drain the tank as a function of y/y0 for 0.1 ^ yo — 
1 m with d/D as a parameter for 0.1 S d/D S 0.5. 

4.38 A conical flask contains water to height H = 36.8 mm, where the flask diameter is 
D = 29.4 mm. Water drains out through a smoothly rounded hole of diameter 
d = 7.35 mm at the apex of the cone. The flow speed at the exit is approximately 
V = (2gy)]a, where y is the height of the liquid free surface above the hole. 
A stream of water flows into the top of the flask at constant volume flow rate, 
Q = 3.75 X 10 7 nrVhr. Find the volume flow rate from the bottom of the flask. 
Evaluate the direction and rate of change of water surface level in the flask at this 
instant. 

4.39 A conical funnel of half-angle 6 = 15°, with maximum diameter D = 70 mm and 
height H, drains through a hole (diameter d = 3.12 mm) in its bottom. The speed of 
the liquid leaving the funnel is approximately V = (2gy)m, where y is the height of 
the liquid free surface above the hole. Find the rate of change of surface level in the 
funnel at the instant when y = HI2. 

4.40 Water flows steadily past a porous flat plate. Constant suction is applied along the 
porous section. The velocity profile at section cd is 

JL = 3 \ l _ 2 Z 
£/„ IS] is} 

Evaluate the mass flow rate across section be. 

U„ = 3 m/s 
B 

f T T Y T m T T F / 
V = - 0 . 2 j m m / s - ^ 

•L = 2 m -

5 = 1.5 mm 

Width, 
it- = 1.5 m 

P 4 . 4 0 , 4.41 

4.41 Consider incompressible steady flow of standard air in a boundary layer on the length 
of porous surface shown. Assume the boundary layer at the downstream end of the sur­
face has an approximately parabolic velocity profile, u/UK = 2(y/S) - (y/5)2. Uniform 
suction is applied along the porous surface, as shown. Calculate the volume flow rate 
across surface cd, through the porous suction surface, and across surface be. 

4.42 A tank of fixed volume contains brine with initial density, ph greater than water. Pure 
water enters the tank steadily and mixes thoroughly with the brine in the tank. The 
liquid level in the tank remains constant. Derive expressions for (a) the rate of 
change of density of the liquid mixture in the tank and (b) the time required for the 
density to reach the value pf, where pt> pj> p^. 
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V = constant 

PHfi ^ ^ ^ ^ ^ ^ ^ ^ 

P4.42 

"out 
p 

4.43 A conical funnel of half-angle 6 drains through a small hole of diameter d at the ver­
tex. The speed of the liquid leaving the funnel is approximately V = ->J2gy, where y 
is the height of the liquid free surface above the hole. The funnel initially is filled to 
height y0. Obtain an expression for the time, /, required to drain the funnel. Express 
the result in terms of the initial volume, Vq, of liquid in the funnel and the initial 
volume flow rate, QQ = A^J2gy0 - AV0. If the hole diameter is d = 5 mm, plot 
the time to drain the funnel as a function of y0 over the range 0.1 ^ y0 < 1 m with 
angle 0 as a parameter for 15° £ 6 ^ 45°. 

4.44 Over time, air seeps through pores in the rubber of high-pressure bicycle tires. The 
saying is that a tire loses pressure at the rate of "a pound [1 psi] a day." The true rate 
of pressure loss is not constant; instead, the instantaneous leakage mass flow rate is 
proportional to the air density in the tire and to the gage pressure in the tire, m « pp. 
Because the leakage rate is slow, air in the tire is nearly isothermal. Consider a tire 
that initially is inflated to 0.7 MPa (gage). Assume the initial rate of pressure loss is I 
psi per day. Estimate how long it will take for the pressure to drop to 500 kPa. How 
accurate is "a pound a day" over the entire 30 day period? Plot the pressure as a func­
tion of time over the 30 day period. Show the rule-of-thumb results for comparison. 

4.45 Evaluate the net rate of flux of momentum out through the control surface of Prob­
lem 4.18. 

4.46 For the conditions of Problem 4.21, evaluate the ratio of the ^-direction momentum 
flux at the channel outlet to that at the inlet. 

4.47 For the conditions of Problem 4.23, evaluate the ratio of the jodirection momentum 
flux at the pipe outlet to that at the inlet. 

4.48 Evaluate the net momentum flux through the bend of Problem 4.25, if the depth nor­
mal to the diagram is w = 3 ft. 

4.49 Evaluate the net momentum flux through the channel of Problem 4.26. Would you ex­
pect the outlet pressure to be higher, lower, or the same as the inlet pressure? Why? 

4.50 Find the force required to hold the plug in place at the exit of the water pipe. The 
flow rate is 1.5 m3/s, and the upstream pressure is 3.5 MPa. 

P4.50 

4.51 A large tank of height h = 1 m and diameter D = 0.6 m is affixed to a cart as shown. 
Water issues from the tank through a nozzle of diameter d = 10 mm. The speed of the 
liquid leaving the tank is approximately V = -§2gy where y is the height from the 
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nozzle to the free surface. Determine the tension in the wire when y : 

the tension in the wire as a function of water depth for 0 ^ y ^ 0.8 m. 
0.8 m. Plot 

4.52 

4.53 

P4.51 P 4 . 5 2 

A jet of water issuing from a stationary nozzle at 15 m/s (Aj = 0.05 m 2) strikes a turning 
vane mounted on a cart as shown. The vane turns the jet through angle 0 = 50°. Deter­
mine the value of M required to hold the cart stationary. If the vane angle 6 is adjustable, 
plot the mass, M, needed to hold the cart stationary versus 9 for 0 ^ 0 £ 180°. 
A vertical plate has a sharp-edged orifice at its center. A water jet of speed V strikes 
the plate concentrically. Obtain an expression for the external force needed to hold 
the plate in place, if the jet leaving the orifice also has speed V. Evaluate the force for 
V = 5 m/s, D = 100 mm, and d = 25 mm. Plot the required force as a function of 
diameter ratio for a suitable range of diameter d. 

P 4 . 5 3 

4.54 A circular cylinder inserted across a stream of flowing water deflects the stream 
through angle 0, as shown. (This is termed the "Coanda effect.") For a = 0.5 in., b = 
0.1 in., V = 10 ft/s, and 6 = 20°, determine the horizontal component of the force 
on the cylinder caused by the flowing water. 

4.55 A farmer purchases 675 kg of bulk grain from the local co-op. The grain is loaded 
into his pickup truck from a hopper with an oudet diameter of 0.3 m. The loading 
operator determines the payload by observing the indicated gross mass of the truck 
as a function of time. The grain flow from the hopper (m = 40 kg/s) is terminated 
when the indicated scale reading reaches the desired gross mass. If the grain density 
is 600 kg/m 3, determine the true payload. 

4.56 Water flows steadily through a fire hose and nozzle. The hose is 75 mm inside diame­
ter, and the nozzle tip is 25 mm i.d.; water gage pressure in the hose is 510 kPa, and 
the stream leaving the nozzle is uniform. The exit speed and pressure are 32 m/s and 
atmospheric, respectively. Find the force transmitted by the coupling between the 
nozzle and hose. Indicate whether the coupling is in tension or compression. 

4.57 A shallow circular dish has a sharp-edged orifice at its center. A water jet, of speed V, 
strikes the dish concentrically. Obtain an expression for the external force needed to 
hold the dish in place if the jet issuing from the orifice also has speed V. Evaluate the 
force for V = 5 m/s, D = 100 mm, and d = 20 mm. Plot the required force as a 
function of the angle 6 (0 ^ 0 < 90°) with diameter ratio as a parameter for a suit­
able range of diameter d. 
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1 

P4.57 

45° 

® 

P 4 . 5 8 

4.58 

4.59 

4.60 

4.61 

4.62 

Water is flowing steadily through the 180° elbow shown. At the inlet to the elbow the 
gage pressure is % kPa. The water discharges to atmospheric pressure. Assume proper­
ties are uniform over the inlet and outlet areas: A\ = 2600 mm2, A2 -- 650 mm2, and V, 
= 3.05 m/s. Find the horizontal component of force required to hold the elbow in place. 

A 180° elbow takes in water at an average velocity of 1 m/s and a pressure of 400 
kPa (gage) at the inlet, where the diameter is 0.25 m. The exit pressure is 50 kPa, and 
the diameter is 0.05 m. What is the force required to hold the elbow in place? 

Water flows steadily through the nozzle shown, discharging to atmosphere. Calculate 
the horizontal component of force in the flanged joint. Indicate whether the joint is in 
tension or compression. 

d = 6 .25 in. 

p = 2 .28 psig 

D = 12.5 in. 

V, = 4 . 2 5 ft/s 

P 4 . 6 0 

Assume the bend of Problem 4.26 is a segment of a larger channel and lies in a hori­
zontal plane. The inlet pressure is 170 kPa (abs), and the outlet pressure is 130 kPa 
(abs). Find the force required to hold the bend in place. 

A flat plate orifice of 50 mm diameter is located at the end of a 100 mm diameter 
pipe. Water flows through the pipe and orifice at 0.05 m3/s. The diameter of the water 
jet downstream from the orifice is 35 mm. Calculate the external force required to 
hold the orifice in place. Neglect friction on the pipe wall. 

D = 100 mm 

Q = 0 .05 m 3 / s -

d = 35 mm 

p = 1.35 MPa (gage) 

P 4 . 6 2 

V= 15 ft/s 
o = 1 in. 2 

M = 0.2 Ibm 
V = 12 in. 3 

Supply 

P4 .63 

f A = 3 in 
I P = 1 - 4 J 45 psig 

4.63 A spray system is shown in the diagram. Water is supplied at p = 1.45 psig, through 
the flanged opening of area A = 3 in.2 The water leaves in a steady free jet at atmos­
pheric pressure. The jet area and speed are a = 1.0 in.2 and V = 15 ft/s. The mass of 
the spray system is 0.2 Ibm and it contains V = 12 in.3 of water. Find the force ex­
erted on the supply pipe by the spray system. 
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4.64 The nozzle shown discharges a sheet of water through a 180° arc. The water speed is 
15 m/s and the jet thickness is 30 mm at a radial distance of 0.3 m from the center-
line of the supply pipe. Find (a) the volume flow rate of water in the jet sheet and (b) 
the y component of force required to hold the nozzle in place. 

4.65 A typical jet engine test stand installation is shown, together with some test data 
Fuel enters the top of the engine vertically at a rate equal to 2 percent of the mass 
flow rate of the inlet air. For the given conditions, compute the air flow rate through 
the engine and estimate the thrust. 

4.66 At rated thrust, a liquid-fueled rocket motor consumes 180 lbm/s of nitric acid as ox­
idizer and 70 lbm/s of aniline as fuel. Flow leaves axially at 6000 ft/s relative to the 
nozzle and at 16.5 psia. The nozzle exit diameter is D = 2 ft. Calculate the thrust 
produced by the motor on a test stand at standard sea-level pressure. 

4.67 Consider flow through the sudden expansion shown. If the flow is incompressible 
and friction is neglected, show that the pressure rise, Ap = Pi~ p\,is given by 

Plot the nondimensional pressure rise versus diameter ratio to determine the optimum 
value of dJD and the corresponding value of the nondimensional pressure rise. Hint: 
Assume the pressure is uniform and equal to Pi on the vertical surface of the expansion. 

® © Hinge 

P 4 . 6 7 P 4 . 6 8 

4.68 A free jet of water with constant cross-section area 0.005 m 2 is deflected by a hinged 
plate of length 2 m supported by a spring with spring constant k = 1 N/m and un­
compressed length J C 0 = 1 m. Find and plot the deflection angle 0 as a function of jet 
speed V. What jet speed has a deflection of 10°? 
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4.69 A conical spray head is shown. The fluid is water and the exit stream is uniform. 
Evaluate (a) the thickness of the spray sheet at 400 mm radius and (b) the axial force 
exerted by the spray head on the supply pipe. 

Q = 0.03 m / s -

p , = 150 kPa (abs)(7 

P, = 19.2 psig _ 1 _ 
D, = 3 in. 

P 4 . 6 9 P 4 . 7 0 

4.70 

4.71 

A curved nozzle assembly that discharges to the atmosphere is shown. The nozzle 
weighs 10 lbf and its internal volume is 150 in.3 The fluid is water. Determine the re­
action force exerted by the nozzle on the coupling to the inlet pipe. 

A reducer in a piping system is shown. The internal volume of the reducer is 0.2 m 3 

and its mass is 25 kg. Evaluate the total force that must be provided by the surround­
ing pipes to support the reducer. The fluid is gasoline. 

D = 0.4 m -

Vi = 3 m/s • 

or 

Reducer 
-d = 0.2 m 

2 -

P l = 58.7 kPa (gage) p 2 = 109 kPa (abs) 

P4.71 

4.72 A water jet pump has jet area 0.01 m 2 and jet speed 30 m/s. The jet is within a sec­
ondary stream of water having speed Vs = 3 m/s. The total area of the duct (the sum 
of the jet and secondary stream areas) is 0.075 m 2. The water is thoroughly mixed 
and leaves the jet pump in a uniform stream. The pressures of the jet and secondary 
stream are the same at the pump inlet. Determine the speed at the pump exit and the 
pressure rise, p2 — p\. 

PA.12 

• Elbow mass, M - 10 kg 

-Internal vo lume, Y= 0 .006 m 3 

Q = 0.11 m 3 / s • 

P 4 . 7 3 

p, = 200 kPa (abs) 
Ax = 0 .0182 m 2 

P 2 = 120 kPa (abs) 
A2 = 0.0081 m 2 

4.73 A 30° reducing elbow is shown. The fluid is water. Evaluate the components of force 
that must be provided by the adjacent pipes to keep the elbow from moving. 
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4.74 A rnonotube boiler consists of a 20 ft length of tubing with 0.375 in. inside diameter. 
Water enters at the rate of 0.3 lbm/s at 500 psia. Steam leaves at 400 psig with 0.024 
slug/ft3 density. Find the magnitude and direction of the force exerted by the flowing 
fluid on the tube. 

4.75 A gas flows steadily through a heated porous pipe of constant 0.2 m 2 cross-sectional 
area. At the pipe inlet, the absolute pressure is 340 kPa, the density is 5.1 kg/m3, and 
the mean velocity is 152 m/s. The fluid passing through the porous wall leaves in a 
direction normal to the pipe axis, and the total flow rate through the porous wall is 
29.2 kg/s. At the pipe outlet, the absolute pressure is 280 kPa and the density is 2.6 
kg/m3. Determine the axial force of the fluid on the pipe. 

4.76 Consider the steady adiabatic flow of air through a long straight pipe with 0.5 ft2 

cross-sectional area. At the inlet, the air is at 30 psia, 140°F, and has a velocity of 
500 ft/s. At the exit, the air is at 11.3 psia and has a velocity of 985 ft/s. Calculate the 
axial force of the air on the pipe. (Be sure to make the direction clear.) 

4.77 Water is discharged from a narrow slot in a 150 mm diameter pipe. The resulting 
horizontal two-dimensional jet is 1 m long and 15 mm thick, but of nonuniform ve­
locity. The pressure at the inlet section is 30 kPa (gage). Calculate (a) the volume 
flow rate at the inlet section and (b) the forces required at the coupling to hold the 
spray pipe in place. Neglect the mass of the pipe and the water it contains. 

i— O = 150 m m 

ii 
VY = 7.5 m/s 

11.3 m/s 

T h i c k n e s s , ; = 15 m m 

P 4 . 7 7 

4.78 Water flows steadily through the square bend of Problem 4.26. Flow at the inlet is at 
p, = 185 kPa (abs). Flow at the exit is nonuniform, vertical, and at atmospheric pres­
sure. The mass of the channel structure is Mc = 2.05 kg; the internal volume of the 
channel is V = 0.00355 m3. Evaluate the force exerted by the channel assembly on 
the supply duct. 

4.79 A nozzle for a spray system is designed to produce a flat radial sheet of water. The 
sheet leaves the nozzle at V2

 = 10 m/s, covers 180° of arc, and has thickness 1 = 1.5 
mm. The nozzle discharge radius is R = 50 mm. The water supply pipe is 35 mm in 
diameter and the inlet pressure is p, = 150 kPa (abs). Evaluate the axial force ex­
erted by the spray nozzle on the coupling. 

Water 

P4.79 

T h i c k n e s s , ; 0 
P 4 . 8 0 

4.80 A small round object is tested in a 1 m diameter wind tunnel. The pressure is uni­
form across sections (D and (2). The upstream pressure is 20 mm H 2 0 (gage), the 
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8 1 

downstream pressure is 10 mm H 2 0 (gage), and the mean air speed is 10 m/s. The 
velocity profile at section (2) is linear; it varies from zero at the tunnel centerline to 
a maximum at the tunnel wall. Calculate (a) the mass flow rate in the wind tunnel, 
(b) the maximum velocity at section (2), and (c) the drag of the object and its sup­
porting vane. Neglect viscous resistance at the tunnel wall. 

The horizontal velocity in the wake behind an object in an air stream of velocity U is 
given by 

u(r) = U 

u(r) = U 

1 - cos — 

> 1 

where r is the non-dimensional radial coordinate, measured perpendicular to the 
flow. Find an expression for the drag on the object. 

82 An incompressible fluid flows steadily in the entrance region of a two-dimensional 
channel of height 2h. The uniform velocity at the channel entrance is (/, = 20 ft/s. 
The velocity distribution at a section downstream is 

= 1 

Evaluate the maximum velocity at the downstream section. Calculate the pressure 
drop that would exist in the channel if viscous friction at the walls could be neglected. 

t/j = 20 ft/s 
p = 0 . 0 0 2 3 8 slug/ft3 

P 4 . 8 2 

V{ = 3 0 ft/s 
p = 0 .075 Ibrn/ft3 

P4 .83 

83 An incompressible fluid flows steadily in the entrance region of a circular tube of ra­
dius R. The uniform velocity at the tube entrance is t/, = 30 ft/s. The velocity distri­
bution at a section downstream is 

^ a x 

Evaluate the maximum velocity at the downstream section. Calculate the pressure 
drop that would exist in the tube if viscous friction at the walls could be neglected. 

84 Air enters a duct, of diameter D = 25.0 mm, through a well-rounded inlet with uni­
form speed, Ux = 0.870 m/s. At a downstream section where L = 2.25 m, the fully 
developed velocity profile is 

The pressure drop between these sections is p, — p2 = 1.92 N/m 2. Find the total 
force of friction exerted by the tube on the air. 

r 
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/ V l = 0.870 m/s P = 25.0 m m - | 

- / . = 2.25 m -

© 
P 4 . 8 4 

4.85 

4.86 

4.87 

4.88 

Air at standard conditions flows along a fiat plate. The undisturbed freestream speed 
is t /p = 10 m/s. At L = 145 mm downstream from the leading edge of the plate, the] 
boundary-layer thickness is 8 = 2.3 mm. The velocity profile at this location is 

u 
2 5 

Calculate the horizontal component of force per unit width required to hold the plate] 
stationary. 

Consider the incompressible flow of fluid in a boundary layer as depicted in Example] 
Problem 4.2. Show that the friction drag force of the fluid on the surface is given by 

7 = [ pu(U-u 
Jo 

)wdy 

Evaluate the drag force for the conditions of Example Problem 4 .2. 

Air at standard conditions flows along a flat plate. The undisturbed freestream speed 
is U0 = 30 m/s. At L = 0.3 m downstream from the leading edge of the plate, the 
boundary-layer thickness is 8 = 1.5 mm. The velocity profile at this location is ap­
proximated as ulUQ = y/S. Calculate the horizontal component of force per unit j 
width required to hold the plate stationary. 

A sharp-edged splitter plate inserted part way into a flat stream of flowing water pro- 1 

duces the flow pattern shown. Analyze the situation to evaluate 6 as a function of a, 1 

where 0 < a < 0.5. Evaluate the force needed to hold the splitter plate in place. 
(Neglect any friction force between the water stream and the splitter plate.) Plot both 
9 and R. as functions of a. 

P 4 . 8 8 P 4 . 8 9 

4.89 When a plane liquid jet strikes an inclined flat plate, it splits into two streams of 
equal speed but unequal thickness. For frictionless flow there can be no tangential 
force on the plate surface. Use this assumption to develop an expression for h2/h as a 
function of plate angle, 6. Plot your results and comment on the limiting cases, 
9 = 0 and 6 = 90°. 
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4.90 Gases leaving the propulsion nozzle of a rocket are modeled as flowing radially out­
ward from a point upstream from the nozzle throat. Assume the speed of the exit 
flow, Ve, has constant magnitude. Develop an expression for the axial thrust, Ta, 
developed by flow leaving the nozzle exit plane. Compare your result to the one-
dimensional approximation, T = mVe. Evaluate the percent error for a = 15°. Plot 
the percent error versus a for 0 ^ a £ 22.5°. 

P 4 . 9 0 P4 . 9 1 

*4.91 Two large tanks containing water have small smoothly contoured orifices of equal 
area. A jet of liquid issues from the left tank. Assume the flow is uniform and unaf­
fected by friction. The jet impinges on a vertical flat plate covering the opening of 
the right tank. Determine the minimum value for the height, h, required to keep the 
plate in place over the opening of the right tank. 

*4.92 A horizontal axisymmetric jet of air with 10 mm diameter strikes a stationary verti­
cal disk of 200 mm diameter. The jet speed is 75 m/s at the nozzle exit. A manometer 
is connected to the center of the disk. Calculate (a) the deflection, h, if the manome­
ter liquid has SG = 1.75 and (b) the force exerted by the jet on the disk. 

V = 75 m/s 

P 4 . 9 2 

J 
h 

1 
SG = 1 .75 

*4.93 A uniform jet of water leaves a 15 mm diameter nozzle and flows directly downward. 
The jet speed at the nozzle exit plane is 2.5 rn/s. The jet impinges on a horizontal 
disk and flows radially outward in a flat sheet. Obtain a general expression for the ve­
locity the liquid stream would reach at the level of the disk. Develop an expression 
for the force required to hold the disk stationary, neglecting the mass of the disk and 
water sheet. Evaluate for h = 3 m. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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*4.94 A 5 Ibm disk is constrained horizontally but is free to move vertically. The disk is struck] 
from below by a vertical jet of water. The speed and diameter of the water jet are 35 ft/a 
and 1 in. at the nozzle exit. Obtain a general expression for the speed of the water jet as 
a function of height, h. Find the height to which the disk will rise and remain stationary, 

*4.95 A stream of air at standard conditions from a 2 in. diameter nozzle strikes a curved 
vane as shown. A stagnation tube connected to a water-filled U-tube manometer is 
located in the nozzle exit plane. Calculate the speed of the air leaving the nozzle. EsJ 
timale the horizontal component of force exerted on the vane by the jet. Comment od 
each assumption used to solve this problem. 

9 = 30" 

P 4 . 9 5 P 4 . 9 6 

*4.96 Water from a jet of diameter D is used to support the cone-shaped object shown. De­
rive an expression for the combined mass of the cone and water, M, that can be sup­
ported by the jet, in terms of parameters associated with a suitably chosen control 
volume. Use your expression to calculate M when Vn = 10 m/s, H = 1 m, h = 0.8 
m, D = 50 mm, and 6 = 30°. Estimate the mass of water in the control volume. 

*4.97 A venturi meter installed along a water pipe consists of a convergent section, a con­
stant-area throat, and a divergent section. The pipe diameter is D — 100 mm and the 
throat diameter is d = 40 mm. Find the net fluid force acting on the convergent section 
if the water pressure in the pipe is 600 kPa (gage) and the average velocity is 5 m/s. 
For this analysis neglect viscous effects. 

*4.98 A plane nozzle discharges vertically downward to atmosphere. The nozzle is sup­
plied with a steady flow of water. A stationary, inclined, flat plate, located beneath 
the nozzle, is struck by the water stream. The water stream divides and flows along 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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the inclined plate; the two streams leaving the plate are of unequal thickness. Fric-
tional effects are negligible in the nozzle and in the flow along the plate surface. 
Evaluate the niinimum gage pressure required at the nozzle inlet. Calculate the mag­
nitude and direction of the force exerted by the water stream on the inclined plate. 
Sketch the pressure distribution along the surface of the plate. Explain why the pres­
sure distribution is shaped the way you sketched it. 

*4.99 In ancient Egypt, circular vessels filled with water sometimes were used as crude 
clocks. The vessels were shaped in such a way that, as water drained from the bot­
tom, the surface level dropped at constant rate, 5. Assume that wateT drains from a 
small hole of area A. Find an expression for the radius of the vessel, r, as a function 
of the water level, h. Obtain an expression for the volume of water needed so that the 
clock will operate for n hours. 

"4.100 A stream of incompressible liquid moving at low speed leaves a nozzle pointed 
directly downward. Assume the speed at any cross section is uniform and neglect 
viscous effects. The speed and area of the jet at the nozzle exit are V0 and A0, 
respectively. Apply conservation of mass and the momentum equation to a differ­
ential control volume of length dz in the flow direction. Derive expressions for 
the variations of jet speed and area as functions of z- Evaluate the distance at 
which the jet area is half its original value. (Take the origin of coordinates at the 
nozzle exit.) 

*4.101 A stream of incompressible liquid moving at low speed leaves a nozzle pointed di­
rectly upward. Assume the speed at any cross section is uniform and neglect viscous 
effects. The speed and area of the jet at the nozzle exit are V0 and A 0, respectively. 
Apply conservation of mass and the momentum equation to a differential control vol­
ume of length dz in the flow direction. Derive expressions for the variations of jet 
speed and area as functions of z. Evaluate the vertical distance required to reduce the 
jet speed to zero. (Take the origin of coordinates at the nozzle exit.) 

*4.102 Incompressible fluid of negligible viscosity is pumped, at total volume flow rate Q, 
through a porous surface into the small gap between closely spaced parallel plates as 
shown. The fluid has only horizontal motion in the gap. Assume uniform flow across 
any vertical section. Obtain an expression for the pressure variation as a function of 
x. Hint: Apply conservation of mass and the momentum equation to a differential 
control volume of thickness dx, located at position x. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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P 4 . 1 0 2 P 4 . 1 0 3 

*4.104 

*4.105 

^ * 4 . 1 0 6 

4.107 

Incompressible liquid of negligible viscosity is pumped, at total volume flow rate Q, 
through two small holes into the narrow gap between closely spaced parallel disks as 
shown. The liquid flowing away from the holes has only radial motion. Assume uni­
form flow across any vertical section and discharge to atmospheric pressure at r = R] 
Obtain an expression for the pressure variation and plot as a function of radius. Hint:\ 
Apply conservation of mass and the momentum equation to a differential control vol^ 
ume of thickness dr located at radius r. 

Liquid falls vertically into a short horizontal rectangular open channel of width b.< 
The total volume flow rate, Q, is distributed uniformly over area bh. Neglect viscou* 
effects. Obtain an expression for ht in terms of hj, Q, and b. Hint: Choose a control 
volume with outer boundary located at x = L. Sketch the surface profile, h(x). Hint! 
Use a differential control volume of width dx. 

The narrow gap between two closely spaced circular plates initially is filled with in-j 
compressible liquid. At / = 0 the upper plate begins to move downward toward the] 
lower plate with constant speed, V0, causing the liquid to be squeezed from the nar­
row gap. Neglecting viscous effects and assuming uniform flow in the radial direc­
tion, develop an expression for the velocity field between the parallel plates. Hint:] 
Apply conservation of mass to a control volume with outer surface located at radius] 
r. Note that even though the speed of the upper plate is constant, the flow is unsteady. 

Design a clepsydra (Egyptian water clock)—a vessel from which water drains by 
gravity through a hole in the bottom and which indicates time by the level of the re­
maining water. Specify the dimensions of the vessel and the size of the drain hole; 
indicate the amount of water needed to fill the vessel and the interval at which id 
must be filled. Plot the vessel radius as a function of elevation. 

A jet of water is directed against a vane, which could be a blade in a turbine or in I 
any other piece of hydraulic machinery. The water leaves the stationary 50 mm di-| 
ameter nozzle with a speed of 20 m/s and enters the vane tangent to the surface at A.\ 
The inside surface of the vane at B makes angle 6 = 150° with the x direction. 
Compute the force that must be applied to maintain the vane speed constant at' 
U = 5 m/s. 

* These problems require materia] from sections that may be omitted without loss of continuity in the te 
material. 
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P 4 . 1 0 7 P 4 . 1 0 8 , 4 .110 , 4 . 1 1 3 , 4 . 1 2 5 , 
4 .152 

4.108 

4.109 

4.110 

4.111 

4.112 

4.113 

4.114 

Water from a stationary nozzle impinges on a moving vane with turning angle 0 = 
120°. The vane moves away from the nozzle with constant speed, U = 30 ft/s, and 
receives a jet that leaves the nozzle with speed V = 100 ft/s. The nozzle has an exit 
area of 0.04 ft2. Find the force that must be applied to maintain the vane speed constant. 

A jet boat takes in water at a constant volumetric rate Q through side vents and ejects 
it at a high jet speed Vj at the rear. A variable-area exit orifice controls the jet speed. 
The drag on the boat is given by F d r a g = kV2, where V is the boat speed. Find an ex­
pression for the steady speed V. If a jet speed Vj = 25 m/s produces a boat speed of 
10 m/s, what jet speed will be required to double the boat speed? 

A jet of oil (SG = 0.8) strikes a curved blade that turns the fluid through angle 
9 = 180°. The jet area is 1200 mm 2 and its speed relative to the stationary nozzle is 
20 m/s. The blade moves toward the nozzle at 10 m/s. Determine the force that must 
be applied to maintain the blade speed constant. 

The circular dish, whose cross section is shown, has an outside diameter of 0.20 m. 
A water jet with speed of 35 m/s strikes the dish concentrically. The dish moves to 
the left at 15 m/s. The jet diameter is 20 mm. The dish has a hole at its center that al­
lows a stream of water 10 mm in diameter to pass through without resistance. The re­
mainder of the jet is deflected and flows along the dish. Calculate the force required 
to maintain the dish motion. 

9 = 40° 

d = 10 m m 

D = 20 mm 

P4.111 

The Canadair CL-215T amphibious aircraft is specially designed to fight fires. It is 
the only production aircraft that can scoop water—1620 gallons in 12 seconds — 
from any lake, river, or ocean. Determine the added thrust required during water 
scooping, as a function of aircraft speed, for a reasonable range of speeds. 

Consider a single vane, with turning angle 8, moving horizontally at constant speed, 
U, under the influence of an impinging jet as in Problem 4.108. The absolute speed 
of die jet is V. Obtain general expressions for the resultant force and power that the 
vane could produce. Show that the power is maximized when U = V/3. 

The circular dish, whose cross section is shown, has an outside diameter of 0.15 m. 
A water jet strikes the dish concentrically and then flows outward along the surface 
of the dish. The jet speed is 45 m/s and the dish moves to the left at 10 m/s. Find the 
thickness of the jet sheet at a radius of 75 mm from the jet axis. What horizontal 
force on the dish is required to maintain this motion? 
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U= 10 m/s 

P 4 . 1 1 4 

/\>- = 4 0 ' 

4.115 

4 . 1 1 6 

4.117 

4.118 

4.119 

V = 45 m/s 

d = 50 m m • 

P 4 . 1 1 5 

Water, in a 100 mm diameter jet with speed of 30 m/s to the right, is deflected by a 
cone that moves to the left at 15 m/s. Determine (a) the thickness of the jet sheet at 
a radius of 200 mm and (b) the external horizontal force needed to move the conftf 

Consider a series of turning vanes struck by a continuous jet of water that leaves a 5QJ 
mm diameter nozzle at constant speed, V = 86.6 m/s. The vanes move with constant 
speed, U = 50 m/s. Note that all the mass flow leaving the jet crosses the vanes. Thd 
curvature of the vanes is described by angles 0, = 30° and 62 = 45°, as shown. EvaJJ 
uate the nozzle angle, a, required to ensure that the jet enters tangent to the leading 
edge of each vane. Calculate the force that must be applied to maintain the vana 
speed constant. 

P4.116, 4.117, 4.163 

Consider again the moving multiple-vane system described in Problem 4.116. AS-H 
suming that a way could be found to make a nearly zero (and thus, 6{ nearly 90°),| 
evaluate the vane speed, U, that would result in maximum power output from thel 
moving vane system. 

A steady jet of water is used to propel a small cart along a horizontal track as shown.] 
Total resistance to motion of the cart assembly is given by FD = kU2, where] 
k = 0.92 N • s 2/m 2. Evaluate the acceleration of the cart at the instant when its speed! 
is U = 10 m/s. 

0 = 30° 

A h 
D = 25.0 m m 

\ y = 10.0 m/s 
0 m/s / V—^ p M = 15.0 kg ^ 

P4.118, 4.120, 4.124, 4.163 

A plane jet of water strikes a splitter vane and divides into two flat streams as shown. 
Find the mass flow rate ratio, NH/RH), required to produce zero net vertical force on 
the splitter vane. Determine the horizontal force that must be applied under these 
conditions to maintain the vane motion at steady speed. 
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4.120 The hydraulic catapult of Problem 4.118 is accelerated by a jet of water that strikes 
the curved vane. The cart moves along a level track with negligible resistance. At any 
time its speed is U. Calculate the time required to accelerate the cart from rest to 
U = V72. 

4.121 A vane/slider assembly moves under the influence of a liquid jet as shown. The coef­
ficient of kinetic friction for motion of the slider along the surface is fik = 0.30. 
Calculate the terminal speed of the slider. 

t/= 10.0 m/s 

6 = 30° 

^ 1 1 p = 9 9 9 kg/m-

V = 20 m/s 

A = 0 .005 m 2 

Af = 30kg 

u 

uk = 0 .30 

Initial mass, M0 

*• U 

P 4 . 1 2 1 , 4 . 1 2 2 , 4 . 1 3 2 , 4 . 1 3 3 P 4 . 1 2 3 , 4 .164 

4.122 For the vane/slider problem of Problem 4.121, find and plot expressions for the ac­
celeration, speed, and position of the slider as a function of time. 

4.123 A cart is propelled by a liquid jet issuing horizontally from a tank as shown. The 
track is horizontal; resistance to motion may be neglected. The tank is pressurized 
so that the jet speed may be considered constant. Obtain a general expression for the 
speed of the cart as it accelerates from rest. If M0 = 100 kg, p = 999 kg/m3, and 
A = 0.005 m 2, find the jet speed V required for the cart to reach a speed of 1.5 m/s 
after 30 seconds. For this condition, plot the cart speed U as a function of time. Plot 
the cart speed after 30 seconds as a function of jet speed. 

4.124 If the cart of Problem 4.118 is released at / = 0, when would you expect the acceler­
ation to be maximum? Sketch what you would expect for the curve of acceleration 
versus time. What value of 0 would maximize the acceleration at any time? Why? 
Will the cart speed ever equal the jet speed? Explain briefly. 

4.125 The acceleration of the vane/cart assembly of Problem 4.108 is to be controlled as 
it accelerates from rest by changing the vane angle, 6. A constant acceleration, 
a = 1 . 5 m/s 2, is desired. The water jet leaves the nozzle of area A = 0.025 m 2, 
with speed V = 15 m/s. The vane/cart assembly has a mass of 55 kg; neglect 
friction. Determine 6 at t = 5 s. Plot 6{t) for the given constant acceleration over a 
suitable range of /. 

4.126 The wheeled cart shown rolls with negligible resistance. The cart is to accelerate to 
the right at a constant rate of 2 m/s2. This is to be accomplished by ''programming" 
the water jet area, A(t), that reaches the cart. The jet speed remains constant at 10 
m/s. Obtain an expression for A(t) required to produce the motion. Sketch the area 
variation for / £ 4 s. Evaluate the jet area at t = 2 s. 
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4.130 

4.131 
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4.133 
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120° 

p = 9 9 9 kg/m 3 

V= 10 m/s 

P 4 . 1 2 6 P 4 . 1 2 7 , P 4 . 1 2 8 

A rocket sled, weighing 10,000 Ibf and traveling 600 mph, is to be braked by lower­
ing a scoop into a water trough. The scoop is 6 in. wide. Determine the time required 
(after lowering the scoop to a depth of 3 in. into the water) to bring the sled to a 
speed of 20 mph. Plot the sled speed as a function of time. 

A rocket sled is to be slowed from an initial speed of 300 m/s by lowering a scoop 
into a water trough. The scoop is 0.3 m wide; it deflects the water through 150°. The 
trough is 800 m long. The mass of the sled is 8000 kg. At the initial speed it experi­
ences an aerodynamic drag force of 90 kN. The aerodynamic force is proportional to 
the square of the sled speed. It is desired to slow the sled to 100 m/s. Determine the 
depth D to which the scoop must be lowered into the water. 

Starting from rest, the cart shown is propelled by a hydraulic catapult (liquid jet). The jet 
strikes the curved surface and makes a 180° turn, leaving horizontally. Air and rolling 
resistance may be neglected. If the mass of the cart is 100 kg and the jet of water leaves 
the nozzle (of area 0.001 m2) with a speed of 35 m/s, determine the speed of the cart 5 s 
after the jet is directed against the cart. Plot the cart speed as a function of time. 

Mass, M 

T T 

P4.129, 4.130, 4.153 

Consider the jet and cart of Problem 4.129 again, but include an aerodynamic drag] 
force proportional to the square of cart speed, FD = kU1, with k = 2.0 N • s 2/m 2. De-1 
rive an expression for the cart acceleration as a function of cart speed and other given 
parameters. Evaluate the acceleration of the cart at U = 10 m/s. What fraction is this 
speed of the terminal speed of the cart? 

A small cart that carries a single turning vane rolls on a level track. The cart mass is M = 
10.5 kg and its initial speed is U0 = 12.5 m/s. At / = 0, the vane is struck by an oppos­
ing jet of water, as shown. Neglect any external forces due to air or rolling resistance. 
Determine the time and distance needed for the liquid jet to bring the cart to rest. Plot] 
the cart speed (nondimensionalized on U0) and the distance traveled as functions of time. 

9 = 60' A 
M= 10.5 kg 

V= 8 .25 m/s 

A = 9 0 0 m m 2 

T T 

P4.131 

Solve Problem 4.12l if the vane and slider ride on a film of oil instead of sliding in 
contact with the surface. Assume motion resistance is proportional to speed, FR = 
kU, with k = 7.5 N • s/m. 

For the vane/slider problem of Problem 4.132, find and plot expressions for the ac­
celeration, speed, and position of the slider as functions of time. (Consider numerical 
integration.) 
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4.134 A rectangular block of mass M, with vertical faces, rolls without resistance along a 
smooth horizontal plane as shown. The block travels initially at speed U0. At t = 0 
the block is struck by a liquid jet and its speed begins to slow. Obtain an algebraic 
expression for the acceleration of the block for / > 0. Solve the equation to deter­
mine the time at which U = 0. 

4.135 If M = 100 kg, p = 999 kg/m3, and A = 0.01 m 2, find the jet speed V required for 
the cart to be brought to rest after one second if the initial speed of the cart is U0 = 5 
m/s. For this condition, plot the speed U and position x of the cart as functions of 
time. What is the maximum value of x, and how long does die cart take to return to 
its initial position? 

4.136 A rectangular block of mass M, with vertical faces, rolls on a horizontal surface be­
tween two opposing jets as shown. At / = 0 the block is set into motion at speed U0. 
Subsequently, it moves without friction parallel to the jet axes with speed U(t). Ne­
glect the mass of any liquid adhering to the block compared with M. Obtain general 
expressions for the acceleration of the block, a(f), and the block speed, U(i). 

4.137 Consider the statement and diagram of Problem 4.136. Assume that at / = 0, when 
the block is at x = 0, it is set into motion at speed U0 = 10 m/s, to the right. Calcu­
late the time required to reduce the block speed to U = 0.5 m/s, and the block posi­
tion at that instant. 

*4.138 A vertical jet of water impinges on a horizontal disk as shown. The disk assembly 
weighs 65 lbf. When the disk is 10 ft above the nozzle exit, it is moving upward at 
U = 15 ft/s. Compute the vertical acceleration of the disk at this instant. 

P 4 . 1 3 4 , 4 . 1 3 5 

P 4 . 1 3 6 , 4 . 1 3 7 

[/ = 15 ft/s 

h= 10 ft 
— A = 0 .05 ft 2 

V = 4 0 ft/s 

TV 
P 4 . 1 3 8 , 4 .139 , 4 . 1 6 0 

* This problem requires material from sections that may be omitted without loss of continuity in the text 
materia]. 
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(jĵ *4.139 A vertical jet of water leaves a 75 mm diameter nozzle. The jet impinges on a horifl 
zontal disk (see Problem 4.138). The disk is constrained horizontally but is free to 
move vertically. The mass of the disk is 35 kg. Plot disk mass versus flow rate to de-] 
termine the water flow rate required to suspend the disk 3 m above the jet exit plane. 

4.140 A manned space capsule travels in level flight above the Earth's atmosphere at initial 
speed U0 = 8.00 km/s. The capsule is to be slowed by a retro-rocket to U = 5.0B 
km/s in preparation for a reentry maneuver. The initial mass of the capsule is 
M0 = 1600 kg. The rocket consumes fuel at m = 8.0 kg/s, and exhaust gases leave at 
V, = 3000 m/s relative to the capsule and at negligible pressure. Evaluate the dura­
tion of the retro-rocket firing needed to accomplish this. Plot the final speed as a 
function of firing duration for a time range ± 10% of this firing time. 

4.141 A rocket sled traveling on a horizontal track is slowed by a retro-rocket fired in 
the direction of travel. The initial speed of the sled is U0 = 500 m/s. The initial 
mass of the sled is M0 = 1500 kg. The retro-rocket consumes fuel at the rate of 
7.75 kg/s, and the exhaust gases leave the nozzle at atmospheric pressure and a 
speed of 2500 m/s relative to the rocket. The retro-rocket fires for 20 s. Neglect 
aerodynamic drag and rolling resistance. Obtain and plot an algebraic expression 
for sled speed U as a function of firing time. Calculate the sled speed at the end ol 
retro-rocket firing. 

4.142 A rocket sled accelerates from rest on a level track with negligible air and rolling] 
resistances. The initial mass of the sled is M0 = 600 kg. The rocket initially con-] 
tains 150 kg of fuel. The rocket motor burns fuel at constant rate m = 15 kg/s. Exl 
haust gases leave the rocket nozzle uniformly and axially at Vc = 2900 m/s relative 
to the nozzle, and the pressure is atmospheric. Find the maximum speed reached bjl 
the rocket sled. Calculate the maximum acceleration of the sled during the run. 

4.143 A rocket sled with initial mass of 2000 Ibm is to be accelerated on a level track. ThJ 
rocket motor burns fuel at constant rate m = 30 lbm/s. The rocket exhaust flow is 
uniform and axial. Gases leave the nozzle at 9000 ft/s relative to the nozzle, and the 
pressure is atmospheric. Determine the minimum mass of rocket fuel needed to pro! 
pel the sled to a speed of 600 mph before burnout occurs. As a first approximation! 
neglect resistance forces. 

4.144 A rocket sled has an initial mass of 4 metric tons, including 1 ton of fuel. The motion 
resistance in the track on which the sled rides and that of the air total kU, where k is 
75 N • s/m, and U is the speed of the sled in m/s. The exit speed of the exhaust gal 
relative to the rocket is 1500 m/s, and the exit pressure is atmospheric. The rockel 
burns fuel at the rate of 75 kg/s. Compute the speed of the sled after 10 s. Plot thd 
sled speed and acceleration as functions of time. Find the maximum speed. 

4.145 A rocket motor is used to accelerate a kinetic energy weapon to a speed of 1.8 km/J 
in horizontal flight. The exit stream leaves the nozzle axially and at atmospheric presJ 
sure with a speed of 3000 m/s relative to the rocket. The rocket motor ignites upon reJ 
lease of the weapon from an aircraft flying horizontally at U0 = 300 m/s. Neglecting 
air resistance, obtain an algebraic expression for the speed reached by the weapon ill 
level flight. Determine the minimum fraction of the initial mass of the weapon thai 
must be fuel to accomplish the desired acceleration. 

4.146 A rocket sled with initial mass of 3 metric tons, including 1 ton of fuel, rests on a 
level section of track. At / = 0, the solid fuel of the rocket is ignited and the rockes 
burns fuel at the rate of 75 kg/s. The exit speed of the exhaust gas relative to thd 
rocket is 2500 m/s, and the pressure is atmospheric. Neglecting friction and air resist-] 
ance, calculate the acceleration and speed of the sled at / = 10 s. 

* This problem requires material from sections that may be omitted without loss of continuity in the texfl 
material. 
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4.147 A daredevil considering a record attempt—for the world's longest motorcycle 
jump—asks for your consulting help: He must reach 875 km/hr (from a standing 
start on horizontal ground) to make the jump, so he needs rocket propulsion. The to­
tal mass of the motorcycle, the rocket motor without fuel, and the rider is 375 kg. 
Gases leave the rocket nozzle horizontally, at atmospheric pressure, with a speed of 
2510 m/s. Evaluate the minimum amount of rocket fuel needed to accelerate the mo­
torcycle and rider to the required speed. 

4.148 A large two-stage liquid rocket with mass of 30,000 kg is to be launched from a sea-
level launch pad. The main engine burns liquid hydrogen and liquid oxygen in a stoi­
chiometric mixture at 2450 kg/s. The thrust nozzle has an exit diameter of 2.6 m. The 
exhaust gases exit the nozzle at 2270 m/s and an exit plane pressure of 66 kPa ab­
solute. Calculate the acceleration of the rocket at liftoff. Obtain an expression for 
speed as a function of time, neglecting air resistance. 

4.149 A "home-made" solid propellant rocket has an initial mass of 20 lbm; 15 lbm of 
this is fuel. The rocket is directed vertically upward from rest, burns fuel at a con­
stant rate of 0.5 lbm/s, and ejects exhaust gas at a speed of 6500 ft/s relative to the 
rocket. Assume that the pressure at the exit is atmospheric and that air resistance 
may be neglected. Calculate the rocket speed after 20 s and the distance traveled 
by the rocket in 20 s. Plot the rocket speed and the distance traveled as functions 
of time. 

4.150 Neglecting air resistance, what speed would a vertically directed rocket attain in 10 s 
if it starts from rest, has initial mass of 200 kg, burns 10 kg/s, and ejects gas at at­
mospheric pressure with a speed of 2900 m/s relative to the rocket? Plot the rocket 
speed as a function of time. 

4.151 Inflate a toy balloon with air and release it. Watch as the balloon darts about the 
room. Explain what causes the phenomenon you see. 

4.152 The vane/cart assembly of mass M = 30 kg, shown in Problem 4.108, is driven by a 
water jet. The water leaves the stationary nozzle of area A = 0.02 m 2, with a speed 
of 20 m/s. The coefficient of kinetic friction between the assembly and the surface is 
0.10. Plot the terminal speed of the assembly as a function of vane turning angle, 6, 
for 0 £ 0 :£ TT/2. At what angle does the assembly begin to move if the coefficient of 
static friction is 0.15? 

4.153 Consider the vehicle shown in Problem 4.129. Starting from rest, it is propelled by a 
hydraulic catapult (liquid jet). The jet strikes the curved surface and makes a 180° 
turn, leaving horizontally. Air and rolling resistance may be neglected. Using the no­
tation shown, obtain an equation for the acceleration of the vehicle at any time and 
determine the time required for the vehicle to reach U = V/2. 

4.154 The moving tank shown is to be slowed by lowering a scoop to pick up water 
from a trough. The initial mass and speed of the tank and its contents are M0 and 
f70, respectively. Neglect external forces due to pressure or friction and assume 
that the track is horizontal. Apply the continuity and momentum equations to 
show that at any instant U = UOMQ/M. Obtain a general expression for U/U0 as a 
function of time. 

Tank initial 
mass, M0 

Water trough 

P 4 . 1 5 4 

V Initial 
mass, M0 

P4.155 
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4.155 The tank shown rolls with negligible resistance along a horizontal track. It is to be accel­
erated from rest by a liquid jet that strikes the vane and is deflected into the tank. The 
initial mass of the tank is MQ. Use the continuity and momentum equations to show that 
at any instant the mass of the vehicle and liquid contents is M = M0V/(V - U). 
Obtain a general expression for U/V as a function of time. 

4.156 A small rocket motor is used to power a "jet pack" device to lift a single astrona 
above the Earth's surface. The rocket motor produces a uniform exhaust jet with con­
stant speed, Ve = 2940 m/s. The total initial mass of the astronaut and the jet pack ia 
M0 = 130 kg. Of this, 40 kg is fuel for the rocket motor. Develop an algebraic ex­
pression for the variable fuel mass flow rate required to keep the jet pack and astro­
naut hovering in a fixed position above the ground. Calculate the maximum ho 
time aloft before the fuel supply is expended. 

4.157 A model solid propellant rocket has a mass of 69.6 g, of which 12.5 g is fuel.' 
rocket produces 1.3 lbf of thrust for a duration of 1.7 s. For these conditions, calcu­
late the maximum speed and height attainable in the absence of air resistance. Plot 
the rocket speed and the distance traveled as functions of time. 

*4.158 Several toy manufacturers sell water "rockets" that consist of plastic tanks to be 
partially filled with water and then pressurized with air. Upon release, the com­
pressed air forces water out of the nozzle rapidly, propelling the rocket. You are 
asked to help specify optimum conditions for this water-jet propulsion system. To 
simplify the analysis, consider horizontal motion only. Perform the analysis and 
design needed to define the acceleration performance of the compressed air/water-
propelled rocket. Identify the fraction of tank volume that initially should be filled 
with compressed air to achieve optimum performance (i.e., maximum speed from 
the water charge). Describe the effect of varying the initial air pressure in the tank. 

P 4 . 1 5 8 P 4 . 1 5 9 

*4.159 A disk, of mass M, is constrained horizontally but is free to move vertically. A jet o' 
water strikes the disk from below. The jet leaves the nozzle at initial speed V0. Obtain 
a differential equation for the disk height, h(t), above the jet exit plane if the disk ̂  
released from large height, H. Assume that when the disk reaches equilibrium, i 
height above the jet exit plane is IIQ. Sketch h(t) for the disk released at t = 0 fro, 
H > V Explain why the sketch is as you show it. 

*4.160 Consider the configuration of the vertical jet impinging on a horizontal disk shown 
Problem 4.138. Assume the disk is released from rest at an initial height of 10 
above the jet exit plane. Solve for the subsequent motion of this disk. Identify thi 
steady-state height of the disk. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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4.161 A small solid-fuel rocket motor is fired on a test stand. The combustion chamber is 
circular, with 100 mm diameter. Fuel, of density 1660 kg/m3, burns uniformly at the 
rate of 12.7 mm/s. Measurements show that the exhaust gases leave the rocket at am­
bient pressure, at a speed of 2750 m/s. The absolute pressure and temperature in the 
combustion chamber are 7.0 MPa and 3610 K, respectively. Treat the combustion 
products as an ideal gas with molecular mass of 25.8. Evaluate the rate of change of 
mass and of linear momentum within the rocket motor. Express the rate of change of 
linear momentum within the motor as a percentage of the motor thrust. 

*4.162 A classroom demonstration of linear momentum is planned, using a water-jet propulsion 
system for a cart traveling on a horizontal linear air track. The track is 5 m long, and the 
cart mass is 155 g. The objective of the design is to obtain the best performance for the 
cart, using 1 L of water contained in an open cylindrical tank made from plastic sheet 
with density of 0.0819 g/cm2. For stability, the maximum height of the water tank cannot 
exceed 0.5 m. The diameter of the smoothly rounded water jet may not exceed 10 per­
cent of the tank diameter. Determine the best dimensions for the tank and the water jet 
by modeling the system performance. Plot acceleration, velocity, and distance as func­
tions of time. Find the optimum dimensions of the water tank and jet opening from the 
tank. Discuss the limitations on your analysis. Discuss how the assumptions affect the 
predicted performance of the cart. Would the actual performance of the cart be better or 
worse than predicted? Why? What factors account for the difference(s)? 

*4.163 The capability of the Aircraft Landing Loads and Traction Facility at NASA's Lang-
ley Research Center is to be upgraded. The facility consists of a rail-mounted 
carriage propelled by a jet of water issuing from a pressurized tank. (The setup is 
identical in concept to the hydraulic catapult of Problem 4.118.) Specifications re­
quire accelerating the carriage with 49,000 kg mass to a speed of 220 knots in a dis­
tance of 122 m. (The vane turning angle is 170°.) Identify a range of water jet sizes 
and speeds needed to accomplish this performance. Specify the recommended oper­
ating pressure for the water-jet system and determine the shape and estimated size of 
tankage to contain the pressurized water. 

*4.164 Analyze the design and optimize the performance of a cart propelled along a hori­
zontal track by a water jet that issues under gravity from an open cylindrical tank 
carried on board the cart. (A water-jet-propelled cart is shown in the diagram for 
Problem 4.123.) Neglect any change in slope of the liquid free surface in the tank 
during acceleration. Analyze the motion of the cart along a horizontal track, assum­
ing it starts from rest and begins to accelerate when water starts to flow from the jet. 
Derive algebraic equations or solve numerically for the acceleration and speed of the 
cart as functions of time. Present results as plots of acceleration and speed versus 
time, neglecting the mass of the tank. Determine the dimensions of a tank of mini­
mum mass required to accelerate the cart from rest along a horizontal track to a spec­
ified speed in a specified time interval. 

*4.165 The 90° reducing elbow of Example FYoblem 4.6 discharges to atmosphere. Section 
(1) is located 0.3 m to the right of Section © . Estimate the moment exerted by the 
flange on the elbow. 

::4.166 A large irrigation sprinkler unit, mounted on a cart, discharges water with a speed of 40 
m/s at an angle of 30° to the horizontal. The 50 mm diameter nozzle is 3 m above the 
ground. The mass of the sprinkler and cart is M = 350 kg. Calculate the magnitude of 
the moment that tends to overturn the cart. What value of V will cause impending mo-
lion? What will be the nature of the impending motion? What is the effect of the angle of 
jet inclination on the results? For the case of impending motion, plot the jet velocity as a 
function of the angle of jet inclination over an appropriate range of the angles, 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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1.5 m 

L = 20 m 

p = 332 kPa 

P 4 . 1 6 6 P4 .167 , 

*4.167 

*4.168 

Crude oil (SG = 0.95) from a tanker dock flows through a pipe of 0.25 m diameter 
in the configuration shown. The flow rate is 0.58 m3/s, and the gage pressures are 
shown in the diagram. Determine the force and torque that are exerted by the pipe as­
sembly on its supports. 

The simplified lawn sprinkler shown rotates in the horizontal plane. At the centerj 
pivot, Q = 4.5 gpm of water enters vertically. Water discharges in the horizontaB 
plane from each jet. If the pivot is frictionless, calculate the torque needed to keepl 
the sprinkler from rotating. Neglecting the inertia of the sprinkler itself, calculate the 
angular acceleration that results when the torque is removed. 

i l 
d = 6.35 mm 

R = 152 mm 

P4 .168 , 4 .169 , 4 . 1 7 0 

*4.169 Consider the sprinkler of Problem 4.168 again. Derive a differential equation for the 
angular speed of the sprinkler as a function of time. Evaluate its steady-state speed of 
rotation, if there is no friction in the pivot. 

*4.170 Repeat Problem 4.169, but assume a constant retarding torque in the pivot of 
0.045 ft • Ibf. 

4.171 Water flows in a uniform flow out of the 5 mm slots of the rotating spray system as] 
shown. The flow rate is 15 kg/s. Find the torque required to hold the system station-] 
ary, and the steady-state speed of rotation after it is released. 

T T M T T T Dia. = 15 mm 

200 mm 

2 5 0 mm 

P 4 . 1 7 1 , 4 . 1 7 2 

T T T T T T T T 

4.172 If the same flow rate in the rotating spray system of Problem 4.171 is not uniform but 
instead varies linearly from a maximum at the outer radius to zero at a point 50 mrJ 

* These problems require material from sections that may be omitted without loss of continuity in the texl 
material. 
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from the axis, find the torque required to hold it stationary, and the steady-state speed 
of rotation. 

*4.173 The lawn sprinkler shown is supplied with water at a rate of 68 L/min. Neglecting 
friction in the pivot, determine the steady-state angular speed for 8 = 30°. Plot the 
steady-state angular speed of the sprinkler for 0 s 8 ^ 90°, 

—H \—d= 6 .35 mm 

*4.175 

R= 152/nm 

P 4 . 1 7 3 

*4.174 A single tube carrying water rotates at constant angular speed, as shown. Water is 
pumped through the tube at volume flow rate Q = 13.8 L/min. Find the torque that 
must be applied to maintain the steady rotation of the tube using two methods of 
analysis: (a) a rotating control volume and (b) a fixed control volume. 

d = 8 .13 mm 

to = 33-1/3 rpm 

P 4 . 1 7 4 

.R - 2 0 0 mm 

P4 .175 , 4 .176 , 4 .177 

*4.176 

*4.177 

*4.178 

A small lawn sprinkler is shown. The sprinkler operates at a gage pressure of 140 kPa. 
The total flow rate of water through the sprinkler is 4 L/min. Each jet discharges at 17 m/s 
(relative to the sprinkler arm) in a direction inclined 30° above the horizontal. The sprin­
kler rotates about a vertical axis. Friction in the bearing causes a torque of 0.18 N • m 
opposing rotation. Evaluate the torque required to hold the sprinkler stationary. 

In Problem 4.175, calculate the initial acceleration of the sprinkler from rest if no ex­
ternal torque is applied and the moment of inertia of the sprinkler head is 0.1 kg • m 2 

when filled with water. 

A small lawn sprinkler is shown (Problem 4.175). The sprinkler operates at an inlet 
gage pressure of 140 kPa. The total flow rate of water through the sprinkler is 4.0 
L/min. Each jet discharges at 17 m/s (relative to the sprinkler arm) in a direction in­
clined 30° above the horizontal. The sprinkler rotates about a vertical axis. Friction 
in the bearing causes a torque of 0.18 N • m opposing rotation. Determine the steady 
speed of rotation of the sprinkler and the approximate area covered by the spray. 

When a garden hose is used to fill a bucket, water in the bucket may develop a 
swirling motion. Why does this happen? How could the amount of swirl be calcu­
lated approximately? 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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*4.179 Water flows at the rate of 0.15 m3/s through a nozzle assembly that rotates steadily at] 
30 rpm. The arm and nozzle masses are negligible compared with the water inside. De-I 
termine the torque required to drive the device and the reaction torques at the flange. 

P 4 . 1 7 9 

4.180 A pipe branches symmetrically into two legs of length L, and the whole system ro­
tates with angular speed w around its axis of symmetry. Each branch is inclined atj 
angle a to the axis of rotation. Liquid enters the pipe steadily, with zero angular mo-l 
mentum, at volume flow rate Q. The pipe diameter, D, is much smaller than L. Ob-j 
tain an expression for the external torque required to turn the pipe. What additional 
torque would be required to impart angular acceleration wl 

v 

Q 

P 4 . 1 8 0 P4.181 

Liquid in a thin sheet, of width w and thickness h, flows from a slot and strikes a sta-l 
tionary inclined flat plate, as shown. Experiments show that the resultant force of thd 
liquid jet on the plate does not act through point O, where the jet centerline intersects 
the plate. Determine the magnitude and line of application of the resultant force as 
functions of 8. Evaluate the equilibrium angle of the plate if the resultant force is apl 
plied at point O. Neglect any viscous effects. 

For the rotating sprinkler of Example Problem 4.14, what value of a will produce thel 
maximum rotational speed? What angle will provide the maximum area of coverage] 
by the spray? Draw a velocity diagram (using an r, 6, z coordinate system) to indi-j 
cate the absolute velocity of the water jet leaving the nozzle. What governs thej 
steady rotational speed of the sprinkler? Does the rotational speed of the sprinkler af-J 
feet the area covered by the spray? How would you estimate the area? For fixed al 
what might be done to increase or decrease the area covered by the spray? 

Air at standard conditions enters a compressor at 75 m/s and leaves at an absolute) 
pressure and temperature of 200 kPa and 345 K, respectively, and speed V = 123 
m/s. The flow rate is 1 kg/s. The cooling water circulating around the compressed 
casing removes 18 kJ/kg of air. Determine the power required by the compressor. 

Compressed air is stored in a pressure bottle with a volume of 10 ft3, at 3000 psia and! 
140°F. At a certain instant a valve is opened and mass flows from the bottlel 
at m = 0.105 lbm/s. Find the rate of change of temperature in the bottle at this instantj] 

*4.181 

^ '4.182 

4.183 

4.184 

* These problems require material from sections that may be omitted without loss of continuity in the texj 
material. 
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4.185 A centrifugal water pump with a 4 in. diameter inlet and a 4 in. diameter discharge 
pipe has a flow rate of 300 gpm. The inlet pressure is 8 in. Hg vacuum and the exit 
pressure is 35 psig. The inlet and outlet sections are located at the same elevation. 
The measured power input is 9.1 hp. Determine the pump efficiency. 

4.186 Air enters a compressor at 14 psia, 80°F with negligible speed and is discharged at 
70 psia, 500°F with a speed of 500 ft/s. If the power input is 3200 hp and the flow 
rate is 20 lbm/s, determine the rate of heat transfer. 

4.187 A turbine is supplied with 0.6 mVs of water from a 0.3 m diameter pipe; the dis­
charge pipe has a 0.4 m diameter. Determine the pressure drop across the turbine if it 
delivers 60 kW. 

4.188 Air is drawn from the atmosphere into a turbomachine. At the exit, conditions are 
500 kPa (gage) and 130°C. The exit speed is 100 m/s and the mass flow rate is 0.8 
kg/s. Flow is steady and there is no heat transfer. Compute the shaft work interaction 
with the surroundings. 

4.189 A pump draws water from a reservoir through a 150 mm diameter suction pipe and de­
livers it to a 75 mm diameter discharge pipe. The end of the suction pipe is 2 m below 
the free surface of the reservoir. The pressure gage on the discharge pipe (2 m above 
the reservoir surface) reads 170 kPa. The average speed in the discharge pipe is 3 m/s. 
If the pump efficiency is 75 percent, determine the power required to drive it. 

4.190 All major harbors are equipped with fire boats for extinguishing ship fires. A 75 mm 
diameter hose is attached to the discharge of a 10 kW pump on such a boat. The noz­
zle attached to the end of the hose has a diameter of 25 mm. If the nozzle discharge 
is held 3 m above the surface of the water, determine the volume flow rate through 
the nozzle, the maximum height to which the water will rise, and the force on the 
boat if the water jet is directed horizontally over the stern. 

: ;4.191 The total mass of the he Li copter-type craft shown is 1500 kg. The pressure of the air 
is atmospheric at the outlet. Assume the flow is steady and one-dimensional. Treat 
the air as incompressible at standard conditions and calculate, for a hovering posi­
tion, the speed of the air leaving the craft and the minimum power that must be deliv­
ered to the air by the propeller. 

1-3.3 m £ M 

- 3 . 3 m D - l 

P4.191 P 4 . 1 9 2 

4.192 Liquid flowing at high speed in a wide, horizontal open channel under some conditions 
can undergo a hydraulic jump, as shown. For a suitably chosen control volume, the flows 
entering and leaving the jump may be considered uniform with hydrostatic pressure distri­
butions (see Example F'roblem 4.7). Consider a channel of width w, with water flow at 
D, = 0.6 m and V, = 5 m/s. Show that in general, = £ \ [ / l + 8V? /gD, - 1] 12 
Evaluate the change in mechanical energy through the hydraulic jump. If heat trans­
fer to the surroundings is negligible, determine the change in water temperature 
through the jump. 

* This problem requires material from sections that may be omined without loss of continuity in the text 
material. 



Chapter 5 

INTRODUCTION TO 
DIFFERENTIAL ANALYSIS 

OF FLUID MOTION 

In Chapter 4, we developed the basic equations in integral form for a control vol-] 
time. Integral equations are useful when we are interested in the gross behavior of a 
flow field and its effect on various devices. However, the integral approach doea 
not enable us to obtain detailed point-by-point knowledge of the flow field. For ex­
ample, the integral approach could provide information on the lift generated by a 
wing; it could not be used to determine the pressure distribution that produced thel 
lift on the wing. 

To obtain detailed knowledge, we must apply the equations of fluid motion in 
differential form. In this chapter we shall develop differential equations for the con­
servation of mass and Newton's second law of motion. Since we are interested in for-; 
mulating differential equations, our analysis will be in terms of infinitesimal systems' 
and control volumes. 

5-1 CONSERVATION OF MASS 

In Chapter 2, we developed the field representation of fluid properties. The property fields 
are defined by continuous functions of the space coordinates and time. The density and 
velocity fields were related through conservation of mass in integral form in Chapter 4 
(Eq. 4.12). In this chapter we shall derive the differential equation for conservation of 
mass in rectangular and in cylindrical coordinates. In both cases the derivation is carried 
out by applying conservation of mass to a differential control volume. 

Rectangular Coordinate System 

In rectangular coordinates, the control volume chosen is an infinitesimal cube with 
sides of length dx, dy, dz as shown in Fig. 5.1. The density at the center, 0, of 
the control volume is assumed to be p and the velocity there is assumed to be i 
V = iu + jv + kw. 

To evaluate the properties at each of the six faces of the control surface, we use 
a Taylor series expansion about point 0. For example, at the right face, 

= p + 
x+dx/2 

d p Udx_ 
2! I 2 
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5-1 CONSERVATION OF MASS 185 

y 
Control vo lume 

z 

Fig. 5.1 Differential contro l vo lume in rectangular 
coord ina tes . 

Neglecting higher-order terms, we can write 

and 

P I = P + 
'x+dx/2 

du] 
l\ =u + 3 -
'x+dxTl [dx) 

(dp\fo 
dx) 2 

2 

dp du 
where p, u, and — aj- e a \ \ evaluated at point O. The corresponding terms at the 

left face are 

'x-dxll \OX 

{ du 
= u + — 

-dx/2 \OX 2 J [dx 

dx 
2 

dx 
~2 

A word statement of conservation of mass is 

Net rate of mass flux out 
through the control surface 

Rate of change of mass 
inside the control volume] = 0 

To evaluate the first term in this equation, we must evaluate J pV • dA; we must 
consider the mass flux through each of the six surfaces of the control surface. The de­
tails of this evaluation are shown in Table 5.1. Velocity components at each of the six 
faces have been assumed to be in the positive coordinate directions and we have used 
the convention that the area normal is positive outwards on each face. Higher-order 
terms [e.g., (dx)2] have been neglected. 

We see that the net rate of mass flux out through the control surface is given by 

dpu dpv dpw 
dx dy dz 

dxdydz 

The mass inside the control volume at any instant is the product of the mass per unit 
volume, p, and the volume, dxdydz. Thus the rate of change of mass inside the 
control volume is given by 
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Table 5.1 Mass Flux through the Control Surface of a Rectangular Differential Control Volume 

Surface 8A 

Left _ 
HO ~ 

Right 
(+*) " 

Bottom _ 
( - y ) - ' 

P + 

'dp) dx 

K Y x ) T 

ydX 

dx 

, dp dy 

Top 
( + y ) 

Back 
( - 2 ) " 

Front 
(+z) " 

P + 
dp) dy 
dv J 2 

u + 

v -

v + 

KdxJ 2 

du\ cU 
dx) 2 

dv] dy 

dydz =-pudydz + 

dydz 

dy) 2 

'dv} dy 

3p 
dz 

dz ( 3 \ aw 

< dlj 
dz 
2 

w + 
dw) dz 

[dz) 2 
dxdy 

pudydz + — 

dxdz = -pv dx dz + — 
2 

dxdz = dx dz + — " I 1 

au 
<dxj 

ydy, 

( I ) 

dxdy = -pwdxdy+ — 

pw dxdy + — 

dp} (dw 

dp\ (dw 

dx dy dz 

dxdy dz 

dxdydz 

dx dy dz 

dx dy dz 

dx dy dz 

Then, 

f PV 
JCS 

dA df> 
+ P 

(du_ 
dx {dy, 

+ P 
dv 

[dy) 
(dw) 
[dz 

dxdydz 

or 

pV•dA= dpu dpv dpw 
dx dy dz 

dxdydz 

^-dxdydz 
at 

In rectangular coordinates the differential equation for conservation of mass is then 

dx dy dz dt 
(5.1 

Equation 5.1a is frequently called the continuity equation. 
Since the vector operator, V , in rectangular coordinates, is given by 

V = , • _ ! + " J _ + j fc ! . 
dx dy dz 

then 

dpu dpv dpw „ 
ox dy dz 
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(Note that the del operator V acts on p and V !) and the conservation of mass may be 
written as 

V - p V + ^ 0 
dt 

(5.1b) 

Two flow cases for which the differential continuity equation may be simplified 
are worthy of note. 

For an incompressible fluid, p = constant; density is neither a function of space 
coordinates nor a function of time. For an incompressible fluid, the continuity equa­
tion simplifies to 

dx dy dz 
(5.1c) 

Thus the velocity field, V(x, y, z, t), for incompressible flow must satisfy V • V = 0 . 
For steady flow, all fluid properties are, by definition, independent of time. Thus 

dpldt = 0 and at most p = p(x, y, z). For steady flow, the continuity equation can be 
written as 

dx dy dz 
(5. Id) 

(and remember that the del operator V acts on p and V). 

EXAMPLE 5.1 Integration of Two-Dimensional Differential Continuity Equation 

For a two-dimensional flow in the xy plane, the x component of velocity is given by 
u = Ax. Determine a possible y component for incompressible flow. How many y 
components are possible? 

EXAMPLE PROBLEM 5.1 

GIVEN: Two-dimensional flow in the ry plane for which u = Ax. 

FIND: (a) Possible y component for incompressible flow, 
(b) Number of possible y components. 

JLUTION: 
• • V 7 f> dp -overning equation: V • p v + — = 0 

at 

For incompressible flow this simplifies to V • V = 0. In rectangular coordinates 

dx dy dz 
0 

ftr two-dimensional flow in the xy plane, V = V(x, y). Then partial derivatives with respect to z are zero, and 

du dv 
— + — = 0 
dx dy 
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Then 

dv _ du _ 
dy dx 

which gives an expression for the rate of change of v holding x constant This equation can be integrated to 
obtain an expression for v. The result is 

= IT DY+F(X'0 = ~AY+/(JC'0 <-
'dv 
dy 

(The function of x and t appears because we had a partial derivative of v with respect to y.) 

Any function/(x, t) is allowable, since f(x,t) = 0. Thus any number of expressions for v could satisfy 
dy 

the differential continuity equation under the given conditions. The simplest expression for v would be 
obtained by setting/(x, t) = 0. Then v = — Ay, and 

V = Axi - Ayj < V 

This problem: 
/ Shows use of the differentia] continuity equation for obtain­

ing information on a flow field. 
/ Demonstrates integration of a partial derivative. 
/ Proves that the flow originally discussed in Example Prob­

lem 2.1 is indeed incompressible. 

EXAMPLE 5.2 Unsteady Differential Continuity Equation 

A gas-filled pneumatic strut in an automobile suspension system behaves like a piston-
cylinder apparatus. At one instant when the piston is L = 0.15 m away from the 
closed end of the cylinder, the gas density is uniform at p = 18 kg/m 3 and the piston! 
begins to move away from the closed end at V = 12 m/s. The gas velocity is one-' 
dimensional and proportional to distance from the closed end; it varies linearly from 
zero at the end to u = V at the piston. Evaluate the rate of change of gas density at 
this instant. Obtain an expression for the average density as a function of time. 

EXAMPLE PROBLEM 5.2 

GIVEN: Piston-cylinder as shown. 

FIND: (a) Rate of change of density, 
(b) p(0. 

SOLUTION: 
dp Governing equation: V • pV + — = 0 
dt 

r , . . dpu dpv dpw dp In rectangular coordinates, -f— + -f— + -~— + —— = 0 
dx dy dz dt 

V = 12 m/s 
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luce u — u(x), partial derivatives with respect to y and z are zero, and 

dpu_ + 3p = Q 

3JC dt 

Then 

dp 
dt 

dpu du dp 
dx = - p T x - u T x 

Separate variables and integrate, 

• , dp „ . dp dp du Since p is assumed uniform m the volume, — = 0, and — = — = - p — • 
dx dt dt dx 

x du V dp V 
Since u = V — , — = —, then — = ~P~r. However, note that L = LQ + Vt. 

L dx L dt L 

Jpo p Jo L Jo In + Vt 

l „ 
and p(t) = p 0 

l n - ^ = ln 
U + Vt 

1 
1 + Vt/L0 

Alt = 0, 

dp V 18 kg 12 m 1 
— = - p n — = - — 2 - x — x 
dt L m 3 s 0.15 m 

= -1440kg/(m J • s) 

I 

This problem demonstrates use of the differential continuity 
equation for obtaining the density variation with time for an 
unsteady flow. 

The density-time graph is shown in an Excel workbook. 
This workbook is interactive: It allows one to see the ef­
fect of different values of pn, L, and V on p versus /. Also, 
the time at which the density falls to any prescribed 
value can be determined. 

dp 
dt 

Cylindrical Coordinate System 

A suitable differential control volume for cylindrical coordinates is shown in Fig. 5.2. 
The density at the center, O, of the control^volume is assumed to be p and the velocity 
there is assumed to be V = erVr + eeVe + kVz, wheree r , eg, and k are unit vectors in the 
r, 6, and z directions, respectively, and Vr, Ve, and Vz are the velocity components in the 

r, 6, and z directions, respectively. To evaluate pV • dA, we must consider the mass 
J c s 

flux through each of the six faces of the control surface. The properties at each of the 
six faces of the control surface are obtained from a Taylor series expansion about 
point O. The details of the mass flux evaluation are shown in Table 5.2. Velocity com­
ponents Vr, Vg, and Vz are all assumed to be in the positive coordinate directions and 
we have again used the convention that the area normal is positive outwards on each 
face, and higher-order terms have been neglected. 
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(a) Isometric view (fc) Projection on r$ plane 

F ig . 5.2 Dif ferent ial con t ro l v o l u m e in cy l indr ica l coord ina tes . 

We see that the net rate of mass flux out through the control surface is given by 

drdddz 
dPVr dpVe dPVz 

P r dr d$ dz 

The mass inside the control volume at any instant is the product of the mass per unit 
volume, p, and the volume, rd6 dr dz. Thus the rate of change of mass inside the con­
trol volume is given by 

^-rdddrdz 
dt 

In cylindrical coordinates the differential equation for conservation of mass is then 

dPVr dpVe dpVz dp n 

de dt 

or 
d(rpVr) | dpVe ^dpVz < rdp = Q 

dr dO dz dt 

Dividing by r gives 

1 d{rpVr) | 1 d(pVe) | 3(pV z) | dp = Q 

r dr r dd dz dt 
(5.2a) 

In cylindrical coordinates the vector operator V is given by 

„ „ d . 1 3 r 3 
dr r dd dz 

Equation 5.2a also may be written' in vector notation as 

v . p v + | £ = o 
3/ 

1 To evaluate V • pV in cylindrical coordinates, we must remember that 

= e„ and = -e, 
dd 9 de 

(3.18) 

(5.1b) 



T a b l e 5.2 M a s s F l u x t h r o u g h t h e C o n t r o l S u r f a c e o f a C y l i n d r i c a l Di f ferent ia l C o n t r o l V o l u m e 

Surface jpV dA 

Inside 

Outside 

Front 
(-0) 

Back 
(+8) 

Bottom 
(-z) 

Top 

dp} dr 
~o~r)~2 

K _ ( ^ 1 * 1 (r - £)d6 dz = -PVr rd6 dz + pV^dSdz + p ( ^ ) r ^ d6 dz + V rf ^ ] r - < » * 
V or J 2 ^ 2 / 2 1, dc J 2 V or J 2 

d p ) d8 
p ~ [ d d ) Y 

1 d e l 2 
V. + 

r + —)dddz= pVr rdddz + pVr —d8dz+ p m r ± d B d z + v p J L \ r ± d B d z 

2 \dr) 2 

dd ) 2 

d V A d d 

dd ) 2 

drdz 

dr dz 

-PV.** + P | ' t ) ? * * * V . ( J ) f * * 

p + 

dp\dz 
dz) 2 1 dz ) 2 

= - PVZ rd8 dr + p^jf rd& dr + Vz ̂ j | ^ * 

T h e n , 

•Ms 
pV•dA = 3K, 

3z 
drdddz 

Jcs 
pV • dA 

dpVr dpVe dPVz drdddz 
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For an incompressible fluid, p = constant, and Eq. 5.2a reduces to 

1 d(rVr) + 1 dVe + dVz _ y . y _ Q 

r dr r dd dz 
(5.2b) 

Thus the velocity field, V{x, y, z, t), for incompressible flow must satisfy V 
For steady flow, Eq. 5.2a reduces to 

•V = 0. 

1 d(rpVr) ( 1 d(pVe) d(pVz)_v -
r dr r de dz 

(5.2c) 

(and remember once again that the del operator V acts on p and V). 
When written in vector form, the differential continuity equation (the mathemat­

ical statement of conservation of mass), Eq. 5.1b, may be applied in any coordinate 
system. We simply substitute the appropriate expression for the vector operator V. In 
retrospect, this result is not surprising since mass must be conserved regardless of our 
choice of coordinate system. 

EXAMPLE 5.3 Differential Continuity Equation in Cylindrical Coordinates 

Consider a one-dimensional radial flow in the r0 plane, characterized by V r = j\r) 
and Ve = 0. Determine the conditions on f(r) required for the flow to be incom­
pressible. 

EXAMPLE PROBLEM 5.3 

GIVEN: One-dimensional radial flow in the rO plane: Vr = J{r) and Vg = 0. 

FIND: Requirements on J{r) for incompressible flow. 

SOLUTION: 

Governing equation: V • pV + — = 0 
3/ 

For incompressible flow in cylindrical coordinates this reduces to Eq. 5.2b, 

1 3 . . . . 1 3 . . BVZ . 

r dr r dd dz 

For the given velocity field, V = V(r). Vg = 0 and partial derivatives with respect to z are zero, so 

± f <rVr) = 0 
r dr 

Integrating with respect to r gives 

rVr = constant 

Thus the continuity equation shows that the radial velocity must be Vr = f(r) = Clr for one-dimensional 
radial flow of an incompressible fluid. This is not a surprising result: As the fluid moves outwards from the 
center, the volume flow rate (per unit depth in the z direction) Q = 27rrV at any radius r is constant. 
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*5.2 STREAM FUNCTION FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLOW 

We have already been introduced to the notion of streamlines in Chapter 2, where we 
described them as lines tangent to the instantaneous velocity vectors at every point. 
We can now make a more formal definition of the stream function, ip. The concept of 
the stream function allows us to mathematically represent two entities—the velocity 
components u(x, y, t) and v{x, y, t) of a two-dimensional incompressible flow—using 
a single function ip(x, y, t). The stream function is defined by 

u = —- and v = -—— (5.3) 
dy ax 

Why this definition? Because it guarantees that any continuous function tp(x, y, t) au­
tomatically satisfies the two-dimensional form of the incompressible continuity equa­
tion! For two-dimensional, incompressible flow in the x-y plane, Eq 5. lc becomes 

T + T = ° <5-4> 
ox ay 

and 

du dv d2ip d2ib 
— + — = ^ — = 0 
dx dy dx dy dy dx 

We have previously (in Example Problem 2.1) used the fact that at each point the 
streamlines are tangent to the instantaneous velocity vectors. This means that 

dy) 

dx /streamline u 

Thus we obtain the equation of a streamline in a two-dimensional flow, 

u dy - v dx = 0 

Substituting for the velocity components, u and v, in terms of the stream function, ip, 
from Eq. 5.3, we find that along a streamline, 

dip dip 
-^dx + ^-dy = 0 (5.5) 
dx dy 

Since i/r = ip(x, y, t), then at an instant, t0, \p = \p(x, y, t0); at this instant, a change in 
ip may be evaluated as though ip = ip(x, y). Thus, at any instant, 

d* = ¥-dx + ^dy (5.6) 
dx dy 

Comparing Eqs. 5.5 and 5.6, we see that along an instantaneous streamline, dip = 0; 
in other words, ip is a constant along a streamline. Hence we can specify individual 
streamlines by their stream function values: ip = 0, 1, 2, etc. What is the significance 
of the ip values? The answer is that they can be used to obtain the volume flow rate 

* This section may be omitted without loss of continuity in the text material. 



CHAPTER 5 / INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID MOTION 

Fig. 5.3 Ins tan taneous s t reaml ines in a two-d imens iona l 
flow. 

between any two streamlines. Consider the streamlines shown in Fig. 5.3. We can 
compute the volume flow rate between streamlines t//, and tpj by using line AB, BC, 
DE, or EF (recall that there is no flow across a streamline). 

Let us compute the flow rate by using line AB, and also by using line BC. 
For a unit depth (dimension perpendicular to the xy plane), the flow rate across 

AB is 

rn tvidip 
Q=\ udy=\ —dy 

J><, Jv, dy 

But along AB, x = constant, and (from Eq. 5.6) dtp = dip/dy dy. Therefore, 

Jy\ ay -V, 

For a unit depth, the flow rate across BC is 

_ r*2 f*2 dtp , 
Q = vdx = - -^~dx 

Jxl J.r, dx 

Along BC, y = constant, and (from Eq. 5.6) dip = dipldx dx. Therefore, 

ax J1P2 
Thus the volume flow rate (per unit depth) between any two streamlines can be writ­
ten as the difference between the constant values of tp defining the two streamlines. 2 

If the streamline through the origin is designated \p = 0, then the ip value for any 
other streamline represents the flow between the origin and that streamline. [We are 
free to select any streamline as the zero streamline because the stream function is 

2 For two-dimensional steady compressible flow in the xy plane, the stream function, is defined such that 

dip dip pu = — and pv = 
dy dx 

The difference between the constant values of ip defining two streamlines is then the mass flow rale (per 
unit depth) between the two streamlines. 
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defined as a differential (Eq. 5.3); also, the flow rate will always be given by a differ­
ence of ip values.] Note that because the volume flow between any two streamlines is 
constant, the velocity will be relatively high wherever the streamlines are close 
together, and relatively low wherever the streamlines are far apart—a very useful 
concept for "eyeballing" velocity fields to see where we have regions of high or low 
velocity. 

For a two-dimensional, incompressible flow in the rd plane, conservation of 
mass, Eq. 5.2b, can be written as 

dr d0 

The stream function, ip(r, 6, t), then is defined such that 

r r de 

dlp_ (5.8) 

With ip defined according to Eq. 5.8, the continuity equation, Eq. 5.7, is satisfied 
exactly. 

EXAMPLE 5.4 Stream Function for Flow in a Corner 

Given the velocity field for the steady, incompressible flow of Example 2.1, 
V = Axi - Ayj, with A — 0.3 s "', determine the stream function that will yield this 
velocity field. Plot and interpret the streamline pattern in the first and second quad­
rants of the xy plane. 

EXAMPLE PROBLEM 5.4 

GIVEN: Velocity field, V = Axi - Ayj, with A = 0.3 s~]. 

FIND: Stream function ip and plot in first and second quadrants; interpret the results. 

SOLUTION: 

The flow is incompressible, so the stream function satisfies Eq. 5.3. 
• dip dip 
•From Eq. 5.3, u = —— and v = - — . From the given velocity field, 

dy dy 

u = Ax 
dip_ 

dy 

integrating with respect to y gives 

4> jj^dy + f(x) = Axy + f( x) 

where f(x) is arbitrary. The function f(x) may be evaluated using the equation for v. Thus, from Eq. 1, 

M . df 

dx dx 

(1) 

(2) 



196 CHAPTER 5 / INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID MOTION 

From the given velocity field, v = —Ay. Comparing this with Eq. 2 shows that — = 0, or /(x) = con­
stant. Therefore, Eq. 1 becomes ^ 

ip = Axy + c ( 0 

Lines of constant ip represent streamlines in the flow field. The constant c may be chosen as any convenient 
value for plotting purposes. The constant is chosen as zero in order that the streamline through the origin 
be designated as ip = ip\ = 0. Then the value for any other streamline represents the flow between the ori­
gin and that streamline. With c = 0 and A = 0.3 s " \ then 

ip = 0.3xy (m3/s/m) 

(This equation of a streamline is identical to the result (xy = constant) obtained in Example Problem 2.1.) 

Separate plots of the streamlines in the first and second quadrants are presented below. Note that in 
quadrant 1, u > 0, so ip values are positive. In quadrant 2, u < 0, so ip values are negative. 

In the first quadrant, since u > 0 and v < 0, the flow is from left to right and down. The volume flow rate 
between the streamline ip = ip, through the origin and the streamline ip = 4h is 

Qn = 4h. ~~ "Ai = 0-3 m3/s/m 

In the second quadrant, since u < 0 and v < 0, the flow is from right to left and down. The volume flow 
rate between streamlines ip7 and 09 is 

Q19 = 09 - 07 = [-1.2 - (-0.6)] m3/s/m = -0.6m 3 /s /m 

The negative sign is consistent with flow having u < 0. 

As both the streamline spacing in the graphs and the equation 
for V indicate, the velocity is smallest near the origin (a 
"corner"). 

dtpf There is an Excel workbook for this problem that can be 
used to generate streamlines for this and many other 
stream functions. 



5-3 MOTION OF A FLUID PARTICLE (KINEMATICS) 197 

-3 MOTION OF A FLUID PARTICLE (KINEMATICS) 

Figure 5.4 shows a typical finite fluid element, within which we have selected an infini­
tesimal particle of mass dm and initial volume dxdy dz,al time t, and as it (and the infin­
itesimal particle) may appear after a time interval dt. The finite element has moved and 
changed its shape and orientation. Note that while the finite element has quite severe dis­
tortion, the infinitesimal particle has changes in shape limited to stretchmg/slvrinking 
and rotation of the element's s ides—this is because we are considering both an 
infinitesimal time step and particle, so that the sides remain straight. We will examine 
the infinitesimal particle so that we will eventually obtain results applicable to a 
point. We can decompose this particle's motion into four components: translation, in 
which the particle moves from one point to another; rotation of the particle, which 
can occur about any or all of the x, y or z axes; linear deformation, in which the 
particle's sides stretch or contract; and angular deformation, in which the angles 
(which were initially 90° for our particle) between the sides change. 

It may seem difficult by looking at Fig. 5.4 to distinguish between rotation and 
angular deformation of the infinitesimal fluid particle. It is important to do so, be­
cause pure rotation involves no deformation but angular deformation does and, as we 
learned in Chapter 2, fluid deformation generates shear stresses. Figure 5.5 shows the 
xy plane motion decomposed into the four components described above, and as we 
examine each of these four components in turn we will see that we can distinguish 
between rotation and angular deformation. 

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field 

The translation of a fluid particle is obviously connected with the velocity field 
V = V(x, y, z, t) that we previously discussed in Section 2-2. We will need the accel­
eration of a fluid particle for use in Newton's second law. It might seem that we could 
simply compute this as a = dV/dt. This is incorrect, because Vis a field, i.e., it de­
scribes the whole flow and not just the motion of an individual particle. (We can see 
that this way of computing is incorrect by examining Example Problem 5.4, in which 
particles are clearly accelerating and decelerating so a ¥= 0, but dV/dt = 0.) 

F i g . 5.4 F in i te f lu id e l emen t and in f in i tes imal par t ic le at t imes f and f -• dt. 
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Translation Rotation 

Angular deformation Linear deformation 

F ig . 5.5 P ic tor ia l r e p r e s e n t a t i o n of t he c o m p o n e n t s of f luid m o t i o n . 

The problem, then, is to retain the field description for fluid properties and ob­
tain an expression for the acceleration of a fluid particle as it moves in a flow field. 
Stated simply, the problem is: 

Given the velocity field, V = V{x, y, z, /), find the acceleration 
of a fluid particle, ap. 

Consider a particle moving in a velocity field. At time t, the particle is at the po­
sition x, y, z and has a velocity corresponding to the velocity at that point in space at 
time t, 

Vp], = V(x,y,zj) 

At t + dt, the particle has moved to a new position, with coordinates x + dx, y + dy, 
z + dz, and has a velocity given by 

Vp\t+di= V(x + djc>y + dy,z + dz,t + dt) 

This is shown pictorially in Fig. 5.6. 

Particle path 

Particle at 
+ dr t i m e , ; + di 

Fig. 5.6 M o t i o n of a par t i c le in 
a f l ow f ie ld. 
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The particle velocity at time t (position r) is given by V = V(x, y, z, t). Then d\, 
the change in the velocity of the particle, in moving from location r to r + dr, is-
given by the chain rule, 

dV j dV , dV , dV , 

The total acceleration of the particle is given by 

dVB dV dxn dV dy„ dV dz„ dV 
a = — — = — + — + — H 

p dt dx dt dy dt dz dt dt 

Since 

we have 

dx dy dzp 

—- = u, —— = v, and — - = w, 
dt dt dt 

dV dV dV dV dV 
a„ - —- = u — + v— + w — + ~ 

p dt dx dy dz dt 

To remind us that calculation of the acceleration of a fluid particle in a velocity field 
requires a special derivative, it is given the symbol DVIDt. Thus 

DV _ dV dV dV dV 
= an = u—+ v—+ w—+ — (5.9) 

Dt p dx dy dz dt 

The derivative, DVIDt, defined by Eq. 5.9, is commonly called the substantial deriv­
ative to remind us that it is computed for a particle of "substance." It often is called 
the material derivative or particle derivative. 

From Eq. 5.9 we recognize that a fluid particle moving in a flow field may un­
dergo acceleration for either of two reasons. As an illustration, refer to Example 
Problem 5.4. This is a steady flow in which particles are convected toward the low-
velocity region (near the "corner"), and then away to a high-velocity region. 3 If a 
flow field is unsteady a fluid particle will undergo an additional local acceleration, 
because the velocity field is a function of time. 

The physical significance of the terms in Eq. 5.9 is 

DV dV dV dV dV 
a.= = «— + v —- + w—- + — 

p Dt dx dy dz dt 
1 v ~ / 

total convective local 
acceleration acceleration acceleration 
of a particle 

The convective acceleration may be written as a single vector expression using 
the gradient operator V. Thus 

u— + v— + w — = (V • V)V 
dx dy dz 

'Convective accelerations are demonstrated and calculation of total acceleration of a fluid particle is 
illustrated in the NCFMF video Eulerian and Lagrangian Descriptions in Fluid Mechanics. 
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(We suggest that you check this equality by expanding the right side of the equation 
using the familiar dot product operation.) Thus Eq. 5.9 may be written as (5 10) 

For a two-dimensional flow, say V = V(x, y, t), Eq. 5.9 reduces to 

DV dV dV dV 
= u — + v — + — 

Dt dx dy dt 
For a one-dimensional flow, say V = V(x, t), Eq. 5.9 becomes 

DV dV dV 
—- = u— + — 
Dt dx dt 

Finally, for a steady flow in three dimensions, Eq. 5.9 becomes 

DV dV dV dV 
= U + V H W 

Dt dx dy dz 
which, as we have seen, is not necessarily zero. Thus a fluid particle may undergo a 
convective acceleration due to its motion, even in a steady velocity field. 

Equation 5.9 is a vector equation. As with all vector equations, it may be written 
in scalar component equations. Relative to an xyz coordinate system, the scalar com­
ponents of Eq. 5.9 are written 

ax '-
Du 

' Dt 
du du du du 

dx dy dz dt 
(5.11a) 

a --
>p 

Dv 
' Dt 

dv + dv dv + dv 

dx dy dz dt 
(5.11b) 

Dw 
Dt 

dw dw dw ^ dw 

dx dy dz dt 
(5.11c) 

The components of acceleration in cylindrical coordinates may be obtained from 
Eq. 5.10 by expressing the velocity, V, in cylindrical coordinates (Section 5-1) and 
utilizing the appropriate expression (Eq. 3.18) for the vector operator V. Thus, 4 

1/ d V r 
a = V —-

T" r dr 
r 

dvr 

de 
- y i + v ^ + 

r " dz 

dvr 

dt 
(5.12a) 

av f l 

p dr r 
dve 

de 
+

 v r v e + v We 

r 1 dz 
+ We 

dt 
(5.12b) 

a, = Vr —-L 

dr r 
dv 
de 

+ vz — ^ + — i 
dz dt 

(5.12c) 

Equations 5.9, 5.11, and 5.12 are useful for computing the acceleration of a 
fluid particle anywhere in a flow from the velocity field (a function of x, y, z, and /); 

4 In evaluating (V • V)V, recall that er and ee are functions of 8 (see footnote 1 on p. 190). 
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this is the Eulerian method of description, the most-used approach in fluid 
mechanics. 

As an alternative (e.g., if we wish to track an individual particle's motion in, 
for example, pollution studies) we sometimes use the Lagrangian description of 
particle motion, in which the acceleration, position, and velocity of a particle are 
specified as a function of time only. Both descriptions are illustrated in Example 
Problem 5.5. 

[EXAMPLE 5.5 Particle Acceleration in Eulerian and Lagrangian Descriptions 

Consider two-dimensional, steady, incompressible flow through the plane converging 
channel shown. The velocity on the horizontal centerline (x axis) is given by 
V= VJ1 + (xJL)]i Find the acceleration for a particle moving along that centerline. 
If we use the method of description of particle mechanics, the position of the particle, 
located at x = 0 at time / = 0, will be a function of time, xp = fit). Obtain the ex­
pression for fit) and then, by taking the second derivative of the function with respect 
to time, obtain an expression for the x component of the particle acceleration. 

EXAMPLE PROBLEM 5.5 

GIVEN: Steady, two-dimensional, incompressible flow through the converging channel shown. 

V, 1 + on x axis 

FIND: (a) The acceleration of a particle moving along the x axis. 
, (b) For the particle located at JC = 0 at / = 0, an expression for its 

(1) position, xp, as a function of time. 
(2) x component of acceleration, a^, as a function of time. 

SOLUTION: 
The acceleration of a particle moving in a velocity field is given by 

DV dV dV dV dV 
= M — — + V—— + W — — + — — 

Dt dx dy dz dt 

The x component of acceleration of a particle is given by 

Du du du du du 
= U YV— + w 1 

Dt dx dy dz dt 

For any particle on the x axis, v = w = 0, and u = V, ^1 + j . 

Therefore, - = u - = V,(l + - -f[l + ^ 
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{ To determine the acceleration of a particle at any point along the centerline of the channel, we 1 
merely substitute the present location of the particle into the above result. J 

In the second part of this problem we are interested in following a single particle, namely the one lo­
cated at x = 0 at / = 0, as it flows along the channel centerline. 

The x coordinate that locates this particle will be a function of time, xp = fit). Furthermore, up = dfldt 
will be a function of time. The particle will have the velocity corresponding to its location in the velocity 
field. At / = 0, the particle is at x = 0, and its velocity is Up = V,. At some later time, /, the particle will reach 
the exit, x = L; al that time it will have velocity up = 2VX. To find the expression forx p = j\t), we write 

dx 
p_ 

dt dt 

Separating variables gives 
df = Vxdt 

(1 + f/L) 
Since at / = 0, the particle in question was located at x = 0, and at a later time r, this particle is located at 
X

P = / -

Then, In | 

and 

\ f ^ = ['v.dt and L l n f l + ̂ Y 
Jo (l + .f/L) Jo 1 V L) 

V,t 

L) = YxL 
L) L 

1 , / V,tlL 
or 1 + — = e 1 

/ = L[ev*"L - I] 

Then the position of the particle, located at x = 0 at / = 0, is given as a function of time by 

xp = / ( / ) = L[e' 

The x component of acceleration of this particle is then 

O r = 

d \ 

dt2 dt2 L 

We now have two different ways of expressing the acceleration of the particle that was located at x = 0 at 
( = 0. Note that although the flow field is steady, when we follow a particular particle, its position and 
acceleration (and velocity) are functions of time. 

We check to see that both expressions for acceleration give the same results: 

ax = 
Xp 

(a) At / = 0, xp = 0 

ar = 

(b) When xp = — ,t = /,, 

L 
2 

L[e 

(a) 

" Dt L \ L) 

At / = 0, the particle is at x = 0 

Dt L 

Mx = 0.5L 

Du 
— = -L-(1 + 0.5) 
Dt L 

(a) 
Check. 

Therefore, eVi'l'L 1.5, and Du 
Dt 

1.5Viz 

Check. 



5-3 MOTION OF A FLUID PARTICLE (KINEMATICS) 203 

x" L 

V? n « 1.5 V? ax = —i-(1.5) = -

(c) When xp = L,t = t2, 

m xp = L = L[eWL - 1 ] 

Therefore, eV]'2lL = 2, and 

00 
Alx = L 

Du Vf 
= ^ - ( 1 + 1) 

Dr L 

L 
1 V , / , / i Du = 2V\ 

Dt ~ L (r- (c) 
Check. 

ax = ^ ( 2 ) = ^ L 
*? L L (c) 

This problem illustrates use of the Eulerian and Lagrangian 
descriptions of the motion of a fluid particle. 11 

Fluid Rotation 

A fluid particle moving in a general three-dimensional flow field may rotate about all 
three coordinate axes. Thus particle rotation is a vector quantity and, in general, 

a> = i a>x + jtoy + ka>z 

where u)x is the rotation about the x axis, coy is the rotation about the y axis, and or, is the 
rotation about the z axis. The positive sense of rotation is given by the right-hand rule. 

We now see how we can extract the rotation component of the particle motion. 
Consider the xy plane view of the particle at time t. The left and lower sides of the parti­
cle are given by the two perpendicular line segments oa and ob of lengths AJC and Ay, 
respectively, shown in Fig. 5.7a. In general, after an interval At the particle will have 
translated to some new position, and also have rotated and deformed. A possible instan­
taneous orientation of the lines at time t + At is shown in Fig. 5.7b. Edge oa has ro­
tated some angle Ac* counterclockwise (e.g., 6°) and edge ob has rotated some angle 
A/3 clockwise (e.g., 4°). These rotations are caused partly by the particle rotating as a 
rigid body, and partly by the fact that the particle is undergoing an angular deformation. 

It makes sense that we define the rotation of the particle about the z axis as the aver­
age of the angular motions of edges oa and ob. Computing this we obtain V2(Aa - A/3) 
(e.g., V2(6° - 4°) = 1°) counterclockwise, as shown in Fig. 5.7c (counterclockwise is 
considered positive because of the right-hand rule). This means that the total angular de­
formation of the particle must be given by the sum of the two equal angular deformations 
V2(Aa + A/3) (e.g., V2(6° + 4°) = 5°), as shown in Fig. 5.7d. Why must the two angular 
deformations be equal? The answer is that when the deformation of Fig. 5.7d is com­
bined with the rotation of Fig. 5.7c we must obtain our original motion, Fig. 5.7b! For 
example, the angular motion of edge oa, Act (e.g., 6° counterclockwise) is obtained by 
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Ay 

A x 

(a) Original particle 

>/2 (Aa + A/3) 
\ / 
\ 1 
r 
i 

(£>) Particle after t ime A i 

' / 2 ( A a + AB) 

(c) Rotational component Angular deformation component 

Fig . 5.7 Rota t ion a n d angu la r de fo rma t i on of pe rpend icu la r l ine s e g m e n t s in a two -d imens iona l flow. 

adding a pure rotation V2(Aa - A/3) (e.g., 1°), and a deformation V2(Aa + Aj8) (e.g., 5°). 
(As an exercise, you can verify that the motion of edge ob can be similarly obtained.) 

We need to convert these angular measures to quantities obtainable from the 
flow field. To do this, we recognize that (for small angles) Aa = A t j / A x , and A)3 = 
AtyAy. But A£ arises because, if in interval At point o moves horizontally distance 

uAt, then point b will have moved distance |w + | ^ AyJAt (using a Taylor series ex­

pansion). Likewise, A t j arises because, if in interval At point o moves vertically distance 

vAt, then point a will have moved distance [v + ^ Ax^Ar. Hence, 

AE, = | u + — Ay |A/ - uAt 
dy 

and 

ATJ 
dv , 

v + — Ax 
dx 

vAt 

du 

dy 

dv 

Ay A/ 

AxAt 

We can now compute the angular velocity of the particle about the z axis, toz, by com­
bining all these results: 

lim 
t\t-*0 

| ( A a - AjS) 

'to 
^3x 

At 

du 
dy 

= lim -
At->0 

A t j _ A£ 

Ax Ay 
_ A t 

lim 
&->0 

dv Ax 
dx Ax 

At 
du Ay 
dy Ay 

At 

At 

By considering the rotation of pairs of perpendicular line segments in the yz and 
xz planes, one can show similarly that 

1 ( du dw^ 1 dw 

3y 
to 
dz 

and cov = 
y 2 dz dx 

Then w = i u>x + jot + kii)z becomes 

1 
co = — 

2 

dw 
+ J 

to 
{dy dz 

We recognize the term in the square brackets as 

curl V = V x V 
Then, in vector notation, we can write 

(du dw\^^(dv du^ 
\dz dx) ydx dy j 

(5.13) 
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(5.14) 

It is worth noting here that we should not confuse rotation of a fluid particle with 
flow consisting of circular streamlines, or vortex flow. As we will see in Example 
Problem 5.6, in such a flow the particles could rotate as they move in a circular mo­
tion, but they do not have to! 

When might we expect to have a flow in which the particles rotate as they move 
( w =£())? One possibility is that we start out with a flow in which (for whatever rea­
son) the particles already have rotation. On the other hand, if we assumed the particles 
are not initially rotating, particles will only begin to rotate if they experience a torque 
caused by surface shear stresses; the particle body forces and normal (pressure) forces 
may accelerate and deform the particle, but cannot generate a torque. We can conclude 
that rotation of fluid particles will always occur for flows in which we have shear 
stresses. We have already learned in Chapter 2 that shear stresses are present whenever 
we have a viscous fluid that is experiencing angular deformation (shearing). Hence we 
conclude that rotation of fluid particles only occurs in viscous flows5 (unless the parti­
cles are initially rotating, as in Example Problem 3.10). 

Flows for which no particle rotation occurs are called irrotational flows. Al­
though no real flow is truly irrotational (all fluids have viscosity), it turns out that 
many flows can be successfully studied by assuming they are inviscid and irrota­
tional, because viscous effects are often negligible. 6 As we discussed in Chapter 1, 
and will again in Chapter 6, much of aerodynamics theory assumes inviscid flow. We 
just need to be aware that in any flow there will always be regions (e.g., the boundary 
layer for flow over a wing) in which viscous effects cannot be ignored. 

The factor of j can be eliminated from Eq. 5.14 by defining the vorticity, £, to 
be twice the rotation, 

The vorticity is a measure of the rotation of a fluid element as it moves in the flow 
field. In cylindrical coordinates the vorticity is 7 

The circulation, T (which we will revisit in Example Problem 6.12), is defined 
as the line integral of the tangential velocity component about any closed curve fixed 
in the flow, 

where ds is an elemental vector tangent to the curve and having length ds of the ele­
ment of arc; a positive sense corresponds to a counterclockwise path of integration 
around the curve. We can develop a relationship between circulation and vorticity by 
considering the rectangular circuit shown in Fig. 5.8, where, the velocity components 
at o are assumed to be (u, v), and the velocities along segments be and ac can be de­
rived using Taylor series approximations. 

5 A rigorous proof using the complete equations of motion for a fluid particle is given in [1], pp. 142-145. 
6 Examples of rotational and irrotational motion are shown in the NCFMF video Vorticity. 
7 In carrying out the curl operation, recall that er and eg are functions of 6 (see footnote 1 on p. 190). 

C = 2<b = V X V (5.15) 

(5.17) 
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Fig . 5.8 Veloci ty c o m p o n e n t s on 
the boundar ies of a f lu id e lement . 

For the closed curve oacb, 

AT = uAx + 
dv 

v + — Ax Ay u + ^ Ay |Ax - v Ay 
dy 

AY = 
dv du ., 

A r = 2&>zAxAy 

Then, 

V-ds= 2a), dA 
c JA 

(V X V)z dA (5.18) 

Equation 5.18 is a statement of the Stokes Theorem in two dimensions. Thus the 
circulation around a closed contour is equal to the total vorticity enclosed within it. 

EXAMPLE 5.6 Free and Forced Vortex Flows 

Consider flow fields with purely tangential motion (circular streamlines): V r = 0 and 
Ve = fir)- Evaluate the rotation, vorticity, and circulation for rigid-body rotation, a 

forced vortex. Show that it is possible to choose/V) so that flow is irrotational, i.e., to 
produce a free vortex. 

EXAMPLE PROBLEM 5.6 

GIVEN: Flow fields with tangential motion, Vr = 0 and Vg = j%r). 

FIND: (a) Rotation, vorticity, and circulation for rigid-body motion (a forced vortex). 
(b) Vg = j\r) for irrotational motion (a free vortex). 

SOLUT ION: 

Governing equation: f = 2cl) = V x V (5.15) 

For motion in the r$ plane, the only components of rotation and vorticity are in the z direction, 

„ _ 1 drVa 1 dVr Cz = 2coz = 
r dr de 

Because Vr = 0 everywhere in these fields, this reduces to ( = 2co = — ^Yi-
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(a) For rigid-body rotation, Vg = u>r. 
1 1 drV, Then w7 = 

z 2 r 
—— a>r = — (Z(or) 

2 r or 2r 
and L = 2m. 

The circulation is T 2a>7dA. (5.18) 

Since u>z = a> = constant, the circulation about any closed contour is given by T = 2cuA, where A is 
the area enclosed by the contour. Thus for rigid-body motion (a forced vortex), the rotation and vortic­
ity are constants; the circulation depends on the area enclosed by the contour. 

(b) For iiTOtational flow, —-^-rVe = 0. Integrating, we find 
r dr 

C 
rVg = constant or yg = /(,-) = _ 

r 
For this flow, the origin is a singular point where Vg —* <». The circulation for any contour enclosing 
the origin is 

r2ir 
r=(j)V-ds = ^ -rd6 = 2irC 

The circulation around any contour not enclosing the singular point at the origin is zero. Streamlines 
for the two vortex flows are shown below, along with the location and orientation at different instants 
of a cross marked in the fluid that was initially at the 12 o'clock position. For the rigid-body motion 
(which occurs, for example, at the eye of a tornado, creating the "dead" region at the very center), the 
cross rotates as it moves in a circular motion; also, the streamlines are closer together as we move 
away from the origin. For the irrotational motion (which occurs, for example, outside the eye of a tor­
nado—in such a large region viscous effects are negligible), the cross does not rotate as it moves in a 
circular motion; also, the streamlines are farther apart as we move away from the origin. 

Rigid-body motion Irrotational motion 

Fluid Deformation 

a. Angu la r Deformat ion 

As we discussed earlier (and as shown in Fig. 5.7d), the angular deformation of a 
particle is given by the sum of the two angular deformations, or in other words by 
(Aa + AjS). 

We also recall that A a = A17/AX, A/3 = A£/Ay, and A£ and A T J are given by 

At - uAt = — Ay At 
dy 

and 
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AT/ = \v + ^ Ax 1a* - vAt = ^ AxAt 
dx ) ax 

We can now compute the rate of angular deformation of the particle in the xy plane! 
by combining these results, 

Rate of angular 
deformation 
in xy plane 

Rate of angular 
deformation 
in xy plane 

(Aa + A/3) 
= hm = hm 

At^O 

' A T , + A£ 

v A* Ay 

= lim 
A/->0 

At 

'dvAx 

(dx Ax 

At^O 

A. du Ay . 
At + -At 

dy Ay 

At 

At 
(dv + du^ 

dx dy j 
( 5 . 1 9 a l 

Similar expressions can be written for the rate of angular deformation of the part iclJ 
in the yz and zx planes, 

dw dv^ Rate of angular deformation in yz plane = | _ + 
dy dz) 

d d 
Rate of angular deformation in zx plane = | — + — 

dx dz 

( 5 . 1 9 b | 

( 5 . 19c | 

We saw in Chapter 2 that for one-dimensional laminar Newtonian flow the shearl 
stress is given by the rate of deformation (du/dy) of the fluid particle, 

du 
(2.10) 

We will see shortly that we can generalize Eq. 2.10 to the case of three-dimensionan 
laminar flow; this will lead to expressions for three-dimensional shear stresses inJ 
volving the three rates of angular deformation given above. (Eq. 2.10 is a special casd 
of Eq. 5.19a.) 

The concepts of rotation and deformation are treated at length in the NCFMF 
video Deformation of Continuous Media. Calculation of angular deformation is illus­
trated for a simple flow field in Example Problem 5.7. 

EXAMPLE 5.7 Rotation in Viscometric Flow 

A viscometric flow in the narrow gap between large parallel plates is shown. Thel 
velocity field in the narrow gap is given by V = U(y/h)i, where (7 = 4 mm/s and| 
h = 4 mm. At / = 0 line segments ac and bd are marked in the fluid to form a cross 
as shown. Evaluate the positions of the marked points at t = 1.5 s and sketch for 
comparison. Calculate the rate of angular deformation and the rate of rotation of a 
fluid particle in this velocity field. Comment on your results. 

Lines marked 
n fluid 

a t / = 0 
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EXAMPLE PROBLEM 5.7 

GIVEN: Velocity field, V = U — i;U = 4 mm/s, and h = 4 mm. Fluid particles marked at t = 0 to form 
h 

cross as shown. 

FIND: (a) Positions of points a', b', c', and <f at t = 1.5 s; plot. 
(b) Rate of angular deformation. 
(c) Rate of rotation of a fluid particle. 
(d) Significance of these results. 

SOLUTION: 
For the given flow field v = 0, so there is no vertical motion. The velocity of each point stays constant, so 
Ax = uAt for each point At point b, u = 3 mm/s, so 

3 mm 1.5 s 
Axb = x = 4.5 mm 

s 

Similarly, points a and c each move 3 mm, and point d moves 1.5 mm. The plot at t = 1.5 s is 

3 

2 

1 

_ 0 

d Lines at i = 1.5 s 

0 I 2 3 4 5 6 7 

The rate of angular deformation is 

du dv 1 . t/ 4 mm 1 , _i 
— + — = 11— + 0 = — = x = l s 
dy dx h h s 4 mm 

The rate of rotation is 

1 (dv du^ 
2 I ox dy 

U 1 4 mm 1 _i - x x = -0.5 s 
2 s 4 mm 

In this problem we have a viscous flow, and hence should 
have expected both angular deformation and particle rotation. 

b. Linear Deformat ion 

During linear deformation, the shape of the fluid element, described by the angles at its 
vertices, remains unchanged, since all right angles continue to be right angles (see Fig. 
5.5). The element will change length in the x direction only if du/dx is other than zero. 
Similarly, a change in the y dimension requires a nonzero value of dv/dy and a change 
in the z dimension requires a nonzero value of dw/dz- These quantities represent the 
components of longitudinal rates of strain in the x, y, and z directions, respectively. 
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Changes in length of the sides may produce changes in volume of the element] 
The rate of local instantaneous volume dilation is given by 

Volume dilation rate = ^ + ^ + ^ = V V (5.20) 
dx oy 6z 

For incompressible flow, the rate of volume dilation is zero (Eq. 5.1c). 

The velocity field V = Axi - Ayj represents flow in a "corner," as shown in Example] 
Problem 5.4, where A = 0.3 s~' and the coordinates are measured in meters. AJ 
square is marked in the fluid as shown at / = 0. Evaluate the new positions of the] 
four corner points when point a has moved to x = 2 m after T seconds. Evaluate thel 
rates of linear deformation in the x and y directions. Compare area a'b'c'd' at t = N 
with area abed at t = 0. Comment on the significance of this result. 

V = Axi - Ayj; A = 0.3 s , x and y in meters. 

Position of square at t — T when a is at 

a at x = 2 m 

Rates of linear deformation. 
Area a'b'c'd' compared with area abed. 
Significance of the results. 

6(1 ,2 ) c (2 ,2) 

a ( 

. Square marked 
a t ; = 0 

.1) rf(2,l) 

First we must find T , so we must follow a fluid particle using a Lagrangian description. Thus 
dx 
dt 

P A dx J 
- Axp, — = A rff,so 

x 

r dx_ _ r 

h n X Jo 

T = H H ^ = JN(|) = L 3 5 S 

0.3 s" 
In the y direction 

dyP 
v = —f- = -Ayp dt p 

The point coordinates at rare: 

d-^ = -Ad, 

A dt and In — = AT 
0 * 0 

yo 

The plot is: 

Point t = 0 t = T 

a (1, 1) (*. f) 

b (1,2) (h *> 

c (2, 2) (3, f ) 

d (2, 1) (3, 

-1 = 0 
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The rates of linear deformation are 

du d 
dx 

dv 

dx 

d 

Ax = A = 0.3s" in the x direction 

dy dy 

•The rate of volume dilation is 

(-Ay) = -A = -0.3 s - i in the y direction 

V • V = — + — = A - A 
dx ay 

Area abed = I m 2 and area a'b'c'd' = (3 - 4-)(4 _ 4) = 1 m 2 

Notes: 
/ ParaJlel planes remain parallel; there is linear deformation 

but no angular deformation. 
/ The flow is irrotational (dv/dx + du/dy = 0). 
/ Volume is conserved because the two rates of linear defor­

mation are equal and opposite. 
/ The NCFMF video Flow Visualization uses hydrogen bub­

ble time-streak markers to demonstrate experimentally that 
the area of a marked fluid square is conserved in two-
dimensional incompressible flow. 

•
The Excel workbook for this problem shows an anima­
tion of this motion. 

We have shown in this section that the velocity field contains all information 
needed to determine the acceleration, rotation, angular deformation, and linear defor­
mation of a fluid particle in a flow field. 

5-4 MOMENTUM EQUATION 

A dynamic equation describing fluid motion may be obtained by applying Newton's 
second law to a particle. To derive the differential form of the momentum equation, 
we shall apply Newton's second law to an infinitesimal fluid particle of mass dm. 

Recall that Newton's second law for a finite system is given by 

(4.2a, 

''system 
where the linear momentum, P , of the system is given by 

System = f , V dm (4.2b) •> mass (system) 
Then, for an infinitesimal system of mass dm, Newton's second law can be written 
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dF = dm^-
dt 

(5.21) 
system 

Having obtained an expression for the acceleration of a fluid element of mass dm, moving 
in a velocity field (Eq. 5.9), we can write Newton's second law as the vector equation 

dF = dm = dm 
Dt 

dV dV dV dV 
u— + v— + W 1-

dx dy dz dt 
(5.22) 

We now need to obtain a suitable formulation for the force, dF, or its components, 
dFx, dFy, and dFz, acting on the element. 

Forces Acting on a Fluid Particle 

Recall that the forces acting on a fluid element may be classified as body forces and! 
surface forces; surface forces include both normal forces and tangential (shear) forces. 

We shall consider the x component of the force acting on a differential element 
of mass dm and volume dY = dx dy dz- Only those stresses that act in the x direction! 
will give rise to surface forces in the x direction. If the stresses at the center of thel 
differential element are taken to be a^, ryx, and T „ , then the stresses acting in the x 
direction on all faces of the element (obtained by a Taylor series expansion about thel 
center of the element) are as shown in Fig. 5.9. 

To obtain the net surface force in the x direction, dFs , we must sum the forces! 
in the x direction. Thus, 

3 T , 

' y x dy 

dy dz 

\ 

2 

dr„ dz 
dz 2 

dxdz-

dx dy -

yx 

da^ dx\ 
dx 2 J 
drvx dy) 

By 2 J 
drv dz) 

dy dz 

dx dz 

daxx dx 
' " 5 7 2 dx 

° " 5 7 " 2 

dy 2 

Fig. 5.9 S t resses in the x d i rec t ion on an e lemen t of f luid 
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On simplifying, we obtain 
d°~xx , ^Tyx , d^) 

dx dy dz 
dxdydz 

When the force of gravity is the only body force acting, then the body force per unit 
mass is g. The net force in the x direction, dFx, is given by 

dFx = dFBr + dFSr = PSx + 
l a . ' yx dxdydz (5.23a) 
dx dy dz 

We can derive similar expressions for the force components in the y and z directions: 

dFy = dFBv + dFSy = P * , + ^ f + 
9 T „ . da,,., dr ^ 

dx dy dz j 
dxdydz (5.23b) 

dFz = dFB + dFSr = PSZ + U 2 . L2L 
da 

dx dy dz 
dxdydz (5.23c) 

Differential Momentum Equation 

We h a v e n o w formulated expressions for the components, dFx, dFy, and dFz, of the 
force, dF, acting on the element of mass dm. If we substitute these expressions (Eqs. 
5.23) for the force components into the x, y, and z components of Eq. 5.22, we obtain 
the differential equations of motion, 

^ da^ 
PSx + + ox 

dr 

' yx dr, 

P8>+~d. 

Pgz + 

dy 

da yy 

dz 

dr 

= P 
'du du du du^ 

— + u— + v — + w — 
dt dx dy dz 

(5.24a) 

dy 

dr 

+ dz 

dv dv dv dv . 
— + U— + V— + W— | (5.24b) 

^ dt dx dy dz 

z + °°-zz 

dy dz 
= P 

'dw dw dw dw^ 
1- u + v + w — 

dt dx dy dz j 
(5.24c) 

Equations 5.24 are the differential equations of motion for any fluid satisfying 
the continuum assumption. Before the equations can be used to solve for u, v, and w, 
suitable expressions for the stresses must be obtained in terms of the velocity and 
pressure fields. 

Newtonian Fluid: Navier-Stokes Equations 

For a Newtonian fluid the viscous stress is directly proportional to the rate of shearing 
strain (angular deformation rate). We saw in Chapter 2 that for one-dimensional lami­
nar Newtonian flow the shear stress is proportional to the rate of angular deformation: 
ryx = duldy (Eq. 2.10). For a three-dimensional flow the situation is a bit more com­
plicated (among other things we need to use the more complicated expressions for rate 
of angular deformation, Eq. 5.19). The stresses may be expressed in terms of velocity 
gradients and fluid properties in rectangular coordinates as follows: 8 

8 T h e derivation of these results is beyond the scope of this book. Detailed derivations may be found in 
References 2, 3, and 4. 
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Txy ~ Tyx ~ P yx 

T — T = 
yz zy 

O-yy = ~P 

a . z = - p 

P 

dv du^ 
dx dy j 

(dw dv — + — 
\dy dz 

Txz = P\ 

2 

(du dw^ 
{dz~ + ~dx~ 

(Txx=~P- -pVV + 2p^ 
3 dx 

\pVV + 2 ^ 
3 dy 

2 w r, 3w -pVV + 2p,— 
3 dz 

(5.25 

(5.25 

(5.25 

(5.25 

(5.25e 

(5.25 

where p is the local thermodynamic pressure. 9 Thermodynamic pressure is related to 
the density and temperature by the thermodynamic relation usually called the equa­
tion of state. 

If these expressions for the stresses are introduced into the differential equations 
of motion (Eqs. 5.24), we obtain 

Du 
Dt 

dp d 
ax ox 

d 
+ — 

dy 
P 

du dv 
dy dx 

d 
+ \Tz 

dw du^ 

dx dz 
(5.26a1 

Dv 
Dt 

dp d 
P 8 > - ^ + lTx 

f du ^dv^ d / 

p 
Kdy dx j + — 

dy 
P 

\ 

2 ^ - ^ W V 
dy 3 

3 
+ — 

dz 
P 

dv dw 

dz dy 
(5.26b] 

Dw 
~Dt 

_dp+d_ 
z dz dx 

P 
'dw du} 

dx dz dy 
dv dw^ 

dz dy 

P 
dz 3 

(5.26c] 

These equations of motion are called the Navier-Stokes equations. The equations anj 
greatly simplified when applied to incompressible flow with constant viscosity. UndeJ 
these conditions the equations reduce to 

' Reference 5 discusses the relation between the thermodynamic pressure and the average pressure de^ 
fined as p = —(cr„ + cr ( l + ov)/3. 
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du du du du 
p\ V u — + v 1- w — 

dt dx dy dz 
= PSx ~ 

dp (<l -\2 <1 \ 

a u a u a u 

d x 2 + d y 2 + d z T

J 

(5.27a) 

dv dv dv dv 

Y t + u Y x + v Y y + w Y z V 

dp (d2v cfv cfv) 

dy2 + dz2 dx2 ^-2 
(5.27b) 

dw dw dw dw 
1- u 1- v ——I- w —— 

dt dx dy dz 
P8z ~ 

dp 

Y z + " 

( & a w d2 

{ dx2 dy 

w d w + 
dzz 

(5.27c) 

This form of the Navier-Stokes equations is probably (next to the Bernoulli equation) 
the most famous set of equations in fluid mechanics, and has been widely studied. 
These equations, with the continuity equation (Eq. 5.1c), form a set of four coupled 
nonlinear partial differential equations for u, v, w and p. Solutions to these equations 
have been obtained for many special cases [3], but only for the simplest of geome­
tries and initial or boundary conditions, for which many of the terms in the equations 
can be set to zero. We will solve the equations for such a simple problem in Example 
Problem 5.9. 

The Navier-Stokes equations for constant density and viscosity are given in cylin­
drical coordinates in Appendix B; they have also been derived for spherical coordinates 
[3]. We will apply the cylindrical coordinate form in solving Example Problem 5.10. 

In recent years computational fluid dynamics (CFD) computer applications 
(such as Fluent [6] and STAR-CD [7]) have been developed for analyzing the Navier-
Stokes equations for more complicated, real-world problems. 

For the case of frictionless flow (p. = 0) the equations of motion (Eqs. 5.26 or 
Eqs. 5.27) reduce to Eider's equation, 

°V - v 

We shall consider the case of frictionless flow in Chapter 6. 

EXAMPLE 5.9 Analysis of Fully Developed Laminar Flow down 
an Inclined Plane Surface 

A liquid flows down an inclined plane surface in a steady, fully developed laminar 
film of thickness h. Simplify the continuity and Navier-Stokes equations to model 
this flow field. Obtain expressions for the liquid velocity profile, the shear stress dis­
tribution, the volume flow rate, and the average velocity. Relate the liquid film thick­
ness to the volume flow rate per unit depth of surface normal to the flow. Calculate 
the volume flow rate in a film of water h = 1 mm thick, flowing on a surface b = 1 m 
wide, inclined at 6 = 15° to the horizontal. 

EXAMPLE PROBLEM 5.9 

GIVEN: Liquid flow down an inclined plane surface in a steady, fully developed laminar film of thickness h. 

FIND: (a) Continuity and Navier-Stokes equations simplified to model this flow field. 
(b) Velocity profile. 
(c) Shear stress distribution. 
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(d) Volume flow rale per unit depth of surface normal to diagram. 
(e) Average flow velocity. 
(f) Film thickness in terms of volume flow rate per unit depth of surface normal to diagram. 
(g) Volume flow rate in a film of water 1 mm thick on a surface 1 m wide, inclined at 15° to the 

horizontal. 

SOLUTION: 
The geometry and coordinate system used to model the flow field are shown. (It is convenient to align one 
coordinate with the flow down the plane surface.) 

1 mm 

Width b = 1 m 

Governing equations written for incompressible flow with constant viscosity are 

A 3 

(5.1c) 

(5.27a) 

(5.27b) 

(5.27c) 

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. 
The assumptions are discussed in the order in which they are applied to simplify the equations. 

Assumptions: (1) Steady flow (given). 
(2) Incompressible flow; p = constant. 
(3) No flow or variation of properties in the z direction; w = 0 and d/dz = 0. 
(4) Fully developed flow, so no properties vary in the x direction; dldx = 0. 

Assumption (1) eliminates time variations in any fluid property. 
Assumption (2) eliminates space variations in density. 
Assumption (3) states that there is no z component of velocity and no property variations in the z 

direction. All terms in the z component of the Navier-Stokes equation cancel. 
After assumption (4) is applied, the continuity equation reduces to dvldy = 0. Assumptions (3) and 

(4) also indicate that dvldz = 0 and dvldx = 0. Therefore v must be constant. Since v is zero at the solid 
surface, then v must be zero everywhere. 

The fact that v = 0 reduces the Navier-Stokes equations further, as indicated by (5). The final simpli­
fied equations are 
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I 
a 2 " 

n dp 0 = ^-^_ 

(1) 

(2) 

Since dufdz = 0 (assumption 3) and du/dx = 0 (assumption 4), then u is at most a function of y, and 
(fVdy2 = dtul&y1, and from Eq. 1, then 

d \ 

dy1 
pgx sin e 
— = -pg — p, p 

Integrating, 

and integrating again, 

du sin 6 
— = -ps — y + c, 
dy p. 

sind y1 

u = -pg — + cYy + c2 

p 2 

(3) 

(4) 

The boundary conditions needed to evaluate the constants are the no-slip condition at the solid surface 
(u = 0 at y = 0) and the zero-shear-stress condition at the liquid free surface (du/dy = 0 at y = h). 

I Evaluating Eq. 4 at y = 0 gives c 2 = 0. From Eq. 3 at y = h, 

« sin 0 , 0 = -pg h + c, 

or 

P 

sin 0 , 
Cj = Pg h P 

Substituting into Eq. 4 we obtain the velocity profile 

sin d y sin 0 , 
u = -pg — + pg ny 

p. 2 P 

or 

« = Pg-sine 
P { 

y2^ 

The shear stress distribution is (from Eq. 5.25a after setting dvldx to zero, or alternatively, for one-dimen­
sional flow, from Eq. 2.10) 

Tyx(y) du 
TyX = p— = Pg SIN 6(h - y)^_ 

The shear stress in the fluid reaches its maximum value at the wall (y = 0); as we expect, it is zero at the 
[ free surface (y = h). At the wall the shear stress is positive but the surface normal for the fluid is in the 

negative y direction; hence the shear force acts in the negative x direction, and just balances the x compo-
I ncnt of the body force acting on the fluid. The volume flow rate is 

Q = [ udA = \H ubdy 
JA Jo 
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th pg sin d 
Jo PL ' 2 

bdy = pg 
sin 6 b 

e = 
pg sin 6 b h 

(5) 

The average flow velocity is V = Q/A = Qlbh. Thus 

^ _ _0 = pg sin fl 

Solving for film thickness gives 

3^2 
pg sin 0 b 

1/3 

(6) A 

A film of water h = 1 mm thick on a plane b = 1 m wide, inclined at 0 = 15°, would carry 

999 kg 9.81m sin (15°) l m m - s 
8 = - F X - R * 1.00 x 10^ kg 

(0.001)3 m 3 1000 L x - - - x — T 

3 m 3 

Q = 0.846 L/s. 

Notes: 
y This problem illustrates how the full Navier-Stokes equa­

tions (Eqs. 5.27) can sometimes be reduced to a set of 
solvable equations (Eqs. 1 and 2 in this problem). 

/ After integration of the simplified equations, boundary (or 
initial) conditions are used to complete the solution. 

/ Once the velocity field is obtained, other useful quantities 
(e.g., shear stress, volume flow rate) can be found. 

/ Equations (5) and (6) show that even for fairly simple prob­
lems the results can be quite complicated: The depth of the 
flow depends in a nonlinear way on flow rate (h « g" 3 ) . 

EXAMPLE 5.10 Analysis of Laminar Viscometric Flow between Coaxial Cylinders 

A viscous liquid fills the annular gap between vertical concentric cylinders. The inner 
cylinder is stationary, and the outer cylinder rotates at constant speed. The flow is 
laminar. Simplify the continuity, Navier-Stokes, and tangential shear stress equations 
to model this flow field. Obtain expressions for the liquid velocity profile and the 
shear stress distribution. Compare the shear stress at the surface of the inner cylinder 
with that computed from a planar approximation obtained by "unwrapping" the an-
nulus into a plane and assuming a linear velocity profile across the gap. Determine 
the ratio of cylinder radii for which the planar approximation predicts the co 
shear stress at the surface of the inner cylinder within 1 percent. 
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EXAMPLE PROBLEM 5.10 

GIVEN: Laminar viscometric flow of liquid in annular gap between vertical concentric cylinders. The in­
ner cylinder is stationary, and the outer cylinder rotates at constant speed. 

flND: (a) Continuity and Navier-Stokes equations simplified to model this flow field. 
(b) Velocity profile in the annular gap. 
(c) Shear stress distribution in the annular gap. 
(d) Shear stress at the surface of the inner cylinder. 
(e) Comparison with "planar" approximation for constant shear stress in the narrow gap between 

cylinders. 
(f) Ratio of cylinder radii for which the planar approximation predicts shear stress within 1 per­

cent of the correct value. 

SOLUTION: 
The geometry and coordinate system used to model the flow field are shown. (The z coordinate is directed 
vertically upward; as a consequence, gr = ge = 0 and gz = -g . ) 

The continuity, Navier-Stokes, and tangential shear stress equations (from Appendix B) written for 
incompressible flow with constant viscosity are 

(B.l) 

(B.3a) 

(B.3b) 
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rre= M 
d (v^ 

(B.3c) 

(B.2) 

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. 
The assumptions are discussed in the order in which they are applied to simplify the equations. 

Assumptions: (1) Steady flow; angular speed of outer cylinder is constant. 
(2) Incompressible flow; p = constant. 
(3) No flow or variation of properties in the z direction; vz = 0 and d/dz = 0. 
(4) Circumferentially symmetric flow, so properties do not vary with 6, and d/dd = 0. 

Assumption (1) eliminates time variations in fluid properties. 
Assumption (2) eliminates space variations in density. 
Assumption (3) causes all terms in the z component of the Navier-Stokes equation to cancel, except 

for the hydrostatic pressure distribution. 
After assumptions (3) and (4) are applied, the continuity equation reduces to 

± f (n>,) = 0 
r dr 

Because d/dd = 0 and d/dz = 0 by assumptions (3) and (4), then 

rvr = constant 

Since vr is zero at the solid surface of each cylinder, then vr must be zero everywhere. 
The fact that v, = 0 reduces the Navier-Stokes equations further, as indicated by cancellations (5). 

The final equations reduce to 

- p -

0 

dp 
dr 

d \_d_ 
r dr rva 

But since d/dd = 0 and d/dz = 0 by assumptions (3) and (4), then ve is a function of radius only, and 

d (I d 

Integrating once, 
dr\r dr 

[rv0] = 0 

LJL 
7 dr 

[rve] = c, 

or 

Integrating again, 

rv„ 

dr 
[rve] = q r 

r 1 
ve = c, - + c2 -

2 r 
Two boundary conditions are needed to evaluate constants c, and c2- The boundary conditions are 
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ve = co R2 

ve = 0 
Substituting 

After considerable algebra 

at 
at 

r — R2 and 

n * v 7 

uR2 = C\^r- + C2 

R\ 1 

0 = c, — + c2 — 
1 2 2 fl, 

2w 

1 -
\ 2 

and c 2 =. 

1 -

Substituting into the expression for v8, 

cor 

^1) 

ioR\lr 

\ 2 

coR, 
( 

1 
^R2 

( D \ 2 ( D \ 2 

\ R 2 ) 

X2j 

R r 

The shear stress distribution is 

dr fir dr 
coR, 

yR2j 

R ' r2 = pr-
coR, 

Tr8 = V 
2co ftf 1 

2 2 

^ 2 

At the surface of the inner cylinder, r = Rso 

"̂surface P" 
2co 

1 -

For a "planar" gap 

rplanar — M . — M 
Ay /?2 - /?] 

Tplanar " A 1 p 
1 - 1 

ft 2 <-

Factoring the denominator of the exact expression for shear stress at the surface gives 

^surface P ' 
2co 

- A Y i . A L 
R2 A R 2 ) 

' p l a n a r 

BIBL IOTECf l 

u, e. a. 

1 
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Thus 

For 1 percent accuracy, 

^surface _ ^ 

''"planar 

1.01 = 
i + A 

R 
—— = —-— (2 — 1.01) = 0.980 
R 1.01 

The accuracy criterion is met when the gap width is less than 2 percent of the cylinder radius. 

Notes: 

/ 

This problem illustrates how the full Navier-Stokes equa­
tions in cylindrical coordinates (Eqs. Bl to B.3) can some­
times be reduced to a set of solvable equations. 
As in Example Problem 5.9, after integration of the simpli­
fied equations, boundary (or initial) conditions are used to 
complete the solution, 
Once the velocity field is obtained, other useful quantities 
(in this problem, shear stress) can be found. 

The Excel workbook for this problem compares the vis­
cometer and linear velocity profiles. It also allows one to 
derive the appropriate value of the viscometer outer 
radius to meet a prescribed accuracy of the planar ap­
proximation. We will discuss the concentric cylinder-
infinite parallel plates approximation again in Chapter 8. 

5-5 SUMMARY 

In this chapter we have: 

/ Derived the differential form of the conservation of mass (continuity) equation 
vector form as well as in rectangular and cylindrical coordinates. 

/ *Defined the stream function ip for a two-dimensional incompressible flow and 
learned how to derive the velocity components from it, as well as to find ip from the 
velocity field. 

/ Learned how to obtain the total, local, and convective accelerations of a fluid particle 
from the velocity field. 

/ Presented examples of fluid particle translation and rotation, and both linear and an­
gular deformation. 

/ Defined vorticity and circulation of a flow. 

* This topic applies to a section that may be omitted without loss of continuity in the text material. 
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/ Derived, and solved for simple cases, the Navier-Stokes equations, and discussed 
the physical meaning of each term. 

We have also explored such ideas as how to determine whether a flow is incom­
pressible by using the velocity field and, given one velocity component of a two-
dimensional incompressible flow field, how to derive the other velocity component. 

In this chapter we studied the effects of viscous stresses on fluid particle defor­
mation and rotation; in the next chapter we examine flows for which viscous effects 
are negligible. 
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PROBLEMS 

5.1 Which of the following sets of equations represent possible two-dimensional incom­
pressible flow cases? 
(a) u = Ix2 + y2 — x2y (b) u = 2xy - x2 + y; 

v = r 1 + xiy2 — 2y) v = 2xy - y2 + x2 

(c) u = xt + 2y; v = xf - yt (d) u = (x + 2y)xt; v = -(2A- + y)yt 

5.2 Which of the following sets of equations represent possible two-dimensional incom­
pressible flow cases? 
(a) u = — x + y; v = x - y2 (b) u ~ x + 2y\ v = x2 - y 
(c) u = Ax1 — y; v = x — y2 (d) u = xt + 2y; v = x2 - yt 
(e) u = xi2; v = xyt + y2 

5.3 The three components of velocity in a velocity field are given by u = Ax + By + Cz, 
v = Dx + Ey + Fz, and w = Gx + Hy + Jz- Determine the relationship among the co­
efficients A through J that is necessary if this is to be a possible incompressible flow field. 

5.4 Which of the following sets of equations represent possible three-dimensional incom­
pressible flow cases? 
(a) u = x + y + z2\ v = x — y + z; w = 2xy + y2 + 4 
(b) u = xyzf, v = -xyzt2; w = (z1l2){xii - yt) 
(c) u = y1 + 2xz; v = -2yz + x^yz; w = j x2z2 + x*y4 

5.5 For a flow in the xy plane, the x component of velocity is given by u = Ax(y - B), 
where ^ = 3 m " ' • s " ' , B = 2m, and x and y are measured in meters. Find a possible 

http://www.fluent.com
http://www.cd-adapco.com
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y component for steady, incompressible flow. Is it also valid for unsteady, incompress­
ible flow? Why? How many y components are possible? 

5.6 For a flow in the xy plane, the y component of velocity is given by v = y 2 — 2x + 2y. 
Determine a possible x component for steady, incompressible flow. Is it also valid for 
unsteady, incompressible flow? Why? How many possible JC components are there? 1 

The x component of velocity in a steady, incompressible flow field in the xy plane is u — I 
A/x, where A = 2 m2/s, and x is measured in meters. Find the simplest y component of 
velocity for this flow field. 

The y component of velocity in a steady, incompressible flow field in the xy plane is v = 
Ay2/*2, where A = 2 m/s and x and y are measured in meters. Find the simplest x com­
ponent of velocity for this flow field. 

The x component of velocity in a steady incompressible flow field in the xy plane is 
u = AxJix2 + y2), where A = 10 m2/s, and x and y are measured in meters. Find the 
simplest y component of velocity for this flow field. 

A crude approximation for the x component of velocity in an incompressible laminar 
boundary layer is a linear variation from u = 0 at the surface (y = 0) to the 
freestream velocity, U, at the boundary-layer edge (y = 5). The equation for the pro­
file is w — Uy/8, where 8 = cxm and c is a constant. Show that the simplest expres­
sion for the y component of velocity is v = uylAx. Evaluate the maximum value of the 
ratio v/U, at a location where x = 0.5 m and 5 = 5 mm. 

A useful approximation for the x component of velocity in an incompressible laminar 
boundary layer is a sinusoidal variation from u = 0 at the surface ( y = 0) to the 
freestream velocity, U, at the edge of the boundary layer (y = 8). The equation for the 
profile is u = U sin(Try/25), where 8 = cxm and c is a constant. Show that the sim­
plest expression for the y component of velocity is 

5.7 

5.8 

5.9 

5.10 

5.11 

v_ _ _1_ 8 
U ~ TT X 

C O S 
7 7 y TT y) . (try 

S I N 

2 8) {2 8 

9 5.12 

5.13 

5.14 

Plot u/U and v/U versus y/8, and find the location of the maximum value of the rail 
v/U. Evaluate the ratio where x = 0.5 m and 8=5 mm. 

A useful approximation for the x component of velocity in an incompressible laminae 
boundary layer is a parabolic variation from u = 0 at the surface (y = 0) to the 
freestream velocity, U, at the edge of the boundary layer ( y = 8). The equation for 
the profile is u/U = 2(y/8) - (y /S) 2 , where 8 = cxm and c is a constant. Show that 
the simplest expression for the y component of velocity is 

v 
U 

1 (y_ 
2 5 

Plot v/U versus y /8 to find the location of the maximum value of the ratio v/U. EvaluJ 
ate the ratio where 5 = 5 mm and x = 0.5 m. 

A useful approximation for the x component of velocity in an incompressible laminar 
boundary layer is a cubic variation from u = 0 at the surface ( y = 0) to the freestream 
velocity, U, at the edge of the boundary layer ( y = 5). The equation for the profiJ 
is u/U = j(y/8) — ^iy/8)3, where 8 = cxul and c is a constant. Derive the simpleJ 
expression for v/U, the y component of velocity ratio. Plot u/U and v/U versus y/8, and 
find the location of the maximum value of the ratio v/U. Evaluate the ratio where 8 = 
5 mm and x = 0.5 m. 

The y component of velocity in a steady, incompressible flow field in the xy plane is 
v = -fixy 3 , where B = 0.2 m 3 • s ', and x and y are measured in meters. Find the 
simplest x component of velocity for this flow field. Find the equation of the streanJ 
lines for this flow. Plot the streamlines through points (1,4) and (2, 4). 
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5.15 For a flow in the xy plane, the x component of velocity is given by u = Ax2?2, where 
A = 0.3 n T 3 • s _ 1 , and x and y are measured in meters. Find a possible y component 
for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? 
Why? How many possible y components are there? Determine the equation of the 
streamline for the simplest y component of velocity. Plot the streamlines through 
points (I, 4) and (2, 4). 

5.16 Derive the differentia] form of conservation of mass in rectangular coordinates by ex­
panding the products of density and the velocity components, pu, pu, and pw, in a 
Taylor series about a point O. Show that the result is identical to Eq. 5.1a. 

5.17 Consider a water stream from a jet of an oscillating lawn sprinkler. Describe the corre­
sponding pathline and streakline. 

5.18 Consider a water stream from a nozzle attached to a rotating lawn sprinkler. Describe 
the corresponding pathline and streakline. 

5.19 Which of the following sets of equations represent possible incompressible flow cases? 
(a) V, = (/cos 0; Vg = - ( / s i n d 
(b) V, = -qll-m; Ve = Kll-wr 
(c) Vr = (/cos 8 [1 - {air)2}; V„ = - f / s in 0[1 + (air)1} 

5.20 For an incompressible flow in the rd plane, the 6 component of velocity is given as 
Vg = -A sin Blr . Determine a possible r component of velocity. How many possible 
r components are there? 

5.21 A viscous liquid is sheared between two parallel disks of radius R, one of which rotates 
while the other is fixed. The velocity field is purely tangential, and the velocity varies 
linearly with z from Ve = 0 at z = 0 (the fixed disk) to the velocity of the rotating disk 
at its surface (z = h). Derive an expression for the velocity field between the disks. 

5.22 A velocity field in cylindrical coordinates is given as V = erAlr + eeB/r, where A 
and B are constants with dimensions of m2/s. Does this represent a possible incom­
pressible flow? Sketch the streamline that passes through the point r 0 = 1 m, 8 = 90° 
if A = B = 1 m2/s, if A = 1 m2/s and B = 0, and if B = 1 m2/s and A = 0. 

5.23 Evaluate V • p V in cylindrical coordinates. Use the definition of V in cylindrical coor­
dinates. Substitute the velocity vector and perform the indicated operations, using the 
hint in footnote 1 on page 190. Collect terms and simplify; show that the result is 
identical to Eq. 5.2c. 

"5.24 The velocity field for the viscometric flow of Example Problem 5.7 is V = U(y/h)i. 
Find the stream function for this flow. Locate the streamline that divides the total flow 
rate into two equal parts. 

5.25 Determine the family of stream functions ip that will yield the velocity field 
V = {x + 2y)i+(x2 - y)j. 

5.26 Does the velocity field of Problem 5.22 represent a possible incompressible flow case? 
If so, evaluate and sketch the stream function for the flow. If not, evaluate the rate of 
change of density in the flow field. 

5.27 The stream function for a certain incompressible flow field is given by the expression 
ip — — Ur sin 6 + qOllrr. Obtain an expression for the velocity field. Find the stagnation 
point(s) where W\ = 0, and show that ip = 0 there. 

*5.28 Consider a flow with velocity components u — 0, v = —y3 - 4z, and w = 3}^ . 
(a) Is this a one-, two-, or three-dimensional flow? 
(b) Demonstrate whether this is an incompressible or compressible flow. 
(c) If possible, derive a stream function for this flow. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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*5.29 An incompressible frictionless flow field is specified by the stream function ip = 
-2Ax — 5Ay, where A = 1 m/s, and x and y are coordinates in meters. Sketch the 
stTeamlines ip = 0 and tp = 5. Indicate the direction of the velocity vector at the point 
(0, 0) on the sketch. Determine the magnitude of the flow rate between the streamlines 
passing through the points (2, 2) and (4, 1). 

*5.30 In a parallel one-dimensional flow in the positive x direction, the velocity varies lin­
early from zero at y = 0 to 100 ft/s at y = 5 ft. Determine an expression for the 
stream function, Also determine the y coordinate above which the volume flow rate 
is half the total between y = 0 and y = 5 ft. 

*5.31 A Dnear velocity profile was used to model flow in a laminar incompressible boundary 
layer in Problem 5.10. Derive the stream function for this flow field. Locate streanB 
lines at one-quarter and one-half the total volume flow rate in the boundary layer. 

*5.32 Derive the stream function that represents the sinusoidal approximation used to model 
the x component of velocity for the boundary layer of Problem 5.11. Locate stream­
lines at one-quarter and one-half the total volume flow rate in the boundary layer. 

*5.33 A parabolic velocity profile was used to model flow in a laminar incompressible bound-] 
ary layer in Problem 5.12. Derive the stream function for this flow field. Locate stream­
lines at one-quarter and one-half the total volume flow rate in the boundary layer. 

5.34 A cubic velocity profile was used to model flow in a laminar incompressible boundary 
layer in Problem 5.13. Derive the stream function for this flow field. Locate stream­
lines at one-quarter and one-half the total volume flow rate in the boundary layer. 

*5.35 Example Problem 5.6 showed that the velocity field for a free vortex in the rO plane is 
V = iff Clr. Find the stream function for this flow. Evaluate the volume flow rate pel 
unit depth between r, = 0.10 m and r2 = 0.12 m, if C = 0.5 m2/s. Sketch the velocity 
profile along a line of constant 6, Check the flow rate calculated from the stream func­
tion by integrating the velocity profile along this line. 

*5.36 A rigid-body motion was modeled in Example Problem 5.6 by the velocity fielJ 
V = rcoeg. Find the stream function for this flow. Evaluate the volume flow rate pel 
unit depth between rt = 0.10 m and r 2 = 0.12 m, if co = 0.5 rad/s. Sketch the 
velocity profile along a line of constant 0. Check the flow rate calculated from the 
stream function by integrating the velocity profile along this line. 

5.37 Consider the velocity field V = A(x2 + 2xy)i - A(2xy + y2)j in the xy plane, where! 
A = 0.25 nT 1 • s" 1, and the coordinates are measured in meters. Is this a possible in­
compressible flow field? Calculate the acceleration of a fluid particle at point 
(x,y) = (2, I). 

5.38 Consider the flow field given by V = xy2i - ^ y*j + xyk. Determine (a) the number 
of dimensions of the flow, (b) if it is a possible incompressible flow, and (c) the accel­
eration of a fluid particle at point (x, y,z) = (1, 2, 3). 

5.39 Consider the flow field given by V = ax2yi - byj + cz2k, where a = 1 m" 2 • s~', 
b = 3 s" 1, and c = 2 m" 1 • s"'. Determine (a) the number of dimensions of the flow, 
(b) if it is a possible incompressible flow, and (c) the acceleration of a fluid particle at 
point (x,y, z) = (3, 1,2). 

5.40 The velocity field within a laminar boundary layer is approximated by the expression 

- AUv : AUv2 -
V = ^ 2 - + J x ^ J 

* These problems require material from sections thai may be omitted without loss of continuity in the text 
material. 
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In this expression, A = 141 m~ l / 2 , and U = 0.240 m/s is the freestream velocity. 
Show that this velocity field represents a possible incompressible flow. Calculate the 
acceleration of a fluid particle at point (x, y) = (0.5 m, 5 mm). Determine the slope of 
the streamline through the point. 

5.41 The x component of velocity in a steady, incompressible flow field in the xy plane is 
u = A/x2, where A = 2 m3/s and x is measured in meters. Find the simplest y compo­
nent of velocity for this flow field. Evaluate the acceleration of a fluid particle at point 
(x.y) = (1.3). 

5.42 The y component of velocity in a two-dimensional, incompressible flow field is given 
by v = —Axy, where v is in m/s, x and y are in meters, and A is a dimensional con­
stant. There is no velocity component or variation in the z direction. Deteirnine the di­
mensions of the constant, A. Find the simplest x component of velocity in this flow 
field. Calculate the acceleration of a fluid particle at point (x,y) = (1, 2). 

5.43 Consider the velocity field V - Ax/{x2 + y2)i + Ay/(x2 + y2)j in the xy plane, where 
, 4 = 1 0 m2/s, and x and y are measured in meters. Is this an incompressible flow field? 
Derive an expression for the fluid acceleration. Evaluate the velocity and acceleration 
along the x axis, the y axis, and along a line defined by y x. What can you conclude 
about this flow field? 

5.44 An incompressible liquid with negligible viscosity flows steadily through a horizontal 
pipe of constant diameter. In a porous section of length L = 0.3 m, liquid is removed 
at a constant rate per unit length, so the uniform axial velocity in the pipe is u(x) = 
U( 1 — xl2L), where U = 5 m/s. Develop an expression for the acceleration of a fluid 
particle along the centerline of the porous section. 

5.45 Solve Problem 4.103 to show that the radial velocity in the narrow gap is V, = 
QI2irrh. Derive an expression for the acceleration of a fluid particle in the gap. 

5.46 Consider the low-speed flow of air between parallel disks as shown. Assume that the 
flow is incompressible and inviscid, and that the velocity is purely radial and uniform 
at any section. The flow speed is V = 15 m/s at R = 75 mm. Simplify the continuity 
equation to a form applicable to this flow field. Show that a general expression for the 
velocity field is V = V{RJr)er for /; < r < R. Calculate the acceleration of a fluid 
particle at the locations r = r, and r = R. 

fr 

V = 15 m/s 

P 5 . 4 6 

5.47 The temperature, T, in a long runnel is known to vary approximately as T = T0 -
ae~'"~ sin(2"7rr/T), where T0, a, L, and T are constants, and x is measured from the en­
trance. A particle moves into the tunnel with a constant speed, U. Obtain an expres­
sion for the rate of change of temperature experienced by the particle. What are the 
dimensions of this expression? 
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5.48 

5.49 

5.50 

5.51 

$ 5.52 

As an aircraft flies through a cold front, an on-board instrument indicates that ambie 
temperature drops at the rate of 0.5°F per minute. Other instruments show an air sp 
of 300 knots and a 3500 ft/min rate of climb. The front is stationary and vertically i 
form. Compute the rate of change of temperature with respect to horizontal distance 
through the cold front. 

An aircraft flies due North at 300 mph ground speed. Its rate of climb is 3000 ft/mid 
The vertical temperature gradient is - 3 °F per 1000 ft of altitude. The ground temrxj 
ature varies with position through a cold front, falling at the rate of l°F per mil] 
Compute the rate of temperature change shown by a recorder on board the aircraft 

After a rainfall the sediment concentration at a certain point in a river increases at the 
rate of 100 parts per million (ppm) per hour. In addition, the sediment concentration in­
creases with distance downstream as a result of influx from tributary streams; this rate 
of increase is 50 ppm per mile. At this point the stream flows at 0.5 mph. A boat is used 
to survey the sediment concentration. The operator is amazed to find three different ap­
parent rates of change of sediment concentration when the boat travels upstream, drifts 
with the current, or travels downstream. Explain physically why the different rates are 
observed. If the speed of the boat is 2.5 mph, compute the three rates of change. 

Expand (V • V)V in rectangular coordinates by direct substitution of the velocity vector to 
obtain the convective acceleration of a fluid particle. Verify the results given in Eqs. 5.1M 

A steady, two-dimensional velocity field is given by V = Axi - A yy, where A = I s - 1 . 
Show that the streamlines for this flow are rectangular hyperbolas, xy = C. Obtain a 
general expression for the acceleration of a fluid particle in this velocity fieltS 
Calculate the acceleration of fluid particles at the points (x, y) = (\, 2),(1,1),and (2,4/),. 
where x and y are measured in meters. Plot streamlines that correspond to C = 0, 1, and 2 
m 2 and show the acceleration vectors on the streamline plot. 

5.53 A velocity field is represented by the expression V = (Ax - B)i + Cyj + Dtk, where A 
D = 5 m and the coordinates are measured in meters.! = 2 s" 1, B = 4 m 

Determine the proper value for C if the flow field is to be incompressible. Calculate 
the acceleration of a fluid particle located at point (x, y) = (3, 2). Plot a few flow 
streamlines in the xy plane. 

5.54 A velocity field is represented by the expression V = (Ax - B)i - Ayj, where A = 0.2 j 
s ', B = 0.6 m • s ', and the coordinates are expressed in meters. Obtain a general ex­
pression for the acceleration of a fluid particle in this velocity field. Calculate the ac­
celeration of fluid particles at points (x, y) = (0,-j), (1,2), and (2, 4). Plot a few 
streamlines in the xy plane. Show the acceleration vectors on the streamline plot. 

5.55 Show that the velocity field of Problem 2.12 represents a possible incompressible 
flow field. Determine and plot the streamline passing through point (x, y) = (2, 4) at 
t = 1.5 s. For the particle at the same point and time, show on the plot the velocity 
vector and the vectors representing the local, convective, and total accelerations. 

5.56 A linear approximate velocity profile was used in Problem 5.10 to model a laminar 
incompressible boundary layer on a flat plate. For this profile, obtain expressions 
for the x and y components of acceleration of a fluid particle in the boundary layer. 
Locate the maximum magnitudes of the x and y accelerations. Compute the ratio of 
the maximum x magnitude to the maximum y magnitude for the flow conditions of 
Problem 5.10. 

5.57 A sinusoidal approximate velocity profile was used in Problem 5.11 to model flow in 
a laminar incompressible boundary layer on a flat plate. For this profile, obtain an ex­
pression for the x and y components of acceleration of a fluid particle in the boundary 
layer. Plot ax and ay at location x = 1 m, where S = 1 mm, for a flow with U — 5 m/sJJ 
Find the maxima of ax and a., at this x location. 
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5.58 A parabolic approximate velocity profile was used in Problem 5.12 to model flow in a 
laminar incompressible boundary layer on a flat plate. For this profile, find the x com­
ponent of acceleration, ax, of a fluid particle within the boundary layer. Plot ax at loca­
tion x = 1 m, where 8 = 1 mm, for a flow with U = 5 m/s. Find the maximum value 
of ax at this x location. 

5.59 A r flows into the narrow gap, of height h, between closely spaced parallel plates 
through a porous surface as shown. Use a control volume, with outer surface located 
at position x, to show that the uniform velocity in the x direction is u = v0x/h. Find an 
expression for the velocity component in the y direction. Evaluate the acceleration of a 
fluid particle in the gap. 

Q j z r m T 
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5.60 Air flows into the narrow gap, of height h, between closely spaced parallel disks 
through a porous surface as shown. Use a control volume, with outer surface located 
at position r, to show that the uniform velocity in the r direction is V = v0r/2h. Find 
an expression for the velocity component in the z direction {v0 « V). Evaluate the 
components of acceleration for a fluid particle in the gap. 

5.61 The velocity field for steady inviscid flow from left to right over a circular cylinder, of 
radius R, is given by 

V = U cos I - i f fJs in fJ 

5.62 

Obtain expressions for the acceleration of a fluid particle moving along the stagnation 
streamline (6 = if) and for the acceleration along the cylinder surface (r = R). Plot a, 
as a function of rlR for $ = ir, and as a function of d for r = R; plot ae as a function 
of 0 for r = R. Comment on the plots. Determine the locations at which these acceler­
ations reach maximum and minimum values. 

Consider the incompressible flow of a fluid through a nozzle as shown. The area of the 
nozzle is given by A — A 0(l — bx) and the inlet velocity varies according to U = 
U0(l - e A')> where A0 = 0.5 m 2, L = 5 m, b = 0.1 m ' 1 , A = 0.2 s _ 1 , and U0 = 
5 m/s. Find and plot the acceleration on the centerline, with time as a parameter. 

5.63 Consider the one-dimensional, incompressible flow through the circular channel shown. 
The velocity at section is given by U = U0 + Ux sin cot, where U0 = 20 m/s, 
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U\ = 2 m/s, and (o = 0.3 rad/s. The channel dimensions are L = 1 m, /?, = 0.2 m, and 
R2 = 0.1 m. Detennine the particle acceleration at the channel exit. Plot the 
results as a function of time over a complete cycle. On the same plot, show the accelera­
tion at the channel exit if the channel is constant area, rather than convergent, and ex­
plain the difference between the curves. 

5.64 Consider again the steady, two-dimensional velocity field of Problem 5.52. Obtain 
expressions for the particle coordinates, xp =/ , ( / ) and yp = f2(t), as functions of 
time and the initial particle position, (XQ, y0) at / = 0. Determine the time required for 
a particle to travel from initial position, (xo,yrj) = ("J" '^) , to positions (x, y) = (1,1) 
and (2,^)- Compare the particle accelerations determined by differentiating/,(?) and -1 
/2(f) with those obtained in Problem 5.52. 

5.65 Expand (V • V) V in cylindrical coordinates by direct substitution of the velocity vec­
tor to obtain the convective acceleration of a fluid particle. (Recall the hint in footnote 
1 on page 190.) Verify the results given in Eqs. 5.12. 

5.66 A flow is represented by the velocity field V = )0xi - \0yj + 30k. Determine if the 
field is (a) a possible incompressible flow and (b) irrotational. 

5.67 Which, if any, of the flow fields of Problem 5.2 are irrotational? 

5.68 Consider again the sinusoidal velocity profile used to model the x component of ve­
locity for a boundary layer in Problem 5.11. Neglect the vertical component of veloc­
ity. Evaluate the circulation around the contour bounded by x = 0.4 m, x = 0.6 m, 
y = 0, and y = 8 mm. What would be the results of this evaluation if it were per­
formed 0.2 m further downstream? Assume U = 0.5 m/s. 

5.69 Consider the velocity field for flow in a rectangular "corner," V = Axi - Ayj, with! 
A = 0.3 s~', as in Example Problem 5.8. Evaluate the circulation about the unit square 
of Example Problem 5.8. 

5.70 Consider the two-dimensional flow field in which u = Axy and v = By2, where 
A = 1 m - ' • s~\ B = m~' • s _ 1 , and the coordinates are measured in meters. Shod 
that the velocity field represents a possible incompressible flow. Determine the rotation 
at point (x, y) = (1, 1). Evaluate the circulation about the "curve" bounded by y = Oj 
x = 1, y = 1, and x = 0. 

"5.71 Consider the flow field represented by the stream function i//= (<7/2-7r) tan 1 (ylx)l 
where q = constant. Is this a possible two-dimensional, incompressible flow? Is thd 
flow irrotational? 

*5.72 Consider a flow field represented by the stream function ip = -A/2(x 2 + y2), where A =• 
constant. Is this a possible two-dimensional incompressible flow? Is the flow irrotational? 

•5.73 Consider a velocity field for motion parallel to the x axis with constant shear. Tha 
shear rate is du/dy = A, where A — 0.1 s '. Obtain an expression for the velocity] 
field, V. Calculate the rate of rotation. Evaluate the stream function for this flow field.! 

{^1*5.74 Consider the velocity field given by V = Axyi + By1], where A = 4 m • s~'p 

B = —2 irT 1 • s~\ and the coordinates are measured in meters. Determine the fluid ro­
tation. Evaluate the circulation about the "curve" bounded by y = 0, x = 1, y = 1, 
and x = 0. Obtain an expression for the stream function. Plot several streamlines in 
the first quadrant. 

^ ^ * 5 . 7 5 A flow field is represented by the stream function ip = x2 — y2. Find the correspon­
ding velocity field. Show that this flow field is irrotational. Plot several streamlines 
and illustrate the velocity field. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
materia]. 
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t *5.76 Consider the flow represented by the velocity field V = (Ay + B)i + Axj, where A = 
6 s~', B = 3 m • s _ l , and the coordinates are measured in meters. Obtain an expres­
sion for the stream function. Plot several streamlines (including the stagnation stream­
line) in the first quadrant. Evaluate the circulation about the "curve" bounded by y = 
0, x = I, y = 1, and x — 0, 

I *5.77 Consider the flow field represented by the stream function ip = Axy + Ay2, where A = 
1 s" 1. Show that this represents a possible incompressible flow field. Evaluate the ro­
tation of the flow. Plot a few streamlines in the upper half plane, 

5.78 Consider again the viscometric flow of Example Problem 5.7. Evaluate the average 
rate of rotation of a pair of perpendicular line segments oriented at ± 45° from the x 
axis. Show that this is the same as in the example. 

*5.79 The velocity field near the core of a tornado can be approximated as 

V = - - L - er + eg 

2 7 J T 2-7JT 

Is this an irrotational flow field? Obtain the stream function for this flow. 

5.80 Consider the pressure-driven flow between stationary parallel plates separated by 
distance b. Coordinate y is measured from the bottom plate. The velocity field is 
given by u = U(ylb)[\ — (y/b)]. Obtain an expression for the circulation about a 
closed contour of height h and length L. Evaluate when h = b/2 and when h = b. 
Show that the same result is obtained from the area integral of the Stokes Theorem 
(Eq. 5.18). 

5.81 The velocity profile for fully developed flow in a circular tube is Vz = 
^ m a x D ~~ (rlR)2]. Evaluate the rales of linear and angular deformation for this flow. 
Obtain an expression for the vorticity vector, f. 

5.82 Consider the pressure-driven flow between stationary parallel plates separated by dis­
tance 2b. Coordinate y is measured from the channel centeriine. The velocity field is 
given by u = « n m [ l — {y/b)2]. Evaluate the rates of linear and angular deformation. 
Obtain an expression for the vorticity vector, £. Find the location where the vorticity 
is a maximum. 

5.83 A linear velocity profile was used to model flow in a laminar incompressible boundary 
layer in Problem 5.10. Express the rotation of a fluid particle. Locate the maximum 
rate of rotation. Express the rate of angular deformation for a fluid particle. Locate the 
maximum rale of angular deformation. Express the rates of linear deformation for a 
fluid particle. Locate the maximum rates of linear deformation. Express the shear 
force per unit volume in the x direction. Locate the maximum shear force per unit vol­
ume; interpret this result. 

5.84 The x component of velocity in a laminar boundary layer in water is approximated as 
u = U sin(77y/26), where U = 3 m/s and 8 = 2 mm. The y component of velocity is 
much smaller than u. Obtain an expression for the net shear force per unit volume in 
the x direction on a fluid element. Calculate its maximum value for this flow. 

5.85 Problem 4.23 gave the velocity profile for fully developed laminar flow in a circular tube 
as u = w m M [l - (r/R)2]. Obtain an expression for the shear force per unit volume in the 
x direction for this flow. Evaluate its maximum value for the conditions of Problem 4.23. 

* These problems require material from sections that may be omined without loss of continuity in the text 
material. 



Chapter 6 

INCOMPRESSIBLE 
INVISCID FLOW 

In Chapter 5 we devoted a great deal of effort to deriving the differentia] equatio 
(Eqs. 5.24) that describe the behavior of any fluid satisfying the continuum assump­
tion. We also saw how these equations reduced to various particular forms—the most 
well known being the Navier-Stokes equations for an incompressible, constant vis­
cosity fluid (Eqs. 5.27). Although Eqs. 5.27 describe the behavior of common fluids 
(e.g., water, air, lubricating oil) for a wide range of problems, as we discussed in 
Chapter 5, they are unsolvable analytically except for the simplest of geometries and 
flows. For example, even using the equations to predict the motion of your coffee as 
you slowly stir it would require the use of an advanced computational fluid dynamics 
computer application, and the prediction would take a lot longer to compute than the 
actual stirring! In this chapter, instead of the Navier-Stokes equations, we will study 
Euler's equation, which applies to an inviscid fluid. Although truly inviscid fluids do 
not exist, many flow problems (especially in aerodynamics) can be successfully ana­
lyzed with the approximation that /x = 0. 

6-1 MOMENTUM EQUATION FOR FRICTIONLESS FLOW: 
; EULER'S EQUATION 

Euler's equation (obtained from Eqs. 5.27 after neglecting the viscous terms) is 

DV _ 
P— = Pg-vp (6.1 

This equation states that for an inviscid fluid the change in momentum of a fluid par­
ticle is caused by the body force (assumed to be gravity only) and the net pressurej 
force. For convenience we recall that the material derivative is 

Dt dt 
(5.1 

In this chapter we will apply Eq. 6.1 to the solution of incompressible, inviscid flow 
problems. In addition to Eq. 6.1 we have the incompressible form of the mass 
conservation equation, 

V • V = 0 (5.1 

232 
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Equation 6.1 expressed in rectangular coordinates is 

du du du du 
— + u — + v— + w — 
dt dx ay az 

dv dv dv dv 

dt dx dy dz 

w dw dw dw 
— + u— + v — + w — 
dt ox dy az , 

P8x 

P8y 

P8Z 

dp 
dx 

dp 

dy 

dp 

dz 

(6.2a) 

(6.2b) 

(6.2c) 

If the z axis is assumed vertical, then gx = 0, gy = 0, and g. — -g, so g = -pgk. 
In cylindrical coordinates, the equations in component form, with gravity the 

only body force, are 

pae 

paz 

dt r dr r d6 - dz 

dVa 

VJ_ 
r 

VrVa 

P8r 
dp 
dr 

dVff Vn dVn dV„ 

p I — - + Vr — - + — — - + V, — - + -i-Q-
1 dt

 r dr r dd
 c dz r 

9V; dVz Vg dV, „ dVz - 1 + Vr + — - r ^ + V, —L 

dt dr de L dz 
= PgZ 

= Pge 

dp 

dz 

ldp_ 

r de 

(6.3a) 

(6.3b) 

(6.3c) 

If the z axis is directed vertically upward, then gr = gg = 0 and gz = —g. 
Equations 6.1, 6.2, and 6.3 apply to problems in which there are no viscous 

stresses. Before continuing with the main topic of this chapter (inviscid flow), let's 
consider for a moment when we have no viscous stresses, other than when /x = 0. 
We recall from previous discussions that, in general, viscous stresses are present 
when we have fluid deformation (in fact this is how we initially defined a fluid); 
when we have no fluid deformation, i.e., when we have rigid-body motion, no 
viscous stresses will be present, even if p ¥• 0. Hence Euler's equations apply to 
rigid-body motions as well as to inviscid flows. We discussed rigid-body motion in 
detail in Section 3.7 as a special case of fluid statics. As an exercise, you can show 
that Euler's equations can be used to solve Example Problems 3.9 and 3.10. 

6-2 EULER'S EQUATIONS IN STREAMLINE COORDINATES 

In Chapters 2 and 5 we pointed out that streamlines, drawn tangent to the velocity 
vectors at every point in the flow field, provide a convenient graphical representation. 
In steady flow a fluid particle will move along a streamline because, for steady flow, 
pathlines and streamlines coincide. Thus, in describing the motion of a fluid particle 
in a steady flow, the distance along a streamline is a logical coordinate to use in writ­
ing the equations of motion. "Streamline coordinates" also may be used to describe 
unsteady flow. Streamlines in unsteady flow give a graphical representation of the 
instantaneous velocity field. 

For simplicity, consider the flow in the yz plane shown in Fig. 6.1. We wish to 
write the equations of motion in terms of the coordinate s, distance along a streamline, 
and the coordinate n, distance normal to the streamline. The pressure at the center of 
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P + 
dp ds 
ds 2 

J dndx 

' - I f ] * * 

Fig. 6.1 F lu id par t ic le mov ing a long a s t reaml ine . 

the fluid element is p. If we apply Newton's second law in the streamwise (the s) direc­
tion to the fluid element of volume ds dn dx, then neglecting viscous forces we obtain 

P~ 
dp ds 
ds 2 , 

dndi P + 
dp ds 

dndx - pg sin B dsdn dx = pas ds dn dx 

where B is the angle between the tangent to the streamline and the horizontal, and as 

is the acceleration of the fluid particle along the streamline. Simplifying the equation, 
we obtain 

dp 
pg sin B = pas 

Since sin B = dz/ds, we can write 

p ds ds 
= a. 

Along any streamline V = V(s, t), and the material or total acceleration of a fluid par­
ticle in the streamwise direction is given by 

DV dV xrdV 
a, = = — + V — 

s Dt dt ds 
Euler's equation in the streamwise direction with the z axis directed vertically up­
ward is then 

p ds ds dt ds 
(6.4a) 

For steady flow, and neglecting body forces, Euler's equation in the streamwi 
direction reduces to 

1 dP = _V<K 
p ds ds 

(6. 

which indicates that a decrease in velocity is accompanied by an increase in pressure 
and conversely. 1 This makes sense: The only force experienced by the particle is the 

1 The relationship between variations in pressure and velocity in the streamwise direction for steady iffl 
compressible inviscid flow is illustrated in the NCFMF video Pressure Fields and Fluid Acceleration. 1 



5-2 EULER'S EQUATIONS IN STREAMLINE COORDINATES 235 

net pressure force, so the particle accelerates toward low-pressure regions and decel­
erates when approaching high-pressure regions. 

To obtain Euler's equation in a direction normal to the streamlines, we apply 
Newton's second law in the n direction to the fluid element. Again, neglecting vis­
cous forces, we obtain 

dp dn 
p \dsax -
y dn 2 1 

dp dn ^ 
dn 2 

dsdx - pg cos (idn dx ds = pan dndxds 

where /3 is the angle between the n direction and the vertical, and a„ is the accelera­
tion of the fluid particle in the n direction. Simplifying the equation, we obtain 

— - pgcosfi = pa„ 
dn 

Since cos/3 = dz/dn, we write 

I dp dz 
"T- = an 

on p dn 

The normal acceleration of the fluid element is toward the center of curvature of the 
streamline, in the minus n direction; thus in the coordinate system of Fig. 6.1, the fa­
miliar centripetal acceleration is written 

</2 

R 

for steady flow, where R is the radius of curvature of the streamline. Then, Euler's 
equation normal to the streamline is written for steady flow as 

/ 2 

p dn 
d z 

dn 
YL 
R 

(6.5a) 

For steady flow in a horizontal plane, Euler's equation normal to a streamline 
becomes 

J_ dp 
p dn R 

(6.5b) 

Equation 6.5b indicates that pressure increases in the direction outward from the 
center of curvature of the streamlines} This also makes sense: Because the only force 
experienced by the particle is the net pressure force, the pressure field creates the 
centripetal acceleration. In regions where the streamlines are straight, the radius of 
curvature, R, is infinite so there is no pressure variation normal to straight streamlines. 

EXAMPLE 6.1 Flow in a Bend 

The flow rate of air at standard conditions in a flat duct is to be determined by 
installing pressure taps across a bend. The duct is 0.3 m deep and O.l m wide. The in­
ner radius of the bend is 0.25 m. If the measured pressure difference between the taps 
is 40 mm of water, compute the approximate flow rate. 

2 The effect of streamline curvature on the pressure gradient normal to a streamline is illustrated in the 
NCFMF video Pressure Fields and Fluid Acceleration. 

file:///dsax


236 CHAPTER 6 / INCOMPRESSIBLE INVISCID FLOW 

EXAMPLE PROBLEM 6.1 

GIVEN: Flow through duct bend as shown. 

P2~ P\= Pmpg Ah 

where Ah = 40 mm H 2 0 . Air is at STP. 

FIND: Volume flow rate, Q. 

SOLUTION: 
Apply Euler's n component equation across flow streamlines. 

r dp pV2 

fjoverning equation: —— = 
dr ;• 

Assumptions (1) Frictionless flow. 
(2) Incompressible flow. 
(3) Uniform flow at measurement section. 

For this flow, p = p(r), so 

cV _ dp__ pV2 

dr dr r 

or 

dp = pV 
dr 

Integrating gives 

Pi ~ P\ = Pv l n r 
r2=pV2\n^ 

and hence 

Pi ' Pi 
p l n ( r 2 / r , ) 

1/2 

But Ap = p2 - P[ = P H o g A/i.so V = 
P L N ( R 2 / R I ) 

1/2 

Substituting numerical values, 

V 
999 ke 9.81 m 0.04 m m

3 

~ vy \s w 

1 

m .23 kg ln(0.35 m/0.25 m) 

1/2 

= 30.8 m/s 

For uniform flow 

„ 30.8 m 0.1m 0.3 m 
Q = VA = — x x 

s 

Q = 0.924 m3/s < 
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In this problem we assumed that the velocity is uniform 
across the section. In fact, the velocity in the bend approxi­
mates a free vortex (irrotational) profile in which 
V ^ Mr (where r is the radius) instead of V = const. Hence, 
this flow-measurement device could only be used to obtain 
approximate values of the flow rate. 

6-3 BERNOULLI EQUATION — I N T E G R A T I O N OF EULER'S EQUATION ALONG 
A STREAMLINE FOR STEADY FLOW 

Compared to the viscous-flow equivalents, the momentum or Euler's equation for 
incompressible, inviscid flow (Eqs. 6.1) is simpler mathematically, but solution (in 
conjunction with the mass conservation equation, Eq. 5.1c) still presents formidable 
difficulties in all but the most basic flow problems. One convenient approach for a 
steady flow is to integrate Euler's equation along a streamline. We will do this below 
using two different mathematical approaches, and each will result in the Bernoulli 
equation. Recall that in Section 4-4 we derived the Bernoulli equation by starting 
with a differential control volume; these two additional derivations will give us more 
insight into the restrictions inherent in use of the Bernoulli equation. 

Derivation Using Streamline Coordinates 

Euler's equation for steady flow along a streamline (from Eq. 6.4a) is 

p ds ds ds 

If a fluid particle moves a distance, ds, along a streamline, then 

dPA A 
— ds = dp 
ds 
— ds = dz 
ds 

(the change in pressure along s) 

(the change in elevation along s) 

dV 
ds = dV (the change in speed along s) 

(6.6) 

Thus, after multiplying Eq. 6.6 by ds, we can write 

- ^ - g d z = VdV or 
P 

Integration of this equation gives 

dp 
+ VdV + gdz = 0 (along s) 

dp V_ 

2 
+ — + gz - constant (along s) (6.7) 

Before Eq. 6.7 can be applied, we must specify the relation between pressure and 
density. For the special case of incompressible flow, p = constant, and Eq. 6.7 
becomes the Bernoulli equation, 
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2 
+ gz = constant (6.8 

Restrictions: (1) Steady flow. 
(2) Incompressible flow. 
(3) Frictionless flow. 
(4) Flow along a streamline. 

The Bernoulli equation is a powerful and useful equation because it relates presJ 
sure changes to velocity and elevation changes along a streamline. However, it gives 
correct results only when applied to a flow situation where all four of the restriction! 
are reasonable. Keep the restrictions firmly in mind whenever you consider using tha 
Bernoulli equation. (In general, the Bernoulli constant in Eq. 6.8 has different value^ 
along different streamlines. 3) 

'Derivation Using Rectangular Coordinates 

The vector form of Euler's equation, Eq. 6 .1, also can be integrated along a stream-^ 
line. We shall restrict the derivation to steady flow; thus, the end result of our effort 
should be Eq. 6.7. 

For steady flow, Euler's equation in rectangular coordinates can be expressed a. 

DV 
Dt 

d V °V dV - - 1 
u — + v — + w—- = (V • V)V = Vp- gk 

dx dy dz p 
(6.9) 

For steady flow the velocity field is given by V = V{x, y, z). The streamlines are 
lines drawn in the flow field tangent to the velocity vector at every point. Recall again; 
that for steady flow, streamlines, pathlines, and streaklines coincide. The motion of af 
particle along a streamline is governed by Eq. 6.9. During time interval dt the particle 
has vector displacement dsalong the streamline. 

If we take the dot product of the terms in Eq. 6.9 with displacement ds along the 
streamline, we obtain a scalar equation relating pressure, speed, and elevation along 
the streamline. Taking the dot product of ds with Eq. 6.9 gives 

[V • V)Vds = - - V p - ds-gkds (6.10) 

where 

ds = dxi + dyj + dzk (along s) 

Now we evaluate each of the three terms in Eq. 6.10, starting on the right, 

--Vpds = - -
P P 

_ J_ 
P 

--Vp-ds = - -
P P 

?dp idp pdp 
i + J + k 

dx dy dz 
[dxi + dyj + dzk] 

dp , dp , dp , 
dx dy dz 

dp (along s) 

(along s) 

3 For ihe case of irrotational flow, the constant has a single value throughout the entire flow field (Section 6-7). 
*This section may be omitted without loss of continuity in the text material. 
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and 

-gk • ds - -gk, • [dx i + dy j + dz k] 
= -g dz (along s) 

Using a vector identity, 4 we can write the third term as 

(V • W)V • ds = V(V • V) - V x (V x V)] • ds 

= {1 V(V • V)} • ds - {V x (V x V)} • ds 

The last term on the right side of this equation is zero, since V is parallel to ds. Con­
sequently, 

(V • V)V • ds = \ V(V • V) • ds = \ V ( V 2 ) • ds (along s) 

: dV1 - 3V 2 

3x 

3V 2 

3x 

+ J 

dx + 

3y 

dy 

+ k 
dV1 

dy + 
dV2 

[dxi + dyj + dzk] 

dz 

(V • V)V - d s = i d ( V 2 ) (along j ) 

Substituting these three terms into Eq. 6.10 yields 

^ + -d(V2) + gdz = 0 (alongs) 
P 2 

Integrating this equation, we obtain 

r dP v 

— + — + gz = constant (along s) 
i n 2 

dp 
P " ' 2 

If the density is constant, we obtain the Bernoulli equation 

p VL 

— H + gz = constant 
P 2 

As expected, we see that the last two equations are identical to Eqs. 6.7 and 6.8 de­
rived previously using streamline coordinates. The Bernoulli equation, derived using 
rectangular coordinates, is still subject to the restrictions: (1) steady flow, (2) incom­
pressible flow, (3) frictionless flow, and (4) flow along a streamline. 

Static, Stagnation, and Dynamic Pressures 

The pressure, p, which we have used in deriving the Bernoulli equation, Eq. 6.8, is the 
thermodynamic pressure; it is commonly called the static pressure. The static pressure is 
the pressure seen by the fluid particle as it moves (so it is something of a misnomer!)— 

4 The vector identity 

may be verified by expanding each side into components. 

(V . V)V = i V ( V • V) - V x (V x V) 
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we also have the stagnation and dynamic pressures, which we will define shortly. 
How do we measure the pressure in a fluid in motion? 

In Section 6-2 we showed that there is no pressure variation normal to straight 
streamlines. This fact makes it possible to measure the static pressure in a flowing 
fluid using a wall pressure "tap," placed in a region where the flow streamlines are 
straight, as shown in Fig. 6.2a. The pressure tap is a small hole, drilled carefully in 
the wall, with its axis perpendicular to the surface. If the hole is perpendicular to the 
duct wall and free from burrs, accurate measurements of static pressure can be made 
by connecting the tap to a suitable pressure-measuring instrument [1]. 

In a fluid stream far from a wall, or where streamlines are curved, accurate static 
pressure measurements can be made by careful use of a static pressure probe, shown 
in Fig. 6.2b. Such probes must be designed so that the measuring holes are placed 
correctly with respect to the probe tip and stem to avoid erroneous results [2]. In use, 
the measuring section must be aligned with the local flow direction. 

Static pressure probes, such as that shown in Fig 6.2b, and in a variety of other 
forms, are available commercially in sizes as small as 1.5 mm ( 7^ in.) in diameter [3]. 

The stagnation pressure is obtained when a flowing fluid is decelerated to zero 
speed by a frictionless process. For incompressible flow, the Bernoulli equation can 
be used to relate changes in speed and pressure along a streamline for such a process, 
Neglecting elevation differences, Eq. 6.8 becomes 

p V2 

— + — = constant 
p 2 

SS. 

If the static pressure is p at a point in the flow where the speed is V, then the stagna­
tion pressure, p0y where the stagnation speed, V0, is zero, may be computed from 

0 

Po + 

or 

Po P + {PV2 (6.1 

Equation 6.11 is a mathematical statement of the definition of stagnation pressiL 
valid for incompressible flow. The term \pV2 generally is called the dynamic pressut 
Equation 6.11 states that the stagnation (or total) pressure equals the static pressure 
plus the dynamic pressure. One way to picture the three pressures is to imagine you 
are standing in a steady wind holding up your hand: The static pressure will be at­
mospheric pressure; the larger pressure you feel at the center of your hand will be the 
stagnation pressure; and the buildup of pressure will be the dynamic pressure 

pressure gage 

(A) Wall pressure tap (W Static pressure probe 

F ig . 6.2 M e a s u r e m e n t of s tat ic p r e s s u r e . 
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Flow c 

Small hole 

To manometer or 
pressure gage 

Fig. 6.3 Measurement of stagnation pressure. 

Solving Eq. 6.11 for the speed, speed, 
2(PQ ~ P) 

(6.12) 

Thus, if the stagnation pressure and the static pressure could be measured at a point, 
Eq. 6.12 would give the local flow speed. 

Stagnation pressure is measured in the laboratory using a probe with a hole that 
faces directly upstream as shown in Fig. 6.3. Such a probe is called a stagnation pres­
sure probe, or pitot (pronounced pea-toe) tube. Again, the measuring section must be 
aligned with the local flow direction. 

We have seen that static pressure at a point can be measured with a static pres­
sure tap or probe (Fig. 6.2). If we knew the stagnation pressure at the same point, 
then the flow speed could be computed from Eq. 6.12. Two possible experimental 
setups are shown in Fig. 6.4. 

In Fig. 6.4a, the static pressure corresponding to point A is read from the wall 
static pressure tap. The stagnation pressure is measured directly at A by the total head 
tube, as shown. (The stem of the total head tube is placed downstream from the 
measurement location to minimize disturbance of the local flow.) 

Two probes often are combined, as in the pitot-static tube shown in Fig. 6Ab. 
The inner tube is used to measure the stagnation pressure at point B, while the static 
pressure at C is sensed using the small holes in the outer tube. In flow fields where 
the static pressure variation in the streamwise direction is small, the pitot-static tube 
may be used to infer the speed at point B in the flow by assuming pB = pc and using 
Eq. 6.12. (Note that when pB pc, this procedure will give erroneous results.) 

Remember that the Bernoulli equation applies only for incompressible flow 
(Mach number M ^ 0.3). The definition and calculation of the stagnation pressure 
for compressible flow will be discussed in Section 11-3. 

Static 
pressure 

Po 
[a) Total head tube used (ft) Pitot-static tube 

with wall static tap 

Fig. 6.4 Simultaneous measurement of stagnation and static pressures. 

MPLE6.2 Pitot Tube 

A pitot tube is inserted in an air flow (at STP) to measure the flow speed. The tube is 
inserted so that it points upstream into the flow and the pressure sensed by the tube is 
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the stagnation pressure. The static pressure is measured at the same location in the 
flow, using a wall pressure tap. If the pressure difference is 30 mm of mercury, detefl 
mine the flow speed. 

EXAMPLE PROBLEM 6.2 

GIVEN: A pitot tube inserted in a flow as shown. The flowing fluid is air and the manometer liquid is 
mercury. 

FIND: The flow speed. 

SOLUTION: 

P v 

Governing equation: — + — + gz = constant 
P 2 

Assumptions: (1) Steady flow. 
(2) Incompressible flow. 
(3) Flow along a streamline. 
(4) Frictionless deceleration along stagnation streamline. 

Writing Bernoulli's equation along the stagnation streamline (with Az = 0) 
yields 

P P 2 
p 0 is the stagnation pressure at the tube opening where the speed has been reduced, without friction, to 
zero. Solving for V gives 

Air flow 
fc- s 

1 1 r y 
Mercury-^ 

30 m m 

h 

V = |2(PQ - p) 
Pair 

From the diagram, 
Po - P = PHg8n = PH2o8h(SGHs) 

and 

V = 
2 P H 2 Q g / ' ( S G H g ) 

2 1000 kg 9.81m 30 mm 13.6 m

3 

X — = - X — X X X 
m 1.23 kg 1000 mm 

V = 80.8 m/s 

At T = 20°C, the speed of sound in air is 343 m/s. Hence, M = 0.236 and the assumption of incompress­
ible flow is valid. 

This problem illustrates use of a pitot tube to determine flow 
speed. Pitot (or pitot-static) tubes are often placed on the exte­
rior of aircraft to indicate air speed relative to the aircraft, and 
hence aircraft speed relative to the air. 
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Applications 

The Bernoulli equation can be applied between any two points on a streamline pro­
vided that the other three restrictions are satisfied. The result is 

1 Pi V 2 J- + gz, = ^ + -f + gz2 2 p 2 
(6.13) 

where subscripts 1 and 2 represent any two points on a streamline. Applications of 
Eqs. 6.8 and 6.13 to typical flow problems are illustrated in Example Problems 6.3 
through 6.5. 

In some situations, the flow appears unsteady from one reference frame, but 
steady from another, which translates with the flow. Since the Bernoulli equation was 
derived by integrating Newton's second law for a fluid particle, it can be applied in 
any inertia! reference frame (see the discussion of translating frames in Section 4-4). 
The procedure is illustrated in Example Problem 6.6. 

EXAMPLE 6.3 Nozzle Flow 

Air flows steadily at low speed through a horizontal nozzle (by definition a device for 
accelerating a flow), discharging to atmosphere. The area at the nozzle inlet is 0.1 m 2 . 
At the nozzle exit, the area is 0.02 m 2 . Determine the gage pressure required at the 
nozzle inlet to produce an outlet speed of 50 m/s. 

EXAMPLE PROBLEM 6.3 

GIVEN: Flow through a nozzle, as shown. 

FIND: P l - p.Mm. 

SOLUTION: 

Governing equations: 

Pl P2 ^ n 
p 2 p 2 

4 , = 0.1 m 2 

P? = Patm 
50 m/s 

A2 = 0.02 m 2 

= 0(1) 

pdV + 
cv 

pV-dA = 0 
cs 

ASSUMPTIONS: (1) Steady flow. 
(2) Incompressible flow. 
(3) Frictionless flow. 
(4) Flow along a streamline. 
(5) z, = z2. 
(6) Uniform flow at sections (T) and (2). 

The maximum speed of 50 m/s is well below 100 m/s, which corresponds to Mach number M = 0.3 in 
standard air. Hence, the flow may be treated as incompressible. 

Apply the Bernoulli equation along a streamline between points ® and © to evaluate P ] . Then 

P\ ~ Patm = Pl - Pi f ( v 2

2 - v 2 ) 
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Apply the continuity equation to determine V1 ; 

( -pVAO+fpVA) = 0 or VA, = VjA7 

so that 

V! = V, ^2 _ 50 m 0.02 
— x 0.1m" 

= 10 m/s 

For air at standard conditions, p = 1.23 kg/m3. Then 

I 

1 1.23 kg = - x 

Pi - Patm = 1-48 kP a 

(50) 2

 m

2 (10) z m 2 „ 2 N • S 

kg • m 

P i - P. 

Notes: 
/ This problem illustrates a typical application of the 

Bernoulli equation. 
/ The streamlines must be straight at the inlet and exit in or­

der to have uniform pressures at those locations. 

EXAMPLE 6.4 Flow through a Siphon 

A U-tube acts as a water siphon. The bend in the tube is 1 m above the water surface; the 
tube outlet is 7 m below the water surface. The water issues from the bottom of the siphon 
as a free jet at atmospheric pressure. Determine (after listing the necessary assumptions! 
the speed of the free jet and the minimum absolute pressure of the water in the bend. 

EXAMPLE PROBLEM 6.4 

GIVEN: Water flowing through a siphon as shown. 

FIND: (a) Speed of water leaving as a free jet. 
(b) Pressure at point ® in the flow. 

SOLUTION: 
p v 2 

Governing equation: — + — + gz = constant 
p 2 

Assumptions: (I) Neglect friction. 
(2) Steady flow. 
(3) Incompressible flow. 
(4) Flow along a streamline. 
(5) Reservoir is large compared with pipe. 
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Apply the Bernoulli equation between points (T) and (2). 

p 2 p 2 

Since a r e a ^ ^ 3 > area,,^, then V, = 0. Also/?, = p2 = P a m , so 

8Z\ + gz2 and V2 = 2g(z, - z 2) 

• 12 9.81 m 7rn 

To determine the pressure at location @ , we write the Bernoulli equation between (T) and @ . 

Pi PA 
p 2 p 2 

Again V, ~ 0 and from conservation of mass VA = V2. Hence 

PA _ Pi v 2 Pi x v 2 
• «Zi - - « Z A = — + « (z i - ZA) - "V 2 p 2 

P/4 = Pl + P«(Zl - Z/|) - P" 

1.01xl(f_N_ 999 kg ^ 9.81m J - l m ) N • s 

m 

1 999 kg (11.7)2 m 2 N s 2 

— x 
2 m s kg • m 

pA = 22.8 kPa (abs) or -78.5 kPa (gage) ^ _ 

kg • m 

PA 

Notes: 
/ This problem illustrates an application of the Bernoulli 

equation that includes elevation changes. 
/ Always take care when neglecting friction in any internal 

flow. In this problem, neglecting friction is reasonable if 
the pipe is smooth-surfaced and is relatively short. In 
Chapter 8 we will study frictional effects in internal flows. 

EXAMPLE 6.5 Flow under a Sluice Gate 
Water flows under a sluice gate on a horizontal bed at the inlet to a flume. Upstream 
from the gate, the water depth is 1.5 ft and the speed is negligible. At the vena con-
tracta downstream from the gate, the flow streamlines are straight and the depth is 
2 in. Determine the flow speed downstream from the gate and the discharge in cubic 
feet per second per foot of width. 
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EXAMPLE PROBLEM 6.5 

GIVEN: Row of water under a sluice gate. 

FIND: (a) V2. 
(b) g in ff/s/ft of width. 

SOLUTION: 
Under the assumptions listed below, the flow 
satisfies all conditions necessary to apply the 
Bernoulli equation. The question is, what 
streamline do we use? 

DI = 1.5 ft 

® 

Sluice gate 

Vena contracta 

: 2 in. 

Governing equation 

Assumptions 

Pi V ? 
— + IT + 8Z| p 2 

PI V 2 

P 2 

(1) Steady flow. 
(2) Incompressible flow. 
(3) Frictionless flow. 
(4) Flow along a streamline. 
(5) Uniform flow at each section. 
(6) Hydrostatic pressure distribution. 

If we consider the streamline that runs along the bottom of the channel (z 
the pressures at CD and (2) are 

0), because of assumption 6 j 

PI = PAM. + PgD\ and 

so that the Bernoulli equation for this streamline is 

Pi = PATM + PgDi 

(p^ + PgDA V ( P a t m + P S ^ ) 2L + Yl 

or 

+ gD2 (1) 

On the other hand, consider die streamline that runs along the free surface on both sides of the gate. For 
this streamline 

2 2 

p 2 p 2 

or 

V2 vl 
-1 + g D , = ^ + gD2 

(1) 

We have arrived at the same equation (Eq. 1) for the streamline at the bottom and the streamline at the free 
surface, implying the Bernoulli constant is the same for both streamlines. We will see in Section 6-6 that 
this flow is one of a family of flows for which this is the case. Solving for V 2 yields 

V2 =^2g(Dl-D2) + V2 
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But Vf « 0, so 

z r r \z 32.2 ft (l.5 ft - 2 in.O 
V2 = ^J2g(Dj - D2) = x —I x 

12 in. 
V2 = 9.27 ft/s <_ 

or uniform flow, Q = VA = VDw, or 

Q 
w 

Q 
w 

9.27 ft 2 in. ft 
VD = V2D2 = — x x — — 

s 12 in. 

1.55 ft J/s/foot of width. 

1.55 f r / s 

e 
w 

EXAMPLE 6.6 Bernoulli Equation in Translating Reference Frame 

A light plane flies at 150 km/hr in standard air at an altitude of 1000 m. Determine 
the stagnation pressure at the leading edge of the wing. At a certain point close to the 
wing, the air speed relative to the wing is 60 m/s. Compute the pressure at this point. 

EXAMPLE PROBLEM 6.6 

GIVEN: Aircraft in flight at 150 km/hr at 1000 m altitude in standard air. 

V w = 150 km/hr 

VB = 60 m/s 
B (relative to wing) 

Observer 

FIND". Stagnation pressure, p0^, at point A and static pressure, pB, at point B. 

SOLUTION: 
Row is unsteady when observed from a fixed frame, that is, by an observer on the ground. However, an ob­
server on the wing sees the following steady flow: 

p 

Observer 

i l B VB = 60 m/s 

FAIR = V H , = 150 km/hr 

At z = 1000 m in standard air, the temperature is 281 K and the speed of sound is 336 m/s. Hence at point 
6. MB = VBlc = 0.178. This is less than 0.3, so the flow may be treated as incompressible. Thus the 
Bernoulli equation can be applied along a streamline in the moving observer's inertial reference frame. 

Governing equation: ^k. + + GZAII = EA. + YA. + G Z A = ER. + Y§_ + GZG 

p 2 p 2 p 2 
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Assumptions: (1) Steady flow. 
(2) Incompressible flow ( V < 100 m/s). 
(3) Frictionless flow. 
(4) Flow along a streamline. 
(5) Neglect Az. 

Values for pressure and density may be found from Table A.3. Thus, at 1000 m, pIpsL
 = 0.8870 and 

p/psL = 0.9075. Consequently, 

p = 0.8870p s t = 
0.8870 1.01 x l O 3 N 

m 
8.96 x 10" N/m" 

and 

0.9075 1.23 kg 3 p = 0.9075p S i = x - 2 - = 1.12kg/m 3 

m 

Since the speed is VA = 0 at the stagnation point, 

1 „ 2 
P0A = Pair +-PVm, 

.96 x 10 4 N 1 1.12 kg (150 km 1000 m 
+ — x 

r 2 2 m 

hr 
hr km 3600 s ) kg • m 

N • s" 

PQA = 90.6 kPa (abs) PoA 

Solving for the static pressure at B, we obtain 

PB = Pair +\pWl - V 2 ) 

8.96 x 10 4 N 1 1.12 kg 
PB = — + r x - y m 2 m 

p B = 88.6 kPa (abs) 

f l50km 1000 m hr 1 
— x — x 

k hr km 3600 s y 

(60) 2

 m

2 N - s z 

kg • m 

PB 

Cautions on Use ot the Bernoulli Equation 
In Example Problems 6.3 through 6.6, we have seen several situations where the 
Bernoulli equation may be applied because the restrictions on its use led to a reasonl 
able flow model. However, in some situations you might be tempted to apply the 
Bernoulli equation where the restrictions are not satisfied. Some subtle cases that viol 
late the restrictions are discussed briefly in this section. 

Example Problem 6.3 examined flow in a nozzle. In a subsonic nozzle (a con-ji 
verging section) the pressure drops, accelerating a flow. Because the pressure dropa 
and the walls of the nozzle converge, there is no flow separation from the walls ana 
the boundary layer remains thin. In addition, a nozzle is usually relatively short so 
frictional effects are not significant. All of this leads to the conclusion that the 
Bernoulli equation is suitable for use for subsonic nozzles. 

Sometimes we need to decelerate a flow. This can be accomplished using a sub­
sonic diffuser (a diverging section), or by using a sudden expansion (e.g., from a pipe! 
into a reservoir). In these devices the flow decelerates because of an adverse pressure! 
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gradient. As we discussed in Section 2-6, an adverse pressure gradient tends to lead 
to rapid growth of the boundary layer and its separation. 5 Hence, we should be care­
ful in applying the Bernoulli equation in such devices—at best, it will be an approxi­
mation. Because of area blockage caused by boundary-layer growth, pressure rise in 
actual diffusers always is less than that predicted for inviscid one-dimensional flow. 

The Bernoulli equation was a reasonable model for the siphon of Exam­
ple Problem 6.4 because the entrance was well rounded, the bends were gentle, and 
the overall length was short. Flow separation, which can occur at inlets with sharp 
corners and in abrupt bends, causes the flow to depart from that predicted by a one-
dimensional model and the Bernoulli equation. Frictional effects would not be negli­
gible if the tube were long. 

Example Problem 6.5 presented an open-channel flow analogous to that in a 
nozzle, for which the Bernoulli equation is a good flow model. The hydraulic j u m p 6 

is an example of an open-channel flow with adverse pressure gradient. Flow through 
a hydraulic jump is mixed violently, making it impossible to identify streamlines. 
Thus the Bernoulli equation cannot be used to model flow through a hydraulic jump. 

The Bernoulli equation cannot be applied through a machine such as a propeller, 
pump, turbine, or windmill. The equation was derived by integrating along a stream 
tube (Section 4-4) or a streamline (Section 6-3) in the absence of moving surfaces 
such as blades or vanes. It is impossible to have locally steady flow or to identify 
streamlines during flow through a machine. Hence, while the Bernoulli equation may 
be applied between points before a machine, or between points after a machine (as­
suming its restrictions are satisfied), it cannot be applied through the machine. (In 
effect, a machine will change the value of the Bernoulli constant.) 

Finally, compressibility must be considered for flow of gases. Density changes 
caused by dynamic compression due to motion may be neglected for engineering 
purposes if the local Mach number remains below about M ~ 0.3, as noted in Exam­
ple Problems 6.3 and 6.6. Temperature changes can cause significant changes in den­
sity of a gas, even for low-speed flow. Thus the Bernoulli equation could not be 
applied to air flow through a heating element (e.g., of a hand-held hair dryer) where 
temperature changes are significant. 

6-4 THE BERNOULLI EQUATION INTERPRETED AS AN ENERGY EQUATION 

The Bernoulli equation, Eq. 6.8, was obtained by integrating Euler's equation along a 
streamline for steady, incompressible, frictionless flow. Thus Eq. 6.8 was derived 
from the momentum equation for a fluid particle. 

An equation identical in form to Eq. 6.8 (although requiring very different re­
strictions) may be obtained from the first law of thermodynamics. Our objective in this 
section is to reduce the energy equation to the form of the Bernoulli equation given by 
Eq. 6.8. Having arrived at this form, we then compare the restrictions on the two equa­
tions to help us understand more clearly the restrictions on the use of Eq. 6.8. 

Consider steady flow in the absence of shear forces. We choose a control volume 
bounded by streamlines along its periphery. Such a boundary, shown in Fig. 6.5, 
often is called a stream tube. 

5 See the NCFMF video Flow Visualization. 
6 See the NCFMF videos Waves in Fluids and Stratified Flow for examples of this behavior. 
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Flow 

Fig . 6.5 Flow th rough a s t ream tube. 

Basic equation: 

= 0(1) = 0(2) = 0(3) = 0 ( 4 ) 

Q - ^ s - / ^ ~ / ^ = ^ j epdV+ j (e + pv)pV-dA (4.56J 

e = u + — + gz 

Restrictions: (1) Ws = 0. 

(2) V V S H E A R = 0. 

(3) V I W R = 0. 

(4) Steady flow. 

(5) Uniform flow and properties at each section. 

(Remember that here v represents the specific volume, and u represents the specifics 
interna] energy, not velocity!) Under these restrictions, Eq. 4.56 becomes 

( r,2 \ ( \ 

M i + P\v\ + 2 + g Z l f~PiViA0 + "2 + P2V2 + ^ + 8Z2 (p2V2A2)-Q = 0 

But from continuity under these restrictions, 

= 0(4) 

pd V + 
cv J 

pV-dA = 0 
cs 

or 

That is, 

Also 

( -p ,V,A, ) + (ftVjAJ = 0 

m = p, V,A, = p1W1A1 

Q ^ ^ = S Q d m = SQih 

dt dm dt dm 

Thus, from the energy equation, 

P2V2 +-Y + 8Z2 
f v 2 ) m + [tin — Mi - \m = 0 

\ dm) 
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or 

P2V2 + - Y - + SZ2 + | «2 - "1 

Under the additional assumption (6) of incompressible flow, vx = v2 = 1/p and 
hence 

pi vi p i vi ( s q s 

p 2 p 2 \ am. 
(6.14) 

Equation 6.14 would reduce to the Bernoulli equation if the term in parentheses were 
zero. Thus, under the further restriction, 

(7) ( u 2 - u, - 50/dm) = 0 

the energy equation reduces to 

P i V2\ Pi v\ 
— + + gzi = ^ + ~f + gz2 p 2 p 2 

or 

P vA 

— I + gz = constant 
P 2 

(6.15) 

Equation 6.15 is identical in form to the Bernoulli equation, Eq. 6.8. The 
Bernoulli equation was derived from momentum considerations (Newton's second 
law), and is valid for steady, incompressible, frictionless flow along a streamline. 
Equation 6.15 was obtained by applying the first law of thermodynamics to a stream 
tube control volume, subject to restrictions 1 through 7 above. Thus the Bernoulli 
equation (Eq. 6.8) and the identical form of the energy equation (Eq. 6.15) were de­
veloped from entirely different models, coming from entirely different basic con­
cepts, and involving different restrictions. 

Note that restriction 7 was necessary to obtain the Bernoulli equation from the 
first law of thermodynamics. This restriction can be satisfied if SQJdm is zero (there 
is no heat transfer to the fluid) and = u { (there is no change in the internal thermal 
energy of the fluid). The restriction also is satisfied if ( u 2 - U\) and SQ/dm are 
nonzero provided that the two terms are equal. That this is true for incompressible 
frictionless flow is shown in Example Problem 6.7. 

EXAMPLE 6.7 Internal Energy and Heat Transfer in Frictionless Incompressible Flow 

Consider frictionless, incompressible flow with heat transfer. Show that 

8Q 
dm 

EXAMPLE PROBLEM 6.7 

GIVEN: Frictionless, incompressible flow with heat transfer. 

SHOW: « 2 - u, = 
dm B I B L t O T E C A 
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SOLUTION: 
In general, internal energy can be expressed as u = u(T, v). For incompressible flow, v = constant, and u =j 
u(T). Thus the thermodynamic state of the fluid is determined by the single thermodynamic property, 
T. For any process, the internal energy change, «2 — " i . depends only on the temperatures at the end 
states. 

From the Gibbs equation, Tds — du + p dv, valid for a pure substance undergoing any process, we 
obtain 

Tds = du 

for incompressible flow, since dv = 0. Since the internal energy change, du, between specified end 
states, is independent of the process, we take a reversible process, for which Tds = d(8Q/dm) = du. 
Therefore, 

SQ 
dm < 

For the special case considered in this section, it is true that the first law of ther-I 
modynamics reduces to the Bernoulli equation. Each term in Eq. 6.15 has dimension^ 
of energy per unit mass (we sometimes refer to the three terms in the equation as the 
"pressure" energy, kinetic energy, and potential energy per unit mass of the fluid). It 
is not surprising that Eq. 6.15 contains energy terms—after all, we used the first l a w 
of thermodynamics in deriving it. How did we end up with the same energy-likel 
terms in the Bernoulli equation, which we derived from the momentum equations 
The answer is because we integrated the momentum equation (which involves forcJ 
terms) along a streamline (which involves distance), and by doing so ended up wiUJ 
work or energy terms (work being defined as force times distance): The work oi 
gravity and pressure forces leads to a kinetic energy change (which came from inteJ 
grating momentum over distance). In this context, we can think of the Bernoulli 
equation as a mechanical energy balance—the mechanical energy ("pressure" plus] 
potential plus kinetic) will be constant. We must always bear in mind that for the] 
Bernoulli equation to be valid along a streamline requires an incompressible inviscid] 
flow, in addition to steady flow. If we had density changes they would continuously 
allow conversion of any or all of the mechanical energy forms to internal thermal en­
ergy, and vice versa. Friction always converts mechanical energy to thermal energy 
(appearing either as a gain of internal thermal energy or as heat generation, or both).' 
In the absence of density changes and friction, the mechanisms Unking the mechani-i 
cal and internal thermal energy do not exist, and restriction 7 holds—any internal 
thermal energy changes will result only from a heat transfer process and be independ­
ent of the fluid mechanics, and the thermodynamic and mechanical energies will be 
uncoupled. 

In summary, when the conditions are satisfied for the Bernoulli equation to be 
valid, we can consider separately the mechanical energy and the internal thermal en­
ergy of a fluid particle (this is illustrated in Example Problem 6.8); when they are not 
satisfied, there will be an interaction between these energies, the Bernoulli equation 
becomes invalid, and we must use the full first law of thermodynamics. 

EXAMPLE 6.8 Frictionless Flow with Heat Transfer 

Water flows steadily from a large open reservoir through a short length of pipe and a 
nozzle with cross-sectional area A = 0.864 in. 2 A well-insulated 10 kW heater sur­
rounds the pipe. Find the temperature rise of the water. 
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EXAMPLE PROBLEM 6.8 

G I V E N : Water flows from a large reservoir through the sys­
tem shown and discharges to atmospheric pressure. 
The heater is 10 kW; AA = 0.864 in.2 

FIND: The temperature rise of the water between points ® 
and © . 

SOLUTION: 

P v2 

[Governing equations: — + h gz = constant 
P 2 

= 0(1) 

pdV + pV-dA = Q 
lev JCS l « J C V J C 

= c 0(4) = 0(4) = 0(1) 

Assumptions: (1) Steady flow. 
(2) Frictionless flow. 
(3) Incompressible flow. 
(4) No shaft work, no shear work. 
(5) Flow along a streamline. I 

Under the assumptions listed, the first law of thermodynamics for the CV shown becomes 

Q = L [ u + p v + Y 2 - + 8 z 

f { v 2 ) 

pV • dA 

pVdA + j \u + pv + — + gz pV • dA 

For uniform properties at (T) and (2) 

" I + P\V + + #zi 
^ i 

+ ( P V ^ ) Q = -{pVA) 

From conservation of mass, pVxAx = pV2A2 = m, so 

For frictionless, incompressible, steady flow, along a streamline, 

«2 + P2° + - Y + 8*2 

P2 Vl fl V ) 
«2 - "1 + — + + 8Z2 - — + -± + gZi {p 2 ) {p 2 ) 

Therefore, 

P V 
—h h gz = constant 
P 2 

Q = m(u^ - «,) 
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Since, for an incompressible fluid, — «, = c(T2 — T^), then 

mc 

From continuity, 

m = pV^Aj 

To find V4, write the Bernoulli equation between the free surface at (3) and point (?) • 

p 2 P 2 

Since p3 = p 4 and V3 ~ 0, then 

, 2 32.2 ft 10ft 

K, = V2«(z3 - z 4 ) = J x X = 25.4 ft/s 

and 

1.94 slug 25.4 ft 0.864 in. 2 ft 2 

"» = pV4A, = x - x 
ft s 

Assuming no heat loss to the surroundings, we obtain 

144 in." 
0.296 slug/s 

T2 ~ 7] = 
Q 10 kW 3413 Btu fu­

me 

T2-Tx = 0.995 °R 

s slug Ibm • °R 
kW • hr " 3600 s " 0.296 slug 32.2 Ibm 1 Btu 

This problem illustrates that: 
/ In general, the first law of thermodynamics and the 

Bernoulli equation are independent equations. 
/ For an incompressible, inviscid flow the internal thermal 

energy is only changed by a heat transfer process, and is 
independent of the fluid mechanics. 

6-5 ENERGY GRADE LINE AND HYDRAULIC GRADE LINE 

For steady, frictionless, incompressible flow along a streamline, we have shown thai 
the first law of thermodynamics reduces to the Bernoulli equation. From Eq. 6.15 wa 
conclude that there is no loss of mechanical energy in such a flow. 

Often it is convenient to represent the mechanical energy level of a flow graphii 
cally. The energy equation in the form of Eq. 6.15 suggests such a representation. Di^ 
viding Eq. 6.15 by g, we obtain 

p v 2 

— + — + z = H - constant (6.16 
Pg 2g 

Each term in Eq. 6.16 has dimensions of length, or "head" of flowing fluid. Th 
individual terms are 
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P the head due to local static pressure 
("pressure" energy per unit weight of the flowing fluid) Pg 

the head due to local dynamic pressure 
(kinetic energy per unit weight of flowing fluid) 

the elevation head 
(potential energy per unit weight of the flowing fluid) 

H, the total head for the flow 
(total mechanical energy per unit weight of the flowing fluid) 

The energy grade line (EGL) represents the total head height. As shown by 
Eq. 6.16, the EGL height remains constant for frictionless flow when no work is 
done on or by the flowing liquid, although the individual static pressure, dynamic 
pressure, and elevation heads may vary. We recall from Section 6-3 that a pitot-
static tube placed in the flow measures the stagnation pressure (static plus 
dynamic), and it will obviously be installed at the local height z of the flow; 
hence, the height of the liquid in a column attached to the tube will equal the sum 
of the three heads in Eq. 6.16. This height directly indicates the value of H, or the 

The hydraulic grade line (HGL) height represents the sum of the elevation and 
static pressure heads, z + plpg. In a static pressure tap attached to the flow conduit, 
liquid would rise to the HGL height. For open-channel flow, the HGL is at the liquid 
free surface. 

The difference in heights between the EGL and the HGL represents the dynamic 
(velocity) head, V2/2g. The relationship among the EGL, HGL, and velocity head is 
illustrated schematically in Fig. 6.6 for frictionless flow from a tank through a pipe 
with a reducer. 

Static taps and total head tubes connected to manometers are shown schemati­
cally in Fig. 6.6. The static taps give readings corresponding to the HGL height. The 
total head tubes give readings corresponding to the EGL height. 

The total head of the flow shown in Fig. 6.6 is obtained by applying Eq. 6.16 at 
point (T)> the free surface in the large reservoir. There the velocity is negligible and 
the pressure is atmospheric (zero gage). Thus total head is equal to z , . This defines 
the height of the energy grade line, which remains constant for this flow, since there 
is no friction or work. 

The velocity head increases from zero to V\l2g as the liquid accelerates into 
the first section of constant-diameter tube. Hence, since the EGL height is constant 
the HGL must decrease in height. When the velocity becomes constant, the HGL 
height stays constant. 

The velocity increases again in the reducer between sections (D and © . As the 
velocity head increases, the HGL height drops. When the velocity becomes constant 
between sections (3) and (§), the HGL stays constant at a lower height. 

At the free discharge at section (4), the static head is zero (gage). There the 
HGL height is equal to ZA- As shown, the velocity head is V\l2g. The sum of the 
HGL height and velocity head equals the EGL height. (The static head is negative be­
tween sections (3) and (4) because the pipe centerline is above the HGL.) 

The effects of friction on a flow will be discussed in detail in Chapter 8. The 
effect of friction is to convert mechanical energy to internal thermal energy. 
Thus friction reduces the total head of the flowing fluid, causing a gradual reduction 
in the EGL height. 

EGL. 
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Work addition to the fluid, for example as delivered by a pump, increases the EGL. 
height. The effect of work interactions with a flow will be discussed in Chapters 8 and 10; 

6-6 UNSTEADY BERNOULLI E Q U A T I O N — I N T E G R A T I O N OF EULER'S 
EQUATION ALONG A STREAMLINE (CD-ROM) 

6-7 IRROTATIONAL FLOW (CD-ROM) 

6-8 SUMMARY 

In this chapter we have: 

/ Derived Euler's equations in vector form and in rectangular, cylindrical, and 
streamline coordinates. 

/ Obtained Bernoulli's equation by integrating Euler's equation along a steady-flow 
streamline, and discussed its restrictions. We have also seen how for a steady, in­
compressible flow through a stream tube the first law of thermodynamics reduces 

\ to the Bernoulli equation if certain restrictions apply. 
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/ Denned the static, dynamic, and stagnation (or total) pressures. 
/ Defined the energy and hydraulic grade lines. 
/ *Derived an unsteady flow Bernoulli equation, and discussed its restrictions. 
/ *Observed that for an irrotational flow that is steady and incompressible, the 

Bernoulli equation applies between any two points in the flow. 
/ *Defined the velocity potential <p and discussed its restrictions. 

*We have also explored in detail two-dimensional, incompressible and irrotational 
flows, and learned that for these flows: the stream function ip and the velocity poten­
tial d> satisfy Laplace's equation; ip and <pcan be derived from the velocity compo­
nents, and vice versa, and the iso-lines of the stream function ip and the velocity po­
tential <b are orthogonal. We explored for such flows how to combine potential flows 
to generate various flow patterns, and how to determine the pressure distribution and 
lift and drag on, for example, a cylindrical shape. 
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PROBLEMS 

6.1 Consider the flow field with velocity given by V = Axyi - fly2/; A = 10 ft 1 • s"', 
B = 1 ft"1 • s '; the coordinates are measured in feet. The density is 2 slug/ft3, and 
gravity acts in the negative y direction. Calculate the acceleration of a fluid particle 
and the pressure gradient at point (x, y) — (1, 1). 

T h e s e topics apply to sections that may be omitted without loss of continuity in the text material. 

http://www.fluent.com
http://www.cd-adapco.com
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6.2 An incompressible frictionless flow field is given by V = (Ax - By)i - Ayj, where 
A = 2 s - ' , B = I s~\ and the coordinates are measured in meters. Find the magni­
tude and direction of the acceleration of a fluid particle at point (x, y) = (1, 1). F u » 
the pressure gradient at the same point, if g = -gj and the fluid is water. 

6.3 A horizontal flow of water is described by the velocity field V = (Ax + Bt)i +1 
{-Ay + Bt)j, where A = 5 s" 1, B = 10 ft • s 2 , x and y are in feet, and / is in sec-l 
onds. Find expressions for the local acceleration, the convective acceleration, and! 
the total acceleration. Evaluate these at point (2, 2) at t = 5 seconds. Evaluate Vp at I 
the same point and time. 

Consider the flow field with velocity given by V = (Ary - Bx )i + (Axy - By 
where A = 2 ft 1 • s~\ B = I ft 1 • s~\ and the coordinates are measured in feet. 
The density is 2 slug/ft3 and gravity acts in the negative y direction. Determine thel 
acceleration of a fluid particle and the pressure gradient at point (x, y) = (1, 1). 

A velocity field in a fluid with density of 1500 kg/m3 is given by V = (Ax - By)li M 
(Ay + Bx)tj, where A = 1 s^ 2, 6 = 2 s~2, x and y are in meters, and t is in seconds. 
Body forces are negligible. Evaluate Vp at point (x, y) = (1, 2) at t = 1 s. 

Consider the flow field with velocity given by V = Ax sin(2ira>/)i' - Ay sin(27ratf)B 
where A = 2 s ' and m = l s '. The fluid density is 2 kg/m3. Find expressions for the 
local acceleration, the convective acceleration, and the total acceleration. Evaluate these 
at point (l, l) at / = 0,0.5 and I seconds. Evaluate V/? at the same point and times. 

6.7 The velocity field for a plane source located distance h = l m above an infinite wall 
aligned along the x axis is given by 

6.4 

6.5 

6.6 

V 
2 T T [ X 2 + (y hY 

[xi +(y- h)j\ 
2 T T [ X 2 + (y + ft)2] 

[x/ + (y + A);'] 

where q = 2 m3/s/m. The fluid density is 1000 kg/m3 and body forces are negligible.! 
Derive expressions for the velocity and acceleration of a fluid particle that move*] 
along the wall, and plot from x = 0 to x = + I OA. Verify that the velocity and accel-J 
eration normal to the wall are zero. Plot the pressure gradient dp/dx along the wall. Is 
the pressure gradient along the wall adverse (does it oppose fluid motion) or not? 

P 6 . 7 

6.8 The y component of velocity in an incompressible flow field is given by v = Ay, 
where A = 2 s 1 and the coordinates are measured in meters. The pressure at point 
(x, y) = (0, 0) is p0 = 190 kPa (gage). The density is p = 1.50 kg/m3 and the z axis 
is vertical. Evaluate the simplest possible x component of velocity. Calculate the 
fluid acceleration and determine the pressure gradient at point (x, y) = (2, 1). Find 
the pressure distribution along the positive x axis. 

6.9 The velocity distribution in a two-dimensional steady flow field in the xy plane is 
V = (Ax - B)i +(C- Ay)], where A = 2 s \B = 5 m • s ', and C = 3 m • s '; the 
coordinates are measured in meters, and the body force distribution is g = -gk. 
Does the velocity field represent the flow of an incompressible fluid? Find the 
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stagnation point of the flow field. Obtain an expression for the pressure gradient in 
the flow field. Evaluate the difference in pressure between point (x, y) = (1, 3) and 
the origin, if the density is 1.2 kg/m3. 

6.10 In a frictionless, incompressible flow, the velocity field in m/s and the body force are 
given by V = Axi - Ayy and g = -gk; the coordinates are measured in meters. 
The pressure is p0 at point (x, y, z) = (0, 0, 0). Obtain an expression for the pressure 
field, p(x, y, z). 

6.11 An incompressible liquid with density of 900 kg/m3 and negligible viscosity flows 
steadily through a horizontal pipe of constant diameter. In a porous section of length 
L = 0.3 m, liquid is removed at a constant rate per unit length so that the uniform 
axial velocity in the pipe is u(x) = U{\ — xl2L), where U = 5 m/s. Develop expres­
sions for the acceleration of a fluid particle along the centerline of the porous section 
and for the pressure gradient along the centerline. Evaluate the outlet pressure if the 
pressure at the inlet to the porous section is 35 kPa (gage). 

6.12 For the flow of Problem 4.103 show that the uniform radial velocity is Vr = Qllirrh. 
Obtain expressions for the r component of acceleration of a fluid particle in the 
gap and for the pressure variation as a function of radial distance from the central 
holes. 

6.13 The velocity field for a plane vortex sink is given by V = ~-^^.^r

 + 2 m - w n e r e 

q = 2 m3/s/m and K = I m3/s/m. The fluid density is 1000 kg/m3. Find the accelera­
tion at (1, 0), (1, 7r/2) and (2, 0). Evaluate Vp under the same conditions. 

6.14 An incompressible, inviscid fluid flows into a horizontal round tube through its 
porous wall. The tube is closed at the left end and the flow discharges from the tube 
to the atmosphere at the right end. For simplicity, consider the x component of veloc­
ity in the tube uniform across any cross-section. The density of the fluid is p, the tube 
diameter and length are D and L respectively, and the uniform inflow velocity is v0. 
The flow is steady. Obtain an algebraic expression for the x component of accelera­
tion of a fluid particle located at position x, in terms of v(h x, and D. Find an expres­
sion for the pressure gradient, dp/dx, at position x. Integrate to obtain an expression 
for the gage pressure at x = 0. 

6.15 A diffuser for an incompressible, inviscid fluid of density p = 1000 kg/m3 consists 
of a diverging section of pipe. At the inlet the diameter is D, = 0.25 m, and at the 
outlet the diameter is D„ = 0.75 m. The diffuser length is L = 1 m, and the diameter 
increases linearly with distance x along the diffuser. Derive and plot the acceleration 
of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is 
V; = 5 m/s. Plot the pressure gradient through the diffuser, and find its maximum 
value. If the pressure gradient must be no greater than 25 kPa/m, how long would the 
diffuser have to be? 

6.16 A nozzle for an incompressible, inviscid fluid of density p = 1000 kg/m3 consists of 
a converging section of pipe. At the inlet the diameter is Di: = 100 mm, and at the 
outlet the diameter is D0 — 20 mm. The nozzle length is L = 500 mm, and the diam­
eter decreases linearly with distance x along the nozzle. Derive and plot the accelera­
tion of a fluid particle, assuming uniform flow at each section, if the speed at the inlet 
is V, = 1 m/s. Plot the pressure gradient through the nozzle, and find its maximum 
absolute value. If the pressure gradient must be no greater than 5 MPa/m in absolute 
value, how long would the nozzle have to be? 

6.17 Consider the flow of Problem 5.46. Evaluate the magnitude and direction of the net 
pressure force that acts on the upper plate between r, and R, if r, = R/2. 

6.18 Consider again the flow field of Problem 5.59. Assume die flow is incompressible 
with p = 1.23 kg/m3 and friction is negligible. Further assume the vertical air flow 
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velocity is v0 = 15 mm/s, the half-width of the cavity is L = 22 mm, and its height 
is h = 1.2 mm. Calculate the pressure gradient at (x, y) = (L, h). Obtain an equation 
for the flow streamlines in the cavity. 

6.19 A rectangular microcircuit "chip" floats on a thin layer of air, h = 0.5 mm thick, 
above a porous surface. The chip width is b = 20 mm, as shown. Its length, L, is 
very long in the direction perpendicular to the diagram. There is no flow in the z di­
rection. Assume flow in the x direction in the gap under the chip is uniform. Flow is 
incompressible and frictional effects may be neglected. Use a suitably chosen control 
volume to show that U(x) = qx/h in the gap. Find a general expression for the accel­
eration of a fluid particle in the gap. Evaluate the maximum acceleration. Obtain an 
expression for the pressure gradient dp/ax and sketch the pressure distribution under 
the chip. Show p a l m on your sketch. Is the net pressure force on the chip directed up­
ward or downward? Explain. For the conditions shown, with q = 0.06 m3/s/m, esti­
mate the mass per unit length of the chip. 

rfTTffrfmfrffnr 
Uniform flow of air, q V U) 

Porous surface 

P6.19 

6.20 A liquid layer separates two plane surfaces as shown. The lower surface is station 
the upper surface moves downward at constant speed V. The moving surface had 
width iv, perpendicular to the plane of the diagram, and w » L. The incompressibU 
liquid layer, of density p, is squeezed from between the surfaces. Assume the flow h 
uniform at any cross-section and neglect viscosity as a first approximation. Use a 
suitably chosen control volume to show that u = Vxlb within the gap, where b = bJ 
- Vr. Obtain an algebraic expression for the acceleration of a fluid particle located af 
x. Determine the pressure gradient, dp/dx, in the liquid layer. Find the pressure distri-j 
bution, p(x). Obtain an expression for the net pressure force that acts on the upper 
(moving) flat surface. 

i " — L — * 

\ 
H Y T L I Q U I D S b 

•u 

P6.20 

6.21 Heavy weights can be moved with relative ease on air cushions by using a load pallet 
as shown. Air is supplied from the plenum through porous surface AB. It enters the 
gap vertically at uniform speed, q. Once in the gap, all air flows in the positive x di­
rection (there is no flow across the plane at x = 0). Assume air flow in the gap is in­
compressible and uniform at each cross section, with speed u(x), as shown in the 
enlarged view. Although the gap is narrow {h « L), neglect frictional effects as a 
first approximation. Use a suitably chosen control volume to show that u(x) = qxlh 
in the gap. Calculate the acceleration of a fluid particle in the gap. Evaluate the pres­
sure gradient, dp/dx, and sketch the pressure distribution within the gap. Be sure to 
indicate the pressure at x = L. 
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Air Load 

I P lenum <? 1 

* _ Ai r_s u p p I y_ JR ™ F L 

E x T 3 « W 

P 6 . 2 1 

6.22 

6.23 

Air at 20 psia and 100°F flows around a smooth corner at the inlet to a diffuser. The 
air speed is 150 ft/s, and the radius of curvature of the streamlines is 3 in. Determine 
the magnitude of the centripetal acceleration experienced by a fluid particle rounding 
the corner. Express your answer in gs. Evaluate the pressure gradient, dpldr. 
Steady, frictionless, and incompressible flow from right to left over a stationary cir­
cular cylinder of radius a is given by the velocity field 

U cos 8er + U + 1 sin 6t 

Consider flow along the streamline forming the cylinder surface, r = a. Express the 
components of the pressure gradient in terms of angle 6. Plot speed V as a function 
of r along the radial line 9 = 7t/2 for r > a. 

6.24 To model the velocity distribution in the curved inlet section of a wind tunnel, the ra­
dius of curvature of the streamlines is expressed as R = LR^Ily. As a first approxima­
tion, assume the air speed along each streamline is V = 20 m/s. Evaluate the pressure 
change from y = 0 to the tunnel wall at y = U2, if L = 150 mm and R0 = 0.6 m. 

6.25 The radial variation of velocity at the midsection of the 180° bend shown is given by 
rVg = constant. The cross section of the bend is square. Assume that the velocity is 
not a function of z. Derive an equation for the pressure difference between the out­
side and the inside of the bend. Express your answer in terms of the mass flow rate, 
the fluid density, the geometric parameters /?, and R2, and the depth of the bend, h = 
R2 - /?,. 

6.26 The velocity field in a two-dimensional, steady, inviscid flow field in the horizontal 
xy plane is given by V = (Ax + B)i - Ay j , where A = 1 s" 1 and B = 2 m/s; x and y 
are measured in meters. Show that streamlines for this flow are given by (x + BIA) y -
constant. Plot streamlines passing through points (x, y) = ( 1 , 1) , ( 1 , 2), and (2, 2). At 
point (x, y) = ( 1 , 2), evaluate and plot the acceleration vector and the velocity vector. 
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Find the component of acceleration along the streamline at the same point; express it 
as a vector. Evaluate the pressure gradient along the streamline at the same point if 
the fluid is air. What statement, if any, can you make about the relative value of the 
pressure at points (1,1) and (2, 2)1 

6.27 A velocity field is given by V = Axyi + By2 j ; A = 0.2 m 1 • s" 1, B is a constant, 
and the coordinates are measured in meters. Determine the value and units for B if 
this velocity field is to represent an incompressible flow. Calculate the acceleration of 
a fluid particle at point (x, y) = (2, 1). Evaluate the component of particle acceleratJ 
don normal to the velocity vector at this point. 

6.28 The x component of velocity in a two-dimensional, incompressible flow field is given 
by u = Ax2; the coordinates are measured in feet and A = 1 f t - ' • s '. There is no 
velocity component or variation in the z direction. Calculate the acceleration of a 
fluid particle at point (x, y) = (I, 2). Estimate the radius of curvature of the streanw 
line passing through this point. Plot the streamline and show both the velocity vector 
and the acceleration vector on the plot. 

6.29 The x component of velocity in a two-dimensional, incompressible flow field is giv 
by u — Axy; the coordinates are measured in meters and A = 2 m 1 • s - 1 . There is 
no velocity component or variation in the z direction. Calculate the acceleration of a 
fluid particle at point (x, y) = (2, 1). Estimate the radius of curvature of the stream­
line passing through this point. Plot the streamline and show both the velocity vector 
and the acceleration vector on the plot. 

6.30 The y component of velocity in a two-dimensional incompressible flow field is given 
by v = ~Axy, where v is in m/s, the coordinates are measured in meters, and A = 
1 m 1 • s '. There is no velocity component or variation in the z direction. Calculate 
the acceleration of a fluid particle at point (x, y) = (1, 2). Estimate the radius of cur­
vature of the streamline passing through this point. Plot the streamline and show both 
the velocity vector and the acceleration vector on the plot. 

6.31 The x component of velocity in a two-dimensional incompressible flow field is given 
A(x 2 - y 2 ) 

by u = \ i-J-< where u is in m/s, the coordinates are measured in meters, 
(x 2 + y 2 ) 2 

and A = 2 m 3 • s '. Show that the simplest form of the y component of velocity is 
2 Axy 

given by v = - 2 ^—j^f • There is no velocity component or variation in the z di­
rection. Calculate the acceleration of fluid particles at points (x, y) = (0, I), (0, 2) 
and (0, 3). Estimate the radius of curvature of the streamlines passing through these 
points. What does the relation among the three points and their radii of curvature 
suggest to you about the flow field? Verify this by plotting these streamlines. [Hint: 
You will need to use an integrating factor.] 

6.32 Consider the velocity field V = Ax2 i - Bxyj; A = 2 m" 1 • s ', B = 4 m~l • s - 1 , 
and the coordinates are measured in meters. Show that this is a possible incompres­
sible flow. Obtain the equation of the streamline through point (x, y) = (1, 2). Derive 
an algebraic expression for the acceleration of a fluid particle. Estimate the radius of 
curvature of the streamline at (x, y) = (1, 2). 

6.33 Water flows at a speed of 3 m/s. Calculate the dynamic pressure of this flow. Express 
your answer in millimeters of mercury. 

6.34 Calculate the dynamic pressure that corresponds to a speed of 100 km/hr in standard 
air. Express your answer in millimeters of water. 

6.35 You present your open hand out of the window of an automobile perpendicular to the 
airflow. Assuming for simplicity that the air pressure on the entire front surface is stag­
nation pressure (with respect to automobile coordinates), with atmospheric pressure 
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on the rear surface, estimate the net force on your hand when driving at (a) 30 mph 
and (b) 60 mph. Do these results roughly correspond with your experience? Do the 
simplifications tend to make the calculated force an over- or underestimate? 

6.36 A jet of air from a nozzle is blown at right angles against a wall in which a pressure 
tap is located. A manometer connected to the tap shows a head of 0.14 in. of mercury 
above atmospheric. Determine the approximate speed of the air leaving the nozzle if 
it is at 40°F and 14.7 psia. 

6.37 A pitot-static tube is used to measure the speed of air at standard conditions at a point 
in a flow. To ensure that the flow may be assumed incompressible for calculations of 
engineering accuracy, the speed is to be maintained at 100 m/s or less. Determine the 
manometer deflection, in millimeters of water, that corresponds to the maximum de­
sirable speed. 

6.38 Maintenance work on high-pressure hydraulic systems requires special precautions. 
A small leak can result in a high-speed jet of hydraulic fluid that can penetrate die 
skin and cause serious injury (therefore troubleshooters are cautioned to use a piece 
of paper or cardboard, not a finger, to search for leaks). Calculate and plot the jet 
speed of a leak versus system pressure, for pressures up to 40 MPa (gage). Explain 
how a high-speed jet of hydraulic fluid can cause injury. 

6.39 The inlet contraction and test section of a laboratory wind tunnel are shown. The air 
speed in the test section is U = 22.5 m/s. A total-head tube pointed upstream indi­
cates that the stagnation pressure on the test section centerline is 6.0 mm of water 
below atmospheric. The corrected barometric pressure and temperature in the labora­
tory are 99.1 kPa (abs) and 23°C. Evaluate the dynamic pressure on the centerline of 
the wind tunnel test section. Compute the static pressure at the same poinL Qualita­
tively compare the static pressure at the tunnel wall with that at the centerline. Explain 
why the two may not be identical. 

I- -h—Test section 
Contraction 

P6.39 

6.40 An open-circuit wind tunnel draws in air from the atmosphere through a well-con­
toured nozzle. In the test section, where the flow is straight and nearly uniform, a 
static pressure tap is drilled into the tunnel wall. A manometer connected to the tap 
shows that static pressure within the tunnel is 45 mm of water below atmospheric. 
Assume that the air is incompressible, and at 25°C, 100 kPa (abs). Calculate the air 
speed in the wind-tunnel test section. 

6.41 The wheeled cart shown in Problem 4.108 rolls with negligible resistance. The cart is 
to accelerate to the right. The jet speed is V = 40 m/s. The jet area remains constant 
at A — 25 mm2. Neglect viscous forces between the water and vane. When the cart 
attains speed U = 15 m/s, calculate the stagnation pressure of the water leaving the 
nozzle with respect to a fixed observer, the stagnation pressure of the water jet leav­
ing the nozzle with respect to an observer on the vane, the absolute velocity of the jet 
leaving the vane with respect to a fixed observer, and the stagnation pressure of the 
jet leaving the vane with respect to a fixed observer. How would viscous forces affect 
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the latter stagnation pressure, i.e., would viscous forces increase, decrease, or leave 
unchanged this stagnation pressure? Justify your answer. 

6.42 Water flows steadily up the vertical 0.1 m diameter pipe and out the nozzle, which is 
0.05 m in diameter, discharging to atmospheric pressure. The stream velocity at the 
nozzle exit must be 20 m/s. Calculate the minimum gage pressure required at section 
® . If the device were inverted, what would be the required minimum pressure at 
section (T) to maintain the nozzle exit velocity at 20 m/s? 

4 m 

P 6 . 4 2 

6.43 Water flows in a circular duct. At one section the diameter is 0.3 m, the static pres­
sure is 260 kPa (gage), the velocity is 3 m/s, and the elevation is 10 m above ground] 
level. At a section downstream at ground level, the duct diameter is 0.15 m. Find tha 
gage pressure at the downstream section if frictional effects may be neglected. 

6.44 The water flow rate through the siphon is 0.02 m3/s, its temperature is 20°C, and the 
pipe diameter is 50 mm. Compute the maximum allowable height, h, so that the presn 
sure at point A is above the vapor pressure of the water. 

6.45 Water flows from a very large tank through a 2 in. diameter tube. The dark liquid in 
the manometer is mercury. Estimate the velocity in the pipe and the rate of discharge 
from the tank. 

6.46 A stream of liquid moving at low speed leaves a nozzle pointed directly downward. 
The velocity may be considered uniform across the nozzle exit and the effects of 
friction may be ignored. At the nozzle exit, located at elevation ZQ, the jet velocity 
and area are V0 and A0, respectively. Determine the variation of jet area with 
elevation. 

6.47 In a laboratory experiment, water flows radially outward at moderate speed through 
the space between circular plane parallel disks. The perimeter of the disks is open to 
the atmosphere. The disks have diameter D = 150 mm and the spacing between the 
disks is h = 0.8 mm. The measured mass flow rate of water is m = 305 g/s. Assum­
ing frictionless flow in the space between the disks, estimate the theoretical static 
pressure between the disks at radius r = 50 mm. In the laboratory situation, where 
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some friction is present, would the pressure measured at the same location be above 
or below the theoretical value? Why? 

6.48 Consider steady, frictionless, incompressible flow of air over the wing of an airplane. 
The air approaching the wing is at 10 psia, 40°F, and has a speed of 200 fl/s relative 
to the wing. At a certain point in the flow, the pressure is —0.40 psi (gage). Calculate 
the speed of the air relative to the wing at this point. 

6.49 A fire nozzle is coupled to the end of a hose with inside diameter D = 75 mm. The 
nozzle is contoured smoothly and has outlet diameter d = 25 mm. The design inlet 
pressure for the nozzle is pt = 689 kPa (gage). Evaluate the maximum flow rate the 
nozzle could deliver. 

6.50 A mercury barometer is carried in a car on a day when there is no wind. The temper­
ature is 20°C and the corrected barometer height is 761 mm of mercury. One window 
is open slightly as the car travels at 105 km/hr. The barometer reading in the moving 
car is 5 mm lower than when the car is stationary. Explain what is happening. Calcu­
late the local speed of the air flowing past the window, relative to the automobile. 

6.51 An Indianapolis racing car travels at 98.3 m/s along a straightaway. The team engi­
neer wishes to locate an air inlet on the body of the car to obtain cooling air for the 
driver's suit. The plan is to place the inlet at a location where the air speed is 25.5 
m/s along the surface of the car. Calculate the static pressure at the proposed inlet lo­
cation. Express the pressure rise above ambient as a fraction of the freestream dy­
namic pressure. 

6.52 Steady, frictionless, and incompressible flow from left to right over a stationary cir­
cular cylinder, of radius a, is represented by the velocity field 

V - U 
f ' - ( £ f f ' - ( £ f 

cos 8er - U sin 8 eA 

Obtain an expression for the pressure distribution along the streamline forming the 
cylinder surface, r = a. Determine the locations where the static pressure on the 
cylinder is equal to the freestream static pressure. 

6.53 The velocity field for a plane source at a distance h above an infinite wall aligned 
along the x axis was given in Problem 6.7. Using the data from that problem, plot the 
pressure distribution along the wall from x = — \ 0h to x = + [Oh (assume the pres­
sure at infinity is atmospheric). Find the net force on the wall if the pressure on the 
lower surface is atmospheric. Does the force tend to pull the wall towards the source, 
or push it away? 

IjJ? 6.54 The velocity field for a plane doublet is given in Table 6.1 (page S-27 on the CD). If A 
= 3 rn3 • s" 1, the fluid density is p — 1.5 kg/m3, and the pressure at infinity is 100 kPa, 
plot the pressure along the x axis from x ~ —2.0 m to —0.5 m and x = 0.5 m to 2.0 m. 

6.55 A fire nozzle is coupled to the end of a hose with inside diameter D = 3.0 in. The 
nozzle is smoothly contoured and its outlet diameter is d = 1.0 in. The nozzle is de­
signed to operate at an inlet water pressure of 100 psig. Determine the design flow 
rate of the nozzle. (Express your answer in gpm.) Evaluate the axial force required to 
hold the nozzle in place. Indicate whether the hose coupling is in tension or 
compression. 

6.56 A smoothly contoured nozzle, with outlet diameter d = 20 mm, is coupled to a 
straight pipe by means of flanges. Water flows in the pipe, of diameter D = 50 mm, 
and the nozzle discharges to the atmosphere. For steady flow and neglecting the ef­
fects of viscosity, find the volume flow rate in the pipe corresponding to a calculated 
axial force of 45.5 N needed to keep the nozzle attached to the pipe. 
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6.57 Water flows steadily through a 3.25 in. diameter pipe and discharges through a 1. 
in. diameter nozzle to atmospheric pressure. The flow rate is 24.5 gpm. Calculate the 
minimum static pressure required in the pipe to produce this flow rate. Evaluate the 
axial force of the nozzle assembly on the pipe flange. 

6.58 Water flows steadily through the reducing elbow shown. The elbow is smooth and 
short, and the flow accelerates, so the effect of friction is small. The volume flow rate 
is Q = 1.27 Us. The elbow is in a horizontal plane. Estimate the gage pressure at 
section ® . Calculate the x component of the force exerted by the reducing elbow on\ 
the supply pipe. 

mm 
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6.59 A water jet is directed upward from a well-designed nozzle of area At = 600 mm2; 
the exit jet speed is V, = 6.3 m/s. The flow is steady and the liquid stream does not 
break up. Point © is located H = 1.55 m above the nozzle exit plane. Determine the 
velocity in the undisturbed jet at point © . Calculate the pressure that would be 
sensed by a stagnation tube located there. Evaluate the force that would be exerted 
on a flat plate placed normal to the stream at point © . Sketch the pressure distribu-! 
tion on the plate. 

6.60 An object, with a flat horizontal lower surface, moves downward into the jet of the 
spray system of Problem 4.63 with speed U = 5 ft/s. Determine the minimum supply 
pressure needed to produce the jet leaving the spray system at V = 15 ft/s. Calculate 
the maximum pressure exerted by the liquid jet on the flat object at the instant when 
the object is h = 1.5 ft above the jet exit. Estimate the force of the water jet on the 
flat object. 

6.61 Water flows out of a kitchen faucet of 0.5 in. diameter at the rate of 2 gpm. The bot­
tom of the sink is 18 in. below the faucet oudet. Will the cross-sectional area of the 
fluid stream increase, decrease, or remain constant between the faucet outlet and the 
bottom of the sink? Explain briefly. Obtain an expression for the stream cross section 
as a function of distance y above the sink bottom. If a plate is held directly under the 
faucet, how will the force required to hold the plate in a horizontal position vary with 
height above the sink? Explain briefly. 

6.62 An old magic trick uses an empty thread spool and a playing card. The playing card 
is placed against the bottom of the spool. Contrary to intuition, when one blows 
downward through the central hole in the spool, the card is not blown away. Instead 
it is "sucked" up against the spool. Explain. 

6.63 The tank, of diameter D, has a well-rounded nozzle with diameter d. At t = 0, the 
water level is at height hg. Develop an expression for dimensionless water height, 
h/ho, at any later time. For Did = 1 0 , plot hlha as a function of time with as a pa­
rameter for 0.1 ^ i% s 1 m. For /in = 1 m, plot h/ho as a function of time with Did 
as a parameter for 2 s Did < 10. 
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Tank 

diameter, D 

Jet diameter, d 
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6.64 The water level in a large tank is maintained at height H above the surrounding level 
terrain. A rounded nozzle placed in the side of the tank discharges a horizontal jet. 
Neglecting friction, determine the height h at which the orifice should be placed so 
the water strikes the ground at the maximum horizontal distance X from the tank. 
Plot jet speed V and distance X as functions of h (0 < h < H). 

6.65 A horizontal axisymmetric jet of air with 10 mm diameter strikes a stationary verti­
cal disk of 200 mm diameter. The jet speed is 75 m/s at the nozzle exit. A manometer 
is connected to the center of the disk. Calculate (a) the deflection, if the manometer 
liquid has SG = 1.75, (b) the force exerted by the jet on the disk, and (c) the force 
exerted on the disk if it is assumed that the stagnation pressure acts on the entire for­
ward surface of the disk. Sketch the streamline pattern and the distribution of pres­
sure on the face of the disk. 

6.66 The flow over a Quonset hut may be approximated by the velocity distribution of 
Problem 6.52 with 0 < 6 < TT. During a storm the wind speed reaches 100 km/hr; 
the outside temperature is 5°C. A barometer inside the hut reads 720 mm of mercury; 
pressure p^ is also 720 mm Hg. The hut has a diameter of 6 m and a length of 18 m. 
Determine the net force tending to lift the hut off its foundation. 

6.67 Many recreation facilities use inflatable "bubble" structures. A tennis bubble to en­
close four courts is shaped roughly as a circular semicylinder with a diameter of 30 
m and a length of 70 m. The blowers used to inflate the structure can maintain the air 
pressure inside the bubble at 10 mm of water above ambient pressure. The bubble is 
subjected to a wind that blows at 60 km/hr in a direction perpendicular to the axis of 
the semicylindrical shape. Using polar coordinates, with angle 0 measured from the 
ground on the upwind side of the structure, the resulting pressure distribution may be 
expressed as 

P6.66 

P ~ A ̂ = 1 - 4sin 2 0 

where p is the pressure at the surface, pa the atmospheric pressure, and Vw the wind 
speed. Determine the net vertical force exerted on the structure. 
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6.68 

6.69 

6.70 

6.71 

6.72 

6.73 

6.74 

Water flows at low speed through a circular tube with inside diameter of 50 mm. A 
smoothly contoured body of 40 mm diameter is held in the end of the tube where the 
water discharges to atmosphere. Neglect frictional effects and assume uniform veloc-1 
ity profiles at each section. Determine the pressure measured by the gage and the] 
force required to hold the body. 

1 4 . 
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High-pressure air forces a stream of water from a tiny, rounded orifice, of area A, in a 
tank. The pressure is high enough that gravity may be neglected. The air expands 
slowly, so that the expansion may be considered isothermal. The initial volume of air 
in the tank is V^. At later instants the volume of air is Y(t); the total volume of the 
tank is Yr Obtain an algebraic expression for the mass flow rate of water leaving 
the tank. Find an algebraic expression for the rate of change in mass of the water in* 
side the tank. Develop an ordinary differential equation and solve for the water mass 
in the tank at any instant. If V0 = 5 m 3, V, = 10 m3, A = 25 mm 2, and p0 = 1 MPaJ 
plot the water mass in the tank versus time for the first forty minutes. 

Repeat Problem 6.69 assuming the air expands so rapidly that the expansion may be 
treated as adiabatic. 

Describe the pressure distribution on the exterior of a multistory building in a steadjl 
wind. Identify the locations of the maximum and minimum pressures on the outsidfll 
of the building. Discuss the effect of these pressures on infiltration of outside air into 
the building. 

Imagine a garden hose with a stream of water flowing out through a nozzle. Explain! 
why the end of the hose may be unstable when held a half meter or so from the noz­
zle end. 

An aspirator provides suction by using a stream of water flowing through a venruri.l 
Analyze the shape and dimensions of such a device. Comment on any limitations onl 
its use. 

A tank with a reentrant orifice called a Borda mouthpiece is shown. The fluid is in-1 
viscid and incompressible. The reentrant orifice essentially eliminates flow along thel 
tank wails, so the pressure there is nearly hydrostatic. Calculate the contraction! 
coefficient, Cc = A ;/A 0. Hint: Equate the unbalanced hydrostatic pressure force andl 
momentum flux from the jet. 

P6.74 
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6.75 Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for 
the system shown in Fig. 6.6 if the pipe is horizontal (i.e., the outlet is at the base of 
the reservoir), and a water turbine (extracting energy) is located at point © , or 
at point © . In Chapter 8 we will investigate the effects of friction on internal Hows. 
Can you anticipate and sketch the effect of friction on the EGL and HGL for the two 
cases? 

6.76 Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for 
the system shown in Fig. 6.6 if a pump (adding energy to the fluid) is located at 
point © , or at point © , such that flow is into the reservoir. In Chapter 8 we will in­
vestigate the effects of friction on internal flows. Can you anticipate and sketch the 
effect of friction on the EGL and HGL for the two cases? 

*6.77 Compressed air is used to accelerate water from a tube. Neglect the velocity 
in the reservoir and assume the flow in the tube is uniform at any section. At a 
particular instant, it is known that V = 2 m/s and dVldt = 2.50 m/s 2. The cross-
sectional area of the tube is A = 0.02 m 2. Determine the pressure in the tank at 
this instant. 

h = 1.5 m Water L= 10 m • 

P6 .77 , 6 .78 , 6.81 

;6.78 If the water in the pipe in Problem 6.77 is initially at rest and the air pressure is 20 
kPa (gage), what will be the initial acceleration of die water in the pipe? 

*6.79 Consider the reservoir and disk flow system with the reservoir level maintained con­
stant. Flow between the disks is started from rest at t = 0. Evaluate the rate of 
change of volume flow rate at r = 0, if r, = 5 0 mm. 

I 

P6.79 

*6.80 Apply the unsteady Bernoulli equation to the U-tube manometer of constant diame­
ter shown. Assume that the manometer is initially deflected and then released. Obtain 
a differential equation for / as a function of time. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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*6.8I If the water in the pipe of Problem 6.77 is initially at rest, and the air pressure is 
maintained at 10 kPa (gage), derive a differentia] equation for the velocity V in the 
pipe as a function of time, integrate, and plot V versus / for t = 0 to 5 s. 

*6.82 Two circular disks, of radius R, are separated by distance b. The upper disk moves I 
toward the lower one at constant speed V. The space between the disks is filled with 
a frictionless, incompressible fluid, which is squeezed out as the disks come together. 
Assume that, at any radial section, the velocity is uniform across the gap width b. 
However, note that b is a function of time. The pressure surrounding the disks is at-l 
mospheric. Determine the gage pressure at r = 0. 

*6.83 Consider the tank of Problem 4.36. Using the Bernoulli equation for unsteady flow 
along a streamline, evaluate the minimum diameter ratio, Did, required to justify the 
assumption that flow from the tank is quasi-steady. 

*6.84 Determine whether the Bernoulli equation can be applied between different radii for 
the vortex flow fields (a) V = ur eff and (b) V = eg K/2irr. 

*6.85 Consider the flow represented by the stream function ip = Ajr^y, where A is a dimen- j 
sional constant equal to 2.5 m"' • s"'. The density is 2.45 slug/ft3. Is the flow! 
rotational? Can the pressure difference between points (x, y) = (I, 4) and (2, 1) be] 
evaluated? If so, calculate it, and if not, explain why. 

*6.86 The velocity field for a two-dimensional flow is V = (Ax - By)li - (Bx + Ay)tj,\ 
where A — 1 s 2 , B = 2 s ~2, / is in seconds, and the coordinates are measured in me-1 
ters. Is this a possible incompressible flow? Is the flow steady or unsteady? Show that] 
the flow is irrotational and derive an expression for the velocity potential. 

*6.87 The flow field for a plane source at a distance h above an infinite wall aligned along] 
the x axis is given by 

V = 
2 T H V + ( y - hf\ 

\x i +(y- h)j] + — r — 1 \x i + (y + h)j 
1 J 2TT\X2 + ( y + / i ) 2 ] L 

where q is the strength of the source. The flow is irrotational and incompressible, j 
Derive the stream function and velocity potential. By choosing suitable values for q 
and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Ex­
cel workbook of Example Problem 6.10.) 

*6.88 Using Table 6.1, find the stream function and velocity potential for a plane source, of 
strength q, near a 90° corner. The source is equidistant h from each of the two infinite 
planes that make up the corner. Find the velocity distribution along one of the planes, 
assuming p = p0 at infinity. By choosing suitable values for q and h, plot the stream­
lines and lines of constant velocity potential. (Hint: Use the Excel workbook of Ex­
ample Problem 6.10.) 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 



PROBLEMS 271 

*6.89 Using Table 6.1, find the stream function and velocity potential for a plane vortex, of 
strength K, near a 90° comer. The vortex is equidistant h from each of the two infi­
nite planes that make up the corner. Find the velocity distribution along one of the 
planes, assuming p = p0 at infinity. By choosing suitable values for K and h, plot the 
streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook 
of Example Problem 6.10.) 

*6.90 The stream function of a flow field is ip = Ar^y - By3, where A = 1 m _ 1 • s - ' , B = 
• j m - 1 - s _ l , and the coordinates are measured in meters. Find an expression for the 
velocity potential. 

*6.91 A flow field is represented by the stream function ip = x2 — y 2. Find the corresponding 
velocity field. Show that this flow field is irrotational and obtain the potential function. 

*6.92 Consider the flow field represented by the potential function <f> = x2 — y2. Verify that 
this is an incompressible flow and obtain the corresponding stream function. 

*6.93 Consider the flow field represented by the potential function cf> = Ax2 + Bxy - Ay2. 
Verify that this is an incompressible flow and determine the corresponding stream 
function. 

*6.94 Consider the flow field represented by the velocity potential <f> = Ax + Bx2 — By2, 
where A = 1 m • s~', B = 1 s~', and the coordinates are measured in meters. Obtain 
expressions for the velocity field and the stream function. Calculate the pressure dif­
ference between the origin and point (x, y) = (1, 2). 

"6.95 A flow field is represented by the potential function <p — Ay3 - BJPj, where A = 
•3 m' ' • s ', B = 1 nT 1 • s^1, and the coordinates are measured in meters. Obtain an 
expression for the magnitude of the velocity vector. Find the stream function for die 
flow. Plot the streamlines and potential lines, and visually verify that they are orthog­
onal. (Hint: Use the Excel workbook of Example Problem 6.10.) 

*6.96 An incompressible flow field is characterized by the stream function ip = 3 Ax*y -
Ay3, where A = 1 m"' • s~'. Show that this flow field is irrotational. Derive the 
velocity potential for the flow. Plot the streamlines and potential lines, and visually 
verify that they are orthogonal. (Hint: Use the Excel workbook of Example Problem 
6.10.) 

^ ^ 1 *6.97 The velocity distribution in a two-dimensional, steady, inviscid flow field in the xy 
plane is V = (Ax + B)i + ( C - Ay)j, where A = 3 s~\ B = 6 m/s, C = 4 m/s, and 
the coordinates are measured in meters. The body force distribution is B = -gk and 
the density is 825 kg/m3. Does this represent a possible incompressible flow field? 
Plot a few strearrdines in the upper half plane. Find the stagnation point(s) of the 
flow field. Is the flow irrotational? If so, obtain the potential function. Evaluate the 
pressure difference between the origin and point (x, y, z) = (2, 2, 2). 

*6.98 A certain irrotational flow field in the xy plane has the stream function ip = Bxy, 
where B = 0.25 s~\ and the coordinates are measured in meters. Determine the rate 
of flow between points (JC, y) = (2, 2) and (3, 3). Find the velocity potential for this 
flow. Plot the streamlines and potential lines, and visually verify that they are orthog­
onal. (Hint: Use the Excel workbook of Example Problem 6.10.) 

*6.99 Consider the flow past a circular cylinder, of radius a, used in Example Problem 
6.11. Show that Vr - 0 along the lines (r, ff) = (r, ±TT/2). Plot VeIU versus radius 
for r & a, along the line (r, 0) = (r, TT/2). Find the distance beyond which the influ­
ence of the cylinder is less than 1 percent of U. 

*6.100 Consider flow around a circular cylinder with freestream velocity from right to left 
and a counterclockwise free vortex. Show that the lift force on the cylinder can be 
expressed as F L = —pUT, as illustrated in Example Problem 6.12. 

* These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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*6.101 

*6.102 

*6.103 

( ^ * 6 . 1 0 4 

^ 1 * 6 . 1 0 5 

•6.107 

A crude model of a tornado is formed by combining a sink, of strength q = 2800 
m2/s, and a free vortex, of strength K = 5600 m2/s. Obtain the stream function and 
velocity potential for this flow field. Estimate the radius beyond which the flow may 
be treated as incompressible. Find the gage pressure at that radius. 

A source and a sink with strengths of equal magnitude, q = 3ir m2/s, are placed on 
the x axis at x = —a and x = a, respectively. A uniform flow, with speed U = 20 m/s, 
in the positive x direction, is added to obtain the flow past a Rankine body. Obtain 
the stream function, velocity potential, and velocity field for the combined flow. Find 
the value of </» = constant on the stagnation streamhne. Locate the stagnation points 
if a = 0.3 m. 

Consider again the flow past a Rankine body of Problem 6.102. The half-width, k, ot 
the body in the y direction is given by the transcendental equation 

Evaluate the half-width, h. Find the local velocity and the pressure at points (x, y) = H 
(0, ±h). Assume the fluid density is that of standard air. 
A flow field is formed by combining a uniform flow in the positive x direction, with] 
U = 10 m/s, and a counterclockwise vortex, with strength K = 16TT m2/s, located al 
the origin. Obtain the stream function, velocity potential, and velocity field for the 
combined flow. Locate the stagnation point(s) for the flow. Plot the streamlines and 
potential lines. (Hint: Use the Excel workbook of Example Problem 6.10.) 

Consider the flow field formed by combining a uniform flow in the positive x direc­
tion and a source located at the origin. Obtain expressions for the stream function, 
velocity potential, and velocity field for the combined flow. If U = 25 m/s, detennins 
the source strength if the stagnation point is located at x = — 1 m. Plot the stream­
lines and potential lines. (Hint: Use the Excel workbook of Example Problem 6.10.)' 

Consider the flow field formed by combining a uniform flow in the positive x direct 
tion and a source located at the origin. Let U = 30 m/s and q = 150 m2/s. Plot the 
ratio of the local velocity to the freestream velocity as a function of 6 along the stag4 
nation streamline. Locate the points on the stagnation streamline where the velocity 
reaches its maximum value. Find the gage pressure there if the fluid density • 

Consider the flow field formed by combining a uniform flow in the positive x direc­
tion with a sink located at the origin. Let U = 50 m/s and q = 90 m2/s. Use a suit] 
ably chosen control volume to evaluate the net force per unit depth needed to hold in 
place (in standard air) the surface shape formed by the stagnation streamline. 

* These problems require material from sections that may be omitted without loss of continuity in the 
material. 



Chapter 7 

DIMENSIONAL ANALYSIS 
AND SIMILITUDE 

A few years ago an article in Scientific American [1] discussed the speed at which 
dinosaurs may have been able to run. The only data available on these creatures was the 
fossil record—the most pertinent data being the dinosaurs' average leg length / and 
stride 5. Could these data be used to extract the dinosaurs' speed? Comparing data on / 
and s and the speed of quadrupeds (e.g., horses, dogs) and bipeds (e.g., humans) led to 
no insight until it was realized that if one plotted the ratio s/l against V2/gl (where V is 
the measured speed of the animal and g is the acceleration of gravity) the data for most 
animals fell approximately on one curve! Hence, by using the dinosaurs' value of s/l, a 
corresponding value of V^/gl could be interpolated from the curve, leading to an esti­
mate for V of dinosaurs. Based on this, in contrast to Jurassic Park, it seems likely that 
humans could easily outrun Tyrannosaurus! How did the author come up with these 
two groupings of parameters? Another question: Virtuaily all engineering or scientific 
journal articles present data in terms of what at first may seem like strange groupings of 
parameters: Why do they do this? A third question: In previous chapters we have men­
tioned that a flow will be essentially incompressible if the Mach number M = Vic (c is 
the speed of sound) is less than a certain value, and that we can neglect viscous effects 
in most of a flow if the Reynolds number Re = pVLIp, (V and L are the typical or "char­
acteristic" velocity and size scale of the flow) is "large." How did we obtain these group­
ings, and why do their values have such powerful predictive power? A final question: If 
we put a 3/8-scaIe model of an automobile in a wind tunnel at 60 mph, and measure a 
drag of 6 lbf, this predicts that the drag on the full-size automobile at the same speed 
will be about 42 lbf. How do we know this, and what are the rules for modeling? 

We will attempt to answer questions such as these in this chapter; the answers 
have to do with the method of dimensional analysis. This is a technique for gaining 
insight into fluid flows (in fact into many engineering or scientific phenomena) before 
we do either extensive theoretical analysis or experimentation; it also enables us to 
extract trends from data that would otherwise remain disorganized and incoherent. It 
is important to successfully be able to do experimental work in fluid mechanics be­
cause it is often difficult to obtain the mathematical solution to a problem—as we 
discussed when we derived the Navier-Stokes equations in Chapter 5. 

7-1 NONDIMENSIONAUZING THE BASIC DIFFERENTIAL EQUATIONS 

Before describing dimensional analysis let us see what we can learn from our previous 
analytical descriptions of fluid flow. Consider, for example, a steady incompressible 
two-dimensional flow of a Newtonian fluid with constant viscosity (already quite a 
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list of assumptions!). The mass conservation equation (Eq. 5.1c) becomes 

0 
du • dv 
dx dy 

(7.1) 

and the Navier-Stokes equations (Eqs. 5.27) reduce to 

du du^ 
u— + v — 

dx dv 
dp d\ dh 

dx2 + dy2 

and 
^ dv dv 

dx dy 
-Pg 

dp 
dy 

2 „ > d2v d^v 

dx2 + dy2 

(7. 

(7 

As we discussed in Section 5-4, these equations form a set of coupled nonlinear partial] 
differential equations for u, v, and p, and are difficult to solve for most flows. Equation 
7.1 has dimensions of 1/time, and Eqs. 7.2 and 7.3 have dimensions of force/volume. Lea 
us see what happens when we convert them into dimensionless equations. (Even if you 
did not study Section 5-4 you will be able to understand the following material.) 

To nondimensionalize these equations, divide all lengths by a reference length, LA 
and all velocities by a reference velocity, V„, which usually is taken as the freestream 
velocity. Make the pressure nondimensional by dividing by pV£ (twice the freestream 
dynamic pressure). Denoting nondimensional quantities with asterisks, we obtain 

x 
T 

y* - —, u* 
u 

V~~ 
V 

and p* ~ (7.4) 

To illustrate the procedure for nondimensionalizing the equations, consider two typi­
cal terms in the equations, 

and 
d2 

du 
ox 

d (du 

diu/V^ du* 

dy' dy{dy) d{ylL)L 

d(x/L)L L 

d{ylL)L 
d2i 

L dy" 

By following this procedure, Eqs. 7.1, 7.2, and 7.3 can be written 

du* V L dv* 
L dx* L dy" 

0 

pVL 

L 

2 / 

„ du* ^ du* 
* 1- v* 

dy* dx* 

dv* 

P v 2 dp* | JUK, ( 3 2 a i 

) 

+ v* 
V 

djr_ 
dy* 

dx* 

,2 

d\ 

dx*2 dy* 

= ~Pg 
pVJ dp* | plV„ 

L dy* L2 

(<2 3 V d2z 

dx* dy* 

Dividing Eq. 7.5 by V^IL and Eqs. 7.6 and 7.7 by pV\ IL gives 

du* dv* 
- — + = 0 
dx* dy* 

(7.: 

(7.6) 

(7.7) 

(7.8) 

du* _ du* 
i* 1- v* 

dx* dy* 

dp* 
+ • 

d~u* 

dx*2 dy" 
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^ dv* „ dv* gL dp* p \ d V* d v* 
u* — — + v* —— = - - - f — + — T + r (7 10) 

dx* dy* V2 dy* pVML{dx*2 dy*2) K ' 
Equations 7.8, 7.9, and 7.10 are the nondimensional forms of our original equa­

tions (Eqs. 7 .1 , 7.2, 7.3). As such, we can think about their solution (with appropriate 
boundary conditions) as an exercise in applied mathematics. Equation 7.9 contains a 
dimensionless coefficient pJpV^L (which we recognize as the inverse of the Reynolds 
number) in front of the second-order (viscous) terms; Eq. 7.10 contains this and an­
other dimensionless coefficient, gUVl (which we will discuss shortly) for the gravity 
force term. We recall from the theory of differential equations that the mathematical 
form of the solution of such equations is very sensitive to the values of the coeffi­
cients in the equations (e.g., certain second-order partial differential equations can be 
elliptical, parabolic, or hyperbolic depending on coefficient values). 

These equations tell us that the solution, and hence the actual flow pattern they 
describe, depends on the values of the two coefficients. For example, if pJpVJL is 
very small (i.e., we have a high Reynolds number), the second-order differentials, 
representing viscous forces, can be neglected, at least in most of the flow, and we end 
up with a form of Euler's equations (Eqs. 6.2). We say "in most of the flow" because 
we have already learned that in reality for this case we will have a boundary layer in 
which there is significant effect of viscosity; in addition, from a mathematical point of 
view, it is always dangerous to neglect higher-order derivatives, even if their coeffi­
cients are small, because reduction to a lower-order equation means we lose a bound­
ary condition (specifically the no-slip condition). We can predict that if pJpVJL is large 
or small, then viscous forces will be significant or not, respectively; if gUV2 is large or 
small, we can predict that gravity forces will be significant or not, respectively. We can 
thus gain insight even before attempting a solution! Note that for completeness, we 
would have to apply the same nondimensionalizing approach to the boundary condi­
tions of the problem, which often introduce further dimensionless coefficients. 

Writing nondimensional forms of the governing equations, then, can yield insight 
into the underlying physical phenomena, and indicate which forces are dominant. If we 
had two geometrically similar but different scale flows satisfying Eqs. 7.8, 7.9, and 7.10 
(for example, a model and a prototype), the equations would only yield the same mathe­
matical results if the two flows had the same values for the two coefficients (i.e., had the 
same relative importance of gravity, viscous, and inertia forces). This nondimensional 
form of the equations is also the starting point in numerical methods, which is very often 
the only way of obtaining their solution. Additional derivations and examples of estab­
lishing similitude from the governing equations of a problem are presented in [2] and [3]. 

We will now see how the method of dimensional analysis can also be used to 
find appropriate dimensionless groupings of physical parameters. As we have men­
tioned, using dimensionless groupings is very useful for experimental measurements, 
and is usable even when an analytical description is not available or cannot be com­
pletely analyzed. Dimensional analysis is a procedure for obtaining dimensionless 
groups for a flow problem, even in the absence of analytical equations. 

NATURE OF DIMENSIONAL ANALYSIS 

Most phenomena in fluid mechanics depend in a complex way on geometric and flow 
parameters. For example, consider the drag force on a stationary smooth sphere 
immersed in a uniform stream. What experiments must be conducted to determine the 
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drag force on the sphere? To answer this question, we must specify the parameters that 
are important in determining the drag force. Clearly, we would expect the drag force I 
to depend on the size of the sphere (characterized by the diameter, D), the fluid veloc- 1 
ity, V, and the fluid viscosity, p. In addition, the density of the fluid, p, also might be 
important. Representing the drag force by F, we can write the symbolic equation 

F = f(D, V, p, pu) 

Although we may have neglected parameters on which the drag force depends, such* 
as surface roughness (or may have included parameters on which it does not depend), I 
we have formulated the problem of determining the drag force for a stationary sphere , 
in terms of quantities that are both controllable and measurable in the laboratory. 

We could set up an experimental procedure for finding the dependence of F on 1 
V, D, p, and p.. To see how the drag, F, is affected by fluid velocity, V, we could place 
a sphere in a wind tunnel and measure F for a range of V values. We could then run 
more tests in which we explore the effect on F of sphere diameter, D, by using differ- I 
ent diameter spheres. We are already generating a lot of data: If we ran the wind tun- I 
nel at 10 different speeds, for 10 different sphere sizes, we'd have 100 data points. 
We could present these results on one graph (e.g., we could plot 10 curves of F vs. V, 
one for each sphere size), but acquiring the data would already be time consuming: If we 
assume each run takes j hour, we have already accumulated 50 hours of work! We 
still wouldn't be finished—we would have to book time using, say, a water tank, 
where we could repeat all these runs for a different value of p and of p.. In principle, 
we would next have to search out a way to use other fluids to be able to do experi­
ments for a range of p and p. values (say, 10 of each). At the end of the day (actually, I 
at the end of about 2-j years of 40-hour weeks!) we would have performed about 104 

tests. Then we would have to try and make sense of the data: How do we plot, say, 
curves of F vs. V, with D, p, and p all being parameters? This is a daunting task, even ' 
for such a seemingly simple phenomenon as the drag on a sphere! 

Fortunately we do not have to do all this work. As we will see in Example Prob­
lem 7.1, all the data for drag on a smooth sphere can be plotted as a single relation­
ship between two nondimensional parameters in the form 

PV2D2 f 

fpVD} 

P 

The form of the function still must be determined experimentally. However, rather 
than needing to conduct 10 4 experiments, we could establish the nature of the function 
as accurately with only 10 tests. The time saved in performing only 10 rather than 10*-
tests is obvious. Even more important is the greater experimental convenience. Ncj 
longer must we find fluids with 10 different values of density and viscosity. Nor must 
we make 10 spheres of different diameters. Instead, only the parameter pVD/p must 
be varied. This can be accomplished simply by changing the velocity, for example. 

Figure 7.1 shows some classic data for flow over a sphere (the factors \ and 77/4 
have been added to the denominator of the parameter on the left to make it take th§ 
form of a commonly used nondimensional group, the drag coefficient, CD, that we will 
discuss in detail in Chapter 9). If we performed the experiments as outlined above ou| 
results would fall on the same curve, within experimental error. The data points represent 
results obtained by various workers for several different fluids and spheres. Note that wl 
end up with a curve that can be used to obtain the drag force on a very wide range 01 
sphere/fluid combinations. For example, it could be used to obtain the drag on a hot-airj 
balloon due to a crosswind, or on a red-blood cell (assuming it could be modeled as a 
sphere) as it moves through the aorta—in either case, given the fluid (p and p), the flow 
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Fig. 7.1 Experimentally derived relation between the nondimensional parameters [4]. 

speed V, and the sphere diameter D, we could compute a value for pVD/fi, then read the 
corresponding value for CD, and finally compute the drag force F. 

In Section 7-3 we introduce the Buckingliam Pi theorem, a formalized procedure 
for deducing the dimensionless groups appropriate for a given fluid mechanics or 
other engineering problem. The theorem may at first seem a little abstract, but as sub­
sequent sections illustrate, it is a very practical and useful approach. 

The Buckingham Pi theorem is a statement of the relation between a function 
expressed in terms of dimensional parameters and a related function expressed in 
terms of nondimensional parameters. The Buckingham Pi theorem allows us to de­
velop the important nondimensional parameters quickly and easily. 

BUCKINGHAM PI THEOREM 

Given a physical problem in which the dependent parameter is a function of n — 1 
independent parameters, we may express the relationship among the variables in 
functional form as 

?i = f(°2' a3> • • • . 9«) 

where is the dependent parameter, and q2, q%, . . . , qn are the n — 1 independent 
parameters. Mathematically, we can express the functional relationship in the 
equivalent form 

g(qx, q2, ... ,<?„) = 0 

where g is an unspecified function, different from / . For the drag on a sphere we 
wrote the symbolic equation 

F = f(D, V, p, fi) 

We could just as well have written 

g(F, D, V, p, /x) = 0 

The Buckingham Pi theorem [5] states that: Given a relation among n parame­
ters of the form 

g(qx,q2, - • • , qn) = 0 
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n n _ m ) = o 

or 
n, = G , ( n 2 , n 3 , . . . , n „ _ m ) 

The number m is usually, 1 but not always, equal to the rmnimum number, r, of 
independent dimensions required to specify the dimensions of all the parameters, 
<?i. <?2. • • • . qn-

The theorem does not predict the functional form of G or Gx. The functional relation 
among the independent dimensionless TJ parameters must be determined experimentally. 1 

The n — m dimensionless IT parameters obtained from the procedure are inde­
pendent. A IT parameter is not independent if it can be formed from a product or q u o | 
tient of the other parameters of the problem. For example, if 

r 3 / 4 

n 5 = 
211! 

EUEL or n 6 = 
n 

then neither n 5 nor Il 6 is independent of the other dimensionless parameters. 
Several methods for determining the dimensionless parameters are available. A • 

detailed procedure is presented in the next section. 

7-4 DETERMINING THE 0 GROUPS 

Regardless of the method to be used to determine the dimensionless parameters, onel 
begins by listing all dimensional parameters that are known (or believed) to affect thdl 
given flow phenomenon. Some experience admittedly is helpful in compiling the list.1 
Students, who do not have this experience, often are troubled by the need to apply! 
engineering judgment in an apparent massive dose. However, it is difficult to go 
wrong if a generous selection of parameters is made. 

If you suspect that a phenomenon depends on a given parameter, include it. Ifl 
your suspicion is correct, experiments will show that the parameter must be included! 
to get consistent results. If the parameter is extraneous, an extra If parameter may r e J 
suit, but experiments will later show that it may be eliminated from considerations! 
Therefore, do not be afraid to include all the parameters that you feel are important)! 

The six steps listed below outline a recommended procedure for determining the 
n parameters: 

Step 1. List all the dimensional parameters involved. (Let n be the number of param-J 
eters.) If the pertinent parameters are not all included, a relation may be ob-1 
tained, but it will not give the complete story. If parameters that actually] 
have no effect on the physical phenomenon are included, either the process] 
of dimensional analysis will show that these do not enter the relation sought,] 
or one or more dimensionless groups will be obtained that experiments will] 
show to be extraneous. 

Step 2. Select a set of fundamental (primary) dimensions, e.g., MLt or FLt. (Note] 
that for heat transfer problems you may also need T for temperature, and in] 
electrical systems, q for charge.) 

'See Example Problem 7.3. 

the n parameters may be grouped into n - m independent dimensionless ratios, or II 
parameters, expressible in functional form by 
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Step 3 . List the dimensions of all parameters in terms of primary dimensions. (Let r 
be the number of primary dimensions.) Either force or mass may be selected 
as a primary dimension. 

Step 4. Select a set of r dimensional parameters that includes all the primary dimen­
sions. These parameters will all be combined with each of the remaining 
parameters, one of those at a time, and so will be called repeating parame­
ters. No repeating parameter should have dimensions that are a power of the 
dimensions of another repeating parameter; for example, do not include both 
a length (L) and a moment of inertia of an area (L 4) as repeating parameters. 
The repeating parameters chosen may appear in all the dimensionless groups 
obtained; consequently, do not include the dependent parameter among those 
selected in this step. 

Step 5. Set up dimensional equations, combining the parameters selected in Step 4 
with each of the other parameters in turn, to form dimensionless groups. 
(There will be n - m equations.) Solve the dimensional equations to obtain 
the n - m dimensionless groups. 

Step 6. Check to see that each group obtained is dimensionless. If mass was initially 
selected as a primary dimension, it is wise to check the groups using force as 
a primary dimension, or vice versa. 

The functional relationship among the II parameters must be determined experi­
mentally. The detailed procedure for determining the dimensionless IT. parameters is 
illustrated in Example Problems 7.1 and 7.2. 

EXAMPLE 7.1 Drag Force on a Smooth Sphere 

As noted in Section 7-2, the drag force, F, on a smooth sphere depends on the 
relative velocity, V, the sphere diameter, D, the fluid density, p, and the fluid viscos­
ity, p. Obtain a set of dimensionless groups that can be used to correlate experimen­
tal data. 

NIPLE PROBLEM 7.1 

IVEN: F = f(p, V, D, p) for a smooth sphere. 

D: An appropriate set of dimensionless groups. 

L I I T I O N : 

Circled numbers refer to steps in the procedure for determining dimensionless FL parameters.) 

El f V D p p n = 5 dimensional parameters 

© Select primary dimensions M, L, and t. 

SD F V D p p. 

ML L , M M . • A-

—— — L — r = 3 primary dimensions 
t2 t L 3 U 

Select repeating parameters p, V, D. m = r = 3 repeating parameters 

© Then n — m = 2 dimensionless groups will result. Setting up dimensional equadons, we obtain 

N , = p V r / f and f^J^\Lf^ML"j = M

0L°t0 
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Equating the exponents of M, L, and / results in 

M 
L 
t 

Similarly, 

M 
L 

a + l = 0 
-3a + b + c + 1 = 0 

-b - 2 = 0 

Yl2=pdVeDfp. and 

d + 1 = 0 
-3d + e + f - 1 = 0 

-e - 1 = 0 

c = -2 i- Therefore, II, = —~— 
b = -2\ PV2D2 

e = -l Therefore, n 2 = pVD 

© Check using F, L, t dimensions 

[11,] = 
PV2D2 

and J l _ (t\2 1 
Ft2 

= 1 

where [ ] means "has dimensions of," and 

[n2] = 
pVD 

and 

The functional relationship is n, = /(n2), or 

F 
PV2D2 ~ 1 

Ft V H 

L2 Ft2 L L 

pVD 

as noted before. The form of the function,/, must be determined experimentally (see Fig. 7.1). 

^ f e The Excel workbook for this Example Problem is con-
venient for computing the values of a, b, and c for this 
and other problems. 

EXAMPLE 7.2 Pressure Drop in Pipe Flow 

The pressure drop, Ap, for steady, incompressible viscous flow through a straight 
horizontal pipe depends on the pipe length, /, the average velocity, V, the fluid vis­
cosity, pi, the pipe diameter, D, the fluid density, p, and the average "roughness" 
height, e. Determine a set of dimensionless groups that can be used to correlate 
data. 

EXAMPLE PROBLEM 7.2 

GIVEN: Ap = f(p, V, D, I, p., e) for flow in a circular pipe. 

FIND: A suitable set of dimensionless groups. 

SOLUTION: 

(Circled numbers refer to steps in the procedure for determining dimensionless II parameters.) 
CD A P p p 9 I D e n = l dimensional parameters 
© Choose primary dimensions M, L, and t. 
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® Ap 9 P- 9 

M M M L 
Lt2 U LA t 

D 

L 

e 

L r = 3 primary dimensions 

@ Select repeating parameters p,V,D. m = r = 3 repeating parameters 

© Then n — m = 4 dimensionless groups will result. Setting up dimensional equations we have: 

n, = paVbDcL\p and 

M: 
L: 
t: 

0 = a + 1 
0 = -3a + b + c 
0 = -b-2 

Therefore, n, = p~lV~2 D°Ap = 4 § 

n 3 = pgVhDi 

M 

and 

^-1 I - I ( L ) ' L = M W 

M: 
L: 
/: 

0 = g 
0 = -3g + A + i + I 
0 = -h 

I 
Therefore, IT = — 

D 

© Check, using F, L, t dimensions 

Ap 

Therefore, TT2 

P 
pVD 

n 4 = p'VkDle and 
k 

^ Y f ^ l ( L ) ' L = M W 
r 

M: 0 = y 
L: 0 = - 3 ; + + / + 1 
t. 0 = -k 

Therefore, n 4 = — 

I N , ] = 

pv2 

p 
pVD 

and 

and 

L2 Ft2 L2 

Ft L t I 
L2 Ft2 L L 

Finally, the functional relationship is 

[n3] = 

[n 4] = 

n, = /cn 2, n 3 , n 4) 

and 

and 

L 
L 

L 
L 

Ap 
PV2 = / P 

pVD' D' D 

Notes: 
/ As we shall see when we study pipe flow in detail in Chap­

ter 8, this relationship correlates the data well. 
/ Each IT group is unique (e.g., there is only one possible 

dimensionless grouping of p, p, V, and D), 
/ We can often deduce If groups by inspection, e.g., IID is 

the obvious unique grouping of / with p, V, and D. 
The Excel workbook for Example Problem 7.1 is conven-
ient for computing the values of a, b, and c for this problem. 

Bll IL IOTECA 
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The procedure outlined above, where m is taken equal to r (the fewest independ­
ent dimensions required to specify the dimensions of all parameters involved), almost 
always produces the correct number of dimensionless II parameters. In a few cases, 
trouble arises because the number of primary dimensions differs when variables are 
expressed in terms of different systems of dimensions. The value of m can be estab-| 
lished with certainty by determining the rank of the dimensional matrix; that rank is 
m. For completeness, this procedure is illustrated in Example Problem 7.3. 

The n - m dimensionless groups obtained from the procedure are independent 
but not unique. If a different set of repeating parameters is chosen, different groups 
result. The repeating parameters chosen may appear in all the dimensionless groups 
obtained. Based on experience, viscosity should appear in only one dimensionless pa-j 
rameter. Therefore p, should not be chosen as a repeating parameter. 

Choosing density p, with dimensions Mil}, velocity V, with dimensions LIT, and 
characteristic length L, with dimension L, as repeating parameters generally leads to 
a set of dimensionless parameters that are suitable for correlating a wide range of ex-1 
perimental data. This is not surprising if one recognizes that inertia forces are impor­
tant in most fluid mechanics problems. From Newton's second law, F = ma; the 
mass can be written as m = pV and, since volume has dimensions of L 3 , m «• pL1. 
The acceleration can be written as a = dv/dt = v dv Ids, and hence a a V2/L. Thus 
the inertia force, F, is proportional to pV2 L2. 

If n - m = 1, then a single dimensionless II parameter is obtained. In this case, 
the Buckingham Pi theorem indicates that the single If parameter must be a constant. 

EXAMPLE 7.3 Capillary Effect: Use of Dimensional Matrix I 
When a small tube is dipped into a pool of liquid, surface tension causes a meniscus 
to form at the free surface, which is elevated or depressed depending on the contact! 
angle at the liquid-solid-gas interface. Experiments indicate that the magnitude of 
this capillary effect, Ah, is a function of the tube diameter, D, liquid specific weight, 
y, and surface tension, a. Determine the number of independent If parameters that 
can be formed and obtain a set. 

EXAMPLE PROBLEM 7.3 

GIVEN: A / j = f{D, y, a) 

FIND: (a) Number of independent II parameters, 
(b) One set of II parameters. 

SOLUTION: 
(Circled numbers refer to steps in the procedure for determining di 
mensionless II parameters.) 

CD Ah D y a n = 4 dimensional parameters 

© Choose primary dimensions (use both M, L, t and F, L, t dimensions to illustrate the problem in deter-1 

mining m). 

T 
^ Tube 

T ' 
V 

D 
Liquid 

(Specific weight = y 
Surface tension = a) 

(a) M, L, t 

Ah D y 
M 

L2t2 

a 
M 
,2 

r = 3 primary dimensions 

(b) F, L, t 

Ah D 

L L 

y 
F 

a 
F_ 
I 

r = 2 primary dimensions 
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Thus for each set of primary dimensions we ask, "Is m equal to r?" Let us check each dimensional 
matrix to find out. The dimensional matrices are 

Ah D y a 
M 0 0 l 1 

L 1 1 -2 0 
t 0 0 -2 -2 

Ah D y a 
F 0 0 l 1 

L 1 1 -3 -1 

The rank of a matrix is equal to the order of its largest nonzero determinant. 

= 0 - (l)(-2) + (l)(-2) = 0 
0 1 1 

1 - 2 0 
0 - 2 - 2 

= 4 * 0 :.m = 2 
m * r 

-2 0 
-2 -2 

P ) m = 2. Choose D, y as repeating parameters. 

i(5) n - m = 2 dimensionless groups will result. 

II, = D V A £ and 
M 

L2t2 
(L) = M W 

^Therefore, fl 

[ I 2 = Dcyd(T and 

(L)c 
M 

L2,2 
- 5 - = M L t 
l 

d = -\ 
c = -2 

| : M: + 1 = 0 
t L: c - 2d = Q 

t: -2d-2 = 0\ 

i Therefore, IT = 
D2y 

© Check, using F, L, / dimensions 

[n2] 

D 

D 2 7 

and 

and 

* = 1 
L 

F_ _1_ Z? _ 1 

Ll}~F ~ 

1 1 

- 3 -1 
= -1 + 3 = 2 * 0 

,\m = 2 
m = r 

m = 2. Choose £>, 7 as repeating parameters. 

« — m = 2 dimensionless groups will result, 

n, = DeyfAh and 

(L)e\ jj I L = F°L°t° 
F: / = 0 
L: e - 3 / + l = 0 

Therefore, II1 = — 
1 D 

n 2 = Dsyha and 

F. 
L: 

F 

h + \ = 0-
g - 3h - I = 0 

{Lf\jj\ ^ = F°L°ta 

Therefore, JFLO = —^— 
D2y 

Check, using M, L, t dimensions 

'Ah [n,] = 

[n2] = 

D 

D2y 

and 

and 

^ = 1 
L 

M 1 L 2 ; 2 

7 L 2 T = 1 

Therefore, both systems of dimensions yield the same dimensionless IT parameters. The predicted func­
tional relationship is 

N , = / ( I I 2 ) or 
Ah 
D = f 

D2y) 
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Notes: 
/ This result is reasonable on physical grounds. The fluid 

is static; we would not expect time to be an important 
dimension. 
We analyzed this problem in Example Problem 2.3, where 
we found that Ah = 4crcos(6)/pgD (6 is the contact angle). 
Hence AhID is directly proportional to a/D2y. 
The purpose of this problem is to illustrate use of the dimen­
sional matrix to determine the required number of repeating 
parameters. 

7-5 SIGNIFICANT DIMENSIONLESS GROUPS IN FLUID MECHANICS 

Over the years, several hundred different dimensionless groups that are important in 
engineering have been identified. Following tradition, each such group has been! 
given the name of a prominent scientist or engineer, usually the one who pioneered! 
its use. Several are so fundamental and occur so frequently in fluid mechanics that wel 
should take time to learn their definitions. Understanding their physical significancdl 
also gives insight into the phenomena we study. 

Forces encountered in flowing fluids include those due to inertia, viscosity, pres-| 
sure, gravity, surface tension, and compressibility. The ratio of any two forces w i l l 
be dimensionless. We have previously shown that the inertia force is proportional to 
pV2 L2. To facilitate forming ratios of forces, we can express each of the remainingj 
forces as follows: 

Viscous force = T A = a — A /x — L2 

dy L 
Pressure force = (Ap)A<*(Ap)L 

pVL 

Gravity force = mg < 

Surface tension force = ah 

Compressibility force = EVA°^EVL 

Inertia forces are important in most fluid mechanics problems. The ratio of the inertia| 
force to each of the other forces listed above leads to five fundamental dimensionles 
groups encountered in fluid mechanics. 

In the 1880s, Osborne Reynolds, the British engineer, studied the transition be-i 
tween laminar and turbulent flow regimes in a tube. He discovered that the parameter! 
(later named after him) 

pVD _ VD 
Re = 

P 

is a criterion by which the flow regime may be determined. Later experiments havej 
shown that the Reynolds number is a key parameter for other flow cases as well, 
Thus, in general, 

Re = ^ = ^ 
P v 



7-5 SIGNIFICANT DIMENSIONLESS GROUPS IN FLUID MECHANICS 285 

where L is a characteristic length descriptive of the flow field geometry. The 
Reynolds number is the ratio of inertia forces to viscous forces. Flows with "large" 
Reynolds number generally are turbulent. Flows in which the inertia forces are 
"small" compared with the viscous forces are characteristically laminar flows. 

In aerodynamic and other model testing, it is convenient to present pressure data 
in dimensionless form. The ratio 

Eu = 

is formed, where Ap is the local pressure minus the freestream pressure, and p and V are 
properties of the freestream flow. This ratio has been named after Leonhard Euler, the 
Swiss mathematician who did much early analytical work in fluid mechanics. Euler is 
credited with being the first to recognize the role of pressure in fluid motion; the Euler 
equations of Chapter 6 demonstrate this role. The Euler number is the ratio of pressure 
forces to inertia forces. (The factor \ is introduced into the denominator to give the dy­
namic pressure.) The Euler number is often called the pressure coefficient, Cp. 

In the study of cavitation phenomena, the pressure difference, Ap, is taken as 
Ap = p — pv, where p is the pressure in the liquid stream, and pv is the liquid vapor 
pressure at the test temperature. Combining these with p and V in the stream yields 
the dimensionless parameter called the cavitation number, 

C a - p - p » 
x-pV2 

2 

The smaller the cavitation number, the more likely cavitation is to occur. This is 
usually an unwanted phenomenon. 

William Froude was a British naval architect. Together with his son, Robert Ed­
mund Froude, he discovered that the parameter 

was significant for flows with free surface effects. Squaring the Froude number gives 

2 _ V 2 _ pV2L2 

RL pgl} 
which may be interpreted as the ratio of inertia forces to gravity forces. The length, L, 
is a characteristic length descriptive of the flow field. In the case of open-channel 
flow, the characteristic length is the water depth; Froude numbers less than unity indi­
cate subcritical flow and values greater than unity indicate supercritical flow. 

The Weber number is the ratio of inertia forces to surface tension forces. It may 
be written 

We = ^ 

The value of the Weber number is indicative of the existence of, and frequency of, 
capillary waves at a free surface. 

In the 1870s, the Austrian physicist Ernst Mach introduced the parameter 

M=V-
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where V is the flow speed and c is the local sonic speed. Analysis and experimen 
have shown that the Mach number is a key parameter that characterizes compressibil­
ity effects in a flow. The Mach number may be written 

or M PV2L2 

EVL2 

which may be interpreted as a ratio of inertia forces to forces due to compressibili 
For truly incompressible flow (and note that under some conditions even liquids 
quite compressible), c = °° so that M = 0. 

7-6 FLOW SIMILARITY AND MODEL STUDIES 

To be useful, a model test must yield data that can be scaled to obtain the forces, 
ments, and dynamic loads that would exist on the full-scale prototype. What co 
tions must be met to ensure the similarity of model and prototype flows? 

Perhaps the most obvious requirement is that the model and prototype musti 
geometrically similar. Geometric similarity requires that the model and prototype be1 

the same shape, and that all linear dimensions of the model be related to correspon­
ding dimensions of the prototype by a constant scale factor. 

A second requirement is that the model and prototype flows must be kinemati-
cally similar. Two flows are kinematically similar when the velocities at correspon­
ding points are in the same direction and differ only by a constant scale factor. Thus 
two flows that are kinematically similar also have streamline patterns related by i 
constant scale factor. Since the boundaries form the bounding streamlines, flows that 
are kinematically similar must be geometrically similar. 

In principle, in order to model the performance in an infinite flow field correctly, 
kinematic similarity would require that a wind tunnel of infinite cross-section be used 
to obtain data for drag on an object. In practice, this restriction may be relaxed con­
siderably, permitting use of equipment of reasonable size. 1 

Kinematic similarity requires that the regimes of flow be the same for model and 
prototype. If compressibility or cavitation effects, which may change even the quali­
tative patterns of flow, are not present in the prototype flow, they must be avoided in 
the model flow. 

When two flows have force distributions such that identical types of forces are I 
parallel and are related in magnitude by a constant scale factor at all corresponding 
points, the flows are dynamically similar. 

The requirements for dynamic similarity are the most restrictive. Kinematic sim-1 
ilarity requires geometric similarity; kinematic similarity is a necessary, but not suffi­
cient, requirement for dynamic similarity. 

To establish the conditions required for complete dynamic similarity, all forces I 
that are important in the flow situation must be considered. Thus the effects of vis- I 
cous forces, of pressure forces, of surface tension forces, and so on, must be consid- I 
ered. Test conditions must be established such that all important forces are related by I 
the same scale factor between model and prototype flows. When dynamic similarity I 
exists, data measured in a model flow may be related quantitatively to conditions in I 
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the prototype flow. What, then, are the conditions that ensure dynamic similarity be­
tween model and prototype flows? 

The Buckingham Pi theorem may be used to obtain the governing dimension­
less groups for a flow phenomenon; to achieve dynamic similarity between 
geometrically similar flows, we must make sure that each independent dimension­
less group has the same value in the model and in the prototype. Then not only will 
the forces have the same relative importance, but also the dependent dimensionless 
group will have the same value in the model and prototype. 

For example, in considering the drag force on a sphere in Example Problem 7.1, 
we began with 

F = f(D, V,p,Ai) 

The Buckingham Pi theorem predicted the functional relation 

F 

pV2D2 f ) 

In Section 7-5 we showed that the dimensionless parameters can be viewed as ratios of 
forces. Thus, in considering a model flow and a prototype flow about a sphere (the flows 
are geometrically similar), the flows also will be dynamically similar if the value of the 
independent parameter, pVD/p., is duplicated between model and prototype, i.e., if 

f pVD 

/model V P J prototype 

Furthermore, if 

Re model = Re prototype 

then the value of the dependent parameter, F/pV2D2, will be duplicated between 
model and prototype, i.e., 

PV2D2 

model 
2 r .2 

prototype 

and the results determined from the model study can be used to predict the drag on 
the full-scale prototype. 

The actual force on the object caused by the fluid is not the same in both cases, 
but the value of its dimensionless group is. The two tests can be run using different 
fluids, if desired, as long as the Reynolds numbers are matched. For experimental 
convenience, test data can be measured in a wind tunnel in air and the results used to 
predict drag in water, as illustrated in Example Problem 7.4. 

7.4 Similarity: Drag of a Sonar Transducer 
The drag of a sonar transducer is to be predicted, based on wind tunnel test data. The 
prototype, a 1 ft diameter sphere, is to be towed at 5 knots (nautical miles per hour) 
in seawater at 5°C. The model is 6 in. in diameter. Determine the required test speed 
in air. If the drag of the model at these test conditions is 5.58 lbf, estimate the drag of 
the prototype. 



288 CHAPTER 7 / DIMENSIONAL ANALYSIS AND SIMILITUDE 

EXAMPLE PROBLEM 7.4 

GIVEN: Sonar transducer to be tested in a wind tunnel. 

FIND: (a) Vm. 
(b) Fp. 

Vp = 5 knots 

D„ = 6 in. 

— « - F = 5 . 5 8 lbf 

Water at 5°C Air 

SOLUTION: 
Since the prototype operates in water and the model test is to be performed in air, useful results can be ex­
pected only if cavitation effects are absent in the prototype flow and compressibility effects are absent from 
the model test. Under these conditions, 

pV2D2 ~ f 

pVD 

and the test should be run at 

Re, model Re, prototype 

to ensure dynamic similarity. For seawater at 5°C, p = 1.99 slug/ft3 and f « 1.69 X 10 5 ft2/s. At proto­
type conditions, 

„ 5nmi 6080 ft hr O A A t r i 

V„ = x x = 8.44 ft/s 
p hr nmi 3600s 

VpD 8.44 ft 1ft 
Re = p F = — x : 

v„ s 1.69 x l O " 5 ft2 
4.99 x 103 

The model test conditions must duplicate this Reynolds number. Thus 

Re„ 
V D ^ 
- 2 L - 2 L = 4.99 x 105 

M 

M 
m 
-M 

For air at STP, p = 0.00238 slug/ft3 and v = 1.57 X 10~4 ft2/s. The wind tunnel must be operated at 

. 0 5 1.57 x l O " 4 * 2 

x 

Vm = 157 ft/s 

Vm = Re. 
4.99 x lO 3 l ^ x l O ^ f r 1 

x — x 
s 0.5 ft 

This speed is low enough to neglect compressibility effects. 
At these test conditions, the model and prototype flows are dynamically similar. Hence 

pV2D*\ pV2D1 

and 

F = F BP.YL^ =
 5 - 5 8 l b f

 x

 L " x (8-44)2 _J_ 
p m

 P m V2 D2

m

 X 0.00238 X (157)2 * (0.5) 2 

Fp = 53.9 lbf _̂ 

If cavitation were expected—if the sonar probe were operated at high speed near the free surface of 
the seawater—then useful results could not be obtained from a model test in air. 
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This problem: 
/ Demonstrates the calculation of prototype values from 

model test data. 
/ "Reinvented the wheel": the results for drag on a smooth 

sphere are very well known, so we did not need to do a model 
experiment but instead could have simply read from the graph 
of Fig. 7.1 the value of CD = Fp f[\ pVJ f £>*) * 1 corre­
sponding to a Reynolds number of 4.99 X 105. Then Fp = 
54 lbf can easily be computed. We will have more to say 
on drag coefficients in Chapter 9. 

Incomplete Similarity 

We have shown that to achieve complete dynamic similarity between geometrically 
similar flows, it is necessary to duplicate the values of the independent dimensionless 
groups; by so doing the value of the dependent parameter is then duplicated. 

In the simplified situation of Example Problem 7.4, duplicating the Reynolds 
number value between model and prototype ensured dynamically similar flows. Test­
ing in air allowed the Reynolds number to be duplicated exactly (this also could have 
been accomplished in a water tunnel for this situation). The drag force on a sphere 
actually depends on the nature of the boundary-layer flow. Therefore, geometric simi­
larity requires that the relative surface roughness of the model and prototype be the 
same. This means that relative roughness also is a parameter that must be duplicated 
between model and prototype situations. If we assume that the model was con­
structed carefully, measured values of drag from model tests could be scaled to pre­
dict drag for the operating conditions of the prototype. 

In many model studies, to achieve dynamic similarity requires duplication of 
several dimensionless groups. In some cases, complete dynamic similarity between 
model and prototype may not be attainable. Determining the drag force (resistance) 
of a surface ship is an example of such a situation. Resistance on a surface ship arises 
from skin friction on the hull (viscous forces) and surface wave resistance (gravity 
forces). Complete dynamic similarity requires that both Reynolds and Froude num­
bers be duplicated between model and prototype. 

In general it is not possible to predict wave resistance analytically, so it must be 
modeled. This requires that 

Fr = 1/2 = Fr = 
V„ 

1/2 

To match Froude numbers between model and prototype therefore requires a velocity 
ratio of 

1/2 

\ P J 

to ensure dynamically similar surface wave patterns. 
Hence for any model length scale, matching the Froude numbers determines the 

velocity ratio. Only the kinematic viscosity can then be varied to match Reynolds 
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Rem = 
m 

numbers. Thus 

leads to the condition that 

If we use the velocity ratio obtained from matching the Froude numbers, equality o\ 
Reynolds numbers leads to a kinematic viscosity ratio requirement of 

vl/2 

K L P J 

\3/2 

K L P J 

If LmILp equals (a typical length scale for ship model tests), then vjvp m u s t 
be Figure A.3 shows that mercury is the only liquid with kinematic viscosity! 
less than that of water. However, it is only about an order of magnitude less, so thel 
kinematic viscosity ratio required to duplicate Reynolds numbers cannot be at tained! 

We conclude that it is impossible in practice for this model/prototype scale of 
•j^Q to satisfy both the Reynolds number and Froude number criteria; at best we will! 
be able to satisfy only one of them. In addition, water is the only practical fluid fori 
most model tests of free-surface flows. To obtain complete dynamic similarity thenj 
would require a full-scale test. However, all is not lost: Model studies do provide use-1 
ful information even though complete similarity cannot be obtained. As an example,! 
Fig.7.2 shows data from a test of a 1:80 scale model of a ship conducted at the U.S.I 
Naval Academy Hydromechanics Laboratory. The plot displays "resistance coeffi-l 
cient" data versus Froude number. The square points are calculated from values of { 

0.008 

0.006 

0 .004 -

tS 0 .002 

0 .000 

- O . 0 0 2 

• 
0 P ° 

Total resistance • ••rh 

Viscous resistance ****Oo 0 0 

3 OQOno8o°8° 
o°° 

CPO® Wave resistance 
oc£ e o 8

0 8° c 

0.1 0.2 0.3 0.4 
Froude number 

0.5 0.6 

Fig. 7.2 Data f rom test of 1:80 sca le mode l of U.S. Navy gu ided 
miss i le f r igate Oliver Hazard Perry (FFG-7) . (Data f rom U.S. Naval 
A c a d e m y H y d r o m e c h a n i c s Laboratory, cou r t esy of Professor 
B ruce Johnson . ) 
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total resistance measured in the test. We would like to obtain the corresponding total 
resistance curve for the full-scale ship. 

If you think about it, we can only measure the total drag (the square data points). 
The total drag is due to both wave resistance (dependent on the Froude number) and 
friction resistance (dependent on the Reynolds number). We cannot use the total drag 
curve of Fig. 7.2 for the full-scale ship because, as we have discussed above, we can 
never set up the model conditions so that its Reynolds number and Froude number 
match those of the full-scale ship. Nevertheless, we would like to extract from Fig. 7.2 
the corresponding total drag curve for the full-scale ship. In many experimental situa­
tions we need to use a creative "trick" to come up with a solution. In this case, the ex­
perimenters used boundary-layer theory (which we discuss in Chapter 9) to predict the 
viscous resistance component of the model (shown as diamonds in Fig. 7.2); then they 
estimated the wave resistance (not obtainable from theory) by simply subtracting this 
theoretical viscous resistance from the experimental total resistance, point by point 
(shown as circles in Fig. 7.2). 

Using this clever idea (typical of the kind of experimental and analytical ap­
proaches experimentalists need to employ), Fig. 7.2 therefore gives the wave resist­
ance of the model as a function of Froude number. It is also valid for the full-scale 
ship, because wave resistance depends only on the Froude number! We can now 
build a graph similar to Fig. 7.2 valid for the full-scale ship: Simply compute from 
boundary-layer theory the viscous resistance of the full-scale ship and add this to the 
wave resistance values, point by point. The result is shown in Fig. 7.3. The wave 
resistance points are identical to those in Fig. 7.2; the viscous resistance points are 
computed from theory (and are different from those of Fig. 7.2); and the total resist­
ance curve for the full-scale ship is finally obtained. 

In this example, incomplete modeling was overcome by using analytical computa­
tions; the model experiments modeled the Froude number, but not the Reynolds number. 

Because the Reynolds number cannot be matched for model tests of surface 
ships, the boundary-layer behavior is not the same for model and prototype. The 

0.006 

0.004 

s 0 .002 

0 .000 

- 0 . 0 0 2 

a P a 
a c t P r j 

Total resistance • 

o ^ o o o o o o o o o o o 

O O Wave resistance 

j O O O O O O q O 

0 0 0 0 0 0 0 0 v 0 0 0 0 < 
Viscous resistance 

0.1 0.2 0.3 0.4 
Froude number 

0.5 0.6 

I Fig. 7.3 Res is tance of fu l l -scale sh ip p red ic ted f rom mode l test 
resul ts. (Da ta f r om U.S. Naval A c a d e m y H y d r o m e c h a n i c s Labora­
tory, cou r t esy of Pro fessor B ruce Johnson . ) 
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model Reynolds number is only (Lm/Lp)y2 as large as the prototype value, so the ex­
tent of laminar flow in the boundary layer on the model is too large by a correspon­
ding factor. The method just described assumes that boundary-layer behavior can be 
scaled. To make this possible, the model boundary layer is "tripped" or "stimulated" 
to become turbulent at a location that corresponds to the behavior on the full-scale 
vessel. "Studs" were used to stimulate the boundary layer for the model test result'! 
shown in Fig. 7.2. 

A correction sometimes is added to the full-scale coefficients calculated from 
model test data. This correction accounts for roughness, waviness, and unevenness 
that inevitably are more pronounced on the full-scale ship than on the model. Com-] 
parisons between predictions from model tests and measurements made in full-scale 
trials suggest an overall accuracy within ± 5 percent [6]. 

The Froude number is an important parameter in the modeling of rivers and har-j 
bors. In these situations it is not practical to obtain complete similarity. Use of a rea­
sonable model scale would lead to extremely small water depths. Viscous forces and] 
surface tension forces would have much larger relative effects in the model flow than 
in the prototype. Consequently, different length scales are used for the vertical and 
horizontal directions. Viscous forces in the deeper model flow are increased using ar­
tificial roughness elements. 

Emphasis on fuel economy has made reduction of aerodynamic drag important 
for automobiles, trucks, and buses. Most work on development of low-drag configu­
rations is done using model tests. Traditionally, automobile models have been built to 
| scale, at which a model of a full-size automobile has a frontal area of about 0.3 rem 
Thus testing can be done in a wind tunnel with test section area of 6 m 2 or larger. Al 
| scale, a wind speed of about 150 mph is needed to model a prototype automobile 
traveling al the legal speed limit. Thus there is no problem with compressibility ef-' 
fects, but the scale models are expensive and time-consuming to build. 

A large wind tunnel (test section dimensions are 5.4 m high, 10.4 m wide, 
and 21.3 m long; maximum air speed is 250 km/hr with the tunnel empty) is used 
by General Motors to test full-scale automobiles at highway speeds. The large tes] 
section allows use of production autos or of full-scale clay mockups of proposer! 
auto body styles. Many other vehicle manufacturers are using comparable faciliJ 
ties; Fig. 7.4 shows a full-size sedan under test in the Volvo wind tunnel. The relal 
tively low speed permits flow visualization using tufts or "smoke" streams. 2 UsinJ 
full-size "models," stylists and engineers can work together to achieve opt imurj 
results. 

It is harder to achieve dynamic similarity in tests of trucks and buses; models] 
must be made to smaller scale than those for automobiles. 3 A large scale for truck! 
and bus testing is 1:8. To achieve complete dynamic similarity by matching Reynolds 
numbers at this scale would require a test speed of 440 mph. This would introduce! 
unwanted compressibility effects, and model and prototype flows would not be kine­
matically similar. Fortunately, trucks and buses are "bluff" objects. Experiments 
show that above a certain Reynolds number, their nondimensional drag becomes in-' 
dependent of Reynolds number [9]. Although similarity is not complete, measured 

; A mixture of liquid nitrogen and steam may be used to produce "smoke" streaklines that evaporate and 
do not clog the fine mesh screens used to reduce the turbulence level in a wind tunnel. Streaklines may 
be made to appear "colored" in photos by placing a filter over the camera lens. This and other tech­
niques for flow visualization are detailed in [71 and [8]. 

3 T h e vehicle length is particularly important in tests at large yaw angles to simulate crosswind behavior. 
Tunnel blockage considerations limit the acceptable model size. See [91 for recommended practices. 
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Fig. 7.4 Ful l -sca le au tomob i l e under test in Volvo w i n d tunne l , us ing s m o k e s t reak l ines for f low v isua l iza t ion , 
p h o t o g r a p h cou r t esy of Vo lvo Cars of Nor th A m e r i c a , Inc.) 

test data can be scaled to predict prototype drag forces. The procedure is illustrated in 
Example Problem 7.5. 

For additional details on techniques and applications of dimensional analysis 
consult [10-13]. 

EXAMPLE 7.5 Incomplete Similarity: Aerodynamic Drag on a Bus 

The following wind tunnel test data from a 1:16 scale model of a bus are available: 

Air Speed 18.0 21.8 26.0 30.1 35.0 38.5 40.9 44.1 46.7 
(m/s) 

Drag Force 3.10 4.41 6.09 7.97 10.7 12.9 14.7 16.9 18.9 
(N) 

Using the properties of standard air, calculate and plot the dimensionless aerody­
namic drag coefficient, 

versus Reynolds number Re - pVw/fi, where w is model width. Find the minimum 
test speed above which CD remains constant. Estimate the aerodynamic drag force 
and power requirement for the prototype vehicle at 100 km/hr. (The width and frontal 
area of the prototype are 8 ft and 84 ft2, respectively.) 
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EXAMPLE PROBLEM 7.5 

GIVEN: Data from a wind tunnel test of a model bus. Prototype dimensions are width of 8 ft and frontal 
area of 84 ft2. Model scale is 1:16. Standard air is the test fluid. 

FIND: (a) Aerodynamic drag coefficient, CD = FD/\pV1A, versus Reynolds number, Re = pVw/p.; 
plot. 

(b) Speed above which CD is constant. 
(c) Estimated aerodynamic drag force and power required for the full-scale vehicle at 100 km/hr. 

SOLUTION: 
The model width is 

The model area is 

1 1 8 ft 0.3048 m 
w> = — w „ = — x x — = 0.152 m 

m 16 p 16 ft 

. 2 Am = — \ A„ = — x x = 0.0305 m 
m {\6J " {16) ft 2 

The aerodynamic drag coefficient may be calculated as 

C - F ° 
D~{PV2A 

2 Fn{N) m 3 s 2 1 kg-m 
1.23 kg ( V ) 2 m 2 0.0305 m 2 N s 2 

53.3 FD (N) 

[V(m/s)]2 

C 

The Reynolds number may be calculated as 

_ pVw _ Vw _ V m s / 0.152 m w s 
t\(Z — — — X X _ „ 

p v s 1.46 x lO' 5 ml 

Re = 1.04 x l O 4 V(m/s) 
The calculated values are plotted in the following figure: 

The plot shows that the model drag coefficient becomes constant at CDm ~ 0.46 above Rem = 4 X 105, 
which corresponds to an air speed of approximately 40 m/s. Since the drag coefficient is independent of 
Reynolds number above Re ~ 4 X 105, then for the prototype vehicle (Re ~ 4.5 X 106), CD = 0.46. The 
drag force on the full-scale vehicle is 
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Pop = CdjpvIa 
0.46 

p p 
1.23kg 

m 

100 km 1000 m hr x X 
hr km 3600s 

84 ft z (0.305)2 m 2 N -s 
k g m 

FDp =1.71kN 

The corresponding power required to overcome aerodynamic drag is 

ft 
ft' 

ft 

ft 
ft' 

I 
ft 

ft' 

_ 1 . 7 l x l 0 3 N 100 km 
hr 

2P„ = 47.5 kW 
P < 

1000 hr W • s m 
km 3600 s N • m 

This problem illustrates a common phenomenon in aerody­
namics: Above a certain minimum Reynolds number the drag 
coefficient of an object usually approaches a constant—that 
is, becomes independent of the Reynolds number. Hence, in 
these situations we do not have to match the Reynolds num­
bers of the model and prototype in order for them to have the 
same drag coefficient—a considerable advantage. However, 
the SAE Recommended Practices [9] suggests Re > 2 X 10 6 

for truck and bus testing. 

Scaling with Multiple Dependent Parameters 

In some situations of practical importance there may be more than one dependent 
parameter. In such cases, dimensionless groups must be formed separately for each 
dependent parameter. 

\ As an example, consider a typical centrifugal pump. The detailed flow pattern 
Within a pump changes with volume flow rate and speed; these changes affect the 
pump's performance. Performance parameters of interest include the pressure rise (or 
head) developed, the power input required, and the machine efficiency, measured un­
der specific operating conditions. 4 Performance curves are generated by varying an 
independent parameter such as the volume flow rate. Thus the independent variables 
are volume flow rate, angular speed, impeller diameter, and fluid properties. Depen­
dent variables are the several performance quantities of interest. 

Finding dimensionless parameters begins from the symbolic equations for the 
dependence of head, h (energy per unit mass, L2lt2), and power, 9 \ on the independ­
ent parameters, given by 

h = g\ (Q, P, co, D, p) 

and 

9 s = S 2 (2 . P. w- D- P) 
4 Efficiency is defined as the ratio of power delivered to the fluid divided by input power, 17 = l3'/(3'm. For 

incompressible flow, we will see in Chapter 8 that the energy equation reduces to 9 = pQh (when 
"head" h is expressed as energy per unit mass) or to 31 = pgQH (when head H is expressed as energy 
per unit weight). 



CHAPTER 7 / DIMENSIONAL ANALYSIS AND SIMILITUDE 

Straightforward use of the Pi theorem gives the dimensionless head coefficient 
power coefficient as 

f Q ...r*> h -
co2D2 " f l 

pcoD 

and 

~pjrj^h 

Q pcoD2 

(7.11 

(7.1 

The dimensionless parameter Qlo)Di in these equations is called the flow coefficie.. 
The dimensionless parameter pcoD2/p (^pVD/pb) is a form of Reynolds number. 

Head and power in a pump are developed by inertia forces. Both the flow pattern 
within a pump and the pump performance change with volume flow rate and speed on 
rotation. Performance is difficult to predict analytically except at the design point of] 
the pump, so it is measured experimentally. Typical characteristic curves plotted from 
experimental data for a centrifugal pump tested at constant speed are shown in Fig. 7.5 
as functions of volume flow rate. The head, power, and efficiency curves in Fig. 7M 
are faired through points calculated from measured data. Maximum efficiency usually 
occurs at the design point. 

Complete similarity in pump performance tests would require identical flow co­
efficients and Reynolds numbers. In practice, it has been found that viscous effects 
are relatively unimportant when two geometrically similar machines operate under 
"similar" flow conditions. Thus, from Eqs. 7.11 and 7.12, when 

Q\ 

it follows that 

and 

*z S 
TO 5 — 
X 0_ Ld 

K h2 

2 n 2 
IO2D2 

% 9 2 

Plw]D\ p2t02L>2 

s E f f i c i e n c y 

Power 

(7.1 

(7.1 

(7.1 

Volume flow rate • 

Fig 7.5 Typical character is t ic cu rves for 
cent r i fuga l p u m p tes ted at cons tan t s p e e d . 
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The empirical observation that viscous effects are unimportant under similar 
flow conditions allows use of Eqs. 7.13 through 7.15 to scale the performance charac­
teristics of machines to different operating conditions, as either the speed or diameter 
is changed. These useful scaling relationships are known as pump or fan "laws." If 
operating conditions for one machine are known, operating conditions for any geo­
metrically similar machine can be found by changing D and co according to Eqs. 7.13 
through 7.15. (More details on dimensional analysis, design, and performance curves 
for fluid machinery are presented in Chapter 10.) 

Another useful pump parameter can be obtained by eliminating the machine di­
ameter from Eqs. 7.13 and 7.14. If we designate IT! = Q/ioD1 and n 2 = hla?D2, then 
the ratio IIJ ' 2 / !!^ 4 is another dimensionless parameter; this parameter is the specific 
speed, Ns, 

1/2 

• 3 /4 
(7.16a) 

The specific speed, as defined in Eq. 7.16a, is a dimensionless parameter (provided 
that the head, h, is expressed as energy per unit mass). You may think of specific 
speed as the speed required for a machine to produce unit head at unit volume flow 
rate. A constant specific speed describes all operating conditions of geometrically 
similar machines with similar flow conditions. 

Although specific speed is a dimensionless parameter, it is common practice to 
use a convenient but inconsistent set of units in specifying the variables co and Q, and 
to use the energy per unit weight H in place of energy per unit mass h in Eq. 7.16a. 
When this is done the specific speed, 

J / 2 
N s = H 3 /4 

(7.16b) 

is not a unitless parameter and its magnitude depends on the units used to calculate it. 
Customary units used in U.S. engineering practice for pumps are rpm for co, gpm for 
Q, and feet (energy per unit weight) for H. In these customary U.S. units, "low" spe­
cific speed means 500 < N, < 4000 and "high" means 10,000 < N, < 15,000. 
Example Problem 7.6 illustrates use of the pump scaling laws and specific speed pa­
rameter. More details of specific speed calculations and additional examples of appli­
cations to fluid machinery are presented in Chapter 10. 

EXAMPLE 7.6 Pump " L a w s " 

A centrifugal pump has an efficiency of 80 percent at its design-point specific speed 
of 2000 (units of rpm, gpm, and feet). The impeller diameter is 8 in. At design-point 
flow conditions, the volume flow rate is 300 gpm of water at 1170 rpm. To obtain a 
higher flow rate, the pump is to be fitted with a 1750 rpm motor. Use the pump 
"laws" to find the design-point performance characteristics of the pump at the higher 
speed. Show that the specific speed remains constant for the higher operating speed. 
Determine the motor size required. 

EXAMPLE PROBLEM 7.6 

GIVEN: Centrifugal pump with design specific speed of 2000 (in rpm, gpm, and feet units). Impeller di­
ameter is D = 8 in. At the pump's design-point flow conditions, co = 1170 rpm and Q = 300 
gpm, with water. 
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FIND: (a) Performance characteristics, (b) specific speed, and (c) motor size required, for similar flow 
conditions at 1750 rpm. 

SOLUTION: 
From pump "laws," Q/ioB* = constant, so 

Q2 = e , 
a>2 = 300 gpm 

1750 
1170 

(l) 3 = 449 gpm ^ 

The pump head is not specified at iox = 1170 rpm, but it can be calculated from the specific speed, Ns 

2000. Using the given units and the definition of Ns , 

N. = 

Then Hlu?D2 = constant, so 

coQ 1/2 

H so 
1/2 

V "<M J 

\ 4 / 3 

= 21.9 ft 

H2 - Hy u>2 

i J \ D \ J 

= 2 1 . 9 f t f ^ f 
U170J 

49.0 ft 

The pump output power is 9", = pgQ\Hx, so at a>x = 1170 rpm, 

min lbf s hp • s 
x x x 

1.94 slug 32.2 ft 300 gal 21.9 ft ftJ 

1 ft 3 s 2 min 7.48 gal 60 s slug • ft 550 ft • lbf 
2 ? , = 1.66 hp 

But <3'lp<i?D1' = constant, so 

s>2 = g > , \ e i 

The required input power may be calculated as 

, 7 in 
5.55 hp 

0.80 
6.94 hp 

Thus a 7.5 hp motor (the next larger standard size) probably would be specified. 
The specific speed at 102 = 1750 rpm is 

N. = 
coQ 1/2 

H 3/4 
1 7 5 ° ( 4 4 9 ) ' / 2 = 2000 

3 / 4 ZUVJU ^ (49.0) J 

This problem illustrates application of the pump "laws" and 
specific speed to scaling of performance data. Pump and fan 
"laws" are used widely in industry to scale performance curves 
for families of machines from a single performance curve, and 
to specify drive speed and power in machine applications. 

9> 

N,. 

Comments on Model Testing 
While outlining the procedures involved in model testing, we have tried not to imply 
that testing is a simple task that automatically gives results that are easily interpreted, 
accurate, and complete. As in all experimental work, careful planning and execution are 



7-7 SUMMARY 299 

needed to obtain valid results. Models must be constructed carefully and accurately, 
and they must include sufficient detail in areas critical to the phenomenon being meas­
ured. Aerodynamic balances or other force measuring systems must be aligned care­
fully and calibrated correctly. Mounting methods must be devised that offer adequate 
rigidity and model motion, yet do not interfere with the phenomenon being measured. 
References [14-16] are considered the standard sources for details of wind tunnel test 
techniques. More specialized techniques for water impact testing are described in [17]. 

Experimental facilities must be designed and constructed carefully. The quality 
of flow in a wind tunnel must be documented. Flow in the test section should be as 
nearly uniform as possible (unless the desire is to simulate a special profile such as 
an atmospheric boundary layer), free from angularity, and with little swirl. If they in­
terfere with measurements, boundary layers on tunnel walls must be removed by suc­
tion or energized by blowing. Pressure gradients in a wind tunnel test section may 
cause erroneous drag-force readings due to pressure variations in the flow direction. 

Special facilities are needed for unusual conditions or for special test require­
ments, especially to achieve large Reynolds numbers. Many facilities are so large or 
specialized that they cannot be supported by university laboratories or private indus­
try. A few examples include [18-20]: 

• National Full-Scale Aerodynamics Complex, NASA, Ames Research Center, Mof-
fett Field, California. 
Two wind tunnel test sections, powered by a 125,000 hp electric drive system: 
• 40 ft high and 80 ft wide (12 X 24 m) test section, maximum wind speed of 300 

knots. 
• 80 ft high and 120 ft wide (24 X 36 m) test section, maximum wind speed of 

137 knots. 
• U.S. Navy, David Taylor Research Center, Carderock, Maryland. 

• High-Speed Towing Basin 2968 ft long, 21 ft wide, and 16 ft deep. Towing car­
riage can travel at up to 100 knots while measuring drag loads to 8000 Ibf and 
side loads to 2000 Ibf. 

• 36 in. variable-pressure water tunnel with 50 knot maximum test speed at pres­
sures between 2 and 60 psia. 

• Anechoic Flow Facility with quiet, low turbulence air flow in 8 ft square by 21 ft 
long open-jet test section. Flow noise at maximum speed of 200 ft/s is less than 
that of conversational speech. 

U.S. Army Corps of Engineers, Sausalito, California, 
• San Francisco Bay and Delta Model with slightly more than 1 acre in area, 

1:1000 horizontal scale and 1:100 vertical scale, 13,500 gpm of pumping capac­
ity, use of fresh and salt water, and tide simulation. 

• NASA, Langley Research Center, Hampton, Virginia. 
• National Transonic Facility (NTF) with cryogenic technology (temperatures as 

low as — 300°F) to reduce gas viscosity, raising Reynolds number by a factor of 
6, while halving drive power. 

SUMMARY 

In this chapter we have: 

/ Obtained dimensionless coefficients by nondimensionalizing the governing differ­
ential equations of a problem. 



300 CHAPTER 7 / DIMENSIONAL ANALYSIS AND SIMILITUDE 

/ Stated the Buckingham Pi theorem and used it to determine the independent 
dependent dimensionless parameters from the physical parameters of a problem. 

/ Defined a number of important dimensionless groups: the Reynolds number, Euler 
number, cavitation number, Froude number, and Mach number, and discussed their 
physical significance. 

We have also explored some ideas behind modeling: geometric, kinematic, and dynamic 
similarity, incomplete modeling, and predicting prototype results from model tests. 
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PROBLEMS 

Many of the Problems in this chapter involve obtaining the II groups that characterize a prob­
lem. The Excel workbook used in Example Problem 7.1 is useful for performing the computa­
tions involved. To avoid needless duplication, the disk symbol will only be used next to Prob­
lems when it has an additional benefit (e.g., for graphing). 

7.1 The propagation speed of small-amplitude surface waves in a region of uniform depth 
is given by 

•> (a 2ir gA] , 2-irh 
c- = + — tanh 

[p A 2TTJ A 
where h is depth of the undisturbed liquid and A is wavelength. Using L as a character­
istic length and V0 as a characteristic velocity, obtain the dimensionless groups that 
characterize the equation. 

7.2 The slope of the free surface of a steady wave in one-dimensional flow in a shallow 
liquid layer is described by the equation 

dh _ u du 
dx g dx 

Use a length scale, L, and a velocity scale, V0, to nondimensionalize this equation. Ob­
tain the dimensionless groups that characterize this flow. 

7.3 One-dimensional unsteady flow in a thin liquid layer is described by the equation 

du du dh 
dt dx dx 

Use a length scale, L, and a velocity scale, V0, to nondimensionalize this equation. 
Obtain the dimensionless groups that characterize this flow. 

7.4 By using order of magnitude analysis, the continuity and Navier-Stokes equations can 
be simplified to the Prandtl boundary-layer equations. For steady, incompressible, and 
two-dimensional flow, neglecting gravity, the result is 

du dv _ 
dx dy 

du du 1 dp d2u 
u— + v—- = + v—j 

ox dy p dx dy 
Use L and V0 as characteristic length and velocity, respectively. Nondimensionalize 
these equations and identify the similarity parameters that result. 

7.5 The equation describing motion of fluid in a pipe due to an applied pressure gradient, 
when the flow starts from rest, is 

du 1 dp 
dt p dx 

! d2u 1 du ^ 
— 2 + 

v 3 r r dr 
Use the average velocity V, pressure drop Ap, pipe length L, and diameter D to nondi­
mensionalize this equation. Obtain the dimensionless groups that characterize this flow, 

7.6 In atmospheric studies the motion of the earth's atmosphere can sometimes be mod-
eled with the equation 

DV 1 
— + 2 X l x V = - - V p 
Dt p 

l a 
BIBL IOTEC i l 

p.. a. 
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where V is the large-scale velocity of the atmosphere across the earth's surface, Vp , 
is the climatic pressure gradient, and Clis the earth's angular velocity. What is thai 
meaning of the term 11 x V ? Use the pressure difference, Ap, and typical length scale, 
L (which could, for example, be the magnitude of, and distance between, an atmos­
pheric high and low, respectively), to nondimensionalize this equation. Obtain the di­
mensionless groups that characterize this flow. 

7.7 At very low speeds, the drag on an object is independent of fluid density. Thus the I 
drag force, F, on a small sphere is a function only of speed, V, fluid viscosity, p., and 
sphere diameter, D. Use dimensional analysis to determine how the drag force F d e l 
pends on the speed V. 

7.8 At relatively high speeds the drag on an object is independent of fluid viscosity. Thus 
the aerodynamic drag force, F, on an automobile, is a function only of speed, V, air 
density p. and vehicle size, characterized by its frontal area A. Use dimensional analy­
sis to determine how the drag force F depends on the speed V. 

7.9 Experiments show that the pressure drop for flow through an orifice plate of diameteJ 
d mounted in a length of pipe of diameter D may be expressed as Ap =fl 
P\ — P2~ f(p, p, V, d, D). You are asked to organize some experimental data. Obtain 
the resulting dimensionless parameters. 

7.10 The boundary-layer thickness, S, on a smooth flat plate in an incompressible flow 
without pressure gradients depends on the freestream speed, U, the fluid density, p, the 
fluid viscosity, p, and the distance from the leading edge of the plate, x. Express these 
variables in dimensionless form. 

7.11 The wall shear stress, TW, in a boundary layer depends on distance from the leading! 
edge of the body, x, the density, p, and viscosity, p, of the fluid, and the freestream 
speed of the flow, U. Obtain the dimensionless groups and express the functional rela­
tionship among them. 

7.12 The mean velocity, u, for turbulent flow in a pipe or a boundary layer may bel 
correlated using the wall shear stress, TW, distance from the wall, y, and the fluid prop­
erties, p and p. Use dimensional analysis to find one dimensionless parameter con­
taining u and one containing y that are suitable for organizing experimental data. J 
Show that the result may be written 

where u, = (T„Vp)" 2 is the friction velocity. 
7.13 The speed, V, of a free-surface gravity wave in deep water is a function of wave­

length, A, depth, D, density, p, and acceleration of gravity, g. Use dimensional analy­
sis to find the functional dependence of V on the other variables. Express V in the 
simplest form possible. 

7.14 Measurements of the liquid height upstream from an obstruction placed in an open-
channel flow can be used to determine volume flow rate. (Such obstructions, 
designed and calibrated to measure rate of open-channel flow, are called weirs.) 
Assume the volume flow rate, Q, over a weir is a function of upstream height, h, 
gravity, g, and channel width, b. Use dimensional analysis to find the functional de­
pendence of Q on the other variables. 

7.15 The load-carrying capacity, W, of a journal bearing is known to depend on its diame­
ter, D, length, /, and clearance, c, in addition to its angular speed, to, and lubricant 
viscosity, p. Determine the dimensionless parameters that characterize this problem. 

7.16 Capillary waves are formed on a liquid free surface as a result of surface tension. 
They have short wavelengths. The speed of a capillary wave depends on surface ten­
sion, IT , wavelength, A, and liquid density, p. Use dimensional analysis to express 
wave speed as a function of these variables. 
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7.17 The time, t, for oil to drain out of a viscosity calibration container depends on the 
fluid viscosity, p,, and density, p, the orifice diameter, d, and gravity, g. Use dimen­
sional analysis to find the functional dependence of t on the other variables. Express t 
in the simplest possible form. 

7.18 The power per unit cross-sectional area, £, transmitted by a sound wave is a function 
of wave speed, V, medium density, p, wave ampbtude, r, and wave frequency, n. De­
termine, by dimensional analysis, the general form of the expression for £ in terms 
of the other variables. 

7.19 The power, 9 \ required to drive a fan is believed to depend on fluid density, p, vol­
ume flow rate, Q, impeller diameter, D, and angular velocity, to. Use dimensional 
analysis to determine the dependence of 9 on the other variables. 

7.20 You are asked to find a set of dimensionless parameters to organize data from a labora­
tory experiment, in which a tank is drained through an orifice from initial liquid level 
i%. The time, T , to drain the tank depends on tank diameter, D, orifice diameter, d, ac­
celeration of gravity, g, liquid density, p, and liquid viscosity, p.. How many dimension­
less parameters will result? How many repeating variables must be selected to deter­
mine the dimensionless parameters? Obtain the n parameter that contains the viscosity. 

7.21 In a fluid mechanics laboratory experiment a tank of water, with diameter D, is drained 
from initial level i%. The smoothly rounded drain hole has diameter d. Assume the 
mass flow rate from the tank is a function of h, D, d, g, p, and /x, where g is the acceler­
ation of gravity and p and p are fluid properties. Measured data are to be correlated in 
dimensionless form. Determine the number of dimensionless parameters that will re­
sult. Specify the number of repeating parameters that must be selected to determine the 
dimensionless parameters. Obtain the n parameter that contains the viscosity. 

7.22 A continuous belt moving vertically through a bath of viscous liquid drags a layer of 
liquid, of thickness h, along with it. The volume flow rate of liquid, Q, is assumed to 
depend on /u, p, g, h, and V, where V is the belt speed. Apply dimensional analysis to 
predict the form of dependence of Q on the other variables. 

7.23 Small droplets of liquid are formed when a liquid jet breaks up in spray and fuel injec­
tion processes. The resulting droplet diameter, d, is thought to depend on liquid density, 
viscosity, and surface tension, as well as jet speed, V, and diameter, D. How many di­
mensionless ratios are required to characterize this process? Determine these ratios. 

7.24 The diameter, d, of the dots made by an ink jet printer depends on the ink viscosity 
p., density p, and surface tension, cr, the nozzle diameter, D, the distance, L, of the 
nozzle from the paper surface, and the ink jet velocity V. Use dimensional analysis to 
find the n parameters that characterize the ink jet's behavior. 

7.25 The sketch shows an air jet discharging vertically. Experiments show that a ball 
placed in the jet is suspended in a stable position. The equilibrium height of the ball 
in the jet is found to depend on D, d, V, p, fi, and W, where W is the weight of the 
ball. Dimensional analysis is suggested to correlate experimental data. Find the n 
parameters that characterize this phenomenon. 

Ball 

i i 
h 

P 7 . 2 5 
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7.26 The diameter, d, of bubbles produced by a bubble-making toy depends on the soapy 
water viscosity p, density p, and surface tension, <r, the ring diameter, D, and the 
pressure differential, Ap, generating the bubbles. Use dimensional analysis to find 
the II parameters that characterize this phenomenon. 

7.27 The terminal speed Vof shipping boxes sliding down an incline on a layer of air (in­
jected through numerous pinholes in the incline surface) depends on the box mass, 
m, and base area, A, gravity, g, the incline angle, 6, the air viscosity, p, and the air 
layer thickness, 8. Use dimensional analysis to find the fl parameters that character-: 
ize this phenomenon. 

7.28 The time, t, for a flywheel, with moment of inertia /, to reach angular velocity co, 
from rest, depends on the applied torque, T, and the following flywheel bearing prop­
erties: the oil viscosity p., gap S, diameter D, and length L. Use dimensional analysis 
to find the IT parameters that characterize this phenomenon. 

7.29 A large tank of liquid under pressure is drained through a smoothly contoured nozzle 
of area A. The mass flow rate is thought to depend on nozzle area, A, liquid density, p, 
difference in height between the liquid surface and nozzle, h, tank gage pressure, Ap, 
and gravitational acceleration, g. Determine how many independent fl parameters can 
be formed for this problem. Find the dimensionless parameters. State the functional] 
relationship for the mass flow rate in terms of the dimensionless parameters. 

7.30 Spin plays an important role in the flight trajectory of golf, Ping-Pong, and tennis 
balls. Therefore, it is important to know the rate at which spin decreases for a ball in 
flight. The aerodynamic torque, T, acting on a ball in flight, is thought to depend O B 
flight speed, V, air density, p, air viscosity, p, ball diameter, D, spin rate (angulaa 
speed), co, and diameter of the dimples on the ball, d. Determine the dimensionlesS 
parameters that result. 

7.31 The power loss, 9\ in a journal bearing depends on length, /, diameter, D, and clearance, 
c, of the bearing, in addition to its angular speed, co. The lubricant viscosity and meaJ 
pressure are also important. Obtain the dimensionless parameters that characterize this 
problem. Determine the functional form of the dependence of 2P on these parameters. 

7.32 The thrust of a marine propeller is to be measured during "open-water" tests at a variety 
of angular speeds and forward speeds ("speeds of advance"). The thrust, FT, is thougha 
to depend on water density, p, propeller diameter, D, speed of advance, V, acceleration] 
of gravity, g, angular speed, co, pressure in the liquid, p, and liquid viscosity, p. Develop] 
a set of dimensionless parameters to characterize the performance of the propeller. (One! 
of the resulting parameters, gD/V2, is known as the Froude speed of advance.) 

7.33 The power, required to drive a propeller is known to depend on the following 
variables: freestream speed, V, propeller diameter, D, angular speed, co, fluid viscos-i 
ity, p, fluid density, p, and speed of sound in the fluid, c. How many dimensionlessi 
groups are required to characterize this situation? Obtain these dimensionless groups. 

7.34 In a fan-assisted convection oven, the heat transfer rate to a roast, Q (energy per unit 
time), is thought to depend on the specific heat of air, cp, temperature difference, ©, a 
length scale, L, air density, p, air viscosity, p, and air speed, V. How many basic di­
mensions are included in these variables? Determine the number of IT. parameters 
needed to characterize the oven. Evaluate the U parameters. 

7.35 The rale dTldt at which the temperature T at the center of a rice kernel falls during a 
food technology process is critical — too high a value leads to cracking of the kernel, 
and too low a value makes the process slow and costly. The rate depends on the rice 
specific heat, c, thermal conductivity, k, and size, L, as well as the cooling air specific 
heat, c p, density, p, viscosity, p, and speed, V. How many basic dimensions are in­
cluded in these variables? Determine the It parameters for this problem. 

7.36 When a valve is closed suddenly in a pipe with flowing water, a water hammer pres­
sure wave is set up. The very high pressures generated by such waves can damage 
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the pipe. The maximum pressure, p m a x , generated by water hammer is a function of 
liquid density, p, initial flow speed, U0, and liquid bulk modulus, Ev. How many di­
mensionless groups are needed to characterize water hammer? Determine the func­
tional relationship among the variables in terms of the necessary n groups. 

7.37 An ocean-going vessel is to be powered by a rotating circular cylinder. Model tests 
are planned to estimate the power required to rotate the prototype cylinder. A dimen­
sional analysis is needed to scale the power requirements from model test results to 
the prototype. List the parameters that should be included in the dimensional analy­
sis. Perform a dimensional analysis to identify the important dimensionless groups. 

7.38 An airship is to operate at 20 m/s in air at standard conditions. A model is con­
structed to -^j-scale and tested in a wind tunnel at the same air temperature to deter­
mine drag. What criterion should be considered to obtain dynamic similarity? If the 
model is tested at 75 m/s, what pressure should be used in the wind tunnel? If the 
model drag force is 250 N, what will be the drag of the prototype? 

7.39 To match the Reynolds number in an air flow and a water flow using the same size 
model, which flow will require the higher flow speed? How much higher must it be? 

7.40 The designers of a large tethered pollution-sampling balloon wish to know what the 
drag will be on the balloon for the maximum anticipated wind speed of 5 m/s (the air 
is assumed to be at 20°C). A ^ - s c a l e model is built for testing in water at 20°C. 
What water speed is required to model the prototype? At this speed the model drag is 
measured to be 2 kN. What will be the corresponding drag on the prototype? 

7.41 Measurements of drag force arc made on a model automobile in a towing tank filled 
with fresh water. The model length scale is ^ that of the prototype. State the condi­
tions required to ensure dynamic similarity between the model and prototype. Deter­
mine the fraction of the prototype speed in air at which the model test should be 
made in water to ensure dynamically similar conditions. Measurements made at 
various speeds show that the dimensionless force ratio becomes constant at model 
test speeds above Vm = 4 m/s. The drag force measured during a test at this speed is 
FDm = 182 N. Calculate the drag force expected on the prototype vehicle operating 
at 90 km/hr in air. 

7.42 A -^--scale model of a torpedo is tested in a wind tunnel to determine the drag force. 
The prototype operates in water, has 533 mm diameter, and is 6.7 m long. The de­
sired operating speed of the prototype is 28 m/s. To avoid compressibility effects in 
the wind tunnel, the maximum speed is limited to 110 m/s. However, the pressure in 
the wind tunnel can be varied while holding the temperature constant at 20°C. At 
what minimum pressure should the wind tunnel be operated to achieve a dynamically 
similar test? At dynamically similar test conditions, the drag force on the model is 
measured as 618 N. Evaluate the drag force expected on the full-scale torpedo. 

7.43 The drag of an airfoil at zero angle of attack is a function of density, viscosity, and 
velocity, in addition to a length parameter. A -scale model of an airfoil was tested 
in a wind tunnel at a Reynolds number of 5.5 X 10 6 , based on chord length. Test 
conditions in the wind tunnel air stream were 15°C and 10 atmospheres absolute 
pressure. The prototype airfoil has a chord length of 2 m, and it is to be flown in air 
at standard conditions. Determine the speed at which the wind tunnel model was 
tested, and the corresponding prototype speed. 

7.44 Consider a smooth sphere, of diameter D, immersed in a fluid moving with speed V. The 
drag force on a 3 m diameter weather balloon in air moving at 1.5 m/s is to be calculated 
from test data. The test is to be performed in water using a 50 mm diameter model. Un­
der dynamically similar conditions, the model drag force is measured as 3.78 N. Evalu­
ate the model test speed and the drag force expected on the full-scale balloon, 

7.45 An airplane wing, with chord length of 5 ft and span of 30 ft, is designed to move 
through standard air at a speed of 230 ft/s. A -scale model of this wing is to be 
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tested in a water tunnel. What speed is necessary in the water tunnel to achieve dy­
namic similarity? What will be the ratio of forces measured in the model flow to 
those on the prototype wing? 

7.46 The fluid dynamic characteristics of a golf ball are to be tested using a model in a 
wind tunnel. Dependent parameters are the drag force, FD, and lift force, FL, on the 
ball. The independent parameters should include angular speed, co, and dimple depth, d 
Determine suitable dimensionless parameters and express the functional dependence 
among them. A golf pro can hit a ball at V = 240 ft/s and co = 9000 rpm. To model 
these conditions in a wind ninnel with maximum speed of 80 ft/s, what diameter 
model should be used? How fast must the model rotate? (The diameter of a U.S. golf 
ball is 1.68 in.) 

7.47 A model test is performed to determine the flight characteristics of a Frisbee. Depen­
dent parameters are drag force, FD, and lift force, FL. The independent parameters 
should include angular speed, co, and roughness height-, h. Determine suitable dimen­
sionless parameters and express the functional dependence among them. The test 
(using air) on a ^-scale model Frisbee is to be geometrically, kinematically, and dy­
namically similar to the prototype. The prototype values are Vp = 20 ft/s and cop = 
100 rpm. What values of Vm and co,„ should be used? 

7.48 A m6del hydrofoil is to be tested at 1:20 scale. The test speed is chosen to duplicate 
the Froude number corresponding to the 60 knot prototype speed. To model cavita­
tion correctly, the cavitation number also must be duplicated. At what ambient 
pressure must the test be run? Water in the model test basin can be heated to 130°F, 
compared to 45°F for the prototype. 

7.49 SAE 10W oil at 80°F flowing in a 1 in. diameter horizontal pipe, at an average speed 
of 3 ft/s, produces a pressure drop of 65.3 psig over a 500 ft length. Water at 60°F 
flows through the same pipe under dynamically similar conditions. Using the results 
of Example Problem 7.2, calculate the average speed of the Water flow and the corre­
sponding pressure drop. 

7.50 A £ -scale model of a tractor-trailer rig is tested in a pressurized wind tunnel. The rig 
width, height, and length are W = 0.305 m, H = 0.476 m, and L = 2.48 m, respec­
tively. At wind speed V = 75.0 m/s, the model drag force is FD = 128 N. (Air den­
sity in the tunnel is p = 3.23 kg/m3.) Calculate the aerodynamic drag coefficient fan 
the model. Compare the Reynolds numbers for the model test and for the prototype] 
vehicle at 55 mph. Calculate the aerodynamic drag force on the prototype vehicle al 
a road speed of 55 mph into a headwind of 10 mph. 

7.51 In some speed ranges, vortices are shed from the rear of bluff cylinders placed across 
a flow. The vortices alternately leave the top and bottom of the cylinder, as shownj 
causing an alternating force normal to the freestream velocity. The vortex shedding 
frequency,/, is thought to depend on p, d, V, and p.. Use dimensional analysis to de­
velop a functional relationship for/. Vortex shedding occurs in standard air on two 
cylinders with a diameter ratio of 2. Determine the velocity ratio for dynamic simi­
larity, and the ratio of vortex shedding frequencies. 

7.52 The aerodynamic behavior of a flying insect is to be investigated in a wind runnel us­
ing a ten-times scale model. If the insect flaps its wings 50 times a second when 
flying at 1.25 m/s, determine the wind tunnel air speed and wing oscillation frel 
quency required for dynamic similarity. Do you expect that this would be a succesJ 
ful or practical model for generating an easily measurable wing lift? If not, can you 

Vortices 

P 7 . 5 1 
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suggest a different fluid (e.g., water, or air at a different pressure and/or temperature) 
that would produce a better modeling? 

7.53 A model test of a tractor-trailer rig is performed in a wind tunnel. The drag force, FD, 
is found to depend on frontal area, A, wind speed, V, air density, p, and air viscosity, 
p.. The model scale is 1:4; frontal area of the model is A = 0.625 m 2. Obtain a set of 
dimensionless parameters suitable to characterize the model test results. State the 
conditions required to obtain dynamic similarity between model and prototype flows. 
When tested at wind speed V = 89.6 m/s, in standard air, the measured drag force on 
the model was FD = 2.46 kN. Assuming dynamic similarity, estimate the aerody­
namic drag force on the full-scale vehicle at V = 22.4 m/s. Calculate the power 
needed to overcome this drag force if there is no wind. 

7.54 Your favorite professor likes mountain climbing, so there is always a possibility that the 
professor may fall into a crevasse in some glacier. If that happened today, and the pro­
fessor was trapped in a slowly moving glacier, you are curious to know whether the pro­
fessor would reappear at the downstream drop-off of the glacier during this academic 
year. Assuming ice is a Newtonian fluid with the density of glycerine but a million times 
as viscous, you decide to build a glycerin model and use dimensional analysis and simi­
larity to estimate when the professor would reappear. Assume the real glacier is 15 m 
deep and is on a slope that falls 1.5 m in a horizontal distance of 1850 m. Develop the 
dimensionless parameters and conditions expected to govern dynamic similarity in this 
problem. If the model professor reappears in the laboratory after 9.6 hours, when should 
you return to the end of the real glacier to provide help to your favorite professor? 

7.55 A 1:30 scale model of a submarine is to be tested in a towing tank under two condi­
tions: motion at the free surface and motion far below the free surface. The tests are 
performed in fresh water. On the surface, the submarine cruises at 20 knots. At what 
speed should the model be towed to ensure dynamic similarity? Far below the sur­
face, the sub cruises at 0.5 knots. At what speed should the model be towed to ensure 
dynamic similarity? What must the drag of the model be multiplied by under each 
condition to give the drag of the full-scale submarine? 

7.56 An automobile is to travel through standard air at 100 km/hr. To determine the pres­
sure distribution, a y-scale model is to be tested in water. What factors must be con­
sidered to ensure kinematic similarity in the tests? Determine the water speed that 
should be used. What is the corresponding ratio of drag force between prototype and 
model flows? The lowest pressure coefficient is Cp — —1.4 at the location of the mini­
mum static pressure on the surface. Estimate the minimum tunnel pressure required to 
avoid cavitation, if the onset of cavitation occurs at a cavitation number of 0.5. 

7.57 Consider water flow around a circular cylinder, of diameter D and length I. In addi­
tion to geometry, the drag force is known to depend on liquid speed, V, density, p, 
and viscosity, p. Express drag force, FD, in dimensionless form as a function of all 
relevant variables. The static pressure distribution on a circular cylinder, measured in 
the laboratory, can be expressed in terms of the dimensionless pressure coefficient; 
the lowest pressure coefficient is Cp = —2.4 at the location of the minimum static 
pressure on the cylinder surface. Estimate the maximum speed at which a cylinder 
could be towed in water at atmospheric pressure, without causing cavitation, if the 
onset of cavitation occurs at a cavitation number of 0.5. 

7.58 A JQ--scale model of a tractor-trailer rig is tested in a wind tunnel. The model frontal 
area is Am = 1.08 ft2. When tested at Vm = 250 ft/s in standard air, the measured 
drag force is FD = 76.3 Ibf. Evaluate the drag coefficient for the model conditions 
given. Assuming that the drag coefficient is the same for model and prototype, calcu­
late the drag force on a prototype rig at a highway speed of 55 mph. Determine the 
air speed at which a model should be tested to ensure dynamically similar results if 
the prototype speed is 55 mph. Is this air speed practical? Why or why not? 
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7.59 It is recommended in [9] that the frontal area of a model be less than 5 percent of tit 
wind tunnel test section area and Re = Vwlv > 2 x 106, where w is the model 
width. Further, the model height must be less than 30 percent of the test section 
height, and the maximum projected width of the model at maximum yaw (20°) must 
be less than 30 percent of the test section width. The maximum air speed should be j 
less than 300 ft/s to avoid compressibility effects. A model of a tractor-trailer rig is to 
be tested in a wind tunnel that has a test section 1.5 ft high and 2 ft wide. The height, 
width, and length of the full-scale rig are 13 ft 6 in., 8 ft, and 65 ft, respectively. 
Evaluate the scale ratio of the largest model that meets the recommended criteria. 
Assess whether an adequate Reynolds number can be achieved in this test facility. • 

7.60 A circular container, partially filled with water, is rotated about its axis at constani 
angular speed, co. Al any time, r, from the start of rotation, the speed, Vd, at distance' 
r from the axis of rotation, was found to be a function of T, CO, and the properties otj 
the liquid. Write the dimensionless parameters that characterize this problem. If, in! 
another experiment, honey is rotated in the same cylinder at the same angular speed, 
determine from your dimensionless parameters whether honey will attain steady^ 
motion as quickly as water. Explain why the Reynolds number would not be an im­
portant dimensionless parameter in scaling the steady-state motion of liquid in the 
container. 

7.61 The power, 2P, required to drive a fan is assumed to depend on fluid density, p, volume 
flow rate, Q, impeller diameter, D, and angular speed, co. If a fan with D, = 200 runfl 
delivers gi = 0.4 mVs of air at cot — 2400 rpm, what volume flow rate could be ex­
pected for a geometrically similar fan with D2 = 400 mm at co2 = 1850 rpm? 

( J l 7.62 Over a certain range of air speeds, V, the lift, FL, produced by a model of a complete 
aircraft in a wind tunnel depends on the air speed, air density, p, and a characteristic 
length (the wing base*chord length, r = 150 mm). The following experimental data 
is obtained for air at standard atmospheric conditions: 

V(m/s) 10 15 20 25 30 35 40 45 50 
F, (N) 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54 

Plot the lift versus speed curve. By using Excel to perform a trendline analysis oifi 
this curve, generate and plot data for the lift produced by the prototype, which has an 
wing base chord length of 5 m, over a speed range of 75 m/s to 250 m/s. 

7.63 The pressure rise, Ap, of a liquid flowing steadily through a centrifugal pump de­
pends on pump diameter, D, angular speed of the rotor, co, volume flow rate, Q, and 
density, p. The table gives data for the prototype and for a geometrically similaj 
model pump. For conditions corresponding to dynamic similarity between the model 
and prototype pumps, calculate the missing values in the tabic. 

Variable Prototype Model 

Ap 29.3 kPa 
Q 1.25 mVmin 
p 800 kg/m5 999 kg/m3 

CO 183 rad/s 367 rad/s 
D 150 mm 50 mm 

( J | 7.64 A centrifugal water pump running at speed co = 750 rpm has the following data for 
flow rate Q and pressure head Ap: 

y(m 3 /hr) 0 100 150 200 250 300 325 350 
Ap(kPa) 361 349 328 293 230 145 114 59 
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The pressure head Ap is a function of flow rate, Q, and speed, co, and also impeller 
diameter, D, and water density, p. Plot the pressure head versus flow rate curve. Find 
the two II parameters for this problem, and from the above data plot one against the 
other. By using Excel to perform a trendline analysis on this latter curve, generate 
and plot data for pressure head versus flow rate for impeller speeds of 500 rpm and 
1000 rpm. 

7.65 An axial-flow pump is required to deliver 25 ft3/s of water at a head of 150 ft • lbf/slug. 
The diameter of the rotor is 1 ft, and it is to be driven at 500 rpm. The prototype is to 
be modeled on a small test apparatus having a 3 hp, 1000 rpm power supply. For simi­
lar performance between the prototype and the model, calculate the head, volume flow 
rate, and diameter of the model. 

7.66 Consider again Problem 7.32. Experience shows that for ship-size propellers, viscous 
effects on scaling are small. Also, when cavitation is not present, the nondimensional 
parameter containing pressure can be ignored. Assume that torque, T, and power, 2P, 
depend on the same parameters as thrust. For conditions under which effects of p. 
and p can be neglected, derive scaling "laws" for propellers, similar to the pump 
"laws" of Section 7-6, that relate thrust, torque, and power to the angular speed and 
diameter of the propeller. 

7.67 A model propeller 600 mm in diameter is tested in a wind tunnel. Air approaches the 
propeller at 45 m/s when it rotates at 2000 rpm. The thrust and torque measured un­
der these conditions are HON and 10 N • m, respectively. A prototype 10 times as 
large as the model is to be built. At a dynamically similar operating point, the 
approach air speed is to be 120 m/s. Calculate the speed, thrust, and torque of the 
prototype propeller under these conditions, neglecting the effect of viscosity but in­
cluding density. 

7.68 Closed-circuit wind tunnels can produce higher speeds than open-circuit tunnels with 
the same power input because energy is recovered in the diffuser downstream from 
the test section. The kinetic energy ratio is a figure of merit defined as the ratio of the 
kinetic energy flux in the test section to the drive power. Estimate the kinetic energy 
ratio for the 40 ft X 80 ft wind tunnel at NASA-Ames described on page 299. 

7.69 A 1:16 model of a bus is tested in a wind tunnel in standard air. The model is 
152 mm wide, 200 mm high, and 762 mm long. The measured drag force at 26.5 m/s 
wind speed is 6.09 N. The longitudinal pressure gradient in the wind tunnel test sec­
tion is -11.8 N/m2/m. Estimate the correction that should be made to the measured 
drag force to correct for horizontal buoyancy caused by the pressure gradient in the 
test section. Calculate the drag coefficient for the model. Evaluate the aerodynamic 
drag force on the prototype at 100 km/hr on a calm day. 

7.70 A 1:16 model of a 20 m long truck is tested in a wind tunnel at a speed of 80 m/s, 
where the axial static pressure gradient is —1.2 mm of water per meter. The frontal 
area of the prototype is 10 m 2. Estimate the horizontal buoyancy correction for this 
situation. Express the correction as a fraction of the measured CD, if CD = 0.85. 

7.71 During a recent stay at a motel, a hanging lamp was observed to oscillate in the air 
stream from the air conditioning unit. Explain why this might occur. 

7.72 Frequently one observes a flag on a pole flapping in the wind. Explain why this occurs. 

7.73 Explore the variation in wave propagation speed given by the equation of Problem 
7.1 for a free-surface flow of water. Find the operating depth to rmnimize the speed 
of capillary waves (waves with small wavelength, also called ripples). First assume 
wavelength is much smaller than water depth. Then explore the effect of depth. What 
depth do you recommend for a water table used to visualize compressible-flow wave 
phenomena? What is the effect of reducing surface tension by adding a surfactant? 



Chapter 8 

INTERNAL INCOMPRESSIBLE | 
VISCOUS FLOW 

Flows completely bounded by solid surfaces are called internal flows. Thus intern 
flows include flows through pipes, ducts, nozzles, diffusers, sudden contractions and 
expansions, valves, and fittings. 

Internal flows may be laminar or turbulent. Some laminar flow cases may bj 
solved analytically. In the case of turbulent flow, analytical solutions are not possible, 
and we must rely heavily on semi-empirical theories and on experimental data. The 
nature of laminar and turbulent flows was discussed in Section 2-6. For internal flows, 
the flow regime (laminar or turbulent) is primarily a function of the Reynolds number. 

The restriction of incompressible flow limits the consideration of gas flows to 
those with negligible heat transfer in which the Mach number M < 0.3; a value • 
M = 0.3 in air corresponds to a speed of approximately 100 m/s. 

Following a brief introductory section, we consider two cases of fully developed 
laminar flow of a Newtonian fluid (Part A). In Part B we present experimental data to 
provide insight into the basic nature of turbulent flows in pipes and ducts and to en-] 
able evaluations of the pressure changes that result from incompressible flow in 
pipes, ducts, and flow systems. The chapter concludes (Part C) with a discussion O H 
flow measurements. 

8-1 INTRODUCTION 

As discussed previously in Section 2-6, the pipe flow regime (laminar or turbulent) I 
determined by the Reynolds number, Re = OVDIJJL. One can demonstrate, by the clas­
sic Reynolds experiment,' the qualitative difference between laminar and turbulenl 
flows. In this experiment water flows from a large reservoir through a clear tube. A 
thin filament of dye injected at the entrance to the tube allows visual observation of 
the flow. At low flow rates (low Reynolds numbers) the dye injected into the flow 
remains in a single filament along the tube; there is little dispersion of dye becausl 
the flow is laminar. A laminar flow is one in which the fluid flows in laminae, or lay-l 
ers; there is no macroscopic mixing of adjacent fluid layers. 

As the flow rate through the tube is increased, the dye filament eventually be--
comes unstable and breaks up into a random motion throughout the tube; the line of 
dye is stretched and twisted into myriad entangled threads, and it quickly disperses 
throughout the entire flow field. This behavior of turbulent flow is caused by small, 
high-frequency velocity fluctuations superimposed on the mean motion of a turbulent 
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1 This experiment is demonstrated in the NCFMF video Turbulence. 
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flow, as illustrated earlier in Fig. 2.15; the mixing of fluid particles from adjacent lay­
ers of fluid results in rapid dispersion of the dye. 

Under normal conditions, transition to turbulence occurs at Re ~ 2300 for flow 
in pipes: For water flow in a 1 in. diameter pipe, this corresponds to an average speed 
of 0.3 ft/s. With great care to maintain the flow free from disturbances, and with 
smooth surfaces, experiments have been able to maintain laminar flow in a pipe to a 
Reynolds number of about 100,000! However, most engineering flow situations are 
not so carefully controlled, so we will take Re ~ 2300 as our benchmark for transi­
tion to turbulence. Transition Reynolds numbers for some other flow situations are 
given in the Example Problems. Turbulence occurs when the viscous forces in the 
fluid are unable to damp out random fluctuations in the fluid motion (generated, for 
example, by roughness of a pipe wall), and the flow becomes chaotic. For example, a 
high viscosity fluid is able to damp out fluctuations more effectively than a low vis­
cosity fluid and therefore remains laminar even at relatively high flow rates. On the 
other hand, a high density fluid will generate significant inertia forces due to the 
random fluctuations in the motion, and this fluid will transition to turbulence at a rel­
atively low flow rate. 

Figure 8.1 illustrates laminar flow in the entrance region of a circular pipe. The 
flow has uniform velocity U0 at the pipe entrance. Because of the no-slip condition at 
the wall, we know that the velocity at the wall must be zero along the entire length of 
the pipe. A boundary layer (Section 2-6) develops along the walls of the channel. The 
solid surface exerts a retarding shear force on the flow; thus the speed of the fluid in 
the neighborhood of the surface is reduced. At successive sections along the pipe in 
this entry region, the effect of the solid surface is felt farther out into the flow. 

For incompressible flow, mass conservation requires that, as the speed close to 
the wall is reduced, the speed in the central frictionless region of the pipe must in­
crease slightly to compensate; for this inviscid central region, then, the pressure (as in­
dicated by the Bernoulli equation) must also drop somewhat. To satisfy conservation 
of mass for incompressible flow, the average velocity magnitude at any cross section 

V = - [ udA 

A JArea 

must equal U0, so 

V = U0 = constant 
Sufficiently far from the pipe entrance, the boundary layer developing on the pipe 

wall reaches the pipe centerline and the flow becomes entirely viscous. The velocity 
profile shape then changes slightly after the inviscid core disappears. When the profile 
shape no longer changes with increasing distance x, the flow is called fully developed. 
The distance downstream from the entrance to the location at which fully developed 
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flow begins is called the entrance length. The actual shape of the fully developed ve­
locity profile depends on whether the flow is laminar or turbulent. In Fig. 8.1 the pro­
file is shown qualitatively for a laminar flow. Although the velocity profiles for some 
fully developed laminar flows can be obtained by simplifying the complete equations 
of motion from Chapter 5, turbulent flows cannot be so treated. 

For laminar flow, the entrance length, L, is a function of Reynolds number, 

A. 0 . 0 6 ^ (8.1 
D /x 

Laminar flow in a pipe may be expected only for Reynolds numbers less than 230" 
Thus the entrance length for laminar pipe flow may be as long as 

L = 0.06 Re D < (0.06)(230O) D = 138D 

or nearly 140 pipe diameters. If the flow is turbulent, enhanced mixing among fluid 
layers 2 causes more rapid growth of the boundary layer. Experiments show that tha 
mean velocity profile becomes fully developed within 25 to 40 pipe diameters from 
the entrance. However, the details of the turbulent motion may not be fully developed 
for 80 or more pipe diameters. Fully developed laminar internal flows are treated in 
Part A of this chapter. Turbulent flow in pipes and ducts is treated in Part B. 

P A R T A FULLY D E V E L O P E D L A M I N A R F L O W 

In this section we consider a few classic examples of fully developed laminar flowsi 
Our intent is to obtain detailed information about the velocity field because knowledge] 
of the velocity field permits calculation of shear stress, pressure drop, and flow rate. 

8-2 FULLY DEVELOPED LAMINAR FLOW 
BETWEEN INFINITE PARALLEL PLATES 

Both Plates Stationary 

Fluid in high-pressure hydraulic systems (such as the brake system of an automobile) 
often leaks through the annular gap between a piston and cylinder. For very small gaps 
(typically 0.005 mm or less), this flow field may be modeled as flow between infinite par-' 
allel plates. To calculate the leakage flow rate, we must first determine the velocity field. 

Let us consider the fully developed laminar flow between horizontal infinite par­
allel plates. The plates are separated by distance a, as shown in Fig. 8.2. The plates 
are considered infinite in the z direction, with no variation of any fluid property in 
this direction. The flow is also assumed to be steady and incompressible. Before 
starting our analysis, what do we know about the flow field? For one thing we know 
that the x component of velocity must be zero at both the upper and lower plates as a 
result of the no-slip condition at the wall. The boundary conditions are 

at y = 0 u = 0 

at y = a u = 0 

Since the flow is fully developed, the velocity cannot vary with x and, hence, depends 
on y only, so that a = u{y). Furthermore, there is no component of velocity in either the 

2 This mixing is illustrated extremely well in the introductory portion of the NCFMF video Turbulence. 
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Fig . 8.2 Cont ro l v o l u m e for ana lys is of laminar f low be tween s ta t ionary inf inite paral lel 
p lates. 

y or z direction (v = w = 0). In fact, for fully developed flow only the pressure can and 
will change (in a manner to be determined from the analysis) in the x direction. 

This is an obvious case for using the Navier-Stokes equations in rectangular co­
ordinates (Eqs. 5.27). Using the above assumptions, these equations can be greatly 
simplified and then solved using the boundary conditions. In this section we will take 
a longer route—using a differential control volume—to bring out some important 
features of the fluid mechanics. 

For our analysis we select a differential control volume of size dV = dxdydz, 
and apply the x component of the momentum equation. 

Basic equation: 

= 0(3) = 0 ( 1 ) 

J c v 
updV + \ upV- dA (4.18a) 

cs 

Assumptions: (1) Steady flow (given) 
(2) Fully developed flow (given) 
( 3 ) f = 0 (given) 

For fully developed flow the velocity is not changing with x, so the net momentum 
flux through the control surface is zero. (The momentum flux through the right face 
of the control surface is equal in magnitude but opposite in sign to the momentum 
flux through the left face; there is no momentum flux through any of the remaining 
faces of the control volume.) Since there are no body forces in the x direction, the 
momentum equation reduces to 

FSx = 0 (8.2) 

The next step is to sum the forces acting on the control volume in the x direction. We 
recognize that normal forces (pressure forces) act on the left and right faces and tan­
gential forces (shear forces) act on the top and bottom faces. 

If the pressure at the center of the element is p , then the pressure force on the 
left face is 

dF, = 
dp dx 

P~dx~Y 
dy dz 

and the pressure force on the right face is 
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If the shear stress at the center of the element is ryx, then the shear force on 
bottom face is 

( 

dFt> =-

and the shear force on the top face is 

dTyx dy 

dy 2 

djyx dy 

dy 2 

dx dz 

dx dz 

Note that in expanding the shear stress, ryx, in a Taylor series about the center of the 
element, we have used the total derivative rather than a partial derivative. We did this 
because we recognized that T w is only a function of y, since u = u(y). 

Having formulated the forces acting on each face of the control volume, we sub­
stitute them into Eq. 8.2; this equation simplifies to 

dp 
dx 

dr„ 

dy 
(8 

With no change in particle momentum, the net pressure force (which is actually -dp/dx) 
balances the net friction force (which is actually -dryx/dy). Equation 8.3 has an 
interesting feature: The left side is at most a function of x only (this follows immedi­
ately from writing the y component of the momentum equation); the right side is at 
most a function of y only (because the flow is fully developed). Hence, the only way the 
equation can be valid for all x and v is for each side to in fact be constant: 

dry 

dy 
dp 
dx 
— = constant 

Integrating this equation, we obtain 

y + c. 

which indicates that the shear stress varies linearly with y. We wish to find the veloc­
ity distribution. To do so, we need to relate the shear stress to the velocity field. F o r a 
Newtonian fluid we can use Eq. 2.10 because we have a one-dimensional flow [or wcj 
could have started with the full stress equation (Eq. 5.25a) and simplified], 

so we get 

Integrating again 

du 
dy 

du (dp^ 

(2.1 

J_(dp 
\y2 + - y + c2 

ZpL V OX J pi 
(8.4 

It is interesting to note that if we had started with the Navier-Stokes equatio 
(Eqs. 5.27) instead of using a differential control volume, after only a few steps (i.e.] 
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simplifying and integrating twice) we would have obtained Eq. 8.4. To evaluate the 
constants, c, and c 2 , we must apply the boundary conditions. At y = 0, u = 0. 
Consequently, c2 = 0. At y = a, u = 0. Hence 

This gives 

and hence, 

2p \dx 
0 = _Lf$v + 

dp 
dx 

P 

2p \ dx ) 2p\dx ) 2p\ dx 
(8.5) 

At this point we have the velocity profile. What else can we learn about the flow? 

Shear St ress Distr ibution 

The shear stress distribution is given by 

TyX 
(8.6a) 

Vo lume F low Rate 

The volume flow rate is given by 

For a depth / in the z direction, 

Thus the volume flow rate per unit depth is given by 

Q=__L(BP)„3 
l \2p \ dx 

(8.6b) 

Flow Rate as a Funct ion of P ressure Drop 

Since dp/dx is constant, the pressure varies linearly with x and 

3p _ Pi ~ Pi = - A p 
dx L L 

Substituting into the expression for volume flow rate gives 

Q 
I2p 

-Ap i a3Ap 
a' -

\2pL 
(8.6c) 
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Ave rage Veloci ty 

The average velocity magnitude, V, is given by 

i 
12/i \dx J la \2p\dx 

dp\ 2 a (8. 

Point of Max imum Veloci ty 

To find the point of maximum velocity, we set duldy equal to zero and solve for 
corresponding y. From Eq. 8.5 

Thus, 

du ~2y r 
ydxj .a2 ' a_ 

du 
= 0 

a 
= 0 at y = y = 

2 

At 

a 
2 ' u - u„ &pb{dx) 2 

(8. 

Transformat ion of Coord inates 

In deriving the above relations, the origin of coordinates, y = 0, was taken at the b o t j 
torn plate. We could just as easily have taken the origin at the centerline of the c h a n i 
nel. If we denote the coordinates with origin at the channel centerline as x, y', the 
boundary conditions are u• = 0 at y' = ± a/2. 

To obtain the velocity profile in terms of x, >•', we substitute y = y' + a/2 intdl 
Eq. 8.5. The result is 

u = 2/i ^ dx 
(8.7) 

Equation 8.7 shows that the velocity profile for laminar flow between stationary par-J 
allel plates is parabolic, as shown in Fig. 8.3. 

Fig . 8.3 D imens ion less veloc i ty prof i le for ful ly deve loped laminar 
f low b e t w e e n inf ini te paral le l p lates. 

file:///2p/dx
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Since all stresses were related to velocity gradients through Newton's law of 
viscosity, and the additional stresses that arise as a result of turbulent fluctuations 
have not been accounted for, all of the results in this section are valid for laminar 
flow only. Experiments show that laminar flow between stationary parallel plates be­
comes turbulent for Reynolds numbers (defined as Re = pValpS) greater than approx­
imately 1400. Consequently, the Reynolds number should be checked after using 
Eqs. 8.6 to ensure a valid solution. 

EXAMPLE 8.1 Leakage Flow Past a Piston 

A hydraulic system operates at a gage pressure of 20 MPa and 55°C. The hydraulic 
fluid is SAE 10W oil. A control valve consists of a piston 25 mm in diameter, fitted to 
a cylinder with a mean radial clearance of 0.005 mm. Determine the leakage flow rate 
if the gage pressure on the low-pressure side of the piston is 1.0 MPa. (The piston is 
15 mm long.) 

EXAMPLE PROBLEM 8.1 

GIVEN: Flow of hydraulic oil between 
piston and cylinder, as shown. 
Fluid is SAE 10W oil at 55°C. 

FIND: Leakage flow rate, Q. 

SOLUTION: 
The gap width is very small, so the flow may be modeled as flow 
between parallel plates. Equation 8.6c may be applied. 

Governing equation: Q_ - A ^ P 
I \2pL 

Assumptions: (1) Laminar flow. 
(2) Steady flow. 
(3) Incompressible flow. 
(4) Fully developed flow. 

(Note Ua = 15/0.005 = 3000!) 

The plate width, /, is approximated as I = TTD. Thus 

(8.6c) 

Q 
irDa Ap 

\2pL 

• a = 0 .005 mm 

p, = 20 MPa (gage) 

/. = 15 mm 

P2 = 1.0 MPa (gage) 

For SAE 10W oil at 55°C, p = 0.018 kg/(m • s), from Fig. A.2, Appendix A. Thus 

vr 25 mm (0.005) 3 mm 3 (20 - 1)106 N m • s 
CJ — X X X — X 

12 m 2 

1 kg • m 
0.018 kg 15 mm N s 

iQ = 57.6 mm 3 /s Q 

lb ensure that flow is laminar, we also should check the Reynolds number. 
3 

•nDa 
57.6 mm" 1 x — x 1 

x 
1 

and 
7 T 25 mm 0.005 mm 10 3 mm 

pVa _ SGp^oVfl 

= 0.147 m/s 

Re = 
P P 
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For SAE 10W oil, SG = 0.92, from Table A.2, Appendix A. Thus 

0.92 1000 kg 0.147 m 0.005 mm m s m 
Re = x —=r x — x x x — 5 

m 3 s 0.018 kg 10 3 mm 
Thus flow is surely laminar, since Re « 1400. 

= 0.0375 

Upper Plate Moving with Constant Speed, U 

A second laminar flow case of practical importance is flow in a journal bearing (a 
commonly used type of bearing, e.g., the main crankshaft bearings in the engine of an 
automobile). In such a bearing, an inner cylinder, the journal, rotates inside a station­
ary member. At light loads, the centers of the two members essentially coincide, and 
the small clearance gap is symmetric. Since the gap is small, it is reasonable to "un­
fold" the bearing and to model the flow field as flow between infinite parallel plates. 

Let us now consider a case where the upper plate is moving to the right with 
constant speed, U, as shown in Fig. 8.4. All we have done in going from a stationary! 
upper plate to a moving upper plate is to change one of the boundary conditions. The] 
boundary conditions for the moving plate case are 

0 

U 
at 

at 

0 

Since only the boundary conditions have changed, there is no need to repeat thai 
entire analysis of the previous section. The analysis leading to Eq. 8.4 is equally vaiiol 
for the moving plate case. Thus the velocity distribution is given by 

1 (dp) 
u - — — 

2p {dx 
2 C\ 

y +-Ly + C 2 

(8.4 

and our only task is to evaluate constants c, and c 2 by using the appropriate boun 
conditions. [Note once again that using the full Navier-Stokes equations (Eqs. 5.27)| 
would have led very quickly to Eq. 8.4.] 

At y = 0, u = 0. Consequently, c 2 = 0. 
At y = a, u = U. Consequently, 

U ±(dp 
2p ydx 

2 c \ and thus c, = 
Up 

a 

dy 

— dx-

Differential 
control 
volume 

5 ( | ) ] i v * 

p + 
dP ,dx 
Tx ( T 

'-)]dydz 

(u) Geometry of CV (fc) Forces acting on CV 

Fig. 8.4 Dif ferent ia l contro l v o l u m e for ana lys is of laminar f low b e t w e e n inf inite paral le l p lates: 
upper p la te mov ing wi th cons tan t s p e e d , U. 
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Hence, 

u = 

u = 

2p ydx 
Uy 

2p {dx 
dp 

y + — - — rr- ay = — + 
Uy 

2p 

Ul+cr2_fdp 
a 2p\dx 

(8.8) 

It is reassuring to note that Eq. 8.8 reduces to Eq. 8.5 for a stationary upper plate. 
From Eq. 8.8, for zero pressure gradient (for dp/dx = 0) the velocity varies linearly 
with y. This was the case treated earlier in Chapter 2. 

We can obtain additional information about the flow from the velocity distribu­
tion of Eq. 8.8. 

Shear St ress Distr ibution 

The shear stress distribution is given by T„ = p(du/dy), 

U_ . a' 
a 

Ty* =

 2 

{dp} 

KdX; 

U 
p ha 

a ydXj 
I_ J _ 
a 2 

(8.9a) 

Vo lume F low Rate 

The volume flow rate is given by Q = [ V • dA. For depth / in the z direction 

Q Q = fu/rfv or ^ = T Jo / Jo a 2p\dx 
- ay) dy 

Thus the volume flow rate per unit depth is given by 

Q _ Ua 1 (dp 
I 2 \2p\dx 

A v e r a g e Veloci ty 

The average velocity magnitude, V, is given by 

V = Q l Ua__ 
2 \2p 

dp 
/la 

U 
2 \2p \ dx 

(8.9b) 

(8.9c) 

Point of Max imum Veloci ty 

To find the point of maximum velocity, we set du/dy equal to zero and solve for the 
corresponding y. From Eq. 8.8 

ri „ 2 di 

Thus, 
du 

d~y 

(dp) [2y 1 1 U 

U J 2 a _ a 

= 0 
a 

= 0 at y = — y = 
2 

2p \ dx 
2 1 * 1 -

U/a 
(\lp)(dpldx) 

There is no simple relation between the maximum velocity, umn, and the mean veloc­
ity, V, for this flow case. 

file:///2p/dx


Fig. 8.5 D imens ion less ve loc i ty prof i le for ful ly deve loped laminar f low be tween inf inite 
paral le l p la tes : upper p la te mov ing wi th cons tan t s p e e d , U. 

Equation 8.8 suggests that the velocity profile may be treated as a combination 
of a linear and a parabolic velocity profile; the last term in Eq. 8.8 is identical to that 
in Eq. 8.5. The result is a family of velocity profiles, depending on U and 
(\/p)(dp/dx); three profiles are sketched in Fig. 8.5. (As shown in Fig. 8.5, somJ 
reverse flow—flow in the negative x direction—can occur when dp/dx > 0.) 

Again, all of the results developed in this section are valid for laminar flow only! 
Experiments show that this flow becomes turbulent (for dp/dx = 0) at a Reynold! 
number of approximately 1500, where Re = pUalp for this flow case. Not much inl 
formation is available for the case where the pressure gradient is not zero. 

EXAMPLE 8.2 Torque and Power in a Journal Bearing 

A crankshaft journal bearing in an automobile engine is lubricated by SAE 30 oil at 
2I0°F. The bearing diameter is 3 in., the diametral clearance is 0.0025 in., and the shaft] 
rotates at 3600 rpm; it is 1.25 in. long. The bearing is under no load, so the clearance is 
symmetric. Determine the torque required to turn the journal and the power dissipated] 

EXAMPLE PROBLEM 8.2 

GIVEN: Journal bearing, as shown. Note that the gap GIVEN: Journal bearing, as shown. Note that the gap 
width, a, is half the diametral clearance. Lubri­

L- 1.25 m-m D = 3 0 - a S P ' n . 
cant is SAE 30 oil at 210°F. Speed is 3600 rpm. 

L- 1.25 m-m D = 3 0 - a S P ' n . 
FIND: (a) Torque, T. 

(b) Power dissipated. 

Torque on the journal is caused by viscous shear in the oil film. The gap width is small, so the flow may be 
modeled as flow between infinite parallel plates: 
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= 0(6) 

Governing equation: - u + 
a 2 (8.9a) 

Assumptions: (1) Laminar flow. 
(2) Steady flow. 
(3) Incompressible flow. 
(4) Fully developed flow. 
(5) Infinite width (Ua = 1.25/0.00125 = 1000, so this is a reasonable assumption). 
(6) dpfdx = 0 (flow is symmetric in the actual bearing at no load). 

Then 
U toR toD 

ryx = P- — = P~ — = ^l^^ ' a a 2a 

Fbr SAE 30 oil at 210°F (99°C), p = 9.6 X KT 3 N • s/m2 (2.01 X 1 0 " lbf • s/ft2), from Fig. A.2, Appen-
i x A . Thus, 

2.01 x 10" 4 lbf • s 3600 rev 2TT rad min 3 in. 1 
T , „ = T — X X X X X — X 

1 
•yx rev 60 s 2 0.00125 in. 

Tyx = 90.9 lbf/ft' 

The total shear force is given by die shear stress times the area. It is applied to the journal surface. There-
fcre, for the torque 

T = FR = TVZTTDLR = — TVXD2L 
yx 2 

vr 90.9 lbf (3) 2 in.2 

= — x 
2 

ft' 1.25 in. 
ft' 144 in / 

T = 11.2 in. • lbf 

The power dissipated in the bearing is 

W = FV = FRio = Tw 

11.2 in. lbf 3600 rev min 2rr rad ft hp • s 
x x X X X — 

min 60s rev 12 in. 550 ft • lbf 
W = 0.640 hp <_ W 

To ensure laminar flow, check the Reynolds number. 

pUa _ SG Pn^Va _ SG p^^uiRa 
Re = 

P 

Assume, as an approximation, the specific gravity of SAE 30 oil is the same as that of SAE 10W oil. From 
Table A.2, Appendix A, SG = 0.92. Thus 

„ 0.92 1.94 slug (3600)27rrad 1.5 in. 0.00125 in. 
Re = x — ^ x — x x 

60 

ft' ft' lbf • s ' 
2.01 x 10^* lbf • s 144 in.' slug • ft 

Re = 43.6 
Therefore, the flow is laminar, since Re « 1500. 

lit BiESLlOTECA 

11. E. a. 
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In this problem we approximated the circular-streamline flow in 
a small annular gap as a linear flow between infinite parallel 
plates. As we saw in Example Problem 5.10, for the small value 
of the gap width a to radius R ratio alR (in this problem < 1 %), 
the error in shear stress is about '/2 of this ratio. Hence, the error 
introduced is insignificant—much less than the uncertainty as­
sociated with obtaining a viscosity for the oil. 

We have seen how steady, one-dimensional laminar flows between two plates can bd 
generated by applying a pressure gradient, by moving one plate with respect to the! 
other, or by having both driving mechanisms present. To finish our discussion of this 
type of flow, Example Problem 8.3 examines a gravity-driven steady, one-dimensional 
laminar flow down a vertical wall. Once again, the direct approach would be to start 
with the two-dimensional rectangular coordinate form of the Navier-Stokes equations 
(Eqs. 5.27); instead we will use a differential control volume. 

EXAMPLE 8.3 Laminar Film on a Vertical Wall 

A viscous, incompressible, Newtonian liquid flows in steady, laminar flow down a 
vertical wall. The thickness, 8, of the liquid film is constant. Since the liquid free S U M 
face is exposed to atmospheric pressure, there is no pressure gradient. For this gravity-! 
driven flow, apply the momentum equation to differential control volume dxdydz to| 
derive the velocity distribution in the liquid film. 

EXAMPLE PROBLEM 8.3 

GIVEN: Fully developed laminar flow of 
incompressible, Newtonian liquid 
down a vertical wall; thickness, 5, 
of the liquid film is constant and 
dp/dx = 0. 

FIND: Expression for the velocity distribu­
tion in the film. 

SOLUTION: 
The x component of the momentum equation 
for a control volume is 

Fs +FB = — \ upd¥+\ upVdA (4.18a) 
* dt Jcv Jcs 

Under the conditions given we are dealing with a steady, incompressible, fully developed laminar flow. 

d r 
For steady flow, — u pd¥ = 0 

dt Jcv 

For fully developed flow, J « pV • dA = 0 
Thus the momentum equation for the present case reduces to 

41 
Differential 

-control 
volume r4,, dx dz 

dy pg dx dy dz 
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The body force, Fg , is given by FBx - pgdY = pg dx dy dz. The only surface forces acting on the differ­
ential control volume are shear forces on the vertical surfaces. (Since dp/dx = 0, no net pressure forces act 

[on the control volume.) 
If the shear stress at the center of the differential control volume is T v j , then, 

shear stress on left face is r 

and 

shear stress on right face is T 

d r y x dy) 

vx , « 

dy 2 

dT dy^ 

y x dy 2 

The direction of the shear stress vectors is taken consistent with the sign convention of Section 2-3. Thus on 
ithe left face, a minus y surface, ryXl acts upward, and on the right face, a plus y surface, TyXR acts downward. 

The surface forces are obtained by multiplying each shear stress by the area over which it acts. Sub-
'. stituting into Fs + FR = 0, we obtain 

- T dxdz + T y X R dxdz + pg dxdydz = 0 

or 

•yx 

dryx dy 

dy 2) 
dxdz Tyx + 

dTyx dy 

dy 2) 
dx dz + pg dx dy dz = 0 

Simplifying gives 

. Since 

dr 
-f^ + pg = 0 or 
dy 

dr 
dy 

yx_ _ -Pg 

Tyx = p 
du 
dy 

d2u 

Integrating with respect to y gives 

Integrating again, we obtain 

then p—=" = ~P8 ^ d 
dy 

du pg 
dy p 

d2u 

dy2 

£1 

M l . 
p 2 

i To evaluate constants cx and c 2 , we apply appropriate boundary conditions: 

(i) y = 0, u = 0 (no-slip) 
du 

(ii) y = 5, — = 0 (neglect air resistance, i.e., assume zero shear stress at free surface) 
dy 

From boundary condition (i), c2 = 0 

From boundary condition (ii), o = - — 8 + c{ or q = —8 
p p 

Hence, u = _Ky_ + Bl8y o r u = PiS2 
p 2 p p 

Hz 
2\8 

"(>') 
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Using the velocity profile it can be shown that: 
pg ^ 

the volume flow rate is Qll = — cT 

ng 2 
the maximum velocity is UMAX = R— 6 2 M 

pg n 

the average velocity is V = !-2- 5 
3M 

Flow in the liquid film is laminar for Re = V8/v < 1000 []]. 

1 

'a 

Notes: 
This problem is a special case (0 = 90°) of the inclined 
plate flow analyzed in Example Problem 5.9 that we 
solved using the Navier-Stokes equations. 
This problem and Example Problem 5.9 demonstrate that 
use of the differential control volume approach or the 
Navier-Stokes equations, leads to the same result. 

8-3 FULLY DEVELOPED LAMINAR FLOW IN A PIPE 

As a final example of fully developed laminar flow, let us consider fully developed} 
laminar flow in a pipe. Here the flow is axisymmetric. Consequently it is most con-] 
venient to work in cylindrical coordinates. This is yet another case where we could) 
use the Navier-Stokes equations, this time in cylindrical coordinates (Eqs. B.3). In-! 
stead we will again take the longer route—using a differential control volume—to-
bring out some important features of the fluid mechanics. The development will be 
very similar to that for parallel plates in the previous section; cylindrical coordinates 
just make the analysis a little trickier mathematically. Since the flow is axisymmetric, 
the control volume will be a differential annulus, as shown in Fig. 8.6. The control 
volume length is dx and its thickness is dr. 

For a fully developed steady flow, the x component of the momentum equation 
(Eq. 4.18a), when applied to the differential control volume, reduces to 

Fs = 0 

Annular differential 

[a) End view of CV (M Side v iew of CV (c) Forces on CV 

Fig . 8.6 D i f fe rent ia l c o n t r o l v o l u m e for a n a l y s i s of ful ly d e v e l o p e d l a m i n a r f l ow in a p ipe . 
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The next step is to sum the forces acting on the control volume in the x direction. We 
know that normal forces (pressure forces) act on the left and right ends of the control 
volume, and that tangential forces (shear forces) act on the inner and outer cylindrical 
surfaces. 

If the pressure at the left face of the control volume is p, then the pressure force 
on the left end is 

dFL = plirrdr 

The pressure force on the right end is 

dFR = -^p + |^<&cj 2-nr dr 

If the shear stress at the inner surface of the annular control volume is rrx, then 
the shear force on the inner cylindrical surface is 

dFj = —rrx2Trrdx 

The shear force on the outer cylindrical surface is 

dr 
dF0 = \ j r x + drj 2-77 (r + dr) dx 

The sum of the x components of force acting on the control volume must be 
zero. This leads to the condition that 

-^-2TTT drdx + T r r 277 dr dx + ^ ^ - 2 T 7 T dr dx - 0 
ox dr 

Dividing this equation by 27TT dr dx and solving for dp/dx gives 

dP = lrx_ + °Kx_ = 1 d(rTrx) 
dx r dr r dr 

Comparing this to the corresponding equation for parallel plates (Eq. 8.3) shows the 
mathematical complexity introduced because we have cylindrical coordinates. The 
left side of the equation is at most a function of x only (the pressure is uniform at 
each section); the right side is at most a function of r only (because the flow is fully 
developed). Hence, the only way the equation can be valid for all x and r is for both 
sides to in fact be constant: 

1 d(rTrx) dp d(rrrx) dp 
- — — — = = constant or " = 
r dr dx dr dx 

Integrating this equation, we obtain 

^fdp 
2 [dx + c, 

or 
r dp\ c 

7 » = 2 f r + , ( 8 ' 1 0 ) 

Since T , V = a — , we have 
" dr 
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and 

u = 
4p 

\ + — In r + c 2 

^dx J fi 

(8.11 

We need to evaluate constants c, and c2. However, we have only the one boundary 
condition that u = 0 at r = R. What do we do? Before throwing in the towel, let us 
look at the solution for the velocity profile given by Eq. 8.11. Although we do not 
know the velocity at the pipe centerline, we do know from physical consideration* 
that the velocity must be finite at r = 0. The only way that this can be true is for c, td 
be zero. (We could have also concluded that c, = 0 from Eq. 8.10—which would 
otherwise yield an infinite stress at r = 0.) Thus, from physical considerations, wa 
conclude that c, = 0, and hence 

4/i \ dx 
c 7 

The constant, c 2 , is evaluated by using the available boundary condition at the pipe] 
wall: at r — R, u — 0. Consequently, 

4p{dx) 2 

This gives 

and hence 

c 2 4p {dx 

'dp) 'dp) 1 
4/x ydx) 4p ,dxj " 4p ydx) 

or 

u = 
4p \dx 

(8.12) 

Since we have the velocity profile, we can obtain a number of additional features of 
the flow. 

Shear St ress Distr ibution 

The shear stress is 

Vo lume F low Rate 

The volume flow rate is 

rrx = P 
du 

Tr 2{dx 
(8.13a) 

Q = f V d A = \Ru2Trrdr= f *— [ ^ | ( r 2 - R2)2irr dr 
•M Jo Jo 4p\dx) 

irR4 ( 3p N 

Q = - 8/u, \dx 
(8.13b) 
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Flow Rate as a Funct ion of P ressure Drop 

In fully developed flow, the pressure gradient, dpldx, is constant. Therefore, dpldx = 
(Pi ~ P\)IL = —b-plL. Substituting into Eq. 8.13b for the volume flow rate gives 

Q = -
TTR 4 r 

8/Ll 

-Ap nApR4 _ irApD 
%pL \2%pL 

(8.13c) 

for laminar flow in a horizontal pipe. Note that Q is a sensitive function of D. 

Ave rage Veloci ty 

The average velocity magnitude, V, is given by 

Q_ _j?_(dp 
7TRZ 8/u. ydx 

(8.13d) 

Point of Max imum Veloci ty 

To find the point of maximum velocity, we set duldr equal to zero and solve for the 
corresponding r. From Eq. 8.12 

du _ J_(dp 
dr 2p\dx 

Thus, 

At r = 0, 

du „ „ 
— = 0 at r = 0 
dr 

u = "max = U = ~ -7-
4p 

(Bp 
dx 

= 2V (8.13e) 

The velocity profile (Eq. 8.12) may be written in terms of the maximum (centerline) 
velocity as 

The parabolic velocity profile, given by Eq. 8.14 for fully developed laminar 
pipe flow, was sketched in Fig. 8.1. 

8.4 Capillary Viscometer 

A simple and accurate viscometer can be made from a length of capillary tubing. If 
the flow rate and pressure drop are measured, and the tube geometry is known, the 
viscosity of a Newtonian liquid can be computed from Eq. 8.13c. A test of a certain 
liquid in a capillary viscometer gave the following data: 

Flow rate: 880 mm 3 /s Tube length: 1 m 
Tube diameter: 0.50 mm Pressure drop: 1.0 MPa 

Determine the viscosity of the liquid. 
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EXAMPLE PROBLEM 8.4 

GIVEN: Flow in a capillary viscometer. 

The flow rate is Q = 880 mmVs. 

FIND: The fluid viscosity. 

SOLUTION: 

Equation 8.13c may be applied. 

Governing equation: 
Assumptions: (1) Laminar flow. 

(2) Steady flow. 
(3) Incompressible flow. 
(4) Fully developed flow. 
(5) Horizontal tube. 

Flow • 
CV • D = 0.5 mm 

L = 1 m 

© (2 

Ap = p x - p 2 = 1.0 MPa 

Q = 
irApD 
mpL 

(8.13c« 

Then 

-rrApD4 TT 1.0 x 10 N (0.50) mm 
a = — = x - ^ r x x 

128LQ 128 m 2 

p. = 1.74 x 10~3 N • s/m2 , 

880 mm 3 1 m 10 3 mm 

Check the Reynolds number. Assume the fluid density is similar to that of water, 999 kg/m3. Then 

- Q 4(3 4 880 mm 3 

V = — = — = — x x 
A TTD TT s 

1 
(0.50)2 mm 2 10 3 mm 

4.48 m/s 

and 

pVD 999 kg 4.48 m 0.50 mm 
Re = - — = — \ x — x x 

u, m s 

Re = 1290 
Consequently, since Re < 2300, the flow is laminar. 

m m N • s x x 
1 . 7 4 x l O " 3 N s 103 mm kg • m 

This problem is a little oversimplified. To design a capillary 
viscometer the entrance length, liquid temperature, and kinetic 
energy of the flowing liquid would all need to be considered. 

f1 

P A R T B F L O W IN P I P E S A N D D U C T S 

Our main purpose in this section is to evaluate the pressure changes that result from 
incompressible flow in pipes, ducts, and flow systems. Assume for a moment friction­
less flow. This is unrealistic for duct flow, but is nevertheless useful for seeing what 
factors affect the pressure. The Bernoulli equation (Eq. 6.8) indicates that the pres­
sure will only change if we have a change in potential or velocity. For example, in a 
horizontal duct of constant cross-section (constant potential and velocity) the pres-
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sure would be constant. If this duct had an increase in area (decrease in velocity), the 
pressure would increase; for a constant area duct sloping upwards (increasing poten­
tial), the pressure would decrease. We now need to see how these trends are modified 
by the fact that all real duct flows have friction. For example, in a constant area hori­
zontal duct the effect of friction will be to decrease pressure, causing a pressure 
"loss" compared to the ideal, frictionless flow case. To simplify analysis, the "loss" 
will be divided into major losses (caused by friction in constant-area portions of the 
system) and minor losses (resulting from flow through valves, tees, elbows, and fric-
tional effects in other nonconstant-area portions of the system). 

To develop relations for major losses due to friction in constant-area ducts, we shall 
deal with fully developed flows in which the velocity profile is unvarying in the direction 
of flow. Our attention will focus on turbulent flows, since the pressure drop for fully de­
veloped laminar flow in a pipe can be calculated from the results of Section 8-3. The 
pressure drop that occurs at the entrance of a pipe will be treated as a minor loss. 

Since ducts of circular cross section are most common in engineering applica­
tions, the basic analysis will be performed for circular geometries. The results can be 
extended to other geometries by introducing the hydraulic diameter, which is treated 
in Section 8-7. (Compressible flow in ducts will be treated in Chapter 12.) 

SHEAR STRESS DISTRIBUTION IN FULLY DEVELOPED PIPE FLOW 

We consider again fully developed flow in a horizontal circular pipe, except now we 
may have laminar or turbulent flow. In Section 8-3 we showed that a force balance 
between friction and pressure forces leads to Eq. 8.10: 

dp 
dx r 

(8.10) 

Because we cannot have infinite stress at the centerline, the constant of integration c, 
must be zero, so 

r dp 
2 dx 

(8.15) 

Equation 8.15 indicates that for both laminar and turbulent fully developed flows the 
shear stress varies linearly across the pipe, from zero at the centerline to a maximum 
at the pipe wall. The stress on the wall, T W (equal and opposite to the stress in the 
fluid at the wall), is given by 

= _ 
2 a* 

(8.16) 

For laminar flow we used our familiar stress equation T„ = pduldr in Eq. 8.15 to 
eventually obtain the laminar velocity distribution. This led to a set of usable equa­
tions, Eqs. 8.13, for obtaining various flow characteristics; e.g., Eq. 8.13c gave a rela­
tionship for the flow rate Q , a result first obtained experimentally by Jean Louis 
Poiseuille, a French physician, and independently by Gotthilf H. L. Hagen, a German 
engineer, in the 1850s [2]. 

Unfortunately there is no equivalent stress equation for turbulent flow, so we 
cannot replicate the laminar flow analysis to derive turbulent equivalents of Eqs. 8.13. 
All we can do in this section is indicate some classic semi-empirical results. 
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bu len t f l ow in a p i p e . (Data f r o m [5].) 

As we discussed in Section 2-6, and illustrated in Fig. 2.15, turbulent flow is 
represented at each point by the time-mean velocity u plus (for a two-dimensionaj 
flow) randomly fluctuating velocity components u' and v' in the x and y directions (ill 
this context y is the distance from the pipe wall). These components continuously 
transfer momentum between adjacent fluid layers, tending to reduce any velocity g r a 
dient present. This effect shows up as an apparent stress, first introduced by Osbornl 
Reynolds, and called the Reynolds stress? This stress is given by —pu'v', where the 
overbar indicates a time average. Hence, we find 

du —r-, 
T = T l a m + T t u r b = P — - P U V (8.17 j 

dy 
In Fig. 8.7, experimental measurements of the Reynolds stress for fully developed 
turbulent pipe flow at two Reynolds numbers are presented; Rev — UD/u, where If, 
is the centerline velocity. The turbulent shear stress has been nondimensionalizedl 
with the wall shear stress. Since the total shear stress varies linearly across the pipe' 
radius, the data show that turbulent shear is dominant over the center region of the 
pipe. Close to the wall (not shown in Fig. 8.7), the no-slip condition holds, so not 
only does the mean velocity u —> 0, but also the fluctuating velocity components «' 
and v' —> 0 (the wall tends to suppress the fluctuations). Hence, the turbulent stress, 
Tiurb = -pu'v' —> 0, as we approach the wall, and is zero at the wall. Since the 
Reynolds stress is zero at the wall, Eq. 8.17 shows that the wall shear is given by 
TW = p,(du/dy)y In the region very close to the wall, called the wall layer, viscous 
shear is dominant. In the region between the wall layer and the central portion of the 
pipe both viscous and turbulent shear are important. 

0.8 
-pu'v' 

0.6 

0.4 

8-5 TURBULENT VELOCITY PROFILES IN FULLY DEVELOPED PIPE FLOW 

Except for flows of very viscous fluids in small diameter ducts, internal flows gener­
ally are turbulent. As noted in the discussion of shear stress distribution in fully 
developed pipe flow (Section 8-4), in turbulent flow there is no universal relationship 

3 The Reynolds stress terms arise from consideration of the complete equations of motion for turbulent 
flow [4], 
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F ig . 8.8 T u r b u l e n t v e l o c i t y prof i le for ful ly d e v e l o p e d f low in a s m o o t h p i p e . ( D a t a 
f r o m [5].) 

between the stress field and the mean velocity field. Thus, for turbulent flows we are 
forced to rely on experimental data. 

Dividing Eq. 8.17 by p gives 

T 

P 

du — 
v uv 

dy 
(8.18) 

The term i7p arises frequently in the consideration of turbulent flows; it has dimen­
sions of velocity squared. In particular, the quantity (Twlp)m is called the friction 
velocity and is denoted by the symbol u*. 

The velocity profile for fully developed turbulent flow through a smooth pipe is 
shown in Fig. 8.8. The plot is semi logarithmic; ii/u, is plotted against log (yuJv). 
The nondimensional parameters u/u, and yuJv arise from dimensional analysis if 
one reasons that the velocity in the neighborhood of the wall is determined by the 
conditions at the wall, the fluid properties, and the distance from the wall. It is simply 
fortuitous that the dimensionless plot of Fig. 8.8 gives a fairly accurate representation 
of the velocity profile in a pipe away from the wall; note the small deviations in the 
region of the pipe centerline. 

In the region very close to the wall where viscous shear is dominant, the mean 
velocity profile follows the linear viscous relation 

+ u yu* + 

u = — = = y 
u* v 

(8.19) 

where y is distance measured from the wall (y = R — r, R is the pipe radius), and u 
is mean velocity. Equation 8.19 is valid for 0 < v + ^ 5-7; this region is called the 
viscous sublayer. 

For values of yuJv > 30, the data are quite well represented by the semiloga-
rithmic equation 

J L = 2 . 5 1 n ^ + 5 . o f^ T , "cSS(8.20) 

BiBLiqiaa 
• L P a 
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In this region both viscous and turbulent shear are important (although turbulenl 
shear is expected to be significantly larger). There is considerable scatter in the nu­
merical constants of Eq. 8.20; the values given represent averages over many experi­
ments [6]. The region between y + = 5-7 and y + = 30 is referred to as the transition 
region, or buffer layer. 

If Eq. 8.20 is evaluated at the centerline (y - R and u = U) and the general ex­
pression of Eq. 8.20 is subtracted from the equation evaluated at the centerline, we 
obtain 

U-u „ C 1 R 
= 2.5 In — 

w * y 
(8.211 

where U is the centerline velocity. Equation 8.21, referred to as the defect law, shov 
that the velocity defect (and hence the general shape of the velocity profile in 
neighborhood of the centerline) is a function of the distance ratio only and does no 
depend on the viscosity of the fluid. 

The velocity profile for turbulenl flow through a smooth pipe may also be ap-j 
proximated by the empirical power-law equation 

.1/71 / \ 1//1 

u 

(8.22) 

where the exponent, n, varies with the Reynolds number. In Fig. 8.9 the data of] 
Laufer [5] are shown on a plot of In ylR versus In u IU. If the power-law profile were 
an accurate representation of the data, all data points would fall on a straight line of 
slope n. Clearly the data for Re,, = 5 X 10 4 deviate from the best-fit straight line in 
the neighborhood of the wall. 

The power-law profile is not applicable close to the wall (y/R < 0.04). Since the 
velocity is low in this region, the error in calculating integral quantities such as mass, 
momentum, and energy fluxes at a section is relatively small. The power-law profile 
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Fig . 8.9 Power- law veloc i ty prof i les for ful ly deve loped turbulent 
f low in a s m o o t h p ipe. (Da ta f rom [5].) 
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gives an infinite velocity gradient at the wall and hence cannot be used in calculations 
of wall shear stress. Although the profile fits the data close to the centerline, it fails to 
give zero slope there. Despite these shortcomings, the power-law profile is found to 
give adequate results in many calculations. 

Data from [7] suggest that the variation of power-law exponent n with Reynolds 
number (based on pipe diameter, D, and centerline velocity, U) for fully developed 
flow in smooth pipes is given by 

n = - 1 . 7 + 1.8 log/?e t , (8.23) 

fo r / f ey > 2 X 10 4. 
Since the average velocity is V = Q/A, and 

Q = jAV-dA 

the ratio of the average velocity to the centerline velocity may be calculated for the 
power-law profiles of Eq. 8.22 assuming the profiles to be valid from wall to center-
line. The result is 

U (n + 1)(2« + 1) ' 

From Eq. 8.24, we see that as n increases (with increasing Reynolds number) the ra­
tio of the average velocity to the centerline velocity increases; with increasing 
Reynolds number the velocity profile becomes more blunt or "fuller" (for n = 6, 
VIII = 0.79 and for n = 10, V/U = 0.87). As a representative value, 7 often is used 
for the exponent; this gives rise to the term "a one-seventh power profile" for fully 
developed turbulent flow. 

Velocity profiles for n = 6 and n = 10 are shown in Fig. 8.10. The parabolic 
profile for fully developed laminar flow is included for comparison. It is clear that the 
turbulent profile has a much steeper slope near the wall. This is consistent with our 
discussion leading to Eq. 8.17—the fluctuating velocity components u and v' con­
tinuously transfer momentum between adjacent fluid layers, tending to reduce the 
velocity gradient. 
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8-6 ENERGY CONSIDERATIONS IN PIPE FLOW 

Thus far in our discussion of viscous flow, we have derived all results by applying the 
momentum equation for a control volume. We have, of course, also used the control] 
volume formulation of conservation of mass. Nothing has been said about conserva­
tion of energy—the first law of thermodynamics. Additional insight into the nature] 
of the pressure losses in internal viscous flows can be obtained from the energy 
equation. Consider, for example, steady flow through the piping system, including a 
reducing elbow, shown in Fig. 8.11. The control volume boundaries are shown as 
dashed lines. They are normal to the flow at sections © and © and coincide with] 
the inside surface of the pipe wall elsewhere. 

Basic equation: 

= 0(1) = 0(2) = 0(1) = 0(3) 

a Q - W- w. 
CV 

e p dV + (e + pv) pV • dA (4.56) 

Assumptions: (1) 
(2) 

(3) 

e = u + 
2 

+ gz 

Ws = 0, WolheT = 0 
''Hhear = 0 (although shear stresses are present at the walls of the I 

elbow, the velocities are zero there). 
Steady flow. 

(4) Incompressible flow. 
(5) Internal energy and pressure uniform across sections © and © . 1 

Under these assumptions the energy equation reduces to 

Q = m(u2 — « i ) + /w Pi P\ + mg(z2 - Zi) 

lfpV2dA2-lA^pV} (8.25 

Note that we have not assumed the velocity to be uniform at sections © and © , 
since we know that for viscous flows the velocity at a cross-section cannot be uni­
form. However, it is convenient to introduce the average velocity into Eq. 8.25) 
so that we can eliminate the integrals. To do this, we define a kinetic energy 
coefficient. 

C V -

© 
Flow 

© 

Fig. 8.11 Cont ro l vo lume and coord ina tes for energy 
ana lys is of f low th rough a 90 ' reduc ing e lbow. 
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Kinetic Energy Coefficient 
The kinetic energy coefficient, a, is defined such that 

r V2 r V2 V2 

— pVdA = a\ —pVdA = am— (8.26a) 
J A 2 J A 2 2 

[ pV7dA 
a = J A „ (8.26b) 

mV2 

We can think of a as a correction factor that allows us to use the average velocity V to 
compute the kinetic energy at a cross section. For laminar flow in a pipe (velocity 
profile given by Eq. 8.12), a = 2.0. 

In turbulent pipe flow, the velocity profile is quite flat, as shown in Fig. 8.10. We 
can use Eq. 8.26b together with Eqs. 8.22 and 8.24 to determine a. Substituting the 
power-law velocity profile of Eq. 8.22 into Eq. 8.26b, we obtain 

£/V 2n2 

or 

a = \ ^ \ — (8.27) 

{vj (3 + n)(3 + 2«) 

The value of V/U is given by Eq. 8.24. For n = 6, a = 1.08 and for n = 10, a = 1.03. 
Since the exponent, n, in the power-law profile is a function of Reynolds number, a 
also varies with Reynolds number. Because a is reasonably close to unity for high 
Reynolds numbers, and because the change in kinetic energy is usually small compared 
with the dominant terms in the energy equation, we shall almost always use the approx­
imation a = I in our pipe flow calculations. 

Head Loss 
Using the definition of a, the energy equation (Eq. 8.25) can be written 

1 + mg(z2 ~ Z]) + rh 
KP P ) 

Q = m(u2 — U\) + rh fa2v\ a,vV 
Dividing by the mass flow rate gives 

A 2 V 2 SQ pi p. 
-f. = u2 - M , + ^ - £L + gz2 - gzx + 
am P P 2 

a]V{ 

Rearranging this equation, we write 

P\ v 2 

P 2 

f 
P2 
— + a 2 ^ + gz2 

P 2 
(u2 -«])-

J 

SQ 
dm 

In Eq. 8.28, the term 

P v 2 

- + a — - + gz 
P 2 

(8.28) 

represents the mechanical energy per unit mass at a cross section. The term u2 - U\ -
8Q/dm is equal to the difference in mechanical energy per unit mass between sections 
(T) and (2). It represents the (irreversible) conversion of mechanical energy at sec­
tion (T) to unwanted thermal energy (w2 - uy) and loss of energy via heat transfer 
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(-SQ/dm). We identify this group of terms as the total energy loss per unit mass and 
designate it by the symbol h, . Then 

( 
EL + a , 

Pl V l 
— + "i^r + gz2 

v P 2 

(8.29) 

The dimensions of energy per unit mass FUM are equivalent to dimensions of LVt1. 
Equation 8.29 is one of the most important and useful equations in fluid mechanics. It 
enables us to compute the loss of mechanical energy caused by friction between two 
sections of a pipe. We recall our discussion at the beginning of Part B, where we dis­
cussed what would cause the pressure to change. We hypothesized a frictionless flow 
(i.e., described by the Bernoulli equation, or Eq. 8.29 with a = 1 and = 0) so that 
the pressure could only change if the velocity changed (if the pipe had a change in di­
ameter), or if the potential changed (if the pipe was not horizontal). Now, with 
friction, Eq. 8.29 indicates that the pressure will change even for a constant area hori­
zontal pipe—mechanical energy will be continuously changed into thermal energy. 

As the empirical science of hydraulics developed during the nineteenth century, 
it was common practice to express the energy balance in terms of energy per unit 
weight of flowing liquid (e.g., water) rather than energy per unit mass, as in Eq. 8.29, 
When Eq. 8.29 is divided by the acceleration of gravity, g, we obtain 

KPg 
+ a. 

2g 
+ Z] 

Pi_ 
pg 2g g 

(8.30) 

Each term in Eq. 8.30 has dimensions of energy per unit weight of flowing fluid. 
Then the net dimensions of HT = hlrlg are (L 2/r 2)(f 2/L) = L, or feet of flowing liquid! 
Since the term head loss is in common use, we shall use it when referring to either 
H1T (with dimensions of energy per unit weight or length) or hlr = gHlr (with dimen-l 
sions of energy per unit mass). 

Equation 8.29 (or Eq. 8.30) can be used to calculate the pressure difference be- j 
tween any two points in a piping system, provided the head loss, hlr (or Hly), can re­
determined. We shall consider calculation of head loss in the next section. 

8-7 CALCULATION OF HEAD LOSS 

Total head loss, h,, is regarded as the sum of major losses, hh due to frictional effects 
in fully developed flow in constant-area tubes, and minor losses, h, , resulting from 
entrances, fittings, area changes, and so on. Consequently, we consider the major and I 
minor losses separately. 

Major Losses: Friction Factor 

The energy balance, expressed by Eq. 8.29, can be used to evaluate the major head 
loss. For fully developed flow through a constant-area pipe, h, = 0, and ax (V 2 /2) =m 
a2 (V\I2); Eq. 8.29 reduces to 

P i - Pi = g(z2 - zO + h, (8.31) 
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If the pipe is horizontal, then z 2

 = Z\ and 

Pi - Pi = Ap 
P P 

(8.32) 

Thus the major head loss can be expressed as the pressure loss for fully developed 
flow through a horizontal pipe of constant area. 

Since head loss represents the energy converted by frictional effects from mechanical 
to thermal energy, head loss for fully developed flow in a constant-area duct depends only 
on the details of the flow through the duct. Head loss is independent of pipe orientation. 

a. Laminar F low 

In laminar flow, the pressure drop may be computed analytically for fully developed 
flow in a horizontal pipe. Thus, from Eq. 8.13c, 

Ap 
\2SpLQ mpLV(irD2/4) 

TTLT TTD 
32 

Substituting in Eq. 8.32 gives 

h, = 32 — 
L pV L V1' 

64 P 
pVD 

L pV 
D D 

64 \ L V 
— — (8.33) 

Re D 2 D pD D 2 \ 

(We shall see the reason for writing ht in this form shortly.) 

b. Turbulent F low 

In turbulent flow we cannot evaluate the pressure drop analytically; we must resort to ex­
perimental results and use dimensional analysis to correlate the experimental data. In 
fully developed turbulent flow, the pressure drop, Ap, caused by friction in a horizontal 
constant-area pipe is known to depend on pipe diameter, D, pipe length, L, pipe rough­
ness, e, average flow velocity,V, fluid density, p, and fluid viscosity, p. In functional form 

Ap = Ap(D, L, e, V, p, p) 

We applied dimensional analysis to this problem in Example Problem 7.2. The results 
were a correlation of the form 

Ap_ 

PV2 
= / p L e 

{pV~D'~D'~D 

We recognize that pJpVD = l/Re, so we could just as well write 

Ap 

PV1 

Substituting from Eq. 8.32, we see that 

2 = n R e > - 5 > D 

V2 
4>\ Re,-,-

D D 

Although dimensional analysis predicts the functional relationship, we must obtain 
actual values experimentally. 

Experiments show that the nondimensional head loss is directly proportional to 
LJD. Hence we can write 

file:///2SpLQ
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Since the function, d>u is still undetermined, it is permissible to introduce a constant 
into the left side of the above equation. The number \ is introduced into the denorni-] 
nator so that the left side of the equation is the ratio of the head loss to the kinetic en­
ergy per unit mass of flow. Then 

l y 2 D T \ D, 

The unknown function, <p2 (Re, elD), is defined as the friction factor, f, 

e 

and 

f = <t>2\Re, l 

L V2 I 
f — — (8.34) 

D 2 

or 
L ?2 

D 2g 
The friction factor 4 is determined experimentally. The results, published by L. F. Moody 
[8], are shown in Fig. 8.12. 

To determine head loss for fully developed flow with known conditions, the 
Reynolds number is evaluated first. Roughness, e, is obtained from Table 8.1. Theifl 
the friction factor,/, can be read from the appropriate curve in Fig. 8.12, at the knowrj 
values of Re and e/D. Finally, head loss can be found using Eq. 8.34 or Eq. 8.35. 

Several features of Fig. 8.12 require some discussion. The friction factor f q 
laminar flow may be obtained by comparing Eqs. 8.33 and 8.34: 

MM V2 „ L V2 

\ReJD 2 * I 

Table 8.1 Roughness for Pipes of Common Engineering Materials (Data from [8]) 

Pipe 

Roughness, e 

Pipe Feet Millimeters 

Riveted steel 0.003-0.03 0.9-9 
Concrete 0.001-0.01 0.3-3 
Wood stave 0.0006-0.003 0.2-0.9 
Cast iron 0.00085 0.26 
Galvanized iron 0.0005 0.15 
Asphalted cast iron 0.0004 0.12 
Commercial steel 

or wrought iron 0.00015 0.046 
Drawn tubing 0.000005 0.0015 

4 The friction factor defined by Eq. 8.34 is the Darcy friction factor. The Fanning friction factor, less fred 
quently used, is defined in Problem 8.83. 

file:///ReJD
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fl laminar 
64 
Re 

(8.: 

Thus, in laminar flow, the friction factor is a function of Reynolds number only; it is 
independent of roughness. Although we took no notice of roughness in deriving Eq. 
8.33, experimental results verify that the friction factor is a function only of Reynolds 
number in laminar flow. 

The Reynolds number in a pipe may be changed most easily by varying the average I 
flow velocity. If the flow in a pipe is originally laminar, increasing the velocity until the ] 
critical Reynolds number is reached causes transition to occur; the laminar flow gives 
way to turbulent flow. The effect of transition on the velocity profile was discussed in ' 
Section 8-5. Figure 8.10 shows that the velocity gradient at the tube wall is much larger 
for turbulent flow than for laminar flow. This change in velocity profile causes the wall I 
shear stress to increase sharply, with the same effect on the friction factor. 

As the Reynolds number is increased above the transition value, the velocity pro- I 
file continues to become fuller, as noted in Section 8-5. For values of relative rough­
ness e/D ^ 0.001, the friction factor at first tends to follow the smooth pipe curve, 
along which friction factor is a function of Reynolds number only. However, as the 
Reynolds number increases, the velocity profile becomes still fuller. The size of the 
thin viscous sublayer near the tube wall decreases. As roughness elements begin to 
poke through this layer, the effect of roughness becomes important, and the friction 
factor becomes a function of both the Reynolds number and the relative roughness. J 

At very large Reynolds number, most of the roughness elements on the tube wall 
protrude through the viscous sublayer; the drag and, hence, the pressure loss, depend 
only on the size of the roughness elements. This is termed the "fully rough" flow 
regime; the friction factor depends only on e/D in this regime. 

For values of relative roughness e/D > 0.001, as the Reynolds number is in- I 
creased above the transition value, the friction factor is greater than the smooth pipe I 
value. As was the case for lower values of e/D, the value of Reynolds number at which 
the flow regime becomes fully rough decreases with increasing relative roughness. 

To summarize the preceding discussion, we see that as Reynolds number is in- I 
creased, the friction factor decreases as long as the flow remains laminar. At transi­
tion, / increases sharply. In the turbulent flow regime, the friction factor decreases I 
gradually and finally levels out at a constant value for large Reynolds number. 

Bear in mind that the actual loss of energy is hh (Eq. 8.34), which is proportional 
to / a n d V2. Hence, for laminar flow h, « V ( b e c a u s e / = 64/Re, and Re V); for the 
transition region there is a sudden increase in ht; for the fully rough zone 
(because / ~ const.), and for the rest of the turbulent region ht increases at a rate I 
somewhere between V and V2. We conclude that the head loss always increases with I 
flow rate, and more rapidly when the flow is turbulent. 

To avoid having to use a graphical method for obtaining / for turbulent flows, I 
various mathematical expressions have been fitted to the data. The most widely used I 
formula for friction factor is from Colebrook [9], 

]_ 
0.5 -2.0 log 

e/D 2.51 

3.7 Ref 0.5 (8.37; 

Consequently, for laminar flow 
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Equation 8.37 is implicit in / , but these days most scientific calculators have an 
equation-solving feature that can be easily used to find/for a given roughness ratio 
elD and Reynolds number Re (and some calculators have the Colebrook equation it­
self built in!). Certainly a spreadsheet such as Excel, or other mathematical computer 
applications, can also be used. Even without using these automated approaches 
Eq. 8.37 is not difficult to solve for /—al l we need to do is iterate [the expression is 
very stable, so almost any guess value (e.g., 0.1, 1, 10) will converge after a few 
iterations]. Miller [10] suggests that a single iteration will produce a result within 
1 percent if the initial estimate is calculated from [11] 

1-2 

/o = 0.25 
fe/D 5.74 ^ 

l 0 8 l l 7 - + ^ J 

For turbulent flow in smooth pipes, the Blasius correlation, valid for Re ^ 105, is 

, 0.316 
/ = ( 8 " 3 8 ) 

Re 

When this relation is combined with the expression for wall shear stress (Eq. 8.16), 
the expression for head loss (Eq. 8.32), and the definition of friction factor (Eq. 8.34), 
a useful expression for the wall shear stress is obtained as 

/ N0.25 

TW = 0 .0332pV 2 (^J (8.39) 

This equation will be used later in our study of turbulent boundary-layer flow over a 
flat plate (Chapter 9). 

All of the e values given in Table 8.1 are for new pipes, in relatively good condi­
tion. Over long periods of service, corrosion takes place and, particularly in hard wa­
ter areas, lime deposits and rust scale form on pipe walls. Corrosion can weaken 
pipes, eventually leading to failure. Deposit formation increases wall roughness ap­
preciably, and also decreases the effective diameter. These factors combine to cause 
elD to increase by factors of 5 to 10 for old pipes (see Problem 10.62). An example is 
shown in Fig. 8.13. 

Curves presented in Fig. 8.12 represent average values for data obtained from 
numerous experiments. The curves should be considered accurate within approxi­
mately ± 10 percent, which is sufficient for many engineering analyses. If more 
accuracy is needed, actual test data should be used. 

Minor Losses 

The flow in a piping system may be required to pass through a variety of fittings, 
bends, or abrupt changes in area. Additional head losses are encountered, prima­
rily as a result of flow separation. (Energy eventually is dissipated by violent 
mixing in the separated zones.) These losses will be minor (hence the term minor 
losses) if the piping system includes long lengths of constant-area pipe. Depend­
ing on the device, minor losses traditionally are computed in one of two ways, 
either 

V2 

h, = K— (8.40a) 

where the loss coefficient, K, must be determined experimentally for each situation, o 



For flow through pipe bends and fittings, the loss coefficient, K, is found to vary 
with pipe size (diameter) in much the same manner as the friction factor, / , for flow 
through a straight pipe. Consequently, the equivalent length, LJD, tends toward a 
constant for different sizes of a given type of fitting. 

Experimental data for minor losses are plentiful, but they are scattered among a 
variety of sources. Different sources may give different values for the same flow con-l 
figuration. The data presented here should be considered as representative for some 
commonly encountered situations; in each case the source of the data is identified, j 

a. Inlets and Exi ts 

A poorly designed inlet to a pipe can cause appreciable head loss. If the inlet has 
sharp corners, flow separation occurs at the corners, and a vena contracta is formed. 
The fluid must accelerate locally to pass through the reduced flow area at the vena 
contracta. Losses in mechanical energy result from the unconfined mixing as the flow 
stream decelerates again to fill the pipe. Three basic inlet geometries are shown in 
Table 8.2. From the table it is clear that the loss coefficient is reduced significantly] 
when the inlet is rounded even slightly. For a well-rounded inlet (r/D ^ 0.15) the en­
trance loss coefficient is almost negligible. Example Problem 8.9 illustrates a proce-l 
dure for experimentally determining the loss coefficient for a pipe inlet. 

The kinetic energy per unit mass, aV2f2, is completely dissipated by mixinJ 
when flow discharges from a duct into a large reservoir or plenum chamber. The situl 
ation corresponds to flow through an abrupt expansion with AR = 0 (Fig. 8.14). Tha 
minor loss coefficient thus equals a. No improvement in minor loss coefficient for an 
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Entrance Type Minor Loss 
Coefficient, K° 

Reentrant 

Square-edged 

Rounded 

0.78 

0.5 

r/D 0.02 0.06 > 0.15 
K 0.28 0.15 0.04 

0 Based on h: = K(V2/2), where V is the mean velocity in the pipe. 

exit is possible; however, addition of a diffuser can reduce V 2/2 and therefore h{ 

considerably (see Example Problem 8.10). 

b. En la rgements and Contract ions 

Minor loss coefficients for sudden expansions and contractions in circular ducts are 
given in Fig. 8.14. Note that both loss coefficients are based on the larger V 2 /2. Thus 
losses for a sudden expansion are based on V 2 /2, and those for a contraction are 
based on V\I2. 

Losses caused by area change can be reduced somewhat by installing a nozzle or 
diffuser between the two sections of straight pipe. Data for nozzles are given in Table 8.3. 

Losses in diffusers depend on a number of geometric and flow variables. Dif­
fuser data most commonly are presented in terms of a pressure recovery coefficient, 
Cp, defined as the ratio of static pressure rise to inlet dynamic pressure, 

(8.41) 

This indicates what fraction of the inlet kinetic energy shows up as a pressure 
rise. It is not difficult to show (using the Bernoulli and continuity equations) that the 

1.0 

0.8 

o 
" w 

0.6 

8 M 
— -5 
c 

0 .4 8 M 
— -5 
c 
o , 0.2 

0 :ra
ct

 0.2 

0 
c 

Contraction Expansion 

Area ratio, AR 

Fig. 8.14 Loss coef f ic ients for f low t h rough s u d d e n area 
changes . (Data f rom [1].) 

Table 8.2 Minor Loss Coefficients for Pipe Entrances (Data from [12].) 
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Table 8.3 Loss Coefficients (K) for Gradual Contractions: Round 
and Rectangular Ducts (Data from [13].) 

Included Angle, 6, Degrees 

Flow 

A2/A, 10 15-40 50-60 90 120 150 180 

0.50 0.05 0.05 0.06 0.12 0.18 0.24 0.26 
0.25 0.05 0.04 0.07 0.17 0.27 0.35 0.41 
0.10 0.05 0.05 0.08 0.19 0.29 0.37 0.43 

Note: Coefficients are based on h, = K(V$I2). 

ideal (frictionless) pressure recovery coefficient is given by 

(8.42 

where AR is the area ratio. Hence, the ideal pressure recovery coefficient is a function 
only of the area ratio. In reality a diffuser typically has turbulent flow, and the static 
pressure rise in the direction of flow may cause flow separation from the walls if the 
diffuser is poorly designed; flow pulsations can even occur. For these reasons the ac­
tual C p will be somewhat less than indicated by Eq. 8.42. For example, data for coni­
cal diffusers with fully developed turbulent pipe flow at the inlet are presented in Fig.l 
8.15 as a function of geometry. Note that more tapered diffusers (small divergence! 
angle qb or large dimensionless length AW?,) are more likely to approach the ideal 
constant value for Cp. As we make the cone shorter, for a given fixed area ratio we 
start to see a drop in Cp—we can consider the cone length at which this starts to hap­
pen the optimum length (it is the shortest length for which we obtain the maximunB 

0.5 0.8 1.0 1.5 2.0 3 .0 4.0 5.0 8.0 10.0 
Dimensionless length, i V / f t , 

Fig. 8.15 Pressure recovery for con ica l d i f fusers wi th ful ly deve loped turbu lent p ipe 
f low at inlet. (Data f rom [14].) 
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coefficient for a given area ratio). We can relate Cp to the head loss. If gravity is ne­
glected, and a, = a 2 = 1.0, Eq. 8.29 reduces to 

Thus, 

P2 3 1 
2 _ P 2 

P 2 " " P i 

= h, h, 

I - P 2 ~ Pi 

From continuity, A , V, = A 2 V 2 , s 0 

h, = 1 -
KA2j 

or 
i?2 

1 -
{ARY 

c„ 

(8.43) 

The frictionless result (Eq. 8.42) is obtained from Eq. 8.43 if fym = 0. We can com­
bine Eqs. 8.42 and 8.43 to obtain an expression for the head loss in terms of the 
actual and ideal Cp values: 

hi = ( c D - c D y (8.44) 

Performance maps for plane wall and annular diffusers [15] and for radial dif-
fusers [16] are available in the literature. 

Diffuser pressure recovery is essentially independent of Reynolds number for 
inlet Reynolds numbers greater than 7.5 x 10 4 [17]. Diffuser pressure recovery with 
uniform inlet flow is somewhat better than that for fully developed inlet flow. Perfor­
mance maps for plane wall, conical, and annular diffusers for a variety of inlet flow 
conditions are presented in [18]. 

Since static pressure rises in the direction of flow in a diffuser, flow may sepa­
rate from the walls. For some geometries, the outlet flow is distorted. The flow 
regime behavior of plane wall diffusers is illustrated well in the NCFMF video Flow 
Visualization. For wide angle diffusers, vanes or splitters can be used to suppress stall 
and improve pressure recovery [19]. 

c. Pipe Bends 

The head loss of a bend is larger than for fully developed flow through a straight 
section of equal length. The additional loss is primarily the result of secondary flow,5 

and is represented most conveniently by an equivalent length of straight pipe. The 
equivalent length depends on the relative radius of curvature of the bend, as shown in 
Fig. 8.16a for 90° bends. An approximate procedure for computing the resistance of 
bends with other turning angles is given in [12]. 

5 Secondary flows are shown in the NCl̂ MF video Secondary Flow. 
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5 10 
Relative radius, rID 

(a) 

15 15 30 45 60 75 
Deflection angle, 6 (degrees) 

( 6 ) 

90 

F ig . 8.1 
and (b) 

6 Represen ta t i ve total res is tance (L,,/D) for (a) 90° pipe bends and f langed elbows, 
mi ter bends . (Data f rom [12].) 

Because they are simple and inexpensive to construct in the field, miter bends 
ten are used in large pipe systems. Design data for miter bends are given in Fig. 8J 

d. Va l ves and Fitt ings 

Losses for flow through valves and fittings also may be expressed in terms of 
equivalent length of straight pipe. Some representative data are given in Table 8.4. 

All resistances are given for fully open valves; losses increase markedly w1" 
valves are partially open. Valve design varies significantly among manufact 
Whenever possible, resistances furnished by the valve supplier should be used 
accurate results are needed. 

Table 8.4 Representative Dimensionless Equivalent Lengths 
(LJD) for Valves and Fittings (Data from [12].) 

Fitting Type Equivalent Length," 
LJD 

Valves (fully open) 
Gate valve 8 
Globe valve 340 
Angle valve 150 
Ball valve 3 
Lift check valve: globe lift 600 

: angle lift 55 
Foot valve with strainer: poppet disk 420 

: hinged disk 75 
Standard elbow: 90° 30 

: 45° 16 
Return bend, close pattern 50 
Standard tee: flow through run 20 

: flow through branch 60 

1 Based on A 
V 
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Fittings in a piping system may have threaded, flanged, or welded connections. 
For small diameters, threaded joints are most common; large pipe systems frequently 
have flanged or welded joints. 

In practice, insertion losses for fittings and valves vary considerably, depending on 
the care used in fabricating the pipe system. If burrs from cutting pipe sections are al­
lowed to remain, they cause local flow obstructions, which increase losses appreciably. 

Although the losses discussed in this section were termed "minor losses," they can 
be a large fraction of the overall system loss. Thus a system for which calculations are to 
be made must be checked carefully to make sure all losses have been identified and their 
magnitudes estimated. If calculations are made carefully, the results will be of satisfac­
tory engineering accuracy. You may expect to predict actual losses within ± 10 percent. 

We include here one more device that changes the energy of the fluid—except 
this time the energy of the fluid will be increased, so it creates a "negative energy loss." 

Pumps, Fans, and Blowers in Fluid Systems 

In many practical flow situations (e.g., the cooling system of an automobile engine, 
the HVAC system of a building), the driving force for maintaining the flow against 
friction is a pump (for liquids) or a fan or blower (for gases). Here we will consider 
pumps, although all the results apply equally to fans and blowers. We generally neg­
lect heat transfer and internal energy changes of the fluid (we will incorporate them 
later into the definition of the pump efficiency), so the first law of thermodynamics 
applied across the pump is 

W - m 
'pump "' 

— + 
P 2 

+ gz 
/discharge 

+ gz 

We can also compute the head Ahpump (energy/mass) produced by the pump, 

Ah pump 
pump 

m 

"pump 

fp V2 

~ + — + gz 
yP 2 

P v 
+ 

'discharge V ^ 

2 > 

+ gz 

A 
(8.45) 

In many cases the inlet and outlet diameters (and therefore velocities) and elevations 
are the same or negligibly different, so Eq. 8.45 simplifies to 

_ A / 7 p u m p 
A/2 pump (8.46) 

It is interesting to note that a pump adds energy to the fluid in the form of a gain in 
pressure—the everyday, invalid perception is that pumps add kinetic energy to the 
fluid. The idea is that in a pump-pipe system the head produced by the pump (Eq. 
8.45 or 8.46) is needed to overcome the head loss for the pipe system. Hence, the 
flow rate in such a system depends on the pump characteristics and the major and mi­
nor losses of the pipe system. We will leam in Chapter 10 that the head produced by 
a given pump is not constant, but varies with flow rate through the pump, leading to 
the notion of "matching" a pump to a given system to achieve the desired flow rate. 

A useful relation is obtained from Eq. 8.46 if we multiply by m = pQ (Q is the 
flow rate) and recall that mAhpump is the power supplied to the fluid, 

W, pump = Q\p pump (8.47) 
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We can also define the pump efficiency: 

W. 
V = 

pump (8.48 

where W p u m p i s the power reaching the fluid, and Wm is the power input (usually elec­
trical) to the pump. 

We note that, when applying the energy equation (Eq. 8.29) to a pipe system, w 
may sometimes choose points 1 and 2 so that a pump is included in the system. For 
these cases we can simply include the head of the pump as a "negative loss": 

2 • + gz2 
= tu. iump (8.49) 

Noncircular Ducts 

The empirical correlations for pipe flow also may be used for computations involving 
noncircular ducts, provided their cross sections are not too exaggerated. Thus ducts 
of square or rectangular cross section may be treated if the ratio of height to width is 
less than about 3 or 4. 

The correlations for turbulent pipe flow are extended for use with noncirculas 
geometries by introducing the hydraulic diameter, defined as 

DH = 
4A 

P 
(8.50) 

in place of the diameter, D . In Eq. 8.50, A is cross-sectional area, and P is wetteM 
perimeter, the length of wall in contact with the flowing fluid at any cross-sectiofll 
The factor 4 is introduced so that the hydraulic diameter will equal the duct diametel 
for a circular cross-section. For a circular duct, A = 7 r D 2 / 4 and P = TTD, S O that 

41 £ W 

TTD 
D 

For a rectangular duct of width b and height h,A = bh and P = 2(b + h), so 

D - A B K 

h 2{b + h) 

If the aspect ratio, ar, is defined as ar = hlb, then 

2h 
DH = 1 + 

for rectangular ducts. For a square duct, ar = 1 and D H = h. 
As noted, the hydraulic diameter concept can be applied in the approximate range 

^ < ar < 4. Under these conditions, the correlations for pipe flow give acceptably ac­
curate results for rectangular ducts. Since such ducts are easy and cheap to fabricate j 
from sheet metal, they are commonly used in air conditioning, heating, and ventilating 
applications. Extensive data on losses for air flow are available (e.g., see [13, 20]). 

Losses caused by secondary flows increase rapidly for more extreme geome­
tries, so the correlations are not applicable to wide, flat ducts, or to ducts of triangular 
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or other irregular shapes. Experimental data must be used when precise design infor­
mation is required for specific situations. 

SOLUTION OF PIPE FLOW PROBLEMS 

Section 8-7 provides us with a complete scheme for solving many different pipe flow 
problems. For convenience we collect together the relevant computing equations. 

The energy equation, relating the conditions at any two points 1 and 2 for a 
single-path pipe system, is 

P\ V\ 
— + otl^- + gzl 

P 2 

Pi v i 
— + (*i^r + gzi 

Kp 2 
(8.29) 

This equation expresses the fact that there will be a loss of mechanical energy ("pres­
sure," kinetic and/or potential) in the pipe. Recall that for turbulent flows a = 1. 
Note that by judicious choice of points 1 and 2 we can analyze not only the entire 
pipe system, but also just a certain section of it that we may be interested in. The to­
tal head loss is given by the sum of the major and minor losses. (Remember that we 
can also include "negative losses" for any pumps present between points 1 and 2. The 
relevant form of the energy equation is then Eq. 8.49.) 

Each major loss is given by 

>2 
h,=f 

where the friction factor is obtained from 

64 

D 2 
(8.34) 

/ = 
Re 

for laminar flow (Re < 2300) (8.36) 

or 

/ 0.5 = - 2 . 0 log 
2.51 e/D 

3.7 Ref 0.5 for turbulent flow (Re > 2300) (8.37) 

and Eqs. 8.36 and 8.37 are presented graphically in the Moody chart (Fig. 8.12). 
Each minor loss is given either by 

h, = K 
V2 

(8.40a) 

where K is the device loss coefficient, or 

L V2 

''" D 2 
(8.40b) 

where Le is the additional equivalent length of pipe. 
We also note that the flow rate Q is related to the average velocity V at each pipe 

cross-section by 

D2 -
Q = 7T—V 

4 
We will apply these equations first to single-path systems. 
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Single-Path Systems 

In single-path pipe problems we generally know the system configuration (type of 
pipe material and hence pipe roughness, the number and type of elbows, valves, and 
other fittings, etc., and changes of elevation), as well as the fluid (p and p) we will be 
working with. Although not the only possibilities, usually the goal is to determine 
one of the following: 

(a) The pressure drop Ap, for a given pipe (L and D), and flow rate Q. 
(b) The pipe length L, for a given pressure drop Ap, pipe diameter D, and flow rate Q. 
(c) The flow rate Q, for a given pipe (L and D), and pressure drop Ap. 
(d) The pipe diameter D, for a given pipe length L, pressure drop Ap, and flow rate Q. 

Each of these cases often arises in real-world situations. For example, case (a) is a 
necessary step in selecting the correct size pump to maintain the desired flow rate in a 
system—the pump must be able to produce the system Ap at the specified flow 
rate Q. (We will discuss this in more detail in Chapter 10.) Cases (a) and (b) are 
computationally straightforward; we will see that cases (c) and (d) can be a little 
tricky to evaluate. We will discuss each case, and present an Example Problem for 
each. The Example Problems present solutions as you might do them using a calcuM 
tor, but there is also an Excel workbook for each. The advantage of using a computer 
application such as a spreadsheet is that we do not have to use either the Moody chart 
(Fig. 8.12) or solve the implicit Colebrook equation (Eq. 8.37) to obtain turbulent 
friction factors—the application can find them for us! In addition, as we'll see, cases 
(c) and (d) involve significant iterative calculations that can be avoided by use of a 
computer application. Finally, once we have a solution using a computer application] 
engineering "what-ifs" become easy, e.g., if we double the head produced by a pump, 
how much will the flow rate in a given system increase? 

a. F ind Ap for a G i v e n L, D, and Q 

These types of problems are quite straightforward—the energy equation (Eq. 8.29) 
has only one unknown. The flow rate leads to the Reynolds number (or numbers if 
there is a diameter change) and hence the friction factor (or factors) for the flow; talw 
ulated data can be used for minor loss coefficients and equivalent lengths. The energy 
equation can then be used to directly obtain the pressure drop. Example Problem 8. 
illustrates this type of problem. 

b. F ind L for a G i v e n Ap, D, and O 

These types of problems are also straightforward—the energy equation (Eq. 8.29) 
has only one unknown. The flow rate again leads to the Reynolds number and henca 
the friction factor for the flow. Tabulated data can be used for minor loss coefficient)! 
and equivalent lengths. The energy equation can then be rearranged and solved di­
rectly for the pipe length. Example Problem 8.6 illustrates this type of problem. 

c . F ind Qfor a G i v e n Ap, L, and D 

These types of problems require either manual iteration or use of a computer applical 
tion such as Excel. The unknown flow rate or velocity is needed before the Reynolds 
number and hence the friction factor can be found. To manually iterate we first solve 
the energy equation directly for V in terms of known quantities and the unknown 
friction factor/. To start the iterative process we make a guess for / ( a good choice is to 
take a value from the fully turbulent region of the Moody chart because many practical 
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flows are in this region) and obtain a value for V - Then we can compute a Reynolds 
number and hence obtain a new value for/ . We repeat the iteration process/—* V —* 
Re —*f until convergence (usually only two or three iterations are necessary). A much 
quicker procedure is to use a computer application. For example, spreadsheets (such as 
Excel) have built-in solving features for solving one or more algebraic equations for 
one or more unknowns. Example Problem 8.7 illustrates this type of problem. 

d. F ind D for a G i v e n Ap , L, and Q 

These types of problems arise, for example, when we have designed a pump-pipe 
system and wish to choose the best pipe diameter—the best being the minimum di­
ameter (for minimum pipe cost) that will deliver the design flow rate. We need to man­
ually iterate, or use a computer application such as Excel. The unknown diameter is 
needed before the Reynolds number and relative roughness, and hence the friction fac­
tor, can be found. To manually iterate we could first solve the energy equation directly 
for D in terms of known quantities and the unknown friction fac to r / and then iterate 
from a starting guess f o r / i n a similar way to case (c) above: f—*D—>Re and e/D —> 
f. In practice this is a little unwieldy, so instead to manually find a solution we make 
successive guesses for D until the corresponding pressure drop Ap (for the given flow 
rate Q) computed from the energy equation matches the design Ap. As in case (c) a 
much quicker procedure is to use a computer application. For example, spreadsheets 
(such as Excel) have built-in solving features for solving one or more algebraic equa­
tions for one or more unknowns. Example Problem 8.8 illustrates this type of problem. 

In choosing a pipe size, it is logical to work with diameters that are available 
commercially. Pipe is manufactured in a limited number of standard sizes. Some data 
for standard pipe sizes are given in Table 8.5. For data on extra strong or double extra 
strong pipes, consult a handbook, e.g., [12]. Pipe larger than 12 in. nominal diameter 
is produced in multiples of 2 in. up to a nominal diameter of 36 in. and in multiples 
of 6 in. for still larger sizes. 

Table 8.5 Standard Sizes for Carbon Steel, Alloy Steel, and 
Stainless Steel Pipe (Data from [12].) 

Nominal Inside Nomina] Inside 
Pipe Size (in.) Diameter (in.) Pipe Size (in.) Diameter (in.) 

l 
8 0.269 2-L 

Z 2 
2.469 

1 
4 0.364 3 3.068 
3 
3 0.493 4 4.026 
1 
2 0.622 5 5.047 i 
3 
4 0.824 6 6.065 

1 1.049 8 7.981 ' 

1.610 10 10.020 

2 2.067 12 12.000 

EXAMPLE 8.5 Pipe Flow from a Reservoir: Pressure Drop Unknown 

A 100 m length of smooth horizontal pipe is attached to a large reservoir. What 
depth, d, must be maintained in the reservoir to produce a volume flow rate of 0.01 
m 3 /s of water? The inside diameter of the smooth pipe is 75 mm. The inlet is square-
edged and water discharges to the atmosphere. 
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EXAMPLE PROBLEM 8.5 

GIVEN: Water flow at O.Ol m 3/s through 75 mm diameter 
smooth pipe, with L = 100 m, attached to a constant-
level reservoir. Square-edged inlet. 

FIND: Reservoir depth, d, to maintain the flow. 

SOLUTION: 
Governing equations: 

— + « i ^ L + ^ i P 2 
P2 V2 

I P 2 

where 

L V2-
h,=f (8.34) 

D 2 

= hh=h,+hlm 

(8.29) 

and 

© 

z a 

i l l 

CV 

D = 75 mm 
I L 

r 
L= 100 m • 

1 
i 

^ = K Y ( 8 ' 4 0 a ) 

For the given problem, p, = p2 = P a m , V, = 0, V = V, and 02 = 1.0. If z 2

 = 0, then Z\ = d. Simplifying 
Eq. 8.29 gives 

gd =/ + K — 
2 D 2 2 

(1) 

Then 

Since 
TTDZ 

d = -
g 

then 

f +K— + — 
D 2 2 2 2g 

f— + K + \ 
D 

d = 8G 2 r 

v2D4gl" D 
f-+K + l 

Assuming water at 20°C, p = 999 kg/m3, and p = 1.0 X 10~3 kg/(m • s). Thus 

Re 
pVD _ 4pQ 

p irpD 
4 999 kg 0.01 m 3 

Re = —x —5- x x - 1 
s 1 .0x l0" 3 kg 0.075 m 

= 1.70 x 103 

For turbulent flow in a smooth pipe, from Eq. 8.37,/ = 0.0162. From Table 8.2, K = 0.5. Then 

d = 
n2DAg 

f— + K + \ 
D 

1 _8_ (O.Ol)2 m 6 

7 7 2 X s 2 X (0.075)4 m" 9.81m x (0 .0162) -^°™- + 0.5 + 1 
v ; 0.075 m 

d = 6.02 m = 6 m 
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EXAMPLE 8.6 Flow in a Pipeline: Length Unknown 

Crude oil flows through a level section of the Alaskan pipeline at a rate of 1.6 million 
barrels per day (1 barrel = 42 gal). The pipe inside diameter is 48 in.; its roughness 
is equivalent to galvanized iron. The maximum allowable pressure is 1200 psi; the 
minimum pressure required to keep dissolved gases in solution in the crude oil is 50 
psi. The crude oil has SG = 0.93; its viscosity at the pumping temperature of 140°F 
is (i = 3.5 X 10~ 4 lbf • s/ft2. For these conditions, determine the maximum possible 
spacing between pumping stations. If the pump efficiency is 85 percent, determine 
the power that must be supplied at each pumping station. 

EXAMPLE PROBLEM 8.6 

GIVEN: Flow of crude oil through horizontal section of Alaskan pipeline. 

cv r 

Q = 1.6 Mbpd 

p 2 < 1200 psig P l > 50 psig 

D = 48 in. (roughness of galvanized iron), SG = 0.93, a-= 3.5 X 10 4 lbf • s/ft2 

FIND: (a) Maximum spacing, L 
(b) Power needed at each pump station. 

SOLUTION: 
As shown in the figure, we assume that the Alaskan pipeline is made up of repeating pump-pipe sections. 
We can draw two control volumes: CV,, for the pipe flow (state (2) to state (T)); CV 2, for the pump (state 

[ ® to state © ) . 
First we apply the energy equation for steady, incompressible pipe flow to CV,. 

Governing equations: ft + ^ + ^ ' _ £i_ + ^ jl + ^ \=hl+ h,m 
(8.29) 

where 

L VZ 

k=f (8.34) 
D 2 

and h, =K— (8.40a) 
^ 2 

1 
This problem illustrates the method for manually calculating 
total head loss. 

The Excel workbook for this problem automatically 
computes Re and / from the given data. It then solves 
Eq. 1 directly for depth d without having to explicitly 
solve for it first. The workbook can be easily used to see, 
for example, how d is affected by changing the diameter 
D; it is easily editable for other case (a) type problems. 
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Assumptions: (1) a ,V 2 = a2V\. 
(2) Horizontal pipe, zi = z2-
(3) Neglect minor losses. 
(4) Constant viscosity. 

Then, using CV, 

or 

L V2 

&P = Pi~ Pi= f-^P^ 

L = — - ^ r where / = f(Re, e/D) 
f pV2 

_ 1.6xl0 6 bbl 42 gal ft3 day hr 1 A 

Q = x x x — — x = 104fr7s 
day bbl 7.48 gal 24 hr 3600 s 

f = G = 1 0 4 f t i x _ 4 _ ^ = 

A s 7r(4) 2 ft 2 

pVD (0.93) 1.94 slug 8.27 ft 4 ft ft 2 M s 2 

p ft 3 s 3.5 x lO" 4 lbf s slug ft 
Re =1.71x 10 5 

From Table 8.1, e = 0.0005 ft and hence e/D = 0.00012. Then from Eq. 8 .37 , /= 0.017 and thus 

2 4 ft (1200 - 5 0 ) lbf ft 3 s 2 

L = x x —=- x 
2 f . 2 0.017 in / (0.93) 1.94 slug (8.27)2 ft 

x M 4 i n * s t a g ^ 5 f t 

ft 2 lbf • s 2 

L = 632,000 ft (120 mi) < 

To find the pumping power we can apply the first law of thermodynamics to CV 2. This control vol- j 
ume consists only of the pump, and we saw in Section 8-7 that this law simplifies to 

% u m p = G A p p u m p (8.47) j 

and the pump efficiency is 

U = % * (8.48V 

We recall that W p u m p is the power reaching the fluid, and Wm is the power input. Because we have a re­
peating system the pressure rise through the pump (i.e., from state (T) to state (2)) equals the pressure drop 
in the pipe (i.e., from state (2) to state (T)), 

APpump = Ap 

so that 

104ft 3 (1200- 50) lbf 144in. 2 h p s 
Wmmo = GAp D l i m D = — x - 5 — 2 x 5 — x = 31,300hp 

p u m p * F p u m p 2 ft2 550 ft • lbf V 
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and the required power input is 
W 

w "pump 
31300 hp 

0.85 
= 36,800 hp 

• This problem illustrates the method for manually calculating 
pipe length L. 

The Excel workbook for this problem automatically com­
putes Re and / f rom the given data. It then solves Eq. 1 di­
rectly for L without having to explicitly solve for it first. 
The workbook can be easily used to see, for example, 
how the flow rate Q depends on L\ it may be edited for 
other case (b) type problems. 

Wr needed 

I EXAMPLE 8.7 Flow from a Water Tower: Flow Rate Unknown 

A fire protection system is supplied from a water tower and standpipe 80 ft tall. The 
longest pipe in the system is 600 ft and is made of cast iron about 20 years old. The 
pipe contains one gate valve; other minor losses may be neglected. The pipe diameter 
is 4 in. Determine the maximum rate of flow (gpm) through this pipe. 

EXAMPLE PROBLEM 8.7 

GIVEN: Fire protection system, as 
shown. 

FIND: Q, gpm. 

SOLUTION: 
Governing equations: 

h = 8 0 ft Gate valve 
D = 4 i n . \ 

• ^ipc = 600 ft 

0(2) 

fp + a $ + gz] " ( j f + + SZ2) = hlT=h, + hlm 

where 

' D 2 
(8.34) and K =F ^11 

D 2 
(8.40b) 

Assumptions: (1) p, = p2 = p^. 
(2) V, =* 0, and a 2 =« 1.0. 

Then Eq. 8.29 can be written as 

G(ZL-Z2)-^-HLT=F[- + ^ ) 

For a fully open gate valve, from Table 8.4, LJD = 8. Thus 

(8.29) 

(1) 
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To manually iterate, we solve for V2 and obtain 

V2 = 2g(zi - z2) 
1/2 

600 f t+80 ft 12 in. . . . . 
x — = 2040 

4 in. ft 

/ (L /D + 8) + l 

To be conservative, assume the standpipe is the same diameter as the horizontal pipe. Then 

L 
D 

Also 
Zi ~ z2 = h = 80 ft 

To solve Eq. 2 manually we need to iterate. To start, we make an estimate for / by assuming the flow is 
fully turbulent (where/is constant). This value can be obtained from solving Eq. 8.37 using a calculator or 
from Fig. 8.12. For a large value of Re (e.g., 108), and a roughness ratio e/D = 0.005 (e = 0.00085 ft for 
cast iron is obtained from Table 8.1, and doubled to allow for the fact that the pipe is old), we find that / « 
0.03. Thus a first iteration for V2 from Eq. 2 is 

-i 1/2 

v2 = 
2 32.2 ft 80 ft 1 

0.03(2040 + 8) + 1 

Now obtain a new value for/: 

pVD 
Re = 

VP 
v 

9.08 ft ft 
— x — x 
s 3 1 .21xl0" 5 f t 2 

= 9.08 ft/s 

= 2.50 x 103 

For e/D = 0.005,/ = 0.0308 from Eq. 8.37. Thus we obtain 

"2 32.2 ft 80 ft 1 

7 * v 2 = 0.0308(2040 + 8) + ! 

1/2 

= 8.97 ft/s 

The values we have obtained for V2 (9.08 ft/s and 8.97 ft/s) differ by less than 2%-an acceptable level of 
accuracy. If this accuracy had not been achieved we would continue iterating until this, or any other accu­
racy we desired, was achieved (usually only one or two more iterations at most are necessary for reason­
able accuracy). Note that instead of starting with a fully rough value f o r / we could have started with a 
guess value for V2 of, say, 1 ft/s or 10 ft/s. The volume flow rate is 

Q = V2A = V2 

Q = 351 gpm 

TTD1 8.97 ft 77 
— x — 
s 4 

ft2 7.48 gal 60 s 
X ~~ A 

ft m i l 
Q 

This problem illustrates the method for manually iterating to 
calculate flow rate. 

The Excel workbook for this problem automatically iter­
ates to solve for the flow rate Q. It solves Eq. 1 without 
having to obtain the explicit equation (Eq. 2) for V2 (or 
Q) first. The workbook can be easily used to perform nu­
merous "what-ifs" that would be extremely time-
consuming to do manually, e.g., to see how Q is affected 
by changing the roughness e/D. For example, it shows 
that replacing the old cast-iron pipe with a new pipe 
(e/D = 0.0025) would increase the flow rate from 351 gpm 
to about 386 gpm, a 10% increase! The workbook can 
be modified to solve other case (c) type problems, 
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EXAMPLE 8.8 Flow in an Irrigation System: Diameter Unknown 

Spray heads in an agricultural spraying system are to be supplied with water through 
500 ft of drawn aluminum tubing from an engine-driven pump. In its most efficient 
operating range, the pump output is 1500 gpm at a discharge pressure not exceeding 
65 psig. For satisfactory operation, the sprinklers must operate at 30 psig or higher 
pressure. Minor losses and elevation changes may be neglected. Determine the small­
est standard pipe size that can be used. 

EXAMPLE PROBLEM 8.8 

GIVEN: Water supply system, as shown. 

Pump 
4 ^ 500 ft = \ _ -

® 
P] < 65 psig 

CV 
Q= 1500 gpm 

p 2 > 30 psig 

BIND: Smallest standard D. 

SOLUTION: 
Ap, L, and Q are known. D is unknown, so iteration is needed to determine the minimum standard diameter 
that satisfies the pressure drop constraint at the given flow rate. The maximum allowable pressure drop 
over the length, L, is 

A / W = Pi ~ P2 mi„ = (65 - 30) psi = 35 psi 

Governing equations: + + - + a2j^ + ̂ ij = h,T (8.29) 
= 0(3) 

Assumptions: ( 1 ) Steady flow. 
(2) Incompressible flow 

Then 

(3) h h = hhi.a.,h,m = 0. 

(4) z, = z2. 
(5) V, = V2 = V; a, - a 2 . 

r L Pyl 

Ap = A - p 2 = / - — (1) 

Equation 1 is difficult to solve for D because both V and/depend on D\ The best approach is to use a 
computer application such as Excel to automatically solve for D. For completeness here we show the man­
ual iteration procedure. The first step is to express Eq. 1 and the Reynolds number in terms of Q instead of 
V(Q is constant but V varies with D). We have V = QIA = 4QJirD2 so that 
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L p ( 4Q f _ SfLpQ2 

The Reynolds number in terms of Q is 

Re = 
pVD _VD 4Q D 4Q 

p v TTD v TTVD 

Finally, Q must be converted to cubic feet per second. 

0 = 
1500 gal min ft J ~^ACi, x x = 3.34 ft Vs 

min 60s 7.48 gal 

For an initial guess, take nominal 4 in. (4.026 in. i.d.) pipe: 

s 1 4Q 4 3.34 ft Re = —— = — x — x 
TTVD TT s 1.21 x 10" 5 ft 2 4.026 in. 

x 1 2 ^ = 1 .06x l0 6 

ft 

For drawn tubing, e = 5 X 10~6 ft (Table 8.1) and hence e/D = 1.5 X 10 - 5 , s o / = 0.012 (Eq. 8.37), and 

A p = 8 / L P Q 2

 = JL x

 0 0 1 2

 x 500 ft x 1.94 slug x (3.34) 2 ft^ 
T T 2 D 5 IT 

X 
1 

fr 
1728 in. 3 lbf • s 2 

(4.026) 5 in . 5 x f t 3 slug • ft 
Ap = 172lbf/in. 2 > A p m a x 

Since this pressure drop is too large, try D = 6 in. (actually 6.065 in. i.d.): 

x Re- — x 3 3 4 — 
~ v s 1.21 x lO^f t 2 6.065 in. 

x 1 2 ^ = 6 . 9 5 x l 0 5 

ft 

For drawn tubing with D = 6 in., e/D = 1.0 X 10" 5, s o / = 0.013 (Eq. 8.37), and 

8_ v 0.013 v 500 ft v 1.94 slug (3.34) 2 ft6 

7T ft-
1 x (12) 3 i n i x lbf- s 2 

(6.065) 5 in. 5 f t 3 slug-ft 
\p = 24.0 lbf/ in 2 < A p m a x 

Since this is less than the allowable pressure drop, we should check a 5 in. (nominal) pipe. With an actual 
i.d. of 5.047 in., 

*3 4 3.34 ft J 

Re = — x — x , x

1 2 i 5 : = 8 . 3 6 x l 0 5 

ir s 1 . 2 1 x l 0 ° f r 5.047 in. ft 

For drawn tubing with D = 5 in., elD = 1.2 X 10~5, s o / = 0.0122 (Eq. 8.37), and 

2 ft6 8 0.0122 500ft 1.94 slug (3.34)' ft' 
x 

(5.047)5 in. 5 

ft J s z 

(12) 3 in. 3 lbf • s 2 

ft3 slug • ft 
Ap = 56.41bf/in.2 > A P m M 

Thus the criterion for pressure drop is satisfied for a minimum nominal diameter of 6 in. pipe. D 
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This problem illustrates the method for manually iterating to 
calculate pipe diameter. 

j j f c The Excel workbook for this problem automatically iter-
ates to solve for the exact pipe diameter D that satisfies 
Eq. 1, without having to obtain the explicit equation (Eq. 2) 
for D first. Then all that needs to be done is to select the 
smallest standard pipe size that is equal to or greater than 
this value. For the given data, D = 5.58 in., so the appro­
priate pipe size is 6 in. The workbook can be used to 
perform numerous "what-ifs" that would be extremely 
time-consuming to do manually, e.g., to see how the re­
quired D is affected by changing the pipe length L. For 
example, it shows that reducing L to 250 ft would allow 
5 in. (nominal) pipe to be used. The workbook can be 
modified for solving other case (d) type problems. 

We have solved Example Problems 8.7 and 8.8 by iteration (manual, or using 
Excel). Several specialized forms of friction factor versus Reynolds number diagrams 
have been introduced to solve problems of this type without the need for iteration. 
For examples of these specialized diagrams, see [21] and [22], 

Example Problems 8.9 and 8.10 illustrate the evaluation of minor loss coefficients 
and the application of a diffuser to reduce exit kinetic energy from a flow system. 

[EXAMPLE 8.9 Calculation of Entrance Loss Coefficient 

Reference [23] reports results of measurements made to determine entrance losses 
for flow from a reservoir to a pipe with various degrees of entrance rounding. A cop­
per pipe 10 ft long, with 1.5 in. i.d., was used for the tests. The pipe discharged to at­
mosphere. For a square-edged entrance, a discharge of 0.566 ft3/s was measured 
when the reservoir level was 85.1 ft above the pipe centerline. From these data, eval­
uate the loss coefficient for a square-edged entrance. 

EXAMPLE PROBLEM 8.9 

LGIVEN: Pipe with square-edged entrance discharging 
from reservoir as shown. 

HND. ^ e n t r a n c e ' 

SOLUTION: 
Apply the energy equation for steady, incompressible pipe 
How. 

Governing equations: 

- 0 ( 2 ) = 0 
Q = 0 .566 ft 3/s 
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h -fkYl + K Yl 

Assumptions: (1) p, = p2 = / w 

(2) v; - 0. 

V? L V2, v\ 
Substituting for h, and dividing by g gives z , = /j = a 2 - 2 - - t - / — — + E n t r a n c e " T 1 

7 2g D 2g 2g 

or 

The average velocity is 

_2gh L 
^entrance _ "^2 ~ £ ) ~ 1 

v2 = Q = ^ 
2 A irD2 

,-. 4 0.566 ft 3 1 1.44 in. 2 

V2 = — x — x , — T x —=- = 46.1 ft/s 
7T s (1.5)2 in. 2 ft 2 

Assume T = 70°F, so v = 1.05 X 10" 5 ft2/s (Table A.7). Then 

VD 46.1ft 1.5 in. s ft 5 

Re = = — x x =—T x = 5.49 x 10 
v s 1 .05xl0" 5 ft2 12 in. 

For drawn tubing, e = 5 X 10~6 ft (Table 8.1), so e/D = 0.000,04 a n d / = 0.0135 (Eq. 8.37). 
In this problem we need to be careful in evaluating the kinetic energy correction factor a2, as it is a 

significant factor in computing Ktnwina: from Eq. 1. We recall from Section 8-6 and previous Example Prob­
lems that we have usually assumed a « 1, but here we will compute a value from Eq. 8.27: 

2n 2 

(3 + n)(3 + In) 
(8.27) 

To use this equation we need values for the turbulent power-law coefficient n and the ratio of centerline to 
mean velocity U/V. For n, from Section 8-5 

n = -1.7 + 1.8 log(/fcy) = 8.63 (8.23) 

where we have used the approximation Re^ « Re^. For V/t/,wehave 

0.847 (8.24) 
U (n + l)(2n + 1) 

Using these results in Eq. 8.27 we find a = 1.04. Substituting into Eq. 1, we obtain 

_ 2 32.2 ft 85.1ft s 2 (0.0135) 10 ft 12 in. 
x s 2 x X

( 4 6 . 1 ) 2 f t 2 1.5 in. X ft 1 0 4 

^entrance = °- 459 

This coefficient compares favorably with that shown in Table 8.2. The hydraulic and energy grade lines are 
shown below. The large head loss in a square-edged entrance is due primarily to separation at the sharp 
inlet comer and formation of a vena contracta immediately downstream from the comer. The effective flow 
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area reaches a rrunimum at the vena contracta, so the flow velocity is a maximum there. The flow expands 
again following the vena contracta to fill the pipe. The uncontrolled expansion following the vena contracta 
is responsible for most of the head loss. (See Example Problem 8.12.) 

100 

50 

0 -

—r v2 
Energy grade line 

Entrance 

Exit 
Hydraulic grade line 

Local velocity reaches a max imum 
at the vena contracta. 

Rounding the inlet corner reduces the extent of separation significantly. This reduces the velocity in­
crease through the vena contracta and consequently reduces the head loss caused by the entrance. A "well-
rounded" inlet almost eliminates flow separation; the flow pattern approaches that shown in Fig. 8.1. The 
added head loss in a well-rounded inlet compared with fully developed flow is the result of higher wall 
shear stresses in the entrance length. 

This problem: 

Illustrates a method for obtaining the value of a minor loss 
coefficient from experimental data. 
Shows how the EGL and HGL lines first introduced in 
Section 6-5 for inviscid flow are modified by the presence 
of major and minor losses. The EGL line continuously 
drops as mechanical energy is consumed — quite sharply 
when, for example, we have a square-edged entrance loss; 
the HGL at each location is lower than the EGL by an 
amount equal to the local dynamic head V I2g—at the 
vena contracta, for example, the HGL experiences a large 
drop, then recovers. 

EXAMPLE 8.10 Use of Diffuser to Increase Flow Rate 
Water rights granted to each citizen by the Emperor of Rome gave permission to at­
tach to the public water main a calibrated, circular, tubular bronze nozzle [24]. Some 
citizens were clever enough to take unfair advantage of a law that regulated flow rate 
by such an indirect method. They installed diffusers on the outlets of the nozzles to 
increase their discharge. Assume the static head available from the main is ZQ = 1.5 
m and the nozzle exit diameter is D = 25 mm. (The discharge is to atmospheric pres­
sure.) Determine the increase in flow rate when a diffuser with N/R\ = 3.0 and AR = 
2.0 is attached to the end of the nozzle. 
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EXAMPLE PROBLEM 8.10 

GIVEN: Nozzle attached to water main as shown. 

FIND: Increase in discharge when diffuser with N/RT = 3.0 
and A R = 2.0 is installed. 

SOLUTION: 
Apply the energy equation for steady, incompressible pipe flow. 

1.5 m 
i — 25 mm 

Governing equation: 
- 2 

Pn V(\ P\ (8.29) 

Assumptions: (1) V0 «*» 0. 

(2) a, - 1. 

For the nozzle alone, 

- 0 ( 1 ) » 1(2) = 0 

2 + ^ + « - f + / ? V + A * 
nlf "entrance ^ 

Thus 
1/2 

(1 + i^ enirance) 

Solving for the velocity and substituting the value of Kentrma. = 0.04 (from Table 8.2), 

1.04 V 1.04 o = J 2 f i , = I J_x 9 .81m. . 1.5m 5.32 m/s 

(1) 

^ ,-, «Of 5 - 3 2 m " (0.025)2 m 2

 3 

0 = V,A, = V, L = — x — x = 0.00261 m / s 
1 ' ' 4 s 4 

G 

For the nozzle with diffuser attached, 

0(1) - 1 ( 2 ) = 0 

"/y- "~ "entrance ~ T "diffuser 0 

SZo - — + (^entrance + ^dif fuser) ~ ^ 
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From continuity VXA^ = 92A2, so 

A, AR 

and Eq. 2 becomes 

[ARY 
+ K. diffuser 

Figure 8.15 gives data for C„ = —=5- for diffusers. 

To obtain Kmmt!, apply the energy equation from (D to © . 

Solving, with a2 1, we obtain 

(3) 

i>2 
K, diffuser 

VA2 
c p = i 

From Fig. 8.15, Cp = 0.45, so 

"•diffuser 1 

(2.0) z 
0.45 = 0.75 - 0.45 = 0.3 

Solving Eq. 3 for the velocity and substituting the values of KmtmKX and Kimsa, we obtain 

0.25 + 0.04 + 0.3 

so 

1 \ 0.59 0.59 
9.81m 1.5m 

x x = 7.06 m/s 

and 

& = ViA = ^ 
7.06 m TT (0.025) 2m 2 

X — X : 

s 4 

0.00347 m7s 

The flow rate increase that results from adding the diffuser is 

AQ _ Qd~Q _Qd 
Q Q Q 

l = 
0.00347 
0.00261 

1 = 0.330 or 33 percent — -
Q 

.Addition of the diffuser significantly increases the flow rate! There are two ways to explain this. 
First, we can sketch the EGL and HGL curves—approximately to scale—as shown below. We can 

see that, as required, the HGL at the exit is zero for both flows (recall that the HGL is the sum of static 
pressure and potential heads). However, the pressure rises through the diffuser, so the pressure at the dif­
fuser inlet will be, as shown, quite low (below atmospheric). Hence, with the diffuser, the Ap driving force 
for the nozzle is much larger than that for the bare nozzle, leading to a much greater velocity, and flow rate, 
U the nozzle exit plane—it is as if the diffuser acted as a suction device on the nozzle. 

Second, we can examine the energy equations for the two flows (for the bare nozzle Eq. 1, and for the 
nozzle with diffuser Eq. 3). These equations can be rearranged to yield equations for the velocity at the 
nozzle exit, 
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l + K„ 
(bare nozzle) (nozzle + diffuser). 

UARY 
+ K, diffuser + K„ 

Comparing these two expressions, we see that the diffuser introduces an extra term (its loss coefficient 
^diaiser

 = 0-3) t° the denominator, tending to reduce the nozzle velocity, but on the other hand we replace the 
term 1 (representing loss of the bare nozzle exit plane kinetic energy) with 1/(A/?)2 = 0.25 (representing a 
smaller loss, of the diffuser exit plane kinetic energy). The net effect is that we replace 1 in the denominator 
with 0.25 + 0.3 = 0.55, leading to a net increase in the nozzle velocity. The resistance to flow introduced by 
adding the diffuser is more than made up by the fact that we "throw away" much less kinetic energy at the 
exit of the device (the exit velocity for the bare nozzle is 5.32 m/s, whereas for the diffuser it is 1.77 m/s). 

Water Commissioner Frontinus standardized conditions for all Romans in 97 A . D . He required that the 
tube attached to the nozzle of each customer's pipe be the same diameter for at least 50 lineal feet from the 
public water main (see Problem 8.129). 

"Multiple-Path Systems 

Many real-world pipe systems (e.g., the pipe network that supplies water to the apart­
ments in a large building) consist of a network of pipes of various diameters assem­
bled in a complicated configuration that may contain parallel and series connections. 

* This section may be omitted without loss of continuity in the text material. 
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As an example, consider part of a system as shown in Fig. 8.17. Water is supplied 
at some pressure from a manifold at point 1, and flows through the components 
shown to the drain at point 5. Some water flows through pipes A, B, C, and D, con­
stituting a series of pipes (and pipe B has a lower flow rate than the others); some 
flows through A, E, F or G, H, C, and D (F and G are parallel), and these two main 
branches are in parallel. We analyze this type of problem in a similar way to how 
we analyze DC resistor circuits in electrical theory: by applying a few basic rules 
to the system. The electrical potential at each point in the circuit is analogous to the 
HGL (or static pressure head if we neglect gravity) at corresponding points in the 
system. The current in each resistor is analogous to the flow rate in each pipe sec­
tion. We have the additional difficulty in pipe systems that the resistance to flow in 
each pipe is a function of the flow rate (electrical resistors are usually considered 
constant). 

The simple rules for analyzing networks can be expressed in various ways. We 
will express them as follows: 

1. The net flow out of any node (junction) is zero. 
2. Each node has a unique pressure head (HGL). 

For example, in Fig. 8.17 rule 1 means that the flow into node 2 from pipe A must 
equal the sum of outflows to pipes B and E. Rule 2 means that the pressure head at 
node 7 must be equal to the head at node 6 less the losses through pipe F or pipe G, 
as well as equal to the head at node 3 plus the loss in pipe H. 

These rules apply in addition to all the pipe-flow constraints we have discussed 
(e.g., for Re > 2300 the flow will be turbulent), and the fact that we may have signifi­
cant minor losses from features such as sudden expansions. We can anticipate that the 
flow in pipe F (diameter 1 in.) will be a good deal less than the flow in pipe G (diam­
eter 1.5 in), and the flow through branch E will be larger than that through branch B 
(why?). 

The problems that arise with pipe networks can be as varied as those we dis­
cussed when studying single-path systems, but the most common involve finding the 
flow delivered to each pipe, given an applied pressure difference. We examine this 
case in Example Problem 8.11. Obviously, pipe networks are much more difficult and 

2 6 

B F 

3 | 

H 

A: L = 10 ft, D = 1.5 in. 
B:L = 20 ft, D = 1.5 in. 
C:L = 10 ft, D = 2 in. 
D: L = 10 ft, D = 1.5 in. 
E: L = 5 ft, Dm 1.5 in. 
F:L = 10 ft, D = 1 in. 
G:L = 10 ft, O = 1.5 in. 
H:L = 5 ft, D = 2 in. 

5 
F i g . 8.17 Schema t i c of part of a p ipe network . 
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EXAMPLE PROBLEM 8.11 

GIVEN: Pressure head h y . 5 of 100 ft 
across pipe network. 

FIND: The flow rate in each pipe. 

SOLUTION: 
Governing equations: 

For each pipe section, 

= 0(1) =0(1) 0(2) 

(8.29) 

where 

hi = f D 2 
(8 

and / is obtained from either Eq. 8.36 (laminar) or Eq. 8.37 (turbulent). For the cast-iron pipe, Table 
gives a roughness for cast iron of e = 0.00085 ft. 

Assumptions: (1) Ignore gravity effects. 

(2) Ignore minor losses. 

(Assumption 2 is applied to make the analysis clearer—minor losses can be incorporated easily later.) 

In addition we have mathematical expressions for the basic rules 
1. The net flow out of any node (junction) is zero. 
2. Each node has a unique pressure head (HGL). 

34) 

8.1 

time-consuming to analyze than single-path problems, almost always requiring itera­
tive solution methods, and in practice are usually only solved using the computer. A 
number of computer schemes for analyzing networks have been developed [25], and 
many engineering consulting companies use proprietary software applications for 
such analysis. A spreadsheet such as Excel is also very useful for setting up and solv­
ing such problems. 

EXAMPLE 8.11 Flow Rates in a Pipe Network 

In the section of a cast-iron water pipe network shown in Fig. 8.17, the static pressure 
head (gage) available at point 1 is 100 ft of water, and point 5 is a drain (atmospheric 
pressure). Find the flow rates (gpm) in each pipe. 
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Qe = Gf + Go (2) 

We can apply basic rule 1 to nodes 2 and 6: 

Node 2: QA = QB + QE (1) Node 6: 

and we also have the obvious constraints 

Ga = Q c O) Ga = Gd (4) Ge = Gh (5) 

We can apply basic rule 2 to obtain the following pressure drop constraints: 

his- h = hA + hB + he + hD (6) hM: hB = hE + h¥ + hH (7) h^-,: hf = ho (8) 

This set of eight equations must be solved iteratively. If we were to manually iterate, we would use Eqs. 3, 
4, and 5 to immediately reduce the number of unknowns and equations to five (QA, QB, QE, Gf> Gg)- There 
are several approaches to the iteration, one of which is: 

§ 1- Make a guess for QA, QB, and Qf 

• 2. Eqs. 1 and 2 then lead to values for g E and QG. 
K 3. Eqs. 6,7, and 8 are finally used as a check to see if rule 2 (for unique pressure heads at the nodes) is 

satisfied. 
I 4. If any of Eqs. 6, 7, or 8 are not satisfied, use knowledge of pipe flow to adjust the values of QA, QB, 

or gp. 
I 5. Repeat steps 2 through 5 until convergence occurs. 

An example of applying step 4 would be if Eq. 8 were not satisfied. Suppose hF > Iiq; then we would have 
selected too large a value for QF, and would reduce this slighdy, and recompute all flow rates and heads. 

This iterative process is obviously quite unrealistic for manual calculation (remember that obtaining 
each head loss h from each Q involves a good amount of calculation). Fortunately, we can use a spread­
sheet such as Excel to automate all these calculations—and.it will solve for all eight unknowns automati­
cally! The first step is to set up one worksheet for each pipe section for computing the pipe head h given 
the flow rate Q • A typical such worksheet is shown below: 
I 

M II F .> , 1 1 - „„.'. , I H i i nil r r ^ ' F ' 

Al 

P i p e A D a t a ; 

L (ft) 0 0") 
10 | l i ilJffiUM 

Flow Rati 

0.100 
111 .ID f * <nV) 

8.1 97009 AT2SM 0JD184 4? 

J _ l 

In these worksheets, a given flow rate Q is used to compute values for V, Re, elD,f, and h from L, D, and e. 
The next step is to set up a calculation page that collects together the flow rates and corresponding 

head losses for all of the pipe sections, and then use these to check whether Eqs. 1 through 8 are satisfied. 
Shown below is this page with initial guess values of 0.1 ft3/s for each of the flow rates. The logic of the 
workbook is that the eight values entered for QA through Qn determine all the other values—that is, hA 

through hH, and the values of the constraint equations. The errors for each of the constraint equations are 
shown, as well as their sum. We can then use Excel's Solver feature (repeatedly as necessary) to minimize 
the total error (currendy 665%) by varying QA through QH. 

http://and.it


A v a l a M * H a a d : 
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tit*?*?) 
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The final results obtained by Excel are: 

Ava f l ab te H u d : 

Ji -
100 ft 

F l o w s : BAC***) 6 c (••>•) Bi<*3'*) Be<"rVi> 

0 57I OISL 0 57K 0 3 » C M 0 2 * 3 

B t t t r - ) B i C i r - ) B e t a - ) B i t o - > B . t o - ) B i t o - l B . t o - 3 flito-0 
300 3» 300 147 37 no 147 
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37 W | 9 37 7 t t 2 
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D M ojm OOH OOH 
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»!-»• 
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•Tie flow rates are: 
GA = Gc = Go = 260 gpm 
Gii(gpm) = 112 gpm 
QE (gpm) = g H (gpm) = 147 gpm 
g F (gpm) = 37 gpm 
e G ( g p m ) = 110 gpm 

L 

This problem illustrates use of Excel to solve a set of coupled, 
nonlinear equations for unknown flow rates. 

The Excel workbook for this problem can be modified 
for solving a variety of other multiple-path systems. 

P A R T C F L O W M E A S U R E M E N T 

Throughout this text we have referred to the flow rate Q or average velocity V in a 
pipe. The question arises: How does one measure these quantities? We will address 
this question by discussing the various types of flow meters available. 

The choice of a flow meter is influenced by the accuracy required, range, cost, 
complication, ease of reading or data reduction, and service life. The simplest and 
cheapest device that gives the desired accuracy should be chosen. 

8-9 DIRECT METHODS 

The most obvious way to measure flow rate in a pipe is the direct method—simply 
measure the amount of fluid that accumulates in a container over a fixed time period! 
Tanks can be used to determine flow rate for steady liquid flows by measuring the 
volume or mass of liquid collected during a known time interval. If the time interval 
is long enough to be measured accurately, flow rates may be determined precisely in 
this way. 

Compressibility must be considered in volume measurements for gas flows. The 
densities of gases generally are too small to permit accurate direct measurement of 
mass flow rate. However, a volume sample often can be collected by displacing a 
"bell," or inverted jar over water (if the pressure is held constant by counterweights). 
If volume or mass measurements are set up carefully, no calibration is required; this 
is a great advantage of direct methods. 

In specialized applications, particularly for remote or recording uses, positive 
displacement flow meters may be specified, in which the fluid moves a component 
such as a reciprocating piston or oscillating disk as it passes through the device. 
Common examples include household water and natural gas meters, which are cali­
brated to read directly in units of product, or gasoline metering pumps, which meas­
ure total flow and automatically compute the cost. Many positive-displacement 
meters are available commercially. Consult manufacturers' literature or References 
(e.g., [10]) for design and installation details. 
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8-10 RESTRICTION FLOW METERS FOR INTERNAL FLOWS 

Most restriction flow meters for internal flow (except the laminar flow element, 
discussed shortly) are based on acceleration of a fluid stream through some form of 
nozzle, as shown schematically in Fig. 8.18. The idea is that the change in v e l o c H 
leads to a change in pressure. This Ap can be measured using a pressure gage 
(electronic or mechanical) or a manometer, and the flow rate inferred using either a 
theoretical analysis or an experimental correlation for the device. Flow separation at 
the sharp edge of the nozzle throat causes a recirculation zone to form, as shown by 
the dashed lines downstream from the nozzle. The mainstream flow continues to ac­
celerate from the nozzle throat to form a vena contracta at section (2) and then 
decelerates again to fill the duct. At the vena contracta, the flow area is a minimum, 
the flow streamlines are essentially straight, and the pressure is uniform across the 
channel section. 

The theoretical flow rate may be related to the pressure differential between sec-
tions (T) and (2) by applying the continuity and Bernoulli equations. Then empirical! 
correction factors may be applied to obtain the actual flow rate. 

Basic equations: 

= 0(1) 

/ I cv 
p dV + pV • dA = 0 (4.12 

cs 

El 

P 
+ Y1 + El 

P +

 v4 
2 

z2 
(6.! 

Assumptions: (1) Steady flow. 
(2) Incompressible flow. 
(3) Flow along a streamline. 
(4) No friction. 
(5) Uniform velocity at sections (J) and (2). 
(6) No streamline curvature at sections (T) or 

form across those sections. 
(7) z, = z 2 . 

so pressure is U H H 

Flow 
»• D 

CV | 

- — * 
- r 

- L 
- i 

® 
Fig . 8.18 Internal f low th rough a genera l i zed nozz le , show ing contro l 
v o l u m e used for ana lys is . 
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Then, from the Bernoulli equation, 

ft-ft = f(vi-v?) = 

and from continuity 

(-pV 1A,) + (pV 2 A 2 ) = 0 

or 

Substituting gives 

VlAl = V2A2 so 

Pl~P2= — 

2 
A2 

l V 2 , 

' V 2 

V A \ J 

Solving for the theoretical velocity, V2, 

- ' r f l - C A ^ A , ) 2 ] 

The theoretical mass flow rate is then given by 

'"theoretical = P^2A2 

= P. 
2(P\ - Pl) A 

p [ l - ( A 2 / A , ) 2 ] 2 

or 

^ t h e o r e t i c a l 

Vl-(A2/A,)2 

A / 2 P ( P I - Pl) 

(8.51) 

(8.52) 

Equation 8.52 shows that, under our set of assumptions, for a given fluid (p) and flow 
meter geometry (A, and A 2 ) , the flow rate is directly proportional to the square root of 
the pressure drop across the meter taps, 

^theoretical Ap 

which is the basic idea of these devices. This relationship limits the flow rates that 
can be measured accurately to approximately a 4:1 range. 

Several factors limit the utility of Eq. 8.52 for calculating the actual mass flow 
rate through a meter. The actual flow area at section (2) is unknown when the vena 
contracta is pronounced (e.g., for orifice plates when D, is a small fraction of D,). 
The velocity profiles approach uniform flow only at large Reynolds numbers. 
Frictional effects can become important (especially downstream from the meter) 
when the meter contours are abrupt. Finally, the location of pressure taps influences 
the differential pressure reading. 

The theoretical equation is adjusted for Reynolds number and diameter ratio 
D,ID\ by defining an empirical discharge coefficient C such that 
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^actual = , pp(P[ ~ Pi) 

V i - ( V A I ) 2 

Letting /3 = D,/D„ then (A,M,) 2 = (D,ID{f = (?, so 

CA, '"actual 42P(P\ ~ Pi) 

(8. 

(8. 

In Eq. 8.54, 1/^1 - / 3 4 is the velocity-of-approach factor. The discharge coefficien 
and velocity of approach factor frequently are combined into a single flow coefflcie 

~W¥ <8'; 

K = 

In terms of this flow coefficient, the actual mass flow rate is expressed as 

'"actual = KA,42P(P\ ~ P2) (8. 

For standardized metering elements, test data [10, 26] have been used to develop 
empirical equations that predict discharge and flow coefficients from meter bore, pipe 
diameter, and Reynolds number. The accuracy of the equations (within specified 
ranges) usually is adequate so that the meter can be used without calibration. If the 
Reynolds number, pipe size, or bore diameter fall outside the specified range of the 
equation, the coefficients must be measured experimentally. 

For the turbulent flow regime (pipe Reynolds number greater than 4000) the dis­
charge coefficient may be expressed by an equation of the form [10] 

C = C + 

The corresponding form for the flow-coefficient equation is 

1 b 
K = K„ + 

(8.5 

(8.58) 

In Eqs. 8.57 and 8.58, subscript 0 0 denotes the coefficient at infinite Reynolds number, 
constants b and n allow for scaling to finite Reynolds numbers. Correlating equations and 
curves of coefficients versus Reynolds number are given in the next three subsections! 
following a general comparison of the characteristics of specific metering elements. 

As we have noted, selection of a flow meter depends on factors such as cost, accu­
racy, need for calibration, and ease of installation and maintenance. Some of these fac­
tors are compared for orifice plate, flow nozzle, and venturi meters in Table 8.6. Note 
that a high head loss means that the running cost of the device is high—it will consume 
a lot of the fluid energy. A high initial cost must be amortized over the fife of the device. 
This is an example of a common cost calculation for a company (and an individual!)— 
between a high initial but low running cost, or low initial but high running cost. 

R o w meter coefficients reported in the literature have been measured with 
fully developed turbulent velocity distributions at the meter inlet (Section (T)). If a 
flow meter is to be installed downstream from a valve, elbow, or other disturbance] 
a straight section of pipe must be placed in front of the meter. Approximately 
10 diameters of straight pipe are required for venturi meters, and up to 40 diameters 
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T a b l e 8.6 Characteristics of Orifice, Flow Nozzle, and Venturi Flow Meters 

Flow Meter Type Diagram Head Loss Initial Cost 

Orifice Flow High Low 

Flow Nozzle 

Venturi 

j r 

Flow Intermediate Intermediate 

Low H i g h 

for orifice plate or flow nozzle meters. When a meter has been properly installed, 
the flow rate may be computed from Eq. 8.54 or 8.56, after choosing an appropriate 
value for the empirical discharge coefficient, C, or flow coefficient, K, defined in 
Eqs. 8.53 and 8.55, respectively. Some design data for incompressible flow are 
given in the next few sections. The same basic methods can be extended to 
compressible flows, but these will not be treated here. For complete details, see 
[10] or [26]. 

The Orifice Plate 

The orifice plate (Fig. 8.19) is a thin plate that may be clamped between pipe flanges. 
Since its geometry is simple, it is low in cost and easy to install or replace. The sharp 
edge of the orifice will not foul with scale or suspended matter. However, suspended 
matter can build up at the inlet side of a concentric orifice in a horizontal pipe; an ec­
centric orifice may be placed flush with the bottom of the pipe to avoid this difficulty. 
The primary disadvantages of the orifice are its limited capacity and the high perma­
nent head loss caused by the uncontrolled expansion downstream from the metering 
element. 

Pressure taps for orifices may be placed in several locations, as shown in 
Fig. 8.19 (see [10] or [26] for additional details). Since the location of the pressure 
taps influences the empirically determined flow coefficient, one must select handbook 
values of C or K consistent with the location of pressure taps. 

Flange taps 

1 in. -]J[ L4—1 in. 

| | | 

^ C o r n e r taps 
V 1 

k\ 1:1 1 

D 4-
D and 4f taps 

F i g . 8 .19 Or i f ice g e o m e t r y and p ressure tap locat ions 
[ 1 0 ] . 
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0.80 

0.78 

0.76 

0.74 

* 0.72 

I 0.70 

S 0.68 
s 
o 

^ 0.66 

0.64 

0.62 

0.60 0.58 

—-2^L_ 
. 03 

0.2 
i i 1 i 1 

10" 1 0 3 2 5 

Reynolds number, Re0 = 

1 0 6 2 10 7 

F i g . 8 .20 F low coef f ic ients for concent r i c or i f ices wi th co rne r taps. 

The correlating equation recommended for a concentric orifice with corner taps 
[10] is 

-.2.5 

C = 0.5959 + 0.0312(32-1 - 0.184/3 8 + 9 

Re 
0.75 
0, 

(8.59) 

Equation 8.59 predicts orifice discharge coefficients within ± 0.6 percent for 0.2 < B < I 
0.75 and for 10 4 < ReD^ < 10 7. Some flow coefficients calculated from Eq. 8.59 and 
8.55 are presented in Fig. 8.20. 

A similar correlating equation is available for orifice plates with D and D/2 taps. 
Flange taps require a different correlation for every line size. Pipe taps, located at 2 1 j 
and 8 D, no longer are recommended for accurate work. 

Example Problem 8.12, which appears later in this section, illustrates the appli­
cation of flow coefficient data to orifice sizing. 

The Flow Nozzle 

Flow nozzles may be used as metering elements in either plenums or ducts, as shown 
in Fig. 8.21; the nozzle section is approximately a quarter ellipse. Design details and 
recommended locations for pressure taps are given in [26]. 

The correlating equation recommended for an ASME long-radius flow nozzle 
[10] is 

C = 0.9975 
6.530 0.5 

Re 0 . 5 
(8.60) 

Equation 8.60 predicts discharge coefficients for flow nozzles within ± 2.0 percent 
for 0.25 < /3 < 0.75 for 10 4 < Re^ < 10 7. Some flow coefficients calculated from 
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(u) In duct (b) In plenum 

Fig. 8.21 T y p i c a l ins ta l la t ions ot n o z z l e f l o w m e t e r s . 

Eq. 8.60 and Eq. 8.55 are presented in Fig. 8.22. (K can be greater than one when the 
velocity-of-approach factor exceeds one.) 

a. Pipe Installation 

For pipe installation, A!" is a function of /3 and Re^. Figure 8.22 shows that K is 
essentially independent of Reynolds number for ReD^ > 10 6. Thus at high flow rates, 
the flow rate may be computed directly using Eq. 8.56. At lower flow rates, where K 
is a weak function of Reynolds number, iteration may be required. 
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b. P lenum Installation 

For plenum installation, nozzles may be fabricated from spun aluminum, molded 
fiberglass, or other inexpensive materials. Thus they are simple and cheap to make 
and install. Since the plenum pressure is equal to p2, the location of the downstream 
pressure tap is not critical. Meters suitable for a wide range of flow rates may bfl 
made by installing several nozzles in a plenum. At low flow rates, most of them may 
be plugged. For higher flow rates, more nozzles may be used. 

For plenum nozzles /3 = 0, which is outside the range of applicability of 
Eq. 8.58. Typical flow coefficients are in the range, 0.95 < K < 0.99; the larger val-j 
ues apply at high Reynolds numbers. Thus the mass rate of flow can be computed 
within approximately ± 2 percent using Eq. 8.56 with K = 0.97. 

The Venturi 

Venturi meters, as sketched in Table 8.6, are generally made from castings and machined 
to close tolerances to duplicate the performance of the standard design. As a result, ven­
turi meters are heavy, bulky, and expensive. The conical diffuser section downstream 
from the throat gives excellent pressure recovery; therefore, overall head loss is low. 
Venturi meters are also self-cleaning because of their smooth internal contours. 

Experimental data show that discharge coefficients for venturi meters range 
from 0.980 to 0.995 at high Reynolds numbers {Re^ > 2 X 105). Thus C = 0.99 
can be used to measure mass flow rate within about ±1 percent at high Reynolds 
number [10]. Consult manufacturers' literature for specific information at Reynolds 
numbers below 10 s. 

The orifice plate, flow nozzle, and venturi all produce pressure differentials pro­
portional to the square of the flow rate, according to Eq. 8.56. In practice, a meter 
size must be chosen to accommodate the highest flow rate expected. Because the re­
lationship of pressure drop to flow rate is nonlinear, the range of flow rate that can be 
measured accurately is limited. Flow meters with single throats usually are consid­
ered only for flow rates over a 4:1 range [10]. 

The unrecoverable loss in head across a metering element may be expressed as a 
fraction of the differentia] pressure, Ap, across the element. Pressure losses are dis­
played as functions of diameter ratio in Fig. 8.23 [10]. Note that the venturi meter has 
a much lower permanent head loss than the orifice (which has the highest loss) or 
nozzle, confirming the trends we summarized in Table 8.6. 

The Laminar Flow Element 

The laminar flow element6 is designed to produce a pressure differentia] directly propor­
tional to flow rate. The idea is that the laminar flow element (LFE) contains a metering 
section in which the flow passes through a large number of tubes or passages (these ofl 
ten look like a bunch of straws) that are each narrow enough that the flow through theni 
is laminar, regardless of the flow conditions in the main pipe (recall that Re^ m 
pViubtDtube'lM so if Dmbe is made small enough we can ensure that Re,ube < Re^ 
2300). For each laminar flow tube we can apply the results of Section 8-3, specifically 

Qrube - 4 p ~ A p (8.13' 128/ii^be 

6 Patented and manufactured by Meriam Instrument Co., 10920 Madison Ave., Cleveland, Ohio 44102. 
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E 

10 

"i 1 n ~ 
^ - S q u a r e - e d g e orifice 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Diameter ratio, fl = 

Fig . 8.23 Permanent h e a d l o s s produced by various flow metering 
e l e m e n t s [10]. 

so the flow rate in each tube is a Linear function of the pressure drop across the 
device. The flow rate in the whole pipe will be the sum of each of these tube flows, 
and so will also be a linear function of pressure drop. Usually this linear relation is 
provided in a calibration from the manufacturer, and the LFE can be used over a 10:1 
range of flow rates. The relationship between pressure drop and flow rate for laminar 
flow also depends on viscosity, which is a strong function of temperature. Therefore, 
the fluid temperature must be known to obtain accurate metering with an LFE. 

A laminar flow element costs approximately as much as a venturi, but it is much 
lighter and smaller. Thus the LFE is becoming widely used in applications where 
compactness and extended range are important. 

EXAMPLE 8.12 Flow through an Orifice Meter 
An air flow rate of I m 3 /s at standard conditions is expected in a 0.25 m diameter 
duct. An orifice meter is used to measure the rate of flow. The manometer available to 
make the measurement has a maximum range of 300 mm of water. What diameter 
orifice plate should be used with corner taps? Analyze the head loss if the flow area at 
the vena contracta is A 2 = 0.65 A,. Compare with data from Fig. 8.23. 

EXAMPLE PROBLEM 8.12 

GIVEN: Flow through duct and orifice as shown. 

• Q = 1 m 3 /s t l_L .. 
* r- £>, = 0.25 m D. A l r 

' 1 r l X 
® ® (D 

U>1 - P 2 W = 3 0 0 m m H 2 ° 
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FIND: (a) D,. 
(b) Head loss between sections CD and (3). 
(c) Degree of agreement with data from Fig. 8.23. 

SOLUTION: 

The orifice plate may be designed using Eq. 8.56 and data from Fig. 8.20. 

Governing equation: '"actual = 

Assumptions: (1 ) Steady flow. 
(2) Incompressible flow. 

(8.56) 

Since A , / A , = {DJDtf = B2, 

KB2 = ^actual 

^actual = KP2AIT]2P(PI - p2) 

PQ 
\42P(P\ - P2> Al^2p(pl - p2) A , )J2(p, - p2) 

Q 

V2SPB2 

, A / I 

I m J 4 
x s TT (0.25)2 m 2 

KB2 = 0.295 or K = 
B2 

1 x 1.23_kg_ x s 2

 x m 3

 x 1 
2 m 3 9.81m 999 kg 0.30 m 

0.295 

-1I/2 

I 

m 

(1) 

Since K is a function of both B (Eq. 1) and Re^ (Fig- 8.20), we must iterate to find B. The duct Reynolds 
number is 

pVfy p{QIA])Dl 4Q 

P 

4 1 m J 

Ren. = — x — x 

P~ TTVD, 

s I . 4 6 x l 0 ^ 5 m 2 0.25 m 
= 3.49 x 105 

Guess B = 0.75. From Fig. 8.20, K should be 0.72. From Eq. 1 , 

K = 0.295 = 0.524 
( 0 . 75 r 

Thus our guess for B is too large. Guess j8 = 0.70. From Fig. 8.20, K should be 0.69. From Eq. 1, 

0.295 
K = 

(0.7oy 
= 0.602 

Thus our guess for B is still too large. Guess /3 = 0.65. From Fig. 8.20, K should be 0.67. From Eq. 1 , 

K = - ^ = 0.698 
(0.65)2 

There is satisfactory agreement with B =» 0.66 and 

D, = j3D, = 0.66(0.25 m) = 0.165 m < 
D, 
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To find the permanent head loss for this device, we could simply use the diameter ratio / 3 » 0.66 in 
Fig. 8.23; but instead we will find it from the given data. To evaluate the permanent head loss, apply Eq. 
8.29 between sections © a n d © . 

Governing equation: | ^ + a, ^ + ^ z , J - j& + a 3 ^ + ^ z 3 | = h,T (8.29) 

Assumptions: (3) axV\ = a3V\. 
(4) Neglect Az. 

Then 

n = A ~ P3 = Pi ~ Pi " ( f t ~ Pi) 
(2) 

Equation 2 indicates our approach: We will find p{ — p 3 by using /?, — p2 = 300 mm H 2 0 , and obtain a 
value for p 3 — /?2 by applying the x component of the momentum equation to a control volume between 
sections © and (3). 

vena contracta 

CV 

Governing equation: 

ft 

= 0(5) = 0(1) 

Fsx + fBx = $tj^updV+ ^UpV-dA (4.18a) 

Assumptions: (5) FBx = 0. 

1 (6) Uniform flow at sections (D and © . 
(7) Pressure uniform across duct at sections (2) and (3). 
(8) Neglect friction force on CV. 

Then, simplifying and rearranging, 

(Pi ~ Pi) Ai = u2(-pV2A2) + u3(pV3A2) = («3 - u^pQ = (V3 - V2)pQ 

Pi ~ Pi = (V2 - * 3 ) 

ow V3 = Q/Au and 

K2 = 6 = Q Q 
A2 0.65A, O.6502A, 
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Thus, 

P3 ~ Pi Pit 
M 0.65/T 

1 _ 1.23 kg ( l ) 2 m 6 4 2 

m s rr (0.25) m 
1 

0.65(0.66)' 
- 1 N V 

kg - m 
P3 - p2 = 1290 N/m 2 

The diameter ratio, /3, was selected to give maximum manometer deflection at maximum flow rate. Thus 

. , 999 kg 9.81m 0.30 m N s 2 

Pi ~ Pi = PHjOSAh = — j - x - 5 - x x 
z m s kg • m 

2940 N/m' 

Substimting into Eq. 2 gives 

h,_ = Pi ~ P3 _ P i - Pi ~ (P3 ~ Pi) 

. ( 2 9 4 0 - 1290) N m J 

ft. = — 5 - x = 1340 N • m/kg , 
' T m 2 1.23 kg 5 < 

To compare with Fig. 8.23, express the permanent pressure loss as a fraction of the meter differential 

p\- Pi _ (2940-1290) N/m 2 

= 0.561 
P1-P2 2940 N/m' 

The fraction from Fig. 8.23 is about 0.57. This is satisfactory agreement! 
This problem illustrates flow meter calculations and shows use of the momentum equation to compute the 
pressure rise in a sudden expansion. 

8-11 LINEAR FLOW METERS 

The disadvantage of restriction flow meters (except the LFE) is that the measured 
output (Ap) is not linear with the flow rate Q. Several flow meter types produce out­
puts that are directly proportional to flow rate. These meters produce signals without 
the need to measure differential pressure. The most common linear flow meters are 
discussed briefly in the following paragraphs. 

Float meters may be used to indicate flow rate directly for liquids, or gases. An 
example is shown in Fig. 8.24 In operation, the ball or float is carried upward in the 
tapered clear tube by the flowing fluid until the drag force and float weight are in 
equilibrium. Such meters (often called rotameters) are available with factory 
calibration for a number of common fluids and flow rate ranges. 

A free-running vaned impeller may be mounted in a cylindrical section of tube 
(Fig. 8.25) to make a turbine flow meter. With proper design, the rate of rotation of 
the impeller may be made closely proportional to volume flow rate over a wide rang« 

Rotational speed of the turbine element can be sensed using a magnetic or mod­
ulated carrier pickup external to the meter. This sensing method therefore requires no 
penetrations or seals in the duct. Thus turbine flow meters can be used safely to 
measure flow rates in corrosive or toxic fluids. The electrical signal can be displayed! 
recorded, or integrated to provide total flow information. 

An interesting device is the vortex flow meter. This device takes advantage of tha 
fact that a uniform flow will generate a vortex street when it encounters a bluff body] 



8-11 LINEAR FLOW METERS 381 

F i g . 8 .24 F loat - type var iab le -a rea f low meter . (Cour tesy of Dwyer Ins t rument 
Co., M ich igan City, Ind iana.) 

such as a cylinder perpendicular to the flow. A vortex street is a series of alternating 
vortices shed from the rear of the body; the alternation generates an oscillating side­
ways force on, and therefore oscillation of, the cylinder (the classic example of this 
being the "singing" of telephone wires in a high wind). It turns out that the dimen­
sionless group characterizing this phenomenon is the Strouhal number, St = fLIV 
( / i s the vortex shedding frequency, L is the cylinder diameter, and V is the freestream 
velocity), and it is approximately constant (St ~ 0.21). Hence we have a device for 
which V <* / . Measurement off thus directly indicates the velocity V (however, the ve­
locity profile does affect the shedding frequency so calibration is required). The 
cylinder used in a flow meter is usually quite short in length—10 mm or less — and 
placed perpendicular to the flow (and for some devices is not a cylinder at all but 
some other small bluff object). The oscillation can be measured using a strain gage or 
other sensor. Vortex flow meters can be used over a 20:1 range of flow rates [10]. 

The electromagnetic flow meter uses the principle of magnetic induction. A mag­
netic field is created across a pipe. When a conductive fluid passes through the field, a 
voltage is generated at right angles to the field and velocity vectors. Electrodes placed 
on a pipe diameter are used to detect the resulting signal voltage. The signal voltage is 
proportional to the average axial velocity when the profile is axisymmetric. 

F i g . 8 .25 Turb ine f low meter. (Cour tesy of 
Potter Ae ronau t i ca l Corp . , Un ion , N e w Jersey.) 
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Magnetic flow meters may be used with liquids that have electrical conductivi­
ties above 100 microsiemens per meter (1 siemen = I ampere per volt). The mini­
mum flow speed should be above about 0.3 m/s, but there are no restrictions on 
Reynolds number. The flow rate range normally quoted is 10:1 [10]. 

Ultrasonic flow meters also respond to average velocity at a pipe cross section. 
Two principal types of ultrasonic meters are common: Propagation time is measured 
for clean liquids, and reflection frequency shift (Doppler effect) is measured for flows 
carrying particulates. The speed of an acoustic wave increases in the flow direction 
and decreases when transmitted against the flow. For clean liquids, an acoustic path 
inclined to the pipe axis is used to infer flow velocity. Multiple paths are used to esti­
mate the volume flow rate accurately. 

Doppler effect ultrasonic flow meters depend on reflection of sonic waves (in the 
MHz range) from scattering particles in the fluid. When the particles move at flow 
speed, the frequency shift is proportional to flow speed; for a suitably chosen path, 
output is proportional to volume flow rate. One or two transducers may be used; the 
meter may be clamped to the outside of the pipe. Ultrasonic meters may require cali­
bration in place. Flow rate range is 10:1 [10]. 

8-12 TRAVERSING METHODS 

In situations such as in air handling or refrigeration equipment, it may be impractical]' 
or impossible to install fixed flow meters. In such cases it may be possible to obtain; 
flow rate data using traversing techniques. 

To make a flow rate measurement by traverse, the duct cross-section is concep­
tually subdivided into segments of equal area. The velocity is measured at the center] 
of each area segment using a pitot tube, a total head tube, or a suitable anemometer. 
The volume flow rate for each segment is approximated by the product of the mea­
sured velocity and the segment area. The flow rate through the entire duct is the sum 
of these segmental flow rates. Details of recommended procedures for flow rate 
measurements by the traverse method are given in [27]. 

Use of pitot or pitot-static tubes for traverse measurements requires direct ac­
cess to the flow field. Pitot tubes give uncertain results when pressure gradients or 
streamline curvature are present, and their response times are slow. Two types of 
anemometers— thermal anemometers and laser Doppler anemometers (LDAs)—| 
overcome these difficulties partially, although they introduce new complications. 

Thermal anemometers use tiny elements (either hot-wire or hot-film elements) 
that are heated electrically. Sophisticated electronic feedback circuits are used to 
maintain the temperature of the element constant and to sense the input heating rat i 
needed to do this. The heating rate is related to the local flow velocity by calibration 
(a higher velocity leads to more heat transfer). The primary advantage of therma 
anemometers is the small size of the sensing element. Sensors as small as 0.002 mr l 
in diameter and 0.1 mm long are available commercially. Because the thermal masl 
of such tiny elements is extremely small, their response to fluctuations in flow velocj 
ity is rapid. Frequency responses to the 50 kHz range have been quoted [28]. Thiii 
thermal anemometers are ideal for measuring turbulence quantities. Insulating coaW 
ings may be applied to permit their use in conductive or corrosive gases or liquids. 

Because of their fast response and small size, thermal anemometers are used ex>. 
tensively for research. Numerous schemes have been published for treating the result-
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ing data [29]. Digital processing techniques, including fast Fourier transforms, can be 
applied to the signals to obtain mean values and moments, and to analyze frequency 
content and correlations. 

Laser Doppler anemometers are becoming widely used for specialized applica­
tions where direct physical access to the flow field is difficult or impossible. One or 
more laser beams are focused to a small volume in the flow at the location of interest. 
Laser light is scattered from particles that are present in the flow (dust or particulates) 
or introduced for this purpose. A frequency shift is caused by the local flow speed 
(Doppler effect). Scattered light and a reference beam are collected by receiving op­
tics. The frequency shift is proportional to the flow speed; this relationship may be 
calculated, so there is no need for calibration. Since velocity is measured directly, the 
signal is unaffected by changes in temperature, density, or composition in the flow 
field. The primary disadvantages of LDAs are that the optical equipment is expensive 
and fragile, and that extremely careful alignment is needed (as the authors can attest). 

8-13 SUMMARY 

In this chapter we have: 

/ Defined many terms used in the study of internal incompressible viscous flow, such 
as: the entrance length, fully developed flow, the friction velocity, Reynolds stress, 
the kinetic energy coefficient, the friction factor, major and minor head losses, and 
hydraulic diameter. 

/ Analyzed laminar flow between parallel plates and in pipes and observed that we can 
obtain the velocity distribution analytically, and from this derive: the average veloc­
ity, the maximum velocity and its location, the flow rate, the wall shear stress, and 
the shear stress distribution. 

/ Studied turbulent flow in pipes and ducts and learned that semi-empirical approaches 
are needed, e.g., the power-law velocity profile. 

/ Written the energy equation in a form useful for analyzing pipe flows. 
/ Discussed how to incorporate pumps, fans, and blowers into a pipe flow analysis. 
/ Described various flow measurement devices: direct measurement, restriction de­

vices (orifice plate, nozzle, and venturi), linear flow meters (rotameters, various elec­
tromagnetic or acoustic devices, and the vortex flow meter), and traversing devices 
(pitot tubes and laser-Doppler anemometers). 

We have learned that pipe and duct flow problems often need iterative solution—the 
flow rate Q is not a linear function of the driving force (usually Ap), except for lami­
nar flows (which are not common in practice). *We have also seen that pipe networks 
can be analyzed using the same techniques as a single-pipe system, with the addition 
of a few basic rules, and that in practice a computer application such as Excel is 
needed to solve all but the simplest networks, 
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PROBLEMS 

8.1 Consider incompressible flow in a circular channel. Derive general expressions for 
Reynolds number in terms of (a) volume flow rate and tube diameter and (b) mass 
flow rate and tube diameter. The Reynolds number is 1800 in a section where the 
tube diameter is 10 mm. Find the Reynolds number for the same flow rate in a sec­
tion where the tube diameter is 6 mm. 

Standard air enters a 0.25 m diameter duct. Find the volume flow rate at which the 
flow becomes turbulent. At this flow rate, estimate the entrance length required to es­
tablish fully developed flow. 

For flow in circular tubes, transition to turbulence usually occurs around Re «= 2300, 
Investigate the circumstances under which the flows of (a) standard air and (b) water 
at 15°C become turbulent. On log-log graphs, plot: the average velocity, the volume 
flow rate, and the mass flow rate, at which turbulence first occurs, as functions of 
tube diameter. 

8.4 Standard air flows in a pipe system in which the area is decreased in two stages from 
50 mm, to 25 mm, to 10 mm. Each section is 1 m long. As the flow rate is increased, 
which section will become turbulent first? Determine the flow rates at which one, 
two, then all three sections first become turbulent. At each of these flow rates, deter­
mine which sections, if any, attain fully developed flow. 

8.2 

{3 8 J 

P8 .4 

8.5 For the laminar flow in the section of pipe shown in Fig. 8.1, sketch the expected 
wall shear stress, pressure, and centerline velocity as functions of distance along the 
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pipe. Explain significant features of the plots, comparing them with fully developed 
flow. Can the Bernoulli equation be applied anywhere in the flow field? If so, where? 
Explain briefly. 

8.6 The velocity profile for fully developed flow between stationary parallel plates is 
given by u = a(h2/4 - y2), where a is a constant, h is the total gap width between 
plates, and y is the distance measured from the center of the gap. Determine the ratio 

8.7 An incompressible fluid flows between two infinite stationary parallel plates. The vJ 

locity profile is given by u = umax(Ay2 + By + C), where A, B, and C are constants 
and y is measured upward from the lower plate. The total gap width is h units. Use 
appropriate boundary conditions to express the magnitude and units of the constants 
in terms of h. Develop an expression for volume flow rate per unit depth and evaluate 
the ratio V7wmax. 

8.8 A viscous oil flows steadily between stationary parallel plates. The flow is laminar] 
and fully developed. The total gap width between the plates is h = 5 mm. The oUj 
viscosity is 0.5 N • s/m2 and the pressure gradient is —1000 N/m2/m. Find the magni­
tude and direction of the shear stress on the upper plate and the volume flow rate 
through the channel, per meter of width. 

8.9 Viscous oil flows steadily between parallel plates. The flow is fully developed and lama 
inar. The pressure gradient is - 8 lbf/ft2/ft and the channel half-width is h = 0.06 in. 
Calculate the magnitude and direction of the wall shear stress at the upper plate sun 
face. Find the volume flow rate through the channel (p = 0.01 lbf • s/ft2). 

8.10 A fluid flows steadily between two parallel plates. The flow is fully developed and 
laminar. The distance between the plates is h. 
(a) Derive an equation for the shear stress as a function of y. Sketch this function. 
(b) For p = 2.4 X 10 5 lbf • s/ft2, dp/dx = - 4 . 0 lbf/ft2/ft, and h = 0.05 in., calcul 

late the maximum shear stress, in lbf/ft2. 

8.11 Oil is confined in a 100 mm diameter cylinder by a piston having a radial clearance 
of 0.025 mm and a length of 50 mm. A steady force of 20 kN is applied to the pis-l 
ton. Assume the properties of SAE 30 oil at 50°C. Estimate the rate at which o i l 
leaks past the piston. 

8.12 A hydraulic jack supports a load of 9,000 kg. The following data are given: 

Diameter of piston 100 mm 
Radial clearance between piston and cylinder 0.05 mm 
Length of piston 120 mm 

Estimate the rate of leakage of hydraulic fluid past the piston, assuming the fluid is [ 
SAE 30 oil at 30°C. 

8.13 A high pressure in a system is created by a small piston-cylinder assembly. The 
piston diameter is 6 mm and it extends 50 mm into the cylinder. The radial clear­
ance between the piston and cylinder is 0.002 mm. Neglect elastic deformations of j 
the piston and cylinder caused by pressure. Assume the fluid properties are those 
of SAE 10W oil at 35°C. When the pressure in the cylinder is 600 MPa, estimate 
the leakage rate. 

8.14 A hydrostatic bearing is to support a load of 3600 pounds per foot of length perpen­
dicular to the diagram. The bearing is supplied with SAE 30 oil at 100°F and 
100 psig through the central slit. Since the oil is viscous and the gap is small, the 
flow may be considered fully developed. Calculate (a) the required width of the bear­
ing pad, (b) the resulting pressure gradient, dp/dx, and (c) the gap height, if Q = 
0.0006 ft3/min per foot of length. 
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Q 

P8.14 

8.15 The basic component of a pressure gage tester consists of a piston-cyLinder apparatus 
as shown. The piston, 6 mm in diameter, is loaded to develop a pressure of known 
magnitude. (The piston length is 25 mm.) Calculate the mass, M, required to produce 
1.5 MPa (gage) in the cylinder. Determine the leakage flow rate as a function of 
radial clearance, a, for this load if the liquid is SAE 30 oil at 20°C. Specify the maxi­
mum allowable radial clearance so the vertical movement of the piston due to leak­
age will be less than 1 rnm/min. 

M 

P 8 . 1 5 

Oil supply 

P 8 . 1 6 

8.16 

8.17 

Viscous liquid, at volume flow rate Q, is pumped through the central opening into 
the narrow gap between the parallel disks shown. The flow rate is low, so the flow 
is laminar, and the pressure gradient due to convective acceleration in the gap is 
negligible compared with the gradient caused by viscous forces (this is termed 
creeping flow). Obtain a general expression for the variation of average velocity in 
the gap between the disks. For creeping flow, the velocity profile at any cross sec-
lion in the gap is the same as for fully developed flow between stationary parallel 
plates. Evaluate the pressure gradient, dpldr, as a function of radius. Obtain an ex­
pression for p(r). Show that the net force required to hold the upper plate in the po­
sition shown is 

F = 
3pQR2 

1 -

Consider the simple power-law model for a non-Newtonian fluid given by Eq. 2.11. 
Extend the analysis of Section 8-2 to show that the velocity profile for fully devel­
oped laminar flow of a power-law fluid between stationary parallel plates separated 
by distance 2h may be written 

k n + 

where y is the coordinate measured from the channel centerline. Plot the profiles 
u/Umax versus ylh for n = 0.7, 1.0, and 1.3. 
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8.18 Using the profile of Problem 8.17, show that the flow rate for fully developed lami­
nar flow of a power-law fluid between stationary parallel plates may be written as j 

Here vv is the plate width. In such an experimental setup the following data on ap­
plied pressure difference Ap and flow rate Q were obtained: 

Ap(kPa) 10 20 30 40 50 60 70 80 90 100 

Q(L/min) 0.451 0.759 1.01 1.15 1.41 1.57 1.66 1.85 2.05 2.25 

Determine if the fluid is pseudoplastic or dilatant, and obtain an experimental valud 
for n. 

8.19 A sealed journal bearing is formed from concentric cylinders. The inner and outer 
radii are 25 and 26 mm, the journal length is 100 mm, and it turns at 2800 rpm. The 
gap is filled with oil in laminar motion. The velocity profile is linear across the gap. 
The torque needed to turn the journal is 0.2 N • m. Calculate the viscosity of the o i l 
Will the torque increase or decrease with time? Why? 

8.20 Consider fully developed laminar flow between infinite parallel plates separated by 
gap width d = 0.35 in. The upper plate moves to the right with speed U2 = 2 ft/sl 
the lower plate moves to the left with speed Ut = 1 ft/s. The pressure gradient in the 
direction of flow is zero. Develop an expression for the velocity distribution in the 
gap. Find the volume flow rate per unit depth passing a given cross-section. 

8.21 Two immiscible fluids are contained between infinite parallel plates. The plates are 
separated by distance 2h, and the two fluid layers are of equal thickness h; the dy-l 
namic viscosity of the upper fluid is three times that of the lower fluid. If the lowei 
plate is stationary and the upper plate moves at constant speed U = 5 m/s, what is 
the velocity at the interface? Assume laminar flows, and that the pressure gradient in 
the direction of flow is zero. 

8.22 Water at 60°C flows between two large flat plates. The lower plate moves to the left 
at a speed of 0.3 m/s; the upper plate is stationary. The plate spacing is 3 mm, anffl 
the flow is laminar. Determine the pressure gradient required to produce zero net 
flow at a cross-section. 

8.23 Two immiscible fluids are contained between infinite parallel plates. The plates are, 
separated by distance 2h, and the two fluid layers are of equal thickness h = 2.5 mm.I 
The dynamic viscosity of the upper fluid is twice that of the lower fluid, which is 
Piowcr = 0.5 N • s/m2. If the plates are stationary and the applied pressure gradient is 
-1000 N/m2/m, find the velocity at the interface. What is the maximum velocity of 
the flow? Plot the velocity distribution. 

8.24 The dimensionless velocity profile for fully developed laminar flow between infinite 
parallel plates with the upper plate moving at constant speed U is shown in Fig. 8.5. 
Find the pressure gradient dp/dx at which (a) the upper plate and (b) the lower plate 
experience zero shear stress, in terms of U, a, and p. Plot the dimensionless velocity 
profiles for these cases. 

8.25 The record-read head for a computer disk-drive memory storage system rides above 
the spinning disk on a very thin film of air (the film thickness is 0.5 pm). The head 
location is 150 mm from the disk centerline; the disk spins at 3600 rpm. The record-
read head is 10 mm square. For standard air in the gap between the head and disk, 
determine (a) the Reynolds number of the flow, (b) the viscous shear stress, and (c) 
the power required to overcome viscous shear. 
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8.26 Consider steady, fully developed laminar flow of a viscous liquid down an inclined 
surface. The Liquid layer is of constant thickness, h. Use a suitably chosen differen­
tial control volume to obtain the velocity profile. Develop an expression for the vol­
ume flow rate. 

8.27 Consider steady, incompressible, and fully developed laminar flow of a viscous liquid 
down an incline with no pressure gradient The velocity profile was derived in Example 
Problem 5.9. Plot the velocity profile. Calculate the kinematic viscosity of the liquid if 
the film thickness on a 30° slope is 0.8 mm and the maximum velocity is 15.7 mm/s. 

8.28 The velocity distribution for flow of a thin viscous film down an inclined plane surface 
was developed in Example Problem 5.9. Consider a film 5.63 mm thick, of liquid with 
SG = 1.26 and dynamic viscosity of 1.40 N • s/m2. Derive an expression for the shear 
stress distribution within the film. Calculate the maximum shear stress within the film 
and indicate its direction. Evaluate the volume flow rate in the film, in mm3/s per mil­
limeter of surface width. Calculate the film Reynolds number based on average velocity. 

8.29 Two immiscible fluids of equal density are flowing down a surface inclined at a 30° an­
gle. The two fluid layers are of equal thickness h = 2.5 mm; the kinematic viscosity of 
the upper fluid is twice that of the lower fluid, which is = 2 X 10^4 m2/s. Find the 
velocity at the interface and the velocity at the free surface. Plot the velocity distribution. 

8.30 Consider fully developed flow between parallel plates with the upper plate moving at 
U = 2 m/s; the spacing between the plates is a = 2.5 mm. Determine the flow rate per 
unit depth for the case of zero pressure gradient. If the fluid is air, evaluate the shear 
stress on the lower plate and plot the shear stress distribution across the channel for the 
zero pressure gradient case. Will the flow rate increase or decrease if the pressure gra­
dient is adverse? Determine the pressure gradient that will give zero shear stress at y = 
0.25a. Plot the shear stress distribution across the channel for the latter case. 

8.31 Water at 60°F flows between parallel plates with gap width £> = 0.01 ft. The upper 
plate moves with speed U = 1 ft/s in the positive x direction. The pressure gradient is 
dp/dx = — 1.20 lbf/ftVft. Locate the point of maximum velocity and determine its mag­
nitude (let y = 0 at the bottom plate). Determine the volume of flow that passes a given 
cross-section (x = constant) in 10 s. Plot the velocity and shear stress distributions. 

8.32 A continuous belt, passing upward through a chemical bath at speed U0, picks up a 
liquid film of thickness h, density p, and viscosity p. Gravity tends to make the liq­
uid drain down, but the movement of the belt keeps the liquid from running off 
completely. Assume that the flow is fully developed and laminar with zero pressure 
gradient, and that the atmosphere produces no shear stress at the outer surface of the 
film. State clearly the boundary conditions to be satisfied by the velocity at y = 0 
and y — h. Obtain an expression for the velocity profile. 

P8.32 
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8.33 The velocity profile for fully developed flow of air between parallel plates with the 
upper plate moving is given by Eq. 8.8. Assume U = 2 m/s and a = 2.5 mm. Find 
the pressure gradient for which there is no net flow in the x direction. Plot the ex­
pected velocity distribution and the expected shear stress distribution across the 
channel for this flow. For the case where u = 2U at yla = 0.5, plot the expected vej 
locity distribution and shear stress distribution across the channel. Comment on fea­
tures of the plots. 

8.34 The velocity profile for fully developed flow of water between parallel plates with 
upper plate moving is given by Eq. 8.8. Assume U = 2 m/s and a = 2.5 mm. 
Determine the volume flow rate per unit depth for zero pressure gradient. Evaluate the 
shear stress on the lower plate and sketch the shear stress distribution across the chan­
nel. Would the volume flow rate increase or decrease with a mild adverse pressure 
gradient? Calculate the pressure gradient that will give zero shear stress at yla — 0.23] 
Sketch the shear stress distribution for this case. 

8.35 Microchips are supported on a thin air film on a smooth horizontal surface during 
one stage of the manufacturing process. The chips are 11.7 mm long and 9.35 mm 
wide and have a mass of 0.325 g. The air film is 0.125 mm thick. The initial speed of 
a chip is V0 = 1.75 mm/s; the chip slows as the result of viscous shear in the air filna 
Analyze the chip motion during deceleration to develop a differential equation ffl 
chip speed V versus time t. Calculate the time required for a chip to lose 5 percent of 
its initial speed. Plot the variation of chip speed versus time during deceleration. 
Explain why it looks as you have plotted it. 

8.36 Free-surface waves begin to form on a laminar liquid film flowing down an inclined 
surface whenever the Reynolds number, based on mass flow per unit width of film, • 
larger than about 33. Estimate the maximum thickness of a laminar film of water that 
remains free from waves while flowing down a vertical surface. 

8.37 Hold a flat sheet of paper 50 to 75 mm above a smooth desktop. Propel the sheet 
smoothly parallel to the desk surface as you release it. Comment on the motion you 
observe. Explain the fluid dynamic phenomena involved in the motion. 

8.38 A viscous-shear pump is made from a stationary housing with a close-fitting rotating 
dram inside. The clearance is small compared with the diameter of the drum, so flow 
in the annular space may be treated as flow between parallel plates. Fluid is dragged 
around the annulus by viscous forces. Evaluate the performance characteristics of the 
shear pump (pressure differential, input power, and efficiency) as functions of voll 
ume flow rate. Assume that the depth normal to the diagram is b. 

P8.38 , P8 .39 

8.39 The efficiency of the viscous-shear pump of Fig. P8.39 is given by 

(1 - 2q) 
17 = 6<? 

(4 - 6q) 
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8.40 

8.41 

8.42 

8.43 

8.44 

8.45 

8.46 

8.47 

8.48 

where q = QlabRw is a dimensionless flow rate (Q is the flow rate at pressure differ­
ential Ap, and b is the depth normal to the diagram). Plot the efficiency versus 
dimensionless flow rate, and find the flow rate for maximum efficiency. Explain why 
the efficiency peaks, and why it is zero at certain values of q, 

The clamping force to hold a part in a metal-turning operation is provided by high 
pressure oil supplied by a pump. Oil leaks axially through an annular gap with diam­
eter D, length L, and radial clearance a. The inner member of the annulus rotates at 
angular speed co. Power is required both to pump the oil and to overcome viscous 
dissipation in the annular gap. Develop expressions in terms of the specified geome­
try for the pump power, $>p, and the viscous dissipation power, 1?v. Show that the to­
tal power requirement is minimized when the radial clearance, a, is chosen such that 

A journal bearing consists of a shaft of diameter D = 50 mm and length L = 1 m 
(moment of inertia / = 0.055 kg • m 2) installed symmetrically in a stationary hous­
ing such that the annular gap is S = 1 mm. The fluid in the gap has viscosity p = 
0.1 N • s/m2. If the shaft is given an initial angular velocity of co = 60 rpm, deter­
mine the time for the shaft to slow to 10 rpm, 

An inventor proposes to make a "viscous timer" by placing a weighted cylinder in­
side a slightly larger cylinder containing viscous liquid, creating a narrow annular 
gap close to the wall. Analyze the flow field created when the apparatus is inverted 
and the mass begins to fall under gravity. Would this system make a satisfactory 
timer? If so, for what range of time intervals? What would be the effect of a tempera­
ture change on measured time? 

Automotive design is tending toward all-wheel drive to improve vehicle perform­
ance and safety when traction is poor. An all-wheel drive vehicle must have an 
interaxle differential to allow operation on dry roads. Numerous vehicles are being 
built using multiplate viscous drives for interaxle differentials. Perform the analy­
sis and design needed to define the torque transmitted by the differential for a 
given speed difference, in terms of the design parameters. Identify suitable dimen­
sions for a viscous differential to transmit a torque of 150 N • m at a speed loss of 
125 rpm, using lubricant with the properties of SAE 30 oil. Discuss how to find the 
minimum material cost for the viscous differential, if the plate cost per square 
meter is constant. 

For fully developed laminar flow in a pipe, determine the radial distance from the 
pipe axis at which the velocity equals the average velocity. 

Consider first water and then SAE 10W lubricating oil flowing at 40°C in a 6 mm 
diameter tube. Determine the maximum flow rate (and the corresponding pressure 
gradient, dp/dx) for each fluid at which laminar flow would be expected. 

A hypodermic needle, with inside diameter d = 0.1 mm and length L = 25 mm, is 
used to inject saline solution with viscosity five times that of water. The plunger di­
ameter is D = 10 mm; the maximum force that can be exerted by a thumb on the 
plunger is F = 45 N. Estimate the volume flow rate of saline that can be produced. 

A viscosity measurement setup for an undergraduate fluid mechanics laboratory is to 
be made from flexible plastic tubing; the fluid is to be water. Assume the tubing 
diameter is D = 0.125 ± 0.010 in. and the length is 50 ft. Evaluate the maximum 
volume flow rate at which laminar flow would be expected and the corresponding 
pressure drop. Estimate the experimental uncertainty in viscosity measured using this 
apparatus. How could the setup be improved? 

In a commercial viscometer, the volume flow rate is measured by timing the flow of 
a known volume through a vertical capillary under the influence of gravity. To reduce 
the uncertainty in time measurement to a negligible percentage, the size is chosen to 
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give a flow time of about 200 seconds. A certain viscometer has a capillary diametelj 
of 0.31 mm and a tube length of 73 mm. Estimate the maximum amount the diame* 
ter can vary to allow viscosity measurements with uncertainty less than 1 percen' 
(Note the precision required is the order of ± I micrometer; thus most viscome 
require calibration with a liquid of known viscosity.) 

8.49 In engineering science there are often analogies to be made between disparate phe­
nomena. For example, the applied pressure difference Ap and corresponding volume 
flow rate Q in a tube can be compared to the applied DC voltage V across and current 
/ through an electrical resistor, respectively. By analogy, find a formula for the 
"resistance" of laminar flow of fluid of viscosity /x in a tube length of L and diamewi 
D, corresponding to electrical resistance R. For a tube 100 mm long with inside di­
ameter 0.3 mm, find the maximum flow rate and pressure difference for which this 
analogy will hold for (a) kerosine and (b) castor oil (both at 40°C). When the flow 
exceeds this maximum, why does the analogy fail? 

8.50 Consider the capiLlary viscometer setup of Example Problem 8.4. Estimate the exper­
imental uncertainty of the viscosity measurement if the least counts of the measurfl 
ments are ± 0.010 MPa for pressure, ± 0.01 mm for tube diameter, ± 5 mm'/s foi 
volume flow rate, and ± 1.00 mm for tube length (the specific gravity of the test liq­
uid is 0.82). Investigate the effect of tube diameter on experimental uncertainty. CaJ 
the uncertainty be minimized by a proper choice of diameter? 

8.51 Consider fully developed laminar flow in a circular pipe. Use a cylindrical control 
volume as shown. Indicate the forces acting on the control volume. Using the mol 
mentum equation, develop an expression for the velocity distribution. 

I—dr—I 
P8.51 P 8 . 5 2 

9 

8.52 Consider fully developed laminar flow in the annulus between two concentric pipes. 
The outer pipe is stationary, and the inner pipe moves in the x direction with speed a 
Assume the axial pressure gradient is zero (dp/dx — 0). Obtain a general expression! 
for the shear stress, T , as a function of the radius, r, in terms of a constant, Ci. Obtain! 
a general expression for the velocity profile, u(r), in terms of two constants, C, and! 
C2. Obtain expressions for Ct and C2. 

8.53 Consider fully developed laminar flow in the annular space formed by the two con­
centric cylinders shown in the diagram for Problem 8.52, but with pressure gradientJ 
dp/dx, and the inner cylinder stationary. Let r0 = R and r, = kR. Show that the veloc-l 
ity profile is given by 

8.54 

F?_ dp 
4p dx I - -

' l - * 2 > 
\n(l/k) 

I n -
R 

Obtain an expression for the location of the maximum velocity as a function of k Plot! 
the location of maximum velocity (a = r/R) as a function of radius ratio k. Compare 
the limiting case, k —> 0, with the corresponding expression for flow in a circular pipe. 

For the flow of Problem 8.53 show that the volume flow rate is given by 

Q = 
TTR dp 

(1 k4) (1 
ln(l/fc) &p dx 
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u/U 0.996 0.981 0.963 0.937 0.907 0.866 0.831 
ylr 0.898 0.794 0.691 0.588 0.486 0.383 0.280 

u/U 0.792 0.742 0.700 0.650 0.619 0.551 
y/R 0.216 0.154 0.093 0.062 0.041 0.024 

In addition, Laufer measured the following data for mean velocity in fully developed 
turbulent pipe flow at Re,j = 500,000: 

u/U 0.997 0.988 0.975 0.959 0.934 0.908 
y/R 0.898 0.794 0.691 0.588 0.486 0.383 

u/U 0.874 0.847 0.818 0.771 0.736 0.690 
y/R 0.280 0.216 0.154 0.093 0.062 0.037 

Using Excel's trendline analysis, fit each set of data to the "power-law" profile for 
turbulent flow, Eq. 8.22, and obtain a value of n for each set. Do the data tend to con­
firm the validity of Eq. 8.22? Plot the data and their corresponding trendlines on the 
same graph. 

Find an expression for the average velocity. Compare the limiting case, —» 0, with 
the corresponding expression for flow in a circular pipe, 

8.55 In a food industry plant two immiscible fluids are pumped through a tube such 
that fluid 1 (/A, = 1 N • s/m2) forms an inner core and fluid 2 = 1.5 N • s/m2) 
forms an outer annulus. The tube has D = 5 mm diameter and length L = 10 m, 
Derive and plot the velocity distribution if the applied pressure difference, Ap, is 
10 kPa. 

8.56 It has been suggested in the design of an agricultural sprinkler that a structural mem­
ber be held in place by a wire placed along the centerline of a pipe; it is surmised 
that a relatively small wire would have little effect on the pressure drop for a given 
flow rate. Using the result of Problem 8.54, derive an expression giving the 
percentage change in pressure drop as a function of the ratio of wire diameter to pipe 
diameter for laminar flow. Plot the percentage change in pressure drop as a function 
of radius ratio/t for 0.001 < f e < 0 . 1 0 . 

8.57 A horizontal pipe carries fluid in fully developed turbulent flow. The static pressure dif­
ference measured between two sections is 5 psi. The distance between the sections is 
30 ft and the pipe diameter is 6 in. Calculate the shear stress, rm that acts on the walls. 

8.58 The pressure drop between two taps separated in the streamwise direction by 5 m in 
a horizontal, fully developed channel flow of water is 3 kPa. The cross-section of the 
channel is a 30 X 240 mm rectangle. Calculate the average wall shear stress. 

8.59 Kerosine is pumped through a smooth tube with inside diameter D = 30 mm at close 
to the critical Reynolds number. The flow is unstable and fluctuates between laminar 
and turbulent states, causing the pressure gradient to intermittently change from ap­
proximately -4 .5 kPa/m to —11 kPa/m. Which pressure gradient corresponds to 
laminar, and which to turbulent, flow? For each flow, compute the shear stress at the 
tube wall, and sketch the shear stress distributions, 

8.60 A liquid drug, with the viscosity and density of water, is to be administered through 
a hypodermic needle. The inside diameter of the needle is 0.25 mm and its length is 
50 mm. Determine (a) the maximum volume flow rate for which the flow will be 
laminar, (b) the pressure drop required to deliver the maximum flow rate, and (c) the 
corresponding wall shear stress. 

8.61 Laufer [5] measured the following data for mean velocity in fully developed turbu­
lent pipe flow at Rev = 50,000: 



394 CHAPTER 8 / INTERNAL INCOMPRESSIBLE VISCOUS FLOW 

8.62 Consider the empirical "power-law" profile for turbulent pipe flow, Eq. 8.22. For 
n = 7 determine the value of r/R at which u is equal to the average velocity, V. Plot 
the results over the range 10 and compare with the case of fully developed 
laminar pipe flow, Eq. 8.14. 

8.63 Equation 8.23 gives the power-law velocity profile exponent, n, as a function of cen­
terline Reynolds number, Rev, for fully developed turbulent flow in smooth pipes. 
Equation 8.24 relates mean velocity, V, to centerline velocity, U, for various values I 
of n. Prepare a plot of V/U as a function of Reynolds number, Re?. 

8.64 A momentum coefficient, /3, is defined by 

J" upudA = /?J VpudA = BmV 

Evaluate 8 for a laminar velocity profile, Eq. 8.14, and for a "power-law" turbulent 
velocity profile, Eq. 8.22. Plot B as a function of n for turbulent power-law profiles! 
over the range 6 < n < 10 and compare with the case of fully developed laminar 
pipe flow. 

8.65 Consider fully developed laminar flow of water between stationary parallel plates. 
The maximum flow speed, plate spacing, and width are 6 m/s, 0.2 mm, and 30 mm. 
respectively. Find the kinetic energy coefficient, a. 

8.66 Consider fully developed laminar flow in a circular tube. Evaluate the kinetic energy 
coefficient for this flow. 

t̂p 8.67 Show that the kinetic energy coefficient, a, for the "power law" turbulent velocity 
profile of Eq. 8.22 is given by Eq. 8.27. Plot a as a function of Ret, for 
Rey = 1 X 104 to 1 X 107. When analyzing pipe flow problems it is common practice 
to assume a ~ 1. Plot the error associated with this assumption as a function of 
Ref, for Ret = 1 X 104 to 1 X 107. 

8.68 Water flows in a horizontal constant-area pipe; the pipe diameter is 50 mm and the 
average flow speed is 1.5 m/s. At the pipe inlet the gage pressure is 588 kPa, and the 
outlet is at atmospheric pressure. Determine the head loss in the pipe. If the pipe is 
now aligned so that the outlet is 25 m above the inlet, what will the inlet pressure 
need to be to maintain the same flow rate? If the pipe is now aligned so that the out­
let is 25 m below the inlet, what will the inlet pressure need to be to maintain the 
same flow rate? Finally, how much lower than the inlet must the outlet be so that the 
same flow rate is maintained if both ends of the pipe are at atmospheric pressure! 
(i.e., gravity feed)? 

8.69 Measurements are made for the flow configuration shown in Fig. 8.11. At the inlet, 
section © , the pressure is 10.2 psig, the average velocity is 5.5 ft/s, and the eleval 
tion is 7.5 ft. At the outlet, section (2), the pressure, average velocity, and elevation 
are 6.5 psig, 11.2 ft/s, and 10.5 ft, respectively. Calculate the head loss in ft. Converl 
to units of energy per unit mass. 

8.70 For the flow configuration of Fig. 8.11, it is known that the head loss is 1.7 ft. The 
pressure drop from inlet to outlet is 3.7 psi, the velocity increases by 75 percem 
from inlet to outlet, and the elevation increase is 5.5 ft. Compute the inlet waten 
velocity. 

8.71 Consider the pipe flow from a reservoir in the system of Example Problem 8.5. At 
one flow condition, the head loss is 2.85 m at a volume flow rate of 0.0067 m3/$. 
Find the reservoir depth required to maintain this flow rate. 

8.72 Consider the pipe flow from a reservoir in the system of Example Problem 8.5. At 
one flow condition, the head loss is 1.75 m and the reservoir depth is 3.60 m. Calcu­
late the volume flow rate from the reservoir. 
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8.73 The average flow speed in a constant-diameter section of the Alaskan pipeline is 8.27 
ft/s. At the inlet, the pressure is 1200 psig and the elevation is 150 ft; at the outlet, 
the pressure is 50 psig and the elevation is 375 ft. Calculate the head loss in this sec­
tion of pipeline. 

8.74 At the inlet to a constant-diameter section of the Alaskan pipeline, the pressure is 8.5 
MPa and the elevation is 45 m; at the outlet the elevation is 115 m. The head loss in 
this section of pipeline is 6.9 kJ/kg. Calculate the outlet pressure. 

8.75 Water flows from a horizontal tube into a large tank. The tube is located 2.5 m below 
the free surface of water in the tank. The head loss is 2 J/kg. Compute the average 
flow speed in the tube. 

8.76 Water flows at 3 gpm through a horizontal -| in. diameter garden hose. The pressure 
drop along a 50 ft length of hose is 12.3 psi. Calculate the head loss. 

8.77 Water is pumped at the rate of 2 ft3/s from a reservoir 20 ft above a pump to a free 
discharge 90 ft above the pump. The pressure on the intake side of the pump is 5 psig 
and the pressure on the discharge side is 50 psig. All pipes are commercial steel of 
6 in. diameter. Determine (a) the head supplied by the pump and (b) the total head 
loss between the pump and point of free discharge. 

D = 6 in. 
(Elbows are flanged) Free discharge 

:„ = 90 ft 

p 3 = 50 psig 

P2 = 5 P s i g 

P 8 . 7 7 

8.78 Laufer [5] measured the following data for mean velocity near the wall in fully de­
veloped turbulent pipe flow at Rev = 50,000 (U - 9.8 ft/s and R = 4.86 in.) in air: 

— 0.343 0.318 0.300 0.264 0.228 0.221 0.179 0.152 0.140 

- 0.0082 0.0075 0.0071 0.0061 0.0055 0.0051 0.0041 0.0034 0.0030 
R 

Plot the data and obtain the best-fit slope, du/dy. Use this to estimate the wall shear 
stress from T„ = /JL du/dy. Compare this value to that obtained using the friction fac­
tor /computed using (a) the Colebrook formula (Eq. 8.37), and (b) the Blasius corre­
lation (Eq. 8.38). 

8.79 A small-diameter capillary tube made from drawn aluminum is used in place of an 
expansion valve in a home refrigerator. The inside diameter is 0.5 mm. Calculate the 
corresponding relative roughness. Comment on whether this tube may be considered 
"smooth" with regard to fluid flow. 

8.80 A smooth, 75 mm diameter pipe carries water (65°C) horizontally. When the mass 
flow rate is 0.075 kg/s, the pressure drop is measured to be 7.5 Pa per 100 m of pipe. 
Based on these measurements, what is the friction factor? What is the Reynolds 
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8.81 

8.82 

8.83 

number? Does this Reynolds number generally indicate laminar or turbulent flow? 
the flow actually laminar or turbulent? 

Using Eqs. 8.36 and 8.37, generate the Moody chart of Fig. 8.12. 

The turbulent region of the Moody chart of Fig, 8.12 is generated from the empiric 
correlation given by Eq. 8.37. As noted in Section 8-7, an initial guess for/ 0 , gives] 
by 

/o = 0.25 
. e/D 5.74 

l o g | 17 + 7 ^ 
produces results accurate to 1 percent with a single iteration [10]. Investigate the va­
lidity of this claim by plotting the error of this approach as a function of Re, with e/D 
as a parameter. Plot curves over a range of Re = 104 to 108, for e/D = 0, 0.0001, 
0.001, 0.01, and 0.05. 

The Moody diagram gives the Darcy friction factor, / , in terms of Reynolds number 
and relative roughness. The Fanning friction factor for pipe flow is defined as 

• 

r - w 

h ~ {Pv2 

where TW is the wall shear stress in the pipe. Show that the relation between 
Darcy and Fanning friction factors for fully developed pipe flow is given b y / = 4fF. 

8.84 Water flows through a 25 mm diameter tube that suddenly enlarges to a diameter of 
50 mm. The flow rate through the enlargement is 1.25 Liter/s. Calculate the pressura 
rise across the enlargement. Compare with the value for frictionless flow. 

8.85 Air at standard conditions flows through a sudden expansion in a circular duct 
upstream and downstream duct diameters are 3 and 9 in., respectively. The pressi 
downstream is 0.25 in. of water higher than that upstream. Determine the average 
speed of the air approaching the expansion and the volume flow rate, 

8.86 Water flows through a 50 mm diameter tube that suddenly contracts to 25 mm diam­
eter. The pressure drop across the contraction is 3.4 kPa. Determine the volume flow 
rate. 

8.87 In an undergraduate laboratory you have been assigned the task of developing a crude 
flow meter for measuring the flow in a 400 mm diameter water pipe system. You are' 
to install a 200 mm diameter section of pipe, and a water manometer to measuri 
the pressure drop at the sudden contraction. Derive an expression for the theoretical 1 

calibration constant k in Q = k4^h, where Q is the volume flow rate in L/min, and 
A/i is the manometer deflection in mm. Plot the theoretical calibration curve for a 
flow rate range of 0 to 200 L/min. Would you expect this to be a practical device for5 

measuring flow rate? 

8.88 Flow through a sudden contraction is shown. The minimum flow area at the vi 
contracta is given in terms of the area ratio by the contraction coefficient [30], 

N3 

c = 0.62 + 0.38 
i J 

The loss in a sudden contraction is mostly a result of the vena contracta: The fluid 
accelerates into the contraction, there is flow separation (as shown by the dasheS 
lines), and the vena contracta acts as a miniature sudden expansion with significant 
secondary flow losses. Use these assumptions to obtain and plot estimates of the 
minor loss coefficient for a sudden contraction, and compare with the data preti 
sented in Fig. 8.14. 



PROBLEMS 397 

Flow ft = 3 ft 

/t, = 5in. 2 

• 

'A = 0.5 in . 2 

Flow 

P8 .88 P8 .89 

8.89 Water flows from the tank shown through a very short pipe. Assume the flow is 
quasi-steady. Estimate the flow rate at the instant shown. How could you improve the 
flow system if a larger flow rate were desired? 

8.90 Air flows out of a clean room test chamber through a 150 mm diameter duct of 
length L . The original duct had a square-edged entrance, but this has been replaced 
with a well-rounded one. The pressure in the chamber is 2.5 mm of water above am­
bient. Losses from friction are negligible compared with the entrance and exit losses. 
Estimate the increase in volume flow rate that results from the change in entrance 
contour. 

8.91 Consider again flow through the elbow analyzed in Example Problem 4.6. Using the 
given conditions, calculate the minor head loss coefficient for the elbow. 

8.92 A conical diffuser is used to expand a pipe flow from a diameter of 100 mm to a di­
ameter of 150 mm. Find the minimum length of the diffuser if we want a loss coeffi­
cient (a) KAffaiC!0.2, (b) K d i n- u s e r < 0.35. 

8.93 A conical diffuser of length 150 mm is used to expand a pipe flow from a diameter 
of 75 mm to a diameter of 100 mm. For a water flow rate of 0.1 m3/s, estimate the 
static pressure rise. What is the approximate value of the loss coefficient? 

8.94 Space has been found for a conical diffuser 0.45 m long in the clean room ventilation 
system described in Problem 8.90. The best diffuser of this size is to be used. As­
sume that data from Fig. 8.15 may be used. Determine the appropriate diffuser angle 
and area ratio for this installation and estimate the volume flow rate that will be de­
livered after it is installed. 

8.95 By applying the basic equations to a control volume starting at the expansion and 
ending downstream, analyze flow through a sudden expansion (assume the inlet pres­
sure px acts on the area A 2 at the expansion). Develop an expression for and plot the 
minor head loss across the expansion as a function of area ratio, and compare with 
the data of Fig. 8.14. 

8.96 Analyze flow through a sudden expansion to obtain an expression for the upstream 
average velocity Vy in terms of the pressure change Ap — p2 — pu area ratio AR, 
fluid density p, and loss coefficient K. If the flow were frictionless, would the flow 
rate indicated by a measured pressure change be higher or lower than a real flow, and 
why? Conversely, if the flow were frictionless, would a given flow generate a larger 
or smaller pressure change, and why? 

8.97 Water at 45°C enters a shower head through a circular tube with 15.8 mm inside di­
ameter. The water leaves in 24 streams, each of 1.05 mm diameter. The volume flow 
rate is 5.67 L/min. Estimate the minimum water pressure needed at the inlet to the 
shower head. Evaluate the force needed to hold the shower head onto the end of the 
circular tube. Indicate clearly whether this is a compression or a tension force. 

8.98 Water discharges to atmosphere from a large reservoir through a moderately rounded 
horizontal nozzle of 25 mm diameter. The free surface is 1.5 m above the nozzle exit 
plane. Calculate the change in flow rate when a short section of 50 mm diameter pipe 
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is attached to the end of the nozzle to form a sudden expansion. Determine the loca­
tion and estimate the magnitude of the minimum pressure with the sudden expansion 
in place. If the flow were frictionless (with the sudden expansion in place), would the] 
minimum pressure be higher, lower, or the same? Would the flow rate be higher, 
lower, or the same? 

8.99 Water flows steadily from a large tank through a length of smooth plastic tubing, 
then discharges to atmosphere. The tubing inside diameter is 3.18 mm, and its length | 
is 15.3 m. Calculate the maximum volume flow rate for which flow in the tubing will 
remain laminar. Estimate the water level in the tank below which flow will be lami­
nar (for laminar flow, a = 2 and KeM = 1.4). 

8.100 You are asked to compare the behavior of fully developed laminar flow and fully de­
veloped turbulent flow in a horizontal pipe under different conditions. For the same 
flow rate, which will have the larger centerline velocity? Why? If the pipe discharges 
to atmosphere what would you expect the trajectory of the discharge stream to look 
like (for the same flow rate)? Sketch your expectations for each case. For the same 
flow rate, which flow would give the larger wall shear stress? Why? Sketch the shear 
stress distribution T / T w as a function of radius for each flow. For the same Reynolds 
number, which flow would have the larger pressure drop per unit length? Why? For a 
given imposed pressure differential, which flow would have the larger flow rate?] 
Why? 

•
Most of the remaining problems in this chapter involve determination of the turbulent friction 
factor/from the Reynolds number Re and dimensionless roughness e/D. For approximate 
calculations,/can be read from Fig. 8.12; a more accurate approach is to use this value (or 
some other value, even/ = 1) as the first value for iterating in Eq. 8.37. The most convenient 
approach is to use solution of Eq. 8.37 programmed into (or built-into) your calculator, or 
programmed into an Excel workbook. Hence, most of the remaining problems benefit from 
use of Excel. To avoid needless duplication, the disk symbol will only be used next to re­
maining problems in this chapter when it has an additional benefit (e.g., for iterating to a 
solution, or for graphing). 

Estimate the minimum level in the water tank of Problem 8.99 such that the flow will 
be turbulent. 

A laboratory experiment is set up to measure pressure drop for flow of water through] 
a smooth tube. The tube diameter is 15.9 mm, and its length is 3.56 m. Flow enters 
the tube from a reservoir through a square-edged entrance. Calculate the volume flow 
rate needed to obtain turbulent flow in the tube. Evaluate the reservoir height differ­
ential required to obtain turbulent flow in the tube. 

Plot the required reservoir depth of water to create flow in a smooth tube of diameteJ 
10 mm and length 100 m, for a flow rate range of 1 L/s through 10 L/s. 

As discussed in Problem 8.49, the applied pressure difference, Ap, and corral 
sponding volume flow rate, Q, for laminar flow in a tube can be compared to the 
applied DC voltage V across, and current / through, an electrical resistor, respectivelj] 
Investigate whether or not this analogy is valid for turbulent flow by plotting the 
"resistance" Ap/Q as a function of Q for turbulent flow of kerosine (at 40°C) in a 
tube 100 mm long with inside diameter 0.3 mm. 

A water system is used in a laboratory to study flow in a smooth pipe. To obtain a 
reasonable range, the maximum Reynolds number in the pipe must be 100,000. Thel 
system is supplied from an overhead constant-head tank. The pipe system consists oil 
a square-edged entrance, two 45° standard elbows, two 90° standard elbows, and a] 
fully open gate valve. The pipe diameter is 15.9 mm, and the total length of pipe isj 
9.8 m. Calculate the minimum height of the supply tank above the pipe system disJ 
charge to reach the desired Reynolds number. 

8.101 

8.102 

^ 8.103 

$ 1 8.104 

8.105 
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8.106 Water from a pump flows through a 0.25 m diameter commercial steel pipe for a dis­
tance of 6 km from the pump discharge to a reservoir open to the atmosphere. The 
level of the water in the reservoir is 10 m above the pump discharge, and the average 
speed of the water in the pipe is 2.5 m/s. Calculate the pressure at the pump dis­
charge. 

8.107 Water is to flow by gravity from one reservoir to a lower one through a straight, in­
clined galvanized iron pipe. The pipe diameter is 50 mm, and the total length is 250 m. 
Each reservoir is open to the atmosphere. Plot the required elevation difference Az as 
a function of flow rate Q, for Q ranging from 0 to 0.01 m3/s. Estimate the fraction of 
Az due to minor losses. 

8.108 In a certain air-conditioning installation, a flow rate of 35 m3/min of air at standard 
conditions is required. A smooth sheet metal duct 0.3 m square is to be used. Deter­
mine the pressure drop for a 30 m horizontal duct run. 

8.109 A pipe friction experiment is to be designed, using water, to reach a Reynolds 
number of 100,000. The system will use 2 in. smooth PVC pipe from a constant-
head tank to the flow bench and 40 ft of smooth 1 in. PVC line mounted horizon­
tally for the test section. The water level in the constant-head tank is 1.5 ft above 
the entrance to the 2 in. PVC line. Determine the required average speed of water 
in the I in. pipe. Estimate the feasibility of using a constant-head tank. Calculate 
the pressure difference expected between taps 15 ft apart in the horizontal test 
section. 

8.110 A system for testing variable-output pumps consists of the pump, four standard el­
bows, and an open gate valve forming a closed circuit as shown. The circuit is to ab­
sorb the energy added by the pump. The tubing is 75 mm diameter cast iron, and the 
total length of the circuit is 20 m. Plot the pressure difference required from the 
pump for water flow rates Q ranging from 0.01 m3/s to 0.06 m3/s. 

Pump 10 
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8.111 Consider flow of standard air at 35 m3/min. Compare the pressure drop per unit 
length of a round duct with that for rectangular ducts of aspect ratio 1, 2, and 3. As­
sume that all ducts are smooth, with cross-sectional areas of 0.1 m2. 
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8.112 Two reservoirs are connected by three clean cast-iron pipes in series, Lx = 600 ra, 
D, = 0.3 m, L2 = 900 m, D2 = 0.4 m, L, = 1500 m, and D 3 = 0.45 m. When the 
discharge is 0.11 m3/s of water at I5°C, determine the difference in elevation be­
tween the reservoirs. 

8.113 Water, at volume flow rate Q = 20 L/s, is delivered by a fire hose and nozzle assem­
bly. The hose [L = 80 m, D = 75 mm, and e/D = 0.004) is made up of four 20 m 
sections joined by couplings. The entrance is square-edged; the minor loss coefficient 
for each coupling is Kc = 0.5, based on mean velocity through the hose. The nozzle 
loss coefficient is Kn = 0.02, based on velocity in the exit jet, of D2 = 25 mm 
diameter. Estimate the supply pressure required at this flow rate. 

8.114 Data were obtained from measurements on a vertical section of old, corroded, galva­
nized iron pipe of 1 in. inside diameter. At one section the pressure was px = 100 
psig; at a second section, 20 ft lower, the pressure was p2 = 75.5 psig. The volume 
flow rate of water was 0.110 ft3/s. Estimate the relative roughness of the pipe. What 
percent savings in pumping power would result if the pipe were restored to its newa 
clean relative roughness? 

8.115 A small swimming pool is drained using a garden hose. The hose has 20 mm inside 
diameter, a roughness height of 0.2 mm, and is 30 m long. The free end of the hose is 
located 3 m below the elevation of the bottom of the pool. The average velocity at 
the hose discharge is 1.2 m/s. Estimate the depth of the water in the swimming pool. 
If the flow were inviscid, what would be the velocity? 

8.116 Flow in a tube may alternate between laminar and turbulent states for Reynolds 
numbers in the transition zone. Design a bench-top experiment consisting of a 
constant-head cylindrical transparent plastic tank with depth graduations, and &\ 
length of plastic tubing (assumed smooth) attached at the base of the tank through 
which the water flows to a measuring container. Select tank and tubing dimensions 
so that the system is compact, but will operate in the transition zone range. Design 
the experiment so that you can easily increase the tank head from a low range (lami­
nar flow) through transition to turbulent flow, and vice versa. (Write instructions for 
students on recognizing when the flow is laminar or turbulent.) Generate plots (on 
the same graph) of tank depth against Reynolds number, assuming laminar or 
turbulent flow. 

8.117 A compressed air drill requires 0.25 kg/s of air at 650 kPa (gage) at the drill. The 
hose from the air compressor to the drill is 40 mm inside diameter. The maximum 
compressor discharge gage pressure is 670 kPa; air leaves the compressor at 40°C,j 
Neglect changes in density and any effects of hose curvature. Calculate the longest 
hose that may be used. 

8.118 Gasoline flows in a long, underground pipeline at a constant temperature of 15°C. Twoj 
pumping stations at the same elevation are located 13 km apart. The pressure drop be­
tween the stations is 1.4 MPa. The pipeline is made from 0.6 m diameter pipe. All 
though the pipe is made from commercial steel, age and corrosion have raised the pipe 
roughness to approximately that for galvanized iron. Compute the volume flow rate. 

8.119 Water flows steadily in a horizontal 125 mm diameter cast-iron pipe. The pipe is 150 m 
long and the pressure drop between sections and (2) is 150 kPa. Find the volume 
flow rate through the pipe. 

fc^l 8.120 Water flows steadily in a 125 mm diameter cast-iron pipe 150 m long. The pressurj 
drop between sections (T) and (2) is 150 kPa, and section (2) is located 15 m above 
section (T). Find the volume flow rate. 

8.121 Two open standpipes of equal diameter are connected by a straight tube as shownj 
Water flows by gravity from one standpipe to the other. For the instant shown, esti­
mate the rate of change of water level in the left standpipe. 
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8.122 Two galvanized iron pipes of diameter D are connected to a large water reservoir 
as shown. Pipe A has length L and pipe B has length 2L. Both pipes discharge to 
atmosphere. Which pipe will pass the larger flow rate? Justify (without calculating 
the flow rate in each pipe). Compute the flow rates if H = 10 m, D = 50 mm, and 
L = 50 m. 

8.123 A mining engineer plans to do hydraulic mining with a high-speed jet of water. A 
lake is located H = 300 m above the mine site. Water will be delivered through L = 
900 m of fire hose; the hose has inside diameter D = 75 mm and relative roughness 
e/D = 0.01. Couplings, with equivalent length Le = 20 D, are located every 10 m 
along the hose. The nozzle outlet diameter is d = 25 mm. Its minor loss coefficient 
is K = 0.02 based on outlet velocity. Estimate the maximum outlet velocity that this 
system could deliver. Determine the maximum force exerted on a rock face by this 
water jet. 

8.124 Investigate the effect of tube length on flow rate by computing the flow generated by 
a pressure difference Ap = 100 kPa applied to a length L of smooth Utbing, of diam­
eter D = 25 mm. Plot the flow rate against tube length for flow ranging from low 
speed laminar to fully turbulent. 

8.125 Investigate the effect of tube roughness on flow rate by computing the flow gener­
ated by a pressure difference Ap - 100 kPa applied to a length L = 100 m of tub­
ing, with diameter D = 25 mm. Plot the flow rate against tube relative roughness 
e/D for e/D ranging from 0 to 0.05 (this could be replicated experimentally by 
progressively roughening the tube surface). Is it possible that this tubing could 
be roughened so much that the flow could be slowed to a laminar flow 
rate? 

8.126 Use the flow configuration of Example Problem 8.5 with a well rounded inlet, depth 
d = 10 m, D = 26.6 mm, and commercial steel pipe to investigate the effect of hori­
zontal pipe length on volume flow rate. What is the volume flow rate for a pipe 
length of 170 m? At what pipe length will the flow become laminar? What happens 
to the flow rate when the flow changes from laminar to turbulent? How long must the 
pipe be to reduce the flow rate to 1 gal/hr? 

.127 Water for a fire protection system is supplied from a water tower through a 150 mm 
cast-iron pipe. A pressure gage at a fire hydrant indicates 600 kPa when no water is 
flowing. The total pipe length between the elevated tank and the hydrant is 200 m. 
Determine the height of the water tower above the hydrant. Calculate the maximum 
volume flow rate that can be achieved when the system is flushed by opening the 
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8.128 

hydrant wide (assume minor losses are 10 percent of major losses at this conditioi 
When a fire hose is attached to the hydrant, the volume flow rate is 0.75 mVmin. De­
termine the reading of the pressure gage at this flow condition. 

The siphon shown is fabricated from 2 in. i.d. drawn aluminum tubing. The liquid it 
water at 60CF. Compute the volume flow rate through the siphon. Estimate the mini­
mum pressure inside the tube. 

P 8 . 1 2 8 

8.129 Consider again the Roman water supply discussed in Example Problem 8.10. As­
sume that the 50 ft length of horizontal constant-diameter pipe required by law h&\ 
been installed. The relative roughness of the pipe is 0.01. Estimate the flow rate of 
water delivered by the pipe under the inlet conditions of the example. What would be 
the effect of adding the same diffuser to the end of the 50 ft pipe? 

8.130 In Example Problem 8.10 we found that the flow rate from a water main could be in­
creased (by as much as 33 percent) by attaching a diffuser to the outlet of the nozzle 
installed into the water main. We read that the Roman water commissioner required 
that the tube attached to the nozzle of each customer's pipe be the same diameter for 
at least 50 feet from the public water main. Was the commissioner overly conserva-j 
tive? Using the data of the problem, estimate the length of pipe (with e/D = 0.01) at I 
which the system of pipe and diffuser would give a flow rate equal to that with the noz­
zle alone. Plot the volume flow ratio Q/Qj as a function of LID, where L is the length of U 
pipe between the nozzle and the diffuser, Qi is the volume flow rate for the nozzle 
alone, and Q is the actual volume flow rate with the pipe inserted between nozzle and 
diffuser. 

8.131 You are watering your lawn with an old hose. Because lime deposits have built up 
over the years, the 0.75 in. i.d. hose now has an average roughness height of 0.022 
in. One 50 ft length of the hose, attached to your spigot, delivers 15 gpm of water 
(60°F). Compute the pressure at the spigot, in psi. Estimate the delivery if two 50 ft 
lengths of the hose are connected. Assume that the pressure at the spigot varies with 
flow rate and the water main pressure remains constant at 50 psig. 

8.132 A hydraulic press is powered by a remote high-pressure pump. The gage pressure at 
the pump outlet is 20 MPa, whereas the pressure required for the press is 19 MPa 
(gage), at a flow rate of 0.032 m3/min. The press and pump are connected by 50 m of 
smooth, drawn steel tubing. The fluid is SAE 10W oil at 40°C. Determine the mini­
mum tubing diameter that may be used. 

8.133 A pump is located 15 ft to one side of, and 12 ft above a reservoir. The pump is de­
signed for a flow rate of 100 gpm. For satisfactory operation, the static pressure at 
the pump inlet must not be lower than —20 ft of water gage. Determine the smallest 
standard commercial steel pipe that will give the required performance. 
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8.134 Determine the minimum size smooth rectangular duct with an aspect ratio of 2 that 
will pass 80 m3/min of standard air with a head loss of 30 mm of water per 30 m of 
duct. 

8.135 A new industrial plant requires a water flow rate of 5.7 m3/min. The gage pressure 
in the water main, located in the street 50 m from the plant, is 800 kPa. The supply 
line will require installation of 4 elbows in a total length of 65 m. The gage pres­
sure required in the plant is 500 kPa. What size galvanized iron line should be in­
stalled? 

8.136 Investigate the effect of tube diameter on flow rate by computing the flow generated 
by a pressure difference, Ap = 100 kPa, applied to a length L = 100 m of smooth 
tubing. Plot the flow rate against rube diameter for a range that includes laminar and 
turbulent flow. 

8.137 A large reservoir supplies water for a community. A portion of the water supply 
system is shown. Water is pumped from the reservoir to a large storage tank before 
being sent on to the water treatment facility. The system is designed to provide 
1310 L/s of water at 20°C. From B to C the system consists of a square-edged 
entrance, 760 m of pipe, three gate valves, four 45° elbows, and two 90° elbows. 
Gage pressure at C is 197 kPa. The system between F and G contains 760 m of pipe, 
two gate valves, and four 90° elbows. All pipe is 508 mm diameter, cast iron. Cal­
culate the average velocity of water in the pipe, the gage pressure at section F, the 
power input to the pump (its efficiency is 80 percent), and the wall shear stress in 
section FG. 

P 8 . 1 3 7 

8.138 An air-pipe friction experiment consists of a smooth brass tube with 63.5 mm inside 
diameter; the distance between pressure taps is 1.52 m. The pressure drop is indi­
cated by a manometer filled with Meriam red oil. The centerline velocity U is meas­
ured with a pitot cylinder. At one flow condition, U = 23.1 m/s and the pressure 
drop is 12.3 mm of oil. For this condition, evaluate the Reynolds number based on 
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*8.139 

"8.140 

8.141 

8.142 

8.143 

average flow velocity. Calculate the friction factor and compare with the value ob­
tained from Eq. 8.37 (use n = 7 in the power-law velocity profile). 

Oil has been flowing from a large tank on a hill to a tanker at the wharf. The com-1 
partment in the tanker is nearly full and an operator is in the process of stopping | H 
flow. A valve on the wharf is closed at a rate such that 1 MPa is maintained in the 
line immediately upstream of the valve. Assume: 

Length of line from tank to valve 3 km 
Inside diameter of line 200 mm 
Elevation of oil surface in tank 60 m 
Elevation of valve on wharf 6 m 
Instantaneous flow rate 2.5 mVmin 
Head loss in line (exclusive of valve 

being closed) at this rate of flow 23 m of oil 
Specific gravity of oil 0.88 

Calculate the initial instantaneous rate of change of volume flow rate. 

Problem 8.139 describes a situation in which flow in a long pipeline from a hilltop 
tank is slowed gradually to avoid a large pressure rise. Expand this analysis to pre- 1 

diet and plot the closing schedule (valve loss coefficient versus time) needed to | 
maintain the maximum pressure at the valve at or below a given value throughout the 
process of stopping the flow from the tank. 

The pressure rise across a water pump is 9.5 psi when the volume flow rate is 300 
gpm. If the pump efficiency is 80 percent, determine the power input to the pump. 1 

A pump draws water at a steady flow rate of 10 kg/s through a piping system. The 
pressure on the suction side of the pump is —20 kPa. The pump outlet pressure is 
300 kPa. The inlet pipe diameter is 75 mm; the outlet pipe diameter is 50 mm. The 
pump efficiency is 70 percent. Calculate the power required to drive the pump. 

A 2.5 (nominal) in. pipeline conveying water contains 290 ft of straight galvanized! 
pipe, 2 fully open gate valves, 1 fully open angle valve, 7 standard 90° elbows, 1 
square-edged entrance from a reservoir, and 1 free discharge. The entrance and exit 
conditions are: 

Location Elevation Pressure 

Entrance 50.0 ft 20 psig 
Discharge 94.0 ft Opsig 

A centrifugal pump is installed in the line to move the water. What pressure rise must 
the pump deliver so the volume flow rate will be Q = 0.439 ft-Vs? 

8.144 You are asked to size a pump for installation in the water supply system of the Sears 
Tower in Chicago. The system requires 100 gpm of water pumped to a reservoir ail 
the top of the tower 340 m above the street. City water pressure at the street-leveH 
pump inlet is 400 kPa (gage). Piping is to be commercial steel. Determine the mini-1 
mum diameter required to keep the average water velocity below 3.5 m/s in the pipe! 
Calculate the pressure rise required across the pump. Estimate the minimum powerl 
needed to drive the pump. 

8.145 Cooling water is pumped from a reservoir to rock drills on a construction job using] 
the pipe system shown. The flow rate must be 600 gpm and water must leave the] 
spray nozzle at 120 ft/s. Calculate the minimum pressure needed at the pump outlet. 
Estimate the required power input if the pump efficiency is 70 percent. 

*These problems require material from sections that may be omitted without loss of continuity in the text 1 

materia]. 
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8.146 Air conditioning for the Purdue University campus is provided by chilled water 
pumped through a main supply pipe. The pipe makes a loop 3 miles in length. The 
pipe diameter is 2 ft and the material is steel. The maximum design volume flow rate 
is 11,200 gpm. The circulating pump is driven by an electric motor. The efficiencies 
of pump and motor are vp = 0.80 and r),„ = 0.90, respectively. Electricity cost is 
12 e/(kW-hr). Determine (a) the pressure drop, (b) the rate of energy addition to the 
water, and (c) the daily cost of electrical energy for pumping, 

8.147 Heavy crude oil (SG = 0.925 and v = 1.0 X 10"" m2/s) is pumped through a 
pipeline laid on flat ground. The line is made from steel pipe with 600 mm i.d. and 
has a wall thickness of 12 mm. The allowable tensile stress in the pipe wall is limited 
to 275 MPa by corrosion considerations. It is important to keep the oil under pres­
sure to ensure that gases remain in solution. The minimum recommended pressure is 
500 kPa. The pipeline carries a flow of 400,000 barrels (in the petroleum industry, a 
"barrel" is 42 gal) per day. Determine the maximum spacing between pumping sta­
tions. Compute the power added to the oil at each pumping station. 

8.148 A fire nozzle is supplied through 300 ft of 1.5 in. diameter, smooth, rubber-lined 
hose. Water from a hydrant is supplied to a booster pump on board the pumper truck 
at 50 psig. At design conditions, the pressure at the nozzle inlet is 100 psig, and the 
pressure drop along the hose is 33 psi per 100 ft of length. Determine (a) the design 
flow rate, (b) the nozzle exit velocity, assuming no losses in the nozzle, and (c) the 
power required to drive the booster pump, if its efficiency is 70 percent. 

8.149 According to the Purdue student newspaper, the volume flow rate through the fountain 
in the Engineering Mall is 550 gpm. Each water stream can rise to a height of 10 m. Es­
timate the daily cost to operate the fountain. Assume that the pump motor efficiency is 
90 percent, the pump efficiency is 80 percent, and the cost of electricity is 12<2/kW-hr. 

8.150 Petroleum products are transported over long distances by pipeline, e.g., the Alaskan 
pipeline (see Example Problem 8.6). Estimate the energy needed to pump a typical 
petroleum product, expressed as a fraction of the throughput energy carried by the 
pipeline. State and critique your assumptions clearly. 

8.151 The pump testing system of Problem 8.110 is run with a pump that generates a pres­
sure difference given by Ap = 750 - 15 X lO 4 ^ 2 where Ap is in kPa, and the gen­
erated flow rate is Q m3/s. Find the water flow rate, pressure difference, and power 
supplied to the pump if it is 70 percent efficient. 

8.152 A water pump can generate a pressure difference Ap (kPa) given by Ap = 1000 - SCOQ?, 
where the flow rate is Q m3/s. It supplies a pipe of diameter 500 mm, roughness 10 mm, 
and length 750 m. Find the flow rate, pressure difference, and the power supplied 
to the pump if it is 70 percent efficient. If the pipe were replaced with one of rough­
ness 5 mm, how much would the flow increase, and what would the required 
power be? 
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8.153 The head versus capacity curve for a certain fan may be approximated by the equation 
H = 30 — 1CT7 Q2, where H is the output static head in inches of water and Q is the 
air flow rate in ftVmin. The fan outlet dimensions are 8 X 16 in. Determine the air flow 
rate delivered by the fan into a 200 ft straight length of 8 X 16 in. rectangular duct, j 

*8.154 A cast-iron pipe system consists of a 50 m section of water pipe, after which the flow 
branches into two 50 m sections, which then meet in a final 50 m section. Minor 
losses may be neglected. All sections are 45 mm diameter, except one of the two 
branches, which is 25 mm diameter. If the applied pressure across the system is 300 
kPa, find the overall flow rate and the flow rates in each of the two branches. 

*8.155 The water pipe system shown is constructed from 75 mm galvanized iron pipe. Mi­
nor losses may be neglected. The inlet is at 250 kPa (gage), and all exits are at at­
mospheric pressure. Find the flow rates Q0, Qu Q2, and Qy If the flow in the 400 i 
branch is closed off (Qy = 0), find the increase in flows Q2, and Qy 

inn 

Co. 300 m 400 m Qi 

75 m e2 

100 m 
100 m 

100 m 
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*8.156 A swimming pool has a partial-flow filtration system. Water at 75°F is pumped from 
the pool through the system shown. The pump delivers 30 gpm. The pipe is nominal 
3/4 in. PVC (i.d. = 0.824 in.). The pressure loss through the filter is approximately 
Ap = 0.6g 2, where Ap is in psi and Q is in gpm. Determine the pump pressure and 
the flow rate through each branch of the system. 

From 

pool 
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Total length: 
20 ft 

Fi l ter ' 

Total length; 
40 ft 

Patm 

8.157 Why does the shower temperature change when a toilet is flushed? Sketch pressure 
curves for the hot and cold water supply systems to explain what happens. 

8.158 Water at 150°F flows through a 3 in. diameter orifice installed in a 6 in. i.d. pipe. The 
flow rate is 300 gpm. Determine the pressure difference between the corner taps. 

8.159 A square-edged orifice with corner taps and a water manometer are used to meter 
compressed air. The following data are given: 

Inside diameter of air line 
Orifice plate diameter 
Upstream pressure 
Temperature of air 
Manometer deflection 

150 mm 
100 mm 
600 kPa 
25°C 
750 mm H 2 0 

Calculate the volume flow rate in the line, expressed in cubic meters per hour. 

•These problems require material from sections that may be omitted without loss of continuity in the tejq 
material. 
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8.160 A smooth 200 m pipe, 100 mm diameter connects two reservoirs (the entrance and 
exit of the pipe are sharp-edged). At the midpoint of the pipe is an orifice plate with 
diameter 40 mm. If the water levels in the reservoirs differ by 30 m, estimate the 
pressure differential indicated by the orifice plate and the flow rate. 

8.161 A venturi meter with a 75 mm diameter throat is placed in a 150 mm diameter line 
carrying water at 25°C. The pressure drop between the upstream tap and the venturi 
throat is 300 mm of mercury. Compute the rate of flow. 

8.162 Gasoline flows through a 2 X 1 in. venturi meter. The differential pressure is 380 
mm of mercury. Find the volume flow rate. 

8.163 Consider a horizontal 2 X 1 in. venturi with water flow. For a differential pressure of 
20 psi, calculate the volume flow rate. 

8.164 Air flow rate in a test of an internal combustion engine is to be measured using a flow 
nozzle installed in a plenum. The engine displacement is 1.6 liters, and its maximum 
operating speed is 6000 rpm. To avoid loading the engine, the maximum pressure 
drop across the nozzle should not exceed 0.25 m of water. The manometer can be read 
to ± 0.5 mm of water. Determine the flow nozzle diameter that should be specified. 
Find the minimum rate of air flow that can be metered to ± 2 percent using this setup. 

8.165 Air flows through the venturi meter described in Problem 8.161. Assume that the up­
stream pressure is 400 kPa, and that the temperature is everywhere constant at 20°C. 
Determine the maximum possible mass flow rate of ah for which the assumption of 
incompressible flow is a valid engineering approximation. Compute the correspon­
ding differential pressure reading on a mercury manometer. 

8.166 Water at 70°F flows steadily through a venturi. The pressure upstream from the 
throat is 5 psig. The throat area is 0.025 ft2; the upstream area is 0.1 ft2. Estimate the 
maximum flow rate this device can handle without cavitation. 

8.167 Consider a flow nozzle installation in a pipe. Apply the basic equations to the control 
volume indicated, to show that the permanent head loss across the meter can be ex­
pressed, in dimensionless form, as the head loss coefficient, 

c = Pi ~ Pi = 1 ~ Aj/Ay 
1 Pi ~ Pi 1 + Ai/A\ 

Plot C, as a function of diameter ratio, D2/Dt. 

8.168 In some western states, water for mining and irrigation was sold by the "miner's 
inch," the rate at which water flows through an opening in a vertical plank of 1 in.2 

area, up to 4 in. tall, under a head of 6 to 9 in. Develop an equation to predict the 
flow rate through such an orifice. Specify clearly the aspect ratio of the opening, 
thickness of the plank, and datum level for measurement of head (top, bottom, or 
middle of the opening). Show that the unit of measure varies from 38.4 (in Colorado) 
to 50 (in Arizona, Idaho, Nevada, and Utah) miner's inches equal to I ftVs. 

8.169 Drinking straws are to be used to improve the air flow in a pipe-flow experiment. 
Packing a section of the air pipe with drinking straws to form a "laminar flow 
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element" might allow the air flow rate to be measured directly, and simultaneously 
would act as a flow straightener. To evaluate this idea, determine (a) the Reynolds 
number for flow in each drinking straw, (b) the friction factor for flow in each straw, 
and (c) the gage pressure at the exit from the drinking straws. (For laminar flow iofl 
tube, the entrance loss coefficient is KeM = 1 . 4 and a = 2.0.) Comment on the utility! 
of this idea. 

L = 230 mm 

• Straws (d = 3 mm) 

P8 .169 

D = 63 .5 mm 

Q = 100 m3/hr 

10-

8.170 The volume flow rate in a circular duct may be measured by "pitot traverse," i.e., by 
measuring the velocity in each of several area segments across the duct, then su: 
ming. Comment on the way such a traverse should be set up. Quantify and plot 
expected error in measurement of flow rate as a function of the number of radial 
cations used in the traverse. 

8.171 The chilled-water pipeline system that provides air conditioning for the Purdue Uni­
versity campus is described in Problem 8.146. The pipe diameter is selected to mini- j 
mize total cost (capital cost plus operating cost). Annualized costs are compared, I 
since capital cost occurs once and operating cost continues for the life of the system. 
The optimum diameter depends on both cost factors and operating conditions; the 
analysis must be repeated when these variables change. Perform a pipeline optimiza­
tion analysis. Solve Problem 8.146, arranging your calculations to study the effect of 
pipe diameter on annual pumping cost. (Assume friction factor remains constant™ 
Obtain an expression for total annual cost per unit delivery (e.g., dollars per cubH 
meter), assuming construction cost varies as the square of pipe diameter. Obtain an 
analytical relation for the pipe diameter that yields minimum total cost per unit delivB 
ery. Assume the present chilled-water pipeline was optimized for a 20 year life with] 
5 percent annual interest. Repeat the optimization for a design to operate at 30 per­
cent larger flow rate. Plot the annual cost of electrical energy for pumping and thai 
capital cost, using the flow conditions of Problem 8.146, with pipe diameter varietj 
from 300 to 900 mm. Show how the diameter may be chosen to minimize total cost[ 
How sensitive are the results to interest rate? 
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EXTERNAL INCOMPRESSIBLE 
VISCOUS FLOW 

External flows are flows over bodies immersed in an unbounded fluid. The flow over 
a sphere (Fig. 2.12b) and the flow over a streamlined body (Fig. 2.14) are examples 
of external flows, which were discussed qualitatively in Chapter 2. More interesting 
examples are the flow fields around such objects as airfoils (Fig. 9.1), automobiles, 
and airplanes. Our objective in this chapter is to quantify the behavior of viscous, in­
compressible fluids in external flow. 

A number of phenomena that occur in external flow over a body are illustrated 
in the sketch of viscous flow at high Reynolds number over an airfoil (Fig. 9.1). The 
freestream flow divides at the stagnation point and flows around the body. Fluid at the 
surface takes on the velocity of the body as a result of the no-slip condition. Bound­
ary layers form on both the upper and lower surfaces of the body. (The boundary-
layer thickness on both surfaces in Fig. 9.1 is exaggerated greatly for clarity.) The 
flow in the boundary layers initially is laminar. Transition to turbulent flow occurs at 
some distance from the stagnation point, depending on freestream conditions, surface 
roughness, and pressure gradient. The transition points are indicated by " T ' in the 
figure. The turbulent boundary layer following transition grows more rapidly than 
the laminar layer. A slight displacement of the streamlines of the external flow is 
caused by the thickening boundary layers on the surface. In a region of increasing 
pressure (an adverse pressure gradient—so-called because it opposes the fluid mo­
tion, tending to decelerate the fluid particles) flow separation may occur. Separation 
points are indicated by " S " in the figure. Fluid that was in the boundary layers on the 
body surface forms the viscous wake behind the separation points. 

This chapter has two parts. Part A is a review of boundary-layer flows. Here we 
discuss in a little more detail the ideas introduced in Chapter 2, and then apply the 
fluid mechanics concepts we have learned to analyze the boundary layer for flow 
along a flat pla te—the simplest possible boundary layer, because the pressure field is 
constant. We will be interested in seeing how the boundary-layer thickness grows, 
what the surface friction will be, and so on. We will explore a classic analytical solu­
tion for a laminar boundary layer, and see that we need to resort to approximate 
methods when the boundary layer is turbulent (and we will also be able to use these 
approximate methods for laminar boundary layers, to avoid using the somewhat diffi­
cult analytical method). This will conclude our introduction to boundary layers, ex­
cept we will briefly discuss the effect of pressure gradients (present for all body 
shapes except flat plates) on boundary-layer behavior. 

In Part B we will discuss the force on a submerged body, such as the airfoil of 
Fig. 9.1. We will see that this force results from both shear and pressure forces acting 
on the body surface, and that both of these are profoundly affected by the fact that we 
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[ /^-Uni form velocity field upstream 

L B L - Laminar boundary layer 
1. T B L - Turbulent boundary layer 

T - Transit ion 
S - Separation point 

F i g . 9.1 Detai ls of v i scous f low a r o u n d an airfoi l . 

have a boundary layer, especially when this causes flow separation and a wake. Tradi 
tionally the force a body experiences is decomposed into the component parallel t 
the flow, the drag, and the component perpendicular to the flow, the lift. Because 
most bodies do have a point of separation and a wake, it is difficult to use analysis to 
determine the force components, so we will present approximate analyses and expe~ 
mental data for various interesting body shapes. 

P A R T A B O U N D A R Y L A Y E R S 

9-1 THE BOUNDARY-LAYER CONCEPT 

The concept of a boundary layer was first introduced by Ludwig Prandtl [1], a G 
man aerodynamicist, in 1904. 

Prior to Prandtl's historic breakthrough, the science of fluid mechanics had been 
developing in two rather different directions. Theoretical hydrodynamics evolved 
from Euler's equation of motion for a nonviscous fluid (Eq. 6.1, published by Leon-] 
hard Euler in 1755). Since the results of hydrodynamics contradicted many experi­
mental observations (especially, as we saw in Chapter 6, that under the assumption of 
inviscid flow no bodies experience drag!), practicing engineers developed their own 
empirical art of hydraulics. This was based on experimental data and differed signifi­
cantly from the purely mathematical approach of theoretical hydrodynamics. 

Although the complete equations describing the motion of a viscous fluid (tha 
Navier-Stokes equations, Eqs. 5.26, developed by Navier, 1827, and independently 
by Stokes, 1845) were known prior to Prandtl, the mathematical difficulties in solvJ 
ing these equations (except for a few simple cases) prohibited a theoretical treatmenl 
of viscous flows. Prandtl showed [1] that many viscous flows can be analyzed by diJ 
viding the flow into two regions, one close to solid boundaries, the other covering tha 
rest of the flow. Only in the thin region adjacent to a solid boundary (the boundary 
layer) is the effect of viscosity important. In the region outside of the boundary layerj 
the effect of viscosity is negligible and the fluid may be treated as inviscid. 

The boundary-layer concept provided the link that had been missing between 
theory and practice (for one thing, it introduced the theoretical possibility of drag!). 
Furthermore, the boundary-layer concept permitted the solution of viscous flow prob­
lems that would have been impossible through application of the Navier-Stokes 
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equations to the complete flow field.1 Thus the introduction of the boundary-layer 
concept marked the beginning of the modern era of fluid mechanics. 

The development of a boundary layer on a solid surface was discussed in Sec­
tion 2-6. In the boundary layer both viscous and inertia forces are important. Conse­
quently, it is not surprising that the Reynolds number (which represents the ratio of 
inertia to viscous forces) is significant in characterizing boundary-layer flows. The 
characteristic length used in the Reynolds number is either the length in the flow direc­
tion over which the boundary layer has developed or some measure of the boundary-
layer thickness. 

As is true for flow in a duct, flow in a boundary layer may be laminar or turbu­
lent. There is no unique value of Reynolds number at which transition from laminar 
to turbulent flow occurs in a boundary layer. Among the factors that affect boundary-
layer transition are pressure gradient, surface roughness, heat transfer, body forces, 
and freestream disturbances. Detailed consideration of these effects is beyond the 
scope of this book. 

In many real flow situations, a boundary layer develops over a long, essentially 
flat surface. Examples include flow over ship and submarine hulls, aircraft wings, and 
atmospheric motions over flat terrain. Since the basic features of all these flows 
are illustrated in the simpler case of flow over a flat plate, we consider this first. The 
simplicity of the flow over an infinite flat plate is that the velocity U outside the 
boundary layer is constant, and therefore, because this region is steady, inviscid, and 
incompressible, the pressure will also be constant. This constant pressure is the pres­
sure felt by the boundary layer—obviously the simplest pressure field possible. This 
is a zero pressure gradient flow. 

A qualitative picture of the boundary-layer growth over a flat plate is shown 
in Fig. 9.2. The boundary layer is laminar for a short distance downstream from 
the leading edge; transition occurs over a region of the plate rather than at a single 
line across the plate. The transition region extends downstream to the location where 
the boundary-layer flow becomes completely turbulent. 

For incompressible flow over a smooth flat plate (zero pressure gradient), in the 
absence of heat transfer, transition from laminar to turbulent flow in the boundary 
layer can be delayed to a Reynolds number, Rex = pUx/ p, greater than one million 
if external disturbances are minimized. (The length x is measured from the leading 
edge.) For calculation purposes, under typical flow conditions, transition usually is 
considered to occur at a length Reynolds number of 500,000. For air at standard con­
ditions, with freestream velocity U = 30 m/s, this corresponds to x ~ 0.24 m. In the 
qualitative picture of Fig. 9.2, we have shown the turbulent boundary layer growing 

Laminar -
Transition 

F i g . 9.2 B o u n d a r y layer on a flat p la te (vert 
1 Today, computer solutions of the Navier-Stokes equations are common 

cal th i ckness exaggera ted great ly 
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faster than the laminar layer. In later sections of this chapter we shall show that this is 
indeed true. 

In the next section we discuss various ways to quantify the thickness of a bound­
ary layer. 

-73ti&r 9-2 BOUNDARY-LAYER THICKNESSES 

The boundary layer is the region adjacent to a solid surface in which viscous stresses are 
present. These stresses are present because we have shearing of the fluid layers, i.e., I 
velocity gradient, in the boundary layer. As indicated in Fig. 9.2, both laminar and turbu­
lent layers have such gradients, but the difficulty is that the gradients only asymptotically 
approach zero as we reach the edge of the boundary layer. Hence, the location of the 
edge, i.e., of the boundary-layer thickness, is not very obvious—we cannot simply de-1 
fine it as where the boundary-layer velocity u equals the freestream velocity U. Because] 
of this, several boundary-layer definitions have been developed: the disturbance thick­
ness 8, the displacement thickness 8*, and the momentum thickness 6. (Each of these in- ' 
creases as we move down the plate, in a manner we have yet to determine.) 

The most straightforward definition is the disturbance thickness, 5. This is usually 
denned as the distance from the surface at which the velocity is within 1% of the free 
stream, u ~ 0.99U (as shown in Fig. 93b). The other two definitions are based on the] 
notion that the boundary layer retards the fluid, so that the mass flux and momentum 
flux are both less than they would be in the absence of the boundary layer. We imagine 
that the flow remains at uniform velocity U, but the surface of the plate is moved up­
wards to reduce either the mass or momentum flux by the same amount that the bound! 
ary layer actually does. The displacement thickness, 8*, is the distance the plate would] 
be moved so that the loss of mass flux (due to reduction in uniform flow area) is equiva­
lent to the loss the boundary layer causes. The mass flux if we had no boundary layer 

would be J pUdy w, where w is the width of the plate perpendicular to the flow. The 

actual flow mass flux is [ pudyw. Hence, the loss due to the boundary layer is 
Jo 

p(U - ujdyw. If we imagine keeping the velocity at a constant U, and instead! 

move the plate up a distance 8* (as shown in Fig. 9.3a), the loss of mass flux would! 
be pU8* w. Setting these losses equal to one another gives 

pU8* w u) dy w 

S' 

= T 

(in mass flux) (in 
momentum 

flux) T 
(a) Displacement thickness, 8' (Z>) Disturbance thickness, 5 

Fig. 9.3 B o u n d a r y - l a y e r t h i c k n e s s de f in i t ions . 

(c) Momentum thickness, 0 
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For incompressible flow, p = constant, and 

(9.1) 

Since u ~ U at y = 8, the integrand is essentially zero for y > S. Application of the 
displacement-thickness concept is illustrated in Example Problem 9.1. 

The momentum thickness, 9, is the distance the plate would be moved so that the 
loss of momentum flux is equivalent to the loss the boundary layer actually causes. The 

momentum flux if we had no boundary layer would be f puUdy w(the actual mass 
J O 

. 0 0 

flux is pu dy w, and the momentum per unit mass flux of the uniform flow is U 
Jo 

R ° ° 2 
itself). The actual momentum flux of the boundary layer is pu dyw. Hence, the 

J O 
p o o 

loss of momentum in the boundary layer is J pu(U - u) dy w. If we imagine 

keeping the velocity at a constant U, and instead move the plate up a distance 6 (as 
shown in Fig. 9.3c), the loss of momentum flux would be pUUdyw = pU"9w. 
Setting these losses equal to one another gives 

pU26 = P pu(U-u)dy 
J O 

and 

(9.2) 

Again, the integrand is essentially zero fory > 8. 
The displacement and momentum thicknesses, 8* and 6, are integral thicknesses, 

because their definitions, Eqs. 9.1 and 9.2, are in terms of integrals across the boundary 
layer. Because they are defined in terms of integrals for which the integrand vanishes in 
the freestream, they are appreciably easier to evaluate accurately from experimental data 
than the boundary-layer disturbance thickness, 8. This fact, coupled with their physical 
significance, accounts for their common use in specifying boundary-layer thickness. 

We have seen that the velocity profile in the boundary layer merges into the 
local freestream velocity asymptotically. Little error is introduced if the slight differ­
ence between velocities at the edge of the boundary layer is ignored for an approxi­
mate analysis. Simplifying assumptions usually made for engineering analyses of 
boundary-layer development are: 

1. u^> C / a t y = 8 

2. du/dy —> 0 at y = 8 
3. v « U within the boundary layer 

Results of the analyses developed in the next two sections show that the bound­
ary layer is very thin compared with its development length along the surface. There­
fore it is also reasonable to assume: 

4. Pressure variation across the thin boundary layer is negligible. The freestream pressure 
distribution is impressed on the boundary layer. 
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EXAMPLE 9.1 Boundary Layer in Channel Flow 

A laboratory wind tunnel has a test section that is 305 mm square. Boundary-layer 
velocity profiles are measured at two cross-sections and displacement thicknesses are 
evaluated from the measured profiles. At section CD, where the freestream speed is 
U{ = 26 m/s, the displacement thickness is 8* = 1.5 mm. At section (2), located 
downstream from section ©), 8* = 2.1 mm. Calculate the change in static pressure; 
between sections ( T ) and (2). Express the result as a fraction of the freestream dynamic 
pressure at section ©). Assume standard atmosphere conditions. 

EXAMPLE PROBLEM 9.1 

GIVEN: Flow of standard air in laboratory wind tunnel. Test section is L = 305 mm square. Displace­
ment thicknesses are 8* = 1.5 mm and 8* = 2.1 mm. Freestream speed is (/, = 2 6 m/s. 

FIND: Change in static pressure between sections ® and © . (Express as a fraction of freestream dy­
namic pressure at section (T).) 

SOLUTION: 
The idea here is that at each location the boundary-layer displacement thickness effectively reduces the area 
of uniform flow, as indicated in the following figures: Location (2) has a smaller effective flow area than 
location © (because 5* > 5t). Hence, from mass conservation the uniform velocity at location (2) will be 
higher. Finally, from the Bernoulli equation the pressure at location (2) will be lower than that at location 

u u 

la) Actual velocity profile (b) Hypothetical velocity profile ( c ) Cross section of 
wind tunnel 

Apply the continuity and Bernoulli equations to freestream flow outside the boundary-layer displacement 
thickness, where viscous effects are negligible. 

= 0(1) 

Governing equations: pdV + PV-dA=0 
cv Jcs 

P 2 T p 2 

Assumptions: (1) Steady flow. 
(2) Incompressible flow. 
(3) Flow uniform at each section outside 5*. 
(4) Flow along a streamline between sections ® and © . 
(5) No frictional effects in freestream. 
(6) Negligible elevation changes. 
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From the Bernoulli equation we obtain 

p. - pi = \p{v\ - v?) = \ P ( u l - u 2 ) = X - P u 

or 

P\~Pi 
\pU\ 

U2__AL 

I From continuity, Vi At = Ut At = V2 A2 = U2 A2, so — = — , where A = (L — 2S*)2 is the effective 
: flow area. Substituting gives 

P\ ~ Pi _ 
\pu\ 

P\-P2 
\pu\ 

4 

^ 2 ; 
1 = 

305 - 2(1.5) 
305 - 2(2.1) 

- 1 = 0.0161 

Vy A,' 

(L - 25f ) 2 

(L - 25^) 2 

or 1.61 percent 
P\ - Pl 

pU 

Notes: 
This problem illustrates a basic application of the 
displacement-thickness concept. It is somewhat unusual in 
that, because the flow is confined, the reduction in flow 
area caused by the boundary layer leads to the result that 
the pressure in the inviscid flow region drops (if only 
slightly). In most applications the pressure distribution is 
determined from the inviscid flow and then applied to the 
boundary layer. 
We saw a similar phenomenon in Section 8-1, where we 
discovered that the centerline velocity at the entrance of 
a pipe increases due to the boundary layer "squeezing" the 
effective flow area. 

9-3 LAMINAR FLAT-PLATE BOUNDARY LAYER: EXACT SOLUTION (CD-ROM) 

9-4 MOMENTUM INTEGRAL EQUATION 

Blasius' exact solution involved performing a rather subtle mathematical transforma­
tion of two differential equations based on the insight that the laminar boundary layer 
velocity profile is self-similar—only its scale changes as we move along the plate. 
Even with this transformation, we note that numerical integration was necessary to 
obtain results for the boundary-layer thickness 8(x), velocity profile u/U versus y/8, 
and wall shear stress TW(X). Furthermore, the analysis is limited to laminar boundary 
layers only (Eq. 9.4 does not include the turbulent Reynolds stresses discussed in 
Chapter 8), and for a flat plate only (no pressure variations), 
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c 
b 

y cv 

x 

\^dx •] 

Fig. 9.4 Dif ferent ia l contro l v o l u m e in a bounda ry layer. 

To avoid these difficulties and limitations, we now consider a method for de­
riving an algebraic equation that can be used to obtain approximate information on 
boundary-layer growth for the general case (laminar or turbulent boundary layers, 
with or without a pressure gradient). The approach is one in which we will again 
apply the basic equations to a control volume. The derivation, from the mass conJ 
servation (or continuity) equation and the momentum equation, will take several1 

pages. 
Consider incompressible, steady, two-dimensional flow over a solid surface. The 

boundary-layer thickness, <5, grows in some manner with increasing distance, x. For 
our analysis we choose a differential control volume, of length dx, width w, and 
height 8(x), as shown in Fig. 9.4. The freestream velocity is U(x). 

We wish to determine the boundary-layer thickness, 8, as a function of x. There 
will be mass flow across surfaces ab and cd of differential control volume abed. 
What about surface be? Will there be a mass flow across this surface? In Example 
Problem 9.2, (on the CD), we showed that the edge of the boundary layer is not a 
streamline. Thus there will be mass flow across surface be. Since control surface ad 
is adjacent to a solid boundary, there will not be flow across ad. Before considering 
the forces acting on the control volume and the momentum fluxes through the control 
surface, let us apply the continuity equation to determine the mass flux through each 
portion of the control surface. 

a. Cont inui ty Equat ion 

Basic equation: 
= 0(1) 

(4.12 

Assumptions: (1) Steady flow. 
(2) Two-dimensional flow. 

Then 

or 
Kb + mbc + Kd = 0 

Kc = -mob ~ mcd 
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Surface Mass Flux 

ab Surface ab is located alx. Since the flow is two-dimensional (no variation with z), 
the mass flux through ab is 

In PU dy 

cd Surface cd is located at x + dx. Expanding m in a Taylor series about location x, 
we obtain 

dm dx 

and hence 

cd = \ \ pu dy + — [ pu dy 
Jo dx Jo 

dx }w 

be Thus for surface be we obtain 

dx 
\ pudy 

Jo 
dx >w 

Now let us consider the momentum fluxes and forces associated with control 
volume abed. These are related by the momentum equation. 

b. Momentum Equat ion 

Apply the x component of the momentum equation to control volume abed: 

Basic equation: 

= 0(3) = 0 ( 1 ) 

(4.18a) 

Assumption: (3) FB = 0. 

Then 

F s t = m f a b + m f b c + mf 

where mf represents the x component of momentum flux. 
To apply this equation to differential control volume abed, we must obtain ex­

pressions for the x momentum flux through the control surface and also the surface 
forces acting on the control volume in the x direction. Let us consider the momentum 
flux first and again consider each segment of the control surface. 

Now let us evaluate these terms for the differential control volume of width w: 
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Surface Momentum Flux (mf) 

ab 

cd 

be 

Surface ab is located at x. Since the flow is two-dimensional, the x momentum flux 
through ab is 

Surface cd is located at x + dx. Expanding the x momentum flux (mf) in a Taylor 
series about location x, we obtain 

3mf] . 
+ — — I dx 

or 

dx ]x 

I rS 
mi(:d = \ Jo"pu dy + Joupu dy dx >w 

Since the mass crossing surface be has velocity component U in the x direction, the 
x momentum flux across be is given by 

mf, be 

mfh 

-U 

Umbc 

Jo P" dy dx >w 

From the above we can evaluate the net x momentum flux through the control 
surface as 

f upV 
J c s 

dA --jj u pu dy\w + j J upudy 

u pu dy 
Jo 

dx\w-U )Qpudy dx >w 

Collecting terms, we find that 

upV 
J c s 

dA = + 
Jo 

pudy dx-U pu dy dx >w 

Now that we have a suitable expression for the x momentum flux through the control] 
surface, let us consider the surface forces acting on the control volume in the x direc- j 
tion. (For convenience the differential control volume has been redrawn in Fig. 9.5.) 
We recognize that normal forces having nonzero components in the x direction act on 
three surfaces of the control surface. In addition, a shear force acts on surface ad' 

br' 

t 
dd 

_± 

6 

Fig. 9.5 Differential 
control volume. 
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Since the velocity gradient goes to zero at the edge of the boundary layer, the shear 
force acting along surface be is negligible. 

Surface Force 

ab 

cd 

ad 

If the pressure at x is p , then the force acting on surface ab is given by 

Fah = pw8 

(The boundary layer is very thin; its thickness has been greatly exaggerated in ail 
the sketches we have made. Because it is thin, pressure variations in the y direction 
may be neglected, and we assume that within the boundary layer, p = p(x).) 

Expanding in a Taylor series, the pressure at x + dx is given by 

dp' 
Px + dx = P + 

The force on surface cd is then given by 

dx 
dx 

dp 
dx \w(S + dS) 

be The average pressure acting over surface be is 

1 dp 
2 dx 

dx 

Then the x component of the normal force acting over be is given by 

FHR. = P + 
\_dp 
2 dx 

dx 
X J 

w d8 

The average shear force acting on ad is given by 

Fad = - {Tw +\dTw)wdx 

Summing the x components of all forces acting on the control volume, we obtain 

- 0 = 0 

where we note that dx d8 « 8 dx and drw « rw, and so neglect the second and 
fourth terms. 

Substituting the expressions for u pV • dA and FSr into the x momentum 
equation, we obtain 

-%8dx-rwdx\W = \l 

Dividing this equation by w dx gives 

J C S 

r° a f° 
u pudy dx - U — pu dy 

J O dx J O 

dx >w 

sdp 9 r s 

- O T „ , = Supudy-uhipudy 
(9.16) 

Equation 9.16 is a "momentum integral" equation that gives a relation between the x 
components of the forces acting in a boundary layer and the x momentum flux. 
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The pressure gradient, dp/dx, can be determined by applying the Bernoulli 
equation to the inviscjd flow outside the boundary layer: dp/dx = —pU dU/dx. If w e 
recognize that 8 - \ dy, then Eq. 9.16 can be written as 

Jo 

d rs d rs dU r s 

T T V = - — upudy + U—\pudy + —-\ pU dy 
ox J O dx JO dx J o 

Since 
d rs d rs dU :s 

U — pu dy = — pull dy pu dy 
dx J O y dxhH 7 dx Jo 

we have 
d : s dU r 8 

T W = 7 I pu(U - u) dy + — \ p(V - u) dy 
ox JO dx JO 

and 

TW = — Uz\ p — 1 \dy + U p i \dy 
dx Jo U{ U) dx hH{ UJ • 

Using the definitions of displacement thickness, 8* (Eq. 9.1), and momentum thick^ 
ness, 8 (Eq. 9.2), we obtain 

^ = - ( ( / 2 f ) ) + 5 * ( / - (9.17) 

Equation 9.17 is the momentum integral equation. This equation will yield arj 
ordinary differentia] equation for boundary-layer thickness, provided that a suit-j 
able form is assumed for the velocity profile and that the wall shear stress can] 
be related to other variables. Once the boundary-layer thickness is determined, the] 
momentum thickness, displacement thickness, and wall shear stress can then be 
calculated. 

Equation 9.17 was obtained by applying the basic equations (continuity and x 
momentum) to a differential control volume. Reviewing the assumptions we made in 
the derivation, we see that the equation is restricted to steady, incompressible, two-
dimensional flow with no body forces parallel to the surface. 

We have not made any specific assumption relating the wall shear stress, TW, to 
the velocity field. Thus Eq. 9.17 is valid for either a laminar or turbulent boundary-
layer flow. In order to use this equation to estimate the boundary-layer thickness as a 
function of x, we must: 

1. Obtain a first approximation to the freestream velocity distribution, U(x). This is deter­
mined from inviscid flow theory (the velocity that would exist in the absence of a bound­
ary layer) and depends on body shape. The pressure in the boundary layer is related to the 
freestream velocity, U(x), using the Bernoulli equation. 

2. Assume a reasonable velocity-profile shape inside the boundary layer. 
3. Derive an expression for T h > using the results obtained from item 2. 

To illustrate the application of Eq. 9.17 to boundary-layer flows, we consider 
first the case of flow with zero pressure gradient over a flat plate (Section 9-5)—the 
results we obtain for a laminar boundary layer can then be compared to the exact Bla-
sius results. The effects of pressure gradients in boundary-layer flow are then dis­
cussed in Section 9-6. 
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9-5 USE OF THE MOMENTUM INTEGRAL EQUATION FOR FLOW WITH ZERO 
PRESSURE GRADIENT 

For the special case of a flat plate (zero pressure gradient) the free-stream pressure p 
and velocity U are both constant, so for item 1 we have U(x) = U = constant. 

The momentum integral equation then reduces to 

The velocity distribution, u/U, in the boundary layer is assumed to be similar for all 
values of x and normally is specified as a function of y/8. (Note that u/U is dimen­
sionless and 8 is a function of x only.) Consequently, it is convenient to change the 
variable of integration from y to y/8. Defining 

V = l 

' 8 

we get 
dy = 8 dr\ 

and the momentum integral equation for zero pressure gradient is written 

,,2 dd T ! 2 d8 r' u ( u\ r ^ p U - r = PU _ J - [ ] - _ | d l ? 
dx U 

(9.19) 

We wish to solve this equation for the boundary-layer thickness as a function of 
x. To do this, we must satisfy the remaining items: 

2 . Assume a velocity distribution in the boundary layer—a functional relationship of the 
form 

- = f{y-
u U 

(a) The assumed velocity distribution should satisfy the following approximate physi­
cal boundary conditions: 

at y = o, u = 0 

at y = 5, u = u 

at y = 8, 
du 

= 0 y = 8, 
3y 

(b) Note that for any assumed velocity distribution, the numerical value of the integral 
in Eq. 9.19 is simply 

f -

'o U 

1 u \ . e 
1 \dri = — = constant = B 

U) ' 8 
and the momentum integral equation becomes 

dx 

Obtain an expression for rw in terms of 5. This will then permit us to solve 
illustrated below. 
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aty = 0, u = 0 

aty = 8, u = u 

= 8, 
du 

= 0 aty = 8, = 0 aty = 8, 
dy 

Evaluating constants a, b, and c gives 

i U 2 
U 

= 2 7 7 - 1 7 (9.2C 

Equation 9.20 satisfies item 2. For item 3, we recall that the wall shear stress is given b | 

DU 

y=0 

Substituting the assumed velocity profile, Eq. 9.20, into this expression for T W gives 

du 

>-=0 

or 

dy_ 

PU d n 2 . 
0 ar) 

U d(u/U) 

8 d(y/8) 
y/S=0 

pU d(uiU) 

8 dr) 
TJ=0 

7J=0 

^ ( 2 - 2 , 7 ) 
o 

2pU 

T)=0 

Now that we have completed items 1, 2, and 3, we can return to the momentum inte-i 

gral equation 

r w = p £ / 2 - f - 1 - - U 
W DXHUI HI U J (9.19) 

Substituting for T m , and u/U, we obtain 

2/J.U , , 2 d8 r1 

= p U 2 ^ \ (2r)-r,2)(\-2ri + r,2)drl 

dx Jo 

or 
2fxU _ d8c\ 

8PU2 ~ dx Jo 
[ ( 2 T J - 5 T 7 2 +4T7 3 -rj4)dri 

Jo 

Integrating and substituting limits yields 

2/JL 2 d8 15/A 
= or 8 do = —— dx 

8pU 15 dx pU 

which is a differential equation for 8. Integrating again gives 

\5fi 
pU 

x + c 

Laminar Flow 

For laminar flow over a flat plate, a reasonable assumption for the velocity profile is % 
polynomial in y: 

u = a + by + cy2 

The physical boundary conditions are: 
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(30/LLX 

pU 

or 

8 30p 5.48 
x \ pUx ^Rex 

(9.21) 

Equation 9.21 shows that the ratio of laminar boundary-layer thickness to dis­
tance along a flat plate varies inversely with the square root of length Reynolds num­
ber. It has the same form as the exact solution derived from the complete differential 
equations of motion by H. Blasius in 1908. Remarkably, Eq. 9.21 is only in error (the 
constant is too large) by about 10 percent compared with the exact solution (Section 
9-3). Table 9.2 summarizes corresponding results calculated using other approximate 
velocity profiles and lists results obtained from the exact solution. (The only thing that 
changes in the analysis when we choose a different velocity profile is the value of B in 

T w ~ p(J2 — / 3 in item 2b on page 421.) The shapes of the approximate profiles may 
dx 

be compared readily by plotting u/U versus y/8. 
Once we know the boundary-layer thickness, all details of the flow may be de­

termined. The wall shear stress, or "skin friction," coefficient is defined as 

Cf s TP (9.22) 
2 

Substituting from the velocity profile and Eq. 9.21 gives 

C

 T » 2 ^ i U / 8 ) = 4 ^ = 1 P x _ 4 1 J*** f 4 pU2 [• pU2 pU8 pUx 8 Rex 5.48 

Table 9.2 Results of the Calculation of Laminar Boundary-Layer Flow over a Flat 
Plate at Zero Incidence Based on Approximate Velocity Profiles 

Velocity Distribution 
9 
5 

8* 8* 
H = — 

e 
a = — jRex 

X 
b = Cf^JRex 

f(v) = V i 
6 

i 
2 

3.00 3.46 0.577 

Ay) = 2T; - T ) 2 2 
15 

1 
3 

2.50 5.48 0.730 

39 
280 

3 
8 2.69 4.64 0.647 

Av) = 2r/ - Irf + V 37 
315 

3 
10 

2.55 5.84 0.685 

f(r]) = s ' ^ y 7 ^ 4 - TT 

2TT 

T T - 2 

TT 
2.66 4.80 0.654 

Exact 0.133 0.344 2.59 5.00 0.664 

If we assume that 8 — 0 at x = 0, then c = 0, and thus 
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Finally, 

_ 0.730 
(9. 

Once the variation of rw is known, the viscous drag on the surface can be evaluated 
by integrating over the area of the flat plate, as illustrated in Example Problem 9.3.1 

Equation 9.21 can be used to calculate the thickness of the laminar boundary 
layer at transition. At Rex = 5 X 10 5, with U = 30 m/s, x = 0.24 m for air at stan­
dard conditions. Thus 

§ 5.48 5.48 
x V 5 x I 0 5 

= 0.00775 

and the boundary-layer thickness is 

8 = 0.00775;t = 0.00775(0.24 m) = 1.86 mm 

The boundary-layer thickness at transition is less than 1 percent of the deve loB 
ment length, x. These calculations confirm that viscous effects are confined to a very 
thin layer near the surface of a body. 

The results in Table 9.2 indicate that reasonable results may be obtained with 
variety of approximate velocity profiles. 

EXAMPLE 9.3 Laminar Boundary Layer on a Flat Plate: Approximate Solution 
Using Sinusoidal Velocity Profile 

Consider two-dimensional laminar boundary-layer flow along a flat plate. Assume th 
velocity profile in the boundary layer is sinusoidal, 

u . ( IT y 
— - s i n — -

U {2 8 

Find expressions for: 

(a) The rate of growth of 8 as a function of x. 
(b) The displacement thickness, 5*, as a function of x. 
(c) The total friction force on a plate of length L and width b. 

EXAMPLE PROBLEM 9.3 

GIVEN: Two-dimensional, laminar boundary-layer flow along a flat plate. The boundary-layer velocity ' 
profile is 

and 

— = sin — 1} f o r0<y<S 
U {2 8 

1 for y > 8 

FIND: (a) 8(x). (b) 8*(x). 
(c) Total friction force on a plate of length L and width b. 

Six) 
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SOLUTION: 
For flat plate flow, U - constant, dp/dx = 0, and 

dx dxJoUK UJ 
(9.19) 

Assumptions: (1) Steady flow. 
(2) Incompressible flow. 

Substituting — = sin — V into Eq. 9.19, we obtain 
U 2 

Tj2 dS f1 . 77 ( . TT \ 2 dS [lf . TT • 2 TT 1̂ . 
pu — sin — T J 1 - sin —17 drj = pu — sin —17 - sin — r> \dr) 

dxJa 2 \ 2 ) dxJoV 2 2 ' ) ' 

dX TT L 
TT 1 TT 1 

COS — TJ T ) H S i n 777? = pU 
dS 2 
dX TT 

0 + 1 + 0 + 0 - 0 
4 

0A31pU2— = PpU2 —; B = 0.137 
dx dx 

Now 

Therefore, 

du 
Tw = P^~ 

dy J>=o 

U dju/U) 
8 d(y/8) y=0 

U TT TT 
U. COS — 71 

8 2 2 r,=0 

irpU 
28 

Separating variables gives 

Integrating, we obtain 

But c = 0, since 8 = 0 at x = 0, so 

TTuU « , „_ T,2 d8 
25 ax 

8dS = 11.5 -E-dx 
pU 

2- = u.sJLx + c 

2 pU 

8 = 23.0 xp 

- = 4.80 
x 

p _ 4.80 
pUx ^Rex 

j The displacement thickness, 5*, is given by 

5* 

= sj" ^1 - sin TJ j ^17 = 8 2 TT 
Tj + — COS — 7 ) 

7T 2 

S* = 5 1 - 0 + 0 = 5 1 -

5(x) 
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Since, from part (a), 

then 

4.80 

2 ^ 4.80 
x \ TT J JRex 

The total friction force on one side of the plate is given by 

F=\ rwdA 

Since dA = b dx and 0 < ,v £ L, then 

1.74 

F = \LTwbdx= \LpU2—bdx = pU2b\6l dd = pU2b8L 

Jo Jo dx Jo 

From part (a), B = 0.137 and SL = ^=^> s< 
Re, 

F = 
0.658pUzbL 

jRe7 

This problem illustrates application of the momentum integral 
equation to the laminar boundary layer on a flat plate. 

The Excel workbook for this Example Problem plots 
the growth of 8 and 8* in the boundary layer, and the 
exact solution (Eq. 9.13). It also shows wall shear stress 
distributions for the sinusoidal velocity profile and the 
exact solution. 

8*(x) 

Turbulent Flow 
For the flat plate, we still have for item 1 that U = constant. As for the lamin 
boundary layer, we need to satisfy item 2 (an approximation for the turbulent velocity 
profile) and item 3 (an expression for TJ in order to solve Eq. 9.19 for 8 (x): 

(9.19) 

Details of the turbulent velocity profile for boundary layers at zero pressure gradient 
are very similar to those for turbulent flow in pipes and channels. Data for turbulent 
boundary layers plot on the universal velocity profile using coordinates of w /« . ver­
sus yuJv, as shown in Fig. 8.8. However, this profile is rather complex mathemati­
cally for easy use with the momentum integral equation. The momentum integral 
equation is approximate; hence, an acceptable velocity profile for turbulent boundary 
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layers on smooth flat plates is the empirical power-law profile. An exponent of j is 
typically used to model the turbulent velocity profile. Thus 

, 1 / 7 

" _ y \ _ „ i / 7 V (9.24) 
U K8J 

However, this profile does not hold in the immediate vicinity of the wall, since at the 
wall it predicts duldy = °° . Consequently, we cannot use this profile in the definition of 
TW to obtain an expression for rw in terms of 8 as we did for laminar boundary-layer flow. 
For turbulent boundary-layer flow we adapt the expression developed for pipe flow, 

-i0.25 

0.0332pV 2 

RV (8.39) 

For a j - p o w e r profile in a pipe, Eq. 8.24 gives V/U = 0.817. Substituting V = 0.817L7 

and R — 8 into Eq. 8.39, we obtain 

Ms) 
Substituting for TW and u/U into Eq. 9.19 and integrating, we obtain 

- 1 / 4 

T W = 0.0233pf/ 2 f — (9.25) 

{U8J dxJo' 72 dx 

Thus we obtain a differential equation for 8: 

8U4 d8 = 0.240 f̂ ;J dx 

Integrating gives 

U5I4 = 0.240 W 
If we assume that 8 — 0 at x = 0 (this is equivalent to assuming turbulent flow from 
the leading edge), then c = 0 and 

8 = 0.382 fiO x4'5 

or 

' . O J K U r . ^ , 9 . 2 6 , 
x \Ux) Rex 

U5 

Using Eq. 9.25, we obtain the skin friction coefficient in terms of 8: 
. 1 / 4 

2 

Substituting for 8, we obtain 

Cf = - r ^ r = 0.04661 
f 1 pU2 {U8J 

_ ^ ^ _ O 0 5 9 4 
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Experiments show that Eq. 9.27 predicts turbulent skin friction on a flat plate 
very well for 5 X 10 5 < Rex < 10 7 . This agreement is remarkable in view of the ap­
proximate nature of our analysis. 

Application of the momentum integral equation for turbulent boundary-layer 
flow is illustrated in Example Problem 9.4. 

Use of the momentum integral equation is an approximate technique to predict 
boundary-layer development; the equation predicts trends correctly. Parameters of the 
laminar boundary layer vary as Re~ m ; those for the turbulent boundary layer vary as 
Rex

U5. Thus the turbulent boundary layer develops more rapidly than the laminar 
boundary layer. 

Laminar and turbulent boundary layers are compared in Example Problem 9.4. 
Wall shear stress is much higher in the turbulent boundary layer than in the laminar 
layer. This is the primary reason for the more rapid development of turbulent bound­
ary layers. 

The agreement we have obtained with experimental results shows that use of the 
momentum integral equation is an effective approximate method that gives us consid­
erable insight into the general behavior of boundary layers. 

EXAMPLE 9.4 Turbulent Boundary Layer on a Flat Plate: Approximate Solution 
Using y -power Velocity Profile 

Water flows at U = 1 m/s past a flat plate with L = 1 m in the flow direction. The 
boundary layer is tripped so it becomes turbulent at the leading edge. Evaluate the 
disturbance thickness, 8, displacement thickness, 8*, and wall shear stress, rm at x = Li 
Compare with laminar flow maintained to the same position. Assume a j -power tur­
bulent velocity profile. 

EXAMPLE PROBLEM 9.4 

GIVEN: Rat-plate boundary-layer flow; turbulent flow from the leading edge. Assume L-power velocity 
profile. 

FIND: (a) Disturbance thickness, 8L. 
(b) Displacement thickness, 8*. 
(c) Wall shear stress, TW(L). 
(d) Comparison with results for laminar flow 

from the leading edge. 

SOLUTLON: 
Apply results from the momentum integral equation. 

Governing equations: 
5 _ 0.382 
X ~ Re? 

8* = 

CF = Tw 0.0594 
CF = 

$PU2 Re? 

(926) 

(9.1) 

(9.27). 

At x = L, with v= 1.00 X 1 0 6 m2/s for water (7" = 20°C), 

Re, = UL 1 m 1 m 
— x x 10" 6 m 2 

10° 
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From Eq. 9.26, 
0.382 
Ref (10°) 

0 382 
" 6 U 5 x 1 m = 0.0241 m or S L = 24.1 mm ^ 

Using Eq. 9.1, with u/U = (y/S)ln = t j 1 " , we obtain 

i t „ 7 8 / 7 

5, 24.1mm 
-=- = = 3.01 mm 

From Eq. 9.27, 

C, 
0.0594 
(10°) 6 , 1 / 5 

0.00375 

0.00375 1 999 kg (l) 2 m2 N • s2 

X - X — 2 - X —z- X kg • m 
TW = 1.87 N/m' 

For laminar flow, use Blasius solution values. From Eq. 9.13, 

5.0 
(lO 6)" 2 

x 1 m = 0.005 m or 5.00 mm 

Iffrom Example 9.2, S*/S = 0.344, so 
5* = 0.344 5 = 0.344 X 5.0 mm = 1.72 mm 

From Eq. 9.15, Cf = - ^ t , s 
Re* 

1 
r„ =Cf-pW- = 

0.664 

10 
x — x 

6 2 

1 999 kg ^ (l) 2 m2 

nr 

N • s i 
x — = 0.332 N/m 2 

kg • m 
EComparing values at x = L, we obtain 

Disturbance thickness, t u r b u l e n t = 
^ l a m i n a r 

Displacement thickness, 

Wall shear stress, 

^turbulent 

^laminar 

T\y, turbulent 

Tw, laminar 

24.1mm 
5.00 mm 

3.01mm 
1.72 mm 

1.87 N/m 2 

0.332 N/m 2 

4.82 

1.75 

= 5.63 

This problem illustrates application of the momentum integral 
equation to the turbulent boundary layer on a flat plate. Com­
pared to a laminar boundary layer, it is clear that the turbulent 
boundary layer grows much more rapidly—because the 
turbulent wall stress is significantly greater than the laminar 
wall stress. 

^Kj The Excel workbook for this Example Problem plots the 
y-power-law turbulent boundary layer (Eq. 9.26) and 
the laminar boundary layer (Eq. 9.13). It also shows the 
wall stress distributions for both cases. 

rw(L) 
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9-6 PRESSURE GRADIENTS IN BOUNDARY-LAYER FLOW 

The boundary layer (laminar or turbulent) with a uniform flow along an infinite flat 
plate is the easiest one to study because the pressure gradient is zero—the fluid 
particles in the boundary layer are slowed only by shear stresses, leading to boundary-
layer growth. We now consider the effects caused by a pressure gradient, which will be 
present for all bodies except, as we have seen, a flat plate. 

A favorable pressure gradient is one in which the pressure decreases in the flow di­
rection (i.e., dp/dx < 0, arising when the free-stream velocity U is increasing with x, for 
example in a converging flow field) will tend to counteract the slowing of fluid particles 
in the boundary layer. On the other hand an adverse pressure gradient in which pressure 
increases in the flow direction (i.e., dp/dx > 0, when U is decreasing with x, for example 
in a diverging flow field) will tend to contribute to the slowing of the fluid particles. If 
the adverse pressure gradient is severe enough, the fluid particles in the boundary layer1 

will actually be brought to rest. When this occurs, the particles will be forced away from 
the body surface (a phenomenon called flow separation) as they make room for follow-] 
ing particles, ultimately leading to a wake in which flow is turbulent. 

This description, of the adverse pressure gradient and friction in the boundary 
layer together forcing flow separation, certainly makes intuitive sense; the question 
arises whether we can more formally see when this occurs. For example, can we have 
flow separation and a wake for uniform flow over a flat plate, where dp/dx = 0? We 
can gain insight into this question by considering when the velocity in the boundary 
layer will become zero. Consider the velocity u in the boundary layer at an infinitesi­
mal distance dy above the plate. This will be 

du} , du^ 
dy = uy=dy _ "0 + 3 ) ; 

=0 dyjy=Q 

dy 

where u0 = 0 is the velocity at the surface of the plate. It is clear that uy=dy will ba 
zero (i.e., separation will occur) only when dw/dy) > = 0 = 0. Hence, we can use this as 
our litmus test for flow separation. We recall that the velocity gradient near the sur-j 
face in a laminar boundary layer, and in the viscous sublayer of a turbulent boundary 
layer, was related to the wall shear stress by 

du 

Z y = 0 

Further, we learned in the previous section that the wall shear stress for the flat plate 
is given by 

TW(X) _ constant 

~W ~ Wx 

for a laminar boundary layer and 

TW(X) _ constant 

~pLTT ~ ~R~eJ~ 

for a turbulent boundary layer. We see that for the flow over a flat plate, the wall stress 
is always T W > 0. Hence, du/dy)y=0 > 0 always; and therefore, finally, uy=dy > 0 
always. We conclude that for uniform flow over a flat plate the flow never separates, 
and we never develop a wake region, whether the boundary layer is laminar or turbu­
lent, regardless of plate length. 



9-6 PRESSURE GRADIENTS IN BOUNDARY-LAYER FLOW 431 

Region 1 Region 2 Region 3 

Separation point: ^ 1 = 0 J 

Fig . 9.6 Boundary - l aye r f low wi th p ressure grad ient (boundary - layer th ickness 
exagge ra ted for c lar i ty) . 

We conclude that flow will not separate for flow over a flat plate, when dp/dx = 0. 
Clearly, for flows in which dp/dx < 0 (whenever the free-stream velocity is increasing), 
we can be sure that there will be no flow separation; for flows in which dp/dx > 0 (i.e., 
adverse pressure gradients) we could have flow separation. We should not conclude 
that an adverse pressure gradient always leads to flow separation and a wake; we have 
only concluded that it is a necessary condition for flow separation to occur. 

To illustrate these results consider the variable cross-sectional flow shown in 
Fig. 9.6. Outside the boundary layer the velocity field is one in which the flow accel­
erates (Region 1), has a constant velocity region (Region 2), and then a deceleration 
region (Region 3). Corresponding to these, the pressure gradient is favorable, zero, and 
adverse, respectively, as shown. (Note that the straight wall is not a simple flat plate— 
it has these various pressure gradients because the flow above the wall is not a uniform 
flow.) From our discussions above, we conclude that separation cannot occur in Region 
1 or 2, but can (as shown) occur in Region 3. Could we avoid flow separation in a de­
vice like this? Intuitively, we can see that if we make the divergent section less severe, 
we may be able to eliminate flow separation. In other words, we may eliminate flow 
separation if we sufficiently reduce the magnitude of the adverse pressure gradient 
dp/dx. The final question remaining is how small the adverse pressure gradient needs to 
be to accomplish this. This, and a more rigorous proof that we must have dp/dx > 0 for 
a chance of flow separation, is beyond the scope of this text [3]. We conclude that flow 
separation is possible, but not guaranteed, when we have an adverse pressure gradient 

The nondimensional velocity profiles for laminar and turbulent boundary-layer 
flow over a flat plate are shown in Fig. 9.1a. The turbulent profile is much fuller (more 
blunt) than the laminar profile. At the same freestream speed, the momentum flux 
within the turbulent boundary layer is greater than within the laminar layer (Fig. 9.1b). 
Separation occurs when the momentum of fluid layers near the surface is reduced to 
zero by the combined action of pressure and viscous forces. As shown in Fig. 9.7b, the 
momentum of the fluid near the surface is significantly greater for the turbulent pro­
file. Consequently, the turbulent layer is better able to resist separation in an adverse 
pressure gradient. We shall discuss some consequences of this behavior in Section 9-7. 

Adverse pressure gradients cause significant changes in velocity profiles for 
both laminar and turbulent boundary-layer flows. Approximate solutions for nonzero 
pressure gradient flow may be obtained from the momentum integral equation 
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1.0 1.0 

Turbulent 

(vY 
(a) Velocity profiles (W Momentum-f lux profiles 

F ig . 9.7 N o n d i m e n s i o n a l p ro f i les for flat p la te b o u n d a r y - l a y e r f low. 

1.0 

p dx dx 
(9.1 

Expanding the first term, we can write 

or 

IV = U2 — + (8* + 2d)U — 
p dx dx 

pl]1 2 dx U dx (9.28 

where H = 8*16 is a velocity-profile "shape factor." The shape factor increases in an 
adverse pressure gradient. For turbulent boundary-layer flow, H increases from 1.3 
for a zero pressure gradient to approximately 2.5 at separation. For laminar flow with 
zero pressure gradient, H = 2.6; at separation H = 3.5. 

The freestream velocity distribution, U(x), must be known before Eq. 9.28 can bel 
applied. Since dp/dx = — pU dU/dx, specifying U(x) is equivalent to specifying the pres-1 
sure gradient. We can obtain a first approximation for U(x) from ideal flow theory for anl 
inviscid flow under the same conditions. As pointed out in Chapter 6, for frictionless I 
irrotational flow (potential flow), the stream function, ip, and the velocity potential, </>,J 
satisfy Laplace's equation. These can be used to determine U(x) over the body surface.! 

Much effort has been devoted to calculation of velocity distributions over bodies 
of known shape (the "direct" problem) and to the determination of body shapes to pro­
duce a desired pressure distribution (the "inverse" problem). Smith and co-workers [6] I 
have developed calculation methods that use singularities distributed over the body ! 
surface to solve the direct problem for two-dimensional or axisymmetric body 
shapes. A type of finite-element method that uses singularities defined on discrete 
surface panels (the "panel" method [7]) recently has gained increased popularity for 
application to three-dimensional flows. 

Once the velocity distribution, U(x), is known, Eq. 9.28 can be integrated to deter­
mine 9(x), if H and Cf can be correlated with 6. A detailed discussion of various calcula­
tion methods for flows with nonzero pressure gradient is beyond the scope of this book 
Numerous solutions for laminar flows are given in [8]. Calculation methods for turbulent 
boundary-layer flow based on the momentum integral equation are reviewed in [9]. 
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Because of the importance of turbulent boundary layers in engineering flow situ­
ations, the state of the art of calculation schemes is advancing rapidly. Numerous cal­
culation schemes have been proposed [10, 11]; most such schemes for turbulent flow 
use models to predict turbulent shear stress and then solve the boundary-layer equa­
tions numerically [12, 13]. Continuing improvement in size and speed of computers 
is beginning to make possible the solution of the full Navier-Stokes equations using 
numerical methods [14, 15]. 

P A R T B F L U I D F L O W A B O U T I M M E R S E D B O D I E S 

Whenever there is relative motion between a solid body and the viscous fluid surround­
ing it, the body will experience a net force F. The magnitude of this force depends 
on many factors—certainly the relative velocity V, but also the body shape and size, 
and the fluid properties (p, p , etc.). As the fluid flows around the body, it will generate 
surface stresses on each element of the surface, and it is these that lead to the net force. 
The surface stresses are composed of tangential stresses due to viscous action and nor­
mal stresses due to the local pressure. We might be tempted to think that we can analyti­
cally derive the net force by integrating these over the body surface. The first step might 
be: Given the shape of the body (and assuming that the Reynolds number is high enough 
that we can use inviscid flow theory), compute the pressure distribution. Then integrate 
the pressure over the body surface to obtain the contribution of pressure forces to the net 
force F . (As we discussed in Chapter 6, this step was developed very early in the his­
tory of fluid mechanics; it led to the result that no bodies experience drag!) The second 
step might be: Use this pressure distribution to find the surface viscous stress T 1 v (at least 
in principle, using for example 1, Eq. 9.17). Then integrate the viscous stress over the 
body surface to obtain its contribution to the net force F. This procedure sounds 
conceptually straightforward, but in practice is quite difficult except for the simplest 
body shapes. In addition, even if possible, it leads to erroneous results in most cases be­
cause it takes no account of a very important consequence of the existence of boundary 
layers—flow separation. This causes a wake, which not only creates a low-pressure re­
gion usually leading to large drag on the body, but also radically changes the overall 
flow field and hence the inviscid flow region and pressure distribution on the body. 

For these reasons we must resort to experimental methods to determine the net 
force for most body shapes. Traditionally the net force F is resolved into the drag 
force, FD, defined as the component of the force parallel to the direction of motion, 
and the lift force, FL (if it exists for a body), defined as the component of the force 
perpendicular to the direction of motion. In Sections 9-7 and 9-8 we will examine 
these forces for a number of different body shapes. 

DRAG 

Drag is the component of force on a body acting parallel to the direction of relative 
motion. In discussing the need for experimental results in fluid mechanics (Chapter 7), 
we considered the problem of determining the drag force, FD, on a smooth sphere of 
diameter d, moving through a viscous, incompressible fluid with speed V; the fluid 
density and viscosity were p and p , respectively. The drag force, FD, was written in 
the functional form 

FD=Md,V,p,p) 



434 CHAPTER 9 / EXTERNAL INCOMPRESSIBLE VISCOUS FLOW 

Application of the Buckingham Pi theorem resulted in two dimensionless II parame­
ters that were written in functional form as 

pV2d2 ~ h 

pVd 

Note that d is proportional to the cross-sectional area (A = W 2 / 4 ) and therefore we 
could write 

pV2A 

pVd^ 
= MRe) (9.291 

Although Eq. 9.29 was obtained for a sphere, the form of the equation is valid 
for incompressible flow over any body; the characteristic length used in the Reynolds 
number depends on the body shape. 

The drag coefficient, CD, is denned as 

\PV2A (9.30) 

The number has been inserted (as was done in the defining equation for the friction 
factor) to form the familiar dynamic pressure. Then Eq. 9.29 can be written as 

CD=f(Re) (9.31) 

We have not considered compressibility or free-surface effects in this discussion 
of the drag force. Had these been included, we would have obtained the functional form 

CD=f(Re,Fr,M) 

At this point we shall consider the drag force on several bodies for whic: 
Eq. 9.31 is valid. The total drag force is the sum of friction drag and pressure drag. 
However, the drag coefficient is a function only of the Reynolds number. 

We now consider the drag force and drag coefficient for a number of bodidB 
starting with the simplest: a flat plate parallel to the flow (which has only frictiod 
drag); a flat plate normal to the flow (which has only pressure drag); and cylinders 
and spheres (the simplest 2D and 3D bodies, which have both friction and pressure 
drag). We will also briefly discuss streamlining. 

Flow over a Flat Plate Parallel to the Flow: Friction Drag 

This flow situation was considered in detail in Section 9-5. Since the pressure gradienl 
is zero (and in any event the pressure forces are perpendicular to the plate and therel 
fore do not contribute to drag), the total drag is equal to the friction drag. Thus 

T „ , dA 
ale surface 

and 

Fn 
\pV2A 

r„, dA 

[PV2A 
(9.32) J 

where A is the total surface area in contact with the fluid (i.e., the wetted area). Thft! 
drag coefficient for a flat plate parallel to the flow depends on the shear stress distri­
bution along the plate. 

For laminar flow over a flat plate, the shear stress coefficient was given by 
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0.664 
(9.15) 

The drag coefficient for flow with freestream velocity V, over a flat plate of length L 
and width b, is obtained by substituting for TW from Eq. 9.15 into Eq. 9.32. Thus 

C 
A 1A 

0.664 ( v\ 
V) 

1 

664 Re?15 = 

L 

1.33 

0.5 .0 .5 

0.5 

bL Jo 

= 1.33 

\ L 0.664 
Jo 

v y * 5 

x~°5bdx 

V 

VL 

0.5 

(9.33) 

Assuming the boundary layer is turbulent from the leading edge, the shear stress 
coefficient, based on the approximate analysis of Section 9-5, is given by 

0.0594 
,1/5 hpU1 ReL

x 

Substituting for T,„ from Eq. 9.27 into Eq. 9.32, we obtain 

(9.27) 

C = — [ 0.0594 Re"02 dA = — [^0.0594 
° Ah x bLk 

V 

Cn = 

0.0594 

L 

0.0742 

Ref 

0.2 

0.8 
0.0742 

0.2 

- 0 . 2 

x'02bdx 

Equation 9.34 is valid for 5 X 10 5 < ReL < 10 7. 
For Re, < I0 9 the empirical equation given by Schlichting [3] 

_ 0.455 
L o - ,2.58 

(9.34) 

(9.35) 
(log ReL, 

fits experimental data very well. 
For a boundary layer that is initially laminar and undergoes transition at some 

location on the plate, the turbulent drag coefficient must be adjusted to account for 
the laminar flow over the initial length. The adjustment is made by subtracting the 
quantity BIReL from the CD determined for completely turbulent flow. The value of B 
depends on the Reynolds number at transition; B is given by 

B = Reu(CD - C f l ) (9.36) 
l r v turbulent laminar v J 

For a transition Reynolds number of 5 X 10 5, the drag coefficient may be calculated 
by making the adjustment to Eq. 9.34, in which case 

0.0742 1740 
Re 1/5 Re, 

or to Eq. 9.35, in which case 

0.455 
C n = 

1610 

(log to J 2 5 8 ReL 

The variation in drag coefficient for a flat plate parallel to the flow is shown in Fig. 9.8. 

( 5 x l 0 5 < ReL < 1 0 7 ) 

( 5 x 10 5 < ReL < 10 9 ) 

(9.37a) 

(9.37b) 



In the plot of Fig. 9.8, transition was assumed to occur at Rex = 5 X 105 for 
flows in which the boundary layer was initially laminar. The actual Reynolds number 
at which transition occurs depends on a combination of factors, such as surface 
roughness and freestream disturbances. Transition tends to occur earlier (at lower 
Reynolds number) as surface roughness or freestream turbulence is increased. For 
transition at other than Rex — 5 X 10 5, the constant in the second term of Eqs. 9.37 is 
modified using Eq. 9.36. Figure 9.8 shows that the drag coefficient is less, for a given 
length of plate, when laminar flow is maintained over the longest possible distance. 
However, at large ReL ( > 10 7) the contribution of the laminar drag is negligible. 

EXAMPLE 9.5 Skin Friction Drag on a Supertanker 

A supertanker is 360 m long and has a beam width of 70 m and a draft of 25 m. Esti­
mate the force and power required to overcome skin friction drag at a cruising speed 
of 13 kt in seawater at 10°C. 

EXAMPLE PROBLEM 9.5 

GIVEN: Supertanker cruising at U = 13 kt. 

FIND: (a) Force. 
(b) Power required to overcome skin 

friction drag. 

SOLUTION: 
Model the tanker hull as a flat plate, of length L 
and width b = B + 2D, in contact with water. 
Estimate skin friction drag from the drag coeffi­
cient. 

fi = 7 0 m 

Governing equations: Cn = 
\pU2A 

25 m 

(9.32) 
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0.455 1610 
(Log Re J2** ReL 

The ship speed is 13 kt (nautical miles per hour), so 

,, 13 nm 6076 ft 0.305 m hr ^ „ , 
U = x x — x = 6.69 m/s 

hr nm ft 3600 s 
• r o m Appendix A, at 10°C, v= 1.37 X 10 6 m2/s for seawater. Then 

UL 6.69 m 360 m s 
Re, = — = 

1.37 x 1 0 - 6 m 2 
= 1.76 x 10 y 

Assuming Eq. 9.37b is valid, 

C, 
0.455 1610 

(log 1.76 x l O 9 ) 2 5 8 1.76 x l O 9 
= 0.00147 

and from Eq. 9.32, 

FD = CDA\PU2 

0.00147 (360m)(70 + 50)m 1 1020 kg (6.69) 2 m 2 N s 
x — x s kg • m 

FD = 1.45 MN 

The corresponding power is 

9> = FDU = 

?P = 9.70 MW 

1.45xl0 6 N x 6.69 m x W s 
s N • m 

(9.37b) 

9 

This problem illustrates application of drag coefficient equations 
for a flat plate parallel to the flow. 

/ The power required (about 13,000 hp) is very large be­
cause although the friction stress is small, it acts over a 
substantial area. 

/ The boundary layer is turbulent for almost the entire length 
of the ship (transition occurs atx ~ 0.1 m). 

Flow over a Flat Plate Normal to the Flow: Pressure Drag 

In flow over a flat plate normal to the flow (Fig. 9.9), the wall shear stress is perpen­
dicular to the flow direction and therefore does not contribute to the drag force. The 
drag is given by 

FD = f pdA 
•'surface 

For this geometry the flow separates from the edges of the plate; there is back-
flow in the low energy wake of the plate. Although the pressure over the rear surface 
of the plate is essentially constant, its magnitude cannot be determined analytically. 
Consequently, we must resort to experiments to determine the drag force. 
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Wake 

Fig. 9.9 Flow over a flat p la te no rma l to the f low, 

The drag coefficient for flow over an immersed object usually is based on the 
frontal area (or projected area) of the object. (For airfoils and wings, the planform 
area is used; see Section 9-8.) 

The drag coefficient for a finite plate normal to the flow depends on the ratio of 
plate width to height and on the Reynolds number. For Re (based on height) greater 
than about 1000, the drag coefficient is essentially independent of Reynolds number. 
The variation of CD with the ratio of plate width to height (blh) is shown in Fig. 9.10. 
(The ratio blh is defined as the aspect ratio of the plate.) For blh = 1.0, the drag co­
efficient is a minimum at CD = 1.18; this is just slightly higher than for a circular 
disk (CD = 1.17) at large Reynolds number. 

The drag coefficient for all objects with sharp edges is essentially independent 
of Reynolds number (for Re s 1000) because the separation points and therefore 
the size of the wake are fixed by the geometry of the object. Drag coefficients for se­
lected objects are given in Table 9.3. 

2.0 

1.5 

D 

1.0 

0.5 

1 1 

- 1
 b 

1 1 1 1 1 1 1 

1 1 

0 2 4 6 8 10 12 14 16 18 20 
Aspect ratio, blh 

Fig. 9.10 Var ia t ion of d rag coef f ic ient w i th aspect ratio for a flat p late of 
f inite w id th no rma l to the f low wi th Re,, > 1000 [16] . 

Flow over a Sphere and Cylinder: Friction and Pressure Drag 

We have looked at two special flow cases in which either friction or pressure drag 
was the sole form of drag present. In the former case, the drag coefficient was a 
strong function of Reynolds number, while in the latter case, CD was essentially inde­
pendent of Reynolds number for Re £ 1000. 

In the case of flow over a sphere, both friction drag and pressure drag contribute 
to total drag. The drag coefficient for flow over a smooth sphere is shown in Fig. 9.11 
as a function of Reynolds number. 2 

At very low Reynolds number, 3 Re ^ 1, there is no flow separation from a 
sphere; the wake is laminar and the drag is predominantly friction drag. Stokes has 

2 An approximate curve fit to the data of Fig. 9.11 is presented in Problem 9.110. 
3 See the NCFMF video The Fluid Dynamics of Drag or [17] for a good discussion of drag on spheres 

and other shapes. Another excellent NCFMF video is Low Reynolds Number Flows. See also [18]. 
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Table 9.3 Drag Coefficient Data for Selected Objects (Re s lO3)" 

Object Diagram CD(Re & 103) 

Square prism 

Disk 

Ring 

Hemisphere (open end 
facing flow) 

Hemisphere (open end 
facing downstream) 

C-section (open side 
facing flow) 

bin = <* 
blh = 1 

2 . 0 5 

1 .05 

1.17 

1.20* 

1.42 

0.38 

2.30 

C-section (open side 
facing downstream) 

1.20 

" Data from [16). 
b Based on ring area. 

shown analytically, for very low Reynolds number flows where inertia forces may be 
neglected, that the drag force on a sphere of diameter d, moving at speed V, through a 
fluid of viscosity p , is given by 

F0 = 2-niiVd 

400 

200 

100 
60 
40 

20 
10 

CD 6 
4 

2 

1 
0.6 
0.4 

0.2 
0.1 

0.06 

i i 111 i—rm—i i i ii i i i ii i i i ii i i i ii i m i 

Theory d u e _ J > N " 
to Stokes 

I I I I I I I I I I I I I II I I I II I I I II I I I II I 
1 0 1 2 4 6 8 1 0 ° 2 4 S B I O ' 2 4 6 8 1 0 2 2 4 6 8 1 0 3 ? 4 6 8 1 0 4 2 4 6 8 1 0 5 2 4 6 8 1 0 6 

Re = ^ 

Fig. 9.11 D r a g coef f i c ien t of a s m o o t h s p h e r e a s a func t i on of R e y n o l d s n u m b e r [3]. 
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The drag coefficient, CD, defined by Eq. 9.30, is then 

As shown in Fig. 9.11, this expression agrees with experimental values at low Reynol 
number but begins to deviate significantly from the experimental data for Re > 1.0. 

As the Reynolds number is further increased, the drag coefficient drops continu-l 
ously up to a Reynolds number of about 1000, but not as rapidly as predicted by Stokes' 
theory. A turbulent wake (not incorporated in Stokes' theory) develops and grows at the 
rear of the sphere as the separation point moves from the rear of the sphere toward the 
front; this wake is at a relatively low pressure, leading to a large pressure drag. By the 
time Re = 1000, about 95% of total drag is due to pressure. For 103 < Re < 3 X lfffl 
the drag coefficient is approximately constant. In this range the entire rear of the sphenj 
has a low-pressure turbulent wake, as indicated in Fig. 9.12, and most of the drag id 
caused by the front-rear pressure asymmetry. Note that CD « MRe corresponds to FD a V, 
and that CD ~ const, corresponds to FD « V2, indicating a quite rapid increase in drag, j 

For Reynolds numbers larger than about 3 X 10 5, transition occurs and thej 
boundary layer on the forward portion of the sphere becomes turbulent. The point of 
separation then moves downstream from the sphere midsection, and the size of the 
wake decreases. The net pressure force on the sphere is reduced (Fig. 9.12), and the 
drag coefficient decreases abruptly. 

- 1 . 4 I I I I I I I I I 
0 20 40 60 80 100 120 140 160 180 

9, degrees 

Fig. 9.12 P ressu re d is t r ibut ion a round a s m o o t h sphe re for laminar 
and turbu lent boundary - laye r f low, c o m p a r e d wi th invisc id f low [18]. 
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A turbulent boundary layer, since it has more momentum flux than a laminar 
boundary layer, can better resist an adverse pressure gradient, as discussed in Section 9-6. 
Consequently, turbulent boundary-layer flow is desirable on a blunt body because it 
delays separation and thus reduces the pressure drag. 

Transition in the boundary layer is affected by roughness of the sphere surface 
and turbulence in the flow stream. Therefore, the reduction in drag associated with a 
turbulent boundary layer does not occur at a unique value of Reynolds number. Ex­
periments with smooth spheres in a flow with low turbulence level show that transi­
tion may be delayed to a critical Reynolds number, ReD, of about 4 X 10 5 . For rough 
surfaces and/or highly turbulent freestream flow, transition can occur at a critical 
Reynolds number as low as 50,000. 

The drag coefficient of a sphere with turbulent boundary-layer flow is about 
one-fifth that for laminar flow near the critical Reynolds number. The corresponding 
reduction in drag force can affect the range of a sphere (e.g., a golf ball) appreciably. 
The "dimples" on a golf ball are designed to "trip" the boundary layer and, thus, to 
guarantee turbulent boundary-layer flow and minimum drag. To illustrate this effect 
graphically, we obtained samples of golf balls without dimples some years ago. One 
of our students volunteered to hit drives with the smooth balls. In 50 tries with each 
type of ball, the average distance with the standard balls was 215 yards; the average 
with the smooth balls was only 125 yards! 

Adding roughness elements to a sphere also can suppress local oscillations in 
location of the transition between laminar and turbulent flow in the boundary layer. 
These oscillations can lead to variations in drag and to random fluctuations in lift 
(see Section 9-8). In baseball, the "knuckle ball" pitch is intended to behave errati­
cally to confuse the batter. By throwing the ball with almost no spin, the pitcher re­
lies on the seams to cause transition in an unpredictable fashion as the ball moves 
on its way to the batter. This causes the desired variation in the flight path of the 

Figure 9.13 shows the drag coefficient for flow over a smooth cylinder. The vari­
ation of CD with Reynolds number shows the same characteristics as observed in the 
flow over a smooth sphere, but the values of CD are about twice as high. 

ball. 

too z n r m i r r n i r m i r m i r m i r m l m 

o.i 

Fig. 9.13 Drag coefficient for a smooth circular cylinder as a function of Reynolds 
number [3]. 
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Flow about a smooth circular cylinder may develop a regular pattern of alternat­
ing vortices downstream. The vortex trail4 causes an oscillatory lift force on the 
cylinder perpendicular to the stream motion. Vortex shedding excites oscillations that 
cause telegraph wires to "sing" and ropes on flag poles to "slap" annoyingly. Some­
times structural oscillations can reach dangerous magnitudes and cause high stresses; 
they can be reduced or eliminated by applying roughness elements or fins—either 
axial or helical (sometimes seen on chimneys or automobile antennas)—that destroy 
the symmetry of the cylinder and stabilize the flow. 

Experimental data show that regular vortex shedding occurs most strongly in the 
range of Reynolds number from about 60 to 5000. For Re > 1000 the dimensionless 
frequency of vortex shedding, expressed as a Strouhal number, St = fD/V, is approx­
imately equal to 0.21 [3]. 

Roughness affects drag of cylinders and spheres similarly: the critical Reynolds 
number is reduced by the rough surface, and transition from laminar to turbulent flow 
in the boundary layers occurs earlier. The drag coefficient is reduced by a factor of 
about 4 when the boundary layer on the cylinder becomes turbulent. 

EXAMPLE 9.6 Aerodynamic Drag and Moment on a Chimney 

A cylindrical chimney 1 m in diameter and 25 m tall is exposed to a uniform 50 km/hr 
wind at standard atmospheric conditions. End effects and gusts may be neglected. 
Estimate the bending moment at the base of the chimney due to wind forces. 

EXAMPLE PROBLEM 9.6 

GIVEN: Cylindrical chimney, D = 1 m, L = 25 m, in uniform flow with 

V= 50 km/hr p = 101 kPa (abs) T = 1 5 ° C 

Neglect end effects, 

FIND: Bending moment at bottom of chimney, 

SOLUTION: p 

The drag coefficient is given by CD = -—^7, and thus FD = CDA \ pV2. 

Since the force per unit length is uniform over the entire length, the resultant 
force, FD, will act at the midpoint of the chimney. Hence the moment about 
the chimney base is 

Mr, = Fn ~ 

L/2 

L = 25 m 

C o A - p V 2 - = CoA-pV2 

i. ° 2 P 2 ° 4 
50 km 10 3 m hr , , . . 

V = x x = 13.9 m/s 
hr km 3600s 

For air at standard conditions, p = 1.23 kg/m3, and p = 1.79 X 10 5 kg/(m • s). Thus 

Re = pVD _ 1.23 kg 13.9 m Ira m • s 
P m 1 s 1.79 x lO" 5 kg 

= 9.55 x 10-' 

4 The regular pattern of vortices in the wake of a cylinder sometimes is called a Karman vortex street in 
honor of the prominent fluid mechanician, Theodore von Ka\rm£n, who was first to predict the stable 
spacing of the vortex trail on theoretical grounds in 1911; see [19]. 
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From Fig. 9.13, CD = 0.35. For a cylinder, A = DL, so 

MQ = CDA±pV2 = CDDL^pV2 = CDD-^pV2 

4 4 4 
1 0.35 l m ( 2 5 ) 2 m 2 1.23 kg (13.9)2 m 2 N • s 2 

= — X X X X — X — = - X m kg • m 

M0 = 13.0kN-m 

This problem illustrates application of drag-coefficient data to 
calculate the force and moment on a structure. We modeled the 
wind as a uniform flow; more realistically, the lower atmos­
phere is often modeled as a huge turbulent boundary layer, 
with a power-law velocity profile, u ~ yUn (y is the elevation). 
See Problem 9.116, where this is analyzed for the case n = 7. 

EXAMPLE 9.7 Deceleration of an Automobile by a Drag Parachute 

A dragster weighing 1600 Ibf attains a speed of 270 mph in the quarter mile. Immedi­
ately after passing through the timing lights, the driver opens the drag chute, of area 
A = 25 ft2. Air and rolling resistance of the car may be neglected. Find the time 
required for the machine to decelerate to 100 mph in standard air. 

EXAMPLE PROBLEM 9.7 

GIVEN: Dragster weighing 1600 Ibf, moving with initial speed V0 = 270 mph, is slowed by the drag force 
on a chute of area A = 25 ft2. Neglect air and rolling resistance of the car. Assume standard air. 

FIND: Time required for the machine to decelerate to 100 mph. 

[SOLUTION: 
Taking the car as a system and writing Newton's second law in the direction of motion gives 

V0 = 270 mph 

P = 

100 mph 

0.00238 slug/ft3 

Since CD = -—2=— , then FD = \CD pV2A. 
\pV2A 2 D 

^Substituting into Newton's second law gives 

— CV, pv A = m — 
2 D dt 

Separating variables and integrating, we obtain 

~^CDp- dt=\ 
2 m Jo 

/ dV 

1 _ A \Tf 1 1 
Cr> p — t = = + = 

2 ° m Vl Vf V0 

(Vq ~ V/) 
VfV0 
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Finally, 

f = 
(V0 - Vf) 2m _ (V0 - Vf) 2W 

VfV0 CDpA VfV0 CDPAg 

Model the drag chute as a hemisphere (with open end facing flow). From Table 9.3, CD = 1.42 (assuming 
Re > 103). Then, substituting numerical values, 

( = (270 - 100)mph X 2 X 1600 lbf x 1 x hr x J _ y 
ft J 

100 mph 270 mi 1.2 0.00238 slug 

1 s 
X TT X 

x slug • ft x mi x 3600 _s_ 
25 ft 2 " 32.2 ft lbf-s 2 5280 ft hr 

t = 5.05 s 

Check the assumption on Re: 

Re = 
DV 

v 
4 

4 A 1/2 

- i l / 2 

x 2 5 ft' 

Re = 5.27 x 10 6 

Hence the assumption is valid. 

V 
v 

100 mi hr 5280 ft x — x x — x 
hr 3600s mi 1 .57x10^ ft2 

This problem illustrates application of drag-coefficient data to 
calculate the drag on a vehicle parachute. 

j f e The Excel workbook for this Example Problem plots 
the dragster velocity (and distance traveled) as a 
function of time; it also allows "what-ifs", e.g., we can 
find the parachute area A required to slow the dragster 
to 60 mph in 5 sec. 

All experimental data presented in this section are for single objects immersed 
in an unbounded fluid stream. The objective of wind tunnel tests is to simulate the 
conditions of an unbounded flow. Limitations on equipment size make this goal un­
reachable in practice. Frequently it is necessary to apply corrections to measured dat^l 
to obtain results applicable to unbounded flow conditions. 

In numerous realistic flow situations, interactions occur with nearby objects on 
surfaces. Drag can be reduced significantly when two or more objects, moving in tanJl 
dem, interact. This phenomenon is well known to bicycle riders and those interested! 
in automobile racing, where "drafting" is a common practice. Drag reductions of 
80 percent may be achieved with optimum spacing [20]. Drag also can be increased! 
significantly when spacing is not optimum. 

Drag can be affected by neighbors alongside as well. Small particles fallinaj 
under gravity travel more slowly when they have neighbors than when they aral 
isolated. This phenomenon, which is illustrated in the N C F M F video Lom 
Reynolds Number Flows, has important applications to mixing and sedimentatioq] 
processes. 
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Experimental data for drag coefficients on objects must be selected and applied 
carefully. Due regard must be given to the differences between the actual conditions 
and the more controlled conditions under which measurements were made. 

Streamlining 

The extent of the separated flow region behind many of the objects discussed in the 
previous section can be reduced or eliminated by streamlining, or fairing, the body 
shape. We have seen that due to the convergent body shape at the rear of any object 
(after ail, every object is of finite length!), the streamlines will diverge, so that the 
velocity will decrease, and therefore, more importantly (as shown by the Bernoulli 
equation, applicable in the freestream region) the pressure will increase. Hence, we 
initially have an adverse pressure gradient at the rear of the body, leading to boundary 
layer separation and ultimately to a low-pressure wake leading to large pressure drag. 
Streamlining is the attempt to reduce the drag on a body. We can reduce the drag on a 
body by making the rear of the body more tapered (e.g., we can reduce the drag on a 
sphere by making it "teardrop" shaped), which will reduce the adverse pressure gradi­
ent and hence make the turbulent wake smaller. However, as we do so, we are in dan­
ger of increasing the skin friction drag simply because we have increased the surface 
area. In practice, there is an optimum amount of fairing or tapering at which the total 
drag (the sum of pressure and skin friction drag) is minimized. These effects are dis­
cussed at length in the NCFMF video series The Fluid Dynamics of Drag. 

The pressure gradient around a "teardrop" shape (a "streamlined" cylinder) is less 
severe than that around a cylinder of circular section. The trade-off between pressure 
and friction drag for this case is illustrated by the results presented in Fig. 9.14, for tests 
at Rec — 4 X 10 s. (This Reynolds number is typical of that for a strut on an early air­
craft.) From the figure, the minimum drag coefficient is CD ~ 0.06, which occurs when 
the ratio of thickness to chord is tic = 0.25. This value is approximately 20 percent of 
the minimum drag coefficient for a circular cylinder of the same thickness! Hence, even 
a small aircraft will typically have fairings on many structural members, e.g., the struts 
that make up the landing wheel assembly, leading to significant fuel savings. 

The maximum thickness for the shapes shown in Fig. 9.14 is located approxi­
mately 25 percent of the chord distance from the leading edge. Most of the drag on 

-— c = chord length — -

Rec = 4 x 1 0 5 

Total drag 

Skin-friction 
drag 

Pressure drag 

0 0.1 0.2 0.3 0.4 0.5 
lie 

Fig. 9.14 Drag coeff ic ient on a s t reaml ined strut as a funct ion of th ickness 
ratio, show ing contr ibut ions of skin friction and pressure to total drag [19]. 

S 0 .10 

TO 
| 0 .08 
o 

£ 0.06 

3* 0 .04 

= 0.02 

n 
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the thinner sections is due to skin friction in the turbulent boundary layers on the 
tapered rear sections. Interest in low-drag airfoils increased during the 1930s. T h J 
National Advisory Committee for Aeronautics (NACA) developed several series of 
"laminar-flow" airfoils for which transition was postponed to 60 or 65 percent chorJ 
length aft from the airfoil nose. 

Pressure distribution and drag coefficients 5 for two symmetric airfoils of infinite) 
span and 15 percent thickness at zero angle of attack are presented in Fig. 9.15. TranJ 
sition on the conventional (NACA 0015) airfoil takes place where the pressure gradi-j 
ent becomes adverse, at xlc = 0.13, near the point of maximum thickness. Thus mostj 
of the airfoil surface is covered with a turbulent boundary layer; the drag coefficient 
is CD ~ 0.0061. The point of maximum thickness has been moved aft on the airfoil, 
(NACA 66 2 -015) designed for laminar flow. The boundary layer is maintained in the. 
laminar regime by the favorable pressure gradient to xlc = 0.63. Thus the bulk of the: 
flow is laminar; CD » 0.0035 for this section, based on planform area. The drag coef-. 
ficient based on frontal area is CD = Co/0.15 = 0.0233, or about 40 percent of the 
optimum for the shapes shown in Fig. 9.14. 

Tests in special wind tunnels have shown that laminar flow can be maintained up 
to length Reynolds numbers as high as 30 million by appropriate profile shaping. 

5 Note that drag coefficients for airfoils are based on the planform area, i.e., CD = FDI^ pV2 Ap , where 
Ap is the maximum projected wing area. 
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Fig. 9.16 Near ly o p t i m u m s h a p e for 
low-drag strut [24] . 

Because they have favorable drag characteristics, laminar-flow airfoils are used in the 
design of most modern subsonic aircraft. 

Recent advances have made possible development of low-drag shapes even better 
than the NACA 60-series shapes. Experiments [21] led to the development of a pres­
sure distribution that prevented separation while maintaining the turbulent boundary 
layer in a condition that produces negligible skin friction. Improved methods for cal­
culating body shapes that produced a desired pressure distribution [23, 24] led to de­
velopment of nearly optimum shapes for thick struts with low drag. Figure 9.16 shows 
an example of the results. 

Reduction of aerodynamic drag also is important for road vehicle applications. 
Interest in fuel economy has provided significant incentive to balance efficient aero­
dynamic performance with attractive design for automobiles. Drag reduction also has 
become important for buses and trucks. 

Practical considerations limit the overall length of road vehicles. Fully stream­
lined tails are impractical for all but land-speed-record cars. Consequently, it is not 
possible to achieve results comparable to those for optimum airfoil shapes. However, 
it is possible to optimize both front and rear contours within given constraints on 
overall length [25-27]. 

Much attention has been focused on front contours. Studies on buses have 
shown that drag reductions up to 25 percent are possible with careful attention to 
front contour [27]. Thus it is possible to reduce the drag coefficient of a bus from 
about 0.65 to less than 0.5 with practical designs. Highway tractor-trailer rigs have 
higher drag coefficients—C D values from 0.90 to 1.1 have been reported. Commer­
cially available add-on devices offer improvements in drag of up to 15 percent, par­
ticularly for windy conditions where yaw angles are nonzero. The typical fuel saving 
is half the percentage by which aerodynamic drag is reduced. 

Front contours and details are important for automobiles. A low nose and 
smoothly rounded contours are the primary features that promote low drag. Radii of 
"A-pillar" and windshield header, and blending of accessories to reduce parasite and 
interference drag have received increased attention. As a result, drag coefficients have 
been reduced from about 0.55 to 0.30 or less for recent production vehicles. Recent 
advances in computational methods have led to development of computer-generated 
optimum shapes. A number of designs have been proposed, with claims of CD values 
below 0.2 for vehicles complete with running gear. 

LIFT 

For most objects in relative motion in a fluid, the most significant fluid force is 
the drag. However, there are some objects, such as airfoils, for which the lift is 
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significant. 6 Lift is defined as the component of fluid force perpendicular to the fluid 
motion. For an airfoil, the lift coefficient, CL, is defined as 

aid 

C, ^ (9.3 

It is worth noting that the lift coefficient defined above and the drag coefficient 
(Eq. 9.30) are each defined as the ratio of an actual force (lift or drag) divided by the 
product of dynamic pressure and area. This denominator can be viewed as the force 
that would be generated if we imagined bringing to rest the fluid directly approaching 
the area (recall that the dynamic pressure is the difference between total and static] 
pressures). This gives us a "feel" for the meaning of the coefficients: They indicate 
the ratio of the actual force to this (unrealistic but nevertheless intuitively meaning­
ful) force. We note also that the coefficient definitions include V2 in the denominator! 
so that FL (or FD) being proportional to V2 corresponds to a constant CL (or CD), and! 
that FL (or FD) increasing with V at a lower rate than quadratic corresponds to a de-i 
crease in CL (or CD) with V. 

The lift and drag coefficients for an airfoil are functions of both Reynolds num­
ber and angle of attack; the angle of attack, a, is the angle between the airfoil chord! 
and the freestream velocity vector. The chord of an airfoil is the straight line joining! 
the leading edge and the trailing edge. The wing section shape is obtained by com-l 
bining a mean line and a thickness distribution (see [21] for details). When the airfoill 
has a symmetric section, the mean line and the chord line both are straight lines, and! 
they coincide. An airfoil with a curved mean line is said to be cambered. 

The area at right angles to the flow changes with angle of attack. Consequently,) 
the planform area, Ap (the maximum projected area of the wing), is used to define lift] 
and drag coefficients for an airfoil. 

The phenomenon of aerodynamic lift is commonly explained by the velocity] 
increase causing pressure to decrease (the Bernoulli effect) over the top surface of the 
airfoil and the velocity decrease (causing pressure to increase) along the bottom sur-'j 
face of the airfoil. The resulting pressure distributions are shown clearly in the video j 
Boundary Layer Control. Because of the pressure differences relative to atmosphere,' 
the upper surface of the airfoil may be called the suction surface and the lower sur­
face the pressure surface. 

As shown in Example Problem 6.12, lift on a body can also be related to the cir­
culation around the profile: In order for lift to be generated, there must be a net circu­
lation around the profile. One may imagine the circulation to be caused by a vortex 
"bound" within the profile. 

Advances continue in computational methods and computer hardware. How­
ever, most airfoil data available in the literature were obtained from wind tunnel 
tests. Reference 21 contains results from a large number of tests conducted by 
NACA (the National Advisory Committee for Aeronautics—the predecessor to 
NASA). Data for some representative NACA profile shapes are described in the next 
few paragraphs. 

Lift and drag coefficient data for typical conventional and laminar-flow profiles 
are plotted in Fig. 9.17 for a Reynolds number of 9 X 10 6 based on chord length. The 
section shapes in Fig. 9.17 are designated as follows: 

6 Flow over an airfoil is shown in the NCFMF video Boundary Layer Control. 
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Conventional—23015 

2 30 15 

^— section thickness (15 percent chord) 

'— maximum camber location ( | x 30 = 15 percent chord) 

— design lift coefficient {\ X 0.2 = 0.3) 

Laminar Flow—66, — 215 

6 6 2 2 15 

^—section thickness (15 percent) 

'—design lift coefficient (0.2) 

— maximum lift coefficient for favorable 
pressure gradient (0.2) 

— location of minimum pressure (x/c ~ 0.6) 

— series designation (laminar flow) 

Both sections are cambered to give lift at zero angle of attack. As the angle of attack 
is increased, the Ap between the upper and lower surfaces increases, causing the lift 
coefficient to increase smoothly until a maximum is reached. Further increases in an­
gle of attack produce a sudden decrease in CL. The airfoil is said to have stalled when 
CL drops in this fashion. 

Airfoil stall results when flow separation occurs over a major portion of the up­
per surface of the airfoil. As the angle of attack is increased, the stagnation point 
moves back along the lower surface of the airfoil, as shown schematically for the 
symmetric laminar-flow section in Fig. 9.18a. Flow on the upper surface then must 
accelerate sharply to round the nose of the airfoil.7 The effect of angle of attack on the 
theoretical upper-surface pressure distribution is shown in Fig. 9.18fr. The minimum 
pressure becomes lower, and its location moves forward on the upper surface. A severe 
adverse pressure gradient appears following the point of minimum pressure; finally, 
the adverse pressure gradient causes the flow to separate completely from the upper 
surface and the airfoil stalls. 

Movement of the minimum pressure point and accentuation of the adverse pres­
sure gradient are responsible for the sudden increase in CD for the laminar-flow section, 
which is apparent in Fig. 9.17. The sudden rise in CD is caused by early transition from 
laminar to turbulent boundary-layer flow on the upper surface. Aircraft with laminar-
flow sections are designed to cruise in the low-drag region. 

Because laminar-flow sections have very sharp leading edges, all of the effects 
we have described are exaggerated, and they stall at lower angles of attack than con­
ventional sections, as shown in Fig. 9.17. The maximum possible lift coefficient, 
C, , also is less for laminar-flow sections. 

J max 

7 Flow patterns and pressure distributions for airfoil sections are shown in the NCFMF video Boundary 
Layer Control. 
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[a) Lift coefficient vs . angle of attack 
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Angle of attack, a (deg) Angle of attack, a (deg) 

lb) Drag coefficient vs. angle of attack 

Fig. 9 .17 Lift a n d d r a g coe f f i c ien ts v e r s u s a n g l e of at tack for t w o airfoil s e c t i o n s of 15 percent 
t h i c k n e s s ratio at Re, = 9 X 10 6 . ( D a t a f r o m [21].) 

Plots of Q versus CD (called lift-drag polars) often are used to present airfoil data 
in compact form. A polar plot is given in Fig. 9.19 for the two sections we have dis­
cussed. The lift/drag ratio, CJCP, is shown at the design lift coefficient for both sec­
tions. This ratio is very important in the design of aircraft: The lift coefficient 
determines the lift of the wing and hence the load that can be carried, and the drag co­
efficient indicates a large part (in addition to that caused by the fuselage, etc.) of the 
drag the airplane engines have to work against in order to generate the needed lift; 
hence, in general, a high CJCD is the goal, at which the laminar airfoil clearly excels. 

Recent improvements in modeling and computational capabilities have made it 
possible to design airfoil sections that develop high lift while maintaining very low 
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Dimensionless distance, xlc 
lb) Pressure distribution on upper surface 

Fig. 9.18 Effect of ang le of a t tack on f low pat te rn and theoret ica l p ressure d is t r ibu­
t ion for a s y m m e t r i c laminar - f low airfoil of 15 percen t th ickness ratio. (Data f rom [21 ].) 

drag [23, 24]. Boundary-layer calculation codes are used with inverse methods for 
calculating potential flow to develop pressure distributions and the resulting body 
shapes that postpone transition to the most rearward location possible. The turbulent 
boundary layer following transition is maintained in a state of incipient separation 
with nearly zero skin friction by appropriate shaping of the pressure distribution. 

Such computer-designed airfoils have been used on racing cars to develop very 
high negative lift (downforce) to improve high-speed stability and cornering perform­
ance [23]. Airfoil sections especially designed for operation at low Reynolds number 
were used for the wings and propeller on the Kremer prize-winning man-powered 
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All real airfoils — wings—are of finite span and have less lift and more drag 
than their airfoil section data would indicate. There are several ways to explain this.'! 
If we consider the pressure distribution near the end of the wing, the low pressure on 
the upper and high pressure on the lower surface cause flow to occur around the wind 
tip, leading to trailing vortices (as shown in Fig. 9.20), and the pressure difference is 
reduced, leading to less lift. These trailing vortices can also be explained more abl 
straclly, in terms of circulation: We learned in Section 6-6 that circulation around a 
wing section is present whenever we have lift, and that the circulation is solenoidal—I 
that is, it cannot end in the fluid; hence, the circulation extends beyond the wing in thJ 
form of trailing vortices. Trailing vortices can be very strong and persistent, possibll 

Fig. 9.20 Schema t i c rep resen ta t ion of the trai l ing vor tex 
sys tem of a f inite w i n g . 
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being a hazard to other aircraft for 5 to 10 miles behind a large airplane—air speeds 
of greater than 200 mph have been measured. 8 

Trailing vortices reduce lift because of the loss of pressure difference, as we just 
mentioned. This reduction and an increase in drag (called induced drag) can also be 
explained in the following way: The "downwash" velocities induced by the vortices 
mean that the effective angle of attack is reduced—the wing "sees" a flow at approx­
imately the mean of the upstream and downstream directions—explaining why the 
wing has less lift than its section data would suggest. This also causes the lift force 
(which is perpendicular to the effective angle of attack) to "lean backwards" a little, 
resulting in some of the lift appearing as drag. 

Loss of lift and increase in drag caused by finite-span effects are concentrated 
near the tip of the wing; hence, it is clear that a short, stubby wing will experience 
these effects more severely than a very long wing. We should therefore expect the ef­
fects to correlate with the wing aspect ratio, defined as 

2 

ar = — (9.39) 
Ap 

where Ap is planform area and b is wingspan. For a rectangular planform of wingspan 
b and chord length c, 

Ap be c 

The maximum lift/drag ratio (UD = CL/CD) for a modern low-drag section may be 
as high as 400 for infinite aspect ratio. A high-performance sailplane (glider) with 
ar = 40 might have UD — 40, and a typical light plane (ar = 12) might have UD ~ 
20 or so. Two examples of rather poor shapes are lifting bodies used for reentry from 
the upper atmosphere, and water skis, which are hydrofoils of low aspect ratio. For 
both of these shapes, LID typically is less than unity. 

Variations in aspect ratio are seen in nature. Soaring birds, such as the albatross or 
California condor, have thin wings of long span. Birds that must maneuver quickly to 
catch their prey, such as owls, have wings of relatively short span, but large area, which 
gives low wing loading (ratio of weight to planform area) and thus high maneuverability. 

It makes sense that as we try to generate more lift from a finite wing (by, for ex­
ample, increasing the angle of attack), the trailing vortices and therefore the down-
wash increase; we also learned that the downwash causes the effective angle of attack 
to be less than that of the corresponding airfoil section (i.e., when ar = o o ) , ulti­
mately leading to loss of lift and to induced drag. Hence, we conclude that the effects 
of the finite aspect ratio can be characterized as a reduction Aa in the effective angle 
of attack, and that this (which is usually undesirable) becomes worse as we generate 
more lift (i.e., as the lift coefficient CL increases) and as the aspect ratio ar is made 
smaller. Theory and experiment indicate that 

Aa = (9.40) 
irar 

Compared with an airfoil section (ar = o ° ) , the geometric angle of attack of a wing 
(finite ar) must be increased by this amount to get the same lift, as shown in 

Sforza, P. M., "Aircraft Vortices: Benign or Baleful?" Space/Aeronautics, 53, 4, April 1970, pp. 4 2 - 4 9 . 
See also the University of Iowa video Form Drag, Lift, and Propulsion. 
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Geometric angle of attack, a Lift coefficient, CL 

Fig. 9.21 Ef fect of f ini te a s p e c t rat io o n lift a n d d r a g coe f f i c i en ts for a w i n g . 

Fig. 9.21. It also means that instead of being perpendicular to the motion, the lift 
force leans angle Aa backwards from the perpendicular—we have an induced drag 
component of the drag coefficient. From simple geometry 

ACD = CLAa * c l 

var 

This also is shown in Fig. 9.21. 
When written in terms of aspect ratio, the drag of a wing of finite span be 

comes [21 ] 

CD ~ Cr>„ + C -D,i - Co., 
cl (9.42) 

where CD* is the section drag coefficient at CL, CD, is the induced drag coefficient at 
Q , and ar is the aspect ratio of the finite-span wing. 

Drag on airfoils arises from viscous and pressure forces. Viscous drag changes 
with Reynolds number but only slightly with angle of attack. These relationships and 
some commonly used terminology are illustrated in Fig. 9.22. 

Total (profile) drag i 
• i 

Skin-friction J Pressure [ 
drag j drag 

L Nonlifting bodies 

Total dra 

Profile (form) drag i Induced drag | 

i " 1 1 r 
Skin-friction ^ Pressure_j 

drag j drag j 

Lifting 
' bodies 

Fig. 9.22 D r a g b r e a k d o w n o n nonl i f t ing a n d lifting 
b o d i e s . 

A useful approximation to the drag polar for a complete aircraft may be ob­
tained by adding the induced drag to the drag at zero lift. The drag at any lift coeffi­
cient is obtained from 
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C 2 

CD = C D 0 + CDJ = C D 0 + (9.43) 
irar 

where CD0 is the drag coefficient at zero lift and ar is the aspect ratio. 
It is possible to increase the effective aspect ratio for a wing of given geometric 

ratio by adding an endplate or winglet to the wing tip. An endplate may be a simple 
plate attached at the tip, perpendicular to the wing span, as on the rear-mounted wing 
of the racing car (see Fig. 9.26). An endplate functions by blocking the flow that 
tends to migrate from the high-pressure region below the wing tip to the low-pressure 
region above the tip when the wing is producing lift. When the endplate is added, the 
strength of the trailing vortex and the induced drag are reduced. 

Winglets are short, aerodynamically contoured wings set perpendicular to the 
wing at the tip. Like the endplate, the winglet reduces the strength of the trailing vor­
tex system and the induced drag. The winglet also produces a small component of 
force in the flight direction, which has the effect of further reducing the overall drag 
of the aircraft. The contour and angle of attack of the winglet are adjusted based on 
wind tunnel tests to provide optimum results. 

As we have seen, aircraft can be fitted with low-drag airfoils to give excellent 
performance at cruise conditions. However, since the maximum lift coefficient is low 
for thin airfoils, additional effort must be expended to obtain acceptably low landing 
speeds. In steady-state flight conditions, lift must equal aircraft weight. Thus, 

W = FL = CL\pV2A 

Minimum flight speed is therefore obtained when CL 

According to Eq. 9.44, the minimum landing speed can be reduced by increasing ei­
ther C, or wing area. Two basic techniques are available to control these variables: 

max 1 

variable-geometry wing sections (e.g., obtained through the use of flaps) or boundary-
layer control techniques. 

Flaps are movable portions of a wing trailing edge that may be extended during 
landing and takeoff to increase effective wing area. The effects on lift and drag of two 
typical flap configurations are shown in Fig. 9.23, as applied to the NACA 23012 air­
foil section. The maximum lift coefficient for this section is increased from 1.52 
in the "clean" condition to 3.48 with double-slotted flaps. From Eq. 9.44, the corre­
sponding reduction in landing speed would be 34 percent. 

Figure 9.23 shows that section drag is increased substantially by high-lift devices. 
From Fig. 9.23b, section drag at CLmJCD ~ 0.28) with double-slotted flaps is about 
5 times as high as section drag at CLn^{CD ~ 0.055) for the clean airfoil. Induced 
drag due to lift must be added to section drag to obtain total drag. Because induced drag 
is proportional to C\ (Eq. 9.41) total drag rises sharply at low aircraft speeds. At speeds 
near stall, drag may increase enough to exceed the thrust available from the engines. To 
avoid this dangerous region of unstable operation, the Federal Aviation Administration 
(FAA) limits operation of commercial aircraft to speeds above 1.2 times stall speed. 

Although details are beyond the scope of this book, the basic purpose of all 
boundary-layer control techniques is to delay separation or reduce drag, by adding 

= S o l v i n § f o r V ™ n , 

(9.44) 
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Configuration 
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2. Slotted flap 
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(a) Lift coefficient versus angle of attack 
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F ig . 9.23 Effect of f laps on a e r o d y n a m i c charac ter is t i cs of N A C A 23012 airfoil sec t ion . (Dq 
f rom [21] . ) 

ata 

Fig . 9.24(a) Application of high-lift boundary-layer control devices to reduce landing speed of a jet transport 
aircraft. The wing of the Boeing 777 is highly mechanized. In the landing configuration, large slotted trailing- I 
edge flaps roll out from under the wing and deflect downward to increase wing area and camber, thus i n c r e a s i n g 
[he lift coefficient. Slats at the leading edge of the wing move forward and down, to increase the effective radiur 
of the leading edge and prevent flow separation, and to open a slot that helps keep air How attached to the w i n g * 
upper surface. After touchdown, spoilers (not shown in use) are raised in front of each flap to decrease lift and I 
ensure lhat the plane remains on the ground, despite use of the lift-augmenting devices. (This photograph was I 
taken during a flight test. Flow cones are attached to the flaps and ailerons to identify regions of separated flow \ 
on these surfaces.) (Photograph courtesy of Boeing Airplane Company.) 
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F ig . 9.24(d) Application of high-lift boundary-layer control devices to reduce takeoff speed of a jet transport 
aircraft. This is another view of the Boeing 7 7 7 wing. In the takeoff configuration, large slotted trailing-edge 
flaps deflect to increase the lift coefficient. The low-speed aileron near the winglip also deflects to improve span 
loading during takeoff. This view also shows the single-slotted outboard flap, the high-speed aileron, and near­
est the fuselage, the double-slotted inboard flap. (Photograph courtesy of Boeing Airplane Company.) 

momentum to the boundary layer through blowing, or by removing low-momentum 
boundary-layer fluid by suction. 9 Many examples of practical boundary-layer control 
systems may be seen on commercial transport aircraft at your local airport. Two typi­
cal systems are shown in Fig. 9.24. 

EXAMPLE 9.8 Optimum Cruise Performance of a Jet Transport 

Jet engines burn fuel at a rate proportional to thrust delivered. The optimum cruise 
condition for a jet aircraft is at maximum speed for a given thrust. In steady level 
flight, thrust and drag are equal. Hence, optimum cruise occurs at the speed when the 
ratio of drag force to air speed is minimized. 

A Boeing 727-200 jet transport has wing planform area Ap = 1600 ft2, and as­
pect ratio ar = 6.5. Stall speed at sea level for this aircraft with flaps up and a gross 
weight of 150,000 lbf is 175 mph. Below M = 0.6, drag due to compressibility ef­
fects is negligible, so Eq. 9.43 may be used to estimate total drag on the aircraft. CD0 

for the aircraft is constant at 0.0182. Assume sonic speed at sea level is c — 759 mph, 
Evaluate the performance envelope for this aircraft at sea level by plotting drag 

force versus speed, between stall and M = 0.6. Use this graph to estimate optimum 
cruise speed for the aircraft at sea-level conditions. Comment on stall speed and opti­
mum cruise speed for the aircraft at 30,000 ft altitude on a standard day. 

9 See the excellent NCFMF video Boundary Layer Control for a review of these techniques. 
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EXAMPLE PROBLEM 9.8 

GIVEN: Boeing 727-200 jet transport at sea-level conditions. 

W = 150,000 Ibf, A = 1600 ft2, ar = 6.5, and C D i 0 = 0.0182 

Stall speed is = 175 mph, and compressibility effects on drag are negligible for M s 0.6 
(sonic speed at sea level is c = 759 mph). 

FIND: (a) Drag force as a function of speed from VsM to M = 0.6; plot results. 
(b) Estimate of optimum cruise speed at sea level. 
(c) Stall speed and optimum cmise speed at 30,000 ft altitude. 

SOLUTION: 
For steady, level flight, weight equals lift and thrust equals drag. 

Governing equations: FL = CLA\pV2 W Cr. - D , 0 
ct 

FD = CDA±pVl =T M = -
c 

At sea level, p = 0.00238 slug/ft3, and c = 759 mph. 
Since FL = W for level flight at any speed, then 

W 2W 
\pV2A pV2A 

At stall speed, V = 175 mph, so 

ftJ 

0.00238 slug 
hr x mi x 3600 _s_ 

175 mi 5280 ft hr 
1 

1600 ft" 
slug • ft 
Ibf-s 2 

r 3.65 x 10 4 3.65 x 10 4 

C, = r = *— = 1.196, and 
[V(mph)f (175)' 

Cn — C, D . O 0.0182+ = 0.0882 

Then 

7T(6.5) 

FD = W—2- = 150,000 Ibf 
Cr 

0.0882^ 
1.19 J 11,100 Ibf 

At M = 0.6, V = Mc = (0.6)759 mph = 455 mph, so CL = 0.177 and 

CD = 0.0182 + ( ° l 7 7 ) = 0.0197 

so 

vib.5) 

FD = 150,000Ibf [ 0 0 1 9 7 1 = 16,700Ibf 
D { 0.177 ) 

Similar calculations lead to the following table (computed using Excel): 

K(mph) 175 200 300 400 455 
cL 

1.196 0.916 0.407 0.229 0.177 
cD 

0.0882 0.0593 0.0263 0.0208 0.0197 
FD (Ibf) 11,100 9,710 9,700 13,600 16,700 
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These data may be plotted as: 
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From the plot, the optimum cruise speed at sea level is estimated as 320 mph (and using Excel we 
obtain 323 mph). 

At 30,000 ft (9,140 m) altitude, the density is only about 0.375 times sea level density, from Table 
' A.3. The speeds for corresponding forces are calculated from 

FL = CLA\pV or 1 
IE, 

CLpA 

Thus, speeds increase 63 percent at 30,000 ft altitude: 

or 

" 285 mph 

K c n l l 9 e - 522 mph 

1.63 

This problem illustrates that high-altitude flight increases the 
optimum cruising speed—in general this speed depends on 
aircraft configuration, gross weight, segment length, and 
winds aloft. • The Excel workbook for this Example Problem plots the 

drag or thrust and power as functions of speed. It also al­
lows "what-ifs," e.g., what happens to the optimum 
speed if altitude is increased, or if the aspect ratio is in­
creased, and so on. 

Aerodynamic lift is an important consideration in the design of high-speed land 
vehicles such as racing cars and land-speed-record machines. A road vehicle gener­
ates lift by virtue of its shape [29]. A representative centerline pressure distribution 
measured in the wind tunnel for an automobile is shown in Fig. 9.25 [30]. 

The pressure is low around the nose because of streamline curvature as the flow 
rounds the nose. The pressure reaches a maximum at the base of the windshield, 
again as a result of streamline curvature. Low-pressure regions also occur at the 
windshield header and over the top of the automobile. The air speed across the top is 
approximately 30 percent higher than the freestream air speed. The same effect 
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Fig. 9.25 Pressure d is t r ibut ion a long the cen te r l ine of 
an au tomob i l e [30] , 

occurs around the "A-pillars" at the windshield edges. The drag increase caused by 
an added object, such as an antenna, spotlight, or mirror at that location, thus would 
be (1.3) 2 = 1.7 times the drag the object would experience in an undisturbed flow 
field. Thus the parasite drag of an added component can be much higher than would 
be predicted from its drag calculated for free flow. 

At high speeds, aerodynamic lift forces can unload tires, causing serious reduc­
tions in steering control and reducing stability to a dangerous extent. Lift forces off 
early racing cars were counteracted somewhat by "spoilers," at considerable penalty 
in drag. In 1965 Jim Hall introduced the use of movable inverted airfoils on his Chap­
arral sports cars to develop aerodynamic downforce and provide aerodynamic brak­
ing [31]. Since then the developments in application of aerodynamic devices have 
been rapid. Aerodynamic design is used to reduce lift on all modern racing cars, as 
exemplified in Fig. 9.26. Liebeck airfoils [23] are used frequently for high-speed aul 
tomobiles. Their high lift coefficients and relatively low drag allow downforce e q u a 
to or greater than the car weight to be developed at racing speeds. "Ground effect! 
cars use venturi-shaped ducts under the car and side skirts to seal leakage flows. T h | 
net result of these aerodynamic effects is that the downward force (which increase! 

Fig. 9.26 C o n t e m p o r a r y spor ts - rac ing car, s h o w i n g a e r o d y n a m i c des ign features . To achieve 
2 0 0 ' m p h pe r f o rmance requ i res carefu l a t tent ion to ae rodynamic des ign for low d rag and to 
ae rodynam ic down fo r ce for stabi l i ty and high co rne r ing speeds . The photo s h o w s the careful ly 
s t reaml ined mi r rors , f lush inlet duc ts , and o ther deta i ls n e e d e d to ach ieve low d rag . T h e low 
front contour , unde rbody shape , and rear w ing c rea te down fo rce for stabi l i ty and h igh -speed 
co rne r i ng p e r f o r m a n c e . (Pho to cou r tesy of G o o d y e a r T i re & Rubber Co. , Inc.) 
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Lift force, FL 

5 

Spin ratio, oiD/2V 

la) Flow pattern lb) Lift and drag coefficients 

Fig. 9.27 F low pa t te rn , lift, and drag coef f ic ients for a s m o o t h sp inn ing sphe re in uni form 
flow. (Data f rom [19].) 

with speed) generates excellent traction without adding significant weight to the vehi­
cle, allowing faster speeds through curves and leading to lower lap times. 

Another method of boundary-layer control is use of moving surfaces to reduce 
skin friction effects on the boundary layer [32]. This method is hard to apply to 
practical devices, because of geometric and weight complications, but it is very im­
portant in recreation. Most golfers, tennis players, Ping-Pong enthusiasts, and base­
ball pitchers can attest to this! Tennis and Ping-Pong players use spin to control the 
trajectory and bounce of a shot. In golf, a drive can leave the tee at 275 ft/s or more, 
with backspin of 9000 rpm! Spin provides significant aerodynamic lift that substan­
tially increases the carry of a drive. Spin is also largely responsible for hooking and 
slicing when shots are not hit squarely. The baseball pitcher uses spin to throw a 
curve ball. 

Flow about a spinning sphere is shown in Fig. 9.27a. Spin alters the pressure 
distribution and also affects the location of boundary-layer separation. Separation is 
delayed on the upper surface of the sphere in Fig. 9.27a, and it occurs earlier on the 
lower surface. Thus pressure (because of the Bernoulli effect) is reduced on the upper 
surface and increased on the lower surface; the wake is deflected downward as 
shown. Pressure forces cause a lift in the direction shown; spin in the opposite direc­
tion would produce negative lift—a downward force. The force is directed perpendi­
cular to both V and the spin axis. 

Lift and drag data for spinning smooth spheres are presented in Fig. 9.21b. The 
most important parameter is the spin ratio, a>D/2V, the ratio of surface speed to 
freestream flow speed; Reynolds number plays a secondary role. At low spin ratio, 
lift is negative in terms of the directions shown in Fig. 9.27a. Only above coDI2V ~ 
0.5 does lift become positive and continue to increase as spin ratio increases. Lift co­
efficient levels out at about 0.35. Spin has little effect on sphere drag coefficient, 
which varies from about 0.5 to about 0.65 over the range of spin ratio shown. 

Earlier we mentioned the effect of dimples on the drag of a golf ball. Experi­
mental data for lift and drag coefficients for spinning golf balls are presented in Fig. 
9.28 for subcritical Reynolds numbers between 126,000 and 238,000. Again the inde­
pendent variable is spin ratio; a much smaller range of spin ratio, typical of golf balls, 
is presented in Fig. 9.28. 
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Fig. 9.28 Comparison of conventional and hex-dimpled 
golf balls [33], 

A clear trend is evident: The lift coefficient increases consistently with spin ratio 
for both hexagonal and "conventional" (round) dimples. The lift coefficient on a golf 
ball with hexagonal dimples is significantly—as much as 15 percent—higher than 
on a ball with round dimples. The advantage for hexagonal dimples continues to th^i 
largest spin ratios that were measured. The drag coefficient for a ball with hexagonal 
dimples is consistently 5 to 7 percent lower than the drag coefficient for a ball wittj 
round dimples at low spin ratios, but the difference becomes less pronounced as spin 
ratio increases. 

The combination of higher lift and lower drag increases the carry of a golf shot. A 
recent design—the Callaway H X — h a s improved performance further by using a "tu­
bular lattice network" using ridges of hexagons and pentagons (at a precise height of 
0.0083 in.) instead of dimples, so that there are no flat spots at all on the surface [34]. 
Callaway claims the HX flies farther than any ball they ever tested. 

A smooth tennis ball, with 57 g mass and 64 mm diameter, is hit at 25 m/s with tofl 
spin of 7500 rpm. Calculate the aerodynamic lift acting on the ball. Evaluate the ra­
dius of curvature of its path at maximum elevation in a vertical plane. Compare with 
the radius for no spin. 

EXAMPLE PROBLEM 9.9 

GIVEN: Tennis ball in flight, with m = 57 g and D = 64 mm, hit with V = 25 m/s and topspin of 
7500 rpm. 

FIND: (a) Aerodynamic lift acting on ball. 
(b) Radius of curvature of path in vertical plane. 
(c) Comparison with radius for no spin. 

EXAMPLE 9.9 Lift of a Spinning Ball 
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SOLUTION: 
Assume ball is smooth. 

Use data from Fig. 9.27 to find lift: C L = /1^, ReD 

From given data (for standard air, v = 1.46 X 10 3 m2/s), 
10D 1 7500 rev 0.064 m s 2TT rad min , „, 
— = —x x x x — x = 1.01 
2V 2 min 25 m rev 60s 
ReD = VD 25 m 0.064 m 

1 .46x l0~ 5 m 2 
= 1.10 x 103 

From Fig. 9.27, CL = 0.3, so 

FL = CLA)-pV2 

C ^ V 2 

4 2 

FL=-x 0.3 x (0.064)2 m 2

 x 1.23 Jcg x (25) 2 m~_ x _N_s_ _ 0.371 N 
m s kg • m 

Because the ball is hit with topspin, this force acts downward. 
Use Newton's second law to evaluate curvature of path. In the vertical plane, 

2Z F' = —F, - me = ma, = —m — 
z L z R 

or R 
8 + h l m 

R = 
(25) 2 m 2 1 

9.81m 0.371 N 
7 + 

1 _ x kg • m 
0.057 kg N • s 2 

R = 38.3 m (with spin) 

R = 
(25) 2 m 2 

= 63.7 m (withoutspin) _̂ 
s z 9.81m 

Thus topspin has a significant effect on trajectory of the shot! 

_R 

R 

It has long been known that a spinning projectile in flight is affected by a force 
perpendicular to the direction of motion and to the spin axis. This effect, known as 
the Magnus effect, is responsible for the systematic drift of artillery shells. 

Cross flow about a rotating circular cylinder is qualitatively similar to flow about 
the spinning sphere shown schematically in Fig. 9.27a. If the velocity of the upper 
surface of a cylinder is in the same direction as the freestream velocity, separation is 
delayed on the upper surface; it occurs earlier on the lower surface. Thus the wake is 
deflected and the pressure distribution on the cylinder surface is altered when rotation 
is present. Pressure is reduced on the upper surface and increased on the lower sur­
face, causing a net lift force acting upward. Spin in the opposite direction reverses 
these effects and causes a downward lift force. 

Lift and drag coefficients for the rotating cylinder are based on projected area, 
LD. Experimentally measured lift and drag coefficients for subcritical Reynolds num­
bers between 40,000 and 660,000 are shown as functions of spin ratio in Fig. 9.29. 
When surface speed exceeds flow speed, the lift coefficient increases to surprisingly 
high values, while in two-dimensional flow, drag is affected only moderately. Induced 
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Fig . 9.29 Lift and d rag of a rotat ing cy l inder as a 
funct ion of relat ive rotat ional s p e e d ; M a g n u s force. 
(Data f rom [35].) 

drag, which must be considered for finite cylinders, can be reduced by using end 
disks larger in diameter than the body of the cylinder. 

The power required to rotate a cylinder may be estimated from the skin friction 
drag of the cylinder surface. Hoemer [35] suggests basing the skin friction drag 
estimate on the tangential surface speed and surface area. Goldstein [19] suggests that 
the power required to spin the cylinder, when expressed as an equivalent drag coeffi­
cient, may represent 20 percent or more of the aerodynamic CD of a stationary cylinder. 

9-9 SUMMARY 

In this chapter we have: 

/ Defined and discussed various terms commonly used in aerodynamics, such as: 
boundary-layer disturbance, displacement and momentum thicknesses; flow separa­
tion; streamlining; skin friction and pressure drag and drag coefficient; lift and lift 
coefficient; wing chord, span and aspect ratio; and induced drag. 

/ Derived expressions for the boundary-layer thickness on a flat plate (zero pressure 
gradient) using exact* and approximate methods (using the momentum integral 
equation). 

/ Learned how to estimate the lift and drag from published data for a variety of 
objects. 

While investigating the above phenomena, we developed insight into some of the ba­
sic concepts of aerodynamic design, such as how to minimize drag, how to determine 
the optimum cruising speed of an airplane, and so on. 

I 
* This topic applies to a section that may be omitted without loss of continuity in the text material. 
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PROBLEMS 

9.1 The roof of a minivan is approximated as a horizontal flat plate. Plot the length of the 
laminar boundary layer as a function of minivan speed, V, as the minivan accelerates 
from 10 mph to 90 mph. 

9.2 A model of a river towboat is to be tested at 1:13.5 scale. The boat is designed • 
travel at 8 mph in fresh water at 10°C. Estimate the distance from the bow where 
transition occurs. Where should transition be stimulated on the model towboat? 
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9.3 An airplane cruises at 300 knots at 10 km altitude on a standard day. Assume the 
boundary layers on the wing surfaces behave as on a flat plate. Estimate the expected 
extent of laminar flow in the wing boundary layers. 

9.4 Plot on one graph the length of the laminar boundary layer on a flat plate, as a function 
of freestream velocity, for (a) water and standard air at (b) sea level and (c) 10 km 
altitude. Use log-log axes, and compute data for the boundary-layer length ranging 
from 0.01 m to 10 m. 

9.5 The extent of the laminar boundary layer on the surface of an aircraft or missile 
varies with altitude. For a given speed, will the laminar boundary-layer length 
increase or decrease with altitude? Why? Plot the ratio of laminar boundary-layer 
length at altitude z, to boundary-layer length at sea level, as a function of z, up to alti­
tude z = 30 km, for a standard atmosphere. 

9.6 The most general sinusoidal velocity profile for laminar boundary-layer flow on a flat 
plate is u = A sin (By) + C. State three boundary conditions applicable to the lami­
nar boundary-layer velocity profile. Evaluate constants A, B, and C. 

9.7 Velocity profiles in laminar boundary layers often are approximated by the 
equations 

Linear: — 
U 

Sinusoidal: — 
U 

Parabolic: — 
U 

Compare the shapes of these velocity profiles by plotting y/S (on the ordinate) versus 
u/U (on the abscissa). 

9.8 The velocity profile in a turbulent boundary layer often is approximated by the 
j -power-law equation 

Compare the shape of this profile with the parabolic laminar boundary-layer velocity 
profile (Problem 9.7) by plotting y/S (on the ordinate) versus u/U (on the abscissa) 
for both profiles. 

9.9 Evaluate S*/S for each of the laminar boundary-layer velocity profiles given in 
Problem 9.7. 

9.10 Evaluate 6/8 for each of the laminar boundary-layer velocity profiles given in 
Problem 9.7. 

9.11 Evaluate 8*/8 and 018 for the turbulent -y-power-law velocity profile given in Prob­
lem 9.8. Compare with ratios for the parabolic laminar boundary-layer velocity 
profile given in Problem 9.7. 

9.12 A fluid, with density p = 800 kg/m 3, flows at U — 3 m/s over a flat plate 3 m long 
and 1 m wide. At the trailing edge the boundary-layer thickness is 5 = 25 mm. As­
sume the velocity profile is linear, as shown, and that the flow is two-dimensional 
(flow conditions are independent of z). Using control volume abed, shown by 
dashed lines, compute the mass flow rate across surface ab. Determine the drag 
force on the upper surface of the plate. Explain how this (viscous) drag can be 
computed from the given data even though we do not know the fluid viscosity (sec 
Problem 9.34). 
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9.13 The flat plate of Problem 9.12 is turned so that the 1 m side is parallel to the flow 
(the width becomes 3 m). Should we expect that the drag increases or decreases? 
Why? The trailing edge boundary-layer thickness is now S = 14 mm. Assume again 
that the velocity profile is linear, and that the flow is two-dimensional (flow condi-. 
tions are independent of z). Repeat the analysis of Problem 9.12. 

9.14 Solve Problem 9.12 again with the velocity profile at section be given by the para­
bolic expression from Problem 9.7. 

9.15 Laboratory wind tunnels have test sections 1 ft square and 2 ft long. With nominal air 
speed (/, = 80 ft/s at the test section inlet, turbulent boundary layers form on the 
lop, bottom, and side walls of the runnel. The boundary-layer thickness is 3 j H 
0.8 in. at the inlet and 6% = 1.2 in. at the outlet from the test section. The boundary-
layer velocity profiles are of power-law form, with u/U = (y/8)]n. Evaluate the 
freestream velocity, U2, at the exit from the wind-tunnel test section. Determine the 
change in static pressure along the test section. 

9.16 The square test section of a small laboratory wind tunnel has sides of width W = 
305 mm. At one measurement location, the turbulent boundary layers on the tunnel 
walls are S, = 9.5 mm thick. The velocity profile is approximated well by the m 
power expression. At this location the freestream air speed is 17, = 18.3 m/s, and the 
static pressure is /?, = -22.9 mm H 2 0 (gage). At a second measurement location 
downstream, the boundary-layer thickness is = 12.7 mm. Evaluate the air speed 
in the freestream at the second section. Calculate the difference in static pressure 
from section (T) to section (2). 

9.17 Air flows in a horizontal cylindrical duct of diameter D = 100 mm. At a section a few 
meters from the entrance, the turbulent boundary layer is of thickness 5, = 5.25 
and the velocity in the inviscid central core is (/, = 12.5 m/s. Farther downstream 
boundary layer is of thickness 82 = 24 mm. The velocity profile in the boundary 
layer is approximated well by the ^--power expression. Find the velocity, U2, in the 
inviscid central core at the second section, and the pressure drop between the tw* 
sections. 

9.18 Air flows in the entrance region of a square duct, as shown. The velocity is uniform. 
U0 = 30 m/s, and the duct is 80 mm square. At a section 0.3 m downstream from the 
entrance, the displacement thickness, 8*, on each wall measures 1.0 mm. Determine 
the pressure change between sections CD and (2). 

9.19 Flow of air develops in a flat horizontal duct following a well-rounded entrance 
section. The duct height is H = 300 mm. Turbulent boundary layers grow on the 
duct walls, but the flow is not yet fully developed. Assume that the velocity profile in 
each boundary layer is u/U = (y/8)" 7. The inlet flow is uniform at V = 10 m/s 
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section (T). At section (2), the boundary-layer thickness on each wall of the channel 
is 82 = 100 mm. Show that for this flow, 8* = 8/8. Evaluate the static gage pressure 
at section © . Find the average wall shear stress between the entrance and section 
(2), located at L = 5 m. 

9.20 A laboratory wind tunnel has a square test section, with sides of width W = 305 mm 
and length L = 610 mm. When the freestream air speed at the test section entrance is 
Ux = 24.4 m/s, the head loss from the atmosphere is 6.5 mm H 2 0 . Turbulent bound­
ary layers form on the top, bottom, and side walls of the test section. Measurements 
show the boundary-layer thicknesses are 8X = 20.3 mm at the entrance and 82 = 
25.4 mm at the outlet from the test section. The velocity profiles are of ^-power 
form. Evaluate the freestream air speed at the outlet from the test section. Determine 
the static pressures at the test section inlet and outlet. 

9.21 Air flows into the inlet contraction section of a wind tunnel in an undergraduate labo­
ratory. From the inlet the air enters the test section, which is square in cross-section 
with side dimensions of 305 mm. The test section is 609 mm long. At one operating 
condition air leaves the contraction at 50.2 m/s with negligible boundary-layeT thick­
ness. Measurements show that boundary layers at the downstream end of the test sec­
tion are 20.3 mm thick. Evaluate the displacement thickness of the boundary layers 
at the downstream end of the wind tunnel test section. Calculate the change in static 
pressure along the wind tunnel test section. Estimate the approximate total drag force 
caused by skin friction on each wall of the wind tunnel. 

9.22 Flow of air develops in a horizontal cylindrical duct, of diameter D = 400 mm, fol­
lowing a well-rounded entrance. A turbulent boundary grows on the duct wall, but 
the flow is not yet fully developed. Assume that the velocity profile in the boundary 
layer is u/U = (y/8)[n. The inlet flow is at V = 15 m/s at section (T). At section (2), 
the boundary-layer thickness is 82 = 100 mm. Evaluate the static gage pressure at 
section © , located at L = 6 m. Find the average wall shear stress. 

*9.23 Using numerical results for the Blasius exact solution for laminar boundary-layer 
flow on a flat plate, plot the dimensionless velocity profile, u/U (on the abscissa), 
versus dimensionless distance from the surface, y/8 (on the ordinate). Compare with 
the approximate parabolic velocity profile of Problem 9.7. 

*9.24 Using numerical results obtained by Blasius (Table 9.1), evaluate the distribution of 
shear stress in a laminar boundary layer on a flat plate. Plot T/T„, versus y/8. Com­
pare with results derived from the approximate parabolic velocity profile given in 
Problem 9.7. 

*9.25 Using numerical results obtained by Blasius (Table 9.1), evaluate the distribution of 
shear stress in a laminar boundary layer on a flat plate. Plot T/TW versus y/8. Com­
pare with results derived from the approximate sinusoidal velocity profile given in 
Problem 9.7. 

*9.26 Using numerical results obtained by Blasius (Table 9.1), evaluate the vertical compo­
nent of velocity in a laminar boundary layer on a flat plate. Plot v/U versus y/8 for 
Rex = 105. 

*9.27 Verify that the y component of velocity for the Blasius solution to the Prandtl 
boundary-layer equations is given by Eq. 9.10. Obtain an algebraic expression for 
the x component of the acceleration of a fluid particle in the laminar boundary layer. 
Plot ax versus 17 to determine the maximum x component of acceleration at a given x. 

*9.28 Numerical results of the Blasius solution to the Prandtl boundary-layer equations are 
presented in Table 9.1. Consider steady, incompressible flow of standard air over a 

These problems require material from sections that may be omitted without loss of continuity in the text 
material. 
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flat plate at freestream speed U = 4.3 m/s. At x = 0.2 m, estimate the distance from 
the surface at which u = 0.95 U. Evaluate the slope of the streamline through this 
point. Obtain an algebraic expression for the local skin friction, TW(X). Obtain an 
algebraic expression for the total skin friction drag force on the plate. Evaluate the 
momentum thickness at L — 0.8 m. 

*9.29 The Blasius exact solution involves solving a nonlinear equation, Eq. 9.11, with ini­
tial and boundary conditions given by Eq. 9.12. Set up an Excel workbook to o b ^ H 
a numerical solution of this system. The workbook should consist of columns for ij, 
/ , / ' , and/". The rows should consist of values of these, with a suitable step size for i | 
(e.g., for 1000 rows the step size for 17 would be 0.01 to generate data through t j 
10, to go a little beyond the data in Table 9.1). The values o f / a n d / for the first n 
are zero (from the initial conditions, Eq. 9.12); a guess value is needed fo r / ' ( 
0.5). Subsequent row values f o r / / , and/" can be obtained from previous row val­
ues using Euler's finite difference method for approximating first derivatives (and 
Eq. 9.11). Finally, a solution can be found by using Excel's, Goal Seek or Solver 
functions to vary the initial value of/" until/ ' = 1 for large 17 (e.g., 17 = 10, bound­
ary condition of Eq. 9.12). Plot the results. Note: Because Euler's method is rela­
tively crude, the results will agree with Blasius' only to within about 1%. 

9.30 Consider flow of air over a flat plate. On one graph, plot the laminar boundary-layer 
thickness as a function of distance along the plate (up to transition) for freestream 
speeds U = 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s, and 10 m/s. 

9.31 A thin flat plate, L = 0.3 m long and b = 1 m wide, is installed in a water tunnel as u 
splitter. The freestream speed is U = 2 m/s and the velocity profile in the boundary 
layer is approximated as parabolic. Plot 5, 8*, and rw versus xlL for the plate. 

9.32 A thin flat plate is installed in a water tunnel as a splitter. The plate is 0.3 m long and 
1 m wide. The freestream speed is 1.6 m/s. Laminar boundary layers form on both side* 
of the plate. The boundary-layer velocity profile is approximated as parabolic. Deter­
mine the total viscous drag force on the plate assuming that pressure drag is negligible. 

9.33 Consider flow over the splitter plate of Problem 9.31. Show algebraically that the to­
tal drag force on one side of the splitter plate may be written FD = pU28Lb. Evaluate 
8L and the total drag for the given conditions. 

9.34 In Problems 9.12 and 9.13 the drag on the upper surface of a flat plate with flow 
(fluid density p = 800 kg/m3) at freestream speed ( 7 = 3 m/s, was determined from 
momentum flux calculations. The drag was determined for the plate with its 
edge (3 m) and its short edge (1 m) parallel to the flow. If the fluid viscosity 
0.02 N • s/m2, compute the drag using boundary layer equations. 

9.35 A horizontal surface, with length L = 1.8 m and width b = 0.9 m, is immersed in a 
stream of standard air flowing at U = 3.2 m/s. Assume a laminar boundary layer 
forms and approximate the velocity profile as sinusoidal. Plot 8, 8*, and TW versus 
xlL for the plate. 

9.36 The velocity profile in a laminar boundary-layer flow at zero pressure gradient is ap­
proximated by the linear expression given in Problem 9.7. Use the momentum inte­
gral equation with this profile to obtain expressions for 8Jx and Cf. 

9.37 A horizontal surface, with length L = 0.8 m and width b = 1.9 m, is immersed in a 
stream of standard air flowing at U = 5.3 m/s. Assume a laminar boundary layer forms 
and approximate the velocity profile as linear. Plot 8, 8*, and TW versus xlL for the plate. 

9.38 For the flow conditions of Problem 9.37, develop an algebraic expression for th 
variation of wall shear stress with distance along the surface. Integrate to obtain an 

* This problem requires material from sections that may be omitted without loss of continuity in the lest 
material. 
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algebraic expression for the total skin-friction drag on the surface. Evaluate the drag 
for the given conditions. 

9.39 Water at 15°C flows over a flat plate at a speed of 1 m/s. The plate is 0.4 m long and 
1 m wide. The boundary layer on each surface of the plate is laminar. Assume that the 
velocity profile may be approximated as linear. Determine the drag force on the plate. 

9.40 Standard air flows from the atmosphere into the wide, flat channel shown. Laminar 
boundary layers form on the top and bottom walls of the channel (ignore boundary-
layer effects on the side walls). Assume the boundary layers behave as on a flat plate, 
with linear velocity profiles. At any axial distance from the inlet, the static pressure is 
uniform across the channel. Assume uniform flow at section CD- Indicate where the 
Bernoulli equation can be applied in this flow field. Find the static pressure (gage) and 
the displacement thickness at section (2). Plot the stagnation pressure (gage) across 
the channel at section (2), and explain the result. Find the static pressure (gage) at 
section CD and compare to the static pressure (gage) at section (2). 

V=0 

Palm 

U7 = 22.5 m/s 

Width, w- 150 m m 

h = 30 mm 

^ = 10 mm 

P 9 . 4 0 

9.41 A developing boundary layer of standard air on a flat plate is shown in Fig. P9.12. 
The freestream flow outside the boundary layer is undisturbed with U = 50.2 m/s. 
The plate is 3.2 m wide perpendicular to the diagram. Assume flow in the boundary 
layer is turbulent, with a Jr-power velocity profile, and that 8 — 20.3 mm at surface 
be. Calculate the mass flow rate across surface ad and the mass flux across surface 
ab. Evaluate the x momentum flux across surface be. Determine the drag force ex­
erted on the flat plate between d and c. Estimate the distance from the leading edge 
al which transition from laminar to turbulent flow may be expected. 

9.42 Consider flow of air over a flat plate of length 5 m. On one graph, plot the boundary-
layer thickness as a function of distance along the plate for freestream speed U = 
10 m/s assuming (a) a completely laminar boundary layer, (b) a completely turbulent 
boundary layer, and (c) a laminar boundary layer that becomes turbulent at Rex = 
5 X 105. Use Excels Goal Seek or Solver to find the speeds U for which transition 
occurs at the trailing edge, and at x = 4 m, 3 m, 2 m, and 1 m. 

9.43 Assume the flow conditions given in Example Problem 9.4. Plot 8, 8*, and TW versus 
xlL for the plate. 

9.44 For the flow conditions of Example Problem 9.4, develop an algebraic expression for 
the variation of wall shear stress with distance along the surface. Integrate to obtain 
an algebraic expression for the total skin friction drag on the surface. Evaluate the 
drag for the given conditions. 

9.45 The velocity profile in a turbulent boundary-layer flow at zero pressure gradient is 
approximated by the —power profile expression, 

— = T I " 6 , where TJ = — 
U 8 
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Use the momentum integral equation with this profile to obtain expressions for Six 
and Cf. Compare with results obtained in Section 9-5 for the 1-power profile. 

9.46 For the flow conditions of Example Problem 9.4, but using the i-power velocity 
profile of Problem 9.45, develop an algebraic expression for the variation of wall 
shear stress with distance along the surface. Integrate to obtain an algebraic expres­
sion for the total skin friction drag on the surface. Evaluate the drag for the given 
conditions. 

9.47 Repeat Problem 9.45, using the -I-power profile expression. 

9.48 For the flow conditions of Example Problem 9.4, but using the ^-power velocity 
profile, develop an algebraic expression for the variation of wall shear stress with 
distance along the surface. Integrate to obtain an algebraic expression for the total 
skin friction drag on the surface. Evaluate the drag for the given conditions. 

9.49 Air at standard conditions flows over a flat plate. The freestream speed is 10 m/s. 
Find 5 and T w at x = 1 m from the leading edge assuming (a) completely laminar 
flow (assume a parabolic velocity profile) and (b) completely turbulent flow (assume i 
a i-power velocity profile). 

9.50 Standard air flows over a horizontal smooth flat plate at freestream speed U = 20 m/s. 
The plate length is L = 1.5 m and its width is b = 0.8 m. The pressure gradient is 
zero. The boundary layer is tripped so that it is turbulent from the leading edge; the 
velocity profile is well represented by the ^--power expression. Evaluate the 
boundary-layer thickness, 5, at the trailing edge of the plate. Calculate the wall shear 
stress at the trailing edge of the plate. Estimate the skin friction drag on the portion 
of the plate between x = 0.5 m and the trailing edge. 

9.51 A uniform flow of standard air at 60 m/s enters a plane-wall diffuser with negligible 
boundary-layer thickness. The inlet width is 75 mm. The diffuser walls diverge 
slightly to accommodate the boundary-layer growth so that the pressure gradient i-i 
negligible. Assume flat-plate boundary-layer behavior. Explain why the Bernoulli 
equation is applicable to this flow. Estimate the diffuser width 1.2 m downstream 
from the entrance. 

9.52 Small wind tunnels in an undergraduate laboratory have 305 mm square test sec­
tions. Measurements show the boundary layers on the tunnel walls are fully turbuleH 
and well represented by ^--power profiles. At cross section (T) with freestreanfl 
speed Ui = 26.1 m/s, data show that S, = 12.2 mm; at section (2), located down-i 
stream, S2 — 16.6 mm. Evaluate the change in static pressure between sections (T) 
and (2). Estimate the distance between the two sections. 

9.53 A laboratory wind tunnel has a flexible upper wall that can be adjusted to compen­
sate for boundary-layer growth, giving zero pressure gradient along the test section. 
The wall boundary layers are well represented by the -L-power velocity profile. AO 
the inlet the tunnel cross section is square, with height Hi and width W,, each equal 
to 305 mm. With freestream speed t/, = 26.5 m/s, measurements show that 5, =i 
12.2 mm and downstream, S6 = 16.6 mm. Calculate the height of the tunnel walls at 
section © . Determine the equivalent length of flat plate that would produce the inlet 
boundary layer thickness. Estimate the streamwise distance between sections (j) and 
© in the tunnel. 

9.54 Air flows in a cylindrical duct of diameter D = 150 mm. At section (T), the turbulent 
boundary layer is of thickness 5, = 10 mm, and the velocity in the inviscid centra 
core is t/| = 25 m/s. Further downstream, at section (2), the boundary layer is of 
thickness 5 2 = 30 mm. The velocity profile in the boundary layer is approximated 
well by the i-power expression. Find the velocity, ll2, in the inviscid central core at 
the second section, and the pressure drop between the two sections. Does the] 



PROBLEMS 473 

magnitude of the pressure drop indicate that we are justified in approximating the flow 
between sections (j) and ® as one with zero pressure gradient? Estimate the length 
of duct between sections (J) and (2). Estimate the distance downstream from section 
(T) at which the boundary-layer thickness is 8 = 20 mm. 

9.55 Perform a cost-effectiveness analysis on a typical large tanker used for transporting pe­
troleum. Determine, as a percentage of the petroleum cargo, the amount of petroleum 
that is consumed in traveling a distance of 2000 miles. Use data from Example Prob­
lem 9.5, and the following: Assume the petroleum cargo constitutes 75% of the total 
weight, the propeller efficiency is 70%, the wave drag and power to run auxiliary 
equipment constitute losses equivalent to an additional 20%, the engines have a ther­
mal efficiency of 40%, and the petroleum energy is 20,000 Btu/lbm. Also compare 
the performance of this tanker to that of the Alaskan Pipeline, which requires about 
120 Btu of energy for each ton-mile of petroleum delivery. 

9.56 Consider the linear, sinusoidal, and parabolic laminar boundary-layer approximations 
of Problem 9.7. Compare the momentum fluxes of these profiles. Which is most 
likely to separate first when encountering an adverse pressure gradient? 

*9.57 Table 9.1 shows the numerical results obtained from Blasius exact solution of the lam­
inar boundary-layer equations. Plot the velocity distribution (note that from Eq. 9.13 
we see that 17 ~ 5.0-|). On the same graph, plot the turbulent velocity distribution 
given by the L-power expression of Eq. 9.24. Which is most likely to separate first 
when encountering an adverse pressure gradient? To justify your answer, compare 
the momentum fluxes of these profiles (the laminar data can be integrated using a nu­
merical method such as Simpson's rule). 

9.58 Consider the plane-wall diffuser shown in Fig. P9.58. First, assume the fluid is invis­
cid. Describe the flow pattern, including the pressure distribution, as the diffuser 
angle </> is increased from zero degrees (parallel walls). Second, modify your de­
scription to allow for boundary layer effects. Which fluid (inviscid or viscous) will 
generally have the highest exit pressure? 

y 

u 
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9.59 For flow over a flat plate with zero pressure gradient, will the shear stress increase, 
decrease, or remain constant along the plate? Justify your answer. Does the momen­
tum flux increase, decrease, or remain constant as the flow proceeds along the plate? 
Justify your answer. Compare the behavior of laminar flow and turbulent flow (both 
from the leading edge) over a flat plate. At a given distance from the leading edge, 
which flow will have the larger boundary-layer thickness? Does your answer depend 
on the distance along the plate? How would you justify your answer? 

9.60 Boundary-layer separation occurs when the shear stress at the surface becomes zero. As­
sume a polynomial representation for the laminar boundary layer of the form, ulil -
a + b\ + cA2 + d\i, where A = y/8. Specify boundary conditions on die velocity 
profile at separation. Find appropriate constants, a, b, c, and d, for the separation 

This problem requires material from sections that may be omitted without loss of continuity in the text 
material. 
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profile. Calculate the shape factor H at separation. Plot the profile and compare with 
Ore parabolic approximate profile. 

9.61 Cooling air is supplied through the wide, flat channel shown. For minimum noise 
and disturbance of the outlet flow, laminar boundary layers must be maintained on 
the channel walls. Estimate the maximum inlet flow speed al which the ouflet flow , 
will be laminar. Assuming parabolic velocity profiles in the laminar boundary lay^H 
evaluate the pressure drop, — p2. Express your answer in inches of water. 

Flow 

P9.61 

4* 

- i . = 10 ft -

© 
I 

h = 0.5 ft 

9.62 A laboratory wind tunnel has a test section mat is square in cross section, with inlet 
width, Wu and height, Hu each equal to 305 mm. At freestream speed £/, = 24.5 m/s, 
measurements show the boundary-layer thickness is St = 9.75 mm with a L-power 
turbulent velocity profile. The pressure gradient in this region is given approximately 
by dp/dx = -0.035 mm H 20/mm. Evaluate the reduction in effective flow area 
caused by the boundary layers on the tunnel bottom, top, and walls at section (j). 
Calculate the rate of change of boundary-layer momentum thickness, d&dx, 
at section CD- Estimate the momentum thickness at the end of the test section, lo­
cated L = 254 mm downstream. 

9.63 The variable-wall concept is proposed to maintain constant boundary-layer thickness 
in the wind tunnel of Problem 9.62. Beginning with the initial conditions of Problem 
9.62, evaluate the freestream velocity distribution needed to maintain constant 
boundary-layer thickness. Assume constant width, W^. Estimate the top-height set­
tings along the test section from x = 0 at section CD to x = 254 mm at section © 
downstream. 

9.64 A vertical stabilizing fin on a land-speed-record car is L = 1.65 m long and H = 
0.785 m tall. The automobile is to be driven at the Bonneville Salt Rats in Utah, 
where the elevation is 1340 m and the summer temperature reaches 50°C. The car j 
speed is 560 km/hr. Evaluate the length Reynolds number of the fin. Estimate the lo­
cation of transition from laminar to turbulent flow in the boundary layers. Calculate 
the power required to overcome skin friction drag on the fin. 

9.65 A jet transport aircraft cruises at 12 km altitude in steady level flight at 820 km/hr. 
Model the aircraft fuselage as a circular cylinder with diameter D = 4 m and length 
L = 40 m. Neglecting compressibility effects, estimate the skin friction drag forcel 
on the fuselage. Evaluate the power needed to overcome this force. 

9.66 A towboat for river barges is tested in a towing tank. The towboat model is built at a 
scale ratio of 1:13.5. Dimensions of the model are overall length 11.1 ft, beam 3.11 ft, 
and draft 0.62 ft. (The model displacement in fresh water is 1200 lb.) Estimate the 
average length of wetted surface on the hull. Calculate the skin friction drag force on! 
the prototype at a speed of 8 mph relative to the water. 

9.67 A flat-bottomed barge, 25 m long and 10 m wide, submerged to a depth of 1.5 m, is 
to be pushed up a river (the river water is at 15°C). Estimate and plot the power re­
quired to overcome skin friction for speeds ranging up to 20 km/hr. 

9.68 Resistance of a barge is to be determined from model test data. The model is con­
structed to a scale ratio of 1:13.5, and has length, beam, and draft of 22.0, 4.00, and 
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0.667 ft, respectively. The test is to simulate performance of the prototype at 8 mph. 
What must be the model speed in order for the model and prototype to exhibit simi­
lar wave drag behavior? Is the boundary layer on the prototype predominantly lami­
nar or turbulent? Does the model boundary layer become turbulent at the comparable 
point? If not, the model boundary layer could be artificially triggered to turbulent by 
placing a tripwire across the hull. Where would this be placed? Estimate the skin-
friction drag on model and prototype. 

9.69 You are asked by the Purdue crew to estimate the skin friction drag on their eight-
seat racing shell. The hull of the shell may be approximated as half a circular cylin­
der with 457 mm diameter and 7.32 m length. The speed of the shell through the 
water is 6.71 m/s. Estimate the location of transition from laminar to turbulent flow 
in the boundary layer on the hull of the shell. Calculate the thickness of the turbulenl 
boundary layer at the rear of the hull. Determine the total skin friction drag on the 
hull under the given conditions. 

3 

9.70 A sheet of plastic material 8 in. thick, with specific gravity SG = 1.5, is dropped 
into a large tank containing water. The sheet is 2 ft by 3 ft. Estimate the terminal 
speed of the sheet as it falls with (a) the short side vertical and (b) the long side verti­
cal. Assume that the drag is due only to skin friction, and that the boundary layers 
are turbulent from the leading edge. 

9.71 A nuclear submarine cruises fully submerged at 27 knots. The hull is approximately 
a circular cylinder with diameter D = 11.0 m and length L = 107 m. Estimate the 
percentage of the hull length for which the boundary layer is laminar. Calculate the 
skin friction drag on the hull and the power consumed. 

9.72 The 600-seat jet transport aircraft proposed by Airbus Industrie has a fuselage that is 
70 m long and 7.5 m in diameter. The aircraft is to operate 14 hr per day, 6 days per 
week; it will cruise at 257 m/s (M = 0.87) at 12 km altitude. The engines consume 
fuel at the rate of 0.06 kg per hour for each N of thrust produced. Estimate the skin 
friction drag force on the aircraft fuselage at cruise. Calculate the annual fuel savings 
for the aircraft if friction drag on the fuselage could be reduced 1 percent by modify­
ing the surface coating. 

9.73 In Section 7-6 the wave resistance and viscous resistance on a model and prototype 
ship were discussed. For the prototype, L = 409 ft and A = 19,500 ft2. From the 
data of Figs. 7.2 and 7.3, plot on one graph the wave, viscous, and total resistance 
(Ibf) experienced by the prototype, as a function of speed. Plot a similar graph for 
the model. Discuss your results. Finally, plot the power (hp) required for the proto­
type ship to overcome the total resistance. 

9.74 A supertanker displacement is approximately 600,000 metric tons. This ship has 
length L = 300 m, beam (width) b = 80 m, and draft (depth) D = 25 m. The ship 
steams at 14 knots through seawater at 4°C. For these conditions, estimate (a) the 
thickness of the boundary layer at the stern of the ship, (b) the total skin friction drag 
acting on the ship, and (c) the power required to overcome the drag force. 

9.75 As a part of the 1976 bicentennial celebration, an enterprising group hung a giant 
American flag (59 m high and 112 m wide) from the suspension cables of the 
Verrazano Narrows Bridge. They apparently were reluctant to make holes in the flag 
to alleviate the wind force, and hence they effectively had a flat plate normal to the 
flow. The flag tore loose from its mountings when the wind speed reached 16 km/hr. 
Estimate the wind force acting on the flag at this wind speed. Should they have been 
surprised that the flag blew down? 

9.76 A rotary mixer is constructed from two circular disks as shown. The mixer is rotated 
at 60 rpm in a large vessel containing a brine solution (SG = 1.1). Neglect the drag 
on the rods and the motion induced in the liquid. Estimate the minimum torque and 
power required to drive the mixer. 
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As a young design engineer you decide to make the rotary mixer look more "cool" 
by replacing the disks with rings. The rings may have the added benefit of making' 
the mixer mix more effectively. If the mixer absorbs 350 W at 60 rpm, redesign the 
device. There is a design constraint that the outer diameter of the rings not exceed 
125 mm. 

The vertical component of the landing speed of a parachute is to be less than 6 m/s. 
The total mass of chute and jumper is 120 kg. Determine the minimum diameter op 
the open parachute. 

As a young design engineer you are asked to design an emergency braking parachute 
system for use with a military aircraft of mass 9500 kg. The plane lands at 350 krn/ha 
and the parachute system alone must slow the airplane to 100 km/hr in less than 
1200 m. Find the minimum diameter required for a single parachute, and for three 
non-interfering parachutes. Plot the airplane speed versus distance and versus time. 
What is the maximum "g-force" experienced? 

An emergency braking parachute system on a military aircraft consists of a large 
parachute of diameter 6 m. If the airplane mass is 8500 kg, and it lands at 400 km/hr, 
find the time and distance at which the airplane is slowed to 100 km/hr by the para­
chute alone. Plot the aircraft speed versus distance and versus time. What is the 
maximum "g-force" experienced? An engineer proposes that less space would be 
taken up by replacing the large parachute with three non-interfering parachutes each 
of diameter 3.75 m. What effect would this have on the time and distance to slow to 
100 km/hr? 

It has been proposed to use surplus 55 gal oil drums to make simple windmills for 
underdeveloped countries. Two possible configurations are shown. Estimate w h i J 
would be better, why, and by how much. The diameter and length of a 55 gal d r i M 

are D = 24 in. and H = 29 in. 

Ballistic data obtained on a firing range show that aerodynamic drag reduces the 
speed of a .44 magnum revolver bullet from 250 m/s to 210 m/s as it travels over! 
horizontal distance of 150 m. The diameter and mass of the bullet are 11.2 mm and 
15.6 g, respectively. Evaluate the average drag coefficient for the bullet. 

The resistance to motion of a good bicycle on smooth pavement is nearly ah due to 
aerodynamic drag. Assume that the total mass of rider and bike is M = 100 kg. Thl 
frontal area measured from a photograph is A = 0.46 m2. Experiments on a hill 
where the road grade is 8 percent, show that terminal speed is V, = 15 m/s. From 
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these data, the drag coefficient is estimated as C0 = 1.2. Verify this calculation of 
drag coefficient. Estimate the distance needed for the bike and rider to decelerate 
from 15 to 10 m/s while coasting after reaching level road. 

9.84 A cyclist is able to attain a maximum speed of 30 km/hr on a calm day. The total 
mass of rider and bike is 65 kg. The rolling resistance of the tires is FR = 7.5 N, and 
the drag coefficient and frontal area are CD = 1.2 and A = 0.25 m2. The cyclist bets 
that today, even though there is a headwind of 10 km/hr, she can maintain a speed of 
24 km/hr. She also bets that, cycling with wind support, she can attain a top speed of 
40 km/hr. Which, if any, bets does she win? 

9.85 Consider the cyclist in Problem 9.84. Determine the maximum speeds she is actually 
able to attain today (with the 10 km/hr wind) cycling into the wind, and cycling with 
the wind. If she were to replace the tires with high-tech ones that had a rolling resist­
ance of only 3.5 N, determine her maximum speed on a calm day, cycling into the 
wind, and cycling with the wind. If she in addition attaches an aerodynamic fairing 
that reduces the drag coefficient to CD = 0.9, what will be her new maximum 
speeds? 

9.86 Consider the cyclist in Problem 9.84. She is having a bad day, because she has to 
climb a hill with a 5° slope. What is the speed she is able to attain? What is the maxi­
mum speed if there is also a headwind of 10 km/hr? She reaches the top of the hill, 
and turns around and heads down the hill. If she still pedals as hard as possible, what 
will be her top speed (when it is calm, and when the wind is present)? What will be 
her maximum speed if she decides to coast down the hill (with and without the aid of 
the wind)? 

9.87 A circular disk is hung in an air stream from a pivoted strut as shown. In a wind-
tunnel experiment, performed in air at 50 ft/s with a 1 in. diameter disk, a was meas­
ured at 10°. For these conditions determine the mass of the disk. Assume the drag 
coefficient for the disk applies when the component of wind speed normal to the disk 
is used. Assume drag on the strut and friction in the pivot are negligible. Plot a theo­
retical curve of a as a function of air speed. 

9.88 An anemometer to measure wind speed is made from four hemispherical cups of 50 
mm diameter, as shown. The center of each cup is placed at R = 80 mm from the 
pivot. Find the theoretical calibration constant k in the calibration equation V = kto, 
where V (km/hr) is the wind speed and co (rpm) is the rotation speed. In your analysis 
base the torque calculations on the drag generated at the instant when two of the cups 
are orthogonal, and the other two cups are parallel, and ignore friction in the bear­
ings. Explain why, in the absence of friction, at any given wind speed, the anemome­
ter runs at constant speed rather than accelerating without limit. If the actual 
anemometer bearing has (constant) friction such that the anemometer needs a mini­
mum wind speed of 1 km/hr to begin rotating, compare the rotation speeds with and 
without friction for V = 10 km/hr. 

v 

P9 .87 
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9.89 A simple but effective anemometer to measure wind speed can be made from a 
plate hinged to deflect in the wind. Consider a thin plate made from brass that is 20 
mm high and 10 mm wide. Derive a relationship for wind speed as a function of de­
flection angle, 6. What thickness of brass should be used to give 6 = 30° at 10 m/sl 

9.90 An F-4 aircraft is slowed after landing by dual parachutes deployed from the rear. 
Each parachute is 12 ft in diameter. The F-4 weighs 32,000 Ibf and lands at 160] 
knots. Estimate the time and distance required to decelerate the aircraft to 100 knots, 
assuming that the brakes are not used and the drag of the aircraft is negligible. 

9.91 Experimental data [16] suggest that the maximum and minimum drag area (CDA) for 
a sky diver varies from about 0.85 m 2 for a prone, spread-eagle position to about 0 . 1 1 
m 2 for vertical fall. Estimate the terminal speeds for a 75 kg skydiver in each posi­
tion. Calculate the time and distance needed for the skydiver to reach 95 percent ofl 
terminal speed at an altitude of 3000 m on a standard day. 

9.92 A vehicle is built to try for the land-speed record at the Bonneville Salt flats, elevation 
4400 ft. The engine delivers 500 hp to the rear wheels, and careful streamlining has nsl 
suited in a drag coefficient of 0.15, based on a 15 ft2 frdntal area. Compute the theoreti-j 
cal maximum ground speed of the car (a) in still air and (b) with a 20 mph headwind. 

( ^ i 9.93 In the early 1970s a typical large American sedan had a frontal area of 23.4 ft2 and a 
drag coefficient of 0.5. Plot a curve of horsepower required to overcome aerody­
namic drag versus road speed in standard air. If rolling resistance is 1.5 percent ol 
curb weight (4500 Ibf), determine the speed at which the aerodynamic force exceed] 
frictional resistance. How much power is required to cruise at 55 mph and at 70 mptf 
on level road with no wind? 

9.94 A tractor-trailer rig has frontal area A = 102 ft2 and drag coefficient CD = 0.9. 
Rolling resistance is 6 Ibf per 1000 Ibf of vehicle weight. The specific fuel consump­
tion of the diesel engine is 0.34 Ibm of fuel per horsepower hour, and drivetrail 
efficiency is 92 percent. The density of diesel fuel is 6.9 Ibm/gal. Estimate the fuefl 
economy of the rig at 55 mph if its gross weight is 72,000 Ibf. An air fairing systems 
reduces aerodynamic drag 15 percent. The truck travels 120,000 miles per year. Call 
culate the fuel saved per year by the roof fairing. 

9.95 A bus travels at 85 km/hr in standard air. The frontal area of the vehicle is 7.2 m2, 
and the drag coefficient is 0.95. How much power is required to overcome aerody-l 
namic drag? Estimate the maximum speed of the bus if the engine is rated at 450 hp. 
A young engineer proposes adding fairings on the front and rear of the bus to reduce 
the drag coefficient. Tests indicate that this would reduce the drag coefficient to O.&l 
without changing the frontal area. What would be the required power at 85 km/hn 
and the new top speed? If the fuel cost for the bus is currently $l30/day, how long; 
would the modification take to pay for itself if it costs $3,000 to install? 

9.96 A 165 hp sports car of frontal area 1.75 m2, with a drag coefficient of 0.32, requires 
12 hp to cruise at 55 mph. At what speed does aerodynamic drag first exceed rolling 
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resistance? (The rolling resistance is 1% of the car weight, and the car mass is 1250 kg.) 
Find the drive train efficiency. What is the maximum acceleration at 55 mph? What is 
the maximum speed? Which redesign will lead to a higher maximum speed: improving 
the drive train efficiency by 5% from its current value, reducing the drag coefficient to 
0.29, or reducing the rolling resistance to 0.93% of the car weight? 

9.97 A round thin disk of radius R is oriented perpendicular to a fluid stream. The pres­
sure distributions on the front and back surfaces are measured and presented in the 
form of pressure coefficients. The data are modeled with the following expressions 
for the front and back surfaces, respectively: 

Calculate the drag coefficient for the disk. 

9.98 Repeat the analysis for the frictionless anemometer of Problem 9.88, except this time 
base the torque calculations on the more realistic model that the average torque is 
obtained by integrating, over one revolution, the instantaneous torque generated by 
each cup (i.e., as the cup's orientation to the wind varies). 

9.99 An object falls in air down a long vertical chute. The speed of the object is constant 
at 3 m/s. The flow pattern around the object is shown. The static pressure is uniform 
across sections (T) and (2); pressure is atmospheric at section (T). The effective 
flow area at section (2) is 20 percent of the chute area. Frictional effects between 
sections (T) and (2) are negligible. Evaluate the flow speed relative to the object at 
section (2). Calculate the static pressure at section (2). Determine the mass of the 
object. 

9.100 An object of mass m, with cross-sectional area equal to half the size of the chute, 
falls down a mail chute. The motion is steady. The wake area is - | the size of the 
chute at its maximum area. Use the assumption of constant pressure in the wake. Ap­
ply the continuity, Bernoulli, and momentum equations to develop an expression for 
terminal speed of the object in terms of its mass and other quantities. 

9.101 A large paddle wheel is immersed in the current of a river to generate power. Each 
paddle has area A and drag coefficient C D ; the center of each paddle is located at ra­
dius R from the centerline of the paddle wheel. Assume the equivalent of one paddle 
is submerged continuously in the flowing stream. Obtain an expression for the drag 
force on a single paddle in terms of geometric variables, current speed, V, and linear 
speed of the paddle center, U = Rco. Develop expressions for the torque and power 

Front Surface Cp = 1 -

Rear Surface Cp = -0.42 

A , = 0.09 m 2 

P 9 . 9 9 
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produced by the paddle wheel. Find the speed at which the paddle wheel should ro­
tate to obtain maximum power output from the wheel in a given current. 

P9.101 

9.102 A light plane tows an advertising banner over a football stadium on a Saturday after­
noon. The banner is I m tall and 12 m long. According to Hoemer [16], the drag c o l 
efficient based on area (JLh) for such a banner is approximated by CD = 0.05 Uh, 
where L is the banner length and h is the banner height. Estimate the power required 
to tow the banner at V = 90 km/hr. Compare with the drag of a rigid flat plate. Why 
is the drag larger for the banner? 

9.103 The antenna on a car is 8 mm in diameter and 2 m long. Estimate the bending mo­
ment that tends to snap it off if the car is driven at 125 km/hr on a standard day. 

9.104 Consider small oil droplets (SG = 0.85) rising in water. Develop a relation for calcu­
lating terminal speed of a droplet (in m/s) as a function of droplet diameter (in mm) 
assuming Stokes flow. For what range of droplet diameter is Stokes flow a reason­
able assumption? 

9.105 A spherical hydrogen-filled balloon, 0.6 m in diameter, exerts an upward force of 1.3 
N on a restraining string when held stationary in standard air with no wind. With a 
wind speed of 3 m/s, the string holding the balloon makes an angle of 60° with the 
horizontal. Calculate the drag coefficient of the balloon under these conditions, neJ 
glecting the weight of the string. 

9.106 Standard air is drawn into a low-speed wind tunnel. A 30 mm diameter sphere is 
mounted on a force balance to measure lift and drag. An oil-filled manometer is used 
to measure static pressure inside the tunnel; the reading is —40 mm of oil (SG ="| 
0.85). Calculate the freestream air speed in the tunnel, the Reynolds number of flow] 
over the sphere, and the drag force on the sphere. Are the boundary layers on th<M 
sphere laminar or turbulent? Explain. 

9.107 A field hockey ball has diameter D = 73 mm and mass m = 160 g. When struck 
well, it leaves the stick with initial speed U0 = 50 m/s. The ball is essentially] 
smooth. Ifktimate the distance traveled in horizontal flight before the speed of the' 
ball is reduced 10 percent by aerodynamic drag. 

9.108 Compute the terminal speed of a g in. diameter raindrop (assume spherical) in stan­
dard air. 

9.109 A small sphere (D = 6 mm) is observed to fall through castor oil at a terminal speed 
of 60 mm/s. The temperature is 20°C. Compute the drag coefficient for the sphere. 
Determine the density of the sphere. If dropped in water, would the sphere fafl 
slower or faster? Why? 

9.110 The following curve-fit for the drag coefficient of a smooth sphere as a function of 
Reynolds number has been proposed by Chow [36]: 

CD = 24/Re Re < 1 

CD = 24/Reom 1 < Re ^ 400 
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C0 = 0.5 400 < Re < 3 X 103 

C D = 0.000366 Re0AT,i 3 X 105 < Re < 2 X 106 

C 0 = 0.18 fle > 2 X 106 

Use data from Fig. 9.11 to estimate the magnitude and location of the maximum er­
ror between the curve fit and data. 

9.111 A tennis ball with a mass of 57 g and diameter of 64 mm is dropped in standard sea 
level air. Calculate the terminal velocity of the ball. Assuming as an approximation 
that the drag coefficient remains constant at its terminal-velocity value, estimate the 
time and distance required for the ball to reach 95% of its terminal speed. 

9.112 Problem 9.87 showed a circular disk hung in an air stream from a cylindrical strut, 
Assume the strut is L = 40 mm long and d = 3 mm in diameter. Solve Problem 9.87 
including the effect of drag on the support. 

9.113 A water tower consists of a 12 m diameter sphere on top of a vertical tower 30 m tall 
and 2 m in diameter. Estimate die bending moment exerted on the base of the tower 
due to the aerodynamic force imposed by a 100 km/hr wind on a standard day. 
Neglect interference at the joint between the sphere and tower. 

9.114 A spherical balloon contains helium and ascends through standard air. The mass of 
the balloon and its payload is 150 kg. Determine the required diameter if it is to as­
cend at 3 m/s. 

9.115 A cast-iron "12-pounder" cannon ball rolls off the deck of a ship and falls into the 
ocean at a location where the depth is 1000 m. Estimate the time that elapses before 
the cannonball hits the sea bottom. 

9.116 Consider a cylindrical flag pole of height H. For constant drag coefficient, evaluate 
the drag force and bending moment on the pole if wind speed varies as ulU = 
(y/W)"7, where y is distance measured from the ground. Compare with drag and mo­
ment for a uniform wind profile with constant speed U. 

9.117 The Stokes drag law for smooth spheres is to be verified experimentally by dropping 
steel ball bearings in glycerin. Evaluate the largest diameter steel ball for which 
Re < 1 at terminal speed. Calculate the height of glycerin column needed for a bear­
ing to reach 95 percent of terminal speed, 

9.118 The plot shows pressure difference versus angle, measured for air flow around a cir­
cular cylinder at Re = 80,000. Use these data to estimate Q> for this flow. Compare 
with data from Fig. 9.13. How can you explain the difference? 

0 30 60 90 120 150 180 

Angle, 0 (degrees) 
P 9 . 1 1 8 
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f^p) 9.119 The air bubble of Problem 3.10 expands as it rises in water. Find the time it takes for 
the bubble to reach the surface. Repeat for bubbles of diameter 5 mm and 15 mm. 
Compute and plot the depth of the bubbles as a function of time. 

9.120 Consider the tennis ball of Problem 9.111. Use the equations for drag coefficient 
given in Problem 9.110, and a numerical integration scheme (e.g., Simpson's rule) to 
compute the time and distance required for the ball to reach 95% of its terminal 
speed. 

9.121 Consider the tennis ball of Problem 9.111. Suppose it is hit so that it has an initial 
upward speed of 50 m/s. Estimate the maximum height of the ball, assuming (a) a 
constant drag coefficient and (b) using the equations for drag coefficient given in 
Problem 9.110, and a numerical integration scheme (e.g., a Simpson's rule). 

9.122 Coastdown tests, performed on a level road on a calm day, can be used to measure 
aerodynamic drag and rolling resistance coefficients for a full-scale vehicle. Rolling 
resistance is estimated from dVldt measured at low speed, where aerodynamic drag 
is small. Rolling resistance then is deducted from dV/dt measured at high speed to 
determine the aerodynamic drag. The following data were obtained during a test wittj 
a vehicle, of weight W = 25,000 lbf and frontal area A = 79 ft2: 

V(mph) 5 55 
dV fmpi\} 
— —— -0.150 -0.475 
dt \ s ) 

Estimate the aerodynamic drag coefficient for this vehicle. At what speed does the 
aerodynamic drag first exceed rolling resistance? 

9.123 Approximate dimensions of a rented rooftop carrier are shown. Estimate the drag 
force on the carrier (r = 4 in.) at 65 mph. If the drivetrain efficiency of the vehicle • 
0.85 and the brake specific fuel consumption of its engine is 0.46 lbm/(hp • hr), estH 
mate the additional rale of fuel consumption due to the carrier. Compute the effect on 
fuel economy if the auto achieves 30 mpg without the carrier. The rental company 
offers you a cheaper, square-edged carrier at a price $5 less than the current carriel 
Estimate the extra cost of using this carrier instead of the round-edged one for a 500| 
mile trip, assuming fuel is $1.75 per gallon. Is the cheaper carrier really cheaper? 

P 9 . 1 2 3 

9.124 A spherical sonar transducer with 0.375 m diameter is to be towed in seawater. The 
transducer must be fully submerged at 31.1 knots. To avoid cavitation, the minimum] 
pressure on the surface of the transducer must be greater than 30 kPa (abs). Calculate 
the hydrodynamic drag force acting on the transducer at the required towing speed. 
Estimate the minimum depth to which the transducer must be submerged to avoid 
cavitation. 
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9.125 While walking across campus one windy day, Floyd Fluids speculates about using an 
umbrella as a "sail" to propel a bicycle along the sidewalk. Develop an algebraic ex­
pression for the speed a bike could reach on level ground with the umbrella "propul­
sion system." The frontal area of bike and rider is estimated as 0.3 m 2, and the drag 
coefficient is about 1.2. Assume the rolling resistance is 0.75% of the bike and rider 
weight; the combined mass is 75 kg. Evaluate the bike speed that could be achieved 
with an umbrella 1.22 m in diameter in a wind that blows at 24 km/hr. Discuss the 
practicality of this propulsion system. 

9.126 Hold a flat sheet of paper parallel to the ground. Drop the sheet. Notice that it falls 
more slowly than if it were wadded into a ball. Explain. 

9.127 Motion of a small rocket was analyzed in Example Problem 4.12 assuming negligi­
ble aerodynamic drag. This was not realistic at the final calculated speed of 369 m/s. 
Use Euler's finite difference method for approximating the first derivatives, in an 
Excel workbook, to solve the equation of motion for the rocket. Plot the rocket speed 
as a function of time, assuming CD = 0.3 and a rocket diameter of 700 mm. Com­
pare with the results for CD = 0. 

9.128 Wiffle™ balls made from light plastic with numerous holes are used to practice base­
ball and golf. Explain the purpose of the holes and why they work. Explain how you 
could test your hypothesis experimentally. 

9.129 Towers for television transmitters may be up to 500 m in height. In the winter, ice 
forms on structural members. When the ice thaws, chunks break off and fall to the 
ground. How far from the base of a tower would you recommend placing a fence to 
limit danger to pedestrians from falling ice chunks? 

9.130 The "shot tower," used to produce spherical lead shot, has been recognized as a me­
chanical engineering landmark. In a shot tower, molten lead is dropped from a high 
tower; as the lead solidifies, surface tension pulls each shot into a spherical shape. 
Discuss the possibility of increasing the "hang time," or of using a shorter tower, by 
dropping molten lead into an air stream that is moving upward. Support your discus­
sion with appropriate calculations. 

9.131 Design a wind anemometer that uses aerodynamic drag to move or deflect a member 
or linkage, producing an output that can be related to wind speed, for the range from 
1 to 10 m/s in standard air. Consider three alternative design concepts. Select the best 
concept and prepare a detailed design. Specify the shape, size, and material for each 
component. Quantify the relation between wind speed and anemometer output. Pre­
sent results as a theoretical "calibration curve" of anemometer output versus wind 
speed. Discuss reasons why you rejected the alternative designs and chose your final 
design concept. 

9.132 An antique airplane carries 60 m of external guy wires stretched normal to the direc­
tion of motion. The wire diameter is 6 mm. Estimate the maximum power saving that 
results from an optimum streamlining of the wires at a plane speed of 150 km/hr in 
standard air at sea level. 

9.133 Why does an arrow have feathers? Explain how feathers affect the arrow's flight. 

9.134 Why do modern guns have rifled barrels? 

9.135 Why is it possible to kick a football farther in a spiral motion than in an end-
over-end tumbling motion? 

9.136 How do cab-mounted wind deflectors for tractor-trailer trucks work? Explain using 
diagrams of the flow pattern around the truck and pressure distribution on the surface 
of the truck. 

9.137 An airplane with an effective lift area of 25 m 2 is fitted with airfoils of NACA 23012 
section (Fig. 9.23). The maximum flap setting that can be used at takeoff corresponds 
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to configuration (2) in Fig. 9.23. Determine the maximum gross mass possible for 
the airplane if its takeoff speed is 150 km/hr at sea level (neglect added lift due to 
ground effect). Find the minimum takeoff speed required for this gross mass if the 
airplane is instead taking off from Denver (elevation approximately 1.6 km). 

9.138 An aircraft is in level flight at 250 km/hr through air at standard conditions. The lift coef­
ficient at this speed is 0.4 and the drag coefficient is 0.065. The mass of the aircraft is 850 
kg. Calculate the effective lift area for the craft, and the required engine thrust and power, 

9.139 A high school project involves building a model ultralight airplane. Some of the stu­
dents propose making an airfoil from a sheet of plastic 1.5 m long by 2 m wide at an 
angle of attack of 12°. At this airfoil's aspect ratio and angle of attack the lift and 
drag coefficients are CL = 0.72 and CD = 0.17. If the airplane is designed to fly al 
12 m/s, what is the maximum total payload? What will be the required power to 
maintain flight? Does this proposal seem feasible? 

9.140 The foils of a surface-piercing hydrofoil watercraft have a total effective area of 
0.7 m 2. Their coefficients of lift and drag are 1.6 and 0.5, respectively. The total mass 
of the craft in running trim is 1800 kg. Determine the minimum speed at which the 
craft is supported by the hydrofoils. At this speed, find the power required to overcome 
water resistance. If the craft is fitted with a 110 kW engine, estimate its top speed. 

9.141 A light airplane, with mass M = 1000 kg, has a conventional-section (NACA 23015) 
wing of planform area A = 10 m 2. Find the angle of attack of the wing for a cruising 
speed of V = 63 m/s. What is the required power? Find the maximum instantaneous 
vertical "g force" experienced at cruising speed if the angle of attack is suddenly in­
creased. 

9.142 The U.S. Air Force F-16 fighter aircraft has wing planform area A = 27.9 m2; it 
can achieve a maximum lift coefficient of CL = 1.6. When fully loaded its maxi­
mum mass is M = 11,600 kg. The airframe is capable of maneuvers that produce 
9g vertical accelerations. However, student pilots are restricted to 5g maneuvers 
during training. Consider a turn flown in level flight with the aircraft banked. Find 
the minimum speed in standard air at which the pilot can produce a 5g total accel­
eration. Calculate the corresponding flight radius. Discuss the effect of altitude on 
these results. 

9.143 The teacher of the students designing the airplane of Problem 9.139 is not happy 
with the idea of using a sheet of plastic for the airfoil. He asks the students to 
evaluate the expected maximum total payload, and required power to maintain 
flight, if the sheet of plastic is replaced with a conventional section (NACA! 
23015) airfoil with the same aspect ratio and angle of attack. What are the result* 
of the analysis? 

9.144 A light airplane has 10 m effective wingspan and 1.8 m chord. It was originally de­
signed to use a conventional (NACA 23015) airfoil section. With this airfoil, its 
cruising speed on a standard day near sea level is 225 km/hr. A conversion to a 
laminar-flow (NACA 662-215) section airfoil is proposed. Determine the cruisirJ 
speed that could be achieved with the new airfoil section for the same power. 

9.145 Instead of a new laminar-flow airfoil, a redesign of the light airplane of Problem 
9.144 is proposed in which the current conventional airfoil section is replaced with 
another conventional airfoil section of the same area, but with aspect ratio ar = 8. 
Determine the cruising speed that could be achieved with this new airfoil for the 
same power. 

9.146 Assume the Boeing 727 aircraft has wings with NACA 23012 section, planform area 
of 1600 ft2, double-slotted flaps, and effective aspect ratio of 6.5. If the aircraft flies 
at 150 knots in standard air at 175,000 lb gross weight, estimate the thrust required 
to maintain level flight. 
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9.147 An airplane with mass of 4500 kg is flown at constant elevation and speed on a cir­
cular path at 250 km/hr. The flight circle has a radius of 1000 m. The plane has 
lifting area of 22 m 2 and is fitted with NACA 23015 section airfoils with effective as­
pect ratio of 7. Estimate the drag on the aircraft and the power required. 

9.148 Find the minimum and maximum speeds at which the airplane of Problem 9.147 can 
fly on a 1000 m radius circular flight path, and estimate the drag on the aircraft and 
power required at these extremes. 

9.149 Jim Hall's Chaparral 2F sports-racing cars in the 1960s pioneered use of airfoils 
mounted above the rear suspension to enhance stability and improve braking per­
formance. The airfoil was effectively 6 ft wide (span) and had a 1 ft chord. Its angle 
of attack was variable between 0 and minus 12 degrees. Assume lift and drag coeffi­
cient data are given by curves (for conventional section) in Fig. 9.17. Consider a car 
speed of 120 mph on a calm day. For an airfoil deflection of 12° down, calculate (a) 
the maximum downward force and (b) the maximum increase in deceleration force 
produced by the airfoil. 

9.150 The glide angle for unpowered flight is such that lift, drag, and weight are in equi­
librium. Show that the glide slope angle, $, is such that tan 8 = C [ J C L . The mini­
mum glide slope occurs at the speed where CLICD is a maximum. For the conditions 
of Example Problem 9.8, evaluate the minimum glide slope angle for a Boeing 727-
200. How far could this aircraft glide from an initial altitude of 10 km on a standard 
day? 

9.151 The hood ornament of a car is decorative, but it increases the aerodynamic drag of 
the car. Estimate the cost of the increased fuel consumption over the life of a vehicle 
caused by a typical hood ornament. 

9.152 Some cars come with a "spoiler," a wing section mounted on the rear of the vehicle 
that salespeople sometimes claim significantly increases traction of the tires at high­
way speeds. Investigate the validity of this claim. Are these devices really just cos­
metic? 

9.153 The wing loading of the Gossamer Condor is 0.4 lbf/ft2 of wing area. Crude mea­
surements showed drag was approximately 6 Ibf at 12 mph. The total weight of the 
Condor was 200 Ibf. The effective aspect ratio of the Condor is 17. Estimate the min­
imum power required to fly the aircraft. Compare to the 0.39 hp that pilot Brian 
Allen could sustain for 2 hr. 

9.154 How does a Frisbee™ fly? What causes it to curve left or right? What is the effect of 
spin on its flight? 

9.155 An automobile travels down the road with a bicycle attached to a carrier across the 
rear of the trunk. The bicycle wheels rotate slowly. Explain why and in what direc­
tion the rotation occurs. 

9.156 Roadside signs tend to oscillate in a twisting motion when a strong wind blows. Dis­
cuss the phenomena that must occur to cause this behavior. 

9.157 Air moving over an automobile is accelerated to speeds higher than the travel speed, 
as shown in Fig. 9.25. This causes changes in interior pressure when windows are 
opened or closed. Use the data of Fig. 9.25 to estimate the pressure reduction when a 
window is opened slightly at a speed of 100 km/hr. What is the air speed in the 
freestream near the window opening? 

9.158 A class demonstration showed that lift is present when a cylinder rotates in an air 
stream. A string wrapped around a paper cylinder and pulled causes the cylinder to 
spin and move forward simultaneously. Assume a cylinder of 2 in. diameter and 10 
in. length is given a rotational speed of 300 rpm and a forward speed of 4 ft/s. Esti­
mate the approximate lift force that acts on the cylinder. 
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9.159 Rotating cylinders were proposed as a means of ship propulsion in 1924 by the 
German engineer, Flettner. The original Flettner rotor ship had two rotors, each about 
3 m in diameter and 15 m high, rotating at up to 750 rpm. Calculate the maximum 
lift and drag forces that act on each rotor in a 50 km/hr wind. Compare the total force 
to that produced at the optimum UD at the same wind speed. Estimate the power 
needed to spin the rotor at 750 rpm. 

9.160 A golf ball (diameter D = 43 mm) with circular dimples is hit from a sand trap at 20 
m/s with backspin of 2000 rpm. The mass of the ball is 48 g. Evaluate the Eft and 
drag forces acting on the ball. Express your results as fractions of the weight of the 
ball. 

9.161 American and British golf balls have slightly different diameters but the same mass 
(see Problems 1.10 and 1.13). Assume a professional golfer hits each type of ball 
from a tee at 85 m/s with backspin of 9000 rpm. Evaluate the lift and drag forces on 
each ball. Express your answers as fractions of the weight of each ball. Estimate thfflj 
radius of curvature of the trajectory of each ball. Which ball should have the longer 
range for these conditions? 

9.162 A baseball pitcher throws a ball at 90 km/hr. Home plate is 18 m away from the 
pitcher's mound. What spin should be placed on the ball for maximum horizontal de­
viation from a straight path? (A baseball has m = 145 g and D = 74 mm.) How far 
will the ball deviate from a straight line? 

9.163 A soccer player takes a free kick. Over a distance of 15 yd, the ball veers to die right 
by about 3 ^ ft. Estimate the spin the player's kick put on the ball if its speed is lOi 
ft/s. The ball weighs 15 oz and has a diameter of 8.75 in. 



Chapter 10 

FLUID MACHINERY 

Humans have sought to control nature since antiquity. Early humans carried water by 
the bucket; as larger groups formed, this process was mechanized. The first fluid 
machines developed as bucket wheels and screw pumps to lift water. The Romans 
introduced paddle wheels around 70 B.C. to obtain energy from streams [1]. Later, 
windmills were developed to harness wind power, but the low power density of the 
wind limited output to a few hundred horsepower. Development of water wheels 
made it possible to extract thousands of horsepower at a single site. 

Today we take many fluid machines for granted. On a typical day we draw pres­
surized water from the tap, use a blower to dry our hair, drive a car in which fluid 
machines operate the lubrication, cooling, and power steering systems, and work in 
a comfortable environment provided by air circulation. The list could be extended 
indefinitely. 

A fluid machine is a device that either performs work on, or extracts work (or 
power) from, a fluid. As you can imagine, this is a very large field of study, so we will 
limit ourselves mostly to incompressible flows. Within incompressible flows, we will 
focus on such common machines as pumps and fans that perform work on a fluid, and 
machines such as water turbines used for extracting work or power from a fluid. 

First the terminology of the field is introduced and machines are classified by op­
erating principle and physical characteristics. Rather than attempt a treatment of the en­
tire field, we focus on machines in which energy transfer to or from the fluid is through 
a rotating element. Basic equations are reviewed and then simplified to forms useful for 
analysis of fluid machines. Performance characteristics of typical machines are consid­
ered. Examples are given of pump and turbine applications in typical systems. Prob­
lems ranging from simple applications to system design conclude the chapter. 

10-1 INTRODUCTION AND CLASSIFICATION OF FLUID MACHINES 

Fluid machines may be broadly classified as either positive displacement or dynamic. 
In positive-displacement machines, energy transfer is accomplished by volume 
changes that occur due to movement of the boundary in which the fluid is confined. 
Fluid-handling devices that direct the flow with blades or vanes attached to a rotating 
member are termed turbomachines. In contrast to positive-displacement machinery, 
there is no closed volume in a turbomacnine. All work interactions in a turbomachine 
result from dynamic effects of the rotor on the fluid stream. The emphasis in this 
chapter is on dynamic machines. 

A further distinction among types of turbomachines is based on the geometry 
of the flow path. In radial-flow machines, the flow path is essentially radial, with 
significant changes in radius from inlet to outlet. (Such machines sometimes are 
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called centrifugal machines.) In axial-flow machines, the flow path is nearly parallel 
to the machine centerline, and the radius of the flow path does not vary significantly. 
In mixed-flow machines the flow-path radius changes only moderately. Schematic 
diagrams of typical turbomachines are shown in Figs. 10.1 through 10.3. 

Machines for Doing Work on a Fluid 

Machines that add energy to a fluid by performing work on it are called pumps when 
the flow is liquid or slurry, and fans, blowers, or compressors for gas- or vapor-
handling units, depending on pressure rise. Fans usually have small pressure rise (less 
than 1 inch of water) and blowers have moderate pressure rise (perhaps 1 inch of 
mercury); pumps and compressors may have very high pressure rises. Current indus­
trial systems operate at pressures up to 150,000 psi (10 4 atmospheres). 

The rotating element of a pump is frequently called the impeller, the impel leM 
contained within the pump housing or casing. The shaft that transfers mechanical en­
ergy to the impeller usually must penetrate the casing; a system of bearings and seals 
is required to complete the mechanical design of the unit. 

Three typical centrifugal machines are shown schematically in Fig. 10.1. Flow 
enters each machine nearly axially at small radius through the eye of the rotor, dia­
gram (a), at radius r,. Flow is turned and leaves through the impeller discharge at ra­
dius r2, where the width is b2- Flow leaving the impeller is collected in the scroll or 
volute, which gradually increases in area as it nears the outlet of the machine, dia­
gram (b). The impeller usually has vanes; it may be shrouded (enclosed) as shown in 
diagram (a), or open as shown in diagram (c). The impeller vanes may be relatively 
straight, or they may curve to become non-radial at the outlet. Diagram (c) shows that 
there may be a diffuser between the impeller discharge and the volute. This radial 
diffuser may be vaneless or it may have vanes. 

Typical axial-flow and mixed-flow turbomachines are shown schematically in 
Fig. 10.2. Diagram (a) shows a typical axial-flow compressor stage} Flow enters 
nearly parallel to the rotor axis and maintains nearly the same radius through the 
stage. The mixed-flow pump in diagram (b) shows the flow being turned outward and 
moving to larger radius as it passes through the stage. 

Volute 

la) Centrifugal pump lb) Centrifugal blower lc) Centrifugal compressor 

Fig. 10.1 S c h e m a t i c d i a g r a m s of t yp ica l cen t r i f uga l - f l ow t u r b o m a c h i n e s , a d a p t e d f r o m [2]. 

' The combination of a stationary blade row and a moving blade row is called a stage. (The stationary blades 
may be guide vanes placed before the rotor; more commonly they are anltswirl vanes placed after the rotor.) 
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Stage Stage 

Rotor blades 

Stator vanes 

Rotor axis 

(a) Axial-f low compressor stage (fr) Mixed-flow pump stage 

Fig. 10.2 S c h e m a t i c d i a g r a m s of typical ax ia l - f low and mixed- f low tu rbomach ines , 
a d a p t e d f rom [2]. 

The pressure rise that can be achieved efficiently in a single stage is limited, 
depending on the type of machine. However, stages may be combined to produce 
multistage machines, virtually without limit on pressure rise. Axial-flow compres­
sors, as typically found in turbojet engines, are examples of multi-stage compressors. 
Centrifugal pumps frequently are built with multiple stages in a single housing. 

Fans, blowers, compressors, and pumps are found in many sizes and types, rang­
ing from simple household units to complex industrial units of large capacity. Torque 
and power requirements for idealized pumps and turboblowers can be analyzed by 
applying the angular-momentum principle using a suitable control volume. 

Propellers are essentially axial-flow devices that operate without an outer hous­
ing. Propellers may be designed to operate in gases or liquids. As you might expect, 
propellers designed for these very different applications are quite distinct. Marine 
propellers tend to have wide blades compared with their radii, giving high solidity. 
Aircraft propellers tend to have long, thin blades with relatively low solidity. 

Machines for Extracting Work (Power) from a Fluid 

Machines that extract energy from a fluid in the form of work (or power) are called 
turbines. The assembly of vanes, blades, or buckets attached to the turbine shaft is 
called the rotor, wheel, or runner. In hydraulic turbines the working fluid is water, so 
the flow is incompressible. In gas turbines and steam turbines the density of the 
working fluid may change significantly. 

The two most general classifications of turbines are impulse and reaction 
turbines. Impulse turbines are driven by one or more high-speed free jets. Each jet is 
accelerated in a nozzle external to the turbine wheel. If friction and gravity are neg­
lected, neither the fluid pressure nor speed relative to the runner changes as the fluid 
passes over the turbine buckets. Thus for an impulse turbine, the fluid acceleration 
and accompanying pressure drop take place in nozzles external to the blades and the 
runner does not flow full of fluid. 

Several typical hydraulic turbines are shown schematically in Fig. 10.3. Dia­
gram (a) shows an impulse turbine driven by a single jet, which lies in the plane of 
the turbine runner. Water from the jet strikes each bucket in succession, is turned, and 
leaves the bucket with relative velocity nearly opposite to that with which it entered 
the bucket. Spent water falls into the tailrace (not shown). 
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Stationary 

la) Impulse turbine 
(Pelton wheel) 

(fc) Reaction turbine 
(Francis type) 

(c) Propeller turbine 
(Kaplan type) 

Fig. 10.3 S c h e m a t i c d i ag rams of typ ica l hydraul ic tu rb ines , adap ted f rom [ 2 ] . 

In reaction turbines, part of the pressure change takes place externally and part 
takes place within the moving blades. External acceleration occurs and the flow is 
turned to enter the runner in the proper direction as it passes through nozzles or station­
ary blades called guide vanes or wicket gates. Additional fluid acceleration relative to] 
the rotor occurs within the moving blades, so both the relative velocity and the pressure 
of the stream change across the runner. Because reaction turbines flow full of fluid, they 
generally can produce more power for a given overall size than impulse turbines. 

A reaction turbine of the Francis type is shown in Fig. 10.3b. Incoming water 
flows circumferentially through the turbine casing. It enters the periphery of the sta­
tionary guide vanes and flows toward the runner. Water enters the runner nearly radi­
ally and is turned downward to leave nearly axially; the flow pattern may be thought 
of as a centrifugal pump in reverse. Water leaving the runner flows through a diffuser 
known as a draft tube before entering the tailrace. 

Diagram (c) shows a propeller turbine of the Kaplan type. The water entry isj 
similar to that in the Francis turbine just described. However, it is turned to flow 
nearly axially before encountering the turbine runner. Flow leaving the runner may 
pass through a draft tube. 

Thus turbines range from simple windmills to complex gas and steam turbines 
with many stages of carefully designed blading. These devices also can be analyzed 
in idealized form by applying the angular-momentum principle. 

Dimensionless parameters such as specific speed flow coefficient, torque coeffi­
cient, power coefficient, and pressure ratio frequently are used to characterize the 
performance of turbomachines. These parameters were introduced in Chapter 7; theii 
development and use will be considered in more detail later in this chapter. 

10-2 SCOPE OF COVERAGE 

According to Japikse [3], "Turbomachinery represents a $400 billion market (possi-l 
bly much more) with enormous worldwide growth at this lime. It is estimated thai 
industrial centrifugal pumps alone consume 5% of all the energy produced in tha 
USA." Therefore, proper design, construction, selection, and application of pumpa 
and compressors are economically significant. 

Design of actual machines involves diverse technical knowledge, includingl 
fluid mechanics, materials, bearings, seals, and vibrations. These topics are covered 
in numerous specialized texts. Our objective here is to present only enough detail to 
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illustrate the analytical basis of fluid flow design and to discuss briefly the limita­
tions on results obtained from simple analytical models. For more detailed design 
information consult the references. 

Applications or "system" engineering requires a wealth of experience. Much of 
this experience must be gained by working with other engineers in the field. Our cov­
erage is not intended to be comprehensive; instead we discuss only the most important 
considerations for successful system application of pumps, compressors, and turbines. 

In this chapter our treatment deals almost exclusively with incompressible flows. 
Even with this limitation, the material presented in Chapter 10 is intrinsically more 
difficult than the fundamental topics considered in earlier chapters, because so much 
of it involves integration of empirical information with theory. Consequently, no 
presentation of fluid machinery can be as clear or straightforward as the earlier chap­
ters dealing with fundamentals. 

10-3 TURBOMACHINERY ANALYSIS 

The analysis method used for turbomachinery is chosen according to the information 
sought. If overall information on flow rate, pressure change, torque, and power is de­
sired, then a finite-control-volume analysis may be used. If detailed information is 
desired about blade angles or velocity profiles, then individual blade elements must 
be analyzed using an infinitesimal control volume or other detailed procedure. We 
consider only idealized flow processes in this book, so we concentrate on the ap­
proach using the finite control volume, applying the angular-momentum principle. 
The analysis that follows applies to machines both for doing work on, and extracting 
work from, a fluid flow. 

The Angular-Momentum Principle 

The angular-momentum principle was applied to finite control volumes in Chapte 
The result was Eq. 4.46, 

r
 x
 h + Jcv r x gp dV + rshaft = | - | c v r x VpdY + r x VpV • dA (4.46) 

Equation 4.46 states that the moment of surface forces and body forces, plus the ap­
plied torque, lead to a change in the angular momentum of the flow. (The surface 
forces are due to friction and pressure, the body force is due to gravity, the applied 
torque could be positive or negative, and the angular-momentum change can arise as 
a change in angular momentum within the control volume, or flux of angular momen­
tum across the control surface.) 

In the next section Eq. 4.46 is simplified for analysis of turbomachinery. 

Euler Turbomachine Equation 

For turbomachinery analysis, it is convenient to choose a fixed control volume enclos­
ing the rotor to evaluate shaft torque. Because we are looking at control volumes for 
which we expect large shaft torques, as a first approximation torques due to surface 
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U2 = r^a 

Fig. 10.4 Fini te cont ro l vo lume and abso lu te veloc i ty 
c o m p o n e n t s for ana lys is of angu la r m o m e n t u m . 

forces may be ignored. The body force may be neglected by symmetry. Then, for 
steady flow, Eq. 4.46 becomes 

' s ha f t f ?xVpV 
J c s 

dA (10.1a) 

Equation 10.1a states: For a turbomachine with work input, the torque required 
causes a change in the fluid angular momentum; for a turbomachine with work out­
put, the torque produced is due to the change in fluid angular momentum. Let us 
write this equation in scalar form and illustrate its application to axial- and radial-
flow machines. 

As shown in Fig. 10.4, we select a fixed control volume enclosing a generalized 
turbomachine rotor. The fixed coordinate system is chosen with the z axis aligned! 
with the axis of rotation of the machine. The idealized velocity components area 
shown in the figure. The fluid enters the rotor at radial location rh with uniform 
absolute velocity V,; the fluid leaves the rotor at radial location r 2 , with uniform 
absolute velocity V2. 

The integrand on the right side of Eq. 10.1a is the product of r x V with the 
mass flow rate at each section. For uniform flow into the rotor at section (T), and out! 
of the rotor at section (2), Eq. 10.1a becomes 

^shaft* = (r2V, - rxV,)thk 

or in scalar form. 

Tshan = (r2Vt2 - rlK m 

(10.1b) 

0 0 , 0 

Equation 10. lc is the basic relationship between torque and angular momentum fo£ 
all turbomachines. It often is called the Euler turbomachine equation. 

Each velocity that appears in Eq. 10.lc is the tangential component of the ab­
solute velocity of the fluid crossing the control surface. The tangential velocities are 
chosen positive when in the same direction as the blade speed, U. This sign convention 
gives 2" shaft ' > 0 for pumps, fans, blowers, and compressors and T^af{ < 0 for turbines. 

The rate of work done on a turbomachine rotor (the mechanical power, WJ 
is given by the dot product of rotor angular velocity, w, and applied torque, 
Using Eq. 10.1b, we obtain 

K, = d> • t ; h a f t = ojk • rshaft* = cok • (r2Vh - r^Vt)rhk 
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or 
w m = atfshaft = co(r2Vh_ - r{VJm (10.2a) 

According to Eq. 10.2a, the angular momentum of the fluid is increased by the addi­
tion of shaft work. For a pump, Wm > 0 and the angular momentum of the fluid 
must increase. For a turbine, Wm < 0 and the angular momentum of the fluid must de­
crease. 

Equation 10.2a may be written in two other useful forms. Introducing U = rco, 
where U is the tangential speed of the rotor at radius r, we have 

Dividing Eq. 10.2b by mg, we obtain a quantity with the dimensions of length, which 
may be viewed as the theoretical head added to the flow.2 

Equations 10.1 and 10.2 are simplified forms of the angular-momentum equa­
tion for a control volume. Tfiey all are written for a fixed control volume under the 
assumptions of steady, uniform flow at each section. The equations show that only 
the difference in the product rV, or J 7 V „ between the outlet and inlet sections, is im­
portant in determining the torque applied to the rotor or the mechanical power. 
Although r2 > r, in Fig. 10.4, no restriction has been made on geometry; the fluid 
may enter and leave at the same or different radii. 

Velocity Diagrams 

The equations that we have derived also suggest the importance of clearly defining 
the velocity components of the fluid and rotor at the inlet and outlet sections. For this 
purpose, it is useful to develop velocity diagrams (frequently called velocity 
polygons) for the inlet and outlet flows. Figure 10.5 shows the velocity diagrams and 
introduces the notation for blade and flow angles. 

Machines are designed such that at design condition the fluid moves smoothly 
(without disturbances) through the blades. In the idealized situation at the design 
speed, flow relative to the rotor is assumed to enter and leave tangent to the blade pro­
file at each section. (This idealized inlet condition is sometimes called shockless entry 
flow.) At speeds other than design speed (and sometimes in reality, even at design 
speed!), the fluid may impact the blades at inlet, exit at an angle relative to the blade, 
or may have significant flow separation, leading to machine inefficiency. Figure 10.5 is 
representative of a typical radial flow machine. We assume the fluid is moving without 
major flow disturbances through the machine, as shown in Fig. 10.5a, with blade inlet 
and exit angles /S, and W, respectively, relative to the circumferential direction. Note 
that although angles &v and jij are both less than 90° in Fig. 10.5, in general they can 
be less than, equal to, or greater than 90°, and the analysis that follows applies to all of 
these possibilities. 

The runner speed at inlet is LV, = coru and therefore it is specified by the im­
peller geometry and the machine operating speed. The absolute fluid velocity is the 
vector sum of the impeller velocity and the flow velocity relative to the blade. The 
absolute inlet velocity V, may be determined graphically, as shown in Fig. 10.5b. 

2 Since Wm has dimensions of energy per unit time and mg is weight flow per unit time, head, H, is actu­
ally energy per unit weight of flowing fluid. 

Wm =(U2Vh-UyVh)m (10.2b) 

(10.2c) 
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(a) Absolute velocity as sum 
of velocity relative to blade ( i > Velocity components 

and rotor velocity a t ' n l e ' 

Fig. 10.5 G e o m e t r y and nota t ion used to deve lop veloci ty d iag rams 
for typ ica l radia l - f low m a c h i n e s . 

The angle of the absolute fluid velocity, a,, is measured from the direction normal to 
the flow area, as shown. 3 The tangential component of the absolute velocity, V ( |, and the 
component normal to the flow area, V are also shown in Fig. 10.5b. Note from 
the geometry of the figure that at each section the normal component of the absolute 
velocity, V,„ and the normal component of the velocity relative to the blade, Vrb, are 
equal (the blade has no normal velocity). 

When the inlet flow is swirl-free, the absolute inlet velocity will be purely radial. 
The inlet blade angle may be specified for the design flow rate and pump speed to pro­
vide shockless entry flow. Swirl, which may be present in the inlet flow, or introduced 
by inlet guide vanes, causes the absolute inlet flow direction to differ from radial. 

The velocity diagram is constructed similarly at the outlet section. The runner 
speed at the outlet is U2 = cor2, which again is known from the geometry and operat­
ing speed of the turbomachine. The relative flow is assumed to leave the impeller 
tangent to the blades, as shown in Fig. 10.5c. This idealizing assumption of perfect 
guidance fixes the direction of the relative outlet flow at design conditions. 

For a centrifugal pump or reaction turbine, the velocity relative to the blade gen­
erally changes in magnitude from inlet to outlet. The continuity equation must be ap­
plied, using the impeller geometry, to determine the normal component of velocity at 
each section. The normal component, together with the outlet blade angle, is sufficient 
to establish the velocity relative to the blade at the impeller outlet for a radial-flow ma­
chine. The velocity diagram is completed by the vector addition of the velocity relative 
to the blade and the wheel velocity, as shown in Fig. 10.5c. 

The inlet and outlet velocity diagrams provide all the information needed to cal­
culate the ideal torque or power, absorbed or delivered by the impeller, using Eqs. 10fl 
or 10.2. The results represent the performance of a turbomachine under idealized con­
ditions at the design operating point, since we have assumed: 

/ Negligible torque due to surface forces (viscous and pressure). 
/ Inlet and exit flow tangent to blades. 
/ Uniform flow at inlet and exit. 

An actual turbomachine is not likely to conform to all of these assumptions, so the re­
sults of our analysis represent the upper limit of the performance of actual machines. 

! The notation varies from book to book, so be careful when comparing references. 
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Performance of an actual machine may be estimated using the same basic 
approach, but accounting for variations in flow properties across the blade span at the 
inlet and outlet sections, and for deviations between the blade angles and the flow di­
rections. Such detailed calculations are beyond the scope of this book. 

The alternative is to measure the overall performance of a machine on a 
suitable test stand. Manufacturers' data are examples of measured performance in­
formation. 

In Example Problem 10.1 the angular-momentum principle is applied to an ide­
alized centrifugal pump. In Example Problem 10.2 velocity diagrams are utilized in 
the analysis of flow through an axial-flow fan. 

EXAMPLE 10.1 Idealized Centrifugal Pump 

A centrifugal pump is used to pump 150 gpm of water. The water enters the 
impeller axially through a 1.25 in. diameter inlet. The inlet velocity is axial and 
uniform. The impeller outlet diameter is 4 in. Flow leaves the impeller at 10 ft/s 
relative to the blades, which are radial at the exit. The impeller speed is 3450 rpm. 
Determine the impeller exit width, b2, the torque input, and the power predicted by 
the Euler turbine equation. 

EXAMPLE PROBLEM 10.1 

GIVEN: Row as shown in the figure: = 10 ft/s, Q = 150 gpm. 

FIND: (a) b2. 
(b) 

(c) Wm. 

SOLUTION: 
Apply the angular-momentum 
equation to a fixed control vol­
ume. 

Governing equations: 

Fixed CV 

7 \ r _ R2 = 2 in. 

Rj = 0 .625 ln-4f~J~f~\ X 
f- |._L 

V J ' a 
= 3450 rpm 

b2 

4af. = f fxVpVdA 
Jcs 

= 0(2) 

pdV + pV • dA = 0 
lev Jcs 

Assumptions: (1) Neglect torques due to body and surface forces. 
(2) Steady flow. 
(3) Uniform flow at inlet and outlet sections. 
(4) Incompressible flow. 

(10.1a) 

(4.12) 

Then, from continuity, 

[-PVL7TR2) + (pVrbi27rR2b2) = Q 
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or 

m = pQ = pV^lirRfo 

so that 

b2 = Q 

b2 = 0.0319 ft or 0.383 in. 

1 150 gal 1 s ft 
X — — X X X 

min 12 in. 
x x 

min 2 in. 10ft 7.48 gal 60s ft 

The angular-momentum equation, Eq. 10.1a, simplifies to Eq. 10.1b for uniform flow, or in scalar form to 
Eq. 10.1c, 

(10.1c) ^shaft ={r2V,2-rlV,])>n 

For an axial inlet the tangential velocity V(] = 0, and for radial exit blades = R2<o, so Eq. 10.1c re­
duces to 

where we have used continuity (m = pQ). 
Thus, 

3450 rev (2) 2 in. 2 1.94 slug 150 gal 
^shaft = <»R2pQ = — x 

ft J min 

2TT rad min 
x 

ft J t V l b f s z 

rev 3600&z 7.48gal 144in. 2 slug ft 

^shaf, = 6.51 ft-lbf ^ 'shaft 

and 

Wm = ^ s h a f i 
3450 rev 6.51 ft-lbf 2-rr rad min h p s 

min rev 60s 550 ft - lbf 

Wm =4 .28 hp 

This problem illustrates the application of the angular-
momentum equation for a fixed control volume to a centrifu­
gal flow machine. 

EXAMPLE 10.2 Idealized Axial-Flow Fan 

An axial-flow fan operates at 1200 rpm. The blade tip diameter is 1.1 m and the hub 
diameter is 0.8 m. The inlet and exit angles at the mean blade radius are 30° and 60°, 
respectively. Inlet guide vanes give the absolute flow entering the first stage an angle 
of 30°. The fluid is air at standard conditions and the flow may be considered incom­
pressible. There is no change in axial component of velocity across the rotor. Assume 
the relative flow enters and leaves the rotor at the geometric blade angles and use 
properties at the mean blade radius for calculations. For these idealized conditions, 
draw the inlet velocity diagram, determine the volume flow rate of the fan, and sketch 
the rotor blade shapes. Using the data so obtained, draw the outlet velocity diagranj 
and calculate the minimum torque and power needed to drive the fan. 
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EXAMPLE PROBLEM 10.2 

GIVEN: Flow through rotor of axial-flow fan. 

Tip diameter: 1.1m 
Hub diameter: 0.8 m 
Operating speed: 1200 rpm 
Absolute inlet angle: 30° 
Blade inlet angle: 30° 
Blade outlet angle: 60° 

Fluid is air at standard conditions. Use properties at 
mean diameter of blades. 

Flow Stationary CV 
is flow channel 

FIND: (a) Inlet velocity diagram. 
(b) Volume flow rate. 
(c) Rotor blade shape. 

(d) Outlet velocity diagram. 
(e) Rotor torque. 
(f) Power required. 

Governing equations: 

SOLUTION: 
Apply the angular-momentum equation to a fixed control volume. 

W = f r x VpV • dA 
J c s 

= 0(2) 

I pdV + pV • dA = 0 
cv Jcs 

Assumptions: (1) Neglect torques due to body or surface forces. 
(2) Steady flow. 
(3) Uniform flow at inlet and outlet sections. 
(4) Incompressible flow. 
(5) No change in axial flow area. 
(6) Use mean radius of rotor blades, Rm. 

The blade shapes are 

(10.1a) 

(4.12) 

i (Note that for an axial-flow machine the normal velocity components are parallel to the axis, not normal to 
= the circumferential surface!) 

The inlet velocity diagram is 

U = 0)Rm 

/ i \ J f t = 30° 

^ _ t 
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From continuity 

(-PVnA]) + (pVniA2) = 0 

or 

Q = V < = V»2A2 

Since A y = A2, then V„ = V„2, and the outlet velocity diagram is as shown in the following figure: 

At the mean blade radius, 

U = Rmio = — * L to 
m 2 

u = 
(1.1 + 0.8) m 1200 rev 2TT rad nun X x - — = 59.7 m/s 

min rev 60 s 
From the geometry of the inlet velocity diagram, 

U = Vni(tan a, + cot ft) 

so that 

Consequently, 

V„ = 
U 59.7 m 

tan a, + cot ft s tan 30° + cot 30° 
= 25.9 m/s 

25.9 m 1 

cos a s X cos 30° 
29.9 m/s 

29 9 m 
K = y , s i n a , = — x sin 30° = 15.0 m/s 

1 s and 

The volume flow rate is 

sin ft 
25.9 m 1 x • 

s sin 30° 
51.8 m/s 

Q=Vni

Ai =~7 \ ( D (

2 - / ) t

2 ) = 7 x 2 5 - 9 % l ) 2 - ( 0 . 8 ) 2 ] m 2 

1 4 1 4 s 

Q = 11.6m 3/s^ 

From the geometry of the outlet velocity diagram, 

\ _ ^ - V ^ c o t f t , _U-V cotf t 
tun o f o — — — 

V V V 
ri2 « 2 " I 

as = tan 

59.7 m 25.9 m 

s 
x cot 60° 

25.9 m 
s 

59.9° 
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and 

Finally, 

25.9 m 1 

cos a 2 cos a 2 
s cos59.9< 

= 51.6 m/s 

V, = V2 sin a 2 = 5 L 6 — x sin 59.9° = 44.6m/s 

The angular-momentum equation, Eq. 10.1a, simplifies to Eq. 10.1b for uniform flow, or in scalar form to 
Eq. 10.1c, 

For this machine we have r, = = Rm and r2 = R2 = Rm, so Eq. 10.1c reduces to 

where we have used continuity (m = pQ). 
Hence 

^shaft =pQRm(\ -vh) 

1.23 kg 11.6 m 3 0.95 m (44.6 -15.0) m N s 2 

— X X X — X 

m s 2 s kg-m 
TshaA = 2 0 1 N - m < _ 

(10.1c) 

'shaft 

Thus the torque on the CV is in the same sense as a>. The power required is 

1200 rev 277 rad min 201N-m W s 
x — x x x 

min rev 60 s N • m Wm = 25.3 kW 

This problem illustrates construction of velocity diagrams and 
application of the angular-momentum equation for a fixed 
control volume to an axial-flow machine under idealized con­
ditions. 

Figure 10.5 represents the flow through a simple centrifugal pump impeller. If 
the fluid enters the impeller with a purely radial absolute velocity, then the fluid 
entering the impeller has no angular momentum and is identically zero. 

With V(| = 0, the increase in head (from Eq. 10.2c) is given by 

H = (10.3) 
8 

From the exit velocity diagram of Fig. 10.5c, 

V,2 =U2- Vrh2 cos B2 = U2- -^j- cos B2 = U2~ V„2 cot B2 (10.4) 



CHAPTER 10 / FLUID MACHINERY 

Then 

H = 
UJ~U2Vni cot ft 

For an impeller of width w, the volume flow rate is 

Q = 7rD2wVn2 

(10.5) 

(10.6) 

To express the increase in head in terms of volume flow rate, we substitute for V„2 in 
terms of Q from Eq. 10.6. Thus 

Equation 10.7a is of the form 

H=UJ U2cot(32Q 

g irD2wg 

ff = C, - C2Q 

(10.7a) 

(10.7b) 

where constants C, and C2 are functions of machine geometry and speed, 

8 
and C = 

U2 cot 8 
irDjWg 

Thus Eq. 10.7a predicts a linear variation of head, H, with volume flow rate, Q. 
Constant C, = U\lg represents the ideal head developed by the pump for zero 

flow rate; this is called the shutoff head. The slope of the curve of head versus flow 
rate (the H — Q curve) depends on the sign and magnitude of C2. 

For radial outlet vanes, ft = 90° and C 2 = 0. The tangential component of the 
absolute velocity at the outlet is equal to the wheel speed and is independent of flow 
rate. From Eq. 10.7a, the ideal head is independent of flow rate. This characteristic 
H — Q curve is plotted in Fig. 10.6. 

If the vanes are backward curved (as shown in Fig. 10.5a), ft < 90° and C2 > 0.1 
Then the tangential component of the absolute outlet velocity is less than the wheel 

Forward-curved 
ft>90° 

Meridional 
section Cross-section 

Volume flow rate, Q 
Fig. 10.6 Ideal ized re la t ionsh ip be tween 
head and v o l u m e f low rate for cent r i fuga l 
p u m p wi th f o rward -cu rved , radia l , and 
backward -cu rved impel ler b lades. 
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speed and it decreases in proportion to the flow rate. From Eq. 10.7a, the ideal head 
decreases linearly with increasing flow rate. The corresponding H - Q curve is plot­
ted in Fig. 10.6. 

If the vanes are forward curved, then Bj > 90° and C2 < 0. The tangential com­
ponent of the absolute fluid velocity at the outlet is greater than the wheel speed and it 
increases as the flow rate increases. From Eq. 10.7a, the ideal head increases linearly 
with increasing flow rate. The corresponding H — Q curve is plotted in Fig. 10.6. 

The characteristics of a radial-flow machine can be altered by changing the outlet 
vane angle; the idealized model predicts the trends as the outlet vane angle is changed. 

The predictions of the idealized angular-momentum theory for a centrifugal 
pump are summarized in Fig. 10.6. Forward-curved vanes are almost never used in 
practice because they tend to have an unstable operating point. 

Hydraulic Power 

The torque and power predicted by applying the angular-momentum equation to a tur­
bomachine rotor (Eqs. 10.1c and 10.2a) are idealized values. In practice, rotor power 
and the rate of change of fluid energy are not equal. Energy transfer between rotor and 
fluid causes losses because of viscous effects, departures from uniform flow, and de­
partures of flow direction from the blade angles. Kinetic energy transformation to 
pressure rise by diffusion in the fixed casing introduces more losses. Energy dissipa­
tion occurs in seals and bearings and in fluid friction between the rotor and housing of 
the machine ("windage" losses). Applying the first law of thermodynamics to a control 
volume surrounding the rotor shows that these "losses" in mechanical energy are irre­
versible conversions from mechanical energy to thermal energy. As was the case for 
the pipe flows discussed in Chapter 8, the thermal energy appears either as internal en­
ergy in the fluid stream or as heat transfer to the surroundings. 

Because of these losses, in a pump the actual power delivered to the fluid is less 
than predicted by the angular-momentum equation. In the case of a turbine, the actual 
power delivered to the shaft is less than the power given up by the fluid stream. 

We can define the power, head, and efficiency of a turbomachine based on 
whether the machine does work on the fluid or extracts work (or power) from the fluid. 

Machines for Doing Work on a Fluid 

For a pump, the hydraulic power is given by the rate of mechanical energy input to 
the fluid, 

wh = PQRH, 

where 

( P v2 

'discharge 

V2 

Pg 2g 
+ z 

(10.8a) 

(10.8b) 
•'suction 

For a pump the head rise measured on a test stand is less than that produced by the 
impeller. The rate of mechanical energy input is greater than the rate of head rise pro­
duced by the impeller. The mechanical input power needed to drive the pump is re­
lated to the hydraulic power by defining pump efficiency as 

pQgffp -3L 
w „ 10T 

(10.8c) 
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To evaluate the actual change in head across a machine from Eq. 10.8b, we must 
know the pressure, fluid velocity, and elevation at two measurement sections. Fluid 
velocity can be calculated from the measured volume flow rate and passage diame­
ters. (Suction and discharge lines for pumps usually have different inside diameters.]! 

Static pressure usually is measured in straight sections of pipe upstream from 
the pump inlet and downstream from the pump outlet, after diffusion has occurred 
within the pump casing. The elevation of each pressure gage may be recorded, or the 
static pressure readings may be corrected to the same elevation. (The pump centerline 
provides a convenient reference level.) 

Machines for Extract ing Work (Power) f rom a Fluid 

For a hydraulic turbine the hydraulic power is denned as the rate of mechanical ei 
ergy removal from the flowing fluid stream, 

Wh = pQgH, 

where 

Pg 

V_ 

2g 

2 "N 

+ Z 
' inlet V 

— + 
Pg lg 

+ Z 

:n-

(10.9a) 

(10.9b) 
/outlet 

For a hydraulic turbine the power output from the rotor (the mechanical power) is 
less than the rate of energy transfer from the fluid to the rotor, because the rotor must 
overcome friction and windage losses. 

The mechanical power output obtained from the turbine is related to the hy 
draulic power by defining turbine efficiency as 

W OJT 

PQgH, 
(10. 

Equation 10.9b shows that to obtain maximum power output from a hydraulic 
turbine, it is important to minimize the mechanical energy in the flow leaving the tur­
bine. This is accomplished by making the outlet pressure, flow speed, and elevation 
as small as practical. The turbine must be set as close to the tailwater level as possi-l 
ble, allowing for the level increase when the river floods. Tests to measure turbine ef-1 

ficiency may be performed at various output power levels and at different constant 
head conditions (see the discussion of Figs. 10.12 and 10.13). 

The trends predicted by the idealized angular-momentum theory are compared 
with experimental results in the next section. 

10-4 PERFORMANCE CHARACTERISTICS 

To specify fluid machines for flow systems, the designer must know the pressure rise: 
(or head), torque, power requirement, and efficiency of a machine. For a given ma-j 
chine each of these characteristics is a function of flow rate; the characteristics for 
similar machines depend upon size and operating speed. In this section we define 
performance characteristics for pumps and turbines and review experimentally 
measured trends for typical machines. We discuss dimensionless parameters to illus­
trate the similarities among families of machines and the trends in design features ad 
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functions of flow rate and head rise. We review scaling laws and present examples to 
illustrate their use. The section concludes with a discussion of cavitation and the net 
head that must be available at the inlet of a pump to assure satisfactory cavitation-
free operation. 

Performance Parameters 

The idealized analyses presented in Section 10-3 are useful to predict trends and to ap­
proximate the design-point performance of an energy-absorbing or energy-producing 
machine. However, the complete performance of a real machine, including operation 
at off-design conditions, must be determined experimentally. We consider the per­
formance parameters of a turbomachine based on whether the machine does work on 
the fluid or extracts work (or power) from the fluid. 

Machines for Do ing Work on a Fluid 

To determine performance, a pump, fan, blower, or compressor must be set up on an 
instrumented test stand with the capability of measuring flow rate, speed, input 
torque, and pressure rise. The test must be performed according to a standardized 
procedure corresponding to the machine being tested [4, 5]. Measurements are made 
as flow rate is varied from shutoff (zero flow) to maximum delivery by varying the 
load from maximum to minimum (by starting with a valve that is closed and opening 
it to fully open in stages). Power input to the machine is determined from a calibrated 
motor or calculated from measured speed and torque, and then efficiency is computed 
as illustrated in Example Problem 10.3. Finally, the calculated characteristics are 
plotted in the desired engineering units or nondimensionally. If appropriate, smooth 
curves may be faired through the plotted points or curve-fits may be made to the re­
sults, as illustrated in Example Problem 10.4. 

10.3 Calculation of Pump Characteristics from Test Data 

The flow system used to test a centrifugal pump at a nominal speed of 1750 rpm is 
shown. The liquid is water at 80°F, and the suction and discharge pipe diameters are 6 in. 
Data measured during the test are given in the table. The motor is supplied at 460 V, 
3-phase, and has a power factor of 0.875 and a constant efficiency of 90 percent. 

Rate of Suction Discharge Motor 
Flow Pressure Pressure Current 
(gpm) (psig) (psig) (amp) 

0 0.65 53.3 18.0 
500 0.25 48.3 26.2 
800 - 0 . 3 5 42.3 31.0 

1000 - 0 . 9 2 36.9 33.9 
1100 - 1 . 2 4 33.0 35.2 
1200 - 1 . 6 2 27.8 36.3 
1400 - 2 . 4 2 15.3 38.0 
1500 - 2 . 8 9 7.3 39.0 

Calculate the net head delivered and the pump efficiency at a volume flow rate 
of 1000 gpm. Plot the pump head, power input, and efficiency as functions of volume 
flow rate. 
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EXAMPLE PROBLEM 10.3 

GIVEN: Pump test flow system and data shown. 

FIND: (a) Pump head and efficiency at Q = 1000 gpm. 
(b) Pump head, power input, and efficiency as a function of volume flow rate. Plot the results. 

SOLUTION: 

Governing equations: 

Wh = pQgH. 
= pQgHp 

VV„ COT 
( 

p V2 
N f 

p 
V2 ) 

+ — + Z — + — + z 
,P8 2* J d ^Pg 2g J 

Assumptions: (1) Steady flow. 
(2) Uniform flow at each section. 
(3) V2 = V,. 

(4) Correct all heads to the same elevation. 

Since V2

 = die pump head is 

- + gz\ 
(P ' 
- + gz 
p Js 

P2 ~ P\ 

Pg 

where the discharge and suction pressures, corrected to the same elevation, are designated p 2 and p u 

respectively. 
Correct measured static pressures to the pump centerline: 

Pi = Ps + PgZs 

Pi = 
0.92 Ibf 1.94 slug 32.2 ft 1.0ft Ibf • s 

ftJ 7 X 

rV 

slug ft 144in. 
and 

Pl = Pd + PEZd 

Pl = 
36.9 Ibf 1.94slug 32.2 ft 3.0 ft Ibf s 2 ft" 

in. ft 3 X s 2 X 

= -0 .49 psig 

= 38.2 psi 
slug-ft 144 in. 2 

Calculate the pump head: 

Hp = (Pi ~ P\)lpg 

[38.2 - ( -0 .49) ] Ibf ft 3 s 2 144 in. 2 slug ft 
HD = — T x :— x x x — = 89.2 ft 

p in. 2 1.94 slug 32.2 ft ft 2 Ibf s 2 < 

Compute the hydraulic power delivered to the fluid: 

Wh = pQgHp = Q(p2 - P l ) 
1000 gal [38.2 - ( -0 .49) ] M ft 3 min 144 in. 2 h p s 

= ^ x X X X X -
min in. 2 7.48gal 60s ft 2 550ft Ibf 

Wh = 22.6 hp 
Calculate the motor power output (the mechanical power input to the pump) from electrical information: 

9>in = T)S(PF)E1 

0.90 V3 0.875 460 V 33.9 A W hp 
9>in = x x x x x x ^ = 28.5 hp 

VA 746 W 

I 
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The corresponding pump efficiency is 

VJL = = 0.792 or 79.2 percent 
, p Wm 28.5 hp <" 

Results from similar calculations at the other volume flow rates are plotted below: 

This problem illustrates the data reduction procedure used to 
obtain the performance curves for a pump from experimental 
data. The results calculated and plotted in this example are 
typical for a centrifugal pump driven at constant speed: 

/ The pressure rise is highest at shutoff (zero flow rate). 
/ Pressure rise decreases steadily as flow rate is increased; 

compare this typical experimental curve to the linear be­
havior shown in Fig. 10.7 for idealized backward-curved 
impeller blades (used in most centrifugal pumps). 

/ Required power input increases with flow rate; the increase 
is generally nonlinear. 

/ Efficiency is zero at shutoff, rises to a peak as flow rate is 
increased, then drops off at larger flow rates; it stays near 
its maximum over a range of flow rates (in this example, 
from about 800 to 1100 gpm). 

This example is a little oversimplified because it is assumed 
that the motor efficiency is constant. In practice, motor effi­
ciency varies with load, so must be either computed at each 
load from motor speed and torque measurements, or obtained 
from a calibration curve. 

A The Excel workbook for this Example Problem was used 
, * T for the calculations for each flow rate, and for generating 

the graph. It can be modified for use with other pump data. 
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The basic procedure used to calculate machine performance was illustrated for a J 
centrifugal pump in Example Problem 10.3. The difference in static pressures between 
the pump suction and discharge was used to calculate the head rise produced by the 
pump. For pumps, dynamic pressure rise typically is a small fraction of the head rise 
developed by the pump, so it may be neglected compared with the head rise. 

The test and data reduction procedures for fans, blowers, and compressors are I 
basically the same as for centrifugal pumps. However, blowers, and especially fans, 
add relatively small amounts of static head to gas or vapor flows. For these machines, 
the dynamic head may increase from inlet to discharge, and it may be appreciable 
compared with the static head rise. For these reasons, it is important to state clearly 
the basis on which performance calculations are made. Standard definitions are avail- I 
able for machine efficiency based on either the static-to-static pressure rise or the<| 
static-to-total pressure rise [6]. 

EXAMPLE 10.4 Curve-Fit to Pump Performance Data 

Pump test data were given and performance was calculated in Example Problem 10.3. I 
Fit a parabolic curve, H = H0 - AQ2, to these calculated pump performance results 
and compare the fitted curve with the measured data. 

EXAMPLE PROBLEM 10.4 

GIVEN: Pump test data and performance calculated in Example Problem 10.3. 

FIND: (a) Parabolic curve, H = H0 - AQ}, fitted to the pump performance data, 
(b) Comparison of the curve-fit with the calculated performance. 

SOLUTION: 
The curve-fit may be obtained by fitting a linear curve to H versus Q2. Tabulating, 

From calculated performance: From the curve fit: 

Q 
(gpm) 

G 2 

(gpm2) 
H 
(ft) 

H 
(ft) 

Error 
(%) 

0 0 123 127 2.8 
500 25 X 104 113 116 3.1 
800 64 X 104 100 99.8 -0 .5 

1000 100 X 104 89.2 84.6 -5 .2 
1100 121 X 104 80.9 75.7 -6 .5 
1200 144 X 104 69.8 65.9 -5 .6 
1400 196 X 104 42.8 43.9 2.5 
1500 225 X 104 25.5 31.7 24.2 

Intercept = 127 

r2 = 
X 10~5 

0.984 

Using the method of least squares, the equation for the fitted curve is obtained as 

//(ft) = 127 - 4.23 X ]QS [Q(gpm)]2 

with coefficient of determination r2 = 0.984. 
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This problem illustrates that the pump test data for Example 
Problem 10.3 can be fitted quite well to a parabolic curve. As 
with fitting a curve to any experimental data, our justifications 
for choosing a parabolic function in this case are: 

/ Experimental observation — the experimental data looks 
parabolic. 

/ Theory or concept—we will see later in this section that 
similarity rules suggest such a relation between head and 
flow rate. 

The Excel workbook for this Example Problem was used 
for the least-squares calculations, and for generating the 
graph. It can be modified for use with other pump data. 

Typical characteristic curves for a centrifugal pump tested at constant speed were 
shown qualitatively in Fig. 7.5; 4 the head versus capacity curve is reproduced in Fig. 
10.7 to compare with characteristics predicted by the idealized analysis. Figure 10.7 
shows that the head at any flow rate in the real machine may be significantly lower 
than is predicted by the idealized analysis. Some of the causes are: 

1. At very low flow rate some fluid recirculates in the impeller. 
2 . Friction loss and leakage loss both increase with flow rate. 
3. "Shock loss" results from mismatch between the direction of the relative velocity and the 

tangent to the impeller blade at the inlet.5 

Curves such as those in Figs. 7.5 and 10.7 are measured at constant (design) 
speed with a single impeller diameter. It is common practice to vary pump capacity 
by changing the impeller size in a given casing. To present information compactly, 

4 The only important pump characteristic not shown in Fig. 7.5 is the net positive suction head (NPSH) 
required to prevent cavitation. Cavitation and NPSH will be treated later in this section. 

5 This loss is largest at high and low flow rates; it decreases essentially to zero as optimum operating con­
ditions are approached [7], 
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Loss due to recirculation 

Ideal head-flow curve (Fig. 10.6) 
Loss due to 

- flow friction 

Actual 
head-flow 

curve 

Approximate 
best efficiency point 

"Shock" loss 

Volume flow rate, Q 

Fig. 10.7 Comparison of ideal and actual 
head-flow curves for a centrifugal pump with 
backward-curved impeller b lades [8]. 

data from tests of several impeller diameters may be plotted on a single graph, as 
shown in Fig. 10.8. As before, for each diameter, head is plotted versus flow rate; 
each curve is labeled with the corresponding diameter. Efficiency contours are plotted 
by joining points having the same constant efficiency. Power-requirement contours | 
are also plotted. Finally, the NPSH requirements (which we have not yet defined) are 
shown for the extreme diameters; in Fig. 10.8, the curve for the 8 in. impeller would 
lie between the curves for the 6 in. and 10 in. impellers. 

For this typical machine, head is a maximum at shutoff and decreases continu­
ously as flow rate increases. Input power is minimum at shutoff and increases as de­
livery is increased. Consequently, to minimize the starting load, it may be advisable 
to start the pump with the outlet valve closed. (However, the valve should not be left 
closed for long, lest the pump overheat as energy dissipated by friction is transferred 

^ Impeller diameter 

10 in. 60 7 n 

H L _ 8 0 

^ Impeller diameter 

10 in. 60 7 n 

H L _ 8 0 

Best efficiency point 

8 in. \ / / \ 
~ — — — O v j ' 

- - Z x 8 0 7 0 

\ / V ^ T ^ 

Total 
^ head ' ~ — 

1 l \ 

Total 
^ head 

' 4 1 / *N 

Efficiency, % 
Input 

horsepower 

6 in. 10 in. 

Net positive suction head 

Volume flow rate, Q 

Fig. 10.8 Typical pump performance c u r v e s from t e s t s with 
three impeller d iameters at constant s p e e d [8]. 
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to the water in the housing.) Pump efficiency increases with capacity until the best 
efficiency point (BEP) is reached, then decreases as flow rate is increased further. For 
minimum energy consumption, it is desirable to operate as close to BEP as possible. 

Centrifugal pumps may be combined in parallel to deliver greater flow or in se­
ries to deliver greater head. A number of manufacturers build multi-stage pumps, 
which are essentially several pumps arranged in series within a single casing. Pumps 
and blowers are usually tested at several constant speeds. Common practice is to 
drive machines with electric motors at nearly constant speed, but in some system ap­
plications impressive energy savings can result from variable-speed operation. These 
pump application topics are discussed in Section 10-5. 

Machines for Extract ing Work (Power) f rom a Fluid 

The test procedure for turbines is similar to that for pumps, except that a dynamometer 
is used to absorb the turbine power output while speed and torque are measured. 
Turbines usually are intended to operate at a constant speed that is a fraction or multi­
ple of the electric power frequency to be produced. Therefore turbine tests are run at 
constant speed under varying load, while water usage is measured and efficiency is 
calculated. 

The impulse turbine is a relatively simple turbomachine, so we use it to illustrate 
typical test results. Impulse turbines are chosen when the head available exceeds about 
300 m. Most impulse turbines used today are improved versions of the Pelton wheel 
developed in the 1880s by American mining engineer Lester Pelton [9]. An impulse 
turbine is supplied with water under high head through a long conduit called a pen­
stock. The water is accelerated through a nozzle and discharges as a high-speed free jet 
at atmospheric pressure. The jet strikes deflecting buckets attached to the rim of a 
rotating wheel (Fig. 10.3a). Its kinetic energy is given up as it is turned by the buckets. 
Turbine output is controlled at essentially constant jet speed by changing the flow rate 
of water striking the buckets. A variable-area nozzle may be used to make small and 
gradual changes in turbine output. Larger or more rapid changes must be accom­
plished by means of jet deflectors, or auxiliary nozzles, to avoid sudden changes in 
flow speed and the resulting high pressures in the long water column in the penstock. 
Water discharged from the wheel at relatively low speed falls into the tailrace. The 
tailrace level is set to avoid submerging the wheel during flooded conditions. When 
large amounts of water are available, additional power can be obtained by connecting 
two wheels to a single shaft or by arranging two or more jets to strike a single wheel. 

Figure 10.9 illustrates an impulse-turbine installation and the definitions of 
gross and net head [7]. The gross head available is the difference between the levels 
in the supply reservoir and the tailrace. The effective or net head, H, used to calculate 
efficiency, is the total head at the entrance to the nozzle, measured at the nozzle 

Reservoir level 
Energy grade line 

\ Hydraulic grade line 

Gross 
head 

at plant 

B 

Fig. 10.9 S c h e m a t i c of impulse-turbine installation, showing 
definitions of g r o s s and net h e a d s [7]. 
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F ig . 10.10 Ideal and actua l va r iab le -speed per­
f o rmance for an impu lse tu rb ine [10]. 

centerline [7]. Hence not all of the net head is converted into work at the turbi 
Some is lost to turbine inefficiency, some is lost in the nozzle itself, and some is lost 
as residua] kinetic energy in the exit flow. In practice, the penstock usually is sized so 
that at rated power the net head is 8 5 - 9 5 percent of the gross head. 

In addition to nozzle loss, windage, bearing friction, and surface friction 
between the jet and bucket reduce performance compared with the ideal, frictionless 
case. Figure 10.10 shows typical results from tests performed at constant head. 

The peak efficiency of the impulse turbine corresponds to the peak power, since 
the tests are performed at constant head and flow rate. For the ideal turbine, as shown 
in Example Problem 10.5, this occurs when the wheel speed is half the jet speed. As 
we will see, at this wheel speed the fluid exits the turbine at the lowest absolute ve­
locity possible, hence minimizing the loss of kinetic energy at the exit. As indicated in 
Eq. 10.2a, if we minimize the exit velocity V2 we will maximize the turbine work Wm, 
and hence the efficiency. In actual installations, peak efficiency occurs at a wheel 
speed only slightly less than half the jet speed. This condition fixes the wheel speed 
once the jet speed is determined for a given installation. For large units, overall effi­
ciency may be as high as 88 percent [11]. 

EXAMPLE 10.5 Optimum Speed for Impulse Turbine 

A Pelton wheel is a form of impulse turbine well adapted to situations of high head 
and low flow rate. Consider the Pelton wheel and single-jet arrangement shown, in 
which the jet stream strikes the bucket tangentially and is turned through angle 6. 
Obtain an expression for the torque exerted by the water stream on the wheel and the 
corresponding power output. Show that the power is a maximum when the bucket 
speed, U = Ra>, is half the jet speed, V. 
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EXAMPLE PROBLEM 10.5 

GIVEN: Pelton wheel and single jet shown. 

FIND: (a) Expression for torque exerted on 
the wheel. 

(b) Expression for power output. 
(c) Ratio of wheel speed U to jet speed 

V for maximum power. 
A V-U 

V-U (2 
U = Rw 

SOLUTION: 
As an illustration of its use, we start with the angular-momentum equation, Eq. 4.52 (on the CD), for a 
rotating CV as shown, rather than the inertial CV form, Eq. 4.46, that we used in deriving the Euler turbo-
machine equation in Section 10.3. 

Governing equation: 

= 0(1) = 0(2) 

r X 

- 0 ( 3 ) 

r X [25 X V T C + 5 X (w X ?) + 5 X ?] pa 

= 0(4) 

1 ?X Vx>lpdV + 7X V^pV^-dA (4.52) 

Assumptions: (1) Neglect torque due to surface forces. 
(2) Neglect torque due to body forces. 
(3) Neglect mass of water on wheel. 
(4) Steady flow with respect to wheel. 
(5) All water that issues from the nozzle acts upon the buckets. 
(6) Bucket height is small compared with R, hence r, = r2 ~ R. 
(7) Uniform flow at each section. 
(8) No change in jet speed relative to bucket. 

Then, since all water from the jet crosses the buckets, 

W . = ?i x Vt(-pVA) + F2 x V2(+pVA) 

h = RK ?\ = Rer 

VX=(V- U)ee V2 = ( V - U)co&6e6 +{V - U)sinder 

so that finally 

7 s h a f tA: = R(V - U)k{-pVA) + R(V - U) cos 6 k'pVA) 

Tshaft* = -R(l - cos 0)pVA(V - U)k 

This is the external torque of the shaft on the control volume, i.e., on the wheel. The torque exerted by the 
water on the wheel is equal and opposite, 

^out = -4art = *(1 - cos 6)pVA(V - U)k = pQR{V - U)(\ - cos 6)k f0M 

The corresponding power output is 

^ou. = w • Tou[ = Rco(l - cos 6)pVA(V - U) = pQU(V - LV)(1 - cos 6) 
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To find the condition for maximum power, differentiate the expression for power with respect to wh 
speed U and set the result equal to zero. Thus 

— = PQ(V - U)(l - cos 0) + pQU(-\)(l - cos G) = 0 
dU 

(V - U) - U = V - 2U = 0 

Thus for maximum power, U/V = j or U = V/2 U/V 

Note: Turning the flow through 6 = 180° would give maximum power with U = V/2. Under these condi­
tions, theoretically the absolute velocity of the fluid at the exit (computed in the direction of 17) 
would be U — (V — U) = V/2 - (V - V/2) = 0, so that there would be no loss of kinetic energy 
at the exit, maximizing the power output. In practice, it is possible to deflect the jet stream through 
angles up to 165°. With 6 — 165°, 1 — cos 6 = 1.97, or about 1.5 percent below the value for 
maximum power. 

This problem illustrates the use of the angular-momentum 
equation for a rotating control volume, Eq. 4.52, to analyze 
flow through an ideal impulse turbine. 

/ The peak power occurs when the wheel speed is half the jet 
speed, which is a useful design criterion when selecting a 
turbine for a given available head. 

/ This problem also could be analyzed starting with an inertial 
control volume, i.e., using the Euler turbomachine equation 
(Problem 10.15). 

In practice, hydraulic turbines usually are run at a constant speed, and output is 
varied by changing the opening area of the needle valve jet nozzle. Nozzle loss in­
creases slightly and mechanical losses become a larger fraction of output as the valve 
is closed, so efficiency drops sharply at low load, as shown in Fig. 10.11. For this 
Pelton wheel, efficiency remains above 85 percent from 40 to 113 percent of full load. 

0 10 20 30 40 50 60 70 80 90 100 110 
Output in percent of full load 

F ig . 10.11 R e l a t i o n b e t w e e n e f f i c i ency a n d o u t p u t for a t yp i ca l P e l t o n w a t e r 
t u rb i ne ( a d a p t e d f r o m [11]). 
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F ig . 10.12 S c h e m a t i c of t yp i ca l r eac t i on t u r b i n e insta l la­
t ion , s h o w i n g de f in i t i ons of h e a d t e r m i n o l o g y [7]. 

At lower heads, reaction turbines provide better efficiency than impulse turbines. 
In contrast to flow in a centrifugal pump, flow in a reaction turbine enters the rotor at 
the largest (outer) radial section and discharges at the smallest (inner) radial section 
after transferring most of its energy to the rotor. Reaction turbines tend to be high 
flow, low head machines. A typical reaction turbine installation is shown schemati­
cally in Fig. 10.12, where the terminology used to define the heads is indicated. 

Reaction turbines flow full of water. Consequently, it is possible to use a diffuser 
or draft tube to regain a fraction of the kinetic energy that remains in water leaving the 
rotor. The draft tube forms an integral part of the installation design. As shown in Fig. 
10.12, the gross head available is the difference between the supply reservoir head and 
the tailrace head. The effective head or net head, H, used to calculate efficiency, is the 
difference between the elevation of the energy grade line just upstream of the turbine 
and that of the draft tube discharge (section C). The benefit of the draft tube is clear: 
the net head available for the turbine is equal to the gross head minus losses in the sup­
ply pipework and the kinetic energy loss at the turbine exit; without the draft tube the 
exit velocity and kinetic energy would be relatively large, but with the draft tube they are 
small, leading to increased turbine efficiency. Put another way, the draft tube diffuser, 
through a Bernoulli effect, reduces the turbine exit pressure, leading to a larger pressure 
drop across the turbine, and increased power output. (We saw a similar Bernoulli effect 
used by ancient Romans in Example Problem 8.10.) 

An efficient mixed-flow turbine runner was developed by lames B. Francis us­
ing a careful series of experiments at Lowell, Massachusetts, during the 1840s [9]. 
An efficient axial-flow propeller turbine, with adjustable blades, was developed by 
German professor Victor Kaplan between 1910 and 1924. The Francis Turbine (Fig. 
\0.3b) is usually chosen when 15 < H < 300 m, and the Kaplan turbine (Fig. 10.3c) 
is usually chosen for heads of 15 m or less. Performance of reaction turbines may be 
measured in the same manner as performance of the impulse turbine. However, be­
cause the gross heads are less, any change in water level during operation is more 
significant. Consequently, measurements are made at a series of heads to completely 
define the performance of a reaction turbine. 

An example of the data presentation for a reaction turbine is given in Fig. 10.13, 
where efficiency is shown at various output powers for a series of constant heads 
[10]. The reaction turbine has higher maximum efficiency than the impulse turbine, 
but efficiency varies more sharply with load. 

As a sharp-eyed reader, you will have noticed that Fig. 10.13 contained both 
model-test (expected efficiencies) and full-scale results. You should be asking, "How 

file:///0.3b
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Fig. 10.13 P e r f o r m a n c e of typ ica l reac t ion t u rb ine a s p r e d i c t e d b y 
m o d e l tes ts ( e x p e c t e d e f f i c ienc ies) a n d c o n f i r m e d b y f ield test [10]. 

are model tests designed and conducted, and how are model test results scaled 
predict prototype performance?" To answer these questions, read on. 

Dimensional Analysis and Specific Speed 

Dimensional analysis for turbomachines was introduced in Chapter 7, where dimen­
sionless flow, head, and power coefficients were derived in generalized form. The 
independent parameters were the flow coefficient and a form of Reynolds number. 
The dependent parameters were the head and power coefficients. 

Our objective here is to develop the forms of dimensionless coefficients in com­
mon use, and to give examples illustrating their use in selecting a machine type, de­
signing model tests, and scaling results. Since we developed an idealized theory for 
turbomachines in Section 10-3, we can gain additional physical insight by developing 
dimensionless coefficients directly from the resulting computing equations. 

The dimensionless flow coefficient, <t\ is defined by normalizing the volume 
flow rate using the exit area and the wheel speed at the outlet. Thus 

Q 
A7U 2 U 2 

(10.10) 

where V is the velocity component perpendicular to the exit area. This component 
is also referred to as the meridional velocity at the wheel exit plane. It appears in true 
projection in the meridional plane, which is any radial cross-section through the cefl 
terline of a machine. 

A dimensionless head coefficient, "*V, may be obtained by normalizing the head, 
H (Eq. 10.2c), with U\lg. Thus 

8fL (10.1 

A dimensionless torque coefficient, T , may be obtained by normalizing the 
torque, T (Eq. 10.1c), with pA2U\R2. Thus 

r = 
9A2UiR7 

(10.12) 
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Finally, the dimensionless power coefficient, II , is obtained by normalizing the 
power W (Eq. I0.2b), with m U\ = pQU\. Thus 

W W 
n = T = — = T (10.13) 

For pumps, mechanical input power exceeds hydraulic power, and the efficiency 
is defined as r\p = Wh/Wm (Eq. 10.8c). Hence 

1 pQgH„ 
Wm = Tea = — Wh = F 6 p (10.14) 

VP Vp 

Introducing dimensionless coefficients <t (Eq. 10.10), "ty (Eq. 10.11), and T (Eq. 
10.12) into Eq. 10.14, we obtain an analogous relation among the dimensionless co­
efficients as 

T = (10.15) 

For turbines, mechanical output power is less than hydraulic power, and the effi­
ciency is defined as 77, = Wm/Wh (Eq. 10.9c). Hence, 

Wm =Ta> = v,Wh = r)tpQgH, (10.16) 

Introducing dimensionless coefficients <P, ty, and r i n t o Eq. 10.16, we obtain an 
analogous relation among the dimensionless coefficients as 

T = T / , ^ < P (10.17) 

The dimensionless coefficients form the basis for designing model tests and 
scaling the results. As shown in Chapter 7, the flow coefficient is treated as the inde­
pendent parameter. Then, if viscous effects are neglected, the head, torque, and power 
coefficients are treated as multiple dependent parameters. Under these assumptions, 
dynamic similarity is achieved when the flow coefficient is matched between model 
and prototype machines. 

As discussed in Chapter 7, a useful parameter called specific speed can be ob­
tained by combining the flow and head coefficients and eliminating the machine size. 
The result was 

( 9 I / 2 

Ns = (7.16a) 
n 

When head is expressed as energy per unit mass (i.e., with dimensions equivalent to 
L2/t2, or g times head in height of liquid), and co is expressed in radians per second, 
the specific speed defined by Eq. 7.16a is dimensionless. 

Although specific speed is a dimensionless parameter, it is common practice to 
use an "engineering" equation form of Eq. 7.16a in which to and Q are specified in 
units that are convenient but inconsistent, and energy per unit mass, h, is replaced 
with energy per unit weight of fluid, H. When this is done, the specific speed is not a 
unitless parameter and the magnitude of the specific speed depends on the units used 
to calculate it. Customary units used in U.S. engineering practice for pumps are rpm 
for co, gpm for Q, and feet (energy per unit weight) for H. In practice, the symbol N is 
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used to represent rate of rotation (co) in rpm. Thus, the dimensional specific speed foU 
pumps, expressed in U.S. customary units, becomes 

n l / 2 N{rpm)[Q(gpm)]> 
i 3 /4 (7.16bJ 

[//(for 
Values of the dimensionless specific speed, Ns (Eq. 7.16a), must be multiplied by] 
2733 to obtain the values of specific speed corresponding to this commonly used bum 
inconsistent set of units (see Example Problem 10.6). 

For hydraulic turbines, we use the fact that power output is proportional to flow] 
rate and head, 9 ? « pQh in consistent units. Substituting ty/ph for Q in Eq. 7.16a| 
gives 

(10.18al 1/2 , , 3 / 4 Ns = co(VlphyLlh ft,SP"2/(p1/2A5/4) 

as the nondimensional form of the specific speed. 
In U.S. engineering practice it is customary to drop the factor pm (water is in-J 

variably the working fluid in the turbines to which the specific speed is applied) andl 
to use head H in place of energy per unit mass h. Customary units used in U.S. engi-l 
neering practice for hydraulic turbines are rpm for to, horsepower for 2P, and feet foa 
H. In practice, the symbol N is used to represent rate of rotation (co) in rpm. Thus the 
dimensional specific speed for a hydraulic turbine, expressed in U.S. customary units! 
becomes 

-.1/2 N (rpm)^ (hp)]' 

tff(ft)] 
5/4 (10. 18b) 

Values of the dimensionless specific speed for a hydraulic turbine, Ns (Eq. 10.18a)J 
must be multiplied by 43.46 to obtain the values of specific speed corresponding t o l 
this commonly used but inconsistent set of units. 

Specific speed may be thought of as the operating speed at which a pump pro\ 
duces unit head at unit volume flow rate (or, for a hydraulic turbine, unit power a t 
unit head). To see this, solve for /V in Eqs. 7.16b and 10.18b, respectively. For pumpJ 

[ # ( f t ) ] 3 / 4 

and for hydraulic turbines 

/V(rpm) = Ns 

N (rpm) = Ns 

[<2(gpm)] ' / 2 

[H(tt)f4 

" [^(hp)] 
1/2 

Holding specific speed constant describes all operating conditions of geometrically] 
similar machines with similar flow conditions. 

0.2 0.3 0.4 0 .50 .6 0.8 1.0 2.0 3 .0 4.0 
Dimensionless specific speed, NI 

Fig. 10.14 T y p i c a l g e o m e t r i c p r o p o r t i o n s of c o m m e r c i a l 
p u m p s a s t h e y v a r y w i th d i m e n s i o n l e s s spec i f i c s p e e d [12]. 
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Fig. 10.15 Average eff iciencies of commercia l p u m p s a s they 
vary with specific s p e e d and pump s i ze [10]. 

It is customary to characterize a machine by its specific speed at the design 
point. This specific speed has been found to characterize the hydraulic design fea­
tures of a machine. Low specific speeds correspond to efficient operation of radial-
flow machines. High specific speeds correspond to efficient operation of axial-flow 
machines. For a specified head and flow rate, one can choose either a low specific 
speed machine (which operates at low speed) or a high specific speed machine 
(which operates at higher speed). 

Typical proportions for commercial pump designs and their variation with di­
mensionless specific speed are shown in Fig. 10.14. In this figure, the size of each 
machine has been adjusted to give the same head and flow rate for rotation at a speed 
corresponding to the specific speed. Thus it can be seen that if the machine's size and 
weight are critical, one should choose a higher specific speed. Figure 10.14 shows the 
trend from radial (purely centrifugal pumps), through mixed-flow, to axial-flow 
geometries as specific speed increases. 

The corresponding efficiency trends for typical pumps are shown in Fig. 10.15, 
which shows that pump capacity generally increases as specific speed increases. The 
figure also shows that at any given specific speed, efficiency is higher for large pumps 
than for small ones. Physically this scale effect means that viscous Josses become less 
important as the pump size is increased. 

Characteristic proportions of hydraulic turbines also are correlated by specific 
speed, as shown in Fig. 10.16. As in Fig. 10.14, the machine size has been scaled in 

0.2 0.3 0.4 0.50.6 0.8 1.0 2.0 3.0 4.0 
Dimensionless specific speed, N, 

Fig. 10.16 Typical geometric proportions of commercial hydraulic 
turbines a s they vary with d imens ion les s specific s p e e d [12]. 
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Specific speed, N, = N < r P m > l-p ' h P > ' ' 

F ig . 10.17 A v e r a g e e f f i c ienc ies of c o m m e r c i a l h y d r a u l i c tur­
b i n e s a s t h e y v a r y w i th spec i f i c s p e e d [10]. 

this illustration to deliver approximately the same power at unit head when rotating at 
a speed equal to the specific speed. The corresponding efficiency trends for typical 
turbine types are shown in Fig. 10.17. 

Several variations of specific speed, calculated directly from engineering units,! 
are widely used in practice. The most commonly used forms of specific speed fcq 
pumps are defined and compared in Example Problem 10.6. 

EXAMPLE 10.6 Comparison of Specific Speed Definitions 

At the best efficiency point, a centrifugal pump, with impeller diameter D = 
produces H = 21.9 ft at Q = 300 gpm with N = 1170 rpm. Compute the correspon­
ding specific speeds using: (a) U.S. customary units, (b) ST units (rad/s, mVs, m 2/s 2), 
and (c) European units (rev/s, m 3 /s , m 2 / s 2 ) . Develop conversion factors to relate the J 
specific speeds. 

EXAMPLE PROBLEM 10.6 

GIVEN: Centrifugal pump at best efficiency point (BEP). Assume the pump characteristics are H = 21.9 ft, 
Q = 300 gpm, and N = 1170 rpm. 

FIND: (a) The specific speed in U.S. customary units. 
(b) The specific speed in SI units. 
(c) The specific speed in European units. 
(d) Appropriate conversion factors to relate the specific speeds. 

SOLUTION: 

LOQ 1/2 
Governing equations: A^ = ^3/4 and NS^ NQ 

1/2 

H 3/4 

From the given information, the specific speed in U.S. customary units is 

I 1170 rpm (30O) 1 / 2 gpm" 2 

= x x 
(21.9) 3 / 4 f t 3 / 4 

2000 
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Convert information to SI units: 

1170 rev 2TT rad min 
x 

mm rev 60 s 
= 123 rad/s 

min (0.305)3 m 3

 n n i n n 3 / 

x x — r - = 0.0190 m / s 
min 7.48 gal 60s ft 3 

„ 21.9 ft 0.305 m 
H = x — = 6.68 m 

ft 

The energy per unit mass is 

h = gH 

The dimensionless specific speed is 

123 rad (0.0190)" z m 

9.81 m 6.68 m 

7X 

1/2 3/2 

,1 /2 s s ' " ( 6 5 . 5 r ' H ( n O 

Convert the operating speed to hertz: 

1170 rev min Hz • s 

65.5 m 2 / s 2 

( s 2 ) 3 / 4 

3 / 4 , „ 2 s 3 / 4 = 0.736 

x x 
min 60 s rev 

= 19.5 Hz 

19.5 Hz (0.0190)" 2 m 3 / 2 

Finally, the specific speed in European units is 

Ns(Eur) 

To relate the specific speeds, form ratios: 

N, 

„l /2 

( s 2 ) 3 ' 4 

J^-J = 0 117 ( 6 5 . 5 ) " \ m ' ) J 

2000 
/Vs(Eur) 0.117 

= 17,100 

^ - ^ = 2720 
Ns(Sl) 0.736 

This problem demonstrates the use of "engineering" equations 
to calculate specific speed for pumps from each of three com­
monly used sets of units and to compare the results. (Three 
significant figures have been used for all calculations in this 
example. Slightly different results would be obtained if more 
significant figures were carried in intermediate calculations.) 

NASI) 

N,(Eur) 

Similarity Rules 

Pump manufacturers offer a Limited number of casing sizes and designs. Frequently, 
casings of different sizes are developed from a common design by increasing or 
decreasing all dimensions by the same scale ratio. Additional variation in characteris­
tic curves may be obtained by varying the operating speed or by changing the im­
peller size within a given pump housing. The dimensionless parameters developed in 
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Chapter 7 form the basis for predicting changes in performance that result from 
changes in pump size, operating speed, or impeller diameter. 

To achieve dynamic similarity requires geometric and kinematic similarity, 
suming similar pumps and flow fields, and neglecting viscous effects, as shown 
Chapter 7, we obtain dynamic similarity when the dimensionless flow coefficient I 
held constant. Dynamically similar operation is assured when two flow conditions 
satisfy the relation 

irom 
As-

n in 
at is 

0-2 (10.19a) 
<M\L\ w 27?2 

The dimensionless head and power coefficients depend only on the flow coefficient, 
i.e., 

h 

co2D2 

Q 
wD 3 

and -l—-f 

Hence, when we have dynamic similarity, as shown in Example Problem 7.6, pump j 
characteristics at a new condition (subscript 2) may be related to those at an old cord 
dition (subscript 1) by 

and 

2 n 2 

p^D* 

0 > 2 / > > 
(10.19b) 

9*> 
3 n 5 (10.1 J 

These scaling relationships may be used to predict the effects of changes in pump op­
erating speed, pump size, or impeller diameter within a given housing. 

The simplest situation is when we keep the same pump and only the pump 
speed is changed. Then geometric similarity is assured. Kinematic similarity holds 
if there is no cavitation; flows are then dynamically similar when the flow coeffi­
cients are matched. For this case of speed change with fixed diameter, Eqs. 10.19 
become 

02 
Q\ 

( 1 0 . 2 0 * 

(10.20HJ 

3 - , 

1 
2 _ (10.20d | 

In Example Problem 10.4, it was shown that a pump performance curve could be 
modeled within engineering accuracy by the parabolic relationship, H = H0 - AQ2! 
Since this representation contains two parameters, the pump curve for the new operat­
ing condition could be derived by scaling any two points from the performance curvei 
measured at the original operating condition. Usually, the shutpff condition and thel 
best efficiency point are chosen for scaling. These points are represented by points B 
and C in Fig. 10.18. 
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F ig . 10.18 Schemat i c of a p u m p per fo rmance curve, 
i l lustrat ing the effect of a c h a n g e in p u m p opera t ing speed . 

As shown by Eq. 10.20a, the flow rate increases by the ratio of operating speeds, so 

QB 
CO and 

Thus, point B' is located directly above point B and point C moves to the right of 
point C (in this example co2 > 

The head increases by the square of the speed ratio, so 

Cx>2 
and C N 2 

Kcox 

Points C and C , where dynamically similar flow conditions are present, are termed 
homologous points for the pump. 

We can relate the old operating condition (e.g., running at speed /V, = 1170 rpm, 
as shown in Fig. 10.18) to the new, primed one (e.g., running at speed /V2 = 1750 rpm 
in Fig. 10.18) using the parabolic relation and Eqs. 10.20a and 10.20b, 

H = H' 
f \ 2 

CL>2 

or 

= H0- AQ = Hi 

H'= H0 -AQ' 

CO] 

co2 

- AQ" 
{L02 

(10.21) 

so that for a given pump the factor A remains unchanged as we change pump speed 
(as we will verify in Example Problem 10.7). 

Efficiency remains relatively constant between dynamically similar operating 
points when only the pump operating speed is changed. Application of these ideas is 
illustrated in Example Problem 10.7. 

EXAMPLE 10.7 Scaling Pump Performance Curves 

When operated at N = 1170 rpm, a centrifugal pump, with impeller diameter D = 8 in., 
has shutoff head H0 = 25.0 ft of water. At the same operating speed, best efficiency 
occurs at Q = 300 gpm, where the head is H — 21.9 ft of water. Fit these data at 
1170 rpm with a parabola. Scale the results to a new operating speed of 1750 rpm. Plot 
and compare the results. 
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EXAMPLE PROBLEM 10.7 

GIVEN: Centrifugal pump (with D = 8 in. impeller) operated at N = 1170 rpm. 

Q (gpm) 0 300 
//(ft of water) 25.0 21.9 

FIND: (a) The equation of a parabola through the pump characteristics at 1170 rpm. 
(b) The corresponding equation for a new operating speed of 1750 rpm 
(c) Comparison (plot) of the results. 

SOLUTION: 
Assume a parabolic variation in pump head of the form, H = H0 — AQ}. Solving for A gives 

^ T = 3.44 x 1 0 - 5 ft/(gpm)2 

(300) 2(gpm) 2 

H0-H (25.0-21.9) ft 
A, = " „— = x 

The desired equation is 

//(ft) = 25.0 - 3.44 X 10" 5 [Q(gpm)]2 

The pump remains the same, so the two flow conditions are geometrically similar. Assuming no cavitation 
occurs, the two flows also will be kinematically similar. Then dynamic similarity will be obtained when the 
two flow coefficients are matched. Denoting the 1170 rpm condition by subscript 1 and the 1750 rpm con­
dition by subscript 2, we have 

Qi _ Q\ „ . Qi _ c>2 N2 

Qx t»i A 7. 3 3 
or 

since D2 = Dx. For the shutoff condition, 

Nx

 1 1170 rpm 

From the best efficiency point, the new flow rate is 

N2 1750 rpm n _ 
T T Q\ - " T T T - ^ — x 0 gpm = 0 gpm 

N2 1750 rpm . . . 
Qi = T T G I = T T T T - ^ x 300gpm = 449gpm 

Ni 1170 rpm 

The pump heads are related by 

No 

H, N2Df //, 

since D2 = D,. For the shutoff condition, 

At the best efficiency point, 

H2 = [N2 

2 

By = ' 1750 rpm > 

^ 1170 rpm, 

H2 = 
'N2" '1750 rpra^ 

1 ̂  1170 rpm, 

25.0 ft = 55.9 ft 

21.9 ft = 49.0 ft 

The curve parameter at 1750 rpm may now be found. Solving for A, we find 

1 . _Hai-H2 (55.9 - 49.0) ft 
r\2 — ^ — A Qi (449) 2(gpm) 2 

= 3.44 x 10" 5 ft/(gpm)2 
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Note that A 2 at 1750 rpm is the same as A! at 1170 rpm. Thus we have demonstrated that the coefficient A 
in the parabolic equation does not change when the pump speed is changed. The "engineering" equations 
for the two curves are 

ff, = 25.0 - 3.44 X 10"5[G (gpm)]2 (at 1170 rpm) 

and 

H2 = 55.9 - 3.44 X 10"5[(2 (gpm)]2 (at 1750 rpm) 

The pump curves are compared in the following plot: 

This Example Problem illustrates the procedures for: 
/ Obtaining the parabolic "engineering" equation from shut-

off head Ha and best efficiency data on Q and H. 
/ Scaling pump curves from one speed to another. 
The Excel workbook for this Example Problem can be 
used to generate pump performance curves for a range of 
speeds. 

In principle, geometric similarity would be maintained when pumps of the same 
geometry, differing in size only by a scale ratio, were tested at the same operating 
speed. The flow, head, and power would be predicted to vary with pump size as 

A 
H2 - /Tj 

r \ 2 

A 
9 > , = 3 > . 

f \ 5 

v A 
(10.22) 

It is impractical to manufacture and test a series of pump models that differ in 
size by only a scale ratio. Instead it is common practice to test a given pump casing at 
a fixed speed with several impellers of different diameter [13]. Because pump casing 
width is the same for each test, impeller width also must be the same; only impeller 
diameter D is changed. As a result, volume flow rate scales in proportion to D2, not to 
D 3 . Pump input power at fixed speed scales as the product of flow rate and head, so it 
becomes proportional to D4. Using this modified scaling method frequently gives re­
sults of acceptable accuracy, as demonstrated in several end-of-chapter problems 
where the method is checked against measured performance data from Appendix D. 
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It is not possible to compare the efficiencies at the two operating conditions di­
rectly. However, viscous effects should become relatively less important as the pump 
size increases. Thus efficiency should improve slightly as diameter is increased. 

Moody [14] suggested an empirical equation that may be used to estimate the 
maximum efficiency of a prototype pump based on test data from a geometrically 
similar model of the prototype pump. His equation is written 

(10.23) 

To develop Eq. 10.23, Moody assumed that only the surface resistance changes with] 
model scale so that losses in passages of the same roughness vary as 1/D5. Unfortu-I 
nately, it is difficult to maintain the same relative roughness between model andl 
prototype pumps. Further, the Moody model does not account for any difference in 
mechanical losses between model and prototype, nor does it allow determination oi l 
off-peak efficiencies. Nevertheless, scaling of the maximum-efficiency point is useful j 
to obtain a general estimate of the efficiency curve for the prototype pump. 

Cavitation and Net Positive Suction Head 

Cavitation can occur in any machine handling liquid whenever the local static preiB 
sure falls below the vapor pressure of the liquid. When this occurs, the liquid can 
locally flash to vapor, forming a vapor cavity and significantly changing the flow pat­
tern from the noncavitating condition. The vapor cavity changes the effective shape of 
the flow passage, thus altering the local pressure field. Since the size and shape of the 
vapor cavity are influenced by the local pressure field, the flow may become uns teadB 
The unsteadiness may cause the entire flow to oscillate and the machine to vibrate. 

As cavitation commences, it reduces the performance of a pump or turbine rap­
idly. Thus cavitation must be avoided to maintain stable and efficient operation. In 
addition, local surface pressures may become high when the vapor cavity implodes or 
collapses, causing erosion damage or surface pitting. The damage may be severe 
enough to destroy a machine made from a brittle low-strength material. Obviously 
cavitation also must be avoided to assure long machine life. 

In a pump, cavitation tends to begin at the section where the flow is accelerated 
into the impeller. Cavitation in a turbine begins where pressure is lowest. The ten­
dency to cavitate increases as local flow speeds increase; this occurs whenever flow 
rate or machine operating speed is increased. 

Cavitation can be avoided if the pressure everywhere in the machine is kept 
above the vapor pressure of the operating liquid. At constant speed, this requires 
that a pressure somewhat greater than the vapor pressure of the liquid be 
maintained at a pump inlet (the suction). Because of pressure losses in the inlea 
piping, the suction pressure may be sub-atmospheric. Therefore it is important to 
carefully limit the pressure drop in the inlet piping system. 

Net positive suction head (NPSH) is defined as the difference between the ab­
solute stagnation pressure in the flow at the pump suction and the liquid vapor pres« 
sure, expressed as head of flowing liquid [15]. 6 The net positive suction head 
required (NPSHR) by a specific pump to suppress cavitation varies with the liquid 

''NPSH may be expressed in any convenient units of measure, such as height of the flowing liquid, e.g., ft 
of water (hence the term suction head), psia, or kPa (abs). When expressed as head, NPSH is measured \ 
relative to the pump impeller centerline. 
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pumped, and with the liquid temperature and pump condition (e.g., as critical geo­
metric features of the pump are affected by wear). NPSHR may be measured in a 
pump test facility by controlling the input pressure. The results are plotted on the 
pump performance curve. Typical pump characteristic curves for three impellers 
tested in the same housing were shown in Fig. 10.8. Experimentally determined 
NPSHR curves for the largest and smallest impeller diameters are plotted near the 
bottom of the figure. 

The net positive suction head available (NPSHA) at the pump inlet must be 
greater than the NPSHR to suppress cavitation. Pressure drop in the inlet piping and 
pump entrance increases as volume flow rate increases. Thus for any system, the 
NPSHA decreases as flow rate is raised. The NPSHR of the pump increases as the 
flow rate is raised. Therefore, as the system flow rate is increased, the curves for 
NPSHA and NPSHR versus flow rate ultimately cross. For any inlet system, there is a 
flow rate that cannot be exceeded if flow through the pump is to remain free from 
cavitation. Inlet pressure losses may be reduced by increasing the diameter of the in­
let piping; for this reason many centrifugal pumps have larger flanges or couplings at 
the inlet than at the outlet. 

EXAMPLE 10.8 Calculation of Net Positive Suction Head (NPSH) 

A Peerless Type 4AEII centrifugal pump (Fig. D.3, Appendix D) is tested at 1750 
rpm using a flow system with the layout of Example Problem 10.3. The water level in 
the inlet reservoir is 3.5 ft above the pump centerline; the inlet line consists of 6 ft of 
5 in. diameter straight cast-iron pipe, a standard elbow, and a fully open gate valve. 
Calculate the net positive suction head available (NPSHA) at the pump inlet at a vol­
ume flow rate of 1000 gpm of water at 80°F. Compare with the net positive suction 
head required (NPSHR) by the pump at this flow rate. Plot NPSHA and NPSHR for 
water at 80°F and 180°F versus volume flow rate. 

EXAMPLE PROBLEM 10.8 

GIVEN*. A Peerless Type 4AE11 centrifugal pump (Fig. D.3, Appendix D) is tested at 1750 rpm using a 
flow system with the layout of Example Problem 10.3. The water level in the inlet reservoir is 
3.5 ft. above the pump centerline; the inlet line has 6 ft of 5 in. diameter straight cast-iron pipe, a 
standard elbow, and a fully open gate valve. 
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FIND: (a) NPSHA alQ = 1000 gpm of water at 80°F. 
(b) Comparison with NPSHR for this pump at Q = 1000 gpm. 
(c) Plot of NPSHA and NPSHR for water at 80°F and 180°F versus volume flow rate. 

SOLUTION: 
Net positive suction head (NPSH) is defined as the difference between the absolute stagnation pressure in 
the flow at the pump suction and the liquid vapor pressure, expressed as head of flowing liquid. Therefore 
it is necessary to calculate the head at the pump suction. 

Apply the energy equation for steady, incompressible pipe flow to compute the pressure at the 
pump inlet and thus the NPSHA. Denote the reservoir level as CD and the pump suction as © , as 
shown above. 

- 0 

Governing equation: Pi + \pjf\ + PSZi = P,+ ^pV2

s + Pgs + Pnn 

Assumption: V, is negligible. Thus 

The total head loss is 

Ps = P\ + P«(Zi - zs) -\p V2 - phtT 

D D) 2 -pv; 

Substituting Eq. 2 into Eq. 1 and dividing by pg, 

H1=Hl+Zl-z,-[l.K + I,f^ + f± + l ^ 

Evaluating the friction factor and head loss, 

/ = f(Re, e/D); Re = 

For 5 in. (nominal) pipe, D = 5.047 in. 

pVD _ VD 
P v A 4 

ft /~1 

D = 5.047 in. x ——— = 0.421ft, A = —— = 0.139 ft2 

12in. 4 
- 1000 gal ft3 1 V = x x mm , s n r . 

x — = 16.0 ft/s min 7.48 gal 0.139ft z 60s 

From Table A.7, for water at T = 80°F, v = 0.927 X 10" 5 ft2/s. 
The Reynolds number is 

VD 16.0 ft 0.421ft s 
Re = — = — x x F — T 

v s 0.927 x 10~5 ft 2 

7.27 x 10' 

(2) 

(3) 

From Table 8.1, e = 0.00085 ft, so e/D = 0.00202. From Eq. 8.37,/= 0.0237. The minor loss coefficients are 

Entrance K = 0.5 

Standard elbow = 30 
D 

Open gate value — = 8 
D 
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Substituting, 

The heads are 

| l K + X / + / + 1 j = 0.5 + 0.0237(30 + 8) + 0 . 0 2 3 7 ^ ^ j j + 1 = 2.74 

Hi = 
p a t m _ 14.7 Ibf „ 144 in. 2

 x ft 3

 ; { s 2

 ? { slug • ft 

Pg ft 2 1.93 slug 32.2 ft M s 2 
= 34.1 ft (abs) 

V2 1 (16.0)2 ft 2 s 2 . n o . 
- x ' x = 3.98 ft 

2g 2 s 2 32.2 ft 
Thus, 

Hs = 34.1ft +3.5 ft -(2.74)3.98 ft = 26.7ft(abs) 

To obtain NPHSA, add velocity head and subtract vapor head. Thus 

V2 

NPHSA = H, + - tfB 2g 

The vapor pressure for water at 80°F is pv = 0.507 psia. The corresponding head is Hv = 1.17 ft of water. 
Thus, 

NPSHA = 26.7 + 3.98 - 1.17 = 29.5 ft NPSHA 

The pump curve (Fig. D.3, Appendix D) shows that at 1000 gpm the pump requires 

NPSHR = 10.0 ft NPSHR 

. Results of similar computations for water at 80°F are plotted in the figure on the left below. (NPSHR val­
ues are obtained from the pump curves in Fig. D.3, Appendix D.) 

40 

£ 30 

1 20 

2 1 0 

c/) 

"i i i i i i i i i i i i r 

NPSHA (ft) 
NPSHR (ft) 

0 I l I I I I L J I I L 

40 

500 1000 

Volume flow rate, Q (gpm) 

(o) Net positive suction head, water at 80 L 'F 

0 

i i i i i i i i i i i i i r 
NPSHA (ft) 
NPSHR (ft) 

I I I I I I I I I I I I L 

500 1000 1500 

Volume flow rate, Q (gpm) 

lb) Net positive suction head, water at 180°F 

Results of computation for water at 180°F are plotted in the figure on the right above. The vapor pres­
sure for water at 180°F is pv = 7.51 psia. The corresponding head is Hv = 17.3 ft of water. This high vapor 
pressure reduces the NPSHA, as shown in the plot. 
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This problem illustrates the procedures used for checking 
whether a given pump is in danger of experiencing cavitation: 

/ Equation 3 and the plots show that the NPSHA decreases as 
flow rate Q (or V,) increases; on the other hand, the NPSHR 
increases with Q, so if the flow rate is high enough, a pump 
will likely experience cavitation (when NPSHA < NPSHR). 
The NPSHR for any pump increases with flow rate Q 
because local fluid velocities within the pump increase, 
causing locally reduced pressures and tending to promote 
cavitation. 
For this pump, at 80°F, the pump appears to have NPSHA > 
NPSHR at all flow rates, so it would never experience cavita­
tion; at 180°F, cavitation would occur around 1100 gpm, but 
from Fig. D.3, the pump best efficiency is around 900 gpm, 
so it would probably not be run at 1100 gpm—the pump 
would probably not cavitate even with the hotter water. 

The Excel workbook for this Example Problem can be 
used to generate the NPSHA and NPSHR curves for a 
variety of pumps and water temperatures. 

10-5 APPLICATIONS T O FLUID SYSTEMS 

We define a fluid system as the combination of a fluid machine and a network ofl 
pipes or channels that convey fluid. The engineering application of fluid machines 
in an actual system requires matching the machine and system characteristics^ 
while satisfying constraints of energy efficiency, capital economy, and durability. 
We have alluded to the vast assortment of hardware offered by competing suppli­
ers; this variety verifies the commercial importance of fluid machinery in modern 
engineering systems. i 

Usually it is more economical to specify a production machine rather than a 
custom unit, because products of established vendors have known, published per­
formance characteristics, and they must be durable to survive in the marketplace. 
Application engineering consists of making the best selection from catalogs of 
available products. In addition to machine characteristic curves, all manufacturer*! 
provide a wealth of dimensional data, alternative configuration and mounting 
schemes, and technical information bulletins to guide intelligent application of 
their products. 

This section consists of a brief review of relevant theory, followed by example 
applications using data taken from manufacturer literature. Two subsections treat ma­
chines for doing work on a fluid (pumps, fans, blowers, compressors, and propellers) 
and machines for extracting work from a fluid (turbines and windmills). Selected per­
formance curves for centrifugal pumps and fans are presented in Appendix D. These 
may be studied as typical examples of performance data supplied by manufactured 
The curves may also be used to help solve the equipment selection and system d e s i p 
problems at the end of the chapter. 
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Machines for Doing Work on a Fluid 

We will consider various machines for doing work on a fluid, but we first make a few 
genera] points. As we saw in Example Problem 10.3, a typical pump, for example, 
produces a smaller head as the flow rate is increased. On the other hand, the head 
(which includes major and minor losses) required to maintain flow in a pipe system in­
creases with the flow rate. Hence, as shown graphically 7 in Fig. 10.19, a pump-system 
will run at the operating point, the flow rate at which the pump head rise and required 
system head match. (Figure 10.19 also shows a pump efficiency curve, indicating that, 
for optimum pump selection, a pump should be chosen that has maximum efficiency 
at the operating point flow rate.) The pump-system shown in Fig. 10.19 is stable. If for 
some reason the flow rate falls below the operating flow rate, the pump pressure head 
rises above the required system head, and so the flow rate increases back to the operat­
ing point. Conversely, if the flow rate momentarily increases, the required head 
exceeds the head provided by the pump, and the flow rate decreases back to the oper­
ating point. This notion of an operating point applies to each machine we will consider 
(although, as we will see, the operating points are not always stable). 

The system pressure requirement at a given flow rate is composed of frictional 
pressure drop (major loss due to friction in straight sections of constant area and mi­
nor loss due to entrances, fittings, valves, and exits) and pressure changes due to 
gravity (static lift may be positive or negative). It is useful to discuss the two limiting 
cases of pure friction and pure lift before considering their combination. 

The all-friction system head versus flow curve, with no static lift, starts at zero 
flow and head, as shown in Fig. 10.20a. For this system the total head required is the 
sum of major and minor losses, 

L V2 

For turbulent flow (the usual flow regime in engineering systems), as we learned in 
Chapter 8 (see Fig. 8.12), the friction factors approach constant and the minor loss 
coefficients K and equivalent lengths Le are also constant. Hence hlr~ V2 — ( ) 2 so 
that the system curve is approximately parabolic. (In reality, because the friction 
factors /only approach constants as the regime becomes fully turbulent, it rums out that 
Q 1 7 5 < hi < Q2.) This means the system curve with pure friction becomes steeper as 

L V V 1 

D 2 2 

Volume flow rate 
F ig . 10.19 S u p e r i m p o s e d s y s t e m h e a d - f l o w a n d p u m p 
h e a d - c a p a c i t y c u r v e s . 

7 While a graphical representation is useful for visualizing the pump-system matching, we typically use 
analytical or numerical methods to determine the operating point (Excel is very useful for this). 
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F ig . 10.20 S c h e m a t i c d i a g r a m s i l lustrat ing b a s i c t y p e s of 
s y s t e m h e a d - f l o w c u r v e s ( a d a p t e d f r o m [8]). 

flow rate increases. To develop the friction curve, losses are computed at various flow 
rates and then plotted. 

Pressure change due to elevation difference is independent of flow rate. Thus the 
pure lift system head-flow curve is a horizontal straight line. The gravity head is eval­
uated from the change in elevation in the system. 

All actual flow systems have some frictional pressure drop and some elevation 
change. Thus all system head-flow curves may be treated as the sum of a frictional 
component and a static-lift component. The head for the complete system at any flow 
rate is the sum of the frictional and lift heads. The system head-flow curve is plotted 
in Fig. 10.20b. 

Whether the resulting system curve is steep or flat depends on the relative im­
portance of friction and gravity. Friction drop may be relatively unimportant in the 
water supply to a high-rise building (e.g., the Sears Tower in Chicago, which is 
nearly 400 m tall), and gravity lift may be negligible in an air-handling system for a 
one-story building. 

In Section 8-7 we obtained a form of the energy equation for a control volume 
consisting of a pump-pipe system, 

El 
P 

PI v2 

Ah, pump (8.49) 

Replacing A / i p u m p with hu, representing the head added by any machine (not only a 
pump) that does work on the fluid, and rearranging Eq. 8.49, we obtain a more gen­
eral expression 

V P2 V 
(10.24a) 
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Dividing by g gives 

p, V2 p7 V2 K 
^ - + a , - L +zi + Ha = -^ 2 - + a 2 ^ - + z2 + — (10.24b) 
pg 2g pg 2g g 

where Ha is the energy per unit weight (i.e, the head, with dimensions of L) added by 
the machine. 

a. P u m p s 

The pump operating point is defined by superimposing the system curve and the 
pump performance curve, as shown in Fig. 10.19. The point of intersection is the 
only condition where the pump and system flow rates are equal and the pump and 
system heads are equal simultaneously. The procedure used to determine the match 
point for a pumping system is illustrated in Example Problem 10.9. 

EXAMPLE 10.9 Finding the Operating Point for a Pumping System 

The pump of Example Problem 10.7, operating at 1750 rpm, is used to pump water 
through the pipe system of Fig. 10.20a. Develop an algebraic expression for the gen­
eral shape of the system resistance curve. Calculate and plot the system resistance 
curve. Solve graphically for the system operating point. Obtain an approximate ana­
lytical expression for the system resistance curve. Solve analytically for the system 
operating point. 

EXAMPLE PROBLEM 10.9 

GIVEN: Pump of Example Problem 10.7, operating at 1750 rpm, with H = H0- AQ2, where H0 = 55.9 
and A = 3.44 X 10~5 ft/(gpm)2. System of Fig. 10.20a, where L, = 2 ft of D, = 10 in. pipe and'' 
Li = 3000 ft of D2 = 8 in. pipe, conveying water between two large reservoirs whose surfaces 
are at the same level. 

FIND: (a) A general algebraic expression for the system head curve. 
(b) The system head curve by direct calculation. 
(c) The system operating point using a graphical solution. 
(d) An approximate analytical expression for the system head curve. 
(e) The system operating point using the analytical expression of part (d). 

SOLUTION: 
[ Apply the energy equation to the flow system of Fig. 10.20a. 
[Governing equation: 

Po Vo „ Pi ^ 3 hh 
Pg 2g pg 2g g 

p where ZQ and zy are the surface elevations of the supply and discharge reservoirs, respectively. 

[.Assumptions: (1) p0 = P i = pam. 
( 2 ) ' 7 0 = ' 7 3 = 0. 
(3) zn = z 3 (given). 

(10.24b) 

[Simplifying, we obtain 

H, (1) 
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where sections (D and © are located just upstream and downstream from the pump, respectively. 
The total head losses are the sum of the major and minor losses, so 

L\ 2 L>2 

Yl 
2 

From continuity, V|A. 

Hence 

V2A2, so V, = V2 = 
A, 

yl 
2g 

or, upon simplifying, 

ff, = 
•T ^ 2 

y L 
2# ff,. 

This is the head loss equation for the system. At the operating point, as indicated in Eq. 1, the head loss is 
equal to the head produced by the pump, given by 

ff. = ffo - AQ2 (2) 

where ff0 = 55.9 ft and A = 3.44 X 10~5 ft/(gpm)2. 

The head loss in the system and head produced by the pump can be computed for a range of flow 
rates: 

Q Rei A Re2 h Hh «a 

(gpm) (ft/s) (1000) (-) (ft/s) (1000) (-) (ft) (ft) 

0 0.00 0 _ 0.00 0 — 0.0 55.9 
100 0.41 32 0.026 0.64 40 0.025 0.7 55.6 
200 0.82 63 0.023 1.28 79 0.023 2.7 54.5 
300 1.23 95 0.022 1.91 119 0.023 5.9 52.8 
400 1.63 127 0.022 2.55 158 0.022 10.3 50.4 
500 2.04 158 0.021 3.19 198 0.022 15.8 47.3 
600 2.45 190 0.021 3.83 237 0.022 22.6 43.5 
700 2.86 222 0.021 4.47 277 0.022 30.6 39.0 
800 3.27 253 0.021 5.11 317 0.022 39.7 33.9 
900 3.68 285 0.021 5.74 356 0.021 50.1 28.0 

1000 4.09 317 0.021 6.38 396 0.021 61.7 21 . 1 
1100 4.49 348 0.020 7.02 435 0.021 74.4 
1200 4.90 380 0.020 7.66 475 0.021 88.4 
1300 5.31 412 0.020 8.30 515 0.021 103 
1400 5.72 443 0.020 8.94 554 0.021 120 
1500 6.13 475 0.020 9.57 594 0.021 137 

The pump curve and the system resistance curve are plotted below: 
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The graphical solution is shown on the plot. At the operating point, H 36 ft and Q 750 gpm. 
We can obtain more accuracy from the graphical solution using the following approach: Because the 

Reynolds number corresponds to the fully turbulent r e g i m e , c o n s t . , we can simplify the equation for 
the head loss and write it in the form 

Hh - CQ2 (3) 

where C = %lir1D\g times the term in square brackets in the expression for HiT. We can obtain a value 
for C direcUy from Eq. 3 by using values for Htr and Q from the table at a point close to the anticipated 
operating point. For example, from the Q = 700 gpm data point, 

__ 30.6 ft 
•,2 

Q 
, = 6.24 x 1 0 ° f t / ( g p m r 

700 2(gpm) 2 

Hence, the approximate analytical expression for the system head curve is 

H,T = 6.24 x 10" 5 f t /(gpm) 2 [e(gpm)] 2 ^ 

Using Eqs. 2 and 3 in Eq. 1, we obtain 

H0 - AQ1 = CG2 

Solving for Q, the volume flow rate at the operating point, gives 

n l / 2 

A + C 

For this case, 

Q 
55.9 ft (gpm) 

(3.44 x 10" 5 + 6.24 x 10" 5)ft 

1/2 

= 760 gpm ^ 

The volume flow rate may be substituted into either expression for head to calculate the head at the operat 
ing point as 

, - 5 f , 
H = C Q 2 = 6.24 x 10-

(gpm) 
2 > < ( 7 6 0 ) 2

( g p m ) 2

 = 3 6 0 f t ^ 
H 

We can see that in this problem our reading of the operating point from the graph was pretty good: 
:The reading of head was in agreement with the calculated head; the reading of flow rate was less than 2% 
different from the calculated result. 

Note that both sets of results are approximate. We can get a more accurate, and easier, result by using 
t Excels Solver or Goal Seek to find the operating point, allowing for the fact that the friction factors vary, 
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however slightly, with Reynolds number. Doing so yields an operating point flow rate of 761 gpm and head 
of 36.0 ft. 

This problem illustrates the procedures used to find the oper­
ating point of a pump and flow system. 

/ The approximate methods—graphical, and assuming fric­
tion losses are proportional to Q}—yielded results close to 
the detailed computation using Excel. We conclude that 
since most pipe flow friction coefficients are accurate to 
only about ± 10% anyway, the approximate methods are 
accurate enough. On the other hand, use of Excel, when 
available, is easier as well as being more accurate. 

/ Equation 3 , for the head loss in the system, must be re­
placed with an equation of the form H = Zn + CQ2 when 
the head H required by the system has a component ZQ due 
to gravity as well as a component due to head losses. 

The Excel workbook for this Example Problem was 
used to generate the tabulated results as well as the most 
accurate solution. It can be adapted for use with other 
pump-pipe systems. 

The shapes of both the pump curve and the system curve can be important to 
system stability in certain applications. The pump curve shown in Fig. 10.19 is typi­
cal of the curve for a new centrifugal pump of intermediate specific speed, for which 
the head decreases smoothly and monotonically as the flow rate increases from shut-
off. Two effects take place gradually as the system ages: the pump wears and its per­
formance decreases (It produces less pressure head so the pump curve gradually 
moves downward toward lower head at each flow rate) and the system head increases 
(the system curve gradually moves toward higher head at each flow rate becauseM 
pipe aging 8). The effect of these changes is to move the operating point toward lower 
flow rates over time. The magnitude of the change in flow rate depends on the shapes 
of the pump and system curves. 

The capacity losses, as pump wear occurs, are compared for steep (friction dom­
inated) and flat (gravity dominated) system curves in Fig. 10.21. The loss in capacity 
is greater for the flat system curve than for the steep system curve. 

The pump efficiency curve is also plotted in Fig. 10.19. The original system operat­
ing point usually is chosen to coincide with the maximum efficiency by careful choice of 
pump size and operating speed. Pump wear increases internal leakage, thus reducing dfl 
livery and lowering peak efficiency. In addition, as shown in Fig. 10.21, the operating 
point moves toward lower flow rate, away from the best efficiency point. Thus the re­
duced system performance may not be accompanied by reduced energy usage. 

Sometimes it is necessary to satisfy a high-head, low-flow requirement; this 
forces selection of a pump with low specific speed. Such a pump may have a perform­
ance curve with a slightly rising head near shutoff, as shown in Fig. 10.22. When tha: 

8 As the pipe ages, mineral deposits form on the wall (see Fig. 8.13), raising the relative roughness and 
reducing the pipe diameter compared with the as-new condition. See Problem 10.62 for typical friction-
factor data. 
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F ig . 10.21 Effect of p u m p w e a r on f low de l ivery to sys tem. 

system curve is steep, the operating point is well defined and no problems with system 
operation should result. However, use of the pump with a flat system curve could eas­
ily cause problems, especially if the actual system curve were slightly above the com­
puted curve or the pump delivery were below the charted head-capacity performance. 

If there are two points of intersection of the pump and system curves, the system 
may operate at either point, depending on conditions at startup; a disturbance could 
cause the system operating point to shift to the second point of intersection. Under 
certain conditions, the system operating point can alternate between the two points of 
intersection, causing unsteady flow and unsatisfactory performance. 

Instead of a single pump of low specific speed, a multi-stage pump may be used 
in this situation. Since the flow rate through all stages is the same, but the head per 
stage is less than in the single-stage unit, the specific speed of the multi-stage pump 
is higher (see Eq. 7.16a). 

The head-flow characteristic curve of some high specific speed pumps shows a 
dip at capacities below the peak efficiency point, as shown in Fig. 10.23. Caution is 
needed in applying such pumps if it is ever necessary to operate the pump at or near 
the dip in the head-flow curve. No trouble should occur if the system characteristic is 
steep, for there will be only one point of intersection with the pump curve. Unless 
this intersection is near point B, the system should return to stable, steady-state oper­
ation following any transient disturbance. 

Operation with a flat system curve is more problematic. It is possible to have 
one, two, or three points of intersection of the pump and system curves, as suggested 
in the figure. Points A and C are stable operating points, but point B is unstable: If the 
flow rate momentarily falls below QB, for whatever reason, the flow rate will continue 
to fall (to QA) because the head provided by the pump is now less than that required 

Volume flow rate 

Fig . 10.22 Opera t i on of low speci f ic s p e e d p u m p near shutoff. 
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F ig . 10.23 O p e r a t i o n of h i g h spec i f i c s p e e d p u m p n e a r the 
d ip. 

by the system; conversely, if the flow surges above QB, the flow rate will continue to 
increase (to Qc) because the pump head exceeds the required head. With the flat sys* 
tern curve, the pump may "hunt" or oscillate periodically or aperiodically. 

Several other factors can adversely influence pump performance: pumping hot 
liquid, pumping liquid with entrained vapor, and pumping liquid with high viscosity. 
According to [5], the presence of small amounts of entrained gas can drastically re­
duce performance. As little as 4 percent vapor can reduce pump capacity by more 
than 40 percent. Air can enter the suction side of the pumping circuit where pressure 
is below atmospheric if any leaks are present. 

Adequate submergence of the suction pipe is necessary to prevent air entrain-
ment. Insufficient submergence can cause a vortex to form at the pipe inlet. If the 
vortex is strong, air can enter the suction pipe. References 16 and 17 give guidelines 
for adequate suction-basin design to eliminate the likelihood of vortex formation. 

Increased fluid viscosity may dramatically reduce the performance of a centrifu­
gal pump [17]. Typical experimental test results are plotted in Fig. 10.24. In the fig­
ure, pump performance with water (/JL = 1 cP) is compared with performance in 
pumping a more viscous liquid (/x = 220 cP). The increased viscosity reduces the 
head produced by the pump. At the same time the input power requirement is in­
creased. The result is a dramatic drop in pump efficiency at all flow rates. 

0 200 400 600 800 1000 
Volume flow rate (gpm) 

F ig . 10.24 Ef fect of l iquid v i s c o s i t y o n p e r f o r m a n c e of a 
cen t r i f uga l p u m p [5]. 



10-5 APPLICATIONS TO FLUID SYSTEMS 537 

Heating a liquid raises its vapor pressure. Thus to pump a hot liquid requires ad­
ditional pressure at the pump inlet to prevent cavitation. (See Example Problem 10.8.) 

In some systems, such as city water supply or chilled-water circulation, there 
may be a wide range in demand with a relatively constant system resistance. In these 
cases, it may be possible to operate constant-speed pumps in series or parallel to sup­
ply the system requirements without excessive energy dissipation due to outlet throt­
tling. Two or more pumps may be operated in parallel or series to supply flow at high 
demand conditions, and fewer units can be used when demand is low. 

For pumps in series, the combined performance curve is derived by adding the 
head rises at each flow rate (Fig. 10.25). The increase in flow rate gained by operat­
ing pumps in series depends upon the resistance of the system being supplied. For 
two pumps in series, delivery will increase at any system head. The characteristic 
curves for one pump and for two identical pumps in series are 

Hi=H0- AQ2 

and 

= 2(H0 ~AQ2) = 2HQ -2AQ2 

Figure 10.25 is a schematic illustrating the application of two identical pumps in se­
ries. A reasonable match to the system requirement is possible—while keeping effi­
ciency h igh—if the system curve is relatively steep. 

In an actual system, it is not appropriate simply to connect two pumps in series. 
If only one pump were powered, flow through the second, unpowered pump would 
cause additional losses, raising the system resistance. It also is desirable to arrange 
the pumps and piping so that each pump can be taken out of the pumping circuit for 
maintenance, repair, or replacement when needed. Thus a system of bypasses, valves, 
and check valves may be necessary in an actual installation [13, 17]. 

Pumps also may be combined in parallel. The resulting performance curve, 
shown in Fig. 10.26, is obtained by adding the pump capacities at each head. The 
characteristic curves for one pump and for two identical pumps in parallel are 

H{ = H0 - A Q2 

and 

(a) S ing le-pump operation (b) T w o pumps in series 

Fig. 10.25 Opera t i on of t w o cent r i fuga l p u m p s in 
ser ies. 



538 CHAPTER 10 / FLUID MACHINERY 

Volume flow rate 

Fig. 10.26 Opera t i on of two cent r i fuga l p u m p s in paral le l , 

The schematic in Fig. 10.26 shows that the parallel combination may be used most 
effectively to increase system capacity when the system curve is relatively flat. 

An actual system installation with parallel pumps also requires more thought to 
allow satisfactory operation with only one pump powered. It is necessary to prevent 
backflow through the pump that is not powered. To prevent backfiow, and to permit 
pump removal, a more complex and expensive piping setup is needed. 

Many other piping arrangements and pump combinations are possible. Pumps of I 
different sizes, heads, and capacities may be combined in series, parallel, or series-
parallel arrangements. Obviously the complexity of the piping and control system in­
creases rapidly. In many applications the complexity is due to a requirement that the 

Table 10.1 Power Requirements for Constant- and Variable-Speed Drive Pumps 

Throttle Valve Control with Constant-Speed (1750 rpm) Motor 

Flow System Valve" Pump Pump Pump Motor Motor Power 
Rate Head Efficiency Head Efficiency Power Efficiency Input Input* 
(gpm) (ft) (%) (ft) (%) " (bhp) (%) ' (hp) (hp) 

1700 180 100.0 180 80.0 96.7 90.8 106.5 106.7 
1500 150 78.1 192 78.4 92.9 90.7 102.4 102.6 
1360 131 66.2 198 76.8 88.6 90.7 97.7 97.9 
1100 102 49.5 206 72.4 79.1 90.6 87.3 87.5 
900 83 39.5 210 67.0 71.3 90.3 79.0 79.1 
600 62 29.0 214 54.0 60.1 90.0 66.8 66.9 

Variable-Speed Drive with Energy-Efficient Motor 

Flow Pump/System Pump Pump Motor Motor Motor Control Power 
Rate Head Efficiency Power Speed Efficiency Input Efficiency Input 
(gpm) (ft) (%) (bhp) (rpm) (%) ' (hp) (%) " (hp) 

1700 180 80.0 96.7 1750 93.7 103.2 97.0 106.4 
1500 150 79.6 71.5 1580 94.0 76.0 96.1 79.1 
1360 131 78.8 57.2 1470 93.9 60.9 95.0 64.1 
1100 102 78.4 36.2 1275 93.8 38.6 94.8 40.7 
900 83 77.1 24.5 1140 92.3 26.5 92.8 28.6 
600 62 72.0 13.1 960 90.0 14.5 89.1 16.3 

"Valve efficiency is the ratio of system pressure to pump pressure. 
''Power input is motor input divided by 0.998 starter efficiency. 
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system handle a variety of flow ra tes—a range of flow rates can be generated by us­
ing pumps in parallel and in series, and by using throttling valves. Throttling valves 
are usually necessary because constant-speed motors drive most pumps, so simply 
using a network of pumps (with some on and others off) without throttling valves 
only allows the flow rate to be varied in discrete steps. The disadvantage of throttling 
valves is that they can be a major loss of energy, so that a given flow rate will require 
a larger power supply than would otherwise be the case. Some typical data for a 
throttling valve, given in Table 10.1 [18], show a decreasing valve efficiency (the per­
centage of pump pressure available that is not consumed by the valve) as the valve is 
used to reduce the flow rate. 

Use of variable-speed operation allows infinitely variable control of system 
flow rate with high energy efficiency and without extra plumbing complexity. A fur­
ther advantage is that a variable-speed drive system offers much simplified control of 
system flow rate. The cost of efficient variable-speed drive systems continues to de­
crease because of advances in power electronic components and circuits. The system 
flow rate can be controlled by varying pump operating speed with impressive savings 
in pumping power and energy usage. The input power reduction afforded by use of a 
variable-speed drive is illustrated in Table 10.1 [18]. At 1100 gpm the power input is 
cut almost 54 percent for the variable-speed system; the reduction at 600 gpm is 
more than 75 percent. 

The reduction in input power requirement at reduced flow with the variable-
speed drive is impressive. The energy savings, and therefore the cost savings, depend 
on the specific duty cycle on which the machine operates. Reference 18 presents in­
formation on mean duty cycles for centrifugal pumps used in the chemical process 
industry; Fig. 10.27 is a plot showing the histogram of these data. The plot shows that 
although the system must be designed and installed to deliver full rated capacity, this 
condition seldom occurs. Instead, more than half the time, the system operates at 70 
percent capacity or below. The energy savings that result from use of a variable-speed 
drive for this duty cycle are estimated in Example Problem 10.10. 
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Fig. 10.27 M e a n duty cyc le for cent r i fuga l p u m p s in the 
chemica l and pe t ro leum indust r ies [18] . 

EXAMPLE 10.10 Energy Savings with Variable-Speed Centrifugal Pump Drive 

Combine the information on mean duty cycle for centrifugal pumps given in Fig. 10.27 
with the drive data in Table 10.1. Estimate the annual savings in pumping energy and 
cost that could be achieved by implementing a variable-speed drive system. 
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EXAMPLE PROBLEM 10.10 

GIVEN: 

FIND: 

Consider the variable-flow, variable-pressure pumping system of Table 10.1. Assume the system 
operates on the typical duty cycle shown in Fig. 10.27,24 hours per day, year round. 

(a) An estimate of the reduction in annual energy usage obtained with the variable-speed drive. 
(b) The energy costs and the cost saving due to variable-speed operation. 

SOLUTION: 
Full-time operation involves 365 days X 24 hours per day, or 8760 hours per year. Thus the percentages in 
Fig. 10.27 may be multiplied by 8760 to give annual hours of operation. 

First plot the pump input power versus flow rate using data from Table 10.1 to allow interpolation, as 
shown below. 
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Illustrate the procedure using operation at 70 percent flow rate as a sample calculation. At 70 percent 
flow rate, the pump delivery is 0.7 X 1700 gpm = 1190 gpm. From the plot, the pump input power 
requirement at this flow rate is 90 hp for the constant-speed drive. At this flow rate, the pump operates 
23 percent of the time, or 0.23 X 8760 = 2015 hours per year. The total energy consumed at this duty 
point is 90 hp X 2015 hr = 1.81 X 105 hp • hr. The electrical energy consumed is 

E = 
1.81 x l O 5 hp hr 0.746 kW 

x 
hr 

The corresponding cost of electricity [at $0.12/(kW 

hp • hr 

hr)] is 

= 1 .35x l0 D kW hr 

1.35xl0>kW.hr x _Sai2_ 
kW • hr 

The following tables were prepared using similar calculations: 

Constant-Speed Drive, 8760 hr/yr 

Flow Flow Time Time Power Energy 
(%) (gpm) (%) (hr) (hp) (hp • hr) 

100 1700 2 175 109 1.91 X 104 

90 1530 8 701 103 7.20 X 104 

80 1360 21 1840 96 17.7 X 104 

70 1190 23 2015 90 18.1 X 104 

60 1020 21 1840 84 15.4 X 104 

50 850 15 1314 77 10.2 X 104 

40 680 10 876 71 6.21 X 104 

Total: 76.7 x 104 
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Summing the last column of the table shows that for the constant-speed drive system the annual energy 
consumption is 7 . 6 7 X 1 0 3 hp • hr. The electrical energy consumption is 

„ 7 . 67 x 1 0 5 hp • hr 0 . 7 4 6 kW • hr „ „ „„„ , , „ L P 

E = y x = 5 7 2 , 0 0 0 kW • hr E C S D 
hp • hr * 

At $ 0 . 1 2 per kilowatt hour, the energy cost for the constant-speed drive system is 

c = 572,000 k W - h r x j a i 2 _ = $ 6 8 J 0 O 

kW - hr 

Variable-Speed Drive, 8760 hr/yr 

Flow Flow Time Time Power Energy 
(%) (gpm) (%) (hr) (hp) (hp • hr) 

100 1700 2 175 109 1.90 X 104 

90 1530 8 701 81 5.71 X 104 

80 1360 21 1840 61 11.2 X 104 

70 1190 23 2015 46 9.20 X 104 

60 1020 21 1840 34 6.29 X 104 

50 850 15 1314 26 3.37 X 104 

40 680 10 876 19 1.68 X 104 

Total: 39.4 X 10 4 

Summing the last column of the table shows that for the variable-speed drive system, the annual 
energy consumption is 3.94 X 105 hp • nr. The electrical energy consumption is 

3.94 x 10 5 hp • hr 0.746 kW • hr 
£ = V x — = 294,000 kW • hr E V S D 

hp • hr < 
At $0.12 per kilowatt hour, the energy cost for the variable-speed drive system is only 

294,000 kW • hr $0 12 
C = x * =$35,250 C V S D kW • hr < — 

Thus, in this application, the variable-speed drive reduces energy consumption by 278,000 kW-hr 
(47 percent). The cost saving is an impressive $33,450 annually. One could afford to install a variable-
speed drive even at considerable cost penalty. The savings in energy cost are appreciable each year and 
continue throughout the life of the system. 

This problem illustrates the energy and cost savings that can be 
gained by the use of variable-speed pump drives. We see that 
the specific benefits depend on the system and its operating 
duty cycle. 

The Excel workbook for this Example Problem was used 
for plotting the graph, for obtaining the interpolated data, 
and for performing all calculations. It can be easily modi­
fied for other such analyses. Note that results were 
rounded down to three significant figures after calculation. 
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b. Fans , B lowers , and C o m p r e s s o r s I 
Fans are designed to handle air or vapor. Fan sizes range from that of the cooling fan 
on a piece of electronic equipment, which moves a cubic meter of air per hour and re­
quires a few watts of power, to that of the ventilation fans for the Channel Tunnel, 
which move thousands of cubic meters of air per minute and require many hundreds 
of kilowatts of power. Fans are produced in varieties similar to those of pumps: They 
range from radial-flow (centrifugal) to axial-flow devices. As with pumps, the charac­
teristic curve shapes for fans depend on the fan type. Some typical performance 
curves for centrifugal fans are presented in Appendix D. The curves may be used to 
choose fans to solve some of the equipment-selection and system-design problems at 
the end of the chapter. 

An exploded view of a medium-size centrifugal fan is shown in Fig. 10.28. 
Some commonly used terminology is shown on the figure. 

The pressure rise produced by fans is several orders of magnitude less than that 
for pumps. Another difference between fans and pumps is that measurement of flow 
rate is more difficult in gases and vapors than in liquids. There is no convenient ana­
log to the "catch the flow in a bucket" method of measuring liquid flow rates! Conse­
quently, fan testing requires special facilities and procedures [6, 20]. Because the 
pressure rise produced by a fan is small, usually it is impractical to measure flow rate 
with a restriction flow meter such as an orifice, flow nozzle, or venturi. It may be nec­
essary to use an auxiliary fan to develop enough pressure rise to permit measurement 
of flow rate with acceptable accuracy using a restriction flow meter. An alternative is 
to use an instrumented duct in which the flow rate is calculated from a pitot traverse. 
Appropriate standards may be consulted to obtain complete information on specific! 
fan-test methods and data-reduction procedures for each application [6, 20]. 

Because the pressure change across a fan is small, the dynamic pressure at the 
fan exit may be an appreciable fraction of the pressure rise. Consequently, it is neces­
sary to carefully specify the basis on which pressure measurements are made. Data 
for both static and total pressure rise and for efficiency, based on both pressure rises,1 

are frequently plotted on the same characteristic graph (Fig. 10.29). 
The coordinates may be plotted in physical units (e.g., inches of water, cubi 

feet per minute, and horsepower) or as dimensionless flow and pressure coefficiem 
The difference between the total and static pressures is the dynamic pressure, so 
vertical distance between these two curves is proportional to Q2. 

Centrifugal fans are used frequently; we will use them as examples. The centrifu-j 
gal fan developed from simple paddle-wheel designs, in which the wheel was a disk 

bic 

1 j 

Inlet 
Outlet Backplate l n l e t g u i , d e v a n e s 

Inlet bell 
Blades 

Side sheet Scroll F l a n 8 e | m p e | | e r Stationary inlet 

F ig . 10.28 E x p l o d e d v i e w of t yp i ca l cen t r i f uga l fan [19] . 
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Volume flow rate, Q 

Fig. 10.29 Typical characteristic curves for fan with 
backward-curved blades [21]. 

carrying radial flat plates. (This primitive form still is used in non-clogging fans such 
as in commercial clothes dryers.) Refinements have led to the three general types 
shown in Figs. 10.30a through c, with backward-curved, radial-tipped, and forward-
curved blades. All the fans illustrated have blades that are curved at their inlet edges 
to approximate shockless flow between the blade and the inlet flow direction. These 
three designs are typical of fans with sheet-metal blades, which are relatively simple 
to manufacture and thus relatively inexpensive. The forward-curved design illustrated 
in the figure has very closely spaced blades; it is frequently called a squirrel-cage fan 
because of its resemblance to the exercise wheels found in animal cages. 

As fans become larger in size and power demand, efficiency becomes more im­
portant. The streamlined airfoil blades shown in Fig. 10.30rf are much less sensitive 
to inlet flow direction and improve efficiency markedly compared with the thin 
blades shown in diagrams a through c. The added expense of airfoil blades for large 
metal fans may be life-cycle cost effective. Airfoil blades are being used more fre­
quently on small fans as impellers molded from plastic become common. 

As is true for pumps, the total pressure rise across a fan is approximately pro­
portional to the absolute velocity of the fluid at the exit from the wheel. Therefore the 
characteristic curves produced by the basic blade shapes tend to differ from each 

[a) Backward-curved (£>) Radial-t ipped (c) Forward-curved 

id) Airfoil blades 

Fig. 10.30 Typical types of blading used for centrifugal fan 
wheels [21]. 
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(a) Backward-curved blades (fr) Radial-tipped blades (c) Forward-curved blades 

Fig . 10.31 General features of performance c u r v e s for centrifugal fans with backward-, 
radial-, and forward-curved blades [21]. 

other. The typical curve shapes are shown in Fig. 10.31, where both pressure rise and] 
power requirements are sketched. Fans with backward-curved blade tips typically 
have a power curve that reaches a maximum and then decreases as flow rate in­
creases. If the fan drive is sized properly to handle the peak power, it is impossible to 
overload the drive with this type of fan. 

The power curves for fans with radial and forward-curved blades rise as flow] 
rate increases. If the fan operating point is higher than the design flow rate, the motor] 
may be overloaded. Such fans cannot be run for long periods at low back pressures. 

Fans with backward-curved blades are best for installations with large power de-' 
mand and continuous operation. The forward-curved blade fan is preferred where lowi 
first cost and small size are important and where service is intermittent. Forward-
curved blades require lower tip speed to produce a specified head; lower blade tig 
speed means reduced noise. Thus forward-curved blades may be specified for heat inl 
and air conditioning applications to minimize noise. 

Characteristic curves for axial-flow (propeller) fans differ markedly from those] 
for centrifugal fans. The power curve, Fig. 10.32, is especially different, as it tends to] 
decrease continuously as flow rate increases. Thus it is impossible to overload a prop-1 
erly sized drive for an axial-flow fan. 

The simple propeller fan is often used for ventilation; it may be free-standing on 
mounted in an opening, as a window fan, with no inlet or outlet duct work. Ducted] 
axial-flow fans have been studied extensively and developed to high efficiency [22]." 
Modern designs, with airfoil blades, mounted in ducts and often fitted with guide 
vanes, can deliver large volumes against high resistances with high efficiency. 
The primary deficiency of the axial-flow fan is the non-monotonic slope of the pres­
sure characteristic: in certain ranges of flow rate the fan may pulsate. Because axial-
flow fans tend to have high rotational speeds, they can be noisy. 

Volume flow rate 

Fig . 10.32 Characteristic curves for a 
typical axial-flow fan [21]. 
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Selection and installation of a fan always requires compromise. To minimize 
energy consumption, it is desirable to operate a fan at its highest efficiency point. To 
reduce the fan size for a given capacity, it is tempting to operate at higher flow rate 
than that at maximum efficiency. In an actual installation, this tradeoff must be made 
considering such factors as available space, initial cost, and annual hours of opera­
tion. It is not wise to operate a fan at a flow rate below maximum efficiency. Such a 
fan would be larger than necessary and some designs, particularly those with for­
ward-curved blades, can be unstable and noisy when operated in this region. 

It is necessary to consider the duct system at both the inlet and the outlet of the 
fan to develop a satisfactory installation. Anything that disrupts the uniform flow at 
the fan inlet is likely to impair performance. Nonuniform flow at the inlet causes the 
wheel to operate unsymmetrically and may decrease capacity dramatically. Swirling 
flow also adversely affects fan performance. Swirl in the direction of rotation reduces 
the pressure developed; swirl in the opposite direction can increase the power re­
quired to drive the fan. 

The fan specialist may not be allowed total freedom in designing the best flow 
system for the fan. Sometimes a poor flow system can be improved without too much 
effort by adding splitters or straightening vanes to the inlet. Some fan manufacturers 
offer guide vanes that can be installed for this purpose. 

Flow conditions at the fan discharge also affect installed performance. Every fan 
produces nonuniform outlet flow. When the fan is connected to a length of straight 
duct, the flow becomes more uniform and some excess kinetic energy is transformed 
to static pressure. If the fan discharges directly into a large space with no duct, the 
excess kinetic energy of the nonuniform flow is dissipated. A fan in a flow system 
with no discharge ducting may fall considerably short of the performance measured 
in a laboratory test setup. 

The flow pattern at the fan outlet may be affected by the amount of resistance 
present downstream. The effect of the system on fan performance may be different at 
different points along the fan pressure-flow curve. Thus, it may not be possible to ac­
curately predict the performance of a fan, as installed, on the basis of curves meas­
ured in the laboratory, 

Fans may be scaled up or down in size or speed using the basic laws developed 
for fluid machines in Chapter 7. It is possible for two fans to operate with fluids of 
significantly different density, 9 so pressure is used instead of head (which uses den­
sity) as a dependent parameter and density must be retained in the dimensionless 
groups. The dimensionless groups appropriate for fan scaling are 

O D 9> 
n i = - ^ 3 . n 2 = — f e ' a n d n 3 = - T O ( 1 0 2 5 ) on) pco D pco D 

Once again dynamic similarity is assured when the flow coefficients are matched. 
Thus when 

(10.26a) 

then 

(10.26b) 

9 Density of the flue gas handled by an induced-draft fan on a steam powerplant may be 40 percent less 
than the density of the air handled by the forced-draft fan in the same plant. 
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and 

Kpj\a>) [D 
(10.26c) 

As a first approximation, the efficiency of the scaled fan is assumed to remain con­
stant, so 

V (10.26d) 

When head is replaced by pressure, and density is included, the expression 
denning the specific speed of a fan becomes 

N. = *>Q w y / 4 

„ 3 / 4 

(10.27) 

A fan scale-up with density variation is the subject of Example Problem 10.11. I 

EXAMPLE 10.11 Scaling of Fan Performance 

Performance curves [21] are given below for a centrifugal fan with D = 36 in. and 
N = 600 rpm, as measured on a test stand using cool air (p = 0.075 lbm/ft 3). Scale 
the data to predict the performance of a similar fan with D ' = 42 in., A7' = 1150 rpm, ] 
and p ' = 0.045 lbm/ft 3. Estimate the delivery and power of the larger fan when it 
operates at a system pressure equivalent to 7.4 in. of H 2 0 . Check the specific speed 
of the fan at the new operating point. 

30 -
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EXAMPLE PROBLEM 10.11 

GIVEN: Performance data as shown for centrifugal fan with D = 36 in., N = 600 rpm, and p = 0.075 
lbm/ft3. 

FIND: (a) The predicted performance of a geometrically similar fan with D' = 42 in., at N' = 1150 
rpm, with p' = 0.045 lbm/ft3. 

(b) An estimate of the delivery and input power requirement if the larger fan operates against a 
system resistance of 7.4 in. H 2 0 . 

(c) The specific speed of the larger fan at this operating point. 
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SOLUTION: 
Develop the performance curves at the new operating condition by scaling the test data point-by-point. Us­
ing Eqs. 10.26 and the data from the curves at Q = 30,000 cfm, the new volume flow rate is 

The fan pressure rise is 

p.= pEl(K)2(£]2

 = 2 . 9 6 i n . H 2 0 f ^ ¥ i ^ ] 2 f ^ ] 2 = 8.88in.H 2 0 
H pVNJKD) 2 1.0.075 A 600 ) K36) 2 

and the new power input is 

We assume the efficiency remains constant between the two scaled points, so 

77' = 77 = 0.64 

Similar calculations at other operating points give the results tabulated below: 

Q P <3> 0! P' <3>' 
(cfm) (in. H 2 0 ) (hp) (%) (cfm) (in. H 2 0 ) (hp) 

0 3.68 11.1 0 0 11.0 101 
10,000 3.75 15.1 37 30,400 11.3 138 
20,000 3.50 18.6 59 60,900 10.5 170 
30,000 2.96 21.4 65 91,300 8.88 195 
40,000 2.12 23.1 57 122,000 6.36 211 
50,000 1.02 23.1 34 152,000 3.06 211 
60,000 0 21.0 0 183,000 0 192 

To allow interpolation among the calculated points, it is convenient to plot the results: 

Volume flow rate, Q' (cfm) 

From the head-capacity curve, the larger fan should deliver 110,000 cfm at 7.5 in. H 2 0 system head, with 
an efficiency of about 58 percent. 
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This operating point is only slightly to the right of peak efficiency for this fan, so it is a reasonable 
point at which to operate the fan. The specific speed of the fan at this operating point (in U.S. customary 
units) is given by direct substitution into Eq. 10.27: 

_ 3 / 4 

(1150rpm)(l 10,000 cfm) 1 / 2(0.045 lbm/f t 3 ) 3 / 4 

(7.5 i n .H 2 0) 3 / 4 
= 8223 

In nondimensional (SI) units, 

_ (120^ad/s)(3110m 3 /s) 1 / 2 (0•721kg/m 3 ) 3 , 4 _ 1 0 c 

v U „ „ 2 v 3 / 4 - 1 8 . 5 ^ (1.86 x 10 J N / m z ) J 

This problem illustrates the procedure for scaling perform­
ance of fans operating on gases with two different densities. 

The Excel workbook for this Example Problem was used 
for plotting the graphs, for obtaining the interpolated 
data, and for performing all calculations. It can be easily 
modified for other such analyses. 

N. 

Ns(Sl) 

I 

Three methods are available to control fan delivery: motor speed control, inlel 
dampers, and outlet throttling. Speed control was treated thoroughly in the section on 
pumps. The same benefits of reduced energy usage and noise are obtained with fans! 
and the cost of variable-speed drive systems continues to drop. 

Inlet dampers may be used effectively on some large centrifugal fans. However! 
they decrease efficiency and cannot be used to reduce the fan flow rate below aboui 
40 percent of rated capacity. Outlet throttling is cheap but wasteful of energy. For furl 
ther details, consult either Reference 19 or 21 ; both are particularly comprehensive! 
Osborne [23] also treats noise, vibration, and the mechanical design of fans. 

Fans also may be combined in series, parallel, or more complex arrangements to 
match varying system resistance and flow needs. These combinations may be analyzed] 
using the methods described for pumps. References 24 and 25 are excellent source! 
for loss data on air flow systems. 

Blowers have performance characteristics similar to fans, but they operate (typi-j 
cally) at higher speeds and increase the fluid pressure more than do fans. Jorgensen [191 
divides the territory between fans and compressors at an arbitrary pressure level thai 
changes the air density by 5 percent; he does not demarcate between fans and blowers] 

Compressors may be centrifugal or axial, depending on specific speed. AutoJ 
motive turbochargers, small gas-turbine engines, and natural-gas pipeline boosters 
usually are centrifugal. Large gas turbines and jet aircraft engines frequently ara 
axial-flow machines. 

Compressor performance depends on operating speed, mass flow rate, and den-J 
sity of the working fluid. It is common practice to present compressor performance! 
data on the coordinates shown in Fig. 10.33, as pressure ratio versus corrected masi 
flow rate, with corrected speed as a parameter. It turns out that normalizing tha 
mass flow rate by V r Ip, where T and p are absolute temperature and pressure, rej 
moves the effects of density variations. Normalizing the compressor operating speed 
with 1 / V r relates the tip speed of the compressor wheel to the speed of sound (this 
forms a dimensional Mach number—see Chapter 11). 
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Pi 

Fig. 10.33 Typical pe r f o rmance m a p for a 
cent r i fuga l c o m p r e s s o r [2]. 

At first glance, the performance curves in Fig. 10.33 appear incomplete. Two 
phenomena limit the range of mass flow rate at which a compressor can be operated 
at any given speed. The maximum mass flow rate is limited by choking—the ap­
proach to M — 1 at some point in the machine—see Chapter 12. Performance deteri­
orates rapidly as the choking limit is approached. 

The mass flow rate is limited at the low end by either rotating stall or surge in 
the compressor. Rotating stall occurs when cells of separated flow form and block a 
segment of the compressor rotor. The effect is to reduce performance and unbalance 
the rotor; this causes severe vibration and can quickly lead to damage. Thus it is im­
possible to operate a compressor with rotating stall and it must be avoided. 

Centrifugal and axial compressors may also be limited by surge, a cyclic pulsa­
tion phenomenon that causes the mass flow rate through the machine to vary, and can 
even reverse it! Surge is accompanied by loud noises and can damage the compressor 
or related components; it too must be avoided. 

In general, as shown in Fig. 10.33, the higher the performance, the more narrow 
the range in which the compressor may be operated successfully. Thus a compressor 
must be carefully matched to its flow system to assure satisfactory operation. Com­
pressor matching in natural gas pipeline applications is discussed by Vincent-Genod 
[26]. Perhaps the most common application of high-speed fluid machinery today is in 
automotive turbochargers (worldwide approximately 3 million units are sold each 
year with turbochargers). Automotive turbocharger matching is described in manu­
facturers' literature [27]. 

c. Pos i t ive-Disp lacement P u m p s 

Pressure is developed in positive-displacement pumps through volume reductions 
caused by movement of the boundary in which the fluid is confined. In contrast to 
turbomachines, positive displacement pumps can develop high pressures at relatively 
low speeds because the pumping effect depends on volume change instead of dy­
namic action. 

Positive-displacement pumps frequently are used in hydraulic systems at pres­
sures ranging up to 40 MPa (6000 psi). A principal advantage of hydraulic power is 
the high power density (power per unit weight or unit size) that can be achieved: for 
a given power output, a hydraulic system can be lighter and smaller than a typical 
electric-drive system. 
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Drive gear 

Driven gear 

Fig . 10.34 Schema t i c of typ ica l gear p u m p [28]. 

Numerous types of positive-displacement pumps have been developed. A few 
examples include piston pumps, vane pumps, and gear pumps. Within each type, 
pumps may be fixed- or variable-displacement. A comprehensive classification of 
pump types is given in [16]. 

The performance characteristics of most positive-displacement pumps are simi­
lar; in this section we shall focus on gear pumps. This pump type typically is used, 
for example, to supply pressurized lubricating oil in internal combustion engines. 
Figure 10.34 is a schematic diagram of a typical gear pump. Oil enters the space be­
tween the gears at the bottom of the pump cavity. Oil is carried outward and upward 
by the teeth of the rotating gears and exits through the outlet port at the top of the 
cavity. Pressure is generated as the oil is forced toward the pump outlet; leakage and 
backflow are prevented by the closely fitting gear teeth at the center of the pump, and 
by the small clearances maintained between the side faces of the gears and the pump 
housing. The close clearances require the hydraulic fluid to be kept extremely cleafl 
by full-flow filtration. 

Figure 10.35 is a photo showing the parts of an actual gear pump; it gives a i 
good idea of the robust housing and bearings needed to withstand the large p r e s * 
sure forces developed within the pump. It also shows pressure-loaded side plates! 
designed to " f loa t"—to allow thermal expansion — while maintaining the smal les t 
possible side clearance between gears and housing. Many ingenious designs h a v J 
been developed for pumps; details are beyond the scope of our treatment h e r e l 
which will focus on performance characteristics. For more details consult Refer-1 
ence 28 or 29. 

Typical performance curves of pressure versus delivery for a medium-duty gearj 
pump are shown in Fig. 10.36. The pump size is specified by its displacement peri 
revolution and the working fluid is characterized by its viscosity and temperature.] 
Curves for tests at three constant speeds are presented in the diagram. At each speed,] 
delivery decreases slightly as pressure is raised. The pump displaces the same vol-j 
ume, but as pressure is raised, both leakage and backflow increase, so delivery de-] 
creases slightly. Leakage fluid ends up in the pump housing, so a case drain must be] 
provided to return this fluid to the system reservoir. 

Volumetric efficiency—shown by the dashed curves — is defined as actual volu­
metric delivery divided by pump displacement. Volumetric efficiency decreases as 
pressure is raised or pump speed is reduced. Overall efficiency—shown by the solid 
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F ig . 10.35 Illustration of gear pump with pressure- loaded s ide 
plates [28]. (Photo courtesy S a u e r Sundstrand Company.) 

curves—is denned as power delivered to the fluid divided by power input to the 
pump. Overall efficiency tends to rise (and reaches a maximum at intermediate pres­
sure) as pump speed increases. 

Thus far we have shown pumps of fixed displacement only. The extra cost and 
complication of variable-displacement pumps is motivated by the energy saving they 
permit during partial-flow operation. In a variable-displacement pump, delivery can 
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Fig. 10.36 Performance characterist ics of typical gear 
pump [28], 
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Fig. 10.37 P ressure - f low d iag ram i l lustrat­
ing s y s t e m losses at par t load [28]. 

be varied to accommodate the load. Load sensing can be used to reduce the delivery 
pressure and thus the energy expenditure still further during part-load operation. 
Some pump designs allow pressure relief to further reduce power loss during standby 
operation. 

Figure 10.37 illustrates system losses with a fixed-displacement pump com­
pared with losses for variable-displacement and variable-pressure pumps. Assume 
the pressure and flow required by the load at partial-flow operation correspond to! 
point L on the diagram. A fixed-displacement pump will operate along curve CD\\ 
its delivery will be at point A. Since the load requires only the flow at L, the re?! 
maining flow (between L and A) must be bypassed back to the reservoir. Its pres-j 
sure is dissipated by throttling. Consequently the system power loss will be thd 
area beneath line LA. 

A variable-displacement pump operating at constant pressure will deliver just 
enough flow to supply the load, but at a pressure represented by point B. The sysJ 
tern power loss will be proportional to the area to the left of line BL. Control of] 
delivery pressure using load sensing can be used to reduce power loss. With a loadj 
sensing pump of variable displacement, the pressure supplied is only slightlw 
higher than is needed to move the load. A pump with load sensing would operate at 
the flow and pressure of point B'. The system loss would be reduced significantlyi 
to the area to the left of line B'L. 

The best system choice depends on the operating duty cycle. Complete details ofj 
these and other hydraulic power systems are presented in [28]. 

EXAMPLE 10.12 Performance of a Positive-Displacement Pump 

A hydraulic pump, with the performance characteristics of Fig. 10.36, operates all 
2000 rpm in a system that requires Q = 20 gpm at p = 1500 psig to the load at on«l 
operating condition. Check the volume of oil per revolution delivered by this p u m p j 
Compute the required pump power input, the power delivered to the load, and thai 
power dissipated by throttling at this condition. Compare with the power dissipatedf 
by using (i) a variable-displacement pump at 3000 psig and (ii) a pump with load 
sensing that operates at 100 psi above the load requirement. 
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EXAMPLE PROBLEM 10.12 

GIVEN: Hydraulic pump, with performance characteristics of Fig. 10.36, operating at 2000 rpm. System 
requires Q = 20 gpm at p = 1500 psig. 

FIND: (a) The volume of oil per revolution delivered by this pump. 
(b) The required pump power input. 
(c) The power delivered to the load. 
(d) The power dissipated by throttling at this condition. 
(e) The power dissipated using: 

(i) a variable-displacement pump at 3000 psig, and 
(ii) a pump with load sensing that operates at 100 psi above the load pressure requirement. 

SOLUTION: 
To estimate the maximum delivery, extrapolate the curve of pressure versus flow rate to zero pressure. Un­
der these conditions, Q = 48.5 gpm alN = 2000 rpm with negligible Ap. Thus 

„ Q 48.5 gal min 231 in. 3

 c ^ n . 3 , 
Y = — = x x = 5.60 in. J/rev , V 

N min 2000rev gal < 

The volumetric efficiency of the pump at maximum flow is 

V v = J ^ k . = 16° = 

V 5 9 
'pump -""̂  

The operating point of the pump may be found from Fig. 10.36. At 1500 psig, it operates at Q » 46.5 gpm. 
The power delivered to the fluid is 

9> fluid = pQgHp = QApp 

46.5 gal 1500 lbf ft 3 min 144 in. 2 h p s 
X T X X X — = - X min in. 2 7.48gal 60s ft 2 550ft lbf 

* fluid =40.7 hp 

From the graph, at this operating point, the pump efficiency is approximately T J = 0.84. Therefore the re 
quired input power is 

at, 9 fluid _ 40.7 hp _ g>. 
™inmil = = 48 hp , J i n p u 

M P U T T J 0.84 < K " 

The power delivered to the load is 
^load = GloadAPload 

20.0 gal 1500 lbf ft 3 min 144 in. 2 h p s 
x —^-x x x — x min in. 2 7.48gal 60s ft2 550ft lbf 

9> l o a d = 17.5 hp ^ SP.oad 

The power dissipated by throttling is 

^dissipated = ® fluid " ^load = 40.7 - 17.5 = 23.2 hp < ^dissipated 

The dissipation with the variable-displacement pump is 

^var-disp Qload^oper — /'load) 

= 20.0 _gal_ (3000 - 1500) J b f _ ft 3 min 144 in. 2 h p s 
min in. 2 X 7.48 gal X 60s X ft 2 550 ft-lbf 

^var-disp = 17-5 hp < ^var-disp 
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The dissipation with the variable-displacement pump is therefore less than the 23.2 hp dissipated with the 
constant-displacement pump and throttle. The saving is approximately 6 hp. 

The final computation is for the load-sensing pump. If the pump pressure is 100 psi above that re­
quired by the load, the excess energy dissipation is 

load-sense 2load(Poper 

= 20.0 gal 
min 

^load-sense = 1-17 hp _̂ 

X 

Pload) 
100 lbf ft3 

in. 2 7.48 gal 60s 
min 144 in. 

x x 
hp-s 

ft2 550 ft lbf 

This problem contrasts the performance of a system with a 
pump of constant displacement to that of a system with vari­
able-displacement and load-sensing pumps. The specific sav­
ings depend on the system operating point and on the duty 
cycle of the system. 

load-sense 

d. Propel lers 

It has been suggested that a propeller may be considered an axial-flow machine with­
out a housing [10]. In common with other propulsion devices, a propeller produces 
thrust by imparting linear momentum to a fluid. Thrust production always leaves the 
stream with some kinetic energy and angular momentum that are not recoverable, sot] 
the process is never 100 percent efficient. 

The one-dimensional flow model shown schematically in Fig. 10.38 is drawn as 
seen by an observer moving with the propeller, so the flow is steady. The actual pro-1 

peller is replaced conceptually by a thin actuator disk, across which flow speed is 
continuous but pressure rises abruptly. Relative to the propeller, the upstream flow is at 
speed V and ambient pressure. The axial speed at the actuator disk is V + A V/2, with a 
corresponding reduction in pressure. Downstream, the speed is V + AV and the 
pressure returns to ambient. (Example Problem 10.13 shows that half the speed 

v ^ S l i p s t r e a m 
/ boundary - Control 

volume 

v + AV 
V + AV 

Pressure 

Ap 

Fig . 10.38 O n e - d i m e n s i o n a l f low mode l and cont ro l vo lume 
used to ana lyze an idea l ized prope l le r [10]. 
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increase occurs before and half after the actuator disk.) The contraction of the slip­
stream area to satisfy continuity and the pressure rise across the propeller disk are 
shown in the figure. 

Not shown in the figure are the swirl velocities that result from the torque re­
quired to turn the propeller. The kinetic energy of the swirl in the slipstream also is 
lost unless it is removed by a counter-rotating propeller or partially recovered in sta­
tionary guide vanes. 

As for all turbomachinery, propellers may be analyzed in two ways. Application 
of linear momentum in the axial direction, using a finite control volume, provides 
overall relations among slipstream speed, thrust, useful power output, and minimum 
residual kinetic energy in the slipstream, A more detailed blade element theory is 
needed to calculate the interaction between a propeller blade and the stream. A gen­
eral relation for ideal propulsive efficiency can be derived using the control volume 
approach, as shown following Example 10.13. 

EXAMPLE 10.13 Control Volume Analysis of Idealized Flow 
through a Propeller 

Consider the one-dimensional model for the idealized flow through a propeller 
shown in Fig. 10.38. The propeller advances into still air at steady speed V,. Ob­
tain expressions for the pressure immediately upstream and the pressure immedi­
ately downstream from the actuator disk. Write the thrust on the propeller as the 
product of this pressure difference times the disk area. Equate this expression for 
thrust to one obtained by applying the linear momentum equation to the control 
volume. Show that half the velocity increase occurs ahead of and half behind the 
propeller disk. 

EXAMPLE PROBLEM 10.13 

GIVEN: Propeller advancing into still air at speed V t, as shown in Fig. 10.38. 

FIND: (a) Expressions for the pressures immediately upstream and immediately downstream from the 
actuator disk. 

(b) Expression for the air speed at the actuator disk. Then show that half the velocity increase oc­
curs ahead of the actuator disk and half occurs behind the actuator disk. 

SOLUTION: 
Apply the Bernoulli equation and the x component of linear momentum using the CV shown. 

- 0(5) 
Governing equations: * 

— + — + g/= constant 
p 2 f 

= 0(5) = 0(1) 

^ a V f c v " ^ 
^ + % = T / I "vzpV-dA xyz 

CS 
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Assumptions: (1) Steady flow relative to the CV. 
( 2 ) Incompressible flow. 
(3) Flow along a streamline. 
(4) Frictionless flow. 
(5) Horizontal flow: neglect changes in 

z; FBx = 0. 
(6) Uniform flow at each section, 
(7) p,,,,, surrounds the CV. 

Applying the Bernoulli equation from section CD to 
section gives 

Patm 
+ —'-

P 2 

Pi 

Propeller disk 
CV 

77i 

Streamline 

Applying Bernoulli from section (3) to section gives 

P 2 p 2 
P3(gage) -

The thmst on the propeller is given by 

FT =(p3-p2)A = ±pA(Vl-V2) 

\p<yl-vb 

(V3 = V2 = V) 

From the momentum equation, using relative velocities, 

RX=FT= « , ( - « ) + « 4 (+m) = pVA(V4 - V,) {«, = Vj, « 4 = V4} 
FT = pVA(VA - Vj) 

Equating these two expressions for FT, 

FT = I p4(V4

2 - V?) = pVA(V4 - V,) 

Thus, V = i ( V j + V 4 ) ,so 

AV12 = V Vl=-(Vi + VA)-V]=-(V4-V]) = — 

or ^-(V 4 + Vi ) (V 4 -V 1 )= V(V 4 -V,) 

AV 

AV34 = V4 - V = V4 - I(V, + V4) = | ( V 4 - V,) = 

The purpose of this problem is to apply the continuity, mo­
mentum, and Bernoulli equations to an idealized flow model 
of a propeller, and to verify the Rankine theory of 1885 that 
half the velocity change occurs on either side of the propeller 
disk. 

Velocity 
Increase 

The continuity and momentum equations in control volume form were applied 
in Example Problem 10.13 to the propeller flow shown in Fig. 10.38. The results ob­
tained are discussed further below. The thrust produced is 

FT = mAV (10.28) 
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For incompressible flow, in the absence of friction and heat transfer, the energy equa­
tion indicates that the minimum required input to the propeller is the power required 
to increase the kinetic energy of the flow, which may be expressed as 

^ input — ^ 
(V + AV) 2 V 2 

= m 
2VAV + (AV) 2 

= mVAV 
2V 

(10.29) 

The useful power produced is the product of thrust and speed of advance, V. Using 
Eq. 10.28, this may be written as 

^useful = FTV = ( 1 0 - 3 0 ) 

Combining Eqs. 10.29 and 10.30, and simplifying, gives the propulsive efficiency as 

^use fuL = L _ (10.31) 
J input 1 -| 

2V 

Equations 10.28 through 10.31 are applicable to any device that creates thrust by 
increasing the speed of a fluid stream. Thus they apply equally well to propeller-
driven or jet-propelled aircraft, boats, or ships. 

Equation 10.31 for propulsive efficiency is of fundamental importance. It indi­
cates that propulsive efficiency can be increased by reducing AVor by increasing V. 
At constant thrust, as shown by Eq. 10.28, AVcan be reduced if m is increased, i.e., if 
more fluid is accelerated over a smaller speed increase. More mass flow can be 
handled if propeller diameter is increased, but overall size and tip speed ultimately 
limit this approach. The same principle is used to increase the propulsive efficiency 
of a turbofan engine by using a large fan to move additional air flow outside the en­
gine core. 

Propulsive efficiency also can be increased by increasing the speed of motion 
relative to the fluid. Speed of advance may be limited by cavitation in marine applica­
tions. Flight speed is limited for propeller-driven aircraft by compressibility effects at 
the propeller tips, but progress is being made in the design of propellers to maintain 
high efficiency with low noise levels while operating with transonic flow at the blade 
tips. Jet-propelled aircraft can fly much faster than propeller-driven craft, giving them 
superior propulsive efficiency, 

A more detailed blade element theory may be used to calculate the interaction 
between a propeller blade and the stream. If the blade spacing is large and the disk 
loading10 is light, blades can be considered independent and relations can be derived 
for the torque required and the thrust produced by a propeller. These approximate re­
lations are most accurate for low-solidity propellers." Aircraft propellers typically 
are of fairly low solidity, having long, thin blades. 

A schematic diagram of an element of a rotating propeller blade is shown in 
Fig. 10.39. The blade is set at angle 6 to the plane of the propeller disk. Flow is 
shown as it would be seen by an observer on the propeller blade. 

The relative speed of flow, Vn passing over the blade element depends on both 
the blade peripheral speed, cor, and the speed of advance, V. Consequently, for a 
given blade setting, the angle of attack, a, depends on both V and a>r. Thus, the per­
formance of a propeller is influenced by both co and V. 

10 Disk loading is the propeller thrust divided by the swept area of the actuator disk. 
11 Solidity is defined as the ratio of projected blade area to the swept area of the actuator disk. 
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Angle of attack, a ^ 

Chord line 
of section 

tr / Plane of propeller disk 

> _ _ _ _ / _ 

Fig . 10.39 D iag ram of b lade e lemen t a n d relat ive f low 
veloc i ty vector. 

Even if the geometry of the propeller is adjusted to give constant geometric 
pitch' 2 , the flow field in which it operates may not be uniform. Thus, the angle of | 
attack across the blade elements m a y vary from the ideal, and can be calculated only 
with the aid of a comprehensive computer code that can predict local flow directions 
and speeds. 

Propeller performance characteristics usually are measured experimentally. 
Figure 10.40 shows typical measured characteristics for a marine propeller [10], and 
for an aircraft propeller [30]. The variables used to plot the characteristics are almost 
dimensionless: by convention, rotational speed, n, is expressed in revolutions per sec- i 
ond (rather than as co, in radians per second). The independent variable is the speed < 
advance coefficient, J, 

V 
J = — (10. 

nD 

Dependent variables are the thrust coefficient, CF, the torque coefficient, CT, 
power coefficient, CP, and the propeller efficiency, tj, defined as 

FT T FrV 
CF = ^ - r , C r = — f - ^ CP = ^ r T , and 7) = - ^ — (10.33) 

pn2D4 T pn2D5 pn3D5 9 > i n p m 

The performance curves for both propellers show similar trends. Both thrust and 
torque coefficients are highest, and efficiency is zero, at zero speed of advance. This 
corresponds to the largest angle of attack for each blade element (a = amBX = 8). Ef­
ficiency is zero because no useful work is being done by the stationary propeller. A* 
advance speed increases, thrust and torque decrease smoothly. Efficiency increases to 
a maximum at an optimum advance speed and then decreases to zero as thrust tend! 
to zero. (For example, if the blade element section is symmetric, this would theoreti­
cally occur when a = 0, or when tanf9 = Vlcor.) 

EXAMPLE 10.14 Sizing a Marine Propeller 

Consider the supertanker of Example Problem 9.5. Assume the total power 
required to overcome viscous resistance and wave drag is 11.4 MW. Use the 
performance characteristics of the marine propeller shown in Fig. 10.40a to esti> 
mate the diameter and operating speed required to propel the supertanker using a 
single propeller. 

12 Pitch is defined as the distance a propeller would travel in still fluid per revolution if it advanced along 
the blade setting angle 8. The pitch, H, of this blade element is equal to Itrr tan0. To obtain constant 
pitch along the blade, 8 must follow the relation, tan 8 = HIITTT, from hub to tip. Thus the geometric 
blade angle is smallest at the tip and increases steadily toward the root. 
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EXAMPLE PROBLEM 10.14 

GIVEN: Supertanker of Example Problem 9.5, with total propulsion power requirement of 11.4 MW to 
overcome viscous and wave drag, and performance data for the marine propeller shown in 
Fig. 10.40a. 

FIND: (a) An estimate of the diameter of a single propeller required to power the ship, 
(b) The operating speed of this propeller. 

SOLUTION: 

From the curves in Fig. 10.40a, at optimum propeller efficiency, the coefficients are 

/ = 0.85, CF = 0.10, CT = 0.020, and TJ = 0.66 
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The ship steams at V = 6.69 m/s and requires S P ^ M = 11.4 MW. Therefore, the propeller thrust must be 

FT = 
11.4 x l O 6 W 

x 
N-m 

6.69 m W s 
= 1.70 MN 

The required power input to the propeller is 

From J = — = 0.85, then 
nD 

Since 

solving for D gives 

D = 

^ rj 0.66 

^ V 6.69 m 1 „ „„ , 
nD = — = — x = 7.87 m/s 

J s 0.85 

= 0.10 = 
p(n2D2)D2 pinDfD2 

FT 

ill 

P(nD)2CF 

1.70xl0 6 N m 3 

x x 1025kg (7 .87) 2 m 2 0.10 N s 
1 kg - m 

x x 
1/2 

D = 16.4 m D 

From nD = - = 7.87 m/s, n = — = ? ' 8 ? — x — — = 0.480 rev/s 
J D s 16.4 m 

so that 
0.480 rev 60 s ^„ „ , . 

n = x = 28.8 rev/ mm 
s min <" 

n 

The required propeller is quite large, but still smaller than the 25 m draft of the supertanker. The ship 
would need to take on seawater for ballast to keep the propeller submerged when not carrying a full cargo 
of petroleum. 

This problem illustrates the use of normalized coefficient data 
for the preliminary sizing of a marine propeller. This prelimi­
nary design process would be repeated, using data for other 
propeller types, to find the optimum combination of propeller 
size, speed, and efficiency. 

1 

Marine propellers tend to have high solidity. This packs a lot of lifting surface 
within the swept area of the disk to keep the pressure difference small across 
the propeller and to avoid cavitation. Cavitation tends to unload the blades of a ma­
rine propeller, reducing both the torque required and the thrust produced [10]. Cavi­
tation becomes more prevalent along the blades as the cavitation number, 

C = £ ^ (.0.34, 

is reduced. Inspection of Eq. 10.34 shows that Ca decreases when p is reduced by op­
erating near the free surface or by increasing V! Those who have operated motor boats 
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also are aware that local cavitation can be caused by distorted flow approaching the 
propeller, e.g., from turning sharply. 

Compressibility affects aircraft propellers when tip speeds approach the critical 
Mach number at which the local Mach number approaches M = 1 at some point on 
the blade. Under these conditions, torque increases because of increased drag, thrust 
drops because of reduced section lift, and efficiency drops drastically. 

If a propeller operates within the boundary layer of a propelled body, where the rel­
ative flow is slowed, its apparent thrust and torque may increase compared with those in 
a uniform freestream at the same rate of advance. The residual kinetic energy in the slip­
stream also may be reduced. The combination of these effects may increase the overall 
propulsive efficiency of the combined body and propeller. Advanced computer codes are 
used in the design of modern ships (and submarines, where noise may be an overriding 
consideration) to optimize performance of each propeller/hull combination. 

For certain special applications, a propeller may be placed within a shroud or duct. 
Such configurations may be integrated into a hull (e.g., as a bow thruster to increase 
maneuverability), built into the wing of an aircraft, or placed on the deck of a hover­
craft. Thrust may be improved by the favorable pressure forces on the duct lip, but effi­
ciency may be reduced by the added skin-friction losses encountered in the duct. 

Machines lor Extracting Work (Power) from a Fluid 

a. Hydrau l ic Turb ines 

Falling water has long been considered a source of "free," renewable energy. In reality, 
power produced by hydraulic turbines is not free; operating costs are low, but consider­
able capital investment is required to prepare the site and install the equipment. At a mini­
mum, the water inlet works, supply penstock, turbine(s), powerhouse, and controls must 
be provided. An economic analysis is necessary to determine the feasibility of developing 
any candidate site. In addition to economic factors, hydroelectric power plants must also 
be evaluated for their environmental impact—in recent years it has been found that such 
plants are not entirely benign, and can be damaging, for example, to salmon runs. 

Early in the industrial revolution water wheels were used to power grain mills 
and textile machinery. These plants had to be located at the site of the falling water, 
which limited use of water power to relatively small and local enterprises. The intro­
duction of alternating current in the 1880s made it possible to transmit electrical 
energy efficiently over long distances. Since then nearly 40 percent of the available 
hydroelectric power resources in the United States have been developed and con­
nected to the utility grid [31]. Hydroelectric power accounts for about 16 percent of 
the electrical energy produced in this country. 

The United States has abundant and relatively cheap supplies of fossil fuels. 
Therefore at present the remaining hydropower resources in the United States are not 
considered economical compared to fossil-fired plants. 

Worldwide, only about 20 percent of available hydropower resources have been 
developed commercially [31]. Considerably more hydropower will likely be devel­
oped in coming decades as countries become more industrialized. Many developing 
countries do not have their own supplies of fossil fuel. Hydropower may offer many 
such countries their only practical path to increased utility development. Conse­
quently the design and installation of hydroelectric plants are likely to be important 
future engineering activities in developing countries. 

To evaluate a candidate site for hydropower potential, one must know the aver­
age stream flow rate and the gross head available to make preliminary estimates of 
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turbine type, number of turbines, and potential power production. Economic analyses 
are beyond the scope of this book, but we consider the fluids engineering fundamen­
tals of impulse turbine performance to optimize the efficiency. 

Hydraulic turbines convert the potential energy of stored water to mechanical 
work. To maximize turbine efficiency, it is always a design goal to discharge water 
from a turbine at ambient pressure, as close to the tailwater elevation as possible, and 
with the minimum possible residual kinetic energy. 

Conveying water flow into the turbine with minimum energy loss also is impor­
tant. Numerous design details must be considered, such as inlet geometry, trash 
racks, etc. [31]. References 1,8, 10, and 31-37 contain a wealth of information about 
turbine siting, selection, hydraulic design, and optimization of hydropower plants. 
The number of large manufacturers has dwindled to just a few, but small-scale units 
are becoming plentiful [34]. The enormous cost of a commercial-scale hydro plant 
justifies the use of comprehensive scale-model testing to finalize design details. See 
[31] for detailed coverage of hydraulic power generation. 

Hydraulic losses in long supply pipes (known as penstocks) must be considered 
when designing the installation for high-head machines such as impulse turbines; an 
optimum diameter for the inlet pipe that maximizes turbine output power can be de­
termined for these units, as shown in Example Problem 10.15. 

Turbine power output is proportional to volume flow rate times the pressure dif­
ference across the nozzle. At zero flow, the full hydrostatic head is available but 
power is zero. As flow rate increases, the net head at the nozzle inlet decreases. 
Power first increases, reaches a maximum, then decreases again as flow rate in­
creases. As we will see in Example Problem 10.15, for a given penstock diameter, the 
theoretical maximum power is obtained when the system is designed so that one-third 
of the gross head is dissipated by friction losses in the penstock. In practice, penstock 
diameter is chosen larger than the theoretical minimum, and only 10-15 percent of 
the gross head is dissipated by friction [7]. 

A certain minimum penstock diameter is required to produce a given power 
output. The minimum diameter depends on the desired power output, the available 
head, and the penstock material and length. Some representative values are shown in 
Fig. 10.41. 
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EXAMPLE 10.15 Performance and Optimization of an Impulse Turbine 

Consider the hypothetical impulse turbine installation shown. Analyze flow in the pen­
stock to develop an expression for the optimum turbine output power as a function of 
jet diameter, Dj. Obtain an expression for the ratio of jet diameter, Dp to penstock di­
ameter, D, at which output power is maximized. Under conditions of maximum power 
output, show that the head loss in the penstock is one-third of the available head. 
Develop a parametric equation for the minimum penstock diameter needed to pro­
duce a specified power output, using gross head and penstock length as parameters. 

EXAMPLE PROBLEM 10.15 

GIVEN: Impulse turbine installation shown. 

FIND: (a) Expression for optimum turbine output power as a function of jet diameter. 
(b) Expression for the ratio of jet diameter, Dj, to penstock diameter, D, at which output power is 

maximized. 
(c) Ratio of head loss in penstock to available head for condition of maximum power. 
(d) Parametric equation for the minimum penstock diameter needed to produce a specified output 

power, using gross head and penstock length as parameters. 

SOLUTION: 
According to the results of Example 10.5, the output power of an idealized impulse turbine is given by 
^ o u t = PQU(V - 10(1 - cos 0). For optimum power output, U = VI2 = V,/2, and 

^ou. = PQ-[V - -fX - cosfl) = pAjVj^-^-d - cost?) 

0 > o m = p A ; - / - ( l - c o s 0 ) 

Thus output power is proportional to Aj Vj. 
Apply the energy equation for steady incompressible pipe flow through the penstock to analyze Vj2 at 

the nozzle outlet. Designate the free surface of the reservoir as section (D; there V\ = 0. 

Governing equation: 

« 0 
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Assumptions: 

Then 

(1) Steady flow. 
(2) Incompressible flow. 
(3) Fully developed flow. 
(4) Atmospheric pressure at jet exit. 
(5) 
(6) 

(7) 

(8) 

Olj = 1, S O Vj = Vj. 
Uniform flow in penstock, so Vp = V. 

L 
Ken. « / D 

8(z1-zJ) = gH = f ^ + 
V2 

or 2gH f L V 2 
D 

Hence the available head is partly consumed in friction in the supply penstock, and the rest is available as 
kinetic energy at the jet exit—in other words, the jet kinetic energy is reduced by the loss in the penstock. 
However, this loss itself is a function of jet speed, as we see from continuity: 

VA = VjAj, so V = Vj j_ _ ' 4 
\ 2 i (D 

and V2 = 2 g / / - / — V? 
1 D J{ D 

Solving for Vj, we obtain 

V: = 
2gH 

The turbine power can be written as 

= pA, —L- (1 - cos 0 ) = p — D2 

' 1 4 P 1 6 J 

2gH 
(1 - C O S 0 ) 

"1 
(1) 

9> = C{Dj 
2gH 

1 + / 
D 

Ml 
D 

where Cx = pTt{2gHfa(l - cos 60/16 = constant. 
To find the condition for maximum power output, at fixed penstock diameter, D, differentiate with 

respect to Dj and set equal to zero, 

d<3> 
dD, 

= 2C,Z>; 1 + / D D 
-C.D2 

i 1 J D D4 

2 L 
4 / - ^ r = 0 

Thus, 

1 + / -D( D 
3 / 

D D 



10-5 APPLICATIONS TO FLUID SYSTEMS 565 

Solving for DjID, we obtain 

D 1 

2 / ^ D 

At this optirnum value of DjID, the jet speed is given by Eq. 1 as 

2gH 
1 
2 l 4 

f Dj ^4 

The head loss at maximum power is then 

V; 2 
h, = f — — = gH-^- = gH--gH = -gH 
* D V 2 3 3 

and 

gH 

Under the conditions of maximum power 

= pVf ^- ( 1 - cos 9) 
2/Z. 

gH 

( 1 - C O S 0 ) 

Finally, to solve for minimum penstock diameter for fixed output power, the equation may be written in the 
form 

1 / 2 

D M) KH 

This problem illustrates the optimization of an idealized im­
pulse turbine. The analysis determines the minimum penstock 
diameter needed to obtain a specified power output. In prac­
tice larger diameters than this are used, reducing the frictional 
head loss below that computed here. 

b. W i n d - P o w e r Machines 

Windmills (or more properly, wind turbines) have been used for centuries to harness 
the power of natural winds. Two well-known examples are shown in Fig. 10.42. 

Dutch windmills (Fig. 10.42a) turned slowly so the power could be used to turn 
stone wheels for milling grain, hence the name "windmill." They evolved into large 
structures; the practical maximum size was limited by the materials of the day. 
Calvert [39] reports that, based on his laboratory-scale tests, a traditional Dutch 
windmill of 26 m diameter produced 41 kW in a wind of 36 km/hr at an angular 
speed of 20 rpm. 
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(o) Traditional Dutch mill (b) American Farm windmill 

F ig . 10.42 E x a m p l e s of we l l - known w indmi l l s [38] . (Pho to cou r t esy of (a) Ne the r l ands Board of 
Tour i sm, (£>) U.S. D e p a r t m e n t of Agr icu l ture. ) 

American multi-blade windmills (Fig. 10.42b) were found on many American 
farms between about 1850 and 1950. They performed valuable service in powering 
water pumps before rural electrification. 

The recent emphasis on renewable resources has revived interest in windmill de­
sign and optimization. Horizontal-axis wind turbine (HAWT) and vertical-axis wind 
turbine (VAWT) configurations have been studied extensively. Most HAWT designs 
feature 2- or 3-bladed propellers turning at high speed. The large modern HAWT, 
shown in Fig. 10.43a, is capable of producing power in any wind above a light 
breeze. 

The final example (Fig. 10.436) is a Darrieus VAWT. This device uses a modem 
symmetric airfoil section for the rotor, which is formed into a troposkien shape. 1 3 In 
contrast to the other designs, the Darrieus VAWT is not capable of starting from resd 
it can only produce usable power above a certain minimum angular speed. It may be 
combined with a self-starting turbine, such as a Savonius rotor, to provide startini 
torque (see illustration for Problem 9.81 or [41]). 

A horizontal-axis wind turbine may be analyzed as a propeller operated in re­
verse. The Rankine model of one-dimensional flow incorporating an idealized actua­
tor disk is shown in Fig. 10.44. The simplified notation of the figure is frequently 
used for analysis of wind turbines. 

The wind speed far upstream is V. The stream is decelerated to V( 1 - a) at the 
turbine disk and to V(l - 2a) in the wake of the turbine (a is called the interferenci 
factor). Thus the stream tube of air captured by the windmill is small upstream anq 
its diameter increases as it moves downstream. 

Straightforward application of linear momentum to a CV (see Example Problem 
10.16) predicts the axial thrust on a turbine of radius R to be 

" This shape (which would be assumed by a flexible cord whirled about a vertical axis) minimizes bend­
ing stresses in the Darrieus turbine rotor. 

FT = 2<nR2pV2a(l - u) (10.3 
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(a) Horizontal-axis wind turbine (b) Vertical-axis wind turbine 
Fig . 10.43 E x a m p l e s of m o d e r n w i n d fu rb ine des igns [40] , (Pho tos cou r tesy U.S. Depa r tmen t 
of Energy.) 

Application of the energy equation, assuming no losses (no change in internal energy 
or heat transfer), gives the power taken from the fluid stream as 

SP = 2>rrR2pV3a(l - a)2 (10.36) 

The efficiency of a windmill is most conveniently defined with reference to the 
kinetic energy flux contained within a stream tube the size of the actuator disk. This 
kinetic energy flux is 

KEF = i pV^irR2 (10.37) 

Combining Eqs. 10.36 and 10.37 gives the efficiency (or alternatively, the power co­
efficient [40]) as 

^ = t I f = 4 a ( 1 - ( 1 0 " 3 8 ) KEt 

Control v o l u m e -

V ( l • a) 

i \ 
i \ 
i i 
i i 
i i -i 1_ 

Turb ine disk 

i i 
i i 
\ i 
\ i 
\ i 

V(\ -2a) 

Fig . 10.44 Cont ro l v o l u m e a n d s impl i f ied notat ion used to ana lyze 
w ind tu rb ine p e r f o r m a n c e . 
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Betz [see 40] was the first to derive this result and to show that the theoretical efficiency 
is maximized when a = 1/3. The maximum theoretical efficiency is rj = 0.593. 

If the windmill is lightly loaded (a is small), it will affect a large mass of air 
per unit time, but the energy extracted per unit mass will be small and the efficiency 
low. Most of the kinetic energy in the initial air stream will be left in the wake and 
wasted. If the windmill is heavily loaded (a « 1/2), it will affect a much smaller 
mass of air per unit time. The energy removed per unit mass will be large, but trie 
power produced will be small compared with the kinetic energy flux through 
the undisturbed area of the actuator disk. Thus a peak efficiency occurs at intermedi­
ate disk loadings. 

The Rankine model includes some important assumptions that limit its applica­
bility [40]. First, the wind turbine is assumed to affect only the air contained within 
the stream tube defined in Fig. 10.44. Second, the kinetic energy produced as swiri 
behind the turbine is not accounted for. Third, any radial pressure gradient is ignored, 
Glauert [see 30] partially accounted for the wake swirl to predict the dependence of 
ideal efficiency on tip-speed ratio, X = toRJV, as shown in Fig. 10.45 (co is the angu­
lar velocity of the turbine). 

As the tip-speed ratio increases, ideal efficiency increases, approaching the 
peak value ( T J = 0.593) asymptotically. (Physically, the swirl left in the wake is 
reduced as the tip-speed ratio increases.) Reference 40 presents a summary of the 
detailed blade-element theory used to develop the limiting efficiency curve shown 
in Fig. 10.45. 

Each type of wind turbine has its most favorable range of application. The tradi­
tional American multi-bladed windmill has a large number of blades and operates at 
relatively slow speed. Its solidity, cr (the ratio of blade area to the swept area of the 
turbine disk, TTR2) is high. Because of its relatively slow operating speed, its t i p - s p J 
ratio and theoretical performance limit are low. Its relatively poor performance, com­
pared with its theoretical limit, is largely caused by use of crude blades, which are 
simple bent sheet metal surfaces rather than airfoil shapes. 

It is necessary to increase the tip-speed ratio considerably to reach a more favor­
able operating range. Modern high-speed wind-turbine designs use carefully shaped 
airfoils and operate at tip-speed ratios up to 7 [42]. 

0.6 T T 

Ideal efficiency 
~of propeller-type 

turbine 

L _ R - I L -
High-speed 

two- or three-
bladed turb ine" 

2 3 4 5 6 

Turb ine t ip-speed ratio, X = (oRlv 

Fig . 10.45 E f f i c i e n c y t r e n d s of w i n d t u r b i n e t y p e s v e r s u s 
t i p - s p e e d rat io [40]. 
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EXAMPLE 10.16 Performance of an Idealized Windmil l 

Develop general expressions for thrust, power output, and efficiency of an idealized 
windmill, as shown in Fig. 10.44. Calculate the thrust, ideal efficiency, and actual 
efficiency for the Dutch windmill tested by Calvert (D = 26 m, N = 20 rpm, V = 
36 km/hr, and 2P o u l p u t = 41 kW). 

EXAMPLE PROBLEM 10.16 

GIVEN: Idealized windmill, as shown in Fig. 10.44, and Dutch windmill tested by Calvert: 

D = 26 m N = 20 rpm V = 36 krn/hr 9 > m t p i u = 41 kW 

FIND: (a) General expressions for the ideal thrust, power output, and efficiency. 
(b) The thrust, power output, and ideal and actual efficiencies for the Dutch wmdrruil tested by 

Calvert. 

SOLUTION: 
Apply the continuity, momentum (x component), and energy equations, using the CV and coordinates shown. 

Governing equations: 

Assumptions: (1) Atmospheric pressure acts on CV; Fs = Rx. 
(2) FBx = 0. 
(3) Steady flow. 
(4) Uniform flow at each section. 
(5) Incompressible flow of standard air. 
(6) V, - V2 = V2 - V3 = 72(V, - V3), as shown by Rankine. 
(7) 2 = 0. 
(8) No change in internal energy for frictionless incompressible flow. 

In terms of the interference factor, a, V, = V, V2 = (1 — a)V, and V3 = (1 - 2a)V. 
From continuity, for uniform flow at each cross section, ViA, = V2A2 = V3A3. 
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From momentum, 
Rx = « , ( - p W + u^(+pV3A3) = (V3 - Vy)pV2A2 [in = Vj, 113 = V3) 

Rx is the external force acting on the control volume. The thrust force exerted by the CV on the surroundings is 

Kx = -Rx = (V, - V3)pV2A2 

In terms of the interference factor, the equation for thrust may be written in the general form, 

Kx = PV2irR22a(\ - a) < £ j 

(Set dKJda equal to zero to show that maximum thrust occurs when a = 1/2.) 
The energy equation becomes 

-Ws = Y { - p V ^ ] + ^ + P W = pV2irR2 j(V2

3 - V2) 

The ideal output power, <3>, is equal to Ws. In terms of the interference factor, 

9> = ws = pV(l - a)irR2 

After simpifying algebraically, 

V2 V2 •> 
— ( l - 2 o ) 2 

2 2 
pv\l-a)^-[l-{l-2a)2} 

'ideal = 2pV37T/?Vl - a)2

 < ^idea) 

The kinetic energy flux through a stream tube of undisturbed flow, equal in area to the actuator disk, is ; 

KEF = PVTTR2 — = - p V W 
2 2 

Thus the ideal efficiency may be written 

l^^pvyaa-af = 2 

KEF ± P V \ R 2 < 

To find the condition for maximum possible efficiency, set d-nlda equal to zero. The maximum efficiency is 
T J = 0.593, which occurs when a = 1/3. 

The Dutch windmill tested by Calvert had a tip-speed ratio of 

NR 20 rev 27r rad min 13 m s „ „ „ 
X = = x x x x = 2.72 X 

V min rev 60s 10 m * 
The maximum theoretically attainable efficiency at this tip-speed ratio, accounting for swirl (Fig. 10.45), 
would be about 0.53. 

The actual efficiency of the Dutch windmill is 

_ _ ^ actual 
'factual isi-r* 

KEF 
Based on Calvert's test data, the kinetic energy flux is 

KEF = -pV3irR2 

2H 

1 1.23 kg (10) 3 m 3 7r(13) 2 m 2 N - s 2 W s 
2 m" s k g m N m 

KEF = 3.27 x 10 5 W or 327 kW 

Substituting into the definition of actual efficiency, 

41 kW n i „ c 

factual = 3 2 7 k W = 0.125 ^ factual 
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Thus the actual efficiency of the Dutch windmill is about 24 percent of the maximum efficiency theoreti­
cally attainable at this tip-speed ratio. 

The actual thrust on the Dutch windmill can only be estimated, because the interference factor, a, is 
not known. The maximum possible thrust would occur at a = 1/2, in which case, 

Kx = pV 27rf? 22a(l - a) 
1.23 kg (10) 2 m 2 7r(13) 2m : 

Kr = 3.27 x 1(T N or 32.7 kN 
U A 2) kg k g m 

This does not sound like a large thrust force, considering the size (D = 26 m) of the windmill. However, 
V = 36 km/hr is only a moderate wind. The actual machine would have to withstand much more severe 
wind conditions during storms. 

This problem illustrates application of the concepts of ideal 
thrust, power, and efficiency for a windmill, and calculation of 
these quantities for an actual machine. 

10-6 SUMMARY 

In this chapter, we: 

/ Defined the two major types of fluid machines: positive displacement machines, and 
turbomachines. 

/ Defined, within the turbomachine category: radial, axial, and mixed flow types, 
pumps, fans, blowers, compressors, and impulse and reaction turbines. 

/ Discussed various features of turbomachines, such as impellers, rotors, runners, 
scrolls (volutes), compressor stages, and draft tubes. 

/ Discussed various defining parameters, such as pump efficiency, solidity, hydraulic 
power, mechanical power, turbine efficiency, shutoff head, shock loss, specific 
speed, cavitation, NPSHR, and NPSHA. 

/ Used the angular-momentum equation for a control volume to derive the Euler tur­
bomachine equation. 

/ Drew velocity diagrams and applied the Euler turbomachine equation to the analysis 
of various idealized machines to derive ideal torque, head, and power. 

/ Evaluated the performance—head, power, and efficiency—of various actual ma­
chines from measured data. 

/ Defined and used dimensionless parameters to scale the performance of a fluid ma­
chine from one size, operating speed, and set of operating conditions to another. 

/ Examined pumps for their compliance with the constraint that the net positive suc­
tion head available exceeds that required to avoid cavitation. 

/ Matched fluid machines for doing work on a fluid to pipe systems to obtain the oper­
ating point (flow rate and head). 

/ Predicted the effects of installing fluid machines in series and parallel on the operat­
ing point of a system. 

With these concepts and techniques, we learned how to use manufacturers' literature 
and other data to perform preliminary analyses and make appropriate selections of 
pumps, fans, hydraulic and wind turbines, and other fluid machines. 
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PROBLEMS 

10.1 A centrifugal pump mnning at 3500 rpm pumps water at a rate of 0.01 nvVs. The waler 
enters axially, and leaves die impeller at 5m/s relative to the blades, which are radial at 
the exit. If the pump requires 5 kW, and is 67 percent efficient, estimate the basic di­
mensions (impeller exit diameter and width), using the Euler turbomachine equation. 

10.2 Consider the centrifugal pump impeller dimensions given in Example Problem 
10.1. Estimate the ideal head rise and mechanical power input if the outlet blade an­
gle is changed to 60°, 70°, 80°, or 85°. 

10.3 Dimensions of a centrifugal pump impeller are 

Parameter Inlet, Section (D Outlet, Section (2) 

Radius, r (mm) 75 250 
Blade width, b (mm) 40 30 
Blade angle, B (deg) 60 70 

The pump is driven at 1250 rpm while pumping water. Calculate the theoretical 
head and mechanical power input if the flow rate is 0.10 m3/s. 

10.4 Dimensions of a centrifugal pump impeller are 

Parameter Inlet, Section © Outlet, Section (2) 

Radius, r (mm) 175 500 
Blade width, b (mm) 50 30 
Blade angle, /3 (deg) 65 70 

The pump handles water and is driven at 750 rpm. Calculate the theoretical 
and mechanical power input if the flow rate is 0.75 mVs. 

10.5 Dimensions of a centrifugal pump impeller are 

Parameter Inlet, Section ® Outlet, Section © 

Radius, r (mm) 400 1200 
Blade width, b (mm) 120 80 
Blade angle, B (deg) 40 60 

The pump is driven at 575 rpm and the fluid is water. Calculate the theoretical headl 
and mechanical power if the flow rate is 5.00 m3/s. 

10.6 A centrifugal water pump, with 6 in. diameter impeller and axial inlet flow, is 
driven at 1750 rpm. The impeller vanes are backward-curved (Bi = 65°) and have 
axial width £>2 = 0.75 in. For a volume flow rate of 1000 gpm determine the theo­
retical head rise and power input to the pump. 

10.7 Consider the geometry of the idealized centrifugal pump described in Problem 
10.11. Draw inlet and outlet velocity diagrams assuming b = constant. Calculate 
the inlet blade angles required for "shockless" entry flow at the design flow rate. 
Evaluate the theoretical power input to the pump at the design flow rate. 

10.8 For the impeller of Problem 10.3, determine the rotational speed for which the tanJ 
gential component of the inlet velocity is zero if the volume flow rate is 0.25 m3/s. 
Calculate the theoretical head and mechanical power input. 
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10.9 For the impeller of Problem 10.4, operating at 750 rpm, determine the volume flow 
rate for which the tangential component of the inlet velocity is zero. Calculate the 
theoretical head and mechanical power input. 

10.10 For the impeller of Problem 10.5, determine the inlet blade angle for which the tan­
gential component of the inlet velocity is zero if the volume flow rate is 8 m3/s. Cal­
culate the theoretical head and mechanical power input. 

10.11 Consider a centrifugal pump whose geometry and flow conditions are 

Impeller inlet radius, /?, 25 mm 
impeller outlet radius, R2 200 mm 
Impeller outlet width, b2 10 mm 
Design speed, N 2000 rpm 
Design flow rate, Q 50 LA 
Backward-curved vanes 

(outlet blade angle), B2 75° 
Required flow rate range 50-150% of design 

Assume ideal pump behavior with 100 percent efficiency. Find the shutoff head. 
Calculate the absolute and relative discharge velocities, the total head, and the theo­
retical power required at the design flow rate. 

10.12 A centrifugal pump runs at 1750 rpm while pumping water at a rate of 50 Us. The 
water enters axially, and leaves tangential to the impeller blades. The impeller exit 
diameter and width are 150 mm and 10 mm, respectively. If the pump requires 
45 kW, and is 75 percent efficient, estimate the exit angle of the impeller blades. 

10.13 Consider the centrifugal pump impeller dimensions given in Example Problem 
10.1. Construct the velocity diagram for shockless flow at the impeller inlet, if b = 
constant. Calculate the effective flow angle with respect to the radial impeller 
blades for the case of no inlet swirl. Investigate the effects on flow angle of (a) vari­
ations in impeller width and (b) inlet swirl velocities. 

10.14 A centrifugal water pump designed to operate at 1300 rpm has dimensions 

Parameter Inlet Outlet 

Radius, r (mm) 100 175 
Blade width, b (mm) 10 7.5 
Blade angle, f3 (deg) 40 

Draw the inlet velocity diagram for a volume flow rate of 35 L/s. Determine the 
inlet blade angle for which the entering velocity has no tangential component. Draw 
the outlet velocity diagram. Determine the outlet absolute flow angle (measured rel­
ative to the norma] direction). Evaluate the hydraulic power delivered by the pump, 
if its efficiency is 75 percent. Determine the head developed by the pump. 

10.15 Repeat the analysis for determining the optimum speed for an impulse turbine of 
Example Problem 10.5, using the Euler turbomachine equation. 

10.16 A centrifugal water pump designed to operate at 1200 rpm has dimensions 

Parameter Inlet Outlet 

Radius, r (mm) 90 150 
Blade width, b (mm) 10 7.5 
Blade angle, B (deg) 25 45 
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Determine the flow rate at which the entering velocity has no tangential component 
Draw the outlet velocity diagram, and determine the outlet absolute flow angle 
(measured relative to the normal direction), at this flow rate. Evaluate the hydraulic 
power delivered by the pump, if its efficiency is 70 percent. Determine the head de­
veloped by the pump. 

10.17 A centrifugal pump designed to deliver water at 460 gpm has dimensions 

Parameter Inlet Outlet 

Radius r (in.) 3.0 6.0 
Blade width, b (in.) 0.3 0.25 
Blade angle, B (deg) 25 40 

Draw the inlet velocity diagram. Determine the design speed if the entering velocity 
has no tangential component. Draw the outlet velocity diagram. Determine the out­
let absolute flow angle (measured relative to the normal direction). Evaluate the 
theoretical head developed by the pump. Estimate the minimum mechanical power 
delivered to the pump. 

10.18 Gasoline is pumped by a centrifugal pump. When the flow rate is 375 gpm, the pump 
requires 19.3 hp input, and its efficiency is 81.2 percent. Calculate the pressure rise 
produced by the pump. Express this result as (a) ft of water and (b) ft of gasoline. 

10.19 In the water pump of Problem 10.6, the pump casing acts as a diffuser, which con­
verts 60 percent of the absolute velocity head at the impeller outlet to static pressure 
rise. The head loss through the pump suction and discharge channels is 0.75 timeJ 
the radial component of velocity head leaving the impeller. Estimate the voluma 
flow rate, head rise, power input, and pump efficiency at the maximum efficiency] 
point Assume the torque to overcome bearing, seal, and spin losses is 10 percent of 
the ideal torque at Q = 1000 gpm. 

10.20 The theoretical head delivered by a centrifugal pump at shutoff depends on the dis­
charge radius and angular speed of the impeller. For preliminary design, it is useful to 
have a plot showing the theoretical shutoff characteristics and approximating the actual 
performance. Prepare a log-log plot of impeller radius versus theoretical head rise at) 
shutoff with standard motor speeds as parameters. Assume the fluid is water and the ac­
tual head at the design flow rate is 70 percent of the theoretical shutoff head. (Show these 
as dashed lines on the plot.) Explain how this plot might be used for preliminary design. 

10.21 Use data from Appendix D to choose points from the performance curves for a 
Peerless horizontal split case Type 4AE12 pump at 1750 and 3550 nominal rpm. 
Obtain and plot curve-fits for total head versus delivery at each speed for this pump, 
with a 12.12 in. diameter impeller. 

10.22 Use data from Appendix D to choose points from the performance curves for a 
Peerless horizontal split case Type 16A18B pump at 705 and 880 nominal rpm. Ob­
tain and plot curve-fits of total head versus delivery for this pump, with an 18.0 in., 
diameter impeller. 

10.23 Data from tests of a Peerless end suction Type 1430 pump operated at 1750 rpm 
with a 14.0 in. diameter impeller are 

Flow rate, Q (gpm) 270 420 610 720 1000 

Total head, H (ft) 198 195 178 165 123 

Power input, (hp) 25 30 35 40 45 

Plot the performance curves for this pump; include a curve of efficiency versus volume 
flow rate. Locate the best efficiency point and specify the pump rating at this point. 
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10.24 Data from tests of a Peerless end suction Type 1440 pump operated at 1750 rpm 
with a 14.0 in. diameter impeller are 

Row rate. Q (gpmj 290 440 550 790 920 1280 

Total head, H (ft) 204 203 200 187 175 135 

Power input, SP (hp) 30 35 40 45 50 60 

Plot the performance curves for this pump; include a curve of efficiency versus volume 
flow rate. Locate the best efficiency point and specify the pump rating at this point. 

10.25 Data measured during tests of a centrifugal pump at 2750 rpm are 

Parameter Inlet, Section (D Outlet, Section © 

Gage pressure, p (kPa) 120 500 
Elevation above datum, z (m) 2.5 9 
Average speed of flow, V (m/s) 2.5 3.5 

The flow rate is 15 rnVhr and the torque applied to the pump shaft is 8.5 N • m. 
Evaluate the total dynamic heads at the pump inlet and outlet, the hydraulic power 
input to the fluid, and the pump efficiency. Specify the electric motor size needed to 
drive the pump. If the electric motor efficiency is 85 percent, calculate the electric 
power requirement. 

10.26 Data measured during tests of centrifugal pump driven at 3000 rpm are 

Parameter Inlet, Section ® Outlet, Section © 

Gage pressure, p (kPa) 90 
Elevation above datum, z (m) 2 10 
Average speed of flow, V (m/s) 2 5 

The flow rate is 15 rnVhr and the torque applied to the pump shaft is 6.5 N • m. The 
pump efficiency is 75 percent, and the electric motor efficiency is 85 percent. Find 
the electric power required, and the gage pressure at section © . 

10.27 Write the pump specific speed in terms of the flow coefficient and the head coefficient 

10.28 Write the turbine specific speed in terms of the flow coefficient and the head 
coefficient. 

10.29 The kilogram force (kgf), defined as the force exerted by a kilogram mass in stan­
dard gravity, is commonly used in European practice. The metric horsepower (hpm) 
is defined as 1 hpm = 75 m • kgf/s. Develop a conversion relating metric horsepower 
to U.S. horsepower. Relate the specific speed for a hydraulic turbine—calculated in 
units of rpm, metric horsepower, and meters—to the specific speed calculated in U.S. 
customary units. 

10.30 A small centrifugal pump, when tested at N = 2875 rpm with water, delivered Q = 
252 gpm and H = 138 ft at its best efficiency point (17 = 0.76). Determine the spe­
cific speed of the pump at this test condition. Sketch the impeller shape you expect. 
Compute the required power input to the pump. 

10.31 Typical performance curves for a centrifugal pump, tested with three different im­
peller diameters in a single casing, are shown. Specify the flow rate and head pro­
duced by the pump at its best efficiency point with a 12 in. diameter impeller. Scale 
these data to predict the performance of this pump when tested with 11 in. and 
13 in. impellers. Comment on the accuracy of the scaling procedure. 
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10.32 At its best efficiency point (rj = 0.85), a mixed-flow pump, with D = 400 mm, 
delivers Q = 1.20 mVs of water at H — 50 m when operating at N = 1500 rprrJ 
Calculate the specific speed of this pump. Estimate the required power input. Deter- 1 
mine the curve-fit parameters of the pump performance curve based on the shutoff 
point and the best efficiency point. Scale the performance curve to estimate the 
flow, head, efficiency, and power input required to run the same pump at 750 rpm. I 

10.33 A pump with D = 500 mm delivers Q = 0.725 mVs of water at H = 10 m at its 
best efficiency point. If the specific speed of the pump is 1.74, and the required in­
put power is 90 kW, determine the shutoff head, H0, and best efficiency, TJ. What 
type of pump is this? If the pump is now run at 900 rpm, by scaling the perform­
ance curve, estimate the new flow rate, head, shutoff head, and required power. 

10.34 A pumping system must be specified for a lift station at a wastewater treatment 
facility. The average flow rate is 30 million gallons per day and the required lift is 
30 ft. Non-clogging impellers must be used; about 65 percent efficiency is ex-1 
pected. For convenient installation, electric motors of 50 hp or less are desired. 1 
Determine the number of motor/pump units needed and recommend an appropriate 
operating speed. 

10.35 A centrifugal water pump operates at 1750 rpm; the impeller has backward-curved 
vanes with ft = 60° and b2 = 0.50 in. At a flow rate of 350 gpm, the radial outlet I 
velocity is Vnr> = 11.7 ft/s. Estimate the head this pump could deliver at 1150 rpm. 

10.36 Appendix D contains area bound curves for pump model selection and performance 
curves for individual pump models. Use these data to verify the similarity rules for I 
a Peerless Type 4AE12 pump, with impeller diameter D = 11.0 in., operated at 
1750 and 3550 nominal rpm. 

10.37 Appendix D contains area bound curves for pump model selection and performance 
curves for individual pump models. Use these data and the similarity rules to 
predict and plot the curves of head H (ft) versus Q (gpm) of a Peerless Type ] 
10AE12 pump, with impeller diameter D = 12 in., for nominal speeds of 1000, 1 
1200, 1400, and 1600 rpm. 

10.38 Use data from Appendix D to verify the similarity rules for the effect of changing 
the impeller diameter of a Peerless Type 4AE12 pump operated at 1750 and 3550 
nominal rpm. 

10.39 Consider the Peerless Type 16A18B horizontal split case centrifugal pump (Appen-
dix D). Use these performance data to verify the similarity rules for (a) impeller di- I 
ameter change and (b) operating speeds of 705 and 880 rpm (note the scale change 
between speeds). 
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10.40 Performance curves for Peerless horizontal split case pumps are presented in Ap­
pendix D. Develop and plot a curve-fit for a Type 10AE12 pump driven at 1150 
nominal rpm using the procedure described in Example Problem 10.7. 

10.41 Performance curves for Peerless horizontal split case pumps are presented in 
Appendix D. Develop and plot curve-fits for a Type 16A18B pump, with impeller 
diameter D = 18.0 in., driven at 705 and 880 nominal rpm. Verify the effects of 
pump speed on scaling pump curves using the procedure described in Example 
Problem 10.7. 

10.42 Problem 10.20 suggests that pump head at best efficiency is typically about 70 per­
cent of shutoff head. Use pump data from Appendix D to evaluate this suggestion. 
A further suggestion in Section 10-4 is that the appropriate scaling for tests of a 
pump casing with different impeller diameters is Q « D2. Use pump data to evalu­
ate this suggestion. 

10.43 A reaction turbine is designed to produce 24,000 hp at 120 rpm under 150 ft of head. 
Laboratory facilities are available to provide 30 ft of head and to absorb 45 hp from 
the model turbine. Assume comparable efficiencies for the model and prototype tur­
bines. Determine the appropriate model test speed, scale ratio, and volume flow rate. 

10.44 Catalog data for a centrifugal water pump at design conditions are Q = 250 gpm 
and Ap — 18.6 psi at 1750 rpm. A laboratory flume requires 200 gpm at 32 ft of 
head. The only motor available develops 3 hp at 1750 rpm. Is this motor suitable for 
the laboratory flume? How might the pump/motor match be improved? 

10.45 A centrifugal pump is to operate at Q - 250 cfs, H = 400 ft, and N = 870 rpm. A 
model test is planned in a facility where the maximum water flow rate is 5 cfs and a 
300 hp dynamometer is available. Assume the model and prototype efficiencies are 
comparable. Determine the appropriate model test speed and scale ratio. 

10.46 A 1/3 scale model of a centrifugal pump, when running at Nm = 100 rpm, produces 
a flow rate of Qm = 32 cfs with a head of Hm = 15 ft. Assuming the model and 
prototype efficiencies are comparable, estimate the flow rate, head, and power 
requirement if the design speed is 125 rpm. 

10.47 White [43] suggests modeling the efficiency for a centrifugal pump using the curve-
fit, TJ = aQ — bQi, where a and b are constants. Describe a procedure to evaluate a 
and b from experimental data. Evaluate a and b using data for the Peerless Type 
10AE12 pump, with impeller diameter D = 12.0 in., at 1760 rpm (Appendix D). 
Plot and illustrate the accuracy of the curve-fit by comparing measured and 
predicted efficiencies for this pump. 

10.48 Sometimes the variation of water viscosity with temperature can be used to achieve 
dynamic similarity. A model pump delivers 1.25 Us of water at 15°C against a head 
of 18.6 m, when operating at 3500 rpm. Determine the water temperature that must 
be used to obtain dynamically similar operation at 1750 rpm. Estimate the volume 
flow rate and head produced by the pump at the lower-speed test condition. Com­
ment on the NPSH requirements for the two tests. 

10.49 A four-stage boiler feed pump has suction and discharge lines of 4 in. and 3 in. in­
side diameter. At 3500 rpm, the pump is rated at 400 gpm against a head of 400 ft 
while handling water at 240°F. The inlet pressure gage, located 1.5 ft below the 
impeller centerline, reads 21.5 psig. The pump is to be factory certified by tests at 
the same flow rate, head rise, and speed, but using water at 80°F. Calculate the 
NPSHA at the pump inlet in the field installation. Evaluate the suction head that 
must be used in the factory test to duplicate field suction conditions. 

10.50 Data from tests of a pump operated at 1200 rpm, with a 12 in. diameter impeller, 
are 
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Flow rate. Q (gpm) 100 200 300 400 500 600 700 

Net positive suction head 
required, NPSHR (ft) 7.1 7.9 8.4 10.1 11.8 13.6 16.7 

Develop and plot a curve-fit equation for NPSHR versus volume flow rate in tha 
form, NPSHR = a + bQ2, where a and b are constants. If the NPSHA = 20 ft, estiJ 
mate the maximum allowable speed of this pump. 

10.51 A large deep fryer at a snack-food plant contains hot oil that is circulated through a 
heat exchanger by pumps. Solid particles and water droplets coming from the foool 
product are observed in the flowing oil. What special factors must be considered in 
specifying the operating conditions for the pumps? 

10.52 The net positive suction head required [NPSHR) by a pump may be expressed ap-J 
proximately as a parabolic function of volume flow rate. The NPSHR for a particu­
lar pump operating at 1750 rpm is given as Hr = H0 + AQ2, where H0 = 10 ft of 
water and A = 4.1 X 10 5 ftV(gpm)2. Assume the pipe system supplying the pumpl 
suction consists of a reservoir, whose surface is 20 ft above the pump centerline, a,S 
square entrance, 20 ft of 6 in. cast-iron pipe, and a 90° elbow. Calculate the maxi­
mum volume flow rate at 68°F for which the suction head is sufficient to operate 
this pump without cavitation. 

10.53 For the pump and flow system of Problem 10.52, calculate the maximum flow rate 
for hot water at various temperatures and plot versus water temperature. (Be sure to 
consider the density variation as water temperature is varied.) 

10.54 A centrifugal pump, operating at N = 2265 rpm, lifts water between two reservoirs 
connected by 300 ft of 6 in. and 100 ft of 3 in. cast-iron pipe in series. The gravity 
lift is 25 ft. Estimate the head requirement, power needed, and hourly cost of elec­
trical energy to pump water at 200 gpm to the higher reservoir. Assume that elec­
tricity costs 120/kWhr, and that the electric motor efficiency is 85 percent. 

10.55 Part of the water supply for the South Rim of Grand Canyon National Park is taken 
from the Colorado River [44]. A flow rate of 600 gpm, taken from the river at eleva­
tion 3734 ft, is pumped to a storage tank atop the South Rim at 7022 ft elevation. Part 
of the pipeline is above ground and part is in a hole directionally drilled at angles up 
to 70° from the vertical; the total pipe length is approximately 13,200 ft. Under steady 
flow operating conditions, the frictional head loss is 290 ft of water in addition to the 
static lift. Estimate the diameter of the commercial steel pipe in the system. Compute 
the pumping power requirement if the pump efficiency is 61 percent. 

10.56 A Peerless horizontal split-case type 4AE12 pump with 11.0 in. diameter impeller, 
operating at 1750 rpm, lifts water between two reservoirs connected by 200 ft of 4 
in. and 200 ft of 3 in. cast-iron pipe in series. The gravity lift is 10 ft. Plot the sys­
tem head curve and determine the pump operating point. 

10.57 A centrifugal pump is installed in a piping system with L = 1000 ft of D = 16 in; 
cast-iron pipe. The downstream reservoir surface is 50 ft lower than the upstream 
reservoir. Determine and plot the system head curve. Find the volume flow rata 
(magnitude and direction) through the system when the pump is not operating. Esti-I 
mate the friction loss, power requirement, and hourly energy cost to pump water at 
14,600 gpm through this system. 

10.58 A pump transfers water from one reservoir to another through two cast-iron pipes irtj 
series. The first is 3000 ft of 9 in. pipe and the second is 1000 ft of 6 in. pipe. 
A constant flow rate of 75 gpm is tapped off at the junction between the two pipes, 
Obtain and plot the system head versus flow rate curve. Find the delivery if th~ 
system is supplied by the pump of Example Problem 10.7, operating at 1750 rpm, 
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10.59 Performance data for a pump are 

(ft) 179 176 165 145 119 84 43 

Q (gpm) 0 500 1000 1500 2000 2500 3000 

Estimate the delivery when the pump is used to move water between two open 
reservoirs, through 1200 ft of 12 in. commercial steel pipe containing two 90° el­
bows and an open gate valve, if the elevation increase is 50 ft. Determine the gate 
valve loss coefficient needed to reduce the volume flow rate by half. 

( J t 10.60 Consider again the pump and piping system of Problem 10.59. Determine the vol­
ume flow rate and gate valve loss coefficient for the case of two identical pumps in­
stalled in parallel. 

10.61 Consider again the pump and piping system of Problem 10.59. Determine the vol­
ume flow rate and gate valve loss coefficient for the case of two identical pumps in­
stalled in series. 

10.62 The resistance of a given pipe increases with age as deposits form, increasing the 
roughness and reducing the pipe diameter (see Fig. 8.13). Typical multipliers to be 
applied to the friction factor are given in [16]: 

(I 

Pipe Age Small Pipes, Large Pipes, 
(years) 4 -10 in. 12-60 in. 

New 1.00 1.00 
10 2.20 1.60 
20 5.00 2.00 
30 7.25 2.20 
40 8.75 2.40 
50 9.60 2.86 
60 10.0 3.70 
70 10.1 4.70 

B I B L I O T E C A 

L L E . B . 

Consider again the pump and piping system of Problem 10.59. Estimate the per­
centage reductions in volume flow rale that occur after (a) 20 years and (b) 40 years 
of use, if the pump characteristics remain constant. Repeat the calculation if the 
pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years. 

10.63 Consider again the pump and piping system of Problem 10.60. Estimate the per­
centage reductions in volume flow rate that occur after (a) 20 years and (b) 40 years 
of use, if the pump characteristics remain constant. Repeat the calculation if the 
pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years. 
(Use the data of Problem 10.62 for increase in pipe friction factor with age.) 

10.64 Consider again the pump and piping system of Problem 10.61. Estimate the per­
centage reductions in volume flow rate that occur after (a) 20 years and (b) 40 years 
of use, if the pump characteristics remain constant. Repeat the calculation if the 
pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years. 
(Use the data of Problem 10.62 for increase in pipe friction factor with age.) 

10.65 The city of Englewood, Colorado, diverts water for municipal use from the South 
Platte River at elevation 5280 ft [44]. The water is pumped to storage reservoirs at 
5310 ft elevation. The inside diameter of the steel water line is 27 in.; its length is 
5800 ft. The facility is designed for an initial capacity (flow rate) of 31 cfs, with an 
ultimate capacity of 38 cfs. Calculate and plot the system resistance curve. Specify 
an appropriate pumping system. Estimate the pumping power required for steady-
state operation, at both the initial and ultimate flow rates, 
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10.66 A pump in the system shown draws water from a sump and delivers it to an open 
tank through 1250 ft of new, 4 in. nominal diameter, schedule 40 steel pipe. The 
vertical suction pipe is 5 ft long and includes a foot valve with hinged disk and a 
90° standard elbow. The discharge line includes two 90° standard elbows, an angle 
lift check valve, and a fully open gate valve. The design flow rate is 200 gpm. Find 
the head losses in the suction and discharge lines. Calculate the NPSHA. Select a 
pump suitable for this application. 

Elev 289 .00 ' 

Sudden enlargement 

Gate valve (fully open) 

Discharge pressure gage 

J Elev 24 .00 ' 

S U M P 

Foot valve with hinged disk 

P10.66 

10.67 Consider the flow system and data of Problem 10.66 and the data for pipe aging 
given in Problem 10.62. Select pump(s) that will maintain the system flow at thel 
desired rate for (a) 10 years and (b) 20 years. Compare the delivery produced byj 
these pumps with the delivery by the pump sized for new pipes only. 

10.68 Consider the flow system shown in Problem 8.106. Assume the minimum NPSHR 
at the pump inlet is 4.5 m of water. Select a pump appropriate for this applications 
Use the data for increase in friction factor with pipe age given in Problem 10.62 to 
determine and compare the system flow rate after 10 years of operation. 

10.69 Consider the flow system described in Problem 8.143. Select a pump appropriate 
for this application. Check the NPSHR versus the NPSHA for this system. 

10.70 Consider the flow system shown in Problem 8.145. Select an appropriate pump for 
this application. Check the pump efficiency and power requirement compared with 
those in the problem statement. 

10.71 A fire nozzle is supplied through 300 ft of 3 in. diameter canvas hose (with e = 
0.001 ft). Water from a hydrant is supplied at 50 psig to a booster pump on boara 
the pumper truck. At design operating conditions, the pressure at the nozzle inlet is 
100 psig, and the pressure drop along the hose is 33 psi per 100 ft of length. Calcu­
late the design flow rate and the maximum nozzle exit speed. Select a pump appro­
priate for this application, determine its efficiency at this operating condition, and 
calculate the power required to drive the pump. 

10.72 Consider the pipe network of Problem 8.155. Select a pump suitable to deliver a to­
tal flow rate of 300 gpm through the pipe network. 

10.73 A pumping system with two different static lifts is shown. Each reservoir is sup­
plied by a line consisting of 1000 ft of 8 in. cast-iron pipe. Evaluate and plot the 
system head versus flow curve. Explain what happens when the pump head is less 
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than the height of the upper reservoir. Calculate the flow rate delivered at a pump 
head of 88 ft. 

1,000'of 8 " pipe (cast iron) 

P10.73 

10.74 Consider the flow system shown in Problem 8.77. Evaluate the NPSHA at the pump 
inlet. Select a pump appropriate for this application. Use the data on pipe aging 
from Problem 10.62 to estimate the reduction in flow rate after 10 years of 
operation. 

10.75 Consider the chilled water circulation system of Problem 8.146. Select pumps that 
may be combined in parallel to supply the total flow requirement. Calculate the 
power required for 3 pumps in parallel. Also calculate the volume flow rates and 
power required when only 1 or 2 of these pumps operates, 

10.76 Consider the gasoline pipeline flow of Problem 8.118. Select pumps that, combined 
in parallel, supply the total flow requirement. Calculate the power required for 4 
pumps in parallel. Also calculate the volume flow rates and power required when 
only 1, 2, or 3 of these pumps operates. 

10.77 Water is pumped from a lake (at z = 0) to a large storage tank located on a bluff 
above the lake. The pipe is 3 in. diameter galvanized iron. The inlet section (be­
tween the lake and the pump) includes one rounded inlet, one standard 90° elbow, 
and 50 ft of pipe. The discharge section (between the pump outlet and the dis­
charge to the open tank) includes two standard 90° elbows, one gate valve, and 
150 ft of pipe. The pipe discharge (into the side of the tank) is at z = 70 ft. Calcu­
late the system flow curve. Estimate the system operating point. Determine the 
power input to the pump if its efficiency at the operating point is 80 percent. 
Sketch the system curve when the water level in the upper tank reaches z — 90 ft. 
If the water level in the upper tank is at z = 75 ft and the valve is partially closed 
to reduce the flow rate to 0.1 ftVs, sketch the system curve for this operating con­
dition. Would you expect the pump efficiency to be higher for the first or second 
operating condition? Why? 

10.78 Water for the sprinkler system at a lakeside summer home is to be drawn from 
the adjacent lake. The home is located on a bluff 80 ft above the lake surface. 
The pump is located on level ground 10 ft above the lake surface. The sprinkler 
system requires 10 gpm at 50 psig. The piping system is to be 1 in. diameter gal­
vanized iron. The inlet section (between the lake and pump inlet) includes a 
reentrant inlet, one standard 45° elbow, one standard 90° elbow, and 50 ft of 
pipe. The discharge section (between the pump outlet and the sprinkler connec­
tion) includes two standard 45° elbows and 120 ft of pipe. Evaluate the head loss 
on the suction side of the pump. Calculate the gage pressure at the pump inlet. 
Determine the hydraulic power requirement of the pump. If the pipe diameter 
were increased to 1.5 in., would the power requirement of the pump increase, 
decrease, or stay the same? What difference would it make if the pump were lo­
cated halfway up the hill? 
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Discharge height (ft) 1 2 5 10 15 20 26.3 

Water flow rate (gpm) 20.4 20 19 16 13 8 0 

The Owner's Manual also states, "Note: These ratings are based on discharge into 1 
in. pipe with friction loss neglected. Using 3/4 in. garden hose adaptor, performance 
will be reduced approximately 15%." Plot a performance curve for the pump. De­
velop a curve-fit equation for the performance curve; show the curve-fit on the plot. 
Calculate and plot the pump delivery versus discharge height through a 50 ft length 
of smooth 3/4 in. garden hose. Compare with the curve for delivery into 1 in. pipe. 

10.80 Consider the fire hose and nozzle of Problem 8.148. Specify an appropriate pump 
and impeller diameter to supply four such hoses simultaneously. Calculate the 
power input to the pump. 

10.81 Consider the swimming pool filtration system of Problem 8.156. Assume the pipe 
used is 3/4 in. nominal PVC (smooth plastic). Specify the speed and impeller diam­
eter and estimate the efficiency of a suitable pump. 

10.82 Performance data for a Buffalo Forge Type BL centrifugal fan of 36.5 in. diameter, 
tested at 600 rpm, are 

Volume flow rate, Q (cfm) 6000 8000 10,000 12,000 14,000 16,000 

Static pressure rise, Ap (in. H 2 0) 2.10 2.00 1.76 1.37 0.92 0.42 

Power input, SP (hp) 2.75 3.18 3.48 3.51 3.50 3.22 

Plot the performance data versus volume flow rate. Calculate static efficiency and! 
show the curve on the plot. Find the best efficiency point and specify the fan rating I 
at this point. 

10.83 Using the fan of Problem 10.82 determine the minimum-size square sheet-metal 
duct that will carry a flow of 12,000 cfm over a distance of 50 ft. Estimate the in­
crease in delivery if the fan speed is increased to 800 rpm. 

10.84 Consider the fan and performance data of Problem 10.82. At Q = 12,000 cfm, the 
dynamic pressure is equivalent to 0.16 in. of water. Evaluate the fan outlet area. Plot! 
total pressure rise and input horsepower for this fan versus volume flow rate. Calcu-| 
late the fan total efficiency and show the curve on the plot. Find the best efficiency! 
point and specify the fan rating at this point. 

10.85 The performance data of Problem 10.82 are for a 36.5 in. diameter fan wheel. This ] 
fan also is manufactured with 40.3, 44.5, 49.0, and 54.3 in. diameter wheels. Pick a 
standard fan to deliver 30,000 cfm against a 5 in. H 2 0 static pressure rise. Assume 
standard air at the fan inlet. Determine the required fan speed and the input power I 
needed. 

10.86 Performance characteristics of a Buffalo Forge axial flow fan are presented on the 
next page. The fan is used to power a wind tunnel with I ft square test section. The 
tunnel consists of a smooth inlet contraction, two screens (each with loss coeffi­
cient K = 0.12), the test section, and a diffuser where the cross section is ex­
panded to 24 in. diameter at the fan inlet. Flow from the fan is discharged back to 
the room. Calculate and plot the system characteristic curve of pressure loss versus 
volume flow rate. Estimate the maximum air flow speed available in this wind tun­
nel test section. 

( B f 10.79 Manufacturer's data for the "Little Giant Water Wizard" submersible utility pump are 
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10.87 Consider again the axial-flow fan and wind tunnel of Problem 10.86. Scale the per­
formance of the fan as it varies with operating speed. Develop and plot a "calibra­
tion curve" showing test section flow speed (in m/s) versus fan speed (in rpm). 

10.88 Experimental test data for an aircraft engine fuel pump are presented below. This 
gear pump is required to supply jet fuel at 450 pounds per hour and 150 psig to the 
engine fuel controller. Tests were conducted at 10, 96, and 100 percent of the rated 
pump speed of 4536 rpm. At each constant speed, the back pressure on the pump 
was set, and the flow rate measured. On one graph, plot curves of pressure versus 
delivery at the three constant speeds. Estimate the pump displacement volume per 
revolution. Calculate the volumetric efficiency at each test point and sketch con­
tours of constant T J 0 . Evaluate the energy loss caused by valve throttling at 100 per­
cent speed and full delivery to the engine. 

Pump Back Fuel Pump Back Fuel Pump Back Fuel 
Speed Pressure Flow Speed Pressure Flow Speed Pressure Flow 
(rpm) (psig) (pph*) (rpm) (psig) (pph) (rpm) (psig) (pph) 

200 1810 200 1730 200 89 
4536 300 1810 4355 300 1750 453 250 73 

(100%) 400 1810 (96%) 400 1735 (10%) 300 58.5 
500 1790 500 1720 350 45 
900 1720 900 1635 400 30 

* Fuel flow rate measured in pounds per hour (pph). 

10.89 An air boat in the Florida Everglades is powered by a propeller, with D = 5 ft, 
driven at maximum speed, N = 1800 rpm, by a 160 hp engine. Estimate the maxi­
mum thrust produced by the propeller at (a) standstill and (b) V = 30 mph. 

10.90 The propeller on an airboat used in the Florida Everglades moves air at the rate of 
40 kg/s. When at rest, the speed of the slipstream behind the propeller is 40 m/s at a 
location where the pressure is atmospheric. Calculate (a) the propeller diameter, (b) 
the thrust produced at rest, and (c) the thrust produced when the airboat is moving 
ahead at 10 m/s, if the mass flow rate through the propeller remains constant. 

10.91 A jet-propelled aircraft traveling at 200 m/s takes in 40 kg/s of air and discharges it at 
500 m/s relative to the aircraft. Determine the propulsive efficiency (defined as the ra­
tio of the useful work output to the mechanical energy input to the fluid) of the aircraft, 
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10.92 Drag data for model and prototype guided missile frigates are presented in Figs. 7.2 j 
and 7.3. Dimensions of the prototype vessel are given in Problem 9.73. Use these | 
data, with the propeller performance characteristics of Fig. 10.40, to size a single 
propeller to power the full-scale vessel. Calculate the propeller size, operating 
speed, and power input, if the propeller operates at maximum efficiency when the 
vessel travels at its maximum speed, V = 37.6 knots. 

10.93 The propeller for the Gossamer Condor human-powered aircraft has D = 12 ft and 
rotates al N = 107 rpm. Additional details on the aircraft are given in Problem 
9.153. Estimate the dimensionless performance characteristics and efficiency of this 
propeller at cruise conditions. Assume the pilot expends 70 percent of maximum 
power at cruise. (See Reference 45 for more information on human-powered flight.) 

10.94 The propulsive efficiency, 17, of a propeller is defined as the ratio of the useful work 
produced to the mechanical energy input to the fluid. Determine the propulsive effi-j 
ciency of the moving airboat of Problem 10.90. What would be the efficiency if thel 
boat were not moving? 

10.95 Equations for the thrust, power, and efficiency of propulsion devices were derived 
in Section 10-5. Show that these equations may be combined for the condition offl 
constant thrust to obtain 

7] = 

1 + 1 + 
pV2 irD2 

Interpret this result physically. 
10.96 Preliminary calculations for a hydroelectric power generation site show a net head 

of 2350 ft is available at a water flow rate of 75 ftVs. Compare the geometry and ef­
ficiency of Pelton wheels designed to run at (a) 450 rpm and (b) 600 rpm. 

10.97 Conditions at the inlet to the nozzle of a Pelton wheel are p = 4.81 MPa (gage) and 
V — 6.10 m/s. The jet diameter is d = 200 mm and the nozzle loss coefficient is! 
^ n o z z l e

 = 0-04- The wheel diameter is D = 2.45 m. At this operating condition, 
17 = 0.86. Calculate (a) the power output, (b) the normal operating speed, (c) the 
approximate runaway speed, (d) the torque at normal operating speed, and (e) the! 
approximate torque at zero speed. 

^ 10.98 The reaction turbines at Niagara Falls are of the Francis type. The impeller outsidej 
diameter is 176 in. Each turbine produces 72,500 hp at 107 rpm, with 93.8 percent 
efficiency under 214 ft of net head. Calculate the specific speed of these units. Eval-j 
uate the volume flow rate to each turbine. Estimate the penstock size, if it is 1300 ft< 
long and the net head is 85 percent of the gross head. 

10.99 Francis turbine Units 19, 20, and 21, installed at the Grand Coulee Dam on the 
Columbia River, are very large [46]. Each runner is 32.6 ft in diameter and contains] 
550 tons of cast steel. At rated conditions, each turbine develops 820,000 hp at 72 
rpm under 285 ft of head. Efficiency is nearly 95 percent at rated conditions. Thel 
turbines operate at heads from 220 to 355 ft. Calculate the specific speed at rated 
operating conditions. Estimate the maximum water flow rate through each turbine.! 

10.100 Figure 10.11 contains data for the efficiency of a large Pelton water wheel installed; 
in the Tiger Creek Power House of Pacific Gas & Electric Company near Jackson,! 
California. This unit is rated at 36,000 hp when operated at 225 rpm under a net head; 
of 1190 ft of water. Assume reasonable flow angles and nozzle loss coefficient. De­
termine the rotor diameter and estimate the jet diameter and the volume flow rate. 

110.101 Measured data for performance of the reaction turbines at Shasta Dam near Red­
ding, California are shown in Fig. 10.13. Each turbine is rated at 103,000 hp when 
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operating at 138.6 rpm under a net head of 380 ft. Evaluate the specific speed and 
compute the shaft torque developed by each turbine at rated operating conditions. 
Calculate and plot the water flow rate per turbine required to produce rated output 
power as a function of head. 

10.102 An impulse turbine is to develop 20,000 hp from a single wheel at a location where 
the net head is 1120 ft. Determine the appropriate speed, wheel diameter, and jet di­
ameter for single- and multiple-jet operation. Compare with a double-overhung 
wheel installation. Estimate the required water consumption. 

10.103 Tests of a model impulse turbine under a net head of 65.5 ft produced the following 
results: 

Wheel No-Load 
Speed Discharge Net Brake Scale Reading (Ibf) 
(rpm) (cfs) (R = 5.25 ft) 

275 0.110 6.8 14.9 22.0 28.9 40.0 48.0 
300 0.125 5.9 12.9 19.8 25.5 36.0 43.8 

Discharge (cfs) 0.397 0.773 1.114 1.414 1.896 2.315 

Calculate and plot the machine power output and efficiency versus water flow rate. 

10.104 According to a spokesperson for Pacific Gas & Electric Company, the Tiger 
Creek plant, located east of Jackson. California, is one of 71 PG&E hydroelectric 
powerplants. The plant has 1219 ft of gross head, consumes 750 cfs of water, is 
rated at 60 MW, and operates at 58 MW. The plant is claimed to produce 968 kW • hr/ 
(acre • ft) of water and 336.4 X 106 kW • hr/yr of operation. Estimate the net 
head at the site, the turbine specific speed, and its efficiency. Comment on the in­
ternal consistency of these data. 

10.105 In U.S. customary units, the common definition of specific speed for a hydraulic 
turbine is given by Eq. 10.18b. Develop a conversion between this definition and a 
truly dimensionless one in SI units. Evaluate the specific speed of an impulse tur­
bine, operating at 400 rpm under a net head of 1190 ft with 86 percent efficiency, 
when supplied by a single 6 in. diameter jet. Use both U.S. customary and SI units. 
Estimate the wheel diameter. 

10.106 Design the piping system to supply a water turbine from a mountain reservoir. The 
reservoir surface is 300 m above the turbine site. The turbine efficiency is 80 per­
cent, and it must produce 25 kW of mechanical power. Define the minimum stan­
dard-size pipe required to supply water to the turbine and the required volume flow 
rate of water. Discuss the effects of turbine efficiency, pipe roughness, and in­
stalling a diffuser at the turbine exit on the performance of the installation. 

10.107 A small hydraulic impulse turbine is supplied with water through a penstock with di­
ameter D and length L; the jet diameter is d. The elevation difference between the 
reservoir surface and nozzle centerline is Z. The nozzle head loss coefficient is Kmalc 

and the loss coefficient from the reservoir to the penstock entrance is A ^ n t r a n c c . Deter­
mine the water jet speed, the volume flow rate, and the hydraulic power of the jet, for 
the case where Z = 300 ft, L = 1000 ft, D = 6 in., Kcmancc = 0.5, = 0.04, and 
d = 2 in., if the pipe is made from commercial steel. Plot the jet power as a function of 
jet diameter to determine the optimum jet diameter and the resulting hydraulic power 
of the jet. Comment on the effects of varying the loss coefficients and pipe roughness. 

10.108 The National Aeronautics & Space Administration (NASA) and the U.S. Depart­
ment of Energy (DOE) co-sponsor a large demonstration wind turbine generator at 
Plum Brook, near Sandusky, Ohio [41]. The turbine has two blades, with D = 38 
m, and delivers maximum power when the wind speed is above V = 29 km/hr. It is 
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designed to produce 100 kW with powertrain efficiency of 0.75. The rotor is de­
signed to operate at a constant speed of 40 rpm in winds over 6 mph by controlling 
system load and adjusting blade angles. For the maximum power condition, esti­
mate the rotor tip speed and power coefficient. 

10.109 A model of an American multiblade farm windmill is to be built for display. The 
model, with D = 2 ft, is to develop full power at V = 22 mph wind speed. Calcu­
late the angular speed of the model for optimum power generation. Estimate the 
power output. 

10.110 The largest known Darrieus vertical axis wind turbine was built by the U.S. Depart­
ment of Energy near Sandia, New Mexico [42]. This machine is 60 ft tall and 30 ft 
in diameter; the area swept by the rotor is almost 1200 ft2. Estimate the maximum 
power this wind turbine can produce in a 20 mph wind. 

10.111 A typical American multiblade farm windmill has D = 7 ft and is designed to pro­
duce maximum power in winds with V = 15 mph. Estimate the rate of water deliv­
ery, as a function of the height to which the water is pumped, for this windmiU. 

10.112 Aluminum extrusions, patterned after NACA symmetric airfoil sections, frequendy 
are used to form Darrieus wind turbine "blades." Below are section lift and drag co­
efficient data [47] for a NACA 0012 section, tested at Re = 6 X 106 with standarfl 
roughness (the section stalled for a > 12°): 

Angle of attack, a (deg) 0 2 4 6 8 10 12 
Lift coefficient, CL (—) 0 0.23 0.45 0.68 0.82 0.94 1.02 

Drag coefficient. CD (—) 0.0098 0.0100 0.0119 0.0147 0.0194 — — 

Analyze the air flow relative to a blade element of a Darrieus wind turbine rotating 
about its troposkien axis. Develop a numerical model for the blade element. Calcu­
late the power coefficient developed by the blade element as a function of tip-speed 
ratio. Compare your result with the general trend of power output for Darrieus ro­
tors shown in Fig. 10.45. 

10.113 Lift and drag data for the NACA 23015 airfoil section are presented in Fig. 9.17. 
Consider a two-blade horizontal-axis propeller wind turbine with NACA 23015 
blade section. Analyze the air flow relative to a blade element of the rotating wind 
turbine. Develop a numerical model for the blade element. Calculate the power co­
efficient developed by the blade element as a function of tip-speed ratio. Compare] 
your result with the general trend of power output for high-speed two-bladed tur­
bine rotors shown in Fig. 10.45. 



Chapter 11 

INTRODUCTION TO 
COMPRESSIBLE FLOW 

In Chapter 2 we briefly discussed the two most important questions we must ask before 
analyzing a fluid flow: whether or not the flow is viscous, and whether or not the flow is 
compressible. We subsequently considered incompressible, inviscid flows (Chapter 6) 
and incompressible, viscous flows (Chapters 8 and 9). We are now ready to study flows 
that experience compressibility effects. Because this is an introductory text, our focus 
will be mainly on one-dimensional compressible, inviscid flows, although we will also 
review some important compressible, viscous flow phenomena. After our consideration 
of one-dimensional flows, we will introduce some basic concepts of two-dimensional 
steady compressible flows. 

We first need to establish what we mean by a "compressible" flow. This is a 
flow in which there are significant or noticeable changes in fluid density. Just as in­
viscid fluids do not actually exist, so incompressible fluids do not actually exist. For 
example, in this text we have treated water as an incompressible fluid, although in 
fact the density of seawater increases by 1% for each mile or so of depth. Hence, 
whether or not a given flow can be treated as incompressible is a judgment call: Liq­
uid flows will almost always be considered incompressible (exceptions include phe­
nomena such as the "water hammer" effect in pipes), but gas flows could easily be ei­
ther incompressible or compressible. As we will see (in Example Problem 11.5), our 
judgment will be guided by the rule of thumb that flows for which the Mach number 
M is less than about 0.3 can be considered incompressible. 

The consequences of compressibility are not limited simply to density changes. 
Density changes mean that we can have significant compression or expansion work 
on a gas, so the thermodynamic state of the fluid will change, meaning that in general 
all properties—temperature, internal energy, entropy, and so on—can change. In 
particular, density changes create a mechanism (just as viscosity did) for exchange of 
energy between "mechanical" energies (kinetic, potential, and "pressure") and the 
thermal interna] energy. For this reason, we begin with a review of the thermodynam­
ics needed to study compressible flow. 

11-1 REVIEW OF THERMODYNAMICS 

The pressure, density, and temperature of a substance may be related by an equation 
of state. Although many substances are complex in behavior, experience shows that 
most gases of engineering interest, at moderate pressure and temperature, are well 
represented by the ideal gas equation of state, 

P = pRT (11.1) 

589 
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where R is a unique constant for each gas; 1 R is given by 

R = 

where Ru is the universal gas constant, Ru = 8314 N • m/(kgmole • K) = 1544 ft • lbf? 
(lbmole • °R) and Mm is the molecular mass of the gas. Although the ideal gas equa­
tion is derived using a model that has the unrealistic assumptions that the gas mole­
cules (a) take up zero volume (i.e., they are point masses) and (b) do not interact with 
one another, many real gases conform to Eq. 11.1, especially if the pressure is "low" 
enough and/or temperature "high" enough (see, e.g., [ 1 -3 ] ) . For example, at room 
temperature, as long as the pressure is less than about 30 atm, Eq. 11.1 models the air 
density to better than 1 percent accuracy; similarly, Eq. 11.1 is accurate for air at I 
atm for temperatures that are greater than about - 130°C (140 K). 

The ideal gas has other features that are useful. In general, the internal energy of 
a simple substance may be expressed as a function of any two independent propen 
ties, e.g., u - u(v, T), where v = 1/p is the specific volume. Then 

du = 
37 

du 
dv 

The specific heat at constant volume is defined as cv 

'du 
dv 

{du/dT)v, so that 

du = c,, dT + dv 

In particular, for an ideal gas it can be shown (see, e.g., Chapter 11 of [1]) that the in­
ternal energy, u, is a function of temperature only, so (du/dv)T = 0, and 

du = c„ dT (11.2) 

for an ideal gas. This means that internal energy and temperature changes may be re-; 
lated if cv is known. Furthermore, since u = u(T), then from Eq. 11.2, cv = cv (T). 

The enthalpy of any substance is defined as h = u + pip. For an ideal gas, p =J 
pRT, and so h = u + RT. Since u = u(T) for an ideal gas, h also must be a function 
of temperature alone. 

We can obtain a relation between h and T by recalling once again that for a simpld 
substance any property can be expressed as a function of any two other independent 
properties [1 ], e.g., h = h(v, T) as we did for u, or h = h(p, T). We choose me latter in 
order to develop a useful relation, 

dh] _ fcV 
d h - [ f f ) dT + 

dp 
dp 

•p V - r / j 

Since the specific heat at constant pressure is defined as cp 

rdh\ 

(dh/dT)., 

dh = cpdT + dp 

We have shown that for an ideal gas h is a function of T only. Consequently, (dh/dp)T = 
Oand 

dh = cp dT (11.3) 

'For air, R = 287 N • m/(kg • K) = 53.3 ft • lbf/(lbm • °R). 
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Since h is a function of T alone, Eq. 11.3 requires that cp be a function of T only for 
an ideal gas. 

Although specific heats for an ideal gas are functions of temperature, their dif­
ference is a constant for each gas. To see this, from 

h = u + RT 

we can write 

dh = du + RdT 

Combining this with Eq. 11.2 and Eq.11.3, we can write 

Then 

dh = cpdT = du + RdT = cv dT + RdT 

c p - c v = R (11.4) 

This result may seem a bit odd, but it means simply that although the specific heats of 
an ideal gas may vary with temperature, they do so at the same rate, so their differ­
ence is always constant. 

The ratio of specific heats is defined as 

(11.5) 

Using the definition of k, we can solve Eq. 11.4 for either cp or cv in terms of k and R. 
Thus, 

(11.6a) 

and 
R 

k - 1 
(11.6b) 

Although the specific heats of an ideal gas may vary with temperature, for moderate 
temperature ranges they vary only slightly, and can be treated as constant, so 

f"2 fTl , \ 

u2 - w, = du = cv dT = cv(T2 - 7] 

h, - hx = f"2 dh = f cp dT = cp{T2 - 7J ) 

(11.7a) 

(11.7b) 

Data for Mm, cp, cv, R, and k for common gases are given in Table A.6 of 
Appendix A. 

We will find the property entropy to be extremely useful in analyzing compressi­
ble flows. State diagrams, particularly the temperature-entropy (Ts) diagram, are 
valuable aids in the physical interpretation of analytical results. Since we shall make 
extensive use of Ts diagrams in solving compressible flow problems, let us review 
briefly some useful relationships involving the property entropy [1-3]. 

Entropy is defined by the equation 

A5 •I 8Q 
rev T 

or dS = 
8Q 
T 

(11.8) 

where the subscript signifies reversible. 
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The inequality of Clausius, deduced from the second law, states that 

As a consequence of the second law, we can write 

dS>y- or TdS^SQ (11.9a) 

For reversible processes, the equality holds, and 

Tds = — (reversible process) (11.9b) 
m 

The inequality holds for irreversible processes, and 

Tds > — (irreversible process) (11.9c) 
m 

For an adiabatic process, 8Q/m = 0. Thus 

ds = 0 (reversible adiabatic process) 

and 

ds > 0 (irreversible adiabatic process) 

Thus a process that is reversible and adiabatic is also isentropic; the entropy remains 
constant during the process, inequality 11.9e shows that entropy must increase for an 
adiabatic process that is irreversible. 

Equations 11.9 show that any two of the restrictions—reversible, adiabatic, or 
isentropic—imply the third. For example, a process that is isentropic and reversible 
must also be adiabatic. 

A useful relationship among properties (p, v, T, s, u) can be obtained by consid­
ering the first and second laws together. The result is the Gibbs, or T ds, equation 

T ds = du + pdv (11.10a) 

This is a differential relationship among properties, valid for any process between 
any two equilibrium states. Although it is derived from the first and second laws, it is, 
in itself, a statement of neither. 

An alternative form of Eq. 11.10a can be obtained by substituting 

du = d{h - pv) = dh - pdv - v dp 

to obtain 

Tds = dh-vdp (11.1 

For an ideal gas, entropy change can be evaluated from the Tds equations as 

du p , dT ndv 
ds = — + — dv = c„ — + R — 

T T v T v 

dh v dT dp 
ds = dp - cn R — 

T T p T p 
For constant specific heats, these equations can be integrated to yield 
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s2 - S| = cv I n - 1 + tfln^- (11.11a) 

s 2 ~S\ = CP \n^--R[n^- (11.11b) 

and also 

s 2 ~S\ = cv

 ] n ~ + c o I n — (11.11c) 
Pi v i 

(Equation 11.11c can be obtained from either Eq. 11.11a or 11.1 lb using Eq. 11.4 
and the ideal gas equation, Eq. 11.1, written in the form pv = RT, to eliminate T.) 

Example Problem 11.1 shows use of the above governing equations (the T ds 
equations) to evaluate property changes during a process. 

For an ideal gas with constant specific heats, we can use Eqs. 11.11 to obtain re­
lations valid for an isentropic process. From Eq. 11.11a 

s2 - S\ - 0 = cv In 
To „ , v7 -1- + R\n-2-

Then, using Eqs. 11.4 and 11.5, 

R/. 

\ T\ A " i J 

"= 0 or T2v2

 1 = Tyv\~x = Tvk 1 = constant 

where states 1 and 2 are arbitrary states of the isentropic process. Using v — Mp, 

T 
Tvk~l = —j-r = constant (11.12a) 

P 
We can apply a similar process to Eqs. 11.11b and 11.11c, respectively, and obtain 
the following useful relations: 

Tp^ = constant (11.12b) 

pvk = ~ 7 = constant (11.12c) 
P 

Equations 11.12 are for an ideal gas undergoing an isentropic process. 
Qualitative information that is useful in drawing state diagrams also can be ob­

tained from the T ds equations. To complete our review of the thermodynamic funda­
mentals, we evaluate the slopes of lines of constant pressure and of constant volume 
on the Ts diagram in Example Problem 11.2. 

11.1 Property Changes in Compressible Duct Flow 

Air flows through a long duct of constant area at 0.15 kg/s. A short section of the duct 
is cooled by liquid nitrogen that surrounds the duct. The rate of heat loss in this sec­
tion is 15.0 kJ/s from the air. The absolute pressure, temperature, and velocity entering 
the cooled section are 188 kPa, 440 K, and 210 m/s, respectively. At the outlet, the ab­
solute pressure and temperature are 213 kPa and 351 K. Compute the duct cross-
sectional area and the changes in enthalpy, internal energy, and entropy for this flow. 
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EXAMPLE PROBLEM 11.1 

GIVEN: Air flows steadily through a short section of constant-area duct that is cooled by liquid nitrogen. 

= 440 K 
p, = 188kPa(abs) 
V, = 210 m/s 

FIND: (a) Duct area, (b) Ah. (c) Au. (d) As. 

SOLUTION: 
The duct area may be found from the continuity equation. 

0(1) 

Governing equation'. dA = 0 

Assumptions: (1) Steady flow. 
(2) Uniform flow at each section. 
(3) Ideal gas with constant specific heats. 

Then 

( - P l V,A, ) + (p2V2A2) = 0 

T2 = 351 K 
p2 = 213kPa(abs) 

(4.12) 

m = P\V\A = p2V2A 

since A = A, = A2 = constant. Using the ideal gas relation, p = pRT, we find 

Pi 
Pi _ I .88x l0 5 _N_ kg -K 1 
RT, m z 287 N • m 440 K 

x = 1,49kg/mJ 

From continuity, 

m 0.15 kg m s . „ . , 2 A = = — x x = 4 .79x10 m 
p,V, s 1.49 kg 210 m 

For an ideal gas, the change in enthalpy is 

•T, 
Ah = *h-hx = f 2 cpdT = cp{T2 - 7 i ) 

= 1.00 _ k J _ x (35i _ 440) K = - 89.0 kJ/kg 
k g - K 6 < -

Also, the change in internal energy is 

r T 2 
Au = u2 - ut = [ 2 cv dT = cv(T2 - 7]) 

Au = 0.717 kl 
kg 

— X (351 - 440) K = -63 .8 kJ/kg^ 

(11.7b) 

Ah 

(11.7a) 

Au 
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The entropy change may be obtained from Eq. 11.11b, 

'l P\ 

'351^1 0.287 Id 

" 71 
As = s2 - s{ = c„ In ~ R In 

1.00 kJ 
kg-K x In 440 kg-K 

x In '2 .13 x l O 5 ^ 
1.88x10" 

As = - 0.262 ld/(kg • K) 

We see that entropy may decrease for a nonadiabatic process in which the gas is cooled. 

This problem illustrates the use of the governing equations for 
computing property changes of an ideal gas during a process. 

As 

EXAMPLE 11.2 Constant-Property Lines on a Ts Diagram 

For an ideal gas, find the equations for lines of (a) constant volume and (b) constant 
pressure in the Ts plane. 

EXAMPLE PROBLEM 11.2 

FIND: Equations for fines of (a) constant volume and 
(b) constant pressure in the Ts plane for an ideal gas, 

SOLUTION: 
(a) We are interested in the relation between T and .s with the volume v held constant. This suggests use of 
Eq. 11.11a, 

0 

s-> — s, = c„ In ^ + R In 

We relabel this equation so that state 1 is now reference state 0, and state 2 is an arbitrary state, 

s - s0 = cv In — or T = T0e c" (1) 

Hence, we conclude that constant volume lines in the Ts plane are exponential. 

(b) We are interested in the relation between T and s with the pressure p held constant. This suggests use 
of Eq. 11.1 lb, and using a similar approach to case (a), we find 

T = T0e Cp (2) 

Hence, we conclude that constant pressure lines in the Ts plane are also exponential. 
What about the slope of these curves? Because cp > cv for all gases, we can see that the exponential, 

and therefore the slope, of the constant pressure curve, Eq. 2, is smaller than that for the constant volume 
curve, Eq. 1 . This is shown in the sketch below: 
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11-2 PROPAGATION OF SOUND WAVES 

Speed of Sound 

Supersonic and subsonic are familiar terms; they refer to speeds that are, respective! 
greater than and less than the speed of sound. The speed of sound (which is a pres­
sure wave of infinitesimal strength) is therefore an important characteristic parameter 
for compressible flow. We have previously (Chapters 2 and 7) introduced the Mach 
number, M = V7c, the ratio of the local flow speed to the local speed of sound, as an 
important nondimensional parameter characterizing compressible flows. Before 
studying compressible flows let us determine the speed of sound in any medium (gas, 
liquid, or solid). As we do so, it is worth keeping in mind the question "Would a liq­
uid, such as water, behave this way, or just a gas, such as air?" 

Consider propagation of a sound wave of infinitesimal strength into an undis­
turbed medium, as shown in Fig. l l . l a . We are interested in relating the speed of 
wave propagation, c, to fluid property changes across the wave. If pressure and den­
sity in the undisturbed medium ahead of the wave are denoted by p and p, passage of 
the wave will cause them to undergo infinitesimal changes to become p + dp and 
p + dp. Since the wave propagates into a stationary fluid, the velocity ahead of the 
wave, Vx, is zero. The magnitude of the velocity behind the wave, Vx + dVx, then will 
be simply dVx; in Fig. l l . l a , the direction of the motion behind the wave has been as­
sumed to the left.2 

2 T h e same final result is obtained regardless of the direction initially assumed for motion behind tha 
wave (see Problem 11.19). 
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p ' p + dp 
Vx = 0 < < dVx 
p I P + dp 

c -* Stationary 
observer 

(o) Propagating wave 

Y 

L 
c-dV. 

0 P + dp 

Observer 
on CV 

(6) Inertial control vo lume moving with wave, velocity c 

Fig. 11.1 Propaga t ing s o u n d w a v e show ing cont ro l vo lume c h o s e n 
for ana lys is . 

The flow of Fig. 11.1a appears unsteady to a stationary observer, viewing the 
wave motion from a fixed point on the ground. However, the flow appears steady to 
an observer located on an inertial control volume moving with a segment of the 
wave, as shown in Fig. 11.16. The velocity approaching the control volume is c. and 
the velocity leaving is c - dVx. 

The basic equations may be applied to the differential control volume shown in 
Fig. 11.1b (we use V, for the x component of velocity to avoid confusion with inter­
nal energy, u). 

a. Cont inu i ty Equat ion 

0(1) 

Governing equation: 
' c v 

pdV + \ pV-dA = 0 (4.12) 
cs 

Assumptions: (1) Steady flow. 
(2) Uniform flow at each section. 

Then 

or 

{-pcA) + {{p + dp)(c - dVx)A) = 0 (11.13a) 

pdA + qbA ~ p dVsA + dpcA 

= 0 

dp d/xA = 0 

or 
dVx = -dp 

P 
(11.13b) 

b. Momen tum Equat ion 

Governing equation: FSr + Fl = 

0(3) = 0(1) 

3 Vr p dY 
c v 

Vx PV • dA (4.18a) 
cs 
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Assumption: (3) FB = 0 

The only surface forces acting in the x direction on the control volume of Fig. 
11.1ft are due to pressure (the infinitesimal upper and lower areas have zero friction be­
cause we assume the wave continues unchanged above and below the control volume), 

Fsx = PA~{P + dp)A = ~A dP 

Substituting into the governing equation gives 

-A dp = c{-pcA) + (c - dVx){{p + dp){c - dVx)A] 

Using the continuity equation, (Eq. 11.13a), this reduces to 

-A dp = c(-pcA) + (c- dVx)(pcA) = (-c + c- dVx)(pcA) 

-A dp = -pcA dVx 

or 

dVx = —dp 
pc 

Combining Eqs. 11.13b and 11.13c, we obtain 

c 1 
dVx = — dp = — dp 

P PC 

(11.1: 

from which 

or 

dp — c2 dp 

c 2 = dp 

dp 
(11.14) 

We have derived an expression for the speed of sound in any medium in terms 
thermodynamic quantities! Equation 11.14 indicates that the speed of sound depends oi 
how the pressure and density of the medium are related. To obtain the speed of sound in 
a medium we could measure the time a sound wave takes to travel a prescribed distance, 
or instead we could apply a small pressure change dp to a sample, measure the corre­
sponding density change dp and evaluate c from Eq. 11.14. For example, an incompress­
ible medium would have dp = 0 for any dp, so c —* °°. We can anticipate that solids and 
liquids (whose densities are difficult to change) will have relatively high c values, ana 
gases (whose densities are easy to change) will have relatively low c values. There is 
only one problem with Eq. 11.14: For a simple substance, each property depends on ans 
two independent properties [ I ]. For a sound wave, by definition we have an infinitesim 
pressure change (i.e., it is reversible), and it occurs very quickly, so there is no time f 
any heat transfer to occur (i.e., it is adiabatic). Thus the sound wave propogates isentropA 
ically. Hence, if we express p as a function of density and entropy, p = pip, s), then 

an 

dp = hr dp? 
dp ^PJ 

dp 

so Eq. 11.14 becomes 
2 _ dp _ dp 

dp dp 
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and 

(11.15) 

We can now apply Eq. 11.15 to solids, liquids, and gases. For solids and liquids 
data are usually available on the bulk modulus Ev, which is a measure of how a pres­
sure change affects a relative density change, 

dp/p dp 

For these media 

For an ideal gas, the pressure and density in isentropic flow are related by 

-4 = constant (11.12c) 
P 

Taking logarithms and differentiating, we obtain 

Therefore, 

dp 

But pip = RT, so finally 

c = JkRT (H.17) 

for an ideal gas. The speed of sound in air has been measured precisely by numer­
ous investigators [4]. The results agree closely with the theoretical prediction of 
Eq. 11.17. 

The important feature of sound propagation in an ideal gas, as shown by 
Eq. 11.17, is that the speed of sound is a function of temperature only. The varia­
tion in atmospheric temperature with altitude on a standard day was discussed in 
Chapter 3; the properties are summarized in Table A.3. The corresponding varia­
tion in c is computed as an exercise in Problem 11.20 and plotted as a function of 
altitude. 

11.3 Speed of Sound in Steel, Water, Seawater, and Air 

Find the speed of sound in (a) steel {Ev ~ 200 GN/m 2 ) , (b) water (at 20°C), (c) sea-
water (at 20°C), and (d) air at sea level on a standard day. 
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EXAMPLE PROBLEM 11.3 

FIND: Speed of sound in (a) steel (£ B = 200 GN/M2), (b) water (at 20°C), 
(c) seawater (at 20°C), and (d) air at sea level on a standard day. 

SOLUTION: 
(a) For steel, a solid, we use Eq. 11.16, with p obtained from Table A. 1 (b), 

c = 
200 x 10 9 N 1 m kg • m . „ , r\ x x x — — T = 5050 m/s 

7.83 1000 kg N • s 

(b) For water we also use Eq. 11.16, with data obtained from Table A.2, 

c = JEvlp = JEv/SGpHfi 

2.24 x l 0 y N 

m 

1 m kg • m 
x — 0.998 1000 kg N • s 

1500 m/s 

'-steel 

water 

(c) For seawater we again use Eq. 11.16, with data obtained from Table A.2, 

c = ^Evlp = ^Ev/SGpHfi 

2.42 x l 0 y N 1 m kg • m 
x —-m 1.025 1000 kg N s ' 

1540 m/s 
<-

(d) For air we use Eq. 11.17, with the sea level temperature obtained from Table A.3, 

c = JkRT 

c 
1.4 287 N - m 2 8 8 K kg • m . . . , 

x x x ——=- = 340 m/s 
k g - K N V 

This Example Problem illustrates the relative magnitudes of 
the speed of sound in typical solids, liquids, and gases (c^^ > 
liquids > c g a s e s ) . Do not confuse the speed of sound with 
the attenuation of sound—the rate at which internal friction 
of the medium reduces the sound level—generally, solids 
and liquids attenuate sound much more rapidly than do 
gases. 

seawater 

~air (288 K) 

Types of F low—The Mach Cone 

Rows for which M < 1 are subsonic, while those with M > 1 are supersonic. Flo\ | 
fields that have both subsonic and supersonic regions are termed transonic. (The trail 
sonic regime occurs for Mach numbers between about 0.9 and 1.2.) Although moa 
flows within our experience are subsonic, there are important practical cases wherl 
M > 1 occurs in a flow field. Perhaps the most obvious are supersonic aircraft and 
transonic flows in aircraft compressors and fans. Yet another flow regime, hypersontk 
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flow (M ^ 5), is of interest in missile and reentry-vehicle design. (The proposed Na­
tional Aerospace Plane would have cruised at Mach numbers approaching 20.) Some 
important qualitative differences between subsonic and supersonic flows can be de­
duced from the properties of a simple moving sound source. 

Consider a point source of sound that emits a pulse every At seconds. Each 
pulse expands outwards from its origination point at speed c, so at any instant / the 
pulse will be a sphere of radius ct centered at the pulse's origination point. We want 
to investigate what happens if the point source itself is moving. There are four possi­
bilities, as shown in Fig. 11.2: 

(a) V = 0. The point source is stationary. Figure 11.2a shows conditions after 3A/ seconds. 
The first pulse has expanded to a sphere of radius c(3A;), the second to a sphere of radius 
c(2Ar), and the third to a sphere of radius c(A/); a new pulse is about to be emitted. The 
pulses constitute a set of ever-expanding concentric spheres. 

(b) 0 < V < c. The point source moves to the left at subsonic speed. Figure 1 \ .2b shows 
conditions after 3A/ seconds. The source is shown at times t = 0, At, 2At, and 3At. The 
first pulse has expanded to a sphere of radius c(3A/) centered where the source was orig­
inally, the second to a sphere of radius c(2A/) centered where the source was at time At, 
and the third to a sphere of radius c(At) centered where the source was at time 2At; a 
new pulse is about to be emitted. The pulses again constitute a set of ever-expanding 

— V t 3 4 l ) 

— V(.2Al) 

[a) V = O. stationary source 

Locus of wave fronts 

lc)V=c id) V > c: supersonic motion 

[e) M > 1: the Mach cone 
V>c 

Fig. 11.2 Propaga t ion of s o u n d waves f rom a mov ing source : 
The M a c h c o n e . 
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spheres, except now they axe not concentric. The pulses are all expanding at constant 
speed c. We make two important notes: First, we can see that an observer who is ahead 
of the source (or whom the source is approaching) will hear the pulses at a higher fre­
quency rate than will an observer who is behind the source (this is the Doppler effect that 
occurs when a vehicle approaches and passes); second, an observer ahead of the source 
hears the source before the source itself reaches the observer. 

(c) V = c. The point source moves to the left at sonic speed. Figure 112c shows conditions af­
ter 3 At seconds. The source is shown at times t = 0 (point 1), At (point 2), 2A/ (point 3), and 
3Ar (point 4). The first pulse has expanded to sphere 1 of radius c(3A/) centered at point 1, 
the second to sphere 2 of radius c(2At) centered at point 2, and the third to sphere 3 of radius 
c(At) centered around the source at point 3. We can see once more that the pulses constitute 
a set of ever-expanding spheres, except now they are tangent to one another on the left! 
The pulses are all expanding at constant speed c, but the source is moving at speed c, with 
the result that the source and all its pulses are traveling together to the left. We again makal 
two important notes: First, we can see that an observer who is ahead of the source will not 
hear the pulses before the source reaches her; second, in theory, over time an unlimited 
number of pulses will accumulate at the front of the source, leading to a sound wave of 
unlimited amplitude (a source of concern to engineers trying to break the "sound barrier," 
which many people thought could not be broken—Chuck Yeager in a Bell X-l was the 
first to do so in 1947). 

(d) V > c. The point source moves to the left at supersonic speed. Figure 11.2d shows condi­
tions after 3At seconds. By now it is clear how the spherical waves develop. We can see 
once more that the pulses constitute a set of ever-expanding spheres, except now the source 
is moving so fast it moves ahead of each sphere that it generates! For supersonic motion, 
the spheres generate what is called a Mach cone tangent to each sphere. The region inside 
the cone is called the zone of action and that outside the cone the zone of silence, for obvi­
ous reasons, as shown in Fig. 11.2e. From geometry, we see from Fig. 11.2d that 

c 1 sin a = — = — 
V M 

or 

1^1 

11-3 REFERENCE STATE: LOCAL ISENTROPIC STAGNATION PROPERTIES 

In our study of compressible flow, we will discover that, in general, all properties (pi 
T, p, u, h, s, V) may be changing as the flow proceeds. We need to obtain reference 
conditions that we can use to relate conditions in a flow from point to point. For any 
flow, a reference condition is obtained when the fluid is (in reality or conceptually) 
brought to rest (V = 0 ) . We will call this the stagnation condition, and the property 
values (p0, T0, pn, u0, s0) at this stale the stagnation properties. This process—of 
bringing the fluid to res t—is not as straightforward as it seems. For example, do we 
do so while there is friction, or while the fluid is being heated or cooled, or "vio­
lently," or in some other way? The most obvious process to use is an isentropic 
process, in which there is no friction, no heat transfer, and no "violent" events. 
Hence, the properties we obtain will be the local isentropic stagnation propertiesA 
Why "local"? Because the actual flow can be any kind of flow, e.g., with friction, so 
it may or may not itself be isentropic. Hence, each point in the flow will have its own, 
or local, isentropic stagnation properties. This is illustrated in Fig. 1 1 . 3 , showing 
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F i g . 11.3 Loca l isent rop ic s tagna t ion proper t ies . 

flow from some state (T) to some new state (2). The local isentropic stagnation 
properties for each state, obtained by isentropically bringing the fluid to rest, are also 
shown. Hence, = S | and SQ2 = s2. The actual flow may or may not be isentropic. 
If it is isentropic, s{ = s2 = 5 0 | = SQ2, S O the stagnation states are identical; if it is not 
isentropic, then s0i SQ2. We will see that changes in local isentropic stagnation 
properties will provide useful information about the flow. 

We can obtain information on the reference isentropic stagnation state for in-
compressible flows by recalling the Bernoulli equation from Chapter 6 

+ gz = constant (6.8) 

valid for a steady, incompressible, frictionless flow along a streamline. Equation 6.8 
is valid for our isentropic process because it is reversible (frictionless and steady) and 
adiabatic (we did not include heat transfer considerations in its derivation). As we 
saw in Section 6.3, the Bernoulli equation leads to 

Po = P + ^PV2 (6.11) 

(The gravity term drops out because we assume the reference state is at the same eleva­
tion as the actual state, and in any event in external flows it is usually much smaller than 
the other terms.) In Example Problem 11.5 we compare isentropic stagnation conditions 
obtained assuming incompressibility (Eq. 6.11), and allowing for compressibility. 

For compressible flows, we will focus on ideal gas behavior. 

Local Isentropic Stagnation Properties for the Flow of an Ideal Gas 

For a compressible flow we can derive the isentropic stagnation relations by applying 
the mass conservation (or continuity) and momentum equations to a differential control 
volume, and then integrating. For the process shown schematically in Fig. 11.3, we can 
depict the process from state (7) to the corresponding stagnation state by imagining the 
control volume shown in Fig. 11.4. Consider first the continuity equation. 

a. Cont inu i ty Equat ion 

Governing equation: 

0(1) 

cv 
p dV + pV • dA = 0 (4.12) 

cs 

Assumptions: (1) Steady flow. 
(2) Uniform flow at each section. 
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CV Stream tube 

P=Po 

Fig . 11.4 C o m p r e s s i b l e f low in an inf in i tes imal s t ream tube. 

Then 
{-pVxA) + {(p + dp){Vx + dVx){A + dA)} = 0 

or 
pVxA = (p + dp)(Vx + dVx)(A + dA) 

b. Momen tum Equat ion 

= 0(3) = 0 ( 1 ) 

Governing equation: Fs, + ̂ B X = [ Vx pdV+ j Vx pV • dA 

(11.19a)-1 

(4.18a 
cv 

Assumptions: (3) FB^ = 0. 
(4) Frictionless flow. 

The surface forces acting on the infinitesimal control volume are 

FSx = dRx + pA - (p + dp)(A + dA) 

The force dRx is applied along the stream tube boundary, as shown in Fig. 11.4, wherd 
the average pressure is p + dp/2, and the area component in the x direction is dA\ 
There is no friction. Thus, 

FSx =(^p + + PA-(P + dp)(A + dA) 

or 
0 - 0 

FSx = PdA +
 djp dp 

dp A - pi 
Substituting this result into the momentum equation gives 

-dp A = Vx{-pVxA} + (V, + dVx){{p + dp){Vx + dVx)(A + dA)} 

which may be simplified using Eq. 11.19a to obtain 

-dp A = (-Vx+ Vx + dVx)(pVxA) 
Finally, 

dp = -pVxdVx=-pd\^-
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or 
dp 

+ d 
Y X 

V 2 V 

= 0 (11.19b) 

Equation 11.19b is a relation among properties during the deceleration process. In 
developing this relation, we have specified a frictionless deceleration process. Before 
we can integrate between the initial and final (stagnation) states, we must specify the 
relation that exists between pressure, p, and density, p, along the process path. 

Since the deceleration process is isentropic, then p and p for an ideal gas are re­
lated by the expression 

— = constant (11.12c) 

Our task now is to integrate Eq. 11.19b subject to this relation. Along the stagnation 
streamline there is only a single component of velocity; Vx is the magnitude of the ve­
locity. Hence we can drop the subscript in Eq. 11.19b. 

From plpk - constant = C, we can write 

Cpk and p = pWkC~Wk 

Then, from Eq. 11.19b, 

-d * = P - U k c U k d p 
p 

We can integrate this equation between the initial state and the corresponding stagna­
tion state 

C p 
Jp 

Kdp 

to obtain 

= C Ilk 

k - \ 

C - -p 

p(k-l)/k]Po 

(k-l)lk 

= C ilk k \n(k-i)/k 
~]~lpo 

<k-l)/k 

k - \ 

( \(k-\)lk 

K p ) 

- 1 

Since Cuk = pUk/p, 

k P p(k-\)lk 
k - \ p 

k P 

PO ^ 

k - l p P J 

(k-l)lk 

Since we seek an expression for stagnation pressure, we can rewrite this equa­
tion as 

/ \(k-l)/k 
Po = 1 + 

v y J 

k - \ pV2 

k p 2 



606 CHAPTER 11 / INTRODUCTION TO COMPRESSIBLE FLOW 

and 

Po. = 

P 
1 + 

For an ideal gas, p = pRT, and hence 

Po. = 

P 
1 + 

k -1 pV2 

k 2p 

k-l V2 

-*kl(k-\) 

k/(k-{) 

2 kRT 

Also, for an ideal gas the sonic speed is c = -JkRT , and thus 

Po_ 1 + k- 1 V2 

P 2 c2 

Eo. 1 + k -U<2 

p 2 

kl(k-\) 
(11.20a>! 

Equation 11.20a enables us to calculate the local isentropic stagnation pressure at any 
point in a flow field of an ideal gas, provided that we know the static pressure and 
Mach number at that point. 

We can readily obtain expressions for other isentropic stagnation properties b 
applying the relation 

p 
- V = constant 

between end states of the process. Thus 

Po. 
P 

Po_ 
K P , 

and *L = 
( \"* Po_ 
, P . 

For an ideal gas, then, 

Zo = P\E -. = Eo. 1 \ 
Po 

~]/k 
( Po^ 

T P Po p V P J IP) 

(k-l)lk 

Using Eq. 11.20a, we can summarize the equations for determining local isentro 
stagnation properties of an ideal gas as 

i + ^ V 

- 1 + ^ M 2 

Po. = 

P 

n 
T 

kl(k-l) 

PO = 

P 
1 + ^ M 2 

U(k-\) 

(11.20a 

(11.20bj 

(11.20c) 

From Eqs. 11.20, the ratio of each local isentropic stagnation property to the corre-j 
sponding static property at any point in a flow field for an ideal gas can be found if the 
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local Mach number is known. We will usually use Eqs. 11.20 in lieu of the continuity 
and momentum equations for relating the properties at a state to that state's stagnation 
properties, but it is important to remember that we derived Eqs. 11.20 using these 
equations and the isentropic relation for an ideal gas. Appendix E-l lists flow func­
tions for property ratios T0/T, p0/p, and p^lp, in terms of M for isentropic flow of an 
ideal gas. A table of values, as well as a plot of these property ratios is presented for 
air (k = 1.4) for a limited range of Mach numbers. The associated Excel workbook, 
Isentropic Relations, can be used to print a larger table of values for air and other ideal 
gases. The calculation procedure is illustrated in Example Problem 11.4. 

The Mach number range for validity of the assumption of incompressible flow is 
investigated in Example Problem 11.5. 

EXAMPLE 11.4 Local Isentropic Stagnation Conditions in Channel Flow 

Air flows steadily through the duct shown from 350 
kPa(abs), 60°C, and 183 m/s at the inlet state to M = 1.3 
at the outlet, where local isentropic stagnation conditions 
are known to be 385 kPa(abs) and 350 K. Compute the 
local isentropic stagnation pressure and temperalttre at 
the inlet and the static pressure and temperature at the 
duct outlet. Locate the inlet and outlet static state points 
on a Ts diagram, and indicate the stagnation processes. 

EXAMPLE PROBLEM 11.4 

GIVEN: Steady flow of air through a duct as shown in the sketch. 

FIND: (a) p0 |. 
(b) r0 l. 
(c) Pl-
(d) T2. 
(e) State points CD and © on a Ts diagram; indicate the stagnation processes. 

SOLUTION: 
To evaluate local isentropic stagnation conditions at section (T), we must calculate the Mach number, 
M, = VJcy. For an ideal gas, c = •JkRT. Then 

c{ = ^kRTx = 1.4 2 8 7 N m (273 + 60)K kg • m 
x X x — T -kg-K N • s ' 

1/2 

= 366 m/s 

and 

W l = H = Mi = 0 . 5 
c, 366 

Local isentropic stagnation properties can be evaluated from Eqs. 11.20. Thus 



608 CHAPTER 11 / INTRODUCTION TO COMPRESSIBLE FLOW 

Poi = Pi 

1 + ^±M\ 

k(k-l) 

= 350kPa[l + 0.2(0.5) 2] 3- 5 =415 kPa(abs) 

= 333 K [1 + 0.2(0.5)2] = 350 K ^ 

At section (2), Eqs. 11.20 can be applied again. Thus from Eq. 11.20a, 

Po, 
Pi 

1 + ^ M 2 

.... = 385 kPa _ 
k l ( k - l ) [1 +0 .2 (1 .3 ) 2 ] 3 J «-

FromEq. 11.20b, 

T2 = 
To = ^ 5 0 K _ = 2 6 2 K 

1 + * ^ A * 2 1 + 0.2(1.3)2 

Poi 

12 

To locate states CD and (2) in relation to one another, and sketch the stagnation processes on the Ts 
diagram, we need to find the change in entropy s2 - s{. At each state we have p and T, so it is convenient 
to use Eq. 11.11b, 

s 2 - s , = c n l n Z 2 . - / ? l n ^ -
h Pi 

1.00 kJ 
x In, 

kg -K U 3 3 J 

r262A 0.287 kJ 
kg-K 350 

s2 - Si = 0.0252kJ/(kg-K) 

Hence in this flow we have an increase in entropy. Perhaps there is irreversibility (e.g., friction), or heat is 
being added, or both. (We will see in Chapter 12 that the fact that T0j = 7Q 2 for this particular flow means 
that actually we have an adiabatic flow.) We also found that T2 < Ti and that p2< P\- We can now sketch 
the Ts diagram (and recall we saw in Example Problem 11.2 that isobars (lines of constant pressure) in Ts 
space are exponential), 

Isentropic processes 

P = Pi 
State ® 

P = p 2 

State (2) 

This problem illustrates use of the local isentropic stagnation 
properties (Eqs. 11.20) to relate different points in a flow. 

The Excel workbook Isentropic Relations can be used for 
computing property ratios from the Mach number Af, as 
well as for computing M from property ratios. 
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EXAMPLE 11.5 Mach-Number Limit for Incompressible Flow 

We have derived equations for p^lp for both compressible and "incompressible" 
flows. By writing both equations in terms of Mach number, compare their behavior. 
Find the Mach number below which the two equations agree within engineering ac­
curacy. 

EXAMPLE PROBLEM 11.5 

GIVEN: The incompressible and compressible forms of the equations for stagnation pressure, p0. 

Incompressible p0 = p + ^ pV2 (6.11) 

Compressible EQ. = 

P 
I + ^ 1 M J (11.20a) 

FIND: (a) Behavior of both equations as a function of Mach number. 
(b) Mach number below which calculated values of p0/p agree within engineering accuracy. 

SOLUTION: 
First, let us write Eq. 6.11 in terms of Mach number. Using the ideal gas equation of state and c 2 = kRT, 

= 1 + 
P 2p 

2 y 2 

= 1 + = 1 + 2RT IkRT 
= 1 + 

2c2 

Thus, 

(1) 

for "incompressible" flow. 
Equation 11.20a may be expanded using the binomial theorem, 

(1+*)" = l+nx+"{"~l) X2 +-,\X\ < 1 
2! 

For Eq. 11.20a, x = [(k - 1V2JM2, and n = k/(k - 1). Thus the series converges for [(k - l)/2]Af < 1, 
and for compressible flow, 

Po 
P 

^ = 1 + 
k - 1 

k 
k-lAk- 1 

^1M2 

2 
k k - 1 

i t - U U - i 
2 

K-^M2 

\ 1 k ~ 1 , , 2 
3 

- AT + 
I 3! 2 

\ + -MC H — M + 
2 48 

Po 

P 
1 + ^ M 2 

2 
1 + I M 2 + ( 2 ^ ) M 4 + . 

4 24 (2) 

In the limit, as M —» 0, the term in brackets in Eq. 2 approaches 1.0. Thus, for flow at low Mach 
number, the incompressible and compressible equations give the same result. The variation of p<Jp with 
Mach number is shown below. As Mach number is increased, the compressible equation gives a larger 
ratio, p0/p. 
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2-o |—r "i—i—r i i r 

Incompressible 
Eq . 6.11 

I I I I I I L _ 
0.2 0.4 0.6 0.8 

Mach number , M 
1.0 

Equations 1 and 2 may be compared quantitatively most simply by writing 

— - 1 = — M2 ("incompressible") 
P 2 

i * - l = * M 2 I + 1 M 2
 + ^ + . 

4 24 
(compressible) 

The term in brackets is approximately equal to 1.02 at M = 0.3, and to 1.04 at M = 0.4. Thus, for calcula­
tions of engineering accuracy, flow may be considered incompressible if M < 0.3. The two agree within 
5 percent for M S 0.45. 

11-4 CRITICAL CONDITIONS 

Stagnation conditions are extremely useful as reference conditions for thermodynamic! 
properties; this is not true for velocity, since by definition V = 0 at stagnation. A useful 
reference value for velocity is the critical speed—the speed V we attain when a flow is 
either accelerated or decelerated (actually or conceptually) isentropically until we reacM 
M = 1. Even if there is no point in a given flow field where the Mach number is equal 
to unity, such a hypothetical condition still is useful as a reference condition. 

Using asterisks to denote conditions at M = 1, then by definition 

V* = c* 

At critical conditions, Eqs. 11.20 for isentropic stagnation properties become 

Po. = 
~k + l~ k/'k-l) 

p* 2 

3 L = 

k + 1 
2 

Po _ ~k + l~ !/<*-!) 

p* ' 2 

(11.21a) 

(11.21b), 

(11.21c> 
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The criticaJ speed may be written in terms of either critical temperature, T*, or 
isentropic stagnation temperature, T0. 

For an ideal gas, c* = -JkRT*, and thus V* = *JkRT*. Since, from Eq. 11.21b, 

T* = —^— 7n 

we have 

V* = C*=\J!LRT (11.22) 
U + 1 

We shall use both stagnation conditions and critical conditions as reference con­
ditions in the next chapter when we consider a variety of compressible flows. ^ ^ J T I F 

9-
11-5 SUMMARY | i 

B I B L I O T E C A 

In this chapter, we: V ^ L ^ E ' E 

/ Reviewed the basic equations used in thermodynamics, including isentropic relation 
/ Introduced some compressible flow terminology, such as definitions of the Mach 

number and subsonic, supersonic, transonic, and hypersonic flows. 
/ Learned about several phenomena having to do with sound, including that the speed of 

sound in an ideal gas is a function of temperature only (c = 4kRT ), and that the Mach 
cone and Mach angle determine when a supersonic vehicle is heard on the ground. 

/ Learned that there are two useful reference states for a compressible flow: the isen­
tropic stagnation condition, and the isentropic critical condition. 

I] 
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PROBLEMS 

11.1 Air is expanded in a steady flow process through a turbine. Initial conditions are 
I300°C and 2.0 MPa (abs). Final conditions are 500°C and atmospheric pressure. 
Show this process on a Ts diagram. Evaluate the changes in internal energy, enthalpy, 
and specific entropy for this process. 
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11.2 A vendor claims that an adiabatic air compressor takes in air at standard atmosphere 
conditions and delivers the air at 650 kPa (gage) and 285°C. Is this possible? Justify 
your answer by calculation. Sketch the process on a Ts diagram. 

11.3 What is the lowest possible delivery temperature generated by an adiabatic air com­
pressor, starting with standard atmosphere conditions and delivering the air at 650 kPa 
(gage)? Sketch the process on a Ts diagram. 

11.4 Ten lbm of air is cooled in a closed tank from 500 to 100°F. The initial pressure is 400 
psia. Compute the changes in entropy, internal energy, and enthalpy. Show the process 
state points on a Ts diagram. 

11.5 Air is contained in a piston-cylinder device. The temperature of the air is 100°C. Us­
ing the fact that for a reversible process the heat transfer q = fTds, compare thel 
amount of heat (J/kg) required to raise the temperature of the air to 1200°C at (a) con­
stant pressure and (b) constant volume. Verify your results using the first law of 
thermodynamics. Plot the processes on a Ts diagram. 

11.6 The four-stroke Otto cycle of a typical automobile engine is sometimes modeled as an 
ideal air-standard closed system. In this simplified system the combustion process is 
modeled as a heating process, and the exhaust-intake process as a cooling process of 
the working fluid (air). The cycle consists of: isentropic compression from state ® 
(p, = 100 kPa (abs), 7", = 20°C, V, = 500 cc) to state © (V2 - V./8.5); isometric 
(constant volume) heat addition to slate (3) (T3 = 2750°C); isentropic expansion to 
state (4) (V4 = V,); and isometric cooling back to state ® . Plot the pY and Ts dia­
grams for this cycle, and find the efficiency, defined as the net work (the cycle area in 
pY space) divided by the heat added. 

11.7 The four-stroke cycle of a typical diesel engine is sometimes modeled as an ideal air-l 
standard closed system. In this simplified system the combustion process is modeledl 
as a heating process, and the exhaust-intake process as a cooling process of the work-l 
ing fluid (air). The cycle consists of: isentropic compression from state (D (/?, = 100 
kPa (abs), 7", = 20°C, V, = 500 cc) to state (2) (Vj = V,/12.5); isometric (constant vol-l 
ume) heat addition to state (D (T, = 3000°C); isobaric heat addition to state ® (V4 = 
1.75 ¥,); isentropic expansion to state (5); and isometric cooling back to state (D. Plot 
the pY and Ts diagrams for this cycle, and find the efficiency, defined as the net work I 
(the cycle area in pY space) divided by the heat added. 

11.8 Air enters a turbine in steady flow at 0.5 kg/s with negligible velocity. Inlet conditions ! 
are 1300°C and 2.0 MPa (abs). The air is expanded through the turbine to atmospheric 
pressure. If the actual temperature and velocity at the turbine exit are 500°C and 
200 m/s, determine the power produced by the turbine. Label state points on a Ts dia­
gram for this process. 

11.9 A lank of volume Y = 10 m 3 contains compressed air at 15UC. The gage pressure in 
the tank is 4.50 MPa. Evaluate the work required to fill the tank by compressing air 
from standard atmosphere conditions for (a) isothermal compression and (b) isen­
tropic compression followed by cooling at constant pressure. What is the peak temper­
ature of the isentropic compression process? Calculate the energy removed during 
cooling for process (b). Assume ideal gas behavior and reversible processes. Label 
state points on a Ts diagram and a pY diagram for each process. 

11.10 Natural gas, with the thermodynamic properties of methane, flows in an underground 
pipeline of 0.6 m diameter. The gage pressure at the inlet to a compressor station is 
0.5 MPa; outlet pressure is 8.0 MPa (gage). The gas temperature and speed at inlet are 
I3°C and 32 m/s, respectively. The compressor efficiency is TJ — 0.85. Calculate the 
mass flow rate of natural gas through the pipeline. Label state points on a Ts diagram 
for compressor inlet and outlet. Evaluate the gas temperature and speed at the com­
pressor outlet and the power required to drive the compressor. 



PROBLEMS 613 

11.11 Over time the efficiency of the compressor of Problem 11.10 drops. At what efficiency 
will the power required to attain 8.0 MPa (gage) exceed 30 MW? Plot the required 
power and the gas exit temperature as functions of efficiency. 

11.12 In an isothermal process, 0.1 cubic feet of standard air per minute (SCFM) is pumped 
into a balloon. Tension in the rubber skin of the balloon is given by cr = kA, where 
k = 200 Ibf/ft5, and A is the surface area of the balloon in ft2. Compute the time re­
quired to increase the balloon radius from 5 to 7 inches. 

11.13 For the balloon process of Problem 11.12 we could define a "volumetric ratio" as the 
ratio of the volume of standard air supplied to the volume increase of the balloon, per 
unit time. Plot this ratio over time as the balloon diameter is increased from 5 to 
7 inches. 

11.14 An airplane flies at 180 m/s at 500 m altitude on a standard day. The plane climbs to 
15 km and flies at 320 m/s. Calculate the Mach number of flight in both cases. 

11.15 The Boeing 727 aircraft of Example Problem 9.8 cruises at 520 mph at 33,000 ft alti­
tude on a standard day. Calculate the cruise Mach number of the aircraft. If the maxi­
mum allowable operating Mach number for the aircraft is 0.9, what is the correspon­
ding flight speed? 

11.16 Actual performance characteristics of the Lockheed SR-71 "Blackbird" reconnais­
sance aircraft never were released. However, it was thought to cruise at M = 3.3 at 
85,000 ft altitude. Evaluate the speed of sound and flight speed for these conditions. 
Compare to the muzzle speed of a 30-06 rifle bullet (700 m/s). 

11.17 Lightning strikes and you see the distant flash. A few seconds later you hear the thun­
derclap. Explain how you could estimate the distance to the lightning strike. 

11.18 Use data for specific volume to calculate and plot the speed of sound in saturated liq­
uid water over the temperature range from 32 to 400°F. 

11.19 Re-derive the equation for sonic speed (Eq. 11.17) assuming that the direction of fluid 
motion behind the sound wave is dVx to the right. Show that the result is identical to 
that given by Eq. 11.17. 

11.20 Compute the speed of sound at sea level in standard air. By scanning data from Table 
A.3 into your PC (or using Fig. 3.3), evaluate the speed of sound and plot for altitudes 
to 90 km. 

11.21 The temperature varies linearly from sea level to approximately 11 km altitude in the 
standard atmosphere. Evaluate the lapse rate—the rate of decrease of temperature 
with al t i tude—in the standard atmosphere. Derive an expression for the rate of 
change of sonic speed with altitude in an ideal gas under standard atmospheric condi­
tions. Evaluate and plot from sea level to 10 km altitude. 

11.22 How could you measure the approximate speed of sound in air? 

11.23 Air at 25°C flows at M = 2.2. Determine the air speed and the Mach angle. 

11.24 A photograph of a bullet shows a Mach angle of 32°. Determine the speed of the bul­
let for standard air. 

11.25 A projectile is fired into a gas in which the pressure is 50 psia and the density is 0.27 
lbm/ft-1. It is observed experimentally that a Mach cone emanates from the projectile 
with 20° total angle. What is the speed of the projectile with respect to the gas? 

11.26 The National Transonic Facility (NTF) is a high-speed wind tunnel designed to oper­
ate with air at cryogenic temperatures to reduce viscosity, thus raising the unit 
Reynolds number (Relx) and reducing pumping power requirements. Operation is en­
visioned at temperatures of - 2 7 0 ° F and below. A schlieren photograph taken in the 
NTF shows a Mach angle of 57° where T = - 2 7 0 ° F and p = 1.3 psia. Evaluate the 
local Mach number and flow speed. Calculate the unit Reynolds number for the flow. 
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11.27 An F-4 aircraft makes a high-speed pass over an airfield on a day when T = 35°C. The 
aircraft flies at M = 1.4 and 200 m altitude. Calculate the speed of the aircraft. How long 
after it passes directly over point A on the ground does its Mach cone pass over point A? 

11.28 An aircraft passes overhead at 3 km altitude. The aircraft flies at M = 1.5; assume air 
temperature is constant at 20°C. Find the air speed of the aircraft. A headwind blows 
at 30 m/s. How long after the aircraft passes directly overhead does its sound reach a 
point on the ground? 

11.29 A supersonic aircraft flies at 10,000 ft altitude at a speed of 3000 ft/s on a standard 
day. How long after passing directly above a ground observer is the sound of the air­
craft heard by the ground observer? 

11.30 For the conditions of Problem 11.29, find the location at which the sound wave that 
first reaches the ground observer was emitted. 

11.31 The Concorde supersonic transport cruises at M — 2.2 at 17 km altitude on a standard 
day. How long after the aircraft passes directly above a ground observer is the sound 
of the aircraft heard? 

11.32 Opponents of supersonic transport aircraft claim that sound waves can be refracted in 
the upper atmosphere and that, as a result, sonic booms can be heard several hundred 
miles away from the ground track of the aircraft. Explain the phenomenon of sound 
wave refraction. 

11.33 The airflow around an automobile is assumed to be incompressible. Investigate the va­
lidity of this assumption for an automobile traveling at 60 mph. (Relative to the automo­
bile the minimum air velocity is zero, and the maximum is approximately 120 mph.) 

11.34 Plot the percentage discrepancy between the density at the stagnation point and the 
density at a location where the Mach number is M, of a compressible flow, for Mach 
numbers ranging from 0.05 to 0.95. Find the Mach numbers at which the discrepancy 
is 1 percent, 5 percent, and 10 percent. 

11.35 The stagnation pressure at the nose of an aircraft in flight is 48 kPa (abs). Estimate the 
Mach number and speed of the craft, if the undisturbed air is at 27.6 kPa (abs) and -55°C. 

11.36 Compute the air density in the undisturbed air, and at the stagnation point, of Problenl 
11.35. What is the percentage increase in density? Can we approximate this as an inJ 
compressible flow? 

11.37 Consider flow of standard air at 600 m/s. What is the local isentropic stagnation pres-1 
sure? The stagnation enthalpy? The stagnation temperature? 

11.38 A body moves through standard air at 200 m/s. What is the stagnation pressure on the! 
body? Assume (a) compressible flow and (b) incompressible flow. 

11.39 A DC-10 aircraft cruises at 12 km altitude on a standard day. A pitot-static tube on th« 
nose of the aircraft measures stagnation and static pressures of 29.6 kPa and 19.4 kPa.; 
Calculate (a) the flight Mach number of the aircraft, (b) the speed of the aircraft, and 
(c) the stagnation temperature that would be sensed by a probe on the aircraft. 

11.40 The Anglo-French Concorde supersonic transport cruises at M = 2.2 at 20 km alti­
tude. Evaluate the speed of sound, aircraft flight speed, and Mach angle. What is the 
maximum air temperature at stagnation points on the aircraft structure? 

11.41 An aircraft cruises at M = 0.65 at 10 km altitude on a standard day. The aircraft speed 
is deduced from measurement of the difference between the stagnation and static pres­
sures. What is the value of this difference? Compute the air speed from this actual dif­
ference assuming (a) compressibility and (b) incompressibility. Is the discrepancy in 
air-speed computations significant in this case? 

11.42 Modem high-speed aircraft use "air data computers" to compute air speed from meas­
urement of the difference between the stagnation and static pressures. Plot, as a function 
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of actual Mach number M, for M = 0.1 to M = 0.9, the percentage error in computing 
the Mach number assuming incompressibility (i.e., using the Bernoulli equation), 
from this pressure difference. Plot the percentage error in speed, as a function of 
speed, of an aircraft cruising at 12 km altitude, for a range of speeds corresponding to 
the actual Mach number ranging from M = 0.1 to M = 0.9. 

11.43 A smoothbore "12-pounder" cannon used on a sailing ship fires a spherical cast-iron 
shot, with diameter D = 110 mm and mass m = 5.44 kg, horizontally at sea level on a 
standard day. Initially the shot travels at supersonic speed, but it is slowed rapidly by 
aerodynamic drag. At the instant when the speed is sonic, estimate (a) the horizontal 
acceleration of the shot (assume the drag coefficient for a sphere at sonic speed is 
CD = 1.3), (b) the maximum pressure on the surface of the shot, and (c) the maximum 
air temperature near the surface of the shot. 

11.44 A supersonic wind tunnel test section is designed to have M = 2.5 at 60°F and 5 psia. 
The fluid is air. Determine the required inlet stagnation conditions, T0 and p0. Calcu­
late the required mass flow rate for a test section area of 2.0 ft2. 

11.45 Air flows steadily through a length ((f) denotes inlet and (2) denotes exit) of insulated 
constant-area duct. Properties change along the duct as a result of friction. 

(a) Beginning with the control volume form of the first law of thermodynamics, show 
that the equation can be reduced to 

h, + —- = h2 H — - = constant 
1 2 2 2 

(b) Denoting the constant by h0 (the stagnation enthalpy), show that for adiabatic flow 
of an ideal gas with friction 

(c) For this flow does 7 0 ( = 7Q 2 ? PQ1 = Po 2? Explain these results. 

11.46 For aircraft flying at supersonic speeds, lift and drag coefficients are functions of Mach 
number only. A supersonic transport with wingspan of 75 m is to fly at 780 m/s at 20 
km altitude on a standard day. Performance of the aircraft is to be measured from tests 
of a model with 0.9 m wingspan in a supersonic wind tunnel. The wind tunnel is to be 
supplied from a large reservoir of compressed air, which can be heated if desired. The 
static temperature of air in the test section is to be 10°C to avoid freezing of moisture. 
At what air speed should the wind tunnel tests be run to duplicate the Mach number of 
the prototype? What must be the stagnation temperature in the reservoir? What pres­
sure is required in the reservoir if the test section pressure is to be 10 kPa (abs)? 

11.47 Actual performance characteristics of the Lockheed SR-71 "Blackbird" reconnaissance 
aircraft were classified. However, it was thought to cruise at M = 3.3 at 26 km altitude. 
Calculate the aircraft flight speed for these conditions. Determine the local isentropic 
stagnation pressure. Because the aircraft speed is supersonic, a normal shock occurs in 
front of a total-head tube. The stagnation pressure decreases by 74.7 percent across the 
shock. Evaluate the stagnation pressure sensed by a probe on the aircraft. What is the 
maximum air temperature at stagnation points on the aircraft structure? 

11.48 Air flows in an insulated duct. At point (J) the conditions are M, = 0.1, T, = 20°C, 
and pt = 1.0 MPa (abs). Downstream, at point (2), because of friction the conditions 
are M2 = 0.7, T2 = — 5.62°C, and p2 = 136.5 kPa (abs). (Four significant figures are 
given to minimize roundoff errors.) Compare the stagnation temperatures at points (T) 
and (2), and explain the result. Compute the stagnation pressures at points (T) 
and (2). Can you explain how it can be that the velocity increases for this frictional 
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flow? Should this process be isentropic or not? Justify your answer by computing the 
change in entropy between points CD and (2). Plot static and stagnation state points 
on a Ts diagram. 

11.49 Air is cooled as it flows without friction at a rate of 0.05 kg/s in a duct. At point CD the 
conditions are M\ = 0.5, 7, = 500°C, and p, = 500 kPa (abs). Downstream, at point 
© , the conditions are M2 = 0.2, T2 = -18.57°C, and p2 = 639.2 kPa (abs). (Four 
significant figures are given to minimize roundoff errors.) Compare the stagnation ' 
temperatures at points CD and (2), and explain the result. Compute the rate of cooling. 
Compute the stagnation pressures at points CD and © . Should this process be isen­
tropic or not? Justify your answer by computing the change in entropy between points 
CD and (2). Plot static and stagnation state points on a Ts diagram. 

11.50 Consider steady, adiabatic flow of air through a long straight pipe with A = 0.05 m2. -
At the inlet (section CD) the air is at 200 kPa (abs), 60°C, and 146 m/s. Downstream 
at section (2), the air is at 95.6 kPa (abs) and 280 m/s. Determine p 0 ) , p0r T0{, r0j, 
and the entropy change for the flow. Show static and stagnation state points on a Ts 
diagram. 

11.51 Air flows steadily through a constant-area duct. At section CD, the air is at 60 psia, 1 
600°R, and 500 ft/s. As a result of heat transfer and friction, the air at section (2) 
downstream is at 40 psia, 800°R. Calculate the heat transferper pound of air between 
sections CD and © , and the stagnation pressure at section © . 

11.52 Air passes through a normal shock in a supersonic wind tunnel. Upstream conditionM 
are = 1.8, T{ = 270 K, and p, = 10.0 kPa (abs). Downstream conditions are M2 ==• 
0.6165, T2 = 413.6 K, and p2 = 36.13 kPa (abs). (Four significant figures are given to 
minimize roundoff errors.) Evaluate local isentropic stagnation conditions (a) upstream 1 
from, and (b) downstream from, the normal shock. Calculate the change in specific I 
entropy across the shock. Plot static and stagnation state points on a Ts diagram. 

11.53 Air enters a turbine at Mx = 0.4, 7, = 2350°F, and p, = 90.0 psia. Conditions leaving 
the turbine are M2 — 0.8, T2 = 1200°F, and p 2 = 3.00 psia. (Four significant figures 
are given to minimize roundoff errors.) Evaluate local isentropic stagnation conditions 
(a) at the turbine inlet and (b) at the turbine outlet. Calculate the change in specific en- j 
tropy across the turbine. Plot static and stagnation state points on a 7s diagram. 

11.54 A Boeing 747 cruises at M = 0.87 at an altitude of 13 km on a standard day. A win -S 
dow in the cockpit is located where the external flow Mach number is 0.2 relative to I 
the plane surface. The cabin is pressurized to an equivalent altitude of 2500 m in a 
standard atmosphere. Estimate the pressure difference across the window. Be sure to 
specify the direction of the net pressure force. 

11.55 A C 0 2 cartridge is used to propel a toy rocket. Gas in the cartridge is pressurized to 45 
MPa (gage) and is at 25°C. Calculate the critical conditions (temperature, pressure, 
and flow speed) that correspond to these stagnation conditions. 

11.56 The gas storage reservoir for a high-speed wind tunnel contains helium at 2000 K and I 
5.0 MPa (gage). Calculate the critical conditions (temperature, pressure, and flow I 
speed) that correspond to these stagnation conditions. 

11.57 Stagnation conditions in a solid propellant rocket motor are T0 = 3000 K and p 0 = 
45 MPa (gage). Critical conditions occur in the throat of the rocket nozzle where the 
Mach number is equal to one. Evaluate the temperature, pressure, and flow speed at 
the throat. Assume ideal gas behavior with R = 323 J/(kg • K) and k — 1.2. 

11.58 The hot gas stream at the turbine inlet of a JT9-D jet engine is at 2350°F, 140 kPa 
(abs), and M = 0.32. Calculate the critical conditions (temperature, pressure, and flow 
speed) that correspond to these conditions. Assume the fluid properties of pure air. 



Chapter 12 

COMPRESSIBLE FLOW 

In Chapter 11 we reviewed some basic concepts of compressible flow. The main 
focus of this chapter is to discuss one-dimensional compressible flow in more detail. 
The first question we can ask is "What would cause the fluid properties to vary in a 
one-dimensional compressible flow?" The answer is that various phenomena can 
cause changes: We could force the velocity (and hence, in general the other proper­
ties) to change by passing the flow through a channel of varying area; we may have 
flow in a channel with friction; we may heat or cool the fluid, and we will learn that 
we may even have what is called a normal shock. For simplicity, we will study each 
of these phenomena separately (bearing in mind that a real flow is likely to ex­
perience several of them simultaneously). After completing our treatment of one-
dimensional flow, we will introduce some basic concepts of two-dimensional flows: 
oblique shocks and expansion waves. 

12-1 BASIC EQUATIONS FOR ONE-DIMENSIONAL COMPRESSIBLE FLOW 

Our first task is to develop general equations for a one-dimensional flow that express 
the basic laws from Chapter 4: mass conservation (continuity), momentum, the first 
law of thermodynamics, the second law of thermodynamics, and an equation of state. 
To do so, we will use the fixed control volume shown in Fig. 12.1. We initially 
assume that the flow is affected by all of the phenomena mentioned above (i.e., area 
change, friction, and heat transfer—even the normal shock will be described by this 
approach). Then, for each individual phenomenon we will simplify the equations to 
obtain useful results. 

As shown in Fig. 12.1, the properties at sections (T) and (2) are labeled with corre­
sponding subscripts. Rx is the x component of surface force from friction and pressure on 
the sides of the channel (there will also be surface forces from pressures at surfaces 
(T) and (2)). Note that the x component of body force is zero, so it is not shown), and Q 
is the heat transfer. 

a. Cont inu i ty Equat ion 

Basic equation: 
= 0(1) 

(4.12) 

Assumptions: (1) Steady flow. 
(2) One-dimensional flow. 

617 
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Then 

or 

Flow 

F ig . 12.1 Cont ro l v o l u m e tor ana lys is of a 
genera l one -d imens iona l f low. 

[-plVlAl) + (p2V2A2) = G 

P\VyA\ = p2V2A2 = pVA = m = constant (12.1a 

b. Momen tum Equat ion 

Basic equation: 

= 0(3) = 0 ( 1 ) 

VxpdV + | Vx pV-dA 
c v cs 

(4.18a 

Assumption: (3) FB = 0. 

The surface force is caused by pressure forces at surfaces (T) and (2), and by the! 
friction and distributed pressure force, Rx, along the channel walls. Substituting gives, 

Rx + p,A, - p2A2 = V K - p . V . A i ) + V2(p2V2A2) 
Using continuity, we obtain 

fit + P A , - p2A2 = mV2 - mVx (12.1b) 

c. First Law of T h e r m o d y n a m i c s 

Basic equation: 

Q 5 '/shear / * other e p dV + (e + pv)p V • dA (4.56) 
cs 

where 

= 9 (6) 
V2 

e = u + 2 + 
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Assumptions: (4) Ws = 0. 
(5) W s h e a r = W o l h e r = 0. 
(6) Effects of gravity are negligible. 

(Note that even if we have friction, there is no friction work at the walls because with 
friction the velocity at the walls must be zero from the no-slip condition.) Under 
these assumptions, the first law reduces to 

, 2 > 

Q = «, + Pxvx + —L (-plV]A]) + u2 + p2v2 + -± (p2V2A2) 

(Remember that v here represents the specific volume.) This can be simplified by us­
ing h = u + pv, and continuity (Eq. 12.1a), 

Q = m< 
^ 2 

2 \ ( 

We can write the heat transfer on a per unit mass rather than per unit time basis: 

dm m 

so 
8Q 

dm 
+ hx + —- - h2 + — (12.1c) 

Equation 12.1c expresses the fact that heat transfer changes the total energy (the sum 
of thermal energy h, and kinetic energy Vz/2) of the flowing fluid. This combination, 
h + V2/2, occurs often in compressible flow, and is called the stagnation enthalpy, 
h0. This is the enthalpy obtained if a flow is brought adiabatically to rest. 

Hence, Eq. 12.1c can also be written 

8Q 

dm 

We see that heat transfer causes the stagnation enthalpy, and hence, stagnation tem­
perature, T 0 , to change. 

d. S e c o n d Law of T h e r m o d y n a m i c s 

Basic equation: 
= 0(1) 

s pV • dA> 
cs 

(4.58) 

or 

sx{-p,VxAx) + s2{p2V2A2)> Jcs-(^ 
and, again using continuity, 

dA 

m(s2 -sx) > [ -[— 
1 Jcs T A 

dA (12. Id) 
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e. Equat ion of State 

Equations of state are relations among intensive thermodynamic properties. These rela­
tions may be available as tabulated data or charts, or as algebraic equations. In general, 
regardless of the format of the data, as we discussed in Chapter 11 (see references [l]-[3] 
of that chapter) for a simple substance any property can be expressed as a function of 
any two other independent properties. For example, we could write h — h (s, p), or 
p = p(s, p)y and so on. 

We will primarily be concerned with ideal gases with constant specific hea ts ! 
and for these we can write Eqs. 11.1 and 11.7b (renumbered for convenient use in 
this chapter), 

and 

p = PRT 

Ah = h7 - h, = cnAT TO 

(12.1el 

(12.1f)l 

For ideal gases with constant specific heats, the change in entropy, As = s2 - sit fod 
any process can be computed from any of Eqs. 11.11. For example, Eq. l l . l l b J 
(renumbered for convenient use in this chapter) is 

T7 

As = s2 - Sy = cp In — - R In 
P2 (12.1* 

We now have a basic set of equations for analyzing one-dimensional compressible: 
flows of an ideal gas with constant specific heats: 

Pi M i = P2V2A2 = P V A = m = constant (12.1a^ 

Rx + pxAx - p2A2 = mV2 - mV (12.1b) 

— + h,+—L 

dm 1 2 
= h2+?l 

2 2 
(12.1cX 

m{s2 - sy) 
Jcs r ^ / \ ; 

dA (12.1d) 

P = pRT (12.1e) 

Ah = h2 - h\ = cpAT= cp {T2 ~ 7-,) (12.1f) 

As = s2 - S\ 
P T 

71 
R\n^ 

Pi 
(12.1g) 

(Eq. 12. le applies only if we have an ideal gas; Equations 12.If and 12.lg apply only 
if we have an ideal gas with constant specific heats.) Our task is now to simplify this 
set of equations for each of the phenomena that can affect the flow: 

/ Flow with varying area, 
/ Flow in a channel with friction. 
/ Flow in a channel with heating or cooling. 
/ Normal shock. 
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12-2 ISENTROPIC FLOW OF AN IDEAL G A S — A R E A VARIATION 

The first phenomenon is one in which the flow is changed only by area variation— 
there is no heat transfer (8Q/dm = 0) or friction (Rx, the x component of surface 
force, results only from pressure on the sides of the channel), and there are no 
shocks. The absence of shocks means the flow will be reversible and adiabatic, so Eq. 
12.Id becomes 

m{s2 — Si > = f — 
2 1 Jcs T{ 

dA = 0 
Jcs T [ A 

or 

As = s2 — S\ = 0 

so such a flow is isentropic. This means that Eq. 12. lg leads to the result we saw in 
Chapter 11, 

T l P l W k = T2p2

il-k),k = Tp{X~k)lk = constant (11.12b) 

or its equivalent (which can be obtained by using the ideal gas equation of state in 
Eq. 11.12b to eliminate temperature), 

EL = E L = = constant (11.12c) 
P i P2 P 

Hence, the basic set of equations (Eqs. 12.1) becomes: 

P\V\A\ - p2V2A2

 = = rh = constant (12.2a) 

Rx + p,A, - p 2 ^ 2 = ^2 - mV] (12.2b) 
2 2 

\ ^ h ] + ^ - = h2+^ = hQi = hQ (12.2c) 

s2 = sx = s (12.2d) 

p = pRT (12.2e) 

Ah = ti2 - h\ = cpAT = cp(T2 - 7,) (12.2f) 

EL = El. = JL = constant (12.2g) 
P l P2 P 

Note that Eqs. 12.2c, 12.2d, and 12.2f provide insight into how this process appears 
on an hs diagram and on a Ts diagram. From Eq. 12.12c, the total energy, or stagna­
tion enthalpy h0, of the fluid is constant; the enthalpy and kinetic energy may vary 
along the flow, but their sum is constant. This means that if the fluid accelerates, its 
temperature must decrease, and vice versa. Equation 12.2d indicates that the entropy 
remains constant. These results are shown for a typical process in Fig. 12.2. 

Equation 12.2f indicates that the temperature and enthalpy are linearly related; 
hence, processes plotted on a Ts diagram will look very similar to that shown in 
Fig. 12.2 except for the vertical scale. 

Equations 12.2 could be used to analyze isentropic flow in a channel of varying 
area. For example, if we know conditions at section (T) ( i .e . ,p h p , , Th su ht, V,, and A,) 
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const 

Kinetic 
energy of 
state ® 

Thermal 
energy of 
state ® 

Kinetic 
energy of 
state © 

Thermal 
- energy of 

state ( D 

Total 
energy 

states 

F ig . 12.2 Isent rop ic f low in the hs p lane. 

we could use these equations to find conditions at some new section (2) where the area 
is A 2 : We would have seven equations and seven unknowns (p 2 , pi, T2, s2, h^, V2, and, if 
desired, the net pressure force on the walls / y . We stress could, because in practice this 
procedure is unwieldy—we have a set of seven nonlinear coupled algebraic equations tol 
solve (however, we will see, for example in Example Problem 12.1, that Excel can bel 
used to solve this set of equations). Instead we will usually use some of these equations! 
as convenient but also take advantage of the results we obtained for isentropic flows in] 
Chapter 11, and develop property relations in terms of the local Mach number, the stag-1 
nation conditions, and critical conditions. Before proceeding with this approach, we can 
gain insight into the isentropic process by reviewing the results we obtained in Chapter 
11 when we analyzed a differential conbol volume (Fig. 11.4). The momentum equation 
for this was 

0 (11.19b) 

or 

Dividing by pV2, we obtain 

dp = -pV dV 

dp _dV_ 

Pv2 = 
(12.3) 

V 

A convenient differential form of the continuity equation can be obtained from 
Eq. 12.2a, in the form 

pAV = constant 

Differentiating and dividing by pAV yields 

dp dA dV 

Solving Eq. 12.4 for dAIA gives 

+ — + — = 0 
p A V 

dA _ dV dp 

(12.4) 

V p 

Substituting from Eq. 12.3 gives 

dA _ dp dp 
A ~ pV2 p 
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or 

dA _ dp \ V2 

A pV2 I dp/dp 

Now recall that for an isentropic process, dp/dp = dpldp)s = c2, so 

or 

dp dA 1 (12.5) 
Pv2 A [\-M2] 

Substituting from Eq. 12.3 into Eq. 12 5, we obtain 

dV dA 1 (12.6) 
V A [l-M2] 

Although we cannot use them for computations (we have not so far determined how 
M varies with A), Eqs. 12.5 and 12.6 give us very interesting insights into how the 
pressure and velocity change as we change the area of the flow. Three possibilities 
are discussed below. 

Subsonic Flow, M< 1 

For M < 1, the factor 1/[1 - M2] in the two equations is positive, so that in a converg­
ing section, the pressure must decrease and the velocity must increase (dA is negative, 
dp is negative, and dV is positive). This result is consistent with our everyday 
experience and is not surprising—for example, recall the venturi meter in Chapter 8, 
in which a reduction in area at the throat of the venturi led to a local increase in ve­
locity, and because of the Bernoulli principle, to a pressure drop (the Bernoulli prin­
ciple assumes incompressible flow, which is the limiting case of subsonic flow). Be­
cause a converging channel accelerates subsonic flow, such a shape is called a 
subsonic nozzle. 

On the other hand, a diverging channel must lead to a pressure increase and a 
velocity decrease, also not a surprising result. Because a diverging channel deceler­
ates flow, such a shape is called a subsonic diffuser. 

The subsonic nozzle and diffuser are shown in Fig. 12.3. 

Supersonic Flow, M> 1 

For M > 1, the factor 1/[1 - M 2 ] in Eqs. 12.5 and 12.6 is negative, so that in a 
converging section, the pressure must increase and the velocity must decrease (dA 
is negative, dp is positive, and dV is negative). This result is perhaps initially sur­
prising. For example, it is the opposite of the venturi meter behavior! Because a 
converging channel leads to flow deceleration, such a shape is called a supersonic 
diffuser. 

On the other hand, a diverging channel causes a pressure decrease and a veloc­
ity increase. Because a diverging channel causes flow acceleration, such a shape is 
called a supersonic nozzle. 

The supersonic diffuser and nozzle are also shown in Fig. 12.3. 
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F ig . 12.3 Nozz le a n d d i f fuser s h a p e s as a func t ion of init ial M a c h number . 

Flow regime 

Supersonic 
M > 1 

Subsonic 
M < 1 

Flo* *• 

^ dv> 0 

Flo-w 

N o z 2 l e 
dp < 0 
rfV> 0 

Diffuser 
dp>0 
dV<0 

Flow 

Flow 

These somewhat counterintuitive results can be understood when we realize that 
we are used to assuming that p = constant, but we are now in a flow regime where 
the fluid density is a sensitive function of flow conditions. From Eq. 12.4, 

For example, in a supersonic diverging flow (dA positive) the flow actually accelerates 
(dV also positive) because the density drops sharply (dp is negative and large, with the 
net result that the right side of the equation is positive). We can see examples of su­
personic diverging nozzles in the space shuttle main engines, each of which has a noz­
zle about 10 ft long with an 8 ft exit diameter. The maximum thrust is obtained from 
the engines when the combustion gases exit at the highest possible speed, which the 
nozzles achieve. 

Sonic Flow, M = 1 

As we approach M = 1, from either a subsonic or supersonic state, the factor 
1/[1 — M2] in Eqs. 12.5 and 12.6 approaches infinity, implying that the pressure and 
velocity changes also approach infinity. This is obviously unrealistic, so we must 
look for some other way for the equations to make physical sense. The only way wd 
can avoid these singularities in pressure and velocity is if we require that dA —> 0 as 
M —> 1. Hence, for an isentropic flow, sonic conditions can only occur where the area 
is constant! We can be even more specific: We can imagine approaching M = 1 from 
either a subsonic or a supersonic state. A subsonic flow (A^ < 1) would need to be acA 
celerated using a subsonic nozzle, which we have learned is a converging section; a 
supersonic flow (M > 1) would need to be decelerated using a supersonic diffuser, 
which is also a converging section. Hence, sonic conditions are limited not just to a 
location of constant area, but one that is a minimum area. The important result is that 
for isentropic flow the sonic condition M = 1 can only be attained at a throat, or sec­
tion of minimum area. (This does not mean that a throat must have M = 1. After all, 
we may have no flow at all in the device!). 

We can see that to isentropically accelerate a fluid from rest to supersonic speed we 
would need to have a subsonic nozzle (converging section) followed by a supersonic 

dV dAdp 
A p V 
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nozzle (diverging section), with M = 1 at the throat. This device is called a converging-
diverging nozzle (C-D nozzle). Of course, to create a supersonic flow we need more than 
just a C-D nozzle: we must also generate and maintain a pressure difference between the 
inlet and exit. We will discuss shortly C-D nozzles in some detail, and the pressures re­
quired to accomplish a change from subsonic to supersonic flow. 

We note that we must be careful in our discussion of isentropic flow (especially 
deceleration), because real fluids can experience nonisentropic phenomena such as 
boundary-layer separation and shock waves. In practice, supersonic flow cannot be 
decelerated to exactly M = 1 at a throat because sonic flow near a throat is unstable 
in a rising (adverse) pressure gradient. (Disturbances that are always present in a real 
subsonic flow propagate upstream, disturbing the sonic flow at the throat, causing 
shock waves to form and travel upstream, where they may be disgorged from the in­
let of the supersonic diffuser.) 

The throat area of a real supersonic diffuser must be slightly larger than that re­
quired to reduce the flow to M = 1. Under the proper downstream conditions, a weak 
normal shock forms in the diverging channel just downstream from the throat. Flow 
leaving the shock is subsonic and decelerates in the diverging channel. Thus deceler­
ation from supersonic to subsonic flow cannot occur isentropically in practice, since 
the weak normal shock causes an entropy increase. Normal shocks will be analyzed 
in Section 12-5. 

For accelerating flows (favorable pressure gradients) the idealization of isen­
tropic flow is generally a realistic model of the actual flow behavior. For decelerating 
flows, the idealization of isentropic flow may not be realistic because of the adverse 
pressure gradients and the attendant possibility of flow separation, as discussed for 
incompressible boundary-layer flow in Chapter 9. 

Reference Stagnation and Critical Conditions for Isentropic 
Flow of an Ideal Gas 

As we mentioned at the beginning of this section, in principle we could use Eqs. 12.2 
to analyze one-dimensional isentropic flow of an ideal gas, but the computations 
would be somewhat tedious. Instead, because the flow is isentropic, we can use the re­
sults of Sections 11 -3 (reference stagnation conditions) and 11.4 (reference critical 
conditions). The idea is illustrated in Fig. 12.4: Instead of using Eqs. 12.2 to compute, 
for example, properties at state (2) from those at state CD, we can use state CD to de­
termine two reference states (the stagnation state and the critical state), and then 
use these to obtain properties at state (2). We need two reference states because the 
reference stagnation state does not provide area information (mathematically the 
stagnation area is infinite). 

We will use Eqs. 11.20 (renumbered for convenience), 

Pa. = i + *-V] kl(k 

P 2 

Zo i + ^ V 
T 2 

Po 
]/(k 

P 2 

(12.7a) 

(12.7b) 

(12.7c) 
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Te­

state ® to 
stagnation state 

Reference stagnation state to s t a t e ® 

T 
i S t a t e ® 

S t a t e © 

Reference critical state 
F 
i 

State ® to 
critical state 
to s t a t e © 

Fig . 12.4 E x a m p l e of s tagna t ion and cr i t ical re ference 
s tates in the Ts p lane . 

We note that the stagnation conditions are constant throughout the isentropic j 
flow. The critical conditions (when M = 1) were related to stagnation conditions in 
Section 11.3, 

i * / ( * - t ) 

(11.21a) 

(11.21b) 

(11.21d| 

Po _ k + r 
p* ~ 2 

To . k + ] 
T* 2 

Po. = 
'k + r 

p* 2 

V* = 
2k 

fc + 1 
RTn (11.22* 

Although a particular flow may never attain sonic conditions (as in the example 
in Fig. 12.4), we will still find the critical conditions useful as reference conditions 
Equations 12.7a, 12.7b, and 12.7c relate local properties (p, p, T, and V) to s tagn« 
tion properties ( p 0 , po, and T0) via the Mach number M, and Eqs. 11.21 and 11.22 KA 
late critical properties (P*, p*, T*, and V*) to stagnation properties {p0, po, and TQ1 
respectively, but we have yet to obtain a relation between areas A and A*. To do thii 
we start with continuity (Eq. 12.2a) in the form 

Then 

pAV = constant = p*A*V* 

J_p* 
M p 

A p* y* p* c* 
A* ' P V p Mc 

A 1 P-Bo It*/t0 

A* ' " M Po P V 777b 

A 1 
r i + A 

2 
1 + i M 2 

-,1/2 

A* M k + 1 k + 1 
2 
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A_ 
A* M 

2 
k + l 

2 

(* + l ) / 2 ( * - l ) 

(12.7d) 

Equations 12.7 form a set that is convenient for analyzing isentropic flow of an 
ideal gas with constant specific heats, which we usually use instead of the basic equa­
tions, Eqs. 12.2. For convenience we list Eqs. 12.7 together: 

BO. 

P 

Zo 
T 

Po. 

P 

1 + ^ M 2 

2 

2 

k / ( * - l ) 

A - _L 2 

2 

( k + l ) / 2 ( k - l ) 

(12.7a) 

(12.7b) 

(12.7c) 

(12.7d) 

Equations 12.7 provide property relations in terms of the local Mach number, the 
stagnation conditions, and critical conditions; they are so useful that some calcula­
tors have some of them built in (for example the HP 48G series [1]). It is a good 
idea to program them if your calculator does not already have them. There are even 
interactive web sites that make them available (see, for example, [2]), and they are 
fairly easy to define in spreadsheets such as Excel. While they are somewhat compli­
cated algebraically, they have the advantage over the basic equations, Eq. 12.2, that 
they are not coupled. Each property can be found directly from its stagnation value 
and the Mach number. Equation 12.7d shows the relation between Mach number Af 
and area A. The critical area A* (defined whether or not a given flow ever attains 
sonic conditions) is used to normalize area A. For each Mach number M we obtain a 
unique area ratio, but as shown in Fig 12.5 each A/A* ratio (except 1) has two possi­
ble Mach numbers—one subsonic, the other supersonic. The shape shown in Fig. 
12.5 looks like a converging-diverging section for accelerating from a subsonic to a 
supersonic flow (with, as necessary, M = 1 only at the throat), but in practice this is 
not the shape to which such a passage would be built. For example, the diverging 
section usually will have a much less severe angle of divergence to reduce the 
chance of flow separation (in Fig. 12.5 the Mach number increases linearly, but this 
is not necessary). 

Appendix E-l lists flow functions for property ratios T0/T, p0/p, p^lp, and A/A* 
in terms of M for isentropic flow of an ideal gas. A table of values, as well as a plot of 
these property ratios, is presented for air (k — 1.4) for a limited range of Mach num­
bers. The associated Excel workbook, Isentropic Relations, can be used to print a 
larger table of values for air and other ideal gases. 
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0.5 1.0 1.5 2.0 2.5 3.0 
Mach number, M 

Fig. 12.5 Var ia t ion of AIA* w i th M a c h n u m b e r for 
isentropic f low of an ideal gas wi th k = 1.4. 

Example Problem 12.1 demonstrates use of some of the above equations. As 
shown in Fig. 12.4, we can use the equations to relate a property at one state to the 
stagnation value and then from the stagnation value to a second state, but note that we 
can accomplish this in one step—for example, p2 can be obtained from p{ by writing 

Pi P2, 
Po 

Po, 
P\ 

px, where the pressure ratios come from Eq. 12.7a evaluated] 

at the two Mach numbers. 

EXAMPLE 12.1 Isentropic Flow in a Converging Channel 

Air flows isentropically in a channel. At section ( J ) , the Mach number is 0.3, the area 
is 0.001 m 2 , and the absolute pressure and the temperature are 650 kPa and 62°C, re­
spectively. At section (2), the Mach number is 0.8. Sketch the channel shape, plot a 
Ts diagram for the process, and evaluate properties at section @ . Verify that the re­
sults agree with the basic equations, Eqs. 12.2. 

EXAMPLE PROBLEM 12.1 

GIVEN: Isentropic flow of air in a channel. At sections © and © , the following data are given: M\ 
0.3, T, = 62°C,/7, = 650kPa(abs),A, = 0.001 m 2 , andM 2 = 0.8. 

FIND: (a) The channel shape. 
(b) A Ts diagram for the process. 
(c) Properties at section © . 
(d) Show that the results satisfy the basic equations. 

SOLUTION: 
To accelerate a subsonic flow requires a converging nozzle. The channel shape must be as shown. 

On the 7s plane, the process follows an s = constant line. Stagnation conditions remain fixed for 
isentropic flow. 
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calculated (for air, k = 1.4) from Eq. 12.7b, 

To2 = 7b, = 7j 1 + 
k - 1 

M 

= (62 + 273)K[l + 0.2(0.3) 2] 

To, =7o, = 341K 

For p 0 2 , fromEq. 12.7a, 

Po2 = Pot = P\ 1 + 
k - 1 

M 
k/(k-l) 

= 650kPa[l + 0.2(0.3) 2] 3- 5 

p 0 2 = 692kPa(abs) <_ 

can be T 

4 

/ POi = Po 2 

/ 

T l - > 

y P \ 

® 

5 

Po, 

For T2, from Eq. 12.7b, 

T2 = T0: 
1 + 

k - 1 
Mi = 341K/[l + 0.2(0.8) : 

T2 = 302 K 

For p 2 y from Eq. 12.7a, 

Pl = Po. 1 + 
k - 1 */Ar-l 

692 kPa/[l + 0.2(0.8) 2 ] 3 ' 5 

p2 = 454 kPa^ 

Note that we could have directly computed T2 from Ty because T0 = constant: 

T2 
T2 /T0 

7] To/ 7i 

T2 
0.8865 

71 0.9823 

Hence, 

1 + 
fe - 1 

Mi = [l + 0.2(0.3) 2]/[l + 0.2 (0.8) 2] 

= 0.9025 

T2 = 0.9025 7, = 0.9025(273 + 62)K = 302 K 

Similarly, for p 2 , 

Hence, 

Jh = Pi. / HQ. -
P\ Po 

I ^ =0 .8865 3 ' 5 /0 .9823 3 5 = 0.6982 
/ Pi 

Pl 

p 2 = 0.6982 p, = 0.6982(650 kPa) = 454 kPa 

The density p 2 at section (2) can be found from Eq. 12.7c using the same procedure we used for T2 and p 2 , 
or we can use the ideal gas equation of state, Eq. 12.2e, 

p2 4.54 x 10 N k g - K 1 . _ , , 3 

p, = - J - L - = x - - x = 5.24 kg/m 
1 RT2 m 2 287 N • m 302 K ' 

Pi 
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and the velocity at section (2) is 

w rrr^r ™ ^ 287 N• m 302K kg-m „„„ , 
V2 = M2c2 = M2JkRT2 = 0.8 x x x x - ? — = 279 m/s, V2 

2 2 2 ^ 2 \ kg-K S

2 - N * 
The area A2 can be computed from Eq. 12.7d, noting that A* is constant for this flow, 

A* _ 1 1 + M 
2 

2 
2 

(*+l)/2(it-l) /, 1 + 
2 1 

A* Ax ~ M2 
k + 1 / * + 1 

2 / 2 

1 1 + 0.2 (0.8) 2 

3 /± 1 + 0.2 (0.3) 2 3 1.038 
= 0.5101 

0.8 1.2 j 0.3 
1.2 2.035 

(* + l)/2(*-l) 

Hence, 

A2 = 0.5101/i, = 0.5101(0.001 m 2 ) = 5.10 x 10"* m 2 

Note that A2 < Ax as expected. 

Let us verify that these results satisfy the basic equations 

We first need to obtain pt and V{: 

-.5 

Pi 
p, _ 6.5 x 10 N kg-K v 1 _ ^ , . „ , „ 3 

RT m 2 2 8 7 N m 335 K 
= 6.76 kg/m J 

and 

K, = Mxc, = MyJkW, = 0.3x |J-4 x 287 N j n 335K 1 ^ = 
1 1 1 1 V 1 -y kg-K s 2 - N 

The mass conservation equation is 

P\V\A\ - p2V2A2 - pVA = rh = constant (12.2a)-

. 6.76 kg 110 m 0.001m 2 5.24 kg 279 m 0.00051m 2 , 
m= -fx — x = -fx — x = 0.744 kg/s (Check!)' 

m s m s 

We cannot check the momentum equation (Eq. 12.2b) because we do not know the force Rx produced by 
the walls of the device (we could use Eq. 12.2b to compute this if we wished). The energy equation is 

V2, V? 
fto, = * i + - 2 L = * 2 + - ^ - = *o 2 = '«o 

We will check this by replacing enthalpy with temperature using Eq. 12.2f, 

Ah = h2-h[ =cpAT = cp{T2-T,) 

so the energy equation becomes 

V2 V2 

cpT{ + = cnT, + = c„Tc 

(12.2c) 

(12.2f) 

p'2 
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Using cp for air from Table A.6, 

V;2 1004 J 335K (llOyVmY* N s 2 J 
C ^ 1 + f = k7KX

 + — [ T j X lcFnT X TrnT = 3 4 2 k J / ^ 
Vl = 1 0 0 4 ^ x 302K + ^ r m V x x _ F _ 

" 2 2 kg-K 2 UJ kg-m N-m 6 

T 1004 J 341K 

cpT0 = x = 342 y / k g (Check!) 
kg-K 

The final equation we can check is the relation between pressure and density for an isentropic process 
(Eq. 12.2g), 

(Check!) 

The basic equations are satisfied by our solution. 

This Example Problem illustrates: 
/ Use of the isentropic equations, Eqs. 12.7. 
/ That the isentropic equations are consistent with die basic 

equations, Eqs. 12.2, 
/ That the computations can be quite laborious without us­

ing preprogrammed isentropic relations! 
The Excel workbook for this Example Problem is con-
venient for performing the calculations, using either the 
isentropic equations or the basic equations. 

Isentropic Flow in a Converging Nozzle 

Now that we have our computing equations (Eqs. 12.7) for analyzing isentropic 
flows, we are ready to see how we could obtain flow in a nozzle, starting from rest. 
We first look at the converging nozzle, and then the C-D nozzle. In either case, to 
produce a flow we must provide a pressure difference. For example, as illustrated in 
the converging nozzle shown in Fig. 12.6a, we can do this by providing the gas from 
a reservoir (or "plenum chamber") at p0 and T0, and using a vacuum pump/valve 
combination to create a low pressure, the "back pressure," pb. We are interested in 
what happens to the gas properties as the gas flows through the nozzle, and also in 
knowing how the mass flow rate increases as we progressively lower the back pres­
sure. (We could also produce a flow by maintaining a constant back pressure, e.g., at­
mospheric, and increasing the pressure in the plenum chamber.) 

Let us call the pressure at the exit plane pe. We will see that this will often be 
equal to the applied back pressure, P b , but not always! The results we obtain as we 
progressively open the valve from a closed position are shown in Figs, \2.6b and 
12.6c. We consider each of the cases shown. 

file:///2.6b
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(a) 0 
0 Throat 0 

F ig . 12.6 Conve rg ing nozz le opera t ing at va r ious back p ressures . 

When the valve is closed, there is no flow through the nozzle. The pressure is p0 

throughout, as shown by condition (i) in Fig. 12.6a. 
If the back pressure, pb, is now reduced to slightly less than p0, there will be flow 

through the nozzle with a decrease in pressure in the direction of flow, as shown by 
condition [ii). Flow at the exit plane will be subsonic with the exit-plane pressure 
equal to the back pressure. 

What happens as we continue to decrease the back pressure? As expected the 
flow rate will continue to increase, and the exit-plane pressure will continue to de­
crease, as shown by condition (Hi) in Fig. 12.6a. 

As we progressively lower the back pressure the flow rate increases, and hence, 
so do the velocity and Mach number at the exit plane. The question arises: "Is there a 
limit to the mass flow rate through the nozzle?" or, to put it another way, "Is there an 
upper limit on the exit Mach number?" The answer to these questions is "Yes!" To 
see this, recall that for isentropic flow Eq. 12.6 applies: 

V 
dA 1 

A [l-M2] 
(12.6) 

From this we learned that the only place we can have sonic conditions (M = 1) is 
where the change in area dA is zero. We cannot have sonic conditions anywhere in 
the converging section. Logically we can see that the maximum exit Mach number is 
one. Because the flow started from rest (M = 0), if we postulated that M > 1 at the 
exit, we would have had to pass through M = 1 somewhere in the converging sec­
tion, which would be a violation of Eq. 12.6. 

Hence, the maximum flow rate occurs when we have sonic conditions at the exit 
plane, when Me = 1, and pe = pb = p*, the critical pressure. This is shown as condi­
tion (iv) in Fig. 12.6a, and is called a "choked flow," beyond which the flow rate can­
not be increased. From Eq. 12.7f, 

Es. 
Po choked 

El 
Po k + l 

U(k-l) 

(12.8) 
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For air, k = 1.4, so pe /poLhoked = 0.528. For example, if we wish to have sonic flow 
at the exit of a nozzle from a plenum chamber that is at atmospheric pressure, we 
would need to maintain a back pressure of about 7.76 psia, or about 6.94 psig vac­
uum. This does not sound difficult for a vacuum pump to generate, but actually takes 
a lot of power to maintain, because we will have a large mass flow rate through the 
pump. For the maximum, or choked, mass flow rate we have 

C h o k e d = P* 

Using the ideal gas equation of state, Eq. I2.2e, and the stagnation to critical pressure 
and temperature ratios, Eqs. 12.7d and 12.7e, respectively, with A* = Ae, it can be 
shown that this becomes 

(12.9) 

For air, m c h o k e d = 0.04Aep0I^T0 ( m c h o k e d in kg/s, A E in m 2 , p0 in Pa, and T 0 in K), or 

'"choked = 76.6A ( ,p 0 I^TQ ( m c h o k e d in Ibm/s, A E in ft2, p0 in psia, and T0 in °R). The 
maximum flow rate in the converging nozzle depends on the gas {k and R), the size of 
the exit area (AJ, and the conditions in the reservoir (p0, T0). 

Suppose we now insist on lowering the back pressure below this "benchmark" 
level of p*. Our next question is "What will happen to the flow in the nozzle?" The 
answer is "Nothing!" The flow remains choked: the mass flow rate does not increase, 
as shown in Fig. \2.6b, and the pressure distribution in the nozzle remains un­
changed, with pL. = p* > ph, as shown in condition (v) in Figs. 12.6a and 12.6c. 
After exiting, the flow adjusts down to the applied back pressure, but does so in a 
nonisentropic, three-dimensional manner in a series of expansion waves and shocks, 
and for this part of the flow our one-dimensional, isentropic flow concepts no longer 
apply. We will return to this discussion in Section 12-6. 

This idea of choked flow seems a bit strange, but can be explained in at least 
two ways. First, we have already discussed that to increase the mass flow rate 
beyond choked would require Me > 1, which is not possible. Second, once the flow 
reaches sonic conditions, it becomes "deaf" to downstream conditions: Any change 
(i.e., a reduction) in the applied back pressure propagates in the fluid at the speed of 
sound in all directions, so it gets "washed" downstream by the fluid which is moving 
at the speed of sound at the nozzle exit. 

Flow through a converging nozzle may be divided into two regimes: 

1. In Regime I, 1 s Pblpa — P*/po- Flow to the throat is isentropic and pe = pb. 
2. In Regime II, pb/p0 < p*/p0. Flow to the throat is isentropic, and ME= 1. A nonisentropic 

expansion occurs in the flow leaving the nozzle and pe — p* > pb. 

The flow processes corresponding to Regime II are shown on a Ts diagram in Fig. 12.7. 
Two problems involving converging nozzles are solved in Example Problems 12.2 
and 12.3. 

Although isentropic flow is an idealization, it often is a very good approxima­
tion for the actual behavior of nozzles. Since a nozzle is a device that accelerates a 
flow, the internal pressure gradient is favorable. This tends to keep the wall boundary 
layers thin and to minimize the effects of friction. 

file:///2.6b
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X 

Fig . 12.7 S c h e m a t i c Ts d i a g r a m tor c h o k e d 
f low t h r o u g h a c o n v e r g i n g n o z z l e . 

EXAMPLE 12.2 Isentropic Flow in a Converging Nozzle 

A converging nozzle, with a throat area of 0.001 m 2 , is operated with air at a back 
pressure of 591 kPa (abs). The nozzle is fed from a large plenum chamber where the 
absolute stagnation pressure and temperature are 1.0 MPa and 60°C. The exit Mach 
number and mass flow rate are to be determined. 

EXAMPLE PROBLEM 12.2 

GIVEN: Air flow through a converging nozzle at the conditions shown: 
Flow is isentropic. 

Po = 1-0 MPa 
T0 = 333K 

FIND: (a) Me 

(b) m. 

SOLUTION: 
The first step is to check for choking. The pressure ratio is 

p t = 591 kPa (abs) 

^ = 5 - 9 1 X l ° ; = 0.591 > 0.528 
Po I .OxlO 6 

so the flow is not choked. Thus pb = pe, and the flow is isentropic, as sketched 
on the Ts diagram. 

Since p0 = constant, Me may be found from the pressure ratio, 

£o 
Pe 

i + ^ V 
Solving for Me, since pe = pb, we obtain 

1 + ^ M 2 = Po 
\PbJ 
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and 

11/2 

ifc-1 

1.0 x 10 
5 .91x10 s 

\0.286 

- 1 
1.4-1 

1/2 

= 0.90 M. 

The mass flow rate is 

m = p„VeAe = peMeceAe 

We need Te to find pc and c,. Since 7 0

 = constant, 

^ = i + i ^ M 2 

n 2 
or 

(273 + 60) K 

1 + * ^ ! M ? l + 0.2(0.9)2 

= 287 K 

c e = JkRTe = 
1.4 287 N m 287 K kg-m 

X X X kg-K N V 

1/2 
= 340 m/s 

and 

Finally, 

Pe = 
pe _ 5.91 x 105 N kg-K 1 
RZ m z 287 N • m 287 K 

7.18kg/m ; l 

7.18 kg 0.9 340 m 0.001 m z „ „ , . , , 
m = p M,ceAe = —^ x x — x = 2.20 kg/s 

m s ' m 

This problem illustrates use of the isentropic equations, Eqs. 
12.7, for a flow that is not choked. 

The Excel workbook for this Example Problem is con-
venient for performing the calculations (using either the 
isentropic equations or the basic equations). 

EXAMPLE 12.3 Choked Flow in a Converging Nozzle 

Air flows isentropically through a converging nozzle. At a section where the nozzle 
area is 0.013 ft2, the local pressure, temperature, and Mach number are 60 psia, 40°F, 
and 0.52, respectively. The back pressure is 30 psia. The Mach number at the throat, 
the mass flow rate, and the throat area are to be determined. 

file:///0.286
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EXAMPLE PROBLEM 12.3 

GIVEN: Air flow through a converging nozzle at the conditions shown: 
Mi = 0.52 
Ti = 40°F 
Pi = 60 psia 
A, = 0.013 ft2 

FIND: (a) Mr (b) m. (c) A, 

SOLUTION: 
First we check for choking, to determine if flow is isentropic down to pb. To check, we evaluate the stagna­
tion conditions. 

k/(k-\) 

= 60 psia [1 + 0.2(0.52) 2f 5 = 72.0 psia Po = Pi 

The back pressure ratio is 

1 + 
2 1 

Pb _ 30.0 
P o 72.0 

= 0.417 < 0.528 

so the flow is choked! For choked flow, 

The Ts diagram is 

M, = 1.0 

The mass flow rate may be found from conditions at section ® , using m = A,. 

Vj = M,c, = My^kxYTi 

= 0.52 1.4 53.3 ft Ibf (460 + 40)°R 32.2 Ibm slug ft 
X X X X Ibm • °R slug Ibf • s 2 

1/2 

Vj = 570 ft/s 

Pi 
Pi 60 Ibf Ibm °R 1 144 i n / , , 3 

— - x x — — x = 0.324 lbm/ft3 RT i n / 53.3 ft Ibf 500°R ft' 
„ , 0.324 Ibm 570 ft 0.013ft2 , 

m = p , V | A i = — s - x — x =2.401bm/s 
1 1 1 ft 3 s 

M, 
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From Eq. 12.6, 
r 

1 + 
2 1 

fc + l A* Af] 

For choked flow, A, = A*. Thus, 

A, = A 

( * + l ) / 2 ( A - l ) 

0.52 
1 + 0.2(0.52/ 

1.2 

3.00 

= 1.303 

. = J L = M ! ^ = , 9 8 x l 0 - 3 f t 2 

1.303 1.303 

This problem illustrates use of the isentropic equations, Eqs. 
12.7, for a flow that is choked. 

/ Because the flow is choked, we could also have used Eq. 
12.9 for m (after finding T0). 

The Excel workbook for this Example Problem is con­
venient for performing the calculations. 

Isentropic Flow in a Converging-Diverging Nozzle 

Having considered isentropic flow in a converging nozzle, we turn now to isentropic 
flow in a converging-diverging (C-D) nozzle. As in the previous case, flow through 
the converging-diverging passage of Fig. 12.8 is induced by a vacuum pump down­
stream, and is controlled by the valve shown; upstream stagnation conditions are 
constant. Pressure in the exit plane of the nozzle is pe; the nozzle discharges to back 
pressure pb. As for the converging nozzle, we wish to see, among other things, how 
the flow rate varies with the applied pressure difference (p0 - pb). Consider the ef­
fect of gradually reducing the back pressure. The results are illustrated graphically in 
Fig. 12.8. Let us consider each of the cases shown. 

With the valve initially closed, there is no flow through the nozzle; the pressure is 
constant at p0. Opening the valve slightly (pb slightly less than pQ) produces pressure 
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distribution curve (/). If the flow rate is low enough, the flow will be subsonic and es­
sentially incompressible at all points on this curve. Under these conditions, the C-D 
nozzle will behave as a venturi, with flow accelerating in the converging portion until 
a point of maximum velocity and minimum pressure is reached at the throat, then d e f l 
celerating in the diverging portion to the nozzle exit. (This behavior is described accu­
rately by the Bernoulli equation, Eq. 6.18.) 

As the valve is opened farther and the flow rate is increased, a more sharply 
denned pressure minimum occurs, as shown by curve (ii). Although compres s ib i l i t y 
effects become important, the flow is still subsonic everywhere, and flow decelerates 
in the diverging section. (Clearly, this behavior is not described accurately by the 
Bernoulli equation.) Finally, as the valve is opened farther, curve (Hi) results. A l l 
the section of minimum area the flow finally reaches M = 1, and the nozzle is 
choked—the flow rate is the maximum possible for the given nozzle and stagnatioiiB 
conditions. 

All flows with pressure distributions (/), (n), and (Hi) are isentropic; each 
curve is associated with a unique rate of mass flow. Finally, when curve (Hi) is 
reached, critical conditions are present at the throat. For this flow rate, the flow is 
choked, and 

m = p*V*A * 

where A* = A„ just as it was for the converging nozzle, and for this maximum possi­
ble flow rate Eq. 12.9 applies (with Ae replaced with the throat area A,), 

" c H o k e d =

 A'P4lAl^\) (12"10) 

For air, C h o k e d = 0.04 A,p0/\JTQ~ ( w c h o k e d in kg/s, A, in m 2 , p 0 in Pa, and T0 in K), or 

^choked = 76.6 A,PQI^TQ (w c h 0 ked m hbm/s, A, in ft2, p0 in psia, and T0 in R). The m a x - a 
imum flow rate in the C-D nozzle depends on the gas (k and R), the size of the throat 
area (A,), and the conditions in the reservoir ( p 0 , T$). Any attempt to increase the flow 
rate by further lowering the back pressure will fail, for the two reasons we discussed 
earlier: once we attain sonic conditions, downstream changes can no longer be trans­
mitted upstream, and we cannot exceed sonic conditions, at the throat because this 
would require passing through the sonic state somewhere in the converging section, I 
which is not possible in isentropic flow. 

With sonic conditions at the throat, we consider what can happen to the flow in j 
the diverging section. We have previously discussed (see Fig. 12.3) that a diverging 
section will decelerate a subsonic flow (M < 1) but will accelerate a supersonic flow 
(M > 1)—very different behaviors! The question arises: "Does a sonic flow behave 
as a subsonic or as a supersonic flow as it enters a diverging section?" The answer t o . l 
this question is that it can behave like either one, depending on the downstream pres­
sure! We have already seen subsonic flow behavior [curve (Hi)]: the applied back 
pressure leads to a gradual downstream pressure increase, decelerating the flow. We 
now consider accelerating the choked flow. 

To accelerate flow in the diverging section requires a pressure decrease. This con- I 
dition is illustrated by curve (iv) in Fig. 12.8. The flow will accelerate isentropically in I 
the nozzle provided the exit pressure is set at piv. Thus, we see that with a throat Mach 

file:///JTq~
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number of unity, there are two possible isentropic flow conditions in the converging-
diverging nozzle. This is consistent with the results of Fig. 12.5, where we found two 
Mach numbers for each A/A* in isentropic flow. 

Lowering the back pressure below condition (iv), say to condition (v), has no 
effect on flow in the nozzle. The flow is isentropic from the plenum chamber to the 
nozzle exit [as in condition (iv)] and then it undergoes a three-dimensional irre­
versible expansion to the lower back pressure. A nozzle operating under these con­
ditions is said to be underexpanded, since additional expansion takes place outside 
the nozzle. 

A converging-diverging nozzle generally is intended to produce supersonic flow 
at the exit plane. If the back pressure is set at piv, flow will be isentropic through the 
nozzle, and supersonic at the nozzle exit. Nozzles operating at ph = piv [correspond­
ing to curve (iv) in Fig. 12.8] are said to operate at design conditions. 

Row leaving a C-D nozzle is supersonic when the back pressure is at or below 
nozzle design pressure. The exit Mach number is fixed once the area ratio, A e /A*, is 
specified. All other exit plane properties (for isentropic flow) are uniquely related to 
stagnation properties by the fixed exit plane Mach number. 

The assumption of isentropic flow for a real nozzle at design conditions is a rea­
sonable one. However, the one-dimensional flow model is inadequate for the design 
of relatively short nozzles to produce uniform supersonic exit flow. 

Rocket-propelled vehicles use C-D nozzles to accelerate the exhaust gases to the 
maximum possible speed to produce high thrust. A propulsion nozzle is subject to 
varying ambient conditions during flight through the atmosphere, so it is impossible 
to attain the maximum theoretical thrust over the complete operating range. Because 
only a single supersonic Mach number can be obtained for each area ratio, nozzles 
for supersonic wind tunnels often are built with interchangeable test sections, or with 
variable geometry. 

You undoubtedly have noticed that nothing has been said about the operation of 
converging-diverging nozzles with back pressure in the range p,„ > pb > For 
such cases the flow cannot expand isentropically to pb. Under these conditions a 
shock (which may be treated as an irreversible discontinuity involving entropy in­
crease) occurs somewhere within the flow. Following a discussion of normal shocks 
in Section 12-5, we shall return to complete the discussion of converging-diverging 
nozzle flows in Section 12-6. 

Nozzles operating with piu > ph > p,v are said to be overexpanded because the 
pressure at some point in the nozzle is less than the back pressure. Obviously, an 
overexpanded nozzle could be made to operate at a new design condition by remov­
ing a portion of the diverging section. 

In Example Problem 12.4, we consider isentropic flow in a C-D nozzle; in 
Example Problem 12.5, we consider choked flow in a C-D nozzle. 

EXAMPLE 12.4 Isentropic Flow in a Converging-Diverging Nozzle 

Air flows isentropically in a converging-diverging nozzle, with exit area of 0.00! m 2 . 
The nozzle is fed from a large plenum where the stagnation conditions are 350 K and 
1.0 MPa (abs). The exit pressure is 954 kPa (abs) and the Mach number at the throat 
is 0.68. Fluid properties and area at the nozzle throat and the exit Mach number are to 
be determined. 
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EXAMPLE PROBLEM 12.4 

GIVEN: Isentropic flow of air in C-D nozzle as shown: 
T0 = 350 K 
Po = 1.0 MPa (abs) 
pb = 954 kPa (abs) 
M, = 0.68 Ae = 0.001 m 2 

FIND: (a) Properties and area at nozzle throat, 
(b) Mr 

SOLUTION: 
Stagnation temperature is constant for isentropic flow. Thus, since 

^ = l + ^±M2 

T 2 
then 

T, = 
350 K 

, + LLL M2 1 + 0.2(0.68) : 

2 ' 

= 320 K 

Also, since p0 is constant for isentropic flow, then 

( T \ * / < * - i ) 

Pi = Po 

p, = 1.0 x 10 6 Pa 

Po 
1 

2 ' 

1 
3.5 

1 + 0.2(0.68)' 
= 734 kPa (abs) Pt 

and 

Pi = 
p. 7 .34x10 s N kg-K 1 3 

RT, m2 287N-m 320 K <" 
Pi 

V, = M,c, = MnfkRT, 

V, = 0.68 1.4 287 N m 320 K kg-m x x x 0 ^ 
kg-K 

From Eq. 12.7d we can obtain a value of A,IA* 

-i(*+l)/2(*-l) 

A* M, 

l + ^ M 2 

2 ' 
k + 1 

N - s z 

1 
0.68 

1/2 

= 244 m/s 

1 + 0.2(0.68/ 
1.2 

3 .00 

= 1.11 

but at this point A* is not known. 
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Since M, < 1, flow at the exit must be subsonic. Therefore, pe = pb. Stagnation properties are con­
stant, so 

EQ. = 

Pe 

kl(k-\) 

Solving for Mc gives 

EL 
PeJ 

1 1 / 2 

1.0 x IP 6 

9.54 x 10 : 

0 . 2 8 6 

(5) 

1/2 

= 0.26 

The Ts diagram for this flow is 

Since Ae and Me are known, we can compute A*. From Eq. 12.7d 

A* 
J _ 

M. 

l + ^ M e

2 

2 
k + 1 

(* + ] ) / 2 ( * - l ) 

0.26 
1 + 0 . 2 ( 0 . 2 6 r 

1.2 

- i 3 . 0 0 

= 2.317 

Thus, 

and 

A* = A_ - 0 - 0 0 1 m = 4 . 3 2 X 1 0 - m 2 

2.317 2.317 

A, = 1.I10A* = (1.110)(4.32 x 10" 4 m 2 ) = 4.80 x 10" 4 m 2 

This problem illustrates use of the isentropic equations, Eqs. 
12.7, for flow in a C-D nozzle that is not choked. 

/ Note that use of Eq. 12.7d allowed us to obtain the throat 
area without needing to first compute other properties. 

The Excel workbook for this Example Problem is con­
venient for performing the calculations (using either the 
isentropic equations or the basic equations). 

M. 

A, 

EXAMPLE 12.5 Isentropic Flow in a Converging-Diverging Nozzle: Choked Flow 

The nozzle of Example 12.4 has a design back pressure of 87.5 kPa (abs) but is oper­
ated at a back pressure of 50.0 kPa (abs). Assume flow within the nozzle is isentropic. 
Determine the exit Mach number and mass flow rate. 
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EXAMPLE PROBLEM 12.5 

GIVEN: Air flow through C-D nozzle as shown: 
To = 350 K 
Po = 1.0 MPa (abs) 

p„(design) = 87.5 kPa (abs) 
Pb = 50.0 kPa (abs) 
A. = 0.001 m 2 

A, = 4.8 X 10" 4 m 2 (Example Problem 12.4) 

FIND: (a) Me. (b) m. 

SOLUTION: 
The operating back pressure is below the design pressure. Consequently, the nozzle is underexpanded, and 
the Ts diagram and pressure distribution will be as shown: 

Row within the nozzle will be isentropic, but the irreversible expansion from pe to pb will cause an entropy 
increase; pe = p,(design) = 87.5 kPa (abs). 

Since stagnation properties are constant for isentropic flow, the exit Mach number can be computed 
from the pressure ratio. Thus 

Ro. 
Pe 

1 + ^ M 2 

or 

Po 

Pe) 

(k-\)/k 

- 1 
k - 1 

1/2 

1.0 x 10 
8.75 x 10" 

6 
0 . 2 8 6 

0.4 

1/2 

2.24 

Because the flow is choked we can use Eq. 12.10 for the mass flow rate, 

N ( * + l ) / 2 ( i t - l ) 

'"choked = 0.04 

(with mchoked in kg/s, A, in m 2, p0 in Pa, and T0 in K), so 

'"choked = O - 0 4 x 4 - 8 x 10"* x 1 x 10 6/V350 

m = '"choked = 1 0 4 kg/s^ 

(12.10) 
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This problem illustrates use of the isentropic equations, Eqs. 
12.7, for flow in a C-D nozzle that is choked. 

/ Note that we used Eq. 12.10 in an "engineering equation" 
form—that is, an equation containing a coefficient that 
has units. While useful here, generally these equations are 
no longer used in engineering because their correct use de­
pends on using input variable values in specific units. 

d& The Excel workbook for this Example Problem is con-
venient for performing the calculations (using either the 
isentropic equations or the basic equations). 

We have now completed our study of idealized one-dimensional isentropic flow 
in channels of varying area. In real channels, we will have friction and quite possibly 
heat transfer. Our next tasks are to study effects of these phenomena on a flow. As we 
mentioned at the beginning of this chapter, in this introductory text we cannot study 
flows that experience all these phenomena: In the next section, we consider the effect 
of friction alone, in Section 12-4 we study the effect of heat transfer alone, and in Sec­
tion 12-5 we study the effect of normal shocks (and see in Section 12-6 how these affect 
the C-D nozzle, in more detail than we did in this section). 

Gas flow in constant-area ducts is commonly encountered in a variety of engineering 
applications. In this section we consider flows in which wall friction is responsible 
for changes in fluid properties. 

As for isentropic flow with area variation (Section 12-2), our starting point in 
analyzing flows with friction is the set of basic equations (Eqs. 12.1), describing one-
dimensional motion that is affected by several phenomena: area change, friction, heat 
transfer and normal shocks. These are 

12-3 FLOW IN A CONSTANT-AREA DUCT WITH FRICTION 

p{V\A{ - P2V2A2 - pVA = m = constant 

Rx + pyAy - p2A2 = mV2 - rhVy (12. 

(12. 

lb) 

la) 

(12. lc) 

(12. Id) 

p = PRT 

Mi = h2-hx= cpAT = cp(T2 - 7 J ) 

(12. 

(12. 

le) 

If) 

A.s = s7 - s. = cn In — - R In — (12. lg) 
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Equation 12.1a is continuity, Eq. 12.1b is a momentum equation, Eq. 12.1c is an energy 
equation, Eq. 12. Id is the second law of thermodynamics, and Eqs. 12.le, 12. If, and 
12. lg are useful property relations for an ideal gas with constant specific heats. 

We must simplify these equations for flow in a constant-area duct with friction. 
The first problem we have is what to do with the heat that friction generates. There are 
two obvious cases we can consider: In the first we assume that the flow is adiabatic, 
so any heat generated remains in the fluid; in the second we assume that the flow re­
mains isothermal, so the fluid either gives off heat or absorbs heat as necessary. While 
some flows may be neither adiabatic nor isothermal, many real-world flows are. Flow 
in a relatively short duct will be approximately adiabatic; flow in a very long duct 
(e.g., an uninsulated natural gas pipeline) will be approximately isothermal (the 
pipeline will be at the ambient temperature). We consider first adiabatic flow. 

Basic Equations for Adiabatic Flow 
We can simplify Eqs. 12.1 for frictional adiabatic flow in a constant-area duct of an 
ideal gas with constant specific heats, as shown in Fig. 12.9. 

We now have A! = A2 = A. In addition, for no heat transfer we have dQIdm = 0. 
Finally, the force Rx is now due only to friction (no x component of surface force is 
caused by pressure on the parallel sides of the channel). Hence, for this flow our equa­
tions become 

p, V( = p2V2 = pV = G - — = constant 
A 

Rx + pxA - p2A = mV2 - rhV] 

= A, + 
V2 , Vl 

(12.11a) 

(12.11b) 

(12.11c) 

S2>Sy 

p = pRT 

Ah = h2-hx =cpAT = cp(T2-T0 

As = s2 - .?] 
P\ 

(12.1 Id) 

(12.1 le) 

(12.1 If) 

(12.11g) 

Equations 12.11 can be used to analyze frictional adiabatic flow in a channel of con­
stant area. For example, if we know conditions at section (T) (i.e., ph py, 7,, s{, hx, 
and V,), we can use these equations to find conditions at some new section (2) after 
the fluid has experienced a total friction force Rx. It is the effect of friction that causes 

Flow 

Fig . 12.9 Cont ro l vo lume used for integral 
ana lys is of f r ic t ional ad iabat ic f low. 
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fluid properties to change along the duct. For a known friction force we have six 
equations (not including the constraint of Eq. 12.1 Id) and six unknowns (p2, T2, 
s2, h2, and V2). In practice this procedure is unwieldy—as for isentropic flow we have 
a set of nonlinear coupled algebraic equations to solve. 

Adiabatic Flow: The Fanno Line 

If we were to attempt the calculations described above, as the flow progresses down 
the duct (i.e., for increasing values of Rx), we would develop a relationship between T 
and s shown qualitatively in Fig. 12.10 for two possibilities: a flow that was initially 
subsonic (starting at some point CD), and flow that was initially supersonic (starting 
at some point ( P ) ) . The locus of all possible downstream states is referred to as the 
Fanno line. Detailed calculations show some interesting features of Fanno-line flow. 
At the point of maximum entropy, the Mach number is unity. On the upper branch of 
the curve, the Mach number is always less than unity, and it increases monotonically 
as we proceed to the right along the curve. At every point on the lower portion of the 
curve, the Mach number is greater than unity; the Mach number decreases monotoni­
cally as we move to the right along the curve. 

For any initial state on a Fanno line, each point on the Fanno line represents a 
mathematically possible downstream state. Indeed, we determined the locus of all pos­
sible downstream states by letting the friction force Rx vary and calculating the corre­
sponding properties. Note the arrows in Fig. 12.10, indicating that, as required by Eq. 
12.1 Id, the entropy must increase for this flow. In fact it is because we do have fric­
tion (an irreversibility) present in an adiabatic flow that this is certain. Referring again 
to Fig. 12.10, we see that for an initially subsonic flow (state (T)), the effect of friction 
is to increase the Mach number toward unity. For a flow that is initially supersonic 
(state ( ? ) ) , the effect of friction is to decrease the Mach number toward unity. 

In developing the simplified form of the first law for Fanno-line flow, Eq. 12.1 lc, 
we found that stagnation enthalpy remains constant. Consequently, when the fluid is 
an ideal gas with constant specific heats, stagnation temperature must also remain con­
stant. What happens to stagnation pressure? Friction causes the local isentropic stag­
nation pressure to decrease for all Fanno-line flows, as shown in Fig. 12.11. Since 
entropy must increase in the direction of flow, the flow process must proceed to the 
right on the Ts diagram. In Fig. 12.11, a path from state CD t o s t a t e © ' s shown on the 
subsonic portion of the curve. The corresponding local isentropic stagnation pres­
sures, p 0 l and p0v clearly show that p^ < p0[. An identical result is obtained for flow 
on the supersonic branch of the curve from state ( P ) to state @ . Again p0r < p 0 | . . 
Thus p n decreases for any Fanno-line flow. 

The effects of friction on flow properties in Fanno-line flow are summarized in 
Table 12.1. 

In deducing the effect of friction on flow properties for Fanno-line flow, we 
used the shape of the Fanno line on the Ts diagram and the basic governing equa­
tions (Eqs. 12.11). You should follow through the logic indicated in the right col­
umn of the table. Note that the effect of friction is to accelerate a subsonic flow! 
This seems a real puzzle — a violation of Newton's second law — until we realize 
that the pressure is dropping quite rapidly, so the pressure gradient more than can­
cels the drag due to friction. We can also note that the density is decreasing in this 
flow (largely because of the pressure drop) mandating (from continuity) that the ve­
locity must be increasing. All properties simultaneously affect one another (as ex­
pressed in the coupled set of equations, Eqs. 12.11), so it is not possible to conclude 
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M = 1 

M > 1 

F ig . 12.10 S c h e m a t i c Ts d iag ram for 
f r ic t ional ad iabat ic (Fanno- l ine) f low in a 
cons tan t -a rea duc t . 

POi - Poy P02 - Paz 
^ ^ -

M < 1 

M = 1 

M > 1 

Fig . 12.11 Schema t i c of Fanno- l ine f low 
on Ts p lane, s h o w i n g reduct ion in local 
isentropic s tagna t ion p ressure c a u s e d by 
f r ic t ion. 

that the change in any one property is solely responsible for changes in any of the I 
others. 

We have noted that entropy must increase in the direction of flow: It is the effect j 
of friction that causes the change in flow properties along the Fanno-line curve. From 
Fig. 12.11, we see that there is a maximum entropy point corresponding to M = 1 fori 
each Fanno line. The maximum entropy point is reached by increasing the amount of 
friction (through addition of duct length), just enough to produce a Mach number of] 
unity (choked flow) at the exit. If we insist on adding duct beyond this critical duct ] 
length, at which the flow is choked, one of two things happens: if the inlet flow is \ 
subsonic, the additional length forces the sonic condition to move down to the new j 
exit, and the flow rate in the duct (and Mach number at each location) decreases; if : 

the inlet flow is supersonic, the additional length causes a normal shock to appear 
somewhere in the duct, and the shock moves upstream as more duct is added (for 
more details see Section 12-6). 

Table 12.1 Summary of Effects of Friction on Properties in Fanno-Line Flow 

Subsonic Supersonic 
Property M< 1 M> 1 Obtained from: 

Stagnation Constant Constant Energy equation 
temperature, T0 

Entropy, s Increases Increases Tds equation 
Stagnation Decreases Decreases 7"0 = constant; 

pressure, p 0 s increases 
Temperature, T Decreases Increases Shape of Fanno line 
Velocity, V Increases Decreases Energy equation, and trend of T 
Mach number, M Increases Decreases Trends of V, T, and definition of M 
Density, p Decreases Increases Continuity equation, and effect on V 
Pressure, p Decreases Increases Equation of state, and effects on p, T 
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To compute the critical duct length, we must analyze the flow in detail, account­
ing for friction. This analysis requires that we begin with a differential control 
volume, develop expressions in terms of Mach number, and integrate along the duct 
to the section where M = 1. This is our next task, and it will involve quite a bit of al­
gebraic manipulation, so first we will demonstrate use of some of Eqs. 12.11 in Ex­
ample Problem 12.6. 

EXAMPLE 12.6 Frictional Adiabatic Flow in a Constant-Area Channel 

Air flow is induced in an insulated tube of 7.16 mm diameter by a vacuum pump. The 
air is drawn from a room, where p 0 = 101 kPa (abs) and T0 = 23°C, through a 
smoothly contoured converging nozzle. At section (T), where the nozzle joins the 
constant-area tube, the static pressure is 98.5 kPa (abs). At section (2), located some 
distance downstream in the constant-area tube, the air temperature is 14°C. Deter­
mine the mass flow rate, the local isentropic stagnation pressure at section (2), and 
the friction force on the duct wall between sections (T) and (2). 

EXAMPLE PROBLEM 12.6 

GIVEN: Air flow in insulated tube. 

FIND: (a) m. 
(b) Stagnation pressure at section ( 2 ) . 
(c) Force on duct wall. 

SOLUTION: 
The mass flow rate can be obtained from properties at section 
(T). For isentropic flow through the converging nozzle, local 
isentropic stagnation properties remain constant. Thus, 

T 0 = 296 K 
p 0 = 101 kPa(abs) 

Flow . t i 
7.16 mm 
I . . J ^^^^^ \ I b 

p. = 98.5 kPa(abs) T2 = 287 K 

i t / (* - l ) 

and 

My = 

7i = 

k - 1 

f \(k-\)lk 
Po, 

{ Py ) 

t s \ 0 . 2 8 6 

' 1.01 x 10 5 ^ 

[ + !LZ1M2 1 + 0.2(0.190) 
2 1 

- 1 

1/2 

294 K 

= 0.190 

For an ideal gas, 

1 Pi 9.85 x 10 N k g k 
Pi = -J-L- = x — - x 

2 287 N-m 294 K 
RTy m 

Vy = MyCy = My^kRTy = (0.190) 

= 1.17kg/m J 

1.4 287 N-m 294K kg-m 
x -—— x x kg-K N-s" 

1/2 

Vy = 65.3 m/s 
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The area, A b is 

A, = A = = — ( 7 . 1 6 x i r r 3 ) 2 m 2 = 4.03 x 10" 5 m 2 

1 4 4 

From continuity, 

1.17 kg 65.3 m 4.03 x 10~5 m 2 

m = p\VxA{ = —=r x — x 
m s 

m = 3.08 x 10" 3 kg/s 

Flow is adiabatic, so T0 is constant, and 

T0 =7b = 296K 

Then 

Solving for M2 gives 

M, = 
k - 1 

T2 

Q2_ = l + LllM2 

To \ 

VT2 ) 

-i l /2 
2 f296 

0.4 I 287 

1 / 2 

0.396 

V2 = M2c2 = M2JkRT2 = (0.396) 

V2 = 134 m/s 

1.4 287 N m 287 K kg-m 
x x x 

- | l / 2 

kg-K N V 

From continuity, Eq. 12.11a, p{Vx = PiV2, so 

P 2 = P 1 £ = U 7 ^ x ^ = 0 .570kg /m^ Pi 

and 

OT 0.570 kg 287 N m 287K 
P 2 = P 2 ^ 2 = - j * : — - x = 47.0 kPa (abs) 

m kg-K ' 

The local isentropic stagnation pressure is 

( 1
 k ~ 1 » , 2 

P 0 2 = Pl\ 1 + — M 2 

p 0 = 52.4 kPa (abs) 

= 4.70 x 10 4 Pa[l + 0.2(0.396) 2 ] 3 5 

Pi 
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The friction force may be obtained using the momentum equation (Eq.12.1 lb), 

Rx + pyA - p2A = mV2 - mV2 (12.11b) 

which we apply to the control volume shown above (except we replace Rx from Fig. 12.9 with -F^because 
we know the friction force Ff on the fluid acts in the negative x direction). 

-Ff = ( P 2 -Py)A + m(V2 - V,) 

-Ff = 
(4.70 - 9.85)104 _N_ 4.03 x 10~5 m 2

 + 3.08 x 10~3 kg (134 - 65.3) m N - s 2 

m k g m 

Ff= 1.86 N (to the left, as shown) 

This is the force exerted on the control volume by the duct wall. The force of the fluid on the duct is 

Kx = -Ff = 1.86 N (to the right) 

This problem illustrates use of some of the basic equations, 
Eqs. 12.11, for flow in a duct with friction. 

The Excel workbook for this Example Problem is con­
venient for performing the calculations. 

Fanno-Line Flow Functions for One-Dimensional Flow of an Ideal Gas 

The primary independent variable in Fanno-line flow is the friction force, Ff. Knowl­
edge of the total friction force between any two points in a Fanno-line flow enables 
us to predict downstream conditions from known upstream conditions. The total fric­
tion force is the integral of the wall shear stress over the duct surface area. Since wall 
shear stress varies along the duct, we must develop a differential equation and then 
integrate to find property variations. To set up the differential equation, we use the 
differential control volume shown in Fig. 12.12. 

Comparing Fig. 12.12 to Fig. 12.9 we see that we can use the basic equations, 
Eqs. 12 .11, for flow in a duct with friction, if we replace T]t pu pu V,, with T, p, p, V, 
and T2, p2, p2, V2, with T + dT, p + dp, p + dp, V + dV, and also Rx with -dFf. 

Flow 

T T+ dT 
P p+dp 
P ip+dp 
V V+dV 

dx 

Area, A 

Fig. 12.12 Di f ferent ia l con t ro l v o l u m e u s e d 
for a n a l y s i s of F a n n o - l i n e f low. 
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The continuity equation (Eq. 12.1 la) becomes 

pV = (p + dp)(V + dV) = EL 
A 

so 

pV = pV + p dV + dpV + dpdV 

which reduces to 
p dV + Vdp = 0 (12.12a) 

since products of differentials are negligible. The momentum equation (Eq. 12.11b) 
becomes 

- dFf + pA-(p + dp)A = m(V + dV) - mV 

which reduces to 
dFf 

L-dp = pVdV (12.12b)| 
A 

after using continuity (m = pAV). The first law of thermodynamics (Eq. 12.1 lcjl 
becomes 

, V2 (V + dV)2 

h + — = (h + dh) + 
2 2 

which reduces to 

dh + d = 0 (12.12c) 

since products of differentials are neg ligible. 
Equations 12.12 are differential equations that we can integrate to develop use-H 

ful relations, but before doing so we need to see how we can relate the friction force! 
Ff to other flow properties. First, we note that 

dFf =TwdAw = TwPdx (12.13) 

where P is the wetted perimeter of the duct. To obtain an expression for T W in termsjj 
of flow variables at each cross section, we assume changes in flow variables with xfl 
are gradual and use correlations developed in Chapter 8 for fully developed, incom-| 
pressible duct flow. For incompressible flow, the local wall shear stress can be writtenfl 
in terms of flow properties and friction factor. From Eqs. 8.16, 8.32, and 8.34 we] 
have, for incompressible flow, 

T ^_RdR = ERdh1 = fpy^ ( 1 2 1 4 ) 

2 dx 2 dx 8 

where / i s the friction factor for pipe flow, given by Eq. 8.36 for laminar flow and 
Eq. 8.37 for turbulent flow, plotted in Fig. 8.12. (We assume that this correlation of 
experimental data also applies to compressible flow. This assumption, when checked 
against experimental data, shows surprisingly good agreement for subsonic flows; 
data for supersonic flow are sparse.) 

Ducts of other than circular shape can be included in our analysis by introducing 
the hydraulic diameter 

Dn = — (8.50) 
" p 
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(Recall the factor of 4 was included in Eq. 8.50 so that Dh would reduce to diameter 
D for circular ducts.) 

Combining Eqs. 8.50, 12.13, and 12.14, we obtain 

dFf = rwPdx = f 
pV2 4A 

8 Du 
dx 

or 

f Dh 2 

Substituting this result into the momentum equation (Eq. 12.12b), we obtain 

(12.15) 

dx-dp = pVdV 
Dh 2 

or, after dividing by p, 

* = -
p Dh 2p p 

Noting that pip = RT = cVk, and V dV = d(V2I2), we obtain 

and finally, 

dp 

P 

dp 

P 

f kM2 k . 
-dx--T-d 

Dh 

f kM2

 J kM2 d(V2) 
- dx =— 

Dh 2 (12.16) 

To relate M and x, we must eliminate dplp and d(V2)/V2 from Eq. 12.16. From 
the definition of Mach number, M = Vic, so V2 = M2c2 = Af2 kRT, and after differ­
entiating this equation and dividing by the original equation, 

d(V2) = dT | d(M2) 

V2 ~ T M2 

From the continuity equation, Eq. 12.12a, dplp = —dVIV and so 

(12.17a) 

dp 

P 

1 d{Vl) 
2 V2 

From the ideal gas equation of state, p = pRT, 

dp _ dp dT 
p p T 

Combining these three equations, we obtain 

dp_ _ 1 dT 1 d(M2) 
p ~ 2 T 2 M2 

Substituting Eqs. 12.17 into Eq. 12.16 gives 

(12.17b) 

1 dT 1 d(M2) 

2 T 2 M2 

f kM2 , kM2 dT kM2 d(M2 

— dx 
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This equation can be simplified to 

r 2 > l + kMz dT 
T 

f kM2 

A , 2 
dx + 

1 - / t M 2 ^ d(M2) 
(12.18) 

We have been successful in reducing the number of variables somewhat 
However, to relate M and x, we must obtain an expression for dT/T in terms of M, 
Such an expression can be obtained most readily from the stagnation temperai 
equation 

^ = 1 + ^ M 2 

r 2 
Since stagnation temperature is constant for Fanno-line flow, 

T\\ + !-M2 ] = constant 

ture 

(11.20b) 

and after differentiating this equation and dividing by the original equation, 

,2 (* - 1) 
dT d(M2) 

1 + ^ M 2 

0 

Substituting for dT/T into Eq. 12.18 yields 

M 2 { k ' l ) 

2 , 2 , d(M2) f 

V ] M2 

I 2 J 

•dx -
[-kM 2 \ d{Ml) 

Ml 

Combining terms, we obtain 

( 1 - M 2 ) d(M2) 

1 + ±M2 kM" 
J _ dx (12.19) 

We have (finally!) obtained a differential equation that relates changes in M with 
x. Now we must integrate the equation to find M as a function of x. 

Integrating Eq. 12.19 between states (T) and (2) would produce a complicated 
function of both Mx and M2. The function would have to be evaluated numerically for 
each new combination of Mx and M2 encountered in a problem. Calculations can be 
simplified considerably using critical conditions (where, by definition, M = 1). All 
Fanno-line flows tend toward M = 1, so integration is between a section where the 
Mach number is M and the section where sonic conditions occur (the critical condi­
tions). Mach number will reach unity when the maximum possible length of duct is 
used, as shown schematically in Fig. 12.13. 

The task is to perform the integration 

( 1 - M Z ) 

M 4 f l + — M 2 

sd(M2) = \ 
1 J ( 

dx 
(12.20) 
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Flow 
i M 5 

Hypothetical 
duct extension 

M = 1 

Fig . 12.13 Coo rd ina tes and nota t ion used for ana lys is of Fanno- l ine f low. 

The left side may be integrated by parts. On the right side, the friction factor,/, may 
vary with x, since Reynolds number will vary along the duct. Note, however, that 
since pV is constant along the duct (from continuity), the variation in Reynolds num­
ber is caused solely by variations in fluid absolute viscosity. 

For a mean friction factor, / , defined over the duct length as 

/ = 
I r̂ Tnax 

^max 0 

fdx 

integration of Eq. 12.20 leads to 

1 - Ml k + 1 , 
+ In 

fcjvT 2k 
(k-f- l)M 

2 1 + • M' 
(12.21a) 

Equation 12.21a gives the maximum fJJD,, corresponding to any initial Mach number. 
Since fLmax/Dh is a function of M, the duct length, L, required for the Mach 

number to change from M, to M2 (as illustrated in Fig. 12.13) may be found from 

Du 
J

 L m a 

Critical conditions are appropriate reference conditions to use in developing 
property ratio flow functions in terms of local Mach number. Thus, for example, 
since T0 is constant, we can write 

Similarly, 

T/T0 

T*/Tn 

k + 1 
2 

1 + ^ M 2 

V_ _ MjkRT 
V* ~ ^kRT* 

= M — 
1 + 1M2 

1/2 

(12.21b) 
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p* p* T* M 

l /2 

i + ^ 1 m 2 

1/2 

( 1 2 . 2 1 C 1 

(12.21dj 

The ratio of local stagnation pressure to the reference stagnation pressure is given b j j 

Po = Po P P* 
P^ P P* P^ 

Po 
Po* 

k-l . ^ k / { l c ~ l ) 1 
= 1 + M 

M 

fc + 1 

i + ^ 1 m : 

1/2 

1 
k +1 

or 

Po ^ 1 
Pg Af 

2 V ^ V 
+ I 

(A + l ) /2 ( i - l ) 
(12.21e 

Equations 12.21 form a complete set for analyzing flow of an ideal gas in a duct wi 
friction, which we usually use instead of (or in addition to) the basic equations^ 
Eqs. 12.11. For convenience we list them together: 

fL^ = 1 - M2

 | k + 1 
Dh kM2 2k 

In 
(* + 1)AT 

2|1 + ^ M 2 

T_ 
fc + 1 

\ + ^ M 2 

2 

fe + 1 V 

i + * ^ a / 2 

1/2 

(12.21a) 

(12.21b' 

(12.21c), 

From continuity, V/V* = p*/p, so 

JL. = E-
V* ~ p 

From the ideal gas equation of state, 
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k + ] 

i 
M 

-1I/2 

P _ 1 2 (12.21d) 
p* M 1 + 

k - \ 
2 

) fc-1 
- i ( * + l ) / 2 ( * - I ) 

P * m L U + i 
1 + (12.21e) 

2 

Equations 12.21, the Fanno-line relations, provide property relations in terms of the lo­
cal Mach number and critical conditions. They are obviously quite algebraically com­
plicated, but unlike Eqs. 12.11 are not coupled. It is a good idea to program them into 
your calculator. They are also fairly easy to define in spreadsheets such as Excel. It is 
important to remember that, as demonstrated in Fig. 11.3, the properties at a state, in 
any flow process, may be related to that state's isentropic stagnation properties 
through use of Eqs. 11.20. Appendix E-2 lists flow functions for property ratios p0lp*, 
TIT*, pip*, pip*, (V*/V), and fE^IDj, in terms of M for Fanno-line flow of an ideal 
gas. A table of values, as well as a plot of these property ratios, is presented for air 
(k = 1.4) for a limited range of Mach numbers. The associated Excel workbook, Fanno-
Eine Relations, can be used to print a larger table of values for air and other ideal gases. 

EXAMPLE 12.7 Frictional Adiabatic Flow in a Constant-Area Channel: 
Solution Using Fanno-Line Flow Functions 

Air flow is induced in a smooth insulated tube of 7.16 mm diameter by a vacuum 
pump. Air is drawn from a room, where p0 = 760 mm Hg (abs) and T0 = 23°C, 
through a smoothly contoured converging nozzle. At section (T), where the nozzle 
joins the constant-area tube, the static pressure is -18.9 mm Hg (gage). At section 
(2), located some distance downstream in the constant-area tube, the static pressure 
is - 4 1 2 mm Hg (gage). The duct walls are smooth; assume the average friction factor, 
/ , is the value at section (J). Determine the length of duct required for choking from 
section (T), the Mach number at section (2), and the duct length, En, between 
sections (T) and (2). Sketch the process on a Ts diagram. 

EXAMPLE PROBLEM 12.7 

GIVEN: Air flow (with friction) in an insulated constant-area tube. 

® 

Gage pressures: p{ = —18.9 mm Hg, and p2 = —412 mm Hg. M 3 = 1.0 
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FIND: (a) L 1 3 . (b) M 2. (c) Ll2. (d) Sketch the Ts diagram. 

SOLUTION: 
Flow in the constant-area tube is frictional and adiabatic, a Fanno-line flow. To find the friction factor, we 
need to know the flow conditions at section (j). If we assume flow in the nozzle is isentropic, local proper­
ties at the nozzle exit may be computed using isentropic relations. Thus 

Solving for MU we obtain 

2 
k - 1 

Po 

Pi 

Po, 

k/'k-l) 

Pl 

1/2 

I 0.4 
760 

760 - 18.9 

0 . 2 8 6 
1/2 

= 0.190 

296 K 

X+'LZIM2 1 +0.2(0.190) 2 

2 1 

= 294 K 

V, = Mfy = MiJkRTy = 0.190 

V, = 65.3 m/s 

1.4 287 N-m 294K k g m 
X X X kg-K 

1/2 

Using the density of mercury at room temperature (23°C), 

Pl = SPHg^i = « S G P H 2 O / I , 

9.81m 13.5 1000 kg (760 - 18.9)10"3 m N s 2 

= X X — 2 - X X m k g m 

px = 98.1 kPa (abs) 

Pi 
_Pj_ _ 9.81 x 10 4 N kg-K 1 

= 1.16kg/mJ 

RTX m z 287N-m 294K 

At T = 294 K (21°C), p. = 1.82 X 10~5 kg/(m • s) from Table A.10, Appendix A. Thus 

_ pxVxL\ _ 1.16 kg ^ 65.3 m x 0.00716m w m - s 
Rex = 

Ml 1.82xl0" 3 kg 
= 2.98 x 10* 

From Eq. 8.37 (turbulent flow), for smooth pipe,/ = 0.0235. 
From Appendix E-2 at M, = 0.190, pip* = 5.745 (Eq. 12.21d), and fL^/D, = 16.38 (Eq. 12.21a). 

Thus, assuming / = / i , 

^ 1 3 _ ( A m a x ) l ^ L = 16.38 x 0 ° ° 7 1 6 m ^ 4.99m 
0.0235 <-

Since p* is constant for all states on the same Fanno line, conditions at section © can be determined from 
the pressure ratio, (p/p*)2. Thus 

/ _ > _ Pl _ Pl P\ _ Pi ( „ ^ 

{P*)2 P* Pi P* Pi {P*)x 1760-18 .9 
/760 - 412 

5.745 = 2.698 
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where we used Eq. 12.21d to obtain the value of pip* at section (D- For pip* = 2.698 at section (2), Eq. 
12.2Id yields M2 = 0.400 (after obtaining an initial guess value from the plot in Appendix E-2, and iterating). 

M2 = 0.400 

The Ts diagram for this flow is 

At M2 = 0.400, fLnJD), = 2.309 (Eq. 12.21a, Appendix E-2). Thus 

Dh 0.00716 m 
^23 - ( ^max )2 

/^nax I = 2 3 0 9 x - = o.704 m 
0.0235 

Finally, 

L L 2 = L, 3 - L 2 3 = (4.99 - 0.704) m = 4.29 m 

Mo 

This problem illustrates use of the Fanno-line equations, Eqs. 
12.21. 

/ These equations give the same results as the basic equa­
tions, Eqs. 12.11, as can be seen by comparing, for exam­
ple, the value of M2 obtained in this Example Problem and 
in Example Problem 12.6. 

/ The computations can be quite laborious without using 
preprogrammed Fanno-line relations! 

The Excel workbook for this Example Problem is con-
venient for perforating the calculations, either using the 
Fanno-line relations or the basic equations. 

Isothermal Flow (CD-ROM) 

12-4 FRICTIONLESS FLOW IN A CONSTANT-AREA DUCT 
W I T H HEAT EXCHANGE 

To explore the effects of heat exchange on a compressible flow, we apply the basic 
equations to steady, one-dimensional, frictionless flow of an ideal gas with constant 
specific heats through the finite control volume shown in Fig. 12.14. 

As in Section 12-2 (effects of area variation only) and Section 12-3 (effects of fric­
tion only), our starting point in analyzing frictionless flows with heat exchange is the 
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F ig . 12.14 Cont ro l v o l u m e used for integral ana ly­
sis of f r ic t ion less f low wi th heat exchange . 

set of basic equations (Eqs. 12.1), describing one-dimensional motion that is affected 
by several phenomena: area change, friction, heat transfer, and normal shocks. These are 

p\VxAY = p2V2A2 ~ PVA ~ ™ ~ constant (12.1a) 

Rx + pxA] - p2A2 = mV2 - mVj (12.1b) 

8Q , — + hy + 
dm 

Vi 
n 2 

m(s2 -sy)> [ 
1_ 

cs T 
dA 

p = pRT 

Ah = h2-hy = cpAT = cp(T2-Ty) 

AS = S2 - Sy C p l n ^ - / ? l n ^ 
P T 

(12.1c) 

(12.1d) 

(12.1e) 

(12.1f) 

(12.1g) 
M Pi 

We recall that Eq. 12.1a is continuity, Eq. 12.1b is a momentum equation, Eq. 12.1c is an 
energy equation, Eq. 12. Id is the second law of thermodynamics, and Eqs. 12. le, 12. If, 
and 12.1g are useful property relations for an ideal gas with constant specific heats. 

Basic Equations for Flow with Heat Exchange 

We simplify Eqs. 12.1 using the facts that A, = A 2 = A and that Rx = 0. In addition 
we have the relation hQ = h + V 2 /2. Equations 12.1 become for this flow 

PiVi =P2V2=PVA = G m - constant 

PyA - p2A = mV2 - mVy 

8Q 
dm 

m(s2 - 5,) > f — 
w 1 JCS T 

UQ dA 
Jcs T \ A 

p = pRT 

Ah = h2-hy = cpAT = cp(T2-Ty) 

As C l n ^ R\n^ 
'i P\ 

(12.30a) 

(12.30b) 

(12.30c) 

(12.30d) 

(12.30e) 

(12.30f) 

(12.30g) 
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Note that Eq. 12.30c indicates that the heat exchange changes the total (kinetic plus 
internal) energy of the flow. Equation 12.30d is not very useful here. The inequality 
or equality may apply, depending on the nature of the heat exchange, but in any event 
we should not conclude that in this flow the entropy necessarily increases. For exam­
ple, for a gradual cooling it will decrease! 

Equations 12.30 can be used to analyze frictionless flow in a channel of constant 
area with heat exchange. For example, if we know conditions at section CD (i.e., pt, 
Pi, Tu su hu and V{) we can use these equations to find conditions at some new 
section (2) after the fluid has experienced a total heat exchange SQ/dm. For a given 
heat exchange, we have six equations (not including the constraint of Eq. 12.30d) and 
six unknowns (p2> Pi, T2, s2, h2, and V2). It is the effect of heat exchange that causes 
fluid properties to change along the duct. In practice, as we have seen for other flows, 
this procedure is unwieldy—we again have a set of nonlinear coupled algebraic equa­
tions to solve. We will use Eqs. 12.30 in Example Problem 12.8. We will also develop 
some Mach number-based relations to supplement or replace the basic equations, and 
show how to use these in Example Problem 12.9. 

The Rayleigh Line 

If we use Eqs. 12.30 to compute property values as a given flow proceeds with a pre­
scribed heat exchange rate, we obtain a curve shown qualitatively in the Ts plane in 
Fig. 12.15. The locus of all possible downstream states is called the Rayleigh line. 
The calculations show some interesting features of Rayleigh-line flow. At the point of 
maximum temperature (point a of Fig. 12.15), the Mach number for an ideal gas is 
\l4k. At the point of maximum entropy (point b of Fig. 12.15), M = 1. On the upper 
branch of the curve, Mach number is always less than unity, and it increases monoto-
nically as we proceed to the right along the curve. At every point on the lower portion 
of the curve, Mach number is greater than unity, and it decreases monotonically as 
we move to the right along the curve. Regardless of the initial Mach number, with 
heat addition the flow state proceeds to the right, and with heat rejection the flow 
state proceeds to the left along the Rayleigh line. 

Fig. 12.15 Schema t i c Ts d iag ram for 
f r ic t ion less f low in a cons tan t -a rea duct wi th 
heat e x c h a n g e (Ray le igh- l ine f low) . 
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For any initial state in a Rayleigh-line flow, any other point on the Rayleigh line 
represents a mathematically possible downstream state. Although the Rayleigh line rep­
resents all mathematically possible states, are they all physically attainable downstream 
states? A moment's reflection will indicate that they are. Since we are considering a flow 
with heat exchange, the second law (Eq. 12.30d) does not impose any restrictions on the 
sign of the entropy change. 

The effects of heat exchange on properties in steady, frictionless, compressible 
flow of an ideal gas are summarized in Table 12.2; the basis of each indicated trend is 
discussed in the next few paragraphs. 

The direction of entropy change is always determined by the heat exchange; 
entropy increases with heating and decreases with cooling. Similarly, the first law, 
Eq. 12.30c, shows that heating increases the stagnation enthalpy and cooling der 
creases it; since Ah0 = cpAT0, the effect on stagnation temperature is the same. 

The effect of heating and cooling on temperature may be deduced from the shap6 
of the Rayleigh line in Fig. 12.15. We see that except for the region \/-Jk < M < 1 
(for air, \l4k ** 0.85), heating causes T to increase, and cooling causes T t o decrease. 
However, we also see the unexpected result that for \I-Jk. < M < 1, heat addition 
causes the stream temperature to decrease, and heat rejection causes the stream tem­
perature to increase! 

Table 12.2 Summary of Effects of Heat Exchange on Fluid Properties 

Heating Cooling 

Property M < 1 M> 1 M< 1 M> 1 Obtained from: 

Entropy, i Increase Increase Decrease Decrease T ds equation 
Stagnation Increase Increase Decrease Decrease First law, and 

temperature, T0 Ah0 = c„ AT0 

Temperature, 7 H t ) 
Increase Increase Decrease Decrease Shape of 

Rayleigh line 1 

Decrease Increase 
Mach number, M Increase Decrease Decrease Increase Trend on 

Rayleigh line 
Pressure,p Decrease Increase Increase Decrease Trend on 

Rayleigh line ' 
Velocity, V Increase Decrease Decrease Increase Momentum 

equation. 
and effect on p\ 

Density, p Decrease Increase Increase Decrease Continuity 
equation, 
and effect on V 

Stagnation Decrease Decrease Increase Increase Fig. 12.16 
pressure, pn 

file:///I-Jk
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(a) Subsonic flow (b) Supersonic flow 

F ig . 12.16 Reduc t i on in s tagna t ion p ressure due to heat add i t ion for two f low cases . 

For subsonic flow, the Mach number increases monotonically with heating, until 
Ai = 1 is reached. For given inlet conditions, all possible downstream states lie on a 
single Rayleigh line. Therefore, the point M = 1 determines the maximum possible 
heat addition without choking. If the flow is initially supersonic, heating will reduce 
the Mach number. Again, the maximum possible heat addition without choking is 
that which reduces the Mach number to M = 1.0. 

The effect of heat exchange on static pressure is obtained from the shapes of the 
Rayleigh line and of constant-pressure lines on the Ts plane (see Fig. 12.16). For 
M < 1, pressure falls with heating, and for M > 1, pressure increases, as shown by 
the shapes of the constant-pressure lines. Once the pressure variation has been found, 
the effect on velocity may be found from the momentum equation, 

PiA - p2A = mV2 - mVx (12.30b) 

or 

= constant 

Thus, since ml A is a positive constant, trends in p and V must be opposite. From the 
continuity equation, Eq. 12.30a, the trend in p is opposite to that in V. 

Local isentropic stagnation pressure always decreases with heating. This is illus­
trated schematically in Fig. 12.16. A reduction in stagnation pressure has obvious 
practical implications for heating processes, such as combustion chambers. Adding 
the same amount of energy per unit mass (same change in T 0) causes a larger change 
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in p0 for supersonic flow; because heating occurs at a lower temperature in super* 
sonic flow, the entropy increase is larger. -j 

EXAMPLE 12.8 Frictionless Flow in a Constant-Area Duct with Heat Addition 

Air flows with negligible friction through a duct of area A = 0.25 ft2. At section ®, j 
flow properties are 7\ = 600°R, p{ — 20 psia, and V, = 360 ft/s. At section (2)^ 
p2 = 10 psia. The flow is heated between sections (T) and (2). Determine the properties! 
at section (2), the energy added, and the entropy change. Finally, plot the process on. 
a Ts diagram. 

EXAMPLE PROBLEM 12.8 

GIVEN: Frictionless flow of air in duct shown: 
T, = 600°R 
Pi = 20 psia p2 = 10 psia 
V, = 360 ft/s Ai = A2 = A = 0.25 ft2 

FIND: (a) Properties at section (2). 
(b) SQIdm. 
(c) S2-Si. 

(d) Ts diagram. 

SOLUTION: 

The momentum equation (Eq. 12.30b) is 

Pi A - p2A = mV2 - mVj 

or 
Pv -Pi = T < V 2 - H) = P 1 V / i (V 2 - V t ) A 

Solving for V2 gives 

(12.30b) 

For an ideal gas, Eq. 12.30e, 

V 2 = ^ + Vi 

P\vi 

p, 20 lbf 144 in. 2 lbm-°R 1 . m , „ , ,_ 3 

RT in. 2 ft 2 53.3 ft-lbf 600° R 
p, = = —y x -^-x x £ n n o r i = 0.0901 lbm/ft 

_ (20 - 10) lbf ^ 144 in. 2 ^ ft3 s ^ 32.2 lbm ^ slug-ft | 360 ft 
2 ~ in. 2 ft 2 0.0901 lbm X 360 ft slug lbf s 2 s 

V2 = 1790 ft/s 

From continuity, Eq. 12.30a, G = px V, = s 0 

VL 0.0901 lbm ( 360 > n n i o l l u , f t 3 

p 7 = p, -L. = = 0.0181 lbm/ftJ p , 
2 1 V2 ft 3 U790J < — 
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Solving for T2, we obtain 

p2 _ 10 Ibf 144 in. 2 ft J 

p2R 
: l b m ° R . = 1490°R 

in. ft 2 0.0181 Ibm 53.3 ft Ibf 

The local isentropic stagnation temperature is given by 11.20b, 

c2 = JkRT2 = 1890 ft/s; M2 = ^ = = 
1890 

T0 = 1490°R[1 + 0.2(0.947)2] = 1760°R <-

and 

, T x i t / O t - l ) 
' n . 

P02 = Pl 
\ T 1 J 

. (1760^ 3.5 

= 10 psia^j^^-J =17.9 psia. 

The heat addition is obtained from the energy equation (Eq. 12.30c), 

1 2 n 2 
2 ^ 

or 

SQ 
dm 

2 = ^ - ^ = ^ ( ^ - 7 0 , ) 

= v - \ 

We already obtained 7Q . For 7Q we have 

T, = 7i 1 + 
fc-1 

c, = JkRT = 1200 ft/s; M, = — = = 0.3 
1 ^ 1 1 q 1200 

7 0 i = 600°R[1 + 0.2(0.3)2] = 611°R 

SQ 0.240 Btu dm 
(1760- 611)°R = 276 Btu/lbm 

Ibm °R <-

For the change in entropy (Eq 12.30g), 

As = s2 - s, = c . l n - ^ - - flln-^2- = c „ l n ^ - - (c„ - c j l n ^ 2 -
" 7j p, > 7, P l 

Then 

0.240 Btu 
s7 - = x In 

1 l b m ° R 1.600 
s2-s{ = 0.266 Btu/(lbm • °R) 

f 1490^1 (0.240 - 0.171) Btu 

(12.30c) 

SQIdm 

Ibm °R 
x In 

(12.30g) 

,2o) 
S2 -

The process follows a Rayleigh line: 
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To complete our analysis, let us examine the change in p0 by comparing pn2 with Po,. 

\ 3 . 5 

* 0 , o n 
Po, = Pi 

= 20.0 psia ^ | ^ | 
,600j Po, 

Comparing, we see that p 0 j is less than p 0 j . 

This problem illustrates the use of the basic equations, Eqs. 
12.30, for analyzing frictionless flow of an ideal gas in a duct 
with heat exchange. 
0fff The Excel workbook for this Example Problem is con­

venient for performing the calculations. 

Rayleigh-Line Flow Functions for One-Dimensional Flow of an Ideal Gas 

Equations 12.30 are the basic equations for Rayleigh-line flow between two arbitral! 
states (J) and (2) in the flow. To reduce labor in solving problems, it is convenient bjj 
derive flow functions for property ratios in terms of local Mach number as we did foij 
Fanno-line flow. The reference state is again taken as the critical condition whenjl 
M = 1 ; properties at the critical condition are denoted by (*). 

Dimensionless properties (such as pip* and TIT*) may be obtained by writing, 
the basic equations between a point in the flow where properties are M, T, p, etc., andi 
the critical state (M = 1, with properties denoted as 7*, p*, etc.). 

Eq, 

or 

The pressure 
12.30b, 

ratio, pip*, may be obtained from the momentum equation, 

pA - p*A - mV* - mV 

p + pV2 = p*+ p*V*2 

Substituting p = p/RT, and factoring out pressures yields 

v*2 

1 + — = p* 1 + 
RT 

= p* 
RT* 
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Noting that V2/RT = k^lkRT) = kM2, we find 
,2 

and finally, 

p[\ + kM ] = p*[l + k] 

p \ + k 

p* 1 + kM2 

From the ideal gas equation of state, 

T _ p p* 

T* p* p 

From the continuity equation, Eq. 12.30a, 

„* y . . c T 
£- = = M— = M 

(12.31a) 

Then, substituting for p*/p, we obtain 

T = P-m\1-

— M 

2 

'4 
.P* , \ \ + kM2)_ 

T* p * \ T* 

Squaring and substituting from Eq. 12.31a gives 

r 
•p* 

From continuity, using Eq. 12.31b, 

p * _ V_ _ M2(\+k) 

p ~ V* " 1 + kM2 

The dimensionless stagnation temperature, T0/T^, can be determined from 

r 0 _ t 0 t t* 

(12.31b) 

(12.31c) 

T T* TQ 

i + ^ 1 m 2 M 
\ + k 

1 + kM2 

- i 2 
1 

i l l 
2 

2(k + ])M2\ 1 + 
k - 1 

Ml 

(\ + kM2)2 

(12.31d) 

Similarly, 

Po _ Po P P 

Po P P* Po 

1 + ^ - M 2 
1 + * 

1+kM'Jfk+l 

1 

Po_ = 

* 
Po 

1 + * 

1 + kMz k + 1 
i + ^ M 2 

2 
kl{k-\) 

kl(k-\) 

(12.31e) 
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For convenience we collect together the equations: 

10. 
* 

p \ + k 

p* ~ 1 + kM2 

l + k T_ 
M 

1 + faVT 
2, * _ V_ _ A r ( l +k) 

j _ V* _ 1 + kM2 

)M2\ l + ^ y - M 2 

(l + kM2) 

( 1 2 . 3 1 a l 
(12.31b! 

(12.31c! 

(12.31di 

PQ. 
Po 

\ + k 

\ + kM' 

klk-l 

k + ] 
1 + ^ M 2 (12 .31e | 

Equations 12.31, the Rayleigh-line relations, provide property ratios in terms of thel; 
local Mach number and critical conditions. They are obviously complicated, but can 
be programmed into your calculator. They are also fairly easy to define in spread-! 
sheets such as Excel. In Example Problem 12.9 we will explore their use. Appendix! 
E-3 lists flow functions for property ratios TD/T*, p0/p*, TIT*, pip*, and p*lp (V7V*)J 
in terms of M for Rayleigh-line flow of an ideal gas. A table of values, as well as a 
plot of these property ratios, is presented for air (k = 1.4) for a limited range ofj 
Mach numbers. The associated Excel workbook, Rayleigh-Line Relations, can be 
used to print a larger table of values for air and other ideal gases. 

EXAMPLE 12.9 Frictionless Flow in a Constant-Area Duct with Heat Addition: 
Solution Using Rayleigh-Line Flow Functions 

Air flows with negligible friction in a constant-area duct. At section CD, properties'! 
are Tx = 60°C, px = 135 kPa (abs), and V, = 732 m/s. Heat is added between section 
(D and section © , where M2 - 1.2. Determine the properties at section (2), then 
heat exchange per unit mass, and the entropy change, and sketch the process on a Ts' 
diagram. 

EXAMPLE PROBLEM 12.9 

GIVEN: Frictionless flow of air as shown: 
7, = 333 K M 2 = 1.2 
p x = 135 kPa(abs) 
V, = 732 m/s 

FIND: (a) Properties at section © . 
(b) SQIdm. 
(c) s2 - sh 

(d) Ts diagram. 

c . 

Flow i i 
L J 

/ 1 

dm 
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SOLUTION: 
To obtain property ratios, we need both Mach numbers. 

c, = jlcRTy = 
1.4 287 N-m 333K k g m 

X X X 

„ V. 732 m s 
Afj = — = — x 

Ci s 366 m 

kg-K 

2.00 

N - s z 

1/2 
= 366 m/s 

From the Rayleigh-line flow functions of Appendix E-3 we find the following: 

M Po/P* TIT* pip* VIV* 

2.00 
1.20 

0.7934 
0.9787 

1.503 
1.019 

0.5289 
0.9119 

0.3636 
0.7958 

1.455 
1.146 

Using these data and recognizing that critical properties are constant, we obtain 

= 1.72; T2 = 1.727] = (1.72)333 K = 573 K 
i 

= 2.19; p2 = 2.19/?! = (2.19)135 kPa 

T2 
T2/T* 0.9119 

7i TylT* 0.5289 

£ 2 . = 
p2/p* 0.7958 

Pl Pi'P* 0.3636 

v 2 . V 2 I V * . 1.146 

v. V,IV* 1.455 

p2 = 296 kPa (abs) ^ p^ 

0.788; V2 = 0.788V, = (0.788)732 m/s 

\ = 577 m/s 

p 2 2.96 x l 0 5 N kg-K I , , 3 

o2=J-J^= x — 2 x = 1.80kg/m p 2 

/?7 2 m 2 287N-m 573 K < — 
The heat addition may be determined from the energy equation, Eq. 12.30c, which reduces to (see Example 
Problem 12.8) 

^ = K ~ \ = C / > ( 7 ° 2 - V 

From the isentropic-stagnation functions (Eq. 11.20b) at M = 2.0, 

L = JL = 0.5556; 7 0 = - 5 — = - ^ I L = 599 K 
7 0 7 0 °' 0.5556 0.5556 

and at M = 1.2, 

Substituting gives 

L = JL = 0.7764; 7 0 = = i Z U ^ = 738 K 7^ 
7 0 7 0 " 2 0.7764 0.7764 < ~ 

SG _ r T _ , 1.00 kJ -^- = c p (7o 2 - 7 0 i ) = 1 - U U

T - — - x (738 - 599) K = 139 kJ/kg Sg/dw 
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For the change in entropy (Eq. 12.30g) 
T, „. p2 

Pi 

1.00 kJ , f 573^ 287 N m , 
x In - x In 

kg-K 1 3 3 3 J kg-K 

r 2 . 9 6 x l 0 5 ^ 
1.35 x l O 5 

kJ 
lOOONm 

s2-s}= 0.317 kJ/(kg-K) 

Finally, check the effect on p 0 . From the isentropic-stagnation function (Eq. 11.20a), at M = 2.0, 

— = = 0.1278; 
Po Po, 

Po, = 
135 kPa 

0.1278 0.1278 
Pi 1.06 MPa (abs) 

and at M = 1.2, 

- L = -£2- = 0.4124; 
Po Po, 

Po, 
296 kPa 

0.4124 0.4124 
P2 = 718kPa(abs) P02 

Thus, PQ2 < PQ1, as expected for a heating process. 

The process follows the supersonic branch of a Rayleigh line: 

This problem illustrates the use of the Rayleigh-line equa­
tions, Eqs. 12.31, for analyzing frictionless flow of an ideal 
gas in a duct with heat exchange. 

The Excel workbook for this Example Problem is con­
venient for performing the calculations. 
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12-5 NORMAL SHOCKS 

We have previously mentioned normal shocks in the section on nozzle flow. In 
practice, these irreversible discontinuities can occur in any supersonic flow field, in 
either internal flow or external flow.1 Knowledge of property changes across shocks 
and of shock behavior is important in understanding the design of supersonic 
diffusers, e.g., for inlets on high performance aircraft, and supersonic wind tunnels. 
Accordingly, the purpose of this section is to analyze the normal shock process. 

Before applying the basic equations to normal shocks, it is important to form a 
clear physical picture of the shock itself. Although it is physically impossible to have 
discontinuities in fluid properties, the normal shock is nearly discontinuous. The thick­
ness of a shock is about 0.2 jxm (10~ 5 in.), or roughly 4 times the mean free path of the 
gas molecules [3]. Large changes in pressure, temperature, and other properties occur 
across this small distance. Local fluid decelerations reach tens of millions of gs! These 
considerations justify treating the normal shock as an abrupt discontinuity; we are inter­
ested in changes occurring across the shock rather than in the details of its structure. 

Consider the short control volume surrounding a normal shock standing in a 
passage of arbitrary shape shown in Fig. 12.17. You may be exhausted by this proce­
dure by now, but as for isentropic flow with area variation (Section 12-2), frictional 
flow (Section 12-3), and flow with heat exchange (Section 12-4), our starting point in 
analyzing this normal shock is the set of basic equations (Eqs. 12.1), describing one-
dimensional motion that may be affected by several phenomena: area change, fric­
tion, and heat transfer. These are 

p,V|A] = P2V2A2 = pVA = m = constant 

Rx + p A , — p2A2 = wV2

 — nW\ 

(12.1a) 

(12.1b) 

(12.1c) 

(12.1d) 

Ah = h2 h 

p = PRT 

= cpAT=cp{T2-Tx) 

(12.1e) 

(12.1f) 

X 

Fig. 12.17 Cont ro l v o l u m e used for analys is 
of n o r m a l s h o c k . 

' The NCFMF video Channel Flow of a Compressible Fluid shows several examples of shock formation 
in internal flow. 
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As = s2 -sy = c p I n - I n ( 1 2 . 1 g ) 
h Pi 

We recall that Equation 12.1a is continuity, Eq. 12.1b is a momentum equation, 
Eq. 12.1c is an energy equation, Eq. 12. Id is the second law of thermodynamics, and! 
Eqs. 12.le, 12.1 f, and 12.lg are useful property relations for an ideal gas with con­
stant specific heats. 

We must simplify these equations for flow through a normal shock. 

Basic Equations for a Normal Shock 

We can now simplify Eqs. 12.1 for flow of an ideal gas with constant specific heats j 
through a normal shock. The most important simplifying feature is that the width of; 
the control volume is infinitesimal (in reality about 0.2 p m as we indicated), so A, » j 
A2 ~ A, the force due to the walls Rx ~ 0 (because the control volume wall surface! 
area is infinitesimal), and the heat exchange with the walls 8Q/dm = 0, for the same i 
reason. Hence, for this flow our equations become 

PiVj = p2V2 = — = constant (12.32a) 
A 

or, using Eq. 12.32a, 

p{A - p2A = mV2 - mVj 

P{+P\V2 = p2+p2V2

2 (12.32b): 

V2 V2 

\ =hi+^ = h2+-f = hf>2 (12.32c) 

s2 > sx (12.32d)j 

p = pRT (12.32e) 

Ah = h2-h,= cpAT = cp(T2 - 7,) (12.320 

^-Rln^2-
T[ P\ 

As = s 2 - sx = cp\n^- - Rln— (12.32g)[ 

Equations 12.32 can be used to analyze flow through a normal shock. For example, if [ 
we know conditions before the shock, at section (T) , (i.e., p , , p , , Th su hv, and V,), j 
we can use these equations to find conditions after the shock, at section (2). We have \ 
six equations (not including the constraint of Eq. 12.32d) and six unknowns ( p 2 , p2, i 
T2, s2, h2, and V 2). Hence, for given upstream conditions there is a single unique' 
downstream state. In practice this procedure is unwieldy—as we have seen in earlier : 

sections, we have a set of nonlinear coupled algebraic equations to solve. 
We can certainly use these equations for analyzing normal shocks, but we will 

usually find it more useful to develop normal shock functions based on M,, the up­
stream Mach number. Before doing this, let us consider the set of equations. We have 
repeatedly stated in this chapter that changes in a one-dimensional flow can be caused 
by area variation, friction, or heat transfer, but in deriving Eqs. 12.32 we have elimi­
nated all three causes! In this case, then, what is causing the flow to change? Perhaps 
there are no changes through a normal shock! Indeed, if we examine each of these 



12-5 NOHMAL SHOCKS 671 

equations we see that each one is satisfied—has a possible "solution"—if all properties 
at location (2) are equal to the corresponding properties at location (T) (e.g., p 2 = p { , 
T2 = Ti) except for Eq. 12.32d, which expresses the second law of thermodynamics. Na­
ture is telling us that in the absence of area change, friction, and heat transfer, flow prop­
erties will not change except in a very abrupt, irreversible manner, for which the entropy 
increases. In fact, all properties except T0 do change through the shock. We must find a 
solution in which all of Eqs. 12.32 are satisfied. (Incidentally, because all the equations 
except Eq. 12.32d are satisfied by p 2 = p y , T2 = Th and so on, numerical searching 
methods such as Excel's Solver have some difficulty in finding the correct solution!) 

Further insight into the equations governing a normal shock, Eqs. 12.32, can be had 
by recalling our discussion of Fanno-line (friction) and Rayleigh-line (heat exchange) 
curves. Since all conditions at state (T) are known, we can locate state (T) on a Ts 
diagram. If we were to draw a Fanno-line curve through state (T) , we would have a lo­
cus of mathematical states that satisfy Eqs. 12.32a and 12.32c through 12.32g. (The 
Fanno-line does not satisfy Eq. 12.32b, which assumes no friction force.) Drawing a 
Rayleigh-line curve through state ( T ) gives a locus of mathematical states that satisfy 
Eqs. 12.32a, 12.32b, and 12.32d through 12.32g. (The Rayleigh-line does not satisfy 
Eq. 12.32c, which assumes no heat exchange.) These curves are shown in Fig. 12.18. 

The normal shock must satisfy all seven of Eqs. 12.32a through 12.32g. Conse­
quently, for a given state (T), the end state (state (2)) of the normal shock must lie on 
both the Fanno line and the Rayleigh line passing through state (T) . Hence, the inter­
section of the two lines at state (2) represents conditions downstream from the shock, 
corresponding to upstream conditions at state (T) . In Fig. 12.18, flow through the 
shock has been indicated as occurring from state (T) to state (2). This is the only 
possible direction of the shock process, as dictated by the second law (s2 > 5,). 

From Fig. 12.18 we note also that flow through a normal shock involves a 
change from supersonic to subsonic speeds. Normal shocks can occur only in flow 
that is initially supersonic. 

Fig . 12.18 In tersect ion of Fanno line and Rayle igh 
l ine as a so lu t ion of the no rma l - shock equat ions . 



CHAPTER 12 / COMPRESSIBLE FLOW 

F ig . 12.19 Schema t i c of no rma l - shock p rocess on the Ts p lane. 

As an aid in summarizing the effects of a normal shock on the flow properties, a 
schematic of the normal-shock process is illustrated on the Ts plane of Fig. 12.19. 
This figure, together with the governing basic equations, is the basis for Table 12.3. 
You should follow through the logic indicated in the table. 

Note the parallel between normal shocks (Table 12.3) and supersonic flow with 
friction (Table 12.1). Both represent irreversible processes in supersonic flow, and all 
properties change in the same directions. 

Normal-Shock Flow Functions for One-Dimensional Flow of an Ideal Gas 

We have mentioned that the basic equations, Eqs. 12.32, can be used to analyze flows 
that experience a normal shock. As in previous flows, it is often more convenient 
to use Mach number-based equations, in this case based on the incoming Mach 
number, Mx. This involves three steps: First, we obtain property ratios (e.g., T2/Tx and 
p2lpx) in terms of Mx and M2, then we develop a relation between Mx and M2, and 
finally, we use this relation to obtain expressions for property ratios in terms of up­
stream Mach number, Mx. 

Table 12.3 Summary of Property Changes across a Normal Shock 

Property Effect Obtained from: 

Stagnation temperature, T0 Constant Energy equation 
Entropy, s Increase Second law 
Stagnation pressure, p 0 Decrease 75 diagram 
Temperature, T Increase 75 diagram 
Velocity, V Decrease Energy equation, and effect on T 
Density, p Increase Continuity equation, and effect on V 
Pressure, p Increase Momentum equation, and effect on V 
Mach number, M Decrease M = V/c, and effects on V and T 
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The temperature ratio can be expressed as 

T2 

Since stagnation temperature is constant across the shock, we have 

2 1 

A velocity ratio may be obtained by using 

V2 _ M2c2 _ M2 ^kRT2 

or 

M2 

Vy ~ MyCy _ My JkRTy _ My 

l l / 2 

V, 
A*2 

Mi 
1 + 

k - l 
•Mi 

A ratio of densities may be obtained from the continuity equation 

P\V\ = P2V2 

so that 

P2 _ Vy _ My M, 

Pi Mo 

1 + k - 1 -11/2 
Ml 

1 + 
* - 1 Mi 

Finally, we have the momentum equation, 

Pi +P\V\ = P2 +P2V2 

Substituting p = pIRT, and factoring out pressures, gives 

Pi 1 + 
RT 

Pi 1 + 

Since 

then 

Finally, 

V V 
— = k = kM 
RT kRT 

p,[l + kM2j = p 2 [ l + kM. 

1 + kM Pi 
Py 1 + kM{ 

(12.33) 

(12.32a) 

(12.34) 

(12.32b) 

(12.35) 

To solve for M2 in terms of My, we must obtain another expression for one of the 
property ratios given by Eqs. 12.33 through 12.35. 
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From the ideal gas equation of state, the temperature ratio may be written as 

Zl = P2fP2R

 = P2P± 
T\ P\IP\R Pi P2 

Substituting from Eqs. 12.34 and 12.35 yields 

T, 2_ _ 1 + kM 1 + 
k - \ 

M 

• k ~ 1 IM2 

1 + Mk 
2 2 

1/2 

(12.36) 

Equations 12.33 and 12.36 are two equations for T2ITy. We can combine them and 
solve for M2 in terms of My Combining and canceling gives 

1 + k - l Mi 

l + ^ M ? 

1 /2 

M2 
Mi 

\ + kM 

1 + kM{ 

Squaring, we obtain 

[ + k—lM2 

I + k-l Mk M\ 

\+2kM\ +k2M\ 

1 + 2kM\ + k2M\ 

which may be solved explicitly for M\. Two solutions are obtained: 

and 

M\ = M\ 

M 2

+ ^ -
Ml=-2F 

k-l 
M\ - 1 

(12.37a) 

(12.37b) 

Obviously, the first of these is trivial. The second expresses the unique dependence of 
M2 on Mv 

Now, having a relationship between M2 and My, we can solve for property ratios 
across a shock. Knowing Mu we obtain M2 from Eq. 12.37b; the property ratios can 
be determined subsequently from Eqs. 12.33 through 12.35. 

Since the stagnation temperature remains constant, the stagnation temperature 
ratio across the shock is unity. The ratio of stagnation pressures is evaluated as 

P o 2 = E^RL-PL- = El 

PO, P2 Pi PO, Pi 

l + ^ ± M 2 

2 2 

kl(k-l) 

1 + 

(12.38) 

Combining Eqs. 12.35 and 12.37b, we obtain (after considerable algebra) 

p2 \+kM2 2k 0 k - \ 
— - - - M r 
P\ 1 + kMk k + l fc + 1 

(12.39) 
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Using Eqs. 12.37b and 12.39, we find that Eq. 12.38 becomes 

Po 2 

Po, 

k + l -\k/(k-\) 
M 

1 + * ^ M 2 

2 1 

k + l 1 

k - 1 
k + l 

(12.40) 

After substituting for M\ from Eq.12.37b into Eqs. 12.33 and 12.34, we summarize 
the set of Mach number-based equations (renumbered for convenience) for use with 
an ideal gas passing through a normal shock: 

M\ + 
Mi k - 1 

2k 
k - 1 

M\ - 1 
(12.41a) 

Po2 

Po, 

1 + ^ M 2 

i + 

2k 

k + \ 

J t - 1 

Jk — 1 
A: + 1 

M f AM 
fc - 1 

' I 

ifc + 1 
M 

(12.41b) 

(12.41c) 

Pi 
P\ 

2 k . M l - k - 1 

k + 1 k + l 
(12.41d) 

El 
Pi 

2 L 
1 + 

1 
M 

(12.41e) 

Equations 12.41, while quite complex algebraically, provide explicit property relations 
in terms of the incoming Mach number, Af,. They are so useful that some calculators 
have some of them built in (e.g., the HP 48G series [1]); it is a good idea to program 
them if your calculator does not already have them. There are also interactive web 
sites that make them available (see, e.g., [2]), and they are fairly easy to define in 
spreadsheets such as Excel. Appendix E-4 lists flow functions for M2 and property ra­
tios Po2/Pat, T2ITU p2lpu and pjp, (VJV2) in terms of M, for normal-shock flow of 
an ideal gas. A table of values, as well as a plot of these property ratios, is presented 
for air (k = 1.4) for a limited range of Mach numbers. The associated Excel work­
book, Normal-Shock Relations, can be used to print a larger table of values for air 
and other ideal gases. 

A problem involving a normal shock is solved in Example Problem 12.10. 

http://Eq.12.37b
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EXAMPLE 12.10 Normal Shock in a Duct 

A normal shock stands in a duct. The fluid is air, which may be considered an ideal 
gas. Properties upstream from the shock are T, = 5°C, p, = 65.0 kPa (abs), and 
V\ = 668 m/s. Determine properties downstream and s2 — sx. Sketch the process on a 
Ts diagram. 

EXAMPLE PROBLEM 12.10 

GIVEN: Normal shock in a duct as shown: 

7", = 5°C 
p, = 65.0 kPa (abs) 
V, = 668 m/s 

FIND", (a) Properties at section © . 
(b) s2 - J | . 

(c) Ts diagram. 

SOLUTION: 
First compute the remaining properties at section (D. For an ideal gas, 

Pi 
p, _ 6.5xlO 4 N kg-K ^ 1 

RT, 
- 0.815 kg/m J 

m 2 287N-m 278K 

c, = JkRT\ = 
1.4 287 N m 278K kg-m 

X X x 

1/2 

kg K N-s" 
= 334 m/s 

Then 

M, = — = 668 
ci 334 

= 2.00, and (using isentropic stagnation relations, Eqs. 11.20b and 11.20a) 

\ = t\U + ^Y-m2\ j = 278 K[l +0.2(2.0) 2] = 500 K 

Po, = Pi 1 + 
k - \ 

Mi 
kl(k-l) 

65.0kPa[l + 0.2(2.0) 2] 3 ' 5 = 509 kPa(abs) 

From the normal-shock flow functions, Eqs. 12.41, at M{ = 2.0, 

M2 Po 2 /Po, T2/Ti PllP\ 

2.00 0.5774 0.7209 1.687 4.500 0.3750 

From these data 

T2 = 1.687T, = (1.687)278 K = 469 K^_ 

p2 = 4.500p, = (4.500)65.0 kPa = 293 kPa (abs) ^ 

V2 = 0.3750V1 = (0.3750)668 m/s = 251 m/s 

Pi 
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For an ideal gas, 

Pl 
p2 2.93 x 10 s N kg-K 1 

= - ! - * - = — = - X - - X = 2.1 RT2 ml 287 N - m 469 K 

Stagnation temperature is constant in adiabatic flow. Thus 

7b2 =7o, = 5 0 0 K < 

Using the property ratios for a normal shock, we obtain 

Pn 
Po2 = Po, — = 509 kPa (0.7209) = 367 kPa (abs) ^ 

8 kg/m 3 

Po, 

For the change in entropy (Eq. 12.32g), 

s2 - s, = c„ In ^ - R In ^2, 
" 7] p, 

But SQ2 - s0] = s2 - s,, so 

= 0 

s0l-s0=s2-s1=cp\nyk-RlTiE2i = - 0.287 —^— X ln(0.7209) 
/T„ Pn. k g - K ' 0 , POi 

s2-s{ = 0.0939 kJ/ (kg-K) 

P2 

'02 

Poi 

S2 - 5, 

The Ts diagram is 

J r 
s02 s0\ 

/ 
POi 

/ 
P02 

'02 ~ 'Oi 

/ S h o c k 

Pi 
r ' i 

s2-sx 

This problem illustrates the use of the normal shock relations, 
Eqs. 12.41, for analyzing flow of an ideal gas through a nor­
mal shock. 

The Excel workbook for this Example Problem is con­
venient for performing the calculations. 
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12-6 SUPERSONIC CHANNEL FLOW WITH SHOCKS 

Supersonic flow is a necessary condition for a normal shock to occur. The possibility] 
of a normal shock must be considered in any supersonic flow. Sometimes a shock] 
must occur to match a downstream pressure condition; it is desirable to determine if a 
shock will occur and the shock location when it does occur. 

In Section 12-5 we showed that stagnation pressure decreases dramatically! 
across a shock: The stronger the shock, the larger the decrease in stagnation pressure. 
It is necessary to control shock position to obtain acceptable performance from a su-i 
personic diffuser or supersonic wind tunnel. 

In this section isentropic flow in a converging-diverging nozzle (Section 12-2) is ex­
tended to include shocks. Additional topics (on the CD) include operation of supersonic, 
diffusers and supersonic wind tunnels, flows with friction, and flows with heat addition.' 

Flow in a Converging-Diverging Nozzle 

Since we have considered normal shocks, we now can complete our discussion of 
flow in a converging-diverging nozzle operating under varying back pressures, begun 
in Section 12-2. The pressure distribution through a nozzle for different back pres­
sures is shown in Fig. 12.20. 

Four flow regimes are possible. In Regime I the flow is subsonic throughout. 
The flow rate increases with decreasing back pressure. At condition (Hi), which forms, 
the dividing line between Regimes I and II, flow at the throat is sonic, and M, = 1. 

As the back pressure is lowered below condition (Hi), a normal shock appears 
downstream from the throat, as shown by condition (vi). There is a pressure rise across 
the shock. Since the flow is subsonic (M < 1) behind the shock, the flow decelerates, 
with an accompanying increase in pressure, through the diverging channel. As the 
back pressure is lowered further, the shock moves downstream until it appears at the 
exit plane (condition vii). In Regime II, as in Regime I, the exit flow is subsonic, and 
consequently pe = pb. Since flow properties at the throat are constant for all conditions 
in Regime II, the flow rate in Regime II does not vary with back pressure. 
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In Regime III, as exemplified by condition (viii), the back pressure is higher than 
the exit pressure, but not high enough to sustain a normal shock in the exit plane. The 
flow adjusts to the back pressure through a series of oblique compression shocks out­
side the nozzle; these oblique shocks cannot be treated by one-dimensional theory. 

As previously noted in Section 12-2, condition (iv) represents the design condi­
tion. In Regime IV the flow adjusts to the lower back pressure through a series of 
oblique expansion waves outside the nozzle; these oblique expansion waves cannot 
be treated by one-dimensional theory. 

The Ts diagram for converging-diverging nozzle flow with a normal shock is 
shown in Fig. 12.21; state CD is located immediately upstream from the shock and 
state (2) is immediately downstream. The entropy increase across the shock moves 
the subsonic downstream flow to a new isentropic line. The critical temperature is 
constant, so p * is lower than p*. Since p* = p*/RT*, the critical density downstream 
also is reduced. To carry the same mass flow rate, the downstream flow must have a 
larger critical area. From continuity (and the equation of state), the critical area ratio 
is the inverse of the critical pressure ratio, i.e., across a shock, p*A* = constant. 

If the Mach number (or position) of the normal shock in the nozzle is known, the 
exit-plane pressure can be calculated directly. In the more realistic situation, the exit-
plane pressure is specified, and the position and strength of the shock are unknown. The 
subsonic flow downstream must leave the nozzle at the back pressure, so pb = pe. Then 

Ph Pe Pe P(>7 Pe A \ Pe A Ae 
— = — = — — = — - ± = — ^ L - ! k (12.42) 
Po, Po, Po 2 Po, Po 2

 Ai Po 2 Ae A2 

Because we have isentropic flow from state (2) (after the shock) to the exit plane, 
A* = A* and pQi = p0e. Then from Eq. 12.42 we can write 

Pe = Pe Al Ae = Pe A Ae 

PO, P 0 2 A> A2 PO, Ae Ae 

Fig . 12.21 Schemat ic Ts d iagram for f low in a 
converg ing-d iverg ing nozzle wi th a normal shock. 



680 CHAPTER 12 / COMPRESSIBLE FLOW 

Rearranging, 

Pe Ae = Pe A e 

Po, A t Po, A* 
(12.43 

In Eq. 12.43 the left side contains known quantities, and the right side is a function of 
the exit Mach number Me only. The pressure ratio is obtained from the stagnation 
pressure relation (Eq. 11.20a); the area ratio is obtained from the isentropic area rela­
tion (Eq. 12.7d). Finding Me from Eq. 12.43 usually requires iteration. (Problerifc] 
12.118 uses ExcePs Solver feature to perform the iteration.) The magnitude and loca*i 
tion of the normal shock can be found once Me is known by rearranging Eq. 12.43| 
(remembering that Po 2

 = Poe), 

Po2 _ A, Ae (12.44) 

Po, A e
 At 

In Eq. 12.44 the right side is known (the first area ratio is given and the second is a 
function of Me only), and the left side is a function of the Mach number before the 
shock, My, only (Eq. 12.41b). Hence, A/, can be found. The area at which this shock 
occurs can then be found from the isentropic area relation (Eq. 12.7d, with A* = A,) 
for isentropic flow between the throat and state ® . 

Supersonic Diffuser (CD-ROM) 

12-7 OBLIQUE SHOCKS AND EXPANSION WAVES 

So far we have considered one-dimensional compressible flows. With the under­
standing we have developed, we are ready to introduce some basic concepts of two-
dimensional flow: oblique shocks and expansion waves. 

Oblique Shocks 

In Section 11-2, we discussed the Mach cone, with Mach angle a, that is generated 
by an airplane flying at M > 1, as shown (in airplane coordinates) in Fig. 12.26a. 
The Mach cone is a weak pressure (sound) wave, so weak that, as shown in 
Fig. 12.26a, it barely disturbs the streamlines—it is the limiting case of an oblique 
shock. If we zoom in on the airplane, we see that at the nose of the airplane we have 

la) Mach cone (b) Obl ique shock 

F ig . 12.26 M a c h c o n e a n d o b l i q u e s h o c k g e n e r a t e d b y a i r p l a n e . 
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==z 4=r £ i < 
(a) Subsonic M < 1 (W Low supersonic (c) Increasing M 

Fig. 12.27 A i r p l a n e f l o w p a t t e r n s a s s p e e d i n c r e a s e s . 

an oblique shock—a shock wave that is aligned, at some angle (3 < 90°, to the flow. 
This oblique shock causes the streamlines to abruptly change direction (usually to 
follow the surface of the airplane or the airplane's airfoil). Further away from the air­
plane we still have an oblique shock, but it becomes progressively weaker (/3 de­
creases) and the streamlines experience smaller deflections until, far away from the 
airplane the oblique shock becomes a Mach cone (/3 —* a) and the streamlines are es­
sentially unaffected by the airplane. 

A supersonic airplane does not necessarily generate an oblique shock that is at­
tached to its n o s e — w e may instead have a detached normal shock ahead of the air­
plane! In fact, as illustrated in Fig. 12.27, as an airplane accelerates to its supersonic 
cruising speed the flow will progress from subsonic, through supersonic with a de­
tached normal shock, to attached oblique shocks that become increasingly "pressed" 
against the airplane's surface. 

We can explain these flow phenomena using concepts we developed in our analysis 
of normal shocks. Consider the oblique shock shown in Fig. 12.28a. It is at some angle 
(3 with respect to the incoming supersonic flow, with velocity Vj, and causes the flow to 
deflect at some angle 0, with velocity V 2

 a f t e r m e shock. 
It is convenient to orient the xy coordinates orthogonal to the oblique shock, 

and decompose V\ and V> into components normal and tangential to the shock, as 
shown in Fig. 12.286, with appropriate subscripts. The control volume is assumed to 
have arbitrary area A before and after the shock, and infinitesimal thickness across 
the shock (the upper and lower surfaces in Fig. 12.286). For this infinitesimal control 
volume, we can write the basic equations: continuity, momentum, and the first and 
second laws of thermodynamics. 

The continuity equation is 

1—> X 

[a) Obl ique shock (b) Obl ique shock in shock coordinates 

Fig. 12.28 O b l i q u e s h o c k con t ro l v o l u m e . 
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Then 

{-PlVinA) + (p2V2iA) = 0 

(The tangential velocity components Vj and V2 flow through an infinitesimal area, so j 
do not contribute to continuity.) Hence, 

Pi\ = P2\ (12.45a) | 

Next we consider the momentum equation for motion normal and tangential to the I 
shock. We get an interesting result if we look first at the tangential, y component, 

0(2) = 0 ( 1 ) 

F- + K=TtLv/pdV + 
c 

Vy pV-dA (4.18b) 
cs 

Assumption: (2) Negligible body forces. 

Then 

O = V1I(-PI-VKA) + V2I(P2V2HA) 

or, using Eq. 12.45a 

\ = % = V, 

Hence, we have proved that the oblique shock has no effect on the velocity compo­
nent parallel to the shock (a result that is perhaps not surprising). The momentum 
equation for the normal, x direction is 

= 0(2) = 0(1) 
r 

VxpV-dA (4.18a) 
cs /cv / 

For our control volume we obtain 

PlA - p2A = VK(-PlVKA) + V2n(p2V2nA) 

or, again using Eq. 12.45a, 

The first law of thermodynamics is 

= 0(4) = 0(5) = 0(5) = 0(5) = 0(1) 

j { - w/ wŷ- wyf= ̂  e p dV + j (e + pv) pV • dA (4.18a) 

where 

= 0(6) 
V2 

e = u + -j + 

Assumptions: (4) Adiabatic flow. 
(5) No work terms. 
(6) Negligible gravitational effect. 
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For our control volume we obtain 

0 = « i + P\v\ + u2 + p2v2 + (p2V2A) 

(Remember that v here represents the specific volume.) This can be simplified by 
using h = u + pv, and continuity (Eq. 12.45a), 

V 
h, + —L = bo + 

1 2 2 

But each velocity can be replaced by its Pythagorean sum, so 

h, + 
vl + V\ 

L = fh + 

We have already learned that the tangential velocity is constant, VJ = V2 = V,, so 
the first law simplifies to 

1 2 2 

Finally, the second law of thermodynamics is 

= 0(1) 

3 

(12.45c) 

dt, 
spdV + s pV-dA 

cs 

0(4) 

\I/Q 

cs 
dA (4.58) 

The shock is irreversible, so Eq. 4.58 for our control volume is 

sl(-P[\A) + s2(p2V2nA)> 0 

and, again using continuity, 

s2 > 5 , (12.45d) 

The continuity and momentum equations, and the first and second laws of thermody­
namics, for an oblique shock, are given by Eqs. 12.45a through 12.45d, respectively. 
Examination of these equations shows that they are identical to the corresponding 
equations for a normal shock, Eqs. 12.32a through 12.32d, except V, and V2 are re­
placed with normal velocity components Vj and V2 , respectively! Hence, we can 
use all of the concepts and equations of Section 12-5 for normal shocks, as long as 
we replace the velocities with their normal components only. The normal velocity 
components are given by 

and 
V2= V2 sin 0 6 - 0 ) 

The corresponding Mach numbers are 

V\ 
Mx = — = My sin jS 

Cy 

(12.46a) 

(12.46b) 

(12.47a) 
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and 

M2 = -=*- = M2 sin (jS - 6) 
c2 

(12.47b) 

The oblique shock equations for an ideal gas with constant specific heats are obtained 
directly from Eqs. 12.41: 

M\ = 2k_ 
k-l Mi 

(12.48a) 

Pa 

Po, 

2 _ 

M i 
2 " 
k-l ,,2 1 + M\ 

2k 
k + 1 

Mi -
k-l 
k + I 

-| 1A*-1) (12.48b) 

12. _ 
l + — M]\\kMl- — 

k + V 

p2 _ 2k 

P\ k + 1 
Mi 

M 1 n 

k-l 
k + 1 

(12.48c) 

(12.48d) 

El 
P) 

k + 1 
M 

1 + 
k -1 

M (12.48e) 

Equations 12.48, along with Eqs. 12.46 and 12.47, can be used to analyze oblique 
shock problems. Appendix E-5 lists flow functions for M2n and property ratios 
Pojpoy T2/T{, p2/pi, and Pilpx (VJV2) in terms of Min for oblique-shock flow of an 
ideal gas. A table of values of these property ratios is presented for air (k = 1.4) for a 
limited range of Mach numbers. The associated Excel workbook, Oblique-Shock Re­
lations, can be used to print a larger table of values for air and other ideal gases. In 
essence, as demonstrated in Example Problem 12.11, an oblique shock problem can 
be analyzed as an equivalent normal shock problem. 

EXAMPLE 12.11 Comparison of Normal and Oblique Shocks 

Air at - 2 ° C and 100 kPa is traveling at a speed of 1650 m/s. Find the pressure, tem­
perature, and speed after the air experiences a normal shock. Compare with the pres­
sure, temperature, and speed (and find the deflection angle 6) if the air instead experi­
ences an oblique shock at angle B = 30°. 
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EXAMPLE PROBLEM 12.11 

GIVEN: Air flow with: 
/?, = 100 kPa 
Ti = - 2 ° C 
V) = 1650 m/s 

FIND: Downstream pressure, temperature, and speed if it experiences (a) a normal shock and (b) an 
oblique shock at angle B = 30°. Also find the deflection angle 6. 

SOLUTION: 
(a) Normal shock 

First compute the speed of sound, 

Then the upstream Mach number is 

1.4 287 N-m 271K k g m „„„ , x x x -4-— = 330 m/s 
kg-K 

V, 1650 m/s 
Mi = -*- = • 

s 2 - N 

Cj 330 m/s 
= 5.0 

From the normal-shock flow functions, Eqs. 12.41, at Mx = 5.0 

Mi Pi/Pi r 2 / T , v 2 / v , 

5.0 0.4152 29.00 5.800 0.2000 

From these data 

T2 = 5.80071 = (5.800)271 K = 1572 K = 1299° C <_ 

p 2 = 29.00^! = (29.00)100kPa = 2.9MPa i 

V2 = 0.200Vi = (0.200)1650 m/s = 330 m/s < 

(b) Oblique shock 

First compute the normal and tangential components of velocity, 

V ln = V, sin 0 = 1650 m/s X sin 30° = 825 m/s 

V1( = ^ cos B = 1650 m/s X cos 30° = 1429 m/s 

Then the upstream normal Mach number is 

%_ _ 825 m/s = 2 5 

C[ 330 m/s 

From the oblique-shock flow functions, Eqs. 12.48, at M,n = 2.5 

Pl 

Pi>P\ r 2 / r , 

2.5 0.5130 7.125 2.138 0.300 
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From these data 

T2 = 2.1387i = (2.138)271 K = 579 K = 306° 

p2 = 7.125/?, = (7.125)100 kPa = 712.5 kPa < 

V 2 n = 0.300Vu = (0.300)825 m/s = 247.5 m/s 

V = v = 1429 m/s 
z ; ' r < The downstream velocity is given by the Pythagorean sum of the velocity components, 

v2 = *j[V2„ + v2,) = t |(247.5 2 + 1429 2) m/s = 1450 m/s 

Note that 
, O 2 8 7 N • m V7QK k o . m 

:m/s 
rn^r 1-4 287 N-m 579K k g m ,,„„ 

c2 = JkRT2 = x x x -f— = 4821 
2 y 2 \ kg-K s 2 - N 

so that the downstream Mach number is 

V j = 1450 m/s = 3 Q 1 

c 2 482 m/s 

Although the downstream normal Mach number must be subsonic, the actual downstream Mach number 
could be subsonic or supersonic (as in this case). 

The deflection angle can be obtained from Eq. 12.46b 

V2n = V2 sin ( / 3 - 0 ) 

- 'f 2 4 7- 5l = 30° 
or 

9 = B - sin" 
'V2 

VV2 
= 30° - sin" 

L 1450 J 
9.8° = 20.2° 

This Example Problem illustrates: 
/ That an oblique shock involves deflection of the flow 

through angle 8. 
/ Use of normal shock functions for solution of oblique 

shock problems. 
/ The important result that for a given supersonic flow an 

oblique shock will always be weaker than a normal shock, 
because M, < Mi, 

n 1 

/ That while Mln < 1 always, M2 can be subsonic or super­
sonic (as in this case). 

The Excel workbook for oblique shocks is convenient 
for performing these calculations. 

We can gain further insight into oblique shock behavior by combining some of 
our earlier equations to relate the deflection angle 6, the Mach number A/,, and the 
shock angle /3. From the oblique shock geometry of Fig. 12.286, 

Vj( tan/3 tan/3 

V2 V2 t an( jS- f l ) tan ( j 8 - 0 ) 
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We can also relate the two normal velocities from Eq. 12.48e, 

k + l 

v \ 1 + - Mi 
2 

Equating the two expressions for the normal velocity ratio, we have 

\ _ tan/3 ~Y~Mh 

2 

v2n tMB-e) l + kzlMi 
2 '« 

and 

„, tan/3 r , t - 1 , , 2 

2 

Finally, if we use My = M, sin B in this expression and further simplify, we obtain 
(after using a trigonometric identity and more algebra) 

2cotB^M2 s i n 2 / 3 - l ) 

M\ ()t + cos2/3) + 2 
tang = , v — — ^ (12.49) 

Equation 12.49 relates the deflection angle 6 to the incoming Mach number M{ and 
the oblique shock angle B. For a given Mach number, we can compute 9 as a function 
of B, as shown in Fig. 12.29 for air (k = 1.4). 

Appendix E-5 presents a table of values of deflection angle 6 as a function of 
Mach number M{ and oblique shock angle B for air [k = 1.4) for a limited range of 
Mach numbers. The associated Excel workbook, Oblique-Shock Relations, can be 
used to print a larger table of values for air and other ideal gases. 

We should note that we used M, and shock angle B to compute 6, but in reality 
the causality is the reverse: it is the deflection 8 caused by an object such as the sur­
face of an airplane wing that causes an oblique shock at angle B. We can draw some 
interesting conclusions from Fig. 12.29: 

/ For a given Mach number and deflection angle, there are generally two possible 
oblique shock angles — we could generate a weak shock (smaller (3 value, and 
hence, smaller normal Mach number, Mx ) or a strong shock (larger B value, and 
hence, larger normal Mach number). In most cases the weak shock appears (excep­
tions include situations where the downstream pressure is forced to take on a large 
value as caused by, for example, an obstruction). 

/ For a given Mach number, there is a maximum deflection angle. For example, for air 
(k = 1.4), if My = 3, the maximum deflection angle is # r a a x « 34°. Any attempt to 
deflect the flow at an angle 6 > (9max would cause a detached normal shock to form 
instead of an oblique shock. 

/ For zero deflection (0—* 0), the weak shock becomes a Mach wave and f} —* a = 
sin '(l/Af,). 
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50 

Shock angle, /) (deg) 

F ig . 12.29 Ob l i que shock def lec t ion angle . 

Figure 12.29 can be used to explain the phenomena shown in Fig. 12.27. If an air­
plane (or airplane wing), causing deflection 8, accelerates from subsonic through super­
sonic speed, we can plot the airplane's progress on Fig. 12.29 as a horizontal line from 
right to left, through lines of increasing Mach number. For example, for 6 = 10°, we ob­
tain the following results: As M, increases from subsonic through about 1.4 there is no 
oblique shock solution—we instead either have no shock (subsonic flow) or a detached 
normal shock; at some Mach number the normal shock first attaches and becomes an 
oblique shock (Problem 12.133 shows that for 6 = 10°, the normal shock first attaches 
and becomes oblique at M, =» 1.42, with fl ~ 67°); as M\ increases from 1.6 through 
1.8, 2.0, 2.5, etc., toward infinity, from Fig. 12.29, (3 ~ 51°, 44°, 39°, 32°, toward 12°, 
respectively—the oblique shock angle progressively decreases, as we saw in Fig. 12.27. 

A problem involving oblique shocks is solved in Example Problem 12.12. 

EXAMPLE 12.12 Oblique Shocks on an Airfoil 

An airplane travels at a speed of 600 m/s in air at 4°C and 100 kPa. The airplane's 
airfoil has a sharp leading edge with included angle 8 = 6°, and an angle of attack 
a = 1°. Find the pressures on the upper and lower surfaces of the airfoil immediately 
after the leading edge. 

EXAMPLE PROBLEM 12.12 

GIVEN: Air flow over sharp leading edge with: 
p . = 100 kPa 8 = 6° 
7", = 4°C a = 1° 
V, = 600 m/s 

FIND: Pressure on upper and lower surfaces. 

y^Sj^—-^—~yTT=2° 
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SOLUTION: 
For an angle of attack of 1° of an airfoil with leading edge angle 6°, the deflection angles are 6tt = 2° and 
&i = 4° as shown. 

(a) Upper surface 

First compute the speed of sound, 

rr^F |l-4 287 N m 277K k g m . 
c, = JkRT, = x x x — = 334 m/s 

1 " 1 -y kg-K s 2 - N 
Then the upstream Mach number is 

_ VI 600m/s 
l Afi = — = " " " " " J = 1.80 

c, 334 m/s 

For M, = 1.80 and <9„ = 2°, we obtain ft from 

2co t f t , (M 2 s in 2 f t , - 1 ) 
tan0„ = 5 - ^ ^ (12.49) 

A/, (fc + cos2ft) + 2 

This can be solved for ft, using manual iteration or interpolation, or by using, for example, Excel's Goal 
Seek function, 

Bu = 35.5° 

Then we can find Mi 
n(upper) 

M, = M, sin ft, = 1.80 x sin 35.5° = 1.045 

The normal Mach number for the upper oblique shock is close to one—the shock is quite weak. 

From the oblique-shock pressure ratio, Eqs. 12.48d, at M l j i ( u = 1.045, 

ftfiaa=l = ™-M\ - k-^l = ^ i ( i . 0 4 5 ) 2 - M z l l = U 1 

P i k + l "'"PP") k + \ (1.4 + 1) (1-4 + 1) 

Hence, 

p2 = l . l l p ! = (1.11)100 kPa = l l l k P a <

 P l ^ ) 

(b) Lower surface 
For M, = 1.80 and 6, = 4°, we obtain ft from 

2co t f t (M, 2 s in 2 f t - l) 
tanfl = « Z (12.49) 

M 2 ( £ + cos2ft) + 2 

and find 

ft = 37.4° 

Then we can find M{ 
ln (lower) 

M, = M, sin ft = 1.80 x sin 37.4° = 1.093 
ln (lower) 1 ' ' 

The normal Mach number for the lower oblique shock is also close to one. 

From the oblique-shock pressure ratio, Eq. 12.48d, at MX

 = 1-093, 
1 n (lower' 

^ W l = J L M \ - = ^ - d . 0 9 3 ) 2 - M z i ) = L a 
ft + . Vlower) £ + 1 (1.4 + 1 ) ' (1.4 + 1) 
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This Example Problem illustrates the use of Eq. 12.49 for ob­
taining oblique shock data from the flow deflection. 
t\% The Excel workbook for oblique shocks is convenient 

for performing these calculations. 

I 
Isentropic Expansion Waves 

Oblique shock waves occur when a flow is suddenly compressed as it is deflected. We 
can ask ourselves what happens if we gradually redirect a supersonic flow, for exam­
ple, along a curved surface. The answer is that we may generate isentropic compres­
sion or expansion waves, as illustrated schematically in Figs. 12.30a and 12.306, 
respectively. From Fig. 12.30a we see that a series of compression waves will eventu­
ally converge, and their cumulative effect will eventually generate an oblique shock 
not far from the curved surface. While compression waves do occur, they are not of 
great interest because the oblique shocks they lead to usually dominate the aerody­
namics—at most the waves are a local phenomenon. On the other hand, as shown in 
Fig. 12.306, expansion waves in series are divergent and so do not coalesce. Figure 
12.30c shows expansion around a sharp-edged corner. 

We wish to analyze these isentropic waves to obtain a relation between the 
deflection angle and the Mach number. First we note that each wave is a Mach 
wave, so is at angle a = sin'\l/M), where M is the Mach number immediately be­
fore the wave. Compression waves are convergent because the wave angle a 
increases as the Mach number decreases. On the other hand, expansion waves are 
divergent because as the flow expands the Mach number increases, decreasing the 
Mach angle. 

Consider an isentropic wave as shown in Fig. 12.31a. (It happens to be a com­
pression wave, but the analysis that follows applies to both expansion and compres­
sion waves.) The speed changes from V to V + dV, with deflection dO. As with the 
oblique shock analysis for Fig. 12.28a, it is convenient to orient the xy coordinates 
orthogonal to the wave, as shown in Fig. 12.316. For this infinitesimal control 
volume, we can write the basic equations (continuity, momentum, and the first and 
second laws of thermodynamics). Comparing the isentropic wave control volume of 
Fig. 12.316 to the control volume for an oblique shock shown in Fig. 12.28, we see 
that the control volumes have similar features. However, an isentropic wave differs1 

(a) Isentropic compression waves (b) Isentropic expansion waves (c) Isentropic expansion at a corner 

F ig . 12.30 I s e n t r o p i c c o m p r e s s i o n a n d e x p a n s i o n w a v e s . 

Hence, 

P2<^ = 1 2 3 P\ = (1-23)100 kPa = 1 2 3 k P 3 < 



12-7 OBLIQUE SHOCKS AND EXPANSION WAVES 691 

CV 

V+dV 

a-dd 
V + dV 

B I B L I O T E C A 
U. P. a 

(a) Isentropic wave (b) Isentropic wave in wave coordinates 

F ig . 12.31 I s e n t r o p i c w a v e c o n t r o l v o l u m e . 

from an oblique shock wave in two important ways: 

/ The wave angle is a = sin l(l/Af), instead o f angle j3 for the oblique shock. 
/ The changes in velocity and in density, pressure, etc., and the deflection angle, are 

all infinitesimals. 

The second factor is the reason that the flow, which is adiabatic, is isentropic. 
With these two differences in mind we repeat the analysis that we performed for 

the oblique shock. The continuity equation is 

= 0(1) 

8 
dt 

pdV + PV-dA = 0 ( 4 . 1 2 ) 

cs 

Assumption: (1) Steady flow. 

Then 
{-pVsinaA} + {(p + dp)(V + dV)s\i\(a-dd)A} = 0 

or 
p V s i n a = (p + dp)(V + dV)sin(a - dd) (12.50) 

Next we consider the momentum equation for motion normal and tangent to the 
shock. We look first at the tangential, y component 

= 0(2) = 0(1) 

pdV + Vy pV • dA (4.18b) 
cs 

Assumption: (2) Negligible body forces. 

Then 

0 = V cos a{-PV sin a A} + (V + dV) cos(a - dd) {(p + dp)(V + dV) s in(a - d6)A) 

or, using continuity (Eq. 12.50), 

V cos a = (V + dV) cos(a - dO) 

Expanding and simplifying [using the facts that, to first order, in the limit as dd —> 0, 
cos(dd) —» 1, and sin(d0) —> d6], we obtain 

dV 
d9 = 

V t a n a 

But sin a = l/M, so tan a = l/^M2 - 1, and 

v 
(12.51) 
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We skip the analysis of the normal, x component of momentum, and move on to the 
first law of thermodynamics, which is 

= 0(4) = 0(5) = 0(5) = 0(5) = 0 ( 1 ) 

3 
- W- w*U - wjt! = 

cv 
epdV+ (e + pv)pV-dA (4.18a)| 

cs 

where 
= 0(6) 

V2 

e = u + Y + 

Assumptions: (4) Adiabatic flow. 
(5) No work terms. 
(6) Negligible gravitational effect. 

For our control volume we obtain (using h = u+ pv, where v represents the specific 
volume) 

0 = + — U - p V s i n a A } 

+ \ (h + dh) + 
(V + dV)2 

\{(p + dp)(V + dV)sin(a - dd)A) 

This can be simplified, using continuity (Eq. 12.50), to 

V2 (V + dV)2 

h + — = (h + dh) + - — 
2 2 

Expanding and simplifying, in the limit to first order, we obtain 

dh = -V dV 

If we confine ourselves to ideal gases, dh = cp dT, so 

cpdT=-VdV (12.52) 

Equation 12.52 relates differential changes in temperature and velocity. We can 
obtain a relation between M and V using V = Mc = MsJkRT. Differentiating (and 
dividing the left side by Vand the right by M^kRT), 

ay__dM_ ]_aj_ 
V ~ M I T 

Eliminating dT using Eq. 12.52, 

dV _ _ dM 
V ' ~M 

dV _ dM 
V M 

2 cpT M 2 V 
dM 1 dV 
M 2 V 

V C P T J 

2 V 
' M kRT 

M 2 V 

Hence, 
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^ = \ ^ (.2.53) 
V 2 + M2(lc-l) M 

Finally, combining Eqs. 12.51 and 12.53, 

d e = _ _ 2 ^ T m 
2 + M2{k-\) M 

We will generally apply Eq. 12.54 to expansion waves, for which dd is negative, so it 
is convenient to change variables, doj= -dd. Equation 12.54 relates the differen­
tial change in Mach number through an isentropic wave to the deflection angle. We 
can integrate this to obtain the deflection as a function of Mach number, to within a 
constant of integration. We could integrate Eq. 12.54 between the initial and final 
Mach numbers of a given flow, but it will be more convenient to integrate from a 
reference state, the critical speed (M = 1) to Mach number M, with w arbitrarily set 
to ?ero at M = 1, 

\ dw =\ — 2 V M 2 - 1 dM 
M2(k - 1) M 

leading to the Prandtl-Meyer supersonic expansion function, 

k+\ _, 
j- t a n 

I 
1 (M2 - 1 ) | - t a n " M V / V / z - 1 I (12.55) 

We use Eq. 12.55 to relate the total deflection caused by isentropic expansion from 
M, to M 2 , 

Deflection = co2 - w{ = co(M2) - w{M\) 

Appendix E-6 presents a table of values of the Prandtl-Meyer supersonic expan­
sion function, co, as a function of Mach number M for air (k = 1.4) for a limited 
range of Mach numbers. The associated Excel workbook, Isentropic Expansion 
Wave Relations, can be used to print a larger table of values for air and other ideal 
gases. 

We have already indicated that the flow is isentropic. We can verify this by using 
the second law of thermodynamics, 

(4.58) 

The wave is reversible, so Eq. 4.58 for our control volume is 

s ( -pVsin a A} + (s + ds){(p + dp)(V + dV)sm(a - d6)A) = 0 

and using continuity (Eq. 12.50), 

ds = 0 

The flow is demonstrated to be isentropic. Hence, stagnation properties are constant and 
the local isentropic stagnation property equations (Section 11-3) will be useful here, 
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PO. = 

P 

R = 
T 

Po. = 

P 

* - 1 » 2 
+ M 

2 

1 + 

2 

-ik/(k-\) 

(11.20a) 

(11.20b) 

(11.20c) 

Equation 12.55, together with Eqs. 11.20a through 11.20c, can be used for analyz­
ing isentropic expansion or compression waves. (We never got around to deriving 
the normal component of momentum — the above analysis provides a complete 
set of equations.) A problem involving expansion waves is solved in Example 
Problem 12.13. 

EXAMPLE 12.13 Expansion Wave on an Airfoil 

The airplane of Example Problem 12.12 (speed of 600 m/s in air at 4°C and 100 kPa, 
with a sharp leading edge with included angle 8 = 6°) now has an angle of attack 
a = 6°. Find the pressures on the upper and lower surfaces of the airfoil immediately 
after the leading edge. 

EXAMPLE PROBLEM 12.13 

GIVEN: Air flow over sharp leading edge with: 
Pi = 100 kPa 5 = 6° 
T, = 4°C a = 6° 
V, = 600 m/s 

FIND: Pressures on upper and lower surfaces. 

SOLUTION. 
For an angle of attack of 6° of an airfoil with leading edge 
angle 6°, the deflection angles are 0„ = 3° and 0, = 9° as shown 

(a) Upper surface—isentropic expansion 

First compute the speed of sound, 

c, = V^?T = 

Then the upstream Mach number is 

.4 287 N-m 277 K k g m „„ , , 
x x — = 334 m/s 

kg-K s' -N 

Vj _ 600 m/s 
C) 334 m/s 

For M, = 1.80, the Prandtl-Meyer function w, is obtained from 

1.80 

k + l _, tan , , - tan (12.55) 
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S O 

1.4 + 1 _, 
tan j ^ W - 1 ) 

1.4 + 1 1.4-1 

The Prandtl-Meyer function value on the upper surface, w„, is then 

wu = w, + 0„ = 20.7° + 3° = 23.7° 

For this Prandtl-Meyer function value, is obtained from Eq. 12.55 
J 1 (upper) n 

- tan _ 1 |Vl .80 2 - 1 ] = 20.7° 

k + l _, 
w„ = J - — - tan 

k - 1 
— ( M 2 - l ) - t a n - ' f J A ^ '(upper) 

This can be solved using manual iteration or interpolation, or by using, for example, Excel's Goal Seek 
function, 

M2 (upper) 
= 1.90 

Finally, we can find p2( > from repeated use of Eq. 11.20a, 

- ! * / ( * - I ) 

Pi 

upper) 

^2(upper) Po 
(upper) Po P\ 

Pi = 1 + * ^ M 2 

2 •'(upper) Pi 

= |[l + (0.2)1.80 2 ] 3 ' 5 / [ l + (0.2)1.902]3'51 x 100 kPa 

Po 
(̂upper) 

(b) Lower surface—oblique shock 

For M , = 1.80 and 6, = 9°, we obtain ft from 

= 85.8 kPa 

t _ 2cotf t (A/ 2 sin 2 ft - 1) 
tan tfi — ^ 

A/,2(fc + cos2ft) + 2 
and find 

Then we can find Mx 

M, 
(lower) 

ft = 42.8° 

= Af, sin ft = 1.80 x sin 42.8° = 1.223 

From the oblique-shock pressure ratio, Eq. 12.48d, at M T ^ = 1.223, 

Pi 
_ i ^ = 2 x l ± ( L 2 2 3 ) 2 _ ( M Z i ) = 1.58 

+ ] 'n(lower) (1.4 + 1 ) ' (1.4 + 1) 

2& ^ 2 

PI 

Hence, 
p2 = 1.58p, = (1.58)100 kPa = 158kPa 

^(lower) 1 

This Example Problem illustrates the use of Eq. 12.55 and the 
isentropic stagnation relations for analysis of isentropic expan­
sion waves and the use of Eq. 12.49 for an oblique shock. 
A The Excel workbooks for isentropic expansion waves 

and oblique shocks are convenient for performing these 
calculations. 

ft !(uppcr) 

(12.49) 

P2 (lower) 
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Example Problem 12.13 hints at the approach we can use to obtain lift and drag! 
coefficients of a supersonic wing, illustrated in Example Problem 12.14. 

EXAMPLE 12.14 Lift and Drag Coefficients of a Supersonic Airfoil 

The airplane of Example Problem 12.13 has a symmetric diamond cross section] 
(sharp leading and trailing edges of angle 5 = 6°). For a speed of 600 m/s in air at 
4°C and 100 kPa, find the pressure distribution on the upper and lower surfaces, and} 
the lift and drag coefficients for an angle of attack of a - 6°. 

EXAMPLE PROBLEM 12.14 

GIVEN: Air flow over symmetric section shown with: 
p, = 100kPa 5 = 6° 
T, = 4°C a = 6° 
V{ = 600 m/s 

FIND: Pressure distribution, and lift and drag coefficients. 
Region 2, 

SOLUTION: 
We first need to obtain the pressures on the four surfaces of the airfoil. We have already obtained in Exam­
ple Problem 12.13 the data for Region 2U and Region 2,: 

M2 = 1.90 
•'(upper) 

Pl (upper) 
= 85.8 kPa P2(uppcr)t 

M-(lower) 1.489 p2 = 158 kPa , iwer) 

(Note that ^ 2 ( l m w )

 = 1-489 is obtained from M^ = 1.223 in Example Problem 12,13 by direct use of 
Eqs. 12.48a and 12.47b.) In addition, for Region 2„, we found the Prandtl-Meyer function to be 23.7°. ; 
Hence, for Region 3„, we can find the value of the Prandtl-Meyer function from the deflection angle. For 6° 
leading- and trailing-edges, the airfoil angles at the upper and lower surfaces are each 174°. Hence, at the 
upper and lower surfaces the deflections are each 6°. 

For Region 3„, 
3(upper) = U>2 (upper) .+ d = 23.7° + 6° = 29.7° 

For this Prandtl-Meyer function value, Af> , is obtained from Eq. 12.55, 
J J(upper) n 

(upper) 
k + 1 _ i 

tan 
ifc-1 

k - 1 
V * + i 

Mi 
J(upper) 

- 1 - tan Ml - 1 
J(upper) 

This can be solved using manual iteration or interpolation, or by using, for example, Excel's Goal Seek 
function, 

M3(upper) =2.12 

Finally, we can find P 3 ( u p p e r ) from repeated use of Eq. 11.20a, 

Pi 
Pl (upper) 

(upper) £0_ 

PO P\ 
Pl = 1 + ^ 1 + 

2 (upper) Pl 

= | [ l + (0.2)1.80 2 ] 3 ' 5 / [ l + (0.2)2.12 2 ] 3 ' 5 j x 100 kPa 

so 
p , = 60.9 kPa 

(upper) ^_ 
upper) 
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For Region 3 (, we first need to find the Prandtl-Meyer function in the previous region, Region 2,. For 
M7 = 1.223, we find from Eq. 12.55, 

z(k>wer) ^ 

0>2 Clowe) \ _ 1 
fc + 1 

tan M\ - 1 
'•(lower) 

1.4 + 1 

so 
^ (lower) 

Hence, for Region 3 ;, 

\ 1 .4-1 

11.58° 

a>3 = 0 ) , + = 11.58° + 6° = 17.6° 
J(lowcr) ^(lower) and M-I is obtained from Eq. 12.55, 

->(lower) ^ 

W 3 (lower) 

fc + 1 
tan 

k - 1 
' j i ^ ! ( A # ! ( i - tan-'f IMJ~~ 

y It + \ \ ^dower) IJ [y -'(lower) 
Once again, this can be solved using manual iteration or interpolation, or by using, for example, Excel's 
Goal Seek function, 

Af3n , = 1.693 
J(lower) 

Finally, we can find PiQomr) from repeated use of Eq. 11.20a, 

ft, 

Pi, (lower) 
(lower) 

P°2 ^ 2(lower) 
Pl (lower) 2 ^ (lower) 

kt{k-\) 
1 + ^ i - M 2 

2 (lower) 

= | [ l + (0.2)1.489 2 ] 3 ' 5 / [ l + (0.2)1.6932]3'5j x 158 kPa 

Hence, 

Pi (lower) 
= 117kPa 

(Note that we cannot use p 0 , the stagnation pressure of the incom­
ing flow for computing this pressure, because the flow experienced 
a shock before reaching the lower surface.) 

To compute the lift and drag coefficients, we need the lift and 
drag force. 

First we find the vertical and horizontal forces with respect to 
coordinates orthogonal to the airfoil. 

The vertical force (assuming the chord c and span s are in 
meters) is given by 

Pv = S^{(P2 + P-K (lower) J(lower) ^(upper)"1" ^(uppcr) ) } 

Fy = ,y(m)^p{(158 + 117) - (85.8 + 60.9)}(kPa) = 64.2 sc kN 

and the horizontal force by 

FH = s - tm3°\\u-, + pi ) - { P t , + p? \\ 
2 [ ( ("PP") ^(kiwer) / ^->(upper) ^Oower) } \ 

Fff = s ( m ) ^ t a n 3 ° { ( 8 5 . 8 + 158) - (60.9 + 117))(kPa) = 1.73 sc kN 

kl(k-l) 

Pl (lower) 

Pi (lower) 

p? 
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The lift and drag forces (per unit plan area) are then 

FL = Fv cos 6° - FH sin 6° = 63.6 sc kN 

and 

FD = Fv sin 6° + FH cos 6° = 8.42 sc kN 

The lift and drag coefficients require the air density, 

p 100 x 10 3 N kg-K 1 , „ « , , , a 
p = -z— = —-r- x - 2 x = 1.258 kg/m J 

RT m 2 287 N • m 277K 
The lift coefficient is then 

C t = T ^ = 2 x 6 3 - 6 x l 0 3 N x ^ x , 4 x ^ = 0.281 
L I 0 y 2 1.258 kg (600) 2 m 2 N s 2 < 

2 

and the drag coefficient is 

FD 2 8.42 x l 0 3 N m 3 s 2 kg-m 
C n = - ; — - — = x x x , — T x - = 0.037 

I O V 2 J C 1.258 kg (600) 2 m 2 N s 2 < 
2 

(Note that instead of using V ^ V 2 in the denominator of the coefficients, we could have used [/2kp M2.) 

The lift-drag ratio is approximately 7.6. 

This Example Problem illustrates the use of oblique shock 
and isentropic expansion wave equations to determine the 
pressure distribution on an airfoil. 

/ We did not need to analyze the flow after the trailing ex­
pansion waves and oblique shock—unlike subsonic flow, 
the downstream condition has no effect on the airfoil. 

/ Unlike a subsonic flow, a supersonic flow can generate drag 
even in the absence of boundary layers and flow separation. 

/ Note that, unlike a subsonic flow, a supersonic flow can 
negotiate a sharp comer, even if we include the effect of a 
viscous boundary layer (as we have not done here). This is 
because an expanding supersonic flow has a negative pres­
sure gradient, i.e., it is no! adverse! 

/ An actual airfoil is not likely to have planar surfaces, so 
more sophisticated techniques than we can cover here are 
needed. However, this example illustrates the kind of re­
sults to be expected when analyzing a supersonic airfoil. 

The Excel workbooks for oblique shocks and isentropic 
expansion waves are convenient for performing these 
calculations. 
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12-8 SUMMARY 

In this chapter, we: 
/ Developed a set of governing equations (continuity, the momentum equation, the first and 

second laws of thermodynamics, and equations of state) for one-dimensional flow of a 
compressible fluid (in particular an ideal gas) as it may be affected by area change, fric­
tion, heat exchange, and normal shocks. 

/ Simplified these equations for isentropic flow affected only by area change, and devel­
oped isentropic relations for analyzing such flows. 

/ Simplified the equations for flow affected only by friction, and developed the Fanno-line 
relations for analyzing such flows. 

/ Simplified the equations for flow affected only by heat exchange, and developed the 
Rayleigh-line relations for analyzing such flows. 

/ Simplified the equations for flow through a normal shock, and developed normal-shock 
relations for analyzing such flows. 

/ Introduced some basic concepts of two-dimensional flow: oblique shocks and expansion 
waves. 

While investigating the above flows we developed insight into some interesting com­
pressible flow phenomena, including: 

/ Use of Ts plots in visualizing flow behavior. 
/ Flow through, and necessary shape of, subsonic and supersonic nozzles and diffusers. 
/ The phenomenon of choked flow in converging nozzles and CD nozzles, and the circum­

stances under which shock waves develop in CD nozzles. 
/ *The phenomena of choked flow in flows with friction and flows with heat exchange. 
/ Computation of pressures and lift and drag coefficients for a supersonic airfoil. 
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PROBLEMS 

Most of the problems in this chapter involve computation of isentropic, Fanno, 
Rayleigh, normal shock, oblique shock, or isentropic expansion wave effects. The CD 
contains associated Excel workbooks for each of these phenomena, and these are rec­
ommended for use while solving the problems (the CD also contains Excel add-in func­
tions for your optional installation). To avoid needless duplication, the CD symbol will 
only be used next to problems when Excel has an additional benefit (e.g., for graphing). 

12.1 Steam flows steadily and isentropically through a nozzle. At an upstream section 
where the speed is negligible, the temperature and pressure are 880°F and 875 psia. 
At a section where the nozzle diameter is 0.50 in., the steam pressure is 290 psia. 
Determine the speed and Mach number at this section and the mass flow rate of 
steam. Sketch the passage shape. 

12.2 Steam flows steadily and isentropically through a nozzle. At an upstream section 
where the speed is negligible, the temperature and pressure are 900°F and 900 psia. 
At a section where the nozzle diameter is 0.188 in., the steam pressure is 600 psia. 
Determine the speed and Mach number at this section and the mass flow rate of 
steam. Sketch the passage shape. 

12.3 At a section in a passage, the pressure is 20 psia, the temperature is 50°F, and the 
speed is 388 ft/s. For isentropic flow of air, determine the Mach number at the point 
where the pressure is 6 psia. Sketch the passage shape, 

12.4 At a section in a passage, the pressure is 200 kPa (abs), the temperature is 32°C, and the 
speed is 525 m/s. At a section downstream the Mach number is 2. Determine the pres­
sure at this downstream location for isentropic flow of air. Sketch the passage shape. 

12.5 Air flows steadily and isentropically through a passage. At section (T), where the 
cross-sectional area is 0.02 m 2, the air is at 40.0 kPa(abs), 60°C, and M = 2.0. At 
section (2) downstream, the speed is 519 m/s. Calculate the Mach number at section 
(2). Sketch the shape of the passage between sections CD and (2). 

12.6 Air, at an absolute pressure of 60.0 kPa and 27°C, enters a passage at 486 m/s, where 
A = 0.02 m 2. At section © downstream, p = 78.8 kPa (abs). Assuming isentropic 
flow, calculate the Mach number at section (2). Sketch the flow passage. 

12.7 Air flows steadily and isentropically through a passage at 65 kg/s. At the section where 
A = 0.513 m2, M = 2, T = 0°C, and p = 15.0 kPa (abs). Determine the speed and 
cross-sectional area downstream where T = 106°C. Sketch the flow passage. 

12.8 For isentropic flow of air, at a section in a passage, A = 0.25 m 2, p = 15 kPa (abs), 
T = 10°C, and V = 590 m/s. Find the Mach number and the mass flow rate. At a 
section downstream the temperature is 137°C and the Mach number is 0.75. Deter­
mine the cross-sectional area and pressure at this downstream location. Sketch the 
passage shape. 

12.9 A passage is designed to expand air isentropically to atmospheric pressure from a 
large tank in which properties are held constant at 5°C and 304 kPa (abs). The 
desired flow rate is 1 kg/s. Assuming the passage is 5 m long, and that the Mach 
number increases linearly with position in the passage, plot the cross-sectional area 
and pressure as functions of position. 

12.10 Air flows isentropically through a converging nozzle into a receiver in which the ab­
solute pressure is 240 kPa. The air enters the nozzle with negligible speed at a pres­
sure of 406 kPa (abs) and a temperature of 95°C. Determine the mass flow rate 
through the nozzle for a throat area of 0.01 m2. 
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12.11 Air flows isentropically through a converging nozzle into a receiver where the pres­
sure is 33 psia. If the pressure is 50 psia and the speed is 500 ft/s at the nozzle loca­
tion where the Mach number is 0.4, determine the pressure, speed, and Mach number 
at the nozzle throat. 

12.12 Air flowing isentropically through a converging nozzle discharges to the atmosphere. 
At the section where the absolute pressure is 250 kPa, the temperature is 20°C and 
the air speed is 200 m/s. Determine the nozzle throat pressure. 

12.13 Air flowing isentropically through a converging nozzle discharges to the atmosphere. 
At a section the area is A = 0.05 m 2, T = 3.3°C, and V = 200 m/s. If the flow is just 
choked, find the pressure and the Mach number at this location. What is the throat 
area? What is the mass flow rate? 

12.14 Air flows from a large tank (p = 650 kPa (abs), T = 550°C) through a converging 
nozzle, with a throat area of 600 mm 2, and discharges to the atmosphere. Determine 
the mass rate of flow for isentropic flow through the nozzle. 

12.15 Air, with p0 = 650 kPa (abs) and T0 = 350 K, flows isentropically through a con­
verging nozzle. At the section in the nozzle where the area is 2.6 x 10 3 m 2, the 
Mach number is 0.5. The nozzle discharges to a back pressure of 270 kPa (abs). 
Determine the exit area of the nozzle. 

12.16 A converging nozzle is connected to a large tank that contains compressed air at 15°C. 
The nozzle exit area is 0.001 m2. The exhaust is discharged to the atmosphere. To ob­
tain a satisfactory shadow photograph of the flow partem leaving the nozzle exit, the 
pressure in the exit plane must be greater than 325 kPa (gage). What pressure is re­
quired in the tank? What mass flow rate of air must be supplied if the system is to run 
continuously? Show static and stagnation state points on a Ts diagram. 

12.17 Air at 0°C is contained in a large tank on the space shuttle. A converging section 
with exit area 1 X 10 3 m 2 is attached to the tank, through which the air exits to 
space at a rate of 2 kg/s. What are the pressure in the tank, and the pressure, tempera­
ture, and speed at the exit? 

12.18 A large tank supplies air to a converging nozzle that discharges to atmospheric pres­
sure. Assume the flow is reversible and adiabatic. For what range of tank pressures 
will the flow at the nozzle exit be sonic? If the tank pressure is 600 kPa (abs) and the 
temperature is 600 K, determine the mass flow rate through the nozzle, if the exit 
area is 1.29 X 10 3 m 2. 

12.19 A large tank initially is evacuated to 27 in. Hg (vacuum). (Ambient conditions are 
29.4 in. Hg at 70°F.) At t = 0, an orifice of 0.25 in. diameter is opened in the tank 
wall; the vena contracta area is 65 percent of the geometric area. Calculate the mass 
flow rate at which air initially enters the tank. Show the process on a Ts diagram. 
Make a schematic plot of mass flow rate as a function of time. Explain why the plot 
is nonlinear. 

12.20 An 18 in. diameter spherical cavity initially is evacuated. The cavity is to be filled 
with air for a combustion experiment. The pressure is to be 5 psia, measured after its 
temperature reaches 7"alm. Assume the valve on the cavity is a converging nozzle with 
throat diameter of 0.05 in., and the surrounding air is at standard conditions. For how 
long should the valve be opened to achieve the desired final pressure in the cavity? 
Calculate the entropy change for the air in the cavity. 

12.21 Air flows isentropically through a converging nozzle attached to a large tank, where 
the absolute pressure is 171 kPa and the temperature is 27°C. At the inlet section the 
Mach number is 0.2. The nozzle discharges to the atmosphere; the discharge area is 
0.015 m 2. Determine the magnitude and direction of the force that must be applied to 
hold the nozzle in place. 
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12.22 A stream of air flowing in a duct (A = 5 X 10" 4 m 2) is at p = 300 kPa (abs), has 
M = 0.5, and flows at m = 0.25 kg/s. Determine the local isentropic stagnation 
temperature. If the cross-sectional area of the passage were reduced downstream, de­
termine the maximum percentage reduction of area allowable without reducing the 
flow rate (assume isentropic flow). Determine the speed and pressure at the minimum 
area location, 

12.23 Consider a "rocket cart" propelled by a jet supplied from a tank of compressed air 
on the cart. Initially, air in the tank is at 1.3 MPa (abs) and 20°C, and the mass of 
the cart and tank is M0 = 25 kg. The air exhausts through a converging nozzle 
with exit area Ar = 30 mm 2. Rolling resistance of the cart is FR = 6 N; aerody­
namic resistance is negligible. For the instant after air begins to flow through the 
nozzle: (a) compute the pressure in the nozzle exit plane, (b) evaluate the mass 
flow rate of air through the nozzle, and (c) calculate the acceleration of the tank 
and cart assembly. 

12.24 An air-jet-driven experimental rocket of 25 kg mass is to be launched from the space 
shuttle into space. The temperature of the air in the rocket's tank is 125°C. A con­
verging section with exit area 25 mm 2 is attached to the tank, through which the air 
exits to space at a rate of 0.05 kg/s. What is the pressure in the tank, and the pressure, 
temperature, and air speed at the exit when the rocket is first released? What is the 
initial acceleration of the rocket? 

12.25 A cyfinder of gas used for welding contains helium at 3000 psig and room tempera­
ture. The cylinder is knocked over, its valve is broken off, and gas escapes through a 
converging passage. The minimum flow area is 0.10 in.2 at the oudet section where 
the gas flow is uniform. Find (a) the mass flow rate at which gas leaves the cylinder 
and (b) the instantaneous acceleration of the cylinder (assume the cylinder axis is 
horizontal and its mass is 125 lb). Show static and stagnation states and the process 
path on a Ts diagram. 

12.26 A converging nozzle is bolted to the side of a large tank. Air inside the tank is main­
tained at a constant 50 psia and 100°F. The inlet area of the nozzle is 10 in.2 and the 
exit area is 1 in.2 The nozzle discharges to the atmosphere. For isentropic flow in the 
nozzle, determine the total force on the bolts, and indicate whether the bolts are in 
tension or compression. 

12.27 An ideal gas, with k = 1.4, flows isentropically through the converging nozzle 
shown and discharges into a large duct where the pressure is p2 = 150 kPa (abs). The 
gas is not air and the gas constant, R, is unknown. Flow is steady and uniform at all 
cross-sections. Find the exit area of the nozzle, A2, and the exit speed, V2, 
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12.28 An insulated air tank with V = 107 ft3 is used in a blowdown installation. Initially 
the tank is charged to 400 psia at 800°R. The mass flow rate of air from the tank is a 
function of time; during the first 30 s of blowdown 64.5 lbm of air leaves the tank. 
Determine the air temperature in the tank after 30 s of blowdown. Estimate the nozzle 
throat area. 
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12.29 A jet transport aircraft, with pressurized cabin, cruises at 11 km altitude. The cabin 
temperature and pressure initially are at 25°C and equivalent to 2.5 km altitude. The 
interior volume of the cabin is 25 m 3. Air escapes through a small hole with effective 
flow area of 0.002 m 2. Calculate the time required for the cabin pressure to decrease 
by 40 percent. Plot the cabin pressure as a function of time. 

12.30 A large insulated tank, pressurized to 620 kPa (gage), supplies air to a converging 
nozzle which discharges to atmosphere. The initial temperature in the tank is 127°C. 
When flow through the nozzle is initiated, what is the Mach number in the exit plane 
of the nozzle? What is the pressure in the exit plane when the flow is initiated? At 
what condition will the exit-plane Mach number change? How will the exit-plane 
pressure vary with time? How will flow rate through the nozzle vary with time? What 
would you estimate the air temperature in the tank to be when flow through the noz­
zle approaches zero? 

12.31 Air escapes from a high-pressure bicycle tire through a hole with diameter d = 
0.254 mm. The initial pressure in the tire is pt = 620 kPa (gage). (Assume the tem­
perature remains constant at 27°C.) The internal volume of the tire is approximately 
4.26 X 10 4 m 3, and is constant. Estimate the time needed for the pressure in the tire 
to drop to 310 kPa (gage). Compute the change in specific entropy of the air in the 
tire during this process. Plot the tire pressure as a function of time. 

12.32 A converging-diverging nozzle is attached to a very large tank of air in which the 
pressure is 21 psia and the temperature is 100°F. The nozzle exhausts to the atmos­
phere where the pressure is 14.7 psia. The exit area of the nozzle is 1 in.2 What is the 
flow rate through the nozzle? Assume the flow is isentropic. 

12.33 At the design condition of the system of Problem 12.32, the exit Mach number is 
Me = 2.0. Find the pressure in the tank of Problem 12.32 (keeping the temperature 
constant) for this condition. What is the flow rate? What is the throat area? 

12.34 A converging-diverging nozzle, designed to expand air to M = 3.0, has a 250 mm 2 

exit area. The nozzle is bolted to the side of a large tank and discharges to standard 
atmosphere. Air in the tank is pressurized to 4.5 MPa (gage) at 750 K. Assume flow 
within the nozzle is isentropic. Evaluate the pressure in the nozzle exit plane. Calcu­
late the mass flow rate of air through the nozzle. 

12.35 A converging-diverging nozzle, with a throat area of 2 in.2, is connected to a large tank 
in which air is kept al a pressure of 80 psia and a temperature of 60°E If the nozzle is to 
operate at design conditions (flow is isentropic) and die ambient pressure outside the 
nozzle is 12.9 psia, calculate the exit area of the nozzle and the mass flow rate. 

12.36 Air, at a stagnation pressure of 7.20 MPa (abs) and a stagnation temperature of 1100 
K, flows isentropically through a converging-diverging nozzle having a throat area of 
0.01 m 2. Determine the speed and the mass flow rate at the downstream section 
where the Mach number is 4.0. 

12.37 Air is to be expanded through a converging-diverging nozzle by a frictionless adia­
batic process, from a pressure of 1.10 MPa (abs) and a temperature of 115°C, to a 
pressure of 141 kPa (abs). Determine the throat and exit areas for a well-designed 
shockless nozzle, if the mass flow rate is 2 kg/s. 

12.38 Air flows isentropically through a converging-diverging nozzle attached to a large 
tank, in which the pressure is 251 psia and the temperature is 500°R. The nozzle is 
operating at design conditions for which the nozzle exit pressure, pe, is equal to the 
surrounding atmospheric pressure, pa. The exit area of the nozzle is Ae = 1.575 in.2 

Calculate the flow rate through the nozzle. Plot the mass flow rate as the temperature 
of the tank is progressively increased to 2000°R (all pressures remaining the same). 
Explain this result (e.g., compare the mass flow rates at 500°R and 2000°R). 
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12.58 For the conditions of Problem 12.52, determine the duct length. Assume the duct is 
circular and made from commercial steel. Plot the variations of pressure and Mach 
number versus distance along the duct. 

12.59 Consider the flow described in Example Problem 12.7. Using the flow functions for 
Fanno-line flow of an ideal gas, plot static pressure, temperature, and Mach number 
versus LID measured from the tube inlet; continue until the choked state is reached. 

12.60 Using coordinates 777"0 and {s — s*)/cp, where s* is the entropy at M = 1, plot the 
Fanno line starting from the inlet conditions specified in Example Problem 12.7. 
Proceed to M = 1. 

12.61 Using coordinates TIT* and (s — s*)lcp, where s* is the entropy at M = 1, plot the 
Fanno line for air flow for 0.1 < M < 3.0. 

^ R ) 12.62 Air flows through a 40 ft length of insulated constant-area duct with D = 2.12 ft. 
The relative roughness is e/D = 0.002. At the duct inlet, 7, = 100°F and p{ = 
17.0 psia. At a location downstream, p 2 = 14.7 psia, and the flow is subsonic. Is suf­
ficient information given to solve for Aft and M{i Prove your answer graphically. 
Find the mass flow rate in the duct and T2. 

12.63 Air brought into a tube through a converging-diverging nozzle initially has stagna­
tion temperature and pressure of 1000°R and 200 psia. Flow in the nozzle is isen­
tropic; flow in the tube is adiabatic. At the junction between the nozzle and tube the 
pressure is 2.62 psia. The tube is 4 ft long and I in. in diameter. If the outlet Mach 
number is unity, find the average friction factor over the tube length. Calculate the 
change in pressure between the tube inlet and discharge. 

12.64 For the conditions of Problem 12.51, determine the duct length. Assume the duct is 
circular and made from commercial steel. Plot the variations of pressure and Mach 
number versus distance along the duct. 

12.65 Beginning with the inlet conditions of Problem 12.51, and using coordinates 77T0 

and (s — s*)/cp, plot the supersonic and subsonic branches of the Fanno line. 

12.66 A smooth constant-area duct assembly (D = 150 mm) is to be fed by a converging-
diverging nozzle from a tank containing air at 295 K and 1.0 MPa (abs). Shock-free 
operation is desired. The Mach number at the duct inlet is to be 2.1 and the Mach 
number at the duct outlet is to be 1.4. The entire assembly will be insulated. Find (a) 
the pressure required at the duct outlet, (b) the duct length required, and (c) the 
change in specific entropy. Show the static and stagnation state points and the 
process path on a Ts diagram. 

* 12.67 In long, constant-area pipelines, as used for natural gas, temperature is constant. 
Assume gas leaves a pumping station at 50 psia and 70°F at M = 0.10. At the section 
along the pipe where the pressure has dropped to 20 psia, calculate the Mach number 
of the flow. Is heat added to or removed from the gas over the length between the 
pressure taps? Justify your answer: Sketch the process on a Ts diagram. Indicate 
(qualitatively) 7^, TQj, and p 0 j . 

*12.68 Air enters a horizontal channel of constant area at 200°F, 600 psia, and 350 ft/s. De­
termine the limiting pressure for isothermal flow. Compare with the limiting pressure 
for frictional adiabatic flow. 

*12.69 Air enters a 6 in. diameter pipe at 60°F, 200 psia, and 190 ft/s. The average friction fac­
tor is 0.016. Flow is isothermal. Calculate the local Mach number and the distance 
from the entrance of the channel, at the point where the pressure reaches 75 psia. 

* These problems require material from sections that may be omitted without loss of conlinuity in the 
text material. 



PROBLEMS 707 

12.70 A clean steel pipe is 950 ft long and 5.25 in. inside diameter. Air at 80°F, 120 psia, 
and 80 ft/s enters the pipe. Calculate and compare the pressure drops through the 
pipe for (a) incompressible, (b) isothermal, and (c) adiabatic flows. 

12.71 Natural gas (molecular mass Mm — 18 and k = 1.3) is to be pumped through a 36 in. 
i.d. pipe connecting two compressor stations 40 miles apart. At the upstream station 
the pressure is not to exceed 90 psig, and at the downstream station it is to be at least 
10 psig. Calculate the maximum allowable rate of flow (ft3/day at70°F and 1 atm) as­
suming sufficient heat exchange through the pipe to maintain the gas at 70°F. 

12.72 Consider frictionless flow of air in a constant-area duct. At section ® , M, = 0.50, 
p, = 1.10 MPa (abs), and 7"0| = 333 K. Through the effect of heat exchange, the 
Mach number at section (2) is M2 = 0.90 and the stagnation temperature is T^ = 
478 K. Determine the amount of heat exchange per unit mass to or from the fluid be­
tween sections (J) and (2) and the pressure difference, p, - p 2 . 

12.73 Air flows through a 2 in. inside diameter pipe with negligible friction. Inlet conditions 
are T, = 60°F, p, = 150 psia, and /W, = 0.30. Determine the heat exchange per 
pound of air required to produce M2 = 1.0 at the pipe exit, where p 2 = 72.0 psia. 

12.74 Air flows without friction through a short duct of constant area. At the duct entrance, 
Mt = 0.30, T, = 50°C, and p, - 2.16 kg/m3. As a result of heating, the Mach num­
ber and pressure at the tube outlet are M2 = 0.60 and p2 — 150 kPa. Determine the 
heat addition per unit mass and the entropy change for the process. 

12.75 Liquid Freon, used to cool electronic components, flows steadily into a horizontal 
tube of constant diameter, D = 15.9 mm. Heat is transferred to the flow, and the liq­
uid boils and leaves the tube as vapor. The effects of friction are negligible compared 
with the effects of heat addition. Flow conditions are shown. Find (a) the rate of heat 
transfer and (b) the pressure difference, p, - p2. 

Flow D = 15.9 mm 

ft, = 60.9 kJ/kg 
p, = 1620 kg/m a 

m ^ 0 .835 kg/s 

ft2= 145 kJ/kg 
(h = 13.4 kg/m 3 

P12.75 

12.76 Air flows at 1.42 kg/s through a 100 mm diameter duct. At the inlet section, the tem­
perature and absolute pressure arc 52°C and 60.0 kPa. At the section downstream 
where the flow is choked, T2 ~ 45°C. Determine the heat addition per unit mass, the 
entropy change, and the change in stagnation pressure for the process, assuming fric­
tionless flow. 

12.77 Consider frictionless flow of air in a duct of constant area, A = 0.087 ft2. At one sec­
tion, the static properties are 500 R and 15.0 psia and the Mach number is 0.2. At a 
section downstream, the static pressure is 10.0 psia. Draw a Ts diagram showing the 
static and stagnation states. Calculate the flow speed and temperature at the down­
stream location. Evaluate the rate of heat exchange for the process. 

12.78 A combustor from a 1T8D jet engine (as used on the Douglas DC-9 aircraft) has 
an air flow rate of 15 lbm/s. The area is constant and frictional effects are negligible. 
Properties at the combustor inlet are 1260°R, 235 psia, and 609 ft/s. At the 

These problems require material from sections that may be omitted without loss of continuity in the 
text material. 
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combustor outlet, T = 1840°R and M = 0.476. The heating value of the fuel is 
18,000 FJtu/lbm; the air-fuel ratio is large enough so properties are those of air. 
Calculate the pressure at the combustor outlet. Determine the rate of energy addition 1 
to the air stream. Find the mass flow rate of fuel required; compare it to the air flow j 
rate. Show the process on a Ts diagram, indicating static and stagnation stales and 
the process path. 

12.79 Consider frictionless flow of air in a duct with D = 4 in. At section CD, the tempera­
ture and pressure are 30°F and 10 psia; the mass flow rate is 1.2 lbm/s. How much 
heat may be added without choking the flow? Evaluate the resulting change in stag­
nation pressure. 

12.80 A constant-area duct is fed with air from a converging-diverging nozzle. At the en­
trance to the duct, the following properties are known: p0 = 800 kPa (abs), Tp, = 
700 K, and M{ = 3.0. A short distance down the duct (at section (D) p2 = 46.4 kPa. 
Assuming frictionless flow, determine the speed and Mach number at section (2), 
and the heat exchange between the inlet and section (2). 

12.81 Air flows steadily and without friction at 1.83 kg/s through a duct with cross-
sectional area of 0.02 m2. At the duct inlet, the temperature and absolute pressure are 
260°C and 126 kPa. The exit flow discharges subsonically to atmospheric pressure. 
Determine the Mach number, temperature, and stagnation temperature at the duct 
outlet and the heat exchange rate. 

12.82 Air flows without friction in a short section of constant-area duct. At the duct inlet, 
M{ = 0.30, 7, = 50°C, and p, =2 .16 kg/m3. At the duct outlet, M2 = 0.60. Deter­
mine the heat addition per unit mass, the entropy change, and the change in stagna­
tion pressure for the process. 

12.83 In the frictionless flow of air through a 100 mm diameter duct, 1.42 kg/s enters at 
52°C and 60.0 kPa (abs). Determine the amount of heat that must be added to choke 
the flow, and the fluid properties at the choked state, 

12.84 Air, from an aircraft inlet system, enters the engine combustion chamber where heat 
is added during a frictionless process in a tube with constant area of 0.01 m2. The 
local isentropic stagnation temperature and Mach number entering the combustor are 
427 K and 0.3. The mass flow rate is 0.5 kg/s. When the rate of heat addition is set at 
404 kW, flow leaves the combustor at 1026 K and 22,9 kPa (abs). Determine for this 
process (a) the Mach number at the combustor outlet, (b) the static pressure at the 
combustor inlet, and (c) the change in local isentropic stagnation pressure during the 
heat addition process. Show static and stagnation state points and indicate the 
process path on a Ts diagram. 

12.85 Consider steady, one-dimensional flow of air in a combustor with constant area of 
0.5 ft2, where hydrocarbon fuel, added to the air stream, bums. The process is equiv­
alent to simple heating because the amount of fuel is small compared to the amount 
of air; heating occurs over a short distance so that friction is negligible. Properties at 
the combustor inlet are 818°R, 200 psia, and M = 0.3. The speed at the combustor 
outlet must not exceed 2000 ft/s. Find the properties at the combustor outlet and the 
heat addition rate. Show the process path on a Ts diagram, indicating static and stag­
nation state points before and after the heat addition. 

12.86 Flow in a gas turbine combustor is modeled as steady, one-dimensional, friction­
less heating of air in a channel of constant area. For a certain process, the inlet condi­
tions are 960°F, 225 psia, and M = 0.4. Calculate the maximum possible heat 
addition. Find all fluid properties at the outlet section and the reduction in stagnation 
pressure. Show the process path on a Ts diagram, indicating ail static and stagnation 
state points. 
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12.87 A supersonic wind tunnel is supplied from a high-pressure tank of air at 25°C. 
The test section temperature is to be maintained above 0°C to prevent formation 
of ice particles. To accomplish this, air from the tank is heated before it flows into 
a converging-diverging nozzle which feeds the test section. The heating is done in 
a short section with constant area. The heater output is (2 = 10 kW. The design 
Mach number in the wind tunnel test section is to be 3.0. Evaluate the stagnation 
temperature required at the heater exit. Calculate the maximum mass flow rate 
at which air can be supplied to the wind tunnel test section. Determine the area 
ratio, AeIA,. 

12.88 Consider steady flow of air in a combustor where thermal energy is added by burning 
fuel. Neglect friction. Assume thermodynamic properties are constant and equal to 
those of pure air. Calculate the stagnation temperature at the burner exit. Compute 
the Mach number at the burner exit. Evaluate the heat addition per unit mass and the 
heat exchange rate. Express the rate of heat addition as a fraction of the maximum 
rate of heat addition possible with this inlet Mach number. 

W] = 0.4 
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12.89 Using coordinates TIT* and (.s- - s*)/cp, where s* is the entropy at M = 1, plot the 
Rayleigh line for air flow (A- - 1.4) for 0.4 < M < 3.0. 

12.90 Beginning with the inlet conditions of Problem 12.50, and using coordinates T/T0j and 
is — s'-:)/cp, plot the supersonic and subsonic branches of the Rayleigh line for the flow. 

12.91 Frictionless flow of air in a constant-area duct discharges to atmospheric pressure at 
section (2). Upstream at section ( J ) , M] = 3.0, 7~, = 215°R, and p , = 1.73 psia. 
Between sections © and (2), 48.5 Btu/lbm of air is added to the flow. Determine M2 

and p 2 . In addition to a Ts diagram, sketch the pressure distribution versus distance 
along the channel, labeling sections (T) and (2). 

12.92 A jet transport aircraft cruises at M = 0.85 at an altitude of 40,000 ft. Air for the 
cabin pressurization system is taken aboard through an inlet duct and slowed isen­
tropically to 100 ft/s relative to the aircraft. Then it enters a compressor where its 
pressure is raised adiabatically to provide a cabin pressure equivalent to 8000 ft alti­
tude. The air temperature increase across the compressor is 170°F. Finally, the air is 
cooled to 70"F (in a heat exchanger with negligible friction) before it is added to the 
cabin air. Sketch a diagram of the system, labeling all components and numbering 
appropriate cross-sections. Determine the stagnation and static temperature and pres­
sure at each cross-section. Sketch to scale and label a Ts diagram showing the static 
and stagnation state points and indicating the process paths. Evaluate the work added 
in the compressor and the energy rejected in the heat exchanger. 

12.93 A normal shock occurs when a pitot-static tube is inserted into a supersonic wind 
tunnel. Pressures measured by the tube are pQ^ = 68.1 kPa (abs) and p 2 = 54.8 kPa 
(abs). Before the shock, T, = 160 K and p , = 11.0 kPa (abs). Calculate the air speed 
in the wind runnel. 
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12.94 A total-pressure probe is placed in a supersonic wind tunnel where 7 = 530°R and 
M = 2.0. A normal shock stands in front of the probe. Behind the shock, M2 = 0.577 
and p 2

 = 5.76 psia. Find (a) the downstream stagnation pressure and stagnation tem­
perature and (b) all fluid properties upstream from the shock. Show static and stagna­
tion state points and the process path on a Ts diagram. 

12.95 Air flows steadily through a long, insulated constant-area pipe. At section CD, M t = 
2.0, 7, = 140°F, and p, = 35.9 psia. At section (2), downstream from a normal 
shock, V2 = 1080 ft/s. Determine the density and Mach number at section © . Make 
a qualitative sketch of the pressure distribution along the pipe, 

12.96 Air approaches a normal shock at Mt = 3.0, with T0j = 700 K and p, = 125 kPa 
(abs). DeteiTtiine the speed and temperature of the air leaving the shock and the en­
tropy change across the shock. 

12.97 A normal shock stands in a constant-area duct. Air approaches the shock with 
TQI = 1000°R, p 0 | = 100 psia, and M, = 3.0. Determine the static pressure down­
stream from the shock. Compare the downstream pressure with that reached by de­
celerating isentropically to the same subsonic Mach number. 

12.98 Air undergoes a normal shock. Upstream, 7, = 35°C, p, = 229 kPa (abs), and V, = 
704 m/s. Determine the temperature and stagnation pressure of the air stream leaving 
the shock. 

12.99 A normal shock occurs in air at a section where V, = 924 m/s, 7, = 10°C, and p, = 
35.0 kPa (abs). Determine the speed and Mach number downstream from the shock, 
and the change in stagnation pressure across the shock. 

12.100 Air approaches a normal shock with 7, = 180C, p, = 101 kPa (abs), and V, = 766 m/s. 
Determine the speed immediately downstream from the shock and the pressure change 
across the shock. Calculate the corresponding pressure change for a frictionless, shock-
less deceleration between the same speeds. 

12.101 A supersonic aircraft cruises at M = 2.2 at 12 km altitude. A pitot tube is used to 
sense pressure for calculating air speed. A normal shock stands in front of the tube. 
Evaluate the local isentropic stagnation conditions in front of the shock. Estimate the 
stagnation pressure sensed by the pitot tube. Show static and stagnation state points 
and the process path on a 7s diagram. 

12.102 Stagnation pressure and temperature probes are located on the nose of a supersonic 
aircraft. At 35,000 ft altitude a normal shock stands in front of the probes. The tem­
perature probe indicates 7 0 = 420°F behind the shock. Calculate the Mach number 
and air speed of the plane. Find the static and stagnation pressures behind the shock. 
Show the process and the static and stagnation state points on a 7$ diagram. 

12.103 The Concorde supersonic transport flies at M = 2.2 at 20 km altitude. Air is deceler­
ated isentropically by the engine inlet system to a local Mach number of 1.3. The air 
passes through a normal shock and is decelerated further to M = 0.4 at the engine 
compressor section. Assume, as a first approximation, that this subsonic diffusion 
process is isentropic and use standard atmosphere data for freestream conditions. De­
termine the temperature, pressure, and stagnation pressure of the air entering the en­
gine compressor. 

12.104 A supersonic wind tunnel is to be operated at M = 2.2 in the test section. Upstream 
from the test section, the nozzle throat area is 0.07 m 2. Air is supplied at stagnation 
conditions of 500 K and 1.0 MPa (abs). At one flow condition, while the tunnel is be­
ing brought up to speed, a normal shock stands at the nozzle exit plane. The flow is 
steady. For this starting condition, immediately downstream from the shock find (a) the 
Mach number, (b) the static pressure, (c) the stagnation pressure, and (d) the minimum 
area theoretically possible for the second throat downstream from the test section. On a 
Ts diagram show static and stagnation state points and the process path. 
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12.105 Consider a supersonic wind tunnel starting as shown. The nozzle throat area is 1.25 
ft2, and the test section design Mach number is 2.50. As the runnel starts, a normal 
shock stands in the divergence of the nozzle where the area is 3.05 ft2. Upstream 
stagnation conditions are T0 = 1080°R and p 0 = 115 psia. Find the minimum theo­
retically possible diffuser throat area at this instant. Calculate the entropy increase 
across the shock. 

P12.105 

12.106 A supersonic aircraft cruises at M = 2.7 at 60,000 ft altitude. A normal shock stands 
in front of a pitot tube on the aircraft; the tube senses a stagnation pressure of 
10.4 psia. Calculate the static pressure and temperature behind the shock. Evaluate 
the loss in stagnation pressure through the shock. Determine the change in specific 
entropy across the shock. Show static and stagnation states and the process path on a 
Ts diagram. 

12.107 An aircraft is in supersonic flight at 10 km altitude on a standard day. The true air 
speed of the plane is 659 m/s. Calculate the flight Mach number of the aircraft. A 
total-head tube attached to the plane is used to sense stagnation pressure which is 
converted to flight Mach number by an on-board computer. However, the computer 
programmer has ignored the normal shock that stands in front of the total-head tube 
and has assumed isentropic flow. Evaluate the pressure sensed by the total-head tube, 
Determine the erroneous air speed calculated by the computer program. 

12.108 A supersonic aircraft flies at M{ = 2.7 at 20 km altitude on a standard day. Air enters 
the engine inlet system where it is slowed isentropically to M 2 = 1.3. A normal shock 
occurs at that location. The resulting subsonic flow is decelerated further to M4 = 0.40. 
The subsonic diffusion is adiabatic but not isentropic; the final pressure is 104 kPa 
(abs). Evaluate (a) the stagnation temperature for the flow, (b) the pressure change 
across the shock, (c) the entropy change, ^4 — 5-, , and (d) the final stagnation pressure. 
Sketch the process path on a Ts diagram, indicating all static and stagnation states, 

12.109 A blast wave propagates outward from an explosion. At large radii, curvature is small 
and the wave may be treated as a strong normal shock. (The pressure and temperature 
rise associated with the blast wave decrease as the wave travels outward.) At one in­
stant, a blast wave front travels at M = 1.60 with respect to undisturbed air at stan­
dard conditions. Find (a) the speed of the air behind the blast wave with respect to the 
wave and (b) the speed of the air behind the blast wave as seen by an observer on the 
ground. Draw a Ts diagram for the process as seen by an observer on the wave, indi­
cating static and stagnation state points and property values. 

12.110 Air flows through a converging-diverging nozzle with AJA, = 3.5. The upstream 
stagnation conditions are atmospheric; the back pressure is maintained by a vacuum 
pump. Determine the back pressure required to cause a normal shock to stand in the 
nozzle exit plane and the flow speed leaving the shock. 
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12.111 A converging-diverging nozzle expands air from 250°F and 50.5 psia to 14.7 psia. j 
The throat and exit plane areas are 0.801 and 0.917 in.2, respectively. Calculate the ; 

exit Mach number. Evaluate the mass flow rate through the nozzle. 

12.112 A converging-diverging nozzle is attached to a large tank of air, in which 7 0 ( = 300 
K and p 0 l = 250 kPa (abs). At the nozzle throat the pressure is 132 kPa (abs). In the 
diverging section, the pressure falls to 68.1 kPa before rising suddenly across a nor­
mal shock. At the nozzle exit the pressure is 180 kPa. Find the Mach number imme­
diately behind the shock. Determine the pressure immediately downstream from the 
shock. Calculate the entropy change across the shock. Sketch the Ts diagram for this 
flow, indicating static and stagnation state points for conditions at the nozzle throat, 
both sides of the shock, and the exit plane. 

12.113 A converging-diverging nozzle, with throat area A, = 1.0 in.2, is attached to a 
large tank in which the pressure and temperature are maintained at 100 psia and 
600°R. The nozzle exit area is 1.58 in.2 Determine the exit Mach number at de­
sign conditions. Referring to Fig. 12.20, determine the back pressures correspon­
ding to the boundaries of Regimes I, II, III, and IV. Sketch the corresponding plot 
for this nozzle. 

12.114 A converging-diverging nozzle, with AJA, = 4.0, is designed to expand air isentropi­
cally to atmospheric pressure. Determine the exit Mach number at design conditions 
and the required inlet stagnation pressure. Referring to Fig. 12.20, determine the 
back pressures that correspond to the boundaries of Regimes I, II, ITT, and IV. Sketch 
the plot of pressure ratio versus axial distance for this nozzle. 

12.115 Air flows adiabatically from a reservoir, where T — 60°C and p = 600 kPa (abs), 
through a converging-diverging nozzle with AJA, = 4.0. A normal shock occurs 
where M = 2.42. Assuming isentropic flow before and after the shock, determine the 
back pressure downstream from the nozzle. Sketch the pressure distribution. 

12.116 A normal shock occurs in the diverging section of a converging-diverging nozzle 
where A = 4.0 in.2 and M = 2.50. Upstream, T0 = 1000°R and pa = 100 psia. The 
nozzle exit area is 6.0 in.2 Assume the flow is isentropic except across the shock. De­
termine the nozzle exit pressure, throat area, and mass flow rate. 

12.117 A converging-diverging nozzle is designed to expand air isentropically to atmospheric 
pressure from a large tank, where T0 = 150°C and p0 = 790 kPa (abs). A normal 
shock stands in the diverging section, where p = 160 kPa (abs) and A = 600 mm2. 
Determine the nozzle back pressure, exit area, and throat area. 

12.118 A converging-diverging nozzle, with design pressure ratio pe/p0 = 0.128, is operated 
with a back pressure condition such that pjpa = 0.830, causing a normal shock to stand 
in the diverging section. Determine the Mach number at which the shock occurs. 

12.119 Air flows through a converging-diverging nozzle, with AJA, = 3.5. The upstream 
stagnation conditions are atmospheric; the back pressure is maintained by a vacuum 
system. Determine the range of back pressures for which a normal shock will occur 
within the nozzle and the corresponding mass flow rate, if A, = 500 mm2. 

12.120 Ah flows through a converging-diverging nozzle with AJA, = 1.87. Upstream, = 
240°F and p 0 l = 100 psia. The back pressure is maintained at 40 psia. Determine the 
Mach number and flow speed in the nozzle exit plane. 

12.121 A converging-diverging nozzle, with AJA, = 1.633, is designed to operate with at­
mospheric pressure at the exit plane. Determine the range(s) of inlet stagnation pres­
sures for which the nozzle will be free from normal shocks, 

12.122 A normal shock occurs in the diverging section of a converging-diverging nozzle 
where A = 4.0 in.2 and M = 2.00. Upstream, T 0 l = 1000°R and p 0 | = 100 psia, 
The nozzle exit area is 6.0 in.2 Assume that flow is isentropic except across the 
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shock. Find the nozzle exit pressure. Show the processes on a Ts diagram, and indi­
cate the static and stagnation state points. 

12.123 Air flows adiabatically from a reservoir, where T0 = 60°C and p 0 | = 600 kPa (abs), 
through a converging-diverging nozzle. The design Mach number of the nozzle is 
2.94. A normal shock occurs at the location in the nozzle where M = 2.42. Assum­
ing isentropic flow before and after the shock, determine the back pressure down­
stream from the nozzle. Sketch the pressure distribution, 

12.124 Consider flow of air through a converging-diverging nozzle. Sketch the approximate 
behavior of the mass flow rate versus back pressure ratio, pblp0. Sketch the variation 
of pressure with distance along the nozzle, and the Ts diagram for the nozzle flow, 
when the back pressure is p*. 

12.125 A stationary normal shock stands in the diverging section of a converging-diverging 
nozzle. The Mach number ahead of the shock is 3.0. The nozzle area at the shock is 
500 mm 2. The nozzle is fed from a large tank where the pressure is 1000 kPa (gage) 
and the temperature is 400 K. Find the Mach number, stagnation pressure, and static 
pressure after the shock. Calculate the nozzle throat area. Evaluate the entropy 
change across the shock. Finally, if the nozzle exit area is 600 mm 2, estimate the exit 
Mach number. Would the actual exit Mach number be higher, lower, or the same as 
your estimate? Why? 

12.126 A supersonic wind tunnel must have two throats, with the second throat larger than 
the first. Explain why this must be so. 

12.127 A normal shock stands in a section of insulated constant-area duct. The flow is 
frictional. At section ( J ) , some distance upstream from the shock, T, = 470°R. At 
section (4), some distance downstream from the shock, 7"4 = 750°R and M4 = 1.0. 
Denote conditions immediately upstream and downstream from the shock by sub­
scripts (2) and (3), respectively. Sketch the pressure distribution along the duct, 
indicating clearly the locations of sections ( D through @. Sketch a Ts diagram 
for the flow. Determine the Mach number at section (J ) . 

12.128 A normal shock stands in a section of insulated constant-area duct. The flow is 
frictional. At section CD, some distance upstream from the shock, T{ = 668°R, 
p0] = 78.2 psia, and M{ = 2.05. At section (4), some distance downstream from 
the shock, MA = 1.00. Calculate the air speed, V2, immediately ahead of the shock, 
where T2 = 388°F. Evaluate the entropy change, sA — sv 

12.129 Supersonic air flow at = 2.2 and 75 kPa is deflected by an oblique shock with 
angle /3 = 30°. Find the Mach number and pressure after the shock, and the deflection 
angle. Compare these results to those obtained if instead the flow had experienced a 
normal shock. What is the smallest possible value of angle B for this upstream Mach 
number? 

12.130 Consider supersonic flow of air at M, = 3.0. What is the range of possible values of 
the oblique shock angle B? For this range of ft, plot the pressure ratio across the shock. 

12.131 The temperature and Mach number before an oblique shock are T{ = 15°C and 
M, = 2.75, respectively, and the pressure ratio across the shock is 4.5. Find the de­
flection angle, 9, the shock angle, B, and the Mach number after the shock, M2. 

12.132 The air velocities before and after an oblique shock are 1000 m/s and 500 m/s, re­
spectively, and the deflection angle is 6 = 30°. Find the oblique shock angle B, and 
the pressure ratio across the shock. 

* These problems require material from sections that may be omitted without loss of continuity in the 
text material. 
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ij^^i 12.133 An airfoil at zero angle of attack has a sharp leading edge with an included angle of 
20°. It is being tested over a range of speeds in a wind tunnel. The air temperature up­
stream is maintained at 15°C. Determine the Mach number and corresponding air 
speed at which a detached normal shock first attaches to the leading edge, and the an­
gle of the resulting oblique shock. Plot the oblique shock angle B as a function of up­
stream Mach number A/,, from the minimum attached-shock value through Af, = 7. 

12.134 An airfoil has a sharp leading edge with an included angle of S = 60°. It is being 
tested in a wind tunnel running at 1200 m/s (the air pressure and temperature up­
stream are 75 kPa and 3.5CC). Plot the pressure and temperature in the region adja­
cent to the upper surface as functions of angle of attack, a, ranging from a = 0° to 
30°. What are the maximum pressure and temperature? (Ignore the possibility of a 
detached shock developing if a is too large; see Problem 12.135.) 

P 1 2 . 1 3 4 , 12 .135 

t^^l 12.135 The airfoil of Problem 12.134 will develop a detached shock on the lower surface if 
the angle of attack, a, exceeds a certain value. What is this angle of attack? Plot the 
pressure and temperature in the region adjacent to the lower surface as functions of 
angle of attack, a, ranging from a = 0° to the angle at which the shock becomes de­
tached. What are the maximum pressure and temperature? 

12.136 The wedge-shaped airfoil shown has chord c = 2 m and included angle S = 10°. 
Find the lift per unit span at a Mach number of 2.5 in air for which the static pressure 
is 80 kPa. 

P 1 2 . 1 3 6 , 1 2 . 1 4 0 P 1 2 . 1 3 7 

12.137 The wedge-shaped airfoil shown has chord c = 2 m and angles 5, o w e r = 15° and 
Supper

 = 5°. Find the lift per unit span at a Mach number of 2.75 in air at a static pres­
sure of 75 kPa. 

12.138 Air flows at Mach number of 2.5, static pressure 75 kPa, and is expanded by angles 
0, = 10° and $2 = 10°, as shown. Find the pressure changes. 
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• 
P 1 2 . 1 3 8 , 12 .139 

12.139 Find the incoming and intermediate Mach numbers and static pressures if, after two 
expansions of 0, = 10° and 82 = 10°, the Mach number is 3.5 and static pressure is 
20 kPa. 

12.140 Consider the wedge-shaped airfoil of Problem 12.136. Suppose the oblique shock 
could be replaced by isentropic compression waves. Find the lift per unit span at the 
Mach number of 2.5 in air for which the static pressure is 80 kPa. 

12.141 Compare the static and stagnation pressures produced by (a) an oblique shock and 
(b) isentropic compression waves as they each deflect a flow at a Mach number of 3.5 
through a deflection angle of 35° in air for which the static pressure is 50 kPa. 

12.142 Find the lift and drag per unit span on the airfoil shown for flight at a Mach number 
of 1.75 in air for which the static pressure is 50 kPa. The chord length is 1 m. 

P 1 2 . 1 4 2 , 12 .143 

12.143 Plot the lift and drag per unit span, and the lift/drag ratio, as functions of angle of at­
tack for a = 0° to 18°, for the airfoil shown, for flight at a Mach number of 1.75 in 
air for which the static pressure is 50 kPa. The chord length is I m. 

12.144 Find the drag coefficient of the symmetric, zero angle of attack airfoil shown for a 
Mach number of 2.0 in air for which the static pressure is 95 kPa and temperature is 
0°C. The included angles at the nose and tail are each 10°, 

P 1 2 . 1 4 4 , 12 .145 

12.145 Find the lift and drag coefficients of the airfoil of Problem 12.144 if the airfoil now 
has an angle of attack of 12°. 



Appendix A 

FLUID PROPERTY DATA 

A-1 SPECIFIC GRAVITY 

Specific gravity data for several common liquids and solids are presented in Figs. A. la 
and A. lb and in Tables A.l and A.2. For liquids specific gravity is a function of temper­
ature. (Density data for water and air are given as functions of temperature in Tables 
A.7 through A. 10.) For most liquids specific gravity decreases as temperature increases. 
Water is unique: It displays a maximum density of 1000 kg/m 3 (1.94 slug/ft 3) at 4°C 

0.950 1 1 1 1 1 1 1 1 

- 2 0 0 20 40 60 80 100 120 
Temperature, °C 

(a) Water 

Temperature, °C 

(i>) Mercury 

Fig. A .1 Spec i f ic gravi ty of wate r and mercu ry as func­
t ions of t empera tu re . (Data f rom [1].) 
(The specif ic gravity of mercu ry var ies l inearly wi th temper­
ature. T h e var iat ion is g iven by S G = 13.60 - 0 .00240 T 
w h e n T is m e a s u r e d in degrees C.) 

716 
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Table A.1 Specific Gravities of Selected Engineering 
Materials 

(a) Common Manometer Liquids at 20°C (Data from 
[1,2, 3].) 

Liquid Specific Gravity 

E.V. Hill blue oil 0.797 
Meriam red oil 0.827 
Benzene 0.879 
Dibutyl phthalate 1.04 
Monochloronaphthalene 1.20 
Carbon tetrachloride 1.595 
Bromoethylbenzene (Meriam blue) 1.75 
Tetrabromoe thane 2.95 
Mercury 13.55 

(b) Common Materials (Data from [4].) 

Specific Gravity 
Material (—) 

Aluminum 2.64 
Balsa wood 0.14 
Brass 8.55 
Cast Iron 7.08 
Concrete (cured) 2.4* 
Concrete (liquid) 2.5* 
Copper 8.91 
Ice (0°C) 0.917 
Lead 11.4 
Oak 0.77 
Steel 7.83 
Styrofoam (1 pcf**) 0.0160 
Styrofoam (3 pcf) 0.0481 
Uranium (depleted) 18.7 
White pine 0.43 

•depending on aggregate 
•pounds per cubic foot 

(39°F). The maximum density of water is used as a reference value to calculate spe­
cific gravity. Thus 

P H 2 O ( a t 4 ° C ) 

Consequently the maximum SG of water is exactly unity. 
Specific gravities for solids are relatively insensitive to temperature; values 

given in Table A. 1 were measured at 20°C. 
The specific gravity of seawater depends on both its temperature and salinity. A 

representative value for ocean water is SG = 1.025, as given in Table A.2. 



APPENDIX A / FLUID PROPERTY DATA 

Table A .2 Physical Properties of Common Liquids at 20°C 
(Data from [1,5, 6].) 

Isentropic Specific 
Bulk Modulus" Gravity 

Liquid (GN/m2) ( - ) 

Benzene 1.48 0.879 
Carbon tetrachloride 1.36 1.595 
Castor oil 2.11 0.969 
Crude oil — 0.82-0.92 
Ethanol — 0.789 
Gasoline — 0.72 
Glycerin 4.59 1.26 
Heptane 0.886 0.684 
Kerosene 1.43 0.82 
Lubricating oil 1.44 0.88 
Methanol — 0.796 
Mercury 28.5 13.55 
Octane 0.963 0.702 
Seawater* 2.42 1.025 
SAE I0W oil — 0.92 
Water 2.24 0.998 

"Calculated from speed of sound; 1 GN/m2 = 10' N/m2 (1 N/m2 = 1.45 X 
irr 4 ibi/in.2). 
''Dynamic viscosity of seawater at 20°C is p. = 1.08 x 10 3 N-s /m 2 . (Thus, the 
kinematic viscosity of seawater is about 5 percent higher than that of fresh water.) 
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T a b l e A . 3 Properties of the U.S. Standard Atmosphere (Data from [7].) 

Geometric 
Altitude 

(m) 
Temperature 

(K) 
P/PSL 

(—) ( - ) 

-500 291.4 1.061 1.049 
0 288.2 1.000" 1.000* 

500 284.9 0.9421 0.9529 
1,000 281.7 0.8870 0.9075 
1,500 278.4 0.8345 0.8638 
2,000 275.2 0.7846 0.8217 
2,500 271.9 0.7372 0.7812 
3,000 268.7 0.6920 0.7423 
3,500 265.4 0.6492 0.7048 
4,000 262.2 0.6085 0.6689 
4,500 258.9 0.5700 0.6343 
5,000 255.7 0.5334 0.6012 
6,000 249.2 0.4660 0.5389 
7,000 242.7 0.4057 0.4817 
8,000 236.2 0.3519 0.4292 
9,000 229.7 0.3040 0.3813 

10,000 223.3 0.2615 0.3376 
11,000 216.8 0.2240 0.2978 
12,000 216.7 0.1915 0.2546 
13,000 216.7 0.1636 0.2176 
14,000 216.7 0.1399 0.1860 
15,000 216.7 0.1195 0.1590 
16,000 216.7 0.1022 0.1359 
17,000 216.7 0.08734 0.1162 
18,000 216.7 0.07466 0.09930 
19,000 216.7 0.06383 0.08489 
20,000 216.7 0.05457 0.07258 
22,000 218.6 0.03995 0.05266 
24,000 220.6 0.02933 0.03832 
26,000 222.5 0.02160 0.02797 
28,000 224.5 0.01595 0.02047 
30,000 226.5 0.01181 0.01503 
40,000 250.4 0.002834 0.003262 
50,000 270.7 0.0007874 0.0008383 
60,000 255.8 0.0002217 0.0002497 
70,000 219.7 0.00005448 0.00007146 
80,000 180.7 0.00001023 0.00001632 
90,000 180.7 0.000001622 0.000002588 

"Psi = 1.01325 X 10 5 N / m 2 (abs) ( = 14.696 psia). 
VsL = 1.2250 kg/m3

 ( = 0.002377 slug/ft3). 
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A-2 SURFACE TENSION 

The values of surface tension, cr, for most organic compounds are remarkably similar at 
room temperature; the typical range is 25 to 40 mN/m. Water is higher, at about 
73 mN/m at 20°C. Liquid metals have values in the range between 300 and 600 mN/m; 
mercury has a value of about 480 mN/m at 20°C. Surface tension decreases with tem­
perature; the decrease is nearly linear with absolute temperature. Surface tension at the 
critical temperature is zero. 

Values of cr are usually reported for surfaces in contact with the pure vapor of 
the liquid being studied or with air. At low pressures both values are about the same. 

Table A . 4 Surface Tension of Common Liquids at 20°C 
(Data from [1, 5, 8, 9].) 

Surface Tension, a- Contact Angle, 0 
Liquid (mN/m)' (degrees) 

(a) In contact with air 

Benzene 28.9 
Carbon tetrachloride 27.0 
Ethanol 22.3 
Glycerin 63.0 
Hexane 18.4 
Kerosene 26.8 
Lube oil 25-35 
Mercury 484 140 
Methanol 22.6 
Octane 21.8 
Water 72.8 ~ 0 

Water 1 
(b) In contact with water 

Liquid 
(b) In contact with water 

Liquid 

Benzene 35.0 
Carbon tetrachloride 45.0 
Hexane 51.1 
Mercury 375 140 
Methanol 22.7 
Octane 50.8 

°1 mN/m = 10 - 5 N/m. 

A-3 THE PHYSICAL NATURE OF VISCOSITY 

Viscosity is a measure of internal fluid friction, i.e., resistance to deformation. The 
mechanism of gas viscosity is reasonably well understood, but the theory is poorly 
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developed for liquids. We can gain some insight into the physical nature of viscous 
flow by discussing these mechanisms briefly. 

The viscosity of a Newtonian fluid is fixed by the state of the material. Thus 
fi = p(T, p). Temperature is the more important variable, so let us consider it first. 
Excellent empirical equations for viscosity as a function of temperature are available. 

Effect of Temperature on Viscosity 
a. Gases 

All gas molecules are in continuous random motion. When there is bulk motion due to 
flow, the bulk motion is superimposed on the random motions. It is then distributed 
throughout the fluid by molecular collisions. Analyses based on kinetic theory predict 

p OC TJT 

The kinetic theory prediction is in fair agreement with experimental trends, but the 
constant of proportionality and one or more correction factors must be determined; 
this limits practical application of this simple equation. 

If two or more experimental points are available, the data may be correlated us­
ing the empirical Sutherland correlation [7] 

b T U 2 

Constants b and S may be determined most simply by writing 

BTV2 

or 

S + T 

T Y 2 ( 1> S 
T + 

p \b) b 

(Compare this with y = mx + c.) From a plot of TV2/p versus T, one obtains the 
slope, \lb, and the intercept, Sib. For air, 

b = 1.458 x 1(T 6 

S = U 0 . 4 K 
m s - K 1 / 2 

These constants were used with Eq. A.l to compute viscosities for the standard at­
mosphere in [7], the air viscosity values at various temperatures shown in Table A. 10, 
and using appropriate conversion factors, the values shown in Table A.9. 

b. L iqu ids 

Viscosities for liquids cannot be estimated well theoretically. The phenomenon of 
momentum transfer by molecular collisions is overshadowed in liquids by the effects 
of interacting force fields among the closely packed liquid molecules. 

Liquid viscosities are affected drastically by temperature. This dependence on 
absolute temperature may be represented by the empirical equation 

fj, = A e m r - a (A.2) 
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- 2 0 0 20 40 60 80 100 120 
Temperature, T (°C) 

F ig . A . 2 D y n a m i c (abso lu te) v iscos i ty of c o m m o n f lu ids as a func t ion of tempera tu re . 
(Da ta f r om [ 1 , 6, and 10].) 

The graphs for air and water were computed from the Excel workbook Absolute 
Viscosities, using Eq. A.l and Eq. A.3, respectively. The workbook can be used to 
compute viscosities of other fluids if constants b and 5 (for a gas) or A, B, and C (for 
a liquid) are known. 
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or the equivalent form 
l x = A[r)BKT-C) ( A 3 ) 

where T is absolute temperature. 
Equation A.3 requires at least three points to fit constants A, B, and C. In theory 

it is possible to determine the constants from measurements of viscosity at just three 
temperatures. It is better practice to use more data and to obtain the constants from a 
statistical fit to the data. 

However a curve-fit is developed, always compare the resulting line or curve with 
the available data. The best way is to critically inspect a plot of the curve-fit compared 
with the data. In general, curve-fit results will be satisfactory only when the quality of 
the available data and that of the empirical relation are known to be excellent. 

Data for the dynamic viscosity of water are fitted well using constant values A = 
2.414 X 10 5 N • s/m 2, B = 247.8 K, and C = 140 K. Reference 10 states that using 
these constants in Eq. A.3 predicts water viscosity within ± 2.5 percent over the tem­
perature range from 0°C to 370°C. Equation A.3 and Excel were used to compute the 
water viscosity values at various temperatures shown in Table A.8, and using appropri­
ate conversion factors, the values shown in Table A.7. 

Note that the viscosity of a liquid decreases with temperature, while that of a 
gas increases with temperature. 

Effect of Pressure on Viscosity 
a. Gases 

The viscosity of gases is essentially independent of pressure between a few hun­
dredths of an atmosphere and a few atmospheres. However, viscosity at high pres­
sures increases with pressure (or density). 

b. L iqu ids 

The viscosities of most liquids are not affected by moderate pressures, but large in­
creases have been found at very high pressures. For example, the viscosity of water at 
10,000 atm is twice that at 1 atm. More complex compounds show a viscosity in­
crease of several orders of magnitude over the same pressure range. 

More information may be found in [11]. 

A-4 LUBRICATING OILS 

Engine and transmission lubricating oils are classified by viscosity according to stan­
dards established by the Society of Automotive Engineers [12]. The allowable viscos­
ity ranges for several grades are given in Table A.5. 

Viscosity numbers with W (e.g., 20W) are classified by viscosity at 0°F. Those 
without W are classified by viscosity at 210°F. 

Multigrade oils (e.g., 10W-40) are formulated to minimize viscosity variation 
with temperature. High polymer "viscosity index improvers" are used in blending 
these multigrade oils. Such additives are highly non-Newtonian; they may suffer per­
manent viscosity loss caused by shearing. 

Special charts are available to estimate the viscosity of petroleum products as a 
function of temperature. The charts were used to develop the data for typical lubricat­
ing oils plotted in Figs. A.2 and A.3. For details, see [15]. 
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Table A.5 Allowable Viscosity Ranges for Lubricants (Data from [12-14].) 

SAE Max. 
Viscosity Viscosity (cP) a Viscosity (cStV5 at 100°C 

Engine Oil Grade at Temp. (°C) Min Max 

OW 3250 at - 3 0 3.8 _ 
5W 3500 at - 2 5 3.8 — 

I0W 3500 at - 2 0 4.1 — 
15W 3500 at - 1 5 5.6 — 
20W 4500 at - 1 0 5.6 — 
25W 6000 at - 5 9.3 — 
20 — 5.6 <9 .3 
30 — 9.3 <12.5 
40 — 12.5 <16 .3 
50 — 16.3 <21.9 

Axle and Manual SAE Max. Temp. (°C) 
Transmission Viscosity for Viscosity of Viscosity (cSt) at 100°C 

Lubricant Grade 150,000 cP Min Max 

70W - 5 5 4.1 
75W - 4 0 4.1 — 
80W - 2 6 7.0 — 
85W - 1 2 11.0 — 
90 — 13.5 <24 .0 

140 — 24.0 <4I.O 
250 — 41.0 — 

Automatic Maximum 
Transmission Viscosity Temperature Viscosity (cSt) at 100°C 
Fluid (Typical) (cP) (°C) Min Max 

50000 - 4 0 6.5 8.5 
4000 - 2 3 . 3 6.5 8.5 
1700 - 1 8 6.5 8.5 

°1 cenlipoise - I cP I mPa-s = 1(T 3 Pa-s ( = 2.09 X I0~ 5 lbf-s/fl 2). 
'I ccntistoke = 10 6 nv/s ( 1.08 X lO^ftVs) . 
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Table A.6 Thermodynamic Properties of Common G a s e s at STP 0 (Data from [7, 16, 17].) m 
—i 

-< 

Gas 
Chemical 
Symbol 

Molecular 
Mass, Mm 

r f> r 7 V 

cv 

{ 3 

* = i 
Cv 

(-) 

, RB > ft lbf ( BCtu ^ f Btu 
Gas 

Chemical 
Symbol 

Molecular 
Mass, Mm V k g - K j [kg-KJ 

* = i 
Cv 

(-) J b m R , [ lbm • " R ; J b m R 

Air 28.98 286.9 1004 717.4 1.40 53.33 0.2399 0.1713 
Carbon dioxide C 0 2 44.01 188.9 840.4 651.4 1.29 35.11 0.2007 0.1556 
Carbon monoxide CO 28.01 296.8 1039 742.1 1.40 55.17 0.2481 0.1772 
Helium He 4.003 2077 5225 3147 1.66 386.1 1.248 0.7517 
Hydrogen H 2 2.016 4124 14,180 10,060 1.41 766.5 3.388 2.402 
Methane CR, 16.04 518.3 2190 1672 1.31 96.32 0.5231 0.3993 
Nitrogen N 2 28.01 296.8 1039 742.0 1.40 55.16 0.2481 0.1772 
Oxygen o 2 32.00 259.8 909.4 649.6 1.40 48.29 0.2172 0.1551 
Steam' H 2 0 18.02 461.4 -2000 -1540 -1 .30 85.78 -0.478 -0.368 

"STP = standard temperature and pressure, T - 15*C s 59°F and p = 101.325 kPa (abs) = 
hR = RJMm\Ru = 8314.3 J/(kgmol-K) = 1545.3 ftlbf/flbmol- "R); 1 Btu = 778.2 ft-lbf. 
'"Water vapor behaves as an ideal gas when superheated by 55°C (100°F) or more. 

14.696 psia. 
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Table A.7 Properties of Water (U.S. Customary Units) 

Dynamic Kinematic Surface Vapor Bulk 
Temperature, Density, Viscosity, Viscosity, Tension, Pressure, Modulus, 

7 T F ) p (slug/ft3) 
p (Ibf s/ft2) 

i>(ft2/s) a (lbf/ft) Pv (psia) Ev (psi) 

32 1.94 . 3,68E 05 ...1..9QE-Q5.. 0.00519 0,0886 .2.92E + 05. 
40 1.94 3.20E-05 1.65E-05 0.00514 0.122 
50 1.94 2.73E-05 1.41E-05 0.00509 0.178 
59 1.94 2.38E-05 1.23E-05 0.00504 0.247 
60 1.94 2.35E-05 1.21E-05 0.00503 0.256 
68 1.94 2.10E-05 1.08E-05 0.00499 0.339 
70 1.93 2.05E-O5 1.06E-05 0.00498 0.363 3.20E + 05 
80 1.93 1.80E-05 9.32E-06 0.00492 0.507 
90 1.93 1.59E-05 8.26E-06 0.00486 0.699 

100 1.93 I.43E-05 7.38E-06 0.00480 0.950 
110 1.92 1.28E-05 6.68E-06 0.00474 1.28 
120 1.92 1.16E-05 6.05E-06 0.00467 1.70 3.32E + 05 
130 1.91 1.06E-O5 5.54E-06 0.00461 2.23 
140 1.91 9.70E-06 5.08E-06 0.00454 2.89 
150 1.90 8.93E-06 4.70E-06 0.00448 3.72 
160 1.89 8.26E-06 4.37E-06 0.00441 4.75 
170 1.89 7.67E-06 4.06E-06 0.00434 6.00 
180 1.88 7.15E-06 3.80E-06 0.00427 7.52 
190 1.87 6.69E-06 3.58E-06 0.00420 9.34 
200 1.87 6.28E-06 3.36E-06 0.00413 11.5 3.08E + 05 
212 1.86 5.84E-06 3.14E-06 0.00404 14.7 

Table A.8 Properties of Water (SI Units) 

Dynamic Kinematic Surface Vapor Bulk 
Temperature, Density, Viscosity, Viscosity, Tension, Pressure, Modulus, 

T(°C) p (kg/m3) ,i(N-s/m 2) v(mVs) (r (N/m) Pv (kPa) Ev (GPa) 

0 1000 1.76E-03 1.76E-06 0.0757 0.661 2.01 
5 1000 1.51E-03 1.51E-06 0.0749 0.872 
10 1000 1.30E-03 1.30E-06 0.0742 1.23 
15 999 1.14E-03 1.14E-06 0.0735 1.71 
20 998 1.01E-03 1.01E-06 0.0727 2.34 2.21 
25 997 8.93E-04 8.96E-07 0.0720 3.17 
30 996 8.00E-04 8.03E-07 0.0712 4.25 
35 994 7.21E-04 7.25E-07 0.0704 5.63 
40 992 6.53E-04 6.59E-07 0.0696 7.38 
45 990 5.95E-04 6.02E-07 0.0688 9.59 
50 988 5.46E-04 5.52E-07 0.0679 12.4 2.29 
55 986 5.02E-04 5.09E-07 0.0671 15.8 
60 983 4.64E-04 4.72E-07 0.0662 19.9 
65 980 4.31 E-04 4.40E-07 0.0654 25.0 
70 978 4.01E-04 4.10E-07 0.0645 31.2 
75 975 3.75E-04 3.85E-07 0.0636 38.6 
80 972 3.52E-04 3.62E-07 0.0627 47.4 
85 969 3.31E-04 3.41E-07 0.0618 57.8 
90 965 3.12E-04 3.23E-07 0.0608 70.1 2.12 
95 962 2.95E-04 3.06E-07 0.0599 84.6 

100 958 2.79E-04 2.92E-07 0.0589 101 
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Table A.9 Properties of Air at Atmospheric Pressure 
(U.S. Customary Units) 

Dynamic Kinematic 
Temperature, Density, Viscosity, Viscosity, 

T (°F) p (slug/ft3) H (lbf • s/ft2) v (ft2/s) 

40 0.00247 3.63E-07 1.47E-04 
50 0.00242 3.69E-07 I.52E-04 
59 0.00238 3.74E-07 1.57E-04 
60 0.00237 3.74E-07 1.58E-04 
68 0.00234 3.79E-07 1.62E-04 
70 0.00233 3.80E-07 1.63E-04 
80 0.00229 3.85E-07 1.68E-04 
90 0.00225 3.91E-07 1.74E-04 

100 0.00221 3.96E-07 1.79E-04 
110 0.00217 4.02E-07 1.86E-04 
120 0.00213 4.07E-07 1.91E-04 
130 0.00209 4.12E-07 1.97E-04 
140 0.00206 4.18E-07 2.03E-04 
150 0.00202 4.23E-07 2.09E-04 
160 0.00199 4.28E-07 2.15E-04 
170 0.00196 4.33E-07 2.21E-04 
180 0.00193 4.38E-07 2.27E-04 
190 0.00190 4.43E-07 2.33E-04 
200 0.00187 4.48E-07 2.40E-04 

Table A .10 Properties of Air at Atmospheric Pressure (SI Units) 

Dynamic Kinematic 
Temperature, Density, Viscosity, 

p (N • s7m2) 
Viscosity, 

7 T O p (kg/m3) 
Viscosity, 

p (N • s7m2) v (m2/s) 

0 1.29 1.72E-05 1.33E-05 
5 1.27 1.74E-05 1.37E-05 

10 1.25 1.76E-05 1.41E-05 
15 1.23 I.79E-05 1.45E-05 
20 1.21 1.81E-05 1.50E-05 
25 1.19 I.84E-05 1.54E-05 
30 1.17 1.86E-05 1.59E-05 
35 1.15 1.88E-05 1.64E-05 
40 1.13 1.91E-05 1.69E-05 
45 1.11 1.93E-05 1.74E-05 
50 1.09 1.95E-05 1.79E-05 
55 1.08 I.98E-05 I.83E-05 
60 1.06 2.00E-05 I.89E-05 
65 1.04 2.02E-05 1.94E-05 
70 1.03 2.04E-05 I.98E-05 
75 1.01 2.06E-05 2.04E-05 
80 1.00 2.09E-05 2.09E-05 
85 0.987 2.11E-05 2.14E-05 
90 0.973 2.13E-05 2.19E-05 
95 0.960 2.15E-05 2.24E-05 

100 0.947 2.17E-05 2.29E-05 
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Appendix B 

EQUATIONS OF MOTION IN 
CYLINDRICAL COORDINATES 

The continuity equation in cylindrical coordinates for constant density is 

i a 1 8 

r or r 00 dz 
(B.l) 

Normal and shear stresses in cylindrical coordinates for constant density and viscosity 
are 
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The Navier-Stokes equations in cylindrical coordinates for constant density and 
viscosity are 

r component: 
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Appendix C 

VIDEOS FOR FLUID MECHANICS 

Listed below by supplier are titles of videos on fluid mechanics. 

1- Encyclopaedia Britannica Educational Corporation 
310 South Michigan Avenue 
Chicago, Illinois 60604 

The following twenty-two videos, developed by the National Committee for Fluid 
Mechanics Films (NCFMF),' are available (length as noted): 

Aerodynamic Generation of Sound (44 min, principals: M. J. Lighthill, J. E. Ffowcs-
Williams) 
Boundary Layer Control (25 min, principal: D. C. Hazen) 
Cavitation (31 min, principal: P. Eisenberg) 
Channel Flow of a Compressible Fluid (29 min, principal: D. E. Coles) 
Deformation of Continuous Media (38 min, principal: J. L. Lumley) 
Eulerian and Lagrangian Descriptions in Fluid Mechanics (27 min, principal: J. L. Lumley) 
Flow Instabilities (27 min, principal: E. L. Mollo-Christensen) 
Flow Visualization (31 min, principal: S. J. Kline) 
77ie Fluid Dynamics of Drag2 (4 parts, 120 min, principal: A. H. Shapiro) 
Fundamentals of Boundary Layers (24 min, principal: F. H. Abernathy) 
Low-Reynolds-Number Flows (33 min, principal: Sir G. I. Taylor) 
Magnetohydrodynamics (27 min, principal: J. A. Shercliff) 
Pressure Fields and Fluid Acceleration (30 min, principal: A. H. Shapiro) 
Rarefied Gas Dynamics (33 min, principals: F. C. Hurlbut, F. S. Sherman) 
Rheological Behavior of Fluids (22 min, principal: H. Markovitz) 
Rotating Flows (29 min, principal: D. Fultz) 
Secondary Flow (30 min, principal: E. S. Taylor) 
Stratified Flow (26 min, principal: R. R. Long) 
Surface Tension in Fluid Mechanics (29 min, principal: L. M. Trefethen) 
Turbulence (29 min, principal: R. W. Stewart) 
Vorticity (2 parts, 44 min, principal: A. H. Shapiro) 
Waves in Fluids (33 min, principal: A. E. Bryson) 

2. The University of Iowa 
AVC Marketing 
215 Seashore Center 
Iowa City, Iowa 52242-1402 

The following six videos were prepared by H. Rouse as a series, in the order listed. 
They can be viewed individually without serious loss of continuity. 

1 Detailed summaries of the NCFMF videos are contained in Illustrated Experiments in Fluid Mechanics 
(Cambridge, MA: The M.I.T. Press, 1972). 

2 The contents of this video are summarized and illustrated in Shape and Flow: The Fluid Dynamics of 
Drag, by Ascher H. Shapiro (New York: Anchor Books, 1961). 
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Introduction to the Study of Fluid Motion (24 min). This orientation video shows a 
variety of familiar flow phenomena. Use of scale models for empirical study of complex 
phenomena is illustrated and the significance of the Euler, Froude, Mach, and Reynolds 
numbers as similarity parameters is shown using several sequences of model and proto­
type flows. 

Fundamental Principles of Flow (23 min). The basic concepts and physical relation­
ships needed to analyze fluid motions are developed in this video. The continuity, 
momentum, and energy equations are derived and used to analyze a jet propulsion device. 

Fluid Motion in a Gravitational Field (23 min). Buoyancy effects and free-surface 
flows are illustrated in this video. The Froude number is shown to be a fundamental pa­
rameter for flows with a free surface. Wave motions are shown for open-channel and 
density-stratified flows. 

Characteristics of Laminar and Turbulent Flow (26 min). Dye, smoke, suspended 
particles, and hydrogen bubbles are used to visualize laminar and turbulent flows. Insta­
bilities that lead to turbulence are shown; production and decay of turbulence and mixing 
are described. 

Form Drag, Lift, and Propulsion (24 min). The effects of boundary-layer separation 
on flow patterns and pressure distributions are shown for several body shapes. The basic 
characteristics of lifting shapes, including effects of aspect ratio, are discussed, and the re­
sults are applied to analysis of the performance of propellers and torque converters. 

Effects of Fluid Compressibility (17 min). The hydraulic analogy between open-
channel liquid flow and compressible gas flow is used to show representative wave patterns. 
Schlieren optical flow visualization is used in a supersonic wind tunnel to show patterns of 
flow past several bodies at subsonic and supersonic speeds. 

3. American Institute of Aeronautics and Astronautics 
370 L'Enfant Promenade, S.W. 
Washington, D.C. 20024-2518 

America's Wings (29 min). Individuals who made significant contributions to devel­
opment of aircraft for high-speed flight are interviewed; they discuss and explain their 
contributions. This is an effective video for a relatively sophisticated audience. 

4. Purdue University 
Center for Instructional Services 
Film Booking 
Hicks Undergraduate Library 
West Lafayette, Indiana 47907 

Tacoma Narrows Bridge Collapse (3 min, silent). This brief video contains spectacu­
lar original footage from the spontaneous collapse in a light breeze of the 2800 ft suspen­
sion bridge over the Tacoma Narrows, which occurred November 7, 1940. 



Appendix D 

SELECTED PERFORMANCE 
CURVES FOR PUMPS AND FANS 

D-1 INTRODUCTION 

Many firms, worldwide, manufacture fluid machines in numerous standard types and 
sizes. Each manufacturer publishes complete performance data to allow application of 
its machines in systems. This Appendix contains selected performance data for use in 
solving pump and fan system problems. Two pump types and one fan type are included. 

Choice of a manufacturer may be based on established practice, location, or 
cost. Once a manufacturer is chosen, machine selection is a three-step process: 

1. Select a machine type, suited to the application, from a manufacturer's full-line catalog, 
which gives the ranges of pressure rise (head) and flow rate for each machine type. 

2 . Choose an appropriate machine model and driver speed from a master selector chart, 
which superposes the head and flow rate ranges of a series of machines on one graph. 

3. Verify that the candidate machine is satisfactory for the intended application, using a de­
tailed performance curve for the specific machine. 

It is wise to consult with experienced system engineers, either employed by the 
machine manufacturer or in your own organization, before making a final purchase 
decision. 

Many manufacturers currently use computerized procedures to select a machine 
that is most suitable for each given application. Such procedures are simply auto­
mated versions of the traditional selection method. Use of the master selector chart 
and the detailed performance curves is illustrated below for pumps and fans, using 
data from one manufacturer of each type of machine. Literature of other manufactur­
ers differs in detail but contains the necessary information for machine selection. 

D-2 PUMP SELECTION 

Representative data are shown in Figs. D.l through D.10 for Peerless 1 horizontal split 
case single-stage (series AE) pumps and in Figs. D . l l and D . l2 for Peerless multi­
stage (series TU and TUT) pumps. 

Figures D.l and D.2 are master pump selector charts for series AE pumps at 
3500 and 1750 nominal rpm. On these charts, the model number (e.g., 6AE14) indi­
cates the discharge line size (6 in. nominal pipe), the pump series (AE), and the max­
imum impeller diameter (approximately 14 in.). 
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Figures D.3 through D.10 are detailed performance charts for individual pump 
models in the AE series. 

Figures D . l l and D.12 are master pump selector charts for series TU and TUT 
pumps at 1750 nominal rpm. Data for two-stage pumps are presented in Fig. D . l l , 
while Fig. D.12 contains data for pumps with three, four, and five stages. 

Each pump performance chart contains curves of total head versus volume flow 
rate; curves for several impeller diameters—tested in the same cas ing—are pre­
sented on a single graph. Each performance chart also contains contours showing 
pump efficiency and driver power; the net positive suction head (NPSH) requirement, 
as it varies with flow rate, is shown by the curve at the bottom of each chart. The best 
efficiency point (BEP) for each impeller may be found using the efficiency contours. 

Use of the master pump selector chart and detailed performance curves is illus­
trated in Example Problem D. l . 

EXAMPLE D.1 Pump Selection Procedure 
Select a pump to deliver 1750 gpm of water at 120 ft total head. Choose the appropri­
ate pump model and driver speed. Specify the pump efficiency, driver power, and 
NPSH requirement. 

EXAMPLE PROBLEM D.1 

GIVEN: Select a pump to deliver 1750 gpm of water at 120 ft total head. 

FIND: (a) Pump model and driver speed. 
(b) Pump efficiency. 
(c) Driver power. 
(d) NPSH requirement. 

SOLUTION: 
Use the pump selection procedure described in Section D-l. (The numbers below correspond to the num­
bered steps given in the procedure.) 

1. First, select a machine type suited to the application. (This step actually requires a manufacturer's full-
line catalog, which is not reproduced here. The Peerless product line catalog specifies a maximum 
delivery and head of 2500 gpm and 660 ft for series AE pumps. Therefore the required performance 
can be obtained; assume the selection is to be made from this series.) 

2. Second, consult the master pump selector chart. The desired operating point is not within any pump 
contour on the 3500 rpm selector chart CFig. D.l). From the 1750 rpm chart (Fig. D.2), select a 
model 6AE14 pump. From the performance curve for the 6AE14 pump (Fig. D.6), choose a 13 in. 
impeller 

3. Third, verify the performance of the machine using the detailed performance chart. On the performance 
chart for the 6AE14 pump, project up from the abscissa at Q = 1750 gpm. Project across from H = 
120 ft on the ordinate. The intersection is the pump performance at the desired operating point: 

T7 = 85.8 percent S? » 64 hp 

From the operating point, project down to the NPSH requirement curve. At the intersection, read NPSH 
~ 17 ft. 

This completes the selection process for this pump. One should consult with experienced system engi­
neers to verify that the system operating condition has been predicted accurately and the pump has been 

.selected correctly. 
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D-3 FAN SELECTION 

Fan selection is similar to pump selection. A representative master fan selection chart 
is shown in Fig. D . l 3 for a series of Buffalo Forge 2 axial-flow fans. The chart shows 
the performance of the entire series of fans as a function of fan size and driver speed. 

The master fan selector chart is used to select a fan size and driver speed for de­
tailed consideration. Final evaluation of suitability of the fan model for the applica­
tion is done using detailed performance charts for the specific model. A sample per­
formance chart for a Buffalo Forge Size 48 Vaneaxial fan is presented in Fig. D. 14. 

The performance chart is plotted as total pressure rise versus volume flow rate. 
Figure D.14 contains curves for HB, LB, and MB wheels, operating at various con­
stant speeds; the shaded bands represent measured total efficiency for the fans. 

EXAMPLE 0.2 Fan Selection Procedure 

Select an axial-flow fan to deliver 40,000 cfm of standard air at 1.25 in. H 2 0 total 
pressure. Choose the appropriate fan model and driver speed. Specify the fan effi­
ciency and driver power. 

EXAMPLE PROBLEM D.2 

GIVEN: Select an axial fan to deliver 40,000 cfm of standard air at 1.25 in. H 2 0 total head. 

FIND: (a) Fan size and driver speed. 
(b) Fan efficiency. 
(c) Driver power. 

SOLUTION: 
Use the fan selection procedure described in Section D-l. (The numbers below correspond to the numbered 
steps given in the procedure.) 

1. First, select a machine type suited to the application. (This step actually requires a manufacturer's full-
line catalog, which is not reproduced here. Assume the fan selection is to be made from the axial fan 
data presented in Fig. D.l3.) 

2. Second, consult the master fan selector chart. The desired operating point is within the contour for the 
Size 48 fan on the selector chart (Fig. D.13). To achieve the desired performance requires driving the 
fan at 870 rpm. 

3. Third, verify the performance of the machine using the detailed performance chart (Fig. D.14). On the 
detailed performance chart, project up from the abscissa at Q = 40,000 cfm. Project across from p = 
1.25 in. H 2 0 on the ordinate. The intersection is the desired operating point. 

These operating conditions cannot be delivered by a Type LB wheel; however, they are close to 
peak efficiency for either HB or MB wheels. The operating conditions can be delivered at about 72 per­
cent total efficiency using an HB wheel. With an MB wheel, slighdy in excess of 75 percent total effi­
ciency may be expected. From the chart, the "efficiency factor" is 4780 at 17 = 0.75, and the fan driver 
power requirement is 

^ Total Pressure x Capacity 1.25 in. H-,0 x 40,000 cfm 
9> = — - = 1 - = 10.5 hp 

Efficiency Factor 4780 
This completes the fan selection process. Again, one should consult with experienced system engineers 
to verify that the system operating condition has been predicted accurately and the fan has been selected 
.correctly. •> 

1 Buffalo Forge, 465 Broadway, Buffalo, NY 14240. 
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7 0 0 3 5 0 0 rpm 

100 2 0 0 3 0 0 4 0 0 500 i 7 0 0 9 0 0 1500 2 5 0 0 35001 
6 0 0 8 0 0 1000 2 0 0 0 3 0 0 0 4 0 0 0 

Volume flow rate, Q (gpm) 
Fi g. D. 1 Selector chart for Peerless horizontal split case (series AE) pumps at 3500 nominal rpm. 

100 200 300 400 600 800 1000 1500 2500 4000 6000 18000 
500 700 900 2000 3000 5000 7000 

Volume flew rate, Q (gpm) 
Fig. D.2 Se lec tor chart for P e e r l e s s horizontal split c a s e ( ser ies AE) p u m p s at 1 7 5 0 nominal rpm. 
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6 P e e r l e s s P u m p H O R I Z O N T A L S P L I T C A S E PUMPS 
TYP« 4 A E 1 1 S U » 4 i S i 1 1 J S S E C T I O N 1 2 4 0 

1 1 . 2 6 n. D I A . 

V E L O C I T Y H E A D I N C L U D E D 
T O T A L E Y E A R E A 2 6 . 5 0 S Q . I N . 
S P H E R E S I Z E .72 I N . 
P E R F O R M A N C E A T 1.0 S P . G R . 

7 0 7 5 1 Mi l l ! 
8 0 

8 3 < * E F F 

1 7 5 0 R P M I I I I 

AO H P 

3 0 H P 

2 0 H P 
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N P S H 

rtl 1 1 8 7 R « v . 

a I M P E L L E R 2 6 0 2 0 3 0 
M I N I U M I I. I 

C U R V E 3 1 3 2 0 0 3 

F ig . D.3 Pe r fo rmance cu rve for Peer less 4 A E 1 1 p u m p at 1750 rpm. 

m P e e r l e s s P u m p 
A Staling Cor 

H O R I Z O N T A L S P L I T C A S E PUMPS 
T Y P « 4 A E 1 2 S L » 4 I 5 L 1 2 . 1 2 S E C T I O N 1 2 4 0 

V E L O C I T Y H E A D I N C L U D E D 
T O T A L E Y E A R E A 21.1 S Q I N 
S P H E R E S I Z E .63 I N . 
P E R F O R M A N C E A T 1.0 S P . Q R . 

1 7 5 0 R P M 

2 S H P 

2 0 H P 

4 8 8 

U . S . G A L L O N S P E R M I N U T E „ " C U F I V E 3 1 1 2 0 0 2 : 
t l H I ' l l t t l l H I I I I I I 

Fig. D.4 Pe r fo rmance cu rve for Peer less 4 A E 1 2 p u m p at 1750 rpm. 
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Fig. D.5 Pe r fo rmance cu rve for Peer less 4 A E 1 2 p u m p at 3 5 5 0 r p m . 

I S P o o r i o o o P u m p H O R I Z O N T A L S P L I T C A S E P U M P S 
1 V P * « A E 1 4 STA* T I L X L U M S E C T I O N 1 2 4 0 

1 7 5 0 R P M 

I M P E L L E R 3 6 9 3 0 7 7 U . S . G A L L O N S P E R M I N U T E C U R V E 

Fig. D.6 Pe r fo rmance cu rve for Peer less 6 A E 1 4 p u m p at 1750 r p m . 
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HORIZONTAL SPLIT CAM PUMPS 
TyptlAUM UltimOxMJO S E C T I O N 1240 

IMPELLER 2093333 US. GALLONS PER M*IUTE l i e CURVE 3132076 

Fig. D.7 Per fo rmance cu rve for Peer less 8 A E 2 0 G p u m p at 1770 rpm. 
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F i g . D.10 Pe r f o rmance c u r v e for Peer less 16A 18B p u m p at 8 8 0 r p m . 
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Fig . D.12 S e l e c t o r char t for P e e r l e s s mul t i -s tage (ser ies T U a n d T U T ) p u m p s at 1750 n o m i n a l r p m . 
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Fig. D.13 Mas te r fan se lec t ion char t for Buf fa lo Forge ax ia l fans. 
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Fig. D.14 Pe r f o rmance char t for Buf fa lo Forge axial fans. 
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Appendix E 

FLOW FUNCTIONS FOR 
COMPUTATION OF 

COMPRESSIBLE FLOW 

E-1 ISENTROPIC FLOW 

Isentropic flow functions are computed using the following equations: 

^ = I + ^ 1 M 2 

T 2 

EQ. = 
P 

Pp_ = 

P 

1 + ^ M 2 

1 + ^ 1 A/ 2 

k/(k-\) 

Wk-\) 

A - _L 
A* ~ M 

1 + ^ M 2 

2 
jfc + l 

{k+\yi(k-\) 

(11.20b)/( 12.7b) 

(11.20a)/( 12.7a) 

(11.20c)/( 12.7c) 

(12.7d) 

Representative values of the isentropic flow functions for k = 1.4 are presented in 
Table E.l and plotted in Fig. E. l . 

Table E.1 Isentropic Flow Functions (one-dimensional flow, ideal gas, k = 1.4) 

M T/Ta p/Po A/A* 

0.00 1.0000 1.0000 1.0000 
0.50 0.9524 0.8430 0.8852 1.340 
1.00 0.8333 0.5283 0.6339 1.000 
1.50 0.6897 0.2724 0.3950 1.176 
2.00 0.5556 0.1278 0.2301 1.688 
2.50 0.4444 0.05853 0.1317 2.637 
3.00 0.3571 0.02722 0.07623 4.235 
3.50 0.2899 0.01311 0.04523 6.790 
4.00 0.2381 0.006586 0.02766 10.72 
4.50 0.1980 0.003455 0.01745 16.56 
5.00 0.1667 0.001890 0.01134 25.00 

This table was computed from the Excel workbook Isentropic Relations. The work­
book contains a more detailed, printable version of the table and can be easily modi­
fied to generate data for a different Mach number range, or for a different gas. 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Mach number 

F ig . E.1 I s e n t r o p i c f l ow f u n c t i o n s . 

fSa This graph was generated from the Excel workbook. The workbook can be modified 
easily to generate curves for a different gas. 
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E-2 FANNO-LINE FLOW 

Fanno-line flow functions are computed using the following equations: 
- | ( * + 1 V 2 ( * - 1 ) 

PO 1 

Po M k + l A 2 

V* p 

fL^ _ I - M k + l 
Dh kM' 2k 

In 
(k + l)M2 

l + ^ M 2 

(12.21e) 

(12.21b) 

(12.21d) 

(12.21c) 

(12.21a) 

Representative values of the Fanno-line flow functions for k = 1.4 are presented in 
Table E.2 and plotted in Fig. E.2. 

Table E.2 Fanno-Line Flow Functions (one-dimensional flow, ideal gas, k = 1.4) 

M Po/p*0 TIT* pip* V/V* }LmJD„ 

0.00 00 1.200 oc 0.0000 0 0 

0.50 1.340 1.143 2.138 0.5345 1.069 
1.00 1.000 1.000 1.000 1.000 0.0000 
1.50 1.176 0.8276 0.6O65 1.365 0.1361 
2.00 1.688 0.6667 0.4083 1.633 0.3050 
2.50 2.637 0.5333 0.2921 1.826 0.4320 
3.00 4.235 0.4286 0.2182 1.964 0.5222 
3.50 6.790 0.3478 0.1685 2.064 0.5864 
4.00 10.72 0.2857 0.1336 2.138 0.6331 
4.50 16.56 0.2376 0.1083 2.194 0.6676 
5.00 25.00 0.2000 0.08944 2.236 0.6938 

flfa This table was computed from the Excel workbook Fanno-Line Relations. The work­
book contains a more detailed, printable version of the table and can be modified 
easily to generate data for a different Mach number range, or for a different gas. 
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' O . O 0.5 1.0 1.5 2.0 2.5 3.0 

Mach number 

F i g . E.2 Fanno- l ine f low funct ions . 

This graph was generated from the Excel workbook. The workbook can be modified 
» easily to generate curves for a different gas. 
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E-3 RAYLEIGH-LINE FLOW 

Rayleigh-line flow functions are computed using the following equations: 

'0 

T* 1 o 

2(k + \)M2\ 1 + J f c - 1 M' 

(1 + kM2)2 

Po = 

P*o 

T_ 
Y* 

P_ 

P* 

p* 

P 

l + k 

1 + fcVT hi \ + ^ M 2 

M 
\ + k 

.1 + kM' 

1 + k 

1 + kM1 

V_ _ M2(\ + k) 
V* ~ 1 + kM2 

kJ(k-\) 

(12.31d) 

(12.31e) 

(12.31b) 

(12.31a) 

(12.31c) 

Representative values of the Rayleigh-line flow functions for k = 1.4 are presented 
in Table E.3 and plotted in Fig. E.3. 

Table E.3 R a y l e i g h - L i n e F l o w F u n c t i o n s ( o n e - d i m e n s i o n a l f low, idea l g a s , k= 1.4) 

M To/T* Po/p* T/T* p/p* v/v* 

0.00 0.0000 1.268 0.0000 2.400 0.0000 
0.50 0.6914 1.114 0.79O1 1.778 0.4444 
1.00 1.000 1.000 1.000 1.000 1.000 
1.50 0.9093 1.122 0.7525 0.5783 1.301 
2.00 0.7934 1.503 0.5289 0.3636 1.455 
2.50 0.7101 2.222 0.3787 0.2462 1.539 
3.00 0.6540 3.424 0.2803 0.1765 1.588 
3.50 0.6158 5.328 0.2142 0.1322 1.620 
4.00 0.5891 8.227 0.1683 0.1026 1.641 
4.50 0.5698 12.50 0.1354 0.08177 1.656 
5.00 0.5556 18.63 0.1 111 0.06667 1.667 

This table was computed from the Excel workbook Rayleigh-Line Relations. The 
workbook contains a more detailed, printable version of the table and can be easily 
modified to generate data for a different Mach number range, or for a different gas. 
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Mach number 

F ig . E.3 Rayleigh- l ine flow functions. 

fjfc This graph was generated from the Excel workbook. The workbook can be modified 
easily to generate curves for a different gas. 
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E-4 NORMAL SHOCK 

Normal-shock flow functions are computed using the following equations: 

Po2 

El 
Pi 

El 
Pi 

M2

l + 

Mk = k - \ 

k-l 1 

k + \ -,U(k-\) 

Mi 

Y + ^ M ] 

M i 

k + l it + 1 

'2 _ 

M\ 

2k 2 k - \ M, -
k + l k + 1 

l + k-^M] 

(12.41a) 

(12.41b) 

(12.41c) 

(12.41d) 

(12.41e) 

Representative values of the normal-shock flow functions for k = 1.4 are presented 
in Table E.4 and plotted in Fig. E.4. 

Table E.4 N o r m a l - S h o c k F l o w F u n c t i o n s ( o n e - d i m e n s i o n a l f low, idea l g a s , k= 1.4) 

M, M 2 Po/PO! z y r , PilPy 

1.00 1.000 1.000 1.000 1.000 1.000 
1.50 0.7011 0.9298 1.320 2.458 1.862 
2.00 0.5774 0.7209 1.687 4.500 2.667 
2.50 0.5130 0.4990 2.137 7.125 3.333 
3.00 0.4752 0.3283 2.679 10.33 3.857 
3.50 0.4512 0.2130 3.315 14.13 4.261 
4.00 0.4350 0.1388 4.047 18.50 4.571 
4.50 0.4236 0.09170 4.875 23.46 4.812 
5.00 0.4152 0.06172 5.800 29.00 5.000 

This table was computed from the Excel workbook Normal-Shock Relations. The 
workbook contains a more detailed, printable version of the table and can be modi­
fied easily to generate data for a different Mach number range, or for a different gas. 
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' 1.0 1.5 2.0 2.5 3.0 
Upstream Mach number 

F ig . E.4 N o r m a l - s h o c k f low f u n c t i o n s . 

This graph was generated from the Excel workbook. The workbook can be modified 
easily to generate curves for a different gas. 
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E-5 OBLIQUE SHOCK 

Oblique-shock flow functions are computed using the following equations: 

M\ 

Po2 

Po, 

El 
P\ 

El 
Pi 

k-l 
2k 

k-l Mf - 1 
1 n 

k-^Ml 
1 + 

i k - 1 
M 

M 
2k 

k + 1 

1 + 

k - 1 
k +1 

- i i / ( * -D 

k - 1 

M 
2k 2 k - \ 

•M, -
k + 1 fc + 1 

k-^M] 
2 

1 + ^ M , 2 

(12.48a) 

(12.48b) 

(12.48c) 

(12.48d) 

(12.48e) 

Representative values of the oblique-shock flow functions for k = 1.4 are presented 
in Table E.5 (identical to Table E.4 except for the Mach number notations). 

Table E.5 Oblique-Shock Flow Functions (ideal gas, k = 1.4) 

M, M^ POy/POl TJTy PilPi PilPx 

1.00 1.000 1.0000 1.000 1.000 1.000 
1.50 0.7011 0.9298 1.320 2.458 1.862 
2.00 0.5774 0.7209 1.687 4.500 2.667 
2.50 0.5130 0.4990 2.137 7.125 3.333 
3.00 0.4752 0.3283 2.679 10.33 3.857 
3.50 0.4512 0.2130 3.315 14.13 4.261 
4.00 0.4350 0.1388 4.047 18.50 4.571 
4.50 0.4236 0.09170 4.875 23.46 4.812 
5.00 0.4152 0.06172 5.800 29.00 5.000 
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The deflection angle Q, oblique-shock angle (3, and Mach number M\ are related 
using the following equation: 

2 c o t / 3 f M , 2 s i n 2 f i - l ) 
tan 6 = y - i — ^ '- (12.49) 

Mf(k + cos 20) + 2 

Representative values of angle 6 are presented in Table E.6. 

Table E.6 Oblique-Shock Deflection Angle 9 (deg) (ideal gas, k- 1.4) 

Mach number M\ 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

1.2 1.4 1.6 1.8 2 2.5 3 4 6 10 OO 

- - - - - - - - - -
4.16 

- - - - - - - - 0.64 5.53 8.32 
- - - - - - 0.80 7.18 10.5 12.4 
- - - - - - 0.77 7.44 12.4 15.1 16.5 
- - - - - 1.93 7.28 12.9 17.1 19.3 20.6 
- - - - - 7.99 12.8 17.8 21.5 23.4 24.5 
- - - 1.41 5.75 13.2 17.6 22.2 25.6 27.3 28.3 
- - 1.31 6.49 10.6 17.7 21.8 26.2 29.4 31.1 32.0 

- - 5.73 10.7 14.7 21.6 25.6 29.8 33.0 34.6 35.5 

- 3.28 9.31 14.2 18.1 24.9 28.9 33.1 36.2 37.8 38.8 

- 6.18 12.1 16.9 20.7 27.4 31.5 35.8 39.0 40.7 41.6 
1.61 8.20 13.9 18.6 22.4 29.2 33.3 37.8 41.1 42.9 43.9 
3.16 9.27 14.6 19.2 23.0 29.8 34.1 38.7 42.3 44.2 45.3 
3.88 9.32 14.2 18.5 22.1 28.9 33.3 38.2 42.1 44.2 45.4 
3.80 8.29 12.5 16.2 19.5 25.9 30.2 35.3 39.5 41.8 43.1 
3.01 6.25 9.34 12.2 14.8 20.1 23.9 28.7 32.8 35.2 36.6 
1.66 3.36 5.03 6.61 8.08 11.2 13.6 16.8 19.7 21.6 22.7 
0 0 0 0 0 0 0 0 0 0 0 

j S L Tables E.5 and E.6 were computed from the Excel workbook Oblique-Shock Relations. 
The workbook contains a more detailed, printable version of the tables and can be modi­
fied easily to generate data for a different Mach number range, or for a different gas. 
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E-6 ISENTROPIC EXPANSION WAVE RELATIONS 

The Prandtl-Meyer supersonic expansion function, co, is 

( k + 1 _) 
tan 

k - 1 
f^ -V-1) 
k + 1 

4M2 - I (12.55) 

Representative values of angle to are presented in Table E.7. 

Table E.7 Prandtl-Meyer Supersonic Expansion Function u> (deg) (ideal gas, k = 1.4) 

M CJ (deg) M to (deg) M oi (deg) M w (deg) 

1.00 0.00 2.00 26.4 3.00 49.8 4.00 65.8 
1.50 0.49 2.05 27.7 3.05 50.7 4.05 66.4 
1.10 1.34 2.10 29.1 3.10 51.6 4.10 67.1 
1.15 2.38 2.15 30.4 3.15 52.6 4.15 67.7 
1.20 3.56 2.20 31.7 3.20 53.5 4.20 68.3 
1.25 4.83 2.25 33.0 3.25 54.4 4.25 68.9 
1.30 6.17 2.30 34.3 3.30 55.2 4.30 69.5 
1.35 7.56 2.35 35.5 3.35 56.1 4.35 70.1 
1.40 8.99 2.40 36.7 3.40 56.9 4.40 70.7 
1.45 10.4 2.45 37.9 3.45 57.7 4.45 71.3 
1.50 11.9 2.50 39.1 3.50 58.5 4.50 71.8 
1.55 13.4 2.55 40.3 3.55 59.3 4.55 72.4 
1.60 14.9 2.60 41.4 3.60 60.1 4.60 72.9 
1.65 16.3 2.65 42.5 3.65 60.9 4.65 73.4 
1.70 17.8 2.70 43.6 3.70 61.6 4.70 74.0 
1.75 19.3 2.75 44.7 3.75 62.3 4.75 74.5 
1.80 20.7 2.80 45.7 3.80 63.0 4.80 75.0 
1.85 22.2 2.85 46.8 3.85 63.7 4.85 75.5 
1.90 23.6 2.90 47.8 3.90 64.4 4.90 76.0 
1.95 25.0 2.95 48.8 3.95 65.1 4.95 76.4 
2.00 26.4 3.00 49.8 4.00 65.8 5.00 76.9 

This table was computed from the Excel workbook Isentropic Expansion Wave 
Relations. The workbook contains a more detailed, printable version of the table and 
can be easily modified to generate data for a different Mach number range, or for a 
different gas. 



Appendix F 

ANALYSIS OF EXPERIMENTAL 
UNCERTAINTY 

F-1 INTRODUCTION 

Experimental data often are used to supplement engineering analysis as a basis for 
design. Not all data are equally good; the validity of data should be documented be­
fore test results are used for design. Uncertainty analysis is the procedure used to 
quantify data validity and accuracy. 

Analysis of uncertainty also is useful during experiment design. Careful study 
may indicate potential sources of unacceptable error and suggest improved measure­
ment methods. 

F-2 T Y P E S OF ERROR 

Errors always are present when experimental measurements are made. Aside from 
gross blunders by the experimenter, experimental error may be of two types. Fixed 
(or systematic) error causes repeated measurements to be in error by the same 
amount for each trial. Fixed error is the same for each reading and can be removed by 
proper calibration or correction. Random error (nonrepeatability) is different for 
every reading and hence cannot be removed. The factors that introduce random error 
are uncertain by their nature. The objective of uncertainty analysis is to estimate the 
probable random error in experimental results. 

We assume that equipment has been constructed correctly and calibrated prop­
erly to eliminate fixed errors. We assume that instrumentation has adequate resolution 
and that fluctuations in readings are not excessive. We assume also that care is used 
in making and recording observations so that only random errors remain. 

F-3 ESTIMATION OF UNCERTAINTY 

Our goal is to estimate the uncertainty of experimental measurements and calculated 
results due to random errors. The procedure has three steps: 

1. Estimate the uncertainty interval for each measured quantity. 
2. State the confidence limit on each measurement. 
3. Analyze the propagation of uncertainty into results calculated from experimental data. 
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Below we outline the procedure for each step and illustrate applications with 
examples. 
Step 1. Estimate the measurement uncertainty interval. Designate the measured vari­

ables in an experiment as xh x2, x„. One possible way to find the uncer­
tainty interval for each variable would be to repeat each measurement many 
times. The result would be a distribution of data for each variable. Random 
errors in measurement usually produce a normal (Gaussian) frequency distri­
bution of measured values. The data scatter for a normal distribution is char­
acterized by the standard deviation, cr. The uncertainty interval for each 
measured variable, xh may be slated as ± na„ where n = 1, 2, or 3. 

For normally distributed data, over 99 percent of measured values of x, 
lie within ± 3a, of the mean value, 95 percent lie within ± 2cr„ and 68 per­
cent lie within ± o~, of the mean value of the data set [ I ] . Thus it would be 
possible to quantify expected errors within any desired confidence limit if a 
statistically significant set of data were available. 

The method of repeated measurements usually is impractical. In most 
applications it is impossible to obtain enough data for a statistically signifi­
cant sample owing to the excessive time and cost involved. However, the 
normal distribution suggests several important concepts: 

1. Small errors are more likely than large ones. 

2. Plus and minus errors are about equally likely. 

3. No finite maximum error can be specified. 

A more typical situation in engineering work is a "single-sample" 
experiment, where only one measurement is made for each point [2], A rea­
sonable estimate of the measurement uncertainty due to random error in a 
single-sample experiment usually is plus or minus half the smallest scale 
division (the least count) of the instrument. However, this approach also 
must be used with caution, as illustrated in the following example. 

EXAMPLE F.1 Uncertainty in Barometer Reading 

The observed height of the mercury barometer column is h = 752.6 mm. The least 
count on the vernier scale is 0.1 mm, so one might estimate the probable measure­
ment error as ± 0.05 mm, 

A measurement probably could not be made this precisely. The barometer slid­
ers and meniscus must be aligned by eye. The slider has a least count of l mm. As a 
conservative estimate, a measurement could be made to the nearest millimeter. The 
probable value of a single measurement then would be expressed as 752.6 ± 0.5 mm. 
The relative uncertainty in barometric height would be stated as 

uh = ± ° " 5 0 1 1 1 1 = ± 0.000664 or ± 0.0664 percent 
752.6 mm 

Comments: 

1. An uncertainty interval of ± 0.1 percent corresponds to a result specified to three signifi­
cant figures; this precision is sufficient for most engineering work. 

2. The measurement of barometer height was precise, as shown by the uncertainty estimate. 
But was it accurate? At typical room temperatures, the observed barometer reading must 
be reduced by a temperature correction of nearly 3 mm! This is an example of a fixed 
error that requires a correction factor. 
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Step 2. State the confidence limit on each measurement. The uncertainty interval of 
a measurement should be stated at specified odds. For example, one may 
write h = 752.6 ± 0.5 mm (20 to 1). This means that one is willing to bet 
20 to 1 that the height of the mercury column actually is within ± 0.5 mm 
of the stated value. It should be obvious [3] that ". . . the specification of 
such odds can only be made by the experimenter based on . . . total labora­
tory experience. There is no substitute for sound engineering judgment in 
estimating the uncertainty of a measured variable." 

The confidence interval statement is based on the concept of standard de­
viation for a normal distribution. Odds of about 370 to 1 correspond to ± 3cr; 
99.7 percent of all future readings are expected to fall within the interval. Odds 
of about 20 to 1 correspond to ± 2a and odds of 3 to 1 correspond to ± cr 
confidence limits. Odds of 20 to 1 typically are used for engineering work. 

Step 3. Analyze the propagation of uncertainty in calculations. Suppose that meas­
urements of independent variables, x,, x2, • • ., x„, are made in the labora­
tory. The relative uncertainty of each independently measured quantity is 
estimated as ur The measurements are used to calculate some result, R, for 
the experiment. We wish to analyze how errors in the XjS propagate into the 
calculation of R from measured values. 

In general, R may be expressed mathematically as R = R(xh x2,. . . , x„). 
The effect on R of an error in measuring an individual may be estimated by 
analogy to the derivative of a function [4]. A variation, 8xh in x, would cause 
variation 8Rt in R, 

57?, = | * & t , 
OX: 

The relative variation in R is 

^l_]_5R_8x _ Xj dR 8x; 

R ~ RdX: ' ~ R dX: x, 
(F.l) 

Equation F.l may be used to estimate the relative uncertainty in the result due 
to uncertainty in x,. Introducing the notation for relative uncertainty, we obtain 

X: dR 
R dx, 

(F.2) 

How do we estimate the relative uncertainty in R caused by the com­
bined effects of the relative uncertainties in all the *,s? The random error in 
each variable has a range of values within the uncertainty interval. It is un­
likely that all errors will have adverse values at the same time. It can be shown 
[2] that the best representation for the relative uncertainty of the result is 

Up - ± 
^dR_ 

R o\r, 
x 2 dR 
R dx2 

+ ... + 
xn dR 
R dx„ 

,-| l/2 

(F.3) 

EXAMPLE F.2 Uncertainty in Volume of Cylinder 

Obtain an expression for the uncertainty in determining the volume of a cylinder 
from measurements of its radius and height. The volume of a cylinder in terms of ra­
dius and height is 

V = Y(r,h) = Ttr2h 



758 APPENDIX F 2ND PAGES 2ND PAGES / ANALYSIS OF EXPERIMENTAL UNCERTAINTY 

Differentiating, we obtain 

dY d¥ 7 dY = — dr + — dh - 2wrh dr + ur dh 
dr dh 

since 

dY 
- 2wrh and 

dY 2 

—— - 77T 
dh 

From Eq. F.2, the relative uncertainty due to radius is 

SYr r dY 
Uu r - = — Ur -

V ' r V ¥ dr r TrrLh 
— (2irrh)ur = 2ur 

and the relative uncertainty due to height is 

SVL h dY h , 2 , 

The relative uncertainty in volume is then 

uv = ± (2urf+(uhf 
1/2 

(F.4) 

Comment: The coefficient 2, in Eq. F.4, shows that the uncertainty in measuring cylinder ra­
dius has a larger effect than the uncertainty in measuring height. This is true be­
cause the radius is squared in the equation for volume. 

F-4 APPLICATIONS T O DATA 

Applications to data obtained from laboratory measurements are illustrated in the fol­
lowing examples. 

EXAMPLE F.3 Uncertainty in Liquid Mass Flow Rate 

The mass flow rate of water through a tube is to be determined by collecting water in 
a beaker. The mass flow rate is calculated from the net mass of water collected di­
vided by the time interval, 

m = ^ (F.5) 
At 

where Am = m} - me. Error estimates for the measured quantities are 

Mass of full beaker, mf = 400 ± 2 g (20 to 1) 

Mass of empty beaker, me = 200 ± 2 g (20 to 1) 

Collection time interval, At = 10 ± 0.2 s (20 to 1) 

The relative uncertainties in measured quantities are 

u m = ± - ^ - = ±0 .005 
m f 400g 
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± - ^ - = ±0.01 
200 g 

0.2 s 

10s 
= ± 0.02 

The relative uncertainty in the measured value of net mass is calculated from Eq. F.3 as 

= + 
">f dAm 
Am dm f 

+ 
me dAm 
Am dm. 

= ±{[(2)(1)(±0.005)] 2 + [ ( 1 ) ( - 1 ) ( ± 0 . 0 1 ) ] 2 } 1 / 2 

= ±0.0141 

Because m = m(Am, AO, we may write Eq. F.3 as 

= + 
Am dm 
m dAm " A m 

The required partial derivative terms are 

Am dm 
m dAm 

Substituting into Eq. F.6 gives 

1 and 

At dm 
m dAt 

At dr, 

1/2 

(F.6) 

m dAt 

um = ±{[(1)(± 0.0141)] 2 + [ ( - l ) ( ± 0 . 0 2 ) ] 2 } 1 / 2 

u„=± 0.0245 or ± 2.45 percent (20 to 1) 

Comment: The 2 percent uncertainty interval in time measurement makes the most impor­
tant contribution to the uncertainty interval in the result. 

EXAMPLE F.4 Uncertainty in the Reynolds Number for Water Flow 

The Reynolds number is to be calculated for flow of water in a tube. The computing 
equation for the Reynolds number is 

Re = 
4m 

ITLLD 
= Re(m, D, LL) (F.7) 

We have considered the uncertainty interval in calculating the mass flow rate. What 
about uncertainties in LL and D? The tube diameter is given as D = 6.35 mm. Do we 
assume that it is exact? The diameter might be measured to the nearest 0.1 mm. If so, 
the relative uncertainty in diameter would be estimated as 

U D = ± f t ? 5 m m = ± 0 ( X ) 7 8 7 

6.35 mm 
or ± 0.787 percent 

The viscosity of water depends on temperature. The temperature is estimated as T = 
24 ± 0.5°C. How will the uncertainty in temperature affect the uncertainty in / A ? One 
way to estimate this is to write 

_ S/JL _ 1 dp 
( ± 6 T ) (F.8) 

Ll LL dT 

The derivative can be estimated from tabulated viscosity data near the nominal tem­
perature of 24°C. Thus 
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dp 
dT 

Ap _ / i(25°C) - M ( 2 3 ° C ) _ ( 0 . 0 0 0 8 9 0 - 0 .000933 ) N • s 1 

AT (25 - 23)° C m 2°C 

d/x 
dT 

= -2 .15 x l O " 5 N • s/(m 2 • °C) 

It follows from Eq. F.8 that the relative uncertainty in viscosity due to temperature is 

1 m 
u 0.000911 N s 

±0.0118 or 

-2.15xlCT 5 N ' S (±0.5°C) 
2 o>~i 

m • C 
±1.18 percent 

Tabulated viscosity data themselves also have some uncertainty. If this is ±1 .0 percent, 
an estimate for the resulting relative uncertainty in viscosity is 

wM = ±[ (±0 .01) 2 + ( ± 0 . 0 1 1 8 ) 2 ] 1 / 2 ± 0 . 0 1 5 5 or ± 1 . 5 5 percent 

The uncertainties in mass flow rate, tube diameter, and viscosity needed to com­
pute the uncertainty interval for the calculated Reynolds number now are known. The 
required partial derivatives, determined from Eq. F.7, are 

m dRe m 
Re dm 

fx dRe 

Re dfx 

D dRe 
Re dD 

Substituting into Eq. F.3 gives 

m dRe 

Re TTJXD 

Re 

Re_ 
Re 

= 1 

f < - " 
Re 

4m Re 

TT(jL2D Re 

Am Re 

TTfxD2 Re 

= +. Re dr, 
fx dRe 
Re d/x 

D dRe 
Re dD 

i 1/2 

uRe = ±{[(1)(±0.0245)] 2 + [ ( - l ) ( ± 0 . 0 1 5 5 ) ] 2 + [(-1)(± 0 .00787) ] 2 } 1 ' 2 

[ ^ = ±0 .0300 or ±3.00 percent 

Comment: Examples E3 and F.4 illustrate two points important for experiment design. First, 
the mass of water collected, Am, is calculated from two measured quandties, m, 
and me. For any stated uncertainty interval in the measurements of mf and me, the 
relative uncertainty in Am can be decreased by making Am larger. This might be 
accomplished by using larger containers or a longer measuring interval, At, which 
also would reduce the relative uncertainty in the measured At. Second, the uncer­
tainty in tabulated property data may be significant. The data uncertainty also is 
increased by the uncertainty in measurement of fluid temperature. 

EXAMPLE F.5 Uncertainty in Air Speed 

Air speed is calculated from pitot tube measurements in a wind tunnel. From the 
Bernoulli equation, 

V = (F.9) 

where h is the observed height of the manometer column, 
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The only new element in this example is the square root. The variation in V due 
to the uncertainty interval in h is 

- 1 / 2 
2gpv 

h dV = h 1 (2gftpwa 

Vdh V2{ P a i r 

h dV _ h 1 1 2 g p w a l e r _ 1 V2 

V dh V 2 V Pai 2 V1 

]_ 
2 

Using Eq. F.3, we calculate the relative uncertainty in V as 

1 f ( 1 
— uh\ + — un 

2 ) \2 Pwa 

2 Pai 

1/2 

If u;, = ± 0 . 0 1 and the other uncertainties are negligible, 

± - (±0.01) 

1/2 

w v = ±0.00500 or ±0.500 percent 

Comment: The square root reduces the relative uncertainty in the calculated velocity to half 
that of u,r 

F-5 SUMMARY 

A statement of the probable uncertainty of data is an important part of reporting 
experimental results completely and clearly. The American Society of Mechanical 
Engineers requires that all manuscripts submitted for journal publication include an 
adequate statement of uncertainty of experimental data [5]. Estimating uncertainty in 
experimental results requires care, experience, and judgment, in common with many 
endeavors in engineering. We have emphasized the need to quantify the uncertainty 
of measurements, but space allows including only a few examples. Much more infor­
mation is available in the references that follow (e.g., [4, 6, 7]). We urge you to con­
sult them when designing experiments or analyzing data. 
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Appendix G 

SI UNITS, PREFIXES, AND 
CONVERSION FACTORS 

T a b l e G.1 SI Units and Prefixes" 

SI Units Quantity Unit SI Symbol Formula 

SI base units: Length meter m — 

Mass kilogram kg — 
Time second s — 
Temperature kelvin K — 

SI supplementary unit: Plane angle radian rad — 
SI derived units: Energy joule I N • m 

Force new ton N kg • m/s2 

Power watt W J/s 
Pressure pascal Pa N/m2 

Work joule J N • m 

SI prefixes Multiplication Factor Prefix SI Symbol 

I 000 000 000 000 = 10 1 2 tera T 
1 000 000 000 - 109 

giga G 
1 000 000 = 106 mega M 

1 000 = to-1 kilo k 
0.01 = i o - 2 centi* c 

0.001 = 1CT3 mi 11 i m 
0.000 001 = 10~6 micro 

0.000 000 001 = IO"9 nano n 
0.000 000 000 001 = I 0 ~ n pico P 

" Source: ASTM Standard for Metric Practice E 3 8 0 - 9 7 , 1997. 
h To be avoided where possible. 

G-1 UNIT CONVERSIONS 

The data needed to solve problems are not always available in consistent units. Thus 
it often is necessary to convert from one system of units to another. 

In principle, all derived units can be expressed in terms of basic units. Then, 
only conversion factors for basic units would be required. 

In practice, many engineering quantities are expressed in terms of defined units, 
for example, the horsepower, British thermal unit (Btu), quart, or nautical mile. 
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G-1 UNIT CONVERSIONS 763 

Definitions for such quantities are necessary, and additional conversion factors are 
useful in calculations. 

Basic SI units and necessary conversion factors, plus a few definitions and con­
venient conversion factors are given in Table G.2. 

T a b l e G.2 C o n v e r s i o n F a c t o r s a n d Def in i t i ons 

Fundamental English Exact Approximate 
Dimension Unit SI Value SI Value 

Length 1 in. 0.0254 m 
Mass 1 lbm 0.453 592 37 kg 0.454 kg 
Temperature 1°F 5/9 K 

Definitions: 
Acceleration of gravity: g = 9.8066 m/s2 (= 32.174 ft/s2) 
Energy: Btu (British thermal unit) = amount of energy required to raise 

the temperature of 1 lbm of water 1°F (1 Btu = 778.2 ft • lbf) 
kilocalorie = amount of energy required to raise the temperature 

of 1 kg of water 1 K(l kcal = 4187 J) 
Length: 1 mile = 5280 ft; 1 nautical mile = 6076.1 ft = 1852 m (exact) 
Power: 1 horsepower = 550 ft • lbf/s 
Pressure: 1 b a r s 10s Pa 
Temperature: degree Fahrenheit, TP = ^ Tc + 32 (where Tc is degrees 

Celsius) 
degree Rankine, 7*R = T¥ + 459.67 
Kelvin, TK = Tc + 273.15 (exact) 

Viscosity: 1 Poise = 0.1 kg/(m • s) 
1 Stoke = 0.0001 nvVs 

Volume: 1 gal =231 in.3 (1 ft3 = 7.48 gal) 

Useful Conversion Factors: 

1 lbf = 4.448 N 
1 lbf/in.2 = 6895 Pa 
1 Btu = 1055 J 
1 hp = 746 W = 2545 Btu/hr 
1 kW = 3413 Btu/hr 
1 quart = 0.000946 m 3 = 0.946 liter 
1 kcal = 3.968 Btu 





ANSWERS TO SELECTED 
PROBLEMS 

C h a p t e r 1 
1.3 
1.5 
1.6 
1.8 

m = 12.4 Ibm 
V = 0.119 m 3 , D = 0.610 m 
m = 61.2 Ibm; 27.8 kg 
p = 0.0765 lbm/ft3, wp = ± 0.348% 

1.9 p = 1.39 kg/m 3, M p = ±0 .238% 
1.10 p = 1130 ± 21.4 kg/m 3 

SG = 1.13 ± 0.214 (20 to 1) 
1.11 u^j — ±1.60%, ±0 .267% 
1.12 p = 930 ± 27.2 kg/m 3 (20 to 1) 
1.13 p = 1260 ± 28.9 kg/m 3 

SG = 1.26 ± 0.0289 (20 to 1) 
1.16 p = 1.005 X 1 0 - 3 N - s / m 2 ; 

wM = 0.61% 
1.17 ua = ±4 .10% 
1.18 8x = ±0 .158 mm 
1.19 8D = ±0.00441 in. 
1.20 H = 57.7 ± 0.548 ft 
1.21 uv = ± 10.9% 
1.22 r = 3W/g/t 
1.23 5 = 2.05 W2/gA:2 

V m a x = 0.798 m/s; < = 3.84 s 
d = 0.074 mm 
V m a x = 56.8 m/s, V I O O = 38.3 m/s 

1.24 
1.25 
1.26 
1.27 
1.30 

V, 37.7 m/s, 0O = 21 
1 psi = 6.89 kPa 
1 liter = 0.264 gal 
1 lbf-s/ft 2 = 47.9 N - s / m 2 

1 m 2/s = 10.7 ft2/s 
100 W = 0.134 hp 
I kJ/kg = 0.43 Btu/lbm 
SG = 13.6, v = 7.37 X 10" 5 m 3/kg 
yE = 847 lbf/ft3, yM = 144 lbf/ft3 

1 in 3/min = 273 mm 3/s 
m 3/s = 15860 gal/min 
L/min = 0.264 gal/min 

1.34 32 psi = 2.25kgf/cm 2 

1.35 Ns = 4.06 
1.37 W= 11 Ibf, V = 1.24 ft3 

1.31 

1.32 

1.33 

C h a p t e r 2 
2.3 y = cx-bla 

2.4 y = cx~b{ta 

2.5 xy2 = c 
2.9 x = y/3; t = 2 s 
2.10 xy = 2 
2.11 y = - bx/at 
2.12 xy = 8 
2.13 y - y 0 = (B/2A2)(x - x0)2 

2.22 y = (xV4) + 4; (4, 8); (5, 10.25) 
2.23 x = (y /4) - 3; (6, 6); (1,4) 
2.24 (2.8, 5), (3, 3) 
2.25 (5.67, 3.00); (3.58, 3.25) 
2.28 b = 1.53 X 1 0 - 6 k g / m - s - K V 

2.29 ryx = -1.83 N/m 2; Plus x 
2.30 F = 0.228 N; Right 
2.32 a = -0 .491 ft/s2 

2.33 
2.34 
2.35 V = 34.3 ft/s 
2.36 Fv = pVAIh; V = {mghlpA)(\ -

exp[-pAT/(M + m)h])\ p= 1.29 N • s/m2 

S = 101.9 K 

ryx = 0.277 lbf/ft2; Positive x 
F ~ 17.1 Ibf 

2.37 Ft = pUa2/h; l = 3.0hJpa2 

2.38 ao = 4.91 m/s 2; 
U = (g sin 9mdJpA)(\ — exp(—pATImd)); 

= 0.27 N • s/m2 

2.39 F = 2.83 N 
2.41 = 8.07 X 1 0 " 4 N - s / m 2 

2.42 = 0.0208 N • s/m2 

2.43 t1 = 0.0159 N-s /m 2 

2.44 I -= 4 s 
2.46 w m a x

 = 2.63 rad/s; t = 0.671 s 
2.47 = 0.202 N • s/m 2 

2.49 y = co/6; T = 2 T T - / ? 3 T ) X / 3 

2.50 k • = 0.0449; /? = 1.21; 
= 0.191 N-s /m 2 ; 0 .195N-s /m 2 

2.51 T = irpAwR4^; 0> = TT/LIWOAO) FPlla; 
s --= 2TalTrpR*u>l\ T] = \ — s 

2.53 u = 0.277 percent 
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2.54 T = pioz tan 61 a; T = 0.0206 N- m 

2.55 7 = 2 ^ 4 (^_CQSa + l 
h { 3 3 j 

2.57 Ap = 2.91 kPa 
2.61 Ao/po = 0.453% 

Chapter 3 
3.1 m = 6 2 k g ; r = 22.3 mm 
3.2 Ah = 6.72 mm Hg; Az = 173 m 
3.4 z = 2980 m; Az = 1480 m 
3.5 F = 21.9 N 
3.6 F = 2620 lbf; T = 14.4 lbf 
3.7 SG = 1.75 (Meriam Blue);/), = 0.89 psi; 

pu = 0.509 psi 
3.8 Ap = 972 kPa; p c u b c - 991 kg/m 3 

3 9 P o M = 316kPa(abs); 
Pwarm = 254 kPa (gage) 

3.10 D = 15.8 mm 
3.12 Ap/pn = 4.34%; 2.14% 
3.14 p = 6.39 X 103 N/m 2; /i = 43.6 mm 
3.15 p = 3.48 kPa (gage); p = 123 kPa (gage) 
3.16 p = 128 kPa (gage) 
3.17 W = 17.8 mm 
3.18 p , - p 2 = 59.5 Pa 
3.19 /J = 42.8 mm 
3.20 = 30.0 mm 
3.21 pa = 1.18 psig 
3.22 SG = 0.900 
3.23 p = 24.7 kPa (gage); h = 0.116 m 
3.24 pA- pB= 1.64 psi 
3.25 / = 1.6 m 
3.26 L = 27.2 mm 
3.27 / = 0.546 m 
3.28 h = 1.11 in. 
3.29 6 = 12.5°; s = 5.0 
3.30 6 ~ 11.1° 
3.31 h = 7.85 mm; J = 0.308 
3-32 p a l m = 14.0 psi 
3.33 / = 0.316 m 
3.34 Ah = 38.1 mm; 67.9 mm 
3.35 D = 9.3 mm 
3.39 Az = 89.0 mm; Az = 1440 m 
3.40 p = 0.00332 kg/m 3 

3.41 p = 57.5 kPa; p = 60.2 kPa 
3.43 FL = 14.7 kN; FL = 52.7 kN 
3.44 FR = 25.7 k N , / = 1.86 m; FR = 71.5 kN, 

>>' = 1.78 m 
3.45 F,( = 376 N; / = 0.3 m 
3.46 FA = 366 kN 

3.47 W= 15,800 lbf 
3.49 F = 2 p g / ? 3 / 3 ; / = 3TT/?/16 
3.50 FD = 32.9 N 
3.51 F = 1.82 X 10 6 lbf; 

FH = (1.76? + 3.04/)10 6 lbf 

3.52 FR = 552 kN; (x \ / ) = (2.5, 2.0) m 
3.54 F = 3 3 . 3 k N ; 7 J ^ 7 . 3 m m 
3.55 F A B = 1800 lbf 
3.56 D = 2.60 m 
3.57 = 32.7 kN 
3.58 d = 2.66 m 
3.59 SG = 0.542 
3.61 (a) FV = 73.9 kN;x' = 1.06 m 

(b) FAH = 34.8 kN (c) FAV = 30.2 kN 

3.62 (a) FV = 7.63 kN; Moment = 3.76 kN- m 
(b) FAH = 5.71 kN 

3.63 Fn = 2 .19kN;* ' = 0.243m 
V 

3.64 F R V = pgwir R2/4; x' = 4R/2m 
3.65 FV = 1.05 MN;* ' = 1.61 m 
3.66 FR = 17,100 lbf;*' = 2.14 ft 

3.67 FB = 82.4 kN 
3.68 FR = 1.83 X 107 N; a = 19.9° 
3.69 FR = 370 kN; a = 57.6° 
3.70 FR = 557 kN; a = 48.3° 
3.71 MIL = pR2{\ + 3TT/4], FIL = pgR2/2 
3.72 FV = 2.48 kN; x' = 0.642 m; 

FH = 7.35 kN; / = 0.217 m 
3.73 FV = 1.55 kN;* ' = 0.120 m 

3.74 W = 4pgL(H - d)y2l?> -Ja 

3.75 SG = (cos '(1 - a) + {a - 1) -Jl-alm 
3.76 A/ = 631 kg 
3.77 F« = 284 kN; a = 34.2° 
3.78 x = 51.2 lbf/ft3; hG = 0.223 ft 
3.79 h= 177 mm 

3.81 SG = SGH20W^/(W^ - W.J 

3.83 V = 2.52 X 10 3 m 3; six weights 
3.84 FB = 8.02 X l O - " N; 

V = 0.344 mm/s 
3.86 Claims are valid; Lift is increased 45 percent 
3.87 D = H 6 m ; A / = 703 kg 
3.88 £> = 82.7 m; A/ = 637 kg 
3.89 6 = 23.8° 
3.91 * = 1.23 ft; F = 1.5 lbf 
3.93 SG > 0.70 
3.94 co = 1.81 rad/s 
3.98 to= 13.1 rad/s; No 
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3.99 a = ghIL 
3.100 Slope = 0.22 
3.101 w = 188rad/s 
3.102 pA = - 1 . 2 3 kPa; Ah = 126 mm 
3.103 Ap = pu?R2l2\ a) = 7.16 rad/s 
3.104 a, = - r w 2 ; 3p/dr = prw 2;/? = 7.19 MPa 
3.105 Slope = - 0 . 2 0 ; 

p(x, 0) = 106 - 1.57A:(m) kPa 
3.106 a = 13.3° 
3.107 a = 30°; Slope = 0.346 
3.108 p 2 /p , = 24.2 
3.109 7 = 47.6 Ibf; p = 55.3 lbf/ft2 (gage) 
3.110 Slope = 0.540; w = 3.48 rad/s 
3.113 OJ = 31.3 rad/s; 

P m = 51.5 kPa (gage); 
pm,„ = 43.9 kPa (gage) 

C h a p t e r 4 
4.1 s2 - sy = -0 .291 kJ/(kg-K) 
4.2 x = 0.943 m 
4.3 5 = 2290 ft, / = 22.4 s 
4.4 V0 = 87.5 km/hr 
4.5 6 = 48.2° 
4.6 A M = 77.5 kJ/kg 
4.7 AU = 4.50 X 105 Btu; AU = 0; 

cfT/fifr = 11.8°R/hr 
4.8 t = 1.5 hr 
4.9 h = 21.2 mm; ps = 0.604 
4.10 (b) 0; (e) - 0 . 5 / - 0.5y' m"/s 2 

4.12 Q = Vhwl2\mfx = ~PV2whB 
4.13 Integrals = - 1 2 . 0 m 3/s; 16i - 24j 

I2km4/s2 

4.14 Q = umaxirR2/2-mf= u2

mmirR</3 
4.15 K.E. flux = -pV 3 w/j/8 
4.16 K.E. flux = -npu^R2l% 
4.17 03 = - 5 . 0 0 ft3/s (intoCV) 

4.18 V3 = 4.04i - 2.34) m/s 

4.19 t = 2.39 s; G l o l a ] = 1.33 m 3 

4.20 m/w = plghi sin &6p 
4.21 M M A X = 7.50 m/s 

4.22 Vm = -n-V,/4 
4.23 U = 5.00 ft/s 
4.24 Q = 10.45 mL/s; i7 = 0.139 m/s; 

"max
 = 0.213 m/s 

4.25 V3 = 3.33 ft/s (into CV) 
4.26 = 5.0 m/s 
4.27 m2 = 16.2 kg/s 
4.28 cVWd* = -0 .181 gal/s 

4.29 ap/3r = -0 .369 kg/m 3/s 
4.30 dhldt = -8 .61 mm/s 
4.31 dhldt = -0 .326 mm/s (falling) 
4.32 dpo/dt = 2.50 X 10" 3 slug/ft3/s 
4.33 dhldt = - 5 6 . 6 mm/s 
4.34 /, = 14.8 s; t2 = 49.6 s 
4.35 Q = 1.50 X 104 gal/s; A = 4.92 X 107 ft2 

4.36 y = 0.134 m 
4.37 t = 22.2 s 
4.38 Go = 3.61 X 10 5 m 3 / s ; 

tf7i/dr = -0 .0532 m/s 
4.39 dyldt = -9 .01 mm/s 
4.40 w b c = 1.42 kg/s (out) 
4.41 Q c d = 4.5 X 10 ' 3 m 3/s; = 0.6 X 

l O ^ m V s ; ^ = 1.65 X 10 3 m 3/s 
4.43 t = 6V0/5Q0 

4.45 mf~ 349/ - 16.5y rN 
4.46 Ratio = 1.2 
4.47 Ratio = 1.33 
4.48 mf~ - 3 4 0 f - 1230/ Ibf 
4.49 mf= - 3 2 0 / + 332) N 
4.50 F = 90.4 kN 
4.51 T = 1.23 N 
4.52 M = 409 kg 
4.53 Ft = 184 N 
4.54 Fx = 0.0230 Ibf 
4.55 M = 671 kg 
4.56 F - 1.81 kN, tension 
4.57 F = 321 N 
4.58 F = 370 N 
4.59 F = 18.5 kN 
4.60 F = 206 Ibf, tension 
4.61 F = - 7 1 4 / + 4 9 8 J N 

4.62 F = 8.32 kN 
4.63 F = 1.70 Ibf 
4.64 Q = 0.424 m 3/s; F v = 4.05 kN 
4.65 T = 65,200 Ibf 
4.66 7 = 47,400 Ibf 
4.68 V = 0.867 m/s 
4.69 / = 1.19 mm; Fx = 3.63 kN 
4.70 F = - 2 6 . 7 / - 139; Ibf 

4.71 F = - 4 . 6 8 / + 1.66i kN 
4.72 V2 = 6.60 m/s; p 2 - p , = 84.2 kPa 

4.73 F = - 1 0 4 0 / - 667) N 
4.74 F = 4.77 Ibf 
4.75 F = 5.11 kN 
4.76 F = 837 Ibf 

4.77 62 = 0.141 m 3/s; F = - 1 . 6 5 / - 1.34/kN 
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4.78 F = 799? - 3 8 7 / N 

4.79 Kx = 37.9 N 
4.80 m = 9.67 kg/s; V 2 m a x = 15.0 m/s; 

FD = 65 N 
4.81 D = (5TT/8 - 2ITT)PU2 

4.82 wm a j s = 30 ft/s; p , - p 2 = 0.190 lbf/ft2 

4.83 « m a x = 60 ft/s; p , - p 2 = 0.699 lbf/ft2 

4.84 F = 7.90 X 10~ 4 N 
4.85 F/w = 0.0393 N/m 
4.86 Drag = 0.446 N 
4.87 Flw = 0.277 N/m 
4.89 fc2//?, = 0.5(1 + sin 6) 
4.90 Error = 1.73 percent 
4.91 h = H/2 
4.92 h = 202 mm; F = 0.543 N 
4.93 V = [V 2 + 2g/ i] , / 2 ; F = 3.56 N 
4.94 V = [V 2 - 2gh]m; h= 16.2 ft 
4.95 V = 175 ft/s; F X J C 1 = 2.96 lbf 
4.96 M = 4.46 kg; Mw = 2.06 kg 
4.97 F = 5.9 kN 
4.98 p , = 61.0 kPa (gage); Ky = 209 N 

(perpendicular to plate) 
4.100 z = 3V 2

0/2£ 
4.101 z = Vll2g 
4.102 p(x) = p(0) - p(QxlwhL)2 

4.104 A, = [h\ + 2Q2/gb2h2]m 

4.105 V(r) = V0r/2h 

4.107 F = - 8 2 2 ? + 220j N 

4.108 F = - 5 7 0 ? + 3 2 9 / lbf 
4.109 Vj = 80 m/s 
4.110 F = 1.73 kN 
4.111 F = 167 N 
4.112 F = 3840 lbf at U = 75 mph 

4.113 VV = p(V - t/) 2LM(l - cos(9) 

4.114 r = 4.17 mm; F = 4240 N 
4.115 t = 6.25 mm; F = 7940 N 
4.116 a = 30°; F = 10.3 kN 
4.117 U = V/2 
4.118 a r f = 13.5 m/s 2 

4.119 m 2 / m 3 = 0.5; F = 7.46 kN 
4.120 / = MlpAV{{ + sin 0) 
4.121 L7, = 15.8 m/s 
4.123 L7/V = ln[W 0/(M 0 - pV At)]; V = 0.61 m/s 
4.125 0 = 19.7° 
4.126 A = 111 mm 2 

4.127 < = 22.6 s 
4.128 A = 17.9 mm 
4.129 U = 22.5 m/s 

4.130 a r f = 5.99 m/s 2; (7/(7, = 0.667 
4.131 l = 1.71 s;s = 7.47 m 
4.132 dUldt = 14.2 m/s 2; {/, = 15.2 m/s 
4.134 / = MlpVA(\ + V/UQ) 
4.135 V = 16.4 m/s; * m a x = 1.93 m; 

r = 2.51 s 
4.136 U/U0 = e *»VA"M 

4.137 l = 0.750 M/pVA; x = 0.238 MU0/pVA 
4.138 a y = -16 .5 ft/s2 

4.139 £> « 0.0469 m 3/s 
4.140 t = 126 s 
4.141 [/ = 227 m/s 
4.142 1/ = 834 m/s; a m a x = 96.7 m/s 2 

4.143 A / r = 186 lbm 
4.144 U = 281 m/s 
4.145 Mass fraction = 0.393 
4.146 a = 83.3 m/s 2; U = 719 m/s 
4.147 M f u e l = 38.1 kg 
4.148 OQ = 17.3 g 
4.149 V = 3860 ft/s; V = 33,500 ft 
4.150 V = 1910 m/s 
4.152 0 = 18.9° 
4.153 f = MIlpVA 
4.154 L7 = t/ 0 /[l + 2pUaAt/M0]m 

4.155 C7/V = 1 - 1/[1 + 2pVAt/M0][n 

4.156 m = Mg/Vt\t = 110 s 
4.157 V m i U = 456 ft/s; y m a x = 3600 ft 

(139 m/s; 1090 m) 
4.160 h = 20.5 m 
4.166 V = 43.8 m/s 
4.167 F = 22.8 kN; T = 469 kN- m 
4.168 T= 0.193 N-m; w = 2610 rad/s 2 

4.169 w m M = 29.5 rad/s 
4.170 a w = 20.2 rad/s 
4.171 T = 16.9 N • m; co = 461 rpm 
4.173 to = 39.1 rad/s 
4.174 T = 0.0722 N-m 
4.175 T = 0.0161 N-m 
4.176 co = 0.161 rad/s 2 

4.177 w = 6.04 rad/s; A = 1720 m 2 

4.179 7 = 29.4N-m; M = 51.0? + 1.40JN-

4.183 W = - 8 0 . 0 kW 

4.184 8F/3r = -0 .177 °R/s 
4.185 Efficiency = 74.8% 
4.186 Q = - 146Btu / s 
4.187 p , - p 2 = 75.4 kPa 
4.188 VV = -96 .0 kW 

4.189 W = -3 .41 kW 
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4.190 Q = 0.0166 m 3/s; z m a x = 61.4 m; 

F = 561 N 

4.191 V= 94.5 m/s; W = - 7 3 9 kW 

4.192 Am.e. = -1 .88N-m/kg ; 
A T = 4.49 X 1 0 " 4 K 

Chapter 5 
5.1 (b),(c),(d) 
5.2 (b), (d) 
5.3 A + E + J = 0 
5.4 (a), (b) 
5.5 i> = A(y2/2 - By) + f(x) 
5.6 u = - 2 y x - 2x + f(y) 
5.7 v = Ay/x2 

5.8 u = lAylx 
5.9!) = Ay/fx2 + y 2) 
5.10 o/J7) m „ = 0.0025 
5.11 v/U)max = 0.00182 
5.12 v/U)ma = 0.00167 
5.13 v/U)mm = 0.00188 
5.14 u = 3Bx2y2/2; xy3n = c 
5.15 v= -2Axfl3;xyil1 = c 
5.19 (a),(b),(c) 
5.20 Vr = -AcosO/r2 

5.21 V = e f lwrZ//i 

5.24 i// = Uy2/2h;y = hi42 

5.25 «/» = xy + y 2 - x 3/3 
5.26 <// = Ad - filn(r) 

5.27 V = ( - [/ cos 0 + ql2irr)er + U sin 0 e f l 

5.28 i// = - y h - 2z2 

5.29 Q = 1 m 3/s/m 
5.30 i// = Ufah;y = 3.54 ft 
5.31 i// = Uy2/28;y/8 = 0.50, 0.707 
5.32 y/S = 0.460, 0.667 
5.33 y/S = 0.442, 0.652 
5.35 ip — -c In r; Q/fc = 0.0912 m 3/s/m 
5.36 <A = -wr2/2; 0/6 = 1.1 X 10" 3 m 3/s/m 

5.37 Yes; dp = 1.75/ + 0.875) m/s 2 

5.38 a,, = (16/ + 32) + 16*)/3 m/s 2 

5.39 3-D; No; o p = 27/ + 9 ) + 64* m/s 2 

5.40 a p = - 2 . 8 6 ( 1 0 ~ 2 / + 10" 4 ) ) m/s 2; 

rfy/ax = 0.01 

5.42 u = Ax2/2; ap = A 2(0.5/ + ) ) 

5.44 ap = -(U2/2L)(l - xl2L) 

5 .45 ap = -(Q/2irh)2r 3 e r 

5 .46 a, = -81 .0 km/s 2; a r = - 3 . 0 km/s 2 

5 .48 dT/dx = -0 .0873 °F/mi 
5 .49 DTIDt = -14°F /min 
5 .50 DCIDt = 0.00, 125 ppm/hr, 

250 ppm/hr 

5 .52 dp = xl + yj 

5 .53 c = - 2 s" 1 ; dp = 4/ + 8) + 5fcm/s2 

5 .54 ap = (A2x - AB)i + A2yj; dp = - 0 . 1 2 / + 

0.267) m/s 2, dp = - 0 . 0 8 / + 0.40) m/s 2, 

a,, = - 0 . 0 4 / + 0.80) m/s 2 

5 . 5 5 i/r = axy[2 + cos(wf)] + constant; 

o i o c a j = 3 T T / - 677) m/s 2, 5 ^ = 18/ + 

36) m/s 2; 
a 1 0 l a, = 27.4/ + 17.2) m/s 2 

5 .56 Ratio = 100 

5 .59 v = v0(\ - y//i); 

ap = iv2xlh2 -j(vl/h)(\ -ylh) 

5 .60 dp = er{Vo/2h)2r - k(vllh){\ - zlh) 

5 .64 / , = x0eA',f2 = y0e~A'; 

r(l, 1) = 0.693 s, r(2, 0 . 5 ) = 1.39 s; 

5,(1,1) = 1+j m/s2, 
dp(2, 0.5) = 2/ + 0.5) m/s 2 

5.66 Yes; Yes 
5.68 T = -0 .100 m 2/s 
5 . 6 9 r = 0 

5.70 w = - 0 . 5 * rad/s; T = - 0 . 5 0 m 2/s 
5.71 Yes; Yes 
5.72 Yes; No 

5.73 0) = - 0 .05 s" 1 k; xfi = Ay2/2 + c 

5.74 co = ~2xk;T = - 2 m 2/s; 
\\> = 2xy2 

5.75 V = - 2 y / - 2x) 

5.76 ip = A(y 2 - x^/2 + By; I" = 0 

5.77 a> = -k 
5.78 co = -L7/2/I 
5.79 Yes; i/» = -(<?0 + Klnryiir 
5.80 T = -L/L/4, 0 

5.81 I = <?9Vma; i2r//?2 

5 .82 I = k2yumJb2 

5.83 oy/^V = -0 .0134 lbf/ft3 

5.84 df/dY = - 1 . 8 5 kN/m 3 
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Chapter 6 
6.1 dp = 90? + 2 / f t / s 2 ; 

Vp = - (180 / + 68.4/) lbf/ft2/ft 
6.2 a = 5.66 m/s 2 at 9 = 45° above * axis; 

Vp = - (4 .0 / + 13.8/)kN/m 2/m 

6.3 fl,OUJ = 310/' - 190;' ft/s; 

Vp = -4 .17* -1- 2.56j - 0.43fcpsi/ft 

6.4 ap = 2? + 2j ft/s2; 

Vp = - ( 4 ? + 68.4/) lbf/ft2/ft 
6.5 Vp = - (3 .0? + 9.0/)kN/m 2 /m 

6.8 u - -Ax; dp = 8? + 4j m/s 2; 
Vp = - 1 2 ? - 6 / - 14.7 it N/m 3; 
ptx) = 190 - 3 ^ Pa (gage) 

6.9 Yes;(*,y) = (2.5, 1.5); 
Vp = -p[(4x - 10)? + (4y - 6 ) / + g*]; 
Ap = 9.6 N/m 2 

6.11 p = 43.4 kPa (gage) 
6.14 a x = l e u g x / D 2 ; / ^ ) = %pvl(UDf 
6.15 3p/dx) m „ = 100 kPa/m; L = 4 m 
6.16 3p/9jt)m a x = lOMPa/m; L = 1 m 
6.17 F = 1.56 N, down 
6.18 Vp = - 4 . 2 3 ? - 12 . l /N/m 3 ; 

(xlh) = [1 - y/h] — constant 

6 1 9 apmm = 144m/s 2;A//Z. = 1.20 X 10" 3 kg/m 
6.20 Fy = 4pV2L3w/3b2 

6.21 aPx = cfx/h2 

6.22 a / = -2800g ; Bp/dr = 270 lbf/ft2/ft 
6.24 pLI2 - po = - 3 0 . 6 N/m 2 

6.26 V = 3? - 2 / m/s; a = 3? + 2 / m/s 2; 

a, = 1.16? - 0.771/m/s 2 ; 

3p/d.r = -1 .71 N/m 2/m 

6.27 B = - 0 . 1 m - 1 • s" 1 ; a p = 0.04? + 
0 .02 /m/s 2 

a„ = 0.0291 m/s 2 

6.28 a p = 2.0? + 4.0y'ft/s2; /? = 1.40 ft 

6.29 dp = 4.0? + 2.0/ ft/s2; /? = 5.84 ft 

6.30 dp = 0.5? + 1.0/ m/s 2; 7? = 2.83 m 
6.32 .r2? = 2; dp = 2AV? + ftrtyB - A)/; 

/? = 5.35 m 
6.33 Ah = 33.7 mm Hg 
6.34 Ah = 48.4 mm water 
6.35 F = 0.379 lbf; 1.52 lbf 
6.36 V = 89.5 ft/s 
6.37 Art = 628 mm water 
6.39 piyn = 296 N/m 2 ; p = - 3 5 5 N/m 2 (gage) 
6.40 V = 27.5 m/s 

6.41 p 0 = 900 kPa (abs); p 0 = 413 kPa (abs); 

V a b s = 2.5? + 21.7/ m/s ;p 0 = 338 kPa (abs) 
6.42 p = 227 kPa (gage), 148 kPa (gage) 
6.43 p = 291 kPa (gage) 
6.44 h = 4.78 m 
6.45 V = 21.5 ft/s; Q = 0.469 ft3/s 
6.47 p = -0 .404 kPa (gage) 
6.48 V = 330 ft/s 
6.49 Q = 66.1 m 3/hr 
6.50 V = 44.2 m/s 
6.51 Ap = 5.54 kPa; Ap/q = 0.933 

6.52 p = p„ + ^ p t / 2 ( l - 4 sin 2 0); 

0 = 30°, 150°, 210°, 330° 
6.53 F = 278 N/m 
6.55 Q = 301 gpm; Fx = 565 lbf; Tension 
6.56 Q = 2.55 X 10" 3 m 3 / s 
6.57 p = 39.0 psf (gage); = 1.67 lbf 
6.58 p,s = 49.2 kPa; Kx = 57.5 N 
6.59 V2 = 3.05 m/s; p ^ = 4.65 kPa (gage); 

Ky = 11.5N 
6.60 p = 1.35 p s ig ;p m 

F = 4.76 lbf 
1.79 psig; 

6.63 hlh, = 
2h0(AR'L 

6.64 h = tf/2; r = H 
6.65 Ah = 202 mm; AT, = 0.547N, 219 N 
6.66 Fv = 83.3 kN 
6.67 Fv = 532 kN 
6.68 p = 164 kPa (gage); F = 152 N 
6.74 C c = 0.5 
6.77 p = 12.3 kN/m 2 (gage) 
6.78 a = 3.47 m/s 2 

6.79 dQ/rft = 0.0516 m3/s/s 
6.80 fift/rff2 = 2gllL 
6.82 p g a g c = 3pV2R2/$b2 

6.83 D/rf = 0.32 
6.84 No; Yes 
6.85 N o ; p 2 - p , = - 2 5 2 lbf/ft2 

6.86 0 = [^(y 2 - x2)/! + Bxy]t 
6.90 tfi = Jty 2 - rV3 

6.91 V = -2 (y? + xj); <f> = 2xy 
6.92 i// = -2jcy 
6.93 ip= Bix2 - y 2)/2 - 24xy 

6.94 V = -(2x + 1)? + 2y/; i// = - (2xy + y); 

Ap = 12.0 kN/m 2 

6.95 | v | = x2 + f; if, = xy2 - *V3 

6.96 <p = lAixty - x3) 
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6.97 Stagnation point ( - 2 , 4/3) m; <p = A{y2 

x2)!! - Bx - Cy; Ap = 55.8 kPa 
6.98 Q = 1.25 m 3/s/m; <b = Biy2 - x2)f2 

6.99 r> \0a 
6.101 r > 9.77 m , p = - 6 . 3 7 kPa (gage) 
6.102 Stagnation at r = 0.367 m, 6 = 0, TT 

6.103 h = 0.162 m; V = 44.3? m/s, 
p = - 9 5 7 N/m 2 (gage) 

6.105 q = 50TTm2/s;y = ±ir 
6.106 r = 1.82 m, 0 = 63°; p = - 3 1 7 N/m 2 

(gage) 

6.107 RJb = 5.51 kN/m 

Chapter 7 
7.1 rr/pLV2, gZVV2, 
7.2 V2/gZ, 
7.3 gUVl 
1 A vIVoL 
7.5 DIL, Ap/pV2, v/VD 
7.7 F/pV/J = constant 
7.9 Ap/pV2 = f(p/pVD,d/D) 
7.10 S/x =f(pUx/p) 
7.11 TjpLP = f(pJpUL) 
7.13 V = J~g~Df{\/d) 
7.14 0 = h\ghyaf(b/h) 
7.15 W/tfw/x = / ( / / D , c/D) 
7.16 V(pAAr)1/2 = constant 

7.17 r = 4dig f(p2/p2gd3) 
7.18 £ = pV3f(nrfV) 
7.19 = pD5w3/(f2/D3w) 
7.20 4;3; pJpdV2gm 

7.21 4; 3; pJpd3l2gm 

1 . 2 2 Q = Vh2f(pVh/p, V2lgh) 
7.23 3; pVD/p,d/D,a/pDV2 

7.25 pVD/p,h/d,D/d 
7.27 V2/g<5, A/5 2 , 0, pSVmg, 
7.29 3; w = pA 5 / 4 g 1 / 2 / ( / i /A l / 2 , AplpAmg) 
7.30 TlpV2D\ pJpVD, toD/V, d/D 
7.31 ^ = pcoD^fipco/p, c/D, €/D) 
7.32 Fr/pV2D2, gD/V2, toD/V,p/pV2, pJpVD 
7.33 Sf/pD 2V 3, wD/V, p/pVD, c/V 
7.34 Q/pV3L2, cp@/V2, p/pVL 
7.36 PmJPUl=f(EvlpUl) 
7.37 'iP/pulD1, V/coD, HID, pJptoD2 

7.38 p = 5 3 9 k P a ; F = 1.34 kN 
7.39 V a i r /V W d l „ = 1 5 . 1 a t 2 0 ° C 
7.40 V,„ = 6.9 m/s; FD (protoype) = 522 N 

7.41 VJVp = 0.331; FD = 214 N 
7.42 p = 1.94 MPa (abs); FD = 43 A kN 
7.43 Vm = 40.3 m/s; Vp = 40.3 m/s 
7.44 Vm = 6.00 m/s; F 0 = 1.05 N 
7.45 V = 179 ft/s; F„/F„ = 4.94 
7.46 D f f l = 5.04 in.; <am = 1000 rpm 
7.47 Vffl = 80 ft/s; w,„ = 1600 rpm 
7.48 pm = 2.96 psia 
7.49 V = 0.048 ft/s; Ap = 0.019 psig 
7.50 C D , m = 0.0972; FD = 470 N 
7.51 V,/V2 = l /2 ; / , / / 2 = 1/4 
7.52 Vm = 0.13 m/s; w„ = 0.5 Hz 
7.53 F 0 = 2.46 kN; <3> = 55.1 kW 
7.54 T = 1070 hr 
7.55 Vm = 1.88 m/s; Vm = 7.29 m/s; 

F ^ F , , = 0.872 
7.56 Vm = 9.51 m/s; F 0 / F D ; > , = 0.263; 

p» = 88.1kPa 
7-57 = 27.1 ft/s 
7.58 C D = 0.951; FD = 794 lbf; V = 807 ft/s 
7.59 Scale ratio = 1/50; Not possible 
7.61 Q = 2.47 m 3/s 
7.63 Ap p = 52.5 kPa; Qm = 0.0928 m 3/min 
7.65 h = 145 ft • lbf/slug; Q = 5.92 ftVs; 

D = 0.491 ft 
7.66 F,lpu?D* =/,(g/w 2D,wD/V); 

F/pw 2/) 5 =/ 2 (g/w 2 D,wD/V); 
W/paPD5 = f^glo/D^DIV); 

7.67 w = 533 rpm; F, = 7.81 kN; 
T= 71 kN-m 

7.68 KE ratio = 7.22 
7.69 FB » 0.273 N; C 0 = 0.443; F D = 1.64 kN 
7.70 Fg = 0.574; 0.44% 

Chapter 8 
8.1 Re = 4Q/irDp; Re = 3000 
8.2 Q = 0.396 m 3/s; L l a m = 34.5 m; 

L, u i b = 6.25 - 10 m 
8.4 <2, = 0.0158 m 3/min; Q2 = 0.0396 m 3/min; 

g 3 = 0.079 m 3/min 
8.6 V7nra„ = 2/3 
8.7 g / i = 2 / i M m a x / 3 ; V7«m a, = 2/3 
8.8 ryx = - 2 . 5 N/m 2 (to right); 

Qlb = 2.08 X 10" 5 m 3/s/m 
8.9 ryx= -0 .040 lbf/ft2 (to right); 

Qlb = 6.67 X 10" 5ft 3/s/ft 
8.10 TYX = ydp/dx; r m a x = -0.00835 lbf/ft2 

8.11 Q = 0.353 cc/s 
8.12 Q = 1.02 cc/s 



772 ANSWERS TO SELECTED PROBLEMS 

8.13 
8.14 

8.15 
8.18 
8.19 
8.20 
8.21 
8.22 
8.23 

8.24 
8.25 
8.27 
8.28 

8.29 
8.30 

8.31 

8.33 
8.34 

8.35 
8.39 
8.41 
8.44 
8.46 
8.47 
8.48 
8.49 
8.52 

8.57 
8.58 
8.59 
8.60 

8.61 
8.62 
8.64 
8.65 
8.66 
8.68 

8.69 
8.70 
8.71 
8.72 

0 = 3.97 X 10 4 cc / s 
w = 0.50 ft; dp/dx = - 4 0 0 psi/ft; 
h = 2.02 X 10" 3 in . 
M = 4.32 kg; a = 1.28 X 10~ 5

 m 

n= 1.48 
p = 0.0695 N- s/m2 

Qlb = 0.0146 ft3/s/ft 
Win, = 3.75 m/s 
dp/dx = - 9 2 . 6 N/m 2/m 
u i n t = 4.17 X 10^ 3 m/s; 
" m a x = 4.34 x 10" 3 m/s 
Ap = -lUpJa2; Ap = +2UpJa2 

Re = 1.94; T = 2.02 kN/m 2; <d> = 11.4 W 
v = 1.0 X 10 4 m 2 / s 
T M A X = 34.8 N/m 2; Qlw = 263 mm 3/s/mm; 
Re = 0.236 
u i m = 0.23 m/s; wfs = 0.268 m/s 
0 / 6 = 2.5 X 10" 3 m 3 /s/m; T = 1.43 X 
10 2 N/m 2 ; dp/3x = 22.9 N/m 2/m 
ylb = 0.695; umJU = 1.24; 
VAv = 9.27 X IO"2ft3/ft 
dp/a* = 34.4 N / m 2 / m , - 6 8 . 8 N/m 2/m 
Qlb = 2.5 X 10- 3irr7s/m; T = 0.912 N/m 2; 
9p/3x = 1.46 kN/m 2/m 
t = 95.5 s 
Ihm, = 33.3% 
t = 10s 
r = 0.707 /? 
6} = 11.3 mm'/s 
Ap = 4.97 lbf/in.2; = 32% 
SD = ±0.775 pm 
Ap = 406 kPa; Ap = 8160 MPa 
u = (ct/p) In r + c 2 ; c, = ^Vo/lntr/ro); 
c 2 = - V 0 In r 0 / m(r f/r 0) 
TK = 3.0 lbf/ft2 

T w = - 8 . 0 N / m 2 

T w = 33.8 Pa; T w = 82.5 Pa 
62 = 4.52 X 10 7

 m V s ; Ap = 235 kPa; 
TW = 294 N/m 2 

n = 6.49; n = 9.17 
r//? = 0.707 (laminar); 0.757 (turbulent) 
0 = 4/3 (laminar); 1.02 (turbulent) 
a = 1.54 
a = 2.0 
h, = 589 J/kg; p = 833 kPa; 
p = 343 kPa; = 60 m 
Hi = 4.24 ft; h, = 137 ft-lbf/slug 
V, = 6.44 ft/s 
d = 2.97 m 
g = 2.66 X 1 0 - 2 m 3 / s 

8.73 H, = 2720 ft 
8.74 p = 1.68 MPa 
8.76 W, = 28.4 ft 
8.77 H = 104 ft, //, = 25.2 ft 
8.79 e/D = 0.003 
8.80 / = 0.039 
8.84 p2- p , = 1.22 kPa 
8.85 V = 76.2 ft/s; 0 = 224 ft3/min 
8.86 62 = 1.10 X 10~ 3nr7s 
8.89 Q = 0.0361 ft3/s 
8.90 AQ = 0.0184m 3 /s 
8.92 N - 275 mm; N = 150 mm 
8.93 Ap = H5kPa ; = 0.234 
8.94 AR = 2.7, 2 0 = 12°; Q = 0.172 m 2/s 
8.98 AG/g = 16.4%;p m i n = - 5 . 2 6 kPa (gage) 
8.99 V = 0.723 m / s ; d = 3.66 m 
8.101 d = 6.15 m 

8.102 g = 2.87 X 1 0 " 5 m 3 / s ; d = 13.6 m m 
8.105 d = 54.0 m 

8.106 p = 1.03 MPa (gage) 
8.107 Az = 88.4 m; Fraction = 1 . 1 percent 

08 
09 
12 
13 
14 
15 
17 
18 
19 
20 g 
21 h, 
22 

23 
26 

Ap = 43.9 N/m 2 

V = 12.9 ft/s; Ap = 3.63 psi 
Az = 8.13 m 
p - 593 kPa 
e/D = 0.021; Saving = 48.2 percent 
d = 1.51 m 
L = 26.5 m 
Q = 1.01 m 3/s 
g = 0.0395 m 3/s 

5.33 x 10 3 m7s 
-42 .5 mm/s 

g = 5.14 X 10~ 3 m 3/s; 3.65 X 10 3 m 3/s 
Vn = 28.0 m/s; F = 365 N 
Q = 38L/min ;L = 143 m; 
L = 1.15 X 1 0 6 m 

27 d = 61.2 m; g - 0.104 nrVs; 
p = 591 kPa 

28 g = 0.260 ft3/s; p m i n = - 2 . 9 6 psig 
29 g = 5.30 X 10" 4 m 3 / s ; g = 5.35 X 

10 4 m 3 / s 
L = 0.97 ft 
p = 35.9 psig; g = 11.5 gpm 
D a 14 mm 
D = 2.5 in. (nominal) 
h = 0.194 m;b = 0.388 m 
D = 6 in. 

38 8.21 X 1 0 4 ; / = 0.019 
39 d g / d / = -0 .524 m3/s/min 
41 SP = 2.08 hp 
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8.142 9> = 4.69 kW 
8.143 Ap = 52.7 psi 
8.144 D = 48 mm; Ap = 3840 kPa; 

SP = 24.3 kW 
8.145 p = 341 psig; QP = 171 hp 
8.146 Ap = 43.7 psi; SP = 286 hp; 

Cost = $853/day 
8.147 L = 72.7 km; 2P = 7.73 MW 
8.148 g = 108 gpm; V = 124 ft/s; SP = 13.4 hp 
8.149 C = $13.63/day 
8.151 Q = 0.0419 m 3/s; 

Ap = 487 kPa;9> = 29.1 kW 
8.152 Q = 0.757 m 3/s; Ap = 542 kPa; 

2P = 586 kW; 0 = 0.807 m 3/s; 
Ap = 480 kPa; '2P = 533 kW 

8.154 Q = 3.97 X 10" 3 m 3/s; 
(2, = 3.28 X 10" 3 m 3/s; 
S 2 = 6.9 X 10" 4 m 3 / s 

8.155 Go = 8.81 X 10" 3 m 3 / s ; 
0, = 4.66 X 10" 3 m 3/s; 
0 2 = 0, = 2.13 X 10~ 3 m 3 /s 

8.158 Ap = 462 lbf/ft2 

8.159 G = 0.224 m 3/s 
8.160 Ap = 266 kPa; 0 = 0.0177 m 3/s 
8.161 G = 0.0404 m 3/s 
8.162 G = 96.8 gpm 
8.163 G = 136 gpm 
8.164 D = 40.8 mm; m = 0.0220 kg/s 
8.165 m - 2.10 kg/s; A/i = 170 mm Hg 
8.166 G = 1-37 ft3/s 
8.169 Re = 1 8 0 0 ; / = 0.0356; 

p = - 2 9 0 N/m 2 (gage) 

Chapter 9 
9.2 x = 182 mm; x m = 13.5 mm 
9.3 x = 0.114 m 
9.6 A = t/; fi = 77/25; C = 0 
9.9 S*/S = 1/2, 1/3, 3/8,0.363 
9.10 8/8 = 0.167, 0.133, 0.137 
9.11 S*/S = 0.125,0.333; 0/5 = 0.0972,0.133 
9.12 mab = 30 kg/s; F , = - 3 0 N 
9.13 mab = 50.4 kg/s; F x = - 5 0 . 4 N 
9.14 mah = 20 kg/s; Fx = - 2 4 N 
9.15 L72 = 81.4 ft/s; p , - p 2 = 0.264 lbf/ft2 

9.16 U2 = 18.4 m/s; Ap = 2.19 Pa 
9.17 L72 = 13.8 m/s; Ap = 20.7 Pa 
9.18 Ap = 59.0 Pa 
9.19 p2 = -73 .1 Pa (gage); r = 0.300 N/m 2 

9.20 U2 = 24.6 m/s; p , = - 4 3 . 9 mm H 2 0 ; 
p2 = - 4 4 . 5 mm H 2 0 

9.21 8* = 2.54 mm; Ap = 107 N/m 2; 
F D = 2.28 N 

9.22 p2 = - 4 0 . 8 Pa (gage); T = 0.12 Pa 
9.28 y = 3.28 mm; Slope = 0.00327; 

8 = 1.09 mm 
9.32 F = 1.62 N 
9.33 6 = 0.283 mm; F = 1.13 N 
9.34 FD = 26.3 N; FD = 45.5 N 

9.36 8/x = 3At>ljRe~x\ Cf = 0.5111 jRe~x 

9.38 F D = 5.63 x 10" 2 N 
9.39 F = 0.783 N 
9.41 FD = 18.9 N;jr, = 0.145 m 
9.44 F = 2.27 N 
9.46 F = 2.32 N 
9.48 F = 2.37 N 
9.49 S, = 6.62 mm, TW = 0.0540 N/m 2; 

S, = 26 mm, TK = 0.249 N/m 2 

9.50 5 = 31.3 mm; T b , = 0.798 N /m 2; F = 0.7 N 
9.51 W = 80.1 mm 
9.52 Ap = 6.16 N /m 2; Ax = 232 mm 
9.53 H6 = 321 mm; L = 0.517 m; Ac = 242 mm 
9.54 U2 = 26.8 m/s; Ap = 56.8 Pa; 

AL = 1.20 m; AL = 0.564 m 
9.55 Consumed = 0.089%; 

Performance = 17.7 BtuAon-mile 
9.60 a = b = 0, c = 3, d = - 2 ; f7 = 3.89 
9.61 C/m a x = 7.82 ft/s; A/i = 0.00340 in. H 2 0 
9.62 Area reduction = -1 .59%; 

d&dx = 0.61 mm/m; 6 = 1.10 mm 
9.64 /?eL = 1.55 X l0 7;.v f = 53.2mm; 

SP = 15.3 kW 
9.65 F = 7.87 kN; 3> = 1.79 MW 
9.66 L = 9.96 ft; F = 2250 Ibf 
9.68 V = 2.18 mph; x, = 0.0339 ft; 

F,„ = 3.65 lb f ;F p = 4110 Ibf 
9.69 x, = 74.5 mm; 8 = 81.3 mm; F D = 279 N 
9.70 V = 11.0 ft/s; V = 11.5 ft/s 
9.71 F = 5.49 X 105 N 
9.74 8 = 1.65 m ; F = 1.56 M N ; ^ = 11.2 MW 
9.75 F = 92.3 kN 
9.76 T = 86.2N-m ;5P = 542 W 
9.77 Rings: d„= 125 mm; d, = 41.8 mm 
9.78 D = 6.90 m 
9.79 D = 3.80 m ; D = 2.20 m; 1 g 
9.80 / = 9.30 s; x = All m; 

t = 7.39 s; x = 407 m 
9.81 Horizontal is 20 percent better 
9.82 C D = 0.299 
9.83 s = 117 m 
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9.84 Wins; Loses 
9.85 VmM = 24.7 km/hr, 35.9 km/hr, 

26.8 km/hr, 39.1 km/hr 
9.86 = 9.47 km/hr, 8.94 km/hr; 

63.6 km/hr, 73.0 km/hr; 
58.1 km/hr, 68.1 km/hr 

9.87 M = 3.29 X 1 0 ^ slug 
9.88 k = 0.0948 km/hr/rpm; w = 105 rpm; 

w = 104 rpm 
9.89 t= 1.30 mm 
9.90 t = 2.95 s; rf = 624 ft 
9.91 V, = 43.5, 121 m/s; 

/ = 8.1 l , 22 .6 s ;y = 224, 1730 m 
9.92 V m a x = 489 ft/s 
9.94 FE = 6.13 mi/gal; AQ = 1720 gal/yr 
9.95 SP = 55.4 kW, V m a x = 43.0 m/s; 

SP = 49.5 kW, V m a x = 44.7 m/s; 7 months 
9.96 V = 42.2 mph; rj = 90.9%; 

0 M M = 3.37 m/s 2 (1/3 g); 
V m M = 150 mph; V m a x = 155 mph 

9.97 CD = 1.17 
9.99 V2(Kl) = 1 5 m / s ; p 2 = - 1 3 3 N/m 2 (gage); 

W = 0.814 kg 
9.101 w o p l = V73/? 
9.102 SP = 69.3 kW 
9.103 T = 11.9 N-m 
9.104 D < 0.231 mm 
9.105 CD = 0.479 
9.106 V = 23.3 m/s; Re = 48,200; F 0 = 0.111 N 
9.107 x = 13.9 m 
9.108 V = 29.8 ft/s 
9.109 C D = 61.9; p = 3720 kg/m 3; 

V = 0.731 m/s 
9.111 V = 23.7 m/s; f = 4.44 s; y = 67.1 m 
9.112 M = 0.048 kg 
9.113 M = 519 k N m 
9.114 D = 6.2 m 
9.115 r = 126s 
9.117 £» = 7.99 mm; A = 121 mm 
9.118 C f l = 1.08 
9.122 C D = 0.611; V = 36.9 mph 
9.123 FD = 12.3 lbf; AFC = 1 . 1 5 lbm/hr; FE = 

27.5 mpg; FE = 22.6 mpg (square-edged); 
No! Net cost = $1.90 

9.124 FD = 2.59kN;rf = 8.57 m 
9.132 ASP = 18.2 kW 
9.137 M = 7260 kg; V = 162km/hr 
9.138 A p = 7.03 m 2; T = 1350 N; SP = 944 kW 
9.139 M = 19.5 kg; SP = 542 W 
9.140 V = 5.62 m/s; SP = 31.0 kW; V = 19.9 m/s 

9.141 a = 3°;SP = 10.0 kW; 4.28 g's 
9.142 V = 144 m/s;/? = 431 m 
9.143 /Vf = 37.9 kg; SP = 1.53 kW 
9.144 V « 289 km/hr 
9.145 V = 237km/hr 
9.146 7 = 17,300 lbf 
9.147 FD = 2.15 kN; SP = 149 kW 
9.148 Vmn = 158 km/hr, F e = 4.04 kN, 

SP = 178 kW; VmM = 623 km/hr, 
F D = 4.89 kN, SP = 845 kW 

9.149 FL = - 3 1 0 lbf; AF = 336 lbf 
9.150 6 = 3.42°; L = 168 km 
9.153 SP = 0.302 hp 
9.157 p = - 1 9 0 N/m 2 (gage); V = 149 km/hr 
9.158 FL = 0.00291 lbf 
9.159 FL = 50.9 kN; FD = 18.7 kN; 

SP = 5.94 kW 
9.160 FJmg = 0.175; Folmg = 0.236 
9.161 FJmg = 3.80, 3.40; F^/mj? = 4.51, 4.07; 

/? = 263 m, 307 m 
9.162 to = 11,600 rpm; 5 = 1.19 m 
9.163 to = 2100 rpm 

C h a p t e r 1 0 
10.1 D = 50 mm; ft = 6.4 mm 
10.2 / / = 101ft, 106 ft, 109ft, 111 ft; 

Wm = 3.86 hp, 4.02 hp, 4.15 hp, 4.21 hp 

10.3 H = 99.8 m; Wm = 97.8 kW 

10.4 H = 135 m; Wm = 994 kW 

10.5 H = 487 m; VVm = 23.9 MW 
10.6 H = 50.1 ft;SP = 12.7 hp 
10.7 /3| = 64.2°; 5 = 7.90° 

10.8 / / = 61.4 m; Wm = 150 kW 

10.9 Q = 1.60m 3/s;W = 132m; Wm = 2.10MW 

10.10 (8, = 47.7°; W = 476 m; VV,„ = 37.3 MW 

10.11 # 0 = 179 m; H = 174 m; lVm = 85.4 kW 
10.12 ft = 61.3° 
10.13 0 e f f = 30.4° 
10.14 VV„ = 11.7kW;/7 = 34.2 m 
10.16 Wm = 5.75 kW; H = 19.7 m 
10.17 tu = 224 rad/s; a 2 = 80.4°; 77 = 325 ft; 

Wm = 37.8 hp 
10.18 H = 165 ft (H 2 0) , 230 ft (gasoline) 
10.19 TJ = 0.445; 2 = 450 gpm; H = 30.9 ft 
10.21 //(ft) = 156 - 1.36 X 10" 4[(2(gpm)] 2 

10.22 //(ft) = 91.5 - 4.01 X 10 7[<2(gpm)]2 

10.23 TJ « 0.79; /7 = 176 ft at (3 = 630 gpm 
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10.24 ?7 = 0.83; H «= 185 ft at Q « 820 gpm 
10.25 Hi = 15.1 m; H2 = 60.7 m; 

W f l u i d = 1.86kW;Tj p = 76%; 
We[cc = 2.88 kW 

10.26 Welec = 2.4 kW; p2 = 369 kPa (gage) 
10.29 1 hp (US) = 1.01 mhp; 

Ns (mhp) = 4.39/V, (US) 
10.30 Ns = 1130; SP,„ = 11.6 hp 
10.31 77 = 0.86 at 0 = 2220 gpm, H = 130ft; 

D = 13 in.: 0 = 2800 gpm, H = 153 ft; 
D = 11 in.: g = 1690 gpm, H = 109 ft 

10.32 W„, = 735 kW; 0 ' = 0.6 m 3/s; 
/ / ' = 12.5 m; 77' = 80%; SP' = 91.9 kW 

10.33 H0 = 26 m; 77 = 79%; 0 ' = 1.07 nvVs; 
H' = 2 1 . 8 m ; / / 0 = 56.6 m; 
SP' = 289 kW 

10.34 n = 5 pump/motor units 
10.35 / / , , 5 0 « 25.9 ft 
10.43 /V,„ = 371 rpm; DJDp = 0.145; 

Q„ = 14.2 ft3/s 
10.44 Yes; Operate at flow rate below BEP, lower 

speed. 
10.45 Nm = 7140 rpm; DJDp = 0.135 
10.46 0 = 1080ft 3/s;/Y = 211 ft; 

SP = 25,800 hp 
10.47 a = 0.0426 ( g p m ) 1 , 

b = - 1 . 5 6 X 10 - 9 (gpm) - 3 ; r 2 = 0.996 
10.48 7 « 46 °C; 0 = 0.625 U s ; 77 « 4.65 m 
10.49 NPSHA = 26.4 ft; 

# = 22.5 ft (p = 9.73 psig) 
10.52 0 m a x = 948 gpm 
10.54 H = 40.4 ft; Cost = 0.29 j£/hr; & = 2.72 hp 
10.55 Z3 = 6 in. (nominal); 2P,„ = 890 hp 
10.57 H = 75.4 ft; ^ \ = 303 hp 
10.58 0 = 627 gpm 
10.59 0 = 2710 gpm; LJD = 27,250 
10.60 0 = 4600 gpm; LJD = 9980 
10.61 0 = 3000 gpm; LVD = 51,600 
10.65 With 3 pumps, 77 « 0.91; 

2 P m = 235,000 hp 
10.66 H„ = 295 ft 
10.68 0 = 2330 gpm, H = 31A ft; Type 

8AE20G, 
19.5 in. impeller, 1770 rpm 

10.69 0 = 197 gpm, H = 116 ft; Type 
4AE12, 
11 in. impeller, 1750 rpm 

10.70 0 = 600 gpm, H = 778 ft; 
Type 5TUT-16B, 5-stage, 1750 rpm 

10.73 0 = 2020 gpm 

10.74 0 = 898 gpm, H = 104 ft; Type 
4AE11, 
11 in. impeller, 1750 rpm 

10.75 0 = 11,200 gpm, H = 101 ft; 3 Type 
10AE12, 12 in. impeller, 1750 rpm 

10.76 0 = 15,700 gpm, H = 654 ft (gasoline); 
4 Type 10TU-22C, 2-stage, 1750 rpm 

10.79 0 m M = 11.2 gpm at Az = 0 
10.81 N = 3500 rpm; D = 3.18 in.; 77 ~ 0.6 
10.82 77 « 0.8 at 0 = 9200 cfm 
10.84 A o u U e l = 6.29 ft2; 77 = 0.85 
10.85 to' = 659 rpm; 2P' = 32.8 hp 
10.86 V= 123 ft/s 
10.88 SP | 0 S S = 0.292 hp 
10.89 FT = 680 and 449 Ibf 
10.90 D = 1.44 m; 7 = 1.60 kN and 800 N 
10.91 77 = 57.1 percent 
10.92 D = 18.6 ft; n = 241 rpm; 

SP i n = 72,700 hp 
10.93 V = 16.0 ft/s; J = 0.748; CF = 0.0415 
10.94 17 = 50.0 percent; 770 = 0 
10.97 SP o u t = 16,900 hp; N = 353 rpm; 

7 = 3.22 X 10 5 ft - Ibf 
10.98 NS = 35.\\Q = 31,800m 3 / s ;D = 27.6 
10.99 NScu = 55.7; 0 « 34,600 ft3/s 
10.100 D= I0.3ft ;D, .= 14.5 in.; 0 = 310 ft3/s 
10.101 /V, = 26.5; 7 = 3.91 X 10 6 ft • Ibf, 

0 = 2570 cfs at H = 380 ft 
10.102 For one jet, N = 229 rpm; D = 10.5 ft 
10.103 2P = 1.77 hp; 77 = 0.600 
10.104 r7„„ ~ 1050 ft; Ns « 5 
10.105 Ns = 4.55; D = 6.20 ft 

Jcu 
10.107 Dj « 2.2 in.; SP = 60.3 hp 
10.108 U, « 79.6 m/s; Q. = 0.364 
10.109 w = 26 s - 1 ; S P m o d e l = 0.069 hp 
10.110 SP ~ 22 hp; w = 98.9 rpm 
10.111 Qh « 737 gpm- ft with 7 7 p u m p = 0.7 

C h a p t e r 11 
11.1 A M = - 5 7 4 kJ/kg; A/i = - 8 0 3 kJ/kg; 

As = 143 J/(kg- K) 
11.2 Yes 
11.3 7 m i n = 246 °C 
11.4 A5 = -0 .923 Btu/°R; AC/ = - 6 8 4 Btu; 

A/7 = - 9 6 0 Btu 
11.5 q= 1.10MJ/kg;o = 788 kJ/kg 
11.6 77 = 57.5%> 
11.8 W = 392 kW 
11.9 W= 176 MI; W = 228 MJ; 7 = 858 K; 

0 = - 3 1 7 M J 
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11.10 m = 36.7 kg/s; T2 = 572 K; V2 = 
4.75 m/s; W = 23 MW 

11.11 TJ = 65% 
11.12 Ar = 828 s 
11.14 M = 0.533, 1.08 
11.15 M = 0.776; V = 269 m/s 
11.16 c = 299 m/s; V = 987 m/s; V/Vb = 1.41 
11.23 V = 761 m/s; a = 27.0° 
11.24 V = 642 m/s 
11.25 V = 6320 ft/s 
11.26 A/ = 1.19; V = 804 ft/s; 

/te/* = 9.84 x 10 6 m 1 

11.27 V = 493 m/s; A/ = 0.398 s 
11.28 V = 515 m/s;f = 6.16 s 
11.29 t = 8.51 s 
11.30 Ax = 3920 ft 
11.31 / « 48.5 s 
11.34 M = 0.141,0.314,0.441 
11.35 M = 0.925; V = 274 m/s 
11.36 Ap/p = 48.5%; No 
11.37 po = 546 kPa; T0 = 466 K; 

/ J 0 - h = 178kJ/kg 
11.38 po = 126, I28kPa(abs) 
11.39 M = 0.801; V = 236 m/s; T0 = 245 K 
11.40 c = 295 m/s; V = 649 m/s; a = 27.0°; 

T 0 = 426 K 
11.41 Ap = 8.67 kPa; V = 195 m/s; V = 205 m/s 
11.43 ax = - 1 6 1 m / s 2 ; p 0 = 191 kPa (abs); 

T0 = 346 K 
11.44 T0 = 394 °F; p 0 = 85.4 psia; 

m = 145 lbm/s 
11.45 Yes; No 
11.46 V = 890 m/s; 7/0 = 677 K; p 0 = 212 kPa 
11.47 V = 987 m/s; p 0 = 125 kPa; 

Po = 31.6 kPa; T0 = 707 K 
11.48 T0, = Toj = 20.6 °C; p 0 | = 1.01 MPa; 

Po2 = 189 kPa; s 2 - s, '= 480 kJ/kg • K 
11.49 T0l = 539 °C ;T 0 2 = - 1 6 . 6 ° C ; 

Q = - 2 7 . 9 kW; p 0 | = 593 kPa; 
Po 2 = 657 kPa ; s 2 - st = - 1 . 1 9 kJ/kg • K 

11.50 7 0 = 344 K; p 0 = 223, 145 kPa (abs); 
s2 - st = 0.124 kJ/(kg- K) 

11.51 SQ/^w = 63.0Btu/lbm; 
Poj = 56.5 psia 

11.52 T 0 = 445 K; p 0 = 57.5, 46.7 kPa (abs); 
s2 - 5 , = 59.6 J/(kg • K) 

11.53 T0 = 2900, 1870 °R; 
Po = 100, 4.57 psia; 
s2 - J , = 0.107 Btu/(lbm- °R) 

11.54 Ap = 48.2 kPa 
11.55 r* = 260 K, p* = = 24.7 MPa (abs); 

v* = 252 m/s 
n.56 r* = 1500 K,p* = 2.44 MPa (abs); 

= 2280 m/s 
11.57 r* - 2730 K,p* = 25.4 MPa (abs); 

v* = 1030 m/s 
n.58 r* = 2390 °R, p* = 79.2 kPa (abs); 

= 2400 ft/s 

C h a p t e r 12 
12.1 V = 2620 ft/s; M = 1.36; 

m = 1.76 lbm/s 
12.2 V = 1660 ft/s; A/ = 0.787; 

m = 0.274 lbm/s 
12.3 A/ = 1.35 
12.4 p = 93.8 kPa 
12.5 M2 = 1.20 
12.6 M2 = 1.20 
12.7 V= 475 m/s; A = 0.315 m 2 

12.8 M = 1.75; m = 27.2 kg/s; 
A 2 = 0 .192m 2 ; p 2 = 55.0 kPa 

12.10 m = 8.50 kg/s 
12.11 p, = 33 psia; M, = 0.90; V, = 1060 ft/s 
12.12 p, = 166 kPa 
12.13 p = 150kPa; M = 0.6; A, = 0.0421 m 2; 

m = 18.9 kg/s 
12.14 m = 0.548 kg/s 
12.15 A = 1.94 X 1 0 - 3 m 2 

12.16 p 0 = 8 0 6 k P a ; m = 1.92 kg/s 
12.17 po = 818 kPa; pe = 432 kPa; 

T t = -45 .5 °C; Ve = 302 m/s 
12.18 po ^ 191 kPa; m = 1.28 kg/s 
12.19 m = 0.0107 lbm/s 
12.20 / = 68.4 s; As = 0.0739 Btu/(lbm -°R) 
12.21 R X = 1560 N (to the left) 
12.22 To = 188°C; AA = -25 .4 percent: 

p = 188 kPa; V = 393 m/s 
12.23 p = 687 kPa (abs); m = 0.0921 kg/s; 

arf = 1.62 m/s 2 

12.24 po'= 988 kPa; pe = 522 kPa; 
Te = 58.7 °C; V, = 365 m/s, a = 1.25 m/s 2 

12.25 m = 2.73 lbm/s; a r / t = 99.8 ft/s2 

12.26 /?, = 304 lbf, tension 
12.27 A2 = 0.0340 m 2 ; V2 = 424 m/s 
12.28 A, = 0.377 in. 2 

12.29 f = 23.6 s 
12.30 M, = 1.00; p f = 381 kPa;p, = 191 kPa; 

T ~ 288 K 
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12.31 / = 23.5 s; As = 161 J/(kg- K) 
12.32 m = 0.440 lbm/s 
12.33 p0 = 115 psia; m = 1.53 lbm/s; 

A, = 0.593 in. 2 

12.34 p = 125 kPa (abs); m = 0.401 kg/s 
12.35 A = 2.99 in. 2; m = 3.74 lbm/s 
12.36 V = 1300 m/s; m = 87.4 kg/s 
12.37 A = 8.86 X 1 0 ' 4 m 2 , 1.50 X 1 0 " 3 m 2 

12.38 m = 3.57 lbm/s 
12.39 /?, = 950 N 
12.40 m = 39.4 lbm/s; F , = 9750 Ibf 
12.41 p = 88.3 kPa (abs); m = 0.499 kg/s; 

X", = 1030 N 
12.42 m = 32.4 kg/s; Ae = 0.167 m 2; 

A,/A, = 19.4 
12.43 p, = 2740 psia; m = 0.0437 lbm/s; 

Thrust = 1.97 Ibf; 36 percent; 
Ae = 7.52 X 1 0 - 3 in 2 

12.44 po = 5600 psia 
12.45 m = 0.0726 kg/s; p < 33.5 kPa (abs) 
12.46 M = 0.20; rit = 3.19 X 10 3 kg/s; 

p = 47.9 kPa (abs) 
12.47 p = 18.5 psia; V= 1040 ft/s 
12.48 p = 477 kPa (abs); As = 49.5 J/(kg- K) 
12.49 m = 0.00321 kg/s; p 0 = 33.8 kPa (abs); 

As = 314 J/(kg • K) 
12.50 m = 0.0192 kg/s; F* = 244 K; 

p* = 53.4, 13.6 kPa (abs) 
12.51 T = 468 K; F = 60 N; As = 149 J/(kg- K) 
12.52 F = 822 Ibf 
12.53 p, = 56.6 psia; T = 433°R; p 0 = 27.8 psia; 

m = 0.0316 lbm/s 
12.54 T = 238 K; p = 26.1 kPa (abs); 

As = 172 J/(kg • K) 
12.55 M = 0.15; T = 246 K , p 0 = 25.6 kPa; 

L = 8.41 m 
12.56 L = 1.27 m 
12.57 F = 459 K; L = 34.5 m 
12.58 L = 18.8 ft 
12.63 / = 0.0122; Ap = 13.0 psi 
12.64 L = 0.405 m 
12.66 p = 191 kPa (abs); L = 5.02 m; 

As = 326 J/(kg • K) 
12.67 M = 0.25; Added 
12.68 p = 153 psia 
12.69 M = 0.452; L = 603 ft 
12.70 Ap = 16.6, 18.2, 18.1 psia 
12.71 Q = 1.84 X 10 8 ft3/day 
12.72 SQ/dm = 145 kJ/kg; Ap = 405 kPa 

12.73 8Q/dm = 243 Btu/lbm 
12.74 8Q/dm = 449 kJ/kg; As = 0.892 kJ/(kg • K) 
12.75 Q = l l l k W ; p , - p2= 1.30MPa 
12.76 8Q/dm = 18kJ/kg; As = 53.2 J/(kg • K); 

Ap 0 = 2.0 kPa 
12.77 V = 1520 ft/s; T = 2310 °R; 

Q = 740 Btu/s 
12.78 p = 209 psia; Q = 2270 Btu/s; 

m/ = 0.126 lbm/s 
12.79 80/rfm = 330 Btu/lbm; Ap 0 = -1 .94 psia 
12.80 V = 866 m/s; p = 46.4 kPa; Af = 1.96; 

8Q/dm = 156U/kg 
12.81 M = 0.50; T 0 = 1560 K; Q = 1.86 MI/s 
12.82 Ap 0 = - 2 2 kPa; Sg/dm = 447 kJ/kg; 

Ai- = 889 J/(kg • K) 
12.83 8Qldm = 17.0 kJ/kg; F = 318 K; 

p - 46.3 kPa; p0 = 87.7 kPa 
12.84 M= l.O;p = 48.8 kPa; 

Ap 0 = - 8 . 6 0 kPa 
12.85 Q = 5.16 X 104 Btu/s 
12.86 8Q/dm = 313 Btu/lbm; Ap 0 -= - 3 4 psia 
12.87 T0 = 764 K; m = 0.0215 kg/s; 

A,7A, = 4.23 
12.88 F 0 = 966 K; M = 0.60; 

5«2/dw = 343 kJ/kg; Fraction = 0.616 
12.91 M2 = 1.74; p 2 = 4.49 psia 
12.93 V = 536 m/s 
12.94 po = 7.22 psia; F 0 = 954 °R 
12.95 p = 0.359 lbm/ft3; A/ - 0.701 
12.96 V = 247 m/s; F = 670 K; 

As = 315 J/(kg -K) 
12.97 p = 28.1, 85.7 psia 
12.98 T= 520 K ; p 0 = 1.29 MPa 
12.99 V = 257 m/s; M = 0.493; 

Ap 0 = - 5 1 2 kPa 
12.100 V = 255 m/s; Ap = 473, 842 kPa 
12.101 F 0 = 426 K; po = 207,130 kPa 
12.102 M = 2.48; V = 2420 ft/s; p = 24.3 psia; 

Po = 29.1 psia 
12.103 T= 414 K;p = 51 .9kPa ;p 0 = 57.9 kPa 
12.104 M - 0.545; p = 514 kPa; p 0 = 629 kPa; 

A = 0.111 m 2 

12.105 A = 2.32 ft2; As = 0.0423 Bru/lbm -°R) 
12.106 Ap 0 = -14 .1 psi; 

As = 0.0591 Btu/(lbm -°R) 
12.107 M = 2.20; p 0 = 178 kPa; 

Vs = 568 m/s 
12.108 T0 = 533 K; Ap = 37.4 kPa; 

As = 30.0 I/(kg • K); po = 116 kPa 
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12.109 V = 265, 279 m/s 
12.110 p = 33.4 kPa; V= 162 m/s 
12.111 M= 1.45; m= 0.808 lbm/s 
12.112 M = 0.701; p = 167 kPa; 

As = 20.9 J/(kg • K) 
12.113 M = 1.92; p = 89.4, 58.6, 14.5 psia 
12.114 Af = 2.94; po = 3.39 MPa; 

p = 3.35, 1.00 MPa, 101 kPa 
12.115 p = 301 kPa 
12.116 p = 46.7 psia; A = 1.52 in. 2; 

m = 2.55 lbm/s 
12.117 p = 587 kPa;A, = 756 mm 2; 

A = 448 m 2 

12.118 A/ = 1.50 
12.119 33.4 <pb < 99.6 kPa; 

m = 0.121 kg/s 
12.120 A/ = 2.12; V= 2000 ft/s 
12.121 P a [ m < p 0 < 112 kPa and po > 743 kPa 
12.122 p = 66.6 psia 
12.123 p = 301 kPa(abs) 

12.125 M = 0.475; p 0 = 361 kPa; r 0 = 400 K; 
A, = 118 mm 2 ; ^ 2

 _ î = 
-0 .320 kJ/(kg • K); Mt = 0.377 

12.127 M = 2.14 
12.128 V = 2140 ft/s; As = 0.0388 Btu/(lbm-°R) 
12.129 M2 = 2.06; p 2 = 93.4 kPa; 6 = 3.72°; 

Normal shock: A/2 = 0.547; 
p 2 = 411 kPa; B = 27° 

12.130 B = 19.5° - 90° 
12.131 6= 25°; B = 46.7°; M2 = 1.56 
12.132 B = 66.2°; p 2 /p , = 6.06 
12.133 M = 1.42; V = 484 m/s 
12.136 F^/w = 138 kN/m 
12.137 FJw = 183 kN/m 
12.138 pi = 36 .6kPa ;p 2 = 15.9 kPa 
12.141 po = 1317 kPa,p = 497 kPa; 

Po = 3814kPa,p = 571 kPa 
12.142 FJw = 64.3 kN/m; D = 13.7 kN/m 
12.144 CD = 0.0177 
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Absolute metric (system of units), 12 
Absolute pressure, 56 
Absolute viscosity, 28 
Acceleration: 

convective, 199 
gravitational, 11 
local, 199 
of particle in velocity field, 197, 199 

cylindrical coordinates, 200 
rectangular coordinates, 200 

Accelerometer, 100 
Adiabatic flow, see Fanno-line flow 
Adiabatic process, 592 
Adverse pressure gradient, 38,409, 430 
Aging of pipes, 341 
Anemometer: 

Laser Doppler, 382 
thermal, 382 

Angle of attack, 448 
Angular deformation, 197,203, 207 
Angular-momentum principle, 103, 145 

fixed control volume, 145 
rotating control volume, S-13 

Apparent viscosity, 31 
Apparent shear stress, 330 
Archimedes' principle, 81 
Area, centroid of, 69 

second moment of, 70 
product of inertia of, 71 

Area ratio, 343 
isentropic flow, 628 

Aspect ratio: 
airfoil, 453 
flat plate, 438 
rectangular duct, 348 

Atmosphere: 
isothermal, 66 
standard, 56 

Average velocity, 110, 311 

Barometer, 64 
Barotropic fluid, 40 
Barrels, U.S. petroleum industry, 353, 405 
Basic equation of fluid statics, 52 
Basic equations for control volume, 102 

angular-momentum principle, for inertial control 
volume, 145 

for rotating control volume, S-13 
conservation of mass, 109 
first law of thermodynamics, 150 
Newton's second law (linear momentum), for control 

volume moving with constant velocity, 134 
for control volume with arbitrary acceleration, S-7 
for control volume with rectilinear acceleration, 137 
for differential control volume, 129 
for nonaccelerating control volume, 116 

second law of thermodynamics, 151 
Basic laws for system, 102 

angular-momentum principle, 103 
conservation of mass, 102 
first law of thermodynamics, 103 
Newton's second law (linear momentum), 103 

differential form, 212 
second law of thermodynamics, 104 

Basic pressure-height relation, 55 
Bearing, journal, 318 
Bernoulli equation, 132,237 

applications, 243 
cautions on use of, 248 
interpretation as an energy equation, 249 
irrotational flow, S-21 
restrictions on use of, 238 
unsteady flow, S-18 

Bingham plastic, 31 
Blasius' solution, S-39 
Blower, 488, 548 
Body force, 24 
Borda mouthpiece, 268 
Boundary layer, 37,410 

displacement thickness, 412 
effect of pressure gradient on, 430 
flat plate, 411 
integral thicknesses, 413 
laminar: 

approximate solution, 422 
exact solution, S-39 

momentum integral equation for, 415, 420 
momentum-flux profiles, 432 
momentum thickness, 413 
separation, 430 
shape factor, 432 
thickness, 412 
transition, 411 
turbulent, 426 
velocity profiles, 432 

779 
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Boundary-layer: 
control, 455, 461 
thicknesses, 412 

British gravitational (system of units), 12 
Buckingham Pi theorem, 277 
Bulk (compressibility) modulus, 40, 599, 718 
Buoyancy force, 80 

Camber, 448 
Capillary effect, 33, 282 
Capillary viscometer, 327 
Cavitation, 40, 524 
Cavitation number, 285, 560 
Center of pressure, 68, 69 
Choking, 632, 638, 646, 661, S-48, S-49 
Chord, 448 
Circulation, 205, S-38 
Coanda effect, 160 
Compressible flow, 40, 589, 617 

basic equations for, 617 
ideal gas, 620 

flow functions for computation of, 744 
Compressor, 488, 548 
Concentric-cylinder viscometer, 48 
Confidence limit, 757 
ConicaJ diffuser, 344 
Conservation: 

of energy, see First law of thermodynamics 
of mass, 102, 109, 184 

cylindrical coordinates, 189 
rectangular coordinates, 184 

Consistency index, 31 
Contact angle, 32, 720 
Continuity, see Conservation of mass 
Continuity equation, differentia] form, 184 

cylindrical coordinates, 189 
rectangular coordinates, 184 

Continuum, 17 
Contraction coefficient, 268, 396 
Control surface, 7 
Control volume, 7 

deformable, 108 
rate of work done by, 151 

Convective acceleration, 199 
Converging-diverging nozzle, see Nozzle 
Converging nozzle, see Nozzle 
Conversion factors, 762 
Creeping flow, 387 
Critical conditions, compressible flow, 610 
Critical flow in open ohannel, 285 
Critical pressure ratio, 610, 632 
Critical Reynolds number, see TransiUon 
Critical speed: 

compressible flow, 611 
Curl, 204, S-22 
Cylinder: 

drag coefficient, 441 
inviscid flow around, S-33, S-35 

D'Alembert paradox, 35, S-33 
Deformation: 

angular, 197, 203, 207 
linear, 197,209 
rate of, 27, 208 

Del operator: 
cylindrical coordinates, 190, S-2, S-22 
rectangular coordinates, 54, 186 

Density, 17 
Density field, 18 
Derivative, substantial, 199 
Design conditions, see Nozzle 
Differential equation, nondimensionalizing, 273 
Diffuser, 343, 361,488,624 

optimum geometries, 344 
pressure recovery in, 344 
supersonic, S-46 

Dilatant, 31 
Dilation, volume, 210 
Dimension, 10 
Dimensional homogeneity, 11 
Dimensional matrix, 282 
Dimensions of flow field, 20 
Discharge coefficient, 371 

flow nozzle, 374 
orifice plate, 373 
venturi meter, 376 

Displacement thickness, 412 
Disturbance thickness, see Boundary layer 
Doppler effect, 382, 602 
Doublet, S-28 

strength of, S-28 
Downwash, 453 
Draft tube, 490, 513 
Drag, 35,410, 433 

form, 38, 454 
friction, 434, 438 
parasite, 460 
pressure, 38, 437, 438 
profile, 454 

Drag coefficient, 293, 434 
airfoil, 454 
complete aircraft, 455 
cylinder, 441 

rotating, 464 
flat plate normal to flow, 438 
flat plate parallel to flow, 434 
golf balls. 462 
induced, 453 
selected objects, 439 
sphere, 439, 480 

spinning, 461 
streamlined strut, 445 
supersonic airfoil, 696 
vehicle, 293 

Dynamic pressure, 239, 240 
Dynamic similarity, 286 
Dynamic viscosity, 28 
Dyne, 12 



Efficiency: 
hydraulic turbine, 502 
propeller, 558, 586 
propulsive, 557 
pump, 295,501 
windmill, 567 

Elementary plane flows, see Potential flow theory 
End-plate, 455 
Energy equation, for pipe flow, 334. See also 

First law of thermodynamics 
Energy grade line, 254 ,361 , 364 
English Engineering (system of units), 12 
Enthalpy, 153,590 
Entrance length, 312 
Entropy, 591 
Equation of state, 5, 620 

ideal gas, 5, 589 
Equations of motion, see Navier-Stokes equations 
Equivalent length, 342 

bends, 346 
fittings and valves, 346 
miter bends, 346 

Euler equations, 215, 232 
along streamline, 234 
cylindrical coordinates, 233 
normal to streamline, 235 
rectangular coordinates, 233 
streamline coordinates, 234 

Eulerian method of description, 10, 201 
Euler number, 285 
Euler turbomachine equation, 491 
Experimental uncertainty. 2, 755 
Extensive property, 104 
External flow, 41 ,409 

Fan, 488, 542 
"laws." 297, 545 
selection procedure, 735 
specific speed, 546 

Fanno-line flow, 643, 645 
basic equations for, 644 
choking length, 653, S-49 
effects on properties, 646 
flow functions for computation of, 649, 746 
normal shock formation in, S-49 
Ts diagram, 646 

Field representation, 18 
First law of thermodynamics, 103, 150 
Fittings, losses in, see Head loss, in valves and fittings 
Flap. 455 
Flat plate, flow over, 411 
Float-type flow meter, 380 
Row behavior index, 31 
Flow coefficient, 296, 372 

flow nozzle. 374, 375 
orifice plate, 374 
turbomachine, 514 

Row field, dimensions of, 20 

Row measurement, 369 
internal flow, 370 

direct methods, 369 
linear flow meters, 380 

electromagnetic, 381 
float-type, 380 
rotameter, 380 
turbine, 380 
ultrasonic, 382 
vortex shedding, 380 

restriction flow meters, 370 
flow nozzle, 374 
laminar flow element, 376 
orifice plate, 373 
venturi, 376 

traversing methods, 382 

laser Doppler anemometer, 382 
thermal anemometer, 382 

Flow meter, see Flow measurement 
Row nozzle, 374 
Row visualization, 21,292 
Ruid, 3 
Ruid machinery. 487 

dynamic, see Turbomachine 
fan, 488 
performance characteristics, 502 
positive displacement, 487 
propeller, 489 
pump, 488 
turbine, 489 

Ruid particle, 19 
Ruid properties. 716 
Fluid statics: 

basic equation of, 52 
pressure-height relation. 55 

Ruid system, 347, 528 
Force: 

body, 24 
buoyancy, 81 
compressibility. 284 
drag, 433 
gravity, 284 
hydrostatic, 67 

on curved submerged surface, 76 
on plane submerged surface, 67 

inertia, 282 
lift, 433, 447 
pressure, 53, 284, 433 
shear, 433 
surface, 24, 433 
surface tension, 32, 33, 284 
viscous, 284 

Forced vortex, 206 
Francis turbine, 490, 513 
Free surface, S-3, S-5 
Free vortex, 206, S-28 
Friction drag, see Drag 
Friction factor, 336, 338, 339 

Darcy, 338 
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Friction factor (continued) 
data correlation for, 339, 340 
Fanning, 338, 396 
laminar flow, 340 
smooth pipe correlation, 341 

Frictionless flow: 
compressible adiabatic, see Isentropic flow 
compressible with heat transfer, see Rayleigh-line flow 
incompressible, 232 

Friction velocity, 302, 331 
Froude number, 285 
Froude speed of advance, 304 
Fully developed flow, 311 

laminar, 312 
turbulent, 330 

Fully rough flow regime, 339, 341 

8 „ H 
Gage pressure, 56 
Gas constant: 

ideal gas equation of state, 5, 590, 726 
universal, 590,726 

Geometric similarity, 286 
Gibbs equations, 592 
Grade line 254 

energy, 255, 361,364 
hydraulic, 255 ,361 ,364 

Gradient, 54 
Gravity, acceleration of, I 1 
Guide vanes, 490 

Head, 254, 336, 493 
gross, 509,513 
pump, 347 ,501 ,529 
net, 509,513 
shutoff, 500 

Head coefficient, 296, 514 
Head loss, 335 

in diffusers, 345 
in enlargements and contractions, 343 
in exits, 342 
in gradual contractions, 344 
in inlets, 343 
major, 329, 336 
minor, 329, 341 
in miter bends, 346 
in nozzles, 344 
permanent, 377 
in pipe bends, 346 
in pipe entrances, 343 
in pipes, 336 
in sudden area changes, 343 
total, 336 
in valves and fittings, 346 

Head loss coefficient, 341 
Heat transfer, sign convention for, 104, 150 
Hydraulic accumulator, 163 
Hydraulic diameter, 348, 650 

Hydraulic grade line, 255, 361, 364 
Hydraulic jump, 190 
Hydraulic power, 501, 502 
Hydraulic systems, 67 
Hydraulic turbine, 490, 561 
Hydrometer, 97 
Hydrostatic force, 67 

on curved submerged surfaces, 76 
on plane submerged surfaces, 68 

Hydrostatic pressure distribution, 69, 121 
Hypersonic flow, 600 

Ice, 717 
Ideal fluid, S-22 
Ideal gas, 5, 589 
Lmpeller, 488 
Incomplete similarity, 289 
Incompressible flow, 40, 106, 187, 192 
Incompressible fluid, 57 
Induced drag, 453 
Inertia! control volume, 116, 134 
Inertial coordinate system, 116, 137 
Intensive property, 104 
Internal energy, 590 
Internal flow, 41 ,310 
Inviscid flow, 36, 232 
Irreversible process, 592 
Irrotational flow. 205, S-20 
Irrotarionality condition, S-20 
Irrotational vortex, 207, S-28 
Isentropic expansion waves, 690 

basic equations for, 691 
on an airfoil, 694 
Prandtl-Meyer expansion function, 693, 754 

isentropic flow, 621 
basic equations for, 621 

ideal gas, 621 
in converging-diverging nozzle, 637 
in converging nozzle, 631 
effect of area variation on. 621, 623 
flow functions for computation of, 627, 744 
in hs plane, 622 
reference conditions for, 625 

Isentropic process, 592 
Isentropic stagnation properties, 602 

for ideal gas, 603, 606 
Isothermal flow, S-44 

let pump, 163 
Journal bearing, 318 

Kaplan turbine, 490, 513 
KilogTam force, 577 
Kinematic similarity, 286 
Kinematics of fluid motion, 197 
Kinematic viscosity, 28 
Kinetic energy coefficient, 335 
Kinetic energy ratio, 309 
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Lagrangian method of description, 8, 201 
Laminar boundary layer, 422, S-39 

flat plate approximate solution, 422 
flat plate, exact solution, S-39 

Laminar flow, 39, 310 
between parallel plates, 312 

both plates stationary, 312 
one plate moving, 318 

in pipe, 324 
Laminar flow element (LFE), 376 
Laplace's equation, S-23 
Lapse rate, 613 
Lift, 410 ,433 ,447 
Lift coefficient, 448 

airfoil, 450 
rotating cylinder, 464 
spinning golf ball, 462 
spinning sphere, 461 
supersonic airfoil, 696 

Lift/drag ratio, 452 
Linear deformation, 197, 209 
Linear momentum, see Newton's second law of motion 
Local acceleration, 199 
Loss, major and minor, see Head loss 
Loss coefficient, see Head loss 
Lubricating oil, 724, 725 

Mach angle, 602 
Mach cone, 601 
Mach number, 40, 286,596 
Magnus effect, 463 
Major loss, see Head loss 
Manometer, 57 

capillary effect in, 33 
multiple liquid, 62 
reservoir, 59 
sensitivity, 59 
U-tube, 58 

Material derivative, 199 
Mean line, 448 
Measurement, flow, see Flow measurement 
Mechanical energy, 252, 335 
Mechanical flow meter, see Flow measurement 
Mechanical power, 492 
Meniscus, 33, 282 
Meridional, 514 
Meter, flow, see Flow measurement 
Methods of description: 

Eulerian. 10,201 
Lagrangian, 8, 201 

Metric horsepower, 577 
Mile, nautical, 763 
Minor loss, see Head loss 
Minor loss coefficient, see Head loss coefficient 
Model studies, 286 
Model test facilities, 299 
Modulus of elasticity, 40 
Molecular mass, 590, 726 
Momentum: 

angular, see Angular-momentum principle 

coefficient, 394 
linear, see Newton's second law of motion 

Momentum equation: 
differential form, 211 
for control volume moving with constant velocity, 134 
for control volume with arbitrary acceleration, S-7 
for control volume with rectilinear acceleration, 137 
for differential control volume, 129 
for inertial control volume, 116 
for inviscid flow, 232 

Momentum flux, 117 
Momentum integral equation, 415,420 

for zero pressure gradient flow, 421 
Momentum thickness, 413 
Moody diagram, 339 

National Transonic Facility (NTF), 299, 613 
Nautical mile, 763 
Navier-Stokes equations, 213 

cylindrical coordinates, 730 
rectangular coordinates, 214 

Net positive suction head, 524 
Network, pipe, 364 
Newton, 12 
Newtonian fluid, 28, 213 
Newton's second law of motion, 103 
Noncircular duct, 348 
Noninertial reference frame. 131, S-7 
Non-Newtonian fluid. 28, 30 

apparent viscosity, 31 
consistency index, 31 
flow behavior index. 31 
power-law model, 31 
pseudoplastic, 31 
rheopectic, 32 
thixotropic, 32 
time-dependent, 32 
viscoelastic, 32 

Normal shock, 669 
basic equations for, 670 
effects on properties, 672 
flow functions for computation of, 672, 750 
supersonic channel flow with, 678, S-46 
Ts diagram, 671, 672 

Normal stress, 25, 145, 214 
No-slip condition, 3, 37, 311 
Nozzle, 243,624 

choked flow in. 632, 638 
converging, 624, 631 
converging-diverging, 625, 637, 678 
design conditions, 639 
incompressible flow through, 243 
normal shock in, 678 
overexpanded, 639 
underexpanded, 639 

Oblique shock, 680 
basic equations for, 681 
comparison with normal shock, 684 
deflection angle, 687, 753 
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Oblique shock (continued) 
flow functions for computation of, 684, 752 
on an anfoil, 688 
shock angle, 687 

One-dimensional flow, 20 
Open-channel flow, 41 
Orifice, reentrant, 268 
Orifice plate, 373 
Overexpanded nozzle, 639 

Particle derivative, 199 
Pascal, 762 
Pathline, 21 
Pelton wheel, 509 
Permanent head loss, see Head loss 
Physical properties, 716 
Pipe: 

aging, 341,581 
compressible flow in, see Fanno-line flow 
head loss, see Head loss 
laminar flow in, 325 
noncircular, 348 
roughness, 337, 338 
standard sizes, 351 
turbulent flow in, 330, 337 

Pipe systems, 350 
networks, 364 
pumps in, 347, 529 
single-path, 350 

Pi theorem, 277 
Pitch, 558 
Pitot-static tube. 241 
Pilot tube. 241 
Planform area, 446, 448 
Poise, 28 
Polar plot, lift-drag, 452 
Potential, velocity, S-22 
Potential flow theory, S-23 

elementary plane flows, S-25 
doublet, S-28 
sink, S-25 
source, S-25 
uniform flow, S-25 
vortex, S-28 

superposition of elementary plane flows, S-28 
Potential function, S-22 
Power coefficient 296, 515, 558 
Power-law model, non-Newtonian fluid, 31 
Power-law velocity profile, 332 
Prandtl boundary layer equations, 301, S-39 
Pressure, 53. 56 

absolute, 56 
center of, 68, 69 
dynamic, 239. 240 
gage, 56 

isentropic stagnation, see Isentropic stagnation properties 
stagnation, 239, 240 
static, 239 
thermodynamic, 214, 239 

Pressure coefficient, 285, 343 
Pressure distribution: 

airfoil, 446, 451 
automobile, 460 
converging-diverging nozzle, 637, 678 
converging nozzle, 632 
cylinder, inviscid flow, S-33, S-35 
diffuser, 361,431 
entrance length of pipe, 359 
sphere, 440 
supersonic airfoil, 688, 694, 696 

Pressure drag, see Drag 
Pressure field, 53 
Pressure force, 53 
Pressure gradient, 54, 431 

effect on boundary layer, 430 
Pressure recovery coefficient, 343 

ideal, 344 
Pressure surface, 448 
Pressure tap, 240, 373 
Primary dimension, 10, 278 
Profile, velocity, see Velocity profile 
Propeller. 489, 554 

actuator disk, 554 
efficiency, 558 
pitch, 558 
power coefficient, 558 
propulsive efficiency, 557 
solidity, 557 
speed of advance coefficient, 558 
thrust coefficient, 558 
torque coefficient, 558 

Properties, fluid, 716 
air, 728 
water, 716,727 

Propulsive efficiency, 557 
Pseudoplastic, 31 
Pump, 488,531 

in fluid system, 347, 529 
"laws," 297, 520 
operating point, 529 
parallel operation, 538 
positive displacement. 549 
selection procedure, 733 
series operation, 537 
specific speed, 516 
variable-speed operation, 539 

Rankine propeller theory, 556 
Rale of deformation, 27, 208 
Rayleigh-line flow, 657 

basic equations for, 658 
choking, 661, S-49 
effects on properties, 660 
flow functions for computation of, 664, 748 
maximum heat addition, 661 
Ts diagram, 659, 661 

Reentrant entrance, 268 
Reference frame, noninertial, 131, S-7 



INDEX 785 

Repeating parameter, 279 
Reversible process, 592 
Reynolds experiment, 310 
Reynolds number, 36, 284 

critical, see Transition 
Reynolds stress, 330 
Reynolds transport theorem, 107 
Rheopectic, 32 
Rigid-body, motion of fluid, S-l 
Rotation, 197,203 
Rotor, turbomachine. 489 
Roughness, pipe, 337, 338 
Runner, turbomachine, 489 

Secondary dimension, 11 
Secondary flow, 345 
Second law of thermodynamics, 104, 157 
Separation, 38, 430 
Shaft work, 151 
Shape factor, velocity profile, 432 
Shear rate, 28 
Shear stress, 3, 25 

distribution in pipe, 329 
Shear work, 152 
Shock, normal, see Normal shock 
Shock, oblique, see Oblique shock 
Shockless entry flow, 493 
Shutoff head, 500 
Significant figures, 2 
Similarity: 

dynamic, 286 
geometric, 286 
incomplete, 289 
kinematic, 286 
rules, 519 

Similar velocity profiles, 421, S-39, S-40 
Similitude, 275 
Sink, S-25 

strength of, S-25 
Siphon, 244, 402 
SI units, 11,762 

prefixes, 762 
Skin friction coefficient, 423, 427, S-41 
Slug, 12 
Sluice gate, 125,245 
Solidity, 489, 557 
Sound, speed of, 596. 599 
Source, S-25 

strength of, S-25 
Span, wing, 453 
Specific gravity, 18, 7 ] 6, 717, 718 
Specific heat: 

constant pressure, 590, 726 
constant volume, 590, 726 

Specific heat ratio, 591, 726 
Specific speed, 297, 515, 516. 546 
Specific volume, 153, 590 
Specific weight, 19 
Speed of advance coefficient, 558 

Speed of sound, 596 
ideal gas, 599 
solid and liquid, 599 

Sphere: 
drag coefficient, 439 
flow around, 37 
inviscid flow around, 37 
pressure distribution, 440 

Spin ratio, 461 
Stability, 80 
Stage, 488 
Stagnation enthalpy, 615, 619 
Stagnation point, 37,410, S-34, S-36 
Stagnation pressure, 239, 240 

isentropic. see Isentropic stagnation 
properties 

Stagnation pressure probe, 241 
Stagnation properties, see Isentropic stagnation 

properties 
Stagnation state, 602 
Stagnation temperature, 606 
Stall, wing, 449 
Standard atmosphere, 56 

properties of, 57. 719 
Standard cubic foot (of gas), 16 
Standard pipe sizes, 351 
Suite: 

equation of, 5 
thermodynamic, 590 

Static fluid, pressure variation in, 57 
Static pressure, 239 
Static pressure probe, 240 
Static pressure tap, 239 
Steady flow, 19, 110, 187, 192 
Stoke, 28 
Stokes' drag law, 439 
Stokes' theorem, 206 
STP (standard temperature and pressure), 17, 726 
Stieakline, 21 
Stream function, 193, 195 
Streamline, 21 

equation of, 22, 193 
Streamline coordinates. 233. 237 
Streamline curvature, 235,459 
Streamlining, 38, 445 
Stream tube, 250 
Stress, 24 

components, 26, 214, 730 
compressive, 53 
normal, 25, 145,214,730 
notation, 25 
shear, 25. 214, 730 
sign convention, 26 
yield, 31 

Stress field, 24 
Stresses, Newtonian fluid, 214 
Strouhal number, 381, 442 
Substantial derivative, 199 
Suction surface, 448 
Sudden expansion, 343 
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Superposition, of elementary plane flows, S-28 
direct method of, S-29 
inverse method of, S-33 

Surface force, 24 
Surface tension, 32,720 
System, 5 
System head curves, 529 
System derivative, 104 

relation to control volume, 107 
Systems: 

of dimensions, 11 
of units, 11 

Taylor series expansion, 53, 184, 189,204,212,314, 
417 ,418 ,419 

Tds equations, 592 
Terminal speed, 8 
Thermodynamic pressure, see Pressure 
Thermodynamics, review of, 589 
Thixotropic, 32 
Three-dimensional flow, 20 
Throat, nozzle, 624 
Thrust coefficient, 558 
Timeline, 21 
Torque coefficient, 514, 558 
Total head tube. 241 
Trailing vortex, 452 
Transition, 311 ,411 ,440 
Translation, 197 
Transonic flow, 600 
Ts diagram, 595 
Turbine, 489 

hydraulic, 489, 561 
impulse, 489, 509 
reaction, 490, 513 
specific speed, 516 
wind, 566 

Turbine flow meter. 381 
Turbomachine, 487 

axial flow, 488 
centrifugal, 488 
fan, 488 
flow coefficient, 296, 514 
head coefficient, 296, 514 
mixed flow. 489 
pump, 488 
power coefficient, 296, 515 
radial flow, 487 
scaling laws for, 296 
specific speed, 297, 515 
stage, 488 
torque coefficient, 514 

Turbulent boundary layer, approximate solution 
for flat plate, 426 

Turbulent flow, 39, 310 
Turbulent pipe flow, 329 

fluctuating velocity, 330 
mean velocity, 330 
shear stress distribution, 330 

velocity profile, 331 
buffer layer, 332 
logarithmic, 331 
power-law, 332 
velocity defect, 332 
viscous sublayer, 331 
wall layer, 330 

Two-dimensional flow, 20 

Uncertainty, experimental, 2, 755 
Underexpanded nozzle, 639 
Uniform flow at a section, 20, 111 
Uniform flow field, 21 
Units, 11,762 
Universal gas constant, 590, 726 
Unsteady Bernoulli equation, S-18 
Unsteady flow, 20 

Vapor pressure, 40 
Vector, differentiation of, 190, 199 
Velocity diagram, 493 
Velocity field, 19 
Velocity measurement, see Flow measurement 
Velocity of approach factor, 372 
Velocity potential, S-22 
Velocity profile, 37 

in pipe flow, laminar, 326 
turbulent, 331 

Vena contracta, 342. 361, 370 
Venturi flowmeter, 376 
Videotapes, fluid mechanics, 731 
Viscoelastic, 32 
Viscometer: 

capillary, 327 
concentric cylinder, 48, 219 
cone-and-plate, 49 

Viscosity, 27, 28 
absolute (or dynamic), 28, 722 
apparent, 31 
kinematic, 28, 723 
physical nature of, 720 

Viscous flow, 36 
Viscous sublayer, 331 
Visualization, flow, 21, 292 
Volume dilation, 210 
Volume flow rate, 110 
Vortex: 

forced, 206 
free, 206, S-27 
irrotational, 207, S-28 
strength of, S-28 
trailing, 442, 452 

Vortex shedding, 306, 442, 452 
Vorticity, 205 

cylindrical coordinates, 205 

Wake, 38,410 
Wall shear stress, 329, 423, 427, S-41 
Water hammer, 40, 304 



Water, properties of, 716,727, 728 
Weber number, 285 
Weight, 13 
Weir, 302 
Wetted area, 434 
Wetted perimeter, 348, 650 
Windmill, 565 
Wind tunnel, 293, 299 

supersonic, S-47 
Wind turbine, 566 

efficiency, 567 
Winglet, 455 
Wing loading, 453 

Wing span, 453 
Work, rate of, 151 

shaft, 151 
shear, 152 
sign convention for, 104, 151 

Yield stress, 31 

Zone: 
of action, 602 
of silence, 602 
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