Marks' Standard Handbook for Mechanical Engineers

Other McGraw-Hill Handbooks of Interest

Brady and Clauser · Materials Handbook Considine · Process/Industrial Instruments and Controls Handbook Fink and Beaty · Standard Handbook for Electrical Engineers Fink and Christiansen · Electronics Engineer's Handbook Freeman · Standard Handbook of Hazardous Waste Treatment and Disposal Ganic and Hicks The McGraw-Hill Handbook of Essential Engineering Information and Data Haines and Wilson · HVAC Systems Design Handbook Harris · Shock and Vibration Handbook Hicks · Standard Handbook of Engineering Calculations Higgins · Maintenance Engineering Handbook Hodson · Maynard's Industrial Engineering Handbook Juran and Gryna · Juran's Quality Control Handbook Karassik et al. · Pump Handbook Lingaiah · Machine Design Data Handbook Maidment · Handbook of Hydrology Merritt and Ricketts · Building Design and Construction Handbook Merritt et al. · Standard Handbook for Civil Engineers Nayyar · Piping Handbook Perry and Green · Perry's Chemical Engineers' Handbook Rosaler · Standard Handbook of Plant Engineering Rothbart · Mechanical Design Handbook Shigley and Mischke · Standard Handbook of Machine Design Tuma · Engineering Mathematics Handbook Wadsworth · Handbook of Statistical Methods for Engineers and Scientists Walsh · McGraw-Hill Machining and Metalworking Handbook Wang · Handbook of Air Conditioning and Refrigeration

Marks' Standard Handbook for Mechanical Engineers

Revised by a staff of specialists

EUGENE A. AVALLONE Editor

Consulting Engineer; Professor of Mechanical Engineering, Emeritus The City College of the City University of New York

THEODORE BAUMEISTER III Editor

Retired Consultant, Information Systems Department E. I. du Pont de Nemours & Co.

Tenth Edition

McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

Library of Congress Cataloged The First Issue of this title as follows:

Standard handbook for mechanical engineers. 1st-ed.; 1916-

New York, McGraw-Hill.

v. Illus. 18-24 cm.

Title varies: 1916–58; Mechanical engineers' handbook. Editors: 1916–51, L. S. Marks.—1958– T. Baumeister. Includes bibliographies.

1. Mechanical engineering—Handbooks, manuals, etc.I. Marks,Lionel Simeon, 1871-ed.II. Baumeister, Theodore, 1897-ed.III. Title; Mechanical engineers' handbook.TJ151.S82502'.4'62116-12915

Library of Congress Catalog Card Number: 87-641192

MARKS' STANDARD HANDBOOK FOR MECHANICAL ENGINEERS

Copyright © 1996, 1987, 1978 by The McGraw-Hill Companies, Inc. Copyright © 1967, renewed 1995, and 1958, renewed 1986, by Theodore Baumeister III. Copyright © 1951, renewed 1979 by Lionel P. Marks and Alison P. Marks. Copyright © 1941, renewed 1969, and 1930, renewed 1958, by Lionel Peabody Marks. Copyright © 1924, renewed 1952 by Lionel S. Marks. Copyright © 1916 by Lionel S. Marks. All rights reserved.

Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1234567890 DOW/DOW 90109876

ISBN 0-07-004997-1

The sponsoring editors for this book were Robert W. Hauserman and Robert Esposito, the editing supervisor was David E. Fogarty, and the production supervisor was Suzanne W. B. Rapcavage. It was set in Times Roman by Progressive Information Technologies.

Printed and bound by R. R. Donnelley & Sons Company.

This book is printed on acid-free paper.

The editors and the publishers will be grateful to readers who notify them of any inaccuracy or important omission in this book.

Contents

v

For the detailed contents of any section consult the title page of that section.

ContributorsixDedicationxiiiPreface to the Tenth EditionxvPreface to the First EditionxviiSymbols and Abbreviationsxix

1.1	Mathematical Tables and Measuring Units	1-1 1-1
1.2	Measuring Units	1-16
2	Mathematics	2-1
2.1	Mathematics	2-2
2.2	Computers	2-40
3	Mechanics of Solids and Fluids	3-1
3.1	Mechanics of Solids	3-2
3.2	Friction	3-20
3.3	Mechanics of Fluids	3-29
3.4	Vibration	3-61
4.	Heat	4-1
4.1	Thermodynamics	4-2
4.2	Thermodynamic Properties of Substances	4-31
4.3	Radiant Heat Transfer	4-62
4.4	Transmission of Heat by Conduction and Convection	4-79
5.	Strength of Materials	5-1
5.1	Mechanical Properties of Materials	5-2
5.2	Mechanics of Materials	5-14
5.3	Pipeline Flexure Stresses	5-55
5.4	Nondestructive Testing	5-61
6.	Materials of Engineering	6-1
6.1	General Properties of Materials	6-3
6.2	Iron and Steel	6-13
6.3	Iron and Steel Castings	6-38
6.4	Nonferrous Metals and Alloys; Metallic Specialties	6-49
6.5	Corrosion	6-94
6.6	Paints and Protective Coatings	6-108
6.7	Wood	6-112
6.8	Nonmetallic Materials	6-128
6.9	Cement, Mortar, and Concrete	6-159
6.10	Water	6-168
6.11	Lubricants and Lubrication	6-179

vi CONTENTS

6.12 6.13	Plastics Fiber Composite Materials	6-185 6-202
7.	Fuels and Furnaces	7-1
7.1	Fuels	7-2
7.2	Carbonization of Coal and Gas Making	7-30
7.3	Combustion Furnaces	7-41
7.4		7-45
7.5	Electric Furnaces and Ovens	7-52
8.	Machine Elements	8-1
8.1	Mechanism	8-3
8.2	Machine Elements	8-8
8.3	Gearing	8-87
8.4	Fluid-Film Bearings	8-116
8.5	Bearings with Rolling Contact	8-132
8.6 8.7	Packings and Seals Pipe, Pipe Fittings, and Valves	8-138 8-143
o.7 8.8	Preferred Numbers	8-215
0.0		0-215
9.	Power Generation	9-1
9.1	Sources of Energy	9-3
9.2		9-29
9.3	Steam Engines	9-54
9.4	Steam Turbines	9-56
9.5 9.6	Power-Plant Heat Exchangers	9-75 9-90
9.0 9.7	Internal-Combustion Engines	9-90 9-124
9.8	Nuclear Power	9-124
9.9	Hydraulic Turbines	9-149
	· · · · · · · · · · · · · · · · · · ·	
10.	Materials Handling	10-1
10.1	Materials Holding, Feeding, and Metering	10-2
10.2	Lifting, Hoisting, and Elevating	10-4
10.3	Dragging, Pulling, and Pushing	10-19
10.4	Loading, Carrying, and Excavating	10-23
10.5	Conveyor Moving and Handling	10-35
10.6	Automatic Guided Vehicles and Robots	10-56
10.7	Material Storage and Warehousing	10-62
	Transportation	11-1
11.1	Automotive Engineering	11-3
11.2	Railway Engineering	11-20
11.3	Marine Engineering	11-40
11.4	Aeronautics	11-59
11.5	Jet Propulsion and Aircraft Propellers	11-81
11.6	Astronautics	11-100
11.7 11.8	Pipeline Transmission	11-126 11-134
11.0		11-134
	Building Construction and Equipment	12-1
12.1	Industrial Plants	12-2
12.2	Structural Design of Buildings	12-18
12.3	Reinforced Concrete Design and Construction	12-49
12.4	Heating, Ventilation, and Air Conditioning	12-61
12.5	Illumination	12-99
12.6	Sound, Noise, and Ultrasonics	12-117

CONTENTS vii

13.	Manufacturing Processes	13-1
13.1		13-2
13.2		13-8
13.3		13-24
13.4		13-45
13.5		13-67
13.6	Woodcutting Tools and Machines	13-72
14.	Fans, Pumps, and Compressors	14-1
14.1	Displacement Pumps	14-2
14.2	Centrifugal and Axial-Flow Pumps	14-15
14.3		14-27
14.4	-	14-39
14.5	5 1	14-49
14.5		17 77
15	Electrical and Electronics Engineering	15-1
15.1		15-1
15.2	Electronics	15-68
	Instruments and Controls	16-1
16.1	Instruments	16-2
16.2	Automatic Controls	16-21
16.3	Surveying	16-50
17.	Industrial Engineering	17-1
17.1	Industrial Economics and Management	17-2
17.2		17-11
17.3		17-19
17.4	J J	17-25
17.5		17-32
17.6	J	17-39
17.7	Automated Manufacturing	17-41
18.	The Engineering Environment	18-1
18.1	Environmental Control	18-2
18.2	Occupational Safety and Health	18-19
18.3		18-23
18.4		18-28
18.5	15 0	18-31
10.0		10-31
10	Pofrigoration Cruogonics Ontice and Miccollanacus	19-1
	Refrigeration, Cryogenics, Optics, and Miscellaneous	
19.1	······································	19-2
19.2	·	19-26
19.3		19-41
19.4	Miscellaneous	19-43

Index follows Section 19

Contributors

Abraham Abramowitz Consulting Engineer; Professor of Electrical Engineering, Emeritus, The City College, The City University of New York (ILLUMINATION)

- Vincent M. Altamuro President, VMA, Inc., Toms River, NJ (MATERIAL HOLDING AND FEEDING. CONVEYOR MOVING AND HANDLING. AUTOMATED GUIDED VEHICLES AND ROBOTS. MATERIAL STORAGE AND WAREHOUSING. METHODS ENGINEERING. AUTO-MATED MANUFACTURING. INDUSTRIAL PLANTS)
- Alger Anderson Vice President, Engineering, Research & Product Development, Lift-Tech International, Inc. (OVERHEAD TRAVELING CRANES)
- William Antis* Technical Director, Maynard Research Council, Inc., Pittsburgh, PA (METHODS ENGINEERING)
- Dennis N. Assanis Professor of Mechanical Engineering, University of Michigan (IN-TERNAL COMBUSTION ENGINES)
- Klemens C. Baczewski Consulting Engineer (CARBONIZATION OF COAL AND GAS MAKING)
- Glenn W. Baggley Manager, Regenerative Systems, Bloom Engineering Co., Inc. (COMBUSTION FURNACES)
- Frederick G. Bailey Consulting Engineer; formerly Technical Coordinator, Thermodynamics and Applications Engineering, General Electric Co. (STEAM TURBINES)
- Antonio F. Baldo Professor of Mechanical Engineering, Emeritus, The City College, The City University of New York (NONMETALLIC MATERIALS. MACHINE ELEMENTS)
- Robert D. Bartholomew Sheppard T. Powell Associates, LLC (CORROSION)
- George F. Baumeister President, EMC Process Corp., Newport, DE (MATHEMATI-CAL TABLES)
- Heard K. Baumeister Senior Engineer, Retired, International Business Machines Corp. (MECHANISM)
- Howard S. Bean* Late Physicist, National Bureau of Standards (GENERAL PROPERTIES OF MATERIALS)
- E. R. Behnke^{*} Product Manager, CM Chain Division, Columbus, McKinnon Corp. (CHAINS)
- John T. Benedict Retired Standards Engineer and Consultant, Society of Automotive Engineers (AUTOMOTIVE ENGINEERING)
- C. H. Berry* Late Gordon McKay Professor of Mechanical Engineering, Harvard University; Late Professor of Mechanical Engineering, Northeastern University (PREFERRED NUMBERS)
- Louis Bialy Director, Codes & Product Safety, Otis Elevator Company (ELEVATORS, DUMBWAITERS, AND ESCALATORS)
- Malcolm Blair Technical and Research Director, Steel Founders Society of America (IRON AND STEEL CASTINGS)
- **Omer W. Blodgett** Senior Design Consultant, Lincoln Electric Co. (WELDING AND CUTTING)
- Donald E. Bolt Engineering Manager, Heat Transfer Products Dept., Foster Wheeler Energy Corp. (POWER PLANT HEAT EXCHANGERS)
- Claus Borgnakke Associate Professor of Mechanical Engineering, University of Michigan (INTERNAL COMBUSTION ENGINES)
- G. David Bounds Senior Engineer, PanEnergy Corp. (PIPELINE TRANSMISSION)
- William J. Bow Director, Retired, Heat Transfer Products Department, Foster Wheeler Energy Corp. (POWER PLANT HEAT EXCHANGERS)
- James L. Bowman Senior Engineering Consultant, Rotary-Reciprocating Compressor Division, Ingersoll-Rand Co. (COMPRESSORS)
- Aine Brazil Vice President, Thornton-Tomasetti/Engineers (STRUCTURAL DESIGN OF BUILDINGS)
- Frederic W. Buse* Chief Engineer, Standard Pump Division, Ingersoll-Rand Co. (DIS-PLACEMENT PUMPS)

*Contributions by authors whose names are marked with an asterisk were made for the previous edition and have been revised or rewritten by others for this edition. The stated professional position in these cases is that held by the author at the time of his or her contribution.

- C. P. Butterfield Chief Engineer, Wind Technology Division, National Renewable Energy Laboratory (WIND POWER)
- Benson Carlin* President, O.E.M. Medical, Inc. (SOUND, NOISE, AND ULTRASONICS)
 C. L. Carlson* Late Fellow Engineer, Research Labs., Westinghouse Electric Corp. (NONFERROUS METALS)
- Vittorio (Rino) Castelli Senior Research Fellow, Xerox Corp. (FRICTION, FLUID FILM BEARINGS)
- Michael J. Clark Manager, Optical Tool Engineering and Manufacturing, Bausch & Lomb, Rochester, NY (OPTICS)
- Ashley C. Cockerill Staff Engineer, Motorola Corp. (ENGINEERING STATISTICS AND OUALITY CONTROL)
- Aaron Cohen Retired Center Director, Lyndon B. Johnson Space Center, NASA and Zachry Professor, Texas A&M University (ASTRONAUTICS)
- Arthur Cohen Manager, Standards and Safety Engineering, Copper Development Assn. (COPPER AND COPPER ALLOYS)
- D. E. Cole Director, Office for Study of Automotive Transportation, Transportation Research Institute, University of Michigan (INTERNAL COMBUSTION ENGINES)
- James M. Connolly Section Head, Projects Department, Jacksonville Electric Authority (COST OF ELECTRIC POWER)
- Robert T. Corry* Retired Associate Professor of Mechanical and Aerospace Engineering, Polytechnic University (INSTRUMENTS)
- Paul E. Crawford Partner; Connolly, Bove, Lodge & Hutz; Wilmington, DE (PATENTS, TRADEMARKS, AND COPYRIGHTS)
- M. R. M. Crespo da Silva* University of Cincinnati (ATTITUDE DYNAMICS, STABILI-ZATION, AND CONTROL OF SPACECRAFT)
- Julian H. Dancy Consulting Engineer, Formerly Senior Technologist, Technology Division, Fuels and Lubricants Technology Department, Texaco, Inc. (LUBRICANTS AND LUBRICATION)
- Benjamin B. Dayton Consulting Physicist, East Flat Rock, NC (HIGH-VACUUM PUMPS)
- Rodney C. DeGroot Research Plant Pathologist, Forest Products Lab., USDA (WOOD) Joseph C. Delibert Retired Executive, The Babcock and Wilcox Co. (STEAM BOILERS) Donald D. Dodge Supervisor, Retired, Product Quality and Inspection Technology, Manufacturing Development, Ford Motor Co. (NONDESTRUCTIVE TESTING)
- Joseph S. Dorson Senior Engineer, Columbus McKinnon Corp. (CHAIN)
- Michael B. Duke Chief, Solar Systems Exploration, Johnson Space Center, NASA (AS-TRONOMICAL CONSTANTS OF THE SOLAR SYSTEM, DYNAMIC ENVIRONMENTS. SPACE EN-VIRONMENT)
- F. J. Edeskuty Retired Associate, Los Alamos National Laboratory (CRYOGENICS)
- **O. Elnan*** University of Cincinnati (SPACE-VEHICLE TRAJECTORIES, FLIGHT MECHANICS, AND PERFORMANCE. ORBITAL MECHANICS)
- Robert E. Eppich Vice President, Technology, American Foundrymen's Society (IRON AND STEEL CASTINGS)
- C. James Erickson* Principal Consultant, Engineering Department. E. I. du Pont de Nemours & Co. (ELECTRICAL ENGINEERING)
- George H. Ewing* Retired President and Chief Executive Officer, Texas Eastern Gas Pipeline Co. and Transwestern Pipeline Co. (PIPELINE TRANSMISSION)
- Erich A. Farber Distinguished Service Professor Emeritus; Director, Emeritus, Solar Energy and Energy Conversion Lab., University of Florida (HOT AIR ENGINES. SOLAR EN-ERGY. DIRECT ENERGY CONVERSION)
- D. W. Fellenz* University of Cincinnati (SPACE-VEHICLE TRAJECTORIES, FLIGHT ME-CHANICS, AND PERFORMANCE. ATMOSPHERIC ENTRY)
- Arthur J. Fiehn* Late Retired Vice President, Project Operations Division, Burns & Roe, Inc. (COST OF ELECTRIC POWER)
- Sanford Fleeter Professor of Mechanical Engineering and Director, Thermal Sciences and Propulsion Center, School of Mechanical Engineering, Purdue University (JET PROPUL-SION AND AIRCRAFT PROPELLERS)
- William L. Gamble Professor of Civil Engineering, University of Illinois at Urbana-Champaign (CEMENT, MORTAR, AND CONCRETE. REINFORCED CONCRETE DESIGN AND CONSTRUCTION)

x CONTRIBUTORS

- **Daniel G. Garner*** Senior Program Manager, Institute of Nuclear Power Operations, Atlanta, GA (NUCLEAR POWER)
- Burt Garofab Senior Engineer, Pittston Corp. (MINES, HOISTS, AND SKIPS. LOCOMO-TIVE HAULAGE, COAL MINES)
- Siamak Ghofranian Senior Engineer, Rockwell Aerospace (DOCKING OF TWO FREE-FLYING SPACECRAFT)
- Samuel V. Glorioso Section Chief, Metallic Materials, Johnson Space Center, NASA (STRESS CORROSION CRACKING)
- **Norman Goldberg** *Consulting Engineer* (HEATING, VENTILATION, AND AIR CONDI-TIONING)

David T. Goldman Deputy Manager, U.S. Department of Energy, Chicago Operations Office (MEASURING UNITS)

- Frank E. Goodwin Vice President, Materials Science, ILZRO, Inc. (BEARING METALS. LOW-MELTING-POINT METALS AND ALLOYS. ZINC AND ZINC ALLOYS)
- Don Graham Manager, Turning Programs, Carboloy, Inc. (CEMENTED CARBIDES)
- John E. Gray* ERCI, Intl. (NUCLEAR POWER)
- David W. Green Supervisory Research General Engineer, Forest Products Lab., USDA (WOOD)
- Walter W. Guy Chief, Crew and Thermal Systems Division, Johnson Space Center, NASA (SPACECRAFT LIFE SUPPORT AND THERMAL MANAGEMENT)
- Harold V. Hawkins* Late Manager, Product Standards and Services, Columbus McKinnon Corp. (DRAGGING, PULLING, AND PUSHING, PIPELINE FLEXURE STRESSES)
- Keith L. Hawthorne Senior Assistant Vice President, Transportation Technology Center, Association of American Railroads (RAILWAY ENGINEERING)
- V. T. Hawthorne Vice President, Engineering and Technical Services, American Steel Foundries (RAILWAY ENGINEERING)
- J. Edmund Hay U.S. Department of the Interior (EXPLOSIVES)
- Roger S. Hecklinger Project Director, Roy F. Weston of New York. Inc. (INCINERA-TION)
- Terry L. Henshaw Consulting Engineer, Battle Creek, MI (DISPLACEMENT PUMPS)
- Roland Hernandez Research General Engineer, Forest Products Lab., USDA (WOOD) Hoyt C. Hottel Professor Emeritus, Massachusetts Institute of Technology (RADIANT
- HEAT TRANSFER) R. Eric Hutz Associate; Connolly, Bove, Lodge, & Hutz; Wilmington, DE (PATENTS,
- TRADEMARKS, AND COPYRIGHTS) Michael W. M. Jenkins Professor, Aerospace Design, Georgia Institute of Technology (AERONALITICS)
- Peter K. Johnson Director, Marketing and Public Relations, Metal Powder Industries Federation (POWDERED METALS)
- Randolph T. Johnson Naval Surface Warfare Center (ROCKET FUELS)
- Robert L. Johnston Branch Chief, Materials, Johnson Space Center, NASA (METAL-
- LIC MATERIALS FOR AEROSPACE APPLICATIONS. MATERIALS FOR USE IN HIGH-PRESSURE OXYGEN SYSTEMS) Byron M. Jones Retired Associate Professor of Electrical Engineering, School of Engi-
- neering, University of Tennessee at Chattanooga (ELECTRONICS)
- Scott K. Jones Associate Professor, Department of Accounting, University of Delaware (COST ACCOUNTING)
- Robert Jorgensen Engineering Consultant (FANS)
- Serope Kalpakjian Professor of Mechanical and Materials Engineering, Illinois Institute of Technology (METAL REMOVAL PROCESSES AND MACHINE TOOLS)
- Igor J. Karassik Late Senior Consulting Engineer, Ingersoll-Dresser Pump Co. (CEN-TRIFUGAL AND AXIAL FLOW PUMPS)
- **Robert W. Kennard*** Lake-Sumter Community College, Leesburg, FL (ENGINEERING STATISTICS AND QUALITY CONTROL)
- Edwin E. Kintner* Executive Vice President, GPU Nuclear Corp., Parsippany, NJ (NU-CLEAR POWER)
- J. Randolph Kissell Partner, The TGB Partnership (ALUMINUM AND ITS ALLOYS)
- Andrew C. Klein Associate Professor, Nuclear Engineering, Oregon State University (ENVIRONMENTAL CONTROL. OCCUPATIONAL SAFETY AND HEALTH. FIRE PROTECTION)
- Ezra S. Krendel Emeritus Professor of Operations Research and Statistics, Wharton School, University of Pennsylvania (HUMAN FACTORS AND ERGONOMICS. MUSCLE GENER-ATED POWER)
- A. G. Kromis* University of Cincinnati (SPACE-VEHICLE TRAJECTORIES, FLIGHT ME-CHANICS, AND PERFORMANCE)
- P. G. Kuchuris, Jr.* Market Planning Manager, International Harvester Co. (OFF-HIGHWAY VEHICLES AND EARTHMOVING EQUIPMENT)
- L. D. Kunsman* Late Fellow Engineer, Research Labs., Westinghouse Electric Corp. (NONFERROUS METALS)
- Colin K. Larsen Vice President, Blue Giant U.S.A. Corp. (SURFACE HANDLING) Lubert J. Leger Deputy Branch Chief, Materials, Johnson Space Center, NASA (SPACE
- ENVIRONMENT)
 John H. Lewis Technical Staff, Pratt & Whitney, Division of United Technologies Corp.;
- JOHIH LEWIS Technical staff, Fratt & Whitney, Division of United Technologies Corp.; Adjunct Associate Professor, Hartford Graduate Center, Renssealear Polytechnic Institute (GAS TURBINES)
- Peter E. Liley Professor, School of Mechanical Engineering, Purdue University (THER-MODYNAMICS, THERMODYNAMIC PROPERTIES OF SUBSTANCES)

- Michael K. Madsen Manager, Industrial Products Engineering, Neenah Foundry Co. (FOUNDRY PRACTICE AND EQUIPMENT)
- C. J. Manney* Consultant, Columbus McKinnon Corp. (HOISTS)
- Ernst K. H. Marburg Manager, Product Standards and Service, Columbus McKinnon Corp. (LIFTING, HOISTING, AND ELEVATING. DRAGGING, PULLING, AND PUSHING. LOAD-ING, CARRYING, AND EXCAVATING)
- Adolph Matz* Late Professor Emeritus of Accounting, The Wharton School, University of Pennsylvania (COST ACCOUNTING)
- Leonard Meirovitch University Distinguished Professor, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University (VIBRATION)
- Sherwood B. Menkes Professor of Mechanical Engineering, Emeritus, The City College, The City University of New York (FLYWHEEL ENERGY STORAGE)
- George W. Michalec Consulting Engineer, Formerly Professor and Dean of Engineer-
- ing and Science, Stevens Institute of Technology (GEARING) Duane K. Miller Welding Design Engineer, Lincoln Electric Co. (WELDING AND CUT-
- TING) Russell C. Moody Supervisory Research General Engineer, Forest Products Lab.,
- USDA (WOOD) Ralph L. Moore* Retired Systems Consultant, E. I. du Pont de Nemours & Co. (AUTO-MATIC CONTROLS)
- Thomas L. Moser Deputy Associate Administrator, Office of Space Flight, NASA Headauarters. NASA (SPACE-VEHICLE STRUCTURES)
- George J. Moshos Professor Emeritus of Computer and Information Science, New Jersey Institute of Technology (COMPUTERS)
- Otto Muller-Girard Consulting Engineer (INSTRUMENTS)
- James W. Murdock Late Consulting Engineer (MECHANICS OF FLUIDS)
- Gregory V. Murphy Process Control Consultant, DuPont Co. (AUTOMATIC CON-TROLS)
- Joseph F. Murphy Supervisory General Engineer, Forest Products Lab., USDA (WOOD)
- John Nagy Retired Supervisory Physical Scientist, U.S. Department of Labor, Mine Safety and Health Administration (DUST EXPLOSIONS)
- B. W. Niebel Professor Emeritus of Industrial Engineering, The Pennsylvania State University (INDUSTRIAL ECONOMICS AND MANAGEMENT)
- Paul E. Norian Special Assistant, Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission (NUCLEAR POWER)
- Nunzio J. Palladino* Dean Emeritus, College of Engineering, Pennsylvania State University (NUCLEAR POWER)
- D. J. Patterson Professor of Mechanical Engineering, Emeritus, University of Michigan (INTERNAL COMBUSTION ENGINES)
- Harold W. Paxton United States Steel Professor Emeritus, Carnegie Mellon University (IRON AND STEEL)
- Richard W. Perkins Professor of Mechanical, Aerospace, and Manufacturing Engineering, Syracuse University (WOODCUTTING TOOLS AND MACHINES)
- W. R. Perry* University of Cincinnati (ORBITAL MECHANICS. SPACE-VEHICLE TRAJEC-TORIES, FLIGHT MECHANICS, AND PERFORMANCE)
- Kenneth A. Phair Senior Mechanical Engineer, Stone and Webster Engineering Corp. (GEOTHERMAL POWER)
- **Orvis E. Pigg** Section Head, Structural Analysis, Johnson Space Center, NASA (SPACE-VEHICLE STRUCTURES)
- Henry O. Pohl Chief, Propulsion and Power Division, Johnson Space Center, NASA (SPACE PROPULSION)
- Charles D. Potts Retired Project Engineer, Engineering Department, E. I. du Pont de Nemours & Co. (ELECTRICAL ENGINEERING)
- R. Ramakumar Professor of Electrical Engineering, Oklahoma State University (WIND POWER)
- Pascal M. Rapier Scientist III, Retired, Lawrence Berkeley Laboratory (ENVIRONMEN-TAL CONTROL. OCCUPATIONAL SAFETY AND HEALTH. FIRE PROTECTION)
- James D. Redmond President, Technical Marketing Services, Inc. (STAINLESS STEEL)
- Albert H. Reinhardt Technical Staff, Pratt & Whitney, Division of United Technologies Corp. (GAS TURBINES)
- **Warren W. Rice** Senior Project Engineer, Piedmont Engineering Corp. (MECHANICAL REFRIGERATION)
- George J. Roddam Sales Engineer, Lectromelt Furnace Division, Salem Furnace Co. (ELECTRIC FURNACES AND OVENS)
- Louis H. Roddis* Late Consulting Engineer, Charleston, SC (NUCLEAR POWER)
- Darrold E. Roen Late Manager, Sales & Special Engineering & Government Products, John Deere (OFF-HIGHWAY VEHICLES)
- Ivan L. Ross* International Manager, Chain Conveyor Division, ACCO (OVERHEAD CONVEYORS)
- Robert J. Ross Supervisory Research General Engineer, Forest Products Lab., USDA (WOOD)
- J. W. Russell* University of Cincinnati (SPACE-VEHICLE TRAJECTORIES, FLIGHT ME-CHANICS, AND PERFORMANCE. LUNAR- AND INTERPLANETARY-FLIGHT MECHANICS)
- A. J. Rydzewski Project Engineer, Engineering Department, E. I. du Pont de Nemours & Co. (MECHANICAL REFRIGERATION)

CONTRIBUTORS xi

- C. Edward Sandifer Professor, Western Connecticut State University, Danbury, CT (MATHEMATICS)
- Adel F. Sarofim Lammot du Pont Professor of Chemical Engineering, Massachusetts Institute of Technology (RADIANT HEAT TRANSFER)
- Martin D. Schlesinger Wallingford Group, Ltd. (FUELS)
- John R. Schley Manager, Technical Marketing, RMI Titanium Co. (TITANIUM AND ZIRCONIUM)
- Matthew S. Schmidt Senior Engineer, Rockwell Aerospace (DOCKING OF TWO FREE-FLYING SPACECRAFT)
- George Sege Technical Assistant to the Director, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission (NUCLEAR POWER)
- James D. Shearouse, III Senior Development Engineer, The Dow Chemical Co. (MAGNESIUM AND MAGNESIUM ALLOYS)
- David A. Shifler Metallurgist, Naval Surface Warfare Center (CORROSION)
- **Rajiv Shivpuri** Professor of Industrial, Welding, and Systems Engineering, Ohio State University (PLASTIC WORKING OF METALS)
- William T. Simpson Research Forest Products Technologist, Forest Products Lab., USDA (WOOD)
- Kenneth A. Smith Edward R. Gilliland Professor of Chemical Engineering, Massachusetts Institute of Technology (TRANSMISSION OF HEAT BY CONDUCTION AND CONVEC-TION)
- Lawrence H. Sobel* University of Cincinnati (VIBRATION OF STRUCTURES)
- James G. Speight Western Research Institute (FUELS)
- Ivan K. Spiker NASA, Retired (STRUCTURAL COMPOSITES)
- Robert D. Steele Manager, Turbine and Rehabilitation Design, Voith Hydro, Inc. (HY-DRAULIC TURBINES)
- Robert F. Steidel, Jr. Professor of Mechanical Engineering, Retired, University of California, Berkeley (MECHANICS OF SOLIDS)

- Stephen R. Swanson Professor of Mechanical Engineering, University of Utah (FIBER COMPOSITE MATERIALS)
- John Symonds Fellow Engineer, Retired, Oceanic Division, Westinghouse Electric Corp. (MECHANICAL PROPERTIES OF MATERIALS)
- Anton TenWolde Research Physicist, Forest Products Lab., USDA (WOOD)
- W. David Teter Professor of Civil Engineering, University of Delaware (SURVEYING)
- Helmut Thielsch^{*} President, Thielsch Engineering Associates (PIPE, PIPE FITTINGS, AND VALVES)
- Michael C. Tracy Captain, U.S. Navy (MARINE ENGINEERING)
- John H. Tundermann Vice President, Research and Technology, INCO Alloys Intl., Inc. (METALS AND ALLOYS FOR USE AT ELEVATED TEMPERATURES. NICKEL AND NICKEL ALLOYS)
- Charles O. Velzy Consultant (INCINERATION)
- Harry C. Verakis Supervisory Physical Scientist, U.S. Department of Labor, Mine Safety and Health Administration (DUST EXPLOSIONS)
- Arnold S. Vernick Associate, Geraghty & Miller, Inc. (WATER)
- J. P. Vidosic Regents' Professor Emeritus of Mechanical Engineering, Georgia Institute of Technology (MECHANICS OF MATERIALS)
- Robert J. Vondrasek Assistant Vice President of Engineering, National Fire Protection Assoc. (COST OF ELECTRIC POWER)
- Michael W. Washo Engineering Associate, Eastman Kodak Co. (BEARINGS WITH ROLLING CONTACT)
- Harold M. Werner* Consultant (PAINTS AND PROTECTIVE COATINGS)
- Robert H. White Supervisory Wood Scientist, Forest Products Lab., USDA (WOOD)
- **Thomas W. Wolff** Instructor, Retired, Mechanical Engineering Dept., The City College, The City University of New York (SURFACE TEXTURE DESIGNATION, PRODUCTION, AND CONTROL)
- John W. Wood, Jr. Applications Specialist, Fluidtec Engineered Products, Coltec Industries (PACKINGS AND SEALS)

Dedication

On the occasion of the publication of the tenth edition of *Marks' Standard Handbook for Mechanical Engineers*, we note that this is also the eightieth anniversary of the publication of the first edition. The Editors and publisher proffer this brief dedication to all those who have been instrumental in the realization of the goals set forth by Lionel S. Marks in the preface to the first edition.

First, we honor the memory of the deceased Editors, Lionel S. Marks and Theodore Baumeister. Lionel S. Marks' concept of a *Mechanical Engineers' Handbook* came to fruition with the publication of the first edition in 1916; Theodore Baumeister followed as Editor with the publication of the sixth edition in 1958.

Second, we are indebted to our contributors, past and present, who so willingly mined their expertise to gather material for inclusion in the Handbook, thereby sharing it with others, far and wide.

Third, we acknowledge our wide circle of readers—engineers and others—who have used the Handbook in the conduct of their work and, from time to time, have provided cogent commentary, suggestions, and expressions of loyalty.

Preface to the Tenth Edition

In the preparation of the tenth edition of "Marks," the Editors had two major continuing objectives. First, to modernize and update the contents as required, and second, to hold to the high standard maintained for eighty years by the previous Editors, Lionel S. Marks and Theodore Baumeister.

The Editors have found it instructive to leaf through the first edition of *Marks' Handbook* and to peruse its contents. Some topics still have currency as we approach the end of the twentieth century; others are of historical interest only. Certainly, the passage of 80 years since the publication of the first edition sends a clear message that "things change"!

The replacement of the U.S. Customary System (USCS) of units by the International System (SI) is still far from complete, and proceeds at different rates not only in the engineering professions, but also in our society in general. Accordingly, duality of units has been retained, as appropriate.

Established practice combined with new concepts and developments are the underpinnings of our profession. Among the most significant and far-reaching changes are the incorporation of microprocessors into many tools and devices, both new and old. An ever-increasing number of production processes are being automated with robots performing dull or dangerous jobs.

Workstations consisting of personal computers and a selection of software seemingly without limits are almost universal. Not only does the engineer have powerful computational and analytical tools at hand, but also those same tools have been applied in diverse areas which appear to have no bounds. A modern business or manufacturing entity without a keyboard and a screen is an anomaly.

The Editors are cognizant of the competing requirements to offer the user a broad spectrum of information that has been the hallmark of the Marks' Handbook since its inception, and yet to keep the size of the one volume within reason. This has been achieved through the diligent efforts and cooperation of contributors, reviewers, and the publisher.

Last, the Handbook is ultimately the responsibility of the Editors. Meticulous care has been exercised to avoid errors, but if any are inadvertently included, the Editors will appreciate being so informed so that corrections can be incorporated in subsequent printings of this edition.

Ardsley, NY Newark, DE EUGENE A. AVALLONE THEODORE BAUMEISTER III

Preface to the First Edition*

This Handbook is intended to supply both the practicing engineer and the student with a reference work which is authoritative in character and which covers the field of mechanical engineering in a comprehensive manner. It is no longer possible for a single individual or a small group of individuals to have so intimate an acquaintance with any major division of engineering as is necessary if critical judgment is to be exercised in the statement of current practice and the selection of engineering data. Only by the cooperation of a considerable number of specialists is it possible to obtain the desirable degree of reliability. This Handbook represents the work of fifty specialists.

Each contributor is to be regarded as responsible for the accuracy of his section. The number of contributors required to ensure sufficiently specialized knowledge for all the topics treated is necessarily large. It was found desirable to enlist the services of thirteen specialists for an adequate handling of the "Properties of Engineering Materials." Such topics as "Automobiles," "Aeronautics," "Illumination," "Patent Law," "Cost Accounting," "Industrial Buildings," "Corrosion," "Air Conditioning," "Fire Protection," "Prevention of Accidents," etc., though occupying relatively small spaces in the book, demanded each a separate writer.

A number of the contributions which deal with engineering practice, after examination by the Editor-in-Chief, were submitted by him to one or more specialists for criticism and suggestions. Their cooperation has proved of great value in securing greater accuracy and in ensuring that the subject matter does not embody solely the practice of one individual but is truly representative.

An accuracy of four significant figures has been assumed as the desirable limit; figures in excess of this number have been deleted, except in special cases. In the mathematical tables only four significant figures have been kept.

The Editor-in-Chief desires to express here his appreciation of the spirit of cooperation shown by the Contributors and of their patience in submitting to modifications of their sections. He wishes also to thank the Publishers for giving him complete freedom and hearty assistance in all matters relating to the book from the choice of contributors to the details of typography.

Cambridge, Mass. April 23, 1916 LIONEL S. MARKS

Symbols and Abbreviations

For symbols of chemical elements, see Sec. 6; for abbreviations applying to metric weights and measures and SI units, Sec. 1; SI unit prefixes are listed on p. 1-19.

Pairs of parentheses, brackets, etc., are frequently used in this work to indicate corresponding values. For example, the statement that "the cost per kW of a 30,000-kW plant is \$86; of a 15,000-kW plant, \$98; and of an 8,000-kW plant, \$112," is condensed as follows: The cost per kW of a 30,000 (15,000) [8,000]-kW plant is \$86 (98) [112].

In the citation of references readers should always attempt to consult the latest edition of referenced publications.

A or Å	$A_{12} = 400000000000000000000000000000000000$	ANG	American National Chards de de Institute
	Angstrom unit = 10^{-10} m; 3.937×10^{-11} in	ANSI	American National Standards Institute
A	mass number = $N + Z$; ampere	antilog	antilogarithm of
AA	arithmetical average	API	Am. Petroleum Inst.
AAA	Am. Automobile Assoc.	approx	approximately
AAMA	American Automobile Manufacturers' Assoc.	APWA	Am. Public Works Assoc.
AAR	Assoc. of Am. Railroads	AREA	Am. Railroad Eng. Assoc.
AAS	Am. Astronautical Soc.	ARI	Air Conditioning and Refrigeration Inst.
ABAI	Am. Boiler & Affiliated Industries	ARS	Am. Rocket Soc.
abs	absolute	ASCE	Am. Soc. of Civil Engineers
a.c.	aerodynamic center	ASHRAE	Am. Soc. of Heating, Refrigerating, and Air Conditioning
a-c, ac	alternating current		Engineers
ACI	Am. Concrete Inst.	ASLE	Am. Soc. of Lubricating Engineers
ACM	Assoc. for Computing Machinery	ASM	Am. Soc. of Metals
ACRMA	Air Conditioning and Refrigerating Manufacturers Assoc.	ASME	Am. Soc. of Mechanical Engineers
ACS	Am. Chemical Soc.	ASST	Am. Soc. of Steel Treating
ACSR	aluminum cable steel-reinforced	ASTM	Am. Soc. for Testing and Materials
ACV	air cushion vehicle	ASTME	Am. Soc. of Tool & Manufacturing Engineers
A.D.	anno Domini (in the year of our Lord)	atm	atmosphere
AEC	Atomic Energy Commission (U.S.)	Auto. Ind.	Automotive Industries (New York)
a-f, af	audio frequency	avdp	avoirdupois
AFBMA	Anti-friction Bearings Manufacturers' Assoc.	avg, ave	average
AFS	Am. Foundrymen's Soc.	AWG	Am. Wire Gage
AGA	Am. Gas Assoc.	AWPA	Am. Wood Preservation Assoc.
AGMA	Am. Gear Manufacturers' Assoc.	AWS	American Welding Soc.
ahp	air horsepower	AWWA	American Water Works Assoc.
AlChE	Am. Inst. of Chemical Engineers	b	barns
AIEE	Am. Inst. of Electrical Engineers (see IEEE)	bar	barometer
AIME	Am. Inst. of Mining Engineers	B&S	Brown & Sharp (gage); Beams and Stringers
AIP	Am. Inst. of Physics	bbl	barrels
AISC	American Institute of Steel Construction, Inc.	B.C.	before Christ
AISE	Am. Iron & Steel Engineers	B.C.C.	body centered cubic
AISI	Am. Iron and Steel Inst.	Bé	Baumé (degrees)
a.m.	ante meridiem (before noon)	B.G.	Birmingham gage (hoop and sheet)
a-m, am	amplitude modulation	bgd	billions of gallons per day
Am. Mach.	Am. Machinist (New York)	BHN	Brinnell Hardness Number
AMA	Acoustical Materials Assoc.	bhp	brake horsepower
AMCA	Air Moving & Conditioning Assoc., Inc.	BLC	boundary layer control
amu	atomic mass unit	B.M.	board measure; bench mark
AN	ammonium nitrate (explosive); Army-Navy Specification	bmep	brake mean effective pressure
AN-FO	ammonium nitrate-fuel oil (explosive)	B of M,	Bureau of Mines
ANC	Army-Navy Civil Aeronautics Committee	BuMines	
ANS	Am. Nuclear Soc.	BOD	biochemical oxygen demand

xx SYMBOLS AND ABBREVIATIONS

bp	boiling point	d-c, dc	direct current
Bq	bequerel	def	definition
bsfc	brake specific fuel consumption	deg	degrees
BSI	British Standards Inst.	diam. (dia)	diameter
Btu	British thermal units	DO	dissolved oxygen
Btuh, Btu/h	Brush diefinal diffis	D ₂ O	deuterium (heavy water)
	1	-	
bu	bushels	d.p.	double pole
Bull.	Bulletin	DP	Diametral pitch
Buweaps	Bureau of Weapons, U.S. Navy	DPH	diamond pyramid hardness
BWG	Birmingham wire gage	DST	daylight saving time
с	velocity of light	d^2 tons	breaking strength, $d =$ chain wire diam, in.
°C	degrees Celsius (centigrade)	DX	direct expansion
С	coulomb	е	base of Napierian logarithmic system $(= 2.7182 +)$
CAB	Civil Aeronautics Board	EAP	equivalent air pressure
CAGI	Compressed Air & Gas Inst.	EDR	equivalent direct radiation
cal	calories	EEI	Edison Electric Inst.
C-B-R	chemical, biological & radiological (filters)	eff	efficiency
CBS	Columbia Broadcasting System	e.g.	exempli gratia (for example)
cc, cm ³	cubic centimeters	ehp	effective horsepower
CCR	critical compression ratio	EHV	extra high voltage
c to c	center to center	El. Wld.	Electrical World (New York)
cd	candela	elec	electric
c.f.	centrifugal force	elong	elongation
cf.	confer (compare)	emf	electromotive force
cfh, ft ³ /h	cubic feet per hour	Engg.	Engineering (London)
cfm, ft3/min	cubic feet per minute	Engr.	The Engineer (London)
C.F.R.	Cooperative Fuel Research	ENT	emergency negative thrust
cfs, ft ³ /s	cubic feet per second	EP	extreme pressure (lubricant)
cg	center of gravity	ERDA	Energy Research & Development Administration (successor
cgs	centimeter-gram-second		to AEC; see also NRC)
Chm. Eng.	Chemical Eng'g (New York)	Eq.	equation
chu	centrigrade heat unit	est	estimated
C.I.	cast iron	etc.	et cetera (and so forth)
cir	circular	et seq.	et sequens (and the following)
cir mil	circular mils	eV	electron volts
cm	centimeters		
CME		evap	evaporation
C.N.	Chartered Mech. Engr. (IMechE)	exp	exponential function of exterior secant of
	cetane number	exsec	
coef	coefficient	ext	external
COESA	U.S. Committee on Extension to the Standard Atmosphere	°F	degrees Fahrenheit
col	column	F	farad
colog	cologarithm of	FAA	Federal Aviation Agency
const	constant	F.C.	fixed carbon, %
cos	cosine of	FCC	Federal Communications Commission; Federal Constructive
cos ⁻¹	angle whose cosine is, inverse cosine of		Council
cosh	hyperbolic cosine of	F.C.C.	face-centered-cubic (alloys)
cosh-1	inverse hyperbolic cosine of	ff.	following (pages)
cot	cotangent of	fhp	friction horsepower
\cot^{-1}	angle whose cotangent is (see \cos^{-1})	Fig.	figure
coth	hyperbolic cotangent of	F.I.T.	Federal income tax
coth^{-1}	inverse hyperbolic cotangent of	f-m, fm	frequency modulation
covers	coversed sine of	F.O.B.	free on board (cars)
c.p.	circular pitch; center of pressure	FP	fore perpendicular
ср	candle power	FPC	Federal Power Commission
cp	coef of performance	fpm, ft/min	feet per minute
CP	chemically pure	fps	foot-pound-second system
CPH	close packed hexagonal	ft/s	feet per second
cpm,	cycles per minute	F.S.	Federal Specifications
cycles/min		FSB	Federal Specifications Board
cps, cycles/s	cycles per second	fsp	fiber saturation point
CSA	Canadian Standards Assoc.	ft	feet
csc	cosecant of	fc	foot candles
	cosecant of		
csc ⁻¹	angle whose cosecant is (see \cos^{-1})	fL	foot lamberts
csc ⁻¹ csch		fL ft · lb	foot lamberts foot-pounds
	angle whose cosecant is (see cos ⁻¹) hyperbolic cosecant of	ft · lb	foot-pounds
csch	angle whose cosecant is (see \cos^{-1})	$ft \cdot lb$	foot-pounds acceleration due to gravity
csch csch ⁻¹ cu	angle whose cosecant is (see cos ⁻¹) hyperbolic cosecant of inverse hyperbolic cosecant of cubic	ft · lb g g	foot-pounds acceleration due to gravity grams
csch csch ⁻¹	angle whose cosecant is (see cos ⁻¹) hyperbolic cosecant of inverse hyperbolic cosecant of	$ft \cdot lb$	foot-pounds acceleration due to gravity

SYMBOLS AND ABBREVIATIONS xxi

GCA	ground-controlled approach	J&P	joists and planks
g · cal	gram-calories	Jour.	Journal
gd	Gudermannian of	JP	jet propulsion fuel
G.E.	General Electric Co.	k	isentropic exponent; conductivity
GEM	ground effect machine	K	degrees Kelvin (Celsius abs)
GFI	gullet feed index	K	Knudsen number
G.M.	General Motors Co.	kB	kilo Btu (1000 Btu)
GMT	Greenwich Mean Time	kc	kilocycles
GNP	gross national product	kcps	kilocycles per sec
gpcd	gallons per capita day	kg	kilograms
gpd	gallons per day; grams per denier	kg · cal	kilogram-calories
gpm, gal/min	gallons per minute	kg ∙ m	kilogram-meters
gps, gal/s	gallons per second	kip	1000 lb or 1 kilo-pound
gpt	grams per tex	kips	thousands of pounds
Н	henry	km	kilometers
h	Planck's constant = 6.624×10^{-27} erg-sec	kmc	kilomegacycles per sec
ħ	Planck's constant, $\hbar = h/2\pi$	kmcps	kilomegacycles per sec
HEPA	high efficiency particulate matter	kpsi	thousands of pounds per sq in
h-f, hf	high frequency	ksi	one kip per sq in, 1000 psi (lb/in ²)
hhv	high heat value	kts	knots
horiz	horizontal	kVA	kilovolt-amperes
hp	horsepower	kW	kilowatts
h-p	high-pressure	kWh	kilowatt-hours
HPAC	Heating, Piping, & Air Conditioning (Chicago)	L	lamberts
$hp \cdot hr$	horsepower-hour	L 1, L	litres
	-	f, L £	
hr, h	hours high around steel	£ lb	Laplace operational symbol
HSS	high speed steel	L.B.P.	pounds
H.T.	heat-treated		length between perpendiculars
HTHW	high temperature hot water	lhv	low heat value
Hz	hertz = 1 cycle/s (cps)	lim	limit
IACS	International Annealed Copper Standard	lin	linear
IAeS	Institute of Aerospace Sciences	ln	Napierian logarithm of
ibid.	ibidem (in the same place)	loc. cit.	loco citato (place already cited)
ICAO	International Civil Aviation Organization	log	common logarithm of
ICC	Interstate Commerce Commission	LOX	liquid oxygen explosive
ICE	Inst. of Civil Engineers	1-p, 1p	low pressure
ICI	International Commission on Illumination	LPG	liquified petroleum gas
I.C.T.	International Critical Tables	lpw, lm/W	lumens per watt
I.D., ID	inside diameter	1x	lux
i.e.	id est (that is)	L.W.L.	load water line
IEC	International Electrotechnical Commission	lm	lumen
IEEE	Inst. of Electrical & Electronics Engineers (successor to	m	metres
	AIEE, $q.v.$)	М	thousand; Mach number; moisture, %
IES	Illuminating Engineering Soc.	mA	milliamperes
i-f, if	intermediate frequency	Machy.	Machinery (New York)
IGT	Inst. of Gas Technology	max	maximum
ihp	indicated horsepower	MBh	thousands of Btu per hr
IMechE	Inst. of Mechanical Engineers	mc	megacycles per sec
imep	indicated mean effective pressure	m.c.	moisture content
Imp	Imperial	Mcf	thousand cubic feet
in., in	inches		megacycles per sec
		mcps Mash Euro	
in. · lb,	inch-pounds	Mech. Eng.	Mechanical Eng'g (ASME)
in · lb	T . CNT 1.4 1% .	mep	mean effective pressure
INA	Inst. of Naval Architects	METO	maximum, except during take-off
Ind. & Eng.	Industrial & Eng'g Chemistry (Easton, PA)	me V	million electron volts
Chem.		MF	maintenance factor
int	internal	mhc	mean horizontal candles
i-p, ip	intermediate pressure	mi	mile
ipm, in/min	inches per minute	MIL-STD	U.S. Military Standard
	inches per revolution	min	minutes; minimum
ipr	iron pipe size	mip	mean indicated pressure
ipr IPS		MKS	meter-kilogram-second system
-	Inst. of Radio Engineers (see IEEE)		
IPS	Inst. of Radio Engineers (see IEEE) Internal Revenue Service	MKSA	meter-kilogram-second-ampere syster
IPS IRE		MKSA mL	meter-kilogram-second-ampere syster millilamberts
IPS IRE IRS	Internal Revenue Service		e i ;
IPS IRE IRS ISO	Internal Revenue Service International Organization for Standardization	mL	millilamberts
IPS IRE IRS ISO isoth	Internal Revenue Service International Organization for Standardization isothermal	mL ml, mL	millilitre = 1.000027 cm^3

xxii SYMBOLS AND ABBREVIATIONS

mmf	magnatomativa fana	nci lh/in?	lle man ag in
mmf mal	magnetomotive force	psi, lb/in ²	lb per sq in
mol	mole	psia	lb per sq in. abs
mp MBC	melting point	psig	lb per sq in. gage
MPC	maximum permissible concentration	pt DVC	point; pint
mph, mi/h	miles per hour	PVC	polyvinyl chloride
MRT	mean radiant temperature	Q	10 ¹⁸ Btu
ms	manuscript; milliseconds	qt	quarts
msc	mean spherical candles	q.v.	quod vide (which see)
MSS	Manufacturers Standardization Soc. of the Valve & Fittings	r	roentgens
	Industry	R	gas constant
Mu	micron, micro	R	deg Rankine (Fahrenheit abs); Reynolds number
MW	megawatts	rad	radius; radiation absorbed dose; radian
MW day	megawatt day	RBE	see rem
MWT	mean water temperature	R-C	resistor-capacitor
n	polytropic exponent	RCA	Radio Corporation of America
Ν	number (in mathematical tables)	R&D	research & development
Ν	number of neutrons; newton	RDX	cyclonite, a military explosive
N _s	specific speed	rem	Roentgen equivalent man (formerly RBE)
NA	not available	rev	revolutions
NAA	National Assoc. of Accountants	r-f, rf	radio frequency
NACA	National Advisory Committee on Aeronautics (see NASA)	RMA	Rubber Manufacturers Assoc.
NACM	National Assoc. of Chain Manufacturers	rms	square root of mean square
NASA	National Aeronautics and Space Administration	rpm, r/min	revolutions per minute
nat.	natural	rps, r/s	revolutions per second
NBC	National Broadcasting Company	RSHF	room sensible heat factor
NBFU	National Board of Fire Underwriters	ry.	railway
NBS	National Bureau of Standards	s s	entropy
NCN	nitrocarbonitrate (explosive)	s	seconds
NDHA	National District Hearing Assoc.	S	sulfur, %; siemens
NEC®	National Electric Code [®] (National Electrical Code [®] and	SAE	Soc. of Automotive Engineers
NEC	National Electric Code (National Electrical Code and NEC [®] are registered trademarks of the National Fire Protec-	sat	saturated
	tion Association, Inc., Quincy, MA.)	SBI	
NENA			steel Boiler Inst.
NEMA	National Electrical Manufacturers Assoc.	scfm	standard cu ft per min
NFPA	National Fire Protection Assoc.	SCR	silicon controlled rectifier
NLGI	National Lubricating Grease Institute	sec	secant of
nm	nautical miles	sec ⁻¹	angle whose secant is (see \cos^{-1})
No. (Nos.)	number(s)	Sec.	Section
NPSH	net positive suction head	sech	hyperbolic secant of
NRC	Nuclear Regulator Commission (successor to AEC; see also	sech ⁻¹	inverse hyperbolic secant of
	ERDA)	segm	segment
NTP	normal temperature and pressure	SE No.	steam emulsion number
0.D., OD	outside diameter (pipes)	sfc	specific fuel consumption, lb per hphr
O.H.	open-hearth (steel)	sfm, sfpm	surface feet per minute
O.N.	octane number	shp	shaft horsepower
op. cit.	opere citato (work already cited)	SI	International System of Units (Le Système International
OSHA	Occupational Safety & Health Administration		d'Unites)
OSW	Office of Saline Water	sin	sine of
OTS	Office of Technical Services, U.S. Dept. of Commerce	sin ⁻¹	angle whose sine is (see \cos^{-1})
oz	ounces	sinh	hyperbolic sine of
p. (pp.)	page (pages)	sinh ⁻¹	inverse hyperbolic sine of
Pa	pascal	SME	Society of Manufacturing Engineers (successor
P.C.	propulsive coefficient		to ASTME)
PE	polyethylene	SNAME	Soc. of Naval Architects and Marine Engineers
PEG	polyethylene glycol	SP	static pressure
P.E.L.	proportional elastic limit	sp	specific
PETN	an explosive	specif	specification
pf	power factor	sp gr	specific gravity
PFI	Pipe Fabrication Inst.	sp ht	specific heat
PIV	peak inverse voltage	spp	species unspecified (botanical)
p.m.	post meridiem (after noon)	SPS	standard pipe size
PM	preventive maintenance	sq	square
P.N.	performance number	sq sr	steradian
	•	SSF	sec Saybolt Furol
ppb PPI	parts per billion	SSF	
	plan position indicator		seconds Saybolt Universal (same as SUS)
ppm	parts per million	std	standard Saybelt Universal seconds (some as SSU)
press	pressure	SUS	Saybolt Universal seconds (same as SSU)
Proc.	Proceedings	SWG	Standard (British) wire gage
PSD	power spectral density, g ² /cps	Т	tesla

SYMBOLS AND ABBREVIATIONS xxiii

TAC	Technical Advisory Committee on Weather Design Condi-	USS	United States Standard
	tions (ASHRAE)	USSG	U.S. Standard Gage
tan	tangent of	UTC	Coordinated Universal Time
tan ⁻¹	angle whose tangent is (see \cos^{-1})	V	volt
tanh	hyperbolic tangent of	VCF	visual comfort factor
tanh ⁻¹	inverse hyperbolic tangent of	VCI	visual comfort index
TDH	total dynamic head	VDI	Verein Deutscher Ingenieure
TEL	tetraethyl lead	vel	velocity
temp	temperature	vers	versed sine of
THI	temperature-humidity (discomfort) index	vert	vertical
thp	thrust horsepower	VHF	very high frequency
TNT	trinitrotoluol (explosive)	VI	viscosity index
torr	= 1 mm Hg = 1.332 millibars (1/760) atm	viz.	videlicet (namely)
	= (1.013250/760) dynes per cm ²	V.M.	volatile matter, %
TP	total pressure	vol	volume
tph	tons per hour	VP	velocity pressure
tpi	turns per in	vs.	versus
TR	transmitter-receiver	W	watt
Trans.	Transactions	Wb	weber
T.S.	tensile strength; tensile stress	W&M	Washburn & Moen wire gage
tsi	tons per sq in	w.g.	water gage
ttd	terminal temperature difference	WHO	World Health Organization
UHF	ultra high frequency	W.I.	wrought iron
UKAEA	United Kingdom Atomic Energy Authority	W.P.A.	Western Pine Assoc.
UL	Underwriters' Laboratory	wt	weight
ult	ultimate	yd	yards
UMS	universal maintenance standards	Y.P.	yield point
USAF	U.S. Air Force	yr	year(s)
USCG	U.S. Coast Guard	Y.S.	yield strength; yield stress
USCS	U.S. Commercial Standard; U.S. Customary System	z	atomic number; figure of merit
USDA	U.S. Dept. of Agriculture	Zeit.	Zeitschrift
USFPL	U.S. Forest Products Laboratory	Δ	mass defect
USGS	U.S. Geologic Survey	μc	microcurie
USHEW	U.S. Dept. of Health, Education & Welfare	σ , s	Boltzmann constant
USN	U.S. Navy	μ	micro (= 10^{-6}), as in μ s
USP	U.S. Pharmacopoeia	μ m	micrometer (micron) = 10^{-6} m (10^{-3} mm)
USPHS	U.S. Public Health Service	Ω	ohm

MATHEMATICAL SIGNS AND SYMBOLS

+	plus (sign of addition)	+ ≠	not equal to
+	positive	$\rightarrow \doteq$	approaches
-	minus (sign of subtraction)	x	varies as
-	negative	00	infinity
± (∓)	plus or minus (minus or plus)	$\sqrt{-}$	square root of
×	times, by (multiplication sign)	³ √	cube root of
•	multiplied by	.:.	therefore
÷	sign of division		parallel to
/	divided by	O [] {}	parentheses, brackets and braces; quantities enclosed by them
:	ratio sign, divided by, is to		to be taken together in multiplying, dividing, etc.
::	equals, as (proportion)	\overline{AB}	length of line from A to B
<	less than	π	pi (= 3.14159 ⁺)
>	greater than	0	degrees
~	much less than	,	minutes
\gg	much greater than	"	seconds
=	equals	∠	angle
=	identical with	dx	differential of x
~	similar to	Δ	(delta) difference
~	approximately equals	Δx	increment of x
\cong	approximately equals, congruent	$\partial u/\partial x$	partial derivative of u with respect to x
≤	qual to or less than	ſ	integral of
≥	equal to or greater than		

xxiv SYMBOLS AND ABBREVIATIONS

\int_{a}^{a}		4!	factorial $4 = 4 \times 3 \times 2 \times 1$
	integral of, between limits a and b	x	absolute value of x
б	line integral around a closed path	x	first derivative of x with respect to time
Σ	(sigma) summation of	<i>X</i>	second derivative of x with respect to time
f(x), F(x)	functions of x	$\mathbf{A} \times \mathbf{B}$	vector product; magnitude of A times magnitude of B times
$\exp x = e^x$	[e = 2.71828 (base of natural, or Napierian, logarithms)]		sine of the angle from A to B ; $AB \sin \overline{AB}$
∇	del or nabla, vector differential operator	$\mathbf{A} \cdot \mathbf{B}$	scalar product; magnitude of A times magnitude of B times
∇^2	Laplacian operator		cosine of the angle from \mathbf{A} to \mathbf{B} ; $AB \cos AB$
£	Laplace operational symbol		