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PREFACE

This text was written for an introductory course in fluid mechanics. Qur approach to
the subject, as in previous editions, emphasizes the physical concepts of fluid
mechanics and methods of analysis that begin from basic principles. The primary
objeclive of this book is to help users develop an orderly approach to problem solv-
ing. Thus we always start from governing equations, state assumptions clearly, and
try 1o relate mathematical results to corresponding physical behavior. We emphasize
the use of control volumes to maintain a practical problem-solving approach that is
also theoretically inclusive.

This approach is illustrated by 116 example problems in the text. Solutions to
the example problems have been prepared to illustrate good solution technique and to
explain difficult points of theory. Example problems are set apart in format from the
text so they are easy to identify and follow. Forty-five example problems include
Excel workbooks on the accompanying CD-ROM, making them useful for “What
if?” analyses by students or by the instructor during class.

Additional important information about the text and our procedures is given in
the “Note to Students” section on page 1 of the printed text. We urge you to study
this section carefully and to integrate the suggesied procedures into your problem
solving and results-presentation approaches.

ST units are used in about 70 percent of both example and end-of-chapter prob-
lems. English Engineering units are retained in the remaimng problems to provide
experience with this traditional system and to highlight conversions among unit sys-
tems that may be derived from fundamemals.

Complete explanations presented in the text, together with numerous detailed
examples, make this book understandable for students. This frees the instructor to de-
part from conventional lecture teaching methods. Classroom time can be used to
bring in outside material, ¢xpand upon special topics {such as non-Newtonian flow,
boundary-layer flow, lift and drag, or expermental methods), solve example prob-
lems, or explain difficult points of assigned homework problems. In addition, the 45
example problem Exce!l workbooks are useful for presenting a variety of fluid me-
chanics phenomena, cspecially the effects produced when varying input parameters.
Thus each class period can be used in the manner most appropriate to meet student
needs.

The material has been selected carefully to include a broad range of topics
suitable for a one- or two-semester course at the junior or senior level. We assume a
background in rigid-body dynamics and mathematics through differential equations.
A background in thermodynamics is desirable for studying compressible flow.

More advanced material, not typically covered in a first course, has been moved
to the CD. There the advanced material is available {0 interested users of the hook; on
the CD it does not interrupt the topic flow of the printed text.
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CHAPTER 1 / INTRODUCTION

an intreductory course in thermodynamics) and prior courses in statics, dynamics,
and differential and integral calculus. No attempt will be made to restate this subject
material; however, the pertinent aspects of this previous study will be reviewed
briefly when appropnate.

It is our strong belief that one learns best by deing. This is true whether the sub-
ject under study is fluid mechanics, thermodynamics, or golf. The fundamentals in
any of these are few, and mastery of them comes through practice. Thus it is ex-
tremely important that you solve problems. The nurncrous problems included at the
end of cach chapfer provide the opportunity to practice applying fundamentals to the
solution of problems. You should avoid the temptation to adopt a “plug and chug” ap-
proach to solving problems. Most of the problems are such that this approach simply
will not work. In solving problems we strongly recommend that you proceed using
the following logical steps:

1. State briefly and concisely {in your own words) the information given.

2. State the information to be found.

3. Draw a schematic of the systemn or control volume to be used in the analysis. Be sure to label
the boundanes of the system or control volume and label appropriate coordinate dicections.

4. Give the appropriate mathematical formulation of the basic laws that you consider neces-
sary to solve the problem.

5. List the simplifying assumptions that you feel are appropriate in the problem.

6. Complete the analysis algebraically before substituting numerical values.

7. Substitute numerical values (using a consistent sel of units) to obtain a numerical answer.
a. Reference the source of values for any physical properties.
b. Be sure the significant figures in the answer are cousistent with the given data.

8. Check the answer and review the assurnptions made in the solution to make sure they are
reasonable.

9. Label the answer.

In your initial work this problem format may seem unnecessary and even long-
winded. However, such an orderly approach to the solution of problems will reduce
errors, save time, and permit a clearer understanding of the limitations of a particular
solution. This approach also prepares you for communicating your solution method
and results to others, as will often be necessary in your career. This format is used
in all example problems presented in this text; answers to example problems are
rounded to three significant figures.

Most engingering calculations nvolve measured values or physical property
data. Every measured value has associated with it an experimental uncertainty. The
uncertainty in a measurement can be reduced with care and by applying more precise
measurement techniques, but cost and time needed to obtain data nse sharply as
measurement precision 1s increased. Consequently, few engingering data are suffi-
ciently precise 1o justify the use of more than three significant figures.

Not all measurements can be made to the same degrec of accuracy and not all
data are equally good; the validity of data should be documented before test results
are used for design. A statement of the probable uncertainty of data is an important
part of reporting experimental results completely and clearly. Analysis of uncertainty
also is useful during experiment design. Careful study may indicate potential sources
of unacceptable error and suggest improved measurement methods.

The principles of specifying the experimental uncertainty of a measurement
and of estimating the uncertainty of a calculated result are reviewed in Appendix F.
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1-3

SCOPE OF FLUID MECHANICS

Fluid mechanics deals with the bebhavior of fluids at rest and in motion. We might ask
the question: “Why study fluid mechanics?”

Knowledge and understanding of the basic principles and concepts of fluid me-
chanics are essential 1o analyze any system in which a fluid is the working medium. We
can give many examples. The design of virtually all means of transportation requires
application of the principles of fluid mechanics. Included are subsonic and supersonic
aircraft, surface ships, submarines, and automobiles. In recent years automobile manu-
facturers have given more consideration to aerodynamic design. This has been true for
some time for the designers of both racing cars and boats. The design of propulsion
systems for space flight as well as for toy rockets is based on the principles of fluid
mechanics. The collapse of the Tacoma Narrows Bridge in 1940 is evidence of the pos-
sible consequences of neglecting the basic principles of fluid mechanics.? It is com-
monplace today to perform model studies to determine the aercdynamic forces on, and
flow fields around, buildings and structures. These include studies of skyscrapers, base-
ball stadiums, smokestacks, and shopping plazas.

The design of all types of fluid machinery including pumps, fans, blowers, com-
pressors, and turbines clearly requires knowledge of the basic principles of fluid me-
chanics. Lubrication is an application of considerable importance in fluid mechanics.
Heating and ventilating systems for private homes and large office buildings and the
design of pipeline systems are further examples of technical problem areas requiring
knowledge of fluid mechanics. The circulatory system of the body is essentially a
fluid system. It is not surprising that the design of blood substitutes, artificial hearts,
heart-lung machines, breathing aids, and other such devices must rely on the basic
principles of fluid mechanics.

Even some of our recreational endeavors are directly related to fluid mechanics.
The slicing and hooking of golf balls can be explained by the principles of Auid me-
chanics (although they can be corrected only by a golf pro!).

This list of real-world applications of fluid mechanics could go on indefinitely.
QOur main point here is that fluid mechanics is not a subject studied for purely aca-
demic interest; rather, il is a subject with widespread importance both in our every-
day experiences and in modern technology.

Clearly, we cannot hope to consider in detail even a small percentage of these
and other specific problems of fluid mechanics. Instead, the purpose of this text is to
present the basic laws and associated physical concepts that provide the basis or start-
ing point in the analysis of any problem in fluid mechanics.

BASIC EQUATIONS

Analysis of any problem in fluid mechanics necessanly includes statement of the ba-
sic laws governing the fluid motion. The basic laws, which are applicable to any
fluid, are:

? For dramatic evidence of acrodynamic forces in action, see the short video Collapse of the Tacoma Nar-
rows Bridge.
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Systermn
boundary

Fig.1.2 Piston-cylinder assembly.

In the familiar piston-cylinder assembly from thermodynamics, Fig. 1.2, the gas
in the cylinder is the system. If the gas is heated, the piston will lift the weight; the
boundary of the system thus moves. Heat and work may cross the boundaries of the
system, but the quantity of matter within the system boundaries remains fixed. No
mass crosses the system boundaries.

EXAMPLE 1.1 First Law Applicalion to Closed System

A piston-cylinder device contains 0.95 kg of oxygen initially at a temperature of 27°C
and a pressure due to the weight of 150 kPa (abs). Heat is added to the gas until it
reaches a temperature of 627°C. Determine the amount of heat added during the process.

EXAMPLE PROBLEM 1.1

GIVEN: Piston-cylinder containing O, m = 0.95kg.
T, =27°C T,=627°C
FIND: Q..

SOLUTION: _
p = constant = 150 kPa (abs)

We are dealing with a system, m = 0.95 kg.

Governing equation: First law for the system, @\, ~ W), = E, — E|

Assumptions: (1) E = U, since the system is stationary
{2) Ideal gas with constant specific heats

Under the above assumptions,
E,—E =U - U =mu,—uw)=me(T, - T)

The work done during the process is moving boundary work
¥
W, =L] p ¥ = p¥ — ¥)

For an ideal gas, p¥ = mRT. Hence Wy, = mR(T: — T). Then from the first law equation,
On=E-E+W;=mc(l, —T))+ mR(T, - T)
Qu=mT, - T)c, + R)
On = me(Tz - T (R = Cp — €}
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It 15 always important 1o take care in selecting a contro} volume, as the choice has a
big effect on the mathematical form of the basic laws.

Ditferential versus Integral Approach

The basic laws that we apply in our study of fluid mechanics can be formulated in
terms of infinitesimal or finite systems and contro] volumes. As you might suspect,
the equations will look different in the two cases. Both approaches are important in
the study of fluid mechanics and both will be developed in the course of our work.

In the first case the resulting equations are differential equations. Solution
of the differential equations of motion provides a means of determining the de-
tailed behavior of the flow. An example might be the pressure distribution on a
wing surface.

Frequently the information sought does not require a detailed knowledge of the
flow. We often are interested in the gross behavior of a device; in such cases it is
more appropriate to use integral formulations of the basic laws. An example might be
the overall lift a wing produces. Integral forrnulations, using finite systems or control
volumes, usually are easier to treat analytically. The basic laws of mechanics and
thermodynamics, formulated in terms of finite systems, are the basis for deriving the
conirol volume equations in Chapter 4.

Methods of Description

Mechanics deals almost exclusively with systems; you have made extensive use of
the basic equations applied to a fixed, identifiable quantity of mass. On the other
hand, attempting to analyze thermodynamic devices, you often found it necessary to
use a control volume (open system) analysis. Clearly, the type of analysis depends on
the problem.,

Where it is easy to keep track of identifiable clements of mass {e.g., in particle
mechanics), we use a method of description that follows the particle. This sometimes
1s referred to as the Lagrangian method of description.

Consider, for example, Ihe application of Newton’s second law to a particle of
fixed mass. Mathematically, we can write Newton’s second law for a system of
mass m 4s

~ 5.
SF=mi= mﬂ = md—;
at dt
In Eq. 1.2, 2 F is the sum of all external forces acting on the system, a is the acceleration
~ of the center of mass of the system, V is the velocity of the center of mass of the sys-
tem, and & is the position vector of the center of mass of the systcm relative to a
“ fixed coordinate system.

(1.2)

EXAMPLE 1.2 Free-Fall of Ball in Air

The air resistance (drag force) on a 200 g ball in free flight is given by Fp, = 2 X
107* V2, where F, is in newtons and V is in meters per sccond. If the ball is dropped
from rest 500 m above the ground, determine the speed at which it hits the ground.
What percentage of the terminal speed is the result? (The ferminal speed is the
steady speed a falling body eventually attains.)
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In the SI system of units, the unit of mass is the kilogram (kg), the unit of length
is the meter (m), the unit of time is the second (s), and the unit of temperature is the
kelvin (K). Force is a secondary dimension, and its unit, the newton (N), is defined
from Newton's second law as

IN =1 kg - m/s?

In the Absolute Metric system of units, the unit of mass is the gram, the unit of
length is the centimeter, the unit of time is the second, and the unit of temperature is
the kelvin. Since force is a secondary dimension, the unit of force, the dyne, is de-
fined in terms of Newton's second law as

1 dyne = | g - cm/s?

b. FLiT

in the British Gravitational system of units, the unit of force is the pound (Ibf), the
unit of length is the foot (ft), the unit of time is the second, and the unit of tempera-
ture is the degree Rankine (°R). Since mass is a secondary dimension, the unit of
mass, the slug, is defined in terms of Newton's second law as '

1 slug = 11bf - s¥/ft

¢c. FMLtT

In the English Engineering system of units, the unit of force 1s the pound force
(Ibf), the unit of mass is the pound mass (lbm), the unit of length is the foot, the
unit of time is the second, and the unit of temperature is the degree Rankine. Since
both force and mass are chosen as primary dimensions, Newton's second law is
written as
Foma
&

A force of one pound (1 1bf) is the force that gives a pound mass (1 Ibm) an accelera-
tion equal to the standard acceleration of gravity on Earth, 32.2 ft/s®. From Newton’s
second law we see that

[ Ibm x 32.2 ft /s>
g

11bf =

or
g, = 32.2 ft - Ibm/(Ibf - §%)

The constant of proportionality, g., has both dimensions and units. The dimensions arose
because we selected both force and mass as primary dimensions; the units (and the nu-
merical value) are a consequence of our chaices for the standards of measurement.

Since a force of 1 Ibf accelerates 1 lbm at 32.2 ft/s?, it would accelerate 32.2 Ibm
at | ft/s>. A slug also is accelerated at 1 f/s? by a force of 1 1bf. Therefore,

| slug = 32.2 Ibm

Many textbooks and references use lb instead of 1bf or Ibm, leaving it up to the
reader to determine from the context whether a force or mass is being referred to.
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1.6

L7

1.8

1.9

1.10

1.14

1.15

1.17

Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or
1000 Ibm or kg) of standard air that is in a room 10 ft by 10 1 by 8 ft, and then com-
pute this mass in lbm and kg to see how close your estimate was.

A tank of compressed nitrogen for industrial process use is a cylinder with 6 in. diame-
ter and 4.25 ft length. The gas pressure is 204 atmospheres (gage). Calculate the mass
of nitrogen in the tank,

Calculate the density of standard air in a laboratory from the ideal gas equation of state.
Estimate the experimental uncertainty in the air density calculated for standard condi-
tions (29.9 in. of mercury and 39°F) if the uncertainty in measuring the barometer
height is = 0.1 in. of mercury and the uncentainty in measuring temperature is = 0.5°F.
{Note that 29.9 in. of mercury corresponds to 14.7 psia.)

Repeat the calculaton of uncertainty described in Problem 1.8 for air in a freezer.
Assume the measured barometer height is 759 £ 1 mm of mercury and the temperature
is —20 * 0.5°C., [Note that 759 mm of mercury corresponds to 10{ kPa (abs).]

The mass of the standard American golf ball is 1.62 * (.01 oz and 11s mean diameter is
1.68 = 0.01 in. Determine the density and specific gravity of the American golf bal.
Estimate the uncentainties in the calculated values.

The mass flow rate in a water Aow system determined by collecting the discharge over a
timed interval is 0.2 kg/s. The scales used can be read to the nearest 0.05 kg and the
stopwatch is accurate 10 0.2 s. Estimate the precision with which the flow rate can be
calculated for time intervals of (a) 10 s and (b) | min.

A can of pet food has the following internal dimensions: 102 mm height and 73 mm di-
ameter (each = | mm at odds of 20 to 1). The label lists the mass of the contents as 397 g.
Evaluate the magnitude and estimated uncertainty of the density of the pet food if the
mass value is accurate to =1 g at the same odds.

The mass of the standacd British golf ball is 45.9 = (0.3 g and its mean diameter is 41.1
* 0.3 mm. Determine the density and specific gravity of the British golf ball. Estimate
the uncertainties in the calculated values.

The mass flow rate of water in a tube iy measured vsing a beaker 1o catch water during
a timed interval. The nominal mass flow rate is 100 g/s. Assume that mass is measured
using a balance with a least count of 1 g and a maximum capacity of 1 kg, and that the
timer has a least count of (1.1 s. Estimate the time intervals and uncertainties in meas-
ured mass flow rate that would result from using 100, 500, and 1000 mL beakers.
Would there be any advantage in using the largest beaker? Assume the tare mass of the
empty 1000 mL beaker is 500 g.

The estimated dimensions of a soda can are ) = 66,0 = 0.5 mm and H = 110 = 0.5
mm. Measure the mass of a full can and an empty can using a kitchen scale or postal
scale. Estimate the volume of soda contained in the can. From your measurements esti-
mate the depth to which the can is filled and the uncertainty in the estimate. Assume the
value of 8G = 1.055, as supplied hy the bottler.

From Appendix A, the viscosity g (N - s/m?) of water at temperature T (K) can be com-
puted from g = A10MT ) where A = 2414 X 10 SN - s/m?, B = 2478 K, and C =
140 K. Determine the viscosity of water at 20°C, and estimate its uncertainty if the un-
certainty in temperature measurement is + .25°C.

An enthusiast magazine publishes data from its road tests on the lateral acceleration ca-
pability of cars. The measurements are made using a 150 ft diameter skid pad. Assume
the vehicle path deviates from the circle by *+ 2 ft and that the vehicle speed is read
from a fifth-wheel speed-measuring system to + 0.5 mph. Eslimate the experimental
uncertainty in a reported lateral acceleration of 0.7 g. How would you improve the ex-
penimental procedure to reduce the uncertainty?
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1.29

1.30

1.31

1.32

1.33

1.34

1.35

136

1.37

(e) Energy (f) Momentum
(g) Shear stress (h) Specific heat
(i) Thermal expansion coefficient  (j) Angular momentum

For each quantity listed, indicate dimensions using the FLiT system of dimensions, and
give typical ST and English units:

(a) Power (b) Pressure

(c) Modulus of elasticity {d) Angular velocity

(e) Energy () Moment of a force
(g) Momentum (h) Shear stress

(i) Strain (j}  Angular momentum

Derive the following conversion factors:

(1) Convert a pressure of | psi to kPa.

(b) Convert a volume of 1 liter to gallons.

() Convert a viscosity of 1 Ibf - s/ft® to N - s/m>,

Derive the following conversion factors:

(a) Convert a viscosity of | m%s to fi¥s.

(b) Convert 4 power of 100 W 10 horsepower.

(¢) Convert a specific energy of 1 kJ/kg to Bru/lIbm.

The density of mercury is given as 26.3 slug/ft>. Calculate the specific gravity and the
specific volume in m¥kg of the mercury. Calculate the specific weight in Ibf/ft} on
Earth and on the moon. Acceleration of gravity on the moon is 5.47 fu/s®,

Derive the following conversion factors:

{a) Convert a volume fow rate in io.*/min to mm¥/s.

(b) Converl a volume flow rate in cubic meters per second to gpm (gallons per minute).

(c) Convert a volume flow rate in liters per rainute to gpm (gallons per minute).

(d} Convert a volume flow rate of air in standard cubic feet per minute (SCFM) to cu-
bic meters per hour. A standard cubic foot of gas occupies one cubic foot at stan-
dard temperature and pressure (7 = [5°C and p = 101.3 kPa absolute).

The kilogram force is commonly used in Europe as a unit of force. (As in the U.S, cus-
tomary system, where 1 1bf is the force exerted by a mass of J {bm in standard gravity,
| kgt is the force exerted by a mass of | kg in standard gravity.) Moderate pressures,
such as those for auto or truck tires, are conveniently expressed in units of kgficm?.
Convert 32 psig to these units.

Somelimes “engineering” equations are used in which units are present in an inconsis-
tent manner. For example, a parameter that is ofien used in deseribing pump petform-
ance is the specific speed, N;;(u‘ given by

_ Nirpm)IQ (gpmy]?
(H (O]

5

What are the units of specific speed? A particular pump has a specific speed of 2000.
What will be the specific speed in SI units (angular velocity in rad/s)?

A particular pump has an "engincering” equation form of the performance characteris-
tic equation given by H (ft) = 1.5 — 4.5 X 107 [Q (gpm)T, relating the head H and
Alow rate ). What are the units of the coefficients 1.5 and 4.5 X 107 Derive an S ver-
sion of this equation,

A container weighs 3.5 Ibf when empty. When filled with water at 90°F, the mass of the
container and its contents is 2.5 slug. Find the weight of water in the container, and iis
volume in cubic feet, using data from Appendix A.
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¥ Yolume ¥
of mass, m
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Fig. 2.1 Definition of density at a point.

select a small volume, 8%, surrounding point C and then determine the ratio m/8¥.
The question is, how small can we make the volume 6¥? We can answer this question
by plotting the ratio dm/&¥, and allowing the volume to shrink continuously in size.
Assuming that volume 8V is initially relatively large (but still small compared with
the volume, ¥) a typical plot of dm/6¥ might appear as in Fig. 2.15. In other words,
8¥ must be sufficiently large to yield a meaningful, reproducible value for the density
at a location and yet small enough to be called a point. The average density tends to
approach an asymptotic value as the volume is shrunk to enclose only homogeneous
fluid in the immediate neighborhood of point C. If ¥ becomes so small that it con-
tains only a small number of molecules, it becomes impossible to fix a definite value
for 6m/&¥, the value will vary erratically as molecules cross into and out of the vol-
ume. Thus there is a lower limiting value of 6¥, designated 8% in Fig. 2.1b, allowable
for use in defining fluid density at a point.2 The density at a “point” is then defined as

. om
75 5 @n
Since point C was arbitrary, the density at any other point in the fluid could be deter-
mined in the same manner, If density was measured simultaneously at an infinite
anumber of points in the fluid, we would obtain an expression for the density distribu-
tion as a function of the space coordinates, p = p{x, ¥, z), at the given instant.

The density at a point may also vary with time (as a result of work done on or
by the fluid and/or heat transfer to the fluid). Thus the complete representation of
density (the field representation) is given by

p=plyzn (2.2)

Since density is a scalar quantity, requiring only the specification of a magnitude for
a complete description, the field represented by Eq. 2.2 is a scalar field.

The density of a liquid or solid may also be expressed in dimensionless form as
the specific gravity, SG, defined as the ratio of material density to the maximum

2 The volume 8% is extremely small. For example, a 0.1 mm X 0.1 mm X 0.1 mm cube of air (aboul the
size of a grain of sand) at STP conditions contains about 2.5 X 10'* molecules. This is 2 large enough
number 10 ensure thal even though many molecules may enler and leave. the average mass within the
cube does not fluctuate, For most purposes a cube this size can be considered “a point.”
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In steady flow, any property may vary from point 1o point in the field, but all proper-
ties remain constant with time at every point.

One-, Two-, and Three-Dimensional Flows

A flow is classified as one-, two-, or threc-dimensional depending on the number of
space coordinates required to specify the velocity field.? Equation 2.3 indicates that
the velocity field may be a function of three space coordinates and time. Such a flow
field is termed three-dimensional (it is also unsteady) because the velocily at any point
in the flow field depends on the three coordinates required to locate the point in space.

Although most flow fields are inherently three-dimensional, analysis based on
fewer dimensions is frequently meaningful. Consider, for example, the steady flow
through a long straight pipe that has a divergent section, as shown in Fig. 2.2. In this
example, we are using cylindrical coordinates (r, 8, x}. We will learn (in Chapter 8)
that under certain circumstances (e.g., far from the entrance of the pipe and from the
divergent section, where the flow can be quite complicated), the velocity distribution

may be described by ]
A\
= 1-|= 25
I umx[ [R] :I (2.5)

This is shown on the left of Fig. 2.2. The velocity u(r) is a function of only one coordi-
nate, and so the flow is one-dimensional. On the other hand, in the diverging section, the
velocity decreases in the x-direction, and the flow becomes two-dimensional: « = u(r, x).

As you might suspect, the complexity of analysis increases considerably with
the number of dimensions of the flow field. For many problems encountered in engi-
neering, a one-dimensional anatysis is adequate to provide approximate solutions of
engineering accuracy.

Since all fluids satisfying the continuum assumption must have zero relative ve-
locity at a solid surface (to satisfy the no-slip condition), most flows are inherently
two- or three-dimensional. To simplify the analysis it is oflen convenient (o use the
notion of uniform flow at a given cross section. In a flow that is uniform at a given
cross section, the velocity is constant across any section normal to the flow. Under
this assumption,* the two-dimensional flow of Fig. 2.2 is modeled as the flow shown
in Fig. 2.3. In the flow of Fig. 2.3, the velocity ficld is a function of x alone, and thus

.. ,{ }4 - Hna

t
LABR L

u(r) 1elr.x)

Fig.2.2 Examples of one- and two-dimensional flows.

3 Some authors choose to classify a flow as one-, two-, or theee-dimensional on the basis of the number of
space coordinates required 1o specity aff fluid properties. In this text, classification of Aow fields will be
based on the number of space coordinates required to specify the velocity ficld only.

4 This may scem like an unrealistic simplification, but actually in many cases leads to useful results.
Sweeping assumptions such as uniform flow at a cross scetion should always be reviewed carefully to
be sure they provide a reasonable analytical model of the real flow.



Fig. 2.3 Example of uniform flow at a sectian.
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The shapes of the streamlines may vary from instant to instant if the flow is un-
steady. In the case of unsteady flow, pathlines, streaklines, and strecamlines do fiot

coincide.

EXAMPLE 2.1 Streamlines and Pathlines in Two-Dimensional Flow

A velocity field is given by V = Axi - Ayj: the units of velocity are m/s; x and y are

given in meters; A = 0.3s "

{a) Obtain an equation {or the streamlines in the xy plane.
(b) Plot the streamline passing through the point (x;. yp) = (2, 8).
(¢) Determine the velocity of a particle at the point (2, 8).

(d) If the particle passing through the point (x;, ¥p) 1s marked at time ¢ = 0, determine the

location of the particle at ime 1 = 6 5.

{c) What is the velocity of this particle at time { = 6 57

(f) Show that the equation of the panticle path (the pathlinc) is the same as the equation of the

streamline.

EXAMPLE PROBLEM 2.1

GIVEN: Velocity field. V = Axi — Ayj; x and y in meters; A = 0.3 s~

FIND: (a) Eguation of the streamlines in the xy plane.

SOLUTION:

(8) Streamlines are lines drawn in the Aow field

(b)

(b} Streamline plot through point (2, 8).
(¢} Velocity of particle at point (2, 8).

(d) Position at r = 6 s of particle located at (2, 8) at ¢ = (.

(e) Velocity of particle at position found in (d).

(f) Equation of pathline of particle located at (2, 8) at¢ = 0.

such that, at a given instant, they are tangent
10 the direction of flow at every point.
Consequently,

& ) e |

dx ]sucnml'mc u Ax x

Separaling variables and integrating, we obtain

I5=-1%

v {(m})

1&

12

V,a=0.6i-2.4]mss

or
Iny= —-Inx +
This can be written as xy = ¢

€

For the streamline passing through the point (xg, y,) = (2, 8) the constant, ¢, has a value of 16 and the

equation of the streamline through the point (2, 8} is

XY = X = lﬁmz(r

The plot is as sketched above.
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2-3 STRESS FIELD

In oor study of fluid mechanics, we will need to understand what kinds of forces act
on fluid particles. Each fluid particle can expenience: surface forces (pressure, fricion)
that arc generated by contact with other particles or a solid surface; and body forces
(such as gravity and electromagnelic) that are experienced throughout the particle.

The gravitational body force acting on an element of volume, d¥, is given by
p 2d¥, where p is the density (mass per unit volume) and £ is the local gravitational
acceleration. Thus the gravitational bady force per unit volume is p g and the gravita-
tional body force per unit mass isg.

Surtace forces on a fluid particle lead to stresses. The concept of stress is useful
for describing how forces acting on the boundaries of a medium (fluid or solid) are
transmitted throughout the medium. You have probably seen stresses discussed in
s0lid mechanics. For example, when you stand on a diving board, stresses are gener-
ated within the board. On the other hand, when a body moves through a fluid,
stresses are developed within the fluid. The difference between a fluid and a solid is,
as we’ve seen, that stresses in a fluid are mostly generated by motion rather than by
deflection.

Imagine the surface of a fluid particle in contact with other fluid particles, and
consider the contact force being generated between the particles. Consider a portion,
8 A, of the surface at some point €. The oricntation of 8A is given by the unit vec-
tor, #, shown in Fig. 2.4. The vector 7 js the outwardly drawn unit normal with respect
to the particle. .

The force, 6F, actling on 8A may be resolved into two components, one normal
1o and the other tangent to the area. A normal stress o, and a shear stress T, are then
defined as

g,= lim % (2.6)
&, =0 514"
and
) oF
LNy @7

]

Subscript n on the stress is included as a reminder thal the stresses are associated
with the surface 8A through C, having an outward normal in the n direction. The
fluid is actually a continuum, so we could have imagined breaking it up any number

Fig. 2.4 The concept of stress in a continuum.
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Ay

s

Fig. 2.6 Notation for stress.

Referring to the infinitesimal element shown in Fig. 2.6, we sce that there are
six planes (two x planes, two y planes, and two z planes) on which stresses may
act. In order to designate the plane of interest, we could use terms like front and
back, top and bottom, or left and right. However, it is more logical to name the
planecs in terms of the coordinate axes. The planes are named and denoted as posi-
tive or negative according to the direction of the outwardly drawn normal to the
plane. Thus the top plane, for example, is a positive y plane and the back planc is
a negative z plane.

It also is necessary to adopt a sign convention for stress. A stress component is
positive when the direction of the siress component and the plane on which it acts arc
both positive or both negative. Thus 7,, = 5 Ibf/in.? represents a shear stress on a pos-
itive y plane in the positive x dircetion or a shear stress on a negative y plane in the
negative x direction. In [ig. 2.6 all stresses have been drawn as positive stresscs.
Stress components are negative when the direction of the stress component and the
plane on which it acts are of opposite sign.

VISCOSITY

Where do stresses come from? For a solid, stresses develop when Lhe material is elas-
tically deformed or strained; for a fluid, shear stresses arise due 10 viscous flow (we
will discuss a fluid’s normal stresses shortly). Hence we say solids are elastic, and
fluids are viscous (and iU’s interesting to note that many biological tissues are vis-
coelastic, meaning they combine features of a solid and a fluid). For a fluid at rest,
there will be no shear stresses. We will see that each fluid can be cateporized by ex-
amining the relation between the applied shear stresses and the flow (specifically the
rate of deformation) of the fluid.

Consider the behavior of a fluid element between the two infinite plates shown
in Fig. 2.7. The upper plate moves at constant velocity, du, under the influence of
a constant applied force, 8F_ The shear stress, 1,,, applied to the fluid element is
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Newtonian Fluid

Most cominon fluids (the ones discussed in this text) such as water, air, and gasoline
ar¢ Newtonian under normal conditions. If the fluid of Fig. 2.7 is Newtonian, then

d
Ty o f (2.9)

We are familiar with the fact that some fluids resist motion more than others. For ex-
ample, a container of SAE 30W oil is much harder to stir than one of water. Hence
SAE 30W oil 1s much more viscous—it has a higher viscosity. (Note that a con-
tainer of mercury is also harder to stir, but for a different reason') The constant of
proportionality in Eq. 2.9 is the absolute (or dynamic) viscosity, u. Thus in terms of
the coordinates of Fig. 2.7, Newton’s law of viscosity is given for one-dimensional
flow by

Ty = H— (2.10)

Nole that, since the dimensions of T are [F/L?*] and the dimensions of dw/dy are [1/1],
w has dimensions [F~/L?]. Since the dimensions of force, F. mass, M, length, L, and
time, ¢, are related by Newton’s sccond law of motion, the dimensions of g can also
be expressed as [M/Le). In the Brtish Gravitational system, the units of viscosity are
Ibf - s/ft? or slug/(ft - s). In the Absolute Metric system, the basic unit of viscosity is
called a poise [l poise — | gficm - s)]: in the SI system the units of viscosity are
kp/im - s)orPa-s (1 Pa-s= 1N -s/m?). The calculation of viscous shear stress is
illustrated in Example Problem 2.2.

In fluid mechanics the ratio of absolute viscosity, u, to density. p, oftcn arises.
This ratio is given the name kinematic viscosity and is represented by the symbol v.
Since densily has dimensions [M/L13), the dimensions of v are [L¥f). In the Absolute
Metric system of units, the unit for » is a stoke (1 stoke = | cm?¥s).

Viscosity data for a number of common Newtonian fluids are given in Appendix A.
Note that for gascs, viscosity increases with temperature, whereas for liquids, viscosity
decreases with increasing temperature.

EXAMPLE 2.2 Viscosity and Shear Stress in Newtonian Fluid

An infinite plate is moved over a sccond plate on a layer of liquid as shown. For
small gap width, &, we assume a lincar velocity distribution in the liquid. The liquid
viscosity is (L.65 centipoise and its specific gravity is (.88. Determine:

{a) The absolute viscosity of the liquid, ¥
in 1bf - s/fi’. t
I . — =
(b) The kinematic viscosity of the liquid, LY =03 mbs
in ms. 4= 0.3 mm

(¢} The shear stress on the upper plate, in Ibf/ft%,
{(d) The shear siress on the lower plate, in Pa.

() The direction of each shear stress calculated in parts (¢} and (d).
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EXAMPLE PROBLEM 2.2

GIVEN: Linear velocity profile in the liquid between infinite paralle! plates as shown,

p=10.65cp

SG =088 — 1! =0.3 mis
A

FIND: (a) w in units of Ibf - s/ft%. d=0.3mm

(b) vin units of m?s.

(¢ 7on upper plate in units of Ibf/ft?.

(d)} 7on lower plate in units of Pa.

(e) Direction of stresses in parts (c) and (d).

v

SOLUTION:
Governing equation: 7, = pj—u Definition: » = £
Y g

Assumptions: (1) Linear velocity distribution (given)
(2) Steady flow
(3) p = constant

@ = O.ﬁScpx poise g _x Ibm N slug XBO.SEX 1bf -5
100cp cm-s-poisc 454 g 322 Ibm ft  slug-ft
@ =136 X 1077 Ibf . s ¢ @
# #
by ==
i p SG PH,0
1
" 1.36 x 107 Ibf - 5 fi® slug - ft _ (0.305)° m?
= x X 5 X =
f1i2  (0.88)1.94 slug ~ Ibf-s? fi*
v=1741%107 m¥s v
A
du’

(c) Tupper = Tyx,upper = “_J
4 Jyed

Since u varies linearly with y,

e e _Bu _U=0_U_03m 1 100mm _ 000 ¢t
v dy Ay d-0 4 s 03 mm m
.
1.36 X 107% |bf -
Tupper = ""% = % X @ = 0.0136 Ibf/ft? P Tupper
5
445 2 .

@ Tiower == PO X f Pa m” _ 0651 Pa « Tiower

X x X
d f? Ibf ~ (0.305)% m’ N
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2-5 SURFACE TENSION

You can tell when your car needs waxing: Water droplets tend to appear somewhat
flattened out, After waxing, you get a nice “beading” effect. These two cases are
shown in Fig. 2.9. We define a liquid as “wetting” a surface when the confact angle 8
< 90°. By this definition, the car’s surface was wetted before waxing, and not wetted
after. This is an example of effects due to surface tension. Whenever a liquid is in
contact with other liquids or gases, or in this case a gas/solid surface, an interface de-
velops that acts [ike a stretched elastic membrane, creating surface tension. There are
two features 1o this membrane: the contact angle 6, and the magnitude of the surface
tension, o (N/m or 1bf/ft). Both of these depend on the type of liquid and the type of
solid surface (or other liquid or gas) with which it shares an interface, In the car-wax-
ing example, the contact angle changed from being smaller than 90°, to larger than
90°, because, in effect, the waxing changed the nature of the solid surface. Factors
that affect the contact angle include the cleanliness of the surface and the purity of
the liquid.

Other examples of surface tension effects arise when you are able to place a nee-
dle on a water surface and, similarly, when small water insects are able to walk on the
surface of the water.?

Appendix A contains data for surface tension and contact angle for common lig-
uids in the presence of air and of water,

A force balance on a segment of interface shows that there is a pressure jump
across the imagined elastic membrane whenever the interface is curved. For a wa-
ter droplet in air, pressure in the water is higher than ambient; the same is true for
a gas bubble in liquid. For a soap bubble in air, surface tension acts on both inside
and outside interfaces between the soap film and air along the curved bubble sur-
face. Surface tension also leads to the phenomena of capillary (i.e., very small
wavelength) waves on a liquid surface [5] and capillary rise or depression, dis-
cussed below.

In engineering, probably the most important effect of surface tension is the cre-
ation of a curved meniscus that appears in manometers or barometers, leading to a
(usually unwanted) capillary rise (or depression), as shown in Fig. 2.10. This rise
may be pronounced if the liquid is in a small diameter tube or narrow gap, as shown
in Example Problem 2.3.

Water
droplet

(@) A “wetted" surface (&) A nonwetted surface
Fig. 2.9 Surface tension effects on water droplets.

® These and other example phenomena are illustrated in the NCEMF video Surface Tension in Fluid
Mechanics.
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Plotting,

For water, o = 72.8 mN/m and 8 = (°, and for mercury o = 484 mN/m and 8 = 140° (Table A 4).

Using the above equation to compute D, for A# = 1 mm, we find for mercory and water

Capiltary effect in small tubes

— Water
20 — == Mercury

Capillary height, A# (mm)
=

Diameter, £ (mm)

Dy =11.2mm and D =30 mm
Notes:
v This problem reviewed use of the free-body diagram
approach.

v It turns out that neglecting the volume in the meniscus re-
gion is only valid when Ah is large compared with D.
However, in this problem we have the result that Ak is
about | mm when D is 11.2 mm (or 30} mm); hence the re-
sults can only be very approximate.

% The graph and results were generated from the Excel
workbook.

Folsom [6] shows that the simple analysis of Example 2.3 overpredicts the
capillary effect and gives reasonable results only for tube diameters less than 0.1
in. (2.54 mm). Over a diameter cange 0.1 <. D < 1.1 in., experimental data for the
capillary rise with a water-air interface are correlated by the empirical expression
Ah = 0.400/e*70,

Manometer and barometer readings should be made at the level of the middle of
the meniscus. This is away from the maximum effects of surface tension and thus
ncarest to the proper liquid level.

All surface tension data in Appendix A were measured for pure liquids in contact
with clean vertical surfaces. Impurities in the liquid, dirt on the surface, or surface in-
clination can cause an indistinct meniscus; under such conditions it may be difficult to
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If the bulk modulus is independent of temperature, then density is only a function of
pressure (the fluid is barotropic). Bulk modulus data for some common liquids are
given in Appendix A,

Water hammer and cavitation'? are examples of the importance of compressibil-
ity effects in liquid flows. Warer hammer is caused by acoustic waves propagating
and reflecting in a confined liquid, for example when a valve is closed abruptly. The
resulting noise can be similar to “hammering™ on the pipes, hence the term.

Cavitation occurs when vapor pockets form in a liquid flow because of local re-
ductions in pressure (for example at the tip of a boat’s propeller blades). Depending
on the number and distribution of particles in the liquid to which very small pockets
of undissolved gas or air may attach, the local pressure at the onset of cavitation may
he at or below the vapor pressure of the liquid. These particles act as nucleation sites
to initiate vaporization,

Vapor pressure of a liquid is the partial pressure of the vapor in contact with the
saturated liquid at a given temperature. When pressure in a liquid is reduced to less
than the vapor pressure, the liquid may change phase suddenly and “flash” to vapor.

The vapor pockets in a liquid flow may alter the geometry of the flow field sub-
stantiatly. When adjacent to a surface, the growth and collapse of vapor bubbles can
cause serious damage by eroding the surface material.

Very pure liquids can sustain large negative pressures—as much as - -60 at-
mospheres for distilled water—before the liquid “ruptures” and vaporization oc-
curs. Undissolved air is invariably present near the tree surface of waler or seawa-
ter, so cavitation occurs where the local total pressure is quite close to the vapor
pressure,

It turns out that gas flows with negligible heat transfer also may be considered
incompressible provided that the flow speeds are small relative to the speed of sound;
the ratio of the flow speed, V, 1o the local speed of sound, ¢, in the gas is defined as
the Mach number,

M

]

~ |

For M < (.3, the maximum density vanation is less than 5 percent. Thus gas flows
with M << 0.3 can be treated as incompressible; a value of M = 0.3 in air at standard
conditions corresponds to a speed of approximately 100 nv/s. For example, although it
might be a little counterinluitive, when you drive your car at 65 mph the air flowing
around it has negligible change in density.

Compressible flows occur frequently in engineering applications. Common ex-
amples include compressed air systems used to power shop tools and dental drills,
transmission of gases in pipelines at high pressure, and pneumatic or fluidic control
and sensing systems. Compressibility etfects are very important in the design of
moderm high-speed aircraft and missiles, power plants, fans, and compressors.

Internal and External Flows

Flows completely bounded by solid surfaces are called internal or duct flows. Flows
over bodies immersed in an unbounded fluid arc termed external flows. Both internal
and external flows may be laminar or turbulent, compressible or incompressible.

'Y Examples of cavitation are illustrated in the NCFMF video Cavitation.
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At

2-7 SUMMARY

In this chapter we have completed our review of some of the fundamental concepts
we will utilize in our study of fluid mechanics. Some of these are:

v How to describe flows (timelines, pathlines, streamlines, streaklines).

« Forces (surlace, body) and stresses (shear, normal).

v Types of fluids (Newtonian, non-Newlonian—dilatant, pseudoplastic, thixotropic,
rheopectic, Bingham plastic) and viscosity (kinematic, dynamic, apparent).

v Types of flow (viscous/inviscid, laminarfturbulent, compressible/incompressible,
internal/external).

We also briefly discussed some interesting phenomena, such as surface tension,
boundary layers, wakes, and streamlining. Finally, we introduced two very useful di-
mensionless groups —the Reynolds number and the Mach number.

Eh " o
YT 1 9 .
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PROBLEMS

2.1 For the velocity fields given below, determine:

(a) whether the flow field is one-. two-, or three-dimensional, and why,
{b) whether the flow is steady or unsteady, and why.
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Consider the flow ficld given in Fulerian description by the expression V = Al + Br}.
where A = 2 m/s, B = (.6 m/s?, and the coordinates are measured in meters. Derive the
Lagrangian position functions for the fluid particle that was located at the point (x, y) =
(1, 1) at the instant ¢ = 0. Obtain an algebraic expression for the pathline followed by
this particle. Plot the pathline and compare with the streamlines plotted through the
same point at the instants r = 0, 1, and 2 s.

Consider the flow described by the velocity field V = Bx(l + At)i + Cyj, with A =
05s ! and B= C =1 s"'. Coordinates are measured in meters. Plot the pathline
traced out by the particle that passes through the point (1, 1) at time ¢ = 0. Compare
with the streamlines plotted through the same point at the instants + = 0, 1, and 2 s.

A velocity field is given by V = axti — byj, where a = 0.1 s> and » = | s™'. For the
particle that passes through the point (x, ¥y = (1, 1) at instant ¢ = Q s, plot the pathline
during the interval from ¢+ = O to ¢ = 3 s. Compare with the streamlines plotted through
the same point at the instants ¢ = 0, 1, and 2 &,

Consider the flow field V = axti + b; where ¢ = 025 ? and b = 3 m/s. Coordinates
are measured in meters. For the particle that passes through the point (x, ¥) = (3, 1) at
the instant + = 0, plot the pathline during the interval from 7 = 0 to 3 s. Compare this
pathline with the streamlines plotted through the same point at the instants ¢ = 1, 2,
and 3 &,

Consider the velocity field V = axi + by(l + ct)j,where a=5b=25"! and ¢ = Q.4
s . Coordinates arc measured in meters. For the particle that passes through the point
{x, y) = (1, 1} at the instant ¢ = 0, plot the pathline during the interval from ¢ = 0 to
1.5 5. Compare this pathline with the streamlines plotted through the same point at the
instants ¢+ — 0, 1, and 1.5 s.

Consider the velocity field of Problem 2.14. Plot the streakline formed by particles that
passed through the point (1, 1} during the interval from ¢ = O to ¢ = 3 5. Compare with
the streamlines plotted through the same point at the instants ¢ = 0, 1, and 2 5.

Streaklines are traced out by neutrally buoyant marker fluid injected into a flow ficld
from a fixed point in space. A particle of the marker {luid that is at point {x, ¥) at time ¢
musl have passed through the injection point (xg, o) at some earlier instant 1 = 7. The
time history of a marker particle may be found by solving the pathline equations for the
imtial conditions that x = x;,, ¥ = y, when ¢ = 7. The present locations of particles on
the streakline are obtained by setting 7 equal to values in the range 0 = 1 = . Consider
the flow field V = ax(1 + b1} + ¢cyj, wherea = ¢ = L s Tand b = 0.2 5 ", Coordinates
are measured in meters, Plot the streakline that passes through the initial point (xg, yo} =
(1, t), during the interval from t = 0 to t = 3 5. Compare with the streamline plotied
through the same point at the instants r = 0, 1, and 2 5.

Tiny hydrogen bubbles arc being used as tracers to visualize a flow. All the bubbles are
generated at the origin (x = 0, y = 0). The velocity field is unsteady and obeys the
equations:

&=~ mfs v=1ms D=r1<2g
u=0 v~ 2m/s 2=<1<4s

Plot the pathlines of bubbles that lcave the originat r = 0, 1, 2, 3, and 4 5. Mark the lo-
cations of these five bubbles at 1 = 4 5. Use a dashed line to indicate the position of a
streakline at t = 4 5.

Consider the low field V = axri + b}, wherea = 0.2 5 2and b = 1 m/s. Coordinates
are measured in meters, For the particle that passes through the point (x, y) =
(1, 2) at the instant ¢ = O, plot the pathline during the time interval from ¢ = 0 (o
3 s. Compare this pathline with the streakline through the same point at the instant
1::3s.
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2.29

2.30

2.34

2.35

6 2.36

The velocity distribution for laminar flow between parallel plates is given by

]
Hinax h

where ki is the distance separating the plates and the origin is placed midway between
the plates. Consider a flow of water at 15°C, with uy,, = 0.10 nv/s and i = (.25 mm.
Calculate the shear stress on the upper plate and give its direction. Sketch the variation
of shear stress across the channel.

The velocity distribution for laminar fiow between parallel plates is given by

“ =1—(2—ﬂ2

Himax

where 4 is the distance separating the plates and the origin is placed midway between
the plates. Consider flow of water at 15°C with maximum speed of 0.05 m/s and h =
1 mm. Calculate the force on a im? section of the lower plate and give its direction.

Explain how an ice skate interacts with the ice surface. What mechanism acts to reduce
sliding friction between skate and ice?

A female freestyle ice skater, weighing 100 Ibf, glides on onc skate at speed V = 20
ft/s. Her weight is supported by a thin film of liquid water melted from the ice by the
pressure of the skate blade. Assume the blade is L = 11.5 in. long and w = 0.125 in.
wide, and that the water film is & = 0.0000575 in. thick. Estimate the deceleration
of the skater that resuolts from viscous shear in the water film, if end effects are
neglected.

Crude oil, with specific gravity SG = 0.85 and viscosity g = 2.15 % 10~ Ibf - s/ft,
flows steadily down a surface inclined & = 30 degrees below the hotizontal in a film of
thickness k = 0.125 in. The velocity profile is given by

u= ﬁ{h'y - L]sint‘i’
M 2

{(Coordinate x is along the surface and y is normal to the surface.)y Plot the velocity
profile. Determine the magnitude and direction of the shear stress that acts on the
surface,

A block weighing 10 Ibf and having dimensions L0 in. on each edge is pulled up an in-
clined surfuace on which there js a film of SAE 10W oil a1 100°F, If the speed of the
block is 2 fifs and the oil film is 0.001 in. thick, find the force required to pull the block.
Assume the velocity distribution in the oil film is linear. The surface is inclined at an
angle of 25° from the horizontal.

Recording tape is to be coated on both sides with lubricant by drawing it through a oar-
row gap. The tape is 1.015 in. thick and (.00 in. wide. Tt is centered in the gap with a
clearance of 0.012 in. on each side. The lubricant, of viscosityp = 0.021 slug/(ft - 5),
completely fills the space between the tape and gap for a length of 075 in. along the
tape, If the tape can withstand a2 maximum tensile foree of 7.5 1bf, determine the maxi-
mum speed with which it can be pulled through the gap.

A block of mass M slides on a thin film of vil. The film thickness is # and the area of the
block is A. When released, mass m ¢xerts tension on the cord, causing the block to acceler-
ate. Negiect friction in the pulley and air resistance. Develop an algebraic expression for
the viscous force that acts on the block when it moves at speed V. Derive a diferential
equation for the block speed as a function of lime. Obtain an expression for the block
speed as a function of time. The mass M = Skg,m = 1 kg, A = 25¢em?, and h = 0.5 mm.
If it takes | s for the speed to reach 1 m/s, find the oil viscosity ge. Plot the curve for V().



P2.36

Oil film
(viscosity, u)
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2.44

245

2.46

247

P2.43, 2.44

The viscometer of Problem 2.43 is being used to verify that the viscosity of a particular
fluid is g = 0.1 N - s/m% Unfortunately the cord snaps during the experiment. How
long will it take the cylinder to lose 99% of its speed? The moment of inertia of the
cylinder/pulley system is 0.0273 kg - m™.

The thin outer cylinder (mass m, and radius R) of a small portable concentric cylinder
viscometer is driven by a falling mass, m,, altached to a cord. The inner cylinder is sta-
tionary. The clearance between the cylinders is a. Neglect bearing lriction, air resist-
ance, and the mass of liquid i the viscometer. Obtain an algebraic expression for the
torque due to viscous shear that acts on the cylinder at angular speed o. Denve and
solve a ditferential equation for the angular speed of the outer cylinder as a function of
time. Obtain an expression for the maximum angular speed of the cylinder.

C..I..D o Clearance,

a=05mm
T— - a
!
T
¥

P2.45 P2.46

A circular aluminum shaft mounted in a journal is shown. The symmetric clearance
gap between the shaft and journal is filled with SAE 10W-30 oil at T = 30°C. The
shaft is caused to turn by the attached mass and cord. Develop and solve a differen-
tial equation for the angular speed of the shaft as a function of time. Calculate the
maximum angular speed of the shaft and the time required to reach 95 percent of
this speed.

A shack-{ree coupling for a low-power mechanical drive is to be made from a pair of
concentric cylinders. The annular space between the cylinders is to be filled with oil.
The drive must transmit power, = 5 W. Other dimensions and properties are as
shown, Neglect any bearing friction and end effects. Assume the minimum practical
gap clearance & for the device is 8 = 0.5 mm. Dow manufactures silicone fluids with



#=10mm w; 29,000 rpm

@, = 10,000 rpm (outer cylinder)

P22y
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P2.51

a=0.25mm

H =25 mm

Qil film (viscosity, u)
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Chapter 3
FLUID STATICS

We defined a Aluid a5 a substance that will continnously deform, or fiow, whenever a
shear stress is applied to it. It follows that for a fluid at rest the shear stress must be zero.
We can conclude that for a static fluid (or one undergoing “rigid-body”™ motion) only
normal stress is present—in other words, pressure. We will study the topic of fluid stat-
ics (often called hydrostatics, even though it is not restricted to water) In this chapter.

Although fluid statics problems are the simplest kind of fuid mechanics prob-
lems, this is not the only reason we will study them. The pressurc generated within a
static fluid is an important phenomenon in many practical situations. Using the prin-
ciples of hydrostatics, we can compute forces on submerged objects, develop instru-
ments for measuring pressures, and deduce propertics of the atmosphere and oceans.
The principles of hydrostatics also may be used to determine the forces developed by
hydraulic systems in applications such as industrial presses or automobile brakes.

In a static, homogeneous fluid, or in a fluid undergoing rigid-body motion, a fluid
particle retains its identsty for all time, and fluid elements do not deform. We may ap-
ply Newton’s second law of motion to evaluate the forces acting on the particle.

THE BASIC EQUATION OF FLUID STATICS

The first objective of this chapter is to obtain an equation for computing the pressure
field in a static fluid. We will deduce what we already know from everyday experience,
that the pressure increases with depth. To do this, we apply Newton's second law to a
differential fluid element of mass dm = p d¥%, with sides dx, dy, and dz, as shown in
Fig. 3.1. The fluid elcment is stationary relative to the stationary rectangular coordinate
system shown. (Fluids in rigid-body motion will be treated in Section 3-7 on the CD.)

From our previous discussion, recall that two general types of forces may be ap-
plied w0 a fluid: body forces and surface forces. The only body force that must be
considered in most engincering problems is due to gravity. In some situations body
forces caused by electric or magnetic fields might be present; they will not be consid-
ered in this text.'

For a differential fluid element, the body force is

dFy = gdm = gpd¥

where g is the local gravity vector, p is the density, and d¥ is the volume of the
element. In Cartesian coordinates d¥ = dx dy dz, so

dFy = pg dx dy dz

! The effect of hody forces caused by magnetic hields is illustrated in the NCFMF video Magnetohvdrody-
namics.

92
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Collecting and canceling terms, we obtain

- fap~ Op-~ ap-
(L P~ dp
dFy = — —i+—j+—k|dedydz KN F
s or oy J oz ] Y (3.1a)
The term in parcntheses is called the gradient of the pressure or simply the pressure
gradient and may be written grad p or Vp. In rectangular coordinates
~ Rl c (n ~ ~ ph
gradp = Vp = igg+ja—p+kip = ii+jﬁ—+kip
ox dy dz z

The gradient can be viewed as a vector operator; taking the gradient of a scalar field
gives a vector field. Using the gradient designation, Eq. 3.1a can be wrillen as

dF = —grad p(dx dy dz) = —Vp dx dy dz (3.1b)

Physically the gradient of pressure is the negative of the surface force per unit vol-
ume due to pressure. We note that the level of pressure is not important in evaluating
the net pressure force. Instead, what matters is the rate at which pressure changes oc-
cur with distance, the pressure gradient. We shall encounter this term throughout our
study of fluid mechanics.

We combine the formulations for surface and body forces that we have devel-
oped to obtain the total force acting on a fluid element. Thus

dF = dfg + dby = (-Vp + p)dx dy dz = (=Vp + pg) d¥
or on a per unit volune basis
dF _ g . =
v p+pg (3.2)

For a fluid particle, Newton's second law gives d F=ddm=a pd¥_For a static
fluid, @ = 0. Thus

dF

_ = ] = 0
av
Substituting for d F/d¥% from Eq. 3.2, we obtain
-Vp+pg =0 (3.3

Let us review this equation briefly. The physical significance of each term is

- Vp + og =0
net pressure force body force per
{ per unit volume } + 4 unit volume =0
at 4 point alL a point

This is a vector equation, which means that it is equivalent to three component cqua-
tions that must be satished individually. The component equations are

_a_p +pg, =0 xdirection
ox
—a—P +pg, =0  ydirection (3.4)
dy
e}
- d—p +pg. = z direction
Z J
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3-2 THE STANDARD ATMOSPHERE

Several International Congresses for Aeronautics have been held so that aviation
experts around the world might communicate better. Their goal is to develop an
acceptable model atmosphere for use as a standard; agreement is yet to be reached on
an international standard.

The temperature profile of the U.S. Standard Atmosphere is shown in Fig. 3.3
Additional property values are tabulated as functions of elevation in Appendix A. Sea
level conditions of the U.5. Standard Atmosphere are summarized in Table 3.1.

90
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Fig. 3.3 Temperature variation with altitude in the U.S.
Standard Atmosphere,

Table 3.1 Sea Level Conditions of the U.S. Standard Atmosphere

Property Symbol St English
Temperature T 15°C S9°F
Pressure P 101.3 kPa (abs) 14.696 psia
Density P 1.225 kg/m’ 0.002377 slug/ft}
Specific weight ¥ — 0.07651 |bffft
Viscosily i 1.789 % 10 ®kgf(m - 5) 3,737 % 10 7 1bf - s/

{(Pa %)
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Equation 3.7 indicates that the pressure difference between two points in a static in-
compressible fluid can be determined by measuring the elevation difference between
the two points. Devices used for this purpose are called manometers.

Use of Eq. 3.7 for a manometer is illustrated in Example Problem 3.1.

EXAMPLE 3.1 Systolic and Diastolic Pressure

The normal blood pressure of 4 hurmnan is 120/80 mm Hg. By modeling a sphygmo-
manometer pressure gage as a U-tube manometer, converl these pressures to psig.

EXAMPLE PROBLEM 3.1

GIVEN: Gage pressures of 120 and 80 mm Hg

ood Air
Bl —
FIND: The corresponding pressures in psig. pressure

SOLUTION:
Apply hydrostatic equation to points A, A’, and B.

Governing equation:

P = Po = pgh 37
Assumptions: (1) Static fluid,

(2) Incompressible fluids.

(3} Neglect air density (<5< Hg density).

Applying the governing equation between points A” and B (and py is atmospheric and therefore zero
gage):
Pa = Pp t puygh = SGyy pu,osh
In addition, the pressure increases as we go downward from point A’ to the botlom of the manometer,
and decreases by an equal amount as we return up the left branch to point A. Hence points A and A’ have
the same pressure, so we end up with
Pa=pa = SGHsPHzngh

Substituting SGy, = 13.6 and py o = 1.94 slug/ft? from Appendix A-1 yields for the systolic pressure (£ =
120 mm Hg)

136 194slug 322 ft  120mm in. ft Ibf-s?
ps)sluljc =Pa= X X X ") X x x o X
ft s 25.4mm 12in.  slug-ft
Paysoic = 334 1bIHZ = 2.32 psi |, Paysiaiic
By a similar process, the diastolic pressure (# = 80 mm Hg) is
Paisstic = 1.55psi Pdissolic
Notes:

v Two points at the same level in a continuous single fluid
have the same pressure.

v In manometer problems we neglect change in pressure
with depth for a gas,

v This problem shows the conversion from mm Hg to psi,
using Eq. 3.7: 120 mm Hg is equivalent to about 2.32 psi.
More generally, | atm = 4.7 psi = 10| kPa — 760 mm Hg,
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Thus
Ap

a2
p18|sin 8 + [BJ ) L

To obtain an expression for sensitivity, express Ap in terms of an equivalent water column height, A,.

Ap = pyyogh, 3
Combining Eqs. 2 and 3, noting that p; = SG, py,q. gives

smm[gf]

PH,08k, = SGpy,08L)

or
L 1

e 2
g SG,|:sin g+ [iJ ]
D ) 5

<

5=

This expression defines the sensitivity of an inclined-tube manometer. It shows that to increase sensitivity,
SGy, sin 6, and d/D each should be made as small as possible. Thus the designer must choose a gage liquid
and two geometric parameters to complete a design, as discussed below.

Gage Liquid

The gage liquid should have the smallest possible specific gravity to increase sensitivity. In addition, the
gage liquid must be safe (without toxic fumes or flammability), be immiscible with the fluid being gaged,
suffer minimal loss from evaporation, and develop a satisfactory meniscus. Thus the gage liquid should
have relatively low surface tension and should accept dye to improve its visibility.

Tables A.1, A.2, and A.4 show that hydrocarbon liquids satisfy many of these criteria. The lowest spe-
cific gravity is about 0.8, which increases manometer sensitivity by 25 percent compared to water.

Diameter Ratio

The plot shows the effect of diameter ratic on sensitivity for a vertical reservoir manometer with gage lig-
uid of unity specific gravity. Note that d/D = | cocresponds to an ordinary U-tube manometer; its sensitiv-
ity is 0.5 because half the height differential appears on either side of the manometer. Sensitivity doubles to
1.0 as d/D approaches zero because most of the level change occurs in the measuring tube.

The minimwm tube diameter d must be larger than about 6 mm to avoid excessive capillary effect,
The maximum reservoir diameter D is limited by the size of the manometer. If D is set at 60 mm, so that
d/D is 0.1, then (d/D)* = 0.01, and the sensitivity increases to 0.99, very close to the maximum attainable
value of 1.0.

1.0 6,
T 08 -8
- 06: < 4
. O .
S r 6= 90" g3
3 04C $6=1 22
[
A 02 311-
00_ | 1 1 | | 0 ! ! ! ! ! ! ! !
0 .2 04 06 08 10 0 10 20 30 40 S0 60 70 80 S0
Diameter ratio, /) (—) Angle, 8 (degrees)
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EXAMPLE PROBLEM 3.3

GIVEN: Multiple-liquid manometer as shown.

FIND:  Pressure difference, py — py, in 1bffin ?

SOLUTION:
. =D
h s = 8
dy = 10° i |
0
Governing equations: Ap=gXZ phy  SG= -
i Pr,0
Assumptions: (1) Static fluid,
(2) Incompressible fluid.
Applying the governing equation, working from point 810 A
Pa ~ Ps = Ap = glpnods + pugds — Py + Pugda — Mayod) (1

This equation can also be derived by repeatedly using Eq. 3.7 in the following form:

P2 = pr = pglly — hy)
Beginning at point 4 and applying the equation between successive points along the manometer gives
Pc — Pa = +Pr,084)
Po— Pc = ~Pu 8%
Pe = Pp = *+paikds
PF— PE = —PH 84,
Pa — Pr = —Pu,08ds
Multiplying each equation by minus one and adding, we obtain Eq. (1)
Pa = Po = (Pa = po) T{pe— pp) Y {pp— pe) + (pe = pe) + (P — pa)
= —py,08d, + Py, 84 — Poil&dy + Py, 8dy + p,084s
Substituting p = SGpy,o with Gy, = 13.6 and 8G,,, = 0.88 (Table A.2), yiclds

Pa — Pp = 8(=pn,od) + 13.6py,0dy - 088py ady +13.6py,0d, + py,0ds)
= 8ou,0(~d, +13.6d; — 0.88d; +13.6d, + ds)
Pr = Pa = 8Pw,0(-10 + 40.8 = 3.52 + 68 + 8) in,
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Then

]ni:iln M :i]n l_ﬂz;
Po mR TU mR 76

and the pressore variation, in a gas whose temperature varies lincarly with elevation,

is given by
~ l_ﬂg.’mR_ 13;’%’* \o
2=p 7, Po T (3.9)

EXAMPLE 3.4 Pressure and Density Variation in the Atmosphere

The maximum power output capability of an intemal combustion engine decreases
with altitude because the air density and hence the mass flow rate of air decrease. A
truck leaves Denver (elevation 5280 ft) on a day when the local temperature and
barometric pressure are 80°F and 24.8 in. of mercury, respectively. It travels through
Vail Pass (elevation 10,600 ft), where the temperature is §2°F, Determine the local
barometric pressure at Vail Pass and the percent change in density.

EXAMPLE PROBLEM 3.4

GIVEN: Truck wavels from Denver to Vail Pass.

Denver: z = 5280 ft Vail Pass:  z = 10,600 ft
p=248in.Hg T = 62°F
T = B0°F

FIND: Aumospheric pressure at Vai! Pass.
Percent change in air density between Denver and Vail.

SOLUTION:

d
Governing equations: d—i = —pg p = pRT

Assumptions: (1) Static fluid.
(2) Air behaves as an ideal gas.

We shall consider four assumptions for property variations with altitude.

(a) If we assume temperature varies linearly with altitude, Eq. 3.9 gives
mR
P [ 1 JRI‘
o \B

Hh-T __ (80-62)°F
z-25 (10.6 —5.28)10°n

Evaluaning the constant m gives

=338 x 107 °F/ft

and

g  3R2f fr Ibm - °R slug Iof - 52
—-= — X —— X x X =555
mR s 338x107°°F  53.3ft-1bf 322 Ibm  slug-ft
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Liquid surface
G/ Ie] Ambient pressure, po

Liquid,
density = p

xy plane viewed from above

Edge view

¥

Point of application of £
{center of pressure)

Fig. 3.5 Plane submerged surface.
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where v, is the y coordinate of the centroid of the area, A. Thus,
Fy = poA + pgsin @y, A = (py + pgh.)A

or

Fr = pA (3.10b)

where p, is the absolute pressure in the liquid at the location of the centroid of area A.
Eq. 3.10b computes the resultant force due to the liquid —including the effect of the
ambient pressure p,— on one side of a submerged plane surface. It does not take into
account whatever pressure or force distribution may be on the other side of the
surface. However, if we have the same pressure, py, on this side as we do at the free
surface of the liquid, as shown in Fig. 3.6, its effect on Fy cancels out, and if we wish
to obtain the net force on the surface we can use Eq. 3.10b with p,_ expressed as a
gage rather than absolute pressure.

In computing ¥, we can use either the integral of Eq. 3.10a or the resulting Eq.
3.10b. It is important to note that even though the force can be computed from the
pressure at the center of the plate, this is nof the point through which the force acts!

Our next task 1s to determine (x’, ¥'), the location of the resultant force. Let’s first
obtain y" by recognizing that the moment of the resultant force about the x axis must
be equal to the moment due 1o the distributed pressure force. Taking the sum (i.e., in-
tegral) of the moments of the infinitesimal forces dF about the x axis we obtain

VFEg = JA yp dA (3.11a)

We can integrate by expressing p as a function of y as hefore:

’ 3 = B - - . 2
V'Fg L)pdA L)(pwpgh)dA L(poy-kpg) sin #) dA

poL ydA + pgsin GL ysz

The first integral is our familiar y A. The second inlegral, L‘ y?‘dA, is the second

moment of area about the x axis, /,. We can use the parallel axis theorem,
f.=I;+ Aycz, to replace /,, with the standard second moment of area, about the
centroidal % axis. Using all of these, we find

~~ Liquid surface

¢ Ambient pressure, pg

3

Liquid,
density = p

Edge view

¥
Fig. 3.6 Pressure distribution on plane submerged
surface.
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In calculating the moment of the distributed force (right side), recall, from your earlier courses in statics, that the
centroid of the area element must be used for x. Since the area element is of constant width, then x = w/2, and

x':i_[ ﬁpdA:lj pdd===25m x'

Algebraic Equations

In using the algebraic equations we need to take care in selecting the appropriate set. In this problem we
have pg = p,, on both sides of the plate, so Eq. 3.10b with p, as a gage pressure is used for the net force:

Fr=pA=pghA= pg(D + %-sin 30°]Lw
L2
Fp = pgw| DL + Tsin o
This is the same expression as was obtained by direct integration.

The y coordinate of the center of pressure is given by Eq. 3.11c:

Y=y, 4 ix;r (3.11¢)
c

For the inclined rectangular gate

D L 2m 4m

Ye a3 T 7 " saar T 5 o™

A=ILw=4mx5m=20m>
] 3 2
Iy =5 WL =4 x5mx (4m)’ =267m

y =y, v JE Cem 4 2067m 12 y ;2=6‘22m y
Ay, 20m 6m
The x coordinate of the center of pressure is given by Eq. 3.12¢:
: I35
X =X, + A, (3.12c)
For the rectangular gate /33 = Oandx’ = x, = 2.5m. | x!

This Example Problem shows
v Use of integral and algebraic equations.

v Use of the algebraic equations for computing the net force,

EXAMPLE 3.6 Force on Vertical Plane Submerged Surface with Nonzero Gage
Pressure at Free Surface

The door shown in the side of the tank is hinged
along its bottom edge. A pressure of 100 psfg is ~ 100 e <
applied to the liquid free surface. Find the force, p:s, orrit” (gage) . :
F,, required to keep the door closed. 3

Liguid, y= 100 Ibt#t3

Hinge
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Fig. 3.7 Curved submerged surface.
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Since p = pgh,
F, = jpghdAz= jpgdv

where pgh dA, = pg d¥ is the weight of a differential cylinder of liquid above the el-
ement of surface area, dA, extending a distance i from the curved surface to the free
surface. The vertical component of the resultant force is obtained by integrating over
the entire submerged surface. Thus

F, = Lz pghdA, = L pgav = pg¥

It can be shown that the line of action of the vertical force component passes through
the center of gravity of the volume of liquid directly above the curved surface (see
Example Problem 3.7). ’

We have shown that the resultant hydrostatic force on a curved submerged
surface is specified in terms of its components. We recall from our study of statics
that the resultant of any force system can be reprcsented by a force-couple system,
1.e., the resultant force applied at a point and a couple about that point. If the force
and the couple vectors are orthogonal (as is the case for a two-dimensional curved
surface), the resultant can be represented as a pure force with a unique line of action.
Otherwise the resultant may be represented as a “wrench,” also having a unique line
of action.

EXAMPLE 3.7 Force Components on a Curved Submerged Surface

The gate shown is hinged at O and has constant width, | F,
w =5 m. The equation of the surface is x = y¥a, I=5m

where a = 4 m. The depth of water to the right of the
gate 1s D = 4 m. Find the magnitude of the force, F,, vV —
applied as shown, required to maintain the gate in
equilibrium if the weight of the gate is neglected.

R L SRV A

ndo.

EXAMPLE PROBLEM 3.7

GIVEN: Gate of constant width, w = 5 m.
Equation of surface in xy plane is x = y*/a, where ¢ = 4 m.
Water stands at depth D = 4 m to the right of the gate.
Force F, is applied as shown, and weight of gate is to be neglected.

¥y y-(—f: 5m »
Fﬂl
N — - -—
bl
[
O X

{a) System FBO (b} Null fluid forces (c) Fluid forces
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82 CHAPTER 3 / FLUID STATICS

submerged must actively adjust buoyancy and gravity forces to remain neutrally
buoyant. For submarines this is accomplished using tanks which arc flooded 1o re-
duce excess buoyancy or blown out with compressed air to increase buoyancy [1].
Airships may vent gas to descend or drop ballast to rise. Buoyancy ol a hot-air bal-
loon is controlled by varying the air temperature within the balloon envelope.

For deep ocean dives use of compressed air becomes impractical because of the
high pressures (the Pacific Ocean is over 10 km deep; seawater pressure at this depth is
greater than 1000 atmospheres!). A liquid such as gasoline, which is buoyant in seawa-
ter, may be used to provide buoyancy. However. because gasoline is more compressible
than water, its buoyancy decreases as the dive gets deeper. Therefore it is necessary to
carry and drop ballast to achieve positive buoyancy for the return trip to the surface.

The most structurally efficient hull shape for airships and submarines has a cir-
cular cross-section. The buoyancy force passes through the center of the circle.
Therefore, for roll stability the CG must be located below the hull centerline. Thus
the crew compartment of an airship is placed beneath the hull to lower the CG.

FLUIDS IN RIGID-BODY MOTION (CD-ROM)

SUMMARY

In this chapter we have reviewed the basic concepts of fluid statics. This included:

v Deriving the basic equation ol fluid statics in vector form.
v Applying this equation o compute the pressure variation in a static fluid:
o Incompressible liguids: pressure increases uniformly with depih.
o Gases: pressure decreases nonuniormly with elevation (dependent on other ther-
modynamic properties).
v Study of:
Gage and absolute pressure.
~ Use of manometers and barometers,
v Analysis of the fluid force magnitude and location on submerged:
¢ Plane surfaces.
¢ Curved surfaces.
¢ *Derivation and use of Archimedes’ Principle of Buoyancy.
v #Analysis of rigid-body fluid metien (on the CD).

We have now concluded our introduction to the fundamental concepts of fluid me-
chanics, and the basic concepts of fluid statics. In the next chapter we will begin our
study of fluids in motion.

REFERENCES

1. Burcher, R., and L. Rydill. Concepis in Submarine Design. Cambridge, U.K.: Cambridge
University Press, 1994,

!-J

Marchaj, C. A.. Aero-Hydrodvnamics of Sailing, rev. ed. Camden, ME: International
Marine Publishing, 1988.

* These topics apply to sections that may be omitted without loss of continuity in the text matenia).
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138 CHAPTER 4 / BASIC EQUATIONS IN INTEGRAL FORM FOR A CONTROL VOLUME

(1)  The unburned fuel and the rocket structure have zero momentum relative 1o the rocket.
(2) The velocity of the gas at the nozzle exit remains constant with time as does the velocity at various
points in the nozzle.

Consequently, it is reasonable 10 assume that
]
—| v d¥ =0
a1 Joy "2 P

D) o Vi p‘l7 . dA = -[CS I,'J,l.yz(pvxyz dA) = _Vejcs (pvm dA)

The velocity v,,, (relative to the control volume) is —V, (it is in the negative y direction), and is a constant,
so was taken outside the integral. The remaining integral is simply the mass flow rate at the exit (positive
because flow is out of the control volume),

It )=

and so

Vyyp PV, - dA = —Vorit
cs xyz PVxyz Mo

Subslituting terms @ through @ into Eq. 1, we obtain
_g(MO - rhef) - a,fy (MQ - f;lt,f) = “Veﬂ"le

or
Ve,
a; = —Sf—
T My — iyt @
Attime ¢ = 0,
V., 3500 m _ Skg 1 9.8l m
arf ) =+ f_p= —_ X —X - -
Yh=0 My $ s 400kg s
2 @ Yz
arf,,)’=0 =339 mhs® fy)e=0
The acceleration of the CV is by definition
dVey
ay =——*+
T oat
Substituting from Eq. 2,
ey _ Vi _
dt My — m,t

Separating variables and integrating gives

Vov t Vom,di ' My —-mu
v =J dV.. =J‘#_J' dt = =V, In| =2 — " | _ 47
v o cv o My — rind 08 ) M, 8

Att = 105,

Vov = -

400 kg s?

3500 m [350kg] 981 m x10s
Sxh|=E-""Z
S

Voy = 369 mis Yev)r = 10

|
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T D

EXAMPLE PROBLEM 4.14
GIVEN: Small lawn sprinkler as shown. 0= 7.5 Unmin o
FIND: (a) Jet speed relative to each nozzle. w=30 rp:}m e S
{b) Friction torque at pivot. ®O e T S e Vi
e - [ z
SOLUTION: a =307 P ¥
Apply continuity and angular momentum '\ > -/ 0 X
equations using fixed control vofume enclos- (C""its"’f'ix“:;“me \ .
ing sprinkler arms. wit X¥Z) /{ Pruppty = 20 kPa (gage)
Ry \/R =150 mm
A
=0(1)
Governing equations: 3 _
ﬁ pd’c’+J pV-di=20
A tlev cs
L Fxf-l-.[ FXgpd¥+T, -ij FxV d¥+I FxVpV.dA (N
: ov gp shaft = = v P cs P
where all velocities are measured relative to the inertial coordinates XYZ.
Assumptions: (1) Incompressible flow.
(2) Uniform flow at each section.
(3) @ = constant.
From continuity, the jet speed relative to the nozzle is given by
. 0 _@ 4
™" 24, 2wl
et . jet
1 75 L 4 1 m> 10° mm® _ min
=5 X=X X T X
2 min 7 (4)° mm 1000 L m 60s
Vg = 497 mis¢ Vil
Consider terms in the angular momentum equation separately. Since atmospheric pressure acts on the en-
tire control surface, and the pressure force at the inlet causes no moment about O, ¥ X F, = 0. The mo-
ments of the body (i.c., gravity) forces in the two arms are equal and opposite and hence Lhe second term
on the left side of the equation is zero. The only external torque acting on the CV is friction in the pivot. It

opposes the motion, so

&% Topate = _Tf}% 2

Qur next task is to determine the two angular momentum terms on the right side of Eq. 1. Consider the
unsteady term: This is the rate of change of angular momentum in the control volume, It is clear that al-
though the position F and velocity V of fluid particles are functions of time in XYZ coordinates, because
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Table 5.2 Mass Flux through the Control Surface of a ndrical Differential Control Volume

Surface Ipﬁ'—dAT
Inside dp ) dr BV,Jdr [ a’r] dr av, \ dr dpy dr
- _|p-[2)%] v - SN~ dpdr = —pV, rdf dz + pV, L db d D o+ v LA g

(-r} kP [r]2:||:r (ar 2 ’ 2 t e i z+par r2 e rr2 @
Ouside _ [ (30)dr] [,  (3V3dr (r+£]d9dz = ovraedi+ oV Lapaz+ ol D) L spar v gy
(+7) P )2 T % )2 2 Prrravde s plry @ Pl ) 2 P ) T
Fromt _ _ |, _[3)4d8 (9% )48 - 4o [3%e )28 AL
<) = _p ( 8] 2][1/9 ( 7 |3 drdz =—pVydrdz+p 30 13 drdz+Vy 50132 drdz
Back dp ) do WV, a8 _ BRCATI 3p ) d6
(+EGC) = [pi—(—a} 2 ] {Vg +[7 7 drdz = pV‘g dra'<,+p 36‘ ?drd4+vﬂ ‘8—6 Tdrdz

( ] ]ﬂ rdé dr =—pV, rdf dr + [a_v,h L ododr+ v [a"}ﬂrdedr

2 P Pl )2 3 )2
( ]%}rd@ dr =pV, rdfl dr+p[%-]%r¢19 dr +V, [g—’:}% refd dr

RERTE R N A )

9V, 9% | 9PV,

V.dA=|pV +
P [p, "o a8 dz

] drdbdz
cs
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5-2 STREAM FUNCTION FOR TWO-DIMENSIDNAL INCOMPRESSIBLE FLOw 195

defined as a differential (Eq. 5.3): also, the flow rate will always be given by a differ-
ence of i values,] Note that because the volume flow between any two streamlines s
constant, the velocity will be relatively high wherever the streamlines are close
together, and relatively low wherever the streamlines are far apart—a very useful
concept for “eyeballing” velocity fields to see where we have regions of high or low
velocity.

For a two-dimensional, incompressible flow in the r6 plane, conservation of
mass, Eq. 5.2b, can be written as

a(r-V,.) N aVy

= 5.7
ar a0 0 G

The stream function, ({r, 6, 1), then is defined such that

and V, = _a_w (5.8)

v ar

Q|
SR

It
~ 1=

With  defined according to Eq. 5.8, the continuity equation, Eq. 5.7, is satisfied
exactly.

EXAMPLE 5.4 Stream Function for Flow in a Corner

Given the velocity field for the steady, incompressible flow of Example 2.1,
V = Axi = Ayj, with A = 0.3 s ', determine the stream function that will yield this
velocity field. Plot and interpret the streamline pattern in the first and second quad-
rants of the xy plane.

EXAMPLE PROBLEM 5.4

GIVEN: Velocity field, V = Axi — Ayj, withA = 0357,

FIND:  Stream function y and plot in first and second quadrants; interpret the results.

SOLUTION:

The flow is incompressible, so the stream function satisfies Eq. 5.3.

From Eq. 5.3, u = 3_!11 and v = — i—w From the given velocity field,
¥ y

o
= Ax=—-L
. wEax dy

Integrating with respect to y gives

W= ja—"’d_v F 100 = Axy + f() n
dy

where f(x) is arbitrary. The function f{x) may be evaluated using the equation for v, Thus, from Eq. 1,

o 4
ax Ay dx

(2}




Quadrant 2

o = -1.2 m¥s/m
wa = -0.9 m¥s/m
wy = =0.6 mY/s/m
W, = -0.3 myis/m

Wy
Vg
vy
v —1 \ | \
! 4 -3 2 -
x(m)

Quadrant 1

. = 1.2 m/s/m
2 = 0.9 mifsim

¥
¥y
L
\ | | ';’f -0
1 2 3 4 -
3 {m)




5-3 MOTION OF A FLUID PARTICLE (KINEMATICS) 197

5-3 MOTION OF A FLUID PARTICLE (KINEMATICS)

Figure 5.4 shows a typical finite fluid element, within which we have selected an infini-
tesimal particle of mass dm and imitial volume dx dy dz, at ime ¢, and as it (and the infin-
itesimal particle) may appear after a time interval dt. The finite element has moved and
changed its shape and orientation. Note that while the finite element has quite severe dis-
tortion, the infinitesimal particle has changes in shape limited to stretching/shrinking
and rotation of the element’s sides—this is because we are considering both an
infinitesimal time step and particle, so that the sides remain straight. We will examine
the infinitesimal particle so that we will eventually obtain results applicable to a
point. We can decompose this particle’s motion into four components: transtation, in
which the particle moves from one point to another; rotation of the particle, which
can occur about any or all of the x, y or z axes; linear deformation, in which the
particle’s sides stretch or contract; and angular deformation, in which the angles
(which were initially 90° for our particle) between the sides change.

It may seem difficult by looking at Fig. 5.4 to distinguish between rotation and
angular deformation of the infinitesimal fluid particle. Tt is important to do so, be-
cause pure rotation involves no deformation but angular deformation does and, as we
learned in Chapter 2, Huid deformation generates shear stresses. Figure 5.5 shows the
xy plan¢ motion decomposed into the four components described above, and as we
examine each of these four components in turn we will see that we can distinguish
between rotation and angular deformation.

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field

The translation of a fluid particle is obviously connected with the velocity field
V = Vi, ¥, z, 1) that we previously discussed in Section 2-2. We will need the accel-
eration of a fluid particle for use in Newton’s second law. It might seem that we could
simply compute this as a = = aV/at. This is incortect. because Vis a field, i.c., it de-
scribes the whole flow and not just the motion of an individual particle. (We can see
that this way of computing is incorrect by examining Example Problem 5.4, tn which
particles are clearly accelerating and decelerating so a4 # 0, but 0V/dt = 0.)

o i

Finite element &
Finite element & infinitesimal c infinitesimal particle

particle at time ¢ / attime ¢ + de

z

Fig. 5.4 Finile fluid element and infinitesimal particle at times tand t - df.
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54 MOMENTUM EQUATION 211

The rates of linear deformation are:

J _

-—u=iAX=A=0.351 in the x direction

ox dx

dv_ 0o -1

— = —(-A =-A= —03 i i i
3y~ 3 (-Ay) 5 in the y direction

The rate of velume dilation is

Notes:

v Parallel planes remain parallel; there is lincar deformation
but no angular deformation.
The flow is irrotational (dw/dx + duldy = Q).
Volume is conserved because the two rates of linear defor-
mation are equal and opposite.
The NCFMF video Flow Visualization uses hydrogen bub-
ble time-streak markers to demonstrate experimentally that
the area of a marked fluid square is conserved in two-
dimensional incompressible fliow,

NN S

@ The Excel workbook for this problem shows an anima-
tion of this motion,

We have shown in this section that the velocity field contains all information
needed to determine the acceleration, rotation, angular deformation, and linear defor-
mation of a fluid particle in a flow field.

54 MOMENTUM EQUATION

A dynamic equation describing fluid motion may be obtained by applying Newton’s

second law to a particle. To derive the differential form of the momentum equation,

we shall apply Newton’s second law to an infinitesimal fluid particle of mass dm.
Recall that Newton’s second law for a finite system 1s given by

= _dP
F="- 4.2
ar ) (4.2a)
syslem
where the linear momentum, P, of the system is given by
Poem = Vd
system J- mass (system} " (4.2b)

Then, for an infimtesimal system of mass dm, Newton's second law can be written
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5-4 MOMENTUM EQUATION 221

Vg = (lJRz at r= R2 and
v, =0 at r=R
Substituting
R 1
WRy = ¢) == + ¢y —
‘ 2 1 2 2 R,
: R 1
’ 0= 4] = + €y —
2 R
After considerable algebra
2w —w Rzl
qs———= ad o=—T775
(R (&
R R

Substiluting into the expression for vy,

wr w Rr . wR

e TE I a
8 - & 2 L ﬁ 2 . ﬂ 2 Rl r
R, R, R, - vglr)

‘The shear stress distribution is

ENEY
(&7
RZ ¢ TrB

2w
Tsurface I 2
[ &
Rg P Tsurface
ra “planar” gap
‘UR;_)
r i AU _ W Rz
planar Av R - R - ¥
]
—I x
w R R
Tplanar = M R
B E‘; ¢ T planar

Factoring the denominator of the exact expression for shear stress at the surface gives
2w w 2

Tourface = M R R =M ~ R : R,
1= B B 1-— 1+—=

R R

R, R 2 2
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63 BERNOULLI EDUATION—INTEGRATION OF EULER’S EQUATION ALONG A STREAMLINE FOR STEADY FLOW 239

and

—gé-di" = —giz dxi + dy}' +dz!2]
=-gdz (along 5)

Using a vector identity,* we can write the third term as
(V-VW-di = [} V(7 - ) -V x (Vx V)] - ds
=[$vv- v} a5 - {V x (Vx W)} -ds
The last term on the right side of this equation is zero, since V is parallel to d5. Con-
sequently,
(V- VW -d§ =4V(V-V)-d5 = LV(V?) d5 (along s)

I|-ov? .ov? .oav? . .
=—li +j +k ldxi +dyj+dzk
2':I ax 7 ay dz [dxi+dyj+dek]

1| av? ov? v?
=— d d d
Z[E)x X a9y ¥ dz Z]

(\7 - V)';' -ds = %d(vz) (along 5)

Substituting these three terms into Eq. 6.10 yields

@ + %d(vz) +gdz=0 (alongs)
p F

Integrating this equation, we obtain

9

J-@ +— + gz = constant  (along s)
p 2
If the density 1s constant, we obtain the Bernoulli equation

2

'g + T + 87 = constant

4l
As expected, we sec that the last two equations are identical to Egs. 6.7 and 6.8 de-
rived previously using streamline coordinates. The Bernoulli equation, derived using
rectangular coordinates, is still subject to the restrictions: (1) steady flow, (2) incom-
pressible flow, (3) frictionless flow, and (4) flow along a streamline.

Static, Stagnation, and Dynamic Pressures

The pressure, p, which we have used in deriving the Bemnoulli equation, Eq. 6.8, is the
thermodynamic pressure; it is cornmonly called the static pressure. The static pressure is
the pressure secn by the ftuid particle as it moves (so it 18 something of a misnomer!)—

*"The vector identity

(G-V)V:%V(ﬁ.ﬁ)—ﬁx(\?x\?)

may be verified by expanding each side into components, I
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Fig. 6.6 Encrgy and hydraulic grade lines for frictionless flow.
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If the water in the pipe of Problem 6.77 is initially at rest, and the air pressure is
maintained at 10 kPa {gage), derive a differential equation for the velocity V in the
pipe as a function of time, integrate, and plot V versus £ for ¢ = 010 5 s.

Two circular disks, of radius R, are separated by distance b. The upper disk moves
toward the lower one at constant speed V. The space between the disks is filled with
a frictionless, incompressible fluid, which is squeezed out as the disks come together.
Assume that, at any radial section, the velocity is uniform across the gap width b.
However, note that b is a function of time. The pressure surrounding the disks is at-
mospheric. Determine the gage pressure at r = (.

Consider the tank of Problem 4.36. Using the Bemoulli equation for unsteady fow
along a streamline, evaluate the minimum diameter ratio, D/d, required to justify the
assumption that flow from the tank is quasi-steady.

Determine whether the Bernoulli equation can be applied between different radii for
the vortex flow fields (a) V = wrég and (b) V = &5 K/2a7.

Consider the flow represented by the stream function ¥ = Ax’y, where A is a dimen-
sional constant cqual to 2.5 m™' + 57" The density is 2.45 slug/ft®. Is the flow
rotational? Can the pressure difference between points (x, ) = (1, 4) and (2, 1) be
evaluated? If so, calculate it, and il not, explain why.

The velocity field for a two-dimensional flow is V= (Ax - By)rf —(Bx + Ay)t},
where A = 1s 2, B = 2572 tis in seconds, and the coordinates are measured in me-
ters. Is this a possible incompressible flow? Is the flow steady or unsicady? Show that
the flow is irrotational and derive an expression for the velocity potential.

The flow field for a plane source at a distance A above an infinite wall aligned along
the x axis is given by

B R T

where 4 is the strength of the source. The flow is irrotational and incompressible.
Derive the stream function and velogity potential. By choosing suitable values for g
and h, plot the streamlines and lines of constant velocity polential. (Hint: Use the Ex-
cel workbook of Example Problem 6.10.)

Using Table 6.1, find the stream function and velocity potential for a plane source, of
strength g, near a 90° comer. The source is equidistant & from each of the two infinite
planes that make up the corner. Find the velocily distribution along one of the planes,
assuming p = pyat infinily. By choosing suitable values for g and A, plot the stream-
lines and lines of constant velocity potential. (Hint: Use the Excef workbook of Ex-
ample Problem 6.10.)

* These problems require material from sections that may be omitted without loss of continuity in the fext
material.






27

55 =t 1

22 ke,







i

T

'

oy










7-3 BUCKINGHAM PI THEOREM 277

T T T T 1T 17T 1T 7 TIIr T TTIT T 1T

N B
< <

T TTIT T Fo0Tl

B N 1 I

)
(=]
T TIT

[N

o
o
]

o
[T

[
810°2 4 6810°

—
o

0=
b f—
ok
8 -
—

[=]

=1

rne -
o=
o f—
@™ -
—
=

o -
oy
o f—
o f—
—

=

-
P -
[« )
o
8
P
n

[
00
gl
™~
F
[+, T

o
Fig. 7.1 Experimentally derived relation between the nondimensional parameters [4).

speed V, and the sphere diameter D, we could compute a value for pVD/ g, then read the
corresponding value for €, and finally compute the drag force F.

In Seetion 7-3 we introduce the Buckingham Pi theorem, a formalized procedure
for deducing the dimensionless groups appropriate for a given fluid mechanics or
other engineering problem. The theorem may at first seem a little abstract, but as sub-
sequent sections illustrate, it is a very practical and useful approach,

The Buckingham Pi theorem ts a statement of the relution between a function
expressed in terms of dimensional parameters and a related function expressed in
terms of nondimensional parameters. The Buckingham Pi theorem allows us to de-
velop the important nondimensional parameters quickly and easily.

1-3

BUCKINGHAM PI THEOREM

Given a physical problem in which the dependent parameter is a function of n — 1
independent parameters, we may express the relationship among the variables in
functional form as

g = fg2. g3, - -+ )

where ¢, is the dependent parameter, and ¢;, 45, - - . . g, are the n — 1 independent
parameters. Mathematically, we can express the functional relationship in the
equivalent form

8(q1’ qrs - - 'qn) =0

where g is an unspecified function, different from f. For the drag on a sphere we
wrote the symbolic equation

F=f(DV, p
We could just as well have written
gF. DV, p, uy=10

The Buckingham Pi theorem [5] states that: Given a relation among # parame-
ters of the {form

g q. - gy) =0



Gl s, ...










4 and
d ¢
M L M 0700
) 7)Y = ML
(EJ[!]()JL;
M: OD=d+1 d=—1
L. 0:_3d+€+f— e =1
I 0=-e¢-1 f=_l
;
v b
i=0
k }k:o
=1
3
Ix
LS
5 -=
£ i
_n







¢

fﬂi

M B+0=0
La-2b+1=20
rn=2b+0=0

an
D

D

)

b=0
a=-1

r

dh



A v

=gl




An

5 |.-3
s NV
[

rr L
1‘I:g|r.

M






& ll:r'||_.l'u E

oM
e O *
i
s F s F. '\.
| ' _|'_.l1-" L

PLE




=

=
! s
-

'S






290

I"':W"r‘m B - F I'.:':"r'."
o ¢ 1,
e, Y i
1 V, lo
; ¢
L R R
o, L

] A
Ta
_En 1 |
o |_-_-q.‘|'-|ﬂur_|:|| 1
_|:|

— e rach _
] B4 B
5 teg
E Pag LY e
: RSB
i o
= ]
£ >




madi arle »eticier

T = = L o
t‘-{,l L]
[
[N ]
qﬁ,pmﬁw %
o 10, 40 -

BIBLICTECA

Soony et




292







Pty MRt 0w
= = b n L
y .
06 T 1 T |

Model drag
coefficient, 'y,
<
)

o
=

o

1 2 3 4
Model Reynolds number, Re,, {x 109

C

D VETSUS Rey

~




ka

ETS

ar



296

L radd Tt L

.I:F d ]
Cadt [T

= e
:-.l,ﬂ:': i S

|';I|..-|

a ] ovlaged




and

il

N

il



P

“Ln

Y,

TR

[T

[

o y
. .
“un
—
L Y

o e g
J: [|]'=
“ ®



















304







a0a

v Dﬁ ] 1 s |
e e
D s |

=] u |
















! Entrance length

Fig. 8.1 Flow in the entrance region of a pipe.










by

4
ol
L
LY
L P
5 b
e
T = T
i T
PRI
Tw S M




_ f

BT A

£l = i;'lm!rf_}' o

do®  Lf g “op
AT

—_ ¥

. 2hdxs LOX

£ - J:l Vg

} a1 e s
U =I — ||1_.-' — oyt
TR



16

ot T e
) EJJ.
aJ )
AP 2 =_l":"_""],.,.-‘__1;‘

|

B —

.



file:///2p/dx

<1




4
o :
M
.. [Trf
i
e dE0 o
——

e .

—
LA
FARR

;]u: .




8-2 FULLY DEVELDPED LAMINAR FLOW BETWEEN INFINITE PARALLEL PLATES 319

Hence,

| (ap] 2 Uy | fap] Uy 1 [ap] 2
“= ZMLBx Yy 2u\ 0x o= a +2p. ox " - ay)

2 Nrany .
0l .[(z] m} @8
a 2uldxj\a a.
It is reassuring to note that Eq. 8.8 reduces to Eq. 8.5 for a stationary upper plate.
From Eq. 8.8, for zero pressure gradient (for dp/dx = 0) the velocity varies linearly
with y. This was the case treated earlier in Chapter 2.
We can obtain additional information about the flow from the velocity distribu-
tion of Eq. 8.8.

Shear Stress Distribution

The shear stress distribution is given by 7, = p(dufdy}.
U az(ap [Zy 1} U ap)
L= —_ + _ - — | = — 4+ al —
T TR \ox Jla® a " axJ

Volume Flow Rate

y |
e .9
':a _ 2] (8.9a)

The volume flow rate is given by @ = L V - dA. For depth { in the z direction
_ [ Q _ ey, L{dp). 2 ,
Q= N wldv or = LJ |:7 + ﬂ[ax](y ay) | dy

Thus the volume flow rate per unit depth is given by

9 _Ua_ L(ﬁe]a-’» (8.9b)
{ 2 12w \dx

Average Velocity

The average velocity magnitude, V, is given by

- ¢ Va 1 ap] 3 U 1 [ap) 2
v =L e Lol -Y__Li% o
A [2 12,u[ax AT 7 T e\ e ) (8.9¢)

Point of Maximum Velocity

To find the point of maximum velocity, we set du/dy equal (o zero and solve for the
corresponding y. From Eq. 8.8

du U r)p\F\' l} U "ap] ,)(y} ]
au _ v b L AL L I B A Y A B
dy a ¥ Z,u(ax_J a® a a N 2,u.tax ua

du_U at Y_g__ Ula
dy T2 (Mu)(oplax)

There 1s no simple relation between the maximum velocity, i,,,, and the mean veloc-
ity, V. tor this flow case.

Thus,
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dp
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Fg +Fy =0

The body force, FB:’ is given by Fy = pgd¥ = pg dx dy dz The only surface forces acting on the differ-
ential control volume are shear forces om the vertical surfaces. (Since dpfdx = 0, no net pressure forces act
on the control volume.)

[f the shear stress at the center of the differential control volume is 7, then,

¥ET

dr
shear stress on left face is Ty, = Tye = - d_v ,
] i ¥ dy 2
and
{ dr,. A4y
shear stress on right face is 7, = | 7,, + yr 4Y
R » dy 2

The direction of the shear stress vectors is taken consistent with the sign convention of Section 2-3. Thus on
the left face, a minus y surface, 7, acts upward, and on the right face, a plus y surface, 7, acts downward.

The surface forces are obtained by mulliplying each shear siress by the area over which it acts. Sub-
stituting into Fs + f = 0, we obtain

Ty dxdz + Tixg dedz v pededydz =0

or
dTw dy dr - d}-
-7, - —= = ldrdz+ 7, +—5 2 |dvdz + pedrdvdz =
( ¥x dy 2 ¥ dy 2 g Y d
Simplifying gives
dr,, dr,
— 4 = 0 or _ = =
o TeR pe P8
du d%u d*u og
Since T,.,=p— then pu—=-pg and —s=-2
_ o Ty dy* dy* ®
Integrating with respect to y gives
: p ’
_H = - EA— y+q
. dy 12
Integrating again, we obtain
2
u= —EL‘PC]}"f’CZ
. u 2

To evaluate constants ¢, and ¢;, we apply appropriate boundary conditions:
(i) y =0, u==0 (no-slip)

W y=s M

” =0 (ncglect air resistance, i.e., assume zero shear stress at free surfiace)
¥

From boundary condition (i), ¢z = 0

From boundary condition (ii). (= - g S+¢ or ¢ = 2 5
I

2 . \2
Hence, u=_$L+£5y or n=Prs? [l}-l(i|
2 ‘\3/

-— - u(y)
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4 it 2
Wie £

Fig. 8.13 Pipe section removed after 40 years of service as a water line, showing
formation of scale. (Photo courtesy of Alan T. McDonald.)

L v
h = F
- sz

where L, is an equivalent length of straight pipe.
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or other irregular shapes. Experimental data must be used when precise design infor-
mation is required for specific situations.

SOLUTION OF PIPE FLOW PROBLEMS

Section 8-7 provides us with a complete scheme for solving many different pipe flow
problems. For convenience we collect together the relevant computing equations.

The energy equation, relating the conditions at any two points 1 and 2 for a
single-path pipe system, is

- 2 f -
[p—]"'“l—vl’rgi’-x}— 22t a 4 "‘822}:*'1 =2h+3h  (8.29)
p 2 o 2 ! §

This equation expresses the fact that there will be a loss of mechanical energy (“pres-
sure,” kinetic and/or potentiat) in the pipe. Recall that for turbulent flows o = |
Note that by judicious choice of points | and 2 we can analyze not only the entire
pipe system, but also just a certain section of it that we may be interested in. The ro-
tal head loss is given by the sum of the major and minor losses. (Remember that we
can also include “negative losses” for any pumps present between points | and 2. The
relevant form of the energy equation is then Eq. 8.49.)

Each major loss is given by

LV
h = f—— (8.34)
y = f 5 2
where the friction factor is obtained from

f= R for laminar low (Re << 2300)  (8.36)

or

1 (e/D 2.51
log| —

fw =-201o 37 + W] for turhulent flow {(Re = 2300} (8.37)

and Eqs. 8.36 and 8.37 are presented graphically in the Moody chart (Fig. 8.12).
Each minor loss is given either by

"/2
b = K— (8.40a)
m 2
where K is the device loss coefficient, or
L, v’
h = foe (8.40b)
, = f D 2

where L, is the additional equivalent length of pipe.
We also note that the flow rate Q is related to the average velocity V at each pipe
cross-section by
D* .
=7—V
¢ 4

We will apply these equations first to single-path systems.
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and the required power input is

: W :
,, W, = —pomp _ 3D300MD _ 46 gonps Wi
= : 1 0.85 ¢

This problem illustrates the method for manually calculating
pipe length L.

G The Excel workbook for this problem automatically com-

putes Re and f from the given data. It then solves Eq. 1 di-
i rectly for L without having to explicitly solve for it first.
- The workbook can be easily vsed to see, for example,
how the flow rate Q depends on L; it may be edlted for
other case (b) type problems.

EXAMPLE 8.7 Flow from a Water Tower: Flow Rate Unknown

A fire protection system is supplied from a water tower and standpipe 80 ft tall. The
longest pipe in the system is 600 ft and is made of cast iron about 20 years old. The
pipe contains one gate valve; other minor losses may be neglected. The pipe diameter
is 4 in. Determine the maximum rate of flow {gptn) through this pipe.

EXAMPLE PROBLEM 8.7

GIVEN: Fire protection system, as
t shown.

FIND: Q. gpm. cam Gate valve\

SOLUTION: —
i ations: L =600ft———j

Governing equations:

= 02)
5‘ + al{+ 321 + az 2 + Bzz] Rl R (8.29)
where
L V? 72
¥ f—— (8.34) and m,= =l gaon
m D 2
Assumptions: {1} p; = p; = Pap-
(2) V| =}, and Uy = 1.0.
Then Eq. 8.29 can be written as
V3 L V3
i‘ 3(31'22)_72— -f(—*r D]Tz (1)

For a fully open gate valve, from Table 8.4, L/D = 8. Thus

- _WirL
‘ 8z —29) = 5 [f\D+8]+l}
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EXAMPLE 8.8 Flow in an Irrigation System: Diameler Unknown

Spray heads in an agricultural spraying system are to be supplied with water through
:1 500 ft of drawn aluminum tubing from an engine-driven pump. In its most efficient
operating range, the pump output is 1500 gpm at a discharge pressure not exceeding
‘ 65 psig. For sutisfactory operation, the sprinklers must operate at 30 psig or higher
) pressure. Minor losses and elevation changes may be neglected. Determine the small-

. est standard pipe size that can be used.

EXAMPLE PROBLEM 8.8

GIVEN: Water supply system, as shown.

b Pump =500t =

—o e = =]~ 0= 1500 gpm
- o < ®
i P S 65 psig po > 30 psig

FIND: Smallest standard D.

SOLUTION:

Ap, L, and Q are known. D is unknown, so iteration is needed to determine the minimum standard diameter
that satisfies the pressure drop constraint at the given flow rate. The maximum atlowable pressure drop
over the length, L, is

Governing equations: (%‘ + algz + ;41] - (Iff + a;% + }éz) = by, (8.29)

=003

APmax = Pimsx ™ Pamin = (65 — 30) psi = 35 psi

h=h+ b /= f

oI
™13

Assumptions: (1} Steady flow.
(2) Incompressible fiow,
(3) hy, = hyieh =0.
! 4 o=z
G V=V, = Vi, = q,

4 L 92
' Ap=p ~-py = BpT (1}

Equation 1 is difficult to solve for D because both V and f depend on D! The best approach is to use a
¢ompuler application such as Excel to automatically solve for 0. For completeness here we show the man-
ual iteration procedure. The first step is to express Eq. 1 and the R%ynolds number in terms of () instead of
¥(Q is constant but V varies with D). We have V = /A = 40/7D* so that
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area reaches a minimum at the vena contracta, so the flow velocity is a maximum there. The flow expands
again following the vena contracta to fill the pipe. The uncontroiled expansion following the vena contracta
is responsible for most of the head loss, (See Example Problem 8.12.)
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100

Elevation, ft
wn
<

L]

-
-
-

Entrance

————

Local velocity reaches a maximum
at the vena contracta.

-

Hydraulic grade line

Rounding the inlet corner reduces the extent of separation significantly. This reduces the velocity in-
crease through the vena contracta and consequently reduces the head loss caused by the entrance. A “well-
rounded” inlet almost eliminates flow separation; the flow pattern approaches that shown in Fig. 8.1. The
added head loss in a well-rounded inlet compared with fully developed fow is the result of higher wall
shear stresses in the entrance length.

v

v

This problem:

Ilustrates a method for obtaining the value of a minot loss
coefficient from experimental data.

Shows how the EGL and HGL lines first introduced in
Section 6-5 for inviscid flow are modified by the presence
of major and minor losses. The EGL line continuously
drops as mechanical energy is consumed —quite sharply
when, for example, we have a square-edged entrance loss;
the HGL at each location is lower than the EGL by an
amount equal to the local dynamic head 92/2g—at the
vena contracta, for example, the HGL cxperiences a large

drop, then recovers.

EXAMPLE 8.10 Use of Diffuser to Increase Flow Rate

Water rights granted to each citizen by the Emperor of Rome gave permission to at-
tach to the public water main a calibrated, circular, tubular bronze nozzle [24]. Some
citizens were clever enough to take unfair advantage of a law that regulated flow rate
by such an indircet method. They installed diffusers on the outlets of the nozzles to
increase their discharge. Assume the static head available from the main is z; = 1.5
m and the nozzle exit diameter is I = 25 mm, (The discharge is to atmospheric pres-
sure.) Determine the increase in flow rate when a diffuser with N/R, = 3.0 and AR =
2.0 is atrached to the end of the nozzle.
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As an example, consider part of a system as shown in Fig. 8.17. Water is supplied
at some pressure from a manifold at point 1, and flows through the components
shown to the drain at point 5. Some water flows through pipes A, B, C, and P, con-
stituting a series of pipes (and pipe B has a lower flow rate than the others); some
flows through A, E, For G, H, C, and D (F and G are parallel), and these two main
branches are in parallel. We analyze this type of problem in a similar way to how
we analyze DC resistor circuits in electrical theory: by applying a few basic rules
to the system. The electrical potential at each point in the circuit is analogous to the
HGL (or static pressure head if we neglect gravity) at corresponding points in the
system. The current in each resistor is analogous to the flow rate in each pipe sec-
tion. We have the additional difficulty in pipe systems that the resistance to flow in
each pipe is a function of the flow rate (electrical resistors are usually considered
constant).

The simple rules for analyzing networks can be expressed in various ways. We
will express them as follows:

1. The net flow out of any node (junction) is zero.
2. Each node has a unique pressure head (HGL),

For example, in Fig. 8.17 rule 1 means that the flow into node 2 from pipe A must
equal the sum of outflows to pipes 8 and E. Rule 2 means that the pressure head at
node 7 must be equal to the head at node 6 less the losses through pipe F or pipe G,
as well as equal to the head at node 3 plus the loss io pipe A.

These rules apply in addition 10 all the pipe-flow constraints we huve discussed
(e.g.. for Re = 2300 the flow will be turbulent), and the fact that we may have signifi-
cant minor losses from features such as sudden expansions. We can anticipate that the
flow in pipe F (diameter 1 in.) will be a good deal less than the flow in pipe G (diam-
eter 1.5 in), and the flow through branch £ will be larger than that through branch B
(why?).

The problems that arise with pipe networks can he as varied as those we dis-
cussed when studying single-path systems, but the most common involve finding the
flow delivered to each pipe, given an applied pressure difference. We examine this
case in Example Problem 8.11. Obviously, pipe networks are much more difficult and

| 3 6 A:L=10f 0=15n.
B:L=20ftD=15in

Cc:L=10f,D=2in.
B F G D L=10ftD=15n.
E:L=5ft, D=15in.

3 FL=10%fD=1in
7 G L=10ft,p=15in

H:L=5H D=2in

g —
(¥
e |
: )
T

Fig. 8.17 Schematic of part of a pipe network.
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The Aow rates are:

8-0 DIRECT METHODS 369

Qs = Q¢ = Up = 260 gpm

O (gpm) = 112 gpm

Ok (gpm) = Oy (gpm) = 147 gpm
Of (gpm) = 37 gpm

Qg (gpm) = 110 gpm

This problem illustrates use of Excel to solve a set of coupled,
nonlinear equations for unknown flow rates.

‘ The Excel workbook for this problem can be modified
for solving a variety of other multiple-path systems.

PART C FLOW MEASUREMENT

Throughout this text we have referred to the flow rate 2 or average velocity Vin a
pipe. The question arises: How does one measure these quantities? We will address
this question by discussing the various types of flow meters available.

The choice of a flow meter is influenced by the accuracy required, range, cost,
complication, ease of reading or data reduction, and service life. The simplest and
cheapest device that gives the desired accuracy should be chosen.

DIRECT METHODS

The most obvious way to measure flow rate in a pipe is the direct method —simply
measure the amount of fluid that accumulates in a container over a fixed time period!
Tanks can be used to determine flow rate for steady liguid flows by measuring the
volume or mass of liquid collected during a known time interval. If the time interval
is long enough to be measured accurately, flow rates may be determined precisely in
this way.

Compressibility must be considered in volume measurements for gas flows. The
densities of gases generally are oo small to permit accurate direct measurcment of
mass flow rate. However, a volume sample often can be collected by displacing a
“bell,” or inverted jar over water (if the pressure is held constant by counterweights).
If volume or mass measurements are set up carefully, no calibration is required; this
is a great advantage of direct methods.

In specialized applications, particularly for remote or recording uses, positive
displacement flow meters may be specified, in which the fluid moves a componcnt
such as a reciprocating piston or oscillating disk as it passes through the device.
Common examples include household water and natural gas meters, which are cali-
brated to read directly in units of product, or gasoline metering pumps, which meas-
ure total flow and automatically compute the cost. Many positive-displacement
meters are available commercially. Consult manufacturers’ literature or References
{e.g., [10]) for design and installation details.



'
ST

)
i

.



8-10 RESTRICTION FLOW METERS FOR INTERNAL FLOWS 371

Then, from the Bernoulli cquation,

5 2

£z _ 2y _ PY2 Y

y - py, = 2(VEoy3) =2 | 2L
] 2(2 |) 2[ [Vz]}

and from continuity

or

2 2
VIAI = V2A2 50 i = éi
v, A

5 2

PV, 4

—p, =2 |2
I 3 { (AJ}

Solving for the theoretical velocity, V,,

Substituting gives

BIBLIOTECA
U-e.8

-

I 2(p = po)
Vol - (Ay/4))7)

The theoretical mass flow rate is then given by

2 = (8.51)

Myheoretical = PV2A2
2 -
¥ ALl — (Ay/A))]

. A :
Miheoretical = __2_ 5 N2p(py = pp) (8.52)
V1= (A/AD

or

Equation 8.52 shows that, under our set of assumptions, for a given fluid (p) and Now
meter geometry (A, and A,), the flow rate is directly proportional to the square root of
the pressure drop across the meter taps,

Miheocerical * y Ap

which is the basic idea of these devices. This relationship limits the flow rates that
can be measured accurately to approximately a 4:1 range.

Several factors limit the utility of Eq. 8.52 for calculating the actual mass flow
rate through a meter. The actual flow area at section ) is unknown when the vena
contracta 1s pronounced (e.g., for orifice plates when D, is a small fraction of D).
The velocity profiles approach uniform flow only at large Reynolds numbers.
Frictional effects can become important (especially downstream from the meter)
when the meter contours are abrupt. Finally, the location of pressure taps influences
the differcntial pressure reading.

The theoretical equation is adjusted for Reynolds number and diameter ratio
D,/D, by defining an empirical discharge coefficient C such that



372

A,




: hs TR
1 —
t N Flow
e
Dy >



e’

]
0, = __‘:l
10,
eter rat
m
Dia

0.75

0.7

oy

IRV
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Flow nozzle
Nozzle
1 N T

_ !
A N n, Flow A D, Flow
2

—rar—

Plenum chamber

{2} I duct (B) In plenem
Fig.8.21 Typical installations of nozzle flow meters.

Eq. 8.60 and Eqg. 8.55 are presented in Fig. 8.22. (K can be greater than one when the
velocity-of-approach factor exceeds one.)

a. Pipe Installation

For pipe installation, K is a function of 3 and Rep,. Figure 8.22 shows that K 1s
essentially independent of Reynolds nuraber for Rey, > 10° Thus at high flow rates,

the flow rate may be computed directly using Eq. 8.56. At lower flow rates, where X
is a weak function of Reynolds numbecr, itcration may be required.

Diameter ratio, 5 = %
1.12— 1

1.06

Flow coefficient, X
—
=)
®

1.04

1.02

1.00

0.98

0.96
108 2 5 105 2 5 1o 2 5 107

YD,
u
Fig. 8.22 Flow coefiicients for ASME long-radius flow nozzles,

Reynoltds number, Re,, =
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100
90
80

70—
60 —

50 -

| | I [
-~ Sauare-edge oritice ]

Flow nozzle

30+ —
Venturi
15° exit cone

20

Permanent head loss, percent of differential

1ol 1 | | | | | \
o 0l 02z 03 04 05 06 07 08

. . D,
Diameter ratio, f = ;‘;1
1

Fig. 8.23 Permanent head lass produced by various tlow metering
elements [10].

so the flow rate in cach tube is a linear function of the pressure drop across the
device, The flow rate in the whole pipe will be the sum of each of thesc tube flows,
and so will also be a linear function of pressure drop. Usually this linear relation is
provided in a cahibration from the manufacturer, and the LFE can be used over a 10:1
range of flow rates. The relationship between pressure drop and flow rate for laminar
flow also depends on viscosity, which is a strong function of temperature. Therefore,
the fluid temperaturc must be known to obtain accurate metering with an LFE.

A laminar flow element costs approximately as much as a venturi, but it is much
lighter and smatler. Thus the LFE is becoming widely used in applications where
compaciness and extended range are important.

EXAMPLE 8.12 Flow through an Orifice Meter

An air flow rate of | m%s at standard conditions is expected in a 0.25 m diameter
duct. An orifice meter is used to measure the rate of flow. The manometer available to
make the measurement has a maximum range of 300 mm of water. What diameter
orifice plate should be used with corner taps? Analyze the head loss if the flow area at
the vena contracta is A, = 0.65 A,. Compare with data from Fig. 8.23.

EXAMPLE PROBLEM 8.12

GIVEN: Flow through duct and orifice as shown.

=1 ms

: + D, -025m _*_D, Air

(1 = palonay - 300 mm H,0
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8-10 RESTRICTION FLOW METERS FOR INTERNAL FLOWS 370

To find the permanent head loss for this device, we could simply use the diameter ratio 8 = 0.66 in
Fig. 8.23; but instead we will find it from the given data. To evaluate the permanent head loss, apply Eg.
§.29 between sections @ and @

Governing equation: (% + a, % +/Lé1) - (% + G’s? +%3] =h, (8.29)

Assumptions: (3) alf/% = agV%.
{4) Neglect Az,

Then

h,T.__pl_pEl _h-ph-(p-p)
p [

2

Equation 2 indicates our approach: We will find p;, — p; by using p, — p; = 300 mm H,0, and obtain a
valee for p, — p; by applying the x component of the momentum equation to a control volume between
sections and 3).

w

A2=A

welta cuiitracta

Governing equation: =0(5) = 1)
st+7§:= g‘j updV+J upV dA (4.18a)
‘s ' ev cs

Assumptions:  (5) Fz = 0.
(6) Uniform flow at sections @ and @.
‘ (7) Pressure uniform across duct at sections (Z) and (3).
. (8) Neglect friction force on CV.

| Then, simplifying and rearranging,

(P2 — P3) A = i{—pWhAy) + i5(pVaA3) = (43 — 1)@ = (V4 — V)pQ

| Py = (- 22
4
owV, = QJA,, and
s _Q Q@ _ @

A, 0654, 0658%4
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Fig.8.24 Float-type variable-arca flow meter (Courlesy of Dwyer Instrument
Co., Michigan City, Indiana.)

such as a cylinder perpendicular to the How. A vortex street is a series of alternating
vortices shed from the rear of the body; the alternation generates an oscillating side-
ways force on, and therefore ascillation of, the cylinder (the classic example of this
being the “singing” of telephone wires in a high wind). It turns out that the dimen-
sionless group characterizing this phenomenon is the Strouhal number, St = fL/V
(fis the vortex shedding frequency, L is the cylinder diameter. and V is the freestream
velocity), and it is approximately constant (5t = 0.21). Hence we have a device for
which V « f. Measurement of fthus directly indicates the velocity V (however, the ve-
locity profile does affect the shedding frequency so calibration is required). The
cylinder used in a flow meter is usually quite short in length— 10 mm or less —and
placed perpendicular to the flow (and for some devices is not a cylinder at all but
some other small bluff object). The oscillation can be measured using a strain gage or
other sensor. Vortex flow meters can be used over a 20 | range of flow rates [10].

The electromagnetic flow meter uses the principle of magnetic induction. A mag-
netic field is created across a pipe. When a conductive fluid passes through the field, a
voltage is generated at right angles to the ficld and velocity vectors. Electrodes placed
on a pipe diameter are used to detect the resulting signal voltage. The signal voltage is
proportional lo the average axial velocity when the profile is axisymmetric.

Fig. 8.25 Turbine flow meter. (Courtesy of
Potter Aeronautical Corp., Union, New Jersey.)
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8.138

pROBLEMS 403

T‘—— 15’—-{‘ Pump

— 0 = 100 gpn

Water
AQ°F

P8.133

Determing the minimur size smooth rectangular duct with an aspect ratio of 2 that
will pass 80 m¥min of standard air with a head loss of 30 mm of water per 30 m of
duct.

A new industrial plant requires a water flow rate of 5.7 m*min. The gage pressure
in the water main, located in the street 50 m from the plant, is 800 kPa. The supply
line will require installation of 4 elbows in a total length of 65 m. The gage pres-
sure required in Lthe plant is 500 kPa. What size galvanized iron line should be in-
stalled?

Investigate the effect of tube diameter on flow rate by computing the flow generated
by a pressure difference, Ap = 100 kPa, applied to a length L = 100 m of smooth
tubing. Plot the flow rate against tube diameter for a range that includes laminar and
turbulent flow.

A large reservoir supplies water for a community. A portion of the water supply
system is shown, Water is pumped from the reservoir o a large storage tank before
being sent on to the water treatment facility. The system is designed to provide
1310 LJs of water at 20°C. From B to C the system consists of a square-cdged
entrance, 760 m of pipe, three gate valves, four 45° elbows, and two 90° elbows.
Gage pressure at ' is 197 kPa. The system between F and G contains 760 m of pipe,
two gate valves, and [our 90° elhows. All pipe is 508 mm diameler, cast iron. Cal-
culate the average velocity of water in the pipe, the gage pressure at section F, the
power input to the pump (its efficiency is 80 percent), and the wall shear stress in
section FG.

| 4 + ( z= 174 m

——z=152m
H
Pumgp z=104m——o4—‘
=91 M — | - (£
c \N_/F

P8.137

An air-pipe friction experiment consists of 4 smooth brass tube with 63.5 mm inside
diameter; the distance hetween pressure taps is 1.52 m. The pressure drop is indi-
cated by a manometer filled with Mernam red oil, The centerline velocity U is meas-
ured with a pilot vylinder. At one flow condition, &/ = 23.1 m/s and the pressure
drop is 12.3 mum of oil. For this condition, evaluate the Reynolds number based on






Pipe, D=4 in,
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Total length: £ = 700 ft
Joints; 15, each with
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9-4 MOMENTUM INTEGRAL EQUATION 419

Since the velocity gradient goes to zero at the edge of the boundary layer, the shear
force acting along surface be is negligible.

Surface Force
ab If the pressure at x is p, then the force acting on surface ab is given by
Fop = pwd

(The boundary layer is very thin; its thickness has been greatly exaggerated in ail
the sketches we have made. Because it is thin, pressure variations in the y direction
may be neglected, and we assume that within the boundary layer, p = p(x).)

cd Expanding in a Taylor series, the pressure at x + elv is given by

dp
Prsge = Pt E]rdx

The force on surface cd 1s then given by

Fg=- {p + @] dr1w(8 + db)
de ]y )
be The average pressure acting over surface be is
4
P+ _p] dx
2dx],

Then the x component of the normal foree acting over be is given by
£ =|p+ l@] dx |w ds
2 dx ],

ad The average shear force acting on ad is given by

Fg= —(Th + %d'rw)w dx

Summing the x components of all forces acting on the control volume, we obtain
=0 =0

g L e g ]
FS|+[ aﬁdx 5 In d%d T, dx 2d}'zix

where we note that dx dd <<< 6 dx and d71, << 71, and so neglect the second and
fourth terms. .

Substituting the expressions for I upV - dAand F; into the x momentum
equation, we obtain s *

P e a1 0T _ulr
{dxr‘idx .wdx} -{ax[‘[oupua‘y:ldx Uax[fopudy]dt}w

Dividing this equation by w dx gives

W

dx

Equation 9.16 is a “momentum integral” cquation that gives a relation between the x
components of the forces acting in a boundary layer and the x momentum flux.

J b d (o ,
w= oo umdy-vs- [ pudy (9.16)
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9-5 USE OF THE MOMENTUM INTEGRAL EQUATION FOR FLOW WITH ZERO PRESSURE GRADIENT 425

SOLUTION:
For flat plate flow, 7 = constant, dp/dx = 0, and
de dd mu u
: _ 290 g dd _[1_—}1 9.19
& Tw = P dx P dr JIO U U n ( )

Assumptions: (1) Steady flow.
(2) Incompressible flow.

Substituting % = sin % 7 into Eq. 9.19, we obtain

s ' . T ds T WK
, = UZ—J sin — [l—s'n— ]d = Uz—j (sin-— —sinf = ]d
Ty P dx Jo 271 1 2"1 n=p g 2"? nian

2
ds 2 r Ix 1 ! ds 2 -
=pr —=Z|~cos—n— ——n+—si = Uz———[0+l——+0+0—0]
P dx'n'|: 717227 4’"7"']0 i 4
ds , dé
= 0.137pU0% 2= = BpUt == =0.137
Ty P o Bo I B
Now
_ m_:u@_} =u_l{a(ulU)} :p_l{icoszn] _ mul
Fi Wl “Bawm], TE2T 2, 28
Therefore,

7, = L;‘SU = 0.137pU? i;g

Separating variables gives

5d5 =115 dx
pU

Integrating, we obtain

— =1l15—2x+r¢
2 pl

Bute = 0,since 5 = Qatx = 0, 50

J—
5= fzs.oﬂ
Y U

8 480
— =480 = ——
X Y pUx Re, | 8(x)

I
I p

The displacement thickness, 8%, is given by
ey
a*:aj 1- %
0\ U] K
L . 2 7 7T
=6I l-sin—n|dn=061+—cos—7
i} 2 m 2 0
8*:8[1-0+0—3-‘=8|t1—1]
[L. T T
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From Eg. 9.26,

0.382 0.382 5
= L

8; x1lm=00241m or 4§ =24lmm,

. Re,l_"s - (106)1.'5
Using Eq. 9.1, with w/l/ = (/&'7 = 5'7, we obtain

aL__[n [1 U)dy-SLIU[l U]d[ﬁ] a,,J‘D(l 7"y dn SL[n 57

1

0
4.
3}‘:8—L=—2ﬂ=3.01mm, 51
8 8 A
From Eq. 9.27,
(= 280
5 1 > m?* N
'r,v=CflpU2=0'0037 x—xgggk—%x() m—zx s
2 2 m s kg - m
r, = 1.87 N/m? Tu(L)

For laminar flow, use Blasius solution values. From Eq. 9.13,

b, = 5.0 L:%xlm=0.005m or  5.00mm
Re; (10™y

From Example 9.2, 5*/8 = 0.344, so
§* = 03445 = 0.344 X 5.0 mm = 1.72 mm

From Eq.9.15, C; = 222
\/Rex
1'2 2 i 2
= C oyt =280 L 99 ke (T NS 0332 Nm?
2 Jio8 2 m’ s¢ kg-m

Comparing values at x = L, we obtain

S .
Disturbance thickness, —urbulent 2lmm 482
aminur 5.00 mm
¢ 3
Displacement thickness, Stwge . 30Lmm 1.75
8]2]!1.‘1“!11’ 1'72 mm
2
Wall shear stress, Twourbutenr __L87N/m”_ 563

Ty laminar 0.332 N/m?

This problem illustrates application of the momentum integral
equation to the turbulent boundary layer on a flat plate. Com-
pared to a laminar boundary layer, it is clear that the turbulem
boundary layer grows much more rapidly —because the
turbulent wall stress is significantly greater than the laminar
wall stress.

@ The Excel workbook for this Example Problem plots the
1 -power-law turbulent boundary layer (Eq. 9.26) and
the laminar boundary layer (Eq. 9.13). It also shows the
wall stress distributions for both cases.
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436 CHAPTER 8 / EXTERNAL INCOMPRESSIBLE VISCOLS FLOW :
0.010 —— I , I . ]
0.008 |- ~

Turbulent n
0.006 boundary iayer _
" | (Eq. 9.34) _]
Q
£ 0.004 -
a
o
‘E ST Turbufent —
o P Transition at e O boundary layer
0 Re = 5x 10° T (Eq. 9.35)
= Eq. 9.37b .
© 0002 (a ) e -
.
—
Laminar "
houndary layer —
{Eq. 9.33)
0001 __ L | L | | ] | | | |
10° 2 5 10° 2 5 107 2 5 108 2

Fig. 9.8 Variation of drag cosfficient with Reynolds number for a smocoth flat plate parallel to the flow.

Reynolds number, Re,

Water line

—— -_.__-.J“




The ship speed is 13 kt (nautical miles per hour), so

Assuming Eq. 9.37b is valid,

and from Eq. 9.32,

The corresponding power is

9-7 DRAG 437

0.455 610
= - (9.37b)
(log Re, )™ Re,

D

13 nm 6076 fi 0.305 m hr
U= X — X — X

—_— = 6.69 m/s
hr nm ft  3600s
From Appendix A, at 10°C, v = 1.37 X 10 S m¥s for seawater. Then
69 m
Re, = YL 009 M 3O0M, S 176x10°
v ] 137 107 m
o (.455 1610 — 0.00147

" o176 X 1077 176 % 10°

Fy = Cpalpl?

2 2 2
_ 0.00147 % (360 m) (70 + 50)m x 1 v 1020 _l% x (6.69) m_z y N-s
2 m’ § kg-m

Fp = L45MN fp

—

145x10°N 669 m W s
s N-m

?]’:9.701'\4'»’\1< @

This problem illustrates application of drag coefficient equations
for a flat plate parallel to the flow.

v The power required (aboutl 13,000 hp) is very large be-
cause although the friction stress is small, it acts over a
substantial area.

v The boundary layer is turbulent for almost the entire length
of the ship (transition occurs at x = 0.1 m).

Flow over a Flat Plate Normal 1o the Flow: Pressure Drag

In flow over a flat plate normal to the fiow (Fig. 9.9), the wall shear stress is perpen-
dicular 1o the flow direction and therefore does not contribute to the drag force. The
drag is given by

s :j dA
o surtace P

For this geometry the flow separates from the edges of the plate; there is back-
flow in the low energy wake of the plate. Although the pressure over the rear surface
of the plate is essentially constant, 1ts magnitude cannot be determined analytically.
Consequently, we must resort to expenments to determine the drag force.
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Table 9.3 Drag Cosfficient Data for Selected Objects (Re = 10%)y

Object Diagram Cp(Re = 10%)
Square prism bith = = 2.05
N blh = | 1.08

\

Disk @ 1.17

Ring - 1.20%

Hemisphere (open end - @ 1.42
facing flow) /

Hemisphere (cpen end © 0.38
facing downstream) /.,

C-section (open side 2.30
facing flow) \

C-section (open side 1.20
facing downstream) SO

i

\

4 Dhata from [16).
" Based on ring area.

shown analytically, for very low Reyoolds number Hlows where inertia forces may be
neglecied, that the drag force on a sphere of diameter d, moving at speed V, through a
fluid of viscosity u, is given by

Fo=3muVd

0T T T T T T 7T T I T T 7T T T T T 1717
200
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o
—
I

Fig. 9.11 Drag cecefficicnt of a smooth sphere as a function of Reynolds number (3]
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From Fig. 9.13, Cp, = (.35. For a cylinder, A = DL, so
L 12
Mo = CpA pV? = CpDL -ﬁ‘— pV? = CpD - pv?

1 035 1m_ (25°m* 123kg (139 m®> N5
— X X x X — x —= X
4 m s kg - m

M, =130kN-m, M,

This problem illustrates application of drag-cocfficient data to
calculate the force and moment on a structure. We modeled the
wind as a uniform flow; more realistically, the lower atmos-
phere is often modeled as a huge turbulent boundary layer,
with a power-law velocity profile, u ~ ¥ (y is the elevation).
See Problem 9.116, where this is analyzed for the case n = 7.

EXAMPLE 9.7 Deceleration of an Automabile by a Drag Parachute

A dragster weighing 1600 1bf attains a speed of 270 mph in the quarter mile. Immedi-
ately after passing through the timing lights, the driver opens the drag chute, of area
A = 25 fi°. Air and rolling resistance of the car may be neglected. Find the time
required {or the machine to decelerate to {00 mph in standard air.

EXAMPLE PROBLEM 9.7

GIVEN: Dragster weighing 1600 1bf, moving with initiai speed V, = 270 mph, is slowed by the drag force
on a chute of area A = 25 fi%. Neglect air and rolling resistance of the car. Assume standard air.

FIND: Time required for the machine to decelerate to 100 mph.

SOLUTION:
Taking the car as a system and writing Newton's second law in the direction of motion gives
¥ Ve = 270 mph
- FD =mad=m ﬂ .qL L ¢
dt V; = 100 mph
. p = 0.00238 slug/fit®

- FD 2
Since Cp = —25—, then Fp = 1+ Cp pV*A.
D I VA p=3tpp
Substituting into Newton’s second law gives

1 2 d4v
——CppVA=m—
2 PP dr
Separating variables and integrating, we obtain
1 A Vr dv
2 P pm 0 Vo v?
1 Ve V-V
SR PP PP\ (U R I R
2 i 14 vy Vf V() va(]
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Fig. 9.15 Theoretical pressure distributions at zero angle of attack for two symmet-
ric airfoil sections of 15 percent thickness ratio. (Data from [21].)
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Conventional —23015
2 30 15

i
L section thickness (15 percent chord)

— maximum camber location (3 X 30 = 15 percent chord)

design lift coefficient (§ X 0.2 = 0.3)
Laminar Flow—066, — 215
66 , — 215
4

l\section thickness (15 percent)
design lift coefficient (0.2)

maximum lift coefficient for favorable
pressure gradient (0.2)

— location of minimum pressure {x/c == 0.6)

— series designation (laminar flow)

Both sections are cambered to give lift at zero angle of attack. As the angle of attack
is increased, the Ap between the upper and lower surfaces increases, causing the lift
coefficient to increase smoothly until 2 maximum is reached. Further increases in an-
gle of attack produce a sudden decrease in C;. The airfoil is said to have stalfed when
C, drops in this fashion.

Airfoil stall results when tlow separation occurs over a major portion of the up-
per surface of the airfoil. As the angle of attack is increased, the stagnation point
moves back along the lower surface of the airfoil, as shown schematically for the
symmetric laminar-flow section in Fig. 9.18a. Flow on the upper surface then must
accelerate sharply to round the nose of the airfoil.” The effect of angle of attack on the
theoretical upper-surface pressure distribution is shown in Fig. 9.185. The minimum
pressure becornes lower, and its location moves forward on the upper surface. A severe
adverse pressure gradient appears following the point of minimum pressure; finally,
the adverse pressure gradient causes the flow to separate completely from the upper
surface and the airfoil stalls.

Movement of the minimum pressure point and accentuation of the adverse pres-
sure gradient are responsible for the sudden increase in C, for the laminar-flow section,
which is apparent in Fig. 9.17. The sudden nise in Cpy 15 caused by early transition from
laminar to turbulent boundary-layer flow on the upper surface. Aircraft with laminar-
flow sections are designed to cruise in the low-drag region.

Becaunse laminar-flow sections have very sharp leading edges, all of the effects
we have described are exaggerated, and they stall at lower angles of attack than con-
ventional scctions, as shown in Fig. 9.17. The maximum possible lift coclficient,
Cr,.. Alsois less for laminar-flow sections.

=

T Flow patterns and pressure distributions for airfoil sections are shown in the NCFMF video Boundary
Laver Control.
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Fig. 9.18 Effect of angle of attack on flow pattern and theoretical pressure distribu-
tion for a symmetric laminar-flow airfoil of 15 percent thickness ratio, (Data from [211.)

drag [23, 24]. Boundary-layer calculation codes are used with inverse methods for
calculating potential flow o develop pressure distributions and the resulting body
shapes that postpone transition to the most rearward location possible. The turbulent
boundary layer following transition is maintained in a state of incipient separation
wilh nearly zero skin friction by appropriate shaping of the pressure distribution,
Such computer-designed airfoils have been used on racing cars to develop very
high negative lift (downforce) to improve high-speed stability and cornering perform-
ance [23]. Airfoil sections especially designed for operation at low Reynolds number
were used for the wings and propeller on the Kremer prize-winning man-powered
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Fig. 919 Lift-drag polars for two airfoil sections of 15 percent thickness
ratio. (Data fram [21].)

“Gossamer Condor” |28], which now hangs in the National Air and Space Muse
in Washington, D.C.

Finite wing
Flight
l Induced

l “downwash"
l velacities
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being a hazard to other aircraft for 5 to 10 miles behind a large airplane —air speeds
of greater than 200 mph have been measured.®

Trailing vortices reduce hft because of the loss of pressure difference, as we just
mentioned. This reduction and an increase in drag (called induced drag) can also be
explained in the following way: The “downwash™ velocities induced by the vortices
mean that the effective angle of attack is reduced —the wing “sees™ a flow at approx-
imately the mean of the upstream and downstream directions—explaining why the
wing has less lift than its section data would suggest. This also causes the lift force
{which is perpendicular to the effective angle of attack) to “lean backwards™ a little,
resulting in some of the lift appearing as drag.

Loss of Lift and increase in drag caused by finite-span effects are concentrated
near the tip of the wing; hence, it is clear that a short, stubby wing will expericnce
these effects more severely than a very long wing. We should therefore expect the ef-
fects to correlate with the wing aspect ratio, defined as

2
ar = — (9.39)
Ap
where A, is planform area and & is wingspan. For a rectangular planform of wingspan
b and chord lengih ¢,

BB b
C

ar = wo— =
Ap be ‘

The maximum lift/drag ratio (L/D) = C,/Cp) for a modern low-drag section may be
as high as 400 for infinite aspect ratio. A high-performance sailplane (glider) with
ar = 40 might have L/D = 40, and a typical light plane (ar = 12) might have L/D ==
20 or s0. Two examples of rather poor shapes are lifting bodies used for reentry from
the upper atmosphere, and water skis, which are hydrofoils of low aspect ratio. For
both of these shapes, L/D typically is less than unity.

Variations in aspect ratio are seen in nature. Soaring birds, such as the albatross or
California condor, have thin wings of long span. Birds that must maneuver quickly to
catch their prey, such as owls, have wings of relatively short span, but large area, which
gives low wing loading (ratio of weight to planform area) and thus high mancuverability.

[t makes sense that as we try to generate more lift from a finite wing (by, for ex-
ample, increasing the angle of attack), the trailing vortices and therefore the down-
wash increasc; we also lcarned that the downwash causes the effective angle of attack
to be less than that of the corresponding airfoil section (i.e., when ar = 9), ulti-
mately leading to loss of lift and to induced drag. Hence, we conclude that the effects
of the finite aspect ratio can be characterized as a reduction A in the effective angle
of attack, and that this (which is usually undesirable) becomes worse as we generate
more hift (i.c., as the lift coefficient C, increases) and as the aspect ratio ar is made
smaller. Theory and experiment indicate that

Aa = S (3.40)

war
Compared with an airfoil section (ar = ), the geometric angle of attack of a wing
(finite ar) must be increased by this amount to get the same lift. as shown n

¥ Sforza, P. M., “Aireraft Vortices: Benign or Baleful?" Space/Aeronautics, 53. 4, April 1970, pp. 42-49.
See also the University of lowa video Form Drag, Lift, and Propulsion.
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T T | [
Cp
Lift force, #, 0.6 _A W —
3

0.2 — o 6.2x10% -

A 7. /x104

t" o 10.7 x 104

: :::i\ | | i I

!

s 1 2 3 4 5

Spin ratio, wD/2V
(e} Flow paltern (4} Lift and drag coefticients

Fig. 9.27 Flow pattern, lift, and drag coefficients for a smooth spinning sphere in uniform
flow. {Data from [19].}

with speed) generates excellent traction without adding significant weight to the vehi-
cle, allowing faster speeds through curves and leading to Jower lap times.

Another method of boundary-layer control is use of moving surfaces to reduce
skin friction effects on the boundary layer |32]. This method is hard to apply to
practical devices, because of geometric and weight complications, hut it is very im-
portant in recreation. Most golfers, tennis players, Ping-Pong enthusiasts, and base-
ball pitchers can attest to this! Tennis and Ping-Pong players use spin to control the
trajectory and bounce of a shot. In golf, a drive can leave the tee at 275 {t/s or more,
with backspin of 9000 rpm! Spin provides significant aerodynamic lift that substan-
tially increases the carry of a drive. Spin is also largely responsible for hooking and
slicing when shots are not hit squarely. The bascball pitcher uses spin to throw a
curve ball.

Flow about a spinning sphere is shown in Fig. 9.27a. Spin alters the pressure
distribution and also affects the location of boundary-layer separation. Separation is
delayed on the upper surface of the sphere in Fig. 9.27a, and it occurs earlier on the
lower surface. Thus pressure (because of the Bermoull effect) is reduced on the upper
surface and increased on the lower surface; the wake is deflected downward as
shown. Pressure forces cause a lift in the direction shown; spin in the opposite direc-
tion would produce negative lift—a downward force. The force is directed perpendi-
cular to both V and the $pin axis.

Lift and drag data for spinning smooth spheres are presented in Fig. 9.275. The
mosl important parameter is the spin ratio, wlX2V, the ratio of surface speed to
freestream flow speed; Reynolds number plays a secondary role. At low spin ratio,
Iift is negative in terms of the directions shown in Fig. 9.274. Only above wD/2V =~
0.5 does lift become positive and continue to increase as spin ratio increases. Lift co-
efficient levels out at about 0.35. Spin has little cffect on sphere drag coefficient,
which varies from about 0.5 10 about (.65 over the range of spin ratio shown.

Earlier we mentioned the effect of dimples on the drag of a golf ball. Experi-
mental data for lift and drag coefficients for spinning golf balls are presented in Fig.
9.28 for subcritical Reynolds numbers between 126,000 and 238,000. Again the inde-
pendent variable is spin ratio; a much smaller range of spin ratio, typical of golf balis,
15 presented in Fig. 9.28.
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Chapter 10
FLUID MACHINERY

Humans have sought to control nature since antiquity. Early humans carried water by
the bucket; as larger groups formed, this process was mechanized. The first fluid
machines developed as bucket wheels and screw pumps to lift water. The Romans
introduced paddle wheels arcund 70 B.C. to obtain energy from streams [1]. Later,
windmills were developed to harness wind power, but the low power density of the
wind limited output to a few hundred horsepower. Development of water wheels
made it possible to extract thousands of horsepower at a single site.

Today we take many fluid machines for granted. On a typical day we draw pres-
surized water from the tap, use a blower to dry our hair, drive a car in which fluid
machines operate the lubrication, cooling, and power steering systems, and work in
a comfortable environment provided by air circulation. The list could be extended
indefinitely.

A fluid machine 1s a device that either performs work on, or extracts work {or
power) from, a fluid. As you can imagine, this is a very large field of study, so we will
limit ourselves mostly to incompressible lows. Within incompressible flows, we will
focus on such commen machines as pumps and fans that perform work on a fluid, and
machines such as water turbines used for extracting work or power from a fluid.

First the terminclogy of the field is introduced and machines are classified by op-
erating principle and physical characteristics. Rather than attempt a treatment of the en-
tire field, we focus on machines in which energy transfer to or from the fluid is through
a rotating element. Basic equations are reviewed and then simplified to forms usetul for
analysis of fluid machines. Performance characteristics of typical machines are consid-
ered. Examples are given of pump and wrbine applications in typical systems. Prob-
lems ranging from simple applications to system design conclude the chapter.

101

INTRODUCTION AND CLASSIFICATION OF FLUID MACHINES

Fluid machines may be broadly classified as either positive displacement or dynamic.
[n positive-displacement machines, energy transfer 1s accomplished by volume
changes that occur duc 1o movement of the boundary in which the fluid is confined.
Flutd-handling devices that direct the flow with blades or vanes attached 10 a rotaling
member are termed turbomachines. In contrast to positive-displacement machinery,
there is no closed volume in a turbomachine. All work intecactions in a turbomachine
resalt from dynamic effects of the rotor on the fluid stream. The emphasis in this
chapter is on dynamic machines.

A further distinction among types of turbomachines is based on the geometry
of the flow path. In radial-flow machines, the flow path is essentially radial, with
significant changes in radius from inlet to outlet. (Such machines sometimes are
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or
W, = wlipaq = w(nV,, = v, )m (10.2a)

According to Eq. 10.2a, the angular momentum of the fluid is increased by the addi-
tion of shaft work. For a pump, W,, > 0 and the angular momentum of the fluid
must increase. For a turbine, W,, < 0 and the angular momentum of the fluid must de-
crease.

Equation 10.2a may be wrilten in two other useful forms. Introducing U = rw,
where U is the tangential speed of the rotor at radius r, we have

W, = UV, ~ UV, (10.2b)

Dividing Eq. 10.2b by mg, we obtain a quantity with the dimensions of length, which
may be viewed as the theoretical kead added to the Aow.?
W
mg
Equations 10.1 and 10.2 are simplified forms of the angular-momentum equa-
tion for a control volume. They all are written for a fixed control volume under the
assumptions of steady, uniform flow at each section. The equations show that only
the difference in the product rV, or IV, between the outlet and inlet sections, is im-
portant in determining the torque applied to the rotor or the mechanical power.
Although r, = r| in Fig. 10.4, no restriction has been made on geometry; the fluid
may enter and leave at the same or different radii.

|
H= o= UV, = U%) (10.2¢)

Velocity Diagrams

The equations that we have derived also suggest the importance of clearly defining
the velocity components of the Auid and rotor at the inlet and outlet sections. For this
purpose, it is useful to develop wvelocity diagrams (frequently called velocity
polygons) for the inlet and outlet flows. Figure 10.5 shows the velocity diagrams and
introduces the notation for blade and flow angles.

Machines are designed such that at design condition the fluid moves smoothly
{without disturbances) through the blades. In the idealized sitwation at the design
speed, flow relative to the rotor is assumed to enter and leave tangent to the blade pro-
file at each section. (This idealized inlet condition is sometimes called shockless entry
flow.) At speeds other than design speed (and sometimes in rcality, even at design
speed!), the fluid may impact the blades at inlet, exit at an angle relative to the blade,
or may have significant flow separation, leading to machine inefficiency. Figure 10.5 is
representative of a typical radial flow machine. We assume the fluid is moving without
major flow disturbances through the machine, as shown in Fig. 10.54, with blade inlet
and exit angles 8, and 3,, respectively, relative to the circumfcrential direction. Note
that although angles 3, and 3, are both less than 90° in Fig. 10.5, in general they can
be less than, equal 1o, or greater than 90°, and the analysis that follows applies to all of
these possibilities.

The runner speed at inlel is U/, = wr,, and therefore it is specificd by the im-
peller geometry and the machine operating speed. The absolute fluid velocity is the
vector sum of the impeller velocity and the flow velocity relative to the blade. The
absolute inlet velocity V| may be determined graphically, as shown in Fig. 10.55.

2 Since W;,, has dimensions of energy per unit time and mg is weight flow per unit time, head, H, is actu-
ally energy per unit weight of flowing fluid.
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Performance of an actual machine may be estimated using the same basic
approach, but accounting for variations in flow properties across the blade span at the
inlet and outlet sections, and for deviations between the blade angles and the flow di-
rections. Such detailed calculations are beyond the scope of this book.

The alternative is 10 measure the overall performance of a machine on a
suitable test stand. Manufacturers” data are examples of measured performance in-
formation.

In Example Problem 10.1 the angular-momentum principle is applied to an ide-
alized centrifugal pump. In Example Problem 10.2 velocity diagrams are utilized in
the analysis of flow through an axial-flow fan.

EXAMPLE 10.1 ldealized Centrifugal Pump

A centrifugal pump is used to pump 150 gpm of water. The water enters the
impeller axially through a 1.25 in. diameter inlet. The inlet velocity is axial and
uniform. The impeller outlet diameter is 4 in. Flow lcaves the impeller at 10 fi/s
relative 1o the blades, which are radial at the exit. The impeller speed is 3450 rpm.
Determine the impeller exit width, b,, the torque input, and the power predicted by
the Euler turbine equation.

EXAMPLE PROBLEM 10.1

GIVEN:  Flow as shown in the figure: V,,, = 10 fi/s, 0 = 150 gpm.

FIND: (a) b,
() Tpun-
{c) W

Fixed CV

SOLUTION:

Apply the angular-momentum
equation to a fixed coatrol vol-
ume.

Goveming equations: i;'hnﬂ = I Fx VpV - dA (10.1a)
cs

=0(2)
gj pdV+J pV-dA =0 (4.12)
¢ Jev cs

Assumptions: (1) Neglect torques due to body and surface forces.
(2) Steady flow.
(3) Uniform flow at inlet and outlet sections.
(4) Incompressible flow.

Then, from continuity,

(~oVimR] ) + {pV,s, 27Rs0,) = 0
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EXAMPLE PROBLEM 10.5
GIVEN: Pelton wheel and single jet shown, o
C_V rotates
FIND: (a) Expression for torque exerted on ,w'th wheel
the wheel. P
(h) Expression for power output, -
{¢) Ratio of wheel speed U to jet speed A
V for maximum power, U= Re

SOLUTION:

As ao illustration of its use, we start with the angular-momentum equation, Eq. 4.52 (on the CD), for a
rotating CV as shown, rather than the inertial CV form, Eq. 4.46, that we used in deriving the Euler turbo-
machine equation in Section 10.3.

Governing equation:

= 0(1) =0(2) =03
?xf‘{drj FX§p/dd+Tm-f FXRBXV, +& X(@'XF)+$XF]()/¢4
cy cv )
=({4)
=Y #x Vo, pd¥ + | FX VoV, dA (4.52)
t Jov s ’

Assumptions: (1) Neglect torque duc to surfuce forces.
(2) Neglect torque due to body forces.
(3) Neglect mass of water on wheel.
(4) Steady flow with respect to wheel.
(53) All water that issues from the nozzle acts upon the buckets.
{6) Bucket height is small compared with R, hence r| = r, = R.
{7 Uniform flow at each section.
(8) Nochange in jet speed relative to bucket.

Then, since all water from the jet crosses the buckets,
Tyt = 7i ¥ V(=pVA) + 5 x ¥ (+pVA)

i = Re, B = Ré,

“

(V = U)éy V, =(V-U)cosféy +(V - U)singé,
Tpaik = R(V = U)k(—pVA) + R(V = U)cos 8 k(pVA)
so that finally
Typank = —R(1 — cos @)pVALY — U)k

This is the external torque of the shaft on the control volume, i.e., on the wheel. The torque cxerted by the
water on the wheel is equal and opposite,

Tyw = =Tyan = R(1L = cos B)pVA(Y — Uk = pOR(Y — U)(1 - cos O)k Tou

The corresponding power output is

Wo = @ Toy = Rea(l = cos 0)pVA(V - U) = pQU(V - U)(1 - cos0) W,
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Fig. 10.15 Average efficiencies of commercial pumps as they
vary with specific speed and pump size [10].

It is customary to characterize a machine by its specific specd at the design
point. This specific speed has been found to characterize the hydraulic design fea-
tures of a machine. Low specific speeds correspond to efficient operation of radial-
flow machines. High specific speeds correspond to efficient operation of axial-flow
machines. For a specified head and tlow rate, one can choose either a low specific
speed machine (which operates at low speed) or a high specific speed machine
(which operates at higher speed).

Typical proportions for commercial purap designs and their variation with di-
mensionless specific speed are shown in Fig. 10.14. In this figure, the size of each
machine has been adjusted to give the same head and flow rate for rotation at a speed
corresponding to the specific speed. Thus it can be seen that if the machine’s size and
weight are critical, one should choose a higher specific speed. Figure 10.14 shows the
trend from radial (purely centrifugal pumps), through mixed-flow. to axial-flow
geomelries as specific speed increascs.

The corresponding efficiency trends for typical pumps are shown in Fig. 10.15,
which shows that pump capacity generally increases as specific speed increases. The
figure also shows that at any given specific speed, efficiency is higher for large pumps
than for smali ones. Physically this scale effect means that viscous losses become less
important as the pump size is increased.

Characteristic proportions of hydraulic turbines also are correlated by specific
speed, as shown in Fig. 10.16. As in Fig. 10.14, the machine size has been scaled in

_____ WRE B

T T T T T T TTTTd T T 1T T
0.2 03 04 0%6 08 10 20 30 40
Dimensionless specific speed, N,

Fig. 10.16 Typical geometric proportions of commercial hydraulic
turbines as they vary with dimensionless specific speed [12].
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Convert information to SI units:

1170 rev 27 rad  min
ar = —

— = 123 rad/s
min rev 8
3 . 33
0= 300g—?] x _f x (0:305) -r—n~3— =0.0190 m*%s
min  748gal 60s ft
o= 2191 XO.BOSE - 668 m
ft
The energy per unit mass is
h=gH = 9'8152 W 068 M _ o s mre
s
The dimensionless specific speed is
123 0.0190 uw: 32 \2 374
N, = 1P rad Q0190 m & —073%6 N (S
s s (65.5)""(m*) N
Convert the operating speed to hertz:
w= 170 om0 RS o5
min  60s rev
Finally, the specific speed in European units is
195Hz  (0.0190)"/% 2 (s2y¥4
N, (Eur) = X NE 6357 (mZ T4 =0117 c N, (Eur)

To relate the specific speeds, form ratios:

*eu :&=l7.100
N (Eur) 0.117

N,

s _ 2000 oo

N(ST) 0736

This problem demaonstrates the use of “engincering’ equalions
to caleulate specific speed for pumps from each of three com-
monly used sets of umts and to compare the results. (Three
significant figures have been used for all calculations in this
example. Slightly different results would be obtained if more
significant figures were carried in intermediate calculations.)

T

Similarity Rules

Pump manufacturers offer a limited number of casing sizes and designs. Frequently,
casings of different sizes are developed from a common design by increasing or
tecreasing all dimensions by the same scale ratio. Additional variation in characteris-
tic curves may be obtained by varying the operating speed or by changing the im-
peller size within a given pump housing. The dimensionless parameters developed in
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pumped, and with the liquid temperature and pump condition (e.g., as critical geo-
metric features of the pump are affected by wear). NPSHR may be measured in a
pump test facility by controlling the input pressure. The results are plotted on the
pump performance curve. Typical pump characteristic curves for three impellers
tested in the same housing were shown in Fig. 10.8. Experimentally determined
NPSHR curves for the largest and smallest impeller diameters are plotted near the
bottom of the figure.

The net positive suction head available (NPSHA) at the pump inlet must be
greater than the NPSHR to suppress cavitation. Pressure drop in the inlet piping and
pump entrance increases as volume flow rate increases. Thus for any system, the
NPSHA dcecreases as flow rate is raised. The NPSHR of the pump increases as the
flow rate is raised. Therefore, as the systemn flow rate is increased, the curves for
NPSHA and NPSHR versus flow rate ultimately cross. For any inlet system, there is a
flow rate that cannot be exceeded if flow through the pump is to remain free from
cavitation. Inlet pressure losses may be reduced by increasing the diameter of the in-
let piping; for this reason many centrifugal pumps have larger flanges or couplings at
the inlet than at the outlet.

EXAMPLE 10.8 Calculation of Net Positive Suction Head (NPSH)

A Peerless Type 4AEI] centrifugal pump (Fig. D.3, Appendix D) is tested at 1750
rpm using a flow system with the layout of Example Problem 10.3. The water level in
the inlet reservoir is 3.5 ft above the pump centerline; the inlet line consists of 6 ft of
5 in. diameter straight cast-iron pipe, a standard elbow, and a fully open gate valve.
Calculate the net positive suction head available (NPSHA) at the pump inlet at a vol-
ume flow rate of 1000 gpm of water at 80°F. Compure with the net positive suction
head required (NPSHR) by the pump at this flow rate. Plot NPSHA and NPSHR for
water at 80°F and 180°F versus volume flow rate,

EXAMPLE PROBLEM 10.8

GIVEN: A Pecrless Type 4AE11 centrifugal pump (Fig. D.3, Appendix D) is tested at 1750 rpm using a
flow system with the layout of Example Problem 10.3. The water level in the inlet reservoir is
3.5 fi. above the pump centerline; the inlet line has 6 ft of 5 in. diameter straight cast-iron pipe, a
standard elbow, and a fully open gate valve.

D=5in. :F]:
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Substituting,
(ZK+Ef£+f£+l)—05+00237(30+8)+00Q37[ 6 ]+1=274
D 'D R o421 )
The heads are
2 3 2 Ao .
H, =p;‘“l=l4'7%x144£'2—x fi xS X.slug gt = 34.1ft (abs)
pg in. ft 1.93slug  322ft 1bf-s
(72 2 52 2
Y L a8 s 3k
2¢ 2 $ 3221t

Thus,
H, =341t +3.5ft — (2.74)3.98 ft = 26.7 fi(abs)

To obtain NPHSA, add velocity head and subtract vapor head. Thus

V2
NPHSA = H + * - H,
2g

The vapor pressure for water at 80°F is p, = 0.507 psia. The corresponding head is H, = 1.17 ft of water.
Thus,

NPSHA =267 + 398 — 1.17 = 29501 _ NPSHA

The pump curve (Fig. D.3, Appendix D} shows that at 1000 gpm the pump requires

NPSHR = 10.0fc NPSHR

Resulis of similar computations for water at 80°F are plotted in the figure on the left below. (NPSHR val-
ues are obtained from the pump curves in Fig. D.3, Appendix D.)

10 - 1 10

-
-
———

WrT T T T T T T T T P T T T T T 7T T T T T T T T T T 77
_ T B NPSHA () |~
£ 30 -4 3 = NPSHR (ft)
I
3 NPSHA (ft) 7 B T
8 20| ===-=- NPSHR (f) 20
[ =
S
T
=
1]

! :
0 500 1000 1500 © 500 1000 1500

Volume flow rate, (& (gpm) Vaolume flow rate, Q (gpm}
{a} Net positive suction head, water at 80°F {k) Net posilive suction head, water at 180°F

Results of computation for water at 180°F are plotted in the figure on the right above. The vapor pres-

sure for water at 180°F is p, = 7.51 psia. The corresponding head is H, = 17.3 ft of water. This high vapor
pressure reduces the NPSHA, as shown in the plot.
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Machines for Doing Work on a Fluid

We will consider various machines for doing work on a fluid, but we first make a few
general points. As we saw in Example Problem 10.3, a typical pump, for example,
produces a smaller head as the flow rate is increased. On the other hand, the head
{which includes major and minor losses) required to maintain flow in a pipe system in-
creases with the flow rate. Hence, as shown graphically” in Fig. 10.19, a pump-system
will run at the operating point, the flow rate at which the pump head rise and required
systemn head match. (Figure 10.19 also shows a pump efficiency curve, indicating that,
for optimum pump selection, a pump should be chosen that has maximum efficiency
at the operating point flow rate.) The pump-system shown in Fig. 10.19 is stable, If for
some reason the flow rale falls below the operating flow rate, the pump pressure head
rises above the required system head, and so the flow rate increases back to the operat-
ing point. Conversely, if the flow rate momentarily increases, the required head
exceeds the head provided by the pump, and the flow rate decreases back to the oper-
ating point. This notion of an operating point applies to each machine we will consider
(although, as we will see, the operating points are not always stable).

The system pressure requirement at a given flow rate is composed of frictional
pressure drop (major loss due to friction in straight sections of constant area and mi-
nor loss due to entrances, fittings, valves, and exits) and pressure changes due to
gravity (static litt may be positive or negative). It is useful to discuss the two limiting
cases of pure friction and pure lift before considering their combination.

The all-friction system head versus flow curve, with no static litt, starts at zero
flow and head, as shown in Fig. 10.20a. For this system the total head required is the
sum of major and minor losses,

Lv? LVt i
hIT = zhl + Zh.;m = EfBT +Z[j BBT + K—Z—J

For turbulent flow (the usual flow regime in cngineering systems), as we learned in
Chapter 8 (see Fig. 8.12), the friction factors approach constant and the minor loss
coefficients K and equivalent lengths L, arc also constant. Hence #, ~ v2-- Q%0
that the system curve is approximately parabolic. (In reality, because the friction
factors f only approach constants as the regime becomes fully turbulent, it tums out that
07 < by, < ©?.) This means the system curve with pure friction becomes steeper as

Pump head-capacity cuV Operating point

Pump efficiency curve
/.-\‘) y

Head

‘ System citrve

Volume tlow rate

Fig. 10.19 Superimposed system head-flow and pump
head-capacity curves.

"While a graphical representation is useful for visnalizing the pump-systemn matching, we typically use
analytical or numerical methods to determine the operating point (Excel is very useful for this).
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0T T 7T T T T T T 1
- - Pump |
x
g 40 — a6 ft —
S A -, S,
£ | .
T ‘
o 20— e =
Pis System : 50 gpm
T L t _
i
o R R I
¢} 200 400 600 80O 1000
Volume flow rate, O {gpm)

The graphical solution is shown on the plot. At the operating point, i = 36 ft and =~ 750 gpm.

We can obtain more accuracy from the graphical solution using the following approach: Because the
Reynolds number corresponds to the fully turbulent regime, f = const., we can simplify the equation for
the head loss and write it in the form

H, =CQ 3)
where C = 8/72D4g times the term in square brackets in the expression for H;. We can obtain a valve

for C directly from Eq. 3 by using values for H;_and @ from the table at a point close to the anticipated

operating point. For example, from the @ = 700 gpm data point,
H
C= —EZT— = _% = 6.24 x 107 ft /(gpm)*
Q" 700%(gpm)
Hence, the approximalc analytical expression for the system head curve is

H, =624 %107 ft/(gpm)’ (Qgpm)]* Hy

Using Eqs. 2 and 3 in Eq. 1, we obtain
Hy— AQ* = CQ*

Solving for @, the volume flow rate at the operating point, gives
1/2
e=[3ve]
A+C

_ |35t (gpm)*
(3.44 x 1072 +6.24 x 107 ft

The volume flow raie may be substituted into either expression for head 1o calculate the head at the operat-
ing point as

For this case,

172
] =760 gpm _ Q

-5 2 2
H = CQ? = 6,24 x 10 ft i >((760) {gpm)
(gpm)

We can see that in this problem our reading of the operating point from the graph was pretty good:
“The reading of head was in agreement with the calculated head; the reading of flow rate was less than 2%
different from the calculated result.

Note that both sets of results are approximate. We can get a more accurate, and easier, result by using
Excel's Solver or Goal Seek 10 find the operating point, allowing for the fact that the friction factors vary,

=360l H
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Heating a liquid raises its vapor pressure. Thus to pump a hot liquid requires ad-
ditional pressurc at the pump inlet to prevent cavitation. (Sec Example Problem 10.8.)

In some systems, such as city water supply or chilled-water circulation, there
may be a wide range in demand with a relativcly constant system resistance. In these
cases, it may be possible to operate constant-speed pumps in series or parallel to sup-
ply the system requirements without excessive energy dissipation due to outlet throt-
tling. Two or more pumps may be operated in parallel or series to supply flow at high
demand conditions, and fewer units can be used when demand is low.

For pumps in series, the combined performance curve is derived by adding the
head rises at each flow rate (Fig. 10.25). The increase in flow rate gained by operat-
ing pumps in series depcnds upon the resistance of the system being supplied. For
two pumps in series, delivery will increase at any system head. The characteristic
curves for one pump and for two identical pumps in series are

Hl = Hﬂ - AQZ
and
Hy=2Hy, —AQY) =2H, - A Q*

Figure 10.25 is a schematic illustrating the application of two identical pumps in se-
ries. A reasonable match to the system reguirement is possible— while keeping effi-
ciency high—if the system curve is relatively steep.

In an actual system, it is not appropriate simply to connect two pumps in series.
If only one pump were powered, flow through the second, unpowered pump would
cause additional losses, raising the system resistance. It also is desirable to arrange
the pumps and piping so that each pump can be taken out of the pumping circuit for
maintenance, repair, or replacement when needed. Thus a system of bypasses, valves,
and check valves may be necessary in an actual installation [13, 17].

Pumps also may be combined in parallel. The resulting performance curve,
shown in Fig. 10.26, is obtained by adding the pump capacities at each head. The
characteristic curves for one pump and for two identical pomnps in parallel are

H1=H0_AQ2

and

/ Head curve

il
H,
—_ Efficiency curve +
H H,
R I S
— f—2s—
ta) Single-pump operation (b} Two pumps in series

Fig. 10.25 Operation of two centrifugal pumps in
sefies.
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system handle a variety of flow rates—a range of flow rates can be generated by us-
ing pumps in parallel and in series, and by using throttling valves. Throttling valves
are usually necessary because constant-speed motors drive most pumps, so simply
using a network of pumps (with some on and others off) without throttling valves
only allows the flow rate to be varied in discrete steps. The disadvantage of throttling
valves is that they can be a major loss of encrgy, so that a given flow rate will require
a larger power supply than would otherwise be the case. Some typical data for a
throttling valve, given in Table 10.1 [18], show a decreasing valve efficiency (the per-
centage of pump pressure available that is not consumed by the valve) as the valve is
used to reduce the flow rate.

Use of variable-speed operation allows infinitely variable control of system
flow rate with high energy efficiency and without extra plumbing complexity. A fur-
ther advantage is that a variable-speed drive system offers much simplified control of
system flow rate. The cost of efficient variable-speed drive systems continues to de-
crease because of advances in power electronic components and circuits. The system
flow rate can be controlled by varying pump operating speed with impressive savings
in pumping power and energy usage. The input power reduction afforded by use of a
variable-speed drive is illustrated in Table 10.1 [18]. At 1100 gpm the power input is
cut almost 54 percent for the variable-speed system; the reduction at 6(0) gpm is
more than 73 percent.

The reduction in input power requirement at reduced flow with the variable-
speed drive is impressive. The energy savings, and therefore the cost savings, depend
on the specific duty cycle on which the machine operates. Reference 18 presents in-
formation on mean duty cycles for centrifugal pumps used in the chemical process
industry; Fig. 10.27 is a plot showing the histogram of these data. The plot shows that
although the system must be designed and installed to deliver full rated capacity, this
condition scldom occurs. Instead, more than half the time, the system operates at 70
percent capacity or below. The energy savings that result from use of a variable-speed
drive for this duty cycle are estimated in Example Problem 10.10.

30 — 1 T T 1t 1 1 T 1 1
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E
=
£ 20F R o i
% G E
° e R wn Y
™ :"-b- #ian & .'-.'rn
210 L2 fin4 g“a i e &cl-} —
g YR v 85 &
8 s RS R I
& i L) m o W

0 | ] | [ S T D D s | 4

0 10 20 30 40 50 &0 70 80 90 100

Percent of rated flaw

Fig. 10.27 Mean duty cycle for centrifugal pumps in the
chemical and petroleum industries [18).

EXAMPLE 10.10 Energy Savings with Variable-Speed Centrifugal Pump Drive

Combine the information on mean duty cycle for centrifugal pumps given in Fig. 10.27
with the drive data in Table 10.1. Estimate the annual savings in pumping energy and
cost that could be achieved by implementing a variable-speed drive system.
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EXAMPLE PROBLEM 10.12

GIVEN: Hydraulic pump, with performance characteristics of Fig. 10.36, operating at 2000 tpm. System
requires @ = 20 gpm at p = 1500 psig.

FIND: (a) The volume of oil per revolution delivered by this pump.
{(b) The required pump power input.
(¢) The power delivered to the load.
(d) The power dissipated by throttling at this conditien.
(e) The power dissipated using:
(i) a variable-displacement pump at 3000 psig, and
(i1) a pump with load sensing that operates at 100 psi above the load pressure requirement.

SOLUTION:

To estimate the maximum delivery, extrapolate the curve of pressure versus flow rate to zero pressure. Un-
der these conditions, @ = 48.5 gpm at N = 2000 rpm with negligible Ap. Thus

48.5 i 231jp.3
p-Q_ Mgl min  SinT g in ey, ¥
N min 2000 rev gal
The volumetric efficiency of the pump at maximum flow is
ny = —ale = 380 _ 04
Yoump 59

The operaling point of the pump may be found from Fig. 10.36. At 1500 psig, it operates at @ = 46.5 gpm.
The power delivered to the fluid is

Pruia = PREH, = QAp,
465 gal 1500 Ibf fit! min _ 144 in.2 hp-s
= - X — ———— X —X —3 K
min in. 748gal  60s ft 550 ft- Ibf
@ﬂuid =40.7 hp
From the graph, at this operating point, the pump efficiency is approximately n = 0.84. Therefore the re-
quired input power is
Pavia _ 40.7hp
9:'in]:aui == T A =
- 0.84
The power delivered to the load is
Proaa = Q0adBP 10ad .
20.0 gal 1500 Ibf ft® min _ 144 in2 hp-s
= — X 7 x X — X -3 K ———
min in° 7.48gal G0s ft 550 ft - 1bf
Proag = 17.5hp P 1oad

48 hp . P input

The power dissipated by throttling is
P gissiparzd = Pria — Proag = 40.7 - 175 = 23.2hp, P dissipated

The dissipation with the variable-displacement pump is
gP\fa.r-n:lisp = Q]Ulld(poper = Plosg)
_ 200 gal (3000-1500) bf '  min I44in® _ hp's
min in2 " 7.48gal = 60s fi2 550 ft. 1bf
P raredisp = 17.5hp P o disp
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For incompressible flow, in the absence of friction and heat transfer, the energy equa-
tion indicates that the minimum required input to the propeller is the power required
to increase the kinetic energy of the flow, which may be expressed as

2 2 2
» . [(v +Av? v_] _ m[zmvuw)

. AV
input = m 2 2 3 :l = mVAV[] + -Z_V] (1029)

The useful power produced is the product of thrust and speed of advance, V. Using
Eq. 10.28, this may be written as

Pusofal = FrV = mVAV (10.30)
Combining Eqgs. 10.29 and 10.30, and simplifying, gives the propulsive cfficiency as
@meful 1
= m (10.31)
Qpinput | + A‘i
2V

Equations 10.28 through 10.31 are applicable to any device that creates thrust by
increasing the speed of a fluid stream. Thus they apply equally well to propeller-
driven or jet-propelled aircraft, boats, or ships.

Equation 10.31 for propulsive efficiency is of fundamental importance. It indi-
cates that propulsive efficiency can be increased by reducing AV or by increasing V.
At constant thrust, as shown by Eq. 10.28, AV can be reduced if m is increased, i.e., if
more fluid is accelerated over a smaller speed increase. More mass flow can be
handled if propeller diameter is increased, but overall size and tip speed ultimately
limit this approach. The same principle is used to increase the propulsive efficiency
of a rurbofan engine by using a large fan to move additional air flow outside the en-
gine core.

Propulsive efficiency also can be increased by increasing the speed of motion
relative to the fluid. Speed of advance may be limited by cavitation in marine applica-
tions. Flight speed is limited for propeller-driven aircraft by compressibility effects at
the propeller tips, but progress is being made in the design of propellers to maintain
high efficiency with low noise levels while operating with transonic flow at the blade
tips. Jet-propelled aircraft can fly much faster than propeller-driven craft, giving them
superior propulsive efficiency.

A more detailed blade element theory may be used to calculate the interaction
between a propeller blade and the stream. If the blade spacing is large and the disk
loading'® is light, blades can be considered independent and relations can be derived
for the torque required and the thrust produced by a propeller. These approximate re-
lations are most accurate for low-solidity propellers.'! Aircraft propellers typically
are of fairly low solidity, having long, thin blades.

A schematic diagram of an element of a rotating propeller blade is shown in
Fig. 10.39. The blade is set at angle @ to the plane of the propeller disk. Flow is
shown as it would be seen by an observer on the propeller blade.

The relative speed of flow, V, passing over the blade element depends on both
the blade peripheral speed, wr, and the speed of advance, V. Consequently, for a
given blade setting, the angle of attack, a, depends on both V and wr. Thus, the per-
formance of a propeller is influenced by both w and V.

'® Disk loading is the propeller thrust divided by the swept area of the actuator disk.
" Solidity is defined as the ratio of projected blade area to the sweplt area of the actuator disk.



wr




10-5 APPLICATIONS TO FLUID SYSTEMS 559

= 1.0 T I T 0.10
=
g
5 0B —o08
b= Q
[Fi} -
o €
% 06— —0.06 :g
[y =
& g
5 04 —0.04 o
o =
t [
% e
o 0.2 — 0.02
7]
=
£
- D0 0
0 02 04 06 08 10 12
Speed of advance coefficient, 7
{a) Marine propeller [10]
1.0 T T T 0.20

0.16

0.12

0.08

Efficiency,

0.04

0 0
0 0.2 0.4 06 08 1.0
Speed of advance coeflicient, J
{b) Aircraft propeller [30)

Flg. 10.40 Typical measured characteristics of two
propellers.

Thrust coefficient, Cp and Power coefficient, Cp

EXAMPLE PROBLEM 10.14

GIVEN: Supertanker of Example Problem 9.5, with total propulsion power requirement of 11.4 MW to
overcome viscous and wave drag, and performance data for the marine propeller shown in
Fig. 10.40a.

FIND: (a) An estimate of the diameter of a single propeller required to power the ship.
(b) The operating speed of this propeller.

SOLUTION:
From the curves in Fig. 10.404, at optimurn propeller efficiency, the coefficients are

J=085, C,=0.10, C,=0020, and n =066
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EXAMPLE 10.15 Performance and Optimization of an Impulse Turbine

Consider the hypothetical impulse turbine installation shown. Analyze flow in the pen-
stock to develop an expression for the optimum turbine output power as a function of
jet diameter, D, Obtain an expression for the ratio of jet diameter, £, to penstock di-
ameter, D, at which output power is maximized. Under conditions of maximum power
output, show that the head loss in the penstock is one-third of the available head.
Develop a parametric equation for the minimum penstock diameter needed to pro-
duce a specified power output, using gross head and penstock length as parameters.

Reservoir surface
/ —~—

Turbine wheel

Penstock

EXAMPLE PROBLEM 10.15

GIVEN: Impulse turbine installation shown.

FIND: (a) Expression for optimum turbine output powet as 2 function of jet diameter.
(b) Expression for the ratio of jet diameter, D, to penstock diameter, D, at which output power is
maximized.
(c) Ratio of head loss in penstock to available head for condition of maximum power.
(d) Parametric equation for the minimum penstock diameter needed to produce a specified output
power, using gross head and penstock length as parameters.

SOLUTION:
According to the resulis of Example 10.5, the output power of an idealized impulse turbine is given by
Poue = pRUV — UX1 — cos 6). For optimum power output, U = V/2 = V,/2, and

4 4 1787
Pow = pQ—2~(V - 3)(1 - cos ) = pé;V; 7’%(1 - c‘ose)
V3

Pow = pA; Tf'(l — cos 6)

Thus output power is proportional to A; V7.
Apply the energy equation for steady incompressible pipe flow through the penstock to analyze Vi at
the nozzle outlet. Designate the free surface of the reservoir as section ;there V|, = 0.

Governing equation:

= {
7. . N L\v?
5;]‘ +al£+8Z1 (7; + oy <L +ng)—hrT— (Kem+fl_))‘2£ + Koo
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Solving for D;/D, we obtain

D 1
- - 4
= D .
D |,k )
Dl D
At this optimum value of D,/D, the jet speed is given by Eq. | as
1
2gH
VJ = & 4 = _'SH
1+ f L &
D\ D
The head loss at maximum power is then
L v? v
=f=—= ———=gH-—gH=—-gH
n=fn T > =8 sH =3¢
and
L/ A
gH 3 gH
Under the conditions of maximum power
A 3 s T
. ] 4 2 | D2
P =pVP L1 -coso) = [— H) —| == (1 -cos#
X Pj4( )ﬂ33 162fL( )
Finally, to solve for minimum penstock diameter for fixed output power, the equation may be written in the
form
! 2
LI
o= (57
H/\H) | D

This problem illustrates the optumization of an idealized im-
pulse turbine. The analysis determines the minimum penstock
diameter needed to obtain a specified power output. In prac-
tice larger diameters than this are used, reducing the frictional
head loss below that computed here.

b. Wind-Power Machines

Windmills (or more properly, wind turbines) have been vsed for centuries to harness
the power of natural winds. Two well-known examples are shown in Fig. 10.42.

Dutch windmills (Fig. 10.424) turned slowly so the power could be used to turn
stone wheels for milling grain, hence the name “windmill.” They evolved into large
structures; the practical maximom size was limited by the materials of the day.
Calvert [39] reports that, based on his laboratory-scale tests, a traditional Duich
windmill of 26 m diameter produced 41 kW in a wind of 36 km/he at an angular
speed of 20 rpm.
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EXAMPLE 10.16 Performance of an Idealized Windmill

Develop general expressions for thrust, power output, and efficiency of an idealized
windmill, as shown in Fig. 10.44. Calculate the thrust, ideal efficiency, and actual
efficiency for the Dutch windmill tested by Calvert (D = 26 m, N = 20 rpm, V =
36 km/hr, and P = 41 kW),

EXAMPLE PROBLEM 10.16

GIVEN: Idealized windmill, as shown in Fig. 10.44, and Dutch windmill tested by Calvert;
D=26m N=20mpm V=36kmhr Pep =41 kW

FIND: (a) General expressions for the ideal thrust, power output, and efficiency.
(b) The thrust, power output, and idea! and actual efficiencies for the Dutch windmill tested by

Calvert.
SOLUTION:
Apply the continuity, momentum (x component), and epergy equations, using the CV and coordinates shown.
cv
Windmill disk ~ \. - r
e | ‘[ o,
Vy ! v, D =+lv
I_‘ === ar g
X R, 75‘-'- ——
Streamline
= 0(3)
Governing equations: /glj pd¥ + J pvV-dA =0
Flov cs
={0(2) = 0(3)
FS‘+‘7{‘=% updV+j upff'-d;:
tles s
=07 =0(3)

/6—W,=§—4‘ epdv+j (e+%)p7-dg
o cs

Assumptions: (1) Awmnospheric pressure actson CV; F; = R,

(2) Fg = 0. ’

(3) Steady flow.

(4} Uniform flow at each section.

(5) Incompressible flow of standard air.

6y V, — Vo =V, — V, = LoV, — V), as shown by Rankine.

MHe=0

(8) No change in internal encrgy for frictionless incompressible flow.
In terms of the interference factor, a, V, = V, V, = (1 — a)V,and V3 = {1 — 2a)}V.

From continuity, for uniform flow at each cross section, V1A, = VA, = VA,
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PROBLEMS 581

0 10.59  Performance data for a pump are

H (ft) 179 176 163 145 119 84 43

Q(pm) O 500 1000 1500 2000 2500 3000

Estimate the dclivery when the pump is used o move water between two open
reservoirs, through 1200 ft of 12 in, commercial steel pipe containing two 90° el-
bows and an open gate valve, if the elevation increase is 50 ft. Detenmine the gate
valve loss coefficient needed to reduce the volume flow rate by hall.

G 10.60 Consider again the pump and piping system of Problem 10.59. Determine the vol-
ume flow rate and gate valve loss coetficient for the case of two identical pumps in-
stalled in parallel.

0 10.61 Consider again the pump and piping system of Problem 10.59. Determine the vol-
ume flow rate and gate valve loss cocfficient for the case of two identical pumps in-
stalled in series.

@ 162  The resistance of a given pipe increascs with age as deposits form, increasing the
roughness and reducing the pipe diameter (scc Fig. 8.13). Typical multipliers to be
applied to the friction factor are given in [16):

Pipe Age Small Pipes, Large Pipes,

p Tll'l

B e

=5

(years) 4-10in. 12-60 in. v
‘d
New 1.00 1.00 ! D@
10 2.20 1.60 >
20 500 200 ! ’lBLloTECA
30 7.25 220 L. P.
40 8.75 2.40
50 9.60 2.86 LA
60 10.0 370
70 10.] 4.70

Consider again the pump and piping system of Problem 10.59. Estimatc the per-
centage reductions in volume flow rate that occur afier (a) 20 years and (b) 40 years
of use, it the pump characteristics remain constant. Repeat the caleculation if the
pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years.

6 10.63 Consider again the pump and piping system of Problem 10.60. Estimare the per-
centage reductions in volume flow rate that occur after (a) 20 years and (b) 40 years
of use, if the pump characteristics remain constant. Repeat the calculation if the
pump head is reduced 10 percent after 20 years of usc and 25 percent after 40 years,
{Use the data of Problem 10.62 for increase in pipe friction factor with age.)

Q 10.64 Consider again the pump and piping system of Problem 10.61. Estimate the per-
centage reductions in volume flow rate that occur after (a) 20 years and (h) 40 years
of use, if the pump characteristics remain constant. Repeat the calculation if the
pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years.
{Use the data of Problem 10.62 for increase in pipe friction factor with age.)

% 10.65 The city of Englewood, Colorade, diverts water for municipal use from the South
Platte River at elevation 5280 ft [44). The water is pumped 1o storage reservoirs at
5310 ft elevation. The inside diameter of the steel water line is 27 in.; its length is
5800 ft. The facility is designed for an initial capaciry (flow rate) of 31 cfy, with an
ultimate capacity of 38 cfs. Calculate and plot the system resistance curve. Specify
an appropriate pumping system. Estimate the pumping power required for steady-
slate operation, at both the initial and uitimate flow rates.
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Since h is a function of T alone, Eq. 11.3 requires that ¢, be a function of T only for
an ideal gas.

Although specific heats for an ideal gas are functions of temperature, their dif-

ference is a constant for each gas. To see this, from
h=u+RT
we can write
dh = du + RdT
Combining this with Eq. 11.2 and Eq.11.3, we can write
dh=c,dT = du + RdT = ¢, dT + RdT
Then
€~ ¢ =R (11.4)

This result may scem a bit odd, but it means simply that although the specific heats of
an ideal gas may vary with temperature, they do so at the same rate, so their differ-
ence is always constant.

The ratio of specific heats is defined as

k

m

N3 (11.5)
c‘?)

Using the definition of &, we can solve Eq. 11.4 for either ¢, or ¢, in terms of k and R.
Thus,

kR
= 11.6a
T k- (11.6a)
and
R
= (11.6b
e, ] )

Although the specific beats of an ideal gas may vary with temperature, for moderate
temperature ranges they vary only slightly, and can be treated as constant, so

thy 1)

P :Jl"du:jr"cvdec,,(Tz—T,) (11.7a)
4 1
hy T i

”2""4}.‘ dh=| ¢ dl = (T, - T)) (11.7b)

Data for M, ¢,, ¢,, R, and k for common gases are given in Table A6 of
Appendix A.

We will find the property entropy to be extremely useful in analyzing compressi-
ble flows. State diagrams, particularly the temperature-entropy (7s5) diagram, are
valuable aids in the physical interpretation of analytical results. Since we shall make
extensive use of Ts diagrams in solving compressible flow problems, let us review
briefly some useful relationships involving the property entropy [1-3].

Entropy is defined by the equation

80 8O
AS = = ds == 1.
T or ( T Jm (11.8)

where the subscript signifies reversible.
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5y -5 =¢, 022+ RIn 22 (11.11a)
T Y
5 2!
? 1y 4
and also
-5 = nfl 4, ™2 (11.11c)
43 Ul

(Equation 11.11¢c can be obtained from either Eq. 11.11a or 11.11b using Eq. 11.4
and the ideal gas equation, Eq. 11.1, written in the form pv = RT, to eliminate T.)
Example Problem 11.! shows use of the above governing equations (the T ds
equations) to evaluate property changes during a process.
For an ideal gas with constant specific heats, we can use Eqs. 11.11 to obtain re-
lations valid for an isentropic process. From Eq, 11.11a

T. (4
$5-5=0=c,In-2+RIn-2
7 v

Then, using Eqgs. 11.4 and 11.5,

Ry
T, oy, |°° - -
b | B 0 or Tzvg = Ti'{)f L Tv* ! = constant
i A ™

where states 1 and 2 are arbitrary states of the isentropic process. Using v = 1/p,

T
ok = —— = constant (11.12a)
pk ]

We can apply a similar process to Egs. 11.11b and 11.11¢, respeciively, and obtain
the following useful relations:

l,
1p 7 = constant (11.12b)
pv* = —PT = constant (11.12¢)
P

Equations 11.12 are for an ideal gas vndergoing an isentropic process.

Qualitative information that is useful in drawing state diagrams also can be ob-
tained from the T ds equations. To complete our review of the thermodynamic funda-
mentals, we evaluate the slopes of lines of constant pressure and of constant volume
on the 75 diagram in Example Problem 11.2.

EXAMPLE 11.1 Property Changes in Compressible Duct Flow

Air flows through a long duct of constant area at 0.15 kg/s. A short section of the duct
15 cooled by liquid nitrogen that surrounds the duct. The rate of heat loss in this sec-
tion is 15.0 k¥/s from the air. The absolute pressure, lemperature, and velocity entering
the cooled section are 188 kPa, 440 K, and 210 m/s, respectively. At the outlet, the ab-
solute pressure and temperature are 213 kPa and 350 K. Compute the duct cross-
sectional area and the changes in enthalpy, internal energy, and entropy for this flow.
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The entropy change may be obtained from Eq. 11.11b,

As =5, — g =Can£—Rln&
T 14
100 K 351y 0287 K 2.13%10°
= —— X In| —— |- x ln 3
kg K 440 kg K 1.88 % 10
As = - 0262 KI/(kg - K) As

We see that entropy may decrease for a nonadiabatic process in which the gas is cooled.

This problem illustrates the use of the governing equations for

computing property changes of an ideal gas during a process.

EXAMPLE 11.2 Constant-Property Lines on a 7s Diagram

For an ideal gas, find the equations for lines of (a) constant volume and (b) constant
pressure in the s plane.

EXAMPLE PROBLEM 11.2

FIND: Fquations for lines of (a) constant volume and
(b} constant pressure in the 7y plane for an ideal gas.

SOLUTION:
(a) We are interested in the relation between T and s with the volume © held constant. This suggests use of

Eq.11.11a,
=0

T.
52—.v,=r'ulnﬁ +Rln/g'

We relabel this equation so that state 1 is now reference state 0, and state 2 is an arbitrary state,
T R
s—5=c¢,ln— or T=Te™ n
To
Hence, we conclude that constant volume lines in the Ts plane are exponential.

(b) We are interesied in the relation between T and s with the pressure p held constant. This suggests use
of Eq. 11.11b, and using a sirmular approach to case (a), we find

=%

T="Te 2)

Hence, we conclude that constant pressure lines in the Ts plane are also exponential.

What about the slope of these curves? Because ¢, > ¢, for all gases, we can see that the exponential,
and therefore the slope, of the constant pressure curve, Eq. 2, is smaller than that for the constant volume
curve, Eq. 1. This is shown in the sketch below:




Decreasing ¥

Constant volume

Constant pressure

Temperature

Increasing p

Entropy

This Example Problem illustrates use of governing equations

to explore relations among properties.
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11-2 PROPAGATION OF SOUND waves 601

flow (M = 5), is of interest in missile and reentry-vehicle design. (The proposed Na-
tional Aerospace Planc would have cruised at Mach numbers approaching 20.) Some
important qualitative differences between subsonic and supersonic flows can be de-
duced from the properties of a simple moving sound source.

Consider a point source of sound that emits a pulse every Ar seconds. Each
pulse expands outwards from its origination point at specd ¢, 50 at any instant f the
pulse wilt be a sphere of radius ct centered at the pulse’s origination point. We want
to investigate what happens if the point source itself is moving. There are four possi-
bilities, as shown in Fig. 11.2:

(a) V = 0. The potnt source is stationary. Figure 11.2a shows counditions after 3At seconds.
The first pulse has expanded to a sphere of radius c(3Ar), the second to a sphere of radius
c(2Ar), and the third to a sphere of radius c(A/); a new pulse is about to be emiited. The
pulscs constitute a set of ever-expanding concentric spheres.

(b) 0 <V < ¢ The point source moves to the left at subsonic speed. Figure 11.2b shows
conditions after 3A¢ seconds. The source is shown at times ¢ = 0, Az, 2A¢, and 3At. The
first pulse has expanded to a sphere of radius c(3Ar) centered where the source was orig-
inally, the second to a sphere of radius c(2Ar) centered where the source was at time At,
and the third to a sphere of radius c(Af) centered where the source was at time 2Ar; a
new pulse 1s about to be emitted. The pulses again constitute a setl of ever-cxpanding

:"‘-—- Locus of wave fronts
e} vV=c¢

Oulside cone:
unaware of sound

/ {e) M > 1: the Mach cone

L -

Fig. 11.2 Propagation of sound waves from a moving source:
The Mach cone.
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11-3  REFERENCE STATE: LOCAL ISENTROPIC STAGNATION PROPERTIES 603

| P2 Ta, Pa 1, By 52, Ve |
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Fig. 11.3 Local isentropic stagnation properties,

flow from some state @ to some new state @ The local isentropic stagnation
properties for each state, obtained by isentropically bringing the fluid to rest, are also
shown. Hence, s5 = 5, and sp, = 5,. The actual flow may or may not be isentropic.
If it is isentropic, s, = §3 = §;, = $p,, so the stagnation states are identical; if it is not
isentropic, then sy ¥ so,- We will see that changes in local isentropic stagnation
properties will provide useful information about the flow.
We can obtain information on the reference isentropic stagnation state for in-
compressible flows by recalling the Bernoulli equation from Chapter 6
2
LA v + gz = constant (6.8)
p 2
valid for a steady, incompressible, frictionless flow along a streamline. Equation 6.8
is valid for our isentropic process because it is reversible (frictionless and steady) and
adiabatic (we did not include heat transfer considerations in its derivation). As we
saw in Section 6.3, the Bernoulli equation leads to

1
po=pt+opV? (6.11)

(The gravity term drops out because we assume the reference state is at the same eleva-
tion as the actual state, and in any event in external flows it is usually much smaller than
the other terms.) In Example Problem 11.5 we compare isentropic stagnation conditions
abtained assuming incompressibility (Eq. 6.11), and allowing for compressibility.

For compressible flows, we will focus on ideal gas behavior.

Local Isentropic Stagnation Properties for the Flow of an ldeal Gas

For a compressible flow we can derive the isentropic stagnation relations by applying
the mass conservation (or continuity) and momentum equations to a differential control
volume, and then integrating. For the process shown schematically in Fig. 11.3, we can
depict the process from state (1) to the corresponding stagnation state by imagining the
control volume shown in Fig. 11.4. Consider first the continuity equation.

a. Continuity Equation
={(1)
Governing equation: % pd¥ + J oV - dA =0 4.12)
o ¢s

Assumptions: (1) Steady flow,
(2) Uniform flow at each section.



604

GHAPTER 11 / INTRODUCTION TO COMPRESSIBLE FLOW

cv

St _
4R, g_ ream E‘ie,,y
e ——

<o
&
J—_'
{
=
+ 4+
[--N
<O
RS
i u
‘o‘:i (=]

A A+ dA I=T1,
P p+dp
T T+dr
Fig. 11.4 Compressible flow in an infinitesimal stream tube.
Then
(—pV,a) + (o + dp)(V, +dV,)(A +dA)} = 0
or

pV.A = (p + dp)(V, + dV. A + dA) (11.192)

b. Momentum Equation

=03) =0(1)

Govering equation: £y, +/’{, =gf V. pd¥ + j V., pr- dA (4.182
Cv Cs .

Assumptions: (3) FBt =0.
(4) Frictionless flow.

The surface forces acting on the infinitesimal control volume are
Fg =dR. + pA — (p + dp}A + dA)

The force dR, is applied along the stream tube boundary, as shown in Fig. 11.4, where
the average pressure is p + dp/2, and the ar¢a component in the x direction is dA.
There is no friction. Thus,

P:s-x = [p+d?p]dA+pA~(p+dp)(A+dA)

Substituting this result into the momentum equation gives

or

—dp A =V {-pV, A} + (V, + dV, {{(p + dp)(V, + dV, )4 + dA)}

which may be simplified using Eq. 11.19a to obtain

—dpA=(-V, +V, +dV)(pV,A)
Finally,
{2
14
dp = —pV dV, = _de;J
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local Mach number is known. We will usually use Eqgs. 11.20 in lieu of the continuity
and momentum equations for relating the properties at a state to that state’s stagnation
properties, but it is important to remember that we derived Eqs. 11.20 using these
equations and the isentropic relation for an ideal gas. Appendix E-1 lists flow func-
tions for property ratios Ty/T, po/p, and py/p, in terms of M for isentropic flow of an
ideal gas. A table of values, as well as a plot of these property ratios is presented for
air (k = 1.4) for a limited range of Mach numbers. The associated Exce! workbook,
Isentropic Relations, can be used to print a larger table of values for air and other ideal
gases. The calculation procedure is illustrated in Example Problem 11.4.

The Mach number range for validity of the assumption of incompressible flow is
investigated in Example Problem 11.5.

EXAMPLE 11.4 Local Isentropic Stagnation Conditions in Channel Flow
Air flows steadily through the duct shown from 350

kPa(abs), 6G0°C, and 183 mv/s at the inlet state to M = 1.3
at the outlet, where local isentropic stagnation conditions
are known to be 385 kPa{abs) and 350 K. Compute the
local isentropic stagnation pressure and temperature at
the inlet and the static pressure and temperature at the

duct outlet. Locate the inlet and outlet static state points
on a Ty diagram, and indicate the stagnation processes.

Inlet Qutlet

EXAMPLE PROBLEM 11.4

GIVEN: Steady flow of air through a duct as shown in the skelch.

py = 350 kPa (abs} Pg, = 385 kPa (abs)
T, =60°C Te, =350 K
v, =183 m/s g M, =13

O] @

FIND: (a) Po,:
(b Ty
©) p2
(d) T,
(e) Stale points (D and @ onaTs diagram; indicate the stagnation processes.

SOLUTION:
To evaluate local isentropic stagnation conditions at section (D, we must calculate the Mach number,
M, = Vyjc,. For an ideal gas, ¢ = YART. Then

12
o= T <[ ok dem)

and

w_m

Local isentropic stagnation properties can be evaluated from Egs. 11.20. Thus
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11.14

11.15

11.16

11.22
11.23
11.24

11.25

11.26
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Over time the efficiency of the compressor of Problem 1 1.10 drops. At what efficiency
will the power required to attain 8.0 MPa (gage) exceed 30 MW? Plot the required
power and the gas exit temperature as functions of efficiency.

In an isothermal process, 0.1 cubic feet of standard air per minute (SCFM) is pumped
inte a balloon. Tension in the rubber skin of the balloon is given by o = kA, where
k = 200 Ibf/ft*, and A is the surface area of the balloon in {1, Compute the time re-
yuired to increase the balloon radius from 5 to 7 inches.

For the balloon process of Problem 11.12 we could define a “volumetric ratio” as the
ratio of the volume of standard air supplied 10 the volume increase of the balleon, per
unit time. Plot this ratio over time as the balloon diameter is increased from 3 to
7 inches.

An airplane flies at 180 m/s at 500 m altitude on a standard day. The plane climbs Lo
15 km and fAies at 320 m/s. Calculate the Mach number of flight in both cases.

The Boeing 727 aircraft of Example Problem 9.8 cruises at 520 mph at 33,000 ft alti-
tude on a standard day. Calculate the cruise Mach number of the aircraft. If the maxi-
mum allowable operating Mach number for the aircraft is 0.9, what is the correspon-
ding flight speed?

Actlual performance characteristics of the Lockheed SR-71 “Blackbird” reconnais-
sance aireraft never were released, However, it was thought to cruise at M = 33 at
85,000 ft altitude. Evaluate the speed of sound and flight speed for these conditions.
Compare to the muzzle speed of a 30-06 rifle bullet (700 m/s).

Lightning strikes and you see the distant flash. A few seconds [ater you hear the thun-
derclap. Explain huw you could estiinate the distance to the lightning strike.

Use data for specific volume to ¢alculale and plot the speed of sound in saturated lig-
uid water over the temperature range from 32 o 400°F.

Re-derive the equation for sonic speed (Fq. 11.17) assuming thal the direction of Auid
motion bebind the sound wave is dV, to the right. Show that the result is identical to
that given by Eq. 11.17.

Compule the speed of sound at sea level in standard air. By scanning data from Table
A3 into your PC (or using Fig. 3.3), cvaluate the speed of sound and plot for altitudes
10 90 km.

The temperature varies linearly from sea level to approximately 11 km altitude in the
standard atmosphere. Evaluate the lapse rate—the rate of decrease of temperature
with altitude—in the standard atmosphere. Derive an expression for the rate of
change of sonic speed with altitude in an ideal gas under standard atmospheric condi-
tions. Evalvate and plot from sea level to 10 km altitude.

How could you measure the upproximate speed of sound in air?
Air at 25°C flows at M = 2.2, Determine the air speed and the Mach angle.

A photograph of a bullet shows 4 Mach angle of 32°, Determine the speed of the bul-
let for standard air.

A projectile is fired into a gas in which the pressure is 50 psia and the density is 0.27
lbm/ft*. It is observed experimentally that a Mach cone emanates from the projectile
with 20° total angle. What is the speed of the projectile with respect o the gas?

The National Transonic Facility (NTF) is a high-speed wind tunnel designed to oper-
ate with air at crvogenic temperatures to reduce viscosity, thus raising the unit
Reynolds number (Re/x) and reducing pumping power requirements. Operation is en-
visioned at 1emperatures of —270°F and below. A schlieren photograph taken in the
NTF shows a Mach angle of 37° whete T = —270°F and p = 1.3 psia. Evaluate the
local Mach number and flow speed. Caleulate the unit Reynolds number tor the flow.
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Chapter12 - -
COMPRESSIBLE FLOW

In Chapter 11 we reviewed some basic concepts of compressible flow. The main
focus of this chapter is to discuss one-dimensional compressible flow in more detail.
The first question we can ask is “What would cause the fluid properties to vary in a
one-dimensional compressible flow?” The answer is that various phenomena can
cause changes: We could force the velocity (and hence. in general the other proper-
ties) to change by passing the flow through a channel of varying area; we may have
flow in a channel with friction; we may heat or cool the fluid, and we will learn that
we may even have what is called a normal shock. For simplicity, we will study each
of these phenomena separately {(bearing in mind that a real flow is likely to ex-
perience several of them simultaneously). After completing our treatment of one-
dimensional flow, we will introduce some basic concepts of two-dimensional flows:
oblique shocks and expansion waves.

121

BASIC EQUATIONS FOR ONE-DIMENSIONAL COMPRESSIBLE FLOW

Our first task is 1o develop general equations for a one-dimensional flow that express
the basic laws from Chapter 4: mass conservation (continuity), momentum, the first
law of thermodynamics, the second law of thermodyramics, and an equarion of state.
To do so, we will use the fixed control volume shown in Fig. 12.1. We initially
assume that the flow is affected by all of the phenomena mentioned above (i.e., arca
change, friction, and heat transfer— even the normal shock will be described by this
approach). Then, for each individual phenomenon we will simplify the equations to
obtain uscful results.

As shown in Fig, 12.1, the properties at sections (1) and (2) are labeled with corre-
sponding subscripts. R, is the x component of surface force [rom foction and pressure on
the sides of the channel (there will also be surface torces from pressures at surtaces
(D and (2)). Note that the x component of body force is zero, so it is not shown}, and Q
15 the heat transfer.

a. Continuity Equation

Basic equation:
= 0(1)

%J pdV+J PV dA =0 (4.12)
ICV Cs

Assumptions: (1) Steady flow.
(2} One-dimensional flow.
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12-1  BASIC EQUATIONS FOR ONE-DIMENSIONAL FLow 619

Assumptions: (4) w, =0
(5) “‘{;hmr = Wmhcr = 0
(6} Effects of gravily are negligible.

(Note that even if we have friction, there is no friction work at the walls because with
friction the velocity at the walls must be zero from the no-slip condition.} Under
these assumptions, the first law reduces to

. V2 v2
Q= [“l +pu + 71](‘191"’11‘\1) + [“2 + pavy + TZJ(P:szAz)

(Remember that v here represents the specific velume.) This can be simplified by us-
ing h=u + pv, and continuity (Eq. 12.1a),

oo 3H-3)

We can write the heat transfer on a per unit mass rather than per unit time basis;

8Q 1 .
dam _n'mQ
50
80 vi v
0 Yi_o, Y 12.1
dm ! 2 2 2 ( ©)

Equation 12.1c expresses the fact that heat transfer changes the total energy (the sum
of thermal energy A, and kinetic energy V%2) of the flowing fluid. This combination,
h + V2, occurs often in compressible flow, and is called the stagnation enthalpy,
hy. This is the enthalpy obtained if a flow is brought adiabatically to rest.
Hence, Eq. 12.1¢ can also be written
30

dm hy, = b,

We see that heat transfer causes the stagnation enthalpy, and hence, stagnation tem-
perature, Ty, to change.

d. Second Law of Thermodynamics

Basic equation:
=0(1)

d = = 1
= pdV+J .‘;pV-dA::J- —(
atJ::/ cs s T

(e
sI(—NA)) + 5:(pVaAy) = JCS?[%]dA

> IS

)dA {4.58)

or

and, again using continuily,

: 1{G
mis; — 51} = CS?(%}M (12.1d)
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A _dp |V
A pVP|  dpldp

Now recall that for an isentropic process, dp/dp = dpldp), = ¢?, s0

2
éA;_d_P[l_Z_}: dp (1— M2

ar

- 2 2

A sz c
or

ﬂ’pq _da 1 (12.5)
pv? A [1-m?]

Substituting from Eq. 12.3 into Eq. 12.5, we obtain

dv dA ! (12.6)

v oA l-m
Although we cannol use them for computations (we have not so far determined how
M varies with A), Egs. 12.5 and 12.6 give us very interesting insights into how the

pressure and velocity change as we change the area of the flow. Three possibilities
are discussed below.

Subsonic Flow, M < 1

For M < 1, the factor 1/[1 — M?] in the two equations is positive, so that in a converg-
ing section, the pressure must decrease and the velocity must increase (dA is negative,
dp is negative, and dV is positive). This result is consistent with our everyday
experience and is not surprising—for example, recall the venturi meter in Chapter 8,
in which a reduction in area at the throat of the venturi led to a local increase in ve-
locity, and because of the Bermnoulli principle, to a pressure drop (the Bernoulli prin-
ciple assumes incompressible flow, which is the limiting case of subsonic flow). Be-
cause a converging channel acceleratcs subsonic flow, such a shape is called a
subsonic nozzle.

On the other hand, a diverging channel must lead 1o a pressure increase and a
velocity decrease, also not a surprising result, Because a diverging channel deceler-
ates flow, such a shape is called a subsonic diffuser.

The subsonic nozzle and diffuser are shown in Fig. 12.3.

Supersonic Flow, M > 1

For M > 1, the factor 1/[1 — M?}in Egs. 12.5 and 12.6 is negative, so that in a
converging section, the pressure must increase and the velocity must decrease (dA
is negative, dp 1§ positive, and dV is negative). This result is perhaps initially sur-
prising. For example, it is the opposite of the venturi meter behavior! Because a
converging channel leads to fiow deceleration, such a shape is called a supersonic
diffuser.

On the other hand, a diverging channel causcs a pressure decrease and a veloc-
ity increase. Because a diverging channe] causes flow acceleration, such a shape is
called a supersonic nozzle.

The supersonic diffuser and nozzle are also shown in Fig. 12.3.
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nozzle (diverging section), with M = | at the throat, This device is called a converging-
diverging nozzle (C-D nozzle). Of course, to create a supersonic flow we need more than
just a C-D nozzle: we must also generate and maintain a pressure difference between the
inlet and exit. We will discuss shortly C-I> nozzles in some detail, and the pressures re-
quired to accomplish a change from subsonic to supersonic flow.

We note that we must be careful in our discussion of isentropic flow (especially
deceleration), because real fiuids can experience nonisentropic phenomena such as
boundary-layer separation and shock waves, In practice, supersenic flow cannat be
deceleraled to exactly M = 1 at a throat because sonic flow near a throat is unstable
in a rising (adverse) pressure gradient. (Disturbances that are always present in a real
subseonic flow propagate upstream, disturbing the sonic flow at the throat, causing
shock waves to form and travel upstream, where they may be disgorged from the in-
let of the superseonic diffuser.)

The throat area of a real supersonic diffuser must be slightly larger than that re-
guired to reduce the flow to M = 1. Under the proper downstream ¢onditions, a weak
normal shock forms in the diverging channel just downstream from the throat. Flow
leaving the shock is subsonic and decelerates in the diverging channel. Thus deceler-
ation from supersonic to subsonic flow cannot occur isentropically in practice, since
the weak normal shock causes an entropy increase. Normal shocks will be analyzed
in Section 12-5.

For accelerating flows (favorable pressure gradients) the idealization of isen-
tropic flow is generally a realistic model of the actual flow behavior. For decelerating
flows, the idealization of isentropic flow may not be realistic because of the adverse
pressure gradients and the attendant possibility of flow separation, as discussed for
incompressible boundary-layer flow in Chapter 9.

Reference Stagnation and Critical Conditions for Isentropic
Flow of an Ideal Gas

As we mentioned at the beginning of this section, in principle we could use Egs. 12.2
to analyze one-dimensional iscntropic flow of an ideal gas, but the computations
would be somewhat tedious. Instead, because the flow is isentropic, we can use the re-
sults of Sections 11-3 (reference stagnation conditions) and 11.4 (reference critical
conditions). The idea is illustrated in Fig. 12.4: Instead of using Eqgs. 12.2 to compute,
for example, properties at state @ from those at state @ we ¢can use state @ to de-
termine two reference states (the stagnation state and the critical state), and then
use these to obtain propertics at state (). We need two reference states because the
reference stagnation state does not provide area information (mathematically the
stagnation area is infinite).
We will use Egs. 11.20 (renumbered for convenience),

k-1 ki (k—1)
P_0=[1+_M2] (12.7a)
p 2
L k-lype (12.7h)
T 2
_ 1{k=1)
Py _ [1 Ll M2] (12.7¢)
p 2
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-1 (k+1)/2(k=1)
A 1|lr=m M?
A M| KAT (12.7d)
12

Equations 12.7 form a set that is convenient for analyzing isentropic flow of an
ideal gas with constant specific heats, which we usually use instead of the basic equa-
tions, Eqs. 12.2. For convenience we list Egs. 12.7 together:

_ k(k-1)
&:[1+—k21M2:| (12.7a)
P
% = 1+k—;1M2 (12.7b)
_ 1(k-1)
Po =[1 +52—1M2] {(12.7¢)
p
_ (k+1)/2(k~1)
A 1 1+ —]‘ ! M2
y by ‘_“k%l_‘“ (12.7d)
2

Equations 12.7 provide property relations in terms of the local Mach number, the
stagnation conditions, and critical conditions; they are so useful that some calcula-
tors have some of them built in (for example the AP 48G series [1]). It is a good
idea to program them if your calculator does not already have them. There are even
interactive web sites that make them available (see, for example, [2]), and they are
fairly easy to define in spreadsheets such as Excel. While they are somewhat compli-
cated algebraically, they have the advantage over the basic equations, Eq. 12.2, that
they are not coupled. Each property can be found directly from its stagnation value
and the Mach number. Equation 12.7d shows the relation between Mach number M
and ar¢a A. The critical area A* (defined whether or not a given flow ever attains
sonic conditions) is used to normalize area A. For each Mach number M we obtain a
unique area ratio, but as shown in Fig 12.5 each A/A* ratio (except 1) has two possi-
ble Mach numbers—one subsonic, the other supersonic. The shape shown in Fig.
12.5 fooks like a converging-diverging section for accelerating from a subsonic to a
supersonic flow (with, as necessary, M = 1 only at the throat), but in practice this is
not the shape to which such a passage would be built. For example, the diverging
section usually will have a much less severe angle of divergence to reduce the
chance of flow separation (in Fig. 12.5 the Mach number increases lingarly, but this
18 not necessary).

Appendix E-1 lists flow functions for property ratios Ty /T, po/p, py/p, and A/A*
in terms of M for isentropic flow of an ideal gas. A table of values, as weil as a plot of
these property ratios, is presented for air (k¢ = 1.4) for a limited range of Mach num-
bers. The associated Fxcel workbook, fsentropic Relations, can be used to print a
larger table of values for air and other ideal gases.
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Consequently, the stagnation temperature at section @ canbe T l
calculated (for air, k¥ = 1.4) from Eq. 12.7b,

k-1 i
T, =Ty, = T|[1 + Mil] L p
2 2 T, @
= (62 + 273) K[l +02 (0.3)2] o2
T.
To, =T, = 341K T, T, 6
F
For py,, from Eq. 12.7a,
£ &/ (k=1
Po, = po, = pl[l + ME] = 650 kPa[l + 0.2(0.3)°1**
P, = 692 kPa(abs) P,
For T,, from Eq, 12.7b,
%= 132/[1 ok ;1 Mg] = 3411(/[1 + 0.2(0.8)2]
T, = 302K, 5L
For p,, from Eq. 12.7a,
_ k/k=1 15
Py = pni/[l + %ME] = 692kPa/[1 + 02(08]
P = 454 kPa, )

Note that we could have directly computed T, from T because Ty = constant:

o T;/I@. - [, . "; !‘M'z]/[] + "_;lug] = [1+02037]/[1 + 02087

L n/ T
n = 0.8863 = 0,9025
T, 09823

Hence,

T, =09025T = 09025273 + 62)K = 32 K

Similarly, for ps,

nh_ P / Po —0.8865%/0.9823%% = 0.6982
P Pol P
Hence,

p2 = 0.6982 p, = 0.6982(650 kPa) = 454 kPa

The density p; at sectiop (2) can be found from Eq. 12.7¢ using the same procedure we used for T; and p,,
or we can use the ideal gas equation of state, Eq. 12.2¢,

_p _454xI°N kg K ]
P2 = ke, mE 287N m 302K

= 5.24 kg/m® P2
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Using c, for air from Table A6,
o SV 1004 ) 335K (110)° (E)’ NSt ok
P o T kg-K 2 \s kg-m N.m - 42d7ke
2 2 2 2
::;p'l'z+Vi=mod'—-—J x J02K  QT78) [—“1] VoL LBV =342 klikg
kg-K 2 s kg'm N-m
1004 341
Ty = 1004 _T_ 34K o ke (Check!)

kg-K

The final equation we can check is the relation between pressure and density for an isentropic process

(Eq. 12.29),

151 P2 P
— = = = — = constant
ot s o
p _ 60kPa  p;,  454kPa kPa
pl_.l‘l = ke s = ;T-T = ke V- =447 ke 12 (Check!)
: (6.76 —3) 2 [5.24 —%J [%)
m m m

The basic equations are satisfied by our solution.

This Example Problem illustrates:
v Use of the isentropic equations, Eqs. 12.7.
v That the isentropic equations are consistent with the basic
equations, Egs. 12.2.
v That the computations can be quite labotious without us-
ing preprogrammed isentropic relations!
G The Excel workbook for this Example Problem is con-
venient for performing the calculations, using either the
isentropic equations or the basic equations.

Isentropic Flow in a Converging Nozzle

Now that we have our computing equations (Eqs. 12.7) for analyzing isentropic
flows, we arc ready to see how we could obtain flow in a nozzle, starting from rest.
We first look at the converging nozzle, and then the C-D nozzle. In either case, to
produce a flow we must provide a pressure difference. For example, as illustrated in
the converging nozzle shown in Fig. 12.6a, w¢ can do this by providing the gas from
a reservoir (or “plenum chamber™) at p; and 7, and using a vacuum pump/valve
combination 1o create a low pressure, the “back pressure,” p,. We are interested in
what happens to the gas propertics as the gas flows through the nozzle, and also in
knowing how the mass flow rate increases as we progressively lower the back pres-
sure. {We could also produce a flow by maintaining a constant back pressure, e.g., at-
mospheric, and increasing the pressure in the plenum chamber.)

Let us call the pressure at the exit plane p,. We will see that this will often be
equal to the applied back pressure, p,, but not always! The results we oblain as we
progressively open the valve from a closed position are shown in Figs, 12.6/ and
12.6¢. We consider each of the cases shown.
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For air, k = 1.4, 50 p./pglenokes = 0.528. For example, if we wish Lo have sonic flow
at the exit of a nozzle from a plenum chamber that is at atmospheric pressure, we
would need to maintain a back pressure of about 7.76 psia, or about 6.94 psig vac-
uum. This does not sound difficult for a vacuum pump to generate, but actually takes
a lot of power to maintain, because we will have a large mass flow rate through the
pump. For the maximum, or choked, mass fipw rate we have

rhchuked = p* V*A*

Using the ideal gas equation of state, Eq. 12.2e, and the stagnation to critical pressure
and temperature ratios, Egs. 12.7d and 12.7e, respectively, with A* = A,, it can be
shown that this becomes

Menoked = AP0 (12.9)

{—k_( 2 J(kH)I’Z{kI)

Y RT \k +1

For air, fiteyaxea = 0044, pof Ty (Muoreq in kgfs, A, in m?, pg in Pa, and Ty in K), or

Mehoked = 76-6A9P0/\[7To(”'1chnkcd in lbmvs, A, in fi%, p, in psia, and 73 in °R). The
maximum flow rate in the converging nozzle depends on the gas (4 and R), the size of
the exit area (A,), and the conditions in the reservoir (py, Tp).

Suppose we now insist on lowering the back pressure below this “benchmark™
level of p*. Our next question is “What will happen to the flow in the nozzle?” The
answer is “Nothing!” The flow remains choked: the mass flow rate does nol increase,
as shown in Fig. 12.65, and the pressure distribution in the nozzle remains un-
changed, with p, = p* > p,, as shown in condition () in Figs. 12.6a and 12.6¢.
After exiting, the flow adjusts down to the applied back pressure, but docs so in a
nonisentropic, three-dimensional manner in a serics of expansion waves and shocks,
and for this part of the flow our one-dimensional, isentropic flow concepts no longer
apply. We will return to this discussion in Section 12-6.

This idea of choked flow seems a bit strange, but can be explained in at least
two ways. First, we have already discussed that to increase the mass flow rate
beyond choked would require M, > |, which is not possible. Second, once the llow
reaches sonic conditions, it becomes “deaf” to downstream conditions: Any change
(i.e., a reduction} in the applied back pressure propagates in the fluid at the speed of
sound in all directions, so it gets “washed” downstream by the fluid which is moving
at the speed of sound at the nozzle exit.

Flow through a converging nozzle may he divided into two regimes:

1. TanRegime, | = pfp, = p*ipy. Flow to the throal is isentropic and p, = p,.

2. In Regime Il, py/py, << p*/p,. Flow to the throat is iscntropic, and M, = 1. A nonisentropic
expansion occurs in the flow leaving the nozzle and p,. — p* > p,.

The flow processes corresponding to Regime 11 are shown on a 7 diagram in Fig. 12.7,
Two problems involving converging nozzles are solved in Example Problems 12.2
and 12.3,

Although isentropic flow is an idealization, it often is a very good approxima-
tion for the actual behavior of nozzles. Since a nozzle is a device that aceelerates a
flow, the internal pressure gradient is favorable. This tends 10 keep the wall boundary
Jayers thin and to minimize the effects of friction.
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Fig.12.7 Schemalic Ts diagram for choked
flow through a converging nozzle,
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EXAMPLE 12.2 Isentropic Flow in a Converging Nozzie

A converging nozzle, with a throat area of 0.001 m?, is operated with air at a back
pressure of 591 kPa (abs). The nozzle is fed from a large plenum chamber where the
absolute stagnation pressure and temperature are 1.0 MPa and 60°C. The exit Mach
number and mass flow rate are to be determined.

EXAMPLE PROBLEM 12.2

GIVEN: Air fow through a converging nozzle at the conditions shown:

Flow is isentropic.
FIND: (a) M,. po = 1.0 MPa (abs) py = 591 kPa {abs)
(b)y m. Ty = 333K
_______ e
SCGLUTION:

The first step is to check for choking. The pressure ratio is

py  S91x10°

B = 0591 > 0.528
po 1LOx10°

so the flow is nor choked. Thus p, = p,. and the flow is iscntropic, as sketched
on the 7s diagram.
Since py = constant, M, may be found from the pressure ratio,

_ kiCk=1)
o . [1 L M3:|
Pe 2

Solving for M,, since p, = p,, we obtain

(k=1)1k
1+ k_;_lMez = [&]
Py
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and
/2

172

(k=1)/k & \0-286
M, = 1|[ 2 _1_2__ = Mg _1% = 0.90 M,
2 k-1 591% 10 14-1 ——¢

The mass flow rate is

m = pzveAe = P,M,C,A,,

We need T, to find p, and c,. Since T, = constant,

T; _1
LR [ 7L
T, 2
or
T,= o - EBLOL ok
1+ =Dy 1+0209)
2
14 287 N-m 287K kg-m]|
I : ‘M g m
Ce = kJ?Te 2[ X mx X N_32 = 340 m/s
and
_ P _591x10° N kg-K oL =718 3
Pe = T, X WINm 2K sky/m
Finally,
7.18 9 7 0.001 m? .
= p,M,c,A, = %XOQXMOEX 0Im™ _ 5 20 kgs i

m S

This problem illustrates use of the isentropic equatious, Eqs.

12.7, for a flow that is not choked.

% The Excel workbook for this Example Problem is con-
venient for performing the calculations (using either the
isentropic equations or the basic equations).

EXAMPLE 12.3 Choked Flow in a Converging Nozzie

Air flows isentropically through a converging nozzle. At a section where the nozzle
area is 0.013 ft?, the local pressure, temperature, and Mach number arc 60 psia, 40°F,
and 0.52, respectively. The back pressuce is 30 psia. The Mach number at the throat,
the mass flow rate, and the throat arca are to be determined.


file:///0.286

mb




To vacuum
pump

plpg

— L
Throat Exit plane x

Flg. 12.8 Pressure distributions for isentropic flow in a canverging-diverging
nozzle.

A



638

1y - 2 s T =]


file:///JTq~

12-2 ISENTROPIC FLOW OF AN IDEAL GAS—AREA VARIATION 639

number of unity, there are two possible isentropic flow conditions in the converging-
diverging nozzle. This is consistent with the results of Fig. 12.5, where we found two
Mach numbers for each A/A* in isentropic flow.

Lowering the back pressure below condition (fv), say to condition (v), has no
effect on flow in the nozzle. The flow is isentropic trom the plenum chamber to the
nozzle exit [as in condition (iv)] and then it undergoes a three-dimensional irre-
versible expansion to the lower back pressure. A nozzle operating under these con-
ditions is said to be underexpanded, since additional expansion takes place outside
the nozzle.

A converging-diverging nozzle generally is intended to produce supersonic flow
at the exit plane. If the back pressure is set at p;,.. flow will be isentropic through the
nozzle, and supersonic at the nozzle exit. Nozzles operating at p, = p;, [correspond-
ing to curve (iv) in Fig. 12.8] are said to operate at design conditions.

Flow leaving a C-D nozzle is supersonic when the back pressure is at or below
nozzle design pressure. The exit Mach number is fixed once the area ratio, A, /A%, is
specified. All other exit plane properties (for isentropic flow) are uniquely related to
stagnation properties by the fixed exit plane Mach number.

The assumption of isentropic flow for a real nozzle at design conditions is a rea-
sonable one. However, the one-dimensional flow moded is inadequate for the design
of relatively short nozzles to produce umform supersonic exit flow.

Rocket-propelled vehicles use C-D nozzles to accelerate the exhaust gases to the
maximum possible speed 1o produce high thrust. A propulsion nozzle is subject to
varying ambient conditions during flight through the atmosphere, so it is impossible
to attain the maximum theoretical thrust over the complete operating range. Because
only a single supersonic Mach number can be obtained for each area ratio, nozzles
for supersonic wind tunnels often are built with interchangeable test sections, or with
variable geometry.

You undoubtedly have noticed that nothing has been said about the operation of
converging-diverging nozzles with back pressure in the range py; > p, > p,. For
such cases the flow cannot expand isentropically to p,. Under these conditions a
shock (which may be treated as an irreversible discontinuity invelving entropy in-
crease) oceurs somewhere within the How. Following a discussion of normal shocks
in Section 12-5, we shall return to complete the discussion of converging-diverging
nozzle flows in Section 12-6.

Nozzles operating with p,; > p, > p,, are said to be overexpanded because the
pressure at some point in the nozzle is less than the back pressure. Obviously, an
overexpanded nozzle could be made to operate at a new design condition by remov-
ing a portion of the diverging section.

In Example Problem 12.4, we consider isentropic flow in a C-D nozzle; in
Example Problem 12.5, we consider choked flow in a C-D nozzle.

EXAMPLE 12.4 Isentropic Flow in a Converging-Diverging Nozzle

Air flows isentropically in a converging-diverging nozzle, with exit arca of 0.001 m?,
The norzle is fed from a large plenum where the stagnation conditions are 350 K and
1.0 MPa (abs). The exit pressure is 954 kPa (abs) and the Mach number at the throat
is 0.68. Fluid properties and area at the nozzle throat and the exit Mach number are to
be determined.
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EXAMPLE PROBLEM 12.4

GIVEN: Isentropic flow of air in C-D nozzle as shown:

T, = 350K

Pp = 1.0 MPa (abs)

P = 954 kPa (abs)

M, =068 A, = 0001 m?

FIND: (a) Properties and area at nozzle throat.
(b) M..

SOLUTION:

Stagnation temperature is constant for isentropic flow. Thus, since

E = ] + ﬂ M2
T 2
then
T 350K
L=—aiy—-= - = 320K
1+ —— M,-z 1+ 02(068) M
2
Also, since py is constant for isentropic flow, then
k/(k—1)
k1(k-1
P = P [T,] o = b .
= Pol 7 SHN T T 4
I To 1+ 52Ty
2

1

3.5
p, = LOx 10° Pa[ ] = 734 kPa (abs) ,

1 + 0.2(0.68)

50
7.34 %105 .
p, =P = N teX 1 799 ke/m?
RT, nZ  28IN-m 320K ¢
and
V, = Me, = M, JkRT,
112
= oga| 14 BT Nem 30K deem T
kg K N-s €

From Eq. 12.7d we can obtain a value of A /A%

k-1 (k+1)72(k-1)

2 3.00

|1, M _ 1 [1roxoen? 7 _

M, ﬁl 0.08 12 ’
2

Al_
Ax

but at this point A* is not known.
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Since M, < 1, flow at the exit must be subsonic. Therefore, p, = p;. Stagnation properties are con-

stant, so
_ kHk-1)
& = [1 o u 3]
Pe 2z
Solving for M, gives

172 152
Ck—1)/k 6 0.286
2 1.0x10
M, = [(E“J - ‘]ﬁ - [[954_5] - '}5’ mo e
De 54 % 10 —

The Ts diagram for this flow is

~y

Y
T
-~

Since A, and M, are known, we can compute A*. From Eq. 12.7d

k=1 ; (k+1)2{k-1)
R 3.00

A, 1|V M 1 [1+020.26)

A _ L) 2 % = = 2317

A* M, k+1 0.26 1.2

2
Thus,
2
av= A 0O0IMT 107 2
2317 2317

and

A = LII0A* = (1.110)432 x 107 m?) = 4.80 x 107" m? A,

This problem illustrates use of the isentropic equations, Eqs.
12.7, for flow in a C-D nozzle that is not choked.
v Note that use of Eq. 12.7d allowed us 1o obtain the throat
area without needing to first compute other properties.
’ The Excel workbook for this Example Problem is con-
venient for performing the calculations (using either the
isentropic equations or the basic equations).

EXAMPLE 12.5 Isentropic Flow in a Converging-Diverging Nozzle: Choked Flow

The nozzle of Example 12.4 has a design back pressure of 87.5 kPa (abs) but is oper-
ated at a back pressure of 50.0 kPa (abs). Assume flow within the nozzle is isentropic.
Determine the exit Mach number and mass flow rate.
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This problem illustrates use of the isentropic equations, Egs.
12.7, for flow in a C-D nozzle that is choked.

v/ Note that we used Eq. 12.10 in an “engineering equation”
form —that is, an equation containing a coefficient that
has units. While useful here, generally these cquations are
no longer used in engincering because their correct use de-
pends on using input variable values in specific units.

0 The Excel workbook for this Example Problem is con-
venient for performing the calculations (using either the
isentropic equations or the basic equations).

We have now completed our study of idcalized one-dimensional isentropic flow
in channels of varying area. In real channels, we will have friction and quite possibly
heat transfer. Our next tasks are to study effects of these phenomena on a flow. As we
mentioned at the beginning of this chapter, in this introductory text we cannot study
flows that experience all these phenomena: In the next section, we consider the effect
of friction alone, in Section 124 we study the effect of heat transfer alone, and in Sec-
tion 12-5 we study the effect of normal shocks (and see in Section 12-6 how these affect
the C-DD nozzle, in more detail than we did in this section).

12-3

FLOW IN A CONSTANT-AREA DUCT WITH FRICTION

Gas flow in constant-area ducts is commonly encountered in a variety of engineering
applications. In this section we consider flows in which wall friction is responsible
for changes in fluid pruperties.

As for isentropic flow with area vanation (Section 12-2), our starting point in
analyzing flows with friction is the set of basic equations (Egs. 12.1), describing one-
dimensional motion that is affected by several phenomena: area change, friction, heat
transfer and normal shocks. These are

RX + PlAl — pzAz = sz - mV, (12.1b)

2 2
PR £ a12.1¢)

dm 2 2

. (o

-5z = = |dA 12.1d
misy — 5} CST[AJ ( )
p = pRT {12.1e)
Ah=hy -y = c, AT = ¢ ,(T, - 1)) (12.1€)
As = 55 — 5 =cpln£—R1n& (12.1g)

h 4|



644

s

]

—y
= — Rln

.

1







-

Ml



12-3 FLOW IN A CONSTANT-AREA DUCT WITH FRICTION 547

To compute the critical duct length, we must analyze the flow in detail, account-
ing for friction. This analysis requires that we begin with a differential control
volume, develop expressions in terms of Mach number, and integrate along the duct
to the section where M = 1. This is our next task, and it will involve quite a bit of al-
gebraic manipulation, so first we will demonstrate use of some of Eqgs. 12.11 in Ex-
ample Problem 12.6.

EXAMPLE 12.6 Frictional Adiabatic Flow in a Constant-Area Channel

Air flow is induced in an insulated tube of 7.16 mm diameter by a vacuum pump. The
air is drawn from a room, where p, = 101 kPa (abs) and T, = 23°C, through a
smoothly contoured converging nozzle. At section @, where the nozzle joins the
constant-arca tube, the static pressure is 98.5 kPa (abs). At section @ located some
distance downstream in the constant-area tube, the air temperature is 14°C. Deter-
mine the mass flow rate, the local isentropic stagnation pressure at section (2), and
the friction force on the duct wall between sections (1) and (2).

EXAMPLE PROBLEM 12.6

GIVEN: Air flow in insulated tube.

FIND: (a) m.
(b) Stagnation pressure at section @. Ty = 296 K !
(¢) Force on duct wall, po= 101 kPalabs)| — P=7.16mm

SOLUTION:

The mass flow rate can be obtained from properties at section
. For isentropic flow through the converging nozzle, local

isentropic stagnation properties remain constant. Thus,

_ ki (k=1)
&=(1+—-k2 IM";J

py = 98.5 kPalabs) T, = 287 K

P
and
172 12
(k-i/k 510286
M =2 ([P b SR L — 0%
k=1 p 0.4l 9.85x10
T .
T = ko.l _ (273+23)K2 — 294K
1+ XLy 140200190
2
For an ideal gas,
P 985%x10* N kg k 1 3
== — X X = 1.17kg/m
o7 R m?  287N-m 294K ke/
172
14 287 N-m 294K _ kg'm
W = Me; = M JkRT, = (0.190 X —x X ——
| 191 |VERT, = ( ) ke K N-sz]

V, = 653 mis
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The friction force may be obtained using the momentum equation (Eq.12.11b},
R, + pA = prA =mV, — mY, (12.11b)

which we apply to the control volume shown above {except we replace R, from Fig. 12.9 with — F,because
we know the friction force F; on the fluid acts in the negalive x direction).

—Fp = (p2 — pPA + m(V; - V)

_(470-98510" N  403x10°m’ 308x107 kg (134-653)m N-¢*

m? 5 s kg'm

-F t
or
F;= 186N (to the left, as shown)
This is the force exerted on the control volume by the duct wall. The force of the fuid on the duct is

K, =-F; =186N __(to theright) K,

This problem illustrates use of some of the basic equations,
Eqgs. 12.11, for flow in a duct with friction,

The Excel workbook for this Example Problem is con-
venient for performing the calculations.

Fanno-Line Flow Functions far One-Dimensional Flow of an ldeal Gas

The primary independent variable in Fanno-line tlow is the friction force, Fy. Knowl-
edge of the total friction force between any two points in & Fanno-line flow enables
us to predict downstream conditions from known upstream conditions. The total fric-
tion force is the integral of the wall shear stress over the duct surface area. Since wall
shear stress varies along the duct, we must develop a differential equation and then
integrate to find property variations. To set up the differential equation, we use the
differential control volume shown in Fig. 12.12.

Comparing Fig. 12.12 to Fig. 12.9 we see that we can use the hasic equations,
Egs. 12.11, for flow in a duct with friction, if we replace T, p,. py. Vi, with T, p, p, V,
and Ts, py, po, Voo With 7 + d7, p + dp, p + dp, V + dV, and also R, with —dF,.

CV;

r i
T: T+ dT
P 'p+dp
y, p! 1p+dp  Area, A
Vi
1
1

} V+ dV
|
l— . ' dF,

Flg.12.12 Diflerential contro} volume used
for analysis of Fanno-line flow.
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{Recall the factor of 4 was included in Eq. 8.50 so that D, would reduce to diameter
D for circular ducts.)
Combining Eqgs. 8.50, 12.13, and 12.14, we obtain

2
dF; =1 pax = 234 4
g D,
or
2
aF, =&&dx (12.15)
D, 2
Substituting this result into the momentum equation (Eq. 12.12b), we obtain
2
LBV e —dp = pVav
D,, 2

or, after dividing by p,
2
dp __f oV, pVav
P D, 2p p
Noting that p/p = RT = c¥k, and V dV = d(V¥2), we obtain

2 2
LI I N3]
D D, 2 22

and finally,

2 2 2
dp __ S kMt kME d(vE)

p D, 2 2 v (12.16)

To relate M and x, we must eliminate dp/p and d(V*)/V? from Eq. 12.16. From
the definition of Mach number, M = Vic, so V2 = M%c? = M? kRT, and after differ-
entiating this equation and dividing by the original equation,

d(v?) dT _ d(M?)
7 -t 2
vV T M
From the continuity equation, Eq. 12.12a, dp/p = —dV/V and s0
dp _ 14d(V?)
o 2 V2
From the ideal gas equation of state, p = pRT,
dp_dp  dT
p p T
Combining these three equations, we obtain

Ep_ 1 4T 1 d(Mz) (12.17b)

p 2T 2 M
Substituting Eqgs. 12.17 into Eq. 12.16 gives

(12.17a)

147 _1dM?%) _ _ f kM? ,  kMPdT kP d(M?)

2T 2 M D, 2 2 T 2 M

1
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Flow

Hypothetical
duct extension

Lmax |
O

Fig. 12.13 Coordinates and notation used for analysis of Fanno-line flow,

The left side may be integrated by parts. On the right side, the friction factor, f, may
vary with x, since Reynolds number will vary along the duct. Note, however, that
since pV is constant along the duct (from continuvity), the variation in Reynolds num-
ber is caused solely by varations in fluid absolute viscosity.

For a mean friction factor, f, defined over the duct length as

f_. ) Lniax '[{}Lmu fdx

integration of Eq. 12.20 leads to

) ]
=M kL &+ DM? | Fly,

2 —
kM 2k 2(]+§_51M2] D,

(12.21a)

Equation 12.21a gives the maximum f L/D, corresponding to any initial Mach number.

Since f Lo /Dy is a function of M, the duct length, L. required for the Mach
number to change from M, to M, (as illustrated in Fig. 12.13) may be found from

FL_ [f'Lm) _[ﬂmj
DI Dh M, Dh M

T

Critical conditions are appropriate reference conditions to use in developing
property ratio flow functions in lerms of local Mach number. Thus, for example,
since Ty is constant, we can wrile

k+1
T _ Ty _ 2

T*  T*/T, _(Hk—le}
2

(12.21b)

Similarly,
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[kH) 2
2 1 % (12.21d)
pr M BT 2
2
_ (k+1M20k-1)
T O R
P +

Equations 12.21, the Fanno-line relations, provide property relations in terms of the lo-
cal Mach number and critical conditions. They are obviously quite algebraically com-
plicated, but unlike Eqs. 12.11 are not coupled. It is a good idca to program them into
your calculator. They are also fairly easy to define in spreadsheels such as Excel. 1t is
important to remember that, as demonstrated in Fig. 11.3, the propertics at a state, in
any flow process, may be related 10 that state’s isentropic stagnation properties
through use of Eqs. 11.20. Appendix E-2 lists flow functions for property ratios pe/pi,
TIT*, pip*, plp*, (V¥/V), and fL./D, in terms of M for Fanno-line flow of an ideal
gas. A table of values, as well as a plot of these property ratios, is presented for air
(k = 1.4) for a limited range of Mach numbers. The associated Excel workbook, Fanno-
Line Relations, can be used to print a larger table of values for air and other ideal gases.

EXAMPLE 12.7 Frictional Adiabatic Flow in a Constant-Area Channel:
Solution Using Fanno-Line Flow Funclions

Air flow is induced in a smooth insulated tube of 7.16 mm diameter by a vacuum
pump. Air is drawn from a rcom, where p; = 7600 mm Hg (abs) and T, = 23°C,
through a smoothly contoured converging nozzle. At section (D, where the nozzle
joins the constant-area tube, the static pressure 1s —18.9 mm Hg (gage). At section
@, located some distance downstream in the constant-area tube, the static pressure
is —412 mm Hg (gage). The duct walls are smooth; assume the average friction factor,
£, is the value at section (). Determine the length of duct required for choking from
section @, the Mach number at section @, and the duct length, L., between
sections (1) and (2). Sketch the process on a Ts diagram,

EXAMPLE PROBLEM 12.7

GIVEN: Air flow (with friction) in an insulated constant-area tube.

To=296 K
Pp = 760 mm Hg

Gage pressures: p; = —18.9 mm Hg, and p, = —412 mm Hg. M, =10
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where we used Eq. 12.21d to obtain the value of p/p* at section @ For p/p* = 2.698 at section @, Eg.
12.21d vields M; = 0.400 (after obtaining an initial guess value from the plot in Appendix E-2, and iterating).

M, = 0.400 M,
The Ts diagram for this flow is
. Poy P Poz
TIMO = constant
721D T2
p, (2

§

AtM, = 0,400, fLy, /Dy, = 2.309 (Eq. 12.21a, Appendix E-2). Thus

floa\ Dy 0.00716 m
= = | — —+ =239 Xx —— = 0.704
Lo3 = mac)2 { D, ), % X 00235 "
Finaily,
Ly =Ly - Ly =(499-0704)m =429m L,

—

This problem illustrates use of the Fanno-line equations, Eqs.
12.21.

v These equations give the same results as the basic equa-
tions, Eqs. 12.11, as can be seen by comparing, for exam-
ple, the value of M, obtained in this Example Problem and
in Example Problem 12.6.

v The computations can be quile laborious without using
preprogrammed Fanno-line relations!

The Excel workbook for this Example Problem is ¢on-

venient for performing the calculations, either using the

Fanno-line relations or the basic equations,

Isothermai Flow (CD-ROM)

. 12-4 FRICTIONLESS FLOW IN A CONSTANT-AREA DUCT
o WITH HEAT EXCHANGE

To explore the effects of heat exchange on a compressible flow, we apply the hasic
equations to steady, one-dimensional, frictionless flow of an ideal gas with constant
specific heats through the finite control velume shown in Fig. 12.14.

As in Section 12-2 (effects of area variation only) and Section 12-3 (effects of fric-
tion only), our starting point in analyzing frictionless flows with heat ¢xchange is the




658

i) I
I
i
"If_:"
_' '-\."q.-'
— :;' -
O] i AR
W3 ¥
= |- & I' l".'| | T'I lll'J\
2, £ )
"'-
- [
P

'rrl_'ll



12-4 FRICTIONLESS FLOW IN A CONSTANT-AREA DUCT WITH HEAT EXCHANGE 659

Note that Eq. 12.30¢ indicates that the heat exchange changes the total (kinetic plus
internal) energy of the flow. Equation 12.30d is not very useful here. The inequality
or equality may apply, depending on the nature of the heat exchange, but in any event
we should not conclude that in this flow the entropy necessarily increases. For exam-
ple, for a gradual cooling it will decrease! _

Equations 12.30 can be used to analyze frictionless flow in a channel of constant
area with heat exchange. For example, if we know conditions at section () (i.c., p,,
p, T, 5, hy, and V) we can use these equations to find conditions at some new
section (2) after the fluid has experienced a total heat exchange 8Q/dm. For a given
heat exchange, we have six equations (not including the constraint of Eq. 12.30d) and
SiX unknowns (py, o, Ta, 52, by, and V5). Tt is the effect of heat exchange thal causes
fluid properties to change along the duct. In practice, as we have seen for other flows,
this procedure is unwieldy — we again have a set of nonlinear coupled algebraic equa-
tions to solve, We will use Eqgs. 12.30 in Example Problem 12.8. We will also develop
some Mach number-based relations to supplement or replace the basic equations, and
show how (o use these in Example Problem 12.9.

The Rayleigh Line

If we use Eqgs. 12.30 to compute property values as a given flow proceeds with a pre-
scribed heal exchange rate, we obtain a curve shown qualitatively in the Ts plane in
Fig. 12.15. The locus of all possible downstrcam states is called the Rayleigh line.
The calculations show some interesting features of Rayleigh-line flow. At the point of
maximum temperature (point a of Fig. 12.15), the Mach number for an ideal gas is
1/+/k . At the point of maximum entropy (point b of Fig. 12.15), M = 1. On the upper
branch of the curve, Mach number is always less than unity, and it increases monoto-
nically as we proceed to the right along the curve. At every point on the lower portion
of the curve, Mach number is greater than unity, and it decreases monotonically as
we move to the right along the curve. Regardless of the initial Mach number, with
heat addition the flow state proceeds to the night, and with heat rejection the flow
state proceeds to the left along the Rayleigh line.

T

5
Fig. 12.15 Schematic Ts diagram for
frictionless flow in a constant-area duct with
heat exchange (Rayleigh-line tlow}.
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r
oy

Rayleigh lj
Rayleigh line ayleigh line

g
3

(e} Subsonic flow l {b) Supersonic flow
Fig. 12.16 Reduction in stagnaticn pressure due to heat addition for two flow cases.

For subsonic flow, the Mach number increases monotonically with heating, until
M =1 is reached. For given inlet conditions, all possible downstream states lie on a
single Rayleigh line. Theretfore, the point M = 1 determines the maximum possible
heat addition without choking. If the flow 1s initially supersonic, heating will reduce
the Mach number. Again, the maximum possible heat addition without choking is
that which reduces the Mach number to M = 1.0

The effect of heat exchange on static pressure is obtained from the shapes of the
Rayleigh line and of constant-pressure lines on the Ts planc (see Fig. 12.16). For
M <1, pressure falls with heating, and for M >> 1, pressure increases, as shown by
the shapes of the constant-pressure lines, Once the pressure variation has been found,
the effect on velocity may be found from the momentum equation,

A = prA = mVy, —mV, (12.30b)

or
Pt (EJV = constant
A

Thus, since m/A is a positive constant, trends in p and V must be opposite. From the
continuity equation, Eq. 12.30a, the trend in p is opposite to that in V.

Local isentropic stagnation pressure always decreases with heating. This 1s illus-
trated schematically in Fig. 12.16. A reduction in stagnation pressure has obvious
practical implications for heating processes, such as combustion chambers. Adding
the same amount of energy per unit mass (same change in 7,) causes a larger change
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Solving for T,, we obtain

2 3 a
T2=&=103’f7x1443‘2—x R, om R s00or T,
R in. ft 0.01811bm  53.3ft-1bf
The local isentropic stagnation temperature is given by 11.20b,
k-1 .,
Toz = T2[1 + TMEJ
V. 1790
¢, = JkRT, = 1890fus; M, = 6—2 = Taon = 0947
Ty, = 1490°R[1 + 0.2(0.947)*] = 1760°R ¢ To,
and
kS(k-1) 35
T 1760 Po
= 2 — H - M
Py, = pz[TZJ =10 psu{M%] = ]7.9 psia ¢ 2
The heat addition is obtained from the energy equation (Eq. 12.30¢),
50 Vi i
= - 42— =h, - (12.30¢)
el =L b= by,
or
&0
an ho, = by, = ¢p(Ty, — T,
We already obtained Ty, . For T, we have
_ k-1 5
=y
Vi 360
¢ = JKRT, = 1200fvs; My =-—L=""-=03
! ! : 1T T 1200
Ty, = 600°R[1 + 0.2(0.3)*] = 611°R
50
% _0280 BN 00 611)°R = 276 Bru/lbm 801 dm
dm lbm-°R ¢
For the change in entropy (Eq 12.30g),
T P T J
As=s,—5,=c,n2-Rm =¢, 2 -(c, —c,)In2 (12.30g)
2 A Iy R P Py &
Then
0.240 Bw (1490] {0.240 — 0.171) Btu (10]
52 — 5 = 1 - X In| —
ibm -°R 600 tbm - °R 20
Iy =5 = 0.266 Bl‘u!(lbm OR) L 5 =5
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The process follows a Rayleigh line:
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SOLUTION:
To obtain property ratios, we need both Mach numbers.

1/2
14 287 N-m 333K kgm
= JkRT, = X —_— % X = 366 m/!
“ [ kg K N-sz} )

M]=ﬁ=732.'ﬂx S __—2
| 5  366m

From the Rayleigh-line flow functions of Appendix E-3 we find the following:

M ToIT} Polp® T/T* pip* Vive
2.00 0.7934 1.503 0.5289 0.3636 1.455
1.20 0.9787 1.019 0.9119 0.7958 1.146

Using these data and recognizing that critical properties are constant, we obtain

T, HIT*_ 08119 _
o LIT* 05289

72, T, = L7127 = (1.72)333K = 573K T,

1] P2 ,p* 0.7958
=t l_=_""_ =219 =2.19p, = (2.19)135kPa
n p/p* 03636 P n =219

P2 = 296 kPa (abs) ) P2

h —

¥
Vo BiVE_ 1198 _h78s v, = 0.788Y, = (07881732 mis
Vv, V/ve 1455

Vo, =577Tmis | V,
S
p, 296x10° N kgK | 3
P LY = 1.80 kg
P2 = %1y m? 287N-m 513K gm i

A3

The heat addition may be determined from the energy equation, Eq. 12.30¢c, which reduces to (see Example
Problem 12.8)

2 =ty = (T, = Ty)

From the isentropic-stagnation functions (Eq. 11.20b) at M = 2.0,

T 7 T, 333K
—:—:0,5556; Ih =———=———=53K
T, Ty, % 7 05556 0.5556
andatM = 12,
T = i - 07764; 7‘0 = T2' = m = 738 K | T'}l
T T, 2707764 0.77 ¢
Substituting gives
80 .
o =T, "%')zlmkg'l( X (738 — S99)K = 139 K/kg 8Q/ dm
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ey

12-5 NORMAL SHOCKS

We have previously mentioned normal shocks in the section on nozzle flow, In
practice, these irreversible discontinuities can occur in any supersonic flow field, in
either internal flow or external flow.! Knowledge of property changes across shocks
and of shock behavior is important in understanding the design of supersonic
diffusers, e.g., for inlets on high performance aircraft, and supersonic wind tunnels.
Accordingly, the purpose of this section is to analyze the normal shock process.

Before applying the basic equations to normal shocks, it is important to form a
clear physical picture of the shock itself. Although it is physically impossible to have
discontinuities in fluid propertics, the normal shock is nearly discontinuous. The thick-
ness of a shock is abour 0.2 pum {1077 in.), or roughly 4 times the mean free path of the
gas molecules [3]. Large changes in pressure, temperature, and other properties occur
across this small distance. Local fluid decelerations reach tens of millions of gs! These
considerations justify treating the normal shock as an abrupt discontinuity; we are inter-
ested in changes occurring across the shock rather than in the details of its structure,

Consider the short control volume surrounding a normal shock standing in a
passage of arbitrary shape shown in Fig. 12.17. You may be exhausted by this proce-
dure by now, but as for isentropic flow with area variation (Section 12-2), frictional
flow (Section 12-3), and flow with heat exchange (Section 12-4), our starting point in
analyzing this normal shock is the set of basic equations (Egs. 12.1), describing one-
dimensional motion that may be affected by several phenomena: area change, fric-
tion, and heat transfer, These are

pVIA = p,VaA, = pVA = s = constant (12.1a)
R.+ piA, — poAs = 1iVy — iV, (12.1b)

- 2 2
Xy (12.1¢)

dm 2 2

. 1{Q

AR I - D) 12.1d
=29 o
p = pRT {12.1e)
Ah=hy = h = AT =¢(T, - T\) (12.1)

Fig. 12.17 Control velume used for analysis
of normal shock.

' The NCFMF video Channel Flow of a Compressible Fluid shows several examples of shock formation
in internal flow.
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The temperature ratio can be expressed as

L_hlhyT
L L, T T
Since stagnation temperature is constant across the shock, we have
r 1+ k-t M3
2o 2 (12.33)
T; k-1 .2
o+ —— M5
2
A velocity ratio may be obtained by using
Yy My, My RL M, T
Y Mg, M, JkRT, M VT
or "
k-1, 5,7
v, M 1+ — M
MM e
A ratio of densities may be obtained from the continuity equation
V= Vs (12.32a)
s0 that
k=1, 1/2
l+ —M
pp_ Y M| 2 72 (12.34)
2 Vs Myl ﬂ MIZ
2
Finally, we have the momentum equation,
R AN R AT (12.32b)
Substituting p = p/RT, and factoring out pressures, gives
2 2
P ]+V—'_ =m ]+V—2
R RT,
Since
v? v?
= k—— = kM?
RT kRT
then
2
p][l + kM]] = pz[l + kM%:I
Finally,
2
Py _LHKM| (12.35)
14! | + kM2

To solve for M, in terms of M,, we must obtain another expression for one of the
property ratios given by Eqs. 12.33 through 12.35.
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Using Eqs. 12.37b and 12.39, we find that Eq. 12.38 becomes

ki(k=1)
k+1M%
2
» l+k_lM,2
0 2 DT (12.40)
Po, [2:( 3 k-l]‘
M7 -
k+1 k+1

After substituting for M7 from Eq.12.37b into Eqgs. 12.33 and 12.34, we summarize
the set of Mach pumber-based equations {renumbered for convenience) for use with
an ideal gas passing through a normal shock:

. 2
Mt
M; = k=1 (12.41a)
2 M? -
k-1
kf(k~1)
k+]M‘ig
2
1+EM%
Po, _ 2 (12.41b)
— = 7 (k=) )
Po, |:2k 2k 1}
k417 k1
[1 it M3 )(kME - u}
L 2 2 (12.41¢)
T 2 4AlC
1 (k+]] Mlp_
2
Py _ 2k %Jf“l (12.41d)
m k1 k+1
k+1 2
M
p_Y__ 2 (12.41€)

¥ 1+QM|2
2

Equations 12.41, while quite complex algebraically, provide explicit property relations
in terms of the incoming Mach number, M,. They are so useful that some calculators
have some of them built in (c.g., the HP 48G serics [1]); it is a good idea to program
them if your calculator does not already have them. There are also interactive web
sites that make them available (see, e.g., [2]), and they are fairly easy to define in
spreadsheets such as Excel. Appendix E-4 lists flow functions for M, and property ra-
tos py/Pa,, TiT|, pifp,, and po/p, (Vi/V,) in terms of M, for normal-shock flow of
an ideal gas. A table of values, as well as a plot of these property ratios, is presented
for air (¢ = 1.4) for a limited range of Mach numbers. The associated Excel work-
book, Normal-Shock Relations, can be used to print a larger table of values for air
and other ideal gases.
A problem involving a normal shock is solved in Examplc Problem 12.10.
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For an ideal gas,

293 x 10° .

py =22 = XO%X kg K 1 =2.18kg/m’ P2
RT, m- 287N.-m 469K

Stagnation temperature is constant in adiabatic flow. Thus
T
Tp, =T, = S00K ¢ o

Using the property ratios for a normal shock, we obtain

Po, = Po, P02 _ 509 kPa (0.7209) = 367 kPa(abs) Pu,

0y

For the change in entropy (Eq. 12.32g),

T
S5 -85 = crpln—z— RInE2
T P
But s, — 5o, = $; — 5,50
=0
T; P kJ
— 5, =5 85 =c,l —RInf% = - ().287 X In(0.7209
S, — S0, =5 "5 =, ni;.{] nPu: 0 e K nf )
53 — 51 = 0.0939kV(kg-K) 5 -5
The T diagram is
T )
.!'Uz - .\Ol
P Top =Ty,
Poy Poy : P
T2

| Shock

S2—5)

This problem illustrates the use of the normal shock relations,
Egs. 12.41, {or analyzing flow of an ideal gas through a nor-
mal shock.
i The Excel workbook for this Example Problem is con-
venient for performing the calculations.




Ty — Tovacuum
Po — pump
V=0
T T T T T T T T T T Talve
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Po (i) Regime |
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egime 11
(v
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(wiii) Regime 111
) ¥ Regme Ty
|
Throat L Exit x —
plane

Fig.12.20 Pressure distributions for flow in a cenverging-diverging nezzle for
diffgrant back pressures,
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In Regime III, as exemplified by condition (viif), the back pressure is higher than
the exit pressure, but not high enough to sustain a normal shock in the exit plane. The
flow adjusts to the back pressure through a series of oblique compression shocks out-
side the nozzle; these oblique shocks cannot be treated by one-dimensional theory.

As previously noted in Section 12-2, condition (/v) represents the design condi-
tion. In Regime 1V the flow adjusts to the lower back pressure through a series of
oblique expansion waves outside the nozzle; these oblique expansion waves cannot
be treated by one-dimensional theory.

The Ty diagram for converging-diverging nozzle flow with a normal shock is
shown in Fig. 1221, state D is located immediately upstream from the shock and

state @) is immediately downstream. The entropy increase across the shock moves
the subsonic downstream flow to a new isentropic line. The critical temperature is
constant, so p¥ is lower than p¥. Since p* = p*/RT*, the critical density downstream
also is reduced. To carry the same mass fiow rate, the downstream flow must have a
larger critical area. From continuity (and the equation of state), the critical area ratio
is the inverse of the critical pressure ratio, i.e., across a shock, p*A* = constant.

If the Mach number (or position) of the normal shock in the nozzle is known, the
exil-plane pressure can be calculated directly. In the more realistic situation, the exit-
plane pressure is specified, and the position and strength of the shock are unknown. The
subsonic fiow downstream must leave the nozzle at the back pressure, so p, = p,. Then

Py _ P _ P Py _ p AT _ P AA

e b (12.42)
Po, Po, Po, Pv, Po, A3 Po, A A3

Because we have isentropic flow from state @ (after the shock) to the exit plane,

AY = AY and Py, = Pp- Then from Eq. 12.42 we can write

Pe _ Pe A A _ P A A

Po, Po, A A3 po, A AT

Ty = constant

T = constant

5

Fig. 12.21 Schematic Ts diagram for flow in a
converging-diverging nozzle with a normal shock.
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.

il
(@) Subsonic A < 1 () Low supersonic (¢) Increasing M

Fig. 12.27 Airplane flow patterns as speed increases.

an oblique shock—a shock wave that is aligned, at some angle 8 < 90°, to the flow,
This oblique shock causes the streamlines to abruptly change direction (usually to
follow the surface of the airplane or the airplane’s airfoil). Further away from the air-
plane we still have an oblique shock, but it becomes progressively weaker (8 de-
creases) and the streamlings ¢xperience smaller deflections until, far away from the
airplane the oblique shock becomes a Mach cone {8 — «) and the streamlines are es-
sentially unaffected by the airplane.

A supersonic airplane does not necessarily generate an oblique shock that is at-
tached to its nose—we may instead have a detached normal shock ahead of the air-
plane! In fact, as illustrated in Fig. 12.27, as an airplane accelerates to its supersonic
cruising speed the flow will progress from subsonic, through supersonic with a de-
tached normal shock, to attached oblique shocks that become increasingly “pressed”
against the airplane’s surface.

We can explain these flow phenomena using concepts we developed in our analysis
of normal shocks. Consider the oblique shock shown in Fig. 12.28q. It is at some angle
B with respect to the incoming supersonic flow, with velocity V., and causes the flow to
deflect at some angle 0, with velocity V, after the shock.

It is convenient to orient the xy coordinates orthogonal to the oblique shock,
and decompose V, and ¥, into components normal and tangential to the shock, as
shown in Fig. 12.28b, with appropriate subscripts. The control volume is assumed to
have arbitrary area A before and after the shock, and infinitesimal thicknegss across
the shock (the upper and lower surfaces in Fig. 12.286). For this infinitesimal control
volume, we can write the basic equations: continuity, momentum, and the first and
second laws of thermodynamics.

The continuity equation is

= 0(1)

@J/ dV+J pV-dA =0 (4.12)
a[ Cv s

Assumption: (1) Steady flow,

BIBLIOTECOR
.28

-

{a} Oblique shock (b) Oblique shack 1n shock coordinates
Fig. 12.28 Obliqua shock control volume.
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For our control volume we obtain

0= [“1 ot 71}(_131‘/1,,’1) + [”z + prUp t —;—J(szz,,A)

(Remember that v here represents the specific volume.) This can be simplified by
using # = u + pv, and continuity (Eq. 12.45a},

v v2
By +—L =h +—%
172 b 2

But each velocity can be replaced by its Pythagorean suni, so

v+ vl v 4+ Vi
il f= + n {

o+
2 2

We have already learned that the tangential velocity is constant, V| =V, =V, so
the first law simplifies to

vi Vi

i
h + —2 = h2 4+ —A 12.45¢)
! 2 2 (

Finally, the second law of thermodynamics is
= 0(1) = 0(4)

%yspdwf 5 ;)V'dEEJ’ %)M (4.58)
cv cs s

The shock is irreversible, so Eq. 4.58 for our control volume is
Sl(_pl‘/J"A) + .92([)2‘/2”44) >0

and, again using continuity,
55 > 8 (12.45d)

The continuity and momentum equations, and the first and second laws of thermody-
namics, for an oblique shock, are given by Eqs. 12.45a through 12.45d, respectively.
Examination of these equations shows that they are identical to the corresponding
equations for a normal shock, Eqs. 12.32a through 12.32d, except V, and V, are re-
placed with normal velocity components V) and V; , respectively! Hence, we can
use all of the concepts and equations of Section 12-5 for normal shocks, as long as
we replace the velocities with their normal components only. The normal velocity
CcOmponents are given by

W, =V sing (12.46a)

and
Vzu = Vysin(B - 6) (12.46b)

The corresponding Mach numbers are

v
M, = CL = M, sin B (12.47a)
t
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EXAMPLE PROBLEM 12.11

GIVEN: Air flow with:

p = 100kPa
T, =-2C
V, = 1650 m/s

FIND: Downstream pressure, temperature, and speed if it experiences (a) a normal shock and (b) an
obligue shock at angle 8 = 30°. Also find the deflection angle .

SOLUTION:
(a) Normal shock
First compute the speed of sound,
14 287 N-m 271K kg-m
¢ = JKRT, = ' X —_— X x =330 m/s
1 I V kg‘ K 32 .\ N

Then the upstream Mach number is

From the normal-shock flow functions, Eqgs. 12.41, at M, = 5.0

M, M, P2/py T/T, V)/Vy
5.0 04152 29.00 5.800 0.2000

From these data

T, = 5.8007; = (5.800)271K = IS72K = 1299°C L5
py = 29.00p, = (29.00)100 kPa = 2.9MPa | p;
V, = 0200V, = (0.200)1650 m/s = 330 mvs Y

{(b) Oblique shock
First compute the normal and tangential components of velocity,
Vi, = V;sin B = 1650 m/s X sin 30° = 825 m/s
V), = V,cos B = 1650 mfs X cos 30° = 1429 m/s
Then the upstream normal Mach number is

_ Vi, _825mis _
" 330ms

From the oblique-shock flow functions, Eqs. 12.48, at M, = 2.5

Ml Mzn lepl Tle] Vg,/Vh

2.5 0.5130 7.125 2,138 0.300
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We can also relate the two normal velocities from Eq. 12.48e,

Ly 2 " .
s {12.48¢)

Equating the two expressions for the normal velocity ratio, we have

k+1 .2

Y I

n

_wanf3 o
V, anB-6) ., k-1 M,z
2 A

and

tan 3 k=1
tan(f3 — 8) = [] + M 1"]
e+ 1) Mﬁr

Finally, if we use M, = M, sin 8 in this expression and further simplify, we obtain
(after using a trigonometric identity and more algebra)

2cot (M} sin® B 1)

tand = 5
Mi{k+cos2f)+2

(12.49)

Equation 12.49 relates the deflection angle # to the incoming Mach number M, and
the oblique shack angle 8. For a given Mach number, we can compute # as a function
of B, as shown in Fig. 12.29 for air (k = 1.4).

Appendix E-5 presents a table of values of deflection angle 8 as a function of
Mach number M| and oblique shock angle 3 for air (k = 1.4} for a limited range of
Mach numbers. The associated Excel workbook, Oblique-Shock Relations, can be
used to print a larger table of values for air and other ideal gases.

We should note that we used M, and shock angle & to compute 4, but in reality
the causality is the reverse: it is the deflection 8 caused by an object such as the sur-
face of an airplane wing that causes an oblique shock at angle 8. We can draw some
interesting conclusions from Fig. 12.29:

v For a given Mach number and deflection angle, there are generally awo possible
oblique shock angles—we could generate a weak shock (smaller 8 value, and
hence, smaller normal Mach number, M, ) or a strong shock (larger 8 value, and
hence, larger normal Mach number). In most cases the weak shock appears (excep-
tions include situations where the downstream pressure is forced to take on a large
value as caused by, for example, an obstruction).

v For a given Mach number, there is a maximum deflection angle. For example, for air
(k = 1.4),if M, = 3, the maximum deflection angle is 8,,, = 34°. Any attempt to
deflect the flow at an angle 6 > 6., would cause a detached normal shock to form
instead of an oblique shock.

v For zero deflection (6 — 0), the weak shock becomes a Mach wave and 8-+ o =
sin '(1/M).



Deflection angle, 8{deg)
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SOLUTION:
For an angle of attack of 1° of an airfoil with leading edge angle 6°, the deflection angles are 6, = 2° and
6, = 4° as shown.

(a) Upper surface
First compute the speed of sound,

T4_®N.m _ 277K _kgm
= JRT, = [ T ATTR =34
“ ' \( kg K <N )

Then the upstream Mach number is

Vi _ 600m/s
¢ 334mis

For M, = 1.80 and 6, = 2°, we obtain §, from
2cot B, (M sin® B, - 1)
ME(k + cos2B,) +2

= 1.80

(12.49)

tan@, =

This can be solved for 8, using manual iteration or interpolation, or by using, for example, Exce!'s Goal
Seek function,

B, = 35.5°

Then we can find M,mm),

= M, sin 8, = 1.80 x sin 35.5° = 1.045

Ln(appen)
The normal Mach number for the upper oblique shock is close to one —the shock i1s quite weak.

From the oblique-shock pressure ratio, Eqs. 12.48d, at M) oper) — 1.045,

Pauppen) _ 2k " _kol_2x14 o pen (45D
o) k+1 e Fgp] (14+1) (14 +1
Hence,
P2py = 1111 = (11100 KPa = 111 kPa P2 uppen
(b) Lower surface

For M, = 1.80 and ¢, = 4°, we obtain 3, from
2cot (M7 sin” B, - 1)

(12.49)
ME(k + cos2B,) + 2

tan 6; =

and find
ﬂt = 37.4°
Then we can find M, ,
a ([ower)
L gowey = Misin B = 1.80 x sin 37.4° = 1.093

The normal Mach number for the lower oblique shock is also close to one.

From the oblique-shock pressure ratio, Eq. 12.48d, at = 1,093,

pzt_lowcr) - Zk i}, _ k -1 _ 2% 1.4 (1 3)2 _ (l4 - 1) _

Py k+1 Ttowe gyl (14 +1) 4+1
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V+dV

(a) Isentropic wave {b) Isentropic wave in wave coordinates
Fig. 12.31 I[sentropic wave control volume.

from an oblique shock wave in two important ways:

v The wave angle is @ = sin"'(1/M), instead of angle B for the oblique shock.

v The changes in velocity and in density, pressure, etc., and the deflection angle, are
all infinitesimals.

The second factor is the reason that the flow, which is adiabatic, is isentropic.
With these two differences in mind we repeat the analysis that we performed for
the oblique shock. The continuity equation is

= 0(1)

if/pdwf o7 dA =0 @12)
i s

Assumption: (1) Stcady flow.
Then
[-pVsina A} + {{(p + dp)}(V + dV)sin(a — dB)A) = 0
or
pVsina = (p + dp)(V + dV)sin(a — d6) (12.50)

Next we consider the momentum equation for motion normal and tangent 1o the
shock. We look first at the tangential, y component

= 0(2) =0(1)

Fs,+F/'/y‘= %j %;d&wj V, oV - dA (4.18b)
v cs

Assumption:  (2) Negligible body forces,
Then
0 = Veosal—pVsina A} + (V + dV) cos(a — d8){{(p + dp)V + dV)sin(a — dB)A)
or, using continuity (Eq. 12.50),
Veosa = (V + dV)cos(a — d6)

Expanding and simplifying [using the facts that, to first order, in the limit as 6 — 0,
cos(d®) — 1, and sin{d6) — 48], we obtain
av
Viano

Butsina = /M, sotan a = lf’\fM’2 -1, and

d6=—\/M2-1d7v (12.51)
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dv 2 dM
— (12.53)
Vo 2+M(k-1Y M
Finally, combining Eqgs. 12.51 and 12.53,
WM -1 aM
= J d (12.54)

2+ M k-1 M
We will generally apply Eq. 12.54 to expansion waves, for which d8 is negative, so it
is convenient to change variables, dw = —d6. Equation 12.54 relates the differen-
tial change in Mach number through an isentropic wave to the deflection angle. We
can integrate (his to obtain the deflection as 4 function of Mach number, to within a
constant of integration. We could integrate Eq. 12.54 between the initial and final
Mach numbers of a given flow, but it will be more convenient to integrate from a
reference state, the critical speed (M = 1) to Mach number M, with w arbitrarily set
tozeroat M = [,

w oM -1 aM
Iod _-[1 2 2 M
s MAUk-D M

leading to the Prandti-Meyer supersonic expansion function,

. -1 o ) :
kL '5——1(M2 - |- ran“(ﬁdz - 1) (12.55)
k-1 Vk+1

& =

We use L. 12.55 to relate the total deflection caused by isentropic expansion {rom
ﬂ/f] 18] Mz‘
Deflection = wy — | = w(M;) - w(M))

Appendix E-6 presents a table of values of the Prandii-Meyer supersonic expan-
sion function, @, as a functon of Mach number M for air (k = [.4) for a limited
range of Mach numbers. The associated FExcel workbook, Isentropic Expansion
Wave Relations, can be used to print a larger table of values for air and other ideal
gases.

We have already indicated that the flow is isentropic. We can verify this by using
the second law of thermodynamics,

= 0(1) = 0(4)

glyspd’v‘+j spﬁ-di'af %%)M (4.58)
(8" s [N

The wave is reversible, so Eq. 4.58 for our control volume is
sl—pVsina A} + (s + ds)[(p + do}V + dV)sin(a — d6)A) = 0
and using continuity (Eqg. 12.50),
ds =10

The flow is demonstrated to be isentropic. Hence, stagnation properties are constant and
the local 1sentropic stagnation property equations (Section 11-3) will be usetu] here.
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80

V14

The Prandtl-Meyer function value on the upper surface, w,, is then
w, = w + 6, =207+ 3 =237
For this Prandtl-Meyer function value, MZ(W] is obtained from Eq. 12.55:

_ k+1 2l k=1 2 -i H 2
w, = mtan (Jm(ﬂfqumﬁ—‘]]]—tan Mz(uw“)—l

This can be solved using manual iteration or interpolation, or by using, for example, Excel’s Goal Seek

function,
M, = 1.90
(uppes)

w = 1'4'” "f (1802—1)J ‘1[J1.302—1}=20.7°

Finally, we can find P2y from repeated use of Eq. 11.20a,

p &(k-1) _ kfk=1)
p2 T _ Z(uppe:) p_(}pl _ 1+ _k lMl 1+ k ] M%| pl
o py P 2 2w

= {1+ 21802 /(1 + ©.201.90* "} x 100 kPa
{ I [+ 02n00]}

$0
. P2iupper
P2 B5.8kPa Liuppery

(b) Lower surface—oblique shock
For M, = 1.80 and 8, = 9°, we obtain 3, from

2 col @(M3 sin® B, -

tan 8, = = (1249)
Mi(k +cos2fB)+2
and find
B = 42.8°

Then we can find M, .

Mln {Jower) = M] Sin Bf = I-g() X Sin 42-80 = 1223
From the oblique-shock pressure ratio, Eq. 12.48d, at M:,‘(,m,, = 1223,

p . B -
2(Inwcr? = iM% - —l = Zx14 (1223)2- M = I'58
pl k +1 n{lower) k +1 (1.4 + 1) (1.4 + l)

Henece,

Plery = 1-38P = (1.58)100 kPa = 158 kPa P2 owen

& L
—

This Example Problem illustrates the use of Eq. 12.55 and the

isentropic stagnation relations for analysis of isentropic expan-

sion waves and the use of Eq. 12.49 for an oblique shock.

% The Excel workbooks for isentropic expansion waves
and oblique shocks are convenient for performing these
calculations.
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For Region 3, we first need to find the Prandtl-Meyer function in the previous region, Region 2,. For
My = 1.223, we find from Eq. 12.55,

Gowex)
_ k+1 -1 ‘k-—l 2 -1 2
Domes = Y g1 2" (Um(%m«;'l) ~tan ( Mzw‘l]
o LAt J1'4_1(1.4892—l] —tan"(\h.4892—lj
Via-1 14+1
S0

2 ey = 11.58°
Hence, for Region 3,,
B3 ey = Ploey +0 = 11.58°+6° = 17.6°

)is cbtained from Eq. 12.55,

jloweer)
_ e i o kD1 (1
m3(lowe:] - k-1 1an [Jk +1 (M3(luwcr) - I)J — tan M3(Iower) ~1

Once again, this can be solved using manual iteration or interpolation, or by using, for example, Excel’s
Goal Seek function,

and Mgﬂ

M; ey = 1693
Finally, we can find P, from repeated use of Eq. 11.20a,

P3gers POy [ k=19 ]“‘"‘” /[ k-1, ]“(*-”
= =1+ —M 1+ —M
P ouen Po, Pl P2 joueny 9 2 flower) 2 3 (lowen P2 ouen

= {[1 + (0.2)1.4892]3‘5 / [1 + (0.2)1.6932]3‘5} x 158 kPa

Hence,

pa{lower) = 117kPa s 73

(Note that we cannot use pp, the stagnation pressure of the incom-
ing flow for computing this pressure, because the flow experienced
a shock before reaching the lower surface.)

To compute the lift and drag coefficients, we need the lift and
drag force.

First we find the vertical and horizontal forces with respect to
coordinates orthogonal to the airfoil.

The vertical force (assuming the chord ¢ and span s are in
meters) is given by

Fy=s % {(pzﬂnwer)+ p3(lower)) - (Pz‘“PP“’+ Peren )}

F, = s(m) C(;“) {(158 + 117) - (85.8 + 60.9)}(kPa) = 64.2 sc kN

and the horizontal force by

c <
Fu = Si tan3 {(pzt\rwer)+ P’gmw)) - (p3(""l"’3+ P3goue )}

Fy = s(m)@m 3°{(85.8 + 158) - (60.9 + 117)}(kPa) = 1.73 sc kN
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i2-8 SUMMARY

In this chapter, we:

v Developed a set of governing equations {(continuity, the momentum equation, the first and
second laws of thermodynamics, and equations of stae) for one-dimensional flow of a
compressible fluid (in particular an ideal gas) as it may be affected by area change, fric-
tion, heat exchange, and normal shocks.

v Simplified these equations for isentropic flow affected only by area change, and devel-
oped isentropic relations for analyzing such flows.

v Simplified the equations for flow affected only by friction, and developed the Fanno-line
relations for analyzing such flows.

v Simplified the equations for flow affected only by heat exchange. and developed the
Rayleigh-line rclations for analyzing such flows.

« Simplified the equations for flow through a normal shock, and developed normal-shock
relations for analyzing such flows,

v Introduced some basic concepts of two-dimensional flow: oblique shocks and expansion
waves.

While investigating the above flows we developed insight into some interesting com-
pressible flow phenomena, including:

« Use of Ts plots in visualizing flow behavior.

v Flow through, and necessary shape of, subsonic and supersonic nozzles and diffusers.

« The phenomenen of choked flow in converging nozzles and CD nozzles, and the circum-
stances under which shock waves develop in CD nozzles.

v *The phenomena of choked flow in flows with friction and flows with heat exchange.
v Computation of pressures and lift and drag coefficients for a supersonic aicfoil.

.ot
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PROBLEMS 701

12.11 Air flows isentropically through a converging nozzle into a receiver where the pres-
sure is 33 psia. If the pressure is 50 psia and the speed is 500 ft/s at the nozzle loca-
tion where the Mach number is 0.4, determine the pressure, speed, and Mach number
at the nozzle throat.

12,12 Air flowing isentropically through a converging nozzle discharges to the atmosphere.
At the section where the absolute pressure is 250 kPa, the temperature 1 20°C and
the air speed is 200 m/s. Determine the nozzle throat pressure.

12.13  Air flowing isentropically through a converging nozzle discharges to the atmosphere.
At a section the area is A = 0.05 m?, 7 = 3.3°C, and V = 200 m/s. If the flow is just
choked, find the pressure and the Mach number at this location. What is the throat
area? What is the mass flow rate?

12.14  Air flows from a large tank (p = 650 kPa (abs), 7" = 550°C) through a converging
nozzle, with a throat area of 600 mm?, and discharges 1o the atmosphere. Determine
the mass rate of flow for isentropic flow through the nozzle.

12.15  Air, with py = 650 kPa (abs) and T, = 350 K, flows isentropically through a con-
verging nozzle. Al the section in the nozzle where the area is 2.6 X 10 * m?, the
Mach number is 0.5. The nozzle discharges to a back pressure of 270 kPa (abs).
Determine the exit area of the nozzle.

12.16 A converging nozzle is connected to a large Lank that contains compressed air at 15°C.
The nozzle cxit area is 0.001 m2 The exhaust is discharged to the aunosphere. To ob-
tain a satisfactory shadow photograph of the flow patiern leaving the nozzle exil, the
pressure in the exit plane must be greater than 325 kPa (gage). What pressure is re-
quired in the tank? What mass flow rate of air must be supplied if the system js to run
continuously”? Show static and stagnation state points on a Ts diagram.

12.17  Air at 0°C is contained in a large tank on the space shuttle. A converging section
with exit area 1 X 10" * m? is attached to the tank, through which the air exits to
space al a rate of 2 kg/s. What are the pressure in the tank, and the pressure, tempera-
ture, and speed at the exit?

12.18 A large tank supplies air to a converging nozzie that discharges to atmospheric pres-
sure. Assume the flow is reversible and adiabatic. For what range of tank pressures
will the flow at the nozzle exit be sonic? If the tank pressure is 600 kPa (abs) and the
temperature is 600 K, determine the mass flow rate through the nozzle, if the exit
areais 1.29 x 10" *

E2.19 A large lank initially is evacuated to 27 in. Hg (vacuum). (Ambient conditions are
29.4 in. Hg at 70°F.) At ¢ = 0, an orifice of 0.25 in. diameter is opened in the tank
wall; the vena contracta area is 65 percent of the geometric area. Calculate the mass
flow rate at which air initially enters the tank. Show the process on a Ts diagram,
Make a schematic plot of mass flow rale as a function of time. Explain why the plot
15 nonlinear.

12.20 An 18 in. diameter spherical cavity initiaily is evacuated. The cavity is to be filled
with air for a combustion experment. The pressure is to be 5 psia, measored after its
temperature reaches T,,. Assume the valve on the cavity is a converging nozzle with
throat diameter of 0.05 in., and the surrounding air is at standard conditions. For how
long should the valve be opened 1o achieve the desired final pressure in the cavity?
Calculate the entropy change for the air in the cavity.

12.21  Air flows isentropically through a converging nozzle attached to a large tank, where
the absolute pressure is 171 kPa and the temperature is 27°C. At the inlet section the
Mach number is 0.2. The nozzle discharges 1o the atmosphere; the discharge arca is
0.015 m?. Determine the magnitude and direction of the force that must be applied to
hold the nozzle in place.
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PROBLEMS 703

A jet transport aircraft, with pressurized cabin, cruises at 11 km altitude. The cabin
temperature and pressure initially ar¢ at 25°C and equivalent to 2.5 km altitude. The
interior volume of the cabin is 25 m>. Air escapes through a small hole with etfective
flow area of 0.002 m?. Calculate the time requircd for the cabin pressure to decrease
by 40 percent. Plot the cabin pressure as a function of time.

A large insulated tank, pressurized to 620 kPa (gage), supplies air to a converging
nozzle which discharges to atmosphere. The initial temperature in the tank is 127°C.
When flow through the nozzle is initiated, what is the Mach number in the exit planc
of the nozzle? What is the pressure in the exit plane when the flow is initiated? At
what condition will the exit-plane Mach number change? How will the exit-plane
pressuce vary with time? How will flow rate through the nozzle vary with time? What
would you estimate the air temperature in the tank to be when flow through the noz-
zle approaches zero?

Air escapes from a high-pressure bicycle tire through a hole with diameter 4 =
0.254 mm. The initial pressure in the tire is p; = 620 kPa (gage). (Assume the temn-
perature remains constant at 27°C.) The internal volume of the tire is approximately
4.26 %X 10 *m’, and is constant. Estimate the time needed for the pressure in the tire
to drop to 310 kPa (gage). Compute the change in specific entropy of the air in the
tire during this process. Plot the tire pressure as a function of time.

A converging-diverging nozzle is attached to a very large tank of air in which the
pressure is 21 psia and the temperature is J00°F. The nozzle exhausts to the atmos-
phere where the pressure is 14.7 psia. The exit area of the nozzle is 1 in.2 What is the
flow rate through the nozzle? Assume the flow is isentropic.

At the design condition of the systen1 of Problem 12.32, the exit Mach number is
M. = 2.0. Find the pressure in the tank of Problem 12.32 (keeping the temperature
constant) for this condition. What is the flow rate? What is the throat area?

A converging-diverging nozzle, designed to expand air to M = 3.0, has a 250 mm?®
exit area. The nozzle is bolted to the side of a large tank and discharges to standard
atmaosphere. Air in the tank is pressurized o 4.5 MPa {gage) at 750 K. Assume flow
within the noezle is isentropic. Evaluate the pressure in the nozzle exit plane. Calcu-
late the mass flow rate of air through the nozzle.

A converging-diverging nozzle, with a throat area of 2 in2, is connected to a large tank
in which air is kept at a pressure of 80 psia and a temperature of 60°F. If the nozzle is to
operate at design conditions (flow is isentropic) and the ambient pressure outside he
nozzle is 12.9 psia, calculate the exit area of the nozzle and the mass fiow rate.

Air, at a stagnarion pressure of 7.20 MPa (abs) and a stagnation temperature of 1100
K, flows isentropically through a converging-diverging nozzle having a throat area of
0.01 m?% Determine the speed and the mass flow rate at the downstream section
where the Mach number is 4.0,

Air is to be expanded through a converging-diverging nozzle by a frictionless adia-
batic process. from a pressure of [.10 MPa (abs) and a temperature of 115°C, to a
pressure of 141 kPa (abs). Determine the throat and exit areas for a well-designed
shockless nozzle, if the mass flow rate is 2 kg/s.

Air flows isentropically through a converging-diverging nozzle attached to a large
tank, in which the pressure is 251 psia and the temperature is 5(0°R. The nozzle is
operating at design conditions for which the nozzle exit pressure, p,, is equal to the
surrounding atmospheric pressure, p,. The exit area of the nozzle is A, = 1.575 in.?
Calculate the flow rate through the nozzle. Plot the mass flow rate as the temperature
of the tank is progressively increased to 2000°R (all pressures remaining the same).
Explain this result (e.g., compare the mass flow rates at S00°R and 2000°R).
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A clean steel pipe is 950 ft long and 5.25 in. inside diameter. Air at 80°F, 120 psia.
and BO fifs enters the pipe. Calculate and compare the pressure drops through the
pipe for (a) incompressible, (b) 1sothermal, and (¢) adiabatic flows.

Natural gas (molecular mass M,, = 18 and k = 1.3} is 10 be pumped through a 36 in.
i.d. pipe connecting two compressor stations 40 miles apart. At the upstream station
the pressure is not to exceed 90 psig, and at the downstreamn station it is to be at least
10 psig. Calculate the maximum allowable rate of Aow (fi*/day a1 70°F and | atm) as-
suming sufticient heat exchange through the pipe to maintain the gas at 70°F.

Consider frictionless flow of air in a constant-area duct. At section @ M, = 0.50,
7 = .10 MPa (abs), and Ttn = 333 K. Through the effect of heat exchange. the
Mach number at section (Z) is M; — 0.90 and the stagnation temperature is Tp, =
478 K. Determine the amount of heat exchange per unit mass to or from the fluid he-
tween secuons @ and @ and the pressure difference, p; — p,.

Air flows through a 2 in. inside diameter pipe with negligible friction. Inlet conditions
ae T, — 60°F, py = 150 psia, and M, = 0.30. Delermine the heat exchange per
pound of air required to praduce M, = 1.0 at the pipe exit, where p, = 72.0 psia.

Air lows without fniction through a short duct of constant area. At the duct entrance,
M, — 0.30, T, - 50°C, and p; = 2.16 kg/m®. As a result of heating, the Mach num-
ber and pressure at the tube outlet are M, = 0.60 and p» — 130 kPa. Determine the
heat addition per unit mass and the entropy change for the process.

Liquid Freon, used Lo cool electronic components, flows steadily into a horizontal
tube of constant diameter, 2 = 15.9 mm. Heat is transferred to the flow, and the lig-
uid beils and leaves Lhe tube as vapor. The effects of fniction are negligible cornpared
with rhe effects of heat addition. Flow conditions are shown. Find (a) the rate of heat
transfer and (b) the pressurc difference, pp — pa.

- S |

Fow —

0
ky = 60.9 kifkg hy = 145 kifkg
o = 1620 kgim?® Pz - 13.4 kgm?
h = 0.835 kgis

P12.75

Air flows at 1.42 kg/s through a 100 mun diauneter duct. Al the inlet section, the tem-
perature and absolute pressure are 52°C and 60.0 kPa. At the section downstream
where the flow is choked. T, - 45°C. Determine the heat addition per unit mass, the
entropy change, and the change in stagnation pressure for the process, assuming fric-
tionless flow.

Consider frictionless flow of air in a duct of constant area, A = 0.087 fi>. At one see-
tion, the static properties are S(0°R and 15.0 psia and the Mach number is (.2, At a
section downstreamn, the static pressure is 10.0 psia. Draw a Ts diagram showing the
static and stagnation states. Calculate the flow speed and temperature at the down-
stream location. Evaluate the rate of heat exchange for the process.

A combustor from a JTED jet engine (as used on the Douglas DC-9 aircraft) has
an air flow rate of 15 Ibm/s. The area is constant and frictional etfects are negligible.
Properties at the combustor inlet are 1260°R, 233 psia, and 609 fus. At the

= These problems require material from sections that may be omitted without loss of continuity in the
text material.
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A supersonic wind tunnel is supplied from a high-pressure tank of air at 25°C.
The test section temperature is to be maintained above 0°C to prevent formation
of ice particles. To accomplish this, air from the tank is heated before it flows into
a converging-diverging nozzle which leeds the test section. The heating is done in
a short section with constant area. The heater output is Q = 10 kW. The design
Mach number in the wind tunnel test section is to be 3.0. Evaluate the stagnation
temperature required at the heater exit. Caleulate the maximum mass flow rate
at which air can be supplied 1o the wind tunnel test section. Determine the area
ratio, A /A,

Consider steady flow of air in a combustor where thermal energy is added by burning
fuel. Negleet friction. Assume thermodynamic propertics are constant and cqual to
those of pure air. Calculate the stagnation temperature at the burner exit. Compute
the Mach number at the burner exit. Evaluate the heat addition per unit mass and the
heat cxchange rate, Express the rate of heat addition as a fraction of the maximum
rate of heat addition possible with this inlet Mach number.

[- - -Combustc:—J
v '
ot A 0.0185 m?

How —

ro=604k () din 2) r,=900K
i = 557 kPa (abs)
Mi - 04

P12.88

Using coordinates 7/7* and (s s%)c,, where s® is the entropy at M = 1, plot the
Rayleigh line for air flow (& - 1.4) for 0.4 <. M < 3.0.

Beginning with the inlet conditions of Problern 12.50. and using coordinates T/T,, and
{5 — 5%)/c,, plot the supersunic and subsonic branches of the Rayleigh line for the flow.

Frictionless flow of air in a constant-area duct discharges to atmospheric pressure at
section 2. Upstream at section . M, — 30, T = 2I5°R, and p, = 1.73 psia.
Between sections (D) and @), 48.5 Buw/lbm of air is added to the flow. Determine M,
and ps. In addition 10 a 7y diagram, skeich the pressure distnibution versus distance
along the channel, labeling sections (D and @

A jet transport aircrafl cruises at M = 0.85 at an altitude of 40,000 ft. Air for the
cabin pressurization system is taken aboard through an inlet duct and slowed isen-
wopically to 100 /s relative to the aircraft. Then it eniers a compressor where its
pressure is raised adiabatically to provide a cabin pressure equivalent to 8430 ft alti-
tude, The air temperature increase across the compressor is 170K, Finally, the aic is
cooled 1o 707F (in a heat exchanger with negligible friction) hefore it is added to the
cabin air. Sketch a diagram of the sysiem. labeling all components and numbering
appropriaie cross-sections. Determine the stagnation and static temperature and pres-
sure al each cross-section. Skeich to scale and label a Ts diagram showing the static
and stagnation state points and indicating the process paths, Evaluate the work added
in the compressor and the energy rejected in the heat exchanger.

A normal shock occurs when a pitot-static tube is inscried into a supersonic wind
tunnel. Pressures measured by the tube are p, = 68.1 kPa (abs) and p; - 54.8 kPa
(abs). Before the shock, 7, = 160 K and p, = 11,0 kPa (abs). Calculaie the air speed
in the wind tunnel.
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Consider a supersonic wind tunnel starting as shown. The nozzle throat area is 1.25
ft?, and the test section design Mach number is 2.50. As the tunnel starts, a normal
shock stands in the divergence of the nozzle where the arca is 3.05 ft>. Upsiream
stagnation conditions are 7, = 1080°R and p, = 115 psia. Find the minimum theo-
retically possible diffuser throat area at this instant. Calculate the entropy increase
across the shock.

Nozzie Test Ditfuser
section

P12.105

A supersonic aircraft cruises at M = 2.7 at 60,000 ft altitude. A normal shock stands
in front of a pitot tube on the aircraft: the tube senses a stagnation pressure of
10.4 psia. Caleulate the static pressure and temperature behind the shock. Evaluate
the loss in stagnation pressure through the shock. Determine the change in specific
entropy across the shock. Show static and stagnation states and the process path on a
Ts diagram.

An aircraft is in supersonic flight at 10 km altitude on a standard day. The true air
specd of the plane is 659 m/s. Calculate the flight Mach number of the aircraft. A
total-head tube attached 10 the plane is used to sense stagnation pressure which is
converted to flight Mach number by an on-board computer. However, the computer
programumer has ignored the normal shock that stands in front of the total-head mbe
and has assumed isentropic flow. Evaluate the pressure sensed by the total-head tube.
Determine the erroneous air speed calculated by the computer program.

A supersonic aircraft flies at M, = 2.7 at 20 km altitude on a standard day. Air enters
the engine inlet system where it is slowed isentropically to M, = 1.3. A normal shock
oceurs at that location. The resulting subsonic flow is decelerated further to M, —= 0.40.
The subsonic diffusion is adiabatic but not isentropic; the final pressure is 104 kPa
{abs). Evaluate (a) the stagnation temperature for the flow, (b) the pressure change
across the shock, (¢) the entropy change, s, — 1, and (d) the final stagnation pressure,
Sketch the process path on a T's diagram, indicating all static and stagnation states.

A blast wave propagales outward from an explosion. At large radit, curvature 15 small
and the wave may be treated as a strong normal shock. (The pressure and temperature
rise associated with the blast wave decrease as the wave travels outward.) At one in-
stant, a blast wave front travels at M = 1.60 with respect to undisturbed air at stan-
dard conditions. Find (a) the speed of the air behind the blast wave with respect to the
wave and {b) the speed of the air behind the blast wave as seen by an observer on the
ground. Draw a Ts diagram for the process as seen by an observer on the wave, indi-
cating stalic and stagnation state points and property values.

Air flows through a converging-diverging nozzle with A /A, = 3.5. The upstream
stagnation conditions are atmospheric; the back pressure is maintained by a vacuum
pump. Determine the back pressure required to cause a normal shock to stand in the
nozzle exit plane and the flow speed leaving the shock.
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shock. Find the nozzle exit pressure. Show the processes on a Ts diagram, and indi-
cate the static and stagnativn stale points.

Air flows adiabatically from a reservoir. where 7Ty = 60°C and py, = 600 kPa (abs),
through a converging-diverging nozzle. The design Mach number of the nozzle is
2.94. A normal shock occurs at the location in the nozzle where M - 2.42. Assum-
ing isentropic flow before and after the shock, determine the back pressure down-
stream from the nozzle. Sketch the pressure distribution.

Consider flow of air through a converging-diverging nozzle. Sketch the approximate
behavior of the mass flow rate versus back pressure ratio, p,/po. Sketch the variation
of pressure with distance along the nozzle, and the Ts diagram for the nozzle flow,
when the back pressure is p*.

A stationary normal shock stands in the diverging section of a converging-diverging
nozzle. The Mach number ahead of the shock is 3.0. The nozzle area at the shock is
500 mm?. The nozzle is fed from a large tank where the pressure is 1000 kPa (gage)
and the temperature is 400 K. Find the Mach number, stagnation pressure, and static
pressure after the shock. Calculate the nozzle throat area. Evaluate the entropy
change across the shock. Finally, if the nozzle exit area is 600 mm?, estimate the exit
Mach number, Would the actual exit Mach number be higher, lower, or the same as
your cstimate? Why?

A supersonic wind tunnel must have two throats, with the second throat larger than
the first. Explain why this must be so.

A normal shock sitands in a section of insulated constant-area duct. The flow is
frictional. At section @ some distance upstream from the shock, T = 470°R. Al
section @ some distance downstrcam from the shock, 7, = 750°R and M, = L.0.
Denote conditions immediately upstream and downstream from the shock by sub-
scripts @ and @, respectively. Sketch the pressure distribution along the duct,
indicating clearly the locations of sections (1) through (@), Skeich a Ts diagram
for the low. Determine the Much number at section @

A normal shock stands in a section of insulated constant-area duct. The [low is
frictional. At section @ some distance upstream from the shock, 7, = 668°R,
Py, = 78.2 psia, and M, = 2.05. At section @, some distance downstream from
the shock, M, = 1.00. Calculate the air speed. V,, immediately ahead of the shock,
where T, = 388°F. Evaluate the entropy change, 5, sy

Supersonic air flow at M, = 2.2 and 75 kPa is deflected by an oblique shock with
angle 8 = 30°. Find the Mach number and pressure afier the shock, and the deflection
angle. Compare these results to those obtained if instead the flow had expericnced a
normal shock. What is the smallest possible value of angle 8 for this upstream Mach
number?

Consider supersenic flow of air at M, = 3.(). What is the range of possible values of
the ohlique shock angle 37 For this range of 3, plot the pressure ratio across the shock.

The temperature and Mach number before an oblique shock are Ty = 15°C and
M, = 2.75, espectlively, and the pressure ratio across the shock is 4.5. Find the de-
flection angle, &, the shock angle, 8, and the Mach number after the shock, Mo

The air velocities before and after an oblique shock are 1000 m/s and 500 m/s, re-

spectively, and the deflection angle is # = 30°. Find the oblique shock angle 3, and
the pressure ratio across the shock.

* These problems require material {rom sectians that may be omitted without loss of continuity in the
text material.
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P12.138, 12.139

Find the incoming and intermediate Mach numbers and static pressures if, after two
expansions of 8, = 10° and #, = 10°, the Mach number is 3.5 and static pressure is
20 kPa.

Consider the wedge-shaped airfoil of Problem 12.136. Suppose the oblique shock
could be replaced by isenlropic compression waves. Find the lift per unit span at the
Mach number of 2.5 in air for which the static pressure is 80 kPa.

Compare the static and stagnation pressures produced by (a) an oblique shock and
(b) isentropic compression waves as they each deflect a flow at a Mach number of 3.5
through a deflection angle of 35° in air for which the static pressure is 50 kPa.

Find the lift and drag per unit span on the airfoil shown for flight at a Mach number
of 1.75 in air for which the static pressure is 30 kPa. The chord length 1s 1 m.

P12.142, 12.143

Plot the lift and drag per unit span, and the lift/drag ratio, as functions of angle of at-
tack for & = 0° 1o 18°, for the airfoil shown, for flight at a Mach number of 1.75 in
air for which the static pressure is 50 kPa. The chord length is | m.

Find the drag coefficient of the symmetric, zero angle of attack airfoil shown for a
Mach number of 2.0 in air for which the static pressure is 95 kPa and temperature is
0°C. The included angles at the nose and tail are each 10°,

P12.144,12.145

Find the lift and drag coefficients of the airfoil of Problem 12.144 if the airfoil now
has an angle of attack of 12°.
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A-1  SPECIFIC GRAVITY

Table A.1 Specific Gravities of Selected Engineering

Materials
{a) Common Manometer Liquids at 20°C (Data from
[1,2, 3]
Liquid Specific Gravity
E.V. Hill blue ail 0.797
Meriam red vil 0.827
Benzene 0.879
Dibutyl phthalate 1.04
Monochloronaphthalene 1.20
Carbon tetrachloride 1.595
Bromoethylbenzene (Meriam blue) 1.75
Tetrabromoethane 295
Mercury 13.55
(b) Common Materials (Data from [4].)
Specific Gravity

Material (—)
Aluminum 2.64
Balsa wood 0.14
Brass 8.55
Cast Iron 7.08
Concrete (cured) 2.4%
Concrete (liguid) 2.5*
Copper 8.9
[ce (0"C) 0917
Lead 1.4
Oak 077
Stecl 7.83
Styrofoam (1 pef**) 0.0160
Styrofoam (3 pcf) 0.0481
Uranium (depleted) 18.7
White pine 0.43

*depending on aggregale

**pounds per cubic foot

17

(39°F). The maximum density of water is uscd as a reference value to calculate spe-

cific gravity. Thus

Consequently the maximum SG of water is exactly unity.

SG = L __
szo (at4 C)

Specific gravities for solids are relatively insensitive to temperature; values
given in Table A.] were measured at 20°C.
The specific gravity of seawater depends on both its temperature and salinity. A
representative value for ocean water is $G = 1.025, as given in Table A.2.
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Table A.3 Propenrties of the U.S. Standard Atmosphere (Data from [7].)

Geometric
Altitude Temperature PP, pips,
(m) (K) (=) (=)
=500 2914 1.061 1.049
0 288.2 1.0007 1.000°
500 2849 0.9421 0.9529
1,000 281.7 0.8870 0.9075
1,500 2784 0.8345 0.8638
2,000 2752 0.7346 0.8217
2,500 271.9 07372 0.7812
3,000 268.7 0.6920 0.7423
3,500 2654 0.6492 0.7048
4,000 2622 0.6085 0.6689
4,500 258.9 0.5700 0.6343
5,000 255.7 0.5334 0.6012
6,000 2492 0.4660 0.5389
7,000 2427 (.4057 0.4817
8,000 236.2 0.3519 0.4292
9,000 229.7 0.3040 0.3813
10,000 223.3 0.2615 0.3376
11,000 216.8 0.2240 0.2978
12.000 216.7 0.1915 (.2546
13.000 216.7 0.1636 02176
14,00%) 216.7 0.1399 0.1860
15,000 216.7 0.1195 0.1390
16,000 216.7 0.1022 0.1359
17,000 2167 0.08734 0.1162
18,000 216.7 0.07466 0.09930
19,000 216.7 0.06383 0.08489
20,000 216.7 0.05457 00.07258
22,000 218.6 (1.03995 0.05266
24,000 220.6 0.02933 0.03832
26,000 2225 0.02160 0.02797
28,000 2245 0.01595 0.02047
30,000 226.5 0.01181 0.01503
40,000 2504 0.002834 0.003262
50,000 2107 0.0007874 0.0008383
60,000 255.8 (0.0002217 0.0002497
70,000 219.7 0.00005448 0.00007146
80,000 180.7 0.00001023 0.00001632
90,000 180.7 0.000001622 0.000002588

1.01325 X 10° Nfm? (abs) (= 14.696 psia).
1.2250 kg/m* (- 0.002377 slug/ft').

“Psi.
*pa.






A-3 THE PHYSICAL NATURE OF VisCOSITY 721

developed for lignids. We can gain some insight into the physical nature of viscous
flow by discussing these mechanisms briefly.

The viscosity of a Newtonian fluid is fixed by the state of the material. Thus
u = (7T, p). Temperature is the more important variable, so let us consider il first.
Excellent empirical equations for viscosity as a function of temperature are available.

Efiect of Temperature an Viscosity
a. Gases

All gas molecules are in continuous random motion. When these is bulk motion due to
flow, the bulk motion is superimposed on thc random motions. It is then distributed
throughout the fluid by molecular collisions. Analyses based on kinetic theory predict

woeNT

The kinetic theory prediction is in fair agreement with experimental trends, but the
constant of proportionality and one or more correction factors must be determined;
this limits practical application of this simple equation.

If two or more cxperimental points are available, the data may be correlated us-
ing the empirical Sutherland correlation [7]

bTUZ
1+ ST

1

Constants & and § may be determined most simply by writing

bT.”I
ST
or
Tf\f?
o [1J7+§
7} b b

{Compare this with y = mx + ¢.) From a plot of T¥%/u versus 7. one obtains the
slope, 1/b, and the intercept, S/b. For air,

kg

-6

§=1104K

These constants were used with Eq. A.1 to compute viscosities for the standard at-
mosphere in [7], the air viscosity values at various temperatures shown in Table A.10,
and using appropriale conversion factors, the values shown in Table A.9.

b. Liquids

Viscosilies for liguds cannot be estimated well theoretically. The phenomenon of
momenturn transfer by molecular collisions s overshadowed in liquids by the effects
of interacting force fields among the closely packed liquid molecules.

Liquid viscositics are affected drastically by temperature. This dependence on
ahsolute iemperature may be represented by the ¢mpirical equation

p = AT € (A.2)
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or the equivalent form
o= A8 O (A3)

where T is absolute temperature.

Equation A.3 requires at least three points to fit constants A, B, and C. In theory
it is possible to determine the constants from measurements of viscosity at just three
temperatures. lt is better practice to use more data and to obtain the constants from a
statistical fit to the data.

However a curve-fit is developed, always compare the resulting line or curve with
the available data. The best way is to critically inspect a plot of the curve-fit compared
with the data. In general, curve-fit results will be satisfactory only when the quality of
the available data and that of the empirical relation are known to be excellent.

Data for the dynamic viscosity of water are fitted well using constant values A =
2,414 X 10 * N - s/m%, B = 247.8 K, and C = 140 K. Reference 10 states that using
these constants in Eq. A.3 predicts water viscosity within = 2.5 percent over the tem-
perature range from 0°C o 370°C. Equation A,3 and Excel were used 1o compute the
water viscosity values at various temperatures shown in Table A.¥, and using appropri-
ate conversion factors, the values shown in Table A.7.

Note that the viscosity of a liquid decreases with temperature, while that of a
gas increases with temperature.

Effect of Pressure on Viscosity
a. Gases

The viscosity of gases is essentially independent of pressure hetween a [ew buo-
dredths of an atmosphere and a few atmospheres. However, viscosity ar high pres-
sures increases with pressure (or density).

b. Liquids

The viscosities of most liquids are not affected by moderate pressures, but large in-
creases have been found at very high pressures. For example, the viscosity of water at
10,000 atm is twice that at 1 am. More complex compounds show a viscosity in-
crease of several orders of magnitude over the same pressure range.

More information may be found in [11].

LUBRICATING DILS

Engine and transmission lubricating oils are classified by wiscosity according to stan-
dards established by the Society of Automotive Engineers [12]. The ullowable viscos-
ity ranges for several grades are given in Table A.S.

Viscosity numbers with W (e.g,, 20W) are classified by viscosity at 0°F. Those
without W are classified by viscosity at 210°F.

Multigrade oils (e.g., 10W-40) are formulated 10 minimize viscosity variation
with temperature, High polymer “viscosity index improvers’” are used in blending
these multigrade oils. Such additives are highly non-Newtonian; they may suffer per-
manent viscosity loss caused by shearing.

Special charts are available to estimate the viscosity of petroleum products as a
function of temperature. The charts were used 1o develop the data for typical lubricat-
ing oils plotted in Figs. A.2 and A.3. For details, sce [15].
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Table A.5 Aliowable Viscosity Ranges for Lubricants {Data from [12-14].)

SAE Max.
Viscosity Viscosity (¢P) Viscosity (¢StY at 100°C
Engine (il Grade at Temp. (°C) Min Max
ow 3250 at - 30 a8 —
5w 3500 at —25 38 —
10w 3500 at =20 4,1 —-
15W 3500 at 15 36 —
20W 4500 at —10 5.6 —
25W 6000 a1 —35 2.3 —
20 — 5.6 <93
30 - 93 <125
40 — 12.5 <16.3
50 — 16.3 <21.9
Axle and Manual SAL Max. Temp. (°C)
Transmission Viscosity for Viscosity of Viscosity (cSt) at 100°C
Lubricant Grade 150,000 cP Min Max
TOW -55 4.1 —
7SW —40 4.1 —
BOW - 26 70 —
“5w —12 11.0 —
90 - 13.5 <240
140 — 24.0) <41.0
150 — 41.0 —
Automatic Maximum
Transmission Viscosity Temperature Viscosity (¢St) at 1HC
Fluid (Typical) (cP) °C) Min Max
50000 -40 6.5 85
4000 =233 6.5 8.5
1700 -8 6.5 8.5

“| centipoise = 1¢P = ImPars 10 *Pa-s( 209 X 10 > It o/fi?),
| centistoke = 10 “mYs ( 1.08 X 1074 {t¥s).



Tabile A.6 Thermodynamic Properties of Common Gases at STP? (Data from [7, 16, 17).)

Rb P Cp c, _ cp Rb cp ¢
Chemical Molecular J J | J k= c_v ft - Ibf f Btu Btz:l
Gas Symbel Mass, M,, kg - K kg K Lkg K (=) Ibm - °R \Ibm - ‘R thm - R
Air — 28.98 2869 1004 717.4 1.40 5333 0.2399 0.1713
Carbon dioxide co, 4401 188.9 §40.4 651.4 1.29 3511 0.2007 0.1556
Carbon monoxide co 28.0] 296.8 1039 742.1 1.40 53.17 0.2481] 0.1772
Helium He 4.003 2077 5225 3147 1.66 386.1 1.248 0.7517
Hydrogen H, 2.016 4124 14,180 10,060 1.41 766.5 3.388 2.4012
Methane CH, 16.04 518.3 2190 1672 .31 96.32 0.5231 0.3993
Nitrogen N, 28.01 296.8 1039 742.0 1.40 55.16 (.2481 0.1772
Oxygen 0, 32.00 259.8 909.4 649.6 1.40 48.29 0.2172 0.1551
Steam' H,0O 18.02 461.4 ~-2000 ~1540 ~1.30 85.78 ~(.478 ~().368

?STP - standard temperature and pressure, 7 :

PR = RJM.. R, = 83143 J/(kgmol - K) - 15433 fr-Ibf/(lbmol - *R}; | Btu = 778.2 ft- Ibf.
“Water vapor behaves as an ideal gas when superheated by 55°C (100-F) or more.

15°C = 59°F and p — 101.325 kPa (abs} = 14.696 psia.
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Table A.7 Properties of Water {U.S. Customary Units)

Dynamic Kinematic Surface Vapor Bulk
Temperature, Density, Viscosity, Viscosity, Tension, Pressure, Modulus,
7 (°F) p (slug/ft’y w(Ibf - siAt®) wvifts) o (Ibfif) p,(psia)  E, (psi)

LA 194 368E-05 L9005 0.00519  0.0886 . 2.92E + 03
40 1.94 3.20E-03 1.6SE-05 000514  0.122
__________ 50 1%  273E.05 141E-05  0.00509  0.178
60 TTrea T 235E05 0256 ]
T8 TTIea T 0805 LORE0S. 0,0049 o ose T
70 1.93 2.05E-035 1.06E-05  0.00498 0.363 3.20E + 05
80 1.93 1.80E-05 932E-06 000492  0.507
90 1.93 1.59E-05 8.26E-06  0.00486  (.099
100 1.93 1.43E-05 7.38E-06  0.00480  0.950
110 1.92 1.28E-05 6.68E-06  0.00474 1.28
120 1.92 1.16E-05 6.05E-06  0.00467 1.70 3.32E + 05
130 1.91 1.06E-05 5.54E-06  0.00461 2.23
140 191 9.70E-06 3.08E-06  0.00454 2.89
150 1.90 8.93L-06 470E-06  0.00448 372
160 1.89 8.26E-06 437E-06  0.00441t 475
170 1.89 7.67E-06 4.06E-06  (1.00434 6.00
180 1.88 7.15E-06 3.80E-06  0.00427 7.52
190 1.87 6.69E-06 358E-06 000420 934
200 187 628E06  3.36E-06 000413 115 308E -+ 05
212 1.86 5.84E-06 3.14E-06 0.00404 147
Table A.B Properties of Water (S| Units)
Dynamic  Kinematic Sorface Vapor Bulk
Temperature, Density,  Viscosity,  Viscosity, Tension, Pressure, Modulus,
T°C) pkg/md u™N-sm?) wrimis) o(Nm) p,(kPa) E,(GPa)
0 1000 1.76E-03 [.76E-06 0.0757 0.661 2.01
5 1000 1.51E-03 1.5YE-06 0.0749 0.872
10 1000 1.30E-03 1.30E-06 0.0742 1.23
L5 999 1.14E-03 1.14E-06 0.0735 1.71
20 998 1.01E-03 1.01E-06 0.0727 234 221
25 597 8.93E-04 B.96E-07 0.0720 3.17
30 906 8.00E-D4 8.03E-07 0.0712 4.25
a5 994 7.21E-04 1.25E-07 0.0704 5.63
40 992 6.53E-04 6.59E-07 0.0696 7.38
45 990 5.95E-04 6.02E-07 0.0688 9.59
50 088 5.46E-04 5.52E-07 0.0679 12.4 2.29
35 986 5.02E-04 5.096-07 0.0671 5.8
60 983 4.64E-04 4.72E-07 0.0662 9.9
65 980 4.31E-04 4.40E-07 0.0654 25.0
70 978 4.01E-04 4.10E-07 0.0645 31.2
75 975 3.75E-(4 3.85E-07 0.0636 38.6
8} 972 3.52E-04 3.62E-07 0.0627 474
85 969 3.31E-04 3.41E-07 0.0618 57.8
90 965 3.12E-04 3.23E-07 0.0608 70.1 2.12
95 962 2.95E-04 3.06E-07 0.0599 84.6

106 958 2.79E-04 2.92E-07 00.0589 101
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Appendix C
VIDEOS FOR FLUID MECHANICS

Listed below by supplier are titles of videos on fluid mechanics.

1. Encyclopaedia Britannica Educational Corporation
310 South Michigan Avenue
Chicago, [llinois 60604
The following twenty-two videos, developed by the National Committee for Fluid
Mechanics Films (NCFMF),' are available (length as noted):

Aerodynamic Generation of Sound (44 min, principals: M. J. Lighthill, J. E. Ffowcs-
Williams)

Boundary Layer Controf (25 min. principal: D. C. Hazen)

Cavitation (31 min, principal: P. Eiscnberg)

Channel Flow of a Compressible Flieid (29 min, principal: D. E. Coles)

Deformation of Continuous Media (38 min, principal: J. L. Lumley)

Eulerian and Lagrangian Descripiions in Fluid Mechanics (27 min, principal: J. L. Lumley)
Flow Instabilities (27 min, principal: E. L. Mollo-Christensen)

Flow Visualization (31 min, principal: S. J. Kline)

The Fluid Dynamics of Drag® (4 parts, 120 min, principal: A. H. Shapiro)
Fundamenitals of Boundary Layers (24 min, principal: F H. Abemathy}
Low-Revnolds-Number Flows (33 min, principal: Sir G. T. Taylor)
Magretohydrodynamics (27 min, principal: J. A. Shercliff)

Pressure Fields and Fluid Acceleration (30 min, principal: A. H. Shapiro)
Rarefied Gas Dynamics (33 min, principals: E. C. Hurlbut, F. 3. Sherman)
Rhecological Behavior of Fluids (22 min, principal: H. Markovitz)

Rorating Flows (29 min, principal: D. Fultz) ‘%
Secondary Flow (30 min, principal: E. S. Taylor) 5—' @
Stratified Flow (26 min, principal: R. R. Long) ;
Surface Tension in Fiuid Mechanics (29 min, principal: L. M. Trefcthen) 2

BIBLIOTECK

Turbulence (29 min, principal: R. W. Stewart)
Vorticity (2 parts, 44 min, principal: A. H. Shapiro)
Waves in Fluids (33 min, principal: A. E. Bryson)

U.P.8

3

rT

)

The University of Iowa
AVC Marketing
215 Seashore Center
Iowa City, lowa 52242-1402
The following six videos were prepared by H. Rouse as a series, in the order listed.
They can be viewed individually without serious loss of continuity.

! Derailed summaries of the NCFMF videos are contained in [lustrated Experiments in Fluid Mechanics
{Cambridge, MA: The M.LT. Press, 1972).

2 The contents of this video are summarized and illustrated in Shape and Flow: The Fluid Dynamics of
Drag, by Ascher H. Shapiro (New York: Anchor Books, 1961),
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Introduction to the Study of Fluid Motion (24 min). This orientation video shows a
variety of familiar flow phenomena. Use of scale models for empirical study of complex
phenomena is illustrated and the significance of the Euler, Froude, Mach. and Reynolds
nurabers as similarity parameters is shown using several sequences of mode) and proto-
type flows.

Fundamental Principles of Flow (23 min). The basic concepts and physical relation-
ships necded to analyze fluild motions are developed in this video. The continuity,
momentury, and energy equations are derived and used to analyze a jet propulsion device.

Fluid Motion in a Gravitational Field (23 min). Buoyancy effects and free-surface
flows are illustrated in this video. The Froude number is shown to be a fundamental pa-
rameter for flows with a free surface. Wave motions are shown for open-channel and
density-stratified flows.

Characteristics of Laminar and Turbulent Flow (26 min), Dye, smoke, suspended
panticles, and hydrogen bubbles are used to visualize laminar and turbulent flows. Insta-
bilities that lead to turbulence are shown; production and decay of turbulence and mixing
are described,

Form Drag, Lift, and Propulsion (24 min). The effects of boundary-layer separation
on flow patterns and pressure distributions are shown for several body shapes. The basic
characteristics of lifting shapes, including effects of aspect ratio, are discussed, and the re-
sults are applied 1o analysis of the performance of propellers and torque converters.

Effects of Fluid Compressibility (17 min). The hydraulic analogy between open-
channel liquid flow and compressible gas flow is used 10 show representative wave patterns,
Schlieren optical flow visualization is used in a supersonic wind tunnel to show pattems of
flow past several bodies at subsonic and supersonic speeds.

3.  American Institute of Aeronautics and Astronautics
370 L’Enfant Promenade, S.W.
Washington, D.C. 20024-2518

America’s Wings (29 min). Individuals who made significant contributions to devel-
opment of aircraft for high-speed flight are interviewed; they discuss and explain their
contributions. This is an effective video for a relatively sophisticated audience.

4. Purdue University
Center for Instructional Services
Film Booking
Hicks Undergraduate Library
West Lafayette, Indiana 47907

Tacoma Narrows Bridge Collapse (3 min, silent). This brief video contains spectacu-
lar original footage from the spontaneous collapse in a light breeze of the 2800 ft suspen-
sion bridge over the Tacoma Narrows, which occurred Novernber 7, 1940,



- Appendix D

SELECTED PERFORMANCE
CURVES FOR PUMPS AND FANS

D-1

INTRODUCTION

Many firms, worldwide, manufacture fluid machines in numerous standard types and
sizes. Each manufacturer publishes complete performance data to allow application of
its machines in systems, This Appendix contains selected performance data for use in
solving pump and fan system problems. Two pump types and one fan type are included.

Choice of a manufacturer may be based on established practice, location, or
cost. Once a manufacturer is chosen, machine selection is a three-step process:

1. Select a machine Lype, suited to the application, from a manufacturer’s full-line catalog,
which gives the ranges of pressure rise (head) and flow rate for each machine type.

2. Choose an appropriate machine model and driver speed from a master selector chart.
which superposes the head and flow rate ranges of a series of machines on one graph.

3. Verify that the candidate machine is satisfactory for the intended application, using a de-
tailed performance curve for the specific machine,

It is wise 1o consult with cxperienced system engineers, either employed by the
machine manufacturer or in your own organization, before making a final purchase
decision.

Many manufacturers currently use computerized procedures to select a machine
that is most suitable for cach given application, Such procedures are simply auto-
mated versions of the traditional selection method. Use of the master selector chart
and the detailed performance curves is illustrated below for pumps and fans, using
data from one manufacturer of each type of machine. Literature of other manufactur-
ers differs in detail but contains the necessary information for machine selection.

PUMP SELECTION

Representative data are shown in Figs. D.1 through D.10 for Peerless' horizontal split
case single-stage (series AE) pumps and in Figs. D.11 and D.12 for Peerless multi-
stage (series TU and TUT) pumps.

Figures D.1 and D.2 are master pump seleclor charts for serics AE pumps at
3500 and 1750 nominal rpm. On these charts, the model number (e.g., 6AE14) indi-
cates the discharge line size (6 in. nominal pipe), the pump series (AE), and the max-
imum impeller diameter (approximately 14 in.).

! Peerless Pump Company, P.O. Box 7026, Indianapolhs, IN 46207-7026.
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D-3 FANSELECTION 735

D-3 FAN SELECTION

Fan selection is similar to pump sclection. A representative master fan sclection chart
is shown in Fig. D.13 for a series of Buffalo Forge? axial-flow fans. The chart shows
the performance of the entire series of fans as a function of fan size and driver speed.

The master fan selector chart is used to select & fan size and driver speed for de-
tailed consideration. Final evaluation of suitability of the fan model for the applica-
tion is done using detailed performance charts for the specific model. A sample per-
formance chart for a Buffalo Forge Size 48 Vaneaxial fan is presented in Fig. D.14,

The performance chart is plotted as total pressure rise versus volume flow rate.
Figure D.14 contains curves for HB, LB, and MB wheels, operating at various con-
stant speeds; the shaded bands represent measured total efficiency for the fans.

EXAMPLE D.2 Fan Selection Procedure

Select an axial-flow fan to deliver 40,000 ¢fm of standard air at 1.25 in. H,O total
pressure. Choose the appropriate fan model and driver speed. Specify the fan effi-
ciency and driver power.

EXAMPLE PROBLEM D.2

GIVEN: Select an axial fan to deliver 40,000 cfm of standard air at 1,25 in. H,0 total head.

FIND: (a) Fan size and driver speed.
(b) Fan efficiency.
(¢) Driver power.

SOLUTION:

Use the fan selection procedure described in Section D-1, (The numbers below correspond to the numbered
sleps given in the procedure.)

1. First, select a machine type suited to the application. (This step actually requires a manufacturer’s full-
line catalog, which is not reproduced here. Assume the fan selection is to be made from the axial fan
data presented in Fig. D.13.)

2. Second, consult the master fan sclector chart. The desired operating point is within the contour for the
Size 48 fan on the selector chart (Fig. D.13). To achieve the desired performance requires driving the
fan at 870 rpm.

3. Third, verify the performance of the machine using the detailed performance chart (Fig. D.14). On the
detailed performance chart, project up from the abscissa at ¢ = 40,000 cfm. Project across from p =
1.25 in. H,0 on the ordinate. The intersection is the desired operating point.

These operating conditions cannot be delivered by a Type LB wheel; however, they are ciose to
pedk efficicncy for either HB or MB wheels. The operating conditions can be delivered at about 72 per-
cent total efficiency using an HB wheel. With an MB whee!, slightly in excess of 75 percent total effi-
ciency may be expected. From the chart, the “efficiency factor” is 4780 at i = .75, and the fan driver
power requirement is

_ Tatal Pressure x Capacity  1.25 in. HyO x 40,000 ¢fm
Efficiency Factor 4780
{Thjs completes the fan selection process. Again, one should consult with experienced system engineers

=105hp

to verify that the system operating condition has been predicted accurately and the fan has been selected
correctly.

! Buffalo Forge, 465 Broadway, Buffalo. NY 14240,
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PUMP PERFORMANCE CURVES
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PUMP PERFORMANCE CURVES 739
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Fig. D.11 Selector chart for Peerless two-stage (series TU and TUT) pumps at 1750 nominal rpm.
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E-2 FANNO-LINE FLOW 747
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Fig. E.2 Fanno-line flow functions.

G This graph was generated from the Fxcel workbook. The workbook can be modified
easily to generate curves for a different gas.
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E-4

&

NCGRMAL SHOCK

Normal-shock flow functions are computed using the following equations:

M;

Po, _

Po, [
k

M2+
k-1
%LM%—l

2

k-1

k+1M?
2
1+If_:lM]2
2

ki(k—1)

2k o, k-1
w1kl

jlb'[k—l)

k-1, » k-1
IR VIR (97 {——
T [ 2 'I 12

)

T[ k+12 2
[2JM
2 -
Py _ k Mlz_k 1
P k+1 k+1
k+1 . ,5
— M
p_Vi_ 2 !
n W ]+k__1.M%
2

(12.41a)

{12.41b)

(12.41¢c)

(12.41d)

(12.41e)

Representative values of the normal-shock flow functions for k = 1.4 are presented
in Table E.4 and plotted in Fig. E4.

Table E.4  Normal-Shock Flow Functions (one-dimensional flow, ideal gas, kK = 1.4)

M, M, Po, /P, I,/T, P2/py 0/
1.00 1.000 1.000 1.000 1.000 [.000
1.50 0.7011 0.5298 1.320 2.458 1.862
2.00 0.5774 0.7209 1.687 4.500 2.667
2.50 0.5130 (.4990 2.137 7.125 3.333
3.00 0.4752 (.3283 2.679 10.33 3857
31.50 0.4512 0.2130 3.315 14.13 4.261
4.00 0.4350 0.1388 4.047 18.50 4.571
450 0.4238 0.09170 4.875 23.46 4812
5.00 0.4152 0.06172 5.800 29.00 5.000

This table was computed from the Exce!l workbook Nermal-Shock Relations. The
workbook contains a more detailed, printable version of the table and can be modi-
fied casily to generate data for a different Mach number range, or for a different gas.

® o o >
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Property ratios
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Fig. E.4 Normal-shock flow functions.

%‘ This graph was generated from the Exce! workbook. The workbook can be medified
easily to generate curves for a different gas.
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r

E-5 OBLIQUE SHOCK

Oblique-shock flow functions are computed using the following equations:

Representative values of the oblique-shock flow functions for £ = 1.4 are presented
in Table E.5 (identical to Table E.4 except for the Mach number notations).

Table E.5 Oblique-Shock Flow Functions (ideal gas, k = 1.4)

2 '2"+k21
" - _
25Tk Lo
k—1

k1,02

2

-1, 5

Po, 1+ M

LA(k-1)

(1 HM%I"ME
2 n n
2
2 n
2k z_k—l
k+1 ' k41
k+l,p0
Ly 2

(12.48)

{12.48b)

(12.48¢)

(12.48d)

(12.48¢)

M,, M, Poy/Po, T, PP 29
1.00 1.000 1.0000 1.000 1.000 1.000
1.50 0.7011 0.9298 1.320 2.458 1.862
2.00 0.5774 0.7209 1.687 4.500 2.667
2.50 0.5130 0.4990 2.137 7.125 3.333
3.00 0.4752 0.3283 2.679 10.33 3.857
3.50 0.4512 0.2130 1315 14.13 4261
4.00 0.4350 0.1388 4.047 18.50 4571
4,50 0.4236 0.09170 4875 23.46 4812
5.00 0.4152 0.06172 5.800 29.00 5.000
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The deflection angle 6, oblique-shock angle 3, and Mach number M, are related
using the following equation:

_ 2cot ﬁ(ME sin® 3 — 1)

12.49
ME(k + cos2B) + 2 (1249
Representative values of angle @ are presented in Table E.6.
Table E.6 Oblique-Shock Deflection Angle @ (deg) (ideal gas, k = 1.4)
Mach number M,
1.2 14 1.6 1.8 2 2.5 3 4 6 10 ®
0 . _ _ . - _ - _ _ - —
5 - - - - - - - - - - 4.16

10 - - - - - - - - 0.64 5.53 8.32

15 - - - - - - - (.80 7.18 105 12.4

20 - - - - - - Q.17 744 124 15.1 6.5

25 - - - - - 1.93 728 129 17.1 19.3 206
’;.‘5.3 30 - - - - - 799 128 178 215 234 245
2|3 - - - 141 575 132 176 222 256 2713 283
G_j— 40 - 1.31 6.49 106 17.7 213 262 20.4 311 32.0
?cn 45 - - 573 107 14.7 21.6 256 29.8 330 4.6 355
;’ 50 - 328 931 142 18.1 24.9 289 KEN! 36.2 378 38.8
9 35 - 6.18 121 16.9 207 274 31.5 35.8 39.0 40.7 41.6
7] 60 1.6l 820 139 18.6 224 292 333 3718 41.1 429 43.9

65 316 927 146 192 23.0 298 341 38.7 423 44.2 453

70 388 932 142 18.5 22 28.9 333 38.2 421 4472 45.4

75 380 829 1253 16.2 19.5 259 302 353 395 41.8 431

80 301 625 934 122 14.8 20.1 239 287 32.8 35.2 36.6

85 166 336 503 o661 .08 11.2 13.6 16.8 19.7 21.6 22.7

920 0 0 0 0 0 0 0 0 0 0 0

0 Tables E.5 and E.6 were computed from the Excel workbook Oblique-Shock Relations.
The waorkbook contains a more detailed, prntable version of the tables and can be modi-
fied easily to generate data for a different Mach number range, or for a different gas.
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Appendix F

ANALY SIS OF EXPERIMENTAL

UNCERTAINTY

F-1

INTRODUCTION

Experimental data often are used to supplement engineering analysis as a basis for
design. Not all data are equally good; the validity of data should be documented be-
fore test resuolts are used for design. Uncertainty analysis 1s the procedure used to
quantify dara validity and accuracy.

Analysis of uncertainty also is useful during experiment design. Careful study
may indicate potential sources of wnacceptable error and suggest improved measure-
ment methods,

TYPES OF ERROR

Errors always are present when experimental measurements are made. Aside from
gross hlunders by the experimenter, experimental error may be of two types. Fixed
{or systematic) error causes repeated measurements to be in error by the same
amount for each trial. Fixed error is the same for each reading and can be removed by
propur calibration or correction. Random error (nonrepeatability) is different for
every reading and hence cannot be removed. The factors that introduce random error
are uncertain by their nature. The objective of uncertainty analysis 15 to estimate the
probable random error in experimental results.

We assume that equipment has becn constructed correctly and calibrated prop-
erly to eliminate fixed errors. We assume that instrumentation has adequate resolution
and that fluctuations in readings are not excessive. We assume also that care 1s used
in making and recording observations so that only random errors remain.

ESTIMATION OF UNCERTAINTY

Our goal is 10 estimatc the uncertainty of experimental measurements and calculated
results due to random crrors. The procedure has three steps:

1. Esumate the uncertainty interval for each measured quantity.
2. Suate the confidence limit on each measurement.
J.  Analyze the propagation of uncertainty into results calculated from experimental data.
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Below we outhne the procedure for cach siep and illusirate applications with
examples.

Step 1.

Estimate the measurement uncertainty interval. Designate the measured vari-
ables in an experiment as xj, Xy, ..., X,. One possible way to find the uncer-
tainty interval for each variable would be to repeat cach measurement many
times. The result would be a distribution of data for each variable. Random
errors in measurement usually produce a normal (Gaussian) frequency distri-
bution of measured values. The data scatter for a normal distribution is char-
acterized by the standard deviation, o. The uncertainty interval for each
measured variable, x, may be stated as = no;, wheren = 1,2, or 3.

For normally distributed data, over 99 percent of measured values of x;
lie within * 3¢, of the mean value, 95 percent lie within = 20, and 68 per-
cent lic within = «, of the mean value of the data set [I]. Thus it would be
possible to quantify expected errors within any desired confidence limit if a
statistically significant set of data were available.

The method of repeated measurements usually is impractical. In most
applications it is impossible to obtain enough data for a statistically signifi-
cant sample owing (o the excessive time and cost involved. llowever, the
normal distribution suggests several important concepts:

1. Small errors are more likely than large ones.
2. Plus and minus errors are about equally likely,
3. No finite maximum error can be specified.

A more typical situation in engineering work is a “single-sample”
experiment, where only one measurement is made for each point [2]. A rea-
sonable estimale of the measurement uncertainty due (o random error in a
single-sample experiment usually is plus or minus half the smallest scale
division {the least count) of the instrument, However, this approach also
must be used with caution, as illustrated in the following example.

EXAMPLE F.1 Uncertainty in Barometer Reading

The observed height of the mercury barometer column s £ = 752.6 mm. The least
count on the vernier scale is 0.1 mm, o one might cstimate the probable measure-
ment error as + 0.05 mm.

A measurement probably could not be made this precisely. The barometer slid-
ers and meniscus must be aligned by eye. The slider has a least count of | mm. As a
conservative estimate, a measurement could be made to the nearest millimeter. The
probable value of a single measurement then would be expressed as 752.6 = 0.5 mm.
The relative uncertainty in barometric height would be stated as

W=+ 2™ 0000664 or  + 0.0664 percent
752.6 mm

Comments:

1. An uncertainty interval of = 0.1 percent corresponds to a result specified to three signifi-
cant figures; this precision is sufficient for most engineering work.

2. The measurement of barometer height was precise, as shown by the uncertainty estimate.
But was it accurate? At typical room temperatures, the observed barometer reading must
be reduced by a temperature correction of nearly 3 mm! This is an example of a fixed
error that requires a comrection factor.

@
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Step 2. State the confidence limit on each measurement. The uncertainty interval of
a measurement should be stated at specified odds. For example, one may
write h = 752.6 £ 0.5 mm (20 1o 1). This means that one is willing to bet
20 to 1 that the height of the mercury column actually i1s within = 0.5 mm
of the stated value. It should be obvious [3] that . . . the specification of
such odds can only be made by the experimenter based on . . . total Jabora-
tory experience. There is no substitute for sound engineering judgment in
eslimating the uncertainty of a measured variable.”

The confidence interval statement is based on the concept of standard de-
viation for a normal distribution. Odds of about 370 to 1 correspond to * 3¢;
997 percent of all future readings are expected to fall within the interval. Odds
of about 20 to 1 correspond to = 2o and odds of 3 to ] correspond 1o *+ o
confidence limits. Odds of 20 to 1 typically are used for engineering work.

Step 3. Analyze the propagation of uncertainty in calculations. Suppose that meas-
urements of independemt variables, x,, x,. . . ., ¥,, are made in the Jabora-
tory. The relative uncertainty of each independently measured quantity is
estunated as «,. The measurcments are vsed to calculate some result, R, for
the experiment. We wish to analyze how errors in the x;s propagate inlo the
calculation of & from measured values.

In general, R may be expressed mathematically as R = R(x), xp, . . ., X,).
The effect on R of an error in measuring an individual x; may be estimated by
analogy to the derivative of a function [4]. A variation, 8x;, in x; would cause
vanation 8K, in R,

_oR

8R. = — éx;
1 ax'. I
The relative variation in R is
OR; 1 dR x; oR 6x;
S L e 22
R R ox; ! R ox; x; (F1)

Equation I.1 may be used to estimate the relative uncertainty in the result due
to uncertainty in x,. Introducing the notation for relative uncertainty, we obtain

. =M aR .
R R aX,' i
How do we estimate the relative uncertainty in R caused by the com-
bined effects of the relative uncertainties in all the x,s? The random error in
each variable has a range of values within the uncertainty inicrval. It is un-

likely that all errors will have adverse values at the same time. It can be shown
(2] that the best representation for the relative uncertainty of the result is

x, oR x, oR x, OR
Up == {#gl—ul) +[—[§—ax—2u2) +"'+(FE};—M"] (F'3)

n

(F.2)

EXAMPLE F.2 Uncertainty in Volume of Cylinder

Obtain an expression for the uncertainty in determining the volume of a cylinder
from measurements of its radius and height. The volume of a cylinder in terms of ra-
dius and height is

¥ = ¥, h) = wrlh



13

=5 X1
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u, =1 2g
e 200g

0.2s
=+t——=40.02
e 13s

=+0.01

The relative uncertainty in the measured value of net mass is calculated from Eq. E3 as

2 2 1/2
i = 4+ m_faA_mu + UL aA_mu
am | Am om o Am om,

= +[[(2)1)(£ 0.005)17 + [(1)(=1)(=0.01)2}/?

uy, = +0.0141
Because m = m(Am, Af), we may write Eq. E3 as
172
Am i P ofarom Y}
= || — = + | —— F.
i [{ w 9Am "A’"] (n': XY “A’} ] (F.6)
The required partial derivative terms are
Am dm At om
— =1 and ——=-1
m dAm m oAl

Substituting into Eq. F.6 gives
wy = {ANE0.014D]% + [(-1)( 0.02))*)2
u, = 00245 or 245 percent (20to 1)

Comment: The 2 percent uncertainty interval in time measurement makes the most impor-
tant contribution to the uncertainty interval in the result,

EXAMPLE F.4 Uacertainly in the Reynolds Number for Water Flow

The Reynolds number is to be calculated for flow of water in a tube. The computing
equation for the Reynolds number is

4m .

Re = —— = Re(rn, D, ) F7)

,
We have considered the uncertainty interval in calculating the mass flow rate. What
about uncertainties in g and D? The tube diameter is given as D = 6.35 mm. Do we
assume that it is exact? The diameter might be measured to the nearcst 0.1 mm. If so,
the relative uncertainty in diameter would be estimated as

0.05 mm

Unp = tT—
6.35mm

The viscosity of water depends on temperature. The temperature is estimated as T =

24 * 0.5°C. How will the uncertainty in temperature affect the uncertainty in p? One
way to estimate this is to write

= (L0787 or + (.787 percent

du_ld
Uory = i_if = ;ﬁ(i 8T) (E8)

The derivative can be estimated from tabulated viscosity data near the nominal tem-
perature of 24°C. Thus
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The only new element in this example is the square root. The variation in V due
to the uncertainty interval in £ is

-1/2
iﬂ - El 2ghpwaler 2gpwater
v ah V2 Pair
BV _ k11 280y LVE_ 1
Vah V2V pu 2v: 2

Using Eq. F.3, we calculate the relative uncertainty in V as

12
1Y (1 : RS
S | P B SN Bl e

If u, = * 0.0] and the other uncertainties are negligible,

1 21112
Z(+0.
i{[Z (*0 Ol)] }

uy = £0.00500 or +0.500 percent

Uy

Comment.  The square root reduces the relative uncertainty in the calculated velocity to half
that of -

3@ 5 SUMMARY

A statement of the probable uncertainty of data is an important part of reporting
experimental results completely and clearly. The American Society of Mechanical
Engineers requires that all manuscripts submitted for journal publication include an
adequate statement of uncertainty of experimental data [5]. Estimating uncertainty in
cxperimental results requires care, experience, and judgment, in common with many
endeavors in engineering. We have emphasized the need to quantify the uncertainty
of measurements, but space allows including only a few examples. Much more infor-
mation is available in the references that follow (e.g., [4, 6, 7]). We urge you to con-
sult them when designing experiments or analyzing data.
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Definitions for such quantities are necessary, and additional conversion faclors are

uscful in calculations.

Basic SI units and necessary conversion factors, plus a few definitions and con-
venient conversion factors are given in Table G.2.

Table G.2 Conversion Factors and Definitions

Fundamental English Exact Approximate
Dimension Unit SI Value SI Value
Length Iin. 0.0254 m —
Mass I Ibm 0.453 562 37 kg 0454 kg
Temperature I°F 59K
Definitions:
Acceleration of gravity: 2 = 9.8066 n/s? (= 32.174 fu/s?)
Energy: Buu (British thermal unit) = amount of energy required to raise
the temperature of 1 Ibm of water 1°F (1 Btu = 778.2 ft - 1bf)
kilocalorie = amount of energy required to raise the lemperature
of | kg of water 1 K{1 kcal = 4187 ])
Length: 1 mile = 5280 ft; 1 nautical mile = 6076.1 ft = 1852 m {exact)
Power: 1 horsepower = 350 ft - Ibf/s
Pressure: 1 bar= 10° Pa
Temperature: degree Fahrenheit, T = % Te + 32 (where T¢ is degrees
Celsius)
degree Rankine, Ty = T + 459.67
Kelvin, Ty, = T~ + 273.15 (exact)
Viscosity: 1 Poise = (0.1 kg/(m - s)
1 Stoke = 0.0001 ms
Volume: 1 gal::231in2 (1 fi) = 7.48 gal)

Useful Conversion Factors:

1ibf = 4448 N

1 Ibf/in. = 6895 Pa

1 B = 1055]

1 hp = 746 W = 2545 Bw/hr

1 kW = 3413 Biw/hr

1 quart = 0.000946 m* = 0.946 liter
1 kcal = 3.968 Btu







ANSWERS TO SELECTED
PROBLEMS

Chapter 1 Chapter 2
1.3 m = 124 lbm 23 y=cxth
15 %=0119m D=0610m 24 y = cx b B'B'-';”;C“
16 m = 61.2 Ibm: 27.8 kg 25 P =¢ \: -5
1.8 p = 0.0765 Ibm/fi’, u, = *0.348% 29 x=y31t=12s r
19 p=139kg/m?* u, = *0.238% 210 xy =2
110 p = 1130 = 21.4 kg/m® 2.11 y = Jfc— bxlat
SG=113*021420t0 1) 212 xy =8
L11 u, = +1.60%, +0.267% 213 y - yp = (BRAD(x ~ xg)?
1.12 p = 930 £ 27.2 kg/m’ (20to 1) 222 y = (x¥4) + 4; (4, 8); (5, 10.25)
1.13 p = 1260 = 289 kg/m’ 223 x = (¥4 — 3;(6,6); (1, 4)
SG=126=*0028920t0 1) 224 (2.8,5),(3.3)
1.16 p = 1.005 X 107* N - s/m?; 2.25 (5.67,3.00); (3.58,3.25) :
u, = 0.61% 228 b =153 X 10 ®kg/m-s-K™% § = 101 9K
117 w, = £4.10% 229 1, = -1.83 N/m?; Plus x
118 dx = = 0.158 mm 2.30 F = 0.228 N; Right
1.19 8D = * 0.00441 in. 2.32 a = —0.491 fus?
120 H= 577 = 0.548 ft 2.33 7, = 0.277 Ibf/fi?; Positive x
121 uy = *10.9% 234 F = 17.1 Ibf
1.22 1 = 3W/gk 235 V=3431ss
123 s = 2.05 W¥gk? 236 F, = pVAIR; V = (mghlpA)) —
1.24 Vo, = 0.798 mfs; 1 = 3.84 s exp[~ mATHM + m)k]); i = 1.29 N - sfm?
125 d = 0.074 mm 237 F, = uUdh,t = 3.0hlua’
1.26 Via = 56.8 m/fs, Vigp = 383 m/s 238 a = 4.91 mis;
1.27 Vy = 37.7 m/s, 8, = 21.8° L = (g sin @md/pAN] — cxp(—uATimd));
1.30 1 psi = 6.89kPa = 027 N-s/m?
1 liter = (0.264 gal 239 F=283N
1 Ibf-sA1® = 47.9 N- s/m? 241 p = 8.07 X 107* N-s/m?
1.31 1 m%s = 10.7 fi¥/s 242 p = 0.0208 N - s/m?
100 W = 0.134 hp 243 u = QOISO N-s/m?
! kJ/kg = 0.43 Buw/lbm 244 1 =4s
1.32 §G = 13.6,v = 7.37 X 1073 m"/kg 246 wy,,, = 2.63madls t=0.671s
ve = 847 Ibfift’, y,, = 144 1bfife? 247 p = 0202 N-s/m?
1.33 1in¥%min = 273 mm¥s 249 y = ol6, T = 20R'7, /3
m’/s = 15860 gal/min 2.50 &k = 0.0449;, n = 1.21;
L/min = 0.264 gal/min @ = 0.191 N- s/mZ; 00.195 N - s/m?
1.34 32 psi = 2.25 kgffem? 251 T = mudwR2a; P = mpwAe Rf2a;
1.35 Ny = 4.06 § = 2TalmuRle,n=1—3
137 W=771bf, ¥ = 1.24 f* 2.53 u = .277 percent
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3.99 a = gh/L

3,100 Slope = 0.22

3,101 w = 188 rad/s

3.102 p, = —1.23 kPa; Ah = 126 mm
3.103 Ap = pa? R¥2; v = T7.16 rad/s

3004 a, = —re’; dptor = protp = 7.19 MPa

3.105 Slope = —0.20,

plx, ) = 106 — 1.57x(m) kPa
3.106 e = 13.3°
3.107 « = 30° Slope = 0.346
3108 pafp, = 24.2
3.109 T = 47.61bf; p = 55.3 Ibf/fi% (gage)
3.110 Slope = 0.540; w = 3.48 rad/s
3.113 w = 31.3 radss;

Pax = 51.5 kPa (gage);

Pmis — 43.9 kPa (gage)

Chapter 4

4.1 55— 5, = —0.291 kli(kg- K)

42 x=0943m

43 5 =2290ft,r =224s

44 V, = 87.5km/hr

4.5 §=482°

4.6 Au=T715Kkg

4.7 AU =450 X 10 Buw; AU = 0,

dT/dt = 11.8°R/hr

48 t=15hr

49 h =212 mm: g, = 0.604

4.10 (b) 0; () —0.5/ — 0.5] m*/s?

412 Q = Viwi2imf, = ~pViwhi3

4.13 Tntegrals = —12.0 m¥s; 167 — 24j —
12k m*s?

414 O = u,, wRY2, mf = ul R

4.15 K.E. flux = —pV*wh/8

416 KE. flux = mpul, RY8

4,17 @, = --5.00 {t*fs (into CV)

4,18 Vi = 4.047 — 234/ nvs

419 t = 2395 O = 133 m?

420 m/w = plgh’sin G6u

421 u,, = 7.50 wis

422 V. — 7v,/4

4.23 U = 5.00 fi/s

424 Q0 = 1045mL/s; & = 3.139 mv/s;
Upar = 0213 m/s

4.25 V; = 3.33 ft/s (into CV)

426 v, = 5.0mfs

427 r, = 16.2kgls

428 J¥ldt = —0.181 gal/s

ANSWERS TO SELECTED PROBLEMS 167

4.29 dp/dr = —0.369 kg/m*/s

4,30 dhidr = -8.61 mm/s

431 dhfdt = —0.326 mm/s (falling)
4,32 dpyfot = 2.50 X 1077 slug/ft¥/s
4.33 dhtdr = —56.6 mm/s

434 1, = 14851, = 49.65

4.35 0 = 1.50 X 10° galfs; A = 4,92 X 107 fi?

436 y=0.134m

437 +=222%

438 0, =361 X 1D S m¥s;
dhldr = —0.0532 m/s

439 dylds = -9.01 mm/s

440 m,, = 1.42 kg/s (out)

441 O4=45x 10" m¥s; 0,y = 0.6 X
1073 ms, Qe = 165 X 10 P m's

443 1 = 6¥,/5Q,

4.45 mf = 349/ — 16.5; N

4.46 Ratio = 1.2

4.47 Ratio = 1.33 i

4.48 mf = —340f — 1230, Ibf

449 mf= 3200 + 332j N

450 F = 90.4 kN

451 T=123N
452 M = 409 ke
453 F, = 184N

434 F, = 0.02301bf
455 M = 671 kg

4.56 F — 1.81 kN, tensicn
457 F=1321N

458 F=370N

459 F = 185kN

4.60 F = 206 Ibf, tension

461 F = 714 + 498 N

462 F=832kN

4.63 F = 1.70 Ibf

464 Q0 = 0424 mfs, F, = 405 kN
4.65 T = 65,200 Ibf

466 T = 47400 1hf

4.68 V = 0.867 m/s

469 ¢ = 119 mm: £, = 3.63kN

470 F = —26.77 — 139, Ibf

471 F = —4.68] + 166/ kN

472 V, = 6.60 mfs; p; —~ p, = 84.2 kPa
473 F = —1040f — 667 N

474 F = 4.77 bt

475 F=511kN
4,76 F = 837 Ibf

477 Q = 0.141 m¥%s; F = —1.65{ — 1.34 kN
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478 F =799 — 387 N

479 K, =379N

4.80 rir = 9.67 ke/s; Vo = 15.0 mfs;
Fp= 65N

481 D = (Sm8 — 2/m pU?

4.82 u,, = 30fus; p, — p; = 0.190 Ibf/f

4.83 uy,. = 60 fifs; p, — p, = 0.699 Ibf/fi?

484 F=790 X I107*N

485 Fiw = 00393 N/m

486 Drag = 0446 N

487 Fiw = 0.277 N/m

489 hyth, = 0501 + sin 6)

4.90 Error — 1.73 percent

491 h = Hi2

492 A =202mm; F = 0543 N

493 V= [VE+ 2gh]" F = 356N

494 V= [Vi- 2eh)" h=1621

495 V = 175 ft/s; F ey = 2.96 Lbt

496 M = 446 kg, M, = 2.06 kg

497 F=359kN

498 p) = 61.0kPa(gage): K, = 209N
(perpendicular to plate)

4100 z = 3Vif2ge

4.101 z = Vifg

4,102 p(x) = p(0) — p(QxiwhLl)’

4,104 k, = [h3 + 2Q0%gh’h,]'?

4,105 V(r) = Vr/2h

4107 F = ~8221 + 220/ N

4.108 F = —570{ + 329; ibf
4.109 v, = 80 m/s

4110 F = L.73 kN

4111 F=167N

4.112 F = 3840 Ibf at U = 75 mph
4113 W = p(V — UVUA( — cosé)
4.114 1= 4.17mm; F = 4240 N
4115 = 625mm; F = 7940 N
4.116 a = 30° F = 10.3 kN

4117 U=vR

4,118 a4 = 13.5m/fs?

4.119 thyfrny = 0.5, F — 7.46 kN
4.120 1 = M/pAV(1 + sin &)

4.121 U, = 158 m/s

4.123 UIV = In[My/(M, — pVAD]; V = 0.61 m/s
4.125 0=19.7°

4126 A = 111 mm?

4127 1= 2265

4128 A = 179 mm

4129 U =225m/s

4.130 a, = 5.99 nv/s* /U, = 0.667

4131 1=171s;s=T74Tm

4.132 dUfdt = 142 m/s%; U, = 15.2 m/s

4.134 1 = MIpVAQl + VIUy

4,135 V = 164 mfs; xp0 = 1.93 m;
t=251s

4.136 UlUy = e 0¥

4,137 1 = 0750 MipVA, x = 0.238 MU,/pVA

4.138 a, = —16.5 fus’

4.139 @ = 0.0469 m¥/s

4140 1 = 126 s

4.14) U =227 m/fs

4.142 U = 834 mfs; a,,, = 96.7 m/s?

4.143 M, = 186 1bm

4144 U =281 m/s

4.145 Mass fraction = 0.393

4.146 a = 83.3 m/s*; U = 719 mfs

4,147 My = 38.1 kg

4.148 a5 = 173 g

4.149 V = 3860 fu/s; ¥ = 33,500 ft

4150 V= 1910 m/s

4152 6 = 18.9°

4.153 t = Mi2pVA

4.154 U = Uy/[1 + 2pllgAtiMg]"?

4155 UV = | — IV + 2pVAIM,]'"?

4.156 it = Mg/V,; 1= 1105

4157 Voo = 456 fUs; Yo, = 3600 fi
(139 m/s; 1090 m)

4,160 h = 205m

4.166 V = 43.8 m/s

4167 F=228kN;T=469kN'-m

4168 T= 0193 N-m; @ = 2610 rad/s?

4.169 wp, = 29.5 radfs

4170 @, = 20.2 radfs

4171 T = 169N - m; @ = 461 rpm

4173 w = 39.1 rad/s

4174 T=00722N'm

4175 T =0.0161 N-m

4.176 w = 0.161 rad/s’

4.177 w = 6.04 rad/s; A = 1720 m?

4179 T=1294N-m; M — 51.0; + 1.40; N-m
4183 W = —80.0 kW

4,184 dTior = —0.177 °Ris
4.185 Efficiency = 74.8%

4.186 Q = —146 Btws
4,187 p, — p, = 75.4kPa
4188 W = 96.0KkW
4189 W = —341 kW



4.190 @ = 00166 m*fs; Zy, = 61.4 m;
F=56IN
4.191 V=945m/fs; W = —739 kW

4.192 Ame = — .88 N-m/kg;
AT =449 x 10 ‘K

Chapter 5

5.1 (b), (c), (d)

5.2 (b), ()

S3A+E+J=0

54 (a), (b)

5.5 v=A(y2 ~ By) + f(x)

56 u— —2yx — 2Zx + f(v)

5.7 v = Ayl

5.8 u = 24y/x

59 v = Ay/i(x® + )

5.10 V1), = 0.0025

5.11 viU),, = 0.00182

5.12 v/U),,, = 0.00167

5.13 v/, = 0.00188

514 u=3B5H2 0" = ¢

505 v= 2Axy3; 0y = ¢

5.19 (a), (b), (c)

520 V, = —Acoséir?

521 V = éywrzth

524 = Uyizny = W2

525 y=xy + ¥y — X3

5.26 = A@ — Bln(r)

527 V = (=Ucosh + gl2m)é, + Usinfé,
528 vr= —yz ~ 27

529 @ = 1 m¥s/m

530 o = Uy2h.y = 3.54 ft

5.31 o = UyY285; 36 = 0.50, 0.707
5.32 yi6 = 0.460, 0.667

5.33 v/é = 0.442,0.652

5.35 Y= —¢lInr; Qb = 0.0912 m¥fs/m
536 = —wrf2; Q/b = 1.1 X 107" m%/s/m

537 Yes; a, = 1757 + 0.875] m/s?
538 d, = (J6i + 32f + 16ky3 nvs?
539 3-D;No; a, = 271 + 9 + 64k n/s®

540 d, = —2.86(10727 + 107*/) m/s;
dyldx = 0.01
542 u = AX2; d, = A0S0 + )

544 a, = ~(U2L)(1 — &2L)
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545 a, = —(Qf2mh)’r Y&,

546 a, = —81.0 km/s*; g, = -3.0km/s*
5.48 dT/ax = —0.0873 °F/mi
5.49 DT/ = —14 °F/min
5.50 DC/Dr = 0.00, 125 ppm/hr,
250 ppm/hr

552 G, =xf +yj

553 ¢ = —257 &, = 4l + 8] + Skm/s?

554 a, = (A% — AB)Y + A%j; a, = —0.12] +
0267 nvs?, d, = —0.08/ + 0.40j nvs?,
i, = —0.04] + 0.80; m/s?

5.55 ¢ = axy[2 + cos{w)] + constant;
G = 37 — 67 m/s?, d,,, = 187 +
36 m/s?;
g = 2747 + 17.2] nvs?

5.56 Ratio = 100
5.59 v = vyl — yhY;

d, = igxth? = Ji(L — yik)
5.60 d, = é(uf2hyr - ko1 ~ k)
5.64 f; = xpe, f = ye M

#1, 1) = 0.693s,4(2,0.5) = 1.395;

anny=1 +j mis?,

,(2,0.5) = 27 + 0.5 nvs®

conv

5.66 Yes; Yes
568 I'= 0.100 m¥s
SO T =0

570 & = —0.5kradfs; " = —0.50 m¥s
5.71 Yes; Yes

5.72 Yes;No
573 & = —005s 'k u=AY2 +¢
5.74

@ — - 25k T = —2 m¥s:
 — 2xy’
575 V = =2y — 2xj
¥
@
w

576 ¢r=A(y* — x*)2 + By;T =0
577 @ = —k
5.78 = —Ul2h

5719 Yes, o — —(g6 + Klnr)f2w
580T =-Ur/4,0

581 { = 84V, 2r/R>
5.82 ¢ = k2yu, /b

583 dffd¥ = -0.0134 1bf/t*
5.84 dfid¥ = —1.85 kKN/m®
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Chapter 6
6.1 a,=90i + 2j fus%
Vp = —(180{ + 68.4)) Ibf/ft2/ft
6.2 a = 5.66 m/s* at 6 = 45° above x axis;
Vp = —(4.0i + 13.8/) kKN/m¥m
6.3 G = 3107 — 190 fuss;
Vp = —4.17i + 2.56] — 0.43k psi/ft
64 a,=2 + 2 fus
Vp = —(4f + 68. 4}) Ibf/ft3/it
6.5 Vp = —(3.0{ + 9.0/) kN/m*/m

68 u= —Ax, a, -3x+4jm/S‘
Vp = ~12{ ~ 6j — 147k N/m®;
p(x) = 190 — 3x* Pa (gage)
6.9 Yes; (x,y) = (2.5, 1.5); ) N
Vp = =pl(4x = 10){ + (dy - 6)] + gkl
Ap = 9.6 N/m?
6.11 p = 43.4 kPa (gage)
6.14 a, = 163D p(0) = 8pvd(L/DY
6.15 dpfoxdp,, = 100kPa/m; L = 4 m
6.16 9p/OX)ma = 10MPa/m; L = 1 m
6.17 F = 1.56 N, down
6.18 Vp = —4.23{ — 12.1j N/m?%,
(x/h) = [1 — y/h] = constant
6.19 4, e = 144 mish MIL = 1.20 X 1073 kg/m
6.20 F, = 4pV2L3w/3p?
621 a, = g’x/h?
6.22 a, = —2800g; dp/or = 270 lbf/fi*/fi
6.24 P2 — Po = —30.6 N/m?

626 V =3 —2jm/s; @ =37+ 2j m/s?%;
= 1.16f — 0.771] nvs?,
opids = —1.71 N/m¥m
627 B=-0.1m™" -s7'; d, =004 +
0.02; m/s?
a, = 0.0291 nvs?
6.28 @, =207 + 4.0/ fusk R = 1.40 ft
629 d,=4.07 +20j fs3 R = 5.84 ft

630 d, =05+ 1.0/ % R =283 m

6.32 x¥y = 2; a, = 2A%N + BB — A)j;
R=535m

6.33 Ah = 33.7mm Hg

6.34 Ah = 48.4 mm water

6.35 F = 0.379 Ibf; 1,52 1bf

6.36 V = 895t

6.37 Ah = 628 mm water

6.39 pg,, = 296 N/m% p = —355 N/m? (gage)

640 V = 275 m/fs

]

6.41 p, = 900 kPa (abs); p, = 413 kPa (abs);
v w = 251 + 21.7f m/s; pg = 338 kPa (abs)

6.42 p = 227 kPa (gage), 148 kPa (gage)

6.43 p = 29] kPa (gage)

644 h=4.78m

6.45 V = 21.5fi/s, Q = 0.469 ft’/s

6.47 p = —0.404 kPa (gage)

6.48 V = 330 fi/s

649 O = 66.1 m¥hr

6.50 V=442wms

6.51 Ap = 5.54 kPa; Ap/g = 0.933

652 p=p.+ —2LpU2(| — 4sin? @);
# = 30°, 150°, 210°, 330°

6.53 F =278 N/m

6.55 @ = 301 gpm; £, = 5635 |bf; Tension

6.56 Q = 2.55 X 107 m¥s

6.57 p = 39.0 psf (gage); K, = 1.67 lbf

6.58 p,, = 492 kPa; K, = 57.5 N

6.59 V, = 3.05 m/s; ppz = 4.65 kPa (gage);

K,= 115N
6.60 p = 1.35 psig; Pyax = 1.79 psig;
F =476 1bf
6.63 hih, = [ J%o(f‘ﬂ ]
6.64 h=HZ,r=

6.65 Ah = 202 mm; K, =0547N, 219N

6.66 F, = 83.3kN

6.67 F, = 532 kN

6.68 p = 164 kPa(page), F = 152 N

674 C. = 0.5

677 p = 12.3 KN/m? (gage)

6.78 a = 347 m/s?

6.79 dQ/dt = 0.0516 m¥/s/s

6.80 d%itde = 2gi/L

6.82 Ppge = 3pVRYSHE

6.83 Did = 0.32

6.84 No; Yes

6.85 No; p; — p, = —252 lbiff

6.86 ¢ = [A(y? — )2 + Bxylt

6.90 ¢ = xy? — X1

691 V = —20y + xj% b = 2xy

692 y= —2xy

6.93 ¢ = BUZ — Y2 — 2Axy

694 V = =Qx+ )i +2y/1 = ~(2xy + vy
Ap = 12.0 kN/m?

695 IVl = 2 +y2 y=x? - ¥3

6.96 ¢ = 3A(Fy — x)
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6.97 Stagnation point (=2, 4/3) m; ¢ = A(y? — 741 Vv, = 0331, F, = 214N
22 — Bx — Cy; Ap = 558 kPa 742 p = 1.94 MPa (abs); Fp = 434 kN
698 0 = 1.25 m¥s/m; ¢ = B(y* — xH2 743 V,, = 403 mfs; V, = 40.3 m/s
6.99 r > 10a 744 V,, = 6.00m/s; Fp = 1.LOSN
6.101 r=> 977 m, p = —6.37 kPa (gage) 745 V = 1719 {i/s; F/F, = 4.94
6.102 Stagnationatr = 0367 m, 8 =0,7 7146 D, = 5.04 in.; w,, = 1000 rpm
6.103 h = 0.162m; V = 4437 m/s, 7.47 Vi = 80 Us; , = 1600 rpm
748 p, = 2.96 psia

p = =957 N/m’ (gage) 7.49 V = 0.048 fi/s; Ap = 0.019 psig
6.105 ¢ = 50mm’s; y = *z 7.50 Cp,, = 0.0972; £, = 470N 4
6.106 r = 1.82m, 8 = 63% p = —317 N/m? 751 ViV, = 112, £, = 114 g D@

(gage) 7.52 V,, = 0.13 mfs; w, = 0.5 Hz i
6.107 R./b = 5.51 kN/m 753 Fp = 246 kKN; ® = 55.1 kW BIBLIOTECA

7.54 7=1070hr U.rP.B

Chapter 7 7.55 V,, = 1.8 m/s; V,, = 7.29 m/s; rT
7.1 alplVi, gLV FoudFp = 0872
7.2 Vel 7.56 V,, = 9.5 m/s; Fp /Fp,, = 0.263;
7.3 gliv} p. = 88.1 kPa
74 WVl 75T Vi = 27.1 fUs
7.5 DIL, AplpV:, VD 7.58 Cp = 0.951; Fp = 794 1bl; V = 807 ft/s
7.7 FiuVD = constant 7.59 Scale ratio = 1/50; Not possible
7.9 AplpV? = flulpVD, diD) 761 Q =247 ms
7.10 $x = flpUx/u) 7.63 Ap, = 52.5 kPa; Q,, = 0.0928 m¥min
710 7, l0pl? = flulpUL) 7.65 h = 145 ft - Ibfislug; O = 5.92 ft¥s;

766 Flpa?D* = fi(a!*D,wDIV);
TlpelD’ = filgfe?D,wDIV);
PlpaPD® = fulpla?D.wDIV),;

7.67 @ = 533 rpm; F, = 781 kN;

7.14 @ = kX (gh)'"*f(blh)
7.15 WiD*wu = f(ID, ¢/D)
7.16 V{pA/o)\? — constant

707 ¢ = JJdig f(p¥ted®) T=71kN-m

TA8 E = pV(nr/V) 7.68 KE ratio = 7.22

7.19 9 = DSwL}f(Q/D.lw) 769 Fg=0273N,Cp =0443; F, = 1.64kN
7.20 4;3; phpd*?g'? 170 Fp = 0.574;0.44%

721 4; 3; wpd¥2g'

722 Q = VEfpVhip, Viigh) Chapter 8

7.23 3, pVD/u, diD, ofpDV?

725 pVDiu. hid, Did

7.27 V¥e8, AIB, 6, n&img,

7.29 3; = pA™Mg'2f(WA'?, ApipA'Pg)
7.30 TipViD?, plpVD, wDIV, diD

131 P = pwD’f(uwip, cID, £1D)

7.32 FlpV2D?, gDIV?, DIV, plpV?, wlpVD
733 PIpD*V3, wDIV, plpVD., cfV

8.1 Re = 4Q/7Du; Re = 3000

82 Q=039 m¥s; L, =34.5m;
Luw =625 —10m

8.4 @, = 0.0158 m*/min; @, = 0.0396 m*/min;
@ = 0.079 m¥min

8.6 Viu,,, = 2/3

8.7 O = 2huup, d3; Viu,, = 213

88 7, = —2.5N/m? (to right);

7.34 QIpVAL2, ¢, O1V?, plpVL Q/b = 2.08 X 1075 m¥/s/m

7.36 Pra/pUS = f(E,1pU3) 8.9 7, = —0.040 Ibf/ft? (to right);

1.37 Pipw’D?, ViwD, HID, pipwlP O/b = 6.67 X 1073 f’/s/ft

7.38 p = 539kPa; F = 1.34 kN 8.10 7,, = yop/ox; Tma = —0.00835 Ibf/fr
139 VilViaer = 15.1 a1 20°C 8.11 ¢ =0353ccls

7.40 V,, = 6.9 m/s; Fy, (protoype) = 522 N 8.12 0 = 1.02ccls
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8.13
R.14

8.15
8.18
8.19
820
8.21
3.22
B.23

R.24
8.25
8.27
8.28

8.29
8.30

831

833
834

8.35
8.39
8.4]
8.44
8.46
8.47
8.48
849
§.52

8.57
8.58
8.59
8.60

8.61
8.62
8.64
8.65
8.66
8.68

8.69
8.70
871
8.72
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Q=397 X 10 *cefs

w = 0.50 ft; dp/dx = —400 psi/fi;

h =202 % 10%in,

M=432kga= 128X 10" m

n= 148

g = 0.0695 N- s/m?

Qfb = 0.0146 f*/s/ft

Hipe — 375 mfs

dpidx = —92.6 N/m*m

Ui = 4.17 % 107 mfs;

M = 4.34 X 107 Y mis

Ap = —2Uula?, Ap = +2Upia?

Re =194, 7 =202 kKN/m% &P = [1.4W
v=1.0x 10 *m¥s

T = 34.8 N/m?;, Q/w = 263 mm*/s/mm;
Re = 0.236

iy = 0.23 m/s; wy, = 0.268 m/s

Qb =25 x 107 T mdsim; 7= 143 X
1072 Nfm?; 9plox = 22.9 N/m*/ro

yb = 0.695; u,,, /U = 1.24;

¥iw = 9.27 X 1072 fi’/ft

dpldx = 34.4 N/m*m, —68.8 N/m*/m
Qb = 2.5 X 10 *m"/s/m; v = 0.912 N/m?,
Ipidx = 1.46 kN/m¥m

r=955s

T = 33.3%

t=10s

r=0707TR

@ = 11.3 mm’fs

Ap = 497 Ibffin.%; u, = 2%

8D = 0775 um

Ap = 406 kPa; Ap = 8160 MPa

u = (/) Inr + ¢y 0 = pVy/in(rirg),
& = —Vylnr/Inirir,)

7, = 3.0 Ibf/fi2

T, = —8.0 N/m?

T, = 33.8Pa; 1, = 82.5Pa

Q = 452 X 10" m¥s; Ap = 235 kPa;
7., = 294 N/m?

n=649 1 =9.17

riR = 0.707 {laminar); 0.757 (turbulent)
B = 4/3 (laminar); 1.02 (turbulent)
a= 154

a=20

h; = 589 J/kg, p = 833 kPa;
p=343KkPa;h = 60 m

H, = 4.24 ft; b, = 137 feIbffslug
V, = 6.44 fu/s

d=29Tm

0 = 2.66 X 1072 m¥s

873 H, = 27201t

8.74 p = 1.68 MPa

8.76 H, = 28.4f1

877 H=1041t, H, =252t

8.79 /D = 0.003

8.80 f=0.039

884 p, —p, = 1.22kPa

8.85 V =762 fus; ¢ = 224 {tmin

8.86 0 =110 % 10 *m's

8.89 0 = 0.0361 ft'/s

8.90 AQ = 0.0184 ms

802 N =275 mm N = 150 mm

893 Ap = 115kPa; K = 0.234

894 AR = 2.7,2¢ = 12° Q = 0.172 m¥s
8.98 AQIQ = 16.4%; prin =
899 V=0723mfs:d = 3.66m

B8.101 d=6.15m

8.102 O = 2.87 X 107 m¥s; d = 13.6 mm
8.105 d = 540m

8.106 p = 1.03 MPa (gage)

8.107 Az = 88.4 m, Fraction = 1.| percent
R.108 Ap = 43.9 N/m?

8.109 vV = 129 fis; Ap = 3.63 psi

8.112 Az = 813 m

8.113 p = 593 kPa

8.114 ¢/D = 0.021; Saving = 4¥.2 percent
B.II54=151m

8117 L=2065m

8.118 O = 1.01 m¥s

8.119 O = 00395 m¥/s

8.120 @ =533 X 103 m's

8121 A, = —42.5 mm/s

8.122 & — 5.14 X 107 ms; 3.65 X 10" * m¥/s

8.123 V, = 28.0m/fs; F = 365N

8.126 0 = 38L/min; L = 143 m;
L=115%10m

8.127 d = 61.2m: @ = 0.104 m'/s;
p = 591 kPa

8,128 O = 0.260 ft¥/s; prin = —2.96 psig

8120 O =530 % 10 m¥%s; 0 = 535 X
10 *m¥s

B.130 L =097 ft

8.131 p = 359 psig; 0 = 11.5 gpm

8.132 D= 14 mm

8.133 D = 2.5 in. (nominal)

81034 h=0194m; b = 0388 m

8.135 D = 6in.

8138 Rey = 821 X 10% /= 0.019

8.139 dQ/dt = —0.524 m*/s/min

8.141 % = 2.08 hp

—5.26 kPa (gage)



8.142 B = 4.69kW

8.143 Ap = 52.7 psi

8.144 D = 48 mm; Ap = 3840 kPa,
P =243 kW

B.145 p =341 psig; P = 171 hp

8.146 Ap = 437 psi; ¥ = 286 hp;
Cost = 3$853/day

8.147 L = 72.7km; % = 773 MW

8.148 Q=108 gpm: V = 124 ft/s; P = 134 hp

8.149 C = $13.63/day
8151 @ = 0.0419 mi/s;
Ap = 487 kPa; & = 29.1 kW
8.152 @ = 0.757 ms; Ap = 542 kPa;
9P = 586 kW; @ = 0.807 m¥s;
Ap = 480 kPa; # = 533 kW
B.154 0 — 3.97 X 107 m'fs;
0, = 3.28 X 107 m¥fs;
0, = 6.9 X 10 *m¥s
B.155 O, = 8.81 X 10 * m¥s;
Q, = 4.66 X 10" * m¥s;
0, =0, = 2.13 X 10" 3 m¥s
8.158 Ap = 462 |bf/fi’
8.159 Q = 0.224 m'/s
8.160 Ap = 266 kPa, ¢ = 0.0177 m¥s
8.161 Q = 0.0404 m*s
8.162 ) = 96.8 gpm
8.163 Q = 136 gpm
8.164 D = 408 mm; m — 0.0220 kg/fs
8.165 fm = 2.10kg/s; Ah = 170 mm Hg
8.166 O = 1.37 fi¥s
8.169 Re = 1800: f = 0.0356;
p = —290 N/m? (gage)

Chapter 9

92 x = 182 mm; x,, = 13.5 mm
93 x=0.114m

90 A=U;B=mn/26,C=10(
99 §/6 = 1/2, 1/3, 3/8,0.363
910 6/ -- 0.167,0.133,(.137

9.11 8*5 = 0.125.0.333: &8 = 0.0972, 0.133

912 i, = 30kgfs: F, = —30N

913 my, =504 kefs. F,— —504N

9.14 sy, = 20kgls: £, = 24N

9.15 U, = 814 fUs; p, — py = 0.264 Ibf/f2

9.16 U, = 184 m/s; Ap = 2.19 Pa

917 U, = 13.8mis; Ap = 20.7 Pa

9.18 Ap = 59.0Pa

9.19 p, — —73.1 Pa (gage); 7 = 0.300 N/m?

920 U, — 24.6 m/s; p; = —43.9 mm H,0;
p> = —44.5 mm H,0

9.21

9.22
9.28

932
9.33
9.34

9.36

9.38
9.39
941
.44
9.46
9.48
9.49

9.50
9.51
8.52
9.53
9.54

9.60
9.61
9.62

5.64

9.65
9.66
9.68

9.69
9.70
9.7
9.74
9.75
9.76
9.717
9.78
9.79
9.80

9.81
9.82
0.83
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& = 254 mm: Ap = 107 N/m?;
Fp=228N
pr = —40.8 Pa (gage); 7= 0.12 Pa

y = 3.28 mm; Slope = 0.00327,
8 = 1.09 mm
F=162N

2=0283mm; F= 113N
Fpn=263N;Fp, =455N

8ix = 3.46/\Re,; C; = 0.577/[Re,
Fp =563 x 102N

F=0783N

Fp =189 N;x, = 0.145m
F=221IN

F=232N

F=237N

8 = 6.62 mm, 7, = 0.0540 N/m?;

8, = 26 mm, 7, = 0.249 N/m?
§=313mm; 1, = 0798 N/m% F=07N
W = 80.l mm

Ap = 6.16 Nfm%; Ax = 232 mm

He =321 mm; L = 0.517 m; Ax — 242 mm
U/; = 268 mfs; Ap = 56.8 Pa;

AL = 1.20m; AL = 0564 m

5 Consumed = 0.089%:

Performance = 17.7 Buw/ion-mile
a=b=0,c=3,d- —-2;H =389
U = 7.82 ftfs; & = 0.00340 in. H,0
Area reduction = - },59%;

d0dx = 0.6 mmim; 8 = 1.10 mm

Re; — 155 X 107, x, = 53.2 mm;

P =153kW

F=787kN;P =179 MW

L =996t F = 2250 Ibf

V = 2.18 mph; x, = 0.0339 ft;
F,=3651bf. F, = 4110 Ibf
x=745mm:; 5§ = 81.3mm; Fp, = 279N
V=1101t/s; V=115 1fus

F =549 X [0°N

6= 165m F=15MN.P=11.2MW
F=923kN

T=862N-mP =542 W

Rings: d, = 125 mm; d; — 41.8 mm
D=690m
D=380m;D=220m;1lg

t =930s, x =477 m;

t=739s;x =407 m

Honizontal is 20 percent better

C, = 0.299

s=117m
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10.24 7= 0.83; H = 185 ft at @ ~ 820 gpm
10.25 H, = 151 m; H, = 607 m;
Wﬂuid = 1.86 kW; T = 76%;
W = 2.88 kW
10.26 W, = 2.4 kW; p, = 369 kPa (gage)
10.29 1 hp (US) = 1.01 mhp;
N, (mhp) = 4.39N, (US)
1030 N, = 1130, P, = l1.6 hp
1031 n=086a 0 = 2220 gpm, H = 130 f1;
D=13in:Q = 280 gpm, # = 153 ft;
D =11in:Q = 1690 gpm, # = 109 ft
1032 W,, = 735kW; 0’ = 0.6 m%s;
H =125m;n = §0%, %P = 91.9kW
1033 Hy =26 m; m = 79%; Q' = 1.07 m%s;
H =218m, H, = 566m;
P’ = 289 kW
10.34 n = 5 pump/motor units
10.35 Hyj50= 25911

1043 N, = 371 rpm; D/, = (1.145;
@, = 142 fiYs

10.44 Yes; Operate at flow rate below BEF, lower
speed.

1045 N, = 7140 rpm; D,/D, = 0.135
1046 @ = 1080 ft¥/s; H = 211 ft;
B = 25800 hp
10.47 a = 0.0426 (gpm) °,
b= —1.56 X 107%gpm)~* #* = 0996
1048 T=46°C, 0 = 0625 /s, H=465m
10.49 NPSHA = 264 11,
H=225ft{p = 9.73 psig)
10.52 ¢ = 948 gpm
10.54 H = 404 ft; Cost = 0.29 ¢/hr; P = 2.72hp
10.55 D = 6in. (nominal); ., = 890 hp
10.57 H =754 ft; %, = 303 hp
10.58 @ = 627 gpm
10.59 @ = 2710 gpm; LD = 27,250
10.60 @ = 4600 gpm; L /D = 9980
10.61 @ = 3000 gpmy; LJID — 51,600
10.65 With 3 pumps, 1 = 0.91;
@, = 235,000 hp
10.66 H, = 295 ft
10.68 Q = 2330 gpm, H = 374 f1; Type
BAE20G,
19.5 in. impeller, 1770 rpm
10,69 ¢ = 197 gpm, H = 116 ft; Type
4AE12,
L'l in. impeller, 1750 rpm
10.70 ¢ = 600 gpm, H = 778 ft;
Type 5TUT-16B, 5-stage, 1750 rpm
10.73 @ = 2020 gpm
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1074 Q = 898 gpm, H = 104 f1; Type
4AEIL,
Il in. impeller, 1750 rpm
10.75 Q = 11,200 gpm, H = 101 ft; 3 Type
10AE|2, 12 in. impeller, 1750 rpm
10.76 @ = 15,700 gpm. H = 654 ft (gasoline);
4 Type 10TU-22C, 2-stage, 1750 rpm
1079 Op = 112 gpmat Az =0
10.81 N = 3500rpm; D = 3.18in.; n = (.6
1082 5= 0.8 at Q = 9200 ¢fm
10.84 Aga = 6.29 ft2; = 0.85
10.85 " = 659 rpm; P = 328 hp
i0.86 V= 123 fi/s
10.88 2y, = 0.292 bp
10.89 F; = 680 and 449 1bf
1090 D = 144 m; T = 1.60 kN and 800 N
1091 m = 57.1 percent
10,92 D = 18.6 11, n = 241 rpm;
P, = 72,700 hp
1093 V = 16.0fus; J = 0.748; Cp = 0.0415
10.94 % = 50.0 percent; 75 = 0
10,97 %, = 16,900 hp; N = 353 ipm;
T = 3.22 % 10° ft - Ibf
10.98 N, = 35.1; @ = 31,800 m¥s; D = 27.6
1099 N, = 55.7; Q = 34,600 f’/s
10,100 D = 10311, D; = 14.5in.; Q = 310 {t'/s
10.101 N, = 2657 = 3.91 x 10°ft - Ibf,
@ =2570cfsatH = 380
10,102 Forone jet, N = 229 rpm; D = 10.5 ft
10,103 & = L.77 hp; 7 = 0.600
10104 H, ., = 1050ft; N, = 5
10105 N, =455 D = 6201t
10.107 1, =22 in; P = 60.3 hp
10.108 U, = 79.6 m/s; Cp = 0.364
10109 w = 265 " P = 0.06% hp
10.110 2 = 22 hp; w = 98.9 rpm
10.111 @h = 737 gpm- ft with By, = 0.7

Chapter 11

1.1 Au = —574 ki/kg: Al = —803 kl/kg:
As = 143 Ji(kg- K)

11.2 Yes

113 Ty, = 246 °C

114 AS = ~0.923 Bw/R; AU = —684 Btu;
AH = —960 Bw

11.5 ¢ = 1.10 Ml/kg: g = 788 kJ/kg

11.6 = 57.5%

118 W —392kW

119 W= 176 ML, W = 228 MJ, T = 858 K;
Q="317TMJ
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110 m =367 kgfs; T, =512K, V, =
475 mis; W = 23 MW
11.11 7= 65%
11.12 Ar = 828
11,14 M = 0533, 1.08
11.15 M = 0,776, V = 269 m/s
11.16 ¢ = 299 m/s; V = 987 m/s; VIV, = 1.41
11.23 V=761 m/s; x = 27.0°
11.24 V = 642 m/s
11.25 V = 6320 ft/s
11.26 M = 1.19; V = 804 fi/s;
Reix = 9.84 X 1065 m™!
11.27 V =493 m/s; At = 0.398 s
1128 V=515m/fs;r = 6.165
1129 r = 851 s
11.30 Ax = 39201
11.31 + = 4855
11.34 M = 0.141,0.314, 0441
11.35 M = 0925, V= 274 mfs
11.36 Aplp = 48.5%; No
11.37 py = 346 kPa, T, = 466 K;
hy — h = 178 kl/kg
11.38 pg = 126, 128 kPa (abs)
11.39 M= 0801; V=23mfs; T, = 245K
1840 ¢ = 295 m/s; V = 649 mfs; a = 27.0°%
T, = 426 K
1141 Ap = 8.67kPa; V = 195 m/s; V = 205 mv/s
1143 a, = — 161 m/s*; py = 191 kPa (abs);
T, = 346 K
11.44 T, = 394 °F, p, = 85.4 psia;
1 = 145 lbm/s
11.45 Yes; No
1146 V = 890 mss; T, = 677 K; p, = 212 kPa
1147 V = 987 m/s; p, = 125 kPa;
Po = 31L6kPa; T, = TO0TK
1148 T, = Ty, = 20.6 °C; py, = 1.01 MPg;
Po, = 189 kPa. s, — 5, = 480 k¥kg- K
1149 T, = 539°C; Ty, = —16.6°C;
Q= —-279kW; po, = 593 kPa,
P, = 657 kPa; 5, — s, = —1.19kl/kg- K
11.50 T, = 344 K: py = 223, 145 kPa (abs);
5 — 5 = 0,124 kM (kg K)
11.51 &Q/dm = 63.0 Bow/lbm;
Po, = 56.3 psia
11.52 T, = 445 K; py = 57.5, 46.7 kPa (abs);
S — 5 = 59.6 M(kg- K}
[1.53 T, = 2900, 1870 °R:
po = 100, 4,57 psia;
5 — 5, = 0.107 Btu/(lbm - °R)

i

11.54 Ap = 48.2kPa

11,55 T* = 260 K, p* = 24.7 MPa (abs);
V* = 252 m/s

11.56 7* = 1500 K, p* = 2.44 MPa (abs);
V* = 2280 m/s

11.57 T* = 2730 K, p* = 254 MPa (abs);
V* = 1030 mfs

11.58 T* = 2390 °R, p* = 79.2 kPu {abs);
V* = 2400 ft/s

I

Chapter 12
12.1 V= 2620 ft/s; M = 1.36;,
rit = 1.76 lbm/s
12.2 V = 1660 fi/s; M = 0.787,;
m = 0.274 lbm/s
123 M =135
124 p = 938 kPa
125 M, = 1.20
12.6 M, = 1.20
127 V=475m/s; A = 0.315 m’
12.8 M = 1.75: mm = 27.2 kefs;
A, = 0.192 m?; p, = 55.0kPa
1210 rir = 8.50 kgfs
12.11 p, = 33 psia; M, = 0.90; V, = 1060 ft/s
12.12 p, = 166 kPa
1213 p = 150 kPa, M = 0.6; A, = 0.0421 m?;
m = 18.9 ke/s
12.14 s = 0.548 kg/s
12,15 A = 1.94 X 107 m?

12.16 py = B06 kPa; m = 1.92 kg/s
12.17 py = 818 kPa; p, = 432 kPa;

T, = —455°C; V, = 302 m/s
12.18 po = 191 kPa; i = 1.28 kg/s

1219 m = 00107 lbuv/'s

12.20 r = 68.4 s Ay = 0.0739 Btu/(lbm - °R)

12.21 R, = 1560 N (to the left)

12.22 T, = 188°C; AA = —25.4 percent:
p = 188 kPa; V = 393 m/s

12.23 p = 687 kPa (abs); ia = 0.0921 kg/s;
a, = 1.62 m/s*

1224 pp = 988 kPa, p, = 522 kPa;
T, = 587°C; V.= 365m/fs,a = 1.25 m/s®

1225 i = 2.73 Ibmis; a,, = 99.8 fus?

12.26 R, = 304 Ibf, tension

12.27 A, = 0.0340 m2 V, —~ 424 m/s

1228 A, — 0.377 in.?

1229 + = 23.6s

12.30 M, = 1.00; p, = 381 kPa; p, = 191 kPa;
T = 288K




12.31 ¢+ = 23.5s; As = 161 Mkg K)
12.32 i = 0.440 lbm/s
12.33 py = 115 psia; s = 1.53 1bmy/s;

A, = 0.593in?
12.34 p = 125 kPa (abs), i = 0.401 kg/s
12.35 A = 2.99in%; /i = 3.74 Ibm/s
12.36 V = 1300 m/s; i1 = 87.4 kgfs
1237 A = 886 X 107*m?, 1.50 % 107 m?
12.38 m = 3.57 lbm/s
12.39 R, = 950N
12.40 rir = 39.4 1bm/s; F, = 9750 Ibf
12.41 p = 88.3 kPa (abs}; m = 0.499 kg/s;

K, = 1030N
1242 i = 324 kgfs; A, = 0.167 m?;
A /A, =194

12.43 p, = 2740 psia; m = (0.0437 1bm/s;
Thrust = 1.97 1bf; 36 percent;
A, =752 %10 ¥in?
12.44 p, = 5600 psia
1245 m = 0.0726 kg/s; p =< 33.5 kPa (abs)
1246 M = 0.20;m = 3.19 x 10 kgls;
p = 47.9 kPa (abs)
12.47 p = 18.5 psia; V = 1040 fus
1248 p = 477 kPa (abs); As = 49.5 J(kg K)
12.49 mr = 0.00321 kg/s; p, = 33.8 kPa (abs);
As = 314 JAkg - K)
12.50 m = 0.0192 kgfs; T* — 244 X
p¥ = 53.4, 13.6 kPa (abs)
1251 T =468 K; F = 60 N; As = 149 J/(kg-K)
12.52 F = 822 Ibf

12.33 p, == 56.6 psia; T = 433°R; py = 27.8 psia;

m = 0.0316 Ibm/s

12.54 T = 238 K; p = 26.1 kPa (abs);
As = 172 Jitkg  K)

1255 M = 0.15: T = 246 K, py — 25.6 kPa,
L=84Im

1256 L=127m

1257 T=439K; L =345m

12.58 L =18.811

1263 f = 0.0122; Ap —= 13.0 psi

1264 L =0405m

1266 p = 19] kPa (abs); L = 502 m;
As = 326 (kg - K)

12.67 M = 0.25; Added

12.68 p = 153 psia

1269 M = 0.452; L = 603 fi

1270 Ap = 16.6, 18.2, 18.1 psia

1271 @ = 1.84 X 10® ft'¥/day

12.72 8Q/dm = 145 kVikg; Ap = 405 kPa
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12.73 8Q/dm = 243 Btu/ibm
12.74 6Q/dm = 449 klrkg; As = 0.892 k)/(kg - K)
(275 Q = L11kW; p, — p, = 130 MPa

1276 8Qidm = 18 kI/kg; As = 53.2 I(kg - K);

Apy = 2.0kPa

1277 V= 1520 fts; T = 2310 °R,
Q = 740 Btu/s

1278 p = 209 psia; ¢ = 2270 Btu/s;
iy = 0.126 lbm/s

12.79 80Q/dm = 330 Btu/lbm; Ap, = —1.94 psia
12.80 V = 806 n/s; p = d46.4 kPa, M = 1.96;
8Q/dm = 156 kl/kg
1281 M =050,T, = 1560 K; Q0 = 1.R6 MI/s
12.82 Apy = —22 kPa; 8Qfdm = 447 kl/kg;
As = B89 Ni(kg - K)
12.83 §Qfdm = 17.0klikg. T = 318 K;
p = 463 kPa, p, = 87.7 kPa
1284 M = 1.0:p = 48.8 kPa;
Apg = -8.60 kPa
12.85 0 = 5.16 X 10° Btu/s
12.86 8Q/dm = 313 Btw/lbm; Ap, = —34 psia
12.87 T, = 764 K; i = 0.0215 kg/s;
AJA, = 423
12.88 7, = 966 K; M = 0.60;
80/dm = 343 kl/kg; Fraction = 0.616
1291 M, = 1.74;, p, = 449 psia
1293 V = 536 m/fs
1294 p,=1722psia; T, = 954 °R
12.95 p = 0.359 bm/ft*; M = 0.701
1296 V=247 mfs; T = 670K,
As = 315 Jitkg - K)
1297 p — 28.1, 85.7 psia
1298 T = 520K, py = 1.29 MPa
1299 vV = 257 m/s; M = 0.493;
Ap, = =512 kPa
12,100 ¥ =255 m/s; Ap = 473, 842 kPa
12101 T, = 426 K; py = 207.130 kPa
12,102 M = 2.48; V = 2420 {uUs; p = 24.3 psia;
po = 29.1 psia
12103 T = 414 K; p = 51.9kPa, py = 579 kPa
12104 M = 0.545; p = 514 kPa, p, = 629 kPa;
A=0111m?
12,105 A = 232 ft%; As = 0.0423 Br/lbm -°R)
12,106 Ap, = —14.1 psi;
As = 0.0591 Bru/{lbim - °R)
12,107 M = 2.20; py = 178 kPa;
V. = 568 m/fs
[2.108 T, = 533 K; Ap — 37.4 kPa;
As = 300 Jikg - K); pp = 116 kPa
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12.109 V = 265, 279 nv/s
12110 p = 334 kPa; V= 162 m/s
12.111 M = 1.45; m= 0.808 lbmv/s
12.112 M = 0.701; p = 167 kPa;
As = 209 Ji(kg - K)
12.113 M =192, p = 89.4,58.6, 14.5 psia
12.114 M = 2.94; py = 3.39 MPa;
p = 3.35, 1.00 MPa, 101 kPa
12,115 p = 301 kPa
12.116 p = 46.7 psia; A = 1.52in%
m = 2.55 Ibmv/s
12.117 p = 587 kPa; A, = 756 mm?;
A =448 m?
12,118 M = 1.50
12.119 33.4 < p, < 99.6 kPa;
= 0.121 kgfs
12,120 M = 2.12; v = 2000 ft/s
12,121 Pym < pp < 112 kPa and p, >> 743 kPa
12.122 p = 66.6 psia
12.123 p = 301 kPa (abs)

12.125 M = 0475, py = 36! kPa; T, = 400 K;
A = 118mm%s; — 5 =
—0.320 kiKkg - K); M, = 0.377

12,127 M =214

12.128 v = 2140 fus; As = 0.0388 Bu/(1lbm- “°R)

12129 M, = 2.06; p, = 93.4 kPa; § = 3.72°;
Normal shock: M, = 0.547;
p2 = 411 kPa; B = 27°
12,130 B8 =19.5° — W0°
12.131 #=125%B=467°; M, =156
12,132 B = 66.2°% p.fp, = 6.06
12,133 M = 1.42; V = 484 m/s
12.136 F;/w = 138 kN/m
12.137 Fyfw = 183 kN/m
12.138 p, = 36.6 kPa; p, = 15.9 kPa
12.141 py = 1317 kPa, p = 497 kPa;
Po = 3814 kPa, p = 571 kPa
12,142 Fy/w = 643 kN/m; D = 13.7 kN/m
12.144 Cp, = 0.0177

|



Absolute mertric (system of units), 12
Absolute pressure, 56
Absolute viscosity, 28
Acceleration:
convective, 199
gravitational, 11
locul, 199
of particle in velocity field, 197, 199
cylindrical courdinates, 200
rectangular coordinates, 200
Accelerometer, 100
Adiabatic flow. seée Fanno-line flow
Adiabatic process, 592
Adverse pressure gradient, 38, 409, 430
Aging of pipes, 341
Anemometer:
I.aser Doppler, 382
thermal, 382
Angle of attack, 448
Angular deformation, 197, 203, 207
Angular-momentum principle, 103, 145
hixed control volume, 145
rotating centrol volume, S-13
Apparent viscosity, 31
Apparent shear stress, 330
Archimedes” principle, 81
Area, centroid of, 69
second moment of, 70
praduct of inertia of, 71
Area ratio, 343
isentropic flow, 628
Aspect ratio:
airfoil, 453
flat plate, 438
rectangular duct, 348
Atmosphere:
isothermal, 66
standard, 56
Average velocity, 110, 311

Rarometer, 64
Barotropic fluid, 40
Barrels. U.S. petroleumn indusiry, 353, 405
Basic equation of fluid statics, 52
Basic equations for cotitrol volume, 102
angular-momentum principle, for inertial conerol
volume, 145

INDEX

for rotating control volume, S-13
conservation of mass, 109
first law of thermodynamics, 150
Newton's second law (linear momenturn), for control
volume moving with constant velocity, 134
for control volume with arbitrary acceleration, §-7
for control volume with rectilinear acceleration, 137
for differential control volume, 129
for nonaccelerating control volume, 116
second law of thermodynamics, {51
Basic laws for system, 102
angular-momentum principle, 103
conservation of mass, 102
first law of thermodynamics, 103
Newton's second law (linear momentum), 103
differential form, 212
second law of thermodynamics, 104
Basic pressure-height relation, 55
Bearing, journal, 318
Bernoulli equation, 132, 237
applications, 243
cautions on use of, 248
interpretation as an energy equation, 249
irrotational flow, S-21
restrictions on use of, 238
unsteady flow, S-18
Bingham plastic, 31
Blasius® solution, S-39
Blower, 488, 548
Body force, 24
Borda mouthpiece, 268
Boundary layer, 37, 410
displacement thickness, 412
effect of pressure gradient on, 430
flat plate, 411
integral thicknesses, 413
laminar:
approximate solution, 422
exact solution, 5-39
momentum integral equation for, 415, 420
momentum-flux profiles, 432
momentum thickness, 413
separation, 430
shape factor, 432
thickness, 412
transilion, 411
turbulent, 426
velocity proliles, 432
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Boundary-layer:

control, 455, 461

thicknesses, 412
British gravitational {(system of units), 12
Buckingham Fi theorem, 277

Bulk (compressibility) modulus, 40, 599, 718

Buoyancy force, 80

Camber, 448
Capillary effect, 33, 282
Capillary viscometer, 327
Cavitation, 40, 524
Cavitation number, 285, 560
Center of pressure, 68, 69
Choking, 632, 638, 646, 661, $-48, 549
Chord, 448
Circulation, 205, 8-38
Coanda effect, 160
Compressible flow, 40, 589, 617

basic equations for, 617

ideal gas, 620

flow tunctions for computation of, 744
Compressor, 488, 548
Concentric-cylinder viscometer, 48
Confidence limit, 757
Conical diffuser, 344
Conservation:

of energy, se¢ First law of thermodynamics

of mass, 102, 109, 184
cylindrical coordinates, 189
rectangular coordinates, 184

Consistency index, 31
Contactangle, 32, 720
Continuity, see Conservation of mass
Continuity equalion, differential form, 184

eylindrical coordinates, 189

rectangular coordinates, 184
Conlinoum, 17
Contraction eoeflicient, 268, 396
Contro] sucloce. 7
Control volume, 7

deformable, 108

rate of work done by, 151
Convective acceleration, 199
Converging-diverging nozzle, see Nozzle
Converging nozzle, see Nozzle
Conversion factors, 762
Creeping flow. 387
Critical conditions. compressible flow, 610
Crilical How in open ohannel, 285
Critical pressure ralio, 610, 632
Criticat Reynolds number, see Transition
Critical speed:

compressible low, 611
Curl, 204, §-22
Cylinder:

drag coefficient, 441

inviscid Aow around, §-33, §-35

D' Alembert paradox, 35, §-33
Deformalion:
angular, 197, 203, 207
linear, 197, 209
rate of, 27, 208
Del operator:
eylindrical coordinates, 190, §-2, §-22
rectangular coordinates, S4, 186
Densiry, 17
Density field, 18
Denrivative, substantial, 199
Design conditions, see Nozzle

Differential equation, nondimensionalizing, 273

Diffuser, 343, 361, 488, 624
optimum geemetries, 344
pressure recovery in, 344
supersonic, 5-46

Dilatant, 31

Dilation, volume, 210

Dimension, 10

Dimensional homogeneity, 11

Dimensional matrix, 282

Dimensions of flow field, 20

Discharge coefficient, 371
flow nozvle, 374
orifice plate, 373
venturi meter. 376

Displacement thickness, 412

Disturbance thickness. see Boundary layer

Doppler eftect, 382, 602

Doublet, $-28
strength of, 5-28

Downwash, 453

Draft tube, 490, 513

Drag, 35,410, 433
form, 38, 454
friction, 434, 438
parasite, 460
pressure, 38, 437, 438
profile, 454

Drag coefficient, 293, 434
airfoil, 454
complete aircraft, 455
cylinder, 441

rotanng, 464
flat plate normal to flow, 438
flat plate parallel to flow, 434
goll balls, 462
imduced, 453
selected objects, 439
sphere, 439, 430

spinning, 461
streamliped strut, 445
supersonic airfoil, 696
vehicle, 293

Dynamic pressure, 239, 240

Dynamic similarity, 286

Dynamic viscosity, 28

Dyne, 12




Efficiency:
hydraulic turbine, 502
propeller, 558, 586
propulsive, 557
pump, 295, 501
windmill, 567
Elementary plane flows, see Polential iow theory
End-plate, 455
Energy equation, for pipe flow, 334, See aiso
First law of thermodynamics
Energy grade line, 254, 361, 364
English Engincering (system of units), 12
Enthalpy, 153, 590
Entrance length, 312
Entropy, 591
Equation of swte, 5, 620
ideal gas, 5, 589
Equations of motion, see Navier-Stokes equations
Equivalent length, 342
bends, 346
fittings and valves, 346
miter bends, 346
Euler equations, 215, 232
along streamline, 234
¢ylindrical coordinates, 233
norrual to streamline, 235
rectangular coordinates, 233
streamline coordinales, 234
Eulerian method of description, 10, 201
Euler number, 285
Euler turbomachine equation, 491
Experimental uncertainty. 2, 755
Extensive property, 104
External flow, 41, 409

Fan, 488, 542
“laws.” 297, 545
selection procedure, 735
specific speed, 546
Fanno-line flow, 643, 645
basic equations for, 644
choking length, 653. S-49
effects an propertics. 646
flow functions for computation of, 649, 746
normal shock farmation in, 8-49
Ts diagram, 646
Field representation, |8
First law of thermodynamics, 103, 150
Fittings, losses in, tee Head loss, in valves and fitlings
Flap, 455
Flat plate, flow over, 411
Float-type tlow meter, 380
Flow behavior index, 31
Flow coeflicient, 296, 372
flow noezle, 374, 375
arifice plate, 374
twrboniachine, 514
HFlow field. dimeensions of, 20

INDEX

Flow measurement, 369
inteenal flow, 370
direct methods, 369
linear flow meters, 380
¢lectromagnetic, 381
float-type, 380
rotameter, 380
turbine, 380
ultrasonic, 342
vortex shedding, 380
restnction flow meters, 370
flow nozzle, 374
laminar flow element, 376
orifice plate, 373
ventori, 376
traversing metheds, 382
laser Boppler anemometer, 382
thermal anemometer, 382
Flow meter, s¢e Flow measurement
Flow nozzle, 374
Flow visualization, 21, 292
Fluid, 3
Fluid machinery, 487
dynamic, see Turbomachine
fan, 488
performance characteristics, 502
positive displacement, 487
propeller, 489
pump, 488
turbing, 489
Fluid particle, 19
Fluid properties, 716
Fluid statics:
basic equation of, 52
pressure-height relation, 55
Fluid system, 347, 528
Force:
body, 24
huoyancy, 81
compressibility. 284
drag, 433
gravity, 284
hydrostatic, 67
on curved submerged surface, 76
on plane submerged surface, 67
inertia, 282
litt. 433, 447
pressure, 53, 284, 433
shear, 433
surface, 24, 433
surface tension, 32, 33, 284
viscous, 284
Forced vortex, 206
Francis turbine, 490, 513
Free surface, $-3, 8-5
Free vortex, 206, $-28
Frictton drag, see Drag
Friction factor, 336, 338, 339
Darey, 338

781
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Friction facior (continued) Hydraulic grade line, 255, 361, 364
data correlation for, 339, 340 Hydraulic jump, 190
Fanning, 338, 396 Hydraulic power, 501, 502
laminar flow, 340 Hydraulic systems, 67
smoaoth pipe correlation, 341 Hydraulic turbine, 490, 56/
Frictionless Aow: Hydrometer, 97
compressible adiabatic, see Isentropic flow Hydrostatic force, 67
compressible with heat transfer, see Rayleigh-line flow on curved submerged surfaces, 76
incompressible, 232 on plane submerged surfaces, 68
Friction velocity, 302, 331 Hydrostatic pressure distribution, 69, 121
Froude number, 285 Hypersonic flow, 600
Froude speed of advance, 304
Fully developed flow, 311
laminar, 312 Ice, 717
turbulent, 330 Ideal fluid, 5-22
Fully rough flow regime, 339, 341 Ideal gas, 5, 589
lmpeller, 488
Incomplete similarity, 289
Bo 11 Incompressible Aow, 40, 106, 187, 192
Gage pressure, 56 Incompressible fluid, 57
Gas conslant: Induced drag, 453
ideal gas equation of state, 5, 590, 726 Inertial control volume, 116, 134
universat, 590, 726 Inertial coordinate system, 116, 137
Geometric similarity, 286 Intensive property, 104
Gibbs equations, 592 Internal energy, 590
Grade line 254 Internal Row, 41, 310
energy, 255, 361, 364 Inviscid flow, 36, 232
hydraulic, 255, 361, 364 Irreversible process, 592
Gradient, 54 Irrotatonal flow, 205, 8-20
Gravity, acceleration of, 11 Irrotationality condition, §-20
Guide vanes, 490 Irrotational vortex, 207, S-28

[sentropic expansion waves, 690
basic equations for, 691

Head. 254, 336. 493 on an airfoil, 694
gross, 509, 513 Prandtl-Meyer expansion function, 693, 754
pump, 347, 501, 529 Isentropic Row, 621
net, 509,513 basic equations for, 621
shutott, 500 ideal gas, 621
Head coefticient, 296, 514 in converging-diverging nozzle, 637
Head loss, 335 in converging nozzle, 631
in dilfusers, 345 effect of area variation on, 621, 623
in enlargements and contractions, 343 flow functions for computation of, 627, 744
in exits, 342 in hs plane, 622
in gradual coniractions, 344 reference conditions for, 625
in inlets, 343 Isentropic process, 592
major, 329, 336 Isentropic stagnation properties, 602
minor, 329, 34] for ideal gas, 603, 606
in miter bends, 346 Isothermal flow, S-44
in nozzles, 344
permanent, 377

Jet pump, 163

in pipe bends, 346 Journal bearing, 318

in pipe entrances, 343
in pipes, 336

in sudden area changes, 343 Kaplan turbine, 490, 513

to1al, 336 Kilogram force, 577

in valves and filings, 346 Kinematic similarity, 286
Head loss coefficient, 341 Kinematics of fluid motion, 197
Heat transfer, sign convention for, 104, 150 Kinematic viscosity, 28
Hydraulic accumulator, 163 Kinetic energy coefficient, 335

Hydraulic diameter, 348, 650 Kinetic energy ratio, 309
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Lagrangian method of description, 8, 201 coefficient, 394
Laminar boundary layer, 422, §-39 linear, see Newton's second law of motion
flat plate approximate solution, 422 Mormentum equation:
flat plate, exact sofulion, $-39 differenuial form, 211
Laminar flow, 39, 310 for control volume moving with constant velocity, 134

between parallel plates, 312
both plates statiunary, 312

for control volume with arbitrary acceleration, S-7
for control volume with rectilinear acceleration, 137

one plate moving, 318
in pipe, 324
Larminar flow element {LFE), 376
Laplace’s equation, §-23
Lapse rate, 613
Litt, 410, 433, 447
Lift coetficient, 448
airfoil, 450
rotating cylinder, 464
spinning golf ball, 462
spinning sphere, 461
supersonic airfolil, 696
Lifv/drag ratio, 432
Linear deformation, 197. 209

Linear momentum, see Newton's second law of motion

Local acceleration, 199

Loss, major and minor, see Head loss
Loss coefficient, see Head loss
Lubricating oil, 724, 725

Mach angle, 602
Mach cone, 601
Mach number, 40, 286, 596
Magnus cffect, 463
Major loss, see Head loss
Manometer, 57
capillary effect in, 33
multiple liquid, 62
reservoir, 59
sensitivily, 59
U-tube, 58
Material derivative, 199
Mean line, 448
Measurement, Aow, see Flow measurement
Mechanical energy, 252, 335
Mechanical flow meter, see Flow measurement
Mechanical power, 492
Meniscus, 33, 282
Meridionat, 514
Meter, flow, see Flow measurement
Methods of description:
Eulerian, 10, 201
Lagrangian, §, 201
Metric horsepower, 577
Mile, nautical, 763
Minor loss, see Head loss
Minor loss coefficient, see Head loss coefficient
Model studies, 286
Model test facilities, 299
Modulus of elasticity, 40
Molecular mass, 590, 726
Momentum:
angular, see Angular-momentum principle

for differential controt volume, 129
for inertial control volume, 116
for inviscid flow, 232
Momentum flux, 117
Momentum integral equation, 415, 420
for zero pressure gradient flow, 421
Momentum thickness, 413
Moody diagram, 339

National Transonic Facility (NTF), 299, 613
Nautical mile, 763
Navier-Stokes equations, 213
tylindrical coordinates, 730
rectangular coordinates, 2 14
Net positive suction head, 524
Netwark, pipe, 364
Newton, 12
Newtonian fluid, 28, 213
Newton's second law of motion, 103
Noncircular duct, 348
Noninertial reference frame. 131, 5-7
Non-Newtonian fluid, 28, 30
apparen! viscosity, 31
consistency index, 31
flow behavior index, 31
power-law model, 3|
pseudoplastic, 31
rheopectic, 32
thixotropic, 32
fime-dependent. 32
viscoelastic, 32
Normal shack, 669
basic equations for, 670
effects on properties, 672
fiow functions for computation of, 672, 750
supersonic channel flow with, 678, $-46
Ts diagram, 671, 672
Normal stress, 25, 145, 214
No-slip conditicn, 3, 37, 31)
Nozzle, 243, 624
choked flow in, 632, 638
converging, 624, 631
converging-diverging, 625, 637, 678
design conditions, 639
incompressible flow through, 243
normal shock in, 678
overexpanded, 639
underexpanded, 639

Oblique shock, 680
hasic equations for, 681
comparison with normal shock, 684
deflection angle, 687, 753



784  nDex

Oblique shock {conrinued y
flow functions for compultation of, 684, 752
on an anfoil, 688
shock angle, 687

One-dimensional flow, 20

Open-channet flow, 41

Onfice, reentmnt, 268

Orifice plate, 373

Overexpanded nozzle, 639

Particle derivative, 199
Pascal, 762
Pathline, 21
Pelton wheel, 509
Permanent head loss, see Heuad loss
Physical properties, 716
Pipe:
aging, 341, 581
compressible Avw in, see Fanno-line flow
head Joss, see Head 10ss
laminar flow in, 325
noncircular, 348
roughness, 337, 338
standard sizes, 351
turhulent Aaw in, 33Q, 337
Pipe systems, 350
networks, 364
pumps n, 347, 529
single-path, 350
Pi theorem, 277
Pitch, 558
Pitot-static tube, 241
Pitol tube, 24|
Plantorm area, 446, 443
Poise. 28
Polar plot, lifl-drag, 452
Potental, velocity, $-22
Potential flow theory, $-23
clementary plane flows, $-25
doubler, 5-28
sink, 8-25
source, S-25
uniform How, 8-25
vortex, 5-28
superposition of elementary plane Hows, $-2%
Potential funetion, 8-22
Power coefficient 296, 515, 558
Power-law model, non-Newtonian fiuid, 31
Power-law velocity profile, 332
Prandil boundary layer equations, 301, §-39
Pressure, 53, 56
absolute, 56
center of, 68, 69
dynamic, 239, 240
gage, 56

isentropic stagration, see Isentrepic stagnation properties

stagnation, 239, 240
static, 239
thermodynamic, 214, 239

Pressure coefficient, 285, 343
Pressure distribution:
airfoil, 446, 451
automobile, 460
converging-diverging nozzle, 637, 678
converging nozzle, 632
cylinder, inviscid flow, 8-33, §-35
diffuser, 361, 431
entrance length of pipe, 359
sphere, 440
supersetiic airfuil, 688, 694, 696
Pressure drag, see Drag
Pressure field, 53
Pressure force, 53
Pressure gradient, 54, 431
effect on boundary layer, 430
Pressure recovery coefficient, 343
ideal, 344
Pressure surface, 448
Pressure tap, 240, 373
Primary dimension, 10, 278
Profile, velocity, see Velocity profile
Propeller. 489, 554
actuator disk, 554
efficiency, 558
pitch, 558
power cocfficient, 358
propulfive efficiency, 557
solidity, 557
speed of advance coefficient, 558
thrust coefficient, 558
torque coefficient, 558
Properties, fluid, 716
air, 728
water, 716,727
Propulsive efficiency, 557
Pseudoptastic, 31
Pump, 488, 531
in fluid system, 347, 529
“laws,” 297, 520
operating point, 529
parallel operation, 338
positive displacement, 549
selection procedure, 733
series operation, 537
specific speed, 516
variable-speed operation, 539

Rankine propeller theory, 556
Rate of deformaltion, 27, 208
Rayleigh-line flow, 657
basic equations for, 658
choking, 661, 549
effects an properties, 660
flow functions for computation of, 664, 748
maximum heat addition, 661
Ts diagram, £59, 661
Reenmrant entrance, 268
Reference frame, noninertial, 131, 8-7




Repeating parameter, 279

Reversible process, 592

Reynolds experiment, 310

Reynolds number, 36, 284
critical. see Transition

Reynolds stress, 330

Reynolds transport theorem, 107

Rheopectic, 32

Rigid-body, motion of fluid, -1

Rotation, 197, 203

Rotor, wrbomachine, 489

Roughness, pipe, 337, 338

Runner, wrbomachine, 489

Secondary dimension, 11
Secondary flow, 345

Second law of thermodyvanics, 104, 157

Separation, 38, 430
Shaft work, 151
Shape factor, velocity profile, 432
Shear rate, 28
Shear stress, 3, 25
distribution in pipe, 329
Shear work, 152
Shock. normal, see Normal shock
Shock, oblique, see Oblique shock
Shockless entry flow, 493
Shutaff head, 500
Significant figures, 2
Similarity:
dynamic, 286
geometric, 286
ncomplete, 289
kinematic, 286
rules, 519

Similar velocity profiles, 421, 8-39, §-40

Similitude, 275
Sink, $-25
strength of, §5-25
Siphon, 244, 402
Slunits, 11, 762
prefixes, 762

Skin friction coefficient, 423, 427, 5-41

Slug, 12
Sluice gate, 125,245
Solidity, 489, 557
Sound, speed of, 596. 599
Source, §-25
strength of, 5-25
Span, wing, 453
Specific gravity, 18, 716, 717, 718
Specific heat
constant pressure, 590, 726
constant volume, 390, 726
Specific heat ratio, 591,726
Specific speed, 297, 515, 516, 546
Sperific volume, 153, 590
Specific weight, 19
Speed of advance coefficient. 558

INDEX

Speed of sound, 596
ideal gas, 599
solid and liquid, 599
Sphere:
drag coefficient, 439
flow around, 37
inviscid flow around, 37
pressure distribution, 440
Spin ratio, 461
Stability, &80
Stage, 488
Stagnation enthalpy, 615,619
Stagnation point, 37, 410, 8-34, §-36
Stagnation pressure, 239, 240
isentropic, see lsentropic stagnation
properties
Stagnation pressure probe, 24]
Stagnation propertics, see [scotropic stagnation
properties
Stagnation state, 602
Stagnation temperature, 606
Stall. wing, 449
Standard atmosphere, 56
properlies of, 57. 719
Standard cubic foot (of gas), 16
Standard pipe sizes, 351
State:
equation of, 3
thermodynamic, 590
Static fluid, pressure variation in, 57
Static pressure, 239
Static pressure probe. 240
Static pressure tap, 239
Steady flow, 19, 110, 187, 192
Stoke, 28
Stokes’ drag law, 439
Stokes” theorem, 206
STP (standard temperaiure and pressure), 17, 726
Streakline, 21|
Stream function, 193, 195
Streamnline, 21
egqualion of, 22, 193
Swreamline coordinates, 233, 237
Streamline curvature, 235, 459
Streamlining, 38, 445
Stream tube, 250
Stress, 24
components, 26, 214, 730
compressive, 53
normal, 25, 145, 214, 730
notation, 25
shear, 25, 214, 730
sign convention, 26
yield, 31
Stress field, 24
Stresses. Newtonian fuid, 214
Strouhal number, 381, 442
Substantial derivative, 199
Suction surface, 448
Sudden expansion, 343

785
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Suvperposition, of elementary plane lows, 5-28
direct method of, §-29
inverse methed of, $-33
Surface force, 24
Surface tensicn. 32, 720
System, 5
System head curves, 529
System derivative, 104
relation to control volume, 107
Systems:
of dimensions, L1
of units, t1

Taylor series expansion, 53, 184, 189, 204, 212, 314,
417,418,419
Tds equations, 592
Terminal speed, 8
Thermodynamic pressure, see Pressure
Thermodynamics, review of, 589
Thixotropic, 32
Three-dimensional low, 20
Throat, nozzle, 624
Thrust coefficient, $58
Timeline, 21
Toryue coefficient, 514, 558
Total head tube, 241
Trailing vortex, 452
Transition, 311, 411,440
Translation, 197
Transonic Row, 600
Ts diagram, 595
Turbine, 489
hydraulic, 489, 561
impulse, 489, 509
rcaction, 490, 513
specific speed, 516
wind, 566
Turbine flow meter, 381
Turbomachine, 487
axial flow, 488
centrifugul, 488
fan, 488
flow coefficient, 296, 514
head coefficient, 296, 514
mixed flow, 489
pump, 488
power coefficient, 296, 515
radial flow, 487
scaling laws for, 296
specific speed, 297, 513
stage, 488
torque coefficienl, 514
Turbulent boundary luyer, approximate solulion
for flat plate, 426
Turbulent flow, 39, 310
Turbulent pipe flow, 329
flucwating velocity, 330
mean velocity, 330
shear stress distribution, 330

velocity profile, 331
buffer layer, 332
logarithmic, 331
power-law, 332
velocity detect, 332
viscous sublayer, 331
wall layer, 330

Two-dimensional flow, 20

Uncerainty, experimental, 2, 755
Underespanded nozale, 639
Uniform flow at a section, 20, 111
Uniform flow field, 2]

Units, 11, 762

Universal gas constant, 590, 720
Unsteady Bernoulli equation, $-18
Unsteady tlow, 20

Vapor pressure, 40
Vector, differentiation of, 19, 199
Velocity diagram, 493
Vetocity ficld, 19
Velocity measurement, see Flow measurement
Velocity of approach faclor, 372
Velocity potential, §-22
Velacity profile, 37
in pipe flow, laminar, 326
tusbulent, 331
Vena conltracta, 342, 361, 370
Venturi flowmeter, 376
Videotapes, fluid mechanics, 731
Viscoelastic, 32
Viscometer:
capillary, 327
concentric cylinder, 48, 219
cone-and-plate, 49
Viscosity, 27. 28
absolute (or dynamic), 28, 722
apparent, 31
kinematic, 28, 723
physical nature of, 720
Viscous flow, 36
Viscous sublayer, 331
Visualization, flow, 21, 292
Volumne dilation, 210
Volume flow rate, 110
Vortex:
forced, 206
lree, 206, §-27
irrolational, 207, $-28
strength of, 8-28
trailing, 442, 452
Vortex shedding, 306, 442, 452
Vorucity, 205
cylindrical coordinates, 205

Wake, 38,410 !
Wall shear stress, 329, 423, 427, 8-41
Water hammer, 40, 304
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