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m 27.8kg=m 61.2 lbm=m 0.0765
lbm

ft3
⋅ 800× ft3⋅=

m ρ V⋅=The mass of air is then

V 800ft3=V 10 ft⋅ 10× ft 8× ft=The volume of the room is

ρ 1.23
kg

m3
=orρ 0.0765

lbm

ft3
=

ρ 14.7
lbf

in2
⋅

1
53.33

×
lbm R⋅
ft lbf⋅

⋅
1

519 R⋅
×

12 in⋅
1 ft⋅







2
×=

ρ
p

Rair T⋅
=Then

T 59 460+( ) R⋅= 519 R⋅=p 14.7 psi⋅=Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

The data for standard air are:

Find: Mass of air in lbm and kg.

Given: Dimensions of a room.

Solution

Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or
1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then compute
this mass in lbm and kg to see how close your estimate was.

Problem 1.6



M 0.391slug=M 12.6 lb=

M 204 14.7×
lbf

in2
⋅

144 in2⋅

ft2
× 0.834× ft3⋅

1
55.16

×
lb R⋅
ft lbf⋅
⋅

1
519

×
1
R
⋅ 32.2×

lb ft⋅

s2 lbf⋅
⋅=

M V ρ⋅=
p V⋅

RN2 T⋅
=Hence

V 0.834 ft3=V
π
4

6
12

ft⋅





2
× 4.25× ft⋅=

V
π
4

D2⋅ L⋅=where V is the tank volume

ρ
M
V

=andp ρ RN2⋅ T⋅=

The governing equation is the ideal gas equation

(Table A.6)RN2 55.16
ft lbf⋅
lb R⋅

⋅=T 519R=T 59 460+( ) R⋅=

p 204 atm⋅=L 4.25 ft⋅=D 6 in⋅=

The given or available data is:

Solution

Find:   Mass of nitrogen

Given:  Data on nitrogen tank

Problem 1.7
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T
µ T( )d

d
A− 10

B
T C−( )⋅

B

T C−( )2
⋅ ln 10( )⋅→

For the uncertainty

µ T( ) 1.005 10 3−×
N s⋅

m2
=

µ T( ) 2.414 10 5−⋅
N s⋅

m2
⋅ 10

247.8 K⋅
293 K⋅ 140 K⋅−( )×=Evaluating µ

µ T( ) A 10

B
T C−( )⋅=The formula for viscosity is

uT 0.085%=uT
0.25 K⋅
293 K⋅

=The uncertainty in temperature is

T 293 K⋅=C 140 K⋅=B 247.8 K⋅=A 2.414 10 5−⋅
N s⋅

m2
⋅=

The data provided are:

Find: Viscosity and uncertainty in viscosity.

Given: Data on water.

Solution

From Appendix A, the viscosity µ (N.s/m2) of water at temperature T (K) can be computed
from µ = A10B/(T - C), where A = 2.414 X 10-5 N.s/m2, B = 247.8 K, and C = 140 K.  
Determine the viscosity of water at 20°C, and estimate its uncertainty if the uncertainty in 
temperature measurement is +/- 0.25°C.

Problem 1.16



so
uµ T( )

T
µ T( ) T

µ T( ) uT⋅d
d
⋅ ln 10( ) T

B

T C−( )2
⋅ uT⋅⋅→=

Using the given data

uµ T( ) ln 10( ) 293 K⋅
247.8 K⋅

293 K⋅ 140 K⋅−( )2
⋅ 0.085⋅ %⋅⋅=

uµ T( ) 0.61%=
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uH
L
H L

H uL⋅∂

∂
⋅









2
θ
H θ

H uθ⋅
∂

∂
⋅









2

+=For the uncertainty

H 57.7 ft=H L tan θ( )⋅=The height H is given by

uθ 0.667%=uθ
δθ

θ
=The uncertainty in θ is

uL 0.5%=uL
δL
L

=The uncertainty in L is

δθ 0.2 deg⋅=θ 30 deg⋅=δL 0.5 ft⋅=L 100 ft⋅=

The data provided are:

Find:

Given: Data on length and angle measurements.

Solution

The height of a building may be estimated by measuring the horizontal distance to a point on t
ground and the angle from this point to the top of the building. Assuming these measurements
L = 100 +/- 0.5 ft and θ = 30 +/- 0.2 degrees, estimate the height H of the building and the 
uncertainty in the estimate. For the same building height and measurement uncertainties, use 
Excel’s Solver to determine the angle (and the corresponding distance from the building) at 
which measurements should be made to minimize the uncertainty in estimated height. Evaluat
and plot the optimum measurement angle as a function of building height for 50 < H < 1000 f

Problem 1.20



and
L

H∂

∂
tan θ( )=

θ
H∂

∂
L 1 tan θ( )2+( )⋅=

so uH
L
H

tan θ( )⋅ uL⋅





2 L θ⋅
H

1 tan θ( )2+( )⋅ uθ⋅








2
+=

Using the given data

uH
100
57.5

tan
π
6









⋅
0.5
100
⋅








2 100
π
6
⋅

57.5
1 tan

π
6









2
+









⋅
0.667
100

⋅











2

+=

uH 0.95%= δH uH H⋅= δH 0.55 ft=

H 57.5 0.55− ft⋅+=

The angle θ at which the uncertainty in H is minimized is obtained from the corresponding Exce
workbook (which also shows the plot of uH vs θ)

θoptimum 31.4 deg⋅=



Problem 1.20 (In Excel)

The height of a building may be estimated by measuring the horizontal distance to a
point on the ground and the angle from this point to the top of the building. Assuming
these measurements are L  = 100 +/- 0.5 ft and θ = 30 +/- 0.2 degrees, estimate the
height H  of the building and the uncertainty in the estimate. For the same building
height and measurement uncertainties, use Excel ’s Solver  to determine the angle (and
the corresponding distance from the building) at which measurements should be made
to minimize the uncertainty in estimated height. Evaluate and plot the optimum measurement
angle as a function of building height for 50 < H  < 1000 ft.

Given: Data on length and angle measurements.

Find: Height of building; uncertainty; angle to minimize uncertainty

Given data:

H = 57.7 ft
δL = 0.5 ft
δθ = 0.2 deg

For this building height, we are to vary θ (and therefore L ) to minimize the uncertainty u H.

Plotting u H vs θ

θ (deg) u H

5 4.02%
10 2.05%
15 1.42%
20 1.13%
25 1.00%
30 0.949%
35 0.959%
40 1.02%
45 1.11%
50 1.25%
55 1.44%
60 1.70%
65 2.07%
70 2.62%
75 3.52%
80 5.32%
85 10.69%

Optimizing using Solver

Uncertainty in Height (H  = 57.7 ft) vs θ

0%

2%

4%

6%

8%

10%

12%

0 20 40 60 80 100

θ (o)

u
H

The uncertainty is uH
L
H

tan θ( )⋅ uL⋅






2 L θ⋅
H

1 tan θ( )2+( )⋅ uθ⋅








2
+=

Expressing uH, uL, uθ and L as functions of θ, (remember that δL and δθ are 
constant, so as L and θ vary the uncertainties will too!) and simplifying

uH θ( ) tan θ( ) δL
H

⋅








2 1 tan θ( )2+( )
tan θ( ) δθ⋅









2

+=



θ (deg) u H

31.4 0.95%

To find the optimum θ as a function of building height H  we need a more complex Solver

H  (ft) θ (deg) u H

50 29.9 0.99%
75 34.3 0.88%

100 37.1 0.82%
125 39.0 0.78%
175 41.3 0.75%
200 42.0 0.74%
250 43.0 0.72%
300 43.5 0.72%
400 44.1 0.71%
500 44.4 0.71%
600 44.6 0.70%
700 44.7 0.70%
800 44.8 0.70%
900 44.8 0.70%
1000 44.9 0.70%

Use Solver  to vary ALL θ's to minimize the total u H!

Total u H's:  11.32%

Optimum Angle vs Building Height

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

H  (ft)

θ 
(d

eg
)
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Vmax
M g⋅

3 π⋅ µ⋅ d⋅
=

1
3 π×

2.16 10 11−× kg⋅

s2
× 9.81×

m

s2
⋅

m2

1.8 10 5−× N⋅ s⋅
×

1
0.000025 m⋅

×=

so

M g⋅ 3 π⋅ V⋅ d⋅=Newton's 2nd law for the steady state motion becomes

M 2.16 10 11−× kg=

M ρAl
π d3⋅

6
⋅ 2637

kg

m3
⋅ π×

0.000025 m⋅( )3

6
×==The sphere mass is

ρAl 2637
kg

m3
=ρAl SGAl ρw⋅=Then the density of the sphere is

d 0.025 mm⋅=SGAl 2.64=ρw 999
kg

m3
⋅=µ 1.8 10 5−×

N s⋅

m2
⋅=ρair 1.17

kg

m3
⋅=

The data provided, or available in the Appendices, are:

Find: Maximum speed, time to reach 95% of this speed, and plot speed as a function of time.

Given: Data on sphere and formula for drag.

Solution

For a small particle of aluminum (spherical, with diameter d = 0.025 mm) falling in standard air 
at speed V, the drag is given by FD = 3πµVd, where µ is the air viscosity.  Find the maximum 
speed starting from rest, and the time it takes to reach 95% of this speed. Plot the speed as a 
function of time.

Problem 1.24



Vmax 0.0499
m
s

=

Newton's 2nd law for the general motion is M
dV
dt

⋅ M g⋅ 3 π⋅ µ⋅ V⋅ d⋅−=

so dV

g
3 π⋅ µ⋅ d⋅

m
V⋅−

dt=

Integrating and using limits V t( )
M g⋅

3 π⋅ µ⋅ d⋅
1 e

3− π⋅ µ⋅ d⋅
M

t⋅
−







⋅=

Using the given data

0 0.005 0.01 0.015 0.02

0.02

0.04

0.06

t (s)

V
 (m

/s
)

The time to reach 95% of maximum speed is obtained from

M g⋅
3 π⋅ µ⋅ d⋅

1 e

3− π⋅ µ⋅ d⋅
M

t⋅
−







⋅ 0.95 Vmax⋅=

so

t
M

3 π⋅ µ⋅ d⋅
− ln 1

0.95 Vmax⋅ 3⋅ π⋅ µ⋅ d⋅

M g⋅
−









⋅= Substituting values t 0.0152s=



Problem 1.24 (In Excel)

For a small particle of aluminum (spherical, with diameter d  = 0.025 mm) falling in
standard air at speed V , the drag is given by F D  = 3πµVd , where µ is the air viscosity.
Find the maximum speed starting from rest, and the time it takes to reach 95% of this
speed. Plot the speed as a function of time.

Solution

Given: Data and formula for drag.

Find: Maximum speed, time to reach 95% of final speed, and plot.

The data given or availabke from the Appendices is

µ = 1.80E-05 Ns/m2

ρ = 1.17 kg/m3

SGAl = 2.64
ρw = 999 kg/m3

d  = 0.025 mm

Data can be computed from the above using the following equations

t (s) V (m/s) ρAl = 2637 kg/m3

0.000 0.0000
0.002 0.0162 M = 2.16E-11 kg
0.004 0.0272
0.006 0.0346 Vmax = 0.0499 m/s
0.008 0.0396
0.010 0.0429
0.012 0.0452 For the time at which V (t ) = 0.95V max, use Goal Seek :
0.014 0.0467
0.016 0.0478
0.018 0.0485 t (s) V (m/s) 0.95Vmax Error (%)
0.020 0.0489 0.0152 0.0474 0.0474 0.04%
0.022 0.0492
0.024 0.0495
0.026 0.0496

Speed V vs Time t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.000 0.005 0.010 0.015 0.020 0.025 0.030

t (s)

V 
(m

/s
)

ρAl SGAl ρw⋅=

M ρAl
π d3⋅

6
⋅=

Vmax
M g⋅

3 π⋅ µ⋅ d⋅
=

V t( )
M g⋅

3 π⋅ µ⋅ d⋅
1 e

3− π⋅ µ⋅ d⋅
M

t⋅
−







⋅=



x t( )
M g⋅

3 π⋅ µ⋅ d⋅
t

M
3 π⋅ µ⋅ d⋅

e

3− π⋅ µ⋅ d⋅
M

t⋅
1−







⋅+









⋅=Integrating again

V t( )
M g⋅

3 π⋅ µ⋅ d⋅
1 e

3− π⋅ µ⋅ d⋅
M

t⋅
−







⋅=Integrating and using limits

dV

g
3 π⋅ µ⋅ d⋅

m
V⋅−

dt=so

M
dV
dt

⋅ M g⋅ 3 π⋅ µ⋅ V⋅ d⋅−=Newton's 2nd law for the sphere (mass M) is

ρw 999
kg

m3
⋅=µ 1.8 10 5−×

N s⋅

m2
⋅=

The data provided, or available in the Appendices, are:

Find: Diameter of water droplets that take 1 second to fall 1 m.

Given: Data on sphere and formula for drag.

Solution

For small spherical water droplets, diameter d, falling in standard air at speed V, the drag is 
given by FD = 3πµVd, where µ is the air viscosity. Determine the diameter d of droplets that 
take 1 second to fall from rest a distance of 1 m. (Use Excel’s Goal Seek.)

Problem 1.25



Replacing M with an expression involving diameter d M ρw
π d3⋅

6
⋅=

x t( )
ρw d2⋅ g⋅

18 µ⋅
t

ρw d2⋅

18 µ⋅
e

18− µ⋅

ρw d2⋅
t⋅

1−







⋅+











⋅=

This equation must be solved for d so that x 1 s⋅( ) 1 m⋅= .  The answer can be obtained from 
manual iteration, or by using Excel's Goal Seek.

d 0.193 mm⋅=

0 0.2 0.4 0.6 0.8 1

0.5

1

t (s)

x 
(m

)



Problem 1.25 (In Excel)

For small spherical water droplets, diameter d, falling in standard air at speed V , the drag
is given by F D  = 3πµVd , where µ is the air viscosity. Determine the diameter d  of
droplets that take 1 second to fall from rest a distance of 1 m. (Use Excel ’s Goal Seek .)
speed. Plot the speed as a function of time.

Solution

Given: Data and formula for drag.

Find: Diameter of droplets that take 1 s to fall 1 m.

The data given or availabke from the Appendices is µ = 1.80E-05 Ns/m2

ρw = 999 kg/m3

Make a guess at the correct diameter (and use Goal Seek  later):
(The diameter guess leads to a mass.)

d  = 0.193 mm
M  = 3.78E-09 kg

Data can be computed from the above using the following equations:

Use Goal Seek  to vary d  to make x (1s) = 1 m:

t (s) x (m) t (s) x (m)
1.000 1.000 0.000 0.000

0.050 0.011
0.100 0.037
0.150 0.075
0.200 0.119
0.250 0.167
0.300 0.218
0.350 0.272
0.400 0.326
0.450 0.381
0.500 0.437
0.550 0.492
0.600 0.549
0.650 0.605
0.700 0.661
0.750 0.718
0.800 0.774
0.850 0.831
0.900 0.887
0.950 0.943
1.000 1.000

Distance x vs Time t

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.000 0.200 0.400 0.600 0.800 1.000 1.200

t (s)

x 
(m

)

M ρw
π d3⋅

6
⋅=

x t( )
M g⋅

3 π⋅ µ⋅ d⋅
t

M
3 π⋅ µ⋅ d⋅

e

3− π⋅ µ⋅ d⋅
M

t⋅
1−







⋅+









⋅=













Problem 1.30

Derive the following conversion factors:
  (a) Convert a pressure of 1 psi to kPa.
  (b) Convert a volume of 1 liter to gallons.
  (c) Convert a viscosity of 1 lbf.s/ft2 to N.s/m2.

Solution

Using data from tables (e.g. Table G.2)

(a) 1 psi⋅ 1 psi⋅
6895 Pa⋅

1 psi⋅
×

1 kPa⋅
1000 Pa⋅

×= 6.89 kPa⋅=

(b) 1 liter⋅ 1 liter⋅
1 quart⋅

0.946 liter⋅
×

1 gal⋅
4 quart⋅

×= 0.264 gal⋅=

(c) 1
lbf s⋅

ft2
⋅ 1

lbf s⋅

ft2
⋅

4.448 N⋅
1 lbf⋅

×

1
12

ft⋅

0.0254 m⋅











2

×= 47.9
N s⋅

m2
⋅=



Problem 1.31

Derive the following conversion factors:
  (a) Convert a viscosity of 1 m2/s to ft2/s.
  (b) Convert a power of 100 W to horsepower.
  (c) Convert a specific energy of 1 kJ/kg to Btu/lbm.

Solution

Using data from tables (e.g. Table G.2)

(a) 1
m2

s
⋅ 1

m2

s
⋅

1
12

ft⋅

0.0254 m⋅











2

×= 10.76
ft2

s
⋅=

(b) 100 W⋅ 100 W⋅
1 hp⋅

746 W⋅
×= 0.134 hp⋅=

(c) 1
kJ
kg
⋅ 1

kJ
kg
⋅

1000 J⋅
1 kJ⋅

×
1 Btu⋅
1055 J⋅

×
0.454 kg⋅

1 lbm⋅
×= 0.43

Btu
lbm
⋅=
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Problem 1.33

Derive the following conversion factors:
  (a) Convert a volume flow rate in in.3/min to mm3/s.
  (b) Convert a volume flow rate in cubic meters per second to gpm (gallons per minute).
  (c) Convert a volume flow rate in liters per minute to gpm (gallons per minute).
  (d) Convert a volume flow rate of air in standard cubic feet per minute (SCFM) to cubic
        meters per hour. A standard cubic foot of gas occupies one cubic foot at standard              
        temperature and pressure (T = 15°C and p = 101.3 kPa absolute).

Solution

Using data from tables (e.g. Table G.2)

(a) 1
in3

min
⋅ 1

in3

min
⋅

0.0254 m⋅
1 in⋅

1000 mm⋅
1 m⋅

×





3
×

1 min⋅
60 s⋅

×= 273
mm3

s
⋅=

(b) 1
m3

s
⋅ 1

m3

s
⋅

1 quart⋅

0.000946 m3⋅
×

1 gal⋅
4 quart⋅

×
60 s⋅

1 min⋅
×= 15850 gpm⋅=

(c) 1
liter
min
⋅ 1

liter
min
⋅

1 quart⋅
0.946 liter⋅

×
1 gal⋅

4 quart⋅
×

60 s⋅
1 min⋅

×= 0.264
gal
min
⋅=

(d) 1 SCFM⋅ 1
ft3

min
⋅

0.0254 m⋅
1
12

ft⋅











3
×

60 min⋅
hr

×= 1.70
m3

hr
⋅=
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Problem 1.35

Sometimes “engineering” equations are used in which units are present in an inconsistent 
manner. For example, a parameter that is often used in describing pump performance is 
the specific speed, NScu, given by

NScu
N rpm( ) Q gpm( )

1
2⋅

H ft( )

3
4

=

What are the units of specific speed? A particular pump has a specific speed of 2000.  
What will be the specific speed in SI units (angular velocity in rad/s)?

Solution

Using data from tables (e.g. Table G.2)

NScu 2000
rpm gpm

1
2⋅

ft

3
4

⋅= 2000
rpm gpm

1
2⋅

ft

3
4

×
2 π⋅ rad⋅
1 rev⋅

×
1 min⋅
60 s⋅

× ..×=

4 quart⋅
1 gal⋅

0.000946 m3⋅
1 quart⋅

⋅
1 min⋅
60 s⋅

⋅








1
2 1

12
ft⋅

0.0254 m⋅











3
4

× 4.06

rad
s

m3

s









1
2

⋅

m

3
4

⋅=



Problem 1.36

A particular pump has an “engineering” equation form of the performance characteristic equatio
given by H (ft) = 1.5 - 4.5 x 10-5 [Q (gpm)]2, relating the head H and flow rate Q. What are the 
units of the coefficients 1.5 and 4.5 x 10-5? Derive an SI version of this equation.

Solution

Dimensions of "1.5" are ft.

Dimensions of "4.5 x 10-5" are ft/gpm2.

Using data from tables (e.g. Table G.2), the SI versions of these coefficients can be obtained

1.5 ft⋅ 1.5 ft⋅
0.0254 m⋅

1
12

ft⋅
×= 0.457 m⋅=

4.5 10 5−×
ft

gpm2
⋅ 4.5 10 5−⋅

ft

gpm2
⋅

0.0254 m⋅
1
12

ft⋅
×

1 gal⋅
4 quart⋅

1quart

0.000946 m3⋅
⋅

60 s⋅
1min
⋅








2
×=

4.5 10 5−⋅
ft

gpm2
⋅ 3450

m

m3

s









2
⋅=

The equation is H m( ) 0.457 3450 Q
m3

s

















2

⋅−=





2D V
→

V
→

t( )≠ Steady

(5) V
→

V
→

x( )= 1D V
→

V
→

t( )≠ Steady

(6) V
→

V
→

x y, z,( )= 3D V
→

V
→

t( )= Unsteady

(7) V
→

V
→

x y, z,( )= 3D V
→

V
→

t( )≠ Steady

(8) V
→

V
→

x y,( )= 2D V
→

V
→

t( )= Unsteady

Problem 2.1

For the velocity fields given below, determine:
  (a) whether the flow field is one-, two-, or three-dimensional, and why.
  (b) whether the flow is steady or unsteady, and why.
(The quantities a and b are constants.)

Solution

(1) V
→

V
→

x( )= 1D V
→

V
→

t( )= Unsteady

(2) V
→

V
→

x y,( )= 2D V
→

V
→

t( )≠ Steady

(3) V
→

V
→

x( )= 1D V
→

V
→

t( )≠ Steady

(4) V
→

V
→

x z,( )=
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See the plots in the corresponding Excel workbook

y c x 20−⋅=For t = 20 s

y
c
x

=For t = 1 s

y c=For t = 0 s

y c x

b−
a

t⋅
⋅=The solution is

ln y( )
b− t⋅
a

ln x( )⋅=Integrating

dy
y

b− t⋅
a

dx
x

⋅=So, separating variables

v
u

dy
dx

=
b− t⋅ y⋅
a x⋅

=For streamlines

Solution

jbtyiaxV ˆˆ −=
r

A velocity field is given by

where a = 1 s-1 and b = 1 s-2. Find the equation of the streamlines at any time t. Plot several 
streamlines in the first quadrant at t = 0 s, t = 1 s, and t = 20 s.

Problem 2.4



Problem 2.4 (In Excel)

A velocity field is given by

where a  = 1 s-1 and b  = 1 s-2. Find the equation of the streamlines at any time t .
Plot several streamlines in the first quadrant at t  = 0 s, t  =1 s, and t  =20 s.

Solution

t = 0 t =1 s t = 20 s
(### means too large to view)

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3
x y y y x y y y x y y y

0.05 1.00 2.00 3.00 0.05 20.00 40.00 60.00 0.05 ##### ##### #####
0.10 1.00 2.00 3.00 0.10 10.00 20.00 30.00 0.10 ##### ##### #####
0.20 1.00 2.00 3.00 0.20 5.00 10.00 15.00 0.20 ##### ##### #####
0.30 1.00 2.00 3.00 0.30 3.33 6.67 10.00 0.30 ##### ##### #####
0.40 1.00 2.00 3.00 0.40 2.50 5.00 7.50 0.40 ##### ##### #####
0.50 1.00 2.00 3.00 0.50 2.00 4.00 6.00 0.50 ##### ##### #####
0.60 1.00 2.00 3.00 0.60 1.67 3.33 5.00 0.60 ##### ##### #####
0.70 1.00 2.00 3.00 0.70 1.43 2.86 4.29 0.70 ##### ##### #####
0.80 1.00 2.00 3.00 0.80 1.25 2.50 3.75 0.80 86.74 ##### #####
0.90 1.00 2.00 3.00 0.90 1.11 2.22 3.33 0.90 8.23 16.45 24.68
1.00 1.00 2.00 3.00 1.00 1.00 2.00 3.00 1.00 1.00 2.00 3.00
1.10 1.00 2.00 3.00 1.10 0.91 1.82 2.73 1.10 0.15 0.30 0.45
1.20 1.00 2.00 3.00 1.20 0.83 1.67 2.50 1.20 0.03 0.05 0.08
1.30 1.00 2.00 3.00 1.30 0.77 1.54 2.31 1.30 0.01 0.01 0.02
1.40 1.00 2.00 3.00 1.40 0.71 1.43 2.14 1.40 0.00 0.00 0.00
1.50 1.00 2.00 3.00 1.50 0.67 1.33 2.00 1.50 0.00 0.00 0.00
1.60 1.00 2.00 3.00 1.60 0.63 1.25 1.88 1.60 0.00 0.00 0.00
1.70 1.00 2.00 3.00 1.70 0.59 1.18 1.76 1.70 0.00 0.00 0.00
1.80 1.00 2.00 3.00 1.80 0.56 1.11 1.67 1.80 0.00 0.00 0.00
1.90 1.00 2.00 3.00 1.90 0.53 1.05 1.58 1.90 0.00 0.00 0.00
2.00 1.00 2.00 3.00 2.00 0.50 1.00 1.50 2.00 0.00 0.00 0.00

jbtyiaxV ˆˆ −=
r

The solution is y c x

b−
a

t⋅
⋅=

For t = 0 s y c=

For t = 1 s y
c
x

=

For t = 20 s y c x 20−⋅=



Streamline Plot (t = 0)
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See the plot in the corresponding Excel workbook

y
c

x3
=The solution is

y c x

b
a⋅= c x 3−⋅=ln y( )

b
a

ln x( )⋅=Integrating

dy
y

b
a

dx
x

⋅=So, separating variables

v
u

dy
dx

=
b x⋅ y⋅

a x2⋅
=

b y⋅
a x⋅

=For streamlines

v 6−
m
s

⋅=v b x⋅ y⋅= 6−
1

m s⋅
⋅ 2× m⋅

1
2

× m⋅=

u 8
m
s

⋅=u a x2⋅= 2
1

m s⋅
⋅ 2 m⋅( )2×=

At point (2,1/2), the velocity components are

2DThe velocity field is a function of x and y.  It is therefore

Solution

jbxyiaxV ˆˆ2 +=
r

A velocity field is specified as

where a = 2 m-1s-1 and b = - 6 m-1s-1, and the coordinates are measured in meters. Is the 
flow field one-, two-, or three-dimensional?  Why?  Calculate the velocity components at the 
point (2, 1/2). Develop an equation for the streamline passing through this point. Plot several 
streamlines in the first quadrant including the one that passes through the point (2, 1/2).

Problem 2.6



Problem 2.6 (In Excel)

A velocity field is specified as

where a  = 2 m-1s-1, b  = - 6 m-1s-1, and the coordinates are measured in meters.
Is the flow field one-, two-, or three-dimensional?  Why?
Calculate the velocity components at the point (2, 1/2). Develop an equation
for the streamline passing through this point. Plot several streamlines in the first
quadrant including the one that passes through the point (2, 1/2).

Solution

c =
1 2 3 4

x y y y y
0.05 8000 16000 24000 32000
0.10 1000 2000 3000 4000
0.20 125 250 375 500
0.30 37.0 74.1 111.1 148.1
0.40 15.6 31.3 46.9 62.5
0.50 8.0 16.0 24.0 32.0
0.60 4.63 9.26 13.89 18.52
0.70 2.92 5.83 8.75 11.66
0.80 1.95 3.91 5.86 7.81
0.90 1.37 2.74 4.12 5.49
1.00 1.00 2.00 3.00 4.00
1.10 0.75 1.50 2.25 3.01
1.20 0.58 1.16 1.74 2.31
1.30 0.46 0.91 1.37 1.82
1.40 0.36 0.73 1.09 1.46
1.50 0.30 0.59 0.89 1.19
1.60 0.24 0.49 0.73 0.98
1.70 0.20 0.41 0.61 0.81
1.80 0.17 0.34 0.51 0.69
1.90 0.15 0.29 0.44 0.58
2.00 0.13 0.25 0.38 0.50
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jbxyiaxV ˆˆ2 +=
r

The solution is y
c

x3
=



See the plot in the corresponding Excel workbook

y
6

x 2+
=

y
6

x
20
10

+
=

C y x
B
A

+





⋅= 2 1
20
10

+





⋅= 6=

For the streamline that passes through point (x,y) = (1,2)

y
C

x
B
A

+
=The solution is

1
A

− ln y( )
1
A

ln x
B
A

+





⋅=Integrating

dy
A− y⋅

dx
A x⋅ B+

=So, separating variables

v
u

dy
dx

=
A− y⋅

A x⋅ B+
=Streamlines are given by

Solution

Problem 2.7



Problem 2.7 (In Excel)

Solution

A = 10
B = 20

C =
1 2 4 6

x y y y y
0.00 0.50 1.00 2.00 3.00
0.10 0.48 0.95 1.90 2.86
0.20 0.45 0.91 1.82 2.73
0.30 0.43 0.87 1.74 2.61
0.40 0.42 0.83 1.67 2.50
0.50 0.40 0.80 1.60 2.40
0.60 0.38 0.77 1.54 2.31
0.70 0.37 0.74 1.48 2.22
0.80 0.36 0.71 1.43 2.14
0.90 0.34 0.69 1.38 2.07
1.00 0.33 0.67 1.33 2.00
1.10 0.32 0.65 1.29 1.94
1.20 0.31 0.63 1.25 1.88
1.30 0.30 0.61 1.21 1.82
1.40 0.29 0.59 1.18 1.76
1.50 0.29 0.57 1.14 1.71
1.60 0.28 0.56 1.11 1.67
1.70 0.27 0.54 1.08 1.62
1.80 0.26 0.53 1.05 1.58
1.90 0.26 0.51 1.03 1.54
2.00 0.25 0.50 1.00 1.50
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Problem 2.8

Solution

Streamlines are given by v
u

dy
dx

=
b x⋅ y3⋅

a x3⋅
=

So, separating variables dy

y3
b dx⋅

a x2⋅
=

Integrating 1

2 y2⋅
−

b
a

1
x

−





⋅ C+=

The solution is y
1

2
b

a x⋅
C+





⋅

= Note: For convenience the sign of C is 
changed.

See the plot in the corresponding Excel workbook



Problem 2.8 (In Excel)

Solution

a = 1
b = 1

C =
0 2 4 6

x y y y y
0.05 0.16 0.15 0.14 0.14
0.10 0.22 0.20 0.19 0.18
0.20 0.32 0.27 0.24 0.21
0.30 0.39 0.31 0.26 0.23
0.40 0.45 0.33 0.28 0.24
0.50 0.50 0.35 0.29 0.25
0.60 0.55 0.37 0.30 0.26
0.70 0.59 0.38 0.30 0.26
0.80 0.63 0.39 0.31 0.26
0.90 0.67 0.40 0.31 0.27
1.00 0.71 0.41 0.32 0.27
1.10 0.74 0.41 0.32 0.27
1.20 0.77 0.42 0.32 0.27
1.30 0.81 0.42 0.32 0.27
1.40 0.84 0.43 0.33 0.27
1.50 0.87 0.43 0.33 0.27
1.60 0.89 0.44 0.33 0.27
1.70 0.92 0.44 0.33 0.28
1.80 0.95 0.44 0.33 0.28
1.90 0.97 0.44 0.33 0.28
2.00 1.00 0.45 0.33 0.28
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See the plots in the corresponding Excel workbook

y C
x2

5
−=For t = 20 s

y C 4 x2⋅−=For t = 1 s

x c=For t = 0 s

y C
b x2⋅
a t⋅

−=The solution is

1
2

a⋅ t⋅ y2⋅
1
2

− b⋅ x2⋅ C+=Integrating

a t⋅ y⋅ dy⋅ b− x⋅ dx⋅=So, separating variables

v
u

dy
dx

=
b− x⋅

a y⋅ t⋅
=Streamlines are given by

Solution

Problem 2.11



Problem 2.11 (In Excel)

Solution

t = 0 t =1 s t = 20 s
C = 1 C = 2 C = 3 C = 1 C = 2 C = 3 C = 1 C = 2 C = 3

x y y y x y y y x y y y
0.00 1.00 2.00 3.00 0.000 1.00 1.41 1.73 0.00 1.00 1.41 1.73
0.10 1.00 2.00 3.00 0.025 1.00 1.41 1.73 0.10 1.00 1.41 1.73
0.20 1.00 2.00 3.00 0.050 0.99 1.41 1.73 0.20 1.00 1.41 1.73
0.30 1.00 2.00 3.00 0.075 0.99 1.41 1.73 0.30 0.99 1.41 1.73
0.40 1.00 2.00 3.00 0.100 0.98 1.40 1.72 0.40 0.98 1.40 1.72
0.50 1.00 2.00 3.00 0.125 0.97 1.39 1.71 0.50 0.97 1.40 1.72
0.60 1.00 2.00 3.00 0.150 0.95 1.38 1.71 0.60 0.96 1.39 1.71
0.70 1.00 2.00 3.00 0.175 0.94 1.37 1.70 0.70 0.95 1.38 1.70
0.80 1.00 2.00 3.00 0.200 0.92 1.36 1.69 0.80 0.93 1.37 1.69
0.90 1.00 2.00 3.00 0.225 0.89 1.34 1.67 0.90 0.92 1.36 1.68
1.00 1.00 2.00 3.00 0.250 0.87 1.32 1.66 1.00 0.89 1.34 1.67
1.10 1.00 2.00 3.00 0.275 0.84 1.30 1.64 1.10 0.87 1.33 1.66
1.20 1.00 2.00 3.00 0.300 0.80 1.28 1.62 1.20 0.84 1.31 1.65
1.30 1.00 2.00 3.00 0.325 0.76 1.26 1.61 1.30 0.81 1.29 1.63
1.40 1.00 2.00 3.00 0.350 0.71 1.23 1.58 1.40 0.78 1.27 1.61
1.50 1.00 2.00 3.00 0.375 0.66 1.20 1.56 1.50 0.74 1.24 1.60
1.60 1.00 2.00 3.00 0.400 0.60 1.17 1.54 1.60 0.70 1.22 1.58
1.70 1.00 2.00 3.00 0.425 0.53 1.13 1.51 1.70 0.65 1.19 1.56
1.80 1.00 2.00 3.00 0.450 0.44 1.09 1.48 1.80 0.59 1.16 1.53
1.90 1.00 2.00 3.00 0.475 0.31 1.05 1.45 1.90 0.53 1.13 1.51
2.00 1.00 2.00 3.00 0.500 0.00 1.00 1.41 2.00 0.45 1.10 1.48

The solution is y C
b x2⋅
a t⋅

−=

For t = 0 s x c=

For t = 1 s y C 4 x2⋅−=

For t = 20 s y C
x2

5
−=



Streamline Plot (t = 0)
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y e t−=x e0.05 t2⋅=

Using the given data, and IC (x0,y0) = (1,1) at t = 0

y y0 e b− t⋅⋅=x x0 e

a
2

t2⋅
⋅=For initial position (x0,y0)

ln y( ) b− t⋅ c2+=ln x( )
1
2

a⋅ t2⋅ c1+=Integrating

dy
y

b− dt⋅=
dx
x

a t⋅ dt⋅=So, separating variables

dy
dt

v= b− y⋅=
dx
dt

u= a x⋅ t⋅=Pathlines are given by

Solution

Problem 2.15



Problem 2.15 (In Excel)

Solution

Pathline Streamlines
t = 0 t = 1 s t = 2 s

t x y x y x y x y
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 0.78 1.00 0.78 1.00 0.97 1.00 0.98
0.50 1.01 0.61 1.00 0.61 1.01 0.88 1.01 0.94
0.75 1.03 0.47 1.00 0.47 1.03 0.75 1.03 0.87
1.00 1.05 0.37 1.00 0.37 1.05 0.61 1.05 0.78
1.25 1.08 0.29 1.00 0.29 1.08 0.46 1.08 0.68
1.50 1.12 0.22 1.00 0.22 1.12 0.32 1.12 0.57
1.75 1.17 0.17 1.00 0.17 1.17 0.22 1.17 0.47
2.00 1.22 0.14 1.00 0.14 1.22 0.14 1.22 0.37
2.25 1.29 0.11 1.00 0.11 1.29 0.08 1.29 0.28
2.50 1.37 0.08 1.00 0.08 1.37 0.04 1.37 0.21
2.75 1.46 0.06 1.00 0.06 1.46 0.02 1.46 0.15
3.00 1.57 0.05 1.00 0.05 1.57 0.01 1.57 0.11
3.25 1.70 0.04 1.00 0.04 1.70 0.01 1.70 0.07
3.50 1.85 0.03 1.00 0.03 1.85 0.00 1.85 0.05
3.75 2.02 0.02 1.00 0.02 2.02 0.00 2.02 0.03
4.00 2.23 0.02 1.00 0.02 2.23 0.00 2.23 0.02
4.25 2.47 0.01 1.00 0.01 2.47 0.00 2.47 0.01
4.50 2.75 0.01 1.00 0.01 2.75 0.00 2.75 0.01
4.75 3.09 0.01 1.00 0.01 3.09 0.00 3.09 0.00
5.00 3.49 0.01 1.00 0.01 3.49 0.00 3.49 0.00

Using the given data, and IC (x0,y0) = (1,1) at t = 0, the pathline is x e0.05 t2⋅= y e t−=

The streamline at (1,1) at t = 0 s is x 1=

The streamline at (1,1) at t = 1 s is y x 10−=

The streamline at (1,1) at t = 2 s is y x 5−=

Pathline and Streamline Plots
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Problem 2.20 (In Excel)

Solution

Pathlines: Starting at t = 0 Starting at t = 1 s Starting at t = 2 s Streakline at t = 4 s

t x y x y x y x y
0.00 0.00 0.00 0.00 0.00
0.20 -0.20 0.20 0.00 0.40
0.40 -0.40 0.40 0.00 0.80
0.60 -0.60 0.60 0.00 1.20
0.80 -0.80 0.80 0.00 1.60
1.00 -1.00 1.00 0.00 0.00 0.00 2.00
1.20 -1.20 1.20 -0.20 0.20 0.00 2.40
1.40 -1.40 1.40 -0.40 0.40 0.00 2.80
1.60 -1.60 1.60 -0.60 0.60 0.00 3.20
1.80 -1.80 1.80 -0.80 0.80 0.00 3.60
2.00 -2.00 2.00 -1.00 1.00 0.00 0.00 0.00 4.00
2.20 -2.00 2.40 -1.00 1.40 0.00 0.40 -0.20 4.20
2.40 -2.00 2.80 -1.00 1.80 0.00 0.80 -0.40 4.40
2.60 -2.00 3.20 -1.00 2.20 0.00 1.20 -0.60 4.60
2.80 -2.00 3.60 -1.00 2.60 0.00 1.60 -0.80 4.80
3.00 -2.00 4.00 -1.00 3.00 0.00 2.00 -1.00 5.00
3.20 -2.00 4.40 -1.00 3.40 0.00 2.40 -1.20 5.20
3.40 -2.00 4.80 -1.00 3.80 0.00 2.80 -1.40 5.40
3.60 -2.00 5.20 -1.00 4.20 0.00 3.20 -1.60 5.60
3.80 -2.00 5.60 -1.00 4.60 0.00 3.60 -1.80 5.80
4.00 -2.00 6.00 -1.00 5.00 0.00 4.00 -2.00 6.00

Pathline and Streamline Plots
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Problem 2.28 (In Excel)

Solution

Pathlines: Data: Using procedure of Appendix A.3:

T (oC) T (K) µ(x105) T (K) T3/2/µ
0 273 1.86E-05 273 2.43E+08

100 373 2.31E-05 373 3.12E+08
200 473 2.72E-05 473 3.78E+08
300 573 3.11E-05 573 4.41E+08
400 673 3.46E-05 673 5.05E+08

The equation to solve for coefficients
S  and b  is

From the built-in Excel Hence:
Linear Regression  functions:

Slope = 6.534E+05 b  = 1.53E-06 kg/m.s.K1/2

Intercept = 6.660E+07 S  = 101.9 K
R2 = 0.9996

Plot of Basic Data and Trend Line
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M a⋅ M g⋅ sin θ( )⋅ Ff−=

Applying Newton's 2nd law at any instant

ainit 4.9
m

s2
=ainit g sin θ( )⋅= 9.81

m

s2
⋅ sin 30( )×=so

M a⋅ M g⋅ sin θ( )⋅ Ff−= M g⋅ sin θ( )⋅=

Applying Newton's 2nd law to initial instant (no friction)

µ 0.4
N s⋅

m2
⋅=From Fig. A.2

θ 30 deg⋅=d 0.2 mm⋅=A 0.2 m⋅( )2=M 5 kg⋅=Given data

Solution

M g⋅

Find: Initial acceleration; formula for speed of 
block; plot; find speed after 0.1 s.  Find oil 
viscosity if speed is 0.3 m/s after 0.1 s

x, V, a
Given: Data on the block and incline Ff τ A⋅=�����������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������

A block 0.2 m square, with 5 kg mass, slides down a smooth incline, 30° below the horizontal, 
a film of SAE 30 oil at 20°C that is 0.20 mm thick. If the block is released from rest at t = 0, wh
is its initial acceleration? Derive an expression for the speed of the block as a function of time. 
the curve for V(t). Find the speed after 0.1 s. If we want the mass to instead reach a speed of 0.3
m/s at this time, find the viscosity µ of the oil we would have to use.

Problem 2.38



and Ff τ A⋅= µ
du
dy
⋅ A⋅= µ

V
d

⋅ A⋅=

so M a⋅ M
dV
dt

⋅= M g⋅ sin θ( )⋅
µ A⋅

d
V⋅−=

Separating variables dV

g sin θ( )⋅
µ A⋅
M d⋅

V⋅−

dt=

Integrating and using limits

M d⋅
µ A⋅

− ln 1
µ A⋅

M g⋅ d⋅ sin θ( )⋅
V⋅−








⋅ t=

or

V t( )
M g⋅ d⋅ sin θ( )⋅

µ A⋅
1 e

µ− A⋅
M d⋅

t⋅
−







⋅=

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.1

0.2

0.3

0.4

t (s)

V
 (m

/s
)



At t = 0.1 s

V 5 kg⋅ 9.81×
m

s2
⋅ 0.0002× m⋅ sin 30( )⋅

m2

0.4 N⋅ s⋅ 0.2 m⋅( )2⋅
×

N s2⋅
kg m⋅

× 1 e

0.4 0.04⋅
5 0.002⋅

0.1⋅





−
−







×=

V 0.245
m
s

=

To find the viscosity for which V(0.1 s) = 0.3 m/s, we must solve  

V t 0.1 s⋅=( )
M g⋅ d⋅ sin θ( )⋅

µ A⋅
1 e

µ− A⋅
M d⋅

t 0.1 s⋅=( )⋅
−







⋅=

The viscosity µ is implicit in this equation, so solution must be found by manual iteration, or by 
of a number of classic root-finding numerical methods, or by using Excel's Goal Seek

From the Excel workbook for this problem the solution is

µ 0.27
N s⋅

m2
=

Excel workbook



Problem 2.38 (In Excel)

A block 0.2 m square, with 5 kg mass, slides down a smooth incline, 30° below the
horizontal, on a film of SAE 30 oil at 20°C that is 0.20 mm thick. If the block is released
from rest at t  = 0, what is its initial acceleration? Derive an expression for the
speed of the block as a function of time. Plot the curve for V (t ). Find the speed after
0.1 s. If we want the mass to instead reach a speed of 0.3 m/s at this time, find the viscosity
µ of the oil we would have to use.

Solution

The data is M = 5.00 kg
θ = 30 deg
µ = 0.40 N.s/m2

A = 0.04 m2

d = 0.2 mm

t (s) V (m/s)
0.00 0.000
0.01 0.045
0.02 0.084
0.03 0.117
0.04 0.145
0.05 0.169
0.06 0.189
0.07 0.207
0.08 0.221
0.09 0.234
0.10 0.245
0.11 0.254
0.12 0.262
0.13 0.268
0.14 0.274
0.15 0.279
0.16 0.283
0.17 0.286 To find the viscosity for which the speed is 0.3 m/s after 0.1 s
0.18 0.289 use Goal Seek  with the velocity targeted to be 0.3 by varying
0.19 0.292 the viscosity in the set of cell below:
0.20 0.294
0.21 0.296 t (s) V (m/s)
0.22 0.297 0.10 0.300 for µ = 0.270 N.s/m2

0.23 0.299
0.24 0.300
0.25 0.301
0.26 0.302
0.27 0.302
0.28 0.303
0.29 0.304
0.30 0.304

Speed V of Block vs Time t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
t (s)

V (m/s)

The solution is V t( )
M g⋅ d⋅ sin θ( )⋅

µ A⋅
1 e

µ− A⋅
M d⋅

t⋅
−






⋅=

Ff τ A⋅=
x, V, a

M g⋅
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where V and ω are the instantaneous linear and angular velocities.

τ µ
du
dy
⋅= µ

V 0−
a

⋅=
µ V⋅

a
=

µ R⋅ ω⋅
a

=The stress is given by

where α is the angular acceleration and τ
viscometer

I α⋅ Torque= τ− A⋅ R⋅=

The equation of motion for the slowing viscometer is

µ 0.1
N s⋅

m2
⋅=I 0.0273 kg⋅ m2⋅=a 0.20 mm⋅=H 80 mm⋅=R 50 mm⋅=

The given data is

Solution

Find: Time for viscometer to lose 99% of speed

Given: Data on the viscometer

The viscometer of Problem 2.43 is being used to 
verify that the viscosity of a particular fluid is µ = 
0.1 N.s/m2. Unfortunately the cord snaps during 
the experiment. How long will it take the cylinder 
to lose 99% of its speed? The moment of inertia of 
the cylinder/pulley system is 0.0273 kg.m2.

Problem 2.44



Hence

I α⋅ I
dω
dt

⋅=
µ R⋅ ω⋅

a
− A⋅ R⋅=

µ R2⋅ A⋅
a

ω⋅=

Separating variables

dω
ω

µ R2⋅ A⋅
a I⋅

− dt⋅=

Integrating and using IC ω = ω0

ω t( ) ω0 e

µ R2⋅ A⋅
a I⋅

− t⋅
⋅=

The time to slow down by 99% is obtained from solving

0.01 ω0⋅ ω0 e

µ R2⋅ A⋅
a I⋅

− t⋅
⋅=

so t
a I⋅

µ R2⋅ A⋅
− ln 0.01( )⋅=

Note that A 2 π⋅ R⋅ H⋅=

t
a I⋅

2 π⋅ µ⋅ R3⋅ H⋅
− ln 0.01( )⋅=so

t
0.0002 m⋅ 0.0273⋅ kg⋅ m2⋅

2 π⋅
−

m2

0.1 N⋅ s⋅
⋅

1

0.05 m⋅( )3
⋅

1
0.08 m⋅
⋅

N s2⋅
kg m⋅
⋅ ln 0.01( )⋅= t 4 s=



Simon Durkin
Problem 2.45

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 2.46

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 2.46  (cont'd)

Simon Durkin

Simon Durkin



Simon Durkin
Problem 2.47

Simon Durkin

Simon Durkin

Simon Durkin





Simon Durkin
Problem 2.49

Simon Durkin

Simon Durkin

Simon Durkin



η k
du
dy






n 1−
⋅= k

ω

θ








n 1−
⋅=where η is the apparent viscosity.  Hence

k
du
dy







n 1−
⋅

du
dy

η
du
dy
⋅=From Eq 2.11. 

du
dy

ω

θ
=For small θ, tan(θ) can be replace with θ, so

where N is the speed in rpmω
2 π⋅ N⋅

60
=where ω (rad/s) is the angular velocity

du
dy

r ω⋅
r tan θ( )⋅

=The velocity gradient at any radius r is

Solution

Find: The values of coefficients k and n; determine the 
kind of non-Newtonial fluid it is; estimate viscosity at 
90 and 100 rpm

Given: Data from viscometer

Problem 2.50



The data in the table conform to this equation.  The corresponding Excel workbook shows how
Excel's Trendline analysis is used to fit the data. 

From Excel

k 0.0449= n 1.21=

η 90 rpm⋅( ) 0.191
N s⋅

m2
⋅= η 100 rpm⋅( ) 0.195

N s⋅

m2
⋅=

For n > 1 the fluid is dilatant



Problem 2.50 (In Excel)

Solution
The data is N (rpm) µ (N.s/m2)

10 0.121
20 0.139
30 0.153
40 0.159
50 0.172
60 0.172
70 0.183
80 0.185

The computed data is

ω (rad/s) ω/θ (1/s) η (N.s/m2x103)
1.047 120 121
2.094 240 139
3.142 360 153
4.189 480 159
5.236 600 172
6.283 720 172
7.330 840 183
8.378 960 185

From the Trendline  analysis

k  = 0.0449
n  - 1 = 0.2068
n  = 1.21 The fluid is dilatant

The apparent viscosities at 90 and 100 rpm can now be computed

N (rpm) ω (rad/s) ω/θ (1/s) η (N.s/m2x103)
90 9.42 1080 191

100 10.47 1200 195

Viscosity vs Shear Rate

y = 44.94x0.2068

R2 = 0.9925

10

100

1000

100 1000

Shear Rate ω/θ (1/s)

η 
(N

.s
/m

2 x1
03 ) Data

Power Trendline



Simon Durkin
Problem 2.51

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 2.52

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 2.53

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 2.54

Simon Durkin

Simon Durkin

Simon Durkin







Simon Durkin
Problem 2.57

Simon Durkin

Simon Durkin

Simon Durkin



Hence D < 1.55 mm.  Only the 1 mm needles float (needle length is irrelevant)

8 σ⋅ cos θ( )⋅

π SG⋅ ρ⋅ g⋅
8

π 7.83⋅
72.8× 10 3−×

N
m
⋅

m3

999 kg⋅
×

s2

9.81 m⋅
×

kg m⋅

N s2⋅
×= 1.55 10 3−× m⋅=

Hence

SG 7.83=From Table A.1, for steel

ρ 999
kg

m3
⋅=and for waterθ 0 deg⋅=σ 72.8

mN
m

⋅=From Table A.4

D
8 σ⋅ cos θ( )⋅

π ρs⋅ g⋅
≤or

2 L⋅ σ⋅ cos θ( )⋅ W≥ m g⋅=
π D2⋅

4
ρs⋅ L⋅ g⋅=

For a steel needle of length L, diameter D, density ρs, to float in water with surface tension σ an
contact angle θ, the vertical force due to surface tension must equal or exceed the weight

Solution

Find: Which needles, if any, will float

Given: Data on size of various needles

You intend to gently place several steel needles on the free surface of the water in a
large tank. The needles come in two lengths: Some are 5 cm long, and some are 10 cm
long. Needles of each length are available with diameters of 1 mm, 2.5 mm, and 5 mm.
Make a prediction as to which needles, if any, will float.

Problem 2.58
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where σc is the circumferential stress in the container

ΣF 0= p
π D2⋅

4
⋅ σc π⋅ D⋅ t⋅−=

To determine wall thickness, consider a free body diagram for one hemisphere:

M 62kg=

M
25 106⋅ N⋅

m2
kg K⋅
297 J⋅

×
1

298 K⋅
×

J
N m⋅

×
π 0.75 m⋅( )3⋅

6
×=

M
p V⋅
R T⋅

=
p

R T⋅
π D3⋅

6









⋅=Then the mass of nitrogen is

R 297
J

kg K⋅
⋅=where, from Table A.6, for nitrogen

p V⋅ M R⋅ T⋅=Assuming ideal gas behavior:

Solution

Find: Mass of nitrogen; minimum required wall thickness

Given: Data on nitrogen tank

 D = 0.75 m. The gas is at an 
absolute pressure of 25 MPa and a temperature of 25°C. What is the mass in the tank? If the 
maximum allowable wall stress in the tank is 210 MPa, find the minimum theoretical wall 
thickness of the tank.

Problem 3.1



Then t
p π⋅ D2⋅

4 π⋅ D⋅ σc⋅
=

p D⋅
4 σc⋅

=

t 25 106⋅
N

m2
⋅

0.75 m⋅
4

×
1

210 106⋅
×

m2

N
⋅=

t 0.0223m= t 22.3mm=



∆hHg 6.72mm=

∆hHg
0.909

13.55 999×
100× m⋅=

SGHg 13.55=   from Table A.2∆hHg
ρair
ρHg

∆z⋅=
ρair

SGHg ρH2O⋅
∆z⋅=

Combining

∆p ρHg− g⋅ ∆hHg⋅=and also∆p ρair− g⋅ ∆z⋅=

We also have from the manometer equation, Eq. 3.7

ρair 0.909
kg

m3
=

ρair 0.7423 ρSL⋅= 0.7423 1.225×
kg

m3
⋅=

Assume the air density is approximately constant constant from 3000 m to 2900 m.
From table A.3

Solution

Find:  Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears 
to "pop."

Given: Data on flight of airplane

Ear “popping” is an unpleasant phenomenon sometimes experienced when a change in 
pressure occurs, for example in a fast-moving elevator or in an airplane. If you are in a 
two-seater airplane at 3000 m and a descent of 100 m causes your ears to “pop,” what is the 
pressure change that your ears “pop” at, in millimeters of mercury? If the airplane now rises to 
8000 m and again begins descending, how far will the airplane descend before your ears 
“pop” again? Assume a U.S. Standard Atmosphere.

Problem 3.2



For the ear popping descending from 8000 m, again assume the air density is approximately con
constant, this time at 8000 m.
From table A.3

ρair 0.4292 ρSL⋅= 0.4292 1.225×
kg

m3
⋅=

ρair 0.526
kg

m3
=

We also have from the manometer equation

ρair8000 g⋅ ∆z8000⋅ ρair3000 g⋅ ∆z3000⋅=

where the numerical subscripts refer to conditions at 3000m and 8000m.
Hence

∆z8000
ρair3000 g⋅

ρair8000 g⋅
∆z3000⋅=

ρair3000
ρair8000

∆z3000⋅=

∆z8000
0.909
0.526

100× m⋅=

∆z8000 173m=
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Problem 3.4 (In Excel)

When you are on a mountain face and boil water, you notice that the water temperature
is 90°C. What is your approximate altitude? The next day, you are at a location
where it boils at 85°C. How high did you climb between the two days? Assume a
U.S. Standard Atmosphere.

Given: Boiling points of water at different elevations
Find: Change in elevation

Solution

From the steam tables, we have the following data for the boiling point (saturation temperature) of water

Tsat (oC) p (kPa)
90 70.14
85 57.83

The sea level pressure, from Table A.3, is

pSL = 101 kPa

Hence

Tsat (oC) p/pSL

90 0.694
85 0.573

From Table A.3

p/pSL Altitude (m)
0.7372 2500
0.6920 3000
0.6492 3500
0.6085 4000
0.5700 4500

Then, any one of a number of Excel  functions can be used to interpolate
(Here we use Excel 's Trendline analysis)

p/pSL Altitude (m)
0.694 2985 Current altitude is approximately 2980 m
0.573 4442

The change in altitude is then 1457 m

Alternatively, we can interpolate for each altitude by using a linear regression between adjacant data points

p/pSL Altitude (m) p/pSL Altitude (m)
For 0.7372 2500 0.6085 4000

0.6920 3000 0.5700 4500

Then 0.6940 2978 0.5730 4461

The change in altitude is then 1483 m or approximately 1480 m

Altitude vs Atmospheric Pressure

y = -11953x + 11286
R2 = 0.999
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SG 1.75=

SG

2 slug⋅ 32.2×
ft

s2
⋅

lbf s2⋅
slug ft⋅

× 50.7 lbf⋅−

1.94
slug

ft3
⋅ 32.2×

ft

s2
⋅

lbf s2⋅
slug ft⋅

× 0.5 ft⋅( )3×

=

SG
M g⋅ T−

ρH2O g⋅ d3⋅
=Hence the force balance gives

where H is the depth of the upper surface

pL pU− p0 ρ g⋅ H d+( )⋅+  p0 ρ g⋅ H⋅+( )−= ρ g⋅ d⋅= SG ρH2O⋅ d⋅=Hence

p p0 ρ g⋅ h⋅+=For each pressure we can use Eq. 3.7

where M and d are the cube mass and size and pL and pU are the pressures on the lower and uppe
surfaces

ΣF 0= T pL pU−( ) d2⋅+ M g⋅−=Consider a free body diagram of the cube:

Solution

Find: The fluid specific gravity; the gage pressures on the upper and lower surfaces

Given: Properties of a cube suspended by a wire in a fluid

A cube with 6 in. sides is suspended in a fluid by a wire. The top of the cube is horizontal 
and 8 in. below the free surface. If the cube has a mass of 2 slugs and the tension in the wire 
is T = 50.7 lbf, compute the fluid specific gravity, and from this determine the fluid. What 
are the gage pressures on the upper and lower surfaces?

Problem 3.7



From Table A.1, the fluid is Meriam blue.

The individual pressures are computed from Eq 3.7

p p0 ρ g⋅ h⋅+=

or

pg ρ g⋅ h⋅= SG ρH2O⋅ h⋅=

For the upper surface pg 1.754 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅

2
3

× ft⋅
lbf s2⋅
slug ft⋅

×
1 ft⋅

12 in⋅






2
×=

pg 0.507psi=

For the lower surface pg 1.754 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅

2
3

1
2

+





× ft⋅
lbf s2⋅
slug ft⋅

×
1 ft⋅

12 in⋅






2
×=

pg 0.89psi=



Note that the SG calculation can also be performed using a buoyancy approach (discussed later 
in the chapter):

Consider a free body diagram of the cube: ΣF 0= T FB+ M g⋅−=

where M is the cube mass and FB is the buoyancy force FB SG ρH2O⋅ L3⋅ g⋅=

Hence T SG ρH2O⋅ L3⋅ g⋅+ M g⋅− 0=

or SG
M g⋅ T−

ρH2O g⋅ L3⋅
= as before

SG 1.75=



∆p 999
kg

m3
⋅ 9.81×

m

s2
⋅ 0.1× m⋅ 0.9 0.92 0.1×+( )×

N s2⋅
kg m⋅

×=

SGSAE10 0.92=From Table A.2, for SAE 10W oil:

∆p ρH2O g⋅ d⋅ 0.9 SGSAE10 0.1⋅+( )⋅=

∆p pL pU−= ρH2O g⋅ 0.9⋅ d⋅ ρSAE10 g⋅ 0.1⋅ d⋅+=

Hence the pressure difference is

where pU and pL are the upper and lower pressures, p0 is the oil free surface pressure, H is the 
depth of the interface, and d is the cube size

pL p0 ρSAE10 g⋅ H⋅+ ρH2O g⋅ 0.9⋅ d⋅+=

pU p0 ρSAE10 g⋅ H 0.1 d⋅−( )⋅+=

The pressure difference is obtained from two applications of Eq. 3.7

Solution

Find: The pressures difference between the upper and lower surfaces; average cube density

Given: Properties of a cube floating at an interface

A hollow metal cube with sides 100 mm floats at the interface between a layer of water and a la
of SAE 10W oil such that 10% of the cube is exposed to the oil. What is the pressure difference
between the upper and lower horizontal surfaces? What is the average density of the cube?

Problem 3.8



∆p 972Pa=

For the cube density, set up a free body force balance for the cube

ΣF 0= ∆p A⋅ W−=

Hence W ∆p A⋅= ∆p d2⋅=

ρcube
m

d3
=

W

d3 g⋅
=

∆p d2⋅

d3 g⋅
=

∆p
d g⋅

=

ρcube 972
N

m2
⋅

1
0.1 m⋅

×
s2

9.81 m⋅
×

kg m⋅

N s2⋅
×=

ρcube 991
kg

m3
=



Tcold 265.4 K⋅=At an elevation of 3500 m, from Table A.3

Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m, to 25oC.

patm 101 kPa⋅=At sea level

pabs 316kPa=

pabs patm pgage+= 65.6 kPa⋅ 250 kPa⋅+=

Then the absolute pressure is:

patm 65.6kPa=

patm 0.6492 pSL⋅= 0.6492 101× kPa⋅=

At an elevation of 3500 m, from Table A.3:

Solution

Find: Absolute pressure at 3500 m; pressure at sea level

Given: Data on tire at 3500 m and at sea level

Your pressure gage indicates that the pressure in your cold tires is 0.25 MPa (gage) on a 
mountain at an elevation of 3500 m. What is the absolute pressure? After you drive down 
to sea level, your tires have warmed to 25°C. What pressure does your gage now 
indicate?Assume a U.S. Standard Atmosphere.

Problem 3.9



Hence, assuming ideal gas behavior, pV = mRT
the absolute pressure of the hot tire is

phot
Thot
Tcold

pcold⋅=
298 K⋅

265.4 K⋅
316× kPa⋅=

phot 355kPa=

Then the gage pressure is

pgage phot patm−= 355 kPa⋅ 101 kPa⋅−=

pgage 254kPa=
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Problem 3.15

A partitioned tank as shown contains water and mercury. What is the gage pressure
in the air trapped in the left chamber? What pressure would the air on the left need to
be pumped to in order to bring the water and mercury free surfaces level?

Given: Data on partitioned tank

Find: Gage pressure of trapped air; pressure to make 
water and mercury levels equal

Solution

The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from
3.8.  Starting from the right air chamber

pgage SGHg ρH2O× g× 3 m⋅ 2.9 m⋅−( )× ρH2O g× 1× m⋅−=

pgage ρH2O g× SGHg 0.1× m⋅ 1.0 m⋅−( )×=

pgage 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 0.1× m⋅ 1.0 m⋅−( )×

N s2⋅
kg m⋅

×=

pgage 3.48kPa=

If the left air pressure is now increased until the water and mercury levels are now equal, 
Eq. 3.8 leads to

pgage SGHg ρH2O× g× 1.0× m⋅ ρH2O g× 1.0× m⋅−=

pgage ρH2O g× SGHg 1× m⋅ 1.0 m⋅−( )×=



pgage 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 1× m⋅ 1.0 m⋅−( )×

N s2⋅
kg m⋅

×=

pgage 123kPa=



Problem 3.16

In the tank of Problem 3.15, if the opening to atmosphere on the right chamber is first sealed, 
what pressure would the air on the left now need to be pumped to in order to bring the water 
and mercury free surfaces level? (Assume the air trapped in the right chamber behaves 
isothermally.)

Given: Data on partitioned tank

Find: Pressure of trapped air required to bring water and 
mercury levels equal if right air opening is sealed

Solution

First we need to determine how far each free surface moves.

In the tank of Problem 3.15, the ratio of cross section areas of the partitions is 0.75/3.75 or 1:5.  
Suppose the water surface (and therefore the mercury on the left) must move down distance x to 
bring the water and mercury levels equal.  Then by mercury volume conservation, the mercury fr
surface (on the right) moves up (0.75/3.75)x = x/5.  These two changes in level must cancel the 
original discrepancy in free surface levels, of (1m + 2.9m) - 3 m = 0.9 m.  Hence x + x/5 = 0.9 m
or x = 0.75 m.  The mercury level thus moves up x/5 = 0.15 m.

Assuming the air (an ideal gas, pV=RT
will be

pright
Vrightold
Vrightnew

patm⋅=
Aright Lrightold⋅

Aright Lrightnew⋅
patm⋅=

Lrightold
Lrightnew

patm⋅=

where V, A and L
Hence

pright
3

3 0.15−
101× kPa⋅=

pright 106kPa=



When the water and mercury levels are equal application of Eq. 3.8 gives:

pleft pright SGHg ρH2O× g× 1.0× m⋅+ ρH2O g× 1.0× m⋅−=

pleft pright ρH2O g× SGHg 1.0× m⋅ 1.0 m⋅−( )×+=

pleft 106 kPa⋅ 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 1.0⋅ m⋅ 1.0 m⋅−( )×

N s2⋅
kg m⋅

×+=

pleft 229kPa=

pgage pleft patm−= pgage 229 kPa⋅ 101 kPa⋅−=

pgage 128kPa=
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Problem 3.23

Consider a tank containing mercury, water, benzene, and air as shown. Find the air 
pressure (gage). If an opening is made in the top of the tank, find the equilibrium level of 
the mercury in the manometer.

Given: Data on fluid levels in a tank

Find: Air pressure; new equilibrium level if 
opening appears

Solution

Using Eq. 3.8, starting from the open side and working in gage pressure

pair ρH2O g× SGHg 0.3 0.1−( )× m⋅ 0.1 m⋅− SGBenzene 0.1× m⋅− ×=

Using data from Table A.2

pair 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 0.2× m⋅ 0.1 m⋅− 0.879 0.1× m⋅−( )×

N s2⋅
kg m⋅

×=

pair 24.7kPa=



To compute the new level of mercury in the manometer, assume the change in level from 0.3 m
an increase of  x.  Then, because the volume of mercury is constant, the tank mercury level will
fall by distance (0.025/0.25)2x

x

SGHg ρH2O× g× 0.3 m⋅ x+( )× SGHg ρH2O× g× 0.1 m⋅ x
0.025
0.25







2
⋅−









× m⋅

ρH2O g× 0.1× m⋅ SGBenzene ρH2O× g× 0.1× m⋅++

...=

Hence x
0.1 m⋅ 0.879 0.1× m⋅+ 13.55 0.1 0.3−( )× m⋅+[ ]

1
0.025
0.25







2
+









13.55×

=

x 0.184− m= (The negative sign indicates the manometer level actually fell)

The new manometer height is h 0.3 m⋅ x+=

h 0.116m=
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∆h
4 σ⋅ cos θ( )⋅

g D⋅ ρ2 ρ1−( )⋅
−=Solving for ∆h

∆p
π D2⋅

4
⋅ ρ1 g⋅ ∆h⋅

π D2⋅
4

⋅− ρ2 g⋅ ∆h⋅
π D2⋅

4
⋅ ρ1 g⋅ ∆h⋅

π D2⋅
4

⋅−= π− D⋅ σ⋅ cos θ( )⋅=

Hence

Assumption: Neglect meniscus curvature for column height and volume calculations

∆p ρ2 g⋅ ∆h⋅=where ∆p ∆h,

F∑ 0= ∆p
π D2⋅

4
⋅ ρ1 g⋅ ∆h⋅

π D2⋅
4

⋅− π D⋅ σ⋅ cos θ( )⋅+=

A free-body vertical force analysis for the section of fluid 1 height 
∆h in the tube below the "free surface" of fluid 2 leads to

Solution

Find: An expression for height ∆h; find diameter for 
∆h < 10 mm for water/mercury

Fluid 1

Fluid 2

Given: Two fluids inside and outside a tube

Consider a small diameter open-ended tube inserted at the interface between two immiscible 
fluids of different densities. Derive an expression for the height difference ∆h between the 
interface level inside and outside the tube in terms of tube diameter D, the two fluid densities, ρ
and  ρ2, and the surface tension  σ and angle θ
water and mercury, find the tube diameter such that ∆h < 10 mm.

Problem 3.35



For fluids 1 and 2 being water and mercury (for mercury σ = 375 mN/m and θ = 140o, from 
Table A.4), solving for D to make Dh = 10 mm

D
4 σ⋅ cos θ( )⋅

g ∆h⋅ ρ2 ρ1−( )⋅
−=

4 σ⋅ cos θ( )⋅

g ∆h⋅ ρH2O⋅ SGHg 1−( )⋅
−=

D
4 0.375×

N
m
⋅ cos 140o( )×

9.81
m

s2
⋅ 0.01× m⋅ 1000×

kg

m3
⋅ 13.6 1−( )×

kg m⋅

N s2⋅
×=

D 9.3 10 4−× m= D 9.3 mm⋅≥



Problem 3.36

Compare the height due to capillary action of water exposed to air in a circular tube of 
diameter D = 0.5 mm, and between two infinite vertical parallel plates of gap a = 0.5 mm.

Given: Water in a tube or between parallel plates

Find: Height ∆h; for each system

Water

Solution

a) Tube: A free-body vertical force analysis for the section of water height ∆h above the "free 
surface" in the tube, as shown in the figure, leads to

F∑ 0= π D⋅ σ⋅ cos θ( )⋅ ρ g⋅ ∆h⋅
π D2⋅

4
⋅−=

Assumption: Neglect meniscus curvature for column height and volume calculations

Solving for ∆h ∆h
4 σ⋅ cos θ( )⋅

ρ g⋅ D⋅
=

b) Parallel Plates: A free-body vertical force analysis for the section of water height ∆h above 
the "free surface" between plates arbitrary width w (similar to the figure above), leads to

F∑ 0= 2 w⋅ σ⋅ cos θ( )⋅ ρ g⋅ ∆h⋅ w⋅ a⋅−=



Solving for ∆h ∆h
2 σ⋅ cos θ( )⋅

ρ g⋅ a⋅
=

For water σ = 72.8 mN/m and θ = 0o (Table A.4), so

a) Tube ∆h
4 0.0728×

N
m
⋅

999
kg

m3
⋅ 9.81×

m

s2
⋅ 0.005× m⋅

kg m⋅

N s2⋅
×=

∆h 5.94 10 3−× m= ∆h 5.94mm=

b) Parallel Plates ∆h
2 0.0728×

N
m
⋅

999
kg

m3
⋅ 9.81×

m

s2
⋅ 0.005× m⋅

kg m⋅

N s2⋅
×=

∆h 2.97 10 3−× m= ∆h 2.97mm=



Simon Durkin

Simon Durkin



Simon Durkin





Problem 3.37 (In Excel)

Two vertical glass plates 300 mm x 300 mm are placed in an open tank containing
water. At one end the gap between the plates is 0.1 mm, and at the other it is 2 mm.
Plot the curve of water height between the plates from one end of the pair to the other.

Given: Geometry on vertical plates
Find: Curve of water height due to capillary action

Solution

σ = 72.8 mN/m
ρ = 999 kg/m3

Using the formula above

a  (mm) ∆h  (mm)
0.1 149
0.2 74.3
0.3 49.5
0.4 37.1
0.5 29.7
0.6 24.8
0.7 21.2
0.8 18.6
0.9 16.5
1.0 14.9
1.1 13.5
1.2 12.4
1.3 11.4
1.4 10.6
1.5 9.90
1.6 9.29
1.7 8.74
1.8 8.25
1.9 7.82
2.0 7.43

Capillary Height Between Vertical Plates
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ei

gh
t ∆
h

 (m
m

)

A free-body vertical force analysis (see figure) for the 
section of water height ∆h above the "free surface" 
between plates arbitrary separated by width a, (per 
infinitesimal length dx of the plates) leads to

F∑ 0= 2 dx⋅ σ⋅ cos θ( )⋅ ρ g⋅ ∆h⋅ dx⋅ a⋅−=

Solving for ∆h ∆h
2 σ⋅ cos θ( )⋅

ρ g⋅ a⋅
=

For water σ = 72.8 mN/m and θ = 0o (Table A.4)

Plates
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Problem 3.38 (In Excel)

Based on the atmospheric temperature data of the U.S. Standard Atmosphere of Fig. 3.3,
compute and plot the pressure variation with altitude, and compare with the
pressure data of Table A.3.

Given: Atmospheric temperature data
Find: Pressure variation; compare to Table A.3

Solution

p SL = 101 kPa
R  = 286.9 J/kg.K
ρ = 999 kg/m3

From Section 3-3:

dp
dz

ρ− z⋅= (Eq. 3.6)

For linear temperature variation (m = - dT/dz) this leads to

p p0
T

T0









g
m R⋅

⋅= (Eq. 3.9)

For isothermal conditions Eq. 3.6 leads to

p p0 e

g z z0−( )⋅

R T⋅
−

⋅= Example Problem 3.4

In these equations p0,  T0, and  z0 are reference conditions



The temperature can be computed from the data in the figure
The pressures are then computed from the appropriate equation From Table A.3

z  (km) T  (oC) T  (K) p /p SL z  (km) p /p SL

0.0 15.0 288.0 m  = 1.000 0.0 1.000
2.0 2.0 275.00 0.0065 0.784 0.5 0.942
4.0 -11.0 262.0 (K/m) 0.608 1.0 0.887
6.0 -24.0 249.0 0.465 1.5 0.835
8.0 -37.0 236.0 0.351 2.0 0.785

11.0 -56.5 216.5 0.223 2.5 0.737
12.0 -56.5 216.5 T  = const 0.190 3.0 0.692
14.0 -56.5 216.5 0.139 3.5 0.649
16.0 -56.5 216.5 0.101 4.0 0.609
18.0 -56.5 216.5 0.0738 4.5 0.570
20.1 -56.5 216.5 0.0530 5.0 0.533
22.0 -54.6 218.4 m  = 0.0393 6.0 0.466
24.0 -52.6 220.4 -0.000991736 0.0288 7.0 0.406
26.0 -50.6 222.4 (K/m) 0.0211 8.0 0.352
28.0 -48.7 224.3 0.0155 9.0 0.304
30.0 -46.7 226.3 0.0115 10.0 0.262
32.2 -44.5 228.5 0.00824 11.0 0.224
34.0 -39.5 233.5 m  = 0.00632 12.0 0.192
36.0 -33.9 239.1 -0.002781457 0.00473 13.0 0.164
38.0 -28.4 244.6 (K/m) 0.00356 14.0 0.140
40.0 -22.8 250.2 0.00270 15.0 0.120
42.0 -17.2 255.8 0.00206 16.0 0.102
44.0 -11.7 261.3 0.00158 17.0 0.0873
46.0 -6.1 266.9 0.00122 18.0 0.0747
47.3 -2.5 270.5 0.00104 19.0 0.0638
50.0 -2.5 270.5 T  = const 0.000736 20.0 0.0546
52.4 -2.5 270.5 0.000544 22.0 0.0400
54.0 -5.6 267.4 m  = 0.000444 24.0 0.0293
56.0 -9.5 263.5 0.001956522 0.000343 26.0 0.0216
58.0 -13.5 259.5 (K/m) 0.000264 28.0 0.0160
60.0 -17.4 255.6 0.000202 30.0 0.0118
61.6 -20.5 252.5 0.000163 40.0 0.00283
64.0 -29.9 243.1 m  = 0.000117 50.0 0.000787
66.0 -37.7 235.3 0.003913043 0.0000880 60.0 0.000222
68.0 -45.5 227.5 (K/m) 0.0000655 70.0 0.0000545
70.0 -53.4 219.6 0.0000482 80.0 0.0000102
72.0 -61.2 211.8 0.0000351 90.0 0.00000162
74.0 -69.0 204.0 0.0000253
76.0 -76.8 196.2 0.0000180
78.0 -84.7 188.3 0.0000126
80.0 -92.5 180.5 T  = const 0.00000861
82.0 -92.5 180.5 0.00000590
84.0 -92.5 180.5 0.00000404
86.0 -92.5 180.5 0.00000276
88.0 -92.5 180.5 0.00000189
90.0 -92.5 180.5 0.00000130



Agreement between calculated and tabulated data is very good (as it should be, considering the table data is also computed!)

Atmospheric Pressure vs Elevation
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y' H 0.45 m⋅−>

But for equilibrium, the center of force must always be at or below the level of the hinge so tha
stop can hold the gate in place.  Hence we must have

y' H
L
2

−





w L3⋅

12 w⋅ L⋅ H
L
2

−





⋅
+= H

L
2

−





L2

12 H
L
2

−





⋅
+=

where L = 1 m is the plate height and w is the plate width

Hence

yc H
L
2

−=withIxx
w L3⋅

12
=andy' yc

Ixx
A yc⋅

+=

This is a problem with atmospheric pressure on both sides of the plate, so we can first 
determine the location of the center of pressure with respect to the free surface, using 
Eq.3.11c (assuming depth H)

Solution

Find: Depth H at which gate tips

Given: Gate geometry

A rectangular gate (width w
what depth H will the gate tip?

Problem 3.48



Combining the two equations

H
L
2

−





L2

12 H
L
2

−





⋅
+ H 0.45 m⋅−≥

Solving for H

H
L
2

L2

12
L
2

0.45 m⋅−





⋅
+≤

H
1 m⋅
2

1 m⋅( )2

12
1 m⋅
2

0.45 m⋅−





×
+≤

H 2.167 m⋅≤













Simon Durkin
Problem 3.52

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.53

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.54

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.55

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.56

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.57

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.58

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 3.59

Simon Durkin

Simon Durkin

Simon Durkin



m ρcement g⋅ b⋅ D⋅ w⋅= SG ρ⋅ g⋅ b⋅ D⋅ w⋅=Also

y D y'−=
D
3

=so

y' yc
Ixx

A yc⋅
+=

D
2

w D3⋅

12 w⋅ D⋅
D
2

⋅
+=

2
3

D⋅=

FH pc A⋅= ρ g⋅
D
2

⋅ w⋅ D⋅=
1
2
ρ⋅ g⋅ D2⋅ w⋅=

Straightforward application of the computing equations of 
Section 3-5 yields 

a) Rectangular dam

For each case, the dam width b
enough moment to balance the moment due to fluid hydrostatic force(s).  By doing a moment 
balance this value of b can be found

Solution

Find: Which requires the least concrete; plot 
cross-section area A as a function of α

Given: Various dam cross-sections

A solid concrete dam is to be built to hold back a depth D of water. For ease of construction 
the walls of the dam must be planar. Your supervisor asks you to consider the following dam 
cross-sections: a rectangle, a right triangle with the hypotenuse in contact with the water, and a
right triangle with the vertical in contact with the water.  She wishes you to determine which of
these would require the least amount of concrete.  What will your report say? You decide to 
look at one more possibility: a nonright triangle, as shown. Develop and plot an expression for 
the cross-section area A as a function of α, and find the minimum cross-sectional area.

Problem 3.60



Taking moments about O

M0.∑ 0= FH− y⋅
b
2

m⋅ g⋅+=

so 1
2
ρ⋅ g⋅ D2⋅ w⋅





D
3

⋅
b
2

SG ρ⋅ g⋅ b⋅ D⋅ w⋅( )⋅=

Solving for b b
D

3 SG⋅
=

The minimum rectangular cross-section area is A b D⋅=
D2

3 SG⋅
=

For concrete, from Table A.1, SG = 2.4, so A
D2

3 SG⋅
=

D2

3 2.4×
=

A 0.373 D2⋅=

a) Triangular dams

made, at the end of which right triangles are analysed 
as special cases by setting α = 0 or 1.

Straightforward application of the computing equations 
of Section 3-5 yields 

FH pc A⋅= ρ g⋅
D
2

⋅ w⋅ D⋅=
1
2
ρ⋅ g⋅ D2⋅ w⋅=

y' yc
Ixx

A yc⋅
+=

D
2

w D3⋅

12 w⋅ D⋅
D
2

⋅
+=

2
3

D⋅=



so y D y'−=
D
3

=

Also FV ρ V⋅ g⋅= ρ g⋅
α b⋅ D⋅

2
⋅ w⋅=

1
2
ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅=

x b α b⋅−( ) 2
3
α⋅ b⋅+= b 1

α
3

−







⋅=

For the two triangular masses

m1
1
2

SG⋅ ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅= x1 b α b⋅−( ) 1
3
α⋅ b⋅+= b 1

2 α⋅
3

−







⋅=

m2
1
2

SG⋅ ρ⋅ g⋅ 1 α−( )⋅ b⋅ D⋅ w⋅= x2
2
3

b 1 α−( )⋅=

Taking moments about O

M0.∑ 0= FH− y⋅ FV x⋅+ m1 g⋅ x1⋅+ m2 g⋅ x2⋅+=

so 1
2
ρ⋅ g⋅ D2⋅ w⋅





−
D
3

⋅
1
2
ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅





b⋅ 1
α
3

−







⋅+

1
2

SG⋅ ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅





b⋅ 1
2 α⋅
3

−







⋅
1
2

SG⋅ ρ⋅ g⋅ 1 α−( )⋅ b⋅ D⋅ w⋅





2
3
⋅ b 1 α−( )⋅++

... 0=

Solving for b b
D

3 α⋅ α2−( ) SG 2 α−( )⋅+
=



For a α = 1, and

b
D

3 1− SG+
=

D

3 1− 2.4+
=

b 0.477 D⋅=

The cross-section area is A
b D⋅
2

= 0.238 D2⋅=

A 0.238 D2⋅=

For a α = 0, and

b
D

2 SG⋅
=

D

2 2.4⋅
=

b 0.456 D⋅=

The cross-section area is A
b D⋅
2

= 0.228 D2⋅=

A 0.228 D2⋅=

For a general triangle A
b D⋅
2

=
D2

2 3 α⋅ α2−( ) SG 2 α−( )⋅+⋅
=



A
D2

2 3 α⋅ α2−( ) 2.4 2 α−( )⋅+⋅
=

The final result is A
D2

2 4.8 0.6 α⋅+ α2−⋅
=

From the corresponding Excel workbook, the minimum area occurs at α = 0.3

Amin
D2

2 4.8 0.6 0.3×+ 0.32−⋅
=

A 0.226 D2⋅=

The final results are that a triangular cross-section with α = 0.3 uses the least concrete; the 
next best is a right triangle with the vertical in contact with the water; next is the right triangle 
with the hypotenuse in contact with the water; and the cross-section requiring the most 
concrete is the rectangular cross-section.



Problem 3.60 (In Excel)

A solid concrete dam is to be built to hold back a depth D  of water. For ease of construction
the walls of the dam must be planar. Your supervisor asks you to consider
the following dam cross-sections: a rectangle, a right triangle with the hypotenuse in
contact with the water, and a right triangle with the vertical in contact with the water.
She wishes you to determine which of these would require the least amount of concrete.
What will your report say? You decide to look at one more possibility: a nonright
triangle, as shown. Develop and plot an expression for the cross-section area A
as a function of α, and find the minimum cross-sectional area.

Given: Various dam cross-sections
Find: Plot cross-section area as a function of α

Solution
The triangular cross-sections are considered in this workbook

The dimensionless area, A /D 2, is plotted

α A /D 2

0.0 0.2282
0.1 0.2270
0.2 0.2263
0.3 0.2261
0.4 0.2263
0.5 0.2270
0.6 0.2282
0.7 0.2299
0.8 0.2321
0.9 0.2349
1.0 0.2384

Solver  can be used to
find the minimum area

α A /D 2

0.30 0.2261

Dam Cross Section vs Coefficient α
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The final result is A
D2

2 4.8 0.6 α⋅+ α
2

−⋅
=



























FH1 pc A⋅= ρ1 g⋅
D
2

⋅





D⋅ L⋅=
1
2

SG1⋅ ρ⋅ g⋅ D2⋅ L⋅=For fluid 1 (on the left)

(a) Horizontal Forces

L 6 m⋅=D 3 m⋅=For the weir

SG2 0.8=SG1 1.6=For the fluids

ρ 999
kg

m3
⋅=For waterThe data are

For vertical forces, the computing equation of Section 3-5 is FV ρ g⋅ V⋅=  where V is the 

volume of fluid above the curved surface.

For horizontal forces, the computing equation of Section 3-5 is FH pc A⋅=  where A is 

the area of the equivalent vertical plate.

The horizontal and vertical forces due to each fluid are treated separately.  For each, the horizon
force is equivalent to that on a vertical flat plate; the vertical force is equivalent to the weight of 
"above".

Solution

Find: Resultant force and direction

Given: Sphere with different fluids on each side

Consider the cylindrical weir of diameter 3 m and length 6 m. If the fluid on the left has a 
specific gravity of 1.6, and on the right has a specific gravity of 0.8, find the magnitude and 
direction of the resultant force.

Problem 3.70



FH1
1
2

1.6⋅ 999⋅
kg

m3
⋅ 9.81⋅

m

s2
⋅ 3 m⋅( )2⋅ 6⋅ m⋅

N s2⋅
kg m⋅
⋅=

FH1 423kN=

For fluid 2 (on the right) FH2 pc A⋅= ρ2 g⋅
D
4

⋅





D
2

⋅ L⋅=
1
8

SG2⋅ ρ⋅ g⋅ D2⋅ L⋅=

FH2
1
8

0.8⋅ 999⋅
kg

m3
⋅ 9.81⋅

m

s2
⋅ 3 m⋅( )2⋅ 6⋅ m⋅

N s2⋅
kg m⋅
⋅=

FH2 53kN=

The resultant horizontal force is

FH FH1 FH2−= FH 370kN=

(b) Vertical forces

For the left geometry, a "thought experiment" is needed to obtain surfaces with fluid "above

Hence FV1 SG1 ρ⋅ g⋅

π D2⋅

4
2

⋅ L⋅=



FV1 1.6 999×
kg

m3
⋅ 9.81×

m

s2
⋅

π 3 m⋅( )2⋅
8

× 6× m⋅
N s2⋅
kg m⋅

×=

FV1 332kN=

(Note: Use of buoyancy leads to the same result!)

For the right side, using a similar logic

FV2 SG2 ρ⋅ g⋅

π D2⋅

4
4

⋅ L⋅=

FV2 0.8 999×
kg

m3
⋅ 9.81×

m

s2
⋅

π 3 m⋅( )2⋅
16

× 6× m⋅
N s2⋅
kg m⋅

×=

FV2 83kN=

The resultant vertical force is

FV FV1 FV2+= FV 415kN=

Finally the resultant force and direction can be computed

F FH
2 FV

2+= F 557kN=

α atan
FV
FH









= α 48.3deg=
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yc 9.36m=yc H
4 R⋅
3 π⋅

−=The center of pressure of the glass is

Consider the x component

(a) Horizontal Forces

H 10 m⋅=R 1.5 m⋅=For the aquarium

SG 1.025=For the fluid (Table A.2)

ρ 999
kg

m3
⋅=For waterThe data are

For the vertical force, the computing equation of Section 3-5 is FV ρ g⋅ V⋅=  where V is the 

volume of fluid above the curved surface.

For horizontal forces, the computing equation of Section 3-5 is FH pc A⋅=  where A is 

the area of the equivalent vertical plate.

The x, y and z components of force due to the fluid are treated separately.  For the x, y 
components, the horizontal force is equivalent to that on a vertical flat plate; for the z component
(vertical force) the force is equivalent to the weight of fluid above.

Solution

Find: Resultant force and direction

Given: Geometry of glass observation room

A glass observation room is to be installed at the corner of the bottom of an aquarium. The 
aquarium is filled with seawater to a depth of 10 m. The glass is a segment of a sphere, radius 
1.5 m, mounted symmetrically in the corner. Compute the magnitude and direction of the net 
force on the glass structure.

Problem 3.77



FV 160kN=

FV SG ρ⋅ g⋅ V⋅= 1.025 999×
kg

m3
⋅ 9.81×

m

s2
⋅ 15.9× m3⋅

N s2⋅
kg m⋅

×=Then

V 15.9m3=V
π R2⋅

4
H⋅

4 π⋅ R3⋅

3
8

−=The volume is

The vertical force is equal to the weight of fluid above (a volume defined by a rectangular 
column minus a segment of a sphere)

(b) Vertical forces

FH 235kN=FH FHx
2 FHy

2+=

The resultant horizontal force (at 45o to the x and y axes) is

FHy 166kN=FHy FHx=

The y component is of the same magnitude as the x component

FHx 166kN=

FHx 1.025 999×
kg

m3
⋅ 9.81×

m

s2
⋅ 9.36× m⋅

π 1.5 m⋅( )2⋅
4

×
N s2⋅
kg m⋅

×=

FHx pc A⋅= SG ρ⋅ g⋅ yc⋅( ) π R2⋅
4

⋅=Hence



Finally the resultant force and direction can be computed

F FH
2 FV

2+= F 284kN=

α atan
FV
FH









= α 34.2deg=

Note that α
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W 24.7N=

W 7.83 999×
kg

m3
⋅ 9.81×

m

s2
⋅ 3.22× 10 4−× m3⋅

N s2⋅
kg m⋅

×=

W SG ρ⋅ g⋅ Vsteel⋅=The weight of the cylinder is

Vsteel 3.22 10 4−× m3=Vsteel δ
π D2⋅

4
π D⋅ H⋅+









⋅=The volume of the cylinder is

δ 1 mm⋅=H 1 m⋅=D 100 mm⋅=For the cylinder

SG 7.83=For steel (Table A.1)

ρ 999
kg

m3
⋅=For waterThe data are

Solution

Find: Volume of water displaced; number of 1 kg wts to make it sink

Given: Geometry of steel cylinder

An open tank is filled to the top with water. A steel cylindrical container, wall thickness δ = 1 
mm, outside diameter D = 100 mm, and height H = 1 m, with an open top, is gently placed in 
the water. What is the volume of water that overflows from the tank? How many 1 kg weights 
must be placed in the container to make it sink?  Neglect surface tension effects.

Problem *3.83



At equilibium, the weight of fluid displaced is equal to the weight of the cylinder

Wdisplaced ρ g⋅ Vdisplaced⋅= W=

Vdisplaced
W
ρ g⋅

= 24.7 N⋅
m3

999 kg⋅
×

s2

9.81 m⋅
×

kg m⋅

N s2⋅
×=

Vdisplaced 2.52 10 3−× m3=

To determine how many 1 kg wts will make it sink, we first need to find the extra volume that w
need to be dsiplaced

Distance cylinder sank x1
Vdisplaced

π D2⋅
4









= x1 0.321m=

Hence, the cylinder must be made to sink an additional distance x2 H x1−= x2 0.679m=

We deed to add n weights so that 1 kg⋅ n⋅ g⋅ ρ g⋅
π D2⋅

4
⋅ x2⋅=

n
ρ π⋅ D2⋅ x2⋅

4 1 kg⋅×
= 999

kg

m3
⋅

π
4

× 0.1 m⋅( )2× 0.679× m⋅
1

1 kg⋅
×

N s2⋅
kg m⋅

×=

n 5.328=

Hence we need n 6=  weights to sink the cylinder
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To just lift the rod out of the water requires F 1.5 lbf⋅=  (half of the rod weight)

gives a physically unrealistic value)
x 1.23 ft=

x L L2 W L⋅
γ A⋅

−−= 10 ft⋅ 10 ft⋅( )2 3 lbf⋅ 10× ft⋅
ft3

62.4 lbf⋅
×

1

3 in2⋅
×

144 in2⋅

1 ft2⋅
×−−=

γ A⋅ x⋅ L
x
2

−





⋅
W L⋅

2
=Hence

where FB γ A⋅ x⋅=  is the buoyancy force x is the submerged length of rod

Mhinge∑ 0= W
L
2
⋅ cos θ( )⋅ FB L x−( )

x
2

+





⋅ cos θ( )⋅−=For the moment

The semi-floating rod will have zero net force and zero moment about the hinge

W 3 lbf⋅=A 3 in2⋅=L 10 ft⋅=For the cylinder

γ 62.4
lbf

ft3
⋅=For waterThe data are

Solution

Find: How much is submerged if weight is removed; force 
required to lift out of water

Given: Data on rod

If the weight W in Problem 3.89 is released from the rod, at equilibrium how much of the rod 
will remain submerged? What will be the minimum required upward force at the tip of the rod 
to just lift it out of the water?

Problem *3.91
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pA
ρ ω2⋅

2
L2−( )⋅ ρ g⋅ 0( )⋅−=

ρ ω2⋅ L2⋅
2

−=Hence

r0 rD= L=r 0=z zA= zD= z0= H=

p0 pD=p pA=In this case

where p0 is a reference pressure at point (r0,z0)

p p0
ρ ω2⋅

2
r2 r0

2−



⋅+ ρ g⋅ z z0−( )⋅−=

From the analysis of Example Problem 3.10, the pressure p at any point (r,z) in a continuous 
rotating fluid is given by

(gage)pD 0 kPa⋅=The pressure at D is

ω 20.9
rad
s

=ω 200 rpm⋅=The speed of rotation is

ρ 999
kg

m3
⋅=For water

Solution

Find: Pressure at A at 200 rpm; water loss due to leak

Given: Data on U-tube

If the U-tube of Problem 3.101 is spun at 200 rpm, what will be the pressure at A? If a small 
leak appears at A, how much water will be lost at D?

Problem *3.102



∆h 125mm=∆h H zA−= 300 mm⋅ 175 mm⋅−=The amount of water lost is

zA 0.175m=

zA 0.3 m⋅
1
2

20.9
rad
s

⋅





2
× 0.075 m⋅( )2×

s2

9.81 m⋅
×

N s2⋅
kg m⋅

×−=

zA H
ω2 L2⋅

2 g⋅
−=

0
ρ ω2⋅

2
L2−( )⋅ ρ g⋅ zA H−( )⋅−=Hence

r0 rD= L=r 0=z0 zD= H=z zA=

p0 pD= 0=p pA= 0=In this case

where p0 is a reference pressure at point (r0,z0)

p p0
ρ ω2⋅

2
r2 r0

2−



⋅+ ρ g⋅ z z0−( )⋅−=

When the leak appears,the water level at A will fall, forcing water out at point D.  Once again, fr
the analysis of Example Problem 3.10, the pressure p at any point (r,z) in a continuous rotating f
is given by

pA 1.23− kPa=

pA
1
2

− 999×
kg

m3
⋅ 20.9

rad
s

⋅





2
× 0.075 m⋅( )2×

N s2⋅
kg m⋅

×=
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x
M gÖ

k
M gÖ

k
åæ
ç

õö
÷

2 2 MÖ gÖ hÖ
k

++=

x2 2 MÖ gÖ
k

xÖ-
2 MÖ gÖ hÖ

k
- 0=Solving for x

M gÖ hÖ M gÖ x-( )Ö
1
2

kÖ x2Ö+=so

E1 E2=But

Note: The datum for zero potential is the top of the uncompressed spring

E2 M gÖ x-( )Ö
1
2

kÖ x2Ö+=Total mechanical energy at instant of maximum compression x

E1 M gÖ hÖ=Total mechanical energy at initial state

Apply the First Law of Thermodynamics: for the system consisting of the mass and the spring (t
spring has gravitional potential energy and the spring elastic potential energy)

k 400
N
m
Ö=h 5 mÖ=M 3 kgÖ=The given data is

Solution

Find: Maximum spring compression

Given: Data on mass and spring

A mass of 3 kg falls freely a distance of 5 m before contacting a spring attached to the 
ground. If the spring stiffness is 400 N/m, what is the maximum spring compression?

Problem 4.2



x 3 kgÖ 9.81³
m

s2
Ö

m
400 NÖ

³

3 kgÖ 9.81³
m

s2
Ö

m
400 NÖ

³å
æ
ç

õ
ö
÷

2
2 3³ kgÖ 9.81³

m

s2
Ö 5³ mÖ

m
400 NÖ

³++

...=

x 0.934m=

Note that ignoring the loss of potential of the mass due to spring compression x gives

x
2 MÖ gÖ hÖ

k
= x 0.858m=

Note that the deflection if the mass is dropped from immediately above the spring is

x
2 MÖ gÖ

k
= x 0.147m=





Problem 4.4



Problem 4.5





Problem 4.7



Tamb 278K=Tamb 5 273+( ) KÖ=

Tinit 298K=Tinit 25 273+( ) KÖ=Given data for cooling

where Tinit is the initial temperature.  The available data from the coolling can now be used to ob
a value for constant A

T t( ) Tamb Tinit Tamb-( ) e A- tÖ+=Integrating

dT
T Tamb-

A- dtÖ=Separating variables

where M is the can mass, c T is the 
temperature, and Tamb is the ambient temperature

A
k

M cÖ
=wheredT

dt
A- T Tamb-( )Ö=orM cÖ

dT
dt

Ö k- T Tamb-( )Ö=

The First Law of Thermodynamics for the can (either warming or cooling) is

Solution

Find: How long it takes to warm up in a room

Given: Data on cooling of a can of soda in a refrigerator

Problem 4.8



t 1.5hr=t 5.398 103³ s=

t
1
A

ln
Tinit Tamb-

Tend Tamb-

å
æ
ç

õ
ö
÷

Ö=
s

1.284 10 4-Ö
ln

283 293-
288 293-
åæ
ç

õö
÷

Ö=Hence the time τ is

Tend Tamb Tinit Tamb-( ) e A- tÖ+=with

Tend 288K=Tend 15 273+( ) KÖ=

Tamb 293K=Tamb 20 273+( ) KÖ=

Tinit 283K=Tinit 10 273+( ) KÖ=

Then, for the warming up process

A 1.284 10 4-³ s 1-=

A
1
t

ln
Tinit Tamb-

T Tamb-

å
æ
ç

õ
ö
÷

Ö=
1

3 hrÖ
1 hrÖ

3600 sÖ
³ ln

298 278-
283 278-
åæ
ç

õö
÷

³=Hence

t t= 10 hrÖ=whenT 283K=T 10 273+( ) KÖ=







Problem 4.10

Given: Data on velocity field and control volume geometry

Find: Several surface integrals

Solution

kwdyjwdzAd ˆˆ
1 +-=
C    

kdyjdzAd ˆˆ
1 +-=
C

jwdzAd ˆ
2 =
C     jdzAd ˆ

2 =
C

( )kbjazV ˆˆ +=
C     ( )kjzV ˆ5ˆ10 +=

C

(a) ( ) ( ) dyzdzkdyjdzkjzdAV 510ˆˆˆ5ˆ101 +-=+-Ö+=Ö
C

(b)
055510 1

0

1

0
2

1

0

1

0
1

1

=+-=+-=Ö ñññ yzdyzdzdAV
A

C

(c) ( ) ( ) zdzjdzkjzdAV 10ˆˆ5ˆ102 =Ö+=Ö
C

(d) ( ) ( ) zdzkjzdAVV 10ˆ5ˆ102 +=Ö
CC

(e) ( ) ( ) kjkzjzzdzkjzdAVV
A

ˆ25ˆ3.33ˆ25ˆ
3

10010ˆ5ˆ10
1

0
2

1

0

3
1

0
2

2

+=+=+=Ö ññ
CC



Problem 4.11

Given: Data on velocity field and control volume geometry

Find: Volume flow rate and momentum flux through 
shaded area

Solution

kdxdyjdxdzAd ˆˆ +=
C      

jbyiaxV ˆˆ -=
C     

jyixV ˆˆ -=
C

(a) Volume flow rate 

( ) ( )

( )

s
m3

362233

ˆˆˆˆ

3

1

0
2

1

0

1

0

3

0

1

0

-=

+-=--=-=-=

+Ö-=Ö=

ñññ ñ

ññ

Q

zzdzzydzdxydz

kdxdyjdxdzjyixdAVQ
AA

C

(b) Momentum flux 

( ) ( )( )

( )

( )

r

rrr

rr

rr

167.3

3
4

2
91

3
42

2

3ˆ

ˆˆ

1

0

31

0
2

3

0

2

1

0

2
3

0

1

0

-=

ö
÷
õ

æ
ç
å +-=

ö
ö

÷

õ

æ
æ

ç

å
-+ö

÷
õ

æ
ç
å -
öö
ö

÷

õ

ææ
æ

ç

å
-=

+-=

--=Ö

ññ ñ

ññ

zzzx

dzydxdzixy

ydxdzjyixAdVV
AA

CCC



Problem 4.12
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Problem 4.18



V3 6.67 e

t
2

-
Ö 2.67 cos 2 pÖ tÖ( )Ö+=The velocity at A3 is

V3
V1 A1Ö V2 A2Ö+

A3
=

10 e

t
2

-
Ö

m
s

Ö 0.1³ m2Ö 2 cos 2 pÖ tÖ( )Ö
m
s

Ö 0.2³ m2Ö+

0.15 m2Ö
=

V1- A1Ö V2 A2Ö- V3 A3Ö+ 0=

Applying to the device (assuming V3 is out)

A


V
ò

ó
óô

d V


ä A

Ö= 0=

For incompressible flow (Eq. 4.13) and uniform flowGoverning equation:

Solution

Find: Velocity V3; plot V3 against time; find when V3 is zero; 
total mean flow

Given: Data on flow through device

Problem 4.19



The total mean volumetric flow at A3 is

Q
0

¤

tV3 A3Ö
ò
ó
ô

d=
0

¤

t6.67 e

t
2

-
Ö 2.67 cos 2 pÖ tÖ( )Ö+

å
æ
ç

õ
ö
÷ 0.15Ö

ò
ó
ó
ô

d
m
s

m2Öåæ
ç

õö
÷

Ö=

Q
¤t

2- e

t
2

-
Ö

1
5 pÖ

sin 2 pÖ tÖ( )Ö+lim


2-( )-= 2 m3Ö=

Q 2 m3Ö=

The time at which V3 first is zero, and the plot of V3 is shown in the corresponding Excel workbo

t 2.39 sÖ=



Problem 4.19 (In Excel)

Given: Data on flow rates and device geometry
Find: When V 3 is zero; plot V 3

Solution

t  (s) V 3 (m/s)
0.00 9.33
0.10 8.50
0.20 6.86
0.30 4.91
0.40 3.30
0.50 2.53
0.60 2.78
0.70 3.87
0.80 5.29
0.90 6.41
1.00 6.71
1.10 6.00
1.20 4.48
1.30 2.66
1.40 1.15
1.50 0.48
1.60 0.84
1.70 2.03
1.80 3.53 The time at which V 3 first becomes zero can be found using Goal Seek
1.90 4.74
2.00 5.12 t  (s) V 3 (m/s)
2.10 4.49 2.39 0.00
2.20 3.04
2.30 1.29
2.40 -0.15
2.50 -0.76

Exit Velocity vs Time
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The velocity at A3 is V3 6.67 e

t
2

-
Ö 2.67 cos 2 pÖ tÖ( )Ö+=











u r( )
Dp-

4 mÖ LÖ
Ro

2 r2-
Ro

2 Ri
2-

ln
Ri
Ro

å
æ
ç

õ
ö
÷

ln
Ro
r

å
æ
ç

õ
ö
÷

Ö+
å
æ
æ
æ
ç

õ
ö
ö
ö
÷

Ö=

(From Fig. A.2)m 0.1
N sÖ

m2
Ö=

Dp
L

10-
kPa
m

Ö=Ri 1 mmÖ=Ro 5 mmÖ=The given data is

Vav
Q
A

=Q A


V
ò

ó
óô

d=

Governing equation

Solution

Find: Volume flow rate; average velocity; maximum velocity; plot velocity distribution

Given: Velocity distribution in annulus

Problem 4.24



The flow rate is given by

Q
Ri

Ro
ru r( ) 2Ö pÖ rÖ

ò
ó
ô

d=

Considerable mathematical manipulation leads to

Q
Dp pÖ

8 mÖ LÖ
Ro

2 Ri
2-å

ç
õ
÷Ö

Ro
2 Ri

2-å
ç

õ
÷

ln
Ro
Ri

å
æ
ç

õ
ö
÷

Ri
2 Ro

2+å
ç

õ
÷-

è
é
é
é
ê

ø
ù
ù
ù
ú

Ö=

Substituting values

Q
p
8

10- 103Ö( )Ö
N

m2 mÖ
Ö

m2

0.1 NÖ sÖ
Ö 52 12-( )Ö

m
1000
åæ
ç

õö
÷

2
Ö

52 12-

ln
5
1
åæ
ç
õö
÷

52 12+( )-
è
é
é
ê

ø
ù
ù
ú

Ö
m

1000
åæ
ç

õö
÷

2
Ö=

Q 1.045 10 5-³
m3

s
= Q 10.45

mL
s

=

The average velocity is

Vav
Q
A

=
Q

p Ro
2 Ri

2-å
ç

õ
÷Ö

=

Vav
1
p

1.045³ 10 5-³
m3

s
Ö

1

52 12-
³

1000
m

åæ
ç

õö
÷

2
Ö= Vav 0.139

m
s

=



The maximum velocity occurs when du
dr

0=

du
dr x

Dp-

4 mÖ LÖ
Ro

2 r2-
Ro

2 Ri
2-

ln
Ri
Ro

å
æ
ç

õ
ö
÷

ln
Ro
r

å
æ
ç

õ
ö
÷

Ö+
å
æ
æ
æ
ç

õ
ö
ö
ö
÷

Öd
d

=
Dp

4 mÖ LÖ
- 2- rÖ

Ro
2 Ri

2-å
ç

õ
÷

ln
Ri
Ro

å
æ
ç

õ
ö
÷

rÖ

-
è
é
é
é
ê

ø
ù
ù
ù
ú

Ö= 0=

r
Ri

2 Ro
2-

2 ln
Ri
Ro

å
æ
ç

õ
ö
÷

Ö

= r 2.73mm=

Substituting in u(r) umax u 2.73 mmÖ( )= 0.213
m
s

Ö=

The maximum velocity, and the plot, are also shown in the corresponding Excel workbook



Problem 4.24 (In Excel)

Given: Velocity distribution in annulus
Find: Maximum velocity; plot velocity distribution

Solution

R o = 5 mm
R i = 1 mm

∆p /L  = -10 kPa/m
µ = 0.1 N.s/m2

r  (mm) u  (m/s)
1.00 0.000
1.25 0.069
1.50 0.120
1.75 0.157
2.00 0.183
2.25 0.201
2.50 0.210
2.75 0.213
3.00 0.210
3.25 0.200
3.50 0.186
3.75 0.166
4.00 0.142
4.25 0.113
4.50 0.079
4.75 0.042
5.00 0.000

The maximum velocity can be found using Solver

r  (mm) u  (m/s)
2.73 0.213

Annular Velocity Distribution
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Problem 4.26



Problem 4.27
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Problem 4.33



A 0.0177m2=A
p D2Ö

4
=where A is the cross-section area

Q A-
dh
dt

Ö= k HÖ=

For the flow rate out of the upper chamberGoverning equation

D 150 mmÖ=d 20 mmÖ=L 50 mmÖ=

x t 0=( ) 0=h0 80 mmÖ=h t 0=( ) h0=Then

Let the instantaneous depth of water in the upper 
chamber be h; let the filter height be L; let the gap 
between the filter and the bottom be d; and let the level 
in the lower chamber be x.

k 2 10 4-Ö
m2

s
Ö=whereQ k HÖ=Given data

Solution

Given: Geometry on water filter

A home water filter container as shown is initially completely empty. The upper chamber is now
filled to a depth of 80 mm with water. How long will it take the lower chamber water level to ju
touch the bottom of the filter? How long will it take for the water level in the lower chamber to
reach 50 mm? Note that both water surfaces are at atmospheric pressure, and the filter material 
itself can be assumed to take up none of the volume. Plot the lower chamber water level as a 

Q = kH where k = 2x10-4 m2/s and H
(m) is the net hydrostatic head across the filter.

Problem 4.34



x h0 L+( ) 1 e

k
A

- tÖ
-Ö

å
æ
ç

õ
ö
÷Ö=

x h0 h-= h0 h0 L+( ) e

k
A

- tÖ
Ö L-

è
é
ê

ø
ù
ú-=so

A xÖ A h0 h-( )Ö=Note that the increase in lower chamber level is equal to 
the decrease in upper chamber level

We must find the instant that the lower chamber level reaches the bottom of the filter

Note that the initial condition is satisfied, and that as time increases h approaches -L, that is, 
upper chamber AND filter completely drain

h h0 L+( ) e

k
A

- tÖ
Ö L-=

Integrating and using the initial condition h = h0

dh
h L+

dt
A

-=Separating variables

A-
dh
dt

Ö H= h L+=

Hence the governing equation becomes

H h L+=The head H is given by 

(a) First Regime: water level in lower chamber not in contact with filter, x < d

There are two flow regimes: before the lower chamber water level reaches the bottom of the filte
and after this point



Before integrating we need an initial condition for this regime

dh
2 hÖ L+ d+ h0-

dt
A

-=Separating variables

A-
dh
dt

Ö H= h L+ d+ x-= 2 hÖ L+ d+ h0-=

Hence the governing equation becomes

x h0 h-=soA xÖ A h0 h-( )Ö=

Note that the increase in lower chamber level is equal to 
the decrease in upper chamber level

H h L+ d+ x-=The head H is now given by 

(a) Second Regime:water level in lower chamber in contact with filter, x > d

t 14.8 s=

t 0.0177- m2Ö
s

2 10 4-Ö m2³
³ ln 1

20
80 50+

-åæ
ç

õö
÷

³=

t
A
k

- ln 1
d

h0 L+
-å

æ
ç

õ
ö
÷

Ö=Solving for t

d h0 L+( ) 1 e

k
A

- tÖ
-Ö

å
æ
ç

õ
ö
÷Ö=

Hence we need to find when x = d, or



Let the time at which x = d be t1 = 14.8 s

Then the initial condition is h h0 x-= h0 d-=

Integrating and using this IC yields eventually

h
1
2

h0 L+ d-( ) e

2 kÖ
A

- t t1-( )Ö
Ö

1
2

L d+ h0-( )Ö-=

or x
1
2

L d+ h0+( )Ö
1
2

h0 L+ d-( )Ö e

2 kÖ
A

- t t1-( )Ö
Ö-=

Note that the start of Regime 2 (t = t1), x = d, which is correct.

We must find the instant that the lower chamber level reaches a level of 50 mm

Let this point be x xend= 50 mmÖ=

We must solve xend
1
2

L d+ h0+( )Ö
1
2

h0 L+ d-( )Ö e

2 kÖ
A

- t t1-( )Ö
Ö-=

Solving for t t
A
2 kÖ

- ln
L d+ h0+ 2 xendÖ-

h0 L+ d-

å
æ
ç

õ
ö
÷

Ö t1+=

t 49.6 s=



The complete solution for the lower chamber water level is

x h0 L+( ) 1 e

k
A

- tÖ
-Ö

å
æ
ç

õ
ö
÷Ö= x d¢

x
1
2

L d+ h0+( )Ö
1
2

h0 L+ d-( )Ö e

2 kÖ
A

- t t1-( )Ö
Ö-= x d>

The solution is plotted in the corresponding Excel workbook; in addition, Goal Seek is used to
find the two times asked for



Problem 4.34 (In Excel)

A home water filter container as shown is initially completely empty. The upper
chamber is now filled to a depth of 80 mm with water. How long will it take the
lower chamber water level to just touch the bottom of the filter? How long will it
take for the water level in the lower chamber to reach 50 mm? Note that both water
surfaces are at atmospheric pressure, and the filter material itself can be assumed to
take up none of the volume. Plot the lower chamber water level as a function of time.
For the filter, the flow rate is given by Q = kH  where k  = 2x10-4 m2/s and
H  (m) is the net hydrostatic head across the filter.

Given: Geometry of water filter
Find: Times to reach various levels; plot lower chamber level

Solution

The complete solution for the lower chamber water level is

x h0 L+( ) 1 e

k
A

- tÖ
-Ö

å
æ
ç

õ
ö
÷Ö= x d¢

x
1
2

L d+ h0+( )Ö
1
2

h0 L+ d-( )Ö e

2 kÖ
A

- t t1-( )Ö
Ö-= x d>



h o = 80 mm To find when x  = d , use Goal Seek
d  = 20 mm
L  = 50 mm t  (s) x  (mm)
D  = 150 mm 14.8 20.0
k  = 2.00E-04 m2/s

To find when x  = 50 mm, use Goal Seek
A  = 0.0177 mm

t  (s) x  (mm)
t 1 = 14.8 s 49.6 50

t  (s) x  (mm)
0.0 0.0
2.5 3.6
5.0 7.2
7.5 10.6
10.0 13.9
12.5 17.1
15.0 20.3
17.5 23.3
20.0 26.2
22.5 28.8
25.0 31.4
27.5 33.8
30.0 36.0
32.5 38.2
35.0 40.2
37.5 42.1
40.0 43.9
42.5 45.6
45.0 47.3
47.5 48.8
50.0 50.2
52.5 51.6
55.0 52.9
57.5 54.1
60.0 55.2

Water Depth in Filter Lower Chamber
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Problem 4.35











Problem 4.38



Problem 4.39



Problem 4.40



Problem 4.41



Problem 4.42











Problem 4.45



Problem 4.46



Problem 4.47



Problem 4.48



Problem 4.49



Momentum

Governing equation:

V2 84.9
m
s

=V2
Q
A2

=

V1 30.6
m
s

=V1
Q
A1

=

A2 0.0177m2=A2
p
4

D1
2 D2

2-å
ç

õ
÷Ö=

A1 0.0491m2=A1
p D1

2Ö

4
=Then

r 999
kg

m3
Ö=p1 3500 kPaÖ=Q 1.5

m3

s
Ö=D2 0.2 mÖ=D1 0.25 mÖ=

The given data are

Solution

Find: Force required to hold plug

Given: Data on flow and system geometry

Find the force required to hold the plug in place at the exit of the water pipe. The flow rate is 1
m3/s, and the upstream pressure is 3.5 MPa.

Problem 4.50



Applying this to the current system

F- p1 A2Ö+ p2 A2Ö- 0 V1 r- V1Ö A1Ö( )Ö+ V2 r V2Ö A2Ö( )Ö+=

and p2 0= (gage)

Hence F p1 A1Ö r V1
2 A1Ö V2

2 A2Ö-å
ç

õ
÷Ö+=

F 3500
kN

m2
³ 0.0491Ö m2Ö

999
kg

m3
Ö 30.6

m
s

Öåæ
ç

õö
÷

2
0.0491Ö m2Ö 84.9

m
s

Öåæ
ç

õö
÷

2
0.0177Ö m2Ö-

è
é
ê

ø
ù
ú

³+

...=

F 90.4kN=









Problem 4.54



Problem 4.55



Problem 4.56





Problem 4.58



V2 25
m
s

=V2
Q
A2

=

Q 0.0491
m3

s
=Q V1 A1Ö=

A2 0.00196m2=A2
p
4

D2
2Ö=

A1 0.0491m2=A1
p D1

2Ö

4
=Then

V1 1
m
s

Ö=

p2 50 kPaÖ=p1 400 kPaÖ=D2 0.05 mÖ=D1 0.25 mÖ=r 999
kg

m3
Ö=

The given data are

Solution

Find: Force required to hold elbow in place

Given: Data on flow and system geometry

A 180° elbow takes in water at an average velocity of 1 m/s and a pressure of 400 kPa (gage) 
at the inlet, where the diameter is 0.25 m. The exit pressure is 50 kPa, and the diameter is 0.05 
m. What is the force required to hold the elbow in place?

Problem 4.59



Governing equation:

Momentum

Applying this to the current system

F- p1 A2Ö+ p2 A2Ö+ 0 V1 r- V1Ö A1Ö( )Ö+ V2 r V2Ö A2Ö( )Ö-=

Hence F p1 A1Ö p2 A2Ö+ r V1
2 A1Ö V2

2 A2Ö+å
ç

õ
÷Ö+=
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kN

m2
Ö 0.0491Ö m2Ö 50

kN

m2
Ö 0.00196Ö m2Ö+

999
kg

m3
Ö 1

m
s

Öåæ
ç
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2
0.0491Ö m2Ö 25

m
s
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ç

õö
÷

2
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è
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ù
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Ö+

...=

F 21kN=



Problem 4.60



Problem 4.61



Problem 4.62



Problem 4.63



Problem 4.64



Problem 4.65



Problem 4.66





k x0 L sin q( )Ö-( )Ö r V2Ö AÖ sin q( )Ö=Hence

Fspring k xÖ= k x0 L sin q( )Ö-( )Ö=But

Fspring V sin q( )Ö r VÖ AÖ( )Ö=

Momentum

Governing equation:

x0 1 mÖ=k 1
N
m
Ö=L 2 mÖ=A 0.005 m2Ö=r 999

kg

m3
Ö=

The given data are

Solution

Find: Deflection angle as a function of speed; jet speed 
for 10o deflection

Given: Data on flow and system geometry

2 is deflected by a hinged plate of 
length 2 m supported by a spring with spring constant k = 1 N/m and uncompressed length x0 = 
1 m. Find and plot the deflection angle θ as a function of jet speed V. What jet speed has a 
deflection of 10°?

Problem 4.68



Solving for θ q asin
k x0Ö

k LÖ r AÖ V2Ö+

åæ
æç

õö
ö÷

=

For the speed at which θ = 10o, solve

V
k x0 L sin q( )Ö-( )Ö

r AÖ sin q( )Ö
=

V
1

N
m
Ö 1 2 sin 10( )Ö-( )Ö mÖ

999
kg

m3
Ö 0.005Ö m2Ö sin 10( )Ö

kg mÖ

N s2Ö
Ö=

V 0.867
m
s

=

The deflection is plotted in the corresponding Excel workbook, where the above velocity is 
obtained using Goal Seek



Problem 4.68 (In Excel)

A free jet of water with constant cross-section area 0.005 m2 is deflected by a hinged
plate of length 2 m supported by a spring with spring constant k  = 1 N/m and uncompressed
length x 0 = 1 m. Find and plot the deflection angle θ as a function of jet
speed V . What jet speed has a deflection of 10°?

Given: Geometry of system
Find: Speed for angle to be 10o; plot angle versus speed

Solution

ρ = 999 kg/m3

x o = 1 m To find when θ = 10o, use Goal Seek
L  = 2 m

k  = 1 N/m V  (m/s) θ (o)
A  = 0.005 m2 0.867 10

V  (m/s) θ (o)
0.0 30.0
0.1 29.2
0.2 27.0
0.3 24.1
0.4 20.9
0.5 17.9
0.6 15.3
0.7 13.0
0.8 11.1
0.9 9.52
1.0 8.22
1.1 7.14
1.2 6.25
1.3 5.50
1.4 4.87
1.5 4.33

Deflection Angle vs Jet Speed
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The equation for q is q asin
k x0Ö

k LÖ r AÖ V2Ö+
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Problem 4.69



Problem 4.70



Problem 4.71



Problem 4.72



Problem 4.73



Problem 4.74



Problem 4.75



Problem 4.76



Problem 4.77



Problem 4.78



Problem 4.79



Problem 4.80



F p r U2 2
0

1
rr u r( )2Ö

ò
ó
ô

dÖ-
åæ
æç

õö
ö÷

Ö=

F- U r- pÖ 12Ö UÖ( )Ö
0

1
ru r( ) rÖ 2Ö pÖ rÖ u r( )Ö

ò
ó
ô

d+=

Applying this to the horizontal motion

Momentum

Governing equation:

Solution

Find: An expression for the drag

Given: Data on wake behind object

where r is the non-dimensional radial coordinate, measured perpendicular to the flow.  Find 
an expression for the drag on the object.

r 1>u r( ) U=

r 1¢u r( ) U 1 cos
p rÖ
2
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ö
÷

2
-

å
æ
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õ
ö
÷

Ö=

The horizontal velocity in the wake behind an object in an air stream of velocity U is given by

Problem 4.81
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Integrating and using the limits

F p r U2Ö 1
3
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F
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Problem 4.82



Problem 4.83



Problem 4.84



Problem 4.85



Problem 4.86



Problem 4.87











Problem *4.91









Problem *4.95



Problem *4.96



Problem *4.96 cont'd



V2 31.3
m
s

=V2
Q
A2

=

Q 0.0393
m3

s
=Q V1 A1Ö=

A2 0.00126m2=A2
p
4

d2Ö=

A1 0.00785m2=A1
p D2Ö

4
=Then

V1 5
m
s

Ö=p1 600 kPaÖ=d 0.04 mÖ=D 0.1 mÖ=r 999
kg

m3
Ö=

The given data are

Solution

Find: Force on convergent section

Given: Data on flow and venturi geometry

A venturi meter installed along a water pipe consists of a convergent section, a constant-area 
throat, and a divergent section. The pipe diameter is D = 100 mm and the throat diameter is d
= 40 mm. Find the net fluid force acting on the convergent section if the water pressure in the 
pipe is 600 kPa (gage) and the average velocity is 5 m/s.  For this analysis neglect viscous 
effects.

Problem *4.97



Governing equations:

Bernoulli equation p
r

V2

2
+ g zÖ+ const= (4.24)

Momentum

Applying Bernoulli between inlet and throat

p1
r

V1
2

2
+

p2
r

V2
2

2
+=

Solving for p2 p2 p1
r
2

V1
2 V2

2-å
ç

õ
÷Ö+=

p2 600 kPaÖ 999
kg

m3
Ö 52 31.32-( )³

m2

s2
Ö

N s2Ö
kg mÖ

³
kN

1000 NÖ
³+=

p2 125kPa=

Applying the horizontal component of momentum

F- p1 A2Ö+ p2 A2Ö- V1 r- V1Ö A1Ö( )Ö V2 r V2Ö A2Ö( )Ö+=

Hence F p1 A1Ö p2 A2Ö- r V1
2 A1Ö V2

2 A2Ö-å
ç

õ
÷Ö+=
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m2
Ö 0.00126³ m2Ö-
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m
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2
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m
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2
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³
N s2Ö

kg m³
Ö+

...=

F 3.52kN=



Problem *4.98



Problem *4.99



Problem *4.100



Problem *4.101



Problem *4.102







Problem *4.104



Problem *4.104 cont'd



Problem *4.105







Problem 4.107



Problem 4.108



V
r QÖ
2 kÖ

-
r QÖ
2 kÖ

å
æ
ç

õ
ö
÷

2 r QÖ VjÖ

k
++=Solving for V

k V2Ö r QÖ VÖ+ r QÖ VjÖ- 0=

k V2Ö r QÖ VjÖ r QÖ VÖ-=Hence

Fdrag V r- QÖ( )Ö Vj r QÖ( )Ö+=

Applying the horizontal component of momentum

Momentum

Governing equation:

CV in boat coordinatesSolution

Find: Formula for boat speed; jet speed to double boat 
speed

Given: Data on jet boat

A jet boat takes in water at a constant volumetric rate Q through side vents and ejects it at a 
high jet speed Vj at the rear. A variable-area exit orifice controls the jet speed.  The drag on the
boat is given by Fdrag = kV2, where V
speed V. If a jet speed Vj = 25 m/s produces a boat speed of 10 m/s, what jet speed will be 
required to double the boat speed?

Problem 4.109



Let a
r QÖ
2 kÖ

=

V a- a2 2 aÖ VjÖ++=

We can use given data at V = 10 m/s to find α V 10
m
s

Ö= Vj 25
m
s

Ö=

10
m
s

Ö a- a2 2 25Ö
m
s

Ö aÖ++=

a2 50 aÖ+ 10 a+( )2= 100 20 aÖ+ a2+=

a
10
3

m
s

Ö=

Hence V
10
3

-
100
9

20
3

VjÖ++=

For V = 20 m/s 20
10
3

-
100
9

20
3

VjÖ++=

100
9

20
3

VjÖ+
70
3

=

Vj 80
m
s

Ö=



Problem 4.110





Problem 4.112



Problem 4.113



Problem 4.114



Problem 4.115



Problem 4.116



Problem 4.117





Problem 4.119



Problem 4.120





dU

r V U-( )2Ö AÖ
M

g mkÖ-

dt=

Separating variables

a
r V U-( )2Ö AÖ

M
g mkÖ-=

(The acceleration is)

dU
dt

r V U-( )2Ö AÖ
M

g mkÖ-=

The equation of motion, from Problem 4.121, is

mk 0.3=V 20
m
s

Ö=A 0.005 m2Ö=M 30 kgÖ=r 999
kg

m3
Ö=

The given data is

Solution

Find: Formula for acceleration, speed, and 
position; plot

Given: Data on vane/slider

For the vane/slider problem of Problem 4.121, find and plot expressions for the acceleration, 
speed, and position of the slider as a function of time.

Problem 4.122



Substitute u V U-= dU du-=

du

r AÖ u2Ö
M

g mkÖ-

dt-=

u
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and u = V - U so

M
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- atanh
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g mkÖ MÖ
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Ö
M
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Using initial conditions

M
g mkÖ rÖ AÖ

- atanh
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g mkÖ MÖ
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Ö
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atanh
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å
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V U-
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M
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å
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U V
g mkÖ MÖ

r AÖ
tanh

g mkÖ rÖ AÖ

M
tÖ atanh

r AÖ
g mkÖ MÖ

VÖ
å
æ
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õ
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÷

+
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æ
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Ö-=

Note that atanh
r AÖ

g mkÖ MÖ
VÖ

å
æ
ç

õ
ö
÷

0.213
p
2

iÖ-=

which is complex and difficult to handle in Excel, so we use the identity

atanh x( ) atanh
1
x
åæ
ç
õö
÷

p
2

iÖ-= for x > 1

so U V
g mkÖ MÖ
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tanh
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and finally the identity

tanh x
p
2
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1
tanh x( )

=

to obtain
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For the position x

dx
dt

V

g mkÖ MÖ

r AÖ

tanh
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r AÖ
1
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Ö
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æ
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õ
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-=

This can be solved analytically, but is quite messy.  Instead, in the corresponding Excel workboo
it is solved numerically using a simple Euler method.  The complete set of equations is

U V
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The plots are presented in the Excel workbook



Problem 4.122 (In Excel)

For the vane/slider problem of Problem 4.121, find and plot expressions for the acceleration,
speed, and position of the slider as a function of time.

Given: Data on vane/slider
Find: Plot acceleration, speed and position

Solution

The solutions are

ρ = 999 kg/m3

µk = 0.3
A  = 0.005 m2

V  = 20 m/s
M  = 30 kg
∆t  = 0.1 s

t  (s) x  (m) U  (m/s) a  (m/s2)
0.0 0.0 0.0 63.7
0.1 0.0 4.8 35.7
0.2 0.5 7.6 22.6
0.3 1.2 9.5 15.5
0.4 2.2 10.8 11.2
0.5 3.3 11.8 8.4
0.6 4.4 12.5 6.4
0.7 5.7 13.1 5.1
0.8 7.0 13.5 4.0
0.9 8.4 13.9 3.3
1.0 9.7 14.2 2.7
1.1 11.2 14.4 2.2
1.2 12.6 14.6 1.9
1.3 14.1 14.8 1.6
1.4 15.5 14.9 1.3
1.5 17.0 15.1 1.1
1.6 18.5 15.2 0.9
1.7 20.1 15.3 0.8
1.8 21.6 15.3 0.7
1.9 23.1 15.4 0.6
2.0 24.7 15.4 0.5
2.1 26.2 15.5 0.4
2.2 27.8 15.5 0.4
2.3 29.3 15.6 0.3
2.4 30.9 15.6 0.3
2.5 32.4 15.6 0.2
2.6 34.0 15.6 0.2
2.7 35.6 15.7 0.2
2.8 37.1 15.7 0.2
2.9 38.7 15.7 0.1
3.0 40.3 15.7 0.1
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Problem 4.132



a
r V U-( )2Ö AÖ

M
k UÖ
M

-=

(The acceleration is)

dU
dt

r V U-( )2Ö AÖ
M

k UÖ
M

-=

The equation of motion, from Problem 4.132, is

k 7.5
N sÖ
m

Ö=V 20
m
s

Ö=A 0.005 m2Ö=M 30 kgÖ=r 999
kg

m3
Ö=

The given data is

Solution

Find: Formula for acceleration, speed, and position; plot

Given: Data on vane/slider

For the vane/slider problem of Problem 4.132, find and plot expressions for the acceleration, 
speed, and position of the slider as functions of time. (Consider numerical integration.)

Problem 4.133



The differential equation for U can be solved analytically, but is quite messy.  Instead we use a 
simple numerical method - Euler's method

U n 1+( ) U n( )
r V U-( )2Ö AÖ

M
k UÖ
M

-
è
é
ê

ø
ù
ú
DtÖ+=

where ∆t is the time step

Finally, for the position x dx
dt

U=

so x n 1+( ) x n( ) U DtÖ+=

The final set of equations is

U n 1+( ) U n( )
r V U-( )2Ö AÖ

M
k UÖ
M

-
è
é
ê

ø
ù
ú
DtÖ+=

a
r V U-( )2Ö AÖ

M
k UÖ
M

-=

x n 1+( ) x n( ) U DtÖ+=

The results are plotted in the corresponding Excel workbook



Problem 4.133 (In Excel)

For the vane/slider problem of Problem 4.132, find and plot expressions for the acceleration,
speed, and position of the slider as functions of time. (Consider numerical integration.)

Given: Data on vane/slider
Find: Plot acceleration, speed and position

Solution

The solutions are

ρ = 999 kg/m3

k  = 7.5 N.s/m
A  = 0.005 m2

V  = 20 m/s
M  = 30 kg
∆t  = 0.1 s

t  (s) x  (m) U  (m/s) a  (m/s2)
0.0 0.0 0.0 66.6
0.1 0.0 6.7 28.0
0.2 0.7 9.5 16.1
0.3 1.6 11.1 10.5
0.4 2.7 12.1 7.30
0.5 3.9 12.9 5.29
0.6 5.2 13.4 3.95
0.7 6.6 13.8 3.01
0.8 7.9 14.1 2.32
0.9 9.3 14.3 1.82
1.0 10.8 14.5 1.43
1.1 12.2 14.6 1.14
1.2 13.7 14.7 0.907
1.3 15.2 14.8 0.727
1.4 16.6 14.9 0.585
1.5 18.1 15.0 0.472
1.6 19.6 15.0 0.381
1.7 21.1 15.1 0.309
1.8 22.6 15.1 0.250
1.9 24.1 15.1 0.203
2.0 25.7 15.1 0.165
2.1 27.2 15.1 0.134
2.2 28.7 15.2 0.109
2.3 30.2 15.2 0.0889
2.4 31.7 15.2 0.0724
2.5 33.2 15.2 0.0590
2.6 34.8 15.2 0.0481
2.7 36.3 15.2 0.0392
2.8 37.8 15.2 0.0319
2.9 39.3 15.2 0.0260
3.0 40.8 15.2 0.0212
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M
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Problem 4.134



U V-
V U0+

1
r AÖ V U0+( )Ö

M
tÖ+

+=

Integrating and using the IC U = U0 at t = 0

d V U+( )

V U+( )2
r AÖ
M

dtÖå
æ
ç

õ
ö
÷

-=

which leads to

dU
dt

r V U+( )2Ö AÖ
M

-=

The equation of motion, from Problem 4.134, is

U0 5
m
s

Ö=A 0.01 m2Ö=M 100 kgÖ=r 999
kg

m3
Ö=The given data is

Solution

Find: Jet speed to stop cart after 1 s; plot speed & 
position; maximum x; time to return to origin

Given: Data on system

If M = 100 kg, ρ = 999 kg/m3, and A = 0.01 m2, find the jet speed V required for the cart to 
be brought to rest after one second if the initial speed of the cart is U0 = 5 m/s. For this 
condition, plot the speed U and position x of the cart as functions of time. What is the 
maximum value of x, and how long does the cart take to return to its initial position?

Problem 4.135



To find the jet speed V V, with U = 0 
and t = 1 s.  (The equation becomes a quadratic in V).  Instead we use Excel's Goal Seek in 
the associated workbook

From Excel V 5
m
s

Ö=

For the position x we need to integrate

dx
dt

U= V-
V U0+

1
r AÖ V U0+( )Ö

M
tÖ+

+=

The result is

x V- tÖ
M
r AÖ

ln 1
r AÖ V U0+( )Ö

M
tÖ+

è
é
ê

ø
ù
ú

Ö+=

This equation (or the one for U with U x b
differentiating, as well as the time for x to be zero again.  Instead we use Excel's Goal Seek and 
Solver in the associated workbook

From Excel xmax 1.93 mÖ= t x 0=( ) 2.51 sÖ=

The complete set of equations is

U V-
V U0+

1
r AÖ V U0+( )Ö

M
tÖ+

+=

x V- tÖ
M
r AÖ

ln 1
r AÖ V U0+( )Ö

M
tÖ+

è
é
ê

ø
ù
ú

Ö+=

The plots are presented in the Excel workbook



Problem 4.135 (In Excel)

If M  = 100 kg, ρ = 999 kg/m3, and A  = 0.01 m2, find the jet speed V  required for the cart to
be brought to rest after one second if the initial speed of the cart is U 0 = 5 m/s. For this condition,
plot the speed U  and position x  of the cart as functions of time.
What is the maximum value of x , and how long does the cart take to return to its initial position?

Given: Data on system
Find: Jet speed to stop cart after 1 s; plot speed & position; maximum x ; time to return to origin

Solution

M  = 100 kg
ρ = 999 kg/m3

A  = 0.01 m2

U o = 5 m/s

t  (s) x  (m) U  (m/s) To find V  for U  = 0 in 1 s, use Goal Seek
0.0 0.00 5.00
0.2 0.82 3.33 t  (s) U  (m/s) V  (m/s)
0.4 1.36 2.14 1.0 0.00 5.00
0.6 1.70 1.25
0.8 1.88 0.56
1.0 1.93 0.00
1.2 1.88 -0.45
1.4 1.75 -0.83 To find the maximum x , use Solver
1.6 1.56 -1.15
1.8 1.30 -1.43 t  (s) x  (m)
2.0 0.99 -1.67 1.0 1.93
2.2 0.63 -1.88
2.4 0.24 -2.06 To find the time at which x = 0 use Goal Seek
2.6 -0.19 -2.22
2.8 -0.65 -2.37 t  (s) x  (m)
3.0 -1.14 -2.50 2.51 0.00

U V-
V U0+

1
r AÖ V U0+( )Ö

M
tÖ+

+=

x V- tÖ
M
r AÖ

ln 1
r AÖ V U0+( )Ö

M
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Cart Speed U  vs Time
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Problem 4.142  cont'd
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Problem *4.165









Problem *4.168



Problem *4.169



Problem *4.170



Tshaft A


r


Vxyz
½½

³ rÖ Vxyz
½½

Ö
ò
ó
ó
ô

d=

For no rotation (ω = 0) this equation reduces to a single scalar equation

Governing equation: Rotating CV

d 0.005 mÖ=ri 0.05 mÖ=ro 0.25 mÖ=D 0.015 mÖ=

mflow 15
kg
s

Ö=r 999
kg

m3
Ö=The given data is

Solution

Given: Data on rotating spray system

Water flows in a uniform flow out of the 5 mm slots of the rotating spray system as shown. The
flow rate is 15 kg/s. Find the torque required to hold the system stationary, and the steady-state
speed of rotation after it is released.

Problem *4.171



or Tshaft 2 dÖ
ri

ro
rr VÖ rÖ VÖ

ò
ó
ô

dÖ= 2 rÖ V2Ö dÖ
ri

ro
rr

ò
ó
ô

dÖ= r V2Ö dÖ ro
2 ri

2-å
ç

õ
÷Ö=

where V is the exit velocity with respect to the CV

V

mflow
r

2 dÖ ro ri-( )Ö
=

Hence Tshaft r

mflow
r

2 dÖ ro ri-( )Ö

è
é
é
ê

ø
ù
ù
ú

2

Ö dÖ ro
2 ri

2-å
ç

õ
÷Ö=

Tshaft
mflow

2

4 rÖ dÖ

ro ri+( )
ro ri-( )Ö=

Tshaft
1
4

15
kg
s

Öåæ
ç

õö
÷

2
³

m3

999 kgÖ
³

1
0.005 mÖ

³
0.25 0.05+( )
0.25 0.05-( )

³=

Tshaft 16.9N mÖ=

For the steady rotation speed the equation becomes

Vr


2 w

Ö Vxyz

½½
³å

ç
õ
÷³ rÖ

ò
ó
ó
ô

d- A


r


Vxyz
½½

³ rÖ Vxyz
½½

Ö
ò
ó
ó
ô

d=



The volume integral term Vr


2 w

Ö Vxyz

½½
³å

ç
õ
÷³ rÖ

ò
ó
ó
ô

d-  must be evaluated for the CV.

The velocity in the CV varies with r.  This variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is 
Q, the flow out is Q + dQ, and the loss through the slot is Vδdr.  Hence mass conservation 
leads to

Q dQ+( ) V dÖ drÖ+ Q- 0=

dQ V- dÖ drÖ=

Q r( ) V- dÖ rÖ const+=

At the inlet (r = ri) Q Qi=
mflow

2 rÖ
=

Hence Q Qi V dÖ ri r-( )Ö+=
mflow

2 rÖ

mflow
2 rÖ dÖ ro ri-( )Ö

dÖ ri r-( )Ö+=

Q
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2 rÖ
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å
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Ö=
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2 rÖ

ro r-

ro ri-

å
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Ö=

and along each rotor the water speed is v r( )
Q
A

=
mflow
2 rÖ AÖ

ro r-

ro ri-

å
æ
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õ
ö
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Ö=



Hence the term - Vr
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Ö
ò
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Hence equation Vr
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mflow wÖ
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Ö r V2Ö dÖ ro

2 ri
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ç
õ
÷Ö=

Solving for ω w
3 ro ri-( )Ö rÖ V2Ö dÖ ro

2 ri
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ç
õ
÷Ö

mflow ro
3 ri
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Tshaft 2 dÖ
ri

ro
rr VÖ rÖ VÖ

ò
ó
ô

dÖ=or

Tshaft A


r


Vxyz
½½

³ rÖ Vxyz
½½

Ö
ò
ó
ó
ô

d=

For no rotation (ω = 0) this equation reduces to a single scalar equation

Governing equation: Rotating CV

d 0.005 mÖ=ri 0.05 mÖ=ro 0.25 mÖ=D 0.015 mÖ=

mflow 15
kg
s

Ö=r 999
kg

m3
Ö=The given data is

Solution

Given: Data on rotating spray system

If the same flow rate in the rotating spray system of Problem 4.171 is not uniform but instead 
varies linearly from a maximum at the outer radius to zero at a point 50 mm from the axis, find 
the torque required to hold it stationary, and the steady-state speed of rotation.

Problem *4.172



where V is the exit velocity with respect to the CV.  We need to find V(r).  To do this we use ma
conservation, and the fact that the distribution is linear

V r( ) Vmax
r ri-( )
ro ri-( )Ö=

and 2
1
2
Ö VmaxÖ ro ri-( )Ö dÖ

mflow
r

=

so V r( )
mflow
r dÖ

r ri-( )
ro ri-( )2

Ö=

Hence Tshaft 2 rÖ dÖ
ri

ro
rr V2Ö
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dÖ= 2
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1
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For the steady rotation speed the equation becomes
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The volume integral term Vr
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d-  must be evaluated for the CV.

The velocity in the CV varies with r.  This variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is 
Q, the flow out is Q + dQ, and the loss through the slot is Vδdr.  Hence mass conservation 
leads to

Q dQ+( ) V dÖ drÖ+ Q- 0=
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Problem *4.179 cont'd
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Problem *4.181  cont'd
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Problem 5.3

Simon Durkin

Simon Durkin

Simon Durkin
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Problem 5.9

The x component of velocity in a steady incompressible flow field in the xy plane is 
u = Ax/(x2 + y2), where A = 10 m2/s, and x and y are measured in meters. Find 
the simplest y component of velocity for this flow field.

Given: x component of velocity of incompressible flow

Find: y component of velocity

Solution

u x y,( )
A x⋅

x2 y2+
=

For incompressible flow du
dx

dv
dy

+ 0=

Hence v x y,( ) y
x

u x y,( )d
d

⌠

⌡

d−=

du
dx

A y2 x2−( )⋅

x2 y2+( )2
=

so v x y,( ) y
A x2 y2−( )⋅

x2 y2+( )2

⌠


⌡

d= v x y,( )
A y⋅

x2 y2+
=
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Problem 5.13

A useful approximation for the x
layer is a cubic variation from u = 0 at the surface ( y = 0) to the freestream velocity, U, at the 
edge of the boundary layer ( y = δ). The equation for the profile is u/U = 3/2(y/δ) - 1/2(y/δ)3, 
where δ = cx1/2 and c is a constant. Derive the simplest expression for v/U, the y component of 
velocity ratio. Plot u/U and v/U versus y/δ, and find the location of the maximum value of the 
ratio v/U. Evaluate the ratio where δ = 5 mm and x = 0.5 m.

Given: Data on boundary layer

Find: y component of velocity ratio; location of maximum value; plot velocity profiles; 
evaluate at particular point

Solution

u x y,( ) U
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y
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For incompressible flow du
dx

dv
dy

+ 0=

Hence v x y,( ) y
x
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The maximum occurs at y δ= as seen in the corresponding Excel workbook

vmax
3
8

U⋅
δ
x
⋅ 1

1
2

1⋅−





⋅=

At δ 5 mm⋅=  and x 0.5 m⋅= , the maximum vertical velocity is

vmax
U

0.00188=



Problem 5.13 (In Excel)

A useful approximation for the x component of velocity in an incompressible laminar boundary
layer is a cubic variation from u  = 0 at the surface (y  = 0) to the freestream velocity, U , at the
edge of the boundary layer (y  = d ). The equation for the profile is u /U  = 3/2(y /d ) - 1/2(y /d )3,
where d  = cx 1/2 and c  is a constant. Derive the simplest expression for v /U , the y  component
of velocity ratio. Plot u /U  and v /U  versus y /d , and find the location of the maximum value of
the ratio v /U . Evaluate the ratio where d  = 5 mm and x  = 0.5 m.

Given: Data on boundary layer

Find: y  component of velocity ratio; location of maximum value;
plot velocity profiles; evaluate at particular point

Solution

To find when v /U  is maximum, use Solver

v /U y /δ
0.00188 1.0

v /U y /δ
0.000000 0.0
0.000037 0.1
0.000147 0.2
0.000322 0.3
0.000552 0.4
0.00082 0.5
0.00111 0.6
0.00139 0.7
0.00163 0.8
0.00181 0.9
0.00188 1.0

Vertical Velocity Distribution In Boundary layer

0.0
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v /U

y
/ δ

The solution is v
U

3
8
δ
x
⋅

y
δ









2 1
2

y
δ









4
⋅−









⋅=







Simon Durkin
Problem 5.16

Simon Durkin

Simon Durkin



Simon Durkin
Problem 5.17

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 5.18

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 5.19

Simon Durkin

Simon Durkin

Simon Durkin





Simon Durkin
Problem 5.21

Simon Durkin

Simon Durkin

Simon Durkin



so r
1
r

⌠


⌡

d θ
A
B

⌠


⌡

d=

r dr⋅
A

r2 dθ⋅
B

=
dr
Vr

r dθ⋅
Vθ

=For the streamlines

Hence Flow is incompressible1
r r

r Vr⋅( )d
d
⋅

1
r θ

Vθ
d
d
⋅+ 0=

1
r θ

Vθ
d
d
⋅ 0=

1
r r

r Vr⋅( )d
d
⋅ 0=

1
r r

r Vr⋅( )d
d
⋅

1
r θ

Vθ
d
d
⋅+ 0=For incompressible flow

Vθ
B
r

=Vr
A
r

=

Solution

Find: Whether or not it is a incompressible flow; sketch various streamlines

Given: The velocity field

Problem 5.22



Integrating ln r( )
A
B

θ⋅ const+=

Equation of streamlines is r C e

A
B

θ⋅
⋅=

(a) For A = B = 1 m2/s, passing through point (1m, π/2) r e
θ

π
2

−
=

(b) For A =  1 m2/s, B = 0 m2/s, passing through point (1m, π/2) θ
π
2

=

(c) For A =  0 m2/s, B = 1 m2/s, passing through point (1m, π/2) r 1 m⋅=

4 2 0 2 4

4

2

2

4

(a)
(b)
(c)
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ψ B− ln r( )⋅ g θ( )+=
r
ψ∂

∂
Vθ−=

B
r

−=Integrating

ψ A θ⋅ f r( )+=
θ
ψ∂

∂
r Vr⋅= A=For the stream function

Hence Flow is incompressible1
r r

r Vr⋅( )d
d
⋅

1
r θ

Vθ
d
d
⋅+ 0=

1
r θ

Vθ
d
d
⋅ 0=

1
r r

r Vr⋅( )d
d
⋅ 0=

1
r r

r Vr⋅( )d
d
⋅

1
r θ

Vθ
d
d
⋅+ 0=For incompressible flow

Vθ
B
r

=Vr
A
r

=

Solution

Find: Whether or not it is a incompressible flow; sketch stream function

Given: The velocity field

Does the velocity field of Problem 5.22 represent a possible incompressible flow case? If so, 
evaluate and sketch the stream function for the flow. If not, evaluate the rate of change of 
density in the flow field.

Problem *5.26



Comparing, stream function is ψ A θ⋅ B ln r( )⋅−=

ψ
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Problem *5.34

A cubic velocity profile was used to model flow in a laminar incompressible boundary layer in 
Problem 5.13. Derive the stream function for this flow field. Locate streamlines at one-quarter 

Given: Data on boundary layer

Find: Stream function; locate streamlines at 1/4 and 1/2 of total flow rate

Solution

u x y,( ) U
3
2

y
δ








⋅
1
2

y
δ








3
⋅−









⋅=

and δ x( ) c x⋅=

For the stream function u
y
ψ∂

∂
= U

3
2

y
δ








⋅
1
2

y
δ








3
⋅−









⋅=

Hence ψ yU
3
2

y
δ








⋅
1
2

y
δ








3
⋅−









⋅

⌠



⌡

d=

ψ U
3
4

y2

δ
⋅

1
8

y4

δ3
⋅−







⋅ f x( )+=



Let ψ = 0 along y = 0, so f(x) = 0

so ψ U δ⋅
3
4

y
δ








2
⋅

1
8

y
δ








4
⋅−









⋅=

The total flow rate in the boundary layer is

Q
W

ψ δ( ) ψ 0( )−= U δ⋅
3
4

1
8

−





⋅=
5
8

U⋅ δ⋅=

At 1/4 of the total ψ ψ0− U δ⋅
3
4

y
δ








2
⋅

1
8

y
δ








4
⋅−









⋅=
1
4

5
8

U⋅ δ⋅





⋅=

24
y
δ








2
⋅ 4

y
δ








4
⋅− 5=

Trial and error (or use of Excel's Goal Seek) leads to y
δ

0.465=

At 1/2 of the total flow ψ ψ0− U δ⋅
3
4

y
δ








2
⋅

1
8

y
δ








4
⋅−









⋅=
1
2

5
8

U⋅ δ⋅





⋅=

12
y
δ








2
⋅ 2

y
δ








4
⋅− 5=

Trial and error (or use of Excel's Goal Seek) leads to y
δ

0.671=







The acceleration is given by

Incompressible flow

du
dx

dv
dy

+ 2 A⋅ x y+( )⋅ 2 A⋅ x y+( )⋅−= 0=Hence

du
dx

dv
dy

+ 0=For incompressible flow

v x y,( ) A− 2 x⋅ y⋅ y2+( )⋅=

u x y,( ) A x2 2 x⋅ y⋅+( )⋅=

y 1 m⋅=x 2 m⋅=A 0.25 m 1−⋅ s 1−⋅=The given data is

Solution

Given: Velocity field

Problem 5.37



For the present steady, 2D flow

ax u
du
dx
⋅ v

du
dy
⋅+= A x2 2 x⋅ y⋅+( )⋅ 2⋅ A⋅ x y+( )⋅ A 2 x⋅ y⋅ y2+( )⋅ 2 A⋅ x⋅−=

ax 2 A2⋅ x⋅ x2 x y⋅+ y2+( )⋅=

ay u
dv
dx
⋅ v

dv
dy
⋅+= A x2 2 x⋅ y⋅+( )⋅ 2− A⋅ y⋅( )⋅ A 2 x⋅ y⋅ y2+( )⋅ 2− A⋅ x y+( )⋅[ ]−=

ay 2 A2⋅ y⋅ x2 x y⋅+ y2+( )⋅=

At point (2,1) the acceleration is

ax 2 A2⋅ x⋅ x2 x y⋅+ y2+( )⋅= ax 1.75
m

s2
=

ay 2 A2⋅ y⋅ x2 x y⋅+ y2+( )⋅= ay 0.875
m

s2
=
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The acceleration is given by

v
2 A⋅ y⋅

x3
=

Hence v y
du
dx

⌠


⌡

d−= y
2 A⋅

x3

⌠



⌡

d=

du
dx

dv
dy

+ 0=For incompressible flow

u x y,( )
A

x2
=

y 3 m⋅=x 1 m⋅=A 2
m3

s
⋅=The given data is

Solution

Find: y component of velocity; find acceleration at a point

Given: x component of incompressible flow field

The x component of velocity in a steady, incompressible flow field in the xy plane is u =  A/x2, 
where A = 2 m3/s and x is measured in meters. Find the simplest y component of velocity for 
this flow field. Evaluate the acceleration of a fluid particle at point (x, y) = (1, 3).

Problem 5.41



For the present steady, 2D flow

ax u
du
dx
⋅ v

du
dy
⋅+=

A

x2
2 A⋅

x3
−






⋅
A y⋅

x2
0⋅+= ax

2 A2⋅

x5
−=

ay u
dv
dx
⋅ v

dv
dy
⋅+=

A

x2
6 A⋅ y⋅

x4
−






⋅
2 A⋅ y⋅

x3
2 A⋅

x3








⋅+= ay
2 A2⋅ y⋅

x6
−=

At point (1,3) the acceleration is

ax
2 A2⋅

x5
−= ax 8−

m

s2
=

ay
2 A2⋅ y⋅

x6
−= ay 24−

m

s2
=
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Problem 5.43

Given: Velocity field

Find: Whether flow is incompressible; expression for acceleration; evaluate acceleration along 
axes and along y = x

Solution

The given data is A 10
m2

s
⋅=

u x y,( )
A x⋅

x2 y2+
=

v x y,( )
A y⋅

x2 y2+
=

For incompressible flow du
dx

dv
dy

+ 0=

Hence du
dx

dv
dy

+ A−
x2 y2−( )
x2 y2+( )2

⋅ A
x2 y2−( )
x2 y2+( )2

⋅+= 0=

Incompressible flow



The acceleration is given by

For the present steady, 2D flow

ax u
du
dx
⋅ v

du
dy
⋅+=

A x⋅

x2 y2+

A x2 y2−( )⋅

x2 y2+( )2
−










⋅
A y⋅

x2 y2+

2 A⋅ x⋅ y⋅

x2 y2+( )2
−





⋅+=

ax
A2 x⋅

x2 y2+( )2
−=

ay u
dv
dx
⋅ v

dv
dy
⋅+=

A x⋅

x2 y2+

2 A⋅ x⋅ y⋅

x2 y2+( )2
−





⋅
A y⋅

x2 y2+

A x2 y2−( )⋅

x2 y2+( )2











⋅+=

ay
A2 y⋅

x2 y2+( )2
−=

Along the x axis ax
A2

x3
−=

100

x3
−= ay 0=

Along the y axis ax 0= ay
A2

y3
−=

100

y3
−=



Along the line x = y ax
A2 x⋅

r4
−=

100 x⋅

r4
−= ay

A2 y⋅

r4
−=

100 y⋅

r4
−=

where r x2 y2+=

For this last case the acceleration along the line x = y is

a ax
2 ay

2+=
A2

r4
− x2 y2+⋅=

A2

r3
−=

100

r3
−=

a
A2

r3
−=

100

r3
−=

In each case the acceleration vector points towards the origin, so the flow field is a radial 
decelerating flow 
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The acceleration is given by

u x t,( )
A0

A x( )
U0⋅ 1 e λ− t⋅−( )⋅

U0
1 b x⋅−( )

1 e λ− t⋅−( )⋅==so

u x( ) A x( )⋅ U0 Ao⋅=

The velocity on the centerline is obtained from continuity

A x( ) A0 1 b x⋅−( )⋅=

U0 5
m
s

⋅=λ 0.2 s 1−⋅=b 0.1 m 1−⋅=L 5 m⋅=A0 0.5 m2⋅=The given data is

Solution

Find: Acceleration along centerline; plot

Given: Velocity field and nozzle geometry

Problem 5.62



For the present 1D flow

ax t
u∂

∂
u

x
u∂

∂
⋅+=

λ U0⋅

1 b x⋅−( )
e λ− t⋅⋅

U0
1 b x⋅−( )

1 e λ− t⋅−⋅( )⋅
b U0⋅

1 b x⋅−( )2
1 e λ− t⋅−⋅( )⋅







⋅+=

ax
U0

1 b x⋅−( )
λ e λ− t⋅⋅

b U0⋅

1 b x⋅−( )2
1 e λ− t⋅−( )2

⋅+






⋅=

The plot is shown in the corresponding Excel workbook



Problem 5.62 (In Excel)

Given: Velocity field and nozzle geometry

Find: Acceleration along centerline; plot

Given data:

A 0 = 0.5 m2

L  = 5 m
b  = 0.1 m-1

λ = 0.2 s-1

U 0 = 5 m/s

t = 0 5 10 60
x  (m) a x  (m/s2) a x  (m/s2) a x  (m/s2) a x  (m/s2)

0.0 1.00 1.367 2.004 2.50
0.5 1.05 1.552 2.32 2.92
1.0 1.11 1.78 2.71 3.43
1.5 1.18 2.06 3.20 4.07
2.0 1.25 2.41 3.82 4.88
2.5 1.33 2.86 4.61 5.93
3.0 1.43 3.44 5.64 7.29
3.5 1.54 4.20 7.01 9.10
4.0 1.67 5.24 8.88 11.57
4.5 1.82 6.67 11.48 15.03
5.0 2.00 8.73 15.22 20.00

For large time (> 30 s) the flow is essentially steady-state

Acceleration in a Nozzle

0
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2 ) t = 0 s
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t = 2 s
t = 10 s

The acceleration is ax
U0

1 b x⋅−( )
λ e λ− t⋅⋅

b U0⋅

1 b x⋅−( )2
1 e λ− t⋅−( )2⋅+







⋅=
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Not irrotionaldv
dx

du
dy

− y t⋅( ) 0( )−= y t⋅= 0≠(e)

Not irrotionaldv
dx

du
dy

− 2 x⋅( ) 2( )−= 2 x⋅ 2−= 0≠(d)

Not irrotionaldv
dx

du
dy

− 1( ) 1−( )−= 2= 0≠(c)

Not irrotionaldv
dx

du
dy

− 2 x⋅( ) 2( )−= 2 x⋅ 2−= 0≠(b)

Irrotionaldv
dx

du
dy

− 1( ) 1( )−= 0=(a)

dv
dx

du
dy

− 0=For a 2D field, the irrotionality the test is

Solution

Find: Which flow fields are irrotational

Given: Velocity components

Which, if any, of the flow fields of Problem 5.2 are irrotational?

Problem 5.67



Simon Durkin
Problem 5.68

Simon Durkin

Simon Durkin



Simon Durkin
Problem 5.69

Simon Durkin

Simon Durkin

Simon Durkin



Simon Durkin
Problem 5.70

Simon Durkin

Simon Durkin

Simon Durkin



Incompressibledu
dx

dv
dy

+
q x2 y2−( )⋅

2 π⋅ x2 y2+( )2
⋅

−
q x2 y2−( )⋅

2 π⋅ x2 y2+( )2
⋅

+= 0=

du
dx

dv
dy

+ 0=Alternatively, we can check with

incompressibleBecause a stream function exists, the flow is

v
dψ
dx

−=
q y⋅

2 π⋅ x2 y2+( )⋅
=

u
dψ
dy

=
q x⋅

2 π⋅ x2 y2+( )⋅
=The velocity components are

ψ
q

2 π⋅
atan

y
x





⋅=The stream function is

Solution

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Given: The stream function

Consider the flow field represented by the stream function ψ = (q/2π) tan-1(y/x), where 
q = constant. Is this a possible two-dimensional, incompressible flow? Is the flow 
irrotational?

Problem *5.71



For a 2D field, the irrotionality the test is dv
dx

du
dy

− 0=

dv
dx

du
dy

−
q x⋅ y⋅

π x2 y2+( )2
⋅

−
q x⋅ y⋅

π x2 y2+( )2
⋅

−





−= 0= Irrotational



Incompressibledu
dx

dv
dy

+
4 A⋅ x⋅ y⋅

π x2 y2+( )3
−

4 A⋅ x⋅ y⋅

π x2 y2+( )3
+= 0=

du
dx

dv
dy

+ 0=Alternatively, we can check with

incompressibleBecause a stream function exists, the flow is

v
dψ
dx

−=
A x⋅

π x2 y2+( )2
−=

u
dψ
dy

=
A y⋅

π x2 y2+( )2
=The velocity components are

ψ
A

2 π⋅ x2 y2+( )−=The stream function is

Solution

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Given: The stream function

Consider the flow field represented by the stream function ψ = - A/2π(x2 +y2), where 
A = constant. Is this a possible two-dimensional, incompressible flow? Is the flow 
irrotational?

Problem *5.72



For a 2D field, the irrotionality the test is dv
dx

du
dy

− 0=

dv
dx

du
dy

−
A x2 3 y2⋅−( )⋅

π x2 y2+( )3
⋅

A 3 x2⋅ y2−( )⋅

π x2 y2+( )3
⋅

−=
2 A⋅

π x2 y2+( )2
⋅

−= 0≠ Not irrotational
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Incompressible flow

du
dx

dv
dy

+ A sin 2 π⋅ ω⋅ t⋅( )⋅ A sin 2 π⋅ ω⋅ t⋅( )⋅−= 0=Hence

du
dx

dv
dy

+ 0=Check for incompressible flow

v A− y⋅ sin 2 π⋅ ω⋅ t⋅( )⋅=u A x⋅ sin 2 π⋅ ω⋅ t⋅( )⋅=

ρ 2
kg

m3
⋅=ω 1

1
s
⋅=A 2

1
s
⋅=The given data is

Solution

Find: Expressions for local, convective and total acceleration; evaluate at several points; evaluat
pressure gradient

Given: Velocity field

Problem 6.6



The governing equation for acceleration is

The local acceleration is then

x - component
t
u∂

∂
2 π⋅ A⋅ ω⋅ x⋅ cos 2 π⋅ ω⋅ t⋅( )⋅=

y - component
t
v∂

∂
2− π⋅ A⋅ ω⋅ y⋅ cos 2 π⋅ ω⋅ t⋅( )⋅=

For the present steady, 2D flow, the convective acceleration is

x - component

u
du
dx
⋅ v

du
dy
⋅+ A x⋅ sin 2 π⋅ ω⋅ t⋅( )⋅ A sin 2 π⋅ ω⋅ t⋅( )⋅( )⋅

A− y⋅ sin 2 π⋅ ω⋅ t⋅( )⋅( ) 0⋅+
...=

u
du
dx
⋅ v

du
dy
⋅+ A2 x⋅ sin 2 π⋅ ω⋅ t⋅( )2⋅=

y - component

u
dv
dx
⋅ v

dv
dy
⋅+ A x⋅ sin 2 π⋅ ω⋅ t⋅( )⋅ 0⋅ A− y⋅ sin 2 π⋅ ω⋅ t⋅( )⋅( ) A− sin 2 π⋅ ω⋅ t⋅(⋅(⋅+=

u
dv
dx
⋅ v

dv
dy
⋅+ A2 y⋅ sin 2 π⋅ ω⋅ t⋅( )2⋅=



12.6
m

s2
⋅and12.6−

m

s2
⋅Localt 0.5 s⋅=

12.6−
m

s2
⋅12.6

m

s2
⋅Total

0
m

s2
⋅and0

m

s2
⋅Convective

12.6−
m

s2
⋅and12.6

m

s2
⋅Localt 0 s⋅=

Evaluating at point (1,1) at

t
v∂

∂
u

dv
dx
⋅+ v

dv
dy
⋅+ 2− π⋅ A⋅ ω⋅ y⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 y⋅ sin 2 π⋅ ω⋅ t⋅( )2⋅+=

y - component

t
u∂

∂
u

du
dx
⋅+ v

du
dy
⋅+ 2 π⋅ A⋅ ω⋅ x⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 x⋅ sin 2 π⋅ ω⋅ t⋅( )2⋅+=

x - component

The total acceleration is then



x
p∂

∂
ρ− 2 π⋅ A⋅ ω⋅ x⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 x⋅ sin 2 π⋅ ω⋅ t⋅( )2⋅+( )⋅=

x
p∂

∂
ρ−

Du
dt

⋅=

Hence, the components of pressure gradient (neglecting gravity) are 

(6.1)

The governing equation (assuming inviscid flow) for computing the pressure gradient is

12.6−
m

s2
⋅12.6

m

s2
⋅Total

0
m

s2
⋅and0

m

s2
⋅Convective

12.6−
m

s2
⋅and12.6

m

s2
⋅Localt 1 s⋅=

12.6
m

s2
⋅12.6−

m

s2
⋅Total

0
m

s2
⋅and0

m

s2
⋅Convective



25.1
Pa
m

⋅y comp.25.1−
Pa
m

⋅x comp.

t 1 s⋅=

25.1−
Pa
m

⋅y comp.25.1
Pa
m

⋅x comp.

t 0.5 s⋅=

25.1
Pa
m

⋅y comp.25.1−
Pa
m

⋅x comp.

t 0 s⋅=Evaluated at (1,1) and time

x
p∂

∂
ρ− 2− π⋅ A⋅ ω⋅ y⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 y⋅ sin 2 π⋅ ω⋅ t⋅( )2⋅+( )⋅=

y
p∂

∂
ρ−

Dv
dt

⋅=



Problem 6.7

Given: Velocity field

Find: Expressions for velocity and acceleration along wall; plot; 
verify vertical components are zero; plot pressure gradient

Solution

The given data is q 2

m3

s
m

⋅= h 1 m⋅= ρ 1000
kg

m3
⋅=

u
q x⋅

2 π⋅ x2 y h−( )2+ 

q x⋅

2 π⋅ x2 y h+( )2+ 
+=

v
q y h−( )⋅

2 π⋅ x2 y h−( )2+ 

q y h+( )⋅

2 π⋅ x2 y h+( )2+ 
+=

The governing equation for acceleration is



x - component

u
du
dx
⋅ v

du
dy
⋅+

q2 x⋅ x2 y2+( )2
h2 h2 4 y2⋅−( )⋅−





⋅

x2 y h+( )2+ 
2

x2 y h−( )2+ 
2

⋅ π2⋅

−=

ax
q2 x⋅ x2 y2+( )2

h2 h2 4 y2⋅−( )⋅−




⋅

π2 x2 y h+( )2+ 
2

⋅ x2 y h−( )2+ 
2

⋅

−=

y - component

u
dv
dx
⋅ v

dv
dy
⋅+

q2 y⋅ x2 y2+( )2
h2 h2 4 x2⋅+( )⋅−





⋅

π2 x2 y h+( )2+ 
2

⋅ x2 y h−( )2+ 
2

⋅

−=

ay
q2 y⋅ x2 y2+( )2

h2 h2 4 x2⋅+( )⋅−




⋅

π2 x2 y h+( )2+ 
2

⋅ x2 y h−( )2+ 
2

⋅

−=

For motion along the wall y 0 m⋅=

u
q x⋅

π x2 h2+( )⋅
= v 0= (No normal velocity)

ax
q2 x⋅ x2 h2−( )⋅

π2 x2 h2+( )3
⋅

−= ay 0= (No normal acceleration)



The governing equation (assuming inviscid flow) for computing the pressure gradient is

(6.1)

Hence, the component of pressure gradient (neglecting gravity) along the wall is 

x
p∂

∂
ρ−

Du
dt

⋅=
x

p∂

∂

ρ q2⋅ x⋅ x2 h2−( )⋅

π2 x2 h2+( )3
⋅

=

The plots of velocity, acceleration, and pressure gradient are shown in the associated Excel 
workbook.  From the plots it is clear that the fluid experiences an adverse pressure gradient from
the origin to x = 1 m, then a negative one promoting fluid acceleration.  If flow separates, it will 
likely be in the region x = 0 to x = h.



Problem 6.7 (In Excel)

Given: Velocity field

Find: Plots of velocity, acceleration and pressure gradient along wall

Solution

The velocity, acceleration and pressure gradient are given by

q  = 2 m3/s/m
h  = 1 m
ρ = 1000 kg/m3

x  (m) u  (m/s) a  (m/s2) dp /dx  (Pa/m)
0.0 0.00 0.00000 0.00
1.0 0.32 0.00000 0.00
2.0 0.25 0.01945 -19.45
3.0 0.19 0.00973 -9.73
4.0 0.15 0.00495 -4.95
5.0 0.12 0.00277 -2.77
6.0 0.10 0.00168 -1.68
7.0 0.09 0.00109 -1.09
8.0 0.08 0.00074 -0.74
9.0 0.07 0.00053 -0.53
10.0 0.06 0.00039 -0.39

Velocity Along Wall Near A Source

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

x  (m)

u
 (m

/s
)

u
q x⋅

π x2 h2+( )⋅
=

ax
q2 x⋅ x2 h2−( )⋅

π 2 x2 h2+( )3
⋅

−=

x
p∂

∂

ρ q2⋅ x⋅ x2 h2−( )⋅

π 2 x2 h2+( )3
⋅

=



Acceleration Along Wall Near A Source
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ar
q2

4 π2⋅ r3⋅
−=ar Vr r

Vr
∂

∂
⋅

Vθ
r θ

Vr
∂

∂
⋅+=

r - component

The total acceleration for this steady flow is then

The governing equations for this 2D flow are

Vθ
K

2 π⋅ r⋅
=Vr

q
2 π⋅ r⋅

−=

ρ 1000
kg

m3
⋅=K 1

m3

s
m

⋅=q 2

m3

s
m

⋅=The given data is

Solution

Find: The acceleration at several points; evaluate pressure gradient

Given: Velocity field

Problem 6.13



1
r θ

p∂

∂
⋅ 6.33−

Pa
m

⋅=
r
p∂

∂
12.7

Pa
m

⋅=Evaluating at point (2,0)

1
r θ

p∂

∂
⋅ 50.5−

Pa
m

⋅=
r
p∂

∂
101

Pa
m

⋅=Evaluating at point (1,π/2)

1
r θ

p∂

∂
⋅ 50.5−

Pa
m

⋅=
r
p∂

∂
101

Pa
m

⋅=Evaluating at point (1,0)

1
r θ

p∂

∂
⋅

ρ q⋅ K⋅

4 π2⋅ r3⋅
−=

1
r θ

p∂

∂
⋅ ρ− aθ⋅=

r
p∂

∂

ρ q2⋅

4 π2⋅ r3⋅
=

r
p∂

∂
ρ− ar⋅=

From Eq. 6.3, pressure gradient is

aθ 0.00633
m

s2
=ar 0.0127−

m

s2
=Evaluating at point (2,0)

aθ 0.051
m

s2
=ar 0.101−

m

s2
=Evaluating at point (1,π/2)

aθ 0.051
m

s2
=ar 0.101−

m

s2
=Evaluating at point (1,0)

aθ
q K⋅

4 π2⋅ r3⋅
=aθ Vr r

Vθ
∂

∂
⋅

Vθ
r θ

Vθ
∂

∂
⋅+=

θ - component



Simon Durkin
Problem 6.14

Simon Durkin

Simon Durkin

Simon Durkin



V x( )
4 Q⋅

π Di
Do Di−

L
x⋅+









2

⋅

=V x( )
π
4
⋅ D x( )2⋅ Q=Hence

Q 0.245
m3

s
=Q V A⋅= V

π
4
⋅ D2⋅= Vi

π
4
⋅ Di

2⋅=From continuity

D x( ) Di
Do Di−

L
x⋅+=For a linear increase in diameter

ρ 1000
kg

m3
⋅=Vi 5

m
s

⋅=

L 1 m⋅=Do 0.75 m⋅=Di 0.25 m⋅=The given data is

Solution

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure 
gradient is less than 25 kPa/m

Given: Diffuser geometry

ρ = 1000 kg/m3 consists of a 
diverging section of pipe. At the inlet the diameter is Di = 0.25 m, and at the outlet the 
diameter is Do = 0.75 m. The diffuser length is L = 1 m, and the diameter increases linearly 
with distance x along the diffuser. Derive and plot the acceleration of a fluid particle, assuming
uniform flow at each section, if the speed at the inlet is Vi = 5 m/s. Plot the pressure gradient 
through the diffuser, and find its maximum value. If the pressure gradient must be no greater 
than 25 kPa/m, how long would the diffuser have to be?

Problem 6.15



or V x( )
Vi

1
Do Di−

L Di⋅
x⋅+









2
=

The governing equation for this flow is

or, for steady 1D flow, in the notation of the problem

ax V
x

Vd
d
⋅=

Vi

1
Do Di−

L Di⋅
x⋅+









2 x

Vi

1
Do Di−

L Di⋅
x⋅+









2
d
d
⋅=

ax x( )
2 Vi

2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

−=

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is

x
p∂

∂
ρ− ax⋅=

x
p∂

∂

2 ρ⋅ Vi
2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

=



This is also plotted in the associated Excel workbook.  Note that the pressure gradient is 
adverse: separation is likely to occur in the diffuser, and occur near the entrance

At the inlet
x

p∂

∂
100

kPa
m

⋅= At the exit
x

p∂

∂
412

Pa
m

⋅=

To find the length L for which the pressure gradient is no more than 25 kPa/m, we need to solve 

x
p∂

∂
25

kPa
m

⋅≤
2 ρ⋅ Vi

2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

=

with x = 0 m (the largest pressure gradient is at the inlet)

Hence L
2 ρ⋅ Vi

2⋅ Do Di−( )⋅

Di x
p∂

∂
⋅

≥ L 4 m⋅≥

This result is also obtained using Goal Seek in the Excel workbook



Problem 6.15 (In Excel)

A diffuser for an incompressible, inviscid fluid of density ρ = 1000 kg/m3 consists
of a diverging section of pipe. At the inlet the diameter is D i  = 0.25 m, and at the
outlet the diameter is D o  = 0.75 m. The diffuser length is L  = 1 m, and the diameter
increases linearly with distance x  along the diffuser. Derive and plot the acceleration
of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is
V i  = 5 m/s. Plot the pressure gradient through the diffuser, and find its maximum
value. If the pressure gradient must be no greater than 25 kPa/m, how long would the
diffuser have to be?

Given: Diffuser geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L
such that pressure gradient is less than 25 kPa/m

Solution

The acceleration and pressure gradient are given by

D i  = 0.25 m
D o  = 0.75 m

L  = 1 m
V i  = 5 m/s

ρ = 1000 kg/m3

x  (m) a  (m/s2) dp /dx  (kPa/m)
0.0 -100 100
0.1 -40.2 40.2
0.2 -18.6 18.6 For the length L  required
0.3 -9.5 9.54 for the pressure gradient
0.4 -5.29 5.29 to be less than 25 kPa/m
0.5 -3.13 3.13 use Goal Seek
0.6 -1.94 1.94
0.7 -1.26 1.26 L  = 4.00 m
0.8 -0.842 0.842
0.9 -0.581 0.581 x  (m) dp /dx  (kPa/m)
1.0 -0.412 0.412 0.0 25.0

ax x( )
2 Vi

2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

−=

x
p∂

∂

2 ρ⋅ Vi
2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

=



Acceleration Through a Diffuser
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V x( )
4 Q⋅

π Di
Do Di−

L
x⋅+









2

⋅

=V x( )
π
4
⋅ D x( )2⋅ Q=Hence

Q 0.00785
m3

s
=Q V A⋅= V

π
4
⋅ D2⋅= Vi

π
4
⋅ Di

2⋅=From continuity

D x( ) Di
Do Di−

L
x⋅+=For a linear decrease in diameter

ρ 1000
kg

m3
⋅=Vi 1

m
s

⋅=

L 0.5 m⋅=Do 0.02 m⋅=Di 0.1 m⋅=The given data is

Solution

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure 
gradient is less than 5 MPa/m in absolute value

Given: Nozzle geometry

A nozzle for an incompressible, inviscid fluid of density ρ = 1000 kg/m3 consists of a 
converging section of pipe. At the inlet the diameter is Di = 100 mm, and at the outlet the 
diameter is Do = 20 mm. The nozzle length is L = 500 mm, and the diameter decreases 
linearly with distance x along the nozzle. Derive and plot the acceleration of a fluid particle, 
assuming uniform flow at each section, if the speed at the inlet is Vi = 1 m/s. Plot the pressure 
gradient through the nozzle, and find its maximum absolute value. If the pressure gradient must
be no greater than 5 MPa/m in absolute value, how long would the nozzle have to be?

Problem 6.16



or V x( )
Vi

1
Do Di−

L Di⋅
x⋅+









2
=

The governing equation for this flow is

or, for steady 1D flow, in the notation of the problem

ax V
x

Vd
d
⋅=

Vi

1
Do Di−

L Di⋅
x⋅+









2 x

Vi

1
Do Di−

L Di⋅
x⋅+









2
d
d
⋅=

ax x( )
2 Vi

2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

−=

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is

x
p∂

∂
ρ− ax⋅=

x
p∂

∂

2 ρ⋅ Vi
2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

=



This is also plotted in the associated Excel workbook.  Note that the pressure gradient is 

At the inlet
x

p∂

∂
3.2−

kPa
m

⋅= At the exit
x

p∂

∂
10−

MPa
m

⋅=

To find the length L for which the absolute pressure gradient is no more than 5 MPa/m, we need 
solve 

x
p∂

∂
5

MPa
m

⋅≤
2 ρ⋅ Vi

2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

=

with x = L m (the largest pressure gradient is at the outlet)

Hence L
2 ρ⋅ Vi

2⋅ Do Di−( )⋅

Di
Do
Di









5

⋅
x

p∂

∂
⋅

≥ L 1 m⋅≥

This result is also obtained using Goal Seek in the Excel workbook



Problem 6.16 (In Excel)

A nozzle for an incompressible, inviscid fluid of density ρ = 1000 kg/m3 consists
of a converging section of pipe. At the inlet the diameter is D i  = 100 mm, and at the
outlet the diameter is D o  = 20 mm. The nozzle length is L  = 500 mm, and the diameter
decreases linearly with distance x along the nozzle. Derive and plot the acceleration
of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is
V i  = 5 m/s. Plot the pressure gradient through the nozzle, and find its maximum absolute
value. If the pressure gradient must be no greater than 5 MPa/m in absolute value,
how long would the nozzle have to be?

Given: Nozzle geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L
such that the absolute pressure gradient is less than 5 MPa/m

Solution

The acceleration and pressure gradient are given by

D i  = 0.1 m
D o  = 0.02 m

L  = 0.5 m
V i  = 1 m/s

ρ = 1000 kg/m3

x  (m) a  (m/s2) dp /dx  (kPa/m)
0.00 3.20 -3.20
0.05 4.86 -4.86
0.10 7.65 -7.65 For the length L  required
0.15 12.6 -12.6 for the pressure gradient
0.20 22.0 -22.0 to be less than 5 MPa/m (abs)
0.25 41.2 -41.2 use Goal Seek
0.30 84.2 -84.2
0.35 194 -194 L  = 1.00 m
0.40 529 -529
0.45 1859 -1859 x  (m) dp /dx  (kPa/m)
0.50 10000 -10000 1.00 -5000

ax x( )
2 Vi

2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

−=

x
p∂

∂

2 ρ⋅ Vi
2⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+









5

⋅

=



Acceleration Through A Nozzle
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Problem 6.31

Given: x component of velocity field

Find: y component of velocity field; acceleration at several points; 
estimate radius of curvature; plot streamlines

Solution

The given data is Λ 2
m3

s
⋅= u

Λ x2 y2−( )⋅

x2 y2+( )2
−=

The governing equation (continuity) is du
dx

dv
dy

+ 0=

Hence v y
du
dx

⌠


⌡

d−= y
2 Λ⋅ x⋅ x2 3 y2⋅−( )⋅

x2 y2+( )3

⌠


⌡

d−=

Integrating (using an integrating factor)

v
2 Λ⋅ x⋅ y⋅

x2 y2+( )2
−=



Alternatively, we could check that the given velocities u and v satisfy continuity

u
Λ x2 y2−( )⋅

x2 y2+( )2
−=

du
dx

2 Λ⋅ x⋅ x2 3 y2⋅−( )⋅

x2 y2+( )3
=

v
2 Λ⋅ x⋅ y⋅

x2 y2+( )2
−=

dv
dy

2 Λ⋅ x⋅ x2 3 y2⋅−( )⋅

x2 y2+( )3
−=

so du
dx

dv
dy

+ 0=

The governing equation for acceleration is

x - component ax u
du
dx
⋅ v

du
dy
⋅+=

ax
Λ x2 y2−( )⋅

x2 y2+( )2
−










2 Λ⋅ x⋅ x2 3 y2⋅−( )⋅

x2 y2+( )3











⋅
2 Λ⋅ x⋅ y⋅

x2 y2+( )2
−





2 Λ⋅ y⋅ 3 x2⋅ y2−( )⋅

x2 y2+( )3











⋅+=



ay 0.0333−
m

s2
⋅=ax 0

m

s2
⋅=v 0

m
s

⋅=u 0.222
m
s

⋅=Evaluating at point (0,3)

ay 0.25−
m

s2
⋅=ax 0

m

s2
⋅=v 0

m
s

⋅=u 0.5
m
s

⋅=Evaluating at point (0,2)

ay 8−
m

s2
⋅=ax 0

m

s2
⋅=v 0

m
s

⋅=u 2
m
s

⋅=Evaluating at point (0,1)

ay
2 Λ2⋅ y⋅

x2 y2+( )3
−=

ay
Λ x2 y2−( )⋅

x2 y2+( )2
−










2 Λ⋅ y⋅ 3 x2⋅ y2−( )⋅

x2 y2+( )3











⋅
2 Λ⋅ x⋅ y⋅

x2 y2+( )2
−





2 Λ⋅ y⋅ 3 y2⋅ x2−( )⋅

x2 y2+( )3











⋅+=

ay u
dv
dx
⋅ v

dv
dy
⋅+=y - component

ax
2 Λ2⋅ x⋅

x2 y2+( )3
−=



This is an inexact integral, so an integrating factor is needed

2− x⋅ y⋅ dx⋅ x2 y2−( ) dy⋅+ 0=so

dy
dx

v
u

=

2 Λ⋅ x⋅ y⋅

x2 y2+( )2
−

Λ x2 y2−( )⋅

x2 y2+( )2
−

=
2 x⋅ y⋅

x2 y2−( )=The streamlines are given by

The radius of curvature in each case is 1/2 of the vertical distance from the origin.  The streamlin
form circles tangent to the x axis

r 1.5 m⋅=r
0.2222

m
s

⋅





2

0.03333
m

s2
⋅

=y 3m=

r 1m=r
0.5

m
s

⋅





2

0.25
m

s2
⋅

=y 2m=

r 0.5m=r
2

m
s

⋅





2

8
m

s2
⋅

=y 1m=For the three points

r
u2

ay
−=oraradial ay−=

u2

r
−=The instantaneous radius of curvature is obtained from



First we try R
1

2− x⋅ y⋅ x
x2 y2−( )d

d y
2− x⋅ y⋅( )d

d
−









⋅=
2
y

−=

Then the integrating factor is F e

y
2
y

−
⌠


⌡

d

=
1

y2
=

The equation becomes an exact integral 2−
x
y
⋅ dx⋅

x2 y2−( )
y2

dy⋅+ 0=

So u x2−
x
y
⋅

⌠


⌡

d=
x2

y
− f y( )+= and u y

x2 y2−( )
y2

⌠



⌡

d=
x2

y
− y− g x( )+=

Comparing solutions ψ
x2

y
y+= or x2 y2+ ψ y⋅= const y⋅=

These form circles that are tangential to the x axis, as shown in the associated Excel workbook
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F pstag patm−( ) A⋅=
1
2
ρ⋅ V2⋅ A⋅=

Hence, for pstag on the front side of the hand, and patm on the rear, by assumption,

where V is the free stream velocity

patm
1
2
ρ⋅ V2⋅+ pstag=

The governing equation is the Bernoulli equation (in coordinates attached to the vehicle)

A 153cm2=A 9 cm⋅ 17× cm⋅=

We need an estimate of the area of a typical hand.  Personal inspection indicates that a good 
approximation is a square of sides 9 cm and 17 cm

ρ 0.00238
slug

ft3
⋅=For air

Solution

Find: Estimates of aerodynamic force on hand

Given: Velocity of automobile

You present your open hand out of the window of an automobile perpendicular to the airflow. 
Assuming for simplicity that the air pressure on the entire front surface is stagnation pressure 
(with respect to automobile coordinates), with atmospheric pressure on the rear surface, 
estimate the net force on your hand when driving at (a) 30 mph and (b) 60 mph. Do these 
results roughly correspond with your experience? Do the simplifications tend to make the 
calculated force an over- or underestimate?

Problem 6.35



(a) V 30 mph⋅=

F
1
2
ρ⋅ V2⋅ A⋅=

1
2

0.00238×
slug

ft3
⋅ 30 mph⋅

22
ft
s

⋅

15 mph⋅
⋅











2

× 153× cm2⋅

1
12

ft⋅

2.54 cm⋅











2

×=

F 0.379 lbf=

(a) V 60 mph⋅=

F
1
2
ρ⋅ V2⋅ A⋅=

1
2

0.00238×
slug

ft3
⋅ 60 mph⋅

22
ft
s

⋅

15 mph⋅
⋅











2

× 153× cm2⋅

1
12

ft⋅

2.54 cm⋅











2

×=

F 1.52 lbf=
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V 0→v 0→u 0→x 0→At

Apply this to point arbitrary point (x,0) on the wall and at infinity (neglecting gravity)

V u2 v2+=wherep
ρ

1
2

V2⋅+ g z⋅+ const=

The governing equation is the Bernoulli equation

v
q y h−( )⋅

2 π⋅ x2 y h−( )2+ 

q y h+( )⋅

2 π⋅ x2 y h+( )2+ 
+=

u
q x⋅

2 π⋅ x2 y h−( )2+ 

q x⋅

2 π⋅ x2 y h+( )2+ 
+=

ρ 1000
kg

m3
⋅=h 1 m⋅=q 2

m3

s
m

⋅=The given data is

Solution

Find: Pressure distribution along wall; plot distribution; net force 
on wall

Given: Velocity field

The velocity field for a plane source at a distance h above an infinite wall aligned along the x 
axis was given in Problem 6.7. Using the data from that problem, plot the pressure 
distribution along the wall from x = - 10h to x = + 10h (assume the pressure at infinity is 
atmospheric). Find the net force on the wall if the pressure on the lower surface is 
atmospheric. Does the force tend to pull the wall towards the source, or push it away?

Problem 6.53



At point (x,0) u
q x⋅

π x2 h2+( )⋅
= v 0= V

q x⋅

π x2 h2+( )⋅
=

Hence the Bernoulli equation becomes

patm
ρ

p
ρ

1
2

q x⋅

π x2 h2+( )⋅









2
⋅+=

or (with pressure expressed as gage pressure)

p x( )
ρ
2

−
q x⋅

π x2 h2+( )⋅









2
⋅=

(Alternatively, the pressure distribution could have been obtained from Problem 6.7, where 

x
p∂

∂

ρ q2⋅ x⋅ x2 h2−( )⋅

π2 x2 h2+( )3
⋅

=  

along the wall.  Integration of this with respect to x leads to the same result for p(x))

The plot of pressure is shown in the associated Excel workbook.  From the plot it is clear that the
wall experiences a negative gage pressure on the upper surface (and zero gage pressure on the 
lower), so the net force on the wall is upwards, towards the source

The force per width on the wall is given byF
10− h⋅

10 h⋅
xpupper plower−( )⌠


⌡

d=

F
ρ q2⋅

2 π2⋅
−

10− h⋅

10 h⋅

x
x2

x2 h2+( )2

⌠



⌡

d⋅=



The integral is x
x2

x2 h2+( )2

⌠


⌡

d
1−

2
x

x2 h2+( )⋅
1

2 h⋅
atan

x
h





⋅+→

so F
ρ q2⋅

2 π2⋅ h⋅
−

10
101

− atan 10( )+





⋅=

F
1

2 π2⋅
− 1000×

kg

m3
⋅ 2

m2

s
⋅









2

×
1

1 m⋅
×

10
101

− atan 10( )+





×
N s2⋅
kg m⋅

×=

F 278−
N
m

=



Problem 6.53 (In Excel)

The velocity field for a plane source at a distance h  above an infinite wall aligned along the x
axis was given in Problem 6.7. Using the data from that problem, plot the pressure
distribution along the wall from x  = - 10h  to x  = + 10h  (assume the pressure at infinity is
atmospheric). Find the net force on the wall if the pressure on the lower surface is
atmospheric. Does the force tend to pull the wall towards the source, or push it away?

Given: Velocity field

Find: Pressure distribution along wall

Solution

The given data is

q  = 2 m3/s/m
h  = 1 m
ρ = 1000 kg/m3

x  (m) p  (Pa)
0.0 0.00
1.0 -50.66
2.0 -32.42
3.0 -18.24
4.0 -11.22
5.0 -7.49
6.0 -5.33
7.0 -3.97
8.0 -3.07
9.0 -2.44
10.0 -1.99

Pressure Distribution Along Wall

-60

-50

-40

-30

-20

-10

0
0 1 2 3 4 5 6 7 8 9 10

x  (m)

p
 (P

a)

The pressure distribution is p x( ) ρ
2

−
q x⋅

π x2 h2+( )⋅









2
⋅=



Apply this to point arbitrary point (x,0) on the x axis and at infinity

p
ρ

1
2

u2⋅+ const=so (neglecting gravity)

V u2 v2+=wherep
ρ

1
2

V2⋅+ g z⋅+ const=

The governing equation is the Bernoulli equation

v 0=u
Λ

x2
−=

where Vr and Vθ are the velocity components in cylindrical coordinates (r,θ).  For points along th
x axis, r = x, θ = 0, Vr = u and Vθ = v = 0

Vθ
Λ

r2
− sin θ( )⋅=Vr

Λ

r2
− cos θ( )⋅=From Table 6.1

p0 100 kPa⋅=ρ 1000
kg

m3
⋅=Λ 3

m3

s
⋅=The given data is

Solution

Find: Pressure distribution along x axis; plot distribution

Given: Velocity field for plane doublet

The velocity field for a plane doublet is given in Table 6.1 (page S-27 on the CD). If Λ = 3 
m3.s-1, the fluid density is ρ = 1.5 kg/m3, and the pressure at infinity is 100 kPa, plot the 
pressure along the x axis from x = - 2.0 m to - 0.5 m and x = 0.5 m to 2.0 m.

Problem 6.54



At x 0→ u 0→ p p0→

At point (x,0) u
Λ

x2
−=

Hence the Bernoulli equation becomes

p0
ρ

p
ρ

Λ2

2 x4⋅
+=

or p x( ) p0
ρ Λ2⋅

2 x4⋅
−=

The plot of pressure is shown in the associated Excel workbook



Problem 6.54 (In Excel)

The velocity field for a plane doublet is given in Table 6.1 (page S-27 on the CD). If Λ = 3
m3.s-1, the fluid density is ρ = 1.5 kg/m3, and the pressure at infinity is 100 kPa, plot the
pressure along the x axis from x  = - 2.0 m to - 0.5 m and x  = 0.5 m to 2.0 m.

Given: Velocity field

Find: Pressure distribution along x  axis

Solution

The given data is

Λ = 3 m3/s
ρ = 1.5 kg/m3

p 0 = 100 kPa

x  (m) p  (Pa)
0.5 99.89
0.6 99.95
0.7 99.97
0.8 99.98
0.9 99.99
1.0 99.99
1.1 100.00
1.2 100.00
1.3 100.00
1.4 100.00
1.5 100.00
1.6 100.00
1.7 100.00
1.8 100.00
1.9 100.00
2.0 100.00

Pressure Distribution Along x  axis

99.88

99.90

99.92

99.94

99.96

99.98

100.00

100.02

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x  (m)

p
 (k

Pa
)

The pressure distribution is p x( ) p0
ρ Λ2⋅

2 x4⋅
−=
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Problem 6.75 
 
Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the 
system shown in Fig. 6.6 if the pipe is horizontal (i.e., the outlet is at the base of the 
reservoir), and a water turbine (extracting energy) is located at (a) point , or (b) at point 

.  In Chapter 8 we will investigate the effects of friction on internal flows.  Can you 
anticipate and sketch the effect of friction on the EGL and HGL for cases (a) and (b)? 
 
 

(a) Note that the effect of friction would be that the EGL would tend to drop: 
suddenly at the contraction, gradually in the large pipe, more steeply in the 
small pipe.  The HGL would then  “hang” below the HGL in a manner similar 
to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL Turbine 



 
(b) Note that the effect of friction would be that the EGL would tend to drop: 

suddenly at the contraction, gradually in the large pipe, more steeply in the 
small pipe.  The HGL would then  “hang” below the HGL in a manner similar 
to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL Turbine 



Problem 6.76 
 
 Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the 
system shown in Fig. 6.6 if a pump (adding energy to the fluid) is located at (a) point , 
or (b) at point , such that flow is into the reservoir.  In Chapter 8 we will investigate the 
effects of friction on internal flows.  Can you anticipate and sketch the effect of friction 
on the EGL and HGL for cases (a) and (b)? 
 
 

(a) Note that the effect of friction would be that the EGL would tend to drop from 
right to left: steeply in the small pipe, gradually in the large pipe, and 
suddenly at the expansion.  The HGL would then  “hang” below the HGL in a 
manner similar to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL Pump 

Flow 



 
(b) Note that the effect of friction would be that the EGL would tend to drop from 

right to left: steeply in the small pipe, gradually in the large pipe, and 
suddenly at the expansion.  The HGL would then  “hang” below the HGL in a 
manner similar to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL 

Pump 

Flow 
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ax 3.47
m

s2
=

ax
pair ρ g⋅ h⋅+

ρ L⋅
=

pair
ρ L⋅

g
h
L
⋅+= 20 103⋅

N

m2
⋅

m3

999 kg⋅
×

1
10 m⋅

×
kg m⋅

N s2⋅
× 9.81

m

s2
⋅

1.5
10

×+=

Hence

(gage pressures)pR 0=pL pair ρ g⋅ h⋅+=Also, for no initial motion

ρ A⋅ L⋅ ax⋅ pL pR−( ) A⋅=orm ax⋅ ΣFx=

The simplest approach is to apply Newton's 2nd law to the water in the pipe.  The net 
horizontal force on the water in the pipe at the initial instant is (pL - pL)A where pL and pR 
are the pressures at the left and right ends and A is the pipe cross section area (the water is 
initially at rest so there are no friction forces)

ρ 999
kg

m3
⋅=pair 20 kPa⋅=L 10 m⋅=h 1.5 m⋅=The given data is

Solution

Find: Initial water acceleration

Given: Data on water pipe system

If the water in the pipe in Problem 6.77 is initially at rest and the air pressure is 20 kPa (gage), 
what will be the initial acceleration of the water in the pipe?

Problem *6.78
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pair
ρ

g h⋅+
V2

2
L

dV
dt

⋅+=Hence

At each instant V has the same value everywhere in the pipe, i.e., V = V(t) only

pair
ρ

g h⋅+
V2

2
0

L

x
t
V∂

∂

⌠


⌡

d+=Hence

State 1 is the free surface; state 2 is the pipe exit.  For state 1, V1 = 0,  p1 = pair (gage),  z1 
= h.  For state 2, V2 = V,  p2 = 0 (gage),  z2 = 0.  For the integral, we assume V is 
negligible in the reservoir

The governing equation for this flow is the unsteady Bernoulli equation

ρ 999
kg

m3
⋅=pair 10 kPa⋅=L 10 m⋅=h 1.5 m⋅=The given data is

Solution

Find: Velocity in pipe; plot

Given: Data on water pipe system

If the water in the pipe of Problem 6.77 is initially at rest, and the air pressure is maintained at 
10 kPa (gage), derive a differential equation for the velocity V in the pipe as a function of 
time, integrate, and plot V versus t for t = 0 to 5 s.

Problem *6.81



The differential equation for V is then

dV
dt

1
2 L⋅

V2⋅+

pair
ρ

g h⋅+








L
− 0=

Separating variables

L dV⋅

pair
ρ

g h⋅+








V2

2
−

dt=

Integrating and applying the IC that V(0) = 0 yields, after some simplification

V t( ) 2
pair
ρ

g h⋅+








⋅ tanh

pair
ρ

g h⋅+








2 L2⋅
t⋅













⋅=

This function is plotted in the associated Excel workbook.  Note that as time increases V approac

V t( ) 7.03
m
s

=

The flow approaches 95% of its steady state rate after about 5 s



Problem *6.81 (In Excel)

If the water in the pipe of Problem 6.77 is initially at rest, and the air pressure is
maintained at 10 kPa (gage), derive a differential equation for the velocity V  in the
pipe as a function of time, integrate, and plot V  versus t  for t  = 0 to 5 s.

Given: Data on water pipe system

Find: Plot velocity in pipe

Solution

The given data is

h  = 1.5 m
L  = 10 m
ρ = 999 kg/m3

p air = 10 kPa

t  (s) V  (m/s) The flow approaches 95% of its steady state rate after about 5 s
0.00 0.00
0.25 0.62
0.50 1.22
0.75 1.81
1.00 2.38
1.25 2.91
1.50 3.40
1.75 3.85
2.00 4.26
2.25 4.63
2.50 4.96
2.75 5.26
3.00 5.51
3.25 5.73
3.50 5.93
3.75 6.09
4.00 6.24
4.25 6.36
4.50 6.46
4.75 6.55
5.00 6.63

Velocity in Pipe vs Time

0

1

2

3

4

5

6

7

0 1 1 2 2 3 3 4 4 5 5

t  (s)

V
 (m

/s
)

The solution is V t( ) 2
pair
ρ

g h⋅+








⋅ tanh

pair
ρ

g h⋅+








2 L2⋅
t⋅













⋅=
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Problem *6.87

Find: Stream function and velocity potential; plot

Solution

The velocity field is u
q x⋅

2 π⋅ x2 y h−( )2+ 

q x⋅

2 π⋅ x2 y h+( )2+ 
+=

v
q y h−( )⋅

2 π⋅ x2 y h−( )2+ 

q y h+( )⋅

2 π⋅ x2 y h+( )2+ 
+=

The governing equations are

u
y
ψ∂

∂
= v

x
ψ∂

∂
−=

u
x
φ∂

∂
−= v

y
φ∂

∂
−=



Hence for the stream function

ψ yu x y,( )
⌠
⌡

d=
q

2 π⋅
atan

y h−
x







atan
y h+

x






+





⋅ f x( )+=

ψ xv x y,( )
⌠
⌡

d−=
q

2 π⋅
atan

y h−
x







atan
y h+

x






+





⋅ g y( )+=

The simplest expression for ψ is then

ψ x y,( )
q

2 π⋅
atan

y h−
x







atan
y h+

x






+





⋅=

For the stream function

φ xu x y,( )
⌠
⌡

d−=
q

4 π⋅
− ln x2 y h−( )2+  x2 y h+( )2+ ⋅ ⋅ f y( )+=

φ yv x y,( )
⌠
⌡

d−=
q

4 π⋅
− ln x2 y h−( )2+  x2 y h+( )2+ ⋅ ⋅ g x( )+=

The simplest expression for φ is then

φ x y,( )
q

4 π⋅
− ln x2 y h−( )2+  x2 y h+( )2+ ⋅ ⋅=
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Problem *6.88

Using Table 6.1, find the stream function and velocity potential for a plane source, of strength 
q, near a 90° corner. The source is equidistant h from each of the two infinite planes that 
make up the corner. Find the velocity distribution along one of the planes, assuming p = p0 at 
infinity. By choosing suitable values for q and h, plot the streamlines and lines of constant 
velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

Given: Data from Table 6.1

Find: Stream function and velocity potential for a source in a corner; plot; velocity along one pla

Solution

From Table 6.1, for a source at the origin

ψ r θ,( ) q
2 π⋅

θ⋅= φ r θ,( ) q
2 π⋅

− ln r( )⋅=

Expressed in Cartesian coordinates

ψ x y,( )
q

2 π⋅
atan

y
x





⋅= φ x y,( )
q

4 π⋅
− ln x2 y2+( )⋅=

To build flow in a corner, we need image sources at three locations so that there is symmetry abo
both axes.  We need sources at (h,h), (h,- h), (- h,h), and (- h,- h)

ψ x y,( )
q

2 π⋅
atan

y h−
x h−






atan
y h+
x h−






+ atan
y h+
x h+






+ atan
y h−
x h+






+





⋅=



φ x y,( )
q

4 π⋅
− ln x h−( )2 y h−( )2+  x h−( )2 y h+( )2+ ⋅ ⋅

q
4 π⋅

− x h+( )2 y h+( )2+ ⋅ x h+( )2 y h−( )2+ ⋅+

...= (Too long to 
fit on one 
line!)

By a similar reasoning the horizontal velocity is given by

u
q x h−( )⋅

2 π⋅ x h−( )2 y h−( )2+ 

q x h−( )⋅

2 π⋅ x h−( )2 y h+( )2+ 
+

q x h+( )⋅

2 π⋅ x h+( )2 y h+( )2+ 

q x h+( )⋅

2 π⋅ x h+( )2 y h+( )2+ 
++

...=

Along the horizontal wall (y = 0)

u
q x h−( )⋅

2 π⋅ x h−( )2 h2+ 

q x h−( )⋅

2 π⋅ x h−( )2 h2+ 
+

q x h+( )⋅

2 π⋅ x h+( )2 h2+ 

q x h+( )⋅

2 π⋅ x h+( )2 h2+ 
++

...=

or u x( )
q
π

x h−

x h−( )2 h2+

x h+

x h+( )2 h2+
+
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ψ x y,( )
K

4 π⋅
− ln

x h−( )2 y h−( )2+

x h−( )2 y h+( )2+

x h+( )2 y h+( )2+

x h+( )2 y h−( )2+
⋅







⋅=

φ x y,( )
K

2 π⋅
atan

y h−
x h−






atan
y h+
x h−






− atan
y h+
x h+






+ atan
y h−
x h+






−





⋅=

To build flow in a corner, we need image vortices at three locations so that there is symmetry ab
both axes.  We need vortices at (h,h), (h,- h), (- h,h), and (- h,- h).  Note that some of them must 
have strengths of - K!

ψ x y,( )
q

4 π⋅
− ln x2 y2+( )⋅=φ x y,( )

q
2 π⋅

atan
y
x





⋅=

Expressed in Cartesian coordinates

ψ r θ,( ) K
2 π⋅

− ln r( )⋅=φ r θ,( ) K
2 π⋅

θ⋅=

From Table 6.1, for a vortex at the origin

Solution

Find: Stream function and velocity potential for a vortex in a corner; plot; velocity along one pla

Given: Data from Table 6.1

Using Table 6.1, find the stream function and velocity potential for a plane vortex, of strength 
K, near a 90° corner. The vortex is equidistant h from each of the two infinite planes that 
make up the corner. Find the velocity distribution along one of the planes, assuming p = p0 at 
infinity. By choosing suitable values for K and h, plot the streamlines and lines of constant 
velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

Problem *6.89



By a similar reasoning the horizontal velocity is given by

u
K y h−( )⋅

2 π⋅ x h−( )2 y h−( )2+ 
−

K y h+( )⋅

2 π⋅ x h−( )2 y h+( )2+ 
+

K y h+( )⋅

2 π⋅ x h+( )2 y h+( )2+ 
−

K y h−( )⋅

2 π⋅ x h+( )2 y h−( )2+ 
++

...=

Along the horizontal wall (y = 0)

u
K h⋅

2 π⋅ x h−( )2 h2+ 

K h⋅

2 π⋅ x h−( )2 h2+ 
+

K h⋅

2 π⋅ x h+( )2 h2+ 
−

K h⋅

2 π⋅ x h+( )2 h2+ 
−+

...=

or u x( )
K h⋅
π

1

x h−( )2 h2+

1

x h+( )2 h2+
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Problem 7.5 
 

   
 
Nondimensionalizing the velocity, pressure, spatial measures, and time: 
 
 

L
Vtt

L
rr

L
xx

p
pp

V
uu ===

∆
== *****  

 
 
Hence 
 
 

***** t
V
LtrDrxLxpppuVu ===∆==  

 
 
 
Substituting into the governing equation 
 
 












∂
∂

+
∂
∂

+
∂
∂

∆−=
∂
∂

=
∂
∂

*
*

*
1

*
*1

*
*11

*
*

2

2

2 r
u

rr
u

D
V

x
p

L
p

t
u

L
VV

t
u

ν
ρ

 

 
 
 
The final dimensionless equation is 
 
 












∂
∂

+
∂
∂














+

∂
∂∆

−=
∂
∂

*
*

*
1

*
*

*
*

*
*

2

2

2 r
u

rr
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D
L

VDx
p

V
p

t
u ν

ρ
 

 
 
The dimensionless groups are 
 

D
L

VDV
p ν

ρ 2
∆  



Problem 7.6 
 
   
 
 
 
 
 
 
 
 
 
 
 
Recall that the total acceleration is 
 
 

VV
t
V

Dt
VD rr

rr

∇⋅+
∂
∂

=  

 
 
Nondimensionalizing the velocity vector, pressure, angular velocity, spatial measure, and 
time, (using a typical velocity magnitude V and angular velocity magnitude Ω): 
 
 

L
Vtt

L
xx

p
pp

V
VV ==

Ω
Ω

=Ω
∆

== *****
r

r
r

r
 

 
 
Hence 
 
 

***** t
V
LtxLxpppVVV ==ΩΩ=Ω∆==

rrrr
 

 
 
Substituting into the governing equation 
 
 

*1**2***
*
* p

L
pVVVV

L
VV

t
V

L
VV ∇

∆
−=×ΩΩ+⋅∇+

∂
∂

ρ

rrrr
r

 

 
 
 
 
 



The final dimensionless equation is 
 
 

**2***
*
*

2 p
V
pV

V
LVV

t
V

∇
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−=×Ω





 Ω+⋅∇+

∂
∂

ρ

rrrr
r

 

 
 
The dimensionless groups are 
 
 

V
L

V
p Ω∆

2ρ
 

 
 
The second term on the left of the governing equation is the Coriolis force due to a 
rotating coordinate system.  This is a very significant term in atmospheric studies, leading 
to such phenomena as geostrophic flow.  
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Problem 7.8 

 
 
Given:  That drag depends on speed, air density and frontal area 
 
Find:     How drag force depend on speed 
 
 
Apply the Buckingham Π procedure 

 
   F          V         ρ          A   n = 4 parameters 

 
 
 

 Select primary dimensions M, L, t 
 
 

            
2

32 L
L
M

t
L

t
ML

AVF ρ
  r = 3 primary dimensions 

 
 

    V         ρ          A   m = r = 3 repeat parameters 
 
 
 

  Then n – m = 1 dimensionless groups will result.  Setting up a dimensional equation, 
 
 

( ) 000
2

2
3

1

tLM
t
MLL

L
M

t
L

FAV

c
ba

cba

=













=

=Π ρ
 

 
 
 
 
 
 



Summing exponents, 
 
 

202:
10123:
101:

−==−−
−==++−
−==+

aat
ccbaL
bbM

 

 
Hence 

 

AV
F

21
ρ

=Π  

 
 
 

  Check using F, L, t as primary dimensions 
 

 
[ ]1

2
2

2

4

21 ==Π
L

t
L

L
Ft

F  

 
 
The relation between drag force F and speed V must then be 
 
 

22 VAVF ∝∝ ρ  
 
 
The drag is proportional to the square of the speed. 
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Problem 7.17 (In Excel)

Given: That drain time depends on fluid viscosity and density, orifice diameter, and gravity

Find: Functional dependence of t  on other variables

Solution
We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is: n  = 5
The number of primary dimensions is: r  = 3
The number of repeat parameters is: m  = r  = 3
The number of Π groups is: n  - m  = 2

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose ρ, g , d

M L t
ρ 1 -3
g 1 -2
d 1

Π GROUPS:
M L t M L t

t 0 0 1 µ 1 -1 -1

Π1: a  = 0 Π2: a  = -1
b  = 0.5 b  = -0.5
c  = -0.5 c  = -1.5



The following Π groups from Example Problem 7.1 are not used:

M L t M L t
0 0 0 0 0 0

Π3: a  = 0 Π4: a  = 0
b  = 0 b  = 0
c  = 0 c  = 0

Hence                                    and                                                      with 
 
 
 
 
 
 
The final result is 

d
gt=Π1 32

2

2
3

2
12 gd
dg

ρ

µ

ρ

µ
→=Π ( )21 Π=Π f











= 32

2

gd
f

g
dt

ρ

µ
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Problem 7.24 (In Excel)

Given: That dot size depends on ink viscosity, density, and surface tension, and geometry

Find: Π groups

Solution
We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is: n  = 7
The number of primary dimensions is: r  = 3
The number of repeat parameters is: m  = r  = 3
The number of Π groups is: n  - m  = 4

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose ρ, V , D

M L t
ρ 1 -3
V 1 -1
D 1

Π GROUPS:

M L t M L t
d 0 1 0 µ 1 -1 -1

Π1: a  = 0 Π2: a  = -1
b  = 0 b  = -1
c  = -1 c  = -1



M L t M L t
σ 1 0 -2 L 0 1 0

Π3: a  = -1 Π4: a  = 0
b  = -2 b  = 0
c  = -1 c  = -1

Note that groups Π1 and Π4 can be obtained by inspection

Hence                                                                                                                                         
D
d

=Π1
µ

ρ
ρ
µ VD
VD

→=Π2 DV 23
ρ
σ

=Π
D
L

=Π 4
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Problem 7.26 (In Excel)

Given: Bubble size depends on viscosity, density, surface tension, geometry and pressure

Find: Π groups

Solution
We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is: n  = 6
The number of primary dimensions is: r  = 3
The number of repeat parameters is: m  = r  = 3
The number of Π groups is: n  - m  = 3

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose ρ, ∆p , D

M L t
ρ 1 -3

∆p 1 -1 -2
D 1

Π GROUPS:

M L t M L t
d 0 1 0 µ 1 -1 -1

Π1: a  = 0 Π2: a  = -0.5
b  = 0 b  = -0.5
c  = -1 c  = -1



M L t M L t
σ 1 0 -2 0 0 0

Π3: a  = 0 Π4: a  = 0
b  = -1 b  = 0
c  = -1 c  = 0

Note that the Π1 group can be obtained by inspection

Hence                                                                                                                                         
D
d

=Π1 2

2

2
1

2
12 pD

Dp
∆

→

∆

=Π
ρ
µ

ρ

µ

pD∆
=Π

σ
3



Problem 7.27 (In Excel)

Given: Speed depends on mass, area, gravity, slope, and air viscosity and thickness

Find: Π groups

Solution
We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is: n  = 7
The number of primary dimensions is: r  = 3
The number of repeat parameters is: m  = r  = 3
The number of Π groups is: n  - m  = 4

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose g , δ, m

M L t
g 1 -2
δ 1
m 1

Π GROUPS:

M L t M L t
V 0 1 -1 µ 1 -1 -1

Π1: a  = -0.5 Π2: a  = -0.5
b  = -0.5 b  = 1.5
c  = 0 c  = -1



M L t M L t
θ 0 0 0 A 0 2 0

Π3: a  = 0 Π4: a  = 0
b  = 0 b  = -2
c  = 0 c  = 0

Note that the Π1 , Π3 and Π4 groups can be obtained by inspection

Hence                                                                                                                                         
δ

δ
g
V

g

V 2

2
1

2
11 →=Π

gm
mg

2

32

2
1

2
3

2
δµµδ

→=Π θ=Π 3 24
δ
A

=Π



Problem 7.28 (In Excel)

Given: Time to speed up depends on inertia, speed, torque, oil viscosity and geometry

Find: Π groups

Solution
We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is: n  = 8
The number of primary dimensions is: r  = 3
The number of repeat parameters is: m  = r  = 3
The number of Π groups is: n  - m  = 5

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose ω, D , T

M L t
ω -1
D 1
T 1 2 -2

Π GROUPS:
Two Π groups can be obtained by inspection: δ/D and L /D .  The others are obtained below

M L t M L t
t 0 0 1 µ 1 -1 -1

Π1: a  = 1 Π2: a  = 1
b  = 0 b  = 3
c  = 0 c  = -1



M L t M L t
I 1 2 0 0 0 0

Π3: a  = 2 Π4: a  = 0
b  = 0 b  = 0
c  = -1 c  = 0

Note that the Π1 group can also be easily obtained by inspection

Hence the Π groups are                                                                                                                         
 
 
 
 
 

ωt
D
δ

T
D3µω

T
I 2ω

D
L
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Problem 7.35 

 
 
Given:  That the cooling rate depends on rice properties and air properties 
 
 
Find:     The Π groups 
 
 
Apply the Buckingham Π procedure 

 
c   dT/dt        c        k        L        cp       ρ       µ       V  n = 8 parameters 
 
 
 
d Select primary dimensions M, L, t and T (temperature) 
 
 
 

e            
t
L

Lt
M

L
M

Tt
LL

Tt
ML

Tt
L

t
T

VcLkcdtdT p

32

2

22

2

µρ
 r = 4 primary dimensions 

 
 
 
f    V         ρ          L         cp   m = r = 4 repeat parameters 
 
 
 
g Then n – m = 4 dimensionless groups will result. 
 
 
By inspection, one Π group is c/cp 
 
 
 
 



Setting up a dimensional equation, 
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Summing exponents, 
 

3012:
12023:

00:
101:

−==−−−
=→−=+=++−

==
==+−

adat
ccadcbaL

bbM
ddT

 

 
 
Hence 
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By a similar process, find 
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Vw 6.9
m
s

=

Vw Vair
µw
µair
⋅

ρair
ρw

⋅
Lair
Lw

⋅= Vair
µw
µair
⋅

ρair
ρw

⋅ Lratio⋅= 5
m
s

⋅
10 3−

1.8 10 5−×







×
1.24
999







× 20×=

Then

ρw Vw⋅ Lw⋅

µw

ρair Vair⋅ Lair⋅

µair
=For dynamic similarity we assume

Fw 2 kN⋅=Lratio 20=Vair 5
m
s

⋅=The given data is

µw 10 3− N s⋅

m2
⋅=ρw 999

kg

m3
⋅=

µair 1.8 10 5−×
N s⋅

m2
⋅=ρair 1.24

kg

m3
⋅=From Appendix A (inc. Fig. A.2)

Solution

Find: Required water model water speed; drag on protype based on model drag

Given: Model scale for on balloon

Problem 7.40



For the same Reynolds numbers, the drag coefficients will be the same so

Fair
1
2
ρair⋅ Aair⋅ Vair

2⋅

Fw
1
2
ρw⋅ Aw⋅ Vw

2⋅
=

where
Aair
Aw

Lair
Lw









2

= Lratio
2=

Hence the prototype drag is

Fair Fw
ρair
ρw

⋅ Lratio
2⋅

Vair
Vw









2

⋅= 2000 N⋅
1.24
999







× 202×
5

6.9






2
×=

Fair 522N=
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Vm 0.125
m
s

=Vm Vinsect
Linsect

Lm
⋅= Vinsect Lratio⋅= 1.25

m
s

⋅
1
10

×=

Hence

ωinsect Linsect⋅

Vinsect

ωm Lm⋅

Vm
=

Vinsect Linsect⋅

νair

Vm Lm⋅

νair
=

For dynamic similarity the following dimensionless groups must be the same in the insect and m

Lratio
1
10

=Vinsect 1.25
m
s

⋅=ωinsect 50Hz=The given data is

νair 1.5 10 5−×
m2

s
⋅=ρair 1.24

kg

m3
⋅=From Appendix A (inc. Fig. A.3)

Solution

Find: Required model speed and oscillation frequency

Given: 10-times scale model of flying insect

Problem 7.52



Also ωm ωinsect
Vm

Vinsect
⋅

Linsect
Lm

⋅= ωinsect
Vm

Vinsect
⋅ Lratio⋅= 50 Hz⋅

0.125
1.25

×
1
10

×=

ωm 0.5 Hz⋅=

It is unlikely measurable wing lift can be measured at such a low wing frequency (unless the 
measured lift was averaged, using an integrator circuit).  Maybe try hot air for the model

For hot air try νhot 2 10 5−×
m2

s
⋅= instead of νair 1.5 10 5−×

m2

s
⋅=

Hence
Vinsect Linsect⋅

νair

Vm Lm⋅

νhot
=

Vm Vinsect
Linsect

Lm
⋅

νhot
νair
⋅= 1.25

m
s

⋅
1
10

×
2

1.5
×= Vm 0.167

m
s

=

Also ωm ωinsect
Vm

Vinsect
⋅

Linsect
Lm

⋅= ωinsect
Vm

Vinsect
⋅ Lratio⋅= 50 Hz⋅

0.167
1.25

×
1
10

×=

ωm 0.67 Hz⋅=

Hot air does not improve things much



Finally, try modeling in water νw 9 10 7−×
m2

s
⋅=

Hence
Vinsect Linsect⋅

νair

Vm Lm⋅

νw
=

Vm Vinsect
Linsect

Lm
⋅

νw
νair
⋅= 1.25

m
s

⋅
1
10

×
9 10 7−×

1.5 10 5−×
×= Vm 0.0075

m
s

=

Also ωm ωinsect
Vm

Vinsect
⋅

Linsect
Lm

⋅= ωinsect
Vm

Vinsect
⋅ Lratio⋅= 50 Hz⋅

0.0075
1.25

×
1
10

×=

ωm 0.03 Hz⋅=

This is even worse!  It seems the best bet is hot (very hot) air for the wind tunnel.
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km
1
2
ρ⋅ Am⋅ CD⋅=andkp

1
2
ρ⋅ Ap⋅ CD⋅=where

Fm km Vm
2⋅=andFp kp Vp

2⋅=or

Fm
1
2
ρ⋅ Am⋅ CD⋅ Vm

2⋅=andFp
1
2
ρ⋅ Ap⋅ CD⋅ Vp

2⋅=We have

The problem we have is that we do not know the area that can be used for the entire 
model or prototype (we only know their chords).

CD
Fp

1
2
ρ⋅ Ap⋅ Vp

2⋅
=

Fm
1
2
ρ⋅ Am⋅ Vm

2⋅
=

For high Reynolds number, the drag coefficient of model and prototype agree

Solution

Find: Plot of lift vs speed of model; also of prototype

Given: Data on model of aircraft

Problem 7.62



Note that the area ratio Ap/Am is given by (Lp/Lm )2 where Lp and Lm are length scales, 
e.g., chord lengths.  Hence

kp
Ap
Am

km⋅=
Lp
Lm









2

km⋅=
5

0.15






2
km⋅= 1110 km⋅=

We can use Excel's Trendline analysis to fit the data of the model to find km, and then 
find kp from the above equation to use in plotting the prototype lift vs velocity curve.  This 
is done in the corresponding Excel workbook

An alternative and equivalent approach would be to find the area-drag coefficient AmCD for the 
model and use this to find the area-drag coefficient ApCD for the prototype.



Problem 7.62 (In Excel)

Given: Data on model of aircraft

Find: Plot of lift vs speed of model; also of prototype

Solution

Vm (m/s) 10 15 20 25 30 35 40 45 50
F m (N) 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54.0

This data can be fit to

From the trendline, we see that

k m = N/(m/s)2

(And note that the power is 1.9954 or 2.00 to three signifcant
figures, confirming the relation is quadratic)

Also, k p = 1110 k m

Hence,

k p = 24.3 N/(m/s)2 F p = k pV m
2

0.0219

Fm
1
2
ρ⋅ Am⋅ CD⋅ Vm

2⋅= or Fm km Vm
2⋅=



V p (m/s) 75 100 125 150 175 200 225 250
F p (kN) 
(Trendline)

137 243 380 547 744 972 1231 1519

Lift vs Speed for an Airplane Model

y = 0.0219x1.9954

R2 = 0.9999
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Lift vs Speed for an Airplane Model
(Log-Log Plot)

y = 0.0219x1.9954

R2 = 0.9999
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Problem 7.64 (In Excel)

Given: Data on centrifugal water pump

Find: Π groups; plot pressure head vs flow rate for range of speeds

Solution
We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is: n  = 5
The number of primary dimensions is: r  = 3
The number of repeat parameters is: m  = r  = 3
The number of Π groups is: n  - m  = 2

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose ρ, g , d

M L t
ρ 1 -3
ω -1
D 1

Π GROUPS:
M L t M L t

∆p 1 -1 -2 Q 0 3 -1

Π1: a  = -1 Π2: a  = 0
b  = -2 b  = -1
c  = -2 c  = -3



The following Π groups from Example Problem 7.1 are not used:

M L t M L t
0 0 0 0 0 0

Π3: a  = 0 Π4: a  = 0
b  = 0 b  = 0
c  = 0 c  = 0

The data is

Q  (m3/hr) 0 100 150 200 250 300 325 350
∆p  (kPa) 361 349 328 293 230 145 114 59

ρ = 999 kg/m3

ω = 750 rpm
D  = 1 m (D  is not given; use D  = 1 m as a scale)

Q /(ωD 3) 0.00000 0.000354 0.000531 0.000707 0.000884 0.00106 0.00115 0.00124

∆p /(ρω2D 2) 0.0586 0.0566 0.0532 0.0475 0.0373 0.0235 0.0185 0.00957

Centifugal Pump Data and Trendline

y = -42371x2 + 13.399x + 0.0582
R2 = 0.9981

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

Q /(ωD 3)

∆p
/( ρ

ω
2 D

2 )

Pump Data
Parabolic Fit

Hence                                      and                            with Π1 = f(Π2). 
 
 
 
Based on the plotted data, it looks like the relation between Π1 and Π2 may be parabolic 
 
 
Hence 
 
 
 

221
D
p

ρω
∆

=Π 32 D
Q

ω
=Π

2

3322 





+






+=

∆

D
Qc

D
Qba

D
p

ωωρω



From the Trendline  analysis

a  = 0.0582
b  = 13.4
c  = -42371

and

Finally, data at 500 and 1000 rpm can be calculated and plotted

ω = 500 rpm

Q  (m3/hr) 0 25 50 75 100 150 200 250
∆p  (kPa) 159 162 161 156 146 115 68 4

ω = 1000 rpm

Q  (m3/hr) 0 25 50 100 175 250 300 350
∆p  (kPa) 638 645 649 644 606 531 460 374

 


















+






+=∆
2

33
22
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ωω
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Q 0.396
m3

min
=Q

Recrit π⋅ ν⋅ D⋅

4
=orRecrit

Q
π
4

D2⋅

D⋅

ν
=Hence

Lturb 25 D⋅ 40 D⋅−=or, for turbulent,Llaminar 0.06 Recrit⋅ D⋅=

Q
π
4

D2⋅ V⋅=Recrit 2300=Re
V D⋅
ν

=

The governing equations are

ν 1.46 10 5−⋅
m2

s
⋅=From Fig. A.3

D 0.25 m⋅=The given data is

Solution

Find: Volume flow rate for turbulence; entrance length

Given: Data on air flow in duct

Problem 8.2



Llaminar 0.06 Recrit⋅ D⋅= Llaminar 34.5m=

or, for turbulent, Lmin 25 D⋅= Lmin 6.25m=

Lmax 40 D⋅= Lmax 10m=



Vair

0.0334
m2

s
⋅

D
=Vair

2300 1.45× 10 5−×
m2

s
⋅

D
=Hence for air

V
Recrit ν⋅

D
=For the average velocity

Recrit 2300=Re
V D⋅
ν

=The governing equations are

νw 1.14 10 6−×
m2

s
⋅=ρw 999

kg

m3
⋅=

νair 1.45 10 5−×
m2

s
⋅=ρair 1.23

kg

m3
⋅=From Tables A.8 and A.10

Solution

Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Given: That transition to turbulence occurs at about Re = 2300

Problem 8.3



These results are plotted in the associated Excel workbook

mw 2.06
kg
m s⋅
⋅ D×=mw ρw Qw⋅=

mair 0.0322
kg
m s⋅
⋅ D×=mair ρair Qair⋅=

Finally, the mass flow rates are obtained from volume flow rates

For water Qw 0.00206
m2

s
⋅ D×=Qw

π
4

2300× 1.14× 10 6−⋅
m2

s
⋅ D⋅=

Qair 0.0262
m2

s
⋅ D×=Qair

π
4

2300× 1.45× 10 5−⋅
m2

s
⋅ D⋅=Hence for air

Q A V⋅=
π
4

D2⋅ V⋅=
π
4

D2⋅
Recrit ν⋅

D
⋅=

π Recrit⋅ ν⋅

4
D⋅=

For the volume flow rates

Vw

0.00262
m2

s
⋅

D
=Vw

2300 1.14× 10 6−×
m2

s
⋅

D
=For water



Problem 8.3 (In Excel)

Given: That transition to turbulence occurs at about Re  = 2300

Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution

The relations needed are

From Tables A.8 and A.10 the data required is

ρair = 1.23 kg/m3 νair = 1.45E-05 m2/s

ρw = 999 kg/m3 νw = 1.14E-06 m2/s

D  (m) 0.0001 0.001 0.01 0.05 1.0 2.5 5.0 7.5 10.0
V air (m/s) 333.500 33.350 3.335 0.667 3.34E-02 1.33E-02 6.67E-03 4.45E-03 3.34E-03
V w (m/s) 26.2 2.62 0.262 5.24E-02 2.62E-03 1.05E-03 5.24E-04 3.50E-04 2.62E-04

Q air (m
3/s) 2.62E-06 2.62E-05 2.62E-04 1.31E-03 2.62E-02 6.55E-02 1.31E-01 1.96E-01 2.62E-01

Q w (m3/s) 2.06E-07 2.06E-06 2.06E-05 1.03E-04 2.06E-03 5.15E-03 1.03E-02 1.54E-02 2.06E-02
m air (kg/s) 3.22E-06 3.22E-05 3.22E-04 1.61E-03 3.22E-02 8.05E-02 1.61E-01 2.42E-01 3.22E-01
m w (kg/s) 2.06E-04 2.06E-03 2.06E-02 1.03E-01 2.06E+00 5.14E+00 1.03E+01 1.54E+01 2.06E+01

Recrit 2300= V
Recrit ν⋅

D
= Q

π Recrit⋅ ν⋅

4
D⋅= mrate ρ Q⋅=



Average Velocity for Turbulence in a Pipe

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

V
 (m

/s
)

Velocity (Air)
Velocity (Water)

Flow Rate for Turbulence in a Pipe

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

Q
 (m

3 /s
)

Flow Rate (Air)
Flow Rate (Water)



Mass Flow Rate for Turbulence in a Pipe

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

m
flo

w
 (k

g/
s)

Mass Flow Rate (Air)
Mass Flow Rate (Water)



Q1 0.0786
m3

min
=Q1

Recrit π⋅ ν⋅ D1⋅

4
=

Then the flow rates for turbulence to begin in each section of pipe are 

Q
Re π⋅ ν⋅ D⋅

4
=orRe

V D⋅
ν

=
Q

π
4
π⋅ D2⋅

D
ν
⋅=

Writing the Reynolds number as a function of flow rate

Recrit 2300=The critical Reynolds number is

D3 10 mm⋅=D2 25 mm⋅=D1 50 mm⋅=L 1 m⋅=The given data is

ν 1.45 10 5−×
m2

s
⋅=From Table A.10

Solution

Find: Flow rates for turbuence to start; which 
sections have fully developed flow

Given: Pipe geometry

Problem 8.4



Pipes 1 and 2 are laminar, not fully developed.

Llaminar 1.38m=Llaminar 0.06
4 Q3⋅

π ν⋅ D2⋅







⋅ D2⋅=

Llaminar 1.38m=Llaminar 0.06
4 Q3⋅

π ν⋅ D1⋅







⋅ D1⋅=For pipes 1 and 2

Fully developed flow

Lmax 0.4m=Lmax 40 D3⋅=

Lmin 0.25m=Lmin 25 D3⋅=or, for turbulent,

Not fully developed flowIf the flow is still laminar

Llaminar 1.38m=Llaminar 0.06 Re3⋅ D3⋅=

Re3 2300=Re3
4 Q3⋅

π ν⋅ D3⋅
=For pipe 3

For the smallest pipe transitioning to turbulence (Q3)

Hence, smallest pipe becomes turbulent first, then second, then the largest.

Q3 0.0157
m3

min
=Q3

Recrit π⋅ ν⋅ D3⋅

4
=

Q2 0.0393
m3

min
=Q2

Recrit π⋅ ν⋅ D2⋅

4
=



Pipe 1 (Laminar) is not fully 
developed; pipe 3 
(turbulent) is fully developed

L3max 0.4m=L3max 40 D3⋅=

L3min 0.25m=L3min 25 D3⋅=

L1 3.45m=L1 0.06
4 Q2⋅

π ν⋅ D1⋅







⋅ D1⋅=For pipes 1 and 3

Fully developed flow

Lmax 1m=Lmax 40 D2⋅=

Lmin 0.625m=Lmin 25 D2⋅=or, for turbulent,

Not fully developed flowIf the flow is still laminar

Llaminar 3.45m=Llaminar 0.06 Re2⋅ D2⋅=

Re2 2300=Re2
4 Q2⋅

π ν⋅ D2⋅
=For pipe 2

For the middle pipe transitioning to turbulence (Q2)



Pipes 2 and 3 (turbulent) are 
fully developed

L3max 0.4m=L3max 40 D3⋅=

L3min 0.25m=L3min 25 D3⋅=

L2max 1m=L2max 40 D2⋅=

L2min 0.625m=L2min 25 D2⋅=

For pipes 2 and 3

Not fully developed flow

Lmax 2m=Lmax 40 D1⋅=

Lmin 1.25m=Lmin 25 D1⋅=or, for turbulent,

Not fully developed flowIf the flow is still laminar

Llaminar 6.9m=Llaminar 0.06 Re1⋅ D1⋅=

Re1 2300=Re1
4 Q1⋅

π ν⋅ D1⋅
=For pipe 1

For the large pipe transitioning to turbulence (Q1)
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Problem 8.18

Given: Laminar velocity profile of power-law fluid flow between parallel plates

Find: Expression for flow rate; from data determine the type of fluid

Solution

The velocity profile is u
h
k
∆p
L

⋅







1
n n h⋅

n 1+
⋅ 1

y
h





n 1+
n

−











⋅=

The flow rate is then Q w
h−

h
yu

⌠

⌡

d⋅= or, because the flow is symmetric

Q 2 w⋅
0

h
yu

⌠

⌡

d⋅=



The integral is computed as

y1
y
h





n 1+
n

−

⌠




⌡

d y 1
n

2 n⋅ 1+
y
h





2 n⋅ 1+
n

⋅−











⋅=

Using this with the limits

Q 2 w⋅
h
k
∆p
L

⋅







1
n

⋅
n h⋅

n 1+
⋅ h⋅ 1

n
2 n⋅ 1+

1( )

2 n⋅ 1+
n⋅−









⋅=

Q
h
k
∆p
L

⋅







1
n 2 n⋅ w⋅ h2⋅

2 n⋅ 1+
⋅=



Problem 8.18 (In Excel)

Given: Laminar velocity profile of power-law fluid flow between parallel plates

Find: Expression for flow rate; from data determine the type of fluid

Solution

The data is

∆p  (kPa) 10 20 30 40 50 60 70 80 90 100
Q  (L/min) 0.451 0.759 1.01 1.15 1.41 1.57 1.66 1.85 2.05 2.25

This must be fitted to Q
h
k
∆p
L

⋅








1
n 2 n⋅ w⋅ h2⋅

2 n⋅ 1+
⋅= or Q k ∆p

1
n⋅=



We can fit a power curve to the data

Hence 1/n  = 0.677 n  = 1.48

Flow Rate vs Applied Pressure for a
Non-Newtonian Fluid

y = 0.0974x0.677

R2 = 0.997

0.1

1.0

10.0

10 100∆p  (kPa)

Q
 (L

/m
in

)

Data
Power Curve Fit
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Problem 8.21

Given: Properties of two fluids flowing between parallel plates; upper plate has velocity of 5 m/s

Find: Velocity at the interface

Solution

Given data U 5
m
s

⋅= µ2 3 µ1⋅= (Lower fluid is fluid 1; upper is fluid 2)

Following the analysis of Section 8-2, analyse the forces on a differential CV of either fluid

The net force is zero for steady flow, so

τ
dτ
dy

dy
2

⋅+ τ
dτ
dy

dy
2

⋅−







−







dx⋅ dz⋅ p
dp
dx

dx
2

⋅− p
dp
dx

dx
2

⋅+





−





dy⋅ dz⋅+ 0=

Simplifying



c2 0=Hence

µ1 c1⋅ µ2 c3⋅=

U c3 2⋅ h⋅ c4+=

c1 h⋅ c2+ c3 h⋅ c4+=

0 c2=Using these four BCs

(4)µ1
du1
dy

⋅ µ2
du2
dy

⋅=y h=

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

(3)u2 U=y 2 h⋅=

(2)u1 u2=y h=

(1)u1 0=y 0=We need four BCs.  Three are obvious

u2 c3 y⋅ c4+=u1 c1 y⋅ c2+=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

µ
2y

ud

d

2
⋅ 0=so for each fluiddτ

dy
dp
dx

= 0=



Eliminating c4 from the second and third equations

c1 h⋅ U− c3− h⋅=

and µ1 c1⋅ µ2 c3⋅=

Hence c1 h⋅ U− c3− h⋅=
µ1
µ2

− h⋅ c1⋅=

c1
U

h 1
µ1
µ2

+






⋅

=

Hence for fluid 1 (we do not need to complete the analysis for fluid 2)

u1
U

h 1
µ1
µ2

+






⋅

y⋅=

Evaluating this at y = h, where u1 = uinterface

uinterface

5
m
s

⋅

1
1
3

+





=

uinterface 3.75
m
s

=
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The net force is zero for steady flow, so

Following the analysis of Section 8-2, analyse the forces on a differential CV of either fluid

(Lower fluid is fluid 1; upper is fluid 2)

µ2 1
N s⋅

m2
=µ2 2 µ1⋅=µ1 0.5

N s⋅

m2
⋅=

h 2.5 mm⋅=k
dp
dx

= 1000−
Pa
m

⋅=Given data

Solution

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Problem 8.23



c2 c4=

0
k

2 µ1⋅
h2⋅ c1 h⋅− c2+=Using these four BCs

(4)µ1
du1
dy

⋅ µ2
du2
dy

⋅=y 0=

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

(3)u2 0=y h=

(2)u1 u2=y 0=

(1)u1 0=y h−=We need four BCs.  Three are obvious

For convenience the origin of coordinates is placed at the centerline

u2
k

2 µ2⋅
y2⋅ c3 y⋅+ c4+=u1

k
2 µ1⋅

y2⋅ c1 y⋅+ c2+=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

µ
2y

ud

d

2
⋅ k=so for each fluiddτ

dy
dp
dx

= k=

Simplifying

τ
dτ
dy

dy
2

⋅+ τ
dτ
dy

dy
2

⋅−







−







dx⋅ dz⋅ p
dp
dx

dx
2

⋅− p
dp
dx

dx
2

⋅+





−





dy⋅ dz⋅+ 0=



0
k

2 µ2⋅
h2⋅ c3 h⋅+ c4+=

µ1 c1⋅ µ2 c3⋅=

Hence, after some algebra

c1
k h⋅

2 µ1⋅

µ2 µ1−( )
µ2 µ1+( )⋅= c2 c4=

k h2⋅

µ2 µ1+
−= c3

k h⋅
2 µ2⋅

µ2 µ1−( )
µ2 µ1+( )⋅=

The velocity distributions are then

u1
k

2 µ1⋅
y2 y h⋅

µ2 µ1−( )
µ2 µ1+( )⋅+







⋅
k h2⋅

µ2 µ1+
−=

u2
k

2 µ2⋅
y2 y h⋅

µ2 µ1−( )
µ2 µ1+( )⋅+







⋅
k h2⋅

µ2 µ1+
−=

Evaluating either velocity at y =  0, gives the velocity at the interface

uinterface
k h2⋅

µ2 µ1+
−= uinterface 4.17 10 3−×

m
s

=

The plots of these velocity distributions are shown in the associated Excel workbook, as is the 
determination of the maximum velocity.

From Excel umax 4.34 10 3−×
m
s

⋅=



Problem 8.23 (In Excel)

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution

The data is

k  = -1000 Pa/m
h  = 2.5 mm
µ1 = 0.5 N.s/m2

µ2 = 1.0 N.s/m2

The velocity distribution is

u1
k

2 µ1⋅
y2 y h⋅

µ2 µ1−( )
µ2 µ1+( )⋅+







⋅
k h2⋅

µ2 µ1+
−=

u2
k

2 µ2⋅
y2 y h⋅

µ2 µ1−( )
µ2 µ1+( )⋅+







⋅
k h2⋅

µ2 µ1+
−=



y  (mm) u 1 x 103 (m/s) u 2 x 103 (m/s) The lower fluid has the highest velocity
-2.50 0.000 NA We can use Solver  to find the maximum
-2.25 0.979 NA (Or we could differentiate to find the maximum)
-2.00 1.83 NA
-1.75 2.56 NA y  (mm) u max x 103 (m/s)

-1.50 3.17 NA -0.417 4.34
-1.25 3.65 NA
-1.00 4.00 NA
-0.75 4.23 NA
-0.50 4.33 NA
-0.25 4.31 NA
0.00 4.17 4.17
0.25 NA 4.03
0.50 NA 3.83
0.75 NA 3.57
1.00 NA 3.25
1.25 NA 2.86
1.50 NA 2.42
1.75 NA 1.91
2.00 NA 1.33
2.25 NA 0.698
2.50 NA 0.000
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Problem 8.24

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot

Solution

From Eq. 8.8, the velocity distribution isu
U y⋅

a
a2

2 µ⋅ x
p∂

∂









⋅
y
a





2 y
a

−








⋅+=

The shear stress is τyx µ
du
dy
⋅= µ

U
a

⋅
a2

2 x
p∂

∂









⋅ 2
y

a2
⋅

1
a

−







⋅+=

(a)   For τyx = 0 at y = a 0 µ
U
a

⋅
a
2 x

p∂

∂
⋅+=

x
p∂

∂

2 U⋅ µ⋅

a2
−=



The velocity distribution is then u
U y⋅

a
a2

2 µ⋅

2 U⋅ µ⋅

a2
⋅

y
a





2 y
a

−








⋅−=

u
U

2
y
a
⋅

y
a





2
−=

(b)   For τyx = 0 at y = 0 0 µ
U
a

⋅
a
2 x

p∂

∂
⋅−=

x
p∂

∂

2 U⋅ µ⋅

a2
=

The velocity distribution is then u
U y⋅

a
a2

2 µ⋅

2 U⋅ µ⋅

a2
⋅

y
a





2 y
a

−








⋅+=

u
U

y
a





2
=

The velocity distributions are plotted in the associated Excel workbook



Problem 8.24 (In Excel)

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot

Solution

(a)  For zero shear stress at upper plate u
U

2
y
a
⋅

y
a







2
−=

(b)  For zero shear stress at lower plate u
U

y
a







2
=



y /a (a) u /U (b) u /U
0.0 0.000 0.000
0.1 0.190 0.010
0.2 0.360 0.040
0.3 0.510 0.090
0.4 0.640 0.160
0.5 0.750 0.250
0.6 0.840 0.360
0.7 0.910 0.490
0.8 0.960 0.640
0.9 0.990 0.810
1.0 1.00 1.000
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(2)u1 u2=y h=

(1)u1 0=y 0=We need four BCs.  Two are obvious

u2
ρ g⋅ sin θ( )⋅

2 µ2⋅
− y2⋅ c3 y⋅+ c4+=u1

ρ g⋅ sin θ( )⋅

2 µ1⋅
− y2⋅ c1 y⋅+ c2+=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

2y
ud

d

2 ρ g⋅ sin θ( )⋅

µ
−=

From Example Problem 5.9 (or Exanple Problem 8.3 with g replaced with gsinθ), 
a free body analysis leads to (for either fluid)

(The lower fluid is designated fluid 1, the upper fluid 2)

ν2 2 ν1⋅=ν1 2 10 4−×
m2

s
⋅=θ 30 deg⋅=h 2.5 mm⋅=Given data

Solution

Find: Velocity at interface; velocity at free surface; plot

Given: Data on flow of liquids down an incline

Problem 8.29



The velocity distributions are then

c4 3 ρ⋅ g⋅ sin θ( )⋅ h2⋅
µ2 µ1−( )
2 µ1⋅ µ2⋅

⋅=c3
2 ρ⋅ g⋅ sin θ( )⋅ h⋅

µ2
=

c2 0=c1
2 ρ⋅ g⋅ sin θ( )⋅ h⋅

µ1
=

Hence, after some algebra

ρ− g⋅ sin θ( )⋅ h⋅ µ1 c1⋅+ ρ− g⋅ sin θ( )⋅ h⋅ µ2 c3⋅+=

ρ− g⋅ sin θ( )⋅ 2⋅ h⋅ µ2 c3⋅+ 0=

ρ g⋅ sin θ( )⋅

2 µ1⋅
− h2⋅ c1 h⋅+ c2+

ρ g⋅ sin θ( )⋅

2 µ2⋅
− h2⋅ c3 h⋅+ c4+=

c2 0=Using these four BCs

(4)µ1
du1
dy

⋅ µ2
du2
dy

⋅=y h=

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

(3)µ2
du2
dy

⋅ 0=y 2 h⋅=

The third BC comes from the fact that there is no shear stress at the free surface 



u1
ρ g⋅ sin θ( )⋅

2 µ1⋅
4 y⋅ h⋅ y2−( )⋅=

u2
ρ g⋅ sin θ( )⋅

2 µ2⋅
3 h2⋅

µ2 µ1−( )
µ1

⋅ 4 y⋅ h⋅+ y2−






⋅=

Rewriting in terms of ν1 and ν2 (ρ is constant and equal for both fluids)

u1
g sin θ( )⋅

2 ν1⋅
4 y⋅ h⋅ y2−( )⋅=

u2
g sin θ( )⋅

2 ν2⋅
3 h2⋅

ν2 ν1−( )
ν1

⋅ 4 y⋅ h⋅+ y2−






⋅=

(Note that these result in the same expression if ν1 = ν2, i.e., if we have one fluid)

Evaluating either velocity at y =  h, gives the velocity at the interface

uinterface
3 g⋅ h2⋅ sin θ( )⋅

2 ν1⋅
= uinterface 0.23

m
s

=

Evaluating u2 at y = 2h gives the velocity at the free surface

ufreesurface g h2⋅ sin θ( )⋅
3 ν2⋅ ν1+( )
2 ν1⋅ ν2⋅

⋅= ufreesurface 0.268
m
s

=

The velocity distributions are plotted in the associated Excel workbook



Problem 8.29 (In Excel)

Given: Data on flow of liquids down an incline

Find: Velocity at interface; velocity at free surface; plot

Solution

h  = 2.5 mm
θ = 30 deg

ν1 = 2.00E-04 m2/s

ν2 = 4.00E-04 m2/s

y  (mm) u 1 (m/s) u 2 (m/s)

0.000 0.000
0.250 0.0299
0.500 0.0582
0.750 0.0851
1.000 0.110
1.250 0.134
1.500 0.156
1.750 0.177
2.000 0.196
2.250 0.214
2.500 0.230 0.230
2.750 0.237
3.000 0.244
3.250 0.249
3.500 0.254
3.750 0.259
4.000 0.262
4.250 0.265
4.500 0.267
4.750 0.268
5.000 0.268

Velocity Distributions down an Incline
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u1
g sin θ( )⋅

2 ν1⋅
4 y⋅ h⋅ y2−( )⋅=

u2
g sin θ( )⋅

2 ν2⋅
3 h2⋅

ν2 ν1−( )
ν1

⋅ 4 y⋅ h⋅+ y2−






⋅=
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Problem 8.39 (In Excel)

Given: Expression for efficiency

Find: Plot; find flow rate for maximum efficiency; explain curve

Solution

q η
0.00 0.0%
0.05 7.30%
0.10 14.1%
0.15 20.3%
0.20 25.7%
0.25 30.0%
0.30 32.7%
0.35 33.2%
0.40 30.0%
0.45 20.8%
0.50 0.0%

For the maximum efficiency point we can use Solver  (or alternatively differentiate)

q η The efficiency is zero at zero flow rate because there is no output at all
0.333 33.3% The efficiency is zero at maximum flow rate ∆p  = 0 so there is no output

The efficiency must therefore peak somewhere between these extremes

Efficiency of a Viscous Pump
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I α⋅ I
dω
dt

⋅=
µ D⋅ ω⋅

2 δ⋅
− π⋅ D⋅ L⋅

D
2

⋅=
µ π⋅ D3⋅ L⋅

4 δ⋅
− ω⋅=Hence

where U and ω are the instantaneous linear and angular velocities.

τ µ
U
δ
⋅=

µ D⋅ ω⋅

2 δ⋅
=As in Example Problem 8.2 the stress is given by

where α is the angular acceleration and τ is the viscous stress, and A π D⋅ L⋅=  is the 
surface area of the bearing

I α⋅ Torque= τ− A⋅
D
2

⋅=

The equation of motion for the slowing bearing is

ωf 10 rpm⋅=ωi 60 rpm⋅=µ 0.1
N s⋅

m2
⋅=

δ 1 mm⋅=I 0.055 kg⋅ m2⋅=L 1 m⋅=D 50 mm⋅=The given data is

Solution

Find: Time for the bearing to slow to 10 rpm

Given: Data on a journal bearing

Problem 8.41



Separating variables

dω
ω

µ π⋅ D3⋅ L⋅
4 δ⋅ I⋅

− dt⋅=

Integrating and using IC ω = ω0

ω t( ) ωi e

µ π⋅ D3⋅ L⋅
4 δ⋅ I⋅

− t⋅
⋅=

The time to slow down to ωf = 10 rpm is obtained from solving

ωf ωi e

µ π⋅ D3⋅ L⋅
4 δ⋅ I⋅

− t⋅
⋅=

so t
4 δ⋅ I⋅

µ π⋅ D3⋅ L⋅
− ln

ωf
ωi







⋅= t 10s=
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(1)V R I⋅=For an electrical resistor

ρ 2.11 990×
kg

m3
⋅= 2090

kg

m3
⋅=µ 0.25

N s⋅

m2
⋅=Castor oil:

ρ 0.82 990×
kg

m3
⋅= 812

kg

m3
⋅=µ 1.1 10 3−×

N s⋅

m2
⋅=Kerosene:

From Fig. A.2 and Table A.2

D 0.3 mm⋅=L 100 mm⋅=The given data is

Solution

Find: "Resistance" of tube; maximum flow rate and pressure difference for which electrical anal
holds for (a) kerosine and (b) castor oil

Given: Data on a tube

Problem 8.49



∆pmax
128 µ⋅ L⋅

π D4⋅
Qmax⋅=

32 2300⋅ µ2⋅ L⋅

ρ D3⋅
=

The corresponding maximum pressure gradient is then obtained from Eq. (2)

Qmax
2300 µ⋅ π⋅ D⋅

4 ρ⋅
=or

ρ
Q

π
4

D2⋅

⋅ D⋅

µ
2300<

Writing this constraint in terms of flow rate

ρ V⋅ D⋅
µ

2300<orRe 2300<The analogy is only valid for

The "resistance" of a tube is directly proportional to fluid viscosity and pipe length, and strongly
dependent on the inverse of diameter

R
128 µ⋅ L⋅

π D4⋅
=

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop ∆p.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

(2)∆p
128 µ⋅ L⋅

π D4⋅
Q⋅=or

Q
π ∆p⋅ D4⋅

128 µ⋅ L⋅
=

The governing equation for the flow rate for laminar flow in a tube is Eq. 8.13c



(a)  For kerosine Qmax 7.34 10 7−×
m3

s
= ∆pmax 406kPa=

(b)  For castor oil Qmax 6.49 10 5−×
m3

s
= ∆pmax 8156MPa=

The analogy fails when Re > 2300 because the flow becomes turbulent, and "resistance" to flow 
then no longer linear with flow rate
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(1)u2 0=r
D
2

=We need four BCs.  Two are obvious

u2
r2

4 µ2⋅

∆p
L

⋅
c3
µ2

ln r( )⋅+ c4+=u1
r2

4 µ1⋅

∆p
L

⋅
c1
µ1

ln r( )⋅+ c2+=

Applying this to fluid 1 (inner fluid) and fluid 2 (outer fluid)

u
r2

4 µ⋅ x
p∂

∂









⋅
c1
µ

ln r( )⋅+ c2+=

From Section 8-3 for flow in a pipe, Eq. 8.11 can be applied to either fluid

µ2 1.5
N s⋅

m2
⋅=µ1 1

N s⋅

m2
⋅=

∆p 10− kPa⋅=L 10 m⋅=D 5 mm⋅=Given data

Solution

Find: Velocity distribution; plot

Given: Data on tube, applied pressure, and on two fluids in annular flow

Problem 8.55



c2
D2 ∆p⋅
64 L⋅

−
µ2 3 µ1⋅+( )
µ1 µ2⋅

=(To avoid singularity)c1 0=

Hence, after some algebra

D
8

∆p
L

⋅
4 c1⋅

D
+

D
8

∆p
L

⋅
4 c3⋅

D
+=

0r

c1
µ1 r⋅

lim
→

0=

D
4







2

4 µ1⋅

∆p
L

⋅
c1
µ1

ln
D
4







⋅+ c2+

D
4







2

4 µ2⋅

∆p
L

⋅
c3
µ2

ln
D
4







⋅+ c4+=

D
2







2

4 µ2⋅

∆p
L

⋅
c3
µ2

ln
D
2







⋅+ c4+ 0=Using these four BCs

(4)µ1
du1
dr

⋅ µ2
du2
dr

⋅=r
D
4

=

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

(3)
du1
dr

0=r 0=

The third BC comes from the fact that the axis is a line of symmetry

(2)u1 u2=r
D
4

=



c3 0= c4
D2 ∆p⋅

16 L⋅ µ2⋅
−=

The velocity distributions are then

u1
∆p

4 µ1⋅ L⋅
r2

D
2







2 µ2 3 µ1⋅+( )
4 µ2⋅

⋅−






⋅=

u2
∆p

4 µ2⋅ L⋅
r2

D
2







2
−









⋅=

(Note that these result in the same expression if µ1 = µ2, i.e., if we have one fluid)

Evaluating either velocity at r =  D/4 gives the velocity at the interface

uinterface
3 D2⋅ ∆p⋅

64 µ2⋅ L⋅
−= uinterface 7.81 10 4−×

m
s

=

Evaluating u1 at r = 0 gives the maximum velocity

umax
D2 ∆p⋅ µ2 3 µ1⋅+( )⋅

64 µ1⋅ µ2⋅ L⋅
−= umax 1.17 10 3−×

m
s

=

The velocity distributions are plotted in the associated Excel workbook



Problem 8.55 (In Excel)

Given: Data on tube, applied pressure, and on two fluids in annular flow

Find: Velocity distribution; plot

Solution

L  = 10 m
D  = 5 mm
µ1 = 1 N.s/m2

µ2 = 1.5 N.s/m2

∆p  = -10 kPa

r  (mm) u 1 (m/s) u 2 (m/s)

0.00 1.172
0.13 1.168
0.25 1.156
0.38 1.137
0.50 1.109
0.63 1.074
0.75 1.031
0.88 0.980
1.00 0.922
1.13 0.855
1.25 0.781 0.781
1.38 0.727
1.50 0.667
1.63 0.602
1.75 0.531
1.88 0.456
2.00 0.375
2.13 0.289
2.25 0.198
2.38 0.102
2.50 0.000

Velocity Distributions in a Tube
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u1
∆p

4 µ1⋅ L⋅
r2

D
2







2 µ2 3 µ1⋅+( )
4 µ2⋅

⋅−






⋅=

u2
∆p

4 µ2⋅ L⋅
r2

D
2







2
−









⋅=









Because both flows are at the same nominal flow rate, the higher pressure drop must 
correspond to the turbulent flow, because, as indicated in Section 8-4, turbulent flows 
experience additional stresses.  Also indicated in Section 8-4 is that for both flows the shear 
stress varies from zero at the centerline to the maximums computed above at the walls.

τw2 82.5Pa=τw2
D
4

−
x

p2
∂

∂
⋅=

τw1 33.8Pa=τw1
D
4

−
x

p1
∂

∂
⋅=

Hence for the two cases

τw
R
2

−
x

p∂

∂
⋅=

D
4

−
x

p∂

∂
⋅=

From Section 8-4, a force balance on a section of fluid leads to

D 30 mm⋅=
x

p2
∂

∂
11−

kPa
m

⋅=
x

p1
∂

∂
4.5−

kPa
m

⋅=Given data

Solution

Find: Which pressure drop is laminar flow, which turbulent 

Given: Data on pressure drops in flow in a tube

Problem 8.59
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Problem 8.61 (In Excel)

Given: Data on mean velocity in fully developed turbulent flow

Find: Trendlines for each set; values of n  for each set; plot

Solution

y/R u/U y/R u/U Equation 8.22 is
0.898 0.996 0.898 0.997
0.794 0.981 0.794 0.998
0.691 0.963 0.691 0.975
0.588 0.937 0.588 0.959
0.486 0.907 0.486 0.934
0.383 0.866 0.383 0.908
0.280 0.831 0.280 0.874
0.216 0.792 0.216 0.847
0.154 0.742 0.154 0.818
0.093 0.700 0.093 0.771
0.062 0.650 0.062 0.736
0.041 0.619 0.037 0.690
0.024 0.551



Applying the Trendline  analysis to each
set of data:

At Re  = 50,000 At Re  = 500,000

u/U  = 1.017(y/R )0.161 u/U  = 1.017(y/R )0.117

with R 2 = 0.998 (high confidence) with R 2 = 0.999 (high confidence)

Hence 1/n  = 0.161 Hence 1/n  = 0.117
n  = 6.21 n  = 8.55

Both sets of data tend to confirm the validity of Eq. 8.22

Mean Velocity Distributions in a Pipe
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Problem 8.67

Given: Definition of kinetic energy correction coefficient α

Find: α for the power-law velocity profile; plot

Solution

Equation 8.26b is α

Aρ V3⋅
⌠
⌡

d

mrate Vav
2⋅

=

where V is the velocity, mrate is the mass flow rate and Vav is the average velocity

For the power-law profile (Eq. 8.22)
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For the mass flow rate mrate ρ π⋅ R2.⋅ Vav⋅=

Hence the denominator of Eq. 8.26b is

mrate Vav
2⋅ ρ π⋅ R2⋅ Vav

3⋅=



We next must evaluate the numerator of Eq. 8.26b
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Putting all these results togetherα
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To plot α versus ReVav we use the following parametric relations

n 1.7− 1.8 log Reu( )⋅+= (Eq. 8.23)
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= (Eq. 8.24)
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3 2 n2⋅
3 n+( ) 3 2 n⋅+( )⋅

⋅= (Eq. 8.27)

A value of ReU leads to a value for n; this leads to a value for Vav/U;
these lead to a value for ReVav and α

The plots of α, and the error in assuming α = 1, versus ReVav are shown in the associated Excel 
workbook



Problem 8.67 (In Excel)

Given: Definition of kinetic energy correction coefficient α

Find: α for the power-law velocity profile; plot

Solution

Re U n V av/U Re Vav α α  Error
1.00E+04 5.50 0.776 7.76E+03 1.09 8.2%
2.50E+04 6.22 0.797 1.99E+04 1.07 6.7%
5.00E+04 6.76 0.811 4.06E+04 1.06 5.9%
7.50E+04 7.08 0.818 6.14E+04 1.06 5.4%
1.00E+05 7.30 0.823 8.23E+04 1.05 5.1%
2.50E+05 8.02 0.837 2.09E+05 1.05 4.4%
5.00E+05 8.56 0.846 4.23E+05 1.04 3.9%
7.50E+05 8.88 0.851 6.38E+05 1.04 3.7%
1.00E+06 9.10 0.854 8.54E+05 1.04 3.5%
2.50E+06 9.82 0.864 2.16E+06 1.03 3.1%

A value of Re U leads to a value for n ; 5.00E+06 10.4 0.870 4.35E+06 1.03 2.8%
this leads to a value for V av/U ; 7.50E+06 10.7 0.873 6.55E+06 1.03 2.6%
these lead to a value for Re Vav and α 1.00E+07 10.9 0.876 8.76E+06 1.03 2.5%

n 1.7− 1.8 log Reu( )⋅+= (Eq. 8.23)
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⋅= (Eq. 8.27)
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hlT 589
J

kg
=hlT

p1 p2−

ρ
=Equation 8.29 becomes

V1 V2=z1 z2=

(Gage pressures)p2 0 kPa⋅=p1 588 kPa⋅=Horizontal pipe data

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hlT=

The governing equation between inlet (1) and exit (2) is

ρ 999
kg

m3
⋅=D 50 mm⋅=Given or available data

Solution

Find: Head loss for horizontal pipe; inlet pressure for different alignments; slope for 
gravity feed

Given: Data on flow in a pipe

Problem 8.68



z2 60− m=z2 z1
hlT
g

−=Equation 8.29 becomes

(Gage)p1 0 kPa⋅=

For a gravity feed with the same flow rate, the head loss will be the same as above; in addition 
we have the following new data

p1 343kPa=p1 p2 ρ g⋅ z2 z1−( )⋅+ ρ hlT⋅+=Equation 8.29 becomes

z2 25− m⋅=z1 0 m⋅=

For an declined pipe with the same flow rate, the head loss will be the same as above; in 
addition we have the following new data

p1 833kPa=p1 p2 ρ g⋅ z2 z1−( )⋅+ ρ hlT⋅+=Equation 8.29 becomes

z2 25 m⋅=z1 0 m⋅=

For an inclined pipe with the same flow rate, the head loss will be the same as above; in addition
we have the following new data
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Problem 8.78 (In Excel)

Given: Data on mean velocity in fully developed turbulent flow

Find: Best fit value of du /dy  from plot

Solution

y/R u/U
0.0082 0.343
0.0075 0.318
0.0071 0.300 Using Excel 's built-in Slope  function:
0.0061 0.264
0.0055 0.228 d (u/U )/d (y/R ) = 39.8
0.0051 0.221
0.0041 0.179
0.0034 0.152
0.0030 0.140

Mean Velocity Distribution in a Pipe
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V1 V2= V=For a constant area pipe

(8.34)hl f
L
D
⋅

V2

2
⋅=

(8.29)
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2
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− hl=

The governing equations between inlet (1) and exit (2) are

µ 4 10 4−⋅
N s⋅

m2
⋅=ρ 999

kg

m3
⋅=From Appendix A

mrate 0.075
kg
s

⋅=
∆p
L

0.075
Pa
m

⋅=D 75 mm⋅=Given data

Solution

Find: Friction factor; Reynolds number; if flow is laminar or turbulent

Given: Data on flow in a pipe

Problem 8.80



Hence Eqs. 8.29 and 8.34 become

f
2 D⋅

L V2⋅

p1 p2−( )
ρ

⋅=
2 D⋅

ρ V2⋅

∆p
L

⋅=

For the velocity V
mrate

ρ
π
4
⋅ D2⋅

= V 0.017
m
s

=

Hence f
2 D⋅

ρ V2⋅

∆p
L

⋅= f 0.039=

The Reynolds number is Re
ρ V⋅ D⋅
µ

= Re 3183=

This Reynolds number indicates the flow is Turbulent

(From Eq. 8.37, at this Reynolds number the friction factor for a smooth pipe is f = 0.043; the 
friction factor computed above thus indicates that, within experimental error, the flow correspon
to trubulent flow in a smooth pipe)



Problem 8.81 (In Excel)

Solution

Using the add-in function Friction factor  from the CD

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.04

Re
500 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280

1.00E+03 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640
1.50E+03 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427
2.30E+03 0.0473 0.0474 0.0474 0.0477 0.0481 0.0489 0.0512 0.0549 0.0619 0.0747
1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0672
1.50E+04 0.0278 0.0280 0.0282 0.0287 0.0296 0.0313 0.0356 0.0415 0.0511 0.0664
1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0649
1.50E+05 0.0166 0.0172 0.0178 0.0194 0.0214 0.0246 0.0310 0.0383 0.0489 0.0648
1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0647
1.50E+06 0.0109 0.0130 0.0144 0.0170 0.0198 0.0235 0.0304 0.0379 0.0487 0.0647
1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0647
1.50E+07 0.0076 0.0121 0.0138 0.0167 0.0197 0.0234 0.0304 0.0379 0.0486 0.0647
1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0647

f

Friction Factor vs Reynolds Number
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Problem 8.82 (In Excel)

Solution

Using the above formula for f 0, and Eq. 8.37 for f 1

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0323 0.0337 0.0376 0.0431 0.0522 0.0738
2.50E+04 0.0245 0.0248 0.0250 0.0257 0.0268 0.0288 0.0337 0.0402 0.0501 0.0725
5.00E+04 0.0209 0.0213 0.0216 0.0226 0.0240 0.0265 0.0322 0.0391 0.0494 0.0720
7.50E+04 0.0191 0.0196 0.0200 0.0212 0.0228 0.0256 0.0316 0.0387 0.0492 0.0719
1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0718
2.50E+05 0.0150 0.0159 0.0166 0.0185 0.0208 0.0241 0.0308 0.0381 0.0488 0.0716
5.00E+05 0.0132 0.0144 0.0154 0.0177 0.0202 0.0238 0.0306 0.0380 0.0487 0.0716
7.50E+05 0.0122 0.0138 0.0149 0.0174 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716
1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0716
5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716
1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0716
5.00E+07 0.0065 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716
1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

Using the add-in function Friction factor  from the CD

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0738
2.50E+04 0.0245 0.0248 0.0250 0.0257 0.0268 0.0288 0.0337 0.0402 0.0502 0.0725
5.00E+04 0.0209 0.0212 0.0216 0.0226 0.0240 0.0265 0.0322 0.0391 0.0494 0.0720
7.50E+04 0.0191 0.0196 0.0200 0.0212 0.0228 0.0256 0.0316 0.0387 0.0492 0.0719
1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0718
2.50E+05 0.0150 0.0158 0.0166 0.0185 0.0208 0.0241 0.0308 0.0381 0.0488 0.0716
5.00E+05 0.0132 0.0144 0.0154 0.0177 0.0202 0.0238 0.0306 0.0380 0.0487 0.0716
7.50E+05 0.0122 0.0138 0.0150 0.0174 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716
1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0716
5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716
1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0716
5.00E+07 0.0065 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716
1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

f

f 1



The error can now be computed

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0434% 0.0533% 0.0624% 0.0858% 0.1138% 0.1443% 0.1513% 0.1164% 0.0689% 0.0251%
2.50E+04 0.0531% 0.0322% 0.0144% 0.0252% 0.0596% 0.0793% 0.0646% 0.0382% 0.0179% 0.0054%
5.00E+04 0.0791% 0.0449% 0.0202% 0.0235% 0.0482% 0.0510% 0.0296% 0.0143% 0.0059% 0.0016%
7.50E+04 0.0833% 0.0407% 0.0129% 0.0278% 0.0426% 0.0367% 0.0175% 0.0077% 0.0030% 0.0008%
1.00E+05 0.0818% 0.0339% 0.0050% 0.0298% 0.0374% 0.0281% 0.0118% 0.0049% 0.0019% 0.0005%
2.50E+05 0.0685% 0.0029% 0.0183% 0.0264% 0.0186% 0.0095% 0.0029% 0.0011% 0.0004% 0.0001%
5.00E+05 0.0511% 0.0160% 0.0232% 0.0163% 0.0084% 0.0036% 0.0010% 0.0003% 0.0001% 0.0000%
7.50E+05 0.0394% 0.0213% 0.0209% 0.0107% 0.0049% 0.0019% 0.0005% 0.0002% 0.0001% 0.0000%
1.00E+06 0.0308% 0.0220% 0.0175% 0.0077% 0.0032% 0.0012% 0.0003% 0.0001% 0.0000% 0.0000%
5.00E+06 0.0183% 0.0071% 0.0029% 0.0008% 0.0003% 0.0001% 0.0000% 0.0000% 0.0000% 0.0000%
1.00E+07 0.0383% 0.0029% 0.0010% 0.0002% 0.0001% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
5.00E+07 0.0799% 0.0002% 0.0001% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
1.00E+08 0.0956% 0.0001% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

Error (%)

Error in Friction Factor vs Reynolds Number
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∆p p1 p2−= ρ
V2

2

2

V1
2

2
− K

V2
2

2
⋅+







⋅=Hence the pressure drop is
(assuming α = 1)

(8.40a)hl K
V2

2

2
⋅=where

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hl=

The governing equations between inlet (1) and exit (2) are

D2 200 mm⋅=D1 400 mm⋅=Given data

Solution

Find: Theoretical calibration constant; plot

Given: Data on a pipe sudden contraction

Problem 8.87



For the sudden contraction V1
π
4
⋅ D1

2⋅ V2
π
4
⋅ D2

2⋅= Q=

or V2 V1
D1
D2









2

⋅=

so ∆p
ρ V1

2⋅

2

D1
D2









4

1 K+( ) 1−








⋅=

For the pressure drop we can use the manometer equation

∆p ρ g⋅ ∆h⋅=

Hence ρ g⋅ ∆h⋅
ρ V1

2⋅

2

D1
D2









4

1 K+( ) 1−








⋅=

In terms of flow rate Q ρ g⋅ ∆h⋅
ρ
2

Q2

π
4

D1
2⋅








2
⋅

D1
D2









4

1 K+( ) 1−








⋅=

or g ∆h⋅
8 Q2⋅

π2 D1
4⋅

D1
D2









4

1 K+( ) 1−








⋅=

Hence for flow rate Q we find Q k ∆h⋅=



where k
g π2⋅ D1

4⋅

8
D1
D2









4

1 K+( ) 1−








⋅

=

For K, we need the aspect ratio AR

AR
D2
D1









2

= AR 0.25=

From Fig. 8.14 K 0.4=

Using this in the expression for k, with the other given values

k
g π2⋅ D1

4⋅

8
D1
D2









4

1 K+( ) 1−








⋅

= 0.12
m

5
2

s
⋅=

For ∆h in mm and Q in L/min k 228

L
min

mm

1
2

=

The plot of theoretical Q versus flow rate ∆h is shown in the associated Excel workbook



Problem 8.87 (In Excel)

Given: Data on a pipe sudden contraction

Find: Theoretical calibration constant; plot

Solution

D 1 = 400 mm
D 1 = 200 mm
K  = 0.4 The values for ∆h  are quite low;

this would not be a good meter -
k  = 228 L/min/mm1/2 it is not sensitive enough.

In addition, it is non-linear.

∆h  (mm) Q  (L/min)
0.010 23
0.020 32
0.030 40
0.040 46
0.050 51
0.075 63
0.100 72
0.150 88
0.200 102
0.250 114
0.300 125
0.400 144
0.500 161
0.600 177
0.700 191
0.767 200

Calibration Curve for a
Sudden Contraction Flow Meter
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Q k ∆h⋅=
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2
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8
D1
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4

1 K+( ) 1−








⋅

=



Problem 8.88

Given: Contraction coefficient for sudden contraction

Find: Expression for minor head loss; compare 
with Fig. 8.14; plot

Solution

We analyse the loss at the "sudden expansion" at the vena contracta

The governing CV equations (mass, momentum, and energy) are

Assume 1. Steady flow
2. Incompressible flow
3. Uniform flow at each section
4. Horizontal: no body force



hlm
Vc

2

2
1

V2
Vc









2

−








⋅ Vc
2 Ac

A2
⋅

V2
Vc









1−








⋅+=

hlm
Vc

2 V2
2−

2
Vc

Ac
A2
⋅ V2 Vc−( )⋅+=Combining Eqs. 2 and 3

(3)hlm u2 uc−
Qrate
mrate

−=
Vc

2 V2
2−

2
pc p2−

ρ
+

...=or (using Eq. 1)

Qrate uc
pc
ρ

+ Vc
2+









ρ− Vc⋅ Ac⋅( )⋅

u2
p2
ρ

+ V2
2+









ρ V2⋅ A2⋅( )⋅+

...=The energy equation becomes

(2)pc p2− ρ Vc⋅
Ac
A2
⋅ V2 Vc−( )⋅=or (using Eq. 1)

pc A2⋅ p2 A2⋅− Vc ρ− Vc⋅ Ac⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=The momentum equation becomes

(1)Vc Ac⋅ V2 A2⋅=The mass equation becomes

5. No shaft work
6. Neglect viscous friction
7. Neglect gravity



This result, and the curve of Fig. 8.14, are shown in the associated Excel workbook.  
The agreement is reasonable

Cc 0.62 0.38
A2
A1









3

⋅+=where

K
1

Cc
1−








2
=So, finally

K
1 Cc−( )2

Cc
2

=Hence, comparing Eqs. 4 and 5 

(5)hlm K
V2

2

2
⋅= K

Vc
2

2
⋅

V2
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2

⋅= K
Vc

2

2
⋅ Cc

2⋅=But we have

(4)hlm
Vc

2

2
1 Cc−( )2⋅=

hlm
Vc

2

2
1 Cc

2− 2 Cc
2⋅+ 2 Cc⋅−



⋅=

hlm
Vc

2

2
1 Cc

2−



⋅ Vc

2 Cc⋅ Cc 1−( )⋅+=Hence

Cc
Ac
A2

=
V2
Vc

=From Eq. 1



Problem 8.88 (In Excel)

Given: Sudden contraction

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

The CV analysis leads to

A 2/A 1 K CV K Fig. 8.14

0.0 0.376 0.50
0.1 0.374
0.2 0.366 0.40
0.3 0.344
0.4 0.305 0.30
0.5 0.248 0.20
0.6 0.180
0.7 0.111 0.10
0.8 0.052
0.9 0.013 0.01
1.0 0.000 0.00

(Data from Fig. 8.14 is "eyeballed")
Agreement is reasonable

Loss Coefficient for a
Sudden Contraction
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Fig. 8.14

K
1

Cc
1−








2
=

Cc 0.62 0.38
A2
A1









3

⋅+=
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(1)K 1
1

AR2
− Cp−=

Combining these we obtain an expression for the loss coefficient K

(8.42)Cpi 1
1

AR2
−=and

(8.44)hlm K
V1

2

2
⋅= Cpi Cp−( )

V1
2

2
⋅=

The governing equations for the diffuser are

D2 150 mm⋅=D1 100 mm⋅=Given data

Solution

Find: Minimum lengths to satisfy requirements

Given:  Data on inlet and exit diameters of diffuser

Problem 8.92



N 150mm=N 3 R1⋅=

N
R1

3=From Fig. 8.15

Cp 0.452=Cp 1
1

AR2
− K−=K 0.35=(b)

N 275mm=N 5.5 R1⋅=

R1 50mm=R1
D1
2

=
N
R1

5.5=From Fig. 8.15

Cp 0.602=Cp 1
1

AR2
− K−=K 0.2=(a)

The pressure recovery coefficient Cp is obtained from Eq. 1 above once we select K; 
then, with Cp and AR specified, the minimum value of N/R1 (where N is the length 
and R1 is the inlet radius) can be read from Fig. 8.15

AR 2.25=AR
D2
D1









2

=The area ratio AR is



(8.42)Cpi 1
1

AR2
−=and

(8.44)hlm K
V1

2

2
⋅= Cpi Cp−( )

V1
2

2
⋅=

(8.41)Cp
p2 p1−

1
2
ρ⋅ V1

2⋅
=

The governing equations for the diffuser are

Q 0.1
m3

s
⋅=ρ 999

kg

m3
⋅=

(N = length)N 150 mm⋅=D2 100 mm⋅=D1 75 mm⋅=Given data

Solution

Find: Static pressure rise; loss coefficient

Given: Data on geometry of conical diffuser; flow rate

Problem 8.93



V1 22.6
m
s

=V1
Q

π
4

D1
2⋅

=

To complete the calculations we need V1

Cp 0.5=

From Fig. 8.15, with AR = 1.78 and the dimensionless length N/R1 = 4, we find

N
R1

4=Hence

R1 37.5mm=R1
D1
2

=

AR 1.78=AR
D2
D1









2

=The aspect ratio AR is

The pressure recovery coefficient Cp for use in Eqs. 1 and 2 above is obtained from 
Fig. 8.15 once compute AR and the dimensionless length N/R1 (where R1 is the inlet 
radius)

(2)K 1
1

AR2
− Cp−=

Combining Eqs. 8.44 and 8.42 we obtain an expression for the loss coefficient K

(1)∆p p2 p1−=
1
2
ρ⋅ V1

2⋅ Cp⋅=From Eq. 8.41



We can now compute the pressure rise and loss coefficient from Eqs. 1 and 2

∆p
1
2
ρ⋅ V1

2⋅ Cp⋅= ∆p 128kPa=

K 1
1

AR2
− Cp−= K 0.184=
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Problem 8.95

Given: Sudden expansion

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

The governing CV equations (mass, momentum, and energy) are

Assume 1. Steady flow
2. Incompressible flow
3. Uniform flow at each section
4. Horizontal: no body force
5. No shaft work
6. Neglect viscous friction
7. Neglect gravity

The mass equation becomes V1 A1⋅ V2 A2⋅= (1)



hlm
V1

2

2
1 AR2−( )⋅ V1

2 AR⋅ AR 1−( )⋅+=Hence

AR
A1
A2

=
V2
V1

=From Eq. 1

hlm
V1

2

2
1

V2
V1









2

−








⋅ V1
2 A1

A2
⋅

V2
V1









1−








⋅+=

hlm
V1

2 V2
2−

2
V1

A1
A2
⋅ V2 V1−( )⋅+=Combining Eqs. 2 and 3

(3)hlm u2 u1−
Qrate
mrate

−=
V1

2 V2
2−

2
p1 p2−

ρ
+

...=or (using Eq. 1)

Qrate u1
p1
ρ

+ V1
2+









ρ− V1⋅ A1⋅( )⋅

u2
p2
ρ

+ V2
2+









ρ V2⋅ A2⋅( )⋅+

...=The energy equation becomes

(2)p1 p2− ρ V1⋅
A1
A2
⋅ V2 V1−( )⋅=or (using Eq. 1)

p1 A2⋅ p2 A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=The momentum equation becomes



hlm
V1

2

2
1 AR2− 2 AR2⋅+ 2 AR⋅−( )⋅=

hlm K
V1

2

2
⋅= 1 AR−( )2 V1

2

2
⋅=

Finally K 1 AR−( )2=

This result, and the curve of Fig. 8.14, are shown in the associated Excel workbook.  
The agreement is excellent



Problem 8.95 (In Excel)

Given: Sudden expansion

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

AR K CV K Fig. 8.14

0.0 1.00 1.00
0.1 0.81
0.2 0.64 0.60
0.3 0.49
0.4 0.36 0.38
0.5 0.25 0.25
0.6 0.16
0.7 0.09 0.10
0.8 0.04
0.9 0.01 0.01
1.0 0.00 0.00

(Data from Fig. 8.14 is "eyeballed")
Agreement is excellent

Loss Coefficient for a
Sudden Expansion
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From the CV analysis

K 1 AR−( )2=



V2 V1
A1
A2
⋅=so

V1 A1⋅ V2 A2⋅=The mass equation is

1. Steady flow
2. Incompressible flow
3. hl = 0
4. α2 = α2 = 1
5. Neglect gravity

Assume

hlT hl K
V2

2
⋅+=

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hlT=

The governing equation is

Solution

Find: Expression for upstream average velocity

Given: Sudden expansion

Problem 8.96



V2 AR V1⋅= (1)

Equation 8.29 becomes
p1
ρ

V1
2

2
+

p1
ρ

V1
2

2
+ K

V1
2

2
⋅+=

or (using Eq. 1) ∆p
ρ

p2 p1−

ρ
=

V1
2

2
1 AR2− K−( )⋅=

Solving for V1 V1
2 ∆p⋅

ρ 1 AR2− K−( )⋅
=

If the flow were frictionless, K = 0, so Vinviscid
2 ∆p⋅

ρ 1 AR2−( )⋅
V1<=

Hence. the flow rate indicated by a given ∆p would be lower

If the flow were frictionless, K = 0, so ∆pinvscid
V1

2

2
1 AR2−( )⋅=

compared to ∆p
V1

2

2
1 AR2− K−( )⋅=

Hence. a given flow rate would generate a larger ∆p for inviscid flow
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Problem 8.101 (In Excel)

Given: Data on water flow from a tank/tubing system

Find: Minimum tank level for turbulent flow

Solution
Governing equations:

Re ρ V⋅ D⋅
µ

=

p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hlT=

major

hl∑
minor

hlm∑+= (8.29)

hl f
L
D
⋅

V2

2
⋅= (8.34)

hlm K
V2

2
⋅= (8.40a)

hlm f
Le
D
⋅

V2

2
⋅= (8.40b)

f
64
Re

= (8.36) (Laminar)

1

f 0.5
2.0− log

e
D

3.7
2.51

Re f 0.5⋅
+











⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes

g d⋅ α
V2

2
⋅− f

L
D
⋅

V2

2
⋅ K

V2

2
⋅+=

This can be solved expicitly for height d, or solved using Solver



Given data: Tabulated or graphical data:

L  = 15.3 m ν = 1.00E-06 m2/s
D  = 3.18 mm ρ = 998 kg/m3

K ent = 1.4 (Appendix A)
α = 2

Computed results:

Re  = 2300 (Transition Re )
V  = 0.723 m/s
α = 1 (Turbulent)
f  = 0.0473 (Turbulent)

d  = 6.13 m (Vary d  to minimize error in energy equation)

Energy equation: Left (m2/s) Right (m2/s) Error
(Using Solver ) 59.9 59.9 0.00%

Note that we used α = 1 (turbulent); using α = 2 (laminar) gives d  = 6.16 m
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Problem 8.103 (In Excel)

Given: Data on tube geometry

Find: Plot of reservoir depth as a function of flow rate

Solution
Governing equations:

d
V2

2 g⋅
α f

L
D
⋅+ K+





⋅=

This can be solved explicitly for reservoir height d, or solved using (Solver)

g d⋅ α
V2

2
⋅− f

L
D
⋅

V2

2
⋅ K

V2

2
⋅+=

The energy equation (Eq. 8.29) becomes

(Turbulent)(8.37)1

f 0.5
2.0− log

e
D

3.7
2.51

Re f 0.5⋅
+











⋅=

(Laminar)(8.36)f
64
Re

=

(8.40a)hlm K
V2

2
⋅=

(8.34)hl f
L
D
⋅

V2

2
⋅=

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hlT=

major

hl∑
minor

hlm∑+=

Re
ρ V⋅ D⋅
µ

=



Given data: Tabulated or graphical data:

L  = 100 m µ = 1.01E-03 N.s/m2

D  = 10 mm ρ = 998 kg/m3

α = 1 (All flows turbulent) (Table A.8)
K ent = 0.5 (Square-edged)

(Table 8.2)

Computed results:

Q  (L/min) V  (m/s) Re f d  (m)
1 0.2 2.1E+03 0.0305 0.704
2 0.4 4.2E+03 0.0394 3.63
3 0.6 6.3E+03 0.0350 7.27
4 0.8 8.4E+03 0.0324 11.9
5 1.1 1.0E+04 0.0305 17.6
6 1.3 1.3E+04 0.0291 24.2
7 1.5 1.5E+04 0.0280 31.6
8 1.7 1.7E+04 0.0270 39.9
9 1.9 1.9E+04 0.0263 49.1
10 2.1 2.1E+04 0.0256 59.1

The flow rates given (L/s) are unrealistic!
More likely is L/min.  Results would otherwise be multiplied by 3600!

Required Reservoir Head versus Flow Rate
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(8.34)hl f
L
D
⋅

V2

2
⋅=

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hl=

The governing equations for turbulent flow are

(1)V R I⋅=For an electrical resistor

ρ 0.82 990×
kg

m3
⋅= 812

kg

m3
⋅=µ 1.1 10 3−×

N s⋅

m2
⋅=Kerosene:

From Fig. A.2 and Table A.2

D 0.3 mm⋅=L 100 mm⋅=The given data is

Solution

Find: "Resistance" of tube for flow of kerosine; plot

Given: Data on a tube

Problem 8.104



1

f 0.5
2.0− log

e
D

3.7
2.51

Re f 0.5⋅
+











⋅= (8.37)

Simplifying Eqs. 8.29 and 8.34 for a horizontal, constant-area pipe

p1 p2−

ρ
f

L
D
⋅

V2

2
⋅= f

L
D
⋅

Q
π
4

D2⋅











2

2
⋅=

or ∆p
8 ρ⋅ f⋅ L⋅

π2 D5⋅
Q2⋅= (2)

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop ∆p.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

R
∆p
Q

=
8 ρ⋅ f⋅ L⋅ Q⋅

π2 D5⋅
=

The "resistance" of a tube is not constant, but is proportional to the "current" Q!  Actually, the 
dependence is not quite linear, because f decreases slightly (and nonlinearly) with Q.  The analog
fails!

The analogy is hence invalid for Re 2300> or ρ V⋅ D⋅
µ

2300>



Writing this constraint in terms of flow rate

ρ
Q

π
4

D2⋅

⋅ D⋅

µ
2300> or Q

2300 µ⋅ π⋅ D⋅
4 ρ⋅

>

Flow rate above which analogy fails Q 7.34 10 7−×
m3

s
=

The plot of "resistance" versus flow rate is shown in the associated Excel workbook 



Problem 8.104 (In Excel)

Given: Data on a tube

Find: "Resistance" of tube for flow of kerosine; plot

Solution

Given data: Tabulated or graphical data:

L  = 100 mm µ = 1.01E-03 N.s/m2

D  = 0.3 mm SG ker = 0.82
ρw = 990 kg/m3

ρ = 812 kg/m3

(Appendix A)

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop ∆p.
The "resistance" of the tube is

R ∆p
Q

=
8 ρ⋅ f⋅ L⋅ Q⋅

π
2 D5⋅

=

The "resistance" of a tube is not constant, but is proportional to the "current" Q!  Actually, the 
dependence is not quite linear, because f decreases slightly (and nonlinearly) with Q.  The analogy 
fails!



Computed results:

Q  (m3/s) V  (m/s) Re f "R" (109 Pa/m3/s)
1.0E-06 14.1 3.4E+03 0.0419 1133
2.0E-06 28.3 6.8E+03 0.0343 1855
4.0E-06 56.6 1.4E+04 0.0285 3085
6.0E-06 84.9 2.0E+04 0.0257 4182
8.0E-06 113.2 2.7E+04 0.0240 5202
1.0E-05 141.5 3.4E+04 0.0228 6171
2.0E-05 282.9 6.8E+04 0.0195 10568
4.0E-05 565.9 1.4E+05 0.0169 18279
6.0E-05 848.8 2.0E+05 0.0156 25292
8.0E-05 1131.8 2.7E+05 0.0147 31900

The "resistance" is not constant; the analogy is invalid for turbulent flow

"Resistance" of a Tube versus Flow Rate
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Problem 8.107 (In Excel)

Given: Data on reservoir/pipe system

Find: Plot elevation as a function of flow rate; fraction due to minor losses

Solution

L  = 250 m
D  = 50 mm
e/D  = 0.003
K ent = 0.5
K exit = 1.0

ν = 1.01E-06 m2/s

Q  (m3/s) V  (m/s) Re f ∆z  (m) h lm /h lT
0.0000 0.000 0.00E+00 0.000
0.0005 0.255 1.26E+04 0.0337 0.562 0.882%
0.0010 0.509 2.52E+04 0.0306 2.04 0.972%
0.0015 0.764 3.78E+04 0.0293 4.40 1.01%
0.0020 1.02 5.04E+04 0.0286 7.64 1.04%
0.0025 1.27 6.30E+04 0.0282 11.8 1.05%
0.0030 1.53 7.56E+04 0.0279 16.7 1.07%
0.0035 1.78 8.82E+04 0.0276 22.6 1.07%
0.0040 2.04 1.01E+05 0.0275 29.4 1.08%
0.0045 2.29 1.13E+05 0.0273 37.0 1.09%
0.0050 2.55 1.26E+05 0.0272 45.5 1.09%
0.0055 2.80 1.39E+05 0.0271 54.8 1.09%
0.0060 3.06 1.51E+05 0.0270 65.1 1.10%
0.0065 3.31 1.64E+05 0.0270 76.2 1.10%
0.0070 3.57 1.76E+05 0.0269 88.2 1.10%
0.0075 3.82 1.89E+05 0.0269 101 1.10%
0.0080 4.07 2.02E+05 0.0268 115 1.11%
0.0085 4.33 2.14E+05 0.0268 129 1.11%
0.0090 4.58 2.27E+05 0.0268 145 1.11%
0.0095 4.84 2.40E+05 0.0267 161 1.11%
0.0100 5.09 2.52E+05 0.0267 179 1.11%

Required Head versus Flow Rate
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Problem 8.110 (In Excel)

Given: Data on circuit

Find: Plot pressure difference for a range of flow rates

Solution
Governing equations:

∆p ρ f⋅
V2

2
⋅

L
D

4
Lelbow

D
⋅+

Lvalve
D

+








⋅=

or

p1 p2−

ρ
f

L
D
⋅

V2

2
⋅ 4 f Lelbow⋅⋅

V2

2
⋅+ f Lvalve⋅

V2

2
⋅+=

The energy equation (Eq. 8.29) becomes for the circuit (1 = pump outlet, 2 = pump inlet)

(Turbulent)(8.37)1

f 0.5
2.0− log

e
D

3.7
2.51

Re f 0.5⋅
+











⋅=

(Laminar)(8.36)f
64
Re

=

(8.40b)hlm f
Le
D
⋅

V2

2
⋅=

(8.34)hl f
L
D
⋅

V2

2
⋅=

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hlT=

major

hl∑
minor

hlm∑+=

Re ρ V⋅ D⋅
µ

=



Given data: Tabulated or graphical data:

L  = 20 m e  = 0.26 mm
D  = 75 mm (Table 8.1)

µ = 1.00E-03 N.s/m2

ρ = 999 kg/m3

(Appendix A)
Gate valve L e/D  = 8

Elbow L e/D  = 30
(Table 8.4)

Computed results:

Q  (m3/s) V  (m/s) Re f ∆p  (kPa)
0.010 2.26 1.70E+05 0.0280 28.3
0.015 3.40 2.54E+05 0.0277 63.1
0.020 4.53 3.39E+05 0.0276 112
0.025 5.66 4.24E+05 0.0276 174
0.030 6.79 5.09E+05 0.0275 250
0.035 7.92 5.94E+05 0.0275 340
0.040 9.05 6.78E+05 0.0274 444
0.045 10.2 7.63E+05 0.0274 561
0.050 11.3 8.48E+05 0.0274 692
0.055 12.4 9.33E+05 0.0274 837
0.060 13.6 1.02E+06 0.0274 996

Required Pressure Head for a Circuit
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Problem 8.116 (In Excel)

Solution
Governing equations:

H
V2

2 g⋅
α f

L
D
⋅+ K+





⋅=

This can be solved explicity for reservoir height H

g H⋅ α
V2

2
⋅− f

L
D
⋅

V2

2
⋅ K

V2

2
⋅+=

The energy equation (Eq. 8.29) becomes

(Turbulent)(8.37)1

f 0.5
2.0− log

e
D

3.7
2.51

Re f 0.5⋅
+











⋅=

(Laminar)(8.36)f
64
Re

=

(8.40a)hlm K
V2

2
⋅=

(8.34)hl f
L
D
⋅

V2

2
⋅=

(8.29)
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hlT=

major

hl∑
minor

hlm∑+=

Re
ρ V⋅ D⋅
µ

=



Choose data: Tabulated or graphical data:

L  = 1.0 m µ = 1.00E-03 N.s/m2

D  = 3.0 mm ρ = 999 kg/m3

e  = 0.0 mm (Appendix A)
α = 2 (Laminar) K ent = 0.5 (Square-edged)

= 1 (Turbulent) (Table 8.2)

Computed results:

Q  (L/min) V  (m/s) Re Regime f H  (m)
0.200 0.472 1413 Laminar 0.0453 0.199
0.225 0.531 1590 Laminar 0.0403 0.228
0.250 0.589 1767 Laminar 0.0362 0.258
0.275 0.648 1943 Laminar 0.0329 0.289
0.300 0.707 2120 Laminar 0.0302 0.320
0.325 0.766 2297 Laminar 0.0279 0.353
0.350 0.825 2473 Turbulent 0.0462 0.587
0.375 0.884 2650 Turbulent 0.0452 0.660
0.400 0.943 2827 Turbulent 0.0443 0.738
0.425 1.002 3003 Turbulent 0.0435 0.819
0.450 1.061 3180 Turbulent 0.0428 0.904



The flow rates are realistic, and could easily be measured using a tank/timer system
The head required is also realistic for a small-scale laboratory experiment
Around Re  = 2300 the flow may oscillate between laminar and turbulent:
Once turbulence is triggered (when H  > 0.353 m), the resistance to flow increases
requiring H  >0.587 m to maintain; hence the flow reverts to laminar, only to trip over
again to turbulent!  This behavior will be visible: the exit flow will switch back and
forth between smooth (laminar) and chaotic (turbulent)

Required Reservoir Head
versus Reynolds Number
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Problem 8.124 (In Excel)

Solution
Governing equations:

Fluid is not specified: use water

Given data: Tabulated or graphical data:

∆p  = 100 m µ = 1.00E-03 N.s/m2

D  = 25 mm ρ = 999 kg/m3

(Water - Appendix A)

Re
ρ V⋅ D⋅
µ
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p1
ρ
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2

2
⋅+ g z1⋅+







p2
ρ

α2
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2

2
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− hl= (8.29)

hl f
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V2

2
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f
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Re

= (8.36) (Laminar)

1

f 0.5
2.0− log

e
D

3.7
2.51

Re f 0.5⋅
+











⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube

p1 p2− ∆p= ρ f⋅
L
D
⋅

V2

2
⋅=

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because 
f depends on V; solution for a given L requires iteration (or use of Solver)



Computed results:

L  (km) V  (m/s) Q  (m3/s) x 104 Re Regime f ∆p  (kPa) Error
1.0 0.40 1.98 10063 Turbulent 0.0308 100 0.0%
1.5 0.319 1.56 7962 Turbulent 0.0328 100 0.0%
2.0 0.270 1.32 6739 Turbulent 0.0344 100 0.0%
2.5 0.237 1.16 5919 Turbulent 0.0356 100 0.0%
5.0 0.158 0.776 3948 Turbulent 0.0401 100 0.0%
10 0.105 0.516 2623 Turbulent 0.0454 100 0.0%
15 0.092 0.452 2300 Turbulent 0.0473 120 20.2%
19 0.092 0.452 2300 Laminar 0.0278 90 10.4%
21 0.092 0.452 2300 Laminar 0.0278 99 1.0%
25 0.078 0.383 1951 Laminar 0.0328 100 0.0%
30 0.065 0.320 1626 Laminar 0.0394 100 0.0%

The "critical" length of tube is between 15 and 20 km.
For this range, the fluid is making a transition between laminar
and turbulent flow, and is quite unstable.  In this range the flow oscillates
between laminar and turbulent; no consistent solution is found 
(i.e., an Re  corresponding to turbulent flow needs an f  assuming laminar to produce
 the ∆p  required, and vice versa!)
More realistic numbers (e.g., tube length) are obtained for a fluid such as SAE 10W oil
(The graph will remain the same except for scale)

Flow Rate versus Tube Length for Fixed ∆p

0.1

1.0

10.0

0 5 10 15 20 25 30 35
L  (km)

Q  (m3/s)
x 104

Laminar
Turbulent



Problem 8.125 (In Excel)

Solution
Governing equations:

Fluid is not specified: use water

Given data: Tabulated or graphical data:

∆p  = 100 kPa µ = 1.00E-03 N.s/m2

D  = 25 mm ρ = 999 kg/m3

L  = 100 m (Water - Appendix A)
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µ
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⋅+ g z1⋅+







p2
ρ

α2
V2

2

2
⋅+ g z2⋅+







− hl= (8.29)
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⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube

p1 p2− ∆p= ρ f⋅
L
D
⋅

V2

2
⋅=

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends 
on V; solution for a given relative roughness e/D requires iteration (or use of Solver)



Computed results:

e/D V  (m/s) Q  (m3/s) x 104 Re Regime f ∆p  (kPa) Error
0.000 1.50 7.35 37408 Turbulent 0.0223 100 0.0%
0.005 1.23 6.03 30670 Turbulent 0.0332 100 0.0%
0.010 1.12 5.49 27953 Turbulent 0.0400 100 0.0%
0.015 1.05 5.15 26221 Turbulent 0.0454 100 0.0%
0.020 0.999 4.90 24947 Turbulent 0.0502 100 0.0%
0.025 0.959 4.71 23939 Turbulent 0.0545 100 0.0%
0.030 0.925 4.54 23105 Turbulent 0.0585 100 0.0%
0.035 0.897 4.40 22396 Turbulent 0.0623 100 0.0%
0.040 0.872 4.28 21774 Turbulent 0.0659 100 0.0%
0.045 0.850 4.17 21224 Turbulent 0.0693 100 0.0%
0.050 0.830 4.07 20730 Turbulent 0.0727 100 0.0%

It is not possible to roughen the tube sufficiently to slow the flow down to
a laminar flow for this ∆p .  Even a relative roughness of 0.5 (a physical
impossibility!) would not work.

Flow Rate versus Tube Relative Roughness
for Fixed ∆p
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Problem 8.127 (In Excel)

Given:  Some data on water tower system

Find:  Water tower height; maximum flow rate; hydrant pressure at 0.75 m3/min

Solution

Governing equations:

This can be solved for V (and hence Q) by iterating or by using Solver

(2)g H⋅
V2

2
1 1.1 f⋅

L
D
⋅+





⋅=

g H⋅
V2

2
− hlT= 1 0.1+( ) hl⋅=

The energy equation (Eq. 8.29) becomes, for maximum flow (and α = 1)

(1)H
p2
ρ g⋅

=org H⋅
p2
ρ

=

For no flow the energy equation (Eq. 8.29) applied between the water tower
free surface (state 1; height H) and the pressure gage is
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Re
ρ V⋅ D⋅
µ

=



Given data: Tabulated or graphical data:
p 2 = 600 kPa e  = 0.26 mm

(Closed) (Table 8.1)
D  = 150 mm µ = 1.00E-03 N.s/m2

L  = 200 m ρ = 999 kg/m3

Q  = 0.75 m3/min (Water - Appendix A)
(Open)

Computed results:

Closed: Fully open: Partially open:

H  = 61.2 m V  = 5.91 m/s Q  = 0.75 m3/min
(Eq. 1) Re  = 8.85E+05 V  = 0.71 m/s

f  = 0.0228 Re  = 1.06E+05
f  = 0.0243

Eq. 2, solved by varying V  using Solver : p 2 = 591 kPa
Left (m2/s) Right (m2/s) Error (Eq. 3)

601 601 0%

Q  = 0.104 m3/s

(3)p2 ρ g⋅ H⋅ ρ
V2

2
⋅ 1 1.1 ρ⋅ f⋅

L
D
⋅+





⋅−=

g H⋅
p2
ρ

−
V2

2
+ hlT= 1 0.1+( ) hl⋅=

The energy equation (Eq. 8.29) becomes, for restricted flow

This can be solved for V (and hence Q) by iterating, or by using Solver

(2)g H⋅
V2

2
1 1.1 f⋅

L
D
⋅+





⋅=

g H⋅
V2

2
− hlT= 1 0.1+( ) hl⋅=

The energy equation (Eq. 8.29) becomes, for maximum flow (and α = 1)
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Problem 8.136 (In Excel)

Given:  Pressure drop per unit length

Find: Plot flow rate versus diameter

Solution
Governing equations:
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⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube

p1 p2− ∆p= ρ f⋅
L
D
⋅

V2

2
⋅=

This cannot be solved explicitly for velocity V (and hence flow rate Q), because f depends 
on V; solution for a given diameter D requires iteration (or use of Solver)



Fluid is not specified: use water (basic trends in plot apply to any fluid)

Given data: Tabulated or graphical data:

∆p  = 100 kPa µ = 1.00E-03 N.s/m2

L  = 100 m ρ = 999 kg/m3

(Water - Appendix A)

Computed results:

D  (mm) V  (m/s) Q  (m3/s) x 104 Re Regime f ∆p  (kPa) Error
0.5 0.00781 0.0000153 4 Laminar 16.4 100 0.0%
1.0 0.0312 0.000245 31 Laminar 2.05 100 0.0%
2.0 0.125 0.00393 250 Laminar 0.256 100 0.0%
3.0 0.281 0.0199 843 Laminar 0.0759 100 0.0%
4.0 0.500 0.0628 1998 Laminar 0.0320 100 0.0%
5.0 0.460 0.0904 2300 Turbulent 0.0473 100 0.2%
6.0 0.530 0.150 3177 Turbulent 0.0428 100 0.0%
7.0 0.596 0.229 4169 Turbulent 0.0394 100 0.0%
8.0 0.659 0.331 5270 Turbulent 0.0368 100 0.0%
9.0 0.720 0.458 6474 Turbulent 0.0348 100 0.0%
10.0 0.778 0.611 7776 Turbulent 0.0330 100 0.0%

Flow Rate versus Tube Diameter
for Fixed ∆p
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Problem 8.151 (In Excel)

Given: Data on circuit and pump

Find: Flow rate, pressure difference, and power supplied

Solution
Governing equations:

(3)Power
Q ∆p⋅

η
=

Finally, the power supplied to the pump, efficiency η, is

(2)∆p 750 15 104× Q2⋅−=

This must be matched to the pump characteristic equation; at steady state, the 
pressure generated by the pump just equals that lost to friction in the circuit

(1)∆p ρ f⋅
V2

2
⋅

L
D

4
Lelbow

D
⋅+

Lvalve
D

+








⋅=

or

p1 p2−

ρ
f

L
D
⋅

V2

2
⋅ 4 f Lelbow⋅⋅

V2

2
⋅+ f Lvalve⋅

V2

2
⋅+=

The energy equation (Eq. 8.29) becomes for the circuit (1 = pump outlet, 2 = pump inlet)
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Given data: Tabulated or graphical data:

L  = 20 m e  = 0.26 mm
D  = 75 mm (Table 8.1)

ηpump = 70% µ = 1.00E-03 N.s/m2

ρ = 999 kg/m3

(Appendix A)
Gate valve L e/D  = 8

Elbow L e/D  = 30
(Table 8.4)

Computed results:

Q  (m3/s) V  (m/s) Re f ∆p  (kPa) 
(Eq 1)

∆p  (kPa) 
(Eq 2)

0.010 2.26 1.70E+05 0.0280 28.3 735
0.015 3.40 2.54E+05 0.0277 63.1 716
0.020 4.53 3.39E+05 0.0276 112 690
0.025 5.66 4.24E+05 0.0276 174 656
0.030 6.79 5.09E+05 0.0275 250 615
0.035 7.92 5.94E+05 0.0275 340 566
0.040 9.05 6.78E+05 0.0274 444 510
0.045 10.2 7.63E+05 0.0274 561 446
0.050 11.3 8.48E+05 0.0274 692 375
0.055 12.4 9.33E+05 0.0274 837 296
0.060 13.6 1.02E+06 0.0274 996 210

Error
0.0419 9.48 7.11E+05 0.0274 487 487 0 Using Solver !

Power = 29.1 kW (Eq. 3)
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Problem 8.152 (In Excel)

Given: Data on pipe and pump

Find: Flow rate, pressure difference, and power supplied; repeat for smoother pipe

Solution
Governing equations:

2

This must be matched to the pump characteristic equation; at steady state, the 
pressure generated by the pump just equals that lost to friction in the circuit

(1)∆ppump ρ f⋅
L
D
⋅

V2

2
⋅=

or

∆hpump f
L
D
⋅

V2

2
⋅=

The energy equation (Eq. 8.49) becomes for the system (1 = pipe inlet, 2 = pipe outlet)
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Tabulated or graphical data: Given data:

µ = 1.00E-03 N.s/m2 L  = 750 m
ρ = 999 kg/m3 D  = 500 mm

(Appendix A) ηpump = 70%

Computed results: e  = 10 mm

Q  (m3/s) V  (m/s) Re f ∆p  (kPa) 
(Eq 1)

∆p  (kPa) 
(Eq 2)

0.1 0.509 2.54E+05 0.0488 9.48 992
0.2 1.02 5.09E+05 0.0487 37.9 968
0.3 1.53 7.63E+05 0.0487 85.2 928
0.4 2.04 1.02E+06 0.0487 151 872
0.5 2.55 1.27E+06 0.0487 236 800
0.6 3.06 1.53E+06 0.0487 340 712
0.7 3.57 1.78E+06 0.0487 463 608
0.8 4.07 2.04E+06 0.0487 605 488
0.9 4.58 2.29E+06 0.0487 766 352
1.0 5.09 2.54E+06 0.0487 946 200
1.1 5.60 2.80E+06 0.0487 1144 32.0

Error
0.757 3.9 1.93E+06 0.0487 542 542 0 Using Solver !

Power = 586 kW (Eq. 3)

(3)Power
Q ∆p⋅

η
=

Finally, the power supplied to the pump, efficiency η, is

(2)∆ppump 1000 800 Q2⋅−=



Repeating, with smoother pipe

Computed results: e  = 5 mm

Q  (m3/s) V  (m/s) Re f ∆p  (kPa) 
(Eq 1)

∆p  (kPa) 
(Eq 2)

0.1 0.509 2.54E+05 0.0381 7.41 992
0.2 1.02 5.09E+05 0.0380 29.6 968
0.3 1.53 7.63E+05 0.0380 66.4 928
0.4 2.04 1.02E+06 0.0380 118 872
0.5 2.55 1.27E+06 0.0380 184 800
0.6 3.06 1.53E+06 0.0379 265 712
0.7 3.57 1.78E+06 0.0379 361 608
0.8 4.07 2.04E+06 0.0379 472 488
0.9 4.58 2.29E+06 0.0379 597 352
1.0 5.09 2.54E+06 0.0379 737 200
1.1 5.60 2.80E+06 0.0379 892 32.0

Error
0.807 4.1 2.05E+06 0.0379 480 480 0 Using Solver !

Power = 553 kW (Eq. 3)
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Problem *8.154 (In Excel)

Given: Data on pipe system and applied pressure

Find: Flow rates in each branch

Solution
Governing equations:

We have 4 unknown flow rates (or, equivalently, velocities) and four equations

(4)∆pB ∆pC=

(3)∆p ∆pA ∆pB+ ∆pD+=

(2)QA QB QB+=

(1)QA QD=

In addition we have the following contraints

This can be written for each pipe section

∆p ρ f⋅
L
D
⋅

V2

2
⋅=

The energy equation (Eq. 8.29) can be simplified to
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The workbook for Example Problem 8.11 is modified for use in this problem

Pipe Data:

Pipe L  (m) D  (mm) e  (mm)

A 50 45 0.26
B 50 45 0.26
C 50 25 0.26
D 50 45 0.26

Fluid Properties:

ρ = 999 kg/m3

µ = 0.001 N.s/m2

Available Head:

∆p  = 300 kPa

Flows: Q A (m3/s) Q B (m3/s) Q C (m3/s) Q D (m3/s)
0.00396 0.00328 0.000681 0.00396

V A (m/s) V B (m/s) V C (m/s) V D (m/s)
2.49 2.06 1.39 2.49

Re A Re B Re C Re D

1.12E+05 9.26E+04 3.46E+04 1.12E+05

f A f B f C f D

0.0325 0.0327 0.0400 0.0325

Heads: ∆p A (kPa) ∆p B (kPa) ∆p C (kPa) ∆p D (kPa)
112 77 77 112

Constraints: (1) Q A = Q D (2) Q A = Q B + Q C

0.03% 0.01%

(3) ∆p  = ∆p A + ∆p B + ∆p D (4) ∆p B = ∆p C

0.01% 0.01%

Error: 0.06% Vary Q A, Q B, Q C, and Q D

using Solver  to minimize total error



Problem *8.155 (In Excel)

Given: Data on pipe system and applied pressure

Find: Flow rates in each branch

Solution
Governing equations:

(Pipe 4 is the 75 m unlabelled section)

We have 5 unknown flow rates (or, equivalently, velocities) and five equations

(5)∆p2 ∆p3=

(4)∆p ∆p0 ∆p4+ ∆p2+=

(3)∆p ∆p0 ∆p1+=

(2)Q4 Q2 Q3+=

(1)Q0 Q1 Q4+=

In addition we have the following contraints

This can be written for each pipe section

∆p ρ f⋅
L
D
⋅

V2

2
⋅=

The energy equation (Eq. 8.29) can be simplified to
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The workbook for Example Problem 8.11 is modified for use in this problem

Pipe Data:

Pipe L  (m) D  (mm) e  (mm)

0 300 75 0.15
1 400 75 0.15
2 100 75 0.15
3 100 75 0.15
4 75 75 0.15

Fluid Properties:

ρ = 999 kg/m3

µ = 0.001 N.s/m2

Available Head:

∆p  = 250 kPa

Flows: Q 0 (m
3/s) Q 1 (m

3/s) Q 2 (m
3/s) Q 3 (m

3/s) Q 4 (m
3/s)

0.00928 0.00306 0.00311 0.00311 0.00623

V 0 (m/s) V 1 (m/s) V 2 (m/s) V 3 (m/s) V 4 (m/s)
2.10 0.692 0.705 0.705 1.41

Re 0 Re 1 Re 2 Re 3 Re 4

1.57E+05 5.18E+04 5.28E+04 5.28E+04 1.06E+05

f 0 f 1 f 2 f 3 f 4

0.0245 0.0264 0.0264 0.0264 0.0250

Heads: ∆p 0 (kPa) ∆p 1 (kPa) ∆p 2 (kPa) ∆p 3 (kPa) ∆p 4 (kPa)
216.4 33.7 8.7 8.7 24.8

Constraints: (1) Q 0 = Q 1 + Q4 (2) Q 4 = Q 2 + Q 3

0.00% 0.01%

(3) ∆p  = ∆p 0 + ∆p 1 (4) ∆p  = ∆p 0 + ∆p 4 + ∆p 2

0.03% 0.01%

(5) ∆p 2 = ∆p 3

0.00%

Error: 0.05% Vary Q 0, Q 1, Q 2, Q 3 and Q 4

using Solver  to minimize total error
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Problem 8.160 (In Excel)

Given:  Data on pipe-reservoir system and orifice plate

Find:  Pressure differential at orifice plate; flow rate

Solution

Governing equations:

where K is the orifice flow coefficient, At is the orifice area, 
and ∆p is the pressure drop across the orifice

(2)mrate K At⋅ 2 ρ⋅ ∆p⋅⋅=

The mass flow rate is given by 

The tricky part to this problem is that the orifice loss coefficient Korifice is given 
in Fig. 8.23 as a percentage of pressure differential ∆p across the orifice, 
which is unknown until V is known!

(∆H is the difference in reservoir heights)

This cannot be solved for V (and hence Q) because f depends on V; we can 
solve by manually iterating, or by using Solver

(1)g ∆H⋅
V2

2
f

L
D

⋅ Kent+ Korifice+ Kexit+





⋅=

The energy equation (Eq. 8.29) becomes (α = 1)
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64
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There are three minor losses: at the entrance; at the orifice plate; at the exit.  For each
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Given data: Tabulated or graphical data:
∆H  = 30 m K ent = 0.50 (Fig. 8.14)

L  = 200 m K exit = 1.00 (Fig. 8.14)
D  = 100 mm Loss at orifice = 80% (Fig. 8.23)
D t = 40 mm µ = 0.001 N.s/m2

β = 0.40 ρ = 999 kg/m3

(Water - Appendix A)

Computed results:

Orifice loss coefficient: Flow system: Orifice pressure drop

K  = 0.61 V  = 2.25 m/s ∆p = 265 kPa
(Fig. 8.20 Q  = 0.0176 m3/s
Assuming high Re ) Re  = 2.24E+05

f  = 0.0153

Eq. 1, solved by varying V  AND ∆p , using Solver :
Left (m2/s) Right (m2/s) Error Procedure using Solver :

294 293 0.5% a) Guess at V  and ∆p
b) Compute error in Eq. 1

Eq. 2 and m rate = ρQ  compared, varying V  AND ∆p c) Compute error in mass flow rate
(From Q ) (From Eq. 2) Error d) Minimize total error 

m rate (kg/s) = 17.6 17.6 0.0% e) Minimize total error by varying V  and ∆p

Total Error 0.5%

Equations 1 and 2 form a set for solving for TWO unknowns: the pressure drop ∆p 
across the orifice (leading to a value for Korifice) and the velocity V.  The easiest way to do 
this is by using Solver

where K is the orifice flow coefficient, At is the orifice area, 
and ∆p is the pressure drop across the orifice
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